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Abstract  This study investigates the relationship between drivers’ electrodermal 
activity (EDA) and their eco-driving behaviours through real-time monitoring. 
Electrodermal activity, a physiological marker of sympathetic nervous system 
arousal, reflects emotional and cognitive states, providing a valuable window into 
drivers’ internal experiences. EDA and driving data were collected for 48 trips from 
10 different drivers. Cluster analysis and the Pearson correlation coefficient was 
used to uncover potential patterns between driver EDA and their driving behaviour 
as measured using a driving score. The results follow the Yerkes-Dodson Law. 
Driving performance increase with EDA arousal, but only to a point. The investiga-
tion has implications for enhancing road safety, as it contributes to our understand-
ing of how drivers’ emotional states influence their on-road performance. 
Additionally, it holds promise for developing innovative in-car systems that can 
adapt to drivers’ changing emotional states, promoting safer and more comfortable 
driving experiences. Ultimately, this study bridges the gap between psychophysiol-
ogy and transportation, shedding light on the often-overlooked emotional aspects of 
driving behaviour.
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Table 1  Paper nomenclature

Variable Definition

AccX Acceleration forwards or braking
AccY Acceleration side to side
AccZ Acceleration up and down
AccXPosi The ith positive acceleration recorded from the Geotab G09 device.
AccXNegi The ith negative acceleration (braking) recorded from the Geotab G09 device.
AccYPosi The ith right turn force recorded from the Geotab G09 device.
AccYNegi The ith left turn force recorded from the Geotab G09 device.
Brake The braking score.
C A self-reported “calm” mood.
CDC Centers for Disease Control
Driving 
Score

A weighted average of the speeding, acceleration, braking, right, and left 
cornering scores.

EDA Electrodermal Activity – The variation of electrical characteristics of the skin due 
to perspiration or sweat gland activity.

E4 Sensor The wristband, developed by Empatica, worn by drivers to record their EDA while 
driving. It has a sampling frequency of 4 Hz.

F A self-reported “fatigued” mood.
G09 Device The telematic device, developed by Geotab, used in the study to record driving 

data. It is plugged into the OBD II port of the drivers’ personal vehicle.
GPS Global Positioning System
H A self-reported “happy” mood.

LS
′ Length of the trip not spent speeding.

L Length of a trip.
Left The left cornering score.
Max EDA The maximum EDA.
Mean EDA The average EDA.
Med EDA The median EDA.
Mood 1 The self-reported mood prior to driving.
Mood 2 The self-reported mood during driving.
NAcc The total number of recorded acceleration events.
NBrk The total number of recorded negative acceleration (braking) events.
NLCrn The total number of recorded left turn events.
NRCrn The total number of recorded right turn events.
OBD II On-Board Diagnostics II – The second generation of on-board self-diagnostic 

equipment.
Right The right cornering score.
S A self-reported “stressed” mood.
Skew EDA The skewness of all EDA values.
SpdFreq The number of speeding events recorded by the telematic device.
Speed Speed score
US United States
Sd EDA The standard deviation of all EDA values.
μS microSiemens – Measures of skin conductance are expressed in units of 

microSiemens.
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1 � Introduction

A study performed by the Centers for Disease Control and Prevention (CDC) com-
pared the United States (U.S.) to 28 other high-income countries regarding road 
safety and found that the U.S. experienced more motor-vehicle deaths than any 
other country with the highest rate of motor-vehicle deaths per 100,000 population 
(Yellman & Sauber-Schatz, 2022). The report further states that motor vehicle inju-
ries are the leading cause of preventable death in the world, accounting for nearly 
1.3 million deaths. Aggressive driving behaviour is one of the main reasons for 
crash risk (Office of Traffic Safety, 2021).

The National Highway Traffic Safety Administration (NHTSA) defines aggres-
sive driving as “the operation of a vehicle in a manner that endangers or is likely to 
endanger persons or property” (Stuster, 2004). Aggressive driving is solely due to 
human decision-making and involves following too closely, driving at excessive 
speeds, weaving through traffic, and running stop lights and signs. In asset manage-
ment, accidents resulting from aggressive driving can lead to substantial costs, 
including vehicle repairs, medical expenses, legal fees, and increased insurance pre-
miums. Reducing aggressive driving, by supporting the driver, can help mitigate 
these costs and protect the financial health of the fleet.

Eco-driving, defined as an energy-efficient use of vehicles through less aggres-
sive driving style, has garnered significant interest in the literature for its reported 
benefits on reducing aggressive driving habits thus, potentially, increasing road 
safety. Since eco-driving depends on the driver making the decision to engage in an 
eco-driving style, it becomes imperative to comprehend the underlying factors that 
influence driver’s behaviour and performance.

In terms of the physiological state of the driver, fatigue is already known to 
impact safety since drivers’ reaction times, awareness of hazards, and ability to 
sustain attention all worsen (Meng et al., 2015). Driver stress has emerged as a sig-
nificant concern, directly impacting safety, operational efficiency, and driver well-
being. In a search of the Scopus database of “the relationship between driver’s 
emotional state and aggressive driving”, only five papers were found from 2006 to 
2022 with no studies that investigate the relationship between emotional arousal of 
the driver and aggressive driving using naturalistic driving data. The objective of 
this study is to investigate the relationship between drivers’ emotional arousal (mea-
sured using Electrodermal Activity) and their eco-driving score.

2 � Literature Review

Aggressive driving habits, such as rapid acceleration and frequent braking, consume 
more fuel and decrease fuel efficiency. By encouraging smoother driving behav-
iours, fleet managers can reduce fuel costs and environmental impact. Aggressive 
driving also places additional stress on vehicles, leading to increased wear and tear 
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on components such as brakes, tires, and engines. A reduction in aggressive driving 
can extend the lifespan of fleet vehicles, resulting in lower maintenance and replace-
ment costs.

Ecological driving (“Eco-Driving”) is a term used to describe “a driving behav-
ior (or a driving style) that aims at saving fuel and reducing harmful GHG emis-
sions” (Andrieu & Pierre, 2012; Fafoutellis et  al., 2020; Barkenbus, 2010). 
Eco-driving involves accelerating moderately, anticipating traffic flow and signals 
to avoid sudden starts and stops, maintaining an even driving pace, driving at or 
safely below the speed limit, and eliminating excessive idling (Barkenbus, 2010). 
The advantages of eco-driving go beyond CO2 reductions to include reducing the 
cost of driving to the individual and producing tangible and well-known safety ben-
efits (fewer accidents and traffic fatalities) (Barkenbus, 2010; Zarkadoula et  al., 
2007; Beusen et al., 2009). It is already established that fatigue negatively impacts 
driving ability (Al-Mekhlafi et al., 2020). Recent research investigates the role of 
emotions and personality traits in the occurrence of aggressive driving habits.

2.1 � Emotion and Aggressive Driving

Three related research aspects can be identified when studying emotions in the car: 
(1) the effect of emotions on aggressive driving, (2) the detection of emotions using 
psycho-physiological sensors, and (3) in-car responses to regulate and influence 
driver emotions (Hassib et al., 2019). Aggressive personality types tend to engage in 
more aggressive driving behaviour (Beanland et al., 2014; Alavi et al., 2017).

Primary driving tasks include all necessary tasks that control the movement of 
the vehicle such as steering, accelerating, braking, and speeding. These primary 
tasks are strongly related to safe driving and can be negatively impacted by negative 
emotions (Hassib et al., 2019).

Affective state changes in a person are always accompanied by significant physi-
ological responses such as blood flow, changes in heart rate, muscles, facial expres-
sions, and voice. According to Russell’s model, each affective state can be 
represented by two dimensions: arousal and valence (Russell, 1980). Arousal indi-
cates the level of a person’s involvement in reaction to a stimulus. Valence defines 
the positive or negative emotional state. The Yerkes-Dodson Law (Yerkes & Dodson, 
1908) and the inverted U-shape model provide theoretical foundations for under-
standing the complex interplay between stress and performance. These models pro-
pose an optimal stress zone where driver performance is at its peak.

A study by Eboli et al., 2017, used a questionnaire to investigate the relationship 
between driving style and drivers’ somatic, behavioural, and emotional conditions 
(Eboli et al., 2017). They found that a driver inclines toward a more cautious driving 
style when tired, sleepy, sick, or bored while driving. If the driver is gloomy, wor-
ried, nervous, or angry, they driver inclines towards a more aggressive driving style.

Another study by Ahmed et al., 2022, used an emotional intelligence (EI) survey 
and the Dula Dangerous Driving Index survey to analyse dangerous driving 
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behaviour among 615 non-commercial US drivers (Ahmed et al., 2022). They found 
significant associations between dangerous driving behaviours and EI. Specifically, 
higher EI scores engaged in less dangerous driving behaviours, resulting in fewer 
crashes and fatalities.

(Britt & Garrity, 2006) asked participants to recall a recent time when they expe-
rienced three different anger-provoking events when driving. They then rated their 
behaviours and emotions during the event, and their attributions for why the event 
occurred. Hostile and blame attributions predicted aggressive behaviour and anger.

In a study by Lee and Winston, a simulation was used to induce negative emo-
tional states in young drivers to examine the relationship between emotional states 
and driver reactions (Lee & Winston, 2016). Self-reported data were collected from 
33 young driver participants who reported their emotional states at four time points 
during the protocol. These data were then matched with vehicle control behaviours 
based on measures derived from the simulator. The simulated traffic situations 
resulted in emotional fluctuations over time, with a positive correlation between the 
magnitude of negative emotions and the number of unsafe behaviours.

An anonymous, web-based survey of 769 college students was conducted at a large 
East Coast university  to investigate the relationship between distress tolerance and 
risky and aggressive driving (Beck et al., 2014). The authors define distress tolerance 
as “the individual’s capability to experience and endure negative emotional states”. 
Driver participants self-reported their emotional states at four time points during the 
protocol. The authors found that, after controlling for age, gender, race, ethnicity, year 
in school, grade point average, and driving frequency, distress tolerance was signifi-
cantly inversely related to reported risky driving and aggressive driving.

Asset managers must consider the delicate balance between stress-induced 
arousal and optimal performance, as excessively high or low stress levels can lead 
to suboptimal driving behaviours. High levels of stress can impair a driver’s ability 
to focus, react quickly, and make sound decisions on the road. Stressed drivers may 
be more prone to accidents, endangering themselves, other road users, and the com-
pany’s assets. Paschalidis et al. (Paschalidis et al., 2019) developed a car-following 
model that explicitly accounts for the stress level of the driver and quantifies its 
impact on acceleration-deceleration decisions. They found that drivers with higher 
levels of stress (as manifested in the physiological responses) express similar char-
acteristics to the “aggressive” drivers used in some microsimulation tools. The abil-
ity to describe the behaviours of drivers, even before they may be consciously aware 
of their likely behaviours, will provide a significant advancement to the transporta-
tion infrastructure (Dehzangi & Williams, 2015).

2.2 � Wearable Sensors and Telematic Devices

Industry 4.0 aims to design machines to assist humans in being more efficient. It 
creates cyber-physical systems, which represent tight interaction and coordination 
between computational and physical resources within a smart factory (Hermawati 
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& Lawson, 2019). Researchers have identified eight categories in which Industry 
4.0 technologies can assist operators in human-cyber physical systems: (1) opera-
tors and powered exoskeletons, (2) operators and augmented reality, (3) operators 
and virtual reality, (4) operators and wearable trackers, (5) operators and social 
networks, (6) operators and collaborative robots, (7) operators and big data analyt-
ics, and (8) operators and intelligent personal assistants (Romero et al., 2016). This 
work shows an application of the fourth category to monitor driver stress while 
driving using wearable sensors, telematics, and data insights.

Stress is a dynamic process that reflects the brain’s response to internal and 
external factors (Butler, 1993) and is defined as “a reaction from a calm state to an 
excited state for the purpose of preserving the integrity of the organism” (Healey & 
Picard, 2005). It is linked to impaired decision-making capabilities (Baddeley, 
2000), decreased situational awareness, and degraded performance, which can 
impair driving ability. Stress is measured via cortisol levels (Hellhammer et  al., 
2009) or via self-reports such as the Perceived Stress Scale (PSS)  (Cohen et al.,  
1983). These methods cannot be used to measure stress continuously for an extended 
period and sometimes require a person to go to a clinician or psychologist (Mishra 
et al., 2020).

Recent improvements in sensing capabilities and wearable sensors (E4 Empatica 
device) have enabled continuous detection and monitoring of stress in several con-
ditions: controlled, semi-controlled, and free-living conditions  (Gjoreski et al.,  
2016; Mishra et al., 2018). One study has shown student pilots to have high EDA 
values during highly demanding tasks (Vallès-Català et al., 2021), as highly demand-
ing tasks put extra pressure on them. Another study used wearable sensors to mea-
sure electroencephalography/electromyography (EEG/EMG) and heart rate to 
evaluate driving performance while driving under stressful conditions (Hassib et al., 
2019). In addition to achieving an accuracy of 78.9% for classifying valence and 
68.7% for arousal, the researchers observed enhanced driving performance when 
ambient lighting was introduced to calm the drivers. This indicates that wearable 
sensors can be used to predict emotional arousal accurately.

The E4 Empatica wristband, which includes an electrodermal activity (EDA) 
sensor, will be used to collect the EDA values of the participants while driving. It is 
an innocuous device designed to acquire information in real time and continuously 
throughout daily activities.

The goal of this study is to investigate whether drivers drive worse when stressed. 
This is an observational study in which drivers wear an Empatica E4 wristband with 
a telematic device plugged into the On-Board Diagnostics (OBD II) port of their 
personal vehicle while driving. Their eco-driving performance is measured using a 
driving score (T. Seecharan, 2022). A survey was used to obtain the drivers’ self-
reported assessments of their moods. Descriptive statistics are used to search for 
patterns between (1) the drivers’ self-reported moods and their driving scores and 
(2) the drivers’ raw EDA and their driving scores.
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2.3 � Summary

Related work shows that emotions can impact driving performance. Eco-driving can 
potentially improve road safety by reducing hard acceleration, hard braking, and 
speeding. Researchers have investigated the use of physiological sensors to under-
stand driver emotions. However, limited research investigates the relationship 
between EDA and driving performance and none investigate the relationship 
between EDA and eco-driving performance. In this work, wearable sensors are used 
to observe the relationship between drivers’ EDA and their eco-driving 
performance.

3 � Methodology

Analysing EDA and eco-driving involves a combination of data collection, process-
ing, and interpretation. A general outline of the steps involved in this analysis is as 
follows:

3.1 � Data Collection

Driving Behaviour Data: To analyse driving behaviour, data can be collected through 
various sources, such as vehicle telematics, GPS devices, accelerometers, or smart-
phone apps. The Geotab G09 device, plugged into the drivers’ on-board diagnostics 
(OBD II) port, collected speed, acceleration, and braking patterns.

	1.	 EDA Data: Electrodermal activity measures electrical conductance on the skin’s 
surface, commonly known as skin conductance or galvanic skin response. The 
Empatica E4 device was used to collect EDA data from the drivers.

	2.	 Data Synchronization - The EDA data and driving behaviour data must be syn-
chronized correctly so that both datasets can be analysed in relation to each 
other. In the Geotab cloud, trip start and end dates along with trip lengths were 
recorded. These data were matched to the EDA timestamp.

	3.	 Preprocessing: Trips less than 5 miles in length were removed, and any EDA 
data that were abnormally high were removed. For one driver, there was a trip in 
which their EDA was in the range of 30 μS. This was abnormally high for this 
driver and was removed from the analyses. Driving data, EDA data, and survey 
responses that matched in terms of trip date and duration were retained for 
analysis.

	4.	 EDA Analysis – This work uses the raw EDA data in the analysis. Descriptive 
statistics for the EDA recorded for each trip for each driver were calculated 
including mean EDA, standard deviation of the EDA (sd EDA), median EDA 
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(Med EDA), maximum EDA value (Max EDA), and skewness of the EDA (skew 
EDA). The independent variable in this study was mean EDA.

	5.	 Eco-Driving Behaviour Analysis – Eco-driving behaviour is quantified using a 
“driving score”. Metrics to calculate this driving score are harsh acceleration, 
harsh braking, sharp turns, and excessive speed. This is the dependent variable in 
the study.

	6.	 Correlation and Patterns - The correlation between mean EDA and driving score 
was examined. Hierarchical clustering was used to create separable clusters and 
observe differences in mean EDA, median EDA and driving score between 
clusters.

	7.	 Interpretation – The results were interpreted, and conclusions about the connec-
tion between emotional arousal (EDA) and eco-driving behaviour were drawn. 
The implications of the findings for improving road safety, driver behaviour, and 
potential interventions were considered.

3.2 � Participants

This paper presents the results from ten drivers recruited from the undergraduate 
student population at the University of Minnesota Duluth. Drivers must hold a valid 
driver’s license and valid vehicle insurance to be included in the study. They were 
asked to record their EDA and driving data for five trips of at least five miles in 
length. Drivers were also asked to record their mood via a survey. Driving data were 
collected using the Geotab G09 telematics device plugged into the on-board diag-
nostics port of the drivers’ personal vehicle. The drivers wore an E4 Empatica 
device while driving to record their EDA data. The E4 sensor and G09 device are 
shown in Fig. 1.

Driving data from the G09 device were downloaded from Geotab’s cloud storage 
and analysed using R. The participants were also asked to complete a short survey 
after each driving session. The survey questions are shown below. This survey 
assists in matching EDA data with vehicle engine data.

The EDA from the Empatica E4 was measured with dry electrodes that detect 
changes in the electrical conductivity of the skin. It sampled at a frequency of 4 Hz, 

Fig. 1  E4 wristband (left) and G09 telematic device (right)
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and data were measured in microSiemens (μS). The Empatica E4 is a wearable sen-
sor worn on the wrist that is used to record physiological signals. It offers two 
modes of recording: (1) real-time via an app or (2) locally stored data on the device. 
This work used the real-time mode of recording. After finishing the real-time record-
ing, the data were transferred to Empatica Connect via a Wi-Fi internet connection. 
On Empatica Connect, the E4 data can be visualized, deleted, or downloaded. 
Empatica offers physiological signals in raw format (e.g., EDA, blood volume 
pulse, temperature, and movement) but offers no tools for signal analyses.

3.3 � Trip Survey

	1.	 Participant ID?
	2.	 Trip Date and Time?
	3.	 Which word best describes your mood before your trip started?

	 a)	 Happy
	 b)	 Calm
	 c)	 Stressed
	 d)	 Fatigued
	 e)	 Angry

	4.	 Which word best describes your mood during your trip?

	 a)	 Happy
	 b)	 Calm
	 c)	 Stressed
	 d)	 Fatigued
	 e)	 Angry

	5.	 Please select which of the following events happened while you were driving.

	 a)	 Sudden braking to avoid a pedestrian/cyclist/car
	 b)	 Hostile behaviour from another driver
	 c)	 Accident
	 d)	 Heavy traffic
	 e)	 None of the above (uneventful)

3.4 � Driving Score

The telematic device records GPS and engine data for each driver. The engine data 
include acceleration forwards and braking (AccX), acceleration side to side (AccY), 
acceleration up and down (AccZ), GPS location, trip distance and number of times 
the driver “speeds” along with the distance and time spent speeding. Acceleration 
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data are recorded at small increments in time, as shown in Table 2. For example, in 
the third row of Table 2, for the driver identified as “BB”, at 2:34 pm in their first 
recorded trip, a braking event was recorded at −2.30 m/s2.

Speeding, on the other hand, is a user-defined “rule” within the portal. A sample 
speeding report is shown in Table 3. For example, for the driver identified as “BB”, 
during their 5th trip, at 2:50 pm, the driver was speeding for 0.6879 miles.

The driving score penalizes higher levels of acceleration, braking, cornering and 
speeding (T. S. Seecharan, 2021). To calculate the driving score, three levels were 
created for acceleration, braking and cornering to incorporate mid-range driving. 
Thresholds were chosen based on previous research on the effect of hard accelera-
tion on vehicle fuel economy and passenger safety (Boodlal & Chiang, 2014). A 
speeding event for a driver depends on the posted speed limit of the road; therefore, 
a mid-range level for speeding was not designed. Instead, the trip length was 
recorded along with the length of time spent speeding.

Telematic devices collect continuous driving data and report them as discrete 
data at small time increments. In a trip – defined as from when the driver starts the 
car, drives, and then turns off the car –acceleration, braking, left cornering, right 
cornering and car speed are discrete values. Each discrete recording of acceleration, 
braking, left cornering, or right cornering is termed an “event”. Each positive accel-
eration event is defined as AccXPosi, each negative acceleration event is AccXNegi, 
each right turn event is AccYNegi and each left turn event is AccYPosi. In one trip, 
depending on the length, there are many of these events. The scoring system for 

Table 2  Sample acceleration report

DriverID TripID time description value

BB 1 2:34:56 PM AccX 0
BB 1 2:34:56 PM AccY 0
BB 1 2:34:56 PM AccY −2.30
BB 1 2:35:02 PM AccX 0
BB 1 2:35:02 PM AccY 0
BB 1 2:35:39 PM AccX 0
BB 1 2:35:39 PM AccY 0
BB 1 2:35:39 PM AccX 2.48
BB 1 2:35:42 PM AccX 0
BB 1 2:36:05 PM AccX 0
BB 1 2:36:05 PM AccY 0
BB 1 2:36:06 PM AccY −2.83

Table 3  Speeding distance recorded for driver “BB”

DriverID TripID time Distance (miles)

BB 5 14:50:53 0.688
BB 5 14:53:40 0.592
BB 5 14:54:30 1.28
BB 5 14:56:50 0.495
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each metric is shown in Table 4. The thresholds were chosen from GPS tracking 
companies’ websites (linxup, n.d.; Broughall, 2020).

The value of the event is checked against the threshold. For acceleration, brak-
ing, left cornering, and right cornering, each event is assigned a value of 0, 1, or 2 
depending on its comparison to the thresholds. Using these values, the acceleration, 
braking, right cornering, and left cornering scores are calculated using Eqs. (1), (2), 
(3), and (4), respectively.
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In one trip, there will be a total number of acceleration events labelled (“NAcc”); a 
total number of braking events labelled (“NBrk”), a total number of right turn events 
labelled (“NRCrn”) and a total number of left turn events labelled (“NLCrn”). As 
described above, each acceleration event, AccXPosi,is assigned 0, 1 or 2 depending 
on the range in which the event falls. For example, an acceleration event of 2.83 m/
s2 is considered “Soft” and assigned a value of two. The assigned values for all these 
acceleration events are then summed ( �

�

NAcc

i

iAccXPos
1

). The best possible 

Table 4  Scoring system for the driving score

Metric Range Score Level

AccXPosi AccXi > 3.83ms2 0 Hard
2.83ms2 < AccXi ≤ 3.83ms2 1 Medium
0 < AccXi ≤ 2.83ms2 2 Soft

AccXNegi AccXi <  − 3.73ms2 0 Hard
−2.73ms2 ≤ AccXi ≤  − 3.73ms2 1 Medium
−2.73ms2 < AccXi < 0 2 Soft

AccYNegi AccYi <  − 3.75ms2 0 Hard
−3.75ms2 ≤ AccYi <  − 1.875ms2 1 Medium
−1.875ms2 ≤ AccYi ≤ 0 2 Soft

AccYPosi AccYi > 3.75ms2 0 Hard
1.875ms2 < AccYi ≤ 3.75ms2 1 Medium
0 < AccYi ≤ 1.875ms2 2 Soft
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acceleration score will be the case in which all acceleration events are soft 
(2 × NAcc). For a trip containing 10 acceleration events, the best possible score a 
driver can obtain would be 20 if all the acceleration events are soft. The same pro-
cess is repeated for braking, right cornering, and left cornering.

In the case of speeding, the driver’s road speed is compared with the road’s 
posted speed limit using the GPS capability of the G09 device. Since data were 
recorded on roads within the United States, speed is communicated in terms of 
miles per hour. Within a trip, the telematic device records the number of times the 
driver was found speeding (SpdFreq) (if speed >8 mph over the posted speed limit) 
and the distance spent speeding. A speeding score is then the length of the trip not 
spent speeding divided by the total trip length, as shown in Eq. (5).

	
Speed

L

L
S� �
�

10
	

(5)

where LS
′  is the length of a trip not spent speeding and L is the length of a trip.

Finally, the driving score is the weighted average of the individual scores as 
shown in Eq. (6).
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This type of weighted score was developed to: (1) be easy for the drivers to under-
stand and (2) give more weight to metrics that are contributors to road traffic acci-
dents. In addition to seeing a driving score, drivers see a breakdown of their scores 
on a radar plot. An example is shown in the example.

4 � Results

Table 5 shows, for each driver, the trip driving score along with their self-reported 
mood pre- and posttrip. From Table 5, the data in the column titled “Mood 1” rep-
resents their pretrip moods, and the data in the column titled “Mood 2” represents 
their posttrip moods. The possible moods were “C” – calm; “F” – fatigued; “H” – 
happy; and “S” – stressed. For ten drivers, 48 trips of complete data were recorded.

4.1 � EDA Data

Although a survey can gain some insight into the self-reported emotional states of 
drivers, it becomes tedious for drivers to complete a survey prior to each driving 
trip. Their EDA attempts were recorded to gain insight into their physiological 
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states while driving. From Fig. 2, the EDA varies by driver and by trip. The driver 
CB stated being calm for all four recorded trips. However, Fig. 2 shows consider-
able variability in the distribution of the driver’s recorded EDA. The EDA distribu-
tion was lowest for Trip3 and highest for Trip2. Interestingly, CB’s driving score 
was highest during Trip3 and lowest during Trip2. Sample boxplots for participants 
DH and DK are also shown in Fig. 2.

Overall, the average driving score was 8.75, median  =  8.63, standard devia-
tion = 0.445, and interquartile range = 0.565. When drivers reported being stressed 
prior to driving, the average score = 8.67; if the drivers were calm, the average driv-
ing score  =  8.72. This shows some preliminary evidence that when drivers are 
“Stressed” prior to driving, their scores are lower than when they are “Calm”. For 
drivers who reported feeling stressed while driving (Mood 2 = “S”), the average 
driving score = 8.67, and if they reported feeling calm while driving (Mood 2 = “C”), 
the average driving score = 8.85. Again, this suggests that drivers who reported feel-
ing calm exhibited more eco-driving habits.

Figure 3 shows the distribution of driving scores by Mood 2. For drivers in the 
“C” state, the data are skewed towards higher driving scores meaning that most of 
the driving scores are toward the left of the mean. When drivers self-reported being 
stressed, “S”, the upper quantile is smaller than the lower quantile, and the data are 
skewed to the left, with lower driving  scores pulling the mean to less than the 
median. This suggests that a driving score of 10 is more likely when the drivers are 
calm. Additionally, the median of the driving scores in the “C” state is lower than 
when drivers reported being stressed.

Figure 4 shows a plot of the driving score and the average EDA, and Table 6 
shows the correlations of the driving score with the EDA descriptive metrics. 
Interestingly, all correlations are positive, but they are all small. The correlations 
between the driving score and sdEDA, the driving score and MaxEDA, and the driv-
ing score and Skew are all close to zero, indicating no relationship. The correlation 
between the driving score and mean EDA is greater but still very small. Therefore, 
given the data, there is no statistically significant evidence to show that when the 
EDA descriptive statistics increase, the driving score increases.

4.2 � Observations by Driver

All drivers are unique, and thus, their EDA activities vary. It is difficult to assign 
an EDA value or range that identifies a “stressed” state for all drivers. For this 
reason, driving performance is observed for each driver. Table 7 provides a brief 
description of the observations by driver. The analysis of driver experiences and 
behaviours during specific trips, considering driving scores, EDA, and reported 
moods, reveals intriguing patterns. Notably, drivers who achieved their best driv-
ing scores often exhibited EDA characteristics aligned with their reported emo-
tional states. For instance, drivers with calm moods tended to record lower average 
EDA, while those with stress reported higher EDA. Interestingly, the direction of 

The Role of Eco-Driving and Wearable Sensors in Industry 4.0
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Fig. 2  Boxplots of the EDA distribution for three drivers: (a) CB, (b) DH, and (c) DK
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Fig. 3  Distribution of driving scores by mood 2

Fig. 4  Driving Score and mean EDA for all trips

Table 6  Correlation matrix

Mean EDA Sd EDA Med EDA Max EDA Skew EDA

Driving score 0.1607 0.0318 0.1493 0.0377 0.0366
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Table 7  Intra-driver observations

Driver Comments

CB This driver recorded the best driving score during trip 3. The driver said they felt calm 
during this trip. This seems to be reflected in their EDA since the mean was the lowest.

DH The best driving score was recorded for trip 3. The mean EDA was second lowest with 
the greatest positive skew meaning most EDA was to the left of the mean.

DK The best driving score was recorded for trip 4. The driver reported feeling stressed, and 
their mean EDA was the second highest. Skewness was most negative for trip 4, 
meaning most EDA was to the right of the mean.

GT The best driving score was recorded for trip 3. The mean EDA was in the middle.
WW The best driving score was recorded for trip 3. This was also the drivers lowest average 

EDA with a positive skew. This driver drove best when their EDA distribution was 
lowest.

JL The best driving score was recorded for trip 3. The mean EDA was the second lowest, 
but the skew was the most negative meaning the distribution of EDA was to the right of 
the mean.

JV The best driving score was recorded for trip 2. Their mean EDA was the second highest.
BB The best driving score was recorded for trip 5. Their mean EDA was the second highest 

during this trip.
WM The best driving score was recorded for trip 5. Their mean EDA was the second lowest.
AOE The best driving score was recorded for trip 5. Their mean EDA was the second highest.

skewness in EDA distributions also seemed to correspond to driving performance, 
with positive skew linked to better performance for some. These findings under-
score the potential interplay between physiological responses, emotional states, 
and driving outcomes, suggesting avenues for deeper investigations into the com-
plex relationships among human emotions, physiological signals, and driving 
performance.

4.3 � Cluster Analysis

Hierarchical clustering with the “ward.D2” linkage method is used to search for 
patterns within clusters. Ward’s method minimizes the total within-cluster variance. 
Ward D2 considers the distance between the centroids of the clusters being merged 
as opposed to the Ward D methods that consider the distance between the individual 
data points and the mean of the merged cluster. Empirically, Ward D2 tends to pro-
duce more compact and spherical clusters, while Ward D may be more sensitive to 
outliers. Figure 5 shows the generated dendrogram.

From Fig. 6, the Mean EDA and Median EDA show separable clusters. There is 
a difference in the mean EDA and median EDA between clusters. Cluster 2 has the 
highest mean and median EDA distribution. The median of the driving scores in 
Cluster 2 is very close to Cluster 3. However, because of the shape of the boxplot, 
many of the driving scores fall to the right of the median. Cluster 1 seems to have 
the “best” distribution of driving scores, in which the scores are generally higher 
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Fig. 5  Dendrogram from cluster analysis

than those of the other two clusters. Interestingly, the EDA values are not the lowest 
and not the highest. This indicates some evidence that driving scores are best when 
the drivers’ EDA is not low but not too high.

Fig. 6  For each cluster, the above boxplots compare the driving score, mean EDA, and median EDA

The Role of Eco-Driving and Wearable Sensors in Industry 4.0
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5 � Discussion

This paper presented a pilot study to investigate the relationship between EDA and 
eco-driving performance. For fleet managers, stress-related issues can results in 
increased costs for companies due to accidents, increased downtime, and higher 
rates of absenteeism. By addressing drivers’ stress levels, fleet managers can miti-
gate these financial burdens. Driver stress can negatively impact the physical and 
mental health of employees. Chronic stress can lead to various health issues, includ-
ing hypertension, anxiety, and depression. Caring for drivers’ well-being fosters a 
healthier and more motivated workforce. Stressed drivers are more likely to violate 
traffic laws and regulations, potentially leading to legal consequences and penalties 
for the company. A supportive work environment that prioritizes drivers’ well-being 
can improve employee satisfaction and retention rates. Happy and supported drivers 
are more likely to stay with the company long-term. Fleet companies are responsi-
ble for their drivers’ actions on the road. High stress levels may lead to aggressive 
driving behaviours or customer service issues, which can damage the company’s 
reputation and lead to a loss of clients.

Ten drivers wore an Empatica E4 wristband while they completed 5 trips of at 
least 5 miles in length. The Geotab G09 telematics device was used to record engine 
data, including acceleration forward, braking and acceleration side to side. It also 
has GPS capability to identify when speeding occurs. An eco-driving score was 
used to measure their level of eco-driving. Lower scores indicate fewer eco-driving 
behaviours.

The highest observed correlation was between the driving score and mean EDA, 
but this correlation was not statistically significant. Although positive – higher driv-
ing scores indicated higher mean EDA – this correlation was not statistically signifi-
cant. A cluster analysis was also performed to look for patterns within clusters. The 
cluster dendrogram shows that three separable clusters can be achieved. From 
Fig. 6, the driving scores in cluster 1 had the highest mean and distribution towards 
higher scores than the other two clusters. Interestingly, this cluster contained neither 
the highest nor lowest mean and median EDA. This indicates that the best driving 
performance for the 48 recorded trips occurred when the drivers were more emo-
tionally aroused. This finding supports the Yerkes-Dodson Law that performance 
increases with physiological or mental arousal, but only up to a point. When levels 
of arousal become too high, performance decreases.

5.1 � Study Limitations, Strengths, and Future Work

The strength of this study is that it uses naturalistic driving and wearable sensors to 
observe the eco-driving behaviours of drivers. The E4 sensor and G09 device are 
both minimally invasive. The preliminary results indicate the need for fleet 
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managers to pay attention to the mental health and stress levels of their drivers. 
In-vehicle systems to monitor drivers’ physiological states while driving.

One of the study limitations is the use of raw EDA data. Another way of analys-
ing skin conductance is to separate it into its phase and tonic components. The 
phasic component, also known as the skin conductance response (SCR), is a rela-
tively fast variation in skin conductance, while the tonic component, also known as 
the skin conductance level, reflects slow variation (Benedek & Kaernbach, 2010; 
Imtiaz et al., 2020). In this study, the phasic component is more significant, as the 
participant could experience abrupt situations, e.g., sudden braking and sudden 
accidents. A future study will decompose the EDA signal into its phasic and tonic 
components and analyse eco-driving performance as the drivers’ phasic component 
changes. A “true baseline”, which is the driver’s EDA during a calm emotional state, 
was not recorded in this study. For a future study that uses phasic data, a true base-
line is required. In addition to the small sample size, this study limits the sample to 
young drivers. Future studies can investigate whether similar patterns are observed 
in different age groups and for a larger sample size.

Vehicle emissions are a major contributor to greenhouse gas (GHG) emissions 
worldwide. In 2021, the transportation sector was the largest source of GHG emis-
sions in the United States (U.S.) (United States Environmental Protection Agency, 
2022). A future study can investigate the relationship between driver’s emotional 
state and their decisions toward sustainable transportation.

Understanding driver stress empowers asset managers to create safer, more effi-
cient, and driver-centric operations. By integrating stress awareness into asset man-
agement practices, the transportation industry can achieve higher levels of 
performance, safety, and driver satisfaction.

6 � Conclusion

In this work, the relationship between driver emotional arousal and eco-driving 
behaviours using naturalistic driving behaviour was investigated. Drivers wore a 
wristband sensor to record their EDA while driving. An eco-driving score was built 
using engine data recorded using a telematic device plugged into the OBD II port of 
drivers’ personal vehicle. This pilot study recorded 48 trips of five miles in length 
from 10 drivers. The results follow the Yerkes-Dodson law. The drivers’ best driving 
scores were observed when they were emotionally aroused but not as the highest 
level. These results point to the possibility that attention must be given to the emo-
tional state of drivers before they drive. Future work will increase the sample size, 
incorporate different routes, increase the age range.

Ethics Approval  This study received approval from the Institutional Review Board (IRB) with 
study code STUDY00015895.
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