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Preface

Welcome to the third volume of the Springer EAMR Series – a prestigious collec-
tion under the auspices of the International Society of Engineering Asset 
Management (ISEAM). This volume, titled Advances in Asset Management: 
Strategies, Technologies, and Industry Applications, is a testament to the ongoing 
commitment of ISEAM and Springer to provide a platform for the dissemination of 
cutting-edge research in the field of engineering asset management. This compila-
tion, meticulously elaborated, brings together selected papers that initially appeared 
in the proceedings of the 16th World Congress on Engineering Asset Management 
(WCEAM). Recognizing the value and significance of these contributions, the 
authors were invited to extend and enhance their papers, resulting in the comprehen-
sive and enriched content you hold in your hands. We express our sincere gratitude 
to the authors for their dedication and support to ISEAM and the Springer EAMR 
Series. Their commitment has played a pivotal role in the continued success of this 
collaborative endeavor. As we embark on this journey through the realms of asset 
management, we invite readers to explore the nuanced discussions, innovative strat-
egies, and practical insights presented in this volume, each contributing to the over-
arching goal of advancing the field and fostering excellence in asset management 
practices worldwide.

The content of the book is divided in the following four parts:

�Part I: Risk Management and Qualitative Analysis

In the opening part, we lay the foundation with an exploration of risk management 
principles and qualitative analysis. The Risk Qualitative Criticality Matrix (RQCM) 
sets the stage, introducing readers to the fundamental concepts of risk assessment. 
Additionally, we delve into the critical factors influencing the quality of network 
services in emerging telecom markets, offering valuable insights into the complex 
interplay of risks in dynamic operating environments.
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�Part II: Technology and Innovation in Asset Management

Part II focuses on the integration of technology and innovation in asset manage-
ment. “A Conceptual Implementation Process for Smart Maintenance Technologies” 
provides a roadmap for leveraging cutting-edge solutions. Complementing this, “A 
Framework for Assessing Emerging Technology Risks in Industrial Asset” explores 
the challenges and opportunities presented by emerging technologies in industrial 
settings.

�Part III: Asset Health and Maintenance Strategies

This section delves into strategies for maintaining asset health. “Challenges on an 
Asset Health Index Calculation” guides readers through the complexities of calcu-
lating and maintaining an Asset Health Index, while “Determination of the Exact 
Economic Time for the Component Replacement Using Condition-Based 
Maintenance” navigates the economic considerations of optimal replacement tim-
ing. The general bases for hierarchy definition for digital assets in the railway con-
text are also explored.

�Part IV: Industry-Specific Asset Management 
and Other Considerations

The final part consolidates industry-specific insights and additional considerations. 
The audit models take center stage, with “Audit Models for Asset Management, 
Maintenance and Reliability Processes: A Case Study Applied to the Desalination 
Plant” and “Audit Model for Asset Management, Maintenance and Reliability 
Processes: A Case Study Applied to Pulp Mill Sector”. These studies provide practi-
cal applications of audit models, offering real-world examples of their effectiveness. 
Additionally, “The Role of Eco-Driving and Wearable Sensors in Industry 4.0” 
expands the discussion to the role of sustainability and emerging technologies in the 
future of asset management.

This book serves as a comprehensive guide for professionals, researchers, and 
students seeking a deep understanding of contemporary asset management prac-
tices. Each part unfolds a new dimension, collectively contributing to the ongoing 
dialogue on how organizations can optimize their assets in an ever-evolving 

Preface
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landscape. We invite you to explore the rich tapestry of ideas and insights presented 
in Advances in Asset Management: Strategies, Technologies, and Industry 
Applications.

Seville, Spain�   Adolfo Crespo Márquez
� 
Duluth, MN, USA�   Turuna S. Seecharan
 � 
Trois-Rivières, QC, Canada�   Georges Abdoul-Nour
 � 
Hatfield, Pretoria, Gauteng, South Africa�   Joe Amadi-Echendu
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RQCM: Risk Qualitative Criticality 
Matrix. Case Study: Ophthalmic Lens 
Production Systems in Costa Rica
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Abstract  The use of prioritization analysis techniques allows identifying the level 
of criticality of physical assets and helps to manage resources: human, economic 
and technological in a more efficient way. In other words, the process of criticality 
analysis helps to determine the importance and consequences of the failures of pro-
ductive equipment in the operational context in which they perform. This article 
explains the basic theoretical aspects of the equipment prioritization analysis pro-
cess based on risk matrices (failure frequency and consequences); and the develop-
ment of the model named Risk Qualitative Criticality Matrix (RQCM). Finally, are 
presented and analysed the results of a case of application of the RQCM in the 
sector of ophthalmic lenses (new factory built in Costa Rica – PRATS Laboratory).

1 � Introduction

Taking as reference the 8-phase of Maintenance Management Model (MMM) (see 
Fig.  1), this section describes the hierarchical and criticality techniques and is 
related to phase 2 of the MMM (Crespo, 2007; Parra & Crespo, 2015). The tech-
niques of criticality analysis are tools that allow identifying and hierarchy for their 
importance the assets of an installation on which it is worth directing resources 
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Phase 1:
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maintenance
objectives, 
strategies and
responsibilities

Phase 2:
Equipment ranking
according to the
Importance of its
function

Phase 3:
Analysis of weak
points in high
impact equipment

Phase 4:
Preventive
Maintenance plans
design and resource
needs identification

Phase 5:
Maintenance
programing and
optimization in the
allocation of
resources

Phase 7:

Life cycle analysis
and the possible
equipment renewal

Phase 6:
Evaluation and
maintenance
execution
control

Phase 8:
Implementation of the
process of continuous
improvement and
adoption of new
tecnologies

Evaluation Efficiency

Effectiveness

Improvement
Information
Technologies
support
SAP PM, 
MAXIMO, 
MERIDIUM, 
MP7i, etc…..

Fig. 1  Maintenance management process model. Source: Crespo Márquez et al., 2009

(human, economic and technological). In other words, the process of criticality 
analysis (also known as risk assessment) helps to determine the importance and 
consequences of potential failure events of production assets within the operational 
context in which they work.

Criticality analysis is a great tool for identifying the priority of maintenance 
tasks. A good way to look at it is that maintenance task priority should be estab-
lished by the risk level that comes with not performing that task. Coincidently, 
this level of risk associated with not doing a particular maintenance task is deter-
mined by the consequences of the potential failure that could happen if the task is 
not completed and the likelihood of that failure occurring if the task is not done at 
a predetermined time. Once you have your criticality ratings, a criticality analysis 
can help you choose a proper risk mitigation strategy that you can apply to each 
asset. The term “critical” and the definition of criticality can have different inter-
pretations depending on the objective that is being treated by hierarchy (Crespo 
Márquez et al., 2009; Parra et al., 2021a). The objective of a critical analysis is to 
establish a method that serves as an instrument of aid in determining the hierarchy 
of processes, systems, and equipment of a complex production process, allowing 
subdividing the elements in sections that can be handled in a controlled and 

C. Parra et al.
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Fig. 2  Qualitative Risk 
Matrix (QRM). Source: 
Parra et al., 2020a, b

auditable manner. From this perspective there is a great diversity of possible cri-
teria that allow us to evaluate the criticality of an asset of production. Prioritization 
reasons may vary according to the opportunities and needs of the organization 
(Crespo, 2007). Below are some common criteria to be used within the hierarchy 
processes:

•	 Operational flexibility (availability of alternating function or backup)
•	 Effect in operational continuity /production capacity
•	 Effect in product quality
•	 Effect on health, safety and environment
•	 Costs of shutdown and maintenance
•	 Failure frequency/reliability
•	 Operating conditions (temperature, pressure, fluid, flow, speed) Flexibility/

Accessibility for inspection & Maintenance
•	 Requirements/Resource availability for inspection and maintenance
•	 Availability of spare parts

The risk assessment process starts by first identifying risk events. In turn, these risk 
events have two dimensions (Fig. 2):

–– The consequence of an event
–– The likelihood of an event

The overall level of risk is determined by the combination of these dimensions, 
frequently visualized in a risk matrix. We can consider risk to be the combination of 
the severity of consequences of an event, and the probability or likelihood of that 
event occurring. In other words, risk applies to an event – not to a physical item 
(such as an item of equipment). If we consider that Equipment criticality is the same 
as equipment failure risk, then we had better be clear about what the failure event(s) 
are that we are assessing.

RQCM: Risk Qualitative Criticality Matrix. Case Study…
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Even the recently published ISO 55000 standard for Asset Management does 
not define equipment criticality – although it does define a critical asset as being 
an “asset having potential to significantly impact on the achievement of the orga-
nization’s objectives”. ISO 55002 suggests that a “a risk ranking process can be 
used to determine which assets have a significant potential to impact on the 
achievement of the asset management objectives, i.e., which are the critical 
assets”. However, once again, assessing risk implies having to assess the likeli-
hood of an event, which in turn means that we need to be clear about exactly 
which events are being assessed, and how the probability and consequences asso-
ciated with multiple events on an equipment item are to be rolled up to an overall 
failure risk associated with that equipment (Parra et al., 2020a, b). Furthermore, if 
we accept that Equipment Criticality is somehow derived from equipment failure 
risks, it is not clear whether we are intended to assess the unmitigated or mitigated 
risks associated with each of these failures. In other words, are we supposed to 
assess the risks assuming that we do not have any controls in place to minimize 
the likelihood or consequences of those failure events (or that they are not effec-
tive) or are we expected to assume that the controls that we currently have in place 
are effective when assessing equipment failure risks? (Crespo Márquez et  al., 
2009; Parra et al., 2021a).

Qualitative hierarchizing techniques based on risk analysis are tools that can be 
used to determine the criticality of industrial business assets. These techniques 
allow us to evaluate and know the level of importance of industrial assets consid-
ered two factors: frequency and consequences of failures and help those involved 
in decision-making processes effectively guide resources: human, economic and 
technological in the areas of maintenance, operations, logistics, quality, safety, 
environment, etc. In other words, the process of criticality risk analysis (CRA), 
helps determine the importance of assets according to the consequences caused by 
failure events in the operational context in which they work (Parra et al., 2021a; 
Neurohr et al., 2021). The following article, takes as a specific reference, the risk-
based ranking proposal developed in Phase 2 of the MMM (Maintenance 
Management Model), presented in Fig. 1 (Crespo Márquez et al., 2009, Parra & 
Crespo, 2015, 2020b). The term “critical” and the definition of criticality may 
have different interpretations depending on the goal that is trying to hierarchize 
(Parra & Crespo, 2015, 2019; González-Prida et al., 2012; Parra et al., 2021b). 
The objective of a critical analysis is to establish a method that serves as a generic 
instrument in maintenance; and help to determine the hierarchy of plants, sys-
tems, equipment, components, etc., from a complex production process, allowing 
the elements in sections that they can be handled in a controlled and audit-
able manner.

Next, two criticality models are presented: QRM: Qualitative Risk Matrix, meth-
odology that represents the antecedent to the RQCM: Risk Qualitative Criticality 
Matrix, whose methodology is the one that will to be used in the case study of this 
chapter: Ophthalmic lens production systems in Costa Rica, both based on the risk 
assessment process and used to identify critical systems (Parra et  al., 2020a, 
b, 2021a).

C. Parra et al.
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2 � Criticality Model QRM: Qualitative Risk Matrix

Risk assessment is a fundamental process of the oil refining industry that allows to 
allocate priorities related to mitigation plans and the selection of maintenance strat-
egies. In industrial risk assessments, they combine the probability/frequency of a 
failure event with the impact that the fault event would cause (Parra et al., 2021b). 
The decision-making process behind the determination of the criticality of assets 
requires a hierarchical structure and the application of some mathematical models 
that allow weights and priorities of assets to be evaluated. In this case study, the 
steps to be followed to design the risk-based criticality model would be the follow-
ing (Parra et al., 2020a, b, 2021b):

	1.	 Define a scope and purpose for the criticality analysis based on the risk model
	2.	 Define the level of detail of the analysis (Taxonomy  – ISO 14224 Standard 

Reference)
	3.	 Establish criteria of importance of the risk model: ranges of failure frequencies 

and the factors of consequences to be evaluated (aligned with the business objec-
tives) within the risk model

	4.	 Select or develop a risk assessment method that allows hierarchy systems

The criticality model taken as a reference in this section, is called Qualitative Risk 
Matrix  – QRM, originally designed for the off-shore production assets of the 
Magallanes Oil Production ENAP SIPETROL and adapted to refinery plants (Parra 
& Crespo, 2015; Parra et al., 2021b). The proposed model is based on the estimation 
of the risk factor and adjusted to the needs of the catalytic cracking unit. The general 
expressions for the evaluation of the criticality model based on the risk factor are 
presented below:

Criticality Index

	 CI FF C� � 	 (1)

Where:
CI: Criticality Index
FF: �is the frequency factor or the number of faults in a given period (failures/year)
C: �is the general factor of consequences of the failure, this factor is divided into dif-

ferent subcategories:

Consequences

	
C OI OF MC HSEI� �� � � �

	
(2)

Where:
OI: Operational Impact
OF: Operational Flexibility
MC: Cost of Corrective Maintenance
HSEI: Health, Safety, and Environment Impact

RQCM: Risk Qualitative Criticality Matrix. Case Study…
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It is important to mention that the factors included in the QRM (frequencies and 
consequences) were proposed and endorsed by the management of the refinery 
under study. For the subcategories of consequences (C = (OI × OF) + MC + HSEI)), 
the percentage (%) of importance assigned to each factor of the consequences of the 
matrix are aligned with the objectives defined by the management of the Oil Refinery 
complex and were approved by the business owners. The importance weights of the 
consequences of the failures are presented below:

OI × OF = accounts for 80% of the total weight of the consequences (40/50 = 80%)
MC = accounts for 4% of the total weight of the consequences� (2/50 = 4%)
SEI = accounts for 16% of the total weight of the consequences� (8/50 = 16%)

Regarding the definition of the factors: frequency of failures (F) and consequences 
C = (OI × OF) + MC + HSEI)), the natural work team, established the intervals and 
the measuring scales to classify the different assets in the developed risk matrix  
(see Fig. 3 and Tables 1, 2, 3, 4 and 5).

Regarding the development of the risk matrix, it has the following 
configuration:

•	 Vertical axis (failure frequency): 4 rows, maximum value 4 points (scale: 1–4)
•	 Horizontal axis (failure consequences): 5 columns, maximum value: 50 points 

(scale of 1 to 50)

The values of the attributes for subcategories of consequences in the QRM are 
assigned so that they are aligned with the business objectives, and the approval of 
the management of the installation for its application in the analysis is required. 
Below are the weighting factors for frequency (F) and consequences (C) to be used 
for the evaluation of criticality in the risk matrix (Parra & Crespo, 2015).

The results of the evaluation of the above factors will allow defining the criticality 
of the assets evaluated in the QRM (see Fig. 3). The vertical axis is formed by 4 

F
R
E
Q
U
E
N
C
Y

CONSEQUENCES

Leyend

Critical

Semi Critical

Non Critical
Maximum Value: 200

Fig. 3  Qualitative Risk Matrix (QRM). Source: Parra et al., 2020a, b

C. Parra et al.
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Table 1  Classification and 
scale (FF): Failure 
frequencies

Failure frequency F Failures per year Value

Poor > 4 4
Average 3–4 3
Good 1–2 2
Excellent < 1 1

Source: Own elaboration

Table 2  Classification and scale OI: Operational impact

Operational Impact (OI) Consequences Scale

Extremely high Overall plant total loss of production 10
High Loss of production in a main process 8
Average Partial loss in a production process 5
Low Minor losses in a production process 3
No impact No impact in production 1

Source: Own elaboration

Table 3  Classification and scale OF: Operational flexibility

Operational flexibility 
(OF) Consequences Scale

High No backup / spare equipment nor alternate operational 
procedure available

4

Average Share backup / spare equipment available 2
Low Backup / spare equipment available 1

Source: Own elaboration

Table 4  Classification and 
MC scale: Cost of corrective 
maintenance

Maintenance Costs (MC) Consequences Scale

High C ≥ 20,000 US$ 2
Low C < 20,000 US$ 1

Source: Own elaboration

Table 5  HSEI classification and scale: health, safety and environment impact

SEI Consequences Scale

Extremely 
high

External and internal catastrophic environmental impact/loss of lives 
(death) and/or physical damage with permanent disabling injuries to 
people, requiring notification to public organizations

8

Very high Irreversible environmental impact/physical damage with temporary 
disabling injuries to people with loss of work time/ severe damage in 
facilities

6

Average Reversible environmental impact/physical damage with injuries that require 
immediate attention to people by health services, but without causing 
disability or loss of work time

4

Low Minor incidents and accidents (recoverable) 2
No impact No effect in people, environment, and facilities 1

Source: Own elaboration

RQCM: Risk Qualitative Criticality Matrix. Case Study…
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frequency levels of failures, while the horizontal axis is formed by five levels of 
failure consequences. To define the level of equipment criticality to be evaluated, a 
group of experts analyze the frequency factors and consequence of the failures and 
allocate rating to each factor according to the values shown in the previous tables. 
In summary, the definition of criticality is detailed below: First, the value assigned 
to the failure frequency (FF) is selected and the vertical position is defined in the 
matrix of the evaluated equipment, then the values are assigned to the 4 factors that 
make up the consequences of failures (C = (OI x OF) + MC + HSEI)), the result of 
Eq. 2 represents the value that will define the horizontal position of the equipment 
evaluated in the criticality matrix. Subsequently, the frequency value and the value 
obtained on the side of the consequences are taken and said values are intercepted 
in the risk matrix (Fig. 2). In this way, the level of criticality of the equipment evalu-
ated in the risk matrix is obtained (the risk matrix is divided into three regions rep-
resenting three levels of criticality):

NC: Non Critical
SC: Semi Critical
C: Critical

Here is a basic example of the use of the matrix:

–– Equipment to evaluate: M101

FF engine: 3 average (2–4 faults per year)

OI: 5 averages (partial loss of a production process)
OF: 2 averages (shared backup function)
MC: 2 High (C ≥ 20,000 US $)
HSEI: 4 averages (Reversible Environmental Impact/Minor Physical Damage)
Final position (values to intercept in the risk matrix):
Failure frequency (FF): 3
Consequence factor: = (OI x OF) + MC + HSEI = (5 x 2) + 2 + 4 = 16
Position in the criticality matrix: 3 vertical axis, 16 horizontal axis  =  SC (semi  

critical), (see Fig. 3)

3 � Criticality Model RQCM: Risk Qualitative 
Criticality Matrix

Risk assessment techniques can be used to prioritize equipment/assets and align main-
tenance actions to key business objectives (Parra et al., 2021a; Li & Wright, 2019). 
When carrying out, it ensures that maintenance actions are effective from the point of 
view of the main costs associated with maintenance and most importantly be efficient 
to minimize the consequences on safety, environment, production (Parra et al., 2021b; 
Junietz et al., 2018). In this case: Ophthalmic lens production systems in Costa Rica, 
the steps to be followed to design the risk-based criticality model are similar to the 
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QRM method presented in the previous section and it was adjusted to the needs of the 
industry of the ophthalmic sector (Parra & Crespo, 2018, 2019; Parra et al., 2021c):

	1.	 Define a scope and purpose for criticality analysis based on the risk model. This 
will be defined according to maintenance goals aligned to business goals and 
management.

	2.	 Define the level of detail of the analysis (Taxonomy Reference – ISO 14224 
Standard).

	3.	 Importance criteria of the risk model should be established: ranges of fault fre-
quencies (FF) and the consequence factors (C) to be evaluated (aligned with the 
business objectives) within the selected risk model.

	4.	 Selecting or developing a risk assessment method that allows the systems within 
the industry or department. The criticality model taken as a reference for this 
article is called Risk Qualitative Criticality Matrix (RQCM), originally it was 
designed for the off-shore production assets of the Magallanes area, ENAP 
Sipetrol, (ENAP Sipetrol, 2015, 2016; Crespo, 2007; Parra & Crespo, 2020a, b; 
Viveros-Gunckel et al., 2020).

For this case, the model of the qualitative criticality risk: RQCM, is used in the 
ophthalmic lens company, hoping to be the door to future risk assessments, direct-
ing the maintenance management of PRATS Laboratory towards continuous 
improvement with the proposed recommendations and the lessons learned. The 
RQCM (Parra et al., 2020a; Chiu et al., 2017), is a simple analysis process, which is 
supported in the concept of risk: frequency of a failure by the consequences, the 
expression used for hierarchy systems from the RQCM model is:

Total Criticality Risk

	 TCR FF C� � 	 (3)

Where,

•	 Total Criticality Risk
•	 Failure frequency (failure range in a certain time (failures/year)
•	 Consequences of failure events

Where the value of the consequences (C) is obtained from the following expression:

Estimation of Consequences

	
C PI OF MC HSE� �� � � �

	
(4)

Where,

•	 Impact on production factor
•	 Operational flexibility factor
•	 Maintenance costs factor
•	 Health, Safety and Environment factor

RQCM: Risk Qualitative Criticality Matrix. Case Study…
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The final expression of the TCR prioritization model will be as follows:

Total Criticality Risk

	
TCR FF PI OF MC HSE� � �� � � �� �

	
(5)

The weighted factors of each criteria are presented below (criteria were adjusted 
to the needs of the industry of the ophthalmic sector: PRATS Costa Rica laboratory)

•	 Fault frequency factor (FF) (scale 1–4)
4: Frequent: greater than 2 events per year
3: Average: 1 and 2 events per year
2: Good: Between 0.5 and an event a year
1: Excellent: Less than 0.5 events a year

•	 Factors of consequences or operational impact (PI) (scale 1–10)
10: Production losses greater than 75%
7: Production losses between 50% and 74%
5: Production losses between 25% and 49%
3: Production losses between 10% and 24%
1: Production losses less than 10%

•	 Impact by operational flexibility (OF) (scale 1–4)
4: No backup units are available to cover production, long repair times and compli-
cated logistics
2: There are backup units that they can be partially cover the impact of production, 
average repair times and logistics
1: It has standby, there is no affectation in the process

•	 Impact on maintenance costs (MC) (scale 1–2)
2: Repair costs, materials and labour exceeding 20,000 dollars
1: Repair costs, materials and labour less than 20,000 dollars

•	 Impact on Health, Safety and Environment (HSE) (Scale 1–8)
8: High risk of lives losses, serious health damage, higher environmental incident 
(Catastrophic) that exceeds the allowed limits
6: Average risk of loss of life, important damage to health, environmental incident 
of difficult restoration
3: Minimum risk of loss of life and health condition (recoverable in the short term) 
and/or minor environmental incident (controllable), easy-to-contain and 
repeated leakage
1: There is no risk of loss of life, no health condition, or environmental damage

The selection of the weighted factors is carried out in work meetings with the par-
ticipation of the different persons involved in the operational context of the asset in 
study (operations, maintenance, processes, safety and environment). To obtain the 
level of criticality of each equipment/business system, the total values of each of the 
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Non Crititcality Area (NC)

Medium Crititcality Area (MC)

Criticality Area (C)

Fig. 4  Equipment criticality matrix. Source: Parra et al., 2021a

main factors are taken: frequency and consequences of the failures and are located 
in the 4 × 5 criticality matrix (Fig. 4). The failure frequency value is located on the 
vertical axis and the consequence value is located on the horizontal axis (the final 
result of the consequence expression is taken: ((PI x OC) + CM + HSE calculated). 
The criticality matrix shown next, allows systems to be ranked in three areas (see 
Fig. 4):

•	 Area of Non-Critical systems (NC)
•	 Medium Criticality Systems Area (MC)
•	 Critical Systems Area (C)

The result of the equation is located in the matrix (Fig. 4) to determine which area 
the equipment under study is located. The maximum value of risk criticality that can 
be obtained is 200 points distributed in 3 possible levels of hierarchizing systems 
(critical, semi critical and not critical). With regard to the development of the risk 
matrix, it has the following configuration:

•	 Vertical axis (Failure Frequency): 4 rows, maximum value 4 points (scale: 1 to 4).
•	 Horizontal axis (Failure Consequences): 5 columns, maximum value: 50 points 

(scale: 1 to 50).

For subcategories of consequences (C = (PI x OF) + MC + HSE)), the percentage of 
importance assigned to each factor of the consequences, is aligned with the business 
objectives and they were approved by company management:

•	 PI × OF = represents 80% of the total weight of the consequences: (40/50 = 80%)
•	 MC = represents 4% of the total weight of the consequences:� (2/50 = 4%)
•	 HSE = represents 16% of the total weight of the consequences:� (8/50 = 16%)

RQCM: Risk Qualitative Criticality Matrix. Case Study…
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4 � Case Study: Application of the RQCM Model 
in Production Equipment of the PRATS Costa 
Rica Laboratory

The critical analysis was developed at the level of systems (level 5, according to 
ISO 14224, see Fig. 5) in the new laboratory of Grupo PRATS. Specifically, were 
evaluated the 12 more relevant systems that are included as technical locations in 
the hierarchical structure of the laboratory (Orders Workshop (TE), Treatments 
(TRA), Control (CT) and Beveling and assembly (BM)) (Rodríguez, 2021). It is 
important to make note that the application of the RQCM model can be performed 
at different hierarchical levels as shown in the pyramid in Fig. 5 (plant, processes, 
systems, equipment, components, etc.), and the results will be specific for the 
study carried out. For example, the criticality of two similar systems in the same 
industry may be different since risk factors for both systems may vary or have a 
different relative importance depending on the characteristics of the operational 
context in which each system it is operating (Parra et al., 2020b). In this study, the 
natural work team was composed of five members, including the facilitator and 
the people of the following departments: technical management, maintenance 

(9)
Part

(8)
Component / Maintainable Item

(7)
Subunit

(6)
Unit equipment

(5)
Section / System

(4)
Plant / Unit

(4)
Facility

(2)
Business category

(1)
Industry

Fig. 5  Proposed taxonomy for the hierarchization of physical assets using the different levels of 
ISO 14224. Source: Parra et al., 2021a
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management, operations management, operators trained in Brazil and Italy with 
extensive experience of equipment and maintenance.

4.1 � Description of the Productive Process 
and Operational Context

PRATS Laboratory of Costa Rica, specializes in the production of ophthalmic 
lenses and sunglasses, together with their respective treatments (against scratch, 
reflection, glare; mirrored, tinted, among others). This laboratory produces 1000 
daily lenses between finished and semi-finished (equipment availability 
required = 88%). This is proposed for a good start of the factory and a competitive 
insertion in the Costa Rican market. PRATS manufacturing process is divided in the 
following areas:

•	 Orders Workshop (TE)
•	 Treatments (TRA)
•	 Control (CT)
•	 Beveling and assembly (BM)

Simplified manufacturing process (see Fig. 6):

	1.	 Choice of the necessary block and tools: the most suitable block is chosen, its 
material (resins CR-39, MR-8 or polycarbonate) and the molds for the tuning 
and polishing of each surface.

	2.	 Generation of the anterior surface of the lens: consists of four stages: clamping, 
generation, tuning and polishing.

	3.	 Intermediate Control: the first surface of the sagitta lens and the thickness are 
controlled.

	4.	 Generation of the posterior surface of the lens: consists of four stages: clamping, 
generation, tuning and polishing.

	5.	 Treatment: the lenses are washed and healed in ultrasonic washing machine 
before entering and the baking white room at approximately 120 °C do the treat-
ment of multilayer (against scratches, reflection, glare; mirrored, tinted, etc.). 
This is done in clean room laboratory with controlled environment Grade C/ISO 
7, air quality PM 2.5 and at 22 °C in the environment.

	6.	 Beveling of the lens to give it the desired shape by the client, this is carried out 
with the Italian machine of cutting MEI and is a crucial step, it is the final step 
before mounting the pair of lenses in the desired frame (see Fig. 4, semi-finished 
lenses).

	7.	 Final control: Controls the quality of the surfaces, the mass and the recipe for-
mulated for the client (Robotic AR).

	8.	 Packaging and storage: Later it is delivered to the messengers for shipping to the 
customer.

RQCM: Risk Qualitative Criticality Matrix. Case Study…
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Fig. 6  PRATS productive process flow diagram. Source: Rodríguez, 2021

4.2 � Results and Analysis of the RQCM Application

The results of the application of the RQCM (Tables 6, 7 and Fig. 7) are summarized, 
the maximum value of risk criticality that can be obtained is 200 points (TCR: Total 
Criticality Risk) and is distributed in 3 possible levels of hierarchizing systems (crit-
ical, semi critical and not critical for the organization). Next, the results of the 
RQCM tool practical application are summarized: 12 equipment evaluated in 
PRATS Costa RICA (November 2021).

C. Parra et al.
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Equipment FF PI OF MC HSE C TCR
Satisloh Layoutblocker-PRA blocking 

machine

3 1 1 1 1 3 9

Laser Micromac 3D UV Laser Rxe 200 1 3 4 1 1 14 14

Satisloh Auto-Flex polishing machine 3 3 1 1 1 5 15

Satisloh VFT-ORBIT generator 2 5 4 1 3 24 48

LOH Lens lacquer machine 2 3 2 1 3 10 20

FISA CS20 4 Plus + R02 ultrasonic 

washer machine

1 5 4 1 3 24 24

SATTE band Orders Workshop 2 1 2 1 1 4 8

Satisloh Multilayer MC-380-X 2 5 4 1 3 24 48

MEI Bisphera XDD-TBA beveling 
machine

3 10 4 1 3 44 132

SAT Eudepro Tecnic band Beveling 

and Assembly

2 5 2 1 1 12 24

Enduro Coating SCL CDC 1000PP2 1 5 4 1 3 24 24

Robotic AR Type MCVP8_V2 2 3 2 1 1 8 16

Table 6  Summary of results obtained in the criticality calculation (TCR). (12 systems evaluated)

Table 7  Summary of results obtained in the RQCM matrix. (12 systems evaluated)

RQCM: Risk Qualitative Criticality Matrix. Case Study…
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CONSEQUENCES

FF… Frequency
C… Consequences

Non Critical (NC)
Medium Criticality (MC)
Critical (C)

Fig. 7  Summary of all the systems evaluated in the RQCM criticality matrix. Source: 
Rodríguez, 2021

•	 1 item in the critical system area (C) (8,33%)
•	 4 equipment in the semi critical area (SC) (33,33%)
•	 7 equipment in the non-critical area (NC) (58,33%)

The selection of the RQCM model was justified by the effectiveness and ease of 
implementation of this technique in the process of the priorization. The RQCM, 
allows to quickly estimate the factor of frequency and consequence of failures, 
which can help guide the effective selection of critical equipment. The main limita-
tion of RQCM is associated with the minimum existing information and its low 
quality (because it is a new production line). It is important to mention that the 
organization understands and recognizes the technical limitations of the RQCM and 
its impact on the final results of the case study presented in this report (Rodríguez, 
2021). For the application of the RQCM, the organization formed a working group 
made up of the following people (4 people):

–– A leader of the RQCM application (Reliability Engineering).
–– Two experts in the types of equipment to be evaluated (Process and Quality 

Engineering)
–– An expert in ​​industry 4.0 (Automation and Control Engineering)

The results of the 12-equipment criticality evaluation are the beginning of an opti-
mization process. After this analysis, in the next phase of the Operational Reliability 
Optimization Project, the equipment: MEI Bisphera XDD-TBA beveling machine, 
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that remained in the area of high criticality (C), will be taken; and the following 
reliability and risk engineering methods will be applied (Rodríguez, 2021; Yoon 
et al., 2019):

–– RCA (Root Cause Analysis)
–– RCM (Reliability Centered Maintenance)
–– RAM-A (Reliability, Availability and Maintainability-Analysis)
–– CRBA (Cost Risk Benefit Analysis)

5 � Assessment Recommendations

A key success factor in the implementation of Critical Analysis, is that senior man-
agers who have the authority to make decisions and act on the recommendations of 
the investigation team, should be involved. An action plan for the implementation of 
additional risk control measures is the desired outcome of a thorough investigation. 
The action plan should have SMART objectives: Specific, Measurable, Agreed, and 
Realistic, with Timescales (Parra et  al., 2021b; Viveros-Gunckel et  al., 2020). 
Deciding where to intervene requires a good knowledge of the organization and the 
way it carries out its work. For the risk control measures proposed to be SMART, 
management, safety professionals, employees and their representatives should all 
contribute to a constructive discussion on what should be in the action plan. Not 
every risk control measure will be implemented, but the ones accorded the highest 
priority should be implemented immediately. In deciding your priorities, you should 
be guided by the magnitude of the risk (‘risk’ is the likelihood and severity of harm). 
Ask yourself ‘What is essential to securing the health and safety of the workforce 
today?, What cannot be left until another day?, How high is the risk to employees if 
this risk control measure is not implemented immediately? If the risk is high, you 
should act immediately. You will, no doubt, be subject to financial constraints, but 
failing to put in place measures to control serious and imminent risks is totally unac-
ceptable. You must either reduce the risks to an acceptable level or stop the work. 
For those risks that are not high and immediate, the risk control measures should be 
put into your action plan in order of priority. Each risk control measure should be 
assigned a timescale and a person made responsible for its implementation. It is 
crucial that a specific person, preferably a director, partner or senior manager, is 
made responsible for ensuring that the action plan as a whole is put into effect. This 
person does not necessarily have to do the work him or herself but he or she should 
monitor the progress of the risk control action plan. Progress on the action plan 
should be regularly reviewed. Any significant departures from the plan should be 
explained and risk control measure rescheduled, if appropriate. Employees and their 
representatives should be kept fully informed of the contents of the risk control 
action plan and progress with its implementation (Parra et al., 2021a).

RQCM: Risk Qualitative Criticality Matrix. Case Study…
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6 � Final Considerations

When carrying out a correct application of qualitative methods of criticality analysis 
can help both managing and technical levels to make more efficient decisions, 
directly addressing both economic and human resources in the processes related to 
the operation and maintenance of industrial assets (Parra & Crespo, 2020a, b; Villar 
Fidalgo et al., 2018). It is important that maintenance management understand that 
criticality models to design or use should be aligned with business objectives and 
not make the mistake of developing criticality tools where only particular mainte-
nance process factors are included. With respect to the latter point, using criticality 
models based on the Risk factor analysis, it is very interesting, since the Risk 
Analysis process allows to evaluate the impact of the factors inherent in the mainte-
nance process and to add the assessment of factors such as: production, quality, 
production losses costs, safety, and environment, among others. Regarding mainte-
nance management, the results of a semi-quantitative criticality analysis process 
will enable the development of maintenance strategies and management tools with 
a risk-based optimization approach and its impact on the business.

Below are presented some strengths and weaknesses which are important to con-
sider at the time of the development of a Qualitative Criticality Risk-Based Model 
(Parra et al., 2021c):

Strengths
•	 It is a good time to unify the criteria around the risk analysis process (this helps 

standardize the risk prioritization scenarios of business systems/processes).
•	 The Qualitative Risk Matrix Model is a simple technique and very easy applica-

tion (its implantation is fast) requiring only to consult connoisseurs and experts 
in the systems and the business process to audit.

•	 It introduces and disseminates the concept of Risk (indicator that allows to inte-
grate the frequency factors and consequences of the failures on safety, the envi-
ronment, the quality, the operations of the business, etc.).

•	 It does not require additional (high-cost) resources from the company or busi-
ness, with the exception of the time spent by the experts to develop the model 
adjusted to the needs of the organization under study and this be as real as 
possible.

Weaknesses
•	 The qualitative methods of Risk generate a high level of uncertainty, therefore 

we must be very careful with the criteria to evaluate within the model and with 
the expectations of the management (stakeholders) of the industrial sector where 
the methodology of criticality analysis is being used, so it is highly recommended 
for experts to evaluate with the greatest possible objectivity for best results.

•	 The actual improvements that are obtained from a criticality analysis process, in 
this case of the qualitative matrix of risk, are going to depend on the subsequent 
actions that are generated on the critical systems, after having done the criticality 
analysis, this methodology depends on the subsequent application of other 
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improvement methods, for example: RCA (Root Cause Analysis), RCM 
(Reliability Centered Maintenance), CRBA (Cost Risk Benefit Analysis), 
among others.

•	 It depends a lot on the information available (key factor to recommend: having 
expert people and truthful backing information), to such a point, that a risk may 
be omitted if the starting data are incorrect or incomplete, in addition to overes-
timating or undervaluing productive systems.

•	 Being a qualitative, although systematic technique, there is no real assessment of 
the frequency and consequences of the failures (it is only a qualitative estimate 
of the reality lived in the business, in this case the lessons learned from the 
PRATS company to apply them to the new Costa Rican laboratory).

Finally, the results obtained from the effective application of the methodology 
RQCM (Risk Qualitative Criticality Matrix), guide the Industrial Assets Managers 
to make decisions more efficiently and with a lesser degree of uncertainty, helping 
to maximize the profitability of manufactured products in the PRATS Costa Rica 
factory throughout their entire life cycle.
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Abstract  As an emerging market, the telecoms sector in Nigeria has undergone a 
considerable increase in teledensity, internet usage and consumer base over a decade 
and is still on exponential growth. However, the consequence of this increase in 
growth has been a continuous degradation of telecom network quality of service 
(QoS), which has impacted subscribers’ customers’ needs, satisfaction, expecta-
tions and added value services. In exploring the quality of services (QoS) issues, the 
asset performance is not meeting the agreed key performance indicators (KPIs) on 
power availability (PA), a critical KPI which is affected by asset maintenance activi-
ties. Therefore, this paper focuses on the technical and human factors of asset man-
agement and maintenance practices. The methodology used in this paper is the 
quantitative and qualitative approaches with a systematic review of related literature 
on the research context. The primary data sources are through a structured survey 
questionnaire and semi-structured interviews. The secondary data source is the sys-
tematic literature review on related journal articles to the research subject matter. 
The paper used the statistical package for the social sciences software (SPSS 29) 
and Nvivo software for the data analysis. The research results and findings indicate 
critical maintenance strategic differences in existing asset maintenance activities 
and operations, cost pressure, and complex operating environments and markets 
that could be explained through intelligent and digitalised asset management and 
maintenance strategies. The systematic review results indicate the advancement of 
asset maintenance strategies to support maintenance planning, asset real-time moni-
toring and management, as the existing maintenance practice did not match the 
intelligent-based approach drawn from the concept of Industry 4.0R.
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1 � Introduction

Increasing teledensity and customer satisfaction in emerging telecom markets 
requires intelligent and digitalised asset management and processes. This includes 
more flexible and cost-effective operations management strategies due to the cost 
pressure on operations and maintenance and the effect of human and environmental 
challenges on asset management activities. Public electricity (power grid) is a cru-
cial issue in Nigeria’s operating environment that impacts telco infrastructure asset 
management regarding reliability, performance and operation cost. Over seventy-
five per cent (75%) of the telecom infrastructure and asset base stations are off 
public electricity. These infrastructure and assets operate mainly on alternating cur-
rent diesel generators (ACDG) and direct-current diesel generators (DCDG), with 
high operating costs and the integration of green or clean energy solutions like solar 
and hybrid batteries, which also are prone to functionality issues because of theft on 
the components such as panels and batteries.

In addition, the asset operations and maintenance strategies need to meet the 
requirements of the likely asset lifecycle that addresses the infrastructure and asset 
challenges based on the existing operations and maintenance conditions. Thus, as 
key maintenance enablers, operations and maintenance needs, intelligent and digi-
talised maintenance strategies must have improved flexibility and efficiency in 
ensuring network quality of service and asset performance that addresses the net-
work quality of service (see Fig. 1).

However, the existing asset management and maintenance practices are reactive, 
time-consuming, and not responsive or intelligent enough to address network qual-
ity of service challenges, thereby creating issues with network availability, which is 
a critical KPI for network quality of service. The present asset management and 
maintenance activities rely greatly on human interventions, individual skills and 
unintelligent escalation processes that increase mean-time-to-repair and operating 
expenditure (OPEX) based on poor work attitude and non-compliance to Predictive-
based maintenance strategies. These factors, such as intermittent asset outages, field 
technicians’ frequent visits to sites, and poor maintenance practices, are key drivers 
of asset performance, which is a critical factor affecting the quality of service.

Infrastructure Diversified OPEX Cost Complex operating
and Asset Mgt Operations Pressure Environment

Operations and Innovative and Efficient Cost-Effective Intelligent Operations

Maintenance Needs Operations and Maintenance Operations and Maintenance and Maintenance model

processes model

Existing Operations Division of operations and Static costing on operations Complicated fault escalation

and Maintenance Maintenance, and Asset and maintenance spares and and resolution

Condition Management activities asset activities

The Challenges facing Incomplete operations and High operations and High mean-time-to-repair;

infrastructure maintenance practice; maintenance cost; increase Difficult to resolve faults effectively.

performance and QoS Inadequate diesel delivery manpower and working hours

process; Frequent breakdown

of infrastructure due to End of

lifecycle.

Network Quality 
of Service

Fig. 1  Flowchart of key maintenance enablers
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In the telecoms domain, quality of service (QoS) is the mechanism in the net-
work systems that control traffic and ensure critical application performance and 
availability with limited network capacity or a set of parameters connected with 
traffic performance in telecoms (Opara et al., 2021). It is measured based on net-
work availability, congestion or packet loss. On the other hand, quality of service 
aims at the technical characteristics of a provider’s perspective (Raj & Basar, 2019) 
and service received by the customer.

The network quality of service indicates that telecom infrastructure and asset per-
formance on quality of service is multidimensional with various reported dimensions 
(Olde Keizer et al., 2018), and factors such as intermittent asset outages and poor 
compliance to routine planned preventive maintenance activities are challenges 
affecting asset performance that in turn impact QoS.  The level of automation is 
mainly low, such as the integration between various asset redundancy procedures, 
such as synchronisation of the public grids and the diesel generators 1 or 2. Thus, the 
performance of these infrastructures and assets impacts the agreed key performance 
indicators, such as network availability, mean-time-to-repair and quality of service.

2 � Literature Review

Despite several pieces of extant literature that support the importance of asset manage-
ment, almost no published research addresses infrastructure and asset management and 
maintenance activities that impact QoS in Nigeria’s telecoms context. Given the impor-
tance of sustaining and addressing the issues with the network quality of service in the 
research domain, our purpose is to explore the factors affecting network quality of 
service in Nigeria as an emerging telecom operating environment and market. This 
understanding explains how the quality of network services greatly influences custom-
ers’ perceptions, needs and expectations. It is, therefore, required to identify the factors 
affecting the QoS. In achieving this exploration, the paper focused on the technical, 
human and operating environmental areas that have not been researched in this context, 
such as infrastructure and asset management and maintenance strategies. Previous 
studies (Lewis & Booms, 1983; Grönroos, 1998; Parasuraman et al., 2015; Sugeng, 
2016; Kotler et al., 2019) have overlooked the impact of asset impact on quality of 
service but rather focused on quality service as related to customer satisfaction, market-
ing, sales, promotions, and regulatory and government interventions.

Customer satisfaction is typically ascribed to issues with network availability 
and quality of service, thus impacting customer’s needs, expectations, value-added 
services and dissatisfaction. However, much of the existing work on similar emerging 
operating environments and markets focused on applied technologies for powering 
assets, such as hybrid solar, batteries, and other green systems (Oviroh and Jen (2018). 
Other research works aim at consumer dissatisfaction (Opata, 2013a, b), connectiv-
ity and the digital ecosystem (Adame, 2021). However, various research works 
agreed that no contemporary telecoms markets could be developed and continued 
short of an efficient telecoms infrastructure and service (ITU, 2019; Vu et al., 2020). 
These existing research works did not focus on infrastructure and asset management 
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or maintenance roles in sustaining network values such as QoS and network avail-
ability. This understanding justified the broad divergence in the description of net-
work quality from a general business perspective as services without defects (Brady 
& Cronin, 2001) and the concepts that included internal resources and service 
(Duggal & Verna, 2013). However, from a customer’s critical perspective, 
Parasuraman et al. (1988) described quality as a global attitude or judgement relat-
ing to the superiority of the service.

In contrast, Lewis and Booms (1983) defined quality of service as customers’ 
expectations of the performance attained from the services offered. These descrip-
tions could be linked to the paper’s concerns about subscribers’ needs and expecta-
tions of the added value services. However, the performance of service could be 
quantified and examined based on the tangibility of the activities from the infra-
structure and asset management and maintenance practices that provide the service. 
From the physical environment and infrastructure and asset perspective, Almossawi 
(2012) noted that internal company policies, service challenges, customer satisfac-
tion and organisation position are attributes that affect QoS. In the context of this 
paper, we focus on the infrastructure and asset management and maintenance con-
cept that will develop intelligent and digital systems driven by predictive-based 
maintenance and condition-based maintenance strategies to enhance asset perfor-
mance in an effort to provide stable quality network service.

Notwithstanding the applied conventional maintenance strategy of planned pre-
ventive maintenance cycles in the research context based on the recommended 
manufacturer’s manual book followed by the operators, these infrastructures and 
assets break down intermittently, causing poor network availability and stability of 
network quality of services, increasing operating expenditure which impacts asset 
performance. Nakajima (1988) maintained that asset performance is the measure-
ment and identification of outages of critical business characteristics such as avail-
ability, performance and quality. This explains the understanding that network 
availability is expressed as the uptime and downtime of infrastructure and assets 
(Kehinde et al., 2017). A better experience and performance of network availability 
influence QoS (De Azevedo, 2019) as this perspective relates to asset management 
and maintenance strategies.

2.1 � Telecoms Industry

Telecoms engineering is the field of business dealing with ICT systems that provide 
network services and other internet access. Network quality of service in the context 
of this paper has drawn attention because of the impact on network providers’ per-
formance. Quality of service is generally a determinant of how satisfactory the 
extent of delivered service meets the customer’s expectations and needs (Santos, 
2003). This description is outlined based on perceived service quality by the users 
(Grönroos, 1984). Also, this description was supported by Parasuraman et al. (1988) 
as a general assessment of a particular service organisation that results from 
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contrasting that organisation’s performance with users’ overall expectation of the 
organisation’s performance indicators. Unlike assumed better quality of services, 
which can be assessed with some objectivity, QoS is measured based on certain 
defined key performance indicators (KPIs) that are majorly dependent on network 
power availability (PA). Power availability is an outcome of the passive asset per-
formance that supports the active performance under which QoS is quantified and 
measured. However, Ghobadian et al. (1994) argued that quality of service has char-
acteristics such as inseparability of service and consumption, intangibility, hetero-
geneity and decreased capability measures quality of service as a very multifaceted 
issue. Thus, because of the lack of objective measures, organisations rely on users’ 
views of service quality to determine their strengths and weaknesses and put appro-
priate strategies. This conclusion is not the case in this paper; rather, the paper 
focuses on quantifiable factors that affect the quality of service.

Given these insights on quality of service and the focus of this paper on infra-
structure and asset management and maintenance activities as factors that affect 
QoS, we classify active and passive asset components and elements. The passive 
assets ensure high power availability and reliability that supports the active compo-
nents related to network quality of service. Availability in this context is the capac-
ity to fulfil and access the network (Hedvall & Paltschik, 1991; Kehinde et  al., 
2017), and it is determined by the level and extent to which the network services are 
everywhere. On the other hand, availability is the complement of reliability; thus, 
they are the core factors of quality of service, considering the key technical charac-
teristics in this domain. This understanding explains that reliability is the probabil-
ity that the services will be actively operating the exact function in an absolute 
setting for all duration. For instance, the expected asset lifecycle or the asset means-
time-to-repair (MTTR) between outages can originate from this likelihood duration. 
This is because asset failures, measured at a variation of times, prevent customers’ 
accessibility to the network. A particular challenge in this context is to increase and 
sustain network availability through passive asset performance, which necessitates 
new maintenance approaches for better functionality of the asset.

2.2 � Network Service Quality Parameters

Network availability in the context of the telecom is the parameter that defines the 
quality of service (QoS) from the network and service provider perspective. In con-
trast, the basic requirement from the user’s perspective is based on the accessibility 
of the network. Nurysh et al. (2019) agree with Abd-Elrahman (2019) on the find-
ings that perceived value and service quality have a positive relationship with user 
satisfaction, where service reliability is a factor that affects the quality of service. 
The perceived network service quality is the attitude and behaviour concerning the 
dominance and advantage of the service compared to the context (Parasuraman 
et al., 1988, 2015). This understanding involves experiences related to customers’ 
beliefs about the asset or utility arising from services which they experienced 
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(Parasuraman et al., 1988, 2015). Abd-Elrahman (2019) concludes that the role of 
perceived quality of service is determined by the settings under various factors that 
affect QoS evaluation and user satisfaction. Garin (1987) and Abd-Elrahman (2019) 
support this proposition with identified critical characteristics that a service must 
have to be considered of high quality, such as performance, reliability, durability, 
perceived and features.

Conversely, we can conclude from the literature that quality of service (QoS) is 
dependent on various aspects of the interconnect between the passive assets and 
active assets, which the network providers manage. Thus, this paper focused on the 
passive asset that supports the active assets in providing the necessary network avail-
ability, thus the factors from asset performance affecting network quality of services. 
For critical assets such as generators, power systems, solar and green solutions, air-
conditioning units and hybrid systems, the maintenance procedure has to face differ-
ent typical faults management and different operations. Thus, in this context, all the 
assets are combined inside each base station. The maintenance process is specifically 
directed at maintaining the infrastructure and assets involved in the activities. Typical 
infrastructure and asset outages are classified as generator faults such as mechanical, 
electrical, injector or fuel pump failure, high temperature or low water, and high and 
low frequencies. Automation systems failure, such as synchronisation failure, alarms 
failure malfunction. Fuel supply failures such as low diesel levels, adulterate quantity 
and quality, and theft. Cooling faults such as air conditioning unit faults.

Additionally, telecom infrastructure and asset management and maintenance 
activities are characterised by routine and non-routine tasks, which involve the need 
for rational maintenance strategies for planning and monitoring. The cost of routine 
maintenance in this context is high because of the 24-h running and requires logis-
tics, spare replacement and necessary capacities.

2.3 � Maintenance Practice

In this researched environment, the supply and provision of the public grid or elec-
tricity are unreliable compared to other developing nations where telecom services 
infrastructure and assets are operating on the public grid and electricity. Excluding 
the regular load shedding of public electricity, the power availability of public elec-
tricity in this context supplies to telecom infrastructure and assets is less than 10% 
of the duration, thereby increasing the paper context infrastructure and assets depen-
dence on diesel generators and other solutions such as hybrid and solar systems. 
This dependence on diesel-generating sets has created a huge OPEX cost for telco 
maintenance organisations (Danbatta & Zangina, 2022). In addition to the poor 
availability of electricity in this telecom infrastructure and assets, telco maintenance 
organisations are also faced with other operational challenges and issues. For 
instance, diesel pilferage has impacted operational costs (OPEX) and theft of pas-
sive equipment. However, the plan towards reducing the diesel intake has been 
inconsistent with other operations and maintenance associates’ interests, thus 
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impeding the effective execution of the other power options. Given this mainte-
nance context, telco maintenance organisations must strengthen their operations 
and maintenance systems and processes to reduce the impact on infrastructure and 
asset performance and improve the quality of network services that address custom-
ers’ needs and expectations.

On the other hand, the importance of this Predictive-based maintenance approach 
is for optimal planned inspection (Aremu et al., 2018; Marquez et al., 2020; Pais de 
Almeida et  al., 2021). In this manner, prolonged or early interventions, avoidable 
infrastructure and asset interruption and high MTTR are decreased, and sudden down-
time is detected and prevented. Therefore, if the infrastructure asset elements can be 
monitored constantly through intelligent or digital devices, intervening for mainte-
nance and inspection could be likely only at discrete periods that distinguish between 
periodic and aperiodic decision instants (Olde Keizer et al., 2018). The Predictive-
based maintenance approach involves several tasks such as alarm installation, data 
and information classification, and asset management activities – high-temperature 
faults, cooling alarms, power alarms, low diesel levels processing and decision-mak-
ing. In reference to the intelligent predictive-based maintenance approach, the simula-
tion instruments and intelligence analysis are drawn from artificial intelligence (AI) 
systems. The AI simulates human intelligence processes through human and machine 
learning collaboration termed hybrid intelligence (Kamar, 2016; Dellermann et al., 
2019) to address human intervention and inappropriate maintenance activities, 
whereby infrastructure and asset functionality are monitored in real-time. This action 
is achieved through intelligent or digital like sensors, meters, and vision systems that 
monitor real-time system performance and collect data to manage uncertainties in 
infrastructure and asset activities—automating data and real-time escalation of predic-
tive outages saves human time, cost and better decision-making.

2.4 � Maintenance Strategies

Maintenance is a required feature of the asset management process in the telecom 
domain. Maintenance includes technical and human activities related to planning, 
inspections, condition-based monitoring, routine maintenance, repairs, main and 
minor overhauling, spare replacement and supervision (Olde Keizer et al., 2018). 
Although several systematic reviews cover the conventionally used techniques for 
asset maintenance in the context of this paper in such a comprehensive manner, not 
much review covered the industrial 4.0R concepts such as simulation, big data, 
intelligence, digital twin and predictive-based maintenance strategies, except in 
other contexts. A comparison and summary of the systematic review was based on 
criteria such as the maintenance strategy that indicates the effect of the presented 
content on management approaches. For instance, maintenance strategy formation 
or likely change of existing processes or practices.

A maintenance strategy is categorised based on the duration when a repair on an 
outage is conducted in relation to the incidence of the breakdown or outage, such as 
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preventive, corrective and predictive maintenance strategies (Molęda et al., 2023). 
However, based on these understandings, the existing maintenance strategies (pre-
ventive and corrective) in this paper context have not addressed the issues of asset 
performance, which in turn impact the quality of service due to certain maintenance 
culture, implementation and environmental challenges. Thereby provocating con-
cerns on how contemporary technologies support existing asset maintenance strate-
gies and practices. Inappropriate maintenance strategies and practices reduce and 
impact performance (Satish & Anil, 2017); likewise, intelligent and Predictive-
based maintenance strategies increase asset performance and availability and reduce 
maintenance costs or operating expenditures (Bradbury et  al., 2018). thus, the 
increase in the application of intelligent or predictive-based maintenance strategies.

Additionally, the corrective maintenance strategy suggests conducting activity 
after a breakdown has happened. This method reduces the asset maintenance or 
servicing cost but with the risk of intermittent asset failures because of the change 
in the maintenance interval, and should be more appropriate for non-critical, simple, 
repairable asset faults. Intermittent asset failures create a loss of revenue, increased 
operating expenditure (OPEX), and increased mean-time-to-repair (MTTR) as a 
result of unplanned breakdown and downtime. All these are factors that impact asset 
performance, which in turn impact the network quality of services.

In contrast, the predictive-based maintenance strategy is performed when it is 
needed, normally abruptly prior to anticipated breakdown. The significance of the 
predictive-based maintenance practice is to envisage and predict the condition of an 
asset based on recurring analysis or identified features. This understanding suggests 
that predictive-based maintenance is a kind of condition-based maintenance that 
envisages and foresees future performance based on present and historical signs or 
pieces of evidence (Olde Keizer et al., 2018; Molęda et al., 2023). The use of this 
strategy leads to a decrease in unplanned and planned breakdowns.

2.5 � Computational Devices for Maintenance Planning

Several approaches have been established to optimise the maintenance strategies for 
asset management support in planning and operating cost reduction (Rinaldi et al., 
2016). This tool comprises inputs, simulations, mechanisms and outputs that sim-
plify the maintenance planning and approaches, which was initially developed for 
the energy domain that allows flexibility across different technologies, specifically 
wind turbines and energy converters. The critical assets in this paper context are 
energy and power-driven based on the challenges of providing power for the equip-
ment, making the power availability a key KPI. However, an adjustment is required 
to make these tools appropriate to capture and simulate the dynamic process of asset 
maintenance activities over time (Rinaldi et al., 2016), usually the asset lifecycle 
and explore various aspects of techniques to detect the difficulty and ineffectiveness 
of the maintenance strategy and propose likely areas for enhancement. Shafiee 
(2015a, b) noted that each instrument or approach is individually created to describe 
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Power availability 99.9%
Mean time to repair 30mins
Diesel outage and blockage 0%

Fig. 2  Maintenance tool. (Rinaldi et al., 2016)

one or several characteristics of the asset activities and to span various planning 
perspectives.

Most of these approaches and tools simulate the dynamic process of asset main-
tenance over time, usually the asset lifecycle and explore various techniques to 
detect the difficulty and ineffectiveness of the maintenance strategy and propose 
likely areas for enhancement. Shafiee (2015a, b) noted that each instrument or 
approach is created to describe one or several characteristics of the infrastructure 
and asset activities and span various planning perspectives. Although some tools 
include optimisation features, other means are restricted to characterisation, usually 
assessing the agreed key performance indicators (KPIs). The mechanisms described 
the guidelines for the simulation of the maintenance activities. The inputs and con-
straints include the task descriptions for the individual method and the whole infra-
structure assets maintenance (Rinaldi et al., 2016). The outputs offer a technical and 
cost-effective task evaluation during the simulated cycle. However, several of these 
maintenance models are adaptable and can certainly be tailored toward intelligent or 
digital asset maintenance practices. Figure  2 visually describes the mechanism, 
inputs, constraints and outputs traditionally considered in a telecoms maintenance 
simulation tool.

The inputs involve the asset management and maintenance activities that are sup-
posed to sustain the asset performance in order to achieve the KPIs stated as the 
outputs – power availability of 99.99%, reduced mean-time-to-repair 30 min and 
reduced diesel outages and diesel line blockages to 0%. If these activities are sus-
tained assets, performance impact on quality of service issues will be addressed. 
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However, with human-centric interventions, certain constraints have been observed 
to affect asset maintenance activities. For instance, fault escalations, inadequate 
spares and materials holding such as batteries, air filters or elements, fan belts, 
erratic load imbalance, low generator frequencies, diesel line blockage and low 
level, alternator failure, etc., are not readily available in most situations. Additionally, 
access and security to sites due to landlord and community demand contribute mini-
mal impact. Operational vehicles and float are challenges faced internally by the 
field operational teams due to issues with individual managed service organisations. 
These constraints are not significantly a key concern as they are micro-managed at 
the operational level.

Given the description of the inputs, constraints and outputs, the mechanism covers 
the maintenance strategies that aim at each asset element independently because of 
the assumption that downtime, faults, and degradation situations are independent. 
The outputs offer a technical and cost-effective task evaluation during the simulated 
cycle. The detailed assessments of the maintenance simulation tools are described as 
these are examined and categorised based on the objective, attributes, working stan-
dard and fundamental methodology. However, several of these maintenance models 
are adaptable and can certainly be tailored to other asset maintenance practices. A 
significant aspect of the application and exploitation of intelligent asset management 
for maintenance planning and implementation is the real-time faults report, intelli-
gent or digital resolution and monitoring of maintenance activities. However, this 
method is complicated in telecom infrastructure and asset operations because of the 
comparative uniqueness of the inadequate knowledge of the mechanism.

2.6 � Condition-Based and Predictive-Based 
Maintenance Approach

The condition-based or Predictive-based maintenance approach integrates data-
driven reliability simulations with data gathered from the alarm mechanism and 
condition monitoring structure to create an enhanced maintenance strategy (Hameed 
et al., 2010). For example, proactive and predictive maintenance could be planned 
to use the data produced by the alarm mechanism and the knowledge accumulated 
from the historical data. This perspective is related to Zhao et al. (2019) condition-
based maintenance (CBM) approach and Pais de Almeida et al. (2021) optimising 
the life cycle of physical assets, which typically results in greater availability and 
reduces maintenance costs since it aims to avoid unplanned outages and prevent 
avoidable preventive maintenance activities for infrastructure and asset. However, 
the advantage of CBM remains uncertain in multi-infrastructure systems such as the 
telecom setting, where opportunistic maintenance strategies can be used. In the cur-
rent network quality of service context, opportunistic maintenance could be an extra 
in network management because it aims to classify maintenance activities of several 
elements to lower maintenance costs (Farinha, 2020), as in support that CBM could 
be cost-effective (Zhao et al., 2019).
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Fig. 3  Flow diagram of predictive-based maintenance approach

This suggestion happens when necessary, for example, when the infrastructure 
and asset are still in working condition, in progress, or very late when the infrastruc-
ture and asset have broken down, thereby triggering a high mean time to repair 
(MTTR). In contrast, monitoring diesel consumption and delivery, which contrib-
utes to the higher impact, may be problematic for these approaches; thus, AI and 
human-centric collaboration can be applied through intelligent or digital and sys-
tematised maintenance practice. The critical stages of the condition and Predictive-
based maintenance approach are:

•	 Information about the processed signal is obtained from the appropriate data – 
such as fault identification and analysis.

•	 Reliability modelling to capture infrastructure asset deterioration, then send a 
signal to forecast failures. This action comprises fault prediction and subsequent 
proof with the current database.

•	 Decisions toward maintenance optimisation involve inspection and planned pre-
ventive maintenance.

The Predictive-based maintenance approach is outlined in a flowchart in Fig. 3. It 
depends on the mixed utilisation of data gathered from alarm devices and intelligent 
or digital equipment with calibrated reliability models to assist the planned preven-
tive maintenance.

This Predictive-based maintenance approach aims to obtain well-defined, timely 
and specific signals regarding when infrastructure asset maintenance is essential 
(Van Horenbeek et al., 2010). On the other hand, the emphasis of this Predictive-
based maintenance approach could be on the optimal planned inspection. In this 
manner, prolonged or early interventions, avoidable infrastructure and asset  
interruption, and high MTTR are decreased and sudden downtime is prevented. 
Therefore, if the infrastructure asset elements can be monitored constantly through 
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intelligent or digital devices, intervening for maintenance and inspection could be 
likely only at discrete periods that distinguish between periodic and aperiodic deci-
sion instants (Olde Keizer et al., 2018). The drawback is that this Predictive-based 
maintenance approach involves a detailed knowledge and interpretation of multi-
system changing aspects, particularly interdependent infrastructure and asset down-
time or faults, environmental situations, and associated non-technical consequences 
(Lawrence & O’Connor, 1995). Moreover, this Predictive-based maintenance 
approach involves several tasks such as alarm installation, data and information 
classification, and asset management activities – high-temperature faults, cooling 
alarms, power alarms, low diesel levels processing and decision-making.

The Predictive-based maintenance approach is critical in the telecoms infrastruc-
ture and asset maintenance process because of the various factors and activities – 
erratic load imbalance, low generator frequencies, diesel line blockage and low 
level, alternator failure, and operation cost. However, this Predictive-based mainte-
nance approach aims at each infrastructure and asset element independently because 
of the assumption that downtime faults and degradation situations are independent. 
Although this proposition could be a generalisation that may perhaps lead to the 
inaccurate assessment of the infrastructure and asset downtime or MTTR. (Peng  
et al., 2014; Camci, 2009) posits that fault dependencies between infrastructure and 
assets could be distinct and outlined as follows;

•	 Functional or structural dependence – infrastructure and asset breakdown or not 
functioning as a result of another dependent infrastructure and asset not working, 
which could be because of technical – failure or maintenance – performance;  
in such a situation, the maintenance of the non-dependent infrastructure and 
asset may require pre or post-intervention on the dependent infrastructure 
and asset.

•	 Stochastic dependence – the breakdown of one infrastructure and asset impacts 
another infrastructure and asset. The shared mode in which this could occur is a 
direct fault–induced damage–failure, owing to a rise in the workload shared until 
that moment of load sharing and – mutual decline – standard mode. For example, 
the increase in load or equipment could impact the generator load sharing among 
various collocated infrastructures and assets in the telecoms base station. 
In this situation, (Rasmekomen & Parlikad, 2016) noted that the degradation of 
dependent infrastructure and assets could be modelled using a standard probabil-
ity distribution.

•	 Resource dependence – an inadequate quantity of particular resources, such as 
spare parts, tools and technicians, hampers maintenance.

•	 Economic dependence  – maintenance of multiple infrastructure and assets is 
either cheaper – positive economic dependence or more costly – negative eco-
nomic dependence than maintaining the same infrastructure and assets 
individually.

Equally, the dependencies lead to secondary effects, such as maintenance cost or 
service and asset lifecycle reduction, because of the various multi-assets that are 
disassembled elements in the base station. For instance, a power system outage 
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affects the cooling units, security lights and real-time escalation of active compo-
nents. Therefore, for this reason, (Wang, 2002) posits that proper opportunistic 
maintenance may not be recurrent or time-based, as the inspection process could 
support the planned interventions that reveal the condition of the infrastructure and 
asset. However, this action requires the consideration of two activities. Firstly, the 
inspections could be fallible, such as failure in detecting faults.

In contrast, the inspections have to be adequately planned, following standardised 
criteria for maintenance optimisation, such as reliability maximisation and cost 
minimisation. However, Sheu et al. (2015) noted that inspections could be intermit-
tent in continuous monitoring, both routine or non-routine, and the decision at the 
correct period may differ due to the asset lifecycle status. Therefore, planned inspec-
tion optimisation is a significant characteristic of the complete maintenance plan-
ning and decision-making model that can improve infrastructure and asset 
performance.

2.7 � Diagnosis and Prognosis

Diagnosis and prognosis are the methods employed to chart the condition-based 
maintenance data and forecast the future situations and status of the assets (Kang 
et al., 2019). When the information on the procedure that led the asset to fail is pre-
sented, the data will be utilised to identify the failed infrastructure and assets. 
Diagnosis is applied to analyse the distinctions between normal working conditions 
and failed conditions. At the same time, the prognosis is employed to foresee when 
the infrastructure and assets are imminent to break down. These two methods 
applied numerical or digital models to describe the correlation between fault causes 
and fault mechanisms (Mathur et  al., 2001; Liu et  al., 2018; Olde Keizer et  al., 
2018), as they assist in assessing the past, present (diagnosis) and future (prognosis) 
conditions of the infrastructure and asset system.

The two critical methods known for diagnosis purposes are the statistical anal-
ysis that identifies a signal that can signify unusual infrastructure and asset condi-
tions and exploits computational procedures capable of self-adapting and 
improving after an early training phase. Rinaldi et al. (2021) noted that genetic 
algorithms (GAs), Machine Learning (ML) and artificial neural networks (ANNs) 
are the most employed computational approaches. However, the critical aim of 
prognosis is to decide the effective residual lifecycle before the infrastructure and 
asset breakdown happens. This is due to uncertainty because of the stochastic 
breakdown behaviour of the infrastructure and assets. However, this inference 
permits an evaluation of the breakdown possibility before an inspection or a 
planned preventive intervention, which supports optimising the maintenance 
period. Prognosis could be usually attained by a scientific or physical model of the 
infrastructure and asset – model-based or physics, by design recognition in for-
merly obtained data  – data-driven through earlier knowledge with the mainte-
nance of the same infrastructure and asset – experience-based, or a combination 
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of hybrid. This option of a prognosis method over another technique varies on 
considerations such as the availability of historical information and the complex-
ity of creating an appropriate system model.

In addition, signal processing methods are necessary to examine and observe 
changes in infrastructure and asset performance and trigger an alarm if necessary. 
According to Liu et al., 2015 and Yang et al., 2016a, b conventionally, time and 
frequency domain methods are used in industrial condition maintenance practices. 
However, suppose environmental changes and other considerations, such as non-
technical impacts, are considered. In that case, the condition of the infrastructure 
and asset could be assessed by comparing the infrastructure and asset performance 
with that of adjoining components or activities. However, (Liu et al., 2015) noted 
that condition-based maintenance practices efficiently identify irregularities in the 
infrastructure and asset performance; not every breakdown mode could be correctly 
described, and some could go unnoticed.

2.8 � Infrastructure and Asset Maintenance Procedures

To design consistent infrastructure and asset maintenance procedures for effective 
operations and maintenance in all activities responsible for network operations. 
Consistent scope of the site specifics will lead the management to prompt outcomes 
on the action plan. Therefore, the required infrastructure and asset maintenance 
activities are planned preventive maintenance (PPM) – The strategy includes regular 
inspection, servicing and maintaining the infrastructure and assets in good condition 
(Kehinde et al., 2017; Thai et al., 2021). The maintenance performed at prearranged 
periods or cycles based on the specified benchmarks aims to lessen the possibility of 
failure or breakdown on the degradation of the working of the infrastructure and 
asset. The planned preventive maintenance should be applied to active and passive 
infrastructure and asset maintenance. The PPM is designed to develop a system that 
will uncover possible failures and make modifications or repairs to avoid failure.

This procedure also requires creating a technological and human procedure that 
will make the procedure operate within the acceptance level (Chen et al., 2021) and 
be used selectively in infrastructure assets and other equipment. Corrective mainte-
nance (CM) – This maintenance procedure is constantly needed irrespective of the 
level of planned preventive maintenance used, but to a reduced degree (Kehinde 
et al., 2017; Duarte & Santiago, 2023). This procedure lets the infrastructure and 
asset operate until it gets a defect or failure that will not permit it to be performed 
again (Opara et al., 2021). The maintenance performed after fault detection aims to 
repair the fault to a stable condition immediately. These procedures are also os per-
formed to rectify the failure or faults.

However, the most significant attention of maintenance practice should be a 
well-defined process that is precise and measurable. Failure to focus on the activi-
ties that constitute the maintenance activities will impact the infrastructure and asset 
performance (Kehinde et al., 2017; Opara et al., 2021). This proposition explains 
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the significant impact of infrastructure asset performance and asset management 
activities. Thus, the below discussions on the maintenance context and operational 
models for telecom infrastructure and asset operations in emerging telecom opera-
tions and environment.

2.9 � Integration of Human-Machine 
Collaborative Maintenance

During the maintenance process design phase, the knowledge of skilled individuals 
is recorded, captured and codified in the knowledge artificial intelligence manage-
ment platform. Integrating this knowledge with complete data, machine learning 
training and process design concepts are applied to the management platform of the 
iterative and deterministic jobs formerly conducted by maintenance team members 
and continuously improve (Opara et al., 2021). Additional tasks are slowly passed 
to the machine through repetition, enhancing the maintenance implementation and 
practice correctness. In the telecoms infrastructure and asset domain, the mainte-
nance process will be automated, in addition to planned preventive maintenance 
activities, by implementing predictive and self-healing abilities into the artificial 
intelligence management platform using collected data.

The human-machine collaborative maintenance process will leverage and value 
traditional maintenance approaches by deploying the artificial intelligence knowl-
edge management platform to perform maintenance implementation and integrate 
existing processes, interfaces and needs. However, this approach is not a substitute 
for human operations but rather an enabler for an individual to create more value 
with the help of the machine through artificial intelligence. For example, the exist-
ing field operations technicians’ roles will be upgraded to network strategy techni-
cians, while new positions will be designed to manage the decision-making and 
special activities.

3 � Research Method

The research method for this paper is a case study with a survey strategy that 
includes a quantitative technique structured questionnaire, a qualitative approach 
and a systematic review of related literature and documents data collection. The 
justification for using a case study survey approach is to capture a variety of view-
points quickly, economically, focused, scientifically and reliably and the opportu-
nity to use mixed techniques. Yin (2014) concluded that a mixed-method of 
quantitative and qualitative case study method offers the opportunity to gain a 
greater understanding of a contemporary phenomenon, generate hypotheses and 
reduce the possibility of any bias (Kezar, 2002), thereby reducing the researcher and 
participants’ positionality. Indeed, variables in the questionnaire are likely scales 
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from their descriptions and are employed in relevant asset management research. 
The five-point Likert scale uses intervals ranging from 1 strongly disagree to 
5 = strongly agree based on Newell and Goldsmith’s (2001) work on the question 
that evaluates perceptions of the variables.

Additionally, Creswell and Poth (2016) suggest that the survey strategy is one of 
the most common methods in management research that is generally used to answer 
the where, who, how and what research questions. This understanding is based on 
deductive reasoning, which begins with a theory and attempts to agree or disagree 
through quantitative techniques, and inductive reasoning, that the assumptions are 
derived from a particular phenomenon through a qualitative approach. The study 
participants are the employees of the telecom organisations responsible for the man-
aged services, network operators and regulatory agencies. The judgment and area 
sampling techniques were used to administer the survey. This technique involves 
identifying the population within the studied operating environment that conforms 
to the criteria of high density with a focus on telecoms asset management. All par-
ticipants had various background knowledge and experiences in telecoms and main-
tenance operations, regulatory and stakeholder management.

The online structured questionnaire was created and distributed to participants 
involved in asset maintenance design and implementation. These questionnaire 
questions reflect the research issue. For instance, one of the key questions was. How 
does asset performance improve the quality of service in your network? This ques-
tion focuses on a specific issue with detailed and remarkable answers. At the same 
time, the semi-structured qualitative method was administrated to the managers in 
charge of the operations strategies, decision-making and stakeholder management. 
The qualitative questions focus on the participant’s experience, knowledge and 
views concerning the research problems. For instance, How has the quality of ser-
vices been affected by asset outages in your network? These questions were designed 
and structured to generate conclusive and quantifiable data.

The data were then analysed to understand the asset management process and how 
decisions are made in the physical context where the outages occur and affect 
QoS. The paper also reviewed related published journals on telecoms and asset man-
agement maintenance. This search includes keywords such as passive infrastructure 
and asset, network availability, QoS, asset management and preventive and corrective 
maintenance. This document search was conducted in vital academic databases such 
as Google Scholar, ProQuest, Scopus, Science Direct and JSTOR.

4 � Results

As mentioned earlier in this paper, little attention has been given in the literature to 
explore the impact of different organisational scopes on asset management, perfor-
mance, cost and risk in the research context. Therefore, this paper explores the posi-
tive effect of asset performance, cost and risk on QoS. Accordingly, various subjects 
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were conceptualised to design the questionnaire, with each question examined on 
the five-point Likert scale of 1 – strongly disagree and 5 – strongly agree.

4.1 � Quantitative Structured Questionnaire Results

The structured questionnaire was administered to participants at the researched 
organisations with managed services companies, with a returned response of 85% 
of the one hundred fifteen billed participants. This sample size is within the accepted 
requirements for the SPSS dataset (Kline, 2005). This population show adequate 
content validity based on Gable and Wolf’s (1993) suggestion that the number of 
professionals needed for content validity is between two and twenty.

4.2 � Results -Descriptive Analysis

Table 1 presents how the appropriate regression model fits the dataset. This is 
because .963 illustrates an appropriate linear correlation between the predictors and 
response variables. The coefficient of determination, which is R-squared 0.928, is a 
perfect proportion of the variance in the response (dependent) variable that is 
described by the predictor (independent) variables.

For this paper model, the R-square value signifies that the predictor (indepen-
dent) variables would describe 93% of the variance in the response (dependent) 
variable. Field (2018) noted that the R-squared value is always lower than the 
R-squared value. The observed standard error of the estimated value of this model 
falls an average of 0.360945239 units from the regression line (Field, 2018); this is 
because the standard error of the estimate of regression is the average distance that 
the observed values fall from the regression line.

The F-test shows a p-value of <.001, which determines the significance of the 
R-squared change. This F-test is within the accepted value of 0.05 (Field, 2018), 
thus showing a significant relationship between the predictor (independent) vari-
ables and response (dependent) variable based on the p-value of <.001.

Table 1  Model summary

Model R
R 
square

Adjusted  
R square

Std. Error  
of the estimate

Change 
statistics
R square 
change

F 
change df1 df2

Sig. F 
change

1 .963a 0.928 0.921 0.360945239 0.928 129.208 9 90 <.001
aPredictors: (Constant), MTTR, Dieselmgt, Tower mce, PdM/CbM, Sparemgt, RCA, Janitorial, 
Asset Pef, PPM
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Table 2  ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 151.501 9 16.833 129.208 <.001b

Residual 11.725 90 0.13
Total 163.227 99

aDependent Variable: QoS
bPredictors: (Constant), MTTR, Dieselmgt, Tower mce, PdM/CbM, Sparemgt, RCA, Janitorial, 
Asset Pef, PPM

4.3 � Results of the Overall Regression Model

Table 2 The sig value in the ANOVA tables provides the statistical significance of 
the regression model through the interpretation of each parameter value. For 
instance, the regression degree of freedom number is equal to the value of the 
regression coefficient minus one. This model intercept term is nine (9) predictors 
(independent) variables. With a total regression coefficient of ten (10), the regres-
sion of freedom is 10–1 = 9. In addition, the total degree of freedom which is the 
number of dataset (observations) participants minus 1. Therefore, 100–1  =  99.  
Also, the residual degree of freedom, which is the value equal to the total degree of 
freedom df minus regress df, 99–90 = 9.

On the other hand, the means square is analysed by the regression value  
of the square divided by the regression degrees of freedom df, which is 
151.501/9 = 16.833344. Results from these values and parameters show a strong 
relationship between the predictors (independent) variables and response (depen-
dent) variable. These indicators are in agreement with (Field, 2013; Blume et al., 
2019) assertions on evidence to assume that the regression model fits the dataset 
appropriately.

4.4 � Results from the Hypothesis Testing

Table 3 indicates a strong correlation between quality of service (QoS) with asset 
performance caused by maintenance activities of planned preventive maintenance 
with p-v of <.00, diesel mismanagement with p-v of 0.005, incorrect root cause 
analysis with p-v of 0.007 and means-time-to-repairs (MTTR) with p-v of 0.003. 
These predictors impact asset management and maintenance performance and, in 
turn, are factors impacting the quality of service.

Conversely, we observed a significant correlation between tower maintenance 
and janitorial with a p-v of 0.035. Although, these two predictors are non-traffic 
affecting and do not impact the quality of services. Another non-traffic affecting 
factor is the correlation between spare management and janitorial maintenance with 
a p-v .022. These non-affecting factors could only impact the quality of service at a 
secondary level of maintenance activities when a planned network comes with a 
work order and reference number to enable the implementation of the activity.
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Table 3  Coefficienta

Model Unstandardized coefficients
Standardized 
coefficients t Sig.

95.0% 
confidence 
interval for B

B
Std. 
Error Beta Lower bound

Upper 
bound

1 (Constant) −7.918 1.064 −7.443 <.001 −10.031 −5.804
Tower mce 0.012 0.078 0.005 0.153 0.879 −0.144 0.168
PdM/CbM −0.033 0.079 −0.013 −0.417 0.678 −0.19 0.124
Janitorial 0.17 0.087 0.061 1.952 0.054 −0.003 0.343
PPM 0.987 0.177 0.581 5.564 <.001 0.634 1.339
Asset Pef 4.178 0.857 0.399 4.878 <.001 2.476 5.88
Sparemgt −0.061 0.083 −0.024 −0.735 0.464 −0.226 0.104
RCA −0.208 0.202 −0.077 −1.03 0.306 −0.61 0.193
Dieselmgt 2.639 0.955 0.135 2.762 0.007 0.741 4.536
MTTR 1.59 0.549 0.098 2.897 0.005 0.5 2.681

aDependent Variable: QoS

In addition, the strong correlation from mean-time-to-repairs (MTTR) with a p-v 
of .003 as a factor affecting the quality of service shows that intermittent outages of 
infrastructure and assets impact network availability and QoS and increased OPEX 
caused by inappropriate planned preventive maintenance activities and diesel mis-
management, which have shown a significant correlation of beta 0.581, p-v of <.001 
and beta 0.135, p-v of 0.007. In most cases, the generator elements and engine oil 
are not replaced at the appropriate cycle, and air-conditioning (cooling systems) 
units are not serviced according to the design specifications. The reason has been 
inadequate real-time solutions, such as predictive-based maintenance strategies to 
monitor maintenance activities and functionality. Another reason is based on the 
manual delivery of diesel supply to sites and inaccurate recording of quantity  
consumed and delivered based on the power systems counter issues.

We observed from the regression analysis that infrastructure and asset failures 
caused by diesel mismanagement, resulting from incorrect diesel allocation, quality 
and quantity consumption, poor monitoring of diesel supplied to sites, faulty generator 
counters and no intelligent system to confirm actual supply and consumption impact 
asset management and maintenance which in turn affect network quality of services. 
This concern about poor diesel management and the exact quantity consumed creates 
an increase in OPEX and outages that affect QoS and overall performance.

Root cause analysis with beta 0.135 and p-v of 0.007 shows a positive correlation 
to asset management and maintenance performance based on the invisibility of 
actual asset outages, which in turn increase frequent site visits by field technicians 
from the point of high mean-time-to-repairs (MTTR), penalties for not meeting the 
service level agreement (SLAs) and travel time, and off-course operational risks to 
personnel and the organisation. By risk, the paper focuses on the MTTR caused by 
the downtime from the infrastructure and asset failures at midnight or odd hours and 
not only the risk caused by the improper planned maintenance of the infrastructures 
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and assets. Therefore, the result was based on addressing the impact of infrastruc-
ture and asset performance, OPEX and risk on QoS. The factors concerning perfor-
mance were created based on the participants’ response and their reviewed faults 
reports and documents, as additionally, the OPEX and risk were mainly from the 
available records and reports.

The predictive-based and condition-based maintenance approaches are another 
critical factor but with a negative correlation with beta −0.013, p-v 0.678 that affect 
the quality of service. This factor entails monitoring asset functionalities such as spare 
replacement, fault detections, real-time escalation on asset unforeseen breakdowns 
and outages and cooling systems performance. Inefficient cooling causes high tem-
peratures, which in turn shut down the power systems and damage the active compo-
nents because the active components operate within a specific temperature. Real-time 
escalation and detection of unforeseen asset outages reduce MTTR, improve perfor-
mance and QoS, and reduce OPEX and security and environmental issues.

For instance, the results show intermittent asset breakdown, which impacts net-
work availability and QoS and increases OPEX.  The reason for the increase in 
OPEX has been frequent site visits by field technicians from the point of high mean-
time-to-repairs (MTTR), penalties for not meeting the service level agreement 
(SLAs) and travel time, and off-course operational risks to personnel and the organ-
isation. By risk, the paper focuses on the MTTR caused by the downtime from the 
asset failures and not only the risk caused by the improper planned maintenance of 
the infrastructures and assets. Maintenance activities of planned preventive mainte-
nance represent the monthly asset maintenance cycle based on the manufacturer 
manual, which occurs every 250 h, 500 h and 1000 h based on the power configura-
tion and hybrid solutions. Inappropriate and non-compliance to planned preventive 
maintenance activities have been observed from the data and is the key factor 
impacting asset performance. Reasons for non-compliance are basically human atti-
tude and behaviour issues. Diesel consumption and management are other critical 
factors that impact asset performance. The data indicates inaccurate diesel con-
sumption values, under allocation and quality issues. However, because of the 
human interface, there is concern about exposure to theft based on the demand on 
the local and street market, thereby creating concerns about diesel management.

4.5 � Qualitative – Semi-Structured Interview Results

The paper also performs six (6) semi-structured interviews with participants respon-
sible for policy making, supervision, asset management and maintenance decisions. 
This interview process was via Zoom and Google Meet and lasted around 30 min 
maximum duration. The results from the interview were a follow-up to the quantita-
tive data collection that needed further explanation from management team mem-
bers. The sampling strategy for this paper was purposeful sampling to assist with 
participants that are most effective and meaningful in answering the research ques-
tions (Lincoln & Guba, 1985). The participant was selected based on their length of 

C. Okeyia and N. M. Almeida



45

work experience, understanding of the maintenance practice, readiness to share the 
experience and how assets are managed in the organisation.

The collection of data through the interviews and survey questionnaires is simul-
taneous with the data interpretation and analysis to show a rich understanding of the 
data. Together with the textual data, this paper uses NVivo version 12 to analyse the 
data by organising, analysing and visualising the data through word search to code 
sources and capture concepts for thematic analysis. The outcome from the interview 
data shows that predictive-based maintenance strategies are significant in address-
ing issues of asset performance, which, in turn, impact the quality of service.

Figure 4 The word cloud evidently articulates each keyword or theme identified 
from the data and gradually organises comparable themes into various all-
encompassing proportions or scopes that made up the foundation of a developing 
thematic structure that assisted in showing the evidence of the results. The thematic 
structure of the asset performance with the maintenance activities that are imple-
mented through the predictive-based maintenance approach explains the stability of 
the network’s quality of service. The asset outages depend on real-time escalation 
monitoring and functionality and how organisations in this context will use 
predictive-based maintenance strategies to improve asset performance and reduce 
operating expenditures. Keywords that relate to asset performance which impact the 
quality of service from the interviews are real-time, outages, functionality, monitor-
ing and operating expenditure OPEX, etc.

Additionally, the results from the interview word cloud integrated and correlated 
with the results from the quantitative data. This insight provides directions on the 
impact of asset performance on QoS based on its maintenance activities. For 
instance, from the transcribed text from the interviews based on participants’ 
responses, one participant’s statement response to one of the questions on factors 
impacting asset performance made this proposition; “The issues with asset 

Fig. 4  Results from interview word cloud
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performance is based on high mean-time-to-repair which is a result of the poor 
escalation of outages and sites location.” This kind of issue could be resolved with 
the implementation of a predictive-based maintenance strategy whereby asset con-
ditions and functionality are inspected before failures occur.

Other participants said that; “Increased visibility and transparency of all planned 
preventive maintenance activities to ensure that the servicing materials are actually 
replaced every cycle to avoid intermittent asset outages.” These propositions from 
the participants are in alignment with various theories on maintenance strategies 
that address asset outages, such as using predictive-based systems to monitor main-
tenance activities and reporting field team activities.

4.6 � Systematic Review Results

The results from the reviewed literature show the relationship between factors affecting 
the quality of the network from the asset management perspectives, such as the mainte-
nance strategy, planning, optimisation approaches and asset maintenance activities and 
tasks (Dekker, 1996; De Jonge & Scarf, 2020). Therefore, a detailed assessment and 
categorisation of maintenance procedures are necessary for maintenance strategy 
(Wang, 2002). A critical categorisation of maintenance strategies considers three princi-
pal areas (Ayu & Yunusa-Kaltungo, 2020): planned preventive, corrective, condition-
based and predictive-based maintenance strategy. Planned preventive maintenance 
prevents unplanned outages through programmed periodic inspections and spare 
replacement.

Critical activities in planned preventive maintenance involve engine oil or lubri-
cant changes, filter or elements replacement and adjustment of belts and general 
inspections. These activities are repeated at intervals based on the manufacturer’s 
references and analysis of quality factors such as mean-time-to-failure (MTTF). 
This preventive maintenance strategy guarantees good asset condition and function-
ality that reduces the risk of likely breakdowns or outages.

In contrast, Mobley (2003), Farinha (2020), and Duarte and Santiago (2023) 
noted that a preventive maintenance strategy does protect against unaccepted out-
ages and defects of elements, as replacing spare parts too often is not always a better 
option based on the argument that new spare parts are more likely to be defective 
than the existing ones. However, the paper does agree with this proposition of 
replacing new spare parts to protect the asset functionality and performance based 
on experiences and insight from the extant literature.

Therefore, using the Nvivo version 12 software to analyse the imported data 
from the reviewed literature shows key findings that relate to the research, such as 
predictive data, systems, digitisation, twin, machining and systems, etc. These 
words are relevant to asset management and maintenance practices (Fig. 5).

Typically, if these strategies are integrated, planned preventive strategies for well-
recognised and constant failure–time correlation, corrective strategies for assets with 
low criticality in terms of infrastructure and asset availability and cost, and condition-
based strategies for the most critical assets (Molęda et al., 2023). In another category, 
predictive and proactive maintenance are recognised (Lawrence & O’Connor, 1995; 
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Fig. 5  Results from word cloud analysis

Van Horenbeek & Pintelon, 2013; Opara et al., 2021). These approaches are consid-
ered model-driven or condition-based maintenance, respectively.

Though both intend to improve the asset lifecycle and infrastructure and asset 
availability, the first uses historical data, and the second depends on continuous 
monitoring to identify early indications or symptoms of infrastructure and asset 
failure. Sikorska et al. (2011) analyse the methods of maintaining asset useful life 
by categorising the features of the methods in the context of resources and customer 
needs. Diagnosis that includes a description of methods and application in areas 
such as fault detection and identification, pattern recognition and root cause analy-
sis. Gao et al. (2015) focus on showing fault detection and identification and label-
ling them in detail, grouping them as model-based and knowledge-based with 
data-driven (Moleda et al., 2020).

Additionally, Solé et al. (2017) argued on the root cause analysis issues concern-
ing maintenance requirement, performance and scalability aspects. A prediction 
that covers methods and applications such as predictive management and useful 
lifecycle mainly in predictive maintenance application in broad industrial domains, 
such as Carvalho et al. (2019), focus on approaches, devices and data sources (Diez-
Olivan et al., 2019) on the categorisation into descriptive, predictive and prescrip-
tive analysis, (Zonta et al., 2020) on the limitation of predictive-based maintenance. 
The prescription describes advanced analysis applications in the prescriptive area, 
including techniques such as digital twin, simulation, process optimisation and area 
that is telecoms domain and other industrial areas covered by the review.

4.7 � Summary of the Main Results

The summary of the key findings was outlined accordingly. First, to understand how 
network availability and QoS are affected by asset outages and performance, OPEX 
and risk. Secondly, the data shows that intermittent outages of the assets affect the 
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network quality of services despite the planned maintenance cycles and diesel man-
agement of the assets. Other factors affecting network service quality are ageing 
infrastructure, assets, and security threats.

Table 4 presents the summary of the leading factors affecting the quality of ser-
vices from asset performance perspectives. Asset performance with a strong corre-
lation of .916 is significant at the 0.01 level, 2-tailed with p-v of <.001 as a factor 
affecting the quality of service. The inappropriate planned preventive maintenance 
activity with another strong correlation of .901 is significant at the 0.01 level, 
2-tailed with p-v of <.001 as a factor affecting the quality of service. False escala-
tion of root cause analysis with a positive correlation of .799 is significant at the 
0.01 level, 2-tailed with p-v of <.001 as a factor impacting the quality of service.

Diesel mismanagement with a positive correlation of .519 is significant at the 
0.01 level, 2-tailed with p-v < .001, affects the quality of service and means-time-to-
repair (MTTR) with a correlation of .293 is significant at the 0.01 level, 2-tailed 
with p-v .003, is a critical factor affecting the quality of service. These factors are 
inconsistent with (Opata, 2013a, b; Opara et al., 2021; Chen et al., 2021; Thai et al., 
2021; Danbatta & Zangina, 2022; Duarte & Santiago, 2023) studies on asset man-
agement and quality of services.

Additionally, the planned preventive maintenance activity to asset management 
and These identified factors impact the quality of the network services based on 
these reasons: asset failures caused by diesel mismanagement, resulting from incor-
rect diesel allocation, quality and quantity consumption, poor monitoring of diesel 
supplied to sites, faulty generator counters and no intelligent system to confirm 
actual supply and consumption.

These concerns about poor diesel management and the exact quantity consumed 
create an increase in OPEX and outages that affect QoS and overall performance.

The paper also found factors such as a lack of real-time visibility of the technical 
and environmental activities that affect QoS, from the point of not predicting the 
outages before they occur and resolving issues remotely before escalating to the 
field technicians to visit the site physically. Furthermore, not monitoring the main-
tenance activities remotely to ensure materials were appropriately replaced, and 
actual diesel quantity delivered to the site were also factors that affected QoS 
through port network availability.

5 � Discussion

This paper supports the assumptions establishing intelligent and human collabora-
tion by telecom operators in emerging operating environments and markets. This 
action will benefit them by executing appropriate asset management and mainte-
nance practices through real-time applications that will address performance, cost 
and risk issues in their operations. Several approaches optimise the maintenance 
strategies for asset management support.
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The existing asset maintenance practice is reactive, time-consuming, and not 
responsive or intelligent enough to address network operations and maintenance 
challenges. Current operational and asset management activities rely greatly on 
human interventions, affecting OPEX.  These routine and non-routine operations 
and maintenance costs and activities represent high OPEX. The level of the existing 
intelligence or digital in the study context is mainly low. For instance, the integra-
tion between various power redundancy procedures (public grids/diesel generators 
1 or 2) is not swift and intelligent.

Due to the more complex operating environments, such as across rivers, 
standalone or road coverage sites, that trigger network availability issues such 
that manual integration increases mean-time-to-repair (MTTR). This high 
MTTR explains the problem with network availability, which affects QoS, as 
monitoring whether the spares are replaced or reused with the correct quantity 
and quality. These problems could be resolved by predictive-based systems that 
would assist network operators in having visibility, enhancing performance, and 
reducing OPEX and risk. This is because the management and maintenance 
practice influences asset performance, improving the QoS that addresses cus-
tomer satisfaction and expectations.

5.1 � Contribution from the Reviewed Literature

The examined extant literature is distinguished between journal articles that focus 
on a wider explanation of approaches in the context of asset management and main-
tenance domain as a whole and asset engineering management presenting different 
solutions. However, issues relating to network quality of service, asset solutions and 
likely changes to existing practices, specifically maintenance strategies based on the 
context of this paper, were not addressed in detail in the reviewed literature. Thus, 
this paper extends the range of these reviews from the existing conventional meth-
ods and approaches used in asset maintenance to cover solutions that encompass 
systematic capabilities and intelligence-based procedures, such as predictive-based 
maintenance approaches. This understanding assisted with approaches covering the 
domains of diagnostics, prediction and remedy in the context of telecom operating 
environments. However, the reviewed literature suggests simplified strategies 
generic to fault detection and identification (diagnosis) and remaining lifecycle 
(prognosis) by classifying the approaches into dimensions of data-driven and 
model-based. Thus, from preventive and corrective maintenance strategies to pre-
dictive maintenance strategies.
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5.2 � Contribution to Knowledge

This study contributes to infrastructure and asset management and maintenance 
practice by developing a better understanding of the interactions and relationship 
between infrastructure and asset management and maintenance approach and asset 
performance and functionality. The paper builds on the existing literature from these 
domains to develop an empirical review and insight into how the organisation’s 
resources could promote and improve network quality of service through asset per-
formance. Thus, offering empirical findings would add to the scholarly study and 
offer a practical understanding of asset management employees in telco mainte-
nance organisations. The results achieved during this study are presented concern-
ing the research problem.

6 � Conclusions

Using the predictive-based maintenance strategy and condition-based maintenance 
practices to address the factors affecting the quality of service through the prediction 
and real-time monitoring of asset functionality provides a new likely approach to 
addressing the asset performance issues affecting the network quality of services in 
emerging telecom environments and markets. Specific use of the predictive-based 
maintenance strategy, where traditional approaches requiring inactive elements and 
human analysis are substituted by industry 4.0R digital twin and artificial intelligence 
inference based on existing practice, extensive digitisation permitting real-time condi-
tion-monitoring of asset functionality and response from operator interface.

The proposed approach is related to real-time fault detection, identification and 
escalation based on the likely possessed understanding, data resources, assets and 
human interface, which is consistent with (Chen et al., 2021) studies on using intel-
ligent and digitalised systems for asset management. However, improved QoS can-
not be achieved without the stability of the asset performance. Therefore, network 
operators should focus more on asset management and maintenance activities 
towards addressing factors affecting QoS by integrating intelligence and a human-
centric approach to optimise network values as a gateway for the future in sustain-
ing better QoS. This proposition aligns with Duarte and Santiago (2023) studies on 
maintenance practice and asset functionality and effectiveness, where organisations 
focus on overall equipment effectiveness.

Additionally, implementing intelligent and human-centric strategies in asset 
management and maintenance practices in this context helped network operators 
focus on addressing and stabilising network quality of service in the future. This 
conclusion explains that adopting intelligence and human-centric operational con-
cepts entailed practical intelligence of the technical and non-technical procedures 
that predict real-time and remotely resolve issues. Besides, a multi-disciplinary 
method between intelligence and human-machine interface through monitoring and 
control was necessary to address the network quality of service caused by poor 
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network availability due to asset failures caused by the technical and non-technical 
factors associated with asset performance.

From the data analysis, the action needed to address the two key factors that 
impact asset performance and, in turn, network quality of services is to adopt a 
predictive-based approach that can assist in monitoring all asset management and 
maintenance activities concerning proper maintenance services on the assets, accu-
rate delivering, actual root cause analysis on outages and supply diesel quantity to 
each location, real-time escalation of asset functionality and outages. In addition, 
assist field technicians to improve their routine activities by reducing frequent visit 
visits, false alarms or fault escalations. The action will result in improved asset per-
formance, which in turn improves network availability and quality of service that 
will address customer complaints.

7 � Recommendations

For network operators to address and achieve these QoS problems, a predictive-
based asset management and maintenance practice that involves an intelligent and 
human-centric approach should be adopted and implemented to address asset per-
formance issues affecting network availability and quality of services. This approach 
will assist in continuous real-time fault identification, escalation, prediction, ampli-
fication, and evaluation to improve maintenance decision-making based on asset 
functionality. This is because asset management, efficient maintenance approaches, 
and appropriate maintenance activities are crucial predictors of quality of service. 
This perspective supports the significance of integrating an improved intelligent and 
human-centric asset management and maintenance practice that will reduce too 
much reliance on human interventions and reporting.

This paper is to be further developed by the principal author of this paper, focus-
ing on Off-Grid Passive Telecoms Infrastructure in Emerging Market: Efficient and 
Cost-Reduced in Asset Management Solutions for Sustainable Network Value.
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A Conceptual Implementation Process 
for Smart Maintenance Technologies

San Giliyana, Antti Salonen, and Marcus Bengtsson

Abstract  Industry 4.0 is usually presented as usage of technologies. Some of these 
play an important role in the development of smart maintenance technologies. 
However, although the subject of smart maintenance has been discussed for more 
than 10 years, the manufacturing industry still finds it challenging to implement 
smart maintenance technologies to add benefits to maintenance organizations in line 
with company’s goals. This study presents a conceptual process for implementing 
smart maintenance technologies, challenges and enablers to consider when imple-
menting, and benefits. This article is based on an analysis of empirical findings from 
seven large manufacturing companies in Sweden, previous maintenance research, 
and authors’ three previous smart maintenance research articles. In the first article, 
the authors explored perspectives on smart maintenance technologies from 11 large 
companies within the manufacturing industry, while in the second one, perspectives 
on smart maintenance technologies from 15 manufacturing Small and medium-
sized enterprises (SMEs) were presented. In the third and final one, the authors 
developed and presented a testbed for smart maintenance technologies.
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1 � Introduction

In Industry 4.0, production, Information Technology (IT), and the Internet are com-
bined (Matt et al., 2020). According to Bajic et al. (2021), the aim of Industry 4.0 is 
to integrate the physical world of manufacturing processes with the cyber world. 
Tao et al. (2019) state that the cyber world consists of data analysis, apps, services, 
and decision-making, while the physical world consists of machines, real factory 
environments, material, people, and execution. Information and Communication 
Technologies (ICT), smart factories, and the development of internet and embedded 
system technologies are what Industry 4.0 deals with (Liu & Xu, 2017).

The nine technologies of Industry 4.0 are: (1) Industrial Internet of Things (IIoT), 
(2) Big Data and Analytics, (3) Augmented Reality (AR), (4) Simulation, (5) 
Autonomous Robots, (6) Additive Manufacturing (AM), (7) Cyber Security, (8) Cloud 
Computing, and (9) Horizontal and Vertical System Integration (Alcácer & Cruz-
Machado, 2019). These technologies provide innovations that affect production sys-
tems including strategies, processes, machinery types, and maintenance (Frost et al., 
2019). Globalization, new devices, and connectivity drive industries to improve their 
production lines’ performance and efficiency to stay relevant (Achouch et al., 2022).

To keep the production systems stable, maintenance as a function is essential and 
Abidi et al. (2022) state that maintenance activities are crucial to increase the life-
time of the equipment. In addition, Abidi et al. (2022) state that maintenance is one 
of the domains of manufacturing that introduces Industry 4.0 technologies, and 
maintenance is one function that will be affected by implementing Industry 4.0 
technologies (Bokrantz, 2017). Four generations of maintenance are presented by 
Moubray (1997). In the first one, the machines were run to failure, which is related 
to Corrective Maintenance. Systems for planning and control were implemented in 
the second one, which is related to Predetermined Maintenance. Condition Based 
Maintenance (CBM) was presented in the third maintenance generation. The nine 
technologies of Industry 4.0, as well as Artificial Intelligence (AI) and Cyber-
Physical Systems (CPS), play an important role in maintenance as a part of Industry 
4.0 (Silvestri et al., 2020; Lee et al., 2019; Kanawaday & Sane, 2017; Al-Najjar 
et al., 2018) and may possibly be seen as the fourth generation of maintenance.

Previous research presents several approaches for smart maintenance technolo-
gies (Singh et al., 2013; Al-Najjar et al., 2018; Cachada et al., 2018). However, the 
manufacturing industry still finds it challenging to implement smart maintenance 
technologies to add benefit to maintenance organizations in line with company’s 
goals. Giliyana et al. (2022, 2023a), Silvestri et al. (2020) and James et al. (2022), 
state that further research is needed to support the manufacturing industry in the 
implementation of smart maintenance technologies. Moreover, Flores et al. (2018) 
performed a study that included responses from 76 individuals located in 25 differ-
ent countries. It showed that only 17% of the companies had a fully developed 
strategy for implementing Industry 4.0 technologies. Organizational challenges, 
such as integration of all stakeholders, Original Equipment Manufacturers (OEMs), 
end-users and support providers, are identified by Badri et al. (2018).
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Furthermore, Lundgren et al. (2022) state that further research is needed to sup-
port the manufacturing industry in implementing smart maintenance. They have 
investigated several hindering factors in the implementation of smart maintenance, 
such as leadership clarity, culture, and time and resources. Lundgren et al. (2021), 
have studied many challenges when implementing smart maintenance in digitalized 
manufacturing industry, such as technological challenges in System Integration, 
which is also stated by Kans and Galar (2017). Additionally, many managerial and 
technical challenges are identified by Bajic et al. (2021) and Rikalovic et al. (2021), 
such as poor data quality, too large dataset to manage, and competence.

A study where 15 Small and medium-sized enterprises (SMEs) within the manu-
facturing industry were included, performed by Giliyana et al., (2023a), showed that 
no smart maintenance technologies had been implemented in those companies. 
According to Moeuf et al. (2020), SMEs offer 67.1% of the jobs in private sector in 
Europe, which means that the implementation of Industry 4.0 technologies is essen-
tial to compete nationally and internationally.

According to Bokrantz et  al. (2020), smart maintenance has four dimensions. 
The first one is data-driven decision-making, making maintenance decision based 
on data. The second one is human capital resources, competence development of 
maintenance employees. Internal integration is the third, integrating the mainte-
nance function with other internal functions, and the last one is external integration, 
integrating maintenance function with external functions, such as machine suppliers.

This paper addresses smart maintenance technologies and is related to the dimen-
sion of data-driven decision-making. The primary aim is to develop and present a 
conceptual implementation process for smart maintenance technologies. This pro-
cess will include not only the challenges and enablers that the manufacturing indus-
try needs to consider during implementation but also the benefits derived from the 
use of such technologies.

2 � Methodology

This paper is based on a case study. The empirical data is collected through semi-
structured interviews and analyzed through a process for qualitative data analysis.

2.1 � Data Collection

The data collection is mainly based on interviews in 2023. Säfsten and Gustavsson 
(2020) present several weaknesses of interviews. One is that a wrong respondent 
may provide misleading results related to low validity (Säfsten & Gustavsson, 
2020). To address this, the researcher required that the chosen respondents have 
experience in and work with maintenance development. When collecting qualitative 
data, purposeful sampling is often used (Patton, 1990), to select settings, persons, or 
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events to provide important information (Maxwell, 1996). Säfsten and Gustavsson 
(2020) have written about convenience sampling, which means that the researcher 
uses the available elements. The corresponding author is an industrial doctoral stu-
dent at Mälardalen Industrial Technology Center (MITC), which is a laboratory and 
collaboration platform in Sweden. The empirical data was collected through semi-
structured interviews with respondents from seven large companies within the man-
ufacturing industry, which were available within MITC’s network for manufacturing 
companies and are at the forefront of technological development in Sweden. Two 
are classified as lighthouse factories, see Table 1.

The semi-structured interview questions were (shortened): (1) How do you see 
the term “Smart Maintenance”?, (2) How do you see the term “Smart Maintenance 
Technologies”?, (3) What types of technologies have been implemented or tested in 
your maintenance processes, and in what context?, (4) Was a process followed dur-
ing the implementation of smart maintenance technologies?, (5) Would a specific 
process be needed?, (6) What are the challenges with the technologies in your main-
tenance processes? When implementing., (7) What are the challenges with the tech-
nologies in your maintenance processes? When using., and (8) What benefits do the 
technologies add to your maintenance processes?

2.2 � Data Analysis

When the empirical data is collected through interviews, Säfsten and Gustavsson 
(2020) state that qualitative data analysis process should be used. Säfsten and 
Gustavsson (2020) present a process for qualitative data analysis. First, the data is 

Table 1  Case companies

Site 
empl.

Maint. 
depart. 
Size Type Position Date

Dura. 
(min)

A 1700 230 Automotive industry Maintenance 
manager

03–
16

49

B 600 50 Automotive industry Two maintenance 
engineers

03–
16

24

C 10,000 1000 Automotive industry Maintenance 
analyst

03–
28

28

D 1000 70 Automotive industry Maintenance 
engineer

03–
30

35

E, 
lighthouse

2000 100 Manuf. of bearings, 
seals, and lubrication 
systems

Maintenance 
manager

04–
27

32

F 5000 400 Automotive industry Maintenance 
engineer

05–
22

39

G, 
lighthouse

250 21 Manuf. of tools and 
machining solutions

Maintenance 
manager

05–
23

43
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reduced by transcribing and coding. Second, the data is visualized using tables, 
charts, etc. Third, the conclusions are made by looking for patterns, explanations, 
creating clusters, making comparisons, and analyzing changes over time (Säfsten & 
Gustavsson, 2020).

In this paper, the recordings from the semi-structured interviews were transcribed 
and coded in Nvivo, a software for qualitative data analysis. The codes were: imple-
mented smart maintenance technologies, implementation process, smart mainte-
nance definition, smart maintenance technologies definition, challenges when 
implementing, challenges when using and benefits of using. Then, the data was 
visualized through two tables, one for implemented smart maintenance technolo-
gies and implementation process and one for challenges when implementing, chal-
lenges when using, and the benefits of using smart maintenance technologies. In the 
last step, a deeper understanding was made by looking for explanations and making 
comparisons between different technologies and case companies.

3 � Smart Maintenance Technologies and Their Benefits

In this paper, smart maintenance technologies are limited to the nine technologies of 
Industry 4.0, AI, and CPS. Using IIoT, the physical object can be connected to the 
Internet (Silvestri et al., 2020), through different types of communication protocols, 
such as Message Queuing Telemetry Transport (MQTT) and Open Platform 
Communications Unified Architecture (OPC UA) (Silva et al., 2021), and collect 
data. For instance, machine components can be connected to the Internet and 
thereby collect maintenance-related data, such as vibration, pressure, and tempera-
ture (Amruthnath & Gupta, 2018).

Witkowski (2017) and Yin and Kaynak (2015) have defined Big Data and 
Analytics through 5 V: (1) Volume, the amount of data, (2) Variety, the variety of 
data, (3) Velocity, the speed of new data generation, (4) Value, the value of data, and 
(5) Veracity, quality of the data. Two benefits of Big Data and Analytics are advanced 
data analysis and real-time decision-making (Witkowski, 2017; Subramaniyan 
et al., 2018).

Predetermined Maintenance is applied based on the failure time data. The failure 
time data is based on experiences or OEM, such as every 1000 h or ten days (Ahmad 
& Kamaruddin, 2012a). Labib (2004) presents three reasons why the last-mentioned 
strategy is unsuitable for minimizing operation costs and maximizing machine per-
formance. The first one is that every machine works in a different factory environ-
ment. The second one is that the machine designers lack maintenance experience. 
Lastly, the OEMs may have a hidden strategy to maximize spare parts replacement. 
Implementing IIoT and Big Data and Analytics will overcome the drawbacks of 
Predetermined Maintenance. When the machines are connected to the Internet 
through IIoT, maintenance data can be generated, supporting the maintenance plan-
ning and decision-making, which is related to Big Data and Analytics and machine 
learning (Silvestri et al., 2020; Soori et al., 2023; Bona et al., 2021; Lee et al., 2019).
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Another Industry 4.0 technology that may support maintenance planning is 
Simulation, which is based on mathematical modeling and algorithms used for pro-
cess optimization (Erboz, 2017) and the design of a production system (Chong 
et al., 2018). According to Goodall et al. (2019), using Simulation, the behavior of 
a production system can be predicted, and thereby maintenance activities may be 
based on the prediction and the data from the simulation model.

Cloud Computing plays an important role in the development of smart mainte-
nance technologies, which is about data and platform sharing at an entire company 
(Erboz, 2017). Using Cloud Computing, the maintenance data may be shared 
between, for example, the maintenance and production department, with the opera-
tors who work close to the machines and are responsible for Autonomous 
Maintenance. Furthermore, Cloud Computing can provide a cloud-based 
Computerized Maintenance Management System (CMMS) that may be accessed 
when the maintenance workers are close to the machines, using different types of 
client media, such as laptops, netbooks, and smartphones (Chang et al., 2016). In 
addition, by assigning different system roles, operators can view Autonomous 
Maintenance activities on their smartphones while near the machines. Maintenance 
engineers may find modules for maintenance planning, root cause analysis, and 
spare parts inventory useful. Maintenance managers may, for instance, benefit from 
a dashboard that includes various types of diagrams and graphs to follow-up main-
tenance progresses, based on (Chang et al., 2016; Carnero & Novés, 2006).

According to Roy et al. (2016) AR, which is based on a real-time combination of 
3D-virtual objects with a real environment (Figueiredo et al., 2014), is playing a 
significant role in the development of smart maintenance technologies, offering 
step-by-step guidance for diagnostics, inspection, and training (Chong et al., 2018), 
which reduce time for performing maintenance tasks as well as errors (Masoni 
et al., 2017). Masoni et al. (2017) have shown the benefits of remote maintenance 
using AR, which is about remotely involving of the maintenance expert in problem-
solving, by sending pictures of the real situation, and then, the maintenance expert 
replies through symbols, sketches, or text, in real-time. Some of the benefits of 
remote maintenance, mentioned by Masoni et al. (2017), are the reduction of travel 
costs and downtime. Another benefit of AR within maintenance is digitalized 
instructions for Corrective Maintenance, Preventive Maintenance, and Predictive 
Maintenance (Eswaran et al., 2023).

AM is another technology that may enable efficient maintenance (Chong et al., 
2018). In AM, a digital design, i.e., 3D-CAD, is converted to a physical object, layer 
by layer. According to Chong et al. (2018), to create knowledge about equipment 
and maintenance, 3D-CAD can be used.

According to Kour and Gondhi (2020), the definition of AI is a technique that 
can perform activities that mimic human behavior. AI is becoming a major technol-
ogy for developing smart maintenance technologies, such as the analysis of mainte-
nance sensor data (Lee et al., 2019). Machine learning is a part of AI, and it is about 
making a system learn by itself based on data (Kour & Gondhi, 2020). Supervised 
machine learning forecasts events based on labeled data (Kour & Gondhi, 2020). 
Unsupervised machine learning is based on unlabeled data. Reinforcement machine 
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learning is about a machine’s ability to predict its own behavior to maximize perfor-
mance (Kour & Gondhi, 2020). CBM consists of condition monitoring and decision-
making (Ahmad & Kamaruddin, 2012b). In the first step, condition monitoring, the 
health of the equipment is monitored based on data collection, such as vibration 
data (Ahmad & Kamaruddin, 2012b). In the second step, decision-making, the deci-
sion is made. Diagnosis and prognosis are two types of CBM analysis processes 
(Lewis & Edwards, 1997). Diagnosis is about finding the source of a failure, while 
prognosis is about predicting the occurrence of a failure (Lewis & Edwards, 1997). 
The labeled data in supervised machine learning is based on condition monitoring 
data that can be used for failure prediction, which boosts the prognosis process 
(Yuan & Liu, 2013). Prajapati and Ganesan (2013) state that CBM aims to make 
decisions based on data. Furthermore, Prajapati and Ganesan (2013) state that 
machine learning algorithms aim to make decisions based on sensor data, which has 
a one-to-one relation with the aim of CBM. Vibration measuring is a CBM tech-
nique and the most spread technique for rotating machines (Azevedo et al., 2016). 
Al-Najjar et al. (2018) state that the process of vibration analysis is done manually, 
and due to the demand for labor, knowledge, and experience, the machines are not 
monitored continuously. Moreover, lubrication reduces friction and increases the 
machine’s life. For instance, bearings are lubricated by central lubrication or manu-
ally greased, unrelated to the bearing condition and the real need (Al-Najjar et al., 
2018). To overcome the mentioned drawbacks of CBM, Al-Najjar et al. (2018) have 
investigated how CBM can be boosted using CPS.  The concept developed by 
Al-Najjar et al. (2018), consists of four steps, (1) Data collection, such as vibration 
data, (2) Maintenance actions recommendation, (3) Automatic maintenance of spe-
cific actions, and (4) Report to the maintenance department regarding what mainte-
nance actions, when and where to have to be done manually.

In addition, Giliyana et al. (2022) have investigated what types of smart mainte-
nance technologies have been implemented in the manufacturing industry and in 
what context. Their study shows that IIoT is implemented for machine connection, 
real-time sensors for maintenance data collection, Big Data and Analytics for main-
tenance data collection and maintenance planning, machine learning for predictive 
maintenance, AM for making spare parts for older manufacturing machines, and AR 
for remote maintenance.

Moreover, Giliyana et al. (2022) have mentioned several added values with smart 
maintenance technologies, such as the reduction of unplanned stops, automated 
condition monitoring, tracking of process data, failure prediction, spare parts avail-
ability, and deeper process knowledge. Furthermore, the respondents involved in 
Giliyana et al. (2022) mentioned that thanks to the smart maintenance technologies, 
they perform correct maintenance actions in time, they have become more cost effi-
cient, they have fewer production disturbances, they work with predictive mainte-
nance instead of reactive maintenance, they have increased knowledge on how their 
equipment works and can follow the degradation progress, and they plan mainte-
nance activities and make decisions based on data (Giliyana et al., 2022).
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4 � Challenges and Enablers of Smart 
Maintenance Technologies

Masood and Sonntag (2020) have investigated several general challenges when 
implementing Industry 4.0 technologies. The most common one is the training of 
the workforce. Then, support from experts, time to work with the new technologies, 
awareness of a large amount of technologies, and a large investment. Bajic et al. 
(2021) have investigated several challenges, such as that the technology is not 
mature, awareness of what kinds of Industry 4.0 technologies exist, large invest-
ments and uncertain returns, and lack of strategy. Other challenges Bajic et  al. 
(2021) mentioned are poor quality of the collected data, too large datasets to man-
age, competence about Industry 4.0 technologies, and Cyber Security and data pro-
tection. Badri et  al. (2018) have investigated several implementation challenges, 
such as the involvement of end-users and support providers. In this case, end-users 
can be maintenance engineers, mechanics, electricians, operators, and so on. 
Giliyana et  al. (2022) have investigated several challenges when implementing 
smart maintenance technologies in the manufacturing industry, such as Start-up 
cost, Cyber Security, change management, the technology may not be available for 
older machines, resources, competence, know what to monitor, and know what type 
of data to collect.

Moreover, Giliyana, Bengtsson, and Salonen (2023a) have investigated smart 
maintenance technologies implementation challenges related to Knowledge, Time 
and resources, Cost, and Age of the machines, from fifteen SMEs within the manu-
facturing industry in Sweden. Knowledge, they have summarized as, (1) To know 
what kind of data to collect and measure, (2) Technical knowledge, competence, 
and expertise in senior positions, (3) Make the technologies work and make every-
one understand and work after them, etc. The Time and resources category presents, 
(1) Resources to work with these technologies, (2) The time between implementing 
these technologies and benefits, (3) The maturity of the technologies, and (4) The 
machine manufacturers do not have the opportunity to offer these types of technolo-
gies for maintenance. The Cost category, they have summarized as, 1) Start-up 
costs, 2) Financial resources, etc. Older machines are presented in the category Age 
of the machines, since some of the respondents in their study mentioned that their 
machines are older, and these types of smart maintenance technologies may not be 
available for older machines (Giliyana, Bengtsson, & Salonen, 2023a).

4.1 � Implementation

Lundgren et al. (2021) have presented a smart maintenance implementation pro-
cess. This process consists of (shortened): (1) Benchmarking using a smart mainte-
nance measurement instrument, providing employees an understanding of the four 
smart maintenance dimensions presented by Bokrantz et al. (2020). (2) Setting clear 
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goal based on the company’s main goal. (3) Setting strategic priority to ensure that 
the activities are done in the right direction. (4) Planning key activities to reach the 
desired goals. (5) Creating an action plan, and (6) Follow-up to ensure the impact on 
the company’s main goal.

A six-step process for digitalization of the industrial maintenance is presented by 
Campos et al. (2020). The steps are (shortened): (1) Business case, a need is recog-
nized. (2a) Business understanding, a detailed understand of the situation is gained. 
(2b) Data understanding, data collection and storage, and ICT requirements. (3) 
Requirements specification, ICT requirements are specified and developed. (4) 
Subsystem/component design. (5) Prototype, an ICT prototype is designed, and (6) 
Final product/service, the ICT application is finalized.

CBM is expected to play a dominant role in smart maintenance technologies 
(Al-Najjar et  al., 2018). Therefore, the four-step CBM process presented by 
Bengtsson (2008) is of interest for this research paper. In the first step, Feasibility 
test, the question regarding whether CBM technologies are applicable should be 
answered. In the second step, Analysis and technical development, responsibilities 
are assigned, components, sub-systems and/or systems to be monitored are selected, 
and what, how and when to measure, are answered. Bengtsson (2008) has divided 
the third step, Implementation, into (1) Management and (2) Introduction. 
Management entails managers facilitating and supporting the implementation pro-
cess. In the introduction part, the technologies are introduced for other departments. 
When the implementation is done, in the fourth step, Assessment, the result needs 
to be compared to the period before CBM technologies, including employee percep-
tion, calculations like investment cost and cost for lost production, and so on. 
Another thing to consider is continuous improvement (Bengtsson, 2008). A similar 
CBM implementation process is also presented by (Rastegari, 2017). Furthermore, 
a CBM implementation framework is presented by Ahmer et al. (2022) and a gen-
eral CBM process is presented by Ahmad and Kamaruddin (2012b).

Additionally, Giliyana, Karlsson, et  al. (2023b) have developed a testbed for 
smart maintenance technologies and the development process is presented in their 
study. Two steps in their process that will play an important role in this study are 
Team building and Pre-study. Smart maintenance technologies are characterized as 
cross-border technologies, necessitating the involvement of multiple departments, 
such as maintenance, IT, and production departments. Hence, in Team building, it is 
imperative to construct a cross-functional team that includes maintenance engi-
neers, mechanics, electricians, software developers, maintenance managers, pro-
duction managers, and operators with direct proximity to the machines and with the 
deepest knowledge about machines and processes. According to Masood and 
Sonntag (2020), one of the challenges when implementing new technologies is 
awareness of many technologies. Therefore, in Pre-study, what Industry 4.0 tech-
nologies exist and what kinds of technologies can be used in the development of 
smart maintenance technologies, should be clarified (Giliyana, Karlsson, 
et al., 2023b).
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5 � Empirical Findings

The respondents see smart maintenance as a support system to solve problems 
smarter and faster based on data. The respondents exemplified smart maintenance 
technologies by stating AR, smart sensors, machine learning, data analysis, IoT 
platforms, 3D-printer, Cyber Security, OPC UA, and MQTT.  Table  2 shows the 
implemented smart maintenance technologies, and the implementation process.

Table 3 shows that all case companies have implemented some kinds of smart 
maintenance technologies. Moreover, Table 3 shows the benefits of implemented 
smart maintenance technologies, as well as challenges.

6 � Analysis

The empirical findings show that the respondents see the term of smart maintenance 
as a support system and enabler, rather than a revolution. For example, at case com-
pany G, an application development software and QR codes are used to improve 
Autonomous Maintenance, and at the case company F and G, 3D printers are being 
used to reduce waiting time for spare parts. Also, previous research presents that 
smart maintenance is a kind of support system to improve Preventive and Corrective 
Maintenance (Eswaran et al., 2023; Soori et al., 2023).

Regarding the term smart maintenance technologies, the respondents mentioned 
AR, machine earning, data analysis, IoT, cloud solutions, 3D-printer, etc. The 
respondent from case company C, mentioned that smart maintenance technologies 
are not about a robot coming and fixing a machine. Furthermore, this respondent 
mentioned that smart maintenance technologies are about making maintenance 
repairmen and technicians’ job easier and faster. At the case company F, the respon-
dent mentioned that technologies should make work easier for employees, other-
wise, they will not use the technologies.

The empirical findings show that all case companies have implemented some 
kinds of smart maintenance technologies, such as mobile applications, sensors, 
automatic vibration sensors, dashboards, AI algorithms, IoT platforms, and visual-
ization software, such as Grafana. Previous research present that AR is becoming 
very important for smart maintenance (Chong et  al., 2018; Masoni et  al., 2017; 
Eswaran et al., 2023), but one answer, by the respondent from case company F, is 
that they purchased AR equipment for remote maintenance, but they could not see 
the value within the frame of maintenance. AR is implemented but not used, as 
mentioned by the respondent.

This study also shows that the case companies face several challenges when 
implementing and using smart maintenance technologies, although the subject of 
Industry 4.0 has been discussed since 2011. Case companies G and E are lighthouse 
factories, but the empirical findings show that they still face many challenges when 
implementing smart maintenance technologies, such as support from IT 
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Table 2  The implementation of smart maintenance technologies

Implemented smart maintenance 
technologies Implementation process

A Mobile applications and sensors. 
Ongoing pilot projects. “…I feel that 
we are quite mature both in terms of 
installing the equipment, using the 
equipment, and evaluating the data…”.

“…technology roadmap…” to identify needs. A “…
guideline…” could be needed for implementing 
new technologies.

B Automatic vibration sensors to replace 
bearings before breakdowns.

“…it’s defined in the project..., we have a business 
plan, and the maintenance has its part in the 
business plan…”. A specific process could be 
needed for implementing smart maintenance 
technologies in a standardized way.

C Proof of concept before deciding. 
Sensors are connected to collect data 
and monitor. 1.5 million Swedish 
crowns are saved on one compressor in 
one year. When the profit is visible, 
they decided to work with larger cases. 
“We have a project for an IoT platform 
right now for a new battery factory.”. 
Furthermore, there are dashboards, 
machine learning, big data and 
analytics, and emails that are 
automatically sent to the technicians 
when anomalies are detected by 
machine learning. Regarding root 
cause analysis, there are algorithms 
that have not yet been implemented. 
Therefore, they do the root cause 
analysis manually.

(1) connectivity, which is about deciding what 
machine to connect and with what communication 
standard, (2) data acquisition, what data to collect 
and with what sensors, (3) data pre-processing, 
what data to store in the database, (4) data 
visualization, visualization of the data on 
dashboards, (5) data analytics, data analysis using 
algorithms, and (6) automatic maintenance, 
maintenance orders are created automatically and 
the degradation can be followed before breakdown.

D IoT platform and measurements in 
welding robots. A few robots are 
connected, and they can see trends and 
tendencies. One reason for 
implementing smart maintenance 
technologies is to understand and learn 
what is available and what they can get 
out of the technologies.

An organization works with new technologies and 
identifies where they can benefit from smart 
technologies to reduce disturbances, improve 
quality, or reduce costs, in cross-functional areas 
with production, production technology, and 
maintenance. One improvement is to have a 
standardized process for implementing new 
technologies.

(continued)
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Table 2  (continued)

Implemented smart maintenance 
technologies Implementation process

E Grafana software for data visualization, 
such as moisture meters to identify 
corrosion problems. Thermometers, 
vibration measurement equipment, and 
other types of logs. Experiment with 
hardening processes by connecting 
machines to the Swedish 
Meteorological and Hydrological 
Institute (SMHI) and detect when there 
is a certain percentage of lightning 
strikes in the region, which then stops 
the processes for about 4–5 h, to ensure 
that it stabilizes.

The implementation is done in the form of a 
project. There is no structured way of working. 
They try to demonstrate the benefits of smart 
maintenance to get management approval for the 
projects. The plan is to start a project in each 
sub-factory to identify losses and then demonstrate 
the benefits with the help of smart maintenance. A 
specific process or Gant chart could be needed 
when implementing smart maintenance 
technologies. A process is needed to follow to show 
where to start when implementing technologies for 
smart maintenance, to get the most benefit. A 
process also makes it easy to involve the culture, as 
not all people are for new technology, and shows 
what is needed in the beginning, such as training.

F 3D printer is fully implemented to 
manufacture spare parts to reduce 
waiting time for spare parts. The 3D 
printer is connected to the CMMS. A 
library has been built with standard 
items. They are working on machine 
connectivity. They want to standardize 
how machines are connected and how 
data is visualized so that a maintenance 
engineer can determine the criticality 
of their equipment and connect their 
machines themselves. They purchased 
AR equipment for remote assistance, 
but they couldn’t see their value within 
the frame of maintenance. They are 
implemented but not used.

They don’t have a clearly defined process. When 
they implemented the 3D printer, the maintenance 
engineers evaluated it themselves, purchased a 
small 3D printer, set up various use cases, and then 
made calculations based on that. Afterward, they 
scaled it up by taking real use cases from the 
operations and ensuring local anchoring, 
ownership, and competence. The most important 
thing is to have local anchoring when implementing 
new technologies. A specific process for 
implementing smart maintenance technologies is 
not needed, but some types of manufacturing 
strategy where all functions are involved, so that 
each one does not do it separately, production, 
quality, maintenance etc.

G They have conducted a pilot project for 
autonomous maintenance since they 
had issues with autonomous 
maintenance not being performed. 
They built an application using 
Microsoft power apps software and 
placed QR codes on the machine’s 
checkpoint, such as checking oil. When 
scanning the QR code with a phone, a 
title appears indicating what needs to 
be done. Clicking on the title provides 
brief instructions on how to perform 
the task. It worked, but they have not 
been able to establish a stable solution 
to scale it up, therefore they only have 
it implemented on one machine. A 3D 
printer is used to print spare parts to 
reduce waiting time for spare parts.

They don’t have an implementation process. For 
instance, 3D printing has been driven by ideas. One 
of the reasons why scaling up doesn’t work at the 
case company could be the lack of an 
implementation process. “Some things need to be 
driven by enthusiasm, I believe, and then you can’t 
maybe frame it too much. But when it comes to 
implementation, you need to have some structure to 
follow.” at a small company, perhaps, a process is 
unnecessary, but in a large company, there are so 
many people involved, such as the IT department, 
and if there’s no process, there are many obstacles 
along the way. In the early stages, creativity is 
needed, but when things need to be streamlined, a 
process is necessary.

S. Giliyana et al.



73

Table 3  The benefits and challenges of smart maintenance technologies

Benefits
Challenges when 
implementing Challenges when using

A “…with data and information, we 
gain an advantage and we get a 
competitive…”, “…more fact-based 
decisions…”, “we will optimize our 
way of running production, we will 
not wear out the equipment as hard, 
we will have a better economic use 
of our equipment…”, “…we will 
work more safely…”

“Competence…”, “…resists 
new things…”, “…individuals 
and groups need to go 
through a journey of change. 
But at the same time, we live 
with old hardware.”

“Certain technologies 
are quickly accepted 
while other are 
slower.”

B “… to become more efficient in 
maintenance, so that fewer manual 
resources are needed, and so that it 
becomes more accurate when doing 
the right maintenance at the right 
time.”

Competence and cost. “…
convincing that this is worth 
the investment, because a lot 
is linked to the fact that we 
want a quick return on 
invested capital, but with 
these, it’s like 3, 4, 5 years 
maybe at best before you see 
the real profit...”. Defining 
the responsibility is a 
challenge, since smart 
maintenance technologies are 
cross-border technology and 
both maintenance, IT, and 
production need to be 
involved.

To have a follow-up to 
ensure that the 
technologies are used 
in the right way. One 
mistake is to set a level 
on a vibration sensor to 
replace a bearing when 
it alarms without doing 
a root cause analysis.

(continued)
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Table 3  (continued)

Benefits
Challenges when 
implementing Challenges when using

C They mainly work on urgent jobs 
and “…progressive 
maintenance…”, they repair 
machines that break down, with not 
much focus on improvements. This 
leads to long production stoppages 
and stress among the staff. With 
smart maintenance, if it is possible 
to see when a machine is going to 
break down, they can plan and 
ensure that the correct spare parts 
are in stock, and it may take a week 
to get a motor to the comp any. 
With smart maintenance, the 
production department, 
maintenance and logistic can be 
connected to each other, to 
coordinate better. This coordination 
does not exist today. “This will be a 
significant advantage that we can 
get from smart maintenance.”.
“It took a very long time for the 
company to accept smart 
maintenance, I think it took 3 years. 
Because the company is a large 
company, and they work in a very 
traditional way. It was very difficult 
to come and say that data can do 
the job better for those who have 
been working here for a very long 
time.” thanks to research projects 
and proof of concepts, the benefits 
of smart maintenance, such as the 
savings on the compressor, became 
apparent, and the decision was 
made to start with smart 
maintenance.

Competence. It is difficult to 
use the technology, difficult 
to choose signals, and 
difficult to use data and 
analyze it. Therefore, the 
progress is slow. A large 
SCADA system exists and 
collects a lot of data. But 
there are challenges in the 
maintenance department, 
such as training and 
acceptance.

When using the smart 
maintenance 
technologies, they have 
a standard package that 
they deliver and show 
to employees. It’s not 
certain that those who 
receive the standard 
package feel that it 
provides value. What 
they do at the case 
company is to update 
the standard package 
based on inputs from 
employees. This is a 
way to increase interest 
and motivate them to 
use the technology. 
There are different 
requirements from 
departments, such as 
maintenance and 
production. The 
challenge is to 
implement all the 
requirements that come 
in, but all requirements 
are taken in and 
prioritized.

(continued)
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Table 3  (continued)

Benefits
Challenges when 
implementing Challenges when using

D “In some places, not everywhere, 
but in some places, we can save 
quite a bit of money by using smart 
technology and measuring, being 
able to predict disruptions and 
breakdowns so that we can plan a 
component exchange at a good time 
instead of experiencing a long 
unplanned shutdown.”

To find a suitable 
prioritization, how do we do 
it, and who does it? It is a 
problematic area to find time 
to work with these things. 
“It’s not just a matter of 
connecting a sensor and then 
the problem is solved.” One 
big problem is data analysis, 
finding any correlations, 
setting limits, and seeing 
what’s right and what’s 
outside the tolerance. Not 
dedicating people with the 
right skills to do the data 
analysis and decide where the 
data should be stored, and 
how should it be stored and 
visualized in a simple and 
good way. There are many 
steps to consider, from the 
sensor on an equipment, the 
communication to the IoT 
platform and converting data 
to the information that can be 
used to make decision on.

It’s becoming more 
and more automated. 
When a sensor is 
connected and 
collecting data via 
OPC tags and has done 
a basic analysis, then it 
rolls much by itself. 
However, maintaining 
competence is always a 
challenge, even in the 
user stage.

E A decision support system to put 
the right maintenance action. They 
are repairing a lot of things 
expensively, and they are replacing 
too many components, and 
sometimes when a machine is 
disassembled, they take the 
opportunity to change other 
components too, and that is “…
money out…”.

Lack of time, resources, and 
competence. Acceptance 
from the machine owner. The 
production manager does not 
want the machines to be shut 
down. Cost is not a problem, 
but the challenge is to shut 
down production to install 
sensors.

The challenges when 
using smart 
maintenance 
technologies is to 
industrialize the 
solutions. Other 
challenges are setting 
alarm levels to identify 
vibrations that require 
replacement and how 
many months until that 
point, and to trust the 
technologies.

(continued)
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Table 3  (continued)

Benefits
Challenges when 
implementing Challenges when using

F 3D-printer that has provided several 
benefits, such as shorter waiting 
time to spare parts. Data-driven 
decisions and auto-generated work 
orders will result in significant 
benefits in the terms of availability 
and working time. “If you don’t 
implement new technologies, you 
won’t be in the game”, “if you are 
going to engage in real large-scale 
production, you have to do this.”

“The largest challenge is the 
alignment between 
organizations”. There are 
many standards and technical 
suppliers, and the challenge 
is to adhere to a standard. 
Proper preparation is 
important during 
implementation. “The issue 
that can arise if you don’t do 
the preparation properly is 
that you may have difficulty 
justifying the business.” 
Another mentioned challenge 
is too large data to manage.

There must be a 
genuine need from the 
business. One example 
is AR, where there 
wasn’t a genuine need, 
and therefore, the 
technology is not being 
used today, even 
though this is available 
at the case company. 
Technologies should 
make work easier for 
employees, otherwise, 
they won’t adopt new 
technologies.

G They have issues with waiting time 
for spare parts since they have many 
machines, and it is impossible to 
have all the spare parts in stock. “If 
we can 3D print things, for 
example, and have the things in 
2 days instead of 4 weeks, it’s a 
great opportunity.” when it comes 
to autonomous maintenance 
instructions, for instance, it is an 
opportunity to make it less 
dependent on individual personnel, 
both in
Terms of how it’s performed and if 
it’s performed.

The challenges when 
implementing new 
technologies are to get 
support from the IT 
department, competence, and 
resources.

“…a form of 
competence or an 
understanding that this 
exists and can be used 
for these things.”

department, competence, resources, and too many communications standard proto-
cols to manage. Additional implementation-related challenges mentioned by the 
respondents at the other case companies were competence, cost, and lack of time, 
all in alignment with Giliyana et al. (2022) and (2023a).

Regarding the challenges when using smart maintenance technologies, the 
respondents mentioned, ensuring that the technologies are used correctly, accep-
tance, competence in a user stage, and the risk of replacing broken components 
based on the output of a technology without doing root cause analysis. The respon-
dent at six of seven case companies mentioned that they do not follow any specific 
implementation process for implementing smart maintenance technologies. At the 
seventh one, case company C, a six-step process is followed, but the focus is only 
on the technical parts. For instance, the respondent at case company A mentioned 
that one improvement could be to have a guideline for implementing new technolo-
gies. The respondents at case company B mentioned that a specific process for 
implementing smart maintenance technologies is needed to work in a standardized 
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way, which is also mentioned by the respondent from case company D. Furthermore, 
the respondent at case company E mentioned that a specific process or Gant chart 
could be needed when implementing smart maintenance technologies, to show 
where to start the implementation to get the most benefit and that a process also 
makes it easy to involve culture, since not all people are willing to work with new 
technologies. One more benefit of having a specific process for the implementation 
of smart maintenance technologies, mentioned by the respondent at case company 
E, is that a process makes it easy to see what is needed in the beginning, such as 
training. Moreover, the respondent at case company G mentioned that one reason 
why scaling up at their company does not work could be the lack of an implementa-
tion process, and the respondent at case company F mentioned that a strategic way 
of working is needed where all functions are involved, so that each one does not do 
it separately, such as production, quality, and maintenance department. Finally, the 
previous research shows that smart maintenance technologies are cross-border tech-
nologies, where several departments need to be involved in the implementation pro-
cess, which is mentioned by several respondents, such as from case companies 
B and D.

7 � A Conceptual Implementation Process

The empirical findings and previous research show that manufacturing companies 
still find it challenging to implement smart maintenance technologies to add bene-
fits to the maintenance organizations in line with company’s goals, although many 
smart maintenance implementation processes are presented in previous research, 
such as Lundgren et  al. (2021) and Campos et  al. (2020). Furthermore, Silvestri 
et al. (2020) state that from industry’s point of view, there is no clear view of what 
steps an organization should take to implement smart maintenance technologies. 
Related to this, a study performed by Fraser et  al. (2015), shows that out of 82 
empirical papers, only three have direct practical links to the manufacturing indus-
try. In addition, previous research presents many challenges when implementing 
smart maintenance technologies. However, the challenges are not organized into a 
structured implementation process. One example is the challenges identified by 
James et al. (2022), Giliyana et al. (2022) and (2023a), related to the implementa-
tion of smart maintenance technologies. Also, the challenges that are identified by 
Bajic et al. (2021) and Rikalovic et al. (2021). Furthermore, as mentioned in the 
Analysis section, several respondents mentioned that a specific process or a stan-
dardized way, is needed to implement smart maintenance technologies.

This research paper organizes the challenges and enablers into a conceptual 
implementation process for smart maintenance technologies, see Fig. 1. The chal-
lenges and enablers are based on previous research and empirical findings from 
seven large manufacturing companies involved in this study. Furthermore, the con-
ceptual implementation process could possibly support the manufacturing industry 
in what steps to take to implement smart maintenance technologies.

A Conceptual Implementation Process for Smart Maintenance Technologies
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1. Team 
building

2. Pre-study

3. Feasibility 
test

4. Analysis and 
technical 

develoment

5. Action plan 
and 

implementation

6. Follow-up 
and continuous 
improvements

Fig. 1  The conceptual 
implementation processes

7.1 � Team Building

Smart maintenance technologies are characterized as cross-border technologies. 
Therefore, in this step, a cross-functional team is built (Giliyana et al., 2023b). One 
enabler is good communication between functions (Bengtsson, 2008). As presented 
in the empirical findings, other enablers are using pilot projects and testbeds to 
demonstrate the benefits of smart maintenance technologies and get management 
approval. According to the empirical findings, some challenges to consider in this 
step are cost, lack of time and resources, resisting new technologies, and support 
from IT department.

7.2 � Pre-study

In this step, smart maintenance technologies should be clarified. Therefore, one 
enabler for this step is education and training, since Masood and Sonntag (2020) 
have shown that knowledge is one major challenge when implementing new tech-
nologies. Additionally, Giliyana et  al. (2022) and (2023a), have identified many 
challenges when implementing smart maintenance technologies. One major chal-
lenge is knowledge, about IIoT, Big Data and Analytics, AI, etc.
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7.3 � Feasibility Test

Based on the potential gains and drawbacks of the technologies the question of 
whether smart maintenance technologies are applicable should be answered in this 
step. Moreover, whether smart maintenance technologies are accepted in the com-
pany should be investigated in this step. One enabler is to use audit and benchmark-
ing to assess the maturity of the maintenance organization (Bengtsson, 2008). 
According to the respondents in this study, some challenges to consider in this step 
are cost, lack of time and resources, and acceptance from the production managers 
since the risk is that the production managers do not want to shut down the machines 
to install sensors. Moreover, Bajic et al. (2021) have investigated several challenges 
related to the Feasibility test, such as unmatured technology, awareness of what 
kinds of Industry 4.0 technologies exist, large investments and uncertain financial 
returns, and lack of strategy.

7.4 � Analysis and Technical Development

In this step, the responsibilities for activities are decided to give motivation, which 
is one enabler for this step (Bengtsson, 2008). But at the same time, according to the 
empirical findings, defining the responsibility is challenging since smart mainte-
nance technologies are characterized as cross-border technologies involving differ-
ent departments. Other challenges, according to the empirical findings, are 
competence, not dedicating people with the right skills, difficulty to choose signals, 
difficult to use and analyze data, data storage, data visualization, convert data to 
information that can be used for decision-making, setting limits and seeing what is 
right and what is outside the tolerance, communication between the sensor on an 
equipment to the IIoT platform, and to set warning limits to identify deterioration 
that require component replacement and how long time until that point. According 
to previous research, some challenges related to this step are poor quality of the col-
lected data, too large datasets to manage, competence about technologies, Cyber 
Security (Bajic et al., 2021), knowing what kind of data to collect and know what to 
monitor (Giliyana et al., 2022).

7.5 � Action Plan and Implementation

In this step, an action plan should be created to fulfill the activities (Lundgren et al., 
2021). Implementation challenges, stated by Badri et al. (2018), are the involvement 
of end-users and support providers. Furthermore, Bengtsson (2008) has presented 
several enablers to consider during the implementation step, such as management 
support, goal setting, communication, using pilot project and keep up motivation.
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7.6 � Follow-Up and Continuous Improvements

In this step, the result of the implementation needs to be compared to before smart 
maintenance technologies was implemented, including employee perception and 
cost. Then, the use of smart maintenance technologies needs to be continuously 
improved to maintain the benefits. Enablers to consider in this step are, additional 
training and education might be necessary, additional tools might be needed or steps 
need to be repeated (Bengtsson, 2008). Related to this step, the empirical findings 
present several challenges when using smart maintenance technologies, such as 
ensuring that the right technologies are used in the right way, the risk of replacing 
broken components based on the output of a technology, without doing root cause 
analysis, competence in a user stage, and some technologies are quickly accepted 
while others are slower.

8 � Conclusions and Discussion

In this research paper, a conceptual implementation process is proposed, based on 
empirical findings, the authors’ three maintenance research articles, Giliyana et al. 
(2022), (2023a), and (2023b), as well as maintenance research by other researchers. 
The empirical findings are based on data from respondents from seven large manu-
facturing companies at Sweden’s forefront of technological development. Two of 
the case companies are classified as lighthouse factories. Furthermore, challenges 
and enablers for each process step are presented. This research paper generates new 
scientific knowledge for academia, regarding implementation, challenges, enablers, 
as well as benefits of using smart maintenance technologies. As mentioned in Sect. 
6, the conceptual implementation process presented in this paper supports the man-
ufacturing industry in what step to take to implement smart maintenance technolo-
gies. The limitation of this research paper is that the conceptual implementation 
process is not tested. The next step is to test the implementation process at one or 
several manufacturing companies and further improve it. One improvement sugges-
tion is also to improve the process steps by adding additional challenges and enablers 
for each step.
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A Framework for Assessing Emerging 
Technology Risks in Industrial Asset
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Abstract  The management of risks in the context of Industry 4.0 is currently lack-
ing accurate and efficient systematic approaches and tools, leading to a potential 
underestimation or unrealistic perception of risks in various domains where effec-
tive risk management is crucial. Traditional methods, while valuable, have limita-
tions and may not adequately capture all the factors that influence system safety. To 
address the challenges posed by conventional industry issues, emerging risks, and 
the complexities of socio-technical systems, there is a need for comprehensive Asset 
Management and Decision Support approaches. These approaches should encom-
pass both conventional and emerging risk safety management, providing innovative 
and efficient solutions to support practitioners in navigating these complex environ-
ments. Based on the rationale provided, this paper is dedicated to the identification 
and analysis of risk management components, particularly pertaining to emerging 
safety risks in the context of Industry 4.0. It also examines the challenges posed by 
extreme, rare, and disruptive events that have the potential to severely impact orga-
nizational performance. The research focuses on relatively new methods grounded 
in system theories, specifically the Functional Resonance Analysis Method (FRAM) 
and the System-Theoretic Accident Model and Processes (STAMP). These 
approaches are considered the most suitable for investigating and addressing the 
research objectives. To validate the efficiency and practicality of the adopted  
methods, further research initiatives will be focused on conducting case studies. 
These case studies will aim to gather more accurate data and insights related to the 
application of FRAM and STAMP in real-world scenarios.
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Keywords  Asset management strategy · Enterprise risk management (ERM) · 
Emerging risks · Extreme-rare-and-disruptive-events · Resilience · Industry 4.0 / 
5.0 · Risk-informed decision-making approach (RIDM) · Functional resonance 
analysis method (FRAM) · System-theoretic accident model and 
processes (STAMP)

1 � Introduction

The rising complexity of socio-technical systems driven by Industry 4.0 presents 
significant challenges for conventional analysis techniques used to assess safety 
risks (for e.g., see challenges for Complex System Governance by Keating et al., 
2022 as well as Complex system governance as a framework for asset management 
by Katina et  al., 2021). These traditional methods, such as Failure Modes and 
Effects Analysis (FMEA), Fault Tree Analysis (FTA), Hazard and Operability 
Analysis (HAZOP), Event Tree Analysis (ETA), and Bowtie analysis, have been 
valuable in analysing safety risks in various domains. However, as systems become 
more interconnected, dynamic, and technologically advanced, new approaches are 
needed to address the emerging risks. Industry 4.0 introduces a range of new tech-
nologies, including the Internet of Things (IoT), artificial intelligence, robotics,  
and cyber-physical systems. These technologies enable automation, data-driven 
decision-making, and integration across various components of the system. While 
they bring numerous benefits, they also introduce novel risks that may not be ade-
quately addressed by traditional analysis methods. To effectively manage safety 
risks in the context of Industry 4.0, new tools and approaches are required. These 
tools should consider the interdependencies and interactions among various system 
components, both technological and human, as well as the potential cascading 
effects and emerging risks associated with complex socio-technical systems.

Developing innovative techniques such as system dynamics modelling, resil-
ience engineering (Hickford et  al., 2018; Woods, 2015; Praetorius et  al., 2015), 
systemic risk analysis and managing emerging risks (ISO, 2009, 2018a, b; CEN, 
2013), or integrating concepts from Functional Resonance Analysis Method 
(FRAM) (for e.g., Diop et al., 2022b; Patriarca et al., 2020; Gattola et al., 2018; De 
Carvalho, 2011), System-Theoretic Accident Model and Processes (STAMP) (for 
e.g., Allison et al., 2017; Leveson, 2016; Ouyang et al., 2010), and Risk-Informed 
Decision-Making Approach (RIDM) (for e.g., Gaha et al., 2021; Komljenovic et al., 
2019; Dezfuli et al., 2010; Komljenovic et al., 2016; Zio & Pedroni, 2012) can help 
address the challenges posed by the rising complexity of socio-technical systems 
driven by Industry 4.0. These approaches emphasize a holistic understanding of the 
system and its interactions, proactive identification of potential risks, and the ability 
to adapt and respond effectively to emerging risks. In the same context, Abdul-Nour 
et al. (2021) have put forth a safety management framework that addresses decision-
making in the presence of risk and uncertainty. Their framework, which can be 
found in Appendix 1, offers a systematic approach to enhancing resilience in  
complex systems.
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The primary focus of our researchers is to address the research question that 
arises from the need to integrate complementary approaches to risk management. 
With this in mind, the overall objective of this research paper is to develop a 
Framework for Assessing Emerging Technology Risks in Industrial Assets. This 
framework aims to capture the unique challenges and uncertainties that arise from 
the adoption and implementation of new technologies, such as artificial intelligence, 
Internet of Things, or robotics, within industrial settings.

The remainder of this paper is structured as follows: Sect. 2 summarizes the  
literature review in asset management complexity and uncertainty as well as the 
FRAM and STAMP approaches. Section 3 describes the proposed framework and 
upcoming case-study. Finally, Sect. 4 concludes the study then provides new 
research directions.

2 � Literature Review

2.1 � Asset Management Complexity and Uncertainty

Managing assets in today’s world is indeed a complex challenge due to various fac-
tors. The intense international competition and the unpredictable nature of global 
markets create a dynamic and uncertain environment for organizations. Additionally, 
the global landscape is marked by various insecurities, further adding to the com-
plexity of asset management. These factors create a demanding environment where 
organizations must navigate uncertainties, mitigate risks, and ensure the optimal 
performance and resilience of their assets. These organizations are constantly con-
fronted with a wide range of risks and uncertainties that have the potential to impact 
their objectives, as well as the performance of technical and technological systems 
and human operators. These risks can range from traditional risks to emerging risks 
that are influenced by various factors such as technological advancements, global 
changes, and shifting market dynamics. In recent years, there has been an emer-
gence of new types of risks that pose significant challenges to organizations. These 
risks create conditions that are conducive to the occurrence of extreme, rare, and 
disruptive events, which can severely disrupt organizational performance. Indeed, 
the unstable global economic context, the highly insecure political context resulting 
from the conflict between Russia and Ukraine, and the previous COVID-19 pan-
demic are compelling asset decision-makers to reassess and modify their economic 
asset management models. These external factors have created significant uncer-
tainties and challenges for businesses and investors worldwide. The volatile eco-
nomic conditions, geopolitical tensions, and the far-reaching impacts of the 
pandemic have necessitated a proactive approach to mitigate risks, identify new 
opportunities, and adjust strategies accordingly. Asset decision-makers must care-
fully analyse the evolving landscape and adapt their economic asset management 
models to navigate these complex and rapidly changing circumstances.
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2.2 � Functional Resonance Analysis Method

The Functional Resonance Analysis Method (FRAM) is a modern approach to per-
formance assessment used in accident investigation and risk assessment. It aligns 
with the principles of resilience engineering and embraces the concept of safety II 
rather than safety I (Hollnagel, 2012, 2014). The safety I approach, which is com-
monly associated with traditional hazard analysis methods like Failure Mode and 
Effects Analysis (FMEA) and Hazard and Operability (HAZOP), focuses primarily 
on identifying potential failures or hazards. These methods typically employ a bot-
tom-up approach to risk analysis (Sun et al., 2022). In contrast, the safety II concept 
adopted by FRAM emphasizes understanding the essential functions required for 
the system to achieve its intended purpose. It shifts the focus to the nature of 
everyday activities rather than solely focusing on failure modes (Hollnagel, 2012). 
By adopting the FRAM approach, organizations can gain a deeper understanding of 
how everyday activities and functions contribute to overall system performance and 
safety, enabling a more comprehensive and proactive approach to risk assessment 
and management (Diop et  al., 2022b). The FRAM structure follows a five-step 
process, as depicted in Table 1.

Step 0. Purpose of the FRAM analysis.

This step focuses on the objective of the analysis, which can be retrospective, aim-
ing to understand past events such as accident investigation, or prospective, aiming 
to anticipate future events such as risk assessment.

Step 1. Identification & description of functions.

In this step, the focus is on identifying and describing the essential functions that 
contribute to the effective functioning of the system. These functions represent the 
activities being studied and their interdependencies within the system. The cou-
plings among functions reflect the interconnectedness and mutual influence between 
them. Whether performed by humans, machines, or a combination of both, these 
functions are crucial for the system to operate effectively and achieve its overall 
objectives.

In the model, each function is symbolized by a hexagon shape, containing six 
important aspects: Input (I), Output (O), Preconditions (P), Resources (R), Time 
(T), and Control (C). These aspects capture the various types of incoming instances 
that impact the function from other interconnected functions, known as upstream 
functions. Except for the output, each aspect represents an input that influences the 

Table 1  Depiction of the main steps of the FRAM method

Step 0 1 2 3 4

Description Purpose of 
the FRAM 
analysis.

Identification 
and description 
of functions

Identification 
of variability

Identification of 
functional 
resonance

Determination of 
safety constraints

(Source: own representation based on Hollnagel, 2012)
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Fig. 1  Illustration of a 
function in FRAM

function’s behavior and operation. On the other hand, the output of a function rep-
resents the result or outcome generated by that function, which is then connected to 
one or more aspects of downstream functions in the system. This interconnectedness 
illustrates how the functions within the system interact and exchange information to 
achieve overall system objectives. Figure 1 provides a graphical representation of a 
function, offering a visual depiction of its structure and components.

Step 2. Identification of variability.

This step forms a crucial basis for further analysis and making informed decisions 
regarding the management of performance variability. In the original version of the 
method, it involved assessing a set of Common Performance Conditions (CPCs) to 
estimate the potential variability. These CPCs included factors such as resource 
availability, training and experience, communication quality, operational support, 
availability of procedures, work conditions, conflicting goals, time pressure, circa-
dian rhythm, stress, team collaboration, and organizational support. By evaluating 
these CPCs, it becomes possible to assess the likelihood of performance variability 
for each identified function, considering its specific characteristics and nature 
(Macchi, 2010; Hollnagel, 2004).

To address limitations of the CPCs-based Performance Variability Assessment 
approach, Hollnagel (2012) introduces an alternative methodology for accurately 
estimating normal performance variability. This methodology considers the charac-
teristics of different functions and differentiates between two factors that contribute 
to variability, namely: internal variability and external variability. The model helps 
determine the extent to which each individual function within the system is influ-
enced by internal (endogenous) or external (exogenous) variability. This approach 
allows for a more nuanced assessment of performance variability, considering both 
internal and external factors.
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Various function types can be considered, including: (i) Technological functions, 
achieved through different types of technology, are an integral part of the FRAM 
concept. These functions are typically perceived as stable and predictable, implying 
that their outputs are expected to remain relatively consistent. However, it is impor-
tant to acknowledge that the performance of technology-based functions can still 
exhibit variability. This variability can stem from factors like insufficient mainte-
nance, unfavourable operating conditions, gradual wear and degradation, and other 
similar influences. (ii) Human functions, whether performed individually or collec-
tively by human, are acknowledged as variable and susceptible to instability due to 
the inherent potential for human error. The variability in human-based functions can 
be ascribed to various factors, including circadian rhythm, human factors, ergonom-
ics (comprising psychological and physiological aspects), social pressures, decision-
making processes, and other pertinent considerations. (iii) Organizational functions 
involve activities performed by groups of individuals within an organization and are 
described at the organizational level, setting them apart from individual human-
based functions. Organizational functions usually exhibit low-frequency variability, 
suggesting gradual changes over time. However, when variability occurs, it can 
have a significant impact, often with a considerable magnitude. Multiple factors 
contribute to the potential variability of organizational functions, including ele-
ments such as luck or ineffective communication, conflicting or unclear priorities, 
inadequate coordination, and other dynamics within the organization. These factors 
have the capacity to create fluctuations and deviations in the performance of organi-
zational functions. Table 2 and Table 3 presents an overview of the potential vari-
ability in the output of functions, specifically in terms of timing and precision 
respectively. It provides an outline of how functions within the system may exhibit 
variations in the timing of their outputs and the level of precision achieved.  

Table 2  Potential output variability pertaining to Time

Too early On time Too late Not at all

Technological Unlikely Normal, 
expected

Unlikely, but 
possible if software 
is involved

Very unlikely (only in 
case of complete 
breakdown)

Human Possible, 
serendipity

Possible, should 
be typical

Possible, more 
likely than too early

Possible, to a lesser 
degree

Organisational Unlikely Likely Possible Possible

(Source: adapted from Hollnagel, 2012)

Table 3  Potential output variability pertaining Precision

Precise Acceptable Imprecise

Technological Normal, expected Unlikely Unlikely
Human Possible, but unlikely Typical Possible, likely
Organisational Unlikely Possible Likely

(Source: adapted from Hollnagel, 2012)
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This information can help stakeholders understand and anticipate potential varia-
tions in the system’s performance, enabling them to make informed decisions and 
implement appropriate measures to manage and mitigate variability.

Step 3. Identification of functional resonance.

This step is crucial for understanding the interdependencies among functions and 
their variability within the system. It involves analysing and characterizing the 
sources of functional resonance by studying the functional aspects. Variability in 
upstream functions can have a cascading effect, leading to performance variability 
that propagates through downstream functions. This phenomenon, known as func-
tional resonance. The latter occurs when variability and interactions among func-
tions become intensified, potentially resulting in unexpected behaviours or failures. 
Exceeding a critical tolerance level of functional resonance intensity can increase 
the risk of accidents or undesired outcomes within the system. Monitoring and man-
aging functional resonance are crucial for maintaining system safety and preventing 
adverse outcomes. Through the examination of functional aspects such as input, 
output, preconditions, resources, time, and control, the analysis allows for the iden-
tification of sources that can contribute to functional resonance. This analysis helps 
determine how variations and interactions among functions can impact the overall 
performance of the system.

Step 4. Determination of safety constraints.

In this step, the focus is on adjusting performance variability and promoting positive 
outcomes, rather than solely addressing negative outcomes. Aligning with the four 
key principles of the FRAM concept, various solutions are recommended. These 
solutions can range from eliminating risks at their source to implementing safe-
guards, redundancy, training, feedback mechanisms, or other control measures to 
mitigate the negative effects of variability and enhance the positive effects. 
Additionally, strategies may involve changes in processes, procedures, training, 
technology, or organizational factors to effectively manage variability within the 
system. These measures aim to improve the system’s resilience to adapt to changing 
conditions and ensure its reliable and safe operation.

In summary, although the FRAM model is valuable for identifying safety con-
straints, it is essential to recognize that this aspect extends beyond the core princi-
ples of FRAM. While the FRAM process provides a macro analysis of the system 
and offers insights into its overall functioning and dynamics, addressing specific 
safety constraints requires the incorporation of other methods. In this study, we 
utilize the STAMP method, as recommended by experts such as Hollnagel (2018) 
and Leveson (2016). The STAMP approach complements the FRAM model by pro-
viding a deeper understanding of the system’s control structure and the interactions 
between components, enabling a comprehensive assessment of safety and risk. By 
combining the strengths of both FRAM and STAMP, we can effectively address 
safety constraints and gain a deeper understanding of the system’s safety and per-
formance (Diop et al., 2022a, b).
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2.3 � System-Theoretic Accident Model and Processes

Leveson (2016) introduces a novel approach to accident causation and safety analy-
sis called the System-Theoretic Accident Model and Processes (STAMP). STAMP 
is a top-down system engineering approach that offers a unique perspective on 
safety and security analysis. Its theoretical foundation draws upon overall systems 
theory, allowing for a more comprehensive assessment of highly complex systems 
compared to traditional safety analysis methods. Traditional accident investigation 
methods often focus solely on technical and technological aspects, while STAMP 
takes a broader system thinking approach by considering a comprehensive set of 
factors and understanding the system as a whole and its dynamic behaviour.

One key distinction of STAMP is its perspective on system safety and security as 
a “dynamic control problem” (rather than a failure or reliability problems). It is 
important to note that the STAMP process acknowledges that accidents resulting 
from independent component failures are contained within the system model. In 
other words, it recognizes that individual component failures alone may not lead to 
accidents if the safety control system effectively handles those failures and prevents 
them from propagating or causing harm. However, the focus of the STAMP process 
goes beyond isolated component failures. It emphasizes the need to identify and 
address the interactions among components, as well as the control mechanisms that 
govern those interactions. Accidents can arise when these interactions are not prop-
erly managed, leading to the violation of safety constraints and the potential for 
system-wide failures or hazardous situations. In other words, within the STAMP 
process, accidents occur when the safety control system fails to effectively manage 
defective interactions among system components. These defective interactions refer 
to situations where safety constraints or requirements are violated, leading to unsafe 
conditions or hazardous events.

STAMP considers not only technical elements but also human operators and 
organizational aspects. By integrating human and organizational considerations 
alongside technical and technological aspects into the analysis, STAMP recognizes 
the crucial role of human operators in system behaviour. It acknowledges that 
human actions and decision-making can significantly influence the overall system’s 
safety and performance. Additionally, STAMP emphasizes the significance of orga-
nizational factors. This includes aspects such as management practices, communi-
cation protocols, training procedures, and organizational culture, all of which play 
a vital role in shaping the system’s behaviour and safety outcomes. Indeed, STAMP 
recognizes that accidents can arise not only from technical failures but also from 
issues such as inadequate training, ineffective communication, flawed organiza-
tional processes, and inadequate safety culture. STAMP recognizes that accidents 
and failures in complex systems often arise from the dynamic interactions among 
components, rather than isolated failures of individual components.

The STAMP causality model incorporates a top-down hazard assessment tech-
nique known as System-Theoretic Process Analysis (STPA). The latter is an innova-
tive method for analysing hazards based on the extended model of accident causation 
in STAMP. The primary goal of STPA is to identify accident scenarios that cover the 
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Table 4  Steps of STPA

Step Description

(1) Defining the 
purpose of the analysis

Define the purpose of the analysis. Identify the system’s boundaries. 
Identify the system’s hazards and losses. Establish safety constraints.

(2) Modelling the 
control structure 
(HSCS)

Systems are Hierarchical Safety Control Structures (HSCS) with 
feedback control loops at different levels, governing system activities 
and behaviours.
Identify the controllers, the controlled Process, the control actions 
(CA) and the feedbacks.

(3) identifying unsafe 
control actions (UCAs)

Identifying UCAs involves recognizing behaviours or actions that must 
be prevented to mitigate system hazards and prevent losses within the 
sociotechnical system.

(4) identifying loss 
scenarios

In the final step of the analysis, the emphasis is on comprehending the 
occurrence and propagation of each UCA identified in step 3, leading 
to losses within the system.
What could cause UCAs? Why would CA be not executed or not 
followed properly?

entire accident process, going beyond just the electromechanical components 
involved (Leveson, 2016). The STPA method enables the control of both the system 
components and the system as a whole, ensuring that safety requirements and con-
straints are effectively implemented in the operational system. It considers the inter-
actions and behaviours of various system elements to identify potential hazards and 
evaluate the effectiveness of safety measures. The STPA process consists of several 
steps, which are illustrated in Table 4. These steps provide a systematic approach to 
analysing hazards and identifying safety requirements at different levels of the sys-
tem. By following the STPA process, organizations can gain a comprehensive 
understanding of potential accident scenarios and develop strategies to mitigate 
risks and enhance system safety.

(Step 1) Define the Purpose of the Analysis.

The first stage of the analysis process begins by outlining the purpose of the analy-
sis, encompassing the identification of safety requirements and goals set by stake-
holders. Within this phase, the system’s boundaries are defined, and the hazards and 
losses that necessitate examination in the study are identified. Safety constraints are 
subsequently established, considering the system’s hazards and losses, thereby 
establishing the desired safety level for the system. Table 5 presents an example of 
such losses and hazards as well as high-level safety constraints associated with an 
aircraft system.

(Step 2) Model the Control Structure.

Systems theory regards systems as Hierarchical Safety Control Structures (HSCS), 
consisting of feedback control loops functioning at different levels and encompass-
ing various system activities and behaviours. Figure 2 visually presents the dynamic 
nature of a feedback control loop, emphasizing the interplay between the controlled 
process and the controller. These loops involve a two-way exchange of information. 
HSCS sees systems as feedback control loops operating at different levels. 
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Table 5  Example of an aircraft losses and hazards

Losses
Hazards
Constraints ID Descriptions

Losses (Ai) A1 Death or serious injury to aircraft passengers or people in the area of 
the aircraft

A2 Unacceptable damage to the aircraft or objects outside the aircraft
A3 Financial losses resulting from delayed operations
A4 Reduced sales due to damage to aircraft or airline reputation

Hazards (Hi) H1 Insufficient thrust to maintain controlled flight [A1, A2]
H2 Loss of airframe integrity [A1, A2]
H3 Violating minimum separation between aircraft and fixed or moving 

objects [A1, A2]
H4 An aircraft on the ground comes too close to moving or stationary 

objects or inadvertently leaves the taxiway [A1, A2]
H5 Aircraft unable to take off when scheduled [A3, A4]
H6 etc.

Safety 
constraints 
(SCi)

SC1 Sufficient thrust must be available to maintain controlled flight [H1]

SC2 Airframe integrity must be maintained under worst case conditions [H2]
SC3 Aircraft must satisfy minimum separation standards from fixed or 

moving objects [H3]
SC4 Aircraft on the ground must always maintain a safe distance from 

moving or stationary and objects and remain within safe regions such as 
taxiways.

SC5 Aircraft must be able to take off within TBD minutes of scheduled 
departure [H6]

SC6 etc.

(Adapted from Leveson & Thomas, 2018)

Downward arrows (Downward Control Channels) enforce safety constraints, while 
upward arrows (Upward Feedback Channels) provide valuable feedback to inform 
adjustments. The top level is the controller, responsible for decision-making, and 
the bottom level is the controlled process regulated by the controller. Figure  3 
depicts a basic HSCS model comprising three interconnected control loops that 
represent control relationships and feedback mechanisms within the system.

HSCS, also referred to as the STPA model, helps address challenges in safety 
engineering, such as human-system interactions and software behaviour. The 
“Control Algorithm” is the decision-making mechanism used by the controller, 
based on the “Process Model (PM)” or “Mental Model (MM)” for human opera-
tors. PM influence decision-making and Control Actions (CA). Feedback channels 
update and refine the PM.  The “Control Algorithm” may also be referred to as 
“Operating Procedures” or “Decision-Making Rules”, providing structured guide-
lines for the controller’s actions. Figure  4 exemplifies a high-level HSCS for 
Aircraft system.
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Fig. 2  Representation of a 
control loop

Fig. 3  Representation of a 
basic HSCS

(Step 3) Identify Potential Unsafe Control Actions (UCAs).

During this analysis phase, the primary focus is on identifying potential Uncontrolled 
Control Actions (UCAs). UCAs encompass behaviours or actions that need to be 
prevented to mitigate system hazards and prevent losses within the sociotechnical 
system. Losses occur when safety constraints are not adequately enforced, imple-
mented, or when these constraints are entirely absent. An example of such losses 
occurs when the PM does not align with the state of the Controlled Process, result-
ing in the Controller issuing unsafe commands. Accidents or losses fundamentally 
arise when the HSCS model fails to effectively manage interactions among system 
components, leading to a violation of safety constraints. In such instances, the sys-
tem’s ability to ensure the proper functioning and adherence to safety measures is 
compromised, leading to increased risks and potential negative outcomes. Hence, 
this step involves a meticulous examination of each Control Actions (CA) identified 
in the previous step, determining the corresponding UCAs that could lead to unde-
sirable outcomes. By identifying and understanding these potential UCAs, 

A Framework for Assessing Emerging Technology Risks in Industrial Asset



96

Fig. 4  A High-Level HSCS at the Aircraft Level. (Source: Leveson & Thomas, 2018)

strategies and measures can be developed to prevent or mitigate them, thereby 
enhancing overall system safety and reliability. Control is not limited to engineering 
systems or direct human intervention; it also involves policies, procedures, shared 
values, and organizational culture. These factors shape how the system operates and 
decisions are made, affecting overall safety and performance. Table 6 outlines four 
types of UCAs (Leveson, 2016).

Identifying and categorizing these UCAs helps stakeholders understand how CA 
contribute to system hazards. This understanding aids in developing strategies to 
mitigate these hazards and improve system safety. Table 7 shows examples of UCAs 
for an Aircraft Flight Crew related to the Wheel Braking System. Appendix 2 depicts 
the HSCS for the Wheel Braking System.

(Step 4) Identify Loss Scenarios.

After identifying UCAs, the subsequent step is to identify scenarios that could result 
in losses. A loss scenario encompasses the causal factors that can give rise to UCAs 
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Table 6  Four distinct types of UCAs

Type of UCAs Description

Not providing 
causes hazard

This UCA occurs when required CA are not provided, leading to hazardous 
conditions in the system.

Providing causes 
hazard

This UCA occurs when executing CA directly leads to hazardous 
conditions.

Too soon, too late, 
out of order

This UCA relates to CA being executed too early, too late, or out of order, 
which can introduce risks and adverse outcomes within the system.

Stopped too soon, 
applied too long

This UCA pertains to premature or extended duration of CA, which can 
introduce risks and adverse outcomes within the system.

Table 7  UCA for the Aircraft Flight Crew – (Partial example)

Control 
Action 
(CA) by 
Flight 
Crew

Not providing 
causes hazard

Providing causes 
hazard

Too soon, too late, out 
of order

Stopped too 
soon, applied 
too long

Manual 
braking 
via brake 
pedals.

Crew does not 
provide manual 
braking during 
landing, RTO, or 
taxiing when 
Autobrake is not 
providing braking 
or is providing 
insufficient 
braking.

Crew provides 
manual braking with 
insufficient pedal 
pressure.
Crew provides 
manual braking with 
excessive pedal 
pressure (resulting in 
loss of control, 
passenger/crew 
injury, brake 
overheating, brake 
fade or tire burst 
during landing).
Crew provides 
manual braking 
provided during 
normal takeoff

Crew provides manual 
braking before 
touchdown (causes 
wheel lockup, loss of 
control, tire burst).
Crew provides manual 
braking too late (TBD) 
to avoid collision or 
conflict with another 
object (can overload 
braking capability 
given aircraft weight, 
speed, distance to 
object (conflict), and 
tarmac conditions).

Crew stops 
providing 
manual braking 
command 
before safe taxi 
speed (TBD) is 
reached.
Crew provides 
manual braking 
too long 
(resulting in 
stopped aircraft 
on runway or 
active 
taxiway).

(Adapted from Leveson & Thomas, 2018)

and hazards. The focus here is on understanding (i) “Why would UCAs occur”? and, 
(ii) “Why would CAs be improperly executed or not executed, leading to hazards”? 
This involves examining the factors that contribute to the occurrence of UCAs and 
the reasons behind the failure or deviation from intended CA. Note that the ultimate 
aim of STPA is to identify causal scenarios that can result in a hazardous state. 
Figure 5 presents a control model to assist in causal scenario generation related to a 
control loop. This visual representation serves as a guide, facilitating further analy-
sis and comprehension of the potential causes and consequences of these flaws 
within the system.

A Framework for Assessing Emerging Technology Risks in Industrial Asset



98

Fig. 5  Control model to support in creating causal scenarios. (Source: Leveson & Thomas, 2018)

3 � The Proposed Framework and Upcoming Case-Study

The proposed risk management framework is twofold. It combines the Functional 
Resonance Analysis Method (FRAM) and the System-Theoretic Accident Model 
and Processes (STAMP).

Firstly, through the utilization of the FRAM process, we construct a model that 
emphasizes the variability of functions within the system. This enables us to analyse 
and comprehend the interdependencies and interactions that exist within the system.

Secondly, we conduct a more in-depth safety assessment by using the STAMP 
process. We develop a model that governs the behaviour of both the individual  
components and the system as a whole. This approach empowers us to effectively 
control and manage the system, ensuring that safety requirements and constraints 
are upheld throughout its operation. FRAM and STAMP integration provides a 
comprehensive approach to understanding system functions, variability, and control 
in relation to potential risks and accidents. It enables organizations to proactively 
identify and manage risks, enhancing system resilience and safety.

In fine, for upcoming perspectives, we suggest integrating the FRAM and 
STAMP frameworks into the Risk-Informed Decision Making (RIDM) model.  
This integrated model provides a comprehensive approach to risk management and 
decision making, leveraging the strengths of both frameworks. By adopting the 
RIDM model, organizations can improve their understanding of system behaviour, 
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variability, and control, enabling more informed and effective decision making in 
managing risks and ensuring system safety and performance. The incorporation of 
the RIDM model would provide support for long-term performance and the sustain-
ability of an organization, particularly in a dynamic and unpredictable environment. 
It enables the consideration of risks associated with extreme and rare events within 
the broader Asset Management strategy and decision-making process. By integrat-
ing the RIDM approach, the organization can proactively enhance their ability to 
assess and address these risks, ultimately contributing to more robust and informed 
decision-making in asset management. For readers who are unfamiliar with the 
RIDM approach, we recommend referring to the works of Diop et al. (2021, 2022a, 
2023) and their corresponding bibliographic references. These sources provide  
further details and insights into the RIDM approach, offering a comprehensive 
understanding of its principles and application.

Figure 6 illustrates the categorization of safety analysis methods, including 
FRAM, STAMP, and RIDM. These methods are positioned in quadrant 2, which 
represents highly complex and challenging-to-control systems. This positioning 
indicates that they are particularly suitable for addressing the unique challenges 
associated with such systems, providing valuable insights and guidance for manag-
ing safety risks.

The LineDrone, showcased in Fig.  7, is one of Hydro-Quebec’s Unmanned 
Aerial Vehicles (UAVs) that will be the focus of our upcoming case study. This 
state-of-the-art UAV has been specifically designed and optimized for performing 
direct-contact inspections of high-voltage transmission lines. It offers advanced 
capabilities and features tailored to meet the specific requirements of this task.
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Fig. 6  Categorization of safety analysis methods. (Source: Hollnagel et al. (2008)) – modified)
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Fig. 7  Hydro-Quebec 
Linedrone. (Source: 
hydroquebec.com)

4 � Conclusion

This research aims to present a comprehensive framework for assessing emerging 
technology risks in industrial assets. To achieve this, we have chosen to utilize a 
combination of two concepts that we believe are highly effective and valuable in 
addressing the complexities of socio-technical systems: the FRAM and the STAMP 
approaches. These methods offer superior capabilities over traditional approaches 
in engineering such complex systems. We also propose the integration of the frame-
work into the RIDM model. This integration aims to enhance the analysis and 
decision-making processes by leveraging the strengths of both FRAM and 
STAMP.  By combining these frameworks, a more comprehensive and holistic 
understanding of system behaviour, hazards, and risk factors can be achieved, ulti-
mately informing and guiding risk-informed decision-making processes. This paper 
represents a preliminary exploration and requires further theoretical and practical 
developments. Moving forward, future research endeavours will focus on conduct-
ing case studies to gather more accurate and detailed data, further enhancing the 
applicability and validity of the framework.

�Appendices

�Appendix 1

This framework (see Fig. 8) suggests employing either traditional risk management, 
management under uncertainty, or resilience management approaches that acknowl-
edge the complexity of assets (Abdul-Nour et al., 2021). The choice of approach 
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Fig. 8  Risk management of approach. (Source: Abdul-Nour et al., 2021)

will depend on the specific characteristics and context of the assets being managed. 
(i) Traditional risk management involves identifying and assessing risks, imple-
menting controls and mitigation measures, and monitoring and managing risks 
within predetermined risk tolerances. This approach relies on historical data, prob-
ability calculations, and established risk management frameworks. (ii) Management 
under uncertainty recognizes that there are inherent uncertainties and limitations in 
predicting future outcomes. It emphasizes flexibility, adaptability, and the ability to 
make informed decisions in the face of uncertain and evolving conditions. It may 
involve scenario planning, sensitivity analysis, and dynamic decision-making pro-
cesses. (iii) Resilience management focuses on building the capacity to absorb and 
recover from shocks, disruptions, and unforeseen events. It emphasizes robustness, 
redundancy, and the ability to bounce back and adapt in the face of adversity.  
It involves identifying critical assets, diversifying resources, and implementing  
contingency plans.
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�Appendix 2

Figure 9 provides a detailed representation of the Hierarchical Safety Control 
Structure (HSCS) specifically for the Wheel Braking System. It showcases the 
interconnected control loops and feedback mechanisms that govern the operation 
and safety of the braking system. The top level of the HSCS represents the control-
ler responsible for decision-making and control, while the bottom level represents 
the controlled process, which includes the wheel braking system components and 
their interactions.

Fig. 9  HSCS for aircraft wheel braking system. (Source: Leveson & Thomas, 2018)
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Challenges on an Asset Health Index 
Calculation

Eduardo Candón Fernández, Adolfo Crespo Márquez , 
and Antonio Jesús Guillén López

Abstract  In the current era of Industry 4.0, we find ourselves in the midst of a 
profound transformation in the industrial landscape. This new era brings with it a 
host of challenges and problems, particularly in relation to the effective capture and 
processing of data. The success of this revolution hinges on our ability to harness 
data in a meaningful way, but achieving this goal is no small feat.

At the core of this data-driven revolution lies the critical importance of capturing 
data accurately. However, in many companies, this proves to be an incredibly com-
plex problem. It is not simply a matter of capturing as much data as possible from 
the moment an asset or system is initiated. Rather, the focus is on acquiring a mini-
mum amount of data that is sufficient to enable proper processing and analysis. This 
requirement presents a unique challenge in itself, as it often necessitates estimating 
this minimum data requirement based on a solid and reliable foundation of existing 
information.

The consequences of lacking adequate information can be far-reaching. 
Insufficient data availability inevitably leads to deviations in the processing and 
analysis of the captured data. However, this limitation also offers an opportunity for 
comparison. By examining assets of the same type that face similar challenges in 
data capture and processing, valuable insights can be gained. For instance, consider 
the scenario of comparing the health index of multiple transformers located in dif-
ferent electrical substations and operating under diverse conditions. If the data cap-
ture relating to the operational and maintenance variables is equally deficient across 
these transformers, and similar estimation techniques are employed, it becomes 
possible to compare the overall health of these equipment units.

To delve deeper into this topic, let us explore the specific example of calculating 
the Health Index for different pumps. In this particular case, the challenge arises 
from the fact that the start-up of these pumps predates the availability of operation 
and maintenance data. Consequently, due to this lack of information, a different 

E. Candón Fernández (*) · A. Crespo Márquez · A. J. Guillén López 
Department of Industrial Management, University of Seville, Seville, Spain
e-mail: ecandon@us.es; adolfo@us.es; ajguillen@us.es

© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2024
A. Crespo Márquez et al. (eds.), Advances in Asset Management: Strategies, 
Technologies, and Industry Applications, Engineering Asset Management 
Review 3, https://doi.org/10.1007/978-3-031-52391-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52391-5_5&domain=pdf
https://orcid.org/0000-0002-2027-7096
mailto:ecandon@us.es
mailto:adolfo@us.es
mailto:ajguillen@us.es
https://doi.org/10.1007/978-3-031-52391-5_5


110

approach must be taken. The estimation of various fundamental variables becomes 
necessary to facilitate the calculation of the Health Index and derive meaningful 
insights into the condition and performance of the pumps.

In conclusion, the advent of Industry 4.0 has brought forth a range of challenges 
and problems in the realm of data capture and processing. The ability to obtain and 
process data accurately is a critical factor in the success of this revolution. However, 
the complexity of the task lies not only in capturing a substantial amount of data but 
also in determining the minimum data requirements for meaningful analysis. 
Despite the difficulties posed by limited information, the comparison of similar 
assets facing data capture challenges can provide valuable insights. Through a spe-
cific example involving pump health index calculations, we can further understand 
the importance of addressing data estimation and processing in the context of 
Industry 4.0. Throughout this paper, the example of calculating the Health Index of 
different pumps will be developed in which the start-up of these goes back to times 
prior to the date of capture of the operation and maintenance data. Due to this lack 
of information, it will be necessary to start from the estimation of different funda-
mental variables for the processing of the data to be calculated.

1 � Introduction

An Asset Health Index (AHI) is an asset score, which is designed, in some way, to 
reflect or characterize the asset’s condition and thus, its performance in terms of 
fulfilling the role established by the organization (De la Fuente et al., 2021). An AHI 
represents a practical method to quantify the general health of a complex asset. For 
simple assessments, Condition Based Maintenance (CBM) technologies can pre-
cisely estimate the status of a specific asset with defined and specifics failure modes. 
However, most of these assets are composed of multiple subsystems, and each sub-
system can be characterized by multiple modes of degradation and failure. From a 
pure theoretical perspective, every failure mode of every item that composes a sys-
tem can be modelled and estimated. In some cases, it may be considered that an 
asset has reached the end of its useful life, when several subsystems have reached a 
state of deterioration that prevents the continuity of service required by the business 
(Hjartarson & Otal, 2006). This calculation can be complex and cause a significant 
investment in time and resources. It is in the case of complex systems where the 
health index, based on the results of operational observations, field inspections and 
laboratory tests, produces a single objective and quantitative indicator. It may be 
used as a tool to manage assets, to identify capital investment needs and mainte-
nance programs, allowing (Naderian et al., 2008; Naderian et al., 2009; Azmi et al., 
2017): (1) Compare the health of equipment located in similar technical locations, 
to study possible premature deterioration and optimize operation plans and/or asset 
maintenance if necessary; (2) Communicate more accurately with manufacturers/
builders, to understand the behaviour of assets of different manufacturers/builders 
in specific technical locations; and (3) Support decision-making processes in future 
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investments in assets, or in extension of the life of these (Silvestri et  al., 2020). 
Thus, AHIs are widely used in supporting maintenance and replacement strategies 
based on asset condition and performance in some countries, to justify asset replace-
ment schemes to the regulators (GB DNO groups, 2017; Australian Local 
Government Association, 2015; Federation of Canadian Municipalities (FCM) & 
other seven partner organizations, 2020).

A proper design of a health index should meet the following requirements 
(Hjartarson & Otal, 2006):

•	 The index must be indicative of the suitability of the asset to provide continuity 
to the service and representative of the general health of the asset.

•	 The index should contain objective and verifiable measures of the condition of 
the asset, instead of subjective observations.

•	 The index must be understandable and easily interpreted.

Several methods and models fulfilling these requirements have been reviewed, for 
instance, the ones by Kinetrics (), DNV GL (Vermeer et al., 2015), Terna (Scatiggio 
& Pompili, 2013) and GB DNO (GB DNO groups, 2017).

Although most of these models build a streamlined approach to introduce differ-
ent influent factors to estimate the lifetime expectation/remaining useful life of an 
asset, several drawbacks are still present in their model formulation:

	 (i)	 The AHI procedure seems not to be properly robust from the scientific perspec-
tive, as original models are built mostly by practitioners in specific sectors with 
very specific assets.

	(ii)	 Many influent factors are evaluated based on assumptions that are never dis-
cussed (e.g., ranges of numerical values are given as scales for different factors 
while it is almost unclear what is the basis to define such ranges).

	(iii)	 The procedure proposed is mainly presented in its development and never 
demonstrated completely with, at least, some case-based reasoning or at the 
minimum a complete industrial case which would enable a proper validation of 
the AHI model proposed.

There are approaches in the relevant literature to identify asset health (López et al., 
2019) used mainly in CBM applications based on dynamic health assessment, but 
the concept is different from the one used in this paper, now the health assessment 
allows comparison and decision-making among different assets.

To overcome these weakness points, in this paper the methodology adopted to 
model the AHI is only loosely based on the OFGEM Network Asset Indices 
Methodology (GB DNO groups, 2017) (a similar approach as in the example previ-
ously presented in (Crespo et al., 2020)). This method is selected because it is con-
sidered simple for simulation model building purposes and very practical in its 
implementation, if a more robust scientific design of the model format is reached.

More precisely, the method (GB DNO groups, 2017) requires: (1) The iden-
tification of the asset, which includes the category of the equipment under study, 
the current age, the expected life, the name of the manufacturer/builder, the 
model of the equipment and the location of the installation; (2) The operation 
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and maintenance data recorded during a certain period of time; and (3) The 
condition of the equipment, that is, the results of the analyses performed on the 
equipment in site, results of readings of physical variables, results of visual 
inspections, etc.

The health index model adopted in this paper contains values between 1 and 10, 
thus being able to compare health between different types of assets. There are other 
indices that go from 0 to 1 and others that range from 1 to 100. In any case, they all 
have the same functionality: normalize the health of different assets to be able to 
compare them with each other.

2 � AHI Modelling Methodology

The application procedure for calculating the health index is based on 6 consecutive 
steps, in which, starting from a design life associated with an equipment’s category, 
a current health index is reached. For this, a series of factors related to the location, 
operation and condition of the asset are considered. It is presented in the following 
Fig. 1, the model, with the 6 steps for calculating the health index of an asset. For a 
precise description of the methodology of the AHI the reader is addressed to (Serra 
et al., 2019). In addition, for a precise description of the mathematical formulation 
of the model, the reader is addressed to (Crespo, 2022).

A synthesis of formulation is as follows in Fig. 1.
The methodology for calculating the asset health index consists of 6 steps (Fig. 1) 

which are briefly described as follows:

Step 1: Selection and Definition

In this initial step, the asset of interest is identified, and its class and subclass are 
defined. This involves gathering relevant information about the asset, such as its 
functional location and an estimation of its expected normal life. This step sets the 
foundation for the subsequent calculations.

Step 2: Evaluation of Load and Location Factors

The next step involves evaluating the impact of load and location factors on the asset’s 
life. Load factors consider the magnitude and frequency of stress or strain that the asset 
experiences during operation. Location factors take into account environmental condi-
tions or specific operating conditions that may affect the asset’s longevity. By assessing 
these factors, an estimation of the asset’s remaining life can be calculated.

Step 3: Calculation of Aging Rate

Assets experience aging phenomena over time, such as corrosion, wear, oxidation, 
and insulation breakage. The aging rate represents the mathematical expression of 
this behavior, typically exhibiting an exponential pattern. By determining the asset’s 
aging rate, it becomes possible to quantify the rate at which the asset’s condition 
deteriorates as it ages, considering the various aging-related factors it may encoun-
ter throughout its useful life.
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Fig. 1  Procedure to calculate the AHI

Step 4: Obtaining the Initial Health Index

The initial health index is calculated to provide an assessment of the asset’s health 
at its current age. It is a dimensionless number typically ranging between 1 and 10. 
The initial health index is closely tied to the asset’s age, as defined by the aging rate. 
It reflects the asset’s expected condition based on its age and the underlying aging 
behavior.

Step 5: Obtaining the Actual Initial Health Index

To refine the initial health index further, it is necessary to consider the load modifier 
recorded for the current age of the asset. This load modifier accounts for any devia-
tions from normal operating conditions that may impact the asset’s health. By 
adjusting the initial health index with this load modifier, the actual initial health 
index is derived, providing a more accurate representation of the asset’s current 
health status.
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Step 6: Obtaining the Health Index

The final step involves determining the health index of the asset based on its condi-
tion, operating conditions, and reliability conditions at the time of evaluation. The 
health index provides a comprehensive assessment of the asset’s health, considering 
factors such as its physical condition, the operating environment, and the asset’s 
reliability in terms of its performance and potential failure risks. The resulting 
health index serves as a valuable metric for evaluating the overall health of the asset 
and making informed decisions regarding maintenance or replacement actions.

By following these steps, the calculation of an asset’s health index provides a 
systematic and quantitative approach to assess the asset’s condition, estimate its 
remaining useful life, and guide decision-making regarding maintenance strategies 
and asset management.

The calculation of the asset health index (AHI) is an important step in assessing 
the condition of assets. However, to ensure the accuracy and reliability of the results, 
it is crucial to validate these findings through the expertise of the organization’s 
knowledgeable personnel. This validation process involves comparing the AHI 
results with the health status estimated by the experts.

The expertise of the organization’s personnel is invaluable in assessing the assets’ 
health and condition. Their deep understanding of the assets, operational processes, 
and environmental factors allows them to provide valuable insights and observa-
tions that may not be captured solely through data-driven calculations. By compar-
ing the AHI results with the experts’ assessment, any discrepancies or mismatches 
can be identified and analyzed.

Several factors may contribute to the need for recalibration of the model based 
on the validation process. Changes in operational or environmental conditions, such 
as modifications in maintenance practices, variations in operating parameters, or 
shifts in environmental factors, can impact the asset’s health and performance. 
Additionally, as the organization’s knowledge and experience about these assets 
increase, it may lead to new insights and understanding that require adjustments to 
the AHI model.

Recalibrating the model based on the validation results and updated knowledge 
ensures that the AHI remains accurate and reflects the true health state of the assets. 
This iterative process of validation, comparison, and recalibration helps refine the 
model over time, enhancing its effectiveness and reliability in assessing asset health.

In summary, the validation of AHI results through expert assessment is essential 
for ensuring the accuracy and reliability of the calculated health index. By compar-
ing the AHI with the experts’ knowledge and experience, discrepancies can be iden-
tified and addressed. Recalibrating the model when necessary, in response to 
changes in operational or environmental conditions or the accumulation of new 
knowledge, helps maintain the accuracy and relevance of the AHI model, ultimately 
supporting effective asset management decision-making.
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3 � Case of Study

The motors of two motor pumps of a power generation plant have been selected as 
real examples on which the proposed methodology has been applied. The calcula-
tion of the health index will make it possible to know the current condition of the 
assets, making it possible to compare them objectively with each other. This indica-
tor will make it possible to prioritise interventions, care and/or the renewal of the 
assets analysed.

3.1 � Application of the Methodology Proposed

As is shown in Fig. 1, in step 1 a design theoretical life for every asset depending on 
the equipment category is defined. Its design life can be adapted by the owner 
according to accumulated experience and the information provided by different 
manufacturers and builders. In this case of study, it has been considered that it can 
operate 24 hours a day, every day of the year and for 10 years, so that an estimated 
normal life of 87,600 hours is left.

In step 2, the estimated owner life can then be adjusted according to the charac-
teristics of the asset location and loading. In the installation where the analysis is 
carried out, the assets are located indoors, which means that distance to the coast, 
altitude above sea level, annual average of outside temperature, exposure to corro-
sive atmosphere or exposure to dust in suspension are factors that do not almost 
affect the deterioration of the equipment. Therefore, the location factor (FE) is con-
sidered to have no influence, i.e. it is equal to 1. The load factor (FEL) measures the 
load request that is made on the asset in that location, in front of the maximum 
admissible load. In this case, the variable selected to calculate the load factor is the 
flow rate. The values for nominal and maximum allowable flow rate are available in 
the pump operating manual, resulting in a load factor of 81%. Eq. ((1)) shows the 
calculation of the estimated life of these pumps:

	
Estimated life t

t

F x F x
hoursEL

DL

FL EL

= = = =
87 600

1 0 81
108 148

,

.
,

	
(1)

A fundamental hypothesis of the methodology is that the irreversible degradation of 
an asset follows an exponential behaviour with respect to its age, and in step number 
3, the aging rate (β) of the asset is determined by the natural logarithm of the quo-
tient between the asset health index when new (Hnew) and the asset health index 
when reaching its expected life (Hestimated life). The equation for its calculation is the 
following, used in step 3:
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Then, in step 4, the initial health index (HIit) is considered as a dimensionless num-
ber between 1 and 10, with an exponential behaviour with respect to the age “t” of 
the asset, which is characterized by the aging rate as follows:

	 HIi HI et new
t= • •β

	 (3)

The health index (HI) is the result of adjusting the initial health index, using load, 
health, and reliability modifiers. In a first step, the initial health index (HIit) of an 
asset is modified to obtain what we call the real initial health index (HIiReal) in Step 
5, considering the load modifier registered for the current age (ML(t)), using the fol-
lowing equation:

	
HI Real t HI ei new

t

M tL( ) = ( )•
•β

	
(4)

where the load modifier is the quotient between the load factor existing at an instant 
(FRL(t)) and the expected load factor (FEL);

	
M t F F tL EL RL( ) = ( )/

	
(5)

The load modifier is a health modifier of the asset, which is considered in this initial 
phase since it is very likely that in many assets the load recorded during each asset 
age will be significantly different to the one initially planned for the functional loca-
tion. The introduction of HIiReal then allows the current asset degradation to be 
adjusted to compare with the anticipated degradation for the functional location.

Finally, in step 6, the health index of the asset is determined by its operating 
conditions and reliability conditions at the time of the evaluation. To determine the 
health index, the following equation is used:

	
HI t HI Real ti

e
MH t MR t

( ) = ( )
( )+ ( )( )

	
(6)

Where:

MH(t): is the asset’s health modifier (condition and operation).
MR(t): is the asset’s reliability modifier.

For the evaluation of the health modifier (MH) that appears in this last equation, the 
different variables that can be measured and quantified for each asset sub-category 
are considered, and that, being independent in their impact on health, add informa-
tion about it. From the large number of variables available in the plant information 
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system, it is necessary to perform data mining to determine which variables to select 
as pump health modifiers. To do this, RapidMiner Studio software was used to pre-
process the available database, eliminating missing data and outliers, creating a 
single database, and to analyse the correlation between variables, thus allowing the 
most representative variables to be selected to determine the final health modifier. In 
this case, the health modifiers are composed of the operating parameters of speed, 
flow rate, suction pressure, discharge pressure and suction temperature. These vari-
ables are obtained in real time from the PI System.

For the reliability modifier, depending on the sub-category of asset, model and 
manufacturer, tables can be prepared with the value of this parameter. In this case, 
the reliability modifiers are made up of the unavailability of the pump and the num-
ber of major maintenance or overhauls that are carried out.

Once the proxy variables for health and reliability modifiers have been deter-
mined, the challenge is to determine how they impact on the health of the asset. To 
do this, it will be necessary to determine, within a range of [1; 1.4], how each of 
these variables affects the health of the pump in a particular way, considering a 
value of 1 as having no effect on health and 1.4 as having a 40% negative effect on 
the health of the pump. Likewise, once these ranges have been determined for the 
different operating thresholds of each variable, they are dimensioned and the modi-
fiers MHj(t) and MRk(t) are calculated, respectively, in a range [0;1], which multi-
plied by the weights of each modifier will give rise to the variable modifier (see Eq. 
(7) and Eq. (8)). In order to determine the effect of the modifiers, the participation 
of the organisation’s expert group is necessary, which, being familiar with the assets 
analysed, makes it possible to quantify how each variable affects the asset health. In 
this case, operational thresholds are established for each variable, and the corre-
sponding modifiers are determined. Table 1 shows the results proposed for each 
variable.

In addition, Table 2 shows the weights of each of the variables and the associated 
coefficient γi.

The equations to obtain the value of the health modifier (MH) and the reliability 
modifier (MR) will be the following:

	
MH t MH t

j n

j

j j( ) = ∑ ( )
=

=1

γ •
	

(7)

With:

j = 1… n is an index used for different health modifiers.
γj: is the weight assigned to the health modifier j in the model.
MHj (t): is the health modifier at time t, age of the asset.

And

	
MR t MR t

k m

k

k k( ) = ∑ ( )
=

=1

γ •
	

(8)
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Table 1  Health and reliability modifiers

Pump 
variables

Below the 
admissible 
range In the recommended range Above the admissible range

Flow 0 0 1
Suction 
Pressure

1 0 0

Discharge 
Pressure

0 0 1

Suction 
Temperature

1 0 1

Below the 
admissible 
range during 
t > = 30’

Below the 
admissible 
range during 
t < 30’

In the 
recommended 
range

Above the 
admissible 
range during 
t < 30’

Above the 
admissible 
range during 
t > = 30’

BFP Speed 0.5 0.25 0 0.5 1
From 0% to 
50%

From 50% to 75% From 75% to 100%

Inactivity 0 0.5 1
From 0 to 3 From 3 to 5 More than 5

Overhauls 0 0.33 1

Table 2  Relative weight and 
coefficient γi Modifier

Relative 
weight

Coefficient 
γi

Flow 15.22% 0.046
Suction Pressure 15.22 % 0.046
Discharge Pressure 14.13 % 0.042
Suction Temperature 13.04 % 0.039
BFP Speed 15.22% 0.046
Inactivity 13.04% 0.039
Overhauls 14.13% 0.042

With

k = 1… m is an index used for different reliability modifiers.
γk: is the weight assigned to the reliability modifier k in the model.
MRk (t): is the reliability modifier at time t, age of the team.

The determination of the weight assigned to each modifier must be done relative to 
the rest of the modifiers and assuming a maximum possible impact of the set of 
modifiers in their worst condition. This is achieved considering the following 
restrictions:

The sum of the totality of the modifier weights will be equal to the so-called 
maximum impact rate γ (for this rate, all modifiers always take the value 1).
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Fig. 2  Effects of modifiers on the initial health index of assets
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The value of γ is obtained by forcing the HIit to be equal to 10 (maximum limit of 
the HI of the asset in the model) upon reaching the estimated normal life (tEL) of the 
asset. Therefore, γ = Ln (Ln (10)/Ln (5.5)) = 0.301.

The effect that the modifiers of the asset’s health have in the calculation of the 
health index can be seen as an example in Fig. 2. Where the HIit is compared to the 
𝐻𝐼𝑖𝑅𝑒𝑎𝑙 (𝑡) and the (𝑡). This Figure considers the possibility that the asset’s health 
index improves with respect to the forecast (by reducing the load compared to the 
forecast). The figure includes the effect of the Overhaul of the pump on the men-
tioned indices.

3.2 � Interpretation of AHI Results

The interpretation of Asset Health Index (AHI) can be performed in two ways: indi-
vidually for decision-making on a specific asset, and comparatively for decision-
making affecting a group of similar assets managed by the same organization or 
manager within budgetary constraints. Comparative management of AHI values is 
particularly valuable in global management decision-making for a network of infra-
structure assets. This approach involves considering not only the AHI itself but also 
conducting a multivariable analysis that incorporates additional variables such as 
lifetime and expected degradation. By jointly managing these variables, it becomes 
possible to generate a comprehensive control system at the network level and effec-
tively manage the knowledge generated. The comparative analysis between network 
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assets is essential for enhancing the manager’s ability to handle information, under-
stand system behavior, and collect relevant data for decision-making processes. 
This approach enables informed decision-making and improves the overall manage-
ment of the asset network.

The case study involved the assessment of eight pumps belonging to two differ-
ent motor pump units, namely units A and B. This assessment allowed for a com-
parison of the health status of all the pumps. Based on the results obtained from the 
calculation of the asset health index (AHI), decisions can be made regarding the 
appropriate actions to take depending on the condition of each individual asset. For 
instance, by directly interpreting the health index values, it becomes possible to 
determine the necessary course of action. As an illustrative example, Table 3 show-
cases the potential decisions to be made based on the value of the health index. This 
table helps guide decision-making by linking the health index range to specific 
actions, such as normal maintenance, diagnostic testing, replacement planning, or 
immediate risk assessment and potential replacement or rebuilding. By utilizing the 
asset health index and the corresponding decision framework, organizations can 
effectively manage their assets, prioritize maintenance efforts, and optimize resource 
allocation to ensure the reliability and longevity of their equipment.

On the otrher hand, the model enables the establishment of decision-making 
guidelines through the comparison of different asset indicators and the analysis of 
results obtained from assets of the same class. Figure 3 presents the results, illustrat-
ing the health index of each pump on the y-axis against the operating hours since the 
last overhaul on the x-axis. The size of the circles represents the level of deteriora-
tion, which is measured as the deviation between the initial health index (HIi) and 
the final health index (HI) of each pump.

From the comparative analysis of the pumps shown in Fig. 3, several observa-
tions can be made. Pumps A2 and A4 have the lowest number of operating hours 
and the lowest health index. However, pump A4 has a higher health index compared 
to A2, despite accumulating 220 fewer operating hours. This difference is attributed 
to the influence of load factors and health modifiers.

Pumps B2 and B4 exhibit similar health indices, but pump B4 has accumulated 
approximately 3400 more operating hours than B2. Surprisingly, pump B2 shows a 
higher deterioration (HI-HIi) compared to B4.

Table 3  Recommendations due to AHI interpretation (De La Fuente et al., 2018)

AHI Condition Requirements

1 - 4 Very good Normal maintenance
4 – 5.5 Good Normal maintenance
5.5 - 7 Fair Increase diagnostic testing, possible replacement 

depending on criticality
7 - 8 Poor Start planning process to replace
8 - 10 Very poor Immediately assess risk; replace or rebuild based on 

assessment

E. Candón Fernández et al.



121

Fig. 3  Asset Health Index vs Operation Time of the pumps analysed

Although pump B1 does not have the highest number of operating hours (that 
distinction goes to pump A1), it has the worst health index and the highest accumu-
lated deterioration among all the pumps analyzed.

Notably, pump B4 displays the best aging rate among the sampled pumps, while 
pump B1 has the worst aging rate.

As an example, pump B1 stands out as the most degraded pump among the ana-
lyzed pumps. It has accumulated approximately 59,902 operating hours since over-
haul and a health index of 3.962. Despite pump A1 having slightly more operating 
hours than pump B1, pump B1 shows greater deterioration with approximately 200 
additional operating hours.

Pump B1 is approaching the HI2 range between H = 4 and H = 6, indicating the 
beginning of wear signs in the asset. In case prioritization of maintenance activities 
is required, pump B1 takes precedence over the rest, followed by pumps A1, A3, 
and B3 consecutively.

By considering these observations and analyzing the comparative health and 
deterioration of the pumps, informed decisions can be made regarding maintenance 
priorities and resource allocation to ensure the optimal performance and reliability 
of the assets.

As an example, pump B1 is the most degraded pump from the rest of pumps 
analysed. This pump has accumulated approximately 59,902 operating hours since 
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overhaul and a health index of 3.962. This pump is second only to pump A1 among 
all pumps in unit A and B in accumulating the most operating hours since overhaul, 
but shows greater deterioration than pump A1, with approximately 200 more oper-
ating hours than pump B1.

This pump B1 is close to reaching the HI2 range between the values H = 4 and 
H = 6, which corresponds to the period of time when the first signs of wear begin to 
appear in the asset. In case any maintenance activity has to be prioritised among 
these pumps, pump B1 will take precedence over the rest, followed by pumps A1, 
A3 and B3 consecutively.

4 � Conclusions

In conclusion, the study conducted to calculate the asset health index of eight differ-
ent assets in an industrial plant has provided valuable insights into the current con-
dition of these assets. Although the methodology used may have certain weaknesses 
in terms of its mathematical formulation and consistency, it has successfully 
achieved its primary objective of measuring and comparing the health of the ana-
lyzed assets in an objective manner.

The collection and processing of a significant amount of location, operation, and 
maintenance data have enabled the estimation of the assets’ current health states. 
This information serves as a powerful tool for the organization, providing an indica-
tor that facilitates the prioritization of interventions, attention, and potential equip-
ment renewal. By having a clear understanding of the assets’ health status, 
decision-makers can allocate resources effectively, ensuring that critical equipment 
receives the necessary maintenance and renewal.

It is important to acknowledge the limitations of the methodology, such as the 
lack of consideration for the previous health index value in the calculation at each 
instant. This can result in flat areas in the graph, where the influence of health and 
reliability modifiers may not be fully captured. Despite these weaknesses, the study 
has delivered valuable results and provided a foundation for further improvements 
and refinements in future iterations.

Moving forward, it is recommended to continue exploring enhancements to the 
methodology, addressing the weaknesses identified, and striving for increased 
mathematical formulation and consistency. By refining the calculation process and 
considering a broader range of factors, such as the history of the asset’s health index, 
the methodology can become more robust and offer an even more accurate repre-
sentation of the asset’s condition.

The complexity of the case study presents various challenges when implement-
ing the proposed methodology. One major issue is the unavailability of historical 
data that spans from the commissioning of the asset to the present analysis date. 
This lack of historical data prevents training the model based on the actual knowl-
edge of the asset’s health status over time. However, it is still possible to execute the 
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methodology based on the available data, as long as the current health status is 
known and can provide an initial approximate value.

Another challenge lies in the quality of the data itself, which can impact the 
accuracy of the proposed model. Inaccurate or incomplete data can lead to subopti-
mal results and hinder the effectiveness of the methodology. It is crucial to ensure 
the data’s reliability and take appropriate measures to address any data quality 
issues that may arise.

Transferring the knowledge and experience of specialists to define indicators and 
modifiers for quantifying the health of the analyzed assets can be a complex task. 
This process requires effective communication and collaboration between experts 
and model implementers to ensure a comprehensive understanding of the assets and 
their health factors. Clear guidelines and documentation of the knowledge transfer 
process can help mitigate this challenge.

Despite these difficulties, implementing the proposed methodology in an orga-
nized manner allows for the generation of valid and reliable results. Validation is an 
essential step where the calculated health index is compared with the estimated 
actual health status of the assets. Expert personnel play a crucial role in this valida-
tion process, leveraging their expertise to assess the accuracy of the methodology’s 
results. Any mismatches or discrepancies between the calculated health index and 
the actual health state of the asset indicate the need for recalibration.

There are three main situations that may trigger the need for recalibration. 
Firstly, a mismatch or discordance between the actual health of the asset and the 
calculated health index suggests that the methodology did not accurately assess 
the asset’s health. Secondly, based on the acquired experience and knowledge 
about the asset, adjustments to the modifiers or estimated ranges may be neces-
sary to improve the accuracy of the health index calculation. Lastly, changes in the 
operating conditions of the assets may require reconsideration of the modifiers’ 
potential impact on health.

Recalibration of the model ensures that it remains aligned with the real health of 
the assets and takes into account any new insights or changes in the operating condi-
tions. This iterative process of validation and recalibration enhances the accuracy 
and reliability of the methodology, enabling more informed decision-making in 
asset management.

Overall, while the case study presents challenges related to historical data avail-
ability, data quality, and knowledge transfer, a well-executed implementation of the 
methodology, coupled with validation and recalibration, can address these issues 
and yield meaningful results for effective asset management.

In summary, the study has laid the groundwork for effective asset management 
within the industrial plant by providing an objective measure of asset health and 
enabling comparative analysis. The findings serve as a valuable resource for 
decision-making, aiding in the prioritization of interventions and resource alloca-
tion to ensure optimal performance, reliability, and longevity of the assets. 
Continuous improvement and refinement of the methodology will further enhance 
its effectiveness and contribute to the organization’s long-term success.
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General Bases to Hierarchy Definition 
for Digital Assets in Railway Context

Mauricio Rodríguez, Adolfo Crespo Márquez , 
Antonio Jesús Guillén López, and Eduardo Candón Fernández

Abstract  Defining the existence of a digital asset, integrating multiple platforms 
that represent its entities digitally, and simultaneously meeting the specific demands 
of the operational context of railway infrastructure systems represents an unresolved 
challenge for this industry. This study focuses on the search for commonalities, 
complementing the perspectives of the scientific community and research centers 
with real-world applications. From there, the development of a framework pre-
sented in our research emerges, capturing both the state of the art and practice, 
providing a starting point for the development of scientific discussions and the 
search for future models that offer an effective solution to the problem. The integra-
tion of maintenance management models with architectures for the development of 
digital twins in Industry 4.0, and the applied study of the railway industry itself, are 
part of the foundation of this study. Seeking to adhere to the principles already pro-
posed for Industry 4.0, the scheme introduces new relationship factors that will be 
prototyped in the industry, especially in railway infrastructures, allowing for scal-
ability and the digitization of processes as crucial as the criticality assessment for 
asset prioritization.

Keywords  Railway maintenance · Asset management · Criticality analysis · Asset 
hierarchy definition · Industry 4.0 · Digital twin

1 � Introduction

The principal motivation to develop this research is to provide the scientific com-
munity and the industrial world with a comprehensive framework to initiate the 
standardization of digitalization in the railways industry. In pursuit of this goal, the 
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authors contribute their invaluable experience in real applications, skillfully inte-
grated with state-of-the-art practices for the 4.0 industry.

This paper aims to establish a robust hierarchical structuring scheme for railway 
assets, taking into consideration a systemic, holistic, and digital perspective. The 
framework encompasses three fundamental dimensions that are pivotal to the suc-
cess of the digital transformation: the real-world dimension, which pertains to the 
physical assets in the railways (Zheng et al., 2021); the digital dimension, mani-
fested in multiple platforms seeking to generate their own digital elements 
(Schweichhart, 2016); and the management dimension, derived from well-
established models like MGM (Crespo Márquez, 2007), ISO (55,000), and UIC 
standards, all geared towards maximizing value and streamlining processes to 
achieve desired outcomes.

One of the primary challenges confronting the industry lies in selecting an appro-
priate Maintenance Management model to efficiently oversee assets. It is crucial to 
consider both the outputs and inputs of the chosen model from the outset. The defi-
nition of inputs and the way they are integrated will significantly influence the suc-
cess of implementing any management model, particularly at higher levels of 
decision-making (“the last layer”) (Schweichhart, 2016). Thus, understanding the 
entire journey from start to finish is essential before embracing any technological or 
digital solution, no matter how promising they might appear in addressing mainte-
nance issues.

Meanwhile, the omnipresence of digitalization in various OT (Operational 
Technology) and IT (Information Technology) platforms poses its own set of chal-
lenges. Aligning these diverse solutions to converge and add value to the process, 
rather than causing confusion or entropy, becomes a critical endeavor. Currently, 
there lacks a widespread consensus on a general architecture that can cater to the 
demands of Industry 4.0 for networked systems, specifically within the context of 
railway infrastructure systems (UIC A.W, 2022).

This research sets out to bridge the gaps in these dimensions and overcome the 
challenges through a comprehensive and systemic approach. By proposing a hierar-
chical framework that incorporates the real-world, digital, and management per-
spectives, it paves the way for a standardized approach to digitalization in the 
railways industry.

It is evident that standardizing digitalization in the railways sector will unlock 
numerous benefits. Streamlined processes and improved asset management will 
lead to enhanced efficiency, reduced downtime, and overall cost savings. 
Additionally, the adoption of Industry 4.0 principles will empower railways to stay 
competitive in an increasingly digital world.
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2 � Research Methodology

The methodology employed for this study encompassed three key approaches: a 
comprehensive review of scientific and technical literature in European research, 
consultations with infrastructure managers across Europe, and the examination of 
practical experiences related to the development and implementation of a manage-
ment and digitalization model within one of the European railway systems.

In the initial phase, the focus was on conducting a bibliographic and bibliometric 
review of scientific publications, utilizing the Scopus database as a reference. The 
primary objective was to identify the level and intensity of the relationship between 
the three main concepts under study: Hierarchy of Assets, Digital Twin, and Railway. 
The search pattern employed was “railway” AND “digital twin” OR “railway” AND 
“hierarchy.”

Subsequently, the second phase concentrated on investigating in railway research 
centers and ongoing projects to identify potential models in development or experi-
mentation that could serve as a foundation or contribute inputs to the proposed 
model. This phase involved examining the technological and railway regulation sys-
tems pertaining to digitalization, hierarchy, and maintenance. Additionally, research 
was conducted on digitalization projects within European railways, including their 
respective internal forums, to gain insights into the industry’s real-life practices.

3 � Synthesis Review

3.1 � Technical Scientific Literature

This review aims to provide a fundamental vision of the art state in which the dis-
cussion of these concepts within the scientific community is located, and the evolu-
tion over time of them. The results obtained, presented as number of publications 
over time are shown in 1a and the bibliometric study developed through the VOS 
viewer platform, allows to appreciate Figs. 1a and 1b, both the intensity of the con-
cepts, as well as their relationship and their connection with other concepts treated 
in the analyzed studies. Out of a total of 668 results obtained from SCOPUS.

The analysis indicates that within the railway context, the concepts of digitaliza-
tion, digital twins, and Industry 4.0 are still in the nascent stages of development. 
Despite the utilization of the Analytic Hierarchy Process (AHP), which is predomi-
nantly associated with risk assessment processes, its application to hierarchize rail-
way assets and the develop of their corresponding digital twins remains limited. 
This being precisely the “Gap” identified as our object of study.

Another observation from the bibliometric review is that over the past 5 years, 
the subject has only begun to emerge in connection with Geographic Information 
Systems (GIS). However, this emergence is confined to specific contexts with his 
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Fig. 1a  Evolution 1995–2022 on SCOPUS of mains concepts

Fig. 1b  Evolution, Intensity and Relationship of mains concepts

own rules and does not offer a comprehensive view of the hierarchy of digital assets 
within the railway industry.

Then, from the existing literature review is possible to see ample opportunities 
for the development of models and the initiation of scientific discussions on the 
subject matter. It is worth mentioning, neither the hierarchy nor the taxonomy of 
railway infrastructure assets appear to be regulated by any scientific model yet. 
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Rather, they have been derived from practical considerations implemented individu-
ally by the railway operators themselves.

In summary respect of the actual scientific discussion on these aspects, we con-
firm our gap objectives. We can see that as the industry moves towards digital trans-
formation, the need for a coherent and scientifically grounded framework for 
hierarchizing railway assets becomes increasingly apparent. This reveals that is nec-
essary calls for further research and scholarly dialogue to address the existing gaps 
and establish a unified approach to the integration of digitalization, digital twins, 
and Industry 4.0 principles in the railway domain.

3.2 � Research European Projects

Currently there are multiple efforts to incorporate digitalization in the various rail-
way entities, giving rise to several initiatives both from the scientific and practical 
perspective. The approach from the scientific point of view as analyzed in 3.1 sug-
gests which respect of hierarchization of asset in the railway digitalization context, 
the discussion is weak, so it is of special attention to complement it with the applied 
visions. Aiming to rescue the praxis from the industry itself, these 3 sources have 
been investigated, corresponding to applied research projects, with a strong link to 
the current railway ecosystem:

•	 Europeans Investigations: Shitt2rail (Rail, s.f.) Fig. 2: Shift2Rail R&I Programme 
& Projects. “The vision of the Shift2Rail is to deliver, through railway research 
and innovation, the capabilities to bring about the most sustainable, cost-efficient, 
high-performing, time driven, digital and competitive customer-centred transport 
mode for Europe”.

•	 Industry-Specific Research: UIC (UIC, s.f.): “The UIC research portal is intended 
to play a crucial role in facilitating this process. This portal collects and main-
tains information from numerous global sources. Its primary purpose is to build 
on information shared by his members and research institutes and by industry-
leading research providers used and recommended by his members, as well as 
data obtained by linking up globally with other rail research databases”.

•	 Railway Innovation Hub (RIH, 2023): His mission is to promote railway tech-
nology and knowledge at international level through the generation of collabora-
tive R&D projects, the commercialization of technology and know-how, the 
promotion of entrepreneurship and the provision of specialized services.

From the multiple research project develops in these 3 instances, we rescue 2 stud-
ies specifically related with the Gap proposed un our investigation, the first of them 
referring to the taxonomy of assets developed by “The Railway Innovation Hub, 
Spain” and the second to the study of “Big data for Asset Management”, developed 
by UIC. From where the following key aspects for this research are rescued:

General Bases to Hierarchy Definition for Digital Assets in Railway Context



132

Fig. 2  Shift2Rail R&I Programme & Projects 2022–23

	1.	 From RIH, in the lasts years efforts on the development of BIM Railway 
Classification System Manual. Focused mainly on BIM systems (Ali et  al., 
2022) and consequently on digital models for construction only.

	2.	 From S2R, is reaffirmed that it is possible to find multiple investigations that 
point to the digitalization of assets, but that most of them focus on rolling stock 
and its peripherals, leaving as a corollary that in the aspect of digitalization of 
railway infrastructure is limited to a few.

	3.	 From UIC research, we found a very interest approach, in (Roda, I, 2022) it is 
argued that it is essential to adopt a systemic perspective for the management of 
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Fig. 3  Top-down and 
bottom-up approaches for 
systemic and asset-centric, 
data-driven decision-
making. (Roda, 2022)

physical assets (Macchi et al., 2012), which will certainly condition the way in 
which data is handled (big data management), because it is these same, coming 
from the individual asset (bottom up), which determine the strategies (strategic 
decision-making) that must be addressed systemically (top down). Fig. 3.

	4.	 In (Roda, 2022) the existence of a high-level taxonomy (Sedghi et al., 2021), 
characteristic of railway systems, is recognized, where it is possible to recognize 
2 large groups of assets: network assets, discrete assets see Fig. 4.

	5.	 In the consensus of the studies in UIC it is stated that Is necessary a methodology 
for the adoption of Big Data, where it is indicated that one of the first activities 
will be the definition of “relevant elements”, his impact on the business and in 
the decisions may be exist over itself. Where for each of them “the relevant ele-
ment” there will be the "data wish list" necessary to make those decisions better.

We can indicate from this study that these aspects, as a whole, provide a first 
approach to railway 4.0 industry, and together justify the need to have a standard-
ized architecture, which allows the exploitation of data in a systematized way.

3.3 � Railway Administrators

The third part of the research has been developed on the actual application of a 
maintenance management model for a railway operator in Europe. That it has con-
sidered the revision of its current data models and applications that allow its exploi-
tation. In this context, because of an internal inquiry at European level, it has been 
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Fig. 4  Asset taxonomy for railways organization and current digitalization levels (Roda, 2022)

possible to collect the empirical experience of several operators, which as a result 
demonstrates a high level of data variability in other railways. This experience 
allows us to verify that there are multiple models that have developed naturally over 
time, that is, they have been adaptations to a progressive growth of information, 
usually hyper specialized, which effectively solve their local problems, but wich do 
not have systemic capacities that allow the exploitation of data and the identification 
of assets in a digital and unique way. In the case study itself, we have found that 
such a level of personalization becomes an advantage from the perspective of a 
specialty and its own requirements, but that, on the other hand, it becomes a great 
disadvantage when it comes to exploiting the information, given the architecture of 
the system and the data. Problems such as taxonomy, multiple identification of the 
same asset, multiplicity of structures and / or hierarchies, multiplicity of informa-
tion sources (ranging from databases to pdfs un-processable digitally), in short, the 
“big data” ends up transforming into “Frankenstein data”. From the applied experi-
ence, at least 3 factors that directly affect digitalization are recognized:

	1.	 Reference system: an aspect in constant discussion from the railway point of 
view. Given their nature, railways began to reference their assets according to 
tracks (lines) and points on them, however, the complexity of growth has led the 
system rather to a network model, composed of nodes and strokes that together 
with a certain topology become a complex system, recognizing that the current 
system is insufficient to meet the needs of digitalization. In this sense, an issue 
to be resolved when considering a hierarchy of assets is the reference sys-
tem itself.

	2.	 Attributes Heterogeneity: each type of asset is characterized by having its own 
set of attributes according to the specialty to which it provides service, this con-
dition has led computer developers in the railway world to propose ultra-
specialized data solutions, which prevent the standard characterization of an 
element or digital entity, consequently, they do not facilitate their relationship on 
a common basis that allows their comparison and respective hierarchization.
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with its identifier and
submodel elements

• Manufacturer = CUSTOMER GmbH • Max. Rotation Speed = 5000 [1/min] • Rotation Speed = 4370 [1/min] • Title = Operating Manual

• Document Class ID = 03-02

• Document Class Name = Operation

• Digital File PDF→
 /aasx/OperatingManual.PDF

• Max. Torque = 200 [Nm] • Torque = 117.4 [Nm]
• Cooling Type = BAB657

• GLN = 10101010

• Manufacturers Product Designation =
 140 Capable Servo Motor
• Serial Number = P12345678140

Asset Administration Shell

0 1 0 1
1 0 1

Submodel

Submodel Submodel Submodel

IDENTIFICATION
Submodel
TECHNICAL DATA

Submodel
OPERATIONAL DATA

Submodel
DOCUMENTATION

Fig. 5  Asset Administration Shell and its submodel (Bader et al., 2018)

	3.	 Information Sources: Most railway operators in Europe have ownership over 
infrastructures, which implies that at least 3 different functional contexts coexist 
(Railway Operation, Construction of new networks, Conservation and 
Maintenance of Infrastructures), on which assets also coexist, but respond to 
very different objectives, which makes each context separately define its own 
data structure and information systems for the exploitation of them, granting 
multiple different identities to the same physical asset, which makes the data 
unmanageable from the computer perspective, forcing to create fictitious rela-
tionships that allow interpreting a set of data, but that do not reflect exactly real-
ity. This drives the need for data integration, throughout the asset lifecycle, 
where the “digital physical asset” is unique, in a single functional structure and 
on which the layer or Asset Administration Shell, see Fig. 5, is placed (Bader 
et al., 2018) that characterize it in one context or another.

4 � Conceptual Scheme for Development a Digital 
Architecture: Railway Application

The work presented in this paper develops an adaptation of the current models in the 
scientific discussion about digital twins and 4.0 industry. Adding elements and their 
relationship in a multi-system context (Macchi et al., 2012), applied specifically to 
the context of the railway industry. This provides as a result a proposal that is based 
on the 3 groups of layers indicated at the introduction, the first that is related to the 
real physical assets, the second that groups all the capture, processing, modeling 
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and integration of the data related to each real asset, and finally the third layer that 
consolidates decision making (Zheng et al., 2021), normally supported in multivari-
able decision models, such as the criticality model, in the case of asset hierarchy.

As an approximation to a general data model (Candón et al., 2019) for the devel-
opment of the railway industry 4.0, and as a result of the practical application in the 
case studies, a model is presented that proposes to correlate at least 5 elementary 
dimensions, these are:

	1.	 Hierarchical Structure of the assets which will establish their functional depen-
dence for the required purpose of the set Functional Units of System. This 
hierarchical decomposition may be developed according to the regulations that 
apply (if any) to each specialty. Typically, systems, subsystems, equipment, and 
components will be recognized (Fig. 6).

	2.	 Units Functional of System, recognized as the minimum unit of process that 
generates value. This concept, which is introduced as a result of our research, 
results from a convenient convention for the grouping of assets in a networked 
distributed linear asset environment. It is very important to note that what is 
called "value" is closely related to the purpose of the business. Aligning with it 
the systemic perspective that is required for decision making, as we have cited in 
Sect. 3.2.

To exemplify the above, consider the case of a train that must travel from sta-
tion A to station B, its purpose is to arrive on time and fulfil that journey by 
transporting a certain amount of passengers or merchandise. If any of the sys-
tems serving that route fails, the purpose cannot be executed, in this case we will 
recognize a Network UFC. Other case may be exemplified with UFS of a dis-
creet nature, that is, they are located at a point or node of the network and that 

Fig. 6  RAMI 4.0 Functional Architecture (Schweichhart, 2016)
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they fulfil a specific purpose, as is the case of level crossings, which complement 
the railway operation have as their objective the protection of railway and road 
safety, in this case if there is any failure in the safety barrier, this discreet UFS 
will no longer fulfil its purpose.

	3.	 Real Assets Layer, which uniquely identifies each physical asset. In this layer 
you can recognize the physical assets that make up a UFS, for example in the 
railway case are Rails, sleepers, fixings, Switch & Crossing, Track circuits, 
Interlockings, catenary wire, posts, transformation centers, bridges, tunnels, etc.

	4.	 Digital Twin layer, which digests, recognizes and processes the data of each real 
Asset, providing the Digital identity and some result according to some given 
output according to the ontology (Li et  al., 2022) defined for each case. In 
(Malakuti et al., 2020) is define a discrete digital twin like a single entity that 
provides value without needing to be broken down further. For example, the 
gearbox or motor for a ball mill in mining can be monitored and reported on at 
this entity level. Assembling discrete digital twins to create a composite digital 
twin is shown in Fig. 7 as a vertical expansion that describes the increase in 
composition from a single to many entities.

A composite digital twin is a combination of discrete digital twins that repre-
sent an entity comprising multiple individual components or parts. The composi-
tion may take place at different levels. For example, a production cell is a 
composite entity, whose digital twin consists of the digital twins of the devices 
within the production cell. An entire plant is a system, whose digital twin con-
sists of several others composite digital twins.

	5.	 BDM Layer, Layer of business decisions from the Big data, for example an 
operational risk assessment of railway infrastructure (Weik et al., 2022) of the 
system, which includes not only the health data of the assets but also the opera-

Fig. 7  Composite Digital Twin. (Malakuti et al., 2020)
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tional possibilities that affect them, allowing to establish a risk management 
model using Markov chains, on which business decisions could be made.

In general, this layer produces the information from the business rules and 
exploitation of information that the Stakeholders demand.

4.1 � RDTA: Railway Digital Twin Architecture (Schematic)

Based on the principles proposed in the digitalization model structures such as 
RAMI, CDT among others (Zheng et al., 2021), the scheme shown in Fig. 8 intro-
duces a new concept that allows it’s adaptation to the railway industry, this takes 
charge of the way in which the minimum units of value are defined in a railway 
context, which will be classified as both network units or discrete units (Leitner 
et al., 2017). We have called this concept a Functional System Unit.

Therefore, the integration of a real asset, duly structured in a hierarchy that 
places it at a certain level and a functional unit in which it provides a service, all on 
the layer of digitization rules (recognition of the same asset in multiple systems), 

Inventory

Elemental System of Reference
Definition of Control Volumes

Layers IT/OT

Digital registration: UNIQUE ID

A�ributes and Variables
(for each System)

Logical Functional Relationship

Business Process Interaction

Fig. 8  Railways digital twin architecture

M. Rodríguez et al.



139

will provide each asset with what we have called a digital identity, which can then 
be conveniently exploited in the last layer of business decisions. Those that may be 
to a lesser or greater degree digitalize them, according to the internal digitalization 
models (Weik et al., 2022) that each architecture implementation defines, being able 
to be these simple relationships between databases, up to complex Machine Learning 
models integrated in real time.

UFS: Unit Functional of System, minimum unit within the value chain, where 
value is added to the process as such, autonomous unit where all the existing sys-
tems in the hierarchy coexist, which will be related, logically and functionally 
through these UFS, allowing to establish a base relationship parallel to the hierarchy 
of systems / equipment / component, that allows to emulate and assess the function 
of each asset with it’s impact at the systemic level (Mohammadi & El-Diraby, 
2021), the above will complement the traditional structure / hierarchy of assets and 
will cross the layer of inventories, allowing to order from the base to the assets 
according to their taxonomy and their function provided at the same time. 
Recognizing, also, at this level two types of units, the “Network units” and the 
“Discrete Units” For example, a journey vs a bridge, a tunnel. (Carretero et al., 2003).

HIERARCHY LEVELS: Defined as System, subsystem, component according 
to the railway taxonomy.

LAYERS: Grouped into 3 macro levels, real level, digital level, decision level.

Real Level: deals with the physical assets, refers to the physical and tangible aspect 
of the railway industry. It encompasses all the physical assets and infrastructure 
that make up the railway system, such as tracks, trains, signaling equipment, 
bridges, tunnels, and stations. This level deals with the actual, on-ground compo-
nents that ensure the smooth functioning of the railway network.

Digital Level: creates virtual representations through digital twins. The Digital 
Level is the realm of virtual representation and data integration. It involves the 
creation of digital twins for each physical asset at the Real Level. A digital twin 
is a virtual replica of a real-world asset, capturing its characteristics, behavior, 
and performance through data. In the Digital Level, various computer systems, 
such as Enterprise Asset Management (EAM), Building Information Modeling 
(BIM), and Geographic Information Systems (GIS), play a crucial role. These 
systems collect, process, and integrate data related to each asset, providing a 
comprehensive and dynamic digital representation.

Decision Level: utilizes data-driven insights to make informed and strategic deci-
sions for the industry’s success. Asset management focuses on maintaining and 
optimizing the physical assets to ensure safe and efficient operations. This 
includes regular maintenance, inspections, and repairs to prevent failures and 
minimize downtime.
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4.2 � Proof of Concept: Railway Application

The study on computer solutions for Asset Management EAM, BIM Systems, GIS 
Systems, allows us to recognize that it is feasible at the digital level to recognize an 
asset through a volume of control (real, digital or both), which may be as small or 
as large as the user defines. Taking this into account and the data of a real railway 
system, a sequence of steps is proposed that should at least be considered for the 
implementation of the scheme proposed in Sect. 4.1, our objective, under the frame-
work of the digitalization of assets for decision-making regarding their management 
and maintenance, in line with the framework proposed by (Crespo Márquez, 2022).

Step 1: Considering the criteria established in our RDTA scheme, we define a 
digital asset within a control volume, which will have as an elementary reference 
geo spatiality, recognizing this as the most absolute feasible reference, each control 
volume will therefore have it’s 3 dimensions, expanding the current reference sys-
tems that are only limited to flat referencing (v-pk). To make that, as a proposal 
proof of concept we consider all the assets existent into inventory (rail, sleepers, 
signally, welding, swishes, etc.) that belong to some functional section (for example 
from station A to station B), then propose the relationship with the element defined 
an BIM platform to identify and match the singularity elements defined on BIM 
model with the individual element defined on the inventory platform. Finally, we 
relate the 2 previous platforms and correspond data references with the GIS system, 
is very important to remark that the systems currently are not integrated. Figure 9. 
So to extend the model requires the creation of individual digital entities capable of 
being recognized in interpreted in each of the systems from which they are 
demanded, this will imply the creation of essential attributes for each asset and then 

Fig. 9  Example of Real word Railways Assets vs Digital word on BIM, EAM or GIS system 
(Image: Siemens Mobility)
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in your AAS all the data models that are needed will be added, starting with the 
hierarchy itself that from our perspective is considered as an essential data in 
given entity.

Step 2: Categorization of functional units (network or discrete). To define if a 
unit is a network or discrete unit, we concentrate in the function “the proposal” of 
the UFS, in this sense we can define it like an example of network unit: the segment 
between 2 stations, including all kinds of assets that belong to this segment (perma-
nent way, electrification system, signaling, telecommunications, etc.). For the other 
side if we find a bridge, a tunnel or switches and crossing elements, we are extract-
ing them from the network unit and recognize like a discrete unit, with a pro-
posal itself.

Step 3: Hierarchical structuring of assets, defined by their taxonomy according 
to specialty. Is a principal effort to give a digital identity to the assets, mainly on the 
EAM systems, where we can give the parameters for the decision-making model.

Step 4: Allocation of the real assets into each UFS with it’s respective hierarchi-
cal structure associated, according to how many real assets you have, level of group-
ing by specialty connected online. Level of detail of each specialty according to 
each Linear or point element defined. In this point it is very important to define 
some rules to truncate or divide the asset, mainly the linear assets, because for 
example: not necessarily the limit or the end of one permanent way is the same limit 
or end of a telecommunication system, as seen in Fig. 10. Then the final of the UFS 
will not be referenced to some unique linear reference system, but to multiples sys-
tems, as seen in Figs. 11 and 12, integrated in a digital twin.

Like a result of the application of the model we observe, first that if the organiza-
tion aligns the digital definitions of each asset through one “management perspec-
tive”, according to one model, allowing all the uplevels for the exploitation of the 
information to decision-making layers. The homogenization and standardization of 
each unit with the same criteria, allow too to scale the model for all the company 
(Fig. 12), gives the capability to use advanced techniques of data mining or business 
analytics to get the best result for the business, always aligned with one criticality 
perspective.

Fig. 10  Example of coexistence of complex multiple end-limit between specialities on a rail-
way network
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Fig. 11  UFS Railways Multiply System Scheme

Fig. 12  Business, Network and Enterprise Units

5 � Conclusions

The main contribution of this study is to open the scientific discussion around the 
establishment of two clear lines of research and development for the future structur-
ing of digitalization models applied to the railway industry.

The first line involves the incorporation of the “management” factor through a 
model that aims to maximize the business results. While digitalization has predomi-
nantly focused on technical aspects, this proposal seeks to integrate all computer 
models under a clear Management model (The MMM). This approach recognizes 
that digital assets must not only be defined individually but also establish functional 
relationships that determine their impact on the business. By adopting a systemic 
and functional criteria, the proposed model, RDTC, emphasizes the hierarchical 
dependence of assets according to their taxonomy and their functional relationships 
(data source) from equipment to system (Button-up perspective). Finally this 
approach enables decision-making (top-down) with the appropriate information 
about all assets and their overall impact.
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The second line, is the model RDTC itself like a conceptual scheme, incorporat-
ing the systemic perspective in the asset management models, consequently, of their 
digital twins. The digital asset normally is defined individually, but not necessarily 
establishing a functional relationship, that determines the impact on the business. In 
this sense, it is proposed as an essential factor, the use of a systemic and functional 
criteria, which fixes the hierarchical dependence of the assets respect to their tax-
onomy, and their functional relationship (data source) from the equipment to the 
system (Button-up perspective), enabling decision-making (top down) with the 
appropriate information of all assets and their affectation to the whole.

Overall, this study has successfully emphasized the importance of a clear man-
agement model and incorporating a systemic perspective in asset management and 
their digital twins. Embracing this vision and implementing the proposed frame-
work will enable railways to harness the full potential of digital technologies and 
navigate the challenges and opportunities presented by the 4.0 industry.
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Determination of the Exact Economic Time 
for the Component Replacement Using 
Condition-Based Maintenance

Antonio Sánchez-Herguedas, Antonio Jesús Guillén-López, 
and Francisco Rodrigo-Muñoz

Abstract  In most industrial assets, determining the preventive interval is a task 
carried out by the maintenance engineer. In non-critical assets, the optimization 
process of the interval must consider the costs of operation and maintenance, as well 
as the income generated by its operation. The result is the economic determination 
optimal moment to perform preventive intervention (PM). Mathematically, an 
expression can be found that relates these variables to the failure occurrence pro-
cess. However, when the equipment is critical to the business, it is necessary to 
avoid the occurrence of failure. For this purpose, investment is made in techniques 
that determine asset degradation (CBM). In this case, not only must the failure 
occurrence process be controlled, but the degradation of the asset must also be ana-
lyzed. To determine the economically optimal moment for the preventive replace-
ment of a component subject to CBM, a semi-Markovian model has been developed. 
The model considers degradation as a Wiener process and integrates it with the 
failure occurrence process, adjusted to a Weibull distribution. The result is two 
mathematical formulas to determine the optimal degradation threshold and the 
interval for preventive replacement, optimizing costs, income, degradation, and fail-
ure distribution.
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1 � Introduction

Many industrial assets are subject to condition-based maintenance (CBM) and post-
failure corrective tasks. Once the degradation threshold value is reached, the pre-
ventive task is scheduled to avoid failure. The interval size to perform the preventive 
replacement is the key, i.e. how much time is running before the failure occurs? To 
calculate the preventive interval τ of a failure mode with degradation for an asset, it 
is necessary to carry out a study where costs, income, degradation, and probability 
of failure must be considered. It is usual for this study not to be carried out due to a 
lack of time, resources, or knowledge, and the asset owner or its maintainer chooses 
to set alarm thresholds obtained from their own experience or from the experience 
of others who are experts in the CBM of the asset. The asset that has been designed 
for the conditions set by the manufacturer is used by the owner in his particular 
conditions. The maintenance manager must strive to calculate the economically 
optimal degradation threshold and preventive interval under his conditions of use 
and maintenance. By using degradation levels, CBM policies reduce the occurrence 
of faults and lengthen the periods between preventive tasks (Table 1).

A semi-Markovian model is designed to observe the influence on the size of the 
optimal preventive interval of the asset’s uptime income, the costs of corrective  
and preventive maintenance interventions, degradation, and failures. This model  
presents a state where the corrective task is performed, a preventive state, and two 
operational states. The first of these two states is controlled by item degradation. 
The degradation is defined by a mathematical function following a Wiener process. 
In this state, the effective degradation of the element is measured by CBM tech-
niques. The probability of asset failure is considered zero as long as the degradation 
does not exceed a set threshold. Once this threshold is exceeded, the asset is placed 
in the second operational state. From this point on, the probability of failure is no 
longer zero and the model is controlled by a Weibull distribution.

The model evolves in time, following a semi-Markovian process with an embed-
ded Markov chain. The process is semi-Markovian because the sojourn times in the 
states are not exponential functions. Transitions between states occur according to 

Table 1  List of terms/nomenclature

CBM condition-based maintenance τo optimal preventive interval
PHM Prognostics and health management RUL Remaining useful life
Ri Cost or income in state i Rij Cost of transition from i to j
Do Degradation threshold To Degradation threshold time
V(m) Expected accumulated return  

in m transitions
V(1) Expected accumulated return in one 

transition
P Transitions matrix R Returns matrix
τ Preventive interval D(t) Degradation function
W(t) Wiener process σ Wiener process drift
v Wiener process mean trend α Weibull sharpe parameter
β Weibull scale parameter
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probabilities fixed in the Markov chain. At each transition, the process accumulates 
costs or income as returns (negative or positive). The aim is to find the preventive 
interval that maximizes the accumulated returns at each transition. This allows find-
ing optimal values of the preventive interval τo for any transition of the time hori-
zon. The model proposes a system of difference equations for expected accumulated 
return, solved by applying the z-transform. Subsequently, by derivation the mathe-
matical expression of the preventive interval τ0 is reached.

The model allows us to analyze how the preventive interval is affected by changes 
in income, costs, degradation, and failures. In addition, it allows the calculation of 
the threshold limit of degradation for the signal collected in the monitoring for this 
optimal preventive interval. These two decisions are the key to establishing a CBM 
policy. This last value is so far calculated based on experimental values and the 
expert’s experience. This work is included among works issues related to Prognostics 
and Health Management (PHM).

2 � Background

The calculation of the value of the optimal preventive interval is analyzed by many 
authors, who have used different techniques and models to obtain it. Some of them 
have elaborated models built based on semi-Markovian processes. This technique is 
executed transition by transition, visiting successive states, so it replicates well  
the sequence of execution of operation and maintenance activities of industrial 
physical assets.

Hu et al. (2020) use a Markov model with preventive substitutions and imperfect 
repairs. In the paper, they develop a semi-Markovian model to find the value of the 
optimal preventive interval, minimizing the long-term average cost. As in our work, 
the result is a mathematical formula valid for any time horizon. Other authors also 
use this technique. Lyubchenko et al. (2018) present an application of this approach 
to evaluate the recommended preventive maintenance intervals in radio devices.  
In this case, they use Markov chain theory to mathematically describe the sequence 
of transitions between states and apply the semi-Markovian process model to the 
random process of sojourn times in each state. Wang and Miao (2021) formulate a 
preventive maintenance optimization model under a semi-Markovian model for a 
balanced system, where each unit is subject to degradation failure and the dwell 
times in each state follow Erlang distributions with different parameters. Grabski 
(2014) analyses the technique and explains how to build semi-Markovian models, 
discussing the different parameters and reliability characteristics that can be 
obtained from these models. He defines the properties and theorems of the theory of 
semi-Markovian processes.

Other authors combine semi-Markovian models with other techniques and theo-
ries. To develop their model, Kumar and Varghese (2018) use non-exponential fail-
ure and repair time distributions. This forces them to model from a semi-Markovian 
approach. But they focus their attention on the evaluation of system availability. 
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They then derive the availability-optimizing preventive interval using the golden 
section search technique. Wu et al. (2021) develop their model using continuous-
time semi-Markovian processes and then provide a method for solving these pro-
cesses. They use algorithms from discrete-time cases, considering the error made 
when discretizing. This method is applied to a reliability problem, analyzing the 
availability of a system subject to sequential cyber-attacks. The method solves two 
scenarios when the sojourn times follow exponential or Weibull distributions. 
Kumar et al. (2021) propose a semi-Markovian approach to analyze the degradation 
of complex mechanical systems by constructing operational states. They start from 
an initial scenario and consider the failure rate and the repair rate to establish the 
transition probabilities between states. Finally, they calculate the system availability 
when the stationary scenario is reached. They perform a practical application of this 
proposed methodology to analyze the degradation of an air compressor and calculate 
its availability. Wu et al. (2019) propose a competitive risk model with a constraint 
for transition times in repairable multistate systems following semi-Markovian 
processes. Once the model is established, they employ aggregate stochastic pro-
cesses to obtain the formulas for the competitive risk probabilities, survival time 
distributions, and availabilities. Nasrfard et  al. (2022) propose a probabilistic 
approach considering some correlations and uncertainties to find the optimal inspec-
tion rates. They develop a model using a semi-Markovian chain based on Monte 
Carlo simulations, using 95% percentiles of the total cost to determine the optimal 
inspection rates. Wang et al. (2019) consider a condition- and age-based optimal 
maintenance policy for a repairable two-unit serial system. They formulate and 
solve the maintenance problem in the semi-Markovian decision process framework. 
They establish a formula for the average maintenance cost and determine the opti-
mal levels for the maintenance of the two units that minimize the long-term aver-
age cost.

Other authors use Markov chains. Farahani et  al. (2019) model a production 
system as a continuous-time Markov chain. The model determines the optimal pre-
ventive maintenance interval by reducing the unit time costs of corrective and pre-
ventive interventions. Farhadi et al. (2022) also use Markov chains, in this case, to 
determine the optimal number of spare parts and establish the best supplier and the 
appropriate quality of the spare part. They suggest several models and apply numer-
ical samples to show the state representation and determine optimal spare parts 
supply strategies and inventory policies.

Our model includes the income per unit of asset operating time after degradation 
in the preventive interval calculation. This revenue received by the owner is not 
considered in most optimization studies. There are very few cases where this data is 
included in the analysis, and this work aims to fill this gap as well. Zhu et al. (2021) 
develop a preventive maintenance optimization model based on a three-stage failure 
process for a single-component system. The objective is to maximize profit, but 
unlike conventional optimization models, it uses a revenue function to correlate 
profit with availability and cost. Mizutani and Zhao (2021) use various reliability 
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engineering techniques and tools to choose the best strategies for systems with 
replacements, including periodic replacements. The developed method searches for 
the optimal preventive interval. To do so, they start from the survival function and 
the values of revenues and costs during operation and maintenance interventions. 
Our study is a continuation of other articles published using the income obtained 
from the operation of assets. (Sánchez-Herguedas et al., 2021, 2022, 2022a, b, and c) 
for the optimal preventive interval calculation.

In the literature, it is rare to see the use of income in optimization. Formulas to 
calculate the preventive interval and the degradation threshold for any transition are 
also not usually given. The degradation threshold is usually calculated in relation to 
the failure. In this case, it is calculated in relation to the time of preventive 
replacement.

Degradation data have been widely used to predict the remaining lifetime of 
systems. Most previous work uses a preset model to capture the degradation process 
and focuses on degradation processes without constant shocks or shock effects. 
(Kong et al., 2021). Stogiannis and Caroni (2013) use a time-to-first impact model 
based on a Wiener process to determine the degradation of a component, further-
more, they attempt to fit this model to data generated by a Weibull regression. Liu 
et al. (2017) review the developments of Wiener process-based models for degrada-
tion data analysis and RUL estimation, as well as their applications in forecasting 
and asset health management. In addition, they discuss applications of Wiener 
process-based models for degradation test design and optimal decision-making 
activities, such as inspection, condition-based maintenance, and replacement. In the 
end, they highlight several future challenges that deserve further study. However, in 
our case, a degraded operating state is included. The word degraded is intended to 
express the circumstance that the failure mode of the element follows the same fail-
ure distribution function from which it started in the operational state, even though 
the income generated by its operation is lower in this second state. However, math-
ematical development is also valid whether the higher income. That opens the door 
to analyzing other problem types.

The main contribution of this study is the development of a mathematical for-
mula that calculates the optimal preventive interval when degradation is measured 
quantitatively. This formula includes the costs of maintenance interventions per-
formed when condition-based maintenance is applied: corrective interventions to 
restore the asset in case of failure and preventive interventions to reduce the failure 
probability due to wear and tear. It also includes the asset income when operating in 
degraded conditions, from which the costs derived from the degradation generated 
signal can be subtracted. The formula can be applied to a time horizon without limi-
tation or to cases where the use of the asset is limited, for example, by the comple-
tion of the business project. This second case is the most common in a critical asset 
subject to CBM. The developed formula is easy to apply for the designer of asset 
maintenance plans and can also be included in the designs of digital twins of assets 
and maintenance processes.
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3 � Material and Methods

The first objective is to find the mathematical expression of the preventive interval 
τ0 that optimizes the expected accumulated return over time, transition by transition. 
The second objective is to find the threshold limit of degradation D0. Both magni-
tudes depend on the costs of the maintenance tasks, the operating income, possible 
penalties for their inactivity, the evolution of the degradation, and the distribution of 
their failures. In this section, the characteristics of the mathematical model are pre-
sented. In the following section, the proposed model is solved mathematically. The 
result is two mathematical formulae that a maintenance manager can apply to his 
plant assets without the knowledge of modeling and calculation techniques. In this 
section, the semi-Markovian model is designed and developed.

3.1 � Model, Returns, Degradation and Failure Distribution

A four-state model is developed and could be applied to the case of the failure of a 
turbine shaft bearing. The first state S1 corresponds to the situation where the asset 
is operational, its owner receives an income R1 for its use, but the element under 
study suffers degradation. This degradation can be controlled by some predictive 
technique (in this case by vibration analysis). The asset remains in S1 until the vibra-
tion value first reaches the degradation threshold value D0. This value as far as we 
know is a value calculated experimentally by the technicians and is not based on 
mathematical calculations but on their own experience. The transition to state S4 can 
incorporate a cost of R14 into the model. To calculate the economically optimal 
value of D0 we must, on the one hand, estimate the average time T0 until D0 is first 
reached. On the other hand, it must be assumed that the probability of bearing fail-
ure up to D0 is zero. This assumption is the basis for the application of any predic-
tive maintenance technique. To calculate the value of T0 a degradation function 
integrating a Wiener process is considered.

Once degradation D0, is reached, the asset enters the degraded state S4. As the 
degradation continues, the probability of failure increases. It can be represented 
using a failure distribution function. In our case, we fit the experimental function 
from the censored and failure data to a three-parameter Weibull distribution func-
tion. Operation in this state also produces income R4, which may be different from 
that of the S1 state. A preventive intervention must be scheduled in this state because 
failure is near. If the bearing fails, which it does with a probability described by the 
Weibull function, the equipment reaches the corrective state S2. If a preventive task 
is performed before the failure, the equipment reaches the preventive state S3.

If the equipment fails, the system incurs costs due to transition R42. In state S2, 
the system incurs costs of types R2 and R21. If after a time τ of operation from the 
initial instant, the equipment undergoes the preventive intervention. The system 
incurs costs R43 due to the transition. In state S3, the system incurs costs of types R3 
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Fig. 1  Representation of states, transitions between states, and expected accumulated returns at 
each transition

and R31. Because of remaining in each state, costs and incomes (Ri and Rij) are accu-
mulated over time in a variable called the expected accumulated return. See Fig. 1. 
The model objective is to find the value of τ0 and D0 (T0) that optimizes the expected 
accumulated return.

The returns (incomes and costs) involved in the process are:

•	 R1, income per unit time that the system remains in state 1 (S1: Operational).
•	 R2, cost per unit time that the system remains on state 2 (S2: Corrective)
•	 R3, cost per unit time that the system remains on state 3 (S3: Preventive).
•	 R4, income per unit time that the system remains in state 4 (S4: Deteriorated).
•	 R14, transition cost from operational state to degraded.
•	 R21, transition cost from corrective state to operational.
•	 R31, transition cost from preventive state to operational.
•	 R42, transition cost from degraded state to corrective.
•	 R43, transition cost from degraded state to preventive.

3.2 � Semi-Markovian Maintenance Model

In this work, a Semi-Markov Process (SMP) is selected as the stochastic format of 
the maintenance model. These processes are powerful tools for reliability optimiza-
tion and maintenance problems solver (Hu & Yue, 2003; Kim & Makis, 2009, 2010; 
Zhang & Gao, 2012). Those are utilized to model the impact of maintenance strate-
gies in a system and for a finite number of periods.

The designed semi-Markovian model consists of two items, a semi-Markovian 
process with transitions between states and sojourn times and a homogeneous 
Markov chain embedded in the process. The process defines the state space, in the 
general case {Xn, n ≥ 0} with n states. The chain defines the state transition proba-
bilities at each transition pij = P(X1 = j| X0 = i). This chain determines the evolution 
of the process. The permanence time of the state and the length of the time horizon 
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are determined by the process. The semi-Markovian process is characterized by the 
fact that sojourn times differ in each state. The sojourn times and the transition 
between states have associated economic returns that can be positive or negative. 
The variable rij(m) contains the return from i to j in transition m. In m successive 
transitions from state i, the process accumulates returns, which are added with their 
respective signs, constituting the accumulated return in m transitions. Let Ri(m) be 
this random variable. The model can establish many alternatives in m transitions. 
For this reason, the value of Ri(m). is impossible to calculate. But it is possible to 
calculate its average value, the expected accumulated return vi(m) = E(Ri(m)).

Following the process established by (Sánchez Herguedas et al., 2022) the fol-
lowing system of differential equations for the mean cumulative return, expressed in 
vector form, is reached:

	
V m V P V m( ) = ( ) + −( )1 1·

	
(1)

Degradation Process
The asset operating time is a random variable T and can take any positive value. 
Usually, this variable is called time to failure. If the system is in operational state S1, 
it will remain in this state until degradation reaches a threshold D0, for the first time, 
moving to the degraded state, S4. T0 is the average time the system remains in the S1 
before the degradation D0 is reached for the first time. We will assume that before 
reaching the threshold D0 the system has such a low failure rate that we can assume 
zero probability of failure.

From its start-up (state S1), the item whose failure mode is being analyzed is 
subjected to a degradation process that increases with time, starting from an initial 
value of zero. This process is modeled (Letot et al., 2015) by a linear Gaussian deg-
radation process, as expressed in the equation:

	
D t D vt W t( ) = ( ) + + ( )0 σ

	
(2)

The parameter v represents the mean trend and σ the drift. W(t) is a Wiener process 
characterized by having a zero initial value, W(t) = 0, by being a continuous func-
tion concerning time, and by having independent transitions that can be expressed 
by a Normal according to W(t) − W(s) = N(0, t − s). The increments have Normal 
distribution.

From this, it follows:

	
W t W t W t W t t( ) = ( ) − = ( ) − ( ) −( ) = ( )0 0 0 0 0~ , ,  ,

	

That is, for each t ≥ 0, the random variable W(t) has a normal distribution of mean 
0 and variance t.

Being a continuous stochastic process, the function W(t) is continuous.
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In the Wiener process, two interesting equalities will be used in the practical 
application of the treatment of the degradation data:

	(a)	 The random variables W(T  .  t) and T W t· ( )  where t, T ≥ 0 have the same 
probability distribution.

	(b)	 The random variables W(t) and t Z·  where t ≥ 0 y Z ~  01,( ) , have the same 
probability distribution.

The degradation D0 is reached at the instant:

	
T t D t D D D0 0

1
0= ( ) ≥{ } = ( )−inf :

	
(3)

The use of a Wiener process implies that T0 is a random variable with an inverse 
Gaussian distribution that has a probability density function (Wang, 2010):
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(4)

Sojourn Time in Each State
But when the system reaches the degraded state, the level of degradation has 
exceeded the threshold D0. The probability of failure can no longer be assumed to 
be zero; from this, the system may fail. To prevent the failure, after a non-random 
time τ and knowing that τ > T0, the system undergoes a preventive intervention that 
returns it to the initial situation. However, the failure may occur before the instant τ, 
in which case the system must undergo a corrective intervention to return it to the 
initial situation.

According to this mechanism, the system remains in the state S4 from the instant 
T0 (measured from the initial instant), when the degradation threshold was reached, 
until a failure occurs or until the instant τ (from the initial instant), is reached, 
depending on which of the two occurs first. The instant of exit from S4 is therefore 
min{ T, τ }, so the sojourn time in S4 is:

	
T T T T T T4 0 0 0= { }− = − −{ }min , min ,τ τ

	
(5)

Where T is the time-to-failure random variable. Since the system remains in the 
state S4 between T0 and at most τ, the sojourn time T4 is the random variable T − T0 
truncated to the interval [T0, τ]. If the failure occurs, it will undergo repair and return 
to state S1. The time taken for the repair is also a random variable T2. If it does not 
fail preventive task occurs and later transits to state S1. The time taken for the pre-
ventive intervention is also a random variable T3.

This maintenance model can be seen as a stochastic process with a space of four 
states {S1, S2, S3, S4}. The times the system remains in each state are random variables. 
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The distribution functions of T, T2, T3 we will designate F(.), F2(.), F3(.) and the 
probability density functions f(.), f2(.), f3(.). The random variable T4 truncated distri-
bution whose distribution function is defined from the distribution function of T.

The matrix of sojourn times in one state before moving on to another is:

	

0 0 0

0 0 0

0 0 0

0 0

0

2

3

4 0

T

T

T

T Tτ −













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
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(6)

The average sojourn times in the operational, corrective, and preventive states are 
the averages of the random variables T0, T2 and T3:

	
A E T tf t dt B E T tf t dt m= ( ) = ∫ ( ) = ( ) = ∫ ( ) =

∞ ∞

0

1 2

0

2 2, ,
	

	
C E T tf t dt m= ( ) = ∫ ( ) =

∞
3

0

3 3
	

(7)

The mean of T4, i.e. the average sojourn time in the degraded state is:

	

D E T
F F T

t T f t dt
F F T

tf t dt
T T

= ( ) = ( ) − ( )
∫ −( ) ( ) =

( ) − ( )
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Since F(T0) = 0, the expressions of D are transformed into:

	

D E T
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t T f t dt
F
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T T

= ( ) = ( )
∫ −( ) ( ) =

( )
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(8)

The average sojourn times matrix is the average of matrix sojourn times (Eq. 6):
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(9)

Where E[.] means, mean value.
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Transition Probabilities Between States
As in all continuous-time random processes, while our semi-Markovian process is 
in one state, there is no moment when it transitions to the same state it is already in. 
It remains there until the next transition takes it to a different state. The probability 
of transition from a state to itself is zero. Being in state S1, the system can only 
transit to state S4, so the transition probability is p14 = 1, and it cannot transit to the 
other states, so p11 = p13 = p14 = 0.

While the system is in state S4, it can only move to states S2 and S3. The transition 
to state S2 will occur if the time to failure T is longer than T0 (indicating that it is no 
longer in state S1) and less than τ. Thus, the probability of transit to state S2 is:

	

p P T T T
P T T T

P T T

P T T

P T T42 0
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Since F(T0) = 0. The probability of transiting to state S3 is the complementary one:

	
p P T T T P T T T p43 0 01 1= >( ) = − >( ) = −τ τ .

	

From states S2 and S3, the system can only move to state S1, so the transition prob-
abilities p21 and p31 are both 1.

According to these considerations, the transition probability matrix is:

	

P

p p p p

p p p p

p p p p

p p p p

=










11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44 






=

−



















0 0 0 1

1 0 0 0

1 0 0 0

0 1 0p p
	

(10)

This is a stochastic matrix because it is the probability matrix of a Markov chain. 
The transitions of this chain occur every time the stochastic process changes state, 
so it is the Markov chain embedded in the process.

We have developed a stochastic process that models the maintenance of our  
system, which has a finite state space, the sojourn times in each state are random 
variables with probability distributions not necessarily exponential, and has an 
embedded Markov chain whose transition probabilities matrix is Eq. 10. We conclude 
that this is a semi-Markovian process.
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Returns Matrix
The matrix of returns is the matrix whose ij − th element is the sum of the return due 
to remaining in the i − th estado state and that due to the transition to the j − th state:

	

R

AR R

BR R

CR R

DR R T R R

=

+
+
+

+ −( ) +


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(11)

4 � Development of Mathematical Expressions

4.1 � Expected Accumulated Return

In order to solve the Eq. 1, the z-transform will now be used. Remember that the 

z-transform of a sequence x(m), which is usually denoted  x m( )  , is a complex 
variable function defined as the Laurent series:

	
Z �x m x n z z C

n
n( )  = ∑ ( ) ∈ { }

∞

=
−

0

0, .
	

(12)

A vector whose components are sequences is considered. The z-transform of a vec-
tor is another vector whose components are the z-transforms of the components. For 
convenience, the Eq. 1 is rewritten with the index increased by one unit:

	
V m V PV m+( ) = ( ) + ( )1 1 .

	 (13)

Multiplying by the inverse of the regular matrix I − z−1P, dividing by z and reorder-
ing terms, the Eq. 14 is obtained:

	
 V m

z
I z P V I z P V( )  = −
−( ) ( ) + −( ) ( )− − − −1

1
1 01 1 1 1

	
(14)

The initial expected returns vector V(0) is the null vector since there is no return 
before the initial instant when the chain evolution begins. During the development, 

we need the vector V(1), which is obtained from v r p with ii

j

ij ij1 1 1 2 3 4
4

1

( ) = ∑ ( ) =
=

, , ,
 

for which we need the Probability P and Returns R matrices:
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(15)

To solve the Eq. 13, it remains is to invert these z-transforms. This process can be 
followed in (Sánchez Herguedas et al., 2022).

After a complex development in z-transforms, where initially the rational func-
tions in z are considered:
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And considering the circumstances that the variable z only appears in simple 
fractions:
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We develop  V m( )   in terms of these four fractions and call their coefficients B1, 
B2, A3 and A4. B1 and B2 are complex conjugates.

After applying Laurent’s series of the four simple fractions and for the sake of 

simplification, we call r and θ the modulus and argument of − −
1

2

3

2
i , that is:
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The inverse transformation of  v m1 ( )  , that is v1(m), the first component of the 
expected accumulated return is as follows:

	
v1 0 0( ) = 	

(16)
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For each transition m, a value of the expected accumulated return is obtained.

4.2 � Optimal Preventive Interval

Let’s introduce the failure distribution function. A Weibull distribution function 
with shape parameter α and scale parameter β. The assumption that there are no 
failures before the degradation threshold D0 is reached implies a third parameter T0 
that represents the average sojourn time of the system in the operational state, guar-
anteed life. Then the probability density functions f(t) and distribution F(t) are:
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By substituting them in Eq. 16, and deriving with respect to the preventive interval 
τ, the expression is reached:
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(17)

Equating to zero, we obtain Eq. 18 hat calculates the value of the optimal preventive 
interval for each transition m.
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(18)

5 � Degradation Threshold Calculation Process

The process of calculating the degradation threshold is an iterative process that 
starts from the choice of an experimental value for T0. To calculate the optimal pre-
ventive interval value for a given transition (value of m), Eq. 18 is applied. With the 
values obtained for the experimental value of T0 and the value obtained for τ0, the 
expected accumulated return value v1(m) is calculated for the transition m chosen 
according to the duration of the business project. From these three values, the itera-
tive process begins.

The first action consists of verifying the value of v1(m) when the value of T0 is 
increased or decreased by a given amount. We call T0

1  the value with the increase 
or decrease over T0 that improves the value of v1(m) up to the value v1(m)1. With 
this new value of T0

1 , the new value τ 0
1  is calculated to obtain the new couple 

T0
1

0
1,τ( ) . The iteration process continues until the values between the components 

of the last two couples T T0 0
1n n−( )−  and τ τ0 0

1n n−( )−
 are lower than a previously 

established value that depends on the failure mode studied. In this case, the dupli-
cate obtained from the n iteration would be the couple T0 0

∗ ∗( ),τ  that maximizes the 
value v1(m)n.

For each data set from returns, degradation, and failures, an optimal couple 
(T0 0

∗ ∗,τ ) for each transition m is calculated. An example of the iterative calculation 
process of the optimal couple is shown in Fig. 2.

The T0
∗  value will determine the degradation threshold D0

∗  that the technician 
must seek by applying predictive techniques. For this, Eq. 3 is used.

6 � Results and Discussion

A mathematical model has been designed, developed, and solved in previous sec-
tions. Four of the fundamental states in which the assets find themselves during the 
operation and maintenance phase have been represented in the model. This model 
has two distinct parts. The first corresponds to the inspection stage in CBM, where 
inspections are carried out to obtain the value of the degradation signal. The stage 
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Fig. 2  Calculation of the couple ( T0 0
∗ ∗,τ ) that maximizes v1(m). Two iterations

objective is to locate the optimal degradation threshold, after which the preventive 
activity is decided. The second part corresponds to the optimal interval search, after 
which the preventive activity is performed.

From this model, two mathematical formulae are developed that will be used to 
obtain two-time values. The first formula corresponds to the degradation inspection 
stage. In the model, the degradation process is identified as a Wiener process. During 
its development, the mathematical formula that determines the time to reach a 
selected degradation for the first time is obtained. The linear fitting of the degrada-
tion of the asset element to the Wiener process requires the choice of two parame-
ters, the linear trend, and the drift. For some cases, the linear trend must be 
substituted because not all elements show a linear degradation. For these types of 
assets, it must be replaced by other trend types. The second formula is developed 
from the semi-Markovian model. The economic optimization of the location of the 
preventive intervention is sought. This formula has been verified using the Nelder-
Mead numerical optimization method and by continuous simulation models.

The model requires the interaction of these two formulas. This interaction gener-
ates a pair formed by two-time values. When the alert is established (degradation 
threshold) and when the preventive intervention is executed. Maintenance techni-
cians must consider both times in the CBM activities management. The last step of 
the model is to economically optimize both times, i.e. to find the optimal couple. 
Possibly the couple will not be formed by the two optimal times. In this case, the 
expected accumulated return, the same variable used for the optimization of the 
preventive interval, is used as the optimization variable. From here, the degradation 
threshold can be determined. Its calculation comes from the degradation formula.
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The model has been designed to support the information needs. The maintenance 
plan manager must consider them when making decisions. For this purpose, three 
relevant aspects have been considered. Those resemble the model of the mainte-
nance process and condition the calculation scenario. Firstly, it calculates the opti-
mum degradation level and preventive interval. Second, the calculation considers 
the costs of operation and maintenance activities and the income obtains from its 
operation by the owner. Third, it develops all the formulas to establish the optimal 
result for any operating horizon, as this selected horizon must coincide with the 
duration of the industrial project.

7 � Conclusions

When applying CBM, several decisions must be made. The first decision is to deter-
mine the technique to capture the degradation signal. The second is to establish the 
signal threshold from which the probability of failure is not zero. The third is to 
determine the economically convenient interval to carry out the preventive interven-
tion before the failure occurs. This article presents a tool composed of two mathe-
matical formulas that respond to the last two decisions. To find the optimal 
preventative interval and degradation threshold when applying a CBM policy.

The formula of the preventive interval depends directly on the income in the 
degraded state (R4), on the costs before reaching other states (R42 and R43), and on 
the costs associated with corrective state S2 and preventive S3. It also depends on 
the component failure probability (α, β) and the time T0 until the degradation thresh-
old D0 is reached.

Looking at the tools, the following observations are made:

•	 An increase of R4 will lead to an increase in the optimal preventive interval.
•	 An increase in the difference between corrective and preventive costs increases, 

and the optimal preventive interval decreases.
•	 Once the threshold limit of degradation has been reached for the first time, the 

asset can continue to be used, although preventive intervention should be planned 
for the time marked by the optimal preventive interval.

•	 Although the interval formula allows one to calculate its value for any transition 
m, it is necessary to determine the transition that coincides with the project dura-
tion in which the asset is involved (finite horizon).

The limitation of this model, like most mathematical models, is that the input data 
for the calculations are obtained from failure events that have occurred in the past. 
Failures occur with some randomness but contain a bias due to wear that makes 
them more predictable. When this wear bias is significant, these models are useful. 
However, their use would be limited in situations where the randomness of the fail-
ure is not negligible. On the other hand, the formulas can be used in any digitization 
process at the failure mode level.
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Audit Models for Asset Management, 
Maintenance and Reliability Processes: 
A Case Study Applied to the Desalination 
Plant

Pablo Duque, Carlos Parra , Félix Pizarro, Andrés Aránguiz, 
and Emanuel Vega

Abstract  Currently, the timely identification of improvements, shortcomings, and 
potential failures applied to maintenance has taken relevant attention from the sci-
entific community in recent years. In order to carry out appropriate diagnosis, the 
employment of methods to properly measure the reliability of industrial processes 
has been a trend. In this work, AMORMS and AMS-ISO 55001 are applied to a 
seawater desalination plant aiming for carrying out a fitted measurement, generating 
suited improvement plans. In this context, AMORMS is a model based on 8 phases, 
which focuses on assets management. On the other hand, AMS-ISO 55001 focuses 
on the asset management norm ISO55001. The results yielded include the design 
and generation of actions to tackle the 20% more deficient categories needed to 
achieve a competitive industrial performance.

1 � Introduction

Copper production in Chile has fallen between 17 and 24% due to the current 
drought, which end up forcing the copper companies to diversify their water sources 
(América económica, 2022). The Chilean Copper Commission estimates that dur-
ing 2020, 73% of the water from mining processes was recirculated and that 70% of 
this water came from continental sources. In addition, it has been proposed, as a 
National Mining Policy, to reduce in the employment of continental water related to 
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industrial mining process, which should not exceed 10% of the water used in 2025 
(Revista Minería Chilena, 2022), thus, concluding in an increment in numbers of 
desalination plants. The development of such a plant has been a key issue in the 
improvements related to the copper industry. Greater availability is thus necessary, 
resulting from a combination of maintainability and reliability. The requirements 
for these are quality controls, safety risk controls, and environmental risk controls 
(Da Silva et al., 2021). In addition, failure management should be considered as a 
coordinated activity aimed at the prevention and resolution of failures (Schneider 
et al., 2019).

In this context, the necessity to identify, review, and optimize the asset manage-
ment and maintenance processes regarding this type of plant has taken relevant 
attention in the last decade. In this work, we propose the employment of two audit 
processes, AMORMS (Asset Management, Operational Reliability & Maintenance 
Survey) and AMS-ISO 55001 (Asset Management Survey ISO 55001), in order to 
identify gaps in maintenance management model to a desalination plant. Regarding 
the results achieved, the first model classifies the plant as having “average standard 
processes”, the second model illustrates the classification as “Processes with very 
good practices”. Thus, we analyse and highlight the drawbacks and gaps detected. 
Also, action plans are designed, generated, and proposed aiming for short and 
medium term.

2 � General Background

In the literature, maintenance audits have been proposed to carry out evaluations of 
different processes and areas that comprise Maintenance Management. This pro-
cess, usually end up generating detailed fitted action plans aiming for improve-
ments. The evaluation process concerns identifying the gaps, generation of 
recommendations in order to reduce or remove deviations (Parra Márquez et al., 
2021). If we consider the Maintenance Management Model, audits are part of Phase 
8: Implementation of the continuous improvement process and adoption of new 
technologies, as depicted in Fig. 1 (Parra Márquez et al., 2021). In this case, since it 
is a recently operational plant, an initial diagnostic audit is conducted within 
this phase.

The methodologies for auditing Maintenance Management processes are varied, 
but they have in common the use of questionnaires to be applied to personnel within 
the organization, both from operations and maintenance, in order to achieve a compre-
hensive evaluation. In this case study, two auditing techniques will be employed: 
AMORMS and AMS-ISO 55001. The main objective behind a maintenance audit is 
to carry out a measurement of different processes and areas that make up the 
Maintenance Management. Once the opportunities for improvement have been identi-
fied, action plans will be generated. The main differences between the models to be 
used are:
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Phase 1:

Definition of
maintenance
objectives, 
strategies and
responsibilities

Phase 2:

Equipment ranking
according to the
Importance of its
function

Phase 3:

Analysis of weak
points in high
impact equipment

Phase 4:

Preventive
Maintenance plans
design and resource
needs identification

Phase 5:

Maintenance
programing and
optimization in the
allocation of
resources

Phase 7:

Life cycle analysis
and the possible
equipment renewal

Phase 6:

Evaluation and
maintenance
execution control

Phase 8:

Implementation of the
process of continuous
improvement and
adoption of new
tecnologies

Evaluation Efficiency

Effectiveness

Improvement
Information
Technologies
support
SAP PM, 
MAXIMO, 
MERIDIUM, 
MP7i, etc…..

Fig. 1  Maintenance Management process model

•	 AMORMS is an audit which focuses on the process by evaluating the 8 phases 
of the Maintenance Management Model proposed by Parra and Crespo (Crespo 
Márquez & Parra Márquez, 2015). This audit includes some topics regarding the 
management model that has been proposed by the standard ISO 55001. Also, it 
gives special emphasis on the employment of support tools for the management 
process.

•	 AMS-ISO 55001 focuses on auditing the processes that make up the asset man-
agement system as a strategic process from a sustainable perspective throughout 
its lifecycle, in accordance with the definition specified in the standards set out 
in ISO 55000 (De Souza et al., 2022) (ISO, 2014).

AMORMS and AMS-ISO 55001 complement each other by addressing different 
aspects of asset management. AMS-ISO 55001 focuses on auditing the manage-
ment system according to the requirements of the ISO 55001 standard, ensuring 
compliance with established standards and practices. On the other hand, AMORMS 
is responsible for auditing the use of support tools for asset management processes 
and their interaction with other areas of the company, such as production and sup-
ply. This synergy between both approaches is essential to gain a comprehensive 
view of asset management and ensure its efficiency and effectiveness within the 
organization.
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2.1 � AMORMS Audit Technique

AMORMS (Asset Management, Operational, Reliability & Maintenance Survey), 
as illustrated in Fig. 1, allows for the evaluation of the 8 phases of the Maintenance 
Management model (Parra Márquez et al., 2021). This audit technique is carried out 
by considering different hierarchical levels within the organization, from supervi-
sors to managers. The technique consists of a 150-question questionnaire that 
addresses the following 8 areas.

•	 Asset management, objectives of the business (KPIS) and support organization.
•	 Hierarchy models based on risk (asset criticality).
•	 Process of problem analysis (Root cause Analysis).
•	 Processes of programming, planning and optimization of maintenance, inspec-

tion and operations plans.
•	 Processes of allocation of resources, computer support and logistics support to 

the maintenance process.
•	 Control Processes and analysis of technical indicators (RAM)
•	 Life cycle cost analysis processes.
•	 Review and continuous improvement processes.

The survey was designed to gather comprehensive information regarding these 
areas, enabling a thorough assessment of the organization’s maintenance manage-
ment practices. Thus, each area is carefully examined to identify strengths, weak-
nesses, and areas for improvement. The AMORMS audit technique provides a 
valuable framework for assessing and enhancing maintenance management pro-
cesses, facilitating informed decision-making and the implementation of continu-
ous improvement initiatives.

To each question in this survey, one of the following scores are assigned,  
Table 1.

Subsequently, the results can be presented in radar charts, which visually identify 
the points with deficiencies that should be addressed with action plans, as shown 
in Fig. 2.

Table 1  AMORMS 
audit results

Score Description

1 Very inefficient process
2 Below average process
3 Average standard process
4 Process with very good practices
5 World-class process level

P. Duque et al.



173

Fig. 2  Example of AMORMS audit results

2.2 � AMS-ISO 55001 Audit Technique

AMS-ISO 55001 (Asset Management Survey-ISO 55001) allows the requirement 
evaluation illustrated in the ISO 55001. This audit identifies the gaps that the orga-
nization has in relation to the following requirements (Parra Márquez et al., 2021).

•	 Context of the organization
•	 Leadership
•	 Planning
•	 Support
•	 Operation
•	 Performance evaluation
•	 Improvement

The audit is carried out by a specially selected group of at least 10 individuals from 
various areas and roles within the organization to respond to the 94 audit questions 
of AMS-ISO 55001. The evaluation is performed employing the rating scales of 
existence/application, maturity level scale of Asset Management, developed by the 
IAM: Institute of Asset Management, see Table 2.
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Table 2  AMS-ISO 55001 audit results

Score Existence of the requirement
0 Non-existent process Inexperienced 0–0.5
1 Very poor process Aware 0.6–1.5
2 Below average process Developing 1.6–2.5
3 Average standard process Competent 2.6–3.5
4 Process with very good practices Optimized 3.6–4.5
5 World-class level process Excellent 4.6–5
Score Application scale of requirement
0% Non-existent process Inexperienced 0–10%
20% Very poor process Aware 11–20%
40% Below average process Developing 21–40%
60% Average standard process Competent 41–60%
80% Process with very good practices Optimized 61–80%
100% World-class level process Excellent 81–100%

Fig. 3  Example of AMS-ISO 55001 audit results

Just like the previous technique, the obtained data is plotted in Fig. 3. Then, to 
determine the maturity of the organization, the maturity scale based on the require-
ments of the ISO 55001 standard is used, as shown in Tables 3 and 4.
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Table 3  Levels of maturity of the organization regarding the requirements of ISO 55001

Score Description Definition Maturity characteristics

0 Inexperienced The organization has not 
recognized the need for 
this requirement and/or 
there is no evidence  
of commitment to 
implement it.

1 Aware The organization has 
identified the need for this 
requirement, and there is 
evidence of attempts  
to progress in 
implementing it.

The proposals are under development, and 
some requirements may be implemented. 
The processes are weakly controlled, 
reactive, and their performance is 
unpredictable.

2 Developing The organization has 
identified the means to 
systematically and 
consistently meet the 
requirements and can 
demonstrate progress with 
credible plans and 
established resources.

The processes are planned, documented 
(when necessary), applied, and controlled at 
a local level or within functional 
departments, often in a reactive manner, but 
they may achieve the expected results 
repeatedly. The processes are insufficiently 
integrated, with limited coherence or 
coordination within the organization.

3 Competent The organization can 
demonstrate systematic 
and conscious compliance 
with the established 
requirements in  
ISO 55001.

This level involves a formally documented 
asset management system that is embedded 
within the organization. The performance of 
the elements of the asset management 
system is continuously measured, reviewed, 
and improved in order to achieve the 
objectives of asset management.

4 Optimized The organization can 
demonstrate that it is 
systematically and 
consciously optimizing its 
asset management 
practice, aligned with 
corporate objectives and 
operational context.

The characteristics of this level include the 
following: performance monitoring and 
evaluation; balancing competitive goals 
within an agile decision-making structure; 
innovation as a way of life, with continuous 
improvement widely demonstrated through 
evidence of results; reference-based 
improvement employed to identify 
additional opportunities; and a more 
integrated and effective management system

2.3 � Background of the Audited Unit

The audited company is a copper mining and processing company located in north-
ern Chile. Through its mining operations, it produces copper concentrate and cath-
odes. Its on-site infrastructure mainly includes mineral crushing and transportation 
systems, concentrator plants, leaching pads, solvent extraction plants, and an elec-
trowinning plant. It also operates two pipelines that transport the concentrate to port 
facilities, where it is filtered and shipped to customers. Additionally, two desalina-
tion plants operate on-site, producing industrial water that supplies 95% of the 
plant’s water requirements. This water is pumped to the mine through aqueducts.
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Table 4  Levels of maturity of the organization regarding the requirements of ISO 55001 
(continued)

Score Description Definition Maturity characteristics

5 Excellent The organization can 
demonstrate that it employs 
cutting-edge practices and 
achieves maximum value 
with the management of its 
assets, aligned with corporate 
objectives and operational 
context.

This is a dynamic and context-sensitive 
state, so the evidence should include 
demonstration of awareness of comparative 
assessment positions against the best similar 
organizations in their class, and that there 
are unknown improvements in asset 
management practices and results (value 
generation) that have not yet been 
implemented.

Fig. 4  Overview of a reference desalination plant

The audited area corresponds to the desalination plants, which have approxi-
mately 5000 assets according to the maintenance computer system. The desalina-
tion stations are required to achieve 95% availability and have a maintenance policy 
of 97% condition-based maintenance and only 3% preventive maintenance based on 
frequency.

The Fig.  4 shows an overview of a reference desalination plant (Servicio de 
Evaluación Ambiental de Chile, 2023), its main assets include:

•	 Water intake system: Intake tower, Outfall, Bilge
•	 Pretreatment: Physical-chemical pretreatment, Filtration, pH adjustment, 

Desanding, Microfiltration
•	 Reverse Osmosis process
•	 Storage tanks
•	 Post treatment

P. Duque et al.
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Fig. 5  Organizational diagram of the maintenance unit

The maintenance strategies and policies are supported by the following organiza-
tional structure, see Fig. 5.

Maintenance planning is carried out as follows: Guidelines are divided into 
1-week guidelines for weekly inspections, 4-week guidelines for monthly mainte-
nance, 8-week guidelines for bi-monthly maintenance, and 12-week guidelines for 
quarterly maintenance. There are also major maintenance guidelines for reverse 
osmosis racks, which occur every 36 months with Outage or Overhaul scope.

The management system used for the company’s asset management is the SAP 
maintenance module, which handles key maintenance-related functions such as the 
adjustment of manpower load capacity, creation of notifications, generation of work 
orders, loading of master data for strategy, recording of man-hours for completed 
work, generation of material withdrawal reservations, and analysis and cost control. 
For planning and scheduling, the WMS (Work Management Scheduler) module is 
used, which can display activities with details such as operations, assigned work-
shops, duration, and associated resources.

3 � Audit Results

In this section the results achieved by the audits are illustrated and discussed. In this 
process, planning engineers, reliability engineers, field Supervisor engineers, and 
maintenance superintendent have participated.
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3.1 � AMORMS Audit Result

In Fig. 6 and Table 5 we illustrate the results achieved by AMORMS. The descrip-
tion of the table is as follows, column 1 depicts each phase reviewed. The column 
Average, display the score achieved after carrying out the measurement of such a 
phase. Lastly, column Process Description, illustrates the classification given by the 
audits based on the score achieved. We can observe that the value illustrated in the 
row X  (3.88), given by the 8 computed Average values, allows this plant to have a 
classification of “average standard processes”. Also, we highlight that 37.5% of the 
processes reach a classification of having “very good practices”, and the remaining 
62.5% achieved an “average standard”. In order to identify the points to improve, 
the Pareto Principle will be employed at two levels: Firstly, the 20% of the subcat-
egories with the lowest score will be considered. Secondly, for each of these subcat-
egories, the 20% of the questions with the lowest score will be considered, and 
action plans will be generated for the latter.

The subcategories identified within the lowest 20% achieved score are illustrated 
in Table 6. In this regard, the subcategories have an Average that allows them to be 
classified as processes with “standard average”.

Fig. 6  Results per phase of the Maintenance Management Model, AMORMS Audit
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Table 5  AMORMS audit results

Phases audited Average Process description

1 Definition of the maintenance objectives and KPI’s 3.88 Standard average
2 Asset priority and maintenance strategy definition 4.07 Very good practices
3 Immediate intervention on high impact weak point 4.00 Very good practices
4 Design of the preventive maintenance plans 4.01 Very good practices
5 Preventive plan, Schedule & resources optimization 3.97 Standard average
6 Maintenance execution assessment and control 3.78 Standard average
7 Asset life cycle analysis 3.57 Standard average
8 Continuous Improvement and new tech 3.74 Standard average

X 3.88 Standard average

Table 6  20% of the Subcategories with lowest score according to the AMORMS Audit

Subcategories of phases of the maintenance management model Average

1.2 Asset Management Plan 3.59
6.3 Operations control processes 3.57
6.5 Workshop management 3.63
7.1 Asset Life Cycle Cost Management 3.15
7.2 Management of information in the Asset Life Cycle 3.56
8.3 Staff development programs 3.11

In Table 7, we present the questions that yielded the lowest score, it can be seen 
that 3 questions depicted reached a score that categorizes them as an “Below aver-
age process”.

Tables 8 and 9 illustrates the proposed action plans designed to reduce the gaps 
detected, which are aligned with the company’s maintenance strategies. Thus, in 
order to control the progress and compliance within the action plans, indicators will 
be designed by the experts based on the established objectives, goals, thresholds, 
and definitions (AENOR, 2003). Moreover, when reviewing the answers from the 
surveys, it can be concluded that there are tools to support management processes, 
which are used systematically and consciously. However, they are not known by all 
the members of the Maintenance Management, so re-instruction and diffusion con-
cerns task to be included into the planning. Regarding question 8.3.5, this was clas-
sified as a “below average process”, which gives the recommendation of carrying 
out an update in the training program. The proposed plan should be focused on 
developing the technical skills, such as knowledge, skills, and aptitudes, which are 
specified for each job position and stated in the given description. Also, the addition 
of a periodic instruction based on the deficient processes is recommended.
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Table 7  20% of the questions of subcategories with lowest score according to the AMORMS Audit

# Subcategory FAQ Score

1.2.2. Comprehensive 
Asset Management 
Plan

Exists a comprehensive plan designed to implement the 
various processes proposed by the asset management 
model?

3.17

6.3.1 Operations Control 
Processes

Exists a procedure that details the operational processes? 3.17

6.5.3 Workshop 
Management

Exists a standardized contract model developed for all 
services requested from the workshops?

3.57

6.5.4 Exists a specific procedure in place to evaluate the 
delivery times, costs, and quality of execution of services 
provided by the workshops?

3.57

6.5.5 Exists a certified audit and benchmarking model under a 
local or international standard that allows the evaluation of 
services provided by the workshops?

3.57

7.1.5 Life Cycle Cost 
Analysis Processes

Is the lifecycle information of assets efficiently 
documented, and are the results of the lifecycle of selected 
equipment audited?

3.00

7.2.1 Asset Lifecycle 
Information 
Management

Does the organization’s management regularly review key 
factors of its asset management system (including asset 
management policy, strategy, objectives, and plans) to 
ensure their effectiveness and adequacy?

2.66

8.3.3 Personnel 
Development 
Process.

Exists a specific training plan tailored to the entire worker 
lifecycle?

2.66

8.3.5 Does the training program include education in the areas 
of modern maintenance techniques, reliability, and asset 
management?

2.66

3.2 � AMS-ISO 55001 Audit Result

According to the results illustrated in Fig. 7 and Table 10, the 7 requirements defined 
by the AMS-ISO 55001 audit can be classified as “Process with very good  
practices”. This can be interpreted as the organization demonstrating being system-
atically and carefully optimizing their own asset management practice, which is 
consequence of being aligned with corporative objectives and their operating 
context.

As in the previous case illustrated in Sect. 3.1, the 20% of the subcategories with 
the lowest scores are identified, see Table 11, all of which are classified as processes 
“with very good practices”.

In Table 12, we illustrate the results with the lowest scored as Average. In this 
regard, we can observe a similar situation identified by the application of AMORMS, 
there is a lack of knowledge related to the activities associated within the measured 
requirements defined by the standard ISO 55001, and how they are connected to the 
activities performed by them. It is proposed that the diffusion and re-training needs 
to be carried out at the operational, tactical, and strategic level on a regular basis.
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Fig. 7  Results by ISO 55001 Requirements, AMS-ISO 55001 Audit

Table 10  AMS-ISO 55001 audit results

ISO 55001 requirements Average Process description

4 Organizational Context 3.95 With very good practices
5 Leadership 4.29 With very good practices
6 Planning 4.14 With very good practices
7 Support 4.34 With very good practices
8 Operation 4.42 With very good practices
9 Performance evaluation 4.22 With very good practices
10 Improve 4.44 With very good practices

Table 11  20% of the 
Subcategories with the lowest 
score, AMS-ISO 55001 Audit

ISO 55001 requirements subcategories Average

4.1 Understand the organization and its 
context

3.9

4.2 Understand the needs and expectations 
of stakeholders

3.9

4.3 Determine the scope of the asset 
management system

4.0

4.4 Asset Management System 4.0
5.1 leadership and commitment 4.1
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Table 12  20% of the questions of Subcategories with lowest score according to the AMS-ISO 
55001 Audit

# Subcategory FAQ Score

1.2.2 Asset Management 
Plan

Exists a comprehensive plan designed to implement the 
various processes proposed by the asset management model?

3.17

6.3.1 Operations Control 
Processes

Exists a procedure that details the operational processes? 3.17

6.5.3 Workshop 
Management

Exists a standardized contract model developed for all 
services requested from the workshops?

3.57

6.5.4 Exists a specific procedure in place to evaluate the delivery 
times, costs, and quality of execution of services offered by 
the workshops?

3.57

6.5.5 Exists a certified audit and benchmarking model under a 
local or international standard that allows evaluating the 
services offered by the workshops?

3.57

7.1.5 Life Cycle Cost 
Analysis Processes

Exists a lifecycle information of assets efficiently 
documented, and are the results of the lifecycle of selected 
equipment audited?

3.00

7.2.1 Asset Lifecycle 
Information 
Management

Does the organization’s management regularly review key 
factors of its asset management system (including asset 
management policy, strategy, objectives, and plans) to 
ensure their effectiveness and adequacy?

3.33

8.3.3 Personnel 
Development 
Process

Exists a specific training plan tailored to the entire worker 
lifecycle?

2.86

8.3.5 Does the training program include education in the areas of 
modern maintenance techniques, reliability, and asset 
management?

2.86

The Tables 13 and 14 presents the proposed action plans designed to reduce the 
gaps detected.

4 � Recommendations

Regarding the results yielded by both audits, it can be highlighted that the mainte-
nance processes of the desalination unit are above average, obtaining the following 
overall ratings:

•	 According to the AMORMS audit, the processes are classified as “Average stan-
dard processes” with a score of 3.88. Through the implementation of proposed 
improvements, they can soon achieve a score of 4.0, categorizing them as 
“Processes with very good practices.”

•	 According to the AMS ISO 55001 audit, the processes are classified as “Processes 
with very good practices” with a score of 4.26. They have the potential to reach 
the classification of “World-class processes” by achieving a score of 4.6.
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For the implementation of the proposed action plans based on the AMS-ISO 55001 
audit, it is advised to conduct informative sessions evaluated by the Reliability A&I 
Superintendence. These sessions should address the certification requirements 
according to the ISO 55001 standard, highlighting the relationship between each 
job position and the good practices of asset management throughout their lifecycle. 
The development of this proposal should consider the action plans proposed based 
on the AMORMS Audit for the following subcategories: Comprehensive Asset 
Management Plan, Life Cycle Cost Analysis Processes, and Information 
Management in the Asset Lifecycle. This aims to save company resources and mini-
mize disruptions to each worker’s activities.

For the implementation of the proposed action plans based on the AMORMS 
Audit, it is suggested, among other measures already indicated, to create a formal 
and cross-organizational Training Program in accordance with the “Personal 
Development Process” (PDP) subcategory. This plan should include role-specific 
training and competencies for each job position, primarily in the Tactical and 
Operational areas, covering the entire worker’s lifecycle. The PDP should include 
training packages that reinforce the competencies defined in the job descriptions 
(knowledge, skills, and aptitudes) and take into consideration the gaps identified 
through recurrent audit processes.

5 � Conclusions and Future Work

In this work, two audits, AMORMS and AMS ISO 55001, are carried out on a 
desalination plant, resulting on identification of gaps in the internal process and 
generation of action plans to all the levels of the organization. Also, the audits 
yielded a classification which was based on different metrics and scores reached, 
which illustrated that the maintenance unit evaluated has an “Average standard pro-
cess” and “Processes with very good practices”, respectively.

It was determined that the main problems behind the maintenance area are 
directly related to the lack of knowledge of processes, plans, and management mod-
els that exist in the area. In this context, it was proposed to give a higher priority to 
the diffusion of knowledge through workshops, training and the use of a dashboards. 
Regarding the future work, we aim to keep this line of work, thus, in accordance 
with the results achieved by the employment of AMORMS, the objective is to per-
form improvements regarding the “Personnel development process”. This process 
will be reviewed in detail and properly exploited in order to design a special training 
for all the technical areas in order to close the gaps and achieve world global perfor-
mance all around the organization.
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Abstract  Currently, the optimization process in the maintenance management has 
been treated as a critical issue by the industry. The proposed work focuses on main-
tenance model diagnosis, the process aims to detect positive practices and highly 
possible future improvements in the models. In order to carry out the diagnostic, a 
systematic process is performed over the maintenance model employed through the 
usage of AMORMS (Asset Management, Operational Reliability & Maintenance 
Survey). The study case presented in this work was carried out over a pulp mill from 
Chile, which has an annual production over 1 million tons. Regarding the overall 
analysis output, several issues were illustrated in order to reach a world level perfor-
mance. Thus, the employment of such instruments aims to detect key issues in 
urgent need to be fixed, helping in successfully designing a fitted model to be com-
petitive and reach higher productivity.

1 � Introduction

Currently, within the main companies in the forestry sector in Chile, pulp mills play 
a fundamental role. In this context, this industry is usually tackled by the necessity 
of high standards on their process, exponential demands in production, current 
international pulp market context, and so on. Thus, there is a high possibility to be 
faced against several issues and setbacks consequence of the high standards needed 
to properly perform.
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In this work, a leading company in the forestry sector which has a Kraft pulp 
plant, located in the south-central zone of Chile is analysed. This plant was designed 
to reach a production of 1 million tons per year, however, this threshold has never 
been achieved by the production plant, which was born in 2006. Also, after carrying 
out a measurement based in the Overall Equipment Effectiveness (OEE) in 2019, 
results displayed an 88.3% which differs from the 93.5% value objective. The 
observed difference has been interpreted as consequences of multiple issues, such 
as catastrophic equipment failures, low production efficiency, and a quality rate far 
from 100% regarding finished products. Thus, in order to design an overall optimi-
zation, the maintenance area was complemented by the incorporation of a reliability 
unit. The main objective was the implementation of a maintenance model, which 
aims at the operational risk management and strategic decision-making in the man-
agement of its assets. In this work, in order to determine the current status of the 
implementation and effectiveness of the maintenance management model, a sys-
tematic audit process is carried out.

In the literature, audits have successfully been applied to measure different fea-
tures, components, and tasks related to the asset management field (Roda & Macchi, 
2018; Parra Márquez et al., 2020a, b). They have also improved at all organizational 
levels the understanding of the profit behind the usage of these tools which can 
achieve a great impact on the business (Lima et al., 2020). On the other hand, it is 
well-known that the consequence of poor maintenance can end up in process fail-
ures, life risks of assets, and so on. In this regard, authors proposed a method based 
on the ISO 55001 and Balanced Scorecard (BSC) was employed to define mainte-
nance performance indicators (MPIs) for asset management. In this case, the audit 
identified the performance evaluation requirement for the system. In this context, 
we employ the AMORMS (Asset Management, Operational Reliability & Survey) 
(Parra Márquez & Crespo Márquez, 2020), which is a tool that evaluates the 8 
phases from the management model. Also, a traditional employment of such a tool 
may display some bias in the results or deficient visualization of key problems as 
generalization can be carried out in the analysis. Nevertheless, in this work, the 8 
phases and subprocess are evaluated in details in order to thoroughly find potential 
gaps in the results obtained.

2 � General Background

2.1 � Strategic Choice of AMORMS for Evaluating 
the Maintenance Management Model

The selection of the comprehensive diagnostic tool AMORMS is grounded in its 
ability to assess the ongoing implementation of the 8 phases of the Maintenance 
Management Model at the pulp mill plant. Its alignment with specific processes in 
maintenance, operational reliability, and asset management within the pulp industry 
positions it as the logical choice to assess and enhance these aspects at the plant.

A. Aránguiz et al.
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Despite the presence of various auditing methodologies such as ISO55001, IAM, 
IIMM, and comparative studies between these tools (Duque Ramírez et al., 2023), 
AMORMS stands out for its comprehensive approach to asset and maintenance 
management. The tool provides an in-depth evaluation of process effectiveness, par-
ticularly notable for its capability to adapt specifically to the idiosyncrasies of the 
pulp mill plant. This customization feature maximizes its utility, enabling a more 
precise and relevant assessment of the plant’s specific processes. The strategic 
choice of AMORMS translates into a thorough evaluation aligned with the unique 
needs of the pulp mill plant, significantly contributing to the successful implementa-
tion of the Maintenance Management Model (Senra et al., 2017).

2.2 � Description of the Tool Used for the Audit

The processes that control the performance concerning the management systems 
require the evaluation of multiple sub-processes and related factors. In this context, 
to the best of our knowledge there is not a defined standard application, which is 
consequence by the difference in the operational context between a pulp mill and 
other plants. This difference can be explained by differences in the demographic 
environmental and social conditions that greatly affect the operational context. 
Moreover, the employment of tools that carry out evaluation of a maintenance man-
agement model, such as an audit, should be considered only a helping tool that 
identify weak points in an organization. However, the process concerning the selec-
tion and application of such a tool can be defined as a high complexity task. In the 
literature, we can find at least 5 types of audits (Parra Márquez & Crespo Márquez, 
2015). In this regard, a tool directly related to this kind of evaluation can be the 
AMORMS, which is a well-known audit tool that was proposed in (Crespo Márquez, 
2007), focuses in the evaluation of the management model eight phases, Fig. 1. This 
audit includes the evaluation of 150 characteristics corresponding to the manage-
ment model. The measurement behind the application of this audit can be described 
as follows. Firstly, the scale evaluation goes from a minimum score of 0 to a maxi-
mum of 5. On the other hand, a classification will be given based on the score 
achieves on each phase: (1) Very poor process, when the score achieved is between 
0 and 0,99. (2) Below average process, when the score achieved is between 1 and 
1,99. (3) Average standard process, when the score achieved is between 2 and 2,99. 
(4) Process with very good practices, when the score achieved is between 3 and 
3,99. (5) Process at world class level, when the score achieved is between 4 and 5.

To properly implement the AMORMS Audit, it is essential to select collaborators 
with a systemic vision of the different processes involved, such as operation, main-
tenance, logistics, and human resources. These collaborators should receive appro-
priate training in the methodology, including knowledge of a glossary, relevant 
concepts, and methodologies. Integrating this training into the plant’s organizational 
culture is crucial to ensure that the gathered information holds significance and 
allows for a comprehensive evaluation of the organization’s maturity level.
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Fig. 1  Maintenance Management Model (Crespo Márquez, 2007)

The ultimate goal of this audit is to efficiently generate improvement plans that 
address and diminish the gaps identified in each audited phase. These improvement 
plans will be fundamental in optimizing the maintenance management system of the 
pulp mill plant, guaranteeing its optimal and effective functioning.

The final score of a characteristic can be obtained by calculating the average 
score across all audits for that specific characteristic. In mathematical terms, the 
final score (FS) of characteristic j can be expressed as:
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Where,

Cj= Final Score of characteristic j.
na= represents the total number of audits conducted
j= Denotes the designation of the audited characteristic (1 ≤ j ≤ 150)
i= Represents the specific audit performed (1 ≤ i ≤ na)
Cji=Score of charasterictic j, de la auditoría i

Similarly, each phase is evaluated by averaging each characteristic from the audit 
related to that particular phase. This process yields the organization’s maturity level 
concerning the maintenance management model.
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2.3 � Background of the Audited Unit

Given the implementation stage of the maintenance model, the team of engineers in 
charge of the Plant Reliability Superintendence will be used as a sample for a pre-
liminary evaluation of results. This group is made up of mechanical, electrical and 
electronic engineers, which have at least 10 years of experience in the organization. 
Also, engineers with less than 2 years in the organization from other industries, such 
as metallic mining, non-metallic mining and steel industry.

3 � General Results of the Audit Process

The results obtained in the applied audit are illustrated in Table 1,which displays 
that the maintenance management process used in the organization is below the 
standard, obtaining a score of 2,7 that corresponds to an “average standard process”.

The observed results can be described as follows, only 38% of the audited phases 
achieved a classification valued as having “very good practices”, which correspond 
to the phases 1, 2, and 3, where the highest score was reached by phase 1. On the 
other hand, the remaining 62% were classified as having an “average standard pro-
cess”, where the lowest phase measured was phase 7. In this regard, the weakest 
scored group of phases will be the focus in the analysis presented in Sect. 4, the 
main objective is to highlight the gaps found with this tool evaluating the manage-
ment process implemented in the pulp mill.

Table 1  Individual evaluation of each phase through AMORMS audit

Audited phases Scores

Phase 1: Definition of the maintenance objectives and KPI’s 3,28
Phase 2: Asset priority and maintenance strategy definition 3,00
Phase 3: Immediate intervention on high impact weak point 3,07
Phase 4: Design of the preventive maintenance plans and 
resources

2,79

Phase 5: Preventive plan, schedule and resources optimization 2,41
Phase 6: Maintenance execution assessment and control 2,48
Phase 7: Asset life cycle analysis and replacement 
optimization

2,13

Phase 8: Continuous improvement and new tech 2,48

Audit Model for Asset Management, Maintenance and Reliability Processes: A Case…
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4 � Specific Results

4.1 � Analysis Behind the Result Achieved on Phase 1: 
Definition of the Maintenance Objectives and Strategy

The sub-process evaluated in this phase and the corresponding scores achieved are 
illustrated in Table 2.

Considering the organizational culture of this organization, the asset man-
agement model should be implemented in this plant, as it generates the highest 
benefit for the holding company. The organization should clearly explain, in 
terms of resources and timeframes, what it plans to do with its assets. In this 
regard, regulations help standardize the systematization of processes, although 
it is not a guarantee of success. However, unlike other regulations, ISO55000, in 
particular, is linked to the generation of EBITDA value. Therefore, the mainte-
nance departments must understand that asset management is the coordinated 
activity to generate value through assets, striking a balance between cost, per-
formance, and risk.

Regarding the audited plant, the following observations have been noted:

•	 The organization has not adhered to good maintenance management practices 
(ISO55000, PAS55, or similar).

•	 The Maintenance organization lacks various elements of the maintenance man-
agement system, such as a comprehensive, well-structured, documented, com-
municated, and monitored strategic plan and improvement plan (covering 
processes, people, equipment, technology, data, information, etc.) with an action 
plan (responsible party, deadline, action to be taken).

•	 There is a general Strategic Maintenance Management Plan, but the various 
interviewed individuals do not thoroughly understand it.

•	 No Balanced Scorecard was observed that represents the connection between 
business KPIs and KPIs in different dimensions.

Table 2  Phase – definition 
of the maintenance objectives 
and strategy

Phase 1: definition of the maintenance 
objectives and strategy scores

Managerial Vision & Leadership 3,05
Comprehensive Asset Management 
Plan

2,32

Comprehensive Maintenance Policies 
(Managerial)

3,25

Organizational Structure 3,40
Financial Control (Key Business KPIs) 3,40
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•	 There is no traceability of previous efforts to document the maintenance strategy 
and processes (previous maintenance leaders or external consultants). Significant 
prior efforts were not implemented to define and document the maintenance 
policy, strategy, objectives, plans, and processes to improve the current mainte-
nance performance.

4.2 � Analysis Behind the Result Achieved on Phase 2: Asset 
Priority Setting According to their Function

The sub-process evaluated in this phase and the corresponding scores achieved are 
illustrated in Table 3.

Regarding the results of this phase, it can state that the cellulose plant has asset 
prioritization, which was carried out before its commissioning. However, only 
consequence-based prioritization was used, neglecting the frequency of failures for 
each asset in the plant. This has led to different initiatives. For example, in some 
areas, the logarithmic scatter diagram (Jack Knife) is used for prioritizing “poor 
performers in maintenance.” In contrast, in others, only the expert judgment of for-
mer maintenance managers is used. The plant has a reasonably functional manage-
ment model regarding the Health, Safety, and Environmental processes. However, 
this model must be constantly updated, and both management models must be inte-
grated into a risk management model. The most significant gaps found in these 
phases are:

Expert judgment of operations and maintenance personnel is used for 
prioritization.

There is no prioritization of maintenance work considering equipment criticality, 
the impact of maintenance tasks, service precision, the severity of the failure, or any 
other parameter that aids decision-making.

To address the gap identified in this audited phase, it is crucial to establish a risk 
management model that incorporates a decision-making matrix for risk administra-
tion. This matrix should adopt a semi-quantitative approach, considering the failure 
frequency and consequence level while assigning value to the organization’s high-
priority parameters.

Table 3  Phase – asset priority setting according to their function

Phase 2: asset priority setting according to their function scores

Risk Management 2,80
Equipment Prioritization 3,15
Management of Health, Safety, and Environmental 
Processes

3,10
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4.3 � Analysis Behind the Results Achieved on Phase 3: 
Immediate Intervention on High Impact Assets Problems

The sub-process evaluated in this phase and the corresponding scores achieved are 
illustrated in Table 4

The management of failures is perceived as something other than a systematic 
process for conducting corresponding analyses. Within the audited scope, efforts 
focus mainly on sporadic failures rather than chronic-acute failures. On the other 
hand, plant personnel are aware that these analyses add value to the production 
process and are trained in fault-finding tools. It should be noted that the tools vary 
depending on whether they are from the Operations or Maintenance area, which is 
reflected in the maturity level of the second subcategory. A strength present in this 
organization is that it has units that support failure management, such as symptom-
atic analysis units, which perform condition-based inspections using techniques 
such as ultrasound, thermography, vibration analysis, dynamic testing, oil analysis, 
wear analysis, etc. These inspections specifically target equipment to identify symp-
toms that allow potential failures to be diagnosed before they impede the asset’s 
functionality. From the perspective of the maintenance organization’s maturity pro-
file, a “symptomatic” profile is achieved after fully reaching the “planned” profile, 
and it is expected that preventive maintenance policies will be complemented with 
predictive policies. This is because predictive policies can anticipate a failure within 
a reasonable time before it occurs. However, establishing and integrating a predic-
tive policy into the organization takes work. The following considerations should be 
considered to reduce the gap in this phase:

•	 Not all reliability processes are documented.
•	 There is no tracking and control of root cause analysis (RCA) reports and 

action plans.
•	 The results of the analyses could be more efficiently communicated to the 

organization.
•	 Define failure modes and their symptoms before the loss of function, recognizing 

the measurement parameters and their operational context. Furthermore, the nec-
essary technique(s) and measurement support or equipment should be defined as 
the international standards indicate (e.g. BS ISO 17359, 2018).

•	 Distinguish between low and high-maintainability machines, as the latter will 
require more complex solutions.

Table 4  Phase – immediate intervention on high impact assets problems

Phase 3: immediate intervention on high impact assets 
problems. scores

Falla Management 3,05
Multidisciplinary Optimization Teams 3,25
Failure Analysis Methods 2,90
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Differentiate the predictive policy’s actions according to each asset’s criticality 
within the production process. For example, critical machines with constant load 
and speed should have online monitoring systems.

4.4 � Analysis Behind the Results Achieved on Phase 4: Desing 
of the Preventive Maintenance Plans and Resources

The sub-process evaluated in this phase and the corresponding scores achieved are 
illustrated in Table 5.

Maintenance planning is a process where materials, resources, and supplies are 
defined for the execution of a specific task, determining the “how” of the work. On 
the other hand, maintenance scheduling addresses the “who” is responsible for car-
rying out these tasks and “when” they should be executed (Senra et al., 2017). The 
planning and scheduling of all maintenance tasks, whether derived from basic main-
tenance plans or generated from inspections, downtime analysis, or failures, are 
prioritized based on their criticality.

It is important to note that there is an 18-month shutdown program in place, 
which has implemented operational reliability optimization techniques and mainte-
nance procedures. These procedures clarify 31 topics, including task sequences, 
preparatory work, team competencies, and risk analysis when working on equip-
ment. This gives the maintenance team a comprehensive overview of the interven-
tion before it occurs, increasing adequate maintenance time and reducing downtime. 
For task execution, a working guideline is provided to guide maintenance personnel 
in the field, avoiding deviations, and a checklist for pre-startup equipment checks. 
However, these measures are only implemented for critical equipment that under-
goes maintenance every 18 months, creating a need for more information for more 
routine maintenance tasks. Regarding scheduling, there is a cross-functional team 
for all five plants in the organization responsible for standardizing pre-maintenance 
activities. From the findings, the following can be described:

•	 There needs to be more documentation, such as procedures and technical infor-
mation, accompanying the work plan, which hinders effective management. Not 
all relevant areas are always involved in weekly meetings.

Table 5  Phase – desing of the preventive maintenance plans and resources

Phase 4: desing of the preventive maintenance plans and 
resources scores

Scheduling and Planning 2,85
Work Procedures and Instructions 2,50
Condition-Based Maintenance Plans (Predictive Techniques) 2,75
Optimization Techniques in Reliability, Maintenance, and 
Operations Areas

3,05
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•	 There is no systematic projection of availability loss due to the maintenance 
program.

•	 Predictive plans have low visibility within the overall maintenance plans.

4.5 � Analysis Behind the Results Achieved on Phase 5: 
Preventive Plan, Schedule and Resources Optimization

The sub-process evaluated in this phase and the corresponding scores achieved are 
illustrated in Table 6.

In the organization, the pulp mill has a dedicated engineering section which is in 
charge of the custody of plans, process diagrams and modification control, and 
employment of a specially parametrized software, SAP resource planning software 
(ERP-SAP). This last component incorporates key business functions related to the 
organizations, which could bring support to all the characteristics audited in this 
phase and have a high rating value. However, the following gaps were identified in 
this sub-category:

•	 The employment of ERP-SAP is not standardized for each area of the organiza-
tion, which is why different units of the plant, such as the maintenance units, 
introduces default notices, work orders, route sheets, and maintenance plans are 
individually defined.

•	 Preventive and corrective maintenance plans do not have their technical and 
safety procedures properly loaded in the system.

•	 The management work orders from SAP are not suited and timely presented 
within the same shift, following the defined standard. There is no review in order 
to make sure that details, such as comments are included, data about the update 
of real machine hours, real man hours, backup photos, and execution reports has 
been an issue.

•	 The control in the documentation, for instance, drawings, process diagrams, and 
so on, is not standardized and usually depends on the guidelines of the engineer-
ing superintendent, who looks for the best approach to maintain custody of the 
information.

Table 6  Phase – preventive plan, schedule and resources optimization

Phase 5: preventive plan, schedule and resources 
optimization scores

Maintenance computer support system (maintenance 
software)

2,50

Document control system 1,80
Management of spare parts, materials (logistics) 2,80
Warehouse and inventory management processes 2,55
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•	 The handling of materials and spare parts are managed using expert judgment, 
without considering historical movements of materials arranged in the ERP-
SAP. Thus, leading to discrepancy between the existing data.

4.6 � Analysis Behind the Results Achieved on Phase 6: 
Maintenance Execution Assessment and Control

The sub-process evaluated in this phase and the corresponding scores achieved are 
illustrated in Table 7.

The main gaps detected after carrying out the audit on this phase, has been iden-
tified as consequence of deficiencies generated in the previously measured phase 5. 
In this context, multiple issues were detected, such as the absence of a standardized 
ERP-SAP employment, the use of performance indicators in the maintenance area 
which has not been successfully implemented to all plant areas, therefore, the fol-
lowing gaps were detected and highlighted:

•	 Unreliable information about historical equipment data in the ERP SAP.
•	 Absence of standardization in the indicators which evaluates the performance on 

maintenance areas.
•	 The decision making is based on expert judgment consequence by the lack of 

standardized indicators, thus, there is no control of the executed processes.
•	 Absence of a process capable to validate and audit the credentials of the contrac-

tors which participate in all the different processes relates to maintenance.

4.7 � Analysis Behind the Results Achieved on Phase 7: Asset 
Life Cycle Analysis and Replacement Optimization

Due to the results achieved, this can be the selected phase with the greatest devia-
tion. However, according to Table 8, it can be highlighted that the organization has 
a sub-process which can be classified as having “good practices related to special 
maintenance” with a score achieved of 3.15. This sub-process is related to Overhaul 

Table 7  Phase – 
maintenance execution 
assessment and control

Phase 6: maintenance execution 
assessment and control scores

Technical performance indicators 2,10
Maintenance plan review programs 2,30
Operations control processes 2,60
Contractor control 2,85
Workshop management 2,55
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Table 8  Phase – asset life 
cycle analysis and 
replacement optimization

Phase 7: asset life cycle analysis 
and replacement optimization scores

Asset Life Cycle Cost Management 1,50
Management of information in the 
Asset Life Cycle

1,75

Special maintenance (plant 
shutdowns, overhauls, etc.)

3,15

(BS ISO 17359, 2017), that is carried out on general plant shutdowns occurrence. 
They are usually controlled and guided by different units cross the entire organiza-
tion, which support the planning, execution, and analysis of all the special tasks that 
are carried out. Also, these kinds of units have highly trained personnel to fulfil all 
related tasks with excellence.

On the other hand, deficient scores can be observed in the other two sub-process 
related to this phase. In this regard, the organization does not have a specialized 
support area which could give professional assistance to the execution areas, pro-
cessing historical information, and facilitating decision-making for the organiza-
tion’s managers. Also, even if the unit which controls the reliability have been 
implemented, there exist a lack of specifically designed tools which calculates 
essentials KPIs, for instance, the TBF (time between failure) and TTR (time to 
repair). In this context, not having a key indicator such as the LCC (Life Cycle 
Cost), the units have real impediments on performing historical analysis over fail-
ures for Overhaul planning. However, if this issue were to be improved, the organi-
zation can potentially reach a higher degree of maturity on this sub-process.

On the other hand, although the organization has systems for risk management, 
there are many gaps in the employment of prioritization tools in different areas of 
the plant, which means that it is not possible to instantly analyse how the risk varies 
in the different areas assets of the productive areas.

The main objective behind the asset life cycle analysis is the proposition of meth-
ods which aims to evaluate different designs or actions. Thus, giving high impor-
tance to the performance of this kind of task, which propose an improvement in the 
efficiency related to the employment of human and economic resources in order to 
develop a balanced production system. The gaps detected in this phase are described 
as follows:

•	 The members of the organization are unfamiliar with the different techniques 
related to the analysing of the life cycle cost of assets.

•	 The organization’s assets are not managed through life cycle cost analysis.
•	 The organization does not have specially designed tools with the capabilities to 

quantify the cost of the life cycle and make strategic decisions to reduce the risk 
on all the process related to production.

•	 Usually, most efforts from the organization are aimed to general plant shutdowns, 
Overhaul, and special maintenance. Thus, ignoring the potential advantages that 
properly managing the life cycle cost of each asset may have.
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4.8 � Analysis Behind the Results Achieved on Phase 8: 
Continuous Improvement and New Tech

The sub-process evaluated in this phase and the corresponding scores achieved are 
illustrated in Table 9.

Although the organization has intensified the efforts in the application of con-
tinuous improvement process, the focus behind this action can be lost when the 
implementation of special tools is carried out without the proper training plan. This 
action can be the source of several issues, which can be detrimental to different 
processes within the company, not generating positive changes, nor benefits within 
this organization. The main findings in this phase can be described as follows:

The programs and processes regarding the quality control, continuous improve-
ment, and staff development have had support in the implementation of external 
advisors. However, the high rotation of key strategic professionals managing the 
organization has affected such definitions based on the decision-making condi-
tioned to their expertise in the field.

Tasks related to maintenance, such as quality control and assurance processes 
were created in 2013, however, to date, a systematic review of said plans and pro-
cesses has not been developed, due to the fact that these plans were generated by 
professionals outside the organization.

There is no talent management program within the organization.

5 � Conclusions and Future Work

In this work, the application maintenance audit AMORMS was carried out. The 
output behind the analysis highlighted gaps in the maintenance management pro-
cess implemented in the pulp mill. The results obtained illustrate that phase 1, 2 and 
3 of the evaluated models obtained a classification of “Process with very good prac-
tices”. However, phases 4, 5, 6, 7, and 8 were classified as an “average standard 
process”. Regarding the diagnosis of this last group of phases, two main problems 
were observed to be the source of high potential risk issues. Firstly, the deficiencies 
observed in a process carried out in a specific phase can potentially be consequence 
of a mal functioning on other phases of the model. For instance, the gaps detected 
in phase 6, can be described as consequence of deficiencies belonging to phase 5. 
Also, we observed in phase 7 certain sub-process which were classified as “Process 
below average”, which could have been hardly visible if a detailed evaluation and 

Table 9  Phase – continuous 
improvement and new tech

Phase 8: continuous improvement 
and new tech Scores

Quality control 2,70
Continuous improvement programs 2,85
Staff development programs 1,90
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measurement on each sub-process was not properly carried out. Furthermore, it was 
observed that inadequate training and professional development plans for the per-
sonnel contribute to a lack of cohesion in task execution. The absence of proper 
training and professional development opportunities directly affects the quality and 
stability of the implementation of maintenance practices. These findings underscore 
the importance of addressing personnel management and training as critical aspects 
to close the identified gaps and strengthen the long-term success of the Maintenance 
Management Model at the pulp mill plant.

On the other hand, the final results obtained were successfully given to the orga-
nization governing and decision makers body within the pulp and paper industry, 
contributing to the state of the art and meeting the initial objectives established in 
this work. In order to give continuity and take further profit from the analysis gener-
ated, we are considering as future work the design of a strategy to improve the 
weakest scored phases. In this regard, we will propose a detailed improvement plan 
capable to reform the current organization to evolve to a model of maintenance 
management at the level of world-class companies.

References

BS ISO 17359. (2017). Maintenance terminology. BSI Standards Limited.
BS ISO 17359. (2018). Condition monitoring and diagnostic of machines – General guidelines 

(p. 108). Technical Committee ISO/TC.
Crespo Márquez, A. (2007). The maintenance management framework. Models and method for 

complex system maintenance. Springer Verlag.
Duque Ramírez, P. A., et al. (2023). Audit models for asset management, maintenance and reli-

ability processes: A case study applied to the desalination plant. In 16th WCEAM proceedings. 
Springer International Publishing.

Lima, E.  S., McMahon, P., & Seixas Costa, A.  P. C. (2020). Establishing the relationship 
between asset management and business performance. International Journal of Production 
Economics, 107937.

Parra Márquez, C., & Crespo Márquez, A. (2015). Ingeniería de Mantenimiento y Fiabilidad 
Aplicada en la Gestión de Activos. Segunda toim. Asociación para el Desarrollo de la Ingeniería 
de Mantenimiento.

Parra Márquez, C., & Crespo Márquez, A. (2020). Audit techniques applied in the maintenance 
and reliability management processes., s.l.: INGECON.

Parra Márquez, C., González-Prida, V., Candón, E., De la Fuente, A., Martínez-Galán, P., & 
Crespo, A. (2020a). Integration of asset management standard ISO55000 with a maintenance 
management model. In A. Crespo Márquez, D. Komljenovic, & J. Amadi-Echendu (Eds.), 14th 
WCEAM Proceedings (WCEAM 2019. Lecture Notes in Mechanical Engineering). Springer.

Parra Márquez, C., Crespo Márquez, A., González-Prida, V., Sola Rosique, A., Kristjanpoller 
Rodríguez, F., & Viveros Gunckel, P. (2020b). Audit models for asset management, mainte-
nance and reliability processes. Case study: Electricity transmission sector. Dyna Management, 
8(1), 14.

Roda, I., & Macchi, M. (2018). A framework to embed asset management in production com-
panies. Proceedings of the Institution of Mechanical Engineers Part O: Journal of Risk and 
Reliability, 232(4, SI), 368–378.

Senra, P., Lopes, I., & Oliveira, J. A. (2017). Supporting maintenance scheduling: A case study. 
Procedia Manufacturing, 11, 2123–2130. Osa/vuosikerta.

A. Aránguiz et al.



205

Andrés Aránguiz  is a Professor at Universidad Técnica Federico Santa María (UTFSM) in Chile, 
and Mechanical Civil Engineer from the University of Concepción, he holds a Master’s in Asset 
Management from UTFSM. Currently, as the General Director of Continuing Education at the 
UTFSM, he has played key roles such as Head of the Industrial Maintenance Technician Program 
and Director of the Mechanical Department. In the industrial sector, he has been a Maintenance 
Engineer and Reliability Engineer, specializing in reliability modeling, developing focused main-
tenance plans, symptomatic maintenance, and conducting lifecycle analysis of assets, particularly 
in vibrational signal analysis, primarily within the Pulp and Paper industry. With significant con-
tributions to academia, he authored two publications in Asset Management, emphasizing 
Maintenance Audits and action plan generation. Recognized as an ‘Outstanding Teacher’ in 2015 
and receiving the ‘Excellence in Teaching’ award in 2018, he also spoke at the WCEAM 2022 
conference. Currently, his efforts are devoted to enhancing Continuing Education at the Universidad 
Técnica Federico Santa María.

Félix Pizarro  is a professor in the Mechanics Department at the Viña del Mar campus of the 
Federico Santa María Technical University (UTFSM), Chile. He obtained his master’s degree in 
business administration from the University of Viña del Mar in Chile (2016), with a specialization 
in ‘Integrated Quality, Environment, and Safety Management Systems.’ He held a position as a 
member of the Board of Overseers of the Federico Santa María Technical University. He is cur-
rently the Director of the Mechanics Department at the Viña del Mar headquarters of the Federico 
Santa María Technical University. He has published four research articles in reputed national and 
international journals.

Carlos Parra  is currently Professor at the Mechanical Department, UTFSM Chile. His first 18 
years of experience were directly in the maintenance area in the oil, gas, manufacturing, and pet-
rochemical sectors. He completed a master’s degree in maintenance engineering (University of the 
Andes, Venezuela) and a Ph.D. in Industrial Engineering (University of Seville, Spain). In the last 
8 years, Prof. Parra gained experience in the manufacturing, food and beverage, mining, energy 
and oil sectors, participating in maintenance and operations optimization projects  in the main 
companies throughout America. Total of publications on Research-Gate: 253 (October 2023). 
Books published: Cases on Optimizing the Asset Management Process, 2022, IGI Global, United 
States and “Ingeniería de Mantenimiento y Fiabilidad aplicada en la Gestión de Activos”, 2015, 
INGEMAN, Spain.

Pablo Duque  The professor and Mechanical Engineer Pablo Duque Ramírez graduated from the 
Federico Santa María Technical University (UTFSM), Chile. Currently, he is the head behind the 
careers of Industrial Maintenance Technician and Maintenance Engineering. In addition, he leads 
the Diploma on Welding Inspection within the UTFSM. His areas of interest include non-destruc-
tive testing, human reliability, and maintenance management. In the field of maintenance manage-
ment, he has carried out applied research, focusing on maintenance audits, life cycle cost analysis, 
and maintenance management models which were illustrated at the World Congress on Engineering 
Asset Management, in 2022.

Emanuel Vega  is a Professor of the Computer Science Department at the Pontifical Catholic 
University of Valparaíso (PUCV), Chile. He received both MSc in Informatic Engineering (2016) 
and MSc in computer science (2019) at the PUCV. Also, received his PhD degree in Computer 
Science from the PUCV under the supervision of Ricardo Soto (Chile) and El-Ghazali Talbi 
(France), in 2023. His areas of research interest include mainly Metaheuristics, Global 
Optimization, Machine learning, and Expert Systems. In this context, He has published about 13 
scientific papers in different international conferences and journals, some of them top ranked in 
Computer Science, Operational Research, and Artificial Intelligence. Most of these papers are 
based on the resolution of real-world and academic optimization problems related to industry, 
manufacturing, rostering and seaports.

Audit Model for Asset Management, Maintenance and Reliability Processes: A Case…



207© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2024
A. Crespo Márquez et al. (eds.), Advances in Asset Management: Strategies, 
Technologies, and Industry Applications, Engineering Asset Management 
Review 3, https://doi.org/10.1007/978-3-031-52391-5_10

The Role of Eco-Driving and Wearable 
Sensors in Industry 4.0

Turuna S. Seecharan
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activity (EDA) and their eco-driving behaviours through real-time monitoring. 
Electrodermal activity, a physiological marker of sympathetic nervous system 
arousal, reflects emotional and cognitive states, providing a valuable window into 
drivers’ internal experiences. EDA and driving data were collected for 48 trips from 
10 different drivers. Cluster analysis and the Pearson correlation coefficient was 
used to uncover potential patterns between driver EDA and their driving behaviour 
as measured using a driving score. The results follow the Yerkes-Dodson Law. 
Driving performance increase with EDA arousal, but only to a point. The investiga-
tion has implications for enhancing road safety, as it contributes to our understand-
ing of how drivers’ emotional states influence their on-road performance. 
Additionally, it holds promise for developing innovative in-car systems that can 
adapt to drivers’ changing emotional states, promoting safer and more comfortable 
driving experiences. Ultimately, this study bridges the gap between psychophysiol-
ogy and transportation, shedding light on the often-overlooked emotional aspects of 
driving behaviour.
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Table 1  Paper nomenclature

Variable Definition

AccX Acceleration forwards or braking
AccY Acceleration side to side
AccZ Acceleration up and down
AccXPosi The ith positive acceleration recorded from the Geotab G09 device.
AccXNegi The ith negative acceleration (braking) recorded from the Geotab G09 device.
AccYPosi The ith right turn force recorded from the Geotab G09 device.
AccYNegi The ith left turn force recorded from the Geotab G09 device.
Brake The braking score.
C A self-reported “calm” mood.
CDC Centers for Disease Control
Driving 
Score

A weighted average of the speeding, acceleration, braking, right, and left 
cornering scores.

EDA Electrodermal Activity – The variation of electrical characteristics of the skin due 
to perspiration or sweat gland activity.

E4 Sensor The wristband, developed by Empatica, worn by drivers to record their EDA while 
driving. It has a sampling frequency of 4 Hz.

F A self-reported “fatigued” mood.
G09 Device The telematic device, developed by Geotab, used in the study to record driving 

data. It is plugged into the OBD II port of the drivers’ personal vehicle.
GPS Global Positioning System
H A self-reported “happy” mood.

LS
′ Length of the trip not spent speeding.

L Length of a trip.
Left The left cornering score.
Max EDA The maximum EDA.
Mean EDA The average EDA.
Med EDA The median EDA.
Mood 1 The self-reported mood prior to driving.
Mood 2 The self-reported mood during driving.
NAcc The total number of recorded acceleration events.
NBrk The total number of recorded negative acceleration (braking) events.
NLCrn The total number of recorded left turn events.
NRCrn The total number of recorded right turn events.
OBD II On-Board Diagnostics II – The second generation of on-board self-diagnostic 

equipment.
Right The right cornering score.
S A self-reported “stressed” mood.
Skew EDA The skewness of all EDA values.
SpdFreq The number of speeding events recorded by the telematic device.
Speed Speed score
US United States
Sd EDA The standard deviation of all EDA values.
μS microSiemens – Measures of skin conductance are expressed in units of 

microSiemens.
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1 � Introduction

A study performed by the Centers for Disease Control and Prevention (CDC) com-
pared the United States (U.S.) to 28 other high-income countries regarding road 
safety and found that the U.S. experienced more motor-vehicle deaths than any 
other country with the highest rate of motor-vehicle deaths per 100,000 population 
(Yellman & Sauber-Schatz, 2022). The report further states that motor vehicle inju-
ries are the leading cause of preventable death in the world, accounting for nearly 
1.3 million deaths. Aggressive driving behaviour is one of the main reasons for 
crash risk (Office of Traffic Safety, 2021).

The National Highway Traffic Safety Administration (NHTSA) defines aggres-
sive driving as “the operation of a vehicle in a manner that endangers or is likely to 
endanger persons or property” (Stuster, 2004). Aggressive driving is solely due to 
human decision-making and involves following too closely, driving at excessive 
speeds, weaving through traffic, and running stop lights and signs. In asset manage-
ment, accidents resulting from aggressive driving can lead to substantial costs, 
including vehicle repairs, medical expenses, legal fees, and increased insurance pre-
miums. Reducing aggressive driving, by supporting the driver, can help mitigate 
these costs and protect the financial health of the fleet.

Eco-driving, defined as an energy-efficient use of vehicles through less aggres-
sive driving style, has garnered significant interest in the literature for its reported 
benefits on reducing aggressive driving habits thus, potentially, increasing road 
safety. Since eco-driving depends on the driver making the decision to engage in an 
eco-driving style, it becomes imperative to comprehend the underlying factors that 
influence driver’s behaviour and performance.

In terms of the physiological state of the driver, fatigue is already known to 
impact safety since drivers’ reaction times, awareness of hazards, and ability to 
sustain attention all worsen (Meng et al., 2015). Driver stress has emerged as a sig-
nificant concern, directly impacting safety, operational efficiency, and driver well-
being. In a search of the Scopus database of “the relationship between driver’s 
emotional state and aggressive driving”, only five papers were found from 2006 to 
2022 with no studies that investigate the relationship between emotional arousal of 
the driver and aggressive driving using naturalistic driving data. The objective of 
this study is to investigate the relationship between drivers’ emotional arousal (mea-
sured using Electrodermal Activity) and their eco-driving score.

2 � Literature Review

Aggressive driving habits, such as rapid acceleration and frequent braking, consume 
more fuel and decrease fuel efficiency. By encouraging smoother driving behav-
iours, fleet managers can reduce fuel costs and environmental impact. Aggressive 
driving also places additional stress on vehicles, leading to increased wear and tear 
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on components such as brakes, tires, and engines. A reduction in aggressive driving 
can extend the lifespan of fleet vehicles, resulting in lower maintenance and replace-
ment costs.

Ecological driving (“Eco-Driving”) is a term used to describe “a driving behav-
ior (or a driving style) that aims at saving fuel and reducing harmful GHG emis-
sions” (Andrieu & Pierre, 2012; Fafoutellis et  al., 2020; Barkenbus, 2010). 
Eco-driving involves accelerating moderately, anticipating traffic flow and signals 
to avoid sudden starts and stops, maintaining an even driving pace, driving at or 
safely below the speed limit, and eliminating excessive idling (Barkenbus, 2010). 
The advantages of eco-driving go beyond CO2 reductions to include reducing the 
cost of driving to the individual and producing tangible and well-known safety ben-
efits (fewer accidents and traffic fatalities) (Barkenbus, 2010; Zarkadoula et  al., 
2007; Beusen et al., 2009). It is already established that fatigue negatively impacts 
driving ability (Al-Mekhlafi et al., 2020). Recent research investigates the role of 
emotions and personality traits in the occurrence of aggressive driving habits.

2.1 � Emotion and Aggressive Driving

Three related research aspects can be identified when studying emotions in the car: 
(1) the effect of emotions on aggressive driving, (2) the detection of emotions using 
psycho-physiological sensors, and (3) in-car responses to regulate and influence 
driver emotions (Hassib et al., 2019). Aggressive personality types tend to engage in 
more aggressive driving behaviour (Beanland et al., 2014; Alavi et al., 2017).

Primary driving tasks include all necessary tasks that control the movement of 
the vehicle such as steering, accelerating, braking, and speeding. These primary 
tasks are strongly related to safe driving and can be negatively impacted by negative 
emotions (Hassib et al., 2019).

Affective state changes in a person are always accompanied by significant physi-
ological responses such as blood flow, changes in heart rate, muscles, facial expres-
sions, and voice. According to Russell’s model, each affective state can be 
represented by two dimensions: arousal and valence (Russell, 1980). Arousal indi-
cates the level of a person’s involvement in reaction to a stimulus. Valence defines 
the positive or negative emotional state. The Yerkes-Dodson Law (Yerkes & Dodson, 
1908) and the inverted U-shape model provide theoretical foundations for under-
standing the complex interplay between stress and performance. These models pro-
pose an optimal stress zone where driver performance is at its peak.

A study by Eboli et al., 2017, used a questionnaire to investigate the relationship 
between driving style and drivers’ somatic, behavioural, and emotional conditions 
(Eboli et al., 2017). They found that a driver inclines toward a more cautious driving 
style when tired, sleepy, sick, or bored while driving. If the driver is gloomy, wor-
ried, nervous, or angry, they driver inclines towards a more aggressive driving style.

Another study by Ahmed et al., 2022, used an emotional intelligence (EI) survey 
and the Dula Dangerous Driving Index survey to analyse dangerous driving 
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behaviour among 615 non-commercial US drivers (Ahmed et al., 2022). They found 
significant associations between dangerous driving behaviours and EI. Specifically, 
higher EI scores engaged in less dangerous driving behaviours, resulting in fewer 
crashes and fatalities.

(Britt & Garrity, 2006) asked participants to recall a recent time when they expe-
rienced three different anger-provoking events when driving. They then rated their 
behaviours and emotions during the event, and their attributions for why the event 
occurred. Hostile and blame attributions predicted aggressive behaviour and anger.

In a study by Lee and Winston, a simulation was used to induce negative emo-
tional states in young drivers to examine the relationship between emotional states 
and driver reactions (Lee & Winston, 2016). Self-reported data were collected from 
33 young driver participants who reported their emotional states at four time points 
during the protocol. These data were then matched with vehicle control behaviours 
based on measures derived from the simulator. The simulated traffic situations 
resulted in emotional fluctuations over time, with a positive correlation between the 
magnitude of negative emotions and the number of unsafe behaviours.

An anonymous, web-based survey of 769 college students was conducted at a large 
East Coast university  to investigate the relationship between distress tolerance and 
risky and aggressive driving (Beck et al., 2014). The authors define distress tolerance 
as “the individual’s capability to experience and endure negative emotional states”. 
Driver participants self-reported their emotional states at four time points during the 
protocol. The authors found that, after controlling for age, gender, race, ethnicity, year 
in school, grade point average, and driving frequency, distress tolerance was signifi-
cantly inversely related to reported risky driving and aggressive driving.

Asset managers must consider the delicate balance between stress-induced 
arousal and optimal performance, as excessively high or low stress levels can lead 
to suboptimal driving behaviours. High levels of stress can impair a driver’s ability 
to focus, react quickly, and make sound decisions on the road. Stressed drivers may 
be more prone to accidents, endangering themselves, other road users, and the com-
pany’s assets. Paschalidis et al. (Paschalidis et al., 2019) developed a car-following 
model that explicitly accounts for the stress level of the driver and quantifies its 
impact on acceleration-deceleration decisions. They found that drivers with higher 
levels of stress (as manifested in the physiological responses) express similar char-
acteristics to the “aggressive” drivers used in some microsimulation tools. The abil-
ity to describe the behaviours of drivers, even before they may be consciously aware 
of their likely behaviours, will provide a significant advancement to the transporta-
tion infrastructure (Dehzangi & Williams, 2015).

2.2 � Wearable Sensors and Telematic Devices

Industry 4.0 aims to design machines to assist humans in being more efficient. It 
creates cyber-physical systems, which represent tight interaction and coordination 
between computational and physical resources within a smart factory (Hermawati 
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& Lawson, 2019). Researchers have identified eight categories in which Industry 
4.0 technologies can assist operators in human-cyber physical systems: (1) opera-
tors and powered exoskeletons, (2) operators and augmented reality, (3) operators 
and virtual reality, (4) operators and wearable trackers, (5) operators and social 
networks, (6) operators and collaborative robots, (7) operators and big data analyt-
ics, and (8) operators and intelligent personal assistants (Romero et al., 2016). This 
work shows an application of the fourth category to monitor driver stress while 
driving using wearable sensors, telematics, and data insights.

Stress is a dynamic process that reflects the brain’s response to internal and 
external factors (Butler, 1993) and is defined as “a reaction from a calm state to an 
excited state for the purpose of preserving the integrity of the organism” (Healey & 
Picard, 2005). It is linked to impaired decision-making capabilities (Baddeley, 
2000), decreased situational awareness, and degraded performance, which can 
impair driving ability. Stress is measured via cortisol levels (Hellhammer et  al., 
2009) or via self-reports such as the Perceived Stress Scale (PSS)  (Cohen et al.,  
1983). These methods cannot be used to measure stress continuously for an extended 
period and sometimes require a person to go to a clinician or psychologist (Mishra 
et al., 2020).

Recent improvements in sensing capabilities and wearable sensors (E4 Empatica 
device) have enabled continuous detection and monitoring of stress in several con-
ditions: controlled, semi-controlled, and free-living conditions  (Gjoreski et al.,  
2016; Mishra et al., 2018). One study has shown student pilots to have high EDA 
values during highly demanding tasks (Vallès-Català et al., 2021), as highly demand-
ing tasks put extra pressure on them. Another study used wearable sensors to mea-
sure electroencephalography/electromyography (EEG/EMG) and heart rate to 
evaluate driving performance while driving under stressful conditions (Hassib et al., 
2019). In addition to achieving an accuracy of 78.9% for classifying valence and 
68.7% for arousal, the researchers observed enhanced driving performance when 
ambient lighting was introduced to calm the drivers. This indicates that wearable 
sensors can be used to predict emotional arousal accurately.

The E4 Empatica wristband, which includes an electrodermal activity (EDA) 
sensor, will be used to collect the EDA values of the participants while driving. It is 
an innocuous device designed to acquire information in real time and continuously 
throughout daily activities.

The goal of this study is to investigate whether drivers drive worse when stressed. 
This is an observational study in which drivers wear an Empatica E4 wristband with 
a telematic device plugged into the On-Board Diagnostics (OBD II) port of their 
personal vehicle while driving. Their eco-driving performance is measured using a 
driving score (T. Seecharan, 2022). A survey was used to obtain the drivers’ self-
reported assessments of their moods. Descriptive statistics are used to search for 
patterns between (1) the drivers’ self-reported moods and their driving scores and 
(2) the drivers’ raw EDA and their driving scores.
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2.3 � Summary

Related work shows that emotions can impact driving performance. Eco-driving can 
potentially improve road safety by reducing hard acceleration, hard braking, and 
speeding. Researchers have investigated the use of physiological sensors to under-
stand driver emotions. However, limited research investigates the relationship 
between EDA and driving performance and none investigate the relationship 
between EDA and eco-driving performance. In this work, wearable sensors are used 
to observe the relationship between drivers’ EDA and their eco-driving 
performance.

3 � Methodology

Analysing EDA and eco-driving involves a combination of data collection, process-
ing, and interpretation. A general outline of the steps involved in this analysis is as 
follows:

3.1 � Data Collection

Driving Behaviour Data: To analyse driving behaviour, data can be collected through 
various sources, such as vehicle telematics, GPS devices, accelerometers, or smart-
phone apps. The Geotab G09 device, plugged into the drivers’ on-board diagnostics 
(OBD II) port, collected speed, acceleration, and braking patterns.

	1.	 EDA Data: Electrodermal activity measures electrical conductance on the skin’s 
surface, commonly known as skin conductance or galvanic skin response. The 
Empatica E4 device was used to collect EDA data from the drivers.

	2.	 Data Synchronization - The EDA data and driving behaviour data must be syn-
chronized correctly so that both datasets can be analysed in relation to each 
other. In the Geotab cloud, trip start and end dates along with trip lengths were 
recorded. These data were matched to the EDA timestamp.

	3.	 Preprocessing: Trips less than 5 miles in length were removed, and any EDA 
data that were abnormally high were removed. For one driver, there was a trip in 
which their EDA was in the range of 30 μS. This was abnormally high for this 
driver and was removed from the analyses. Driving data, EDA data, and survey 
responses that matched in terms of trip date and duration were retained for 
analysis.

	4.	 EDA Analysis – This work uses the raw EDA data in the analysis. Descriptive 
statistics for the EDA recorded for each trip for each driver were calculated 
including mean EDA, standard deviation of the EDA (sd EDA), median EDA 
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(Med EDA), maximum EDA value (Max EDA), and skewness of the EDA (skew 
EDA). The independent variable in this study was mean EDA.

	5.	 Eco-Driving Behaviour Analysis – Eco-driving behaviour is quantified using a 
“driving score”. Metrics to calculate this driving score are harsh acceleration, 
harsh braking, sharp turns, and excessive speed. This is the dependent variable in 
the study.

	6.	 Correlation and Patterns - The correlation between mean EDA and driving score 
was examined. Hierarchical clustering was used to create separable clusters and 
observe differences in mean EDA, median EDA and driving score between 
clusters.

	7.	 Interpretation – The results were interpreted, and conclusions about the connec-
tion between emotional arousal (EDA) and eco-driving behaviour were drawn. 
The implications of the findings for improving road safety, driver behaviour, and 
potential interventions were considered.

3.2 � Participants

This paper presents the results from ten drivers recruited from the undergraduate 
student population at the University of Minnesota Duluth. Drivers must hold a valid 
driver’s license and valid vehicle insurance to be included in the study. They were 
asked to record their EDA and driving data for five trips of at least five miles in 
length. Drivers were also asked to record their mood via a survey. Driving data were 
collected using the Geotab G09 telematics device plugged into the on-board diag-
nostics port of the drivers’ personal vehicle. The drivers wore an E4 Empatica 
device while driving to record their EDA data. The E4 sensor and G09 device are 
shown in Fig. 1.

Driving data from the G09 device were downloaded from Geotab’s cloud storage 
and analysed using R. The participants were also asked to complete a short survey 
after each driving session. The survey questions are shown below. This survey 
assists in matching EDA data with vehicle engine data.

The EDA from the Empatica E4 was measured with dry electrodes that detect 
changes in the electrical conductivity of the skin. It sampled at a frequency of 4 Hz, 

Fig. 1  E4 wristband (left) and G09 telematic device (right)
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and data were measured in microSiemens (μS). The Empatica E4 is a wearable sen-
sor worn on the wrist that is used to record physiological signals. It offers two 
modes of recording: (1) real-time via an app or (2) locally stored data on the device. 
This work used the real-time mode of recording. After finishing the real-time record-
ing, the data were transferred to Empatica Connect via a Wi-Fi internet connection. 
On Empatica Connect, the E4 data can be visualized, deleted, or downloaded. 
Empatica offers physiological signals in raw format (e.g., EDA, blood volume 
pulse, temperature, and movement) but offers no tools for signal analyses.

3.3 � Trip Survey

	1.	 Participant ID?
	2.	 Trip Date and Time?
	3.	 Which word best describes your mood before your trip started?

	 a)	 Happy
	 b)	 Calm
	 c)	 Stressed
	 d)	 Fatigued
	 e)	 Angry

	4.	 Which word best describes your mood during your trip?

	 a)	 Happy
	 b)	 Calm
	 c)	 Stressed
	 d)	 Fatigued
	 e)	 Angry

	5.	 Please select which of the following events happened while you were driving.

	 a)	 Sudden braking to avoid a pedestrian/cyclist/car
	 b)	 Hostile behaviour from another driver
	 c)	 Accident
	 d)	 Heavy traffic
	 e)	 None of the above (uneventful)

3.4 � Driving Score

The telematic device records GPS and engine data for each driver. The engine data 
include acceleration forwards and braking (AccX), acceleration side to side (AccY), 
acceleration up and down (AccZ), GPS location, trip distance and number of times 
the driver “speeds” along with the distance and time spent speeding. Acceleration 
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data are recorded at small increments in time, as shown in Table 2. For example, in 
the third row of Table 2, for the driver identified as “BB”, at 2:34 pm in their first 
recorded trip, a braking event was recorded at −2.30 m/s2.

Speeding, on the other hand, is a user-defined “rule” within the portal. A sample 
speeding report is shown in Table 3. For example, for the driver identified as “BB”, 
during their 5th trip, at 2:50 pm, the driver was speeding for 0.6879 miles.

The driving score penalizes higher levels of acceleration, braking, cornering and 
speeding (T. S. Seecharan, 2021). To calculate the driving score, three levels were 
created for acceleration, braking and cornering to incorporate mid-range driving. 
Thresholds were chosen based on previous research on the effect of hard accelera-
tion on vehicle fuel economy and passenger safety (Boodlal & Chiang, 2014). A 
speeding event for a driver depends on the posted speed limit of the road; therefore, 
a mid-range level for speeding was not designed. Instead, the trip length was 
recorded along with the length of time spent speeding.

Telematic devices collect continuous driving data and report them as discrete 
data at small time increments. In a trip – defined as from when the driver starts the 
car, drives, and then turns off the car –acceleration, braking, left cornering, right 
cornering and car speed are discrete values. Each discrete recording of acceleration, 
braking, left cornering, or right cornering is termed an “event”. Each positive accel-
eration event is defined as AccXPosi, each negative acceleration event is AccXNegi, 
each right turn event is AccYNegi and each left turn event is AccYPosi. In one trip, 
depending on the length, there are many of these events. The scoring system for 

Table 2  Sample acceleration report

DriverID TripID time description value

BB 1 2:34:56 PM AccX 0
BB 1 2:34:56 PM AccY 0
BB 1 2:34:56 PM AccY −2.30
BB 1 2:35:02 PM AccX 0
BB 1 2:35:02 PM AccY 0
BB 1 2:35:39 PM AccX 0
BB 1 2:35:39 PM AccY 0
BB 1 2:35:39 PM AccX 2.48
BB 1 2:35:42 PM AccX 0
BB 1 2:36:05 PM AccX 0
BB 1 2:36:05 PM AccY 0
BB 1 2:36:06 PM AccY −2.83

Table 3  Speeding distance recorded for driver “BB”

DriverID TripID time Distance (miles)

BB 5 14:50:53 0.688
BB 5 14:53:40 0.592
BB 5 14:54:30 1.28
BB 5 14:56:50 0.495
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each metric is shown in Table 4. The thresholds were chosen from GPS tracking 
companies’ websites (linxup, n.d.; Broughall, 2020).

The value of the event is checked against the threshold. For acceleration, brak-
ing, left cornering, and right cornering, each event is assigned a value of 0, 1, or 2 
depending on its comparison to the thresholds. Using these values, the acceleration, 
braking, right cornering, and left cornering scores are calculated using Eqs. (1), (2), 
(3), and (4), respectively.
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In one trip, there will be a total number of acceleration events labelled (“NAcc”); a 
total number of braking events labelled (“NBrk”), a total number of right turn events 
labelled (“NRCrn”) and a total number of left turn events labelled (“NLCrn”). As 
described above, each acceleration event, AccXPosi,is assigned 0, 1 or 2 depending 
on the range in which the event falls. For example, an acceleration event of 2.83 m/
s2 is considered “Soft” and assigned a value of two. The assigned values for all these 
acceleration events are then summed ( �

�

NAcc

i

iAccXPos
1

). The best possible 

Table 4  Scoring system for the driving score

Metric Range Score Level

AccXPosi AccXi > 3.83ms2 0 Hard
2.83ms2 < AccXi ≤ 3.83ms2 1 Medium
0 < AccXi ≤ 2.83ms2 2 Soft

AccXNegi AccXi <  − 3.73ms2 0 Hard
−2.73ms2 ≤ AccXi ≤  − 3.73ms2 1 Medium
−2.73ms2 < AccXi < 0 2 Soft

AccYNegi AccYi <  − 3.75ms2 0 Hard
−3.75ms2 ≤ AccYi <  − 1.875ms2 1 Medium
−1.875ms2 ≤ AccYi ≤ 0 2 Soft

AccYPosi AccYi > 3.75ms2 0 Hard
1.875ms2 < AccYi ≤ 3.75ms2 1 Medium
0 < AccYi ≤ 1.875ms2 2 Soft
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acceleration score will be the case in which all acceleration events are soft 
(2 × NAcc). For a trip containing 10 acceleration events, the best possible score a 
driver can obtain would be 20 if all the acceleration events are soft. The same pro-
cess is repeated for braking, right cornering, and left cornering.

In the case of speeding, the driver’s road speed is compared with the road’s 
posted speed limit using the GPS capability of the G09 device. Since data were 
recorded on roads within the United States, speed is communicated in terms of 
miles per hour. Within a trip, the telematic device records the number of times the 
driver was found speeding (SpdFreq) (if speed >8 mph over the posted speed limit) 
and the distance spent speeding. A speeding score is then the length of the trip not 
spent speeding divided by the total trip length, as shown in Eq. (5).

	
Speed

L

L
S� �
�

10
	

(5)

where LS
′  is the length of a trip not spent speeding and L is the length of a trip.

Finally, the driving score is the weighted average of the individual scores as 
shown in Eq. (6).

	

Driving Score Speed Accel Brake
Right

� � � � � � � � �
� � � �
0 3 0 2 0 2

0 15

. . .

. 00 15. Left� � 	

(6)

This type of weighted score was developed to: (1) be easy for the drivers to under-
stand and (2) give more weight to metrics that are contributors to road traffic acci-
dents. In addition to seeing a driving score, drivers see a breakdown of their scores 
on a radar plot. An example is shown in the example.

4 � Results

Table 5 shows, for each driver, the trip driving score along with their self-reported 
mood pre- and posttrip. From Table 5, the data in the column titled “Mood 1” rep-
resents their pretrip moods, and the data in the column titled “Mood 2” represents 
their posttrip moods. The possible moods were “C” – calm; “F” – fatigued; “H” – 
happy; and “S” – stressed. For ten drivers, 48 trips of complete data were recorded.

4.1 � EDA Data

Although a survey can gain some insight into the self-reported emotional states of 
drivers, it becomes tedious for drivers to complete a survey prior to each driving 
trip. Their EDA attempts were recorded to gain insight into their physiological 
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states while driving. From Fig. 2, the EDA varies by driver and by trip. The driver 
CB stated being calm for all four recorded trips. However, Fig. 2 shows consider-
able variability in the distribution of the driver’s recorded EDA. The EDA distribu-
tion was lowest for Trip3 and highest for Trip2. Interestingly, CB’s driving score 
was highest during Trip3 and lowest during Trip2. Sample boxplots for participants 
DH and DK are also shown in Fig. 2.

Overall, the average driving score was 8.75, median  =  8.63, standard devia-
tion = 0.445, and interquartile range = 0.565. When drivers reported being stressed 
prior to driving, the average score = 8.67; if the drivers were calm, the average driv-
ing score  =  8.72. This shows some preliminary evidence that when drivers are 
“Stressed” prior to driving, their scores are lower than when they are “Calm”. For 
drivers who reported feeling stressed while driving (Mood 2 = “S”), the average 
driving score = 8.67, and if they reported feeling calm while driving (Mood 2 = “C”), 
the average driving score = 8.85. Again, this suggests that drivers who reported feel-
ing calm exhibited more eco-driving habits.

Figure 3 shows the distribution of driving scores by Mood 2. For drivers in the 
“C” state, the data are skewed towards higher driving scores meaning that most of 
the driving scores are toward the left of the mean. When drivers self-reported being 
stressed, “S”, the upper quantile is smaller than the lower quantile, and the data are 
skewed to the left, with lower driving  scores pulling the mean to less than the 
median. This suggests that a driving score of 10 is more likely when the drivers are 
calm. Additionally, the median of the driving scores in the “C” state is lower than 
when drivers reported being stressed.

Figure 4 shows a plot of the driving score and the average EDA, and Table 6 
shows the correlations of the driving score with the EDA descriptive metrics. 
Interestingly, all correlations are positive, but they are all small. The correlations 
between the driving score and sdEDA, the driving score and MaxEDA, and the driv-
ing score and Skew are all close to zero, indicating no relationship. The correlation 
between the driving score and mean EDA is greater but still very small. Therefore, 
given the data, there is no statistically significant evidence to show that when the 
EDA descriptive statistics increase, the driving score increases.

4.2 � Observations by Driver

All drivers are unique, and thus, their EDA activities vary. It is difficult to assign 
an EDA value or range that identifies a “stressed” state for all drivers. For this 
reason, driving performance is observed for each driver. Table 7 provides a brief 
description of the observations by driver. The analysis of driver experiences and 
behaviours during specific trips, considering driving scores, EDA, and reported 
moods, reveals intriguing patterns. Notably, drivers who achieved their best driv-
ing scores often exhibited EDA characteristics aligned with their reported emo-
tional states. For instance, drivers with calm moods tended to record lower average 
EDA, while those with stress reported higher EDA. Interestingly, the direction of 
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Fig. 2  Boxplots of the EDA distribution for three drivers: (a) CB, (b) DH, and (c) DK
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Fig. 3  Distribution of driving scores by mood 2

Fig. 4  Driving Score and mean EDA for all trips

Table 6  Correlation matrix

Mean EDA Sd EDA Med EDA Max EDA Skew EDA

Driving score 0.1607 0.0318 0.1493 0.0377 0.0366
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Table 7  Intra-driver observations

Driver Comments

CB This driver recorded the best driving score during trip 3. The driver said they felt calm 
during this trip. This seems to be reflected in their EDA since the mean was the lowest.

DH The best driving score was recorded for trip 3. The mean EDA was second lowest with 
the greatest positive skew meaning most EDA was to the left of the mean.

DK The best driving score was recorded for trip 4. The driver reported feeling stressed, and 
their mean EDA was the second highest. Skewness was most negative for trip 4, 
meaning most EDA was to the right of the mean.

GT The best driving score was recorded for trip 3. The mean EDA was in the middle.
WW The best driving score was recorded for trip 3. This was also the drivers lowest average 

EDA with a positive skew. This driver drove best when their EDA distribution was 
lowest.

JL The best driving score was recorded for trip 3. The mean EDA was the second lowest, 
but the skew was the most negative meaning the distribution of EDA was to the right of 
the mean.

JV The best driving score was recorded for trip 2. Their mean EDA was the second highest.
BB The best driving score was recorded for trip 5. Their mean EDA was the second highest 

during this trip.
WM The best driving score was recorded for trip 5. Their mean EDA was the second lowest.
AOE The best driving score was recorded for trip 5. Their mean EDA was the second highest.

skewness in EDA distributions also seemed to correspond to driving performance, 
with positive skew linked to better performance for some. These findings under-
score the potential interplay between physiological responses, emotional states, 
and driving outcomes, suggesting avenues for deeper investigations into the com-
plex relationships among human emotions, physiological signals, and driving 
performance.

4.3 � Cluster Analysis

Hierarchical clustering with the “ward.D2” linkage method is used to search for 
patterns within clusters. Ward’s method minimizes the total within-cluster variance. 
Ward D2 considers the distance between the centroids of the clusters being merged 
as opposed to the Ward D methods that consider the distance between the individual 
data points and the mean of the merged cluster. Empirically, Ward D2 tends to pro-
duce more compact and spherical clusters, while Ward D may be more sensitive to 
outliers. Figure 5 shows the generated dendrogram.

From Fig. 6, the Mean EDA and Median EDA show separable clusters. There is 
a difference in the mean EDA and median EDA between clusters. Cluster 2 has the 
highest mean and median EDA distribution. The median of the driving scores in 
Cluster 2 is very close to Cluster 3. However, because of the shape of the boxplot, 
many of the driving scores fall to the right of the median. Cluster 1 seems to have 
the “best” distribution of driving scores, in which the scores are generally higher 
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Fig. 5  Dendrogram from cluster analysis

than those of the other two clusters. Interestingly, the EDA values are not the lowest 
and not the highest. This indicates some evidence that driving scores are best when 
the drivers’ EDA is not low but not too high.

Fig. 6  For each cluster, the above boxplots compare the driving score, mean EDA, and median EDA
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5 � Discussion

This paper presented a pilot study to investigate the relationship between EDA and 
eco-driving performance. For fleet managers, stress-related issues can results in 
increased costs for companies due to accidents, increased downtime, and higher 
rates of absenteeism. By addressing drivers’ stress levels, fleet managers can miti-
gate these financial burdens. Driver stress can negatively impact the physical and 
mental health of employees. Chronic stress can lead to various health issues, includ-
ing hypertension, anxiety, and depression. Caring for drivers’ well-being fosters a 
healthier and more motivated workforce. Stressed drivers are more likely to violate 
traffic laws and regulations, potentially leading to legal consequences and penalties 
for the company. A supportive work environment that prioritizes drivers’ well-being 
can improve employee satisfaction and retention rates. Happy and supported drivers 
are more likely to stay with the company long-term. Fleet companies are responsi-
ble for their drivers’ actions on the road. High stress levels may lead to aggressive 
driving behaviours or customer service issues, which can damage the company’s 
reputation and lead to a loss of clients.

Ten drivers wore an Empatica E4 wristband while they completed 5 trips of at 
least 5 miles in length. The Geotab G09 telematics device was used to record engine 
data, including acceleration forward, braking and acceleration side to side. It also 
has GPS capability to identify when speeding occurs. An eco-driving score was 
used to measure their level of eco-driving. Lower scores indicate fewer eco-driving 
behaviours.

The highest observed correlation was between the driving score and mean EDA, 
but this correlation was not statistically significant. Although positive – higher driv-
ing scores indicated higher mean EDA – this correlation was not statistically signifi-
cant. A cluster analysis was also performed to look for patterns within clusters. The 
cluster dendrogram shows that three separable clusters can be achieved. From 
Fig. 6, the driving scores in cluster 1 had the highest mean and distribution towards 
higher scores than the other two clusters. Interestingly, this cluster contained neither 
the highest nor lowest mean and median EDA. This indicates that the best driving 
performance for the 48 recorded trips occurred when the drivers were more emo-
tionally aroused. This finding supports the Yerkes-Dodson Law that performance 
increases with physiological or mental arousal, but only up to a point. When levels 
of arousal become too high, performance decreases.

5.1 � Study Limitations, Strengths, and Future Work

The strength of this study is that it uses naturalistic driving and wearable sensors to 
observe the eco-driving behaviours of drivers. The E4 sensor and G09 device are 
both minimally invasive. The preliminary results indicate the need for fleet 

T. S. Seecharan



227

managers to pay attention to the mental health and stress levels of their drivers. 
In-vehicle systems to monitor drivers’ physiological states while driving.

One of the study limitations is the use of raw EDA data. Another way of analys-
ing skin conductance is to separate it into its phase and tonic components. The 
phasic component, also known as the skin conductance response (SCR), is a rela-
tively fast variation in skin conductance, while the tonic component, also known as 
the skin conductance level, reflects slow variation (Benedek & Kaernbach, 2010; 
Imtiaz et al., 2020). In this study, the phasic component is more significant, as the 
participant could experience abrupt situations, e.g., sudden braking and sudden 
accidents. A future study will decompose the EDA signal into its phasic and tonic 
components and analyse eco-driving performance as the drivers’ phasic component 
changes. A “true baseline”, which is the driver’s EDA during a calm emotional state, 
was not recorded in this study. For a future study that uses phasic data, a true base-
line is required. In addition to the small sample size, this study limits the sample to 
young drivers. Future studies can investigate whether similar patterns are observed 
in different age groups and for a larger sample size.

Vehicle emissions are a major contributor to greenhouse gas (GHG) emissions 
worldwide. In 2021, the transportation sector was the largest source of GHG emis-
sions in the United States (U.S.) (United States Environmental Protection Agency, 
2022). A future study can investigate the relationship between driver’s emotional 
state and their decisions toward sustainable transportation.

Understanding driver stress empowers asset managers to create safer, more effi-
cient, and driver-centric operations. By integrating stress awareness into asset man-
agement practices, the transportation industry can achieve higher levels of 
performance, safety, and driver satisfaction.

6 � Conclusion

In this work, the relationship between driver emotional arousal and eco-driving 
behaviours using naturalistic driving behaviour was investigated. Drivers wore a 
wristband sensor to record their EDA while driving. An eco-driving score was built 
using engine data recorded using a telematic device plugged into the OBD II port of 
drivers’ personal vehicle. This pilot study recorded 48 trips of five miles in length 
from 10 drivers. The results follow the Yerkes-Dodson law. The drivers’ best driving 
scores were observed when they were emotionally aroused but not as the highest 
level. These results point to the possibility that attention must be given to the emo-
tional state of drivers before they drive. Future work will increase the sample size, 
incorporate different routes, increase the age range.

Ethics Approval  This study received approval from the Institutional Review Board (IRB) with 
study code STUDY00015895.
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