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Abstract. Objective: To explore the efficacy of machine learning tech-
niques in identifying Metabolic Syndrome (MetS) and examine the per-
formance of models when applied to target populations with different dis-
tributions. Methods: This study utilizes data from the National Health
and Nutrition Examination Survey (NHANES) and local physical exam-
inations, where MetS is diagnosed based on the International Diabetes
Federation (IDF) standards. We first employ demographic and blood
test data from NHANES and predicted MetS using machine learning
models (including MLP, Logistic Regression, Random Forest, XGBoost,
Catboost, and Multi-layer Perceptron), and then test these predictions
on different population data. Results: Models employing 59 features
demonstrate commendable performance in the NHANES test set (same
population testing), with the MLP model exhibiting the best perfor-
mance (AUROC= 0.93). Models constructed with 32 features (excluding
height, weight, and certain blood test information) still show promising
results (MLP AUROC = 0.89). However, when the models are tested on
the local physical examination dataset (cross-population testing), there
is a substantial decline in performance (MLP AUROC = 0.71). Conclu-
sion: Machine learning techniques can predict MetS on the NHANES
dataset with high accuracy. Due to the distribution shift, examined
machine learning models perform better in the setting with same popu-
lation distribution.

Keywords: Metabolic Syndrome · Machine Learning · Population
Health Management

1 Introduction

Metabolic syndrome (MetS) is an early subclinical syndrome characterized by
the aggregation of multiple risk factors of metabolic diseases. The main indica-
tors of MetS include abdominal obesity, elevated blood pressure, hyperglycemia,
hyperlipidemia, and low high-density lipoprotein cholesterol. Existing researches
have shown that MetS is closely associated with the risk of numerous chronic
non-communicable diseases, such as coronary heart diseases, stroke, diabetes,
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and hypertension [1]. As a result, it has become a significant disease burden in
the field of public health and a focal issue in recent population health manage-
ment (PHM) [2,3].

Machine learning (ML) technology has been increasingly utilized in clinical
areas [4]. The timely and accurately detection and diagnosis of diseases through
machine learning remains a consistent and prominent topic in scientific research.
Concurrently, the widespread application of AI technology has fostered the rapid
growth of PHM, which aims to enable all individuals within a specific population
to maintain and enhance their health. With the evolution and implementation
of advanced machine learning models, population health research can model
multidimensional health data from large cohorts to extract valuable insights,
further applying these findings to PHM [5].

The diagnosis of metabolic syndrome (MetS), according to the diagnos-
tic criteria in the joint statement by the International Diabetes Federation
(IDF), involves multiple physical meOSasurements and laboratory tests, such as
waist circumference, blood pressure, blood sugar, triglycerides, and high-density
lipoprotein cholesterol, which obviously presents certain limitations in the con-
text of PHM or individual health management. Among the others, waist circum-
ference is the indicator that is fairly stable and can be conveniently measured.
The blood pressure and blood sugar require multiple measures to confirm the
reliability. The triglycerides, and high-density lipoprotein cholesterol need to be
tested in hospital with lab analyser. The gold standards for the blood sugar,
riglycerides, and high-density lipoprotein cholesterol are tested intrusively. In
this case, out-of-hospital diagnosis of MetS has become challenging, thus, the
exploiting of other valuable indicators and the use of ML approaches to assist
the remote monitoring and detection in the early stage is immensely valuable.

In clinical scenarios, if a patient is suspected to have MetS, endocrinologists
will be involved in the diagnosis and treatment pipeline. Patients will receive
advice from endocrinologists on lifestyle management. However, this process can
be time-consuming and labor-intensive, and there is also a certain risk of missed
or misdiagnosis.

Given these challenges, this research aims achieve early identification of MetS
using ML technologies with population health data. Better classification of MetS
will assist the timely detection of MetS and thus improve personal health man-
agement.

2 Datasets and Methods

2.1 Datasets

Data Sources. In this study, we utilized the public database from the National
Health and Nutrition Examination Survey (NHANES), which is a national sur-
vey program conducted by the U.S. National Center for Health Statistics. Ini-
tiated in 1960, this program periodically evaluates the health and nutritional
status of the American population, collecting relevant clinical, demographic, and
nutritional data. NHANES stands as one of the largest ongoing health surveys in
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the US population, offering a comprehensive dataset on population health, which
can be employed to research various health issues, such as MetS, diabetes, and
cardiovascular diseases. The NHANES survey adopts multistage sampling tech-
niques, including random sampling, stratified sampling, and cluster sampling.
Participants undergo questionnaire interviews, physical examinations, and bio-
logical sample collections. The comprehensive NHANES dataset encompasses
numerous physiological indicators, biochemical markers, nutritional indices, dis-
ease diagnoses, medication usage, and health behaviors [6,7].

We used the NHANES data from 1999–2018, encompassing 101,316 individ-
uals, and a local health examination dataset, encompassing 10,446 individuals,
forming the original datasets for this study.

Diagnosis of Metabolic Syndrome. In this study, we diagnosed MetS based
on the standards and definitions set forth in the joint statement by the IDF
[8]. According to this criterion, MetS is diagnosed when three or more of the
following five components are present:

1) Increased waist circumference (≥88cm for females, ≥102cm for males);
2) Elevated triglycerides (TG) (≥150mg/dL) or currently undergoing treatment

for hyperlipidemia;
3) Reduced high-density lipoprotein cholesterol (HDL-c) (<40mg/dL for males,

<50mg/dL for females) or currently undergoing treatment for low HDL-c;
4) Elevated blood pressure (systolic blood pressure (SBP) ≥130mmHg or dias-

tolic blood pressure (DBP) ≥85mmHg or both) or currently on antihyperten-
sive treatment or with a history of hypertension;

5) Elevated fasting blood glucose (FBG) (≥100mg/dL) or currently undergoing
treatment for hyperglycemia.

Using the questionnaire information and biochemical data of participants
provided by NHANES, such as blood glucose, triglycerides, and HDL-C, we diag-
nosed each component [9]. NHANES did not collect laboratory test information
for HDL-C during the survey years from 1999 to 2004. Thus, we substituted
this with medication treatment information reported in the questionnaire. Ulti-
mately, 55,684 participants with sufficient information were diagnosed, of which
19,530 (35.1%) were categorized as MetS.

Features. As is a specialized, large-scale cross-sectional study, NHANES data
encompasses various features ranging from demographic, anthropometric, to
blood test variables. Given the distinct feature sets in NHANES and local health
examination datasets, we utilized the overlapping feature subset in this study.
We primarily based our choices on the features available in the local health
examination dataset. Firstly, after excluding indicators for MetS diagnosis, we
identified common demographic, anthropometric, and blood test features present
in both the local health examination dataset and the NHANES dataset (a total
of 59 features). Due to the issue of missing data in the local physical exami-
nation dataset, we ultimately established two feature settings encompassing 59
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features and 32 features respectively, and three different experiments (Table 1).
Specifically, Experiment 1 involved modeling using 59 variables in the NHANES
dataset and testing in an independent validation set selected from the NHANES
population. Experiments 2 and 3 utilized the same NHANES training data, with
an input of 32 features, and were tested on the independent validation set from
NHANES and the local dataset, respectively. Table 2 illustrates the full names
and corresponding abbreviations of the features.

Table 1. Features included in different experiments

Experiment Features

1 sex, age, BUN, UA, TBIL, TP, Glo, Alb, Cr, ALT,
AST, TC, NENO, NEPCT, MOPCT, MONO,
BANO, BAPCT, EONO, EOPCT, MPV, MCHC,
MCH, LY, LYPCT, WBC, RBC, RDW CV, HCT,
MCV, PLT, Hb, GGT, ALP, Sodium, kalium, CRP,
Insulin, Lead, LDH, HbA1c, Height, Weight, LDL,
HAV, HBsAg, HBcAb, HCV, HBsAb

2 sex, age, BUN, UA, TBIL, TP, Glo, Alb, Cr, ALT,
AST, TC, NENO, NEPCT, MOPCT, MONO,
BANO, BAPCT, EONO, EOPCT, MPV, MCHC,
MCH, LY, LYPCT, WBC, RBC, RDW CV, HCT,
MCV, PLT, Hb

3 sex, age, BUN, UA, TBIL, TP, Glo, Alb, Cr, ALT,
AST, TC, NENO, NEPCT, MOPCT, MONO,
BANO, BAPCT, EONO, EOPCT, MPV, MCHC,
MCH, LY, LYPCT, WBC, RBC, RDW CV, HCT,
MCV, PLT, Hb

2.2 Methods

Data Preprocessing. The preprocessing of the data commenced with the iden-
tification of outliers in each column, those values falling outside the range (<Q1-
1.5×IQR, >Q3+1.5×IQR) were regarded as outliers. Adopting a stratified app-
roach based on varied age and gender demographics, any missing value in each
feature was substituted with the mean value of that particular feature derived
from specific age-gender subgroup. For categorical variables, missing values were
imputed with a distinct value and subsequently transformed into dummy vari-
ables.

The NHANES dataset was splitted into a training set (38,978 samples) and
a test set (16,706 samples) randomly with the “train test split” function in the
“scikit-learn” package, while the whole local dataset was employed as an inde-
pendent validation test set (10,446 samples). Subsequently, using the “Quan-
tileTransformer” function in the “scikit-learn” package (Python, version 0.23.2)
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Table 2. Abbreviation of the features included

Feature names Abbreviation

Gender sex

Age age

Triglycerides TG

Fasting blood glucose FBG

Systolic blood pressure SBP

Diastolic blood pressure DBP

Blood urea nitrogen BUN

Urine acid UA

Total bilirubin TBIL

Total protein TP

Globulin Glo

Albumin Alb

Creatinine Cr

Alanine transaminase ALT

Aspartate transaminase AST

Total cholesterol TC

Neutrocyte number NENO

Neutrocyte percentage NEPCT

Monocytes percentage MOPCT

Monocytes number MONO

Basophils number BANO

Basophils percentage BAPCT

Eosinophils number EONO

Eosinophils number EOPCT

Mean platelet volume MPV

Mean corpuscular hemoglobin concentration MCHC

Mean corpuscular hemoglobin content MCH

Lymphocytes number LY

Lymphocytes percentage LYPCT

White blood cell count WBC

Red blood cell count RBC

Coefficient of variation of red blood cell distribution width RDW CV

Hematocrit HCT

Mean corpuscular volume MCV

Platelet PLT

Hemoglobin Hb

Gamma-Glutamyl Transpeptidase GGT

Alkaline Phosphatase ALP

Sodium Sodium

Kalium kalium

C-reactive Protein CRP

Insulin Insulin

Lead Lead

Lactate Dehydrogenase LDH

Hemoglobin A1c HbA1c

Height Height

Weight Weight

Low Density Lipoprotein LDL

Hepatitis A Virus HAV

Hepatitis B Surface Antigen HBsAg

Hepatitis B Core Antibody HBcAb

Hepatitis C Virus HCV

Hepatitis B Surface Antibody HBsAb
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to normalise the datasets. This non-linear and independent transformation tech-
nique converts raw values into uniform distribution values sampled from the esti-
mated cumulative distribution function of the feature. To mitigate the potential
adverse effects of sample imbalance on training efficacy, the Synthetic Minority
Over-sampling Technique (SMOTE) was used to oversample the MetS positive
population within the training set. Table 3 presents the sample size for each
dataset.

Table 3. Size of datasets

Datasets Sample size

NHANES training set 38,978

NHANES testing set 16,706

Local Dataset 10,446

Models. We employed various machine learning models including Logistic
Regression (LR), Random Forest (RF), XGBoost, Catboost, as well as the Mul-
tilayer Perceptron (MLP). We used 10-fold cross-validation and optimised each
model, subsequently training the models with these optimal settings [10]. For
the MLP model, the hyper-parameters and model architectures were optimised
by a random search, with the model then being trained using this configuration.

Evaluation. Accuracy, Precision, Recall, F1-score, and the Area Under the
ROC curve (AUROC) are used to evaluating the performance of the models.
Accuracy measures the proportion of samples correctly classified out of the total,
representing the model’s ability to classify correctly. Precision indicates the pro-
portion of positive predictions that were actually positive, reflecting the precision
of the model’s classification. Recall represents the proportion of actual positive
samples that the model correctly predicted as positive, indicating the model’s
coverage of positive samples. The F1-score is the harmonic mean of Precision and
Recall, serving as an integrated metric to assess the classification performance of
the model. AUROC, determined by calculating the area under the ROC curve,
depicts the relationship between the true positive rate and the false positive rate
across different thresholds, revealing the classifier’s performance under various
thresholds.

3 Results

Firstly, we trained models using 59 features and 32 features respectively in the
NHANES dataset and evaluated the models on a unified hold-out test set.

As shown in Table 4, all five models achieved satisfactory results, with nearly
all evaluation metrics exceeding 0.8. Among all five models, the MLP demon-
strated the best performance, achieving top-tier results in every performance
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Table 4. Performance of the models in the NHANES dataset

Experiment Models Accuracy Precision Recall F1 AUROC AUPRC

1 LR 0.847 0.744 0.865 0.800 0.851 0.828

RF 0.835 0.718 0.877 0.790 0.845 0.819

XGBoost 0.839 0.729 0.867 0.792 0.845 0.822

Catboost 0.777 0.618 0.968 0.754 0.820 0.799

MLP 0.848 0.739 0.879 0.803 0.929 0.858

2 LR 0.810 0.692 0.832 0.755 0.815 0.791

RF 0.803 0.673 0.858 0.754 0.815 0.791

XGBoost 0.784 0.636 0.903 0.747 0.811 0.787

Catboost 0.718 0.559 0.962 0.707 0.774 0.767

MLP 0.806 0.680 0.855 0.758 0.894 0.782

evaluation metric. The LR shows the best in precision. The nonlinear ensem-
ble models like XGBoost and Catboost, although they had high Recall values,
performed worse than MLP and LR.

Additionally, when comparing the results of models with 59 features against
those with 32 features in NHANES only, it is evident that, although there was
a decline in performance across all models, the magnitude of this decline wasn’t
significant. This implies that after eliminating body measurements like height,
weight, and additional blood test features, the models were not significantly
affected.

By evaluate the performance of the models trained on NHANES when applied
to different populations of local dataset (with 32 features), as shown in Table 5,
it indicated that the MLP still outperformed the others. Overall, compared to
their counterpart on the NHANES dataset, all the models witnessed a substantial
decline in performance. For instance, the AUROC score of the best-performing
model, MLP, dropped from 0.89 to 0.71.

Table 5. Performance of the models in the local dataset

Models Accuracy Precision Recall F1 AUROC AUPRC

LR 0.671 0.381 0.621 0.472 0.654 0.546

RF 0.623 0.350 0.682 0.462 0.644 0.554

XGBoost 0.634 0.356 0.668 0.464 0.646 0.551

Catboost 0.441 0.286 0.906 0.435 0.601 0.607

MLP 0.661 0.375 0.645 0.475 0.710 0.423
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4 Discussion

In our experiments, we explored a variety of machine learning models for MetS
classification based on demographic and blood test indicators. Through multiple
model and dataset configurations, we discerned that the MLP model showed
superior performance in this context. It is noted that the inclusion or exclusion
of variables like height and weight, which are conventionally strongly associated
with MetS, did not have a significant impact on model performance. Most cru-
cially, our experiment exhibited considerable variability in model performance
when applied across different populations. This underscores a potential distribu-
tion shift across various regions and demographic characteristics. Hence, trans-
ferring a model to be applied to a different population distribution necessitates
a judicious approach. Enhancing the model’s generalization capability through
continual learning strategies remains a future objective of this study.
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