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Abstract. Multi-task feature learning (MTFL) methods play a key role
in predicting Alzheimer’s disease (AD) progression. These studies adhere
to a unified feature-sharing framework to promote information exchange
on relevant disease progression tasks. MTFL not only utilise the inherent
properties of tasks to enhance prediction performance, but also yields
weights that are capable to indicate nuanced changes of related AD
biomarkers. Task regularized priors, however, introduced by MTFL lead
to uncertainty in biomarkers selection, particularly amidst a plethora
of highly interrelated biomarkers in a high dimensional space. There is
little attention on studying how to design feasible experimental proto-
cols for assessment of MTFL models. To narrow this knowledge gap, we
proposed a Randomize Multi-task Feature Learning (RMFL) approach
to effectively model and predict AD progression. As task increases, the
results show that the RMFL is not only stable and interpretable, but
also reduced by 0.2 in normalized mean square error compared to single-
task models like Lasso, Ridge. Our method is also adaptable as a general
regression framework to predict other chronic disease progression.

Keywords: Multi-task feature learning · Alzheimer’s disease ·
Randomization · Stability selection

1 Introduction

Alzheimer’s disease, as one of the most common forms of dementia, is a neurode-
generative disease that causes problems with progressive cognitive decline and
memory loss [8]. With rates projected to increase by 75% in the next quarter
of a century [1], AD is a leading contributor to disability amongst older people
and causes significant morbidity as well as personal family burden. So far, there
is no effective cure for AD where science has not yet identified any treatments
that can slow or halt the progression of this disease. Yet, early intervention and
timely diagnosis could be still promising and cost-effective. It poses an important
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research area that understands how the AD progresses and identify their related
pathological biomarkers for the progression. To accelerate AD’s research, the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) funded by NHI provided a
large boundary of publicly available neuroimaging data including magnetic res-
onance imaging (MRI), positron emission tomography (PET), other biomarkers
and cognitive measures for scientific study. A variety of medical data driven based
machine learning techniques [9,10,21–23], like deep learning models [5,11], multi-
task feature learning (MTFL) model [12,24,26] and survival model [15,19,20],
have been investigated to deal with these data for better prediction of AD pro-
gression. The motivation of those study is to learn a stable set of features across
all tasks and share them to improve the accuracy of all tasks. However,before
they share feature information, picking out stable and unbiased features is a key
challenge.

Randomization as a method of machine learning has been extensively used in
theoretical algorithms and real-world applications [18]. It prevents the selection
bias and insures against the accidental bias. For example, in ensemble learning
approaches, the Random Forest and the Extra-Trees algorithm [13,16] belong
to two averaging algorithms based on randomized decision trees. Both algo-
rithms are perturb-and-combine techniques [2] specifically designed for trees.
This means a diverse set of models is created by introducing randomness in the
model’s construction. The prediction of the ensemble is given as the averaged
prediction of the individual models. Despite the algorithms in ensemble learning
have good predictive accuracy, they are black box methods which are unable
to explain the reasons behind the result. Particularly in the field of medically
assisted diagnosis as well as in finance, the value of model interpretability is
much higher than the accuracy of its predictions.

In this paper, we introduce a randomize multi-task feature learning (RMFL)
approach for effectively modelling and predicting AD progression. We examine
typical MTFL models via randomized structural regularization approaches in
AD study and choose two typical single task models: Ridge regression and Lasso
regression. Considering that MTFL features shared parameters and representa-
tions, we further explore four potential key points affecting evaluation process of
RMFL in AD study: 1) evaluation indicators: validating the model’s robustness
on different type of square error or correlation coefficient; 2) repeated experimen-
tal times (e.g., results of 10 repeated experiments and 100 repeated experiments
are different results; 3) size and portion of training data; 4) number of tasks in
MTFL (e.g., time points in AD progression). For each point, we design and set
up experimental protocols for comparison and exploration, highlighting following
multi-fold contributions:

– We introduce a RMFL strategy that is capable of predicting AD progres-
sion with high accuracy, while elucidating the structure that can structural
nuances indicative of significant biomarkers alterations in AD.

– We provide a solid evidence that whether RMFL model perform well in com-
plex practical experimental settings. One key finding is that MTEN’s superior
performance may stem from the stability selection of features across multiple
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tasks. This provides a checkpoint for whether the model works well in more
complex practical applications.

– By leveraging methodical validation, we demonstrate that some limitations of
MTFL models in AD study: 1) the normalized mean square error emerges as
the most reliable performance metric, while alternative evaluative indicators
lack comparable objectivity. 2) MTEN has a considerable potential for further
improvement at late stage prediction of AD progression. 3) The assumption
of temporal smoothness in MTFL models for AD study constrains early task
performance.

2 Methodology

2.1 Subjects

To track the effectiveness of disease progression models, ADNI-1 subjects with
all corresponding MRI and cognitive scales are evaluated. The ADNI is a lon-
gitudinal multicenter study designed to develop clinical, imaging, genetic, and
biochemical biomarkers for the early detection and tracking of AD. Since its
launch more than a decade ago, the landmark public-private partnership has
made major contributions to AD research, enabling the sharing of data between
researchers around the world. A total of 800 subjects, approximately 200 normal
individuals (NL), 400 subjects with Mild cognitive impairment (MCI) and 200
subjects with early AD, were involved in this study. All participants received
standard clinical tests of cognitive function to be followed for 3 years, such
as Mini Mental State Exam score (MMSE), Alzheimer’s Disease Assessment
Scale cognitive total score (ADAS-cog) and Rey Auditory Verbal Learning Test
(RAVLT). The date of the participant’s first visit to the hospital for screening
was set as the baseline period in order to facilitate comparison with subsequent
changes in the participant’s status. The follow-up points, such as 6 or 12months
after the baseline point, supported the longitudinal disease progression of the
subjects. For example, “M12” was defined as the follow-up survey at month 12
after baseline. As the timeline lengthens, the number of subjects who still have
follow-up records gradually decreases, but detailed data at the screening stage
is useful for early detection of a patient’s potential risk of AD.

2.2 Image Pre-processing

For guarantee high image quality and reliable data handling, the MR images
used in the paper were derived from standardized datasets, which provide the
intensity normalized and gradient un-warped TI image volumes. Subsequently,
the FreeSurfer image analysis suite [4] was performed to feature extraction of
the MR, which executes cortical reconstruction and volumetric segmentations
for processing and analyzing brain MR images. For each MRI, cortical regions
and subcortical regions are generated after this pre-processing suite. For each
cortical region, the cortical thickness average, standard deviation of thickness,

https://adni.loni.usc.edu/about/adni1/
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surface area, and cortical volume were calculated as features. For each subcortical
region, subcortical volume was calculated as feature. Data cleaning operations
are performed:

– Removal of individuals who failed cortical reconstruction and failed quality
control;

– Removal of features with more than half of the missing values;
– Individual subjects whose removal of baseline did not screen for MRI;
– Using the average of the features to fill in missing data;
– Removal of cognitive function tests in individuals with missing follow-up

points in longitudinal studies.

After the pre-processing procedure, there are a total of 429 subjects and 327
MRI features.

2.3 Regression Model via Structural Regularization

Regression model has been widely used in statistical, medical and industrial
applications. It is a mathematical and statistical analysis of dependent influences
(independent variables) and predictors (dependent variables). Its strength lies in
its strong interpretation. By fitting the data, the parameter values corresponding
to the independent variable indicate its effect on the dependent variable.

We consider the problem of prediction as a linear model. In order to obtain
models with generalizability, loss functions with empirical structural loss risk
minimization as the formula:

min
β

L(y,X, β) + λR(β) (1)

where the loss term L(y,X, β) measures how well the model fits the data, the
regularization term R(β) measures model complexity. When λ ≥ 0 denotes the
penalty parameters, i.e., balancing the goal of fitting the training with the goal
of keeping the parameter values small, come to keep the hypothesis relatively
simple in form and avoid overfitting.

In general, the sample contains a large number of possible biomarkers for the
patient, such as MRI statistical values for the regional cortex, CSF, biochemical
indicators and cognitive scores. They are transformed into features that can be
run by the model so that the relatively important subset of features can be
filtered out in the subsequent training process.

The regularization term is considered as the addition of a prior, and common
paradigms are Ridge regression and Lasso, which respectively add the L1 and
L2 norm. Statistical theory can prove that Ridge regression specifies a prior that
the model obeys a Gaussian distribution and Lasso specifies a prior that the
model obeys a Laplace distribution. This regularization term can be expressed
as:

min
w

L(Y,X,W ) + λ||W ||1 (2)

min
w

L(Y,X,W ) + λ||W ||2 (3)
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where ridge regression constrains variables to a smaller range for reducing some
factors with little impacts on model’s prediction. Unfortunately, this reduction
means that these variables are still considered. To solve this problem, Lasso
was proposed as a new sparse representation linear algorithm, which simul-
taneously performs feature selection and regression. Some variables are set to
zero directly to achieve sparsity and dimensionality reduction. In addition, some
randomization-based sparse algorithms [17] put in different prior assumptions to
achieve the desired effect and kernel extended strategy [3] to cope with nonlinear
system in complex space.

2.4 Multi-task Feature Learning

A popular setting of multi-task feature is to treat a regression model as a task.
The purpose of multi-task feature learning [6] is to learn a common set of features
across all tasks and share them to improve the accuracy of all tasks. Among
these learning tasks, a basic assumption of MTFL is that one or more subsets
are related to each other.

Let X = [x1, ..., xn]T ∈ R
n×d be the data matrix, Y = [y1, ..., yn]T ∈ R

n×k

be the predicted matrix, and W = [w1, ..., wk]T ∈ R
d×k be the weight matrix.

The process of establishing a MTL model is to estimate the value of W, which
is the parameter to be estimated from the training samples.

Two common MTFL models are presented to display their properties. Multi-
Task lasso is a linear model that estimates sparse coefficients for multiple regres-
sion problems jointly. The constraint is that the selected features are the same
for all the regression problems, also called tasks. The Fig. 4 compares the loca-
tion of the non-zero entries in the coefficient matrix W obtained with a simple
Lasso or a Multi-task Lasso. Mathematically, it consists of a linear model trained
with a L21-norm for regularization. The objective function to minimize is:

min
w

1
2n

||XW − Y ||2F + α||W ||21 (4)

where || · ||F denotes the Frobenius norm ||A||F =
√∑m

i=1

∑n
j=1 |aij |2, and

||W ||21 denotes ||W ||21 =
∑d

i=1

√∑t
j=1 W 2

i,j . The multi-task lasso allows to
fit multiple regression problems jointly enforcing the selected features to be the
same across tasks. For example, AD cognitive progress sequential measurements,
each task is a time instant, and the relevant features vary in amplitude over time
while being the same. This makes feature selection by the Lasso more stable.
However, when there are correlations between multiple features, the features will
be randomly selected, especially when the brain region is regarded as a feature,
there are some blocks with high correlation, such as atrophy of the cerebral
cortex causes reduction in cortical volume and cortical thickness.

Another approach of MTFL is multi-task elastic net (MTEN). It can compen-
sate for the shortcomings generated by multi-task lasso. When multiple features
are correlated with one another, MTEN tends to select both features rather than
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a random. Mathematically, it consists of a linear model trained with a mixed
L21-norm and L21-norm for regularization. The objective function to minimize
is:

min
w

1
2n

||XW − Y ||2F + αρ||W ||21 + α(1 − ρ)
2

||W ||2F (5)

The difference from multi-task lasso is that MTEN adds a constraint on the
F-norm of W. α and ρ controls the strictness of model penalties to trading-
off the advantages between Lasso and Ridge. When ρ = 0, MTEN degrades to
multi-task lasso; When α = 0, MTEN degrades to traditional linear regression
problem.

2.5 Randomize Multi-task Feature Learning

Randomization as a method of machine learning has been extensively used in
theoretical algorithms and real-world applications [18]. It prevents the selection
bias and insures against the accidental bias. For example, in embedded feature
selection schemes, randomization has recently received increasing attention due
to the use of randomization-related techniques to select a more stable and less
biased feature subsets. Stability selection are one of them.

Stability selection is based on subsampling in combination with (high dimen-
sional) selection algorithms. In previous related studies [24], the stability ranking
score gives the probability that it is naturally interpretable. This study propose
to extend a strategy of stability selection to multi-task feature study to quantify
the importance of the features selected by the MTFL formulations for predicting
disease progression. Multi-Task elastic network algorithm was utilized to track
the area of the cerebral cortex associated with AD progression.

Let F be the overall set of features and let f ∈ F be the subset of features
by sub-sampling. Let γ denote the iteration number of sub-sampling and Di =
{X(i), Y (i)} denote one random sub-sample operation of number i ∈ (0, γ]. Each
operation size account for �n

2 �. Let Λ be the regularization parameter space. For
a λ ∈ Λ, let Ŵ (i) denote the model coefficient of MTFL that fitted on a subset of
D(i). Then, the subset of features generated in task j by the sparse constraints
of the MTFL algorithm can be denote as:

Sλ
j

(
D(i)

)
=

{
f : Ŵ

(i)
j �= 0

}
. (6)

With stability selection, we do not simply select one model in the parameter
space λ. Instead the data are perturbed (e.g. by sub-sampling) γ times at task
j and we choose all structures or variables that occur in a large fraction of the
resulting selection sets:

π̂λ
j =

∑γ
i=1 I

(
f ∈ Sλ

j (Dij)
)

γ
. (7)

where indicator function I(•) denote I(x) =

{
1, x = 0
0, others

and π̂λ
j ∈ [0, 1] denote

the stability probability of task j at MTFL approaches which feature selection
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is not based on individual operations but on multiple task collaboration con-
straints.

Repeat the above procedure for all λ ∈ Λ, we obtain the stability score Sj(f)
for each feature f at task j:

Sj(f) = max
λ∈Λ

(
π̂λ

j

)
. (8)

Finally, for a cut-off πth with 0 < πth < 1 and a set of regularization param-
eters Λ, the set of stable variables is defined as:

Ŝstable = {k : Sj(f) ≥ πth} =
{

k : max
λ∈Λ

(
π̂λ

j

) ≥ πth

}
. (9)

The embedded multi-task approach ensures that the selected features have the
following properties:1) Stability. A cortical region of the brain that is closely
related to the subject’s disease progression. 2) Global significance. MTFL makes
sure that the selected features are important for each task. One technique that
arises here is to pick the coefficient value for one of the tasks when doing statistics
on the stability of the selected features at Eq. 4. Overall, the complete stability
selection procedure is shown below:

– Randomized selection of feature subsets;
– Randomly selected data subsets;
– Given a hyperparameter search range and a selected set;
– Training Multi-task model and Obtaining weighting factors;
– Polling statistics to find out the probability of a feature being selected;
– Chosen the maximum value as its final stability probability in each random-

ization algorithm;
– Feature selection based on a given threshold.

3 Experiment

3.1 Experiment Setup

First, experiments demonstrated that MTFL is superior in following AD pro-
gression. Combined with randomization techniques, RMFL is enable to locate
the stable and sensitive cortical biomarkers. Our empirical protocol design is
based on a pipeline shown in Fig.A5. The total experimental process mainly
includes 5 steps: 1) split the data set; 2) select the hyper-parameters; 3) train
the model; 4) evaluate the model using the test set; 5) iterate the above oper-
ations and 6) randomize multi-task feature selection strategy. Different colors
denote the source or generation of different data, arrows indicate the flow of
data, and serial numbers indicate the steps of the experiment.

Then, to demonstrate that the MTFL algorithm is more generalizable and
stable in a variety of realistic scenarios, Four protocol is set up to explore the
potential influence that the error arising from the experimental process itself:
1) evaluation indicators, 2) repeated experimental times; 3) size and portion
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of training data; 4) number of tasks in MTFL. In addition, the significance of
randomize multi-task feature selection strategy in guiding the search for stable
biomarkers was demonstrated in Experiment II visually stability biomarkers.

The evaluation metric of cross-validation is employed to evaluate the perfor-
mance of AD progression model. When a metric is set in the cross-validation
experiment process, a set of hyper-parameters can be obtained. By comparing
the pros and cons of the results, the suitable metric for the model is finally deter-
mined. The regression performance metric often employed in MTL is normalized
mean square error (nMSE) and root mean square error (rMSE) is employed to
measure the performance of each specific regression task. In particular, nMSE
has been normalized to each task before evaluation, so it is widely used in
MTL methods based on regression tasks. Also, weighted correlation coefficient
(wR) as employed in the medical literature addressing AD progression problems
[7,14,25]. nMSE, rMSE and wR are defined as follows:

nMSE(Y, Ŷ ) =

∑t
i=1

∥∥∥Yi−, Ŷi

∥∥∥
2

2
/σ (Yi)

∑t
i=1 ni

(10)

rMSE(y, ŷ) =

√
‖y − ŷ‖22

n
(11)

wR(Y, Ŷ ) =

∑t
i=1 Corr

(
Yi, Ŷi

)
ni

∑t
i=1 ni

(12)

3.2 Experiment I Prediction with Cerebral Cortex Features

In many real-world AD application scenarios, clinicians expect the prediction
model to be simple and with less input data required for giving timely early
screening. In this case, it is hard to acquire both precise MRI and cognitive
measures. Normally, clinicians have to spend few hours to measure AD patients’
cognitive scores though some tests. Thus, one key application was considered
with only MRI data as input data to predict cognitive scores at baseline and
future time points. It is necessary for clinicians to perform a cognitive scale
assessment, but time-consuming to complete a set of cognitive measures.

The first goal is to show a quantitative analysis of typical MTFL meth-
ods (MTEN) in comparing to single task methods (Ridge, Lasso). The external
experiment setting remained consistent, with same split ratio of sample data,
iteration times and features. Specifically, dataset was randomly split into train-
ing and testing sets using a ratio 9:1, i.e., models were built on 90% of the
data and evaluated on the remaining 10% of the data. Models parameters were
selected by 5-fold cross validation.

The results in Table 1 implies that three selected structural regularization
methods are all robust (low variance). Also, MTEN models outperforms single-
task learning model (Ridge and Lasso), in terms of prediction accuracy.
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Table 1. Validation of AD disease progression based MTFL

Ridge Lasso MTEN
Target: MMSE
nMSE 2.088 ± 0.359 0.945 ± 0.247 0.745 ± 0.172
wR 0.310 ± 0.070 0.499 ± 0.034 0.568 ± 0.053
BL rMSE 2.841 ± 0.298 2.042 ± 0.496 1.721 ± 0.225
M06 rMSE 3.767 ± 0.408 2.491 ± 0.480 2.197 ± 0.244
M12 rMSE 3.958 ± 0.456 2.717 ± 0.587 2.368 ± 0.535
M24 rMSE 4.633 ± 0.579 3.320 ± 0.713 2.944 ± 0.437
M36 rMSE 5.745 ± 0.708 3.947 ± 0.791 3.820 ± 0.736
Target: ADAS-cog
nMSE 1.147 ± 0.111 0.729 ± 0.060 0.698 ± 0.063
wR 0.468 ± 0.046 0.542 ± 0.052 0.573 ± 0.044
BL rMSE 5.465 ± 0.599 4.229 ± 0.534 4.117 ± 0.558
M06 rMSE 5.900 ± 0.840 4.590 ± 0.672 4.489 ± 0.675
M12 rMSE 6.074 ± 0.894 4.998 ± 0.754 4.759 ± 0.620
M24 rMSE 7.483 ± 1.200 5.818 ± 1.066 5.761 ± 1.012
M36 rMSE 8.905 ± 1.361 7.981 ± 1.420 7.730 ± 1.221

Key: MMSE, Mini-Mental State Examination; ADAS-cog,
Alzheimer’s Disease Assessment Scale Cognitive Subscale; BL
Baseline visiting point; All algorithms were repeat 100 times and
their means ± variance was counted. Represents that the result
in bold is statistically significantly better than other comparison
methods.

3.3 Experiment II Visually Stability Biomarkers

Experiment screened all MRI features using stability selection strategy and
obtained 126 stable features, which were stable scores ≥ 0.96. Then, this fea-
ture set was put back into the MTEN algorithm to obtain a 35 stable sub-
features, which can be used to track cortical biomarkers associated with AD
progression. The stability vectors of stable MRI features for MMSE are shown in
Fig. 1. Experiment finds that the imaging biomarkers identified by RMFL yielded
promising patterns that are expected from prior knowledge on neuroimaging and
cognition. Some important features are selected, such as Inferior Parietal, Hip-
pocampus, Middle Temporal Gyri and Fusiform, are relevant to the cognitive
function.

3.4 Experiment III Evaluation Indicators

In MTFL for AD study, cross-validation with evaluation metric is widely utilised
to select suitable model hyper-parameters. Fair hyper-parameters could make
MTFL models have better generalization performance. When an evaluation indi-
cator is set in cross-validation experiment process, a set of hyper-parameters can
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Fig. 1. Thermogram of MRI stability features by multi-task elastic net. Each column
represents a cortical region of the brain selected by randomization technique.

be obtained. By comparing the pros and cons of the results, the suitable met-
ric for the model is finally determined. However, different metrics have different
preferences and emphasis on the model. It has become a consensus to employ
metrics to evaluate the pros and cons of models.

Three models (Lasso, TGL and MTEN) are selected for evaluation. Dataset
was randomly split into training and testing sets using a ratio 9:1. Models param-
eters were selected by 5-fold cross validation. The mean and standard deviation
based on 20 iterations of experiments. The experimental results in Table 2 showed
that selection of evaluation metrics significantly affect performance assessment
of MTFL models.

According to our results, therefore, it can be seen that 1) the results obtained
by metrics such as square error (MSE, rMSE, nMSE) are basically the same; 2)
nMSE is the best indicator to evaluate these models due to relatively stable
performance. The reason is that data distribution of each task is not the same,
sharing with each other will have the effect of noise. Therefore, using the variance
of tasks in nMSE will reduce the impact of task differences, and the results can
better take into account each other’s tasks.

3.5 Experiment IV Repeated Experimental Times

In MTFL for AD study, one typical consensus is that one experiment result
is usually accidental and unreliable. To reduce experiment accidental errors,
repeated experiments are required. Therefore, we evaluate the performance of
four MTFL models under different repeated experimental times. We conducted
6 sets of experiments, and the number of iterations in each set was 5, 10, 20, 30,
40, 50, 100. Also, in each set of experiments, other conditions remained the same.
The final result is shown in Fig. 6. The horizontal axis represents iteration, the
vertical axis represents the nMSE value of each algorithm, and different colors
represent algorithm. In Fig. 6, it appears that the effect of different experiments
on three algorithms are visually observed. MTEN models maintains good per-
formance in each set of experiments. From the fluctuation range of the model
mean: Ridge not only performs poorly overall, but also has a large range of
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Fig. 2. nMSE values for predicting MMSE cognitive scores under different data size.
Each colour label indicates the proportion of the training set in the overall.

fluctuations, which may be the reason for the under-fitting. As the number of
iterations increased, three algorithms are fluctuating to varying degrees. Lasso
and MTNE are relatively less affected, which implies that sparsity plays a key
role in real-world scenarios.

3.6 Experiment V Size and Portion of Training Data

One significant advantage of MTFL is to deal with the issue of missing data and
reduce the risk of overfitting. To prove this assumption, we evaluate different
portion of training AD data over these MTFL models. Experiment train four
MTL models with datasets of different data sizes with 8 groups of experiment
performances. Data was split into training and test sets according to the ratio (2:
8, 3: 7, 4: 6, 5: 5, 6: 4, 7: 3, 8: 2, and 9: 1) respectively. For example, in order to
compare the experimental results, the other condition settings of each group of
experiments are kept consistent: datasets with MMSE scores as learning labels
are conducted, with 429 and 425 samples respectively. The same data set was
used to predict the trend of cognitive scores of the MMSE and ADAS-cog scales
at baseline and in the next three years. The result based on 50 iterations of
experiments on different splits of data using 5-fold cross validation. Each group
of experiments uses 3 algorithms (Ridge, Lasso, and MTEN) for comparison.
The results are shown in the Fig. 2 (a). The finding shows that: Ridge and Lasso
have high overfitting risks but MTEN show advantages. In addition, to clarify the
difference in performance between Lasso and MTEN, Fig. 2 (b) is the comparison
of Lasso and MTEN in detail, connecting the mean two points with a straight
line whose slope is less than zero, implying that MTEN is optimal for global
training processes.

3.7 Experiment VI Number of Tasks in MTFL

Final key issue to MTFL models is to explore the sharing knowledge between
multiple tasks. The common method is to propose an assumption and then trans-
form into a constraint and put into an optimization function. But whether this
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Fig. 3. Histograms of the effect of different numbers of tasks on model performance.

assumption relationship is worth scrutinizing needs to be paid more attention.
Therefore, several sets of experiments were designed to test the validity of this
relationship. We carried out four sets of experiments using from two to five
tasks together to build MTFL model. The purpose of the experiment is to find
whether the performance of the model can be improved under a certain task
relationship. The results were based on 50 iterations of experiments on different
splits of data with 9:1 using 5-fold cross validation. Three algorithms (Ridge,
Lasso, MTEN) were conducted in each group for comparison. The results are
shown in the Fig. 3. The finding shows that:

– As the number of tasks in MTL increases, the accuracy gains of MTL models
in AD progression prediction become more obvious. This proves the effective-
ness of multi-task learning.

– At 3 or 4 tasks were considered, the errors of the Lasso and MTEN are
small. This may be due to the fact that the core element of structure-based
regularization of MTFL is the use of L1norm. Due to the high similarity
between tasks, there is thus less complementary information between tasks,
i.e., fewer tasks do not yield significant performance gains.

– The discrepancy results is most obvious when the five tasks is considered
simultaneously in one model. Result implies that the sharing knowledge
between multiple tasks are effective. Noting that the tasks error also increase,
this may be due to a non-linear relationship of MRI features and cognitive
scores in the late stage of AD progression.
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4 Conclusion

Early intervention of AD may enable clinicians to better monitor disease progres-
sion and extend patient longevity. In this study, we introduce RMFL approach
to effectively model and predict AD progression. The model is capable of pre-
dicting AD progression with high accuracy, even in scenarios characterized by
missing data, data scarcity, or reliance on single MRI inputs. We further cor-
roborate the efficacy of the RMFL through rigorous validation across various
complex experimental settings. The results show that the RMFL retains sta-
bility and interpretability while exhibiting superior performance as the number
of tasks increases. This method offers new insights into the role of modeling
chronic disease progression and thus may assist in the discovery of more signifi-
cant biomarkers in future research.
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A Lasso and multi-task lasso

Fig. 4. A comparison of models built by Lasso or a Multi-task Lasso. White block
indicates that the parameter value of the position is zero, otherwise, non-zero positions
indicated by different colors are used.



RMFL for Modelling and Predicting AD Progression 65

B Pipeline

Fig. 5. Pipeline of empirical protocol design.

C Repeated experiments times

Fig. 6. Evaluation results of repeated experiments times.
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D Evaluation indicators

Table 2. The result based on different evaluation indicators

Ridge Lasso MTEN
cv: nMSE
nMSE 2.779 ± 0.177 0.718 ± 0.137 0.629 ± 0.077
wR 0.516 ± 0.043 0.630 ± 0.049 0.677 ± 0.049
BL rMSE 1.805 ± 0.232 1.803 ± 0.251 1.816 ± 0.286
M06 rMSE 2.345 ± 0.337 2.132 ± 0.293 1.962 ± 0.182
M12 rMSE 2.393 ± 0.537 2.393 ± 0.385 1.966 ± 0.312
M24 rMSE 3.087 ± 0.633 3.087 ± 0.572 2.345 ± 0.400
M36 rMSE 4.924 ± 0.751 3.924 ± 0.683 3.232 ± 0.550
cv: wR
nMSE 2.783 ± 0.072 0.712 ± 0.192 0.750 ± 0.269
wR 0.514 ± 0.050 0.667 ± 0.043 0.710 ± 0.041
BL rMSE 1.702 ± 0.225 1.813 ± 0.291 2.112 ± 0.329
M06 rMSE 2.293 ± 0.218 2.109 ± 0.312 2.059 ± 0.309
M12 rMSE 2.385 ± 0.425 2.040 ± 0.296 2.092 ± 0.330
M24 rMSE 3.975 ± 0.648 2.570 ± 0.470 2.579 ± 0.809
M36 rMSE 4.635 ± 0.577 3.741 ± 1.118 3.528 ± 0.888
cv: rMSE
nMSE 2.788 ± 0.091 0.684 ± 0.194 0.630 ± 0.007
wR 0.522 ± 0.044 0.648 ± 0.062 0.691 ± 0.042
BL rMSE 1.776 ± 0.229 1.823 ± 0.293 1.879 ± 0.277
M06 rMSE 2.275 ± 0.348 1.996 ± 0.262 1.943 ± 0.208
M12 rMSE 3.523 ± 0.543 2.133 ± 0.272 1.907 ± 0.243
M24 rMSE 4.180 ± 0.411 2.424 ± 0.544 2.563 ± 0.515
M36 rMSE 4.788 ± 0.556 3.345 ± 0.596 3.149 ± 0.584
cv: MSE
nMSE 2.765 ± 0.057 0.650 ± 0.087 0.613 ± 0.132
wR 0.527 ± 0.032 0.658 ± 0.039 0.684 ± 0.039
BL rMSE 1.806 ± 0.218 1.748 ± 0.148 1.738 ± 0.252
M06 rMSE 2.304 ± 0.354 1.952 ± 0.234 2.059 ± 0.267
M12 rMSE 2.338 ± 0.486 2.083 ± 0.261 1.992 ± 0.236
M24 rMSE 3.138 ± 0.759 2.689 ± 0.541 2.472 ± 0.576
M36 rMSE 3.876 ± 0.597 3.391 ± 0.645 3.228 ± 0.579
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