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Abstract. In the era of the Internet of Things (IoT), the retrieval of
relevant medical information has become essential for efficient clinical
decision-making. This paper introduces MedFusionRank, a novel app-
roach to zero-shot medical information retrieval (MIR) that combines
the strengths of pre-trained language models and statistical methods
while addressing their limitations. The proposed approach leverages a
pre-trained BERT-style model to extract compact yet informative key-
words. These keywords are then enriched with domain knowledge by link-
ing them to conceptual entities within a medical knowledge graph. Exper-
imental evaluations on medical datasets demonstrate MedFusionRank’s
superior performance over existing methods, with promising results with
a variety of evaluation metrics. MedFusionRank demonstrates efficacy in
retrieving relevant information, even from short or single-term queries.

Keywords: medical information retrieval · Internet of Things ·
natural language processing · clinical decision-making · medical
knowledge graph

1 Introduction

The widespread adoption of the Internet of Things (IoT) has enabled the col-
lection of large amounts of medical text data. By using IoT to identify patients,
transfer information to central databases, and search for relevant medical texts
such as electronic health records (EHRs) and disease-related papers, we can
improve the efficiency of treatment procedures and therapeutic outcomes [8,19].
For instance, the MIMIC-III [12] and MIMIC-IV [11] critical care medical
databases use IoT systems to collect structured clinical data and texts. These
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medical texts have become the foundation for medical natural language process-
ing, serving as corpora for pre-training large language models and embeddings
[1,16,32]. Additionally, the use of IoT in healthcare has the potential to revo-
lutionise patient care by providing real-time monitoring and personalised treat-
ment plans based on individual patient data. This can lead to improved patient
outcomes and reduced healthcare costs [7].

A key challenge in healthcare is enabling real-time, personalised clinical
decision-making beyond traditional tasks like diagnostic classification and out-
come prediction. Effective clinical decision support fundamentally relies on the
ability to retrieve relevant information from massive amounts of unstructured
EHR data. While earlier work in medical information retrieval relied on statisti-
cal methods like BM25 [23] with Term Frequency-Inverse Document Frequency
(TF-IDF) features, these techniques struggled with the complexity and spar-
sity of medical text. Medical notes exhibit pervasive synonym phenomena, with
different terms like “hypertension” and “high blood pressure” denoting identical
concepts. Abbreviations and shorthand introductions are also ubiquitous, posing
difficulties for simple lexical matching.

Recently, pre-trained large language models (LLMs) like BERT [6], Alpaca
[27], and Llama [29] have shown promise by learning generalisable represen-
tations of medical language. However, their computational overhead makes
deployment directly onto resource-constrained IoT devices impractical. Training
with massive LLMs requires substantial data, computing power, and memory
exceeding the available on-device. Therefore, an open challenge is adapting the
strengths of LLMs for medical search on embedded IoT systems. More efficient
methods are needed to extract knowledge from LLMs and make it accessible for
medical information retrieval on hardware-friendly architectures.

To address the aforementioned challenges, we propose a novel zero-shot infor-
mation retrieval approach that integrates the strengths of statistical methods
and pre-trained LLMs while mitigating their limitations. Our key insight is to
leverage a pre-trained BERT-style model to extract compact yet informative
keywords. These keywords are then enriched with domain knowledge by link-
ing them to conceptual entities within a medical knowledge graph. Our method
has demonstrated promising results on two benchmark datasets, outperforming a
range of existing Information Retrieval models across various evaluation metrics.

2 Related Work

Medical information retrieval (MIR) aims to retrieve relevant medical data from
sources such as EHR. However, it faces distinct challenges that extend beyond
conventional information retrieval (IR) - complex medical terminology, hetero-
geneous data, privacy constraints, and difficulties in system evaluation. While
leveraging core IR techniques, MIR has specific requirements arising from the
medical domain. In this section, we provide an overview of key IR methods that
facilitate effective MIR.
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2.1 Statistical Information Retrieval

Statistical information retrieval (Statistical IR) is a foundational approach that
leverages probabilistic and statistical models to quantify the relevance of docu-
ments to user queries. This allows ranking search results by estimated relevance
based on mathematical models. Popular statistical IR techniques, including vec-
tor space model [3], probabilistic retrieval model [25], and Okapi BM25 [23] rely
heavily on weighted keyword matching between query and document terms. They
estimate relevance using statistical signals like TF-IDF, and length normalisa-
tion. While very effective for many search tasks, these lexical similarity models
have limitations. Specifically, they cannot account for semantic matching, failing
to recognise synonyms and antonyms.

2.2 Neural Information Retrieval

Neural information retrieval (Neural IR) is a modern paradigm that leverages
neural networks and deep learning techniques to overcome the limitations of
statistical IR models. Neural IR models can be classified into two main types:
first-stage retrieval methods and re-ranking methods.

First-Stage Methods. First-stage methods aim to directly retrieve relevant
documents from a large collection using neural networks. These methods can be
further categorised into sparse retrieval methods and dense retrieval methods.
Sparse retrieval methods use sparse word representations, such as bag-of-words
or TF-IDF, as inputs to neural networks and learn to rank documents based on
their similarity to queries [5,15]. Dense retrieval methods, on the other hand,
use dense vector representations, such as word embeddings or contextual embed-
dings, as inputs to neural networks and learn to map queries and documents into
a common semantic space where their relevance can be measured by distance
metrics [10,14,24].

Re-ranking Methods. Re-ranking methods use neural networks to refine
the initial ranking results produced by a base retriever, such as BM25 or
a sparse/dense retriever. These methods can be categorised into two main
approaches: 1)Re-ranking with sentence embeddings: These methods treat each
document independently as an instance and learn to score its relevance to the
query [22]. They derive vector representations for the query and each document
in a separate manner, compare their embeddings and assign relevance scores. 2)
Re-ranking using a cross-encoder: These methods consider each query-document
pair as an instance and learn to compare their relative relevance [31]. The cross-
encoder jointly models the query and document to capture semantic matching.

3 Methodology

We show the overall architecture of our proposed method in Fig. 1. Specifically,
it first extracts keywords from medical documents to capture semantic con-
text. Then, medical embeddings for each keyword are constructed based on the
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Fig. 1. The overall architecture of our proposed method.

domain-specific knowledge graph. The query and document keywords are com-
pared in the medical embedding space and their similarity scores are aggregated
to identify relevant information across query terms for retrieval.

3.1 Document Keyword Extraction

Given the inherent complexity of documents within the medical domain, often
encompassing multiple aspects, the necessity of pre-processing before conduct-
ing IR becomes evident. One such approach involves the extraction of keywords
that aptly describe and summarise the content. By utilising a contextualised
attention-based pre-trained language model, the contextual information can be
effectively harnessed to discern the document’s relatively significant sections.
Therefore, we utilise the RoBERTa [18] model for the initial encoding of the cor-
pus documents. RoBERTa is a state-of-the-art language model that has demon-
strated exceptional performance in various natural language processing tasks.
Specifically, when dealing with a document d comprised of k words, denoted as
d = {d1, ...dk}, we leverage the RoBERTa encoding function, f(·; θ), to transform
all the words into a coherent and meaningful semantic space, i.e.

{h<s>,hd1 , ...hdk
,h</s>} = f({< s >, d1, ...dk, < /s >}; θ) (1)

where hdi
is the representation of the i-th word in RoBERTa embedding space.

< s > and < /s > are two special tokens indicating the start and the end
positions in the document, respectively. This process enables us to capture the
intricate contextual relationships and nuances present within the document.

The comprehensive essence of the document is commonly encapsulated within
the hidden state of the special token < s >; in order to estimate the signifi-
cance of individual words within the document, we compute the cosine similarity
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between the representation of the special token < s > and the representation of
each word. We take the top K ranking words based on their similarity scores, and
extract those as the key keywords for the document d. This process is articulated
as follows:

d̃ = top K
di∈d

[Sim (hdi
,h<s>)] (2)

where d̃ is the keyword set for document d, Sim(·) is the cosine similarity func-
tion. Based on our observation, the top 20 keywords can effectively capture the
core semantic content of a document. Hence, we set the number of extracted
keywords (K) to 20.

3.2 Medical Embedding Construction

In our work, the challenge posed by zero-shot IR is significant, primarily due to
the absence of any prior exposure of the model to the medical domain. In this
case, a crucial approach involves enhancing each keyword in the keyword set d̃
with relevant background information. This enrichment encompasses additional
context, definitions, and pertinent details sourced from the medical field. In this
endeavour, the Medical Subject Headings (MeSH) [17] knowledge graph emerges
as an exceptional resource. MeSH is a meticulously structured and high-quality
knowledge graph that encompasses a vast spectrum of medical concepts along
with their relationships. For instance, the relation“treatment” connects the two
concepts “cancer” and “chemotherapy”. This indicates that chemotherapy is a
type of treatment commonly used for cancer patients.

To harness the knowledge from MeSH, a method called Node2Vec [9] can be
used to generate medical embeddings. The main idea is to treat this graph as
a network, where nodes are concepts and edges represent relationships between
concepts [32]. This method utilises random walks and learns latent representa-
tions of nodes that maximise the probability of the sampled walks. The objective
function J for constructing the medical embeddings can be written as follows:

J = max

⎡
⎣ 1

T

T∑
i=1

∑
vj∈C(vi)

log p (vj | vi)

⎤
⎦ (3)

where T is the number of the MeSH concepts and C(vi) is a set containing sur-
rounding words of vi based on random walks in the knowledge graph. For this
study, alignment between the keyword set d̃, the query q, and concepts in the
MeSH knowledge graph were performed by matching keywords with concept
names. This simple lexical approach to entity linking was chosen for its simplic-
ity. However, it has known limitations, such as ambiguity and lack of semantic
matching. Future work should explore more sophisticated techniques to deal with
the issue.
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3.3 Retrieval with Medical Knowledge

By acquiring all the medical embeddings for document keywords from a corpus
in the MeSH knowledge graph embedding space through an offline process, we
can retrieve relevant information for each word from a given human-generated
query in an efficient manner. In particular, each query term can focus on each
word in the document to identify the most relevant information in the document
that can be retrieved by that specific query word. We aggregate all the relevance
scores for each query term during the retrieval process, i.e.

s(q, d) =
|q|∑
i=1

|d̃|
max
j=1

[
vqi � vdj

]
(4)

where |q| and |d̃| are the number of words in the query and document keyword
set, respectively. � is the dot product operation symbol. vqi and vdj

are corre-
sponding medical embeddings for the i-th word in the query and j-th word in
the document keyword set.

One clear limitation of Retrieval with Medical Knowledge is the equal weight-
ing given to documents whose keyword sets contain query terms, regardless of
term frequency. Despite the inclusion of background knowledge corresponding
to each word in the document’s keywords, factors such as term frequency should
also be considered. BM25 [23] is a commonly used unsupervised ranking func-
tion, incorporating lexical aspects and statistical information to improve scoring.
Leveraging medical embeddings enables the retrieval of candidate-relevant docu-
ments while applying BM25, which can further refine the ranking of those initial
results by incorporating term frequency statistics. Therefore, we propose fusing
the scores yielded by both approaches to improve overall performance, i.e.

ŝ(q, d) =

⎧
⎨
⎩

s(q, d) + s′(q, d) ∃s′(q, d)

s(q, d) �s′(q, d)
(5)

where s′(q, d) represents the BM25 score assigned to a given query q and docu-
ment d. ŝ(q, d) is the final score after the fusion.

4 Results and Evaluation

We evaluated the performance of our proposed models on two medical datasets:
NFCorpus [2] and SCIFACT [30]. Both focus on retrieving medical abstracts rel-
evant to search queries. The abstracts are written in technical medical terminol-
ogy, mostly from PubMed. For each dataset, a range of metrics, including Mean
Reciprocal Rank (MRR), Precision, normalised Discounted Cumulative Gain
(nDCG), Precision (P) and Recall (R), was employed for a thorough evaluation.
Our model was compared against several first-stage retrievers and BM25-based
re-rankers to assess its effectiveness.
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4.1 Baseline Models

First-Stage Retrievers

– BioLinkBERT [13] and S-BERT [22]: These are two BERT-based models
that generate sentence embeddings using siamese networks. While S-BERT
was pre-trained on a general domain question-answering dataset to create
universal semantic embeddings, BioLinkBERT utilises contrastive learning
on medical texts from PubMed to produce embeddings specialised for the
medical domain.

– DocT5Query [20]: It leverages a pre-trained T5 [21] model to generate syn-
thetic queries based on the document for text enrichment before indexing.

– DeepCT [4]: It employs the BERT model to estimate the weight of each
word in the context of the document. These BERT-derived weights are then
used to modify the term frequencies of the words.

– BM25 [23]: It is a traditional unsupervised ranking function. The basic idea
is that a more relevant document will contain more of the query terms, and
multiple occurrences of a term can indicate higher relevance.

BM25-Based Re-Rankers

– S-BERT [22]: We used the same S-BERT model as described previously to
re-rank the top 100 candidate documents retrieved in the first-stage for each
query.

– Cross Encoder [31]: It passes both the query and document sentence simul-
taneously to a Transformer network, producing an output value between 0 and
1, which indicates the relevance of the sentence pair. In reference to a study
by Thakur et al.[28], it is highlighted that MiniLM demonstrates the best
performance. Therefore, we evaluate the performance when using MiniLM as
the Cross Encoder for re-ranking.

4.2 Main Results

The main retrieval results are illustrated in Table 1. It demonstrates that
BM25 is an effective baseline for zero-shot IR compared with bi-encoders such
as S-BERT and BioLinkBERT. BM25 ranking alone achieves reasonable per-
formance, which can be further improved by re-ranking using a cross-encoder
model. This two-stage ranking pipeline achieves the best MRR results on the
NFCorpus dataset. However, re-ranking based on BM25 has limitations stem-
ming from BM25’s dependence on exact term matching, which can cause relevant
documents to be excluded from consideration during later re-ranking stages.

A noteworthy scenario emerged where the precision of MedRetriever at the
top 1000 exhibited favourable results among all the baseline retrievers. In con-
trast, the nDCG at the top 10 demonstrated comparatively suboptimal per-
formance. This disparity between precision and nDCG metrics suggests that
although the MedRetriever is capable of retrieving a fair proportion of relevant
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Table 1. Performances of first-stage retrievers, BM25-based re-rankers and our pro-
posed models. †The results were cited from [28]. ∗MedRetriever refers to our proposed
method as a standalone approach, distinct from its fusion with BM25.

Method NFCorpus SCIFACT

MRR P@10 nDCG@10 R@1k MRR P@10 nDCG@10 R@1k

First-stage Retrievers

BioLinkBERT 0.329 0.132 0.173 0.532 0.519 0.076 0.550 0.979

S-BERT 0.501 0.218 0.300 0.574 0.570 0.082 0.596 0.959

DocT5Query† – – 0.328 – – – 0.675 –

DeepCT† – – 0.283 – – – 0.630 –

BM25 0.537 0.233 0.325 0.372 0.635 0.088 0.665 0.980

BM25-based Re-rankers

Cross Encoder 0.591 0.244 0.350 0.250 0.662 0.091 0.688 0.908

S-BERT 0.430 0.170 0.232 0.229 0.539 0.081 0.568 0.864

Our Proposed Models

MedRetriever ∗ 0.499 0.222 0.298 0.644 0.540 0.083 0.581 0.990

MedFusionRank 0.552 0.262 0.357 0.644 0.673 0.094 0.705 0.990

documents overall, it struggles to rank the most relevant documents at the very
top of the list. When we combine scores from two methods, MedRetriever and
BM25, the results consistently outperformed nearly all of the baseline methods
across all evaluation metrics.

4.3 Out-of-Vocabulary Strategy

Table 2. Performances of using different out-of-vocabulary strategies for MedFusion-
Rank

Method NFCorpus SCIFACT

MRR P@10 nDCG@10 R@1k MRR P@10 nDCG@10 R@1k

Prefix Approx 0.552 0.262 0.357 0.644 0.673 0.094 0.705 0.990

CharLSTM 0.553 0.263 0.358 0.643 0.684 0.094 0.713 0.990

To handle out-of-vocabulary (OOV) words, this work incorporates two strate-
gies: Prefix Approximation and a Character-level Long Short-Term Memory net-
work (CharLSTM). Prefix Approximation, originally proposed in [26], identifies
the longest common prefix between an OOV word and in-vocabulary words,
then averages all embeddings sharing that prefix to represent the OOV term.
On the other hand, the CharLSTM learns sequential character-level features of
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in-vocabulary words to construct a non-linear mapping from character sequences
to medical embeddings. As depicted in Table 2, the CharLSTM achieves bet-
ter overall performance compared to Prefix Approximation. This indicates that
modelling the sequential patterns and characters of medical terminology plays a
more vital role in estimating representations for OOV words in this domain.

4.4 Case Study

Table 3. Keywords in the retrieved document based on a single term as query

Query Keywords in retrieved document

zoloft depression depressive antidepressants exercise sertraline

aerobic therapy anxiety treatment medication

therapeutic 50 disorders mental older

effects 67 rating mdd diagnostic

myelopathy spinal sclerotic paraplegia cobalamin spine

vegetarian vegan subacute cervical vitamin

degeneration hypertonia diagnosed reflexia impairment

paresthesias rehabilitative hypotrophy neurogenic diet

To further evaluate the performance of our proposed model, we conducted a
case study using short, single-term queries common in human searches. Statisti-
cal matching models like BM25 often struggle with these sparse queries, as the
single terms may not exist in the corpus. As shown in Table 3, the sample query
terms “zoloft” and “myelopathy” did not appear in any documents. However, our
proposed model successfully retrieved relevant documents with medical concepts
from the knowledge graph, ranking pertinent documents in the top 10 results
for both queries.

In the first example, “zoloft” is an antidepressant medication. Therefore,
“depression”, “depressive”, and “anxiety” are closely connected to “zoloft” since
the medication aims to alleviate the symptoms associated with these conditions.
In another example, “myelopathy” is a spinal cord pathology that can result
from vitamin deficiency, spinal degeneration, or cord compression. The keywords
“spinal”, “spine”, “vitamin” and “degeneration” from the retrieved document
could be relevant to the query.

This case study highlights the potential of our proposed model to improve the
search relevancy of short user queries. Our model effectively utilised associated
medical concepts to match user information needs.

5 Conclusion and Future Work

In this paper, we have presented MedFusionRank, a novel zero-shot MIR app-
roach that integrates the strengths of statistical methods and pre-trained lan-
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guage models. Our key insight is to leverage a pre-trained BERT-style model
to extract compact yet informative keywords. These keywords are then enriched
with domain knowledge by linking them to conceptual entities within a medical
knowledge graph.

Our experiments on two benchmark medical datasets demonstrate that Med-
FusionRank achieves promising results, outperforming a range of existing models
across various evaluation metrics. The case study also reveals MedFusionRank’s
ability to retrieve relevant documents even for short or single-term queries.

There are several exciting directions for future work. First, we plan to expand
the coverage of our medical knowledge graph using more comprehensive knowl-
edge resources. Second, we intend to explore more sophisticated entity-linking
techniques beyond simple lexical matching. Third, to enable deployment on
resource-constrained IoT devices, we will construct a vector database of the
encoded document embeddings and load it directly onto the target hardware.
This will circumvent the need for inference-time encoding and drastically reduce
retrieval latency and memory overhead. Finally, we aim to implement an end-
to-end prototype for real-time clinical decision support on medical IoT devices.

Acknowledgement. We would like to acknowledge the financial support provided
by the Postgraduate Research Scholarship (PGRS) at Xi’an Jiaotong-Liverpool Uni-
versity (contract number PGRS2006013). Additionally, this research has received par-
tial funding from the Jiangsu Science and Technology Programme (contract number
BK20221260).

References

1. Alsentzer, E., et al.: Publicly available clinical Bert embeddings. arXiv preprint
arXiv:1904.03323 (2019)

2. Boteva, V., Gholipour, D., Sokolov, A., Riezler, S.: A full-text learning to rank
dataset for medical information retrieval. In: Ferro, N., et al. (eds.) ECIR 2016.
LNCS, vol. 9626, pp. 716–722. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30671-1 58

3. Christopher, D., Raghavan, P., Schütze, H., et al.: Scoring term weighting and the
vector space model. Introduction Inf. Retrieval 100, 2–4 (2008)

4. Dai, Z., Callan, J.: Context-aware term weighting for first stage passage retrieval.
In: Association for Computing Machinery, SIGIR 2020, pp. 1533–1536. New York,
NY, USA (2020). https://doi.org/10.1145/3397271.3401204

5. Dai, Z., Xiong, C., Callan, J., Liu, Z.: Convolutional neural networks for soft-
matching n-grams in ad-hoc search. In: Proceedings of the Eleventh ACM Inter-
national Conference on Web Search and Data Mining, pp. 126–134 (2018)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Min-
nesota (2019). https://doi.org/10.18653/v1/N19-1423. URL https://aclanthology.
org/N19-1423

http://arxiv.org/abs/1904.03323
https://doi.org/10.1007/978-3-319-30671-1_58
https://doi.org/10.1007/978-3-319-30671-1_58
https://doi.org/10.1145/3397271.3401204
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423


Zero-Shot Medical Information Retrieval via Knowledge Graph Embedding 39

7. Dimitrov, D.V.: Medical internet of things and big data in healthcare. Healthc.
Inf. Res. 22(3), 156–163 (2016)
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