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Abstract. Purpose: The electroencephalography (EEG) signals recor-
ded in clinical settings are usually corrupted by electrooculography
(EOG) artifacts. EEMD-ICA is a commonly used method for removing
EOG artifacts. This study aims at exploring the performance of different
methods of identification of artifactual components under the framework
of EEMD-ICA.

Methods: This study is conducted in a semi-simulated way. A EEG
dataset covering signal of SNR from -1 to 2 is generated based on the
EEG and EOG segments from two public datasets. Characterized by the
artifactual components identification method, EEMD-ICAkurt, EEMD-
ICAentropy, EEMD-ICAautocor and EEMD-ICAeogcor are proposed and
evaluated in terms of Normalized Mean Square Error (NMSE), Cross
Correlation (CC) and Structural Similarity Index (SSIM) on this dataset.

Results: EEMD-ICAautocor outperforms other three approaches and
demonstrates the strongest versatility. Besides successfully eliminating
EOAs from EEG signals, it loses the least neuron activities.

Conclusion: Although performance metrics improve as SNR
increases, the loss of structure information also improves (SNR > 1).
In practice, it is vital to estimate the SNR of data before applying these
approaches because when SNR is high, these methods may have a coun-
terproductive.
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1 Introduction

Analyzing neural activities using Electroencephalography (EEG) plays a impor-
tant role in neuroscience. It provides a non-invasive way to understand brain
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dynamics and pathology. Clinically, EEG is crucial in the study and diagnosis
of extensive kinds of diseases such as meningitis, encephalitis and brain para-
sites. EEG with iconic waveform can make doctors diagnose with clinical symp-
toms. In the therapeutic setting, EEG can be used to identify and treat epilepsy
[15], research sleep and identify insomnia. In cognitive research, EEG is used to
investigate cognitive processes like attention, memory, and emotion as well as
human-computer interfaces like brain-computer interfaces (BCI).

Artifacts are undesired signals that get mixed into the data collected from the
recording system, which can negatively impact the quality of the EEG signal and
make its analysis more challenging especially on wearable devices [16], making it
difficult for doctors to identify and use [14]. It may cause difficulties in reading,
which make the diagnosis difficult to determine, and even lead to diagnostic
errors. Even worse, some sophisticated computer instruments cannot detect EEG
precisely under the interference of artifacts artifacts. The artifacts also bring
difficulties of artificial intelligence in this field [23,26,27].

Generally, artifacts in EEG can be categorized into two types: non-
physiological and physiological. Non-physiological artifacts are caused by sub-
jects’ misconduct, such as electrode displacement and body movement during
recording. By providing proper subject instructions and experimental setup, non-
physiological artifacts can be reduced [12]. Nevertheless, physiological artifacts
cannot be avoided during EEG data collection. Physiological artifacts mainly
refer to ocular artifacts, cardiac artifacts, and muscle artifacts [18]. One of the
most common artifacts influencing the quality of EEG signals are the EOG
Artifacts (EOAs), a kind of activities whose magnitude is usually much higher
than that of EEG signals. Physiological artifacts can hardly be avoided during
recording because they arise from the normal physiological activities of subjects.

As a result, identifying and removing artifacts, whether in clinical diagnosis
or practical applications, is the most crucial prepossessing step before further
analysis. Regression methods are the conventional approach for reducing artifacts
from EEG [10], while Blind Source Separation (BSS) is one of the most com-
monly used techniques for removing physiological artifacts [8,12]. Blind source
separation is a family of algorithms aiming at separating a set of source signals
S from a set of signals formed by the mixture of S without the aid of information
about S or the mixing process. Independent component analysis (ICA)-based
methods are most commonly used for artifact removal [4,5] among BSS algo-
rithms. Empirical Mode Decomposition (EMD) is another signal decomposition
algorithm commonly used in EEG artifact removal and it is often combined with
ICA in last decade, i.e., the EEMD-ICA [13].

EEMD-ICA is a kind of hybrid artifact removal technique [12]. The nature of
EEMD allow this method to be used on both single channel and multi-channel
EEG signal. Strictly speaking, EEMD-ICA is merely a tool for decomposing sig-
nals, and the most crucial step is to identify artifactual components. Therefore,
this study aims at exploring the performance of different methods of identifica-
tion of artifactual components under the framework of EEMD-ICA. By compre-
hensively testing four different ways of artifactual component identification, it
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is indicated the method based autocorrelation has the best performance. This
study also draw a preliminary conclusion that, from the perspective of perfor-
mance metrics, these artifact removal methods may have a counterproductive
when SNR is high.

2 Methods

In this section, we first outline the various techniques employed in the paper and
then we will describe the artifactual components identification method.

2.1 Blind Source Separation (BSS)

Blind source separation (BSS) is the one of the most used techniques to remove
physiological artifacts [12,19]. Blind source separation is a family of algorithms,
aiming at separating a set of source signals S from a set of signals formed by
the mixture of S without the aid of information about S or the mixing process.
Let X be the multi-channel EEG signals with linear mixture S, A be arbitrary
mixing matrix, then mathematically,

X = AS, (1)

in this way, an un-mixing matrix W can be generated by BBS to separate original
sources,

Ŝ = WX (2)
where is the W is the estimation of the original source.

Numerous BSS techniques, such as independent component analysis (ICA),
principal component analysis (PCA), canonical correlation analysis (CCA), and
Empirical Mode Decomposition (EMD), have been developed to eliminate arti-
facts from EEG data.

2.2 Independent Component Analysis (ICA)

Independent component analysis (ICA) based methods are dominant for artifact
removal [4,5] among BSS algorithms. ICA separates sources of signal from the
raw signal and classifies them into the corresponding independent components
(ICs). Raw signal can also be restored from ICs via Inverse-ICA. As shown in
Fig. 1, after unmixing the raw multi-channel EEG signal into n ICs. Components
which are not from neuronal activity will be rejected. Artifact- free EEG can be
got via applying Inverse-ICA to remaining ICs.

Although ICA is a powerful tool for artifact removal, it has two major con-
straints. (a) ICA by its nature requires the channel number of input signal to
be larger than the number of sources. If this requirement is not met, it may fail
to separate the artifacts from the neural components [8]. (b) To generate reli-
able decomposition, ICA requires the input signal to have adequate samples. To
undergo ICA decomposition on an EEG recording, it is presently recommended
that the recording should has at least 30∗( the number of input channels )2 data
samples [7].
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Fig. 1. The general design Of ICA-based artifact removal method. The artifact-free
signal is recovered from remaining ICs after rejecting artifactual ones.

2.3 Empirical Mode Decomposition (EMD)

Empirical Mode Decomposition (EMD) is another BSS algorithm used in EEG
artifact removal. EMD receives single channel signal and decompose it into intrin-
sic mode functions (IMFs) and a residual in an iteration way:

x(t) =
N∑

i=1

imfi(t) + rn(t) (3)

where rn is the residual when N IMFs have been extracted. The process of
extracting IMFs stop when halting requirements are achieved or target number
of IMFs have been got. Compared with other signal decomposition methods like
ICA and PCA, EMD is a more robust method since it has no requirements on
input signal. Although EMD can be used independently [11], it is often used to
expand the channel number of EEG signal. So that the EEG record with few
channels can also work with ICA and CCA [3,24].

One disadvantage of the EMD method is its susceptibility to noise, which
leads to mode mixing issues [22].In the introduction of the specifics of the
enhanced-EMD (EEMD) method [21], the robustness of EMD was increased
by using the average of many ensembles of EMD as the ideal IMFs. In some cir-
cumstances, the remaining IMFs that have been rebuilt can be introduced into
a separate environment for artifact removal to improve the quality of the EEG
data.

2.4 EEMD-ICA

The idea of combining EEMD and ICA was first introduced to the task of EEG
artifact removal in 2010 [13]. The research team behind this paper explored the
theoretically best performance of EEMD-ICA yet their method can hardly be
used in practical situation. Multiple improved methods have been put forward
during past decades [1,24] to make EEMD-ICA an automatic artifact removal
method. In spite of having various variants, the general idea of this method
remains unified. As shown in Fig. 2, the paradigm is concise - Decompose raw
signal, reject artifactual components and reconstruct artifact-free EEG signal.
The main difference between variants of EEMD-ICA lies in the rules of compo-
nent rejection, in other words, the method to identify artifactual components.
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Fig. 2. The framework Of EEMD-ICA artifact removal method. This Figure consists
of four committed steps (1) Decomposition of neural data with EEMD. (2) Artifact
concentration with ICA. (3) Identification and rejection of artifactual components. (4)
Signal reconstruction with remaining components.

2.5 Description of Simulated EEG Data

In this paper, the generation of simulated EEG data is based on EEG and EOG
segments from two public datasets [9,25]. The EOG artifacts is considered as a
combination of Horizontal EOG (HEOG) and Vertical EOG (VEOG) [6]:

ArtifactEOG = μxHEOG + εxV EOG (4)

where μ and ε respectively represents the contribution of HEOG and VEOG.
Sufficient kinds of EOG artifacts can be generated by adjusting the coefficients,
HEOG and VEOG. The artifactual EEG signal EEGContaminated is then gen-
erated by mixing up ArtifactEOG and EEGPure:

EEGContaminated = EEGPure + a(μ · HEOG + ε · V EOG) (5)

where a represents the contribution of artifact. Hence, the signal to noise ratio
(SNR) of EEGContaminated can be denoted as:

SNR = 10 log10
RMS(EEGPure)

RMS(a · ArtifactEOG)
(6)

When EEGPure and ArtifactEOG are determined. The SNR of generated
EEGContaminated can be controlled by adjusting coefficient a.

3 Identification of Artifactual Components

This study aim at exploring the performance of four kinds of EEMD-ICA related
artifact removal method. Characterized by the artifactual components iden-
tification methods, these approaches are denoted as EEMD-ICAkurt, EEMD-
ICAentropy, EEMD-ICAautocor and EEMD-ICAeogcor
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3.1 Kurtosis and Entropy

Abnormalities, like blinks and discontinuities, are normally characterized by a
peaky distribution of potential values. Kurtosis and Entropy can capture these
characteristics. EEMD-ICAkurt and EEMD-ICAentropy respectively use kurto-
sis and entropy as indicator of artifactual component. ICs with highly positive
kurtosis or entropy are identified as artifacts. Similar practices were common in
previous studies [3,5,24]. The definition of kurtosis is unique, while there are
multiple types of entropy, e.g., Approximate Entropy, Sample Entropy, Fuzzy
Entropy. Specifically, the entropy applied in this study is Sample Entropy [17].

3.2 Autocorrelation

Autocorrelation is used to describe the correlation degree of data itself in differ-
ent periods, that is, to measure the influence of historical data on the present:

ACF (k) = ρk =
Cov (yt, yt−k)

Var (yt)
(7)

With the independent variable k representing the lag, the autocorrelation func-
tion (ACF) of a signal thus reflects its correlation with itself at different lags.
In accordance to previous study [2], ocular artifacts are assumed to show higher
autocorrelation. As shown in Fig. 3, The ACF of artifactual components in this
study has obvious features. In the proposed EEMD-ICAautocor method, if the
ACF of IC has higher energy, this IC is identified as artifactual component.

Fig. 3. An example of Autocorrelation Functions (ACFs) of ICs decomposed by EEMD-
ICA. The ACF of IC 0, 2, 6, 7 obviously shows feature of tailing off to zero, indicating
that these three components correspond to EOG artifact.
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3.3 Correlation with EOG Reference Channel

When it comes to rejecting ocular artifact with BSS-based method, EOG Ref-
erence Channel is often introduced. Since BSS-based method can concentrate
artifact into IC, it is assumed that the ICs correspond to ocular artifact have
higher correlation with EOG reference channel. If EOG is not available, the EEG
channel near the eyes can also be used as EOG reference channel. In a study
that combine CCA and MEMD for EEG artifact removal, correlation with EOG
reference channel is used to identify EOG artifacts [19]. In the proposed EEMD-
ICAeogcor method, correlation of each IC of this EEG segment with EEGPure

is calculated. The IC having higher correlation with original signal is identified
as artifactual component (Fig. 4).

Fig. 4. An example of EEG simulation. (a) a segment of HEOG (b) a segment of
VEOG (c) An example of ArtifactEOG generated using Eq. 4 with μ = 1, ε = 1 (d)
An example of EEGContaminated generated using Eq. 6 with SNR = -1

4 Results and Discussion

To evaluate the performance of 4 artifact removal methods, we simulated 30
groups of single-channel corrupted EEG segments and each group contained 50
EEG segments. EEG segments within the same group were controlled to share
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unified SNR via the method in Sect. 2.5. To measure the influence SNR could
have on the performance of artifact removal methods. Data of SNRs ranging
from -1 to 2 by step 0.1 (except 0) were generated for testing. To comprehen-
sively quantify the performance, we use three kinds of performance metrics. The
Normalized Mean Square Error (NMSE) is the most commonly used metric for
quantifying the difference between ground truth x and predicted value x̂.

NMSE =
‖x − x̂‖22

‖x‖22
(8)

In this study, x is the artifact-free data EEGPure, x̂ is the corresponding data
reconstructed from the simulated artifactual signal EEGAfter.

Another two metrics are the Cross Correlation (CC) and Structural Similarity
Index (SSIM) [20]:

CC(x, x̂) =
Cov(x, x̂)

σxσx̂
=

σxx̂

σxσx̂
(9)

SSIM(x, x̂) = (
2μxμx̂

μ2
x + μ2

x̂

) · ( 2σxσx̂

σ2
x + σ2

x̂

) · ( σxx̂

σxσx̂
) (10)

where μx, μx̂ are local means and σx, σx̂ are standard deviations. σxx̂ is the
covariance between x and x̂. To better evaluate the contribution of artifact
removal approaches, the variation of each metric is also taken into account. The
results for every aritfactual component identification approach are presented in
Fig. 5.

Among the four methods, EEMD-ICAautocor has the best performance in
terms of all metrics. EEMD-ICAentropy is slightly weaker than EEMD-ICAautocor

while EEMD-ICAkurt and EEMD-ICAeogcor have significant limitations.
As shown in Fig. 5 (a), the EEG data reconstructed through EEMD-

ICAautocor and EEMD-ICAentropy remains a generally low NMSE, indicating
higher similarity between reconstructed EEG and EEGPure. However, EEMD-
ICAentropy is considered to be worse than EEMD-ICAautocor for two reasons. The
overall NMSE of EEMD-ICAentropy is higher and its NMSE curve has intersec-
tion with baseline curve. The baseline curves represents the metrics calculated
from EEGContaminated and EEGPure, showing the values of the metrics when
we were doing nothing. Having an intersection with baseline curve indicating
that after the intersection point, applying this method is worse than doing noth-
ing in terms of this metric. This intersection is called “critical point”. For the
figures in the upper row of Fig. 5, critical point is the intersection between curve
and baseline curve. For the figures in lower row, critical point is the intersection
between curve and horizontal zero line.

EEMD-ICAkurt and EEMD-ICAeogcor has a close overall performance in
terms of NMSE while EEMD-ICAkurt has an advantage that its NMSE criti-
cal point appears later In terms of CC, although the performance of EEMD-
ICAkurt and EEMD-ICAeogcor continuously improves with the increase of SNR,
such trend is highly deceptive. As shown in Fig. 5 (e), the curves of these two
methods are totally below horizontal 0 line and keep decreasing, indicating that
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Fig. 5. The performance measures between different SNR for EEMD-ICAkurt, EEMD-
ICAentropy, EEMD-ICAautocor and EEMD-ICAeogcor, SNR of the synthetic data
ranged from -1 (dB) to 2 (dB) with step 0.1 (dB). The diagrams in left column show
the value of performance metrics and the diagrams in right column show the variation
of performance metrics caused by applying different artifact removal approaches. (a)
NMSE (b) ΔNMSE (c) CC (d) ΔCC (e) SSIM (f) ΔSSIM
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6. A case of the artifactual components (ACs) detection (SNR=1.5). All four
approaches were applied to the same contaminated EEG segment (SNR = 1.5). (a), (c),
(e), (g) are ACs detected by EEMD-ICAautocor, EEMD-ICAkurt, EEMD-ICAentropy,
EEMD-ICAeogcor. (b), (d), (f), (h) are lost neuron activities. In this case, the power
of neuron activities lost by EEMD-ICAeogcor is about twice as much as the power of
neuron activities lost by EEMD-ICAautocor

the two methods make negative contributions to CC under all SNR in this study.
For EEMD-ICAautocor and EEMD-ICAentropy, their performance in terms of CC
are highly close. But their contribution to CC turn negative at around SNR =
1.0, indicating these two methods may not be suitable for high SNR signal.
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As shown in 5 (c), (f), four approaches all cause decrease of SSIM under most
SNR. This may mean that EEMD-ICA based artifact removal process inevitably
lead to loss of structural information. This is probably because the ICs identified
as artifacts still contains components from normal neural activities. Relatively
speaking, EEMD-ICAautocor performs best in terms of SSIM. As presented in
Fig. 6, EEMD-ICAautocor has the least neuron activities loss. Considering NMSE,
CC and SSIM comprehensively, EEMD-ICAautocor is the artifact removal app-
roach of best performance among the four proposed approaches.

5 Conclusion

This study developed four EEMD-ICA based approaches to artifact rejection
for noisy neural data: EEMD-ICAkurt, EEMD-ICAentropy, EEMD-ICAautocor

and EEMD-ICAeogcor. These approaches share the signal decomposition proce-
dure while differ in terms of artifactual components identification method. The
effectiveness of proposed approaches were examined with semi-simulated data.

When using NMSE as the metric, EEMD-ICAautocor significantly outper-
formed the other two approach. It can almost be twice as good as EEMD-
ICAentropy. When the SNR was high, the difference between the four approaches
was reduced in terms of absolute NMSE value. However, all methods except
EEMD-ICAautocor shows negative contribution to NMSE when SNR was high.
When SNR is larger than 1.0, EEMD-ICAeogcor resulted worse NMSE than
doing nothing while such phenomenon appeared when SNR is larger than 1.5 for
EEMD-ICAentropy and EEMD-ICAkurt. It is indicated that EEMD-ICAautocor

shown best versatility.
When using CC as the metric. The performance of EEMD-ICAeogcor and

EEMD-ICAkurt were unacceptable for their negative contribution to CC under
all SNR. While EEMD-ICAautocor and EEMD-ICAentropy had close perfor-
mance. In terms of CC, these two approaches are only suitable for data with SNR
being less than 1.0. When using SSIM as the metric, all the four approaches have
poor performance. Although performance improved as SNR increased. These
approaches contributed negatively to SSIM.

Generally speaking, EEMD-ICAautocor and EEMD-ICAentropy are effective
in artifact removal. However, a significant drawback of these methods is that
they show worse performance than the baseline when the SNR is high, limiting
their scope of application to severely contaminated EEG signal.

Effectiveness of the four artifact rejection approaches had been evaluated
and these approaches can act as prepossessing and improve the performance of
following task. However, it is vital to estimate the SNR of data before apply-
ing these approaches because when SNR is high, these methods may have a
counterproductive effect.
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