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Preface

This volume contains papers from the 5th International Workshop on Internet of Things
of BigData for Healthcare (IoTBDH2023), whichwas held under the 2023 International
Conference on Information and Knowledge Management (CIKM). The workshop was
held on 22nd October 2023 in Birmingham, UK.

Internet of Things (IoT) enabled technology has rapidly and efficiently facilitated
healthcare diagnosis and treatment with low-cost and lightweight devices. Big data
generated from IoT offers valuable and crucial information to guide decision-making,
improve patient outcomes, decrease healthcare costs, etc. The workshop aimed to pro-
vide an opportunity for researchers and practitioners from both academia and indus-
try to present state-of-the-art research and applications in utilizing IoT and big data
technology for healthcare by presenting efficient scientific and engineering solutions,
addressing the needs and challenges of integration with new technologies, and providing
visions for future research and development. The 1st IoTBDH was held in 2015 as a
workshop under the 2015 IEEE International Conference on Computer and Information
Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and
Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM).
The 2nd IoTBDH was held in 2017 under the 2017 IEEE International Conference
on Internet of Things (iThings), IEEE Green Computing and Communications (Green-
Com), IEEE Cyber, Physical and Social Computing (CPSCom), and IEEE Smart Data
(SmartData). The 3rd IoTBDH, held in 2018, was under the IEEE 20th International
Conference on High Performance Computing and Communications; IEEE 16th Inter-
national Conference on Smart City; IEEE 4th International Conference on Data Science
and Systems (HPCC/SmartCity/DSS). The 4th IoTBDHwas held in 2020 under the 2020
IEEE Intl. Conf. on Parallel & Distributed Processing with Applications; Big Data &
Cloud Computing; Sustainable Computing & Communications; Social Computing &
Networking (ISPA/BDCloud/SustainCom/SocialCom). This year, we were pleased that
the 5th IoTBDH was held in Birmingham, UK.

We received a total of 36 submissions, six times the number at the previousworkshop.
Each submissionwas peer reviewed by two reviewers fromour ProgramCommittee (PC)
as well as sub-reviewers invited by our PCmembers, resulting in 70 reviews. All reviews
were double-blind, and submissions not properly anonymized were desk-rejected with-
out review. Based on the review scores and confidence levels of the reviewers, 7 sub-
missions were accepted as full papers and 4 as short papers. These 11 manuscripts were
authored by 116 scholars and graduates students.

IoTBDH 2023 would not have been possible without the contributions and efforts
of a dedicated scientific community. We sincerely appreciate members of our Pro-
gram Committee and all the external reviewers for providing comprehensive and timely
reviews. We also appreciate the funding support of the Young Scientists Fund of the
National Natural Science Foundation of China (62301452), the China Scholarship
Council (202107030007), and the Engineering and Physical Sciences Research Council
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(EPSRC) Doctoral Training Partnership (EP/T517835/1). The conference management
system EasyChair was used to handle the submissions and conduct the reviewing and
deciding. We thank Springer for their continued trust and for publishing the proceedings
of IoTBDH 2023.

December 2023 Jun Qi
Po Yang
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Enhancing Search Engine Optimization
in Healthcare and Clinical Domains

with Natural Language Processing and Graph
Techniques

Soodabeh Sarafrazi1, Darwin Wheeler2, David Garcia2, Shane Henrikson2,
Naveed Sharif2, and Hui Wu2(B)

1 Oakland 94612, USA
2 Kaiser Permanente, Oakland 94612, USA

{darwin.s.wheeler,david.x3.garcia,shane.a.henrikson,

naveed.sharif,jason.x2.wu}@kp.org

Abstract. Search Engine Optimization (SEO) is the art of refining a website
to enhance its visibility in search engine results, capturing the attention of both
potential and existing customers. At Kaiser Permanente Digital, our unwavering
commitment is to provide individuals with pertinent and precise health-related
information. In this study, our primary objective is to elevate the rankings of
KP.org webpages. To attain this goal, we leverage data from a third-party plat-
form and harness cutting-edge Natural Language Processing (NLP) techniques,
including the powerful large language model BERT. Our NLP arsenal encom-
passes diverse techniques, such as clustering and topic modeling, designed to
extract invaluable insights from our data. Moreover, we complement our findings
with practical examples and compelling visualizations tailored to the clinical and
healthcare domain. Additionally, we conduct thorough graph analysis, employing
methods like node2vec, to identify pages with closely related content within our
domain, addressing the issue of keyword cannibalization and content competi-
tion for ranking. In this paper, we present our innovative solutions in a visually
intuitive manner, showcasing how these approaches not only optimize our content
effectively but also ensure strategic and non-redundant keyword utilization across
our website.

Keywords: Search Engine Optimization (SEO) · Natural Language Processing
(NLP) · Large Language Model (LLM) · Graph Analysis

1 Introduction

At Kaiser Permanente (KP) Digital, our ongoing effort is to deliver relevant and accurate
health-related information to people. In this study, our goal is to enhance the rankings of
KP.org domain pages. By leveraging diverse machine learning techniques, our goal is to

S. Sarafrazi—Independent Researcher.
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empower SEO and content generation teams in creating enhanced content and webpage
structures. This, in turn, will boost the visibility and accessibility of our health-related
content.

The first problem with KP.org domain pages is the lack of sufficient content. This
insufficiency can negatively impact SEO by impeding search engines’ ability to assess
the pages’ relevance and quality for specific search queries. Consequently, it can result
in lower search rankings for those pages. To address this problem, it is essential to
enhance the content by offering comprehensive and informative knowledge that fulfills
user intent. This optimization will increase the likelihood of achieving higher rankings
in search engine results, thereby attracting more clicks from users. It is widely observed
that people tend to click on search results that appear at the top positions in the rankings.

The second problem with KP.org domain pages is the presence of pages with highly
similar content, resulting in keyword cannibalization. Such phenomenon occurs when
multiple pages within a website target the same keyword or set of keywords. This confu-
sion confounds search engines and has a detrimental effect on SEO efforts. To mitigate
this issue, it is important to review and optimize the content of each page, ensuring that
each targets unique keywords and offers distinct, valuable information. By doing so,
search engines can better understand the relevance of each page, leading to improved
SEO performance. In this study, we are leveraging state of the art machine learning tech-
niques to address the issue of insufficient content onKP.org domain pages and effectively
tackle keyword cannibalization.

2 Literature Review

The evolution of artificial intelligence (AI) has empowered search engine developers to
continuously enhance their algorithms.They employ avariety of thesemethods to acquire
accurate data and fulfill user expectations. These methods encompass Self-Organizing
Map [1], ForestGenerationAlgorithm [2], andSupportVectorMachine [3].Additionally,
search engines take numerous factors into account when determining website rankings
on the internet. For instance, Google relies onmore than 200 undisclosed factors [1], and
even if these factors were fully disclosed, the specific weighting and algorithms used
to evaluate each one remains undisclosed. More recently, Google has confirmed the
implementation of RankBrain, an artificial intelligence component that plays a pivotal
role in shaping search engine rankings [4, 5].

UtilizingAI techniques to procure precise data fromsearch engines poses an enduring
challenge for SEO professionals, requiring a profound grasp of search engine algorithms
for effective adaptation. This is where AI,ML, andNLPmethods prove invaluable. Here,
we will provide a summary of various endeavors that amalgamate these technologies
with SEO. The existing literature at the intersection of machine learning and SEO is
somewhat limited. Nevertheless, we have uncovered several studies that delve into this
domain.

In a literature review conducted by Yuniarthe [6], a comprehensive exploration of AI
applications in SEO was undertaken. This review uncovered various prototypes such as
Polidoxa and Fuzzy Inference System, along with the adoption of commercial packages
like SPSS Clementine and SearchDex Hyperloop. Additionally, the application of Sup-
port VectorMachine and theK-Nearest Neighbor Algorithmwere discussed. However, it
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was noted that challenges in this research domain arise from the inherent confidentiality
of SEO company algorithms and the constraints imposed by search engines.

Godlevsky et al. [7] proposed a theoretical basis for SEO utilizing situation control,
machine learning, semantic net building, data mining, and service-oriented architecture.
The approach was validated through successful SEO projects in Ukraine from 2012 to
2016. Salminen et al. [8] utilized 30 ranking factors and an XGBoost model to predict
page rankings for 733 content pages, achieving an accuracy of 0.86. Links and website
security were found to be important ranking factors. Drivas et al. [9] introduced a predic-
tive model that integrates statistical findings and utilizes both a macro-level descriptive
model and a micro-level data-driven agent-based model. The aim was to devise effec-
tive strategies that enhance the visibility and discoverability of cultural collections on
the Internet. Portier et al. (2020) [10] analyzed the performance of different machine
learning models applied to selected features for search engine ranking. The Random
Forest model combined with the Fisher filter method or Backward Elimination wrapper
method yielded the best results.

In light of the development of large language models and the continuous advance-
ments in NLP, it’s evident that natural language understanding plays a paramount role,
if not the most crucial, in machine learning algorithms utilized by search engines.
Consequently, we present a collection of studies dedicated to exploring the practical
applications of NLP in the context of content optimization within the domain of SEO.

In their comprehensive study, Vinutha [11] examined the synergy between Machine
Learning (ML) and NLP in SEO. This study shows that NLP enhances natural lan-
guage understanding but faces challenges with quantitative factors like keyword density
and backlinks. ML excels in data analysis and ranking predictions. The author pro-
poses a combined approach, utilizing NLP for query understanding and ML for ranking
predictions, as a potent strategy for effective SEO.

In a study conducted by Reutterer et al. [12], the authors delved into the applica-
tion of natural language generation (NLG) within the context of content marketing for
SEO. Their investigation centered on the utilization of NLG to autonomously generate
website landing page content. Through field experiments conducted across two distinct
industries, their findings unveiled the potential of machine-generated SEO content to
surpass human-authored content in terms of search engine rankings. Moreover, this app-
roach demonstrated a remarkable reduction in production costs, thereby substantially
enhancing Return on Investment (ROI) in the domain of content marketing.

In their study, Jenkins et al. [13] devised amodel to generate text annotations tailored
for SEO. This model leverages the Extreme Gradient Boosting algorithm to accurately
label phrases and utilizes logistic regression to generalize rankings for content clusters.
Their research results highlight that the proposed model leads to a noticeable increase
in web content traffic, typically in the range of 1–2%.

Sharma et al. [14] introduce an innovative semantic architecture that harnesses web
and data mining techniques to enhance eCommerce search engine personalization. The
architecture’s development involves several key phases. Firstly, it conducts query expan-
sion using NLP operations to grasp the user’s intent. Following that, an ontology classi-
fication step filters relevant web content subjects. Subsequently, topic modeling through
clustering is employed, and statistical computations are utilized for effective re-ranking.
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Horasan [15] implements latent semantic analysis for SEO purposes. This study
involves extracting keywords from textual data through latent semantic analysis, a tech-
nique that establishes connections between documents, sentences, and terms within the
text using principles of linear algebra.

In our paper, we leverage the widely recognized Bidirectional Encoder Representa-
tions from Transformers (BERT) model [16], which is extensively employed by Google,
the predominant search engine globally. Our focus revolves around the intricate chal-
lenge of optimizing content within the SEO context. To the best of our knowledge, this
research marks a unique endeavor, being among the first to explore the application of
the BERT model in deciphering user query intents for content enhancement in the SEO
domain.

Moreover, we take a pragmatic step forward by tackling the complex issue of key-
word cannibalization. Through the utilization of graph analysis, we offer a practical
solution. In essence, our study endeavors to address two primary concerns faced by SEO
professionals. Our approach is grounded in real-world applicability, providing insights
and resolutions that can assist practitioners in their day-to-day work. This distinctive
combination of BERT-based content optimization and graph-based keyword cannibal-
ization management in the clinical and healthcare domain sets our research apart within
the SEO landscape.

3 Data

In this study, we draw upon a comprehensive third-party keyword research dataset,
encompassing several vital components. This dataset comprises the keyword itself,
search volume (reflecting the frequency of searches for each keyword), difficulty (gaug-
ing the level of competition for securing a place on search engine result pages), URLs
of pages within the KP.org domain, alongside their corresponding rankings. Addition-
ally, it includes URLs and rankings for competitor pages. This rich dataset serves as a
crucial resource, affording us valuable insights into the keywords’ popularity and com-
petitiveness, enabling the evaluation of the performance of KP.org domain pages, and
facilitating an in-depth analysis of competitor pages’ rankings and strategies.

Within the dataset employed for this research, we encountered a robust collection of
115,000 queries related to cancer in a broader context. These queries represent the actual
searches conducted by users within a single month, specifically, August 2022, through
major search engines such as Google and Bing.

4 Methods

In this study, our focus is on addressing two critical problems: content optimization and
keyword cannibalization, as mentioned earlier. To tackle the first problem, we utilize
techniques such as word frequency analysis, word combination exploration, query clus-
tering and topicmodeling. For the second challenge concerningkeyword cannibalization,
we employ graph analytics methodologies.
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4.1 Keyword Frequency and Network Analysis

To address the first problem (content optimization), we use the bag-of-words method
to identify the most frequent words associated with each topic. We then take it one
step further and employ network analysis to uncover the most frequent combinations of
words.

4.2 Hierarchical Clustering and Topic Modeling

We also employ clustering techniques to identify similar queries based on their intent
using BERT [16]. Google search engine utilizes BERT, a cutting-edge Large Language
Model (LLM), to understand and fulfill user search queries [5]. BERT is employed to
generate vector representations of keywords, which are then clustered together using
a hierarchical clustering algorithm. This clustering process helps identify queries with
similar intents. By grouping related terms,we can identify high-potential clusters that can
attractwebsite traffic based on their total search volume and average keyword difficulties.
These two methods work in tandem to enhance our content optimization efforts. To
perform topic modeling, we utilize the BERTopic library [17]. BERTopic is a powerful
approach that leverages transformers and c-TF-IDF to generate dense clusters. This
methodology facilitates the creation of easily interpretable topics while ensuring that
important words are retained within the topic descriptions.

4.3 Page Clustering Using Graph Techniques

To address the challenge of internal content cannibalization within the KP.org domain,
we harness the prowess of graph techniques. In this intricate analysis, each webpage
within the KP.org domain and those of our competitors (e.g., competitor 1, competitor
2) are depicted as nodes within a comprehensive graph. A link is forged between two
nodes when both pages share ranking for a specific keyword, with the strength of this
link determined by the extent of their shared keywords. This method births an undirected
graph replete with weighted edges.

To pinpoint nodes exhibiting remarkable similarity within this intricate network, we
employ the node2vec algorithm [18]. Node2vec deftly distills low-dimensional vector
representations of nodes by assimilating the intricacies of the graph’s structural tapestry.
In doing so, it unveils the parallels between nodes through their interconnections and the
commonality of keywords they embrace. Through this innovative fusion of NLP, ML,
and graph techniques, we embark on a journey to decipher and conquer the intricate
labyrinth of content optimization and keyword strategy in the ever-evolving landscape
of SEO.

5 Results

5.1 Keyword Frequency and Network Analysis

Figures 1, 2, 3, 4, 5 and 6 are screenshots of the interactiveMicrosoft PowerBI dashboard
[19] that we have developed. The bag-of-words method result for breast cancer topic is
visualized in Fig. 1. Here we see the 30 most frequent words that users search for in
relation to breast cancer.
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Fig. 1. Most Frequent Keywords Related to Breast Cancer

Figure 2, illustrates the network analysis results, showcasing the interconnectedness
and prevalence of specific word combinations within the data. Using this analysis, we
can identify the frequent words and determine the accompanying most common words
associated with each of them. This analysis provides writers and content generators with
a valuable insight into the interconnectedness of important words within the context of
breast cancer. Such understanding enables them to develop a more comprehensive grasp
of the relationships between key terms and enhance their content accordingly.

Fig. 2. Network of Keywords Related to Breast Cancer
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In Fig. 3, we present a closer view of one of the frequently occurring words dis-
played in the interactive visualization of Fig. 2: “lump.“ This illustration showcases the
associated terms related to this word. The visual aims to address the queries that content
generators may have regarding users’ interests in relation to this keyword. By examining
the visual, we can observe the users’ curiosity about various aspects of a lump, such as
its presence in the armpit, potential pain, or discomfort, and whether it is cancerous. The
varying size of the circles within the network is directly linked to the search volume
associated with each term. This visualization not only offers content generators the most
critical and frequently used keywords but also provides valuable insights into important
topics they can explore for each of them. This comprehensive approach enables them to
address user interests effectively and generate meaningful and engaging material related
to the identified keywords.

Fig. 3. Most Frequent Keywords Related to Lump in Relation to Breast cancer

5.2 Hierarchical Clustering

As described in Sect. 4, our approach involves utilizing BERT embeddings and hierar-
chical clustering to group queries into highly similar intent clusters. By adjusting the
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clustering threshold, we can control the proximity of intent within each cluster. While
smaller clusters with closely related queries serve specific purposes, such as identify-
ing “Golden Opportunities” (which will be discussed later), content generators often
require a broader perspective. To accommodate this need, we generate different levels
of clusters by employing various threshold levels, allowing for a more comprehensive
understanding of query intent across different scales.

Figure 4, provides an illustrative example of a hierarchical cluster structure. The
cluster with ID = 15 (Level 2) comprises three smaller clusters, namely ID = 1233, ID
= 325, and ID = 1861 (Level 1), which consist of queries sharing very similar intents.
For a more comprehensive understanding of this arrangement, please refer to Table 1.
This table presents a selection of query examples from the hierarchy of clusters depicted
in Fig. 4. It demonstrates the diverse levels of clusters that cater to different scales of
intents. The initial layer clusters (ID: 352, 1233, and 1861) predominantly focus on
closely aligned intents, such as specific chemotherapy treatments or specific type of
breast cancer. In contrast, the higher level of cluster (ID: 15) offer a broader perspective,
encompassing a wider range of intents.

Level 1 Clusters

Level 2 Clusters

Fig. 4. The Hierarchy of Clusters Exhibits Different Scales of Similarities Among Inner Queries

Figure 5, sheds light on an additional benefit of clustering. By organizing related
keywords with similar intents into Level 1 Clusters (as illustrated in Fig. 4), and subse-
quently evaluating them based on their search volume and difficulty, we unveil valuable
prospects known as “golden opportunities.“ These clusters, depicted in Fig. 5 within the
red box, exhibit a considerable total search volume and moderate keyword difficulties.
Recognizing these intents enables us to identify topics that have the potential to attract
significant traffic to our websites. In the specific context of breast cancer, our analysis
has identified over 40 clusters that belong to this category.

In this analysis, it is crucial to understand that, for BERT to correctly comprehend
the intent of a query, we should refrain from employing techniques like stemming,
lemmatization, or the exclusion of stop words, as is common in many other NLP tasks.
Therefore, in our initial approach, we input these queries to the BERT model without
any alterations.
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Table 1. Example of Queries in Different Cluster Levels

Query Cluster Level 1 ID Cluster Level 2 ID

carboplatin and taxol breast cancer 325 15

carboplatin and taxotere for breast cancer 325 15

carboplatin breast cancer 325 15

carboplatin chemotherapy breast cancer 325 15

xeloda breast cancer 1233 15

xeloda breast cancer adjuvant 1233 15

xeloda and metastatic breast cancer 1233 15

xeloda triple negative breast cancer 1861 15

xeloda for residual triple-negative breast cancer 1861 15

xeloda triple negative breast cancer 1861 15

Golden Opportunities

Fig. 5. Cluster Analysis - Search Volume vs Keyword Difficulty

Through this method, we achieved a remarkable performance of 95% for our intent
clusters (level 1), as evaluated by humans. This implies that in 95% of the clusters, all
queries within a cluster address the same intent. In the remaining 5%, we encountered
two types of issues. First, not all queries within one cluster referred to a single intent.
Second, in very few cases, two clusters addressed the same intent. Upon analyzing these
clusters, we identified misspelling as the root cause of these issues.

To enhance the accuracy of our clustering in the second round, we addressed these
spelling issues with the assistance of Python libraries, particularly a library called
pyspellchecker [20]. Following this round of spell correction, we achieved an impressive
accuracy rate of 99%.
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5.3 Topic Modeling

Through a distinct analysis, we utilize BERT topic modeling to ascertain the topic with
the most significant search volumes. Figure 6 depicts a two-dimensional visualization
showcasing the top 20 topics. The size of the circles in the visualization corresponds to
their respective search volumes, providing a visual representation of their significance.

Fig. 6. Two-Dimensional Representation of the Most Important Topics Related to Breast Cancer

5.4 Page Clustering

In Fig. 7, we observe an embedding of nodes representing three entities: KP.org pages
(represented by blue nodes), competitor 1 pages (represented by yellow nodes), and
competitor 2 pages (represented by red nodes). Let’s focus on a specific KP.org page
labeled as K8 in the figure. K8 is the main breast cancer page within the KP.org domain,
intended to comprehensively address awide range of queries related to this topic. Despite
its intended purpose, the effectiveness of K8 is hindered by the presence of numerous
competing minor pages and even PDF files within the domain. As a result, the desired
level of traffic cannot be achieved through this page.

Using page clustering we can detect nodes (pages) very similar to K8. These nodes
fall into two categories. Firstly,we have nodeswithin theKP.org domain,which represent
pages that are highly similar toK8. These pages contribute to keyword cannibalization, as
they compete for the same keywords and can potentially dilute the visibility and ranking
of K8. Secondly, we have nodes in competitors’ domains. These nodes offer valuable
insights into how our competitors address a specific topic. By examining the pages and
link structures within these pages, we can gain a deeper understanding of the strategies
employed by our competitors. This analysis provides us with valuable intelligence on
the number and type of pages they utilize, as well as their internal linking practices,
helping us refine our own approach to effectively compete in the search engine results.
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Fig. 7. Undirected Graph of KP.org and Competitors’ Pages

In relation to the main breast cancer page, K8, within the KP.org domain, we have
discovered the presence of 10 minor pages that are actively competing with it. Addition-
ally, there is one PDF file that is also vying for visibility and engagement on the same
topic. This competition among the various pages and the PDF file poses a challenge in
effectively driving traffic to the K8 page.

6 Conclusion and Future Work

In conclusion, our study highlights the transformative impact of NLP andML techniques
within the domain of SEO. These technologies excel in deciphering the intricacies of
natural language in search queries and web content, enhancing our understanding of
user intent and content quality. Simultaneously, ML techniques play a pivotal role in
dissecting quantitative factors such as keyword density, backlinks, and user engagement,
all crucial for achieving higher search rankings. Building on this foundation, our research
has presented a comprehensive and practical solution to address two fundamental SEO
challenges: content optimization and the prevention of keyword cannibalization.

Looking ahead, our work identifies areas for future development and improvement.
Our primary focus is on expanding our healthcare datasets, encompassing diverse data
types such as clickstream data, page and query performance data, business Objectives
and Key Results (OKR) data, and conversion data. By doing so, we aim to deepen our
understanding of specific words and entities within the context of the healthcare domain.
Additionally, we acknowledge the need for comprehensive performance testing and plan
to integrate evaluations from various sources. We propose the implementation of a “vot-
ing” mechanism to accommodate the diverse metric priorities within our organization,
which will allow us to track preferences over time and identify consistently successful
teams or individuals. This iterative process is critical for bridging the gap between pre-
dicting future performance, reporting on actual performance, and minimizing disparities
between the two.

In summary, the fusion of NLP and graph analysis in our research empowers SEO
professionals to uncover opportunities for targeted keyword optimization, bridge content
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gaps, discern crucial user intent, and elevate their website’s visibility in search engine
results. In today’s ever-evolving digital landscape, these cutting-edge techniques provide
practitioners with the essential tools to stay ahead and navigate the complexities of SEO
effectively.
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Abstract. Explainable AI was created to solve the black box problems of deep
learning models. Various explainable AI algorithms can highlight the features
used by a black box model in deciding. Integrated frameworks were developed
with multiple machine learning capabilities including model explanation. This
research aims to investigate which of the integrated frameworks is more imple-
mentable within the healthcare sector and to evaluate howwell the selected frame-
works can explain prediction done with a tabular, natural language processing and
image dataset. We investigated OmniXAI and InterpretML frameworks and the
selected explainers are LIME and SHAP. Prostate cancer, pneumonia chest x-ray
and medical question and answer were used as the datasets for tabular, image and
natural language processing predictions. The feature importance score was used
to compare and evaluate the explanations of the algorithms. Findings show that
OmniXAI supports more methods and data formats. It can implement and explain
tabular, image and NLP predictions while InterpretML supports only tabular data.
InterpretML had a better plot of the explanation for the tabular prediction. Inter-
pretML is more user-friendly and easily implementable. The OmniXAI integrated
framework can be used in laboratories where tests are carried out with results
stored in text, image, or CSV format. As the results are fed into the models for
prediction, the explainers of the integrated frameworks will give insights into the
model predictions. InterpretML can be implemented in laboratories where tabular
results are been generated.

Keywords: Explainability AI ·Machine Learning and Healthcare

1 Introduction

1.1 Background

Artificial Intelligence (AI) is being utilized to address various human problems in the
world today. AI involves computational models that imitate human cognitive abilities
[1, 11]. Through AI, a system can be taught from data and trained to think critically,
learn from experience, and improve itself intuitively. AI has experienced several stages
of evolution since its creation over six decades ago, and recent advancements in Big
Data and large computing technology have given it an edge [8]. Artificial learners have
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achieved breakthroughs in various fields, including autonomous vehicles, weaponry,
bioinformatics, and healthcare, with the goal of developing machines that can learn and
think like humans. Businesses are actively investing in the research and development of
advancedAI technologies, which heavily rely on the availability of data [2]. Autonomous
disease detection has been made possible by Deep Learning (DL), a subfield of machine
learning. This technology can replicate the human brain’s ability to process language,
recognize images and objects, develop drugs, diagnose illnesses, and make decisions.
DL can effectively analyse data, including medical images [10]. AI technology has been
successful in the healthcare industry, particularly in surgery and disease diagnostics.
However, some AI models are difficult to understand, which makes it challenging for
medical professionals to draw clinical conclusions that can be explained. To boost doc-
tors’ trust in medical AI applications, transparency is essential, and explainable artificial
intelligence (XAI) is being studied to make applications more credible and incorporated
into practice. As ML/DL algorithms become more complex, the demand for XAI is
increasing. It helps users understand models’ behaviour, which is just as important as
their performance. XAI makes black-box models more transparent and intelligible in
two ways: overall decision-making or specific result insights [4].

2 Literature Review

In 1993, Swartout andMooremade thefirstmention of the idea of interpretingAI systems
followed by Van Lent, Fisher, and Mancuso in 2004. Contrary to the black-box nature
of current AI systems, the term XAI was first used to characterise the internal workings
of game simulations. Due to the rising use of AI/ML in daily life, the term XAI gained
popularity. Pressure from society, ethics, and the law calls for a new generation of AI that
can explain its internal workings and enable users to comprehend the reasoning process
behind its judgments [14]. XAI can make AI systems more reliable, compliant, efficient,
and resilient. XAI involves using techniques to create AI applications that end-users
can comprehend and interpret. These users could be domain experts, data scientists, or
even individuals without academic knowledge about AI. The popularity of DL and its
use in real-world applications has spurred a desire to understand the reasoning behind
its decisions. Generally, users prefer transparent AI models that are easy to interpret
and explain. The breadth of XAI covers almost all application fields, from healthcare to
agriculture [13]. When it comes to ML models, their understandability and believability
are crucial factors in making them interpretable for the target audience. Explainability
is the key to describing a phenomenon in a way that the audience can understand with
ease. In the context of XAI, explainability refers to the AI’s ability to provide users
with a deeper understanding of the predictions obtained from a model, from a more
methodological point of view [9].

2.1 XAI Explanation Methods

Local Explanation. Local explainability is crucial for clinicians using model predic-
tions in treatment. It helps explain why a model made a certain prediction and can be
included in clinical decision support software. Local explanations focus on individual
cases. Techniques like LIME are commonly used for local explainability [16].
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Global Explanation. To verify that a model is learning correctly, for instance, that the
variables influencing model predictions are consistent with clinical knowledge, global
explainability is crucial during the model-building process. The accuracy, fairness, or
generalizability of a model may be affected by biases in the training data, which can be
evaluated using global quality control methodologies. Additionally, there is increased
interest in developing original scientific ideas employing global explanations [15].

Ante-Hoc. These aremodels that are naturally simple and interpretable such as decision
trees, support vector machines and linear regressionmodels. Their architecture and input
format determine their output format. A common strategy for achieving interpretability
through these inherently interpretable models is through rule sets, linear models, deci-
sion trees, case-based reasoning, and generalised additive algorithms. These algorithms
produce outputs that are understandable by humans [14].

Post-Hoc. This method of explanation, also known as surrogate methods, analyses
deep learning models like neural networks that have already been trained to gain an
understanding of their inner workings. Then, they attempt to describe the behaviour of
the resulting black box network. The explanations can be either local or global, as well
as model-specific or model-agnostic. [3].

ModelAgnostic. ModelAgnostic:Rather than relying onmodelling techniques,model-
agnostic techniques work by recognising the association between input-output pairs of
trained models. The underlying structural framework that is employed to determine
the outcome is independent of the models. The flexible model methods, explanation
approaches, and representation techniques are further categories for the model-agnostic
models.

Model Specific. This mode of explanation is used for specific models. These explainers
are built to explain the internal workings of a particular model or group of models. Such
models are heavily reliant on a model’s capabilities and attributes. To execute their tasks,
model-specific algorithms inspect or provide detailed information about the model’s
internal workings.

2.2 XAI Explanation Algorithms

Shapley Additive Explanations. Amethod proposed by [12] involves the use of Shap-
ley values to explain models. The Shapley Additive Explanations (SHAP) method uses
game theory to determine how a specific input x is predicted by calculating the con-
tribution of each feature toward that output prediction. The data features are treated as
players in a coalition game, and Shapley values are used to ensure a fair distribution
of payouts. Similar to LIME, data features in the SHAP method can be categorized in
tabular data or groups of superpixels in images. The problem is formulated as a set of
linear functions, where the explanation becomes a linear function of features [6]. This
method provides a consistent way to interpret the results of any machine learning model
and SHAP is effective in explaining both model-agnostic and model-specific situations.

Local Interpretable Model-Agnostic Explanations. Local Interpretable Model-
Agnostic Explanations (LIME), estimate the given prediction of a model locally [12].
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Being a feature-scoring method, LIME perturbs data input samples and assesses if pre-
dictions have changed to better understand the model. LIME analyses and classifies
observations. It helps users understand model behaviour, including picture and tabu-
lar data classification. All models can be treated as black boxes with LIME’s model
independence [7].

2.3 Integrated XAI Frameworks

Omni Explainable Artificial Intelligence. OmniXAI is a new Python library that
offers interpretive machine-learning techniques and explainable AI capabilities. It pro-
vides a range of explanation methods for different data types, models, and stages of the
ML process. The library supports multiple data types, including tabular data, images,
texts, and time series, and various explanation methods, including feature-attribution,
counterfactual, and gradient-based explanations.

InterpretML. InterpretML is a Python library fromMicrosoft that offers interpretabil-
ity techniques for machine learning. It provides two levels of interpretability for trans-
parent and black boxmodels, with a consistent interface and built-in visualization frame-
work for easy comparison. The Explainable Boosting Machine is included, along with
advanced ML techniques from Microsoft and third-party libraries. InterpretML enables
users to gain a comprehensive understanding of their model’s behaviour and debug
predictions.

3 Research Methodology

This research will use machine learning to analyse data using quantitative methodology.
It will involve preprocessing datasets for tabular, image, and natural language processing
predictions, developing prediction models, and evaluating the explainability of predic-
tions using LIME and SHAP. The models will be evaluated using the confusion matrix,
accuracy, and precision while the explainer algorithms will be evaluated and compared
using the feature importance score.

3.1 Dataset Description

The datasets used for this research are centred on prostate cancer, pneumonia, and med-
ical question-and-answer datasets (MedQuAD). The prostate cancer dataset is used for
the tabular data model prediction and explanation while the pneumonia dataset is used
for image prediction. These datasets were obtained fromKaggle, a platform where users
can work with other users, find, and publish datasets, use GPU-integrated notebooks,
and compete with other data scientists to solve data science challenges.
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3.2 Ethical Considerations

The research follows ethical norms and practices to ensure responsible and ethical use
of data. This includes ensuring data privacy and confidentiality, transparency and repro-
ducibility of the analytical process and model training, checking for fairness and bias
in the dataset and machine learning processes, taking accurate measures to ensure the
integrity and correctness of the output, and considering the broader implications on
society, culture, and the environment.

3.3 Design of Experiment

This section gives insights into the intended approach for the omnixai integrated
framework. Figure 1. is a pictorial representation of the experiment design.

Fig. 1. Flowchart of Experiment Design Source
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4 Results and Evaluation

4.1 Tabular Prediction and Explanation

The classifiers used for the model training were the Logistic Regression and Random
Forest. The classifiers were able to classify all the instances in the test data. Both the
actual and predictive positive instances (recall and precision) were predicted accurately
by the models as shown in Table 1. The test data had a total of 20 instances with 12
of them having the Malignant diagnosis results while 8 had Benign. This performance
is indicative that the models performed remarkably well on the dataset as indicated by
[64].

Table 1. Model Results for Tabular Data.

ML Algorithm Label Accuracy Precision Support

Random
Forest

0 1.00 1.00 12

1 1.00 1.00 8

Logistic
Regression

0 1.00 1.00 12

1 1.00 1.00 8

Evaluation of Predicted Class 0 (Malignant). A prostate cell with a symmetry of
0.192, perimeter of 126, area of 1152, texture of 19, compactness of 0.127, fractal
dimension of 0.060. radius of 10 and smoothness of 0.105 is predicted as Malignant
by the logistic regression model which is an accurate prediction. Cell that has a larger
size tend to be considered as Malignant. In addition to the digital rectal examination,
PSA blood tests, other scans, and biopsy [5]. The OmniXAI LIME and SHAP explainers
identified the perimeter attribute as themost important feature. As shown in Fig. 2, LIME
assigned the feature an importance score of 0.022 while SHAP assigned an importance
score of 0.31 as shown in Fig. 3. Next to the perimeter feature in the order of impor-
tance is the area feature. It had an importance score of 0.29 for SHAP and 0.018. The
fractal dimension, radius, symmetry, and smoothness features are less important for this
prediction. The features were sorted in descending order of importance for the SHAP
explainer. This makes it easier to read and comprehend compared to LIME’s plot. All
features positively influenced the prediction of the models. The plot of explainability
for InterpretML as shown in Fig. 4 slightly differs from OmniXAI, a prostate cell with
a symmetry of 0.16, perimeter of 129, area of 1132, texture of 14, compactness of 0.18,
fractal dimension of 0.07, radius of 20 and smoothness of 0.12 is predicted as Malignant
by the linear regression model which is an accurate prediction. The LIME Explainer of
InterpretML identified perimeter as the feature with the least influence while area has the
most influence in the prediction of the model. The explain-ability plot of InterpretML
is better than the plot of OmniXAI. The feature importance scores can be seen and read
properly. This can easily be understood by users.
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Fig. 2. OmniXAI LIME Explanation for a Predicted Malignant Instance.

Fig. 3. OmniXAI SHAP Explanation for a Predicted Malignant Instance.

Evaluation of Predicted Class 1 (Benign). A prostate cell with a symmetry of 0.139,
perimeter of 85, area of 552, texture of 14, compactness of 0.051, radius of 14 and
smoothness of 0.074 is predicted as Benign by the logistic regression model. The Om-
niXAI LIME and SHAP explainers identified the compactness attribute as the most
important feature for this prediction. As shown in Fig. 5, LIME assigned the feature an
importance score of 0.02 while SHAP assigned an importance score of 0.34 as shown
in Fig. 6. For LIME, the next important feature after compactness is the area with an
importance score of 0.006 while the SHAP importance score for area is 0.095. For
SHAP, the next important feature after compactness is the perimeter with an importance
score of 0.12 while the LIME importance score for the perimeter is 0.0058. The fractal
dimension, radius, symmetry, and smoothness features respectively impacted the pre-
dictions negatively. For InterpretML, the logistic regression model predicted a prostate
cell with a symmetry of 0.17, perimeter of 95, area of 663, texture of 27, compactness

of 0.09, radius of 23 and smoothness of 0.09 as Benign. The LIME Explainer of
InterpretML identified perimeter as the feature with the least influence while area has
the most influence in the prediction of the model as shown in Fig. 7.
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Fig. 4. InterpretML LIME Explanation for a Predicted Malignant Instance.

Fig. 5. OmniXAI LIME Explanation for a Predicted Benign Instance.

4.2 Natural Language Processing Prediction & Explanation

The text for the NLP prediction was selected from the MedQuAD dataset. The selec-
tion was based on the Breast Cancer and Prostate Cancer focus areas. Two different
models were used, the Random Forest Classifier Model and the distilbert-base-uncased-
finetuned-sst-2-english pre-trainedmodel which is based on the DistilBERT architecture
and implemented in the transformer library. The pre-trained model was used because
SHAP explainers for NLP tasks can only support the text classification pipeline from
the transformer model. The LIME explainer was used to explain the predictions of the
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Fig. 6. OmniXAI SHAP Explanation for a Predicted Benign Instance.

Fig. 7. InterpretML LIME Explanation for a Predicted Benign Instance

random forest model while SHAP was used to explain the sentiment analysis done by
the distilbert pre-trained model.

OmniXAI LIME Explainer. The random forest classifier model built had an accuracy
of 95%. This means that the model was able to correctly predict 95% of the instances
available in the dataset. According to the confusion matrix report as shown in Table 2,
the model was able to 10 of the texts for the positive class accurately while two were
wrongly classified as negative. LIME was used to explain the predictions made by the
random forest model. Figures 8 and 9 show the explanation generated by OmniXAI
LIME Explainer. In Fig. 8, the model predicted that the phrase is affiliated with prostate
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cancer. The LIME explainer was able to identify words such as prostate, men and semen
were key in classifying text instances as prostate cancer. In Fig. 9, the model predicted
that the phrase is affiliated with breast cancer. LIME explained that words such as breast,
women, chest, and nodes are key in classifying the text instance as breast cancer.

Table 2. Confusion Matrix Report for Random Forest NLP Model

Actual Positive Class Actual Negative Class

Predicted Positive Class (True) 10 0

Predicted Negative Class (False) 2 8

Fig. 8. OmniXAI LIME Explanation for a Predicted Prostate Cancer Instance.

Fig. 9. OmniXAI LIME Explanation for a Predicted Breast Cancer Instance.

OmniXAI SHAP Explainer. The SHAP explainer was used to explain the prediction
of the DistilBERTmodel. The pre-trained model was used because SHAP explainers for
NLP tasks can only support the text classification pipeline from the transformer model.
SHAP was supplied with an omnixai text object that contained some questions and
answers relating to prostate cancer and breast cancer. However, SHAP explained how
the instances of the omnixai text objects were classified as either negative or positive
by the transformer model. For instance, the MedQuAD answer instance in Fig. 11 was
classified as negative using the phrases “not know how to prevent g lau com a”, “risk
groups for the disease” and words such as “loss”, “cancer”, “glaucoma” and “dilated”
while the word “prevent” greatly influenced the classification of the text instance as
negative in Fig. 10.
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Fig. 10. OmniXAI SHAP Explanation for a MedQuAD Question Classification.

Fig. 11. OmniXAI SHAP Explanation for a MedQuAD Answer Classification.

4.3 Image Prediction and Explanation

We implemented a CNN-based chest disease classification model with 93.98% training
accuracy and 88.14% validation accuracy. Now we tried to apply OmniXAI LIME and
SHAP methods to explain the prediction results. LIME segments images into patches,
constructing weighted local models through permuted instances with changes visible in
grey. Input images with grey backings in Fig. 12 shows LIME’s segmentation. LIME
identified the relevant as well as irrelevant region in this instance. SHAP utilises Shap-
ley values, averaging feature contributions, visualising red and blue pixel impacts (see
Fig. 13).

Fig. 12. Explanation using OmniXAI LIME
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Fig. 13. Explanation using OmniXAI SHAP

5 Discussion

OmniXAI offers explainers for various data formats and has a DataAnalyzer feature for
exploratory data analysis. The GitHub tutorial is helpful for implementation, but there
are limited resources for bug fixes and problem resolution. Tabular and NLP prediction
require preprocessing, and LIME and SHAP explainers can be used for visualization.
Image prediction is more difficult and may encounter issues with the explainers. Inter-
pretMLalso has aGitHub repository, and it supports tabular data for black boxprediction.
It only requires installation of the interpret package and can visualizemodel performance
using ROC curves. LimeTabular creates LIME explanations and ShapKernel creates
SHAP explanations, but the SHAP explanation plot failed to generate. InterpretML also
has a dashboard feature, but it is not yet supported in cloud environments. Two integrated
frameworks were compared based on tasks and methods used during implementation
and user experience metrics. OmniXAI is better for tasks and methods (see Table 3),
while InterpretML is better for user experience (see Table 4). Both frameworks can be
used in healthcare organizations to execute necessary processes end to end and provide
clinicians with insights into model predictions. OmniXAI is suited for labs with test
results in various formats, while InterpretML can be used for tabular results.
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Table 3. Comparison Based on Methods and Data Support.

Task Method
Om-

niXAI 
LIME

OmniXAI 
SHAP

InterpretML 
LIME

Inter-
pretML 
SHAP

Data 
Sup-
port

Tabular
Image
NLP

Tabu-
lar

Model Agnostic
Traditional ML

NLP
Transformer Model

Traditional ML

Image
PyTorch Model

Tensorflow Models

Table 4. Comparison Based on User Experience

Metric Description OmniXAI InterpretML

Fidelity Do the explanations
accurately represent the
model outputs?

Yes Yes

Consistency Are the explanations
consistent across
different instances?

Yes Yes

Ease of Use Is the integrated
framework easy to
implement and straight
forward?

No Yes

Quality of
Visualization

How effective is the
Visualization of the
explanations?

Less Effective Very Effective

User-Friendliness How easy is it to
interact with the
explanation
visualization

Static Plot, No
interaction

Dynamic Plot, Easy
Interaction

Community
Support

Does the integrated
framework have a
community of helpers,
tutorials, and
documentation

No Community.
Tutorials and
documentation are
available on GitHub

No Community.
Tutorials and
documentation are
available on GitHub
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6 Conclusion

The goal of this research is to investigate how integrated frameworks explain disease
prediction models in healthcare. This research carried out an empirical study to iden-
tify and preprocess datasets for tabular, image, and natural language processing pre-
dictions. Develop prediction models and use explainers in XAI frameworks to explain
the model outputs and evaluate the explanation using feature importance scores. The
selected frameworks for this research are OmniXAI and InterpretML. As discussed in
Sect. 5, OmniXAI supports more data types and methods than InterpretML. Based on
user experience metrics, InterpretML is the better integrated framework. Although both
integrated frameworks have no community help, they have proven to be very useful in
the healthcare sector. OmniXAI integrated frameworks in laboratories can provide clin-
icians with insights into model predictions. These frameworks can be used for testing
outcomes in text or tabular format, combining the clinicians’ intelligence and experience
for accurate diagnosis. InterpretML is also suitable for laboratories generating tabular
results.
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Abstract. In the era of the Internet of Things (IoT), the retrieval of
relevant medical information has become essential for efficient clinical
decision-making. This paper introduces MedFusionRank, a novel app-
roach to zero-shot medical information retrieval (MIR) that combines
the strengths of pre-trained language models and statistical methods
while addressing their limitations. The proposed approach leverages a
pre-trained BERT-style model to extract compact yet informative key-
words. These keywords are then enriched with domain knowledge by link-
ing them to conceptual entities within a medical knowledge graph. Exper-
imental evaluations on medical datasets demonstrate MedFusionRank’s
superior performance over existing methods, with promising results with
a variety of evaluation metrics. MedFusionRank demonstrates efficacy in
retrieving relevant information, even from short or single-term queries.

Keywords: medical information retrieval · Internet of Things ·
natural language processing · clinical decision-making · medical
knowledge graph

1 Introduction

The widespread adoption of the Internet of Things (IoT) has enabled the col-
lection of large amounts of medical text data. By using IoT to identify patients,
transfer information to central databases, and search for relevant medical texts
such as electronic health records (EHRs) and disease-related papers, we can
improve the efficiency of treatment procedures and therapeutic outcomes [8,19].
For instance, the MIMIC-III [12] and MIMIC-IV [11] critical care medical
databases use IoT systems to collect structured clinical data and texts. These
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medical texts have become the foundation for medical natural language process-
ing, serving as corpora for pre-training large language models and embeddings
[1,16,32]. Additionally, the use of IoT in healthcare has the potential to revo-
lutionise patient care by providing real-time monitoring and personalised treat-
ment plans based on individual patient data. This can lead to improved patient
outcomes and reduced healthcare costs [7].

A key challenge in healthcare is enabling real-time, personalised clinical
decision-making beyond traditional tasks like diagnostic classification and out-
come prediction. Effective clinical decision support fundamentally relies on the
ability to retrieve relevant information from massive amounts of unstructured
EHR data. While earlier work in medical information retrieval relied on statisti-
cal methods like BM25 [23] with Term Frequency-Inverse Document Frequency
(TF-IDF) features, these techniques struggled with the complexity and spar-
sity of medical text. Medical notes exhibit pervasive synonym phenomena, with
different terms like “hypertension” and “high blood pressure” denoting identical
concepts. Abbreviations and shorthand introductions are also ubiquitous, posing
difficulties for simple lexical matching.

Recently, pre-trained large language models (LLMs) like BERT [6], Alpaca
[27], and Llama [29] have shown promise by learning generalisable represen-
tations of medical language. However, their computational overhead makes
deployment directly onto resource-constrained IoT devices impractical. Training
with massive LLMs requires substantial data, computing power, and memory
exceeding the available on-device. Therefore, an open challenge is adapting the
strengths of LLMs for medical search on embedded IoT systems. More efficient
methods are needed to extract knowledge from LLMs and make it accessible for
medical information retrieval on hardware-friendly architectures.

To address the aforementioned challenges, we propose a novel zero-shot infor-
mation retrieval approach that integrates the strengths of statistical methods
and pre-trained LLMs while mitigating their limitations. Our key insight is to
leverage a pre-trained BERT-style model to extract compact yet informative
keywords. These keywords are then enriched with domain knowledge by link-
ing them to conceptual entities within a medical knowledge graph. Our method
has demonstrated promising results on two benchmark datasets, outperforming a
range of existing Information Retrieval models across various evaluation metrics.

2 Related Work

Medical information retrieval (MIR) aims to retrieve relevant medical data from
sources such as EHR. However, it faces distinct challenges that extend beyond
conventional information retrieval (IR) - complex medical terminology, hetero-
geneous data, privacy constraints, and difficulties in system evaluation. While
leveraging core IR techniques, MIR has specific requirements arising from the
medical domain. In this section, we provide an overview of key IR methods that
facilitate effective MIR.
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2.1 Statistical Information Retrieval

Statistical information retrieval (Statistical IR) is a foundational approach that
leverages probabilistic and statistical models to quantify the relevance of docu-
ments to user queries. This allows ranking search results by estimated relevance
based on mathematical models. Popular statistical IR techniques, including vec-
tor space model [3], probabilistic retrieval model [25], and Okapi BM25 [23] rely
heavily on weighted keyword matching between query and document terms. They
estimate relevance using statistical signals like TF-IDF, and length normalisa-
tion. While very effective for many search tasks, these lexical similarity models
have limitations. Specifically, they cannot account for semantic matching, failing
to recognise synonyms and antonyms.

2.2 Neural Information Retrieval

Neural information retrieval (Neural IR) is a modern paradigm that leverages
neural networks and deep learning techniques to overcome the limitations of
statistical IR models. Neural IR models can be classified into two main types:
first-stage retrieval methods and re-ranking methods.

First-Stage Methods. First-stage methods aim to directly retrieve relevant
documents from a large collection using neural networks. These methods can be
further categorised into sparse retrieval methods and dense retrieval methods.
Sparse retrieval methods use sparse word representations, such as bag-of-words
or TF-IDF, as inputs to neural networks and learn to rank documents based on
their similarity to queries [5,15]. Dense retrieval methods, on the other hand,
use dense vector representations, such as word embeddings or contextual embed-
dings, as inputs to neural networks and learn to map queries and documents into
a common semantic space where their relevance can be measured by distance
metrics [10,14,24].

Re-ranking Methods. Re-ranking methods use neural networks to refine
the initial ranking results produced by a base retriever, such as BM25 or
a sparse/dense retriever. These methods can be categorised into two main
approaches: 1)Re-ranking with sentence embeddings: These methods treat each
document independently as an instance and learn to score its relevance to the
query [22]. They derive vector representations for the query and each document
in a separate manner, compare their embeddings and assign relevance scores. 2)
Re-ranking using a cross-encoder: These methods consider each query-document
pair as an instance and learn to compare their relative relevance [31]. The cross-
encoder jointly models the query and document to capture semantic matching.

3 Methodology

We show the overall architecture of our proposed method in Fig. 1. Specifically,
it first extracts keywords from medical documents to capture semantic con-
text. Then, medical embeddings for each keyword are constructed based on the



32 Y. Wang et al.

Fig. 1. The overall architecture of our proposed method.

domain-specific knowledge graph. The query and document keywords are com-
pared in the medical embedding space and their similarity scores are aggregated
to identify relevant information across query terms for retrieval.

3.1 Document Keyword Extraction

Given the inherent complexity of documents within the medical domain, often
encompassing multiple aspects, the necessity of pre-processing before conduct-
ing IR becomes evident. One such approach involves the extraction of keywords
that aptly describe and summarise the content. By utilising a contextualised
attention-based pre-trained language model, the contextual information can be
effectively harnessed to discern the document’s relatively significant sections.
Therefore, we utilise the RoBERTa [18] model for the initial encoding of the cor-
pus documents. RoBERTa is a state-of-the-art language model that has demon-
strated exceptional performance in various natural language processing tasks.
Specifically, when dealing with a document d comprised of k words, denoted as
d = {d1, ...dk}, we leverage the RoBERTa encoding function, f(·; θ), to transform
all the words into a coherent and meaningful semantic space, i.e.

{h<s>,hd1 , ...hdk
,h</s>} = f({< s >, d1, ...dk, < /s >}; θ) (1)

where hdi
is the representation of the i-th word in RoBERTa embedding space.

< s > and < /s > are two special tokens indicating the start and the end
positions in the document, respectively. This process enables us to capture the
intricate contextual relationships and nuances present within the document.

The comprehensive essence of the document is commonly encapsulated within
the hidden state of the special token < s >; in order to estimate the signifi-
cance of individual words within the document, we compute the cosine similarity
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between the representation of the special token < s > and the representation of
each word. We take the top K ranking words based on their similarity scores, and
extract those as the key keywords for the document d. This process is articulated
as follows:

d̃ = top K
di∈d

[Sim (hdi
,h<s>)] (2)

where d̃ is the keyword set for document d, Sim(·) is the cosine similarity func-
tion. Based on our observation, the top 20 keywords can effectively capture the
core semantic content of a document. Hence, we set the number of extracted
keywords (K) to 20.

3.2 Medical Embedding Construction

In our work, the challenge posed by zero-shot IR is significant, primarily due to
the absence of any prior exposure of the model to the medical domain. In this
case, a crucial approach involves enhancing each keyword in the keyword set d̃
with relevant background information. This enrichment encompasses additional
context, definitions, and pertinent details sourced from the medical field. In this
endeavour, the Medical Subject Headings (MeSH) [17] knowledge graph emerges
as an exceptional resource. MeSH is a meticulously structured and high-quality
knowledge graph that encompasses a vast spectrum of medical concepts along
with their relationships. For instance, the relation“treatment” connects the two
concepts “cancer” and “chemotherapy”. This indicates that chemotherapy is a
type of treatment commonly used for cancer patients.

To harness the knowledge from MeSH, a method called Node2Vec [9] can be
used to generate medical embeddings. The main idea is to treat this graph as
a network, where nodes are concepts and edges represent relationships between
concepts [32]. This method utilises random walks and learns latent representa-
tions of nodes that maximise the probability of the sampled walks. The objective
function J for constructing the medical embeddings can be written as follows:

J = max

⎡
⎣ 1

T

T∑
i=1

∑
vj∈C(vi)

log p (vj | vi)

⎤
⎦ (3)

where T is the number of the MeSH concepts and C(vi) is a set containing sur-
rounding words of vi based on random walks in the knowledge graph. For this
study, alignment between the keyword set d̃, the query q, and concepts in the
MeSH knowledge graph were performed by matching keywords with concept
names. This simple lexical approach to entity linking was chosen for its simplic-
ity. However, it has known limitations, such as ambiguity and lack of semantic
matching. Future work should explore more sophisticated techniques to deal with
the issue.
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3.3 Retrieval with Medical Knowledge

By acquiring all the medical embeddings for document keywords from a corpus
in the MeSH knowledge graph embedding space through an offline process, we
can retrieve relevant information for each word from a given human-generated
query in an efficient manner. In particular, each query term can focus on each
word in the document to identify the most relevant information in the document
that can be retrieved by that specific query word. We aggregate all the relevance
scores for each query term during the retrieval process, i.e.

s(q, d) =
|q|∑
i=1

|d̃|
max
j=1

[
vqi � vdj

]
(4)

where |q| and |d̃| are the number of words in the query and document keyword
set, respectively. � is the dot product operation symbol. vqi and vdj

are corre-
sponding medical embeddings for the i-th word in the query and j-th word in
the document keyword set.

One clear limitation of Retrieval with Medical Knowledge is the equal weight-
ing given to documents whose keyword sets contain query terms, regardless of
term frequency. Despite the inclusion of background knowledge corresponding
to each word in the document’s keywords, factors such as term frequency should
also be considered. BM25 [23] is a commonly used unsupervised ranking func-
tion, incorporating lexical aspects and statistical information to improve scoring.
Leveraging medical embeddings enables the retrieval of candidate-relevant docu-
ments while applying BM25, which can further refine the ranking of those initial
results by incorporating term frequency statistics. Therefore, we propose fusing
the scores yielded by both approaches to improve overall performance, i.e.

ŝ(q, d) =

⎧
⎨
⎩

s(q, d) + s′(q, d) ∃s′(q, d)

s(q, d) �s′(q, d)
(5)

where s′(q, d) represents the BM25 score assigned to a given query q and docu-
ment d. ŝ(q, d) is the final score after the fusion.

4 Results and Evaluation

We evaluated the performance of our proposed models on two medical datasets:
NFCorpus [2] and SCIFACT [30]. Both focus on retrieving medical abstracts rel-
evant to search queries. The abstracts are written in technical medical terminol-
ogy, mostly from PubMed. For each dataset, a range of metrics, including Mean
Reciprocal Rank (MRR), Precision, normalised Discounted Cumulative Gain
(nDCG), Precision (P) and Recall (R), was employed for a thorough evaluation.
Our model was compared against several first-stage retrievers and BM25-based
re-rankers to assess its effectiveness.
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4.1 Baseline Models

First-Stage Retrievers

– BioLinkBERT [13] and S-BERT [22]: These are two BERT-based models
that generate sentence embeddings using siamese networks. While S-BERT
was pre-trained on a general domain question-answering dataset to create
universal semantic embeddings, BioLinkBERT utilises contrastive learning
on medical texts from PubMed to produce embeddings specialised for the
medical domain.

– DocT5Query [20]: It leverages a pre-trained T5 [21] model to generate syn-
thetic queries based on the document for text enrichment before indexing.

– DeepCT [4]: It employs the BERT model to estimate the weight of each
word in the context of the document. These BERT-derived weights are then
used to modify the term frequencies of the words.

– BM25 [23]: It is a traditional unsupervised ranking function. The basic idea
is that a more relevant document will contain more of the query terms, and
multiple occurrences of a term can indicate higher relevance.

BM25-Based Re-Rankers

– S-BERT [22]: We used the same S-BERT model as described previously to
re-rank the top 100 candidate documents retrieved in the first-stage for each
query.

– Cross Encoder [31]: It passes both the query and document sentence simul-
taneously to a Transformer network, producing an output value between 0 and
1, which indicates the relevance of the sentence pair. In reference to a study
by Thakur et al.[28], it is highlighted that MiniLM demonstrates the best
performance. Therefore, we evaluate the performance when using MiniLM as
the Cross Encoder for re-ranking.

4.2 Main Results

The main retrieval results are illustrated in Table 1. It demonstrates that
BM25 is an effective baseline for zero-shot IR compared with bi-encoders such
as S-BERT and BioLinkBERT. BM25 ranking alone achieves reasonable per-
formance, which can be further improved by re-ranking using a cross-encoder
model. This two-stage ranking pipeline achieves the best MRR results on the
NFCorpus dataset. However, re-ranking based on BM25 has limitations stem-
ming from BM25’s dependence on exact term matching, which can cause relevant
documents to be excluded from consideration during later re-ranking stages.

A noteworthy scenario emerged where the precision of MedRetriever at the
top 1000 exhibited favourable results among all the baseline retrievers. In con-
trast, the nDCG at the top 10 demonstrated comparatively suboptimal per-
formance. This disparity between precision and nDCG metrics suggests that
although the MedRetriever is capable of retrieving a fair proportion of relevant
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Table 1. Performances of first-stage retrievers, BM25-based re-rankers and our pro-
posed models. †The results were cited from [28]. ∗MedRetriever refers to our proposed
method as a standalone approach, distinct from its fusion with BM25.

Method NFCorpus SCIFACT

MRR P@10 nDCG@10 R@1k MRR P@10 nDCG@10 R@1k

First-stage Retrievers

BioLinkBERT 0.329 0.132 0.173 0.532 0.519 0.076 0.550 0.979

S-BERT 0.501 0.218 0.300 0.574 0.570 0.082 0.596 0.959

DocT5Query† – – 0.328 – – – 0.675 –

DeepCT† – – 0.283 – – – 0.630 –

BM25 0.537 0.233 0.325 0.372 0.635 0.088 0.665 0.980

BM25-based Re-rankers

Cross Encoder 0.591 0.244 0.350 0.250 0.662 0.091 0.688 0.908

S-BERT 0.430 0.170 0.232 0.229 0.539 0.081 0.568 0.864

Our Proposed Models

MedRetriever ∗ 0.499 0.222 0.298 0.644 0.540 0.083 0.581 0.990

MedFusionRank 0.552 0.262 0.357 0.644 0.673 0.094 0.705 0.990

documents overall, it struggles to rank the most relevant documents at the very
top of the list. When we combine scores from two methods, MedRetriever and
BM25, the results consistently outperformed nearly all of the baseline methods
across all evaluation metrics.

4.3 Out-of-Vocabulary Strategy

Table 2. Performances of using different out-of-vocabulary strategies for MedFusion-
Rank

Method NFCorpus SCIFACT

MRR P@10 nDCG@10 R@1k MRR P@10 nDCG@10 R@1k

Prefix Approx 0.552 0.262 0.357 0.644 0.673 0.094 0.705 0.990

CharLSTM 0.553 0.263 0.358 0.643 0.684 0.094 0.713 0.990

To handle out-of-vocabulary (OOV) words, this work incorporates two strate-
gies: Prefix Approximation and a Character-level Long Short-Term Memory net-
work (CharLSTM). Prefix Approximation, originally proposed in [26], identifies
the longest common prefix between an OOV word and in-vocabulary words,
then averages all embeddings sharing that prefix to represent the OOV term.
On the other hand, the CharLSTM learns sequential character-level features of
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in-vocabulary words to construct a non-linear mapping from character sequences
to medical embeddings. As depicted in Table 2, the CharLSTM achieves bet-
ter overall performance compared to Prefix Approximation. This indicates that
modelling the sequential patterns and characters of medical terminology plays a
more vital role in estimating representations for OOV words in this domain.

4.4 Case Study

Table 3. Keywords in the retrieved document based on a single term as query

Query Keywords in retrieved document

zoloft depression depressive antidepressants exercise sertraline

aerobic therapy anxiety treatment medication

therapeutic 50 disorders mental older

effects 67 rating mdd diagnostic

myelopathy spinal sclerotic paraplegia cobalamin spine

vegetarian vegan subacute cervical vitamin

degeneration hypertonia diagnosed reflexia impairment

paresthesias rehabilitative hypotrophy neurogenic diet

To further evaluate the performance of our proposed model, we conducted a
case study using short, single-term queries common in human searches. Statisti-
cal matching models like BM25 often struggle with these sparse queries, as the
single terms may not exist in the corpus. As shown in Table 3, the sample query
terms “zoloft” and “myelopathy” did not appear in any documents. However, our
proposed model successfully retrieved relevant documents with medical concepts
from the knowledge graph, ranking pertinent documents in the top 10 results
for both queries.

In the first example, “zoloft” is an antidepressant medication. Therefore,
“depression”, “depressive”, and “anxiety” are closely connected to “zoloft” since
the medication aims to alleviate the symptoms associated with these conditions.
In another example, “myelopathy” is a spinal cord pathology that can result
from vitamin deficiency, spinal degeneration, or cord compression. The keywords
“spinal”, “spine”, “vitamin” and “degeneration” from the retrieved document
could be relevant to the query.

This case study highlights the potential of our proposed model to improve the
search relevancy of short user queries. Our model effectively utilised associated
medical concepts to match user information needs.

5 Conclusion and Future Work

In this paper, we have presented MedFusionRank, a novel zero-shot MIR app-
roach that integrates the strengths of statistical methods and pre-trained lan-
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guage models. Our key insight is to leverage a pre-trained BERT-style model
to extract compact yet informative keywords. These keywords are then enriched
with domain knowledge by linking them to conceptual entities within a medical
knowledge graph.

Our experiments on two benchmark medical datasets demonstrate that Med-
FusionRank achieves promising results, outperforming a range of existing models
across various evaluation metrics. The case study also reveals MedFusionRank’s
ability to retrieve relevant documents even for short or single-term queries.

There are several exciting directions for future work. First, we plan to expand
the coverage of our medical knowledge graph using more comprehensive knowl-
edge resources. Second, we intend to explore more sophisticated entity-linking
techniques beyond simple lexical matching. Third, to enable deployment on
resource-constrained IoT devices, we will construct a vector database of the
encoded document embeddings and load it directly onto the target hardware.
This will circumvent the need for inference-time encoding and drastically reduce
retrieval latency and memory overhead. Finally, we aim to implement an end-
to-end prototype for real-time clinical decision support on medical IoT devices.
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Abstract. Chinese herbal medicines are the treasure of Chinese tra-
ditional medicine, which contains active ingredients that have signifi-
cant therapeutic effects for many diseases. To solve the fluctuation and
inefficiency problems faced by the existing image recognition of Chinese
herbal medicines relying on manual subjectivity, a deep classification
and recognition method based on a fractional order convolutional neural
network is proposed for the images of Chinese herbal medicines. This
method introduces Caputo fractional order gradient descent to update
the model parameters, which improves the accuracy of gradient descent
in the process of training the model, and solves the problem that integer
order gradient descent is prone to fall into the local optimal solution and
thus leads to low accuracy. By establishing a multi-scale standard Chi-
nese herbal medicines dataset, the feature recognition ability based on
Caputo Fractional Order Convolutional Neural Network (CFO-CNN) is
trained and tested. And at the same time, the fractional order backprop-
agation function is used, so that the model can effectively find the global
optimal solution, and achieve the output of the feature deep recognition.
Experiments show that the method can effectively achieve the deep clas-
sification recognition of Chinese herbal medicines varieties, species and
grades.

Keywords: Fractional Order · Convolutional Neural Network ·
Chinese herbal medicines · Image classification

1 Introduction

As an important part of traditional Chinese medicine, the active ingredients of
Chinese herbal medicines can be used in the prevention and treatment of diseases,
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and it is also very important to accurately identify their traits. In traditional
trait identification, Chinese herbal medicines are often classified and identified
by human subjective behaviors such as tasting, sniffing, and eye observation.
However, many herbs are morphologically similar but have different effects, e.g.,
Psyllium and Cuscuta, which makes it difficult to classify and identify herbs on
a large scale using only the human appearance of the herbs.

The application of automation and intelligent technology to medical and
health services is of great significance to enhance the development of medical care
[1,2]. To improve the accuracy and consistency of the trait identification tech-
nology of Chinese herbal medicines, the study of how to break through the tra-
ditional trait identification methods of Chinese herbal medicines using machine
learning-based image recognition and classification techniques has become a hot
research issue. Article [3] proposes the use of Attention Pyramid Networks for
the recognition of Chinese herbal medicines, introducing competitive attention
and spatial collaborative attention applied to the recognition of Chinese herbal
medicines. The authors in the article [4] utilize a mutual triple attention learning
approach that allows two student networks to collaborate on parameter updates.
Meng Han et al. [5] classified Chinese herbal medicines through a new mutual
learning model that could extract stronger and richer features without increasing
the parameter size. Although the above deep learning methods can identify the
image types of some Chinese herbal medicines, they do not consider that there
are different varieties of the same kind of Chinese herbal medicines, and the
same variety has different specifications, quality, and price. The traditional deep
learning model-based image recognition and classification methods for Chinese
herbal medicines are facing significant challenges.

Convolutional neural network (CNN) is one of the main deep learning mod-
els [6,7], which has attracted much attention because of its outstanding advan-
tages in image recognition and classification. CNN has been widely used to solve
image recognition problems in many fields of production and life, such as por-
trait recognition [8], plant disease identification [9–11], QR code recognition
[12], Human Activity Recognition [13], and so on. Meanwhile, optimizing CNN
using fractional order is an important method in the field of deep learning, and
some studies [14,15] have shown that the fractional order gradient method can
avoid the problem of the CNN model falling into the local optimal solution.
Therefore, this paper investigates a Caputo fractional order Convolutional Neu-
ral Network (CFO-CNN) based method to achieve deep recognition of Chinese
herbal medicines images. The main contributions of this paper include:

1. A model structure based on CFO-CNN is proposed. This model adopts
Caputo fractional order gradient descent instead of integer order gradient
descent to update the model parameters. By doing so, it addresses the issue
of the integer order gradient descent algorithm’s susceptibility to local optima
due to fine-grained defects. The optimization of the backpropagation algo-
rithm improves the recognition accuracy of the model.

2. A convolutional neural network model incorporating the fractional order gra-
dient descent method applied to Chinese herbal medicines is proposed. This
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model can achieve deep classification recognition of multiple Chinese herbal
medicines varieties, species, and grades. It solves the problem of fluctuation
and inefficiency faced by manual subjective identification of Chinese herbal
medicines, which is of great significance in improving the clinical application
of Chinese herbal medicines.

2 Approach

In this paper, a Caputo Fractional Order Gradient Descent Convolutional Neural
Network (CFO-CNN) for deep classification and recognition of Chinese herbal
medicines is proposed to extract features from the data of Chinese herbal medici-
nes using a convolutional neural network. The fractional order gradient descent
method is used to update the extracted parameter information in the model
and continuously optimize the parameters in the feature extraction process to
improve the classification and recognition of Chinese herbal medicines.

There is no publicly available dataset in the field of Chinese herbal medicines
identification and classification. In this paper, we extracted images of various
Chinese herbal medicines from web pages in different scenes and different back-
grounds to form a dataset, and manually created the label information for each
variety of herbs. The images of different varieties, species, and grades of different
herbal medicines are used as datasets and input data x to the neural network
model, and the feature expressions of herbal medicines are obtained through
convolutional feature extraction

x
(l)
j = f

( l∑

(i=1)

w
(l)
ij ∗ x

(l−1)
i + b

(l)
j

)
(1)

where x
(l−1)
j denotes the Chinese herbal medicines data information of the layer

i channel of layer l − 1, f(·) denotes the activation function, w
(l)
ij denotes the

weight of the convolutional layer l, b
(l)
j denotes the bias term of layer l, and x

(l)
i is

the output of Chinese herbal medicines features of the j channel of convolutional
layer l.

In the backpropagation, the Loss function Loss updates the parameters
learned by the network, and the gradient is updated in the traditional integer
order of

wk+1 = wk − μ
∂Loss

∂wk
(2)

bk+1 = bk − μ
∂Loss

∂bk
(3)

where wk and bk denote the current weights and bias information, wk+1 and bk+1

denote the updated weights and bias information. μ denotes the learning rate of
the gradient descent algorithm. In non-convex function problems, the objective
function may have multiple local optimal solutions and only one global optimal
solution. The fine-grained defects of the integer order gradient descent algorithm
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lead to falling into local optimal solutions in the gradient update. To improve
the model identification accuracy of gradient descent and prevent the problem
of falling into local optimal solutions during updating, the Caputo fractional
order derivative is introduced, and the general form of Caputo fractional order
derivative is obtained after the sum of partial integrals [16] as

C
a Dα

x f(t) =
∞∑

n

f (n)(t0)
Γ (n + 1 − α)

(t − t0)n−α (4)

where C
a Dα

x is an operator of Caputo fractional order, α denotes the order, and
when α is a positive integer, it denotes the integer order derivative in, the usual
sense. When denoting the fractional order, it is necessary to satisfy n−1 < α < n,
where n ∈ N+ and Γ (α) =

∫ ∞
0

xα−1e−xdx is the Gamma function. Each time
the feature parameters are updated by Caputo fractional order gradient descent.
The updated characteristic parameter information of Chinese herbal medicines
that can be obtained by combining Eq. (2), Eq. (3) and Eq. (4) can be expressed
as

w∗
k+1 = wk − μC

a Dα
x Loss(w) (5)

b∗
k+1 = wk − μC

b Dα
x Loss(b) (6)

where w∗
k+1 and b∗

k+1 denote the updated weights and biases of the fractional
order gradient descent method, wk and bk denote the current weights and biases,
μC

a Dα
x Loss(w) denotes the derivatives of the Caputo fractional order concerning

the current weights w, and μC
b Dα

x Loss(b) denotes the derivative of the Caputo
fractional order concerning the current bias b. After Taylor expands the Caputo
fractional order and retains the results of the first term, Eq. (5) and Eq. (6) can
be rewritten as follows

w∗
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|wk − wk−1|(1−α) (7)

b∗
k+1 = bk − μ
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where wk−1 and bk−1 denote the weights and biases of the last time. After many
iterations, the feature parameters of the final output image of Chinese herbal
medicines are classified by Softmax function, and the probability of different
varieties, species and grades under different species of Chinese herbal medicines
obtained can be expressed as follows

P =
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(9)

P denotes the probability of identifying different varieties, species and different
grades of herbs under the same species. xvariety denotes the variable data of
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herbal medicines, xspecies denotes the species data of Chinese herbal medicines,
xgrade denotes the data of different grades of Chinese herbal medicines under the
same type of herb. The deep classification and recognition method of Chinese
herbal medicines based on Caputo fractional order convolutional neural network
is shown in Fig. 1
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Fig. 1. Deep classification recognition system for Chinese herbal medicines based on
Caputo fractional order convolutional neural network

3 Experiments

Through tests of Chinese herbal medicine picture classification and identifica-
tion, the study is methodically assessed. Image recognition shows this method’s
benefits over previous deep learning-based categorization approaches for Chinese
herbal medicines.

Chinese herbal medicine image identification is not restricted to a particu-
lar setting, one event, or even one database [17]. Here, the experiment’s data
consists of randomly selected photos of Chinese herbal medicines against var-
ious backdrops and scenarios from the Chinese herbal medicines dataset. The
data contains nine representative Chinese herbs, each with about 700 images,
and a total of about 6300 images of Chinese herbal medicines as training data
and about 100 images as test data, which are annotated by manually labeling
the data with labels that include the variety, species and grade of the Chi-
nese herbal medicines. After loading the Chinese herbal medicines dataset, the
data resolution is set to 224 × 224, and the step size of each experiment is
16. Convolutional pooling is used to down-sample the images of Chinese herbal
medicines; the fully connected layer provides parameter information in dimen-
sionality reduction; fractional order gradient optimization is used to optimize
the parameters for backpropagation; and lastly, visualization is applied to the
experimental results. The parameter settings of the CFO-CNN model used in
this study are shown in Table 1.

The model uses five convolutional layers and pooling layers to downsample
the input data, the first fully connected layer spreads the down-sampled feature
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maps into one-dimensional vectors, and the second fully connected layer outputs
the dimensions of the number of varieties of herbs to be recognized for the final
classification prediction of Chinese herbal medicines.

Table 1. Parameters of the CFO-CNN model

Layer (type) Output Shape Param #

Conv2d-1 [16, 32, 222, 222] 896

MaxPool2d-2 [16, 32, 111, 111] 0

Conv2d-3 [16, 64, 109, 109] 18,496

MaxPool2d-4 [16, 64, 54, 54] 0

Conv2d-5 [16, 128, 52, 52] 73,856

MaxPool2d-6 [16, 128, 26, 26] 0

Conv2d-7 [16, 256, 24, 24] 295,168

MaxPool2d-8 [16, 256, 12, 12] 0

Conv2d-9 [16, 256, 10, 10] 590,080

MaxPool2d-10 [16, 256, 5, 5] 0

Conv2d-11 [16, 512, 3, 3] 1,180,160

MaxPool2d-12 [16, 512, 1, 1] 0

Linear-13 [16, 128] 65,664

Linear-14 [16, 9] 1,161

From the test dataset, a random selection of Chinese herbal medicine images
was used to create test data, which the CFO-CNN model then categorized. Fig.
A identified this set of Chinese herbal data as Bark, Leaf, Hawthorn, Tuckahoe,
Medlar, Ganoderma lucidum, Rattan, Cordyceps, and Panax notoginseng. From
the figure, it can be seen that the CFO-CNN proposed in this study can classify
accurately all the Chinese herbal medicines given by the test.

Three plants were identified as belonging to the Ginseng variety-Panax gin-
seng, Codonopsis, and Radix glehniae-after deep recognition of the Chinese herb
varieties was carried out, as shown in Fig. B. Three herbs were recognized under
the variety of Ginger as Dried ginger, Curcuma and Baked. Three herbs were
identified under the variety of Chrysanthemum, namely Wormwood, Taraxacum,
and Daisy. The CFO-CNN is very accurate for deep recognition of different
species in the variety of Chinese herbal medicines as shown in Fig. B.

Fig. C demonstrated the analysis of different classes of herbs according to
their respective classes, in which it was identified that in Ginseng, Panax ginseng
belongs to the first class, Radix glehniae is second class, Codonopsis belongs to
the third class. Ginger Curcuma is first class, Baked ginger is second class, and
Dried ginger belongs to the third class. In Chrysanthemum Daisy is first class,
Wormwood is second class, and Taraxacum belongs to third class. From Fig. A,
Fig. B, and Fig. C, it can be judged that the convolutional neural network based
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on fractional order gradient descent can deeply classify and identify the classes
of Chinese herbs, different kinds of herbs under different herb classes as well as
different grades of the same kind of herbs, and the results are accurate.

Compare the effect of fractional order gradient descent CNN algorithm
and integer order gradient descent algorithm in the task of Chinese herbal
medicines classification and recognition. Fig. D compares ResNet18, GoogLeNet,
MobileNet with CFO-CNN. Because of the fractional order compared to the
integer order’s complex computational form, under the same Chinese herbal
medicines dataset, the convolutional neural network with fractional order gradi-
ent descent method is about 7.5% more accurate than the traditional ResNet18
model, about 4% more accurate than the traditional GoogLeNet model, and
about 23% more accurate compared to the traditional MobileNet model, which
is a significant improvement in the accuracy.

The varying convergence speeds exhibited by fractional orders greater than
one and less than one. To further compare different orders of gradient descent
algorithms, Fig. E selected and compared the accuracy of model recognition for
traditional Chinese medicine at different orders. The resulting accuracy change
curve graph reveals insights. Analyzing the range of fractional orders, it’s evident
that for fractional orders of 0.1, 0.4, and 0.7, when the fractional order is less
than one, the performance of fractional order gradient descent algorithms is
inferior to both integer order gradient descent algorithms and fractional order
gradient descent algorithms greater than one. When the order is greater than
one, as seen from the curves at fractional orders of 1.3 and 1.7, fractional order
gradient descent algorithms show significant improvement compared to first-
order integer order algorithms. Analyzing the magnitude of fractional orders,
it’s evident from the curves at orders 0.1, 1.9, and 1.3 that the further the
order is from the corresponding integer order, the worse the gradient descent
performance becomes. Conversely, when the order is greater and closer to the
corresponding integer order, the advantages of fractional order gradient descent
algorithms become prominent. To illustrate, a point-line graph was created based
on the maximum accuracy values for different orders after 150 iterations. In the
case of integer order gradient descent algorithms, the obtained accuracy was 87%.
When the fractional order is 1.3, the accuracy of the fractional order gradient
descent algorithm reaches 95.5%, reflecting an enhancement of 8.5% compared to
integer orders. Conversely, when the fractional order is 0.1, the fractional order
contributes almost negligibly to parameter updates.

Fig. F compares the gradient descent method with fractional orders of 0.7, 1.0
and 1.3. It is obvious from the figure that when the order is 1.3, the function has
converged to the extremum point after about 120 iterations, and the loss error
is about 0.12. When the order is 1.0, the function has completed convergence in
60 iterations, but the error is larger, about 0.88, which is not satisfactory. The
convergence is not satisfactory. When the order is 0.7, the model stops converging
after 90 iterations with an error of about 1.04, and the model performs poorly in
recognizing Chinese herbal medicines during training. It can be seen that when
the order of the fractional order is larger than the integer order and the closer to
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the integer order, the better the convergence of the gradient descent method of
fractional order is, on the contrary, when the order is far away from the integer
order or smaller than the integer order, the model is easy to fall into the local
optimal solution. From this, it can be determined that the value of the order
of the fractional order gradient descent method should be elected as 1.3 in the
deep classification and recognition task of Chinese herbal medicines.

In Fig. G, the CFO-CNN learning recognition accuracy by fractional order
gradient descent method is compared with various network models’ deep learning
techniques. For the comparative experiment, the deep learning models Resnet18,
GoogLeNet, and MobileNet are chosen. The box plot indicates that when com-
pared to the conventional deep learning Chinese herbal medicine image recogni-
tion method, the accuracy of the convolutional neural network with the Caputo
fractional order gradient descent method is improved by at least 4%. Addition-
ally, the results of multiple experiments are stable and reliable. The reason for
this is that the traditional artificial neural network for the image recognition of
Chinese herbal medicines is based on the computational rules of integer order
gradient descent to update the weight information, while this paper adopts the
fractional order gradient descent method to introduce Caputo fractional order
to update the weights, which is superior to the non-local nature of the fractional
order that allows it to better capture the global information, and its update
method is more accurate compared to that of the integer order updating method.

Fig. H compares the loss values of the models derived from the loss function
based on the learning process of Chinese herbal medicine photos in order to
further compare the gradient descent techniques at various orders. We find that
the ultimate loss value of the model decreases minimally as the fractional order
moves farther away from the integer order, suggesting that gradient updates
are not clearly affected by this change. The computed loss values from the loss
function computation are reduced when the fractional order approaches an inte-
ger order and exceeds the first-order integer. This suggests that picture learning
recognition gets more accurate, which is better for correctly identifying and cat-
egorizing Chinese herbal medicines.

The confusion matrix used in this study to identify nine Chinese herbal types
is displayed in Fig. 2. The information reveals that the estimated probability of
identifying Panax ginseng is approximately 100%, that of identifying Codonopsis
is 100%, that of identifying Radix glehniae is 95.6%, that of identifying Dried
ginger is 99.8%, that of Baking ginger is 87.9%, that of Curcuma is 87.3%, that of
Wormwood is 100%, that of Daisy with 84.4% predicted probability, and that of
Taraxacum with 88% predicted probability. It can be seen that the convolutional
neural network based on the fractional order gradient descent method has high
accuracy in predicting multi-class Chinese herbal medicines varieties, and the
recognition accuracy of similar different kinds of Chinese herbal medicines can
reach more than 80% even under the same class.



Deep Recognition of Chinese Herbal Medicines 49

A B C 

D E F 

G H I 

Panax ginsengRadix glehniae Codonopsis

Dried ginger Curcuma

DaisyWormwoo
d

Taraxacum

Baked ginger

Chrysanthemum

Ginger

Ginseng

First class

Third class

Second class

First class First class

Second class Second class

Third classThird class

Chrysanthemum

Ginger

Ginseng

ChrysanthemumGinseng

Ginseng

ChrysanthemumChrysanthemum

Ginger

Ginger

Ginseng

Ginger

Fig. 2. A represents the class of herbs recognized by the model; B is the corresponding
variety of the recognized herbs; C is the classification of the recognized herb classes; D is
the experimental comparison plot of integer order gradient descent and fractional order
gradient descent convolutional neural networks with different models; E represents the
recognition ability of fractional order gradient descent with different orders; F is a plot
of the error analysis for different orders of the fractional order; G is the boxplot of the
recognition effect of different models; H is the magnitude of the loss value of Chinese
herbs at different orders; I is the confusion matrix of a certain nine varieties of herbs.

4 Conclusion

In this paper, a fractional order convolutional neural network based on gradient
descent is investigated for deep recognition and classification of Chinese herbal
medicine images. Among them, the model adopts Caputo fractional order gra-
dient descent instead of integer order gradient descent method to update the
CNN model parameters, solve the problem that the simple computation rule of
integer order leads to easily fall into the local optimal solution, optimizing the
network backpropagation algorithm. Improved model convergence performance
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and improved the accuracy of the deep classification and recognition of Chinese
herbal medicines images by about 8.5%.

This CFO-CNN model can realize the variety recognition of different Chinese
herbal medicines, further identify the species of Chinese herbal medicines under
different varieties of Chinese herbal medicines, and distinguish different grades
under the same type of Chinese herbal medicines according to the advantages and
disadvantages, which solves the fluctuation in the classification of Chinese herbal
medicines due to manual subjectivity and the inefficiency of manual recognition.

The main limitation of this paper is that its data sources are only randomly
grabbed from several Chinese herbal medicine image databases, and thus may
not cover all types of Chinese herbs. Therefore, datasets covering more types of
Chinese herbs are needed to improve the breadth and persuasiveness, and fur-
ther research and experiments are needed to fully evaluate the performance and
feasibility of the present method for the application of Chinese herbal medicines
recognition.
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Abstract. Multi-task feature learning (MTFL) methods play a key role
in predicting Alzheimer’s disease (AD) progression. These studies adhere
to a unified feature-sharing framework to promote information exchange
on relevant disease progression tasks. MTFL not only utilise the inherent
properties of tasks to enhance prediction performance, but also yields
weights that are capable to indicate nuanced changes of related AD
biomarkers. Task regularized priors, however, introduced by MTFL lead
to uncertainty in biomarkers selection, particularly amidst a plethora
of highly interrelated biomarkers in a high dimensional space. There is
little attention on studying how to design feasible experimental proto-
cols for assessment of MTFL models. To narrow this knowledge gap, we
proposed a Randomize Multi-task Feature Learning (RMFL) approach
to effectively model and predict AD progression. As task increases, the
results show that the RMFL is not only stable and interpretable, but
also reduced by 0.2 in normalized mean square error compared to single-
task models like Lasso, Ridge. Our method is also adaptable as a general
regression framework to predict other chronic disease progression.

Keywords: Multi-task feature learning · Alzheimer’s disease ·
Randomization · Stability selection

1 Introduction

Alzheimer’s disease, as one of the most common forms of dementia, is a neurode-
generative disease that causes problems with progressive cognitive decline and
memory loss [8]. With rates projected to increase by 75% in the next quarter
of a century [1], AD is a leading contributor to disability amongst older people
and causes significant morbidity as well as personal family burden. So far, there
is no effective cure for AD where science has not yet identified any treatments
that can slow or halt the progression of this disease. Yet, early intervention and
timely diagnosis could be still promising and cost-effective. It poses an important
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Qi and P. Yang (Eds.): IoTBDH 2023, CCIS 2019, pp. 52–68, 2024.
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research area that understands how the AD progresses and identify their related
pathological biomarkers for the progression. To accelerate AD’s research, the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) funded by NHI provided a
large boundary of publicly available neuroimaging data including magnetic res-
onance imaging (MRI), positron emission tomography (PET), other biomarkers
and cognitive measures for scientific study. A variety of medical data driven based
machine learning techniques [9,10,21–23], like deep learning models [5,11], multi-
task feature learning (MTFL) model [12,24,26] and survival model [15,19,20],
have been investigated to deal with these data for better prediction of AD pro-
gression. The motivation of those study is to learn a stable set of features across
all tasks and share them to improve the accuracy of all tasks. However,before
they share feature information, picking out stable and unbiased features is a key
challenge.

Randomization as a method of machine learning has been extensively used in
theoretical algorithms and real-world applications [18]. It prevents the selection
bias and insures against the accidental bias. For example, in ensemble learning
approaches, the Random Forest and the Extra-Trees algorithm [13,16] belong
to two averaging algorithms based on randomized decision trees. Both algo-
rithms are perturb-and-combine techniques [2] specifically designed for trees.
This means a diverse set of models is created by introducing randomness in the
model’s construction. The prediction of the ensemble is given as the averaged
prediction of the individual models. Despite the algorithms in ensemble learning
have good predictive accuracy, they are black box methods which are unable
to explain the reasons behind the result. Particularly in the field of medically
assisted diagnosis as well as in finance, the value of model interpretability is
much higher than the accuracy of its predictions.

In this paper, we introduce a randomize multi-task feature learning (RMFL)
approach for effectively modelling and predicting AD progression. We examine
typical MTFL models via randomized structural regularization approaches in
AD study and choose two typical single task models: Ridge regression and Lasso
regression. Considering that MTFL features shared parameters and representa-
tions, we further explore four potential key points affecting evaluation process of
RMFL in AD study: 1) evaluation indicators: validating the model’s robustness
on different type of square error or correlation coefficient; 2) repeated experimen-
tal times (e.g., results of 10 repeated experiments and 100 repeated experiments
are different results; 3) size and portion of training data; 4) number of tasks in
MTFL (e.g., time points in AD progression). For each point, we design and set
up experimental protocols for comparison and exploration, highlighting following
multi-fold contributions:

– We introduce a RMFL strategy that is capable of predicting AD progres-
sion with high accuracy, while elucidating the structure that can structural
nuances indicative of significant biomarkers alterations in AD.

– We provide a solid evidence that whether RMFL model perform well in com-
plex practical experimental settings. One key finding is that MTEN’s superior
performance may stem from the stability selection of features across multiple
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tasks. This provides a checkpoint for whether the model works well in more
complex practical applications.

– By leveraging methodical validation, we demonstrate that some limitations of
MTFL models in AD study: 1) the normalized mean square error emerges as
the most reliable performance metric, while alternative evaluative indicators
lack comparable objectivity. 2) MTEN has a considerable potential for further
improvement at late stage prediction of AD progression. 3) The assumption
of temporal smoothness in MTFL models for AD study constrains early task
performance.

2 Methodology

2.1 Subjects

To track the effectiveness of disease progression models, ADNI-1 subjects with
all corresponding MRI and cognitive scales are evaluated. The ADNI is a lon-
gitudinal multicenter study designed to develop clinical, imaging, genetic, and
biochemical biomarkers for the early detection and tracking of AD. Since its
launch more than a decade ago, the landmark public-private partnership has
made major contributions to AD research, enabling the sharing of data between
researchers around the world. A total of 800 subjects, approximately 200 normal
individuals (NL), 400 subjects with Mild cognitive impairment (MCI) and 200
subjects with early AD, were involved in this study. All participants received
standard clinical tests of cognitive function to be followed for 3 years, such
as Mini Mental State Exam score (MMSE), Alzheimer’s Disease Assessment
Scale cognitive total score (ADAS-cog) and Rey Auditory Verbal Learning Test
(RAVLT). The date of the participant’s first visit to the hospital for screening
was set as the baseline period in order to facilitate comparison with subsequent
changes in the participant’s status. The follow-up points, such as 6 or 12months
after the baseline point, supported the longitudinal disease progression of the
subjects. For example, “M12” was defined as the follow-up survey at month 12
after baseline. As the timeline lengthens, the number of subjects who still have
follow-up records gradually decreases, but detailed data at the screening stage
is useful for early detection of a patient’s potential risk of AD.

2.2 Image Pre-processing

For guarantee high image quality and reliable data handling, the MR images
used in the paper were derived from standardized datasets, which provide the
intensity normalized and gradient un-warped TI image volumes. Subsequently,
the FreeSurfer image analysis suite [4] was performed to feature extraction of
the MR, which executes cortical reconstruction and volumetric segmentations
for processing and analyzing brain MR images. For each MRI, cortical regions
and subcortical regions are generated after this pre-processing suite. For each
cortical region, the cortical thickness average, standard deviation of thickness,

https://adni.loni.usc.edu/about/adni1/
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surface area, and cortical volume were calculated as features. For each subcortical
region, subcortical volume was calculated as feature. Data cleaning operations
are performed:

– Removal of individuals who failed cortical reconstruction and failed quality
control;

– Removal of features with more than half of the missing values;
– Individual subjects whose removal of baseline did not screen for MRI;
– Using the average of the features to fill in missing data;
– Removal of cognitive function tests in individuals with missing follow-up

points in longitudinal studies.

After the pre-processing procedure, there are a total of 429 subjects and 327
MRI features.

2.3 Regression Model via Structural Regularization

Regression model has been widely used in statistical, medical and industrial
applications. It is a mathematical and statistical analysis of dependent influences
(independent variables) and predictors (dependent variables). Its strength lies in
its strong interpretation. By fitting the data, the parameter values corresponding
to the independent variable indicate its effect on the dependent variable.

We consider the problem of prediction as a linear model. In order to obtain
models with generalizability, loss functions with empirical structural loss risk
minimization as the formula:

min
β

L(y,X, β) + λR(β) (1)

where the loss term L(y,X, β) measures how well the model fits the data, the
regularization term R(β) measures model complexity. When λ ≥ 0 denotes the
penalty parameters, i.e., balancing the goal of fitting the training with the goal
of keeping the parameter values small, come to keep the hypothesis relatively
simple in form and avoid overfitting.

In general, the sample contains a large number of possible biomarkers for the
patient, such as MRI statistical values for the regional cortex, CSF, biochemical
indicators and cognitive scores. They are transformed into features that can be
run by the model so that the relatively important subset of features can be
filtered out in the subsequent training process.

The regularization term is considered as the addition of a prior, and common
paradigms are Ridge regression and Lasso, which respectively add the L1 and
L2 norm. Statistical theory can prove that Ridge regression specifies a prior that
the model obeys a Gaussian distribution and Lasso specifies a prior that the
model obeys a Laplace distribution. This regularization term can be expressed
as:

min
w

L(Y,X,W ) + λ||W ||1 (2)

min
w

L(Y,X,W ) + λ||W ||2 (3)
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where ridge regression constrains variables to a smaller range for reducing some
factors with little impacts on model’s prediction. Unfortunately, this reduction
means that these variables are still considered. To solve this problem, Lasso
was proposed as a new sparse representation linear algorithm, which simul-
taneously performs feature selection and regression. Some variables are set to
zero directly to achieve sparsity and dimensionality reduction. In addition, some
randomization-based sparse algorithms [17] put in different prior assumptions to
achieve the desired effect and kernel extended strategy [3] to cope with nonlinear
system in complex space.

2.4 Multi-task Feature Learning

A popular setting of multi-task feature is to treat a regression model as a task.
The purpose of multi-task feature learning [6] is to learn a common set of features
across all tasks and share them to improve the accuracy of all tasks. Among
these learning tasks, a basic assumption of MTFL is that one or more subsets
are related to each other.

Let X = [x1, ..., xn]T ∈ R
n×d be the data matrix, Y = [y1, ..., yn]T ∈ R

n×k

be the predicted matrix, and W = [w1, ..., wk]T ∈ R
d×k be the weight matrix.

The process of establishing a MTL model is to estimate the value of W, which
is the parameter to be estimated from the training samples.

Two common MTFL models are presented to display their properties. Multi-
Task lasso is a linear model that estimates sparse coefficients for multiple regres-
sion problems jointly. The constraint is that the selected features are the same
for all the regression problems, also called tasks. The Fig. 4 compares the loca-
tion of the non-zero entries in the coefficient matrix W obtained with a simple
Lasso or a Multi-task Lasso. Mathematically, it consists of a linear model trained
with a L21-norm for regularization. The objective function to minimize is:

min
w

1
2n

||XW − Y ||2F + α||W ||21 (4)

where || · ||F denotes the Frobenius norm ||A||F =
√∑m

i=1

∑n
j=1 |aij |2, and

||W ||21 denotes ||W ||21 =
∑d

i=1

√∑t
j=1 W 2

i,j . The multi-task lasso allows to
fit multiple regression problems jointly enforcing the selected features to be the
same across tasks. For example, AD cognitive progress sequential measurements,
each task is a time instant, and the relevant features vary in amplitude over time
while being the same. This makes feature selection by the Lasso more stable.
However, when there are correlations between multiple features, the features will
be randomly selected, especially when the brain region is regarded as a feature,
there are some blocks with high correlation, such as atrophy of the cerebral
cortex causes reduction in cortical volume and cortical thickness.

Another approach of MTFL is multi-task elastic net (MTEN). It can compen-
sate for the shortcomings generated by multi-task lasso. When multiple features
are correlated with one another, MTEN tends to select both features rather than
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a random. Mathematically, it consists of a linear model trained with a mixed
L21-norm and L21-norm for regularization. The objective function to minimize
is:

min
w

1
2n

||XW − Y ||2F + αρ||W ||21 + α(1 − ρ)
2

||W ||2F (5)

The difference from multi-task lasso is that MTEN adds a constraint on the
F-norm of W. α and ρ controls the strictness of model penalties to trading-
off the advantages between Lasso and Ridge. When ρ = 0, MTEN degrades to
multi-task lasso; When α = 0, MTEN degrades to traditional linear regression
problem.

2.5 Randomize Multi-task Feature Learning

Randomization as a method of machine learning has been extensively used in
theoretical algorithms and real-world applications [18]. It prevents the selection
bias and insures against the accidental bias. For example, in embedded feature
selection schemes, randomization has recently received increasing attention due
to the use of randomization-related techniques to select a more stable and less
biased feature subsets. Stability selection are one of them.

Stability selection is based on subsampling in combination with (high dimen-
sional) selection algorithms. In previous related studies [24], the stability ranking
score gives the probability that it is naturally interpretable. This study propose
to extend a strategy of stability selection to multi-task feature study to quantify
the importance of the features selected by the MTFL formulations for predicting
disease progression. Multi-Task elastic network algorithm was utilized to track
the area of the cerebral cortex associated with AD progression.

Let F be the overall set of features and let f ∈ F be the subset of features
by sub-sampling. Let γ denote the iteration number of sub-sampling and Di =
{X(i), Y (i)} denote one random sub-sample operation of number i ∈ (0, γ]. Each
operation size account for �n

2 �. Let Λ be the regularization parameter space. For
a λ ∈ Λ, let Ŵ (i) denote the model coefficient of MTFL that fitted on a subset of
D(i). Then, the subset of features generated in task j by the sparse constraints
of the MTFL algorithm can be denote as:

Sλ
j

(
D(i)

)
=

{
f : Ŵ

(i)
j �= 0

}
. (6)

With stability selection, we do not simply select one model in the parameter
space λ. Instead the data are perturbed (e.g. by sub-sampling) γ times at task
j and we choose all structures or variables that occur in a large fraction of the
resulting selection sets:

π̂λ
j =

∑γ
i=1 I

(
f ∈ Sλ

j (Dij)
)

γ
. (7)

where indicator function I(•) denote I(x) =

{
1, x = 0
0, others

and π̂λ
j ∈ [0, 1] denote

the stability probability of task j at MTFL approaches which feature selection
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is not based on individual operations but on multiple task collaboration con-
straints.

Repeat the above procedure for all λ ∈ Λ, we obtain the stability score Sj(f)
for each feature f at task j:

Sj(f) = max
λ∈Λ

(
π̂λ

j

)
. (8)

Finally, for a cut-off πth with 0 < πth < 1 and a set of regularization param-
eters Λ, the set of stable variables is defined as:

Ŝstable = {k : Sj(f) ≥ πth} =
{

k : max
λ∈Λ

(
π̂λ

j

) ≥ πth

}
. (9)

The embedded multi-task approach ensures that the selected features have the
following properties:1) Stability. A cortical region of the brain that is closely
related to the subject’s disease progression. 2) Global significance. MTFL makes
sure that the selected features are important for each task. One technique that
arises here is to pick the coefficient value for one of the tasks when doing statistics
on the stability of the selected features at Eq. 4. Overall, the complete stability
selection procedure is shown below:

– Randomized selection of feature subsets;
– Randomly selected data subsets;
– Given a hyperparameter search range and a selected set;
– Training Multi-task model and Obtaining weighting factors;
– Polling statistics to find out the probability of a feature being selected;
– Chosen the maximum value as its final stability probability in each random-

ization algorithm;
– Feature selection based on a given threshold.

3 Experiment

3.1 Experiment Setup

First, experiments demonstrated that MTFL is superior in following AD pro-
gression. Combined with randomization techniques, RMFL is enable to locate
the stable and sensitive cortical biomarkers. Our empirical protocol design is
based on a pipeline shown in Fig.A5. The total experimental process mainly
includes 5 steps: 1) split the data set; 2) select the hyper-parameters; 3) train
the model; 4) evaluate the model using the test set; 5) iterate the above oper-
ations and 6) randomize multi-task feature selection strategy. Different colors
denote the source or generation of different data, arrows indicate the flow of
data, and serial numbers indicate the steps of the experiment.

Then, to demonstrate that the MTFL algorithm is more generalizable and
stable in a variety of realistic scenarios, Four protocol is set up to explore the
potential influence that the error arising from the experimental process itself:
1) evaluation indicators, 2) repeated experimental times; 3) size and portion
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of training data; 4) number of tasks in MTFL. In addition, the significance of
randomize multi-task feature selection strategy in guiding the search for stable
biomarkers was demonstrated in Experiment II visually stability biomarkers.

The evaluation metric of cross-validation is employed to evaluate the perfor-
mance of AD progression model. When a metric is set in the cross-validation
experiment process, a set of hyper-parameters can be obtained. By comparing
the pros and cons of the results, the suitable metric for the model is finally deter-
mined. The regression performance metric often employed in MTL is normalized
mean square error (nMSE) and root mean square error (rMSE) is employed to
measure the performance of each specific regression task. In particular, nMSE
has been normalized to each task before evaluation, so it is widely used in
MTL methods based on regression tasks. Also, weighted correlation coefficient
(wR) as employed in the medical literature addressing AD progression problems
[7,14,25]. nMSE, rMSE and wR are defined as follows:

nMSE(Y, Ŷ ) =

∑t
i=1

∥∥∥Yi−, Ŷi

∥∥∥
2

2
/σ (Yi)

∑t
i=1 ni

(10)

rMSE(y, ŷ) =

√
‖y − ŷ‖22

n
(11)

wR(Y, Ŷ ) =

∑t
i=1 Corr

(
Yi, Ŷi

)
ni

∑t
i=1 ni

(12)

3.2 Experiment I Prediction with Cerebral Cortex Features

In many real-world AD application scenarios, clinicians expect the prediction
model to be simple and with less input data required for giving timely early
screening. In this case, it is hard to acquire both precise MRI and cognitive
measures. Normally, clinicians have to spend few hours to measure AD patients’
cognitive scores though some tests. Thus, one key application was considered
with only MRI data as input data to predict cognitive scores at baseline and
future time points. It is necessary for clinicians to perform a cognitive scale
assessment, but time-consuming to complete a set of cognitive measures.

The first goal is to show a quantitative analysis of typical MTFL meth-
ods (MTEN) in comparing to single task methods (Ridge, Lasso). The external
experiment setting remained consistent, with same split ratio of sample data,
iteration times and features. Specifically, dataset was randomly split into train-
ing and testing sets using a ratio 9:1, i.e., models were built on 90% of the
data and evaluated on the remaining 10% of the data. Models parameters were
selected by 5-fold cross validation.

The results in Table 1 implies that three selected structural regularization
methods are all robust (low variance). Also, MTEN models outperforms single-
task learning model (Ridge and Lasso), in terms of prediction accuracy.
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Table 1. Validation of AD disease progression based MTFL

Ridge Lasso MTEN
Target: MMSE
nMSE 2.088 ± 0.359 0.945 ± 0.247 0.745 ± 0.172
wR 0.310 ± 0.070 0.499 ± 0.034 0.568 ± 0.053
BL rMSE 2.841 ± 0.298 2.042 ± 0.496 1.721 ± 0.225
M06 rMSE 3.767 ± 0.408 2.491 ± 0.480 2.197 ± 0.244
M12 rMSE 3.958 ± 0.456 2.717 ± 0.587 2.368 ± 0.535
M24 rMSE 4.633 ± 0.579 3.320 ± 0.713 2.944 ± 0.437
M36 rMSE 5.745 ± 0.708 3.947 ± 0.791 3.820 ± 0.736
Target: ADAS-cog
nMSE 1.147 ± 0.111 0.729 ± 0.060 0.698 ± 0.063
wR 0.468 ± 0.046 0.542 ± 0.052 0.573 ± 0.044
BL rMSE 5.465 ± 0.599 4.229 ± 0.534 4.117 ± 0.558
M06 rMSE 5.900 ± 0.840 4.590 ± 0.672 4.489 ± 0.675
M12 rMSE 6.074 ± 0.894 4.998 ± 0.754 4.759 ± 0.620
M24 rMSE 7.483 ± 1.200 5.818 ± 1.066 5.761 ± 1.012
M36 rMSE 8.905 ± 1.361 7.981 ± 1.420 7.730 ± 1.221

Key: MMSE, Mini-Mental State Examination; ADAS-cog,
Alzheimer’s Disease Assessment Scale Cognitive Subscale; BL
Baseline visiting point; All algorithms were repeat 100 times and
their means ± variance was counted. Represents that the result
in bold is statistically significantly better than other comparison
methods.

3.3 Experiment II Visually Stability Biomarkers

Experiment screened all MRI features using stability selection strategy and
obtained 126 stable features, which were stable scores ≥ 0.96. Then, this fea-
ture set was put back into the MTEN algorithm to obtain a 35 stable sub-
features, which can be used to track cortical biomarkers associated with AD
progression. The stability vectors of stable MRI features for MMSE are shown in
Fig. 1. Experiment finds that the imaging biomarkers identified by RMFL yielded
promising patterns that are expected from prior knowledge on neuroimaging and
cognition. Some important features are selected, such as Inferior Parietal, Hip-
pocampus, Middle Temporal Gyri and Fusiform, are relevant to the cognitive
function.

3.4 Experiment III Evaluation Indicators

In MTFL for AD study, cross-validation with evaluation metric is widely utilised
to select suitable model hyper-parameters. Fair hyper-parameters could make
MTFL models have better generalization performance. When an evaluation indi-
cator is set in cross-validation experiment process, a set of hyper-parameters can
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Fig. 1. Thermogram of MRI stability features by multi-task elastic net. Each column
represents a cortical region of the brain selected by randomization technique.

be obtained. By comparing the pros and cons of the results, the suitable met-
ric for the model is finally determined. However, different metrics have different
preferences and emphasis on the model. It has become a consensus to employ
metrics to evaluate the pros and cons of models.

Three models (Lasso, TGL and MTEN) are selected for evaluation. Dataset
was randomly split into training and testing sets using a ratio 9:1. Models param-
eters were selected by 5-fold cross validation. The mean and standard deviation
based on 20 iterations of experiments. The experimental results in Table 2 showed
that selection of evaluation metrics significantly affect performance assessment
of MTFL models.

According to our results, therefore, it can be seen that 1) the results obtained
by metrics such as square error (MSE, rMSE, nMSE) are basically the same; 2)
nMSE is the best indicator to evaluate these models due to relatively stable
performance. The reason is that data distribution of each task is not the same,
sharing with each other will have the effect of noise. Therefore, using the variance
of tasks in nMSE will reduce the impact of task differences, and the results can
better take into account each other’s tasks.

3.5 Experiment IV Repeated Experimental Times

In MTFL for AD study, one typical consensus is that one experiment result
is usually accidental and unreliable. To reduce experiment accidental errors,
repeated experiments are required. Therefore, we evaluate the performance of
four MTFL models under different repeated experimental times. We conducted
6 sets of experiments, and the number of iterations in each set was 5, 10, 20, 30,
40, 50, 100. Also, in each set of experiments, other conditions remained the same.
The final result is shown in Fig. 6. The horizontal axis represents iteration, the
vertical axis represents the nMSE value of each algorithm, and different colors
represent algorithm. In Fig. 6, it appears that the effect of different experiments
on three algorithms are visually observed. MTEN models maintains good per-
formance in each set of experiments. From the fluctuation range of the model
mean: Ridge not only performs poorly overall, but also has a large range of
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Fig. 2. nMSE values for predicting MMSE cognitive scores under different data size.
Each colour label indicates the proportion of the training set in the overall.

fluctuations, which may be the reason for the under-fitting. As the number of
iterations increased, three algorithms are fluctuating to varying degrees. Lasso
and MTNE are relatively less affected, which implies that sparsity plays a key
role in real-world scenarios.

3.6 Experiment V Size and Portion of Training Data

One significant advantage of MTFL is to deal with the issue of missing data and
reduce the risk of overfitting. To prove this assumption, we evaluate different
portion of training AD data over these MTFL models. Experiment train four
MTL models with datasets of different data sizes with 8 groups of experiment
performances. Data was split into training and test sets according to the ratio (2:
8, 3: 7, 4: 6, 5: 5, 6: 4, 7: 3, 8: 2, and 9: 1) respectively. For example, in order to
compare the experimental results, the other condition settings of each group of
experiments are kept consistent: datasets with MMSE scores as learning labels
are conducted, with 429 and 425 samples respectively. The same data set was
used to predict the trend of cognitive scores of the MMSE and ADAS-cog scales
at baseline and in the next three years. The result based on 50 iterations of
experiments on different splits of data using 5-fold cross validation. Each group
of experiments uses 3 algorithms (Ridge, Lasso, and MTEN) for comparison.
The results are shown in the Fig. 2 (a). The finding shows that: Ridge and Lasso
have high overfitting risks but MTEN show advantages. In addition, to clarify the
difference in performance between Lasso and MTEN, Fig. 2 (b) is the comparison
of Lasso and MTEN in detail, connecting the mean two points with a straight
line whose slope is less than zero, implying that MTEN is optimal for global
training processes.

3.7 Experiment VI Number of Tasks in MTFL

Final key issue to MTFL models is to explore the sharing knowledge between
multiple tasks. The common method is to propose an assumption and then trans-
form into a constraint and put into an optimization function. But whether this
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Fig. 3. Histograms of the effect of different numbers of tasks on model performance.

assumption relationship is worth scrutinizing needs to be paid more attention.
Therefore, several sets of experiments were designed to test the validity of this
relationship. We carried out four sets of experiments using from two to five
tasks together to build MTFL model. The purpose of the experiment is to find
whether the performance of the model can be improved under a certain task
relationship. The results were based on 50 iterations of experiments on different
splits of data with 9:1 using 5-fold cross validation. Three algorithms (Ridge,
Lasso, MTEN) were conducted in each group for comparison. The results are
shown in the Fig. 3. The finding shows that:

– As the number of tasks in MTL increases, the accuracy gains of MTL models
in AD progression prediction become more obvious. This proves the effective-
ness of multi-task learning.

– At 3 or 4 tasks were considered, the errors of the Lasso and MTEN are
small. This may be due to the fact that the core element of structure-based
regularization of MTFL is the use of L1norm. Due to the high similarity
between tasks, there is thus less complementary information between tasks,
i.e., fewer tasks do not yield significant performance gains.

– The discrepancy results is most obvious when the five tasks is considered
simultaneously in one model. Result implies that the sharing knowledge
between multiple tasks are effective. Noting that the tasks error also increase,
this may be due to a non-linear relationship of MRI features and cognitive
scores in the late stage of AD progression.
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4 Conclusion

Early intervention of AD may enable clinicians to better monitor disease progres-
sion and extend patient longevity. In this study, we introduce RMFL approach
to effectively model and predict AD progression. The model is capable of pre-
dicting AD progression with high accuracy, even in scenarios characterized by
missing data, data scarcity, or reliance on single MRI inputs. We further cor-
roborate the efficacy of the RMFL through rigorous validation across various
complex experimental settings. The results show that the RMFL retains sta-
bility and interpretability while exhibiting superior performance as the number
of tasks increases. This method offers new insights into the role of modeling
chronic disease progression and thus may assist in the discovery of more signifi-
cant biomarkers in future research.
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Fig. 4. A comparison of models built by Lasso or a Multi-task Lasso. White block
indicates that the parameter value of the position is zero, otherwise, non-zero positions
indicated by different colors are used.
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B Pipeline

Fig. 5. Pipeline of empirical protocol design.

C Repeated experiments times

Fig. 6. Evaluation results of repeated experiments times.
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D Evaluation indicators

Table 2. The result based on different evaluation indicators

Ridge Lasso MTEN
cv: nMSE
nMSE 2.779 ± 0.177 0.718 ± 0.137 0.629 ± 0.077
wR 0.516 ± 0.043 0.630 ± 0.049 0.677 ± 0.049
BL rMSE 1.805 ± 0.232 1.803 ± 0.251 1.816 ± 0.286
M06 rMSE 2.345 ± 0.337 2.132 ± 0.293 1.962 ± 0.182
M12 rMSE 2.393 ± 0.537 2.393 ± 0.385 1.966 ± 0.312
M24 rMSE 3.087 ± 0.633 3.087 ± 0.572 2.345 ± 0.400
M36 rMSE 4.924 ± 0.751 3.924 ± 0.683 3.232 ± 0.550
cv: wR
nMSE 2.783 ± 0.072 0.712 ± 0.192 0.750 ± 0.269
wR 0.514 ± 0.050 0.667 ± 0.043 0.710 ± 0.041
BL rMSE 1.702 ± 0.225 1.813 ± 0.291 2.112 ± 0.329
M06 rMSE 2.293 ± 0.218 2.109 ± 0.312 2.059 ± 0.309
M12 rMSE 2.385 ± 0.425 2.040 ± 0.296 2.092 ± 0.330
M24 rMSE 3.975 ± 0.648 2.570 ± 0.470 2.579 ± 0.809
M36 rMSE 4.635 ± 0.577 3.741 ± 1.118 3.528 ± 0.888
cv: rMSE
nMSE 2.788 ± 0.091 0.684 ± 0.194 0.630 ± 0.007
wR 0.522 ± 0.044 0.648 ± 0.062 0.691 ± 0.042
BL rMSE 1.776 ± 0.229 1.823 ± 0.293 1.879 ± 0.277
M06 rMSE 2.275 ± 0.348 1.996 ± 0.262 1.943 ± 0.208
M12 rMSE 3.523 ± 0.543 2.133 ± 0.272 1.907 ± 0.243
M24 rMSE 4.180 ± 0.411 2.424 ± 0.544 2.563 ± 0.515
M36 rMSE 4.788 ± 0.556 3.345 ± 0.596 3.149 ± 0.584
cv: MSE
nMSE 2.765 ± 0.057 0.650 ± 0.087 0.613 ± 0.132
wR 0.527 ± 0.032 0.658 ± 0.039 0.684 ± 0.039
BL rMSE 1.806 ± 0.218 1.748 ± 0.148 1.738 ± 0.252
M06 rMSE 2.304 ± 0.354 1.952 ± 0.234 2.059 ± 0.267
M12 rMSE 2.338 ± 0.486 2.083 ± 0.261 1.992 ± 0.236
M24 rMSE 3.138 ± 0.759 2.689 ± 0.541 2.472 ± 0.576
M36 rMSE 3.876 ± 0.597 3.391 ± 0.645 3.228 ± 0.579
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Abstract. Multi-task learning methods have been studied in
Alzheimer’s disease for cognitive status prediction and neuroimaging fea-
ture identification widely by utilizing prior constraints. However, the
existing models do not explicitly model the spatio-temporal connectivity
for the lack of samples and prior medical knowledge. In this article, we
propose a sparse multi-task learning model for cognitive status predic-
tion, which is adaptively weighted in sparse prior to prevent the error in
spatial feature correlation learning, and incorporated with prior domain
knowledge to estimate the progression with adaptive correction. Infer-
ence in our spatio-temporal model is based on majorization-minimization
optimization guaranteed convergence properties. The proposed model is
applied to a real-world neuroimaging study to predict cognitive tests
scores and structured feature mining with MRI scans. The effectiveness
of the proposed progression model is demonstrated by its superior predic-
tion performance over multiple competing methods and accurate identi-
fication of compact sets of cognition-relevant biomarkers.

Keywords: Alzheimer’s Disease · Multi-task Learning · Constrained
Optimization

1 Introduction

Alzheimer’ Disease (AD), a severe neurodegenerative disorder, causes a heavy
financial burden on society, with an estimated global annual cost of US$1 trillion
[3]. Predicting the status of patients helped in clinical settings, such as informing
diagnosis, prognosis, and treatment planning, and identifying neuroimaging pre-
dictors [6,21]. Some data-oriented methods seek to help inferring AD patients’
cognitive and functional status from neuroimaging biomarkers from individual
magnetic resonance imaging (MRI) or positron emission tomography (PET) of
brain tissues and possible risk factors such as age, gender years of education, and
ApoE gene in [11,22,28,36,38,39]. However, several existing models do not make
a precise prediction for the longitudinal prediction of months or years forecast,
due to the neglect of temporal connectivity of disease progression.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Qi and P. Yang (Eds.): IoTBDH 2023, CCIS 2019, pp. 69–83, 2024.
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Multi-task learning (MTL) is a machine learning framework, utilized the
intrinsic relationship among related tasks to leverage generation performance
[5,30]. It has been commonly used to obtain better generation performance
and make a medium or long-term forecast of patients’ cognitive status rather
than single-task learning [38,39]. For the reason of ambiguous pathology of
Alzheimer’s disease, some sparsity-inducing properties employed for process-
related features mining among large-scale of latent pathogenic features, for
instance, LASSO [18] is widely used in feature weight shrinkage with a sparse
prior distribution constraint. In [11,38,39], fused LASSO was used for feature
selection in an inhomogeneous way for single task and overall tasks. [28] pro-
posed a sparse Bayesian MTL approach, applied in the multiple measurement
vector model to learn sparse correlation both in prior distribution and optimiza-
tion stages. Past several methods identified neuroimaging biomarkers by sparse
prior over features, neglected the sparse prior over features relationship.

Spatial feature connectivity learning can help researchers to identify the rela-
tional features of processes [10,35]. Learning feature connectivity by the Gaus-
sian graphical model to describe the feature networks is a straight approach in
relevant studies [9,34]. In [9], a brain connectivity learning model with sparse
inverse covariance estimation was proposed based on PET data. Three stages of
AD progression were taken into account to clarify the differences and changes
in the connectivity model as the disease progresses. Besides, [33] proposed a
feature extractor based on the Gaussian graphical model to classify AD individ-
uals. Both of them employed the structural prior knowledge among biomarkers
extracted from neuroimages, which may lose accuracy than identification from
the structure pre-selected as disease relevant [8]. To obtain a sparse solution in
feature connectivity learning, sparsity priors like LASSO [18] are used widely
as a replacement of l0 norm with a convex formulation. However, larger coef-
ficients are penalized more heavily in the l1 norm than smaller coefficients [4].
The imbalance of penalisation among the spatial features causes the deviation
in connectivity learning, especially in the calculation of the correlation matrix.

The focus of the current articles is on MTL of AD, where tasks involve bet-
ter general performance by predicting a set of cognitive scores over multiple
time points, and each task focuses on each checked time points of patients. The
prediction performance for each subtask is influenced by the cognitive status
measurements error and shows fluctuation in AD longitudinal study. In [38,39],
adjacent time points prediction tasks residual error estimator proposed based
on medical prior knowledge that multiple regression models from different time
points satisfy the smoothness property [40,41] while neglecting the complicated
progression of all time points. Global residual error constraints have been learned
in [11,36,38], formulated the task correlation by prior knowledge. A Laplacian
matrix (or Nadaraya-Watson kernel) constraint is proposed in [11] to make a
global smoothness constraint with adjustable bandwidth to control the smooth-
ness region among time points. Considering the dynamical process of AD, [40]
utilized a automatic method to simulate disease progression asymmetrical cor-
relation among prediction tasks. Besides the prior knowledge, [36] learned the
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spatio-temporal similarity or disease progression by correlation analysis accord-
ing to the data, while the small quantity of instances in AD research would
lose the accuracy in connectivity learning. However, the ambiguous pathogen-
esis research on AD causes a big challenge to model the disease progression
exactly.

In this article, we propose a new spatio-temporal multi-task learning model,
for modeling the AD progression and feature connectivity learning with adaptive
prior correction, highlighting the following contributions:

– We propose a multi-task sparse feature correlation learning method based on
Gaussian graphical model with a more democratic penalization to overcome
the effect of convex sparse prior in correlation estimation.

– We formulate a new longitudinal dependency constraint in Alzheimer’s dis-
ease process estimation. The constraint penalty could fix prior medical knowl-
edge temporal simulation deficiency in disease process estimation by data
intrinsic characteristics.

– Our model shows superior interpretability and accuracy in both cognitive
status prediction tasks and structural feature mining of AD in MRI imaging
study from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
compared with multiple competing methods.

The rest of the article is organized as follows. In Sect. 2, we present our disease
progression model based MTL, and give an optimization method. In Sect. 3, we
present experiment results on ADNI data and make an explanation of selected
features with former medical research. The conclusion and future directions are
given in Sect. 4.

2 Methodology

In this section, we describe the formulation of our spatio-temporal adaptive
prior correction progression model (STAC). First, we propose a sparsity adap-
tive correction method (SAC), followed by a temporal relation adaptive correc-
tion (TAC) process estimator in Alzheimer’s Disease progression, then we give
an optimization method of our formulation by alternative directions method of
multipliers algorithm.

2.1 Sparsity Adaptive Correction in Spatial Feature Connectivity
Learning

Gaussian graphical model [2] in our feature connectivity learning can be demon-
strated as: a d−dimension random vector sets r = (r1, r2, ..., rn) with joint distri-
bution Z. An undirected graph G = (V,E) characterized Z by the vertex set V
represents the d covariates of r, and edge set E represents the conditional depen-
dence relations between the covariates of r. Assuming r∼N(0, Σ), if ri and rj is
conditionally independent, the inverse covariance matrix Ω(i, j) = 0, where the
Ω = Σ−1. And the empirical covariance matrix is Σ̂ = 1

n

∑n
i=1(ri − r̄)T (ri − r̄),
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where r̄ denotes the mean of samples. Because the sparsity of Alzheimer’s Disease
instances and features, multi-task learning model could leverage the domain-
specific information contained in training samples of correlational tasks [5]. In
our sparse feature correlation learning, we assume that each row ŵi of the weight
matrix W follows a multivariate Gaussian distribution with zero mean and preci-
sion matrix Ω, where Ω = Σ−1, and ŵi ∼ N(0, Σ). The posterior can be written
as follow for a multivariate Gaussian prior over features:

P (W |X,Y ;Ω) ∝
T∏

t=1

nt∏

i=1

P (y(i)
t |x(i)

t , wt)
d∏

j=1

P (ŵj |Ω) (1)

where yt ∈ Rn is the response for the t−th tasks, regressed on the data matrix
Xt ∈ Rn∗d with n samples and dimension d. In the cognitive status prediction
of AD progression model, X denotes the neuroimaging measures of patients,
Y denotes the cognitive tests score of corresponding patients in corresponding
time points; where the first term on the right-hand side denotes the conditional
distribution of the response given the input and parameters, and the second
term denotes the prior over rows of W . We build our spatial feature connectivity
model by the constraint that the learned structure must contribute to cognitive
status prediction tasks. The optimization problem of (1) could be solved by min-
imization of the negative logarithm of (1), corresponding to a linear regression
problem with regularization as follows:

argmin
W

1
2

T∑

t=1

||Xt ∗ wt − yt||22 − d

2
log|Ω| + Tr(WT ΩW ) (2)

where | · | denotes the determinant. A sparse prior knowledge over Ω and W
caused by Alzheimer’s Disease unknown etiology can be applied in (2) to select
relational biomarkers:

argmin
W

1
2

T∑

t=1

||Xt ∗ wt − yt||22 − d

2
log|Ω|

+ Tr(WT ΩW ) + λ1||Ω||1 + λ2||W ||rl1

(3)

where || · ||1 denotes l1 norm [18] as a sparse inducer, is widely used as an
approximation of l0 norm, which is an np-hard problem. And || · ||rl1 denotes
reweighted − l1 norm in [4] with the formulation of log(| · | + ε), ε > 0. The
enhancing sparsity property can be illustrated that the log-sum penalty function
is better than traditional convex l1 relaxation in l0 norm approximate solution
[4]. However, the concave penalty brings a challenge in optimization, we illustrate
the adaptive weight adjustment property by iterative optimization algorithm
based on Majorization-Minimization as:

– 1. Set the iteration count c to zero and weighted matrix

Q
(0)
i,j = 1, i = 1, ..., d, j = 1, ..., T.
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– 2. Solve the weighted l1 − norm minimization problem, where � denotes the
Hadamard product,

W (c) = argmin||Q(c) � W ||1
– 3. Update the weights: for each c = 1, ..., n

Q
(c+1)
i,j =

1

|W (c)
i,j | + ε

– 4. Terminate on convergence or when c attains a specified maximum number
of iterations cmax. Otherwise, increment c and go to step 2.

With an iterative reweighted optimization, the reweighted−l1 norm provides
a heterogeneous constraint in the regression parameter matrix, to eliminate the
bias of learning connectivity by data from different ranges and dimensions.

2.2 Temporal Relation Adaptive Correction

The critical issues in multi-task learning are to identify how the tasks are related
and build learning models to capture such relatedness with different prior knowl-
edge [37,41]. In Alzheimer’s Disease progression study, the cognitive scores of
patients presented fluctuation in varying degrees, although the treatment can
delay the disease to some extent, it is different from the medical theory that
AD caused irreversible cognitive function damage. Considering the temporal
smoothness of the cognitive status of patients, local or global smoothness penal-
ized regularization in [11,38] showed good performance in prediction tasks. An
accurate identification of AD process needs more prior knowledge in medicine,
so we proposed a marginal distribution constraint that allowed prior knowledge
to be incorporated into the process estimation with adaptive correction.

Concentrating on the fluctuation of patients’ cognitive scores, a constraint
on adjacent time points cognitive scores difference by Δy = yt − yt+1 =
Xwt − Xwt+1 = X(wt − wt+1). Considering the columns of the weight matrix
wt, each of them presents a predicted task of a time point. Our MTL formu-
lations focus on encouraging sparsity on the residual error: γt = wt − ŵt =
wt − ∑T

l=1,l �=t rl,twl t = 1, .., T . Where r is entries of correlation matrix R
identified the correlation of tasks.

Γ = WR =

⎡

⎢
⎢
⎢
⎣

γ1
γ2
...
γt

⎤

⎥
⎥
⎥
⎦

T

=

⎡

⎢
⎢
⎢
⎣

w1

w2

...
wt

⎤

⎥
⎥
⎥
⎦

T ⎡

⎢
⎢
⎢
⎣

1 −r1,2 −r1,3 ... −r1,T

−r2,1 1 −r2,3 ... −r2,T

...
...

...
. . .

...
−rT,1 −rT,2 −rT,3 ... 1

⎤

⎥
⎥
⎥
⎦

Considering a ‘perfect’ correlation matrix R, it means that relationships
between multiple tasks of the same feature parameter are completely decou-
pled. γ ∼ N (μ, τ−1) and conjugate prior Gam(τ |a, b). Calculate the Gaussian
marginal distribution as:
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p(γ|μ, a, b) =
∫ ∞

0

N (γ|μ, τ−1)Gam(τ |a, b)dτ

=
ba

Gamma(a)
(

1
2π

)
1
2 [b +

(γ − μ)2

2
]
−a− 1

2

Gamma(a +
1
2
)

(4)

Noticed that Gam denotes the Gamma distribution, and Gamma denotes
the Gamma function. It should be separated from residual error matrix Γ and
its elements γ. Assuming that γ follows a zero-mean distribution, the formula 4
can be transformed as:

PDF (γ) =
1√

vB( 12 , v
2 )

(1 +
γ2

v
)
−(v+1)/2

where PDF is the short for probability density function, v = 2a is the degrees
of freedom, B denotes the Beta function. The maximum posterior estimate of
residual error γ can be written as negative logarithm as: log(γ2 + ε), ε > 0. So
the constraint of residual error is log(γ2

i +ε). To solve the concavity optimization
of log function, we consider the upper bound by:

log(γ2
i + ε) ≤ γ2

i + ε

�
+ log(�) − 1

where � ≥ 0 is arbitrary, the right hand side of inequality becomes equality when
� = γ2

i + ε. Now consider solving the convex optimization problem
∑

i
γ2
i +ε
� +

log(�), for fixed ε, �, the optimal Γ is easy to solve by analytical solution. The
minimizing � for fixed Γ, ε is � = γ2

i + ε, so the concave penalty can be solved
by the iterative algorithm via the construction upon.

The marginal distribution constraints can be seen as reweighted − l2 in [23]
extended to progression estimation. Elementwise marginal distribution could
reduce the impact of changes in different scales of features, meanwhile, the adap-
tive parameter constraint will help both in the correction of the prior correlation
matrix and enhancing sparsity in multi-stages.

Combined with the sparsity adaptive correction in spatial feature connec-
tivity learning, our spatio-temporal adaptive prior correction learning model
(STAC) is:

L
ρ
(W,Ω, Γ, V ) =

1
2

T∑

t=1

||Xt ∗ wt − yt||22 − d

2
log|Ω| + Tr(WT ΩW )

+ λ1||Ω||1 + λ2||W ||rl1 + λ3||W ||2,1 + λ4||Γ ||rl2

(5)

s.t. WR = Γ
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2.3 Optimization of Sparse Spatial Feature Connectivity
with Progression Adaptive-Correction Learning Model

In this section, we illustrate the method to solve the optimization problem 5
due to the non-smooth, concave, and coupling terms. We propose an iterative
optimization algorithm based on the alternative directions method of multipliers
method (ADMM) [2]. ADMM could solve the global optimization problem as
alternative updating local subproblems. The alternating algorithm proceeds as
follows:

The augmented Lagrangian function is:

L
ρ
(W,Ω, Γ, V ) =

1
2

T∑

t=1

||Xt ∗ wt − yt||22 − d

2
log|Ω| + Tr(WT ΩW )

+ λ1||Ω||1 + λ2||W ||rl1 + λ3||W ||2,1 + λ4||Γ ||rl2

+ Tr(V T (WR − Γ )) +
ρ

2
||WR − Γ ||22

where V is the Lagrangian multiplier corresponding to the constraints WR = Γ ,
and ρ > 0 is penalty effectively determining the step size for dual ascent in
ADMM. For iteration index i, the updates of Wi+1, Ωi+1, Γi+1 can be solved by
the fixed Wi, Ωi, Γi, and a detailed illustration is as follow.

argmin
W

1
2

T∑

t=1

||Xt ∗ wt − yt||22 + Tr(WT ΩW ) + λ2||W ||rl1

+ λ3||W ||2,1 + Tr(V T (WR − Γ )) +
ρ

2
||WR − Γ ||22

(6)

We solve the subproblem with concave penalty reweighted − l1 norm of
λ2||W ||rl1 with the Nesterov accelerating method [13], and detailed described in
Sect. 2.1. The update step for Ω, is known as sparse inverse covariance selection
(SICS) problem [2,20] as:

argmin
Ω

Tr(WT ΩW ) − d

2
log|Ω| + λ1||Ω||1 (7)

To solve the problem 7, we utilized the proximal point algorithm in [27],
and it can be accelerated with FISTA [1] or Nesterov [13] accelerated gradient
descent with strong convexity of constructed function:

xk+1 = proxtkψ(xk) = argmin
u

{ψ(u) +
1

2tk
||u − xk||22}

We consider the problem 7 by introducing variable Υ , and transformed as:

min
Ω,Υ

ψ(Ω,Υ ) = −d

2
log|Ω|+ < S,Ω > +λ1||Υ ||1 + ID(Ω,Υ )
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where D = {(Ω,Υ )|Ω − Υ = 0}, S = WWT , < ·, · > denotes the inner product.
ID is the index function of the set D. And we solve the problem as follows in
k−th step iteration by proximal point algorithm:

min
Ω,Υ

ψ(Ω,Υ ) +
1

2tk
(||Ω − Ωk||2F + ||Υ − Υ k||2F ) (8)

We introduce the multiplier Z to construct the dual function to solve the
problem 8.

Φk(Z) = inf
Ω

{−d

2
log|Ω|+ < Z,Ω > +

1
2tk

(||Ω − Ωk||2F }

+ inf
Υ

{λ1||Υ ||1+ < S − Z, Υ > +
1

2tk
||Υ − Υ k||2F }

= Ξ1
tk(Ωk − tkZ) − 1

2tk
(||Ω − tkZ||2F − ||Ω||2F )

+λ1Ξ
2
λ1tk

(Υ k − tk(S − Z)) − 1
2tk

(||Υ k − tk(S − Z)||2F − ||Υ ||2F ),

Ξ1
tk

(A) = inf
Ω

{−d

2
log|Ω| +

1
2tk

||Ω − A||2F },

Ξ2
λ1tk

(B) = inf
Υ

{||Υ ||1 +
1

2λ1tk
||Υ − B||22}

For the symmetry matrix A, eigenvalue decomposition is A = QΛQT , and
QQT = QT Q = I, Λ = diag(Λ1, ..., Λn). Define:

q+tk(c) =
1
2
(
√

c2 + 4tk + c), q−
tk

(c) =
1
2
(
√

c2 + 4tk + c), c ∈ R,

A+ = Qdiag(q+tk(Λ1), q+tk(Λ2), ..., q+tk(Λn))QT ,

A− = Qdiag(q−
tk

(Λ1), q−
tk

(Λ2), ..., q−
tk

(Λn))QT .

The gradient of Ξ1
tk

(A) is ∇AΞ1
tk

(A) = A−A+, and the minimum of Ξ1
tk

(A)
is got when Ω = A+, Ξ1

tk
(A) = − tkd

2 log|Ω|+ 1
2 ||A−||2F . And the Ξ2

λ1tk
(B) can be

solved as the proximal gradient algorithm of LASSO [14], with the gradient of
∇BΞ2

λ1tk
(B) = 1

λ1tk
(B − proxλ1tk||·||1(B)). So the proximal gradient algorithm

of problem 7 in k−th step iteration is:

Zk+1 ≈ argmax
Z

Φk(Z) − 1
tk

||Z − Zk||2F
Ωk+1 = prox− tkd

2 log|·|(Ω
k − tkZk+1)

Υ k+1 = proxλ1tk||·||1(Υ
k − tk(S − Zk+1))

(9)

Noticed that we utilize the dual function to minus the proximal component to
ensure strong concavity, because the Φk(Z) is not strongly concave. The update
of Γ is as follow function with a closed form solution.

argmin
Γ

λ4||Γ ||rl2 + Tr(V T (WR − Γ )) +
ρ

2
||WR − Γ ||22 (10)



Adaptive Prior Correction 77

The penalty reweighted − l2 norm can be written as M � ||W ||2, M is the
weight matrix of reweighted− l2 norm, and update in each iteration counts i by
m(i+1) = 1

|m(i)|2+ε2
, where m denotes the entries of M , ε2 > 0 is the parameter

of iterative algorithm. The dual variable V is updated as ADMM dual variable
ascending method. The main cause in the complexity of our algorithms is the
eigenvalue decomposition in Ω updating steps and can be optimized by parallel
computing during the update process.

3 Experiments

In this section, we present experimental analysis to demonstrate the effectiveness
of the proposed framework on characterizing AD spatial feature connectivity and
adaptive correction progression estimation using a dataset from ADNI [31].

3.1 Experimental Setting

In our work, we apply empirical evaluation to longitudinal progression studies of
MRI data. The biomarkers are based on MRI data from ADNI, and processed
by FreeSurfer image analysis suite by UCSF (University of California, San Fran-
cisco). We removed features with over 1000 missing entries and patients with no
baseline records. And 314 MRI features could be grouped into the following cat-
egories: average cortical thickness, standard deviation in cortical thickness, the
volumes of cortical parcellations, the volumes of specific white matter parcella-
tions, and the total surface area of the cortex. Three kinds of cognitive test scores
were used in our model training target: Alzheimer’s Disease Assessment Scale
cognitive Subscale (ADAS-cog) [7], Mini Mental State Examination (MMSE) [19]
and Rey’s Auditory Verbal Learning Test (RAVLT) [24]. The RAVLT includes
TOTAL (total score of the first 5 learning trials), TOT6 (trial 6 total number
of words recalled) and T30 (30 min delay total number of words recalled).

For the quantitative performance evaluation, we employ the metrics of the
normalized mean squared error (nMSE), weighted R-value (WR) for aggregated
performance over all time points. And root mean squared error (rMSE) for the
single time point evaluation. We split the data into training sets and testing
sets by 9:1, and 20 trials with 5-fold cross-validation performed to select the
best hyperparameter (λ1, λ2, λ3, λ4), and use the selected hyperparameter to
make prediction in test sets. The regularization parameters are chosen from a
log scale of 10−2 to 103, and the iterative reweighted algorithms parameters ε1
and ε2 are chose from a log scale of 10−3 to 102.

In terms of progression model performance, we compared our method with
different multi-task regression methods. A multi-task regression model based on
sparse Gaussian graph model (MSSL) in [8] was chosen to compare our sparsity
adaptive correction method (SAC). Besides, we chose AD progression model with
parameter sharing mechanism and disease progression prior constraints cFSGL
[38] and FL-SGL [11] as competing methods. We employed two temporal prior
correlation matrices as temporal relation adaptive correction learning method
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with local smoothness constraint of coherent column residual (TAC-L). And
temporal relation adaptive correction learning method with global smoothness
constraint based Nadaraya-Watson kernel estimator (TAC-G), and incorporated
with the SAC as STAC-L and STAC-G. For the comparison of spatio-temporal
adaptive prior correction, we choose a Multiple-output Regression with Output
and Task Structures (MROTS) in [16]. The average and standard deviation of
performance measures are calculated by 20 iterations of trails on different splits
of data, shown in Tables 1, 2. Because of the lack of space, we show the prediction
performance of each time points on MMSE and ADAS in Fig. 1.

Table 1. Prediction performance comparison of models in terms of nMSE (lower is
better). 90% of data is used as training data, and shown data in this table is mean
value ± standard derivation.

Method MMSE ADAS TOTAL TOT6 TOT30

MSSL 2.701 ± 0.263 5.937 ± 0.336 2.262 ± 0.086 2.920 ± 0.129 3.110 ± 0.092

SAC 2.600 ± 0.255 5.814 ± 0.274 2.312 ± 0.104 2.866 ± 0.132 2.872 ± 0.105

CFSGL 2.495 ± 0.167 5.598 ± 0.374 2.190 ± 0.115 2.727 ± 0.130 2.809 ± 0.106

FL-SGL 2.310 ± 0.115 5.617 ± 0.394 2.153 ± 0.103 2.668 ± 0.081 2.856 ± 0.137

TAC-L 2.415 ± 0.157 5.577 ± 0.333 2.147 ± 0.097 2.237±0.109 2.737±0.144

TAC-G 2.501 ± 0.199 5.593 ± 0.294 2.184 ± 0.111 2.546 ± 0.099 2.774 ± 0.176

MROTS 2.752 ± 0.276 5.600 ± 0.303 2.144 ± 0.068 2.520 ± 0.116 2.883 ± 0.087

STAC-L 2.351 ± 0.110 5.538±0.376 2.145 ± 0.076 2.601 ± 0.122 2.809 ± 0.106

STAC-G 2.220±0.111 5.632 ± 0.438 2.138±0.112 2.670 ± 0.138 2.760 ± 0.108

Table 2. Prediction performance comparison of models in terms of wR (higher is
better). 90% of data is used as training data, and shown data in this table is mean
value ± standard derivation.

Method MMSE ADAS TOTAL TOT6 TOT30

MSSL 0.601 ± 0.037 0.700 ± 0.025 0.619 ± 0.019 0.592 ± 0.026 0.566 ± 0.016

SAC 0.599 ± 0.026 0.722 ± 0.057 0.646 ± 0.018 0.595 ± 0.035 0.595 ± 0.013

CFSGL 0.648 ± 0.028 0.728 ± 0.021 0.636 ± 0.027 0.615 ± 0.022 0.618 ± 0.020

FL-SGL 0.652 ± 0.017 0.717 ± 0.023 0.637 ± 0.023 0.638 ± 0.020 0.638 ± 0.024

TAC-L 0.660 ± 0.021 0.725 ± 0.020 0.651 ± 0.022 0.645 ± 0.016 0.627 ± 0.024

TAC-G 0.657 ± 0.013 0.719 ± 0.026 0.671±0.018 0.625 ± 0.036 0.630 ± 0.016

MROTS 0.671 ± 0.025 0.741 ± 0.028 0.619 ± 0.017 0.612 ± 0.031 0.641 ± 0.018

STAC-L 0.679±0.015 0.745±0.031 0.657 ± 0.027 0.650±0.020 0.649 ± 0.016

STAC-G 0.667 ± 0.017 0.744 ± 0.026 0.654 ± 0.024 0.650 ± 0.024 0.654±0.030

The results shown in Tables 1, 2 and Fig. 1 indicated our adaptive prior cor-
rection model make a better performance in cognitive status prediction tasks,
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which demonstrates the advantage of proposed prior correction in feature con-
nectivity learning and disease progression modeling. While the spatio-temporal
adaptive prior correction model with global smoothness constraint in our exper-
iments did not show an absolute advantage over adjacent temporal smoothness
constraint, for the following reasons.

– Prediction tasks between long time intervals keep a weakened relationship,
caused by several months or even years of the disease process.

– STAC model provides an adaptive constraint in temporal smoothness residual
error estimator, and it will enhance the accuracy of modeling the disease
progression, meanwhile adjusting temporal structure constraint adaptively.

– Due to the undefined etiology and pathogenesis of AD, the kernel smoothness
estimator could not make an explicit description of disease progression.

The later tasks show worse prediction performance caused by many patients
dropping out from ADNI study thus the number of samples decreases with the
passage of time.

Fig. 1. Prediction performance comparison of each time point in terms of rMSE (lower
is better). The left plot is conducted on MMSE dataset and the right plot on ADAS
dataset.

3.2 Identification of Structural Longitudinal MRI Biomarkers

We study the identification of temporal biomarkers by longitudinal stability
selection in [11,38], with numerous random subsets experiments and computing
the frequency of each feature was selected across the tasks for each cognitive
status tests. We performed longitudinal stability selection from baseline (M00)
to 120 months after baseline (M120). Due to the lack of space, we only show the
stability vector for ADAS-Cog and MMSE with top 25 stable features in Fig. 2.
SV of Left Hippocampus is shown a high correlation with disease progression in
both of cognitive tests of all time. In MMSE tests, a small set of biomarkers was
identified, including TA of right precentral, TA of left middle temporal, TA of
right entorhinal, and TA of right inferior parietal. TA of left middle temporal,
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Fig. 2. Stability vectors of stable MRI features generated by STAC-L for cognitive tests
using longitudinal stability selection. The left plot is conducted on MMSE dataset and
the right plot on ADAS dataset.

TA of left temporal pole and TA of right lateral occipital shown a decreasing
stability score by disease progression in ADAS-cog, while some features shown
a high correlation in the middle stage, like CV of right pars opercularis, SV of
right ventral DC and TA of right caudal middle frontal. The longitudinal stability
selection shows a dynamical weighted stability scores ability of our method with
heterogeneous scores of a vector in different stages of disease progression.

The identified biomarkers hippocampus and middle temporal as important
central nodes in Fig. 2 have been found to predict AD progression [17,29]. The
amygdala is affected early in AD and results from neuropsychiatric symptoms
leading to functional deficits that greatly contribute to the disability associated
with this disease [15]. In [26], researchers found widespread orbitofrontal damage
including Parsorbitalis, transverse temporal and lateral orbitofrontal and this
pathology may contribute heavily to the many non-memory-related behaviour
changes observed in this disorder. [32] indicated a morphological change that
only the precentral gyrus and superior parietal cortex were reduced in both left
and right hemispheres. [12] demonstrated that the fusiform gyrus is critical in
facial recognition and revealed the genetic and epigenetic basis of AD coupled
with fusiform selected by our method as an important node in the biggest subset.
Neuroanatomical studies in higher mammals reveal that the entorhinal cortex
gives rise to axons that interconnect the hippocampal formation bidirectionally
with the rest of the cortex [25].

All the above results have demonstrated that the proposed STAC model
method not only yields superior performance on prediction accuracy, but is also
a powerful tool for discovering structural imaging biomarkers related to AD pro-
gression. These results provide important information for understanding brain
structural changes correlated with cognitive status and potentially help the char-
acterization of AD progression.

4 Conclusions

In this article, we propose a new sparse multi-task learning model to correct the
prior in both spatial and temporal relation learning. The proposed STAC model
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learns and exploits sparse structures related to disease progression based on
Gaussian graphical model. Sparsity-inducing components achieved an adaptive
scale constraint for both parameter sharing and accurate estimation of spatial
feature connectivity. And a marginal distribution penalty helped in an adap-
tive correction of the deficiency for the existing longitudinal simulation method
caused by ambiguous pathogenesis. In its application to the ADNI cohort, com-
pared to multiple competing MTL progression models, STAC not only demon-
strated superior prediction performance over them but also identified struc-
tural imaging biomarkers related to disease progression. The identified struc-
tural biomarkers are consistent with prior knowledge in existing literature. All
the results have clearly demonstrated the effectiveness of STAC.
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Abstract. Sarcopenia, characterized by age-related loss of strength and mus-
cle mass, profoundly affects the elderly’s well-being. Currently, diagnosing sar-
copenia requires the utilization of extensive and cumbersome testing equipment.
Surface electromyography (sEMG) is able to track muscle status and has been
effectively employed in diagnosing various diseases or human-machine interac-
tions, but its application in sarcopenia detection remains unexplored. In this study,
a compact sEMG system is developed to monitor sarcopenia, which is endowed
with compact dimensions, ease of operation, and wireless data transmission capa-
bilities. The investigation involves the analysis of sEMG signals from 15 elderly
participants. A significant correlation is established between themedian frequency
of these sEMG signals and the appendicular skeletal muscle mass (ASM). The
proposed sEMG-based sarcopenia detection device exhibits the merit in portable
use and highly operational efficiency. In future, it holds a high potential to replace
the commercially cumbersome or non-portable testing devices, thereby facilitating
widespread sarcopenia screening across diverse populations.

Keywords: Sarcopenia · sEMG ·Wearable devices

1 Introduction

Sarcopenia is a newlydefineddisease in recent decades andhas beenpaid great attentions.
It is distinctly characterized by the age-related decline in skeletal muscle mass [1, 2],
resulting in sluggishmobility and reduced strength among the elderly. Notably, it leads to
muscle convulsions, spasms, falls, fractures, and other related complications [3, 4]. The
influence of sarcopenia on human’s health is profound, greatly compromising the living
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quality of middle-aged and elderly people. More seriously, it can threaten their lives [5].
Fortunately, there are currently good nutritional interventions and exercise methods for
sarcopenia to alleviate its deterioration. Therefore, a timely diagnosis of sarcopenia is
necessary.

Currently, the diagnosis of sarcopenia needs a comprehensive evaluation including
three key factors: muscle strength, physical performance, and ASM [6]. Muscle strength
and physical performance can be measured simply by grip strength and gait speed,
respectively. However, ASM requires the help of large instruments. The current optimal
option to measure muscle mass relies on utilizing Dual-energy X-ray absorptiometry
(DEXA),which is capable of precisely quantifyingASM.Limited by the high cost, bulky,
and radiation, it is mainly used in the larger medical facilities. A suitable alternative to
quantify the ASM is bioelectrical impedance analysis (BIA) [7], which offers greater
user-friendliness. Nonetheless, fluctuations in cellular impedance that are highly related
to body conditions greatly influence the test’s accuracy, especially when the body suffers
from dehydration or edema. Although lower cost is available for the BIA equipment, it
is still not affordable for some community hospitals or individuals. Hence, it is of vital
significance to design a simple, convenient, and economical ASM assessment tool for
extensive sarcopenia screening [8, 9].

Fig. 1 AnsEMGsignal acquisition system for sarcopenia. It is composedof acquisition electrodes,
an sEMG signal processing system, a mobile user interface with Bluetooth for wireless data
transmission, and an sEMG-based sarcopenia analysis system
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One promising approach is the use of sEMG to diagnose sarcopenia. It serves as a
modality and technique capable of providing an objective representation of the bioelec-
trical activity within the neuromuscular system [10]. It shows the unique advantages
of easy operation, non-invasive and multi-faceted target detection [11, 12]. The sEMG
signals contain a wealth of information that reflect the muscle activities for effective
diagnosis of sarcopenia. Until now, although a few investigations on sEMG signals have
been conducted to diagnose various diseases like Parkinson’s disease, cerebral palsy in
children, and spinal cord injuries [13], a pragmatic and effective diagnostic approach for
sarcopenia is still under exploration.

Here, an sEMG signal acquisition system tailored for sarcopenia detection has been
proposed (Fig. 1). This system allows for the efficient acquisition of eight-channel
sEMG signals and enables a comparable performance to commercial sEMG electrodes.
Notably, it is equipped with a low-power Bluetooth module for wireless data trans-
mission. Owing to its user-friendly operation and reliable performance, we established
collaborations with a local hospital (The First Affiliated Hospital, Zhejiang University
School ofMedicine). This collaboration includes a data acquisition task of sEMG signals
from 15 elderly participants. Subsequently, relevant feature signals have been extracted
from these sEMG signals to reveal certain eigenvalues corresponding to muscle mass
measurements obtained via BIA.Our proposed sEMGdetection system offers a low cost,
lightweight, multi-channel and highly efficient solution for sarcopenia identification in
the future.

2 Acquisition System

2.1 Acquisition Circuit

To enable an user-friendly sEMG system, we have designed a portable circuit, as illus-
trated in Fig. 2A. The dimensions of the acquisition circuit are 23 mm in width and
56 mm in length, with a weight of 7.5 g. The sEMG system was developed not only for
portable testing in hospitals, but also for some wearable applications. Importantly, the
lightweight of this circuit also meets the requirement of wearing comforts.

Obtaining high-quality EMG signals is not a straightforward task, primarily due
to the fact that EMG signals constitute a type of minute signal characterized by high
source impedance. Consequently, we have iteratively refined and optimized the data
acquisition systemmultiple times to address this challenge. The hardware block diagram
of the circuit is depicted in Fig. 2B. This diagram displays two primary interfaces that
connected with the external environment: an eight-channel EMG input interface and a
Bluetooth wireless data transmission interface.

For EMG input and acquisition, an integrated ADC chip (ADS1198) was used.
Although the conventional approach involves employing discrete components to fil-
ter and amplify the EMG signals, subsequently utilizing the ADC of MCU for signal
collection, two primary challenges still exist:

1) Increased PCB board area: The use of discrete devices results in an expanded PCB
board area, which hampers the pursuit of miniaturization and integration.
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2) ADC accuracy limitation: The Successive Approximation Register (SAR) ADC fea-
tured in the MCU entails limited accuracy, rendering it suboptimal for our needs.
By utilizing ADS1198 physiological electrical signal acquisition chip, circuit minia-
turization, acquisition accuracy, and isolation of superior analog from digital signal
during the PCB layout process can be achieved. This is a critical step in achieving a
portable and lightweight sEMG system.

For data transmission, the transceiver functionality can be obtained by using a chip
(STM32WB55CGU6) equipped with Bluetooth function. By leveraging this MCU, we
obviate the need for a standalone Bluetooth chip, leading to a substantial reduction in the
acquisition circuit’s dimensions. Moreover, the inclusion of built-in Bluetooth module
of the MCU fosters enhance efficiency in data exchange between the central processing
unit and the Bluetooth stack. This synergy translates to a more judicious utilization of
Bluetooth communication bandwidth, thereby enhancing overall performance.

Fig. 2 Illustrates of the electromyographic signal acquisition system. (A) Physical diagram of the
sEMG signal acquisition circuitry. (B) Schematic representation of the sEMG signal acquisition
system, including the functions of signal collection, data packaging, and wireless transmission via
Bluetooth to the user-end receiver. (C) Depiction of the attachment of electromyographic elec-
trodes, wherein the positive and negative inputs of two adjacent channels are connected, neces-
sitating the affixation of a total of ten electrodes for the eight-channel electromyographic signal.
(D) Signal diagram of the right-foot driving module, employed for common-mode interference
suppression
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2.2 Electrode Attachment

The proposed electromyographic signal detection equipment facilitates the concurrent
collection of 8 channels of electromyographic signals. During the detection process,
electrodes are affixed to two columns along the muscle fibers, as illustrated in Fig. 2C.
The EMG signal is acquired using a differential method, necessitating the use of two
electrodes per channel. The positive input and negative input of adjacent channels are
linked. This configuration significantly reduces the electrode count, thereby fostering
a more concentrated channel arrangement. Each column accommodates a total of four
channels, leading to deploy five electrodes per column, with the two adjacent electrodes
jointly forming a channel.

Given the substantial impedance of human skin, the acquisition of EMG signals
is susceptible to be interfered by common-mode voltage. To counteract this, we have
incorporated a reference electrode to achieve voltage balance. This reference electrode
is positioned on an area of human skin devoid of muscle tissue. During the testing
phase, we observed that merely grounding the human body in synchronization with the
acquisition device does not yield perfect suppression of common-mode interference.
In response, we drew inspiration from the commonly employed right foot drive circuit
(RLD) in electrocardiogram (ECG) acquisition, as illustrated in Fig. 2D. This tecnique
leverages the principle of negative feedback, channeling the common-mode aspect of
the collected signal back into the right foot drive module. This approach ensures that
the reference potential along the entire collection pathway remains at zero, thereby
significantly enhancing the suppression of common-mode voltage interference.

An additional interference that considerably impacts EMG signals is the 50 Hz /
60 Hz power frequency disturbance, arising from electromagnetic interference originat-
ing in the power mains and infiltrating the acquisition circuit as noise. The approach
employed to address this issue involves the utilization of interfaces and transmission
lines characterized by high degrees of shielding effectiveness. The standard ECG lead
equipped with ten collection electrodes is employed. This choice hinges on the lead’s
robust shielding layer, which serves to curtail the ingress of interference. In terms of
interfaces, our preference is the HDMI interface lead. In contrast to the traditional DB19
interface, the HDMI interface has a more compact form fact. For the RLD drive elec-
trode, we have implemented a shielded lead wire for connection. The MMCX interface
is skillfully integrated, welding it to establish a link between the lead and the acquisi-
tion circuit. MMCX interface is commonly employed for transmitting audio signals in
earphones, showcasing compact physical dimensions with exemplary signal shielding
capabilities.

3 Data Collection

Upon finalizing the design of acquisition system, we start formulating the data collection
strategy. Our primary objective includes the EMG data collection from elderly individ-
uals afflicted with sarcopenia, juxtaposed with EMG data collection from a reference
group of normal elderly individuals.

Following comprehensive analysis and rigorous testing, the bicep muscle emerged
as the chosen test muscle. This selection was grounded in several pivotal factors: 1)
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The bicep muscle’s attachment area was devoid of other muscles, ensuring that the
collection process remained unaffected by interference from neighboring muscles. 2)
The bicep muscle’s force action was relatively straightforward and easily quantifiable,
rendering it amenable to testing. While leg muscles are often preferred for sarcopenia
[14, 15], we recognized that leg EMG signals present a testing challenge, unlike the
biceps. Consequently, we made a deliberate decision to focus on the bicep muscle to
facilitate targeted data collection.

During the experimental phase, we incorporated two distinct actions as our testing
protocols: the Muscle Maximal Voluntary Contraction (MVC) and a Fixed Tension Test
using aweight of 2 kg. As depicted in Fig. 3A, it was essential for participants tomaintain
vertical alignment of their forearms and upper arms throughout the testing. The MVC
test served the purpose of standardizing the amplitude of EMG. The 2 kg fixed tension
test required participants to sustain the posture illustrated in Fig. 3B for a duration of
2 m. Throughout this period, continuous EMG signal data were recorded. Thus, each
participant yielded a set of both MVC signals and fixed tension test signals.

Fig. 3 Electromyographic signal acquisition schematic. (A) Photograph taken during the elec-
tromyographic signal collection at the hospital, illustrating electrodes attached to thebiceps brachii,
wherein the participant’s muscle contraction is employed to lift a weight. (B) Illustrative diagram
of the testing setup, requiring the forearm to be perpendicular to the upper arm

In the preliminary testing phase, we also explored incorporating repetitive dumbbell
lifts as a testing action. However, due to challenges related to the cognitive capabilities
of elderly participants, many struggled to complete the exercise test according to the
stipulated standards. Consequently, we opted not to include this action in our final testing
regime.

The corresponding EMG signals acquisition from participants have been approved
by ethical committees of the 1st affiliated hospital of Zhejiang University. The related
electrodes placement on human participants and the collection of EMG signals were
conducted by professional medical staffs. We finally left 15 participants, eight of whom
were diagnosed with sarcopenia, while others represented healthy individuals.
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4 Data Analysis

4.1 Preconditioning

The original EMG signals inherently exhibit baseline drift and are susceptible to noise
interference. The extraction of accurate, stable, and dependable information from the
original EMGsignal necessitates the elimination of these sources of interference, thereby
facilitating subsequent analysis. The initial step is to eliminate baseline drift from the
electromyographic signals. Both the moving average and wavelet transform techniques
are capable of extracting baseline components from the EMG signals. By subtracting
the baseline-extracted EMG signal from the original, an EMG signal devoid of baseline
drift can be obtained. However, we opted for a simpler strategy: high-pass Butterworth
filter.

Given that EMG signals primarily occupy the frequency range of 6 to 400 Hz, with
the majority of energy concentrated between 20 and 150 Hz [16], the utilization of
a 6–400 Hz bandpass Butterworth filter effectively removes extraneous components.
Recognizing baseline drift as low-frequency noise, its elimination is seamlessly accom-
plished through bandpass filtering. Subsequent fast Fourier transform analysis of the
bandpass-filtered EMG unveils conspicuous spikes corresponding to 50 Hz and its har-
monics. This phenomenon led to deduce that despite the incorporation of shielding during
the electromyographic signal acquisition process, a fraction of power-line interference
has nonetheless infiltrated the signal. To counter this, we implemented notch filtering
at frequencies such as 50 Hz and 150 Hz. With these steps, we arrived at a relatively
untainted EMG signal, poised for subsequent analysis.

4.2 Feature Extraction

The gamut of features extractable from EMG encompasses time domain features, fre-
quency domain features, and nonlinear features.Whendelving into time domain features,
the utilization of MVC test outcomes is indispensable to normalize EMG amplitude
obtained during sustained tension tests. This corrective action is mandated by the varia-
tions in individuals’ skin thickness and adipose tissue content, which significantly influ-
ence EMG amplitude. The exploration of frequency domain indices requires the Fourier
transform of the EMG signal. Nonlinear features have emerged as electromyographic
signal analysis features in recent years. They have demonstrated significant efficacy in
the domain of muscle fatigue assessment [17]. Consequently, we have also harnessed the
potential of fractal dimension features extracted from the EMG for analysis endeavors.
Specifically, the box dimension algorithm is employed to calculate fractal dimension
values. In sum, we extracted fractal dimension (FD), median frequency (MF), root mean
square (RMS), variance (VAR), kurtosis (KUR), and peak-factor (PF) from the EMG
signal. In the hospital-based assessments, we additionally employed BIA to evaluate
participants’ ASM. Comprehensive results are displayed in Table 1.
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Table 1. The clinical indices and electromyographic characteristics of each participant

ID Age Type ASM FD MF RMS VAR KUR PF

1 85 S 3.93 1.59 103.85 0.119 0.0152 4.16 4.19

2 83 H 8.07 1.58 84.90 0.075 0.0057 3.41 3.75

3 88 H 6.91 1.58 81.04 0.146 0.0220 3.38 3.74

4 89 S 5.6 1.59 90.70 0.080 0.0066 3.38 3.75

5 86 S 3.41 1.58 115.47 0.066 0.0053 5.07 4.56

6 81 H 5.81 1.58 85.85 0.084 0.0078 3.46 3.84

7 91 S 3.39 1.60 114.00 0.091 0.0092 3.99 4.15

8 94 S 5.51 1.59 115.18 0.244 0.0630 4.64 4.43

9 92 H 6.77 1.59 95.90 0.085 0.0081 3.47 3.83

10 72 S 4.94 1.60 104.99 0.100 0.0118 3.59 3.90

11 83 S 5.34 1.59 91.07 0.090 0.0082 3.32 3.71

12 93 S 4.5 1.59 100.28 0.163 0.0290 3.64 3.94

13 94 H 5.89 1.60 98.72 0.174 0.0315 3.47 3.84

14 90 H 7.81 1.57 83.05 0.121 0.0151 3.55 3.88

15 87 H 5.72 1.59 85.70 0.053 0.0034 3.30 3.61
* S = Sarcopenia; H = Healthy People

4.3 Results

While deep learning and machine learning have gained wide attentions in EMG sig-
nal analysis, particularly in the realm of motion recognition [18, 19], their reception in
the medical domain remains relatively reserved. On the other hand, traditional math-
ematical and statistical methodologies are often preferred due to their higher degree
of comprehensibility. Such approaches allow medical professionals to gain a clearer
understanding of how a model reaches conclusions, enhancing applicability in clinical
practice. Thus, when analyzing the relationship between electromyography and sarcope-
nia, we adopt mathematical techniques for feature extraction and employed statistical
methods to investigate correlations between electromyography features and established
clinical features.

The analysis encompassed the correlation between the six features derived from the
EMG signal and ASM from BIA. Eventually, a good linear correlation between the
median frequency and body composition is achieved (Fig. 4). This correlation shows a
coefficient of 0.774 with a significant p-value of 0.001.

The calculation process of MF is relatively straightforward. It involves transforming
a time-domain signal within a timewindow into a frequency-domain signal using Fourier
transformation. The frequency atwhich the power onboth sides of the spectrum is equal is
defined as themedian frequency. Fortunately, the efficiency of calculation is significantly
improved by the FFT (Fast Fourier Transform). In the future, there is potential for the
integration of this algorithmwithin the data acquisition system, enabling offline analysis
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Fig. 4 Relationship between electromyographic median frequency and appendicular skeletal
muscle mass (ASM), correlation = 0.774, p < 0.001, N = 15

of sarcopenia. The utilization of median frequency analysis of ASM has the potential to
substantially streamline the detection process and reduce testing costs.

5 Conclusion

Toaddress the challenges encountered in sarcopenia diagnosis, particularly the expensive
and non-portable nature of ASM testing equipment, an electromyographic signal acqui-
sition system is developed for sarcopenia assessment. This innovative system enables
eight-channel sampling at a high 2 kHz rate, with real-time transmission to a personal
computer via Bluetooth. Leveraging this technology, EMG signals are successfully col-
lected from 15 elderly women with the extraction of six distinct characteristic values.
Notably, the median frequency exhibits a robust correlation with body composition. The
electromyography feature obtained through this testing methodology holds the potential
as an alternative benchmark for body composition assessment towards future clinical
standards.

Beyond its diagnostic applications, this collection system has the potential to transi-
tion into a community-level device for large-scale sarcopenia screening. Its deployment
can significantly contribute to early sarcopenia diagnosis, extending the benefits of timely
intervention to a broader demographic.
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Abstract. Objective: To explore the efficacy of machine learning tech-
niques in identifying Metabolic Syndrome (MetS) and examine the per-
formance of models when applied to target populations with different dis-
tributions. Methods: This study utilizes data from the National Health
and Nutrition Examination Survey (NHANES) and local physical exam-
inations, where MetS is diagnosed based on the International Diabetes
Federation (IDF) standards. We first employ demographic and blood
test data from NHANES and predicted MetS using machine learning
models (including MLP, Logistic Regression, Random Forest, XGBoost,
Catboost, and Multi-layer Perceptron), and then test these predictions
on different population data. Results: Models employing 59 features
demonstrate commendable performance in the NHANES test set (same
population testing), with the MLP model exhibiting the best perfor-
mance (AUROC= 0.93). Models constructed with 32 features (excluding
height, weight, and certain blood test information) still show promising
results (MLP AUROC = 0.89). However, when the models are tested on
the local physical examination dataset (cross-population testing), there
is a substantial decline in performance (MLP AUROC = 0.71). Conclu-
sion: Machine learning techniques can predict MetS on the NHANES
dataset with high accuracy. Due to the distribution shift, examined
machine learning models perform better in the setting with same popu-
lation distribution.

Keywords: Metabolic Syndrome · Machine Learning · Population
Health Management

1 Introduction

Metabolic syndrome (MetS) is an early subclinical syndrome characterized by
the aggregation of multiple risk factors of metabolic diseases. The main indica-
tors of MetS include abdominal obesity, elevated blood pressure, hyperglycemia,
hyperlipidemia, and low high-density lipoprotein cholesterol. Existing researches
have shown that MetS is closely associated with the risk of numerous chronic
non-communicable diseases, such as coronary heart diseases, stroke, diabetes,
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and hypertension [1]. As a result, it has become a significant disease burden in
the field of public health and a focal issue in recent population health manage-
ment (PHM) [2,3].

Machine learning (ML) technology has been increasingly utilized in clinical
areas [4]. The timely and accurately detection and diagnosis of diseases through
machine learning remains a consistent and prominent topic in scientific research.
Concurrently, the widespread application of AI technology has fostered the rapid
growth of PHM, which aims to enable all individuals within a specific population
to maintain and enhance their health. With the evolution and implementation
of advanced machine learning models, population health research can model
multidimensional health data from large cohorts to extract valuable insights,
further applying these findings to PHM [5].

The diagnosis of metabolic syndrome (MetS), according to the diagnos-
tic criteria in the joint statement by the International Diabetes Federation
(IDF), involves multiple physical meOSasurements and laboratory tests, such as
waist circumference, blood pressure, blood sugar, triglycerides, and high-density
lipoprotein cholesterol, which obviously presents certain limitations in the con-
text of PHM or individual health management. Among the others, waist circum-
ference is the indicator that is fairly stable and can be conveniently measured.
The blood pressure and blood sugar require multiple measures to confirm the
reliability. The triglycerides, and high-density lipoprotein cholesterol need to be
tested in hospital with lab analyser. The gold standards for the blood sugar,
riglycerides, and high-density lipoprotein cholesterol are tested intrusively. In
this case, out-of-hospital diagnosis of MetS has become challenging, thus, the
exploiting of other valuable indicators and the use of ML approaches to assist
the remote monitoring and detection in the early stage is immensely valuable.

In clinical scenarios, if a patient is suspected to have MetS, endocrinologists
will be involved in the diagnosis and treatment pipeline. Patients will receive
advice from endocrinologists on lifestyle management. However, this process can
be time-consuming and labor-intensive, and there is also a certain risk of missed
or misdiagnosis.

Given these challenges, this research aims achieve early identification of MetS
using ML technologies with population health data. Better classification of MetS
will assist the timely detection of MetS and thus improve personal health man-
agement.

2 Datasets and Methods

2.1 Datasets

Data Sources. In this study, we utilized the public database from the National
Health and Nutrition Examination Survey (NHANES), which is a national sur-
vey program conducted by the U.S. National Center for Health Statistics. Ini-
tiated in 1960, this program periodically evaluates the health and nutritional
status of the American population, collecting relevant clinical, demographic, and
nutritional data. NHANES stands as one of the largest ongoing health surveys in
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the US population, offering a comprehensive dataset on population health, which
can be employed to research various health issues, such as MetS, diabetes, and
cardiovascular diseases. The NHANES survey adopts multistage sampling tech-
niques, including random sampling, stratified sampling, and cluster sampling.
Participants undergo questionnaire interviews, physical examinations, and bio-
logical sample collections. The comprehensive NHANES dataset encompasses
numerous physiological indicators, biochemical markers, nutritional indices, dis-
ease diagnoses, medication usage, and health behaviors [6,7].

We used the NHANES data from 1999–2018, encompassing 101,316 individ-
uals, and a local health examination dataset, encompassing 10,446 individuals,
forming the original datasets for this study.

Diagnosis of Metabolic Syndrome. In this study, we diagnosed MetS based
on the standards and definitions set forth in the joint statement by the IDF
[8]. According to this criterion, MetS is diagnosed when three or more of the
following five components are present:

1) Increased waist circumference (≥88cm for females, ≥102cm for males);
2) Elevated triglycerides (TG) (≥150mg/dL) or currently undergoing treatment

for hyperlipidemia;
3) Reduced high-density lipoprotein cholesterol (HDL-c) (<40mg/dL for males,

<50mg/dL for females) or currently undergoing treatment for low HDL-c;
4) Elevated blood pressure (systolic blood pressure (SBP) ≥130mmHg or dias-

tolic blood pressure (DBP) ≥85mmHg or both) or currently on antihyperten-
sive treatment or with a history of hypertension;

5) Elevated fasting blood glucose (FBG) (≥100mg/dL) or currently undergoing
treatment for hyperglycemia.

Using the questionnaire information and biochemical data of participants
provided by NHANES, such as blood glucose, triglycerides, and HDL-C, we diag-
nosed each component [9]. NHANES did not collect laboratory test information
for HDL-C during the survey years from 1999 to 2004. Thus, we substituted
this with medication treatment information reported in the questionnaire. Ulti-
mately, 55,684 participants with sufficient information were diagnosed, of which
19,530 (35.1%) were categorized as MetS.

Features. As is a specialized, large-scale cross-sectional study, NHANES data
encompasses various features ranging from demographic, anthropometric, to
blood test variables. Given the distinct feature sets in NHANES and local health
examination datasets, we utilized the overlapping feature subset in this study.
We primarily based our choices on the features available in the local health
examination dataset. Firstly, after excluding indicators for MetS diagnosis, we
identified common demographic, anthropometric, and blood test features present
in both the local health examination dataset and the NHANES dataset (a total
of 59 features). Due to the issue of missing data in the local physical exami-
nation dataset, we ultimately established two feature settings encompassing 59
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features and 32 features respectively, and three different experiments (Table 1).
Specifically, Experiment 1 involved modeling using 59 variables in the NHANES
dataset and testing in an independent validation set selected from the NHANES
population. Experiments 2 and 3 utilized the same NHANES training data, with
an input of 32 features, and were tested on the independent validation set from
NHANES and the local dataset, respectively. Table 2 illustrates the full names
and corresponding abbreviations of the features.

Table 1. Features included in different experiments

Experiment Features

1 sex, age, BUN, UA, TBIL, TP, Glo, Alb, Cr, ALT,
AST, TC, NENO, NEPCT, MOPCT, MONO,
BANO, BAPCT, EONO, EOPCT, MPV, MCHC,
MCH, LY, LYPCT, WBC, RBC, RDW CV, HCT,
MCV, PLT, Hb, GGT, ALP, Sodium, kalium, CRP,
Insulin, Lead, LDH, HbA1c, Height, Weight, LDL,
HAV, HBsAg, HBcAb, HCV, HBsAb

2 sex, age, BUN, UA, TBIL, TP, Glo, Alb, Cr, ALT,
AST, TC, NENO, NEPCT, MOPCT, MONO,
BANO, BAPCT, EONO, EOPCT, MPV, MCHC,
MCH, LY, LYPCT, WBC, RBC, RDW CV, HCT,
MCV, PLT, Hb

3 sex, age, BUN, UA, TBIL, TP, Glo, Alb, Cr, ALT,
AST, TC, NENO, NEPCT, MOPCT, MONO,
BANO, BAPCT, EONO, EOPCT, MPV, MCHC,
MCH, LY, LYPCT, WBC, RBC, RDW CV, HCT,
MCV, PLT, Hb

2.2 Methods

Data Preprocessing. The preprocessing of the data commenced with the iden-
tification of outliers in each column, those values falling outside the range (<Q1-
1.5×IQR, >Q3+1.5×IQR) were regarded as outliers. Adopting a stratified app-
roach based on varied age and gender demographics, any missing value in each
feature was substituted with the mean value of that particular feature derived
from specific age-gender subgroup. For categorical variables, missing values were
imputed with a distinct value and subsequently transformed into dummy vari-
ables.

The NHANES dataset was splitted into a training set (38,978 samples) and
a test set (16,706 samples) randomly with the “train test split” function in the
“scikit-learn” package, while the whole local dataset was employed as an inde-
pendent validation test set (10,446 samples). Subsequently, using the “Quan-
tileTransformer” function in the “scikit-learn” package (Python, version 0.23.2)
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Table 2. Abbreviation of the features included

Feature names Abbreviation

Gender sex

Age age

Triglycerides TG

Fasting blood glucose FBG

Systolic blood pressure SBP

Diastolic blood pressure DBP

Blood urea nitrogen BUN

Urine acid UA

Total bilirubin TBIL

Total protein TP

Globulin Glo

Albumin Alb

Creatinine Cr

Alanine transaminase ALT

Aspartate transaminase AST

Total cholesterol TC

Neutrocyte number NENO

Neutrocyte percentage NEPCT

Monocytes percentage MOPCT

Monocytes number MONO

Basophils number BANO

Basophils percentage BAPCT

Eosinophils number EONO

Eosinophils number EOPCT

Mean platelet volume MPV

Mean corpuscular hemoglobin concentration MCHC

Mean corpuscular hemoglobin content MCH

Lymphocytes number LY

Lymphocytes percentage LYPCT

White blood cell count WBC

Red blood cell count RBC

Coefficient of variation of red blood cell distribution width RDW CV

Hematocrit HCT

Mean corpuscular volume MCV

Platelet PLT

Hemoglobin Hb

Gamma-Glutamyl Transpeptidase GGT

Alkaline Phosphatase ALP

Sodium Sodium

Kalium kalium

C-reactive Protein CRP

Insulin Insulin

Lead Lead

Lactate Dehydrogenase LDH

Hemoglobin A1c HbA1c

Height Height

Weight Weight

Low Density Lipoprotein LDL

Hepatitis A Virus HAV

Hepatitis B Surface Antigen HBsAg

Hepatitis B Core Antibody HBcAb

Hepatitis C Virus HCV

Hepatitis B Surface Antibody HBsAb
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to normalise the datasets. This non-linear and independent transformation tech-
nique converts raw values into uniform distribution values sampled from the esti-
mated cumulative distribution function of the feature. To mitigate the potential
adverse effects of sample imbalance on training efficacy, the Synthetic Minority
Over-sampling Technique (SMOTE) was used to oversample the MetS positive
population within the training set. Table 3 presents the sample size for each
dataset.

Table 3. Size of datasets

Datasets Sample size

NHANES training set 38,978

NHANES testing set 16,706

Local Dataset 10,446

Models. We employed various machine learning models including Logistic
Regression (LR), Random Forest (RF), XGBoost, Catboost, as well as the Mul-
tilayer Perceptron (MLP). We used 10-fold cross-validation and optimised each
model, subsequently training the models with these optimal settings [10]. For
the MLP model, the hyper-parameters and model architectures were optimised
by a random search, with the model then being trained using this configuration.

Evaluation. Accuracy, Precision, Recall, F1-score, and the Area Under the
ROC curve (AUROC) are used to evaluating the performance of the models.
Accuracy measures the proportion of samples correctly classified out of the total,
representing the model’s ability to classify correctly. Precision indicates the pro-
portion of positive predictions that were actually positive, reflecting the precision
of the model’s classification. Recall represents the proportion of actual positive
samples that the model correctly predicted as positive, indicating the model’s
coverage of positive samples. The F1-score is the harmonic mean of Precision and
Recall, serving as an integrated metric to assess the classification performance of
the model. AUROC, determined by calculating the area under the ROC curve,
depicts the relationship between the true positive rate and the false positive rate
across different thresholds, revealing the classifier’s performance under various
thresholds.

3 Results

Firstly, we trained models using 59 features and 32 features respectively in the
NHANES dataset and evaluated the models on a unified hold-out test set.

As shown in Table 4, all five models achieved satisfactory results, with nearly
all evaluation metrics exceeding 0.8. Among all five models, the MLP demon-
strated the best performance, achieving top-tier results in every performance
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Table 4. Performance of the models in the NHANES dataset

Experiment Models Accuracy Precision Recall F1 AUROC AUPRC

1 LR 0.847 0.744 0.865 0.800 0.851 0.828

RF 0.835 0.718 0.877 0.790 0.845 0.819

XGBoost 0.839 0.729 0.867 0.792 0.845 0.822

Catboost 0.777 0.618 0.968 0.754 0.820 0.799

MLP 0.848 0.739 0.879 0.803 0.929 0.858

2 LR 0.810 0.692 0.832 0.755 0.815 0.791

RF 0.803 0.673 0.858 0.754 0.815 0.791

XGBoost 0.784 0.636 0.903 0.747 0.811 0.787

Catboost 0.718 0.559 0.962 0.707 0.774 0.767

MLP 0.806 0.680 0.855 0.758 0.894 0.782

evaluation metric. The LR shows the best in precision. The nonlinear ensem-
ble models like XGBoost and Catboost, although they had high Recall values,
performed worse than MLP and LR.

Additionally, when comparing the results of models with 59 features against
those with 32 features in NHANES only, it is evident that, although there was
a decline in performance across all models, the magnitude of this decline wasn’t
significant. This implies that after eliminating body measurements like height,
weight, and additional blood test features, the models were not significantly
affected.

By evaluate the performance of the models trained on NHANES when applied
to different populations of local dataset (with 32 features), as shown in Table 5,
it indicated that the MLP still outperformed the others. Overall, compared to
their counterpart on the NHANES dataset, all the models witnessed a substantial
decline in performance. For instance, the AUROC score of the best-performing
model, MLP, dropped from 0.89 to 0.71.

Table 5. Performance of the models in the local dataset

Models Accuracy Precision Recall F1 AUROC AUPRC

LR 0.671 0.381 0.621 0.472 0.654 0.546

RF 0.623 0.350 0.682 0.462 0.644 0.554

XGBoost 0.634 0.356 0.668 0.464 0.646 0.551

Catboost 0.441 0.286 0.906 0.435 0.601 0.607

MLP 0.661 0.375 0.645 0.475 0.710 0.423
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4 Discussion

In our experiments, we explored a variety of machine learning models for MetS
classification based on demographic and blood test indicators. Through multiple
model and dataset configurations, we discerned that the MLP model showed
superior performance in this context. It is noted that the inclusion or exclusion
of variables like height and weight, which are conventionally strongly associated
with MetS, did not have a significant impact on model performance. Most cru-
cially, our experiment exhibited considerable variability in model performance
when applied across different populations. This underscores a potential distribu-
tion shift across various regions and demographic characteristics. Hence, trans-
ferring a model to be applied to a different population distribution necessitates
a judicious approach. Enhancing the model’s generalization capability through
continual learning strategies remains a future objective of this study.
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Abstract. The current diagnostic approaches for assessing the severity
of colitis necessitate medical professionals or specialists to subjectively
evaluate colitis colonoscopy images, relying extensively on their clinical
expertise. The accuracy of these assessments is of utmost importance in
guiding subsequent treatment strategies for individuals with colitis. Sev-
eral deep learning models have demonstrated their efficacy in the domain
of medical imaging, serving as dependable tools for visualizing and ana-
lyzing medical data. These models include deep learning-based models
and convolution-based neural network models. This study aimed to assess
the effectiveness of various convolution-based neural network models in
diagnosing the severity of colitis. Specifically, the representative ResNet
and DenseNet models were chosen for a comparative analysis. Four types
of medical imaging images of colitis with different severity were selected
for classification and diagnosis. The experimental results demonstrate
that DenseNet outperforms ResNet in terms of efficiency and accuracy
for diagnosing colitis severity. DenseNet achieves an accuracy rate of up
to 80%, indicating the promising potential for its application in the field
of medicine.

Keywords: ResNet · DenseNet · Deep Learning · Colitis · Diagnosis

1 Introduction

Colitis is a pathological condition characterized by inflammation, which can be
attributed to a multitude of etiological reasons. Diagnosis and treatment of colitis
typically necessitate consideration of several aspects during the patient’s visit.
The incidence of consultations for colitis has had an upward trend in recent
years. Nevertheless, it is important to acknowledge that the extent of colitis
may be overestimated during the initial consultation, and failure to administer
appropriate and timely treatment poses a significant risk of infection transmis-
sion, thereby significantly impacting the patient’s overall well-being. Hence, it is
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imperative to precisely assess the extent of colitis by utilizing colonoscopy pic-
tures during the initial stages of diagnosis with utmost accuracy and efficiency.
This is crucial to prevent the potential issue of delayed therapy resulting from
an underestimation of the patient’s condition severity.

The diagnostic techniques commonly employed in medical practice to assess
the severity of colitis typically involve the utilization of colonoscopy and mucosal
biopsy. Colonic mucosal lesions are typically identified by physicians who rely on
their own detection ability and clinical expertise. However, the reliance on clini-
cians alone for judging the severity of colitis is often seen as insufficient in terms
of trustworthiness. The progressive advancement of deep learning is progressively
emerging as a significant tool and instrument for paramedical care. Various deep
learning models have demonstrated consistent performance in terms of their
ability to withstand recognition and control systems, as well as exhibit rapid
convergence [1,2]. In their study, Harada et al. [3] introduced a semi-supervised
learning approach to categorize endoscopic images of colitis. Neural networks
have been extensively utilized by researchers to classify medical images of dis-
eases, including colitis [4,5]. These studies have demonstrated the effectiveness of
employing deep learning techniques for the classification of colonoscopic images
of colitis, thereby validating their potential utility in the clinical management of
this condition.

In the realm of image classification, ResNet and DenseNet have demonstrated
notable efficacy and achieved favorable outcomes. In their study, Sarwinda et al.
[6] introduced a method for detecting colorectal cancer by employing ResNet-18
and ResNet-50 models, which yielded promising results in terms of accuracy. The
DenseNet model has demonstrated exceptional performance in various domains
such as daily life, agricultural output, and medical diagnostics. The severity of
diabetic retinopathy was assessed using DenseNet by the authors in the paper
[7]. The study conducted by the authors in reference [8] employed DenseNet as a
methodology for the identification and categorization of diseases in tomato plant
leaves.

This study aims to investigate the potential of deep learning in diagnosing
disease severity and enhancing the performance of the colitis severity diagnostic
model. To achieve this, the research employs two deep learning models, namely
ResNet and DenseNet, for comparative analysis. Experimental evaluations are
conducted to analyze the diagnostic outcomes of both models. The primary
contributions of this study are as follows:

1. This study examines the disparities and dependability of two prominent
convolution-based deep learning techniques, namely ResNet and DenseNet,
within the domain of colitis severity diagnosis. The two models categorize
colonoscopy images into four types based on the severity of colitis. This clas-
sification enhances the effectiveness of diagnosing colitis severity, minimizes
the likelihood of subjective errors made by clinicians, and offers a framework
for future investigations in the field of colitis severity diagnostic models.

2. A comparison analysis was conducted to assess the efficacy and performance
of ResNet and DenseNet models in diagnosing the severity of colitis. The
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study aimed to investigate the underlying mechanisms and classification accu-
racy of colonoscopy images using these two models. Subsequent investigations
have demonstrated that DenseNet outperforms ResNet in the classification
of colonoscopy images. This superiority is manifested not only in improved
diagnosis accuracy but also in its superior generalization capabilities and pro-
cessing economy.

2 Approach

2.1 The Diagnosis of Colitis Using a ResNet-Based Approach

The deep residual network (ResNet) is a deep learning model that was devel-
oped by He et al. [9]. Their research findings indicate that ResNet exhibits
superior performance compared to other models in the task of image catego-
rization. ResNet, in comparison to alternative deep learning models, effectively
addresses the challenge of gradient vanishing or gradient explosion that arises
from the deep network architecture by employing a residual structure. Addi-
tionally, ResNet exhibits reduced training time and computing cost, along with
enhanced training capabilities.

The feature extraction process of the plain network may be demonstrated by
utilizing the LIMUC dataset as the initial input data for training the model [10]

xm = σ

(
m∑

i=0

wixi + θ

)
(1)

The symbol σ represents the non-linear activation function utilized in the neural
network. The variable wi represents the weight information associated with the
colitis colonoscopy image, whereas xi is the input data of said image. Lastly, θ
denotes the bias term. To enhance the depth of the network while mitigating the
issue of gradient explosion, the plain network incorporates a residual structure.
The residual block can be created for every deep unit by employing recursive
techniques. L characteristics are manifested as [9]

xL = x1 +
L−1∑
i=1

F(xi,Wi) (2)

In this context, L represents the unit layer of the neural network. F(·) represents
the mapping relation of the residual structure. xL refers to the output of the
unit in the layer L, and xi refers to the input of the unit in the layer i. In the
context of backpropagation, given that the loss function is denoted as E, the
application of the chain rule allows us to obtain the desired outcome

∂E

∂x1
=

∂E

∂xL

∂xL

∂x1
=

∂E

∂xL

(
1 +

∂

∂x1

L−1∑
i=1

F (xi,wi)

)
(3)
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The chain rule of backpropagation can be conceptually separated into two com-
ponents. The first component involves the propagation of data signals without
involving weight layers, which can be denoted as ∂E

∂xL
. This process allows for

the direct passage of data signals back to any shallow structure. The second
component involves the propagation of data signals through weight layers, which
can also be represented as ∂E

∂xL
( ∂

∂x1

∑L−1
i=1 F (xi, wi)). ∂E

∂xL
( ∂

∂x1

∑L−1
i=1 F (xi, wi)).

This latter component ensures that the neural network model does not encounter
the issue of vanishing gradient, as the resulting value cannot be equal to -1. In
conclusion, the results generated by the Resnet-based colitis diagnostic network
can be represented as

y = Softmax(FL(RL−1(FL−2(. . . (R2(F1(x;W1, b1)) + x2;WR2, bR2) . . . )
+xL−1;WL−1, bL−1)) + xL;WL, bL) (4)

In this context, the variable represents the severity of the colonists as recognized
by the network by colonoscopy imaging. Additionally, Ri specifies the layer i
residual block. The diagram illustrating the ResNet-based diagnostic model for
assessing the severity of colitis is depicted in Fig. 1.A.

2.2 The Diagnosis of Colitis Using a DenseNet-Based Approach

The DenseNet model, initially introduced by G Huang et al. [11], is charac-
terized by its dense connectivity. The DenseNet architecture incorporates the
DenseBlock-Transition structure, which facilitates the connection of features
across layers rather than relying on a linear mapping relationship. By utiliz-
ing colonoscopy images depicting colitis as the input data for model recognition,
it is possible to articulate the relationship between the features of the input and
the corresponding output [12].

X(t) = H([X0,X1,X2, ...,X(t − 1)]) (5)

Let X(t) represent the output of layer t. X0,X1,X2, ...,X(t − 1) refer to the
input data preceding layer t. H signifies the non-linear transformation applied to
each DenseBlock. A DenseBlock refers to a module of many levels, wherein the
feature maps of each layer possess identical dimensions. The Transition mod-
ule serves the purpose of connecting two adjacent DenseBlocks, facilitating the
reduction in the size of feature maps and ensuring their compatibility in terms of
dimensionality through the utilization of Pooling. The diagnostic identification
of four distinct forms of colitis with varying degrees of severity can be achieved
by the utilization of the softmax function.

y = Softmax(Foutput(Favg−poo1((Fdb(x;Wdb, bdb));Wavg−poo1, bavg−poo1);
Woutput, boutput)

(6)

where y denotes the probability distribution of the outcome of the prediction of
the severity course of colitis colonoscopy. Foutput denotes the last fully connected
layer of the model, the Woutput and boutput denote their corresponding weights
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and biases. Favg−pool denotes the average pooling layer of the model, and its
corresponding associated weights and biases are Wavg−pool and bavg−pool. Fdb

denotes the different DenseBlocks, and the corresponding weights and biases
of each DenseBlocks are Wdb and bdb. The resulting DenseNet-based diagnostic
model for colitis severity is shown in Fig. 1.B.

Fig. 1. A is the diagnosis of colitis using a ResNet-based approach; B is the diagnosis
of colitis using a DenseNet-based approach

3 Experiments

The experimental patients for this investigation were picked from the LIMUC
dataset [13], consisting of colonoscopy pictures depicting various colitis disorders.
These diseases were classified into four severity classifications, namely Mayo 0,
Mayo 1, Mayo 2, and Mayo 3. Out of the total 7502 data photos belonging to
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various classes, around 80% of these images, amounting to around 6000, were
utilized as the training set in the conducted trials. Approximately 20% of the
total number of photos, specifically around 1500 images, were allocated for uti-
lization as the test set. To ensure equal representation of images for colitis illness
identification in each acquisition, a consistent batch size of 16 was employed for
the tests.

To assess the precision of the two network models in detecting colitis disease
in colonoscopy images, we conducted tests on ResNet, and DenseNet, and pre-
trained processed ResNet and DenseNet. As depicted in (a) of Fig. 2, the maxi-
mum accuracy achieved by the pre-trained DenseNet model is around 80%, while
the maximum accuracy attained by the DenseNet model without pre-training is
approximately 76%. The maximum accuracy achieved by the pre-trained ResNet
model is approximately 73%, while the maximum accuracy attained by the
ResNet model without pre-training is approximately 71%. The analysis demon-
strates that DenseNet diverges from the conventional approach of increasing the
depth and width of network layers to enhance model performance, as observed
in ResNet. Instead, DenseNet achieves this by reducing the number of network
parameters through the utilization of feature reuse and bypass mechanisms. This
design choice not only facilitates training in comparison to ResNet but also
yields a certain degree of regularisation effect. The pre-trained model has supe-
rior overall performance compared to the non-pre-trained model. Additionally,
in the context of colitis illness detection, the pre-trained DenseNet exhibits faster
convergence and more accurate analysis and identification of the severity of the
disease.

The boxplot in Fig. 2(b) demonstrates that DenseNet exhibits superior per-
formance compared to ResNet in terms of stability and accuracy across multiple
experiments. This can be attributed to DenseNet’s effective utilization of fea-
ture reuse, which prevents excessive weight shifting during training iterations.
Consequently, the weights in DenseNet remain more stable throughout the train-
ing process, leading to improved overall stability when compared to the ResNet
model.

Figure 2(c) compares the loss values of ResNet, DenseNet, and pre-trained
processed ResNet and DenseNet in the context of feature detection in coli-
tis colonoscopy images. The results indicate that DenseNet exhibits a notable
advantage over ResNet in terms of both image feature detection and model
robustness. Furthermore, the pre-trained DenseNet demonstrates superior capa-
bility in feature extraction specifically in the context of colitis. The pre-trained
DenseNet demonstrates superior capability in extracting features from colitis
colonoscopy images.

In Fig. 2(d), the histogram illustrates the minimum loss observed in coli-
tis enteroscopy images for pathology detection using various models. The figure
demonstrates that DenseNet, with its feature reuse and dense connectivity, effec-
tively reduces the image loss in each iteration. Specifically, the loss value in colitis
enteroscopy images can be reduced to approximately 0.5 for DenseNet without
pre-training. Additionally, the pre-trained model exhibits a further reduction
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in loss value. The loss value of the pre-trained DenseNet model is 0.234. The
untrained ResNet has a loss value of 0.347, whereas the pre-trained ResNet
demonstrates a loss value almost equal to 0.239. The utilization of a pre-trained
model has the potential to enhance the precision of picture classification and
detection. Additionally, it can concurrently diminish the loss value associated
with the identified image, as evidenced by the data presented in Fig. 2. While
both pretrained DenseNet and ResNet exhibit identical loss outcomes, it is note-
worthy that DenseNet demonstrates a greater accuracy. This observation sug-
gests that DenseNet possesses superior robustness and generalization capabilities
in comparison to ResNet.

Fig. 2. (a) denotes the accuracy plot of ResNet and DenseNet under the LIMUC
dataset; (b) denotes the boxplot obtained from multiple experiments of ResNet and
DenseNet; (c) denotes the loss comparison between pre-trained and untrained ResNet
and DenseNet; and (d) denotes the loss bar graph of ResNet and DenseNet loss his-
togram for LIMUC dataset detection

4 Conclusion

This study aimed to compare the performance of the two representative convo-
lution based deep learning models, ResNet and DenseNet, in colonoscopy image
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classification. A series of comparative experiments were conducted to determine
the viability of the two models in the diagnosis of colitis severity. According to
the experimental results, DenseNet not only has a slight improvement in accu-
racy to reach 80% on colonoscopy images of colitis but also has a higher training
efficiency of the model, which can reach convergence at a faster rate. ResNet
and DenseNet both have strong feature extraction capabilities and image clas-
sification advantages. Therefore, DenseNet performs satisfactorily and has more
advantages over ResNet in terms of diagnostic accuracy and robustness when it
comes to determining the severity of colitis.

The comparative study may further examine the diagnostic performance and
accuracy of the two models for colitis severity diagnosis. The deep learning model
has the potential to be further developed in the diagnosis of the severity of
colitis, as evidenced by the positive results of ResNet and DenseNet. Clinicians
can use it as a practical tool to create personalized treatment plans that take
into account the unique circumstances of each patient. Further investigation
into ResNet and DenseNet will be carried out to address further obstacles in the
processing of colonoscopy images from enterocolitis. To continuously enhance the
performance of the colitis severity diagnostic model, more deep learning models
will be tested and modified in this direction in the future. In the meantime,
the application of deep learning models to the diagnosis of colitis severity has a
promising development space.
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Abstract. Purpose: The electroencephalography (EEG) signals recor-
ded in clinical settings are usually corrupted by electrooculography
(EOG) artifacts. EEMD-ICA is a commonly used method for removing
EOG artifacts. This study aims at exploring the performance of different
methods of identification of artifactual components under the framework
of EEMD-ICA.

Methods: This study is conducted in a semi-simulated way. A EEG
dataset covering signal of SNR from -1 to 2 is generated based on the
EEG and EOG segments from two public datasets. Characterized by the
artifactual components identification method, EEMD-ICAkurt, EEMD-
ICAentropy, EEMD-ICAautocor and EEMD-ICAeogcor are proposed and
evaluated in terms of Normalized Mean Square Error (NMSE), Cross
Correlation (CC) and Structural Similarity Index (SSIM) on this dataset.

Results: EEMD-ICAautocor outperforms other three approaches and
demonstrates the strongest versatility. Besides successfully eliminating
EOAs from EEG signals, it loses the least neuron activities.

Conclusion: Although performance metrics improve as SNR
increases, the loss of structure information also improves (SNR > 1).
In practice, it is vital to estimate the SNR of data before applying these
approaches because when SNR is high, these methods may have a coun-
terproductive.

Keywords: EEG · Artifact · Removal · EEMD · ICA

1 Introduction

Analyzing neural activities using Electroencephalography (EEG) plays a impor-
tant role in neuroscience. It provides a non-invasive way to understand brain
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dynamics and pathology. Clinically, EEG is crucial in the study and diagnosis
of extensive kinds of diseases such as meningitis, encephalitis and brain para-
sites. EEG with iconic waveform can make doctors diagnose with clinical symp-
toms. In the therapeutic setting, EEG can be used to identify and treat epilepsy
[15], research sleep and identify insomnia. In cognitive research, EEG is used to
investigate cognitive processes like attention, memory, and emotion as well as
human-computer interfaces like brain-computer interfaces (BCI).

Artifacts are undesired signals that get mixed into the data collected from the
recording system, which can negatively impact the quality of the EEG signal and
make its analysis more challenging especially on wearable devices [16], making it
difficult for doctors to identify and use [14]. It may cause difficulties in reading,
which make the diagnosis difficult to determine, and even lead to diagnostic
errors. Even worse, some sophisticated computer instruments cannot detect EEG
precisely under the interference of artifacts artifacts. The artifacts also bring
difficulties of artificial intelligence in this field [23,26,27].

Generally, artifacts in EEG can be categorized into two types: non-
physiological and physiological. Non-physiological artifacts are caused by sub-
jects’ misconduct, such as electrode displacement and body movement during
recording. By providing proper subject instructions and experimental setup, non-
physiological artifacts can be reduced [12]. Nevertheless, physiological artifacts
cannot be avoided during EEG data collection. Physiological artifacts mainly
refer to ocular artifacts, cardiac artifacts, and muscle artifacts [18]. One of the
most common artifacts influencing the quality of EEG signals are the EOG
Artifacts (EOAs), a kind of activities whose magnitude is usually much higher
than that of EEG signals. Physiological artifacts can hardly be avoided during
recording because they arise from the normal physiological activities of subjects.

As a result, identifying and removing artifacts, whether in clinical diagnosis
or practical applications, is the most crucial prepossessing step before further
analysis. Regression methods are the conventional approach for reducing artifacts
from EEG [10], while Blind Source Separation (BSS) is one of the most com-
monly used techniques for removing physiological artifacts [8,12]. Blind source
separation is a family of algorithms aiming at separating a set of source signals
S from a set of signals formed by the mixture of S without the aid of information
about S or the mixing process. Independent component analysis (ICA)-based
methods are most commonly used for artifact removal [4,5] among BSS algo-
rithms. Empirical Mode Decomposition (EMD) is another signal decomposition
algorithm commonly used in EEG artifact removal and it is often combined with
ICA in last decade, i.e., the EEMD-ICA [13].

EEMD-ICA is a kind of hybrid artifact removal technique [12]. The nature of
EEMD allow this method to be used on both single channel and multi-channel
EEG signal. Strictly speaking, EEMD-ICA is merely a tool for decomposing sig-
nals, and the most crucial step is to identify artifactual components. Therefore,
this study aims at exploring the performance of different methods of identifica-
tion of artifactual components under the framework of EEMD-ICA. By compre-
hensively testing four different ways of artifactual component identification, it
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is indicated the method based autocorrelation has the best performance. This
study also draw a preliminary conclusion that, from the perspective of perfor-
mance metrics, these artifact removal methods may have a counterproductive
when SNR is high.

2 Methods

In this section, we first outline the various techniques employed in the paper and
then we will describe the artifactual components identification method.

2.1 Blind Source Separation (BSS)

Blind source separation (BSS) is the one of the most used techniques to remove
physiological artifacts [12,19]. Blind source separation is a family of algorithms,
aiming at separating a set of source signals S from a set of signals formed by
the mixture of S without the aid of information about S or the mixing process.
Let X be the multi-channel EEG signals with linear mixture S, A be arbitrary
mixing matrix, then mathematically,

X = AS, (1)

in this way, an un-mixing matrix W can be generated by BBS to separate original
sources,

Ŝ = WX (2)
where is the W is the estimation of the original source.

Numerous BSS techniques, such as independent component analysis (ICA),
principal component analysis (PCA), canonical correlation analysis (CCA), and
Empirical Mode Decomposition (EMD), have been developed to eliminate arti-
facts from EEG data.

2.2 Independent Component Analysis (ICA)

Independent component analysis (ICA) based methods are dominant for artifact
removal [4,5] among BSS algorithms. ICA separates sources of signal from the
raw signal and classifies them into the corresponding independent components
(ICs). Raw signal can also be restored from ICs via Inverse-ICA. As shown in
Fig. 1, after unmixing the raw multi-channel EEG signal into n ICs. Components
which are not from neuronal activity will be rejected. Artifact- free EEG can be
got via applying Inverse-ICA to remaining ICs.

Although ICA is a powerful tool for artifact removal, it has two major con-
straints. (a) ICA by its nature requires the channel number of input signal to
be larger than the number of sources. If this requirement is not met, it may fail
to separate the artifacts from the neural components [8]. (b) To generate reli-
able decomposition, ICA requires the input signal to have adequate samples. To
undergo ICA decomposition on an EEG recording, it is presently recommended
that the recording should has at least 30∗( the number of input channels )2 data
samples [7].
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Fig. 1. The general design Of ICA-based artifact removal method. The artifact-free
signal is recovered from remaining ICs after rejecting artifactual ones.

2.3 Empirical Mode Decomposition (EMD)

Empirical Mode Decomposition (EMD) is another BSS algorithm used in EEG
artifact removal. EMD receives single channel signal and decompose it into intrin-
sic mode functions (IMFs) and a residual in an iteration way:

x(t) =
N∑

i=1

imfi(t) + rn(t) (3)

where rn is the residual when N IMFs have been extracted. The process of
extracting IMFs stop when halting requirements are achieved or target number
of IMFs have been got. Compared with other signal decomposition methods like
ICA and PCA, EMD is a more robust method since it has no requirements on
input signal. Although EMD can be used independently [11], it is often used to
expand the channel number of EEG signal. So that the EEG record with few
channels can also work with ICA and CCA [3,24].

One disadvantage of the EMD method is its susceptibility to noise, which
leads to mode mixing issues [22].In the introduction of the specifics of the
enhanced-EMD (EEMD) method [21], the robustness of EMD was increased
by using the average of many ensembles of EMD as the ideal IMFs. In some cir-
cumstances, the remaining IMFs that have been rebuilt can be introduced into
a separate environment for artifact removal to improve the quality of the EEG
data.

2.4 EEMD-ICA

The idea of combining EEMD and ICA was first introduced to the task of EEG
artifact removal in 2010 [13]. The research team behind this paper explored the
theoretically best performance of EEMD-ICA yet their method can hardly be
used in practical situation. Multiple improved methods have been put forward
during past decades [1,24] to make EEMD-ICA an automatic artifact removal
method. In spite of having various variants, the general idea of this method
remains unified. As shown in Fig. 2, the paradigm is concise - Decompose raw
signal, reject artifactual components and reconstruct artifact-free EEG signal.
The main difference between variants of EEMD-ICA lies in the rules of compo-
nent rejection, in other words, the method to identify artifactual components.
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Fig. 2. The framework Of EEMD-ICA artifact removal method. This Figure consists
of four committed steps (1) Decomposition of neural data with EEMD. (2) Artifact
concentration with ICA. (3) Identification and rejection of artifactual components. (4)
Signal reconstruction with remaining components.

2.5 Description of Simulated EEG Data

In this paper, the generation of simulated EEG data is based on EEG and EOG
segments from two public datasets [9,25]. The EOG artifacts is considered as a
combination of Horizontal EOG (HEOG) and Vertical EOG (VEOG) [6]:

ArtifactEOG = μxHEOG + εxV EOG (4)

where μ and ε respectively represents the contribution of HEOG and VEOG.
Sufficient kinds of EOG artifacts can be generated by adjusting the coefficients,
HEOG and VEOG. The artifactual EEG signal EEGContaminated is then gen-
erated by mixing up ArtifactEOG and EEGPure:

EEGContaminated = EEGPure + a(μ · HEOG + ε · V EOG) (5)

where a represents the contribution of artifact. Hence, the signal to noise ratio
(SNR) of EEGContaminated can be denoted as:

SNR = 10 log10
RMS(EEGPure)

RMS(a · ArtifactEOG)
(6)

When EEGPure and ArtifactEOG are determined. The SNR of generated
EEGContaminated can be controlled by adjusting coefficient a.

3 Identification of Artifactual Components

This study aim at exploring the performance of four kinds of EEMD-ICA related
artifact removal method. Characterized by the artifactual components iden-
tification methods, these approaches are denoted as EEMD-ICAkurt, EEMD-
ICAentropy, EEMD-ICAautocor and EEMD-ICAeogcor
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3.1 Kurtosis and Entropy

Abnormalities, like blinks and discontinuities, are normally characterized by a
peaky distribution of potential values. Kurtosis and Entropy can capture these
characteristics. EEMD-ICAkurt and EEMD-ICAentropy respectively use kurto-
sis and entropy as indicator of artifactual component. ICs with highly positive
kurtosis or entropy are identified as artifacts. Similar practices were common in
previous studies [3,5,24]. The definition of kurtosis is unique, while there are
multiple types of entropy, e.g., Approximate Entropy, Sample Entropy, Fuzzy
Entropy. Specifically, the entropy applied in this study is Sample Entropy [17].

3.2 Autocorrelation

Autocorrelation is used to describe the correlation degree of data itself in differ-
ent periods, that is, to measure the influence of historical data on the present:

ACF (k) = ρk =
Cov (yt, yt−k)

Var (yt)
(7)

With the independent variable k representing the lag, the autocorrelation func-
tion (ACF) of a signal thus reflects its correlation with itself at different lags.
In accordance to previous study [2], ocular artifacts are assumed to show higher
autocorrelation. As shown in Fig. 3, The ACF of artifactual components in this
study has obvious features. In the proposed EEMD-ICAautocor method, if the
ACF of IC has higher energy, this IC is identified as artifactual component.

Fig. 3. An example of Autocorrelation Functions (ACFs) of ICs decomposed by EEMD-
ICA. The ACF of IC 0, 2, 6, 7 obviously shows feature of tailing off to zero, indicating
that these three components correspond to EOG artifact.
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3.3 Correlation with EOG Reference Channel

When it comes to rejecting ocular artifact with BSS-based method, EOG Ref-
erence Channel is often introduced. Since BSS-based method can concentrate
artifact into IC, it is assumed that the ICs correspond to ocular artifact have
higher correlation with EOG reference channel. If EOG is not available, the EEG
channel near the eyes can also be used as EOG reference channel. In a study
that combine CCA and MEMD for EEG artifact removal, correlation with EOG
reference channel is used to identify EOG artifacts [19]. In the proposed EEMD-
ICAeogcor method, correlation of each IC of this EEG segment with EEGPure

is calculated. The IC having higher correlation with original signal is identified
as artifactual component (Fig. 4).

Fig. 4. An example of EEG simulation. (a) a segment of HEOG (b) a segment of
VEOG (c) An example of ArtifactEOG generated using Eq. 4 with μ = 1, ε = 1 (d)
An example of EEGContaminated generated using Eq. 6 with SNR = -1

4 Results and Discussion

To evaluate the performance of 4 artifact removal methods, we simulated 30
groups of single-channel corrupted EEG segments and each group contained 50
EEG segments. EEG segments within the same group were controlled to share
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unified SNR via the method in Sect. 2.5. To measure the influence SNR could
have on the performance of artifact removal methods. Data of SNRs ranging
from -1 to 2 by step 0.1 (except 0) were generated for testing. To comprehen-
sively quantify the performance, we use three kinds of performance metrics. The
Normalized Mean Square Error (NMSE) is the most commonly used metric for
quantifying the difference between ground truth x and predicted value x̂.

NMSE =
‖x − x̂‖22

‖x‖22
(8)

In this study, x is the artifact-free data EEGPure, x̂ is the corresponding data
reconstructed from the simulated artifactual signal EEGAfter.

Another two metrics are the Cross Correlation (CC) and Structural Similarity
Index (SSIM) [20]:

CC(x, x̂) =
Cov(x, x̂)

σxσx̂
=

σxx̂

σxσx̂
(9)

SSIM(x, x̂) = (
2μxμx̂

μ2
x + μ2

x̂

) · ( 2σxσx̂

σ2
x + σ2

x̂

) · ( σxx̂

σxσx̂
) (10)

where μx, μx̂ are local means and σx, σx̂ are standard deviations. σxx̂ is the
covariance between x and x̂. To better evaluate the contribution of artifact
removal approaches, the variation of each metric is also taken into account. The
results for every aritfactual component identification approach are presented in
Fig. 5.

Among the four methods, EEMD-ICAautocor has the best performance in
terms of all metrics. EEMD-ICAentropy is slightly weaker than EEMD-ICAautocor

while EEMD-ICAkurt and EEMD-ICAeogcor have significant limitations.
As shown in Fig. 5 (a), the EEG data reconstructed through EEMD-

ICAautocor and EEMD-ICAentropy remains a generally low NMSE, indicating
higher similarity between reconstructed EEG and EEGPure. However, EEMD-
ICAentropy is considered to be worse than EEMD-ICAautocor for two reasons. The
overall NMSE of EEMD-ICAentropy is higher and its NMSE curve has intersec-
tion with baseline curve. The baseline curves represents the metrics calculated
from EEGContaminated and EEGPure, showing the values of the metrics when
we were doing nothing. Having an intersection with baseline curve indicating
that after the intersection point, applying this method is worse than doing noth-
ing in terms of this metric. This intersection is called “critical point”. For the
figures in the upper row of Fig. 5, critical point is the intersection between curve
and baseline curve. For the figures in lower row, critical point is the intersection
between curve and horizontal zero line.

EEMD-ICAkurt and EEMD-ICAeogcor has a close overall performance in
terms of NMSE while EEMD-ICAkurt has an advantage that its NMSE criti-
cal point appears later In terms of CC, although the performance of EEMD-
ICAkurt and EEMD-ICAeogcor continuously improves with the increase of SNR,
such trend is highly deceptive. As shown in Fig. 5 (e), the curves of these two
methods are totally below horizontal 0 line and keep decreasing, indicating that
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Fig. 5. The performance measures between different SNR for EEMD-ICAkurt, EEMD-
ICAentropy, EEMD-ICAautocor and EEMD-ICAeogcor, SNR of the synthetic data
ranged from -1 (dB) to 2 (dB) with step 0.1 (dB). The diagrams in left column show
the value of performance metrics and the diagrams in right column show the variation
of performance metrics caused by applying different artifact removal approaches. (a)
NMSE (b) ΔNMSE (c) CC (d) ΔCC (e) SSIM (f) ΔSSIM
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6. A case of the artifactual components (ACs) detection (SNR=1.5). All four
approaches were applied to the same contaminated EEG segment (SNR = 1.5). (a), (c),
(e), (g) are ACs detected by EEMD-ICAautocor, EEMD-ICAkurt, EEMD-ICAentropy,
EEMD-ICAeogcor. (b), (d), (f), (h) are lost neuron activities. In this case, the power
of neuron activities lost by EEMD-ICAeogcor is about twice as much as the power of
neuron activities lost by EEMD-ICAautocor

the two methods make negative contributions to CC under all SNR in this study.
For EEMD-ICAautocor and EEMD-ICAentropy, their performance in terms of CC
are highly close. But their contribution to CC turn negative at around SNR =
1.0, indicating these two methods may not be suitable for high SNR signal.
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As shown in 5 (c), (f), four approaches all cause decrease of SSIM under most
SNR. This may mean that EEMD-ICA based artifact removal process inevitably
lead to loss of structural information. This is probably because the ICs identified
as artifacts still contains components from normal neural activities. Relatively
speaking, EEMD-ICAautocor performs best in terms of SSIM. As presented in
Fig. 6, EEMD-ICAautocor has the least neuron activities loss. Considering NMSE,
CC and SSIM comprehensively, EEMD-ICAautocor is the artifact removal app-
roach of best performance among the four proposed approaches.

5 Conclusion

This study developed four EEMD-ICA based approaches to artifact rejection
for noisy neural data: EEMD-ICAkurt, EEMD-ICAentropy, EEMD-ICAautocor

and EEMD-ICAeogcor. These approaches share the signal decomposition proce-
dure while differ in terms of artifactual components identification method. The
effectiveness of proposed approaches were examined with semi-simulated data.

When using NMSE as the metric, EEMD-ICAautocor significantly outper-
formed the other two approach. It can almost be twice as good as EEMD-
ICAentropy. When the SNR was high, the difference between the four approaches
was reduced in terms of absolute NMSE value. However, all methods except
EEMD-ICAautocor shows negative contribution to NMSE when SNR was high.
When SNR is larger than 1.0, EEMD-ICAeogcor resulted worse NMSE than
doing nothing while such phenomenon appeared when SNR is larger than 1.5 for
EEMD-ICAentropy and EEMD-ICAkurt. It is indicated that EEMD-ICAautocor

shown best versatility.
When using CC as the metric. The performance of EEMD-ICAeogcor and

EEMD-ICAkurt were unacceptable for their negative contribution to CC under
all SNR. While EEMD-ICAautocor and EEMD-ICAentropy had close perfor-
mance. In terms of CC, these two approaches are only suitable for data with SNR
being less than 1.0. When using SSIM as the metric, all the four approaches have
poor performance. Although performance improved as SNR increased. These
approaches contributed negatively to SSIM.

Generally speaking, EEMD-ICAautocor and EEMD-ICAentropy are effective
in artifact removal. However, a significant drawback of these methods is that
they show worse performance than the baseline when the SNR is high, limiting
their scope of application to severely contaminated EEG signal.

Effectiveness of the four artifact rejection approaches had been evaluated
and these approaches can act as prepossessing and improve the performance of
following task. However, it is vital to estimate the SNR of data before apply-
ing these approaches because when SNR is high, these methods may have a
counterproductive effect.
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Abstract. Parkinson’s disease (PD) is a common neurodegenerative
disease. So far, there is no cure for this disease, but the right medicine can
slow down the progress of the disease. Therefore, early diagnosis of this
disease is very important to improve the quality of life of patients with
PD. In recent years, wearable devices have been widely used to classify,
predict and monitor the condition of patients with PD. Most previous
studies extracted some features for classification, but due to the different
research activities, the extracted features lack of standards and gener-
ality, when the activities change, the previously extracted features are
not necessarily effective. In this paper, we differentiate the PD severity
and select representative 20 features related to the disease. For this rea-
son, we designed 8 commom activities and collect data of 85 PD patients
using inertial wearable sensors off-the-shelf accelerometer, gyroscope sen-
sors. Our best results demonstrate that the classification accuracy of PD
severity is 81.37%. Therefore, this can play a role in assisting doctors
in diagnosing and adjusting medication in a timely manner. Meanwhile,
feature selection reduced the burden of the model and facilitate the later
transplantation of lightweight devices.

Keywords: Parkinson’s disease · Machine learning · Wearable sensor ·
Feature selection

1 Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative dis-
ease in the world [4], affecting more than 6 million people worldwide [7]. The
common clinical motor symptoms of PD include muscle stiffness, tremor, motor
retardation, and gait freezing [9]. These symptoms greatly affect the quality of
life of patients. Therefore, the use of wearable devices to capture the patient’s

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Qi and P. Yang (Eds.): IoTBDH 2023, CCIS 2019, pp. 124–136, 2024.
https://doi.org/10.1007/978-3-031-52216-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52216-1_11&domain=pdf
http://orcid.org/0009-0004-8644-8937
http://orcid.org/0000-0002-7385-4926
http://orcid.org/0000-0001-8015-3688
http://orcid.org/0009-0001-7050-6870
http://orcid.org/0000-0003-3415-3593
http://orcid.org/0000-0001-8973-418X
http://orcid.org/0000-0002-8553-7127
https://doi.org/10.1007/978-3-031-52216-1_11


Representative UPDRS Features of Single Wearable Sensor 125

movement information to assist in diagnosing the disease has become a problem
worthy of attention [31].

In recent years, many approaches have been developed to classify PD severity
in clinical practice. Neuroimaging has been increasingly used as an objective
method for the diagnosis of PD [19], but that’s expensive and not conducive
to observing the environment outside the hospital. At present, the other clinical
scales standard for PD is the Unified Parkinson’s Disease Rating Scale (UPDRS)
[28], which is a qualitative assessment completed by the subjective judgment of
neurologists. The UPDRS can be administered in daily clinical practice without
any expensive equipment. However, the scales tend to be subjective and static.
Neurologists record patient reactions during different tasks and assign ratings
according to UPDRS requirements, it is time-consuming and influenced by the
clinical experience of doctors. At the same time, doctors are only monitoring
the current symptoms in the hospital and cannot conduct timely assessments
outside the hospital or in other environments [2].

In order to develop objective criteria to facilitate timely estimation of the
PD severity, utilising wearable sensors to monitor disease information inside and
outside the hospital has received considerable critical attention [6,14,20,21,24,
26,30,34].

It is necessary to remotely monitor patients with PD and constantly check
their symptoms in order to analyze their condition more effectively. The auxiliary
diagnosis technology of PD based on wearable devices and machine learning can
help individuals to detect the disease at an early stage, and also help doctors to
monitor and evaluate patients inside and outside the hospital, so as to improve
the accuracy of clinical diagnosis, patients. Additionally, it is helpful for timely
and effective adjustment of treatment plans to reduce the economic burden on
patients.

Machine learning (ML) is frequently used for medical disease diagnosis
recently because of its implementation convenience and high accuracy [18,23,35].
Jin et al. [15] develop a quantitative measure of bradykinesia which can be con-
veniently used during clinical finger taps test in patients with PD. Four per-
formance indices were derived from the gyrosensor sensor signal include root-
mean-squared (RMS) angular velocity, RMS angular displacement, peak power
and total power. The system of Patel et al. [21] used support vector machine
(SVM) to distinguish PD patients from healthy controls based on accelerome-
ter data. Five different types of features were estimated from the accelerome-
ter data: the range of amplitude of each channel, the root mean square (rms)
value of each accelerometer signal, two cross-correlation-based features, and two
frequency-based features. Juberty et al. [10] explored extracting chest inclina-
tion leg agility from the shimmer device which was estimated using SVM and
K nearest neighbor (KNN) for automatic UPDRS assessment. Aleksei et al. [27]
differentiate healthy controls from patients with stages 1 and 2 PD by caculat-
ing time, correlation and frequency features, but they only conducted disease
detection and did not conduct detailed disease severity. Guo et al. [12] collected
walking data from 10 PD patients in a laboratory setting to diagnose the freezing
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of gait by using the freezing index. However, this research only detects a single
motor symptom. Pérez-Ibarra et al. [22] collected data from 5 healthy adults
and 7 patients with PD walking on a treadmill as well as on the floor under
the guidance of a professional, they development a real-time adaptive unsuper-
vised algorithms for identification of gait events and phases from a single IMU
mounted at the back of the foot. Luis Sigcha et al. [29] used the inertial sen-
sors embedded in consumer smartwatches and different ML models to detect
bradykinesia in the upper extremities and evaluate its severity. Six PD subjects
and seven age-matched healthy controls were equipped with a consumer smart-
watch and asked to perform a set of motor exercises for at least 6weeks. Chén
et al. [5] based on smartphone sensors, extracting signals from patients perform-
ing the specified six activities at home, PD and healthy people are classified
through an automated disease assessment framework. However, it does not take
into account the abnormalities that arise when performing activities at home.
To reduce the number of anomalies occurring in home data collection, Erb et al.
[8,13] proposed a scheme that the patient logs were completed by caregivers to
track patients’ daily activities, PD symptoms, and medication intake. However,
caregivers have a vague delineation of symptoms and are unable to correctly
identify motor symptoms, which lead to misunderstandings and errors. Martin
Ullrich et al. [32] collect data with inertial measurement units over two weeks
from 12 patients with idiopathic PD who completed the series of three consecu-
tive 4 × 10-Meters-Walking Tests at different walking speeds besides their usual
daily-living activities.

Although the previous research has extracted several features that are effec-
tive for classification, these systems primarily focus on extracting common fea-
tures specific to designated activities. When target activity is altered, features
that were effective on the original activity may not remain superior on the new
activity. Hence, our objective is to identify the most representative features for
PD severity classification.

Targeting at above-mentioned issues, this article focuses on differentiate the
PD severity and select representative 20 features related to the disease. More
precisely, to ensure data reliability, we firstly collect 85 PD subjects of different
severity grades. Each subject performes the 8 activities within the part-III of
UPDRS scale and is scored by the movement disorders neurologists. Our experi-
mental design is conducted from four perspectives. Firstly, we explore the impact
of different window sizes on data processing, we segment the dataset using slid-
ing windows and experiment with various window sizes such as 1 s, 1.5 s and 3 s.
In the second step, we focus on model selection to test the robustness of features.
We validate several mainstream machine learning models, including Support Vec-
tor Machine (SVM), Logistic Regression (LR), and LightGBM (LGBM). In the
third step, we employ joint model feature selection(JMFS) mechanism to select
common important feature. Our objective is to identify the most important com-
mon feature set among eight different types of activities. Lastly, we determine
the optimal feature dimension by comparing the performance differences among
different feature dimensions, such as 10, 20, 30, and so on. This enables us to
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select the feature dimension that exhibits the best performance. The experimen-
tal results show that when using the feature set extracted with a window size of
300, the first 20 important features selected through feature selection are 8.22%
higher than using all features in the classification of PD severity.

The focus of this study is to assess the severity of patients with PD through
single wearable sensor. Our contributions are as follows:

– A novel technical pipeline is proposed for fine-grained classification of PD
severity and identifying the most representative features.

– The most representative 20 symptom-related features is presented in 8
UPDRS activities from gyroscope and accelerometer data.

– We provide ablation experiments on three aspects from model, window size
and feature dimensions respectively to ensure the representative and gener-
alisation of the proposed features.

The rest of this paper is arranged as follows. Section 2 describe the methods
used in this work, We discuss the results of our research in Sect. 3. Finally, Sect. 4
summarizes this paper and put forward the future prospects.

Table 1. UPDRS Paradigm Activities

Num Activity name abbre

1 Finger taps FT
2 Clench and open alternately COA
3 Rapid alternating movements of hands ALTER
4 Hand rotation-right HR-R
5 Hand rotation-left HR-L
6 Finger to nose-right FN-R
7 Standing with arms hold STANDH
8 Walk back and forth WA

2 Methods

2.1 Data Acquisition

As part of the research, data were collected at Yunnan First People’s Hospital
(China). The study participants were informed about the project and signed a
written consent form. The dataset consists of a total of 85 participants,18 with
stage 1, 34 with stage 2, 19 with stage 3, 14 with stage 4, other informations(age:
64 ± 10, gender: 35 male, 24 female, height: 165 cm ± 10, weight: 56 kg ± 10).
After negotiating and signing the data collection consent form, the experiment
will start. Firstly, a inertial sensors will be worn on the patient’s right wrist,
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then, under the guidance of professionals, patients are required to complete a
series of 8 tasks in Table 1, which are selected from the UPDRS-III scale based
on the advice of neurologists [11]. Each action collected for 20 s without special
instructions, the duration of the entire procedure is approximately 6min. Each
task has a specific purpose, such as evoking specific symptoms of PD. Figure 1
shows 8 normal form activities.

2.2 Data Preprocessing and Feature Extraction

The activity data is collected by the wearable sensor shimmer 3 IMU units with
a sampling frequency of 204Hz which is synchronously transmitted to the com-
puter through Bluetooth connection, its data include three-axis accelerometer
and gyroscope signal. Raw data lines were written into a text file and then con-
verted into a CSV format, with seven data columns: timestamp, x, y, and z-axis
of the accelerometer and gyroscrope data.

In order to isolate the frequencies related to the disease and maintain the
authenticity of the original signal to a greater extent and reduce the interference
of noise, the original data is usually filtered and processed. Through signal spec-
trum analysis of the signals we collected and review of relevant literatures, the
tremor frequency of PD patients can be divided into three categories: resting
tremor 3–6Hz, postural tremor 4–12Hz and motor tremor 2–7Hz [3]. There-
fore, it is recommended to use a 3–12Hz band-pass filter to filter the patient’s
motion signals. After filtering, the data of each axis are normalized by Z-score
standardization [25]. After that, a sliding window will be used to segment the
original time series data. The window division method is Semi-Non-Overlapping
Window and the overlap rate is 50% [1]. The window size should include at least
2–3 activity cycles. In this study, the window size will be divided according to
the minimum time point and peak width of the waveform [16]. Therefore, we
select the sliding window size of 200, 300 and 600 to test an optimal window
size, Fig. 2 shows using sliding windows of different sizes for feature extraction
on the waveform of Activity 1 signal collected by the sensor.

After that,87 dimensional features are extracted from the accelerometer and
gyroscope, and time domain features include: maximum, minimum, mean, vari-
ance, standard deviation, amplitude (X, Y, Z, A, T), skewness (X, Y, Z, A, T),
kurtosis (X, Y, Z, A, T), autocorrelation coefficient maximum and minimum (X,
Y, Z, A, T); frequency domain features include: maximum spectrum, mean (X,
Y, Z, A, T), correlation coefficient (XY, XZ, XA, XT, YZ, YA, YT, ZA, ZT,
AT), root mean square (X, Y, Z, A, T), energy values (X, Y, Z, A, T), Entropy
(X, Y, Z, A, T), main frequency (A, T). A total of 174 dimensional features. X,
Y and Z respectively represent the three axes of the three-dimensional sensor,
A is the fusion axis of the three axes, T is the inclination axis, and the fusion
representation of the three axes is performed by calculating the signal ampli-
tude vector. For the fusion axis, the fusion representation of the three axes is
performed by calculating the signal amplitude vector (SMV), which avoids the
user’s change in a single direction, which helps to measure the overall intensity
of the activity.
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Fig. 1. Eight Representative Paradigm Activities.

Fig. 2. Using sliding windows of different sizes for feature extraction on the waveform
of Activity 1 signal collected by the sensor.

2.3 Representative Feature Selection

After feature extraction,significant feature selection is performed to select the
most useful features for disease classification. Cause different models have differ-
ent scales indexes of feature importance [17,33], and there are multiple ranking
results of importance, so we consider using Joint Model Feature Selection (JMFS)
mechanism to select common important features. We use SVM-L1, SVM-L2, LR-
L1, LR-L2, LGBM a total of 5 models to make joint decisions.

The LGBM model has low computational complexity and good scalability in
calculating the importance of features. Due to its framework based on gradient
lifting trees, the calculation of feature importance is carried out by iteratively
fitting residuals and selecting the best segmentation point, without being limited
by feature dimensions. This makes LGBM suitable for processing large-scale
datasets and high-dimensional features. The LR model is relatively simple in
calculating the importance of features. Due to its linear nature, the importance of
features can be measured by observing the absolute values of model parameters.
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LR has low computational complexity and good scalability, making it suitable
for tasks where feature importance is calculated. The SVM model is relatively
complex in calculating the importance of features. The calculation of feature
importance involves retraining the model and calculating support vectors, which
may result in high computational complexity and limited scalability. Especially
when dealing with large-scale datasets and high-dimensional features, SVM has
a high requirement for calculating the importance of features.

SVM train the best hyperparameters from [0.0001,0.001, 0.01,0.1,1], LR train
the best hyperparameters from [0.001,0.01,0.1,1,2], the learning rate of LGBM
is 0.05, and the maximum depth of the tree is 2. The feature selection process
is as follows:

– Input the samples into the model and sort the feature weights generated after
training in descending order;

– Each time the feature weights are sorted in descending order, the 20th weight
is taken as the threshold, the first 20 importance is set to 1, and the last
20 importance is set to 0. The experiment is repeated for 20 times, and the
features with the most occurrence times are recorded;

– Make statistics on the features that appear most frequently in the top 20 of
the 8 data sets.

3 Experimental Results

The goal of this research was to provide the PD severity diagnosis, including
three categories of mild (stages 1+2), moderate (stage 3), and severe (stage 4+5),
and select representative 20 features related to the disease. At the same time,
we explored the most appropriate sliding window size and the optimal feature
dimension. In this scope, it was decided to use three classification approaches
taking a part of this work including differentiating between.

We validated our approach on datasets collected in a laboratory environment.
All our experiments were carried out on an ordinary computer with 2.6GHz CPU
and 8GB memory. Experiment metrics including accuracy, f1-score, precision
and racll. LGBM classifiers was used in final since provided the best results.

3.1 Representative Features

We use the JMFS mechanism proposed in methods 2.3 to select important fea-
tures for the extracted 174 dimensional features. Cause different models have dif-
ferent scales indexes of feature importance, and there are multiple ranking results
of importance, JMFS mechanism can identify the most important features they
share, so that the selected features can ensure robustness and universality. The
final selected top 20 dimensional features are shown in the Fig. 3.
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Fig. 3. Feature importance ranking. This figure shows the top 20 most important
features jointly selected by the five models.

CORR represents axis correlation, ACV represents autocorrelation coefficient
variance. From the top 20 most important features selected, CORR and ACV are
features worth paying close attention to, followed by the maximum and minimum
values of the x and y axes that play an important role. In addition, we also find
that the features of the accelerometer correspond to those of the gyroscope.

3.2 Sliding Window Size

Table 2 shows the classification accuracy of 8 activities using different window
size. We found that the window contains different periods and the key features
extracted vary. From the experimental results, the most suitable window size is
300. For small amplitude actions, using a window of 300 is optimal. For larger
amplitude activities such as Activity 6(FN-R), using a window of 600 will have
slightly higher accuracy, possibly due to the fact that the window of 600 contains
more activity cycles than the window of 300. As for window of 200, the reason
for the average accuracy of the results is that it contains too few activity cycles
and the model does not learn the motion laws well. Additionally, Window size
has little effect on static activity such as Activity 8(STANDH).

3.3 Models

After determining the optimal window size, we conducted a fine-grained classi-
fication of PD severity, which refers to the three classifications of mild (stages
1+2), moderate (stage 3), and severe (stage 4+5). The highest accuracy is high-
lighted with bold and hand fine category activities are highlighted with underline.
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Table 2. Classification accuracy of different windowsize (%)

Act_Num Activity_Name WindowSize
200 300 600

1 Finger taps 41.33 42.59 41.12
2 Clench and open alternately 58.45 60.19 59.43
3 Rapid alternating movements of hands 72 73.15 72.22
4 Hand rotation-right 62.03 62.04 61.5
5 Hand rotation-left 58.44 59.26 57.89
6 Finger to nose-right 48.21 49.07 52.33
7 Standing with arms hold 26.79 26.85 26.75
8 Walk back and forth 46.93 47.22 47.54

The experimental results in Table 3 and Table 4 showed that hand fine category
activities especially Activity 3 (ALTER) had the best effect on disease classifi-
cation reaching 73.15%.

Table 3. Classification result of PD severity (%)

Act_Num Activity_Name LGBM SVM
Acc F1 Pre Rec Acc F1 Pre Rec

1 FT 42.59± 0.12 41.89± 0.06 41.73± 0.09 42.59± 0.14 27.78± 0.26 27.72± 0.32 27.84± 0.06 27.78± 0.18
2 COA 60.19± 0.07 59.55± 0.11 59.9± 0.03 60.19± 0.03 52.78± 0.19 52.96± 0.16 56.5± 0.10 52.78± 0.21
3 ALTER 73.15± 0.03 72.99± 0.01 73.42± 0.11 73.15± 0.07 49.07± 0.11 49.08± 0.02 49.46± 0.13 49.07± 0.09
4 HR-R 62.04± 0.13 62.03± 0.20 62.6± 0.05 62.03± 0.12 55.56± 0.07 55.87± 0.18 56.46± 0.21 55.56± 0.16
5 HR-L 59.26± 0.13 58.98± 0.10 59.99± 0.22 59.26± 0.08 44.44± 0.22 43.87± 0.07 43.66± 0.11 44.45± 0.08
6 FN-R 52.78± 0.09 52.74± 0.17 53.94± 0.08 52.78± 0.06 35.19± 0.13 34.1± 0.06 34.76± 0.08 35.18± 0.16
7 STANDH 26.85± 0.15 26.57± 0.14 26.48± 0.02 26.85± 0.03 25.93± 0.15 24.46± 0.08 23.63± 0.22 25.93± 0.17
8 WA 47.22± 0.11 45.68± 0.07 44.71± 0.20 47.22± 0.04 52.75± 0.03 51.96± 0.11 52.64± 0.08 52.70± 0.20

Table 4. Classification result of PD severity (%)

Act_Num Activity_Name KNN XGB
Acc F1 Pre Rec Acc F1 Pre Rec

1 FT 35.19± 0.11 33.9± 0.06 34.81± 0.24 35.19± 0.12 44.43± 0.21 44.28± 0.19 44.99± 0.00 44.49± 0.38
2 COA 53.75± 0.15 52.32± 0.17 55.44± 0.30 53.71± 0.23 55.53± 0.08 54.86± 0.07 54.77± 0.17 55.52± 0.15
3 ALTER 54.63± 0.17 54.5± 0.23 56.37± 0.12 54.63± 0.05 67.59± 0.09 66.88± 0.19 66.7± 0.14 67.59± 0.04
4 HR-R 44.44± 0.07 43.31± 0.15 44.73± 0.23 44.45± 0.20 54.63± 0.09 53.67± 0.31 54.29± 0.09 54.63± 0.23
5 HR-L 46.3± 0.10 44.55± 0.15 44.31± 0.12 46.3± 0.09 62.04± 0.21 61.23± 0.10 61.41± 0.25 62.04± 0.22
6 FN-R 38.89± 0.16 36.65± 0.10 37.94± 0.14 38.89± 0.21 57.41± 0.15 57.83± 0.29 58.93± 0.26 57.41± 0.23
7 STANDH 30.56± 0.12 29.93± 0.28 29.72± 0.13 30.55± 0.29 32.41± 0.14 32.16± 0.13 33± 0.23 32.41± 0.24
8 WA 53.7± 0.19 52.39± 0.13 52.6± 0.08 53.7± 0.15 48.15± 0.13 47.25± 0.08 47.52± 0.19 48.15± 0.17

3.4 Feature Dimensions

After sorting key features through the JMFS mechanism, we further explored
the optimal feature dimension and identified the most useful features for disease
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diagnosis. Table 5 shows Comparison of accuracy in selecting features from dif-
ferent dimensions. We determine the optimal feature dimension by comparing
the performance among different feature dimensions such as 10, 20, 30, and so
on. This enables us to select the feature dimension that exhibits the best per-
formance. The experimental results show that when retaining the most promi-
nent features in the first 20 dimensions, the classification accuracy reaches the
best 81.37%. Figure 4 shows the classification accuracy of different dimensional
features on three activities, in these numerous experiments, it is found that all
activities had the same trend, so only a portion of the activities were shown here.
And it is more evident from the figure that the best classification performance
is achieved when retaining the significance features of the top 20 dimensions.

Table 5. Comparison of accuracy for different feature dimensions (%)

Act_Num Activity_Name Dimensions
10 20 30

1 Finger taps 47.34 50.85 46.23
2 Clench and open alternately 63.12 67.12 62.36
3 Rapid alternating movements of hands 77.81 81.37 73.00
4 Hand rotation-right 65.90 69.04 65.72
5 Hand rotation-left 63.00 67.26 61.98
6 Finger to nose-right 54.12 56.58 54.65
7 Standing with arms hold 34.42 35.45 33.44
8 Walk back and forth 52.19 54.92 49.32

Fig. 4. Accuracy of different feature dimensions on three activities.
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4 Conclusion

Accurately capturing motor symptom diagnosis of PD patients is particularly
important to determining appropriate medication schedules. In this paper, we
differentiate the PD severity and select representative 20 features related to the
disease in 8 activities, which effectively provides more representative information
than using all features. At present, the best accuracy is 20 dimensions features
in ALTER, with an accuracy rate of 81.37%. This facilitate the later transplan-
tation of lightweight equipment and provide reference for the independent PD
diagnosis in the clinical or at home environment. In the future, we can test the
possibility of more feature selection methods and an adaptive window sliding
method which can be automatically adjusted according to the cycle of different
activities themselves.
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