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Abstract. Let G = (V, E) be a simple undirected graph with no isolated
vertex. A set D ⊆ V is a dominating set if each vertex u ∈ V is either in D
or is adjacent to a vertex v ∈ D. A set Dt2 ⊆ V is said to be a semi-total
dominating set if (i) Dt2 is a dominating set, and (ii) for every vertex
u ∈ Dt2, there exists a vertex v ∈ Dt2 such that the distance between
u and v in G is within 2. Given a graph G, the semi-total domination
problem is to find a semi-total dominating set of minimum cardinality.
The semi-total domination problem is NP-complete for general graphs. It
is also NP-complete on some special graph classes, such as planar, split,
and chordal bipartite graphs. In this paper, we have shown that it is
NP-complete for unit disk graphs. We propose a 6-factor approximation
algorithm for the semi-total dominating set problem in unit disk graphs.
The algorithm’s running time is O(nk), where n and k are the number
of vertices and the size of the maximal independent set of the given
UDG, respectively. In addition, we show that the minimum semi-total
domination problem in a graph with maximum degree D admits a 2 +
ln (D + 1)-factor approximation algorithm which is an improvement over
the best-known result 2 + 3 ln (D + 1).

Keywords: Semi-total dominating set · NP-complete · Approximation
algorithm

1 Introduction

Let G = (V,E) be a simple undirected graph that may contain multiple
components. However, no component in the graph is an isolated vertex. A
set NG(v) denotes the open neighborhood of v in G, and it is defined as
NG(v) = {u ∈ V : uv ∈ E}. On the other hand, the closed neighborhood
NG[v] of v is defined as NG[v] = NG(v) ∪ {v}. For any subset S ⊆ V , G[S]
represents the subgraph induced by the vertex set S in G (i.e., for each u, v ∈ S,
uv ∈ E(G[S]) if and only if uv ∈ E).1 Given two vertices u and v, the distance
d(u, v) between u and v is the minimum number of edges that connect u with
v in G. A subset D ⊆ V is said to be a dominating set (DS) of G if for each
vertex v ∈ V , |NG[v] ∩ D| ≥ 1. The dominating set with minimum cardinality
1 E(G) refers to the edge set of the graph G.
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is called the minimum dominating set, and the size of the minimum dominating
set is called the domination number, γ(G). A vertex v ∈ V dominates NG[v],
and a subset S ⊆ V dominates

⋃
v∈S NG[v]. A subset Dt ⊆ V (G) is said to be a

total dominating set (TDS) of G if Dt is a dominating set of G, and the vertices
in Dt induce a subgraph with no isolated vertex. The total dominating set with
minimum cardinality is called the minimum total dominating set, and the size
of the minimum total dominating set is called the total domination number,
γt(G). A subset Dt2 ⊆ V is said to be a semi-total dominating set of G if (i)
Dt2 is a dominating set (domination property), and (ii) for each u ∈ Dt2, there
exists a vertex v ∈ Dt2 such that d(u, v) ≤ 2 (semi-total property). The semi-
total dominating set with minimum cardinality is called a minimum semi-total
dominating set, and the corresponding cardinality is the semi-total domination
number. We denote the semi-total domination number as γt2(G). Given a graph
G, the objective of the semi-total dominating set problem is to find a minimum
semi-total dominating set.

1.1 Related Work

In computational complexity theory, the dominating set problem is a classi-
cal NP-complete problem [6]. Along with the domination problem, its variants
are also generally hard in general graphs. So, researchers started exploring the
behavior of the domination problem and its variants in different sub-classes of
general graphs. The literature on domination and its variants can be found in
[7–10,13,18]. In this paper, we focus on semi-total dominating set. The Semi-
total dominating set was introduced by W. Goddard et al. [16] in 2015. Since
every semi-total dominating set is a dominating set and every total dominating
set is a semi-total dominating set, the semi-total domination number is squeezed
between the domination number and the total domination number, i.e., for a
given graph G, γ(G) ≤ γt2(G) ≤ γt(G). In [16], authors showed that if G is a
connected graph with n (≥4) vertices, then γt2 ≤ n

2 . In the same paper, authors
also showed that if G is a graph with n vertices and maximum degree D, then
γt2 ≥ 2n

2D+1 . Subsequently, Henning and Marcon [13] showed that for a con-
nected graph with at least 2 vertices, γt2(G) ≤ α′(G) + 1, where α′(G) is the
matching number.2 In [1], Asplund et al. studied the semi-total domination in
cartesian product graphs and established that for any two graphs G and H,
γt2(G�H) ≥ 1

3γt2(G)γt2(H). In [4], authors showed that it is NP-complete to
recognize the graphs that satisfy γt2(G) = γt(G) and γ(G) = γt2(G). In [11],
authors showed that for every connected claw-free cubic graph G of order n,
γt2 ≤ n

3 . In [12], authors showed that the semi-total domination problem remains
NP-complete in planar graphs, chordal bipartite graphs and split graphs. They
also gave a 2 + 3 ln (D + 1)-factor approximation algorithm for the minimum
semi-total domination problem, where D is the maximum degree of G.

2 Given a graph G = (V, E), a set of edges E′ ⊆ E is said to be a matching of G if no
two elements of E′ are adjacent and the matching number is the size of the largest
matching.
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1.2 Our Contribution

The remaining part of this paper is organized as follows. In Sect. 2, we introduce
the required preliminaries and notations. In Sect. 3, we prove that the semi-total
dominating set problem is NP-complete in unit disk graphs. Next, in Sect. 4,
we propose an O(nk) time 6-factor approximation algorithm for the semi-total
domination problem for unit disk graphs. In this section, we also propose a 2 +
ln (D + 1)-factor approximation algorithm for the semi-total domination problem
for general graphs. Finally, we conclude the paper in Sect. 5.

2 Preliminaries

In this section, we will introduce the required notations and definitions. Let
P = {p1, p2, . . . , pn} be a set of n points in R

2. A graph G = (V,E) is said to be
a geometric UDG corresponding to the point set P if there exists a one-to-one
correspondence between each vi ∈ V with pi ∈ P and vivj ∈ E if and only
if δ(pi, pj) ≤ 1, where δ(., .) is the Euclidean distance between two points in
R

2. Let Δ(p) denote the unit disk centered at the point p ∈ P and Δ(P ) =
{Δ(p) : p ∈ P}. The set of disks Δ(P ) is considered independent if for every
pair p, q ∈ P , p /∈ Δ(q), i.e., δ(p, q) > 1. This article often refers to a point as a
vertex or node. Given a positive integer i and a vertex u, N i

G[u] represents the
set of all the vertices within distance i from u in G. We often refer to N1

G[.] as
NG[.].

Next, we list some of the already proven lemmas, theorems, and observations
useful in Sect. 3, and Sect. 4.

Lemma 1 [19]. Let G = (V,E) be a planar graph of degree at most 3. The graph
G can be embedded in a grid of area O(|V |2) such that each v ∈ V lies in a grid
point with co-ordinate (5i, 5j), where i and j are integers and each edge e ∈ E is
a finite sequence of consecutive segments of length 5 units along the grid lines.

Lemma 2 [15]. Let P be a unit disk centered at point p and let S be a set of
independent unit disks such that each disk in S contains the point p, then |S| ≤ 5.

Lemma 3 [3]. Given a UDG G, there exists a 44
9 -approximation algorithm for

the minimum dominating set problem with running time O(n2).

Observation 1 [5]. For a given graph G, γ(G) ≤ γt2(G).

3 NP-Completeness

In this section, we focus on the hardness result of the semi-total domination
problem and prove that the decision version of the problem is NP-complete
in unit disk graphs. We use a reduction from the decision version of the
vertex cover (VC) problem in planer graphs of degree at most 3 to the
decision version of the semi-total dominating set problem in UDGs.
The corresponding decision problems are formally defined as follows:
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The decision version of the VC problem in planar graphs of degree at most 3
(D-VC-PGD3): Given a positive integer k and a planar graph G of degree
at most 3, does G has a VC of size at most k?
The decision version of semi-total dominating set problem in UDGs (D-
T2DS-UDGs): Given a positive integer k and a UDG G, does G has a
semi-total dominating set of size at most k?

Lichtenstein and David [14] reduced the planar 3SAT problem to the planar
vertex cover problem and proved that D-VC-PGD3 is NP-complete. We prove
the hardness result of the semi-total dominating set problem in UDGs by making
a polynomial time reduction from an arbitrary instance of D-VC-PGD3 to an
instance of D-T2DS-UDGs. To prove this, we embed a planar graph G =
(V,E) of degree at most 3 in a grid of cell size 5 × 5 using Lemma 1.

Lemma 4. If G = (V,E) is an instance of D-VC-PGD3 without any isolated
vertex, then an instance G′ = (V ′, E′) of D-T2DS-UDG can be constructed
from G in polynomial time.

Proof. Let V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em} be the vertex set and
edge set of the given instance G. We construct a graph G′ = (V ′, E′) from G by
the four steps as given below:

Step 1 (Embedding): We first embed the graph G on a grid of cell size 5×5
using the algorithm proposed by Biedl et al. in [2]. In this embedding, each
edge e ∈ E is a consecutive sequence of line segment(s) in the grid, where the
length of each segment is 5 unit. Let � be the total number of line segments
used in the embedding. For each vertex v ∈ V , a node point located at a
grid having coordinate (5i, 5j) for some integers i and j. Let pi be the node
point at the grid corresponding to vertex vi ∈ V for 1 ≤ i ≤ n. Let the set
of node points be N , i.e., |N | = |V | = n. Refer to Fig. 1(a) and (b) for an
illustration of the embedding step.
Step 2 (Inclusion of auxiliary points): In this step, we add some auxiliary
points on each segment of the graph after the embedding step as mentioned
below: (i) for each pipj corresponding to the edge vivj ∈ E, if the number
of segments in pipj is one (length of pipj is exactly 5 unit), then add six
points at distances 1, 1.3, 2.1, 2.6, 3.2 and 4 either from pi or pj as depicted
in Fig. 2(a), (ii) if the number of segments is more than one (length of pipj

is greater than 5 unit), then we add a point on each grid point along the
line except the node points. We refer to those points as grid points (see the
filled square points in Fig. 2). If both the endpoints of any segment are grid
points, then add four points on the segment at distances 1, 2, 3, 4 from any
of the endpoints of the segment (see Fig. 2(b)); otherwise, add five points at
distances 1, 1.9, 2.5, 3 and 4 from node point pi (Fig. 2(c)). Let A be the set
representing the auxiliary points added in this step.
Step 3 (Inclusion of gadgets): Since each node in the planar graph has
degree at most 3 and is embedded within a grid, at least one position at
each node point exists to accommodate an extra edge. In this step, we add a
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gadget as shown in Fig. 2(d) at each node point pi. The gadget at pi contains
4 points, namely xi, x′

i, yi and y′
i. Here, the distances between pi and xi, xi

and x′
i, xi and yi, yi and y′

i are 0.9, 0.5, 0.9 and 0.5, respectively. Let S be
the number of points added in this step. Since each gadget contains 4 points,
therefore, |S| = 4|N | = 4n.
Step 4 (Construction of UDG): Let G′ = (V ′, E′) be the UDG con-
structed after applying the above 3 steps on graph G, where V ′ = N ∪ A ∪ S
and E′ = {uv : u, v ∈ V ′ and δ(u, v) ≤ 1}.

From Lemma 1, we conclude that the number of segments � = O(n2). There-
fore, the upper bound on the number of vertices and the number of edges in
G′ is O(n2). Hence, G′ can be constructed from G in polynomial time. For the
complete illustration of the construction phases, refer to Fig. 1 and Fig. 2. �	

Fig. 1. (a) A planar graph G, and (b) Embedding of G in a grid

Theorem 1. D-T2DS-UDGs belongs to the class NP-complete.

Proof. Let G = (V,E) be a unit disk graph. Given a subset S ⊆ V and a positive
integer k, we can verify whether S is a semi-total dominating set of G of size at
most k or not in polynomial time. Therefore, D - T2DS - UDGs ∈ NP .

To prove D - T2DS - UDGs is NP-hard, we will do a polynomial time reduc-
tion from D-VC-PGD3 to D-T2DS-UDGs. Here, we use Lemma 4 to con-
struct an instance G′ = (V ′, E′) of D-T2DS-UDGs from an arbitrary instance
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Fig. 2. (a) Orientation of six points, (b) Orientation of five points, (c) Orientation of
four points, (d) Gadget, and (e) Graph G′

Fig. 3. (a) Vertex cover of G, and (b) Semi-total dominating set of G′
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G = (V,E) of D-VC-PGD3 in polynomial time. Next, we prove the following
claim to complete the hardness result of D-T2DS-UDGs.

Claim: G has a vertex cover Svc such that |Svc| ≤ k if and only if G′ has a
semi-total dominating set Dt2 such that |Dt2| ≤ k + 2� + 2n.

(=⇒) Let Svc be a vertex cover of G such that |Svc| ≤ k and Tvc be the set of
vertices in G′ corresponding to the vertices in Svc, i.e., Tvc = {pi ∈ V ′ : vi ∈ Svc}.
Now, we construct two sets Ta ⊆ A and Tg ⊆ S such that Dt2 = Tvc ∪Ta ∪Tg is a
semi-total dominating set with cardinality less than or equal to k +2�+2n. The
construction of Ta and Tg are as follows. Since Svc is a vertex cover of G, at least
one endpoint of every edge in G is inside Svc. Since every edge in G corresponds
to a sequence of segments in G′, we start from the endpoint, which is inside Tvc.
For each pipj in G′ corresponding to each vivj ∈ E, at least one out of pi and pj

is in Tvc. Without loss of generality, let pi ∈ Tvc. We traverse from pi towards
pj . While traversing, we leave two vertices next to pi, add a single vertex to Ta,
and then leave the next vertex and select the next one for Ta; again, we leave
two vertices. This way, we repeat the process till we reach pj . For each vivj ∈ E,
we apply this process to the corresponding pipj in G′ and observe that exactly
two points from each segment are in Ta. So |Ta| = 2�, where � is the number of
segments in G′. In Fig. 3(b), the red cross points are in Ta. From each pi ∈ V ′,
we choose xi and yi for Tg. So |Tg| = 2n. In Fig. 3(b), the red disks are in Tg.

Now, we are left to show that the set Dt2 is a semi-total dominating set of
G′. Since xi, yi ∈ Tg ⊆ Dt2 and dominate pi, x′

i and y′
i, and d(xi, yi) = 1 for

all i = {1, 2, . . . , n}, and for each pi ∈ Tvc, there exists a vertex xi ∈ Tg such
that d(pi, xi) = 1. Hence, the sets Tvc and Tg satisfy the semi-total domination.
There are three types of segments in G′. The types of segments are as follows:
(i) segments with two endpoints as node points as depicted in Fig. 2(a), (ii)
segments with one endpoint as a node point and another as a grid point as
depicted in Fig. 2(b), and (iii) segments with two endpoints as grid points as
depicted in Fig. 2(c). We have to show that each segment from each segment
type requires at least two points in Dt2 for semi-total domination.

(i) Segments with two endpoints as node points: Since Svc is a vertex cover
of G, at least one out of vi and vj is in Svc, where vivj ∈ E. Therefore, at least
one out of pi and pj is in Tvc. Without loss of generality, let pi ∈ Tvc (pick any
one if both pi, pj ∈ Tvc). The way graph G′ is constructed, there are 6 points
on this type of segment excluding the two node points (i.e., pi and pj). Let us
refer to each point on the segment as zt, where 1 ≤ t ≤ 6 and t is the position of
the point from pi. pi dominates z1. The selection of z3 and z5 in Ta ensure the
domination of z2, z4 and pj and d(z3, z5) ≤ 2 ensures the semi-total property.
For a complete illustration, refer to p4p6 in Fig. 3(b).

(ii) Segments with one endpoint as a node point and another as a grid point:
Let pi and gijt be the node point and grid point, respectively, where the segment
pigijt is in pipj , and t represents the position of the grid point from pi. This type
of segment contains 5 points. Let the points are z1, z2, . . . , z5. (a) If pi ∈ Tvc,
then the selection of z3 and z5 in Ta ensures the domination of the segment. (b)
If pi /∈ Tvc, then a point in the other segment connected to gijt dominates gijt
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(since pj ∈ Tvc). Hence, the selection of z2 and z4 ensures the domination of the
remaining points in the segment pigijt. In either case, the selected two points
are within a distance of 2. Hence, it satisfies the semi-total property.

(iii) Segments with two endpoints as grid points: Let gijt and gij(t+1) be two
grid points and z1, z2, z3 and z4 be the four points on the segment. If so, then
at least one grid point is dominated by a point in the other segment connected
either to gijt or gij(t+1) (since at least one out of pi or pj is in Tvc). Without loss
of generality, if pi ∈ Tvc, then the selection of z2 and z4 ensures domination of
z1, z2, z3, z4 and gij(t+1). Since the distance between z2 and z4 is 2, the selection
satisfies the semi-total property for the segment.

From the above arguments, we conclude that Dt2 = Tvc ∪ Ta ∪ Tg is a semi-
total dominating set of G′. Since |Tvc| ≤ k, |Ta| = 2l and |Tg| = 2n, |Dt2| ≤
k + 2� + 2n.

(⇐=) Let Dt2 be a semi-total dominating set of G′ such that |Dt2| ≤ k+2�+2n.
Then, we will show that G has a vertex cover of size at most k. To prove this,
we prove the following observations.

(i) Out of four points in the gadget associated with each pi in G′, at least two
points belong to Dt2.

(ii) Each segment contributes at least two points to Dt2.
(iii) If pi and pj in G′ corresponds to the end vertices of an edge vivj ∈ E and

if none of them (pi and pj) is in Dt2, then there exists one segment whose
3 vertices are in Dt2 from the segment(s) representing the edge vivj , i.e., if
there are �′ number of segments in G′ corresponding to the edge vivj ∈ E
such that pi, pj /∈ Dt2, then out of 5�′+1 points (excluding pi and pj) 2�′+1
points are in Dt2.

Observation (i): Correspond to each pi ∈ E′, there are 4 points (xi, x′
i, yi

and y′
i) in the corresponding gadget. Since x′

i and y′
i are pendant vertices,

the selection of any two vertices is sufficient for domination. However, for
semi-total domination, it requires either the selection of (xi, yi), (xi, y′

i), or
(x′

i, yi). Hence, in G′, |S ∩ Dt2| ≥ 2n.
Observation (ii): Since there are four types of segments. Let us consider a
segment, say s1 with 4 points (excluding the endpoints), say q1, q2, q3, and
q4. On the contrary, suppose only one vertex is in Dt2. If so, then just for
domination, it requires at least two vertices (since only consecutive points are
adjacent). This implies that the segments with more than four vertices on the
segment require at least two points for domination. Hence, |Dt2 ∩ A| ≥ 2�,
where A and � are the set of auxiliary points and the number of segments in
G′, respectively.
Observation (iii): Let �′ be the number of segments in G′ correspond to
an edge vivj ∈ E. Since only consecutive points are adjacent, two points
can dominate at most 5 points in semi-total domination. So the minimum
number of points required to dominate (semi-total) 5�′ + 1 number of points
on �′ segments is � 5�′+1

5 
 × 2 = 2�′ + 1.
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Given a semi-total dominating set Dt2 of G′ of size at most k+2�+2n, we are
left to show that by deleting and/or replacing some of the vertices from Dt2, we
can obtain a vertex cover Svc of G of size at most k. Let define a set S′

vc = Dt2\S,
then |S′

vc| ≤ k + 2� (due to claim (i)). Then Svc = {vi ∈ V |pi ∈ S′
vc}. For each

edge vivj ∈ E, if vi, vj /∈ Svc, then there exists a segment on pipj in G′, which
has 3 points in Dt2 instead of 2 (refer to claim (ii) and (iii)). For each such edge,
add vi (or vj) to Svc. Since every segment contributes at least 2 to Dt2 and there
is 2� number of such points (refer to claim (ii)), |Svc| ≤ k. Since every edge in
G has at least one vertex in Svc, Svc is a vertex cover of size at most k. This
proves that D - T2DS - UDGs ∈ NP - hard.

Therefore, D - T2DS - UDGs ∈ NP - complete. �	

4 Approximation Algorithms

In this section, we propose a 6-factor approximation algorithm for the semi-total
domination problem in UDGs. We also propose a 2 + ln (D + 1)-factor approx-
imation algorithm for the semi-total domination problem for general graphs,
where D is the maximum degree of the graph, which is an improvement over the
approximation factor 2 + 3 ln (D + 1) given in [12].

4.1 Algorithm for Semi-total Domination in UDGs

Given a geometric unit disk graph G = (V,E) with V = {p1, p2, . . . , pn} ⊆ R
2

as the set of disk centers, Algorithm 1 finds a semi-total dominating set Dt2

of G. Now, we describe the procedure for finding the set Dt2. First, we find a
maximal independent set D ⊆ V of G to satisfy the domination property (see
Lines 2–6 of Algorithm 1). Next, to satisfy the semi-total property, we choose a
set of vertices T ⊆ V such that for each v ∈ D, there exists a vertex u ∈ D ∪ T
such that d(u, v) ≤ 2. To find such a set T , first, we find each point u ∈ D, which
satisfies the semi-total property (see Lines 8–13 of Algorithm 1) and next, we
segregate the points (set U) that do not satisfy the semi-total property in D (see
Line 14 of Algorithm 1) and then for each point u ∈ U , we add a point v ∈ NG(u)
into T (see Lines 15–18 of Algorithm 1). Finally, we report Dt2 = D ∪ T as a
semi-total dominating set of G. Lemma 5 and Lemma 6 represent the algorithm’s
correctness and time complexity, respectively.

Lemma 5. The set Dt2 in Algorithm 1 is a semi-total dominating set of G.

Proof. In the first phase, we find a maximal independent set D of G to satisfy
the domination property (see Lines 2–6 in Algorithm 1). Next, we segregate the
points that do not satisfy the semi-total property in D. Note that, for each vertex
u ∈ V , the algorithm finds Su = NG(u) ∩ D. If |Su| > 1, then the vertices in
Su satisfy the semi-total property, and hence the vertices in the set X ⊆ D also
satisfy the semi-total property (see Lines 8–13). Since U = D \ X, the vertices
in the set U do not satisfy the semi-total property, so we choose a one-distance
neighbor v ∈ V \ D for each such u ∈ U and T is the corresponding set (see
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Algorithm 1. T2DS-UDG(G)
Input: A unit disk graph, G = (V, E), with known disk centers
Output: A semi-total dominating set Dt2 for G

1: V ′ = V, D = ∅
2: while V ′ �= ∅ do
3: choose a vertex v ∈ V ′

4: D = D ∪ {v}
5: V ′ = V ′ \ NG[v]
6: end while
7: T = ∅, X = ∅
8: for each u ∈ V do
9: Su = NG(u) ∩ D

10: if |Su| > 1 then � each vertex in Su satisfies the semi-total property
11: X = X ∪ Su

12: end if
13: end for
14: U = D \ X � vertices in U do not satisfy the semi-total property
15: for each u ∈ U do
16: choose a vertex v ∈ NG(u)
17: T = T ∪ {v}
18: end for
19: Dt2 = D ∪ T
20: return Dt2

Lines 15–18). Since the set T is the set of such one-distance neighbor of each
point violating semi-total property in D, the inclusion of T in Dt2 along with
D ensures that for each vertex u ∈ D, there exists another vertex v ∈ D ∪ T
such that d(u, v) ≤ 2. Therefore, combinedly, the nominated points in D and T
satisfy the domination and semi-total properties. Hence, the set Dt2 is a semi-
total dominating set of G.

Lemma 6. Algorithm 1 runs in O(nk) time.

Proof. The complexity of Algorithm 1 is primarily dominated by the three for
loops (see Lines 2–6, 8–13 and 15–18 of Algorithm 1). Let V = {p1, p2, . . . , pn}
be the set of disks’ centers corresponding to graph G = (V,E). Let all the disks
lie on a plane’s rectangular region R. Let the rectangle’s extreme left and bottom
arms represent the x- and y-axis, respectively. Then, we split the plane R so that
the region R becomes a grid with cell size 1×1. Let [x, y] be the index associated
with each cell, where x, y ∈ N ∪ {0}. If a point p ∈ V is located at co-ordinate
(px, py) on R, then the point belongs to a cell with index [�px�, �py�].

In the first for loop (see Lines 2–6), Algorithm 1 constructs a maximal inde-
pendent dominating set D of the input graph G. To do so efficiently, each non-
empty cell maintains a list that keeps the points of V chosen for inclusion in D
located within that cell. While considering a point p ∈ V as a candidate for the
set D, it only probes into 9 cells surrounding the cell where p lies. That means
if p is located at co-ordinate (px, py), then it searches in each [i, j] cell, where
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�px� − 1 � i � �px� + 1 and �py� − 1 � j � �py� + 1.3 If there does not exist
any point q ∈ D in those 9 cells such that p ∈ Δ(q), then p is included in D. A
height balance binary tree containing non-empty cells is used to store the points
that are in D. Since each cell of size 1 × 1 can contain the centers of at most
3 independent unit disks (since placing the centers on the boundary maximizes
the number of independent unit disks in a cell and one disk covers more than
one edge in a cell), the processing time to decide whether a point is in D or not
requires O(log k) time, where k = |D|. Thus the time taken to process |V | = n
points is O(n log k).

In the second for loop (Lines 8–13), Algorithm 1 finds a set X ⊆ D in
which each vertex satisfy the semi-total property. To find the set X, it finds
Su = NG(u) ∩ D for each vertex u ∈ V . Now, if |Su| > 1, the vertices in Su

satisfy the semi-total property; hence, these vertices collectively represent the
set X. Thus, finding a set X requires O(nk) time.

Since each vertex u in U does not satisfy the semi-total property (i.e., |Su| ≤
1), we add a vertex v ∈ NG(u) to T (see Lines 15–18). Thus, in the worst case,
the time to construct the set T is O(k).

Therefore, in worst case, Algorithm 1 executes in O(nk) time. �	
Lemma 7. In Algorithm 1, |T | ≤ |D∗|, where D∗ is an optimal DS of G.

Proof. On contrary assume that |T | > |D∗|, i.e., |U| > |D∗|. So, at least one
vertex in D∗ dominates two or more vertices in U , which leads to a contradiction
that there is no vertex v ∈ V that has more than one neighbor in U . �	

Analysis: The set Dt2 in Algorithm 1 is a semi-total dominating set of G, where
Dt2 = D ∪ T (see Lemma 5). Let D∗ and D∗

t2 be the optimal dominating set
and optimal semi-total dominating set of G, respectively. Since D is a maxi-
mal independent set of G, from Lemma 2, we have |D| ≤ 5|D∗|. The set T in
Algorithm 1 satisfies the semi-total property when added to the independent set
D. Note that from Lemma 7, we have |T | ≤ |D∗|. Therefore, using Lemma 2,
Lemma 5, Lemma 7 and Observation 1, we conclude the approximation factor
of Algorithm 1 as follows:

|Dt2| = |D ∪ T | ≤ |D| + |T | ≤ 5|D∗| + |D∗| ≤ 6 × |D∗| ≤ 6 × |D∗
t2| (1)

Theorem 2. The proposed algorithm (T2DS-UDG) gives a 6-factor approxima-
tion result for the semi-total domination problem in UDGs. The algorithm runs
in O(nk) time, where n is the number of vertices in the given UDG and k is the
size of the maximal independent set.

Proof. The approximation factor and the time complexity result follow from
Eq. 1 and Lemma 6, respectively. �	
3 Any point outside these 9 cells is independent from p.
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Corollary 1. The semi-total domination problem achieves a 53
9 -factor approx-

imation result in UDGs with running time O(n2), where n is the number of
vertices in the given UDG.

Proof. From Lemma 3 and Lemma 7, we have |D| ≤ 44
9 |D∗| and |T | ≤ |D∗|,

respectively. Therefore,

|Dt2| = |D ∪ T | ≤ |D| + |T |
≤ 44

9
|D∗| + |D∗| =

53
9

|D∗|

≤ 53
9

|D∗
t2|

(2)

�	

Note: In [12], the authors proposed a 2 + 3 ln (D + 1)-factor approximation
algorithm for the semi-total dominating set problem in general graphs. Here,
the authors used two sets, namely D and T , to find the semi-total dominat-
ing set of the given graph G, where D is a DS and T is a set of vertices such
that D ∪ T is a semi-total dominating set. The authors used the approximation
algorithm for the minimum DS problem to find the set D and the approxima-
tion algorithm for the minimum set cover problem to find the set T . Since the
approximation factors of the minimum DS and the minimum set cover problems
are 1 + ln (D + 1) and 1 + 2 lnD, respectively, the approximation factor of the
algorithm in [12] is 2 + 3 ln (D + 1). However, to have an improvement over the
approximation factor, we can modify the algorithm in [12] by selecting the set
T as in Algorithm 1 (the selection of the set T needs the set D to be a domi-
nating set, not necessarily a maximal independent set). Then, by Lemma 7 and
Observation 1, the approximation factor of the semi-total domination problem
in general graphs is as follows:

|Dt2| = |D ∪ T | ≤ |D| + |T | ≤ (1 + ln (D + 1))|D∗| + |D∗|
≤ (2 + ln (D + 1))|D∗| ≤ (2 + ln (D + 1))|D∗

t2|
(3)

Note: Since there exists a polynomial-time approximation scheme (PTAS) for
the domination problem in UDGs with approximation factor (1 + ε) and time
nO( 1

ε
1

log ε ), for any ε > 0 [17]. We have the following corollary.

Corollary 2. The semi-total dominating set problem in UDGs admits a PTAS
with approximation factor (2 + ε) in time nO( 1

ε
1

log ε ).

5 Conclusion

In this paper, we have introduced the concept of semi-total domination to UDGs
and shown that the semi-total domination problem in UDGs is NP-complete.
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Then, we proposed a 6-factor approximation algorithm for the same, with time
complexity O(nk), where k is the size of the maximal independent set of the
given UDG. In addition, we also proposed a 2 + ln (D + 1)-factor approximation
algorithm for general graphs, where D is the maximum degree of the given graph.
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