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Abstract. The total chromatic number χT (G) of G is the least positive
integer k for which G admits a k-total coloring. Clearly, χT (G) ≥ Δ(G)+
1. A long standing Total Coloring Conjecture (TCC) asserts that every
graph G has χT (G) ≤ Δ(G)+2. If χT (G) = Δ(G)+1, then G is a type-1
graph and if χT (G) = Δ(G) + 2, then G is a type-2 graph. Weak TCC
states that any simple graph G has χT (G) ≤ Δ(G)+3. In this paper, we
give an upper bound for the total chromatic number of the join G ∨ H
of graphs G and H. Also, we verify that if G satisfies TCC, then G ∨ G
satisfies TCC and the join of two type-1 graphs having the same order
satisfies TCC. We show that G ∨ H satisfies weak TCC under certain
constrains. Moreover, we show that the join of any two graphs G and H
of same order satisfies weak TCC if both G and H are satisfying TCC.
Also, we prove that if G and H are any two k-regular graphs with same
odd order, then G ∨ H is not type-1. In addition, we verify that the join
of any two cycles satisfies TCC. We give an upper bound for the total
chromatic number of generalized join of graphs and as a result we obtain
an upper bound for the total chromatic number of the lexicographic
product G ◦ H of G and H in terms of the maximum degrees of G and
H if H satisfies TCC. Also, we show that the lexicographic product
of a graph with compliment of complete graphs satisfies weak TCC. In
particular, when the graph is Type-1 then this lexicographic product will
satisfy TCC.
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1 Introduction

All graphs considered here are finite, simple and undirected. Let G =
(V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). For v ∈ V (G),
let NG(v) denote the open neighborhood of v and NG[v] denote the closed neigh-
borhood of v. Δ(G) denote the maximum degree of G. For any A which is a
subset of V (G), 〈A〉 denotes the subgraph induced by A. Graph coloring is the
process of assigning colors to the elements of a graph. Graph coloring has vari-
ous practical applications also. There are different kinds of graph colorings like,
vertex coloring, edge coloring, total coloring etc. If the coloring is for the vertices
only, then it is said to be vertex coloring or simply coloring. If the coloring is for
edges only, then it is said to be the edge coloring. Total coloring is the coloring
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in which we assign colors to both the vertices and edges of a graph and it is
said to be proper if no two adjacent or incident elements are receiving the same
color. A k-total coloring is the total coloring in which we are using k colors.
Total chromatic number of a graph G denoted as χT (G) is the minimum num-
ber of colors required for coloring the vertices and edges of the graph properly
(Similarly we can define chromatic number (χ(G)) and chromatic index number
(χ′(G)) corresponding to the vertex and edge coloring, respectively). Graphs
with χ′(G) = Δ(G) are called class-1 and graphs with χ′(G) = Δ(G) + 1 are
called class-2. Also, graphs with χT (G) = Δ(G)+1 are called type-1 and graphs
with χT (G) = Δ(G) + 2 are called type-2.

In the year 1953 Behzad [1] conjectured that Δ(G) + 2 is an upper bound
for χT (G). It is known as the Total Coloring Conjecture (TCC), which is one
among the classic open problems in graph theory. TCC is studied widely by var-
ious mathematicians. During 1980′s, Sánchez-Arroyo [15] proved that deciding
whether a graph is type-1 or not is NP -complete and also the total coloring
of a complete bipartite graph is NP -hard. Moreover, McDiarmid and Sánchez-
Arroyo [11] proved that determining the total chromatic number is NP-hard even
for r-regular bipartite graphs, for each fixed r ≥ 3. It can be easily seen that
TCC is true for the complete graphs [2], cycles and bipartite graphs.

In case of planar graphs, so many results related to TCC have been done and
are mainly based on the maximum degree and the girth constraints. For planar
graphs with maximum degree at most 5, TCC was verified by A. V. Kostochka [7]
during the late 90’s. Yap [21] verified it for planar graphs with maximum degree
at least 8 and Kowalik et. al. [8] proved that for any planar graph with maximum
degree at least 9 is type-1. For the planar graphs with maximum degree 6 and
7, TCC was verified under certain conditions. For the non-planar case, TCC is
verified for so many classes of graphs. TCC for the cartesian product of two
graphs is verified for many cases [5], and still there are cases for which it is not
verified. But regarding the other graph products only a few results are proved
on TCC yet [3,20]. Geetha et al. [4] have produced an excellent survey on total
coloring, which is a valuable source of information in the state of art.

Even though many well-known researchers from different parts of the world
have studied TCC for over 60 years, it remains open till now. So it make sense
for the current researchers to go for some relaxed version of TCC which is known
as the Weak TCC. Before defining the weak TCC we define some more weaker
version of TCC called the k-TCC which was introduced by Manu Basavaraju et
al. in [10].

k-Total coloring Conjecture (k-TCC).
For any graph G, χT (G) ≤ Δ(G) + k, for some fixed positive integer k ≥ 2.
The 2-TCC is nothing but the original TCC and 3-TCC is known as the

weak TCC. Molloy and Reed [13] showed a probabilistic approach to prove that
for a sufficiently large Δ, χT (G) ≤ Δ(G) + C, where C = 1026.

Let G be a graph with n vertices and H1,H2, . . . , Hn be a collection of graphs.
The G-generalized join of H1,H2, . . . , Hn, denoted by G[H1,H2, . . . , Hn], is the
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graph G′ with vertex set V (G′) =
n⋃

i=1

V (Hi) and edge set E(G′) =
( n⋃

i=1

E(Hi)
)
∪

( ⋃

ij∈E(G)

{xy|x ∈ V (Hi), y ∈ V (Hj)}
)
.

If Hi
∼= H for 1 ≤ i ≤ n, then G[H,H, . . . ,H] is the standard lexicographic

product of G and H and it is denoted as G ◦ H. If G = K2, then K2[H1,H2] is
the well known join of graphs H1 and H2 and it is denoted by H1 ∨ H2.

A complement reducible graph (also called a co-graph) is defined recursively
as follows:

i) A graph on a single vertex is a complement reducible graph.
ii) If G1, G2, . . . , Gk are complement reducible graphs, then so is their union

G1 ∪ G2 ∪ · · · ∪ Gk.
iii) If G is a complement reducible graph, then so is its complement.

The co-graphs have arisen in many disparate areas of mathematics and have
been independently rediscovered by various researchers. The verification of TCC
for the join of two graphs will automatically shows that the co-graphs also sat-
isfies TCC. But verifying TCC even for the join of some simple classes of graphs
will pause many difficulties, which can be seen from some proofs that we have
given in this paper. In our journey to verify TCC for co-graphs, we find some
results that contribute more power to the validity of TCC in general but, TCC
for the join of two arbitrary graphs remains still open.

Some works that have been done regarding the verification of TCC for the
join of certain classes of graphs are as follows : Seoud et al. [16,17] calculated
the total chromatic number of the join of two paths. Guanggrong Li and Limin
Zhang [9] proved that the join of a complete in-equipartite graph and a path is
type-1. In their proof the difficulty in proving TCC for the join of such graphs
(that is Kn1,n2 for n1 �= n2 and Pm) is easily visible as there arises various sub
cases for a single proof (see [9]). Further Wang et al. [20] proved the equality
of the vertex distinguishing total chromatic number and the total chromatic
number of the join of a path with itself and a cycle with itself.

In [19], R. Vignesh et al. proved the validity of TCC for the join of a graph
satisfying TCC with itself. But we found that the existence of a proper edge
coloring that is just mentioned in the proof without any proper explanation is
not always mandatory. Hence in order to overcome that here we give a rigorous
proof using the coloring technique explained in the Lemma given in the second
section.

Even though we do not have a proof for the existence of TCC, we have seen
that it is proved for a vast range of graphs [12,14]. Here we are going to see the
same for some graph operations namely the join of graphs and the lexicographic
product of graphs.

The paper is organized as follows.
In the second section, we obtain a bound for the total chromatic number

of the join two graphs and we verify TCC for G ∨ G, when G satisfies TCC.



Total Coloring of Some Graph Operations 305

As a result, we prove that
2m∨

i=1

Gi satisfies TCC if Gi
∼= G for 1 ≤ i ≤ 2m and

G satisfies TCC. Also, we verify weak TCC for the join of two graphs under
certain constraints and we prove that the join of two type-1 graphs with same
order satisfies TCC. Moreover, we prove G ∨ H is not a type-1 graph if G and
H are regular graphs with same odd number of vertices. In addition, we prove
that Cn ∨ Cm satisfies TCC, for any positive integers m and n.

In the third section, we produce an upper bound for the total chromatic
number of the generalized join of graphs and hence we obtain an upper bound
for the total chromatic number of the lexicographic product G ◦ H if H satisfies
TCC. And in particular we verify weak TCC for the lexicographic product of a
graph with the compliment of a complete graph.

2 TCC for Join of Graphs

In this section, we first recall the Konig’s Theorem.

Theorem 1 (Konig [6]). For any bipartite graph, χ′(G) = Δ(G).

The following result gives a bound for the total chromatic number of the join of
two graphs.

Theorem 2. Let G and H be graphs with m and n vertices, respectively. If
χ′(G) ≤ χT (H), then

max{Δ(H) + m,Δ(G) + n} + 1 ≤ χT (G ∨ H) ≤ max{m,n} + χT (H) + χ(G).

In general, max{Δ(H) + m,Δ(G) + n} + 1 ≤ χT (G ∨ H) ≤ max{m,n} +
max{χ′(G), χ′(H)} + χ(H) + χ(G).

Proof. Let r = max {m,n}, s = χ(G) and t = χT (H). The lower bound is clear
from the definition of join of graphs. For proving the upper bound, we construct
a total coloring of G ∨ H using r + s + t colors.

First, we color the vertices and edges of G and H. Let c be a total coloring
of H using t colors, say 1, 2, . . . , t. It is given that χ′(G) ≤ χT (H). Hence we
can color the edges of G with some or all colors from 1, 2, . . . , t. Then color the
vertices of G with new s colors, say t + 1, t + 2, . . . , t + s. Thus, we colored the
vertices and edges of G and H using t + s colors properly.

Next, we color the uncolored edges of G ∨ H and they are precisely the
edges between G and H and hence the subgraph induced by these edges form a
bipartite graph with maximum degree r. Hence by Theorem 1, it can be colored
properly using new r colors, say t + s + 1, t + s + 2, . . . , t + s + r. So we get a
total coloring of G ∨ H using r + s + t colors and therefore the result follows.
The proof of second part is similar to that of the first one.

As an immediate consequence of Theorem 2, we have the following Corollary.
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Corollary 1. If G is a bipartite graph and H is a graph satisfying TCC and both

having the same maximum degree, then χT (G ∨ H) ≤
{

k + 4 if H is type − 2;
k + 3 if H is type − 1,

where k = Δ(G ∨ H).

Proof. Let the maximum degree of both G and H be Δ. Then, by Theorem
1, Δ = χ′(G) < Δ + 1 ≤ χT (H) and χ(G) = 2. By Theorem 2, we have
χT (G ∨ H) ≤ max{m,n} + χT (H) + 2.

First, if G is type-1, then χT (G∨H) ≤ max{m,n}+Δ(G)+1+2 and hence
χT (G ∨ H) ≤ Δ(G ∨ H) + 3.

Next, if G is type-1, then χT (G ∨ H) ≤ max{m,n}+Δ(G) + 2+ 2 and thus
χT (G ∨ H) ≤ Δ(G ∨ H) + 4.

One can ask the following question.

Problem 1. When does the join two graphs satisfy k-TCC, for some k ≥ 2?
The following results will give some partial answers to this. For proving these

partial answers, we need the following Lemma. For a matching M of G and v ∈
V (G), we say v is M -saturated if v is incident with some edge in M . Otherwise,
v is called M -unsaturated.

Lemma 1. The edge set of Kn,n can be partitioned into n + 1 matchings such
that each vertex of Kn,n is saturated by n matchings among them.

Proof. Let X = {u1, u2, . . . , un} and Y = {v1, v2, . . . , vn} be the partition of
Kn,n. Let M0 = {uivi : 1 ≤ i ≤ n} and R0 = Kn,n − M0.

First, we successively define Rj ’s and Mj ’s as follows, for 1 ≤ j ≤ n − 2,

R′
j = Rj−1 − {uj , vj},Mj = Aj ∪ Bj , where

Aj = {uivi+j+1(mod n) : 1 ≤ i ≤ j − 1 or i = n},
Bj = {uivi+j(mod n) : j + 1 ≤ i ≤ n − 1} and
Rj = Rj−1 − Mj .

Next, we define

R′
n−1 = Rn−2 − {un−1, vn−1},

Mn−1 = {uiv2i+1(mod n) : 1 ≤ i ≤ n and i �= n − 1},
Rn−1 = Rn−2 − Mn−1 and
R′

n = Rn−1 − {un, vn},
Mn = {uiv2i(mod n) : 1 ≤ i ≤ n − 1}.

Clearly, Mj is a matching in R′
j , for 1 ≤ j ≤ n and there are n + 1 matchings

including M0. Also note that each vertex uj (as well as vj) in Kn,n is Mi-
saturated for all i ∈ {1, 2, . . . , n}\{j}, |M0| = n, |Mj | = n − 1 for 1 ≤ j ≤ n and
E(R′

n)\Mn = ∅. Hence
∑n

j=0 |Mj | = |E(Kn,n)|.
Finally, we have to prove {Mj}nj=0 are disjoint.
Clearly, M0 ∩ Mj = ∅, for j ∈ {1, 2, . . . , n}. First, if there exist j1, j2 ∈

{1, 2, . . . , n − 2} and there exist i, k ∈ {1, 2, . . . , n} such that j1 �= j2 and uivk ∈
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Mj1 ∩ Mj2 . Then, i �= j1, j2 and uivk ∈ (Aj1 ∩ Aj2)∪ (Aj1 ∩ Bj2)∪ (Bj1 ∩ Aj2)∪
(Bj1 ∩ Bj2).

When uivk ∈ Aj1 ∩ Bj2 , we have i + j1 + 1 (mod n) = k = i + j2 (mod n),
by the definition of Aj1 and Bj2 . Hence j1 = j2 − 1 (as |j1 − j2| < n). Also,
1 ≤ i ≤ j1 − 1 or i = n and j2 + 1 ≤ i ≤ n − 1. In both cases, it is not possible.

When uivk ∈ Aj1 ∩ Aj2 , we have i+ j2 +1(mod n) = k = i+ j1 +1(mod n).
That means, j2 = j1 (as j1 and j2 are less than n), which is a contradiction.

When uivk ∈ Bj1 ∩ Bj2 , we have j1 = j2, which is not possible.
When uivk ∈ Bj1 ∩ Aj2 , then j2 = j1 − 1 and j1 + 1 ≤ i ≤ n − 1 and

1 ≤ i ≤ j2 − 1, which is a contradiction.
So, for any two distinct j1, j2 ∈ {1, 2, . . . , n − 2},Mj1 ∩ Mj2 = ∅. Similarly,

we can show that Mj ’s, Mn−1, and Mn are disjoint for j ∈ {0, 1, 2, . . . , n − 2}.
Therefore {Mj}nj=1 are disjoint. Hence the result the follows.

Now, using Lemma 1, we prove that TCC is true for the join of a graph satisfying
TCC with itself.

Theorem 3. If G is a graph satisfying TCC, then G ∨ G satisfies TCC.

Proof. Let V (G) = {u1, u2, . . . , un} and Δ(G) = k. Then Δ(G∨G) = n+k and
the graph G∨G can be considered as the union of three induced sub-graphs, that
is two copies of G, say G1 with vertex set {u1, u2, . . . , un}, G2 with vertex set
{v1, v2, . . . , vn} (i.e., vi ∈ V (G2) is the corresponding vertex of ui ∈ V (G1)) and
the edges between G1 and G2 (the induced subgraph of these edges is Kn,n). In
order to verify TCC for G∨G, we need to show that there is a total (n+k+2)-
coloring of G ∨ G.

Let c be a total coloring of G with k + 2 colors, say 1, 2, . . . , k + 2. First we
color the vertices and edges of G1 totally and then color the edges of G2 using
c. Next, we color the edges between G1 and G2 by using Lemma 1 and finally,
we assign colors to the vertices of G2.

As the edges of G1 are colored properly under c, we color the edges of G2

also using c as follows. For vivj ∈ E(G2), c(vivj) = c(uiuj). For i ∈ {1, 2, . . . , n},
we define ci ∈ {1, 2, . . . , k + 2} such that ci is not represented at ui in G1, that
is, ci is not assigned to any of the elements in {uix : x ∈ NG1(ui)} ∪ {ui}. Such
a color ci will always exist as c is a (k+2)-total coloring of G and |{c(uix) : x ∈
NG1(ui)} ∪ {c(ui)}| ≤ k + 1. By Lemma 1, we assign the total coloring c′ to the
vertices and edges of G ∨ G using c as follows. For 1 ≤ i �= j ≤ n,

c′(x) =

⎧
⎨

⎩

c(x) if x = ui, x = uiuj ∈ E(G1) or x = vivj ∈ E(G2) ;
k + 2 + j if x = vj or x ∈ Mj ;

ci if x = uivi ∈ M0.

Then c′ colors the vertices and edges of G ∨ G using n + k + 2 colors.
Finally, we need to verify that c′ is proper. Note that for x ∈ V (G1) ∪

E(G1) ∪ M0 ∪ E(G2), c′(x) ∈ {1, 2, . . . , k + 2} and for i, j ∈ {1, 2, . . . , n} with
i �= j, c′(uivj), c′(vj) ∈ {k + 3, k + 4, . . . , n + k + 2}. Since c′ = c on V (G1) ∪
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E(G1) ∪ E(G2), Mi’s are matchings such that u′
is and v′

is are Mi-unsaturated
and by the definition of ci, we have c′ is proper. Hence the results follows.

By Theorem 3 and applying induction on t, we have the following corollary.

Corollary 2. If a graph G satisfies TCC, then
m∨

i=1

Gi satisfies TCC, where Gi
∼=

G for 1 ≤ i ≤ n and m = 2t for any positive integer t.

For two distinct graphs we cannot adopt the same method of proof since the
missing colors in the corresponding vertices need not be same as in the above
case. So, next we prove the validity of weaker version of TCC for the join of two
graphs under certain restrictions.

Theorem 4. If G and H are two graphs with m and n vertices respectively. Also,
Δ(G) ≥ Δ(H), m ≤ n and G satisfies TCC, then χT (G ∨ H) ≤ Δ(G ∨ H) + 3.

In the other case, that is for m ≥ n, adding isolated vertices in H and taking
the join will results in a new graph whose maximum degree is different from that
of our original G∨H. Hence this method is not valid in that case. We now prove
the following result on regular graphs with odd number of vertices.

Theorem 5. If G and H are two k-regular graphs with same odd order n, then
G ∨ H is not type-1.

The equality of the number of vertices in both graphs plays a crucial role in
the proof and hence in the cases of unequal number of vertices we cannot use this
pattern. The following corollaries are the immediate consequences of Theorem 5
and Theorem 3.

Corollary 3. For an odd ordered regular G graph satisfying TCC, the join G∨G
is type-2.

Corollary 4. For an odd positive integer m ≥ 3, Cm ∨ Cm is a type-2 graph.

The following result gives the validity of TCC for the join of two cycles.

Proposition 1. For m,n ≥ 3, the join of two cycles Cm ∨ Cn satisfies TCC .

Proof. Let G = Cm ∨ Cn. Clearly, Δ(G) = max{m,n} + 2. Let V (Cm) =
{u1, u2, . . . , um} and V (Cn) = {v1, v2, . . . , vn}. Without loss of generality, let
us assume m ≥ n. For m = n = 3, by Theorem 3 the result follows. So let
us assume that, m > 3 and n ≥ 3. We have to show that there exists a total
coloring of G using Δ(G) + 2 colors, where Δ(G) = m + 2.

Case 1. (m and n are even)
The following is a total coloring of G using m + 4 colors.
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c(ui) =
{
1 for i ≡ 1 mod 2 ;
2 for i ≡ 0 mod 2. c(vi) =

{
3 for i ≡ 1 mod 2 ;
4 for i ≡ 0 mod 2.

c(uiui+1) =
{
3 for i ≡ 1 mod 2 ;
4 for i ≡ 0 mod 2. c(vivi+1) =

{
1 for i ≡ 1 mod 2 ;
2 for i ≡ 0 mod 2.

Clearly, the subgraph induced by the uncolored edges forms a bipartite graph
of maximum degree m and hence using Theorem 1 we can properly color those
edges using m new colors and hence the result follows.

Case 2. (m and n are odd)
Consider the following coloring of G,

c(ui) =

⎧
⎨

⎩

1 for i ≡ 1 mod 2, i �= m ;
2 for i ≡ 0 mod 2 ;
3 for i = m.

c(vi) =

⎧
⎨

⎩

4 for i ≡ 1 mod 2, i �= n ;
5 for i ≡ 0 mod 2 ;
6 for i = n.

c(uiui+1) =

⎧
⎨

⎩

5 for i ≡ 1 mod 2, i �= m ;
4 for i ≡ 0 mod 2 ;
2 for i = m, i + 1 = 1.

c(vivi+1) =

⎧
⎨

⎩

1 for i ≡ 1 mod 2, i �= n;
2 for i ≡ 0 mod 2 ;
5 for i = n, i + 1 = 1.

Next, we color some of the edges in between Cm and Cn.
For 1 ≤ i ≤ n, c(uivi) = 3 and for 0 ≤ k ≤ n − 1,

c(um−kvn−k) =
{
6 for 1 ≤ k ≤ n − 1;
1 for k = 0.

The subgraph induced by the remaining uncolored edges forms a bipartite
graph with maximum degree m−2 and hence the result follows from Theorem 1.

Case 3. (m is even and n is odd.)
We color the vertices an edges of Cm and Cn as follows:

c(ui) =
{
1 for i ≡ 1 mod 2 ;
2 for i ≡ 0 mod 2. c(vi) =

⎧
⎨

⎩

3 for i ≡ 1 mod 2, i �= n ;
4 for i ≡ 0 mod 2 ;
5 for i = n.

c(uiui+1) =

{
3 for i ≡ 1 mod 2 ;
4 for i ≡ 0 mod 2. c(vivi+1) =

⎧
⎨

⎩

1 for i ≡ 1 mod 2, i �= n;
2 for i ≡ 0 mod 2 ;
4 for i = n and i + 1 = 1.

Next, we color some edges between Cm and Cn. For 1 ≤ i ≤ n − 1, color
c(uivi) = 5 and also for i = n, color c(ui+1vi) = 1. Then the subgraph induced
by the remaining uncolored edges form a bipartite graph of maximum degree
m − 1 and by Theorem 1, the result follows.

Case 4. (m is odd and n is even.)
First, we color the vertices and edges of both Cm and Cn using,
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c(ui) =

⎧
⎨

⎩

1 for i ≡ 1 mod 2 and i �= m ;
2 for i ≡ 0 mod 2 ;
3 for i = m.

c(vi) =
{
4 for i ≡ 1 mod 2 ;
5 for i ≡ 0 mod 2.

c(uiui+1) =

⎧
⎨

⎩

4 for i ≡ 1 mod 2 and i �= m ;
5 for i ≡ 0 mod 2 ;
2 for i = m and i+ 1 = 1.

c(vivi+1) =

{
1 for i ≡ 1 mod 2 ;
2 for i ≡ 0 mod 2.

For 1 ≤ i ≤ n, color c(uivi) = 3. As m > n, the subgraph induced by the
remaining uncolored edges form a bipartite graph of maximum degree m − 1.
Hence the result follows.

As an immediate consequence of Proposition 1, we have the following corollary.

Corollary 5 ([16]). For any positive integers m and n, Pm ∨Pn satisfies TCC.

3 Total Coloring of the Generalized Join of Graphs

In this section, we give an upper bound for the total chromatic number of

G[H1,H2, . . . , Hn]. Let G be a class-1 graph. Then E(G) =
k⋃

i=1

Mi, where Mi’s

are disjoint matchings. Let r be the least number in {1, 2, . . . , k} such that every
vertex of G is saturated by at least one of the matchings Mi1 ,Mi2 , . . . ,Mir .
Without loss of generality, we relabel Mij by Mj for 1 ≤ j ≤ r.

Theorem 6. Let G be the above mentioned graph with n vertices and
{H1,H2, . . . , Hn} be a set of graphs with Hi ∨ Hj satisfying TCC, for each

i, j ∈ {1, 2, . . . , n}, then χT (G[H1,H2, . . . , Hn]) ≤
r∑

i=1

si +
k∑

j=r+1

tj, where

sj = max{Δ(Hx ∨ Hy) + 2 | xy ∈ Mj} for 1 ≤ j ≤ r and tj =
max{max{|V (Hx)|, |V (Hy)| | xy ∈ Mj}} for r + 1 ≤ j ≤ k.

The following corollary is a consequence of Theorems 3 and 6.

Corollary 6. If H is any graph satisfying TCC with m vertices, then

χT (G ◦ H) ≤
{

Δ(G ◦ H) + Δ(H)(Δ(G) − 1) + 2Δ(G) if G is class − 1
Δ(G ◦ H) + Δ(G)Δ(H) + 2(Δ(G) + 1) + m if G is class − 2

Proof. Clearly, G ◦ H ∼= G[H1,H2, . . . , Hn], where Hi
∼= H for 1 ≤ i ≤ n and

Δ(G ◦ H) = Δ(H) + Δ(G)m. By Theorem 3, H ∨ H satisfies TCC. Then by
Theorem 6, sj = Δ(H)+m+2, for 1 ≤ j ≤ r and tj = m, for r+1 ≤ j ≤ χ′(G).
By Theorem 6, χT (G ◦ H) ≤ Δ(H)r + 2r + mχ′(G) ≤ (Δ(H) + m + 2)χ′(G).

If G is a class-1 graph, then χ′(G) = Δ(G). So, χT (G ◦ H) ≤ (Δ(H) + m +
2)Δ(G) ≤ Δ(G ◦ H) + Δ(H)(Δ(G) − 1) + 2Δ(G).

If G is class-2, then χ′(G) = Δ(G) + 1. So, χT (G ◦ H) ≤ (Δ(H) + m +
2)(Δ(G) + 1) ≤ Δ(G ◦ H) + Δ(G)Δ(H) + 2(Δ(G) + 1) + m. Hence the result
follows.
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As the bound above is a weaker one, we replace our H with the compliment
of complete graph and obtain the following result.

Theorem 7. If G satisfies TCC with m vertices, then G[Kc
n] satisfies weak

TCC. In particular, if G is type-1, then G[Kc
n] satisfies TCC.

4 Concluding Remarks and Open Problems

In this paper, one of our aims was to prove the validity of TCC for co-graphs
by showing that TCC is valid for the join of any two graphs. But we could find
some partial answers only and the TCC for the join of any two arbitrary graphs
is still open. Also, we obtained a bound for the total chromatic number of G-
generalized join of graphs and as a consequence we obtain an upper bound for
the total chromatic number of the lexicographic product G ◦ H.
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