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Preface

This volume contains the papers presented at CALDAM 2024 (the 10th International
Conference on Algorithms and Discrete Applied Mathematics) held on February
15–17, 2024, at the Indian Institute of Technology Bhilai (IIT Bhilai), Chhattisgarh,
India. CALDAM 2024 was organised by IIT Bhilai and the Association for Computer
Science and Discrete Mathematics (ACSDM), India. The program committee consisted
of 32 highly experienced and active researchers from various countries.

The conference had papers in the areas of algorithms and complexity, discrete applied
mathematics, computational geometry, graph theory, graph coloring, graph partitioning,
and domination in graphs. We received 57 submissions from authors from all over the
world. Program committee members and other expert reviewers extensively reviewed
each paper. Single-blind review was used, where each paper received 3 reviews. The
committee decided to accept 22 papers for presentation. The program included three
invited talks by Bhawani Sankar Panda (Indian Institute of Technology Delhi), Iztok
Peterin (University of Maribor), and Saket Saurabh (Institute of Mathematical Sciences,
Chennai).

As volumeeditors,we thank the authors of all submissions for consideringCALDAM
2024 for the potential presentation of their works. We are very much indebted to the
program committee members and the external reviewers for providing serious reviews
within a very short period of time. Our sincerest thanks to the invited speakers, Bhawani
Sankar Panda, Iztok Peterin, andSaket Saurabh, for accepting our invitation to give a talk.
We thank the organizing committee chaired by Rishi Ranjan Singh of Indian Institute of
Technology Bhilai for the smooth conduct of CALDAM 2024 and the Indian Institute
of Technology Bhilai for providing the necessary facilities. We are very grateful to the
chair of the steering committee, Subir Ghosh, for his active help, support, and guidance.
We thank the PC chairs of the previous edition, Amitabha Bagchi and Rahul Muthu, for
assisting with various process details. We thank Springer for publishing the proceedings
in the Lecture Notes in Computer Science series and for supporting the best paper
presentation awards. We thank the EasyChair conference management system, which
effectively handled the entire process.

February 2024 Subrahmanyam Kalyanasundaram
Anil Maheshwari
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Total Coloring Conjecture and Classification Problem

B. S. Panda

Department of Mathematics, Indian Institute of Technology Delhi,
New Delhi 110016, India

bspanda@maths.iitd.ac.in

A graph G = (V ,E) is said to have a total coloring if the elements of V (G) ∪ E(G)

are colored so that: adjacent vertices receive different colors; adjacent edges receive
different colors; and if edge e is incident to vertex v then e and v receive different
colors. The total chromatic number χ ′′(G) is the least number of colors needed to totally
color G. The Total Coloring Conjecture (see [1,4]) which claims that for any graph
G,Δ(G) + 1 ≤ χ ′′(G) ≤ Δ(G) + 2, where Δ(G) is the maximum degree of G is
one of the important open problems that has driven the research in total coloring of
graphs. This conjecture has been proved to be true for various graph classes but it is
still open. A natural and well-studied problem for the graphs for which the total coloring
conjecture hold is the classification of graphs according to their total chromatic numbers.
If χ ′′(G) = Δ(G) + 1, then G is said to be of Type 1 and if χ ′′(G) = Δ(G) + 2, G
is said to be of Type 2. The classification problem is open for various classes of graphs
for which the total coloring conjecture has been verified to hold true. One such class
is complete multipartite graphs. The complete p-partite graph K = K[V1, . . . ,Vp] is
the simple graph with vertex set V (K) = ∪p

i=1Vi (each set Vi is called a part), where
Vi ∩ Vj = ∅ for i �= j, in which two vertices are adjacent if and only if they belong to
different parts of K . If the names of the vertex sets are unimportant then K is simply
referred to as K(r1, . . . , rp), where |Vi| = ri for 1 ≤ i ≤ p.

The graphK is of sufficient complexity that settling the values of its graph parameters
is often a challenge. Finding the chromatic index χ ′(K) is a typical example. Of course,
the classic result of Vizing [4] shows that χ ′(G) is Δ(G) or Δ(G) + 1, thereby giving
rise to the classification of whether a graph is Class 1 or Class 2, respectively. It was
finally shown in 1992 that K is a Class 2 graph if and only if it is overfull [5] (A graph
G = (V ,E) is overful if |E| > Δ(G)� n

2	). Bermond settled the type of K when it is
regular [2]. Yap [7] proved that χ ′′(K) ≤ Δ + 2, and Chew and Yap [3] showed that if
K has an odd number of vertices then it is of Type 1. It has been conjectured [6] that
the total chromatic number χ ′′(K) of the complete p-partite graph K = K(r1, . . . , rp)
is Δ(K) + 1 if and only if K �= Kr,r and if K has an even number of vertices then
def (K) = �v∈V (K)(Δ(K) − dK (v)) is at least the number of parts of odd size. This
conjecture is still open.

In this talk, we will discuss the progress made towards resolving the total coloring
conjecture and the classification problem for some graph classes for which the total
coloring conjecture holds true.
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Two Heuristic Approaches for Some Special Colorings
of Graphs

Iztok Peterin

Faculty of Electrical Engineering and Computer Science,
University of Maribor, Maribor, Slovenia

iztok.peterin@um.si

LetG be a graph. Amapping c : V (G) → {1, . . . , k} is a (proper) coloring if c(u) �= c(v)
for every uv ∈ E(G). A vertex with all the colors in its closed neighborhood is called a
b-vertex. Set Vi = {v ∈ V (G) : c(v) = i} is the i-th color class for every i ∈ {1, . . . , k}.
The chromatic number χ(G) ofG is the minimum number of colors in a proper coloring.
It is well known that determining χ(G) is an NP-hard problem which yields a space for
heuristic approach to get an approximate value for χ(G). Probably two most known
approaches are via greedy coloring and b-coloring. For a greedy coloring, one assigns
to an uncolored vertex the minimum color not present in its open neighborhood. On the
other hand we try to reduce the number of colors in a given coloring by local re-colorings
of all vertices of one color to get a b-coloring. This is possible whenever there exists a
color class without a b-vertex. By the use of heuristics is desired to know the worst case
scenario that can happen.Bothmentionedmethods arewell studied from this perspective:
the Grundy chromatic number Γ (G) for the greedy approach and b-chromatic number
χb(G) for b-colorings.

A special coloring is a coloring with some additional conditions. There are numerous
special colorings and let us mentioned three of them. A coloring is acyclic if any two
color classes Vi ∪ Vj induces a forest, i.e. there are no cycles with two colors. The
minimum number of colors in an acyclic coloring is acyclic chromatic number A(G) of
G. A star coloring is a coloring where the union of any two color classes Vi ∪Vj induces
a family of stars. The minimum number of colors in a star coloring is the star chromatic
number S(G) of G. A packing coloring is a k-coloring where d(u, v) > i for any two
different vertices u, v ∈ Vi for any i ∈ {1, . . . , k}. The packing chromatic number χρ(G)

is the minimum number of colors in a packing coloring of G.
It seems that not many heuristic approaches for special colorings are known in the

literature. Therefore we started awide project to introduce some of them based on greedy
and b-coloring approach.We introduce acyclic b-chromatic numberAb(G) [1,2], Grundy
acyclic chromatic number Γa(G) [5], star b-chromatic number Sb(G) [3] and Grundy
packing chromatic number Γp(G) [4]. We present several properties for them, derive
diverse bounds, give some exact results and pose several questions about them.



xvi I. Peterin

References

1. Anholcer, M., Cichacz, S., Peterin, I.: On b-acyclic chromatic number of a graph,
Comput. Appl. Math. 42(21), 20 (2023)

2. Anholcer,M., Cichacz, S., Peterin, I.: On acyclic b-chromatic number of cubic graphs,
in preparation
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Random Deselection

Saket Saurabh

Institute of Mathematical Sciences, HBNI, Chennai 600113, India
saket@imsc.res.in

In most randomized algorithms, we select an object that belongs to the solution. In
this talk, we will survey some recent algorithms in which we will select an object
that does not belong to the solution, which we will call the method of deselection,
and exploit it to design good algorithms. In particular, we will also discuss a recent
2-approximation algorithm for Feedback Vertex Set in Tournaments that is based on
picking a vertex at random and declaring it to not be part of the solution. In the second
part, using the deselectionmethodology, wewill give a framework to design exponential-
time approximation schemes for basic graph partitioning problems such as k-way cut,
Multiway Cut, Steiner k-cut and Multicut, where the goal is to minimize the
number of edges going across the parts.



Contents

Algorithms and Complexity

Consecutive Occurrences with Distance Constraints . . . . . . . . . . . . . . . . . . . . . . . . 3
Waseem Akram and Sanjeev Saxena

Parameterized Aspects of Distinct Kemeny Rank Aggregation . . . . . . . . . . . . . . . 14
Koustav De, Harshil Mittal, Palash Dey, and Neeldhara Misra

Monitoring Edge-Geodetic Sets in Graphs: Extremal Graphs, Bounds,
Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Florent Foucaud, Pierre-Marie Marcille, Zin Mar Myint,
R. B. Sandeep, Sagnik Sen, and S. Taruni

Distance-2-Dispersion with Termination by a Strong Team . . . . . . . . . . . . . . . . . . 44
Barun Gorain, Tanvir Kaur, and Kaushik Mondal

On Query Complexity Measures and Their Relations for Symmetric
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Rajat Mittal, Sanjay S. Nair, and Sunayana Patro

Computational Geometry

Growth Rate of the Number of Empty Triangles in the Plane . . . . . . . . . . . . . . . . . 77
Bhaswar B. Bhattacharya, Sandip Das, Sk. Samim Islam, and Saumya Sen

Geometric Covering Number: Covering Points with Curves . . . . . . . . . . . . . . . . . . 88
Arijit Bishnu, Mathew Francis, and Pritam Majumder

Improved Algorithms for Minimum-Membership Geometric Set Cover . . . . . . . . 103
Sathish Govindarajan and Siddhartha Sarkar

Semi-total Domination in Unit Disk Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Sasmita Rout and Gautam Kumar Das

Discrete Applied Mathematics

An Efficient Interior Point Method for Linear Optimization Using
Modified Newton Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Sajad Fathi Hafshejani, Daya Gaur, and Robert Benkoczi



xx Contents

Unique Least Common Ancestors and Clusters in Directed Acyclic Graphs . . . . 148
Ameera Vaheeda Shanavas, Manoj Changat, Marc Hellmuth,
and Peter F. Stadler

The Frobenius Problem for the Proth Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Pranjal Srivastava and Dhara Thakkar

Graph Algorithms

Eternal Connected Vertex Cover Problem in Graphs: Complexity
and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Kaustav Paul and Arti Pandey

Impact of Diameter and Convex Ordering for Hamiltonicity
and Domination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

R. Mahendra Kumar and N. Sadagopan

On Star Partition of Split Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
D. Divya and S. Vijayakumar

Star Covers and Star Partitions of Cographs and Butterfly-free Graphs . . . . . . . . 224
Joyashree Mondal and S. Vijayakumar

Open Packing in H-free Graphs and Subclasses of Split Graphs . . . . . . . . . . . . . . 239
M. A. Shalu and V. K. Kirubakaran

Graph Theory

Location-Domination Type Problems Under the Mycielski Construction . . . . . . . 255
Silvia M. Bianchi, Dipayan Chakraborty, Yanina Lucarini,
and Annegret K. Wagler

On Total Chromatic Number of Complete Multipartite Graphs . . . . . . . . . . . . . . . 270
Aseem Dalal and B. S. Panda

The Weak-Toll Function of a Graph: Axiomatic Characterizations
and First-Order Non-definability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Lekshmi Kamal K. Sheela, Manoj Changat, and Jeny Jacob

Total Coloring of Some Graph Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
T. Kavaskar and Sreelakshmi Sukumaran



Contents xxi

Star Colouring of Regular Graphs Meets Weaving and Line Graphs . . . . . . . . . . . 313
M. A. Shalu and Cyriac Antony

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329



Algorithms and Complexity



Consecutive Occurrences with Distance
Constraints

Waseem Akram(B) and Sanjeev Saxena

Department of Computer Science and Engineering, Indian Institute of Technology,
Kanpur, Kanpur 208 016, India

{akram,ssax}@iitk.ac.in

Abstract. A consecutive occurrence of a pattern P [1 : m] in a text
T [1 : n] is a pair (i, j), with i < j, of indices in T such that P occurs
at i and j, but not at any index between them. We give deterministic
solutions to the following two problems using simple and classical data
structures.

The first problem is to preprocess the text T so that one can efficiently
answer bounded gap queries: “given a pattern P and a range [α, β] such
that 1 ≤ α ≤ β ≤ n, report all the consecutive occurrences (i, j) of
the pattern P in the text T with distance j − i ∈ [α, β]”. We present
an O(n log n)-space data structure that supports bounded gap queries in
O(m+logα+#output)-time. The time needed to build the data structure
is O(n2). Moreover, the query time can be improved to O(m+#output)
if α or β is known at the time of preprocessing.

The second problem is the string indexing for top-k close consecutive
occurrences problem, which asks to preprocess the input text T [1 : n] so
that one can quickly answer top-k queries: “given an integer k > 0 and a
pattern P , report the k closest consecutive occurrences of P in T ”. Using
the same data structure mentioned above, we can answer a top-k query
in O(m +#output)-time.

Keywords: Pattern Matching · Segment Intersection · Data
Structures · Algorithms

1 Introduction

The pattern matching problem is a fundamental problem in text processing [1].
The problem asks to preprocess a given text T [1 : n] so that all the occurrences
of a pattern P [1 : m] in the text T can be reported efficiently [1,2]. An index i of
the string T is said to be an occurrence of a string P [1 : m] if P [j] = T [i+ j − 1]
for all 1 ≤ j ≤ m. A pair (i, j), i < j, of indices is said to be a consecutive
occurrence of P in T if i and j are occurrences of P , and P has no occurrence
between i and j. The distance of a consecutive occurrence (i, j) is defined as
j − i.

In this paper, we study two natural variants of the pattern matching problem.
The first problem we study is the string indexing for top-k close consecutive
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Kalyanasundaram and A. Maheshwari (Eds.): CALDAM 2024, LNCS 14508, pp. 3–13, 2024.
https://doi.org/10.1007/978-3-031-52213-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52213-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-52213-0_1
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occurrence (called SITCCO in [3]). In this problem, we want to preprocess the
text T so that subsequent queries of the following type can answered efficiently.

top-k query: given a pattern P and an integer k > 0, report the k
consecutive occurrences of the pattern P in the text T that are closest.

Bille et al. [3] introduced the problem and solved it using a partially persistent
data structure in O(n log n) space and O(log n + k) query time. We present a
solution that uses simpler and classical data structures and achieves the same
space and time bounds.

The other problem we study is to preprocess the text T into an efficient
data structure so that subsequent queries of the following type can be answered
quickly.

bounded-gap query: given a pattern P and two real numbers α and β
with 0 ≤ α ≤ β, report all the consecutive occurrences (i, j) of pattern P
in text T with distance j − i ∈ [α, β].

Navarro and Thankachan [4] introduced the problem and gave a solution with
O(n log n) space and O(log n+#output) query time. We give a solution that takes
O(n log n) space and O(m+logα+#output) time. Our solution is fully determin-
istic and uses simpler data structures compared to Navarro and Thankachan’s
solution [4]. Moreover, if one of the endpoints (α or β) of query ranges is
known at the time of indexing, then we can improve the query time bound
to O(m +#output).

1.1 Previous and Related Works

Bille et al. [3] investigated the top-k query problem and gave an O(n log n)
space solution with optimal O(m+#output) query time. They transformed the
problem into a geometric problem, namely, the orthogonal segment intersection
problem, which they solved using a persistent linked list data structure. They
also presented an O(n

ε ) space data structure that supports queries in O(m+k1+ε)
time, where ε is a constant in (0, 1].

Navarro and Thankachan [4] solved the bounded gap query problem and
gave an O(n log n) space solution with optimal O(m + #output) query time.
To deal with query patterns of length more than log log n, they transformed
the problem into the orthogonal segment intersection problem, for which they
employed a van Emde Boas tree-based data structure. For query patterns with
length at most log log n, a 1-d range reporting data structure based on hash
functions is used. Recently, Bille et al. [5] studied a more general problem where
the goal is to preprocess T so that, given query patterns P1 and P2 and a range
[α, β], all the consecutive occurrences of pairs of P1 and P2 with distance in the
range [α, β] can be quickly reported. They gave an Õ(n) space solution with
Õ(|P1| + |P2| + n2/3occ1/3) query time, where occ is the output size. The Õ
notation hides the logarithmic factors.

The non-overlapping indexing is a related problem where the goal is to pre-
process the text T so that all non-overlapping occurrences of a query pattern P
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can be found efficiently. Two occurrences of P in the text T are said to be non-
overlapping if they are separated by at least |P | characters. Cohen and Porat
[6] gave an optimal O(m + #output) time solution that uses O(n) word space.
In their solution, the suffix tree for T is augmented with O(n) space structure.
Ganguly et al. [7] provided a simpler, more space-efficient solution. They gave
an algorithm that takes O(m +#output) time to answer a query using a suffix
tree only; no augmentation of the suffix tree is required.

1.2 Preliminaries

The suffix tree is a classical data structure in string processing [1,8,9]. The
suffix tree built for a given string stores all the suffixes of the string as their keys
and positions in the string as their values. Each node, except the leaves, has
at least two children. Each edge is labeled with a non-empty substring; no two
edges starting out of a node can have labels beginning with the same character.
The number of leaves in the tree equals the string length; each leaf corresponds
to a unique suffix. Concatenating edge labels on a root-to-leaf path gives the
corresponding suffix of the string. The suffix tree can be built in O(n) time
and space [1], where n is the length (the number of characters) of the string.
Many string operations can efficiently be implemented using the suffix tree data
structure, e.g., substring check, finding the longest repeated substring, building
suffix array, and computing the longest common substring [9].

The suffix array for a text T [1 : n] is an array, denoted by SA[1 : n], that
stores the indices of lexicographically ordered suffixes of T . In particular, SA[i]
stores the index of the ith lexicographically smallest suffix of T .

A heavy path of a tree is a root-to-leaf path in which each node has a size no
smaller than the size of any of its siblings (the size of a node is the number of
nodes in the subtree rooted at that node). Heavy path decomposition is a process
of decomposing a tree into heavy paths. First, we find a heavy path by starting
from the tree’s root and choosing a child with the maximum size at each level.
We follow the same procedure recursively for each subtree rooted at a node that
is not on the heavy path, but its parent node is (on the heavy path). As a result,
a collection of (disjoint) heavy paths is obtained [10]. Some of its properties are:

1. each node v belongs to exactly one heavy path.
2. any path from the root to a leaf can pass through at most log n heavy paths.
3. The number of heavy paths equals the number of leaves in the tree.

The second property follows from the following result due to Sleator and Tarjan
[10].

Lemma 1. The number of heavy paths intersected by any root-to-leaf path is at
most log n, where n is the number of leaves in the tree.

The orthogonal segment intersection problem asks to preprocess a given set of
horizontal segments such that whenever a vertical segment comes as a query,
we can efficiently report all the horizontal segments intersected by the vertical
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segment. Chazelle [11] gave a linear space data structure that can answer a query
in O(logN + #output), where N is the number of horizontal segments. In the
preprocessing phase, an orthogonal subdivision is built using the endpoints of
the horizontal segments, and then it is processed for point location. Given a
vertical segment, the face (or region) containing the lower endpoint of the query
segment is computed using a point location query. Then, the output segments
are reported one by one in the non-decreasing order of their y-coordinates while
moving toward the upper endpoint along the vertical segment. Thus, the data
structure can be used to report the k horizontal segments with the smallest y-
coordinates that are intersected by the query segment in time O(logN + k) (for
details, see Sect. 4 in [11]).

1.3 Notations

Let T [1 : n] and P [1 : m] be the text and pattern strings respectively. We denote
by T [i] the ith character from the start of T [1 : n]. For any two indices i and j
with i ≤ j, the contiguous subsequence of characters T [i], T [i + 1], ..., T [j] is
called a substring, denoted by T [i : j]. A substring of the form T [1 : i] is called
a prefix, and a substring of the form T [i : n] is called a suffix of the string T .
We denote by |S| the length (the number of characters) of a string S.

Let T denote the suffix tree built for the text T [1 : n] with the property
that the children of each non-leaf node are sorted by the first characters of their
edge labels. Note that ith leftmost leaf in T , denoted by li, corresponds to the
ith lexicographically smallest suffix of text T . We denote by path(u) the string
obtained by concatenating the edge labels on the path from the root to node u.
We use locus(P ) to denote the highest node u ∈ T such that P is a prefix of
path(u). The lowest common ancestor of any two nodes u and v is denoted by
lca(u, v).

Recall that in a heavy path decomposition, each heavy path contains exactly
one leaf node. The heavy path containing the leaf li is called ith heavy path and
is denoted by the number i. We use apex(h) to represent the highest node in
the heavy path h. For a node v ∈ T , hp(v) denotes the heavy path containing v.
For each heavy path i in the decomposition, H(i) is the set of all heavy paths
h such that the parent of apex(h) is on the ith heavy path. Formally, as defined
in [4],

H(i) = {j : hp(lca(li, lj)) = i}
By Lemma1, a heavy path can contribute to at most log n such sets, which
implies that

∑n
i=1 |H(i)| = O(n log n).

2 Algorithms

Navarro et al. [4] and Bille et al. [3] solved the bounded gap query problem and
the top-k query problem, respectively, by transforming them into the orthogonal
segment intersection problem. Using similar techniques, we build a data structure
consisting of simple textbook data structures. The data structure supports both
(top-k and bounded gap) types of queries.
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2.1 Data Structure

We build a suffix tree T for the given text T [1 : n] [1]. Using the method of
Sleator and Tarjan [10], we decompose the tree T into a collection of n heavy
paths. As in [4], we define a set of horizontal segments for each heavy path h as
follows.

For each j ∈ H(h), let Pj = path(lca(lj , lh)) i.e. the string corresponding
to the lowest common ancestor of jth and hth leaves from the left. Let a
be the occurrence of Pj just before SA[j] and b be the occurrence of Pj

just after SA[j]. Two horizontal segments corresponding to j are created,
provided a and b exist.
1. Let P

′
j be the smallest non-empty prefix of Pj that does not have any

occurrence in the index range [a+1, SA[j]−1]. We create a horizontal
segment whose y-coordinate is SA[j]− a and x-coordinates are in the
range [|P ′

j |, |Pj |]. Associate the pair (a, SA[j]) with the segment.
2. Let P

′′
j be the smallest non-empty prefix of Pj that does not have any

occurrence in the index range [SA[j]+1, b−1]. We create a horizontal
segment whose y-coordinate is b − SA[j] and x-coordinates are in the
range [|P ′′

j |, |Pj |]. Associate the pair (SA[j], b) with the segment.

The set of horizontal segments corresponding to heavy path h is represented
by Ih (as in [4]). An algorithm for computing the horizontal segments for every
heavy path is described in Sect. 3.

For each heavy path h in the decomposition, we preprocess the set Ih of hori-
zontal segments for the orthogonal segment intersection queries using Chazelle’s
method [11]. We denote the data structure for Ih by Dh. For each node u ∈ T
with |path(u)| ≤ log n, we store the consecutive occurrences of path(u) in a linear
list D(u) in the non-decreasing order of their distances. Our final data structure
consists of the suffix tree T augmented with lists D(u) and the structure Dh for
each heavy path h in the decomposition.

Lemma 2. The data structure uses O(n log n) space.

Proof. The space used by suffix tree T is O(n). For each j ∈ H(h), at most, two
horizontal line segments are being created. As

∑n
i=1 |H(i)| ≤ n log n, the total

number of horizontal segments created for all heavy paths will be O(n log n).
Each edge label in the tree T consists of at least one character, so the level

of a node u with |path(u)| ≤ log n can be at most log n. The subtrees rooted at
any two nodes of the same level in T have no leaves (occurrences) in common,
so the space used to store occurrences at a particular level is O(n). The total
space requirement for all log n levels will be O(n log n). ��

Navarro and Thankachan [4] have shown the following (See Lemma 3 in [4]).

Lemma 3. Let P [1 : m] and [α, β] be the input parameters of a query and let
h = hp(locus(P )). Then, the set of pairs associated with all those horizontal
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segments in Ih, which are stabbed by the vertical segment m × [α, β] (i.e., the
segment connecting the points (m,α) and (m,β)) forms the output to the bounded
gap query problem.

We have the following Lemma for the top-k query problem.

Lemma 4. Given a pattern P [1 : m] and an integer k > 0 as query parameters,
the set of pairs associated with the k horizontal segments in Ih with smallest
y-coordinates that are intersected by the vertical segment m × (−∞,∞) forms
the output to the top-k query problem. Here, h = hp(locus(P )).

Proof. Let (i, j) be one of the k closest consecutive occurrences of pattern P in
text T , and (x1, x2, y) be the horizontal segment corresponding to (i, j). Let u =
locus(P ). Since the pair (i, j) is a consecutive occurrence of pattern P , so m =
|P | ∈ [x1, x2]. The y-coordinate of a horizontal segment represents the distance
of the corresponding consecutive occurrence. The segment (x1, x2, y) corresponds
to the pair (i, j), which is among the k closest consecutive occurrences of P , so
it would be among the first k horizontal segments that are intersected by the
vertical ray emanating from point (m,−∞).

Let (x′
1, x

′
2, y

′) be one of the first k horizontal segments intersected by the
vertical ray emanating from the point (m,−∞). We need to show that pair
(i′, j′) associated with the segment (x′

1, x
′
2, y

′) is among the k closest consecutive
occurrences of P . Since the ray intersects the segment m ∈ [x′

1, x
′
2], in other

words, the (i′, j′) belongs to the set of consecutive occurrences of P in T . Since
the segment is one of the first k segments intersected by the ray and the y-
coordinate of a segment represents the distance of the corresponding consecutive
occurrence, the pair (i′, j′) is one of the k closest consecutive occurrences of
pattern P in text T . ��

2.2 Answering Queries

Top-k Query : Let pattern P [1 : m] and integer k > 0 be the query parameters.
We first compute locus(P ) in suffix tree T . Let u = locus(P ) and h = hp(u).
If the pattern length m is not more than log n, we simply report the first k
consecutive occurrences from the sorted list D(u). Otherwise (i.e., m > log n),
we query the structure Dh with the vertical segment sv : m×(−∞,∞) and return
only the first k horizontal segments, if they exist, intersected by the segment sv

as we move from the lower endpoint (m,−∞) along the segment sv. We report
the consecutive occurrence associated with each returned segment.

Computing locus(P ) takes O(m) time. For the case, m ≤ log n, the additional
time spent reporting the output is O(k). So, the query time, in this case, is
O(m + k). When m > log n, we spend additional O(log n + k) time to compute
the output using the structure Dh. In this case, the time needed to answer the
query is also O(m+k); the log factor is absorbed by the pattern length m. Thus,
a top-k query takes O(m + k) time.

Bounded-Gap Query : Let pattern P [1 : m] and real numbers α and β with
0 ≤ α ≤ β be the query parameters. Again, we first compute locus(P ), say it
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is the node u. If the pattern length m is no more than log n, we compute the
position of value α in the sorted list D(u) using an exponential search [12]. From
the computed position in D(u), we start reporting the consecutive occurrences
while moving down in the list and stop as soon as a consecutive occurrence with
a distance greater than β is found. When m > log n, we query the structure
Dh with the vertical segment m × [α, β]. We report the consecutive occurrences
associated with the returned horizontal segments.

We spend O(m) time to compute locus(P ). For the case m > log n, additional
O(log n+k) time is used for a segment intersection query to the structure Dh. As
m > log n, the query time, in this case, will be O(m+k). For the other case m ≤
log n, we spend additional O(logα + k) time; O(logα) time for an exponential
search and O(k) time for reporting the consecutive occurrences. Finding the
position of α in the list D(u) using an exponential search will take O(log r)
time, where r is the rank of α in the list [12]. Since distances of consecutive
occurrences are integer values from the range [1, n − 1], so r ≤ α. Therefore,
the exponential search takes O(logα) time. Thus, the time spent to answer the
query when m ≤ log n is O(m + logα + k).

The total query time is dominated by the query time for the case m ≤ log n,
which is O(m + logα + k). We have the following theorem.

Theorem 1. We can preprocess a string T of length n into an O(n log n) space
data structure so that, given string P of length m and a positive integer k, we can
report the k consecutive occurrences of P in T that are closest in O(m+k) time.
If two real numbers α and β with 0 ≤ α ≤ β come as query parameters along
with P , the data structure can be used to report all the consecutive occurrences
of P in T with distance in the range [α, β] in O(m + logα +#output) time.

If one of the endpoints of query ranges (α or β) is known at the time of indexing,
the solution can be modified so that queries can be answered in optimal (m+k)
time. Suppose α is given along with the text T [1 : n] at the time of indexing. In
each node u in the suffix tree T with |path(u)| ≤ log n, we compute the position
of α in the structure D(u) in the preprocessing phase to save logα factor in the
query time. Thus, the query time will be O(m + k).

Corollary 1. We can preprocess a text T [1 : n] and an integer α ≥ 0 so that,
given a query pattern P [1 : m] and an integer β ≥ α, all the consecutive occur-
rences of P in T can be reported in (m + #output) time. The space used is
O(n log n).

Bille et al. [3] considered this special case and solved it using O(n
ε ) space and

O(m + k1+ε) time.

3 Computation of Horizontal Segments

In this section, we describe an algorithm to compute the horizontal segments cor-
responding to every heavy path. The algorithm takes O(n2) time and O(n log n)
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space. The algorithm follows an approach that is very similar to the plane sweep
technique [13]. We use notations of Sect. 2.

The level of a node v ∈ T is defined as the number of edges on the path
from root to node v. Equivalently, level(root) = 0 and level(v) = level(u) + 1
for every other node v, where u is the parent of v. We compute the level of each
node in the suffix tree T using the level order traversal. We decompose the tree
T using the heavy path decomposition [10]. The apex(h) of every heavy path h
stores a pointer to its parent in T .

We process the nodes of the suffix tree T in a bottom-up fashion where nodes
at higher levels are processed first. In other words, the nodes at level i will be
processed before any node of level i−1. Without loss of generality, we process the
nodes at a particular level in the left-to-right order. After processing a node on
a heavy path h, some (possibly zero) new horizontal segment(s) corresponding
to h gets created.

While processing the nodes of a particular level, we maintain a doubly linked
list for each heavy path h that has a node v on the current level. The list
corresponding to h after processing a node v on h, denoted by Lh(v), stores
the occurrences of path(v) in the text order (i.e., the ith node from the start of
the list stores the ith occurrence in the text order). Note that the occurrences
corresponding to two consecutive nodes in Lh(v) form a consecutive occurrence
of path(v). We maintain two global lookup tables LT [1 : n] and LT−1[1 : n]
that maintain information about consecutive occurrences: Let v ∈ h be the node
being processed, and w be the child of v on h. If (i, j) is a consecutive occurrence
of path(v) but not of path(w), then LT [i] stores the tuple (j, h, v) and LT−1[j]
stores the value i. We initialize LT [i] ← φ and LT−1[i] ← −1, for every i ∈ [1, n],
to indicate that the lists are initially empty.

Let l denote the number of levels in the tree T . For each level i ∈ {l, l −
1, ..., 2, 1}, in order, we consider the nodes of level i in the left-to-right order. Let
u be the current node being processed, and let h′ = hp(u). For each child v (of
node u) which is not on the path h′, we create a horizontal segment for every
consecutive occurrence of path(v) using the list Lh(v), where h = hp(v). See
Fig. 1. Note that we have Lh(v) as the node v has already been processed. Let i
and j correspond to two consecutive nodes in the list Lh(v). If LT [i] = (j, h, w),
we add the horizontal segment [|path(v)|, |path(w)|]×(j−i) to set Ih. In addition,
we assign LT [i] ← φ and LT−1[j] ← −1 to indicate that these entries are now
empty. Finally, we merge the linked lists Lh(v) along with L′

h(w), where w is the
child of u on h′, and update the lookup tables accordingly. The resultant list is
L′

h(u), and the old (merged) lists become obsolete. While updating the lookup
tables, we create horizontal segments as follows.

We scan the merged linked list in left-to-right order. While scanning the list,
we update the lookup tables and create new horizontal segments. Let i and j
be the occurrences corresponding to the current consecutive pair of nodes in the
list L′

h(u).

– case 1: if both the occurrences i and j are not present in the list L(u), we
set T [i] ← (j, h′, u) and T−1[j] ← i.
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Fig. 1. Two heavy paths h and h′ such that apex(h) has its parent in path h′.

– case 2: if occurrence j is present in L(u) but not i, then two scenarios are
possible. If LT−1[j] is empty, then set LT [i] ← (j, h′, u) and LT−1[j] ← i.
Otherwise, let LT−1[j] = k and LT [k] = (j, h′, w). We first create the hor-
izontal segment [|path(u)|, |path(w)|] × (j − k) and add it to the set Ih′ . In
addition, we make the following assignments.

• LT [k] ← (i, h′, u) and LT−1[i] ← k
• LT [i] ← (j, h′, u) and LT−1[j] ← i

– case 3: if occurrence i is present in L(u) but not j, two scenarios are possible.
If LT [i] is empty, then set LT [i] ← (j, h′, u) and LT−1[j] ← i.
Otherwise, let LT [i] = (k, h′, w). We create the segment [|path(u)|, |path(w)|]
×(k − i) and add it to the set Ih′ . In addition, we make the following assign-
ments.

• LT [i] ← (j, h′, u) and LT−1[j] ← i
• LT [j] ← (k, h′, u) and LT−1[k] ← j

– case 4: When both the occurrences i and j are present in L(u), no action
will be taken.

Lemma 5. We can compute the horizontal segments corresponding to every
heavy path in O(n2) time and O(n log n) space.

Proof. As the number of leaves (i.e., occurrences) in the subtree rooted at a node
can not be more than n. The linked list corresponding to a heavy path consists
of at most n nodes (each corresponds to an occurrence). Recall that there are
n heavy paths resulting from the heavy path decomposition. Two sorted doubly
linked lists can be merged in time linear in the sum of their sizes, so merging
the linked lists of all the heavy paths will take O(n2) time in total. We scan the
merged list once to update the lookup tables and create horizontal segments due
to merging. Therefore, this task will also take total O(n2) time. So, the total
time to compute the horizontal segments for all the heavy paths is O(n2).
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We are maintaining two tables LT [ ] and LT−1[ ] over the algorithm, each of
size n. Observe that the sum of the number of leaves in the subtrees rooted at
the nodes of a particular level is precisely n. At any point during the algorithm,
we maintain linked lists only for those heavy paths with a node at the current
level. Thus, the space used by the algorithm to maintain the linked lists is O(n).
Total O(n log n) horizontal segments are created for all the heavy paths, so the
space complexity is dominated by the O(n log n) factor.

4 Conclusion

We study two variants of computing consecutive occurrences under different
constraints: (i) finding consecutive occurrences of a query pattern with distance
in a range and (ii) computing k consecutive occurrences of a query pattern
that are closest. We propose deterministic algorithms for solving these problems
using simple and classical data structures. After preprocessing the given text,
both queries can be answered efficiently.

We show that the required preprocessing could be done in O(n2) time and
O(n log n) space. We believe that the preprocessing time could be reduced.
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Abstract. The Kemeny method is one of the popular tools for rank aggrega-
tion. However, computing an optimal Kemeny ranking isNP-hard. Consequently,
the computational task of finding a Kemeny ranking has been studied under the
lens of parameterized complexity with respect to many parameters. We study the
parameterized complexity of the problem of computing all distinct Kemeny rank-
ings. We consider the target Kemeny score, number of candidates, average dis-
tance of input rankings, maximum range of any candidate, and unanimity width
as our parameters. For all these parameters, we already have FPT algorithms.
We find that any desirable number of Kemeny rankings can also be found with-
out substantial increase in running time. We also present FPT approximation
algorithms for Kemeny rank aggregation with respect to these parameters.

Keywords: Diversity · Voting · Kemeny · Kendall-Tau

1 Introduction

Aggregating individual ranking over a set of alternatives into one societal ranking is
a fundamental problem in social choice theory in particular and artificial intelligence
in general. Immediate examples of such applications include aggregating the output of
various search engines [14], recommender systems [23], etc. The Kemeny rank aggrega-
tion method is often the method of choice in such applications due to its many desirable
properties like Condorcet consistency that is electing the Condorcet winner (if it exists),
etc. A Condorcet winner is a candidate who defeats every other candidate in pairwise
election. The Kemeny method outputs a ranking R with minimum sum of dissatisfac-
tion of individual voters known as Kemeny score of R; the dissatisfaction of a voter
with ranking Q with respect to R is quantified as the number of pairs of candidates
that Q and R order differently [20]. This quantity is also called the Kendall-Tau dis-
tance between Q and R. A ranking with minimum Kemeny score is called the Kemeny
ranking.

The computational question of finding optimal Kemeny rankings is intractable in
very restricted settings (for instance, even with a constant number of voters). Therefore,
it has been well-studied from both approximation and parameterized perspectives. A
problem is said to be fixed-parameter tractable or FPT with respect to a parameter k if
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it admits an algorithm whose running time can be described as f(k) · nO(1) where the
input size is n, implying that the algorithm is efficient for instances where the parameter
is “small” [11]. For the Kemeny rank aggregation problem, the following parameters
(among others) have enjoyed attention in the literature:

– Range. The range of a candidate in a profile is the difference between its positions
in the votes which rank him/her the lowest and the highest [7]. The maximum and
average range of a profile is defined as, respectively, the maximum and average
ranges of individual candidates. Profiles which are “homogeneous”, i.e. where most
candidates are viewed somewhat similarly by the voters, are likely to have low values
for range, while a single polarizing candidate can skew the max range parameter
considerably.

– KT-distance. The average (respectively, maximum) KT distance is the average
(respectively, maximum) of the Kendall-Tau distances between all pairs of votes [7].
Recall that the KT distance between a pair of rankings is the number of pairs that
are ordered differently by the two rankings under consideration.

A pair of candidates are said to be unanimous with respect to a voting profile if all
votes rank them in the same relative order. Consider the following “unanimity graph”
associated with a profile P and defined as follows: every candidate is represented by a
vertex, and there is an edge between a pair of candidates if and only if they are unani-
mous with respect to the profile. We use GP to denote this graph. Note that the struc-
ture of the complement of this graph, denoted GP , carries information about candidates
about whom the voters are not unanimous in their opinion. In particular, for every pair
of candidates a and b that have an edge between them in the complement of the unanim-
ity graph, there is at least one voter who prefers a over b and at least one who prefers b
over a. Thus every edge signals a lack of consensus, and one could think of the number
of edges in this graph as a measure of the distance of the profile from an “automatic con-
sensus”, which is one that can be derived from the information about unanimous pairs
alone. Motivated by this view, we consider also the following structural parameter:

Unanimity Width. For an input voting profile P , we define a graph, called “unanimity
graph” or the comparability graph, on the set of candidates where we have an edge from
i to j if and only if every ranking in P puts i before j; we denote its complement by
GP . We call the pathwidth of GP the unanimity width of P [4] (refer to Sect. 2 for the
formal definition of pathwidth).

Our contribution concerns enumerating optimal Kemeny rankings. In recent times,
there is considerable research interest in finding a set of diverse optimal or near-optimal
solutions of an optimization problem. Indeed, it is often difficult to encode all aspects
of a complex system into a neat computational problem. In such scenarios, having a
diverse set of optimal solutions for a problem Γ allows the user to pick a solution which
meets other aspects which are not captured in Γ . In the context of rank aggregation,
such other external constraints may include gender fairness, demographic balance, etc.
For the Kemeny rank aggregation method, Arrighi et al. [5] present a parameterized
algorithm to output a set of diverse Kemeny rankings with respect to unanimity width
as the parameter.
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However, note that external requirements are often independent of the constraints in
the optimization problem, and consequently they may not be correlated with diversity
based on distance parameters. In particular, for useful externalities like gender fairness
or geographic balance—these features of the candidates may not have any relation with
their position in the voters’ rankings, and therefore, diversity between solutions may
not imply diversity within any of the solutions. This becomes particularly stark when
most near-optimal rankings do not meet the external requirements. Indeed, there is a
substantial literature [1,25] that considers the problem of accounting for these require-
ments explicitly, and studies trade-offs between optimality of solutions and the degree
to which demands of diversity can be met.

In this paper, we shift our focus from finding diverse solutions to finding as many
distinct solutions as possible. Enumerating solutions is a fundamental goal for any opti-
mization problem. The literature on counting optimal Kemeny rankings is arguably
limited considering that even finding one is hard in very restricted settings, and that
instances could have exponentially many rankings—which would be too expensive to
enumerate. Indeed, consider a profile that consists of two votes over m candidates,
where one vote ranks the candidates in lexicographic order and the other ranks the can-
didates in reverse lexicographic order. For this instance, every ranking is an optimal
ranking. However, note that real world preferences often have additional structure: for
example, profiles with an odd number of votes that are single-peaked [10] or single-
crossing [10] have unique optimal solutions. To address scenarios where the number of
optimal solutions is large, we allow the user to specify the number r of optimal solu-
tions that she wants the algorithm to output. In our problem called DISTINCT OPT
KEMENY RANKING AGGREGATION, the input is a set of rankings over a set of can-
didates and an integer r, and we need to output max{r, number of optimal solutions}
Kemeny rankings.

1.1 Our Contributions

Algorithms for Distinct Kemeny Rank Aggregation. The first parameter that we con-
sider is the optimal Kemeny score k, also called the standard parameter. Many appli-
cations of rank aggregation, for example, faculty hiring, etc. exhibit correlation among
the individual rankings—everyone in the committee may tend to prefer some candidate
with strong academic background than some other candidate with weak track record.
In such applications, the optimal Kemeny score k, average Kendall-Tau distance d
(a.k.a. Bubble sort distance) among input rankings, maximum range of the positions
of any candidate rmax, and unanimity width w will be small, and an FPT algorithm
becomes useful. We show that there is an algorithm for DISTINCT OPT KEMENY

RANKING AGGREGATION running in time O∗ (
2k

)
[Theorem 1]. We next consider

the number of candidates, m as the parameter and present an algorithm running in time
O∗ (

2mrO(1)
)
[Theorem 2] where r is the required number of solutions. For d and rmax,

we present algorithms with running time O∗(16d) and O∗ (32rmax) [Theorems 3 and 4]
respectively. Our last parameter is the unanimity width w which is the pathwidth of the
co-comparability graph of the unanimity order and we present an algorithm running in
time O∗ (

2O(w) · r
)
[Theorem 5].
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Some instances may have a few optimal solutions, but have many close-to-optimal
solutions. To address such cases, we study the DISTINCT APPROXIMATE KEMENY

RANKING AGGREGATION problem where the user gives a real number λ ≥ 1 as
input and looks for max{r, number of optimal solutions} rankings with Kemeny score
at most λ times the optimal Kemeny score. For this problem, we design algorithms with
running timeO∗ (

2λk
)
[Corollary 1],O∗ (

2mrO(1)
)
[Corollary 2] andO∗ (

16λd
)
[The-

orem 6].
We observe that the running time of all our algorithms are comparable with the

respective parameterized algorithms for the problem of finding one Kemeny ranking.
We note that this phenomenon is in sharp contrast with the diverse version of Kemeny
rank aggregation where we have an FPT algorithm only for unanimity width as the
parameter. To begin with, the algorithm, as presented in [4], cannot be used to find
only optimal solutions; it can find only approximately optimal solutions. However, one
can set the parameters of the algorithm in [4] to find all λ approximate rankings in
time O∗((w!(λ − 1)OPT)O(m!)) where OPT is the optimal Kemeny score of the input
rankings.

1.2 Related Work

Kemeny rule [20] shows us its most significant and popular mechanism for ranking
aggregation. However, Bartholdi et al. [6] have established that KEMENY SCORE is
NP-complete even if we apply the restriction of having only four input rankings [15].
Fixed-parameter algorithms for Kemeny voting rule have been proved to be an effective
and important area for research by Betzler et al. [7] considering structural parameter-
izations such as “number of candidates”, “solution size i.e. Kemeny Score”, “average
pairwise distance”, “maximum range”, “average range” of candidates in an election.
A multi-parametric algorithm for DIVERSE KEMENY RANK AGGREGATION over par-
tially ordered votes has been studied in [4]. A small error in the construction proof from
[15] has been rectified by Biedl et al. [8] and they have established the approximation
factor of 2 − 2/k, improving from the previous approximation factor of 2.

Further classification in more exact manner of the classical computational complex-
ity of Kemeny elections has been provided by Hemaspaandra et al. [19]. With respect
to the practical relevance of the computational hardness of the KEMENY SCORE,
polynomial-time approximation algorithms have been developed where a factor of 8/5
is seen in [26] and a factor of 11/7 is proved in [2]. Kenyon-Mathieu and Schudy [21]
proposed a polynomial-time approximation scheme (PTAS) for finding a Kemeny rank-
ing. However, their algorithm is not very useful in practice. There are quite a few works
which develop practical heuristics for this problem [9,12,24].

Polynomial time algorithms producing good solutions for rank aggregation rule is
a consequence of thorough computational studies [3,27]. Cornaz et al. [10] have estab-
lished polynomial time computability of the single-peaked and single-crossing widths
and have proposed new fixed-parameter tractability results for the computation of an
optimal ranking according to the Kemeny rule by following the results of Guo te al.
[16]. In social choice theory [6,22], the ideas related to diverse sets of solutions have
found tremendous applicability. The study in [28] introduced the (j, k)-Kemeny rule
which is a generalization of Kemeny’s voting rule that aggregates ballots containing
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weak orders with j indifference classes into a weak order with k indifference classes.
In social choice theory, different values of j and k yield various rules of the inter-
est of the community turning up as special cases. The minimum Kendall-Tau distance
between pairs of solutions has a nice analogy with min Hamming distance over all
pairs of solutions as shown in [17,18].

2 Preliminaries

For an integer �, we denote the set {1, . . . , �} by [�]. For two integers a, b, we denote the
set {i ∈ N : a ≤ i ≤ b} by [a, b]. Given two integer tuples (x1, . . . , x�) , (y1, . . . , y�) ∈
N

�, we say (x1, . . . , x�) >lex (y1, . . . , y�) if there exists an integer i ∈ [�] such that we
have (i) xj = yj for every j ∈ [i − 1], and (ii) xi > yi.

Let C be a set of candidates and Π = {π1, . . . , πn} a multi-set of n rankings
(complete orders) on C. For a ranking π and a candidate c let us define posπ(c) to
be | {c′ ∈ C : c′ �π c} |. We precisely define the range r(c) in a set of rankings Π to be

max
πi,πj∈Π

{
|posπi

(c) − posπj
(c) |

}
+1. We denote the set of all complete orders over C

by L(C). The Kemeny score of a ranking Q ∈ L(C) with respect to Π is

KemenyΠ(Q) =
n∑

i=1

dKT(Q, πi)

where dKT(·, ·) is the Kendall-Tau distance – the number of pairs of candidates whom
the linear orders order differently – between two linear orders, and NΠ(x � y) is the
number of linear orders in Π where x is preferred over y. A Kemeny ranking of Π is
a ranking Q which has the minimum KemenyΠ(Q); the score KemenyΠ(Q) is called
the optimal Kemeny score of Π .

We now define our problems formally. For a set of rankings Π , we denote the set of
(optimal) Kemeny rankings and rankings with Kemeny score at most some integer k for
Π respectively by K(Π) and K(Π, k), and the minimum Kemeny score by kOPT(Π).

Definition 1 (DISTINCT OPT KEMENY RANKING AGGREGATION). Given a set of
rankings (complete orders) Π over a set of candidates C and integer r, compute � =
min{r, |K(Π)|} distinct Kemeny rankings π1, . . . , π�. We denote an arbitrary instance
of it by (C,Π, r).

For a set of rankings Π over a set of candidates C, we say that a complete order π
respects unanimity order if we have x �π y whenever x � y for all �∈ Π .

Definition 2 (DISTINCT APPROXIMATE KEMENY RANKING AGGREGATION). Given
a set of ranking (complete order) Π over a set of candidates C, an approximation factor
λ ≥ 1, and integer r, compute � = min{r, |K(Π,λ · kOPT(Π))|} distinct rankings
π1, . . . , π� such that each ranking πi, i ∈ [�] respects unanimity order with respect to
Π and the Kemeny score of each ranking πi, i ∈ [�] is at most λ · kOPT(Π). We denote
an arbitrary instance of it by (C,Π, λ, r).
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Definition 3 (DISTINCT KEMENY RANKING AGGREGATION). Given a list of par-
tial votes Π over a set of candidates C, and integers k and r, compute � =
min{r, |K(Π, k)|} distinct rankings π1, . . . , π� such that the Kemeny score for each
ranking πi is at most k and each πi, i ∈ [�] respects unanimity order. We denote an
arbitrary instance of it by (C,Π, k, r).

We use O∗(·) to hide polynomial factors. That is, we denote O(f(k)poly(n)) as
O∗(f(k)) where n is the input size.

We define a path decomposition of a graph G = (V,E) by a tuple P = (Bi)i∈[t]

where each bag Bi ⊆ V , t is the number of bags in P and P satisfies the following addi-
tional constraints : (1)

⋃
i∈[t] Bi = V , (2) ∃i ∈ [t] such that u, v ∈ Bi for each (u, v) ∈

E and (3) Bi ∩ Bk ⊆ Bj for each i, j, k ∈ [t] satisfying i < j < k. The width of P
denoted by w (P) is defined as maxi∈[t] |Bi| − 1. The pathwidth of G is denoted by
pw (G) which is defined as the minimum width of a path decomposition of G.

3 Algorithms for DISTINCT KEMENY RANKING AGGREGATION

We start with an easy Turing reduction from DISTINCT OPT KEMENY RANKING

AGGREGATION to DISTINCT KEMENY RANKING AGGREGATION. In the interest of
space, we defer the proof of some of our results to [13]. They are marked �.

Observation 1. Suppose there exists an algorithm for DISTINCT KEMENY RANKING

AGGREGATION running in time O(f(m,n)) where m is the number of candidates and
n is the number of input votes. Then there exists an algorithm for DISTINCT OPT
KEMENY RANKING AGGREGATION running in time O(f(m,n) log(mn)).

Proof. We note that the optimal Kemeny score belongs to the set {0, 1, . . . , n
(
m
2

)
}.

To solve DISTINCT OPT KEMENY RANKING AGGREGATION, we perform a binary
search in the range from 0 to n

(
m
2

)
to find the smallest k such that the algorithm for

DISTINCT KEMENY RANKING AGGREGATION returns at least one ranking.

We now present a bounded search based FPT algorithm for DISTINCT KEMENY

RANKING AGGREGATION parameterized by the optimal Kemeny score. Hence, we
also have an FPT algorithm for DISTINCT OPT KEMENY RANKING AGGREGATION

parameterized by the optimal Kemeny score.

Theorem 1. Let k be the Kemeny score of a Kemeny ranking. There is an FPT algo-
rithm for DISTINCT KEMENY RANKING AGGREGATION parameterized by k which
runs in time O∗ (

2k
)
. Hence, we have an FPT algorithm for DISTINCT OPT KEMENY

RANKING AGGREGATION parameterized by kOPT which runs in time O∗ (
2kOPT

)
.

Proof. Due to Observation 1, it is enough to present an algorithm for DISTINCT

KEMENY RANKING AGGREGATION. We design an algorithm for a more general prob-
lem DISTINCT KEMENY RANKING AGGREGATION′ where every output ranking needs
to respect the relative order of some set of pair of candidates given as input. If the set of
pairs of candidates is empty, then the new problem is the same as DISTINCT KEMENY

RANKING AGGREGATION.
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Let (C,Π, k, r) be an arbitrary instance of DISTINCT KEMENY RANKING AGGRE-
GATION. We define X = {a � b : a, b ∈ C, every ranking in Π prefers a over b} to
be the unanimity order of Π . We find a solution of DISTINCT KEMENY RANKING

AGGREGATION′ instance (C,Π, k, r,X ). We now design a bounded search based algo-
rithm. We maintain a set S of solutions, which is initialized to the empty set. If every
pair of candidates belong to X and k ≥ 0, then we put the ranking induced by X in S.
If k < 0, then we discard this branch. Otherwise, we pick a pair (a, b) of candidates not
present in X , solve (C,Π, k−|{π ∈ Π : b � a in π}|, r, transitive closure of X ∪{a �
b}) and (C,Π, k −|{π ∈ Π : a � b in π}|, r, transitive closure of X ∪{b � a}) recur-
sively, and put solutions found in S. We note that, since (a, b) is not a unanimous order
of Π , the target Kemeny score k decreases by at least one on both the branches of the
search tree. Hence, the height of the search tree is at most k. Thus, the number of leaves
and nodes in the search tree are at most respectively 2k and 2 · 2k. After the search
terminates, we outputmin{r, |S|} rankings from S. If S remains empty set, report that
there is no ranking whose Kemeny score is at most k. The computation at each node
of the search tree (except the recursive calls) clearly takes a polynomial amount of
time. Hence, the runtime of our algorithm is O∗ (

2k
)
. The correctness of our algorithm

follows from the observation that every ranking R whose Kemeny score is at most k,
appears in a leaf node of the search tree of our algorithm.

Running the algorithm in Theorem 1 with target Kemeny score λk where k is the
optimal Kemeny score gives us the following result.

Corollary 1. There is an algorithm for DISTINCT APPROXIMATE KEMENY RANKING

AGGREGATION running in time O∗ (
2λk

)
parameterized by both λ and k.

We now consider the number of candidates as parameter and present a dynamic pro-
gramming based FPT algorithm for DISTINCT KEMENY RANKING AGGREGATION.

Theorem 2. There is an algorithm for DISTINCT KEMENY RANKING AGGREGA-
TION which runs in time O∗ (

2mrO(1)
)
. In particular, DISTINCT KEMENY RANKING

AGGREGATION and DISTINCT OPT KEMENY RANKING AGGREGATION are FPT
parameterized by the number of candidates since the number r of output rankings can
be at most m!.

Proof. Let (C,Π, k, r) be an arbitrary instance of DISTINCT KEMENY RANKING

AGGREGATION. We maintain a dynamic programming table T indexed by the set of all
possible non-empty subsets of C. For a subset S ⊆ C,S 
= ∅, the table entry T [S] stores
at most min{r, |S|!} distinct rankings on S which have the least Kemeny score when
the votes are restricted to S. Let us define κ = min{r, |S|!}. We initialize table T for the
trivial cases like T [S] = () when |S| = 0, T [S] = (the element from S) when |S| =
1 and T [S] = (x � y) when S = {x, y} and x � y has the least Kemeny score when
Π is restricted to {x, y} or T [S] = (x � y, y � x) when S = {x, y} and both x � y
and y � x have the least Kemeny score when Π is restricted to {x, y}. To update the
table entry T [S] for |S| ≥ 3, we include to that entry min{r, |S|!} rankings that have
the least Kemeny score (when the votes are restricted to S) among all rankings of the
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form c > π, where c is a candidate in S and π is a ranking stored in T [S \ {c}]. Updat-
ing each table entry takes at most O�(rO(1)) time. As there are 2m − 1 table entries,
the running time of our algorithm is at most O�

(
2mrO(1)

)
.

We now present the proof of correctness of our algorithm. Suppose we have S =
{c1, ..., c�} and c1 � ... � c� be a ranking in T [S]. Then c1 � ... � c� is a Kemeny
ranking if the votes in Π are restricted to S. But then c2 � ... � c� is a Kemeny ranking
if votes are restricted to S \ {c1}. If not, then suppose c′

2 � ... � c′
� be a ranking with

Kemeny score less than c2 � ... � c�. Then the Kemeny score of c1 � c′
2 � ... � c′

�

is less than the Kemeny score of c1 � c2 � ... � c� contradicting our assumption that
c1 � ... � c� is a Kemeny ranking when votes are restricted to S. Hence, the update
procedure of our dynamic programming algorithm is correct.

Corollary 2 follows from the algorithm presented in the proof of Theorem 2.

Corollary 2 (�). DISTINCT APPROXIMATE KEMENY RANKING AGGREGATION is
FPT parameterized by the number of candidates m.

Our next parameter is the “average pairwise distance (Kendall-Tau distance)” d of
the input rankings. We present a dynamic programming based FPT algorithm parame-
terized by d.

Theorem 3. Let d be the average KT-distance of an election (Π, C). There is an FPT
for DISTINCT OPT KEMENY RANKING AGGREGATION parameterized by d which
runs in time O�

(
16d

)
.

Proof. Let |C| = m, |Π| = n and average position of a candidate c ∈ C in Π
is defined as pavg (c) := 1

n ·
∑

v∈Π

v(c) where v(c) := | {c′ ∈ C : c′ � c in v ∈ Π} |.

Formally for an election (Π, C), d :=

∑

v∈Π

∑

w∈Π

dKT(v,w)

n·(n−1) . Following the proof of both
Lemma 6 and Lemma 7 from Betzler et al. [7], we have a set of candidates say
Pi := {c ∈ C | pavg(c) − d < i < pavg(c) + d} for each position i ∈ [m − 1]0 in an
optimal Kemeny Consensus and we know that |Pi| � 4d ∀i ∈ [m − 1]0. Our FPT
dynamic programming algorithm is an extension of the algorithm presented in Fig. 4.
of Sect. 6.4 of [7].

Let the subset of candidates that are forgotten at latest at position i, be denoted by
F (i) := Pi−1 \ Pi and the subset of candidates that are introduced for the first time at
position i be denoted by I(i) := Pi \ Pi−1. We maintain a three dimensional dynamic
programming table T indexed by ∀i ∈ [m − 1]0 ,∀ c ∈ Pi and ∀P ′

i ⊆ Pi \ {c} of
size at most O

(
16d · d · m

)
. We define the partial Kemeny Score pK-score(c,R) :=∑

c′∈R

∑

v∈Π

dR
v (c, c′) where dR

v (c, c′) := 0 if c �v c′ and dR
v (c, c′) := 1 otherwise and

R ⊆ C. At each table entry T (i, c, P ′
i ), we store a sequence of at most min (r, 4d)

number of partial Kemeny Scores sorted in non-decreasing order by considering and
iterating over the entries in T (i − 1, c′, (P ′

i ∪ F (i)) \ {c′}) ∀c′ ∈ P ′
i ∪ F (i) and we

store the tuple(
T (i−1, c′, (P ′

i ∪ F (i))\
{
c′}) + pK-score(c, (Pi ∪

⋃
i<j<m

I(j))\ (P ′
i ∪{c}))

)
c′∈P ′

i ∪F (i)
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in that table entry unlike storing only the minimum partial Kemeny Score at each table
entry. K-score of an election is the Kemeny Score of an optimal Kemeny ranking.

K-score(Π, C) =
m−2∑

i=0

pK-score(ci,Ri).

At each entry of the table candidate c takes position i and all of P ′
i take position

smaller than i. The initialization step is same as the algorithm presented in Fig. 4. of
Sect. 6.4 of [7] but the difference lies in the update step of that algorithm. Though we
are storing Kemeny score in each table entry, we can enumerate Kemeny ranking(s)
from them within asymptotic bound of our current run time by iteratively ordering the
candidate(s) for which we get minimum partial Kemeny Score in a particular table entry.
We Output first r number of optimal Kemeny rankings whose K-scores are stored in the
entry T (m − 1, c, Pm−1 \ {c}) where r � 4d � 4m2 << m!. Correctness of Lemma
8 of [7] ensures the correctness of our algorithm for generating at most min (r, 4d)
number of optimal Kemeny Rankings.

Updating each table entry takes time at most min(r, 4d) · (4d + nm logm) time.
Hence, the overall runtime is bounded above by O�

(
16d

)
.

We next consider the “maximum range” rmax of candidate positions in the input
rankings, as our parameter. We again present a dynamic programming based FPT algo-
rithm parameterized by rmax.

Theorem 4 (�). Let rmax be the maximum candidate position range of an elec-
tion (Π, C). There exists an FPT dynamic programming algorithm for DISTINCT

OPT KEMENY RANKING AGGREGATION parameterized by rmax which runs in time
O∗ (32rmax).

Our final parameter is the unanimity width of the input rankings. We present a
dynamic programming based FPT algorithm.

Theorem 5. DISTINCT OPT KEMENY RANK AGGREGATION admits an FPT algo-
rithm in the combined parameter unanimity width w and number of rankings r, which
runs in time O∗(2O(w) · r

)
.

Proof. The problem of finding a Kemeny consensus is known to admit an FPT algo-
rithm in the parameter w (Sect. 3, [5]). We adapt this algorithm to prove Theorem
5. Consider an instance (C,Π, r) of DISTINCT OPT KEMENY RANKING AGGRE-
GATION. Let m denote the number of candidates in C, and let n denote the num-
ber of voters in Π . For any candidates a, b ∈ C, let cost(a, b) denote the number of
voters in Π who prefer b over a. Note that for any linear ordering π of candidates,
KemenyΠ(π) =

∑
a,b∈C:a�b in π cost(a, b). Let ρ denote the unanimity order of Π . Let

Gρ denote the cocomparability graph of ρ. Using Lemma 3 of [4], let’s construct a nice
ρ-consistent path decomposition, say P = (B1, . . . , B2m), of Gρ of width w′ ≤ 5w+4
in time O

(
2O(w) · m

)
. For each 1 ≤ i ≤ 2m,

– Let forg(i) denote the set of candidates that have been forgotten up to ith bag. That
is, forg(i) =

(
B1 ∪ . . . ∪ Bi−1

)
\ Bi.

– For each candidate v ∈ Bi, let A(i, v) denote the cost incurred by the virtue of
placing all candidates of forg(i) before v. That is, A(i, v) =

∑

u∈forg(i)

cost(u, v).
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– For each candidate v ∈ Bi and each T ⊆ Bi \ {v}, let B(i, v, T ) denote the cost
incurred by the virtue of placing all candidates of T before v. That is, B(i, v, T ) =∑

u∈T

cost(u, v).

– For each T ⊆ Bi, let C(i, T ) be a set that consists of first min
(
r, |forg(i) 

T |!
)
orderings, along with their Kemeny scores, if all linear extensions of ρ on

forg(i)  T were to be sorted in ascending order of their Kemeny scores. That
is, C(i, T ) consists of the tuples (π1, k1), (π2, k2), . . ., where π1, π2, . . . are the first
min

(
r, |forg(i)T |!

)
orderings in the sorted order, and k1, k2, . . . are their respec-

tive Kemeny scores.

Recall that every Kemeny consensus extends ρ (Lemma 1, [7]). So, if all linear exten-
sions of ρ on C were to be sorted in ascending order of their Kemeny scores, then all
Kemeny consensuses would appear in the beginning. Thus, (C,Π, r) is a YES instance
if and only if C(2m,φ) contains r orderings of the same Kemeny score. Let’s use DP
to find all A(·, ·)’s, B(·, ·, ·)’s and C(·, ·)’s as follows:

– First, let’s compute and store A(i, ·)’s in a table for i = 1, . . . , 2m (in that order)
in time O

(
w′ · m · log(m · n)

)
as follows: We set A(1, u) = 0, where u denotes

the candidate introduced by B1. Now, consider i ≥ 2 and a candidate v ∈ Bi. Let’s
describe how to find A(i, v).
Introduce Node: Suppose that Bi introduces a candidate, say x. Note that
forg(i) = forg(i − 1). So, if v 
= x, we set A(i, v) = A(i − 1, v). Now, sup-
pose that v = x. Let’s show that cost(u, x) = 0 for all u ∈ forg(i). Consider
u ∈ forg(i). In P , u is forgotten before x is introduced. So, {u, x} 
∈ E(Gρ). That
is, u and x are comparable in ρ. Also, due to ρ-consistency of P , we have (x, u) 
∈ ρ.
Therefore, (u, x) ∈ ρ. That is, all voters in Π prefer u over x. So, cost(u, x) = 0.
Thus, we set A(i, x) = 0.
Forget Node: Suppose that Bi forgets a candidate, say x. Note that forg(i) =
forg(i − 1)  {x}. So, we set A(i, v) = A(i − 1, v) + cost(x, v).

– Next, let’s compute and store allB(·, ·, ·)’s in a table in timeO
(
w′·2w′ ·m·log(m·n)

)

as follows: Consider 1 ≤ i ≤ 2m and v ∈ Bi. We have B(i, v, φ) = 0. Let’s set
B(i, v, T ) for non-empty subsets T ⊆ Bi \ {v} (in ascending order of their sizes) as
B(i, v, T \ {u}) + cost(u, v), where u is an arbitrary candidate in T .

– Next, let’s compute and store C(i, ·)’s in a table in time O
(
w′ · 2w′ · m2 · r · log(m ·

n · r)
)
for i = 1, . . . , 2m (in that order) as follows: We set C(1, φ) = {(, 0)}

and C(1, {u}) = {(u, 0)}, where u denotes the candidate introduced by B1. Now,
consider i ≥ 2. Let’s describe how to find C(i, ·)’s.
Introduce node: Suppose that Bi introduces a candidate, say x. For each T ⊆ Bi

that does not contain x, we set C(i, T ) = C(i − 1, T ).
Now, let’s find C(i, T ) for all subsets T ⊆ Bi that contain x (in ascending order
of their sizes) as follows: First, let’s consider T = {x}. Recall that (u, x) ∈ ρ
for all u ∈ forg(i). So, x is the last candidate in all linear extensions of ρ on
forg(i)  {x}. Also, in any such ordering, the pairs of the form (u, x), where u ∈
forg(i), contribute 0 to Kemeny score. Thus, we put the tuples

(
π1 > x, s1

)
,
(
π2 >
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x, s2
)
, . . . in C(i, {x}), where (π1, s1), (π2, s2), . . . denote the tuples of C(i−1, φ),

and π1 > x, π2 > x, . . . denote the orderings obtained by appending x to π1, π2, . . .
respectively.
Now, let’s consider a subset T ⊆ Bi of size ≥ 2 that contains x. Let’s describe how
to find C(i, T ). Let Δ(i, T ) denote the set of all candidates c ∈ T such that c is not
unanimously preferred over any other candidate of forg(i)  T . That is, there is no
other candidate u ∈ forg(i) T such that (c, u) ∈ ρ. Recall that x appears after all
candidates of forg(i) in any linear extension of ρ on forg(i)T . So, it is clear that
in any such ordering, the last candidate (say y) belongs to Δ(i, T ). Moreover,

• The pairs of the form (u, y), where u ∈ forg(i), together contribute A(i, y) to
Kemeny score.

• The pairs of the form (u, y), where u ∈ T \ {y}, together contribute B(i, y, T \
{y}) to Kemeny score.

So, to find C(i, T ), let’s proceed as follows: We compute Δ(i, T ). For each possible
choice y ∈ Δ(i, T ) of the last candidate, let’s form a set, say Γ (y), that consists of
the following tuples:

•
(
πy
1 > y, sy

1 + A(i, y) + B
(
i, y, T \ {y}

))

•
(
πy
2 > y, sy

2 + A(i, y) + B
(
i, y, T \ {y}

))
and so on

where (πy
1 , sy

1), (π
y
2 , sy

2), . . . denote the tuples of C(i, T \ {y}), and πy
1 > y, πy

2 >
y, . . . denote the orderings obtained by appending y to πy

1 , πy
2 , . . . respectively.

Finally, let’s sort all tuples of
⊎

y∈Δ(i,T )

Γ (y) in ascending order of their Kemeny

scores, and put the first min
(
r, |forg(i)  T |!

)
of them in C(i, T ).

Forget node: Suppose that Bi forgets a candidate, say x. For each T ⊆ Bi, as
forg(i)  T = forg(i − 1) 

(
T  {x}

)
, we set C(i, T ) = C(i − 1, T  {x}).

This concludes the proof of Theorem 5.

Corollary 3. DISTINCT APPROXIMATE KEMENY RANKING AGGREGATION is FPT
in the combined parameter unanimity width w and number of rankings r.

Proof. Consider an instance DISTINCT APPROXIMATE KEMENY RANKING AGGRE-
GATION. As in the algorithm described in the proof of Theorem 5, we find all A(·, ·)’s,
B(·, ·, ·)’s and C(·, ·)’s. Note that (C,Π, λ, r) is a YES instance if and only if C(2m,φ)
contains r orderings, and the Kemeny score of the rth ordering is at most λ times the
Kemeny score of the first ordering. The overall running time of the algorithm is at most
O∗(2O(w) · r

)
. This proves Corollary 3.

Our last result is an FPT algorithm for DISTINCT APPROXIMATE KEMENY RANK-
ING AGGREGATION parameterized by the average Kendall-Tau distance d and the
approximation parameter λ. Here we aim to relate the position of a candidate c in a
λ-approximate ranking π, i.e. a ranking whose Kemeny Score denoted by K-score (π)
has value at most λ ·kOPT where kOPT denotes the optimal Kemeny Score, to its aver-
age position in the set of votes Π denoted by pavg(c).

Lemma 1. pavg(c) − λ · d ≤ π(c) ≤ pavg(c) + λ · d where π(c) denotes position of c
in π and d is average KT-distance.
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Proof. There can be two cases for a vote v ∈ Π .

Case 1. v(c) ≤ π(c)

In Case 1 there are π(c) − 1 candidates that appear before c in π. Note that at most
v(c) − 1 of them can appear before c in v. Hence, at least π(c) − v(c) of them must
appear after c in v. Thus, dKT (v, π) ≥ π(c) − v(c).

Case 2. v(c) > π(c)

Here in Case 2, we come up with dKT (v, π) ≥ v(c)− π(c) arguing similarly to Case 1.

K-score (π) =
∑

v∈Π

dKT(v, π)

=
∑

v∈Π:v(c)≤π(c)

dKT(v, π) +
∑

v∈Π:v(c)>π(c)

dKT(v, π)

≥
∑

v∈Π:
v(c)≤π(c)

(π(c) − v(c)) +
∑

v∈Π:
v(c)>π(c)

(v(c) − π(c)) [using Case 1 and Case 2]

(1)

Note that
∑

v∈Π:v(c)≤π(c)

(π(c) − v(c)) +
∑

v∈Π:v(c)>π(c)

(v(c) − π(c))

=
∑

v∈Π

v(c) − 2
∑

v∈Π:
v(c)≤π(c)

v(c) + π(c) · (2 · | {v ∈ Π : v(c) ≤ π(c)} | − n)

= n · pavg(c) − nπ(c) − 2
∑

v∈Π:
v(c)≤π(c)

v(c) + π(c) · (2 · | {v ∈ Π : v(c) ≤ π(c)} |)

≥ n (pavg(c) − π(c)) (2)

Similarly,

∑

v∈Π:v(c)≤π(c)

(π(c) − v(c)) +
∑

v∈Π:v(c)>π(c)

(v(c) − π(c))

= −
∑

v∈Π

v(c) + 2
∑

v∈Π:
v(c)>π(c)

v(c) + π(c) · (−2 · | {v ∈ Π : v(c) > π(c)} | + n)

= −n · pavg(c) + nπ(c) + 2
∑

v∈Π:
v(c)>π(c)

v(c) − π(c) · (2 · | {v ∈ Π : v(c) > π(c)} |)

≥ −n (pavg(c) − π(c)) (3)

Now let’s show that
K-score (π) ≤ λ · n · d (4)
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We have

d =

∑

v∈Π

∑

w∈Π

dKT (v, w)

n · (n − 1)
≥

n ·
∑

w∈Π,w �=v�

dKT (v�, w)

n · (n − 1)
>

∑

w∈Π,w �=v�

dKT (v�, w)

n
⎡

⎣∃v� ∈ Π for which
∑

w∈Π,w �=v�

dKT (v�, w) is minimum

⎤

⎦

=⇒ K-score (v�) < n · d

So, kOPT ≤ K-score (v�) < n · d (5)

K-score (π) ≤ λ · kOPT < λ · n · d [Using Eq. (5) and proving Eq. (4)] (6)

Now λ · n · d ≥ K-score (π) ≥ n · (pavg(c) − π(c)) [Using Eq. (1), (2)& (4)]
=⇒ pavg(c) − λ · d ≤ π(c) (7)

Again λ · n · d ≥ −n · (pavg(c) − π(c)) [Using Eq. (1), (3)& (4)]
=⇒ π(c) ≤ pavg(c) + λ · d (8)

Hence pavg (c) − λ · d ≤ π (c) ≤ pavg (c) + λ · d [Using Eq. (7)& (8)] (9)

Equation (9) concludes the proof of Lemma 1.
The following Lemma 2 depends on the Lemma 7 from [7].

Lemma 2 (�). |Pi| ≤ 4λd − 1 ∀i ∈ [m − 1]0

We now use the dynamic programming algorithm of Theorem 3 to claim the fol-
lowing Theorem 6. Its proof of correctness follows from Lemma 2.

Theorem 6. There exists an FPT dynamic programming algorithm for DISTINCT

APPROXIMATE KEMENY RANKING AGGREGATION parameterized by both λ and d
which runs in time O∗(16λd).

4 Concluding Remarks and Future Work

We consider the problem of finding distinct rankings that have a good Kemeny score
in either exact or approximate terms, and propose algorithms that are tractable for var-
ious natural parameterizations of the problem. We show that many optimal or close
to optimal solutions can be computed without significant increase in the running time
compared with the algorithms to output a single solution, which is in sharp contrast with
the diverse version of the problem. We also establish a complete comparison between
the five natural parameters associated with the problem, and demonstrate these relation-
ships through experiments.

We propose three main themes for future work. The first would be to extend these
studies to other voting rules, and possibly identify meta theorems that apply to classes
of voting rules. The second would be to understand if the structural parameters that
we studied are correlated with some natural distance notion on the solution space: in
other words, for a given distance notion, do all similar-looking instances have similar
parameter values? Finally, we would also like to establish algorithmic lower bounds for
the question of finding a set of diverse solutions that match the best known algorithms
in the current literature.
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Abstract. A monitoring edge-geodetic set, or simply an MEG-set, of a
graph G is a vertex subset M ⊆ V (G) such that given any edge e of G,
e lies on every shortest u-v path of G, for some u, v ∈ M . The moni-
toring edge-geodetic number of G, denoted by meg(G), is the minimum
cardinality of such an MEG-set. This notion provides a graph theoretic
model of the network monitoring problem.

In this article, we compare meg(G) with some other graph theoretic
parameters stemming from the network monitoring problem and provide
examples of graphs having prescribed values for each of these parameters.
We also characterize graphs G that have V (G) as their minimum MEG-
set, which settles an open problem due to Foucaud et al. (CALDAM
2023). We also provide a general upper bound for meg(G) for sparse
graphs in terms of their girth, and later refine the upper bound using
the chromatic number of G. We examine the change in meg(G) with
respect to two fundamental graph operations: clique-sum and subdivi-
sions. In both cases, we provide a lower and an upper bound of the possi-
ble amount of changes and provide (almost) tight examples. Finally, we
prove that the decision version of the problem of finding meg(G) is NP-
complete even for the family of 3-degenerate, 2 apex graphs, improving
the existing result by Haslegrave (Discrete Applied Mathematics 2023).
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1 Introduction

In the field of network monitoring, the networking components are monitored
for faults and evaluated to maintain and optimize their availability. In order
to detect failures, one of the popular methods for such monitoring processes
involves setting up distance probes [2–4,13]. At any given time, a distance probe
can measure the distance to any other probe in the network. If there is any failure
in the connection, then the probes should be able to detect it as there would be a
change in the distances between the components. Such networks can be modeled
by graphs whose vertices represent the components and the edges represent the
connections between them. We select a subset of vertices of the graph and call
them probes. This concept of probes that can measure distances in graphs has
many real-life applications, for example, it is useful in the fundamental task
of routing [10,15], or using path-oriented tools to monitor IP networks [4], or
problems concerning network verification [2,3,5]. Based on the requirements of
the networks, there have been various related parameters that were defined on
graphs in order to study the problem and come up with an effective solution.
To name a few, we may mention the geodetic number [8,9,12,16], the edge-
geodetic number [1,25], the strong edge-geodetic number [18,22], the distance-
edge monitoring number [13], and the monitoring edge-geodetic number [14,17].
The focus of this article is on studying the monitoring edge-geodetic number of
a graph. We deal with simple graphs, unless otherwise stated.

Note: We have omitted some proofs due to space constraints.

1.1 Preliminaries

Given a graph G, a monitoring edge-geodetic set of G, or simply, an MEG-set of
a graph G is a vertex subset M ⊆ V (G) that satisfies the following: given any
edge e in G, there exists u, v ∈ M such that e lies on all shortest paths between
u and v. In such a scenario, we say that the vertices u, v monitor the edge e.
The monitoring edge-geodetic number, denoted by meg(G), is the smallest size
of an MEG-set of G.

There are some other related parameters whose definitions are relevant in
our context. For convenience, we list them below.

– A geodetic set of a graph G is a vertex subset S ⊆ V (G) such that every vertex
of G lies on some shortest path between two vertices u, v ∈ S. The geodetic
number, denoted by g(G), is the minimum |S|, where S is a geodetic set of
G. The concept was introduced by Harary et al. in 1993 [16] and received
considerable attention since then, both from the structural side [8,9,12] and
from the algorithmic side [6,20].

– An edge-geodetic set of a graph G is a vertex subset S ⊆ V (G) such that every
edge of G lies on some shortest path between two vertices u, v ∈ S. The edge-
geodetic number, denoted by eg(G), is the minimum |S|, where S is an edge-
geodetic set of G. This was introduced in 2003 by Atici et al. [1] and further
studied from the structural angle [25] as well as algorithmic angle [7,11].
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– A strong edge-geodetic set of a graph G is a vertex subset S ⊆ V (G) and
an assignment of a particular shortest u-v path Puv to each pair of distinct
vertices u, v ∈ S such that every edge of G lies on Puv for some u, v ∈ S. The
strong edge-geodetic number, denoted by seg(G), is the minimum |S|, where
S is a geodetic set of G. This concept was introduced in 2017 by Manuel et
al. [22]. See [18] for some structural studies, and [11] for some algorithmic
results.

1.2 Motivation of Our Results and Organization of the Paper

– In Sect. 2, we explore the relation between the parameters geodetic num-
ber, edge-geodetic number, strong edge-geodetic number, and monitoring
edge-geodetic number. As one may have noticed, the above-mentioned graph
parameters are closely related and have a natural relation of inclusion. In
this section, we construct examples of graphs having prescribed values of the
above-mentioned parameters.

– In Sect. 3 we answer an open question posed by Foucaud, Krishna and Rama-
subramony Sulochana [14] on characterizing graphs whose minimum MEG-set
is the entire vertex set. We provide such a characterization by proving a nec-
essary and sufficient condition of when a vertex v is part of every MEG-set of
graph G. Additionally, we also prove a sufficient condition of when a vertex
is never part of any minimum MEG-set of the graph.

– In Sect. 4, we provide upper bounds on meg(G), where G is a sparse graph.
Our upper bound is a function of the order of G, and its girth. A refinement
of the upper bound is provided using the chromatic number of G.

– In Sect. 5, we explore the effect of two fundamental graph operations, namely,
the clique-sum and the subdivision on meg(G). We show that meg(G) is both
lower and upper bounded by functions related to the operations and that the
bounds are (almost) tight.

– In Sect. 6, we answer another open question that was posed in [14] regarding
the computational complexity of finding meg(G). The general question was
recently settled by Haslegrave [17], and we give an alternative proof. In fact,
our result is stronger, as we show that the decision version of the problem of
finding meg(G) is NP-complete even for the restricted class of 3-degenerate,
2-apex graphs.

– In Sect. 7, we share our concluding remarks which also contain suggestions
for future works in this direction.

2 Relation Between Network Monitoring Parameters

From the definitions, notice that any strong edge-geodetic set is also an edge-
geodetic set, and any edge-geodetic set is also a geodetic set (if the graph has no
isolated vertices). Moreover, every MEG-set M of a graph is indeed a strong edge-
geodetic set, as every edge of G is contained in all the shortest paths between
some pair of vertices in M . Thus, one can observe the following relations [14],

g(G) ≤ eg(G) ≤ seg(G) ≤ meg(G).
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Example 1. Notice that, for any complete graph Kn on n ≥ 2 vertices, the values
of all the parameters are equal to n. That is, equality holds in all the inequalities
of the above chain of inequalities.

On the other hand, Fig. 1 gives an example of a graph where all the inequali-
ties of the above chain of inequalities are strict. To be specific, in this particular
example, the values of the parameters increase exactly by one in each step. ��

i

i

i i

iv2

v3 v4

v5

v1

Fig. 1. A graph G with 2 = g(G) < 3 = eg(G) < 4 = seg(G) < 5 = meg(G). Note
that, a minimum geodetic set of G is {v3, v5}, a minimum edge-geodetic set of G is
{v1, v2, v4}, a minimum strong edge-geodetic set of G is {v1, v2, v3, v4}, and a minimum
MEG-set of G is {v1, v2, v3, v4, v5}.

It is natural to ask the question, given four positive integers a, b, c, d satisfying
2 ≤ a ≤ b ≤ c ≤ d, is there a graph Ga,b,c,d such that we have g(Ga,b,c,d) = a,
eg(Ga,b,c,d) = b, seg(Ga,b,c,d) = c, and meg(Ga,b,c,d) = d? We provide a positive
answer to this question except for some specific cases. The rest of the section
deals with the construction of such graphs.

Theorem 1. For any positive integers 4 ≤ a ≤ b ≤ c ≤ d satisfying d �= c + 1,
there exists a connected graph Ga,b,c,d with g(G) = a, eg(G) = b, seg(G) = c and
meg(G) = d.

Proof. We begin the proof by describing the construction of Ga,b,c,d.

Construction of Ga,b,c,d: In the first phase of the construction, we start with
a K2,2+b−a, where the partite set of size two has the vertices x1 and y, and
the partite set of size (2 + b − a) has the vertices z1, z2 and w1, w2, · · · , wb−a.
Moreover, we add some edges in such a way that the set

W = {w1, w2, · · · , wb−a}
becomes a clique. We also add the edge z2w1.

In the second phase of the construction, we add (c − b + 1) parallel edges
between the vertices z1 and z2. After that we subdivide (once) each of the above-
mentioned parallel edges and name the degree two vertices created due to the
subdivisions as v1, v2, · · · , vc−b+1. The set of these vertices created by the sub-
divisions is given by

V = {v1, v2, · · · , vc−b+1}.
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Fig. 2. The structure of Ga,b,c,d.

In the third phase of the construction, we add (a − 3) pendant neighbors
u1, u2, · · · , ua−3 to y, and one pendant neighbor ua−2 to z1. Moreover, we attach
a long path x1x2 · · · xrua−1 with the vertex x1, where ua−1 is a pendant vertex
and r = 3	d−c

2 
+1. Next we will add a false twin x′
3i to the vertices of the form

x3i for i ∈ {1, 2, · · · , 	d−c
2 
}. Additionally, if (d − c) is odd, then we will add

another twin x′′
3 to the vertex x3. For convenience,

U = {u1, u2, · · · , ua−1}
will denote the set of all pendents and

X = {x3i, x
′
3i|i = 1, 2, · · · , 	d − c

2

} ∪ {x′′

3}.

Note that, x′′
3 exists in X if and only if (d − c) is odd. This completes the

description of the construction of the graph Ga,b,c,d (see Fig. 2 for a pictorial
reference).

As U is the set of all pendants, we know that it will be part of any geodetic
set, edge-geodetic set, strong edge-geodetic set, and monitoring edge-geodetic
set [14]. However, the vertices of U cannot cover the vertices of V using shortest
paths between the vertices of U . Therefore, we need at least one more vertex to
form a geodetic set. As U ∪ {z2} is a geodetic set of G, we can infer that

g(Ga,b,c,d) = (a − 1) + 1 = a.

Next, observe that the vertices of U are not able to cover any edge of the
clique W using shortest paths between the vertices of U . Moreover, the only way
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to monitor those edges is by taking W in our edge-geodetic set. Observe that
U ∪ W is still not an edge-geodetic set as they are not able to cover the edge
z2w1 by any shortest path between the vertices of U ∪ W . On the other hand,
U ∪ W ∪ {z2} is an edge-geodetic set. Therefore,

eg(Ga,b,c,d) = (a − 1) + 1 + (b − a) = b.

We know that the vertices of U is in any strong edge-geodetic set. Moreover,
note that, the vertices of W must be in any strong edge-geodetic set to cover
the edges of the clique W . Now, let us see how we can cover the edges of the
(c − b + 1) 2-paths between z1, z2, having the vertices of V as their internal
vertex. First of all, if we do not take z2 in our strong edge-geodetic set, we have
to take all vertices of V . Second of all, if we take z2 in our strong edge-geodetic
set, then we have to take either (at least) all but one vertices of V , or all but
two vertices of V along with z1 in the strong edge-geodetic set. That means, we
need to take at least (c − b + 1) additional vertices in the strong edge-geodetic
set. Moreover, the set U ∪ W ∪ V is indeed a strong edge-geodetic set. Thus,

seg(Ga,b,c,d) = (a − 1) + (b − a) + (c − b + 1) = c.

Finally for any MEG-set, we have to take the vertices of U (as they are
pendants), the vertices of W (to monitor the edges of the clique W ), the vertices
of X (as they are twins [14]). However, even with these vertices, we cannot
monitor the edges of the (c − b + 1) 2-paths between z1, z2, having the vertices
of V as their internal vertex. To do so, we have to take all vertices of V in our
MEG-set. However, the set U ∪ W ∪ V ∪ X is an MEG-set. Hence,

meg(Ga,b,c,d) = (a − 1) + (b − a) + (c − b + 1) + 2	d − c

2

 + ε = d,

where ε = 0 (resp., 1) if (d−c) is (even (resp., odd), and d �= c+1. This completes
the proof. ��

3 Conditions for a Vertex Being in All or No Optimal
MEG-sets

In their introductory paper on monitoring edge-geodetic sets, Foucaud, Krishna
and Ramasubramony Sulochana [14] asked to characterize the graphs G having
meg(G) = |V (G)|. We provide a definitive answer to their question, and to
this end, we give a necessary and sufficient condition for a vertex to be in any
MEG-set of a graph.

Theorem 2. Let G be a graph. A vertex v ∈ V (G) is in every MEG-set of G if
and only if there exists u ∈ N(v) such that any induced 2-path uvx is part of a
4-cycle.
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Proof. For the necessary condition, let us assume that a vertex v ∈ V (G) is in
every MEG-set of G. We have to prove that there exists u ∈ N(v), such that
any induced 2-path uvx is part of a 4-cycle. We prove it by contradiction.

Suppose for every u ∈ N(v), there exists an induced 2-path uvx such that
uvx is not part of a 4-cycle. As uvx is an induced 2-path, observe that u and
x are not adjacent, also as uvx is not part of a 4-cycle, we get, d(u, x) = 2 and
the only shortest path between u and x is via v. This implies if we take u and x
in our MEG-set S, then xv and uv are monitored. Hence, all the neighbors of v
can monitor all the edges incident to v. Therefore, in particular, V (G) \ {v} is a
MEG-set of G. This is a contradiction to the fact that v is in every MEG-set of
G. Thus, the necessary condition for a vertex v to be part of every MEG-set of
G is proved according to the statement.

For the sufficient condition, let us assume that for some vertex v of G, there
exists u ∈ N(v) such that any induced 2-path uvx is part of a 4-cycle. We need to
prove that v is in every MEG-set. Thus, it is enough to show that S = V (G)\{v}
is not an MEG-set of G. Therefore, we would like to find an edge which is not
monitored by the vertices of S.

We first observe that if there does not exist any induced 2-path of the form
uvx, then v must be a simplicial vertex, and thus we know that [14] v belongs
to every MEG-set of G. On the other hand, if there exists an induced 2-path of
the form uvx, then there are at least two shortest paths between u and x. In
particular, u and x cannot monitor the edge uv. As x is arbitrary, the vertices
of S are not able to monitor the edge uv which implies that v has to be part of
every MEG-set. This concludes the proof. ��
Corollary 1. Let G be a graph. meg(G) = n if and only if for every v ∈ V (G),
there exists u ∈ N(v) such that any induced 2-path uvx is part of a 4-cycle.

Proof. The proof directly follows from Theorem 2. ��
Observe that the condition for meg(G) = n can be verified in polynomial

time due to Corollary 1.

Corollary 2. If G �= K2 is a connected graph of order n and girth g ≥ 5, then
meg(G) ≤ n − 1.

Proof. Notice that, if a vertex v of G satisfies the condition of Theorem 2, then
either v has to be part of a 4-cycle, or v has to be simplicial. As G has girth
g ≥ 5, the only way for v to satisfy the condition is by being a pendant vertex.
If all vertices of G are pendant vertices, then G = K2, which is not possible.
Thus, not every vertex of G can satisfy the condition of Theorem 2. Hence,
meg(G) ≤ n − 1. ��

We also give a sufficient condition for when a vertex is never part of any
minimum MEG-set of a graph. This is a useful tool to eliminate such vertices
while finding a minimum MEG-set of a given graph.
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Proposition 1. Let G be a graph with a path v0v1 · · · vk−1vk whose internal
vertices have degree two, v0 has degree at least two, and vk has degree one. Then
the vertices v0, v1, · · · , vk−1 are never part of any minimum MEG-set.

Proof. Firstly, vk is part of any MEG-set of G as it is a simplicial vertex [14].
Let P be a shortest path with one of its end points being vi, for some i ∈
{0, 1, · · · , k − 1}, while the other end point is w (say). Moreover, assume that
vj is not a vertex of the path P , for any value of j ∈ {i + 1, i + 2, · · · , k − 1}.
Observe that, the path P ′ obtained by augmenting the path vi+1vi+2 · · · vk to P
is also a shortest path between w and vk. Thus, in a minimum MEG-set of G,
the inclusion of any of the vertices v0, v1, · · · , vk−1 is redundant. ��
Corollary 3. Let G �= K2 be connected graph. Let v be a vertex of G having a
pendant neighbor u. Then v is never part of any minimum MEG-set of G.

Proof. The proof follows directly from Proposition 1 as a special case where
v = v0 and u = vk. ��
Remark 1. Due to Proposition 1, for a connected graph G �= K2, every vertex
of degree one must be part of any MEG-set, and its neighbor must not be a part
of any MEG-set. Therefore, if meg(G) = |V (G)|, then G must have minimum
degree at least 2.

4 Sparse Graphs

Due to Proposition 1, it makes sense to study connected graphs with minimum
degree 2 only. In Corollary 2 we noted that meg(G), if G has girth 5 or more,
cannot be equal to the order of G. Therefore, it is natural to wonder whether
meg(G) will become even smaller (with respect to the order of G) if G becomes
sparser. One way to consider sparse graphs is to study graphs having high girth.

Theorem 3. Let G be a connected graph having minimum degree at least 2. If
G has n vertices and girth g, then meg(G) ≤ 4n

g+1 .

Proof. Let G be a connected graph having minimum degree at least 2, having
n vertices, and girth g. We construct a vertex subset M of G recursively, and
claim that M is an MEG-set of G. To begin with, we initialize M by picking
an arbitrary vertex of G. Next, we add an arbitrary vertex to M that is at a
distance at least g−3

4 from each vertex of M . We repeat this process until every
vertex of V (G) \ M are at a distance strictly less than g−3

4 from some vertex of
M .

Next, we will show that M is indeed an MEG-set of G. Let uv be an arbitrary
edge of G. Assume without loss of generality that there exists u′ ∈ M such that
d(u, u′) ≤ g−3

4 and d(v, u′) > d(u, u′). Denote v′ the vertex of M closest to v that
is not u′. Let P1 be a shortest path connecting u′ and u, and P2 be a shortest
path connecting v and v′. Let P be the path obtained by augmenting the path
P1, the edge uv, and the path P2. Note that the length of P is at most g−1

2 ,
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otherwise, there would be a vertex of P at distance more than g−3
4 of any vertex

of M . Moreover, if there exists any other (vertex disjoint) path P ′ connecting
u and v of length g−1

2 or less, then it will contradict the fact that G has girth
g. That means, P is a shortest path between u′ and v′, and u′, v′ monitors the
edge uv. This implies that M is an MEG-set of G.

Now we are left with counting the cardinality of M . As G is a connected graph
with minimum degree at least 2, each vertex v of M is part of a cycle. Thus, v
has at least 2 × g−3

8 = g−3
4 vertices at distance at most g−3

8 . Let us denote the
set of these vertices by Sv. Observe that the vertices of Sv do not belong to M
as they are too close (within a distance of g−3

8 to v ∈ M . Furthermore, notice
that, for two vertices u, v ∈ M , we must have Su ∩ Sv = ∅, as u and v are at
distance at least g−3

4 . Therefore, we must have

n = |V (G)| ≥ |M | + |M |
(

g − 3
4

)
=⇒ |M | ≤ 4n

g + 1
.

This completes the proof. ��
Remark 2. As girth can be considered as a measure of the sparseness of a graph,
the above result shows that meg(G) has a stricter upper bound as the sparseness
(in terms of the girth) of G increases. However, the idea used in the proof is quite
general and it may be possible to provide a better bound using the same idea
for specific families of graphs having more structural information.

The following theorem proves that meg(G) of a sparse graph G is upper
bounded by a function of its chromatic number χ(G).

Theorem 4. Let G be a connected graph with girth at least 5 having mini-
mum degree at least 2. If G has n vertices, and chromatic number χ(G), then
meg(G) ≤ n

(
χ(G)−1

χ(G)

)
.

Using Theorem 4, we provide a corollary for graphs that have pendant ver-
tices.

Corollary 4. Let G be a graph with girth at least 5, and � pendant vertices. If G

has n vertices, and chromatic number χ(G), then meg(G) ≤ n
(

χ(G)−1
χ(G)

)
+ �

χ(G) .

5 Effects of Clique-Sum and Subdivisions

Let G1 and G2 be two graphs having cliques C1 and C2 of size k, respectively. A
k-clique-sum of G1 and G2, denoted by G1 ⊕k G2, is a graph obtained by gluing
the vertices of C1 to the vertices C2 (each vertex of C1 is glued to exactly one
vertex of C2), and then deleting one or more edges of the glued clique.

This particular operation between two graphs is a fundamental operation in
graph theory and is an important notion in the context of the illustrious graph
structure theorem [19,23]. We investigate the changes in meg(G) with respect
to the clique-sum operation.
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Theorem 5. Let G1 ⊕k G2 be a k-clique-sum of the graphs G1 and G2 for some
k ≥ 2. Then we have,

meg(G1) + meg(G2) − 2k ≤ meg(G1 ⊕k G2) ≤ meg(G1) + meg(G2).

Moreover, both the lower and the upper bounds are tight.

Let G be a graph. We obtain the graph S�
G by subdividing each edge of G

exactly � times. The graph operation subdivision is also a fundamental graph
operation, integral in the theory of topological minors, which can be used for the
specification of a graph. Moreover, subdivision can be considered as the inverse
operation to edge contraction, which is another fundamental notion that plays
an instrumental role in the famous graph minor theorem [21,24]. The following
result proves a relation between meg(G) and meg(S�

G).

Theorem 6. For any graph G and for all � ≥ 2, we have

1 ≤ meg(G)
meg(S�

G)
≤ 2.

Moreover, the lower bound is tight, and the upper bound is asymptotically tight.

Remark 3. We have observed that meg(S�
G) = k + 1 when G = Pk�P2.

6 Computational Complexity

It is known that, for a fixed integer k, checking whether a graph has an MEG-set
of size at most k can be done in polynomial time [17]. In the same paper, it is
shown that the decision version of the problem is NP-complete, which settled an
open question asked in [14].

Theorem 7 ([17]). The decision problem of determining for a graph G and a
natural number k whether meg(G) ≤ k is NP-complete.

In this section, we will improve this result by showing NP-completeness for
the restricted family of 3-degenerate, 2-apex graphs. Recall that, a graph is k-
degenerate if every subgraph of it has a vertex of degree at most k and a graph
is k-apex if it contains a set of at most k vertices whose removal yields a planar
graph.

In Theorem 7, the reduction was from the Boolean satisfiability problem,
whereas, in our proof, we reduce from the Vertex Cover problem (formally
defined below). A vertex cover of a graph G is a vertex subset S ⊆ V (G) such
that every edge e in G has at least one end point in S. We formally state the
decision version of the problem of finding the vertex cover of a graph in the
following.
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Vertex Cover
Instance: A graph G, an integer k.
Question: Does G have a vertex cover of size at most k?

It is well known that the decision version of the problem is NP-complete. This
problem remains NP-complete even when restricted to the family of sub-cubic
planar graphs with degeneracy 2 [26]. We state this result as a theorem below.

Theorem 8 ([26]). The Vertex Cover problem is NP-complete even for sub-
cubic planar graphs having degeneracy 2.

Next, let us formally present the decision version of the problem of finding
meg(G) ≤ k of a graph G, where both G and k are given as inputs.

MEG-set
Instance: A graph G, an integer k.
Question: Does G have meg(G) ≤ k?

We are now ready to state the main result of this section.

Theorem 9. The MEG-set problem is NP-complete even for 3-degenerate, 2-
apex graphs.

We prove Theorem 9 by giving a reduction from the Vertex Cover prob-
lem, that is, by constructing a graph Ĝ and there by proving the equivalence
of finding meg(Ĝ) and finding τ(G), where τ(G) is the cardinality of a mini-
mum vertex cover of G. Note that, in particular, this improves on the result by
Haslegrave [17] which was for general graphs.

Construction of Ĝ: Given a graph G, we describe the construction of a new
graph Ĝ based on the structure of G in the following. For each edge e = uv ∈
E(G), we add a 5-path uu′e′v′v starting from u and ending at v and add three
pendant vertices u′′, e′′, v′′ for each of the intermediate vertices u′, e′, v′ having
degree 2, respectively. Now, add a common neighbor y for all these u′, v′’s in
the newly added paths. After that, we add a pendant vertex y∗ to the vertex y.
Finally, we add a universal vertex x to all the (original) vertices of the graph
G, and add a pendant vertex x∗ to x. We denote the so-obtained graph by Ĝ.
We refer to Fig. 3 for a pictorial reference demonstrating how one edge of G
transforms in Ĝ.

We now prove some key lemmas that will help us prove Theorem 9.

Lemma 1. The new edges of Ĝ, that is, the edges from the set E(Ĝ) \ E(G),
are monitored by the set of all pendant vertices of Ĝ.

Proof. Let e = uv be an edge of G. Then notice that the pendant vertices of
the type u′′ and v′′ have a unique shortest path of length 4 connecting them,
namely, u′′u′e′v′v′′. This path monitors all the edges on this path, that is, edges
of the form u′′u′, u′e′, e′v′ and v′v′′.
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Fig. 3. A demonstration of the construction of ̂G.

Moreover, between the pendant vertices of the type u′′ and x∗ (resp., y∗),
there exists a unique shortest path of length 4 (resp., 3), namely, u′′u′uxx∗ (resp.,
u′′u′yy∗), monitoring the edges of the type u′u, ux (resp., u′y), and the edge xx∗

(resp., yy∗).
Finally, observe that the edges of the form e′′e′ are monitored by the vertices

u′′, e′′ via the unique shortest path u′′u′e′e′′ connecting them. ��
Lemma 2. Let G be a graph with n vertices and m edges. If τ(G) ≤ k, then
meg(Ĝ) ≤ k + 3m + 2.

Proof. Let S be a vertex cover of G having k vertices. Let Z be the set of all
pendants of Ĝ. We want to show that |Z| = 3m + 2, and S ∪ Z is an MEG-set
of Ĝ.

First observe that, for each edge e = uv of G, there are three pendant vertices
u′′, e′′, v′′. This amounts to 3m pendants in Ĝ. Moreover, counting the pendant
neighbors x∗, y∗ of x, y, respectively, we have 3m + 2 pendant vertices in total,
that is, |Z| = 3m + 2.

By Lemma 1, the pendant vertices are enough to monitor all the edges of
Ĝ, except, maybe, the (original) edges of G. Let us suppose that the vertex u
is in our MEG-set. An immediate consequence of having u and the set Z of all
pendants in an MEG-set is that, between u and the pendant vertex v′′, there is a
unique shortest path uvv′v′′, which monitors the edge uv. That means, a vertex
u and the vertices of Z, monitors all the edges incident to v. Thus, S∪Z monitors
every edge of Ĝ, and hence, meg(Ĝ) ≤ |S ∪ Z| ≤ |S| + |Z| ≤ 3m + k + 2. ��

Lemma 3. Let G be a graph and let Z be the set of pendant vertices in Ĝ. If
M is a minimum MEG-set of Ĝ, then S = M \ Z ⊆ V (G), and S is a vertex
cover of G. Moreover, |S| = meg(Ĝ) − (3m + 2).

Proof. Given a minimum MEG-set M of Ĝ, we know that all the pendant vertices
must belong to M , that is, Z ⊆ M . As, from the proof of Lemma 2, we know
that |Z| = 3m + 2, the moreover part of the proof follows assuming the main
portion of the statement is true.

Thus, now it remains to prove that S = M \ Z ⊆ V (G), and S is a vertex
cover of G. By Corollary 3 we know that the neighbors of the pendent vertices
cannot be part of any minimum MEG-set. Therefore, S ⊆ V (G) as any vertex
which does not belong to V (G) is either a pendant or adjacent to a pendant
in Ĝ.



MEG-sets in Graphs 41

Next, we are going to prove that S must be a vertex cover. Observe that,
two pendant vertices of Ĝ cannot monitor any edge of G. Moreover, as any two
vertices of G are connected by a 2-path through the vertex x, to monitor an
edge e = uv ∈ E(G) in Ĝ using two vertices from V (G), the only option is to
consider the vertices u and v. On the other hand, from what we had noticed in
the proof of Lemma 2, we know that, any vertex u ∈ V (G), along with the set
Z of pendant vertices can monitor every edge incident to v in G. Hence, S must
contain at least one end point of any edge of G. Thus, S is a vertex cover of G. ��
Lemma 4. Let G be a 2-degenerate sub-cubic planar graph. Then Ĝ is a 3-
degenerate, 2-apex graph.

Finally, we are ready to prove the main result of this section.

Proof of the Theorem 9: It is easy to verify (in polynomial time), whether a
given set M is an MEG-set. This can be done by checking the distances between
pairs of vertices in the set, and then checking (and comparing) the distances
after removing an edge; and repeating the same for every edge. Therefore, the
problem is in NP.

However, we have shown using Lemma 2 and Lemma 3 that finding a min-
imum MEG-set for Ĝ is equivalent (up to polynomial reduction) to finding a
minimum vertex cover for G. As, it is well known that the minimum vertex cover
problem is NP-Hard [26] even when restricted to the family of 2-degenerate sub-
cubic planar graphs, using Lemma 4, it follows that the MEG-set problem is
NP-complete even for the class of 3-degenerate, 2-apex graphs. ��

7 Concluding Remarks

(1) In Sect. 2, we gave examples of graphs Ga,b,c,d which attains g(Ga,b,c,d) = a,
eg(Ga,b,c,d) = b, seg(Ga,b,c,d) = c, and meg(Ga,b,c,d) = d for “almost” all
2 ≤ a ≤ b ≤ c ≤ d. However, for some of the combinations of a, b, c, d we
still do not know if an example exists or not. One problem to consider is to
decide exactly for which prescribed values of a, b, c, d, such a graph Ga,b,c,d

exists, along with finding an explicit example.
(2) We have proved a sufficient condition for a vertex not to be part of any

minimum MEG-set. An open question is to find a necessary and sufficient
condition for a vertex not to be in any minimum MEG-set.

(3) In Sect. 5, we deal with the effects on meg(G) with respect to some funda-
mental graph operations like clique-sums, and subdivisions. It will be inter-
esting to perform similar studies with respect to other fundamental graph
operations such as vertex deletion, edge deletion, edge contraction, etc.

(4) We have proved that the problem of finding a minimum MEG-set even
for 2-apex graphs is NP-complete. Hence a natural question is to find the
computational complexity of MEG-set for planar graphs. One can ask this
question for other graph families as well.
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Abstract. Distance-2-Dispersion (D-2-D) problem aims to disperse k
mobile robots starting from an arbitrary initial configuration on an
anonymous port-labeled graph G with n nodes such that no two robots
occupy adjacent nodes in the final configuration, though multiple robots
may occupy a single node if there is no other empty node whose all
adjacent nodes are also empty. In the existing literature, this problem
is solved starting from a rooted configuration for k(≥ 1) robots using
O(mΔ) synchronous rounds with a total of O(log n) memory per robot,
where m is the number of edges and Δ is the maximum degree of the
graph. In this work, we start with k > n mobile robots and improve the
run time to O(m) starting from a rooted configuration using the same
amount of memory per robot. Further, we achieve D-2-D for an arbitrary
initial configuration in O(pm) rounds using O(log n) memory per robot,
where p is the number of nodes containing robots in the initial config-
uration. Both the algorithms terminate without any global knowledge
of m, n, Δ, k, p. As we start with k > n robots, the nodes occupied by
robots in the final configuration form a maximal independent set of the
graph.

Keywords: Mobile robots · Dispersion · Distance-2-Dispersion ·
Deterministic algorithm · Distributed algorithm

1 Introduction

In a recent paper, Kaur et al. [1] propose the problem of Distance-2-Dispersion
(D-2-D). The problem is closely linked to the extensively researched dispersion
problem [2], which seeks to assign a set of k (≤ n) mobile robots to the nodes of
an anonymous port-labeled graph with n nodes and m edges, so that, starting
from any arbitrary initial configuration, each node contains a maximum of one
robot in the final configuration. The authors in [1] consider a constraint on
the dispersion problem in the following form: no two adjacent nodes contain
robots in the final configuration. As some robots can run out of place in D-2-
D, authors allowed the following: an unsettled robot can settle at a node that
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already contains a settled robot, only if the unsettled robot has no other node
to settle at, maintaining the added constraint. Hence, in the final configuration
of D-2-D, many nodes (non-adjacent) can contain multiple robots. Hence, unlike
the dispersion problem where there are k (≤ n) mobile robots, in D-2-D, the
number of robots, k, can be any. As a byproduct, authors in [1] demonstrate
that nodes with settled robots constitute a maximal independent set of the
graph if there are enough robots. The algorithm in [1] solves the D-2-D problem
for k ≥ 1 robots starting from a rooted1 initial configuration in O(mΔ) rounds
using O(log Δ) bits of additional memory per robot, where Δ is the maximum
degree of the graph. However, as robots need to remember their own id, the
overall memory requirement is O(log n) bits per robot.

In this work, we study the D-2-D problem considering there is a strong team
of robots, i.e., k > n. The power of a strong team is already studied in cases
of fundamental problems like gathering [3]. Here, we exploit the same in the
case of D-2-D. The purpose is two-fold. We aim to provide a solution quicker
w.r.t. [1] for the rooted case exploiting the power of a strong team, and such an
assumption guarantees that our algorithm forms a maximal independent set of
the graph. Also, we provide a solution to the D-2-D problem, considering the
arbitrary initial configurations where robots can start from multiple nodes, say
p. In both cases, our algorithm terminates without using any global knowledge of
k, p, or any other graph parameters like n, m, and Δ. Furthermore, as there are
more than n robots to start with, the solution of D-2-D ensures the formation
of a maximal independent set by the nodes with settled robots.

The Model: We consider G to be an arbitrary anonymous undirected connected
zero-storage port-labeled graph. G has n nodes, m edges, and maximum degree
Δ. Anonymous means the nodes have no id. Port-labeled graph implies each edge
associated with any node v has a distinct numbering from the range [0, δ(v)− 1]
where δ(v) is the degree of node v. These port numbers associated with both
ends of an edge are independent of each other. By v(z), we mean the node that
is reachable from node v through the port number z at v. Zero-storage graph
means the nodes have no memory.

We assume the presence of k > n robots that are capable of moving along
the edges of the graph. Each robot has a unique id in the range [1, nc], for some
constant c, and has memory. We consider the face-to-face communication model,
where the robots present at a single node can communicate. A robot knows the
degree and can see the port numbers of the respective edges associated with a
node where it is currently present. A robot knows the port number used by it
to enter the current node. All the robots start the algorithm at the same time.

We assume synchronous rounds where, in each round, a robot communicates
(with co-located robots), computes, and moves (or does not move). In one round,
a robot can traverse only one edge from its current position during the move.
The number of synchronous rounds required from the start till the termination of
all the robots is the time complexity of the algorithm. The memory requirement
per robot to run the algorithm is the memory complexity of the algorithm.
1 all robots start from same node.
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The Problem: Given a set of k > n robots placed arbitrarily in a port-labeled
graph G with n nodes and m edges, the robots need to achieve a configuration by
the end of the algorithm where each robot needs to settle at some node satisfying
the following two conditions: (i) no two adjacent nodes can be occupied by settled
robots, and (ii) a robot can settle in a node where there is already a settled robot
only if no other empty node is available satisfying condition (i).

Our Contribution: We present an algorithm for the D-2-D problem with
rooted initial configuration on arbitrary graphs in O(m) rounds using O(log n)
memory per robot in Sect. 3. We consider k > n robots, and this strong team
helps achieve an improved time complexity compared to [1] keeping the memory
requirement the same. Then we provide an algorithm to solve the D-2-D problem
from any arbitrary initial configuration in Sect. 4 with k > n robots. Our algo-
rithm requires O(pm) rounds, where p is the number of nodes containing robots
in the initial configuration. The memory requirement is O(log n) per robot.

Due to the presence of k > n robots and by virtue of the problem definition,
the nodes with settled robots form a maximal independent set of the graph.
In both of our algorithms, all the settled robots terminate without any global
knowledge regarding any of the parameters m, n, Δ, k, and p.

2 Related Work

Kaur et al. [1] provide an algorithm that solves D-2-D starting from rooted
configuration and terminates after 2Δ(8m−3n+3) rounds using O(log Δ) addi-
tional memory per robot besides the memory required to store their id without
using any prior knowledge of the global parameters. They also provide Ω(mΔ)
lower bound on the number of rounds required by the robots to solve the D-2-D
problem. In our work, using a strong team of robots, we provide an improved
solution in terms of time complexity as well as a solution for the arbitrary initial
configuration.

As our algorithm forms a maximal independent set of the underlying graph,
here we discuss a couple of related works that achieve similar objectives. We
refrain from going into the vast literature on distributed graph algorithms on
the classic maximal independent set finding problem. We discuss only those
works that find maximal independent sets using mobile robots. Pramanick et al.
propose an algorithm to find a maximal independent set using myopic luminous
robots [4] of an arbitrary connected graph under the asynchronous scheduler.
However, according to their model, the robots have prior knowledge of Δ and
robots have at least 3 hops visibility. Robots use colors to represent different
states as a medium of communication. In a recent preprint, Chand et al. [5]
aims to find a minimal dominating set of the underlying graph starting from
an arbitrary initial configuration of the robots. They propose an algorithm that
runs in O(lΔ log λ+nl+m) synchronous rounds, where l is the number of nodes
with multiple robots in the initial configuration and λ is the maximum id length
of the robots. However, their algorithm requires prior knowledge of m, Δ, and
λ. Our algorithm works without any global knowledge.
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The dispersion problem introduced in [2] is a related problem to our work.
Till date, there are several works [6–17] on the dispersion problem under different
model assumptions. The most efficient algorithm for solving dispersion from arbi-
trary initial configuration in our model is from [9] that runs in O(min(m, kΔ))
rounds using Θ(log(k + Δ)) bits additional memory per robot, ignoring the
O(log n) memory that robots anyhow require to store their id. The drawback
of this work is that the algorithm does not terminate. Here in this work, we
do dispersion as a part of our algorithm, but we employ a dispersion algorithm
starting from an arbitrary initial configuration, that terminates without using
any global knowledge, though takes more time which helps the robots to start
the next part of our algorithm.

The problem of scattering or uniform distribution is also related to the D-2-D
problem. The scattering problem is studied on grids [18] and on rings [19,20].
Both problems are studied with anonymous robots.

3 D-2-D from Rooted Initial Configuration

In this section, we present an algorithm based on the Depth-First-Search (DFS)
traversal technique to solve D-2-D problem on an arbitrary graph for rooted
configuration. The robots achieve D-2-D with termination in O(m) rounds with
O(log n) memory per robot and they do not require any knowledge of the global
parameters. We start with a high level idea of our algorithm. The algorithm is
divided into two phases. The phase 1 achieves dispersion on the graph using the
existing DFS traversal technique similar to [2]. Since k > n, we ensure that the
robots traverse the whole graph and that at least one robot does not find any
vacant position to settle. After the unsettled robots reach the root node with no
further ports to explore, they understand that the dispersion is done, i.e., phase 1
is completed for them. The robot settled at the root node, say rmin, then initiates
the phase 2 of the algorithm and as it reaches to other settled robots, they also
get to know that phase 2 has started. The robot rmin initiates a traversal along
the tree edges and reaches the settled robots sequentially, which further decides
whether to stay in its original position or not. In other words, phase 2 of the
algorithm corresponds to the conversion of the dispersion configuration into a
D-2-D configuration. Since rmin is only required to traverse the tree edges in
phase 2, identifying the child robots of a settled robot in the DFS tree poses a
challenge, especially considering the limited memory available, which is bounded
by O(log n). To address this challenge, we employ dedicated rounds. In these
rounds, robots visit their parents so that parents can locally compute which are
the remaining tree edges that rmin needs to traverse next. With the assumption
of k > n, it is ensured that the positions of the settled robots on the graph
form a maximal independent set of the graph by virtue of the D-2-D problem
definition. The algorithm proceeds in several iterations. Each iteration of the
algorithm consists of six rounds, each of which is meant for a specific task to be
done by the robots. In each iteration, the first round is for phase 1, rounds two
to five are for the settled robots to move to their parents, and the last round is
for phase 2. We elaborate on all these later.
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3.1 The Algorithm

We use the rooted dispersion that happens in phase 1, as a subroutine for the D-
2-D problem starting from arbitrary initial configuration as well. The algorithm
is similar to the algorithm of [2] except we use some more variables. For the sake
of completeness, we provide the algorithm for rooted DFS in short here. Below,
we list down the variables used by the robots to store information during the run
of the algorithm. Each robot ri maintains a list of variables defined as follows:

– ri.settled: the value is 1 if robot ri is settled, otherwise 0.
– ri.state: it indicates if ri is in explore state or backtrack state, state is initially

set to explore.
– ri.parent: the port number that is used by ri in the explore state to enter the

node where it is settled. It is initially set to −1 for each robot.
– ri.recent: Each time the group of unsettled robots exits a node, say u, where

robot ru is settled, the robot ru updates the value of its recent to the port pi
used by the group of unsettled robots to exit from u in the same round. The
value of recent is initially set to ⊥.

– ri.port entered: the port number through which the unsettled robots enter
into a node at the end of a round. It is set to −1 initially at the root.

– ri.dist: if a robot ri (settled or unsettled) is at an even distance from the
root node (along the DFS traversal path) during the DFS traversal of phase
1, then it sets ri.dist = 0, else ri.dist = 1. Initially, it is set to 0.

– ri.crnt port: If rmin is present at a node u with a settled robot, say ru, and
rmin.phase = 2, then ru sets ru.crnt port to the smallest child port that is
not yet taken by the robot rmin to move through in the explore state.

– ri.phase: initially, all the robots have ri.phase = 1. Whenever a settled robot
ri enters into phase 2, it updates ri.phase = 2.

– ri.final set: The robots that finally settle at a node after the execution of
phase 2 of the algorithm, set their final set = 1, else it is set to 0.

Now we describe dispersion that happens in phase 1 of our algorithm. The
robot rmin settles at the root node vroot and sets rmin.parent = −1, and
rmin.dist = 0. The unsettled robots exit vroot via the port (ri.port entered +
1)mod(δ(vroot)). While the robot rmin updates rmin.recent = 0. Each time the
unsettled robot ri visits a new node, the decision is made based on these cases:

– If ri.state = explore: The robots set ri.dist = ri.dist+1. The value of ri.dist
is updated to 0 if it is an even number else it is updated to 1. Further,

• if the visited node, say u, is empty then the minimum id robot
from the group of unsettled robots, say rj , settles at u and sets
rj .parent = rj .port entered. The remaining unsettled robots update
ri.port entered = (ri.port entered + 1)mod(δ(u)), where δ(u) is
the degree of the node u. The settled robot rj sets rj .recent =
ri.port entered. If ri.port entered = rj .parent then the unsettled
robots set their ri.state = backtrack, else they exit the node u via
ri.port entered.
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• if the node u that is entered by the unsettled robots is non-empty then
they modify ri.state = backtrack and proceed through ri.port entered.

– If ri.state = backtrack: The robots set ri.dist = ri.dist−1. If ri.dist == −1,
then it is updated to 1. Let rj be the settled robot at the current node u.
The unsettled robots ri after reaching the node u, update ri.port entered =
(ri.port entered + 1)mod(δ(u)).

• If ri.port entered = rj .parent then the unsettled robots exit the node via
ri.port entered. The settled robot rj updates rj .recent = ri.port entered.

• If ri.port entered �= rj .parent then the unsettled robots update ri.state =
explore and exit the node through ri.port entered. The settled robot rj
updates rj .recent = ri.port.

Now we explain phase 2 of our algorithm in detail. Since we assume that
k > n, there is at least one robot, say rv, that does not find any vacant node to
settle at. The robot rv with the other unsettled robots, if any, after exploring the
whole graph reaches the root node, and when rv.port entered = 0, this implies no
unexplored port is left at the root node. Thus, all the remaining unsettled robots
settle at the root node and set ri.parent = rmin.parent while rmin updates
rmin.phase = 2, and rmin.state = explore. Thus, phase 2 is initiated by rmin.
The other settled robots at the root also update their phase variable to 2. This
phase of the algorithm involves transitioning from the dispersion configuration
into the D-2-D configuration. The robot rmin begins the traversal of the graph
via the tree edges. For the robot rmin to travel only via the tree edges, it needs
the information of the port numbers that lead to the child robots of each settled
robot, say ru, in the DFS tree. For now, we assume rmin somehow gets that
information from ru.crnt port. We resolve this with the dedicated rounds that
we will discuss separately later. Let’s proceed with the description of phase 2.

Besides the variables described initially, the robots maintain another two
variables which are required explicitly in the phase 2 of the algorithm. These
help a robot to decide when to terminate.

– ri.final port: The smallest port i of a settled robot ri such that the robot
settled at the node via port i, say rj has rj .final set = 1.

– ri.count: Let rj has rj .decision = 1. The variable count represents the number
of settled robots in the neighborhood of rj which have final set = 0 i.e., their
decision is yet to be taken.

The robot rmin, from node u, moves through the ru.crnt port information,
where ru is the settled robot at u, to reach node rk. If rk.crnt port �= ⊥, then
rmin further moves through rk.crnt port. It moves through the crnt port value
of the settled robots unless it reaches a settled robot, say rl, that has no child
port left to traverse, i.e., rl.crnt port = ⊥. The robot rp sets rp.decision = 1
and rmin waits for 2δ(v) rounds, where δ(v) is the degree of the node where rl
is settled at (after waiting for 2δ(v) rounds, rmin backtracks through the parent
port). The robot rl moves through all its one-hop neighbors to check the status
of the variable final set of the settled robots in its one-hop. The decision is
made by rl based on the following:
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– If there is at least one neighbor, say rj , of rl with rj .final set = 1, then rl
settles at the node where rj is settled at and sets rl.final set = 1.

– If there are no neighbors of rl with final set = 1, then rl settles at its original
position and sets rl.final set = 1.

When the robot rl has rl.decision = 1 and it moves through its ports one
by one, if it meets with a settled robot say rj with rj .final set = 0, then rl
increments its value of count by 1. Whereas the smallest port value that is taken
by the robot rl to meet with a settled robot that has final set = 1 is stored in
the variable rl.final port. Note that, in case rl finds a vacant neighboring node,
it understands that the settled robot corresponding to that node has already
taken its decision and settled elsewhere, and accordingly rl does not increment
its count. After visiting all its ports, if rl.final port is ⊥ then it settles at its
original position. Each time a robot visits rl, it decrements its value of count
and finally terminates when count = 0. However, if rl.final port �= ⊥, the robot
rl moves through this final port after visiting through all its ports, and settles
there, after setting rl.final set = 1 and rl terminates.

After the wait of 2δ(v) rounds, the robot rmin backtracks to reach the parent
node of rp, where a robot, say, rn is settled, and checks the value of rn.crnt port.
If rn.crnt port �= ⊥ then the robot rmin changes its state to explore and moves
through the value of rn.crnt port. However, if rn.crnt port = ⊥, then rmin waits
for 2δ(rn) rounds while rn sets rn.decision = 1. In this way, the decision for each
node is made one by one by traversing through the tree edges of the DFS tree
constructed in phase 1. A robot ri for which ri.crnt port = ⊥, and rmin is
present with ri implies that the decision for all its children has been taken, and
thus ri sets ri.decision = 1. Once the robot rmin reaches the root node, and
rj .crnt port = ⊥, where rj are the remaining settled robots at the root node,
the settled robots at the root node as well as rmin set their value of decision = 1.
Finally, checking of one-hop of the root node is done by all these robots together
and the decision is made collectively. In this way, the robots which are dispersed
on the graph in phase 1 of the algorithm, attain a configuration such that no two
settled robots are adjacent to each other. An example illustrating the execution
of phase 2 of the algorithm is presented in the Fig. 1.

Now we describe how rmin gets the information regarding the tree edges
during phase 2. To be more specific, let rmin be at node u. Let z1, z2, ..., zw
be the child ports corresponding to u where w ≤ δ(u). To visit via tree edges,
while at u, rmin needs to know the child ports so that it can visit only those
from u. The problem is the settled robot at u may need O(Δ log Δ) memory to
remember all the child ports. In the worst case that can be O(n log n) whereas
the settled robot at u has only O(log n) memory.

Our algorithm runs in iterations where each iteration contains six rounds; The
i-th round in each iteration is called the i-dedicated round where i ∈ [1, 6]. In the
1-dedicated round of each iteration, each robot ri with ri.phase = 1 runs phase
1 of the algorithm, and in the 6-dedicated round, each robot ri with ri.phase = 2
runs the phase 2 of our algorithm. In the 2-dedicated round, each settled robot
rj with rj .dist = 0 move through rj .parent to reach its parent node, say vp and
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Fig. 1. (a) Robots are initially positioned at node v1 (b) In Phase 1, the algorithm
constructs a DFS tree with tree edges (shown as dark lines) and non-tree edges (dotted
lines). The minimum id robot i.e., rmin settles at the root node (marked with a green
dot), while other robots settle at their respective nodes (marked with red dots) (c) rmin

moves through crnt port values of the robots settled at v1 and v3 eventually reaching
node v5 which has no child ports. The robot that is settled at v5 sets decision = 1
and finally settles at its node by setting final set = 1 which is shown by a blue
dot (d) rmin backtracks to v3 and further moves through crnt port = 2 to reach v5.
Following the decision of the robot settled at v4, rmin backtracks to node v3 (where
crnt port = ⊥), thus decision for this node is now taken (e) rmin arrives at v1 which
now has crntport = 3 and moves through this port to reach v2. Post the decision for this
node, finally rmin backtracks to v1 (where crnt port = ⊥). All the robots settled at the
root node move through final port = 0 and settle there (f) The D-2-D configuration.
(Color figure online)

meets the settled robot there, say rp. If the robot rmin is present with rp (this
happens if in the 6-dedicated round of the last iteration rmin moved to vp), then
the robot rp updates rp.crnt port = min{rj .port entered | rj .port entered >
rp.crnt port}. In this manner, the value of rp.crnt port is updated each time
the robot rmin is present with it, and further rmin moves through that child
port in the 6-dedicated round of the current iteration. In the 3-dedicated round,
the robot that moved in the 2-dedicated round returns to its original position
through its value of port entered. In the 4-dedicated round and the 5-dedicated
round, a similar procedure is followed by each settled robot rj with rj .dist =
1. This technique facilitates the traversal of the DFS tree by rmin exclusively
through the tree edges. Note that, the sequence of edge traversal by rj might be
different than the sequence of tree edges that formed during the DFS traversal
in phase 1, and this is not an issue with us. Also, during each of the second,
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Algorithm 1: D 2 D Rooted
/* 1-dedicated round */
if ri is an unsettled robot then

call algorithm for unsettled robots in phase 1
else if ri is a settled robot then

call algorithm for settled robots in phase 1
/* 2-dedicated round */
if ri is a settled robot and ri.dist = 0 then

move through ri.parent
/* 3-dedicated round */
if rj is a settled robot with ri.dist = 1 and rmin is present with it then

rj updates rj .crnt port using the incoming ports of the robots who entered at its node
in the 2-dedicated round

if ri moved in the 2-dedicated round then
move through ri.port entered

/* 4-dedicated round */
if ri is a settled robot and ri.dist = 1 then

move through ri.parent
/* 5-dedicated round */
if rj is a settled robot with ri.dist = 0 and rmin is present with it then

rj updates rj .crnt port using the incoming ports of the robots who entered at its node
in the 4-dedicated round

if ri moved in the 4-dedicated round then
move through ri.port entered

/* 6-dedicated round */
if ri is the minimum id robot at the root node then

call algorithm for rmin in phase 2
else if ri is a settled robot then

call algorithm for settled robots in phase 2

third, fourth, and fifth dedicated rounds, if the parent of the settled robot rj has
a phase value of 2, then rj updates their rj .phase = 2.

Here we explicitly mention what happens in an iteration. The pseudo-code
for an iteration is provided in Algorithm 1.

– 1-dedicated round: Robots run phase 1 for one round in this round.
– 2-dedicated round: Each robot rj that is settled at an even distance from the

root node (w.r.t. distance in the DFS traversal), moves through rj .parent.
– 3-dedicated round: The settled robot at odd distant node u updates its

crnt port if rmin is present with it, by seeing the robots who moved in the
2-dedicated round to enter u. The robots rj that moved in the 2-dedicated
round return to their original position via the port they entered through.

– 4-dedicated round: Each robot rj that is settled at an odd distance from the
root node (w.r.t. distance in the DFS traversal), moves through rj .parent.

– 5-dedicated round: The settled robot at even distant node u update its
crnt port if rmin is present with it, by seeing the robots who moved in the
4-dedicated round to enter u. The robots rj that moved in the 4-dedicated
round return to their original position via the port they entered.

– 6-dedicated round: Robots run phase 2 for one round in this round.

3.2 Correctness and Analysis

The proofs of the lemmas are omitted due to page restrictions.

Lemma 1. Phase 1 correctly disperses the robots on the graph. A group of at
least two robots understands the termination of phase 1 after phase 1 is done.
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Lemma 2. Phase 2 terminates correctly.

Theorem 1. Let G be a port-labeled, undirected, and connected graph with n
nodes, m edges, and maximum degree Δ. Let k(> n) robots be initially placed at
a single node of the graph G and robots have no prior knowledge of any of the
global parameters. The robots achieve D-2-D on the graph with termination in
O(m) rounds with O(log n) memory per robot.

Proof. From Lemma 1, after phase 1 of our algorithm, each node of the graph
has at least one robot settled on it. In phase 2 of the algorithm, a settled robot
ri vacates its position only if there is at least one settled robot, say rj , with
rj .final set = 1. As a result, when phase 2 is complete, every node in the graph
has at least one neighbor with a robot rj with rj .final set = 1. Hence, robots
achieve D-2-D configuration by the end of phase 2. Hence the D-2-D configuration
achieved by robots constitutes a maximal independent set of the graph.

k1 involves the DFS traversal of the graph. According to the correctness
proof provided in [2], achieving dispersion through DFS traversal necessitates
a time complexity of 4m − 2n + 2 rounds. This can be inferred as each tree
edge is traversed twice, while each non-tree edge is traversed at most four times
during the process. Our algorithm proceeds in iterations where each iteration
consists of 6 rounds and phase 1 of our algorithm runs only in the first round
of each iteration. Thus the total number of rounds required for our algorithm to
accomplish dispersion on the graph is 6(4m − 2n + 2) = O(m).

Following the completion of phase 1, phase 2 is started by rmin. Robot rmin

traverses only along the tree edges of the tree constructed during the DFS traver-
sal of phase 1. Consequently, each edge is traversed twice, this takes 2n rounds.
For a node v, the settled robot rv at v, whose decision is to be made, a total
of 2δ(v) rounds are required. Thus, at most 2n + 2Δn rounds are required to
execute phase 2 of our algorithm. Again, since phase 2 of our algorithm runs
only in the sixth round of each iteration, the total number of rounds required
for phase 2 of our algorithm is 6(2n + 2Δn) = O(m). Hence our Algorithm 1
terminates after O(m) rounds.

The variables ri.settled, ri.state, ri.phase, ri.decision, ri.dist, and
ri.final set require 2 bits of memory. The variables ri.recent, ri.crnt port,
ri.parent, and ri.port entered require log Δ memory by the robots. As Δ < n
and robots store their id, the algorithm can be executed with O(log n) bits of
memory per robot.

4 D-2-D from Arbitrary Initial Configuration

In this section, we present an algorithm designed for a configuration where
k(> n) robots are placed arbitrarily on the graph, occupying p distinct nodes
where 1 < p ≤ n. We say each of those p nodes contains a group of robots2

and are known as multiplicity nodes. We start with a high-level description. The

2 Even if a node contains only a single robot, we consider that single robot as a group.
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algorithm runs in two phases. The first phase of the algorithm allows all the
robots to disperse on the graph. Each group of robots begins their DFS traver-
sal with the aim of dispersing the robots in the group. Each DFS traversal is
associated with a label that corresponds to the minimum ID robot of the respec-
tive group. As each group does its own DFS traversal, the DFSs corresponding
to different groups need to merge to continue the process. The merging is done
in such a way that at the end there exists only one DFS tree in the graph, and
a group of robots can understand the termination of phase 1 so that they can
initiate phase 2. Then robots run the algorithm of phase 2 described in Sect. 3
to reach a D-2-D configuration. By the end of phase 1, the idea is go get a single
DFS tree associated with the smallest labeled DFS traversal in the graph. When
two DFSs meet, we allow the DFS with the smaller label to extend its DFS by
supplying all the unsettled robots of the larger labeled DFS to it. We say that
the DFS corresponding to the larger label is merged into the DFS corresponding
to the smaller label. One of the benefits of our merging technique is that after
the merging of two or more DFSs, the settled robots of the collapsed DFS do
not vacate their positions. Such settled robots are allowed only to change their
parent pointer and the label of their associated DFS when they are visited by
a smaller labeled DFS. Since we assume that k > n, all the surplus unsettled
robots eventually become a part of the smallest labeled DFS by changing their
label and thus complete the DFS traversal of the graph providing a DFS tree
with respect to the smallest labeled DFS. Finally, these surplus robots settle at
the root node of the smallest labeled DFS. With this, the phase 1 of the algo-
rithm terminates and phase 2 is initiated by the minimum id robot settled at the
root node. This phase is the same as the phase 2 of the algorithm discussed for
the rooted configuration in Sect. 3. Thus we achieve D-2-D on the graph with the
help of the minimum id robot settled at the root node in the phase 2. Note that,
similar to the algorithm provided for rooted configuration, the current algorithm
proceeds in iterations. Each iteration consists of 6 dedicated rounds, where the
1-dedicated round is for the phase 1 of the algorithm that involves DFS traver-
sal of the graph with merging. The functionalities of the 2 − 6 dedicated rounds
remain the same as discussed in the Algorithm 1 for rooted configuration. We
are now ready to discuss our algorithm, specifically, the phase 1 of our algorithm
describing the merging technique in detail.

4.1 The Algorithm

The phase 1 of the algorithm begins with settling the minimum id robot from
each group of unsettled robots at p multiplicity nodes. The remaining unsettled
robots set their label same as the id of the robot settled at the root node. The
robots begin performing dispersion using the method described in Sect. 3 with
an additional checking which is performed by the group of unsettled robots after
reaching a new node. Since there is more than one DFS running simultaneously,
on reaching a new node, the unsettled robots may encounter a settled robot from
a different labeled DFS. As a result, the merging of two DFSs takes place.
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The idea of the merging of two or more DFSs is that the smaller labeled DFS
is allowed to continue its DFS without halting due to the presence of an already
settled robot from a different DFS. Moreover, the unsettled robots of the larger
labeled DFS are transferred to the smaller labeled DFS. The various scenarios
that can occur during this process are described as follows:

– When groups of unsettled robots from two or more DFSs meet at a common
node: In this case, the minimum id robot from the minimum labeled DFS
(say l), is allowed to settle at the current node and the unsettled robots from
the other DFSs now become a part of the minimum labeled DFS l3. Thus
they change ri.label = l and merge with the DFS l. In accordance with the
DFS l, they resume their traversal.

– When the unsettled robots of DFS l meets with a settled robot of DFS m:
• If l > m: Let rj be the settled robot of DFS m and the group of unsettled

robots of DFS l meets with rj when they move in explore state to reach
a new node. In this case, all the unsettled robots of DFS l change their
label to m and follow the recent ports of each settled robot of the DFS
m unless it merges with its group of unsettled robots. Now the following
cases may arise:

* While following the recent pointers, the unsettled robots may meet
a settled robot with a label, say j, such that j < m. In this case,
the group changes its label and follows the recent ports of the settled
robot unless it meets with unsettled group.

* While following the recent pointers, the unsettled robots reach a set-
tled robot, say rp, that has set recent = ⊥, which may occur as
rp was the last robot to settle, and there were no unsettled robots
of the DFS m left. The unsettled group then restarts the DFS
traversal of the DFS m from the current node by moving through
ri.port entered = ri.port entered + 1. The settled robot rp updates
rp.recent same as the port used by the unsettled robots to exit the
node i.e. ri.port entered.

* When the group of unsettled robots following the recent port of the
settled robots meets with the group of unsettled robots of DFS m,
they merge with the DFS m and continue the traversal of DFS m.

• If l < m: Let the unsettled robots of DFS l meet with a settled robot rj
of DFS m while doing its traversal. Since l < m, the robot rj changes
rj .parent = ri.port entered and rj .label = ri.label, where ri are the
unsettled robots of the DFS l. Thus, rj becomes a part of the DFS l. The
group of unsettled robots leaves the node by updating ri.port entered =
ri.port entered+1, while the settled robot rj updates value of rj .recent =
ri.port entered.

An illustrative example demonstrating the execution of phase 1 of the algorithm,
which incorporates the DFS with the merging technique, is provided in Fig. 2.

3 We use DFS w to denote the DFS with label w.
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Fig. 2. (a) Robots are placed on graph nodes, grouped as red, blue, and green (labeled
r, b, and g respectively), with triangular shapes for settled robots and circles for unset-
tled ones. Let r < g < b (b) The three groups start their DFS traversal. In round three,
an unsettled b robot encounters a settled g robot with a smaller label, so it switches
its label to g and follows recent pointers of the settled robots (c) The recent pointer
of the robot settled at the node v6 is ⊥. Thus, the unsettled robot continues the DFS
g (d) The unsettled g robot reaches the node v1 and encounters a settled robot with
label r. It changes its label to r and follows recent pointers. The unsettled r robot
reaches v5 and the robot settled at v5 changes its label to r and parent pointer to 1
(e) The unsettled robot of the DFS r moves through nodes v4, v7, and v6, where all
the settled robots change their label and parent pointers accordingly. While another
robot follows the recent pointers to meet with the unsettled robot of DFS r. Finally,
they meet at the node v4 and continue the traversal of DFS labeled r (f) Final robot
configuration after phase 1, with dark lines indicating tree edges and dotted lines rep-
resenting non-tree edges. Surplus robots settle at the root node. (Color figure online)

Since k > n, we ensure that at least one robot, say ru, that eventually
becomes a part of the minimum labeled DFS, completes the DFS traversal of the
graph resulting in the construction of a DFS tree with respect to the minimum
labeled DFS. Since the phase 1 of the algorithm is concluded, no node is left
unexplored. Thus, each settled robot has the label set as rmin, where rmin is the
robot settled at the root node of the minimum labeled DFS. The robot ru reaches
the root node of this minimum labeled DFS with no further ports to explore.
Thus, when ru updates the value of ru.port entered = ru.port entered+1, and it
equals 0, the phase 1 of the algorithm concludes. The phase 2 of the algorithm is
then initiated by the robot rmin in a similar manner as discussed in the algorithm
for rooted configuration in Sect. 3. Finally, D-2-D is achieved by the robots after
the conclusion of the phase 2 of our algorithm.
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4.2 Correctness and Analysis

The proofs of the lemmas are omitted due to page restrictions.

Lemma 3. The phase 1 correctly disperses the robots on the entire graph and
no node is left vacant.

Lemma 4. The phase 1 of the algorithm terminates and phase 2 of the algo-
rithm is initiated correctly.

Lemma 5. At the conclusion of phase 1 of the algorithm, all the settled robots
rj have labels set as the minimum id robot, i.e., rj .label = rmin.

Theorem 2. Let G be a port-labeled, undirected, and connected graph with n
nodes, m edges, and maximum degree Δ. Let k(k > n) robots be arbitrarily
placed on it at p multiplicity nodes and the robots have no prior knowledge of
any of the global parameters n, m, k, p, and Δ. Then the algorithm described
in the Sect. 4 solves D-2-D with termination in O(pm) rounds, and O(log n)
memory is required by each robot to run the algorithm.

Proof. We assume that in the initial configuration, there are p multiplicity nodes.
The settled robots of a DFS can change their label at most p times when the
unsettled robots from a lower labeled DFS meet them. Thus, an already traversed
DFS may need to be traversed again for at most p times. Since rooted dispersion
requires O(m) time complexity, the phase 1 of our algorithm requires O(pm)
time to complete. The time complexity of phase 2 of our algorithm follows from
the proof of Theorem 1. The time complexity of our algorithm is thus O(pm).

The variables maintained by the robots in this algorithm are the same as the
variables maintained by the robots in Algorithm 1. Thus, O(log Δ) memory is
required by the robots. As Δ can be at most n − 1 and the robots store their
own id that takes O(log n) memory, the algorithm is run with O(log n) memory.

5 Conclusion

In this work we provide an improved solution for rooted D-2-D and a solution
for D-2-D starting from any arbitrary initial configuration, using a strong team
of mobile robots. An Ω(mΔ) lower bound for D-2-D problem with k > 1 robots
is proved in [1]. The proof uses a two robot scenario. It would be interesting
to do a lower-bound study of D-2-D starting with k(> n) robots. Also, solving
D-2-D in the presence of faults can be another direction of further study.
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Abstract. The main reason for query model’s prominence in complexity
theory and quantum computing is the presence of concrete lower bound-
ing techniques: polynomial and adversary method. There have been con-
siderable efforts to give lower bounds using these methods, and to com-
pare/relate them with other measures based on the decision tree.

We explore the value of these lower bounds on quantum query complex-
ity and their relation with other decision tree based complexity measures
for the class of symmetric functions, arguably one of the most natural and
basic sets of Boolean functions. We show an explicit construction for the
dual of the positive adversary method and also of the square root of pri-
vate coin certificate game complexity for any total symmetric function.
This shows that the two values cannot be distinguished for any symmet-
ric function. Additionally, we show that the recently introduced measure
of spectral sensitivity gives the same value as both positive adversary and
approximate degree for every total symmetric Boolean function.

Further, we look at the quantum query complexity of Gap Majority, a
partial symmetric function. It has gained importance recently in regard
to understanding the composition of randomized query complexity. We
characterize the quantum query complexity of Gap Majority and show
a lower bound on noisy randomized query complexity (Ben-David and
Blais, FOCS 2020) in terms of quantum query complexity.

Keywords: Computational Complexity · Quantum Physics · Query
Complexity

1 Introduction

The model of query complexity has been essential in the development of quantum
algorithms and their complexity: many of the famous quantum algorithms can
be best described in this model [15,26] and most of the lower bounds known on
complexity of algorithms are obtained through this model [5,8].

The power of this model for analysing complexity of quantum algorithms
arises from the fact that there are concrete mathematical techniques to give
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lower bounds in this framework. There are two main ways to give lower bounds
in this framework.

– Approximate degree and its variants: techniques motivated from capturing
the success probability of the algorithm as polynomials [8].

– Adversary bound: techniques motivated from the adversary method and its
semi-definite programming characterization [3,5,16,21,27].

These lower bounds have been motivated by complexity measures of Boolean
functions introduced to study deterministic query (decision tree) and random-
ized query complexity. For deterministic query complexity, measures like Fourier
degree, sensitivity, block sensitivity and certificate complexity have been studied
extensively [11,24] (all four are known to lower bound deterministic tree complex-
ity). Similarly randomized certificate complexity is known to be a lower bound
randomized query complexity. In last few years many new measures have been
introduced to understand these query complexity measures [9,12]. For exam-
ple, noisyR was introduced to understand the composition of randomized query
complexity [9], and recently Chakraborty et al. introduced the notion of certifi-
cate games whose public coin version is a lower bound on certificate as well as
randomized query complexity [12]. Huang’s landmark result [18] shows that all
these measures are polynomially related to sensitivity.

How do these measures relate to each other? Huang [18] showed that these
measures are polynomially related. Can we figure out what exponent is needed
to bound one complexity measure by another (the exponent will depend on these
complexity measures)? A lot of work has been done on these relations [3,12]. (A
very nice table with possible separations is given in Aaronson et al. [3].)

Let us ask a different question, can we compare these quantities for special
class of functions? One of the simplest (and well studied) type of functions are the
class of symmetric functions; the output of a symmetric function only depends
on the Hamming weight of the input. This class contains many of the natural
functions (OR, AND, MAJORITY, PARITY) and has been studied extensively
in theoretical computer science. More specifically, related to quantum query
complexity, Paturi [25] characterized the bounded error approximate degree for
any symmetric function. de Wolf [29] showed a tight bound for approximate
degree with small error by constructing optimal quantum query algorithms.

The main focus of this work is to examine different lower bound techniques
known for quantum query complexity and their relation with other complexity
measures for symmetric functions. See the survey by Buhrman and de Wolf [11]
for a list of complexity measures based on the query model (we look at these
measures when the function is symmetric). For the class of transitive symmetric
functions, a study has been initiated by Chakraborty et al. [13].

1.1 Our Results

For all results in this paper, assume ε to be a constant less than 1/2.
We discussed two different lower bounds on bounded error quantum query

complexity of a Boolean function: approximate degree and positive adversary.
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Our first result shows that for any total symmetric function, the positive
adversary bound is asymptotically identical to square root of the certificate game
complexity [12]. We show it by constructing an explicit solution of the dual of
adversary semidefinite program (minimization version, shown in Definition 7)
which works for the square root of certificate game complexity too.

Theorem 1. Let f : {0, 1}n → {0, 1} be a total symmetric Boolean function.

Adv+(f) = Θ
(√

CG(f)
)

= Θ(
√

tf · n). (1)

Here tf is the minimum t such that f is constant for Hamming weights between
t and n − t.

The article [14] introduced the measure expectational certificate complexity
to upper bound Las-Vegas randomized query complexity. It had a very simi-
lar optimization program to square root of certificate game complexity (only
difference being not having the constraint that weights are less than 1). This
construction implies that bound on weights in the expectational certificate com-
plexity makes it different from square root of certificate game complexity.

Even though previous results show the value of Adv+(f) using the upper
bound on Qε(f), we give an explicit upper bound using the min-max formulation
of Adversary bound, which is found to be

√
tf · n, where tf is the minimum t

such that f is constant for Hamming weights between t and n−t. de Wolf [29] has
already shown quantum algorithms with the same quantum query complexity.
This shows that Qε(f) (bounded error quantum query complexity) and Adv+(f)
are also asymptotically identical to square root of certificate game complexity
for total symmetric functions. The bound on adversary method was also shown
by [2].

Recently, a lower bound on adversary, called spectral sensitivity, has gained
lot of attention and is shown to be a lower bound for approximate degree too [3].
For any total symmetric functions, spectral sensitivity gives the same bound as
other two techniques.

Theorem 2. Let f : {0, 1}n → {0, 1} be a total symmetric Boolean function.
Let λ(f) denote the spectral sensitivity of f respectively, then λ(f) = Θ (

√
n · tf ) .

This shows that λ(f) is identical to the known values of Qε(f) and Adv+(f)
for total symmetric functions. The approximate degree is also shown to be
Θ(

√
tf · n) by Paturi [25]. This shows that almost all lower bounds on quantum

query complexity in case of symmetric functions give the same value, Θ(
√

tf · n).
As far as we know, this only leaves one lower bound for quantum query com-
plexity, known as quantum certificate complexity [1,19]. It is known that this
lower bound is equal to Θ(

√
n) for any symmetric function.

Continuing, we examine the quantum query complexity of Gap Majority
problem, a partial symmetric Boolean function. This problem gained a lot of
attention recently due to the work of Ben-David and Blais [9] for proving results
about composition of randomized query complexity. We prove the following the-
orem about Gap Majority.
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Fig. 1. The asymptotic relations on complexity measures of total symmetric functions.
We show, (1)

√
CG(f) and λ(f) are asymptotically identical to Adv+(f); and (2)

Qε(f) = O(noisyRε(f) · √
n);

Theorem 3. Let GapMajn denote the Gap Majority function on n variables
and Qε(f) denote the quantum query complexity with error ε. Then,

Qε(GapMajn) = Θ(
√

n),

We prove the result by giving a quantum algorithm for GapMajn based on
quantum counting and proving the tight lower bound using adversary method
(lower bound also follows from [23]).

Ben-David and Blais [9] recently introduced noisy randomized query com-
plexity (denoted by noisyRε(f)); they showed it to be a lower bound on the
bounded error randomized query complexity (for definition, see [9]). They also
proved that separating noisy randomized query complexity with randomized
query complexity is equivalent to giving counterexample for composition of ran-
domized query complexity.

Theorem 3 allows us to prove a lower bound on the noisy randomized query
complexity in terms of quantum query complexity.

Corollary 1. Let noisyRε(f) (Qε(f)) denote the noisy randomized query com-
plexity (quantum query complexity) with error ε respectively. For any total
Boolean function f : {0, 1}n → {0, 1},

Qε(f) = O(noisyRε(f) · √n).

From the definition of noisy randomized query complexity, it is a lower bound
on randomized query complexity. Since quantum query complexity is a lower
bound on randomized query complexity, Corollary 1 provides a relation between
these two lower bounds. All other known lower bounds on randomized query
complexity are known to be lower bounds on noisyR.
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The known relations on complexity measures for symmetric functions are
illustrated in Fig. 1. The preliminaries required for our results are given in Sect. 2.
Proof of Theorem 1 is detailed in Sect. 3. The results about Gap Majority and
its consequence are given in Sect. 4. The bound on spectral sensitivity is proven
in Sect. 5.

2 Preliminaries

Norm: ‖v‖ denotes 2-norm of a vector v. The spectral norm of a square matrix
Γ is defined as ‖Γ‖ = maxv:‖v‖=1‖Γ.v‖ = max‖u‖=‖v‖=1 uT Γv.

Lemma 1 ([22]). For any two non-negative n×m matrices A and B, ‖A+B‖ ≥
max{‖A‖, ‖B‖}
Definition 1. The Gap Majority function on n variables, called GapMajn, is
the partial symmetric Boolean function

GapMajn(x) =

⎧
⎪⎨
⎪⎩

0, if |x| = n/2 − √
n

1, if |x| = n/2 +
√

n

not defined, otherwise.

Quantum Query Complexity: The bounded error quantum query complexity of a
Boolean function f (Qε(f)) is the minimum number of queries needed to compute
f with error ε. By repeating the algorithm constant times, success probability
can be made 1 − ε for any constant 0 < ε < 1/2. We introduce a few lower
bounds on quantum query complexity in the following subsections. (For exact
definition and more details about quantum query complexity, see [17].)

Positive Adversary: Ambainis [5] introduced the first positive adversary bound,
denoted by Adv+(f). Later, many modification of it were used to give lower
bounds on different problems [6,7,20,30]; all of those were shown to be equivalent
[27]. (These methods do not include the generalized (negative) adversary method
[16].) The following version is from the original article by Ambainis [5, Theorem2].

Theorem 4. Let f(x1, ..., xn) be a function of n {0, 1}-valued variables and X,Y
be two sets of inputs such that f(x) �= f(y) if x ∈ X and y ∈ Y . Let R ⊂ X × Y
be such that

1. For every x ∈ X, there exist at least m different y ∈ Y such that (x, y) ∈ R.
2. For every y ∈ Y , there exist at least m′ different x ∈ X such that (x, y) ∈ R.
3. For every x ∈ X and i ∈ {1, ..., n}, there are at most l different y ∈ Y such

that (x, y) ∈ R and xi �= yi.
4. For every y ∈ Y and i ∈ {1, ..., n}, there are at most l′ different x ∈ X such

that (x, y) ∈ R and xi �= yi.

Then, any quantum algorithm computing f uses Ω(
√

mm′
ll′ ) queries.
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Another version used in this paper is called spectral adversary [7].

Definition 2. Let f : {0, 1}n → {0, 1} be a Boolean function. Let Di, for all
i ∈ [n], be 2n × 2n Boolean matrices, where indexes for rows and columns are
from inputs {0, 1}n. The x, y entry of matrix Di is 1 iff xi �= yi. Similarly, F
is a 2n × 2n Boolean matrix such that F [x, y] = 1 ⇔ f(x) �= f(y). Let Γ be a
2n × 2n non-negative symmetric matrix, then

SA(f) = max
Γ :Γ◦F=Γ

‖Γ‖
maxi∈[n]‖Γ ◦ Di‖ . (2)

Another version is called the minimax adversary method MM(f) [20], and is
a minimization problem.

Definition 3. Let f : S → {0, 1} where S ⊆ {0, 1}n be a Boolean function. Let
w be a weight function, then

MM(f) = min
w

max
x∈Dom(f)

Σi∈[n]w(x, i)

s.t
∑

i:xi �=yi

√
w(x, i)w(y, i) ≥ 1, ∀x, y : f(x) �= f(y)

w(x, i) ≥ 0, ∀x ∈ Dom(f), i ∈ [n].

(3)

We know that Adv+(f) = MM(f) = SA(f) = O(Qε(f)) [5,7,20,27].

Spectral Sensitivity λ(f): In 2020, Aaronson et al. introduced a new measure
based on the sensitivity graph of a Boolean function, which can be used to
estimate complexity of the function [3].

Definition 4. For a total Boolean function f : {0, 1}n → {0, 1}, the spectral
sensitivity is defined as the spectral norm of its adjacency matrix Af .

λ(f) = ‖Af‖ = max
v:‖v‖=1

‖Af .v‖ (4)

This spectral relaxation of sensitivity was found to be a lower bound for
spectral adversary method by Aaronson et al. [3]. It was also observed that
since Gf is symmetric and bipartite, the spectral norm of Af is simply the
largest eigenvalue of Af .

Expectational Certificate Complexity: A new complexity measure was introduced
by Gavinsky et al. [14] called expectational certificate complexity, defined as
follows.

Definition 5. Let f : S → {0, 1} where S ⊆ {0, 1}n be a Boolean function. Let
w be a weight function, then

EC(f) = min
w

max
x∈Dom(f)

Σi∈[n]w(x, i)

s.t
∑

i:xi �=yi

w(x, i)w(y, i) ≥ 1, ∀x, y : f(x) �= f(y)

0 ≤ w(x, i) ≤ 1, ∀x ∈ Dom(f), i ∈ [n].

(5)
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It was shown that EC(f) ≥ FC(f) ([14][Lemma 7]) and EC(f) = Ω(n) for
all symmetric functions f .

3 Lower Bounds on Quantum Query Complexity
for Total Symmetric Functions

In this section we first construct an optimal solution for the min-max formulation
of the adversary bound. It turns out that a similar construction gives an optimal
bound on the private coin version of certificate game complexity.

Adv+(f) for Total Symmetric Boolean Functions

For a Boolean function f , we define tf to be the minimum t such that f is
constant between t and n − t. We use the min-max formulation of Adversary
bound (MM(f)) and explicitly show that Adv+(f) = O(

√
tf · n).

Theorem 5. For any total symmetric Boolean function f, Adv+(f) =
O(

√
tf · n) (Fig. 2).

Fig. 2. A general total symmetric Boolean function viewed on Hamming weights, it is
constant in the range [tf , n − tf ] by definition.

Proof. Using tf , |x| can fall in 3 regions; left (L), right (R) and middle (M). From
the definition of MM(f) given in Sect. 2, we need to define a weight function w.

Definition 6. We define a weight function w(x, i):

– For L (|x| < tf ):

w(x, i) =

{√
n/tf , if xi = 1√
tf/n, if xi = 0.

– For R (|x| > n − tf ):

w(x, i) =

{√
n/tf , if xi = 0√
tf/n, if xi = 1.
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– For M (tf ≤ |x| ≤ n − tf ):

For any tf i′s such that xi = 1, w(x, i) =
√

n/tf .

For any tf i′s such that xi = 0, w(x, i) =
√

n/tf .

For the constraint
∑

i:xi �=yi

√
w(x, i) · w(y, i) ≥ 1 for all x, y : f(x) �= f(y),

following cases arise:

– x ∈ L and y ∈ R: For any x ∈ L and y ∈ R, there are at least (n − 2tf + 2)
indices such that xi = 0 and yi = 1.

∑
i:xi �=yi

√
w(x, i) · w(y, i) ≥ (n − 2tf + 2)

√
tf/n

≥ 1 (true for any 0 < tf ≤ n/2 ).

– x ∈ L and y ∈ M ; x ∈ R and y ∈ M ; x, y ∈ L; x, y ∈ R: We know that for
any y ∈ M , there are at least tf indices such that yi = 1. We also know that
for any x ∈ L, the maximum number of indices such that xi = 1 is < tf . Then
∃ at least one i such that xi = 0 and yi = 1. For this index i, we know that
w(x, i) =

√
tf/n and w(y, i) =

√
n/tf . Thus

∑
i:xi �=yi

√
w(x, i) · w(y, i) ≥ 1

for all x ∈ L and y ∈ M . Similar argument holds for x ∈ R and y ∈ M or
x, y ∈ L or x, y ∈ R.

– x, y ∈ M : There are no x, y ∈ M such that f(x) �= f(y).

With w as the weight scheme, we can see that the value of maxx Σiw(x, i)
becomes Θ(

√
tf · n). Thus, Adv(f) = MM(f) = O(

√
tf · n). Since we already

from Theorem 2 know that Adv(f) = Θ(
√

tf · n), this weight scheme w is an
explicit solution for the same.

Certificate Game Complexity for Symmetric Functions
The article [12] defined certificate game complexity in various settings. The def-
inition in case of private coin setting is very similar to the min-max definition
of the adversary method (Definition 3). In particular, the optimization program
for the square root of certificate game complexity does not have a square root
in the constraints.

Definition 7. Let f : S → {0, 1} where S ⊆ {0, 1}n be a Boolean function. Let
w be a weight function, then

√
CG(f) = min

w
max

x∈Dom(f)
Σi∈[n]w(x, i)

s.t
∑

i:xi �=yi

w(x, i)w(y, i) ≥ 1, ∀x, y : f(x) �= f(y)

w(x, i) ≥ 0, ∀x ∈ Dom(f), i ∈ [n].

(6)
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It turns out that the same bound can be obtained for
√

CG(f) (with the
same explicit solution as the one for the adversary bound). Together with the
result of previous section, we get Theorem 1.

Lemma 2. For any total symmetric Boolean function f,
√

CG(f) =
O(

√
tf · n).

Proof. We consider the same weighing scheme w used for MM(f). For the total
symmetric function f where tf is the minimum value such that the function
value is constant for (tf , n − tf ), we use a weight function w(x) as defined in
Definition 6

First, we verify that w satisfies
∑

i:xi �=yi
w(x, i)w(y, i) ≥ 1 for all x, y : f(x) �=

f(y). A case analysis, similar to proof of Theorem 5, verifies the constraint (notice
that the square root does not matter because the proof only requires at least
one index such that w(x, i)w(y, i) ≥ 1 ).

The objective value maxx Σiw(x, i) remains Θ(
√

tf · n). Thus,
√

CG(f) =
O(

√
tf · n).

Proof (Proof of Theorem 1). Suppose f is symmetric. Since it is known that√
CG(f) is lower bounded by Adv+(f), Lemma 2 shows that

√
CG(f) =

Θ(Adv+(f)). The lower bound on Adv+(f) follows from [2].

It is easy to see that the other certificate game complexity measures,
CGpub(f) = CG∗(f) = CGns(f) are Θ(n) for any total symmetric function
f [12].

Expectational certificate complexity (EC(f)) [14], looks misleadingly similar
to MM(f).

Since EC(f) ≥ FC(f) ([14][Lemma 7]), EC(f) = Ω(n) for all symmetric
functions f . Also Theorem 5 shows that MM(f) = O(

√
tf · n). There are two

differences between EC(f) and MM(f): objective function and the restriction on
the weight scheme. Removing the square root in the objective function doesn’t
change the upper bound (Lemma 2). Though, restricting w(x, i) to be in between
0 and 1 changes the bounds drastically. In particular, we know that there are
lot of symmetric functions for which EC is asymptotically bigger than

√
CG.

4 Quantum Query Complexity for Gap Majority
Function

The Gap Majority function (Definition 1) has been recently used by Ben-David
and Blais [9] to understand the composition of randomized query complexity.
They used it to characterize the noisy randomized query complexity, a lower
bound on randomized query complexity, and were able to show multiple results
on composition using this noisy version. As a first step towards understanding
the quantum query complexity of partial symmetric functions, we compute the
quantum query complexity of GapMajn and use it show new lower bounds on
noisy randomized query complexity.
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The main result of this section, Theorem 3, shows that Qε(GapMajn) =
Θ(

√
n). As a corollary, we obtain Qε(f) = O(noisyRε(f) · √

n) for any total
Boolean function. It is not known to be true for partial Boolean functions.

Proof (Proof of Corollary 1). Ben-David and Blais [9, Theorem 4] showed that
for any Boolean function f ,

Rε(f ◦ GapMajn) = Θ(noisyRε(f) · n)
⇒ Qε(f ◦ GapMajn) = O(noisyRε(f) · n).

(7)

Lee et al. [21, Theorem 1.1, Lemma 5.2] showed that for any total Boolean
function f ,

Qε(f) · Qε(GapMajn) = Θ(Qε(f ◦ GapMajn)). (8)

We prove in Theorem 3 that

Qε(GapMajn) = Θ(
√

n). (9)

Combining the result from Theorem 3 and (Eq. 7) and (Eq. 8), we get the
required result for any total Boolean function f ,

Qε(f) = O(noisyRε(f) · √n). (10)

Comparing our bound with previously known results, Ben-David et al. [9,
Lemma 38] show that noisyRε(f) = Ω(RC(f)) (notice fbs(f) = Θ(RC(f)) [28]).
Looking at previously known bounds on RC using quantum query complexity [3,
Table 1], we know that Qε(f) = O(RC(f)3). The best possible bound on noisyR
in terms of Qε becomes

Qε(f) = O(noisyRε(f)3). (11)

Corollary 1 gives a better bound than the existing bound when noisyRε(f) =
Ω(n

1
4 ).

4.1 Proof of Theorem 3

We start by showing that there exists a quantum algorithm that can compute
the quantum query complexity for Gap Majority in Θ(

√
n) steps, thus giving us

the upper bound for Qε(GapMajn).
The main tool is the following lemma from Aaronson and Rall [4, Theorem

1] to estimate the Hamming weight of an input (a modification of quantum
approximate counting by Brassard et al. [10, Theorem 15]).

Lemma 3 (Restatement of Theorem 1 from [4]). Let ε > 0 and x ∈ {0, 1}n

be the input whose Hamming weight we want to estimate, and t be the actual
Hamming weight of x. Given query access to an input oracle for x and an allowed
error rate δ > 0, there exists a quantum algorithm that outputs an estimate t′

with probability at least 1 − ε satisfying

(1 − δ)t ≤ t′ ≤ (1 + δ)t.

The above algorithm uses O(1δ
√

n/t) queries where the constant depends on ε.
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The upper bound is a straightforward implication of the previous lemma.

Lemma 4. Qε(GapMajn) = O(
√

n).

Proof. We use approximate counting (Lemma 3) in the following way. For
GapMajn, we know that t = n/2 ± √

n, thus we need to choose a δ such that
the minimum estimate of n/2 +

√
n is greater than the maximum estimate of

n/2 − √
n. When δ = 1/

√
n, the minimum estimate for t = n/2 +

√
n and maxi-

mum estimate for t = n/2 − √
n is n/2 ± √

n/2 − 1 respectively and hence there
is no overlap.

Given t = n/2 ± √
n and choosing δ = 1/

√
n, the quantum algorithm from

Lemma 3 can estimate a non-overlapping t′ using O(
√

n) queries with probability
at least 1 − ε. Thus Qε(GapMajn) = O(

√
n).

The matching lower bound was given by [2] using the positive adversary
method. We give a complete proof for the sake of completeness.

Lemma 5. Qε(GapMajn) = Ω(
√

n).

Proof. There are multiple ways of obtaining this lower bound namely using
lemma 29 of [2] or by applying theorem 1.1 from [23] on the function GapMaj(f).
However, we use the positive adversary bound from the original Ambainis arti-
cle [5]. Using the notation of Theorem 4, let X be the set of all inputs such that
GapMajn(x) = 0 and Y be the set of all inputs such that GapMajn(x) = 1. We
take R to be the set of all pairs (x, y) such that the bits which are set to 1 in x
are a subset of the bits which are set to 1 in y.

For any x ∈ X, the number of y ∈ Y such that (x, y) ∈ R are
(n

2 +
√

n

2
√

n

)
. To

enumerate y, we have to look at the number of ways in which we can fill n
2 +

√
n

places with 2
√

n ones and n
2 −√

n zeroes. This is because the rest of the n
2 −√

n
places are the ones which correspond to the ones in x. Since this is true for any
x ∈ X, the value of m is

(n
2 +

√
n

2
√

n

)
. Similar argument holds true for m′ as well,

whose value turns out to be
(n

2 +
√

n
n
2 −√

n

)
.

For a particular i, if xi = 0, the number of y ∈ Y such that (x, y) ∈ R and
yi = 1 is

(n
2 +

√
n−1

2
√

n−1

)
. This is because we are fixing the value of yi to be one, and

we already have n
2 −√

n ones filled out from the set bits of x, so we are left with
2
√

n − 1 ones to be filled in n
2 +

√
n − 1 places. For a particular i, if xi = 1, the

number of y ∈ Y such that (x, y) ∈ R and yi = 0 is 0 because otherwise this
pair (x, y) �∈ R. So, for an x ∈ X, the maximum number of y ∈ Y such that
(x, y) ∈ R and xi �= yi is

(n
2 +

√
n−1

2
√

n−1

)
. Since this is true for any x ∈ X, the value

of l is also the same. Similar argument holds true for l′ as well, which equals(n
2 +

√
n−1

n
2 −√

n

)
.

Substituting the values of m,m′, l, l′, we get Qε(GapMajn) = Ω(
√

n).

Proof (Proof of Theorem 3).
From Lemma 4 and Lemma 5, we can conclude that Qε(GapMajn) = Θ(

√
n).
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5 Spectral Sensitivity of Symmetric Functions

Here, we show that the spectral sensitivity of a total symmetric function f :
{0, 1}n → {0, 1} is Θ(

√
tf · n) (Theorem 2). Remember that for any symmetric

Boolean function f on n variables, we define tf to be the minimum value such
that the function f is constant for Hamming weights between tf and n − tf .

The spectral sensitivity of a function is given by the spectral norm of the
sensitivity graph of the function. First, we will find the spectral sensitivity of
threshold functions. Then, we will express the sensitivity graph of a general
symmetric functions in terms of the sensitivity graph of threshold functions and
obtain tight lower bound on spectral sensitivity.

Threshold Functions. A threshold function with threshold k, Tk : {0, 1}n →
{0, 1}, is a symmetric Boolean function defined to be 1 when |x| ≥ k, and 0
otherwise.

Theorem 6. For threshold function Tk, λ(Tk) =
√

k · (n + 1 − k).

Proof. The adjacency matrix of the sensitivity graph of Tk is denoted by ATk
.

Remember that λ(Tk) = ‖ATk
‖ = maxv:‖v‖=1‖ATk

· v‖
For any l, define vl with indices in {0, 1}n to be,

vl(x) =

{
1 if |x| = l

0 otherwise.

The length of vl is ‖vl‖ =
√∑

x:|x|=l 12 +
∑

x:|x|�=l 02 =
√(

n
l

)
.

To prove the lower bound, we will show that vk achieves a stretch of√
k(n + k − 1). Expanding the value at any index x:

(ATk
· vk)[x] =

∑
0≤|y|≤n

ATk
[x, y] · vk[y].

Since vk[y] = 1 ⇔ |j| = k, (ATk
· vk)[x] =

∑
|y|=k ATk

[x, y] · vk[y].
Notice that ATk

[x, y] = 1 and |y| = k then |x| = (k − 1). This implies that
(ATk

·vk)[x] = 0 if |x| �= k−1. Also, for any x : |x| = (k−1), there are (n+1−k)
possible y’s such that Hamming distance between x and y is 1 and |y| = k. So,

(ATk
· vk)[x] = (n + 1 − k) if |x| = k − 1. (12)

In other words, ATk
· vk = (n + 1 − k) · vk−1. Hence, the stretch in the length

of vector vk when multiplied with adjacency matrix ATk
is

|ATk
· vk|

|vk| =
(n + 1 − k) · |vk−1|

|vk| = (n+1−k)·
√(

n
k−1

)
(
n
k

) =
√

k · (n + 1 − k). (13)
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To prove the upper bound, we will use the result by Aaronson et al. [3],

λ(f) ≤
√

s0(f) · s1(f).

For Tk, the sensitivity of an input x is k if |x| = k and n + 1 − k if |x| = k − 1
(it is 0 everywhere else). We get the required upper bound by noticing that
s0(Tk) = n+1−k and s1(Tk) = k. Since the same lower bound has already been
proved,

λ(Tk) =
√

k · (n + 1 − k).

On plotting the spectral sensitivity against the threshold k, we see that the
spectral sensitivity is minimum when k is 1(OR) or n(AND), and maximum
when k = n

2 (MAJORITY).

Total Symmetric Functions. We observe that the sensitivity graph of any
symmetric function f can be written as sum of the sensitivity graphs of a subset
of threshold functions. Define Sf = {1 ≤ k ≤ n : f(k) �= f(k − 1)}.

Lemma 6. For a symmetric function f : {0, 1}n → {0, 1}, the adjacency matrix
of the sensitivity graph of f can be written as Af =

∑
Sf

ATk

Proof. Let B =
∑

Sf
ATk

. Since the support of ATk
where k ∈ Sf is disjoint, B

is also a {0, 1} matrix. We need to prove that B = Af .
From the definition of sensitivity graph, Af [x, y] = 1 if and only if the Ham-

ming distance between x and y is 1 and f(x) �= f(y). Without loss of generality
(Af and B are symmetric), assume |x| > |y|, then |x| ∈ Sf implying B[x, y] = 1.

For the reverse direction, if B[x, y] = 1 and |x| > |y|, then |x| ∈ Sf . This
means f(x) �= f(y), and the Hamming distance between x and y has to be 1
from the definition of ATk

. Again, Af [x, y] = 1.

Consider a symmetric function f : {0, 1}n → {0, 1}. As defined earlier, tf
is the smallest value such that function value is a constant for the range of
Hamming weights {tf , .., n − tf}. We capture the spectral sensitivity of f using
tf .

Proof (Proof of Theorem 2).
From Lemma 6, the adjacency matrix of the sensitivity graph of f can be

written as Af =
∑

Sf
ATk

. Since each ATk
has only non negative values, Lemma 1

gives us
λ(f) = ‖Af‖ ≥ ‖ATk

‖ = λ(Tk) ∀k ∈ Sf .

There is a change in function value of f at Hamming weight tf or (n+1− tf )
and from Theorem 6

λ(Ttf ) = λ(Tn+1−tf ) =
√

tf .(n + 1 − tf ).

We get λ(f) ≥ √
tf .(n + 1 − tf ). Since (n + 1 − tf ) = Θ(n),

λ(f) = Ω(
√

tf · n).

The upper bound follows from Adv+(f), Theorem 5.
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Abstract. Given a set P of n points in the plane, in general position,
denote by NΔ(P ) the number of empty triangles with vertices in P . In
this paper we investigate by how much NΔ(P ) changes if a point x is
removed from P . By constructing a graph GP (x) based on the arrange-
ment of the empty triangles incident on x, we transform this geometric
problem to the problem of counting triangles in the graph GP (x). We
study properties of the graph GP (x) and, in particular, show that it is
kite-free. This relates the growth rate of the number of empty triangles
to the famous Ruzsa-Szemerédi problem.

Keywords: Discrete geometry · Empty triangles · Kite-free graph

1 Introduction

Let P be a set of n points in the plane in general position, that is, no three are
on a line. We define N�(P ) as the number of empty triangles in P , that is, the
number of triangles with vertices in P with no other point of P in the interior.
Counting the number of empty triangles in planar point sets is a classical prob-
lem in discrete geometry (see [1–3,5,6,8,10,11,14] and the references therein).
Specifically, Bárány and Füredi [1] showed that NΔ(P ) ≥ n2 −O(log n), for any
set of points P , with |P | = n, in general position. On the other hand, a set of n
points chosen uniformly and independently at random from a convex set of area
1 contains 2n2 + o(n2) empty triangles on expectation [11,14].

In this paper we study the growth rate of N�(P ) when a point x is removed
from P . For this, let N�(P\{x}) denote the number of empty triangles in the
set P\{x} and consider the difference:

Δ(x, P ) = |N�(P ) − N�(P\{x})|.

In the following theorem we bound the above difference in terms of number
of triangles in P with x as a vertex, which we denote by VP (x). To this end,
denote by K4\{e} the kite graph, that is, the complete graph K4 with one of its
diagonals removed (see Fig. 1).
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a b

c

d

Fig. 1. The kite graph K4\{e}.

Theorem 1. For any set P , with |P | = n,

Δ(x, P ) ≤ VP (x) + H(VP (x),K3,K4\{e}), (1)

where H(VP (x),K3,K4\{e}) is the maximum number of triangles in a K4\{e}-
free graph on VP (x) vertices. Moreover, there exists a set P , with |P | = n, and
a point x ∈ P such that Δ(x, P ) ≥ CVP (x)

3
2 , for some constant C > 0.

The proof of Theorem 1 is given in Sect. 2. To establish the upper bound in
(1) we construct a graph GP (x) based on the arrangement of empty triangles
in P which have x as a vertex and relate the problem of estimating Δ(x, P ) to
the problem of counting the number of triangles in the graph GP (x). The graph
GP (x) has many interesting properties, specifically, we show that it is kite-free,
which gives the upper bound in (1) (see Sect. 2.1). The lower bound construction
is given in Sect. 2.2.

The extremal number H(VP (x),K3,K4\{e}) that appear in the bound (1)
is closely connected to the celebrated Ruzsa-Szemerédi problem, which asks for
the maximum number of edges in a graph with n vertices such that every edge
belongs to a unique triangle [12]. Note that if a graph G is kite-free, then every
edge in G has at most one triangle passing through it. Then removing the edges
which have no triangles passing through them (which does not change the num-
ber of triangles), one can relate the problem of counting triangles in G to the
Ruzsa-Szemerédi problem. An application of the Szemerédi regularity lemma
[13] shows that any solution to the Ruzsa-Szemerédi problem has at most o(n2)
edges [12] (which is often also referred to as the diamond-free lemma). This can
be improved to n2/eΩ(log� n) by a stronger form of the graph removal lemma
[7]. This, in particular, implies that H(VP (x),K3,K4\{e}) = o(VP (x)2). Hence,
from Theorem 1 we get the upper bound: Δ(x, P ) = o(VP (x)2). On the other
hand, the lower bound of Δ(x, P ) from Theorem 1 is Ω(VP (x)

3
2 ). We believe

the correct order of magnitude of Δ(x, P ) is closer to the lower bound, because
the graph GP (x) has additional geometric structure. We collect some geometric
properties of the graph GP (x) in Sect. 3, which we believe can be of independent
interest.
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2 Proof of Theorem 1

We prove the upper bound in (1) in Sect. 2.1. The lower bound construction is
given in Sect. 2.2.

2.1 Proof of the Upper Bound

We begin with the following simple observation:

Observation 1. Δ(x, P ) ≤ VP (x)+ IP (x), where IP (x) is the number of trian-
gles in P that contain only the point x in the interior.

Proof. Let UP (x) denote the number of empty triangles in P such that x is
not a vertex of the empty triangles. Note that N�(P ) = VP (x) + UP (x) and
N�(P\{x}) = UP (x) + IP (x). This implies, |N�(P ) − N�(P\{x})| = |VP (x) −
IP (x)| ≤ VP (x) + IP (x). �

Given a set P , with |P | = n, and a point x ∈ P , define the graph GP (x) as
follows: The vertex set of GP (x) is V (GP (x)), the set of triangles in P with x
as one of their vertices, and there should be edge between 2 vertices in GP (x) if
the corresponding triangles, say T1 and T2, satisfy the following conditions:

– T1 and T2 share an edge,
– T1 and T2 are area disjoint,
– the sum of angles of T1 and T2 incident at x is greater than 180◦.

We call the graph GP (x) the empty triangle graph incident at x. Figure 2 shows
the graph GP (x) for a set of 4 points P = {x, a, b, c}. (It is worth noting that
we use Δ in notations that count empty triangles in the point set P and K3 to
denote a triangle in the graph GP (x).)

The following lemma shows that IP (x), as defined in Observation 1, is equal
to the number of triangles in GP (x).

Lemma 1. Suppose P be a set of points in the plane, with |P | = n, in general
position and x ∈ P . Then

IP (x) = NK3(GP (x)),

where NK3(GP (x)) is the number of triangles in the graph GP (x).

Proof. Let (a, b, c) be a triangle in IP (x), that is, (a, b, c) only has the point x
in the interior. This corresponds to a triangle in GP (x) as shown in Fig. 2.

Now, consider a triangle with vertices labeled (1, 2, 3) in GP (x). The vertices
1, 2, and 3 in GP (x) correspond to 3 empty triangles in P that have the point
x as one of their vertices, which we denote by T1, T2, and T3, respectively. Since
there is an edge between 1 and 2 in GP (x), the triangles T1 and T2 in P share a
common edge, are area disjoint, and the sum of angles of T1 and T2 incident at x
is greater than 180◦. Hence, we can assume, without loss of generality, T1 and T2
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T2

x

T1 T3

T1

T2

T3

GP (x)

a

b c

(a) (b)

Fig. 2. A set of points P = {x, a, b, c} and the empty triangle graph incident at x.

are arranged as in Fig. 3(a). Similarly, the pairs of triangles (T2, T3) and (T1, T3)
share a common edge, are area disjoint, and the sum of their angles incident at
x is greater than 180◦. This implies, T1, T2, and T3 are mutually area disjoint,
and they cannot all share the same edge. Therefore, the triangles T1, T2, and T3

have to be arranged as in Fig. 3(b). Note that the triangle formed by the union
of the 3 triangles T1, T2 and T3 only contains the point x in P . Hence, for every
triangle (1, 2, 3) in GP (x) one gets a triangle in IP (x), formed by the union of
the 3 triangles T1, T2 and T3. �

Fig. 3. Illustration for the proof of Lemma 1.

Applying Observation 1 and Lemma 1 it follows that

Δ(x, P ) ≤ VP (x) + IP (x) = VP (x) + NK3(GP (x)). (2)
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Therefore, to prove the upper bound in (1), it remains to show that

NK3(GP (x)) ≤ H(VP (x),K3,K4\{e}) (3)

This follows from the lemma below which shows that the graph GP (x) is kite-
free.

Lemma 2. The graph GP (x) does not contain K4\{e} as a subgraph, that is,
GP (x) is kite-free.

Proof. Suppose GP (x) contains a kite K4\{e}, with vertices labeled a, b, c, d as in
Fig. 1. This corresponds to empty triangles Ta, Tb, Tc, Td with x as a vertex such
that (Ta, Tb, Tc) and (Ta, Tb, Td) are mutually interior disjoint, and the pairs of
triangles (Ta, Tb), (Tb, Tc), (Ta, Tc), (Ta, Td), and (Tb, Td) share a common edge.
This means the triangles Ta, Tb, Tc must be arranged as in Fig. 2(a). Hence, it is
impossible to place Td which share an edge with Ta and Tb and is interior disjoint
from Ta, Tb, unless Td coincides with Tc. This shows GP (x) cannot contain a
K4\{e} as a subgraph. �

L points L points

L points

A

C

x

B

Fig. 4. Example showing the lower bound in Theorem 1.

Since GP (x) is kite-free by Lemma 2, the bound in (3) follows. This together
with (2) gives the upper bound in (1).
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2.2 Lower Bound Construction

To prove the lower bound in Theorem 1 consider the set of points P , with
|P | = n = 3L + 1, as shown in Fig. 4. Specifically, P consists of three sets points
A, B, and C, with |A| = |B| = |C| = L, arranged along 3 disjoint convex chains
and a point x at the middle. Note that NΔ(P\{x}) =

(
3L
3

)
∼ 9

2L3. Also,

VP (x) = 3
(

L

2

)
+ 3L2 = Θ(L2). (4)

To compute NΔ(P ) recall that NΔ(P ) = VP (x) + UP (x), where UP (x) is as
defined in Observation 1. Now, note that

UP (x) = 3
(

L

3

)
+ 6L

(
L

2

)
∼ 3.5L3.

Hence, NΔ(P ) ∼ 3.5L3 + Θ(L2) and

Δ(x, P ) = |NΔ(P ) − NΔ(P\{x})| = Θ(L3) = Θ(VP (x)
3
2 ),

from (4). This completes the proof of the lower bound in Theorem 1.

3 Properties of the Graph GP (x)

In this section we collect some geometric properties of the graph GP (x). First,
we show that GP (x) can contain arbitrarily large bipartite graphs.

Lemma 3. Fix r, s ≥ 1. Then there exists a set of points P and x ∈ P such
that the graph GP (x) contains the complete bipartite graph Kr,s.

x

(a)

a1a2 b1 b2 b3

x′

(b)

xx′a1

xx′a2

xx′b1

xx′b2

xx′b3

Fig. 5. Illustration for the proof of Lemma 3.
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Proof. Consider the set of r + s + 2 points

P = {x, x′, a1, a2, . . . , ar, b1, b2, . . . , bs},

as shown in Fig. 5(a) (with r = 2 and s = 3). Specifically, the points {a1, a2,
. . . , ar} and {b1, b2, . . . , bs} lie on 2 disjoint convex chains and the points x and
x′ are in the middle. Note that, for all 1 ≤ i ≤ r and 1 ≤ j ≤ s, the triangles
xx′ai and xx′bj share a common edge, are interior disjoint, and the sum of the
angles incident at x is greater than 180◦. This implies that the graph GP (x)
contains the complete bipartite graph Kr,s. �

The reason it is worthwhile to know whether or not Δ(x, P ) contains complete
bipartite graphs as subgraphs, is because of a possible approach to improve
the o(n2) upper bound on Δ(x, P ) through the Kővári-Sós-Turán theorem [9].
Recall that the Kővári-Sós-Turán theorem states that any graph which is Kr,s-
free, where r ≤ s, has at most O(n2− 1

r ) edges. Therefore, if Δ(x, P ) did not
contain some complete bipartite graph as a subgraph, then it would have led to
a polynomial improvement over the o(n2) upper bound on Δ(x, P ). Lemma 3
shows that this is not the case, hence, one cannot directly apply the Kővári-Sós-
Turán theorem to improve the upper bound on Δ(x, P ).

Although the Kővári-Sós-Turán result cannot be directly applied to the graph
GP (x), we believe a polynomial improvement over the Ruzsa-Szemerédi upper
bound on ΔP (x) is possible, because the graph GP (x) has additional geometric
structure. To illustrate this we show that the well-known Behrend’s construction
[4], which gives a nearly quadratic lower bound on Ruzsa-Szemerédi problem, is
not geometric realizable. We begin recalling Behrend’s construction.

Definition 1 (Behrend’s graph). Suppose p is an odd prime and A ⊆ Z/pZ
is a set with no 3-term arithmetic progression. The Behrend’s graph G(p,A)
is a tripartite graph with vertices on each side of the tripartition numbered
{0, 1, . . . , p − 1} and triangles of the form (z, z + a, z + 2a) modulo p, for
z ∈ {0, 1, . . . , p − 1} and a ∈ A.

It is easy to check that the graph G(p,A) has 3p vertices 3|A|p edges and
each edge belongs to a unique triangle. For example, when p = 3 and A = {1, 2}
one gets the 9 vertex Paley graph shown in Fig. 6. Behrend [4] constructed a set
A of size p/eO(

√
log p) with no 3-term arithmetic progression. Using this set in

the Behrend’s graph in Definition 1 one gets a lower bound of Ω(p2/eO(
√
log p))

for the Ruzsa-Szemerédi problem and, hence, for H(n,K3,K4\{e}).
The following result shows that the graph in Fig. 6 cannot be geometrically

realized, that is, it is not possible to find a set of points P and x ∈ P such that
GP (x) is isomorphic to the graph in Fig. 6.

Proposition 1. The graph in Fig. 6 is not geometrically realizable.

Proposition 1 shows that Behrend’s graphs are not geometrically realizable.
This, in particular, illustrates that the graph GP (x) has a richer geometric struc-
ture than the collection of kite-free graphs.
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0

1 2

0

1 2

0

1 2

Fig. 6. The Paley graph with 9 vertices, 18 edges, and 6 triangles.

3.1 Proof of Proposition 1

We proceed by contradiction. Suppose there exists a point set P and x ∈ P such
that GP (x) is isomorphic to the graph in Fig. 6. This implies VP (x) = 9 and
IP (x) = NK3(GP (x)) = 6 (by Lemma 1). This, in particular, means that there
are 6 triangles in P which only contains the point x in the interior. Denote these
triangles by T = {T ′

1, T
′
2, . . . , T

′
6}.

x

T ′
1 T ′

2 T ′
3

Fig. 7. Illustration for the proofs of Lemma 4.

Lemma 4. There cannot be 3 triangles in the set T which share a common
edge.

Proof. Let, if possible, there exists 3 triangles T ′
1, T

′
2, T

′
3 in T which share one

edge (see Fig. 7(a)). As all the triangles contain x as the only interior point they
must have a common shareable area that contains x. Therefore, it is not possible
to create a new triangle here by joining vertices of existing triangles which will
contain x. Therefore, to create a new triangle which will contain x as the only
interior point, the following two cases may occur.
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• Case 1: There is a triangle T ′
4 ∈ T that does not share any edge and vertex

with T ′
1, T

′
2, T

′
3 (see Fig. 8(a)) or there is a triangle T ′

4 ∈ T that does not share
any edge with T ′

1, T
′
2, T

′
3 but shares one vertex with T ′

1, T
′
2, T

′
3. In both case

VP (x) ≥ 10, which is a contradiction.
• Case 2: There is a triangle T ′

4 ∈ T which shares an edge with the triangles
T ′
1, T

′
2, T

′
3. This means T ′

4 has a vertex that is not common with the vertices of
T ′
1, T

′
2, T

′
3 (see Fig. 8(b)) In this case VP (x) = 9 and IP (x) = NK3(GP (x)) = 4.

Consider the triangle T ′
5 in T \{T ′

1, T
′
2, T

′
3, T

′
4}. Note that, there is at least one

edge in T ′
5 which does not belong to the edge set of the triangles T ′

1, T
′
2, T

′
3, T

′
4.

This edge forms an empty triangle whose one vertex is x. This implies VP (x) ≥
10, which is a contradiction.

Thus, if there are 3 triangles in the set T which share an edge, then it is not
possible to place another 3 triangles satisfying the required geometric constraints
for the graph in Fig. 6. Hence, there cannot be 3 triangle in T which share an
edge. �

Fig. 8. Illustrations for the proofs of Lemma 4: (a) Case 1 and (b) Case 2.

Observe that each edge of a triangle in T generates an empty triangle with
vertex x. Since there are 9 empty triangles with vertex x in GP (x), the number
of distinct edges generated by the triangles in T will be 9. Moreover, by Lemma
4 no edge of a triangle in T can be shared by three triangles of T . Hence, each
of the 9 edges generated by the triangles in T must belong to exactly 2 triangles
in T (since, counting with repetitions, there are a total of 6 × 3 = 18 edges in
the triangles in T ). The following lemma shows that this is not geometrically
realizable.

Lemma 5. All 3 edges of any triangle in T cannot be shared by other triangles
in T .
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Proof. Let, if possible, there exists a triangle T ′
1 ∈ T whose all 3 edges are

shared by the triangles T ′
2, T

′
3, T

′
4 and T ′

2, T
′
3, T

′
4 do not share edges in between.

(see Fig. 9(a)). In this case VP (x) = 9 and IP (x) = NK3(GP (x)) = 4, which is
impossible by arguments similar to Case 2 of Lemma 4.

Alternatively, suppose there exists a triangle T ′
1 = (a, b, c) ∈ T , such that the

edge (a, b) is shared by the triangle T ′
2, the edge (b, c) is shared by the triangle

T ′
3, the edge (c, a) is shared by the edge T ′

4, and T ′
2 and T ′

3 share a common edge.
This implies, there is a vertex v such that T ′

2 = (a, b, v) and T ′
3 = (b, c, v) (see

Fig. 9(b)). Note that v cannot be inside the triangle (a, b, c), since (a, b, c) has
only x as the interior point. Also, v cannot be in region A, region C, and region
E, because then either the triangle T ′

2 or the triangle T ′
3 will have more than

one point in the interior. Hence, v has to be in region B, region D, or region F .
In this case, the triangle T ′

2 and the triangle T ′
3 are area disjoint, hence only one

of them can contain x in the interior (see Fig. 9(b)). This gives a contradiction
and completes the proof of the lemma. �

Fig. 9. Illustrations for the proofs of Lemma 5.

Combining Lemma 4 and Lemma 5, the result in Proposition 1 follows.

4 Conclusions

In this paper, we initiate the study of the growth rate of the number of empty
triangles in the plane, by proving upper and lower bounds on the difference
Δ(x, P ). We relate the upper bound to the well-known Ruzsa-Szemerédi prob-
lem and study geometric properties of the triangle incidence graph GP (x). Our
results show that Δ(x, P ) can range from O(VP (x)

3
2 ) and o(VP (x)2). Under-

standing additional properties of the graph GP (x) is an interesting future direc-
tion, which can be useful in improving the bounds on Δ(x, P ).
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Points with Curves
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Abstract. Given a point set, mostly a grid in our case, we seek upper
and lower bounds on the number of curves that are needed to cover the
point set. We say a curve covers a point if the curve passes through the
point. We consider such coverings by monotonic curves, lines, orthocon-
vex curves, circles, etc. We also study a problem that is converse of the
covering problem – if a set of n2 points in the plane is covered by n lines
then can we say something about the configuration of the points?

Keywords: Discrete geometry · Incidence · Covering

1 Introduction

Let S be a set of curves satisfying some fixed property (e.g., circle, convex curves,
etc.) and P be a set of points in R

d. A curve c ∈ S covers a point p ∈ P if p
lies on the curve c. We say that S covers P if all points in P are covered by the
union of all members of S. We will be interested in the minimum cardinality of
S, satisfying the given property, that covers P (where the point set P is fixed).

To start with, let P be a set of points in R
2 in general position and the goal

is to figure out the number of simple curves needed to cover P . The solution is
trivial – sort the points based on their x-coordinates and join them from left to
right; i.e., we need just one simple curve to cover P . As we move from a simple
curve with no restrictions whatsoever, to a straight line, the problem becomes
hard and deserves non-trivial solutions [1,5,17,19]. This obviously gives rise to
a natural question about what happens to this problem if we consider point
sets with some special configuration, like grids vis-a-vis different kinds of simple
curves like circles, convex curves, orthoconvex curves, etc. To bring the variety
of different point sets and curves under a unifying framework, we propose the
following definition of geometric covering number.

Definition 1 (Geometric covering number). The geometric covering number of
a point set P in R

d with respect to a curve type C (like circle, convex curve,
orthoconvex curve, etc.), denoted as GC(P, d), is the minimum number of curves
of type C needed to cover all points in P . A curve covers a point if the point
lies on the curve. If the dimension is understood, we just write GC(P ) instead of
GC(P, d).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Kalyanasundaram and A. Maheshwari (Eds.): CALDAM 2024, LNCS 14508, pp. 88–102, 2024.
https://doi.org/10.1007/978-3-031-52213-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52213-0_7&domain=pdf
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The notion of covering a point set with different geometric structures have
been studied in the literature [7,9,11,13,16]. The common theme running
through all such problems is about figuring out the minimum number of struc-
tures, e.g., trees, paths, line segments, etc., needed to form a cover of the point
set. Given a set of points, a covering path is a polygonal path that visits all the
points and similarly a covering tree is a tree whose edges are line segments that
jointly cover all the points. Covering paths and trees for planar grids have been
studied in [16], where bounds on the minimum number of line segments of such
paths and trees are given. Analogous questions on covering paths and trees for
higher dimensional grids have been studied in [11]. Given a set S of n points in
the plane, the problem of finding the smallest number l of straight lines needed
to cover all n points in S have been studied in [13], where bounds on the time
complexity of this problem in terms of n and l (assuming l to be small) is given.

On the other hand, incidence problems in geometry [20,21] studies questions
about finding the maximum possible number of pairs (p, �) such that p is a point
belonging to a set of points and � is a line belonging to a set of lines and p lies on
�. Incidence between points and other geometric structures like circles, planes,
algebraic curves, etc. have also been studied. We do not intend to go into all
of them as an interested reader can find them in [20,21]. On the other hand,
researchers have studied the problems of point line cover, or its more general
form of point curve cover [1,5,17,19]. These problems consist of a set P of n
points on the plane and a positive integer k, and the question is whether there
exists a set of at most k lines/hyperplanes/curves which cover all points in P .
They are computationally hard problems, motivated from set cover, and the
effort has been mostly in parametrized complexity where researchers focussed
on finding tight kernels [8] for the problems [1,5,17,19].

Notations: We will use [x] to denote the set of natural numbers {1, 2, . . . , x}. P
will denote a set of n points in dimension d. Unless otherwise stated, P will be
finite.

Organization of the Paper: In this paper, we study the notion of geometric
covering number for a few types of curves. For most of the cases, our point set is
a grid that we want to cover with a particular kind of curve. For completeness
sake, we start with lines, the simplest curve, covering a finite grid in Sect. 2. We
also investigate a converse question of covering in Sect. 2.2. Very simply put, the
converse question deals with the following notion – if there is a guarantee that
some lines cover an “unknown” point set, then can we say something about the
configuration of the point set? From lines, we move onto monotone curves in
Sect. 3. Section 4 considers three types of closed curves – circles, convex curves,
and orthoconvex curves. Finally, Sect. 5 sums up the findings in this work. The
Appendix is in Sect.A where we have put all the missing proofs and remarks.
We feel our work will motivate studying the geometric covering number for more
point set and curve pairs.
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Our Contributions: Two of our major contributions in this paper are the fol-
lowing. As a converse to the covering by lines problem, we show in Theorem 4
that for a set P of n2 points covered by n lines, it’s not true that there always
exists a subset of P of size Θ(n2) that can be put inside a grid of size Θ(n2),
possibly after a projective transformation. Regarding covering by orthoconvex
curves, we proved in Theorem 15 that at least 2n/5 (which is achieved for n = 5)
orthoconvex curves with at most one inner corner and 2n/7 curves with at most
two inner corners are required to cover an n × n grid (Theorem 18). We also
make the following observations regarding covering by other types of curves that
are not very difficult to obtain. We noted in Proposition 10 that the answer to
question of covering a grid by minimum number of monotonic curves can be
obtained by applying Dilworth’s Theorem on posets. For algebraic curves, the
answer (Theorem 7) came as a consequence of the Combinatorial Nullstellensatz.
For circles, the existing results in the literature imply very close upper and lower
bounds (as noted in Proposition 11) and the case of convex curves is settled by
an easy argument in Theorem 13.

2 Covering by Lines and Its Converse Problem

In the first part of this section, we consider covering grids by lines (the bounds
are easy to obtain; we include it for the sake of completeness). In the next part,
we consider a “converse” question – if a set of n2 points in R

2 is covered by n
lines, then can we say something about the configuration of the points?

2.1 Covering by Lines

Note that for any two points there exists a line covering them. Therefore, GC(P )≤
|P |
2 (the equality is achieved for any set of points in general position). Now let

�(P ) denote the maximum number of points in P any line can cover. Then we
have GC(P )≥ |P | /�(P ). Therefore, we get |P |

�(P ) ≤ GC(P ) ≤ |P |
2 . Now we consider

the case when P = [k1] × · · · × [kd]. We state the following whose proof is in
Appendix A.1:

Proposition 2. �(P ) = max{k1, . . . , kd}.

Proposition 2 implies that GC(P ) ≥
∏d

i=1 ki

�(P ) ≥ min
{∏

i�=1 ki, . . . ,
∏

i�=d ki

}
:= N.

On the other hand, GC(P )≤ N since there clearly exists an explicit covering of
P by N lines (namely, by the lines parallel to the coordinate axis i0, where
�(P ) = ki0). Therefore, we get that GC(P ) = min

{∏
i�=1 ki, . . . ,

∏
i�=d ki

}
.

Remark 3 (Skew lines). We say that a line is skew if it is not parallel to x
or y-axis. We look at the question of covering an n × n grid by the minimum
number of skew lines.

Note that the boundary of the n × n grid contains 4n − 4 points. Now any
skew line can contain at most 2 points from the boundary. So we need at least
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2n − 2 skew lines to cover the grid. Also note that the n × n grid can be covered
by 2n − 2 skew lines (consider the 2n − 3 lines parallel to the off-diagonal except
the ones which pass through the bottom-left and top-right corners and these two
corners are covered by the main diagonal).

It is an open problem to find the minimum number of skew hyperplanes
required to cover the d-dimensional hypercube. Current (2023) best known lower
bound for the above problem is d/2, as observed in [22] (see Proposition 1.3).

2.2 On the Converse of the Covering Problem

Since d = 2 for an n×n grid, from the above discussion, it can be covered using
n lines. Here we look at the converse question, namely, if a set of n2 points in
R

2 is covered by n lines then can we say something about the configuration of
the points?

Suppose a set of n2 points is covered by n lines. Then there exists a line
containing Ω(n) points, since otherwise the total number of points is less than n2.
Now if this line contains o(n2) points, then there exists another line containing
Ω(n) points. By continuing this, we can say that there exists a set of lines each
containing Ω(n) points such that the total number of points in the union of these
lines is Θ(n2).

Now the following question seems natural. If a set P of n2 points is covered by
n lines, then does there always exist a subset of P of size Θ(n2) which can be put
inside a grid of size Θ(n2), possibly after applying a projective transformation?
We show that the answer is no.

Theorem 4. There exists a finite set P of n2 points in R
2 which can be covered

with n lines but no subset of P of size Ω(n2) can be contained in a projective
transformation of a rectangular grid of size o(n3).

Proof. Given any two distinct points p, p′ ∈ R
2, we denote by �(p, p′) the unique

line in R
2 that contains both p and p′. By an s× t grid, we mean a point set that

can be obtained by a projective transform f of the set [t] × [s]. By a “horizontal
line” of the grid, we mean a line �(f(1, j), f(t, j)) for some j ∈ [s], and by a
“vertical line” of the grid, we mean a line �(f(i, 1), f(i, s)), for some i ∈ [t]. The
“size” of an s × t grid is st, i.e., the number of points in it. Note that every
horizontal line of a grid intersects every vertical line of the grid (since there is a
point of the grid that is contained in both of them).

For each i ∈ [n], let Li denote the line with equation y = i and let L =
{Li}1≤i≤n. Let P be the set of points defined as follows. Define P1 to be some
set of n distinct points from the line L1. For each 1 < i ≤ n, we define Pi to
be a set of n distinct points from Li that do not lie on any of the lines formed
by points on other lines, i.e. in {�(p, p′) : p �= p′ and p, p′ ∈ ⋃

1≤j≤i−1 Pj}. Let
P =

⋃
1≤i≤n Pi. Let m = |P|. Note that we have |L| = n. We claim that for any

P ′ ⊆ P such that |P ′| = Ω(m) = Ω(n2), any grid that contains all the points of
P ′ has size Ω(n3).

Note that by our construction, if any line contains two points p, p′ ∈ P such
that p ∈ Pi and p′ ∈ Pj , where i �= j, then p and p′ are the only points in P that
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are contained in that line. This implies that the following property is satisfied
by P and L.
(*) Any line in R

2 that contains more than two points in P belongs to L.
Since every line in L contains exactly n points of P, we then have another

property.
(+) Any line in R

2 contains at most n points in P.
Let P ′ ⊆ P be such that |P ′| = Ω(n2). Consider any grid G that contains all

the points of P ′. Let G be an s × t grid. Let h1, h2, . . . , hs denote the horizontal
lines of G and let v1, v2, . . . , vt denote the vertical lines of G. Suppose for the
sake of contradiction that there exist i ∈ [s] and j ∈ [t] such that both the lines
hi and vj contain at least 3 points of P each. Then by property (*), hi and
vj are both lines in L. But as hi and vj intersect, they are two lines in L that
intersect, which is a contradiction, since the lines in L are all parallel to each
other (note that parallel lines under a projective transformation may not be
parallel but they do not intersect at any of the s × t grid points defined). Thus,
we can conclude without loss of generality that for each i ∈ [s], the horizontal
line hi of G contains at most two points from P, and hence at most two points
from P ′. Since every point in P ′ is contained in at least one horizontal line of G,
we have that s ≥ |P ′|/2 and therefore s = Ω(n2). By property (+), each vertical
line of G can contain at most n points of P ′, and therefore, t ≥ |P ′|/n, which
implies that t = Ω(n). Thus the size of the grid G is st = Ω(n3). �

Remark 5. The above construction also provides a counter-example1 to the
Conjecture 1.17 as stated in [23]. The formal statement of the conjecture is:
Consider sufficiently large positive integers m and n that satisfy m = O(n2) and
m = Ω(

√
n). Let P be a set of m points and L be a set of n lines, both in R

2,
such that I(P,L) = Θ(m2/3n2/3) (the number of incidences). Then there exists
a subset P ′ ⊂ P such that |P ′| = Θ(m) and P ′ is contained in a section of the
integer lattice of size Θ(m), possibly after applying a projective transformation
to it.

2.3 Covering by Algebraic Curves

In this subsection, we address the question of covering a grid by algebraic curves.
The answer comes as a direct application of the famous Combinatorial Nullstel-
lensatz Theorem due to Noga Alon.

Lemma 6 (Combinatorial Nullstellensatz [2]). Let f = f(x1, . . . , xd) be a
polynomial in R[x1, . . . , xd]. Suppose the degree deg(f) of f is

∑d
i=1 ti where

each ti is a non-negative integer, and suppose the coefficient of
∏d

i=1 xi
ti in

f is non-zero. Then, if S1, . . . , Sn are subsets of R with |Si| > ti, there are
s1 ∈ S1, s2 ∈ S2, . . . , sd ∈ Sd so that f(s1, . . . , sd) �= 0.

1 This was communicated to Prof. Adam Sheffer who told us that this only exposes
a typo in the statement of the conjecture which is more interesting and challenging
when m = o(n2). Note that in our construction we have m = n2.
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Theorem 7. Suppose the n × n grid is covered by m algebraic curves of degree
at most k. Then m ≥ n/k.

Proof. Suppose m < n/k. Let the algebraic curves defined by f1(x, y) = 0, . . .,
fm(x, y) = 0 cover the n × n grid, where deg(fi) ≤ k. Then the polynomial
f(x, y) :=

∏m
i=1 fi(x, y) vanishes at each grid point. Suppose deg(f) = t1 + t2

with the coefficient of xt1yt2 in f being non-zero. Now note that ti ≤ t1 + t2 =
deg(f) ≤ mk < n, for each i = 1, 2. So by Lemma 6, there exists a grid point
(s1, s2) so that f(s1, s2) �= 0 and we arrive at a contradiction. Therefore, we
conclude that m ≥ n/k. �
Corollary 8. GC(P )= 	n/k
, where P is an n×n grid and C denotes algebraic
curves of degree at most k.

Proof. The lower bound follows from the previous theorem and the upper bound
follows from covering by lines and then considering a set of k lines as one curve
of degree k. �
See Appendix A.2 for a discussion on irreducible algebraic curves.

3 Covering by Monotonic Curves

In this section, we consider the case when the the curve is monotonic.

Definition 9. Let f : [0, 1] → R
d be a curve and suppose f(t) =

(f1(t), . . . , fd(t)) for t ∈ [0, 1]. Then f is called monotonic if it satisfies the
following property: t1 ≤ t2 ⇒ fi(t1) ≤ fi(t2) for each i = 1, . . . , d.

Given a finite subset P of Rd, we define the poset P := (P,≤) as follows. For
x := (x1, . . . , xd) ∈ R

d and y := (y1, . . . , yd) ∈ R
d, we define x ≤ y if xi ≤ yi for

i = 1, . . . , d.
We say that two elements a and b of a poset P are comparable if either

a ≥ b or b ≤ a. An antichain in a poset is a set of elements no two of which are
comparable to each other, and a chain is a set of elements every two of which are
comparable. A chain decomposition is a partition of the elements of the poset
into disjoint chains. Size of an antichain is its number of elements, and the size
of a chain decomposition is its number of chains.

Proposition 10. Let w(P) denote the size of the largest antichain, called the
width, of P. Then GC(P )= w(P), where P is any point set and C denotes mono-
tonic curves.

Proof. Let xi ∈ P for i = 1, . . . , r. Then note that x1 ≤ · · · ≤ xr is a chain
if and only if x1, . . . , xr lie on the same curve (which is monotonic). Therefore,
GC(P ) equals the number of chains in a chain decomposition of smallest size of
P, which by Dilworth’s theorem [10] equals the size of the largest antichain of
P. Hence GC(P )= w(P). �

Note that the poset P can be decomposed into w(P) many disjoint chains.
Therefore, the points in P can be covered by GC(P ) many monotonic curves
such that no two curves intersect at a point of P .
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4 Covering by Closed Curves

In this section, we consider covering grids by circles, convex curves and ortho-
convex curves. Notice that the curves need not be of the same size, e.g., when we
are considering covering by circles, all the circles need not be of the same size.

4.1 Covering by Circles and Convex Curves

Covering by Circles. A circle contains at most O(nε) points from an n×n grid for
every ε > 0 (see e.g. [14]). Therefore, the minimum number of circles required
to cover an n × n grid is Ω(n2−ε), for every ε > 0. Regarding upper bound,
note that there is a covering of the n × n grid by O(n2/

√
log n) circles. This

is obtained by choosing a corner of the grid and drawing all concentric circles
such that each of them is incident to at least one grid point (see Fig. 1). The
number of such circles is O(n2/

√
log n) by a well known theorem of Ramanujan

and Landau [4,18]. The theorem says that the number of positive integers that
are less than n that are the sum of two squares is Θ(n/

√
log n). We sum it up

as the following.

Proposition 11. Ω(n2−ε) ≤ GC(P )≤ O(n2/
√

log n), where P is an n × n grid
and C denotes circles.

Fig. 1. Covering of 5 × 5 grid by circles

Covering by Convex Curves. A closed convex curve intersects non-trivially with a
horizontal grid line if it contains more than two points from the line. Note that,
any closed convex curve can intersect at most two horizontal grid lines non-
trivially. This follows from the following lemma whose proof is in Appendix A.3.

Lemma 12. If a closed convex curve intersects a horizontal grid line non-
trivially, then it must lie entirely on one side of that line.

Theorem 13. The points of the n×n grid cannot be covered with less than n/2
closed convex curves, i.e. GC(P )≥ n/2 where P is an n × n grid and C denotes
closed convex curves.
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Proof. Suppose, for the sake of contradiction, that C1, C2, . . . , Ck are k closed
convex curves such that they together cover every point of the n × n grid and
that k < n/2. Then, since there are n horizontal grid lines, and by Lemma 12
above, each Ci can have a non-trivial intersection with at most 2 horizontal grid
lines, we can conclude that there is some horizontal grid line such that no curve
in C1, C2, . . . , Ck has a non-trivial intersection with that line. Now consider the
points on that horizontal line. There are n points on this line. Each curve in
C1, C2, . . . , Ck can cover at most two points from that line and none of them
intersects non-trivially with this horizontal line. But then, since k < n/2, there
must be some point on this horizontal line that is not covered by any curve in
C1, C2, . . . , Ck, which is a contradiction. �

Almost same argument can be used to get an answer for an m × n grid and this
will be min {	m/2
, 	n/2
}.

4.2 Covering by Orthoconvex Curves

A set K ⊆ R
2 is defined to be orthogonally convex if, for every line � that is

parallel to one of standard basis vectors (1, 0) or (0, 1), the intersection of K
with � is empty, a point, or a single segment. The orthogonal convex hull of
a point set P ⊆ R

2 is the intersection of all connected orthogonally convex
supersets of P . If the boundary of orthogonal convex hull (of a set of points)
is a simple closed curve then we call it an orthoconvex curve. An orthoconvex
curve has only two types of angles, namely 90◦ and 270◦. By inner corner of an
orthoconvex curve, we mean a point where the curve turns by 270◦. See Fig. 2
for an example of an orthoconvex where the red points are its inner corners.

If an orthoconvex curve (with k inner corners) covers a set of points, then
there is also an orthoconvex curve (with k inner corners) covering the same
points which is not self-intersecting and all the corners are grid points. This can
be done by pushing the sides/edges of the curve “outwards” (instead of inwards
which corresponds to taking orthoconvex hull) until we hit a grid line. So w.l.o.g.,
we may impose the following assumptions of ‘non-self-intersecting’ and ‘corners
are grid points’.

Fig. 2. An othoconvex curve and its inner corners (in red) (Color figure online)
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In the following, by curve, we mean an orthoconvex curve having at most
one inner corner (Fig. 3 shows examples of such curves). We say that a curve
hits a (horizontal or vertical) grid line if the curve has a non-trivial intersection
with that grid line (i.e., the curve follows that grid line for some distance, rather
than just crossing it). We say that a collection of curves C hits a (horizontal or
vertical) grid line if there is some curve in C that hits that grid line. Given a
collection of curves C, we say that a grid point is exposed (by C) if the grid point
is not covered by any curve in C, but it lies on a horizontal grid line and a vertical
grid line both of which are hit by C. Given a collection of curves C, a corner of
C is a corner of the (minimum size) bounding box of C. So every collection C of
curves has exactly 4 corners. If a corner of C is an exposed grid point, then we
call it an exposed corner. We say that a sequence of curves c1, c2, . . . , ct is good
if for every i ∈ {2, 3, . . . , t}, ci hits a grid line that is hit by {c1, c2, . . . , ci−1}.
Clearly, every prefix of a good sequence is also a good sequence.

Fig. 3. Orthoconvex curves with at most one inner corner

Lemma 14. Let c1, c2, . . . , ct be a good sequence of curves. Then {c1, c2, . . . , ct}
either: (a) hits at most 5t grid lines, or (b) hits 5t + 1 grid lines and has an
exposed corner.

(See Fig. 4 for an illustration of case (b), whereas Fig. 5 shows an example of
cae (a))

Proof. We prove this by induction on t. It is not difficult to see that the lemma
is true when t = 1. Let i > 1 and suppose that the lemma is true for the good
sequence c1, c2, . . . , ci−1. Let C = {c1, c2, . . . , ci−1}. Then either C hits (a) at
most 5i − 5 grid lines, or (b) hits 5i − 4 grid lines and has an exposed corner.

In case (a), since the curve ci can hit at most 5 grid lines that are not hit by
C (recall that ci hits at least one grid line that is also hit by C), we have that
C ∪{ci} can hit at most 5i grid lines, and we are done. Next, let us consider case
(b). Note that if ci is a rectangle, then it can hit at most 3 grid lines that are
not hit by C (note that, a rectangle has four sides and ci hits at least one grid
line that is also hit by C), and therefore, C ∪{ci} hits at most 5i−4+3 = 5i−1
grid lines, and we are done. So we can assume that ci is not a rectangle. Also,
if there are two grid lines that are hit by both C and ci, then C ∪ {ci} hits at
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most 5i grid lines, and we are done. So we can assume that ci hits exactly one
grid line that is hit by C, and therefore, C ∪{ci} hits exactly 5i+1 grid lines. In
this case, we have to show that one of the corners of C ∪ {ci} is exposed. Let B
be the bounding box of C ∪ {ci}. Let g0, g1, g2, g3 be the grid lines on which the
top, right, bottom, and left borders of B lie. Clearly, each of g0, g1, g2, g3 is hit
by either C or ci or both. Since ci hits exactly one grid line that is hit by C, we
have that at most one of g0, g1, g2, g3 is hit by both C and ci. This implies that
C and {ci} do not have shared corners. Note that a corner v of C is exposed,
and a corner v′ of {ci} is exposed. If each of g0, g1, g2, g3 is hit by C, then v is
an exposed corner of C ∪ {ci} (observe that v cannot be covered by ci, because
if it is, it has to be a corner of {ci}, which would mean that C and {ci} have
a shared corner) and we are done. Similarly, if each of g0, g1, g2, g3 is hit by ci,
then v′ is an exposed corner of C ∪ {ci} and we are again done. Thus we can
assume that neither C nor ci hits all the grid lines g0, g1, g2, g3. Recall that all
grid lines except at most one in g0, g1, g2, g3 are hit by exactly one of C or ci.
Then there exists some j ∈ {0, 1, 2, 3} such that one of gj , gj+1 mod 4 is hit by
C and not by ci, and the other is hit by ci and not by C. Then the grid point
that is contained in both the grid lines gj and gj+1 mod 4 is an exposed corner
of C ∪ {ci}. This completes the proof. �

MM

Fig. 4. Two curves that hit 11 grid lines and has an exposed corner (M)

Theorem 15. If m orthoconvex curves with at most one inner corner cover the
n × n grid, then m ≥ 2n/5.

Proof. Let C be a collection of m curves that cover the n×n grid. For two curves
c and d ∈ C, we say that cRd if there is a grid line that is hit by both c and d.
Let R∗ be the transitive closure of R. Clearly, R∗ is an equivalence relation. Let
S1, S2, . . . , Sp be the equivalence classes of R∗. We need the following claims for
the proof.

Claim 16. For each i ∈ [p], Si does not expose any grid point.
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Proof. Suppose for some i ∈ [p], Si exposes a grid point v. That is, v is not
covered by Si, but both the horizontal grid line as well as the vertical grid line
that contains v are hit by Si. Since C covers the whole grid, there is a curve
c ∈ C that covers v. As Si does not cover v, we have that c ∈ C − Si. As c
covers v, c hits either the horizontal grid line containing v or the vertical grid
line containing v. Since both these grid lines are hit by Si, it follows that there
exists some d ∈ Si such that c and d hit a common grid line. Then dRc, which
implies that c ∈ Si, which is a contradiction. This proves the claim. �

Claim 17. The curves of each equivalence class Si can be arranged in a good
sequence.

Proof. Let G be the graph with vertex set Si and edge set R restricted to Si.
By enumerating the curves of Si in the order in which they are visited by a
graph traversal algorithm starting from an arbitrary vertex, we get a sequence
of the curves in Si such that before a curve c is encountered in the sequence,
we encounter some curve d such that dRc (except for the first curve in the
sequence). This sequence is clearly a good sequence of the curves in Si. This
proves the claim. �

By Lemma 14 and Claims 16 and 17, we know that for each i ∈ [p], Si hits at
most 5|Si| grid lines. Thus the total number of grid lines that are hit by C is at
most 5(|S1| + |S2| + · · · + |Sp|) = 5|C| = 5m. If the the curves in C hit 2n grid
lines, we then have 5m ≥ 2n, which gives m ≥ 2n/5. Otherwise, suppose that the
collection C of m curves, where m ≤ 2n/5, hits less than 2n grid lines. That is,
there is some (horizontal or vertical) grid line that is not hit by any curve in C.
Then every curve in C can cover at most two points on this grid line (if it covers
more than two, then the curve hits this grid line). So at most 2m ≤ 4n/5 points on
this grid line can be covered by the collection of curves C, which means that some
points on this grid line are not covered by any curve in C, which is a contradiction.
So we conclude that m ≥ 2n/5 and this proves the theorem. �

Note that, the inequality of the above theorem is tight for n = 5 since the
5 × 5 grid can be covered by 2 curves (shown in Fig. 5). As a consequence of the
above theorem, we also get the following theorem on orthoconvex curves with at
most 2 inner corners.

Fig. 5. Covering of 5 × 5 grid by two orthoconvex curves (with at most one inner
corner)
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Fig. 6. Decomposition of orthoconvex curves with 2 inner corners

Theorem 18. We need at least 2n/7 orthoconvex curves with at most two inner
corners to cover an n × n grid.

Proof. Suppose we have a covering by m such curves. Note that we can decom-
pose each orthoconvex curve with two inner corners into an orthoconvex curve
with at most one inner corner and a rectangle (see Fig. 6). Hence we obtain a
covering by m orthoconvex curves with at most one inner corner and m rectan-
gles. These m orthoconvex curves with at most one inner corner can together
hit at most 5m grid lines (see proof of Theorem 15) and the rectangles together
hit at most 2m extra grid lines (since each rectangle hit at most two extra grid
lines). So the total number of grid lines hit by our original curves is at most 7m.
Since the curves have to hit 2n grid lines (by the same reasoning as in proof of
Theorem 15), we then have 7m ≥ 2n. Hence, we conclude that m ≥ 2n/7. �

See Appendix A.4 for a remark on covering by orthoconvex curves.

5 Conclusion and Discussion

In this paper, we mainly discussed the problem of covering a grid (mostly planar)
by minimum number of curves of various types. An interesting open problem in
this direction is to cover the hypercube by minimum number of skew hyperplanes.
We leave it as an open problem to figure out what happens when there are more
inner corners for covering by an orthoconvex curve. Lastly, we mention that in
this article we only considered 1-fold covering where every grid point was covered
at least once. But, in general, we could ask analogous questions for r-fold covering
(i.e., every point is covered at least r times) for r ≥ 2.

A Appendix

A.1 Proof of Proposition 2

Proof. Let M := max{k1, . . . , kd}. First we show that �(P ) ≤ M by induction on
d. The base case d = 1 is obvious. Now we proceed to the induction step. Let L be
a line segment that lies inside the rectangular parallelepiped [1, k1]×· · ·× [1, kd].

Then L has length at most
√∑d

i=1(ki − 1)2. Now let x := (x1, . . . , xd) and
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y := (y1, . . . , yd) be two distinct points of P lying on L. If xi = yi for some i,
then L lies inside a lower dimensional rectangular parallelepiped and therefore,
by induction hypothesis, L covers at most max{kj | j �= i} ≤ M many points.
So let us assume xi �= yi for all i = 1, . . . , d. Then the distance between x and y
is at least

√
d. Suppose L covers a total of t points of P . Then we have

(t − 1)
√

d ≤
√√√√ d∑

i=1

(ki − 1)2 ≤
√

d · max{k1 − 1, . . . , kd − 1}

and this implies t ≤ max{k1, . . . , kd}. Therefore, we conclude that �(P ) ≤ M .
On the other hand, there clearly exist lines covering M points, namely the lines
parallel to the coordinate axis i0, where M = ki0 . Hence, we have shown that
�(P ) = M . �

A.2 A remark on Irreducible Algebraic Curves

Remark 19 (Irreducible algebraic curves). By a result of Bombieri and
Pila [6], an irreducible algebraic curve of degree k can contain at most O(n1/k)
points from an n×n grid and hence, the minimum number of irreducible algebraic
curves of degree k to cover the n × n grid is at least Ω(n2−1/k).

Using the same reasoning as in the previous theorem and corollary, one also
has the following result on covering the n1 × · · · × nd grid by algebraic hyper-
surfaces.

Theorem 20. The minimum number of algebraic hypersurfaces of degree at
most k needed to cover the n1×· · ·×nd grid is equal to 	n/k
, i.e., GC(P )= 	n/k
,
where P is an n1 ×· · ·×nd grid and C denotes algebraic hypersurfaces of degree
at most k.

A.3 Proof of Lemma 12

Proof. Suppose the curve intersects a horizontal line at three points p, q, r, where
q lies in the interior of line segment [p, r]. Since the curve is convex, there exists
a line L through q such that the curve lies entirely on one side of L (hyperplane
separation theorem). Now if L is different from the horizontal line, then p and r
lie on different sides of L. But since the curve lies on one side of L, it can not pass
through both p and r, a contradiction. Therefore, L is same as the horizontal
line and the curve lies entirely on one side of this line. �

A.4 Remark on Covering by Orthoconvex Curves

Remark 21. We think that the bound 2n/7 of Theorem 18 is probably not tight.
So a natural problem is to obtain a tight bound for covering by orthoconvex curves
with at most 2 inner corners. The next natural follow up question would be:
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what happens for orthoconvex curves with at most k inner corners for k = 3, 4
etc. It seems our arguments for k = 1, 2 can not be extended to these cases
to obtain non-trivial bounds and hence require new ideas. Another question of
interest is to find the minimum number of general orthoconvex curves (with no
restrictions on the number of inner corners) required to cover an n×n grid. One
can check that for n = 4, 5, 6, 7, 8, 9 and 10, the n × n grid can be covered by
2, 2, 2, 3, 3, 3 and 4 orthoconvex curves, respectively. To us, the general problem
of orthoconvex curves seems difficult. Note that we have obvious lower and upper
bounds of 	(n + 1)/4
 and �n/2� respectively, since, any orthoconvex curve can
contain at most 4n − 4 grid points (the number of grid points on the boundary
of an n × n grid) and on the other hand, an n × n grid can be covered by �n/2�
orthoconvex curves. Any improvement over these bounds would be interesting.
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Abstract. Bandyapadhyay et al. introduced the generalized minimum-
membership geometric set cover (GMMGSC) problem [SoCG, 2023],
which is defined as follows: We are given two sets P and P ′ of points in
R

2, n = max(|P |, |P ′|), and a set S of m axis-parallel unit squares. The
goal is to find a subset S∗ ⊆ S that covers all the points in P while mini-
mizing memb(P ′, S∗), where memb(P ′, S∗) = maxp∈P ′ |{s ∈ S∗ : p ∈ s}|.

We study GMMGSC problem and give a 16-approximation algorithm
that runs in O(m2 log m+m2n) time. Our result is a significant improve-
ment to the 144-approximation given by Bandyapadhyay et al. that runs
in Õ(nm) time.

GMMGSC problem is a generalization of another well-studied prob-
lem called Minimum Ply Geometric Set Cover (MPGSC), in which the
goal is to minimize the ply of S∗, where the ply is the maximum cardinal-
ity of a subset of the unit squares that have a non-empty intersection. The
best-known result for the MPGSC problem is an 8-approximation algo-
rithm by Durocher et al. that runs in O(n + m8k4 log k + m8 log m log k)
time, where k is the optimal ply value [WALCOM, 2023].

Keywords: Computational Geometry · Minimum-Membership
Geometric Set Cover · Minimum Ply Covering · Approximation
Algorithms

1 Introduction

Set Cover is a fundamental and well-studied problem in combinatorial optimiza-
tion. Given a range space (X,R) consisting of a set X and a family R of subsets
of X called the ranges, the goal is to compute a minimum cardinality subset of
R that covers all the points of X. It is NP-hard to approximate the minimum
set cover below a logarithmic factor [10,17]. When the ranges are derived from
geometric objects, it is called the geometric set cover problem. Computing the
minimum cardinality set cover remains NP-hard even for simple 2D objects, such
as unit squares on the plane [11]. There is a rich literature on designing approx-
imation algorithms for various geometric set cover problems (see [1,5,7,12,15]).
Several variants of the geometric set cover problem such as unique cover, red-blue
cover, etc. are well-studied [6,13].
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In this paper, we study a natural variant of the geometric set cover called the
Generalized Minimum-Membership Geometric Set Cover (GMMGSC). This is a
generalization of two well-studied problems: minimum ply geometric set cover
and minimum-membership geometric set cover, which were motivated by real-
world applications in interference minimization in wireless networks and have
received the attention of researchers [3,4,8,9]. We define the problem below.

Definition 1 (Membership). Given a set P of points and a set S of geomet-
ric objects, the membership of P with respect to S, denoted by memb(P,S), is
maxp∈P |{s ∈ S : p ∈ s}|.
Definition 2 (GMMGSC problem). Given two sets P and P ′ of points in
R

2, n = max(|P |, |P ′|), and a set S of m axis-parallel unit squares, the goal
is to find a subset S∗ ⊆ S that covers all the points in P while minimizing
memb(P ′,S∗).

1.1 Related Work

Bandyapadhyay et al. introduced the generalized minimum-membership geo-
metric set cover (GMMGSC) problem and gave a polynomial-time constant-
approximation algorithm for unit squares [3]. Specifically, they consider the spe-
cial case when all the points lie within a unit grid cell and all the input unit
squares intersect the grid cell. They use linear programming techniques to obtain
a 16-approximation in Õ(nm) time for GMMGSC problem for this special case.
Here, Õ(·) hides some polylogarithmic factors. This implies a 144-approximation
for GMMGSC problem for unit squares.

We note that GMMGSC problem is a generalization of two well-studied prob-
lems: (1) Minimum-Membership Geometric Set Cover problem where P ′ = P ,
and (2) Minimum Ply Geometric Set Cover problem where P ′ is obtained by
picking a point from each distinct region in the arrangement A(S) of S.

Minimum-Membership Set Cover (MMSC) problem is well-studied in both
abstract [14] and geometric settings [9]. Kuhn et al. showed that the abstract
MMSC problem admits an O(logm)-approximation algorithm, where m is the
number of ranges. They also showed that, unless P=NP, this is the best pos-
sible approximation ratio. Erlebach and van Leeuwen introduced the geometric
version of the MMSC problem [9]. They showed NP-hardness for approximating
the problem with ratio less than 2 on unit disks (i.e., disks with diameter 1) and
unit squares. They gave a 5-approximation algorithm for unit squares that runs
in nO(k) time, where k is the minimum membership.

Biedl et al. introduced the Minimum Ply Geometric Set Cover (MPGSC)
problem [4]. They gave 2-approximation algorithms for unit squares and unit
disks that run in (nm)O(k) time, where k is the optimal ply of the input instance.
Durocher et al. presented the first constant approximation algorithm for the
MPGSC problem with unit squares [8]. They divide the problem into subprob-
lems by using a standard grid decomposition technique. They solve almost opti-
mally the subproblem within a square grid cell using a dynamic programming
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scheme. Specifically, they give an algorithm that runs in O(n + m8k4 log k +
m8 logm log k) time and outputs a solution with ply ≤ 8k + 32, where k is the
optimal ply. Bandyapadhyay et al. also gave a (36+ ε)-approximation algorithm
for the MPGSC problem for unit squares that runs in nO(1/ε2) time [3,16].

1.2 Our Contribution

We first consider a special case of the GMMGSC problem called the line instance
of GMMGSC, where the input squares are intersected by a horizontal line and
the input points lie on only one side of the line. Refer to Definition 4. We design a
polynomial-time algorithm (i.e., Algorithm1) for this problem where the solution
has some desirable properties.

Next, we consider the slab instance of GMMGSC, where the input squares
are intersected by a unit-height horizontal slab and the points lie within the slab.
Refer to Definition (3). As far as we know, there are no known approximation
results for this problem. We adapt the linear programming techniques in [3] to
decompose a slab instance of GMMGSC into two line instances of GMMGSC.
We use Algorithm1 to solve them. Then we merge the two solutions to obtain the
final solution. A major challenge was finding a solution for the line GMMGSC
which respects a key lemma (i.e., Lemma 1). This key lemma enables us to obtain
a solution with membership at most (8 · OPT + 18) for the slab instance.

Finally, we give an algorithm for GMMGSC problem for unit squares that
runs in O(m2 logm+m2n) time and outputs a solution whose membership is at
most 16 · OPT + 36. We divide GMMGSC instance into multiple line instances.
Then we use Algorithm1 on the line instances. Finally, we merge the solutions
of the line instance to obtain the final solution.

For GMMGSC problem, we note that our result is a significant improvement
in the approximation ratio as compared to the best-known result of Bandyapad-
hyay et al. [3]. For MPGSC problem, our result is a significant improvement in
the running time as compared to the best-known result of Durocher et al. while
achieving a slightly worse approximation ratio [8].

2 Generalized Minimum-Membership Set Cover for Unit
Squares

Let P and P ′ be two sets of points in R
2 and S be a set of axis-parallel unit

squares. We want to approximate the minimum-membership set cover (abbr.
MMSC) of P using S where membership is defined with respect to P ′. First, we
divide the plane into horizontal slabs of unit height. Each slab is defined by two
horizontal lines L1 and L2, unit distance apart, where L2 is above L1. We define
an instance for the slab subproblem below. For an illustration, refer to Fig. 1.

Definition 3 (Slab instance). Consider a set S of unit squares where each
square intersects one of the boundaries of a unit-height horizontal slab α. The
points of the set P to be covered are located within α, each point lying inside at
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least one of the squares in S. Let P ′ be a set of points with respect to which the
membership is to be computed. The instance (P, P ′,S) is called a slab instance.

Fig. 1. A slab instance and a line instance of GMMGSC.

In Sect. 2.2, we solve the slab instance by decomposing it into two line
instances. In the following section, we define and discuss the line instance.

2.1 GMMGSC for the Line Instance

Definition 4 (Line instance). Consider a set S of unit squares where each
square intersects a horizontal line �. The points of the set P to be covered are
located only on one side (above or below) of �, each point lying inside at least one
of the squares in S. Let P ′ be a set of points with respect to which the membership
is to be computed. The instance (P, P ′,S) is called a line instance.

In the rest of this section, we design an algorithm for the line instance where
the input points lie below the defining horizontal line. For the slab, it would be
the instance corresponding to the top boundary L2 of the slab. Refer to Fig. 1
for an example. The algorithm for the line instance corresponding to the line L1

is symmetric.
Let us introduce some notation first. For a unit square s ∈ S, denote by

x(s) and y(s) the x-coordinate and y-coordinate of the bottom-left corner of s,
respectively. For a horizontal line �, denote by y(�) the y-coordinate of any point
on �.

We make the following non-degeneracy assumptions. First, no input square
has its top boundary coinciding with the slab boundary lines. Second, x- and
y-coordinates of the input squares are distinct. Note that a set Q of intersecting
unit squares also forms a clique in the intersection graph of Q.

In a set of unit squares S, two squares s1, s2 ∈ S are consecutive (from left
to right) if there exists no square t ∈ S such that x(s1) < x(t) < x(s2). If a
point p is contained in exactly one square s in a set cover S∗ of a set of points P ,
then p is said to be an exclusive point of the square s with respect to S∗. For
s ∈ S∗, the region in the plane, denoted by Excl(s), which is covered exclusively
by s is called the exclusive region of s with respect to a set cover S∗. For
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si, sj ∈ S∗, the region in the plane, denoted by Excl(si, sj), which is contained
exclusively in si ∩ sj , is called the pairwise exclusive region of si and sj with
respect to a set cover S∗. A square s in a set cover S∗ of a set of points P is
called redundant if it covers no point of P exclusively. Refer to Fig. 2 for an
illustration of these terms.

Fig. 2. A set cover for a line instance. For i ∈ [5], si, si+1 are consecutive squares.
The red points are exclusive points. The purple region is Excl(s3). The yellow region is
Excl(s1, s2). The squares s2, s5 are redundant. (Color figure online)

A set of unit squares having a common intersection is said to form a geo-
metric clique. A set of unit squares containing a point of P ′ in their common
intersection region is said to form a discrete clique. The common intersection
region of a set of unit squares forming a clique Q is called the ply region of
Q. The ply region of a clique Q is always rectangular. For a clique Q, denote
by xl(Q) (resp. xr(Q)) the x-coordinate of the left (resp. right) boundary of the
ply region of Q. Unless specified otherwise, a clique refers to a discrete clique.

Types of Legal Cliques. First, we classify a clique with respect to a line
instance. A set of intersecting squares in a line instance is called a top-anchored
clique when the points to be covered lie below the line with respect to which
the line instance is defined. A set of intersecting squares in a line instance is
called a bottom-anchored clique when the points to be covered lie above the
line with respect to which the line instance is defined.

Let a line instance be defined with respect to a horizontal line �. Let s1, . . . , sk

be a sequence of squares from left to right having a common intersection. This
set of squares is called a monotonic ascending clique if i < j implies y(si) <
y(sj). We use the abbreviation ASC to denote such a clique. Let a line instance
be defined with respect to a horizontal line �. On the other hand, if i < j implies
y(si) > y(sj), then this set of squares is called a monotonic descending
clique. We use the abbreviation DESC to denote such a clique.

Let a line instance be defined with respect to a horizontal line l. Let s1, . . . , sk,
sk+1, . . . sk+r be a sequence of squares from left to right having a common inter-
section. This set of squares is called a composite clique if the following holds.

– The sequence of squares s1, . . . , sk forms a monotonic clique.
– Either y(sk+1) > y(sk) < y(sk−1), or y(sk−1) < y(sk) > y(sk+1), and
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– The sequence of squares sk+1, . . . , sk+r forms a monotonic clique.

The square sk is called the transition square. We use the abbreviation
DESC|ASC to denote a composite clique where the sequence s1, . . . , sk is
descending but the sequence sk+1, . . . , sk+r is ascending. For other types of com-
posite cliques, the abbreviation would be self-explanatory (Fig. 3).

Fig. 3. (a), (b), and (c) show three different types of legal top-anchored cliques. (d)
Shows an invalid clique where a top-anchored composite DESC|ASC clique is followed
by a transition square.

Claim. In a set cover for the line instance, where none of the constituent squares
are redundant, a top-anchored composite clique must be of type DESC|ASC.

Proof. Suppose not. Let Q be a top-anchored composite clique of type
ASC|ASC, where the left ascending sequence be the squares s1, . . . , sk from
left to right. Then the square sk would become redundant since the two squares
sk−1, sk+1 would cover all the points covered by sk lying below the defining
horizontal line. This contradicts the non-redundancy condition. For an example,
refer to Fig. 4. Similar arguments apply to rule out the existence of top-anchored
composite cliques of type ASC|DESC and DESC|DESC.
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In the rest of the paper, whenever we consider a top-anchored clique in the
solution (containing no redundant squares) of a line instance of the GMMGSC
problem, we assume that the clique is of one of the following legal types: (i)
monotonic ASC, (ii) monotonic DESC, or (iii) composite DESC|ASC.

Fig. 4. Different types of a forbidden top-anchored clique. In all the figures, the square
5 is redundant since the squares 4 and 6 fully cover the area of square 5 below the line
L1.

The Algorithm. In this subsection, we describe an algorithm for the line
instance (P, P ′,S) that produces a feasible set cover S∗ with some desirable
structural properties. Multiple maximum cliques may exist in the intersection
graph of S∗. We order the maximum cliques of S∗ in the increasing order of the
xr(·) values of their ply regions.

Definition 5 (Leftmost maximum clique). The leftmost maximum clique
Q of a set of unit squares S∗ refers to that maximum clique in the intersection
graph of S∗ for which xr(·) value of the corresponding ply region is the minimum
among all the maximum cliques in S∗.

The procedure Swap(A, {s},S∗) consists of the deletion of a set of squares A
from a set cover S∗ and the addition of a square s ∈ S \ S∗ into S∗.

Definition 6 (Profitable swap). The operation Swap(A, {s},S∗) is a prof-
itable swap if A is a set of two or more consecutive squares in the leftmost
maximum clique Q ⊆ S∗, and s ∈ S \ S∗ such that S∗ ∪ {s} \ A is a feasible set
cover for P .

The procedure RemoveRedundancy(S) ensures that each square s ∈ S∗ con-
tains at least one point p ∈ P exclusively. We proved that in a set cover for the
line instance, where none of the constituent squares are redundant, any maxi-
mum clique can be of only 3 types, as shown in Fig. 5.

The algorithm for the line instance is given in Algorithm1 and has two steps.
In the first step, RemoveRedundancy(·) is applied on the set S of input squares
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Algorithm 1: Algorithm for line instance of GMMGSC
Input : A horizontal line �, a set S of m unit squares intersecting �, a set P

of n points below � such that each of them lies in at least one square
in S, and a set of points P ′.

Output: Returns a set of squares S∗ ⊆ S covering P .
1 S∗ ← RemoveRedundancy(S)
2 Let Q be the leftmost maximum clique in S∗.
3 while there is a profitable swap in Q do
4 S∗ ← Swap(A, {s}, S∗)
5 S∗ ← RemoveRedundancy(S∗)
6 Update Q to be the leftmost maximum clique in S∗.
7 end
8 return S∗

to obtain a feasible set cover S∗ containing no redundant squares. The second
step performs a set of profitable swaps on S∗. This step aims to obtain a feasible
solution with a maximum clique Q with some desirable properties. A profitable
swap is defined on the leftmost maximum clique of a feasible solution. Refer to
Definition 6. We have the following observation about the solution.

Observation 1. There exist no profitable swaps on the leftmost maximum clique
Q of S∗ returned by Algorithm1.

Our algorithm implicitly implies the following lemma.

Lemma 1 (Key Lemma). Let Q be the leftmost maximum clique in the solu-
tion S∗ returned by Algorithm1. Let |Q| = k and s1, . . . , sk be the squares
of Q from left to right. No input square contains Excl(si) ∪ Excl(si+1), where
1 ≤ i ≤ k − 1.

Proof. Fix an index i with 1 ≤ i ≤ k − 1. Suppose for the sake of contradiction
that there exists an input square t that covers Excl(si)∪Excl(si+1). Observe that
Swap({si, si+1}, {t},S∗) is a profitable swap in S∗, which is a contradiction to
Observation 1.

First, we will show how to implement the algorithm and analyze the running
time.

Observation 2. The procedure RemoveRedundancy(S) can be implemented in
O(nm) time.

Proof. Consider an arbitrary ordering of the n points in P and an arbitrary
ordering of the m squares in S. In O(nm) time, we construct an n × m matrix
T where the (i, j)-th entry is 1 if the i-th point is contained in the j-th square.
Also, construct an array count of length n. For every point pi, count[i] stores
the number of squares in S that contain pi. Initialize each entry of an m-length
array removed to 0. Run a loop that iterates over each square sj ∈ S. If sj does
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not contain any point pi with count[i] = 1, remove sj , i.e., set removed[j] = 1.
Set each entry in the j-th column of T to zero. For each point pi′ ∈ sj , decrease
count[i′] by one. At the end of the loop, output the squares with removed[·] = 0.
Naively, the time required to perform all the operations is O(nm).

Theorem 1. The running time of Algorithm1 is O(m2 logm + m2n).

Proof. To compute the leftmost maximum clique Q in S∗, we first obtain the
set of squares containing each point of P ′. This takes O(nm) time.

We need to check if there exists a profitable swap in Q. There are at most
m choices for the swapped-in square s ∈ S \ S∗. While computing Q, one could
also obtain the left-to-right ordering of the squares in Q. For each candidate
swapped-in square s, we find a set of consecutive squares A ⊆ Q that can lead
to a profitable swap of A by s. We can use binary search on the squares of Q
to do this. This requires O(log |Q|) = O(logm) time. Additionally, we may need
to check if the extreme two squares of A, say si and sj , can be swapped out
safely. This is equivalent to checking if all points in Excl(si, sj) are covered by
s. Naively, the time required to check this is O(n). Thus, if one exists, we can
execute a profitable swap in Q in O(m logm + mn) time.

We need to remove from S∗ those squares in S∗ \ Q that may have become
redundant because of swapping in the square s. This can be done by re-invoking
RemoveRedundancy(·) on S∗ in O(nm) time (due to Observation 2). The leftmost
maximum clique in S∗ can be determined in O(nm) time.

Every profitable swap decreases the size of the set cover by at least one.
Therefore, at most m profitable swaps are performed. Thus, there are at most
m iterations of the while loop. Hence, the total running time of the while loop
is O(m · (m logm + nm)) = O(m2 logm + m2n).

Structural Properties of the Solution. We state two properties about the
structure of the solution returned by Algorithm1. Let Q be the leftmost max-
imum clique in the solution S∗ returned by Algorithm1 for the line instance
(P, P ′,S). Let s1, . . . , sk be the squares of Q from left to right. For 1 ≤ j ≤ k,
let pj be the bottom-most exclusive point in sj .

Lemma 2. Let p ∈ P ′ be an arbitrary point contained in the common intersec-
tion region of Q. For k > 13, there exists a set J ⊂ [k] with |J | ≥ k − 9 such
that every input square t ∈ S containing pj also contains p, for j ∈ J .

Proof. There are two cases to consider.

Case 1: Q is a monotonic clique. There are two subcases.

– Q is a monotonic descending clique. Define the set J = {3, . . . , k − 3}. By
definition y(sj−1) > y(sj) > y(sj+1), for each j ∈ J . Let t be an input square
that contains pj but not p. Again, there are two cases.
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• p lies to the right of t, i.e. x(p) > x(t) + 1: Observe that x(pj) < x(sk).
Since p ∈ s1 and t does not contain p, therefore t starts before s1 starts,
i.e., x(t) < x(s1). Since t contains pj ∈ sj , hence t must end below the
bottom boundary of sj−1 and should end to the right of where sj starts,
i.e., y(t) < y(sj−1) and x(t) + 1 > x(sj). Combining these with the fact
that t is a unit square, t must cover Excl(sj−2) ∪ Excl(sj−1) as shown in
Fig. 5(b). This is a violation of Lemma 1.

• p does not lie to the right of t but is above t, i.e., x(t) + 1 > x(p) but
y(p) > y(t)+1: The square t must end after sk starts, i.e., x(t)+1 > x(sk).
Since p ∈ sk, the square t must end below sk, i.e., y(t) < y(sk). Since
pj ∈ t, therefore x(t) < x(pj). So, t covers Excl(sj+1) ∪ Excl(sj+2). This
is a violation of Lemma 1.

– Q is a monotonic ascending clique. Define the set J = {4, . . . , k − 2}. By
definition y(sj−1) < y(sj) < y(sj+1), for each j ∈ J . Let t be an input square
that contains pj but not p. By an analogous argument, t would be forced to
cover either Excl(sj+1) ∪ Excl(sj+2) (when p lies to the left of t as shown in
Fig. 5(a)) or Excl(sj−1) ∪ Excl(sj−2) (when p does not lie to the left of t but
lies above t). This is again a violation of Lemma 1.

Case 2: Q is a composite clique (of type DESC|ASC). Let b be the index (in
the left-to-right ordering) of the bottom-most square in Q. Define the
set J = {3, . . . , b − 3, b + 3, . . . , k − 2}. Using the two subcases in the
previous case, we can arrive at a violation of Lemma 1 for j ∈ J . Refer
to Fig. 5(c) for an illustration.

Lemma 3. For k > 13, there exists a set J ⊂ [k] with |J | ≥ k − 5 such that no
input square t ∈ S can contain pj , pj+1, pj+2 for j ∈ J .

Proof. There are two cases to consider.

Case 1: Q is a monotonic clique. There are two subcases.

– Q is a monotonic descending clique. Define the set J = {1, . . . ,
k − 3}.

– Q is a monotonic ascending clique. Define the set J = {2, . . . , k − 2}.
For j ∈ J , assume that t ∈ S contains the bottom-most exclusive points
pj , pj+1, pj+2 of three consecutive squares of Q, namely sj , sj+1, sj+2

respectively. Then t would contain either Excl(sj) ∪ Excl(sj+1) or
Excl(sj+1) ∪ Excl(sj+2). This implies a violation of Lemma 1, as can be
seen in Fig. 5. Thus, we have a contradiction.

Case 2: Q is a composite clique (of type DESC|ASC). Let b be the index (in the
left-to-right ordering) of the bottom-most square in Q. We define the
set J = {1, . . . , b−3, b+1, . . . , k−2}. If 1 ≤ j ≤ b−3, then sj , sj+1, sj+2

are in a monotonic descending sequence and the corresponding subcase
from Case 1 applies. If b + 1 ≤ j ≤ k − 2, then sj , sj+1, sj+2 are in
a monotonic ascending sequence and the corresponding subcase from
Case 1 applies.
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Fig. 5. p ∈ P ′ is contained in the ply region of the cliques. The red square t does
not contain p. (a) The green squares constitute a monotonic ASC clique. (b) The
green squares constitute a monotonic DESC clique. In (c), the green squares form a
composite clique of type DESC|ASC. In (a), the red square t can swap out sj+1, sj+2.
In (b), the red square t can swap out sj−1, sj−2. (Color figure online)

2.2 GMMGSC for the Slab Instance

In this section, we present a constant approximation algorithm for the slab
instance. We will use an LP relaxation (adapted from Bandyapadhyay et al.
[3]) to partition the slab instance into two line instances.

For each unit square s ∈ S, we create a variable xs, indicating whether s is
included in our solution. In addition, create another variable y, which indicates
the maximum number of times a point in P ′ is covered by our solution. Then,
we formulate the following linear programming relaxation.

min y

s.t.
∑

s∈S,p∈s

xs ≥ 1 for all p ∈ P
∑

s∈S,p′∈s

xs ≤ y for all p′ ∈ P ′

0 ≤ xs ≤ 1 for all s ∈ S
The input set S of squares is partitioned naturally into two parts S1,S2 where

S1 (resp. S2) consists of the input squares intersecting the bottom (resp. top)
boundary line L1 (resp. L2) of the horizontal slab, say α.

We partition the set P of points within α into P1 and P2 using the LP. Let
({x∗

s}s∈S , y∗) be an optimal solution of the above linear program computed using
a polynomial-time LP solver. For a point p ∈ R

2 and i ∈ {1, 2}, define δp,i as
the sum of x∗

s for all s ∈ Si satisfying p ∈ s. Then we assign each point p ∈ P to
Pi, where i ∈ {1, 2} is the index that maximizes δp,i.

Now we solve the two line instances (Pi, P
′,Si), for i ∈ {1, 2} using Algo-

rithm1. Finally, we output the union of the solutions of these two line instances.
We discard redundant squares from the solution, if any. For i ∈ {1, 2}, denote
by S∗

i the solution returned by Algorithm1 for the line instance (Pi, P
′,Si). We

state and prove the following useful lemma.
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Lemma 4. For every i ∈ {1, 2}, memb(P ′,S∗
i ) ≤ 4 · OPT + 9, where S∗

i is the
solution returned by Algorithm1 for the instance (Pi, P

′,Si) and OPT is the
minimum membership for the slab instance.

Proof. We consider the case when i = 2, i.e., all the squares intersect the top
boundary line L2 of the slab α. The argument for the case of i = 1 is identical and
is not duplicated. Consider the leftmost maximum clique Q in the intersection
graph of the squares in S∗

2 . Suppose, memb(P ′,S∗
2 ) = k and the squares in Q

from left to right are s1, . . . , sk.
If k ≤ 13, then memb(P ′,S∗

i ) ≤ 4 ·OPT +9 is satisfied trivially since OPT ≥
1.

Assume that k > 13. Denote by pj the bottom-most exclusive point of sj .
Let p be any point in P ′ contained in the ply region of Q. By Lemma 2, for each
j ∈ J , every input square containing pj also contains p. By Lemma 3, no input
square s contains pj , pj+1, pj+2 for j ∈ J . Thus we can write

∑

s∈S2,p∈s

xs ≥ 1
2

∑

∀j∈J

∑

s∈S2,pj∈s

xs

Since a variable xs may appear at most twice in the double-sum on the right-
hand side, we have multiplied by the factor 1/2. The left-hand side of the above
inequality is bounded above by the LP optimal y∗. Since every pj belongs to
P2, we have

∑
s∈S2,pj∈s xs ≥ 1/2 from the partitioning criteria of P into P1 and

P2. From the proofs of Lemma 2 and Lemma 3, we observe that |J | ≥ k − 9,
irrespective of the type of clique Q. So we can write

y∗ ≥ 1
2

· (k − 9) · 1
2

=⇒ k ≤ 4y∗ + 9

By definition, the optimal ply value, OPT , is at least y∗. Therefore, k ≤ 4 ·
OPT + 9.

Lemma 5. For i ∈ {1, 2}, let S∗
i be the solution for the line instance (Pi, P

′,Si)
obtained via Algorithm1. Then S∗ = S∗

1 ∪ S∗
2 is a feasible solution to the slab

instance (P, P ′,S) with memb(P ′,S∗) ≤ 8 · OPT + 18.

Proof. Since S = S1 ∪ S2, so S∗ is a feasible set cover for the slab instance
(P, P ′,S). Consider an arbitrary point p ∈ P ′. Using Lemma 4 for i ∈ {1, 2}, we
get that the number of unit squares in S∗

i containing p is at most 4 · OPT + 9.
Thus, memb(P ′,S∗) ≤ 8 · OPT + 18.

2.3 Putting Everything Together

Theorem 2. GMMGSC problem admits an algorithm that runs in O(m2 logm+
m2n) time, and computes a set cover whose membership is at most 16·OPT+36,
where OPT denotes the minimum membership.
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Proof. We divide the plane into unit-height horizontal slabs. For each non-empty
slab α, we partition the slab instance into two subproblems, namely the line
instances corresponding to the boundary lines of α using the LP-relaxation tech-
nique described in Sect. 2.2. We solve each line instance using Algorithm1. Then
we output the union of the solutions thus obtained while discarding redundant
squares, if any. Consider any point p ∈ P ′. Suppose p lies within a slab α whose
boundary lines are L1 and L2. Since the squares containing p must intersect
either L1 or L2, p can be contained in squares from at most 4 subproblems. One
is a line instance corresponding to L1 where the points lie above L1. The other is
a line instance corresponding to L1 where the points lie below L1. The other two
subproblems correspond to L2. Thus, due to Lemma4, the number of squares of
our solution containing p is at most 16 · OPT + 36, where OPT is the optimal
membership value for the instance (P, P ′,S).

Formulating and solving the LP takes Õ(nm) time [2]. The overall running
time of the algorithm is dominated by the running time of Algorithm1. There
are at most O(min(n,m)) line instances to solve. By a standard trick, the total
running time remains O(m2 logm + m2n) using Theorem 1.
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Abstract. Let G = (V, E) be a simple undirected graph with no isolated
vertex. A set D ⊆ V is a dominating set if each vertex u ∈ V is either in D
or is adjacent to a vertex v ∈ D. A set Dt2 ⊆ V is said to be a semi-total
dominating set if (i) Dt2 is a dominating set, and (ii) for every vertex
u ∈ Dt2, there exists a vertex v ∈ Dt2 such that the distance between
u and v in G is within 2. Given a graph G, the semi-total domination
problem is to find a semi-total dominating set of minimum cardinality.
The semi-total domination problem is NP-complete for general graphs. It
is also NP-complete on some special graph classes, such as planar, split,
and chordal bipartite graphs. In this paper, we have shown that it is
NP-complete for unit disk graphs. We propose a 6-factor approximation
algorithm for the semi-total dominating set problem in unit disk graphs.
The algorithm’s running time is O(nk), where n and k are the number
of vertices and the size of the maximal independent set of the given
UDG, respectively. In addition, we show that the minimum semi-total
domination problem in a graph with maximum degree D admits a 2 +
ln (D + 1)-factor approximation algorithm which is an improvement over
the best-known result 2 + 3 ln (D + 1).

Keywords: Semi-total dominating set · NP-complete · Approximation
algorithm

1 Introduction

Let G = (V,E) be a simple undirected graph that may contain multiple
components. However, no component in the graph is an isolated vertex. A
set NG(v) denotes the open neighborhood of v in G, and it is defined as
NG(v) = {u ∈ V : uv ∈ E}. On the other hand, the closed neighborhood
NG[v] of v is defined as NG[v] = NG(v) ∪ {v}. For any subset S ⊆ V , G[S]
represents the subgraph induced by the vertex set S in G (i.e., for each u, v ∈ S,
uv ∈ E(G[S]) if and only if uv ∈ E).1 Given two vertices u and v, the distance
d(u, v) between u and v is the minimum number of edges that connect u with
v in G. A subset D ⊆ V is said to be a dominating set (DS) of G if for each
vertex v ∈ V , |NG[v] ∩ D| ≥ 1. The dominating set with minimum cardinality
1 E(G) refers to the edge set of the graph G.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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is called the minimum dominating set, and the size of the minimum dominating
set is called the domination number, γ(G). A vertex v ∈ V dominates NG[v],
and a subset S ⊆ V dominates

⋃
v∈S NG[v]. A subset Dt ⊆ V (G) is said to be a

total dominating set (TDS) of G if Dt is a dominating set of G, and the vertices
in Dt induce a subgraph with no isolated vertex. The total dominating set with
minimum cardinality is called the minimum total dominating set, and the size
of the minimum total dominating set is called the total domination number,
γt(G). A subset Dt2 ⊆ V is said to be a semi-total dominating set of G if (i)
Dt2 is a dominating set (domination property), and (ii) for each u ∈ Dt2, there
exists a vertex v ∈ Dt2 such that d(u, v) ≤ 2 (semi-total property). The semi-
total dominating set with minimum cardinality is called a minimum semi-total
dominating set, and the corresponding cardinality is the semi-total domination
number. We denote the semi-total domination number as γt2(G). Given a graph
G, the objective of the semi-total dominating set problem is to find a minimum
semi-total dominating set.

1.1 Related Work

In computational complexity theory, the dominating set problem is a classi-
cal NP-complete problem [6]. Along with the domination problem, its variants
are also generally hard in general graphs. So, researchers started exploring the
behavior of the domination problem and its variants in different sub-classes of
general graphs. The literature on domination and its variants can be found in
[7–10,13,18]. In this paper, we focus on semi-total dominating set. The Semi-
total dominating set was introduced by W. Goddard et al. [16] in 2015. Since
every semi-total dominating set is a dominating set and every total dominating
set is a semi-total dominating set, the semi-total domination number is squeezed
between the domination number and the total domination number, i.e., for a
given graph G, γ(G) ≤ γt2(G) ≤ γt(G). In [16], authors showed that if G is a
connected graph with n (≥4) vertices, then γt2 ≤ n

2 . In the same paper, authors
also showed that if G is a graph with n vertices and maximum degree D, then
γt2 ≥ 2n

2D+1 . Subsequently, Henning and Marcon [13] showed that for a con-
nected graph with at least 2 vertices, γt2(G) ≤ α′(G) + 1, where α′(G) is the
matching number.2 In [1], Asplund et al. studied the semi-total domination in
cartesian product graphs and established that for any two graphs G and H,
γt2(G�H) ≥ 1

3γt2(G)γt2(H). In [4], authors showed that it is NP-complete to
recognize the graphs that satisfy γt2(G) = γt(G) and γ(G) = γt2(G). In [11],
authors showed that for every connected claw-free cubic graph G of order n,
γt2 ≤ n

3 . In [12], authors showed that the semi-total domination problem remains
NP-complete in planar graphs, chordal bipartite graphs and split graphs. They
also gave a 2 + 3 ln (D + 1)-factor approximation algorithm for the minimum
semi-total domination problem, where D is the maximum degree of G.

2 Given a graph G = (V, E), a set of edges E′ ⊆ E is said to be a matching of G if no
two elements of E′ are adjacent and the matching number is the size of the largest
matching.
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1.2 Our Contribution

The remaining part of this paper is organized as follows. In Sect. 2, we introduce
the required preliminaries and notations. In Sect. 3, we prove that the semi-total
dominating set problem is NP-complete in unit disk graphs. Next, in Sect. 4,
we propose an O(nk) time 6-factor approximation algorithm for the semi-total
domination problem for unit disk graphs. In this section, we also propose a 2 +
ln (D + 1)-factor approximation algorithm for the semi-total domination problem
for general graphs. Finally, we conclude the paper in Sect. 5.

2 Preliminaries

In this section, we will introduce the required notations and definitions. Let
P = {p1, p2, . . . , pn} be a set of n points in R

2. A graph G = (V,E) is said to be
a geometric UDG corresponding to the point set P if there exists a one-to-one
correspondence between each vi ∈ V with pi ∈ P and vivj ∈ E if and only
if δ(pi, pj) ≤ 1, where δ(., .) is the Euclidean distance between two points in
R

2. Let Δ(p) denote the unit disk centered at the point p ∈ P and Δ(P ) =
{Δ(p) : p ∈ P}. The set of disks Δ(P ) is considered independent if for every
pair p, q ∈ P , p /∈ Δ(q), i.e., δ(p, q) > 1. This article often refers to a point as a
vertex or node. Given a positive integer i and a vertex u, N i

G[u] represents the
set of all the vertices within distance i from u in G. We often refer to N1

G[.] as
NG[.].

Next, we list some of the already proven lemmas, theorems, and observations
useful in Sect. 3, and Sect. 4.

Lemma 1 [19]. Let G = (V,E) be a planar graph of degree at most 3. The graph
G can be embedded in a grid of area O(|V |2) such that each v ∈ V lies in a grid
point with co-ordinate (5i, 5j), where i and j are integers and each edge e ∈ E is
a finite sequence of consecutive segments of length 5 units along the grid lines.

Lemma 2 [15]. Let P be a unit disk centered at point p and let S be a set of
independent unit disks such that each disk in S contains the point p, then |S| ≤ 5.

Lemma 3 [3]. Given a UDG G, there exists a 44
9 -approximation algorithm for

the minimum dominating set problem with running time O(n2).

Observation 1 [5]. For a given graph G, γ(G) ≤ γt2(G).

3 NP-Completeness

In this section, we focus on the hardness result of the semi-total domination
problem and prove that the decision version of the problem is NP-complete
in unit disk graphs. We use a reduction from the decision version of the
vertex cover (VC) problem in planer graphs of degree at most 3 to the
decision version of the semi-total dominating set problem in UDGs.
The corresponding decision problems are formally defined as follows:
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The decision version of the VC problem in planar graphs of degree at most 3
(D-VC-PGD3): Given a positive integer k and a planar graph G of degree
at most 3, does G has a VC of size at most k?
The decision version of semi-total dominating set problem in UDGs (D-
T2DS-UDGs): Given a positive integer k and a UDG G, does G has a
semi-total dominating set of size at most k?

Lichtenstein and David [14] reduced the planar 3SAT problem to the planar
vertex cover problem and proved that D-VC-PGD3 is NP-complete. We prove
the hardness result of the semi-total dominating set problem in UDGs by making
a polynomial time reduction from an arbitrary instance of D-VC-PGD3 to an
instance of D-T2DS-UDGs. To prove this, we embed a planar graph G =
(V,E) of degree at most 3 in a grid of cell size 5 × 5 using Lemma 1.

Lemma 4. If G = (V,E) is an instance of D-VC-PGD3 without any isolated
vertex, then an instance G′ = (V ′, E′) of D-T2DS-UDG can be constructed
from G in polynomial time.

Proof. Let V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em} be the vertex set and
edge set of the given instance G. We construct a graph G′ = (V ′, E′) from G by
the four steps as given below:

Step 1 (Embedding): We first embed the graph G on a grid of cell size 5×5
using the algorithm proposed by Biedl et al. in [2]. In this embedding, each
edge e ∈ E is a consecutive sequence of line segment(s) in the grid, where the
length of each segment is 5 unit. Let � be the total number of line segments
used in the embedding. For each vertex v ∈ V , a node point located at a
grid having coordinate (5i, 5j) for some integers i and j. Let pi be the node
point at the grid corresponding to vertex vi ∈ V for 1 ≤ i ≤ n. Let the set
of node points be N , i.e., |N | = |V | = n. Refer to Fig. 1(a) and (b) for an
illustration of the embedding step.
Step 2 (Inclusion of auxiliary points): In this step, we add some auxiliary
points on each segment of the graph after the embedding step as mentioned
below: (i) for each pipj corresponding to the edge vivj ∈ E, if the number
of segments in pipj is one (length of pipj is exactly 5 unit), then add six
points at distances 1, 1.3, 2.1, 2.6, 3.2 and 4 either from pi or pj as depicted
in Fig. 2(a), (ii) if the number of segments is more than one (length of pipj

is greater than 5 unit), then we add a point on each grid point along the
line except the node points. We refer to those points as grid points (see the
filled square points in Fig. 2). If both the endpoints of any segment are grid
points, then add four points on the segment at distances 1, 2, 3, 4 from any
of the endpoints of the segment (see Fig. 2(b)); otherwise, add five points at
distances 1, 1.9, 2.5, 3 and 4 from node point pi (Fig. 2(c)). Let A be the set
representing the auxiliary points added in this step.
Step 3 (Inclusion of gadgets): Since each node in the planar graph has
degree at most 3 and is embedded within a grid, at least one position at
each node point exists to accommodate an extra edge. In this step, we add a
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gadget as shown in Fig. 2(d) at each node point pi. The gadget at pi contains
4 points, namely xi, x′

i, yi and y′
i. Here, the distances between pi and xi, xi

and x′
i, xi and yi, yi and y′

i are 0.9, 0.5, 0.9 and 0.5, respectively. Let S be
the number of points added in this step. Since each gadget contains 4 points,
therefore, |S| = 4|N | = 4n.
Step 4 (Construction of UDG): Let G′ = (V ′, E′) be the UDG con-
structed after applying the above 3 steps on graph G, where V ′ = N ∪ A ∪ S
and E′ = {uv : u, v ∈ V ′ and δ(u, v) ≤ 1}.

From Lemma 1, we conclude that the number of segments � = O(n2). There-
fore, the upper bound on the number of vertices and the number of edges in
G′ is O(n2). Hence, G′ can be constructed from G in polynomial time. For the
complete illustration of the construction phases, refer to Fig. 1 and Fig. 2. �	

Fig. 1. (a) A planar graph G, and (b) Embedding of G in a grid

Theorem 1. D-T2DS-UDGs belongs to the class NP-complete.

Proof. Let G = (V,E) be a unit disk graph. Given a subset S ⊆ V and a positive
integer k, we can verify whether S is a semi-total dominating set of G of size at
most k or not in polynomial time. Therefore, D - T2DS - UDGs ∈ NP .

To prove D - T2DS - UDGs is NP-hard, we will do a polynomial time reduc-
tion from D-VC-PGD3 to D-T2DS-UDGs. Here, we use Lemma 4 to con-
struct an instance G′ = (V ′, E′) of D-T2DS-UDGs from an arbitrary instance
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Fig. 2. (a) Orientation of six points, (b) Orientation of five points, (c) Orientation of
four points, (d) Gadget, and (e) Graph G′

Fig. 3. (a) Vertex cover of G, and (b) Semi-total dominating set of G′
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G = (V,E) of D-VC-PGD3 in polynomial time. Next, we prove the following
claim to complete the hardness result of D-T2DS-UDGs.

Claim: G has a vertex cover Svc such that |Svc| ≤ k if and only if G′ has a
semi-total dominating set Dt2 such that |Dt2| ≤ k + 2� + 2n.

(=⇒) Let Svc be a vertex cover of G such that |Svc| ≤ k and Tvc be the set of
vertices in G′ corresponding to the vertices in Svc, i.e., Tvc = {pi ∈ V ′ : vi ∈ Svc}.
Now, we construct two sets Ta ⊆ A and Tg ⊆ S such that Dt2 = Tvc ∪Ta ∪Tg is a
semi-total dominating set with cardinality less than or equal to k +2�+2n. The
construction of Ta and Tg are as follows. Since Svc is a vertex cover of G, at least
one endpoint of every edge in G is inside Svc. Since every edge in G corresponds
to a sequence of segments in G′, we start from the endpoint, which is inside Tvc.
For each pipj in G′ corresponding to each vivj ∈ E, at least one out of pi and pj

is in Tvc. Without loss of generality, let pi ∈ Tvc. We traverse from pi towards
pj . While traversing, we leave two vertices next to pi, add a single vertex to Ta,
and then leave the next vertex and select the next one for Ta; again, we leave
two vertices. This way, we repeat the process till we reach pj . For each vivj ∈ E,
we apply this process to the corresponding pipj in G′ and observe that exactly
two points from each segment are in Ta. So |Ta| = 2�, where � is the number of
segments in G′. In Fig. 3(b), the red cross points are in Ta. From each pi ∈ V ′,
we choose xi and yi for Tg. So |Tg| = 2n. In Fig. 3(b), the red disks are in Tg.

Now, we are left to show that the set Dt2 is a semi-total dominating set of
G′. Since xi, yi ∈ Tg ⊆ Dt2 and dominate pi, x′

i and y′
i, and d(xi, yi) = 1 for

all i = {1, 2, . . . , n}, and for each pi ∈ Tvc, there exists a vertex xi ∈ Tg such
that d(pi, xi) = 1. Hence, the sets Tvc and Tg satisfy the semi-total domination.
There are three types of segments in G′. The types of segments are as follows:
(i) segments with two endpoints as node points as depicted in Fig. 2(a), (ii)
segments with one endpoint as a node point and another as a grid point as
depicted in Fig. 2(b), and (iii) segments with two endpoints as grid points as
depicted in Fig. 2(c). We have to show that each segment from each segment
type requires at least two points in Dt2 for semi-total domination.

(i) Segments with two endpoints as node points: Since Svc is a vertex cover
of G, at least one out of vi and vj is in Svc, where vivj ∈ E. Therefore, at least
one out of pi and pj is in Tvc. Without loss of generality, let pi ∈ Tvc (pick any
one if both pi, pj ∈ Tvc). The way graph G′ is constructed, there are 6 points
on this type of segment excluding the two node points (i.e., pi and pj). Let us
refer to each point on the segment as zt, where 1 ≤ t ≤ 6 and t is the position of
the point from pi. pi dominates z1. The selection of z3 and z5 in Ta ensure the
domination of z2, z4 and pj and d(z3, z5) ≤ 2 ensures the semi-total property.
For a complete illustration, refer to p4p6 in Fig. 3(b).

(ii) Segments with one endpoint as a node point and another as a grid point:
Let pi and gijt be the node point and grid point, respectively, where the segment
pigijt is in pipj , and t represents the position of the grid point from pi. This type
of segment contains 5 points. Let the points are z1, z2, . . . , z5. (a) If pi ∈ Tvc,
then the selection of z3 and z5 in Ta ensures the domination of the segment. (b)
If pi /∈ Tvc, then a point in the other segment connected to gijt dominates gijt
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(since pj ∈ Tvc). Hence, the selection of z2 and z4 ensures the domination of the
remaining points in the segment pigijt. In either case, the selected two points
are within a distance of 2. Hence, it satisfies the semi-total property.

(iii) Segments with two endpoints as grid points: Let gijt and gij(t+1) be two
grid points and z1, z2, z3 and z4 be the four points on the segment. If so, then
at least one grid point is dominated by a point in the other segment connected
either to gijt or gij(t+1) (since at least one out of pi or pj is in Tvc). Without loss
of generality, if pi ∈ Tvc, then the selection of z2 and z4 ensures domination of
z1, z2, z3, z4 and gij(t+1). Since the distance between z2 and z4 is 2, the selection
satisfies the semi-total property for the segment.

From the above arguments, we conclude that Dt2 = Tvc ∪ Ta ∪ Tg is a semi-
total dominating set of G′. Since |Tvc| ≤ k, |Ta| = 2l and |Tg| = 2n, |Dt2| ≤
k + 2� + 2n.

(⇐=) Let Dt2 be a semi-total dominating set of G′ such that |Dt2| ≤ k+2�+2n.
Then, we will show that G has a vertex cover of size at most k. To prove this,
we prove the following observations.

(i) Out of four points in the gadget associated with each pi in G′, at least two
points belong to Dt2.

(ii) Each segment contributes at least two points to Dt2.
(iii) If pi and pj in G′ corresponds to the end vertices of an edge vivj ∈ E and

if none of them (pi and pj) is in Dt2, then there exists one segment whose
3 vertices are in Dt2 from the segment(s) representing the edge vivj , i.e., if
there are �′ number of segments in G′ corresponding to the edge vivj ∈ E
such that pi, pj /∈ Dt2, then out of 5�′+1 points (excluding pi and pj) 2�′+1
points are in Dt2.

Observation (i): Correspond to each pi ∈ E′, there are 4 points (xi, x′
i, yi

and y′
i) in the corresponding gadget. Since x′

i and y′
i are pendant vertices,

the selection of any two vertices is sufficient for domination. However, for
semi-total domination, it requires either the selection of (xi, yi), (xi, y′

i), or
(x′

i, yi). Hence, in G′, |S ∩ Dt2| ≥ 2n.
Observation (ii): Since there are four types of segments. Let us consider a
segment, say s1 with 4 points (excluding the endpoints), say q1, q2, q3, and
q4. On the contrary, suppose only one vertex is in Dt2. If so, then just for
domination, it requires at least two vertices (since only consecutive points are
adjacent). This implies that the segments with more than four vertices on the
segment require at least two points for domination. Hence, |Dt2 ∩ A| ≥ 2�,
where A and � are the set of auxiliary points and the number of segments in
G′, respectively.
Observation (iii): Let �′ be the number of segments in G′ correspond to
an edge vivj ∈ E. Since only consecutive points are adjacent, two points
can dominate at most 5 points in semi-total domination. So the minimum
number of points required to dominate (semi-total) 5�′ + 1 number of points
on �′ segments is � 5�′+1

5  × 2 = 2�′ + 1.
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Given a semi-total dominating set Dt2 of G′ of size at most k+2�+2n, we are
left to show that by deleting and/or replacing some of the vertices from Dt2, we
can obtain a vertex cover Svc of G of size at most k. Let define a set S′

vc = Dt2\S,
then |S′

vc| ≤ k + 2� (due to claim (i)). Then Svc = {vi ∈ V |pi ∈ S′
vc}. For each

edge vivj ∈ E, if vi, vj /∈ Svc, then there exists a segment on pipj in G′, which
has 3 points in Dt2 instead of 2 (refer to claim (ii) and (iii)). For each such edge,
add vi (or vj) to Svc. Since every segment contributes at least 2 to Dt2 and there
is 2� number of such points (refer to claim (ii)), |Svc| ≤ k. Since every edge in
G has at least one vertex in Svc, Svc is a vertex cover of size at most k. This
proves that D - T2DS - UDGs ∈ NP - hard.

Therefore, D - T2DS - UDGs ∈ NP - complete. �	

4 Approximation Algorithms

In this section, we propose a 6-factor approximation algorithm for the semi-total
domination problem in UDGs. We also propose a 2 + ln (D + 1)-factor approx-
imation algorithm for the semi-total domination problem for general graphs,
where D is the maximum degree of the graph, which is an improvement over the
approximation factor 2 + 3 ln (D + 1) given in [12].

4.1 Algorithm for Semi-total Domination in UDGs

Given a geometric unit disk graph G = (V,E) with V = {p1, p2, . . . , pn} ⊆ R
2

as the set of disk centers, Algorithm 1 finds a semi-total dominating set Dt2

of G. Now, we describe the procedure for finding the set Dt2. First, we find a
maximal independent set D ⊆ V of G to satisfy the domination property (see
Lines 2–6 of Algorithm 1). Next, to satisfy the semi-total property, we choose a
set of vertices T ⊆ V such that for each v ∈ D, there exists a vertex u ∈ D ∪ T
such that d(u, v) ≤ 2. To find such a set T , first, we find each point u ∈ D, which
satisfies the semi-total property (see Lines 8–13 of Algorithm 1) and next, we
segregate the points (set U) that do not satisfy the semi-total property in D (see
Line 14 of Algorithm 1) and then for each point u ∈ U , we add a point v ∈ NG(u)
into T (see Lines 15–18 of Algorithm 1). Finally, we report Dt2 = D ∪ T as a
semi-total dominating set of G. Lemma 5 and Lemma 6 represent the algorithm’s
correctness and time complexity, respectively.

Lemma 5. The set Dt2 in Algorithm 1 is a semi-total dominating set of G.

Proof. In the first phase, we find a maximal independent set D of G to satisfy
the domination property (see Lines 2–6 in Algorithm 1). Next, we segregate the
points that do not satisfy the semi-total property in D. Note that, for each vertex
u ∈ V , the algorithm finds Su = NG(u) ∩ D. If |Su| > 1, then the vertices in
Su satisfy the semi-total property, and hence the vertices in the set X ⊆ D also
satisfy the semi-total property (see Lines 8–13). Since U = D \ X, the vertices
in the set U do not satisfy the semi-total property, so we choose a one-distance
neighbor v ∈ V \ D for each such u ∈ U and T is the corresponding set (see
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Algorithm 1. T2DS-UDG(G)
Input: A unit disk graph, G = (V, E), with known disk centers
Output: A semi-total dominating set Dt2 for G

1: V ′ = V, D = ∅
2: while V ′ �= ∅ do
3: choose a vertex v ∈ V ′

4: D = D ∪ {v}
5: V ′ = V ′ \ NG[v]
6: end while
7: T = ∅, X = ∅
8: for each u ∈ V do
9: Su = NG(u) ∩ D

10: if |Su| > 1 then � each vertex in Su satisfies the semi-total property
11: X = X ∪ Su

12: end if
13: end for
14: U = D \ X � vertices in U do not satisfy the semi-total property
15: for each u ∈ U do
16: choose a vertex v ∈ NG(u)
17: T = T ∪ {v}
18: end for
19: Dt2 = D ∪ T
20: return Dt2

Lines 15–18). Since the set T is the set of such one-distance neighbor of each
point violating semi-total property in D, the inclusion of T in Dt2 along with
D ensures that for each vertex u ∈ D, there exists another vertex v ∈ D ∪ T
such that d(u, v) ≤ 2. Therefore, combinedly, the nominated points in D and T
satisfy the domination and semi-total properties. Hence, the set Dt2 is a semi-
total dominating set of G.

Lemma 6. Algorithm 1 runs in O(nk) time.

Proof. The complexity of Algorithm 1 is primarily dominated by the three for
loops (see Lines 2–6, 8–13 and 15–18 of Algorithm 1). Let V = {p1, p2, . . . , pn}
be the set of disks’ centers corresponding to graph G = (V,E). Let all the disks
lie on a plane’s rectangular region R. Let the rectangle’s extreme left and bottom
arms represent the x- and y-axis, respectively. Then, we split the plane R so that
the region R becomes a grid with cell size 1×1. Let [x, y] be the index associated
with each cell, where x, y ∈ N ∪ {0}. If a point p ∈ V is located at co-ordinate
(px, py) on R, then the point belongs to a cell with index [�px�, �py�].

In the first for loop (see Lines 2–6), Algorithm 1 constructs a maximal inde-
pendent dominating set D of the input graph G. To do so efficiently, each non-
empty cell maintains a list that keeps the points of V chosen for inclusion in D
located within that cell. While considering a point p ∈ V as a candidate for the
set D, it only probes into 9 cells surrounding the cell where p lies. That means
if p is located at co-ordinate (px, py), then it searches in each [i, j] cell, where
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�px� − 1 � i � �px� + 1 and �py� − 1 � j � �py� + 1.3 If there does not exist
any point q ∈ D in those 9 cells such that p ∈ Δ(q), then p is included in D. A
height balance binary tree containing non-empty cells is used to store the points
that are in D. Since each cell of size 1 × 1 can contain the centers of at most
3 independent unit disks (since placing the centers on the boundary maximizes
the number of independent unit disks in a cell and one disk covers more than
one edge in a cell), the processing time to decide whether a point is in D or not
requires O(log k) time, where k = |D|. Thus the time taken to process |V | = n
points is O(n log k).

In the second for loop (Lines 8–13), Algorithm 1 finds a set X ⊆ D in
which each vertex satisfy the semi-total property. To find the set X, it finds
Su = NG(u) ∩ D for each vertex u ∈ V . Now, if |Su| > 1, the vertices in Su

satisfy the semi-total property; hence, these vertices collectively represent the
set X. Thus, finding a set X requires O(nk) time.

Since each vertex u in U does not satisfy the semi-total property (i.e., |Su| ≤
1), we add a vertex v ∈ NG(u) to T (see Lines 15–18). Thus, in the worst case,
the time to construct the set T is O(k).

Therefore, in worst case, Algorithm 1 executes in O(nk) time. �	
Lemma 7. In Algorithm 1, |T | ≤ |D∗|, where D∗ is an optimal DS of G.

Proof. On contrary assume that |T | > |D∗|, i.e., |U| > |D∗|. So, at least one
vertex in D∗ dominates two or more vertices in U , which leads to a contradiction
that there is no vertex v ∈ V that has more than one neighbor in U . �	

Analysis: The set Dt2 in Algorithm 1 is a semi-total dominating set of G, where
Dt2 = D ∪ T (see Lemma 5). Let D∗ and D∗

t2 be the optimal dominating set
and optimal semi-total dominating set of G, respectively. Since D is a maxi-
mal independent set of G, from Lemma 2, we have |D| ≤ 5|D∗|. The set T in
Algorithm 1 satisfies the semi-total property when added to the independent set
D. Note that from Lemma 7, we have |T | ≤ |D∗|. Therefore, using Lemma 2,
Lemma 5, Lemma 7 and Observation 1, we conclude the approximation factor
of Algorithm 1 as follows:

|Dt2| = |D ∪ T | ≤ |D| + |T | ≤ 5|D∗| + |D∗| ≤ 6 × |D∗| ≤ 6 × |D∗
t2| (1)

Theorem 2. The proposed algorithm (T2DS-UDG) gives a 6-factor approxima-
tion result for the semi-total domination problem in UDGs. The algorithm runs
in O(nk) time, where n is the number of vertices in the given UDG and k is the
size of the maximal independent set.

Proof. The approximation factor and the time complexity result follow from
Eq. 1 and Lemma 6, respectively. �	
3 Any point outside these 9 cells is independent from p.



128 S. Rout and G. K. Das

Corollary 1. The semi-total domination problem achieves a 53
9 -factor approx-

imation result in UDGs with running time O(n2), where n is the number of
vertices in the given UDG.

Proof. From Lemma 3 and Lemma 7, we have |D| ≤ 44
9 |D∗| and |T | ≤ |D∗|,

respectively. Therefore,

|Dt2| = |D ∪ T | ≤ |D| + |T |
≤ 44

9
|D∗| + |D∗| =

53
9

|D∗|

≤ 53
9

|D∗
t2|

(2)

�	

Note: In [12], the authors proposed a 2 + 3 ln (D + 1)-factor approximation
algorithm for the semi-total dominating set problem in general graphs. Here,
the authors used two sets, namely D and T , to find the semi-total dominat-
ing set of the given graph G, where D is a DS and T is a set of vertices such
that D ∪ T is a semi-total dominating set. The authors used the approximation
algorithm for the minimum DS problem to find the set D and the approxima-
tion algorithm for the minimum set cover problem to find the set T . Since the
approximation factors of the minimum DS and the minimum set cover problems
are 1 + ln (D + 1) and 1 + 2 lnD, respectively, the approximation factor of the
algorithm in [12] is 2 + 3 ln (D + 1). However, to have an improvement over the
approximation factor, we can modify the algorithm in [12] by selecting the set
T as in Algorithm 1 (the selection of the set T needs the set D to be a domi-
nating set, not necessarily a maximal independent set). Then, by Lemma 7 and
Observation 1, the approximation factor of the semi-total domination problem
in general graphs is as follows:

|Dt2| = |D ∪ T | ≤ |D| + |T | ≤ (1 + ln (D + 1))|D∗| + |D∗|
≤ (2 + ln (D + 1))|D∗| ≤ (2 + ln (D + 1))|D∗

t2|
(3)

Note: Since there exists a polynomial-time approximation scheme (PTAS) for
the domination problem in UDGs with approximation factor (1 + ε) and time
nO( 1

ε
1

log ε ), for any ε > 0 [17]. We have the following corollary.

Corollary 2. The semi-total dominating set problem in UDGs admits a PTAS
with approximation factor (2 + ε) in time nO( 1

ε
1

log ε ).

5 Conclusion

In this paper, we have introduced the concept of semi-total domination to UDGs
and shown that the semi-total domination problem in UDGs is NP-complete.
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Then, we proposed a 6-factor approximation algorithm for the same, with time
complexity O(nk), where k is the size of the maximal independent set of the
given UDG. In addition, we also proposed a 2 + ln (D + 1)-factor approximation
algorithm for general graphs, where D is the maximum degree of the given graph.
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Abstract. Interior point methods are one of the popular iterative
approaches for solving optimization problems. Search direction plays a
vital role in the performance of the interior point methods. This paper
uses a modification to the Newton method and proposes a new way to
find the search direction. We introduce a two-step interior point algo-
rithm for solving linear optimization problems based on the new search
direction. We present theoretical results for the convergence of the algo-
rithm. Finally, we evaluate the algorithm on some test problems from
the Netlib collection and show that the proposed algorithm reduces the
number of iterations and CPU time by 30.97% and 20.46%, respectively.

Keywords: Interior point method · Linear optimization ·
Experimental evaluation

1 Introduction

In this paper, we consider Linear Optimization (LO) problems in standard form
as in [12].

(P ) min{cT x : Ax = b, x ≥ 0},

and its dual is given by:

(D) max{bT y : AT y + s = c, s ≥ 0},

where x, c, s ∈ R
n, b ∈ R

m, y ∈ R
m and A ∈ R

m×n with m ≤ n. Without loss of
generality, we make the following assumptions:

– The matrix A is full row rank, i.e., rank (A) = m ≤ n.
– Both problems (P) and (D) satisfy the Interior Point Condition (IPC), i.e.,

there exists x0 > 0 and (y0, s0) with s0 > 0 such that:

Ax0 = b, AT y0 + s0 = c.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Kalyanasundaram and A. Maheshwari (Eds.): CALDAM 2024, LNCS 14508, pp. 133–147, 2024.
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Optimization problems can be solved efficiently with Interior Point Methods
(IPMs). The first practical method was introduced by Karmarkar in 1984 for LO
problems, but since then, several approaches have been introduced to improve
complexity bounds and the implementation [2,4,5,9].

The Newton method is commonly used for computing the search direction
of the IPMs. This method is used to move from the current iteration to the
next point. Recently, McDougall and Wotherspoon [6] proposed a new two-step
Newton method. Their algorithm computes the Newton direction by using an
auxiliary point, and they demonstrated that it can significantly reduce the num-
ber of iterations required to reach an optimal solution.

Contributions: Motivated by the works mentioned above, our paper con-
tributes in several ways. First, we propose a new two-step interior point algorithm
for LO problems based on the extension of the method suggested in [6]. Our new
algorithm calculates the matrix inverse only once in each iteration and uses infor-
mation from the previous iteration to determine the search direction. Second,
we extend the theoretical results presented in [1] and prove the convergence of
our proposed algorithm. Third, we evaluate the efficiency of our algorithm by
comparing it with the classical search direction on test problems from the Netlib
collection. Our results demonstrate that our new algorithm can reduce the num-
ber of iterations and CPU times by 30.97% and 20.46%, respectively. Finally,
the theoretical and practical contributions of our work can be applied to other
IPMs, potentially improving their efficiency as well.

The paper is structured in the following manner: Sect. 2 provides a brief
overview of the interior point methods and goes on to describe the new search
direction in detail. Theoretical results for the convergence of the algorithm are
presented in Sect. 3, while Sect. 4 showcases some numerical results. Finally, con-
cluding remarks are provided in Sect. 5.

In this paper, we will use the following notations. First, the Euclidean norm
of a vector is denoted by ‖.‖. We also use R

n
+ and R

n
++ to represent the non-

negative and positive orthants, respectively. When we refer to vectors x and s,
we use xs and x

s to indicate coordinate-wise operations on the vectors, meaning
the components are xisi and xi

si
, respectively.

We denote the auxiliary point by (x̃, ỹ, s̃). The average of the auxiliary and
current points in each iteration of the algorithm is denoted by (x̂, ŷ, ŝ). To
refer to a specific iteration, we use subscripts, such as xn, for the value of x
after n updates. For simplicity, we use v instead of vn and v+ for vn+1 for
v ∈ {x, y, s, x̃, ỹ, s̃, x̂, ŷ, ŝ}. So, x refers to the current point, and x+ refers to the
updated value of x.

Finally, we use the notation f(t) = Θ (g(t)) to indicate that there exist
positive constants ω1 and ω2 such that ω1g(t) ≤ f(t) ≤ ω2g(t) for all t > 0.
We also use the notation f(t) = O (g(t)) to indicate that there exists a positive
constant ω such that f(t) ≤ ωg(t) for all t > 0.
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2 Mid-Point Algorithm

In this section, we will be discussing the new interior point algorithm and its
fundamental idea. To start, we will take a look at the Karush-Kuhn-Tucker
(KKT) conditions for problems (P) and (D). These conditions play a crucial
role in the IPMs and will serve as the foundation for our discussions. KKT
conditions for (P) and (D) are:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (1)
xs = 0,

where the coordinate-wise product of vectors x and s is denoted as xs. The
first and second equalities in Eq. (1) represent the primal and dual feasibility
constraints, respectively. The complementarity condition is given by the third
equality in the same system of equations.

To obtain the optimal solution, the IPM solves the system by replacing the
complementarity condition with the parameterized nonlinear equation xs = μe,
where μ is a positive real parameter and e is the all-one vector of length n. The
resulting system is shown below.

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (2)
xs = μe,

Based on the IPC condition and the full row rank property of matrix A, it can
be concluded that the system (2) has a unique solution (x(μ), y(μ), s(μ)). The
terms x(μ) and (y(μ), s(μ)) are called the μ-centers of (P) and (D), respectively,
as stated in [2]. Additionally, [8,11] define the central path as the collection of all
μ-centers, where μ covers all positive real numbers. They have also demonstrated
that the central path has a limit that exists and converges to an analytic center
of the optimal solutions set of (P) and (D) as μ goes to zero.

Now, we are in a position to extend the method proposed by [6] to the interior
point method. To this end, note that the optimal solution of (2) is equivalent to
finding the roots of the following function:

ξ =

⎡
⎣

x
y
s

⎤
⎦ and F (ξ) =

⎡
⎣

Ax − b
AT y + s − c

μe − xs

⎤
⎦ (3)

where the operator F is defined on the Banach space B1 with values in a Banach
space B2. We can find the root of Eq. (3) denoted by ξ∗ where F (ξ∗) = 0. One
way to calculate this root is to use iterative methods like Newton’s method, which
can find the difference Δξ given an initial value ξ in the vicinity of the root. To
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do this, we can use a linear approximation using the Taylor series expansion
around ξ.

F (ξ) + F ′(ξ)Δξ � 0

where Jacobian F ′ =

⎡
⎢⎣

∂F1
∂ξ1

∂F1
∂ξ2

∂F1
∂ξ3

∂F2
∂ξ1

∂F2
∂ξ2

∂F2
∂ξ3

∂F3
∂ξ1

∂F3
∂ξ2

∂F3
∂ξ3

⎤
⎥⎦ =

⎡
⎣

A 0 0
0 AT I
S 0 X

⎤
⎦ and Δξ =

⎡
⎣

Δx
Δy
Δs

⎤
⎦ ,

where X,S are diagonal matrices constructed from x and s. It yields an iterative
algorithm, the Newton-Raphson method, for finding roots. To start, we need an
initial estimate ξ0. Then, using a linear approximation with the Taylor series
expansion around ξ, we can update the current estimate ξn of the root using the
following rule for some appropriate step size α:

ξn+1 = ξn − α[F ′(ξn)]−1F (ξn)

The Newton-Raphson method’s efficiency can be improved through a two-step
approach suggested in [6]. Let F be any function. The first step involves updating
an auxiliary point ξ̃0 = ξ0 using a linear approximation around the current root
estimate ξn. In the second step, the average ξ̂n of the auxiliary point and the
current estimate is calculated. Finally, in the third step, the current estimate is
updated by employing the linear approximation to F around ξn, but instead of
using the Jacobian at point ξn, the Jacobian is evaluated at the average ξ̂n. The
update rules used in the nth iteration can be concisely summarized as:

ξ̃n+1 =ξn − α[F ′(ξ̂n)]−1F (ξn)

ξ̂n+1 =
1
2
(ξ̃n+1 + ξn)

ξn+1 =ξn − α[F ′(ξ̂n+1)]−1F (ξn)

We extend the approach of [6] to linear optimization problems. The computations
proceed as follows:

Initialization:

1. Start with a feasible point (x, y, s).
2. Set μ ← μ(1 − θ).
3. Compute the proximity function by:1

δ(x, s, μ) = ‖μe − xs‖1.

Check the condition δ ≥ τ . If δ < τ go back to step 2.
4. Set (x̃, ỹ, s̃) = (x, y, s)
5. Compute the average point (x̂0, ŷ0, ŝ0) = (x+x̃

2 , y+ỹ
2 , s+s̃

2 )

1 ‖x‖1 =
∑n

i=1 |xi|.
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6. Find the search direction using the following system:

AΔx = 0

AT Δy + Δs = 0

ŜΔx + X̂Δs = μe − XSe (4)

Note the X̂, Ŝ are diagonal matrices constructed from x̂, ŝ.
7. Find the maximum value for step size β such that the new point is feasible.
8. Update the current point by using the following role:

(x+, y+, s+) ← (x + βΔx, y + βΔy, s + βΔs) (5)

To start the iterative process, we will use the same method as in the initialization
phase for all values of k greater than or equal to 1. However, we will incorporate
a new step to update the auxiliary point in a specific manner.

Iterative Update:

1. Compute δ(x, s, μ) and check Step 3 in the Initialization phase and compute
δ(x, s, μ).

2. Compute the search direction by solving the following system:

AΔx̃ = 0

AT Δỹ + Δs̃ = 0

ŜΔx̃ + X̂Δs̃ = μe − XSe (6)

Note that, in practice, we use the information of the previous iteration to
calculate the search direction (Δx̃,Δỹ,Δs̃).

3. Find the maximum value for α such that the new auxiliary point will remain
feasible.

4. Update the auxiliary point by:

(x̃+, ỹ+, s̃+) ← (x + αΔx̃, y + αΔỹ, s + αΔs̃) (7)

5. Compute the average.

(x̂+, ŷ+, ŝ+) ← 1
2
((x̃+, ỹ+, s̃+) + (x, y, s)) (8)

6. Solve the following system of equations to obtain the search direction.

AΔx = 0

AT Δy + Δs = 0

Ŝ+Δx + X̂+Δs = μe − XSe (9)

Note the X̂+, Ŝ+ are diagonal matrices constructed from x̂+, ŝ+.
7. Find the maximum value for step size β such that the new point is feasible.
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Algorithm 1: A two-step feasible IPM algorithm for LPs.
Input: x0, y0, s0, μ > 0, τ > 0, ε > 0, θ ∈ (0, 1), and δ(x, s, μ)

1 (x, y, s) ← (x0, y0, s0)
2 k, m ← 0
3 while stopping criteria is not met do
4 μ ← μ(1 − θ)
5 while δ(x, y, s, μ) ≥ τ do
6 if m==0 then
7 (x̃, ỹ, s̃) ← (x, y, s)
8 Update (x̂+, ŷ+, ŝ+) ← 1

2
((x̃, ỹ, s̃) + (x, y, s))

9 Find search direction (Δx̃, Δỹ, Δs̃) using (4)
10 Find the value for β and update

(x, y, s) ← (x + βΔx, y + βΔy, s + βΔs)

11 if m ≥ 1 then
12 Find the search direction using (6)
13 Find the maximum step size α and update the auxiliary point using

(7)
14 Update the average point by using (8)
15 Find search direction (Δx, Δy, Δs) by solving (9)
16 Find the maximum value for step size β and update the current

point by using (10)

17 m ← m + 1

18 k ← k + 1

8. Update the current point by using the following role:

(x+, y+, s+) ← (x + βΔx, y + βΔy, s + βΔs) (10)

9. Check Step 1. If δ(x, s, μ) < τ stop the inner loop. If the terminating criteria
are not met update μ and go to Step 1.

The pseudo-code is listed in Algorithm 1. Algorithm 1, begins with an initial
point (x0, y,s0) and some given parameters such as μ, ε, θ, and τ . The algorithm
consists of two loops, the inner and outer loops. In the outer loop, the value
of the barrier parameter is updated by factor (1 − θ)μ. Next, the value of the
proximity function is computed. If δ < τ , then we again update the parameter μ;
otherwise, the algorithm begins the inner loop. In each inner loop iteration, the
search direction is obtained by information from the previous iteration, and then
the best value for step size is computed. Using this information, the auxiliary
point is updated. Then the average of the principle point and the auxiliary point
is computed. Next, the search direction for the principle point is obtained by
solving (9). After that, the algorithm finds the maximum value for step size to
make the new point feasible. Then the principle point is updated using (10). This
procedure is stopped when we find an iterate with δ < τ . This means that the
iterates are in a small enough neighbourhood of the μ-center (x(μ), y(μ), s(μ)).
Again, the parameter μ is reduced by the factor 1 − θ, and we apply the inner
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loop targeting the new mu center. This procedure is repeated until we obtain
an iterate (x, y, s) such that xT s < ε. In this case, an ε-approximate solution of
problems (P) and (D) is found.

When it comes to IPMs, the choice of the barrier update parameter θ is
crucial both in theory and practice. In general, if θ remains constant regardless
of the problem’s dimension n, for instance, when it is set to 1

2 or even θ = 0.99, it
is referred to as a “large-update” method. On the other hand, the “small-update”
methods utilize much smaller values of θ, such as θ = 1√

n
, which depends on the

problem’s size.

3 Convergence

To prove the convergence of Algorithm 1, we first recall some Lemmas without
proof from [1].

Lemma 1 (Lemma 3 in [1]). Suppose that h0 : [0,∞) → R is a continuous
and non-decreasing function. Moreover, we assume that the equation

h0(t) − 1 = 0

has the smallest positive solution κ. Moreover, suppose that there exists a func-
tion h : [0, κ) → R, which is continuous and nondecreasing. Let also parameters
t0, κ0, t1 be such that t0 = 0, κ0 > 0 and κ0 < t1. Define the sequences {tm},
{κm} by

pm = h0

(
tm + κm

2

)
(11)

tm+1 = κm +
h

(
κm−κm−1+tm−tm−1

2

)

1 − pm
(κm − tm) (12)

ωm+1 =
∫ 1

0

h

(
κm − tm

2
+ θ(tm+1 − tm)

)
dθ(tm+1 − tm) (13)

κm+1 = tm+1 +
ωm+1

1 − pm
(14)

If for each m = 0, 1, 2, ... and some β > 0

pm < 1 and tm ≤ β. (15)

Then, the following holds:

0 ≤ tm ≤ κm ≤ tm+1 ≤ β (16)

and
lim

m→∞ tm = ω ≤ β (17)
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The conditions connecting the h functions to the operators F and F ′ are:

A1 There exists an initial guess ξ0 ∈ D, κ0 ≥ 0, t1 ≥ κ0 such that
F ′(ξ0) ∈ L(B2, B1), ‖F ′(ξ0)−1F (ξ0)‖ ≤ κ0, and for ξ̂0 = ξ0−F ′(ξ0)−1F (ξ0),
F ′( ξ0+ξ̂0

2 )−1 ∈ L(B2, B1) with
∥∥∥∥F ′(

x0 + y0

2
)−1F (x0) − F ′(x0)−1F (x0)

∥∥∥∥ ≤ t1 − κ0

A2 ‖F ′(ξ0)−1(F ′(ξ) − F ′(ξ0))‖ ≤ h0(‖ξ − ξ0‖) for all ξ ∈ D. Set

D3 =
⋃

(ξ0, κ) ∩ D.

A3 ‖F ′(ξ0)−1(F ′(ξ̂) − F ′(ξ))‖ ≤ h(‖ξ̂ − ξ‖) for all ξ, ξ̂ ∈ D3

A4 pm < 1 and tm ≤ β
A5

⋃
[ξ, ω] ⊆ D

As we can see from the next lemma, the inner loop of Algorithm 1 is able to
converge to the optimal solution when a fixed value of μ is used.

Lemma 2 (Theorem 3 in [1]). Suppose that the conditions (A1)–(A5) hold.
Then, for a fixed μ the sequence {ξm} converges to a solution ξ∗

μ ∈ ⋃
[ξ0, α] such

that
‖ξm − ξ∗

μ‖ ≤ ω − tm.

The following lemma shows that the outer loop of the algorithm converges at
most O

(
1
θ log n

ε

)
iteration, i.e., after performing O

(
1
θ log n

ε

)
iterations, we have

μ ≤ ε.

Lemma 3 (Lemma I.36 in [10]). The total number of outer iterations to
obtain nμ ≤ ε are O

(
1
θ log n

ε

)
.

Based on Lemma 2, we can see that the inner iteration for a fixed μ can
converge to the optimal solution. Meanwhile, based on Lemma 3, we can conclude
that the outer loop is also able to converge to the optimal solution, meaning that
μ will be less than or equal to ε after a finite number of iterations. Combining
these two conclusions, we can say that Algorithm 1 converges to the optimal
solution.

Theorem 1. Suppose that the outer loop updates the barrier parameter by factor
θ ∈ (0, 1) and k → ∞. Then one has:

‖ξk − ξ∗‖ ≤ ε.
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Remark. While practical evidence supports the idea that the two-step strategy
significantly speeds up Newton’s method, its theoretical complexity hasn’t been
proven [6]. Moreover, the convergence rate has only been demonstrated through
multiple examples. By considering the extension of this method to the interior
point algorithm, the structure of the system (9) prevents us from calculating the
complexity bound of the algorithm. Specifically, the complexity of IPMs involves
multiplying the iterations within the inner and outer loops of Algorithm1. Deriv-
ing the number of outer iterations is straightforward based on the value of the
parameter θ. However, calculating the number of inner iterations necessitates
consideration of Newton’s system. To compute these number of inner iterations,
introducing an auxiliary variable, such as v :=

√
xs
μ , is imperative to reformulate

the right side of the system (9). Unfortunately, due to the concurrent utilization
of x, s and x̂, ŝ defining such a variable is precarious, rendering the computation
of the interior point method’s complexity unattainable using the frameworks
outlined in previous literature.

4 Numerical Results

4.1 Details About the Experimentation

– Algorithms:
In order to demonstrate the effectiveness of our proposed method, we con-
ducted a comparison with the algorithm from [12]. For this comparison, we
analyzed the number of iterations and CPU times on various Netlib instances
taken by the two algorithms.

– Device’s detail:
We programmed the two algorithms, Algorithm 1 and the Classical algorithm
[12], in Python 3.10. For the equation-solving step in both algorithms, we
used BLAS routines. Both algorithms successfully solved 46 instances within
a total time limit of 24 h. We conducted the tests on the Alliance Canada
cluster CEDAR (https://alliancecanada.ca).

– Stopping condition:
For both algorithms, we stopped if the number of iterations exceeded 700 or if
the relative gap was less than 10−6. The relative gap is the absolute difference
between cT x and bT y divided by 1 + |cT x| + |bT y|.

– Test problems:
We have selected 46 test problems of varying sizes from the Netlib collection.
(For more information on each test problem, please see Appendix, Table 2).
Note that nnz denotes the number of non-zeros elements in matrix A.

– Barrier parameter
As for the barrier parameter, we have set the initial value to μ0 = 1 for both
algorithms. In each iteration of the outer loop of the algorithm, we reduce
the value of μ by μ = (1 − θ)μ.

https://alliancecanada.ca
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– Proximity function:
For our algorithms, we rely on the proximity function specified as follows:

δ(x, s, μ) = ‖μe − xs‖1,

where ‖x‖1 =
∑n

i=1 |xi|.
– Threshold parameter:

We are currently working on a large-update method, and as referenced in
a previous study [12], τ value should be set to O(n). As a result, we have
decided to choose τ to be equal to n for both the algorithms.

– Barrier update parameter:
In all experiments, we use θ = 0.6 to update μ.

– Step size:
For all of our experiments, we follow a specific strategy for computing the
step size in an inner iteration, as described in [3]. To calculate the step sizes
α during the algorithm, we use the following equations:

αmax
x =

1
maxi=1,2,··· ,n{1,− xi

Δxi
} , αmax

s =
1

maxi=1,2,··· ,n{1,− si

Δsi
} .

To ensure we don’t hit the boundary, we reduce the maximum allowable step
sizes by a fixed factor of 0 < α0 < 1. Therefore, our final step sizes are given
by αx = α0.α

max
x and αs = α0.α

max
s .

4.2 Initialization

To find an initial feasible solution, we use the following strategy suggested in [7].
We first compute:

ỹ = (AAT )−1Ac, s̃ = c − AT y, x̃ = AT (AAT )−1b

and set

δx = max{−1.5 ∗ min(x̃i), 0}, δs = max{−1.5min ∗(s̃i), 0} (18)

Then, we compute:

δ̃x = δx + 0.5 ∗ (x̃ + δxe)T (s̃ + δse)∑n
i=1(s̃i + δs)

(19)

δ̃s = δs + 0.5 ∗ (x̃ + δxe)T (s̃ + δse)∑n
i=1(x̃i + δx)

(20)

and generate y0 = ỹ and s0
i = s̃i + δ̃s for i = 1, 2, ..., n and x0

i = x̃i + δ̃x for
i = 1, 2, ..., n.

Remark. Let’s recall the concerns highlighted by Argyros et al. [1] regarding
the use of the two-step Newton method, particularly focusing on the crucial task
of choosing the initial point for their algorithm. They provided conditions for
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selecting this initial point, considering scenarios where the function F behaves
as a non-linear function with unbounded first or second derivatives within spe-
cific intervals. However, it’s important to emphasize that all the problems we’re
dealing with here are linear in nature. In simpler terms, any feasible point we
start with works perfectly well for Algorithm 1. Therefore, we adopt the structure
previously described in [7] to decide on the starting point for our algorithm.

4.3 Results

Number of Iterations and CPU Time(s). Please refer to Table 3 for a
detailed summary of the results on select Netlib instances for the two algorithms.
The second column lists the names of the test problems, while the third and
fourth columns show the number of iterations needed for the classical algorithm
and Algorithm 1 respectively. The fifth and sixth columns display the CPU times
for the classical algorithm and Algorithm 1.

Speed-Up and Relative Reduction. In order to determine the effectiveness
of the new proposed method, we analyzed two criteria - the CPU times and the
number of iterations achieved by Algorithms 1 and the classical algorithm. We
calculated the speed-up and relative reduction for each algorithm on a given
instance. The speed-up of Algorithm1 is defined as the time it takes for the
classical algorithm to complete divided by the time it takes for Algorithm1 to
complete. Similarly, the relative reduction in the number of iterations is defined
as the number of iterations required by the classical algorithm divided by the
number of iterations required by Algorithm1. These measurements allowed us
to accurately compare the performance of the two algorithms and determine the
most effective approach.

Figure 1 displays the reduction and speed-up of CPU times and the number
of iterations. The instances are ordered according to their size in an array, and
the average value of speedup and relative reduction is calculated for each suffix
of the array. The x-coordinate is equal to the number of instances, and the y-
coordinate shows the average speedup and relative reduction for the 46-n largest
instances. Algorithm 1 has an average speedup between 1.25 and 1.17, and an
average relative reduction between 1.44 and 1.18 over all 46 instances.

Fig. 1. Left: Relative Reduction. Right, Speedup vs. the number of instances.
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Average Number of Iterations and CPU Times. Based on the obtained
results, (see Appendix, Table 3), we have computed the average number of iter-
ations and CPU time for both algorithms. As can be seen in Table 1, the results
show that the new proposed approach can significantly reduce the number of
iterations and CPU times by %30.97 and %20.46, respectively. This is a promis-
ing development that could have implications for future research in this field.

Table 1. The average number of iterations and CPU time

Methods Aver. Iter. Aver. CPU

Classical Algorithm 95.29 132.46

Algorithm 1 65.77 105.43

5 Conclusions

We introduce a midpoint approach to tackle linear optimization problems. The
approach consists of two steps and employs an auxiliary point to modify the
Newton method. In the first step, the auxiliary point is updated, and in the
second step, the algorithm utilizes this point to calculate the search direction.
We establish the convergence of this novel algorithm. The algorithm is also tested
on select LO instances from the Netlib collection. A comparison with a classical
method for computing the search direction demonstrated a significant reduction
in the number of iterations and CPU time by 30.97% and 20.46% respectively.

Appendix

The Appendix section contains two tables. Table 2 specifies information related
to each test problem, including the name, the number of non-zero elements, and
the number of rows and columns of matrix A. Table 3 provides information on
the number of iterations and the CPU time for performing Algorithm1 and the
classical algorithm proposed in [12]. Additionally, the averages of CPU time and
the number of iterations from Table 3 are presented in Table 1.
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Table 2. LP instances from NETLIB

i Name m n nnz

1 adlittle 56 138 424

2 afiro 27 51 102

3 agg 488 615 2,862

4 agg2 516 758 4,740

5 agg3 516 758 4,756

6 bandm 305 472 2,494

7 beaconfd 173 295 3,408

8 blend 74 114 522

9 bnl2 2,324 4,486 14,996

10 capri 271 482 1,896

11 chemcom 288 744 1,590

12 czprob 929 3,562 10,708

13 e226 223 472 2,768

14 fffff8000 524 1028 6401

15 fit1p 627 1,677 9,868

16 forest6 66 131 246

17 ganges 1,309 1,706 6,937

18 gfrd−pnc 616 1,160 2,445

19 israel 174 316 2443

20 lotfi 153 366 1136

21 pilot−we 722 2,928 9,265

22 sc50a 50 78 160

23 sc50b 50 78 148

24 sc105 105 163 340

25 sc205 205 317 665

26 scagr25 471 671 1,725

27 scfxm1 330 600 2,732

28 scfxm2 660 1,200 5,469

29 scfxm3 990 1,800 8,206

30 scrs8 490 1,275 3,288

31 scagr7 129 185 465

32 scsd1 77 760 2388

33 scsd6 147 1,350 4,316

34 scsd8 397 2,750 8,584

35 sctap1 300 660 1,872

36 sctap2 1,090 2,500 7,334

37 sctap3 1,480 3,340 9,734

38 share1b 117 253 1179

39 share2b 96 162 777

40 stair 356 614 4,003

41 standata 359 1274 3230

42 standmps 467 1,274 3,878

43 stocfor1 117 165 501

44 stocfor2 2,157 3,045 9,357

45 truss 1,000 8,806 27,836

46 lp-vtp-base 198 346 1051
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Table 3. Number of iterations and CPU times for classical algorithm and Algorithm 1.

i Name Number of iterations Time(s)

Classical

Algorithm

Algorithm1 Classical

Algorithm

Algorithm1

1 adlittle 53 41 0.251 0.263

2 afiro 10 12 0.020 0.118

3 agg 91 64 7.540 5.727

4 agg2 95 52 12.595 7.521

5 agg3 124 52 16.229 6.985

6 bandm 106 73 4.497 3.305

7 beaconfd 91 50 1.290 1.972

8 blend 61 24 0.340 0.184

9 bnl2 205 166 1346.310 1086.060

10 capri 88 56 3.642 2.518

11 chemcom 65 41 6.288 3.715

12 czprob 174 161 8531.635 495.363

13 e226 122 77 4.557 3.178

14 fffff8000 130 109 28.523 25.609

15 fit1p 53 37 38.135 25.724

16 forest6 43 24 0.221 0.150

17 ganges 51 41 41.833 33.589

18 gfrd−pnc 700 43 38.531 12.079

19 israel 170 95 5.896 3.000

20 lotfi 700 54 18.409 1.340

21 pilot−we 393 238 742.771 448.402

22 sc50a 22 20 0.073 0.111

23 sc50b 28 17 0.150 0.125

24 sc105 33 24 0.346 0.510

25 sc205 43 25 2.225 0.543

26 scagr7 35 21 0.418 0.438

27 scagr25 43 50 5.720 6.048

28 scfxm1 84 53 5.426 3.908

29 scfxm2 78 68 24.357 24.037

30 scfxm3 86 72 63.983 54.576

31 scrs8 155 108 51.426 35.941

32 scsd1 34 19 5.217 2.000

33 scsd6 47 29 16.232 9.223

34 scsd8 39 24 53.510 32.258

35 sctap1 77 49 5.619 3.823

36 sctap2 85 58 127.099 86.693

37 sctap3 104 86 329.885 274.156

38 share1b 127 95 2.703 2.200

39 share2b 34 30 0.405 0.467

40 stair 144 102 11.808 7.268

41 standata 118 85 37.289 28.812

42 standmps 214 127 72.569 43.784

43 stocfor1 91 45 1.146 1.037

44 stocfor2 217 177 684.794 556.632

45 truss 64 55 1531.321 1309.819

46 lp-vtp-base 66 42 2.1741 1.408
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Abstract. We investigate the connections between clusters and least
common ancestors (LCAs) in directed acyclic graphs (DAGs). We focus
on the class of DAGs having unique least common ancestors for certain
subsets of their minimal elements since these are of interest, particularly
as models of phylogenetic networks. Here, we use the close connection
between the canonical k-ary transit function and the closure function on
a set system to show that pre-k-ary clustering systems are exactly those
that derive from a class of DAGs with unique LCAs. Moreover, we show
that k-ary T -systems and k-weak hierarchies are associated with DAGs
that satisfy stronger conditions on the existence of unique LCAs for sets
of size at most k.

Keywords: Monotone transit function · closure function · clustering
system · k-weak hierarchy

1 Introduction

Directed acyclic graphs (DAGs) play an increasing role in mathematical phy-
logenetics as models of more complex evolutionary relationships that are not
adequately represented by rooted trees. The set X of minimal vertices of a DAG
G = (V,E) corresponds to the extant taxa and thus generalizes the leaf set of
a phylogenetic tree. Inner vertices u ∈ V are interpreted as ancestral states and
are naturally associated with the sets C(u) of the descendant genes. These sets
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are often called the “hardwired clusters” [11,12]. A least common ancestor of a
set A of taxa is a minimal vertex v in G such that A ⊆ C(v), i.e., all taxa in A
are descendants of v. In phylogenetics, least common ancestors play a key role
in understanding evolutionary relationships and processes. The clusters of G, on
the other hand, are often accessible from data. Basic relations between cluster-
ing systems of (rooted) DAGs and the uniqueness of least common ancestors
were explored recently in [10]. Here, we elaborate further on this theme, making
use in particular of the fact that the canonical transit function of set systems
is a restriction of the closure function to small spanning sets. In particular, we
are interested here in characterizing DAGs in which least common ancestors of
certain sets of “leaves” are uniquely defined.

Section 2 contains basic definitions, some useful properties of DAGs, and a
characterization of k-weak hierarchies. Section 3 is about lca and k-lca-property,
and the connection of the latter with the pre-k-ary clustering systems. Section 4
discusses the correspondence of the strict and the strong k-lca properties to the
k-ary T -systems and the k-weak hierarchies, respectively.

2 Background and Preliminaries

Transit Functions and k-ary Transit Functions. Let X be a non-empty,
finite set. We write Xk for the k-fold Cartesian set product of X and X(k) for
the set of all non-empty subsets of X with cardinality at most k.

Following [6], a k-ary transit function on X is a function R : Xk �→ 2X

satisfying the axioms

(t1) u1 ∈ R(u1, u2, . . . , uk);
(t2) R(u1, u2, . . . , uk) = R(π(u1, u2, . . . , uk)) for all ui ∈ X and all permuta-

tions π of (u1, u2, . . . , uk);
(t3) R(u, u, . . . , u) = {u} for all u ∈ X.

The “symmetry” axiom (t2) allows us to interpret a k-ary transit function also as
a function over subsets U ∈ X(k). Then axiom (t2) becomes void, (t3) becomes
R({x}) = {x} for all x ∈ X, and condition (t1) reads “u ∈ U implies u ∈ R(U)
for all U ∈ X(k)”.

Given a k-ary transit function R on X, we denote its system of transit sets by
CR := {R(U) | U ∈ X(k)}. A set system C ⊂ 2X is identified by a k-ary transit
function if C = CRC

where RC : X(k) → 2X defined by RC (U) :=
⋂{C ∈ C |

U ⊆ C} for all U ∈ X(k). As shown in [3,7], a system of non-empty sets C ⊂ 2X

is identified by a k-ary transit function, k ≥ 2, if and only if C is a ( k-ary)
T -system, satisfying the following three axioms

(KS) {x} ∈ C for all x ∈ X
(KR) For all C ∈ C there is a set T ⊆ C with |T | ≤ k such that T ⊆ C ′ implies

C ⊆ C ′ for all C ′ ∈ C .
(KC) For every U ⊆ X with |U | ≤ k holds

⋂
{C ∈ C | U ⊆ C} ∈ C .
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Conversely, a k-ary transit function R identifies a set system if and only if it
satisfies the monotone axiom

(m) For every w1, . . . , wk ∈ R(u1, . . . , uk) holds R(w1, . . . , wk) ⊆ R(u1, . . . , uk).

That is, for all U,W ∈ X(k) holds: W ⊆ R(U) implies R(W ) ⊆ R(U). The
correspondence of monotone k-ary transit functions and k-ary T -systems is
then mediated by the canonical transit function RC and CR, respectively.

For a general set system C on X, the closure function cl : 2X → 2X , some-
times also called the “convex hull”, is defined as cl(A) :=

⋂{C ∈ C | A ⊆ C}
for all A ∈ 2X . The canonical k-ary transit function RC of a set system is the
restriction of its closure function to small sets as arguments: RC (U) = cl(U) for
all non-empty sets U with |U | ≤ k.

A set system is closed if for all non-empty set A ∈ 2X holds A ∈ C ⇐⇒
cl(A) = A. By [10, L. 16], this is equivalent to the condition that for all A,B ∈ C
with A∩B �= ∅ we have A∩B ∈ C , i.e., C is closed under pairwise intersection. A
set system C consisting of non-empty subsets of X is called a clustering system
if it satisfies (KS) and (K1): X ∈ C . Note that axiom (KS) translates to
RC satisfying (t3). A k-ary T -system is thus a clustering system if and only
it satisfies (K1) or, equivalently [7], if its canonical transit function R = RC

satisfies

(a’) there is U ∈ X(k) such that R(U) = X.

A set system is called pre-k-ary if it satisfies (KC) for a given parameter
k. The 2-ary case has received considerable attention in the literature for the
special case of clustering systems, see [3]. A 2-ary transit function is called a
transit function. A clustering system C is called pre-binary in [3] if (KC) with
k = 2 is satisfied, i.e., if RC (x, y) ∈ C for all x, y ∈ X, and binary if in addition
(KR) holds with k = 2. Binary clustering systems are therefore identified by
monotone (2-ary) transit function satisfying (a’) with k = 2; that is, there is
p, q ∈ X such that R(p, q) = X.

Weak and k-Weak Hierarchies. Generalizations of hierarchies are important
in the clustering literature. Recall that a clustering system C is a

weak hierarchy if for any three sets A,B,C ∈ C holds A ∩ B ∩ C ∈ {A ∩
B,A ∩ C,B ∩ C} [1];

k-weak hierarchy if for any k + 1 sets A1, A2, . . . , Ak+1 ∈ C there is 1 ≤ j ≤

k + 1 such that
k+1⋂

i=1

Ai =
k+1⋂

i=1,i �=j

Ai [2].

We write A � B if A ∩ B /∈ {A,B, ∅} and say that A and B overlap. It is well
known that weak hierarchy = 2-weak hierarchy =⇒ k-weak hierarchy =⇒ (k+
1)-weak hierarchy for all k ≥ 3. As outlined in [9], weak hierarchies always satisfy
(KR) for k = 2. More generally, Lemma 6.3 of [7] ensures that k-weak hierarchies
satisfy (KR) for the parameter k. For weak hierarchies, furthermore, axiom
(KC) with k = 2 is equivalent to C being closed under pairwise intersection.
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The characterization of k-weak hierarchies by condition (kW’) in [5],
together with the fact that every k-weak hierarchy is also a k′-weak hierarchy
for all k′ ≥ k, can be rephrased as follows:

Observation 1. A set system C is a k-weak hierarchy if and only if for every
A ∈ 2X with |A| > k there is z ∈ A such that z ∈ cl(A \ {z}).

For our purposes, the following characterization of k-weak hierarchies in terms
of their closure functions will be particularly useful:

Proposition 1. A set system C on X is a k-weak hierarchy if and only if for
every ∅ �= A ⊆ X there exists U ⊆ A with |U | ≤ k such that cl(A) = cl(U).

Proof. First, assume that C is a k-weak hierarchy. If |A| ≤ k, then A = U
trivially satisfies cl(A) = cl(U). Hence, assume |A| > k. By Observation 1, there
is z ∈ A such that z ∈ cl(A \ {z}), which implies A ⊆ cl(A \ {z}). Together with
isotony and idempotency of the closure function, we obtain

cl(A \ {z}) ⊆ cl(A) ⊆ cl(cl(A \ {z})) = cl(A \ {z}).

Thus, there is z ∈ A such that cl(A) = cl(A \ {z}). Repeating this argument for
A′ := A \ {z}, we observe that we can stepwisely remove elements of A while
preserving cl(A) until we arrive at a residual set U ⊂ A with |U | = k that still
satisfies cl(U) = cl(A).

Now assume that C is not a k-weak hierarchy. Hence, there are k + 1 sets
A1, A2, . . . , Ak+1 ∈ C such that for all 1 ≤ j ≤ k + 1 it holds that ∩k+1

i=1 Ai �

∩k+1
i=1,i �=jAi. Thus, there are k + 1 (distinct) elements x1, . . . , xk+1 ∈ X such

that xi ∈ Aj if and only i �= j. Set A = {x1, x2, . . . , xk+1} and consider any
subset U ⊂ A with |U | ≤ k. Then there is at least one set Ah, 1 ≤ h ≤ k + 1,
such that U ⊆ Ah. By the previous arguments, xh /∈ Ah. Since Ah ∈ C , we
have cl(U) ⊆ Ah, and thus xh /∈ cl(U). Since xh ∈ A and A ⊆ cl(A), we have
xh ∈ cl(A) and, thus, cl(U) �= cl(A). ��

Clusters, LCA and lca in DAGs. Let G be a directed acyclic graph (DAG)
with an associated partial order � on its vertex set V (G) defined by v �G w
if and only if there is a directed path from w to v. In this case, we say that w
is an ancestor of v and v is a descendant of w. If the context is clear, we may
drop the subscript and write �. Two vertices u, v ∈ V (G) are incomparable if
neither u � v nor v � u is true. We denote by X = L(G) ⊆ V (G) the �-minimal
vertices of G, and we call x ∈ X a leaf of G. For every v ∈ V (G), the set of its
descendant leaves

C(v) := {x ∈ X | x � v} (1)

is a cluster of G. We write CG := {C(v) | v ∈ V (G)}. By construction, C(x) =
{x} for x ∈ X, hence CG satisfies (KS). For v ∈ V (G), we write Anc(v) =
{w ∈ V (G) | v � w} for the ancestors of v. For every leaf x ∈ X, we have
Anc(x) = {v | x ∈ C(v)}. We write Anc(Y ) :=

⋂
w∈Y Anc(w) for the set of

common ancestors of all w ∈ Y . In general, not every set Y ⊆ V has a common
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ancestor in a DAG: Consider the DAG with three leaves {x, y, z}, two maximal
vertices {p, q}, C(p) = {x, y}, and C(q) = {x, z}. Then Anc({y, z}) = ∅. A
(rooted) network G is a DAG such that there is a unique vertex ρ ∈ V (G), called
the root, with indegree 0. In a network, we have x � ρ for all x ∈ V (G) and,
thus, in particular, C(ρ) = X, i.e., X ∈ CG, and thus CG, satisfying (K1), is a
clustering system.

Definition 1. [4] Let G be a DAG. A vertex w ∈ V (G) is a least common
ancestor (LCA) of Y ⊆ V (G) if it is a �-minimal element in Anc(Y ). The set
LCA(Y ) comprises all LCAs of Y in G.

An LCA of Y thus is an ancestor of all vertices in Y that is �-minimal w.r.t.
this property. Clearly, LCA({v}) = {v} for all v ∈ V (G) and LCA(Y ) = ∅ if and
only if Anc(Y ) = ∅. In a network, the root vertex is a common ancestor for any
set of vertices, and thus LCA(Y ) �= ∅.

We will, in particular, be interested in situations where the LCA of certain
sets of leaves is uniquely defined. More precisely, we are interested in DAGs where
|LCA(Y )| = 1 holds for certain subsets Y ⊆ X; the most obvious examples are
DAGs that satisfy the 2-lca-property (also known as the pairwise lca-property
[10]), i.e., for every pair of leaves x, y ∈ L(G) there is a unique least common
ancestor lca(x, y). For simplicity, we will write lca(Y ) = q instead of LCA(Y ) =
{q} whenever |LCA(Y )| = 1 and say that lca(Y ) is defined ; otherwise, we leave
lca(Y ) undefined.

The following result for networks [10, L. 17] remains valid for all DAGs.

Lemma 1. Let G be a DAG. Then v �G w implies C(v) ⊆ C(w) for all v, w ∈
V (G).

Consequently, [10, Obs. 12 & 13] also hold for DAGs in general:

Observation 2. Let G be a DAG with leaf set X, ∅ �= A ⊆ X, and suppose
lca(A) is defined. Then the following is satisfied:

(i) lca(A) �G v for all v with A ⊆ C(v).
(ii) C(lca(A)) is the unique inclusion-minimal cluster in CG containing A.
(iii) lca(C(lca(A))) = lca(A).

Note that the existence of lca(A) for all A ⊆ X does not imply that G is a
network since we could expand any network “upward” for ρ by attaching an
arbitrary DAG that has ρ as its unique leaf. Clearly, the vertices “above” ρ
cannot be least common ancestors of any leaves.

Consider a set system Q ⊆ 2X . Then the Hasse diagram H(Q) is the DAG
with vertex set Q and directed edges from A ∈ Q to B ∈ Q if (i) B � A and (ii)
there is no C ∈ Q with B � C � A. As we shall see later, Hasse diagrams are
of interest here because they guarantee “well-behaved” least common ancestors.

The correspondence between Hasse diagrams that are networks and k-ary
transit functions is summarized in the following:

Lemma 2. Let R be a k-ary transit function. Then H(CR) is a network if and
only if R satisfies (a’) for k.
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Proof. If N := H(CR) is a network, it contains a unique vertex ρ with indegree 0;
the root of N . Since R satisfies (t3), all singletons {x} with x ∈ X are contained
as vertices of N . Since N has a unique root, it follows that X is a vertex of N
and, in particular, C(ρ) = X ∈ CR. This implies that there must be a subset
U ∈ X(k) such that R(U) = X. Hence, R satisfies (a’). Conversely, if (a’) with
parameter k holds, there is a subset U ∈ X(k) with R(U) = X and thus X ∈ CR.
Let vX be the vertex in H(CR) for which C(vX) = X holds. Since v � vX for
every vertex v in H(CR), this is, in particular, true for the singletons, and thus
vX serves as the unique root of H(CR). ��

Following [10], we say that a DAG G = (V,E) has the path-cluster-
comparability (PCC) property if it satisfies, for all u, v ∈ V : u and v are
�G-comparable if and only if C(u) ⊆ C(v) or C(v) ⊆ C(u). By [10, Cor. 11 &
Prop. 3], the Hasse diagram G of a clustering system C satisfies (PCC) and
[10, Prop. 2] implies that CG = C .

3 DAGs with lca- and k-lca-Property

In the following, we consider the generalization of lca-networks introduced in
[10] for arbitrary (not necessarily rooted) DAGs.

Definition 2. A DAG with leaf set X has the lca-property if lca(A) is defined
for all non-empty A ⊆ X.

By definition, every DAG with the lca-property also has the pairwise lca-
property. The converse is, in general, not satisfied. An example of a network
(rooted DAG) that satisfies the pairwise lca-property but that is not an lca-
network, can be found in [10, Fig. 13(A)].

Lemma 3. If a DAG G has the lca-property, then its clustering system CG is
closed.

Proof. To show that CG is closed, we use the equivalent condition that CG is
closed under pairwise intersection. Thus, let C(u), C(v) ∈ CG for some u, v ∈
V (G). If C(u) ⊆ C(v), C(v) ⊆ C(u) or C(u) ∩ C(v) = ∅, there is nothing to show.
Hence, assume that C(u) � C(v) and set A := C(u) ∩ C(v) �= ∅. Since G has the
lca-property, there is w ∈ V (G) such that w = lca(A), and thus A ⊆ C(w). The
contraposition of Lemma 1 shows that u and v are two incomparable common
ancestors of A. Since w is the unique �-minimal common ancestor of A, we
have w � u and w � v, which together with Lemma 1 implies C(w) ⊆ C(u)
and C(w) ⊆ C(v). Therefore C(w) ⊆ A. Hence A = C(w) ∈ CG and thus, CG is
closed. ��
The converse of Lemma 3 is not true. A counter-example can be found in Fig. 1.
The following connection between the clusters, the least common ancestors, and
the closure function will be useful in the remainder of this contribution:
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Fig. 1. The cluster system CG =
{{w}, {x}, {y}, {x, y}, {w, x, y}, {x, y, z}, {w, x, y, z}}

of the network G is closed and satisfies (KC) for every k ∈ {1, 2, 3, 4}. However, we
have LCA({x, y}) = {p, v, q} and thus G does not have the pairwise lca-property. By
Proposition 2, if G has the pairwise lca-property, then CG is pre-binary. The example in
this Figure shows that the converse is not true. In particular, the equivalence between
pre-k-ary and the k-lca-property in Proposition 3 requires (PCC), which is not satisfied
by G.

Observation 3. If G is a DAG with leaf set X and the lca-property, then
C(lca(Y )) = cl(Y ) for all ∅ �= Y ⊆ X.

Proof. The argument follows the proof of [10, L. 41], observing that [10, L.17]
remains true for arbitrary DAGs, and substituting Observation 2(i) and Lemma 3
for [10, Cor. 18] and [10, P. 11], respectively. ��

The observations above can be extended to networks where more least com-
mon ancestors exist and are unique for all leaf sets of size at most k. Naturally,
we start from the cluster system C := CG := {C(v); v ∈ V (G)} and consider the
map RC : Xk → 2X defined by

RC (u1, u2, . . . , uk) :=
⋂

{C(v) | v ∈ V (G), u1, u2, . . . , uk ∈ C(v)}

One easily verifies that RC satisfies (t2), and thus, we can again interpret RC

as a function over sets, in which case we have RC (U) = cl(U) for all U ∈ X(k).
In this setting, we are interested in cases where lca(U) is defined at least for all
sets of cardinality |U | ≤ k. We formalize this idea in

Definition 3. A DAG G with leaf set X has the k-lca-property if lca(A) is
defined for all A ∈ X(k).

Now, we define the k-ary map RG : Xk → 2X by RG(u1, . . . , uk) :=
C(lca(u1, . . . , uk)); in set notation this reads RG(U) = C(lca(U)) for all U ∈ X(k).

Proposition 2. Let G be a DAG with k-lca-property. Then RG is a monotone,
k-ary transit function that satisfies RG = RCG

. Moreover, CG is pre-k-ary.

Proof. Let G be a DAG with k-lca-property and leaf set X. It follows directly
from the definition and uniqueness of lca(U) for U ∈ X(k) that RG satis-
fies (t1), (t2), and (t3), i.e., RG is a k-ary transit function. If u1, . . . , uk ∈
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Fig. 2. Consider the DAG G with leaf set X = L(G) where CG =
{{x}, {y}, {z}, {w}, {x, y, z}, X}. Here, CG satisfies (KS) and (KC) for k = 2. By def-
inition, CG is thus pre-binary. However, G is not a pairwise lca-network since lca(x, y),
lca(x, z), and lca(y, z) are not defined. Moreover, CG also satisfies (KC) for k = 3 but
G is not a 3 -lca-network since lca(x, y, z) is not defined.

RG(x1, . . . , xk) = C(lca(x1, . . . , xk)), then {u1, . . . , uk} ⊆ C(lca(x1, . . . , xk)) and
we can apply Observation 2(i) to conclude that lca(u1, . . . , uk) � lca(x1, . . . , xk).
Applying Lemma 1 yields C(lca(u1, . . . , uk)) ⊆ C(lca(x1, . . . , xk)), and thus
RG(u1, . . . , uk) ⊆ RG(x1, . . . , xk), i.e., RG is monotone. It follows from Observa-
tion 2(ii) that C(lca(U)) is the unique inclusion minimal cluster in CG containing
U , i.e., cl(U) = C(lca(U)) for all U ∈ X(k). Consequently, RG = RCG

.
Since G has the k-lca-property, lca(U) is defined for all U ∈ X(k). Thus

C(lca(U)) is the unique inclusion minimal cluster in CG containing U for all
U ∈ X(k) by Observation 2(ii); hence CG satisfies (KC) for k, i.e., CG is pre-k-
ary. ��

Note that a DAG G for which CG is pre-k-ary does not necessarily have the
k-lca-property, see Fig. 2 and Fig. 1 for a counter-example. Moreover, (KR) with
parameter k is not necessarily satisfied since the k-lca-property does not claim
the existence of clusters that are not associated with least common ancestors of
a set U ∈ X(k). Therefore, RG need not identify CG. At least for an important
subclass of DAGs there is a simple correspondence between the uniqueness of
LCAs and a property of the T -system.

Proposition 3. Let G be a DAG that satisfies (PCC). Then, G satisfies the
k-lca-property if and only if CG is pre-k-ary.

Proof. Suppose that G is a DAG with leaf set X that satisfies (PCC). If
G satisfies the k-lca-property, then Proposition 2 implies that CG is pre-k-
ary. Assume now that CG is pre-k-ary. Hence, for all U ∈ X(k) we have
RCG

(U) =
⋂{C ∈ CG | U ⊆ C} ∈ CG. Therefore, Anc({U}) �= ∅ and thus,

LCA({U}) �= ∅. Assume, for contradiction, that there are two distinct vertices
v, w ∈ LCA(U). Note that U ⊆ RCG

(U) ⊆ C(v) ∩ C(w). By Definition 1, both
v and w are ≺-minimal ancestors of the vertices in U and, therefore, v and w
are incomparable in G. This, together with the fact that G satisfies (PCC)
implies that neither C(v) ⊆ C(w) nor C(w) ⊆ C(v) can hold. Then, C(v) � C(w)
since C(v) ∩ C(w) �= ∅. Since CG is pre-k-ary, RCG

(U) ∈ CG, i.e., there is a
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vertex z ∈ V (G) such that C(z) = RCG
(U). Hence, C(z) ⊆ C(w) ∩ C(v). Since

C(v) � C(w) it must hold that C(z) � C(w) and C(z) � C(v). Since G satisfies
(PCC), z and v must be �-comparable. If, however, v � z, then Lemma 1
implies that C(v) ⊆ C(z); a contradiction. Hence, z ≺ v and, by similar argu-
ments, z ≺ w must hold. This, however, contradicts the fact that v and w are
≺-minimal ancestors of all the vertices in U . Hence, |LCA(U)| = 1 must hold
for all U ∈ X(k). Consequently, G satisfies the k-lca-property. ��

Consequently, we obtain a characterization of pre-k-ary clustering systems
in terms of the DAGs from which they derive.

Theorem 1. A clustering system C is pre-k-ary if and only if there is a DAG
G with C = CG and k-lca-property.

Proof. Suppose that C is a pre-k-ary clustering system and consider the Hasse
diagram G := H(C ). It satisfies (PCC) and CG = C . Consequently, CG is
pre-k-ary. Thus, we can apply Proposition 3 to conclude that G satisfies the
k-lca-property. Conversely, suppose that G is a DAG with the k-lca-property
and C = CG. By Proposition 2, C is pre-k-ary. ��

Next, we show that k-ary transit functions give rise to DAGs with the k-lca-
property in a rather natural way:

Lemma 4. Let R be a monotone k-ary transit function. Then, the Hasse dia-
gram of its transit sets H(CR) satisfies the k-lca-property.

Proof. Let R be a monotone transit function on X and U ∈ X(k). Considering
R as a function over subsets, conditions (t1) and (t2) imply that U ⊆ R(U). In
the following, let vC denote the unique vertex in H(CR) that corresponds to the
cluster C ∈ CR. For all W ∈ X(k) with U ⊆ R(W ) it holds, by condition (m),
that R(U) ⊆ R(W ). This, together with the definition of the Hasse diagram,
implies that vR(U) � vR(W ) for all W ∈ X(k) with U ⊆ R(W ). Thus, vR(U) is
the unique �-minimal vertex in H(CR) satisfying x � vR(U) for all x ∈ U , and
thus vR(U) = lca(U). ��
As an immediate consequence of the correspondence between monotone k-ary
transit functions and k-ary T -systems, we also conclude that the Hasse diagram
of k-ary T -systems has the k-lca-property.

The converse of Lemma 4, however, need not be true: A Hasse diagram H(CR)
with the k-lca-property for some k is not sufficient to imply that R is monotone:

Example 1. Let R on X = {a, b, c, d} be symmetric and defined by R(a, b) = X,
R(a, c) = {a, b, c}, and all other sets are singletons or X in such a way that (t1)
and (t3) is satisfied. One easily verifies that R is a transit function satisfying (a’)
and that H(CR) is a network with root X. In fact, H(CR) is a rooted tree having
pairwise lca-property. However, R is not monotone since R(a, b) = X � R(a, c).

Theorem 2. Let R be a k-ary transit function. Then R is monotone if and only
if there is a DAG G with k-lca-property, which satisfies CG = CR and RCG

= R.
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Proof. If R is a monotone k-ary transit function, then G = H(CR) satisfies
CG = CR. By Lemma 4, G has the k-lca-property. Moreover, since CG = CR it
follows that RCG

= RCR
. Since R is monotone, R = RCR

= RCG
.

Conversely, let G be a DAG with CG = CR and k-lca-property. By Propo-
sition 2, RG = RCG

is monotone. Therefore, R is a monotone k-ary transit
function. ��

4 DAGs with Strict and Strong k-lca-Property

In general, lca(C(w)) is not necessarily defined for all w ∈ V (G), see e.g. the
DAG in Fig. 2. As discussed in [10], it is, however, a desirable property:

(CL) For every v ∈ V (G), lca(C(v)) is defined.

By definition, every DAG G that has the lca-property satisfies (CL).
Since lca(C(v)) is defined, Observation 2(i) implies lca(C(v)) � v. Then by

Lemma 1, C(lca(C(v))) ⊆ C(v). The reverse inclusion is trivial. Hence, we have
the following Observation:

Observation 4. Let G be a DAG satisfying (CL). Then C(lca(C(v))) = C(v)
for all v ∈ V (G).

Definition 4. Let G be a DAG with leaf set X and k-lca property. Then, G has
the strict k-lca-property if G satisfies (CL), and for every w ∈ V (G), there is
U ∈ X(k) such that lca(C(w)) = lca(U).

Proposition 4. Let G be a DAG with leaf set X and k-lca-property. Then G
has the strict k-lca-property if and only if CG is a k-ary T -system. In this case,
CG is identified by RG.

Proof. The k-lca-property of G implies that CG is pre-k-ary, from Proposition 2.
Assume that G has the strict k-lca-property. Consider C(w) ∈ CG. By definition,
there exists U ∈ X(k) such that lca(C(w)) = lca(U). Since G satisfies (CL),
Observation 4 implies C(w) = C(lca(C(w))) = C(lca(U)). Moreover, by Obser-
vation 2(ii), C(lca(U)) = C(w) is the unique inclusion minimal cluster in CG

containing U . This implies both U ⊆ C(w) and C(w) ⊆ C(v) for every v ∈ V (G)
with U ⊆ C(v). Hence, CG satisfies (KR). Hence, CG is a k-ary T -system.

Conversely, assume that G holds k-lca-property and CG satisfies (KR). Thus,
for every w ∈ V (G), there is U ∈ X(k) such that U ⊆ C(w) and U ⊆ C(v)
implies C(w) ⊆ C(v) for all v ∈ V (G). Hence, C(w) is an inclusion minimal
set in CG containing U . Since G has the k-lca-property, lca(U) is defined and,
by Observation 2(ii), C(lca(U)) is the unique inclusion minimal set in CG con-
taining U , and thus C(w) = C(lca(U)) must hold. By Observation 2(iii) we have
lca(C(w)) = lca(C(lca(U))) = lca(U). Therefore, G has the strict k-lca-property.

Since a set system is identified by a k-ary transit function if and only if it is
a k-ary T -system and its canonical transit function identifies it, we have CG is
identified by RCG

. Moreover, RCG
= RG from Proposition 2. Hence the result. ��
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Fig. 3. The network G with leaf set X = {w, x, y, z} has the clustering systems
CG = {{x}, {y}, {z}, {w}, {w, x}, {w, y}, {x, y}, X} satisfying (KS), (KC) and (KR)
for k = 2, 3, 4. Moreover, lca(u, v) is defined for all u, v ∈ X. However, the sets
{w, x}, {w, y}, {x, y} violates the condition of weak hierarchy. G is an lca-network but
not a strong-2-lca-network since lca({w, x, y}) = r �= lca({u, v}) for any u, v ∈ {w, x, y}.

In [10], networks with the strong lca-property were introduced. These satisfy
(i) the lca-property, and (ii) for every non-empty subset A ⊆ X, there are x, y ∈
A such that lca(x, y) = lca(A). As it turns out, these networks are characterized
by their clustering systems: G is a strong lca-network if and only if G has the
lca-property and CG is a weak hierarchy [10, Prop. 13]. In the following, we
generalize these results to DAGs in general and spanning sets for lca(A) that are
larger than a pair of points:

Definition 5. Let G be DAG with leaf set X and lca-property. Then, G has the
strong k-lca-property if, for every non-empty subset A ⊆ X, there is U ∈ X(k)

such that lca(U) = lca(A).

Figure 3 shows that the lca property does not imply the strong k-lca-property,
i.e., the uniqueness of LCAs for all A ⊆ X does not imply that these are spanned
by small subsets of leaves.

Lemma 5. If a DAG G has the strong k-lca-property, then it has the strict
k-lca-property.

Proof. Suppose that G is a DAG with leaf set X and that has the strong k-lca-
property. By definition, G has the lca-property. Hence, for all non-empty A ∈ 2X ,
lca(A) is defined. This implies that lca(A) is defined for all A ∈ X(k) ⊆ 2X , and
thus, G has the k-lca-property. Furthermore, since C(v) ∈ 2X for all v ∈ V (G),
the DAG G satisfies (CL). Let w ∈ V (G). Since A := C(w) ⊆ X and since G
has the strong k-lca-property, there exists U ∈ X(k) such that lca(U) = lca(A) =
lca(C(w)). In summary, G has the strict k-lca-property. ��

Proposition 5. Let G be a DAG with leaf set X and the lca-property. Then G
has the strong k-lca-property if and only if for every non-empty subset A ⊆ X
there exists U ⊆ A with |U | ≤ k such that cl(A) = cl(U) in CG.

Proof. First, assume that G has the strong k-lca-property and let ∅ �= A ⊆ X.
Then lca(A) = lca(U) for some U ⊆ X with |U | ≤ k. Applying Observation 3,
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we obtain cl(A) = C(lca(A)) = C(lca(U)) = cl(U). Conversely, assume that for
every non-empty subset A ⊆ X, there exists U ⊆ A with |U | ≤ k such that
cl(A) = cl(U) in CG. Let A ⊆ X be non-empty. Applying Observation 2(iii)
and Observation 3 yields lca(A) = lca(C(lca(A))) = lca(cl(A)) = lca(cl(U)) =
lca(C(lca(U))) = lca(U). ��
Using Proposition 1 and 5, we can establish the correspondence between strong
k-lca DAGs and k-weak hierarchies.

Theorem 3. G is a DAG with the strong k-lca-property if and only if G has the
lca-property and CG is a k-weak hierarchy.

Proof. For the only if -direction, suppose that G is a DAG with the strong
k-lca-property. By Definition 5, G has the lca-property. Moreover, Proposition 5
implies that the following “Condition (U,A,X)” is satisfied: for every non-empty
subset A ⊆ X, there exists U ⊆ A with |U | ≤ k such that cl(A) = cl(U) in CG.
By Proposition 1, CG is a k-weak hierarchy. For the if -direction, assume that CG

is a k-weak hierarchy. By Proposition 1, Condition (U,A,X) is satisfied. This,
together with the assumption that G has the lca-property and Proposition 5
implies that G has the strong k-lca-property. ��

5 Concluding Remarks

The connection between clusters and LCAs in DAGs is not limited to the rela-
tionships discussed so far and summarized in the following diagram:

Note that there are no implications between the lca-, strict 2-lca- and strict
k-lca-property.

Weak pyramids [8] are weak hierarchies that, in addition, satisfy a necessary
(but not sufficient) condition for C to comprise intervals [13]:

(WP) If A,B,C ∈ C have pairwise non-empty intersections, then one set is
contained in the union of the two others.

As an example for further close connections between least common ancestors
and clustering properties, we mention the following result:

Lemma 6. Let G be a strong lca-network with leaf set X. Then, CG is a weak
pyramid if and only if there are no four distinct vertices a, b, c, d ∈ X such that
b, c � lca(a, d), a, c � lca(b, d), and a, b � lca(c, d).
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Proof. We prove both directions through contraposition. First suppose that CG

is not weakly pyramidal. Then, there exists A,B,C ∈ CG with pairwise non-
empty intersection such that A � B ∪ C, B � A ∪ C, and C � A ∪ B and
vertices u′, v′, w′ ∈ V (G) such that A = C(u′), B = C(v′) and C = C(w′).
Moreover, by Theorem 3, CG is a weak hierarchy and hence A ∩ B ∩ C �= ∅. By
the latter arguments, there are four vertices d ∈ A ∩ B ∩ C, a ∈ A \ (B ∪ C),
b ∈ B \ (A ∪ C) and c ∈ C \ (A ∪ B). For u := lca(a, d), we have, u � u′ by
Observation 2(i) since a, d ∈ C(u′). This, and the fact that b, c /∈ A = C(u′) (and
therefore, b, c � u′) implies that b, c � u. Analogous argumentation for lca(b, d)
and lca(c, d) shows that a, c � lca(b, d) and a, b � lca(c, d).

Conversely, assume that there exist distinct a, b, c, d ∈ L(G) such that b, c �

u = lca(a, d), a, c � v = lca(b, d), and a, b � w = lca(c, d). Consider A :=
C(u), B := C(v) and C := C(w). Then A,B,C ∈ CG have pairwise non-empty
intersection since d ∈ A∩B ∩C. However, since a ∈ A\ (B ∪C), b ∈ B \ (A∪C)
and c ∈ C \ (A ∪ B), none of the sets A,B,C can be contained in the union of
the two others, i.e., (WP) does not hold. ��
Results like Lemma 6 suggest that the connection between LCAs and clusters
in DAGs remains an interesting topic for future research.

In this contribution, we have restricted ourselves to least common ancestors
of the minimal vertices, i.e., the “leaves” of a DAG G. In a more general setting,
with applications beyond phylogenetics, one may ask analogous questions for
arbitrary subsets of V (G). At present, no characterization of the class of graphs
with unique LCAs for all subsets of V (G), or unique LCAs for all pairs of ver-
tices in V (G), appears to be known. These graphs could serve as interesting
generalizations of rooted trees and may also be of interest from an algorithmic
point of view as there are computational problems that are hard on DAGs in
general, but become tractable if LCAs are unique, in particular also on trees.
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Abstract. Let n be a positive integer greater than 2. We define the
Proth numerical semigroup, Pk(n), generated by {k2n+i + 1 | i ∈ N},
where k is an odd positive number and k < 2n. In this paper, we intro-
duce the Frobenius problem for the Proth numerical semigroup Pk(n)
and give formulas for the embedding dimension of Pk(n). We solve the
Frobenius problem for Pk(n) by giving a closed formula for the Frobenius
number. Moreover, we show that Pk(n) has an interesting property such
as being Wilf.

Keywords: Combinatorial techniques · Frobenius problem · Proth
Number · Numerical semigroup · Apéry Set · pseudo-Frobenius
number · type · Wilf’s conjecture

1 Introduction

The mathematician Ferdinand Frobenius defines the problem that asks to find
the largest integer that is not expressible as a non-negative integer linear com-
bination of elements of L, where L is a set of m coprime positive integers.

The Frobenius problem is defined as follows: Given a set L = {l1, l2, ..., lm}
of coprime positive integers and li ≥ 2, find the largest natural number that
is not expressible as a non-negative linear combination of l1, l2, ..., lm. It is also
known as the money exchange or coin exchange problem in number theory. In
literature, the connection between graph theory, theory of computer science and
Frobenius problem has been developed (see [10,11,14,15]). This is because the
Frobenius problem has attracted mathematicians as well as computer scientists
since the 19-th century (see [3], Chap. 1 in [6], Problem C7 in [9,28]).

For the special case e.g., m = 2, the explicit formula to find the Frobenius
number is known, it is l1l2 − l1 − l2 proved in [26]. In addition to that, for the
case m = 3, semi-explicit formula is known to find the Frobenius number [17].
Moreover, Rödseth [24], Selmer [25] and Beyer [4] have developed algorithms
to solve the Frobenius problem in the case m = 3. In 1996, Ramírez-Alfonsín
showed that the Frobenius problem for variable m is NP-hard [16].

The Frobenius problem has been studied for several special cases, e.g., num-
bers in a geometric sequence, arithmetic sequence, Pythagorean triples, three
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consecutive squares or cubes [7,13,29,30]. Moreover, the Frobenius problem is
defined on some special structure like Numerical semigroup (see the definition
below).

Let N and Z be the set of non-negative integers and set of integers, respec-
tively. A subset S of N containing 0 is a numerical semigroup if S is closed under
addition and has a finite complement in N. If S is a numerical semigroup and
S = 〈B〉, then we call B, a system of generators of S. A system of generators B
of S is minimal if no proper subset of B generates S. In [18] Rosales et al. proved
that every numerical semigroup admits a unique minimal system of generators
and such a system is finite. The cardinality of a minimal system of generators of
S is called the embedding dimension of S denoted by e(S).

The Frobenius number of a numerical semigroup S = 〈{a1, a2, . . . , an}〉
(denoted by F(S)) is the greatest integer that cannot be expressed as a sum
n∑

i=1

tiai, where t1, . . . , tn ∈ N [2,18].

To solve the Frobenius problem for numerical semigroups, several methods
were introduced, e.g., see [5,18–20]. In particular, in recent articles, the method
of computing the Apéry set (see Definition 1) and deduce the Frobenius num-
ber using the Apéry set has been presented. In literature, there exists a large
list of publications devoted to solve the Frobenius problem for special classes
of numerical semigroup, including the Frobenius problem for Fibonacci numeri-
cal semigroup [12], Mersenne numerical semigroup [21], Thabit numerical semi-
group [22] and repunit numerical semigroup [23]. We note that the study of the
Frobenius number for the mentioned numerical semigroups has been inspired by
special primes such as Fibonacci, Mersenne, Thabit and repunit primes. In this
paper, we introduce Proth numerical semigroup motivated by the Proth number.
The main aim of this paper is to study the Proth numerical semigroup and its
invariants like embedding dimension, Frobenius number, etc.

In number theory, the Proth number (named in honor of the mathematician
François Proth) is a natural number of the form k2n + 1, where n and k are
positive numbers and k < 2n is an odd number. We say that a Proth number is
a Proth prime if it is prime.

A numerical semigroup S is the Proth numerical semigroup if n ∈ N such
that S = 〈{k2n+i+1 | i ∈ N}〉, where n and k are positive numbers and k < 2n

is an odd number. We denote by Pk(n) the numerical semigroup 〈{k2n+i + 1 |
i ∈ N}〉. It is easy to see that when k = 1 the Proth numerical semigroup is the
Cunningham numerical semigroup [27]. Hence, we can assume that 2r < k <
2r+1 for some r.

In this paper, we first prove that e(Pk(n)) is n+ r + 1 where 2r < k < 2r+1.
Later, we find the Frobenius number of the Proth numerical semigroup. More
formally, we prove the following theorem.

Theorem 1. Let n > 2 be a positive integer. Then F(P2r+1(n)) = 2s1 + sn +
sn+r − s0, where si = k2n+i + 1 for i ∈ N.

Let S be a numerical semigroup. An integer x is a pseudo-Frobenius number
of S if x ∈ Z \ S and x + s ∈ S for all s ∈ S \ {0}. The set of pseudo-Frobenius
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numbers of S is denoted by PF(S), and the cardinality of the set PF(S) is called
the type of S denoted by t(S) [2,18].

We find the set of pseudo-Frobenius numbers of the Proth numerical semi-
group P2r+1(n) and prove that its type is n + r − 1.

In the context of a numerical semigroup, it is reasonable to study the prob-
lems that connect the Frobenius number and other invariants of a numerical
semigroup. One such problem posed by Wilf (known as Wilf’s conjecture) in [31]
is as follows: Let S be a numerical semigroup and ν(S) = |{s ∈ S | s ≤ F(S)}|,
is it true that F(S)+1 ≤ e(S)ν(S), where e(S) is the embedding dimension and
F(S) is the Frobenius number of S? Note that the numerical semigroups that
satisfy Wilf’s conjecture are called Wilf.

The conjecture is still open; in spite of it, an affirmative answer has been
given for a few special classes of a numerical semigroup. In this paper, we prove
that the Proth numerical semigroup P2r+1(n) supports Wilf’s conjecture.

This paper is an attempt to understand the Frobenius problem and Wilf con-
jecture for arbitrary embedding dimension through the Proth numerical semi-
group. Our approach was inspired by the ideas discussed in [21,22]. However, it
is worth noting that our techniques to find the Apéry set of the Proth numerical
semigroups differ from the existing ones [21,22].

The reader not familiarized with the study of numerical semigroup and the
terminologies like embedding dimension, pseudo-Frobenius numbers, type, etc.,
can refer to the literature [2,18].

2 The Embedding Dimension

We begin this section by proving that Pk(n) is a numerical semigroup. Later, we
prove that the embedding dimension of Pk(n) is n+r+1. Some of the techniques
used in this section are introduced earlier see, e.g., [21,22,27].

Lemma 1. (Lemma 2.1 in [18]) Let S be a nonempty subset of N. Then 〈S〉 is
a numerical semigroup if and only if gcd(S) = 1.

Theorem 2. Let n > 2 be an integer, then Pk(n) is a numerical semigroup.

Proof. It is clear that Pk(n) ⊆ N is closed under addition and contains zero.
Note that from Lemma 1 it is enough to show that gcd(Pk(n)) = 1. Let k2n+1,
k2n+1+1 ∈ Pk(n). Then gcd(k2n+1, k2n+1+1) = gcd(k2n+1, k2n+1 −k2n) =
gcd(k2n + 1, k2n) = 1. Therefore, Pk(n) is a numerical semigroup. �	

Next we give the minimal system of generators of the Proth numerical semi-
group. To this purpose, we need some preliminary results.

Lemma 2. (Lemma 2.1 in [27]) Let S be a numerical semigroup generated by
a non-empty set M of positive integers. Then the following conditions are equiv-
alent:

(i) 2m − 1 ∈ S for all m ∈ M ;
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(ii) 2s − 1 ∈ S for all s ∈ S \ {0}.
Theorem 3. Let n > 2 be an integer, then Pk(n) = 〈{k2n+i+1 | i = 0, . . . , n+
r}〉.
Proof. Let P = 〈{k2n+i +1 | i ∈ {0, 1, . . . , n+ r}}〉. It is clear that P ⊆ Pk(n).
To prove the other direction it is enough to prove that k2n+i+1 ∈ P for all i ∈ N.
Let i ∈ {0, 1, . . . , n+r−1}, then 2(k2n+i+1)−1 = k2n+i+1+1 ∈ P . For i = n+r,
2(k2n+n+r+1)−1 = ((k−2r)2n+1+3)(k2n+1)+((2r+1−k)2n−2)(k2n+1+1) ∈ P .
From Lemma 2, we get 2s − 1 ∈ P for all s ∈ P \ {0}. By induction, we can
deduce that k2n+i +1 ∈ P for all i ≥ n+ r+1 and hence Pk(n) = 〈{k2n+i +1 |
i = 0, . . . , n + r}〉. �	

Note that, Theorem 3 tells us that {k2n+i +1 | i = 0, . . . , n+ r} is a system
of generators of Pk(n).

Lemma 3. Let n > 2 be an integer, then k2n+n+r + 1 /∈ 〈{k2n+i + 1 | i ∈
{0, 1, . . . , n + r − 1}}〉.
Proof. Assume to the contrary that there exists a0, a1, . . . , an+r−1 ∈ N such that

k2n+n+r + 1 =
n+r−1∑

i=0

ai(k2n+i + 1)

= k2n
( n+r−1∑

i=0

2iai

)
+

n+r−1∑

i=0

ai.

Hence,
∑n+r−1

i=0 ai = 1(mod k2n) and we get,
∑n+r−1

i=0 ai = tk2n + 1 for some
t ∈ N. Observe that t 
= 0. Thus,

∑n+r−1
i=0 ai ≥ k2n+1. Therefore, k2n+n+r+1 =

n+r−1∑

i=0

ai(k2n+i + 1) ≥ (
∑n+r−1

i=0 ai)(k2n + 1) ≥ (k2n + 1)2. Since 2r < k we get

2r+n < 2nk < 2nk + 2 ⇒ k2r+n+n < k222n + 2k2n

⇒ k2r+n+n + 1 < k222n + 2k2n + 1

⇒ k2n+n+r + 1 < (k2n + 1)2.

Hence, k2n+n+r + 1 ≥ (k2n + 1)2 > k2n+n+r + 1, which is a contradiction.
Therefore, k2n+n+r + 1 /∈ 〈{

k2n+i + 1 | i ∈ {0, 1, . . . , n + r − 1}}〉
. �	

Theorem 4. Let n > 2 be an integer and let Pk(n) be the Proth numerical
semigroup associated to n, then e(Pk(n)) = n + r + 1. Moreover, {k2n+i + 1 |
i ∈ {0, 1, . . . , n + r}}

is the minimal system of generators of Pk(n).

Proof. By Theorem 3, we know that {k2n+i+1 | i ∈ 0, 1, . . . , n+r} is a system of
generator for Pk(n). Suppose that it is not minimal system of generators of Pk(n).
Then there exists l ∈ {1, 2, . . . , n+ r − 1} such that k2n+l +1 ∈ 〈k2n+i+1 | i ∈
{0, 1, . . . , l−1}〉. Let T = 〈k2n+i+1 | i ∈ {0, 1, . . . , l−1}〉. If i ∈ {0, 1, . . . , l−2},
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then 2(k2n+i+1)−1 = k2n+i+1+1 ∈ T and 2(k2n+l−1+1)−1 = k2n+l+1 ∈ T .
From Lemma 2, we have 2t−1 ∈ T for all t ∈ T \{0}. Hence, by induction we can
obtain that k2n+i+1 ∈ T for all i ≥ l, which is a contradiction as k2n+n+r+1 /∈ T
from Lemma 3. Therefore, {k2n+i + 1 | i ∈ {0, 1, . . . , n + r}}

is the minimal
system of generators of Pk(n) and e(Pk(n)) = n + r + 1. �	

3 The Apéry Set

In this section, we study the notion of Apéry set and give the explicit description
of the elements of the Apéry set of the Proth numerical semigroup P2r+1(n) for
all r ≥ 1. We denote by si the element k2n+i + 1 for all i ∈ N. Thus, with this
notation, {s0, s1, ..., sn+r} is the minimal system of generators of Pk(n).

Definition 1. [1,18] Let S be a numerical semigroup and n ∈ S \ {0}. The
Apéry set of S with respect to n is Ap(S, n) = {s ∈ S | s − n /∈ S}.

It is clear from the following lemma that |Ap(S, n)| = n.

Lemma 4. (Lemma 2.4 in [18]) Let S be a numerical semigroup and let n be a
nonzero element of S. Then Ap(S, n) = {w(0), w(1), . . . , w(n − 1)}, where w(i)
is the least element of S congruent with i modulo n, for all i ∈ {0, . . . , n − 1}.

Our next goal is to describe the elements of Ap(Pk(n), s0).

Lemma 5. Let n > 2 be an integer. Then:

(1) if 0 < i ≤ j < n + r then si + 2sj = 2si−1 + sj+1;
(2) if 0 < i ≤ n+r then si+2sn+r = 2si−1+αs0+βs1, where α = (k−2r)2n+1+3

and β = (2r+1 − k)2n − 2.

Proof. (1) If 0 < i ≤ j < n + r then we have

si + 2sj =(k2n+i + 1) + 2(k2n+j + 1)

=2(k2n+i−1 + 1) + (k2n+j+1 + 1) = 2si−1 + sj+1.

(2) If 0 < i ≤ n + r then we get

si + 2sn+r =(k2n+i + 1) + 2(k2n+n+r + 1)

=2(k2n+i−1 + 1) + k22n+r+1 + 1

=2si−1 + α(k2n + 1) + β(k2n+1 + 1) = 2si−1 + αs0 + βs1,

where α = (k − 2r)2n+1 + 3, β = (2r+1 − k)2n − 2. �	
Let P (r, n) denotes the set of all n+ r-tuple (a1, . . . , an+r) that satisfies the

following conditions:

1. for every i ∈ {1, . . . , n + r}, ai ∈ {0, 1, 2};
2. if aj = 2 for some j = 2, . . . , n + r then ai = 0 for i < j.
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Lemma 6. (Lemma 3.3 in [8]) The cardinality of P (r, n) is equal to 2n+r+1−1.

Lemma 7. Let n > 2 be an integer and let P2r+1(n) be the Proth numerical
semigroup minimally generated by {s0, s1, . . . , sn+r}. If s ∈ Ap(P2r+1(n), s0)
then there exist (a1, . . . , an+r) ∈ P (r, n) such that s = a1s1 + · · · + an+rsn+r.

Proof. Let s ∈ Ap(P2r+1(n), s0). We prove the result of lemma using induction
on s. When s = 0 then result follows trivially. Assume that s > 0 and j be
the smallest element from {0, 1, . . . , n + r} such that s − sj ∈ P2r+1(n). Since
s ∈ Ap(P2r+1(n), s0) we have j 
= 0 and s − sj ∈ Ap(P2r+1(n), s0). Now from
induction hypothesis there exist (a1, . . . , an+r) ∈ P (r, n) such that s − sj =
a1s1 + a2s2 + · · · + an+rsn+r, hence s = a1s1 + a2s2 + · · · + (aj + 1)sj + · · · +
an+rsn+r. Note that, to conclude the proof it suffices to prove that (a1, . . . , aj +
1, . . . , an+r) ∈ P (r, n).

(1) To prove (a1, a2, . . . , aj +1, . . . , an+r) ∈ {0, 1, 2}n+r, it is enough to show
that aj + 1 
= 3. If aj + 1 = 3 then from Lemma 5,

(i) for j < n + r, we have sj + 2sj = 2sj−1 + sj+1. This implies that,
s − sj−1 = a1s1 + · · · + sj−1 + (aj+1 + 1)sj+1 + · · · + an+rsn+r.

(ii) for j = n + r, we have, sj + 2sj = 2sj−1 + αs0 + βs1. This implies that,
s − sj−1 = αs0 + (a1 + β)s1 + a2s2 + · · · + (an+r−1 + 1)sn+r−1.

In both the cases, we get s − sj−1 ∈ P2r+1, which is a contradiction to the
minimality of j. Hence, aj + 1 
= 3.

(2) From the minimality of j, we obtain that ai = 0 for all 1 ≤ i < j. Now
assume that there exist l > j such that al = 2, then again from Lemma 5, we
have

(i) for l < n + r, we have sj + 2sl = 2sj−1 + sl+1;
(ii) for l = n + r, we have, sj + 2sl = 2sj−1 + αs0 + βs1.

Again by the same argument as in (1), we have s−sj−1 ∈ P2r+1, which contradict
the minimality of j.

Therefore, (a1, . . . , aj + 1, . . . , an+r) ∈ P (r, n). �	
It follows from Lemma 7 that Ap(P2r+1(n), s0) ⊆ {a1s1 + · · · + an+rsn+r |

(a1, . . . , an+r) ∈ P (r, n)}.
The next remark tells that the equality in the above expression does not hold

in general.

Remark 1. If possible suppose that, Ap(P2r+1(n), s0) = {a1s1+ · · ·+an+rsn+r |
(a1, . . . , an+r) ∈ P (r, n)}. Then |Ap(P2r+1(n), s0)| = |{a1s1 + · · · + an+rsn+r |
(a1, . . . , an+r) ∈ P (r, n)}| = 2n+r+1 − 1 
= s0.

Thus, it remains to find the elements of the set {a1s1 + · · · + an+rsn+r |
(a1, . . . , an+r) ∈ P (r, n)} which belongs to Ap(P2r+1(n), s0). To do so, we first
define the following sets:

F1 =
{
a1s1 + · · · + an+r−1sn+r−1 + sn+r | ai ∈ {0, 1, 2} for 1 ≤ i ≤ n + r −

2, an+r−1 ∈ {1, 2} and if aj = 2 for some j then ai = 0 for i < j
}
; and
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F2 =
( r−2⋃

l=0

El∪{2sn+r}
)∖{s1+sn+sn+r, 2s1+sn+sn+r, sn+sn+r}, where

El =
{
a1s1 + · · ·+ an+lsn+l + sn+r | ai ∈ {0, 1, 2} for 1 ≤ i ≤ n+ l − 1, an+l ∈

{1, 2} and if aj = 2 then ai = 0 for i < j
}
. Take F = F1 ∪ F2.

Lemma 8. Under the standing hypothesis and notation, the following equalities
hold.

(a) sn+l + sn+r − s0 = ((2n+r − 2n+l) + 2n+1 + 4)s0 + (2n+l − 2n − 3)s1, for
1 ≤ l ≤ r;

(b) si+ sn+ sn+r − s0 = ((2r +1)2n+2− (2i − 4))s0+(2i − 4)s1 for 2 ≤ i ≤ n;
(c) s1 + si + sn + sn+r − s0 = ((2r + 1)2n + 2 − (2i − 4))s0 + (2i − 3)s1 for

2 ≤ i ≤ n;

Proof. (a) Let 1 ≤ l ≤ r. Consider

(2n+r − 2n+l + 2n+1 + 4)s0 + (2n+l − 2n − 3)s1
=(2n+r − 2n+l + 2n+1 + 4)((2r + 1)2n + 1) + (2n+l − 2n − 3)((2r + 1)2n+1 + 1)

= (2r + 1)2n(2n+r − 2n+l + 2 · 2n + 4 + 2(2n+l − 2n − 3)) + 2n+r + 2n + 1

= (2r + 1)2n(2n+r + 2n+l − 2) + 2n+r + 2n + 1

= (2r + 1)2n(2n+r + 2n+l − 1) + 1

= (2r + 1)(2n+n+r) + 1 + (2r + 1)2n+n+l + 1 − (2r + 1)2n − 1
= sn+r + sn+l − s0.

(b) Let 2 ≤ i ≤ n. Consider

((2r + 1)2n + 2 − (2i − 4))s0 + (2i − 4)s1
=((2r + 1)2n + 2 − (2i − 4))((2r + 1)2n + 1) + (2i − 4)((2r + 1)2n+1 + 1)

= (2r + 1)2n((2r + 1)2n + 2 − 2i + 4 + 2 · 2i − 8) + (2r + 1)2n + 2

= (2r + 1)2n((2r + 1)2n + 2i − 2) + (2r + 1)2n + 2

= (2r + 1)2n((2r + 1)2n + 2i − 1) + 2

= (2r + 1)2n+n+r + 1 + (2r + 1)2n+n + 1 + (2r + 1)2n+i + 1 − ((2r + 1)2n + 1)
= sn+r + sn + si − s0.

(c) Follows from the proof of part (b). �	
The following lemmas give the explicit description of the elements in the Apéry
set Ap(P2r+1(n), s0).

Lemma 9. Let n > 2 be an integer. Then F ∩ Ap(P2r+1(n), s0) = φ.

Proof. Let a1s1 + · · · + an+r−1sn+r−1 + sn+r ∈ F1. From Lemma 8(a), we have
sn+r−1 + sn+r − s0 ∈ P2r+1(n). Since an+r−1 ∈ {1, 2}, we have a1s1 + · · · +
an+r−1sn+r−1+sn+r−s0 = a1s1+· · ·+(an+r−1−1)sn+r−1+sn+r−1+sn+r−s0 ∈
P2r+1(n).
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Let a1s1 + · · · + an+lsn+l + sn+r ∈ F2 for 1 ≤ l ≤ r − 2. From Lemma 8(a),
we have sn+l + sn+r − s0 ∈ P2r+1(n). Similar argument as above implies that
a1s1 + · · · + an+lsn+l + sn+r − s0 ∈ P2r+1(n).

Let a1s1 + · · · + ansn + sn+r ∈ F2 (i.e. l = 0). Note that ai 
= 0 for some i ∈
{2, . . . , n−1}. From Lemma 8(b) and (c), we have si+sn+sn+r −s0 ∈ P2r+1(n)
and s1 + si + sn + sn+r − s0 ∈ P2r+1(n). Since ai 
= 0 for 2 ≤ i ≤ n − 1, we have
a1s1 + · · · + ansn + sn+r − s0 ∈ P2r+1(n).

Finally, consider 2sn+r ∈ F2. From Lemma 8(a), we have 2sn+r − s0 ∈
P2r+1(n).

Thus, for any element of F say x, we have x − s0 ∈ P2r+1(n) and hence
F ∩ Ap(P2r+1(n), s0) = φ. �	
Lemma 10. Under the standing hypothesis and notation, we have |F | = 2n+r −
2n − 2.

Proof. Consider the set L11 =
{
a1s1 + · · · + an+r−1sn+r−1 + sn+r | ai ∈

{0, 1} for 1 ≤ i ≤ n + r − 2 and an+r−1 = 1
}
. Clearly, |L11| = 2n+r−2. Now we

construct a new set L12 as follows: Let a1s1 + · · ·+ an+r−1sn+r−1 + sn+r ∈ L11.
Take the least index m ∈ {1, 2, ..., n + r − 1} for which am = 1, add an element
b1s1 + · · ·+ bn+r−1sn+r−1 + sn+r in L12 with bm = 2 and bj = aj for all j 
= m.
Clearly, |L12| = 2n+r−2. Note that F1 is the disjoint union of L11 and L12. Hence,
|F1| = 2n+r−1.

Consider the set L21 =
{
a1s1 + · · · + an+lsn+l + sn+r | ai ∈ {0, 1} for 1 ≤

i ≤ n + l − 1 and an+l = 1
}
. Clearly, |L21| = 2n+l−1. Now we construct a

new set L22 as follows: Let a1s1 + · · · + an+lsn+l + sn+r ∈ L21. Take the least
index m for which am = 1, add an element b1s1 + · · · + bn+lsn+l + sn+r in
L22 with bm = 2 and bj = aj for all j 
= m. Clearly, |L22| = 2n+l−1. Note
that El is the disjoint union of L21 and L22. Hence, |El| = 2n+l. Thus we

get, |F2| =
r−2∑

l=0

|El| + 1 − 3 =
r−2∑

l=0

2n+l − 2 = 2n+r−1 − 2n − 2. Therefore,

|F | = |F1| + |F2| = 2n+r−1 + 2n+r−1 − 2n − 2 = 2n+r − 2n − 2. �	
Theorem 5. Let n > 2 be an integer. Then

Ap(P2r+1(n), s0) = {a1s1 + · · · + an+rsn+r | (a1, . . . , an+r) ∈ P (r, n)} \ F.

Proof. Let P ′(r, n) = {a1s1 + · · · + an+rsn+r | (a1, . . . , an+r) ∈ P (r, n)} \ F .
Now from Lemma 7 and Lemma 9, it is clear that Ap(P2r+1(n), s0) ⊆ P ′(r, n)).
Note that from Lemma 6 and Lemma 10, we have

|P ′(r, n)| = 2n+r+1 − 1 − (2n+r − 2n − 2) = s0 = |Ap(P2r+1(n), s0)|.

Thus, Ap(P2r+1(n), s0) = {a1s1+· · ·+an+rsn+r | (a1, . . . , an+r) ∈ P (r, n)}\
F . �	
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4 The Frobenius Problem

In this section, we give the formula for the Frobenius number of the Proth
numerical semigroup P2r+1(n) for all r ≥ 1. We recall Lemma 4 from Sect. 3.

Let us begin with some preliminary lemmas.

Lemma 11. Let s ∈ P2r+1(n) such that s 
≡ 0(mod s0), then s + 1 ∈ P2r+1(n).
Moreover, w(i + 1) ≤ w(i) + 1 for 1 ≤ i ≤ s0 − 1.

Proof. Since s ∈ P2r+1(n), there exist a0, . . . , an+r ∈ N such that s = a0so +
· · · + an+rsn+r. If s 
≡ 0(mod s0) then there exist i ∈ {1, . . . , n + r} such that
ai 
= 0 and we get, s + 1 = a0s0 + · · · + (ai − 1)si + · · · + an+rsn+r + si + 1.

Now, si + 1 = k2n+i + 1 + 1 = 2kn+i−1 + 2 = 2si−1. Hence, s + 1 =
a0so + · · · + (ai−1 + 2)si−1 + (ai − 1)si + · · · + an+rsn+r ∈ P2r+1(n).

Moreover, by definition, w(i) 
≡ 0(mod s0) for 1 ≤ i ≤ s0−1. Thus, w(i)+1 ∈
P2r+1(n). Now, w(i) + 1 ≡ i + 1(mod s0). As w(i + 1) is the least element of
P2r+1(n) which is congruent with i+1 modulo s0, we get w(i+1) ≤ w(i)+1. �	
Lemma 12. Let n > 2 be an integer. Then

1. w(2) = s1 + sn + sn+r;
2. w(1) = 2s1 + sn + sn+r. Moreover, w(1) − w(2) = s1.

Proof. (1) Consider

s1 + sn + sn+r − 2 =(2r + 1)2n+1 + 1 + (2r + 1)2n+n + 1 + (2r + 1)2n+n+r − 1

=2 · (2r + 1)2n + (2r + 1)22n(2r + 1) + 1

= (2r + 1) · 2n + 1)2 = s20.

Therefore, s1+sn+sn+r ≡ 2(mods0). From Lemma 5 we have, s1+sn+sn+r ∈
Ap(P2r+1(n), s0). Thus, w(2) = s1 + sn + sn+r.
(2) Note that from (1) we have s1 + sn + sn+r − 2 = s20. Now

2s1 + sn + sn+r − 1 =s1 + sn + sn+r + 2(2r + 1)2n + 1 − 1

= s1 + sn + sn+r − 2 + 2s0 = s20 + 2s0.

Therefore, 2s1+sn+sn+r ≡ 1(mods0). Again From Lemma 5 we have, 2s1+sn+
sn+r ∈ Ap(P2r+1(n), s0). Thus, w(1) = 2s1 + sn + sn+r. Clearly, w(1)− w(2) =
s1. �	

The next Lemma is due to Selmer [25] gives us the relation among the Frobe-
nius number and Apéry Set.

Lemma 13. ([25], Proposition 5 in [2]) Let S be a numerical semigroup and let
n be a non-zero element of S. Then F(S) = max(Ap(S, n)) − n.

Lemma 14. Under the standing notation, we have

w(1) = max(Ap(P2r+1(n), s0)).
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Proof. From Lemma 11, w(i + 1) ≤ w(i) + 1, for 1 ≤ i ≤ s0 − 1. Thus, we get
w(3) ≤ w(2) + 1, w(4) ≤ w(3) + 1 ≤ w(2) + 2. In general, for 3 ≤ j ≤ s0 − 1, we
have w(j) ≤ w(2) + (j − 2). Since w(1) − w(2) = s1, we get w(j) ≤ w(1) − s1 +
(j −2) = w(1)− (s1 − (j −2)) < w(1) as s1 − (j −2) > 0. Therefore, w(1) ≥ w(i)
for 0 ≤ i ≤ s0 − 1 and w(1) = max(Ap(P2r+1(n), s0)). �	

Thus, from Lemma 13 and 14 we obtain the following formula for the Frobe-
nius number of P2r+1(n).

Theorem 6. Let n > 2 be a positive integer. Then F(P2r+1(n)) = 2s1 + sn +
sn+r − s0.

Next we define the genus of a numerical semigroup.

Definition 2. Let S be a numerical semigroup then the set N \ S is called set
of gaps of S and its cardinality is said to be genus of S denoted by g(S).

Remark 2. It is well known that (see Lemma 3 in [2]), g(S) ≥ F(S)+1
2 .

Corollary 1. Let n > 2 be a positive integer. Then, g(P2r+1(n)) ≥ k(2n+1 +
22n−1 + 22n+r−1 − 2n−1) + 2.

5 Pseudo-Frobenius Numbers and Type

Our purpose in this section is to give the pseudo-Frobenius set and the formula
for the type of the Proth numerical semigroup P2r+1(n) for all r ≥ 1. Let us
recall the definition of pseudo-Frobenius numbers.

Let S be a numerical semigroup. An integer x is a pseudo-Frobenius number
of S if x ∈ Z \ S and x + s ∈ S for all s ∈ S \ {0}.

Consider the following relation on the set of integers Z: a ≤S b if b − a ∈ S.
Note that this relation is an order relation i.e., it is reflexive, transitive and anti-
symmetric (see [18]). The next lemma characterizes pseudo-Frobenius numbers
in terms of the Apéry set using the relation defined above.

Lemma 15. (Proposition 2.20 in [18]) Let S be a numerical semigroup and let
n be a nonzero element of S. Then

PF(S) = {w − n | w ∈ maximals≤S(Ap(S, n)}.

Remark 3. [22] If w,w′ ∈ Ap(S, x), then w′ − w ∈ S if and only if w′ − w ∈
Ap(S, x). Hence maximal≤S

(Ap(S, x)) =
{
w ∈ Ap(S, x) | w′ − w /∈ Ap(S, x) \

{0} for all w′ ∈ Ap(S, x)
}
.

Let n > 2 be an integer. We define the set X as follows: X = {(a1, . . . , an+r) |
a1s1 + · · ·+ an+rsn+r ∈ F}. Let us consider M(n) = P (r, n) \X. It is clear that
maximal elements in M(n) (with respect to the product order) are

• (2, 1, . . . , 1, 1, 0), . . . , (0, . . . , 0,
r↓
2, 1, . . . , 1, 0), . . . , (0, . . . , 0, 2, 0);
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• (2, 1, . . . ,
n−1

↓
1 , 0, . . . , 0, 1), . . . , (0, . . . , 0, 2,

n−1
↓
1 , 0, . . . , 0, 1);

• (0, . . . , 0,
n−1

↓
2 , 0, . . . , 0, 1), (2, 0, . . . , 0,

n↓
1, 0, . . . , 0, 1).

As a consequence of Theorem 5, we get the following lemma.

Lemma 16. Under the standing notation, we have
maximal≤P2r+1(n)(Ap(P2r+1(n), s0)) = maximal≤P2r+1(n)

{{2si+si+1+· · ·+
sn+r−1 | 1 ≤ i ≤ n + r − 1} ∪ {2sj + sj+1 + · · · + sn−1 + sn+r | 1 ≤ j ≤
n − 2} ∪ {2sn−1 + sn+r, 2s1 + sn + sn+r}

}
.

We are now already to give the main result of this section.

Theorem 7. Let n > 2 be an integer and let P2r+1(n) be the Proth numerical
semigroup associated to n. Then maximal≤P2r+1(n)(Ap(P2r+1(n), s0)) = {2si +
si+1 + · · · + sn+r−1 | 1 ≤ i ≤ r} ∪ {2sj + sj+1 + · · · + sn−1 + sn+r | 1 ≤ j ≤
n − 2} ∪ {2s1 + sn + sn+r}.
Proof. Let i ∈ {r + 1, ..., n + r − 1}, then

2si + si+1 + · · · + sn−1 + sn+r − (2sr+i + sr+i+1 + · · · + sn + sn+r−1)

= k2n+i + k2n+i(2r − 1) + r + k22n+r + 2 − (k22n(2r − 1) + r + k2n+r+i + 1)

= (k22n + 1) = sn.

Also, 2s1 + sn + sn+r − (2sn−1 + sn+r) = 2s1 + k2n + 1 − 2(k2n−1 + 1) = s2.
Hence, we get 2sr+i + sr+i+1 + · · ·+ sn + sn+r−1 ≤P2r+1(n) 2si + si+1 + · · ·+

sn−1 + sn+r for i ∈ {r + 1, ..., n+ r − 1} and 2sn−1 + sn+r ≤P2r+1(n) 2s1 + sn +
sn+r. From Lemma 16 we obtain that maximal≤P2r+1(n)(Ap(P2r+1(n), s0)) =
maximal≤P2r+1(n)

{{2si + si+1 + · · ·+ sn+r−1 | 1 ≤ i ≤ r} ∪ {2sj + sj+1 + · · ·+
sn−1 + sn+r | 1 ≤ j ≤ n − 2} ∪ {2s1 + sn + sn+r}

}
.

Consider a set L1 = {pi = 2si + si+1 + · · · + sn+r−1 | 1 ≤ i ≤ r} and
L2 = {qj = 2sj + sj+1 + · · ·+ sn−1 + sn+r | 1 ≤ j ≤ n− 2}. Take L = L1 ∪L2 ∪
{2s1 + sn + sn+1}. We show that L = maximal≤P2r+1(n)(Ap(P2r+1(n), s0)).

Thus, to conclude the proof, it is enough to show that, for any x, y ∈ L,
x 
≤P2r+1(n) y.

Let pi, pi+1 ∈ L1, then

pi+1 − pi = 2si+1 + si+2 + · · · + sn+r−1 − (2si + si+1 + · · · + sn+r−1)
= −2si + si+1 = −1.

Thus, the difference between any two element of L1 is smaller than r < s0.
Which implies that pi 
≤P2r+1(n) pj for any 1 ≤ i, j ≤ r and i 
= j.

Similarly, one can check that for qi, qi+1 ∈ L2, qi+1−qi = −1 and qi 
≤P2r+1(n)

qj for any 1 ≤ i, j ≤ n − 2 and i 
= j.
Let pi ∈ L1 and qj ∈ L2. Note that, q1 − p1 = sn+r − (sn + · · · + sn+r−1) =

k22n+1−r. Now consider qj−pi = q1−(j−1)−(p1−(i−1)) = q1−p1−(j−i) =
k22n + 1 − r − j + i.
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Suppose that k22n+1−r−j+i ∈ P2r+1(n), then there exists λ0, λ1, ..., λn+r ∈
N such that

k22n + 1 − r − j + i = λ0s0 + λ1s1 + · · · + λn+rsn+r

= (λ0 + · · · + λn+r) + k2n(λ0 + 2λ1 + · · · + 2n+rλn+r).

We get, (λ0 + · · ·+ λn+r) = 1− r − j + i ≤ 0 which is a contradiction as λi ∈ N.
Thus, qj − pi /∈ P2r+1(n) and hence pi 
≤P2r+1(n) qj for 1 ≤ i ≤ r, 1 ≤ j ≤ n − 2.
Now consider,

2s1 + sn + sn+r − pi = 2s1 + sn + sn+r − (p1 − (i − 1))
= −s2 − · · · − sn−1 − sn+1 − · · · − sn+r−1 + sn+r + i − 1

= (k2n+2 − (n − 3)) + k22n − r + 1 + (i − 1)
= k2n(4 + 2n) − n − r + 3 + i.

If possible suppose that k22n + k2n+2 − n − r + 3 + i ∈ P2r+1(n), then there
exists λ0, λ1, ..., λn+r ∈ N such that

k2n(4 + 2n) − n − r + 3 + i = λ0s0 + λ1s1 + · · · + λn+rsn+r

= (λ0 + · · · + λn+r) + k2n(20λ0 + · · · + 2n+rλn+r).

We get, (λ0 + · · · + λn+r) = −(n + r − 3 − i) ≤ 0, which is a contradiction as
λi ∈ N. Therefore, pi 
≤P2r+1(n) 2s1 + sn + sn+r for 1 ≤ i ≤ r.

Similarly, it is clear that 2s1+sn+sn+r−qj = k2n+2+(j−n+2) /∈ P2r+1(n).
Therefore, qj 
≤P2r+1(n) 2s1 + sn + sn+r for 1 ≤ j ≤ n − 2.

Hence, difference between any two elements of L do not belongs to P2r+1(n).
Thus, from Remark 3, we have L = maximal≤P2r+1(n)(Ap(P2r+1(n), s0)). �	

By applying Lemma 15 and Theorem 7 we obtained the following theorem.

Theorem 8. Let n > 2 be an integer and let P2r+1(n) be the Proth numerical
semigroup. Then

PF(P2r+1(n)) = {2si + si+1 + · · ·+ sn+r−1 − s0 | 1 ≤ i ≤ r}∪ {2sj + sj+1 +
· · · + sn−1 + sn+r − s0 | 1 ≤ j ≤ n − 2} ∪ {2s1 + sn + sn+r − s0}
and t(P2r+1(n)) = |PF(P2r+1(n)| = r + n − 1.

6 Wilf’s Conjecture

In this section, we prove that the Proth numerical semigroup P2r+1(n) supports
Wilf’s conjecture. Let us begin with the statement of Wilf’s conjecture.

Conjecture 1. [31] Let S be a numerical semigroup, and ν(S) = |{s ∈ S | s ≤
F(S)}|, then

F(S) + 1 ≤ e(S)ν(S),

where e(S) is the embedding dimension of S and F(S) is the Frobenius number
of S.
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Lemma 17. (Corollary 5 in [2]) Let S be a numerical semigroup. We have
F(S) + 1 ≤ (t(S) + 1)ν(S).

From the previous lemma we obtain the following theorem.

Theorem 9. The Proth numerical semigroup P2r+1(n) satisfies Wilf ’s conjec-
ture.

Proof. Recall that e(P2r+1(n)) = n + r + 1 and from Lemma 17

F(P2r+1(n)) + 1 ≤ (t(P2r+1(n)) + 1) ν(P2r+1(n))
= (n + r) ν(P2r+1(n))
< (n + r + 1) ν(P2r+1(n))
= e(P2r+1(n)) ν(P2r+1(n).

�	

7 Conclusion

In this work, we obtained the formula for the embedding dimension of the Proth
numerical semigroup Pk(n). As a main result, we solved the Frobenius problem
for P2r+1(n). Moreover, we also attained the pseudo-Frobenius set and the type
of P2r+1(n). We concluded the paper by examining that P2r+1(n) supports Wilf’s
conjecture. The following is an immediate open question to investigate: Is there a
formula to find the Frobenius number and other invariants of the Proth numerical
semigroup Pk(n) for arbitrary k?
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Abstract. A variation of the vertex cover problem is the eternal ver-
tex cover problem. This is a two-player (attacker and defender) game,
where the defender must allocate guards at specific vertices in order for
those vertices to form a vertex cover. The attacker can attack one edge
at a time. The defender must move the guards along the edges so that
at least one guard passes through the attacked edge (guard moves from
one end point of the attacked edge to the another end point), and the
new configuration still acts as a vertex cover. If the defender is unable
to make such a maneuver, the attacker prevails. If a strategy for defend-
ing the graph against any infinite series of attacks emerges, the defender
wins. The eternal vertex cover problem is to find the smallest number of
guards with which the defender can develop a successful strategy. The
same problem is referred as the eternal connected vertex cover problem
if the following additional requirement is added: underlying vertices of
each defensive configuration form a connected vertex cover. The smallest
number of guards that can be used to create a successful defensive strat-
egy, in this case, is known as the eternal connected vertex cover number
and is denoted by the ecvc(G). The decision version of the eternal con-
nected vertex cover problem is NP-hard for general graphs and it also
remains NP-hard for bipartite graphs. In this paper, we proved that the
problem is polynomial-time solvable for chain graphs and cographs. In
addition, we proved that the problem is NP-hard for Hamiltonian graphs,
and proposed a polynomial-time algorithm to compute eternal connected
vertex cover number for Mycielskian of a given Hamiltonian graph.

Keywords: Eternal Connected vertex cover · Chain graphs ·
Hamiltonian graphs · Mycielskian · Cographs · Distance-hereditary
Graphs. Graph algorithms

1 Introduction

The dynamic variant of the vertex cover problem, referred to as the eternal vertex
cover problem, was initially introduced by Klostermeyer et al. in 2009 [14]. Given
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a graph G = (V,E), the problem is framed as a two-player game featuring an
attacker and a defender. This game is played in rounds. Before starting the game,
the defender is tasked with strategically assigning guards to specific vertices of
G so that a guard is assigned to at least one endpoint of every edge. Now in the
first round, the attacker’s job is to attack one edge.

After the attack, the defender faces a decision dilemma for every guard:
either relocate it to an adjacent vertex by traversing through the edge between
them or leave it undisturbed. This reallocation of guards must be executed in
such a manner that at least one guard from either endpoint of the attacked
edge can traverse the edge and take up residence at the other endpoint and the
new set of vertices where guards are assigned, still form a vertex cover. If such
a reallocation is possible, the attack is successfully defended; if not then the
attacker wins. After the reallocation, the second round begins, and the attacker
gets to attack an edge, and the defender gets to defend the attack, and the game
goes on. If the defender fails to establish such an arrangement, the attacker
prevails. But, if the defender’s allocation of guards proves capable of defending
any infinite sequence of attacks, victory is secured by the defender.

Note that if at any round of the game, after the reconfiguration of guards,
the underlying vertices of the newly allocated guards do not form a vertex cover,
then in the next round, the attacker can simply attack the edge that does not
have a guard assigned in either of its endpoints and win.

In this context, the fundamental parameter of interest is the eternal ver-
tex cover number of graph G, denoted as evc(G). This parameter signifies the
minimum number of guards required to formulate a winning strategy for the
defender. In a winning strategy, every guard configuration at any round of the
game is called an eternal vertex cover. The Minimum Eternal Vertex Cover
problem (MIN-EVC) is to find an eternal vertex cover of minimum cardinality.
The decision version of the problem is denoted as DECIDE-EVC.

Another variation of the vertex cover problem is the connected vertex cover
problem where the objective is to identify a minimum cardinality vertex cover
S of the given graph G, such that the subgraph induced on S, that is, G[S] is
connected. This concept was initially introduced by Garey et al. in their seminal
work [12]. The connected vertex cover number denoted as cvc(G), represents the
minimum cardinality of a connected vertex cover of G, and such a vertex cover is
termed a minimum connected vertex cover. The problem of finding a minimum
connected vertex cover is denoted as MIN-CVC.

When the following additional constraint is imposed on the Minimum Eter-
nal Vertex Cover problem: each guard configuration constitutes a connected
vertex cover rather than just a vertex cover, the problem is termed as the Min-
imum Eternal Connected Vertex Cover (MIN-ECVC) problem. In that
context, the minimum number of guards needed to devise a successful defen-
sive strategy for the defender is referred to as the eternal connected vertex cover
number, and is denoted as ecvc(G). The Eternal Connected Vertex Cover
Decision (DECIDE-ECVC) problem is the decision version of the MIN-ECVC
problem.
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The inception of the eternal connected vertex cover problem can be attributed
to Fujito et al. [11]. In this work, a fundamental premise is that each vertex within
a given guard allocation configuration can accommodate at most one guard.

1.1 Notations and Definitions

All the graphs used in this study are finite, undirected, and simple. Consider a
graph G = (V,E), where V represents the set of vertices and E represents the
set of edges; n denotes the cardinality of V and m denotes the cardinality of E.
The notation N(v) denotes the set of neighbouring vertices of a given vertex v in
V (G). An independent set I of a graph G is defined as a subset of V such that for
any two vertices u and v in I, the edge {u, v} is not present in the edge set E. The
degree of a vertex v ∈ V is determined by the number of its neighbours, denoted
as deg(v). Let V ′ be a subset of V . We use the notation degV ′(v) to represent
the number of neighbours that vertex v has in V ′. Similarly, we use the notation
NV ′(v) to represent the set of neighbours of v in V ′. A vertex v is defined as a
cut vertex if the number of components in the graph G is strictly smaller than
the number of components in the graph obtained by removing vertex v from G.
The set of all cut vertices in G is represented as Cut(G).

The join of two graphs H1 and H2 is a graph created by combining separate
copies of H1 and H2 by adding edges between every vertex in V (H1) and every
vertex in V (H2). The symbol ⊕ will be used to denote the join operation.

A vertex cover S of a graph G = (V,E) is defined as a subset of the vertex
set V such that for every edge in E, at least one of its endpoints is included
in S. If S is a vertex cover, then the complement of S in V , denoted as V \S,
forms an independent set. A vertex cover with minimum cardinality is referred
to as a minimum vertex cover. The minimum vertex cover number, denoted as
mvc(G), represents the cardinality of the minimum vertex cover in graph G. Let
B be a subset of vertices in a graph G. The minimum cardinality of a vertex
cover that contains B is denoted as mvcB(G). If the induced graph on set S is
connected, then set S is defined as a connected vertex cover. A connected vertex
cover with minimum cardinality is known as minimum connected vertex cover
and the cardinality of a minimum connected vertex cover is denoted as cvc(G).
Let B be a subset of the vertex set V of a graph G. The quantity cvcB(G) is the
cardinality of the smallest connected vertex cover that contains B.

An independent set of maximum cardinality is called maximum independent
set of G and its cardinality is denoted as mis(G). A subset of vertices X ⊆ V
is defined as a separating set if the number of connected components in the
graph G after removing the vertices in X is more than the number of connected
components in the original graph G. The problem referred to as the maximum
non-separating independent set problem involves identifying a maximum inde-
pendent set that does not include any separating set. If S is a connected vertex
cover of a graph G, then the complement of S in V , denoted as V \S, forms a
non-separating independent set in G.
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For a given graph G = (V,E), the Mycielskian of the graph is μ(G), where
the vertex set of μ(G) is {p} ∪ N ∪ V , where N = {v1, . . . , vn} is a copy of V =
{u1, . . . , un}. The edge set of μ(G) is E∪{{p, v}|v ∈ N}∪{{ui, vj}|{ui, uj} ∈ E}.

A Hamiltonian cycle in a graph G = (V,E) is defined as a cycle in G that
traverses each vertex v ∈ V exactly once. A graph containing a Hamiltonian
cycle is called Hamiltonian graph. A graph G = (V,E) is said to be k-regular
if the degree of each vertex in V is equal to k. Distance-hereditary graphs are
graphs in which the distance between any two vertices in any connected induced
subgraph is the same as in the original graph.

1.2 Related Works

The eternal vertex cover problem is polynomial-time solvable for chordal graphs
[4], cactus graphs [5], generalized trees [1], co-bipartite graphs [3], cographs, split
graphs, and chain graphs [16]. Still, whether the DECIDE-EVC problem is in NP
is unknown. Fomin et al. [10] have shown that the problem belongs to the class
PSPACE. Later Babu et al. [2] have shown that the problem is in NP for locally
connected graphs, till now which is the largest graph class for which the problem
is known to be in NP. The problem is known to be NP-hard for general graphs
[10], bipartite graphs [3], and locally connected graphs [2]. Some combinatorial
results on the problem can be found in [14].

The connected vertex cover problem remains NP-hard even when considering
a variety of graph classes, such as planar bipartite graphs with maximum degree
4 [7], planar biconnected graphs with maximum degree 4 [17], 3-connected graphs
[20], and k-regular graphs, k ≥ 4 [15]. The only nontrivial cases in which the
computation of cvc(G) can be achieved in polynomial-time are restricted to
chordal graphs [19] and graphs with maximum degree 3 [6].

Fujito et al. have established a bound for the eternal connected vertex cover
number (ecvc(G)) as follows: cvc(G) ≤ ecvc(G) ≤ cvc(G)+1 [11]. Their contribu-
tions include the polynomial-time algorithm to solve the MIN-ECVC problem
for chordal graphs and the proof of the NP-hardness of the DECIDE-ECVC
problem when restricted to locally connected graphs [11]. Furthermore, Fujito et
al. have presented a 2-approximation algorithm for the MIN-ECVC problem on
general graphs. Additionally, they have provided a comprehensive characteriza-
tion of ecvc(G) for cactus graphs, block graphs, and other graphs where every
block is either a cycle or a clique [11].

1.3 Our Results

The remaining sections of the paper are structured in the following manner:
Sect. 2 of the paper presents a polynomial-time algorithm for calculating the
connected vertex cover number and the eternal connected vertex cover number
of chain graphs. Section 3 of the paper proves the NP-hardness of the DECIDE-
ECVC problem for Hamiltonian graphs. This section also presents a polynomial-
time algorithm for calculating the values of cvc(μ(G)) and ecvc(μ(G)), where
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μ(G) denotes the Mycielskian of a Hamiltonian graph G, given that a Hamil-
tonian cycle is also provided. In Sect. 4, it is proved that there exists a linear-
time algorithm for computing the connected vertex cover number of distance-
hereditary graphs. In Sect. 5, a polynomial-time algorithm is proposed to com-
pute ecvc(G) for cographs. The work is concluded in Sect. 6.

1.4 Existing Theorems Used in the Paper

To facilitate the subsequent proofs presented in this paper, we will briefly enu-
merate some fundamental theorems.

Theorem 1 [11]. For any connected vertex cover C of a connected graph G,
all the edge attacks of G can be eternally defended by (|C| + 1) guards in such
a way that guards always occupy all the vertices in C. In particular, ecvc(G) ≤
cvc(G) + 1.

Theorem 2 [11]. Let G = (V,E) be a connected graph. If ecvc(G) = cvc(G),
then cvc(G) = cvc{v}(G) for each v ∈ V .

Theorem 3 [11]. Let G = (V,E) be a connected graph with |V | ≥ 2. Suppose
every vertex cover of size mvcCut(G)(G) containing Cut(G) is connected. Then
ecvc(G) = cvc(G) if and only if cvc{v}(G) = cvc(G) for each v ∈ V .

2 Computing cvc(G) and ecvc(G) for Chain Graphs

Let G = (X ∪ Y,E) be a bipartite graph. G is said to be a chain graph if the
vertices in X can be ordered {x1, x2, . . . , x|X|}, such that N(x1) ⊆ N(x2) ⊆
. . . ⊆ N(x|X|). Similarly, the vertices of Y can be ordered {y1, y2, . . . , y|Y |}, such
that N(y1) ⊇ N(y2) ⊇ . . . ⊇ N(y|Y |). We propose polynomial-time algorithms
for computing cvc(G) and ecvc(G) for a chain graph G.

For complete bipartite graph Kn1,n2 (where n1 ≤ n2), it is easy to observe
that cvc(Kn1,n2) = ecvc(Kn1,n2) = n1 + 1. So, throughout this section, it will
be assumed that G = (X ∪ Y,E) is a chain graph such that |X| ≤ |Y | and G is
not a complete bipartite graph. Also, |X| = p and |Y | = q. Now we state some
lemmas that will directly imply the correctness of Algorithm 1.

Lemma 1. For any minimum vertex cover S of G, if xi ∈ S, then xi+1 ∈ S,
for each i ∈ [p − 1]. Similarly if yi ∈ S, then yi−1 ∈ S, for each i ∈ {2, 3, . . . , q}.
Proof. For the sake of contradiction let, S be a minimum vertex cover of G and
xi ∈ G but xj /∈ S for j > i. This implies that N(xj) ⊆ S. But since j > i,
N(xi) ⊆ N(xj) ⊆ S. Hence, S\{xi} forms a vertex cover, which contradicts the
minimality of S. Hence the lemma follows. 	

Lemma 2. If mvc(G) < |X|, then every minimum vertex cover S contains xp

and y1, hence G[S] is connected.
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Proof. The proof is easy, and hence is omitted. 	

Lemma 3. If mvc(G) = |X|, then the following statements are true:

a. if there exists an index i ∈ [p − 1], such that deg(xi) = i, then N(xi) ∪
{xi+1, ..., xp} forms a connected vertex cover and cvc(G) = mvc(G).

b. if such an index i does not exist, then cvc(G) = mvc(G) + 1. Also, X ∪ {y1}
forms a minimum connected vertex cover.

Proof. If such index i exists, then it is easy to observe that S = N(xi) ∪
{xi+1, ..., xp} forms a connected vertex cover of cardinality p = mvc(G). Hence
S is also a minimum connected vertex cover.

If such index i does not exist, then let there exists a connected vertex cover
S′ of size < p + 1, that is |S′| = p = mvc(G). Hence, this implies S′ is also a
minimum vertex cover. So, S′ is of the form N(xj) ∪ {xj+1, . . . , xp} for some
j ∈ [p−1] by Lemma 1 and 2. This implies deg(xj) = j, which is a contradiction
to the assumption that no such index i exists. Hence cvc(G) = mvc(G) + 1 and
X ∪ {y1} forms a minimum connected vertex cover. 	


Algorithm 1. An algorithm to compute the cvc(G) for connected chain graph
G

Input: A connected chain graph G = (X ∪ Y, E), with |X| ≤ |Y |.
Output: A minimum connected vertex cover of G.
Find a minimum vertex cover S of G, j ← 0;
if S ∩ X �= φ & S ∩ Y �= φ then

return S;
else

Initialize A[ ], such that A[i] = deg(xi), for all i ∈ [p];
j ← min{i ∈ [p] : A[i] = i};
if j �= 0 and j �= p then

S′ ← N(xj) ∪ {xj+1, ..., xp};
else

S′ ← X ∪ {y1};
end if

end if
return S′;

The proof of correctness for Algorithm 1 can be deduced easily from Lemma
1,2 and 3. Hence the following theorem can be concluded.

Theorem 4. Given a connected chain graph G = (V,E), cvc(G) can be com-
puted in O(n + m) time.

Now for eternal connected vertex cover, we state and prove the following
lemmas.

Lemma 4. If cvc(G) < |X|, then ecvc(G) = cvc(G) + 1.
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Proof. Since cvc(G) < |X|, then mvc(G) < |X|. So, each minimum vertex cover
is connected by Lemma 2. So, there does not exist any minimum connected vertex
cover S which contains x1, otherwise X ⊆ S by Lemma 1. So, by Theorem
2, ecvc(G) �= cvc(G). Also by Theorem 1, we can conclude that ecvc(G) =
cvc(G) + 1 and S ∪ {u} (where u is any vertex form V \S) forms a minimum
eternal connected vertex cover. 	

Lemma 5. If cvc(G) = |X|, then ecvc(G) = cvc(G) + 1.

Proof. Since cvc(G) = |X|, then mvc(G) = |X|. If there exists a minimum con-
nected vertex cover C that contains x1, then C = X and it is not connected.
Hence, a contradiction arises. So, by Theorem 1 and 2, ecvc(G) = cvc(G) + 1. 	

Lemma 6. Given |X| < |Y |, if cvc(G) > |X|, then ecvc(G) = cvc(G) + 1.

Proof. If cvc(G) ≥ |X|+1, then cvc(G) = |X|+1, as X ∪{y1} forms a connected
vertex cover. Let there exist a minimum connected vertex cover S that contains
yq. Note that either xp is contained in S or Y ⊆ S. If Y ⊆ S, then S = Y , as
|Y | ≥ |X| + 1 = cvc(G). But this must not be the case since the graph induced
on Y is not connected, hence xp ∈ S. Let k = max{i : N(yi) = X}. If there
exists a yi, with i ≤ k, such that yi /∈ S, then X ⊆ S and S = X ∪ {yq}, which
contradicts the fact that the graph induced on S is connected as N(yq) �= X.
So, yi ∈ S for each i ∈ [k].

Now, if there exists j > k, such that yj /∈ S, then N(yj) ⊆ S, implying that
N(yq) ⊆ S. This implies S\{yq} is a connected vertex cover, as y1 ∈ S. This
contradicts the minimality of S. So, yj ∈ S, for each j > k, and hence Y ⊆ S,
leading to a contradiction. So, there does not exist any minimum connected
vertex cover that contains yq, which implies ecvc(G) = cvc(G) + 1 by Theorem
1 and 2. 	

Lemma 7. Given |X| = |Y |, if cvc(G) > |X|, then ecvc(G) = cvc(G).

Proof. If cvc(G) ≥ |X|+1, then cvc(G) = |X|+1. In this case, we will show that
any attack can be defended by moving the guards from configuration X ∪ {y1}
to Y ∪ {xp} (or Y ∪ {xp} to X ∪ {y1}).

Assume X ∪ {y1} is the initial configuration of guards and edge {xi, yj}(i �=
p, j �= p) is attacked. Move the guard at xp to yp, y1 to xp and xi to yj and rest
of the guards through the matching mentioned in following claim.

Claim 1. There exists a perfect matching in G[(X\{xi, xp}) ∪ (Y \{yj , yp})].

Proof. Let U ⊆ X\{xi, xp} and k = max{l : xl ∈ U}. So, |U | ≤ k.

First assume that i < k, which implies |U | ≤ k − 1. Note that if |N(xk)| ≤
k, then {y1, . . . , yk} ∪ {xk+1, . . . , xp} forms a connected vertex cover of size p,
which is a contradiction. Hence |N(xk)| ≥ k + 1, which implies that |N(xk) ∩
(Y \{yj , yp})| ≥ k − 1. So, |N(U)| ≥ k − 1 ≥ |U |. So, by Hall’s theorem, there
exists a perfect matching in G[(X\{xi, xp}) ∪ (Y \{yj , yp})].
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Now, if i > k, then xk �= xp−1. If |N(xk)| = k+1, then yp /∈ N(xk), implying
|N(U)| ≥ k = |U |. If |N(xk)| > k + 1, then |N(U)| > k = |U |. So by Hall’s
theorem, there exists a perfect matching in G[(X\{xi, xp}) ∪ (Y \{yj , yp})]. 	


By the above claim, any attack on {xi, yj} can be defended when neither
of i, j is p. If yj = yp and xi �= xp, then move the guard at xi to yj , and
all the guards at X\{xi, xp} to Y \{y1, yp}, which is possible since there exists
a perfect matching in G[(X\{xi, xp}) ∪ (Y \{y1, yp})], which can be proved by
similar arguments used in the above claim. If xi = xp, then move the guard
from xp to yj , y1 to xp and all the guards from X\{xp} to Y \{yj}, which can be
done because of the existence of a perfect matching in G[(X\{xp}) ∪ (Y \{yj})].
So, if the initial configuration is X ∪ {y1}, any attack on an edge e ∈ E can
be defended by exchanging the guards at both endpoints of e or by moving the
guards to the configuration Y ∪ {xp}. If |X| = |Y |, when the configuration is
Y ∪{xp} (or X ∪{y1}), any attack on edge e (where at least one of the endpoints
of e does not have guard assigned) can be defended by moving the guards to
configuration X ∪ {y1} (or Y ∪ {xp}). So, ecvc(G) = cvc(G). 	


So, combining the above lemmas and observations the following theorem can
be concluded.

Theorem 5. The MIN-ECVC problem is solvable for chain graphs in O(n+m)
time.

3 Eternal Connected Vertex Cover for Mycielskian
of Hamiltonian Graphs

The Mycielskian graphs are well-studied graphs. Here at first the iterated Myciel-
skian graph class which is generated from K2, will be discussed, which is
G1 = K2, G2 = μ(G1), G3 = μ(G2) . . . and so on. The vertex set of Myciel-
skian of G, that is V (μ(G)), is denoted as V (μ(G)) = {p} ∪ O ∪ N . The set O
denotes the “old” vertices (that is, vertices of G), N denotes the “new” vertices
which form an independent set and is a copy of O; p is another new vertex. The
edge set is definded as E(μ(G)) = {uiuj | ui, uj ∈ O, uiuj ∈ E(G)}∪{uiu

′
j | ui ∈

O, u′
j ∈ N,uiuj ∈ E(G)} ∪ {pu′

i | u′
i ∈ N}. We define the vertex set of Gi as

{pi} ∪ Oi ∪ Ni and the number of vertices in Gi are 2ki + 1, where ki denotes
the number of vertices in Gi−1; for i ≥ 2. In this section, at first we will show
that the DECIDE-ECVC problem is NP-hard for Hamiltonian graphs.

Theorem 6. The DECIDE-ECVC problem is NP-hard for Hamiltonian graphs.

Proof. It is known that the vertex cover problem is NP-hard for Hamiltonian
graphs [9]. A reduction will be shown from the decision version of the vertex cover
problem for Hamiltonian graphs to the DECIDE-ECVC problem for Hamiltonian
graphs. Let G be a Hamiltonian graph (and not a complete graph), with |V (G)| ≥
3. Construct H in such a way that, H = (V (G) ∪ {u, v, w}, E(G) ∪ {lk|l ∈
{u, v}, k ∈ V (G)}∪{uw, vw}). It is obvious that H is also a Hamiltonian graph.
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Now we show that G has a vertex cover of size at most k(< n − 1) if and only
if H has an eternal connected vertex cover of size at most k + 3.

Let G has a vertex cover (say S) of size at most k. Note that S ∪{u, v} forms
a connected vertex cover of H. Hence it is easy to observe by Theorem 1, that
S ∪ {u, v, w} forms an eternal connected vertex cover of H. Conversely, let H
has an eternal connected vertex cover of size at most k + 3 and D be the initial
configuration. If |D ∩ V (G)| ≤ k, then D ∩ V (G) is a vertex cover of G of size
at most k and we are done. If not then |D ∩ V (G)| = k + 1, which means D
contains u, v but not w. Now attack the edge uw and after defending the attack
the new configuration is D′ which contains u, v and w. So, |D′ ∩ V (G)| ≤ k and
D′ ∩ V (G) is a vertex cover of G of size at most k. Hence the DECIDE-ECVC
problem is NP-hard for Hamiltonian graphs. 	


The following theorem will be used in upcoming proofs.

Theorem 7 [8]. If G is Hamiltonian, then μ(G) is also Hamiltonian.

Since μ(K2) = C5, and C5 is Hamiltonian, Gi is Hamiltonian for each i ≥ 2.

Lemma 8. If |V (Gi)| = 2ki + 1, then mvc(Gi) = ki + 1, for i ≥ 2.

Proof. By Theorem 7, each Gi is Hamiltonian for i ≥ 2. So, a cycle of order
2ki +1 has vertex cover of size at least ki +1 and Oi ∪{pi} forms a vertex cover
of size ki + 1 of Gi, which implies mvc(Gi) = ki + 1. 	


Coming to the eternal connected vertex cover, in the following lemma an
upper bound for ecvc(μ(G)) is given.

Lemma 9. Given the Mycielskian μ(G)(= {p} ∪ O ∪ N) of a connected graph
G; {p, vi} ∪ O (where vi is any vertex of N) forms an initial configuration of an
eternal connected vertex cover of μ(G).

Proof. The proof of Lemma 9 is omitted due to space constraints. 	

Note that by Lemma 8 and Lemma 9 it follows that cvc(Gi) ∈ {ki+1, ki+2}.

Further, to calculate the exact value of cvc(Gi) for each i ≥ 3 , existence of a
polynomial-time algorithm is shown in Theorem 8. Before proving Theorem 8,
we prove the following lemma.

Lemma 10. Given a Hamiltonian graph G with odd number of vertices and its
Mycielskian μ(G), (where μ(G) = {p} ∪ O ∪ N) and |μ(G)| = 2k + 1, if S is a
vertex cover of μ(G) then |S ∩ O| ≥ k+1

2 .

Proof. Note that if S is a vertex cover of μ(G), then S ∩ O is a vertex cover of
G; if not then there is some edge e in G that is not covered by S ∩ O, which
implies e will not be covered in μ(G) also by S, contradicting the fact that S is
a vertex cover. So, |S ∩ O| ≥ mvc(G) ≥ k+1

2 . 	

Theorem 8. Given a Gi = (Vi, Ei), there exists a polynomial-time algorithm
to compute cvc(Gi).



188 K. Paul and A. Pandey

Proof. Let cvc(Gi) = mvc(Gi) = ki + 1 and C be a minimum connected vertex
cover of Gi. Note that C\{pi} forms a minimum vertex cover of Gi[Vi\{pi}].
Now, Gi is Hamiltonian, which implies Gi[Vi\{pi}] has a Hamiltonian path. So,
if piv1v2 . . . v2ki

pi is the Hamiltonian cycle of Gi, then v1v2 . . . v2ki
is a Hamilto-

nian path of Gi[Vi\{pi}]. So, the possible minimum vertex cover candidates for
Gi[Vi\{pi}] are the following since they are the vertex cover choices for a path
of length 2ki.

(1) λ1 = {v1v3 . . . v2ki−1}
(2) λ2 = {v2v4 . . . v2ki−2v2ki

}
(3) λ3 = {v2v3v5v7 . . . v2ki−1}
(4) λ4 = {v2v4v5v7 . . . v2ki−1}
(5) λ5 = {v2v4v6v7 . . . v2ki−1}

...
(ki+1) λki+1 = {v2v4v6v8 . . . v2ki−2v2ki−1}

So, there exist ki + 1 choices (because of the Hamiltonian path) and the
collection of choices be Λ = {λ1, λ2, . . . λki+1}. For each λj ∈ Λ, check if {pi}∪λj

is a connected vertex cover. If no such λj is found, then cvc(Gi) = mvc(Gi)+1 =
ki + 2. Otherwise cvc(Gi) = mvc(Gi) = ki + 1. It is easy to observe that the
whole algorithm takes polynomial-time. 	

Theorem 9. ecvc(Gi) = ki + 2, for each i ≥ 2.

Proof. The proof is omitted due to space constraints. 	

Now if a Hamiltonian graph G with an odd number of vertices along with its

Hamiltonian cycle is given, then mvc(μ(G)), cvc(μ(G)) and ecvc(μ(G)) can be
computed similarly like the proofs of Lemma 8, Lemma 10 and Theorems 8,9.

Lemma 11. Let G be an even cycle of size 2k, for k > 1. Then mvc(μ(G)) =
2k + 1 and ecvc(μ(G)) = 2k + 2.

Proof. G = C2k and it is easy to observe that mvc(μ(G)) = 2k+1 from previous
proofs. For the sake of contradiction, let us assume that ecvc(μ(G)) = 2k + 1,
then for each v ∈ V (G), there exists a minimum connected vertex cover that
contains v. Let the cycle orientation of G be x1x2 . . . x2k. Let G′ = μ(G) =
{p} ∪ O ∪ N ; where O = {x1, x2, . . . , x2k} and N = {y1, y2, . . . , y2k}. where
yi is a copy of xi for each i ∈ [2k]. Then the Hamiltonian cycle in G′ be
y1x2y3 . . . x2kx1y2x3 . . . x2k−1y2kp by [8]. Then from the proof of Theorem 8
there is only one choice for minimum connected vertex cover which contains
y1, that is y1y3 . . . y2k−1x1x3 . . . x2k−1p but this is not a connected vertex cover
as {x1, x3, . . . x2k−1} is an independent set, so there does not exist any edge
from {x1, x3, . . . x2k−1} to {y1, y3, . . . y2k−1}. So, there does not exist any min-
imum connected vertex cover that contains y1, hence contradiction arises. So,
ecvc(μ(G)) = k + 2. 	
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Lemma 12. For a Hamiltonian graph G = (V,E) for which |V | is even, that is,
|V | = 2k and the Hamiltonian cycle x1x2 . . . x2k is given; mvc(μ(G)) = 2k + 1
and ecvc(μ(G)) = 2k + 2.

Proof. The proof is omitted due to space constraints. 	

Theorem 8 can be generalized for any Hamiltonian graph G, as the proof

does not depend on whether G is odd or even. As a result, the following theorem
follows.

Theorem 10. Given a Hamiltonian graph G = (V,E), there exists a
polynomial-time algorithm to compute cvc(μ(G)) if Hamiltonian cycle represen-
tation of G is given.

So, from the above lemmas and theorems, Theorem 11 can be concluded.

Theorem 11. Given a Hamiltonian graph G = (V,E) with |V (μ(G))| = 2k+1;
mvc(μ(G)) = k+1, ecvc(μ(G)) = k+2 and given at least one of the Hamiltonian
cycle representation of G, cvc(μ(G)) can be computed in linear-time.

4 Connected Vertex Cover for Graphs with Bounded
Cliquewidth

In this section, we will show that the minimum connected vertex cover problem
can be solved for distance-hereditary graphs using the fact that the distance-
hereditary graphs are of bounded cliquewidth. With this, we settle an open
problem mentioned in [6], to resolve the complexity status of the minimum con-
nected vertex cover problem for distance-hereditary graphs. The details of the
proof are omitted due to space constraints.

5 Eternal Connected Vertex Cover for Cographs

Cographs are exactly P4-free graphs. A graph G = (V,E) is called a cograph if it
can be generated from K1 by complementation and disjoint union. Recursively,
the class of cographs can be defined as follows

1. K1 is a cograph.
2. Complement of a cograph is a cograph.
3. G1 and G2 are cographs, then G1 ∪ G2 is a cograph.

Cographs can be represented as join of k graphs, G1, G2, . . . , Gk; where each Gi

is either K1 or a disconnected graph and this representation can be found in time
O(n2) [18]. For k ≥ 3, every minimum vertex cover of G is connected. At first an
algorithm is proposed which takes cograph G for which every minimum vertex
cover is connected, as input and outputs ecvc(G). The Algorithm 2 (named
as ECVC CHECK) is deduced from Theorem 3, combined with the fact that
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cographs are also distance-hereditary graphs and the class of distance-hereditary
graphs is closed under pendant vertex addition.

Hammer et al. [13] proved that the minimum vertex cover problem is solv-
able in linear-time for distance-hereditary graphs. So, in Algorithm 2, for each
v ∈ V , computing mvc(Gv) takes O(n)-time. So, the overall time complexity of
Algorithm 2 is O(n2).

Now since for k ≥ 3, every minimum vertex cover is connected,
ECVC CHECK can solve the problem in polynomial-time. Now for the case
when k = 2, that is G is join of G1 and G2, several cases may arise. In this
section, without loss of generality, we assume that |G1| ≤ |G2|.
Case 1 : |G1| = |G2|

If mis(G) < |G1|, then every minimum vertex cover is connected, so the
ecvc(G) can be calculated by ECVC CHECK(G). If mis(G) = |G1| and G1,
G2 are both independent, then G is a complete bipartite graph and ecvc(G) =
|G1| + 1. But if mis(G) = |G1| and G2 is not independent then only possible
maximum independent set is G1, so only possible minimum vertex cover is G2;
implying ecvc(G) = |G2| + 1, where V (G2) ∪ {x} (x is any vertex from V (G1))
forms an initial configuration of minimum eternal connected vertex cover.

Algorithm 2. ECVC CHECK(G)
Input : A connected cograph G = (V, E) for which every minimum vertex cover is
connected.
Output : ecvc(G).
Compute mvc(G);
count = 0;
for each u ∈ V do

Add a pendant vertex v to u in G, the new graph is Gu;
Compute mvc(Gu);
if mvc(G) = mvc(Gu) then

count + +;
end if

end for
if count = |V | then

ecvc(G) = mvc(G);
else

ecvc(G) = mvc(G) + 1;
end if

Case 2 : |G1| < |G2|
If mis(G) < |G1| < |G2|, then any maximum independent set is a proper sub-

set of V (G1) or V (G2), which implies every minimum vertex cover is connected.
So, ecvc(G) can be computed by ECVC CHECK.

If |G1| < mis(G) < |G2|, then any maximum independent set is a proper
subset of V (G2); so each minimum vertex cover is connected; so ecvc(G) can be
computed by ECVC CHECK(G).
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If |G1| < mis(G) = |G2|, then the only possible minimum vertex cover of G
is G1, as the only maximum independent set is G2; implying ecvc(G) = |G1|+1,
as V (G1) ∪ {v}, (for any v ∈ V (G2)) forms an initial configuration of minimum
eternal connected vertex cover.

If |G1| = mis(G) < |G2| and mis(G2) < mis(G), then V (G2) is the only
minimum vertex cover of G, which implies ecvc(G) = |G2| + 1.

Now consider the last case, if |G1| = mis(G) < |G2| and mis(G2) = mis(G),
then cvc(G) = mvc(G); if V (G1) is not an independent set then every mini-
mum vertex cover contains V (G1) and at least one vertex form V (G2), which
implies every minimum vertex cover is connected, so ECVC CHECK can com-
pute ecvc(G). If V (G1) is an independent set, then there exists minimum vertex
cover which is not connected, for example, V (G2). Now construct a new graph
G′ as follows: G′ = G1 ⊕G′

2; where G′
2 = (V (G2)∪{u, u′}, E(G2)∪{uu′}). Now

mis(G′) = |G1| + 1 = mis(G2) + 1, which implies every minimum vertex cover
of G′ is connected and mvc(G′) = cvc(G′). Now, here comes a lemma.

Lemma 13. ecvc(G′) = cvc(G′) if and only if ecvc(G) = cvc(G).

Proof. Let ecvc(G′) = cvc(G′) and let C is an initial configuration for a minimum
eternal connected vertex cover; implying C is a minimum connected vertex cover
of G′. Note that, V (G1) ⊆ V (C) and |V (C) ∩ {u, u′}| = 1. So, C\{u, u′} is a
minimum connected vertex cover of G. Now let the guards be assigned at the
configuration C\{u, u′} in G and some edge e = xy is attacked. If x, y both are
guarded then we are done. If not, then the attack on e in G′ is defended by
moving the guards to some configuration C ′. Similarly the guards at C\{u, u′}
can be moved to C ′\{u, u′} by using the same moving pattern like C to C ′.
The attack is defended. So, C\{u, u′} forms an initial configuration of minimum
eternal connected vertex cover of G. So, ecvc(G) = cvc(G).

Conversely, let ecvc(G) = cvc(G) and S′ is the initial configuration of min-
imum eternal connected vertex cover of G. Then it is easy to observe that
S′′ = S′ ∪{u} is a minimum connected vertex cover of G′. Let an edge e = xy is
attacked in G′. If x and y are both covered by guards then we are done. If not,
two cases may arise.

If x ∈ V (G1) and y ∈ V (G′
2)\S′′; then either y is in G2 or y = u′. If y = u′,

then move the guard at x to u′ and the guard at u to x. The attack is defended
successfully. If y ∈ V (G2), then move the guards in G′ according to how the
guards are moved in G when e was attacked in G.

x ∈ V (G′
2)∩C ′′ and y ∈ V (G′

2)\C ′′. If x = u and y = u′, then shift the guard
at u to u′ and the attack is defended successfully. If x ∈ V (G′

2)∩(C ′′\{u, u′}) and
y ∈ V (G′

2)\(C ′′ ∪ {u, u′}), then defend the attack by moving the guards in the
same pattern in G′ as the guards were moved (except the guard at u or u′) when
e was attacked in G. So, the attack is defended which implies ecvc(G′) = cvc(G′).
Hence the lemma is proved. 	


So, a polynomial-time algorithm can be made for a cograph G = G1 ⊕ G2

where |G1| = mis(G) = mis(G2) < |G2| and V (G1) is an independent set
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in the following way: first G′ is constructed from G using the above descrip-
tion. Note that every minimum vertex cover of G′ is connected, which implies
that we can compute ecvc(G′) by ECVC CHECK. If ecvc(G′) = cvc(G′), then
ecvc(G) = cvc(G). Otherwise ecvc(G) = cvc(G) + 1. So from the above lemmas
and algorithm, we may conclude the following theorem.

Theorem 12. The MIN-ECVC problem is solvable for cographs in O(n2) time.

6 Conclusion and Future Aspects

In this paper, we have solved the MIN-ECVC problem for the chain graphs and
cographs. To the best of our knowledge, the class of chain graphs is the biggest
subclass of bipartite graphs for which a linear-time algorithm has been proposed
to solve the MIN-ECVC problem. It will be interesting to look for efficient algo-
rithms to solve the MIN-ECVC problem for other important subclasses of bipar-
tite graphs. For distance-hereditary graphs, we have shown that the connected
vertex cover problem can be solved in linear-time. But, the complexity status of
the MIN-ECVC problem is open for distance-hereditary graphs. One may try to
propose an algorithm to solve the MIN-ECVC problem for distance-hereditary
graphs.

Acknowledgements. The authors would like to thank Prof. Ton Kloks for their
invaluable inputs and suggestions which helped in improving the paper.
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Abstract. A bipartite graph G(X,Y ) is called a star convex bipartite
graph with convexity on X if there is an associated star T on X such
that for each vertex in Y , its neighborhood induces a subtree in T . A
split graph G(K, I) is a graph that can be partitioned into a clique (K)
and an independent set (I). The objective of this study is twofold: (i) to
strengthen the results presented in [1] for the Hamiltonian cycle (HCY-
CLE), the Hamiltonian path (HPATH), and Domination (DS) problems
on star convex bipartite graphs (ii) to reinforce the results of [2] for
HCYCLE, and HPATH on split graphs by introducing convex ordering
on one of the partitions (clique or independent set). We establish the fol-
lowing dichotomy results on star convex bipartite graphs: (i) HCYCLE
is NP-complete for diameter 3, and polynomial-time solvable for diam-
eter 2, 5, and 6 (ii) HPATH is polynomial-time solvable for diameter 2,
and NP-Complete, otherwise. Note that HCYCLE and HPATH are NP-
complete on star convex bipartite graphs with diameter 4 1. Similarly,
we present the following results on split graphs by imposing convexity on
K (I); HCYCLE and HPATH are NP-complete on star (comb) convex
split graphs with convexity on K (I). On the positive side, we show that
for K1,5-free star convex split graphs with convexity on I, HCYCLE is
polynomial-time solvable.

We further show that the domination problem and its variants (Con-
nected, Total, Outer-Connected, and Dominating biclique) are NP-
complete on star convex bipartite graphs with diameter 3 (diameter 5,
diameter 6). On the parameterized complexity front, we prove that the
parameterized version of the domination problem, with the parameter
being the solution size, is not fixed-parameter tractable on star convex
bipartite graphs with a diameter at most 4, whereas it is fixed-parameter
tractable when the parameter is the number of leaves in the associated
star.
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1 Introduction

The Hamiltonian cycle (path) problem is one of the most significant problems in
graph theory. The complexity of the Hamiltonian cycle (path) problem for vari-
ous graph classes has been well-studied in the literature. The Hamiltonian cycle
(path) problem asks for a cycle (path) that visits each node exactly once. The
Hamiltonian cycle (path) problem is NP-complete for chordal bipartite graphs
[2], and split graphs [2]. Interestingly, this problem is polynomial-time solvable
for distance-hereditary graphs, and bipartite permutation graphs [3].

Bipartite graphs are one of the well-studied graph classes in the literature.
An important restricted bipartite graphs studied in the literature is tree con-
vex bipartite graphs [4]. The Hamiltonian cycle (path) problem is NP-complete
on star convex bipartite graphs [1] and comb convex bipartite graphs [1]. In
this study, we aim to investigate the computational complexity of HPATH on
star convex bipartite graphs from a different perspective. One can study the
structural characterization of a graph in terms of graph parameters. Among the
graph parameters, diameter is one of the popular parameters. Interestingly, for
star convex bipartite graphs, we show that the diameter is at most 6. Further
we establish a dichotomy result for star convex bipartite graphs, HCYCLE is
NP-complete for diameter 3, and polynomial-time solvable for diameter 2, 5
and 6. Similarly, we show that HPATH is Polynomial-time solvable for diameter
2, and NP-Complete, otherwise. Also, we show that for bi-star convex bipar-
tite graphs with diameter 3, HCYCLE and HPATH are NP-complete. All our
results on HCYCLE and HPATH are also true for star convex chordal bipar-
tite graphs. Note that HCYCLE and HPATH are NP-complete on star convex
bipartite graphs with diameter 4 [1].

Similar to HCYCLE and HPATH, domination (DS) is well-studied in the
literature. For a graph G, a set D ⊆ V (G) is a dominating set if each vertex
v ∈ V (G)\D is adjacent to at least one vertex in D. It is known that DS is
NP-complete for star convex bipartite graphs [1], and comb convex bipartite
graphs [1], star-convex split graphs with convexity on I and comb-convex split
graphs with convexity on I [12]. In this paper, we show that for star convex
bipartite graphs with diameter 3, 5, and 6, DS is NP-complete. We consider
some of the variants of DS and present hardness results. A set D ⊆ V (G) of
a graph is called a Connected Dominating set (CDS), Total Dominating set
(TDS), respectively, if D is a dominating set and the induced subgraph of D
is connected, has no isolated vertices respectively. A set D ⊆ V (G) of a graph
is called an outer-connected dominating set (OCDS) of G if D is a dominating
set and the induced subgraph of G on V (G)\D is connected. A set D ⊆ V (G)
of a graph is called a dominating biclique (DB) of G if D is a dominating set
and the induced subgraph of D is a biclique. The outer-connected dominating
set problem is NP-complete for bipartite graphs [5], perfect elimination bipartite
graphs [6], and split graphs [7]. On the positive side, OCD is linear-time solvable
on chain graphs and bounded tree-width graphs [6].

Having imposed convex ordering on bipartite graphs, it is natural to explore
this line of study on graphs having two partitions. A natural choice after bipartite
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graphs is the class of split graphs. A split graph is a graph that can be partitioned
into a clique and an independent set. We wish to extend this line of study to
split graphs by considering convex ordering with respect to the clique set, an
independent set.

Interestingly, HCYCLE on K1,5-free star convex split graphs with convexity
on I is polynomial-time solvable. This brings an interesting dichotomy for HCY-
CLE on star convex split graphs with convexity on I. Note that for K1,5-free
split graphs, HCYCLE is NP-complete [10]. Further, we show that HCYCLE
and HPATH are NP-complete for comb convex split graphs with convexity on K
(I). Also, we show that HCYCLE on split graphs with |K| > |I| is NP-complete.
Similarly, we show that for split graphs with |K| = |I|, and |K| > |I| HPATH is
NP-complete.

In this paper, we work with simple, connected, undirected, and unweighted
graphs. We follow the notation and definitions as defined in [13,14]. We shall
now define tree convex bipartite, and split graphs.

Definition 1. A bipartite graph G = (X,Y,E) is called tree convex bipartite if
there is an associated tree T = (X,F ), such that for each vertex u in Y , its
neighborhood NG(u) induces a subtree of T .

Definition 2. A split graph G is called Π-convex with convexity on K if there is
an associated graph Π on K such that for each v ∈ I, NG(v) induces a connected
subgraph in Π.

Definition 3. A split graph G is called Π-convex with convexity on I if there is
an associated graph Π on I such that for each v ∈ I, N I

G(v) induces a connected
subgraph in Π.

Definition 4. A bipartite graph G = (X,Y,E) is called bi-star convex bipartite
if there is an associated star T1 = (X,F ), and T2 = (Y, F ′) such that for each
vertex u in Y , its neighborhood NG(u) induces a subtree of T1 and for each vertex
v in X, its neighborhood NG(v) induces a subtree of T2.

Due to the page constraint, we ignore some of the proofs. For complete details,
readers can refer to arXiv.

2 Structural Results

In this section, we shall present a structural characterization of star convex
bipartite graphs with respect to their diameter. We shall fix the following nota-
tion to present our results. For a star convex bipartite graph G with bi-partition
(X,Y ), let X = {u1, u2, . . . , um} and Y = {v1, v2, . . . , vn}. By T , we denote an
associated star in X.

Lemma 1. Let G(X,Y ) be a star convex bipartite graph with convexity on X.
If δ(GY ) ≥ 2, then there exists a vertex u ∈ X universal to Y .
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Proof. We know that G is a star convex bipartite graph with convexity on X.
Since δ(GY ) ≥ 2, each vertex in Y must be adjacent to the root of T , say u ∈ X,
to satisfy the convexity property on X. This shows that u is universal to Y . ��
We show that the diameter of G is bounded, in particular diam(G) is at most 6.

Theorem 1. Let G(X,Y ) be a connected star convex bipartite graph with con-
vexity on X (Y ). Then, diam(G) is at most 6.

Proof. Let G be a star convex bipartite graph with convexity on X and ut be the
root of an associated star T . Assume on the contrary, that diam(G) is at least
7. Without loss of generality, we assume that diam(G) is 7. Since diam(G) is 7,
there exists a pair of vertices u, v ∈ V (G) whose distance is 7. This implies that
there exists an induced P8 in G. Let the P8 be (u = z1, z2, z3, z4, z5, z6, z7, z8 =
v). Without loss of generality, we partition the vertices of P8 as follows; X ′ =
{z1, z3, z5, z7} and Y ′ = {z2, z4, z6, z8}. Case 1: ut ∈ X ′. Let H(X ′, Y ′) be the
graph induced on V (P8). We observe that δ(HY ′ − z8) ≥ 2. Note that there is
no u ∈ V (HX′) such that u is universal to V (HY ′), which is a contradiction
to Lemma 1. Case 2: ut /∈ X ′. Since G is a star convex bipartite graph with
convexity on X and the vertices of HY ′ − z8 have minimum degree two, they
must be adjacent to the root vertex ut. Clearly, the distance between u, v is at
most four, which is a contradiction. Both cases clearly show that the diameter
of G is at most six. ��
Theorem 2. A graph G(X,Y ) is star convex bipartite with diameter at most 2
if and only if G(X,Y ) is complete bipartite.

Corollary 1. For star convex bipartite graphs with diameter 2, the Hamiltonian
cycle (path) problem is polynomial-time solvable.

Lemma 2. Let G(X,Y ) be a star convex bipartite graph with diameter 5. Then,
there exists at least one pendant vertex in Y .

Proof. Assume, on the contrary, that there does not exist a pendent vertex in Y .
This implies that δ(GY ) ≥ 2. We know from Lemma 1 that there exists a vertex
x ∈ X universal to Y . We now argue that the distance between any arbitrary
pair of vertices u, v in G is at most 4. We observe that u, v can be from the
same partition or from different partitions. Case 1: u, v ∈ Y . It is easy to see
that the distance between u and v is 2. Case 2: u, v ∈ X. Since G is connected,
there exists u′ ∈ Y such that u′ ∈ NG(u). Similarly, there exists v′ ∈ Y such that
v′ ∈ NG(v). From Case 1, we know that the distance between u′ and v′ is 2. This
shows that d(u, v) ≤ 4. Case 3: u ∈ X and v ∈ Y . Since G is connected, there
exists u′ ∈ Y such that u′ ∈ NG(u). From Case 1, we know that the distance
between u′ and v is 2. This shows that d(u, v) ≤ 3. We know that diam(G) is 5.
Since diam(G) is 5, there must exist a pair u, v in G whose distance is 5. Since
we arrive at a contradiction in all cases, it follows that our assumption is wrong.
Therefore, there exists at least one pendant vertex in Y . ��
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Lemma 3. Let G(X,Y ) be a star convex bipartite graph with convexity on X.
If there exists a universal vertex in X, then diam(G) is at most 4.

Lemma 4. Let G(X,Y ) be a star convex bipartite graph with diameter 6. Then,
there exist at least two pendant vertices y1, y2 in Y .

Proof. On the contrary, assume that at most one pendant vertex exists in Y .
Case 1: There does not exist a pendant vertex in Y . Proof of this case is similar
to the proof of Lemma 2. Case 2: There exists exactly one pendant vertex in Y .
Let the pendant vertex be u. On removing u from G, δ(GY ) becomes at least 2.
An argument similar to the proof of Lemma 2 shows that the diameter of G − u
is at most 4. Adding u to G can increase the diameter of G by at most one. This
shows that diam(G) is at most 5, a contradiction. ��
Lemma 5. Let G(X,Y ) be a star convex bipartite graph with convexity on X.
If there exists a universal vertex in both X and Y , then diam(G) is at most 3.

2.1 Hamiltonian Cycle in Star Convex Bipartite Graphs

It is known from [2] that the Hamiltonian path problem in chordal bipartite
graph G(X,Y ) with |X| = |Y | is NP-complete. Using this reduction, we show
that the Hamiltonian cycle problem is NP-complete on star convex bipartite
graphs with diameter 3. Note that chordal bipartite graphs which are bipartite
graphs that forbid induced cycles of length at least six.

Theorem 3. For star convex bipartite graphs with diameter 3, the Hamiltonian
cycle problem is NP-complete.

Proof. We present a deterministic polynomial-time reduction that reduces an
instance of chordal bipartite graph G(X,Y ) with |X| = |Y | to a corresponding
star convex bipartite graph with diameter 3 instance G′(X ′, Y ′). The mapping
of an instance of G to the corresponding instance of G′ is as follows: V (G′) =
X ′ ∪ Y ′, X ′ = {vi | vi ∈ X, 1 ≤ i ≤ |X|} ∪ {v|X|+1, v|X|+2, v|X|+3}, Y ′ = {uj |
uj ∈ Y, 1 ≤ j ≤ |Y |} ∪ {u|Y |+1, u|Y |+2, u|Y |+3} and E(G′) = E(G) ∪ E′, E′ =
{{v|X|+2, u|Y |+1}, {v|X|+2, u|Y |+3}, {v|X|+3, u|Y |+3}} ∪ {{v|X|+1, uj} | v|X|+1 ∈
X ′, uj ∈ Y ′, 1 ≤ j ≤ |Y ′|}} ∪ {{u|Y |+2, vi} | u|Y |+2 ∈ Y ′, vi ∈ X ′, 1 ≤ i ≤
|X ′|}}.

We show that G′(X ′, Y ′) is a star convex bipartite graph with diameter 3
and convexity on X ′. We first show that diam(G′) is 3. Note that v|X|+1 is
universal to Y ′ and u|Y |+2 is universal to X ′. From Lemma 5, it is clear that
diam(G′) is at most 3. In particular, the distance between v|X|+3 and u|Y |+1 is
3. Therefore, diam(G′) is 3. We now argue that G′ is a star convex bipartite
graph with convexity on X ′. The star T ′ on X ′ has root vertex v|X|+1 and
leaves v1, . . . , v|X|, v|X|+2, v|X|+3. For any vertex uj ∈ Y ′ in G′, its neighborhood
NG′(uj) = NG(uj) ∪ {v|X|+1} is a subtree of T ′. This implies that G′ is a star
convex bipartite graph with convexity on X ′. Clearly, it is a polynomial-time
reduction as we add only six vertices. We claim that G is a yes-instance of the
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Hamiltonian path problem if and only if G′ is a yes-instance of the Hamiltonian
cycle problem.

(⇒) |X| = |Y |, any Hamiltonian path P in G must have one endpoint in
X and another in Y . Suppose that there exists a Hamiltonian path P in G.
Let P = (v1, u1, v2, u2, . . . , v|X|−1, u|Y |−1, v|X|, u|Y |). By the construction of G′,
we know that exists a path P ′ = (v|X|+1, u|Y |+1, v|X|+2, u|Y |+3, v|X|+3, u|Y |+2)
such that it visits all the six newly added vertices. Since v|X|+1 and u|Y |+2

are universal to Y and X, respectively, we join the paths P and P ′ to get the
Hamiltonian cycle in G′. C = (v1, u1, v2, u2, . . . , v|X|−1, u|Y |−1, v|X|, u|Y |, v|X|+1,
u|Y |+1, v|X|+2, u|Y |+3, v|X|+3, u|Y |+2, v1).

(⇐) We know that dG′(v|X|+3) = 2 and dG′(u|Y |+1) = 2. Since NG′(v|X|+3) =
{u|Y |+2, u|Y |+3} and NG′(u|Y |+1) = {v|X|+1, v|X|+2}, any Hamiltonian cycle
must contain P ′ = (v|X|+1, u|Y |+1, v|X|+2, u|Y |+3, v|X|+3, u|Y |+2) as a subpath.
Note that V (G) = V (G′)\V (P ′). We remove P ′ from C to get a Hamiltonian
path in G. ��

Note that the constructed graph G′ has two vertices, v|X|+1 is universal
to Y ′ and u|Y |+2 is universal to X ′. This shows that G′ is a bi-star convex
bipartite graphs. Therefore, for bi-star convex bipartite graphs with diameter 3,
the Hamiltonian cycle problem is NP-complete.

Theorem 4. If G is a star convex bipartite graph with diameter 5 (diameter 6),
then G has no Hamiltonian cycle.

Proof. Follows from Lemma 2 and Lemma 4. Further, this can be answered in
polynomial time. ��

2.2 Hamiltonian Path in Star Convex Bipartite Graphs

In this section, we show that the Hamiltonian path problem is NP-complete
for star convex bipartite graphs with diameter 3, diameter 5, and diameter 6.
Since the necessity part is straight forward, we present the construction and the
sufficiency part of the proof of the NP-complete reductions.

Theorem 5. For star convex bipartite graphs with diameter 3, the Hamiltonian
path problem is NP-complete.

Proof. We present a reduction that reduces an instance of chordal bipartite graph
G(X,Y ) with |X| = |Y | to a corresponding instance of star convex bipartite
graph with diameter 3 G′(X ′, Y ′). The mapping of an instance of G to the corre-
sponding instance of G′ is as follows: V (G′) = X ′∪Y ′, X ′ = {vi | vi ∈ X, 1 ≤ i ≤
|X|} ∪ {v|X|+1, v|X|+2}, Y ′ = {uj | uj ∈ Y, 1 ≤ j ≤ |Y |} ∪ {u|Y |+1, u|Y |+2} and
E(G′) = E(G)∪E′, E′ = {{v|X|+1, u|Y |+1}, {v|X|+1, u|Y |+2}, {v|X|+2, u|Y |+2}}∪
{{v|X|+1, uj} | v|X|+1 ∈ X ′, uj ∈ Y ′, 1 ≤ j ≤ |Y |}} ∪ {{u|Y |+2, vi} | u|Y |+2 ∈
Y ′, vj ∈ X ′, 1 ≤ i ≤ |X|}}.

It is easy to see that the generated instances are star convex bipartite graphs
with convexity on X ′ and diam(G′) is three, due to the presence of the universal
in X. We skip the proof of the necessity part as it is easy.
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(⇐) Since v|X|+2 and u|Y |+1 are pendant vertices, any Hamiltonian path
in G′ must start at v|X|+2 and ends at u|Y |+1 or vice-versa. Without loss of
generality, assume that the Hamiltonian path P ′ starts at v|X|+2 and ends at
u|Y |+1. In particular, P ′ = (v|X|+2, u|Y |+2, v . . . , u, v|X|+1, u|Y |+1). Clearly, Pvu

is a Hamiltonian path in G. ��
Corollary 2. For bi-star convex bipartite graphs with diameter 3, the Hamilto-
nian path problem is NP-complete.

Theorem 6. For star convex bipartite graphs with diameter 5, the Hamiltonian
path problem is NP-complete.

Remarks: We know that from Lemma 2 that star convex bipartite graphs with
diameter 5 have at least one pendant vertex. Note that the reduction instances
have exactly one pendant vertex. This shows that the presence of pendant ver-
tices makes the problem NP-hard.

Theorem 7. For star convex bipartite graphs with diameter 6, the Hamiltonian
path problem is NP-complete.

2.3 Domination and Its Variants on Star Convex Bipartite Graphs

2.3.1 Classical Complexity In this section, we prove that the complexity
of the dominating set problems for star convex bipartite graphs with diameter
3, 5 and 6 are NP-complete. Also, we present hardness results for some of the
variants of dominating set problems, such as connected dominating set and total
dominating set for star convex bipartite graphs with diameter 3, 5 and 6.

Theorem 8. For star convex bipartite graphs with diameter 3, the dominating
set problem is NP-complete.

Proof. It is known that the vertex cover problem (VC) on general graphs is
NP-complete, and this can be reduced in polynomial time to dominating set
problem (DS) on star convex bipartite graphs with diameter 3 using the following
reduction. We construct a star convex bipartite graph G′(X ′, Y ′) with diameter
3 and convexity on X ′ from the given graph G(V,E) in polynomial-time. Let
n = |V (G)|, m = |E(G)| and E(G) = {e1, e1, . . . , em} . V (G′) = X ′ ∪ Y ′,
X ′ = X ′

1∪X ′
2∪{zm+1}, Y ′ = Y ′

1∪Y ′
2∪{un+1}. X ′

1 = {vi | ei ∈ E(G), 1 ≤ i ≤ m},
X ′

2 = {zi | ei ∈ E(G), 1 ≤ i ≤ m}, Y ′
1 = {uj | xj ∈ V (G), 1 ≤ j ≤ n},

Y ′
2 = {un+r+1|1 ≤ r ≤ 2m2 − m}, and associate each vertex un+1+r with a

distinct subset of two elements from X ′
1 ∪ X ′

2 arbitrarily. We now define the
edges of G′. For each edge ek = {xi, xj} ∈ E(G), we add the following edges
{ui, vk}, {ui, zk}, {uj , vk}, {uj , zk}}. Also, for each vertex un+r+1, 1 ≤ r ≤ 2m2−
m in Y ′

2 which we created for every pair of vertices {wi, wj}in X ′
1 ∪ X ′

2, we add
the following edges {wi, un+r+1} and {wj , un+r+1}. We make zm+1 universal
to Y ′.

We show that the constructed graph G′(X ′, Y ′) is a star convex bipartite
graph with diameter 3 and convexity on X ′. Since zm+1 ∈ X ′ is universal to Y ′,
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the distance between any pair of vertices in Y ′ is two. Similarly, d(vi, uj), vi ∈
X ′, uj ∈ Y ′ is at most 3. By our construction, we know that each pair of vertices
in X ′ has a common neighbor. Clearly, the distance between any pair of vertices
in X ′ is two. We know that G′ is not a complete bipartite graph (Theorem
2); therefore, diam(G′) is 3. We now show that G′ is a star convex bipartite
graph with convexity on X ′. The star T ′ on X ′ has root vertex zm+1 and leaves
v1, . . . , vm, z1, . . . , zm. For any vertex uj ∈ Y ′ and dG′(uj) ≥ 2, its neighborhood
contains the vertex zm+1 which forms a subtree of T ′. This implies that G′ is
a star convex bipartite graph with convexity on X ′. Clearly, it is a polynomial-
time reduction. We claim that G has a VC of size at most k if and only if G′

has a DS of size at most k′ = k + 1.
(⇒) Let S = {xj |1 ≤ j ≤ k} is a vertex cover of size k in G. Then we

construct the dominating set D of size k′ = k + 1 in G′ as follows: D = {uj |1 ≤
j ≤ k} ∪ {zm+1}. Since S is a vertex cover, for any edge ek = {xi, xj} ∈ E(G),
xi or xj is in S. Assume that xi ∈ S, we include ui to D (vk and zk are adjacent
to ui in G′). By our construction, every vertex vi ∈ X ′

1 and zi ∈ X ′
2 are adjacent

to at least one vertex from {ui | 1 ≤ j ≤ k} and every vertex in Y ′
1 and Y ′

2 is
adjacent to zm+1. Since un+1 is a pendant vertex, we include its neighbor zm+1

to D. This implies that G′ has a DS of size at most k′ = k + 1.
(⇐) We know from our construction that any dominating set D must contain

either zm+1 or un+1. Suppose D contains un+1, then we replace un+1 by zm+1

to get a dominating set of same size, since un+1 is a pendant vertex. Suppose
D contains any vertex from Y ′

2 then we replace it with zm+1, since zm+1 is
universal to Y ′

2 , and the vertices of Y ′
2 can dominate only two vertices of X ′

1. We
now argue that any dominating set of G′ does not contain vertices from X ′

1 and
X ′

2. For an edge ek = {xi, xj} ∈ E(G), D can contain Case 1: only one vertex
from {vk, zk}, Case 2: both the vertex from {vk, zk}. Case 1: D contains any one
of the vertices from {vk, zk}, say vk. This implies that D contain at most one
vertex from {ui, uj}. Suppose D contains both ui and uj , then vk is redundant
in D, a contradiction to the minimality of D. Without loss of generality, assume
that D contains ui to dominate zk. Since vk is only adjacent to ui and uj , we
can replace vk by uj in D to get a dominating set of the same size. Case 2: D
contains both the vertices from {vk, zk}. Since vk and zk are only adjacent to
ui and uj , we can replace vk(zk) by ui(uj) in D to get a dominating set of the
same size. It is clear from both cases that D does not contain vertices from X ′

1

and X ′
2. We use Y ′

1 vertices to dominate X ′
1 and X ′

2. Therefore, without loss of
generality we assume that D = {uj |1 ≤ j ≤ k}∪{zm+1} is a DS of size k′ = k+1
in G′. It is easy to see that S = {xj |1 ≤ j ≤ k} is a vertex cover of size k in G. ��
Corollary 3. For star convex bipartite graphs with diameter 3, CDS (TDS) is
NP-complete.

For the following results we present only the construction as the proofs are
similar to Theorem 8.

Theorem 9. For star convex bipartite graphs with diameter 5, the dominating
set problem is NP-complete.
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Proof. We construct a star convex bipartite graph G′(X ′, Y ′) with diameter
5 and convexity on X ′ from the given graph G(V,E) in polynomial-time. Let
n = |V (G)|, m = |E(G)| and E(G) = {e1, e1, . . . , em} . V (G′) = X ′ ∪ Y ′,
X ′ = X ′

1 ∪ X ′
2 ∪ X ′

3, Y ′ = Y ′
1 ∪ Y ′

2 . X ′
1 = {vi | ei ∈ E(G), 1 ≤ i ≤

m}, X ′
2 = {zi | ei ∈ E(G), 1 ≤ i ≤ m}, X ′

3 = {zm+1, zm+2, zm+3},
Y ′
1 = {uj | xj ∈ V (G), 1 ≤ j ≤ n}, Y ′

2 = {un+1, un+2, un+3, un+4}
and E(G′) = E1 ∪ E2, E1 = {{ui, vk}, {ui, zk}, {uj , vk}, {uj , zk}}|ek =
{xi, xj} ∈ E(G), 1 ≤ k ≤ m, 1 ≤ i ≤ n, 1 ≤ j ≤ n},
E2 = {{zm+1, un+1}, {zm+1, un+2}, {zm+1, un+3}, {zm+2, un+1}, {zm+3, un+2},
{zm+3, un+3}, {zm+3, un+4}} ∪ {{zm+3, uj} | zm+3 ∈ X ′

3, uj ∈ Y ′
1 , 1 ≤ j ≤ n}.

We show that the constructed graph G′(X ′, Y ′) is a star convex bipartite graph
with diameter 5 and convexity on X ′. By our construction, we know that
d(vi, zm+3), 1 ≤ i ≤ m is two. Similarly, d(zm+3, un+3) is three. This shows
that d(vi, un+3) is five. Therefore diam(G′) is 5. We now show that G′ is a star
convex bipartite graph with convexity on X ′. The star T ′ on X ′ has root vertex
zm+3 and leaves v1, . . . , vm, z1, . . . , zm, zm+1, zm+2. For any vertex uj ∈ Y ′ and
dG′(uj) ≥ 2, its neighborhood contains the vertex zm+3 which forms a subtree
of T ′. This implies that G′ is a star convex bipartite graph with convexity on
X ′. Clearly, it is a polynomial-time reduction. We claim that G has a VC of size
at most k if and only if G′ has a DS of size at most k′ = k + 3. ��
Corollary 4. For star convex bipartite graphs with diameter 5, CDS (TDS) is
NP-complete.

Observe that the dominating set D obtained from Theorem 9 is also a connected
(total) dominating set.

Theorem 10. For star convex bipartite graphs with diameter 6, the dominating
set problem is NP-complete.

Corollary 5. For star convex bipartite graphs with diameter 6, CDS (TDS) is
NP-complete.

From Corollary 2.3.1, 4, and 5, it is clear that the connected dominating set and
total dominating set for star convex bipartite graphs with diameter 3,5 and 6 are
NP-complete. We now show that the complexity of the outer-connected domi-
nating set and dominating biclique problems for star convex bipartite graphs are
NP-complete. Further, we show that for bounded degree star-convex bipartite
graphs, the outer-connected dominating set problem is linear-time solvable.

Theorem 11. For star convex bipartite graphs, the outer-connected dominating
set problem is NP-complete.

Theorem 12. For star convex bipartite graphs, the dominating biclique problem
is NP-complete.
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2.3.2 Parameterized Complexity In this section, we show that the param-
eterized version of dominating set problem with solution size as the parameter
for star convex bipartite graphs is W[2]-hard.

Theorem 13. For star convex bipartite graphs, the parameterized dominating
set problem is W[2]-hard when the parameter is the solution size.

Proof. We give a polynomial-time reduction from the parameterized version of
dominating set problem in general graphs. We map an instance (G, k) of the
parameterized version of dominating set problem on general graphs to the corre-
sponding star convex bipartite instance (G′, k′) as follows: V (G′) = X ′ ∪ Y ′,
X ′ = X ′

1 ∪ {z1}, Y ′ = Y ′
1 ∪ {z2}. X ′

1 = {vi | xi ∈ V (G), 1 ≤ i ≤ n},
Y ′
1 = {ui | xi ∈ V (G), 1 ≤ i ≤ n}, and E(G′) = E1 ∪ E2 ∪E3 ∪ {{z1, z2}}, E1 =

{{vi, uj}, {ui, vj}, |{xi, xj} ∈ E(G), i �= j, 1 ≤ i ≤ |V (G)|, 1 ≤ j ≤ |V (G)|},
E2 = {{vi, ui}|xi ∈ V (G)} and E3 = {{z1, ui}|ui ∈ Y ′}. From the above con-
struction, we know that z1 is universal to Y ′. The star T ′ on X ′ has root vertex
z1 and leaves v1, . . . , vn. For any vertex uj ∈ Y ′ and the degree is at least two,
then its neighborhood contains the vertex z1, which forms a subtree of T ′. This
implies that G′ is a star convex bipartite graph with convexity on X ′. Clearly,
it is a polynomial-time reduction. We show that G has a dominating set of size
at most k if and only if G′ has a dominating set of size at most k′ = k + 1.

(⇒) Let D = {xi|1 ≤ i ≤ k} be a DS in G. If xi is in D, then we include
ui ∈ Y ′ to DS of G′. Since z1 is universal, it dominates Y ′. Thus D′ = {ui|xi ∈
D, 1 ≤ i ≤ k} ∪ {z1} is a DS of size K ′ = k + 1.

(⇐) Since z2 is a pendant vertex and it is adjacent to z1, any dominating set
D′ in G′ must contain either z1 or z2. Suppose D′ contains z2, then we replace
z2 by z1 to get a DS of the same size k′. Since z1 is universal, Y ′ is dominated.
Now D′ includes any vertices of Y ′ so as to dominate X ′. Suppose D′ includes
vi. By our construction there exists an edge {xi, xj} in G and vi is adjacent to
ui and uj . Since Y ′ is already dominated, we replace vi by either ui or uj to get
a DS of the same size k′. We construct D as follows: Suppose D′ contains ui,
then we include xi to D. Clearly, the size of D is at most k, and D is a DS in G.
Therefore, the parameterized version of dominating set problem on star convex
bipartite graphs with solution size as a parameter is W[2]-hard. ��
Theorem 14. For star convex bipartite graphs, the parameterized outer-
connected dominating set problem (dominating biclique problem) is W[2]-hard
when the parameter is the solution size.

Proof. Proof is similar to Theorem 11 (Theorem 12). ��
Having shown that the parameterized version dominating set problem on star
convex bipartite graphs is W[2]-hard. A natural direction is to study the star con-
vex bipartite graphs with some restrictions. One possible direction is to bound
the number of leaves in a star. This direction has been addressed by Arti Pandey
et al. in [8] for the dominating set problem, where the degree of a universal vertex
is bounded. We adopt the algorithm presented in [9] to show the parameterized
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dominating set problem is FPT. Since the number of leaves is bounded by l,
where l is a parameter, G does not contain Kl,l as a subgraph. Thus the dom-
inating set problem is FPT when the parameter is the number leaves in an
associated star.

2.4 Hamiltonicity in Split Graphs

In this section, we present some hardness results of HCYCLE and HPATH for
split graphs, and we use these results to show that HCYCLE (HPATH) is NP-
complete for star (comb) convex split graphs. We know that for strongly chordal
split graphs, HCYCLE is NP-complete [2]. It is easy to see that the reduction
instances are strongly chordal split graphs with |K| = |I|. Since strongly chordal
split graphs are split graphs, HCYCLE for split graphs G(K, I) with |K| = |I|
is NP-complete. Similarly, for split graphs G(K, I) with |K| = |I| − 1, HPATH
is NP-complete [11]. In this paper, we consider other cases of |K| and |I| to
study the complexity of HCYCLE and HPATH in split graphs. For HCYCLE we
consider the case |K| > |I| and for HPATH we consider |K| = |I| and |K| > |I|.
We show that for all these cases, HCYCLE and HPATH are NP-complete, and
the results of this section shall be used in subsequent sections.

1. HPATH is NP-complete for split graphs G(K, I) with |K| = |I|, and |K| > |I|
We observe that reduction instances are K1,5-free split graphs

2. HCYCLE is NP-complete for split graphs G(K, I) with |K| > |I|. The reduc-
tion instances are K1,5-free split graphs

We omit the proof of above two results (1) and (2).

2.5 Hamiltonicity in Star Convex Split Graphs

In this section, we shall prove the HPATH and the HYCLE problems are NP-
complete on star convex split graphs with convexity on K and I.

2.5.1 Star Convex Split Graphs with Convexity on I

Theorem 15. For star convex split graphs G(K, I) with convexity on I, the
Hamiltonian cycle problem is NP-complete.

Proof. We proved the Hamiltonian cycle problem in split graph G(K, I) such
that |K| > |I| is NP-complete (Sect. 2.4). We construct a star convex split graph
H(K ′, I ′) with convexity on I ′ from the given split graph G(K, I) such that
|K| > |I| in polynomial-time. V (H) = K ′ ∪ I ′ and K ′ = K, I ′ = {y|I|+1} ∪ {yj |
yj ∈ I, 1 ≤ j ≤ |I|}, and E(H) = E′ ∪ E(G), E′ = {{y|I|+1, xi} | y|I|+1 ∈
I ′, xi ∈ K ′, 1 ≤ i ≤ |K ′|}.

The star T on I ′ has root vertex y|I|+1 and leaves y1, . . . , y|I|. It is easy to
see that, for any vertex xi ∈ K ′ in H, its neighborhood induces a subtree in T .
We claim that G is a yes-instance of the Hamiltonian cycle problem if and only
if H is a yes-instance of the Hamiltonian cycle problem.
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(⇒) Forward direction of the proof of correctness is trivial.
(⇐) By our construction, the vertex y|I|+1 is adjacent to all the vertices of K ′

in H. This implies that any Hamiltonian cycle must contain P3 = (xi, y|I|+1, xj)
for some i, j ≤ |K| as a subpath. Suppose that there exists a Hamiltonian cycle
in H. Since {xi, xj} ∈ E(G), we remove the vertex y|I|+1 from the cycle and join
the vertices xi, xj to obtain the Hamiltonian cycle in G. ��
Insights into reduction instances of Theorem 15
Note that the graph considered for the reduction is K1,5-free split graph. We
have added the vertex y|I|+1 as part of the construction. Since y|I|+1 is the root
of the associated star T on I ′, each vertex in K ′ is adjacent to y|I|+1. A closer
look at the construction reveals that K1,5-free split graph instance becomes an
instance of K1,6-free star convex split graph due to the addition of y|I|+1. This
implies that for K1,6-free star convex split graphs with convexity on I, HCYCLE
is NP-complete. It is natural to study the complexity of HCYCLE in K1,5-free
star convex split graphs. Interestingly, HCYCLE on K1,5-free star convex split
graphs with convexity on I is polynomial-time solvable, which we prove next.

Theorem 16. For K1,5-free star convex split graphs with convexity on I, the
Hamiltonian cycle problem is polynomial-time solvable.

Proof. We know that for K1,4-free split graphs with |K| = |I|, HCYCLE is
polynomial-time solvable [10]. We modify K1,5-free star convex split graph
instances to K1,4-free split graph instances by removing the root vertex from
the associated star T on I. Note that K1,4-free split graph instances has the
property |K| > |I|.
Claim. Let G(K, I) be a K1,5-free star convex split graph and H(K ′, I ′) be the
modified instance of G (K1,4-free split graph). G has a Hamiltonian cycle if and
only if H has a Hamiltonian cycle.

Proof. (⇒) Assume that G has a Hamiltonian cycle. Let u be the root of the asso-
ciated star. Observe that any Hamiltonian cycle must contain P3 = (xi, u, xj)
as a subpath. Note that xi and xj are clique vertices. We remove the vertex u,
and join xi and xj to get Hamiltonian cycle in H.

(⇐) We know that H has a Hamiltonian cycle. Since |K ′| > |I ′|, any Hamil-
tonian cycle C must contain a clique edge. Let the clique edge be {xi, xj}. Since
the root u is adjacent to both xi and xj , we add u to C (xi, u, xj) to obtain a
Hamiltonian cycle C ′ in G. ��

Theorem 15 and Theorem 16 establishes a dichotomy for HCYCLE in star
convex split graphs with convexity on I, i.e. for K1,5-free star convex split graphs
with convexity on I, HCYCLE is polynomial-time solvable whereas for K1,6-free
star convex split graphs with convexity on I, HCYCLE is NP-complete.

It is natural to investigate the complexity of HCYCLE with convexity on K
and HPATH with convexity on K(I). Further, one can explore the complexity
of HCYCLE and HPATH for other convex properties such as comb, triad, and
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circular convex. In this paper, we shall show for comb convex split graphs with
convexity on K(I), HCYCLE and HPATH are NP-complete. We first show that
the Hamiltonian path problem in split graphs with two pendant vertices is NP-
complete. We use this result to show that the Hamiltonian path problem in star
convex split graphs with convexity on I is NP-complete.

We use a construction similar to the construction presented in Theorem 15 to
prove the following results.

1. For split graphs G(K, I) such that |K| = |I| with two pendant vertices, the
Hamiltonian path problem is NP-complete.

2. For star convex split graphs G(K, I) with convexity on I, the Hamiltonian
path problem is NP-complete.

3. For star convex split graphs G(K, I) with convexity on K, the Hamiltonian
cycle (path) problem is NP-complete.

4. For comb convex split graphs G(K, I) with convexity on I, the Hamiltonian
cycle (path) problem is NP-complete and with convexity on K, the Hamilto-
nian cycle (path) problem is NP-complete.

We shall present the reduction for the the Hamiltonian path problem on star
(comb) convex split graphs.

Theorem 17. For star convex split graphs G(K, I) with convexity on K, the
Hamiltonian path problem is NP-complete.

Proof. The Hamiltonian path problem in split graph G(K, I) is such that |K| =
|I| is NP-complete. We now show that the Hamiltonian path problem in the
star convex split graph H(K, I) is NP-complete. We present a deterministic
polynomial-time reduction that reduces an instance of split graph G(K, I) such
that |K| = |I| to a corresponding star convex split graph instance H(K ′, I ′). We
map an instance of G to the corresponding instance of H as follows: V (H) =
K ′ ∪ I ′, K ′ = {x|K|+1} ∪ {xi | xi ∈ K, 1 ≤ i ≤ |K|}, I ′ = {y|I|+1} ∪ {yj | yj ∈
I, 1 ≤ j ≤ |I|} and E(H) = E′ ∪ E(G), E′ = {{x|K|+1, yj} | x|K|+1 ∈ K, yj ∈
I, 1 ≤ j ≤ |I| + 1}. We now show that H is a star convex split graph H(K ′, I ′)
convexity on K ′. The star T on K ′ has root vertex x|K|+1 and leaves x1, . . . , x|K|.
For any vertex yj ∈ I ′ in H, its neighborhood NH(yj) = NG(yj) ∪ {x|K|+1} is a
subtree of T . This implies that H is a star convex split graph with convexity on
K ′. (⇒) We skip the proof of necessity as it is easy. (⇐) Since y|I|+1 is a pendant
vertex, any Hamiltonian path in H must start (end) at y|I|+1. Since x|K|+1 is
the only neighbor of y|I|+1, any Hamiltonian path that starts at y(|I|+1) must
contain P2 = (y|I|+1, x|K|+1) as a subpath. Without loss of generality, assume
that the Hamiltonian path starts at y|I|+1. We remove P2 = (y|I|+1, x|K|+1) to
obtain the Hamiltonian path in G. ��
Theorem 18. For comb convex split graphs G(K, I) with convexity on K, the
Hamiltonian path problem is NP-complete.
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Proof. We reduce the Hamiltonian path problem in split graphs with |K| =
|I| to Hamiltonian path problem in comb convex split graphs with convex-
ity on K as follows. For a given instance of split graph G(K, I) such that
|K| = |I|, we add 2|K| vertices such that each partition receives |K| ver-
tices. V (H) = K ′ ∪ I ′, K ′ = K ∪ {x|K|+1, x|K|+2, . . . , x|K|+|K|−1, x|K|+|K|},
I ′ = I ∪ {y|K|+1, y|K|+2, . . . , y|K|+|K|−1, y|K|+|K|} and E(H) = E1 ∪ E2 ∪ E3 ∪
E4 ∪ E(G), E1 = {{x|K|+i, yj} | x|K|+i ∈ K, yj ∈ I, 1 ≤ i ≤ |K|, 1 ≤
j ≤ |I|}, E2 = {{x|K|+i, y|K|+i} | x|K|+i ∈ K, y|K|+i ∈ I, 1 ≤ i ≤ |K|},
E3 = {{x|k|+i, y|k|+i−1} | x|K|+i ∈ K, y|K|+i−1 ∈ I, 2 ≤ i ≤ |K|}, E4 =
{{xi, xj} | xi ∈ K,xj ∈ K, i �= j, |K| + 1 ≤ i ≤ 2|K|, 1 ≤ j ≤ 2|K|}. The comb
T on K ′ has backbone {x|K|+1, x|K|+2, . . . , x|K|+|K|} and teeth x1, x2, . . . , x|K|.
For any vertex yj ∈ I, 1 ≤ j ≤ |I|, its neighborhood NH(yj) = NG(yj)∪{x|K|+i |
1 ≤ i ≤ |K|} is a subtree on T . For a comb, any subset of teeth and the backbone
form a subtree. Similarly, for any vertex yj ∈ I, |I|+1 ≤ j ≤ 2|I|−1, its neighbor-
hood is NH(yj) = {xj , xj+1}. We observe that each yj ∈ I, |I|+1 ≤ j ≤ 2|I| − 1
is adjacent only to two adjacent vertices in the backbone. This shows that this
forms a subtree. It is easy to see that the neighborhood of y2|I| induces a subtree
in T .

(⇒) Since |K| = |I|, at least one endpoint of any Hamiltonian path in G
must be in the partition I. Suppose that there exists a Hamiltonian path P in
G. Let the path be P = (x1, y1, x2, y2, . . . , xi, xj , . . . , x|K|−1, y|I|−1, x|K|, y|I|).
From the construction of H, we observe that the graph induced on the set
{x|K|+1, x|K|+2, . . . , x|K|+|K|, y|K|+1, y|K|+2, . . . , y|K|+|K|} is a path P ′. In par-
ticular, the path P ′ starts at the vertex x|K|+1. Since x|K|+1 is adjacent to all
the vertices of I, we join the path P ′ to P to obtain a Hamiltonian path in H.
The Hamiltonian path Q = (x1Py|I|, x|K|+1P

′).
(⇐) By our construction, the vertex y|K|+|K| is a pendant ver-

tex. Any Hamiltonian path Q in H must start at y|K|+|K|. Since the
degree of y|I|+1, . . . , y|I|+|I| is two, any Hamiltonian path must contain
Q1 = (y|I|+|I|, x|K|+|K|, y|I|+|I|−1, x|K|+|K|−1, . . . , y|I|+2, x|K|+2, y|I|+1, x|K|+1)
as a subpath. Suppose if H has a Hamiltonian path, then there exists a sim-
ple path Q2 that visits V (H)\V (Q′) exactly once. We know that the graph
induced on V (H)\V (Q1) is the same as G. Hence, Q2 is a Hamiltonian path in
G. ��

3 Conclusion

In this paper, we made an attempt to reduce the gap between P vs. NPC for
the problems Hamiltonian cycle (path), dominating set problem (DS), and its
variants (CDS, TDS, OCDS, DB) for star convex bipartite graphs with diame-
ter as a parameter. Also, we have shown NP-completeness of the Hamiltonian
cycle and Hamiltonian path problem for bi-star convex bipartite graphs. On the
parameterized front, we have shown that the dominating set problem is W[2]-
hard for star convex bipartite graphs. We believe that the diameter can be used
as a parameter to explore other well-known combinatorial problems restricted
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to star convex bipartite graphs. Further, for split graphs, one can consider other
structures of the trees, such as path and triad, to investigate the complexity of
the HCYCLE and HPATH.
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Abstract. A graph that is isomorphic to K1,r for some r ≥ 0 is called a
star. A partition {V1, . . . , Vk} of the vertex set of a graph G into k sets is
called a star partition of G of size k if each set in the partition induces a
star. The minimum k for which a graph G admits a star partition of size k
is called the star partition number of G and is denoted by sp(G). Given a
graph G, the problem Min StarPartition asks for a star partition of G
of minimum size. Given a graph G and a positive integer k, its decision
version StarPartition asks whether sp(G) ≤ k. StarPartition is
NP-complete for many natural graph classes [25]. In particular, it is
NP-complete for K1,5-free split graphs. In this paper, we study the star
partition problems on split graphs, with a special focus on the degrees of
vertices in the independent part. We call a split graph (a) an r-split graph
if each vertex in the independent part has degree r and (b) an (r1, . . . , rk)-
split graph if each vertex in the independent part has degree equal to
one of r1, . . . , rk. We obtain the following NP-completeness results: (1)
StarPartition is NP-complete even for K1,5-free 2-split graphs. (2)
Deciding whether sp(G) = �ω(G)/2� is NP-complete even for K1,6-free
2-split graph (sp(G) ≥ �ω(G)/2� for any graph G). (3) StarPartition
is NP-complete even for (1, r)-split graphs (r ≥ 2 and is fixed). We obtain
the following fixed parameter (in)tractability results (in each case, k
stands for the parameter) (1) Given any connected split graph G and an
integer k ≥ 1, deciding whether sp(G) ≤ k is fixed parameter tractable
and has an O((2k)2k+1n) time algorithm. (2) Given a graph G and an
integer k ≥ 0, deciding whether sp(G) ≤ �ω(G)/2� + k is para-NP-
hard even when restricted to either (a) K1,6-free (0, 2)-split graphs or
(b) K1,6-free (0, 1, 3)-split graphs. (3) Given a graph G and an integer
k ≥ 0, the problem of deciding whether sp(G) ≤ ω(G) − k is W [1]-hard
even for (1, 2)-split graphs and lies in W [3] for connected split graphs
(sp(G) ≤ ω(G) for any connected split graph G). We also obtain the
following polynomial time algorithms: (1) 3/2-approximation algorithms
for several subclasses of 2-split graphs. (2) A linear time algorithm for
(0, 1)-split graphs; in particular, for any 1-split graph G, we prove that
sp(G) = max(�ω(G)/2�, α(G2)). Most of these results are obtained by an
elegant framework that we have developed for the study of star partition
on split graphs. Using this, we also obtain a simple characterization for
any connected split graph G having sp(G) = ω(G).
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1 Introduction

A graph is called a star if it is isomorphic to the complete bipartite graph K1,r

for some r ≥ 0; please see Fig. 1. When a graph models a network, like a road or
computer network, each induced subgraph that is a star corresponds to a sub-
network that is a star network. The center of an induced star in such a graph
potentially corresponds, in the underlying network, to either a bottleneck or a
point that is desirable for locating some facilities; this is especially the case when
the star has two or more non-center vertices. These practical considerations as
well as their combinatorial appeal motivate a study of two optimization prob-
lems, namely MinStarCover and MinStarPartition, that will be defined
below.

Fig. 1. Some examples of stars.

G = F4

(i)

(ii)

Fig. 2. The friendship graph G = F4 along with (i) an optimal star cover and (ii) an
optimal star partition of it; thus sc(G) = 2 and sp(G) = 5.

By extension, any subset S of the vertex set V of a graph G = (V,E) is called
a star of G if the subgraph induced by S is a star. A collection C = {V1, . . . , Vk}
of stars in G is called a star cover of G if V1 ∪ . . . ∪ Vk = V . A star cover C
of G is called a star partition of G if it is also a partition of V . A star cover C
consisting of k distinct stars of G is called a star cover of G of size k. The size
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of a star partition is defined similarly. The minimum k for which G admits a
star cover of size k is called the star cover number of G and is denoted by sc(G).
The minimum k for which G admits a star partition of size k is called the star
partition number of G and is denoted by sp(G). For instance, the graph G in
Fig. 2 has sc(G) = 2 and sp(G) = 5.

In this paper, we study the following optimization problems and their decision
versions, especially on split graphs.

MinStarCover
Input: A graph G.
Goal: A minimum star cover of G.

MinStarPartition
Input: A graph G.
Goal: A minimum star partition of G.

We study the above problems on split graphs, with a special focus on those
split graphs for which each vertex in the independent part has degree at most
r for a small constant r, like 1 ≤ r ≤ 3. An investigation in this direction is
motivated by the NP-hardness of the problems for K1,5-free split graphs [25] in
which case the independent degrees of the vertices in the clique part are bounded
by a small constant.

Incidentally, split graphs and stars are intimately related in that every split
graph is the intersection graph of substars of some star [16].

Consider any graph G. Since a star partition of G is also a star cover of
G, we have sc(G) ≤ sp(G). Also the centers of any star cover of G form
a dominating set of G. So, we further have γ(G) ≤ sc(G) ≤ sp(G), where
γ(G) is the domination number of G. Thus, if G is triangle-free, we also have
sp(G) = sc(G) = γ(G); this easily follows from Proposition 1. Consequently,
MinStarCover and MinStarPartition are both polynomially equivalent
to the minimum dominating set problem on triangle-free graphs.

In general, sp(G) �= sc(G). For instance, for the friendship graph Fn = K1 ⊕
(nK2), where n ≥ 1, sc(Fn) = 2 but sp(G) = n + 1; see Fig. 2. By Theorem 1
below, sp(G) = sc(G) for any butterfly-free graph G. Interestingly, butterfly-free
graphs include both bipartite graphs and split graphs.

Theorem 1 ([17]). If G is a butterfly-free graph, then sp(G) = sc(G). More-
over, given a star cover of a butterfly-free graph G of size k, a star partition of
G of size at most k can be computed in time O(n2 log n).

Thus MinStarCover and MinStarPartition are polynomially equiva-
lent for butterfly-free graphs. In particular, this holds for split graphs. Thus, in
our study of split graphs, we will focus only on MinStarPartition. Neverthe-
less, we now provide a name to the decision versions of both the problems.

StarCover
Input: A graph G and a positive integer k.
Question: Does G have a star cover of size k?
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StarPartition
Input: A graph G and a positive integer k.
Question: Does G have a star partition of size k?

In [13], stars have been considered in the context of generalizing the well-
known maximum matching problem. It considers the problem of covering a max-
imum number of vertices of the input graph by vertex-disjoint induced stars of
the form K1,i, 1 ≤ i ≤ r, where r ≥ 1 is any fixed positive integer. This prob-
lem is shown to have a polynomial time algorithm in [13]. This algorithm leads
to a simple r

2 -approximation algorithm for MinStarPartition on K1,r-free
graphs, r ≥ 2, that remains NP-hard even for line graphs, a subclass of claw-free
graphs [25].

A summary of known results on StarCover and StarPartition follows.
Deciding whether an input graph can be covered by or partitioned into at
most two stars has polynomial time algorithms but deciding whether an input
graph can be covered by or partitioned into three stars is NP-complete [25];
these problems remain NP-complete even for K4-free graphs. Both StarCover
and StarPartition are NP-complete for (a) chordal bipartite graphs [20], (b)
(C4, C6, . . . , C2t)-free bipartite graphs for every fixed t ≥ 2 [9], (c) subcubic
bipartite planar graphs [11,25], (d) K1,5-free split graphs [25], (e) line graphs
(and hence claw-free graphs and, more generally K1,r-free graphs for any fixed
r ≥ 3) [7,25] and (f) co-tripartite graphs [15,25].

It is NP-hard to approximate MinStarPartition within n1/2−ε for all
ε > 0 [25,29]. Also both MinStarCover and MinStarPartition do not
have any polynomial time c log n-approximation algorithm for some constant
c > 0 unless P = NP [27]. Both the problems have a polynomial time (a) 2-
approximation algorithm for split graphs [25]; (b) O(log n)-approximation algo-
rithms for butterfly-free graphs [17]; (c) (d + 1)-approximation algorithm for
triangle-free graphs of degree at most d [27]. MinStarPartition has a poly-
nomial time r/2-approximation algorithm for K1,r-free graphs (which implies a
3/2-approximation algorithm for, for instance, line graphs and cobipartite graphs
as they are claw-free) [13,25]. MinStarCover has a polynomial time O(log n)-
approximation algorithm for any hereditary graph class for which the maximum
independent set problem has a polynomial time algorithm [17].

With the number of stars in a star cover/partition as the parameter, the prob-
lems are W [2]-complete for bipartite graphs and are fixed parameter tractable
for graphs of girth at least five [24]. Recently, the star partition problem has been
studied in the FPT framework with respect to structural parameters of graphs
such as vertex cover, treewidth and cliquewidth in [21]. The following results
are obtained: (1) with vertex cover number as the parameter, the star parti-
tion problem is fixed parameter tractable; (2) with treewidth as the parameter,
the problem is fixed parameter tractable on bounded treewidth graphs. (For an
introduction to parameterized complexity one may refer to [8].)

The problems have exact (a) 2nnO(1) time and exponential space algorithms
and (b) 3nnO(1) time and polynomial space algorithms [3].
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Both StarCover and StarPartition have polynomial time algorithms
for bipartite permutation graphs [4,10], convex bipartite graphs [2,6], doubly-
convex bipartite graphs [2], trees [5], double-split graphs [18], trivially perfect
graphs and complements of trivially perfect graphs [17].

Related Literature: The problem of covering a maximum number of vertices of
an input graph by vertex-disjoint induced stars of the form K1,i, 1 ≤ i ≤ r, where
r ≥ 1 is any fixed positive integer, has a polynomial time algorithm [13].

The problem of partitioning (the vertex set of) an input graph into induced
paths of length t (t ≥ 3 is fixed) is NP-complete even for bipartite graphs with
maximum degree three [19]. This result implies that the problem of partitioning
a graph into induced K1,2’s is NP-complete, even when restricted to bipartite
graphs with maximum degree three.

The problem of partitioning an input graph into equal but fixed size stars, not
necessarily induced, is investigated for many natural subclasses of perfect graphs
in [26]. (This problem is also referred to as StarPartition in that paper.) This
problem had already been shown to be NP-complete even when the star size is
fixed to be three in [14]. Given a graph G and a positive integer k, the problem of
deciding whether G can be partitioned into exactly k (not necessarily induced)
stars, each of size at least two, is investigated in [1].

We may recall that a graph G = (C ∪ I, E) is called a split graph if its vertex
set partitions into a clique C and an independent set I.

Definition 1. Let G = (C ∪ I, E) be a split graph and let r and r1 ≤ . . . ≤ rk

be non-negative integers. Then:

1. G is called an r-split graph if d(v) = r for each v ∈ I.
2. G is called an (r1, . . . , rk)-split graph if d(v) equals one of r1, . . . , rk for each

v ∈ I.

Our Results: In this paper, we study the star partition problems on split graphs,
with a special focus on degrees of vertices in the independent part; please see
Definition 1 above.

We obtain the following NP-completeness results: (1) StarPartition is
NP-complete even for K1,5-free 2-split graphs. (2) Deciding whether sp(G) =
�ω(G)/2	 is NP-complete even for K1,6-free 2-split graphs (sp(G) ≥ �ω(G)/2	
for any graph G). (3) StarPartition is NP-complete even for (1, r)-split graphs
(r ≥ 2 and is fixed).

We obtain the following fixed parameter (in)tractability results: (1) Given
any connected split graph G and an integer k ≥ 1 as the parameter, deciding
whether sp(G) ≤ k is fixed parameter tractable and has an O((2k)2k+1n) time
algorithm. (2) Given a graph G and an integer k ≥ 0 as the parameter, deciding
whether sp(G) ≤ �ω(G)/2	 + k is para-NP-hard even when restricted to either
(a) K1,6-free (0, 2)-split graphs or (b) K1,6-free (0, 1, 3)-split graphs. (3) Given
a graph G and an integer k ≥ 0 as the parameter, the problem of deciding
whether sp(G) ≤ ω(G) − k is W [1]-hard even for (1, 2)-split graphs and lies in
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W [3] when restricted to connected split graphs (sp(G) ≤ ω(G) for any connected
split graph G).

We obtain the following polynomial time algorithms: (1) 3/2-approximation
algorithms for several subclasses of 2-split graphs. (1) A linear time algorithm for
(0, 1)-split graphs; in particular, for any 1-split graph G, we prove that sp(G) =
max(�ω(G)/2	, α(G2)).

Most of these results are obtained by an elegant framework that we have
developed for the study of star partition on split graphs. Using this, we also
obtain a simple characterization for any connected split graph G having sp(G) =
ω(G).

2 Preliminaries

All graphs considered in this paper are finite. For basic graph theory terminology,
we refer to [28]. Thus Kn, Pn and Cn denote the complete graph, the path and
the cycle on n (unlabeled) vertices. Also Km,n denotes the complete bipartite
graph with independent bipartitions of sizes m and n. In particular, the complete
bipartite graph K1,n is the star on n + 1 vertices, where n ≥ 0.

A clique (independent set) of a graph G is any set of pairwise adjacent (non-
adjacent) vertices of G. The size of a maximum clique (maximum independent
set) in G is denoted by ω(G) (α(G)).

For any set X of vertices in a graph G, G[X] denotes the graph induced by
X in G. Given a graph H, a graph G is said to be H-free if it has no induced
subgraphs isomorphic to H. More generally, given a family (finite or infinite) of
graphs F , a graph G is said be F-free if G does not have any induced subgraph
H isomorphic to some graph H ∈ F .

The complement of a graph G is denoted by G. Let G1 = (V1, E1) and G2 =
(V2, E2) be two vertex-disjoint graphs. Then the graph G = (V1 ∪ V2, E1 ∪ E2)
is called the union of G1 and G2 and is denoted by G1 ∪ G2. In particular, pKn

denotes the union of p vertex-disjoint complete graphs, each isomorphic to Kn.
Also the graph G obtained by joining each vertex of G1 to each vertex of G2 in
the union G1 ∪ G2 is called the join of G1 and G2 and is denoted by G1 ⊕ G2.

If G = (V,E) is any graph, then, as already defined in the introductory
section, we also call a subset S of V a star of G if the induced subgraph G[S] is
a star.

Notation: Let G be any graph. Then any star S in G is often written as a
disjoint union, namely {x} ∪ I, where x is a center vertex of the star G[S] and
I = S\{x} is the independent set consisting of the non-center vertices of G[S]
(where |I| ≥ 0).

Proposition 1 ([18]). If a graph G has a star cover of size k such that the stars
in it have their centers distinct, then it also has a star partition of size k.



On Star Partition of Split Graphs 215

3 Structure of Star Partitions of Split Graphs

In this section, we prove a few basic facts about optimal star partitions of split
graphs. We begin with the following lemma.

Lemma 1. Let G = (C ∪ I, E) be a connected split graph. If G has a star
partition of size k, then it also has a star partition S of size at most k such that
each star in S has its center in C.

Proof. Let S be a star partition of G of size k. If every star in S has its center
from C, then we are done. Otherwise consider any star X = {x}∪J of G that has
its center x in I. Then, since I is an independent set and C is a clique, we have
J ⊆ C and |J | ≤ 1. If |J | = 1, we can as well think that X is a star with its center
in C. So, suppose |J | = 0. Then X = {x} and x ∈ I. Consider N(x). Since G is
connected, N(x) �= ∅. If one of the stars in S, say Y , has its center alone in N(x),
then Z = Y ∪X = Y ∪{x} is also a star in G. In this case, S ′ = {Z}∪[S\{X,Y }]
is a star partition of G of size at most |S|. Else N(x) has a non-center vertex,
say z, of some star Y in S. In this case, Y ′ = Y \{z} and X ′ = {x, z} are stars in
G with X ∪ Y = X ′ ∪ Y ′. Thus, S ′ = {X ′, Y ′} ∪ (S\{X,Y }) is a star partition
of G of size at most |S|.

Proceeding similarly with every star in S, if any, that has its center in I, we
eventually obtain a star partition S∗ of G of size at most |S| = k with all its
centers from C. �

Important Note: In this paper, in the light of Lemma 1, for any connected split
graph G = (C ∪ I, E), without loss of generality, we shall assume that any star
partition S that we consider always has the centers of all its stars in C.

Since C is a clique, any star of G can have at most two vertices from C.

Observation 1: Consider a star partition S of a connected split graph G =
(C ∪ I, E) such that each star in S has its center in C; such a star partition
exists by Lemma 1. Suppose we partition S into the collections S1 and S2 so
that each star in S1 has only its center from C and each star in S2 has its center
as well as a non-center vertex from C. Then the following holds true:

(a) We have |S1| + 2|S2| = |C|.
(b) If G has |C| = q, then q/2 ≤ sp(G) ≤ q. (We have either ω(G) = q or

ω(G) = q + 1.)
(c) If a star X ∈ S1 has u ∈ C as its center, then X ⊆ {u} ∪ NI(u). Indeed

{u} ∪ NI(u) is in itself a star in G.
(d) If a star X ∈ S2 has v ∈ C as its center and w ∈ C as a non-center, then

X ⊆ {v, w} ∪ [NI(v)\NI(w)]. Indeed {v, w} ∪ [NI(v)\NI(w)] is in itself a
star in G.

In the definition below, we now encapsulate the natural transition between
the partition [S1,S2] of S and an associated special partition of the clique part
C of G.
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Definition 2. Let G = (C ∪ I, E) be a split graph with |C| = q. Suppose C
partitions into three ordered sets S = {u1, . . . , us}, T1 = {v1, . . . , vt} and T2 =
{w1, . . . , wt} such that the union of the s stand-alone sets NI(u1), . . . , NI(us)
and t differences NI(v1)\NI(w1), . . . , NI(vt)\NI(wt) equals I. Then (S, T1, T2)
is called an (s, t)-partition of C.

Note: The ordering of the vertices in T1 and T2 are important. So, we always
consider them as ordered sets.

Lemma 2. Let G = (C ∪ I, E) be a connected split graph with |C| = q. Let
s and t be any non-negative integers such that s + 2t = q. Then G has a star
partition of size s + t if and only if C has an (s, t)-partition.

Lemma 3. Let G = (C ∪ I, E) be a connected split graph with |C| = q and
|I| = p and let s, t be any non-negative integers. Then we can decide whether C
has an (s, t)-partition in time O(q2t+1p).

Theorem 2. Let G = (C∪I, E) be a connected split graph with C = {x1, . . . , xq}
as a maximum clique of G so that ω(G) = |C| = q. Then sp(G) = ω(G) if and
only if for every ordered pair (i, j) with 1 ≤ i, j ≤ q and i �= j, either NI(xj) has
a vertex of degree one or NI(xi) ∩ NI(xj) has a vertex of degree two (or both).

Proof. By Lemma 2, sp(G) = ω(G) = q if and only if C has no (s, t)-partition
with t > 0. Also C has no (s, t)-partition with t > 0 means that if we form even
one difference, say NI(xi)\NI(xj) for some (i, j) with 1 ≤ i, j ≤ q and i �= j,
then the union of NI(xi)\NI(xj) and NI(xk)’s, where 1 ≤ k ≤ q and k /∈ {i, j},
does not include some element of I. But this means that for every (i, j) with
1 ≤ i, j ≤ q and i �= j, some element of I belongs only to NI(xj) or only to
NI(xi)∩NI(xj). In other words, this means that for every (i, j) with 1 ≤ i, j ≤ q
and i �= j either NI(xj) has a vertex of degree 1 or NI(xi)∩NI(xj) has a vertex
of degree 2 (or both). �

3.1 The Case of 2-Split Graphs

We begin with a definition that highlights a natural transition that is possible
between arbitrary simple graphs and 2-split graphs.

Note: In a graph G, if u and v is a pair of non-adjacent vertices, then we call
uv a non-edge of G.

Definition 3. 1. Let G = (V,E) be any graph. Then the split division of G,
denoted GS, is the 2-split graph GS = (C ∪ I, ES) that has the clique part
C equal to V (G) and the independent part I equal to E(G) and has vertex
e = uv in I adjacent to (its end) vertices u and v in C.

2. Let G = (C ∪ I, E) be a 2-split graph. Then the kernel of G, denoted GK , is
the graph GK = (VK , EK) with vertex set VK equal to the clique part C of G
and edge set EK = {vw | NG(z) = {v, w} for some z ∈ I}.
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Lemma 4. Let G = (C ∪ I, E) be a 2-split graph and let GK = (VK , EK) be its
kernel. Then G has S = {u1, . . . , us}, T1 = {v1, . . . , vt} and T2 = {w1, . . . , wt}
as an (s, t)-partition of C if and only if GK has vjwj as a non-edge for each
1 ≤ j ≤ t and {w1, . . . , wt} as an independent set.

4 Improved NP-Completeness Results

In this section, we present three NP-completeness results for StarPartition
on split graphs. Each of them, in a strict sense, improves the best known results.

StarPartition is NP-complete for K1,5-free split graphs [25]. This result, in
conjunction with a result from [12], implies that StarPartition is NP-complete
for even for K1,5-free (1, 3)-split graphs. In the theorem below, we extend the
result to K1,5-free 2-split graphs.

Theorem 3. StarPartition is NP-complete even when restricted to K1,5-free
2-split graphs.

Proof. Given a graph G = (V,E) and a positive integer k, we can verify whether
any partition of V into at most k sets is a star partition of G in polynomial time.
Hence it follows that StarPartition lies in NP.

We prove the NP-hardness result by providing a reduction from the Inde-
pendent Set problem restricted to certain special graphs. Given a graph G
and a positive integer k, the Independent set problem asks whether G has an
independent set of size k.

Let G be any graph on 2� vertices and suppose G has a perfect matching.
Also suppose that each vertex in G has degree either two or three. A graph
of this form is given in Fig. 3. Any such graph has the independence number
α(G) ≤ �. The Independent Set problem remains NP-complete even when
restricted to graphs of this form and the corresponding parameter k ≤ � − 2.
This NP-completeness result on independent sets follows from a simple reduction
from the Max2Sat problem restricted to those instances in which each clause
has exactly two literals, each variable occurs exactly thrice and each literal occurs
at least once; Max2Sat restricted to such instances is NP-hard [23].

We indeed prove the NP-hardness of StarPartition for K1,5-free 2-split
graphs by providing a polynomial reduction from the above restriction of the
Independent Set problem.

Let (G, k) be an instance of the restricted Independent Set problem pre-
sented above. Suppose G has 2� vertices. Then, since 1 ≤ k ≤ � − 2, k < � and
� ≥ 3. Our reduction transforms this G into its split division GS = (C ∪ I, ES).
By definition, GS is a split graph in which each vertex in I has degree two. In
other words, it is a 2-split graph; see Definition 3. Since each vertex in G has
degree at most three, it now follows that each vertex in the clique part C of GS

has at most three neighbours in its independent part I. Thus, GS is K1,5-free
too. Finally, we set the parameter equal to k′ = 2� − k.

The construction of (GS , 2� − k) from G can be carried out in polynomial
time. We now show that G has an independent set of size k if and only if GS

has a star partition of size k′ = 2� − k.
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Fig. 3. The structure of an Independent Set instance G considered in the NP-
hardness reduction.

Suppose G has an independent set of size k, say A. Then A has exactly one
end vertex from a set of k matching edges of G (G has a perfect matching of size
�(> k)). Let B = V (G)\A.

We now consider the bipartite graph H = (A ∪ B,EH) with vertex
set A ∪ B = V (G)(= C) and the edge set EH = {ab : a ∈ A, b ∈
B and ab is a non-edge of G}. Since G has maximum degree three and has A as
an independent set of size k, it follows that the bipartite graph H has the degree
of each vertex v in A at least 2�−k−3. This implies that |NH(v)| ≥ 2�−(k+3) for
any v ∈ A. But 2�− (k+3) ≥ k since k ≤ �−2. Consequently, for any nonempty
subset S of A, |NH(S)| ≥ 2�− (k+3) ≥ k = |A| ≥ |S|. Thus, the bipartite graph
H satisfies Hall’s condition. Hence H has a matching, say M , saturating A. Now,
let A = {w1, . . . , wk} and M = {v1w1, . . . , vkwk}. Then G has v1w1, . . . , vkwk

as a matching of non-edges and {w1, . . . , wk} as an independent set; see Fig. 4.
We may now recall that G is the kernel of GS . Thus, if B\{v1, . . . , vk} =

{u1, . . . , u2(�−k)}, then, by Lemma 4, S = {u1, . . . , u2(�−k)}, T1 = {v1, . . . , vk}
and T2 = {w1, . . . , wk} form an (2(�−k), k)-partition of the clique part C of the
2-split graph GS . Then, by Lemma 2, GS has a star partition of size 2� − k.

w1 w2 w3
. . .

wk

v1 v2 v3 vk

. . .
u1

. . .
u2(�−k)

A

B

Fig. 4. A matching of non-edges in the graph G.

Conversely, suppose GS = (C ∪ I, ES) has a star partition of size 2� − k.
Then, since |C| = |V (G)| = 2�, by Lemmas 1 and 2, C has an (2(� − k), �)-
partition, say S = {u1, . . . , u2(�−k)}, T1 = {v1, . . . , vk} and T2 = {w1, . . . , wk}.
But GS is a 2-split graph with G as its kernel. So, by Lemma 4, {w1, . . . , wk} is
an independent set of G of size k. �
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Consider any graph G. Since any star in G, by definition, can include at most
two vertices from any clique of G, we have sp(G) ≥ �ω(G)/2	. Also, the Max2Sat
problem has polynomial time algorithms; for instance, see [22]. These facts imply
that for any K1,5-free 2-split graph G arising in the NP-completeness proof,
deciding whether sp(G) = �ω(G)/2	 has a polynomial time algorithm (i.e., we
set k = � = �ω(G)/2	. But, from [25] and [12], we have that deciding whether
sp(G) = �ω(G)/2	 is NP-complete even for (1, 3)-split graphs. In Theorem 4
below prove that this particular case of the star partition problem remains NP-
complete even for K1,6-free 2-split graphs.

Theorem 4. It is NP-complete to decide whether sp(G) = �ω(G)/2	 even when
the instances are restricted to K1,6-free 2-split graphs.

The above results motivate us to resolve the computational complexity of
StarPartition restricted to r-split graphs for each fixed r ≥ 3. We have not
obtained any conclusive answers in this direction yet. But, in the following the-
orem, we prove that StarPartition is NP-complete for (1, r)-split graphs for
each fixed r ≥ 2. A split graph is called a (1, r) split graph if each vertex in its
independent part has degree either 1 or r; see Definition 1.

Theorem 5. StarPartition is NP-complete even when restricted to (1, r)-
split graphs for each fixed r ≥ 2.

5 Fixed Parameter (In)tractability

In this section, we study the star partition problem of split graphs in the param-
eterized complexity framework. We consider three natural parameterizations.
Interestingly, the results obtained happen to be in three different extremes.

In our first parameterized problem, we take the desired solution size k as the
parameter and ask whether sp(G) ≤ k. Since a split graph is disconnected if and
only if it has isolated vertices, we restrict to connected split graphs.

Theorem 6. Given a connected split graph G and an integer k ≥ 1 as the
parameter, the problem of deciding whether sp(G) ≤ k is fixed parameter
tractable. In fact, it has an O((2k)2k+1n) time algorithm.

Proof. Let G = (C∪I, E) and suppose |C| = q and |I| = p. Then q/2 ≤ sp(G) ≤
q. So, if k < q/2, then we can at once decide that sp(G) �≤ k and, if k ≥ q, then
we can at once decide that sp(G) ≤ k. So, we now assume that q/2 ≤ k < q.

Now, by Lemma 2, G has a star partition of size k if and only if C has an
(s, t)-partition for (s, t) = (2k−q, q−k). Now q ≤ 2k and t = q−k ≤ k. Also, by
Lemma 3, for any non-negative integer pair (s, t), we can decide whether C has
an (s, t)-partition in time O(q2t+1p). But, since q ≤ 2k and t = q − k ≤ k, this
implies that deciding whether C has an (s, t)-partition with (s, t) = (2k−q, q−k)
can be decided in time O((2k)2k+1n). �
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For any graph G, sp(G) ≥ ω(G)/2. This motivates the following parameter-
ized problem: Given a graph G and an integer k ≥ 0 as the parameter, what
is the parameterized complexity of deciding whether sp(G) ≤ �ω(G)/2	 + k?
Here we are parameterizing above a guaranteed value. In the theorem below, we
provide some interesting answers to this question.

Theorem 7. Given a graph G and an integer k ≥ 0 as the parameter, the
problem of deciding whether sp(G) ≤ �ω(G)/2	 + k is para-NP-hard even when
restricted to either (1) K1,6-free (0, 2)-split graphs or (2) K1,5-free (0, 1, 3)-split
graphs.

Proof.(1) From Theorem 4, given a K1,6-free 2-split graph G, deciding whether
sp(G) = �ω(G)/2	 is NP-complete. For k > 0, the NP-completeness result
can be obtained by adding k isolated vertices to the 2-split graph constructed
in the reduction of Theorem 4; this results in a (0, 2)-split graph. Thus the
problem is para-NP-hard even when restricted to K1,6-free (0, 2)-split graphs.

(2) From [25] and [12], given a K1,6-free (1, 3)-split graph G, deciding whether
sp(G) = �ω(G)/2	 is NP-complete. For k > 0, the NP-completeness result
can be obtained by adding k isolated vertices to the (1, 3)-split graph con-
structed in the reduction; this results in a (0, 1, 3)-split graph. Thus problem
is para-NP-hard even when restricted to K1,6-free (0, 1, 3)-split graphs. �
For any connected split graph G, sp(G) ≤ ω(G). This motivates the following

parameterized problem: Given a graph G and an integer k ≥ 0 as the parameter,
what is the parameterized complexity of deciding whether sp(G) ≤ ω(G) − k?.
In this parameterization, we are trying to save k stars. We have the following
theorem.

Theorem 8. Given a graph G and an integer k ≥ 0 as the parameter, the
problem of deciding whether sp(G) ≤ ω(G)− k is W [1]-hard even for (1, 2)-split
graphs. Also this problem is in W [3] for connected split graphs.

6 Polynomial Time Algorithmic Results

By Theorem 3, StarPartition is NP-complete even for K1,5-free 2-split graphs.
Also, by Theorem 5, the problem is NP-hard for (1, r)-split graphs for each
fixed r ≥ 2. In this section, we present some polynomial time algorithms com-
plementing these hardness results. In particular, we obtain a polynomial time
3/2-approximation algorithm for certain 2-split graphs. This may, in some sense,
be considered as an improvement on a polynomial time 2-approximation algo-
rithm for split graphs in [25]. We also obtain a linear time exact algorithm
for MinStarPartition on 1-split graphs. Both these results make use of the
structural result of Lemma 4.

In the following definition, we define a class of 2-split graphs, namely S(G),
corresponding to any graph class G. In Theorem 9, we present a polynomial time
3/2-approximation algorithm for MinStarPartition on the graph class S(G)
provided the maximum independent set problem has a polynomial time exact
algorithm for the graph class G.
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Definition 4. Let G be any graph class. Then S(G) denotes the set of those
2-split graphs for which the kernel is in G.

Theorem 9. Let G be any graph class for which the maximum independent set
problem has a polynomial time algorithm. Then MinStarPartition has a poly-
nomial time 3/2-approximation algorithm for the graph class S(G).

We now present a linear time exact algorithm MinStarPartition on 1-split
graphs (which implies a similar algorithm for (0, 1)-split graphs). This comple-
ments the NP-hardness result for 2-split graphs and (1, r)-split graphs (r ≥ 2)
presented in Theorems 3 and 5, respectively. Interestingly, we prove that for any
1-split graph G, sp(G) = max(�ω(G)/2	, α(G2)).

If Z is a star in a graph G, then any two vertices in Z are at distance at
most two assuming |Z| ≥ 2. Thus if G has two vertices that are at distance three
or more, then they cannot be part of a single star of G. We also recall that the
square of a graph G = (V, E), denoted G2, is a graph with vertex set V and
the edge set consisting of those unordered pairs of vertices u, v ∈ V for which
dG(u, v) ≤ 2. Thus two vertices in G2 are non-adjacent if and only if the distance
between them is three or more in G. Thus, we have the following lemma.

Lemma 5. Let G be any graph and let I be any set of vertices in G such that
any pair of vertices in I are at distance three or more in G. Then sp(G) ≥ |I|.
Consequently, sp(G) ≥ α(G2).

Remark: Computing α(G2) is NP-hard even for 3-split graphs. This follows from
a simple reduction from the NP-complete Exact3Cover problem [11].

Corollary 1. Let G = (C ∪ I, E) be a split graph and let I1 denote the set of
all degree one vertices in the independent part I. Then sp(G) ≥ |N(I1)|.
Proof. Let N(I1) = {x1, . . . , xk}. Then, for each 1 ≤ i ≤ k, choose one yi from
NI(xi). Then any two vertices in {y1, . . . , yk} are at a distance of three from
each other in G. Thus, by Lemma 5, we have that sp(G) ≥ k. Now the corollary
follows since |N(I1)| = k. �
Corollary 2. If G = (C ∪ I, E) is a 1-split graph, then |N(I)| = α(G2).

In the following theorem, we present a simple formula for the star partition
number of a 1-split graph.

Theorem 10. If G is a 1-split graph, then sp(G) = max(�ω(G)/2	, α(G2)).
Consequently, MinStarPartition has a linear time exact algorithm for (0, 1)-
split graphs.
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7 Conclusion

We leave the computational complexity of StarPartition for r-split graphs
unresolved for each fixed r ≥ 3; we believe it is NP-complete. It would be inter-
esting to obtain a factor 3/2 (or better) polynomial time approximation algo-
rithm for MinStarPartition on at least all of 2-split graphs. It appears that
further study of 2-split graphs can possibly help in proving matching inapprox-
imability results. Designing better than factor 2 approximation algorithms for
MinStarPartition on split graphs remains an interesting algorithmic prob-
lem. We also have the complexity status of the problem open even for K1,4-free
split graphs.
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Abstract. A graph that is isomorphic to K1,r for some r ≥ 0 is called
a star. For a graph G = (V,E), any subset S of its vertex set V is called
a star of G if the subgraph induced by S is a star. A collection C =
{V1, . . . , Vk} of stars in G is called a star cover of G if V1 ∪ . . .∪Vk = V .
A star cover C of G is called a star partition of G if it is also a partition
of V . Given a graph G, the problem StarCover asks for a star cover
of G of minimum size. Given a graph G, the problem StarPartition
asks for a star partition of G of minimum size. Both the problems are
NP-hard even for bipartite graphs [24]. In this paper, we obtain exact
O(n2) time algorithms for both StarCover and StarPartition on
(C4, P4)-free graphs and on (2K2, P4)-free graphs. We also prove that
StarCover and StarPartition are polynomially equivalent, up to
the optimum value, for butterfly-free graphs and present an O(n14)
time O(log n)-approximation algorithm for these equivalent problems on
butterfly-free graphs. We also obtain O(log n)-approximation algorithms
for StarCover on hereditary graph classes.

Keywords: Star Cover · Star Partition · Cographs · Butterfly-free
Graphs · Polynomial Time Algorithms · Approximation Algorithms

1 Introduction

A graph is called a star if it is isomorphic to the complete bipartite graph K1,r

for some r ≥ 0; please see Fig. 1. When a graph models a network, like a road or
computer network, each induced subgraph that is a star corresponds to a sub-
network that is a star network. The center of an induced star in such a graph
potentially corresponds, in the underlying network, to either a bottleneck or a
point that is desirable for locating some facilities; this is especially the case when
the star has two or more non-center vertices. These practical considerations as
well as their combinatorial appeal motivate a study of two optimization prob-
lems, namely StarCover and StarPartition, that will be defined below.

By extension, any subset S of the vertex set of a graph G = (V,E) is called
a star of G if the subgraph induced by S is a star. A collection C = {V1, . . . , Vk}
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Fig. 1. Some examples of stars.

G = F4

(i)

(ii)

Fig. 2. The friendship graph G = F4 along with (i) an optimal star cover and (ii) an
optimal star partition of it; thus sc(G) = 2 and sp(G) = 5.

of stars in G is called a star cover of G if V1 ∪ . . . ∪ Vk = V . A star cover C
of G is called a star partition of G if it is also a partition of V . A star cover C
consisting of k distinct stars of G is called a star cover of G of size k. The size
of a star partition is defined similarly. The minimum k for which G admits a
star cover of size k is called the star cover number of G and is denoted by sc(G).
The minimum k for which G admits a star partition of size k is called the star
partition number of G and is denoted by sp(G). For instance, the graph G in
Fig. 2 has sc(G) = 2 and sp(G) = 5.

In this paper, we study the following problems on cographs, butterfly-free
graphs and hereditary graph classes.

StarCover
Input: A graph G.
Goal: A minimum star cover of G.

StarPartition
Input: A graph G.
Goal: A minimum star partition of G.

Consider any graph G. Since a star partition of G is also a star cover of
G, we have sc(G) ≤ sp(G). Also the centers of any star cover of G form
a dominating set of G. So, we further have γ(G) ≤ sc(G) ≤ sp(G), where
γ(G) is the domination number of G. Thus, if G is triangle-free, we also have
sp(G) = sc(G) = γ(G); this easily follows from Proposition 1. Consequently,
StarCover and StarPartition are both polynomially equivalent to the min-
imum dominating set problem on triangle-free graphs.
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In general, sp(G) �= sc(G). For instance, for the friendship graph Fn = K1 ⊕
(nK2), where n ≥ 1, sc(Fn) = 2 but sp(G) = n + 1; see Fig. 2. In this paper,
we prove that sp(G) = sc(G) for any butterfly-free graph. This proof indeed
implies that StarCover and StarPartition are polynomially equivalent for
butterfly-free graphs. Butterfly-free graphs includes many natural graph classes
such as bipartite graphs, split graphs and cluster graphs.

In [16], stars have been considered in the context of generalizing the well-
known maximum matching problem. It considers the problem of covering a maxi-
mum number of vertices of the input graph by vertex-disjoint induced stars of the
form K1,i, 1 ≤ i ≤ r, where r ≥ 1 is any fixed positive integer. This problem is
shown to have a polynomial time algorithm in [16]. This algorithm leads to a sim-
ple r

2 -approximation algorithm for StarPartition on K1,r-free graphs, r ≥ 2,
that remains NP-hard even for line graphs, a subclass of claw-free graphs [24].

A summary of known results on StarCover and StarPartition follows.
Deciding whether an input graph can be covered by or partitioned into at
most two stars has polynomial time algorithms but deciding whether an input
graph can be covered by or partitioned into three stars is NP-complete [24];
these problems remain NP-complete even for K4-free graphs. Both StarCover
and StarPartition are NP-hard for (a) chordal bipartite graphs [22], (b)
(C4, C6, . . . , C2t)-free bipartite graphs for every fixed t ≥ 2 [13], (c) subcubic
bipartite planar graphs [15,24], (d) K1,5-free split graphs in which each vertex
in the independent part has degree exactly two [10], (e) line graphs (and hence
claw-free graphs and, more generally K1,r-free graphs for any fixed r ≥ 3) [11,24]
and (f) co-tripartite graphs [19,24].

It is NP-hard to approximate StarPartition within n1/2−ε for all ε >
0 [24,28]. Also both StarCover and StarPartition do not have any poly-
nomial time c log n-approximation algorithm for some constant c > 0 unless P
= NP [25]. Both StarCover and StarPartition have a polynomial time
(a) 2-approximation algorithm for split graphs [24]; (b) O(log n)-approximation
algorithms for triangle-free graphs [25]; (c) (d + 1)-approximation algorithm for
triangle-free graphs of degree at most d [25]. StarPartition has a polynomial
time r/2-approximation algorithm for K1,r-free graphs (which implies a 3/2-
approximation algorithm for, for instance, line graphs and cobipartite graphs as
they are claw-free) [16,24].

With the number of stars in a star cover/partition as the parameter, we have
the following: (1) Both the problems are W[2]-complete for bipartite graphs
and are fixed parameter tractable for graphs of girth at least five [23]. (2) The
problems are fixed parameter tractable for split graphs [10]. (For an introduction
to parameterized complexity one may refer to [12].)

The problems have exact (a) 2nnO(1) time and exponential space algorithms
and (b) 3nnO(1) time and polynomial space algorithms [5].

Both StarCover and StarPartition have exact polynomial time algo-
rithms for bipartite permutation graphs [6,14], convex bipartite graphs [3,9],
doubly-convex bipartite graphs [3], trees [7] and double-split graphs [20].
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Related Literature: The problem of covering a maximum number of vertices of
an input graph by vertex-disjoint induced stars of the form K1,i, 1 ≤ i ≤ r, where
r ≥ 1 is any fixed positive integer, has a polynomial time algorithm [16].

The problem of partitioning (the vertex set of) an input graph into induced
paths of length t (t ≥ 3 is fixed) is NP-complete even for bipartite graphs with
maximum degree three [21]. This result implies that the problem of partitioning
a graph into induced K1,2’s is NP-complete, even when restricted to bipartite
graphs with maximum degree three.

The problem of partitioning an input graph into equal but fixed size stars,
not necessarily induced, is investigated for many natural subclasses of perfect
graphs in [4]. (This problem is also referred to as StarPartition in that paper.)
This problem had already been shown to be NP-complete even when the star
size is fixed to be three in [17]. Given a graph G and a positive integer k, the
problem of deciding whether G can be partitioned into exactly k (not necessarily
induced) stars, each of size at least two, is investigated in [1].

Our Results: We obtain an O(t(n)n2) time O(log n)-approximation algorithm
for StarCover on any hereditary graph class G for which the maximum inde-
pendent set problem has an O(t(n)) time exact algorithm. As a corollary, for
StarCover on perfect graphs, we also obtain a polynomial time O(log n)-
approximation algorithm.

We prove that sp(G) = sc(G) for any butterfly-free graph G. We also present
an O(n14) time O(log n)-approximation algorithm for both StarCover and
StarPartition on butterfly-free graphs.

For both StarCover and StarPartition, we obtain O(n2) time exact
algorithms on (1) trivially perfect graphs ((C4, P4)-free graphs) and on (2) com-
plements of trivially perfect graphs ((2K2, P4)-free graphs). We also obtain linear
time algorithms for the problems on threshold graphs ((2K2, C4, P4)-free graphs).

2 Preliminaries

All graphs considered in this paper are finite. For basic graph theory terminology,
we refer to [26]. Thus Kn, Pn and Cn denote the complete graph, the path and
the cycle on n (unlabeled) vertices. Also Km,n denotes the complete bipartite
graph with independent bipartitions of sizes m and n. In particular, the complete
bipartite graph K1,n is the star on n + 1 vertices, where n ≥ 0.

A clique (independent set) of a graph G is any set of pairwise adjacent (non-
adjacent) vertices of G. The size of a maximum clique (maximum independent
set) in G is denoted by ω(G) (α(G)). A k-(vertex) coloring of a graph G is a
partition (V1, V2, . . . , Vk) of V (G) such that Vi is an independent set in G for
1 ≤ i ≤ k. The minimum k for which G admits a k-coloring of G is called the
chromatic number of G and is denoted by χ(G).

For any vertex v of a graph G, N(v) denotes the set of all vertices adjacent
to v in G and N [v] denotes {v} ∪ N(v) (these are called the open and closed
neighbourhoods of v, respectively). A set D ⊆ V (G) is called a dominating set
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of G if ∪v∈DN [v] = V (G). The size of a minimum dominating set of G is called
the domination number of G and is denoted by γ(G).

For any set X of vertices in a graph G, G[X] denotes the graph induced by
X in G. Given a graph H, a graph G is said to be H-free if it has no induced
subgraphs isomorphic to H. More generally, given a family (finite or infinite) of
graphs F , a graph G is said be F-free if G does not have any induced subgraph
H isomorphic to some graph H ∈ F .

The complement of a graph G is denoted by G. Let G1 = (V1, E1) and G2 =
(V2, E2) be two vertex-disjoint graphs. Then the graph G = (V1 ∪ V2, E1 ∪ E2)
is called the union of G1 and G2 and is denoted by G1 ∪ G2. In particular, pKn

denotes the union of p vertex-disjoint complete graphs, each isomorphic to Kn.
Also the graph G obtained by joining each vertex of G1 to each vertex of G2 in
the union G1 ∪ G2 is called the join of G1 and G2 and is denoted by G1 ⊕ G2.
Both union and join operations of graphs are associative. So, union (join) of
more than two graphs are defined in the natural manner.

As already defined in the introductory section, a graph G is called a star if
G ∼= K1,r for some integer r ≥ 0. Thus any star G has a vertex x such that
[{x}, N(x)] is a partition of its vertex set into two independent sets. Such an x
in G is called a center of G and the vertices in N(x) are called the non-center
vertices of the star G. Thus, any star that is not isomorphic to K1,1 = K2 has a
unique center; see Fig. 1.

If G = (V,E) is any graph, then, as already defined in the introductory
section, we also call a subset S of V a star of G if the induced subgraph G[S] is
a star.

Notation: Let G be any graph. Then any star S in G can be written as a
disjoint union, namely {x} ∪ I, where x is a center vertex of the star G[S] and
I = S\{x} is the independent set consisting of the non-center vertices of G[S]
(where |I| ≥ 0).

We conclude this section with a proposition.

Proposition 1 ([20]). Consider any graph G. Then the following hold:

1. If a graph G has a star cover of size k, then it also has a star cover of size k
such that the stars in the cover share, if anything, only the centers.

2. If a graph G has a star cover of size k such that the stars in it have their
centers distinct, then it also has a star partition of size k.

3 Hereditary Graph Classes: Star Cover

A class G of graphs is called a hereditary graph class if, for every graph G in
G, all the induced subgraphs of G are also in G. The family of all graphs is an
obvious example of a hereditary graph class. Any graph class with a forbidden
induced subgraph characterization is also hereditary.

In this section, we show that StarCover on any hereditary graph class G
has an O(t(n)n2) time O(log n)-approximation algorithm assuming the maxi-
mum independent set problem on the class G has an O(t(n)) time algorithm.
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This result, in particular, implies that StarCover has a polynomial time
O(log n)-approximation algorithm for perfect graphs. Since perfect graphs include
bipartite graphs, we also have a matching inapproximabilty result assuming P
�= NP [25]. Another interesting consequence concerns butterfly-free graphs; it
appears in Sect. 4.

Fig. 3. An O(log n)-approximation algorithm for the star cover number of a graph from
a hereditary graph class.

Theorem 1. Let G be any hereditary graph class for which the maximum inde-
pendent set problem has an O(t(n)) time algorithm. Then StarCover has an
O(log n)-approximation algorithm running in time O(n2t(n)) for any G in G.

A graph G is called a perfect graph if each of its induced subgraph H has
χ(H) = ω(H). Perfect graphs is a well-known hereditary graph class containing
several natural graph classes. Many optimization problems, including the maxi-
mum independent set problem, are polynomially solvable for perfect graphs. So,
we have the following interesting consequence.

Corollary 1. StarCover has a polynomial time O(log n)-approximation algo-
rithm for perfect graphs. Moreover, for some c > 0, the problem has no poly-
nomial time c log n approximation algorithm when restricted to perfect graphs
assuming P �= NP.

The second half of the corollary above follows from the imapproximability
result on the minimum dominating set problem restricted to bipartite graphs [25]
and the equivalence of dominating set problem and StarCover on bipartite
graphs (sc(G) = γ(G) for any bipartite graph G; this easily follows from Propo-
sition 1).
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4 Butterfly-free Graphs

Fig. 4. The butterfly graph.

A graph G that is isomorphic to K1 ⊕ (2K2) is called a butterfly; see Fig. 4.
Butterfly-free graphs include many natural graph classes such as bipartite graphs
(indeed all triangle-free graphs), split graphs (indeed all 2K2-free graphs) and
cluster graphs.

In this section, we prove that sp(G) = sc(G) for any butterfly-free graph G.
Our proof indeed implies that StarCover and StarPartition are polyno-
mially equivalent for butterfly-free graphs. We also obtain O(n14) time O(log)-
approximation algorithms for both the problems on butterfly-free graphs. We
further note that this O(log n) approximation guarantee is essentially the best
possible for butterfly-free graphs assuming P �= NP.

Theorem 2. Let G be any butterfly-free graph. If G has a star cover of size k,
then it also has a star partition of size at most k. Consequently, sp(G) = sc(G).
Moreover, given a star cover of G, a star partition of at most the same size can
be computed in time O(n2 log n).

Proof. Let C be any star cover of the butterfly-free graph G. By Proposition 1,
we shall assume that the stars in C share, if anything, only the centers. Thus, if
the stars in C have their centers distinct, then C is already a star partition of G.
So, let us assume that some stars in C share their centers.

Suppose Z1 = {x} ∪ I1 and Z2 = {x} ∪ I2 are two distinct stars in C with a
common center, namely x. Then, by our assumption on C, I1 and I2 are disjoint
independent sets of G and do not include the center of any star in C. If I1 ∪ I2 is
an independent set, we replace Z1 and Z2 in C by Z1 ∪Z2 to obtain another star
cover C′. Else, since G is butterfly-free, the induced subgraph G[I1∪I2] is a 2K2-
free bipartite graph. So, the vertices in I1 has an ordering, say (u1, . . . , up), such
that NI2(u1) ⊆ . . . ⊆ NI2(up) [27]; see Fig. 5. (Indeed such an ordering of vertices
in I1 can be computed in time O(n log n) by ordering the vertices I1 according to
their degrees in G[I1∪I2].) So, we have that I3 = {u1, u2, . . . , up−1}∪[I2\NI2(up)]
is an independent set in G. In this case, we replace the stars Z1 and Z2 in C with
the stars {x} ∪ I3 and {up} ∪ NI2(up)) to obtain another star cover C′ of G.

Also, by our assumption on C, no star in it has up as its center. Thus we have
that the stars in C′ have the number of reused centers one less when compared to
those in C. Moreover, the stars in the new star cover C′ also share, if anything,
only the centers. Thus, if we proceed similarly as long as the resulting star cover
has a pair of distinct stars with a common center, we obtain, in at most n steps,
a star cover C∗ of G of size at most |C| that is also a star partition of G. Thus,
the computation can be carried out in time O(n2 log n).
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Fig. 5. The subgraph of a butterfly-free graph induced by a pair of its stars with a
common center vertex.

The above arguments imply that sp(G) ≤ sc(G). Since any star partition
of G is also a star cover of G, we also have sc(G) ≤ sp(G). Hence we have
sp(G) = sc(G). 
�
Theorem 3. The problems StarCover and StarPartition have O(n14)
time O(log n)-approximation algorithms for butterfly-free graphs. Moreover, for
some c > 0, neither of the problems has a polynomial time c log n approximation
algorithm when restricted to butterfly-free graphs assuming P �= NP.

Proof. Butterfly-free graphs form a hereditary graph class. The maximum
independent set problem has an O(n12) time exact algorithm for this graph
class [2,18]. So, the theorem follows from Theorems 1 and 2.

The second half of the theorem follows from a similar imapproximabil-
ity result on the maximum dominating set problem restricted to bipartite
graphs [25] and the equivalence of dominating set problem, StarCover and
StarPartition on bipartite graphs (sp(G) = sc(G) = γ(G) for any bipartite
graph G; this follows, for instance, from Proposition 1. 
�

5 Cographs (P4-free Graphs)

The class of cographs (i.e., P4-free graphs) is also the class of graphs that contains
K1 and is closed under the union and join operations of graphs. This suggests
a bottom-up construction of any cograph G by starting from its vertices and by
iteratively taking the union or join of induced subgraphs already built. Such a
construction of a cograph is modelled by what is called its cotree.

In this section, we present exact O(n2) time algorithms for StarCover
and StarPartition on (1) trivially perfect graphs and (2) co-trivially perfect
graphs. All these algorithms happen to be some natural greedy algorithms. We
also obtain a linear time algorithm for threshold graphs.
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Canonical Cotrees: In the bottom-up construction of a cograph, any maximal
sequence of successive union (join) operations can be replaced by a single union
(join) operation. In the corresponding cotree model, the child of any 0-node (1-
node) will not be a 0-node (1-node). We call this special cotree of a cograph its
canonical cotree.

5.1 Trivially Perfect Graphs

In this section, we present an O(n2) time exact algorithms for StarCover and
StarPartition on trivially perfect graphs. Indeed our algorithms for both the
problems on this graph class are certain simple and natural greedy algorithms.
But proving their correctness is fairly involved.

We note that StarCover and StarPartition are essentially two distinct
computational problems on trivially perfect graphs. For instance, for the friend-
ship graph Fn

∼= K1 ⊕ (nK2), n ≥ 2, which is trivially perfect, sc(G) = 2 but
sp(G) = n + 1.

Fig. 6. A rooted tree underlying a trivially perfect graph G and the corresponding
clique-tree T (G).

Note on Canonical Cotrees of Trivially Perfect Graphs: The canonical cotree
of any trivially perfect graph G has the additional property that every 1-node
of it (that corresponds to a join), if any exists, has at most one 0-node (that
corresponds to an induced disconnected subgraph). Otherwise G will have a C4.

It is well-known that any trivially perfect graph is a comparability graph of a
partial order defined by a rooted tree T . But for the study of StarCover and
StarPartition, we prefer a different but related representation of G that we
call its clique-tree representation and denote it by T (G). An example is provided
in Fig. 6.
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Note: The clique-tree of any connected trivially perfect graph has the property
that every internal node of it, if any exists, has at least two children. Please see
Fig. 6.

The construction in the following lemma is realized from the corresponding
canonical cotree of the input trivially perfect graph. The canonical cotree of any
cograph can be computed in linear time [8].

Lemma 1. The clique-tree forest representation of any trivially perfect graph
can be constructed in linear time.

Lemma 2. Let G � Kn be a connected trivially perfect graph and suppose that it
is given by its clique tree representation. Then any optimal star cover (partition)
of G has a star with the center alone from the root-clique of G.

Lemma 3. Let G be any connected trivially perfect graph that is not a complete
graph. Then G has an optimal star cover (partition) containing some maximum
star of G.

Fig. 7. An O(n2) time algorithm for StarPartition on trivially perfect graphs

The following is the main structural theorem on connected trivially perfect
graphs.

Theorem 4. Let G be any connected trivially perfect graph. Then any maximum
star of G belongs to some optimal star cover (partition) of G.

Theorem 5. StarPartition has an O(n2) time exact algorithm for trivially
perfect graphs.

We now move on to our study of StarCover on trivially perfect graphs. In
the following theorem, we furnish the main structural result.
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Fig. 8. An O(n2) time algorithm for StarCover on trivially perfect graphs

Theorem 6. Let G = (V,E) be any connected trivially perfect graph and let
X = {v} ∪ I be any maximum induced star of G. Let H = G\I if G\X is
disconnected and let H = G\X otherwise. Let C′ be any optimal star cover of
H. Then C = {X} ∪ C′ is an optimal star cover of G.

Theorem 7. StarCover has an O(n2) time exact algorithm for trivially per-
fect graphs.

5.2 Co-trivially Perfect Graphs ((2K2, P4)-Free Graphs)

Co-trivially perfect graphs form a subclass of butterfly-free graphs. Thus, the
problems StarCover and StarPartition are equivalent for this class of
graphs by Theorem 2. So, we will design an algorithm for StarPartition on
co-trivially perfect graphs.

We will consider only connected (2K2, P4)-free graphs. A connected
(2K2, P4)-free graph G � K1 can be obtained by taking the complement of a dis-
connected trivially perfect graph ((C4, P4)-free graph) G′. Thus, complements of
clique-tree forests provide a reasonable representation for (2K2, P4)-free graphs.

The complement of a clique-tree will be called a co-clique-tree. The comple-
ment of a clique-tree forest will be called a co-clique-tree forest.

The co-clique-tree forest of an input connected co-trivially perfect graph
G � K1 can be computed in linear time by suitably modifying the algorithm of
Lemma 1.

Lemma 4. Let G be a connected (2K2, P4)-free graph. Suppose that G is given
by its co-clique-tree forest representation. Then G has a minimum star partition
C such that the centers of stars in C are from the bottom most nodes of co-clique-
trees constituting G.

Lemma 5. Let G be a connected (2K2, P4)-free graph. Suppose that G is given
by its co-clique-tree forest representation. Let L be a leaf node of smallest size in
G. Let G′ = L ⊕ (G\L). Then sp(G′) ≤ sp(G).
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Notation: If G = (L1, . . . , Lp) is a complete multipartite graph, then we will
always assume that |L1| ≤ . . . ≤ |Lp|.

Fig. 9. An algorithm that converts a (2K2, P4)-free graph into a specific complete
multipartite graph.

Fig. 10. An illustration of the execution of the algorithm in Fig. 9.

Note: Let us consider the algorithm in Fig. 9.

1. Step 5 of this algorithm ensures that, if |L1|+ . . .+ |Lq| = p − q and a choice
of such L1, . . . , Lq is possible from more than one co-clique-tree of G, then
such a choice is necessarily made.

2. If a leaf node L chosen for removal has a single sibling node L′ in any iteration
of the while loop of the algorithm, then L′ can be merged with its parent node
after the removal of L to ensure that the modified graph has the co-clique-tree
forest structure; see Fig. 10.
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By Lemma 5, the while loop of the algorithm in Fig. 9 has sp(G2) ≤ sp(G1)
as a loop invariant. So, we have the following lemma.

Lemma 6. Let G be a connected (2K2, P4)-free graph in its co-clique-tree forest
representation and suppose G′ is the complete multipartite graph output by the
algorithm in Fig. 9 on giving G as the input. Then sp(G) ≥ sp(G′).

Lemma 7. Let G = (L1, . . . , Lp) be a complete multipartite graph with |L1| ≤
. . . ≤ |Lp|. Let q be the largest integer such that |L1| + . . . + |Lq| ≤ p − q. Then
sp(G) ≥ p − q.

Lemma 8. Let G be a connected (2K2, P4)-free graph in its co-clique-tree forest
representation and suppose G′ = (L1, . . . , Lp) is the complete multipartite graph
output by the algorithm in Fig. 9 on giving G as the input and has |L1| ≤ · · · ≤
|Lp|. Let q be the largest integer such that |L1| + · · · + |Lq| ≤ p − q. Then
sp(G) ≥ p − q.

Suppose further that (1) |L1| + · · · + |Lq| = p − q, (2) L1, . . . , Lq and every
Lj with q < j ≤ p and |Lj | = |Lq| (if any exists) are all from the same tree T of
G and (3) T has more vertices than p − q. Then sp(G) ≥ p − q + 1.

Lemma 9. Let G be a connected (2K2, P4)-free graph in its co-clique-tree forest
representation and suppose G′ = (L1, . . . , Lp) is the complete multipartite graph
output by the algorithm in Fig. 9 on giving G as the input and has |L1| ≤ · · · ≤
|Lp|. Let q be the largest integer such that |L1| + · · · + |Lq| ≤ p − q.

If |L1| + · · · + |Lq| = p − q, L1, . . . , Lq and every Lj with q < j ≤ p and
|Lj | = |Lq| (if any exists) are all from the same tree T of G and T has more
vertices than p − q, then sp(G) ≤ p − q + 1. Else sp(G) ≤ p − q.

Theorem 8. Let G be a connected co-trivially perfect graph in its co-clique-tree
forest representation and suppose G′ = (L1, . . . , Lp) is the complete multipartite
graph output by the algorithm in Fig. 9 on giving G as the input and has |L1| ≤
· · · ≤ |Lp|. Let q be the largest integer such that |L1| + · · · + |Lq| ≤ p − q.

If |L1| + · · · + |Lq| = p − q, L1, . . . , Lq and every Lj with q < j ≤ p and
|Lj | = |Lq| (if any exists) are all from the same tree T of G and T has more
vertices than p − q, then sp(G) = p − q + 1. Else sp(G) = p − q.

Moreover, an optimal star partition of G can be computed in time O(n2).

Corollary 2. . Let G = (L1, . . . , Lp) be a connected complete multipartite graph
with |L1| ≤ · · · ≤ |Lp|. If q is the largest integer such that |L1|+· · ·+|Lq| ≤ p−q,
then sp(G) = p − q.

5.3 Threshold Graphs ((C4, 2K2, P4)-free Graphs)

A graph is called a threshold graph if it is (C4, 2K2, P4)-free. In this section,
we present linear time algorithm for StarPartition on threshold graphs. This
suffices since StarCover and StarPartition are equivalent for threshold
graphs by Theorem 2.
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It is well-known that any threshold graph G, can be represented by string of
its vertices, along with a label (u or j, meaning union or join) attached to each
vertex. For instance, the sequence εu1u2u3j1u4u5j2 corresponds to a graph that
is obtained by starting with ε and simply adding the ui’s and joining the ji’s.

The following theorem is fairly obvious.

Theorem 9. Let G be a connected threshold graph. Then sp(G) = �ω(G)/2.
Indeed G can be partitioned into a clique and at most one star. Moreover, an
optimal star partition of G can be computed in linear time.

6 Conclusion

We leave the computational complexity of StarCover and StarPartition
for cographs open. There is a nice duality in the objectives of our greedy algo-
rithms for trivially perfect graphs and co-trivially perfect graphs. Further under-
standing in this direction may possibly lead to a polynomial time algorithm to
each of these problems provided it is not NP-hard for cographs. We remark that
both StarCover and StarPartition are NP-hard for P5-free graphs as they
include split graphs and the problems are NP-hard for split graphs.
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Abstract. Given a graph G(V, E), a vertex subset S of G is called an
open packing in G if no pair of distinct vertices in S have a common
neighbour in G. The size of a largest open packing in G is called the
open packing number of G and is denoted by ρo(G). It is interesting
to note that the open packing number is a lower bound for the total
domination number in graphs with no isolated vertices [Henning and
Slater, 1999]. Given a graph G and a positive integer k, Open Packing

problem tests whether G has an open packing of size at least k.
It is known that Open Packing is NP-complete on split graphs (i.e.,

the class of {2K2, C4, C5}-free graphs) [Ramos et al. 2014]. In this work,
we complete the study on the complexity of Open Packing on H-free
graphs for every graph H on at least three vertices by proving that Open

Packing is (i) NP-complete on K1,3-free graphs and (ii) polynomial-
time solvable on (P4 ∪ rK1)-free graphs for every r ≥ 1. Further, we
prove that Open Packing is (i) NP-complete on K1,4-free split graphs
and (ii) polynomial-time solvable on K1,3-free split graphs. We prove a
similar dichotomy result on split graphs with degree restrictions on the
vertices in the independent set of the clique-independent set partition of
the split graph.

Keywords: Total dominating set · Open packing · Split graphs ·
H-free graphs

1 Introduction

Covering and packing problems are a kind of primal-dual problems that have
always attracted the researchers. In this article, we study one such covering-
packing dual problem: total dominating set and open packing in graphs [8].
In a graph G, a vertex subset D of G is called a total dominating set in G if
every vertex in V (G) is adjacent to some vertex in D. In other words, V (G) =
∪u∈DNG(u), where NG(u) denotes the set of vertices in G that are adjacent to u
in G. Note that by the definition of total dominating set, it is evident that a graph
G admits a total dominating set if and only if G has no isolated vertices. The
cardinality of a smallest total dominating set in G is called the total domination
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number,γt(G), of G. A vertex subset S of a graph G is called an open packing
in G if for every pair of distinct vertices x, y ∈ S, NG(x) ∩ NG(y) is empty. The
open packing number of G denoted by ρo(G) is the size of a largest open packing
in G. It is known that ρo(G) ≤ γt(G) [8]. The following are the decision and
optimization versions of the problems total dominating set and open packing.

Total Dominating Set

Instance : A graph G and k ≤ |V (G)|.
Question : Does G has a total dominating

set of size at most k?

Min-Total Dominating Set

Instance : A graph G.
Task : Find γt(G).

Open Packing

Instance : A graph G and k ≤ |V (G)|.
Question : Is there an open packing of size

at least k in G?

Max-Open Packing

Instance : A graph G.
Task : Find ρo(G).

Total dominating set is one of the well studied problems in literature and an
extensive list of results can be found in [5,7,10]. For our work, it is interesting to
note that Total Dominating Set is NP-complete on K1,5-free split graphs [19]
and polynomial-time solvable on K1,4-free split graphs [15]. Also, Total Domi-

nating Set is NP-complete on K1,3-free graphs [12] and an optimal total dom-
inating set of a chordal bipartite graph can be found in polynomial-time [3].
The study on open packing of graphs was initiated by Henning and Slater [9]
and Rall [13] proved that for every non-trivial tree T , γt(G) = ρo(G). In a
recent work [16] (yet to be published), we extended this result by proving that
the total domination number and the open packing number are equal when the
underlying graph is a chordal bipartite graph with no isolated vertices. It is
also known that Open Packing is NP-complete on split graphs (equivalently,
the class of {2K2, C4, C5}-free graphs) [14] and bipartite graphs (a subclass of
K3-free graphs) [16,17]. In this work, we complete the study of Open Packing

on H-free graphs for every graph H on at least three vertices by proving the
following theorems.

Theorem 1. Let H be a graph on three vertices. Then, an optimal open packing
in H-free graphs can be found in polynomial-time if and only if H � K3 unless
P = NP .

Theorem 2. For p ≥ 4, let H be a graph on p vertices. Then, Open Packing

is polynomial-time solvable on the class of H-free graphs if and only if H ∈
{pK1, (K2 ∪ (p − 2)K1), (P3 ∪ (p − 3)K1), (P4 ∪ (p − 4)K1)} unless P = NP .

In order to prove the above theorem, we proved the following results.

(i) Open Packing is NP-complete on K1,3-free graphs.
(ii) For every r ≥ 1 and for every connected (P4 ∪ rK1)-free graph G, ρo(G) ≤

2r + 1. Also, we prove this bound to be tight.
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We also proved the following set of dichotomy results in subclasses of split graphs.

1. Open Packing is NPC on K1,r-free split graphs for r ≥ 4 and is polynomial-
time solvable for r ≤ 3.

2. Open Packing is NPC on Ir-split graphs (see Sect. 2 for definition) for r ≥ 3
and is polynomial-time solvable for r ≤ 2.

The above list of dichotomy results gave us the class of graphs where Total

Dominating Set and Open Packing differ from each other in the view of
classical complexity (Table 1 emphasises this difference).

Table 1. Complexity difference between Total Dominating Set and Open Packing

in subclasses of split graphs

Graph Classes Total Dominating Set Open Packing

I2-Split Graphs NPC [1] P[*]a

K1,4-free Split Graphs P [15] NPC[*]
a[*] denotes the results in this work

2 Preliminaries

We follow West [18] for terminology and notation. The graphs considered in
this work are simple and undirected unless specified otherwise. Given a graph
G(V,E), let n denote the number of vertices in G. Given a vertex x ∈ V (G),
the (open) neighbourhood of x in G is defined as NG(x) = {y ∈ V (G) : xy ∈
E(G)} and the degree of x in G is defined as degG(x) = |NG(x)|. The closed
neighourhood of a vertex x in G is defined as NG[x] = {x}∪NG(x). A vertex x in
G is called an isolated vertex in G, if NG(x) = ∅. Given U ⊆ V (G), the subgraph
of G induced by U is denoted as G[U ]. Given a graph H, G is said to be H-free if
no induced subgraph of G is isomorphic to H. For a vertex x ∈ V (G), let EG(x)
denote the set of all edges incident on x, and for an edge e ∈ E(G), let VG(e)
denote the end vertices of e in G. Note that for u ∈ V (G) and e ∈ E(G), the edge
e ∈ EG(u) if and only if u ∈ VG(e). For a graph G, the line graph L(G) of G is
a graph with vertex set as E(G) and two entries e, e′ ∈ V (L(G)) are adjacent in
L(G) if VG(e)∩VG(e′) 	= ∅. Given two graphs H and H ′, the graph union H ∪H ′

is defined as V (H ∪ H ′) = V (H) ∪ V (H ′) and E(H ∪ H ′) = E(H) ∪ E(H ′). For
p ∈ N ∪ {0} and a graph H, the graph pH is defined as the union of p disjoint
copies of H.
Given C ⊆ V (G), if every pair of vertices in C are adjacent in G, then C is known
as a clique in G. Given I ⊆ V (G) if no pair of vertices in I are adjacent in G,
then I is called an independent set in G. The size of a largest independent set in
G is called the independence number of G, and is denoted by α(G). Let Pn, Cn

and Kn denote the path, cycle and complete graph on n vertices, respectively.
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A set D ⊆ V (G) is called a dominating set in G, if every vertex in V (G)\D is
adjacent to some vertex in D.
A graph G(V,E) is said to be a split graph, if there exists a partition V (G) = C∪I
such that C is a clique and I is an independent set in G and is denote as
G(C∪I, E). Note that for r ≥ 2, if a split graph G is K1,r-free, then |NG(v)∩I| ≤
r − 1 for every v ∈ C. In accordance with this observation the class of Ir-split
graphs is defined for a fixed natural number r as a split graph G(C ∪ I, E) such
that degG(v) = r for every v ∈ I.
Given a graph G and a positive integer k ≤ |V (G)|, the problem Independent

Set asks whether G has an independent set of size at least k. Given a graph
G, the problem Max-Independent Set asks for the value of α(G). For r ∈ N,
given a collection of sets X1,X2, . . . , Xr each of cardinality q for some q ∈ N and

a subset M of
r∏

i=1

Xi, the r-Dimensional Matching problem asks whether

there exists L ⊆ M such that (i) |L| = q and (ii) for every pair of r-tuples
x = (x1, x2, . . . , xr) and y = (y1, y2, . . . , yr) in L, xi 	= yi for 1 ≤ i ≤ r.
Also, we refer the reader to [2,5] for a brief note on parameterized algorithms,
intractability and W-hierarchy.

3 H-free Graphs

We dedicate this section to prove the dichotomy result on the open packing
problem stated in Theorem 2. Observation 1 helps us to prove the necessary
part of Theorem 2.

Observation 1. For p ≥ 4, let H be a graph on p vertices such that H /∈
{P4 ∪ (p − 4)K1, P3 ∪ (p − 3)K1,K2 ∪ (p − 2)K1, pK1}. Then, H contains one of
K3, 2K2, C4,K1,3 or C5 as an induced subgraph.

Proof of Observation 1 is omitted in this article. The following remark about
Open Packing on H-free graphs for H ∈ {K3, 2K2, C4, C5} holds by the
fact that Open Packing is NP-complete on split graphs (i.e., the class of
{2K2, C4, C5}-free graphs) [14] and bipartite graphs (a subclass of K3-free
graphs) [16,17].

Remark 1. Open Packing is NP-complete on (i) 2K2-free graphs (ii) C4-free
graphs, (iii) C5-free graphs and (iv) triangle-free graphs.

Next, we prove that Open Packing is NP-complete on K1,3-free graphs.

3.1 K1,3-free Graphs

The following construction gives a polynomial-time reduction from Indepen-

dent Set in simple graphs to Open Packing in K1,3-free graphs where the
former problem is known to be NP-complete.
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Construction 1.
Input: A simple graph G with V (G) = {u1, u2, . . . , un}.
Output: A K1,3-free graph G′.
Guarantee: G has an independent set of size k if and only if G′ has a open
packing of size k.
Procedure:
Step 1 : Replace each edge e = uu′ in G by a three vertex path ueu′ in G′.
Step 2 : For every pair of edges e, e′ ∈ E(G), add an edge ee′ in G′ if e, e′ ∈

EG(u) for some u ∈ V (G).
Step 3 : For every vertex ui ∈ V (G) with exactly one edge, say e incident on it

in G, introduce a vertex vi and two edges uivi, vie in G′.

An example of Construction 1 is given in Fig. 1. Also, note that Step 2 of Con-
struction 1 can be viewed as an embedding (attachment) of the line graph of
G into the graph obtained in Step 1. Further, V (G′) = V (G) ∪ E(G) ∪ {vi :
1 ≤ i ≤ n and degG(ui) = 1} and E(G) = {ue : u ∈ V (G), e ∈ E(G) and e ∈
EG(u)} ∪ E(L(G)) ∪ {viui : 1 ≤ i ≤ n and degG(ui) = 1} ∪ {vie : 1 ≤ i ≤
n and EG(ui) = {e}}. Hence, |V (G′)| ≤ 2n + m and |E(G′)| ≤ 2m +

(
m
2

)
+ 2n.

Thus, the graph G′ can be constructed in quadratic time in the input size. Note
that the graph G′ is K1,3-free. Proof of Guarantee of Construction 1 is omitted
in this article. The following theorem follows from Construction 1 and the fact

Fig. 1. (a) a simple graph G, (b) K1,3-free graph G′ obtained from G using Construc-
tion 1.

that Independent Set is NP-complete on simple graphs [11].

Theorem 3. Open Packing is NP-complete on K1,3-free graphs.

The following theorem is used to give an approximation hardness result for Open

Packing in K1,3-free graphs.
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Theorem 4 ([6]). Max-Independent Set cannot be approximated within a
factor of n(1−ε) for any ε > 0, in general graphs unless P = NP .

Next theorem follows from Construction 1 and Theorem 4.

Theorem 5. Max-Open Packing is hard to approximate within a factor of
N

1
2−ε for any ε > 0 in K1,3-free graphs unless P = NP , where N denotes the

number of vertices in a K1,3-free graph.

We use the following lemma by Rall [13] to prove that Open Packing param-
eterized by solution size is in W [1].

Lemma 1 ([13]). Given a graph G, let the neighbourhood graph G[o] of G be
a simple graph with V (G[o]) = V (G) and E(G[o]) = {xy : x, y ∈ V (G), x 	=
y and NG(x) ∩ NG(y) 	= ∅}. Then, a vertex subset S is an open packing in G if
and only if S is an independent set in G[o].

Theorem 6. Open Packing parameterized by solution size is W[1]-complete
in K1,3-free graphs.

Proof. Note that by Lemma 1, every instance (G, k) of Open Packing in K1,3-
free graphs can be reduced into an instance (G[o], k) of Independent Set in
general graphs. Since Independent Set parameterized by solution size is W[1]-
complete [4], Open Packing parameterized by solution size is W[1]-complete
in K1,3-free graphs by Lemma 1 and Construction 1. 
�
Now, we prove the necessary part of Theorem 2.

Necessary Part of Theorem 2. Let H be a graph on p vertices for some p ≥ 4 such
that Open Packing is polynomial-time solvable on H-free graphs. Then, we
prove that H ∈ {P4∪(p−4)K1, P3∪(p−3)K1,K2∪(p−2)K1, pK1}. On the con-
trary, assume that H /∈ {P4∪(p−4)K1, P3∪(p−3)K1,K2∪(p−2)K1, pK1}. Then,
by Observation 1, H contains at least one of (i) K3 (ii) 2K2 (iii) C4 (iv) K1,3 or
(v) C5 as its induced subgraph. So, (i) the class of H ′-free graphs is a subclass
of H-free graphs for some H ′ ∈ {K3, 2K2, C4,K1,3, C5} and (ii) Open Packing

is NP-complete on H ′-free graphs for every H ′ ∈ {K3, 2K2, C4,K1,3, C5} (by
Remark 1 and Theorem 3). Thus by (i) and (ii), we can conclude that Open

Packing is NP-complete on H-free graphs, a contradiction. 
�
In the next section, we prove the sufficiency part of Theorem 2.

3.2 (P4 ∪ rK1)-free Graphs

In this section, we show that the open packing number is bounded above by a
function of r in the class of (P4∪rK1)-free graphs for every r ≥ 1. Lemma 2 shows
that this bound would imply that the open packing number of a (P4 ∪ rK1)-free
graph can be found in polynomial-time.

Lemma 2. Given a graph class G, if there exists k ∈ N such that ρo(G) ≤ k for
every G ∈ G, then (i) G contains at most O(nk) open packings and (ii) all open
packings in G can be computed in O(nk+1) time for every G ∈ G. So, ρo(G) can
be computed in O(nk+1) time.
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Proof of Lemma 2 is not included in this article.
Next, we prove that for r ≥ 1, γt(G) ≤ 2r +2 and ρo(G) ≤ 2r +1 in a connected
(P4 ∪ rK1)-free graph G (the bound on the open packing number of (P4 ∪ rK1)-
free graphs along with Lemma 2 will solve the sufficiency part of Theorem 2).
Further, we show that the bound on the open packing number in these graph
classes are tight (in Remark 3) and that the bound on the total domination
number is tight for the class of (P4∪K1)-free graphs (in Remark 2). The following
known lemma solves the problems for P4-free graphs.

Lemma 3 (Folklore). Let G be a connected P4-free graph. Then, ρo(G) ≤
γt(G) = 2.

The lemma below shows that the total domination number of a connected (P4 ∪
rK1)-free graph is bounded above by a function of r and its proof is omitted in
this article.

Lemma 4. For r ≥ 1, if G is a connected (P4 ∪ rK1)-free graph, then γt(G) ≤
2r + 2.

Remark 2. The bound given in Lemma 4 is tight for the case r = 1, and a cycle
on six vertices (C6) is a connected (P4 ∪K1)-free graph that satisfies this bound.
Also, the graphs obtained by replacing every vertex of C6 with a clique will
remain as a (P4 ∪ K1)-free graph with total domination number four.

The next lemma proves a bound on the open packing number in the class of
(P4 ∪ rK1)-free graphs.

Lemma 5. For r ≥ 1, if G is a connected (P4 ∪ rK1)-free graph, then ρo(G) ≤
2r + 1.

Proof of Lemma 5 is omitted in this article.

Remark 3. The bound given in Lemma 5 is tight. For example, let Gr be a graph
with V (Gr) = (∪r

i=1{xi, yi, zi}) ∪ {u, v} and E(Gr) = (∪r
i=1{xiyi, yizi, ziu}) ∪

{uv}. Then, Gr is (P4 ∪ rK1)-free and Sr = (∪r
i=1{xi, yi}) ∪ {v} is an open

packing in G of size 2r + 1. The graph G3 is given in Fig. 2. Also, note that
the graph obtained by replacing the vertex u in Gr by a clique will remain as a
(P4 ∪ rK1)-free graph with open packing number 2r + 1.

Theorem 7. For r ≥ 0, let G be a connected (P4∪rK1)-free graph. Then, there
are polynomially many open packings in G and all open packings in G can be
found in polynomial-time. Hence, ρo(G) can be found in polynomial-time.

The above theorem follows from Lemmas 2, 3, 5 and the fact that for a graph
G with components G1, G2, . . . , Gk, ρo(G) =

∑k
i=1 ρo(Gi). Next, we explicitly

state the complexity status of (i) rK1-free graphs (ii) (K2 ∪ rK1)-free graphs
and (iii) (P3 ∪ rK1)-free graphs as Corollary 1 for the sake of Theorem 2.

Corollary 1. Open Packing is in P in the class of (i) rK1-free graphs for
r ≥ 3, (ii) (K2 ∪ rK1)-free graphs for r ≥ 1 and (iii) (P3 ∪ rK1)-free graphs for
r ≥ 0.
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Fig. 2. A (P4 ∪ 3K1)-free graph G3 defined in Remark 3 with an open packing S3 =
{x1, x2, x3, y1, y2, y3, v} of size 7 = (2(3) + 1).

Corollary 1 follows from the fact that for r ≥ 3 (resp. r ≥ 1, r ≥ 0), the class
of rK1-free graphs (resp. (K2 ∪ rK1)-free graphs, (P3 ∪ rK1)-free graphs) is a
subclass of (P4 ∪ (r − 2)K1)-free graphs (resp. (P4 ∪ (r − 1)K1)-free graphs,
(P4 ∪ rK1)-free graphs). Note that the sufficiency part of Theorem 2 follows
from Theorem 7 and Corollary 1. Also, note that the proof of Theorem 1 follows
from Corollary 1 and Remark 1.

4 Split Graphs

Ramos et al. [14] proved that Open Packing is NP-complete on split graphs.
In this section, we study the complexity of Open Packing in (i) K1,r-free
split graphs for r ≥ 2 and (ii) Ir-split graphs for r ≥ 1. This study shows the
complexity difference between Total Dominating Set and Open Packing

in split graphs (see Table 1).

4.1 K1,r -free Split Graphs

It is known that Total Dominating Set is NP-complete on K1,5-free split
graphs [19] and is polynomial-time solvable on K1,4-free split graphs [15]. In this
section, we give a dichotomy result for Open Packing in K1,r-free split graphs
by proving that the problem is (i) NP-complete for r ≥ 4 and (ii) polynomial-
time solvable for r ≤ 3.
We begin this section with a construction to prove that Open Packing is NP-
complete in K1,4-free split graphs.

Construction 2.
Input: A simple graph G(V,E).
Output: A K1,4-free split graph G′(C ∪ I, E).
Guarantee: G has an independent set of size k if and only if G′ has an open
packing of size k + 1.
Procedure:
Step 1 : Subdivide each edge e = uu′ in G into a three vertex path ueu′ in G′.
Step 2 : Introduce three new vertices x, y, z and two edges xy, xz in G′.
Step 3 : Make E(G) ∪ {y, z} a clique in G′.
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An example of Construction 2 is shown in Fig. 3. The vertex set and the edge
set of the graph G′ can be stated as V (G′) = V (G) ∪ E(G) ∪ {x, y, z} and
E(G′) = {ue : u ∈ V (G), e ∈ E(G) and e ∈ EG(u)} ∪ {xy, xz, yz} ∪ {ye :
e ∈ E(G)} ∪ {ze : e ∈ E(G)} ∪ {ee′ : e, e′ ∈ E(G) and e 	= e′}. Note that
|V (G′)| = n + m + 3 and |E(G′)| = 2m + 3 + 2m +

(
m
2

)
= O(m2). Hence, the

graph G′ can be constructed in polynomial-time from G. Also, by Construction 2,
V (G′) = C ∪I is a clique-independent set partition of G′ with C = E(G)∪{y, z}
and I = V (G)∪{x}. Thus, G′(C ∪ I, E) is a split graph. Clearly, G′ is K1,4-free.
Proof of the guarantee of Construction 2 is not included in this proof.
The following theorems holds by Construction 2 and the fact that Independent
Set is NP-complete on simple graphs [11].

Fig. 3. (a) a graph G and (b) the graph G′ constructed from G using Construction 2

Theorem 8. Open Packing is NP-complete on K1,4-free split graphs.

Similar to that of Theorems 5 and 6, it can be proved that in K1,4-free split
graphs (i) Open Packing parameterized by solution size is W[1]-complete and
(ii) Max-Open Packing is hard to approximate within a factor of N ( 1

2−ε) for
any ε > 0 unless P = NP , where N denotes the number of vertices in a K1,4-free
split graph.
Theorem 8 showed the hardness of Open Packing on K1,4-free split graphs. In
Theorem 9, we show that Open Packing is in P in the class of K1,3-free split
graphs.

Theorem 9. Open Packing is polynomial-time solvable on K1,3-free split
graphs.

We proved that for a connected K1,3-free split graph G(C ∪ I, E), ρo(G) ∈
{1, 2, |I|} and it can be found in polynomial-time whether ρo(G) = 1, 2 or |I|.
Hence, the open packing number of a K1,3-free graph can be found in polynomial-
time (proofs of the above statements are not included in this article).
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4.2 Ir -split Graphs

We observed that a minor modification in Corneil and Perl’s reduction [1] will
show that Total Dominating Set is NP-complete on I2-split graphs. We
have also obtained a dichotomy result by proving that Total Dominating

Set in Ir-split graphs is (i) NP-complete for r ≥ 2 and (ii) polynomial-time
solvable for r = 1 (this result is not included in this article). In this section,
we prove that Open Packing is (i) NP-complete on Ir-split graphs for r ≥ 3
and (ii) polynomial-time solvable on Ir-split graphs for r ≤ 2. The following
construction is used to prove that Open Packing is NP-complete on Ir-split
graphs for r ≥ 3.

Construction 3.
Input: A collection of sets X1,X2, . . . , Xr such that |Xi| = q for some q ∈ N for

i = 1, 2 . . . , r and a non-empty set M ⊆
r∏

i=1

Xi.

Output: An Ir-split graph G(C ∪ I, E).
Guarantee: (X1,X2, . . . , Xr,M) is an yes-instance of r-Dimensional Match-

ing if and only if G has an open packing of size q.
Procedure:
Step 1 : For every i ∈ {1, 2, . . . , r} and for every x ∈ Xi, create a vertex z(x,i)

in G. Similarly, for w ∈ M , create a vertex yw in G.
Step 2 : Introduce an edge between every pair of distinct vertices of C =

∪r
i=1{z(x,i) : x ∈ Xi} in G.

Step 3 : Introduce an edge between the vertex z(x,i) ∈ C and yw in G if the ith

coordinate of w is x.

An example of Construction 3 is given in Fig. 4. The vertex and edge sets of the
graph G can be stated as V (G) = C ∪ I, where I = {yw : w ∈ M} and E(G) =
{xx′ : x, x′ ∈ C}∪{z(x,i)yw : x ∈ Xi, w ∈ M and the ith coordinate of w is x}.
Then, |V (G)| = (r · q) + |M | and |E(G)| = r · |M | +

(
r·q
2

)
. Hence, the graph G

can be constructed in polynomial-time with respect to r, q and |M |. Note that
by the construction of G, C is a clique and I is an independent set, and hence
V (G) = C ∪ I is a clique-independent set partition of V (G). Thus, G(C ∪ I, E)
is a split graph. Further, note that by the construction of G, for every yw ∈ I,
there exists a r-tuple w ∈ W such that NG(yw) = {z(x1,1), z(x2,2), . . . , z(xr,r)} if
w = (x1, x2, . . . , xr). Hence, degG(yw) = r for every yw ∈ I. Thus, G is an Ir-
split graph. Proof of Guarantee of Construction 3 is not included in this article.

Theorem 10. For r ≥ 3, Open Packing is NP-complete on Ir-split graphs.

Proof. Given an Ir-split graph G and a vertex subset S of G, it can be tested
in polynomial-time whether NG(u) ∩ NG(v) is empty for every distinct u, v ∈ S.
Hence, Open Packing is in the class NP on Ir-split graphs. Also, Construction 3
and the fact that r-Dimensional Matching is NP-complete for r ≥ 3 [11]
implies that Open Packing is NP-complete on Ir-split graphs for r ≥ 3.
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Fig. 4. (a) An instance (X1, X2, X3, X4, M) of a 4-Dimensional Matching and (b)
An I4-split graph G(C ∪ I, E) corresponding to the instance (X1, X2, X3, X4, M)
using Construction 3 where C = {z(x1,1), z(u1,1), z(v1,1), z(x2,2), z(u2,2), z(v2,2), z(x3,3),
z(u3,3), z(v3,3), z(x4,4), z(u4,4), z(v4,4)} is a clique in G and I = {yw1 , yw2 , yw3 , yw4 , yw5}
is an independent set in G. The edges between the vertices of C aren’t given in the
figure for clarity.

The following theorem shows that Open Packing is polynomial-time solvable
on a superclass of I1-split graphs and I2-split graphs. Thus, completing our
dichotomy result for Open Packing in Ir-split graphs.

Theorem 11. A maximum open packing in a split graph G(C ∪ I, E) with 1 ≤
degG(v) ≤ 2 for every v ∈ I can be found in O(n3) time.

Proof of Theorem 11 is omitted.
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5 Conclusion

In this article, we completed the study on the complexity of Open Packing

in H-free graphs for every graph H on at least three vertices by proving that
Open Packing is (i) NP-complete on K1,3-free graphs and (ii) polynomial-time
solvable on (P4∪rK1)-free graphs for every r ≥ 1. Further, we proved that Open

Packing is (i) NP-complete on K1,4-free split graphs and (ii) polynomial-time
solvable on K1,3-free split graphs. We also showed that Open Packing is (i)
NP-complete on Ir-split graphs for r ≥ 3 and (ii) polynomial-time solvable on
Ir-split graphs for r ≤ 2. We have also proved that Max-Open Packing is hard
to approximate within a factor of N ( 1

2−ε) for any ε > 0 unless P = NP in (i)
K1,4-free split graphs and (ii) K1,3-free graphs, where N denotes the number of
vertices of a graph in these graph classes. Also, we proved that Open Packing

parameterized by solution size is W[1]-complete on these two graph classes.
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Abstract. We consider the following variants of the classical minimum
dominating set problem in graphs: locating-dominating set, locating total-
dominating set and open locating-dominating set. All these problems are
known to be hard for general graphs. A typical line of attack, therefore, is
to either determine the minimum cardinalities of such sets in general or to
establish bounds on these minimum cardinalities in special graph classes.
In this paper, we study the minimum cardinalities of these variants of the
dominating set under a graph operation defined by Mycielski in [21] and
is called the Mycielski construction. We provide some general lower and
upper bounds on the minimum sizes of the studied sets under the Myciel-
ski construction. We apply the Mycielski construction to stars, paths and
cycles in particular, and provide lower and upper bounds on the minimum
cardinalities of such sets in these graph classes. Our results either improve
or attain the general known upper bounds.

Keywords: Locating-dominating set · Open locating-dominating set ·
Locating total-dominating set · Mycielski construction

1 Introduction

For a graph modeling a facility, the placement of monitoring devices, for exam-
ple, fire detectors or surveillance cameras, motivates the study of various location-
domination type problems in graphs. The problem of placing monitoring devices
so that every site of a facility is visible from a monitor leads to a domination prob-
lem. In addition, the position of a fire, a thief, or a saboteur in the facility can
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be uniquely located by a specific subset of the monitoring devices which leads to
location problems. During the last decades, several combined location-domination
problems of this type have been actively studied, see, for example, the bibliogra-
phy maintained by Lobstein and Jean [19]. In this work, we study three different
location-domination type problems under a graph operation known as the Myciel-
ski construction and defined by Mycielski himself in [21].

All graphs in this paper are finite, simple and connected. Given a graph
G = (V,E), the (open) neighborhood of a vertex u ∈ V is the set N(u) = NG(u)
of all vertices of G adjacent to u, and N [u] = NG[u] = {u} ∪ N(u) is the
closed neighborhood of u. A subset C ⊆ V is dominating (respectively, total-
dominating) if the set N [u] ∩ C (respectively, N(u) ∩ C) is non-empty for all
u ∈ V . In addition, a subset C ⊆ V separates (respectively, total-separates) a
pair u, v ∈ V if N [u]∩C �= N [v]∩C (respectively, N(u)∩C �= N(v)∩C). In such
a case, we also say that u, v ∈ V are separated by C (respectively, total-separated
by C). A subset C ⊆ V is called

– a locating-dominating set [25] (or LD-set for short) of G if it is a dominating
set of G that separates all pairs of distinct vertices outside of C, that is,
N(u) ∩ C �= N(v) ∩ C, for all distinct u, v ∈ V − C;

– a locating total-dominating set [15] (or LTD-set for short) of G if it is a total-
dominating set of G that separates all pairs of distinct vertices outside of C,
that is, N(u) ∩ C �= N(v) ∩ C, for all distinct u, v ∈ V − C;

– an open locating-dominating set [23] (or OLD-set for short) of G if it is a
total-dominating set of G that total-separates all pairs of distinct vertices of
the graph, that is, N(u) ∩ C �= N(v) ∩ C, for all distinct u, v ∈ V .

Two distinct vertices u, v of a graph G = (V,E) are called false twins if
N(u) = N(v), see [23]. Similarly, any two vertices u, v ∈ V with N [u] = N [v]
are called true twins. Now, for X ∈ {LD,LTD,OLD}, the X-problem on G is
the problem of finding an X-set of minimum size in G. The size of such a set
is called the X-number of G and is denoted by γX(G). Note that a graph G
without isolated vertices admits an OLD-set if there are no false twins in G. On
the other hand, LD-sets and LTD-sets are admitted by all graphs.

From the definitions themselves, the following relations hold for any graph
G admitting any two X-sets for X ∈ {LD,LTD,OLD}:

γLD(G) ≤ γLTD(G) ≤ γOLD(G). (1)

It has been shown that determining γX(G) is in general NP-hard for all
X ∈ {LD,LTD,OLD}. Apart from determining γLD(G) being NP-hard in gen-
eral [23], it remains so for bipartite graphs [8] and some subclasses of chordal
graphs like split graphs and interval graphs [13]. This result is also extended to
planar bipartite unit disk graphs in [20] and intersection graphs in [12]. Closed
formulas for the exact values of γLD(G) have so far been found for restricted
graph families, for example, for paths [25], cycles [5], stars, complete multi-
partite graphs, some subclasses of split graphs and thin suns [1,4]. Bounds for
the LD-number of trees were provided in [6]. A linear-time algorithm to deter-
mine γLD(G) for G being a tree was provided by Slater in [26] and has been
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extended to block graphs (graphs which generalize the concept of trees in that
any 2-connected subgraph in a block graph is complete) in [2]. Moreover, in
connection to block graphs and hence, trees, tight upper and lower bounds for
LD-numbers of block graphs and twin-free block graphs have been established
in [7].

Determining γOLD(G) is NP-hard not only in general [23] but also on other
graph classes like perfect elimination bipartite graphs [22], interval graphs [13]
and is APX-hard on chordal graphs of maximum degree 4 [22]. Closed formulas
for the exact value of γOLD(G) have so far been found only for restricted graph
families such as cliques and paths [23], some subclasses of split graphs and thin
suns [1]. Tight lower and upper bounds for OLD-numbers certain classes of
graphs like trees [23], block graphs [7], lower bounds for interval graphs, permu-
tation graphs and cographs [12] and upper bounds for cubic graphs [17] have
been established. Lastly, some algorithmic aspects of the problem have been
discussed in [2,22].

Concerning LTD-sets, it can be checked that it is as hard as the OLD-
problem by using the same arguments as in [23]. Bounds for the LTD-number
of trees are given in [15,16]. In addition, the LTD-number in special families of
graphs, including cubic graphs, grid graphs, complete multipartite graphs, some
subclasses of split graphs and thin suns is investigated in [1,16].

In fact, giving bounds for the X-numbers in special graphs is a popular way
to tackle the problems. In this work, we study the behavior of the three X-sets of
graphs under the following graph operation defined by Mycielski in [21]. Given
a graph G = (V,E) with V = {v1, . . . , vn}, a new graph M(G) is constructed as
follows: for every vertex vi of G, add a new vertex ui and make ui adjacent to
all vertices in NG(vi). Finally add a vertex u which is adjacent to all ui. Let the
set containing all the vertices ui’s be called U , that is, U = {u1, u2, . . . , un}.

Originally, Mycielski introduced this construction in the context of graph
coloring and used it to generate graphs M(G) whose chromatic number increases
by one compared to the chromatic number of G. In [11], it is proved that the
application of the Mycielski construction also increases the dominating number
by one. In this paper, we show that the same holds for total domination and
study the X-numbers of the graphs M(G), where G is a star K1,n, a path Pn

and a cycle Cn (see Fig. 1, Fig. 2 and Fig. 3, respectively, for examples of their
illustrations). As far as previous works on such variants of the dominating sets of
Mycielski constructions is concerned, we know of only one such, namely, in [24]
where the authors find tight upper bounds of ID-numbers of M(G) for G being
an identifiable graph (that is, a graph without true twins). The ID-number of
an identifiable graph G is the minimum cardinality of a dominating set C of G
such that N [u]∩C �= N [v]∩C for all distinct pairs u, v of vertices of G (see [18]).

In Sect. 2, we show that the application of the Mycielski construction
increases the total-dominating number by at least one and give a general lower
bound on the studied X-numbers of the graphs M(G) in terms of γX(G) when
G is either a path or a cycle. We then combine this bound with previously
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Fig. 1. The star K1,3 and the resulting graph M(K1,3)

Fig. 2. The path P4 and the resulting graph M(P4)

known results on γX(Pn) (respectively, on γX(Cn)) to obtain lower bounds on
the X-numbers of M(Pn) (respectively, of M(Cn)).

In Sect. 3, we give a general upper bound on the X-numbers of the graphs
M(G). We also show that this bound is attained when G is a star and improve
the bound for the cases when G is a path or cycle.

We note that there are some particularities in applying the Mycielski con-
struction to paths and cycles with a small number of vertices. In fact, we have
M(P2) = C5. While we have γLD(P2) = 1 and γLTD(P2) = γOLD(P2) = 2, it is
easy to see that γLD(C5) = 2, γLTD(C5) = 3, and γOLD(C5) = 4 hold. More-
over, P3 and C4 have false twins, and so do M(P3) and M(C4). Hence, there
exist no OLD-sets of these graphs. However, we have γX(P3) = γX(C4) = 2 and
γX(M(P3)) = γX(M(C4)) = 4 for X ∈ {LD,LTD}. Hence, in the rest of what
follows, we study paths Pn and cycles Cn with larger values of n.

We close with some concluding remarks and open problems for future
research.

2 Lower Bounds on X-Numbers of Graphs M(G)

To start with, observe the following fact that, for every graph G,

1. two vertices vi and vj are false twins in G if and only if the vertices vi, vj and
ui, uj are pairs of false twins in M(G); and

2. M(G) has no true twins.
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Fig. 3. The cycle C3 and the resulting graph M(C3)

In [11], it is proved that, for every graph G, the equality γ(M(G)) = γ(G)+1
holds, where γ(G) is the dominating number of G. Analogously, for the total-
dominating number γt(M(G)), we can prove:

Lemma 1. For every graph G without isolated vertices, we have γt(M(G)) =
γt(G) + 1.

Proof (sketch). Let C ⊆ V be a total-dominating set of G and let ui ∈ U . We
define Ci = C ∪ {ui}. As G has no isolated vertices, every vertex in V (M(G)) is
adjacent to a vertex in Ci and so, γt(M(G)) ≤ γt(G) + 1.

Now, let CM be a total-dominating set of M(G) of cardinality γt(M(G)).
Every vertex in V is adjacent to a vertex in CM . Let us define the sets CV =
CM∩V and CU = CM∩U . Then it can be verified that the set CV ∪{vi : ui ∈ CU}
is a total-dominating set of G and |CV | ≤ |CM − {u}|. Thus, if u ∈ CM , we are
done. Therefore, let us assume that u /∈ CM . Then, there exists uj ∈ CM in
order for CM to total-dominate u. Now, for every vertex ui ∈ CU , any neighbor
vk (∈ V ) of ui also has a neighbor in CV (the same vertex in CV that is a
neighbor of uk). This implies tat CM −CU is a total-dominating set of V . Since,
uj ∈ CU , we have |CU | ≥ 1 and hence, the result follows. 	


This motivates us to study the parameter γX(M(G)) in terms of γX(G). In
doing so, we now establish a general lower bound on the X-numbers of the graphs
M(G), where G is either a path Pn or a cycle Cn and X ∈ {LD,LTD,OLD}.

Theorem 1. Let X ∈ {LD,LTD,OLD}. For a graph G that is either a path
Pn or a cycle Cn admitting an X-set, we have

γX(M(G)) ≥ γX(G) + 1.

Proof (sketch). As a proof sketch, we provide here the proof of the theorem only
for the case that X = LD. The proof in the other cases when X ∈ {LTD,OLD}
follows with similar proof techniques. To begin with, let us assume that G is
any graph (not necessarily a path or a cycle) and that CM is a minimum LD-
set of M(G). Let CV = CM ∩ V and CU = CM ∩ U . Then define the set
C = CV ∪ {vi : ui ∈ CU}.
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Claim. C is an LD-set of G.

Proof of Claim. Firstly, since CM is a dominating set of M(G), one can verify
that the set C is also a dominating set of G. We now show that C is also a
separating set of G. Let vi, vj ∈ V be any pair of arbitrary vertices such that
vi, vj /∈ C. Then we show that vi, vj are separated by C in G. Let wk ∈ CM with
k /∈ {i, j} separate vi and vj in M(G), where wk ∈ {uk, vk}. If wk = vk, then C
clearly separates vi, vj . So, let wk = uk and that uk is a neighbour of vi and not
of vj in M(G). Now, if k = j, then vj ∈ C and is trivially separated from every
other vertex of G by the definitions of LD–sets. So, let k �= j. Then again, vk is
a neighbour of vi and not of vj in G and thus C separates vi, vj . This establishes
the claim. 	


Thus we have,

γLD(M(G)) ≥ |CM − {u}| ≥ |C| ≥ γLD(G). (2)

So, if u ∈ CM , then γLD(M(G)) > |CM | and hence, the statement of the theorem
holds. So, let us assume that u /∈ CM , in which case, we have γLD(M(G)) ≥
γLD(G). Toward contradiction, let us assume that γLD(M(G)) = γLD(G). Then,
by the assumed equalities in (2), C must be a minimum LD-set of G. This in
turn implies that for each i, we have |{ui, vi} ∩ CM | ≤ 1. In other words, if
ui ∈ CM , then vi /∈ CM and vice-versa.

For the rest of the proof sketch, let us assume that G is either a path Pn

or a cycle Cn. First of all, we observe that if any three consecutive vertices
vi, vi+1, vi+2 ∈ C, then C cannot be a minimum LD-set of G, as one can discard
vi+1 from C and the latter still remains an LD-set. Similarly, for some i, if
vi, vi+1, vi+3, vi+4 ∈ C, then again C cannot be a minimum LD-set of G, as one
can discard vi+1, vi+3 and include vi+2 in C and the latter still remains an LD-
set of G. With those observations, let us first assume that some vertex ui ∈ CM

in order to dominate u. If one of its neighbours in G, say vi+1, without loss of
generality, belongs to CM , then we must also have vi+2 ∈ CM in order for CM

to dominate ui+1 (note that vi /∈ CM ). Thus, vi, vi+1, vi+2 ∈ C, a contradiction
to the minimality of C by our earlier observation. Hence, let us assume that for
all ui ∈ CM , none of its neighbours in G, that is, vi−1 and vi+1, belong to CM .
So, fix one such ui ∈ CM . Then vi /∈ CM . Therefore, without loss of generality,
let ui+1 ∈ CM in order for the latter to dominate vi. If any of ui−1, vi−1 ∈ CM ,
then again we would have three consecutive vertices of G in C, a contradiction.
So, let us assume that ui−1, vi−1 /∈ CM . In order for vi−1, vi+1 to be separated,
we must have either wi−2 ∈ CM or wi+2 ∈ CM , where wi−2 ∈ {ui−2, vi−2} and
wi+2 ∈ {ui+2, vi+2}. However, we cannot have wi+2 ∈ CM , as otherwise, we
would have vi, vi+1, vi+2 ∈ C, the same contradiction as before. Hence, wi−2 ∈
CM . If wi−2 = vi−2, then ui−2 /∈ CM . This implies that vi−3 ∈ CM for CM

to dominate ui−2. This implies that vi−3, vi−2, vi, vi+1 ∈ C, a contradiction by
our earlier observation. Moreover, if wi−2 = ui−2, then vi−2 /∈ C and hence,
wi−3 ∈ CM for vi−2 to be dominated by CM , where wi−3 ∈ {ui−3, vi−3}. Here
again, we have vi−3, vi−2, vi, vi+1 ∈ C, the same contradiction.
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This proves that our assumption of γLD(M(G)) = γLD(G) is wrong which,
in turn, proves the theorem for the case that X = LD. The other cases when
X ∈ {LTD,OLD} follow with similar proof techniques. 	


Note that this lower bound in Theorem 1 is tight:

– for X ∈ {LD,LTD}, we have γX(C3) = 2 as {v1, v2} is a minimum X-set,
and γX(M(C3)) = 3 as {v1, v2, u} is a minimum X-set (see Fig. 3 for C3 and
M(C3)),

– for X = OLD, no tight examples are yet known in this case.

We deduce lower bounds for γX(M(Pn)) and γX(M(Cn)) from the respective
values of γX(Pn) and γX(Cn). Theorem 1 together with the results from [5] on
γLD(Pn) and γLD(Cn) yield:

Corollary 1. If G equals Pn or Cn for n ≥ 3, we have as lower bound:

γLD(M(G)) ≥
⌈
2n
5

⌉
+ 1.

The exact OLD-numbers of path and cycles are studied in [23] and [3], respec-
tively. However, the latter result for cycles of even order needed to be corrected
and as such, we state and prove the result in its entirety as follows.

Theorem 2. For any cycle Cn on n vertices such that n ≥ 3 and n �= 4, we
have

γOLD(Cn) =
{ ⌈

2n
3

⌉
, for odd n,

2
⌈
n
3

⌉
, for even n.

Proof. We prove the theorem by first showing that
⌈
2n
3

⌉
for odd n and 2

⌈
n
3

⌉
for

even n is a lower bound on γOLD(Cn) and then providing an OLD-set of Cn of
exactly the same cardinality as the lower bound. We start with establishing the
lower bound first.

Seo and Slater showed in [23] that if G is a regular graph on n vertices, of
regular-degree r and with no open twins, then we have γOLD(G) ≥ 2

1+rn. Using
this result in [23] for the cycle Cn, therefore, we have γOLD(Cn) ≥ 2

3n, that is,
γOLD(Cn) ≥ ⌈

2
3n

⌉
. Now, for n �= 6k +4 for any non-negative integer k, we have

⌈
2n
3

⌉
=

{ ⌈
2n
3

⌉
, for odd n,

2
⌈
n
3

⌉
, for even n.

Thus, the only case left to prove is the following claim.

Claim. For n = 6k + 4 with k ≥ 1, we have γOLD(Cn) ≥ 2
⌈
n
3

⌉
= 4k + 4.

Proof (of Claim). The proof of the last claim is by induction on k with the base
case being for k = 1, that is, when Cn is a cycle on n = 10 vertices. We fisrt
show the result for n = 10.

Subclaim. γOLD(C10) ≥ 8.
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Proof (of Subclaim). Let V (C10) = {v1, v2, . . . , v10} and S be a minimum open
OLD-set of C10. Then, |S| < 10 by a charaterization result by Foucaud et
al. [10] on the extremal graphs G for which γOLD(G) = |V (G)|. Hence, there
exists a vertex v1 (without loss of generality) such that v1 /∈ S. We consider
the induced 5-paths P1 : v1v2v3v4v5 and P2 : v1v10v9v8v7. Then, from the
path P1, the vertex v3 ∈ S for the latter to total-dominate v2 and the ver-
tex v5 ∈ S for the latter to separate the pair v2, v4. By the same argument,
from path P2, the vertices v9, v7 ∈ S. Moreover, at least one vertex from each
of the pairs (v2, v4), (v4, v6), (v6, v8), (v8, v10), (v10, v2) must belong to S for the
latter to total-dominate v3, v5, v7, v9, v1, respectively. Hence, the result follows
from counting. 	


Thus, the result holds for the base case of the induction hypothesis. We,
therefore, assume k ≥ 2 and that γOLD(Cm) ≥ 4q + 4 for all cycles Cm with
|V (Cm)| = 6q +4 and q ∈ {1, 2, . . . , k − 1}. Toward contradiction, let us assume
that γOLD(Cn) < 4k+4. Moreover, let V (Cn) = {v1, v2, . . . , vn}. Then again, by
the charaterization result in [10], we have γOLD(Cn) < n. This implies that, for
any minimum OLD-set S of Cn, there exists a pair (vn−6, vn−5) (by a possible
renaming of vertices) such that vn−6 ∈ S and vn−5 /∈ S. Let C ′

n−6 be the
cycle on n − 6 vertices formed by adding the edge v1vn−6 in the graph Cn −
{vn−5, vn−4, . . . , vn}. Note that |V (C ′

n−6)| = 6(k−1)+4 and hence, the induction
hypothesis applies to it to give

γOLD(C ′
n−6) ≥ 4(k − 1) + 4 = 4k. (3)

Now, let S′ = S − {vn−5, vn−4, . . . , vn}.

Subclaim. S′ is an OLD-set of C ′
n−6.

Proof (of Subclaim). To show that S′, first of all, is a total-dominating set of
C ′

n−6, we notice that the vertices v1, v5 /∈ S. Therefore, all vertices in the set
{v2, v3, . . . , vn−6} remain total-dominated by S′. Moreover, S′ total-dominates
v1 by virtue of vn−6 ∈ S′. This proves that S′ is a total-dominating set of C ′

n−6.
We now show that S′ is also a total-separating set of C ′

n−6. To that end,
since vn−5 /∈ S, if now the vertex vn /∈ S as well, then S′ clearly total-separates
every pair of vertices in C ′

n−6 and hence, is an OLD-set. If however, vn ∈ S
and total-separates a pair of vertices in C ′

n−6, the pair can either be (v1, v2) or
(v1, v3). Since n ≥ 16, we have 3 < n − 6 and hence, vn−6 ∈ S′ total-separates
the pairs (v1, v2) and (v1, v3) in C ′

n−6. Therefore, S′ is an OLD-set of C ′
n−6. 	


Subclaim. |S ∩ {vn−5, vn−4, . . . , vn}| ≥ 4.

Proof (of Subclaim). Since vn−6 /∈ S, it implies that vn−3 ∈ S in order for the
latter to total-dominate the vertex vn−4. Moreover, we also have vn−1 ∈ S in
order for S to total-separate the pair (vn−2, vn−4). Furthermore, we must have at
least one vertex each from the pairs (vn−4, vn−2) and (vn−2, vn) belonging to S in
order for the latter to total-dominate the vertices vn−3 and vn−1, respectively.
Finally, at least one vertex from the pair (vn−4, vn) must also belong to S in
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order for S to total-separate the pair (vn−3, vn−1). This proves that the result
holds. 	


Recall that |S| = γOLD(Cn) < 4k + 4, by assumption. Thus, we have

γOLD(C ′
n−6) ≤ |S′| = |S| − |S ∩ {vn−5, vn−4, . . . , vn}| < 4k + 4 − 4 = 4k,

a contradiction to the Inequality (3). This proves the claim and establishes the
lower bound on γOLD(Cn). 	


The theorem is, therefore, proved by providing an OLD-set S of Cn of the
exact same cardinality as the lower bound, that is,

|S| =
{ ⌈

2n
3

⌉
, for odd n,

2
⌈
n
3

⌉
, for even n.

(4)

Let = V (Cn) = {v1, v2, . . . , vn} and that n = 6k + r, where r ∈ {0, 1, 2, 3, 4, 5}.
For k = 0, that is, Cn being either a 3-cycle or a 5-cycle, it can be checked
that the sets {v1, v2} and {v1, v2, v3, v4} are the respective OLD-sets. Thus, the
result holds in this case. For the rest of this proof, therefore, we assume that
n ≥ 6, that is, k ≥ 1. We now construct a vertex subset S of Cn by including in
S the vertices

1. v6i−4, v6i−3, v6i−1, v6i for all i ∈ {1, 2, . . . , k} if r = 0, 3. In this case, we have
|S| = 4k for r = 0 and |S| = 4k + 2 for r = 3.

2. v6i−4, v6i−3, v6i−2, v6i−1 for all i ∈ {1, 2, . . . , k} if r �= 0; with
(a) the vertices v6k, v6k+1, . . . , v6k+r−1 if r = 1, 2, 4. In this case, we have

|S| = 4k + r; and
(b) the vertices v6k+1, v6k+2, v6k+3, v6k+4 if r = 5. In this case, we have |S| =

4k + 4.

It can be checked that the constructed set S is, indeed, an OLD-set of Cn

and of the cardinality as in Eq. (4). This proves the result. 	

Combining Theorem 1 with results on γOLD(Pn) in [23] and on γOLD(Cn) in

Theorem 2, we deduce:

Corollary 2. Consider Pn with n = 6k + r for k ≥ 1 and r ∈ {0, . . . , 5}, then
we have:

γOLD(M(Pn)) ≥
{
4k + r + 1 if r ∈ {0, . . . , 4},
4k + 5 if r = 5;

and for n ≥ 3 and n �= 4, we have

γOLD(M(Cn)) ≥
{ ⌈

2n
3

⌉
+ 1, for odd n,

2
⌈
n
3

⌉
+ 1, for even n.

Theorem 1 together with the results from [15] on γLTD(Pn) and from [16] on
γLTD(Cn) imply:

Corollary 3. If G equals Pn or Cn for n ≥ 3, we have as lower bound:

γLTD(M(G)) ≥
⌊n

2

⌋
−

⌊n

4

⌋
+

⌈n

4

⌉
+ 1.
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3 Upper Bounds on X-Numbers of Graphs M(G)

We first establish a general upper bound on X-numbers of graphs M(G) in terms
of γX(G).

Theorem 3. Let X ∈ {LD,LTD,OLD}. For a graph G admitting an X-set,
we have

γX(M(G)) ≤ 2γX(G).

Proof (sketch). Let C be a minimum X-set of G. Then, we construct a new set
C ′ = C ∪ {ui : vi ∈ C}. It can be checked that if C is a dominating (respec-
tively, total-dominating) set of G, then so is it of M(G). For any x ∈ V (M(G)),
let NM (x) (respectively, NM [x]) denote the neighborhood (respectively, closed
neighborhood) of x in M(G). If C is a total-separating set of G, then for any
x ∈ V (M(G)), we have

– C ′ ∩ NM (u) = {ui : vi ∈ C}
– C ′ ∩ NM (uj) = (C ∪ {ui : vi ∈ C}) ∩ NM (uj) = C ∩ N(vj)
– C ′ ∩ NM (vj) = (C ∪ {ui : vi ∈ C}) ∩ NM (vi) = {vk, uk : vk ∈ N(vj) ∩ C}

As is evident, the set C ′ ∩ NM (x) is unique for each x ∈ V (M(G)). Thus, C ′

is also a total-separating set of M(G). Moreover, |C ′| = 2|C|. This proves the
result. 	


Based on results from [4,14,16] on X-numbers of stars and the relation (1),
we can show that the bound given in Theorem 3 is tight for stars (see Fig. 4 for
illustration):

Theorem 4. For stars K1,n with n ≥ 3, we have γX(K1,n) = n and

γX(M(K1,n)) = 2n

whenever X ∈ {LD,LTD}.
Note that stars K1,n have false twins and, therefore, so does M(K1,n).

Hence, M(K1,n) does not admit an OLD-set. Figure 5 provides an example for
γX(M(G)) = 2γX(G) when X = OLD. For OLD-sets, we can further prove the
following.

Theorem 5. Let G be a graph without isolated vertices and false twins. Then
γOLD(M(G)) ≤ γOLD(G) + 2.

Proof (sketch). Let C ⊂ V be an OLD-set of G and let ui ∈ U . We define
Ci = C ∪ {u, ui}. As G has no isolated vertices, every vertex in V (M(G)) is
adjacent to a vertex in Ci. This implies that Ci is a total-dominating set of
M(G). Moreover, by the fact that C is a total-separating set of G, it can be
checked that each of the following sets is unique.

Ci ∩ NM (u) = {ui};
Ci ∩ NM (vj) = (C ∩ N(vj)) ∪ {ui} for vj ∈ N(ui);
Ci ∩ NM (vj) = C ∩ N(vj) for vj /∈ N(ui); and
Ci ∩ NM (uj) = (C ∩ N(vj)) ∪ {u} for uj ∈ U.
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Fig. 4. K1,n and M(K1,n) (black vertices form a minimum X-set when X ∈
{LD,LTD})

This proves that Ci is an OLD-set of M(G) and since, |Ci| = |C|+2, the result
follows. 	


The bound given in Theorem 5 is tight, as M(P2) and M(C3) (in Fig. 5)
show. In addition, it enables us to prove the following for γOLD(M(Pn)) and
γOLD(M(Cn)).

Theorem 6. For all n ≥ 2 and n �= 3, we have

γOLD(M(Pn)) = γOLD(Pn) + 2

and for all n ≥ 3, we have

γOLD(Cn) + 1 ≤ γOLD(M(Cn)) ≤ γOLD(Cn) + 2.

Proof (sketch). The result for cycles follows directly from Theorems 1 and 5.
For paths, again using Theorem 5, we only need to show that γOLD(Pn) ≥
γOLD(Pn)+2 for all n ≥ 2 and n �= 3. As far as small paths a concerned, it can be
checked that γOLD(P2) = 2, γOLD(P4) = γOLD(P5) = 4; and γOLD(M(P2)) = 4,
γOLD(M(P4)) = γOLD(M(P5)) = 6. Thus, the result holds for these small paths.
Therefore, we assume that n = 6k + r with k ≥ 1, where r ∈ {0, 1, . . . , 5}.
If V (P ) = {v1, v2, . . . , vn}, the proof follows by partitioning the vertex set of

Fig. 5. C3 and M(C3) (black vertices form a minimum OLD-set)
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M(Pn) into �n
6  parts, the first �n

6 � of which are given by Bi = {vj , uj : 6i−5 ≤
j ≤ 6i} for all 1 ≤ i ≤ �n

6 �; and the last (if exists, that is, if r �= 0) part
Bl = {vj , uj : 6k + 1 ≤ j ≤ r}. Further analysis of any block Bi for 1 ≤ i ≤ �n

6 �
shows that any OLD-set C of M(Pn) must contain at least 4 vertices from
Bi. Moreover, we would have |C ∩ U | ≥ 2. This gives the total count for the
cardinality of C to be 4k + 2 and thus proves the theorem for r = 0. Moreover,
each other case for r ∈ {1, 2, 3, 4, 5} is dealt with separately where it can be
shown that, for r ∈ {1, 2, 3, 4}, exactly r vertices and, for r = 5, exactly 4
vertices need to be included in C. This proves the theorem by comparison to the
results for γOLD(Pn) in [23]. 	


Concerning LD-numbers, we note that γLD(M(P2)) = 2 and γLD(M(P3)) =
γLD(M(P4)) = γLD(M(P5)) = 4 holds. We can improve the general upper
bounds for γLD(M(Pn)) and γLD(M(Cn)) as follows:

Theorem 7. Consider Pn with n = 3k + r for k ≥ 2, r ∈ {0, 1, 2} and Cn with
n ≥ 3, then we have:

γLD(M(Pn)) ≤
{
2k + 1 if r = 0
2k + 2 if r ∈ {1, 2}

and
γLD(M(Cn)) ≤

{
n − ⌊

n
3

⌋
+ 1 if n is odd

n − 2
⌊
n
6

⌋
+ 1 if n is even

Proof (sketch). We provide the proof sktech for paths to illustrate the proof
technique. The proof for cycles follows with similar techniques. Let n ≥ 6, n =
3k + r with k ≥ 2 and r ∈ {0, 1, 2}. Then, according to three possible values of
r, we define the following sets.

– If r = 0, we define C = {v2} ∪ {vi, vi+1 : i = 3� + 1, � ∈ {1, . . . , k − 1}} ∪
{u3k, u}. In this case, we have |C| = 2k + 1.

– If r = 1, we define C1 = (C − {u3k}) ∪ {v3k+1, u3k+1}. Here we have, |C1| =
2k + 2

– If r = 2, we define C2 = (C − {u6k}) ∪ {v6k+1, v6k+2}. In this case, we have
|C2| = 2k + 2

Further analysis of the above sets C, C1 and C2 shows that in each of the
above three cases, the sets are LD-sets of M(Pn). The result then follows by the
cardinalities of the sets in the above three cases. 	


We observe that the upper bounds are tight for M(Pn) with 6 ≤ n ≤ 8
and for M(Cn) with n ∈ {3, 6, 7}, but are not tight for M(C4) and M(C5), for
example. There are no examples yet known where the upper bounds are not
tight for M(Pn).

The next theorem provides an upper bound for the LTD-numbers of M(Pn)
and M(Cn). However, before coming to it, as far as small graphs of these graph
classes are concerned, we note that γLTD(M(P2)) = 3, γLTD(M(P3)) = 4 and
γLTD(M(P4)) = γLTD(M(P5)) = 5. The next result improves the general upper
bounds for γLTD(M(Pn)) and γLTD(M(Cn)) as follows.
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Theorem 8. Consider Pn with n = 6k + r for k ≥ 1, r ∈ {0, . . . , 5} and Cn

with n ≥ 3, then we have:

γLTD(M(Pn)) ≤
⎧⎨
⎩

4k + 2 if r = 0
4k + r + 1 if r ∈ {1, 2, 3}
4k + r if r ∈ {4, 5}

and
γLTD(M(Cn)) ≤

{
n − ⌊

n
3

⌋
+ 2 if n is odd

n − 2
⌊
n
6

⌋
+ 2 if n is even

Proof (sketch). The upper bound on the LTD-number of M(Pn) follows by the
fact that γLTD(M(Pn)) ≤ γOLD(M(Pn)) = γOLD(Pn) + 2 (by Theorem 6) and
by the known exact values of γOLD(Pn) from [23].

For the upper bound on the LTD-number of M(Cn), we consider the
following two graphs G and G′. Let G = (V,E) be the graph such that
V = {v1, v2, . . . , vn} and E = {{vi, vi+2}, {vi, vi+4}, {vi, vi+3} : i ∈ {1, . . . , n}}
(where the sum of the indices is taken modulo n). Renaming the vertices of
V in such a way that wi = v1+2i for i ∈ {0, . . . , n − 1}, we consider the
second graph G′ with vertex set {wi : i ∈ {0, . . . , n − 1}} and edge set
{{wi, wi+1}, {wi, wi+2} : i ∈ {0, . . . , n − 1}}. We then look at the graph G′

with vertex set V (Cn), and denote by CG′ its minimum vertex cover. Then,
it is easy to check that CG′ ∪ {ui, u} for some i ∈ {1, . . . , n} is an LTD-set of
M(Cn). The theorem for Cn therefore follows by the use of another result proven
separately that the size of a minimum vertex cover of G is

– n − ⌊
n
3

⌋
when n odd and not a multiple of 3,

– n − ⌊
n
4

⌋
when n is odd and multiple of 3,

– n − 2
⌊
n
6

⌋
when n is even.

	

We observe that for γLTD(M(Cn)), there are values of n where the upper

bound is attained (for example, n ∈ {6, 9}), but also where this is not the case
(for example, n ∈ {3, 4, 5, 7, 8}). There are no examples yet known where the
upper bounds are not tight for M(Pn).

4 Concluding Remarks

To summarize, we studied three location-domination type problems under the
Mycielski construction. In Sect. 2, we showed that γX(G) + 1 is a general lower
bound of γX(M(G)) for all paths and cycles and all X ∈ {LD,LTD,OLD}.
Using results on γX(Pn) (respectively, on γX(Cn)) from [3,5,9,15,23], this
allowed us to deduce the appropriate lower bounds on the X-numbers of M(Pn)
(respectively, of M(Cn)) for X ∈ {LD,LTD,OLD}. As a related extension of
one of the main focuses of this paper, namely, the OLD-numbers of M(Cn), we
also establish the exact OLD-numbers for cycles.
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In Sect. 3, we firstly provided two general upper bounds on X-numbers of
the graphs M(G). We showed that the upper bound of 2γX(G) is attained when
G is a star for X ∈ {LD,LTD}. For OLD-numbers of M(G), we could fur-
ther establish the general upper bound of γOLD(G) + 2. We showed that this
bound is attained for γOLD(M(Pn)) and, combining our results on the lower
and upper bound of the OLD-numbers, we obtained a Vizing-type result for
M(Cn), namely, γOLD(Cn)+1 ≤ γOLD(M(Cn)) ≤ γOLD(Cn)+2. For the other
X-problems with X ∈ {LD,LTD}, we could improve the general upper bounds
for the X-numbers of both M(Pn) and M(Cn).

For the studied X-numbers, there are examples where the upper bounds are
attained (and, therefore, cannot be improved any further). On the other hand,
there are also examples where the upper bounds are not tight. Therefore, our
future research includes finding these exact values. In view of the fact that lower
bounds were obtained by considering the domination aspect only, we expect
that the true values are closer to the upper bounds. This applies particularly to
γLD(M(Pn)) and to γLTD(M(Pn)) where no examples are yet known where the
upper bound is not tight.

Moreover, it would be interesting to study similar questions for
other locating-dominating type problems, for example, differentiating total-
dominating sets (defined as total-dominating sets that separate all vertices of
the graph).
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Abstract. This paper makes progress towards settling the long-
standing conjecture that the total chromatic number χ′′(K) of the com-
plete p-partite graph K = K(r1, . . . , rp) is Δ(K) + 1 if and only if
K �= Kr,r and if K has an even number of vertices then def(K) =
Σv∈V (K)(Δ(K)− dK(v)) is at least the number of parts of odd size. The
problem was settled for complete 3-partite graphs by Chew and Yap in
1992, and for complete 4-partite graphs by Dong and Yap in 2000; the
difficulty rises manifold with the increase in the number of parts. In 2014,
Dalal and Rodger (Graphs and Combinatorics (2015), 1–15) introduced
an approach using amalgamations to attack the conjecture and demon-
strated its power by settling the problem for complete 5-partite graphs.
Their approach required coloring of all the vertices in each part with
the same color. However, the applicability of their approach is restricted
because, for each k ∈ N, there are complete 2k-partite graphs K for
which any total coloring of K in which all the vertices in each part
are colored the same would require at least Δ(K) + 2 colors, although
χ′′(K) = Δ(K)+1. In this paper, we overcome this difficulty by provid-
ing a technique that allows the vertices in the same part to have different
colors by adapting a result of Bahmanian and Rodger (J. Graph Theory
(2012), 297–317) on graph amalgamations. Using our technique, we solve
the classification problem for all complete 6-partite graphs.

1 Introduction

A total coloring of a graph G = (V,E) is coloring of elements of V (G) ∪ E(G)
so that adjacent vertices receive different colors; adjacent edges receive different
colors; and if edge e is incident to vertex v then e and v receive different colors.
The total chromatic number χ′′(G) is the least number of colors needed to totally
color G. The complete p-partite graph K = K[V1, . . . , Vp] is the simple graph
with vertex set V (K) = ∪p

i=1Vi (each set Vi is called a part), where Vi ∩ Vj = ∅
for i �= j, in which two vertices are joined if and only if they belong to different
parts of K. If the names of the vertex sets are unimportant then K is simply
referred to as K(r1, . . . , rp), where |Vi| = ri for 1 ≤ i ≤ p.

The graph K is of sufficient complexity that settling the values of its graph
parameters is often a challenge. Finding the chromatic index χ′(K) is a typical
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Kalyanasundaram and A. Maheshwari (Eds.): CALDAM 2024, LNCS 14508, pp. 270–285, 2024.
https://doi.org/10.1007/978-3-031-52213-0_19
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example. Of course, the classic result of Vizing [15] shows that χ′(G) is Δ(G) or
Δ(G) + 1, thereby giving rise to the classification of whether a graph is Class 1
or Class 2, respectively. It was finally shown in 1992 that K is a Class 2 graph
if and only if it is overfull [13]. Similar to Vizing’s result, it is conjectured that
the value of χ′′(G) for any simple graph G is either Δ(G) + 1 or Δ(G) + 2 (see
[2,15]), and G is said to be of Type 1 or Type 2 respectively based on this
value. Bermond settled the type of K when it is regular [3]. Yap [16] proved that
χ′′(K) ≤ Δ + 2, and Chew and Yap [7] showed that if K has an odd number
of vertices then it is of Type 1. In 1992, Chew and Yap [7] proved the following
result.

Theorem 1 [7]. Suppose that either r1 < r2 ≤ r3 ≤ . . . ≤ rp or p = 3. Then K
is of Type 1.

In 2000, Dong and Yap [11] extended the above result by proving the following.

Theorem 2 [11]. Suppose that r1 ≤ r2 . . . ≤ rp and that |V (K)| = 2n. If r2 ≤
r3 − 2 then K is of Type 1. Also if K is not regular with p = 4 then it is of Type
1.

The proof techniques in all these papers are very similar, though they get more
complicated as more difficult cases are attacked. They build upon the idea of
coloring the vertices so that all vertices in one part, say Vβ , receive the same
color, while all other vertices receive different colors (a so-called β-biased total
coloring). Such total colorings were characterized in [14] by Hoffman and Rodger,
thereby producing the following theorem. It is most easily stated in terms of the
deficiency, which is the measure of how far a graph G is from being regular, and
is defined by def(G) = Σv∈V (G)(Δ(G) − dG(v)).

Theorem 3 [14]. Suppose that r1 ≤ r2 ≤ . . . ≤ rp and that |V (K)| = 2n. If

def(K) ≥

⎧
⎪⎨

⎪⎩

2n − r1 if p = 2 or
if p is even, r1is odd, and r1 = rp−1,

2n − rp otherwise,

then K is Type 1.

Hoffman and Rodger [14] made the following conjecture for necessary and
sufficient conditions for K to be of Type 2.

Conjecture 4 [14]. A complete multipartite graph K = K(r1, . . . , rp) is of Type
2 if and only if

1. p = 2 and K is regular, or
2. |V (K)| is even and def(K) is less than the number of parts of odd size.

Dalal and Rodger [8] introduced, in 2014, a novel approach using amalga-
mations to attack the problem. They exemplified the power of the approach
by settling the classification problem for all complete 5-partite graphs, thereby
extending the result for p = 4 in Theorem 2. More precisely, they proved:
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Theorem 5 [8]. K = K(r1, . . . , r5) is Type 2 if and only if |V (K)| ≡ 0 mod 2
and def(K) is less than the number of parts in K of odd size.

Dalal, Panda and Rodger [9] made use of the amalgamation technique, blended
with the traditional approach, to improve upon Theorem 2. More specifically,
they proved the following.

Theorem 6 [9]. Suppose that r1 ≤ r2 . . . ≤ rp and that |V (K)| = 2n. If r2 < r3
then K is of Type 1.

Recently, using amalgamations, Dalal et al. [10] proved the following result which
provides that if the sizes of the third and fourth parts are not equal, then K is
of Type 1.

Theorem 7 [10]. Let K(r1, r2, . . . , rp) be a complete multipartite graph such
that r1 ≤ r2 ≤ . . . ≤ rp and |V (K)| = 2n. If r3 < r4 then K is of Type 1.

Thus, the amalgamation approach introduced by Dalal and Rodger [8] has been
quite useful. To obtain a total coloring of K, their approach requires that all the
vertices in each part are colored the same. However, for each k ∈ N, there are
complete 2k-partite graphs K such that any total coloring of K in which all the
vertices in each part are colored the same would require at least Δ(K)+2 colors
although χ′′(K) = Δ(K)+1. Therefore, this puts limitation on the applicability
of the approach by Dalal and Rodger. To illustrate this, we take an example of
a complete 6-partite graph K[V1, . . . , V6] = K(r, r, r, r, r, r + 2), r is odd. Any
total coloring of K in which all the vertices of V6 are colored the same would
leave at least one vertex v ∈ V1 ∪ . . . ∪ V5 unsaturated. However, all the vertices
in V1 ∪ . . .∪V5 are of the maximum degree, and thus such a total coloring would
require at least Δ(K) + 2 colors. However, K(r, r, r, r, r, r + 2) is of Type 1 (as
proved by Theorem 8 of this paper).

In this paper, we overcome this difficulty by providing a generalized amal-
gamation approach which allows the vertices in the same part to have different
colors. Our approach thus has a wider applicability and we demonstrate this
by solving the classification problem for all complete 6-partite graphs. More
precisely, we prove the following.

Theorem 8. K = K(r1, . . . , r6) is Type 2 if and only if |V (K)| ≡ 0 mod 2 and
def(K) is less than the number of parts in K of odd size.

We first introduce some notations. H is an amalgamation of G if there exists
a function ψ called an amalgamation function from V (G) onto V (H) and a
bijection φ′ : E(G) → E(H) such that e joins u and v in E(G) if and only if
φ′(e) joins ψ(u) and ψ(v) in E(H). Note that φ′ is completely determined by ψ.
Figure 1 gives an illustration of an amalgamation of K(2, 3, 3) to K ′. Associated
with ψ is the number function η : V (H) → N defined by η(v) = |ψ−1(v)|, for
each v ∈ V (H). G is a detachment of H if there exists an amalgamation function
ψ of G onto H such that |ψ−1({u})| = η(u) for every u ∈ V (H). Some authors
refer to detachments as disentanglements. The subgraph of G induced by the



On Total Chromatic Number of Complete Multipartite Graphs 273

edges colored j is denoted by G(j). For a graph G, mG(u, v) denotes the number
of edges joining vertices u and v in G, and lG(u) denotes the number of loops
incident to vertex u. If x, y are real numbers, then �x� and x� denote the integers
such that x − 1 ≤ �x� ≤ x ≤ x� ≤ x + 1, and x ≈ y means �y� ≤ x ≤ y�. We
denote the set of the first k natural numbers by Nk.

V1 V2

V3

ψ

K(2, 3, 3) K

1

2

3

Fig. 1. Amalgamation of K(2, 3, 3) into K′ where V (K′) = {1, 2, 3}.

2 Generalized Approach

Our technique makes use of the following theorem of Bahamanian and Rodger
[1] which generalizes several existing amalgamation results in various ways.

Theorem 9 [1]. Let H be a k-edge-colored graph and η be a function from V (H)
into N such that for each w ∈ V (H), η(w) = 1 implies lH = 0. Then there exists a
loopless η-detachment G of H with amalgamation function ψ : V (G) −→ V (H),
η being the number function associated with ψ such that G satisfies the following
conditions:

1. dG(u) ≈ dH(w)/η(w) for each w ∈ V (H) and each u ∈ ψ−1(w);
2. dG(j)(u) ≈ dH(j)(w)/η(w) for each w ∈ V (H), each u ∈ ψ−1(w) and each

j ∈ Nk;
3. mG(u, v) ≈ mH(w, z)/(η(w)η(z)) for every pair of distinct vertices w, z ∈

V (H), each u ∈ ψ−1(w) and v ∈ ψ−1(z); and
4. mG(j)(u, v) ≈ mH(j)(w, z)/(η(w)η(z)) for every pair of distinct vertices w, z ∈

V (H), each u ∈ ψ−1(w), v ∈ ψ−1(z) and each j ∈ Nk.

Let K ′ be an amalgamation of complete multipartite graph K, where |V (K ′)| =
k′, ψ and η be the amalgamation function and the associated number function,
respectively. For simplicity, we assume that V (K ′) = Nk′ . We would find Δ(K)+
1 subgraphs of K ′, each with degree sequence majorized by (η(1)), . . . , η(k′)), so
that their union forms a graph in which for 1 ≤ i < j ≤ η(k′) vertices i and j are
joined by exactly η(i)η(j) or 0 edges as the case may be, and on disentangling
K ′ to get K (using Theorem 9), the vertices of K are colored using only the
Δ(K)+1 colors while ensuring that the properties of total coloring are satisfied.
It is convenient to consider each subgraph as a color class. The technique follows
four general steps:
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1. k′ or k′ −1 color classes of K ′ are defined in which each vertex i ∈ {1, . . . , k′}
has degree as close to η(i) as possible except for one which has degree 0.

2. Many color classes of K ′ with degree sequence (η(1)), . . . , η(k′)) saturating
all the vertices are found.

3. The remaining edges of K ′ are partitioned into few remaining color classes.
4. Using Theorem 9, K ′ is disentangled to get K. Most vertices of K are then

colored using colors in step (1) and left ones are colored using color(s) in step
(3).

This may be seen in contrast with the technique of Dalal and Rodger, though not
stated in the above form in [8]. For a complete multipartite K = K(V1, . . . , Vp),
their approach would always have a fixed amalgamation function ψ : V (K) →
V (K ′) such that ψ(Vi) = {i} and η(i) = ri for 1 ≤ i ≤ p. In Step (1), p color
classes would be defined. In Step (4), only these p color classes would be used
to color the vertices of K by coloring all the vertices in each of p parts by one
of the p colors.

Thus, it is apparent that our technique is much more general. The limitation
of the approach of Dalal and Rodger [8] and the power of our technique is
apparent when we deal with two subcases in the proof of Theorem 8.

3 Lemmas and Proofs

The following lemma of Hilton [12] characterizes the graphs of order 2n and
having maximum degree 2n − 1 according to their total chromatic number.

Lemma 1 [12]. Let n ≥ 1, let J be a subgraph of K2n, let e = |E(J)| and
let j be the maximum size (i.e., number of edges) of a matching in J . Then
χ′′(K2n − E(J)) = 2n + 1 if and only if e + j ≤ n − 1.

To apply the above lemma for complete multipartite graphs K(r1, r2, . . . , rp)
of order 2n with maximum degree 2n − 1 (i.e. r1 = 1), take J = Kc, then
e = |E(J)| = def(K)

2 and by some simple calculations we get j = n− o(K)
2 where

o(K) is the number of parts of odd size in K. So for the complete multipartite
graph of order 2n and maximum degree 2n − 1, the above lemma gives the
following result:

Lemma 2. Let K(r1, r2, . . . , rp) be a complete multipartite graph of order 2n
and maximum degree 2n − 1 (i.e., r1 = 1). Then K is Type 2 if and only if
def(K) is less than the number of parts of odd size in K.

Similarly, the following lemma of Chen and Fu [5] characterizes the graphs of
order 2n and maximum degree 2n − 2, and therefore also applies to complete
multipartite graphs K(r1, r2, . . . , rp) of order 2n with r1 = 2.

Lemma 3 [5]. Let G be a graph of order 2n and Δ(G) = 2n − 2. Then G is of
Type 2 if and only if Gc is a disjoint union of an edge and a star having 2n − 3
edges.
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A well-known reason for a graph to be of Type 2 was established in a more
general setting in [6], but the following suffices for our purposes.

Lemma 4 [6]. If K has an even order and if def(K) is less than the number of
parts of odd size then K is Type 2.

We also make use of the following result by Bryant et al. [4] which gives
necessary and sufficient conditions for a decomposition of complete multigraphs
into cycles of varying lengths.

Lemma 5 [4]. Let λ, n and m be integers with n, m ≥ 3 and λ ≥ 1. There exists
a decomposition of λKn into m-cycles if and only if (i) m ≤ n; (ii) λ(n − 1)
is even; and (iii) m divides λ

(
n
2

)
. There exists a decomposition of λKn into m-

cycles and a perfect matching if and only if (i) m ≤ n; (ii) λ(n − 1) is odd; and
(iii) m divides λ

(
n
2

) − n
2 .

For any set S, let r ∗S be the multi-set consisting of r copies of each element
in S, and for any graph G, let r ∗ G denote the multigraph formed by replacing
each edge in G with r edges. A sequence s = (s1, . . . , sn) is said to majorize a
sequence t = (t1, . . . , tn) if si ≥ ti for 1 ≤ i ≤ n. In any total coloring, the set of
edges colored Ci is known as the ith color class, denoted by Ci; it will cause no
confusion to also refer to the subgraph induced by the edges colored i as Ci. For
any pair of disjoint subsets A and B of the vertex set of a graph G, let G[A,B]
denote the bipartite subgraph of G induced by the edge set {{a, b}|a ∈ A, b ∈ B} .
If the vertex set of G is a subset of the vertex set of H, then let G + H be the
multigraph with vertex set V (H) formed from H by adding the edges in G to H
(so, for example, if an edge appears once in G and in H then it appears twice in
G + H). For any vertex x and y, Exy or {x, y} denotes the edge between x and
y. An edge-coloring of a multigraph is equitable if, among the edges incident to
each vertex, the number of edges of each color class differs by at most one from
the number of edges of each other class. Equitable edge-coloring has been used
in scheduling and timetabling problems.

Lemma 6. For all r ≥ 3, there exists an equitable 10-edge-coloring of 2(r − 1) ∗
K6 +5∗K[{1, 2, 3, 4}, {5, 6}]+10∗E56, where V (K6) = N6, such that the degree
sequence of each color class is (r, r, r, r, r + 2, r + 2).

Proof. Let R1, . . . , R5 be a 1-factorization of K6. The required color classes are
as follows:

C2i = (r − 1) ∗ Ri + E56 + [{1, 5}, {2, 5}, {3, 6}, {4, 6}] for 1 ≤ i ≤ 5.
C2i−1 = (r − 1) ∗ Ri + E56 + [{3, 5}, {4, 5}, {1, 6}, {2, 6}] for 1 ≤ i ≤ 5.
∪10

i=1 Ci = 2(r − 1) ∗ K6 + 5 ∗ K[{1, 2, 3, 4}, {5, 6}] + 10 ∗ E56.

Lemma 7. For all r ≥ 3, there exists an equitable 20-edge-coloring of 4(r − 1) ∗
K6+5∗K[{1, 2, 3, 4}, {5}]+15∗K[{1, 2, 3, 4}, {6}]+20∗E56, where V (K6) = N6,
such that the degree sequence of each color class is (r, r, r, r, r + 1, r + 3).
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Proof. Let R1, . . . , R5 be a 1-factorization of K6. The required color classes are
as follows:

C4i−3 = (r − 1) ∗ Ri + E56 + [{1, 5}, {2, 6}, {3, 6}, {4, 6}] for 1 ≤ i ≤ 5.
C4i−2 = (r − 1) ∗ Ri + E56 + [{2, 5}, {1, 6}, {3, 6}, {4, 6}] for 1 ≤ i ≤ 5.
C4i−1 = (r − 1) ∗ Ri + E56 + [{3, 5}, {2, 6}, {1, 6}, {4, 6}] for 1 ≤ i ≤ 5.
C4i = (r − 1) ∗ Ri + E56 + [{4, 5}, {2, 6}, {3, 6}, {1, 6}] for 1 ≤ i ≤ 5.
∪20

i=1 Ci = 4(r − 1) ∗ K6 + 5 ∗ K[{1, 2, 3, 4}, {5}] + 15 ∗ K[{1, 2, 3, 4}, {6}] + 20 ∗ E56.

Lemma 8. For odd r ≥ 3, there exists an equitable 5-edge-coloring of (r − 1) ∗
K6 + 4 ∗ K[{1, 2, 3, 4, 5}, {6}] + K[{1, 2, 3, 4, 5}, {7}], where V (K6) = N6, such
that the degree sequence of each color class is (r, r, r, r, r, r + 3, 1).

Proof. Let R1, . . . , R5 be a 1-factorization of K6. The required color classes are
as follows:

Ci = (r − 1) ∗ Ri + (K[{1, 2, 3, 4, 5}, {6}] \ {i, 6}) ∪ {i, 7} for 1 ≤ i ≤ 5.
∪5

i=1 Ci = (r − 1) ∗ K6 + 4 ∗ K[{1, 2, 3, 4, 5}, {6}] + K[{1, 2, 3, 4, 5}, {7}].

Lemma 9. For odd r ≥ 3, there exists an equitable 10-edge-coloring of 2(r −
1) ∗ K6 + 4 ∗ K[{1, 2, 3, 4, 5}, {6}] + 2 ∗ K[{1, 2, 3, 4, 5}, {7}] + K5, (V (K6) = N6,
V (K5) = N5), such that degree sequence of each color class is (r, r, r, r, r, r+2, 1).

Proof. Let R1, . . . , R5 be 1-factorization of K6. The required color classes are as
follows:

C1 = (r − 1) ∗ R1 + K[{1, 2, 3, 4, 5}, {6}] \ [{1, 6}, {2, 6}, {3, 6}] + {1, 2} + {3, 7}.
C2 = (r − 1) ∗ R2 + K[{1, 2, 3, 4, 5}, {6}] \ [{2, 6}, {3, 6}, {4, 6}] + {2, 3} + {4, 7}.
C3 = (r − 1) ∗ R3 + K[{1, 2, 3, 4, 5}, {6}] \ [{3, 6}, {4, 6}, {5, 6}] + {3, 4} + {5, 7}.
C4 = (r − 1) ∗ R4 + K[{1, 2, 3, 4, 5}, {6}] \ [{4, 6}, {5, 6}, {1, 6}] + {4, 5} + {1, 7}.
C5 = (r − 1) ∗ R5 + K[{1, 2, 3, 4, 5}, {6}] \ [{5, 6}, {1, 6}, {2, 6}] + {5, 1} + {2, 7}.
C6 = (r − 1) ∗ R6 + K[{1, 2, 3, 4, 5}, {6}] \ [{1, 6}, {3, 6}, {2, 6}] + {1, 3} + {2, 7}.
C7 = (r − 1) ∗ R7 + K[{1, 2, 3, 4, 5}, {6}] \ [{3, 6}, {5, 6}, {4, 6}] + {3, 5} + {4, 7}.
C8 = (r − 1) ∗ R8 + K[{1, 2, 3, 4, 5}, {6}] \ [{5, 6}, {2, 6}, {3, 6}] + {5, 2} + {3, 7}.
C9 = (r − 1) ∗ R9 + K[{1, 2, 3, 4, 5}, {6}] \ [{2, 6}, {4, 6}, {1, 6}] + {2, 4} + {1, 7}.
C10 = (r − 1) ∗ R10 + K[{1, 2, 3, 4, 5}, {6}] \ [{4, 6}, {1, 6}, {5, 6}] + {4, 1} + {5, 7}.
∪10

i=1 Ci = 2(r − 1) ∗ K6 + 4 ∗ K[{1, 2, 3, 4, 5}, {6}] + 2 ∗ K[{1, 2, 3, 4, 5}, {7}] + K5.

Lemma 10. For even r ≥ 2, there exists an equitable 5-edge-coloring of (r−1)∗
K6 +5∗K[{1, 2, 3, 4, 5}, {6}], (where V (K6) = N6) such that the degree sequence
of each color class is (r, r, r, r, r, r + 4)).

Proof. Let R0, . . . , R4 be a 1-factorization of K6. We partition (r − 1) ∗ K6 + 5 ∗
K[{1, 2, 3, 4, 5}, {6}], (where V (K6) = N6) into (5)-color classes C0, . . . , C4 such
that the degree sequence of each color class is (r, r, r, r, r, r + 4) as follows:
For 0 ≤ i ≤ 4, Ci = (r − 1) ∗ Ri + K[{1, 2, 3, 4, 5}, {6}]
and ∪4

i=0 Ci = K6 + 5 ∗ K[{1, 2, 3, 4, 5}, {6}]. ��
We now provide proof of the Theorem 8.
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Proof (Sketch of Proof of Theorem 8). If def(K) is less than the number of parts
of odd size in K, then by Lemma 4, K is of Type 2. So, we assume the def(K) to
be greater or equal to the number of parts of odd size. If r1 = 1 or r1 = 2, then
K is of Type 1 by Lemma 2 and Lemma 3. Therefore, we can assume r1 = r ≥ 3.
By using Theorem 1, Theorem 3, Theorem 6, and Theorem 7, only the following
five cases are required to be settled:

1. K(r, r, r, r, r + 2, r + 2)
2. K(r, r, r, r, r + 1, r + 3)
3. K(r, r, r, r, r, r + 4)
4. K(r, r, r, r, r, r + 2)
5. K(r, r, r, r, r + 1, r + 1)

It is useful to define notation which describes the uncolored edges of the amal-
gamated graph K ′. So if G is the subgraph of K ′ induced by the edges colored
so far, then φ(G,K ′) is defined as follows: for each {i, j} ⊆ {1, . . . , k′} such that
i and j are joined by an edge in K ′, let φ(G,K ′)({i, j}) = η(i)η(j) − εi,j , where
εi,j is the number of edges joining i and j in G.

Case 1 : K(r, r, r, r, r + 2, r + 2).
Let K ′ be an amalgamation of K with amalgamation function ψ : V (K) →
V (K ′) such that ψ(Vi) = {i} and η(i) = ri for 1 ≤ i ≤ 6. Let V (K6) = {1, . . . , 6}
and let Ci be the set of edges colored ci for 1 ≤ i ≤ Δ(K) + 1 = 5r + 5, defined
as follows:

Sub − Case 1, r is odd

(1) Let {W1, . . . ,W6} be a decomposition of 2∗K6 into 6 cycles of length 5 with
vertex i missing in Wi for 1 ≤ i ≤ 6 (existence by Lemma 5).

C1 = r−1
2 ∗ W1 + E56 + [{2, 5}, {3, 6}, {4, 6}].

C2 = r−1
2 ∗ W2 + E56 + [{3, 5}, {4, 6}, {1, 6}].

C3 = r−1
2 ∗ W3 + E56 + [{2, 5}, {4, 5}, {1, 6}].

C4 = r−1
2 ∗ W4 + E56 + [{1, 5}, {3, 5}, {2, 6}].

C5 = r−1
2 ∗ W5 + [{2, 6}, {3, 6}] + {1, 4}.

C6 = r−1
2 ∗ W6 + [{1, 5}, {4, 5}] + {2, 3}.

⋃6
i=1 Ci = (r − 1) ∗ K6 + 4 ∗ E56 + 2 ∗ K[{1, 2, 3, 4}, {5, 6}] + [{2, 3}, {1, 4}].

(2) Use Lemma 6 to produce (10)-color classes M1,M2, . . . ,M10 in K ′ such
that ∪10

i=1Mi induces 2(r − 1) ∗K6 +5 ∗K[{1, 2, 3, 4}, {5, 6}]+ 10 ∗E56. Take
r−1
2 copies of each of M1, . . . ,M10 to form (5)(r − 1) new color classes. So

in steps (1-2), 5r + 1 color classes have been defined, and their union G is
(r2 − r) ∗ K6 + 5r−1

2 ∗ K[{1, 2, 3, 4}, {5, 6}] + (5r − 1) ∗ E56 + [{2, 3}, {1, 4}]
such that φ = φ(G,K ′) satisfies: φ({1, 2}) = r = φ({3, 4}) = φ({1, 3}) =
φ({2, 4}), φ({2, 3}) = r − 1 = φ({1, 4}); for 1 ≤ i ≤ 4 and 5 ≤ j ≤ 6,
φ({i, j}) = r+1

2 , and φ({5, 6}) = 5.
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(3) Let M ′
0,M

′
1 and M ′

2 be a decomposition of K4 into 1-factors such that M ′
0 =

[{2, 3}, {1, 4}]. We use the 4 colors to color the remaining edges as follows:

C5r+2 = � r+1
4

� ∗ K[{1, 2, 3, 4}, {5}] + 	 r+1
4


 ∗ K[{1, 2, 3, 4}, {6}] +

r−1
2⋃

i=1

M ′
i mod 3.

C5r+3 = � r+1
4

� ∗ K[{1, 2, 3, 4}, {6}] + 	 r+1
4


 ∗ K[{1, 2, 3, 4}, {5}] +
r−1⋃

i= r+1
2

M ′
i mod 3.

C5r+4 = 2 ∗ E56 + ∪2r−1
i=r Mi mod 3; C5r+5 = 3 ∗ E56 + ∪3r−1

i=2r M ′
i mod 3.

Using Theorem 9, we disentangle K ′ to get K with all its edges properly
colored using Δ(K)+1 colors c1, . . . , cΔ+1. We now require to color the vertices
of K using only the colors c1, . . . , cΔ+1 to get a total coloring with Δ(K) + 1
colors. It may be observed that for 1 ≤ i ≤ 6 the color ci is absent from the
vertex {i} in K ′. Therefore, for 1 ≤ i ≤ 6, the color ci is absent from all the
vertices in ψ−1({i}) = Vi ∈ K, and we color them with ci.

Sub − Case 2, r is even : Let K ′ be an amalgamation of K with amalgamation
function ψ : V (K) → V (K ′) such that ψ(Vi) = {i} and η(i) = ri for 1 ≤ i ≤ 6.
Let V (K6) = {1, . . . , 6} and let Ci be the set of edges colored ci for 1 ≤ i ≤
Δ(K) + 1 = 5r + 5, defined as follows:

(1) Let {W1, . . . ,W6} be a decomposition of 2∗K6 into 6 cycles of length 5 with
vertex i missing in Wi for 1 ≤ i ≤ 6.

C1 = r
2

∗ W1 + 2 ∗ E56; C2 = r
2

∗ W2 + 2 ∗ E56; C3 = r
2

∗ W3 + 2 ∗ E56;

C4 = r
2

∗ W4 + 2 ∗ E56; C5 = r
2

∗ W5; C6 = r
2

∗ W6.
⋃6

i=1 Ci = r ∗ K6 + 8 ∗ E56.

(2) Use Lemma 6 to produce (10)-color classes M1,M2, . . . ,M10 in K ′ such that
∪10

i=1Mi induces 2(r − 1) ∗ K6 + 5 ∗ K[{1, 2, 3, 4}, {5, 6}] + 10 ∗ E56. Take r−2
2

copies of each of M1, . . . ,M10 to form 5(r − 2) new color classes. We take
another 5 colors to color the edges as follows:

C5r−3 = (r − 1) ∗ R1 + E56 + [{1, 5}, {2, 5}, {3, 6}, {4, 6}].
C5r−2 = (r − 1) ∗ R2 + E56 + [{3, 5}, {4, 5}, {1, 6}, {2, 6}].
C5r−1 = (r − 1) ∗ R3 + E56 + [{1, 5}, {2, 5}, {3, 6}, {4, 6}].
C5r = (r − 1) ∗ R4 + E56 + [{3, 5}, {4, 5}, {1, 6}, {2, 6}].
C5r+1 = (r − 1) ∗ R5 + E56 + [{1, 5}, {2, 5}, {3, 6}, {4, 6}].

where {R1, . . . , R5} is a 1-factor decomposition of K6.
So in steps (1-2), 5r +1 color classes have been defined, and their union G is
(r2 −r+1)∗K6 + 5r−6

2 ∗K[{1, 2, 3, 4}, {5, 6}]+ [{1, 5}, {2, 5}, {3, 6}, {4, 6}]+
(5r +3) ∗E56 such that φ = φ(G,K ′) satisfies: for 1 ≤ i �= j ≤ 4, φ({i, j}) =
r − 1; for 1 ≤ i ≤ 2, φ({i, 5}) = r

2 + 1, φ({i, 6}) = r
2 + 2; for 3 ≤ i ≤ 4,

φ({i, 5}) = r
2 + 2; φ({i, 6}) = r

2 + 1, and φ({5, 6}) = 0.
(3) Let M ′

0,M
′
1 and M ′

2 be a decomposition of K4 into 1-factors. We use the 4
colors to color the remaining edges as follows:

C5r+2 = r
2 ∗ K[{1, 2, 3, 4}, {5, 6}].

C5r+3 = K[{1, 2, 3, 4}, {5, 6}] + [{3, 5}, {4, 5}, {1, 6}, {2, 6}] + ∪r−3
i=1 M ′

i mod 3.
C5r+4 = ∪2r−3

i=r−2M
′
i mod 3; C5r+5 = ∪3r−3

i=2r−2M
′
i mod 3.



On Total Chromatic Number of Complete Multipartite Graphs 279

Using Theorem 9, we disentangle K ′ to get K with all its edges properly
colored using Δ(K)+1 colors c1, . . . , cΔ+1. We now require to color the vertices
of K using only the colors c1, . . . , cΔ+1 to get a total coloring with Δ(K) + 1
colors. It may be observed that for 1 ≤ i ≤ 6 the color ci is absent from the
vertex {i} in K ′. Therefore, for 1 ≤ i ≤ 6, the color ci is absent from all the
vertices in ψ−1({i}) = Vi ∈ K, and we color them with ci.

Case 2: K(r, r, r, r, r + 1, r + 3).
Let K ′ be an amalgamation of K with amalgamation function ψ : V (K) →
V (K ′) such that ψ(Vi) = {i} and η(i) = ri for 1 ≤ i ≤ 6. Let V (K6) = {1, . . . , 6}
and let Ci be the set of edges colored ci for 1 ≤ i ≤ Δ(K) + 1 = 5r + 5, defined
as follows:

Sub − Case 1, r is odd

(1) Let {W1, . . . ,W6} be a decomposition of 2∗K6 into 6 cycles of length 5 with
vertex i missing in Wi for 1 ≤ i ≤ 6.
C1 = r−1

2 ∗ W1 + E56 + [{2, 5}, {3, 6}, {4, 6}]; C2 = r−1
2 ∗ W2 + E56 +

[{1, 5}, {3, 6}, {4, 6}].
C3 = r−1

2 ∗ W3 + E56 + [{4, 5}, {1, 6}, {2, 6}]; C4 = r−1
2 ∗ W4 + E56 +

[{3, 5}, {1, 6}, {2, 6}].
C5 = r−1

2 ∗W5 +K[{1, 2, 3, 4}, {6}]; C6 = r−1
2 ∗W5 + [{1, 5}, {2, 5}] + {3, 4}.

⋃6
i=1 Ci = (r−1)∗K6+4∗E56+3∗K[{1, 2, 3, 4}, {6}]+K[{1, 2, 3, 4}, {5}]+

[{1, 5}, {2, 5}] + {3, 4}.

r ≡ 1 (mod 4)

(2) Use Lemma 7 to produce (20)-color classes M1,M2, . . . ,M20 in K ′ such that
∪20

i=1Mi induces 4(r−1)∗K6+5∗K[{1, 2, 3, 4}, {5}]+15∗K[{1, 2, 3, 4}, {6}]+
20 ∗ E56. Take r−1

4 copies of each of M1, . . . ,M20 to form 5(r − 1) new color
classes. So, in steps (1-2), 5r + 1 color classes have been defined, and their
union G is

⋃5r+1
i=1 Ci = (r2 − r) ∗ K6 + 15r−3

4 ∗ K[{1, 2, 3, 4}, {6}] + (5r − 1) ∗
E56+ 5r−1

4 ∗K[{1, 2, 3, 4}, {5}]+[{1, 5}, {2, 5}]+{3, 4} such that φ = φ(G,K ′)
satisfies:
φ({1, 2}) = r = φ({2, 3}) = φ({1, 4}) = φ({1, 3}) = φ({2, 4}), and
φ({3, 4}) = r − 1; for 1 ≤ i ≤ 2, φ({i, 5}) = 3r−3

4 and for 3 ≤ i ≤ 4,
φ({i, 5}) = 3r+1

4 ; and for 1 ≤ i ≤ 4, φ({i, 6}) = r+3
4 ; φ({5, 6}) = 4.
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(3) Let M ′
0,M

′
1 and M ′

2 be a decomposition of K4 into 1-factors such that M ′
0 =

[{3, 4}, {1, 2}]. We use the 4 colors to color the remaining edges as follows:

C5r+2 = r+3
4 ∗K[{1, 2, 3, 4}, {6}]+ r−1

4 ∗K[{1, 2, 3, 4}, {5}]+
⋃ r−3

2
i=1 M ′

i mod 3+
{1, 2} + [{3, 5}, {4, 5}].

C5r+3 = r−1
4 ∗ K[{1, 2, 3, 4}, {5}] +

⋃ 5r−5
4

i= r−3
2 +1

M ′
i mod 3 + 2 ∗ E56.

C5r+4 = r−1
4 ∗ K[{1, 2, 3, 4}, {5}] +

⋃2r−1

i= 5r−5
4 +1

M ′
i mod 3 + 2 ∗ E56.

C5r+5 =
⋃3r−1

i=2r M ′
i mod 3.

r ≡ 3 (mod 4)

(2) Use Lemma 7 to produce (20)-color classes M1,M2, . . . ,M20 in K ′ such that
∪20

i=1Mi induces 4(r−1)∗K6+5∗K[{1, 2, 3, 4}, {5}]+15∗K[{1, 2, 3, 4}, {6}]+
20 ∗ E56. Take r−3

4 copies of each of M1, . . . ,M20 to form 5(r − 3) new color
classes. We color some more edges using 10 colors as follows:

C5r−8 = (r − 1) ∗ R1 + E56 + [{1, 5}, {2, 6}, {3, 6}, {4, 6}].
C5r−7 = (r − 1) ∗ R2 + E56 + [{2, 5}, {1, 6}, {3, 6}, {4, 6}].
C5r−6 = (r − 1) ∗ R3 + E56 + [{3, 5}, {2, 6}, {1, 6}, {4, 6}].
C5r−5 = (r − 1) ∗ R4 + E56 + [{4, 5}, {2, 6}, {3, 6}, {1, 6}].
C5r−4 = (r − 1) ∗ R5 + E56 + [{1, 5}, {2, 6}, {3, 6}, {4, 6}].
C5r−3 = (r − 1) ∗ R1 + E56 + [{2, 5}, {1, 6}, {3, 6}, {4, 6}].
C5r−2 = (r − 1) ∗ R2 + E56 + [{3, 5}, {2, 6}, {1, 6}, {4, 6}].
C5r−1 = (r − 1) ∗ R3 + E56 + [{4, 5}, {2, 6}, {3, 6}, {1, 6}].
C5r = (r − 1) ∗ R4 + E56 + [{3, 5}, {2, 6}, {1, 6}, {4, 6}].
C5r+1 = (r − 1) ∗ R5 + E56 + [{4, 5}, {2, 6}, {3, 6}, {1, 6}].

where {R1, . . . , R5} is a 1-factor decomposition of K6. So, in steps (1-2),
5r+1 color classes have been defined, and their union G is

⋃5r+1
i=1 Ci = (r2 −

r)∗K6+ 15r−5
4 ∗K[{1, 2, 3, 4}, {6}]+(5r−1)∗E56+ 5r+1

4 ∗K[{1, 2, 3, 4}, {5}]+
{3, 4} + {1, 6} + {2, 6} such that φ = φ(G,K ′) satisfies: φ({1, 2}) = r =
φ({2, 3}) = φ({1, 4}) = φ({1, 3}) = φ({2, 4}), and φ({3, 4}) = r − 1; for
1 ≤ i ≤ 2, φ({i, 6}) = r+1

4 , and for 3 ≤ i ≤ 4, φ({i, 6}) = r+5
4 ; for 1 ≤ i ≤ 4,

φ({i, 5}) = 3r−1
4 ; φ({5, 6}) = 4.

(3) Let M ′
0,M

′
1 and M ′

2 be a decomposition of K4 into 1-factors such that M ′
0 =

[{1, 2}, {3, 4}]. We use the 4 colors to color the remaining edges as follows:

C5r+2 = r+1
4 ∗ K[{1, 2, 3, 4}, {6}] + r+1

4 ∗ K[{1, 2, 3, 4}, {5}] +
⋃ r−3

2
i=1

M ′
i mod 3 + {1, 2} + [{3, 6}, {4, 6}].

C5r+3 = r+1
4 ∗ K[{1, 2, 3, 4}, {5}] +

⋃ 5r−7
4

i= r−3
2 +1

M ′
i mod 3.

C5r+4 = r−3
4 ∗ K[{1, 2, 3, 4}, {5}] +

⋃2r−1

i= 5r−7
4 +1

M ′
i mod 3 + 4 ∗ E56.

C5r+5 =
⋃3r−1

i=2r M ′
i mod 3.

Using Theorem 9, we disentangle K ′ to get K with all its edges properly
colored using Δ(K)+1 colors c1, . . . , cΔ+1. We now require to color the vertices
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of K using only the colors c1, . . . , cΔ+1 to get a total coloring with Δ(K) + 1
colors. It may be observed that for 1 ≤ i ≤ 6 the color ci is absent from the
vertex {i} in K ′. Therefore, for 1 ≤ i ≤ 6, the color ci is absent from all the
vertices in ψ−1({i}) = Vi ∈ K, and we color them with ci.

Sub − Case 2, r is even: Proof omitted due to space constraints.

Case 3 : K(r, r, r, r, r, r + 4).

Sub − Case 1, r is odd
This subcase requires special attention as any total coloring of K in which all the
vertices of V6 are colored the same would leave at least one vertex v ∈ V1∪. . .∪V5

unsaturated. However, all the vertices in V1∪. . .∪V5 are of the maximum degree,
and thus such a total coloring would require at least Δ(K) + 2 colors. Thus, the
approach by Dalal and Rodger [8] would not yield a Δ(K) + 1 total coloring.
We solve this subcase using our generalized approach as follows:

Let K ′ be an amalgamation of K (where V (K ′) = {1, 2, . . . , 7}) with amal-
gamation function ψ : V (K) → V (K ′) as defined below:
ψ(Vi) = {i} for 1 ≤ i ≤ 5, ψ(V6 \ {a}) = {6}, and ψ({a}) = 7, where a
is an arbitrary vertex in V6. The associated number function η : V (K ′) → N

thus is defined as: η({i}) = r for 1 ≤ i ≤ 5, η({6}) = r + 3 and η({7}) = 1.
Let V (K6) = {1, . . . , 6} and let Ci be the set of edges colored ci for 1 ≤ i ≤
Δ(K) + 1 = 5r + 5, defined as follows: (note that each color class is majorized
by (η(1), . . . , η(6), η(7)) = (r, r, r, r, r, r + 3, 1)).

(1) Let {W1, . . . ,W6} be a decomposition of 2∗K6 into 6 cycles of length 5 with
vertex i missing in Wi for 1 ≤ i ≤ 6.

C1 = r−1
2 ∗ W1 + K[{2, 3, 4, 5}, {6}]

C2 = r−1
2 ∗ W2 + K[{1, 3, 4, 5}, {6}] \ {5, 6} + {5, 7}

C3 = r−1
2 ∗ W3 + K[{1, 2, 4, 5}, {6}] \ {4, 6} + {4, 7}

C4 = r−1
2 ∗ W4 + K[{1, 2, 3, 5}, {6}] \ {3, 6} + {3, 7}

C5 = r−1
2 ∗ W5 + K[{1, 2, 3, 4}, {6}] \ {2, 6} + {2, 7}.

C6 = r−1
2 ∗ W6 + {1, 7} + [{2, 4}, {3, 5}].

⋃6
i=1 Ci = (r − 1) ∗ K6 + 3 ∗ K[{1, 2, 3, 4, 5}, {6}] + K[{1, 2, 3, 4, 5}, {7}]

+[{2, 4}, {3, 5}] + {1, 6}

(2) Use Lemma 8 to produce (5)-color classes M1,M2, . . . ,M5 in K ′ such that
∪5

i=1Mi induces (r−1)∗K6 +4∗K[{1, 2, 3, 4, 5}, {6}]+K[{1, 2, 3, 4, 5}, {7}].
Take (r − 1) copies of each of M1, . . . ,M5 to form (5r − 5) new color
classes. So, in steps (1-2), 5r + 1 color classes have been defined, and their
union G is

⋃5r+1
i=1 Ci = (r2 − r) ∗ K6 + (4r − 1) ∗ K[{1, 2, 3, 4, 5}, {6}] + r ∗

K[{1, 2, 3, 4, 5}, {7}]+{1, 6}+[{2, 4}, {3, 5} such that φ = φ(G,K ′) satisfies:
For 1 ≤ i, j ≤ 5, i �= j, φ({i, j}) = r except φ({2, 4}) = r − 1 = φ({3, 5},
For 2 ≤ i ≤ 5, φ({i, 6}) = 1 and φ({1, 6}) = 0; and for 1 ≤ i ≤ 5,
φ({i, 7}) = 0.



282 A. Dalal and B. S. Panda

(3) Let C1 and C2 be a decomposition of K5 into cycles of length 5 where
C1 = [{2, 4}, {3, 5}, {1, 4}, {2, 3}, {1, 5}] and C2 = [{3, 4}, {1, 3}, {2, 5},
{4, 5}, {1, 2}]. We define the 4 color class as follows:

C5r+2 = {5, 6} + {1, 4} + {2, 3} + r−1
2 ∗ C1

C5r+3 = {2, 6} + {1, 5} + {3, 4} + r−1
2 ∗ C2

C5r+4 = {4, 6} + {1, 3} + {2, 5} + r−1
2 ∗ C1

C5r+5 = {3, 6} + {4, 5} + {1, 2} + r−1
2 ∗ C2

Using Theorem 9, we disentangle K ′ to get K with all its edges properly col-
ored using Δ(K) + 1 colors c1, . . . , cΔ+1. It may be observed that for 1 ≤ i ≤ 5
the color ci is absent from the vertex {i} in K ′. Therefore, for 1 ≤ i ≤ 5, the
color ci is absent from all the vertices in ψ−1({i}) = Vi ∈ K, and we color them
with ci. In K ′, vertex {6} is unsaturated by color class C6 and thus color c6 is
absent from all the vertices in ψ−1({6}) = V6 \ {a}. We color all the vertices in
V6 \ {a} with c6. Also, in K ′ the vertex {7} is unsaturated by the color class
C5r+2 and thus color c5r+2 is absent from all the vertices in ψ−1({7}) = {a}.
We color vertex a ∈ V6 with c5r+2.

Sub − Case 2, r is even: Let K ′ be an amalgamation of K with amalgamation
function ψ : V (K) → V (K ′) such that ψ(Vi) = {i} and η(i) = ri for 1 ≤ i ≤ 6.
Let V (K6) = {1, . . . , 6} and let Ci be the set of edges colored ci for 1 ≤ i ≤
Δ(K) + 1 = 5r + 5, defined as follows:

(1) Let {W1, . . . ,W6} be a decomposition of 2∗K6 into 6 cycles of length 5 with
vertex i missing in Wi for 1 ≤ i ≤ 6.

C1 = r−2
2 ∗ W1 + K[{1, 2, 3, 4, 5}, {6}] \ {1, 6} + [{2, 6}, {3, 6}] + {4, 5}

C2 = r−2
2 ∗ W2 + K[{1, 2, 3, 4, 5}, {6}] \ {2, 6} + [{3, 6}, {4, 6}] + {1, 5}

C3 = r−2
2 ∗ W3 + K[{1, 2, 3, 4, 5}, {6}] \ {3, 6} + [{4, 6}, {5, 6}] + {2, 1}

C4 = r−2
2 ∗ W4 + K[{1, 2, 3, 4, 5}, {6}] \ {4, 6} + [{5, 6}, {1, 6}] + {3, 2}

C5 = r−2
2 ∗ W5 + K[{1, 2, 3, 4, 5}, {6}] \ {5, 6} + [{1, 6}, {2, 6}] + {3, 4}.

C6 = r−2
2 ∗ W5 + [{1, 4}, {4, 2}, {2, 5}, {5, 3}, {3, 1}].

⋃6
i=1 Ci = (r − 2) ∗ K6 + 6 ∗ K[{1, 2, 3, 4, 5}, {6}] + K5

where the vertex set of K5 is N5.
(2) Use Lemma 10 to produce (5)-color classes M1,M2, . . . ,M5 in K ′ such that

∪5
i=1Mi induces (r − 1) ∗ K6 + 5 ∗ K[{1, 2, 3, 4, 5}, {6}]. Take (r − 1) copies

of each of M1, . . . ,M5 to form (5r − 5) new color classes. So, in steps (1-2),
5r + 1 color classes have been defined, and their union G is

⋃5r+1
i=1 Ci =

(r2−r−1)∗K6+(5r+1)∗K[{1, 2, 3, 4, 5}, {6}]+K5 such that φ = φ(G,K ′)
satisfies φ({i, j}) = r for 1 ≤ i �= j ≤ 5, and φ({i, 6}) = 0.

(3) Let C1 and C2 be a decomposition of K5 into cycles of length 5. We use the
4 colors to color the remaining edges as follows:

C5r+2 = C5r+4 = r
2 ∗ C1;C5r+3 = C5r+5 = r

2 ∗ C2.
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Using Theorem 9, we disentangle K ′ to get K with all its edges properly
colored using Δ(K)+1 colors c1, . . . , cΔ+1. We now require to color the vertices
of K using only the colors c1, . . . , cΔ+1 to get a total coloring with Δ(K) + 1
colors. It may be observed that for 1 ≤ i ≤ 6 the color ci is absent from the
vertex {i} in K ′. Therefore, for 1 ≤ i ≤ 6, the color ci is absent from all the
vertices in ψ−1({i}) = Vi ∈ K, and we color them with ci.

Case 4 : K(r, r, r, r, r, r + 2).
The approach by Dalal and Rodger [8] would not yield a Δ(K)+1 total coloring.
We solve this subcase using our generalized approach as follows:

Let K ′ be an amalgamation of K (where V (K ′) = {1, 2, . . . , 7}) with amalga-
mation function ψ : V (K) → V (K ′) defined as follows: ψ(Vi) = {i} for 1 ≤ i ≤ 5,
ψ(V6 \ {a}) = {6}, and ψ({a}) = 7, where a is an arbitrary vertex in V6. The
associated number function η : V (K ′) → N thus is defined as: η({i}) = r for
1 ≤ i ≤ 5, η({6}) = r + 1 and η({7}) = 1. Let V (K6) = {1, . . . , 6} and let Ci be
the set of edges colored ci for 1 ≤ i ≤ Δ(K)+1 = 5r+5, defined as follows: (note
that each color class is majorized by (η(1), . . . , η(6), η(7)) = (r, r, r, r, r, r +1, 1))

Sub − Case 1, r is odd

(1) Let {W1, . . . ,W6} be a decomposition of 2 ∗ K6 into 6 cycles of length
5 with vertex i missing in Wi for 1 ≤ i ≤ 6. Let {M1, . . . ,M5} be a
decomposition of K5 into 5 near 1-factors with vertex i missing in Mi

for 1 ≤ i ≤ 5. Let C1 = [{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}], and C2 =
[{1, 3}, {3, 5}, {5, 2}, {2, 4}, {4, 1}] be cyclic decomposition of K5 into two
5-cycles.

C1 = r−1
2 ∗ W1 + [{2, 6}, {3, 6}] + {4, 5}.

C2 = r−1
2 ∗ W2 + [{3, 7}, {4, 6}] + {5, 1}

C3 = r−1
2 ∗ W3 + [{4, 7}, {5, 6}] + {1, 2}

C4 = r−1
2 ∗ W4 + [{5, 7}, {1, 6}] + {2, 3}

C5 = r−1
2 ∗ W5 + [{2, 7}, {1, 6}] + {3, 4}

C6 = r−1
2 ∗ W6 + [{1, 7}] + [{2, 4}, {3, 5}].

⋃6
i=1 Ci = (r − 1) ∗ K6 + K[{1, 2, 3, 4, 5}, {6}] + K[{1, 2, 3, 4, 5}, {7}]+

C1 + [{1, 6}] + [{2, 4}, {3, 5}]

(2) Use Lemma 9 to produce (10)-color classes M1,M2, . . . ,M10 in K ′

such that ∪10
i=1Mi induces 2(r − 1) ∗ K6 + 4 ∗ K[{1, 2, 3, 4, 5}, {6}] + 2 ∗

K[{1, 2, 3, 4, 5}, {7}] + K5.Take ( r−1
2 ) copies of each of M1, . . . ,M10 to form

(5r − 5) new color classes. So, in steps (1-2), 5r + 1 color classes have
been defined, and their union G is

⋃5r+1
i=1 Ci = (r2 − r) ∗ K6 + (2r − 1) ∗

K[{1, 2, 3, 4, 5}, {6}]+r∗K[{1, 2, 3, 4, 5}, {7}]+C1+[{1, 6}]+[{2, 4}, {3, 5}]+
( r−1

2 ) ∗ K5 such that φ = φ(G,K ′) satisfies: for 1 ≤ i, j ≤ 5, i �= j,
φ({i, j}) = r−1

2 except φ({1, 3}) = r+1
2 = φ({1, 4}) = φ({2, 5}; for 2 ≤ i ≤ 5,

φ({i, 6}) = 1, φ({1, 6}) = 0; and for 1 ≤ i ≤ 5, φ({1, 7}) = 0.
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(3) Let C1 and C2 be a decomposition of K5 into cycles of length 5. We use the
2 colors to color the remaining edges as follows

C5r+2 = [{2, 6}, {3, 6}, {5, 6}] + {1, 4} + r−1
2 ∗ C1

C5r+3 = [{4, 6}] + {2, 5} + {1, 3} + r−1
2 ∗ C2

Using Theorem 9, we disentangle K ′ to get K with all its edges properly
colored using Δ(K)+1 colors c1, . . . , cΔ+1. It may be observed that for 1 ≤ i ≤ 5
the color ci is absent from the vertex {i} in K ′. Therefore, for 1 ≤ i ≤ 5, the
color ci is absent from all the vertices in ψ−1({i}) = Vi ∈ K, and we color them
with ci. In K ′, vertex {6} is unsaturated by color class C6 and thus color c6 is
absent from all the vertices in ψ−1({6}) = V6 \ {a}. We color all the vertices in
V6 \ {a} with c6. Also, in K ′ the vertex {7} is unsaturated by the color class
C5r+2 and thus color c5r+2 is absent from all the vertices in ψ−1({7}) = {a}.
We color vertex a ∈ V6 with c5r+2.

Sub − Case 2, r is even.: We omit the proof due to space constraints.

Case 5 : K(r, r, r, r, r + 1, r + 1)
We omit the proof due to space constraints.

Acknowledgement. The authors thank Prof. C. A. Rodger for introducing them to
this problem.
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Abstract. Toll walks on connected graphs are introduced to charac-
terize dominating pairs of vertices in interval graphs. A weak-toll walk
is an immediate generalization of a toll walk in a graph. The set of all
vertices lying on weak-toll walks between two given vertices gives rise to
the notion of the weak-toll function, denoted WT , of a connected graph.
In this paper, we characterize the weak-toll function of trees, chordal
graphs, and unit interval graphs. This, in turn, provides an additional
characterization of trees and unit interval graphs using a set of first-order
axioms defined on an arbitrary function, known as the transit function,
which is defined for every pair of elements in a non-empty finite set.
Furthermore, we prove that an axiomatic characterization of the func-
tion WT of an arbitrary connected graph is impossible using a set of
first-order axioms.

Keywords: transit function · weak-toll walk · chordal graph · unit
interval graph · first-order non-definability

1 Introduction

To characterize dominating pairs of vertices in interval graphs, Alcon [1] intro-
duced toll walks. A toll walk W from a vertex u to a different vertex v of a graph
G is a special walk that contains exactly one neighbor of u, the second vertex
of W , and exactly one neighbor of v, the for-last vertex of W . The toll interval
T (u, v) consists of the set of all vertices that belong to any toll walk between
u and v. This gives rise to the toll walk function T : V (G) × V (G) → 2V (G)

of a graph G. In [11] and [13], the toll walk function T of a connected graph is
studied from an axiomatic point of view. More accurately, several well-known
first-order betweenness axioms and new axioms are framed for the toll walk
function and showed that the toll walk function of special classes of graphs, like
interval graphs, chordal graphs, asteroidal triple-free graphs, are characterized
by identifying the forbidden induced subgraphs of these graphs.
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Weak-toll walks are the generalization of toll walks in a graph which was
introduced in [4]. The original motivation for the concept of the weak-toll walk
as a relaxation of the toll walk was to use it as a tool to characterize unit
interval graphs as the so-called convex geometries of the convexity associated
with the weak-toll walks. In this paper, we provide another characterization of
unit interval graphs using weak-toll walks.

In this paper, we study the weak-toll function, a generalization of the toll
walk function, and characterize the weak-toll function of unit interval graphs
and trees using a set of first-order axioms framed on an arbitrary function,
known as the transit function. Interestingly, we prove that there is no first-
order axiomatic characterization for the weak-toll function of an arbitrary finite
connected graph. In Sect. 2, we define the notion of a transit function and fix
all the necessary terminologies, in Sect. 3, we frame the axioms and characterize
the weak-toll function of trees, chordal graphs, and unit interval graphs, and
in Sect. 4, we prove that the weak-toll function is not first-order axiomatizable
using the standard tool of EF games.

2 Preliminaries

Let G be a graph with the vertex set V (G) and the edge set E(G). We consider
only simple connected finite graphs, that is, graphs without multiple edges and
loops. The open neighborhood N(v) of v ∈ V (G) is the set {u ∈ V (G) : uv ∈
E(G)} and the closed neighborhood N [v] is N(v) ∪ {v}. A walk Wk in a graph
G is a sequence of k vertices w1, . . . , wk where wiwi+1 ∈ E(G) for every i ∈
{1, . . . , k−1}. We simply write Wk = w1 · · · wk. Notice that some vertices of Wk

can repeat in Wk. If all the vertices of a walk differ, then we say that Wk is a
path Pk of G. A path Pk = v1 · · · vk will also be denoted as the v1, vk-path, and
we say that Pk starts in v1 and ends in vk and u

P−→ x denotes the subpath of a
path P with end vertices u and x. The distance d(u, v) between u, v ∈ V (G) is
the minimum number of edges on a u, v-path or infinite if such a path does not
exist. Any u, v-path of length d(u, v) is called a u, v-geodesic.

Let G and G1, G2, . . . , Gk be connected graphs. We say that the graph
G is (G1G2 · · · Gk)-free graph if G has no induced subgraphs isomorphic to
G1, G2, . . . , Gk. A connected acyclic graph is a tree. A graph class that can
be defined as some induced cycle-free graphs is chordal graphs which are Ck-free
graphs for every k ≥ 4. A set of three vertices in a graph G such that each pair
is joined by a path that avoids the neighborhood of the third vertex is known as
an asteroidal triple in G. Graph G is called the AT-free graph if G does not have
an asteroidal triple. Interval graphs are the intersection graphs of intervals on a
line. Lekkerkerker and Boland in [6] proved that a graph G is an interval graph
if and only if G is a chordal AT-free graph. A graph G is a unit interval graph if
it can be represented by intervals on a line in which all intervals have the same
length. In [12] Roberts proved that the unit interval graphs are claw-free interval
graphs so that unit interval graphs are (claw, net, S3, Cn+4)-free graphs (refer
Fig. 1 for these graphs).
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2.1 Transit Functions

A transit function on a non-empty set V is a function R : V × V −→ 2V such
that for every u, v ∈ V the following three conditions hold:

(t1) u ∈ R(u, v);
(t2) R(u, v) = R(v, u);
(t3) R(u, u) = {u}.

The underlying graph GR of a transit function R is a graph with vertex set
V , where distinct vertices u and v are adjacent if and only if R(u, v) = {u, v}.
The argument x ∈ R(u, v) can be interpreted as x is between u and v. Thus,
the axioms on R are sometimes called “betweenness axioms”. The well-studied
transit functions in graphs are the interval function IG and the induced path
function JG. The interval function IG ( induced path function JG) of a graph G
is a function that returns, for each pair of vertices u, v ∈ G, the set IG(u, v) (
JG(u, v)) of all vertices lying on all the u, v -shortest path (induced path) in G.
It is clear that I(u, v) ⊆ J(u, v), ∀u, v ∈ G.

The axiomatic approach to the function IG of a graph G has garnered atten-
tion through a series of characterizations of IG, employing a set of first-order
axioms framed on an arbitrary transit function by Nebesk’y (for e.g., [9]), which
culminated with the elegant characterization due to Mulder and Nebesk’y [8].
Subsequently, this work has inspired numerous authors to explore the axiomatic
approach with regard to other transit functions on graphs; see, for example, the
case of the induced path function JG in [3] and the toll walk function in [11,13].

A toll walk between two different vertices w1 and wk of a finite connected
graph G is a sequence of vertices w1, . . . , wk that satisfy the following conditions:

– wiwi+1 ∈ E(G) for every i ∈ {1, . . . , k − 1},
– w1wi ∈ E(G) if and only if i = 2, wkwi ∈ E(G) if and only if i = k − 1.

That is, a toll walk W from u to v is a walk in which u is adjacent only to the
second vertex of W , and v is adjacent only to the for-last vertex of W . Note that
if uv ∈ E(G), then the only toll walk between u and v is uv. Additionally, we
define a toll walk that starts and ends at the same vertex w as w itself.

The function T : V × V → 2V defined as

TG (u, v) = {x ∈ V (G) : x lies on a toll walk between u and v}

is the toll walk function on G.
Mitre C. Dourado [4] introduced the concept of weak-toll walk. A weak-toll

walk between u and v in G is a sequence of vertices of the form W : u =
w0, w1, . . . , wk−1, wk = v, where the following conditions are satisfied:

– wiwi+1 ∈ E(G) for every i ∈ {1, . . . , k − 1},
– w0wi ∈ E(G) implies wi = w1, wkwi ∈ E(G) implies wi = wk−1
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That is, a weak-toll walk is any walk W : u,w1, . . . , wk−1, v between u and v
such that u is adjacent only to the vertex w1, which can appear more than once
in the walk, and v is adjacent only to the vertex wk−1, which can appear more
than once in the walk. Note that if uv ∈ E(G) then W : u, v is the only weak-toll
walk between u and v, and W: u is the only weak-toll walk that begins and ends
at u. We define

WTG
(u, v) = {x ∈ V (G) : x lies on a weak-toll walk between u and v}.

to be the weak-toll interval between u and v in G. We observe that the weak-
toll function WT is also a well-defined transit function since WT fulfills all three
transit axioms, and from the definition of the weak-toll function WT on G, it is
clear that G and GWT

are isomorphic. Furthermore, we have I(u, v) ⊆ J(u, v) ⊆
T (u, v) ⊆ WT (u, v).

3 Weak-Toll Function of Trees, Chordal and Unit Interval
Graphs

In this section, we introduce some axioms for the weak-toll function. Using these
axioms together with already known axioms, we characterize the weak-toll func-
tion of trees and unit interval graphs. The following lemma from Liliana Alcon
et al. [2] gives a characterization of the vertices that belong to a toll walk on a
graph.

Lemma 1 [2]. A vertex v is in some toll walk between two different non-adjacent
vertices x and y if and only if N [x]−{v} does not separate v from y and N [y]−{v}
does not separate v from x.

The following analogous lemma provides a characterization of vertices within a
weak-toll function.

Lemma 2. A vertex x is in some weak-toll walk between two different non-
adjacent vertices u and v if and only if there is a x, v-path that includes at most
one neighbor of u and a u, x-path that includes at most one neighbor of v.

Proof. Suppose x ∈ WT (u, v), then from the definition of the weak-toll function,
there is at least one x, v-path that contains at most one neighbor of u and at
least one u, x-path that contains at most one neighbor of v. Conversely assume
that there is a x, v-path, say P that contains at most one neighbor of u say u′

and a u, x-path say Q that contains at most one neighbor of v say v′. we may
choose both P and Q as induced paths. Then uu′ P−→ x

P−→ v is a u, v-weak-toll
walk containing x. �	
Although toll drives are weak toll drives, the converse does not need to hold,
and the following proposition characterizes the graphs for T = WT .

Proposition 1. Let G be a graph. Then T (u, v) = WT (u, v) for all u, v if and
only if G is a claw-free graph.
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Proof. Suppose G contains a claw graph as an induced subgraph with x being the
central vertex and u, v, y being the pendent vertices. Then T (u, v) = {u, x, v} and
WT (u, v) = {u, x, y, v}. That is, T (u, v) 
= WT (u, v) on a claw graph. Conversely,
let T (u, v) 
= WT (u, v) which means that WT (u, v) � T (u, v) for some u, v ∈ V .
Assume x ∈ WT (u, v) and x /∈ T (u, v), which implies that either the u, x-path
contains a neighbor of v or the x, v-path contains a neighbor of u and T (u, x) 
=
{u, x}, T (x, v) 
= {x, v}. Let us assume that the x, v-path, denoted P , contains
a neighbor of u, called u′. Then uu′ P−→ x

P−→ u′ P−→ v is a u, v- weak-toll walk,
say W containing x. Now, consider the vertices x′ and v′, which represent the
neighbors of u′ in the u′, x-subpath and the u′, v-subpath of P , respectively. We
claim that the set of vertices u, u′, x′, v′ induces a claw graph. It is obvious that u
cannot be adjacent to both x′ and v′ since W is a weak-toll walk. If x′v′ ∈ E(G),
then uu′ P−→ x

P−→ x′v′ P−→ v is a toll walk that contains x implies x ∈ T (u, v). So
x′v′ /∈ E(G) and, therefore, u, u′, x′, v′ induces a claw graph. �	

Consider the following axioms that are needed for the characterization of the
weak-toll function of trees and unit interval graphs. Of these, axioms (b1), (J0)
and (J2) are considered in [3], axioms (tr) and (JC) are taken from [13], while
(TW4), (TW5), (TW6) and (bt1) are new axioms.

Axiom (TW4). If there exist elements u, v, x, y, such that x ∈ R(u, v),
R(x, y) = {x, y} and R(y, v) 
= {y, v} and R(u, y) 
= {u, y}, then y ∈ R(u, v).

Axiom (TW5). If there exist elements u, v, x such that x ∈ R(u, v), x 
= v,
R(u, x) = {u, x} then there exist v1 ∈ R(x, v) ∩ R(u, v), v1 
= x with R(x, v1) =
{x, v1} and R(u, v1) 
= {u, v1}.

Axiom (TW6). If there exist elements u, v, x such that x ∈ R(u, v), x 
= v then
there exist v1 ∈ R(x, v) ∩ R(u, v), v1 
= x with R(x, v1) = {x, v1}.

Axiom (b1). If there exist elements u, v, x ∈ V such that x ∈ R(u, v), x 
= v,
then v /∈ R(x, u).

Axiom (b2). If there exist elements u, v, x ∈ V such that x ∈ R(u, v), then
R(u, x) ⊆ R(u, v).

Axiom (bt1). If there exist elements u, v, x such that x ∈ R(u, v), R(u, x) =
{u, x}, u 
= x then u /∈ R(x, v).

Axiom (tr). If there exist elements u, v, x ∈ V such that R(u, x) = {u, x},
R(x, v) = {x, v}, u 
= v then x ∈ R(u, v).

Axiom (J2). If there exist elements u, v, x ∈ V such that R(u, x) = {u, x},
R(x, v) = {x, v}, u 
= v and R(u, v) 
= {u, v}, then x ∈ R(u, v).

Axiom (JC). If there exist different elements u, x, y, v ∈ V such that x ∈ R(u, y)
and y ∈ R(x, v), R(x, y) = {x, y} then x ∈ R(u, v).

Axiom (J0). If there exist different elements u, x, y, v ∈ V such that x ∈ R(u, y)
and y ∈ R(x, v), then x ∈ R(u, v).
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It easily follows that, for a transit function R, the axiom (b1) implies the axiom
(bt1), the axiom (J0) implies the axiom (JC) and the axiom (tr) implies the
axiom (J2). Other axioms are independent, which we will demonstrate with
examples later in this section. We have the following propositions.

Proposition 2. The weak-toll function satisfies the axiom (TW4), (TW5) and
(TW6) on every connected graph.

Proof. In the case of axiom (TW4), suppose x ∈ WT (u, v). So let W1 be u, x-walk
containing at most one neighbor of v and W2 be x, v-walk containing at most one
neighbor of u, so that u

W1−−→ x
W2−−→ v is a u, v-weak-toll walk containing x. Since

WT (x, y) = {x, y} and WT (u, y) 
= {u, y} and WT (y, v) 
= {y, v} it follows that
u

W1−−→ xyx
W2−−→ v is a u, v-weak-toll walk containing y and hence y ∈ WT (u, v).

In the case of axiom (TW5), suppose x ∈ WT (u, v) and WT (u, x) = {u, x}.
Then there exists an x, v- induced path say P without neighbor of u with the
exception of x. For the neighbor v1 of x on P it follows that v1 ∈ WT (x, v) ∩
WT (u, v), v1 
= x with WT (x, v1) = {x, v1} and WT (u, v1) 
= {u, v1}.

In the case of (TW6), Suppose x ∈ WT (u, v). Let W be the u, v-weak-toll
walk containing x. Then W contains a x, v-induced path P that contains at most
one neighbor of u and u, x-induced path Q that contains at most one neighbor
of v. For the neighbor v1 of x in P , it follows that u

Q−→ xv1
P−→ v is a u, v-

weak-toll walk containing v1 and xv1
P−→ v is a x, v- weak-toll walk containing

v1 so that v1 ∈ WT (x, v) ∩ WT (u, v). Also v1 
= x with WT (x, v1) = {x, v1}. �	
Proposition 3. The weak-toll function satisfies the axioms (bt1) on chordal
graphs.

Proof. Suppose that WT does not satisfy the axiom (bt1) on the chordal graphs.
That is, x ∈ WT (u, v), WT (u, x) = {u, x}, u 
= x and u ∈ WT (x, v). Since
x ∈ WT (u, v) and WT (u, x) = {u, x} there exists a x, v-induced path say P
without a neighbor of u and since u ∈ WT (x, v) and WT (u, x) = {u, x}, there

exists a u, v-induced path say Q without a neighbor of x. Then ux
P−→ v

Q−→ u
forms a cycle of length at least 5. Since G is chordal, there are chords from the
path P to Q. Let u′ be the neighbor of u on the path Q and x′ be the neighbor
of x on the path P . Clearly, x is not adjacent to u′ and u is not adjacent to x′,
so the vertices u, x, x′, u′ induce a cycle of length four if u′x′ ∈ E(G). Otherwise,
the vertices u, x, x′, u′ together with some other vertices on paths P and Q will
induce a cycle of length at least five, the final contradiction. �	
The following Theorem is a characterization of chordal graphs using the axiom
(JC) on the weak toll function.

Theorem 1. The weak-toll function WT of a graph G satisfies the axiom (JC)
if and only if G is a chordal graph.
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Proof. If the graph G contains a cycle of length greater than four with its consec-
utive vertices y, x, u, v. Clearly x ∈ WT (u, y) and y ∈ WT (x, v) but x /∈ WT (u, v)
since uv is an edge in G. That is, if WT satisfies the axiom (JC), then G is
chordal. Conversely, suppose that WT does not satisfy the axiom (JC). That is,
x ∈ WT (u, y), y ∈ WT (x, v) and WT (x, y) = {x, y}, but x /∈ WT (u, v). Since
x ∈ WT (u, y) and WT (x, y) = {x, y}, there is a u, x path without a neighbor
of y, say P and since y ∈ WT (x, v) and WT (x, y) = {x, y}, there is a y, v path
without a neighbor of x say Q. Also, x /∈ WT (u, v) implies that all u, x-paths
contain more than one neighbor of v or x, v-paths contain more than one neigh-
bor of u. We may assume that the x, v-path contains more than one neighbor
of u. Suppose ux ∈ E(G), then the x, v-path contains at least one neighbor of

u. Let u′ be the neighbor of u on the path Q and close to y. Then uxy
Q−→ u′u

induces a cycle of length at least four. Now assume ux /∈ E(G), then all the
x, v-path contain more than one neighbor of u. Let u′ be one neighbor of u on
the path Q and close to y. Then u

P−→ xy
Q−→ u′u forms a cycle of length at least

five. There may be chords from the vertices of the path P to the vertices of the
y, u′-subpath of Q. Let ab be a chord such that a is close to x in P . Then the
sequence of vertices a

P−→ xy
Q−→ ba induces a cycle of length at least four, a

contradiction, and completes the proof. �	
The following theorem and lemma stated in [13] is needed to characterize the
weak-toll function of trees in terms of an arbitrary transit function R. In this
section, we consider an arbitrary transit function R on a finite non-empty set V
and so in all the results where transit function R is stated, by a transit function
R on V , we mean an arbitrary transit function R on a finite non-empty set V .

Proposition 4 [13]. Let R be any transit function on V . If R satisfies (JC)
and (J2), then the underlying graph GR of R is Cn-free for n ≥ 4.

Lemma 3 [13]. Let R be a transit function on V satisfying the axioms (J2) and
(JC). If Pn, n ≥ 2, is an induced u, v-path in GR, then V (Pn) ⊆ R(u, v).

We have axiom (tr) implies axiom (J2). If we replace axiom (J2) by axiom (tr) in
Proposition 4, then GR is Cn-free for n ≥ 3. For, if GR contains a triangle with
vertices u, x, v, then R(u, x) = {u, x} and R(x, v) = {x, v}, then x ∈ R(u, v)
according to the axiom (tr), a contradiction since R(u, v) = {u, v}. So, we have
the following proposition and theorem.

Proposition 5. Let R be any transit function on V . If R satisfies (JC) and (tr)
then the underlying graph GR of R is Cn-free for n ≥ 3.

Theorem 2. The weak-toll function WT of a graph G satisfies the axiom (JC)
and (tr) if and only if G is a tree.

Theorem 3. If R is a transit function on V that satisfies the axioms (bt1),
(JC), (tr), (TW4) and (TW6) then R = WT on GR and hence GR is connected.
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Proof. Since R satisfies the axioms (JC) and (tr), by Proposition 5, we conclude
that GR is a tree. Let u 
= v be two vertices of GR. Assume that x ∈ R(u, v)
and x 
= v. To show that x ∈ WT (u, v) on GR. Clearly x ∈ WT (u, v) whenever
x = u. So, let x /∈ {u, v}. If R(u, x) = {u, x} and R(x, v) = {x, v}, then uxv is a
weak-toll walk in GR and x ∈ WT (u, v). Suppose next that R(x, v) 
= {x, v}. We
will construct a x, v-path Q in GR. For this, let x = v0. By axiom (TW6), there
exists a neighbor of v0, say v1 with v0 
= v1 such that v1 ∈ R(v0, v) ∩ R(u, v),
R(v0, v1) = {v0, v1}. By (bt1) v0 /∈ R(v1, v). If v1 
= v and v1 ∈ R(u, v) then
we can continue with the same procedure to get v2 ∈ R(u, v) ∩ R(v1, v), where
R(v1, v2) = {v1, v2}, v1 
= v2 and by (bt1) v1 /∈ R(v2, v). Similarly, we obtain
the vertex v3 with v3 ∈ R(u, v) ∩ R(v2, v), R(v2, v3) = {v2, v3}, v2 
= v3 and by
(bt1) v2 /∈ R(v3, v). So, by repeating this step, we obtain a sequence of vertices
v0, v1, . . . , vq, q ≥ 2, such that

1. R(vi, vi+1) = {vi, vi+1} and vi 
= vi+1, i ∈ {0, 1, . . . , q − 1},
2. vi ∈ R(u, v) i ∈ {0, 1, . . . , q},
3. vi+1 ∈ R(vi, v) i ∈ {0, 1, . . . , q − 1},
4. vi−1 /∈ R(vi, v) i ∈ {1, . . . , q}.

Using conditions 3 and 4, it is clear that vi−1 
= vi+1. If vi = vj , j ≥ i + 3,
i ∈ {0, 1, . . . , q − 3}, then the vertices vi, vi+1, . . . vj induces a cycle Cn, n ≥ 3,
contradicting the assumption that GR is Cn-free, n ≥ 3. Therefore vi 
= vj ,
j ≥ i+3 and i ∈ {0, 1, . . . , q −3}, which implies that all the vi’s are distinct and
this sequence needs to stop. Hence, we may assume that vq = v.

Consider the case R(u, x) = {u, x}. First we claim that u is not adjacent to
vi, i ∈ {1, . . . , q}. Otherwise if possible, let u is adjacent to vr, then the vertices
u, x, v1, . . . vr induce a cycle Cn, n ≥ 3, not possible. Then uxv1 . . . vq−1v is a
u, v-weak-toll walk and x ∈ WT (u, v). Now consider the case R(u, x) 
= {u, x}.
If u is adjacent to vm, for some m ∈ {1, . . . , q}, then u cannot be adjacent to
the vertices vm+1, . . . vq, otherwise GR contains an induced cycle of length of
at least three. Then uvmvm−1 . . . v1xv1 . . . vq−1v is a weak-toll u, v-walk and
x ∈ WT (u, v). If u is not adjacent to vi, i = 1 . . . q − 1. we can symmetrically
build a sequence u0, u1, . . . , ur, where u0 = x, ur = u and u0u1 . . . ur is a x, u-
path in GR. Clearly, uur−1ur−2 . . . u1xv1 . . . vq−1v is a u, v-weak-toll walk and
in all the cases we have x ∈ WT (u, v) and hence GR is connected.

Now suppose that x ∈ WT (u, v) and x /∈ {u, v}. We have to show that
x ∈ R(u, v). Let W be the u, v-weak-toll walk containing x with a minimum
number of vertices. By Lemma 2, u, x-subpath say Q of W contain at most one
neighbor of v and x, v-subpath say R of W contain at most one neighbor of u.
Let P be the u, v-induced path with the maximum number of vertices in W . If x
belongs to P , then x ∈ R(u, v) by Lemma 3 (since (tr) implies (J2)). Suppose x
not belongs to P , let x′ be the common vertex of the paths P and Q and close to
x. By the choice of the induced path P and weak-toll walk W , the x′, x-subpath
of Q does not contain a neighbor of u and v. So, x ∈ R(u, v) by continuous
application of the axiom (TW4). �	
Now, using Theorems 2, and 3 and Propositions 2 and 3, we have the following
theorem characterizing the weak-toll function of trees.
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Theorem 4. A transit function R on V satisfies the axioms (bt1), (tr), (JC),
(TW4) and (TW6) if and only if GR is a tree and R = WT on GR.

The toll-walk function T need not satisfy the axiom (b1) for arbitrary connected
graphs. In [11], the graphs in which T satisfies the axiom (b1) are characterized
as the following theorem.

Theorem 5 [11] The toll walk function T of a graph G satisfies axiom (b1) if
and only if G is (HC5DAT)-free graph.

The next theorem gives the forbidden subgraph characterization of AT -free
graphs due to Köhler from [5].

Theorem 6 [5] A graph G is (CkT2X2X3X30 . . . X41XFn+1
2 XFn

3 XFn
4 )-free for

k ≥ 6 and n ≥ 1 if and only if G is AT -free graph.

The weak-toll function also need not satisfy axiom (b1) for arbitrary graphs.
The following theorem provides a characterization of the graphs in which the
weak-toll function satisfies the axiom (b1).

u v

x

u

v

x

v x

u

u x

v

x

vu

Fig. 1. Graphs claw, hole-H, house, S3 and net (from left to right).

Theorem 7. The weak-toll function WT of a graph G satisfies the axiom (b1)
if and only if G is (claw, hole, house, net, S3)-free graph.

Proof. Clearly, if G contains claw, hole, house, S3 or net as an induced subgraph
with vertices as shown in Figure 1, the weak-toll function WT does not satisfy
the axiom (b1). That is, if WT satisfies axiom (b1), then G is (claw, hole, house,
net, S3)-free. By Proposition 1, the weak-toll function WT coincides with toll
function T since G is claw-free. In Theorem 5, it is proven that T satisfies
the axiom (b1) if and only if G is (HC5DAT)-free graph. Using these we can
conclude that if WT satisfies axiom (b1) if and only if G is a (claw, house, hole,
domino, AT)-free graph. Except for the net graph and S3, all the forbidden
induced subgraphs of the AT -free graph contain claw or C5 or house as induced
subgraphs. The domino contains a claw as an induced subgraph. That is, WT

satisfies axiom (b1), if and only if G is (claw, hole, house, net, S3)-free. �	
The following theorem, which characterizes the weak-toll function of unit interval
graphs, is established by combining Theorems 1 and 7. Since by Theorem 7,
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WT satisfy the axiom (b1) if and only if G is (claw, hole, house, net, S3)- free
and by Theorem 1, WT satisfy the axiom (JC) if and only if G is Cn+4-free. By
combining these two, we obtain that WT satisfies the axioms (b1) and (JC) if
and only if G is (claw, net, S3, Cn+4)-free.

Theorem 8. The weak-toll function WT of a graph G satisfies the axioms (b1)
and (JC) if and only if G is a unit interval graph.

Now, we can replace the axiom (JC) with the axiom (J0) in Theorem 8 to
characterize the weak-toll function of unit interval graphs.

Theorem 9. The weak-toll walk function WT of a graph G satisfies the axioms
(b1) and (J0) if and only if G is a unit interval graph.

Proof. By Theorem 7, it is clear that the weak-toll function WT satisfies the
axiom (b1) if and only if G is (claw, hole, house, net, S3)-free graph. So, it
suffices to show that WT satisfies the axiom (J0) if and only if G is chordal. If
possible, assume that G contains an induced cycle of length at least four with
vertices as; u, v, and y as consecutive vertices, and x as different from u, v, and
y. Then x ∈ WT (u, y) and y ∈ WT (x, v) but x /∈ WT (u, v). That is, WT does
not satisfy the axiom (J0). Conversely, suppose that WT does not satisfy the
axiom (J0). That is, x ∈ WT (u, y) and y ∈ WT (x, v) but x /∈ WT (u, v). Since G
is claw-free, we can assume that the vertices u, x, y and v lies in a path. Since
x ∈ WT (u, y) and G is claw-free, there is a u, x-path without neighbor of y say
P and a x, y-path without neighbor of u say Q. Also, since y ∈ WT (x, v), there
is a x, y-path without neighbor of v say R and a y, v-path without neighbor of x
say S. Also, x /∈ WT (u, v) implies that all the u, x-paths contain more than one
neighbor of v or x, v-paths contain more than one neighbor of u. We may assume
that the x, v-path contains more than one neighbor of u say u′ and u′′ in which
u′ is close to the vertex y. Then the sequence of vertices u

P−→ x
Q−→ y

S−→ u′u
forms a cycle of length at least four. There may be chords from the vertices of
path P to the vertices of path S. Let ab be a chord such that a is close to x

on the path P . Therefore, a
P−→ x

Q−→ y
S−→ ba induces a cycle of length at least

four. That is, WT satisfies axioms (J0) and (b1) in G if and only if G is a unit
interval graph. �	
Now we have the following theorem.

Theorem 10. A transit function R on V satisfies the axioms (b1), (b2) (J2),
(J0), (TW4), (TW5) and (TW6) if and only if GR is a connected unit interval
graph and R = WT on GR.

Proof. Let u and v be two distinct vertices of GR. First, assume that x ∈ R(u, v)
and x 
= v. We have to show that x ∈ WT (u, v) on GR. Clearly x ∈ WT (u, v)
whenever x = u. So, assume that x /∈ {u, v}. If R(u, x) = {u, x} and R(x, v) =
{x, v}, then uxv is a weak-toll walk of GR and x ∈ WT (u, v). Suppose next that
R(u, x) = {u, x} and R(x, v) 
= {x, v}. We will construct a x, v-path Q in GR

without a neighbor of u (except possibly x). For this, let x = v0. By axiom
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(TW5) there exists a neighbor of v0, say v1 with R(u, v1) 
= {u, v1} such that
v1 ∈ R(v0, v) ∩ R(u, v). By (b1) v0 /∈ R(v1, v) and by (b2) R(v1, v) ⊆ R(v0, v)
so that R(v1, v) ⊂ R(v0, v) . If v1 
= v and v1 ∈ R(u, v) then we can continue
with the same procedure to get v2 ∈ R(u, v)∩R(v1, v), where R(u, v2) 
= {u, v2},
R(v1, v2) = {v1, v2} and by (b1) and (b2), R(v2, v) ⊂ R(v1, v). So, by repeating
this step, we obtain a sequence of vertices v0, v1, . . . , vq, q ≥ 2, such that

1. R(vi, vi+1) = {vi, vi+1}, i ∈ {0, 1, . . . , q − 1},
2. R(vi+1, v) ⊂ R(vi, v), i ∈ {0, 1, . . . , q − 1},
3. R(u, vi) 
= {u, vi}, i ∈ {1, . . . , q}.

Clearly, this sequence needs to stop, since V is finite and by the second condi-
tion. Hence, we may assume that vq = v. Then we have a weak-toll u, v-walk
uxv1 . . . vq−1v and x ∈ WT (u, v).

If R(u, x) 
= {u, x}, by continuous application of axioms (TW6), (b1) and
(b2), we obtain a sequence of vertices v0, v1, . . . , vq, q ≥ 2, satisfying the first two
conditions. If u is adjacent to vm, for some m ∈ {1, . . . , q}. Clearly vm ∈ R(u, v).
Then we apply the axiom (TW5) to obtain vm+1, . . . vq such that vm+1, . . . vq
are not adjacent to u and satisfy the first two conditions listed above. Then
uvmvm−1 . . . v1xv1 . . . vq−1v is a weak-toll u, v-walk and x ∈ WT (u, v). If u
is not adjacent to vi, i = 1 . . . q − 1. we can symmetrically build a sequence
u0, u1, . . . , ur, where u0 = x, ur = u and u0u1 . . . ur is a x, u-path in GR. Clearly,
uur−1ur−2 . . . u1xv1 . . . vq−1v is a u, v-weak-toll walk and x ∈ WT (u, v) and
hence GR is connected. Now suppose that x ∈ WT (u, v), then similar to Theo-
rem 3, we can prove that x ∈ R(u, v). By Theorem 9, WT satisfies the axioms
(J0) and (b1) which implies that GR is a unit interval graph. Also WT satisfies
axioms (b1), (J0), (TW4), (TW5) and (TW6) by Theorem 9 and Proposition 2.
Since unit interval graphs doesn’t contain the claw, as an induced subgraph by
Proposition 1, WT = T on unit interval graphs. In [11], it is proved that T sat-
isfies axiom (b1) then T satisfies axiom (b2). Therefore, in unit interval graphs,
WT satisfies the axiom (b2) since it satisfies axiom (b1). Also, WT satisfies axiom
(J2) on every connected graph. �	
The following examples establish the independence of the axioms used in this
section. In the examples (Examples 1 to 6), we define a transit function R on the
set V = {u, x, y, v} and in the Example 7, 8 we define R on V = {u, x, y, w, v}.
Also R(a, a) = {a}, ∀a ∈ V .

Example 1 ((J2), (b2), (J0), (TW4), (TW5) and (TW6), but not (b1)).
Define R as : R(u, v) = R(x, v) = R(u, x) = V , R(a, b) = {a, b} for all other
a, b ∈ V . Then R satisfies the axioms (J2), (b2), (J0), (TW4), (TW5), and
(TW6). Furthermore, x ∈ R(u, v), x 
= v and v ∈ R(u, x) and R do not satisfy
axiom (b1).

Example 2 ((b1), (J2), (b2), (TW4), (TW5), (TW6), but not (J0), (JC)).
Define R as : R(u, y) = {u, x, v, y}, R(x, v) = {x, y, u, v}, R(a, b) = {a, b} for
all other a, b ∈ V . Then R satisfies axioms (b1), (b2), (J2), (TW4), (TW5) and
(TW6). Furthermore, x ∈ R(u, y), y ∈ R(x, v), and x /∈ R(u, v) and hence R
does not satisfy the axioms (J0) and (JC).
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Example 3 ((b1), (b2), (J0), (TW4), (TW5), (TW6) but not (J2), (tr)).
Define R as : R(u, v) = {u, x, v}, R(a, b) = {a, b} for all other a, b ∈ V . Then
R satisfies axioms (b1), (b2), (J0), (TW4), (TW5) and (TW6). In addition
R(u, y) = {u, y}, R(y, v) = {y, v}, R(u, v) 
= {u, v} but y /∈ R(u, v) so that R
does not satisfy the axiom (J2) and (tr).

Example 4 ((b1), (b2), (J2), (J0), (TW5) and (TW6), but not (TW4)).
Define R as : R(u, v) = {u, y, v}, R(u, x) = {u, y, x}, R(x, v) = {x, y, v},
R(a, b) = {a, b} for all other a, b ∈ V . Then R satisfies the axioms (b1), (b2),
(J2), (J0), (TW5) and (TW6). Furthermore, y ∈ R(u, v), R(x, y) = {x, y},
R(u, x) 
= {u, x}, R(v, x) 
= {v, x}, and x /∈ R(u, v) and R do not satisfy the
axiom (TW4).

Example 5 ((b1), (b2), (J2), (J0), (TW4) and (TW6), but not (TW5)).
Define R as: R(u, v) = {u, x, y, v}, R(x, v) = {x, y, v}, R(a, b) = {a, b} for all
the other a, b ∈ V . Then, R satisfies axioms (b1), (b2), (J2), (J0), (TW4), and
(TW6). In addition to x ∈ R(u, v), R(u, x) = {u, x}, there does not exist v1 such
that v1 ∈ R(x, v) ∩ R(u, v), v1 
= x with R(x, v1) = {x, v1}, R(u, v1) 
= {u, v1} so
R does not satisfy axiom (TW5).

Example 6 ((JC), (TW4), (tr) and (TW6), but not (bt1).).
Define R as R(u, v) = R(x, v) = V , R(u, y) = {u, x, y}, R(a, b) = {a, b} for
all other a, b ∈ V . Then R satisfies axioms (JC), (TW4), (tr) and (TW6). But
x ∈ R(u, v), R(u, x) = {u, x}, and u ∈ R(v, x) and R do not satisfy axiom (bt1).

Example 7 ((b1), (b2), (J2), (J0), (TW4) and (TW5), but not (TW6)).
Define R as: R(u, v) = {u, x, w, v}, R(x, v) = {x, y, u, v}, R(y, v) = {y, u, v},
R(u, x) = {u,w, x}, R(a, b) = {a, b} for all other a, b ∈ V . We can verify that
R satisfies the axioms (b1), (b2), (J2), (J0), (TW4), and (TW5). Furthermore,
x ∈ R(u, v), R(u, x) 
= {u, x}, but there does not exist v1 such that v1 ∈ R(x, v)∩
R(u, v), v1 
= x with R(x, v1) = {x, v1}, R(v1, v) ⊆ R(x, v) so R does not satisfy
the axiom (TW6).

Example 8 ((b1), (J2), (J0), (TW4), (TW5) and (TW6), but not (b2).).
Define R as : R(u, v) = {u, x, y, v}, R(x, v) = {x, y, w, v}, R(u, y) = {u, x, y},
R(w, v) = {w, y, v}, R(a, b) = {a, b} for all other a, b ∈ V . Then R satisfies the
axioms (b1), (J2), (J0), (TW4), (TW5), and (TW6). Furthermore, x ∈ R(u, v),
w ∈ R(x, v), and w /∈ R(u, v) so R do not satisfy axiom (b2).

Note that for a transit function R, axioms (tr) and (TW6) implies axiom
(TW5). For, take x ∈ R(u, v), R(u, x) = {u, x} which implies v1 ∈ R(u, v) ∩
R(x, v) with R(x, v1) = {x, v1} by (TW6). Now R(u, x) = {u, x} and R(x, v1) =
{x, v1} =⇒ x ∈ R(u, v1) by (tr) and hence axiom (TW5).

4 Non-definability of Weak-Toll Function

It is proved by Nebeský in [10], respectively, Changat et al. in [13] that a first-
order axiomatic characterization of the induced path function J , respectively,
the toll-walk function T , of an arbitrary connected graph G is not possible.
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Here, we show that, like the function J and T , it is impossible to characterize
the weak-toll function WT of a connected graph using a set of first-order axioms.
The idea of proof of the impossibility of such a characterization is the following.
First, we construct two non-isomorphic graphs Hd and H ′

d and a first-order
axiom which may not be satisfied by the weak-toll function WT of an arbitrary
connected graph. The following axiom is defined for an arbitrary transit function
R in a finite non-empty set V and is called a scant property following Nebeský
[10].

Axiom (SP): If R(x, y) 
= {x, y}, then R(x, y) = V , for any x, y ∈ V .
First, we define certain concepts and terminology of first-order logic [7]. The

tuple X = (X,S) is called a structure when X is a nonempty set called universe,
and S is a finite set of function symbols, relation symbols, and constant symbols
called signature. Here, we assume that the signature contains only relation sym-
bols. The quantifier rank of a formula φ is its depth of quantifier nesting and is
denoted by qr(φ). Let A and B be two structures with the same signatures. A
map q is said to be a partial isomorphism from A to B if and only if dom(q) ⊂ A,
rg(q) ⊂ B, q is injective and for any n-ary relation R in the signature and a0,
. . . , al−1 ∈ dom(q), RA(a0, . . . , al−1) if and only if RB(q(a0), . . . , q(al−1)).

Let r be a positive integer. The r-move Ehrenfeucht-Fraisse game on A and
B is played between 2 players called the Spoiler and the Duplicator, according
to the following rules.

Each run of the game has r moves. In each move, Spoiler plays first and picks
an element from the universe A of the structure A or from the universe B of the
structure B; Duplicator then responds by picking an element from the universe
of the other structure. Let ai ∈ A and bi ∈ B be the two elements picked
by the Spoiler and Duplicator in their ith move, 1 ≤ i ≤ r. The Duplicator
wins the run (a1, b1), . . . , (ar, br) if the mapping ai → bi, where 1 ≤ i ≤ r is a
partial isomorphism from the structure A to B. Otherwise, Spoiler wins the run
(a1, b1), . . . , (ar, br).

Duplicator wins the r-move EF-game on A and B if Duplicator can win
every run of the game, regardless of how Spoiler plays. The following theorem is
our main tool in proving the inexpressibility results.

Theorem 11 [7]. The following statements are equivalent for two structures A
and B in a relational vocabulary.

1. A and B satisfy the same sentence σ with qr(σ) ≤ n.
2. The Duplicator has an n-round winning strategy in the EF game on A and

B.

By a ternary structure we mean an ordered pair (X,D) where X is a finite
nonempty set and D is a ternary relation on X. By the underlying graph of a
ternary structure (X,D) we mean the graph G with the properties that X is its
vertex set and distinct vertices u and v of G are adjacent if and only if

{x ∈ X : D(u, x, v)} ∪ {x ∈ X : D(v, x, u)} = {u, v}.
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We call a ternary structure (X,D), ‘the W ′- structure of a graph G’, if X is
the vertex set of G and D is the ternary relation corresponding to WT (that
is, (x, y, z) ∈ D if and only if y lies in some x, z- weak-toll walk). Obviously, if
(X,D) is a W ′-structure, then it is the W ′-structure of the underlying graph of
(X,D). Let F : X × X → 2X be defined as F (x, y) = {u ∈ X : D(x, u, y)}. So,
for any ternary structure (X,D), we can associate the function F corresponding
to D and vice versa. We say that (X,D) is scant if the function F corresponding
to the ternary relation D, satisfies the axiom (SP) together with the axioms (t1),
(t2) and (t3); in other words, F is a transit function satisfying the axiom (SP).

Next, we present two graphs Hd and H ′
d such that the W ′-structure of one

of them is scant and the other is not. Moreover, the proof will settle, once we
prove that Duplicator wins the EF game on Hd and H ′

d. For d ≥ 2 let Hd be a
graph with vertices

V (Hd) = {u1, u2, . . . , u4d, v1, v2, . . . , v4d, x1},

and edges (indices are via modulo 4d)

E(Hd) = {uiui+1, vivi+1, uivi, v1x1, v2d+1x1 : i ∈ {1, . . . , 4d}}.

Fig. 2. Graph Hd.

For d ≥ 2 let H ′
d be a graph with vertices

V (H ′
d) = {u′

1, u
′
2, . . . , u

′
4d, v

′
1, v

′
2, . . . , v

′
4d, x

′
1},

and edges (indices are via modulo 2d)

E(H ′
d) = {u′

1u
′
2d, u

′
iu

′
i+1, u

′
2d+1u

′
4d, u

′
2d+iu

′
2d+i+1, v

′
1v

′
2d, v

′
iv

′
i+1, v

′
2d+1v

′
4d,

v′
2d+iv

′
2d+i+1, u

′
jv

′
j , v

′
1x

′
1, v

′
2d+1x

′
1 : i ∈ {1, . . . , 2d − 1}, j ∈ {1, . . . , 4d}}.
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Fig. 3. Graph H ′
d.

Graphs Hd and H ′
d are shown in Figs. 2 and 3, respectively. The first-order

non-definability of the toll-walk function is obtained in [13] using the graphs
Hd and H ′

d, and the scant property (SP). In [13] it is proved that the toll walk
function of Hd satisfies the axiom (SP), but the toll walk function of H ′

d does
not satisfy the axiom (SP). That is, for the toll walk function T of Hd, T (u, v) =
V (Hd) for all u, v ∈ V (Hd) and uv /∈ E(Hd). Since all toll-walks are weak-toll
walks, we get WT (u, v) = V (Hd) for all u, v ∈ V (Hd) and uv /∈ E(Hd). Also, note
that WT (v′

2, x
′
1) = {v′

2, x
′
1, v

′
1, u

′
1, v

′
2d, v

′
2d−1, . . . , v

′
4, u

′
2d, u

′
2d−1, . . . , u

′
4} 
= V (H ′

d).
From these observations, we obtain the following lemma.

Lemma 4. Let d ≥ 2.

i. The W ′-structure of Hd is scant.
ii. The W ′-structure of H ′

d is not scant.

Again, since the graphs used for proving the non-definability of the toll func-
tion in [13] are similar to Hd and H ′

d, we obtain the following lemma.

Lemma 5. Let n ≥ 1 and d > 2n+1. If (X1,D1) and (X2,D2) are scant ternary
structures such that the underlying graph of (X1,D1) is Hd and the underlying
graph of (X2,D2) is H ′

d, then (X1,D1) and (X2,D2) satisfy the same sentence
ψ with qr(ψ) ≤ n.

From Lemma 4 and Lemma 5, we can conclude the following result.

Theorem 12. There exists no sentence σ of the first-order logic of vocabulary
{D} such that a connected ternary structure is a W ′-structure if and only if it
satisfies σ.

In conclusion, we observe the following. In [13], it is proved that the function
T of an arbitrary bipartite graph cannot also be first-order definable. Therefore,
using the same structures (odd and even cycles as in the case of T in [13]), we can
prove that the function WT of a bipartite graph is also not first-order definable.
We further observe that Ptolemaic graphs are a subclass of chordal graphs, a
superclass of unit interval graphs, and chordal graphs are perfect. Thus, the
following problem seems interesting.
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Problem: Is there a first-order axiomatic characterization of the weak-toll func-
tion WT of Ptolemaic graphs and perfect graphs?
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Total Coloring of Some Graph Operations
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Abstract. The total chromatic number χT (G) of G is the least positive
integer k for which G admits a k-total coloring. Clearly, χT (G) ≥ Δ(G)+
1. A long standing Total Coloring Conjecture (TCC) asserts that every
graph G has χT (G) ≤ Δ(G)+2. If χT (G) = Δ(G)+1, then G is a type-1
graph and if χT (G) = Δ(G) + 2, then G is a type-2 graph. Weak TCC
states that any simple graph G has χT (G) ≤ Δ(G)+3. In this paper, we
give an upper bound for the total chromatic number of the join G ∨ H
of graphs G and H. Also, we verify that if G satisfies TCC, then G ∨ G
satisfies TCC and the join of two type-1 graphs having the same order
satisfies TCC. We show that G ∨ H satisfies weak TCC under certain
constrains. Moreover, we show that the join of any two graphs G and H
of same order satisfies weak TCC if both G and H are satisfying TCC.
Also, we prove that if G and H are any two k-regular graphs with same
odd order, then G ∨ H is not type-1. In addition, we verify that the join
of any two cycles satisfies TCC. We give an upper bound for the total
chromatic number of generalized join of graphs and as a result we obtain
an upper bound for the total chromatic number of the lexicographic
product G ◦ H of G and H in terms of the maximum degrees of G and
H if H satisfies TCC. Also, we show that the lexicographic product
of a graph with compliment of complete graphs satisfies weak TCC. In
particular, when the graph is Type-1 then this lexicographic product will
satisfy TCC.

Keywords: Total coloring conjecture · Join of graphs

1 Introduction

All graphs considered here are finite, simple and undirected. Let G =
(V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). For v ∈ V (G),
let NG(v) denote the open neighborhood of v and NG[v] denote the closed neigh-
borhood of v. Δ(G) denote the maximum degree of G. For any A which is a
subset of V (G), 〈A〉 denotes the subgraph induced by A. Graph coloring is the
process of assigning colors to the elements of a graph. Graph coloring has vari-
ous practical applications also. There are different kinds of graph colorings like,
vertex coloring, edge coloring, total coloring etc. If the coloring is for the vertices
only, then it is said to be vertex coloring or simply coloring. If the coloring is for
edges only, then it is said to be the edge coloring. Total coloring is the coloring
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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in which we assign colors to both the vertices and edges of a graph and it is
said to be proper if no two adjacent or incident elements are receiving the same
color. A k-total coloring is the total coloring in which we are using k colors.
Total chromatic number of a graph G denoted as χT (G) is the minimum num-
ber of colors required for coloring the vertices and edges of the graph properly
(Similarly we can define chromatic number (χ(G)) and chromatic index number
(χ′(G)) corresponding to the vertex and edge coloring, respectively). Graphs
with χ′(G) = Δ(G) are called class-1 and graphs with χ′(G) = Δ(G) + 1 are
called class-2. Also, graphs with χT (G) = Δ(G)+1 are called type-1 and graphs
with χT (G) = Δ(G) + 2 are called type-2.

In the year 1953 Behzad [1] conjectured that Δ(G) + 2 is an upper bound
for χT (G). It is known as the Total Coloring Conjecture (TCC), which is one
among the classic open problems in graph theory. TCC is studied widely by var-
ious mathematicians. During 1980′s, Sánchez-Arroyo [15] proved that deciding
whether a graph is type-1 or not is NP -complete and also the total coloring
of a complete bipartite graph is NP -hard. Moreover, McDiarmid and Sánchez-
Arroyo [11] proved that determining the total chromatic number is NP-hard even
for r-regular bipartite graphs, for each fixed r ≥ 3. It can be easily seen that
TCC is true for the complete graphs [2], cycles and bipartite graphs.

In case of planar graphs, so many results related to TCC have been done and
are mainly based on the maximum degree and the girth constraints. For planar
graphs with maximum degree at most 5, TCC was verified by A. V. Kostochka [7]
during the late 90’s. Yap [21] verified it for planar graphs with maximum degree
at least 8 and Kowalik et. al. [8] proved that for any planar graph with maximum
degree at least 9 is type-1. For the planar graphs with maximum degree 6 and
7, TCC was verified under certain conditions. For the non-planar case, TCC is
verified for so many classes of graphs. TCC for the cartesian product of two
graphs is verified for many cases [5], and still there are cases for which it is not
verified. But regarding the other graph products only a few results are proved
on TCC yet [3,20]. Geetha et al. [4] have produced an excellent survey on total
coloring, which is a valuable source of information in the state of art.

Even though many well-known researchers from different parts of the world
have studied TCC for over 60 years, it remains open till now. So it make sense
for the current researchers to go for some relaxed version of TCC which is known
as the Weak TCC. Before defining the weak TCC we define some more weaker
version of TCC called the k-TCC which was introduced by Manu Basavaraju et
al. in [10].

k-Total coloring Conjecture (k-TCC).
For any graph G, χT (G) ≤ Δ(G) + k, for some fixed positive integer k ≥ 2.
The 2-TCC is nothing but the original TCC and 3-TCC is known as the

weak TCC. Molloy and Reed [13] showed a probabilistic approach to prove that
for a sufficiently large Δ, χT (G) ≤ Δ(G) + C, where C = 1026.

Let G be a graph with n vertices and H1,H2, . . . , Hn be a collection of graphs.
The G-generalized join of H1,H2, . . . , Hn, denoted by G[H1,H2, . . . , Hn], is the
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graph G′ with vertex set V (G′) =
n⋃

i=1

V (Hi) and edge set E(G′) =
( n⋃

i=1

E(Hi)
)
∪

( ⋃

ij∈E(G)

{xy|x ∈ V (Hi), y ∈ V (Hj)}
)
.

If Hi
∼= H for 1 ≤ i ≤ n, then G[H,H, . . . ,H] is the standard lexicographic

product of G and H and it is denoted as G ◦ H. If G = K2, then K2[H1,H2] is
the well known join of graphs H1 and H2 and it is denoted by H1 ∨ H2.

A complement reducible graph (also called a co-graph) is defined recursively
as follows:

i) A graph on a single vertex is a complement reducible graph.
ii) If G1, G2, . . . , Gk are complement reducible graphs, then so is their union

G1 ∪ G2 ∪ · · · ∪ Gk.
iii) If G is a complement reducible graph, then so is its complement.

The co-graphs have arisen in many disparate areas of mathematics and have
been independently rediscovered by various researchers. The verification of TCC
for the join of two graphs will automatically shows that the co-graphs also sat-
isfies TCC. But verifying TCC even for the join of some simple classes of graphs
will pause many difficulties, which can be seen from some proofs that we have
given in this paper. In our journey to verify TCC for co-graphs, we find some
results that contribute more power to the validity of TCC in general but, TCC
for the join of two arbitrary graphs remains still open.

Some works that have been done regarding the verification of TCC for the
join of certain classes of graphs are as follows : Seoud et al. [16,17] calculated
the total chromatic number of the join of two paths. Guanggrong Li and Limin
Zhang [9] proved that the join of a complete in-equipartite graph and a path is
type-1. In their proof the difficulty in proving TCC for the join of such graphs
(that is Kn1,n2 for n1 �= n2 and Pm) is easily visible as there arises various sub
cases for a single proof (see [9]). Further Wang et al. [20] proved the equality
of the vertex distinguishing total chromatic number and the total chromatic
number of the join of a path with itself and a cycle with itself.

In [19], R. Vignesh et al. proved the validity of TCC for the join of a graph
satisfying TCC with itself. But we found that the existence of a proper edge
coloring that is just mentioned in the proof without any proper explanation is
not always mandatory. Hence in order to overcome that here we give a rigorous
proof using the coloring technique explained in the Lemma given in the second
section.

Even though we do not have a proof for the existence of TCC, we have seen
that it is proved for a vast range of graphs [12,14]. Here we are going to see the
same for some graph operations namely the join of graphs and the lexicographic
product of graphs.

The paper is organized as follows.
In the second section, we obtain a bound for the total chromatic number

of the join two graphs and we verify TCC for G ∨ G, when G satisfies TCC.
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As a result, we prove that
2m∨

i=1

Gi satisfies TCC if Gi
∼= G for 1 ≤ i ≤ 2m and

G satisfies TCC. Also, we verify weak TCC for the join of two graphs under
certain constraints and we prove that the join of two type-1 graphs with same
order satisfies TCC. Moreover, we prove G ∨ H is not a type-1 graph if G and
H are regular graphs with same odd number of vertices. In addition, we prove
that Cn ∨ Cm satisfies TCC, for any positive integers m and n.

In the third section, we produce an upper bound for the total chromatic
number of the generalized join of graphs and hence we obtain an upper bound
for the total chromatic number of the lexicographic product G ◦ H if H satisfies
TCC. And in particular we verify weak TCC for the lexicographic product of a
graph with the compliment of a complete graph.

2 TCC for Join of Graphs

In this section, we first recall the Konig’s Theorem.

Theorem 1 (Konig [6]). For any bipartite graph, χ′(G) = Δ(G).

The following result gives a bound for the total chromatic number of the join of
two graphs.

Theorem 2. Let G and H be graphs with m and n vertices, respectively. If
χ′(G) ≤ χT (H), then

max{Δ(H) + m,Δ(G) + n} + 1 ≤ χT (G ∨ H) ≤ max{m,n} + χT (H) + χ(G).

In general, max{Δ(H) + m,Δ(G) + n} + 1 ≤ χT (G ∨ H) ≤ max{m,n} +
max{χ′(G), χ′(H)} + χ(H) + χ(G).

Proof. Let r = max {m,n}, s = χ(G) and t = χT (H). The lower bound is clear
from the definition of join of graphs. For proving the upper bound, we construct
a total coloring of G ∨ H using r + s + t colors.

First, we color the vertices and edges of G and H. Let c be a total coloring
of H using t colors, say 1, 2, . . . , t. It is given that χ′(G) ≤ χT (H). Hence we
can color the edges of G with some or all colors from 1, 2, . . . , t. Then color the
vertices of G with new s colors, say t + 1, t + 2, . . . , t + s. Thus, we colored the
vertices and edges of G and H using t + s colors properly.

Next, we color the uncolored edges of G ∨ H and they are precisely the
edges between G and H and hence the subgraph induced by these edges form a
bipartite graph with maximum degree r. Hence by Theorem 1, it can be colored
properly using new r colors, say t + s + 1, t + s + 2, . . . , t + s + r. So we get a
total coloring of G ∨ H using r + s + t colors and therefore the result follows.
The proof of second part is similar to that of the first one.

As an immediate consequence of Theorem 2, we have the following Corollary.
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Corollary 1. If G is a bipartite graph and H is a graph satisfying TCC and both

having the same maximum degree, then χT (G ∨ H) ≤
{

k + 4 if H is type − 2;
k + 3 if H is type − 1,

where k = Δ(G ∨ H).

Proof. Let the maximum degree of both G and H be Δ. Then, by Theorem
1, Δ = χ′(G) < Δ + 1 ≤ χT (H) and χ(G) = 2. By Theorem 2, we have
χT (G ∨ H) ≤ max{m,n} + χT (H) + 2.

First, if G is type-1, then χT (G∨H) ≤ max{m,n}+Δ(G)+1+2 and hence
χT (G ∨ H) ≤ Δ(G ∨ H) + 3.

Next, if G is type-1, then χT (G ∨ H) ≤ max{m,n}+Δ(G) + 2+ 2 and thus
χT (G ∨ H) ≤ Δ(G ∨ H) + 4.

One can ask the following question.

Problem 1. When does the join two graphs satisfy k-TCC, for some k ≥ 2?
The following results will give some partial answers to this. For proving these

partial answers, we need the following Lemma. For a matching M of G and v ∈
V (G), we say v is M -saturated if v is incident with some edge in M . Otherwise,
v is called M -unsaturated.

Lemma 1. The edge set of Kn,n can be partitioned into n + 1 matchings such
that each vertex of Kn,n is saturated by n matchings among them.

Proof. Let X = {u1, u2, . . . , un} and Y = {v1, v2, . . . , vn} be the partition of
Kn,n. Let M0 = {uivi : 1 ≤ i ≤ n} and R0 = Kn,n − M0.

First, we successively define Rj ’s and Mj ’s as follows, for 1 ≤ j ≤ n − 2,

R′
j = Rj−1 − {uj , vj},Mj = Aj ∪ Bj , where

Aj = {uivi+j+1(mod n) : 1 ≤ i ≤ j − 1 or i = n},
Bj = {uivi+j(mod n) : j + 1 ≤ i ≤ n − 1} and
Rj = Rj−1 − Mj .

Next, we define

R′
n−1 = Rn−2 − {un−1, vn−1},

Mn−1 = {uiv2i+1(mod n) : 1 ≤ i ≤ n and i �= n − 1},
Rn−1 = Rn−2 − Mn−1 and
R′

n = Rn−1 − {un, vn},
Mn = {uiv2i(mod n) : 1 ≤ i ≤ n − 1}.

Clearly, Mj is a matching in R′
j , for 1 ≤ j ≤ n and there are n + 1 matchings

including M0. Also note that each vertex uj (as well as vj) in Kn,n is Mi-
saturated for all i ∈ {1, 2, . . . , n}\{j}, |M0| = n, |Mj | = n − 1 for 1 ≤ j ≤ n and
E(R′

n)\Mn = ∅. Hence
∑n

j=0 |Mj | = |E(Kn,n)|.
Finally, we have to prove {Mj}nj=0 are disjoint.
Clearly, M0 ∩ Mj = ∅, for j ∈ {1, 2, . . . , n}. First, if there exist j1, j2 ∈

{1, 2, . . . , n − 2} and there exist i, k ∈ {1, 2, . . . , n} such that j1 �= j2 and uivk ∈
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Mj1 ∩ Mj2 . Then, i �= j1, j2 and uivk ∈ (Aj1 ∩ Aj2)∪ (Aj1 ∩ Bj2)∪ (Bj1 ∩ Aj2)∪
(Bj1 ∩ Bj2).

When uivk ∈ Aj1 ∩ Bj2 , we have i + j1 + 1 (mod n) = k = i + j2 (mod n),
by the definition of Aj1 and Bj2 . Hence j1 = j2 − 1 (as |j1 − j2| < n). Also,
1 ≤ i ≤ j1 − 1 or i = n and j2 + 1 ≤ i ≤ n − 1. In both cases, it is not possible.

When uivk ∈ Aj1 ∩ Aj2 , we have i+ j2 +1(mod n) = k = i+ j1 +1(mod n).
That means, j2 = j1 (as j1 and j2 are less than n), which is a contradiction.

When uivk ∈ Bj1 ∩ Bj2 , we have j1 = j2, which is not possible.
When uivk ∈ Bj1 ∩ Aj2 , then j2 = j1 − 1 and j1 + 1 ≤ i ≤ n − 1 and

1 ≤ i ≤ j2 − 1, which is a contradiction.
So, for any two distinct j1, j2 ∈ {1, 2, . . . , n − 2},Mj1 ∩ Mj2 = ∅. Similarly,

we can show that Mj ’s, Mn−1, and Mn are disjoint for j ∈ {0, 1, 2, . . . , n − 2}.
Therefore {Mj}nj=1 are disjoint. Hence the result the follows.

Now, using Lemma 1, we prove that TCC is true for the join of a graph satisfying
TCC with itself.

Theorem 3. If G is a graph satisfying TCC, then G ∨ G satisfies TCC.

Proof. Let V (G) = {u1, u2, . . . , un} and Δ(G) = k. Then Δ(G∨G) = n+k and
the graph G∨G can be considered as the union of three induced sub-graphs, that
is two copies of G, say G1 with vertex set {u1, u2, . . . , un}, G2 with vertex set
{v1, v2, . . . , vn} (i.e., vi ∈ V (G2) is the corresponding vertex of ui ∈ V (G1)) and
the edges between G1 and G2 (the induced subgraph of these edges is Kn,n). In
order to verify TCC for G∨G, we need to show that there is a total (n+k+2)-
coloring of G ∨ G.

Let c be a total coloring of G with k + 2 colors, say 1, 2, . . . , k + 2. First we
color the vertices and edges of G1 totally and then color the edges of G2 using
c. Next, we color the edges between G1 and G2 by using Lemma 1 and finally,
we assign colors to the vertices of G2.

As the edges of G1 are colored properly under c, we color the edges of G2

also using c as follows. For vivj ∈ E(G2), c(vivj) = c(uiuj). For i ∈ {1, 2, . . . , n},
we define ci ∈ {1, 2, . . . , k + 2} such that ci is not represented at ui in G1, that
is, ci is not assigned to any of the elements in {uix : x ∈ NG1(ui)} ∪ {ui}. Such
a color ci will always exist as c is a (k+2)-total coloring of G and |{c(uix) : x ∈
NG1(ui)} ∪ {c(ui)}| ≤ k + 1. By Lemma 1, we assign the total coloring c′ to the
vertices and edges of G ∨ G using c as follows. For 1 ≤ i �= j ≤ n,

c′(x) =

⎧
⎨

⎩

c(x) if x = ui, x = uiuj ∈ E(G1) or x = vivj ∈ E(G2) ;
k + 2 + j if x = vj or x ∈ Mj ;

ci if x = uivi ∈ M0.

Then c′ colors the vertices and edges of G ∨ G using n + k + 2 colors.
Finally, we need to verify that c′ is proper. Note that for x ∈ V (G1) ∪

E(G1) ∪ M0 ∪ E(G2), c′(x) ∈ {1, 2, . . . , k + 2} and for i, j ∈ {1, 2, . . . , n} with
i �= j, c′(uivj), c′(vj) ∈ {k + 3, k + 4, . . . , n + k + 2}. Since c′ = c on V (G1) ∪
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E(G1) ∪ E(G2), Mi’s are matchings such that u′
is and v′

is are Mi-unsaturated
and by the definition of ci, we have c′ is proper. Hence the results follows.

By Theorem 3 and applying induction on t, we have the following corollary.

Corollary 2. If a graph G satisfies TCC, then
m∨

i=1

Gi satisfies TCC, where Gi
∼=

G for 1 ≤ i ≤ n and m = 2t for any positive integer t.

For two distinct graphs we cannot adopt the same method of proof since the
missing colors in the corresponding vertices need not be same as in the above
case. So, next we prove the validity of weaker version of TCC for the join of two
graphs under certain restrictions.

Theorem 4. If G and H are two graphs with m and n vertices respectively. Also,
Δ(G) ≥ Δ(H), m ≤ n and G satisfies TCC, then χT (G ∨ H) ≤ Δ(G ∨ H) + 3.

In the other case, that is for m ≥ n, adding isolated vertices in H and taking
the join will results in a new graph whose maximum degree is different from that
of our original G∨H. Hence this method is not valid in that case. We now prove
the following result on regular graphs with odd number of vertices.

Theorem 5. If G and H are two k-regular graphs with same odd order n, then
G ∨ H is not type-1.

The equality of the number of vertices in both graphs plays a crucial role in
the proof and hence in the cases of unequal number of vertices we cannot use this
pattern. The following corollaries are the immediate consequences of Theorem 5
and Theorem 3.

Corollary 3. For an odd ordered regular G graph satisfying TCC, the join G∨G
is type-2.

Corollary 4. For an odd positive integer m ≥ 3, Cm ∨ Cm is a type-2 graph.

The following result gives the validity of TCC for the join of two cycles.

Proposition 1. For m,n ≥ 3, the join of two cycles Cm ∨ Cn satisfies TCC .

Proof. Let G = Cm ∨ Cn. Clearly, Δ(G) = max{m,n} + 2. Let V (Cm) =
{u1, u2, . . . , um} and V (Cn) = {v1, v2, . . . , vn}. Without loss of generality, let
us assume m ≥ n. For m = n = 3, by Theorem 3 the result follows. So let
us assume that, m > 3 and n ≥ 3. We have to show that there exists a total
coloring of G using Δ(G) + 2 colors, where Δ(G) = m + 2.

Case 1. (m and n are even)
The following is a total coloring of G using m + 4 colors.
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c(ui) =
{
1 for i ≡ 1 mod 2 ;
2 for i ≡ 0 mod 2. c(vi) =

{
3 for i ≡ 1 mod 2 ;
4 for i ≡ 0 mod 2.

c(uiui+1) =
{
3 for i ≡ 1 mod 2 ;
4 for i ≡ 0 mod 2. c(vivi+1) =

{
1 for i ≡ 1 mod 2 ;
2 for i ≡ 0 mod 2.

Clearly, the subgraph induced by the uncolored edges forms a bipartite graph
of maximum degree m and hence using Theorem 1 we can properly color those
edges using m new colors and hence the result follows.

Case 2. (m and n are odd)
Consider the following coloring of G,

c(ui) =

⎧
⎨

⎩

1 for i ≡ 1 mod 2, i �= m ;
2 for i ≡ 0 mod 2 ;
3 for i = m.

c(vi) =

⎧
⎨

⎩

4 for i ≡ 1 mod 2, i �= n ;
5 for i ≡ 0 mod 2 ;
6 for i = n.

c(uiui+1) =

⎧
⎨

⎩

5 for i ≡ 1 mod 2, i �= m ;
4 for i ≡ 0 mod 2 ;
2 for i = m, i + 1 = 1.

c(vivi+1) =

⎧
⎨

⎩

1 for i ≡ 1 mod 2, i �= n;
2 for i ≡ 0 mod 2 ;
5 for i = n, i + 1 = 1.

Next, we color some of the edges in between Cm and Cn.
For 1 ≤ i ≤ n, c(uivi) = 3 and for 0 ≤ k ≤ n − 1,

c(um−kvn−k) =
{
6 for 1 ≤ k ≤ n − 1;
1 for k = 0.

The subgraph induced by the remaining uncolored edges forms a bipartite
graph with maximum degree m−2 and hence the result follows from Theorem 1.

Case 3. (m is even and n is odd.)
We color the vertices an edges of Cm and Cn as follows:

c(ui) =
{
1 for i ≡ 1 mod 2 ;
2 for i ≡ 0 mod 2. c(vi) =

⎧
⎨

⎩

3 for i ≡ 1 mod 2, i �= n ;
4 for i ≡ 0 mod 2 ;
5 for i = n.

c(uiui+1) =

{
3 for i ≡ 1 mod 2 ;
4 for i ≡ 0 mod 2. c(vivi+1) =

⎧
⎨

⎩

1 for i ≡ 1 mod 2, i �= n;
2 for i ≡ 0 mod 2 ;
4 for i = n and i + 1 = 1.

Next, we color some edges between Cm and Cn. For 1 ≤ i ≤ n − 1, color
c(uivi) = 5 and also for i = n, color c(ui+1vi) = 1. Then the subgraph induced
by the remaining uncolored edges form a bipartite graph of maximum degree
m − 1 and by Theorem 1, the result follows.

Case 4. (m is odd and n is even.)
First, we color the vertices and edges of both Cm and Cn using,
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c(ui) =

⎧
⎨

⎩

1 for i ≡ 1 mod 2 and i �= m ;
2 for i ≡ 0 mod 2 ;
3 for i = m.

c(vi) =
{
4 for i ≡ 1 mod 2 ;
5 for i ≡ 0 mod 2.

c(uiui+1) =

⎧
⎨

⎩

4 for i ≡ 1 mod 2 and i �= m ;
5 for i ≡ 0 mod 2 ;
2 for i = m and i+ 1 = 1.

c(vivi+1) =

{
1 for i ≡ 1 mod 2 ;
2 for i ≡ 0 mod 2.

For 1 ≤ i ≤ n, color c(uivi) = 3. As m > n, the subgraph induced by the
remaining uncolored edges form a bipartite graph of maximum degree m − 1.
Hence the result follows.

As an immediate consequence of Proposition 1, we have the following corollary.

Corollary 5 ([16]). For any positive integers m and n, Pm ∨Pn satisfies TCC.

3 Total Coloring of the Generalized Join of Graphs

In this section, we give an upper bound for the total chromatic number of

G[H1,H2, . . . , Hn]. Let G be a class-1 graph. Then E(G) =
k⋃

i=1

Mi, where Mi’s

are disjoint matchings. Let r be the least number in {1, 2, . . . , k} such that every
vertex of G is saturated by at least one of the matchings Mi1 ,Mi2 , . . . ,Mir .
Without loss of generality, we relabel Mij by Mj for 1 ≤ j ≤ r.

Theorem 6. Let G be the above mentioned graph with n vertices and
{H1,H2, . . . , Hn} be a set of graphs with Hi ∨ Hj satisfying TCC, for each

i, j ∈ {1, 2, . . . , n}, then χT (G[H1,H2, . . . , Hn]) ≤
r∑

i=1

si +
k∑

j=r+1

tj, where

sj = max{Δ(Hx ∨ Hy) + 2 | xy ∈ Mj} for 1 ≤ j ≤ r and tj =
max{max{|V (Hx)|, |V (Hy)| | xy ∈ Mj}} for r + 1 ≤ j ≤ k.

The following corollary is a consequence of Theorems 3 and 6.

Corollary 6. If H is any graph satisfying TCC with m vertices, then

χT (G ◦ H) ≤
{

Δ(G ◦ H) + Δ(H)(Δ(G) − 1) + 2Δ(G) if G is class − 1
Δ(G ◦ H) + Δ(G)Δ(H) + 2(Δ(G) + 1) + m if G is class − 2

Proof. Clearly, G ◦ H ∼= G[H1,H2, . . . , Hn], where Hi
∼= H for 1 ≤ i ≤ n and

Δ(G ◦ H) = Δ(H) + Δ(G)m. By Theorem 3, H ∨ H satisfies TCC. Then by
Theorem 6, sj = Δ(H)+m+2, for 1 ≤ j ≤ r and tj = m, for r+1 ≤ j ≤ χ′(G).
By Theorem 6, χT (G ◦ H) ≤ Δ(H)r + 2r + mχ′(G) ≤ (Δ(H) + m + 2)χ′(G).

If G is a class-1 graph, then χ′(G) = Δ(G). So, χT (G ◦ H) ≤ (Δ(H) + m +
2)Δ(G) ≤ Δ(G ◦ H) + Δ(H)(Δ(G) − 1) + 2Δ(G).

If G is class-2, then χ′(G) = Δ(G) + 1. So, χT (G ◦ H) ≤ (Δ(H) + m +
2)(Δ(G) + 1) ≤ Δ(G ◦ H) + Δ(G)Δ(H) + 2(Δ(G) + 1) + m. Hence the result
follows.
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As the bound above is a weaker one, we replace our H with the compliment
of complete graph and obtain the following result.

Theorem 7. If G satisfies TCC with m vertices, then G[Kc
n] satisfies weak

TCC. In particular, if G is type-1, then G[Kc
n] satisfies TCC.

4 Concluding Remarks and Open Problems

In this paper, one of our aims was to prove the validity of TCC for co-graphs
by showing that TCC is valid for the join of any two graphs. But we could find
some partial answers only and the TCC for the join of any two arbitrary graphs
is still open. Also, we obtained a bound for the total chromatic number of G-
generalized join of graphs and as a consequence we obtain an upper bound for
the total chromatic number of the lexicographic product G ◦ H.
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Abstract. For q ∈ N, a q-star colouring of a graph G is a proper
q-colouring f of G such that there is no path u, v, w, x in G with
f(u) = f(w) and f(v) = f(x) (the violating path need not be induced).
For p ≥ 2, Shalu and Antony (Discrete Math., 2022) proved that at least
p+ 2 colours are required to star colour a 2p-regular graph G, and char-
acterised the class G of graphs G for which p+2 colours suffices in terms
of graph orientations. In the second author’s thesis (2023), we provided
a characterisation of the class G in terms of locally constrained graph
homomorphisms. In this paper, we characterise G in terms of weaving
patterns of edge decompositions. We also show that the study of class G
is tied to the theory of line graphs and line digraphs of complete graphs.
We prove that if a K1,p+1-free 2p-regular graph G with p ≥ 2 is (p + 2)-
star colourable, then −2 and p−2 are eigenvalues of the adjacency matrix
of G.

Keywords: Star coloring · Regular graphs · Cyclic plain weaving ·
Edge decomposition · Line digraph · Graph homomorphism · Graph
orientation

1 Introduction

Star colouring is a variant of graph colouring used in the estimation of sparse
Hessian matrices [9]. Nešetřil and Mendez [12] related the minimum number of
colours required to star colour a graph to the chromatic numbers of its minors.
Star colouring is studied for various graph classes, and is extensively studied
for planar graphs [6, Section 14] and line graphs [11]. Speaking of line graphs,
the class of line graphs has a rich theory as evidenced by the vast literature
devoted to it. We refer the reader to the recent book “Line graphs and line
digraphs” [5] by Beineke and Bagga. This book also devotes several chapters to
line digraphs. The line digraph operation on a digraph is a natural adaptation
of the line graph operation to digraphs. We do not use the notion of line digraph
of a digraph in this paper. Rather, we use a closely related operation called line
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digraph operation on an undirected graph discussed by the same authors in [4],
which turns out to be important for star colouring of regular graphs.

For d ≥ 2, at least (d + 4)/2 colours are required to star colour a d-regular
graph, and (d + 4)/2 colours suffices only if d is even [14]. The class G of d-
regular graphs that admit a ((d+4)/2)-star colouring (i.e., 2p-regular (p+2)-star
colourable graphs with p ≥ 2) can be characterised in terms of graph orienta-
tions [14] and graph homomorphisms [3]. We emphasise that given a positive
integer p ≥ 2 and a 2p-regular graph G, it is NP-complete to check whether
G ∈ G, even when p = 2 [3, Corollary 5.1]. In this paper, we show that the study
of the graph class G is tied to the theory of line graphs, and even more so to the
theory of line digraphs. We obtain a necessary condition on K1,p+1-free graphs
G ∈ G in terms of eigenvalues of G. More importantly, we characterise class G
in terms of ‘plain weavings’ of edge decompositions (motivation and examples
appear at the end of this section, and complete definitions appear in Sect. 2).
The main results of this paper are the following (see Sect. 2 for definitions).

– Theorem 4: For every (undirected) graph H, the underlying undirected graph
of the line digraph of H admits a locally bijective homomomorphism to the
line graph of H.

– Theorem 5: If a K1,p+1-free 2p-regular graph G with p ≥ 2 is (p + 2)-star
colourable, then −2 and p − 2 are eigenvalues of G.

– Theorem 6: Let G be a 2p-regular graph with p ≥ 2. Then, G admits a
(p + 2)-star colouring if and only if G admits an orientation �G and an edge
decomposition S = {H0,H1, . . . , Hp+1} such that the following hold:
(i) each Hi is p-regular (i ∈ Zp+2);
(ii) S admits a plain weaving ψ consistent with �G; and
(iii) for distinct i, j ∈ Zp+2 and distinct u, v ∈ V (Hi) ∩ V (Hj),

uv /∈ E(G) and NG(u) ∩ NG(v) = N+
�G
(u) ∩ N+

�G
(v).

We also prove a result similar to Theorem 6 that characterises certain types of
graph orientations called colourful Eulerian orientations.

Weaving patterns are of paramount importance not only in industries such as
textiles [1], but also in digital fabrication [13], computer graphics [10], and topo-
logical graph theory [2]. A plain weave is the simplest type of weaving pattern. In
a plain weave, warp and weft (threads) form a criss-cross pattern. Akleman, Chen
and Gross [2] introduced a notion called cyclic plain-weaving for (topological)
graphs on surfaces. A cyclic plain-weaving on a sphere is essentially equivalent
to the notion of an alternating projection of a link in knot theory [2]. We define a
weave of an arbitrary edge decomposition S of a graph and in particular a plain
weave of S in Sect. 2. We exhibit an example that visualises the notion here.

Figure 1 exhibits an edge decomposition of a graph G. Observe that edge
decompositions of a graph G into q or fewer subgraphs correspond to q-edge
labellings of G (i.e., functions h : E(G) → Zq). We often represent edge decom-
positions in diagrams by the corresponding edge labellings. Figure 2 displays a
‘cyclic plain weaving’ of the edge decomposition shown in Fig. 1 (we remark that
such simple visual representations are not possible if a vertex of G lies in three
or more members of S).
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Fig. 1. Two visual representations of an edge decomposition S of a graph G.

Fig. 2. Two visual representations of a (cyclic) plain weaving ψ of the edge decompo-
sition S = {H0, H1, H2, H3} in Fig. 1. In (a), the ‘crossing points’ are the vertices of
the graph, and the members of the edge decomposition are distinguished by colours.
In (b), a label i on a vertex v denotes that Hi is on top at the corresponding ‘crossing
point’.

This paper is organised as follows. The necessary definitions and preliminaries
appear in Sect. 2. The results appear in Sect. 3, and we conclude with Sect. 4.

2 Definitions and Preliminaries

All graphs in this paper are finite, simple and undirected unless otherwise speci-
fied. We follow West [15] for graph theory terminology and notation. In particu-
lar, we write an edge of (an undirected) graph as {u, v} or simply uv, and write
an arc as (u, v).

For a positive integer q, a (proper) q-colouring of a graph G is a function
f : V (G) → Zq such that f(u) �= f(v) for every edge uv of G. For q ∈ N, a q-star
colouring of a graph G is a proper q-colouring f of G such that there is no path
u, v, w, x in G with f(u) = f(w) and f(v) = f(x) (the violating path need not
be induced). In other words, a proper q-colouring of G is a q-star colouring of
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G if every bicoloured subgraph of G is a disjoint union of stars; hence the name
star colouring.

An orientation �G of a graph G is the directed graph obtained by assigning
a direction on each edge of G; that is, if uv is an edge in G, then either (u, v)
or (v, u) is an arc in �G. For a vertex v of a graph G, the neighbourhood of v
in G, denoted by NG(v), is the set of neighbours of v (i.e., vertices adjacent
to v) in G. A vertex w is an out-neighbour (resp. in-neighbour) of a vertex v

in an orientation �G if (v, w) (resp. (w, v)) is an arc in �G. For a vertex v of an
orientation �G, the out-neighbourhood of v in �G, denoted by N+

�G
(v), is the set

of out-neighbours of v in �G. An orientation �G of a graph G is Eulerian if for
every vertex v of �G, the number of in-neighbours of v equals the number of
out-neighbours of v.

A homomorphism from a graph G to a graph H is a function ψ : V (G) →
V (H) such that ψ(u)ψ(v) is an edge in H whenever uv is an edge in G. If ψ is
a homomorphism from G to H and ψ(v) = w, then we say that v is a copy of
w in G (under ψ).

Fig. 3. A locally bijective homomorphism from a graph G to a graph H. The vertices
in H are labelled distinct and are drawn by distinct shapes. For each vertex w of H,
each copy of w in G has the same label and shape as w.

A Locally Bijective Homomorphism (in short, LBH ) from G to H is a function
ψ : V (G) → V (H) such that for every vertex v of G, the restriction of ψ to the
neighbourhood NG(v) is a bijection from NG(v) onto NH(ψ(v)) [8] (observe that
such a function ψ is always a homomorphism from G to H). In other words, a
homomorphism ψ from G to H is locally bijective if for each vertex w of H and
each neighbour x of w in H, each copy of w in G has exactly one copy of x in
G as its neighbour (see Fig. 3 for an example). An out-neighbourhood bijective
homomorphism from �G to �H is a function ψ : V (�G) → V ( �H) such that for every
vertex v of �G, the restriction of ψ to the out-neighbourhood N+

�G
(v) is a bijection

from N+
�G
(v) to N+

�H
(ψ(v)) [3].
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For brevity, throughout this paper, we call an eigenvalue of the adjacency
matrix of a graph G as an eigenvalue of G. The same convention is adopted for
characteristic polynomials.

Fig. 4. An example of a plain weave. (a) an edge decomposition S = {H0, H1, H2} of
a graph; (b) a weaving of S which is a plain weave (a label i on a vertex v denotes that
(ψ(v))(1) = Hi; note that specifying (ψ(v))(1) for each vertex v uniquely identifies the
weaving in this example since each vertex v belongs to one or two members of S).

An edge decomposition of G is a set of subgraphs H0,H1, . . . , Hq−1 of G
(where q ∈ N) such that {E(Hi) : i ∈ Zq} is a partition of E(G).

Next, we define plain weavings of edge decompositions. Let G be a graph
without any isolated vertex, and let S be an edge decomposition of G such that
no member of S contains an isolated vertex. For each vertex v of G, let Sv

denote the set of members of S that include v (i.e., Sv = {H ∈ S : v ∈ V (H)}).
For instance, for the edge decomposition S = {H0,H1,H2} in Fig. 4a, the sets
are Su = Sv = {H0}, Sw = {H0,H2}, Sx = Sx′ = {H0,H1} and Sy = Sy′ =
{H1,H2}.

A weaving of the edge decomposition S of G is a function ψ that maps each
vertex v of G to an ordering of members of Sv; formally, ψ(v) is a bijection
from {1, 2, . . . , |Sv|} onto Sv. A good way to visualise the notion is to imagine
members of S being laid out as ‘threads’ on a surface with layers, where for each
vertex v, the set Sv is the set of threads that are present at v and ψ determines
which member of Sv is at the top layer at v, which member is at the layer below
it, and so on. For example, the weaving in Fig. 4b maps each vertex z of the
graph to a function ψz (i.e., ψ(z) = ψz), where ψu and ψv are (1 → H0); ψw is(
1 → H0

2 → H2

)
; ψx and ψx′ are

(
1 → H1

2 → H0

)
; ψy and ψy′ are

(
1 → H2

2 → H1

)
. For instance,

ψy : {1, 2} → {H1,H2} is defined as ψy(1) = H2 and ψy(2) = H1.
A weaving ψ of S is a plain weave if for each H ∈ S and for each uv ∈ E(H),

either (ψ(u))(1) = H or (ψ(v))(1) = H (see Fig. 4 for an example). The definition
ensures that for each H ∈ S and for each path P in H, the list of vertices visited
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while traversing the path P follow an under-over-under-over-. . . pattern (that is,
H is at the top layer precisely at alternate vertices). This gives a criss-cross
pattern, especially when each vertex is shared by exactly two members of S
(the pattern is more evident when G is a 4-regular graph and members of S are
2-regular subgraphs as in Fig. 2).

For integers p ≥ 2 and q, an Eulerian orientation �G of a 2p-regular graph G
is called a q-colourful Eulerian orientation (in short, q-CEO) of G if there exists
a q-colouring f of �G such that the following hold for every vertex v of �G [14]:

• no out-neighbour of v has the same colour as an in-neighbour of v;
• out-neighbours of v have pairwise distinct colours; and
• all in-neighbours of v have the same colour.

See Fig. 5a on page 9 for an example of a q-CEO. If a graph G contains diamond
(i.e., K4 − e) or circular ladder graph CL2k+1 as a subgraph, then G does not
admit a q-CEO for any q ∈ N [3].

Let S be an edge decomposition of a graph G. The following condition in the
definition of a plain weave ψ of S allows us to connect the notion to orientations
of G: “for each H ∈ S and for each uv ∈ E(H), either (ψ(u))(1) = H or
(ψ(v))(1) = H”. Observe that an easy way to model this condition is to ask for
a fixed orientation �G of G, and stipulate that for each edge uv of H, the value
(ψ(u))(1) = H if and only if (u, v) is an arc in �G. Thus, we have the following.

Theorem 1. An edge decomposition S of a graph G admits a plain weaving if
and only if there exists an orientation �G of G that satisfies the following for
every vertex v of G: (i) there exists H ∈ Sv such that all edges incident to v in
H are out-edges of v in �G, and (ii) for every other member H ′ of Sv, all edges
incident to v in H ′ are in-edges of v in �G. ��

Let S be an edge decomposition of a graph G, and let �G be an orientation
of G. We say that a plain weaving ψ of S is consistent with �G if for each H ∈ S
and for each uv ∈ E(H), we have (ψ(u))(1) = H if and only if (u, v) is an arc
in �G.

Observation 1. Let G be a 2p-regular graph for some positive integer p. Then,
plain weavings of edge decompositions of G into p-regular subgraphs are in one-
to-one correspondence with Eulerian orientations of G. ��

Next, we define the line digraph operation. The line digraph of (an undirected)
graph H has vertex set

⋃
{u,v}∈E(H){(u, v), (v, u)}, and there is an arc in it from

(u, v) to (v, w) for distinct u, v, w ∈ V (H) with uv, vw ∈ E(H) [4]. We denote
the line digraph of a graph H by �L(H), and the underlying undirected graph
by L∗(H).
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3 Results

First, we point out that the graphs G2p and
−−→
G2p (defined in [14] and [3], respec-

tively) are isomorphic to L∗(Kp+2) and �L(Kp+2), respectively (where p ≥ 2). To
this end, let us recall the definitions of G2p and

−−→
G2p. The oriented graph

−−→
G2p has

vertex set {(i, j) : i, j ∈ Zp+2, i �= j}, and edge set {((i, j), (k, i)
)
: i, j, k ∈ Zp+2}.

The graph G2p is the underlying undirected graph of
−−→
G2p. Consider Zq as

the vertex set of Kq for q ∈ N. Observe that, by definition, the line digraph
�L(Kp+2) is the graph with vertex set {(i, j) : i, j ∈ Zp+2, i �= j} and edge set
{(
(i, j), (j, k)

)
: i, j, k ∈ Zp+2}. Hence, the function ψ from {(i, j) : i, j ∈ Zp+2,

i �= j} to itself defined as ψ
(
(i, j)

)
= (j, i) is an isomorphism from

−−→
G2p to

�L(Kp+2). Therefore,
−−→
G2p is isomorphic to �L(Kp+2) (as digraphs), and thus the

underlying undirected graphs G2p and L∗(Kp+2) are isomorphic to each other.
As a result, we can rephrase Theorem 5.9 and “part I ⇐⇒ IV” of Theorem 5.1
in [3] as follows.

Theorem 2. Let G be a K1,p+1-free 2p-regular graph with p ≥ 2. Then, G
admits a (p + 2)-star colouring if and only if G admits a locally bijective homo-
morphism to L∗(Kp+2). ��
Theorem 3. Let G be a 2p-regular graph with p ≥ 2. Then, G admits a (p +
2)-star colouring if and only if G has an orientation �G that admits an out-
neighbourhood bijective homomorphism to �L(Kp+2). ��

Next, we show that the underlying undirected graph of the line digraph of
H always admits an LBH to the line graph of H.

Theorem 4. For every graph H, there is an LBH from L∗(H) to L(H).

Proof. Let H be a graph. Note that the vertex set of the graph L∗(H) is
∪uv∈E(H){(u, v), (v, u)}. Define ψ : V (L∗(H)) → E(H) as ψ((u, v)) = {u, v}
for every (u, v) ∈ V (L∗(H)). For each edge {(u, v), (v, w)} of L∗(H) where
u, v, w ∈ V (H), we have {ψ((u, v)), ψ((v, w))} = {uv, vw} is an edge in L(H).
Hence, ψ is a homomorphism from L∗(H) to L(H). It remains to prove that ψ
is locally bijective. To prove this, it suffices to show that for an arbitrary vertex
x of L(H), and an arbitrary copy w of x in L∗(H) under ψ (i.e., ψ(w) = x), the
members of NL∗(H)(w) are precisely copies of members of NL(H)(x) in L∗(H)
in a bijective fashion. To this end, consider an arbitrary vertex u1v1 of L(H),
where u1, v1 ∈ V (H). Let u1, u2, . . . , uk be the neighbours of v1 in H, and
let v1, v2, . . . , v� be the neighbours of u1 in H (where k, � ∈ N). The neigh-
bours of u1v1 in L(H) are u1v2, . . . , u1v� (provided � > 1) and v1u2, . . . , v1uk

(provided k > 1). By the definition of ψ, for each vertex yz in L(H) (where
y, z ∈ V (H)), the copies of yz in L∗(H) (under ψ) are (y, z) and (z, y). In par-
ticular, the copies of u1v1 in L∗(H) are (u1, v1) and (v1, u1). The neighbours
of (u1, v1) in L∗(H) are (v1, u2), . . . , (v1, uk),(v2, u1), . . . , (v�, u1), which are pre-
cisely copies of v1u2, . . . , v1uk,u1v2, . . . , u1v� in L∗(H) respectively in a bijective
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fashion. Similarly, the neighbours of (v1, u1) in L∗(H) are (u1, v2), . . . , (u1, v�),
(u2, v1), . . . , (uk, v1), which are precisely copies of u1v2, . . . , u1v�,v1u2, . . . , v1uk

in L∗(H) respectively in a bijective fashion. That is, for each copy w of
u1v1 in L∗(H), the members of NL∗(H)(w) are precisely copies of members of
NL(H)(u1v1) in L∗(H) in a bijective fashion. Since u1v1 ∈ V (L(H)) is arbitrary,
ψ in an LBH from L∗(H) to L(H). ��

Let G be a graph that admits an LBH to L∗(Kp+2), where p ≥ 2. Since
L∗(Kp+2) admits an LBH from L(Kp+2) as well, the graph G admits an LBH
to L(Kp+2) [7]. As a result, the characteristic polynomial of G is divisible by
that of L(Kp+2) [8]. Since the characteristic polynomial of L(Kp+2) in x is
(x − 2p)(x − p + 2)p+1(x + 2)(p−1)(p+2)/2 [5, Table 4.1], this polynomial divides
the characteristic polynomial of G in x. Since each K1,p+1-free 2p-regular (p+2)-
star colourable graph admits an LBH to L∗(Kp+2) (by Theorem 2), we have the
following.

Theorem 5. Let G be a K1,p+1-free 2p-regular graph with p ≥ 2. If G is (p+2)-
star colourable, then p−2 and −2 are eigenvalues of G with multiplicities at least
p + 1 and (p − 1)(p + 2)/2, respectively. ��

To characterise 2p-regular (p + 2)-star colourable graphs in terms of plain
weavings of edge decompositions, we first characterise 2p-regular graphs that
admit a q-CEO in terms of plain weaving of edge decompositions in Lemma 1
below (where p ≥ 2 and q ∈ N). Recall that a plain weaving ψ of S is consistent
with �G if for each H ∈ S and for each uv ∈ E(H), we have (ψ(u))(1) = H if
and only if (u, v) is an arc in �G.

Lemma 1. Let p ≥ 2 and q ≥ 2. Let G be a 2p-regular graph, and let �G be an
orientation of G. Then, �G is a q-CEO of G if and only if G admits an edge
decomposition S = {H0,H1, . . . , Hq−1} that satisfies the following:

(i) each Hi is p-regular (i ∈ Zq);
(ii) S admits a plain weaving consistent with �G; and
(iii) for distinct i, j ∈ Zq and distinct u, v ∈ V (Hi) ∩ V (Hj),

uv /∈ E(G) and NG(u) ∩ NG(v) = N+
�G
(u) ∩ N+

�G
(v).

Proof Overview. Let �G be a q-CEO of G with respect to a q-colouring f of G.
Then, “moving” the vertex colours to arcs along the arc directions gives a q-arc
labelling h of �G (see Fig. 5), and the edge decomposition (of G) corresponding
to h satisfies Properties (i) to (iii) in the lemma statement.

Conversely, suppose that the edge decomposition (of G) corresponding to a
q-arc labelling h of G satisfies Properties (i) to (iii) in the lemma statement.
Then, the function f : V (G) → Zq defined as f(v) = i for each vertex v of G

with (ψ(v))(1) = Hi is a q-star colouring of G, and �G is a q-CEO of G with f
as the underlying colouring (see Fig. 5).

Proof of Lemma 1. To prove the forward direction, suppose that �G is a q-CEO
of G. That is, �G is an Eulerian orientation and there exists a q-colouring f of �G,
say f : V (�G) → Zq, such that the following hold for every vertex v of �G:
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Fig. 5. (a) A 4-CEO of the graph L(Q3) with the underlying 4-colouring shown as a
vertex labelling; (b) an edge decomposition of L(Q3); and (c) a plain weaving of the
edge decomposition in (b) consistent with the orientation in (a). The edge decomposi-
tion in (b) can be obtained from (a) by “moving” the vertex labels to arcs along the
arc directions (and then ignoring the arc direction). From the plain weaving in (c), one
can obtain a q-star colouring f of L(Q3) by taking the label at each vertex v as the
colour of v, and this colouring f induces the orientation of L(Q3) displayed in (a).

• no out-neighbour of v has the same colour as an in-neighbour of v,
• out-neighbours of v have pairwise distinct colours, and
• all in-neighbours of v have the same colour.

Let h be the arc labelling of �G obtained from the coloured oriented graph
(�G, f) by “moving” the colours from vertices to arcs along the arc directions;
that is, h : E(�G) → Zq is defined as h((u, v)) = f(u) for every arc (u, v) of �G
(see Fig. 5 for an example). Clearly, h induces a q-edge labelling h∗ of G; that
is, h∗ : E(G) → Zq is defined for each edge uv of G as h∗(uv) = h((u, v)) if
(u, v) is an arc in �G, and h∗(uv) = h((v, u)) if (v, u) is an arc in �G. The edge
labelling h∗ of G corresponds to an edge decomposition S of G into q subgraphs
H0,H1, . . . , Hq−1. Formally, each Hi ∈ S is defined as the subgraph of G induced
by Ei, where Ei = {uv ∈ E(G) : h∗(uv) = i}. We show that S satisfies Properties
(i) to (iii) in the lemma statement.

Claim 1: Each Hi is p-regular (i ∈ Zq).

Let v be an arbitrary vertex of Hi. Since �G is an Eulerian orientation, v has p
in-neighbours w1, w2, . . . , wp and p out-neighbours x1, x2, . . . , xp in �G. Since Hi

is the subgraph of G induced by Ei, an edge e of G is incident with v in Hi (in
particular, e ∈ E(Hi)). In �G, the edge e is oriented either towards v or away
from v.

Case 1 (of Claim 1): e is oriented towards v in �G.
In this case, we may assume that e = vw1. Then, i = h∗(vw1) = h((w1, v))
since vw1 ∈ E(Hi). Therefore, f(w1) = h((w1, v)) = i by the definition of h.
Thus, f(w1) = f(w2) = · · · = f(wp) = i because all in-neighbours of v have
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the same colour under f in the q-CEO �G. For 1 ≤ j ≤ p, we have h∗(vwj) =
h((wj , v)) = f(wj) = i, and thus vwj ∈ E(Hi). That is, vw1, vw2, . . . , vwp are
edges incident on v in Hi. Since f is a vertex colouring of G, we have f(v) = �
for some � ∈ Zq \ {i}, and h∗(vxj) = h((v, xj)) = f(v) = � for 1 ≤ j ≤ q. Hence,
vxj ∈ E(H�) for 1 ≤ j ≤ q, and in particular vxj is not an edge in Hi. Thus,
exactly p edges are incident on v in Hi.

Case 2 (of Claim 1): e is oriented away from v in �G.
In this case, we may assume that e = vx1. Since vx1 ∈ E(Hi), we have i =
h∗(vx1) = h((v, x1)), and thus f(v) = h((v, x1)) = i. Therefore, h((v, xj)) =
f(v) = i for 1 ≤ j ≤ p. Hence, vx1, vx2, . . . , vxp are edges incident on v in Hi.
For 1 ≤ j ≤ p, we have h∗(vwj) = h((wj , v)) = f(wj) �= f(v) = i, and thus
vwj /∈ E(Hi). Thus, exactly p edges are incident on v in Hi.

Since v is arbitrary and there are exactly p edges incident on v in Hi in both
cases, Hi is p-regular. This proves Claim 1.

Since G is 2p-regular and each Hi ∈ S is p-regular, each vertex of G is in
exactly two members of S. That is, for each vertex v of G, the set Sv of members
of S that include v has cardinality exactly 2.

Claim 2: S admits a plain weaving ψ consistent with �G (i.e., for every
edge uv ∈ E(Hi), (ψ(v))(1) = Hi if and only if (u, v) is an arc in �G).

We need to define ψ. To this end, we first prove that if f(v) = i for some
vertex v of G, then v ∈ V (Hi) (in other words, Hf(v) ∈ Sv for each v ∈ V (G)).
Let f(v) = i for some v ∈ V (G). Since �G is an Eulerian orientation, p edges
incident on v in G are oriented away from v by �G. Let e = uv be one such
edge in G. Clearly, h∗(uv) = h((v, u)) = f(v) = i, and thus uv ∈ Ei. Since
Hi = G[Ei], we have v ∈ V (Hi). Hence, Hf(v) ∈ Sv for each v ∈ V (G).

We are ready to define ψ now. Define ψ as the weaving of S that maps each
vertex v of G to the function bv defined as follows: bv is the bijection from {1, 2}
to Sv that maps 1 to Hf(v) and 2 to the unique member of Sv \ {Hf(v)} (note
that bv is well-defined because |Sv| = 2 and Hf(v) ∈ Sv).

Next, we show that ψ is a plain weaving of S. We know that each vertex of G
is in exactly two members of S. Hence, to prove that ψ is a plain weaving of S, it
suffices to show that for each Hi ∈ S and for each uv ∈ E(Hi), either (ψ(u))(1) =
Hi or (ψ(v))(1) = Hi. By the definition of ψ, we have (ψ(u))(1) = Hf(u) and
(ψ(v))(1) = Hf(v). Thus, it suffices to show that for each Hi ∈ S and for each
uv ∈ E(Hi), either f(u) = i or f(v) = i. Let uv ∈ E(Hi) for some Hi ∈ S. Since
uv ∈ E(Hi), we know that h∗(uv) = i. Since uv is an edge in G, either (u, v) or
(v, u) is an arc in �G. If (u, v) is an arc in �G, then i = h∗(uv) = h((u, v)) = f(u)
and f(v) �= f(u) = i since f is a colouring of G. Similarly, if (v, u) is an arc in
�G, then i = h∗(uv) = h((v, u)) = f(v) and f(u) �= f(v) = i. Thus, in both cases,
either f(u) = i or f(v) = i. This proves that ψ is a plain weaving of S.

Moreover, the proof of ψ being consistent with �G is immediate. Recall that ψ
is (defined to be) consistent with �G if for each Hi ∈ S and each uv ∈ E(Hi), we
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have (ψ(u))(1) = Hi if and only if (u, v) is an arc in �G. Note that (ψ(u))(1) =
Hf(u). Thus, it suffices to show that for each Hi ∈ S and each uv of Hi, we
have f(u) = i if and only if (u, v) is an arc in �G. Let uv ∈ E(Hi), where i ∈ Zq.
That is, h∗(uv) = i. We know by the definition of h∗ that h∗(uv) = f(u) if
(u, v) is an arc in �G, and h∗(uv) = f(v) �= f(u) if (v, u) is an arc in �G. That is,
h∗(uv) = f(u) if and only if (u, v) is an arc in �G. Hence, f(u) = i if and only
if (u, v) is an arc in �G. This proves that ψ is consistent with �G. This completes
the proof of Claim 2.

Claim 3: For distinct i, j ∈ Zq and distinct u, v ∈ V (Hi) ∩ V (Hj),
uv /∈ E(G) and NG(u) ∩ NG(v) = N+

�G
(u) ∩ N+

�G
(v).

Consider distinct i, j ∈ Zq and distinct u, v ∈ V (Hi)∩ V (Hj). We need to prove
that uv /∈ E(G) and NG(u) ∩ NG(v) = N+

�G
(u) ∩ N+

�G
(v). Since Hi and Hj are

p-regular subgraphs of G (see Claim 1) and u ∈ V (Hi) ∩ V (Hj), half of the
edges of G incident on u are in Hi and the remaining half of the edges of G
incident on u are in Hj . Thus, h∗(e) ∈ {i, j} for each edge e incident on u in
G. Similarly, h∗(e) ∈ {i, j} for each edge e incident on v in G. Since p ≥ 2
and �G is an Eulerian orientation of a 2p-regular graph, u has an in-neighbour
u′ �= v and an out-neighbour u′′ �= v in �G. Similarly, v has an in-neighbour
v′ �= u and an out-neighbour v′′ �= u in �G. Since uu′ ∈ E(Hi) or uu′ ∈ E(Hj),
we have h∗(uu′) ∈ {i, j}. Similarly, h∗(uu′′), h∗(vv′), h∗(vv′′) ∈ {i, j}. Hence,
f(u) = h((u, u′′)) = h∗(uu′′) ∈ {i, j}, f(v) = h((v, v′′)) = h∗(vv′′) ∈ {i, j},
f(u′) = h((u′, u)) = h∗(uu′) ∈ {i, j} and f(v′) = h((v′, v)) = h∗(vv′) ∈ {i, j}.
Thus, we have f(u), f(v), f(u′), f(v′) ∈ {i, j}.

Next, we show that uv ∈ E(G) leads to a contradiction. Suppose that uv ∈
E(G). If u′ �= v′, then u′, u, v, v′ is a 4-vertex path in G bicoloured by f (i.e.,
coloured using only i and j), a contradiction since f is a star colouring of G. If
u′ = v′, then u′, u, v is a triangle in G bicoloured by f , a contradiction since f
is a colouring of G. Since we have a contradiction in both cases, uv /∈ E(G).

Next, we show that NG(u)∩ NG(v) = N+
�G
(u)∩ N+

�G
(v). To produce a contra-

diction, assume that NG(u)∩NG(v) �= N+
�G
(u)∩N+

�G
(v). That is, NG(u)∩NG(v) �

N+
�G
(u)∩N+

�G
(v), which means that there exists a vertex w ∈ NG(u) ∩ NG(v) such

that w /∈ N+
�G
(u) ∩ N+

�G
(v). Since u,w, v is a path in G and w /∈ N+

�G
(u)∩ N+

�G
(v),

one of the edges uw and vw is oriented away from w by �G. Without loss of general-
ity, assume that �G orients the edge uw as (w, u). Since uw is an edge of G incident
on u, we have h∗(uw) ∈ {i, j}. Thus, f(w) = h((w, u)) = h∗(uw) ∈ {i, j}. Since
p ≥ 2 and �G is an Eulerian orientation of a 2p-regular graph, u has at least 2 in-
neighbours in �G. Hence, we may suppose that u′ and w are distinct in-neighbours
of u (i.e., u′ �= w). Hence, u′, u, w, v is a 4-vertex path in G bicoloured by f (i.e.,
coloured using only i and j), a contradiction since f is a star colouring of G.
Therefore, by contradiction, NG(u) ∩ NG(v) = N+

�G
(u) ∩ N+

�G
(v). This completes

the proof of Claim 3.
To prove the backward direction, suppose that G admits an edge decomposi-

tion S = {H0,H1, . . . , Hq−1} that satisfies the following:
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(i) each Hi is p-regular (i ∈ Zq);
(ii) S admits a plain weaving ψ consistent with �G in the following sense:

for each Hi ∈ S and for each uv ∈ E(Hi),
(ψ(u))(1) = Hi if and only if (u, v) is an arc in �G; and

(iii) for distinct i, j ∈ Zq and distinct u, v ∈ V (Hi) ∩ V (Hj),
we have uv /∈ E(G) and NG(u) ∩ NG(v) = N+

�G
(u) ∩ N+

�G
(v).

Consider the function f : V (G) → Zq defined as f(v) = i for each vertex v of G
with (ψ(v))(1) = Hi. First, we show that f is a q-colouring of G. Consider an
arbitrary edge uv of G. Since S is an edge decomposition of G, there exists an
Hi ∈ S such that uv ∈ E(Hi). Since uv ∈ E(Hi) and ψ is a plain weave of the
edge decomposition S, we have either (ψ(u))(1) = Hi or (ψ(v))(1) = Hi. That is,
either f(u) = i or f(v) = i. In particular, f(u) �= f(v). Since uv is an arbitrary
edge of G, f is a q-colouring of G.

Next, we show that �G is a q-CEO of G with f as the underlying colouring.
Consider an arbitrary vertex v of �G. Since S admits the plain weaving ψ and
each Hi is p-regular (i ∈ Zq), the vertex v is in exactly two members of S, say
Hi and Hj (where i, j ∈ Zq and i �= j). As a result, half of the edges of G
incident on v are in Hi and the remaining half of the edges of G incident on
v are in Hj . Let w1, w2, . . . , wp be the other endpoints of the p edges incident
on v in G that are in Hi, and let x1, x2, . . . , xp be the other endpoints of the
p edges incident on v in G that are in Hj . Since Sv = {Hi,Hj}, we know that
(ψ(v))(1) ∈ {i, j}. Without loss of generality, assume that (ψ(v))(1) = j. We
know that ψ consistent with �G in the following sense: for each Hi ∈ S and for
each ab ∈ E(Hi), we have (ψ(a))(1) = Hi if and only if (a, b) is an arc in �G. Thus,
for 1 ≤ � ≤ p, since vx� ∈ E(Hj) and (ψ(v))(1) = j, it follows that (v, x�) is an
arc in �G. On the other hand, for 1 ≤ � ≤ p, since vw� ∈ E(Hi) and (ψ(v))(1) �= i,
it follows that (v, w�) is not an arc in �G, and thus (w�, v) is an arc in �G. In other
words, w1, w2, . . . , wp are in-neighbours and x1, x2, . . . , xp are out-neighbours of
v in �G. As a result, �G is an Eulerian orientation (since v is an arbitrary vertex
of �G).

To show that �G is a q-CEO with f as the underlying colouring, it suffices to
prove that f satisfies the following:

• no out-neighbour of v has the same colour as an in-neighbour of v,
• out-neighbours of v have pairwise distinct colours, and
• all in-neighbours of v have the same colour.

Note that for 1 ≤ � ≤ p, we have h∗(vw�) = i because vw� ∈ E(Hi) and
h∗(vx�) = j because vx� ∈ E(Hj). Thus, for 1 ≤ � ≤ p, we have f(w�) =
h((w�, v)) = h∗(vw�) = i. To recap, f(v) = j and f(w1) = f(w2) = · · · =
f(wp) = i. In particular, all in-neighbours of v in �G have the same colour under f .

Clearly, v ∈ V (Hi) ∩ V (Hj) because vw1 ∈ E(Hi) and vx1 ∈ E(Hj).
Next, we show that no out-neighbour of v has the same colour as an in-

neighbour of v. To produce a contradiction, assume the contrary. That is, there
exists an in-neighbour, say w1, of v and an out-neighbour, say x1, of v in �G such
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that f(w1) = f(x1). Thus, f(x1) = f(w1) = i. Since �G is an Eulerian orientation,
x1 has an out-neighbour y in �G. Clearly, h∗(x1y) = h((x1, y)) = f(x1) = i,
and thus x1y ∈ E(Hi). Since x1y ∈ E(Hi) and vx1 ∈ E(Hj), we have x1 ∈
V (Hi)∩ V (Hj). We know that v ∈ V (Hi)∩ V (Hj). Thus, v, x1 ∈ V (Hi)∩ V (Hj)
and vx ∈ E(G), a contradiction to Property (iii) of S. Thus, by contradiction,
no out-neighbour of v has the same colour as an in-neighbour of v.

Finally, we show that out-neighbours of v have pairwise distinct colours. To
produce a contradiction, assume the contrary. That is, two out-neighbours of v,
say x1 and x2, have the same colour under f . That is, f(x1) = f(x2) = k for
some k ∈ Zq. Since �G is an Eulerian orientation, x1 has an out-neighbour y1
and x2 and an out-neighbour y2 in �G. Observe that h∗(x1y1) = h((x1, y1)) =
f(x1) = k; that is, x1y1 ∈ E(Hk) and thus x1 ∈ V (Hi) ∩ V (Hk). Similarly,
h∗(x2y2) = k; thus, x2y2 ∈ E(Hk) and consequently, x2 ∈ V (Hi) ∩ V (Hk).
Vertices x1 and x2 have a common neighbour v in G which is not a common
out-neighbour of x1 and x2 in �G; that is, NG(x1)∩NG(x2) � N+

�G
(x1)∩ N+

�G
(x2).

Since x1, x2 ∈ V (Hi)∩V (Hk) and NG(x1)∩NG(x2) �= N+
�G
(x1)∩N+

�G
(x2), we have

a contradiction to Property (iii) of S. Thus, by contradiction, out-neighbours of
v have pairwise distinct colours.

Therefore, �G is indeed a q-CEO of G with f as its underlying colouring. ��
Since a 2p-regular graph G with p ≥ 2 is (p + 2)-star colourable if and only

if G admits a (p + 2)-CEO [14], we have the following.

Theorem 6. Let G be a 2p-regular graph with p ≥ 2. Then, G admits a (p+2)-
star colouring if and only if G admits an orientation �G and an edge decomposi-
tion S = {H0,H1, . . . , Hp+1} such that the following hold:

(i) each Hi is p-regular (i ∈ Zp+2);
(ii) S admits a plain weaving ψ consistent with �G; and
(iii) for distinct i, j ∈ Zp+2 and distinct u, v ∈ V (Hi) ∩ V (Hj),

uv /∈ E(G) and NG(u) ∩ NG(v) = N+
�G
(u) ∩ N+

�G
(v). ��

4 Conclusion

For d ≥ 2, at least (d+4)/2� colours are required to star colour a d-regular graph,
and this bound is tight [14]. When d is even, the class of d-regular (d + 4)/2�-
star colourable graphs is characterised in terms of graph orientations [14], graph
homomorphisms [3], and in this paper, in terms of weaving patterns of edge
decompositions. This motivates the following problem.

Problem 1: Characterise d-regular (d + 4)/2�-star colourable graphs for odd d.
We remark that the tools required to answer the above problem could be

useful to answer a slightly more general problem.

Problem 2: Characterise d-regular (d + 5)/2�-star colourable graphs.
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Weaving patterns of edge decompositions merit further study in at least two
directions:

(i) Is it possible to characterise other graph-theoretic notions, such as cycle
decompositions, in terms of weaving patterns?

(ii) Characterise graphs that has an edge decomposition S which admits a sim-
ple weaving pattern (such as plain weave or 2-1 twill weave) and also satisfies
some basic constraints, such as distance constraints between members of S?

Acknowledgement. We thank three anonymous referees for their careful reading and
valuable suggestions.

References

1. Adanur, S.: Handbook of Weaving. CRC Press, Boca Raton (2020). https://doi.
org/10.1201/9780429135828

2. Akleman, E., Chen, J., Gross, J.L.: Extended graph rotation systems as a model
for cyclic weaving on orientable surfaces. Discret. Appl. Math. 193, 61–79 (2015).
https://doi.org/10.1016/j.dam.2015.04.015

3. Antony, C.: The complexity of star colouring and its relatives. Ph.D. thesis,
Indian Institute of Information Technology, Design & Manufacturing, (IIITDM)
Kancheepuram, Chennai, India (2023). https://doi.org/10.13140/RG.2.2.28192.
66561

4. Bagga, J.S., Beineke, L.W.: A survey of line digraphs and generalizations. DML
Discrete Math. Lett. 6, 68–83 (2021). https://doi.org/10.47443/dml.2021.s109

5. Beineke, L.W., Bagga, J.S.: Line Graphs and Line Digraphs, Developments in
Mathematics, vol. 68. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81386-4

6. Borodin, O.V.: Colorings of plane graphs: a survey. Discret. Math. 313(4), 517–539
(2013). https://doi.org/10.1016/j.disc.2012.11.011

7. Fiala, J., Paulusma, D., Telle, J.A.: Locally constrained graph homomorphisms
and equitable partitions. Eur. J. Comb. 29(4), 850–880 (2008). https://doi.org/10.
1016/j.ejc.2007.11.006

8. Fiala, J., Kratochvíl, J.: Locally constrained graph homomorphisms - structure,
complexity, and applications. Comput. Sci. Rev. 2(2), 97–111 (2008). https://doi.
org/10.1016/j.cosrev.2008.06.001

9. Gebremedhin, A.H., Manne, F., Pothen, A.: What color is your Jacobian? Graph
coloring for computing derivatives. SIAM Rev. 47(4), 629–705 (2005). https://doi.
org/10.1137/S0036144504444711

10. Hu, S.: A topological theory of weaving and its applications in computer graphics.
Ph.D. thesis, USA (2013). aAI3607499

11. Lei, H., Shi, Y.: A survey on star edge-coloring of graphs. Adv. Math. 50(1), 77–93
(2021)

12. Nešetřil, J., de Mendez, P.O.: Colorings and homomorphisms of minor closed
classes. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Compu-
tational Geometry. Algorithms and Combinatorics, vol. 25, pp. 651–664. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-642-55566-4_29

13. Ren, Y., Panetta, J., Chen, T., Isvoranu, F., Poincloux, S., Brandt, C., Martin,
A., Pauly, M.: 3D weaving with curved ribbons. ACM Trans. Graph. 40(4), 127
(2021). https://doi.org/10.1145/3450626.3459788

https://doi.org/10.1201/9780429135828
https://doi.org/10.1201/9780429135828
https://doi.org/10.1016/j.dam.2015.04.015
https://doi.org/10.13140/RG.2.2.28192.66561
https://doi.org/10.13140/RG.2.2.28192.66561
https://doi.org/10.47443/dml.2021.s109
https://doi.org/10.1007/978-3-030-81386-4
https://doi.org/10.1007/978-3-030-81386-4
https://doi.org/10.1016/j.disc.2012.11.011
https://doi.org/10.1016/j.ejc.2007.11.006
https://doi.org/10.1016/j.ejc.2007.11.006
https://doi.org/10.1016/j.cosrev.2008.06.001
https://doi.org/10.1016/j.cosrev.2008.06.001
https://doi.org/10.1137/S0036144504444711
https://doi.org/10.1137/S0036144504444711
https://doi.org/10.1007/978-3-642-55566-4_29
https://doi.org/10.1145/3450626.3459788


Star Colouring of Regular Graphs Meets Weaving and Line Graphs 327

14. Shalu, M.A., Antony, C.: Star colouring of bounded degree graphs and regular
graphs. Discret. Math. 345(6), 112850 (2022). https://doi.org/10.1016/j.disc.2022.
112850

15. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle
River (2001)

https://doi.org/10.1016/j.disc.2022.112850
https://doi.org/10.1016/j.disc.2022.112850


Author Index

A
Akram, Waseem 3
Antony, Cyriac 313

B
Benkoczi, Robert 133
Bhattacharya, Bhaswar B. 77
Bianchi, Silvia M. 255
Bishnu, Arijit 88

C
Chakraborty, Dipayan 255
Changat, Manoj 148, 286

D
Dalal, Aseem 270
Das, Gautam Kumar 117
Das, Sandip 77
De, Koustav 14
Dey, Palash 14
Divya, D. 209

F
Foucaud, Florent 29
Francis, Mathew 88

G
Gaur, Daya 133
Gorain, Barun 44
Govindarajan, Sathish 103

H
Hafshejani, Sajad Fathi 133
Hellmuth, Marc 148

I
Islam, Sk. Samim 77

J
Jacob, Jeny 286

K
Kaur, Tanvir 44
Kavaskar, T. 302
Kirubakaran, V. K. 239

L
Lucarini, Yanina 255

M
Mahendra Kumar, R. 194
Majumder, Pritam 88
Marcille, Pierre-Marie 29
Misra, Neeldhara 14
Mittal, Harshil 14
Mittal, Rajat 59
Mondal, Joyashree 224
Mondal, Kaushik 44
Myint, Zin Mar 29

N
Nair, Sanjay S. 59

P
Panda, B. S. 270
Pandey, Arti 179
Patro, Sunayana 59
Paul, Kaustav 179

R
Rout, Sasmita 117

S
Sadagopan, N. 194
Sandeep, R. B. 29
Sarkar, Siddhartha 103

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
S. Kalyanasundaram and A. Maheshwari (Eds.): CALDAM 2024, LNCS 14508, pp. 329–330, 2024.
https://doi.org/10.1007/978-3-031-52213-0

https://doi.org/10.1007/978-3-031-52213-0


330 Author Index

Saxena, Sanjeev 3
Sen, Sagnik 29
Sen, Saumya 77
Shalu, M. A. 239, 313
Shanavas, Ameera Vaheeda 148
Sheela, Lekshmi Kamal K. 286
Srivastava, Pranjal 162
Stadler, Peter F. 148
Sukumaran, Sreelakshmi 302

T
Taruni, S. 29
Thakkar, Dhara 162

V
Vijayakumar, S. 209, 224

W
Wagler, Annegret K. 255


	 Preface
	 Organization
	Abstracts of Invited Talks
	 Total Coloring Conjecture and Classification Problem
	 Two Heuristic Approaches for Some Special Colorings of Graphs
	 Random Deselection
	 Contents

	Algorithms and Complexity
	Consecutive Occurrences with Distance Constraints
	1 Introduction
	1.1 Previous and Related Works
	1.2 Preliminaries
	1.3 Notations

	2 Algorithms
	2.1 Data Structure
	2.2 Answering Queries

	3 Computation of Horizontal Segments
	4 Conclusion
	References

	Parameterized Aspects of Distinct Kemeny Rank Aggregation
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 Algorithms for Distinct Kemeny Ranking Aggregation
	4 Concluding Remarks and Future Work
	References

	Monitoring Edge-Geodetic Sets in Graphs: Extremal Graphs, Bounds, Complexity
	1 Introduction
	1.1 Preliminaries
	1.2 Motivation of Our Results and Organization of the Paper

	2 Relation Between Network Monitoring Parameters
	3 Conditions for a Vertex Being in All or No Optimal MEG-sets
	4 Sparse Graphs
	5 Effects of Clique-Sum and Subdivisions
	6 Computational Complexity
	7 Concluding Remarks
	References

	Distance-2-Dispersion with Termination by a Strong Team
	1 Introduction
	2 Related Work
	3 D-2-D from Rooted Initial Configuration
	3.1 The Algorithm
	3.2 Correctness and Analysis

	4 D-2-D from Arbitrary Initial Configuration
	4.1 The Algorithm
	4.2 Correctness and Analysis

	5 Conclusion
	References

	On Query Complexity Measures and Their Relations for Symmetric Functions
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 Lower Bounds on Quantum Query Complexity for Total Symmetric Functions
	4 Quantum Query Complexity for Gap Majority Function
	4.1 Proof of Theorem 3

	5 Spectral Sensitivity of Symmetric Functions
	References

	Computational Geometry
	Growth Rate of the Number of Empty Triangles in the Plane
	1 Introduction
	2 Proof of Theorem 1
	2.1 Proof of the Upper Bound
	2.2 Lower Bound Construction

	3 Properties of the Graph GP(x)
	3.1 Proof of Proposition 1

	4 Conclusions
	References

	Geometric Covering Number: Covering Points with Curves
	1 Introduction
	2 Covering by Lines and Its Converse Problem
	2.1 Covering by Lines
	2.2 On the Converse of the Covering Problem
	2.3 Covering by Algebraic Curves

	3 Covering by Monotonic Curves
	4 Covering by Closed Curves
	4.1 Covering by Circles and Convex Curves
	4.2 Covering by Orthoconvex Curves

	5 Conclusion and Discussion
	A Appendix
	A.1 Proof of Proposition 2
	A.2 A remark on Irreducible Algebraic Curves
	A.3 Proof of Lemma 12
	A.4 Remark on Covering by Orthoconvex Curves

	References

	Improved Algorithms for Minimum-Membership Geometric Set Cover
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Generalized Minimum-Membership Set Cover for Unit Squares
	2.1 GMMGSC for the Line Instance
	2.2 GMMGSC for the Slab Instance
	2.3 Putting Everything Together

	References

	Semi-total Domination in Unit Disk Graphs
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	3 NP-Completeness
	4 Approximation Algorithms
	4.1 Algorithm for Semi-total Domination in UDGs

	5 Conclusion
	References

	Discrete Applied Mathematics
	An Efficient Interior Point Method for Linear Optimization Using Modified Newton Method
	1 Introduction
	2 Mid-Point Algorithm
	3 Convergence
	4 Numerical Results
	4.1 Details About the Experimentation
	4.2 Initialization
	4.3 Results

	5 Conclusions
	References

	Unique Least Common Ancestors and Clusters in Directed Acyclic Graphs
	1 Introduction
	2 Background and Preliminaries
	3 DAGs with lca- and k-lca-Property
	4 DAGs with Strict and Strong k-lca-Property
	5 Concluding Remarks
	References

	The Frobenius Problem for the Proth Numbers
	1 Introduction
	2 The Embedding Dimension
	3 The Apéry Set
	4 The Frobenius Problem
	5 Pseudo-Frobenius Numbers and Type
	6 Wilf's Conjecture
	7 Conclusion
	References

	Graph Algorithms
	Eternal Connected Vertex Cover Problem in Graphs: Complexity and Algorithms
	1 Introduction
	1.1 Notations and Definitions
	1.2 Related Works
	1.3 Our Results
	1.4 Existing Theorems Used in the Paper

	2 Computing cvc(G) and ecvc(G) for Chain Graphs
	3 Eternal Connected Vertex Cover for Mycielskian of Hamiltonian Graphs
	4 Connected Vertex Cover for Graphs with Bounded Cliquewidth
	5 Eternal Connected Vertex Cover for Cographs
	6 Conclusion and Future Aspects
	References

	Impact of Diameter and Convex Ordering for Hamiltonicity and Domination
	1 Introduction
	2 Structural Results
	2.1 Hamiltonian Cycle in Star Convex Bipartite Graphs
	2.2 Hamiltonian Path in Star Convex Bipartite Graphs
	2.3 Domination and Its Variants on Star Convex Bipartite Graphs
	2.4 Hamiltonicity in Split Graphs
	2.5 Hamiltonicity in Star Convex Split Graphs

	3 Conclusion
	References

	On Star Partition of Split Graphs
	1 Introduction
	2 Preliminaries
	3 Structure of Star Partitions of Split Graphs
	3.1 The Case of 2-Split Graphs

	4 Improved NP-Completeness Results
	5 Fixed Parameter (In)tractability
	6 Polynomial Time Algorithmic Results
	7 Conclusion
	References

	Star Covers and Star Partitions of Cographs and Butterfly-free Graphs
	1 Introduction
	2 Preliminaries
	3 Hereditary Graph Classes: Star Cover
	4 Butterfly-free Graphs
	5 Cographs (P4-free Graphs)
	5.1 Trivially Perfect Graphs
	5.2 Co-trivially Perfect Graphs ((2K2, P4)-Free Graphs)
	5.3 Threshold Graphs ((C4, 2K2, P4)-free Graphs)

	6 Conclusion
	References

	Open Packing in H-free Graphs and Subclasses of Split Graphs
	1 Introduction
	2 Preliminaries
	3 -free Graphs
	3.1 -free Graphs
	3.2 -free Graphs

	4 Split Graphs
	4.1 -free Split Graphs
	4.2 -split Graphs

	5 Conclusion
	References

	Graph Theory
	Location-Domination Type Problems Under the Mycielski Construction
	1 Introduction
	2 Lower Bounds on X-Numbers of Graphs M(G)
	3 Upper Bounds on X-Numbers of Graphs M(G)
	4 Concluding Remarks
	References

	On Total Chromatic Number of Complete Multipartite Graphs
	1 Introduction
	2 Generalized Approach
	3 Lemmas and Proofs
	References

	The Weak-Toll Function of a Graph: Axiomatic Characterizations and First-Order Non-definability
	1 Introduction
	2 Preliminaries
	2.1 Transit Functions

	3 Weak-Toll Function of Trees, Chordal and Unit Interval Graphs
	4 Non-definability of Weak-Toll Function
	References

	Total Coloring of Some Graph Operations
	1 Introduction
	2 TCC for Join of Graphs
	3 Total Coloring of the Generalized Join of Graphs
	4 Concluding Remarks and Open Problems
	References

	Star Colouring of Regular Graphs Meets Weaving and Line Graphs
	1 Introduction
	2 Definitions and Preliminaries
	3 Results
	4 Conclusion
	References

	Author Index

