
Towards a Multi-GPU Implementation
of a Seismic Application

Pedro H. C. Rigon1,2(B) , Brenda S. Schussler1,2 , Edson L. Padoin1,2 ,
Arthur F. Lorenzon1,2 , Alexandre Carissimi1,2 ,

and Philippe O. A. Navaux1,2

1 Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre,
Brazil

{phcrigon,bsschussler,aflorenzon,asc,navaux}@inf.ufrgs.br,
padoin@unijui.edu.br

2 Regional University of Northwestern Rio Grande do Sul, Porto Alegre, Brazil

Abstract. This study explores the implementation and analysis of a
Multi-GPU system for the application of the Fletcher Method in geo-
physical exploration, essential in the discovery and extraction of energy
sources such as oil and gas. The scalability of the software for the use of
multiple GPUs (Graphics Processing Units) allows for improved perfor-
mance of these applications due to their parallel processing capacity. The
proposed strategy emphasizes a judicious approach to workload division,
considering the data location and the GPU’s processing capacity. This
implementation stands out as the first in the seismic application field
to utilize multiple V100 GPUs and assess the impact on performance.
The experiments results demonstrated that the proposed Multi-GPU
implementation provides significant performance improvements over the
Single-GPU version (e.g., 2.77 times using 4 GPUs). Furthermore, the
Multi-GPU implementation exhibits linear growth in performance and
efficiency as the input grid size increases.

Keywords: Multi-GPU · Fletcher · Performance · GPU · CUDA

1 Introduction

Geophysical exploration methods play a vital role in our society as they enable
the discovery of fundamental resources (e.g., oil and gas) that drive the economic
development of nations. However, pursuing new oil reservoirs usually involves
destructive practices like drilling in environmentally sensitive areas and improper
waste disposal. Hence, researchers have developed applications that simulate
seismic imaging for oil detection to mitigate these adverse effects and enhance
drilling precision. On top of that, given that these applications involve a huge
amount of data and naturally lend themselves to parallel processing, graphics
processing units (GPUs) have become extensively employed to accelerate such
tasks [Lukawski et al., 2014].

GPUs are architectures designed with a single instruction, multiple data
(SIMD) approach and incorporate thousands of processing cores. This design
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 146–159, 2024.
https://doi.org/10.1007/978-3-031-52186-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_10&domain=pdf
http://orcid.org/0009-0007-9077-7196
http://orcid.org/0009-0005-5264-892X
http://orcid.org/0000-0002-4015-5619
http://orcid.org/0000-0002-2412-3027
http://orcid.org/0000-0002-0884-1483
http://orcid.org/0000-0002-9957-5861
https://doi.org/10.1007/978-3-031-52186-7_10


Towards a Multi-GPU Implementation of a Seismic Application 147

makes them well-suited as accelerator devices for executing applications that effi-
ciently handle array and matrix data structures. However, despite their impres-
sive computing capabilities, GPUs demand significant power during their opera-
tion. Consequently, optimizing the utilization of the available hardware resources
on GPUs, such as cores and memory, becomes imperative when executing paral-
lel applications [Lorenzon and Beck Filho, 2019]. By doing this, we can effectively
reduce energy consumption while mitigating the associated environmental and
economic impacts [Navaux et al., 2023].

With the increasing availability of multiple GPUs in high-performance
servers, one can further explore the processing potential through Multi-GPU
systems [Papadrakakis et al., 2011]. In this scenario, by distributing the work-
load among all the GPUs available in the system, one can take advantage of the
parallel processing power of each one, achieving significant performance improve-
ments [Liu et al., 2019]. Furthermore, the improvement in scalability provided
by multiple GPUs allows the handling of increasingly larger datasets, improving
the analysis capacity and quality of the generated seismic images through the
greater density of data incorporated in the final result.

However, effectively implementing seismic applications that can fully lever-
age the processing power of Multi-GPU systems poses a significant challenge. A
key obstacle lies in achieving efficient utilization of GPUs. Therefore, striking
a balance in workload distribution across the GPUs becomes crucial to opti-
mize the available processing power. Additionally, employing efficient strategies
for workload partitioning and thread coordination is vital to prevent resource
underutilization or overload on the GPUs. By addressing these challenges, one
can maximize the efficiency and performance of parallel applications on Multi-
GPU systems.

Considering the aforementioned scenario, we propose a Multi-GPU imple-
mentation for the Fletcher Method. Our main objective is to provide a workload
division strategy that considers fundamental aspects such as data locality and
maximizes GPU processing capacity. To validate the proposed implementation,
we performed extensive experiments using twenty-nine different grid input sets
on a system with eight GPUs. With that, we can verify the performance gains
and energy consumption reductions a Multi-GPU implementation provides as
the grid input set changes.

Through the experiments, we demonstrate that the proposed Multi-GPU
implementation can provide significant performance improvements over the
Single-GPU version (e.g., 2.77 times using 4 GPUs). Moreover, the results indi-
cate that more GPUs are associated with greater throughput, highlighting scal-
ability as a critical aspect of optimizing performance in this application. We
also show that the performance and efficiency of multi-GPU implementations
are directly proportional to the size of the input grid. However, it is essential to
highlight that for smaller input grids, the multi-GPU performance is degraded
due to the cost of inter-GPU synchronization and data communication, charac-
teristics inherent to these implementations.



148 P. H. C. Rigon et al.

The remainder of this paper is organized as follows. In Sect. 2 we describe the
Fletcher model and list the Related Work. In Sect. 3, the proposed Multi-GPU
implementation is discussed. The methodology followed during the experiments
is described in Sect. 4. Performance and power demand results are discussed in
Sect. 5 while the final considerations are drawn in Sect. 6.

2 Background and Related Work

2.1 Fletcher Modeling

Fletcher modeling works as a technique for simulating wave propagation over
time. This propagation is expressed through the acoustic Eq. (1), where the
velocity varies according to the specific geological layers (Eq. 2). Referring to
the equations, p(x, y, z, t) indicates the pressure at each location in the domain
with respect to time, V (x, y, z) is a representation of the propagation velocity,
and ρ(x, y, z) reflects the density [Fletcher et al., 2009].

1
V 2

∂2p

∂t2
= ∇2p (1)

1
V 2

∂2p

∂t2
= ∇2p − ∇ρ

ρ
· ∇p (2)

Seismic modeling initializes by collecting data in a seismic survey, as illus-
trated in (Fig. 1). The procedure begins with equipment attached to a ship,
which at regular intervals emits seismic waves that reflect and refract in inter-
actions with different environmental undergrounds, working as a sonar to map
geological structures. When these waves return to the ocean’s surface, specific
sensors installed on cables towed by the ship capture and record seismic vari-
ations. These variations, a.k.a. seismic traces, correspond to the set of signals
obtained by each sensor during the wave emission. Therefore, with each emission
of waves, the seismic traces of all the microphones on the cable are recorded,
providing an understandable overview of the subsoil. During this operation, the
ship continues to move and emit signals periodically, thus producing a detailed
image of the seabed and underground [Chu et al., 2011].

The Fletcher method models the acoustic wave propagation in a Tilted Trans-
versely Isotropic (TTI) environment through a three-dimensional grid, in which
the size of each dimension (x,y, and z ) is defined by the variables sx, sy, and sz,
respectively. Each point on this grid represents a point in the physical environ-
ment being modeled, and this point is associated with physical characteristics
such as pressure, density, and wave velocity. In the case of TTI media, the wave
velocity varies depending on the direction. That is, each point has an associated
slope direction.

We illustrate the single-GPU implementation of the Fletcher method in the
Algorithm 1. It requires as input the following parameters: the number of itera-
tions the wave will propagate (endTime), a value that defines the period in which
the state of the wave will be stored in the disk (threshToWriteWave), and the



Towards a Multi-GPU Implementation of a Seismic Application 149

Fig. 1. Data collection in a marine seismic survey

Fig. 2. The pressure point inserted (in red) at the center of the three-dimensional
pressure vector. (Color figure online)

dimensions of the grid (sx, sy, and sz ). The procedure starts by initializing the
grid with the physical characteristics of the environment through the initialize-
Grid() function. Initially, a pressure point that represents the amplitude of the
seismic wave for a given instant is inserted at the central position of the three-
dimensional pressure vector (Fig. 2). Then, before the kernel starts the execution
on the GPU, this three-dimensional array is mapped to a one-dimensional array,
following the traditional (x, y and z ) order. This means that the points x of the
same line are mapped contiguously in the one-dimensional vector resulting from
the mapping.



150 P. H. C. Rigon et al.

Algorithm 1. Fletcher: Single-GPU Implementation
Input: endT ime: number of iterations the wave will propagate.

threshToWriteWave: number of iterations where the wave will be stored in

disk.

sx: size of dimension x.

sy: size of dimension y.

sz: size of dimension z.

1: initializeGrid(grid, sx, sy, sz)

2: initPropagatePointers(grid, initPoint)

3: allocateDataDevice()

4: copyDataToDevice()

5: calculateExecutionConfiguration(blocks, threadsPerBlock, sx, sy, sz).

6: for each dt in endTime do

7: insertSourcePointToDevice()

8: kernelPropagate <<< blocks, threadsPerBlock >>> (...)

9: updatePointers()

10: if dt == threshToWriteWave then

11: writeWave()

12: end if

13: end for

The loop from line 6 to 13 is responsible for iterating until the simulation
is performed. Then, for each iteration, a modulated Gaussian pulse representing
the amplitude of the seismic wave at a given time instant is inserted in the center
of the three-dimensional grid (insertSourcePointToDevice()). Then, the CUDA
Kernel is launched for execution, which will propagate this pressure point in
time. The propagation of the seismic wave is based on the computation of a
5-point stencil during the Kernel execution. Stencil computation is a technique
that involves computing a center point based on reading neighboring points that
are the results of previous kernel computation. This approach is widely used
in parallel processing algorithms and [Pearson et al., 2020] image processing.
During computation using the Stencil (Fig. 3) technique, there is no dependency
between the calculations of individual points, which means that they can be
computed independently and in parallel. This property makes processing highly
parallelizable, allowing multiple points to be calculated simultaneously, speeding
up execution [Pavan et al., 2019].

Once the point associated with the acoustic wave is computed, the wave
state is propagated to the previous state to proceed with the next iteration. In
this scenario, two buffers are used: pp (previous state) and pc (current state).
The current state of the wave is moved to the pp buffer, which now becomes
the previous state. At the same time, the newly calculated next state is stored
in the pc buffer, which now becomes the current state. Furthermore, when the
number of iterations reaches a defined threshold, the wave is written to the disk
(writeWave()).



Towards a Multi-GPU Implementation of a Seismic Application 151

Fig. 3. 5-points 3D Stencil representation

In summary, for each time step, the pressure values at each grid point are
updated based on the wave equation and the previous pressure, density, and
wave velocity values of the point and its neighbors. To avoid artificial reflections
from the border of the grid, which can interfere with the wave propagation
characteristic, an absorption zone of 16 points is applied. The seismic waves are
artificially damped in this region according to the distance from the inner grid.
In this way, the closer to the border of the grid, within the absorption region, the
greater the smoothing velocity at these points, so the velocity set at the border
is zero.

2.2 Related Work

In this section, we list the works that exploit the parallelism of seismic applica-
tions. They are organized in chronological order.

[Liu et al.,2019] explore using GPUs to accelerate the Reverse Time Migra-
tion (RTM) algorithm. The parallelization scheme focuses on using two GPUs
by employing a workload division strategy. The authors also consider a version
that relies on the unified memory scheme available in CUDA. The results suggest
that the workload division strategy presents better results than unified memory
in a multi-GPU environment. Furthermore, the authors argue that computa-
tional efficiency grows linearly with the increase in GPUs. In contrast, our paper
extends the scope to use Multi-GPU systems with up to eight GPUs, with a
balanced workload distribution approach across all these components.

[Serpa and Mishra, 2022] address optimizing the Fletcher method on multi-
core and single-GPU architectures focusing on portability. The paper analyzes
the performance, energy consumption, and energy efficiency of two versions of
the code, an original version and an optimized version for OpenMP, OpenACC,
and CUDA. The results indicate that the CUDA version has the best perfor-



152 P. H. C. Rigon et al.

mance and energy efficiency among all evaluated versions. While it focuses on
multicore architectures and single-GPU only, our work focuses on Multi-GPU
architectures and addresses related topics such as border exchange between algo-
rithm iterations and the performance and energy improvements as the grid size
increases.

[Liu et al., 2012] discuss the implementation of the GPU-accelerated RTM
algorithm. It also addresses specific issues such as uneven topography and
anisotropic environment, i.e., it focuses on various technical aspects of imple-
menting GPU-accelerated RTM. Different from it, our work focuses on the imple-
mentation of a Multi-GPU system and on the performance and energy efficiency
results.

[Pearson et al., 2020] explore techniques to improve 3D stencil communi-
cation on heterogeneous supercomputers using strategies such as hierarchical
partitioning and optimization of data exchange between GPUs. Through tests
on up to 256 nodes, the authors demonstrate the efficiency of these techniques
in improving communication and reducing data exchange time. On the other
hand, our work uses concepts of stencil communication to implement Fletcher’s
method of propagating seismic waves in a Multi-GPU environment in CUDA,
exploring aspects such as performance and energy efficiency.

[Okamoto et al., 2010] describe how the use of multiple GPUs can signifi-
cantly speed up simulations of seismic wave propagation. A particular challenge
faced when using multiple GPUs is non-contiguous memory alignment in the
overlapping regions between subdomains processed by different GPUs. This can
lead to delays in data transfer between the device and the host node. Differently,
in our work, we address this scenario and show that with the increase in the grid
input size, there is a proportional increase in the synchronization time between
the subdomains processed by different GPUs.

3 Multi-GPU Implementation of Fletcher

Given the Single-GPU implementation of the Fletcher method described in
Sect. 2, we discuss next the modifications we have done for the Multi-GPU ver-
sion. Because proper workload distribution and memory management across
many GPUs are key performance aspects in Multi-GPU environments, we con-
sider a workload division that can take advantage of (i) the intrinsic parallelism
available in the calculation of each grid point; (ii) the memory management
between the GPUs; and (iii) the data locality aspect [Padoin et al., 2013].

For the workload distribution, we consider the division of the z-axis among all
GPUs, as illustrated in Fig. 4 for the distribution across 4 GPUs. This partition-
ing divides the three-dimensional grid into subdomains in the z-axis direction,
and each of these subdomains is assigned to a specific GPU for processing. The
outcome of this strategy is an even distribution of the workload across the avail-
able GPUs. This strategy aims to optimize the data locality since the execution
of the CUDA kernel is based on the computation of a 5-point Stencil (Fig. 3).
Hence, when mapping the three-dimensional grid to a one-dimensional grid in



Towards a Multi-GPU Implementation of a Seismic Application 153

Fig. 4. Workload distribution strategy along z-axis across 4 GPUs

the traditional way (x, y, z), it is essential to note that the neighboring addresses
along the x and y axes will be closer in memory than the neighboring points along
the z-axis. In this scenario, assigning a continuous block in the z-axis direction
to each GPU can increase memory locality on L1 and L2 GPU caches, reducing
the need for slower global memory accesses.

Moreover, we explore memory coalescence because GPUs are designed to be
more efficient when threads of the same warp access data stored in contiguous
memory addresses. Hence, decreasing the distance between the points ensures
that memory data access will happen more cohesively. This allows GPU memory
reads and writes to be combined into fewer memory transactions, resulting in a
more efficient use of memory bandwidth. However, although there is immediate
parallelism during kernel execution, it is worth mentioning that each call to the
CUDA kernel advances the solution by a single dt time step. Hence, to propa-
gate the wave by several time steps, the kernel needs to be iterated, and between
these iterations, we must ensure the exchange of information between the dif-
ferent GPUs. This communication occurs through synchronizing and updating
variables in the border regions of the computing domain.

For the 5-point Stencil computation, the edges represent intersection zones
of the three-dimensional grid data mapped to the GPUs used for processing.
These borders are needed to synchronize data across all GPUs, ensuring the
correct reading of data throughout the execution of the CUDA kernel. Hence,
computing the Stencil requires that each subdomain, present on each GPU, have
a 5-point border in the z dimension for each intersection point with the subdo-
main of other GPUs. Therefore, after the kernel execution, it is necessary to
exchange the upper and lower borders across the neighbors’ GPUs to propa-
gate the updated data to the next iteration of wave propagation. During this
exchange operation, cudaMemCpyDeviceToDevice was used to assess the impact
of the border exchange considering an indirect communication. When using this
function, the communication always passes through the Host.

Moreover, the workload distribution along the z-axis also provides benefits in
reducing the number of operations performed only to exchange borders through
GPUs. Although it is not possible to eliminate all communications, this strategy
minimizes the need for inter-GPU communication because threads on each GPU



154 P. H. C. Rigon et al.

Fig. 5. Border exchange across GPUs along the z-axis.

can process their grid points independently without synchronizing and updating
data from other GPUs. In addition, the cost associated with border synchro-
nization reduces since this overhead increases with the growth of the grid size
(Fig. 5).

4 Methodology

The experiments were performed on a p3.16xlarge AWS instance (Table 1), which
is equipped with 64 Intel Xeon E5-2686 v4 (Broadwell) VCPUs, each supporting
two threads per core, resulting in a total of 128 available execution threads. In
addition, the instance has 8 NVIDIA Tesla V100-SXM2 16Gb GPUs and offers
488 GiB of RAM. Also, the following versions were used: CUDA v.12.0, NVIDIA
driver 525.85.12, and gcc 9.4.0 with the −O3 optimization flag.

Table 1. Specifications of the Architecture

Processor Specification

Processor Intel Xeon E5-2686 v4

Architecture Broadwell

Processor/GPU Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30 GHz, 64 VCPUs

Memory 1 MiB L1d, 1 MiB L1i, 8 MiB L2, 90 MiB L3

GPU Specifications

GPU NVIDIA Tesla V100-SXM2

Architecture Volta

Processor/GPU GV100

Registers 256 KB/SM, 20480 KB/GPU

Memory 4096-bit HBM2, 16 GB, 6144 KB L2 Cache

We have considered twenty-nine different input grid sizes for the Fletcher
method: ranging from 88 to 984 (the maximum size we could allocate in the



Towards a Multi-GPU Implementation of a Seismic Application 155

architecture), in intervals of 32. We have chosen to use 3D input vectors with a
dimension multiple of 32 to match the size of the CUDA warps. In this scenario,
the following versions were implemented and tested: Single-GPU, 2-GPUs, 4-
GPUs, and 8-GPUs, indicating the number of used GPUs.

We compare the Single and Multi-GPU versions regarding performance and
energy consumption. The performance is represented by the number of samples
computed per second (MSamples/s). We collected the energy consumption via
the NVIDIA-SMI command line tool provided by NVIDIA. The results presented
in the next section are the average of 10 runs with a 95% confidence interval based
on the Student’s t distribution. In addition, each graph identifies the confidence
intervals of the results for each problem size and GPU version.

5 Results

In this section, we present, analyze, and discuss the results obtained from the
experiments. First, we discuss the performance of the Multi-GPU implementa-
tion of the Fletcher method for 1, 2, 4, and 8 GPUs. The energy efficiency is
analyzed, comparing the average power demand (in Watts) of the GPU dur-
ing the iteration of the CUDA kernel with the performance (in MSamples/s) to
assess the energy efficiency of the application.

Fig. 6. Performance results for each grid size and implementation. The higher the bar,
the better the performance.

Figure 6 shows the performance results for the entire experiment set. It
is worth mentioning that the grid set computed on the Single-GPU and 2-
GPUs versions is limited by the GPU VRAM, which in this case is 16Gb per
Device (NVIDIA Tesla V100-SXM2). Therefore, the first observation is that the
Multi-GPU implementation of Fletcher allows the execution of larger grid sizes,



156 P. H. C. Rigon et al.

improving the capability and quality of seismic images generated through higher
data density incorporated into the final result.

Fig. 7. Performance Speedup over Single-GPU implementation.

By analyzing the behavior of Fig. 7, one can highlight that the performance
grows along with the increase in the grid size, allowing the user to increase
application throughput. As an example, for a grid size equal to 504, the maximum
speedup of 2.77 is achieved over the Single-GPU with 4 GPUs. Moreover, by
using 2 GPUs, we observed a speedup over the Single-GPU greater than 2 for
grid sizes 376 and larger, indicating efficient scalability for this configuration.
However, when increasing the number of GPUs to eight, we could not obtain
proportional gains to this increase in computational capacity because of the
cost of inter-GPU communication. That is, with a small grid size, parallelism in
Kernel computation is not exploited to the maximum, and the cost of border
synchronization between the GPU is more significant in relation to the execution
time of CUDA kernel computing. Therefore, we argue that the effectiveness of an
8-GPU strategy would require a larger problem, where the cost of communication
would have a smaller impact in relation to the throughput gain.

This statement is corroborated by the analysis of Fig. 6, which demonstrates
that the performance of multi-GPU implementations exhibits a positive lin-
ear trend with increasing input grid size. This implies that the effectiveness
of Multi-GPU computing amplifies proportionally to the scale of the problem.
Thus, its performance becomes especially notable for large-scale computational
tasks, where the ratio between the cost of inter-GPU communication and Kernel
CUDA computation is optimized. Additionally, the use of 2 GPUs reaches its
Performance peak for input grid sizes close to 408. Afterward, a slight decrease in
performance is observed as the grid size increases, until GPU memory capacity
(VRAM) limits computation, which it does for input sizes greater than 792.

Figure 8 illustrates the maximum power achieved while running the CUDA
kernel for different versions and grid input sizes. The maximum power increases
as the number of GPUs also increase. The Single-GPU approach consistently



Towards a Multi-GPU Implementation of a Seismic Application 157

Fig. 8. Maximum Power dissipation for each version and grid input set.

Fig. 9. Performance per Watts comparison

presents the lowest power across all problem sizes. This increase in maximum
power with the use of more GPUs is expected, as more processing units mean
more power dissipated. However, it is important to highlight that an increase
in power does not always translate into a proportional increase in performance,
highlighting the importance of considering energy efficiency when analyzing and
optimizing applications for multi-GPU systems, aiming to achieve the best bal-
ance between performance and power consumption.

Extending the analysis through the data of the average power consumed
during the execution of the CUDA kernel. Figure 9 shows that the single-GPU
implementation has high efficiency for small input grid sizes. This is due to the
fact that there is no cost of inter-GPU edge synchronization and also the fact that



158 P. H. C. Rigon et al.

computing power does not become a performance limiting factor for these input
sizes, due to the reduced scale of the grid Furthermore, we confirmed the low
power efficiency of multi-GPU implementations for lower problem sizes. This is
because the cost of inter-GPU synchronization and data communication inherent
in such implementations results in unnecessarily high power consumption for
issues that could be efficiently managed by a single GPU.

Furthermore, the energy efficiency of multi-GPU grows linearly with the size
of the input grid. This indicates that to achieve high efficiency with multi-GPU,
a large input set is needed, in order to ensure that throughput inherent to the
multi-GPU implementation significantly outweighs the cost associated with data
synchronization. This reinforces the idea that the best performance between
single-GPU and multi-GPU implementations depends on factors such as the
input grid and the complexity of modeling wave and medium characteristics.

6 Conclusions and Future Work

In this work, we have explored the implementation of Fletcher’s multi-GPU
method and compared it with the single-GPU approach. This implementation
provided an innovative technical analysis for seismic applications using Multi-
GPU systems with NVIDIA Tesla V100. Therefore, we studied the variations in
performance and energy efficiency according to the variation in the size of the
input grid. The presented results reinforce the importance of choosing the appro-
priate implementation method, given the size of the grid and the complexity of
the modeled problem to be treated.

The results indicate that the multi-GPU implementation offers greater scal-
ability, allowing the handling of larger input sets. However, it should be noted
that for smaller input grids, multi-GPU performance is degraded due to the cost
associated with inter-GPU edge synchronization. We have found that the perfor-
mance of multi-GPU implementations is directly proportional to the input grid
size, reaching peak efficiency and performance, with a Speedup of 2.77 when
employing 2 GPUs for grid sizes around 408. However, within the dataset ana-
lyzed, the configuration with 8 GPUs did not generate gains proportional to the
increase in the available computational load, being more suitable for problems
with a larger grid dimension, where the cost of inter-GPU communication is small
concerning the throughput provided. In future work, we intend to reduce the cost
of inter-GPU communication by implementing a direct approach, which incor-
porates peer-to-peer (P2P) communication and the use of NVIDIA’s NVLINK
technology.

Acknowledgment. This work has been partially supported by Petrobras under num-
ber 2020/00182-5, by the call CNPq/MCTI/FNDCT - Universal 18/2021 under grants
406182/2021-3, and by the Coordenação de Aperfeioamento de Pessoal de Nı́vel Supe-
rior - Brazil (CAPES) - Finance Code 001.



Towards a Multi-GPU Implementation of a Seismic Application 159

References

Chu, C., Macy, B.K., Anno, P.D.: Approximation of pure acoustic seismic wave prop-
agation in TTI media. Geophysics 76(5), WB97–WB107 (2011)

Fletcher, R.P., Du, X., Fowler, P.J.: Reverse time migration in tilted transversely
isotropic (TTI) media. Geophysics 74(6), WCA179–WCA187 (2009)

Liu, G.-F., Meng, X.-H., Yu, Z.-J., Liu, D.-J.: An efficient scheme for multi-GPU TTI
reverse time migration. Appl. Geophys. 16(1), 56–63 (2019)

Liu, H., Li, B., Liu, H., Tong, X., Liu, Q., Wang, X., Liu, W.: The issues of prestack
reverse time migration and solutions with graphic processing unit implementation.
Geophys. Prospect. 60(5), 906–918 (2012)

Lorenzon, A.F., Beck Filho, A.C.S.: Parallel computing hits the power wall: principles,
challenges, and a survey of solutions. Springer Nature (2019)

Lukawski, M.Z., et al.: Cost analysis of oil, gas, and geothermal well drilling. J. Petrol.
Sci. Eng. 118, 1–14 (2014)

Navaux, P.O.A., Lorenzon, A.F., da Silva Serpa, M.: Challenges in high-performance
computing. J. Braz. Comput. Soc. 29(1), 51–62 (2023)

Okamoto, T., Takenaka, H., Nakamura, T., Aoki, T.: Accelerating large-scale simu-
lation of seismic wave propagation by multi-GPUS and three-dimensional domain
decomposition. Earth Planets Space 62(12), 939–942 (2010)

Padoin, E.L., Pilla, L.L., Boito, F.Z., Kassick, R.V., Velho, P., Navaux, P.O.: Eval-
uating application performance and energy consumption on hybrid CPU+ GPU
architecture. Clust. Comput. 16, 511–525 (2013)

Papadrakakis, M., Stavroulakis, G., Karatarakis, A.: A new era in scientific computing:
Domain decomposition methods in hybrid cpu-gpu architectures. Comput. Methods
Appl. Mech. Eng. 200(13), 1490–1508 (2011)

Pavan, Pablo J.., Serpa, Matheus S.., Carreño, Emmanuell Diaz, Mart́ınez, Vı́ctor.,
Padoin, Edson Luiz, Navaux, Philippe O. A.., Panetta, Jairo, Mehaut, Jean-
François.: Improving Performance and Energy Efficiency of Geophysics Applications
on GPU Architectures. In: Meneses, Esteban, Castro, Harold, Barrios Hernández,
Carlos Jaime, Ramos-Pollan, Raul (eds.) High Performance Computing: 5th Latin
American Conference, CARLA 2018, Bucaramanga, Colombia, September 26–28,
2018, Revised Selected Papers, pp. 112–122. Springer International Publishing,
Cham (2019). https://doi.org/10.1007/978-3-030-16205-4 9

Pearson, C., Hidayetoğlu, M., Almasri, M., Anjum, O., Chung, I.-H., Xiong, J., Hwu,
W.-M.W.: Node-aware stencil communication for heterogeneous supercomputers. In:
2020 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 796–805. IEEE (2020)

Serpa, M., Mishra, P.: Performance evaluation and enhancement of the fletcher method
on multicore architectures (2022)

https://doi.org/10.1007/978-3-030-16205-4_9

	Towards a Multi-GPU Implementation of a Seismic Application
	1 Introduction
	2 Background and Related Work
	2.1 Fletcher Modeling
	2.2 Related Work

	3 Multi-GPU Implementation of Fletcher
	4 Methodology
	5 Results
	6 Conclusions and Future Work
	References


