
Carlos J. Barrios H. · Silvio Rizzi ·
Esteban Meneses · Esteban Mocskos ·
Jose M. Monsalve Diaz ·
Javier Montoya (Eds.)

10th Latin American Conference, CARLA 2023
Cartagena, Colombia, September 18–22, 2023
Revised Selected Papers

High Performance
Computing

Communications in Computer and Information Science 1887

Communications
in Computer and Information Science 1887

Editorial Board Members
Joaquim Filipe , Polytechnic Institute of Setúbal, Setúbal, Portugal
Ashish Ghosh , Indian Statistical Institute, Kolkata, India
Raquel Oliveira Prates , Federal University of Minas Gerais (UFMG),
Belo Horizonte, Brazil
Lizhu Zhou, Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0003-1548-5576
https://orcid.org/0000-0002-7128-4974

Rationale
The CCIS series is devoted to the publication of proceedings of computer science con-
ferences. Its aim is to efficiently disseminate original research results in informatics
in printed and electronic form. While the focus is on publication of peer-reviewed full
papers presenting mature work, inclusion of reviewed short papers reporting on work in
progress is welcome, too. Besides globally relevant meetings with internationally repre-
sentative program committees guaranteeing a strict peer-reviewing and paper selection
process, conferences run by societies or of high regional or national relevance are also
considered for publication.

Topics
The topical scope of CCIS spans the entire spectrum of informatics ranging from foun-
dational topics in the theory of computing to information and communications science
and technology and a broad variety of interdisciplinary application fields.

Information for Volume Editors and Authors
Publication in CCIS is free of charge. No royalties are paid, however, we offer registered
conference participants temporary free access to the online version of the conference
proceedings on SpringerLink (http://link.springer.com) bymeans of an http referrer from
the conference website and/or a number of complimentary printed copies, as specified
in the official acceptance email of the event.

CCIS proceedings can be published in time for distribution at conferences or as post-
proceedings, and delivered in the form of printed books and/or electronically as USBs
and/or e-content licenses for accessing proceedings at SpringerLink. Furthermore, CCIS
proceedings are included in the CCIS electronic book series hosted in the SpringerLink
digital library at http://link.springer.com/bookseries/7899. Conferences publishing in
CCIS are allowed to use Online Conference Service (OCS) for managing the whole
proceedings lifecycle (from submission and reviewing to preparing for publication) free
of charge.

Publication process
The language of publication is exclusively English. Authors publishing in CCIS have
to sign the Springer CCIS copyright transfer form, however, they are free to use their
material published in CCIS for substantially changed, more elaborate subsequent publi-
cations elsewhere. For the preparation of the camera-ready papers/files, authors have to
strictly adhere to the Springer CCIS Authors’ Instructions and are strongly encouraged
to use the CCIS LaTeX style files or templates.

Abstracting/Indexing
CCIS is abstracted/indexed in DBLP, Google Scholar, EI-Compendex, Mathematical
Reviews, SCImago, Scopus. CCIS volumes are also submitted for the inclusion in ISI
Proceedings.

How to start
To start the evaluation of your proposal for inclusion in the CCIS series, please send an
e-mail to ccis@springer.com.

http://springerlink.bibliotecabuap.elogim.com
http://springerlink.bibliotecabuap.elogim.com/bookseries/7899
mailto:ccis@springer.com

Carlos J. Barrios H. · Silvio Rizzi ·
Esteban Meneses · Esteban Mocskos ·
Jose M. Monsalve Diaz · Javier Montoya
Editors

High Performance
Computing
10th Latin American Conference, CARLA 2023
Cartagena, Colombia, September 18–22, 2023
Revised Selected Papers

Editors
Carlos J. Barrios H.
Industrial University of Santander
Bucaramanga, Colombia

Esteban Meneses
Centro Nacional de Alta Tecnología
San José, Costa Rica

Jose M. Monsalve Diaz
Argonne National Laboratory
Lemont, IL, USA

Silvio Rizzi
Argonne National Laboratory
Lemont, IL, USA

Esteban Mocskos
University of Buenos Aires & Center for
Computational Simulation Aplicaciones
Tecnológicas
Buenos Aires, Argentina

Javier Montoya
University of Cartagena
Cartagena, Colombia

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-031-52185-0 ISBN 978-3-031-52186-7 (eBook)
https://doi.org/10.1007/978-3-031-52186-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0003-0133-7214
https://orcid.org/0000-0002-4307-6000
https://orcid.org/0000-0001-6875-1685
https://orcid.org/0000-0002-3804-2471
https://orcid.org/0000-0002-6473-7672
https://orcid.org/0000-0003-0507-452X
https://doi.org/10.1007/978-3-031-52186-7

Preface

CARLA, the Latin American High-Performance Computing Conference, is an interna-
tional academic meeting aimed at providing a forum to foster the growth and strength
of the High-Performance Computing (HPC) community in Latin America and the
Caribbean. The conference has been running since 2014 and has become a leading event
for HPC in the region. A key objective of the CARLA Conference is to disseminate
the latest breakthroughs in HPC and HPC&AI (the intersection of HPC and Artificial
Intelligence) to the global community, reflecting the significance of these domains in
driving innovation and progress.

CARLA broadened its horizons this year by adding a third track to its program. This
year, attendees could submit their work to the High-Performance Computing (HPC),
Artificial Intelligence Using HPC at Scale, and High-Performance Computing Applica-
tions tracks. The objective was to provide a valuable platform for HPC users, system
architects, and software developers to engage in meaningful discussions, ultimately
increasing impact.

The 10th edition of the Latin American High-Performance Computing Conference
(CARLA 2023) was a remarkable demonstration of the increasing maturity of the HPC
Community in Latin America and the Caribbean, as well as its global importance. Fur-
thermore, it was a prime illustration of the influential and vital academic network behind
this conference. For ten consecutive editions, this network has come together to drive
insightful discussions in the field, highlighting the strength and importance of collabo-
ration. CARLA was held from September 18–22, 2023, and hosted by the Universidad
de Cartagena, located in Cartagena de Indias, Colombia.

The conference program was not limited to the academic publications presented in
this document. The conference featured eight workshops around advanced computing
techniques and architectures, bioengineering, HPC practices, and HPC communities and
inclusivity. Furthermore, it offered seven tutorials on advanced topics in HPC and AI,
including its applications, programming models, and software development tools. The
website1 contains complete information about the conference and its schedule.

CARLA 2023 had 293 registered attendees from 29 countries from the majority
of the continents, more than doubling the number of attendees from the year before.
Eleven countries from Latin America and the Caribbean represented the vast majority of
attendees, with the participation of 257 attendees. Fifty-five fellowships were provided
across multiple countries in Latin America and the Caribbean to foster women-in-STEM
participation and promote diversity in the conference.

The CARLA 2023 committee included 50 professionals divided into 15 commit-
tees. There were 35 meetings throughout the organization of the event. The event was
sponsored and supported by SCALAC, RedCLARA, theUniversidad de Cartagena, Uni-
versidad Industrial de Santander via SC3UIS, Universidad de Guadalajara via CADS,
the Centro Nacional de Alta Tecnología (CeNAT) of Costa Rica, the RISC2 project,

1 https://carla2023.ccarla.org.

https://carla2023.ccarla.org

vi Preface

and UNESCO via ICTP-Trieste. In addition, CARLA 2023 received sponsorship from
eight companies and two professional societies. Compute resources were provided by
Chameleon Cloud for some of the Tutorials. The committee also recognizes the role
and support of the Science and Technology Ministry in Colombia (MinCiencias) and
RENATA.

CARLA 2023 featured a total of three keynote speakers. In an effort to improve
women’s visibility in the field of high-performance computing (HPC), the committee
made a conscious decision to select recognized female speakers for these keynotes: Ewa
Deelman, Liliana Barbosa Santillan, and Trilce Estrada. The conference included three
invited three invited talks by Fabrizio Gagliardi, Balaji Baktha, and Guido Araujo in
addition to five industry talks given by different sponsors. The conference also encour-
aged attendees’ participation and discussion through three panels featuring 12 interna-
tional panelists. The panels were “EuroHPCLatam Panel: Policy and Global Actions”,
“Education HPC”, and an Industry Panel.

This book contains 14 papers selected from 25 submissions and one invited paper
from one of the keynote speakers. All manuscripts were peer-reviewed by at least three
members of the Program Committee. The work by Johansell Villalobos and Esteban
Meneses titled “Evaluation of Alternatives to Accelerate Scientific Numerical Calcula-
tions onGraphics ProcessingUnits using Python”was selected for the Best PaperAward.
Additionally, the poster by Kevin A. Brown and Robert Ross titled “Understanding HPC
Network Behavior Using Low-level Metrics” was selected for the Best Poster award.

October 2023 Philippe Olivier Auguste Navaux
Carlos J. Barrios H.

Silvio Rizzi
Esteban Meneses
Esteban Mocskos

Jose M. Monsalve Diaz
Javier Montoya

Organization

Program Committee Chairs

Javier Montoya Universidad de Cartagena, Colombia
Silvio Rizzi Argonne National Laboratory, USA
Esteban Meneses Rojas Centro Nacional de Alta Tecnología, Costa Rica
Carlos Jaime Barrios Universidad Industrial de Santander, Colombia
Esteban Mocskos Universidad de Buenos Aires, Argentina
Jose M. Monsalve Diaz Argonne National Laboratory, Department of

Energy, USA
Amaury Cabarcas Universidad de Cartagena, Colombia
Plinio Puello Mafrrugo Universidad de Cartagena, Colombia
Harold Castro Becerra Universidad de los Andes, Colombia
Dario Yezid Peña Ballesteros Universidad Industrial de Santander, Colombia
Lizette Robles Dueñas Universidad de Guadalajara, México
Angie Fernández Olimón Universidad de Guadalajara, México
Luis Alejandro Torres Universidad Industrial de Santander, Colombia
Tania Altamirano Cooperación Latinoamericana de Redes

Avanzadas, Chile
Kevin Brown Argonne National Laboratory, USA
Rafael Mayo-Garcia Centro de Investigaciones Energéticas,

Medioambientales y Tecnológicas, Spain
Claudio Chacón Arévalo Corporación Ecuatoriana para el Desarrollo de la

Investigación y la Academia, Ecuador
Esteban Hernandez Cybercolombia, Colombia
Ginés Guerrero Laboratorio Nacional de Computación de Alto

Rendimiento, Chile
Gilberto Diaz Universidad Industrial de Santander, Colombia
Álvaro L. G. A. Coutinho Universida de Federal do Rio de Janeiro, Brazil
Nicolás Erdödy Open Parallel, New Zealand
Elvis Rojas Universidad Nacional, Sede Regional Brunca,

Costa Rica
Jorge Luis Chacon Velazco Universidad Industrial de Santander, Colombia
Oscar Carrillo CitiLab, Francia
Lucas Schnorr Universidade Federal do Rio Grande do Sul,

Brazil
Philippe Navaux Universidade Federal do Rio Grande do Sul,

Brazil
Alfredo Cristobal Salas Universidad Veracruzana, México

viii Organization

Gina Paola Maestre Gongora Universidad Cooperativa de Colombia, Colombia
Edson Luiz Padoin Universidade Regional do Noroeste do estado do

Rio Grande do Sul-UNIJUÍ, Brazil
Robinson Rivas Suarez Universidad Central de Venezuela, Venezuela
Carla Osthoff Laboratório Nacional de Computação Científica,

Brazil
Isidoro Gitler ABACUS - CINVESTVA, México
Pablo Minini Universidad de Buenos Aires, Argentina
Kary Ann del Carmen Ocaña

Gautherot
Laboratório Nacional de Computação Científica

LNCC, Brazil
Maria Pantoja California Polytech, USA
Ulises Cortés Barcelona Supercomputing Center, Spain
Verónica Vergara Oak Ridge National Laboratory, USA
Aurelio Vivas Universidad de los Andes, Colombia
Salma Jaelife SCALAC: Servicios de computación Avanzada

para América Latina y el Caribe, México
Luis Eliécer Cadenas RedClara: Cooperación Latinoamericana de

Redes Avanzadas, Chile
Mónica López Universidad Nacional de Colombia, Colombia

Program Committee Members

Barrios H., Carlos J. Universidad Industrial de Santander, Colombia
Carrillo, Oscar University of Lyon, CPE, INSA Lyon, Inria,

France
Castro, Harold Universidad de los Andes, Colombia
Cazar Ramírez, Dennis Universidad San Francisco de Quito USFQ,

Ecuador
Cortés, Ulises Barcelona Supercomputing Center, Spain
Cristóbal-Salas, Alfredo Universidad Veracruzana, México
Garcia Henao, John Anderson Nucleus AI, Switzerland
Gitler, Isidoro ABACUS - CINVESTVA, México
Iturriaga, Santiago Universidad de la República, Uruguay
Klapp, Jaime Instituto Nacional de Investigaciones Nucleares,

México
Martinez Abaunza, Victor

Eduardo
University of Campinas, Brazil

Mello Schnorr, Lucas UFRGS, Brazil
Meneses, Esteban Centro Nacional de Alta Tecnología,

Colaboratorio Nacional de Computación
Avanzada, Costa Rica

Organization ix

Mocskos, Esteban Departamento de Computación, Facultad de
Ciencias Exactas y Naturales, Universidad de
Buenos Aires & Centro de Simulación
Computacional p/aplic Tecnológicas
(CSCCONICET),Argentina

Monsalve Diaz, Jose M. Argonne National Laboratory, USA
Montoya, Javier Universidad de Cartagena, Instituto de

Matematicas Aplicadas, Colombia
Netto, Marco Microsoft, USA
Ocaña, Kary Laboratório Nacional de Computação Científica,

Brazil
Osthoff, Carla Laboratório Nacional de Computação Científica,

Brazil
Padoin, Edson Luiz Regional University of the Northwest of the State

of Rio Grande do Sul, Brazil
Pantoja, Maria California Polytech, USA
Raskar, Siddhisanket Argonne National Laboratory, USA
Rivas, Robinson Universidad Central de Venezuela, Venezuela
Rizzi, Silvio Argonne National Laboratory, USA
Steffenel, Luiz Angelo Université de Reims Champagne-Ardenne, France
Wolovick, Nicolás Universidad Nacional de Córdoba, Argentina

Reviewers

Barrios H., Carlos J. Universidad Industrial de Santander, Colombia
Carrillo, Oscar University of Lyon, CPE, INSA Lyon, Inria,

France
Castro, Harold Universidad de los Andes, Colombia
Cazar Ramírez, Dennis Universidad San Francisco de Quito, Ecuador
Cortés, Ulises Barcelona Supercomputing Center, Spain
Cristóbal-Salas, Alfredo Universidad Veracruzana, México
Cruz Silva, Pedro NVIDIA, Brazil
Dagostini, Jessica University of California Santa Cruz, USA
Garcia Henao, John Anderson Nucleus AI, Switzerland
Gitler, Isidoro ABACUS - CINVESTVA, México
Hernandez, Benjamin NVIDIA, USA
Hernandez, Oscar Oak Ridge National Laboratory, USA
Hernandez, Esteban Mercado Libre, Colombia
Herrera Guaitero, Rafael Andres University of Delaware, USA
Iturriaga, Santiago Universidad de la República, Uruguay
Kahira, Albert Njoroge Jülich Supercomputing Center, Germany

x Organization

Klapp, Jaime Instituto Nacional de Investigaciones Nucleares,
México

Martinez Abaunza, Victor
Eduardo

University of Campinas, Brazil

Mello Schnorr, Lucas UFRGS, Brazil
Meneses, Esteban Centro Nacional de Alta Tecnología,

Colaboratorio Nacional de Computación
Avanzada, Costa Rica

Mocskos, Esteban Universidad de Buenos Aires, Argentina
Monsalve Diaz, Jose M. Argonne National Laboratory, USA
Navaux, Philippe Universidade Federal do Rio Grande do Sul,

Brazil
Netto, Marco IBM Research Brazil, Brazil
Ocaña, Kary Laboratório Nacional de Computação Científica,

Brazil
Osthoff, Carla Laboratório Nacional de Computação Científica,

Brazil
Padoin, Edson Luiz UNIJUI, Brazil
Pantoja, Maria California Polytech, USA
Pinto Souto, Roberto Laboratório Nacional de Computação Científica,

Brazil
Raskar, Siddhisanket Argonne National Laboratory, USA
Rivas, Robinson Universidad Central de Venezuela, Venezuela
Riveill, Michel Laboratório Nacional de Computação Científica,

Brazil
Rizzi, Silvio Argonne National Laboratory, USA
Steffenel, Luiz Angelo Université de Reims Champagne-Ardenne, France
Wolovick, Nicolás Universidad Nacional de Córdoba, Argentina

Contents

High Performance Computing (HPC)

Evaluation of Alternatives to Accelerate Scientific Numerical Calculations
on Graphics Processing Units Using Python . 3

Johansell Villalobos and Esteban Meneses

Enhancing a GPU-Based Wave Propagation Application Through Loop
Tiling and Loop Fission Optimizations . 21

Gabriel Costa, Peterson Nogueira, João Speglich, and Laian Silva

Acceleration of High-Dimensional Quantum Computing Simulator
QuantumSkynet . 36

Hernán M. Zuluaga-Bucheli, Andres Giraldo Carvajal,
and Jose A. Jaramillo-Villegas

Multi-objective Analysis of Power Consumption and Quality of Service
in Datacenters for Effective Demand Response . 50

Jonathan Muraña and Sergio Nesmachnow

Enhancing the Sparse Matrix Storage Using Reordering Techniques 66
Manuel Freire, Raul Marichal, Sanderson L. Gonzaga de Oliveira,
Ernesto Dufrechou, and Pablo Ezzatti

Towards Fault Tolerance and Resilience in the Sequential Codelet Model 77
Diego A. Roa Perdomo, Rafael A. Herrera Guaitero,
Dawson Fox, Hervé Yviquel, Siddhisanket Raskar, Xiaoming Li,
and Jose M. Monsalve Diaz

Artificial Intelligence using HPC Scale

Parallel-Distributed Implementation of the Lipizzaner Framework
for Multiobjective Coevolutionary Training of Generative Adversarial
Networks . 97

Sergio Nesmachnow, Jamal Toutouh, Guillermo Ripa,
Agustín Mautone, and Andrés Vidal

Provenance-Based Dynamic Fine-Tuning of Cross-Silo Federated Learning 113
Camila Lopes, Alan L. Nunes, Cristina Boeres,
Lúcia M. A. Drummond, and Daniel de Oliveira

xii Contents

High Performance Computing Applications

A GPU Numerical Implementation of a 2D Simplified Wildfire Spreading
Model . 131

Daniel San Martin and Claudio E. Torres

Towards a Multi-GPU Implementation of a Seismic Application 146
Pedro H. C. Rigon, Brenda S. Schussler, Edson L. Padoin,
Arthur F. Lorenzon, Alexandre Carissimi, and Philippe O. A. Navaux

What Does a Nation-Wide Digital Nervous System Use for an Operating
System? . 160

Nicolás Erdödy, Richard O’Keefe, and Ian Yule

The Impact of CUDA Execution Configuration Parameters
on the Performance and Energy of a Seismic Application . 170

Brenda S. Schussler, Pedro H. C. Rigon, Arthur F. Lorenzon,
Alexandre Carissimi, and Philippe O. A. Navaux

High-Performance Computing for Astrophysical Simulations
and Astroparticle Observations . 184

L. M. Becerra, C. Sarmiento-Cano, A. Martínez-Méndez,
Y. Dominguez, and L. A. Núñez

Parallel Hybrid-Heterogeneous Single Value Decomposition Factorization 197
Juan C. Hernández-Cortés, Amilcar Meneses Viveros,
Liliana Ibeth Barbosa-Santillán, Erika Hernández-Rubio,
and Juan J. Sánchez-Escobar

Improvement of the Simulation of the Degradation of Reinforced Concrete
in Saltwater Environments Using Directives . 212

Félix A. Mejía, Carlos J. Barrios H., and Darío Y. Peña B.

Author Index . 227

High Performance Computing (HPC)

Evaluation of Alternatives to Accelerate
Scientific Numerical Calculations

on Graphics Processing Units Using
Python

Johansell Villalobos1(B) and Esteban Meneses1,2

1 Advanced Computing Laboratory, National High Technology Center,
San Jose, Costa Rica

{jovillalobos,emeneses}@cenat.ac.cr
2 School of Computing, Costa Rica Institute of Technology, Cartago, Costa Rica

Abstract. In this paper, the Numba, JAX, CuPy, PyTorch, and Ten-
sorFlow Python GPU accelerated libraries were benchmarked using sci-
entific numerical kernels on a NVIDIA V100 GPU. The benchmarks con-
sisted of a simple Monte Carlo estimation, a particle interaction kernel,
a stencil evolution of an array, and tensor operations. The benchmarking
procedure included general memory consumption measurements, a sta-
tistical analysis of scalability with problem size to determine the best
libraries for the benchmarks, and a productivity measurement using
source lines of code (SLOC) as a metric. It was statistically determined
that the Numba library outperforms the rest on the Monte Carlo, parti-
cle interaction, and stencil benchmarks. The deep learning libraries show
better performance on tensor operations. The SLOC count was similar
for all the libraries except Numba which presented a higher SLOC count
which implies more time is needed for code development.

Keywords: Parallel Programming · Parallel Python · Graphics
Processing Units

1 Introduction

Scientific computing (SC), alongside high performance computing (HPC), have
revolutionized the way complex problems are approached across disciplines. With
the exponential growth in computational power, problems that were once only
theorized can now be solved by supercomputers. This development allows the
design of simulations that are closer to reality, which sheds light on problems
like weather forecasting, plasma dynamics, and oceanic current modeling.

Also, the supercomputing simulation workflows used are becoming more com-
plex not only in their simulation process but in their pre-processing and data
analysis components. Accommodating these pipelines on HPC systems currently
requires a heterogeneous approach using accelerators which mainly include but
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 3–20, 2024.
https://doi.org/10.1007/978-3-031-52186-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_1&domain=pdf
https://doi.org/10.1007/978-3-031-52186-7_1

4 J. Villalobos and E. Meneses

are not limited to GPUs [18]. Currently, the GPU is the most common accelera-
tor in HPC clusters and supercomputers, due to their high energy efficiency [9]
and throughput. Referring to the Top500 supercomputer list, the heterogeneous
systems are comprised mostly of NVIDIA and AMD manufactured GPUs. Intel
has recently incorporated their GPU chips into the market by implementing the
Aurora HPC system at Argonne National Laboratory [6].

Introducing these high performance CPU-GPU systems to the HPC world pre-
sented a faster, more energy efficient method of executing scientific software. How-
ever, it did so by introducing a different perspective on software parallelism and
a change in the usual programming paradigm. This new environment presented
challenges for the scientific community. CUDA, HIP, and OpenCL, although
specifically designed for GPU computing, are low level programming languages
that slow down productivity while prototyping and generating SC code. It is
important to note that “an increasing number of scientists are using high pro-
ductivity programming languages” [18], in which Python is a clear protagonist.

Computational scientists would prefer to have fast and portable code while still
being able to design the software for the solution of the numerical methods [18].
Python is popular for it portrays a numerical modeling and SC high level abstrac-
tion with appropriate APIs. According to GitHub Octoverse statistics, Python
is the second most used programming language as of 2022 [1]. Generally, Python
code is thought of as slow due to its interpreted nature, but with the introduction
of new libraries that implement just-in-time (JIT) compilation and GPU deploy-
ment with Python bindings for C/C++ code, considerable acceleration of code
execution can be seen [10]. This is the main reason Python has diffused over many
disciplines that are not limited to SC. For instance, the machine learning (ML) and
artificial intelligence fields have been constructed on the basis of clean high-level
Python APIs, such as PyTorch and TensorFlow, that implement bindings to fast
compiled CUDA/C/C++ routines. These routines perform the heavy duty linear
algebra and numerical computations for deep learning model distributed training,
which leaves condensed, readable Python code at the high level.

In that direction, this paper aims to evaluate different Python APIs that
make use of GPU architectures via JIT compilation and CUDA/C/C++ sub-
routines to accelerate scientific numerical calculations. This evaluation considers
the use of fundamental scientific numerical methods as benchmarks, specifically
Monte Carlo methods, particle interaction routines, stencil operations and linear
algebra operations. Furthermore, programmability, performance and scalability
of the libraries is measured. The contributions of this work include: i) a com-
parative evaluation of available parallel programming Python tools for a set of
SC benchmarks; ii) a public GitLab repository with the implemented SC bench-
marks alongside the time and memory measurement modules and results; and
iii) an analysis of tradeoffs between the programming tools.

Alternatives for Python Scientific Computing on GPU 5

1.1 Related Work

Python GPU execution has been benchmarked for Python bindings to CUDA
and OpenCL [8], focusing on an evaluation of performance portability and energy
efficiency between GPU models. The evaluation was done using a finite volume
shallow water code implemented with both of these libraries. Evidence suggests
that using the Python bindings does not have an important impact on the overall
performance of the code and that using Python is as computationally efficient as
using C++. Using the Python APIs alongside the Jupyter Notebook environment
increased development productivity.

NPBench is a set of NumPy computer programs that represent various
HPC applications in different domains [20]. Python machine code compilers
and NumPy-like accelerated libraries were tested and benchmarked, specifically
CuPy, DaCe, DaCe GPU, Numba, and Pythran. It was determined that alternate
implementations of numerical methods using other Python libraries drastically
accelerate execution of code but lower productivity in most cases.

OMB-Py is a module consisting of micro benchmarks that evaluate perfor-
mance of MPI libraries on HPC systems. It implements the first set of com-
munication benchmarks suite for MPI-based parallel Python applications. This
package also performs benchmarks on GPU message passing latency and library
overheads for multi GPU applications [3].

A comparative evaluation of the performance of a cellular nonlinear network
simulator programmed in the CuPy, Numba, PyCUDA, and NumPy Python
libraries was performed in [5]. This simulator served as a benchmark for these
libraries. The data collected shows that the PyCUDA implementation was the
fastest out of the four libraries.

2 Background

2.1 Graphics Processing Unit (GPU) Architecture

GPUs are a core component in today’s HPC systems. In the last 15 years the
realm of application of GPU has expanded from gaming to the artificial intelli-
gence and scientific computing field. The main reason being the high computing
throughput that GPUs can handle due to their parallel computing architecture.

The modern GPU has as its core computational unit the streaming multipro-
cessor (SM). SMs are comprised of thousands of registers that can be partitioned
among numerous threads of execution. This presents a single instruction multi-
ple thread (SIMT) programming paradigm that can be taken advantage of. Even
though GPUs have a slower clock speed than CPUs, the ability to handle data
in parallel with the SMs gives GPUs an edge for numerical applications that
involve multidimensional array operations.

6 J. Villalobos and E. Meneses

The high information throughput of GPUs, which is in the order of TB/s for
high performance GPU architectures, due to the SIMT programming paradigm
proves beneficial for scientific computing. Figure 1 shows the general architecture
of modern GPUs. GPUs like NVIDIA’s Tesla V100 and Ampere A100 have
been used in the acceleration of sections of computational modeling codes in
fields such as lattice quantum chromodynamics, computational fluid dynamics,
molecular dynamics, and climate modeling. This acceleration takes place, for
instance, in the linear algebra solvers used, and domain decomposition of the
system for parallel computation, or even the whole formulation of the algorithm
of a simulation [13].

Fig. 1. Modern GPU architecture diagram.

2.2 Python Libraries for Scientific Numerical Calculations

There are a many Python tools that allow the implementation of numerical
methods to solve scientific computing problems on GPU. In this paper, the
CuPy, PyTorch, TensorFlow, Numba and JAX libraries were chosen for analysis.
This selection was a result of a qualitative evaluation of library relevance in the
scientific computing community, library development, and maintenance in the
Python community.

Multidimensional Array Handling Libraries: The standard programming
library for multidimensional array handling is NumPy. It is built on array objects
(ndarray) that can handle large amounts of data in a more efficient way than
native Python. The NumPy library can perform mathematical operations with
these array objects mainly vectorized and broadcasted mathematical functions,
linear algebra, and random number generation. It provides easy integration with
other scientific computing libraries such as SciPy, Pandas, and Matplotlib.

Similarly, CuPy is a Python library oriented towards the deployment of the
NumPy functionality onto NVIDIA GPUs [14]. This library is also based on
ndarray objects, and performs most of the NumPy functions using a CUDA
backend, which accelerates the execution of code. As CuPy is compatible with
NumPy code, a programmer can import the library with the same alias as
NumPy, usually np, and the code will be executed provided there is a GPU
backend for it. CuPy is and active project, has regular maintenance, and a large
user base. CuPy has been implemented as an accelerator simulation code [5,11].

Alternatives for Python Scientific Computing on GPU 7

Deep Learning Oriented Frameworks: Deep learning Python frameworks
have shown potential in numerical computations for deep neural network training
with large models. These libraries accelerate scientific computing tasks due to
their ability to efficiently vectorize matrix multiplications on GPU.

PyTorch is a deep learning library that presents a tensor data structure as
its core. This tensor data structure is similar to a ndarray but with support for
automatic differentiation for the backpropagation phase in deep learning model
training [15]. PyTorch proves beneficial for research since it executes dynamical
computational graphs which implies faster debugging and prototyping of models.
PyTorch is actively maintained by the Facebook/Meta group.

Comparably, TensorFlow is a deep learning library which also uses a tensor
data structure and automatic differentiation. However, at the time of execution
TensorFlow takes a more static approach to numerical computation [2]. Using
the @tf.function decorator a compiled computational graph is built which
executes faster than regular TensorFlow code. There are some caveats about
this decorator. The compiled code will run faster if TensorFlow functions are
used. However, when using native Python, the code may be slower. Using this
decorator makes the library harder to debug and in turn makes prototyping more
complex. In return speed is incremented. TensorFlow is actively maintained by
Google, and is used extensively in industry applications.

Just-in-Time (JIT) Compilation Libraries: Numba is a JIT compila-
tion library that translates Python code to optimized machine language using
LLVM [10]. Numba is built to produce code that can be executed on CPU
or NVIDIA GPUs. This code can be parallelized in three ways: simple multi-
threading, SIMD vectorization and GPU vectorization. In this work only the
GPU acceleration functionality will be explored. To execute code on the GPU,
Numba presents the @cuda.jit decorator, which informs the compiler to build a
GPU executable kernel. These kernels need to be defined completely, including
the number of grid blocks and threads per block specified beforehand so the
compiler can correctly execute on the GPU. Numba has been tested for code
acceleration an yielded positive results in several cases [3,11,16].

JAX is a JIT compilation library that uses accelerated linear algebra (XLA)
and automatic differentiation (Autograd) to compile native Python code into
differentiable machine code which runs on CPU, GPU or TPU [7]. The main
decorator this library presents is @jax.jit. This decorator allows for the XLA
compilation of any snippet of code provided it satisfies a set of rules. It pro-
vides a similar API to NumPy and is highly compatible with NumPy ndarrays.
JAX automatically vectorizes code, but manual vectorization using vmap and
distributed parallelization using pmap can be used to parallelize code.

8 J. Villalobos and E. Meneses

2.3 Scientific Numerical Calculation Kernels

Scientific computing applications often use similar numerical methods to solve
problems. Depending on the size of the problem being handled, the solution
time can scale up rather quickly. By contrasting the results of algorithms imple-
mented with each library, insights about their advantages and drawbacks can be
obtained. From this, the decision of which is the most effective tool for a specific
scientific computing task can be taken.

The benchmarks designed in this work were inspired by Berkeley’s 13 Dwarfs
on CUDA [17]. These benchmarks fall into four of the 7 categories presented in
[4] which are dense linear algebra operations, n-body methods, structured grids,
and Monte Carlo methods.

Monte Carlo: Monte Carlo simulations are statistical numerical methods that
can describe the dynamics of complex systems in a more detailed manner that
analytical or experimental analyses would. The fundamental concept behind
Monte Carlo simulations is to generate a large number of random samples from
the probability distribution that describes the behavior of system being analysed.
These samples can be used as initial conditions for the model being described
or as parts of a coupled system.

In this case, a simple numerical calculation will be carried out. A way to
calculate the irrational number π is to generate Nsamples random pairs of numbers
{(x, y)|x ∈ [0, 1], y ∈ [0, 1]} and count the number of pairs Nin that satisfy the
condition r =

√
x2 + y2 ≤ 1. The number π then can be approximated as

π ≈ 4Nin/Nsamples.

Particle Interaction: Molecular dynamics simulations are based upon the clas-
sical interaction of particles. This technique allows the study of the behavior of
complex particle systems. Simply put, the method integrates the equations of
motion of all the particles or molecules that compose the system being analyzed.
The equations of motion of an individual particle is given by,

mi
dri
dt

= Fi = −
N∑

i=0

∇V (ri); V (r) = 4ε
[(σ

r

)12

−
(σ

r

)6
]

(1)

in which mi is its mass, ri is its position, and Fi is the total force acting on
the particle. For the interatomic potential V , r is the distance between the two
particles, σ is the distance at which the potential function becomes zero, and ε
is the depth of the potential well.

The total force F is dependent on specific functions which describe the attrac-
tion and repulsion of two particles. These functions or interparticular potentials
can be theoretically or experimentally constructed. The most used potential
function for the study of gases is the Lennard-Jones (LJ) interatomic poten-
tial. This function describes the potential energy between two particles of the
same kind taking into account the Van der Waals attraction and repulsion due
to their overlapping electron clouds. Theoretically, for each individual particle
the total force Fi is the sum of the forces caused by the interaction of the N

Alternatives for Python Scientific Computing on GPU 9

particles in the system, which can scale up computation time quite rapidly for
large problems. Considering this issue, an approximation can be made based
on the distance σ, which is to define a cutoff radius rcutoff = σ to only consider
the particles that influence significantly the total force. With this approximation
only Nr < N calculations have to be made per particle.

Stencil: Partial differential equations (PDEs) are often used in scientific com-
puting. From computational fluid dynamics to electromagnetism, the models
used are always based on spatial and temporal changes of a set of variables.
Given that analytical solutions are not always available, numerical methods
need to be implemented to solve these problems. The finite difference method
(FDM) is a simple method to implement spatial model discretization for numer-
ical PDE solutions. The discretization process of PDEs results in an expression
that describes the value of a node in a structured array-like mesh as a function of
itself and neighboring nodes. This expression constitutes a computational sten-
cil. In this work, a simple averaging stencil will be applied to a three dimensional
cubic array. This operation is given by,
aijk = (a(i+1)jk + a(i−1)jk + ai(j+1)k + ai(j−1)k + aij(k+1) + aij(k−1) + aijk)/7.

Tensor Operations: Tensor operations generalize concepts which are present
in physics and mathematics to a high degree. In continuum mechanics, PDEs are
combined with tensors to represent the change in the stress, strain, and velocity
of a system. In relativity, tensors are used to compute the trajectories of particles
in curved space-times using the geodesic equations. These mathematical objects
are not limited to any particular field of science and are commonly used in
multidimensional array handling. Simple tensor operations like outer and inner
products of matrices and vectors will be used as benchmarks for the chosen
Python tools. These operations are defined mathematically as,

A : B =AijBij = C A ⊗ B =AiBj = Cij AB =AijBjk = Cik (2)

3 Kernel Design and Implementation

Each numerical method was implemented using the five libraries in a similar
algorithmic structure. Naturally, some differences in the algorithms are to be
expected. This section will give an overview of how the four benchmarks were
implemented in the study using the libraries mentioned1.

Monte Carlo: This benchmark had an alteration on its usual implementation
which was the introduction of a loop to generate N × Niter pairs of numbers
for a more accurate calculation of π. The random number generation process is
implemented as similar functions in each library but the pseudorandom number
generators (PRNGs) used differ. The TensorFlow implementation made use of
the decorator @tf.function. This decorator creates computational graphs to
optimize functions which are called on numerous times.
1 The source code of these benchmarks may be found in this repository: https://gitlab.

com/CNCA CeNAT/sc parallelpython.

https://gitlab.com/CNCA_CeNAT/sc_parallelpython
https://gitlab.com/CNCA_CeNAT/sc_parallelpython

10 J. Villalobos and E. Meneses

Particles: The particle codes all followed the same structure, a main loop which
used a Verlet integration algorithm, a vectorized approach to obtain the parti-
cle neighbor list using distance matrices, and a vectorized evaluation of the
Lennard-Jones particle force for each neighbor in the list. All this was necessary
to take advantage of the accelerated linear algebra (XLA) and JIT compilation
implementation characteristics of the libraries used. The exception to this is the
Numba particle code implementation which differs considerably with respect to
the others in its approach to calculate neighbor lists. This benchmark looped over
all particles to define their neighbors instead of calculating a distance matrix.

Stencil: The stencil algorithm was implemented with the exact same structure
throughout all codes. Array slicing was used for vectorized updates of the whole
array. In this benchmark, JIT compilation was used to optimize the TensorFlow
and JAX code. The Numba variant needed specification of thread ids for array
indexing.

Tensor Operations: All tensor operations are already implemented in every
library except Numba. The specific algorithms for each tensor operation had
to be programmed. The matrix contraction and outer product algorithms were
implemented using global thread IDs since both operations are direct, the matrix
contraction algorithm was programmed to calculate the resulting matrix and
then perform a sum reduction of this matrix using the @cuda.reduce decorator.
The matrix multiplication algorithm used shared memory programming since
looping directly with all threads is computationally expensive.

4 Methodology

4.1 Computational Infrastructure

The resources used for the benchmarking process are found in the Kabré Super-
computing Cluster at the Costa Rica National Center of High Technology
(CeNAT). Kabré is a collection of 52 computing nodes of four different architec-
tures that are used in four main areas: machine learning, computational science,
big data, and bioinformatics. The machine learning section of the Kabré super-
computing cluster was used in this study. These nodes are composed of four
NVIDIA TESLA V100, with 32 GB of GPU memory, and 24 2.40 GHz CPU
cores with 2 physical threads each. The software tested in this benchmark is
summarized in Table 1.

Alternatives for Python Scientific Computing on GPU 11

Table 1. Computer program versions

Computer tool Version

Linux distribution CentOS Linux 7 (Core)

Linux kernel 3.10.0-1160.81.1.el7 .x86 64

Python 3.9.0

PyTorch 1.13.0

TensorFlow 2.2.0

Numba 0.56.4

CuPy 8.3.0

JAX 0.4.10

Table 2. Benchmark problem sizes for exper-
imental design

Benchmark Problem sizes N

Monte Carlo [1.0e1, 2.5e7, 5.0e7, 7.5e7, 1.0e8]

Particle Interaction [10, 3757, 7505, 11252, 15000]

Stencil [10, 232, 455, 677, 900]

Matrix contraction [10, 6257, 12505, 18752, 25000]

Outer product [10, 6257, 12505, 18752, 25000]

Matrix mult. [10, 6257, 12505, 18752, 25000]

4.2 Experimental Design

A two stage nested design was used for the data acquisition process using 15
observations per entry. The factors in this experiment were the problem size
N , and programming library, Table 2 shows the problem sizes for each bench-
mark. This experimental design was chosen since it allowed for a more robust
data analysis [12]. Statistical difference between means can be evaluated using a
parametric analysis of variance (ANOVA). If ANOVA assumptions are not sat-
isfied, a non parametric approach using the Kruskal-Wallis median comparison
can be implemented.

4.3 Benchmarking Procedure

GPU Kernel Timing: Due to asynchronous execution of kernels, the kernel
timing process cannot rely on the usual timing techniques used in Python. The
time library is the standard for measuring execution time of functions by imple-
menting the time.perf counter function. In this case, function timing was done
by using the Numba library. Numba presents the elapsed time function to time
GPU kernel execution between two Numba events which implement the CUDA
event structure. This function ensures GPU accurate timing. A timing module
was then programmed to quantify elapsed time on the GPU. The timing was
carried out only for the kernels and not the data transfer between host and
device.

Memory Consumption Measurement: GPU memory usage was quantified
for each kernel using the pynvml Python bindings for the NVIDIA management
library. The measurement was done in parallel using subprocesses triggered by
event structures. Using the time library, data was logged every 10 microseconds.
Memory data was saved to json files for later post-processing.

Script Benchmarking: With the experimental design in mind, the data gen-
eration process started by gathering all kernels and writing scripts for function
benchmarking for each library. The whole set of scripts was then modularized for
easy access of the functions. Later, Python scripts were programmed for timing

12 J. Villalobos and E. Meneses

all functions. Each script implemented the set of all benchmarks for a specific
library. This script then looped over the problem sizes specified in Table 2.

With respect to the problem size N , it varied according to the kernel being
tested since each piece of code has a different memory footprint. This way, the
GPU resources can be fully used, and the benchmark times can be long enough
to reduce any source of randomness in the execution of the kernels.

A set of Nwarmup = 10 warm-up runs and Niters = 10 timed iterations were
used to obtain consistent data. These scripts were then executed on a NVIDIA
V100 GPU using isolated Conda environments for reproducibility. The results
were then saved to disk using json files.

Data Analysis: The data analysis of these results was done using the NumPy,
Pandas, Statsmodels, and Pingouin Python libraries. First and foremost, an
ANOVA test was performed for the nested design, this way the ANOVA sta-
tistical assumptions of residuals could be tested. The linear model yijk =
μ + τi + βj(i) + ε(ij)k was fit using ordinary least squares with the Statsmodels
function ols to carry this out. Then, a normality test was conducted quanti-
tively using a Shapiro-Wilk test. For data that followed the ANOVA assumptions
the Tukey pairwise mean comparison test was implemented. The Kruskal-Wallis
non parametric ANOVA was used for data which did not satisfy the parametric
ANOVA assumptions. It was executed using the Pingouin library. After this,
Dunn’s pairwise comparison was used as a post hoc test to evaluate the differ-
ences between medians and quantify statistical difference. After the post hoc
pairwise tests, the best performing library was chosen according to statistical
difference and minimum median/mean execution time.

Productivity Measurement: Lines of code were used as a measure of
library productivity. To standardize this metric, the Black Python package was
employed, which applies the same format to all Python code it analyzes. After
this, the Pygount tool was used to statically analyze Python scripts and get the
source lines of code (SLOC) count.

5 Results

5.1 Normality Test

ANOVAs were implemented to test the statistical assumptions of the residuals of
the obtained time data. The residuals showed no normality at a 95% confidence
level. Data normalization was considered by implementing a Box-Cox transfor-
mation, however that did not yield positive results. Due to this, non parametric
ANOVA studies were carried out for all levels. Table 3 presents the P -values for
the residuals of each benchmark.

5.2 Memory Consumption

Memory consumption was measured generally for all benchmarks at the largest
problem sizes shown in Table 2. Figure 2 shows the data acquired by the NVIDIA

Alternatives for Python Scientific Computing on GPU 13

Table 3. Normality results for each benchmark.

Benchmark Montecarlo Particles Stencil Matrix
contraction

Outer
product

Matrix
multiplication

P -value 3.34e−32 3.85e−33 1.41e−37 7.59e−35 2.04e−35 7.72e−33

Normal? No No No No No No

driver software. To correctly measure memory consumption for the TensorFlow
and JAX libraries memory preallocation was disabled previously. This was only
performed for the memory usage benchmarking process. Differences in memory
consumption for the libraries may arise due to different background processes.

Considering the Monte Carlo benchmark, Numba used the least memory out
of all the libraries. This may be attributed to its lighter CUDA array object
implementation.

With respect to the particle interaction benchmark, it presented variability
in between libraries due to the difference in functions used to implement the
same method. Some scattering modules had slight alterations on functionality.

Fig. 2. Memory usage results from the execution of the GPU proposed benchmarks.

14 J. Villalobos and E. Meneses

Therefore, workarounds had to be implemented. The Numba implementation
used the least memory since it did not allocate a distance matrix of N × N
particles as the other libraries did.

For the stencil benchmark, Numba presented the least memory consumption
out of all the libraries. In this implementation threads access each array entry
independently and evolve the algorithm without the need to create a view or
slices. The other four libraries implement slicing which creates objects hence,
higher memory consumption.

The tensor operations presented high, constant memory usage for all libraries
except Numba. The matrix multiplication benchmark was implemented using
shared memory programming to accelerate the computation, while the other
two tensor operations were straightforward.

5.3 Scalability

Referring to Fig. 3, the Monte Carlo algorithm displays linear scalability with
respect to problem size. The CuPy library presents the highest execution times
for all sizes except N = 10. Profiling of the Monte Carlo code sheds light on the
inefficiency of the cupy.sum function. The reduction algorithm in this module
may be the cause of slow execution. Numba presents the fastest execution of all
the libraries given its different memory implementation. Random numbers are
generated on the device per thread and not stored in main memory which speeds
up the Monte Carlo process.

Considering the particle interaction benchmark, it scales as N2 for all
libraries. JAX presents poor performance in this benchmark as its execution
time is 20 times the other libraries. Profiling the code with nvprof highlighted
a fusion kernel in which almost 70% of the time was spent. The XLA com-
piler fuses computations to optimize the computational graph. It is possible the
fusion of some computations in this code may be reducing performance thus
raising execution time.

Figure 3 clearly shows that Numba outperforms every other library in the
stencil benchmark. This due to the fast thread access mentioned before. JAX
starts off with a high execution time attributed to the JIT and XLA compilation
of code, yet it scales like the other libraries.

Regarding tensor operations, the deep learning libraries including JAX out-
performed Numba and CuPy. These libraries are optimized for N-dimensional
array handling and multiplication due to the field they are applied in. These
libraries present static, compiled GPU routines which surpass JIT compilcated
kernels.

Alternatives for Python Scientific Computing on GPU 15

Fig. 3. Scalability results from the GPU proposed benchmarks.

After the Kruskal-Wallis non parametric ANOVAs, data was analyzed using
the Dunn post-hoc test. Table 4 presents the best statistically similar results
after performing post-hoc tests.

16 J. Villalobos and E. Meneses

Table 4. Execution time medians [s] of the best statistically similar libraries for the
benchmarks evaluation.

Benchmark Problem Size (N)

N1 N2 N3 N4 N5

Montecarlo
Numba : 0.0002

CuPy : 0.0780

Numba : 0.1246

PyTorch : 2.1880

Numba : 0.2489

PyTorch : 4.3235

Numba : 0.3736

PyTorch : 6.4481

Numba : 0.4986

PyTorch : 8.5914

Particles
Numba : 0.0574

JAX : 0.0576

Numba : 0.0571

CuPy : 0.2186

Numba : 0.0572

CuPy : 0.3501

Numba : 0.0815

CuPy : 0.5765

Numba : 0.0562

CuPy : 0.8917

Stencil
Numba : 0.0001

CuPy : 0.0280

Numba : 0.0238

PyTorch : 0.3274

Numba : 0.2410

PyTorch : 1.0429

Numba : 0.8121

PyTorch : 3.4906

Numba : 1.7729

PyTorch : 11.0197

Matrix Mult.
CuPy : 0.0000

PyTorch : 0.0000

PyTorch : 0.0356

TensorFlow : 0.0356

PyTorch : 0.2811

TensorFlow : 0.2819

TensorFlow : 0.9431

PyTorch : 0.9438

JAX : 2.2371

PyTorch : 2.2418

Matrix Contr.
CuPy : 0.0000

PyTorch : 0.0000

PyTorch : 0.0005

JAX : 0.0009

PyTorch : 0.0022

JAX : 0.0024

JAX : 0.0044

PyTorch : 0.0049

JAX : 0.0072

TensorFlow : 0.0086

Outer Prod.
CuPy : 0.0000

PyTorch : 0.0000

PyTorch : 0.0003

CuPy : 0.0005

PyTorch : 0.0013

JAX : 0.0014

PyTorch : 0.0016

JAX : 0.0021

PyTorch : 0.0028

JAX : 0.0033

Table 4 shows the dominance of the Numba library in terms of execution
time for the Monte Carlo, particle interaction, and stencil benchmarks. The
deep learning frameworks, on the other hand, achieved better performance in
the tensor operations benchmarks.

5.4 Productivity

Python is heavily used for prototyping in the scientific community and it is a
valuable aspect. As such, there is a need to maintain this characteristic while
evolving the language towards HPC. Measuring SLOC is the main way to exam-
ine if productivity indeed is maintained. The SLOC data for each benchmark is
shown in Table 5. Qualitatively, all libraries seem to have similar productivity
relying only on SLOC, with the exception of Numba. Numba presents notorious
differences in SLOC count. These are visible in the particle interaction, and the
tensor operations benchmarks. These counts are to be expected since the CUDA
functionality in Numba is of a lower level with respect to the other libraries.

Table 5. SLOC for each benchmark.

Benchmark Library

CuPy JAX Numba NumPy PyTorch TensorFlow

Monte Carlo 11 14 20 11 14 16

Particles 87 70 97 88 77 76

Stencil 15 19 21 17 18 20

Tensor Operations 9 9 49 11 10 9

Alternatives for Python Scientific Computing on GPU 17

6 Final Remarks

An evaluation of five GPU computing Python libraries was performed, specifi-
cally Numba, CuPy, PyTorch, TensorFlow, and JAX. This evaluation included
memory consumption, scalability, and productivity analyses on a single NVIDIA
V100 GPU. With respect to memory consumption, all libraries seem to handle
GPU memory differently and this behavior is expected. Numba presented the
least memory usage in most benchmarks.

Considering scalability results, our analysis concluded that the data needed a
non parametric statistical evaluation due to non normality of residuals. Kruskal-
Wallis tests with Dunn’s post-hoc test were implemented to quantify the differ-
ences between the median execution times of the libraries. It was found that the
Numba library performs better than the rest for the Monte Carlo, particle inter-
action, and stencil benchmarks. The deep learning libraries, specifically PyTorch,
outperform Numba in tensor operations. This behavior is expected since these
libraries implement highly optimized GPU routines. However, between these
libraries the times are close so no distinction was made with the exception of
CuPy which presents slightly higher computation times for linear algebra kernels.

Regarding the productivity of code, SLOC were counted and from all bench-
marks the library that stands out is Numba. This library presents higher SLOC
count for the particle interaction algorithm and tensor operations. From this it
can be concluded that while using Numba some productivity may be sacrificed
for speed depending on the nature of the problem trying to be solved. The rest
of the libraries present similar SLOC count on all benchmarks.

Acknowledgments. This research was partially supported by a machine allocation
on Kabré supercomputer at the Costa Rica National High Technology Center.

A Roofline Graphs for the Algorithms Proposed

The algorithms proposed in this work were profiled with the NVIDIA Nsight
Compute command line interface (CLI) using the methodology found in [19].
Roofline graphs are shown in Figs. 4 and 5.

18 J. Villalobos and E. Meneses

Fig. 4. Monte Carlo (a), particles (b), and stencil (c) algorithms roofline graphs.

Alternatives for Python Scientific Computing on GPU 19

Fig. 5. Matrix multiplication (a), outer product (b), and matrix contraction (c) algo-
rithms roofline graphs.

20 J. Villalobos and E. Meneses

References

1. The top programming languages. https://octoverse.github.com/2022/top-
programming-languages. Accessed 23 June 2022

2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., et al.: Tensorflow: large-scale
machine learning on heterogeneous distributed systems (2016). https://arxiv.org/
abs/1603.04467

3. Alnaasan, N., Jain, A., Shafi, A., Subramoni, H., Panda, D.K.: OMB-PY: Python
micro-benchmarks for evaluating performance of MPI libraries on HPC systems
(2021). https://arxiv.org/abs/2110.10659

4. Asanović, K., Bodik, R., Catanzaro, et al.: The landscape of parallel comput-
ing research: a view from berkeley. Technical Reports, UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, Dec 2006. http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

5. Dogaru, R., Dogaru, I.: A Python framework for fast modelling and simulation of
cellular nonlinear networks and other finite-difference time-domain systems (2021)

6. Facility, A.L.C.: Aurora. https://www.alcf.anl.gov/aurora
7. Frostig, R., Johnson, M.J., Leary, C.: Compiling machine learning programs via

high-level tracing (2016). https://arxiv.org/abs/1603.04467
8. Holm, H.H., Brodtkorb, A.R., Sætra, M.L.: GPU computing with Python: Perfor-

mance, energy efficiency and usability. Computation 8 (2020). https://doi.org/10.
3390/computation8010004

9. Huang, S., Xiao, S., Feng, W.: On the energy efficiency of graphics processing
units for scientific computing. In: 2009 IEEE International Symposium on Parallel
and Distributed Processing, pp. 1–8 (2009). https://doi.org/10.1109/IPDPS.2009.
5160980

10. Lam, S.K., Pitrou, A., Seibert, S.: Numba: a LLVM-based python JIT compiler,
vol. 2015-January. Association for Computing Machinery (2015). https://doi.org/
10.1145/2833157.2833162

11. Marowka, A.: Python accelerators for high-performance computing. J. Supercom-
put. 74, 1449–1460 (2018). https://doi.org/10.1007/s11227-017-2213-5

12. Montgomery, D.C.: Design and analysis of experiments (2017)
13. NVIDIA: Nvidia HPC application performance. https://developer.nvidia.com/

hpc-application-performance
14. Okuta, R., Unno, Y., Nishino, D., Hido, S., Loomis, C.: Cupy: a numpy-compatible

library for NVIDIA GPU calculations. https://github.com/cupy/cupy
15. Paszke, A., Gross, S., Massa, F., et al.: Pytorch: an imperative style, high-

performance deep learning library (2019). https://arxiv.org/abs/1912.01703
16. Pata, J., Dutta, I., Lu, N., Vlimant, J.R., et al.: ETH library data analysis with

GPU-accelerated kernels (2020). https://doi.org/10.3929/ethz-b-000484721
17. Springer, P.L.: Berkeley’s dwarfs on CUDA (2012)
18. Vetter, J.S., Brightwell, R., Gokhale, M., McCormick, P., et al.: Extreme hetero-

geneity 2018 - productive computational science in the era of extreme heterogene-
ity: report for doe ASCR workshop on extreme heterogeneity (2018). https://doi.
org/10.2172/1473756, https://www.osti.gov/servlets/purl/1473756/

19. Yang, C.: Hierarchical roofline analysis: how to collect data using performance
tools on Intel CPUs and NVIDIA GPUs (2020)

20. Ziogas, A.N., Ben-Nun, T., Schneider, T., Hoefler, T.: NPBench: a benchmarking
suite for high-performance numpy, pp. 63–74. Association for Computing Machin-
ery (2021). https://doi.org/10.1145/3447818.3460360

https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/2110.10659
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://www.alcf.anl.gov/aurora
https://arxiv.org/abs/1603.04467
https://doi.org/10.3390/computation8010004
https://doi.org/10.3390/computation8010004
https://doi.org/10.1109/IPDPS.2009.5160980
https://doi.org/10.1109/IPDPS.2009.5160980
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1007/s11227-017-2213-5
https://developer.nvidia.com/hpc-application-performance
https://developer.nvidia.com/hpc-application-performance
https://github.com/cupy/cupy
https://arxiv.org/abs/1912.01703
https://doi.org/10.3929/ethz-b-000484721
https://doi.org/10.2172/1473756
https://doi.org/10.2172/1473756
https://www.osti.gov/servlets/purl/1473756/
https://doi.org/10.1145/3447818.3460360

Enhancing a GPU-Based Wave
Propagation Application Through Loop
Tiling and Loop Fission Optimizations

Gabriel Costa(B) , Peterson Nogueira , João Speglich , and Laian Silva

Supercomputing Center for Industrial Innovation SENAI CIMATEC (CS2I),
Salvador, Bahia, Brazil

{gabriel.pinheiro,peterson.santos,joao.speglich,laian.silva}@fieb.org.br

Abstract. Graphics Processing Units (GPUs) harbor immense paral-
lelization capabilities that can significantly accelerate the processing of
large datasets. In the context of geophysical modeling, these capabilities
can be harnessed to achieve faster execution times without compromising
the accuracy of results. This study investigates optimization techniques
implemented in a three-dimensional elastic model developed using the
DEVITO tool.

DEVITO is a Domain-Specific Language for stencil computation, with
a focus on seismic inversion problems. DEVITO enables the creation of
geophysical models in Python through functions and classes provided by
the tool. Using an internal compiler, DEVITO can translate the model
written from symbolic equations in Python into a finite difference code
in C/C++.

The performance of an initial naive implementation is compared
against two optimized versions. One of the approaches was named Tiling,
and uses the OpenACC tile directive to block the most relevant loop
nests of the application. The other optimized approach, Sig Fission, uses
the loop fission technique to divide the workload of one of the nests and
then applies the tile directive. These optimizations have led to notable
improvements, including an increased cache hit rate, enhanced GPU
scheduler occupancy, a decrease in the number of registers needed to
issue instructions, and a remarkable 40% reduction in execution time.

By capitalizing on the parallel computing power of GPUs, this study
demonstrates the efficacy of employing optimization strategies, such as
loop tiling and loop fission, in geophysical modeling targeting graphics
processing units. These techniques pave the way for accelerated data pro-
cessing, ultimately contributing to improved efficiency and accuracy in
computational geophysics, without any loss of integrity in the results.

Keywords: GPU · loop tiling · loop fission · DEVITO

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 21–35, 2024.
https://doi.org/10.1007/978-3-031-52186-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_2&domain=pdf
http://orcid.org/0009-0004-8468-6851
http://orcid.org/0000-0002-7728-7463
http://orcid.org/0009-0000-0137-0511
http://orcid.org/0009-0004-1397-6114
https://doi.org/10.1007/978-3-031-52186-7_2

22 G. Costa et al.

1 Introduction

DEVITO is a Domain-Specific Language (DSL) written in Python for stencil
computation, focusing on seismic inversion problems [1,2]. DEVITO enables the
creation of geophysical models in Python with a high degree of abstraction,
thanks to the functions and classes provided by the tool. Using an internal
compiler, DEVITO can translate the model written from symbolic equations in
Python into a finite difference code in C/C++, which is partially optimized for
execution on the specified architecture.

In addition to running on multi-core machines, DEVITO allows code gener-
ation targeting accelerators and GPUs. Offloading the workload to the graphics
unit is done through OpenACC, a programming standard implemented through
a library for C/C++ and Fortran, enabling code optimization in an automated
way via directives [3]. The loop tiling technique stands out among the opti-
mizations implemented in OpenACC and is available for DEVITO. This loop
transformation alters the data access pattern, so the data is no longer accessed
continuously until the end of a dimension but instead accessed in blocks with
dimensions specified by the programmer [4]. The goal of this technique is to take
advantage of the principle of spatial locality of data, favoring the reuse of nearby
stencil points [5,6].

This work focuses on the computational optimization of a DEVITO-based
implementation of elastodynamic equations as described by Virieux [7]. There-
fore, the objective is to develop modifications in the C++ algorithm to improve
performance and mitigate bottlenecks without changing the nature of the equa-
tions and their solutions.

This work continues an ongoing effort to optimize the DEVITO tool, aiming
to contribute to existing efforts with a similar goal. N. Kukreja et al. [1] provide
an initial presentation of DEVITO, introducing some of the optimizations in the
DSL to ensure code generation with optimization levels comparable to manually
optimized code. These automated optimizations include vectorization, aligned
memory allocation, parallelization through pragmas, loop blocking on CPU, and
common sub-expression elimination. The work also measures performance in
GFLOPS/s and arithmetic intensity in FLOPS/byte for the simulation of a
three-dimensional acoustic model.

M. Louboutin et al. [8] conducted industrial-scale tests for seismic imaging
of an anisotropic model using DEVITO. The authors compared the number of
floating-point operations required for each grid point in two cases: without any
optimization and with the optimizations implemented by DEVITO (common
sub-expression elimination, factorization, and cross-iteration redundancy elim-
ination). The difference reached values approximately 81% lower in the lowest
discretization order used and around 95% lower in the highest discretization
order used, both in favor of the optimized version of the code.

L. Jesus et al. [9] performed GPU tests for six visco-acoustic equations, com-
paring the performance of two codes for each equation: one with the advanced
optimizations offered by DEVITO and another with these same optimizations
plus the use of OpenACC loop tiling. The authors used the default tile shape

Enhancing a GPU-Based Wave Propagation Application 23

provided by DEVITO, without tuning this parameter. In the three-dimensional
models of larger magnitude, the authors were able to significantly increase cache
hit rates in more than one memory level, as well as improve floating-point oper-
ation performance and arithmetic intensity.

This study aims to continue these and other efforts to optimize code gen-
erated by DEVITO, proposing an investigation into the performance achieved
by well-established loop modification strategies in HPC: loop tiling (with tuned
values) and loop fission.

The remaining article is divided into the following sections: the Materials,
Methods, and Theory section describes the NSYS and NCU tools used for data
collection and profiling, the forward operator of the elastic equation, the opti-
mized approaches developed for the operator, and the conditions and environ-
ment in which the tests were executed; the Results section presents and discusses
a series of performance-related results collected in tests with the Naive, Tiling,
and Sig Fission approaches, both in single and multi GPU executions; finally, the
Conclusions section summarizes the main conclusions that can be drawn from
the presented results.

2 Materials, Methods, and Theory

2.1 Profiling Tools

Nsight Systems (NSYS) is a GPU profiling tool that provides a comprehensive
view of the system throughout the application’s life cycle. It can track calls to
external APIs, system operations, and the use of other hardware, such as the
CPU, as well as record bilateral memory traffic between the host and device [10].
In the present study, NSYS was used to identify which kernels were responsible
for most of the computational effort involved in the application.

Nsight Compute (NCU) is a CUDA kernel profiler that provides a range of
metrics for data collection and analysis. For the purpose of conducting a focused
and vertical analysis exclusively on kernels, this tool is highly recommended as
it provides statistical insights, isolated information, and facilitates performance
comparisons among different versions of the same kernel [11].

2.2 The Elastic Wave Equation

The propagation of seismic waves in heterogeneous, isotropic, elastic earth media
can be expressed by the elastodynamic equations [7].

24 G. Costa et al.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂vx
∂t

−
(∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z

)
= 0,

ρ
∂vy
∂t

−
(∂σyx

∂x
+

∂σyy

∂y
+

∂σyz

∂z

)
= 0,

ρ
∂vz
∂t

−
(∂σzx

∂x
+

∂σzy

∂y
+

∂σzz

∂z

)
= 0,

∂σxx

∂t
− (λ + 2μ)

∂vx
∂x

− λ
(∂vy

∂y
+

∂vz
∂z

)
= fxx,

∂σyy

∂t
− (λ + 2μ)

∂vy
∂y

− λ
(∂vx

∂x
+

∂vz
∂z

)
= fyy,

∂σzz

∂t
− (λ + 2μ)

∂vz
∂z

− λ
(∂vx

∂x
+

∂vy
∂y

)
= fzz,

∂σyz

∂t
− μ

(∂vz
∂y

+
∂vy
∂z

)
= 0,

∂σzx

∂t
− μ

(∂vx
∂z

+
∂vz
∂x

)
= 0,

∂σxy

∂t
− μ

(∂vx
∂y

+
∂vy
∂x

)
= 0.

(1)

vx, vy, vz are the horizontal and vertical particle velocity fields, σxx, σyy, σzz,
σyz, σzx, σxy are the stress fields, fxx, fyy, fzz are the source terms, ρ is density, λ
and μ are the Lamé parameters. These coefficients describe the spatially variable
property of the earth, and are related to the seismic P-wave and S-wave velocities
via λ + 2μ = ρV 2

p and μ = ρV 2
s .

2.3 Approaches

Analyses performed with the NSYS profiler on the generated C++ code showed
that 98.3% of the computational effort employed in the total execution of the
application is concentrated in just two kernels: V (53.2%) and Sig (45.1%). These
kernels are responsible for calculating the particle velocity fields (V) and the
stress fields (Sig), as shown in Eq. 1. Therefore, optimization efforts focused
on extracting performance from these two kernels. The present work compares
the results obtained from the standard version of the operator generated by
DEVITO with two new approaches developed for performance extraction, as
described below:

– Naive: the DEVITO default approach, in which the main optimization is
the use of the collapse clause to transform a three-dimensional nesting into
a one-dimensional iteration loop.

– Tiling: an approach that replaces the collapse clause by the tile clause in the
V and Sig kernels, with tuned values. The V kernel uses tiles with dimensions
of (32, 4, 4), while the Sig kernel uses dimensions of (16, 4, 4).

Enhancing a GPU-Based Wave Propagation Application 25

– Sig Fission: an approach that combines the techniques of loop tiling and
loop fission. In this approach, the V kernel maintains the tile dimensions of
(32, 4, 4). The loop fission technique divides the workload of a nesting into
two or more nests of smaller workload but with the same iteration space [12].
It was applied to the Sig kernel by separating the cross-derivatives into one
nest, and the derivatives taken in the same dimension into another nest, with
these two new kernels being computed sequentially. The tile clause is applied
again to these two new nests, maintaining the (32, 4, 4) dimension applied in
the V nest.

The tile dimensions of each of the kernels were determined empirically, always
choosing the ones that achieved the best performance. A limitation to be taken
into account in this process is that the product of the tile dimensions should
not exceed the maximum limit of threads per block on the GPU. Since the limit
of the utilized device is 1024 threads per block, the product of the dimensions
must be less than or equal to this value, as shown in Eq. 2, where the Dsize(i)
represents the size of dimension i, and n is the number of dimensions in the tile.

n∏

i=1

Dsize(i) ≤ 1024 (2)

Algorithms 1, 2, and 3 illustrate the pseudocodes of the Naive, Tiling, and
Sig Fission approaches, respectively.

Algorithm 1. Naive Approach
1: procedure Compute V
2: pragma acc parallel loop collapse(3)
3: for x... do
4: for y... do
5: for z... do
6: Compute vx, vy, vz
7: end for
8: end for
9: end for
10: end procedure
11: ...
12: procedure Compute Sig
13: pragma acc parallel loop collapse(3)
14: for x... do
15: for y... do
16: for z... do
17: Compute σxx, σyy, σzz,

σyz, σzx, σxy
18: end for
19: end for
20: end for
21: end procedure

Algorithm 2. Tiling Approach
1: procedure Compute V
2: pragma acc parallel loop tile(32,4,4)
3: for x... do
4: for y... do
5: for z... do
6: Compute vx, vy, vz
7: end for
8: end for
9: end for
10: end procedure
11: ...
12: procedure Compute Sig
13: pragma acc parallel loop tile(16,4,4)
14: for x... do
15: for y... do
16: for z... do
17: Compute σxx, σyy, σzz,

σyz, σzx, σxy
18: end for
19: end for
20: end for
21: end procedure

26 G. Costa et al.

Algorithm 3. Sig Fission Approach
1: procedure Compute V
2: pragma acc parallel loop tile(32,4,4) ...
3: for x... do
4: for y... do
5: for z... do
6: Compute vx, vy, vz
7: end for
8: end for
9: end for
10: end procedure
11: ...
12: procedure Compute Sig Same Dim.
13: pragma acc parallel loop tile(32,4,4) ...
14: for x... do
15: for y... do
16: for z... do
17: Compute σxx, σyy, σzz
18: end for
19: end for
20: end for
21: end procedure
22: ...
23: procedure Compute Sig Crossed
24: pragma acc parallel loop tile(32,4,4) ...
25: for x... do
26: for y... do
27: for z... do
28: Compute σyz, σzx, σxy
29: end for
30: end for
31: end for
32: end procedure

It is important to note that three-dimensional tile shapes do not necessarily
translate to CUDA blocks of the same shape. The tile shapes (32,4,4) and (16,4,4)
resulted in CUDA blocks of (512,1,1) and (256,1,1) formats, respectively.

2.4 Environment and Parameters

All tests were performed on a Nvidia c© Tesla c© V100 SXM2 32 GB card, with
dedicated access to the hardware, eliminating any potential interference from
other applications. The runtime results presented in this study are averaged
over five runs conducted under identical conditions and parameters.

The simulations were performed on a three-dimensional model with 400 ele-
ments in each dimension and a simulation time of 1000 milliseconds. A simple
three-dimensional layered model was used, with a horizontal, longitudinal, and
depth extent of 4 km, and a velocity variation ranging from 1.5 km/s in the top
layer to 3.5 km/s in the bottom layer. A more detailed overview of the execution
parameters can be found in Table 1.

Enhancing a GPU-Based Wave Propagation Application 27

Table 1. Simulation parameters.

Parameter Description Value

nx Number of points in X 400
ny Number of points in Y 400
nz Number of points in Z 400
dx Spacing in X 10 m
dy Spacing in Y 10 m
dz Spacing in Z 10 m
tn Simulation time 1000 ms
dt Discretization timestep size 1.414 ms
nbl Number of boundary layers 40
so Space order 16

3 Results

3.1 Single GPU

Table 2 presents the average execution times in seconds for the three approaches
and the respective saved time percentage of the optimized approaches compared
to the time obtained by the Naive version. The number of cycles required to
execute the two main kernels in each approach is shown in Table 3. For better
visualization and ease of comparison, all data collected from the two additional
kernels generated in Sig Fission will be presented in a combined manner through
a weighted average (taken according to the workload of the kernels), as if they
continued to be a single kernel. Considering that, according to NCU reports,
computing same direction derivatives represents 42% of the original Sig kernel
workload, and cross-derivatives make up the remaining 58%, the results of the
two new kernels are weighted, summed, and then divided by 100 to yield the
final combined outcome.

The results shown in both tables reveal that the optimized approaches were
able to reduce the number of cycles required for processing the two kernels and,
consequently, significantly reduce the execution time of the application.

Table 2. Elapsed time and saved
time percentage (regarding Naive
time).

Approach Elapsed Time Saved

Naive 85.87 s –
Tiling 58.48 s 33%
Sig Fission 52.22 s 40%

Table 3. Cycles spent in kernel V and ker-
nel Sig.

Approach V Cycles Sig Cycles

Naive 56,741,131 67,458,321
Tiling 31,355,925 51,141,142
Sig Fission 31,289,283 41,885,863

28 G. Costa et al.

Tables 4 and 5 present the computational performance and arithmetic inten-
sity of each approach in the V and Sig kernels, respectively. Computational
performance is a metric that measures the number of floating-point operations
per second (FLOP/s), and arithmetic intensity is the number of floating-point
operations per byte (FLOP/byte).

Compared to the Naive version, the use of loop tiling in the V kernel in the
two optimized approaches was able to increase both computational performance
and arithmetic intensity, which exceeded twice the value obtained by the Naive
approach. In the Sig kernel, the two optimized approaches allowed performance
gains in both analyzed metrics. Both the Tiling and Sig Fission approaches come
close to doubling the arithmetic intensity values obtained by the Naive version
and show substantial performance improvements, with the Sig Fission approach
achieving the best results.

Table 4. Performance and Arithmetic Intensity on kernel V.

Approach Performance (FLOP/s) Arith. Intensity (FLOP/byte)

Naive 0.469 · 1012 0.72
Tiling 0.834 · 1012 1.63
Sig Fission 0.834 · 1012 1.63

Table 5. Performance and Arithmetic Intensity on kernel Sig.

Approach Performance (FLOP/s) Arith. Intensity (FLOP/byte)

Naive 0.618 · 1012 1.07
Tiling 0.799 · 1012 2.10
Sig Fission 0.965 · 1012 1.99

For the V kernel, the L1 cache hit rate has increased with the application
of loop tiling in the Tiling and Sig Fission approaches, and the L2 hit rate in
both optimized approaches remained very close to that obtained by the Naive
version, as shown in the graph of Fig. 1(a). The graph in Fig. 1(b) shows that the
Sig kernel presented improvements in L1 cache hit rates, both with the isolated
application of loop tiling in the Tiling approach and with loop fission combined
with tiling in the Sig Fission approach. In L2, the Naive version obtained the
highest hit rate in this kernel, but with very little difference compared to the
two optimized versions.

The cache hit values obtained by the two optimized approaches on both
kernels converge with the previous results. The increase in cache hit rates allows
for more efficient use of data, reducing processing bottlenecks and allowing the
application to increase the use of the available processing power (increasing
FLOP/s performance and arithmetic intensity).

Enhancing a GPU-Based Wave Propagation Application 29

Fig. 1. L1 and L2 cache hit rates on kernels V (a) and Sig (b).

Other essential metrics for performance analysis of an application are the
warp issue rate and the number of registers required for a thread to issue an
instruction. A GPU has multiple microprocessors called Stream Multiprocessors
(SM), and each SM has a set of schedulers responsible for managing and issuing
groups of threads carrying instructions. These groups of threads are called warps.
The warp issue rate, therefore, refers to the average number of warps issued per
scheduler in a certain number of cycles. Nevertheless, each thread requires a
certain amount of hardware registers to issue an instruction, so the heavier the
workload, the more registers will be required, leading to increased competition
for available hardware resources, which can reduce the scheduler issue rate.

Figure 2(a) shows that the use of loop tiling in the Tiling and Sig Fission
versions for the V kernel was able to substantially increase the warp emission
rate in this fraction of the operator, surpassing twice the value obtained in the
Naive version. The number of registers required for a warp to be issued also
showed similar behavior, dropping to just over half with the application of loop
tiling in the two developed approaches.

In the Sig kernel, the Tiling approach slightly increased the number of issued
warps compared to the Naive approach. In contrast, the application of loop tiling
after the fission process in the Sig Fission approach achieved a significant increase
in the issued rate, surpassing twice that obtained by the Naive version, which
proves that the fission process led to an optimization in the use of schedulers.
Compared to the Naive version the utilization of loop tiling in the Sig kernel,
as employed in the Tiling approach, resulted in minimal variations in register
requirements, as depicted in the graph illustrated in Fig. 2(b). The Sig Fission
approach exhibited a significant reduction in register usage, nearly halving the
original count, as expected. This occurred because the original workload was
divided into two new workloads of similar magnitudes.

Tables 6 and 7 present the warp occupancy per SM achieved in each of the
approaches for the kernels V and Sig, respectively. It is noteworthy that the
occupancy profile in both kernels resembles the profile of issued warps observed
in Fig. 2, and also follows the trend of register reduction. The decrease in the
number of registers required per thread, observed in the Tiling and Sig Fission
approaches for kernel V and in the Sig Fission approach for kernel Sig, is one of
the factors that allow an increase in the occupancy of the SM’s schedulers.

30 G. Costa et al.

Table 6. SM occupancy (Warps/
SM) in kernel V.

Approach Occupancy

Naive 7.88
Tiling 15.29
Sig Fission 15.33

Table 7. SM occupancy (Warps/SM) in
kernel Sig.

Approach Occupancy

Naive 7.93
Tiling 7.89
Sig Fission 15.26

Fig. 2. Rate of issued warps every 100 cycles and amount of registers needed on kernels
V (a) and Sig (b).

The main advantage of the two optimized approaches in the V kernel was
reducing the cache miss rate, allowing more efficient use of data, and decreasing
the need for expensive memory accesses since the necessary data for processing
are now more frequently found in the cache memory. The reduction of waiting
bottlenecks caused by accesses to main memory allowed for better use of available
computational resources, increasing performance and arithmetic intensity. These
gains explain the superior performance of the Tiling and Sig Fission approaches
in this kernel if compared to the Naive approach, which obtained significantly
lower cache hit rates.

In the Sig kernel, the reduction in cache miss rate is also the main factor
responsible for the positive results of the Tiling and Sig Fission approaches.
Once again, the more efficient use of data and the reduced need for costly mem-
ory accesses allowed for better utilization of the hardware computational power.
However, the Sig Fission approach proved to be more efficient in reducing the
number of registers required per thread, which led to a higher rate of issued
warps. This higher emission of warps also contributes to even better utiliza-
tion of the processing power offered by the hardware, making the application of
loop fission deliver superior results, even though the two optimized approaches
achieved very similar cache hit rates in both levels of cache.

3.2 Multi GPU

In order to validate the scalability of the presented solutions, the tests were
replicated with increased spatial dimensions and domain decomposition across
four Nvidia c© Tesla c© V100 SXM2 32GB devices, using MPI and with NVLink

Enhancing a GPU-Based Wave Propagation Application 31

disabled. The runtime results presented in this section are averaged over five runs
conducted under identical conditions and parameters. The tests were conducted
in the same three-dimensional model with 820 elements in each dimension. Each
execution applied a simulation time of 6000 ms and a space order of 16 elements.
The values are summarized in Table 8.

Table 8. Parameters for multi GPU executions.

Parameter Description Value

nx Number of points in X 820
ny Number of points in Y 820
nz Number of points in Z 820
dx Spacing in X 10 m
dy Spacing in Y 10 m
dz Spacing in Z 10 m
tn Simulation time 6000 ms
dt Discretization timestep size 1.414 ms
nbl Number of boundary layers 40
so Space order 16

The execution times of each approach and their respective percentage gains
compared to the Naive version can be found in Table 9. Once again, similar to
the tests on a single GPU, the optimized approaches achieved gains compared
to the Naive version, with a stronger emphasis on the Sig Fission approach,
which achieves the most significant performance increase. This maintenance of
the performance gain can be interpreted positively, as it indicates that the com-
munication overhead and other computational costs of domain decomposition are
small compared to the effort employed to compute the workload. Thus, there is
an indication that the developed optimizations remain effective in more robust
models, with larger stencil size, longer simulation time, and domain shared across
multiple devices.

Table 9. Elapsed times for each version running on 4 GPUs. nx 820, ny 820, nz 820,
tn 6000, so 16.

Approach Elapsed Time Saved

Naive 1206.35 s –
Tiling 761.75 s 37%
Sig Fission 698.88 s 42%

32 G. Costa et al.

3.3 SEG/EAGE 3D Salt Model

In order to emphasize the robustness of the presented solutions, multi-GPU tests
were also performed using another geological model.

The SEG/EAGE 3D Salt model was constructed by the SEG and EAGE
research committee as part of a computational technological advancement ini-
tiative. This model exhibits similarity to the Gulf of Mexico Basin, featuring a
salt body with high-velocity contrast in the central region, various types of faults
distributed throughout the model, and lenses and sandstone bodies [13]. Figure 3
shows the wave P velocity model, with velocity values ranging from 1.5 km/s to
4.8 km/s. Its spatial parameters are 7.9 km in the horizontal and longitudinal
directions, with a depth of 4 km. The S velocity and Density models were calcu-
lated using empirical formulas.

Fig. 3. SEG/EAGE 3D Salt model: P-wave velocity models.

Table 10 presents the most relevant parameters used in modeling the tests
conducted in this work. Synthetic seismograms were generated with a Ricker
source placed at the center of the model. The receivers were positioned on the sur-
face for the pressure field, while for particle velocity seismograms, the receivers
were placed on the seafloor (OBN geometry). The tests were conducted using
a distributed computing approach facilitated by MPI, enabling domain decom-
position across four Nvidia c© Tesla c© V100 SXM2 32GB devices, with NVLink
disabled. The runtime results presented in this section are again averaged over
five runs conducted under identical conditions and parameters.

The approaches underwent a new tuning process to ensure that optimal tile
sizes were used in each of the kernels for this model. The dimension (16,4,4)
was used for the V kernel in both approaches, and the dimension (32,4,4) was
used for the Sig kernel in the Tiling approach as well as for the two new kernels
generated by the fission process in the Sig Fission approach.

Table 11 compares the execution times of the three tested approaches. The
results indicate a reduction in the total execution time of the operator in the
two optimized approaches, which were once again able to achieve performance
gains when compared to the Naive version.

Enhancing a GPU-Based Wave Propagation Application 33

Table 10. SEG/EAGE 3D Salt model parameters for multi GPU executions.

Parameter Description Value

nx Number of points in X 400
ny Number of points in Y 400
nz Number of points in Z 505
dx Spacing in X 19.87 m
dy Spacing in Y 19.87 m
dz Spacing in Z 7.96 m
tn Simulation time 4000 ms
dt Discretization timestep size 1.025 ms
nbl Number of boundary layers 50
so Space order 16

The significantly lower gains compared to those obtained in the multi-GPU
execution of Table 9 can be partially explained by the size of the computational
mesh used in both experiments. The experiments with the SEG/EAGE 3D Salt
model used smaller values in all three dimensions compared to the experiment
in Table 9. This reduction in the stencil size naturally leads to a reduced work-
load, which can mitigate the efficiency of the proposed solutions. Additionally,
this reduction in the spatial dimensions leads to a lower resource occupancy
rate on the devices. Consequently, the communication overhead between devices
becomes a more significant fraction of the total processing employed in the exe-
cution.

Profile reports obtained from NSYS indicate that the multi-GPU execution of
Sect. 3.2 incurred a 5.1% processing overhead due to device-to-device communi-
cation facilitated by a dedicated CUDA stream. However, in the tests conducted
in this section using the SEG/EAGE 3D Salt model, the percentage of com-
munication overhead between devices was 13.4%, significantly higher than that
observed in the test with 820 elements in each dimension. This increased commu-
nication overhead limits the potential performance gains, as more time is spent
on non-kernel processing, reducing the sensitivity of the final results to positive
changes made within these loop nests.

Nevertheless, the Tiling and Sig Fission approaches demonstrated their
capacity to harness performance gains compared to the Naive version without
compromising the integrity of the solution. This result corroborates the validity
of the proposed solutions and reaffirms the potential gains of the implemented
modifications.

34 G. Costa et al.

Table 11. Elapsed times for each approach running on 4 GPUs. nx 400, ny 400, nz
505, tn 4000, so 16.

Approach Elapsed Time Saved

Naive 137.88 s –
Tiling 112.52 s 18%
Sig Fission 117.42 s 15%

4 Conclusions

Based on the results collected by the NCU profiler, as well as the average exe-
cution times obtained, it is possible to assert that the two developed approaches
were able to overcome some of the limitations of the Naive approach and deliver
positive results. Both loop transformation techniques used positively impacted
the application, with loop tiling taking advantage of the data locality principle
and making better use of cache memory, and loop fission increasing computa-
tional performance in the Sig kernel.

The Sig Fission approach is the one that achieves the best results by com-
bining the strategies that obtained the most expressive results in the two main
kernels of the operator: using loop tiling of dimensions (32, 4, 4) in the V kernel
and using loop fission separating the cross derivatives followed by the use of loop
tiling of dimensions (32, 4, 4) in the Sig kernels.

The replicated tests on multiple GPUs maintained a similar gain pattern
as those conducted on a single GPU, demonstrating the scalability of the pro-
posed solutions. The sustained performance gains in the experiments with the
SEG/EAGE 3D Salt model, albeit to a lesser extent, also emphasize the effective-
ness of the developed work in achieving improved performance, despite variations
in the computational mesh format and the utilized model.

Acknowledgements. This work was developed in partnership between SENAI
CIMATEC and PETROBRAS. The authors acknowledge PETROLEO BRASILEIRO
S.A and the Agência Nacional de Petróleo, Gás Natural e Biocombustível (ANP), for
their support and investment in research and development.

References

1. Kukreja, N., Louboutin, M., Vieira, F., Luporini, F., Lange, M., Gorman, G.:
Devito: automated fast finite difference computation. In: 2016 Sixth International
Workshop on Domain-Specific Languages and High-Level Frameworks for High
Performance Computing (WOLFHPC), pp. 11–19. IEEE (2016)

2. Lange, M., et al.: Devito: towards a generic finite difference DSL using symbolic
python. In: 2016 6th Workshop on Python for High-Performance and Scientific
Computing (PyHPC), pp. 67–75. IEEE (2016)

Enhancing a GPU-Based Wave Propagation Application 35

3. OpenACC. OpenACC Programming and Best Practices Guide (2022). https://
www.openacc.org/sites/default/files/inline-files/openacc-guide.pdf

4. Jeffers, J., Reinders, J.: High Performance Parallelism Pearls Volume Two: Mul-
ticore and Many-Core Programming Approaches. Morgan Kaufmann, Burlington
(2015)

5. McKinley, K.S., Carr, S., Tseng, C.-W.: Improving data locality with loop trans-
formations. ACM Trans. Program. Lang. Syst. (TOPLAS) 18(4), 424–453 (1996)

6. Kandemir, M., Ramanujam, J., Choudhary, A.: Improving cache locality by a com-
bination of loop and data transformations. IEEE Trans. Comput. 48(2), 159–167
(1999)

7. Virieux, J.: P-SV wave propagation in heterogeneous media: velocity-stress finite-
difference method. Geophysics 51(4), 889–901 (1986)

8. Louboutin, M., et al.: Scaling through abstractions-high-performance vectorial
wave simulations for seismic inversion with devito. arXiv preprint arXiv:2004.10519
(2020)

9. Jesus, L., Nogueira, P., Speglich, J., Boratto, M.: GPU performance analysis for
viscoacoustic wave equations using fast stencil computation from the symbolic
specification. J. Supercomput. 1–16 (2023)

10. Nvidia. Nsight Systems: Developer Tools Documantation (2023). https://docs.
nvidia.com/nsight-systems/UserGuide/index.html

11. Nvidia. Nsight Compute: Developer Tools Documantation (2023). https://docs.
nvidia.com/nsight-compute/NsightCompute/index.html

12. Cardoso, J.M.P., de Figueired Coutinho, J.G., Diniz, P.C.: Embedded Computing
for High Performance: Efficient Mapping of Computations Using Customization,
Code Transformations and Compilation, pp. 137–183. Morgan Kaufmann, Burling-
ton (2017)

13. Aminzadeh, F., Burkhard, N., Long, J., Kunz, T., Duclos, P.: Three dimensional
SEG/EAEG models-an update. Leading Edge 15(2), 131–134 (1996)

https://www.openacc.org/sites/default/files/inline-files/openacc-guide.pdf
https://www.openacc.org/sites/default/files/inline-files/openacc-guide.pdf
http://arxiv.org/abs/2004.10519
https://docs.nvidia.com/nsight-systems/UserGuide/index.html
https://docs.nvidia.com/nsight-systems/UserGuide/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html

Acceleration of High-Dimensional
Quantum Computing Simulator

QuantumSkynet

Hernán M. Zuluaga-Bucheli1,2(B) , Andres Giraldo Carvajal1 ,
and Jose A. Jaramillo-Villegas1,2

1 Universidad Tecnologica de Pereira, Pereira, Colombia
herzulu@utp.edu.co

2 Laboratory for Research in Complex Systems, Menlo Park, CA, USA

Abstract. This paper focuses on the acceleration of QuantumSkynet,
a high-dimensional quantum computing simulator. QuantumSkynet
enables operations with qudits (generalized quantum bits), by execut-
ing quantum circuits, which are fundamentally based on tensor products
and Kronecker operations. However, these integral functions within the
simulator are currently not optimized. The proposed acceleration method
involves a combination of hardware and software enhancements. Hard-
ware acceleration will be achieved through the use of graphical processing
units (GPUs) and multicore processing units, while software acceleration
will be implemented via the Eigen library. These enhancements can sig-
nificantly improve the performance of QuantumSkynet, with speedups of
up to 100x. This makes it possible to simulate larger quantum systems
and algorithms, which is essential for the development of practical quan-
tum computing applications. For example, the proposed method could be
used to accelerate the simulation of quantum systems with many qubits,
or quantum algorithms with numerous steps. The results of this study
suggest that the proposed method can be used to accelerate the perfor-
mance of future high-dimensional quantum computing simulators and to
enable the development of practical quantum computing applications.

Keywords: QuantumSkynet · high-dimensional Quantum Computing
simulator · Qudit operations · Quantum circuits · Tensor products ·
Kronecker operations · Hardware acceleration · Software acceleration ·
Graphical Processing Units (GPUs) · Multicore processing units ·
Hyperthreading · CPU processors · Performance optimization

1 Introduction

High-dimensional quantum computing presents a promising frontier in the com-
putational world, with the potential to address problems of a complexity that
classical computers cannot handle [4]. In this arena, quantum simulators play

Supported by Universidad Tecnologica de Pereira.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 36–49, 2024.
https://doi.org/10.1007/978-3-031-52186-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_3&domain=pdf
http://orcid.org/0000-0002-0925-8329
http://orcid.org/0000-0001-6605-3613
http://orcid.org/0000-0003-0436-3039
https://doi.org/10.1007/978-3-031-52186-7_3

Acceleration of High-Dimensional Quantum Computing Simulator 37

a pivotal role, enabling researchers to model and investigate quantum systems.
One such quantum computing simulator is QuantumSkynet [5]. It allows for
operations with qudits and executes quantum circuits based on tensor products
and Kronecker operations. Notably, QuantumSkynet has been instrumental in
the classification of quantum measurements with qudits [14].

However, a significant challenge lies in the fact that QuantumSkynet has not
been fully optimized to harness the computational power of existing hardware
and software tools. This has imposed restrictions on its efficiency and the scale
of simulations it can handle.

In response to this, we present an approach to optimize QuantumSkynet
through hardware and software enhancements. On the software side, leveraging
the Eigen framework, a robust C++ library for linear algebra, we have accel-
erated the processing in QuantumSkynet [2]. On the hardware side, we have
utilized Graphics Processing Units (GPUs) for parallel computing tasks and
multicore processing units with Hyperthreading technology to create virtual
computing units and allow shared unused functional units between processes
[6–8,15,16].

In response to this, we present an approach to optimize QuantumSkynet
through hardware and software enhancements. Leveraging the Eigen framework,
a robust C++ library for linear algebra, we have accelerated the processing in
QuantumSkynet [2]. On the hardware side, we have exploited the capabilities
of Graphics Processing Units (GPU) processing units [6–8,15,16]. Concurrently,
on the software side, we have utilized Amazon Web Services (AWS) instances
for additional computational resources.

The objective of these enhancements is to markedly reduce the runtimes of
QuantumSkynet’s functions, thereby augmenting the efficiency of the quantum
computing simulator. This is expected to make QuantumSkynet more robust
and faster, capable of handling larger and more complex quantum simulations.

In the subsequent sections, we detail our acceleration methodology, present
the performance test results of the optimized QuantumSkynet, and discuss these
findings. We believe this optimization of QuantumSkynet holds significant impli-
cations for future advancements in quantum computing research.

2 Quantum Computing Simulator

A quantum computing simulation system is a computer program that simulates
the behavior of quantum systems and the execution of quantum algorithms on
a classical computer [1]. These systems are valuable because current quantum
computers have limited processing capabilities and are prone to errors. Hence,
simulations on a classical computer provide an effective means of testing and
developing algorithms before implementing them on a quantum computer. In
addition, simulation systems enable experimentation with various configurations
and parameters to optimize performance and accelerate the development of new
quantum applications.

High-dimensional quantum computing, extends the traditional 2-dimensional
quantum computing (qubits) to a complex d-dimensional Hilbert space. This

38 H. M. Zuluaga-Bucheli et al.

higher dimensionality allows more information to be encoded into each quantum
state and can potentially offer computational advantages over standard qubit
systems.

Key elements of quantum computing include:

– Outer Product: This operation measures the interaction between two quan-
tum states. The computational complexity associated with this function
within a high-dimensional quantum computing simulator is related to the
number of nested iteration cycles, in this case it has two cycles, so the total
number of operations to be performed is 2n where n is each element of the
matrix (1).

|Ψ〉 〈Φ| =
(

a
b

) (
c∗ d∗) =

(
ac∗ ad∗

bc∗ bd∗

)
. (1)

– Tensor Product: This operation is used to measure the interaction between
two or more high-dimensional quantum states (2).

[
a
b

]
⊗

[
d
e

]
=

⎡
⎢⎢⎣

ad
ae
bd
be

⎤
⎥⎥⎦ , (2)

– Pauli Matrices and Their Generalizations: The Pauli matrices can be
generalized to high dimensions using the Weyl adjoint operator (3). This
allows for the generalization of the Pauli X, Y, and Z gates to high dimensions
(4).

W †
q,p =

d−1∑
k=0

ωkq |k ⊕ p〉 〈k| , (3)

Thus, obtaining the generalization of the gates (4):

Im = W †
0,0

Xm = W †
0,m

Zm = W †
m,0

Y m = i(m%d) W †
m,m.

x

(4)

– High-Dimensional Quantum Gates: Quantum gates for high dimensions,
such as the Generalized Pauli gates (5), (6), (7), the Generalized Quantum
Fourier Transform, and the Generalized Controlled Gate are crucial in high-
dimensional quantum computing.

Acceleration of High-Dimensional Quantum Computing Simulator 39

• Generalized Pauli matrix X To find the Generalized Pauli matrix X,
we must replace the variables q, p by 0, m in the Weyl adjoint operator
Eq. (5):

Xm = W †
0,m (5)

The code associated with this operation has a complexity O(n3 + n2)
where n is the number of dimensions.

• Generalized Pauli matrix Z To find the Generalized Pauli Z matrix,
we can replace the variables q, p by m, 0 in the Weyl adjoint operator
Eq. (6):

Zm = W †
m,0 =

d−1∑
k=0

ωkmPk (6)

The code associated with this gate has a complexity O(n3 + 2n2).
• Generalized Pauli matrix Y To find the Generalized Pauli Y matrix,

the variables q, p must be replaced by m, m in the Weyl adjoint operator
equation, and it must also be multiplied by a global cyclic phase of im%b

(7).

Y m = i(m%d) W †
m,m (7)

In summary, the 4 generalized gates within the high-dimensional comput-
ing simulator are the most important feature, since they clearly show the
relationship between Weyl matrices and Pauli gates. Generating a solid
base to make quantum circuits where gates are applied in high dimen-
sions.

• Generalized Quantum Fourier Transform It is part of the set of
gates that are applied to a qubit and is implemented in the simulator as
the generalized quantum Fourier transform (GQFT).
The code associated with this function considers the order, whether direct
or inverse, which generates a quadratic complexity given by: O(n2) where
n is the number of dimensions.

• CNOT the CNOT gate creates a qubit that controls another qubit, this
means that if the control qubit is equal to one, the controlled qubit will
be negated. The matrix associated with the CNOT gate is defined by a
4 × 4 matrix, like this (8):

CNOT (|1〉 ⊗ |0〉) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ (8)

• Generalized Controlled Gate The quantum control gate for two
dimensions (CNOT) can be applied to more than one qubit through mod-
ular addition. For example, if you have two qubits |x〉 and |y〉, where the

40 H. M. Zuluaga-Bucheli et al.

control qubit is |x〉, the result would be equal to the following multipli-
cation (9):

CNOT |x〉 |y〉 = |x〉 |x ⊕ y〉 , (9)

• SWAP To exchange the content of two qubits, the SWAP gate can be
used, whose associated matrix is as follows (10):

SWAP =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ , (10)

Up to this point, a summary of the different quantum gates was presented,
these are presented to perform the optimization of the compendium of
gates supported by the simulator.

3 Acceleration Methodology

The acceleration methodology for the high-dimensional QuantumSkynet quan-
tum computing simulator is meticulously designed to make effective use of the
Eigen library, multithreading, and CUDA [3,11]. The Eigen library, renowned
for its efficient matrix and vector operations, introduces concepts such as Lazy
Evaluation, Vectorization, and Broadcasting. Lazy Evaluation minimizes unnec-
essary computations by intelligently determining the need for temporary vari-
ables at compile time. Vectorization optimizes the simulator by transforming it
from a Single Instruction, Single Data (SISD) to a Single Instruction, Multiple
Data (SIMD) paradigm, effectively utilizing the SIMD capabilities of modern
CPUs for enhanced performance. Broadcasting, on the other hand, allows for
operations between matrices of different dimensions by conceptually expanding
the smaller matrix, thereby ensuring smooth and efficient computations.

In addition to the Eigen library, the methodology also incorporates multi-
threading to exploit the multicore architectures of modern CPUs. This enables
the simultaneous computation of multiple quantum states, thereby significantly
improving the scalability and performance of QuantumSkynet. Furthermore, the
integration of CUDA allows the simulator to leverage the computational power
of NVIDIA GPUs for highly parallel tasks such as large matrix and vector oper-
ations [9,10]. Although the CUDA memory management model presents unique
challenges, careful design and optimization of the QuantumSkynet simulator can
result in substantial performance gains.

Overall, this combination of techniques constitutes a comprehensive accel-
eration methodology that significantly enhances the computational efficiency of
high-dimensional quantum computing simulations in QuantumSkynet, making
it a powerful tool for exploring the complex world of quantum computing.

Acceleration of High-Dimensional Quantum Computing Simulator 41

3.1 Lazy Evaluation

Eigen has an intelligent model based on the compile time, evaluating for each
sub-expression if it is necessary to use temporary variables, which represent
processing time and additional storage space. Eigen automatically determines,
using an Expression-Templates-Based template, which stores different models of
expressions and their storage needs, according to their underlying operations,
these templates work on sub-expressions, this model allows a considerable accel-
eration.

3.2 Vectorization

This concept comes from converting a program that by default is SISD salary
implemented to a SIMD vector implementation. In general, most computers
today have vector implementations that allow them to optimize the resources
available to them.

To execute these SIMD-type functions, computational systems have sets of
subroutines that describe operations external to the processor with the aim of
sending the same operation to the different processing units within the CPUs,
but each unit operates with different data so that tries to use as little single-
threaded processing as possible.

3.3 Broadcasting

When operating with matrices, their dimensions might be different, so operat-
ing them conceptually is impossible. To solve this issue, the concept of Array
Broadcast arises, which is based on increasing the dimension of the lower matrix
to have the possibility of operating them, Eigen has implemented this concept
within its library to give developers fluidity.

3.4 Introduction to the Experiments

In the process of developing and implementing efficient and accelerated algo-
rithms for complex operations, a rigorous empirical evaluation is essential to
compare the performance and effectiveness of different versions of the algo-
rithms. The experimental methodology presented in this section addresses two
key stages:

1. Creation of Accelerated Algorithms: The first stage involved the design
and implementation of new accelerated algorithms, applying optimizations at
both the hardware and software levels.

2. Evaluation Through Test Functions: The second stage consisted of
developing specific test functions to evaluate both the standard and accel-
erated versions of the algorithms. Tests were conducted using vectors of
varying dimensions, allowing for a detailed and realistic comparison. For
example, while tests of the standard version of the base vector algorithm

42 H. M. Zuluaga-Bucheli et al.

were performed with dimensions ranging from 50 to 260000000, the acceler-
ated versions allowed for testing with even larger dimensions, reaching up to
570000000.

The primary goal of these experiments was to ascertain the effectiveness of
the proposed enhancements, analyzing performance and limitations under dif-
ferent scenarios and conditions. The subsequent sections will detail the design,
procedure, measurement, and analysis of these experiments, offering a compre-
hensive perspective on the adopted methodology and the results obtained.

3.5 Experimental Design

Hardware Configuration. The experiments were conducted on two specific
cloud-based architectures, G4ad and G4dn instances, both configured with 1
GPU, 4 vCPUs, and 16 GB of RAM to ensure equality in the testing environ-
ment.

– G4ad Instances: Utilizing AMD Radeon Pro V520 GPUs and AMD EPYC
second-generation processors, these instances were configured with 1 GPU, 4
vCPUs, and 16 GB of RAM. They are suitable for various graphical applica-
tions and provide 25 Gbps networks and 2.4 TB of NVMe-based local SSD
storage.

– G4dn Instances: Employing NVIDIA Tesla GPUs, these instances were also
configured with 1 GPU, 4 vCPUs, and 16 GB of RAM. They feature high-
bandwidth networking and robust floating-point capabilities, with each GPU
having 16 GiB of GDDR6 memory.

The identical configuration of these instances was integral to providing a
robust and consistent platform for running the algorithms, ensuring accurate
and comparable results across the different versions and dimensions tested. Uti-
lizing these specific cloud-based architectures allowed for flexibility and scalabil-
ity in conducting the experiments, accommodating the extensive range of vector
dimensions that were assessed.

4 Results

This section presents a comparative analysis of the performance of the acceler-
ated version of the QuantumSkynet simulator on two different hardware archi-
tectures: Intel and AMD. The analysis focuses on the speedup rates achieved
in various operations that are critical to the simulator due to their substantial
impact on its overall computational complexity. Speedup rates provide a measure
of performance improvement obtained with the accelerated version compared to
a non-accelerated one. A detailed examination of these rates can reveal how
effectively the accelerated simulator performs computations faster and, in cer-
tain instances, extends its storage capacity on different hardware architectures.
The specific results and discussions of speedup rates for each operation tested
on Intel and AMD architectures will be detailed in the following sections.

Acceleration of High-Dimensional Quantum Computing Simulator 43

Sum of Probabilities. The test set that was generated for both versions is
the same, although the accelerated version was able to trade up to 90% more
data. In the case of the sum of probabilities without accelerating, the dimension
interval ranges from a vector of size 1 to 12000. In the case of the accelerated
version, the dimension range grows exponentially from 1 dimension to 12000000,
which represents an increase of 1 to 10. The maximum number of dimensions it
can support the normal version is 12000, with a time of 41 seconds. The total
throughput considering the maximum amount of each test and time is 99% more
for the accelerated version on Intel and AMD architecture with GPU.

Sum of Probabilities: The speedup rates for both Intel and AMD are significantly
higher compared to other operations, especially for Intel. However, the variability
in speedup rates is also much higher, as indicated by the very long box in the
Intel (see Fig. 1).

Fig. 1. Comparison of speedup rates for the Sum of Probabilities using different vector
dimensions on Intel (blue) and AMD (orange) architectures. The x-axis represents the
logarithmic scale of dimensions, ranging from 50 to 12000, while the y-axis shows the
corresponding speedup rates. The graph offers insights into the relative performance
between the two architectures for this specific function. (Color figure online)

Vector Base. This function in its normal form has a linear complexity O(n),
where n is the number of dimensions. For the tests, this function achieved a
mark of 8 seconds to generate vectors of 26000000 dimensions. In contrast, the
accelerated version reached a maximum amount of 57 million in dimensions

44 H. M. Zuluaga-Bucheli et al.

in a time of 8 s. This means that the accelerated version doubles the number
of dimensions with which it can operate. This represents an acceleration and
performance improvement of 46%.

Speedup Rate Base Vector: The speedup rates for Intel are generally lower than
for AMD, and there’s a large variability in the Intel speedup rates, as indicated
by the long box in the figure (see Fig. 2).

Fig. 2. Comparison of speedup rates for vector-based calculations across various dimen-
sions (logarithmic scale) using Intel and AMD architectures. The x-axis represents the
vector dimensions in a logarithmic scale, ranging from 50 to 100000, allowing for direct
comparison across a wide range of sizes. The y-axis indicates the speedup rate, with the
blue line depicting the performance for Intel and the orange line for AMD. The graph
illustrates the relative efficiencies of these architectures in handling vector calculations.
(Color figure online)

Product V ector × Matrix. This test was developed to measure the process-
ing capacity for the product function between a vector and a matrix. The test
was performed in principle for the version without accelerating, with a set of
matrices where the maximum processing capacity was from the operation of
vectors and matrices of dimension 1 to 120. Each dimension is represented in
vector form of size n and matrix with size n × n. The same dataset was used
for accelerated version testing. In this version, it could be evidenced that you
can trade with a higher number of dimensions, compared to the non-accelerated
version, which had a maximum dimension of 120, which had a runtime of 0.05 s.
As for the accelerated version, it allowed trading a maximum number of 15000
dimensions, with a time of 4.84 s. This represents a yield improvement of 117%.

Acceleration of High-Dimensional Quantum Computing Simulator 45

Matrix × Matrix Product. The product function of an array by an array in
general terms allows operating arrays of dimensions of size n×n. In the case of not
accelerated and the accelerated this size is proportional, so that the dimension of
the test matrices goes from 2 to 1592, this allows us to assert that this function
is constant in the number of dimensions. Now, the difference lies in the amount
of time it takes each to operate. In the case of the non-accelerated function, it
obtained a score of 122 s. In contrast, the accelerated version obtained a time of
62 s. This evidence allows verifying the improvement in time of the accelerated
version, which was of 30%.

Matrix × Matrix Product: The speedup rates for both Intel and AMD are
relatively low compared to other operations, and the variability in speedup rates
is also relatively low, as indicated by the short boxes in the figure (see Fig. 3).

Fig. 3. Comparison of speedup rates for the Matrix-Matrix Product operation using
different matrix dimensions on Intel (blue) and AMD (orange) architectures. The x-axis
represents the logarithmic scale of matrix dimensions, ranging from 2 to 1592, while
the y-axis depicts the corresponding speedup rates. The graph illustrates the behavior
of the function, shedding light on the efficiency and performance characteristics of both
architectures for this particular computation. (Color figure online)

External Product. The external product is an operation that is applied
between two arrays of dimension n × n, where each represents, in the Dirac
notation, it BRA 〈φ| and its KET |ψ〉. In the tests carried out, the acceler-
ated version was examined with a set of arrays of dimensions of 2 × 2 up to
15092 × 15092. The amount of time it took to trade was 25 s. As for the acceler-
ated version, it allowed us to exceed the maximum number of dimensions, since
it made it possible to evaluate arrays of dimension 2 × 2 up to 20092 × 20092,

46 H. M. Zuluaga-Bucheli et al.

implying a storage improvement of 24%. As for how long it took you to solve, this
is 15 s. In general, the acceleration of this matrix allows achieving two specific
goals which are performance improvement regarding time and space.

External Product: The speedup rates for Intel are generally higher than for
AMD, but there’s a large variability in the Intel speedup rates, as indicated by
the height of the box in the figure (see Fig. 4).

Fig. 4. Comparison of speedup rates for the External Product operation using dif-
ferent vector dimensions on Intel (blue) and AMD (orange) architectures. The x-axis
represents the logarithmic scale of vector dimensions, ranging from 2 to 15092, while
the y-axis highlights the corresponding speedup rates. The graph demonstrates the
comparative performance of both architectures, illuminating the complex relationships
between dimensionality and computation efficiency in the context of External Product
calculations. (Color figure online)

Kronecker Product. Testing for the Kronecker product [12], was performed
for the non-accelerated version with dimension arrays from 5×5 to 125×125, with
a maximum time of 22 s. In the accelerated version, it was possible to expand
the maximum size of the dimensions, from 5 × 5 to 150 × 150, with a time for
the last one of 8 s. The performance improvement that was obtained regarding
space is 17% and the time improvement is 36%. This represents 218% of the
total acceleration obtained by the accelerated version in an Intel architecture
with GPU.

Acceleration of High-Dimensional Quantum Computing Simulator 47

Kronecker Product: The speedup rates for Intel are generally higher than for
AMD, with a larger variability in the Intel speedup rates, as indicated by the
long box in the figure (see Fig. 5).

Fig. 5. Comparison of speedup rates for the Kronecker Product operation using Intel
(blue) and AMD (orange) architectures across different vector dimensions. The x-axis
illustrates the logarithmic scale of vector dimensions, ranging from 5 to 125, while the
y-axis delineates the associated speedup rates. This representation offers an insightful
analysis of the behavior and efficiency of both architectures in Kronecker Product
computations, accentuating the interplay between dimensionality and performance.
(Color figure online)

5 Conclusions and Future Work

This paper aimed to accelerate the high-dimensional quantum computing sim-
ulator that would allow scientists to evaluate, analyze and fine-tune high-
dimensional quantum algorithms.

The main contribution of this project can be divided into two main aspects,
on the one hand, the acceleration of the high-dimensional quantum gates
included in the simulator as a result of the research carried out on this subject
and the other, the acceleration of quantum gates and other high-dimensional
functions that finally allowed a functional and stable version of the simulator.

This confirms the initial hypothesis that it is possible to improve the perfor-
mance of the high-dimensional quantum computing simulator using CPU accel-
eration, GPU.

48 H. M. Zuluaga-Bucheli et al.

– Apply parallelization techniques by CPU and GPU, to accelerate the process-
ing of gates or functions that demand greater memory capacity and greater
runtime.

– Using dense matrix processing techniques, with the Eigen framework, pro-
vides better performance results in terms of time and space used to perform
calculations.

– Using GPU to accelerate algorithms is a technique that, as far as the problem
of dense arrays is concerned, generates a reduction in computational complex-
ity.

– There is a relationship between the number of dimensions and the number of
qubits, where it is better to grow in number of dimensions than in place of
qubits.

5.1 Future Work

Several lines of research remain open that can extend the scope of this project,
for example in areas such as high-performance computing, quantum comput-
ing, high-dimensional quantum machine learning, drug discovery using quantum
algorithms, among others. Some work based on QuantumSkynet that could be
carried out in the future are:

– Take advantage of simulator acceleration to test different quantum algorithms
or subroutines associated with high-dimensional quantum computing appli-
cations.

– Add a support module to make the distinction between pure and mixed states,
in addition to the simulation of different levels of quantum decoherence, to
provide results more similar to those of a physical quantum computer.

– Add a module that allows noise simulation in quantum circuits.
– Analysis and incorporation of new acceleration techniques through reconfig-

urable computer systems.

References

1. André, T., Sjöqvist, E.: Dark path holonomic qudit computation. Phys. Rev. A
106(6), 062402 (2022). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.
106.062402

2. Avramouli, M., Savvas, I.K., Vasilaki, A., Garani, G.: Unlocking the potential of
quantum machine learning to advance drug discovery. Electronics (Switzerland)
12(11), 2402 (2023). Multidisciplinary Digital Publishing Institute. https://www.
mdpi.com/2079-9292/12/11/2402

3. Criado-Ramón, D., Ruiz, L.B.G., Pegalajar, M.C.: CUDA-bigPSF: an optimized
version of bigPSF accelerated with graphics processing Unit. Expert Syst. Appl.
230, 120661 (2023). https://doi.org/10.1016/j.eswa.2023.120661

4. Daley, A.J., et al.: Practical quantum advantage in quantum simulation. Nature
607(7920), 667–676 (2022). https://www.nature.com/articles/s41586-022-04940-6

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.106.062402
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.106.062402
https://www.mdpi.com/2079-9292/12/11/2402
https://www.mdpi.com/2079-9292/12/11/2402
https://doi.org/10.1016/j.eswa.2023.120661
https://www.nature.com/articles/s41586-022-04940-6

Acceleration of High-Dimensional Quantum Computing Simulator 49

5. Giraldo-Carvajal, A., Jaramillo-Villegas, J.A.: QuantumSkynet: a high-
dimensional quantum computing simulator. In: Optics InfoBase Conference
Papers (2020)

6. Intel Corporation. (n.d.). Tecnoloǵıa Hyper-Threading Intel®. https://www.
intel.la/content/www/xl/es/architecture-and-technology/hyper-threading/hyper-
threading-technology.html

7. Hall, M.: Intel - History, Products, & Facts - Britannica (2021). https://www.
britannica.com/topic/Intel

8. INTEL. ¿Que es Hyper-Threading? - Intel (2020). https://www.intel.la/content/
www/xl/es/gaming/resources/hyper-threading.html

9. Kang, D.K., Kim, C.W., Yang, H.I.: GPU-based parallel computation for structural
dynamic response analysis with CUDA. J. Mech. Sci. Technol. 28(10), 4155–4162
(2014). https://link.springer.com/article/10.1007/s12206-014-0928-2

10. Kim, C.W.: Use of distributed-memory parallel processing in computing the
dynamic response of the passenger-car system. Proc. Inst. Mech. Eng. Part
D J. Automobile Eng. 220(10), 1373–1381 (2006). https://doi.org/10.1243/
09544070JAUTO286

11. Manathunga, M., Aktulga, H.M., Götz, A.W., Merz, K.M.: Quantum mechan-
ics/molecular mechanics simulations on NVIDIA and AMD graphics processing
units. J. Chem. Inf. Model. 63(3), 711–717 (2023). https://pubs.acs.org/doi/abs/
10.1021/acs.jcim.2c01505

12. Poltronieri Vargas, J.: Productos de Kronecker. Revista de Matematica: Teoria y
Aplicaciones 3(1), 45–60 (1996)

13. Givi, P., et al.: Quantum speedup for aeroscience and engineering. AIAA J. 58(8),
3715–3727 (2020)

14. Useche, D.H., Giraldo-Carvajal, A., Zuluaga-Bucheli, H
15. Seen, W.M., Gobithaasan, R.U., Miura, K.T.: GPU acceleration of Runge Kutta-

Fehlberg and its comparison with Dormand-Prince method. AIP Conf. Proc. 1605,
16–21 (2014)

16. Intel Corporation. (n.d.). Tecnologia Hyper-Threading Intel®. https://www.
intel.la/content/www/xl/es/architecture-and-technology/hyper-threading/hyper-
threading-technology.html

https://www.intel.la/content/www/xl/es/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.la/content/www/xl/es/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.la/content/www/xl/es/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.britannica.com/topic/Intel
https://www.britannica.com/topic/Intel
https://www.intel.la/content/www/xl/es/gaming/resources/hyper-threading.html
https://www.intel.la/content/www/xl/es/gaming/resources/hyper-threading.html
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s12206-014-0928-2
https://doi.org/10.1243/09544070JAUTO286
https://doi.org/10.1243/09544070JAUTO286
https://pubs.acs.org/doi/abs/10.1021/acs.jcim.2c01505
https://pubs.acs.org/doi/abs/10.1021/acs.jcim.2c01505
https://www.intel.la/content/www/xl/es/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.la/content/www/xl/es/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.la/content/www/xl/es/architecture-and-technology/hyper-threading/hyper-threading-technology.html

Multi-objective Analysis of Power
Consumption and Quality of Service
in Datacenters for Effective Demand

Response

Jonathan Muraña(B) and Sergio Nesmachnow

Universidad de la República, Montevideo, Uruguay
{jmurana,sergion}@fing.edu.uy

Abstract. This article presents a multi-objective optimization approach
aimed at minimizing the power consumption while mitigating the qual-
ity of service degradation in datacenter operations. The study holds sig-
nificant relevance for datacenter and supercomputing facilities to effec-
tively participate in the electricity market, especially in demand response
events. The research explores an on/off energy-aware strategy combined
with five list scheduling heuristics, comparing their efficacy to solve the
proposed operation problem. The obtained results demonstrate that the
proposed approach provides decision-makers a diverse set of options tai-
lored to their specific business needs in different situations. The com-
parative analysis reveals that strategies that prioritize recently arrived
tasks with a high probability of being completed on time, computed bet-
ter solutions in scenarios where larger power consumption reductions are
requested. The proposed heuristics are useful methods to assist datacen-
ter operators for participating in demand response programs.

Keywords: Green computing · High performance Computing ·
Datacenter operation · Quality of service · Multi-objective analysis

1 Introduction

With the increasing popularity of demand response programs, large consumers
face the challenge of adopting intelligent planning strategies to effectively lever-
age the new business opportunities presented in the electricity market [14,24].
However, the integration into the electricity market can introduce complexities if
the potential impacts on normal operations are not carefully considered. In this
context, conducting a comprehensive multi-objective analysis becomes crucial
for both automated decision-making and post-evaluation processes.

Multi-objective scheduling plays a crucial role in maximizing the computing
capabilities of computing infrastructures while simultaneously meeting business
needs. Multi-objective scheduling has been extensively studied in the literature
[6,11,13,20]. By leveraging the concept of the Pareto front, it becomes possible to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 50–65, 2024.
https://doi.org/10.1007/978-3-031-52186-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_4&domain=pdf
http://orcid.org/0000-0002-9328-2320
http://orcid.org/0000-0002-8146-4012
https://doi.org/10.1007/978-3-031-52186-7_4

Multi-objective Power and QoS Demand Response in Datacenters 51

narrow down the solution space to high-quality solutions. This enables effective
comparison of various techniques and facilitates accurate trade-off decisions.

This article focuses on the challenge of minimizing two objectives in data-
center operation: the power consumption and the quality of service (QoS) degra-
dation. Considering the inherent conflict between these objectives, the solution
to this problem is a Pareto front that encompasses a range of trade-off values.
To solve the considered problem, the proposed approach combines an on-off
energy-aware scheduling strategy with efficient greedy list-scheduling heuristics
[9,12,21].

The manuscript is organized as follows: Sect. 2 provides a detailed descrip-
tion of the multi-objective problem addressed in this study. Subsequently, Sect. 3
presents a review of related work in the field. Section 4 outlines the methodology
employed to resolve the problem. The experimental evaluation of the proposed
methodology is discussed in Sect. 5. Finally, Sect. 6 concludes the article by sum-
marizing the key findings and outlining potential directions for future research.

2 Power Consumption and QoS Degradation Reduction
Problem in Datacenters for Demand Response

This section described the addressed problem and presents its mathematical
formulation.

2.1 Multi-objective Energy Management in Demand Response

Demand response refers to the practice of consumers to adapt their electric-
ity consumption in response to either a rise in electricity prices or incentives
provided to encourage lower or higher electricity usage [1,24]. The paradigm is
applicable to small (i.e., residential) consumers, but it is more relevant when large
consumers are included as active agents in demand response events. Datacenters
are a specific case of large electricity consumer that are able to participate in
demand response events by providing the service of managing and adjusting elec-
tricity consumption to given signals by the electricity market operator/provider.
Datacenters can also incorporate and manage the generation and use of renew-
able energy sources [23]. When reductions are requested, datacenters can manage
electricity consumption by deferring tasks or turning off non-essential computa-
tional infrastructure during the demand response (peak) event. This reduction
results in a reduction in the processing capacity of the computational infras-
tructure and an eventual QoS degradation. After the peak period finishes, the
datacenter returns to normal operation, resuming the regular energy usage, turn-
ing on servers, and executing deferred tasks.

Datacenters usually evaluate their potential participation in demand response
events by employing a one-dimensional utility function. This utility function con-
siders the gains received from the electricity provider and the monetary losses
incurred as a result of service level agreements violations with their clients
[2–4,30]. The utility function provides a simple manner to assess the benefits

52 J. Muraña and S. Nesmachnow

of the datacenter participation in the response event. A better option for char-
acterizing the datacenter participation in the response event is via multi-criteria
analysis. Applying multi-objective (Pareto) comparison provides a more com-
prehensive perspective of the interplay and trade-offs between monetary gains
and provided QoS, which can severely affect the reputation and have a severe
negative implications for the business.

The multi-objective analysis presented in this article provides decision-
makers with a broad range of trade-off levels between power reduction and
quality of service, in order to meet their specific business needs in different
situations. Furthermore, the analysis allows for the consideration of several rele-
vant factors such as: i) datacenter reputation, since having knowledge about the
impact on QoS helps to prevent the image of the datacenter from being affected,
ii) sustainability, allowing ecological goal to be weighted and even prioritized
over monetary incomes (profit), and iii) emergency situations, where reducing
power consumption is mandatory to guarantee a proper electricity supply for
other critical facilities.

Our previous work addressed the problem of demand response in multi-tenant
datacenters that operate in colocation mode [16,19]. The analysis were conducted
at two levels. On the higher level, the datacenter negotiates with its tenants to
achieve the best price for power consumption reduction. On the lower level, ten-
ants offered a price based on their convenience in terms of their profits, applying
single-objective optimization evaluated through simulation.

This article focuses on the optimization performed by a tenant that owns
its own computational infrastructure and serves multiple clients, following the
enterprise datacenter model [25]. Instead of applying a single-objective approach
(only considering profit), a multi-objective analysis is developed. The multi-
objective analysis takes into account the power consumption reduction and the
degradation of service quality as objective function. The next subsection defines
the specific problem addressed in this article.

2.2 Problem Overview

During demand response events, datacenters must reduce their power consump-
tion while simultaneously meeting the computing requirements of their clients.
On one hand, a datacenter operates with a defined set of tasks that must be
completed within a specific scheduling horizon. Each task is associated with a
deadline and penalty cost, which represents the financial compensation that the
datacenter must pay to clients (task owners) in the event of failing to meet
the agreed-upon completion time. On the other hand, the datacenter is also
mandated by the electricity provider to reduce its power consumption within a
specific interval during the scheduling horizon.

Figure 1 shows a comparison of the power consumption curve in two different
situations: business-as-usual operation and a demand response event. The power
curve was obtained using a datacenter simulator specifically designed for demand
response studies, introduced in our previous article [19]. In both business-as-
usual and demand response situation, the same set of tasks is considered.

Multi-objective Power and QoS Demand Response in Datacenters 53

Fig. 1. Comparison of datacenter power consumption curves between business-as-usual
operation (blue curve) and a participation in a demand response event (orange curve).
(Color figure online)

Figure 1 illustrates significant changes in the power consumption curve during
the demand response event, compared to the standard business-as-usual opera-
tion. Specifically, within the reduction interval [15, 45] the power consumption
is effectively reduced by 0.7 kW in the demand response situation. As a conse-
quence of this reduction, certain tasks experience delays in their execution. The
observed peak at the end of the reduction interval is a result of the execution of
delayed tasks.

2.3 Formulation

Formally, the problem is defined as a bi-objective optimization, considering the
following elements and objective functions:

– Let T be a set of time steps, T = {ti}, for i = 1 . . . M . The interval [0, tM]
defines the scheduling horizon of the problem.

– Let I ⊆ [0, tM] be the interval where the power consumption must be reduced
(i.e., the demand response interval)

– Let J be the set of tasks to be executed in [0, tM], J = 1, . . . , N
– Let dj be the deadline of the task j
– Let cj be the penalty cost of the task j.
– Let fj be the completion time of the task j in a task schedule S. If task j

is not completed in [0, tM] (because it is delayed in the computed schedule),
then fj = ∞.

– Let p(ti) be the power consumption in the time step ti, for a task schedule S.

54 J. Muraña and S. Nesmachnow

The bi-objective optimization problem proposes the simultaneous optimiza-
tion of two objective functions that evaluate the penalty cost and the power
consumption of the datacenter:

[penalty cost] min
N∑

j=1

1fj>dj
cj (1)

[power consumption] min max
ti∈I

{p(ti)} (2)

The first objective function is presented in Eq. 1; it aims at minimizing the
penalty cost. This cost corresponds to the summation of the penalty costs of the
tasks that finish after their deadlines. The second objective function, as described
in Eq. 2, aims at minimizing the maximum power consumption considering all
timesteps within the reduction interval. The function p(t) is computed using the
power consumption model in our previous article [18]. This model depends on
two key factors: the number of tasks being executed on the server and the type of
tasks, which can be categorized as either memory-intensive tasks, CPU-intensive
tasks, or a combination of both.

3 Related Work

Several articles have proposed energy-aware scheduling methods, including
heuristics, classical optimization strategies, and game theory methods for plan-
ning in datacenters and other high performance and distributed computing plat-
forms, under the smart grid paradigm.

Meng and Zeng [15] applied game theory to simulate the interaction between
an electricity retailer and its residential customers. The objective was to optimize
pricing for the electricity company while allowing customers to manage their
power consumption. The applied methods were a genetic algorithm for profit
maximization of the electricity company, and a linear programming model for
minimizing customers costs. Experiments conducted on a neighborhood with
1000 customers showed that customers using the proposed smart grid planning
scheme were able to reduce their energy bills compared to those using a business-
as-usual operation. A similar non-competitive method was presented by Dai et
al. [7], studying real-time pricing schemes for demand response to reduce user
and grid operating costs. Multiple retailers and residential users were considered
and modeled the coordination problem among users as an evolutionary game
with private information. The algorithms were validated on a small scenario
with two retailers and five users. Results showed the convergence of the proposed
algorithms and the effectiveness of the demand response model in reducing costs
for residential users.

The model for demand response in cloud computing datacenters by Wang et
al. [29] shifts computation loads to use cheaper electricity or renewable sources.
The interaction is modeled by game theory and heuristics were proposed for
time-ahead pricing and resource allocation. Results showed that the model was

Multi-objective Power and QoS Demand Response in Datacenters 55

effective in improving profit and reducing the risk of power system overflow. In
the model by Chen et al. [4], the operator negotiates with tenants to reduce their
power consumption, while tenants aim to maximize their profits. An iterative
evaluation of a supply function mechanism is used, offering monetary incen-
tives per power unit reduced to all tenants equally until the target reduction
is achieved. The monetary penalty function on tenants is defining according
to queuing theory. The model was proven to achieve optimal solutions under
certain assumptions. A small case study with three tenants showed that the pro-
posed mechanism achieved solutions close to optimal. In the approach by Tran
et al. [28] tenants are encouraged to reduce their electricity consumption. The
model combines game theory, exact and heuristic optimization methods, and a
theoretical supply function. The model considered a theoretical quadratic cost
function to model the use of other energy generation sources.

Regarding multi-objective analysis, Tchernykh et al. [27] studied several
online scheduling heuristics in cloud computing to optimize the provider income,
related to the server level agreement (and therefore to QoS degradation), and
power consumption. The best results, according to the Pareto dominance analy-
sis, were achieved by the strategy of allocating task to servers with the minimum
power consumption among the available options. Stavrinides et al. [26] proposed
an energy-efficient and QoS-aware scheduling approach for cloud computing. The
strategy is based on Dynamic Voltage and Frequency Scaling (DVFS) to min-
imize power consumption. The approach solely considered the number of jobs
that fail to meet their deadlines. The proposed strategy outperformed an early
deadline first heuristic across all conducted experiments.

Our previous articles [17,19] studied the participation of datacenters in
demand response programs, applying a two-level planning approach that esti-
mated the power consumption of tasks execution and the cooling system. The
model was extended by considering multiple power reduction targets during a
demand response event and bio-inspired metaheuristic algorithms for optimiza-
tion [10].

4 Resolution Method

An energy-aware heuristic strategy is proposed to minimize power consumption
and minimize the QoS degradation. The strategy applies an on/off approach,
aimed at reducing power consumption, in combination with greedy list schedul-
ing, aimed at minimizing QoS degradation. The on/off model is simple, effective,
and widely used approach in demand response schemes to encourage customers
to reduce power consumption during peak periods. In this model, consumers are
supposed to be noticed ahead of peak periods, to turn off consuming devices for
a given period of time. In the addressed case study, the devices to turn off are
the served owned by tenants.

Algorithm 1 outlines the proposed energy-QoS aware scheduling heuristics.
The heuristic receives as input a list of tasks to be scheduled for execution in the
available computing infrastructure within the considering scheduling horizon and

56 J. Muraña and S. Nesmachnow

a list of processing thresholds. Each processing threshold is a percentage of the
total available computing cores, which bounds the number of cores in on state
allowed to be used within the reduction interval. Cores not included within the
threshold are considered in idle state. Two output vectors are returned, each one
containing the corresponding value of the two objective functions (penalty cost
and power consumption) for the considered processing thresholds.

Algorithm 1. Proposed energy-QoS-aware heuristic for task scheduling
Input: task list, processing thresholds
Output: penalty cost (�C) and power consumption (�P)
1: for each processing threshold k do
2: sorted task list ← sort by criterion(task list)
3: (F, Q) ← scheduling(sorted task list, k)
4: �C[k] ← ∑N

j=1 1fj>dj cj

5: �P [k] ← maxti∈I{p(ti)}
6: end for
7: return (�C, �P)

In Algorithm 1, function sort by criterion(task list) (line 2) orders the
task list based on a chosen priority criterion. The sorting determines the pri-
ority of the pending task queue, i.e., which pending task is selected first to be
assigned to a suitable computing resource, as long as they are available, in a
given scheduling step. The following criteria are considered:

– First Come First Served (FCFS): tasks are ordered by arrival time, in ascend-
ing order.

– Last In First Out (LIFO): tasks are ordered by arrival time, in descending
order.

– Early deadline first (EDF): tasks are ordered by deadline, in ascending order.
– High penalty first (HDF): tasks are ordered by penalty cost, in descending

order.
– Late deadline first (LDF): tasks are ordered by deadline, in ascending order.

After ordering, scheduling(sorted task list, k) performs the scheduling for
the ordered task list. The scheduling is performed via simulation using the dat-
acenter simulator introduced in our previous work [19], specifically designed for
modeling demand response events. The simulator includes power consumption
modeling of servers and a set of QoS metrics, among other features.

The schedule is computed considering the processing threshold. It determines
the completion time of each task F = [f1, f2, ..fj ..fN], as well as the power
consumption (Q = [p(t1), p(t2), ..p(ti)..p(tM)]) for each timestep of the schedule.

Multi-objective Power and QoS Demand Response in Datacenters 57

5 Experimental Multi-objective Analysis

This section describes the experimental evaluation of the proposed multi-
objective approach for datacenter participation in demand response programs.

5.1 Methodology of the Experimental Evaluation

The evaluation methodology analyzed three key aspects of the proposed multi-
objective approach for realistic problem scenarios that model different datacenter
dimensions. First, the values of relevant multi-objective optimization metrics are
reported and evaluated for each scheduling heuristic. Then, the computed Pareto
fronts are reported and analyzed. Finally, three special solutions are considered
to analyze and compare important solutions provided to decision-makers:

– the best trade-off solution, defined as the closest point to the ideal vector,
which represents a decision based on equally weighting both objectives. The
ideal vector is a non-realistic solution with the best values for power con-
sumption and penalty cost, computed from the extreme values of the global
Pareto front. The trade-off solution is defined by arg minpi∈P ||pi− �id||, where
�id is the ideal vector and P is the set of non-dominated solutions computed
for all heuristics, both normalized to equally weigh both objectives. The ideal
vector is different for each problem scenario solved.

– the best power consumption solution, i.e., the computed solution with the
minimum power consumption.

– the best penalty cost solution, i.e., the computed solution with the minimum
penalty cost.

The experimental analysis was performed on the high performance comput-
ing platform of National Supercomputing Center (Cluster-UY), Uruguay [22].
The reported results correspond to representative independent executions of the
proposed scheduling strategies for the considered problem scenarios. For the com-
parative analysis, the results computed using the FCFS heuristic are used as a
reference baseline, since it represents the most simple and traditional method
for scheduling in datacenters under a business-as-usual scenario.

5.2 Description of the Scenarios and Problem Instances

The experiments were performed on three representative problem scenarios: a
small scenario (considering 20 servers and 4544 tasks), a medium scenario (con-
sidering 50 servers and 7666 tasks), and a large scenario (considering 75 servers
and 14598 tasks). The servers have of 24 computing cores, each one capable of
processing 3000 million instructions per second. Task characteristics were gen-
erated based on real workloads from the Parallel Workloads Archive [8]. To
compute the power consumption, each task is classified as either CPU-bound
or memory-bound, based on the memory usage information obtained from the
PWA workload. If the memory usage of a task is equal to or greater than 200

58 J. Muraña and S. Nesmachnow

MB, it is considered memory-bound; otherwise, it is considered CPU-bound. The
power consumption of a server at a certain timestep is computed using the power
consumption model presented in our previous article [18]. The penalty cost for
a task is randomly selected from a Poisson distribution with λ = 3. A com-
plete description of the procedure applied for generating the problem scenarios
is presented in our previous work [10].

5.3 Multi-objective Optimization Metrics

The multi-objective comparison of the proposed scheduling strategies was based
on computing the following relevant multi-objective optimization metrics:

– Overall Non-dominated Vector Generation (ONVG): quantifies the number
of non-dominated solutions in the computed Pareto front approximation.

– Error Ratio (ER): indicates the percentage of computed non-dominated solu-
tions that are not members of the true Pareto front. Lower values of the
metric correspond to better results.

– Generational Distance (GD): evaluates the distance between the set of com-
puted non-dominated solutions and the true Pareto front. GD is defined in
Eq. 3, where |P | is the number of computed non-dominated solutions and d
is the Euclidean distance from the i -th solution in the computed Pareto front
(pi) to the nearest solution in the true Pareto front.

GD(P, PF) =
1

|P |
√ ∑

pi∈P

d2(pi, PF), (3)

The ideal value of GD is 0, when all computed non-dominated solutions are
in the true Pareto front. Lower values of GD correspond to better results.

Since the true Pareto front of the problem is unknown, all metrics were
calculated considering the global Pareto front, built by gathering all the non-
dominated solutions found in all independent executions performed for each
scheduling strategy. This is a common approach for evaluating multi-objective
optimization metrics for real world problems [5].

Metrics were calculate using the pfevaluator library (https://pypi.org/project/

pfevaluator/). This library contains a useful set of tools for evaluating multi-
objective optimization algorithms.

5.4 Results and Discussion

This subsection reports and analyzes the results of the proposed heuristics. The
analysis focuses on the comparison of the studied multi-objective optimization
metrics to identify the usefulness of each heuristic on different situations.

https://pypi.org/project/pfevaluator/
https://pypi.org/project/pfevaluator/

Multi-objective Power and QoS Demand Response in Datacenters 59

Multiobjective Optimization Metrics. Table 1 presents the numerical val-
ues of the multi-objective metrics for the three studied scenarios. Columns
ΔONVG, ΔER, and ΔGD are the relative improvements over FCFS. The best
results for each metric and the best improvements are indicated in bold.

Table 1. Results of the multiobjetive optimization metrics

scenario strategy ONVG ER GD ΔONV G ΔER ΔGD

small FCFS 75 0.987 0.030 0.000 0.000 0.000

LIFO 79 0.316 0.002 0.053 −0.680 −0.933

EDF 75 0.789 0.027 0.000 −0.201 −0.100

HPF 77 0.987 0.005 0.027 0.000 −0.833

LDF 79 1.013 0.007 0.053 0.026 −0.767

medium FCFS 62 0.908 0.036 0.000 0.000 0.000

LIFO 70 0.605 0.009 0.129 −0.334 −0.750

EDF 62 0.395 0.021 0.000 –0.565 −0.417

HPF 70 0.684 0.010 0.129 –0.247 −0.722

LDF 70 0.895 0.018 0.129 –0.014 −0.500

large FCFS 56 0.836 0.080 0.000 0.000 0.000

LIFO 55 0.090 0.002 −0.018 −0.892 −0.975

EDF 56 0.731 0.059 0.000 −0.126 –0.263

HPF 55 0.731 0.010 −0.018 −0.126 −0.875

LDF 56 0.761 0.016 0.000 –0.090 –0.800

According to Table 1, LIFO was the best heuristic regarding ER and GD,
except for ER in the medium scenario, where EDF was the best. However, the
reason LIFO outperforms EDF in GD despite having less coverage of the global
Pareto front is that LIFO solutions are closely aligned with the global Pareto
front, whereas EDF solutions tend to deviate in other areas. HPF was the second-
best heuristic regarding GD, indicating that close solutions to the Pareto front
were computed. Regarding ONVG metric, all strategies obtained similar values.

Analysis of Pareto Fronts. Figure 2 presents the Pareto fronts computed by
each proposed strategy for the small scenario. The blue line indicates the global
Pareto front and the black cross is the ideal vector.

60 J. Muraña and S. Nesmachnow

Fig. 2. Computed Pareto fronts for the small scenario (Color figure online)

Figure 2 reveals that the solutions obtained by FCFS and EDF are farther
away from the ideal vector compared to other heuristics, especially at medium
and low power consumption. However, as the power consumption values increase
and the penalty costs decrease accordingly, FCFS and EDF solutions gradu-
ally approach to the global Pareto front. EDF solutions outperformed the other
heuristics in solutions close to 3 kW of consumption. This behavior is due to
FCFS and EDF prioritize tasks with long wait times in the pending queue.
Thus, only a few tasks are completed within the specified deadlines when com-
puting resources are scarce. FCFS and EDF are optimistic in the sense that
they assume that tasks that have been waiting longer can still be executed on
time, even if they are already delayed. Pessimistic heuristics (LIFO and LDF)
prioritize recently arrived tasks with a high probability of being completed on
time, meeting their deadlines. The pessimistic approach is more favorable for
meeting deadlines of certain tasks when there computing resources are scarce
due to power consumption restrictions. However, it must be considered that
some clients may be adversely affected by long waiting times. The HPF strat-
egy, which prioritize tasks with high penalty cost, properly balanced solutions
that outperformed pessimistic strategies at low power consumption and outper-
formed optimistic strategies at high power consumption.

Figure 3 presents the Pareto fronts computed by each proposed scheduling
strategy for the medium scenario.

Multi-objective Power and QoS Demand Response in Datacenters 61

Fig. 3. Computed Pareto fronts for the medium scenario

Similar to the small scenario, Fig. 3 shows that optimistic strategies computed
better results at low power consumption levels. EDF outperformed the other
strategies at medium power consumption levels, in contrast to the results in
the small scenarios. FCFS also had better results than in the small scenario at
medium power consumption levels. The differences with results computed in the
small scenario are because the load on the computing infrastructure is lower. In
the medium scenario the task-to-server ratio is 153, whereas in the small scenario
is 227. Considering that the tasks and servers have similar characteristics in
both scenarios and the time horizon is the same, the observed improvement for
optimistic strategies is explained by the difference in the task-to-server ratio.

Figure 4 shows the Pareto fronts computed by each proposed heuristic for the
large scenario. The behavior was similar to the small scenario, where optimistic
heuristic solutions were better than other heuristics at low and medium power
consumption levels. EDF solutions are better at high power consumption levels.

Fig. 4. Computed Pareto fronts for the large scenario

62 J. Muraña and S. Nesmachnow

Analysis of Relevant Solutions. Table 2 reports the trade-off, best power
consumption and best penalty cost solution for the three scenarios. The column
p is the power consumption and the column c is the penalty cost, and the relative
improvement over the power consumption and penalty cost of FCFS are columns
Δp and Δc respectively. The best results for each column are indicated in bold.

Table 2. Trade-off, best power consumption and best penalty cost solutions

scenario strategy trade-off best power best cost

p c Δp Δc p c Δp Δc p c Δp Δc

small FCFS 3.09 0.14 0.00 0.00 1.14 0.75 0.0 0.00 3.47 0.07 0.00 0.0

LIFO 2.75 0.20 −0.11 0.43 1.14 0.66 0.0 −0.12 3.53 0.07 0.02 0.0

EDF 2.86 0.14 −0.07 −0.02 1.14 0.75 0.0 0.00 3.51 0.07 0.01 0.0

HPF 2.78 0.18 −0.10 0.29 1.14 0.70 0.0 −0.06 3.53 0.07 0.01 0.0

LDF 2.71 0.29 −0.12 1.09 1.14 0.66 0.0 −0.12 3.53 0.07 0.02 0.0

medium FCFS 6.26 0.80 0.00 0.00 2.85 1.35 0.0 0.00 8.70 0.35 0.0 0.0

LIFO 5.66 0.59 −0.10 −0.26 2.85 1.06 0.0 −0.21 8.84 0.35 0.02 0.0

EDF 5.80 0.49 −0.07 −0.39 2.85 1.32 0.0 −0.02 8.20 0.35 −0.06 0.0

HPF 5.67 0.62 −0.10 −0.22 2.85 1.14 0.0 −0.16 8.87 0.35 0.02 0.0

LDF 6.27 0.69 0.00 −0.13 2.85 1.07 0.0 −0.21 8.81 0.35 0.01 0.0

large FCFS 10.60 1.25 0.00 0.0 4.27 2.61 0.0 0.00 12.13 0.85 0.00 0.0

LIFO 9.24 1.38 −0.13 0.10 4.27 2.17 0.0 −0.17 12.17 0.85 0.00 0.0

EDF 9.41 1.57 −0.11 0.25 4.27 2.61 0.0 0.00 12.13 0.85 0.00 0.0

HPF 9.49 1.35 −0.10 0.07 4.27 2.25 0.0 −0.14 12.25 0.85 0.01 0.0

LDF 9.62 1.28 −0.09 0.02 4.27 2.21 0.0 −0.16 12.14 0.85 0.00 0.0

Results in Table 2 indicate that LIFO obtained the best value of power con-
sumption for trade-off solutions in medium and large scenarios, and was the
second-best heuristic in the small scenario. Additionally, LIFO achieved accept-
able values of penalty cost for trade-off solutions in all scenarios. FCFS obtained
the best values of penalty cost for trade-off solutions in small and large scenarios,
but with high power consumption in all scenarios. Regarding the best power con-
sumption solutions, all strategies obtained the same value on power consumption
but LIFO and LDF obtained the best penalty cost in all scenarios, outperform-
ing FCFS in 12% in the small scenario, 21% in the medium scenario, and 17%
in the large scenario. Relative improvements show that pessimistic heuristics
obtained better results than the other heuristics at low power consumption lev-
els. Regarding the best penalty cost solutions, no significant differences were
observed among the computed solutions, except for the EDF heuristic in the
medium scenario (EDF improved 6% over FCFS). This improvement that EDF
presents indicates that the EDF heuristic, in situations of low load of the com-
puting infrastructure, manages to obtain solutions with the same penalty cost as
the other heuristics while using 6% less energy than FCFS, which is the strategy
that achieves the second-best penalty cost value.

Multi-objective Power and QoS Demand Response in Datacenters 63

The notebook with the complete Python code used for computing the studied
metrics and elaborating the figures is publicly available at https://colab.research.

google.com/drive/1lrkHP8u9aWaPdgmRIIf0LJ2aPbM99Rpc?usp=sharing.

6 Conclusions and Future Work

This article presented a multi-objective analysis of heuristic methods for min-
imizing power consumption and quality of service degradation in datacenter
operation for participating in demand response programs An on/off energy-
aware strategy in combination with five list scheduling heuristics are studied
and compared for realistic problem scenarios.

The experimental evaluation showed that the proposed heuristics were able
to compute accurate results. Heuristics obtained Pareto fronts that allows deci-
sion makers to have a wide range of scheduling options, accounting for different
trade-offs between the considered problem objectives. The comparative analy-
sis demonstrated that, when power consumption is restricted and computing
resources are limited, pessimistic heuristics (e.g., LIFO) computed better solu-
tions than optimistic ones, achieving improvements of up to 21% in quality of
service while maintaining the same power consumption. Conversely, when there
is a high availability of computing resources, optimistic strategies computed bet-
ter results than pessimistic heuristics, achieving improvements of up to 6% in
power consumption for the same quality of service.

The main outcomes of the multi-objective analysis demonstrated that using
rather simple heuristics has a significant impact on reducing both power con-
sumption and quality of service degradation. Therefore, it is promising to direct
future research towards the design of more complex strategies that incorporate
more specific domain knowledge. The main directions for future work include
implementing strategies that simultaneously consider multiple criteria, such as
prioritizing high-cost and recently arrived tasks together. Additionally, incor-
porating strategies that focus on power consumption reduction through task
consolidation, taking into account the different types of tasks.

References

1. Assad, U., et al.: Smart grid, demand response and optimization: a critical review
of computational methods. Energies 15(6) (2022)

2. Bahrami, S., Wong, V., Huang, J.: Data center demand response in deregulated
electricity markets. IEEE Trans. Smart Grid 10(3), 2820–2832 (2019)

3. Cao, X., Zhang, J., Poor, V.: Data center demand response with on-site renewable
generation: a bargaining approach. IEEE/ACM Trans. Network. 26(6), 2707–2720
(2018)

4. Chen, N., Ren, X., Ren, S., Wierman, A.: Greening multi-tenant data center
demand response. Perform. Eval. 91, 229–254 (2015)

5. Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for Solving
Multi-objective Problems. Kluwer Academic, New York (2002)

https://colab.research.google.com/drive/1lrkHP8u9aWaPdgmRIIf0LJ2aPbM99Rpc?usp=sharing
https://colab.research.google.com/drive/1lrkHP8u9aWaPdgmRIIf0LJ2aPbM99Rpc?usp=sharing

64 J. Muraña and S. Nesmachnow

6. Cui, Y., Geng, Z., Zhu, Q., Han, Y.: Review: multi-objective optimization methods
and application in energy saving. Energy 125, 681–704 (2017)

7. Dai, Y., Gao, Y., Gao, H., Zhu, H.: Real-time pricing scheme based on Stackelberg
game in smart grid with multiple power retailers. Neurocomputing 260, 149–156
(2017)

8. Feitelson, D., Tsafrir, D., Krakov, D.: Experience with using the parallel workloads
archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014)

9. Guo, C., Luo, F., Cai, Z., Dong, Z.: Integrated energy systems of data centers and
smart grids: state-of-the-art and future opportunities. Appl. Energy 301 (2021)

10. Iturriaga, S., Muraña, J., Nesmachnow, S.: Bio-inspired negotiation approach for
smart-grid colocation datacenter operation. Math. Biosci. Eng. 19(3), 2403–2423
(2022)

11. Iturriaga, S., Dorronsoro, B., Nesmachnow, S.: Multiobjective evolutionary algo-
rithms for energy and service level scheduling in a federation of distributed data-
centers. Int. Trans. Oper. Res. 24(1–2), 199–228 (2016)

12. Iturriaga, S., Garćıa, S., Nesmachnow, S.: An empirical study of the robustness
of energy-aware schedulers for high performance computing systems under uncer-
tainty. Commun. Comput. Inf. Sci. 143–157 (2014)

13. Iturriaga, S., Nesmachnow, S., Dorronsoro, B., Bouvry, P.: Energy efficient schedul-
ing in heterogeneous systems with a parallel multiobjective local search. Comput.
Inform. 32(2), 273–294 (2013)

14. Lu, X., Li, K., Xu, H., Wang, F., Zhou, Z., Zhang, Y.: Fundamentals and business
model for resource aggregator of demand response in electricity markets. Energy
204, 117885 (2020)

15. Meng, F.L., Zeng, X.J.: A Stackelberg game-theoretic approach to optimal real-
time pricing for the smart grid. Soft. Comput. 17(12), 2365–2380 (2013)

16. Muraña, J., Nesmachnow, S., Iturriaga, S., Montes de Oca, S., Belcredi, G.,
Monzón, P., Tchernykh, A.: Two level demand response planning for retail multi-
tenant datacenters. In: 18th International Conference on High Performance Com-
puting and Simulation, pp. 1–8 (2021)

17. Muraña, J., Nesmachnow, S., Iturriaga, S., Montes de Oca, S., Belcredi, G.,
Monzón, P., Shepelev, V., Tchernykh, A.: Negotiation approach for the partici-
pation of datacenters and supercomputing facilities in smart electricity markets.
Program. Comput. Softw. 46, 636–651 (2020)

18. Muraña, J., Nesmachnow, S., Armenta, F., Tchernykh, A.: Characterization, mod-
eling and scheduling of power consumption of scientific computing applications in
multicores. Clust. Comput. 22(3), 839–859 (2019)

19. Muraña, J., Nesmachnow, S.: Simulation and evaluation of multicriteria plan-
ning heuristics for demand response in datacenters. SIMULATION 99(3), 291–310
(2021)

20. Nesmachnow, S.: Parallel multiobjective evolutionary algorithms for batch schedul-
ing in heterogeneous computing and grid systems. Comput. Optim. Appl. 55(2),
515–544 (2013)

21. Nesmachnow, S., Dorronsoro, B., Pecero, J., Bouvry, P.: Energy-aware scheduling
on multicore heterogeneous grid computing systems. J. Grid Comput. 11(4), 653–
680 (2013)

22. Nesmachnow, S., Iturriaga, S.: Cluster-UY: collaborative scientific high perfor-
mance computing in Uruguay. In: Torres, M., Klapp, J. (eds.) ISUM 2019. CCIS,
vol. 1151, pp. 188–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
38043-4 16

https://doi.org/10.1007/978-3-030-38043-4_16
https://doi.org/10.1007/978-3-030-38043-4_16

Multi-objective Power and QoS Demand Response in Datacenters 65

23. Nesmachnow, S., Perfumo, C., Goiri, Í.: Holistic multiobjective planning of data-
centers powered by renewable energy. Clust. Comput. 18(4), 1379–1397 (2015)

24. Porteiro, R., Nesmachnow, S., Moreno-Bernal, P., Torres-Aguilar, C.: Computa-
tional intelligence for residential electricity consumption assessment: detecting air
conditioner use in households. Sustain. Energy Technol. Assess. 58, 103319 (2023)

25. Snevely, R.: Enterprise Data Center Design and Methodology. Pearson, London
(2002)

26. Stavrinides, G., Karatza, H.: An energy-efficient, QoS-aware and cost-effective
scheduling approach for real-time workflow applications in cloud computing sys-
tems utilizing DVFS and approximate computations. Futur. Gener. Comput. Syst.
96, 216–226 (2019)

27. Tchernykh, A., Lozano, L., Schwiegelshohn, U., Bouvry, P., Pecero, J., Nesmach-
now, S.: Bi-objective online scheduling with quality of service for IAAS clouds. In:
IEEE 3rd International Conference on Cloud Networking, pp. 307–312 (2014)

28. Tran, N., Pham, C., Ren, S., Han, Z., Hong, C.: Coordinated power reduction
in multi-tenant colocation datacenter: an emergency demand response study. In:
IEEE International Conference on Communications, pp. 1–6 (2016)

29. Wang, Y., Lin, X., Pedram, M.: A Stackelberg game-based optimization framework
of the smart grid with distributed PV power generations and data centers. IEEE
Trans. Energy Convers. 29(4), 978–987 (2014)

30. Zhang, Y., Paschalidis, I., Coskun, A.: Data center participation in demand
response programs with quality-of-service guarantees. In: Proceedings of the 10th
ACM International Conference on Future Energy Systems (2019)

Enhancing the Sparse Matrix Storage
Using Reordering Techniques

Manuel Freire1(B), Raul Marichal1, Sanderson L. Gonzaga de Oliveira2,
Ernesto Dufrechou1, and Pablo Ezzatti1

1 Instituto de Computación, INCO, Facultad de Ingenieŕıa, Universidad de la
República, Montevideo, Uruguay

{mfreire,rmarichal,edufrechou,pezzatti}@fing.edu.uy
2 ICT-Unifesp, Universidade Federal de São Paulo, São José dos Campos, Brazil

Abstract. Sparse linear algebra kernels are memory-bound routines,
and their performance varies significantly according to the non-null pat-
tern of the sparse matrix operands. The impressive computing power
and memory bandwidth of modern massively parallel computing devices
encourage researchers to develop sparse linear algebra kernels that can
exploit these platforms efficiently. In this sense, a main line of work
improves the storage of matrices, aiming to optimize the communication
between the memory and the cores. In previous work, the use of a strat-
egy consisting of a delta-encoding with matrix reorderings compressed
the indexing data of the matrix, saving storage and communications.
This work presents an algorithm to improve the reordering strategy and
the resulting compression of the indexing data. The results show that
this strategy leads to important storage savings, which can also reduce
data movements between the main memory and processors.

Keywords: sparse matrices · storage · memory access · reordering
technique

1 Introduction

Sparse linear algebra is an important and rapidly evolving field, where
researchers invest much effort in improving the basic operations, frequently the
performance bottleneck of many scientific problems. Unlike the dense counter-
part, in sparse matrix problems, the performance of these routines is conditioned
by the particularities of the matrix nonzero pattern. These characteristics make
it difficult the use of a one-fits-all strategy.

One of the most dominant sparse linear algebra operations is the product of
a sparse matrix and a dense vector, known as SpMV. This operation is the core
of many iterative methods to solve sparse linear systems of equations. Due to the
importance of the SpMV, the literature contains several proposals to improve
this operation in diverse hardware platforms [8,9,14]. Naturally, sparse matrix
research, and scientific computation in general, have accompanied the evolution
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 66–76, 2024.
https://doi.org/10.1007/978-3-031-52186-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_5&domain=pdf
https://doi.org/10.1007/978-3-031-52186-7_5

Enhancing the Sparse Matrix Storage Using Reordering Techniques 67

of high-performance computing hardware, which now includes devices that inte-
grate many lightweight cores and have high memory bandwidths like GPUs or
FPGAs. Since the appearance of CUDA in 2007, the GPUs have dominated the
HPC landscape for numerical linear algebra problems.

The SpMV is a typical memory-bound problem due to its low arithmetic
intensity, i.e., the number of floating-point operations performed for each byte of
data loaded from memory. Besides that, the performance of sparse codes in GPU
is also affected by the load imbalance (the variation of non-null entries processed
by each core), low data locality, and data indirection (indexing data structures to
access the floating-point values). Even considering the above, the GPU generally
offers interesting throughput due to its superior memory bandwidth. To exploit
this feature of GPUs, much of the effort on sparse kernels seeks to improve the
storage of matrices, aiming to optimize the communication between the memory
and the cores.

In a previous effort [10], we tried to identify the benefit offered by using
compression strategies to store the matrix index data. In particular, we revis-
ited the use of delta encoding to store the matrix indices with and without
the application of the Reverse Cuthill-Mckee (RCM) method [11]. The study
exposed the significant benefits reached when the strategy uses the techniques
complementarily.

This work deepens our previous effort, focusing on improving the reordering
strategy. In more detail, we design a light heuristic procedure specially tailored
to enhance the delta encoding technique. The experimental evaluation over a
subset of real-world matrices extracted from the SuiteSparse Matrix Collection
[7] demonstrates an important saving in storage (and, therefore, data movements
between the memory and processors) offered by the new idea.

The rest of this article is structured as follows. We describe the main ideas
behind the sparse matrices storage, and the matrix reordering techniques, in
Sect. 2. We propose the new strategy in Sect. 3. In Sect. 4, we show the experi-
mental evaluation of the novel scheme. Finally, the concluding remarks, as well
as lines of the future work, are presented in Sect. 5.

2 Background

This section briefly introduces basic concepts such as sparse matrix storage for-
mats, the Reverse Cuthill-Mckee algorithm for reordering, and the index com-
pression technique known as delta encoding.

2.1 Sparse Matrices Storage Formats

Sparse matrices storage formats are strategies that avoid storing void information
of the sparse matrices (i.e., null coefficients usually represented by zeros) by using
underlying structures which hold information to recover the position of the non-
null elements.

68 M. Freire et al.

The most straightforward idea (in the static context) is to store only the
non-null elements in a vector and store their row and column indices separately.
This format is known as Elementary or Coordinate (COO) [2].

One of the most popular formats to store matrices is the Compressed Sparse
Row (CSR) [21]. This format is similar to COO because it holds only the non-
null values and their indices. CSR goes further in the compression, ordering the
non-null elements row-wise in the values vector and storing the index where each
row starts. If one keeps elements column-wise, the same idea gives place to the
Compressed Sparse Column (CSC) format.

In both cases, each floating-point value needs extra information storage to
recover its position in the matrix. In COO, the memory overhead is 8B per
element and in CSR is 4B per element plus 4B per row. In general, indices
occupy a big part of the memory used to store the matrices, so many formats
focus on reducing that overhead.

Some sparse formats admit the storage of some zeros to mitigate the irregu-
larity in the memory accesses, which damages the performance of sparse routines
in massively parallel processors like GPUs. A typical example is the ELLPACK
storage format [3] which represents the sparse matrix as two dense matrices of
size n×m, where n is the number of rows in the matrix, and m is the number of
non-null of the longest row. One of these matrices stores the non-null coefficients
plus the zero padding, and the other stores the column index corresponding to
each coefficient.

If the matrix has its non-null elements grouped in clusters, a sparse format
could store just one pair of coordinates for each cluster (or block) and calculate
the rest. The set of layouts that use this strategy are known as blocked formats,
and one of the most popular is the Blocked CSR (BCSR) [15] which divides
the matrix into dense blocks of fixed size, treating it as a matrix of blocks and
applying CSR to index the blocks. The efficiency of a blocked format depends on
the sparsity pattern of the matrix it is storing. Other examples of arrangements
that use blocking techniques are bmSparse, Sliced ELL (SELL-C), or Column
Diagonal Storage [1,4,5,13,24].

In recent years much effort has been directed to reducing the weight of index
storage. In that line of work, Tang et al. proposed a family of efficient compression
schemes called bit-representation optimized (BRO) [22]. They introduced two
techniques, BRO-ELL and BRO-COO, based on ELL and COO formats. In
addition, they presented BRO-HYB, which is analogous to HYB because it stores
the regular part in BRO-ELL and the irregular on BRO-COO.

2.2 Reverse Cuthill-Mckee (RCM)

The Reverse Cuthill-Mckee method [11] is the most popular reordering algorithm
to reduce the bandwidth and profile of a matrix. This heuristic improves the
original Cuthill-Mckee (CM) algorithm [6] by reversing the numbering obtained
from CM. RCM has been found to produce matrices with the same bandwidth
as CM but usually with a lower profile. The CM method is a greedy variation of
the breadth-first search procedure, which numbers each vertex in an adjacency

Enhancing the Sparse Matrix Storage Using Reordering Techniques 69

list in ascending degree order. Concretely, it interprets the sparse matrix as
the adjacency matrix of a graph and perform Bread-First Search (BFS) on the
graph associated. The algorithm finds the unvisited nodes in each iteration of
the BFS, starting in an arbitrary root node labeled level 0. The original CM
traverses adjacent nodes to a visited node from low to high degrees.

Since the results of the reductions depend on the node selected as the starting
vertex, researchers have proposed many algorithms to choose the starting vertex.
Extensive experiments among these pseudoperipheral vertex finders showed that
the George-Liu algorithm [12] remains in the state of the practice to provide
pseudoperipheral vertices to the Reverse Cuthill-McKee method when applied
to matrices with symmetric sparsity patterns [19].

2.3 Delta Encoding

An interesting idea to reduce the memory used to store indices in sparse matrices
is to compress them by storing the distance to the previous element of the row
instead of the column index itself. This technique is known as delta encoding [23].

In the worst case, the bits needed to store a distance can be as much as those
used for the index (i.e., the index is the distance from the element (r, 0)). On
the other hand, in many cases, the coefficients in a row are considerably closer,
and we can store them in smaller data types, such as int16 or int8 (instead of
int32).

The main advantage is that this strategy is not related (or opposed) to any
particular storage format. For example, CSR can use delta encoding to store the
column indices, while CSC could do so with row indices. Other layouts such as
ELL or COO can also use this strategy to arrange their column indices (or, in
COO, the row index if one uses column-major ordering).

The idea of applying delta encoding and other related techniques to com-
press the indexes of sparse matrices, accelerating the performance of the SpMV
in shared memory processors and GPUs was explored in [16,17].

3 Proposal

Considering the time spent fetching sparse matrix indexing data from memory
in kernels such as the SpMV, it is reasonable to expect a performance benefit
from storing these indices with only the necessary number of bits. The standard
integer size is 4 bytes, but, for example, one can store indices lower than 216 with
a uint16 data type. Even when we can keep only a part of the matrix indices
with fewer bytes, one can store entire matrix rows with the smaller data types.
In that case, we could use a sparse format that stores rows using different integer
sizes. As the processing of rows is independent in kernels such as the SpMV,
this could improve the processing performance for the part of the matrix stored
with a smaller integer size.

70 M. Freire et al.

In [10] we analyzed the minimum integer size needed to store the matrix
indices for a large set of symmetric sparse matrices. We also evaluated the num-
ber of rows in each matrix that needs 8, 16, or 32 bits for their indices. We
used delta encoding to replace the column index in the CSR sparse format by
the delta to the next non-null in the row and studied the impact of reorder-
ing the matrix on that strategy. The results showed that using the Reverse
Cuthill-Mckee (RCM) reordering heuristic in conjunction with delta encoding, a
significant number of matrices passed from the 32 bits category (those matrices
with at least one row that needs 32 bits) to 16 bits category, and from the 16 bits
category to 8 bits category. Of all the 1407 matrices studied, only 56 matrices
ended in the 32 bits category after applying RCM and delta encoding.

RCM has proven to be a good heuristic to reduce the bandwidth of a matrix,
but, on the other hand, in doing so, sometimes it extends the distance of two
contiguous elements in the rows that end up with more bandwidth. The problem
is that RCM is not designed to reduce the distance between consecutive elements
but reduces bandwidth. Reducing the bandwidth of the matrix brings non-null
elements closer to each other. Thus, we can expect a collateral improvement in
the delta. However, there are many cases where reducing the bandwidth increases
the deltas (e.g., TSOPF/TSOPF FS b300 c3) and many more where RCM improves
the deltas, but other strategies yield better results. In particular, other authors
have replaced the RCM with other heuristics for an specific purposes, see as an
example [18] where the objective is the number of diagonals.

Considering the above, we centered the effort on designing a strategy that
enhances the reordering returned by RCM. The proposal relies on a light search
strategy focused on improving the ordering of matrices that stayed in the 32 bits
category after applying RCM. In a previous study [20], the authors employed
similar ideas for bandwidth reduction.

The algorithm uses a random search in conjunction with a local search to
improve the permutation produced by RCM. To guide the search, we define a
metric of how much away the matrix is to be able to be stored in 16 bits. The
fitness function is defined as follows:

f(p) =
∑

r∈rows

#away16r (1)

where #away16r is the number of elements of row r that are more than 216

positions away from the previous one (or from zero if it is the first element of
the row).

The proposal consists of two stages. In the first stage, the algorithm performs
several random steps, and in the second stage, it makes directed steps towards
improving the solution. The random steps consist of a permutation of n rows
chosen randomly, allowing the routine not to get stuck in a local optimum. We
fixed a boundary α for the deterioration of f to prevent the random steps from
worsening the solution too much.

Enhancing the Sparse Matrix Storage Using Reordering Techniques 71

The second stage is to improve the solution given by the first one. Ideally, the
improvement in this stage outweighs the other’s deterioration (if any). This stage
focuses on fixing the matrix’s “worst” problem by finding the element further
away from the previous coefficient. Once found, the procedure tries to make a
permutation that moves it to a distance less than 216 − 1, making it possible to
store the column index in 16 bits.

Naturally, this change can have an overall negative effect because it can
enlarge distances between other elements. The procedure evaluates if the change
worsens the solution and discards it in that case. If the algorithm does not use
a permutation, it tries with other permutations that make that delta storable in
16 bits. If none of the experimented permutations works, the procedure applies
a fixed permutation that makes the delta equal to one.

4 Experimental Evaluation

In this section, we present the evaluation of our novel heuristic. For this work, we
chose a subset of the five matrices that, after applying RCM and delta encoding,
still cannot be stored using deltas of 16 bits. We took this set of symmetric
matrices from the Suite Sparse Matrix Collection [7]. Table 1 shows the main
characteristics of the testing set.

Table 1. Matrices used for the experimental evaluation with their principal character-
istics.

Id Name Dim Number of non-zeros (NNZ)

1 ASIC 100k 99340 940,621

2 preferentialAttachment 100,000 999,970

3 boyd1 93,279 1,211,231

4 lp1 534,388 1,643,420

5 c-big 345,241 2,340,859

As the primary goal of our heuristic is to increase the number of rows that
uses less than 32 bits for the studied matrices, Table 2 presents the number of
rows and deltas (i.e., particular elements) that require 32 bits for their storage.
These characteristics can be considered the baseline with which we compare
the performance of the new heuristic. The table presents these metrics for the
original matrices and after applying the permutation given by RCM.

Even if the most important metric is the number of rows that need int32,
because it directly impacts the memory requirements of the matrix, the number
of deltas gives a more precise idea of the problem (at least considering our search
strategy). The table shows that applying RCM has an overall positive impact on

72 M. Freire et al.

Table 2. Number of rows and deltas representable only in 32 bits for the original
matrices (right) and after applying RCM (left).

With RCM Without RCM

Id Nrows Ndeltas Nrows Ndeltas

1 6.11E+03 6.11E+03 6.98E+03 6.98E+03

2 1.11E+03 1.12E+03 2.47E+03 2.47E+03

3 2.62E+04 2.62E+04 2.77E+04 2.77E+04

4 5.34E+05 7.20E+05 2.26E+05 2.32E+05

5 2.98E+05 3.78E+08 3.45E+05 4.54E+05

both metrics. The only exception was the matrix lp1. In this case, the number
of rows that require int32 grew significantly.

In the first experiment, we executed RCM and applied the proposed heuristic
to the permutations that resulted from the method. In these tests, we fixed the
number of iterations in n = 6000. Furthermore, we used the boundary α as a
parameter that grows with the iterations to avoid getting trapped in a local
optimum. Since α grows with the number of iterations, the random step can
severely deteriorate the candidate solution after many iterations. For this reason,
each iteration stores the best solution until that point.

Table 3 shows the number of rows and deltas that still require 32 bits after
applying our heuristic method. The results show that for two of the matrices
(ASIC 100k and boyd1), the proposed heuristic gets Nrows to zero, which means
that we can store the entire matrices with a smaller data type. On the other hand,
for the other three, where there are still rows that require int32, we get a sizeable
reduction in the number of rows that require this data type.

Table 3. Number of rows and deltas representable only in 32 bits after applying the
heuristic

Id Rows 32 Deltas 32

1 0 0

2 763 763

3 0 0

4 462,690 462,690

5 252,980 254,240

Another analysis we have performed in our previous work is the distribution
of the rows between categories depending on the data type needed to repre-
sent its deltas. Tables 4 and 5 present the numbers of rows that belong to each
classification.

Enhancing the Sparse Matrix Storage Using Reordering Techniques 73

Table 4. Number of rows that need 32, 16 and 8 bits to store its indices after the
RCM.

Id Rows 32 Rows 16 Rows 8

1 6.11E+03 9.31E+04 8.90E+01

2 1.11E+03 9.89E+04 2.90E+01

3 2.62E+04 6.70E+04 5.60E+01

4 5.34E+05 2.00E+01 8.00E+00

5 2.98E+05 4.71E+04 4.21E+02

Table 5. Number of rows that need 32, 16 and 8 bits to store it indices after the
application of the heuristic.

Id Rows 32 Rows 16 Rows 8

1 0.00E+00 9.93E+04 4.60E+01

2 7.63E+02 9.92E+04 1.00E+00

3 0.00E+00 9.33E+04 1.90E+01

4 4.63E+05 7.09E+04 8.48E+02

5 2.53E+05 9.20E+04 2.21E+02

Concerning the 8 bits categories, the results are diverse, with the number
of 8-bit rows decreasing in some matrices but growing in others. In general,
the percentage of rows in that category is small with respect to the total. The
primary contribution of our heuristic is that it replaces rows from the 32 bits
category to the 16 bits one. Figure 1 presents the same results in percentages
comparing the matrices before and after applying the heuristic proposed. In all
matrices, the first bar represents the results with only RCM and the second after
the heuristic proposed.

Fig. 1. Percentage of rows in each category for the evaluated matrices before and after
the application of the proposed heuristic.

74 M. Freire et al.

5 Conclusions and Future Work

The performance of sparse linear algebra kernels suffers from the cost of accessing
the memory. A significant part of this memory access is dedicated to indexing
data to compute the position of the non-null coefficients in the matrix. As the
cost of the computations is much less than the cost of memory accesses, it can
payoff to compress this data and add some work to decompress it once it reaches
the cores.

In this work, we continued our previous efforts using reordering strategies
that enhance the sparse matrix index compressing based on delta encoding,
focusing on improving the reordering for this purpose. We used a random search
in conjunction with a local search to define a novel heuristic that improves the
results of RCM, reaching a higher compression in the evaluated matrices.

The heuristic proposed in this study reduced the number of rows that
required the higher data type (int32) in all test cases. For two of the test cases,
the resulting matrix can be stored entirely in int16, while for the rest, the new
procedure significantly reduced the rows that require int32.

In future work, we plan to follow different lines:

– Extending our approach to tackle the int16 to int8 transformation.
– Designing a storage format using a mixed-integer size strategy, storing the

matrix in various submatrices with different index sizes depending on the
maximum delta in the row.

– Developing sparse kernels that can take advantage of the new format.

Acknowledgments. This work is partially funded by the UDELAR CSIC-INI project
CompactDisp: Formatos dispersos eficientes para arquitecturas de hardware modernas.
The authors also thank PEDECIBA Informática and the University of the Republic,
Uruguay.

References

1. Monakov, A., Lokhmotov, A., Avetisyan, A.: Automatically tuning sparse matrix-
vector multiplication for GPU architectures. In: Patt, Y.N., Foglia, P., Duester-
wald, E., Faraboschi, P., Martorell, X. (eds.) HiPEAC 2010. LNCS, vol. 5952, pp.
111–125. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11515-
8 10

2. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. Society for Industrial and Applied Mathemat-
ics (1994). https://doi.org/10.1137/1.9781611971538, https://epubs.siam.org/doi/
abs/10.1137/1.9781611971538

3. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis, SC 2009. Association
for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/
1654059.1654078

https://doi.org/10.1007/978-3-642-11515-8_10
https://doi.org/10.1007/978-3-642-11515-8_10
https://doi.org/10.1137/1.9781611971538
https://epubs.siam.org/doi/abs/10.1137/1.9781611971538
https://epubs.siam.org/doi/abs/10.1137/1.9781611971538
https://doi.org/10.1145/1654059.1654078
https://doi.org/10.1145/1654059.1654078

Enhancing the Sparse Matrix Storage Using Reordering Techniques 75

4. Berger, G., Freire, M., Marini, R., Dufrechou, E., Ezzatti, P.: Unleashing the per-
formance of bmSparse for the sparse matrix multiplication in GPUs. In: Proceed-
ings of the 2021 12th Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems (ScalA), pp. 19–26, November 2021

5. Berger, G., Freire, M., Marini, R., Dufrechou, E., Ezzatti, P.: Advancing on an
efficient sparse matrix multiplication kernel for modern GPUs. Concurr. Comput.
Pract. Experience 35, e7271 (2022). https://doi.org/10.1002/cpe.7271, https://
onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7271

6. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices.
In: Proceedings of the 1969 24th National Conference, pp. 157–172. ACM Press
(1969). https://doi.org/10.1145/800195.805928

7. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1), 1–25 (2011). https://doi.org/10.1145/2049662.2049663

8. Dufrechou, E., Ezzatti, P., Quintana-Ort́ı, E.S.: Selecting optimal SPMV realiza-
tions for GPUs via machine learning. Int. J. High Perform. Comput. Appl. 35(3),
254–267 (2021). https://doi.org/10.1177/1094342021990738

9. Favaro, F., Oliver, J.P., Ezzatti, P.: Unleashing the computational power of FPGAs
to efficiently perform SPMV operation. In: 40th International Conference of the
Chilean Computer Science Society, SCCC 2021, La Serena, Chile, 15–19 November
2021, pp. 1–8. IEEE (2021). https://doi.org/10.1109/SCCC54552.2021.9650418

10. Freire, M., Marichal, R., Dufrechou, E., Ezzatti, P.: Towards reducing communica-
tions in sparse matrix kernels. In: Naiouf, M., Rucci, E., Chichizola, F., De Giusti,
L. (eds.) Cloud Computing, Big Data & Emerging Topics, JCC-BD&ET 2023.
CCIS, vol. 1828, pp. 17–30. Springer, Cham (2023). https://doi.org/10.1007/978-
3-031-40942-4 2

11. George, A.: Computer implementation of the finite element method. Ph.D. the-
sis, Computer Science Department, School of Humanities and Sciences, Stanford
University, CA, USA (1971)

12. George, J.A., Liu, J.W.: Computer Solution of Large Sparse Positive Definite Sys-
tems. Prentice-Hall, Englewood Cliffs (1981)

13. Godwin, J., Holewinski, J., Sadayappan, P.: High-performance sparse matrix-
vector multiplication on GPUs for structured grid computations. In: The 5th
Annual Workshop on General Purpose Processing with Graphics Processing Units,
GPGPU-5, London, United Kingdom, 3 March 2012, pp. 47–56. ACM (2012)

14. Gómez, C., Mantovani, F., Focht, E., Casas, M.: Efficiently running SPMV on
long vector architectures. In: Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2021, pp. 292–303.
Association for Computing Machinery, New York, NY, USA (2021). https://doi.
org/10.1145/3437801.3441592

15. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-
vector multiply on GPUs. In: Proceedings of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (15th PPOPP 2010), pp. 115–
125. ACM SIGPLAN, Bangalore, India, January 2010

16. Karakasis, V., Gkountouvas, T., Kourtis, K., Goumas, G.I., Koziris, N.: An
extended compression format for the optimization of sparse matrix-vector multipli-
cation. IEEE Trans. Parallel Distributed Syst. 24(10), 1930–1940 (2013). https://
doi.org/10.1109/TPDS.2012.290, https://doi.org/10.1109/TPDS.2012.290

https://doi.org/10.1002/cpe.7271
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7271
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7271
https://doi.org/10.1145/800195.805928
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1177/1094342021990738
https://doi.org/10.1109/SCCC54552.2021.9650418
https://doi.org/10.1007/978-3-031-40942-4_2
https://doi.org/10.1007/978-3-031-40942-4_2
https://doi.org/10.1145/3437801.3441592
https://doi.org/10.1145/3437801.3441592
https://doi.org/10.1109/TPDS.2012.290
https://doi.org/10.1109/TPDS.2012.290
https://doi.org/10.1109/TPDS.2012.290

76 M. Freire et al.

17. Kourtis, K., Goumas, G.I., Koziris, N.: Optimizing sparse matrix-vector multipli-
cation using index and value compression. In: Ramı́rez, A., Bilardi, G., Gschwind,
M. (eds.) Proceedings of the 5th Conference on Computing Frontiers, 2008, Ischia,
Italy, 5–7 May 2008, pp. 87–96. ACM (2008). https://doi.org/10.1145/1366230.
1366244

18. Marichal, R., Dufrechou, E., Ezzatti, P.: Optimizing sparse matrix storage for the
big data era. In: Naiouf, M., Rucci, E., Chichizola, F., De Giusti, L. (eds.) Cloud
Computing, Big Data & Emerging Topics - 9th Conference, JCC-BD&ET, La
Plata, Argentina, 22–25 June 2021, Proceedings. Communications in Computer
and Information Science, vol. 1444, pp. 121–135. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84825-5 9

19. de Oliveira, S.L.G., de Abreu, A.A.A.M.: An evaluation of pseudoperipheral vertex
finders for the reverse Cuthill-McKee method for bandwidth and profile reductions
of symmetric matrices. In: 37th International Conference of the Chilean Computer
Science Society, SCCC 2018, Santiago, Chile, 5–9 November 2018, pp. 1–9. IEEE
(2018). https://doi.org/10.1109/SCCC.2018.8705263

20. de Oliveira, S.L.G., Silva, L.M.: Low-cost heuristics for matrix bandwidth reduc-
tion combined with a hill-climbing strategy. RAIRO Oper. Res. 55(4), 2247–2264
(2021). https://doi.org/10.1051/ro/2021102

21. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia (2003)

22. Tang, W.T., et al.: Accelerating sparse matrix-vector multiplication on GPUs using
bit-representation-optimized schemes. In: Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Analysis. ACM,
November 2013. https://doi.org/10.1145/2503210.2503234

23. Willcock, J., Lumsdaine, A.: Accelerating sparse matrix computations via data
compression. In: Proceedings of the 20th Annual International Conference on
Supercomputing, ICS 2006, pp. 307–316. Association for Computing Machinery,
New York, NY, USA (2006). https://doi.org/10.1145/1183401.1183444

24. Zhang, J., Gruenwald, L.: Regularizing irregularity: bitmap-based and portable
sparse matrix multiplication for graph data on GPUs. In: Proceedings of the 1st
ACM SIGMOD Joint International Workshop on Graph Data Management Experi-
ences & Systems (GRADES) and Network Data Analytics (NDA), GRADES-NDA
2018. Association for Computing Machinery, New York, NY, USA (2018). https://
doi.org/10.1145/3210259.3210263

https://doi.org/10.1145/1366230.1366244
https://doi.org/10.1145/1366230.1366244
https://doi.org/10.1007/978-3-030-84825-5_9
https://doi.org/10.1007/978-3-030-84825-5_9
https://doi.org/10.1109/SCCC.2018.8705263
https://doi.org/10.1051/ro/2021102
https://doi.org/10.1145/2503210.2503234
https://doi.org/10.1145/1183401.1183444
https://doi.org/10.1145/3210259.3210263
https://doi.org/10.1145/3210259.3210263

Towards Fault Tolerance and Resilience
in the Sequential Codelet Model

Diego A. Roa Perdomo1,2(B), Rafael A. Herrera Guaitero2, Dawson Fox1,2,
Hervé Yviquel3, Siddhisanket Raskar1, Xiaoming Li2,

and Jose M. Monsalve Diaz1

1 Argonne National Laboratory, Lemont, IL, USA
diegor@udel.edu

2 University of Delaware, Newark, DE, USA
3 University of Campinas, Campinas, Brazil

Abstract. Failure or disruption in High-Performance Computer Systems
can have a significant impact on human life, the environment, or the econ-
omy. Critical applications refer to software systems or functionalities that
are essential for the safety, security, or continuity of critical infrastruc-
ture, services, or operations. Considering that semiconductor devices are
susceptible to errors and failure, providing error detection and correction
mechanisms in such systems is imperative. However, the main challenge for
achieving fault tolerance and resiliency is compartmentalizing the causes
and the consequences of error, in both hardware and software. Moreover,
today’s extreme-scale parallel HPC systems necessitate fundamentally
non-deterministic executions, making compartmentalization an even big-
ger challenge. To address these challenges, this paper proposes leverag-
ing the Sequential Codelet Model (SCM), which facilitates parallel exe-
cution of programs expressed sequentially and hierarchically. We propose
to exploit SCM’s encapsulation of semantics and data to compartmen-
talize faults transparently and efficiently. We present multiple techniques
that can be implemented in the Sequential Codelet Model to include fault-
tolerant and resiliency mechanisms. We implement already-known solu-
tions by extending a functional emulator for the Sequential Codelet Model.

Keywords: Codelet Model · Program Execution Model · Fault
Tolerance · Resiliency

1 Introduction

Computers and embedded systems play a significant role in the daily func-
tioning of critical infrastructure and systems in a variety of sectors, including

This research used resources at the Argonne Leadership Computing Facility, a DOE
Office of Science User Facility supported under Contract DE-AC02-06CH11357. This
research was also supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration. This work was partially supported by the
National Science Foundation, under award SHF-1763654, and by Petrobras, under
grant 2018/00347-4.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 77–94, 2024.
https://doi.org/10.1007/978-3-031-52186-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_6&domain=pdf
https://doi.org/10.1007/978-3-031-52186-7_6

78 D. A. R. Perdomo et al.

healthcare, transportation, finance, industry, and defense. In all these sectors, the
disruption or failure of essential services in such areas can result in far-reaching
consequences, including endangering human life, impacting the environment, or
even destabilizing the economy.

Supporting fault tolerance and resiliency in critical HPC systems has been
extensively studied [12,20,32,33]. Fault compartmentalization is one of the main
challenges that apply to both the cause and the impact of faults. When the cause
is compartmentalized, the abnormal components can be isolated and corrective
actions can be taken based on their overall error history. When the impact is
well defined and compartmentalized, the system can recover from faults with
only minimum redo. In traditional von Neumann computational models, com-
partmentalizing usually requires domain-specific analysis and user involvement
to segregate portions of computation and monitor execution. The main reason
is that large-scale HPC applications usually entangle computation, data man-
agement, and parallelism management without much distinction. Coupling that
with the non-deterministic execution of threads magnified in scale, compartmen-
talization can hardly be done in an effective, efficient, and user-transparent way.
Implementing resiliency in parallel and distributed programs often involves com-
plex multi-layered system interactions, spanning across the operating system,
runtime, application, and workload manager. In High-Performance computing,
this kind of resiliency is often done through checkpointing, which helps prevent
the loss of computation progress in case of failure [5,12,26].

A program execution model (PXM) refers to the governing set of rules or con-
ceptual framework that dictates the execution of a computer program by a com-
puting system [8,30]. It defines the behaviors and interactions between the vari-
ous system components involved in executing a program, including the processor,
memory, operating system, and other system resources. Among various PXMs, the
Codelet PXM [16,37] describes computation based on a hybrid between dataflow
and von Neumann computation models. Codelets are units of computation that
can be executed when their dependencies are satisfied. Each codelet can be seen
as a task, defined by a collection of instructions tailored to a particular architec-
ture. Unlike other more widely-used task models (e.g., OpenMP, OmpSs, Legion,
etc.), codelets are pure functions whose outputs only depend on their inputs. To
support more complex programs, codelets interconnect with each other forming
codelet dependence graphs (CDG) that represent the data and control depen-
dencies between them. The creation of this graph is inspired by the theory of
dataflow. An evolution of the Codelet model is the Sequential Codelet Model
(SCM) [9,10,25]. SCM describes the CDG through sequential program semantics,
and it uses techniques inspired by instruction-level parallelism to achieve hetero-
geneous, parallel, and distributed execution of programs. The SCM is based on a
hierarchical view of the system. Each level separates scheduling and orchestration,
execution components, and memory management interfaces.

In this paper, we argue that the Codelet Program Execution Model naturally
provides an effective foundation for compartmentalization and fault tolerance. It
derives from the explicit encapsulation of computation and data in the Codelet
Model. This paper presents mechanisms that leverage PXM behavior to provide

Towards Fault Tolerance and Resilience in the Sequential Codelet Model 79

fault tolerance and resiliency while adapting to changing conditions or failures.
We highlight fault tolerance/resiliency mechanisms that can be implemented as
hardware, software, or both beyond traditional checkpointing.

In particular, we demonstrate how well-defined PXMs facilitate the com-
partmentalization of faults and resiliency into system components. To do so,
we implement some resiliency techniques within an emulated Sequential Codelet
Model, namely SCMUlate [2], running on commodity hardware. In the area of
resiliency for critical applications running on computing systems, our paper con-
tributes the following:

– classification and adaptation of existing state-of-the-art resiliency techniques
for integration within the Codelet PXM,

– demonstration of the implementation of a subset of these resilience techniques
within an emulated Codelet Model, highlighting their real-world applicability,

– and, examination of the performance and resiliency implications of these
adapted techniques, offering data-driven insights into their effects.

2 Sequential Codelet Model

The Sequential Codelet Model (SCM) [9,10,14,25], is a hierarchical PXM that
leverages sequential computer architectures for parallel computation. It inte-
grates the advantages of having sequentially defined programs while providing
flexibility for parallel execution. The SCM defines a structured and flexible app-
roach to implementing reliability and fault tolerance mechanisms, using modu-
larity, compartmentalization, and scalability to enhance system robustness. The
following subsections describe the main elements of the SCM that are considered
in the definition of the aforementioned mechanisms.

2.1 Sequential Codelet Model Abstract Machine

Fig. 1. Two levels of the sequential
Codelet Model Abstract Machine. Each
level as a 5-stage pipeline.

The SCM Abstract Machine (SCM-AM)
(Fig. 1) is a theoretical definition of the
hierarchical architecture that does not
detail the implementation. This abstract
machine is similar to the traditional
5 stages pipeline architectures: Fetch,
Decode, Execute, Memory and Write
Back. Each level is organized in these
stages. The Scheduling Unit (SU) is
directly related to the Fetch and Decode
stages. The SU orchestrates program exe-
cution (e.g., codelet scheduling, and con-
trol flow decisions). The Execute phase
is representative of the execution of
codelets, performed by the Compute Unit
(CU).

80 D. A. R. Perdomo et al.

The hierarchical organization of the SCM machine comes from two aspects.
First, a CU of a given level is a complete machine in the level below. Input and out-
put data dependencies (i.e., operands) are stored in the register file of the level that
schedules the codelet into a CU. Second, memory operations from the level below
interface with the registers of the level above. Hence the name Memory/Register
in Fig. 1. This latter property guarantees that memory operations are bounded in
latency between two levels, providing performance guarantees for code executing
at a given level. Notice that the higher the level in the hierarchy, the larger the
footprint of the system is, resulting in larger memory sizes and increased latency,
therefore translating into larger codelets. The hierarchy in the organization is bro-
ken whenever at a particular level, a Compute Unit is represented in a particular
architecture (e.g., GPGPUs, CPUs, or FGPAs) representing a leaf of the architec-
ture tree. This allows for support for heterogeneous execution of the Sequential
Codelet Model, as presented in [10] in commodity hardware.

2.2 Operational Semantics of the SCM Abstract Machine

Operational Semantics for the SCM-AM describe the system’s expected behavior
and how programs are interpreted as sequences of computational steps. Anal-
ogous to the architecture, programs are hierarchically structured in the SCM
model. A SCM program for a given level is represented as a stream of instruc-
tions to be mapped and interpreted by the five stages of that level. Instructions
are fetched in order according to the SCM program of that level. Instructions
can be of 3 types: control flow and basic arithmetic, compute codelets, and mem-
ory codelets. The SU (i.e., fetch+decode phases) executes control flow and basic
arithmetic instructions that enable the construction of the Codelet Dataflow
Dependence Graph. These basic instructions are the building blocks for condi-
tional branches and jumps and are used to construct loops and manage depen-
dencies discovered at runtime.

At a given level, memory is organized into regions that are effectively named
registers. The higher the level, the larger the size of the registers. Memory
codelets [15] orchestrate memory management between the level above and the
current level. Memory codelets allow for data prefetching, data movement, and
data recoding [13] (e.g., near-memory compute).

Compute codelets are assigned to the Compute Units of the Execute phase.
Compute codelets are collections of instructions that match the execution model
of a CU of a given level. For example, a CPU Codelet is a sequential excerpt
of instructions written in traditional CPU architectures (e.g., RISC-V, X86, or
ARM) that interact with the operand registers of the codelet. Notice that mem-
ory operations of a compute codelet are directly mapped to its register operands
in the level above. Parallelism in the SCM model is achieved through techniques
inspired by instruction-level parallelism [27]. In particular, out-of-order archi-
tectures allow for discovering dataflow dependence graphs within a window of
instructions. Therefore, the sequential description of codelet graphs leverages this
behavior, allowing the SCM program to be parallelized. Thus, the Scheduler Unit
removes false dependencies (Write After Read and Write After Write) and respects
true dependencies (Read After Write) based on the register names.

Towards Fault Tolerance and Resilience in the Sequential Codelet Model 81

Finally, the Write Back phase of the 5 stages pipeline manages synchroniza-
tion, notifying the SU that a given Codelet has finished execution and triggering
the activation of other Codelets.

2.3 Application Programming Interface of the SCM

1 LDIMM R64B_1 , 0; // Vect A Base Addr

2 LDIMM R64B_2 , 52428800 ;// B Base Addr

3 LDIMM R64B_3 , 104857600;// C Base Addr

4 LDIMM R64B_4 , 0; // iteration variable

5 LDIMM R64B_5 , 0; // offset

6 LDIMM R64B_6 , 400; // num of iterations

7 loop:

8 BREQ R64B_4 , R64B_6 , 8; // R64B_4 =400? jmp 8

9 LDOFF R2048L_1 , R64B_1 , R64B_5;

10 LDOFF R2048L_2 , R64B_2 , R64B_5;

11 COD vecAdd_2048L R2048L_3 , R2048L_1 ,

R2048L_2;

12 STOFF R2048L_3 , R64B_3 , R64B_5;

13 ADD R64B_4 , R64B_4 , 1;

14 ADD R64B_5 , R64B_5 , 131072; // Next TILE

15 JMPLBL loop;

16 COMMIT;

Listing 1.1. An SCM program that
performs a vector addition

1 IMPLEMENT CODELET(vecAdd 2048L ,
2 double ∗A = GET OP<2,double∗>() ;
3 double ∗B = GET OP<3,double∗>() ;
4 double ∗C = GET OP<1,double∗>() ;
5
6
7 for (u in t64 t i = 0 ; i < TILE ; i++){
8 C[i] = A[i] + B[I] ;
9 }

10) ;

Listing 1.2. Implementation of the L0
Codelet VecAdd 2048L used in Listing 1.1

The SCM also provides an Application Programming Interface (API). A codelet
is a scheduling quantum of an SCM program at a given level. Codelets are
non-preemptive, atomically scheduled, and represented as pure functions. As
previously mentioned SCM programs are composed of 3 types of instructions:
control and basic arithmetic, compute codelets, and memory codelets. Thus, the
SCM program is expressed sequentially based on the three instruction types.
Each codelet must also be defined in the programming interface of the level
below. Listing 1.1 shows an example of an SCM program that performs a simple
vector addition for the level L1 of Fig. 1. Listing 1.2 shows the definition of the
codelet vecAdd 2048L written for the level L0. Notice that vecAdd 2048L is
used as a single instruction in Listing 1.1 (line 11). A complete reference for the
programs used in this paper can be found in [9,25].

The SCM program in Listing 1.1 calculates a vector addition in the form
A[N] = B[N] + C[N], where A, B, and C contain doubles and N = 400 ∗ 2048 ∗
64bytes = 52.42MB for a total of 6553600 items. It is important to note that
although these values are hardcoded in this example, they may also come from
memory. Codelets of L0 use registers of fixed size. R2048L X refers to a register
of size 2048 × cache line (e.g., 128 KB for 64 Bytes cache lines).

3 Mechanisms for Resiliency and Fault Tolerance

A Program Execution Model such as SCM can be implemented as a combina-
tion of hardware [10] and software [37]. Particularly, the hierarchical view of
the Sequential Codelet Model allows for a combination of software and hard-
ware techniques at different levels. Figure 2 shows the 4 different components or
Functional Units that are used to define containment zones at different parts of
the system. Table 1 presents different fault tolerance and resilience mechanisms

82 D. A. R. Perdomo et al.

in the context of the Sequential Codelet Model presented in Sect. 2. The afore-
mentioned table includes information about the type of implementation: in the
PXM or as part of the program, static: fixed resources; dynamic: resources are
assigned on-demand; hybrid: a combination of static-dynamic is possible. Mech-
anisms are analyzed qualitatively in terms of overhead cost: hardware, runtime,
time, or storage.

Table 1. Mechanisms for Resiliency and Fault Tolerance

Functional
Unit

Method
Implementation Type Overhead / Cost

PXM Program Static Dynamic Hybrid Hardware Runtime Time Storage

A) SU

N-of-M Voting (Cd R.) X X X X X X X

Dynamic Voting (Cd R.) X X X X X X

Lockstep (SU R.) X X X X

Voting (SU R.) X X X X X X X

Main-Backup (SU R.) X X X X X X

Watchdog (SU M.) X X X X

B) CU

Lockstep (CU R.) X X X X

Voting (CU R.) X X X X X X X

Main-Backup (CU R.) X X X X X X

Watchdog (CU M.) X X X X

C) Memory

Redundant Inputs X X X

Register Duplication X X X X X

Memory Checkpointing X X X X X X X

D) CDG
Algorithm based FT X X X X

Supervisory System X X X

As we will observe in this section, SCM resiliency takes advantage of two
fundamental properties of the Codelet Model: 1) Codelets are pure functions with
no side effects beyond their registers. 2) It is possible to compartmentalize codelet
execution owing to their explicit data dependencies. It also takes advantage of the
division of roles in the SCM-AM. The objective of this section is not to provide
a conclusive list of techniques that can be used, but rather to demonstrate the
advantages of using them in the Sequential Codelet Model as well as provide
some guidelines for future implementations of the Program Execution Model.

3.1 A) Scheduling Unit Resiliency

Fig. 2. Extended SCM-AM

While modularity enables compartmental-
ization, the intrinsic hierarchical organiza-
tion between the SU and the CU enables
codelet nesting, storing fine-grain codelets
within coarse-grain codelets. Replicating an
SU also replicates the program and codelets
assigned to that SU, and replicating a CU
of a given level intrinsically replicates the
SU of the level below. However, the fault
tolerance mechanisms used in each level
may target different requirements. In this
section, we focus on mechanisms managed
by the scheduler unit, a central piece in the

Towards Fault Tolerance and Resilience in the Sequential Codelet Model 83

coordination of the system. Scheduling of codelets for fault tolerance, resiliency,
and self-adaptation has been previously studied [23,31]. Likewise, [35] proposes
a symptom based detection and diagnosis for faults in multicore architectures.

N-of-M Voting and N-Modular Systems (Codelet Replication). Vot-
ing techniques can be applied in different forms. An N-of-M system creates M
duplicates of a component and requires up to N of these components to agree to
be functional.

Fig. 3. NMR

Figure 3 shows the architecture of an N-Modular
redundant architecture that presents the execute and
writeback stages of the SCM. In this case, codelets are
replicated via the scheduler unit, and voting occurs in
the writeback stage. By decoupling these roles it is possi-
ble to: 1) maintain the compute units free for more work
to be scheduled, and 2) decouple possible sources of errors
when environmental conditions affect the two stages dif-

ferently. The reader is reminded that the higher the level in the SCM abstract
machine, the larger the footprint of the system is expected. Therefore, each stage
may be at different environmental conditions.

It may not be necessary to replicate all codelets. Codelet metadata can specify
the desired level of redundancy for a specific codelet, increasing the flexibility of
this mechanism and granting some control over the consequent overhead. Such
metadata is to be interpreted by the SU. However, it is important to note that
high error rates tend to reduce the overall system reliability of N-of-M systems, as
explained in [22]; hence, it should only be used in systems with higher reliability.

In the context of Listing 1.1, the Codelet VectAdd 2048L and its operands are
duplicated. Line 11 would be executed M times, each with different input param-
eters. Register renaming is used for operand replication. Register replication is
optional, but duplication of Write and Read/Write operands is mandatory, as
they could result in scrambled output. Notice that compute codelet replication is
straightforward because their input/output operands are well-defined in the form
of a register and their execution is side-effect free. Additionally, codelet duplica-
tion allows for heterogeneous execution where multiple replicas are implemented
by different architectures. This process is achieved by using multiple variants of
the codelet that represent the same mathematical operation. On the other hand,
memory codelet duplication is more challenging as it must include the side effect
of communication with the memory subsystem in the level above.

A similar technique is proposed in [39], a coarse-grained dataflow system
is augmented with redundant execution and thread-level recovery techniques,
leveraging the inherent features of the dataflow execution model like side-effect
free execution and single-assignment semantics. They demonstrate that redun-
dant execution of dataflow threads can increase the utilization of underutilized
resources in a multi-core system while maintaining tolerable overhead in a fully
utilized system. [4] also investigates the scheduling of parallel applications for
message-passing multi-computers via job duplication.

84 D. A. R. Perdomo et al.

Dynamic Voting (Codelet Replication). Replication does not have to be
static (e.g., always replicating M times as in the N-of-M system). Dynamic voting
(Fig. 4) allows the number of codelet replicas to be controlled based on system
conditions. The triggering mechanism for replication can be tailored to the spe-
cific system. There is a tradeoff between fault detection and recovery that the
system designer must balance. An example of dynamic voting starts with only
one replica of the codelet. The system compares the outputs of the original
and the replica. If there are discrepancies more codelets can be scheduled. This
process can be performed until a majority is reached.

Fig. 4. Cd Rep.

The Scheduler Unit can make decisions regarding the
destination compute unit based on the system’s state. For
example, [31] uses error history to change scheduling deci-
sions. The maximum number of replicas before an unre-
coverable error occurs can be specified by the system or
metadata in the SCM program. This method minimizes
overall task overhead, but it might take longer to reach a
consensus in some cases, as it spawns additional codelets
on demand.

SU Replication. SU replication focuses on the
resiliency of control flow instructions and arithmetic
operations performed by the SU that determine codelet

scheduling. SU replication implies redundant execution of these instructions, but
it does not mean codelet replication. In the example in Listing 1.1, SU replica-
tion will be centered around the control flow instructions (i.e., lines 8 and 15)
and the simple arithmetic instructions (i.e., lines 13 and 14), concerning only
the checking of the Level 1 program and its control.

Ravishankar et al. [19] describe similar techniques applied to single-core archi-
tectures. In particular, the Preemptive control-flow-checking technique tracks the
program’s execution and guarantees that the execution corresponds to a correct
execution flow. In general, SU resiliency is centered around the consistency of
the program execution and control flow (Figs. 5 and 6).

Fig. 5. SU Lockstep

Fig. 6. SU Voting

Lockstep Mode: In Lockstep mode, equivalent SUs exe-
cute the same set of operations simultaneously. Lockstep
execution requires the replicated SUs to be tightly cou-
pled physically (e.g., same clock domain), allowing fast
communication between the devices. Multiple recovery
methods could be used, each with different costs associ-
ated. Some examples are 1) copying the processor state
from the unfaulty SU or 2) decommissioning the faulty
unit by disabling or isolating the device. In SU lock-
step replication, the resiliency system performs a one-
to-one comparison of the scheduling decisions performed
by each SU at every step of the execution.

Towards Fault Tolerance and Resilience in the Sequential Codelet Model 85

Decoupled Replication and Voting: The Scheduling Unit is replicated. Error
detection and correction work correspondingly, but the execution of each replica
is completely independent from the others. The voting mechanism compares
scheduler outputs and decides based on the majority. Voting only occurs after
control instructions are executed and does not require the processors to be tightly
coupled, loosening the physical proximity requirement. There are multiple mech-
anisms for comparison, allowing diverse implementations with different tradeoffs.
A costly solution could compare the output of each functional unit that makes
up the SU in hardware (i.e., fetch, decode, and out-of-order mechanisms). A
more modest option is to only compare the program counter register of each SU,
as it directly relates to the control flow decisions (Fig. 7).

Fig. 7. SU M-B

Dynamic Redundancy and Main-Backup: SU replication
can also provide dynamic redundancy in a main-backup
configuration. Another SU can be placed in a location
that can track the current program counter and keep
track of the state of the overall machine. In this configu-
ration, the second SU does not perform system orches-
tration decisions unless the first SU goes offline. The
redundant SU only keeps a copy of the system’s current
state. Upon detection of an error, the second SU can take
over control, allowing execution to continue. The Main-

Backup approach allows for the backup unit to be used for other tasks until
a fault occurs, or to increase hardware lifetime by decreasing utilization of the
backup unit. Hot-swap techniques can be used to reduce downtime: the main
unit can be replaced as the backup operates, normalizing the system’s state
without interruptions (Fig. 8).

Fig. 8. SU Wd

Watchdog and Monitoring: Two directions can be consid-
ered for watchdog mechanisms. First, a horizontal watch-
dog implementation could allow an SU to communicate
with another SU. This mechanism can be used in the
Dynamic Redundancy example in the section above. This
would allow an SU to keep track of its peers at the same

level and coordinate resiliency decisions across them. Second, a vertical watchdog
implementation would involve the SU constantly checking its CUs (downwards)
and communicating its state to the SU of the upper level. Based on this informa-
tion, active action can be taken by an SU to avoid more programs being assigned
to it or to migrate work to a horizontal SU peer. Therefore, SU resiliency pro-
vides some flexibility in how an SU is monitored by a watchdog mechanism and
how it might be replaced in case of failure. Moreover, it is possible to implement
a heartbeat mechanism horizontally and vertically that can range from a simple
clock signal to a checksum or integrity check.

86 D. A. R. Perdomo et al.

3.2 B) Computational Unit Resiliency

CU resiliency is directly connected to SU resiliency as described in Subsect. 3.1.
Here we highlight elements that are most important for CU resiliency.

CU Replication. The commodity SCM-AM already includes Compute Unit
(CU) replication used to achieve parallelism. Thus, a system can take advan-
tage of already existing parallelism for resiliency while maintaining a low time
overhead. This level of redundancy can be taken advantage of by the Scheduler
unit by changing scheduling decisions across CUs. Additionally, notice that for a
given level above L1, replicating a Computational Unit implicitly replicates the
SU of the level below. Therefore, SU replication complements the mechanisms
presented in Sect. 3.1. Multiple operation modes are defined based on previous
work [6,17], targeting error detection and correction, system availability, and
transparency to the user and application.

Fig. 9. CU LS

Fig. 10. CU Voting

Lockstep vs Decoupled: The level of coupling during the
execution of codelets in replicated CUs can be controlled
in the design. A lockstep (Fig. 9) would closely com-
pare the state of each computation as presented in [29].
Memory operations performed within the Codelet must
undergo a majority vote as they access the register file.
A similar lockstep technique, along with checkpointing,
roll-back, and roll-forward mechanisms, is proposed in
[21].

However, the execution of each CU replica can be
completely independent of one another (Fig. 10). The
voting system only occurs after the Codelet is executed
and does not require the processors to be tightly cou-
pled, loosening the physical proximity requirement. This
voting technique was previously described in Fig. 3.

A similar technique is proposed in [40], where a
coarse-grained dataflow system is augmented with redundant execution and
thread-level recovery techniques, leveraging the side-effect free execution and
single-assignment semantics of the dataflow execution model. They demonstrate
that redundant execution of dataflow threads can increase the utilization of
underutilized resources in a multi-core system while maintaining tolerable over-
head in a fully utilized system (Figs. 11 and 12).

Towards Fault Tolerance and Resilience in the Sequential Codelet Model 87

Fig. 11. CU M-B

Fig. 12. CU Wd

Dynamic Redundancy, Main-Backup, and Watchdog:
Previously we described these mechanisms in the con-
text of SUs. However, from the perspective of a CU,
these mechanisms can be thought of as properties of the
unit, rather than as mechanisms in the SU. The CU can
still be seen as a closed unit while dynamic redundancy,
main backup, and watchdog systems are built around
them. Other work has also demonstrated that CUs can
be used as watchdogs [28], enabling automatic anomaly
detection and decision-making. These mechanisms can
also be used as heartbeats [3] that inform another CU
or the SU directly of the state of the processor, or as
a checksum that contains further information about the
program’s state.

3.3 C) and D) Memory and IO, Resiliency and Fault Tolerance

Memory often presents challenges for resiliency. In general, the whole state of
a program in SCM can be described as the current state of the register file,
the program counter, and the memory in the levels above associated with the
current execution. Regarding memory and IO, multiple mechanisms can provide
fault tolerance and resiliency. Our scheme is centered around using Memory
Codelets [15] for resiliency. Unlike Compute Codelets, memory codelets interact
with outside systems, so they must consider possible side effects of replication.

Register File Resiliency. As described in several mechanisms above, the reg-
ister file can play an important role in resiliency. First, Codelet duplication uses
register renaming techniques to allow for full Codelet duplication. Furthermore,
the N-Modular system in Fig. 3 demonstrates a possible configuration that also
provides replication of the register file.

Registers are also named locations that can be replicated upon scheduling
a Codelet. The reader may be familiar with the reservation tables in Toma-
sulo’s algorithm [38]. In this case, registers are duplicated in the register file and
possibly in multiple reservation tables. Likewise, the duplication of Codelets in
multiple CUs can allow for the duplication of registers across different CUs. In
particular, distributed CU systems can allow the replication of registers into each
CU’s local memory. Upon errors in each CU, the register file can be recovered
using the original copy near the SU.

Redundant Inputs/Outputs and Reliable Communication. Redundant
inputs target the problem of reliability in data acquisition. This is particularly
important in the context of signal or data acquisition from external sources. The
concept of Input/Output is previously described in [25] in the context of a hierar-
chical von Neumann view of the system. Therefore, the arrival and transmission
of data from external sources directly relate to the memory interface.

88 D. A. R. Perdomo et al.

Most computational systems rely on networks that transmit information;
more often than not such networks have redundancy or resiliency mechanisms.
For example, the TCP protocol provides a reliable connection between two nodes.
While there might be some overlap with existing communication protocols, we
extend the description of I/O redundancy to non-TCP/IP networks that may
work as an interconnect to the outside of the system. Embedded systems, for
example, may rely on electronic signals interpreted as digital values and then
transmitted over cables or networks. These signals may be acquired redundantly
and handled by the PXM transparently. The SCM-PXM can have a hardware
implementation, relieving the CUs and the Operating System of the responsi-
bility of network communication management and memory operations that can
be handled directly by the PXM. A direct link to SmartNICs for virtual net-
work function privatization is a possible candidate [24]. However, due to space
limitations, we leave this discussion outside of the scope of this paper.

Another property of the SCM is its ability to be event-driven. Redundant sig-
nals can be used as event-driven inputs for duplicated Codelets. The application
may mark these Codelets and associate them with the I/O protocol. Using mul-
tiple inputs combined with other FT&R techniques like algorithm-based fault
tolerance can significantly increase the reliability of a system, targeting different
levels where a fault may occur. [11] proposes QORE, a fault tolerant Network-
on-Chip (NoC) architecture using reversible channel buffers. Other redundancy
mechanisms used in automated design and control of critical systems can be
considered as candidates for the I/O problem in SCM [18,32].

Memory Access Interface Resiliency. In general, the compartmentalization
of local memory (i.e., data dependencies) and Memory Codelets allows SCM
to provide resiliency mechanisms in the memory access interface strategically
(Fig. 13).

Fig. 13. Checkpoint

Memory Checkpointing: Memory checkpointing is a
method employed in computational workloads that usu-
ally require a long execution time. Memory Codelets
orchestrate memory operations between the register file
and the upper level. Therefore, Memory Codelets are
a natural location to take advantage of checkpointing.
Checkpointing often requires the application to deter-
mine the state of the program that is representative of
the next checkpoint. Thanks to the strategic location
of Memory Codelets, duplication can be transparently
achieved for the Memory Codelets that are part of the
checkpoint. Imagine, for example, the memory instruc-
tion in line 12 of Listing 1.1. This memory operation is to be executed by the
memory access interface. If this Codelet represents a checkpoint, the memory
access interface can write to both non-volatile and volatile memory at the same
time.

Towards Fault Tolerance and Resilience in the Sequential Codelet Model 89

The additional latency overhead of the non-volatile memory access can be
hidden by allowing the program to continue once the volatile memory is written.
While Memory Codelets are the mechanism that performs the fine-grain memory
stores for the checkpoint, the SU will have the ability to mark a specific state of
the non-volatile memory as a complete checkpoint. Allowing the SU to save the
state of the machine next to the checkpoint means that the recovery process is
equivalent to a context switch of the system: 1) load the memory of the program
from non-volatile to volatile memory and 2) load the program counter and the
register file into the particular level that is being recovered.

On the other hand, the Memory Access Interface could be leveraged with
recoding and compute capabilities, as described in [15]. Thus, it is possible to
take advantage of algorithm-specific data integrity mechanisms. For instance,
a system knows that values must not be negative. A Memory Codelet could
perform additional checks on the data as it is copied back to the memory. Fur-
thermore, Error Correction Codes can be part of the Memory Codelet interface.
Although DRAM modules already support these, more general architectures
(e.g., distributed systems) may still be able to take advantage of the flexibility
in SCM.

To avoid silent and fail-stop errors, [36] suggests partial task replication and
checkpointing for task-parallel HPC systems. Checkpointing with rollback recov-
ery is a well-known approach for coping with transient faults. In this mechanism,
an application is rolled back to the most recent consistent state using checkpoint
data. A low-overhead two-state checkpointing (TsCp) approach for fault-tolerant
hard real-time systems is presented in [34]. Compared to prior studies, this tech-
nique greatly reduces the number of checkpoints (62% on average), resulting in
a 14% and 13% reduction in execution time and energy usage, respectively. HPC
systems often face I/O bottlenecks when using global checkpointing to external
storage. To address this, a technique was introduced in [26] that combines per-
formance modeling and lightweight monitoring. This approach enables informed
decisions on utilizing local storage devices, dynamically adapting to background
flushes, and reducing checkpointing overhead based on their results.

3.4 Algorithm-Based Fault Tolerance in the Codelet Graph

Fig. 14. Algorithm-
Based Mechanism

Algorithm-based fault tolerance integrates error detec-
tion/correction mechanisms into the application itself.
Codelets can be assigned additional metadata that refers
to algorithm-based checking mechanisms. For example, to
guarantee that the result of a codelet is correct, an addi-
tional segment of code could be added to the description
of the Codelet. Such additional code does not need to be
executed by the CU necessarily. For example, additional
hardware in the writeback stage or the SU can provide a
hardware-assisted interface to perform resiliency opera-

tions on output registers quickly. These mechanisms may also take advantage of
domain-specific features embedded in the application (e.g., values can be checked

90 D. A. R. Perdomo et al.

to be within an acceptable range). Algorithm-based fault tolerance [7] can be
attached as metadata of the Codelet for error detection and correction.

4 Evaluation

In order to demonstrate some of the approaches mentioned in Sect. 3 we have
modified SCMUlate, an emulator of the Sequential Codelet Model previously
used in [10]. SCMUlate is a functional emulator for the first level of the Sequential
Codelet Model. It leverages commodity hardware found in current systems to
be used as compute units of Level 1. Codelets are executed in real hardware
compute units while the rest of the machine is emulated in software. As a result,
the mechanism for fetch, decode, memory, writeback, and the register file for
Level 1 are fully emulated. On the application side, SCMUlate interprets and
executes the programs written in the assembly language of Level 1. This assembly
program uses the same syntax used in Listing 1.1. Parallelization is achieved
through Out-of-Order execution [9].

SCMUlate was extended to allow for SU-driven codelet duplication, per-
forming the necessary register duplication and renaming to achieve N-replicas of
the same codelet. Furthermore, a perfect voting mechanism was included that
would compare all replicas in order to perform fault detection. In the presence
of a recoverable error, the SU performs the necessary actions to recover compu-
tation. Finally, a fault injection mechanism is included that implements codelet
fault injection based on two fault models: Poisson (i.e., constant error rate),
and Weibull. The fault injection mechanism used is an implementation of the
simulation strategy presented in [22].

Our evaluation includes the implementation of three resiliency mechanisms: a
2-of-3 system, a 3-of-5 system, and a dynamic M-of-N system with a maximum
N of 10 duplications. As a baseline, we use a system that has no resiliency
mechanism but is prone to failures based on the specific statistical model of
the fault injection mechanism (i.e., Poisson vs Weibull). The experiments are
focused on fault tolerance mechanisms for the Compute Unit as explained in
Sect. 3 Thus, we assume that the only component that may fail is the Compute
Unit and that other components are fully reliable.

Our execution environment is the Polaris supercomputer hosted by Argonne
Leadership Computing Facilities (ALCF) [1]. To evaluate our approach, we use
the implementation of the matrix multiplication algorithm in SCM that was also
used in [10]. Each codelet executes a tile that is of size 128 by 128 double ele-
ments. The program executes square matrix multiplication of size M=N=K=768
doubles (i.e., 6 by 6 tiles. For the Weibull fault model, we use a beta of 0.7
previously used by [22,31]. For Lambda, we precalculate a range that could
demonstrate the benefits of the approach based on the codelet execution time.
In Polaris, the MatMul 2048L codelet for a single tile runs in approximately 2.5
ms. Based on our calculation the ranges of λ = [0.0002, 0.008] for the Poisson
model, and λ = [0.002, 0.08] for Weibull were considered appropriate values. We
perform 30 repetitions per lambda, increasing lambda by 0.0002 and 0.002 for
Poisson and Weibull respectively.

Towards Fault Tolerance and Resilience in the Sequential Codelet Model 91

Pe
rc

en
ta

ge
 o

f s
uc

ce
ss

fu
l e

xe
cu

tio
ns

0%

25%

50%

75%

100%

125%

0.02 0.04 0.06 0.08
0%

25%

50%

75%

100%

125%

0.002 0.004 0.006 0.008

Av
g

Ex
ec

ut
io

n
tim

e
(s

) o
f s

uc
ce

ss
fu

l

0.0

0.2

0.4

0.6

0.8

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

0.002 0.004 0.006 0.008

No Duplication 2-o-3 3-o-5 Adaptive Duplication

Fig. 15. Percentage of successful trials (Top Row) and execution time (Bottom Row) vs
fault rate λ (horizontal axis) for two fault injection models: Weibull (left) and Poisson
(Right). Weibull uses β = 0.7 in all the experiments. (Color figure online)

Our experiments are summarized in Fig. 15. The top row shows the results for
the number of experiments that yield a successful run. The bottom row shows
the average execution time of those results that were successful. If no results
were successful, no data point for the time was considered, hence the breaking
line in No Duplication (red).

Experiments show a considerable improvement in reliability across the differ-
ent mechanisms. The average overhead of execution time for Weibull was 1.15,
1.37, and 2.07 times the baseline (no duplication). For Poisson on the other
hand overheads were 1.39, 1.80, and 2.81 times the baseline (no duplication). In
general, the adaptive solution presented a considerable advantage both in relia-
bility and performance overhead, consequently demonstrating the advantage of
scheduling-driven approaches.

5 Conclusion

This paper presents a possible implementation of resilience within the Sequen-
tial Codelet PXM. Our main contribution consists of identifying, categorizing,
and adapting state-of-the-art resilience techniques for integration within the
SCM. We demonstrated the real-world applicability of these adapted techniques
within an emulated Codelet Model. We believe our work lays the foundation for
enhancing resilience in similarly complex systems. Furthermore, our in-depth
analysis of the performance implications of these techniques offers critical, data-
driven insights. These insights will assist in understanding the trade-offs between

92 D. A. R. Perdomo et al.

resilience and performance, guiding decisions that balance system robustness
with efficiency. We recognize that our work is only one step in the ongoing jour-
ney towards improving resilience in complex systems like the Codelet PXM.

References

1. Argonne leadership computing facility. https://www.alcf.anl.gov/, Accessed 22
July 2023

2. GitHub - josemonsalve2/SCM: Sequential Codelet Model of Program Execution –
github.com. https://github.com/josemonsalve2/SCM/. Accessed 22 July 2023

3. Aguilera, M., Chen, W., Toueg, S.: Heartbeat: a timeout-free failure detector for
quiescent reliable communication, vol. 1320, pp. 126–140 (1997). https://doi.org/
10.1007/BFb0030680

4. Ahmad, I., Yu-Kwong Kwok, Y.K.K.: A new approach to scheduling parallel pro-
grams using task duplication. In: 1994 International Conference on Parallel Pro-
cessing, vol. 2, pp. 47–51 (1994). https://doi.org/10.1109/ICPP.1994.37

5. Ansel, J., Arya, K., Cooperman, G.: DMTCP: transparent checkpointing for cluster
computations and the desktop. In: 2009 IEEE International Symposium on Parallel
& Distributed Processing, pp. 1–12 (2009). https://doi.org/10.1109/IPDPS.2009.
5161063

6. Bolchini, C., Miele, A., Sciuto, D.: An adaptive approach for online fault man-
agement in many-core architectures (2012). https://doi.org/10.1109/DATE.2012.
6176589

7. Bosilca, G., Delmas, R., Dongarra, J., Langou, J.: Algorithmic based fault tolerance
applied to high performance computing (2008)

8. Dennis, J.: A parallel program execution model supporting modular software con-
struction. In: Proceedings. Third Working Conference on Massively Parallel Pro-
gramming Models (Cat. No. 97TB100228), pp. 50–60 (1997). https://doi.org/10.
1109/MPPM.1997.715961

9. Diaz, J.M.M.: Sequential Codelet Model A SuperCodelet Program Execution
Model and Architecture. Phd thesis, University of Delaware, Newark, DE (2021)

10. Diaz, J.M.M., Harms, K., Guaitero, R.A.H., Perdomo, D.A.R., Kumaran, K., Gao,
G.R.: The supercodelet architecture. In: Proceedings of the 1st International Work-
shop on Extreme Heterogeneity Solutions. ExHET 2022. Association for Comput-
ing Machinery, New York (2022). https://doi.org/10.1145/3529336.3530823

11. DiTomaso, D., Kodi, A., Louri, A.: QORE: a fault tolerant network-on-chip archi-
tecture with power-efficient quad-function channel (qfc) buffers. In: 2014 IEEE 20th
International Symposium on High Performance Computer Architecture (HPCA),
pp. 320–331 (2014). https://doi.org/10.1109/HPCA.2014.6835942

12. Egwutuoha, I.P., Levy, D., Selic, B., Chen, S.: A survey of fault tolerance mech-
anisms and checkpoint/restart implementations for high performance comput-
ing systems. J. Supercomput. 65(3), 1302–1326 (2013). https://doi.org/10.1007/
s11227-013-0884-0

13. Fang, Y., Zou, C., Elmore, A.J., Chien, A.A.: UDP: a programmable accelerator
for extract-transform-load workloads and more. In: Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-50 2017, pp.
55–68. Association for Computing Machinery, New York (2017). https://doi.org/
10.1145/3123939.3123983

14. Fox, D., Diaz, J.M.M., Li, X.: Chiplets and the codelet model (2022)

https://www.alcf.anl.gov/
https://github.com/josemonsalve2/SCM/
https://doi.org/10.1007/BFb0030680
https://doi.org/10.1007/BFb0030680
https://doi.org/10.1109/ICPP.1994.37
https://doi.org/10.1109/IPDPS.2009.5161063
https://doi.org/10.1109/IPDPS.2009.5161063
https://doi.org/10.1109/DATE.2012.6176589
https://doi.org/10.1109/DATE.2012.6176589
https://doi.org/10.1109/MPPM.1997.715961
https://doi.org/10.1109/MPPM.1997.715961
https://doi.org/10.1145/3529336.3530823
https://doi.org/10.1109/HPCA.2014.6835942
https://doi.org/10.1007/s11227-013-0884-0
https://doi.org/10.1007/s11227-013-0884-0
https://doi.org/10.1145/3123939.3123983
https://doi.org/10.1145/3123939.3123983

Towards Fault Tolerance and Resilience in the Sequential Codelet Model 93

15. Fox, D., Diaz, J.M., Li, X.: On memory codelets: prefetching, recoding, moving
and streaming data (2023)

16. Gao, G., Suetterlein, J., Zuckerman, S.: Toward an Execution Model for Extreme-
Scale Systems - Runnemede and Beyond (2011). technical Memo

17. Gizopoulos, D., et al.: Architectures for online error detection and recovery in mul-
ticore processors. In: 2011 Design, Automation & Test in Europe (2011). https://
doi.org/10.1109/date.2011.5763096

18. IEC: Functional safety of electrical/electronic/programmable electronic safety-
related systems. Standard IEC 61508–1:2010. International Electrotechnical Com-
mission, Geneva, CH (2010). https://webstore.iec.ch/publication/5515

19. Iyer, R., Nakka, N., Kalbarczyk, Z., Mitra, S.: Recent advances and new avenues
in hardware-level reliability support. IEEE Micro 25(6), 18–29 (2005). https://doi.
org/10.1109/MM.2005.119

20. Kadri, N., Koudil, M.: A survey on fault-tolerant application mapping tech-
niques for network-on-chip. J. Syst. Arch. 92, 39–52 (2019). https://doi.org/
10.1016/j.sysarc.2018.10.001. https://www.sciencedirect.com/science/article/pii/
S1383762118301498

21. Kasap, S., Wächter, E.W., Zhai, X., Ehsan, S., McDonald-Maier, K.D.: Novel
lockstep-based fault mitigation approach for socs with roll-back and roll-
forward recovery. Microelectron. Reliabil. 124, 114297 (2021). https://doi.org/10.
1016/j.microrel.2021.114297. https://www.sciencedirect.com/science/article/pii/
S0026271421002638

22. Koren, I., Krishna, C.M.: Fault-Tolerant Systems. Organ Kaufmann (2007)
23. Landwehr, A.: An experimental exploration of self-aware systems for exascale archi-

tectures (2016)
24. Linguaglossa, L., et al.: Survey of performance acceleration techniques for network

function virtualization. Proc. IEEE 107(4), 746–764 (2019). https://doi.org/10.
1109/JPROC.2019.2896848

25. Monsalve, J., Harms, K., Kalyan, K., Gao, G.: Sequential codelet model of program
execution - a super-codelet model based on the hierarchical turing machine. In:
2019 IEEE/ACM Third Annual Workshop on Emerging Parallel and Distributed
Runtime Systems and Middleware (IPDRM), pp. 1–8 (2019). https://doi.org/10.
1109/IPDRM49579.2019.00005

26. Nicolae, B., Moody, A., Gonsiorowski, E., Mohror, K., Cappello, F.: Veloc: towards
high performance adaptive asynchronous checkpointing at large scale. In: 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp.
911–920 (2019). https://doi.org/10.1109/IPDPS.2019.00099

27. Patterson, D.A., Hennessy, J.L.: Computer Architecture: A Quantitative App-
roach. Morgan Kaufmann Publishers Inc., San Francisco (1990)

28. Platunov, A., Sterkhov, A.: Whatchdog mechanisms in embedded systems. Sci.
Tech. J. Inf. Technol. Mech. Opt. 301–311 (2017). https://doi.org/10.17586/2226-
1494-2017-17-2-301-311

29. Poledna, S.: Fault-Tolerant Real-Time Systems: The Problem of Replica Deter-
minism. Kluwer Academic Publishers, Boston (1996)

30. Qu, P., Yan, J., Zhang, Y., Gao, G.: Parallel turing machine, a proposal. J. Comput.
Sci. Technol. 32, 269–285 (2017). https://doi.org/10.1007/s11390-017-1721-3

31. Rozo Duque, L.A., Monsalve Diaz, J.M., Yang, C.: Improving mpsoc reliability
through adapting runtime task schedule based on time-correlated fault behavior.
In: 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 818–823 (2015)

https://doi.org/10.1109/date.2011.5763096
https://doi.org/10.1109/date.2011.5763096
https://webstore.iec.ch/publication/5515
https://doi.org/10.1109/MM.2005.119
https://doi.org/10.1109/MM.2005.119
https://doi.org/10.1016/j.sysarc.2018.10.001
https://doi.org/10.1016/j.sysarc.2018.10.001
https://www.sciencedirect.com/science/article/pii/S1383762118301498
https://www.sciencedirect.com/science/article/pii/S1383762118301498
https://doi.org/10.1016/j.microrel.2021.114297
https://doi.org/10.1016/j.microrel.2021.114297
https://www.sciencedirect.com/science/article/pii/S0026271421002638
https://www.sciencedirect.com/science/article/pii/S0026271421002638
https://doi.org/10.1109/JPROC.2019.2896848
https://doi.org/10.1109/JPROC.2019.2896848
https://doi.org/10.1109/IPDRM49579.2019.00005
https://doi.org/10.1109/IPDRM49579.2019.00005
https://doi.org/10.1109/IPDPS.2019.00099
https://doi.org/10.17586/2226-1494-2017-17-2-301-311
https://doi.org/10.17586/2226-1494-2017-17-2-301-311
https://doi.org/10.1007/s11390-017-1721-3

94 D. A. R. Perdomo et al.

32. Safari, S., et al.: A survey of fault-tolerance techniques for embedded systems from
the perspective of power, energy, and thermal issues. IEEE Access 10, 12229–12251
(2022). https://doi.org/10.1109/ACCESS.2022.3144217

33. Sahoo, S.S., Ranjbar, B., Kumar, A.: Reliability-aware resource management
in multi-/many-core systems: a perspective paper. J. Low Power Electron.
Appl. 11(1) (2021). https://doi.org/10.3390/jlpea11010007. https://www.mdpi.
com/2079-9268/11/1/7

34. Salehi, M., Khavari Tavana, M., Rehman, S., Shafique, M., Ejlali, A., Henkel,
J.: Two-state checkpointing for energy-efficient fault tolerance in hard real-time
systems. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(7), 2426–2437
(2016). https://doi.org/10.1109/TVLSI.2015.2512839

35. Sastry Hari, S.K., Li, M.L., Ramachandran, P., Choi, B., Adve, S.V.: Mswat: low-
cost hardware fault detection and diagnosis for multicore systems. In: Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 42, pp. 122–132. Association for Computing Machinery, New York (2009).
https://doi.org/10.1145/1669112.1669129

36. Subasi, O., Unsal, O., Krishnamoorthy, S.: Automatic risk-based selective redun-
dancy for fault-tolerant task-parallel hpc applications. In: Proceedings of the Third
International Workshop on Extreme Scale Programming Models and Middleware,
ESPM22017. Association for Computing Machinery, New York (2017). https://
doi.org/10.1145/3152041.3152083

37. Suettlerlein, J., Zuckerman, S., Gao, G.R.: An implementation of the codelet
model. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol.
8097, pp. 633–644. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40047-6 63

38. Tomasulo, R.M.: An efficient algorithm for exploiting multiple arithmetic units.
IBM J. Res. Dev. 11(1), 25–33 (1967). https://doi.org/10.1147/rd.111.0025

39. Weis, S., Garbade, A., Fechner, B., Mendelson, A., Giorgi, R., Ungerer, T.: Archi-
tectural support for fault tolerance in a teradevice dataflow system. Int. J. Parallel
Program. (2014). https://doi.org/10.1007/s10766-014-0312-y

40. Weis, S., et al.: A fault detection and recovery architecture for a teradevice dataflow
system. In: 2011 First Workshop on Data-Flow Execution Models for Extreme Scale
Computing, pp. 38–44 (2011). https://doi.org/10.1109/DFM.2011.9

https://doi.org/10.1109/ACCESS.2022.3144217
https://doi.org/10.3390/jlpea11010007
https://www.mdpi.com/2079-9268/11/1/7
https://www.mdpi.com/2079-9268/11/1/7
https://doi.org/10.1109/TVLSI.2015.2512839
https://doi.org/10.1145/1669112.1669129
https://doi.org/10.1145/3152041.3152083
https://doi.org/10.1145/3152041.3152083
https://doi.org/10.1007/978-3-642-40047-6_63
https://doi.org/10.1007/978-3-642-40047-6_63
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1007/s10766-014-0312-y
https://doi.org/10.1109/DFM.2011.9

Artificial Intelligence using HPC Scale

Parallel-Distributed Implementation
of the Lipizzaner Framework

for Multiobjective Coevolutionary
Training of Generative Adversarial

Networks

Sergio Nesmachnow1,2(B) , Jamal Toutouh2 , Guillermo Ripa1,
Agust́ın Mautone1, and Andrés Vidal1

1 Universidad de la República, Montevideo, Uruguay
2 Universidad de Málaga, Málaga, Spain
sergion@fing.edu.uy, jamal@uma.es

Abstract. This article presents a parallel-distributed implementation of
the Lipizzaner framework for multiobjective coevolutionary Generative
Adversarial Networks training. A specific design is proposed following the
messagge passing paradigm to execute in high performance computing
infrastructures. The implementation is validated for the generation of
handwritten digits problems. Accurate efficiency and scalability results,
and a proper load balancing are reported.

Keywords: Computational Intelligence · Generative Adversarial
Networks · High Performance Computing

1 Introduction

Generative Adversarial Networks (GANs) are computational methods in the
field of artificial intelligence that aim to learn generative models to estimate the
distribution of a given training dataset to generate new, synthetic data.

GANs consist of two neural networks, the generator and the discriminator,
which compete against each other during the learning process. The generator
strives to produce synthetic data that is indistinguishable from real data, whereas
the discriminator aims to differentiate between real and generated data. GANs
have demonstrated their effectiveness in a variety of tasks, including image and
video generation [6]. Despite their success, GANs training remains a challenging
task due to unstable training dynamics and pathologies such as oscillation, mode
collapse, discriminator collapse, and vanishing gradients [1,2].

Evolutionary computation has shown promising results for GANs training.
Evolutionary Algorithms and Coevolutionary Algorithms have been used to opti-
mize GAN parameters or design spatial systems to improve the learning process.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 97–112, 2024.
https://doi.org/10.1007/978-3-031-52186-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_7&domain=pdf
http://orcid.org/0000-0002-8146-4012
http://orcid.org/0000-0003-1152-0346
https://doi.org/10.1007/978-3-031-52186-7_7

98 S. Nesmachnow et al.

Evolutionary computation-based GAN training methods have guided popula-
tions of neural networks towards convergence, resulting in comparable or better
results than traditional GAN training methods.

This article focuses on the spatially-distributed competitive coevolutionary
algorithm for GAN training proposed in the Lipizzaner framework [13]. The
method specifies a spatial topology, such as a two-dimensional toroidal grid or a
ring, to position pairs of generators and discriminators in each cell of the spatial
topology. Additionally, neighborhood relationships between cells and migration
policies allow for the definition of subpopulations and signal propagation across
the topology. As a result, a cellular algorithm is used to optimize the parameters
of the generators and the discriminators by applying gradient-based training.

The complex optimization strategy proposed by Lipizzaner is effective for
GAN training, but has a specific major drawback: it is computationally expen-
sive. To alleviate the computational cost of the GAN training process, parallel
computing techniques can be applied to distribute the populations handled by
Lipizzaner and evolve them in parallel. This article presents a parallel distributed
implementation of Lipizzaner, designed to execute in cluster infrastructures. Fur-
thermore, instead of the single objective optimization approach in Lipizzaner,
focused on improving the quality of synthetic samples produced by the genera-
tor, a multiobjective optimization aproach is applied. By considering a second
objective function that also optimizes the diversity of the synthetic samples, the
multiobjective approach is more able to represent the distribution of the real
data and it is more robust to specific patologies such as mode collapse. However,
the multiobjective optimization training introduces a new source of complexity
and computational cost. It is not uncommon that a single instance of the training
process for a GAN demands more than a day of execution time [4,14].

The proposed implementation is validated for a benchmark problem in the
field of artificial intelligence generation models, the generation of handwritten
digits. The computed result demonstrate the correctness of the proposed app-
roach. accurate results of both efficiency and scalability were computed, and the
algorithm showed a proper load balancing.

The article is organized as follows. Section 2 introduces coevolutionary
GANs training, the Lipizzaner framework, and reviews related works. Section 3
describes the proposed approach for developing the parallel-distributed multi-
objective version of Lipizzaner. Section 4 reports the experimental evaluation.
Finally, Sect. 5 presents the conclusions of the research.

2 Generative Adversarial Networks and Coevolutionary
Training

This section describes the Lipizzaner framework and reviews related works. The
coevolutionary GAN training approach involves modeling the GAN training pro-
cess as a two-player game between the generator and discriminator. The game
is solved by implementing gradient-based optimization on the GAN minmax
objective [5]. In contrast, competitive coevolutionary GAN training involves two

Parallel Lipizzaner Framework for Coevolutionary Training of GANs 99

populations of generators and discriminators that co-evolve against each other,
while addressing the minmax objective, as described in evolutionary game theory
and the competitive coevolutionary neural population model [9].

2.1 The Lipizzaner Framework

The Lipizzaner framework employs a spatially-distributed competitive coevo-
lutionary algorithm for GAN training [13]. This method coevolves populations
of generators and discriminators, with individual members of each population
located in the cells of a toroidal grid. Overlapping neighborhoods facilitate migra-
tion among cells to propagate models across the grid. Each cell contains two
competitive subpopulations defined by individuals in the cell and those gath-
ered from the neighborhood. Training occurs in pairs throughout the subpopu-
lations by implementing stochastic gradient descent with a minmax objective.
Gaussian mutation is applied to adjust the stochastic gradient descent training
parameters during evolution. After each training epoch, the competing subpop-
ulations are updated with copies of the best generator and discriminator from
each neighborhood cell.

2.2 Related Work

Evolutionary computation methods using populations of generators and discrim-
inators are a promising research line for GAN training. However, few articles have
proposed explicit parallel-distributed approaches to improve the computational
efficiency of the training process.

Liu et al. [8] presented the first implementatioin of a decentralized parallel
gradient-based algorithm for GANs training. A master-worker design was pro-
posed where workers performs several rounds of communications per iteration,
updating both the discriminator and generator simultaneously. The proposed
method was useful to deal with the main challenges of handling the nonconvex-
nonconcave min-max optimization for GANs training. The method was evalu-
ated for training WGAN-GP on the CIFAR10 dataset and Self-Attention GAN
on the ImageNet dataset. The computed results showed the effectiveness of the
proposal on a low latency cluster with four servers equipped with a 14-core
IntelXeon E5-2680 (2.4GHz) processor and four Nvidia P100GPUs.

Hardy et al. [7] proposed a distributed training approach for GANs, using
several datasets on multiple workers. A single generator is kept in a centralized
server and a global learning iteration approach is applied, where each worker has
its own discriminator an performs learning iterations over it to computes an error
feedback to be sent to the central server. The server then computes the gradient
of the generator and optimizes/updates its parameters using Adam. A swap of
discriminators is applied to avoid especialization and overfiting when performing
too many learning iterations over the same data subset. The workload of workers
is kept as reduced as possible, i.e., avoiding moving data shares during training.
The proposal was evaluated for the standard MNIST and CIFAR10 datasets
and compared with a variant of federated learning over a GPU-based server

100 S. Nesmachnow et al.

with two Intel Xeon Gold 6132 processors and NVIDIA Tesla M60 or P100
GPUs. Acceptable efficiency values were obtained (reduction by a factor of two)
improvinig over a variant of federated learning approach for both datasets.

Cardoso et al. [3] explored the parallelization of GANs training on cloud ser-
vices. Parallel approaches were proposed to train on multiple GPUs over Google
Tensor Processing Units (TPU). A synchronous parallel strategy was applied
over multiple GPUs on a single node. A multiworker strategy to use multiple
nodes and a TPU strategy for synchronous training on TPUs using all reduce
and collective operations. The proposal was evaluated on Google Cloud and
Microsoft Azure. Linear speedup of the training process was achieved.

The original Lipizzaner implementation applies a task-based workload distri-
bution implemented using the Flask library from Python and the HTTP proto-
col for communications. Master and slave processes are executed on predefined
nodes and ports, available for communications. The processes open an API on
the assigned port and wait for the start execution message. The master rec-
ognizes the network ports exposed to the clients. Once all clients are identified, a
thread is created for each one that is responsible for checking that they are still
running (a heartbeat mechanism). The threads send a message to each client at
a fixed interval and wait for a response; if no response is received, the client is
restarted or the entire algorithm is terminated. Afterwards, the master sends the
execution start message to each client and blocks until the clients finish execut-
ing the algorithm. Once the clients receive the message to start executing, they
create a new thread that is responsible for executing the algorithm, while the
main process handles arriving requests. At the beginning of each generation, each
client sends a request to its neighbors, to be responded with the network that
was most recently selected in their cells. This method avoids synchronization,
since the last selection is always responded regardless of whether the nodes are in
different generations. A class is used to control read/write access to the local net-
works, avoiding race conditions between the thread that executes the algorithm
and the control thread. When all clients have finished their generations, they
send a completion message to the master as a response to the heartbeat. Once
all clients have notified their completion, the master makes an HTTP request to
all clients for them to send the generators and discriminators. With the obtained
networks, the master generates an ensemble of models, whose weights are opti-
mized via the evolutionary algorithm, based on a given performance metric.

The proposed approach for distributed execution has several drawbacks:

– Requires nodes to have visibility of the IP and port of other nodes. This func-
tionality is not allowed in many clusters as it could be a security vulnerability.
This restricts the environments in which the model can be executed.

– Manual load balancing of processes is necessary. There is no system to deter-
mine an optimal distribution of processes on nodes, and the distribution must
be done manually, adding work when running the algorithm.

– Introduces a high level of complexity, since the implementation uses control
threads to handle the API while the experiment is running. Due to the use of
threads, there is a need for resource access control to avoid race conditions.

Parallel Lipizzaner Framework for Coevolutionary Training of GANs 101

– To obtain the networks of neighbors, it is necessary to make a request for
sending, increasing the number of necessary messages and the delay in being
able to continue the training.

Our previous article [11] presented a parallel implementation of a cellular
competitive coevolutionary method to train two populations of GANs. A dis-
tributed memory parallel implementation was proposed for execution in high
performance/supercomputing centers. Accurate efficiency results were reported,
showing that the proposed implementation was able to reduce the training times
and scale properly when considering different grid sizes for training.

The analysis of related works allows concluding that few explicit parallel-
distributed approaches have been proposed for GAN training. Most proposals
rely on implicit parallelization provided by built-in functions in GPUs.

3 Parallel Distributed Multiobjective Lippizaner

This section describes the design and implementation of the parallel distributed
multiobjective Lippizzaner version.

3.1 Methodology and Design

The applied methodology consisted in reimplementing the original distribution
scheme in Lipizzaner (developed under the client-server model, based on sockets
and the HTTP protocol), to work under the message passing paradigm.

The reimplementation is needed since the distributed computing paradigm
works on specific middleware and not using low-level implementations. For the
distribution of the algorithm, the message passage paradigm was applied. It
communicates information by the explicit passage of messages between the pop-
ulations in Lipizzaner. The design is conceived to be used in high-performance
computing platforms, via the standardization provided by the MPI library.

The methodology applied to carry out the adaptation consisted of the anal-
ysis of the existing structures in Lipizzaner, with emphasis on the structures
related to the main training cycle and the distribution of individuals. The adap-
tation procedure was useful to evaluate the coupling of the structures in the
original communication protocol, identifying the structures that should be dis-
carded and those that should be reused.

The main design decisions when reimplementing Lipizzaner with MPI con-
sisted of: 1) basing the interactions between processes on the Cartesian grid
intracommunicator; 2) not using a separate master process from the processes
that handle the evolutionary cycle; 3) have a single thread of execution in each
process, and 4) minimize synchronization points between processes.

3.2 Implementation Details

The new architecture was designed and implemented, using the mpi4py library
for Python. It allows an easy integration with the source code of Lipizzaner and

102 S. Nesmachnow et al.

also allows integrating other machine learning modules and libraries developed
in Pyton and PyTorch.

mpi4py is responsible of initializing and terminating the MPI context via
the MPI INIT and MPI FINALIZE functions. In turn, provides an object-oriented
interface for defining communicators and accessing MPI functions, and handles
serialization and deserialization of Python objects to make it possible to send
them as MPI messages using the Pickle library.

Regarding the serialization of GANs, the coding for discriminators and gen-
erators defined by the original algorithm was maintained. Both networks are
packaged in a map where the discriminator is indexed by the letter “D” and the
generator is indexed by the letter “G”, to be sent in a single message to neigh-
boring processes. Each process uses lists to represent separate populations of
discriminators and generators. Two neighborhood dictionaries (one for discrim-
inators and one for generators) are maintained. Both are indexed by the rank of
neighboring processes. The neighborhoods are used during the communication
routines to keep track of the MPI ranks (origin neighborhoods) associated with
each Lipizzaner process, to know the origin of the individuals. Populations are
used to execute the evolutionary cycle.

The Cartesian grid topology provided by MPI makes it easy to identify neigh-
boring processes. In addition, it allows taking advantage of the physical location
in the computing nodes to improve the performance of sending messages, since
communications between neighboring nodes are the most frequent in the Lip-
izzaner algorithm. In the Lipizzaner reimplementation, as many processes are
launched as many cells are required in the grid and the process with rank zero is
determined as master. The master process is responsible for the initial loading
of the data into shared memory and the assembly of the final model. However,
unlike the original Lipizzaner algorithm, the master process also participates in
the execution of the evolutionary algorithm as another grid process., following
an active master-slave pattern.

Figure 1 shows a diagram with the execution flow of the process of the
redesigned Lipizzaner algorithm. Labels are included for the steps in which an
MPI function is used. When a process starts its execution and mpi4py implicitly
initializes the MPI context, the process checks if its rank is 0 (corresponding
to the master process). If the process has a different rank, it waits at the first
synchronization barrier until the training data is loaded into memory and can be
used. If the process has rank 0, it is the master process. Thus, it is in charge of
reading the configuration of the algorithm, loading the training data into memory
and waiting at the synchronization barrier for the other processes. Once all the
processes are in the synchronization barrier, the barrier is opened to continue.

After passing the barrier that controls the availability of data, each process
initializes its population, distributes it using the MPI ALLGATHER function over a
communicator that contains only its neighbors, and begins the first generation
of the evolutionary algorithm. From the second generation, the usual migration
flow begins: the process obtains immigrant individuals from its neighbors and
updates its population, executes the evolutionary cycle to select and mutate its
best individual, and begins the emigration process sending the best individual
to its four neighbors.

Parallel Lipizzaner Framework for Coevolutionary Training of GANs 103

Fig. 1. Flowchart of the parallel distributed Lipizzaner redesigned with MPI

104 S. Nesmachnow et al.

According to the original specification of Lipizzaner, the evolutionary cycles
of the different subpopulations are not synchronized at any time. The specifi-
cation implies that the number of immigrants at the beginning of a generation
is not deterministic. Therefore, each process updates its population with the
available information and proceeds to execute the evolutionary cycle. The immi-
gration is executed iteratively: the existence of individuals in the message queue
is checked with the non-blocking function MPI IPROBE and if the function returns
true, the function MPI RECV is executed to consume the message. The process is
repeated until the MPI IPROBE function indicates that there are no new messages
about immigrant individuals available. Since MPI guarantees the order of arrival
of the messages, if several individuals come from the same neighbor, the local
population would be updated only with the most recent one.

At the end of an intermediate generation, each process sends its best indi-
vidual to its four neighbors with four independent non-blocking MPI ISEND func-
tions. At the end of the last generation the best individual is sent only to the
master process through the collective communication function MPI GATHER. After
that, the process is blocked in a final barrier to wait for the completion of any
ongoing message Once all the processes are synchronized on the final barrier,
all but the master finish their execution. Then, the master process assembles
the final model using the final generators sent by the processes and ends its
execution.

Figure 2 presents a diagram with the relevant classes of the new architec-
ture. The main class is LipizzanerWorker, responsible for executing the main
algorithm. The class cell is responsible for handling communications via MPI
and LipizzanerTrainer executes the evolutionary cycle. Neighbourhood and
Population are auxiliary classes that model the notion of neighborhood between
processes and the concept of population, respectively.

At the entry point, each process loads the configuration file and waits for
the data to be loaded by the master according to the diagram in Fig. 1. Then,
the LipizzanerWorker class is instantiated, which allows the training algorithm
to be started using the run method. The LipizzanerWorker class performs
the main loop of each Lipizzaner process, maintaining the current iteration and
coordinating messaging operations with the evolution loop.

The messaging functionality is encapsulated in the Cell class, which main-
tains local individuals, provides methods for encoding and decoding messages,
and implements the immigration from (in the collect method) and migration
to (in distribute method) neighboring subpopulations.

The Population and Neighbourhood classes are collections of individu-
als that represent the local population in different contexts of the algorithm.
On the one hand, Population extends the concept of a list of individuals
by adding functionalities to determine if a multidimensional fitness is used
(is multidimensional), to obtain the best individual of the population (best);
and to calculate the Pareto front (pareto front). The Population class mod-
els the simplest and most ubiquitous notion of population in Lipizzaner, so it
is used in all stages of the algorithm. On the other hand, the Neighbourhood

Parallel Lipizzaner Framework for Coevolutionary Training of GANs 105

Fig. 2. Diagram of classes of the parallel multiobjective version of Lipizzaner

is a dictionary that models the neighborhood between subpopulations, keeping
the ranks of the adjacent processes in the grid (South, North, East and West)
and storing the local individuals according to the rank of the source process.
Unlike Population, the Neighbourhood class represents a notion of population
coupled to algorithm distribution and messaging operations, so it is only used
as an auxiliary to the Cell class.

Finally, the LipizzanerTrainer class is responsible for executing generations
(run generation) on the current population and returning the descendant pop-
ulation. This class has access to the evolutionary operators and encapsulates
their call through the evaluate method to calculate the fitness of each indi-
vidual; select to select the individuals to be mutated; mutate to generate
new individuals through mutation, and survival to determine which individ-

106 S. Nesmachnow et al.

uals will be in the new population. LipizzanerTrainer also implements the
optimize generator mixture method, responsible for adjusting the parame-
ters of the ensemble of the optimized generators in each subpopulation.

4 Experimental Evaluation

This section describes the experimental evalauation of the developed parallel
distributed multiobjective version of Lipizzaner.

4.1 Methodology for Performance Evaluation

GAN Architecture, Dataset, and Parameters. The performance evaluation is per-
formed using a Deep Convolutional GAN architecture over the MNIST dataset.
MNIST gathers images of handwritten digits, including 70,000 images of hand-
written digits (60,000 for training and 10,000 for validation) of size 28×28 pixels
on a single color channel. The parametric configuration, the chosen dataset, the
network architecture, and the hyperparameters are based on the Lipizzaner orig-
inal article. This choice allows the standard implementation of Lipizzaner to be
used as a baseline for comparing results. Table 1 reports the parameter values
used in the performance evaluation (Fig. 3).

Fig. 3. Sample images in MNIST

Table 1. Parameter values used in the
performance evaluation

parameter value

batch size 64

iterations 50

learning rate 5×10−5

population size 2

replacement size 1

tournament size 2

Efficiency Metrics. The execution time is used as the main metric for perfor-
mance evaluation. The traditional approach for algorithmic speedup evaluation
is applied to evaluate efficiency, computing the ratio of the the execution time
of the algorithm on a single compute resource (TP1) and the execution time of
the algorithm on N compute resources (TPN) (Eq. 1).

An adapted formulation of the parallelizability is used to evaluate the scal-
ability of the developed implementation. The approach is based on increasing
the number of computing resources while keeping the amount of work constant.
However, in the case of Lipizzaner, there is a one-to-one relationship between grid
cells (work performed) and the processing cores (available computing resources),

Parallel Lipizzaner Framework for Coevolutionary Training of GANs 107

so the work to be done does not remain constant, but increases proportionally to
computing resources. Given this proportional increase, the adapted formulation
for evaluating scalability (SLN) is defined by Eq. 2, where TPM is the Lipiz-
zaner execution time using M processes and M processing cores and TPN the
Lipizzaner execution time using N processes and N processing cores.

SN =
TP1

TPN
(1) SLN =

TPM − TPN

M −N
, for N < M (2)

For a perfectly parallelizable algorithm, the execution time is constant when
increasing both variables proportionally, therefore SLL = 0. If there are steps
that cannot be parallelized, SLL > 0. The analysis is performed for 4, 9, and 16
resources, corresponding to Lipizzaner grids of dimensions 2×2, 3×3, and 4×4.

Finally, the load balance of the algorithm is also evaluated. The start and
end times of iteration are studied for each process in the grid. The evaluation
was meant to detect situations with load not evenly distributed between the
processes or when some process is benefited by the resource manager.

The experimental analysis was performed on the high performance comput-
ing platform of National Supercomputing Center (Cluster-UY), Uruguay [10].
Experiments were performed on Intel Xeon-Gold 6138 2.00GHz with GPUs
NVIDIA Tesla P100 (12GB RAM) and NVIDIA Ampere A100 (40GB RAM,
6912 CUDA cores FP32, 3456 CUDA cores FP64 and 422 núcleos Tensor cores)
and trying to run the algorithm in the same conditions. All metrics were com-
puted as averages in ten independent executions for each experiment.

4.2 Results Quality

Figure 4 presents a summary of the analysis of results quality. The Q-Q plots for
quality metrics (coverage, density, and Frechet Inception Distance (FID) [12])
are reported. Results obtained in the plane of the theoretical quantiles of a
reference normal distribution and the observed quantiles are shown in green.
The identity line, in orange, is a graphic reference of the approximation of the
results to the reference distribution. Results are correctly aligned, so they are
distributed similar to a normal distribution, i.e., the reference distribution has
mean and standard deviation equal to the empirical generated by the GAN.

108 S. Nesmachnow et al.

Fig. 4. Q-Q plots for result quality metrics

4.3 Performance Results

Analysis of Diversity and Replacement Strategies. Two diversity func-
tions were implemented in the proposed multiobjective evolutionary algorithm
(EGAN and GDPP). In turn, three replacement algorithms werer implemented
and evaluated (FV-MOEA, MOEA/D, an NSGA-2) [12].

Figure 5(a) presents the scalabilty evaluation of execution times for the two
diversity measures studied. Results show a proper almost-linear speedup when
using the GDPP function and a poor sub-linear behaviour for EGAN. Overall,
GDPP is more efficient since it is strictly higher in total execution time for all
grid sizes. Figure 5(b) presents the scalabilty evaluation for the three replacement
algorithms. The three distributions coincide in median and variance, indicating
that the replacement algorithm has a low incidence in the total execution time.

Fig. 5. Scalability analysis for diversity and replacement algorithms

Parallel Lipizzaner Framework for Coevolutionary Training of GANs 109

Scalability Analysis. The scalability analysis studied the relation between
the execution time and the size of the grid/number of computing resources.
Figure 6 summarizes the dependency relationship between execution time and
grid size using a linear regression model. When considering all Lipizzaner exe-
cutions (Fig. 6(a)), the linear regression model did not fit the data precisely
(the coefficient of determination R2 = 0.860). For GDPP executions (Fig. 6(b)),
the linear regression model had a coefficient of determination R2 = 0.996, so
it achieved a better fit to the data. Scalability values (SLN) are reported in
Table 2.

Fig. 6. Scalability analysis for parallel distributed Lipizzaner

Load Balancing and Resource Utilization. The workload in Lipizzaner is
distributed by assigning the same number of network training iterations to all
processes in a grid. Furthermore, each process works on a portion of the used
dataset, which is the same size for each process. When the algorithm to execute,
the number of iterations, are the same between processes, and and the datasets
have the same size, it can be guaranteed that the load between processes is fair.

Table 2 reports the mean and variance in iteration times for each process.
The variance in the duration of the iterations was low, less than 15% of the
average in all cases, which indicates an equitable allocation of resources among
the processes.

110 S. Nesmachnow et al.

Table 2. Scalability results and iteration times

grid size diversity function replacement strategy scalability iteration time

SL4 SL9 SL16 mean (s) stdev (s)

2×2 E–GAN FV–MOEA 0.71 0.66 0.58 10.39 0.23

MOEA/D 0.70 0.64 0.59 10.38 0.17

NSGA–II 0.71 0.68 0.60 10.37 0.18

GDPP FV–MOEA 0.41 0.36 0.32 16.10 1.46

MOEA/D 0.41 0.36 0.32 16.00 1.50

NSGA–II 0.41 0.36 0.32 16.07 1.46

3×3 E–GAN FV–MOEA 0.62 0.60 0.59 17.25 2.85

MOEA/D 0.60 0.58 0.58 16.84 1.95

NSGA–II 0.60 0.57 0.56 16.86 1.90

GDPP FV–MOEA 0.36 0.34 0.31 32.34 3.76

MOEA/D 0.33 0.33 0.32 32.16 3.63

NSGA–II 0.32 0.31 0.31 32.38 3.63

4×4 E–GAN FV–MOEA 0.52 0.49 0.47 21.48 0.86

MOEA/D 0.50 0.47 0.45 21.37 0.80

NSGA–II 0.48 0.46 0.43 21.46 0.83

GDPP FV–MOEA 0.32 0.29 0.27 54.92 4.00

MOEA/D 0.31 0.31 0.28 54.81 3.89

NSGA–II 0.30 0.28 0.26 54.83 3.88

Figure 7 presents the execution time needed for each iteration of processes
belonging to a Lipizzaner grid. Figures 7(a) and 7(b) indicate that the processes
remained at the same or one iteration distance throughout training. However,
in Fig. 7(c) it is shown that process 10 ended its execution while process 9 still
had two iterations to process. The difference between the end of the iterations
increases as time progresses for the case of the 4×4 grid.

Summarizing, no pathologies were detected in the load distribution or in the
allocation of resources. An interesting line of future work is to explore how the
difference between the final iteration times behaves for larger grid sizes, since if
the difference were to increase, it could result in training problems.

Parallel Lipizzaner Framework for Coevolutionary Training of GANs 111

Fig. 7. Execution time of iterations for each process

5 Conclusions and Future Work

This article presented a parallel distributed implementation of the multiobjec-
tive optimization strategy for coevolutionary training of Generative Adversarial
Networks implemented in Lipizzaner.

A redesign of the execution and load distribution methods of Lipizzaner was
proposed and implemented, for execution in high performance computing plat-
forms. Specific synchronization and communications were included using the
Cartesian grid topology provided by MPI, to improve the overall efficiency of
message passing. Asynchronous and collective communications were used for a
correct implementation of the coevolutionary training approach. Several combi-
nations of diversity functions and replacemnt algorithms were included in the
implementation.

The different variants of the proposed approach were validated for the hand-
written digits generation problem, evaluating the efficiency, scalability, and load
balancing of the parallel distributed training algorithm. The main results demon-
strated that the developed implementation scales properly for different grid sizes,
taking advantage of additional computing resources. A correct load balancing
pattern was also corroborated.

The main lines for future work are related to extend the experimental vali-
dation of the proposed parallel approach, and conceive and implement different
multiobjective strategies. The approach should be validated over other stan-

112 S. Nesmachnow et al.

dard datasets to analyze the efficiency and scalability of the proposed parallel
distributed training strategy for larger and more complex problems.

References

1. Arjovsky, M., Bottou, L.: Towards principled methods for training generative
adversarial networks. arXiv preprint arXiv:1701.04862 (2017)

2. Arora, S., Risteski, A., Zhang, Y.: Do GANs learn the distribution? some theory
and empirics. In: International Conference on Learning Representations (2018)

3. Cardoso, R., Golubovic, D., Lozada, I.P., Rocha, R., Fernandes, J., Vallecorsa, S.:
Accelerating GAN training using highly parallel hardware on public cloud. EPJ
Web Conf. 251, 02073 (2021)

4. Esteban, M., Toutouh, J., Nesmachnow, S.: Parallel/distributed intelligent hyper-
parameters search for generative artificial neural networks. In: Jagode, H., Anzt, H.,
Ltaief, H., Luszczek, P. (eds.) ISC High Performance 2021. LNCS, vol. 12761, pp.
297–313. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90539-2 20

5. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

6. Gui, J., Sun, Z., Wen, Y., Tao, D., Ye, J.: A review on generative adversarial
networks: algorithms, theory, and applications. IEEE Trans. Knowl. Data Eng.
35(4), 3313–3332 (2021)

7. Hardy, C., Merrer, E.L., Sericola, B.: MD-GAN: multi-discriminator generative
adversarial networks for distributed datasets. In: IEEE International Parallel and
Distributed Processing Symposium (2019)

8. Liu, M., et al.: A decentralized parallel algorithm for training generative adversarial
nets (2019). https://arxiv.org/abs/1910.12999

9. Moran, N., Pollack, J.: Coevolutionary neural population models. In: Artificial Life
Conference Proceedings, pp. 39–46. MIT Press One Rogers Street, Cambridge, MA
02142–1209, USA (2018)

10. Nesmachnow, S., Iturriaga, S.: Cluster-UY: collaborative scientific high perfor-
mance computing in Uruguay. In: Torres, M., Klapp, J. (eds.) ISUM 2019. CCIS,
vol. 1151, pp. 188–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
38043-4 16

11. Perez, E., Nesmachnow, S., Toutouh, J., Hemberg, E., O’Reily, U.M.: Paral-
lel/distributed implementation of cellular training for generative adversarial neural
networks. In: IEEE International Parallel and Distributed Processing Symposium
Workshops (2020)

12. Ripa, G., Mautone, A., Vidal, A., Nesmachnow, S., Toutouh, J.: Multiobjective
coevolutionary training of generative adversarial networks. In: Genetic and Evolu-
tionary Computation Conference (2023)

13. Schmiedlechner, T., Yong, N., Al-Dujaili, A., Hemberg, E., O’Reilly, U.: Lipizzaner:
a system that scales robust generative adversarial network training (2018). https://
arxiv.org/abs/1811.12843

14. Toutouh, J., Esteban, M., Nesmachnow, S.: Parallel/distributed generative adver-
sarial neural networks for data augmentation of COVID-19 training images. In:
Nesmachnow, S., Castro, H., Tchernykh, A. (eds.) CARLA 2020. CCIS, vol. 1327,
pp. 162–177. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68035-
0 12

http://arxiv.org/abs/1701.04862
https://doi.org/10.1007/978-3-030-90539-2_20
https://arxiv.org/abs/1910.12999
https://doi.org/10.1007/978-3-030-38043-4_16
https://doi.org/10.1007/978-3-030-38043-4_16
https://arxiv.org/abs/1811.12843
https://arxiv.org/abs/1811.12843
https://doi.org/10.1007/978-3-030-68035-0_12
https://doi.org/10.1007/978-3-030-68035-0_12

Provenance-Based Dynamic Fine-Tuning
of Cross-Silo Federated Learning

Camila Lopes , Alan L. Nunes , Cristina Boeres ,
Lúcia M. A. Drummond , and Daniel de Oliveira(B)

Universidade Federal Fluminense, Niterói, Brazil
{camila ol,alan lira}@id.uff.br, {boeres,lucia,danielcmo}@ic.uff.br

Abstract. Federated Learning (FL) is a distributed technique that
allows multiple users to train models collaboratively without accessing
private and sensitive data. Iteratively, each user trains a “local” model
in a specific machine consuming private data and then sends the model
updates to a server for their fusion into a centralized one. Although FL
represents a step forward, the training duration in each iteration directly
depends on the several configurations set, e.g., hyperparameters. Ana-
lyzing hyperparameters during the FL workflow allows for dynamic fine-
tuning that can improve the performance of FL regarding training time
and quality of results. However, due to its exploratory nature, the user
may lose track of which configurations have been used to train the model
with the best accuracy if the choices are not correctly registered. Prove-
nance is the natural choice to represent data derivation traces to help
hyperparameters fine-tuning by providing a global data-oriented picture
of the FL workflow. Yet, the existing FL frameworks do not provide
dynamic fine-tuning nor support provenance capturing. Therefore, this
paper introduces an FL framework named Flower-PROV that uses prove-
nance data for tracking configurations and evaluation metrics during
the FL execution to allow for dynamic fine-tuning of hyperparameters,
thus saving training time. We show a use case with Cross-Silo FL where
Flower-PROV dynamic fine-tuning reduced the FL training time up to
94.24% when compared with the fine-tuning using grid-search.

Keywords: Federated learning · Provenance data · Dynamic
fine-tuning

1 Introduction

Over the last few years, Machine Learning (ML) has gained much attention
from both academia and industry [3,8,17]. Although several ML techniques were
proposed decades ago, many factors explain the cause of ML usage becoming
grandly boosted more recently. The first one is data availability. Massive datasets
are available and can be used to train a myriad of ML models. The second factor
is that many computing resource types are available for any user, especially in

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 113–127, 2024.
https://doi.org/10.1007/978-3-031-52186-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_8&domain=pdf
http://orcid.org/0009-0008-9426-6286
http://orcid.org/0000-0002-9384-862X
http://orcid.org/0000-0002-1679-6643
http://orcid.org/0000-0002-3831-5230
http://orcid.org/0000-0001-9346-7651
https://doi.org/10.1007/978-3-031-52186-7_8

114 C. Lopes et al.

public clouds. Finally, ML has been fostered by the emergence of Deep Learning
(DL) [6], an essential technique for pattern matching at scale.

Although ML and DL represent a step forward, their learning workflow
requires that all available data are fully accessible to train a model, becom-
ing a problem for two primary reasons: Privacy and Volume. Regarding privacy,
many datasets contain sensitive data of individuals that cannot be publicized,
according to regulations such as GDPR in Europe (https://gdpr-info.eu/). Even
though anonymization techniques can be applied, due to reverse engineering,
anonymized datasets usage is often ineffective. Regarding data volume, datasets
often have hundreds of gigabytes. Despite various initiatives aimed at providing
advanced network infrastructure to facilitate research collaborations among dif-
ferent organizations and, consequently, handle large volumes of data transfers
(e.g., RedCLARA within Latin America), not all organizations or institutions
have access to these resources. As a result, data transfers can still pose challenges.

To bridge this gap between ML and privacy, Federated Learning (FL) [13]
has been proposed. FL is a distributed technique that allows multiple users to
train models collaboratively while maintaining their training data private, thus
not exposing sensitive data. The final trained model is obtained iteratively, and
in each iteration, the users (i.e., workers) train their model locally and send
an updated version of the model (not sensitive data) back to the server that
aggregates the received locally trained models and sends the updated parameters
to the workers, so that they can continue their local training in the following
iteration. Besides the clear advantage of keeping data private, FL also reduces
costly data transfers since it removes the need to pool data into a single server.

Despite the evolution of FL in the last few years [11], there are some open,
yet crucial, problems to be addressed. One problem is that each iteration of
the FL workflow may last from a few minutes to several hours, depending on
the model type, the volume of input data, and the worker’s computing power,
which can limit the local training of large models. The training time and the
quality of the trained model in each iteration are directly associated with the
input dataset and the choice of a set of hyperparameters. Although the user can
explore several configurations of hyperparameter values by executing multiple
FL workflows, this can be time-consuming. One attractive option is to analyze
the evaluation metrics values (e.g., accuracy) after each iteration and then per-
form Dynamic Fine-tuning of hyperparameters, i.e., depending on the metric
values, hyperparameters are adjusted at runtime. According to da Silva et al.
[24], there is a lack of capabilities for enabling ML (and consequently FL) steer-
ing and dynamic execution. One of the challenges is how to properly register
which hyperparameter configurations have been used to train a specific model.
If this information is not recorded, the user may lose track of it, mainly due to
the exploratory nature of the FL workflow and its distributed execution.

Provenance data [4] can help the dynamic fine-tuning of hyperparameters
by providing a global data picture with exact dependencies. It supplies a series
of metadata that describes how data are produced in each iteration of the FL
workflow by registering hyperparameter and parameter values, evaluation met-

https://gdpr-info.eu/

Provenance-Based Dynamic Fine-Tuning of Cross-Silo Federated Learning 115

rics, etc. Although recently proposed approaches use a provenance database to
integrate data from ML applications to improve data analyses and decisions [19–
21], it has not been applied in the context of FL, especially to foster dynamic
fine-tuning of hyperparameters.

In this paper, we use provenance data to monitor and dynamically fine-tune
hyperparameters in the FL workflow, especially in the Cross-Silo scenario where
workers represent clients and companies, and their number is usually small (see
Subsect. 2.1 for more details). In particular, we propose an extension of the
well-known Flower framework [2], named Flower-PROV. By using Flower-PROV,
workers perform multiple epochs of training, send the locally trained model to
the server that updates its global model, evaluates it, and adjusts the hyperpa-
rameters at runtime for the next iteration, depending on the results returned by
a query on provenance database, which contains metadata collected throughout
the whole execution of the FL workflow. Flower-PROV was evaluated by train-
ing a classification model based on CIFAR-10 [9] benchmark. Results show that
the Flower-PROV dynamic fine-tuning reduces the overall training time up to
94.24% when compared to static fine-tuning and finds hyperparameter values
configurations not commonly explored by users.

The remainder of this paper is organized as follows. Section 2 discusses essen-
tial concepts such as FL and Provenance. Section 3 brings related work. Section 4
presents the Flower-PROV approach while Sect. 5 shows the experimental results.
Finally, Sect. 6 concludes this paper and proposes future directions.

2 Background

This section discusses two important concepts tackled by this paper: (i) Feder-
ated Learning and (ii) Provenance data.

2.1 Federated Machine Learning in a Nutshell

Federated Machine Learning [13], henceforth named Federated Learning (FL),
allows users to train models using multiple workers (commonly managed by a
central server) of a distributed environment without the requirement to access
the whole dataset. This technique is gaining much attention mainly due to pri-
vacy issues since the raw datasets in worker nodes are not required to be shared
with all users involved in the training process. Moreover, FL can be applied to
train models using different algorithms [14], and it is also receiving attention due
to its applicability to training Deep Neural Networks (DNN).

FL has a well-known workflow, where, in each iteration, the server defines
the model type for training (e.g., a DNN) and forwards this information to
the workers alongside with the necessary hyperparameters. Then, each worker
executes the training phase in the light of its local data, consuming a subset of
the dataset (accessible by the worker). Finally, each worker sends information
regarding the trained model (e.g., weights of a DNN) to the server. The server
combines the parameters of locally trained models and generates an aggregated

116 C. Lopes et al.

global model, which can be achieved using different aggregation strategies. One
common strategy is Federated Averaging (FedAvg), which involves several local
stochastic gradient descent updates and one aggregation by the server in each
round. Once the aggregated global model is obtained, the server starts a new
iteration by sending it back to them.

Although the trained model has its hyperparameters (e.g., dropout and acti-
vation function for DNNs), the FL workflow itself has specific parameters that
must be set. These include the number T of rounds (one round is associated with
one iteration of the learning phase), the number of workers nodes K, the fraction
of workers C used in each round, and the batch size B (the number of exam-
ples used for training) consumed in each iteration. Such parameters commonly
have to be fine-tuned together with the model’s hyperparameters to optimize the
execution both in terms of the accuracy of the result (or any other evaluation
metric) or training time consumption. This fine-tuning is a complex yet essential
task. For example, depending on the heterogeneity of the computing power in
worker nodes, one can define a small value for parameter C, which reduces the
necessary computing power per round.

This server client architecture of FL, also called Model-Centric FL [27], is
classified into Cross-Device, where the clients are mobile devices typically and
can reach up to a scale of millions of workers, or Cross-Silo (which is the focus of
this paper), where workers are usually associated with organizations and their
number is commonly reduced. In this second type of FL, the central server can
assume that all clients are available during the whole execution, as they are
robust machines or even clusters. There are some frameworks capable of exe-
cuting FL workflows. One of the most prominent is Flower [2], open-source,
which enables train models using FL on large numbers of workers. Besides, it
has compatibility with most existing ML frameworks like Keras, TensorFlow,
and PyTorch, allowing research across different servers and devices, including
Cloud, Mobile, and Edge Computing. Flower is interoperable with many oper-
ating systems and hardware platforms, works well in heterogeneous edge device
environments, and is used as the basis for the approach proposed in this paper.

2.2 A Brief Tour Through Provenance

Provenance may be defined as the “lineage and processing history of data” [4]. It
refers to the metadata that describes the process of generating a piece of data and
is used to register, in a structured and queryable form, the data derivation path
of a specific context. Here, provenance data describes how data are produced
during the FL workflow, although it was initially used to assess the quality
and reliability and foster reproducibility. Yet, it contains rich information (e.g.,
consumed parameter values and datasets, execution times) that can be used in
other tasks such as scheduling, fault-tolerance, and parameter tuning [16].

Although provenance data can be represented and stored in many ways, the
W3C standard, named PROV [7], defines a data model for representing prove-
nance. This model represents provenance in terms of Entities, Agents, Activities,
and multiple types of relationships as presented in Fig. 1. An Entity represents a

Provenance-Based Dynamic Fine-Tuning of Cross-Silo Federated Learning 117

thing. In the context of this paper, an entity can be a trained model, the aggre-
gated model, a set of hyperparameter values, etc. Activities are actions executed
within the FL workflow and act upon entities, e.g., the local training in a worker
node or the model aggregation in the server. Finally, an Agent is a user respon-
sible for starting/stopping activities, providing datasets, etc. Although PROV
is an agnostic model, i.e., not tied to a specific knowledge domain, it can be
extended to distinct fields, such as FL.

Fig. 1. PROV data model, adapted from Groth et al. [7].

The FL workflow is composed of multiple steps (e.g., local training, aggre-
gation, etc.), as discussed in Subsect. 2.1, where a dataset will undergo when
subjected to the FL workflow execution. The specification of this workflow can
be seen as Prospective Provenance (p-prov), a type of provenance data that reg-
isters the steps performed during data processing. Another type of provenance is
Retrospective Provenance (r-prov), which in turn records information regarding
the execution, i.e. when an activity of the workflow is executed, the parame-
ters consumed in an execution, errors, etc. Provenance data can be available
at runtime or after the execution of a workflow. When both p-prov and r-prov
are available for querying during the FL workflow execution, they can be used
jointly to foster the analysis and fine-tune hyperparameters. For instance, if the
value defined for a parameter is not producing results with expected accuracy
after the aggregation in a specific round, its value can be updated at runtime.

3 Related Work

This section discusses existing approaches that use provenance data for analyz-
ing and fine-tuning hyperparameters in general ML and FL-specific approaches.
Many use provenance data to foster data analytics of ML workflow [5,12,20,21,
23,26]. ModelDB [26] and ModelKB [5] are model management systems that col-
lect provenance data and other metadata related to the ML workflow. ModelDB
provides specific interfaces to well-known tools, such as SparkML and scikit-
learn, and ModelKB is based on callbacks in native ML frameworks, e.g., Ten-
sorFlow), to collect metadata about the workflow. Similarly, Schelter et al. [23]
propose a system to track the metadata and provenance for SparkML pipelines
and scikit-learn. The previous three approaches provide ways to submit analyses

118 C. Lopes et al.

to the provenance database allowing users to trace back results, but they do not
supply dynamic fine-tuning of hyperparameters.

BugDoc [12] is an approach that captures provenance data from ML work-
flows to help users to understand the reason for failed executions. Once it is
identified, BugDoc suggests parameter values for future executions to improve
efficiency and reduce the number of iterations in the learning workflow. Although
BugDoc represents a step forward, it does not support dynamic fine-tuning or
FL. Similarly, Pina et al. [20,21] propose an approach to capture provenance
data from Deep Learning applications to foster analytics and interpretability of
the trained model. Although Pina et al. use a provenance database to store and
query provenance data at runtime, it does not provide dynamic fine-tuning and
is not designed for the FL workflow.

Some provenance-based approaches are specific to FL [1,18]. The framework
Bassa-ML proposed [1] is a blockchain-based FL platform that is built on top of
the TensorFlow model card toolkit (a model card is an ML document that encap-
sulates metadata and some level of provenance) and implements a blockchain-
based coordinator-less FL scheme to manage provenance data in a decentralized
way. The authors claim that using the generated ML documents permits the
addition of trust to blockchain applications while preventing attacks. Nonethe-
less, it was not reported how the shared information in the Model Card was used
for analysis, and the proposed approach does not allow for dynamic fine-tuning.

Peregrina et al. [18] propose a framework for data governance in the FL work-
flows. The data governance framework has a metadata model and management
system for tracing the participants’ operations and collecting all information
regarding the definition of the goals and configuration of the FL workflow. Their
model, however, lacks some relevant information, such as the activities executed
in the FL workflow. Besides, the proposal does not consider the dynamic tuning
of the FL hyperparameters.

4 Dynamic Fine-Tuning with Flower-PROV

Fine-tuning hyperparameters in FL is far from trivial. Besides the hyperparame-
ters of the chosen model (e.g., DNN), the FL framework has its parameters (e.g.,
number of rounds, and number of epochs in each worker). One challenge when
fine-tuning FL workflows is that popular AutoML techniques are not directly
applied due to the distributed nature of the execution [10]. To support the fine-
tuning of hyperparameters at runtime, we propose Flower-PROV framework. By
using provenance data captured throughout the FL workflow, Flower-PROV can
identify the relationship between the hyperparameter values and the evaluation
metrics (e.g. accuracy), thus allowing the system to change the hyperparameter
values at runtime according to a pre-defined dynamic fine-tuning policy (dfp).

Flower-PROV extends the Flower framework [2] by adding provenance capa-
bilities and dynamic-tuning, where a server is responsible for model aggrega-
tion and each client trains local models. Particularly, Flower-PROV is focused
on Cross-Silo FL workflow. Figure 2 presents the architecture of Flower-PROV,

Provenance-Based Dynamic Fine-Tuning of Cross-Silo Federated Learning 119

Fig. 2. Flower-PROV architecture.

where the light gray rectangles are the contributions of this paper and the white
ones are present at the Flower core framework. The architecture is composed
of six main components: (i) Strategy, (ii) Client Manager, (iii) FL Loop, (iv)
RPC Server, (v) Client, and (vi) Provenance Manager. The Client Manager is
responsible for sampling Clients that will train multiple local models. In coordi-
nation with the RPC Server, it manages numerous ClientProxy objects, which
are objects associated with a client connected to the server. A ClientProxy is
responsible for sending and receiving messages to each of the Clients, which per-
forms local model training. The entire FL workflow orchestration is performed
by FL Loop. It invokes the Strategy, an abstraction of how the FL algorithm
works in the server, to prepare the next round of FL and sends the configura-
tions to the clients involved in the training process. After each Client generates
a new local model, the FL Loop receives the updates, e.g., weights of a DNN,
and invokes the Strategy for aggregating results (Aggregate Train/Evaluation in
Fig. 2). After aggregation, the Strategy evaluates the aggregated model (Config-
ure Train/Evaluation in Fig. 2) according to the chosen evaluation metrics (e.g.,
accuracy).

In each of the forenamed steps, provenance data are captured. The Prove-
nance Manager is the component responsible for receiving provenance data from
the Server and Clients and structuring it in a queryable form. In the current
version of Flower-PROV, the Provenance Manager is built on top of the DfAn-
alyzer provenance library [25] that provides generic methods for capturing and
querying provenance. On the server side, the Provenance Capture Server com-
ponent captures metadata regarding the aggregation and evaluation steps, such
as the evaluation metrics and the model sent to the clients. Client-side activi-
ties and metadata are collected from each Client using the Provenance Capture
Client component. All data are stored in a W3C PROV-compliant provenance

120 C. Lopes et al.

database and are available at runtime, i.e., as soon as they are captured, they
can be queried, which allows for using such data for dynamic fine-tuning.

When the provenance data are available, the Fine Tuning component can be
invoked, triggered by a series of events identified in the provenance database.
Such events can be identified according to user-defined criteria that we call
Dynamic Fine-tuning Policy (dfp). In this work, the FL workflow can be viewed
as a directed graph F = (S,Dep), where S are the vertices representing the
workflow steps to be executed in Server or Client (e.g., local training or model
aggregation) and Dep is a set of arcs that represents the data dependencies
amongst steps in S (i.e., the local training in Clients can only be executed after
receiving updates from the Server). Let us also represent the execution envi-
ronment as R = {r1, . . . , rk}, which is the set of computing resources where the
Clients and the Server execute. Therefore, given an FL workflow F , an input
D, and a set of computing resources R, let X(F,D,R) = {hpv1, hpv2, ..., hpvm}
be the set of hyperparameter values defined for executing the FL workflow F .
Each hyperparameter value hpvi represents one of the configuration parameters
of the FL framework and model, e.g., number of rounds (as detailed in Sub-
sect. 2.1). Thus, the goal of the Fine Tuning component is to use provenance
data to adjust hyperparameter values at runtime seeking the set of hyperparam-
eter values X∗(F,D,R) that satisfy a set of user-defined criteria C.

To find X∗, the hyperparameter values need runtime adjustment following
a procedure. In addition, the moment it is performed has to be identified by
querying the provenance database. The dfp is the abstraction used to define
how parameters are changed and how to identify them. A dfp can be for-
malized as dfp = {e, C,A}, where e is a type of the dfp (i.e., user-defined
or automatic, although in this paper only user-defined dfps are applied), C
is the set of constraints that have to be satisfied to change hyperparame-
ters, and A are fine-tuning actions that can be performed. Such constraints
are translated to a database function in the provenance database (named
update hyperparameters), which is triggered every time new metadata is col-
lected. This function returns 1 if changes are required and 0, otherwise. Figure 3
shows an example of some defined constraints using SQL.

Finally, when it is defined that a change will be performed, the actions in A
are executed. One example of action is the increment on the number of epochs
in the Clients, which will be increased by 1 when a change is required in the
hyperparameters. These changes repeat until the dfp does not trigger any hyper-
parameter changes after some θ rounds.

In the next section, we present the evaluation of the dynamic fine-tuning
mechanism in Flower-PROV. Flower-PROV is being open-sourced and will be
available at https://github.com/UFFeScience/Flower-PROV.

5 Experimental Evaluation

To evaluate dynamic fine-tuning of hyperparameters in Flower-PROV we have
chosen as a case study the MobileNetV2 architecture [22], a general-purpose

https://github.com/UFFeScience/Flower-PROV

Provenance-Based Dynamic Fine-Tuning of Cross-Silo Federated Learning 121

Fig. 3. Example of constraints of the dynamic fine-tuning policy

computer vision convolution DNN. The dataset used was CIFAR-10 [9], a pop-
ular multi-class balanced dataset of colored 32 × 32 pixels images formed by
ten classes, each having 6,000 images. In total, 50,000 (≈ 83.33%) images were
used for training and 10,000 (≈ 16.66%) for testing. To emulate the data privacy
attribute in Flower-PROV, each Client received a balanced and distinct partition
of the original CIFAR-10 generated with the dataset-splitter1 tool. We fixed 10%
of the local training datasets for the validation split in all experiments presented
in this section.

A set of virtual machines in Amazon AWS were deployed to compose the
Cross-Silo FL system comprised of one server and five clients, where all clients are
available during the entire FL workflow execution, i.e., no churn is considered.
All clients in Flower-PROV execute the training and evaluation of the local ML
model in g4dn.xlarge virtual machines, which feature 4 vCPUs, 16 GiB memory,
and 1 GPU NVIDIA T4 Tensor Core with 2560 CUDA cores and 16 GB memory,
costing USD 0.5260 per hour in the On-Demand market. The server, responsible
for aggregating local models, executes in a t2.2xlarge virtual machine, which
features 8 vCPUs and 32.0 GiB memory and costs USD 0.3712 per hour in the
On-Demand market.

5.1 Provenance Capture Overhead Evaluation

The first experiment evaluates the overhead imposed by provenance capture
in Flower-PROV. Although the provenance data provide a rich source of infor-
mation for dynamic fine-tuning, capturing provenance imposes an overhead. We
have executed the FL workflow for training MobileNetV2 multiple times by vary-
ing the values of hyperparameters batch size (bs = {32, 64, 128, 256, 512}) and
client epochs (e = {1, 2, 3, 4, 5}) in each execution, which results in 25 workflow
executions. In these executions, the Fine Tuning component was disabled, i.e.,
there are no runtime changes in hyperparameters, and the number of rounds was
fixed to 100. Figure 4 presents the execution time (in seconds) with and with-
out capturing provenance data. One can note that except by the execution with
bs = 32 and e = 1, the provenance capture imposes an overhead in the order
of single-digit, which is acceptable considering the benefits of provenance for

1 dataset-splitter - https://github.com/alan-lira/dataset-splitter.

https://github.com/alan-lira/dataset-splitter

122 C. Lopes et al.

dynamic fine-tuning. Concerning all the 25 executions, the provenance capture
overhead was 7.54% on average, having a standard deviation of 0.06.

Fig. 4. Provenance data capturing overhead.

5.2 Evaluation of Hyperparameter Fine-Tuning Using Grid-Search

The second experiment evaluates the fine-tuning of hyperparameters using grid-
search [15] and querying captured provenance data. In this scenario, the fine-
tuning involves defining a n-dimensional search space, where each hyperparame-
ter represents a different dimension, and the dimension scale is the possible value
of that hyperparameter. In grid-search, the search space is represented as a grid,
and each position in the grid has to be evaluated, i.e., the FL workflow has to
be executed multiple times, varying the combination of hyperparameters values,
to define the best possible combinations. Although provenance data can help
with this analysis, this type of tuning is time-consuming due to the considerable
number of executions to evaluate.

In this experiment, we executed the FL workflow for training MobileNetV2
25 times, varying the values of hyperparameters batch size bs =
{32, 64, 128, 256, 512} and client epochs e = {1, 2, 3, 4, 5}. Figure 5 and Fig. 6
summarize the training accuracy and time obtained after executing Flower-PROV
for each configuration during 100 rounds, respectively. All data presented were
queried at the provenance database.

As expected, Fig. 5 and Fig. 6 show that, as the number of epochs increases for
a given batch size, the training accuracy and the execution time also rise. Never-
theless, it is not simple nor intuitive to set the best combination of hyperparam-
eters a priori. For example, the best accuracies were achieved for bs = {32, 64},
thus showing that incrementing the batch size higher than 64 may not be bene-
ficial.

Provenance-Based Dynamic Fine-Tuning of Cross-Silo Federated Learning 123

Fig. 5. Accuracy in Grid-search results after 100 rounds.

Fig. 6. Execution time of Grid-search after 100 rounds.

In addition, in each execution of the workflow, all 100 rounds were executed.
However, if the user defines a target accuracy, this value can be achieved with
less than 100 rounds, and the workflow execution could be stopped, sparing
execution time and computing resources. If the user also defines a deadline for
the execution, the FL workflow may not finish executing all rounds in time.
Figure 7 presents the accuracy evolution over the 100 rounds of each of the 25
executions of the workflow. Let the user set the target accuracy as 0.8. Analyzing
Fig. 7, one can note that after 100 rounds, only 10 out of the 25 hyperparameter
configurations achieve the target accuracy value. On the other hand, if the target
accuracy is 0.5 and a deadline of 700 s, only one hyperparameter configuration
is successful. Therefore, executing all the configurations would be a time and
computing resource waste, even considering the limited search space used.

124 C. Lopes et al.

Although the analysis provided by Fig. 7 represents a step forward, it may not
deliver the best hyperparameter configuration. Grid-search is an interesting fine-
tuning strategy if the well-performing hyperparameter combinations are known
a priori. For example, in the experiments, we consider batch size values as the
power of two. However, the best parameter combinations sometimes cannot be
guessed intuitively. Thereby, dynamic fine-tuning is a promising approach.

Fig. 7. Accuracy evolution over 100 rounds for fine-tuning using grid-search with batch
size (a) bs = 32, (b) bs = 64, (c) bs = 128, (d) bs = 256, and (e) bs = 512.

5.3 Evaluation of the Dynamic Fine-Tuning

For this evaluation, we first define the dfp, as detailed in Sect. 4. The set con-
straints that trigger the tuning are: (i) the accuracy of the last round has to be

Provenance-Based Dynamic Fine-Tuning of Cross-Silo Federated Learning 125

smaller than the target accuracy defined by the user, (ii) if the hyperparameters
were not changed in the last two rounds (this allows for the latest hyperparam-
eter change to take effect), (iii) if the accuracy varies less than 0.01 after two
rounds. We have also to define the set of actions to be performed: (i) batch size
is increased by 10% and (ii) the number of epochs is increased by 2. It is worth
noticing that although provenance data are captured since the first round, the
changes in hyperparameter values start on the third round since the constraints
require analyzing a 2-round window.

Four different scenarios are set by varying the target accuracy: (i) 0.5 (DS1),
(ii) 0.6 (DS2), (iii) 0.7 (DS3), and (iv) 0.8 (DS4) and the execution deadline as
10 min. Table 1 presents the number of changes in hyperparameter values, the
chosen batch size, the chosen number of epochs, the required rounds to obtain
the best configuration, the accuracy, and the execution time. It is worth noticing
that fine-tuning hyperparameters using grid search required 25 workflow execu-
tions to obtain the best hyperparameters configuration for a given accuracy goal,
demanding a total of 36,570.32 s (≈ 10 h). Moreover, using the grid-search app-
roach, the user only explores intuitive values for the hyperparameters. However,
Table 1 shows that the hyperparameter values selected cannot be guessed intu-
itively, e.g., bs = 41 and e = 7. In addition, the target accuracy was achieved for
DS1, DS2, DS3 and DS4, respectively, in less than 20 rounds (as presented in
Fig. 8), taking no more than 2,104.95 s (≈ 0.5 h), depicting a 94.24% reduction
in execution time.

Table 1. The chosen values for batch size and number of epochs for each scenario.

Experimental
Scenario

Number of
Updates

Batch
Size

Epochs Round Training
Accuracy

Time (s)

DS1 3 41 7 11 0.5261 420.01

DS2 4 45 9 13 0.6094 388.53

DS3 5 49 11 17 0.7165 586.76

DS4 6 53 13 19 0.8020 709.65

Fig. 8. Training accuracy over rounds.

126 C. Lopes et al.

6 Concluding Remarks

The collaborative nature of a Federated Learning system allows multiple users to
evaluate their private and sensitive data without sharing it. The user seeks the
desired quality metric of the training results, which can be time-consuming and
may require a great effort from the user’s side to set the proper configuration
values. This work proposes Flower-PROV, an FL framework for dynamically fine-
tuning the hyperparameters based on provenance data captured in a queryable
form to achieve an evaluation target. An experimental analysis demonstrates
that the Flower-PROV dynamic fine-tuning shortens the training time up to
94.24% when compared with an exploratory grid-search to reach the desired
target evaluation metrics, under an overhead of no more than 8%. Concerning
future perspectives, Flower-PROV will be expanded to Cross-Device FL, where
clients may not participate in all rounds. Also, it will regard non-IID datasets
since clients can have different data sample sizes and probability distributions.
Furthermore, we plan to apply the framework in real-data scenarios.

References

1. Bandara, E., Shetty, S., Rahman, A., Mukkamala, R., Zhao, J., Liang, X.: Bassa-
ML – a blockchain and model card integrated federated learning provenance plat-
form. In: IEEE 19th Annual Consumer Communications and Networking Confer-
ence (CCNC), pp. 753–759 (2022)

2. Beutel, D.J., et al.: Flower: a friendly federated learning research framework. arXiv
(2020)

3. Fernandes, E., Moro, S., Cortez, P.: Data science, machine learning and big data
in digital journalism: a survey of state-of-the-art, challenges and opportunities.
Expert Syst. Appl. 221, 119795 (2023)

4. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks:
a survey. Comput. Sci. Eng. 10(3), 11–21 (2008)

5. Gharibi, G., Walunj, V., Nekadi, R., Marri, R., Lee, Y.: Automated end-to-end
management of the modeling lifecycle in deep learning. Empir. Softw. Eng. 26,
1–33 (2021)

6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

7. Groth, P., Moreau, L.: W3C PROV - an overview of the prov family of documents
(2013). https://www.w3.org/TR/prov-overview/

8. Kamm, S., Veekati, S.S., Müller, T., Jazdi, N., Weyrich, M.: A survey on machine
learning based analysis of heterogeneous data in industrial automation. Comput.
Ind. 149, 103930 (2023)

9. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical
report. University of Toronto (2009)

10. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, meth-
ods, and future directions. IEEE Sig. Process. Mag. 37(3), 50–60 (2020)

11. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated
optimization in heterogeneous networks. In: Proceedings of Machine Learning and
Systems (MLSys). mlsys.org (2020)

https://www.w3.org/TR/prov-overview/

Provenance-Based Dynamic Fine-Tuning of Cross-Silo Federated Learning 127

12. Lourenço, R., Freire, J., Simon, E., Weber, G., Shasha, D.E.: BugDoc. VLDB J.
32(1), 75–101 (2023)

13. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-
efficient learning of deep networks from decentralized data. In: Proceedings of the
20th (AISTATS), vol. 54, pp. 1273–1282. PMLR (2017)

14. Nair, D.G., Aswartha Narayana, C.V., Jaideep Reddy, K., Nair, J.J.: Exploring
SVM for federated machine learning applications. In: Rout, R.R., Ghosh, S.K.,
Jana, P.K., Tripathy, A.K., Sahoo, J.P., Li, K.C. (eds.) Advances in Distributed
Computing and Machine Learning. LNNS, vol. 427, pp. 295–305. Springer, Singa-
pore (2022). https://doi.org/10.1007/978-981-19-1018-0 25

15. Nogay, H.S., Adeli, H.: Diagnostic of autism spectrum disorder based on struc-
tural brain MRI images using, grid search optimization, and convolutional neural
networks. Biomed. Sig. Process. Control. 79(Part), 104234 (2023)

16. de Oliveira, D.C.M., Liu, J., Pacitti, E.: Data-Intensive Workflow Management:
For Clouds and Data-Intensive and Scalable Computing Environments. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2019)

17. Parmar, J., Chouhan, S.S., Raychoudhury, V., Rathore, S.S.: Open-world machine
learning: applications, challenges, and opportunities. ACM Comput. Surv. 55(10),
205:1–205:37 (2023)

18. Peregrina, J.A., Ortiz, G., Zirpins, C.: Towards a metadata management system
for provenance, reproducibility and accountability in federated machine learning.
In: Zirpins, C., et al. (eds.) ESOCC 2022. CCIS, vol. 1617, pp. 5–18. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-23298-5 1

19. Pina, D.B., Chapman, A., de Oliveira, D., Mattoso, M.: Deep learning provenance
data integration: a practical approach. In: Ding, Y., Tang, J., Sequeda, J.F., Aroyo,
L., Castillo, C., Houben, G. (eds.) Companion Proceedings of the ACM Web Con-
ference 2023. WWW 2023, Austin, TX, USA, 30 April 2023–4 May 2023, pp.
1542–1550. ACM (2023)

20. Pina, D., Kunstmann, L., de Oliveira, D., Valduriez, P., Mattoso, M.: Prove-
nance supporting hyperparameter analysis in deep neural networks. In: Glavic, B.,
Braganholo, V., Koop, D. (eds.) IPAW 2020-2021. LNCS, vol. 12839, pp. 20–38.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80960-7 2

21. Pina, D., et al.: Capturing provenance from deep learning applications using Keras-
Prov and Colab: a practical approach. J. Inf. Data Manag. 13(5) (2022)

22. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2:
inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

23. Schelter, S., Boese, J.H., Kirschnick, J., Klein, T., Seufert, S.: Automatically track-
ing metadata and provenance of machine learning experiments. In: Machine Learn-
ing Systems Workshop at NIPS (2017)

24. da Silva, F., Casanova, R., et al.: Workflows community summit: bringing the
scientific workflows research community together (2021)

25. Silva, V., et al.: Dfanalyzer: runtime dataflow analysis tool for computational sci-
ence and engineering applications. SoftwareX 12, 100592 (2020)

26. Vartak, M., Madden, S.: MODELDB: opportunities and challenges in managing
machine learning models. IEEE Data Eng. Bull. 41(4), 16–25 (2018)

27. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and
applications. ACM Trans. Intell. Syst. Technol. 10(2) (2019)

https://doi.org/10.1007/978-981-19-1018-0_25
https://doi.org/10.1007/978-3-031-23298-5_1
https://doi.org/10.1007/978-3-030-80960-7_2

High Performance Computing
Applications

A GPU Numerical Implementation
of a 2D Simplified Wildfire Spreading

Model

Daniel San Martin1(B) and Claudio E. Torres1,2

1 Departamento de Informática, Universidad Técnica Federico Santa Maŕıa,
Valparáıso, Chile

daniel.sanmartinr@usm.cl, ctorres@inf.utfsm.cl
2 Centro Cient́ıfico Tecnológico de Valparáıso, Universidad Técnica Federico Santa

Maŕıa, Valparáıso, Chile

Abstract. Wildfires are a latent problem worldwide that every year
burns thousands of hectares, negatively impacting the environment. To
mitigate the damage, there is software to support wildfire analysis. Many
of these computational tools are based on different mathematical models,
each with its own advantages and disadvantages. Unfortunately, only a
few of the software are open source. This work aims to develop an open-
source GPU implementation of a mathematical model for the spread of
wildfires using CUDA. The algorithm is based on the Method of Lines,
allowing it to work with a system of partial differential equations as
a dynamical system. We present the advantages of a GPU versus C
and an OpenMP multi-threaded CPU implementation for computing
the outcome of several scenarios.

Keywords: Wildfires · Numerical Methods · GPU · CUDA · Scientific
Computing

1 Introduction

Wildfires are a worldwide problem that each year consumes large extensions of
area, generating environmental, and socioeconomic, among other damages. Most
fires, for example in Chile [8], are caused by human negligence, being natural
causes, such as extreme weather conditions, thunderstorms or volcanic eruptions,
less frequent compared to the former. The season of greatest occurrence of this
phenomenon is in summer and generally in areas with a Mediterranean climate,
conditions that favor the uncontrolled spread of fire.

The devastating effects and behavior of this type of disaster have led to the
importance of developing technology for the study of the phenomenon, especially,
to mitigate the damage they generate. For this purpose, several types of models
have been developed which, according to [28], can be grouped into risk, propaga-
tion, and effect assessment models, which are closely related to each other. These
models have a variety of approaches and may involve different mathematical tech-
niques, mainly based on cellular automata or partial differential equations.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 131–145, 2024.
https://doi.org/10.1007/978-3-031-52186-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_9&domain=pdf
http://orcid.org/0000-0002-3371-2480
http://orcid.org/0000-0003-3548-4773
https://doi.org/10.1007/978-3-031-52186-7_9

132 D. San Martin and C. E. Torres

For the development of this work, we focus on fire propagation models that
use a mathematical representation to describe its behavior. Specifically, this
work uses a physical model based on partial differential equations as described
by [4,12], and [30]. For a comparison between the modeling approaches and
the details of the models on which this work is based, see [30,33]. The main
objective of this work is to extend a numerical implementation of the selected
mathematical model, which is capable of processing multiple simulations effi-
ciently, allowing a contribution to the study of wildfires. This allows for a more
in-depth analysis of the phenomenon by knowing the behavior of the fire and fuel
for different scenarios, for instance: varying ignition sources, wind direction, fuel
characteristics, etc. The use of Graphics Processing Units (GPU) is introduced
as a High-performance Computing (HPC) tool for processing this large number
of case studies.

For an overview of the main approaches used in modeling the phenomenon,
related work is presented in Sect. 2. Subsequently, in Sect. 3, the insight behind
the model studying the dynamics of wildfires is briefly described. In Sect. 4 we
present the numerical method which approximates the solution of the model
used, in addition to the proposed GPU implementation. The numerical experi-
ments and analysis of the implementation are presented in Sect. 5. Finally, the
conclusions and future work are presented in Sects. 6 and 7 respectively.

2 Related Work

Currently, there is a wide range of tools for the analysis of forest fires, including
numerical simulation software. Most of this technology is based on mathemat-
ical models that, very generally, can be grouped into discrete and continuous
approaches. Within the discrete approach are Cellular Automata (CA), which
are widely used for their simplicity of implementation, however, it is a challenge
to relate the state update rules with the physical phenomenon to be modeled,
see [1,2,7,14,18,19,21]. In the continuous approach, there are models based on
Partial Differential Equations (PDE), which build the model from the underly-
ing physical process; however, these usually derive in computationally intensive
implementations; see [4,13,15–17,22,24,30]. In many cases, these models are
used to complement information systems for wildfire analysis (see [3,38]).

In terms of implementation, many of the software uses HPC tools such
as OpenMP or MPI. Recently, due to the capabilities of GPU s, and through
General-Purpose Computing on Graphics Processing Units (GPGPU) approach,
some of the new software provides implementations using frameworks such as
CUDA or OpenCL. See [5,6,9–11,25,34,35,37]. Since most of the references using
GPU are CA-based models, this work explores the development of an open-
source PDE -based model implementation, that includes an efficient numerical
method compatible with the use of the CUDA framework for GPU s.

GPU Implementation of a 2D Wildfire Model 133

3 Mathematical Model

The mathematical model used in this work is based on the model originally
proposed by Asensio & Ferragut [4], also derived by Mandel et al. [22] and
Eberle et al. [13], and recently studied by San Martin & Torres in [29,30,33].

Conceptually, the model describes the temperature behavior through a pro-
cess of diffusion, convection, and reaction, in addition to fuel consumption by
the chemical reaction of the process. Diffusion represents the propagation of
temperature from a zone of higher temperature to a zone of lower temperature.
Convection is the heat transfer induced by the effect of a fluid, such as wind
in this case. The reaction process is an exothermic chemical process between
temperature and vegetable fuel.

Let u(x, t) the temperature value and β(x, t) the fuel fraction, both
defined in the spatial coordinates x = (x, y) at time t, where x ∈ Ω =
]xmin, xmax[×]ymin, ymax[⊂ R

2 y t ∈ [tmin, tmax]. Let v(x, t) = w(t) + ∇T (x)
the vector field which models the effect of wind and topography, and f(u, β) a
non-linear heat source. Then, the mathematical model is defined as,

ut = κ ∇2u − v · ∇u + f(u, β), in Ω×]0, tmax],
βt = g(u, β), in Ω×]0, tmax],

u(x, t) = h1(x, t), on Γ×]0, tmax],
β(x, t) = h2(x, t), on Γ×]0, tmax],
u(x, 0) = u0(x), in Ω,
β(x, 0) = β0(x), in Ω,

(1)

where Γ represents the boundary of Ω and,

f(u, β) = s(u)+β exp
(

u

1 + εu

)
− αu,

g(u, β) = −s(u)+
ε

q
β exp

(
u

1 + εu

)
,

with

s(u)+ =

{
1, if u ≥ upc,

0, otherwise.

The gradient is defined as ∇ =
(

∂
∂x , ∂

∂y

)
and ∇2 = ∂2

∂x2 + ∂2

∂y2 is the Laplace
operator. The mathematical model is presented in its non-dimensional form.
More details of the model and the parameters can be found in Asensio [4] and
Eberle [13].

4 Algorithm

The algorithm used in this work is derived from a numerical approximation using
the Method of Lines representing the PDE s system (1) as the following Initial
Value Problem (IVP)

ẏ(t) = Φ(t,y(t)), (2)

134 D. San Martin and C. E. Torres

where,

ẏ(t) =
(
vec

(
U̇(t)

)
, vec

(
Ḃ(t)

))�

and

Φ(t, y(t)) =

(
vec

(
κ (U(t) D

(2)
Nx

+ D
(2)
Ny

U(t)) −
(

V1(t) � (U(t) DNx) + V2(t) � (DNy U(t))
)

+ F (t)
)

vec (G(U(t), B(t)))

)

with y(0) = (vec (U(0)) , vec (B(0)))� the initial condition. vec (·) denotes the
vectorization operator applied in column-major order. Boundary conditions are
imposed in each time step according to the values of h1(x, t) and h2(x, t) from
(1).

The problem (2) is solved numerically using Second-Order Finite Difference
(FDM) and Fourth-Order Runge-Kutta Method (RK4) over a discrete spatial
and time domain

xi = xmin + iΔx, i = 0, ..., Nx, Δx = (xmax − xmin)/Nx,

yj = ymin + j Δy, j = 0, ..., Ny, Δy = (ymax − ymin)/Ny,

tn = tmin + nΔt, n = 0, ..., Nt, Δt = (tmax − tmin)/Nt.

Nx, Ny, and Nt correspond to the number of intervals for the spatial and tempo-
ral domains. U stores the temperature discretization, B stored the discretization
of fuel, V1, V2 are the matrices corresponding to the approximation of the com-
ponents of the vector field v, F y G are the numerical representation of the
functions f and g defined in (1). DN y D

(2)
N are the differentiation matrices

that allow us to approximate the first and second spatial partial derivatives; see
[30,36]. � represents the Hadamard product or element-wise multiplication.

The derivation, analysis of the convergence, and theoretical and numerically
observed computational complexity of the algorithm can be found in [30,33].

4.1 Applications

This algorithm allows us to study, for example, the vulnerability of fuel zones or
risk maps (see examples in [30]), calculating the damage that fires can cause at
different initial ignition points. This analysis requires a large number of numeri-
cal simulations since there is uncertainty in the initial conditions of the problem.
For example, the location of the initial fire sources, and the meteorological con-
ditions, among others. See Fig. 1. Therefore, it is crucial to develop an implemen-
tation that keeps computation times in the order of minutes or seconds, since
the shorter the execution time, the higher the number of fire scenarios that can
be simulated.

GPU Implementation of a 2D Wildfire Model 135

Initial Configuration

Scenario 2

Scenario 1

...

Scenario N

Risk Map

Fig. 1. Risk maps generation scheme. (source: [30])

4.2 CPU Implementation

The basic implementation of the algorithm was carried out in Python, using the
libraries NumPy for the vector handling of the structures and SciPy for the
handling of sparse matrices. It is important to point out that these libraries
have an optimized implementation of linear algebra algorithms and are mostly
developed in C/C++ [27]. This version can be accessed in [31].

To compare the performance of our implementation, we also include a sequen-
tial version in C and another with a CPU multi-thread management using
OpenMP.

4.3 GPU Implementation

Graphics processing units (GPU s), included on graphics cards, have been widely
used over the past few years because of the amount of computation that can
be processed, including numerical simulations of PDE s. While the video cards
were developed primarily for graphics work, the concept General-Purpose GPU
(GPGPU) has been widely used in scientific applications because of the com-
putational advantages they present over CPU s [20]. The parallel programming
model for GPU s allows an instruction to be performed on multiple threads and
is known as Single Instruction, Multiple Threads (SIMT). CUDA is a platform
for GPU software development, providing a set of directives for working with

136 D. San Martin and C. E. Torres

the C/C++ language, but extending its use to other languages. The execution
of code on GPU is performed in functions called kernels, which are executed in
parallel on the available threads according to the characteristics of the graphics
card. More details about CUDA programming can be accessed in the official
development documentation [26].

The general parameters for the execution of a kernel are the number of blocks
per grid and the number of threads per block. The performance of the code on
GPU often depends on the correct selection of these parameters.

Due to the need to perform multiple numerical simulations, a GPU imple-
mentation is proposed where each thread processes the Y[m]

l element of the
scheme described in Fig. 2. Each scenario m is associated with an independent
numerical simulation with m ∈ [0, Ns−1], l ∈ [0, 2 (Nx+1) (Ny+1)Ns−1], and Ns

the number of scenarios/simulations. The idea is to process 2 (Nx+1) (Ny+1)Ns

elements in parallel for each timestep of the time integration method.

y[0]
0

y[1]
0

...

y[Ns−1]
0

Y0,l

Y0,l−1

Y0,l+1

Y0,0

Y0,1

...

...

thread
thread
thread

y[0]
Nt

y[1]
Nt

...

y[Ns−1]
Nt

YNt,l

YNt,l−1

YNt,l+1

YNt,0

YNt,1

...

...

Scenario 0

Scenario 1

Scenario Ns − 1

Y0 YNt

GPU
Global
Memory

Global
Memory

Fig. 2. GPU implementation description.

In summary, the approach we propose solves an Initial Value Problem(IVP)

Ẏ(t) = Φ(t,Y(t)) (3)

where
Y(t) =

(
y(t)[0], . . . ,y(t)[Ns−1]

)�
,

represents the vector with all the numerical simulations, and

Φ(t,Y(t)) =
(
Φ(t,y(t))[0], . . . , Φ(t,y(t))[Ns−1]

)�

is the evaluation of the right-hand side of (2) for each fire scenario.

GPU Implementation of a 2D Wildfire Model 137

The computational effort is performed in the evaluation of Φ(t,Y(t)), and
this is the reason because it is processed by the GPU.

The algorithm 1 shows the calculation of the right-hand side of equation (3)
using GPU threads. Algorithm 2 presents the computation of the next time step
using RK4 method. The operation “vector plus scalar times another vector”
is described in Algorithm 3. This is used for RK4 method for GPU threads.
Finally, Algorithm 4 shows the RK4 loop performed by the CPU, calling the
GPU CUDA kernels.

Algorithm 1. Computation of right-hand-side of equation (2) Φ.
1: procedure RHSVec(Parameters, Y, Ytmp)
2: tid ← threadIdx.x + blockIdx.x · blockDim.x
3: while tid < Ns (Nx + 1)(Ny + 1) do
4: m ← tid/((Nx + 1)(Ny + 1))
5: row ← (tid − m (Nx + 1)(Ny + 1))%(Ny + 1)
6: col ← (tid − m (Nx + 1)(Ny + 1))/(Ny + 1)
7: offset ← 2 m (Nx + 1)(Ny + 1)
8: l ← offset + col (Ny + 1) + row
9: uidx ← l

10: bidx ← l + (Nx + 1)(Ny + 1)
11: uk ← h1(x, y, t)
12: bk ← h2(x, y, t)
13: if ¬(row = 0 ∨ row = Ny ∨ col = 0 ∨ col = Nx) then
14: u ← Ytmpuidx
15: b ← Ytmpbidx
16: v1, v2 ← v(x, y, t)
17: ur ← Ytmpoffset+(col+1)·(Ny+1)+row

18: ul ← Ytmpoffset+(col−1)·(Ny+1)+row

19: uu ← Ytmpoffset+col·(Ny+1)+row+1

20: ud ← Ytmpoffset+col·(Ny+1)+row−1

21: ux ← (ur − ul)/(2Δx)
22: uy ← (uu − ud)/(2Δy)
23: uxx ← (ur − 2u + ul)/Δx2

24: uyy ← (uu − 2u + ud)/Δy2

25: uk ← κ (uxx + uyy) − (v1 ux + v2 uy)
26: uk ← uk + Hpc(u)b exp(u/(1 + ε u)) − αu
27: bk ← −Hpc(u)ε b exp(u/(1 + ε u))/q
28: end if
29: Yuidx ← uk

30: Ybidx ← bk

31: tid ← tid + gridDim.x · blockDim.x
32: end while
33: end procedure

138 D. San Martin and C. E. Torres

Algorithm 2. RK4 scheme using GPU approach.
1: procedure RK4Scheme(Parameters, Ynew, Yold, k1, k2, k3, k4, Δt, size)
2: tid ← threadIdx.x + blockIdx.x · blockDim.x
3: while tid < size do

4: Ynewtid ← Yoldtid +
Δt

6

(
k1tid + 2k2tid + 2k3tid + k4tid

)

5: tid ← tid + gridDim.x · blockDim.x
6: end while
7: end procedure

Algorithm 3. Vector sum implementation using GPU approach.
1: procedure sumVector(Parameters, c, a, b, size, scalar)
2: tid ← threadIdx.x + blockIdx.x · blockDim.x
3: while tid < size do
4: ctid ← atid + scalar · btid

5: tid ← tid + gridDim.x · blockDim.x
6: end while
7: end procedure

Algorithm 4. Code extract implementing the RK4 loop.
1: . . .
2: for n = 1 to Nt do
3: Copy Y into Ytmp

4: RHSVec<<<N BLOCKS, N THREADS>>>(Parameters, k1, Ytmp)
5: sumVector<<<N BLOCKS, N THREADS>>> (Parameters, ktmp, Ytmp, k1, 0.5Δt, size)
6: RHSVec<<<N BLOCKS, N THREADS>>>(Parameters, k2, Ytmp)
7: sumVector<<<N BLOCKS, N THREADS>>> (Parameters, ktmp, Ytmp, k2, 0.5Δt, size)
8: RHSVec<<<N BLOCKS, N THREADS>>>(Parameters, k3, Ytmp)
9: sumVector<<<N BLOCKS, N THREADS>>> (Parameters, ktmp, Ytmp, k3, Δt, size)
10: RHSVec<<<N BLOCKS, N THREADS>>>(Parameters, k4, Ytmp)
11: RK4Scheme<<<N BLOCKS, N THREADS>>>(Parameters, Y, Ytmp, k1, k2, k3, k4, Δt, size)
12: end for
13: . . .

The parameters of the functions are detailed in equation (1) and N BLOCKS,
N THREADS are the parameters of CUDA kernels. In particular, the RHSVec
kernel consumes approximately the 90% of the execution time.

5 Numerical Experiments

5.1 Numerical Simulations

Some numerical examples are presented below.
The first experiment presented in Fig. 3 is defined in the domain Ω =]0, 90[2,

t ∈]0, 50]. Initial conditions are u0(x, y) = 6 exp(−((x − 20)2 + (y − 70)2)/20)
for temperature and for fuel is β0 ∼ U(0, 1). The boundary conditions are h1 =
h2 = 0. The vector field is defined as v(x, y, t) = (cos(−π/4+0.01 t), sin(−π/4+
0.01 t)). The model parameters are κ = 0.1, ε = 0.3, upc = 3, q = 1 y α = 0.001,
and the number of intervals is Nx = Ny = 127 and Nt = 1000.

GPU Implementation of a 2D Wildfire Model 139

Fig. 3. First experiment using a dynamic vector field.

The second experiment, Fig. 4, has the spatial domain Ω =] − 100, 100[2 and
temporal t ∈]0, 30]. The initial condition for temperature is

u0(x, y) =

{
6 if (x, y) ∈ Ω0,

0 otherwise,

with Ω0 = [−100,−93.7] × [−21.3, 21.3] and for β0 ∼ U(0, 1). The vector field
used is v(x, y, t) = (1, 0). The boundary conditions are h1 = h2 = 0. The model
parameters are κ = 10, ε = 0.3, upc = 3, q = 1 y α = 0.01, and the number of
intervals is Nx = Ny = 127 and Nt = 900.

Figs. 3 and 4 show how the fire front, the highest temperature zone, and fuel
consumption follow the dynamics of the wind, as expected.

140 D. San Martin and C. E. Torres

Fig. 4. Second experiment with a rectangular initial fire source. This experiment aims
to replicate the output presented by Mell et al. [23].

5.2 Comparison

To compare the performance of each implementation, an equispaced ignition
points grid is defined as described in Fig. 1. Using this definition, Ns simulations
are executed with Ns ∈ {1, 10, 100, 1000, 8100}. The aim is to process a high
number of simulations, to compare the execution times for both CPU and GPU
implementations. It is important to point out that this comparison does not
include the implementation developed in [33], because the idea presented in
this article highlights the difference between the multithreaded CPU and GPU
paradigms, being CuPy an intermediate GPU implementation between NumPy
and CUDA, thus, CuPy will be bounded by their behavior.

GPU Implementation of a 2D Wildfire Model 141

The code was executed in the computer cluster of the Centro Cient́ıfico Tec-
nológico de Valparáıso from Universidad Técnica Federico Santa Maŕıa (CCT-
Val). Computer nodes have an Intel(R) Xeon(R) E5-2643 v2 CPU with 3.9
GHz frequency, 6 physical nodes and 12 logical cores. These nodes include a
Tesla K20m graphic card with 2496 cores, 706 MHz frequency, and 5 GB of
vRAM. Additionally, they have 64 GB of RAM.

For the OpenMP implementation, 12 threads were selected due to the shorter
average execution time. To select the CUDA kernel parameters, we performed
10 experiments for 8100 simulations. The results are presented in Table 1.

Table 1. Average execution times (s) of the algorithm for different numbers of threads
and blocks.

Blocks

32 64 128 256 512

Threads 128 116.7 74.2 60.5 62.1 61.1

256 74.0 59.1 59.7 58.8 57.7

512 73.4 65.8 60.7 60.9 59.0

Using the previous results, the configuration of 512 blocks and 256 threads
obtains the shorter average execution time, being 49.42% smaller than the worst
cases with 32 blocks and 128 threads. Figure 5a presents the average times of
experiments performed with the configuration described before. In addition,
we define the speedup as the quotient between the execution time of the CPU
implementations included in the article versus the GPU version using CUDA.
Figure 5b shows these values.

Fig. 5. Implementation results.

142 D. San Martin and C. E. Torres

When analyzing the curves in the execution times plot, we can see how the
GPU implementation considerably reduces the computation time required for
processing the different scenarios. Notice that over 1000 execution scenarios, the
GPU implementation is approximately 88 times faster than the first version
in Python. As well, the CUDA version is 14 times faster than the CPU multi-
threaded OpenMP implementation.

Regarding degradation of speedup, it is mainly because the number of threads
available is lower than the number of tasks that need to be computed under this
approach, thus, the computation has to be performed in batches.

6 Conclusions

This work has presented an open-source GPU implementation of the wildfire
spread model proposed by [4] with the simplification introduced by [13]. A
description of the mathematical model, the algorithm, and a GPU implementa-
tion strategy is provided. To validate the implementation, an extensive compar-
ison has been made with CPU versions, including an implementation on C and
OpenMP, both in the numerical results obtained and in their execution times.

The algorithm has been successfully adapted to take advantage of the power
of graphics cards. The results show that the proposal is 88 times faster than the
version in [30], 32 times faster than a sequential version in C and approximately
14 times faster than a version in a multi-threaded CPU implementation using
OpenMP.

In addition, the described implementation is publicly available on GitHub
[32], therefore the results can be reproduced and the code can be used as an
active tool in the study of wildfires.

7 Future Work

Due to the limitations associated with the parallelization approach used in this
work, specifically, using one thread to process each element of the vector of
simulations, it is open to explore other strategies to improve the performance of
the implementation. For example, using each thread to process more than one
element of the vector considering the local relationship when approximating the
spatial partial derivatives.

Further extensions of the current work are the utilization of different types
of available memory to further reduce GPU computation times, the use of code
profiling in order to optimize and avoid possible bottlenecks, and the exten-
sion of the presented framework to the use of multi-GPU or hybrid CPU -GPU
architecture to solve even more scenarios in parallel.

Acknowledgment. This work was partially supported by ANID-Subdirección de Cap-
ital Humano/Doctorado Nacional/2019-21191017, ANID PIA/APOYO AFB220004
Centro Cient́ıfico Tecnológico de Valparáıso - CCTVal, and Programa de Iniciación a la

GPU Implementation of a 2D Wildfire Model 143

Investigación Cient́ıfica (PIIC) from Dirección de Postgrado y Programas, Universidad
Técnica Federico Santa Maŕıa, Chile.

Powered@NLHPC: This research was partially supported by the supercomputing
infrastructure of the NLHPC (ECM-02).

References

1. Alexandridis, A., Vakalis, D., Siettos, C., Bafas, G.: A cellular automata model for
forest fire spread prediction: the case of the wildfire that swept through Spetses
Island in 1990. Appl. Math. Comput. 204(1), 191–201 (2008). https://doi.org/10.
1016/j.amc.2008.06.046

2. Almeida, R.M., Macau, E.E.N.: Stochastic cellular automata model for wildland
fire spread dynamics. J. Phys: Conf. Ser. 285(1), 12038 (2011). https://doi.org/
10.1088/1742-6596/285/1/012038

3. Arganaraz, J., Lighezzolo, A., Clemoveki, K., Bridera, D., Scavuzzo, J., Bellis, L.:
Operational meteo fire risk system based on space information for Chaco Serrano.
IEEE Lat. Am. Trans. 16(3), 975–980 (2018). https://doi.org/10.1109/TLA.2018.
8358681

4. Asensio, M.I., Ferragut, L.: On a wildland fire model with radiation. Int. J. Numer.
Meth. Eng. 54(1), 137–157 (2002). https://doi.org/10.1002/nme.420

5. Carrillo, C., Margalef, T., Espinosa, A., Cortés, A.: Accelerating wild fire simulator
using GPU. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11540, pp.
521–527. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22750-0 46

6. Carrillo, C., Cortés, A., Margalef, T., Espinosa, A., Cencerrado, A.: Applying GPU
parallel technology to accelerate FARSITE forest fire simulator. In: Advances in
Forest Fire Research, pp. 913–921 (2018). https://doi.org/10.14195/978-989-26-
16-506 100

7. Chopard, B., Droz, M.: Cellular automata model for the diffusion equation. J. Stat.
Phys. 64(3), 859–892 (1991). https://doi.org/10.1007/BF01048321

8. CONAF: Incendios Forestales en Chile (2021). http://www.conaf.cl/incendios-
forestales/incendios-forestales-en-chile/

9. Denham, M., Laneri, K.: Using efficient parallelization in graphic processing units
to parameterize stochastic fire propagation models. J. Comput. Sci. 25, 76–88
(2018). https://doi.org/10.1016/J.JOCS.2018.02.007

10. Denham, M.M., Waidelich, S., Laneri, K.: Visualization and modeling of forest fire
propagation in Patagonia. Environ. Model. Softw. 158, 105526 (2022). https://
doi.org/10.1016/J.ENVSOFT.2022.105526

11. D’Ambrosio, D., Gregorio, S.D., Filippone, G., Rongo, R., Spataro, W., Trunfio,
G.A.: A Multi-GPU approach to fast wildfire hazard mapping. Adv. Intell. Syst.
Comput. 256, 183–195 (2014). https://doi.org/10.1007/978-3-319-03581-9 13

12. Eberle, S.: Modeling and simulation of forest fire spreading. In: Eulogio, P.I.,
Guardiola-Albert, Carolina, Javier, H., Luis, M.M., José, D.J., Antonio, V.G.J.
(eds.) Mathematics of Planet Earth, pp. 811–814. Springer, Berlin Heidelberg,
Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-32408-6 175

13. Eberle, S., Freeden, W., Matthes, U.: Forest fire spreading. In: Freeden, W.,
Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, pp. 1349–1385.
Springer, Berlin Heidelberg, Berlin, Heidelberg (2015). https://doi.org/10.1007/
978-3-642-54551-1 70

https://doi.org/10.1016/j.amc.2008.06.046
https://doi.org/10.1016/j.amc.2008.06.046
https://doi.org/10.1088/1742-6596/285/1/012038
https://doi.org/10.1088/1742-6596/285/1/012038
https://doi.org/10.1109/TLA.2018.8358681
https://doi.org/10.1109/TLA.2018.8358681
https://doi.org/10.1002/nme.420
https://doi.org/10.1007/978-3-030-22750-0_46
https://doi.org/10.14195/978-989-26-16-506_100
https://doi.org/10.14195/978-989-26-16-506_100
https://doi.org/10.1007/BF01048321
http://www.conaf.cl/incendios-forestales/incendios-forestales-en-chile/
http://www.conaf.cl/incendios-forestales/incendios-forestales-en-chile/
https://doi.org/10.1016/J.JOCS.2018.02.007
https://doi.org/10.1016/J.ENVSOFT.2022.105526
https://doi.org/10.1016/J.ENVSOFT.2022.105526
https://doi.org/10.1007/978-3-319-03581-9_13
https://doi.org/10.1007/978-3-642-32408-6_175
https://doi.org/10.1007/978-3-642-54551-1_70
https://doi.org/10.1007/978-3-642-54551-1_70

144 D. San Martin and C. E. Torres

14. Fernandez-Anez, N., Christensen, K., Rein, G.: Two-dimensional model of smoul-
dering combustion using multi-layer cellular automaton: the role of ignition loca-
tion and direction of airflow. Fire Saf. J. 91, 243–251 (2017). https://doi.org/10.
1016/J.FIRESAF.2017.03.009

15. Ferragut, L., Asensio, M.I., Cascón, J.M., Prieto, D.: A wildland fire physical model
well suited to data assimilation. Pure Appl. Geophys. 172(1), 121–139 (2015).
https://doi.org/10.1007/s00024-014-0893-9

16. Ferragut, L., Asensio, M.I., Monedero, S.: Modelling radiation and moisture con-
tent in fire spread. Commun. Numer. Meth. Eng. 23, 819–833 (2006). https://doi.
org/10.1002/cnm.927

17. Ferragut, L., Asensio, M.I., Monedero, S.: A numerical method for solving
convection-reaction-diffusion multivalued equations in fire spread modelling. Adv.
Eng. Softw. 38(6), 366–371 (2007). https://doi.org/10.1016/J.ADVENGSOFT.
2006.09.007

18. Ghisu, T., Arca, B., Pellizzaro, G., Duce, P.: An improved cellular automata for
wildfire spread. Procedia Comput. Sci. 51, 2287–2296 (2015). https://doi.org/10.
1016/J.PROCS.2015.05.388

19. Hansen, P.B.: Parallel cellular automata: a model program for computational sci-
ence. Concurrency Pract. Experience 5(5), 425–448 (1993). https://doi.org/10.
1002/cpe.4330050504

20. Harris, M.: Introducing parallel forall. https://developer.nvidia.com/blog/?p=8.
Accessed 3 Oct 2023

21. Karafyllidis, I., Thanailakis, A.: A model for predicting forest fire spreading using
cellular automata. Ecol. Model. 99(1), 87–97 (1997). https://doi.org/10.1016/
S0304-3800(96)01942-4

22. Mandel, J., et al.: A wildland fire model with data assimilation. Math. Comput.
Simul. 79(3), 584–606 (2008). https://doi.org/10.1016/j.matcom.2008.03.015

23. Mell, W., Jenkins, M.A., Gould, J., Cheney, P.: A physics-based approach to mod-
elling grassland fires. Int. J. Wildland Fire 16(1), 1–22 (2007). https://doi.org/10.
1071/WF06002

24. Montenegro, R., Plaza, A., Ferragut, L., Asensio, M.I.: Application of a nonlinear
evolution model to fire propagation. Nonlinear Anal. Theory Methods Appl. 30(5),
2873–2882 (1997). https://doi.org/10.1016/S0362-546X(97)00341-6

25. Ntinas, V.G., Moutafis, B.E., Trunfio, G.A., Sirakoulis, G.C.: GPU and FPGA
parallelization of fuzzy cellular automata for the simulation of wildfire spread-
ing. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski,
J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 560–569. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-32152-3 52

26. NVIDIA: CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/cuda-
c-programming-guide/. Accessed 3 Oct 2023

27. Oliphant, T.E.: Python for scientific computing. Comput. Sci. Eng. 9(3), 10–20
(2007). https://doi.org/10.1109/MCSE.2007.58

28. Preisler, H.K., Ager, A.A.: Forest-Fire Models. Encycl. Environmetrics (2013).
https://doi.org/10.1002/9780470057339.vaf010.pub2

29. San Mart́ın, D., Torres, C.E.: Exploring a spectral numerical algorithm for solv-
ing a wildfire mathematical model. In: 2019 38th International Conference of the
Chilean Computer Science Society (SCCC), pp. 1–7 (2019). https://doi.org/10.
1109/SCCC49216.2019.8966412

30. San Mart́ın, D., Torres, C.E.: Ngen-Kütral: Toward an open source framework
for chilean wildfire spreading. In: 2018 37th International Conference of the

https://doi.org/10.1016/J.FIRESAF.2017.03.009
https://doi.org/10.1016/J.FIRESAF.2017.03.009
https://doi.org/10.1007/s00024-014-0893-9
https://doi.org/10.1002/cnm.927
https://doi.org/10.1002/cnm.927
https://doi.org/10.1016/J.ADVENGSOFT.2006.09.007
https://doi.org/10.1016/J.ADVENGSOFT.2006.09.007
https://doi.org/10.1016/J.PROCS.2015.05.388
https://doi.org/10.1016/J.PROCS.2015.05.388
https://doi.org/10.1002/cpe.4330050504
https://doi.org/10.1002/cpe.4330050504
https://developer.nvidia.com/blog/?p=8
https://doi.org/10.1016/S0304-3800(96)01942-4
https://doi.org/10.1016/S0304-3800(96)01942-4
https://doi.org/10.1016/j.matcom.2008.03.015
https://doi.org/10.1071/WF06002
https://doi.org/10.1071/WF06002
https://doi.org/10.1016/S0362-546X(97)00341-6
https://doi.org/10.1007/978-3-319-32152-3_52
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1002/9780470057339.vaf010.pub2
https://doi.org/10.1109/SCCC49216.2019.8966412
https://doi.org/10.1109/SCCC49216.2019.8966412

GPU Implementation of a 2D Wildfire Model 145

Chilean Computer Science Society (SCCC), pp. 1–8 (2018). https://doi.org/10.
1109/SCCC.2018.8705159

31. San Martin, D., Torres, C.: Open source framework for chilean wildfire spreading
(2019). https://github.com/dsanmartin/ngen-kutral. Accessed 1 Mar 2019

32. San Martin, D., Torres, C.: Open source framework for Chilean wildfire spread-
ing: GPU implementation (2019). https://github.com/dsanmartin/ngen-kutral-
gpu. Accessed 1 Mar 2019

33. San Martin, D., Torres, C.E.: 2D simplified wildfire spreading model in Python:
from NumPy to CuPy. CLEI Electron. J. 26, 5:1-5:18 (2023). https://doi.org/10.
19153/CLEIEJ.26.1.5

34. Smith, J., Barfed, L., Dasclu, S.M., Harris, F.C.: Highly parallel implementation
of forest fire propagation models on the GPU. In: 2016 International Conference
on High Performance Computing and Simulation, HPCS 2016, pp. 917–924 (2016).
https://doi.org/10.1109/HPCSIM.2016.7568432

35. Sousa, F.A., dos Reis, R.J., Pereira, J.C.: Simulation of surface fire fronts using
fireLib and GPUs. Environ. Model. Softw. 38, 167–177 (2012). https://doi.org/10.
1016/J.ENVSOFT.2012.06.006

36. Trefethen, L.N.: Spectral Methods in MATLAB. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (2000). https://doi.org/10.1137/1.
9780898719598

37. Wu, R., et al.: vFirelib: a GPU-based fire simulation and visualization tool. Soft-
wareX 23, 101411 (2023). https://doi.org/10.1016/J.SOFTX.2023.101411

38. Zambrano, M., Pérez, I., Carvajal, F., Esteve, M., Palau, C.: Command and control
information systems applied to large forest fires response. IEEE Lat. Am. Trans.
15(9), 1735–1741 (2017). https://doi.org/10.1109/TLA.2017.8015080

https://doi.org/10.1109/SCCC.2018.8705159
https://doi.org/10.1109/SCCC.2018.8705159
https://github.com/dsanmartin/ngen-kutral
https://github.com/dsanmartin/ngen-kutral-gpu
https://github.com/dsanmartin/ngen-kutral-gpu
https://doi.org/10.19153/CLEIEJ.26.1.5
https://doi.org/10.19153/CLEIEJ.26.1.5
https://doi.org/10.1109/HPCSIM.2016.7568432
https://doi.org/10.1016/J.ENVSOFT.2012.06.006
https://doi.org/10.1016/J.ENVSOFT.2012.06.006
https://doi.org/10.1137/1.9780898719598
https://doi.org/10.1137/1.9780898719598
https://doi.org/10.1016/J.SOFTX.2023.101411
https://doi.org/10.1109/TLA.2017.8015080

Towards a Multi-GPU Implementation
of a Seismic Application

Pedro H. C. Rigon1,2(B) , Brenda S. Schussler1,2 , Edson L. Padoin1,2 ,
Arthur F. Lorenzon1,2 , Alexandre Carissimi1,2 ,

and Philippe O. A. Navaux1,2

1 Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre,
Brazil

{phcrigon,bsschussler,aflorenzon,asc,navaux}@inf.ufrgs.br,
padoin@unijui.edu.br

2 Regional University of Northwestern Rio Grande do Sul, Porto Alegre, Brazil

Abstract. This study explores the implementation and analysis of a
Multi-GPU system for the application of the Fletcher Method in geo-
physical exploration, essential in the discovery and extraction of energy
sources such as oil and gas. The scalability of the software for the use of
multiple GPUs (Graphics Processing Units) allows for improved perfor-
mance of these applications due to their parallel processing capacity. The
proposed strategy emphasizes a judicious approach to workload division,
considering the data location and the GPU’s processing capacity. This
implementation stands out as the first in the seismic application field
to utilize multiple V100 GPUs and assess the impact on performance.
The experiments results demonstrated that the proposed Multi-GPU
implementation provides significant performance improvements over the
Single-GPU version (e.g., 2.77 times using 4 GPUs). Furthermore, the
Multi-GPU implementation exhibits linear growth in performance and
efficiency as the input grid size increases.

Keywords: Multi-GPU · Fletcher · Performance · GPU · CUDA

1 Introduction

Geophysical exploration methods play a vital role in our society as they enable
the discovery of fundamental resources (e.g., oil and gas) that drive the economic
development of nations. However, pursuing new oil reservoirs usually involves
destructive practices like drilling in environmentally sensitive areas and improper
waste disposal. Hence, researchers have developed applications that simulate
seismic imaging for oil detection to mitigate these adverse effects and enhance
drilling precision. On top of that, given that these applications involve a huge
amount of data and naturally lend themselves to parallel processing, graphics
processing units (GPUs) have become extensively employed to accelerate such
tasks [Lukawski et al., 2014].

GPUs are architectures designed with a single instruction, multiple data
(SIMD) approach and incorporate thousands of processing cores. This design
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 146–159, 2024.
https://doi.org/10.1007/978-3-031-52186-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_10&domain=pdf
http://orcid.org/0009-0007-9077-7196
http://orcid.org/0009-0005-5264-892X
http://orcid.org/0000-0002-4015-5619
http://orcid.org/0000-0002-2412-3027
http://orcid.org/0000-0002-0884-1483
http://orcid.org/0000-0002-9957-5861
https://doi.org/10.1007/978-3-031-52186-7_10

Towards a Multi-GPU Implementation of a Seismic Application 147

makes them well-suited as accelerator devices for executing applications that effi-
ciently handle array and matrix data structures. However, despite their impres-
sive computing capabilities, GPUs demand significant power during their opera-
tion. Consequently, optimizing the utilization of the available hardware resources
on GPUs, such as cores and memory, becomes imperative when executing paral-
lel applications [Lorenzon and Beck Filho, 2019]. By doing this, we can effectively
reduce energy consumption while mitigating the associated environmental and
economic impacts [Navaux et al., 2023].

With the increasing availability of multiple GPUs in high-performance
servers, one can further explore the processing potential through Multi-GPU
systems [Papadrakakis et al., 2011]. In this scenario, by distributing the work-
load among all the GPUs available in the system, one can take advantage of the
parallel processing power of each one, achieving significant performance improve-
ments [Liu et al., 2019]. Furthermore, the improvement in scalability provided
by multiple GPUs allows the handling of increasingly larger datasets, improving
the analysis capacity and quality of the generated seismic images through the
greater density of data incorporated in the final result.

However, effectively implementing seismic applications that can fully lever-
age the processing power of Multi-GPU systems poses a significant challenge. A
key obstacle lies in achieving efficient utilization of GPUs. Therefore, striking
a balance in workload distribution across the GPUs becomes crucial to opti-
mize the available processing power. Additionally, employing efficient strategies
for workload partitioning and thread coordination is vital to prevent resource
underutilization or overload on the GPUs. By addressing these challenges, one
can maximize the efficiency and performance of parallel applications on Multi-
GPU systems.

Considering the aforementioned scenario, we propose a Multi-GPU imple-
mentation for the Fletcher Method. Our main objective is to provide a workload
division strategy that considers fundamental aspects such as data locality and
maximizes GPU processing capacity. To validate the proposed implementation,
we performed extensive experiments using twenty-nine different grid input sets
on a system with eight GPUs. With that, we can verify the performance gains
and energy consumption reductions a Multi-GPU implementation provides as
the grid input set changes.

Through the experiments, we demonstrate that the proposed Multi-GPU
implementation can provide significant performance improvements over the
Single-GPU version (e.g., 2.77 times using 4 GPUs). Moreover, the results indi-
cate that more GPUs are associated with greater throughput, highlighting scal-
ability as a critical aspect of optimizing performance in this application. We
also show that the performance and efficiency of multi-GPU implementations
are directly proportional to the size of the input grid. However, it is essential to
highlight that for smaller input grids, the multi-GPU performance is degraded
due to the cost of inter-GPU synchronization and data communication, charac-
teristics inherent to these implementations.

148 P. H. C. Rigon et al.

The remainder of this paper is organized as follows. In Sect. 2 we describe the
Fletcher model and list the Related Work. In Sect. 3, the proposed Multi-GPU
implementation is discussed. The methodology followed during the experiments
is described in Sect. 4. Performance and power demand results are discussed in
Sect. 5 while the final considerations are drawn in Sect. 6.

2 Background and Related Work

2.1 Fletcher Modeling

Fletcher modeling works as a technique for simulating wave propagation over
time. This propagation is expressed through the acoustic Eq. (1), where the
velocity varies according to the specific geological layers (Eq. 2). Referring to
the equations, p(x, y, z, t) indicates the pressure at each location in the domain
with respect to time, V (x, y, z) is a representation of the propagation velocity,
and ρ(x, y, z) reflects the density [Fletcher et al., 2009].

1
V 2

∂2p

∂t2
= ∇2p (1)

1
V 2

∂2p

∂t2
= ∇2p − ∇ρ

ρ
· ∇p (2)

Seismic modeling initializes by collecting data in a seismic survey, as illus-
trated in (Fig. 1). The procedure begins with equipment attached to a ship,
which at regular intervals emits seismic waves that reflect and refract in inter-
actions with different environmental undergrounds, working as a sonar to map
geological structures. When these waves return to the ocean’s surface, specific
sensors installed on cables towed by the ship capture and record seismic vari-
ations. These variations, a.k.a. seismic traces, correspond to the set of signals
obtained by each sensor during the wave emission. Therefore, with each emission
of waves, the seismic traces of all the microphones on the cable are recorded,
providing an understandable overview of the subsoil. During this operation, the
ship continues to move and emit signals periodically, thus producing a detailed
image of the seabed and underground [Chu et al., 2011].

The Fletcher method models the acoustic wave propagation in a Tilted Trans-
versely Isotropic (TTI) environment through a three-dimensional grid, in which
the size of each dimension (x,y, and z) is defined by the variables sx, sy, and sz,
respectively. Each point on this grid represents a point in the physical environ-
ment being modeled, and this point is associated with physical characteristics
such as pressure, density, and wave velocity. In the case of TTI media, the wave
velocity varies depending on the direction. That is, each point has an associated
slope direction.

We illustrate the single-GPU implementation of the Fletcher method in the
Algorithm 1. It requires as input the following parameters: the number of itera-
tions the wave will propagate (endTime), a value that defines the period in which
the state of the wave will be stored in the disk (threshToWriteWave), and the

Towards a Multi-GPU Implementation of a Seismic Application 149

Fig. 1. Data collection in a marine seismic survey

Fig. 2. The pressure point inserted (in red) at the center of the three-dimensional
pressure vector. (Color figure online)

dimensions of the grid (sx, sy, and sz). The procedure starts by initializing the
grid with the physical characteristics of the environment through the initialize-
Grid() function. Initially, a pressure point that represents the amplitude of the
seismic wave for a given instant is inserted at the central position of the three-
dimensional pressure vector (Fig. 2). Then, before the kernel starts the execution
on the GPU, this three-dimensional array is mapped to a one-dimensional array,
following the traditional (x, y and z) order. This means that the points x of the
same line are mapped contiguously in the one-dimensional vector resulting from
the mapping.

150 P. H. C. Rigon et al.

Algorithm 1. Fletcher: Single-GPU Implementation
Input: endT ime: number of iterations the wave will propagate.

threshToWriteWave: number of iterations where the wave will be stored in

disk.

sx: size of dimension x.

sy: size of dimension y.

sz: size of dimension z.

1: initializeGrid(grid, sx, sy, sz)

2: initPropagatePointers(grid, initPoint)

3: allocateDataDevice()

4: copyDataToDevice()

5: calculateExecutionConfiguration(blocks, threadsPerBlock, sx, sy, sz).

6: for each dt in endTime do

7: insertSourcePointToDevice()

8: kernelPropagate <<< blocks, threadsPerBlock >>> (...)

9: updatePointers()

10: if dt == threshToWriteWave then

11: writeWave()

12: end if

13: end for

The loop from line 6 to 13 is responsible for iterating until the simulation
is performed. Then, for each iteration, a modulated Gaussian pulse representing
the amplitude of the seismic wave at a given time instant is inserted in the center
of the three-dimensional grid (insertSourcePointToDevice()). Then, the CUDA
Kernel is launched for execution, which will propagate this pressure point in
time. The propagation of the seismic wave is based on the computation of a
5-point stencil during the Kernel execution. Stencil computation is a technique
that involves computing a center point based on reading neighboring points that
are the results of previous kernel computation. This approach is widely used
in parallel processing algorithms and [Pearson et al., 2020] image processing.
During computation using the Stencil (Fig. 3) technique, there is no dependency
between the calculations of individual points, which means that they can be
computed independently and in parallel. This property makes processing highly
parallelizable, allowing multiple points to be calculated simultaneously, speeding
up execution [Pavan et al., 2019].

Once the point associated with the acoustic wave is computed, the wave
state is propagated to the previous state to proceed with the next iteration. In
this scenario, two buffers are used: pp (previous state) and pc (current state).
The current state of the wave is moved to the pp buffer, which now becomes
the previous state. At the same time, the newly calculated next state is stored
in the pc buffer, which now becomes the current state. Furthermore, when the
number of iterations reaches a defined threshold, the wave is written to the disk
(writeWave()).

Towards a Multi-GPU Implementation of a Seismic Application 151

Fig. 3. 5-points 3D Stencil representation

In summary, for each time step, the pressure values at each grid point are
updated based on the wave equation and the previous pressure, density, and
wave velocity values of the point and its neighbors. To avoid artificial reflections
from the border of the grid, which can interfere with the wave propagation
characteristic, an absorption zone of 16 points is applied. The seismic waves are
artificially damped in this region according to the distance from the inner grid.
In this way, the closer to the border of the grid, within the absorption region, the
greater the smoothing velocity at these points, so the velocity set at the border
is zero.

2.2 Related Work

In this section, we list the works that exploit the parallelism of seismic applica-
tions. They are organized in chronological order.

[Liu et al.,2019] explore using GPUs to accelerate the Reverse Time Migra-
tion (RTM) algorithm. The parallelization scheme focuses on using two GPUs
by employing a workload division strategy. The authors also consider a version
that relies on the unified memory scheme available in CUDA. The results suggest
that the workload division strategy presents better results than unified memory
in a multi-GPU environment. Furthermore, the authors argue that computa-
tional efficiency grows linearly with the increase in GPUs. In contrast, our paper
extends the scope to use Multi-GPU systems with up to eight GPUs, with a
balanced workload distribution approach across all these components.

[Serpa and Mishra, 2022] address optimizing the Fletcher method on multi-
core and single-GPU architectures focusing on portability. The paper analyzes
the performance, energy consumption, and energy efficiency of two versions of
the code, an original version and an optimized version for OpenMP, OpenACC,
and CUDA. The results indicate that the CUDA version has the best perfor-

152 P. H. C. Rigon et al.

mance and energy efficiency among all evaluated versions. While it focuses on
multicore architectures and single-GPU only, our work focuses on Multi-GPU
architectures and addresses related topics such as border exchange between algo-
rithm iterations and the performance and energy improvements as the grid size
increases.

[Liu et al., 2012] discuss the implementation of the GPU-accelerated RTM
algorithm. It also addresses specific issues such as uneven topography and
anisotropic environment, i.e., it focuses on various technical aspects of imple-
menting GPU-accelerated RTM. Different from it, our work focuses on the imple-
mentation of a Multi-GPU system and on the performance and energy efficiency
results.

[Pearson et al., 2020] explore techniques to improve 3D stencil communi-
cation on heterogeneous supercomputers using strategies such as hierarchical
partitioning and optimization of data exchange between GPUs. Through tests
on up to 256 nodes, the authors demonstrate the efficiency of these techniques
in improving communication and reducing data exchange time. On the other
hand, our work uses concepts of stencil communication to implement Fletcher’s
method of propagating seismic waves in a Multi-GPU environment in CUDA,
exploring aspects such as performance and energy efficiency.

[Okamoto et al., 2010] describe how the use of multiple GPUs can signifi-
cantly speed up simulations of seismic wave propagation. A particular challenge
faced when using multiple GPUs is non-contiguous memory alignment in the
overlapping regions between subdomains processed by different GPUs. This can
lead to delays in data transfer between the device and the host node. Differently,
in our work, we address this scenario and show that with the increase in the grid
input size, there is a proportional increase in the synchronization time between
the subdomains processed by different GPUs.

3 Multi-GPU Implementation of Fletcher

Given the Single-GPU implementation of the Fletcher method described in
Sect. 2, we discuss next the modifications we have done for the Multi-GPU ver-
sion. Because proper workload distribution and memory management across
many GPUs are key performance aspects in Multi-GPU environments, we con-
sider a workload division that can take advantage of (i) the intrinsic parallelism
available in the calculation of each grid point; (ii) the memory management
between the GPUs; and (iii) the data locality aspect [Padoin et al., 2013].

For the workload distribution, we consider the division of the z-axis among all
GPUs, as illustrated in Fig. 4 for the distribution across 4 GPUs. This partition-
ing divides the three-dimensional grid into subdomains in the z-axis direction,
and each of these subdomains is assigned to a specific GPU for processing. The
outcome of this strategy is an even distribution of the workload across the avail-
able GPUs. This strategy aims to optimize the data locality since the execution
of the CUDA kernel is based on the computation of a 5-point Stencil (Fig. 3).
Hence, when mapping the three-dimensional grid to a one-dimensional grid in

Towards a Multi-GPU Implementation of a Seismic Application 153

Fig. 4. Workload distribution strategy along z-axis across 4 GPUs

the traditional way (x, y, z), it is essential to note that the neighboring addresses
along the x and y axes will be closer in memory than the neighboring points along
the z-axis. In this scenario, assigning a continuous block in the z-axis direction
to each GPU can increase memory locality on L1 and L2 GPU caches, reducing
the need for slower global memory accesses.

Moreover, we explore memory coalescence because GPUs are designed to be
more efficient when threads of the same warp access data stored in contiguous
memory addresses. Hence, decreasing the distance between the points ensures
that memory data access will happen more cohesively. This allows GPU memory
reads and writes to be combined into fewer memory transactions, resulting in a
more efficient use of memory bandwidth. However, although there is immediate
parallelism during kernel execution, it is worth mentioning that each call to the
CUDA kernel advances the solution by a single dt time step. Hence, to propa-
gate the wave by several time steps, the kernel needs to be iterated, and between
these iterations, we must ensure the exchange of information between the dif-
ferent GPUs. This communication occurs through synchronizing and updating
variables in the border regions of the computing domain.

For the 5-point Stencil computation, the edges represent intersection zones
of the three-dimensional grid data mapped to the GPUs used for processing.
These borders are needed to synchronize data across all GPUs, ensuring the
correct reading of data throughout the execution of the CUDA kernel. Hence,
computing the Stencil requires that each subdomain, present on each GPU, have
a 5-point border in the z dimension for each intersection point with the subdo-
main of other GPUs. Therefore, after the kernel execution, it is necessary to
exchange the upper and lower borders across the neighbors’ GPUs to propa-
gate the updated data to the next iteration of wave propagation. During this
exchange operation, cudaMemCpyDeviceToDevice was used to assess the impact
of the border exchange considering an indirect communication. When using this
function, the communication always passes through the Host.

Moreover, the workload distribution along the z-axis also provides benefits in
reducing the number of operations performed only to exchange borders through
GPUs. Although it is not possible to eliminate all communications, this strategy
minimizes the need for inter-GPU communication because threads on each GPU

154 P. H. C. Rigon et al.

Fig. 5. Border exchange across GPUs along the z-axis.

can process their grid points independently without synchronizing and updating
data from other GPUs. In addition, the cost associated with border synchro-
nization reduces since this overhead increases with the growth of the grid size
(Fig. 5).

4 Methodology

The experiments were performed on a p3.16xlarge AWS instance (Table 1), which
is equipped with 64 Intel Xeon E5-2686 v4 (Broadwell) VCPUs, each supporting
two threads per core, resulting in a total of 128 available execution threads. In
addition, the instance has 8 NVIDIA Tesla V100-SXM2 16Gb GPUs and offers
488 GiB of RAM. Also, the following versions were used: CUDA v.12.0, NVIDIA
driver 525.85.12, and gcc 9.4.0 with the −O3 optimization flag.

Table 1. Specifications of the Architecture

Processor Specification

Processor Intel Xeon E5-2686 v4

Architecture Broadwell

Processor/GPU Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30 GHz, 64 VCPUs

Memory 1 MiB L1d, 1 MiB L1i, 8 MiB L2, 90 MiB L3

GPU Specifications

GPU NVIDIA Tesla V100-SXM2

Architecture Volta

Processor/GPU GV100

Registers 256 KB/SM, 20480 KB/GPU

Memory 4096-bit HBM2, 16 GB, 6144 KB L2 Cache

We have considered twenty-nine different input grid sizes for the Fletcher
method: ranging from 88 to 984 (the maximum size we could allocate in the

Towards a Multi-GPU Implementation of a Seismic Application 155

architecture), in intervals of 32. We have chosen to use 3D input vectors with a
dimension multiple of 32 to match the size of the CUDA warps. In this scenario,
the following versions were implemented and tested: Single-GPU, 2-GPUs, 4-
GPUs, and 8-GPUs, indicating the number of used GPUs.

We compare the Single and Multi-GPU versions regarding performance and
energy consumption. The performance is represented by the number of samples
computed per second (MSamples/s). We collected the energy consumption via
the NVIDIA-SMI command line tool provided by NVIDIA. The results presented
in the next section are the average of 10 runs with a 95% confidence interval based
on the Student’s t distribution. In addition, each graph identifies the confidence
intervals of the results for each problem size and GPU version.

5 Results

In this section, we present, analyze, and discuss the results obtained from the
experiments. First, we discuss the performance of the Multi-GPU implementa-
tion of the Fletcher method for 1, 2, 4, and 8 GPUs. The energy efficiency is
analyzed, comparing the average power demand (in Watts) of the GPU dur-
ing the iteration of the CUDA kernel with the performance (in MSamples/s) to
assess the energy efficiency of the application.

Fig. 6. Performance results for each grid size and implementation. The higher the bar,
the better the performance.

Figure 6 shows the performance results for the entire experiment set. It
is worth mentioning that the grid set computed on the Single-GPU and 2-
GPUs versions is limited by the GPU VRAM, which in this case is 16Gb per
Device (NVIDIA Tesla V100-SXM2). Therefore, the first observation is that the
Multi-GPU implementation of Fletcher allows the execution of larger grid sizes,

156 P. H. C. Rigon et al.

improving the capability and quality of seismic images generated through higher
data density incorporated into the final result.

Fig. 7. Performance Speedup over Single-GPU implementation.

By analyzing the behavior of Fig. 7, one can highlight that the performance
grows along with the increase in the grid size, allowing the user to increase
application throughput. As an example, for a grid size equal to 504, the maximum
speedup of 2.77 is achieved over the Single-GPU with 4 GPUs. Moreover, by
using 2 GPUs, we observed a speedup over the Single-GPU greater than 2 for
grid sizes 376 and larger, indicating efficient scalability for this configuration.
However, when increasing the number of GPUs to eight, we could not obtain
proportional gains to this increase in computational capacity because of the
cost of inter-GPU communication. That is, with a small grid size, parallelism in
Kernel computation is not exploited to the maximum, and the cost of border
synchronization between the GPU is more significant in relation to the execution
time of CUDA kernel computing. Therefore, we argue that the effectiveness of an
8-GPU strategy would require a larger problem, where the cost of communication
would have a smaller impact in relation to the throughput gain.

This statement is corroborated by the analysis of Fig. 6, which demonstrates
that the performance of multi-GPU implementations exhibits a positive lin-
ear trend with increasing input grid size. This implies that the effectiveness
of Multi-GPU computing amplifies proportionally to the scale of the problem.
Thus, its performance becomes especially notable for large-scale computational
tasks, where the ratio between the cost of inter-GPU communication and Kernel
CUDA computation is optimized. Additionally, the use of 2 GPUs reaches its
Performance peak for input grid sizes close to 408. Afterward, a slight decrease in
performance is observed as the grid size increases, until GPU memory capacity
(VRAM) limits computation, which it does for input sizes greater than 792.

Figure 8 illustrates the maximum power achieved while running the CUDA
kernel for different versions and grid input sizes. The maximum power increases
as the number of GPUs also increase. The Single-GPU approach consistently

Towards a Multi-GPU Implementation of a Seismic Application 157

Fig. 8. Maximum Power dissipation for each version and grid input set.

Fig. 9. Performance per Watts comparison

presents the lowest power across all problem sizes. This increase in maximum
power with the use of more GPUs is expected, as more processing units mean
more power dissipated. However, it is important to highlight that an increase
in power does not always translate into a proportional increase in performance,
highlighting the importance of considering energy efficiency when analyzing and
optimizing applications for multi-GPU systems, aiming to achieve the best bal-
ance between performance and power consumption.

Extending the analysis through the data of the average power consumed
during the execution of the CUDA kernel. Figure 9 shows that the single-GPU
implementation has high efficiency for small input grid sizes. This is due to the
fact that there is no cost of inter-GPU edge synchronization and also the fact that

158 P. H. C. Rigon et al.

computing power does not become a performance limiting factor for these input
sizes, due to the reduced scale of the grid Furthermore, we confirmed the low
power efficiency of multi-GPU implementations for lower problem sizes. This is
because the cost of inter-GPU synchronization and data communication inherent
in such implementations results in unnecessarily high power consumption for
issues that could be efficiently managed by a single GPU.

Furthermore, the energy efficiency of multi-GPU grows linearly with the size
of the input grid. This indicates that to achieve high efficiency with multi-GPU,
a large input set is needed, in order to ensure that throughput inherent to the
multi-GPU implementation significantly outweighs the cost associated with data
synchronization. This reinforces the idea that the best performance between
single-GPU and multi-GPU implementations depends on factors such as the
input grid and the complexity of modeling wave and medium characteristics.

6 Conclusions and Future Work

In this work, we have explored the implementation of Fletcher’s multi-GPU
method and compared it with the single-GPU approach. This implementation
provided an innovative technical analysis for seismic applications using Multi-
GPU systems with NVIDIA Tesla V100. Therefore, we studied the variations in
performance and energy efficiency according to the variation in the size of the
input grid. The presented results reinforce the importance of choosing the appro-
priate implementation method, given the size of the grid and the complexity of
the modeled problem to be treated.

The results indicate that the multi-GPU implementation offers greater scal-
ability, allowing the handling of larger input sets. However, it should be noted
that for smaller input grids, multi-GPU performance is degraded due to the cost
associated with inter-GPU edge synchronization. We have found that the perfor-
mance of multi-GPU implementations is directly proportional to the input grid
size, reaching peak efficiency and performance, with a Speedup of 2.77 when
employing 2 GPUs for grid sizes around 408. However, within the dataset ana-
lyzed, the configuration with 8 GPUs did not generate gains proportional to the
increase in the available computational load, being more suitable for problems
with a larger grid dimension, where the cost of inter-GPU communication is small
concerning the throughput provided. In future work, we intend to reduce the cost
of inter-GPU communication by implementing a direct approach, which incor-
porates peer-to-peer (P2P) communication and the use of NVIDIA’s NVLINK
technology.

Acknowledgment. This work has been partially supported by Petrobras under num-
ber 2020/00182-5, by the call CNPq/MCTI/FNDCT - Universal 18/2021 under grants
406182/2021-3, and by the Coordenação de Aperfeioamento de Pessoal de Nı́vel Supe-
rior - Brazil (CAPES) - Finance Code 001.

Towards a Multi-GPU Implementation of a Seismic Application 159

References

Chu, C., Macy, B.K., Anno, P.D.: Approximation of pure acoustic seismic wave prop-
agation in TTI media. Geophysics 76(5), WB97–WB107 (2011)

Fletcher, R.P., Du, X., Fowler, P.J.: Reverse time migration in tilted transversely
isotropic (TTI) media. Geophysics 74(6), WCA179–WCA187 (2009)

Liu, G.-F., Meng, X.-H., Yu, Z.-J., Liu, D.-J.: An efficient scheme for multi-GPU TTI
reverse time migration. Appl. Geophys. 16(1), 56–63 (2019)

Liu, H., Li, B., Liu, H., Tong, X., Liu, Q., Wang, X., Liu, W.: The issues of prestack
reverse time migration and solutions with graphic processing unit implementation.
Geophys. Prospect. 60(5), 906–918 (2012)

Lorenzon, A.F., Beck Filho, A.C.S.: Parallel computing hits the power wall: principles,
challenges, and a survey of solutions. Springer Nature (2019)

Lukawski, M.Z., et al.: Cost analysis of oil, gas, and geothermal well drilling. J. Petrol.
Sci. Eng. 118, 1–14 (2014)

Navaux, P.O.A., Lorenzon, A.F., da Silva Serpa, M.: Challenges in high-performance
computing. J. Braz. Comput. Soc. 29(1), 51–62 (2023)

Okamoto, T., Takenaka, H., Nakamura, T., Aoki, T.: Accelerating large-scale simu-
lation of seismic wave propagation by multi-GPUS and three-dimensional domain
decomposition. Earth Planets Space 62(12), 939–942 (2010)

Padoin, E.L., Pilla, L.L., Boito, F.Z., Kassick, R.V., Velho, P., Navaux, P.O.: Eval-
uating application performance and energy consumption on hybrid CPU+ GPU
architecture. Clust. Comput. 16, 511–525 (2013)

Papadrakakis, M., Stavroulakis, G., Karatarakis, A.: A new era in scientific computing:
Domain decomposition methods in hybrid cpu-gpu architectures. Comput. Methods
Appl. Mech. Eng. 200(13), 1490–1508 (2011)

Pavan, Pablo J.., Serpa, Matheus S.., Carreño, Emmanuell Diaz, Mart́ınez, Vı́ctor.,
Padoin, Edson Luiz, Navaux, Philippe O. A.., Panetta, Jairo, Mehaut, Jean-
François.: Improving Performance and Energy Efficiency of Geophysics Applications
on GPU Architectures. In: Meneses, Esteban, Castro, Harold, Barrios Hernández,
Carlos Jaime, Ramos-Pollan, Raul (eds.) High Performance Computing: 5th Latin
American Conference, CARLA 2018, Bucaramanga, Colombia, September 26–28,
2018, Revised Selected Papers, pp. 112–122. Springer International Publishing,
Cham (2019). https://doi.org/10.1007/978-3-030-16205-4 9

Pearson, C., Hidayetoğlu, M., Almasri, M., Anjum, O., Chung, I.-H., Xiong, J., Hwu,
W.-M.W.: Node-aware stencil communication for heterogeneous supercomputers. In:
2020 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 796–805. IEEE (2020)

Serpa, M., Mishra, P.: Performance evaluation and enhancement of the fletcher method
on multicore architectures (2022)

https://doi.org/10.1007/978-3-030-16205-4_9

What Does a Nation-Wide Digital Nervous
System Use for an Operating System?

Nicolás Erdödy1(B), Richard O’Keefe2, and Ian Yule3

1 Open Parallel Ltd., Oamaru, New Zealand
nicolas.erdody@openparallel.com
2 Open Parallel Ltd., Dunedin, New Zealand

3 Stoneleigh Consulting, Tauranga, New Zealand

Abstract. Concerns over climate change and sustainable agriculture have made
nation-wide high resolution environment monitoring and modelling desirable.
Recent developments in technology have made it affordable. An environment
modelling network is a supercomputer, but not of a familiar kind. Conventional
supercomputing approaches are appropriate for the modelling aspect, but not the
monitoring aspect. While sensor networks are familiar in the Internet of Things
(IoT), geographically remote sensors without access to mains power have harsher
resource constraints than, say, internet-ready light bulbs. A “two-realm” approach
to system software is needed.

Keywords: Operating System · Sensor Network ·Messaging · AI · Edge
Computing · km-scale Simulations

1 Introduction

Like most nations worldwide, New Zealand is highly dependent on its primary sector.
Land is a diminishing resource, and we must make better use of it and take better care of
it. The dual needs of sustainability and economic exploitation are not symbiotic, at least
in the short term, so we need to develop much more informed methods of management
which will ensure that we can preserve and improve our environment while improving
our economic exploitation of the land. But biology is complicated, variable, riddled with
uncertainty, and highly integrated. It is difficult to be cognisant of all of the moving parts
and it is very difficult to predict beyond the most immediate time period.

Operational response lies mostly with individual producers, while governments have
responsibility for creating the right conditions for sustainable economic exploitation. The
complexity draws comparison to a nervous system which responds to continuous and
varied inputs to maintain health. One of the key components of a nervous system is con-
tinuous sensory input. One of the problems the primary sector has even in a nation-wide
context is that often the sensory mechanisms become compromised, communication can
become discontinuous and input to decision making numbed.

Manyof the crops and production systems used around theworld are similar therefore
there is further utility in linking up with international partners. We have a truly global

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 160–169, 2024.
https://doi.org/10.1007/978-3-031-52186-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_11&domain=pdf
https://doi.org/10.1007/978-3-031-52186-7_11

What Does a Nation-Wide Digital Nervous System 161

food supply industry. If we look at crops like apples or avocados we can see that they
are distributed around the world, but we can also see the importance of countries like
Mexico to global supply (Mexico exported 50x more avocados than New Zealand1 in
2021) [21]. One example would be the fight against pests and diseases, newer Deep
Learning and AI models are being used to detect defects and diagnose pest and disease
problems, these models need to be trained with comprehensive and reliable data sets.
These data sets could be created overseas before the problem occurs in a specific country.
This type of wider diagnosis and cooperation would only work if the nervous system
within each body (country) was functional and data interoperable. Thus, this multilevel
or layering of decision making makes the need for integration of information flow to
support decision making even more critical.

2 Background

There is an acknowledged yield gap in pretty much every growing system, that is the
difference between what is biologically possible and what is actually achieved. It is
suggested by the authors that it is because of non decisions, incomplete, or late decisions
rather thanwrong decisions.Whichwould point to the fact that the necessary information
is not getting to the correct place to make decisions at the right time. It may be that
preventative measures to yield limiting conditions were not taken or were taken too late
and the damage was done. Having better information in the field to rapidly inform the
grower is vital, this can be achieved by having adequate and continuous sensing of the
crop and a nervous system capable of transmitting the information to the neural hub of
the system.

Wewill discuss in this position paper that the amount of data and information required
tomake decisions in a complex environment involving e.g.weather forecast, climate vari-
ation, environment modification, and biology integrations requires a significant amount
of processing capabilities -both distributed and centralised, fitting the definition of a
supercomputer [22] -albeit not in the traditional way.

How much sensing is needed for weather/climate sensing?
Simulations and forecasts are too often based on incomplete data and assumptions

and extrapolations are common, even if satellites are covering more and more areas. A
sub-kilometre scale is presented in the Concept Paper for the Berlin Summit for EVE
(Earth Visualization Engines) held in July 2023. [23] It says: “The demand for km-scale
simulations is rooted in the global need for local information, at greater fidelity, both to
advance scientific understanding as well as to link to impacts and better integrate local
knowledge, including observations” [24].

The same paper gives some context for our approach: “The need to integrate local
knowledge, sample uncertainty through complementary efforts,maintain access to a truly
global talent pool, and establish global legitimacy, can likely only bemet through regional
or super-regional facilities [25] for instance, a lack of open observations throughout the
Global South is crucial to fill” [26].

1 Perú exported 22x more than New Zealand in 2021, and Chile and Colombia ~ 4x more each.
But models tested and used in one country could be replicated in another if they are scalable
and modular.

162 N. Erdödy et al.

3 The Supercomputer

The supercomputer we are concerned with has not been built yet. It has not been funded
yet. But some day soon we shall build it, because we’ll have to.

There are about 250,000 nodes2. Each node contains 4 cores. The cores are 32-bit
processors, running at 120 to 260 MHz depending on the model. At peak, a node draws
about 0.45 A (two CPU packages+ radio or camera) at 3.7 V, so the peak power demand
is 0.42 MW. This is unambiguously a supercomputer.

Given the term “supercomputer”, you have imagined a room, possibly a very large
room, filled with racks and cables. There are no racks, no cables, and no room. What
you must now imagine is the nodes moving apart, until they average about 1 km apart.
That 0.42 MW peak power? It has to be supplied by batteries, which means that all these
nodes have to spend most of their time powered almost completely down.

4 What is Such a Weird Machine for?

This is part of a long-term project called “Listen to the Land” (L2L), which envisages
New Zealand (or a country with similar land area e.g. Ecuador) covered by a network
of environmental sensors for climate monitoring and agriculture and forestry support.
What’s described here is just the weather/climate-sensing part. Given the scale of the
task we want to start by describing a system that can be designed and built modularly3.

Weather is patchy. Climate change is expected to be non-uniform. If you want to
know how to react to climate change, you have an ethical duty to find out how theweather
really is changing, not how your models tell you it ought to be changing. The traditional
approach of “operating over a hundred [WMO quality] Electronic Weather Stations in
[the] National Climate network” [1] cannot provide the fine-grained “ground truth” that
a digital nervous system can. Nor can weather satellites provide the continuous coverage
L2L can.

Think of a nervous system with sensory data flowing from skin to brain, integration
in the brain, and responses floating from brain to muscles.

5 The Six-Layer Architecture

The diagram (Fig. 1) shows a distributed system with six layers. The ground layer is
the physical ground. The land area of New Zealand is 264 537 km2 [2], making it
comparable to the United Kingdom at 241 930 km2 [3] or Ecuador at 256,370 km2 [4].
A recent article (2022) in Nature Climate Change [5] argues that climate models need
1 km resolution, so our current design calls for a similar resolution in ground truth data
from sensor nodes.

The six layers involve:

2 Based on New Zealand’s land area.
3 We are establishing a collaborationwith the Sage project (NorthwesternUniversity, US), a novel
cyberinfrastructure created also to exploit dramatic improvements in AI to build a continent-
spanning network of smart sensors [26].

What Does a Nation-Wide Digital Nervous System 163

1) The sensor nodes have four 32-bitmicrocontroller cores performing specialised tasks:
one tomanage a camera or cameras (for cloud cover, global illuminance, frost anddew,
and precipitation), one tomanage encryption and the radio, one to collect temperature,
pressure, humidity, and wind data and to do overall system management, and one to
do compression, modelling, and forecasting. There will be on the order of 250,000

Fig. 1. A distributed system with six layers.

164 N. Erdödy et al.

of these. Each node has about 1MB of ROM, about 1MB of RAM, and 2–8 MB of
flash. Except for lacking MMUs and FPUs, these machines are much more powerful
than those UNIX was designed for, and could run a fair approximation of Unix V7.
There are no mass stores for virtual memory, and memory protection will be done
by static analysis. Integer arithmetic is adequate for what the sensor nodes do. FPUs
and MMUs would just increase price and current drain. “Operating system” services
will be device drivers, scheduling, and communication stack.

2) The sensor nodes communicate with aggregators through a mesh network. That net-
work is mostly the sensor nodes, filled out with communication nodes which have
two 32-bit microcontroller cores: one to manage the radio and one for system man-
agement. How many are needed depends on the range of the radios in the sensor
nodes, which will change over time. They are very similar to the sensor nodes but
trade cameras for better radios.

3) The aggregators are unattended computers which receive observations from the sen-
sor nodes, communicate with local data integration and modelling centres, which
eventually provide nation-wide real-time high-resolution weather data that can be
integrated with data from other sources and used to correct forecasting models. They
receive forecasts from those models and relay near-term expectations to the sensors.
The sensors and aggregators both know what the sensors have reported and what is
expected next, permitting high compression.

They are single-board/“mini PC” class machines capable of running a conventional
operating system,with limited storage but adequatemains power and internet bandwidth.

4) The geographic information system/human interaction nodes. A system like this has
to be grown, providing value at all stages. These are the systems where primary
producers and others can see high resolution data in near real time. These are desktop
class machines with adequate storage.

5) The regional analysis nodes. These are cloud services providing long term storage
and computing power. Most of the L2L number crunching takes place at this level.

6) Existing national weather and environment supercomputer(s). For the system as a
whole to be adopted, the additional demands placed on these systems must be kept
low.

6 Would Anybody Really Build Such a System?

Weather satellites are amazing, wonderful machines. They can do things that ground-
based weather stations cannot do. And we need them to do those things. But they have
some limitations.

• They move. The viewing angle is constantly changing.
• They move away. There isn’t always a satellite overhead.
• They are owned by someone else. They show us whatever the owners decide they

should show us.
• They are extremely expensive.
• If anything goes wrong, you can’t send someone around with a van and a couple of

spares.

What Does a Nation-Wide Digital Nervous System 165

Satellite estimates of things like precipitation are qualitatively good, but their quan-
titative agreement with ground truth has room for improvement. The same is true of rain
radars, which trade wide coverage for reduced accuracy [6].

A review in 2017 found that access toweather data inNewZealand ismore expensive
than in many other countries. Indeed, many New Zealand farmers get their weather data
fromNorway (e.g., https://www.yr.no/nb/v) which is one of the most open countries.We
estimate that the sensor and communicator nodes can be built for about USD 65 each.
USD 18 million sounds like a lot of money for a network of tiny autonomous weather
stations, but it is 38 times cheaper than launching our own weather satellite would be4.
Each node will be available, providing data around the clock, easy to reach and cheap
to replace.

It’s not just New Zealand that has a use for such a network. Any nation or region
that is seriously concerned about whether and how the climate is changing and what to
do about it needs a good grasp on what is actually happening, and there is no substitute
for actual measurement.

With hindsight, this nation-wide digital nervous system is an obvious answer to the
needs of climate monitoring, precision agriculture and potentially earthquake predic-
tion5. It is only within the last few years that it has become feasible to build sensor
nodes cheap enough yet capable enough to be useful. This needed advances in micro-
controllers, low power radio communication, and sensor technology. If we don’t build
such a system, someone else will. The issues for operating systems will remain.

7 Two Realms

Many people are working on Internet of Things/Edge Computing, and one would expect
that this would be a solved problem. For example, one might turn to the Linux Foun-
dation Edge consortium [7]. There [8] we read that “eKuiper is an edge lightweight
IoT data analytics / streaming software implemented by Golang, and it can be run on
all kinds of resource-constrained edge devices.” Promising, very promising. “Features:
Lightweight, Core service package is only about 4.5 M, initial memory footprint is
10 MB”. 10 MB? That’s not lightweight, that’s huge! What happened to “can be run on
resource-constrained devices”?

The six layer architecture divides into two realms, with one of the layers on the border
between them. The “low realm” (layers 1 and 2 and in some ways 3) is very different
from the “high realm” (layers 4–6 and in some ways 3). A lot of “edge” computing is
actually pretty far from the edge. A device in a building with access to mains power, is
living in the high realm, a very different world from the low realm where a device that’s
outside, nailed to a fencepost in a remote area, desperately trying to save battery power
lives. The analogue of “edge” computing in L2L is the aggregators.

4 USD 290 million for the satellite, USD 400 million for the launch, according to https://science.
howstuffworks.com/satellite10.htm.

5 “Movement along theAlpine Fault (inNewZealand),with its powerful uplift along the Southern
Alps over millions of years, forms the geological foundations for our beautiful South Island
and the stunning landscape we call home. The more we understand our natural environment
and the forces that shape it, the better prepared we can be”.[27].

https://www.yr.no/nb/v
https://science.howstuffworks.com/satellite10.htm

166 N. Erdödy et al.

A. Electrical power

High realm:mains power or own generator. Reducing energy use helps to keep prices
down. Low realm: batteries+ small solar panels. Keep energy useway down or it doesn’t
work at all.

B. Flexibility and maintainability

High realm: the computer should be able to do many things and be able to switch
between them. Software changes fast. Patches are installed often. Low realm: the node
has a fixed set of tasks, which changes very seldom. It makes economic sense to use
formal methods such as SPARK/Ada [9] [10] and FRAMA-C [11] [12] to ensure that
arithmetic errors, pointer errors, stack overflows, and scheduling errors will not occur.

Over-the-Air updates should be rare, but bugs happen. The software that runs in the
sensor nodes must be structured so that updates are more like hot-loading a replacement
module in an Erlang [13] program (which keeps right on running) than stopping a
process and starting a new one in Unix. Updates must, in short, be small so that they can
be transmitted and acted on without interruption to normal service.

C. Heterogeneity

Within a sensor node, each core has a different task. There is no particular benefit in
all the cores having the same hardware architecture. Limited memory means that each
core should store only the drivers for the devices attached to it and only the software
(such as network stack, image processing, modelling, compression or whatever) relevant
to its task. It also means that memory should be managed no later than system build time.
This leaves mainly scheduling and core-to-core communication for a “common OS” to
do.

The aggregators will be just sufficiently powerful single board computers, and it
is here that we might expect to see synergy with Linux Foundation Edge. Fledge [14]
in particular, with its focus on integrating and processing sensor data and forwarding
the results to various destinations, looks attractive. EVE [15] on the other hand, with
its support for “Docker containers, Kubernetes clusters and virtual machines”, is over-
engineered for the needs of this layer. In this layer therewill be tens of thousands of nodes,
so keeping price and power consumption down are still issues. This means just enough
computer, and just enough operating system, to do the aggregation and forwarding job.
As a nation-wide system will not be built all at once, and as it will need incremental
maintenance/replacement, we must expect a mix of different hardware architectures and
different capabilities.

The human interface layer takes us from grass [16] toGRASS [17]. For these systems
unmodified Linux, macOS, and Windows are perfectly adequate. These devices will
typically be owned by the people who use them.

Layers 5 and 6 are already familiar to the audience.
If there is no one kernel running at all levels that can be pointed to as “the OS”, what

can we mean when we talk about “an OS for a nation-wide supercomputer”?
The answer is that the systems are unified by their common task so that the collection

of modules and services that enable the nodes to collaborate in their shared task is “the
OS”. A large part of this is communication support.

What Does a Nation-Wide Digital Nervous System 167

D. Communication is costly

Operating the radio is amajor power drain for a sensor node. In ameshwhere some of
the nodes act as intermediaries between aggregators and other sensor nodes that are out
of range, those intermediaries cannot afford to keep their receivers on at all times in case
some neighbour has something to say. Most communication needs to be on a schedule
where the radios are on at known times just enough to communicate. This means that
keeping the sensor nodes associated with an aggregator tolerably well synchronised with
it and each other is important for power economy. It is also useful because clock drift
can be a sign of other problems.

Communication between aggregators and the geographical information layer is also
difficult. Not depending onmobile phone networks or high-speed broadband is important
-not even fully developed countries have homogeneous broadband coverage within their
boundaries, and then you have to consider all the geographic variables (mountains, lakes,
jungle, etc.). Once again, communicating on a regular schedule, using compression to
keep data volumes down, and keeping software updates small and rare are important.

As we climb to higher layers, more, and more affordable, communication bandwidth
is available, but greater volumes of data need to be transmitted. The two-way flow of
information, with expectations flowing down and observations flowing up, means that
only the surprise in the observations (the differences between what is observed and what
is expected) need to be forwarded, not the raw observations.

Evenmessaging is heterogeneous however.AMQP[18] iswell suited for the aggrega-
tors on up, using an implementation such as RabbitMQ. Communication is so costly and
the sensor nodes so constrained that specialised, special-purpose lightweight protocols
are needed at that level.

E. Failure

Suppose the sensor nodes are so well built that the probability that a specific one fails
on any given day is 1/36536. Then on any given day, out of 250,000 nodes, 68± 8will fail.
These failureswill be scattered all over the nation, and it will be impractical to fix them all
on the same day. This is going to happen to any large scale sensor network. The data that
a failed node would have reported is irretrievably lost. However, for an isolated failure,
an aggregator may be able to “fill in” estimated data using geostatistical [19] techniques
such as kriging. (You would be astonished at how much on- the-ground weather data is
estimated.) The good news is that with multiple sensors (such as temperature at worm
height, at sheep height, at cow height, and at head height) failure will often be partial,
so some data may be available from a “failed” node.

Data reported up-level from an aggregator needs to be tagged according to
its reliability: actual measurements, corrected measurements (allowing for drift), or
estimates.

Planning the process of repairing or replacing failed nodes is a well understood
operations management task.

F. Ownership and authentication

6 1 in 10 years.

168 N. Erdödy et al.

A typical supercomputer is owned by a single organisation. We expect the layer 1–4
devices to be owned by the individuals or organisations whose land they report on.

For a pure weather system, privacy is not much of an issue. We intend the system to
be extended with sensors to “taste” the soil and watercourses for things like biologically
available nitrogen and phosphorus (in New Zealand we should add selenium [20]). This
could have legal and commercial consequences. It is always important to know that
the data being built into our models is the real data. Even sensor nodes must do good
encryption.

A sensor node needs to know its orientation (which way is down= 3-axis accelerom-
eter, which way is North = 3-axis magnetometer) in order to calculate sunrise, sunset,
moonrise, moonset, moon phase in order to predict illumination.

Fortunately, changes in orientation suggest either failure in electronics or someone
moving the device, both of which are signs of unreliable data: a sensor which is no longer
where it was supposed to be is no longer an authentic source of information about that
place.

8 Summary

The operating system for a nation-wide supercomputer is a set of modules (such as con-
ventional operating systems) and services communicating through messaging protocols
that authenticate identity and location of sensors, respect rights to data, and ensure that
quality-tagged reliable data are passed around while staying within resource limits. This
requires machine learning and AI at the edge to cope with failure as well as to exploit
success. A “two-realm” approach to system software is presented to start with the sens-
ing capabilities and move up to the processing capabilities establishing the proposed
architecture.

References

1. National Institute of Water and Air Instruments. https://niwa.co.nz/our-services/instruments/
instrumentsystems/products/climate-stations, (Accessed 08 2022)

2. CIAWorld Factbook, 2022, entry NewZealand. https://www.cia.gov/the-world-factbook/cou
ntries/new-zealand/#geography, (Accessed 08 2022)

3. CIAWorld Factbook, 2022, entry United Kingdom. https://www.cia.gov/the-world-factbook/
countries/united-kingdom/#geography, (Accessed 08 2022)

4. Cancillería de Ecuador (2023). https://www.cancilleria.gob.ec/bolivia/wp-content/uploads/
sites/22/2021/07/ECUADOR.pdf, (Accessed 07 2022)

5. Slingo, J., et al.: Ambitious partnership needed for reliable climate prediction. Nat. Climate
Change 12 (2022)

6. Schleiss, M., et al.: The accuracy of weather radar in heavy rain: a comparative study for
Denmark. Hydrol. Earth Syst. Sci. 24(6) (2020). https://hess.copernicus.org/articles/24/3157/
2020/

7. Linux Foundation Edge home page. https://www.lfedge.org, (Accessed 08 2022)
8. Linux Foundation Edge “eKuiper project”. https://www.lfedge.org/projects/ekuiper,

(Accessed 08 2022)
9. Barnes, J.: SPARK: The Proven Approach to High Integrity Software. Altran Praxis (2012)

https://niwa.co.nz/our-services/instruments/instrumentsystems/products/climate-stations
https://www.cia.gov/the-world-factbook/countries/new-zealand/#geography
https://www.cia.gov/the-world-factbook/countries/united-kingdom/#geography
https://www.cancilleria.gob.ec/bolivia/wp-content/uploads/sites/22/2021/07/ECUADOR.pdf
https://hess.copernicus.org/articles/24/3157/2020/
https://www.lfedge.org
https://www.lfedge.org/projects/ekuiper

What Does a Nation-Wide Digital Nervous System 169

10. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with SPARK 2014.
Cambridge University Press (2015)

11. Baudin, P., et al.: The dogged pursuit of bug-free C programs: the Frama-C software analysis
platform. Commun. ACM 64(8) (2021)

12. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C, A software
analysis. Perspect. Formal Aspects Comput. 27(3) (2015)

13. Armstrong, J.: Programming Erlang: Software for a Concurrent World. 2nd edn. Pragmatic
Programmers (2013)

14. Linux Foundation Edge Fledge project. https://www.lfedge.org/projects/fledge/, (Accessed
08 2022)

15. Linux Foundation Edge EVE project. https://www.lfedge.org/projects/eve, (Accessed 08
2022)

16. Champion, P.D., James, T., Popay, I., Ford, K.: An Illustrated Guide to Common Grasses.
The New Zealand Plant Protection Society, Sedges and Rushes of New Zealand (2012)

17. Neteler, M., Mitasova, H. (eds.): Open Source GIS. Springer US, Boston, MA (2008). https://
doi.org/10.1007/978-0-387-68574-8

18. OASIS, AdvancedMessage Queuing Protocol (AMQP) Version 1.0 (2012). http://docs.oasis-
open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf

19. Kitanidis, P.K.: Introduction to Geostatistics: Applications in Hydro-geology. Cambridge
University Press (1997)

20. Gupta,U.C.,Gupta, S.C.: Selenium in soils and crops, its deficiencies in livestock and humans:
Implications for management. Commun. Soil Sci. Plant Anal. 31(11–14), 1791–1807 (2008)

21. World Bank - World Integrated Trade Solution: Avocados, fresh or dried exports by country
in 2021. http://wits.worldbank.org/trade/comtrade/en/country/ALL/year/2021/tradeflow/Exp
orts/partner/WLD/product/080440, (Accessed 07 2023)

22. Supercomputing. https://www.ibm.com/topics/supercomputing, (Accessed 07 2023)
23. Conveners of the Berlin Summit for EVE (Earth Visualization Engines) (June 5 2023). https://

owncloud.gwdg.de/index.php/s/rNWYNJSdJ19iwbJ, (Accessed 07 2023)
24. Ibid. Pg.8
25. Ibid. Pg.9
26. Ibid. Pg.15
27. Sage. https://sagecontinuum.org/, (Accessed 07 2023)
28. Alpine Fault Magnitude 8 (AF8). https://af8.org.nz/, (Accessed 07 2023)

https://www.lfedge.org/projects/fledge/
https://www.lfedge.org/projects/eve
https://doi.org/10.1007/978-0-387-68574-8
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf
http://wits.worldbank.org/trade/comtrade/en/country/ALL/year/2021/tradeflow/Exports/partner/WLD/product/080440
https://www.ibm.com/topics/supercomputing
https://owncloud.gwdg.de/index.php/s/rNWYNJSdJ19iwbJ
https://sagecontinuum.org/
https://af8.org.nz/

The Impact of CUDA Execution
Configuration Parameters

on the Performance and Energy
of a Seismic Application

Brenda S. Schussler(B) , Pedro H. C. Rigon , Arthur F. Lorenzon ,
Alexandre Carissimi , and Philippe O. A. Navaux

Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
{bsschussler,phcrigon,aflorenzon,asc,navaux}@inf.ufrgs.br

Abstract. Simulating the propagation of acoustic waves is the basis
of seismic imaging software, widely used by the industry for locating
and detecting new oil basins. Due to their complexity, these simulations
require a high computational processing power obtained using GPUs. To
fully exploit these devices’ computing potential, it is necessary to rightly
define the configuration of the number of blocks and threads per block
that will be assigned to a given kernel. However, as we show in this paper,
this task is challenging since the ideal configuration will vary according to
the grid size and the target metric (e.g., performance or energy). In this
scenario, this paper evaluates different execution configurations for the
Fletcher method, a widely used seismic application. When evaluating six-
teen different grid sizes over a distinct set of configurations, we show that
rightly choosing the number of blocks and threads per block can deliver up
to 2 times more performance and save 18% of energy consumption com-
pared to the standard way the Fletcher method is implemented.

Keywords: Seismic application · Performance · Energy efficiency ·
GPU

1 Introduction

Geophysical exploration methods are fundamental for humanity as they explore
essential resources for the economic development of countries, such as oil and
gas. However, investigating new oil reservoirs often involves destructive practices,
such as drilling in sensitive areas and improper waste disposal. Applications
that perform seismic image simulation for oil detection have been developed to
reduce these environmental impacts and increase drilling accuracy. Since these
applications usually involve the computation of a huge amount of data and are
naturally parallel, GPUs (graphics processing units) are widely used to accelerate
such applications [Hanindhito et al., 2022].

GPUs are powerful SIMD (single instruction, multiple data) architectures
that usually consist of thousands of processing cores [Hennessy and Patterson,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 170–183, 2024.
https://doi.org/10.1007/978-3-031-52186-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_12&domain=pdf
http://orcid.org/0009-0005-5264-892X
http://orcid.org/0009-0007-9077-7196
http://orcid.org/0000-0002-2412-3027
http://orcid.org/0000-0002-0884-1483
http://orcid.org/0000-0002-9957-5861
https://doi.org/10.1007/978-3-031-52186-7_12

The Impact of CUDA Execution Configuration Parameters 171

2011]. They are specifically designed as accelerator devices to execute applica-
tions that involve array and matrix data structures efficiently. However, despite
their high computing performance, GPUs also come with a significant power
demand for their operation. For example, the NVIDIA Tesla V100, based on the
Volta architecture, has a rated TDP (thermal design power) of 300 W [NVIDIA,
2017]. This high power consumption not only has cost implications but also
contributes to environmental impacts.

Therefore, in order to mitigate energy consumption and minimize the envi-
ronmental and economic impacts, it is essential for software developers to opti-
mize the utilization of the hardware resources available on GPUs [Navaux et al.,
2023] [Lorenzon and Beck Filho, 2019]. This involves making efficient use of the
GPU’s processing cores and memory when executing parallel applications. One of
the key ways to optimize the use of hardware resources is by carefully configuring
the thread hierarchy when deploying GPU kernels. The thread hierarchy config-
uration typically involves determining the number of blocks and the number of
threads per block. However, finding the optimal thread hierarchy configurations
that deliver the best performance while minimizing energy consumption is not
a straightforward task.

Firstly, there is a vast number of possible combinations of the number of
blocks and threads per block, making it challenging to determine the most effi-
cient configuration. Additionally, the intrinsic characteristics of applications like
seismic image simulation can vary dynamically at runtime. Factors such as work-
load variations and the number of GPU kernels being executed further compli-
cate the task of finding the optimal thread hierarchy configuration. Therefore,
software developers face the challenge of striking the right balance between per-
formance and energy consumption. They need to experiment and explore differ-
ent thread hierarchy configurations to identify the configurations that achieve the
best trade-off between performance and energy efficiency. By doing so, developers
can reduce energy consumption and minimize the economic and environmental
impact associated with GPU-based computations.

Considering the aforementioned scenario, in this paper, we (i) investigate
the performance and energy consumption of Fletcher Modeling, a seismic appli-
cation widely used by oil companies that simulate the propagation of acoustic
waves through time with different configurations of the number of blocks and
threads per block; and (ii) provide guidelines for software developers to define
the execution configuration according to their objectives rightly. Through the
execution of the Fletcher modeling with sixteen different input sets, and fifteen
configurations of the number of blocks and threads per block on an NVIDIA
Tesla V100 SXM2 GPU, we show that:

– There is no unique configuration of the number of blocks and threads per
block capable of delivering the best outcome in performance and energy con-
sumption for all input sets at the same time.

172 B. S. Schussler et al.

– By rightly defining the number of blocks and threads per block, performance
can be improved by up to 50% and energy consumption reduced by up to
18% when compared to the standard way the application is executed in the
GPU.

– For small grid sizes, a lower number of threads per block is capable of deliver-
ing better results because it improves resource utilization, increases SM occu-
pancy, and reduces memory contention. On the other hand, a larger number
of threads per block is better as the grid size grows due to the increase in the
available parallelism, efficient memory access, and load balancing reasons.

The remainder of this paper is organized as follows. In Sect. 2, we describe
the architecture of GPUs, the Fletcher model, and the Related Work. Then, in
Sect. 3, we list the methodology employed during the experiments. Performance
and energy results are discussed in Sect. 4 while Sect. 5 draws the conclusion.

2 Background

2.1 Graphic Processing Units

NVIDIA GPUs have an internal structure consisting of processing units known
as streaming multiprocessors (SMs) [Hennessy and Patterson, 2011. The number
of SMs varies depending on the GPU architecture. For example, GPUs based
on the Volta architecture, such as the NVIDIA Tesla V100, have 80 SMs, while
those based on the Pascal architecture, like the NVIDIA Tesla P100, have 56
SMs. Within each SM, there are processing cores called CUDA cores. These
CUDA cores are responsible for executing instructions in parallel. They enable
the GPU to perform massively parallel processing and accelerate computations.
The fundamental units of execution on GPUs are threads. Each thread executes
a specific task or a portion of a computation that can be executed concurrently
with other threads.

Threads are logically organized into blocks to facilitate cooperation, commu-
nication, and synchronization among them using shared memory regions. This
organization into blocks helps manage the execution and coordination of threads
within an SM. In this context, each block is assigned to an SM. When the GPU
executes a kernel, it maps different blocks to available SMs, distributing the
workload across the SMs for parallel execution. The mapping of blocks to SMs
is done dynamically by the GPU hardware. Furthermore, each thread within a
block is individually assigned to a specific CUDA core within the corresponding
SM. This assignment allows the threads to be executed in parallel by utilizing
the available CUDA cores within the SM. By leveraging the parallelism offered
by the multiple SMs and CUDA cores, GPUs can efficiently execute large-scale
computations by dividing the workload into numerous threads, blocks, and SMs,
thereby achieving significant acceleration in performance compared to traditional
CPU architectures.

Each SM typically contains a group of CUDA cores, caches, warp schedulers,
and shared memory. These components work together to enable efficient parallel

The Impact of CUDA Execution Configuration Parameters 173

processing. CUDA cores within an SM are responsible for executing instructions,
while CUDA threads are organized into groups called warps, typically consisting
of 32 threads. For instance, the NVIDIA Tesla V100 GPU, which was utilized in
our experiments, is equipped with 80 SMs. Each SM consists of 64 CUDA cores
and possesses an on-chip memory capacity of 128 KB. Additionally, there are
four warp schedulers within the GPU [Yuan et al., 2020]. It is worth mentioning
that the GPU architecture imposes a limitation of 1024 threads per block.

In CUDA programming [Sanders and Kandrot, 2010], the code segment that
is parallelized using CUDA is called a kernel. When the kernel is launched for
execution, it is associated with a configuration that determines the number of
blocks and the number of threads per block that will be assigned to the available
SMs. All the allocated threads are then divided based on the chosen configura-
tion to fit the warp size. When defining a kernel configuration, the number of
concurrently executable warps depends on the allocation of registers and shared
memory. However, the responsibility for scaling these resources is not directly
placed on the programmer, as the GPU automatically manages it. Consequently,
setting an appropriate kernel execution configuration becomes essential for effec-
tively utilizing the GPU resources. However, due to the absence of specific direc-
tions or guidelines, determining the ideal configuration becomes an empirical
process heavily reliant on the characteristics of the application and the specific
GPU architecture [PÃ¡ez et al., 2020].

2.2 Fletcher Modeling

The Fletcher method is a well-established technique employed in the field of
geophysics for simulating data collection in seismic surveys. This method plays
an essential role in modeling subsurface topography and is widely used to obtain
detailed information about geological structures, faults, and potential oil reser-
voirs [Fletcher et al., 2009]. In a seismic survey, various types of equipment,
known as seismic sources, are deployed on ships or other platforms. These seis-
mic sources emit sound waves periodically into the subsurface. These sound
waves propagate through the different layers of the earth, interacting with the
subsurface formations along the way. When these waves reach interfaces between
different geological structures or faults, they are partially reflected back to the
surface. These reflected waves, also known as seismic signals, carry valuable
information about the subsurface.

To capture these seismic signals, receivers are placed at specific locations
on the surface, such as on the ship or on land. These receivers are designed to
detect the reflected waves and convert them into electrical signals. The electrical
signals are then processed and analyzed to extract meaningful information about
the subsurface structures. Using the Fletcher method, the collected signals are
subjected to computational algorithms that involve sophisticated mathematical
techniques and data processing procedures. These algorithms aim to analyze and
interpret the seismic data to generate representative images of the subsurface
structures being investigated. The resulting images provide valuable insights
into the subsurface, enabling geoscientists and engineers to identify geological

174 B. S. Schussler et al.

Fig. 1. Example of a three-dimensional grid with dimensions sxxsyxsz, with 3 blocks
in the x direction and 6 blocks in the y direction, totaling 18 blocks in the xy plane.

formations, locate potential oil reservoirs, and assess the viability of hydrocarbon
exploration or other geological investigations.

The algorithm Fletcher implements is based on the numerical solution of
the wave equation. It is a partial differential equation that considers the envi-
ronment’s elastic properties (e.g., the propagation velocity of the wave) and is
represented in a three-dimensional grid. The wave propagation process is itera-
tive, where in each iteration, the algorithm calculates the approximate solution
of the wave equation at each grid point, considering the information from pre-
vious iterations. During propagation, the wave energy spreads and changes as
it interacts with the heterogeneities of the environment, updating the values at
each grid point and allowing the algorithm to model seismic waves’ reflection,
refraction, and diffraction as they propagate underground.

The CUDA implementation of the Fletcher method employs a three-
dimensional grid to represent the wave propagation in the environment. The
dimensions of this data structure are defined by the inputs of the application
(sx, sy, and sz, as shown in Fig. 1 which refer to the size of the x, y, and z-axis
of the grid, respectively). The algorithm adds 40 positions on each dimension to
this value to help during the computation and edge exchange. In this scenario, a
defined input set of x=y=z=56 will allocate a grid of 96 elements on each dimen-
sion. For this grid to be computed by CUDA threads in parallel throughout the
execution of the application, a 2D decomposition of the domain approach is used.
It consists of obtaining a two-dimensional plane and making a cut in the volume
(for example, in the x and y dimensions of the grid). Then, the algorithm can
iterate along the third direction, in this case, represented by the z dimension.
In this scenario, this two-dimensional (x,y) plane can be divided into blocks of
CUDA threads, where the user in the algorithm defines the number of threads
per block in the x and y domains.

Therefore, the total number of threads needed to compute the grid may be
determined by dividing the total grid size by the number of blocks of CUDA
threads in each dimension. Moreover, the number of threads per block is calcu-
lated by multiplying the number of CUDA threads created on each dimension
(BsizeX, BsizeY). For example, for a grid with dimensions 96 × 96 × 96, if the
number of CUDA threads in the x and y domains equals 32 and 16, respectively,

The Impact of CUDA Execution Configuration Parameters 175

there will be a total of 18 blocks of threads (96/32 = 3 in the x -domain, and
96/16=6 blocks in the y-domain). Furthermore, each block will have 512 CUDA
threads. Hence, in the Fletcher algorithm, when a kernel is launched to the GPU,
the user must define the number of threads per block in x and y dimensions, as
well as the number of blocks in x and y.

2.3 Related Work

In this section, we discuss the works that have studied the performance and
energy consumption of geophysical applications running on GPU architectures.
They are discussed in chronological order.

[Michéa and Komatitsch, 2010] discusses the influence of kernel configuration
on the performance of a three-dimensional finite-difference wave propagation
code. However, the number of threads per block was fixed while the number of
blocks was varied. Different from this work, our research simultaneously varies
the number of blocks and threads per block to analyze the impact of this variation
as the size of the propagation grid changes.

[PÃ¡ez et al., 2020] evaluate the performance of two strategies (1D and 2D
decomposition) for implementing elastic modeling using different kernel con-
figurations. When using the 1D layout, only one big block containing all the
processing threads is defined. On the other hand, the 2D layout allows working
with larger blocks, while the number of threads per block is a multiple of warp
size (e.g., 32). In addition to this work, our research addresses a two-dimensional
layout, allowing the software developer to vary the number of threads per block
and the number of blocks in each dimension.

[Alkhimenkov et al., 2021] exploit GPUs in the propagation of seismic waves
in fluid-saturated porous environments. The research discusses how the number
of threads per block in the x, y, and z domains impacts the effective memory
transfer rate (MTP) of the numerical application Biot 3D. Fifteen different block
combinations were analyzed for a fixed resolution of 576× 576× 576. Compared
to this proposal, our paper analyzes the influence of the number of threads per
block on performance and energy consumption, besides exploring different grid
dimensions, as opposed to the fixed resolution of 576 used by [Alkhimenkov et
al., 2021].

Sanchez-Noguez et al., 2022] evaluate different block sizes in 3D and 2D
kernels to compute 3D and 2D arrays, respectively, aiming to study the impact
of shared memory usage on performance. [Serpa and Mishra, 2022] explore the
optimization of the Fletcher method with a focus on portability, analyzing the
performance and energy consumption of eight code versions. Unlike these two
works, our paper addresses the optimization of the Fletcher method by exploring
different kernel execution parameters on GPUs and providing guidelines to end-
users so they can get better GPU usage regardless of the input set.

176 B. S. Schussler et al.

Table 1. Characteristics of the target architecture

Processor Specification

Processor Intel Xeon E5-2686 v4

Architecture Broadwell

Processor/GPU Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz, 64 VCPUs

Memory 1 MiB L1d, 1 MiB L1i, 8 MiB L2, 90 MiB L3

GPU Specifications

GPU NVIDIA Tesla V100-SXM2

Architecture Volta

Processor/GPU GV100

Registers 256 KB/SM, 20480 KB/GPU

Memory 4096-bit HBM2, 16 GB, 6144 KB L2 Cache

3 Methodology

The experiments were performed in a heterogeneous architecture as depicted in
Table 1. The host is an Intel Xeon CPU E5-2686 with 488 GB of main memory;
and the GPU is an NVIDIA Tesla V100 SXM2 with 16GB of main memory,
80 SMs, and 5120 CUDA cores. The Fletcher modeling application was com-
piled with CUDA version 12.0, driver v.525.85.12, and GCC v.9.4.0. We have
considered the following parameters: sixteen different grid dimensions, ranging
from 24 × 24 × 24 to 504 × 504 × 504 in intervals of 32 in each axis; fifteen
combinations of the number of threads in the x and y dimension, ranging from
4 × 4 to 32 × 32.

In the next section, we analyze the performance and energy consumption of
all executions. The performance metric considers the number of grid points cal-
culated per second during the execution, represented as MSamples/s. Therefore,
the higher this value, the better the performance. On the other hand, the energy
consumption was obtained directly from the GPU through the NVIDIA SMI
(system management interface) command line. In this scenario, the lower the
value, the better. Each combination of the input set (grid dimension) and con-
figuration of the number of threads in each dimension was executed ten times,
and the results consider the average with a standard deviation lower than 0.5%.

4 Performance and Energy Evaluation

In this section, we discuss the performance and energy results obtained through
the execution of Fletcher modeling with all the execution configurations and
grid dimensions described in Sect. 3. For that, we start by discussing the results
obtained through the design space exploration. Then, we discuss the perfor-
mance and energy improvements of the ideal configuration when compared to
the standard way the Fletcher Method is executed. Finally, we list guidelines

The Impact of CUDA Execution Configuration Parameters 177

for software developers and end-users so they can optimize the execution of the
Fletcher Method based on our findings.

4.1 Design Space Exploration

Figure 2 illustrates the performance (y-axis) and energy consumption (x -axis)
of six representative grid dimensions: 56, 152, 280, 376, 440, and 504. We have
chosen them as they show the heterogeneity of configurations that present better
results. The plots are organized as follows: each symbol represents a different
combination of block size in the x and y dimensions; the performance of each
combination is normalized to the best performance in every grid dimension, so
the closer the value to 1.0, the better the performance. On the other hand, energy
is normalized to the worst results, and hence, the lower the values, the better the
energy consumption. Therefore, the configuration that delivers the best trade-off
between performance and energy consumption is the one that is closer to the
point (1,0) in the Cartesian plane (x,y).

We start by discussing the results for the execution with the grid dimension
56× 56× 56, shown in Fig. 2(a). For this dimension, one can observe that most
configurations achieved similar energy consumption. On the other hand, varying
the block size in each dimension leads to high variations in the performance.
The best scenario for performance is with the configuration 32× 4, being 50%
better than the default configuration, represented as the baseline (32× 16). On
top of that, this configuration also delivered the lowest energy consumption, even
at lower rates compared to the baseline version. On the other hand, the worst
performance and energy consumption were achieved with the 4× 16 and 4× 4
configurations, respectively.

When it comes to the results for the grid dimension 152× 152× 152, shown
in Fig. 2(b), the configuration that delivers the best performance is not the same
that spends less energy consumption. Although the best performance is achieved
with the baseline configuration (32× 16), it spent 17% more energy than the
configuration with the lowest energy consumption (32× 4). In addition, this
configuration has a performance loss of 10% compared to the baseline. Therefore,
in this situation, it is necessary to analyze the main objectives of the user to
define the appropriate configuration. In the end, the worst configuration for
performance and energy was 4× 16 for both.

For grid dimension 280× 280× 280 results, shown in Fig. 2(c), the highest
performance is reached with the configuration represented by 32 blocks in the
x dimension and 8 blocks in the y dimension. This configuration is about 8%
better than the baseline (32× 16). On the other hand, the configuration with the
lowest energy consumption was 16× 8, spending 4% less energy than the base-
line. However, this version has a performance loss of 50% compared to the best
performance. One can also observe in the plot that the results obtained for the
32× 4, 32× 8, and 32× 16 configurations were very close in energy consumption,
varying only 1%.

Considering the results in Fig. 2(d) for the grid size equal to 376, one can
observe that the 8× 8 configuration is the one that achieves the lowest energy

178 B. S. Schussler et al.

Fig. 2. Performance and Energy Consumption results for each configuration of the
number of blocks in x and y.

consumption. However, it also delivers the worst performance. The energy spent
by this configuration is about 14% lower than the baseline, but its performance
loss is more significant, around 60%. On the other hand, the 32× 8 configuration
achieved the highest performance, being approximately 12% better than the
baseline, with a slight variation concerning energy consumption, around 1%.
Compared to the best configuration for energy (8× 8), the 32× 8 achieved 75%
higher performance, spending approximately only 12% more energy.

Three combinations are worth mentioning when considering the results achie-
ved with the grid size equal to 440× 440× 440, shown in Fig. 2(e). If the user
wants to optimize energy consumption, the 4× 4 configuration delivers better
results, spending about 18% less energy than the baseline. On the other hand, if
the objective is to get the best possible performance, the ideal configuration is
32× 8, providing 15% more performance than the baseline. However, if the user

The Impact of CUDA Execution Configuration Parameters 179

wants to optimize the trade-off between performance and energy consumption,
the configuration delivers the best results is 32× 4. In this scenario, the perfor-
mance is only 10% lower and spends 3% more energy than each metric’s best
outcome.

Finally, Fig. 2(f) illustrates the results for the grid size equal to
504× 504× 504. In this scenario, if the user wants to prioritize the performance,
the ideal configuration is 32× 8, which is about 75% better than the configura-
tion that delivers the lowest energy consumption (8× 32). On the other hand, if
the objective is to reduce energy consumption, the most suitable configuration
is the 8× 32, which spends 10% less energy than the best performance. When
compared to Baseline, the 32× 8 configuration presents performance gains of
10%, while the 8× 32 configuration spends 11% less energy.

In order to summarize the best configuration found for each grid size, Table 2
depicts the configuration that delivers the best performance and energy con-
sumption for all grid dimensions evaluated in this work. We start by highlight-
ing that there is no unique configuration of block size in the x and y dimen-
sions capable of delivering the best performance and energy consumption results
simultaneously for all grid dimensions. For instance, when the grid dimension is
24 × 24 × 24, the best performance is reached with a block size in x equal to
16 and a block size in y equal to 4. On the other hand, for the grid dimension
56× 56× 56, the best configuration is 32× 4. Furthermore, the configuration that
delivers the best performance in most cases differs from the one with the lowest
energy consumption. Only in specific grid dimensions (e.g., 248 × 248 × 248), the
configuration that delivers the best energy also achieve the highest performance
at the same time.

4.2 Performance and Energy Improvements over Baseline

Figure 3 highlights the difference in performance and energy consumption for
the best and worst outcome for each grid size. The results are normalized to
the baseline (represented by the black line). Hence, for the performance, values
above 1.0 mean that the result is better than the baseline. On the other hand,
for energy consumption, the lower the value, the better.

We start by discussing the performance results for the smaller grid sizes
(from 24 to 120). For these input sets, the best performance is reached with
the configurations where the number of threads per block is significantly smaller
than the baseline configuration. For instance, while the baseline creates 512
threads per block (32× 16), the best performance for a grid dimension equal to
24 creates only 64 threads per block (16× 4). In this case, the performance of
the ideal configuration is 2 times better than the standard way the application is
implemented (baseline). The behavior is very similar for the 56, 88, and 120 grid
dimensions, but at different rates. However, when the grid dimension increases,
the best performance is either achieved with configurations that create 128 or 256
threads per block in most cases (Table 2). Therefore, the performance difference
from the best result to the baseline decreases. On the other hand, the difference
from the best to the worst performance increases. This highlights the importance

180 B. S. Schussler et al.

Table 2. Best configuration found by the DSE for each grid dimension w.r.t. the energy
and performance

Grid Dim. Best Performance Best Energy Consumption

24 16× 4 16× 32

56 32× 4 32× 4

88 32× 8 8× 16

120 32× 4 32× 16

152 32× 16 32× 4

184 32× 4 32× 16

216 32× 8 16× 8

248 32× 4 32× 4

280 32× 8 16× 8

312 32× 4 16× 4

344 32× 8 32× 4

376 32× 8 8× 8

408 32× 8 32× 16

440 32× 8 4× 4

472 32× 16 4× 16

504 32× 8 8× 32

of rightly choosing the configurations to execute a given CUDA kernel according
to the grid size.

When it comes to energy consumption, the grid dimension starts to play an
important role. For larger grids, one can observe that the best configuration is
able to save about 20% of energy compared to the baseline (grid size equal to
440). Furthermore, there are many scenarios in which the baseline configuration
was not able to deliver the lowest energy consumption. This means that executing
the Fletcher method without modifying the number of blocks and threads per
block would very likely lead to a waste of energy and power consumption.

In summary, considering the average results of all grid sizes, when the user
correctly defines the number of blocks and threads per block, the performance
improvement over the baseline is 25%. Furthermore, in a scenario where one com-
pares the average of the best with the worst results, the difference in choosing
ideal CUDA kernel configurations is 5.43 times in performance. When consid-
ering energy consumption, choosing the best configuration saves 10% of energy
compared to the baseline.

4.3 Guidelines for Users and Software Developers

Through the design space exploration performed in the previous section, we
discuss some guidelines and directions to help end-users and software developers
in the task of defining the number of blocks and threads per block.

The Impact of CUDA Execution Configuration Parameters 181

Fig. 3. Performance and energy results of the best and worst configuration for each
grid size normalized to the baseline.

We have found that for small grid sizes, a small number of threads per block is
capable of delivering better performance and energy consumption in most cases.
The following reasons can be listed. (i) improved resource utilization: with a
small input set, using a small number of threads per block allows for better use
of registers and shared memory, which reduces the resource contention among
threads and enables more threads to be scheduled on an SM simultaneously. (ii)
increased occupancy (i.e., the ratio of active warps to the maximum possible
warps that can be executed concurrently on an SM): with a small number of
threads per block, each thread block occupies fewer resources, leaving room for
more thread blocks to be launched, allowing the SM to hide memory latency by
switching between different thread blocks. (iii) reduced memory contention: the

182 B. S. Schussler et al.

memory footprint of the computation is smaller with a small input set. Hence,
using a small number of threads per block can reduce memory contention because
the threads are accessing a smaller portion of the global memory simultaneously,
resulting in fewer memory conflicts and improved memory access efficiency.

On the other hand, a larger number of threads per block may deliver better
performance as the grid size increases due to the following reasons. (i) increased
parallelism available: Larger grid sizes often require more parallelism to uti-
lize the computational power of the GPU fully. Hence, by using a larger num-
ber of threads per block, one can increase the total number of threads running
concurrently, enabling more parallel computations. (ii) efficient memory access:
by using a larger number of threads per block, one can exploit better memory
access patterns. That is, multiple threads can access memory in a coalesced man-
ner, fetching contiguous memory locations efficiently, which may reduce mem-
ory latency and improve memory throughput. (iii) load balancing: using a larger
number of threads per block allows for finer granularity in workload distribution.
In this scenario, each thread can process a smaller portion of the grid, enabling
better load balancing among threads. This can help avoid scenarios where a few
threads are overloaded while others remain idle, leading to better performance.

5 Conclusions and Future Work

Defining the number of blocks and threads per block according to the CUDA
application is challenging, as it directly impacts the performance and energy con-
sumption of the GPU system. Hence, in this work, we have performed extensive
experiments over a real-world seismic application to find configurations of blocks
and threads per block that optimize its performance and energy consumption.
When evaluating different configurations over sixteen distinct grid dimensions,
we have shown that no unique configuration can deliver the best outcome for
all grid sizes. We have also shown that performance can be improved 2x com-
pared to the default way the application is implemented by carefully selecting
the ideal configuration. Furthermore, significant energy reductions were achieved
by defining the ideal number of blocks and threads per block.

In summary, it is worth mentioning that the optimal number of threads
per block can depend on various factors, such as GPU architecture, memory
requirements, and the nature of the computation. Therefore, it is recommended
to experiment and profile the application with different thread block sizes to find
the optimal configuration for your specific scenario. In this scenario, as future
work, we intend to implement a heuristic to automatically define the number of
blocks and threads per block according to the grid dimension and optimization
objectives (e.g., performance, energy, or the trade-off between them).

Acknowledgment. This work has been partially supported by Petrobras under num-
ber 2020/00182-5, by the call CNPq/MCTI/FNDCT - Universal 18/2021 under grants
406182/2021-3, and by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Supe-
rior - Brazil (CAPES) - Finance Code 001.

The Impact of CUDA Execution Configuration Parameters 183

References

Alkhimenkov, Y., Räss, L., Khakimova, L., Quintal, B., Podladchikov, Y.Y.: Resolving
wave propagation in anisotropic Poroelastic media using graphical processing units
(GPUs). J. Geophys. Res. Solid Earth 126, e2020JB021175 (2021)

Fletcher, R.P., Du, X., Fowler, P.J.: Reverse time migration in tilted transversely
isotropic (TTI) media. Geophysics 74(6), WCA179–WCA187 (2009)

Hanindhito, B., Gourounas, D., Fathi, A., Trenev, D., Gerstlauer, A., John, L.K.:
GAPS: GPU-acceleration of PDE solvers for wave simulation. In: Proceedings of the
36th ACM International Conference on Supercomputing, ICS 2022, New York, NY,
USA. Association for Computing Machinery (2022)

Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach.
Elsevier (2011)

Francisco Lorenzon, A., Beck Filho, A.C.S.: Parallel Computing Hits the Power Wall.
SCS, Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28719-1

Michéa, D., Komatitsch, D.: Accelerating a three-dimensional finite-difference wave
propagation code using GPU graphics cards. Geophys. J. Int. 182(1), 389–402 (2010)

Navaux, P.O.A., Lorenzon, A.F., da Silva Serpa, M.: Challenges in high-performance
computing. J. Braz. Comput. Soc. 29(1), 51–62 (2023)

NVIDIA: Nvidia dgx-1 with tesla v100 system architecture, Technical white paper
(2017)

PÃ¡ez, A., SÃ¡nchez, I.J., RamÃrez, A.B.: Computational strategies for implementation
of 2D elastic wave modeling in GPU. Entre Ciencia e IngenierÃa 14, 52–58 (2020)

Sanchez-Noguez, J., Couder-Castañeda, C., Hernández-Gómez, J.J., Navarro-Reyes,
I.: Solving the heat transfer equation by a finite difference method using multi-
dimensional arrays in CUDA as in standard C. In: Gitler, I., Barrios Hernández,
C.J., Meneses, E. (eds.) CARLA 2021. CCIS, vol. 1540, pp. 221–235. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-04209-6 16

Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-purpose
GPU Programming. Addison-Wesley Professional (2010)

Serpa, M., Mishra, P.: Performance evaluation and enhancement of the fletcher method
on multicore architectures. Int. J. Res. Publ. Rev. 3, 2649–2655 (2022)

Yuan, Y., Shi, F., Kirby, J.T., Yu, F.: FUNWAVE-GPU: multiple-GPU acceleration of
a Boussinesq-type wave model. J. Adv. Model. Earth Syst. 12(5), e2019MS001957
(2020). https://doi.org/10.1029/2019MS001957

https://doi.org/10.1007/978-3-030-28719-1
https://doi.org/10.1007/978-3-031-04209-6_16
https://doi.org/10.1029/2019MS001957

High-Performance Computing
for Astrophysical Simulations
and Astroparticle Observations

L. M. Becerra1(B) , C. Sarmiento-Cano1 , A. Martínez-Méndez2 ,
Y. Dominguez1,3 , and L. A. Núñez1,4

1 Escuela de Física, Universidad Industrial de Santander, 680002 Bucaramanga,
Colombia

laura.becerra7@correo.uis.edu.co
2 Escuela de Ingeniería de Sistemas e Informática,

Universidad Industrial de Santander, 680002 Bucaramanga, Colombia
3 East African Institute for Fundamental Research (ICTP-EAIFR),

University of Rwanda, Kigali, Rwanda
4 Departamento de Física, Universidad de Los Andes, Mérida, Venezuela

Abstract. Simulations in astrophysics play a crucial role in testing
models and comparing them with observational data, for which High-
Performance Computing has become indispensable for handling complex
scenarios. In this paper, we present two important applications in astro-
physical simulations. First, we explore the adaptation of the Pencil
Code to study the evolution of magnetic field configurations in stratified
stars. Second, we highlight the ARTI framework developed to estimate
signals at the Latin American Giant Observatory. In addition, we discuss
the importance of reproducibility in scientific analysis.

Keywords: HPC · Pencil Code · ARTI · Astrophysics · Astroparticle

1 Introduction

Computers have transformed the practice of science, allowing scientists to tackle
problems of exceptional complexity and scale. They have expanded the scope
of what can be investigated and have deepened our understanding of the fun-
damental laws that govern the universe. This, in turn, has led to new research
avenues and shaped modern physics’s epistemological foundations. The emer-
gence of quantum computing hardware is poised to transfigure physics itself. It
can potentially solve problems much faster than classical computers, particularly
in quantum physics and materials science.

In Astrophysics, numerical simulations and data visualizations are unprece-
dented tools to benchmark models and compare them with observations. High-
performance computing (HPC) has revolutionized astrophysics simulations by
enabling scientists to model complex and diverse astrophysical phenomena with

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 184–196, 2024.
https://doi.org/10.1007/978-3-031-52186-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_13&domain=pdf
http://orcid.org/0000-0002-3262-5545
http://orcid.org/0000-0002-4977-4184
http://orcid.org/0000-0002-1559-9015
http://orcid.org/0009-0007-0462-9630
http://orcid.org/0000-0003-4575-5899
https://doi.org/10.1007/978-3-031-52186-7_13

HPC for Astrophysics 185

remarkable accuracy and detail. This has led to significant advancements in our
understanding of the universe, from the smallest particle interactions to the
largest scale of cosmic structure and evolution.

Several numerical codes have been developed to model various astrophysical
scenarios, ranging from large-scale problems such as galaxy formation to small-
scale phenomena such as turbulence in the interstellar medium. These codes can
be classified according to their discretisation approach, with grid-based codes
(e.g., Pencil [11], Flash [6], Ramses [16], and Pluto [10]) and particle-based
(or N-body) codes (e.g. Gadget [15], Phantom [12]) as the two common cat-
egories. These codes are often coupled with radiative transfer, gravity, nuclear
physics, and general relativity to study a wide range of phenomena, includ-
ing stellar structure, planet formation, stellar and galactic evolution, and high-
energy events such as supernovae, active galactic nuclei (AGN), and gamma-ray
bursts (GRBs).

In a recent work [4], we have employed HPC resources to model the evolution
of magnetic field configurations in the interior of convective and stratified stars.
To do this, we adapted the Pencil Code

1 [11], which is a high-level finite-
difference numerical code for modelling compressible hydrodynamic fluids with
magnetic fields and particles. The code is written primarily in Fortran and runs
efficiently in parallel on shared or distributed memory computers. Its modular
structure allows it to easily adapt to simulate different problems, supporting
Cartesian, cylindrical and spherical geometries.

On the other hand, by analysing astroparticle observations, scientists can
refine and validate the accuracy of astrophysical simulations, leading to a deeper
understanding of cosmic phenomena and enabling more accurate predictions
of astroparticle processes. For example, ground-based detection of secondary
particles allows the study of transient events such as GRBs and/or Forbush
decays [17], as well as practical applications such as muography [8]. These studies
require a detailed understanding of how secondary particles are produced in the
atmosphere and reach specific locations.

The Latin American Giant Observatory (LAGO) focuses on detecting back-
ground radiation for studying astroparticles and geophysical phenomena. LAGO
comprises an extended network of Water Cherenkov Detectors across the con-
tinent, covering a wide range of geomagnetic rigidity cutoffs and atmospheric
absorption depths. A comprehensive computational framework that considers
the influence of the geomagnetic field on the propagation of Galactic Cosmic
Rays (GCRs) has been developed to estimate the expected signals at the LAGO
detector sites. This framework consists of a collection of individual tools, collec-
tively known as the ARTI

2.
In this article, we present a comprehensive overview of the main applications

developed by our group using HPC resources. Section 2 is dedicated to stellar
simulations with the Pencil code, while Sect. 3 is dedicated to astroparticle

1 https://github.com/pencil-code/pencil-code.git.
2 https://github.com/lagoproject/arti.

https://github.com/pencil-code/pencil-code.git
https://github.com/lagoproject/arti

186 L. M. Becerra et al.

simulations with ARTI. Section 4 describes the measures taken to improve the
reproducibility of our analyses. Finally, in Sect. 5, we give some final remarks.

2 Stellar Astrophysics Applications

2.1 Star-in-a-Box Simulation

Large and stable magnetic fields have been observed on the surface of chemi-
cally peculiar stars of spectral type A and B (Ap/Bp stars), some white dwarfs
and neutron stars. These magnetic fields will likely be in magnetohydrodynamic
equilibrium in the stellar interior since neither their properties nor the physical
conditions inside these stars are compatible with dynamo action. Yet, our under-
standing of the conditions that enable this equilibrium and its implications for
stellar structure and evolution remains limited. The complexity of this problem
required the use of numerical simulations.

To evolve the magnetic field inside the star, we solve the magneto-
hydrodynamic equations using the Pencil Code:

∂ρ

∂t
= ∇(ρv) (1)

∂ρv

∂t
= −∇(ρv · v) − ∇P − ρ∇Φ + j × B − ∇(2ρνS)

ρ
(2)

∂s

∂t
= −v · ∇s +

ηj2

ρT
+

2νS2

T
(3)

∂A

∂t
= v × B − ηj , (4)

where ρ, p, v, T and s are the fluid mass density, pressure, velocity, temperature
and entropy, respectively; Φ is the gravitational potential; S is the viscous stress
tensor; A, B and j are the magnetic vector potential, magnetic field, and current
density, respectively; η is the magnetic diffusivity and ν is the fluid viscosity.
The magneto-hydrodynamic equations regarding the vector potential are solved,
ensuring that the magnetic field remains divergence-free.

We used an equally spaced Cartesian grid to model the star and its dynam-
ics. In this approach, the star with radius R is placed in the centre of a cubic
box with side length L (star-in-a-box). The advantage of using Cartesian coor-
dinates over spherical ones is twofold. First, it allows us to model the entire
star, including its centre, which is not defined in spherical coordinates. Second,
it is computationally simpler to work with Cartesian coordinates. The trade-off,
however, is that the resolution of the star is lower compared to a corresponding
simulation in spherical coordinates.

In all the simulations presented here, we used a computational box of L =
4.5 (arbitrary units) and employed a Cartesian grid with periodic boundary
conditions in all directions. The star is at the centre of the box and has a radius
of R = 1.0 (arbitrary units). Outside the star, we typically assume a complete
vacuum with no currents (B = ∇Ψ). To simulate this condition numerically,

HPC for Astrophysics 187

Fig. 1. Left: Magnetic energy decay of a purely Ohmic mode (l = 1 and n = 1). Right:
Snapshot of the magnetic field at the end of the simulation. The field lines correspond
to the poloidal component of the magnetic field, and the surface contours to the toroidal
one. We simulate with the Pencil Code in a Cartesian box with an equally-spaced
grid.

we add an atmosphere of low electrical conductivity in which the magnetic field
relaxes into a potential field:

η =

⎧
⎪⎨

⎪⎩

ηi if r < R,

ηo−ηi

Δr
(r − R) + ηi if R < r < R + Δr

ηo, if r > R + Δr .

(5)

The outer diffusivity, ηo, is 103 times greater than the inner one, ηi. The tran-
sition zone connecting the star’s interior with the atmosphere has a width of
Δr ≈ 0.3R.

To test the Pencil Code for star-in-a-box simulations and the performance
of the magnetic diffusivity given in Eq. (5), we first solve the induction equation
neglecting the advection term:

∂B

∂τ
= −∇ × j = ∇2B (6)

with τ = ηt. This equation has an analytical solution, which is:

B(r) = Bφ(r)φ̂ + ∇ × (Aφ(r)φ̂) , (7)

with

Bφ(r) =
∑

l,n=1

(Alnjl(klnr) + Blnyl(klnr)) P 1
l (cos θ)e−k2

lnτ (8)

Aφ(r) =
∑

l,n=1

(Clnjl(ωlnr) + Dlnyl(ωlnr)) P 1
l (cos θ)e−ω2

lnτ , (9)

where jl and yl are the spherical Bessel functions of the first and second kind,
respectively, and P 1

l are the associated Legendre polynomials. The constants

188 L. M. Becerra et al.

Table 1. Hypatia cluster timing for the Pencil Codel evolving stellar magnetic fields

p time step[µs]
N×p

N Layout p time step[µs]
N×p

N Layout

1 12.312 1283 1× 1× 1 1 63.279 2563 1× 1× 1
4 1.761 1283 1× 1× 4 16 0.049 2563 1× 1× 16
4 0.575 1283 1× 2× 2 16 0.075 2563 1× 2× 8
8 0.160 1283 1× 1× 8 16 0.072 2563 1× 4× 4
8 0.537 1283 1× 2× 4 16 0.082 2563 2× 2× 4
8 0.573 1283 2× 2× 2 32 0.049 2563 1× 1× 32

16 0.178 1283 1× 1× 16 32 0.153 2563 1× 2× 16
16 0.171 1283 1× 2× 8 32 0.022 2563 1× 4× 8
16 0.122 1283 1× 4× 4 32 0.017 2563 2× 2× 8
16 0.041 1283 2× 2× 4 32 0.026 2563 2× 4× 4
32 0.055 1283 1× 1× 32 64 0.038 2563 1× 1× 64
32 0.036 1283 1× 2× 16 64 0.032 2563 1× 2× 32
32 0.052 1283 1× 4× 8 64 0.032 2563 1× 4× 16
32 0.075 1283 2× 2× 8 64 0.031 2563 1× 8× 8
32 0.025 1283 2× 4× 4 64 0.037 2563 2× 4× 8

64 0.041 2563 2× 2× 16
64 0.029 2563 4× 4× 4

Aln, Bln, Cln, Dln, kln and ωln are determined by the boundary conditions:
regular conditions in the centre of the star make Bln = Dnl = 0. In contrast,
the continuity condition of the magnetic field across the star’s surface gives
ω11 = 3.14 and k11 = 4.49 for the n = 1, l = 1 mode.

We follow the evolution of the magnetic field for about one τ time. From
the analytical solution, the magnetic energy of the toroidal component scales
with e−2.0k2

11τ and the poloidal with e−2.0ω2
11τ . Figure 1 shows a good agreement

between the simulated and the analytical model over time. This confirms the
validity and effectiveness of employing the high magnetic conductivity atmo-
sphere in star-in-box simulations. Additionally, Becerra et al. [4] confirmed that
for sufficiently large box sizes (L > 3Rs), the evolution of the magnetic field in
the stellar interior remains unaffected by the periodic boundary conditions at
the box’s sides.

2.2 Code Performance: Stably Stratified Stars

We now evaluate the parallelization performance of the Pencil Code on the
Hypatia cluster3. For this, we run simulations solving the full set of Eqs. (1)–
(4) to track the evolution of magnetic field configurations inside the star. As

3 https://exacore.uniandes.edu.co/es/que-hacemos/procesamiento.

https://exacore.uniandes.edu.co/es/que-hacemos/procesamiento

HPC for Astrophysics 189

10−1 100

Neff /N

10−2

10−1

100

101

ti
m
e
st
ep

[µ
s]
/
(N

×
p
)

N = 1283

N = 2563

(a)

0 10 20 30 40 50 60
p

0

5

10

15

20

25

30

Sp
ee
d
up

N = 1283

N = 2563

(b)

Fig. 2. Left: Mean time spent in each time step per number of points and processors
as a function of the fraction of more effective points in each processor over the total
points of the simulation. Right: Speed up of parallelization of the Pencil code in
Hypatia cluster.

an initial condition, we assume a polytropic relationship between the gas pres-
sure and density within the star, where the radial dependence of the entropy
determines the star’s stable stratification. The stellar interior is also connected
with a uniform-temperature atmosphere outside the star. The simulations start
with a random magnetic field in the star’s centre. In stably stratified stars, this
configuration is expected to evolve toward an equilibrium configuration [4,5].
Throughout the simulation, we assume an ideal gas law for the fluid matter:
P = RρT , where R is the universal gas constant.

The pencil code is a finite-difference code, and it efficiently employs Mes-
sage Passing Interface (MPI) for parallelization. A mesh size of N = Nx×Ny×Nz

points is distributed in a layout of p = px × py × pz processors. To compute the
spatial derivatives, the Pencil code uses a sixth-order finite difference scheme,
requiring an additional 6 ghost zones in each processor. The points in these
zones are communicated with neighbouring processors at each time step. The
total number of points in each processor is:

Neff =
(

Nx

px
+ 6

)

×
(

Ny

py
+ 6

)

×
(

Nz

pz
+ 6

)

(10)

We run simulations with two different resolutions: 1283 and 2563. Table 1
summarises the simulations performed for this test. Each simulation gives the
number of processors used, p, the number of points in the grid, N , the layout,
and the mean time spent in each time step per number of points and processors.
The left panel of Fig. 2 clearly shows that the code’s performance improves as the
fraction between the number of points per processor and the total points of the
simulation decreases when the resolution is 1283, even when up to 32 processors

190 L. M. Becerra et al.

are utilized. This trend seems to be the same for the 2563 resolution, but when
64 processors were employed, the code’s performance did not improve.

The right panel of Fig. 2 shows the speed-up achieved through parallelization
as a function of the number of processors. This quantity is calculated as the time
the code takes to complete 100 interactions on a single processor over the time
taken when using multiple processors. For both resolutions, the code exhibits
speedup benefits up to the utilization of 32 processors.

3 Astroparticle Applications

Atmospheric particle flux simulations require a significant number of simulated
particles. This number increases as the simulation progresses. For example, simu-
lating just one minute of flux introduces about 100,000 primary protons into the
atmosphere. As these primary particles interact with the atmosphere, they cre-
ate hundreds of millions of secondary particles. To get a realistic and statistically
meaningful representation, we must simulate at least 40 million primary protons,
equivalent to five hours of flux. In this case, high-performance computing (HPC)
is the only viable option for these simulations.

We used the ARTI [14] code to estimate the secondary particle flux at each
LAGO site and to simulate the neutron flux. ARTI is a complete framework
designed to simulate the signals produced by the secondary particles emerg-
ing from the interaction of single, multiple, and even from the complete flux of
primary cosmic rays with the atmosphere. These signals are simulated for any
particle detector located anywhere (latitude, longitude and altitude), includ-
ing the real-time atmospheric, geomagnetic and detector conditions. Formulated
through a sequence of codes written in C++, Fortran, Bash and Perl, it pro-
vides an easy-to-use integration of standard astroparticle simulation environ-
ments. ARTI supports different cluster architectures and distributed computing
solutions, such as those based on grid and federated or public clouds implemen-
tations [13]. In the following section, we present the results for both applications.

3.1 Estimation of Cosmic Background Radiation at the Ground
Level

We used ARTI to calculate the expected flux and spectrum of secondary par-
ticles at each LAGO detector site. It follows the procedure described in [2,3].
Here, the primary injected particle flux, Φ, at an altitude of 112 km a.s.l. is given
by:

Φ(Ep, Z,A,Ω) � j0(Z,A)
(

Ep

E0

)α(Ep,Z,A)

, (11)

where Ep is the energy of the primary particle, α(Ep, Z,A) is its spectral index,
which can be considered constant (α ≡ α(Z,A)) in the energy range, from a
few GeV to 106 GeV. Each kind of GCR considered is characterized by its mass
number (A) and atomic number (Z), and j0(Z,A) is the measured flux in the
top of the atmosphere at the reference energy E0 = 103 GeV.

HPC for Astrophysics 191

Fig. 3. Energy spectrum of secondary particles at three different study sites: Buenos
Aires (19 m a.s.l), Bucaramanga (956 m a.s.l), and Berlin (3450 m a.s.l.). The total spec-
trum of particles produced as they reach the ground is shown in black. The electromag-
netic component comprises gamma photons (blue), electrons, and positrons (yellow).
The muon component is shown in green, and the protons in purple. The neutrons, which
have a cut of about 300 MeV applied by CORSIKA to optimize the computation time,
are shown in magenta.

ARTI uses CORSIKA [7] to evaluate the particles produced by the inter-
action of each GCR with the atmosphere. In these simulations, each secondary
particle is tracked up to the lowest energy threshold (Es) allowed by CORSIKA,
which depends on the type of the secondary particle. Currently, these thresholds
are Es ≥ 5 MeV for muons and hadrons (excluding pions) and Es ≥ 5 KeV for
electrons, pions and gammas photons. As the atmospheric profile is a key factor
for the production of secondary particles and a parameter for CORSIKA, we set
atmospheric MODTRAN profiles models [9] according to the geographical posi-
tion of the LAGO sites (see [14] and references therein for a detailed description
of this method).

Figure 3 shows examples of the results for the obtained spectra of each type
of secondary particle at Buenos Aires, Argentina (19m a.s.l), Bucaramanga,
Colombia (956m a.s.l) and Berlin, Colombia (3450m a.s.l.). These sites are
located at different altitudes, with a difference of up to 2,000m. These altitude
variations are reflected in the total flux, with the difference between Buenos
Aires and Berlin being almost one order of magnitude. The neutron component
in these spectra is shown in magenta, and as can be seen, CORSIKA imposes a
cutoff of about 300 MeV to optimize computational time. We use Geant4 [1] to
simulate the last 2 km of particle trajectories to capture the low-energy neutron
component. Geant4 is a software package that simulates the interaction between
radiation and matter. A more detailed discussion of this phase follows in the
next section.

As shown in [13], the generation of such simulations, when stored, transforms
into synthetic data with versatile applications for various research objectives. A
machine with 128 cores and 1 TB of RAM generated the spectra shown in
Fig. 3. ARTI, a software optimized for parallel processing, efficiently divides
these simulations among up to 120 cores, generating 120 binary files. Under
these conditions, simulating one hour of cosmic ray flux takes 1.5 h of computing

192 L. M. Becerra et al.

time. In contrast, using a desktop machine with eight cores and 16 GB of RAM,
the simulation time increases to approximately 24 h. We simulated 12 h of cosmic
ray flux for each site in this case.

Fig. 4. Energy spectrum of neutrons produced by the interaction of cosmic rays within
the atmosphere or three locations in South America. This spectrum was generated in
Geant4.

3.2 Neutron Flux Simulation

As emphasized in the previous section, ARTI calculates the flux of secondary
particles reaching a given observation point. However, our interest is focused
on low-energy neutrons produced in the atmosphere, which are interesting for
research applications in smart agriculture. CORSIKA excludes these since this
software is designed for particles with energies greater than GeV. To solve this
problem, we extended our simulations by including the last 2 km of the atmo-
sphere using Geant4.

Figure 4 shows the resulting spectra after propagating the flux through the
new atmospheric segment. The initial particles injected into Geant4 are the out-
put of ARTI. These spectra were generated specifically for three locations in
South America: Buenos Aires, Bucaramanga, and Berlin, containing only the
neutron component. As can be seen, there is a significant difference in the neu-
tron flux at the surface as the altitude changes. In addition, the shape of the
spectrum and the ratio between the two prominent peaks remain consistent for
each altitude.

The total neutron flux at the different altitudes is shown in Table 2. This
summarises the flux variation with altitude, highlighting significant changes in
flux levels. Furthermore, Table 2 shows the ratio fluxi/flux0 for each altitude,
where we have considered the Buenos Aires flux as the sea level reference, flux0.

HPC for Astrophysics 193

3.3 Simulation Time

GEANT4 approach is based on the sequential injection of particles, which means
that by default, it uses a single processing core to perform a simulation. To over-
come this limitation, we have developed a parallelization strategy that divides
the input file, where each row represents a particle, into as many processing
cores as possible. This approach is feasible because no information exchange is
required between the jobs, guaranteeing that the resulting total file is the sum
of all the individual files generated.

Table 2. Ratio of the flux per altitude according to the see level flux as reference.

Altitude fluxi fluxi/flux0

10 m a.s.l 445 1
956 m a.s.l 986 2.21
3450 m a.s.l 2339 5.24

The simulations, which included 65 million events, each representing one
particle emitted by a source located 2 km above the surface, were planned by
calculating the average time per event. This was done by running four simulations
with 100, 1000, 5000, and 10000 events each. Each event took approximately
0.26 s on a single CPU core. The simulations were run in parallel using 100 CPU
cores, and the task took almost 48 h to complete.

4 Reproducibility Considerations

To improve the reproducibility of our analyses, we employ several strategies,
including the use of Docker4 and Singularity containers to preserve the compu-
tational environment. By encapsulating our software, dependencies and configu-
rations within these containers, we ensure that the exact same environment can
be replicated regardless of the underlying operating system or computing infras-
tructure. This eliminates compatibility issues and minimises the risk of software
version conflicts, allowing other researchers to reproduce our simulations easily.

We also emphasise using open-source software tools based on version control
systems. For example, the Pencil code we use for stellar simulations is licensed
under the GENERAL PUBLIC LICENSE version 2. In contrast, ARTI, our
astroparticle simulation framework, is licensed under the 3-Clause BSD. These
open licences promote transparency and allow researchers to access, study, mod-
ify and redistribute the software, facilitating the replication and validation of
our analyses.

In addition to containerisation and open software, our approach also aims to
facilitate the findability, accessibility, interoperability and reuse (FAIR) [18] of
4 https://hub.docker.com/u/lagocollaboration.

https://hub.docker.com/u/lagocollaboration

194 L. M. Becerra et al.

our digital assets5. We assign persistent identifiers, such as DOIs, to our datasets
and code repositories, making them easy to find. Our open-access policy ensures
the accessibility of our research results, allowing other researchers to reproduce
and build on our work. By adhering to standard file formats, data structures
and interfaces, we promote interoperability with other tools and facilitate the
integration of our analyses into larger scientific workflows. Finally, by openly
sharing our data, code and methods, we encourage their reuse, enabling other
researchers to validate our findings and explore new research directions.

Overall, our comprehensive approach to reproducibility, which includes con-
tainerisation, open software and adherence to the FAIR principles, ensures that
our analyses can be accurately replicated, validated and extended by the scien-
tific community. By promoting transparency, accessibility and compatibility, we
contribute to the robustness and reliability of scientific research, foster collabo-
ration and advance knowledge in our field.

5 Remarks

In this paper, we have discussed two particular cases of study of HPC in astro-
physical and astroparticle simulations. HPC provides the computational power
to model complex astrophysical systems and validate theoretical models against
observational data.

In the first application, we used the Pencil Code, a high-level finite-
difference numerical code, to simulate the evolution of magnetic field config-
urations in convective and stratified stars. We test the performance of these
simulations on the Hypatia Cluster and conclude that the code demonstrates
improved speedup performance when utilizing up to 32 processors.

We also discussed the importance of astroparticle observations in refining
and validating astrophysical simulations. Ground-based detection of secondary
particles is crucial in studying transient events and applications such as muon
radiography. Collaboration between astrophysicists, computational scientists and
observational researchers is essential to advance our knowledge of the Universe.
HPC resources and sophisticated numerical codes and astroparticle observations
enable us to tackle challenging problems and significantly advance astrophysics6.

In the future, we aim to refine our simulations by incorporating additional
physics and considering more complex astrophysical scenarios7. We also look
forward to exploring new avenues of research that harness the power of HPC and
astroparticle observations to deepen our understanding of cosmic phenomena8.

Acknowledgement. L. M. B is supported by the Vicerrectoría de Investigación y
Extensión - Universidad Industrial de Santander Postdoctoral Fellowship Programme
No. 2023000359. MINCIENCIAS has partially founded this work under project 82242 of

5 https://lagoproject.github.io/DMP/.
6 https://exacore.uniandes.edu.co/es/que-hacemos/procesamiento.
7 http://wiki.sc3.uis.edu.co/index.php/Cluster_Guane.
8 https://www.renata.edu.co/.

https://lagoproject.github.io/DMP/
https://exacore.uniandes.edu.co/es/que-hacemos/procesamiento
http://wiki.sc3.uis.edu.co/index.php/Cluster_Guane
https://www.renata.edu.co/

HPC for Astrophysics 195

call 890 of 2020, managed through the ICETEX contract 2022-0718. The computations
presented in this paper were performed on the Hypatia cluster at the Universidad de los
Andes and the Guane cluster at the Universidad Industrial de Santander, both located
in Colombia. These HPC clusters were accessed through the LaRedCCA initiative of
the National Academic Network of Advanced Technology, RENATA.

References

1. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., et al.: Geant4 - a simu-
lation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A: Acceler. Spectromet.
Detect. Associat. Equip. 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-
9002(03)01368-8

2. Asorey, H., Dasso, S., Núñez, L.A., Pérez, Y., Sarmiento-Cano, C., Suárez-Durán,
M., the LAGO Collaboration: The LAGO space weather program: drectional geo-
magnetic effects, background fluence calculations and multi-spectral data analysis.
In: The 34th International Cosmic Ray Conference, vol. PoS(ICRC2015), p. 142
(2015)

3. Asorey, H., Núñez, L., Suárez-Durán, M.: Preliminary results from the Latin Amer-
ican giant observatory space weather simulation chain. Space Weather 16(5), 461–
475 (2018)

4. Becerra, L., Reisenegger, A., Valdivia, J.A., Gusakov, M.E.: Evolution of random
initial magnetic fields in stably stratified and barotropic stars. Mon. Not. R. Astron.
Soc. 511(1), 732–745 (2022). https://doi.org/10.1093/mnras/stac102

5. Braithwaite, J., Nordlund, Å.: Stable magnetic fields in stellar interiors.
Astron. Astrophys. 450(3), 1077–1095 (2006). https://doi.org/10.1051/0004-6361:
20041980

6. Fryxell, B., et al.: FLASH: an adaptive mesh hydrodynamics code for modeling
astrophysical thermonuclear flashes. Astrophys. J. Suppl. 131(1), 273–334 (2000).
https://doi.org/10.1086/317361

7. Heck, D., Knapp, J., Capdevielle, J.N., Schatz, G., Thouw, T.: CORSIKA: a Monte
Carlo code to simulate extensive air showers (1998)

8. Jourde, K., et al.: Monitoring temporal opacity fluctuations of large structures
with muon radiography: a calibration experiment using a water tower. Sci. Rep.
6(23054) (2016). https://doi.org/10.1038/srep23054

9. Kneizys, F.X., Abreu, L.W., Anderson, G.P., Chetwynd, J.H., et al.: The MOD-
TRAN 2/3 report and LOWTRAN 7 model. Tech. Rep. (1996). https://web.gps.
caltech.edu/~vijay/pdf/modrept.pdf

10. Mignone, A., et al.: PLUTO: a numerical code for computational astrophysics.
Astrophys. J. Suppl. 170(1), 228–242 (2007). https://doi.org/10.1086/513316

11. Pencil Code Collaboration, Brandenburg, A., et al.: The Pencil Code, a modu-
lar MPI code for partial differential equations and particles: multipurpose and
multiuser-maintained. J. Open Source Softw. 6(58), 2807 (2021). https://doi.org/
10.21105/joss.02807

12. Price, D.J., et al.: Phantom: a smoothed particle hydrodynamics and magnetohy-
drodynamics code for astrophysics. Publ. Astron. Soc. Austral. 35, e031 (2018).
https://doi.org/10.1017/pasa.2018.25

13. Rubio-Montero, A.J., Pagán-Muñoz, R., Mayo-García, R., Pardo-Diaz, A., Sidel-
nik, I., Asorey, H.: The EOSC-synergy cloud services implementation for the Latin
American giant observatory (LAGO). arXiv preprint arXiv:2111.11190 (2021)

https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1093/mnras/stac102
https://doi.org/10.1051/0004-6361:20041980
https://doi.org/10.1051/0004-6361:20041980
https://doi.org/10.1086/317361
https://doi.org/10.1038/srep23054
https://web.gps.caltech.edu/~vijay/pdf/modrept.pdf
https://web.gps.caltech.edu/~vijay/pdf/modrept.pdf
https://doi.org/10.1086/513316
https://doi.org/10.21105/joss.02807
https://doi.org/10.21105/joss.02807
https://doi.org/10.1017/pasa.2018.25
http://arxiv.org/abs/2111.11190

196 L. M. Becerra et al.

14. Sarmiento-Cano, C., et al.: The arti framework: cosmic rays atmospheric back-
ground simulations. Eur. Phys. J. C 82, 1019 (2022). https://doi.org/10.1140/
epjc/s10052-022-10883-z

15. Springel, V., Pakmor, R., Zier, O., Reinecke, M.: Simulating cosmic structure for-
mation with the GADGET-4 code. Mon. Not. R. Astron. Soc. 506(2), 2871–2949
(2021). https://doi.org/10.1093/mnras/stab1855

16. Teyssier, R.: Cosmological hydrodynamics with adaptive mesh refinement. A new
high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002).
https://doi.org/10.1051/0004-6361:20011817

17. Usoskin, I.G., et al.: Forbush decreases of cosmic rays: energy dependence of the
recovery phase. J. Geophys. Res.: Space Phys. 113(A7) (2008). https://doi.org/
10.1029/2007JA012955

18. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data manage-
ment and stewardship. Sci. Data 3(1), 160018 (2016). https://doi.org/10.1038/
sdata.2016.18

https://doi.org/10.1140/epjc/s10052-022-10883-z
https://doi.org/10.1140/epjc/s10052-022-10883-z
https://doi.org/10.1093/mnras/stab1855
https://doi.org/10.1051/0004-6361:20011817
https://doi.org/10.1029/2007JA012955
https://doi.org/10.1029/2007JA012955
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18

Improvement of the Simulation
of the Degradation of Reinforced Concrete
in Saltwater Environments Using Directives

Félix A. Mejía1,2,3(B) , Carlos J. Barrios H.1,2,3 , and Darío Y. Peña B.1,2,4

1 Universidad Industrial de Santander (UIS), Bucaramanga, Santander, Colombia
felix2067165@correo.uis.edu.co

2 High Performance and Scientific Computing UIS (SC3UIS), Bucaramanga, Colombia
3 Large Scale and Advanced Computing Research Group UIS (CAGE), Bucaramanga, Colombia

4 Corrosion Research Group (GICUIS), Santander, Colombia

Abstract. High-performance computers are now essential in scientific and tech-
nological research and development because of their high processing capacity and
extensive memory; they allow us to simulate phenomena where processing and
handling such information is necessary. The simulation of physicochemical prob-
lems involves the inherent analysis and processing of large volumes of data. For
this, a large computing capacity is required. Therefore, it is necessary to apply a
parallel processing scheme using GPUs that allows an efficient way of obtaining
the simulation results. Thiswork presents a simulated diffusionmodel, considering
the factors that affect the corrosion initiation rate of the reinforcement structure,
such as thewater-cement ratio, temperature, density, and chloride binding capacity
of concrete since all these variables are handled. A significant amount of infor-
mation becomes necessary to use computational architectures based on multiple
GPUs to obtain better results in shorter times and thus minimize this phenomenon
by changing specific design and manufacturing parameters [1, 2].

Keywords: GPGPU Computing · Advanced Computing Materials · Simulation

1 Introduction

The simulation of physicochemical problems is inherent in analyzing and processing
large volumes of information. For this, it requires a large capacity of computation. It
is necessary to apply a parallel processing scheme using GPU that efficiently obtains
the simulation results. Multi-GPU systems use multiple GPUs [3] to shorten simulation
times and eliminate any obstacle that slows down productivity. This achieves much
higher simulation speeds in their systems and generates models with a fidelity that was
not possible before so that more variations in the design can be produced in a shorter
time.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 212–225, 2024.
https://doi.org/10.1007/978-3-031-52186-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_14&domain=pdf
http://orcid.org/0000-0002-9307-4177
http://orcid.org/0000-0002-3227-8651
http://orcid.org/0000-0002-6193-9535
https://doi.org/10.1007/978-3-031-52186-7_14

Improvement of the Simulation of the Degradation of Reinforced Concrete 213

1.1 Physicochemical Phenomenon

The corrosion phenomenon of the steel structures that are part of the reinforced concrete
is caused by oxygen and humidity, in addition to the existence of free chlorides in
the surrounding environment. Seawater has a high concentration of dissolved salts that
represents a severe threat to reinforced concrete because it promotes and accelerates
corrosion.

In coastal areas, the sea breeze carries with it actual moisture contents that, in one
way or another, take chlorides, so structures that are not in direct contact with the sea
begin to suffer from the action of chlorides.

Reinforced concrete is one of the most used materials in construction today due to its
structural properties, low cost, and outstanding durability. The alkaline character present
in the pores of the concrete allows the reinforcement steel to be in a passive state in terms
of corrosion, its speed being almost nil. However, this speed increases due to the entry of
aggressive agents into the environment, such as chloride ions and carbon dioxide. This
leads to the corrosion of the steel structures that reinforce the concrete.

In a marine environment, the leading cause of deterioration of reinforced concrete
structures is corrosion, which is initiated by chloride ions due to the exposure of these
structures to seawater, sea breezes, or the use of aggregates contaminated with salts.
Once the chloride ions reach a critical concentration on the surface of the steel, the
passive protection layer loses its stability and initiates corrosion. Due to the outstanding
deficiencies of concrete, such as low tensile strength and porosity, the latter is the product
of the hydration processes of the reaction between cement and water. Once hardened,
these remains of water will become pores of different sizes, which will be interconnected
with each other, facilitating the transport of fluids, gases, and other chemical substances
that are highly detrimental to reinforced concrete since it allows the beginning of the
process of deterioration of the steel structures that comprise it (Fig. 1).

Fig. 1. Corrosion of reinforced concrete exposed to a marine environment. (Authors Photo)

214 F. A. Mejía et al.

Through this simulation, it is possible to analyze and experiment with what happens
inside the reinforced concrete, thus minimizing this corrosion phenomenon by changing
specific design and manufacturing parameters. Given that many variables and a large
amount of information are handled in this simulation, it is necessary to use multiple
GPU architectures to provide the researcher with the best results in the shortest possible
time.

Corrosion. It is the chemical reaction product of the union of the metal with oxygen.
it is a deterioration observed in a metallic object due to a high electrochemical impact
of the oxidative character, and the degenerative speed of said material will depend on
the ex-position to the oxidizing agent, the temperature presented if it is exposed to
saline solutions and the chemical properties of these metallic agents, this process is
spontaneous, and this can occur in materials that are not metallic [4].

Reinforced Concrete: Also called reinforced concrete, it consists of the use of rein-
forced concrete with steel bars or meshes, although it also uses plastic fibers, fiberglass,
steel fibers, or combinations of steel bars with fibers depending on the requirements
to which will be submitted. It is used in all types of buildings, such as bridges, dams,
tunnels, and industrial works [5].

Durability of Concrete: It is defined as the ability to resist weathering, chemical attack,
abrasion, or any other process or service condition of structures that produce the concrete
deterioration. Several factors affect the durability of reinforced construction, such as the
quality of its components, dosage of each part, mix for a sufficient time to obtain a
homogeneous material, correct placement of steel structures, and suitable compaction
to avoid segregation and porosity [6].

Deterioration of Concrete: Physical, chemical, or physicochemical factors lead to the
reinforcements’ corrosion. In any of these categories, the influence of the components
of the concrete and its geographical location on the structure’s useful life is recognized.
The physical mechanisms of deterioration are associated with the dissolution of pulp
compounds in themedium,with loss ofmass, increased porosity, and a drop in resistance.
The chemical mechanisms correspond to the exchange of ions of the pulp with the
medium, giving rise to compounds that are soluble or not but of a non-expansive nature
that eventually cause similar effects to the physical ones. The physicochemical combines
the two concepts, giving rise to the formation of expansive-type compounds that cause
internal tensions and lead to cracking and possible component disintegration [7].

Attack by Chlorides: Chloride can penetrate the reinforced concrete from the external
environment to the interior, generating corrosion in the reinforcements by combining
various transport mechanisms such as ionic diffusion, water absorption, water flow, and
chloride ion dispersion, or by an effect of external electric potential.

CarbonationofConcrete: Concrete is a veryporousmaterial,which allowspenetration
into the interior of the CO2 from the air. When this happens, the CO2 reaction occurs
with the calcium hydroxide of the concrete and the hydrated compounds of the cement,
calcium carbonate formed by which the pH decreases, reaching values lower than nine
[8].

Improvement of the Simulation of the Degradation of Reinforced Concrete 215

This paper presents a diffusion model simulated considering the different factors
that affect the corrosion initiation rate of the reinforcement structure, such as the water-
cement ratio, temperature, density, and chloride binding capacity of concrete since all
these variables are handled. A significant amount of information becomes necessary
to use computational architectures based on multiple GPUs to obtain better results in
shorter times. This section presents the physical problem from the material’s point of
view. The second section shows the mathematical model, the simulation, and the results.
Finally, a conclusion and further work are presented.

2 Simulations and Results

2.1 Mathematical Model

Simulation of the Prediction of the Useful life of Concrete: The corrosion of the
reinforcement due to the penetration of chloride ions and the carbonation of concrete
is a major problem that reduces the durability of reinforced concrete structures. Once
the chloride concentration around the surface of the steel reinforcement exceeds a cer-
tain limit concentration or the pH value of the concrete pore solution decreases to a
threshold value due to the carbonation reaction, the steel reinforcement will undergo the
depassivation process, and then the metallic corrosion. [10, 11, 12].

Carbonation Process: Concrete carbonation is a complex physical and chemical pro-
cess. In our model, this process is divided into four parts: (1) carbon dioxide transport,
(2) dissolved calcium hydroxide mass balance, (3) solid calcium hydroxide solution in
concrete pore solution, and (4) Chemical reaction of CSH with carbon dioxide. The
governing equations can be given by:

∂(∅ − ∅we)Cco2

∂t
+ ∇.Jco2 = −Ich − ICSH (1)

∂∅weCch,d

∂t
+ ∇.Jch,d = −Ich + Id (2)

∂Cch,s

∂t
= −Id (3)

∂CCSH

∂t
= −rCSH (4)

where CCO2 is the molar concentration of carbon dioxide in the gaseous phase of the
pores (mol/m3 of porous air), ∅ is the current porosity of the concrete,∅we is the fraction
of water volume in the evaporable pore (m3 of solution/m3 of concrete), Jco2 is the flow
of carbon dioxide Ich, and ICSH is the rate of carbon dioxide consumption due to its
chemical reaction with Ca (OH)2 and CSH, respectively.

Cch,d is themolar concentration of dissolved calciumhydroxide (mol/m3 of solution).
Jch,d is the flow of hydroxide ions, Id is the dissolved velocity of solid calcium hydroxide
to the pore water. Cch,s is the molar concentration of solid calcium hydroxide (mol/m3

216 F. A. Mejía et al.

of concrete), CCSH is the molar concentration of CSH in concrete (mol / m3 of concrete),
rCSH is the reaction rate of CSH with carbon dioxide. The right sides in Eqs. (1)–(4) are
determined by the Papadakis carbonation model [13, 14, 15]. The relationship between
∅we and h can be estimated according to the BSB model [16]. Several carbon dioxide
diffusion coefficient estimation methods are used Dcar

CO2
are available in the literature

[15, 16] [17].

Transport of Chloride Ions with Carbonation: It is assumed that the transport equa-
tion of chloride ions after carbonation still complies with Fick’s second law of diffusion.
The total amount of chloride in a unit volume of concrete consists of the free chloride
present in the pore solution and the bound chloride of the Friedel salt.

Ctc = ∅weCfc + Cbc (5)

where Ctc is the total chloride content in a unit of concrete volume (mol/m3 of concrete)
and Cfc is the content of free chloride ions (mol / m3 of pore solution). Cbc is the content
of bound chloride (mol/m3 of concrete). A part of the bound chloride can participate in
the chemical reaction shown in Eq. (3), releasing free chloride ions.

The amount of chloride attached depends on the concentration of free chloride in the
pore solution and the degree of carbonation because we consider carbonation. Therefore,
the instantaneous variation of the total chloride can be expressed as:

∂Ctc

∂t
= ∂∅weCfc

∂t
+ ∂Cbc

∂Cfc

∂Cfc

∂t
+ ∂Cbc

∂αc

∂αc

∂t
(6)

where ∂Cbc
∂Cfc

is an isotherm between the bound chloride and the free chloride ∂Cbc
∂αc

can
also be described with an isotherm in which carbonation should be considered.

Presented the mathematical model to describe the degradation of reinforced concrete
in saltwater environments, proposing an algorithm to be implemented is possible, as
shown in the following section.

2.2 Simulation Algorithm

The algorithm’sfirst part is loading input variables and initializing the data structureswith
the initial values. Subsequently, it starts the iterations where the time variable varies. The
concentrations in current carbonates and chlorides are calculated simultaneously with
the transfer of temperatures and humidity in the concrete. The chloride concentrations
are stored in a VTK file to visualize the chloride entry in the reinforced concrete block.
Afterward, it is verified that the chloride concentrations do not reach their limit value and
continue until reaching the limit value, thus estimating the valuable lifetime of reinforced
concrete. (See Fig. 2).

Using the parallelization techniques and the OpenACC libraries [9], and the com-
piler since it is the most robust one currently available, as well as being installed on the
GUANE-1 cluster of the High-Performance and Scientific Computing Center, SC3UIS
(from Spanish acronym of Supercomputación and Cálculo Científico) at Universidad
Industrial de Santander in Bucaramanga, Colombia [18]. The process of implementing

Improvement of the Simulation of the Degradation of Reinforced Concrete 217

the codes using parallelization techniques of the simulation algorithm based on the chlo-
rides diffusion model combined with the diffusion of carbonates in reinforced concrete
exposed to a marine environment for their respective execution in architectures based on
multiple GPUs. Code development is performed by scientists of the Advanced Comput-
ing and Large Scale Group, CAGE (from Spanish acronym of Computación Avanzada y
de Gran Èscala), and Corrosion Research Group, GIC (from Spanish acronym of Grupo
de Investigación en Corrosión).

The algorithm in Fig. 2 shows the parallel regions in the workflow after the data
input, calculating the current chloride and carbonate concentration and verifying the
concentrations. In the workflow, visualization is also presented, and, using some specific
functions with the directives, the simulation provides information about the process, as
seen later in Fig. 4.

Fig. 2. Algorithm workflow diagram

The main function that calculates the diffusion of the chloride ion in the reinforced
concrete using the second law of Fick was parallelized; for this purpose, the “pragma
acc kernels” directive was used, which tells the compiler to generate parallel accelerator
cores (CUDA cores in our case) for the loop nests that follow the directive. (See Fig. 3).
Obviously, the algorithm is independent of the implementationmechanismand execution
support. Still, contemplating the need to accelerate the execution of the simulation as the
mathematical properties of the algorithm, we will concentrate on the implementation
thought towards massively paralleled machines based on Purpose General platforms
based in CPUs/GPUs.

218 F. A. Mejía et al.

An important aspect to consider is that for this project, and as the proposed algorithm
is seen, we seek to accelerate the visualization of the phenomenon; in this case, the
concentration of the chloride ion advances in reinforced concrete, then the visualization
of the concentrations is critical1.

The implementation mechanism of the algorithmmainly used C and directives using
OpenACC in a homogeneous code. All functions and open-source code are available in
a open repository in [18].

Fig. 3. Parallel code of the function

Figure 3 shows a fragment of the parallel code of the function to highlight the use of
the pragmas and the placement in the structure of the code. It is important to note the use
of collapse on the loop level since this will allow the compiler to use multi-dimensional
blocks.

Considering that about five to seven runs were performed for the simulation for
each of the thirteen simulations presented (and obtain the respective values), a very
good standard deviation was obtained (with very little variability, between 0,3 and 0,5).
However, as explained below, we must not confuse the runs with the interactions made.

1 Another important aspect to observe, but more for computational reasons, was the performance
measures around the resources balancing, the acceleration, and time used in the execution,
visible in the proposed algorithm in Fig. 2.

Improvement of the Simulation of the Degradation of Reinforced Concrete 219

The visualization of the vtk files generated by the algorithm can be seen as a movie
using the Paraview software,2 as seen in Fig. 4. Fundamentally, it is visualized by high-
lighting the colors according to key information needed to observe the phenomenon and
understand the degradation. Then, the color difference provides information about the
concentration of the chloride ion advance in reinforced concrete.

Fig. 4. Visualization of the chloride ion advance in reinforced concrete.

The simulation was executed in sequential solution using only CPUs and in a parallel
solution on a CPU/GPU platform using initially one GPU and after with two GPUs,
obtaining the results shown in Table 1. This usage configuration corresponds to one of the
GUANE-1 Supercomputer node types. The presented results are in terms of processing

2 ParaView is an open-source,multi-platformdata analysis andvisualization tool. It iswidely used
in various fields, including the materials and condensed physics community. More information
about Paraview in: https://www.paraview.org/

https://www.paraview.org/

220 F. A. Mejía et al.

time in seconds for each of the solutions, considering the next computer architecture
elements:

Sequential Running: Intel Xeon CPU E5645 @ 2.40GHz (12 Cores), RAM 104 GB.
Linux operating system, CENTOS distribution. Compiled in GCC.

Parallel CPU/GPU: Intel Xeon CPU E5645 @ 2.40 GHz (12 Cores), RAM 104 GB,
NVIDIA GPU Tesla 12 GB GDDR5. Linux operating system, CENTOS Distribution.
Compiled in NVIDIA NVC (to exploit OpenACC directives suite).

Table 1 shows in the first column the size of the cube for the analysis is varied (256
× 256 × 400, 512 × 512 × 400, and 1024 × 1024 × 400). The second column presents
the number of iterations of the simulation (8000, 16000, 32000, and 64000) and obtains
results from an average of executions (five to seven executions). The last three columns
organize the results for the performed simulations, the third column only for results using
the CPU, and the fourth and last columns the results using one GPU and two GPUs.

Table 1. Execution times (seconds) of the simulation

Cube size Iterations Sequential (seg) GPU (sec) 2XGPU (sec)

256x256x400 8000 57600 32000 17297

256x256x400 16000 115200 65455 34898

256x256x400 32000 230400 137143 73555

256x256x400 64000 460800 263314 142665

512x512x400 8000 268800 76800 40394

512x512x400 16000 537600 145297 75991

512x512x400 32000 1075200 303729 159500

512x512x400 64000 2150400 627854 331192

1024x1024x400 8000 1084800 166892 86473

1024x1024x400 16000 2169600 335332 173523

1024x1024x400 32000 4339200 666544 344544

1024x1024x400 64000 8678400 1329005 683203

In Table 1. is interesting to observe the increase of base time in the execution by
increasing the dimensions of the simulation. However, very quickly to associate these
dimensions to threads of support of the execution obtains a significant reduction in
time, which requires an analysis of the acceleration. According to the obtained data, the
simulation implementation using GPU parallelization achieves much shorter times than
the sequential implementation, achieving accelerations close to seven times compared
to the sequential algorithm, as shown in Fig. 5.

Looking for more complexity, resolution, and acceleration, two GPUs were used
in a new implementation. Thenceforward, employing the parallel algorithm in a hybrid
version that combines OpenMP with OpenACC over a multi-GPU architecture of two

Improvement of the Simulation of the Degradation of Reinforced Concrete 221

GPUs, results were almost equal to twice the acceleration obtained for its version for a
single GPU analyzed previously. Hence, it determines that the algorithm is scalable and
accelerates the processing by increasing the number of GPUs used.

Fig. 5. Acceleration for the simulation in 1XGPU.

The acceleration obtained for each cube size analyzed for the MultiGPU algorithm
is shown in Fig. 6. Comparing the results of both Figs. 5 and 6, we observe that linear
acceleration that is visible, independent of the change in dimension, is sustained by
scaling, as stated above. In the case of using one GPU, the attended acceleration is the
7X, and in the case of the two GPUs is the 12X.

However, the presented results, it’s important to note that not all code can be easily
parallelized and accelerated on a GPU using directives. Some algorithms and compu-
tations may require more fine-grained control and optimization using low-level GPU
programming techniques. Furthermore, the performance benefits of GPU acceleration
using directives may vary depending on the specific code and hardware configuration.
It’s important to profile and optimize the code to achieve the best performance on the
target GPU architecture. For this simulation, the configuration of the support platform
and different elements organized in the compute node allow to focus on processing
acceleration. As can be seen, for example, the RAM memory used allows the dimen-
sions of the experiment to be increased easily and the limitation used was due to the
detail characteristics required by the experiment of the degradation of armored concrete
in saltwater locations, as the columns on a pier.

In Fig. 7, the execution times obtained for the sequential version as the parallel
version using OpenACC directives are shown, with the values of the parallel version
being much smaller, and its difference concerning the serial version increases as the size
of the data increases cube to simulate.

222 F. A. Mejía et al.

Fig. 6. Acceleration obtained for the simulation in 2XGPU.

Fig. 7. Sequential and 2XGPU runtimes

2.3 2.3. OpenACC Directives

The OpenACC directives facilitate the programming of the GPU since employing a few
lines of code without worrying about the location of the data allows for parallelizing
in the GPU program. These directives are added to the code reasonably easily and

Improvement of the Simulation of the Degradation of Reinforced Concrete 223

quickly. Still, it does not allow the programmer to control the hardware in which it is
executed directly, so the program can behave differently than expected; besides, not
directly allowing handling the details of the communication between CPU-GPU can
cause software optimization to deteriorate performance. [9] The OpenACC directives
are based on the use of #pragma compiler instructions following the syntax:

#pragma acc directive-name [clause-list] new-line.
These directives apply to the code block immediately following the #pragma tag.

PGI now supports the following OpenACC directives:

Kernels Construct. Defines the program region that must be compiled in a sequence
of kernels for execution in the accelerator device.

Data Directive. Defines data, usually matrices that must be assigned in the device
memory for the duration of the data region, if the data must be copied from the host to
the memory of the device when entering the region and copied from the device to the
memory of the device host when leaving the region.

• Host Data Construct. It makes the device’s data address available on the host.
• LoopDirective.Describe the typeof parallelism to run the cycle anddeclare variables,

private reduct, and arrangements within the cycle. It applies to the cycle that should
appear in the following line of the directive.

Combined Parallel and Loop Directive. Specifying a Loop Directive nested immedi-
ately within a Kernel Directive is a shortcut. The meaning is identical to the explicit
kernel specification that contains a Loop Directive.

Cache Directive. Specifies the matrix elements or sub-arrays to be searched at the
highest level of the cache for the body of a Loop. It should appear at the top inside the
Loop.

Declare Directive. Specifies that a matrix or arrays should be allocated in the device’s
memory for the duration of the implicit data region of a function, subroutine, or program.
Specifies whether the data values will be transferred from the host to the device memory
when entering the implicit data region and from the device to the host memory when
exiting the implicit data region.

Update Directive. They were used during the validity of the accelerator data to update
all or a part of the host memory array with the corresponding array values in the device’s
memory or to update all or part of the memory array of the device with the corresponding
array values in the host memory.

Routine Directive. It tells the compiler to compile a procedure for an accelerator and
the host. In a file or routine with a procedure call, the Routine Directive describes the
implementation of the attributes of the process when it is called over the accelerator.

The detailed used directives are available and documented in the provided code
via the site [18]. In these experiments to improve the simulation of the degradation of
reinforced concrete in saltwater environments, achieving the GPU acceleration using
directives simplifies the coding. The used directives provide a high-level approach to

224 F. A. Mejía et al.

GPUprogramming, allowing developers to offload computationally intensive tasks to the
GPUwithout having towrite low-levelGPU-specific code and obtain a good acceleration
to take advantage of the available architecture.

3 Conclusions and Further Work

The application of high-performance computing techniques allows for obtaining results
of estimating the advance of the chloride ion within a concrete structure faster and more
accurately. Since it enables it to handle many more factors that affect it and is more
meshing-dense, it allows for much more accurate results. In the case of materials, devel-
oping techniques, algorithms, and implementation mechanisms, as the use of directives,
is crucial to obtain good results in measured times.

The model proposed in this project is a convenient tool that allows evaluating the
progress of the Cl- ion through the concrete structures. Thus, if the necessary concen-
tration has been reached for the start of depassivation of the reinforcing steel or the
approximate time for this to happen, before this work, the simulations performed using
sequential solutions were very costly in time and with little precision.

Using the OpenACC directives simplified the implementation of the parallel version
simulation algorithm using architectures based on multiple GPUs. Today, other projects
collaborate are in progresswithmaterials engineers, physicists, and computer developers
working on open-source codes to perform simulations. These codes and documentation
are available in [18].

Acknowledgment. All experiments were supported by the Supercomputación y Cálculo Cientí-
fico UIS (SC3UIS), a special support unit for advanced computing of the vice-rector for research
and extension of the Universidad Industrial de Santander (UIS).

References

1. Li, L., Page, C., Wang, Y.: Modelling of chloride ingress into concrete from the saline
environment, pp. 1573–1582 (2005)

2. Velázquez Gonzalez, R.: Electrochemical evaluation of the corrosion in grade in reinforced
steel in the presence of admixtures. Portugaliae Electrochimica 23, 179–194 (2005)

3. Nvidia Corporation. ¿Qué es el GPUComputing acelerado?. http://www.nvidia.es/object/gpu
computing-es.html

4. Mejía de Gutiérrez, R.: Durabilidad y Corrosión en Materiales Cementicios. Universidad del
Valle, Cali, Colombia. Cyted, pp. 85–115 (1999)

5. Del Valle Moreno, A., Pérez López, T., y MaerínezMadrid, M.: El Fenómeno de la Corrosión
en Estructuras de Concreto Reforzado. Publicación Técnica No. 182 Sanfandila, Qro, pp. 33–
50 (2001)

6. Fontana, M.G.: de Corrosion engineering, Nueva York, Mc GrawHill, 556 (1986)
7. Mindess, S.a.Y.J.: Concrete. Prentice Hall, Nueva Jersey (1981)
8. G. d. I. d. c. UIS, Desarrollo metodológico electroquímico de la corrosividad de estruc-

turas de concreto sometidas a los ambientes marinos de las costas del pacífico colombiano,
Bucaramanga, Colombia, pp. 15–18 (2009)

http://www.nvidia.es/object/gpucomputing-es.html

Improvement of the Simulation of the Degradation of Reinforced Concrete 225

9. OpenACC, Homepage. https://www.openacc.org/sites/default/files/inline-files/OpenACC_P
rogramming_Guide_0.pdf

10. Bazant, Z.: Physical model for steel corrosion in concrete sea structures theory, de. J. Struct.
Div. ASCE 105, 1137–1153 (1979)

11. Caims,J.: State of the art report on bond of corroded reinforcement (1998)
12. Ho, R.L.D.W.S.: Carbonation of concrete and its prediction, pp. 489–504 (1987)
13. Papadakis, C.V.M.F.V.: Fundamental modeling and experimental investigation of concrete

carbonation. ACI Mater. J. 88(4), 363–373 (1991)
14. Papadakis, C.V.M.F.V.: A reaction engineering approach to the problem of concrete

carbonation. J. Am. Inst. Chem. Eng. 35(10), 1639–1650 (1989)
15. Papadakis, C.V.M.F.V.: Physical and chemical characteristics affecting the durability of

concrete. ACI Mater. J. 88(2) 186–196 (1991)
16. Brunauer, J.S.E.B.S.: Adsorption on non-porous solids,» J. Colloid Interface Sci. 30 (4),

p. 546–552, (1969); Saetta, R. V. A.: Experimental investigation and numerical modeling
of carbonation process in reinforced concrete structures. Part I. Theoretical Formulation,
pp. 571–579 (2004)

17. Saetta, R.S.R.V.A.:Mechanical behavior of concrete under physical–chemical attacks. J. Eng.
Mech. ASCE 124(10), 1100–1109 (1998)

18. Supercomputación y Cálculo Científico, Homepage. http://www.sc3.uis.edu.co/

https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf
http://www.sc3.uis.edu.co/

Parallel Hybrid-Heterogeneous Single
Value Decomposition Factorization

Juan C. Hernández-Cortés1 , Amilcar Meneses Viveros2,3 ,
Liliana Ibeth Barbosa-Santillán3(B) , Erika Hernández-Rubio3 ,

and Juan J. Sánchez-Escobar3

1 Department of Computer Science, Cinvestav -IPN, Mexico City, Mexico
ameneses@cs.cinvestav.mx

2 Universidad de Guadalajara, Guadalajara, Mexico
3 SEPI -ESCOM and CETI, Mexico City, Mexico

ibarbosa@cucea.udg.mx

Abstract. SVD factorization is a fundamental operation to solve prob-
lems in chemistry, biology, physics, and engineering. These problems are
image processing, data mining, and big data, among others. There are
several methods to get SVD factorization. One of these methods involve
the use of Householder transformation, so it is possible to parallelize this
task. Furthermore, novel computer architectures are oriented to use het-
erogeneous computing, such as CPUs and GPUs, in order to increase the
performance and reduce the energy consumption. In this work, an hetero-
geneous parallel implementation of SVD based on Householder transfor-
mation is presented. Some strategies for matrix partition are presented
in order to scale the program in the use of GPU cards. The speedup is
increased when several GPU cards are used.

Keywords: SVD · Heterogeneous parallel programming · Householder
Transformation

1 Introduction

Engineering and science problems use matrix operators or large matrices that are
usually symmetric. The main transformations that apply to these operators are
QR factorization for the resolution of systems of equations (which are generally
LU, Givens, Householder or Cholesky factorization) (Sameh and Kuck 1978;
Cosnard et al. 1986).

Bowgen and Modi (1985) QR factorization is a basis for solving equations
and is also very useful for calculating other operations such as the determinant or
inverse of a matrix (Choi et al. 1996). Factorization can be carried out by various
methods, including LU, Cholesky, Householder or Givens rotations (Householder
1958; Sameh and Kuck 1978; Chen et al. 2008). The Householder transformation
H is a reflection of a vector v on a plane. It allows many elements of v to be zero
in a single transformation. The Householder transformation is characterized by
its low complexity and the properties that have its transformation because it
allows rebuilding in an appropriate way to the matrix Q while building R.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 197–211, 2024.
https://doi.org/10.1007/978-3-031-52186-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52186-7_15&domain=pdf
http://orcid.org/0009-0005-1413-5728
http://orcid.org/0000-0003-1976-6199
http://orcid.org/0000-0002-3509-9667
http://orcid.org/0000-0002-0925-7860
http://orcid.org/0000-0003-0368-341X
https://doi.org/10.1007/978-3-031-52186-7_15

198 J. C. Hernández-Cortés et al.

Bifactorization is an essential step in several processes such as diagonaliza-
tion, SVD factorization, or solving low-rank matrix recovering problems.

The problem runs on supercomputers due to the high complexity and the
large size of the matrices. The diagonalization of a matrix normally takes a few
hours or days (Sunderland 2009) (Leininger et al. 2001) do it in less time. In
several cases, the SVD factorization must be calculated in real-time, for exam-
ple, in Internet search engines such as Google. The diagonalization and SVD
factorization therefore needs to be done within a short time (Osinski and Weiss
2005; Liu et al. 2002).

Many of the current supercomputers are computer nodes connected to high-
speed networks that share a mass storage system. Each node may have one
or more multicore processors or an accelerator such as a GPU or Xeon-Phi.
This diversity of processing units means that only one node must have pro-
grams other than the multicore processors. Based on GPUs’ use, it is possible
to coordinate between them and with other processes to obtain the maximum
performance of a node. Hence, it is necessary to apply various parallel program-
ming paradigms, such as shared memory, distributed memory, hybrid memory,
and heterogeneous computing. We require programs that combine paradigms,
such as hybrid-heterogeneous parallel programs. This type of program can com-
bine MPI with OpenMP and CUDA, or MPI with OpenCL, allowing us to use
the different processing units.

The diversity of execution types units to execute processes in parallel. It
forces us to ask ourselves which option of execution in parallel is the most
appropriate. It is not the same to send the task to a server with some GPU
and multicore processors than to diverse nodes in a supercomputer. Therefore,
are several parallel implementations to use the most convenient one. In this work,
we present various parallelization strategies for the Householder transformation
depending on their application to other algebraic operations. These strategies
are oriented towards parallelization with GPUs using CUDA, multicore proces-
sors using OpenMP and, distributed memory using MPI. The main idea is to
present how Householder’s transformation has various parallelization strategies
that depend on the matrix operation. That is a fundamental operation. Its best
performance varies from implementations in heterogeneous hybrid environments.

A householder in 1958, (Householder 1958), proposed a transformation to
solve a system of equations using a point reflection on the plane. The reflection
is defined by a unit vector v that is orthogonal to the plane such that the
reflection of a point x in the plane is the linear transformation:

x − 2〈x,v〉 = x − 2vvTx.

We can also write this transformation in matrix form, as follows:

P = I − vvT

H
, (1)

where H = 1
2 |v|2 and v is a real vector. The Householder transformation

matrix has the property of being symmetrical or orthogonal. The main idea of

Parallel Hybrid-Heterogeneous Single Value Decomposition Factorization 199

Householder transformation is that by applying it to a vector x, the result will
be:

Px = ||x||e0.
where e0 is the first vector of the canonical base. To achieve this, the vector v
in Eq. (1) must be v = x ± |x|e0.

In 1992, (Press et al. 1992), discussed how to use the Householder transfor-
mation for the tridiagonalization of a symmetrical matrix. A is a non-singular
symmetrical matrix used to find the tridiagonal matrix T similar to A. Then,
we are looking for an invertible matrix P for which:

T = PAP−1 (2)

The matrix P is a multiplication of k matrices of the form PKPk−1 . . .P1,
where a matrix PJ is a transformation of Householder, and P−1 =
P1 . . .Pk−1PK .

Then P1 is such that

P1A =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0
0
... (n−1)P1

0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a00 a01 a02 · · · a0n−1

a10
a20
... irrelevant

an−1,0

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

a00 a01 a02 · · · a0n−1

k
0
... irrelevant
0

⎤
⎥⎥⎥⎥⎥⎦
.

Where (n−1)P1 is a Householder matrix with dimension (n− 1)× (n− 1). Then
computing a a bifactorization for P1 applied to A we get

P1AP1 =

⎡
⎢⎢⎢⎢⎢⎣

a00 k 0 · · · 0
k
0
... irrelevant
0

⎤
⎥⎥⎥⎥⎥⎦
.

This process is repeated k − 1 times, to obtain the tridiagonal matrix. And for
each Pi, the dimension of the Householder matrix is decreased.

From the original paper of Householder (Householder 1958), the complexity
in QR factorization is

O(n3).

The main problem addressed in this work is to carry out the bifactorization
of large matrices in different GPU cards, such that the acceleration advantages
of these devices are.

200 J. C. Hernández-Cortés et al.

Section 2 shows the related work. Section 3 discusses the parallelization
strategies. Section 4 shows the results of the experiments. Finally, we conclude
with the conclusions and the future work.

2 Related Work

In the last decades, parallel algorithms developed for bifactoriazacion; many of
them do not use Householder transformation. Several papers have been pub-
lished on the parallelization of the Householder transformation in CUDA for
bifactorization and other transformations.

Cosnuau in 2014, (Cosnuau 2014), implemented Householder bifactorization
in order to perform the tridiagonalization of matrices. Here, small matrices of
128×128 used to solve eigenvalues and eigenvectors problems since the author
had the idea that it was more efficient to perform for small instances of the
problem the calculations on CPU. Lahabar and Narayanan (2009) implemented
an algorithm to carry out SVD array decomposition on a GPU. In order to per-
form the decomposition, it was necessary to apply bifactoring to diagonalize the
matrix later. The next step of bifactorization is carried out with the Householder
method of reflection.

Sachdev et al. (2010) implemented SVD using bidiagonalization followed by
diagonalization. This procedure was the first to be deployed on a GPU. Bidi-
agonalization implemented using Householder transformations that were closely
related to BLAS operations. The QR algorithm is applied for diagonalization.
This work outperformed an implementation using MATLAB and Intel Math
Kernel Library (MKL) LAPAC on the CPU.

3 Parallelization Strategies of PahHousholder
Architecture

In this work, we consider MPI, OpenMP and CUDA programming models. The
use of several programming models allows us to build hybrid-heterogeneous par-
allel programs that can be executed on clusters with nodes based on multicore
processors and GPUs.

MPI is used for communication between the different processes to give a
distributed memory model. OpenMP is used to perform some operations in par-
allel, using multithreading in a shared-memory scheme, and CUDA is used to
accelerate the GPU computations.

Figure 1 shows that communication is an essential aspect of hybrid-
heterogeneous parallel programs to obtain good performance. The transfer times
between the different execution units must be reduced, and memory access must
be efficient. A good data partitioning strategy is to minimize the number of com-
munication operations. Also, the exchange of information between the CPU and
GPU consider since the stored data operates in the host memory. One feature of
the strategies we present here is that they try to minimize information transfer
between the host and the GPU.

Parallel Hybrid-Heterogeneous Single Value Decomposition Factorization 201

Fig. 1. Use of MPI, OpenMP and, CUDA functions in parallel implementations.

The iterative method calculates the Householder matrix based on the tridi-
agonal form of a symmetric matrix.

Symmetric matrix A multiplied by this matrix. The elements below the i-th
row and the elements to the right of the i-th column become zero.

Several different implementations of this method are described in the follow-
ing sections.

3.1 Sequential Implementation

This implementation used the C language to realize the algorithm of (House-
holder 1958) (Golub and Loan 2012; Press et al. 1992). The main tasks in this
implementation are the computation of the 2-norm of a vector, the vector inner
and outer products, submatrix multiplication, the sum of matrices, and scalar
and matrix multiplication. The data structures used to store the input, House-
holder matrix, and the resulting matrices are double type arrays of size n × n.
Since the size of the Householder matrix decreases by one row and one col-
umn at each iteration, the operations between submatrices were implemented
by traversing the indexes in the original array of size n × n.

3.2 OpenMP Implementation

The parallelization of OpenMP programs is straightforward, and since the House-
holder transformation uses matrix and vector operations, then quickly paral-
lelized. The tasks parallelized with OpenMP were the computation of the 2-norm
of a vector, the vector inner and outer products, submatrix multiplication, the
sum of matrices, and scalar and matrix multiplication.

A critical point to bear in mind with this implementation is that the threads
created to execute the tasks in parallel are managed by the operating system,

202 J. C. Hernández-Cortés et al.

meaning that parallelization with this tool can result in excessive operations
involving the creation and destruction of threads, which can create difficulties
for massive instances of the problem. To take advantage of parallelization with
OpenMP is the parallelized tasks must be of coarse granularity.

3.3 GPU Implementation

Implementing an algorithm in a GPU can represent a great advantage because
this type of device has high computing power. Depending on the programming
tool used, parallelization can be fast (with OpenAcc) or may take more time
(with CUDA). However, a CUDA implementation is beneficial since it raises a
better performance. The parallelized tasks with CUDA were the computation of
the 2-norm of a vector, the vector inner and outer products, submatrix multi-
plication, the sum of matrices, and scalar and matrix multiplication.

Due to the GPUs’ architectural features, the arrays’ data structure was a
double array of size n × n. A critical aspect of this implementation is the data
exchange operations between the host memory and the GPU memory. Since
the application matrices are in host memory, they must be copied to the GPU
memory, as shown in Fig. 2. Since this method requires n1 iterations, the imple-
mentation performs the smallest possible number of this type of operation.

3.4 Hybrid-Heterogeneous Implementation

The bifactorization of a matrix is necessary to perform two matrix multiplica-
tions in each method’s iteration. We also have vector operations, the addition of
matrices, and the multiplication of a scalar by a matrix. All of these operations

Fig. 2. Copy matrix from host memory to GPU memory.

Parallel Hybrid-Heterogeneous Single Value Decomposition Factorization 203

are performed in the GPU, while operations involving sending and receiving data
in the CPU.

Figure 3 shows the bifactorization process in the hybrid-heterogeneous imple-
mentation. From Fig. 3, In the first stage, the vector u is sent to all processes
using a broadcast operation. The vector u is the i-th row of the matrix A. The
slave and master nodes calculate the part of the Householder matrix (H); the
part that is calculated by each node depends on the range of the node and the
total number of processes that are running. It is important to note that although
MPI balances the nodes’ loads, this implementation assumes that all GPUs have
the same capabilities.

As shown in Fig. 3, Stage 2 starts when each process receives the vector
u. The calculation of the 2-norm of the vector is done, and the product point
and a scalar. All these operations are performed on the CPU using OpenMP,
since reduction operations (i.e., of a vector) we obtain one scale. It is better
to perform this type of operation on the CPU, as the GPU would require too
many synchronizations between the threads. At this stage, when each process
has calculated the corresponding part of the Householder matrix, the master
process sends the columns of the original matrix to each node to perform partial
multiplication with the Householder matrix.

In Stage 3, the slave processes send the solutions to the master process, which
combines them to give the matrix resulting from the multiplication of the matrix
H and A. The combined solution is sent to all nodes as the rows of the matrix
HA.

In Stage 4, as shown in Fig. 3, each process receives the rows of the matrix
HA and performs a partial multiplication of the matrices HA and H. When
these processes have generated the partial results, they go to the master process.

In the last stage, the master process unifies the partial solutions to form the
matrix HAH. If the number of iterations is less than n − 1, iterating until the
tridiagonal matrix is obtained.

3.5 Considerations

The following considerations are :

– The matrices are symmetric; the rows sent since rows store the matrices.
When the columns are sent to the nodes to perform the HA multiplication,

– In each iteration, no ones are added to the main diagonal of the reflection
matrix as indicated by (Householder 1958), but the indices of the multiplying
matrices traversed.

– At the end of the iteration, a reordering of the matrix HAH is carried out,
because in this last multiplication columns in the different nodes divide the
matrix.

204 J. C. Hernández-Cortés et al.

Fig. 3. PahHousholder process flow.

4 Experiments and Results

In order to test parallel strategies implemented we have conduce several exper-
iments. Dense matrices up to 4000 × 4000 are used as input and the execution
times, communication times and information exchange time between GPU and
CPU are analyzed.

The infrastructure is two computers for these experiments are used: a server
and a laptop, which used CentOS and Ubuntu Linux distributions, respectively.

The server has:

– CPU
• Model: Intel Xeon X5675
• Socket number: 2

Parallel Hybrid-Heterogeneous Single Value Decomposition Factorization 205

• Frequency: 3.07 GHz
• Cache Memory: 12 MB
• Core number: 6 physics, 6 virtual per socket. 12 physics and 12 virtual

in total.
– RAM Memory: 23 GB.

The server also had three nVidia GPU cards, as shown in Table 1:

Table 1. GPU cards characteristics.

GPU Memory (MB) Threads Maximum by bloc CUDA Cores Memory Velocity (MHz) GPU (MHz) Velocity

Tesla C2070 5375 1024 448 1494 1147

GeForce GTX 460 1024 1024 336 1850 1530

Quadro K2000 2048 1024 384 2000 954

The Laptop had the following characteristics:

– CPU
• Model: Intel i7 6700HQ
• Frequency: 3.5 GHz
• Cache Memory: 6 MB
• Cores numbers: 4 Physics, 4 virtual

– RAM memory: 8 GB

This laptop has a nVidia GTX 960M, Table 2:

Table 2. Characteristic of GTX 960M.

GPU Memory (MB) Max Threads per block CUDA Cores Memory Velocity (MHz) GPU Frequency (MHz)

GeForce GTX 960M 4044 1024 640 2505 1176

The programming language is C with the following libraries: CUDA (version
6.5), OpenMP (version 4.4.7), and OpenMPI (version 1.4).

The bifactorization implementations were tested on square random symmet-
ric matrices of different dimensions were generated, and the following programs
executed: the sequential program, parallel with OpenMP, heterogeneous using
CPU and GPU devices, and finally a hybrid- heterogeneous implementation
using heterogeneous MPI processes to scale up to two and three GPUs.

206 J. C. Hernández-Cortés et al.

Table 3. Execution time for OpenMP implementation of bifactorization process shows.

n Time (ms)

One Thread Two Threads Four Threads Six Threads

128 819 413 214 150

256 19325 4 9755 4997 3514

512 330515 165750 84017 57793

1000 17046837 8482279 4137022 2761388

n Speedup (ms)

One Thread Two Threads Four Threads Six Threads

128 1 1.98 3.82 5.46

256 1 2.25 4.42 4.98

512 1 2.17 4.25 5.19

1000 1 2.009 4.12 6.17

4.1 Sequential Execution

In order to get a reference execution time to compare the different parallel imple-
mentations. This experiments are shows in column “One Thread” in Table 3. The
behavior of the complexity of the algorithm observes in these results.

4.2 OpenMP Experiments

Table 3 shows the execution times for one, two, four and six threads for square
matrices of size 128×128, 256×256, 512×512 and 1000×1000. We can observe
that the speedup is close to the number of threads used, meaning that the
speedup is close to four for four threads. Table 3 present the execution time
and speedup obtained using several cores in the multi-core processor. In several
cases, the acceleration achieved is greater than the number of cores, which would
appear to violate traditional Amdahl’s law. However, this behavior is due to
the experiments run on a processor with Turbo Boost technology. It increases
the running frequencies from 3.06 GHZ to 3.46 GHZ. Therefore, the traditional
maximum Amdahl’s speedup multiplied by H = 3.46/3.06 ≈ 1.1307 (Meneses-
Viveros et al. 2020). For one thread, it means that for one thread must be 1.1307,
for two threads is 2.2614, for four threads is 4.5228 and six threads are 6.7842.

4.3 Heterogeneous Implementation

The heterogeneous parallel implementation used a GPU and CPU, and Table 4
shows the execution times for the GTX 960M card and the Fermi Tesla 2070.
This table observes that although the transfer time is lower for the M690 card,
the execution time is better on the Tesla 2070. Besides, the memory size of the
M690 is not sufficient for problems of size greater than 256. A comparison of the

Parallel Hybrid-Heterogeneous Single Value Decomposition Factorization 207

execution of bifactorization on both cards shown in Fig. 4. We can observe how
the same experimentation shows a considerable reduction in the execution time
depending on the card on which it is executed.

Table 4. HouseHolder bifactorization execution time using only GPUs.

n GTX 690M - Times(ms)

Data Exchange(CPU-GPU) kernel Execution Total Speedup

128 49.25 42357.80 42407.05

256 186.18 385910.47 386096.65

512 764.07 3827876.50 3828640.57

Tesla 2070 Times(ms)

Data Exchange(CPU-GPU) kernel Execution Total Speedup

128 65.59 5554.12 5619.71

256 253.98 51 127.34 51381.32

512 1027.45 542 280.13 543 307.58

1000 3914.59 6 260 953.50 6264868.09

2000 15671.66 63 241 900.00 63257571.66

128 256 512 1,000

0

2

4

6

·106

Matrix size

E
xe
cu

ti
on

T
im

e(
m
s)

Execution Times

GTX 960M
Tesla

Fig. 4. Householder bifactorization execution time on GTX M690 and Tesla 2070.

4.4 PahHousholder Implementation

The parallel heterogeneous hybrid (HH) implementation uses multiple CPUs
and GPUs. Table 5 shows the performance when the bifactorization runs on
more than one GPU. This approach has two main advantages: firstly, there is
a reduction in the execution time, and secondly, we can increase the size of the
problem. Figure 5 shows the decrease in execution time as the number of GPUs
used increases.

208 J. C. Hernández-Cortés et al.

Table 5. Execution time for HouseHolder bifactorization runs in two and three GPUs
cards.

n Two GPUs - Times(ms)

Data Exchange(CPU-GPU) kernel Execution MPI Communication Total

1 000 13 565.85 1 724 308.75 5 232.46 1 743 107.06

2 000 71 268.21 28 066 792.00 42 426.12 28 180 486.33

3 000 177 776.97 120 106 832.00 135 439.37 120 420 048.34

4 000 348 623.71 268 435 456.00 287 675.46 269 071 755.17

Three GPUs - Times(ms)

Data Exchange(CPU-GPU) kernel Execution MPI Communication Total

1 000 15 875.75 1 101 020.00 35 200.49 1 152 096.24

2 000 70 530.17 18 481 052.00 69 298.65 18 620 880.82

3 000 191 979.02 92 628 416.00 206 430.76 93 026 825.78

4 000 354 307.13 253 067 424.00 314 666.45 253 736 397.58

1,000 2,000 3,000 4,000

0

1

2

·108

Matrix size

E
xe
cu

ti
on

T
im

e(
m
s)

Execution Times

Two GPUs
Three GPUs

Fig. 5. Execution time for PahHousholder uses two and three GPUs.

The bifactoring process shows an increase of the GPU numbers in the same
proportion that occurs in the experimentation with OpenMP. The cards do not
have the same characteristics and affect the experiment’s performance differently,
as shown in Table 4.

Table 4 shows that the same implementation has a faster execution time on
the Tesla card than on the GTX card.

Figure 6 shows a comparison between the accelerations obtained for the dif-
ferent experiments. The runtime decreases when more GPUs are used. Although
the program executes on a single card, the experiment on the CPU is faster.

Parallel Hybrid-Heterogeneous Single Value Decomposition Factorization 209

1000

106

107

Matrix Size

T
im

e
(m

s)

Sequential
OpenMP 4 Threads
OpenMP 6 Threads

GPU
Two GPUs

Three GPUs

Fig. 6. Comparision of differents experiments for Householder bifactorization.

As the number of GPU cards increases, the time required to exchange data
between the MPI processes increases. However, the time for communication
between CPU and GPU decreases, as shown in Fig. 7.

1,000 2,000 3,000 4,000

0

1

2

3

·105

Matrix size

T
im

e(
m
s)

Two GPUs MPI
Three GPUs MPI

Two GPUs(CPU-GPU)
Three GPUs(CPU-GPU)

Fig. 7. Data Transfer Time for PahHousholder experiments.

Figure 8 shows the data exchange times between the CPU and GPU. The
number of communications between processes and the time for execution for the
matrix size is accelerated 4000 × 4000. We note that there is a decrease in the
kernel runtime when there is an increase in communication between processes
and a decrease in the exchange time between CPU and GPU.

210 J. C. Hernández-Cortés et al.

Two GPUs Three GPUs

106

107

108

T
im

e
(m

s)
Communication Exchange CPU-GPU

MPI Communication
kernel Execution

Fig. 8. Data transfer and execution for PahHousholder experiments.

5 Conclusion and Discussion

The results presented above demonstrate the performance enhancements
achieved through the use of the PahHousholder implementation, which signifi-
cantly reduces execution times for bifactorization and bidiagonalization.

The OpenMP implementation was for sizes of matrices greater than 1000 ×
1000, but these tests were incompleted due to the continuous creation and
destruction of execution threads involved.

Since the method for bifactorization of matrices requires n−2 iterations, this
may affect the implementation’s performance with OpenMP.

This implementation shows that its possible get the bifactorization process
in multiple GPU cards to process large matrices that are difficult to compute
in a single GPU card. Also, the speedup is consistent with the number of GPU
cards used.

Conflict of Interest. The authors declare that they have no conflict of interest.

References

Bowgen, G., Modi, J.: Implementation of QR factorization on the dap using householder
transformations. Comput. Phys. Commun. 37(1–3), 167–170 (1985)

Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 887: Cholmod,
supernodal sparse cholesky factorization and update/downdate. ACM Trans. Math.
Softw. (TOMS) 35(3), 22 (2008)

Choi, J., Dongarra, J.J., Ostrouchov, L.S., Petitet, A.P., Walker, D.W., Whaley, R.C.:
Design and implementation of the scaLAPACK LU, QR, and Cholesky factorization
routines. Sci. Program. 5(3), 173–184 (1996)

Cosnard, M., Muller, J.-M., Robert, Y.: Parallel QR decomposition of a rectangular
matrix. Numer. Math. 48(2), 239–249 (1986)

Cosnuau, A.: Computation on GPU of eigenvalues and eigenvectors of a large number
of small hermitian matrices. Procedia Comput. Sci. 29, 800–810 (2014)

Parallel Hybrid-Heterogeneous Single Value Decomposition Factorization 211

Golub, G.H., Loan, C.F.V.: Matrix Computations, 4th edn. Johns Hopkins University
Press, Baltimore (2012)

Householder, A.S.: Unitary triangularization of a nonsymmetric matrix. J. ACM
(JACM) 5(4), 339–342 (1958)

Lahabar, S., Narayanan, P.: Singular value decomposition on GPU using CUDA. In:
IEEE International Symposium on Parallel & Distributed Processing, 2009. IPDPS
2009, pp. 1–10. IEEE (2009)

Leininger, M.L., Sherrill, C.D., Allen, W.D., Schaefer, H.F., III.: Systematic study of
selected diagonalization methods for configuration interaction matrices. J. Comput.
Chem. 22(13), 1574–1589 (2001)

Liu, F., Yu, C., Meng, W.: Personalized web search by mapping user queries to cate-
gories. In: Proceedings of the Eleventh International Conference on Information and
Knowledge Management, pp. 558–565. ACM (2002)

Meneses-Viveros, A., Paredes-López, M., Hernández-Rubio, E., Gitler, I.: Energy con-
sumption model in multicore architectures with variable frequency. J. Supercomput.
77, 1–28 (2020)

Osinski, S., Weiss, D.: A concept-driven algorithm for clustering search results. IEEE
Intell. Syst. 20(3), 48–54 (2005)

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C:
The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge
(1992)

Sachdev, G.S., Vanjani, V., Hall, M.W.: Takagi factorization on GPU using CUDA. In:
Symposium on Application Accelerators in High Performance Computing, Knoxville,
Tennessee (2010)

Sameh, A.H., Kuck, D.J.: On stable parallel linear system solvers. J. ACM (JACM)
25(1), 81–91 (1978)

Sunderland, A.G.: Parallel diagonalization performance on high-performance comput-
ers. In: Parallel Scientific Computing and Optimization, pp. 57–66. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-0-387-09707-7 5

https://doi.org/10.1007/978-0-387-09707-7_5

Author Index

B
Barbosa-Santillán, Liliana Ibeth 197
Barrios H., Carlos J. 212
Becerra, L. M. 184
Boeres, Cristina 113

C
Carissimi, Alexandre 146, 170
Carvajal, Andres Giraldo 36
Costa, Gabriel 21

D
de Oliveira, Daniel 113
Diaz, Jose M. Monsalve 77
Dominguez, Y. 184
Drummond, Lúcia M. A. 113
Dufrechou, Ernesto 66

E
Erdödy, Nicolás 160
Ezzatti, Pablo 66

F
Fox, Dawson 77
Freire, Manuel 66

G
Gonzaga de Oliveira, Sanderson L. 66
Guaitero, Rafael A. Herrera 77

H
Hernández-Cortés, Juan C. 197
Hernández-Rubio, Erika 197

J
Jaramillo-Villegas, Jose A. 36

L
Li, Xiaoming 77
Lopes, Camila 113
Lorenzon, Arthur F. 146, 170

M
Marichal, Raul 66
Martínez-Méndez, A. 184
Mautone, Agustín 97
Mejía, Félix A. 212
Meneses, Esteban 3
Muraña, Jonathan 50

N
Navaux, Philippe O. A. 146, 170
Nesmachnow, Sergio 50, 97
Nogueira, Peterson 21
Nunes, Alan L. 113
Núñez, L. A. 184

O
O’Keefe, Richard 160

P
Padoin, Edson L. 146
Peña B., Darío Y. 212
Perdomo, Diego A. Roa 77

R
Raskar, Siddhisanket 77
Rigon, Pedro H. C. 146, 170
Ripa, Guillermo 97

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
C. J. Barrios H. et al. (Eds.): CARLA 2023, CCIS 1887, pp. 227–228, 2024.
https://doi.org/10.1007/978-3-031-52186-7

https://doi.org/10.1007/978-3-031-52186-7

228 Author Index

S
San Martin, Daniel 131
Sánchez-Escobar, Juan J. 197
Sarmiento-Cano, C. 184
Schussler, Brenda S. 146, 170
Silva, Laian 21
Speglich, João 21

T
Torres, Claudio E. 131
Toutouh, Jamal 97

V
Vidal, Andrés 97
Villalobos, Johansell 3
Viveros, Amilcar Meneses 197

Y
Yule, Ian 160
Yviquel, Hervé 77

Z
Zuluaga-Bucheli, Hernán M. 36

	 Preface
	 Organization
	 Contents
	High Performance Computing (HPC)
	Evaluation of Alternatives to Accelerate Scientific Numerical Calculations on Graphics Processing Units Using Python
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Graphics Processing Unit (GPU) Architecture
	2.2 Python Libraries for Scientific Numerical Calculations
	2.3 Scientific Numerical Calculation Kernels

	3 Kernel Design and Implementation
	4 Methodology
	4.1 Computational Infrastructure
	4.2 Experimental Design
	4.3 Benchmarking Procedure

	5 Results
	5.1 Normality Test
	5.2 Memory Consumption
	5.3 Scalability
	5.4 Productivity

	6 Final Remarks
	A Roofline Graphs for the Algorithms Proposed
	References

	Enhancing a GPU-Based Wave Propagation Application Through Loop Tiling and Loop Fission Optimizations
	1 Introduction
	2 Materials, Methods, and Theory
	2.1 Profiling Tools
	2.2 The Elastic Wave Equation
	2.3 Approaches
	2.4 Environment and Parameters

	3 Results
	3.1 Single GPU
	3.2 Multi GPU
	3.3 SEG/EAGE 3D Salt Model

	4 Conclusions
	References

	Acceleration of High-Dimensional Quantum Computing Simulator QuantumSkynet
	1 Introduction
	2 Quantum Computing Simulator
	3 Acceleration Methodology
	3.1 Lazy Evaluation
	3.2 Vectorization
	3.3 Broadcasting
	3.4 Introduction to the Experiments
	3.5 Experimental Design

	4 Results
	5 Conclusions and Future Work
	5.1 Future Work

	References

	Multi-objective Analysis of Power Consumption and Quality of Service in Datacenters for Effective Demand Response
	1 Introduction
	2 Power Consumption and QoS Degradation Reduction Problem in Datacenters for Demand Response
	2.1 Multi-objective Energy Management in Demand Response
	2.2 Problem Overview
	2.3 Formulation

	3 Related Work
	4 Resolution Method
	5 Experimental Multi-objective Analysis
	5.1 Methodology of the Experimental Evaluation
	5.2 Description of the Scenarios and Problem Instances
	5.3 Multi-objective Optimization Metrics
	5.4 Results and Discussion

	6 Conclusions and Future Work
	References

	Enhancing the Sparse Matrix Storage Using Reordering Techniques
	1 Introduction
	2 Background
	2.1 Sparse Matrices Storage Formats
	2.2 Reverse Cuthill-Mckee (RCM)
	2.3 Delta Encoding

	3 Proposal
	4 Experimental Evaluation
	5 Conclusions and Future Work
	References

	Towards Fault Tolerance and Resilience in the Sequential Codelet Model
	1 Introduction
	2 Sequential Codelet Model
	2.1 Sequential Codelet Model Abstract Machine
	2.2 Operational Semantics of the SCM Abstract Machine
	2.3 Application Programming Interface of the SCM

	3 Mechanisms for Resiliency and Fault Tolerance
	3.1 A) Scheduling Unit Resiliency
	3.2 B) Computational Unit Resiliency
	3.3 C) and D) Memory and IO, Resiliency and Fault Tolerance
	3.4 Algorithm-Based Fault Tolerance in the Codelet Graph

	4 Evaluation
	5 Conclusion
	References

	Artificial Intelligence using HPC Scale
	Parallel-Distributed Implementation of the Lipizzaner Framework for Multiobjective Coevolutionary Training of Generative Adversarial Networks
	1 Introduction
	2 Generative Adversarial Networks and Coevolutionary Training
	2.1 The Lipizzaner Framework
	2.2 Related Work

	3 Parallel Distributed Multiobjective Lippizaner
	3.1 Methodology and Design
	3.2 Implementation Details

	4 Experimental Evaluation
	4.1 Methodology for Performance Evaluation
	4.2 Results Quality
	4.3 Performance Results

	5 Conclusions and Future Work
	References

	Provenance-Based Dynamic Fine-Tuning of Cross-Silo Federated Learning
	1 Introduction
	2 Background
	2.1 Federated Machine Learning in a Nutshell
	2.2 A Brief Tour Through Provenance

	3 Related Work
	4 Dynamic Fine-Tuning with Flower-PROV
	5 Experimental Evaluation
	5.1 Provenance Capture Overhead Evaluation
	5.2 Evaluation of Hyperparameter Fine-Tuning Using Grid-Search
	5.3 Evaluation of the Dynamic Fine-Tuning

	6 Concluding Remarks
	References

	High Performance Computing Applications
	A GPU Numerical Implementation of a 2D Simplified Wildfire Spreading Model
	1 Introduction
	2 Related Work
	3 Mathematical Model
	4 Algorithm
	4.1 Applications
	4.2 CPU Implementation
	4.3 GPU Implementation

	5 Numerical Experiments
	5.1 Numerical Simulations
	5.2 Comparison

	6 Conclusions
	7 Future Work
	References

	Towards a Multi-GPU Implementation of a Seismic Application
	1 Introduction
	2 Background and Related Work
	2.1 Fletcher Modeling
	2.2 Related Work

	3 Multi-GPU Implementation of Fletcher
	4 Methodology
	5 Results
	6 Conclusions and Future Work
	References

	What Does a Nation-Wide Digital Nervous System Use for an Operating System?
	1 Introduction
	2 Background
	3 The Supercomputer
	4 What is Such a Weird Machine for?
	5 The Six-Layer Architecture
	6 Would Anybody Really Build Such a System?
	7 Two Realms
	8 Summary
	References

	The Impact of CUDA Execution Configuration Parameters on the Performance and Energy of a Seismic Application
	1 Introduction
	2 Background
	2.1 Graphic Processing Units
	2.2 Fletcher Modeling
	2.3 Related Work

	3 Methodology
	4 Performance and Energy Evaluation
	4.1 Design Space Exploration
	4.2 Performance and Energy Improvements over Baseline
	4.3 Guidelines for Users and Software Developers

	5 Conclusions and Future Work
	References

	High-Performance Computing for Astrophysical Simulations and Astroparticle Observations
	1 Introduction
	2 Stellar Astrophysics Applications
	2.1 Star-in-a-Box Simulation
	2.2 Code Performance: Stably Stratified Stars

	3 Astroparticle Applications
	3.1 Estimation of Cosmic Background Radiation at the Ground Level
	3.2 Neutron Flux Simulation
	3.3 Simulation Time

	4 Reproducibility Considerations
	5 Remarks
	References

	Improvement of the Simulation of the Degradation of Reinforced Concrete in Saltwater Environments Using Directives
	1 Introduction
	1.1 Physicochemical Phenomenon

	2 Simulations and Results
	2.1 Mathematical Model
	2.2 Simulation Algorithm
	2.3 2.3. OpenACC Directives

	3 Conclusions and Further Work
	References

	Parallel Hybrid-Heterogeneous Single Value Decomposition Factorization
	1 Introduction
	2 Related Work
	3 Parallelization Strategies of PahHousholder Architecture
	3.1 Sequential Implementation
	3.2 OpenMP Implementation
	3.3 GPU Implementation
	3.4 Hybrid-Heterogeneous Implementation
	3.5 Considerations

	4 Experiments and Results
	4.1 Sequential Execution
	4.2 OpenMP Experiments
	4.3 Heterogeneous Implementation
	4.4 PahHousholder Implementation

	5 Conclusion and Discussion
	References

	Author Index

