
Javier Cámara
Sung-Shik Jongmans (Eds.)

LN
CS

 1
44

85

19th International Conference, FACS 2023
Virtual Event, October 19–20, 2023
Revised Selected Papers

Formal Aspects
of Component Software

Lecture Notes in Computer Science 14485
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Javier Cámara · Sung-Shik Jongmans
Editors

Formal Aspects
of Component Software
19th International Conference, FACS 2023
Virtual Event, October 19–20, 2023
Revised Selected Papers

Editors
Javier Cámara
University of Malaga
Málaga, Spain

Sung-Shik Jongmans
Open University of Netherlands
Heerlen, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-52182-9 ISBN 978-3-031-52183-6 (eBook)
https://doi.org/10.1007/978-3-031-52183-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0001-6717-4775
https://orcid.org/0000-0002-4394-8745
https://doi.org/10.1007/978-3-031-52183-6

Message from the PC Chairs

This volume contains the papers presented at the 19th International Conference on
Formal Aspects of Component Software (FACS 2023), held online during October
19–20, 2023.

FACS aims to bring together practitioners and researchers in the areas of component
software and formal methods in order to promote a deeper understanding of how formal
methods can or should be used to make component-based software development suc-
ceed. The component-based software development approach has emerged as a promising
paradigm to transport sound production and engineering principles into software engi-
neering and to cope with the ever-increasing complexity of present-day software solu-
tions. However, many conceptual and technological issues remain in component-based
software development theory and practice that pose challenging research questions.
Moreover, the advent of digitalization and industry 4.0, which requires better support
from component-based solutions, e.g., cloud computing, cyber-physical and critical sys-
tems, and the Internet of Things, has brought to the fore new dimensions. These include
quality of service, safety, and robustness to withstand inevitable faults, which require
established concepts to be revisited and new ones to be developed in order to meet the
opportunities offered by these supporting technologies.

To celebrate the 20th anniversary of FACS, this edition invited submissions to a
special track on the topic of “component-based systems through the years” that describe
important results and success stories that originated in the context of component-based
software engineering.

The research track received 18 submissions, out of which the Program Committee
selected 6 papers (33% acceptance rate), whereas all five invited submissions to the
anniversary track were accepted. All submitted papers were reviewed by three referees
(single blind). These proceedings include all the final versions of the accepted papers,
taking into account the comments received by the reviewers.Authors of selected accepted
papers will be invited to submit extended versions of their contributions to appear in a
special issue of Elsevier’s journal Science of Computer Programming.

We would like to thank all researchers who submitted their work to the confer-
ence, the Steering Committee members who provided precious guidance and support,
all colleagues who served on the Program Committee, and the external reviewers, who
helped us to prepare a high-quality conference program. Particular thanks to the invited
speakers, Marsha Chechik from the University of Toronto in Canada and Rajeev Alur
from the University of Pennsylvania in the USA, for their efforts and dedication to
present their research and to share their perspectives on formal methods at FACS.
We are extremely grateful for their help in managing practical arrangements to the
Open University of the Netherlands, to Springer for their sponsorship, and to FCT,

vi Message from the PC Chairs

the Portuguese Foundation for Science and Technology, within the project IBEX, with
reference PTDC/CCI-COM/4280/2021, for additional financial support.

November 2023 Javier Cámara
Sung-Shik Jongmans

Message from the Anniversary Chair: Exploring
the Available FACS Impact (2003–2023)

Joint work with Louis Robert

Introduction. This preface is dedicated to a bibliometric analysis of the proceedings
of the first eighteen editions of the International Conference on Formal Aspects of
Component Software (FACS), also known as “workshop” and “symposium” for its first
ten editions, to perceive its achievements and evaluate its impact on the community.

Methodology. Bibliographic and bibliometric data were collected from different but
complementary resources. Three databases1–Dimensions, Scopus and Web of Science–
allowed a first visualization of data, and afterwards complete extractions of the elements
necessary for the study. In addition, to extend the period covered by those databases,
search engines2–such as Lens, Semantic Scholar and openAIRE–were used. More-
over, these resources have been complemented by consultation using SpringerLink,
ScienceDirect and DBLP3 for monitoring and enumeration purposes, namely by using
digital object identifiers, DOI.

Our search queries, although adapted to the resource and engine used, were in gen-
eral centred on the full title of the conference and its acronym (FACS); most interfaces
require the use of the all search criterion (search in all fields), and of quotes to constrain
the expression. The changing status of meetings (workshop, symposium and then con-
ference) was covered by a regular expression when it was possible. In addition, let us
note that most of the platforms require information concerning the document type, a
disciplinary filter (e.g., computer science) and a filter on the period (2003–2023).

Results. The FACS proceedings, either Electronic Notes in Theoretical Computer Sci-
ence (ENTCS, 2005–2009) or Lecture Notes in Computer Science (LNCS, 2010–2022),
contain 294 contributions by 476 authors from 39 countries. Starting from 2005, each
volume contains 10 (2021) to 23 (2005, 2013, 2014) articles. In addition, 75 selected
extended papers have been published in 13 special issues of Science of Computer Pro-
gramming (SCP, 2010-2022) and Software and System Modeling (SoSyM, 2023) inter-
national journals. Let us note that in the databases used, the ENTCS volumes are not

1 https://www.dimensions.ai.
https://www.scopus.com.
https://www.webofscience.com.

2 https://www.lens.org.
https://www.semanticscholar.org.
https://explore.openaire.eu.

3 https://link.springer.com.
https://www.sciencedirect.com.
https://dblp.org.

https://www.dimensions.ai
https://www.scopus.com
https://www.webofscience.com
https://www.lens.org
https://www.semanticscholar.org
https://explore.openaire.eu
https://springerlink.bibliotecabuap.elogim.com
https://www.sciencedirect.com
https://dblp.org

viii Message from the Anniversary Chair

Fig. 1. Keywords co-occurrency: 2011–2016 vs. 2017–2022

explicitly linked to the FACS workshop, making extractions partial with 170 records at
most. On their side, the (manually built) DOI-based queries provide 263 records.

The data that caught our attention are the titles, keywords and abstracts. They have
been the subject of text mining to highlight the topics and the themes covered, and their
evolution over the two FACS decades. The data processing was carried out thanks to the
available export and analysis functions for the databases and the engines used. For result
visualization, the VOSViewer tool4 was also used, like in Fig. 1, where VOS stands for
visualization of similarities.

By comparing the co-occurrency of the keywords with VOSviewer using a technique
that categorizes the keywords in clusters, we found some interesting features of the topics
landscape over the past two decades. First, formal aspects of component-based system
development–design, specification, verification and validation–stay central to the FACS
community over the years. Second, whereas the focus of the first editions was mainly on
software components, it was then put on distributed, embedded and complex systems in
general, and more recently on cyber-physical systems. Third, the artificial intelligence-
related topics were diffuse in 2015–2016, but now the artificial intelligence cluster is
formed and anchored to systems’ analysis activities.

Discussion. Bibliometric data provide a perspective on the visibility of the FACS con-
ference. Obviously, it depends on databases’ core collections. Open Access (OA) also
provides a perspective for analysis on how important it has been over the last twenty
years, and on howOA has increased the visibility of the FACS contributions. The data on
OA available in the databases, which are displayed in Fig. 2, together with the possibility
of sorting by citation, allowed us to provide a first attempt to address these questions,
with the creation of top lists of the most-cited FACS articles (top 10, top 20 and top 30).
For all the databases explored, more than 50% of the FACS contributions are in OA. Let

4 N. J. van Eck and L. Waltman. Software survey: VOSviewer, a computer program for
bibliometric mapping. Scientometrics, 84(2):523–538, 2010.

Message from the Anniversary Chair ix

Fig. 2. Open Access: Synthesis for WoS, Lens, and Scopus databases

Fig. 3. Open Access for 10 and 20 most cited articles

us emphasize that the OA ratio for the 3 lists of the most-cited articles is greater then
for all the articles in general, as illustrated in Fig. 3 for the top 10 and top 20 articles in
comparison with Fig. 2.

Currently, the overall impact analysis is mainly based on citations for both databases
and search engines. Amore precise impact analysis for separate contributions is possible,
e.g., with Semantic Scholar to identify influential citations. Notice that it also depends
on the access to the full text of the citing papers in the core collections.

November 2023 Olga Kouchnarenko

Organization

Program Committee

Antónia Lopes Universidade de Lisboa, Portugal
Anton Wijs Eindhoven University of Technology,

The Netherlands
Arpit Sharma Indian Institute of Science Education and

Research, India
Brijesh Dongol University of Surrey, UK
Camilo Rocha Pontificia Universidad Javeriana Cali, Colombia
Clemens Dubslaff Eindhoven University of Technology,

The Netherlands
Emilio Tuosto Gran Sasso Science Institute, Italy
Farhad Arbab CWI/Leiden University, The Netherlands
Fatemeh Ghassemi University of Tehran, Iran
Genaina Rodrigues University of Brasilia, Brazil
Giorgio Audrito University of Turin, Italy
Gwen Salaün Grenoble Alpes University, France
Huibiao Zhu East China Normal University, China
Ivan Lanese University of Bologna, Italy
Jacopo Mauro University of Southern Denmark, Denmark
Javier Cámara University of Málaga, Spain/University of York,

UK
José Proença CISTER-ISEP/HASLab-INESC TEC, Portugal
Keigo Imai Gifu University, Japan
Kenneth Johnson Auckland University of Technology, New Zealand
Kyungmin Bae Pohang University of Science and Technology

(POSTECH), South Korea
Ludovic Henrio CNRS, France
Luís Soares Barbosa University of Minho, Portugal
Marie Farrell University of Manchester, UK
Meng Sun Peking University, China
Mieke Massink CNR-ISTI, Pisa, Italy
Olga Kouchnarenko University of Franche-Comté, France
Peter Ölveczky University of Oslo, Norway
Rob van Glabbeek University of Edinburgh, UK
Samir Genaim Universidad Complutense de Madrid, Spain
Shoji Yuen Nagoya University, Japan

xii Organization

Sung-Shik Jongmans Open University of the Netherlands/CWI,
The Netherlands

Violet Ka I Pun Western Norway University of Applied Sciences,
Norway

Zhiming Liu Southwest University, China

Program Chairs

Javier Cámara University of Málaga, Spain/University of York,
UK

Sung-Shik Jongmans Open University/CWI, The Netherlands

FACS 20th Anniversary Chair

Olga Kouchnarenko University of Franche-Comté, France

Steering Committee

Farhad Arbab CWI/Leiden University, The Netherlands
Kyungmin Bae Pohang University of Science and Technology,

South Korea
Peter Csaba Ölveczky University of Oslo, Norway
Javier Cámara University of Málaga, Spain/University of York,

UK
Sung-Shik Jongmans Open University of the Netherlands/CWI,

The Netherlands
Zhiming Liu Southwest University, China
Markus Lumpe Swinburne University of Technology, Australia
Eric Madelaine Inria Sophia Antipolis, France
Corina Pasareanu CMU, USA
José Proença Polytechnic Institute of Porto, Portugal
Gwen Salaün Université Grenoble Alpes, France
Luís Soares Barbosa (Chair) University of Minho, Portugal
Anton Wijs Eindhoven University of Technology,

The Netherlands

Organization xiii

Additional Reviewers

Carwehl, Marc
Ciancia, Vincenzo
Delahaye, Benoit
Kaarsgaard, Robin
Li, Zhaokai
Mezzina, Claudio Antares
Osama, Muhammad
Sun, Weidi
Yang, Zhibin

Keynotes

Model Checking for Safe Autonomy

Rajeev Alur

University of Pennsylvania

We focus on the problem of formally verifying correctness requirements of a closed-loop
control system where the controller is trained using machine learning. As an illustrative
realistic case study, we consider an autonomous car that navigates a structured environ-
ment using a neural-network-based controller. In this scenario, safety corresponds to
avoiding collisions, and we first discuss how to formalize this as a verification problem.
Then we describe a specific solution strategy, advocated by the verification tool Verisig,
which relies on tools for computing reachable states of hybrid dynamical systems. We
conclude by discussing challenges and opportunities of applying formal verification to
establish safety of autonomous systems with learning-enabled components.

Assurance for Software Product Lines Through Lifting
and Reuse

Marsha Chechik

University of Toronto

Fromfinancial services platforms to social networks to vehicle control, complex software
has come to mediate many activities of daily life. Software failures can have significant
consequences to individuals, organizations and societies. As such, stakeholders require
evidence-based assurance that software satisfies key requirements – for instance, that it
is safe, secure, or protects privacy. Evidence is often generated using testing or verifi-
cation techniques, making creation and maintenance of assurance an expensive process.
Furthermore, many industries – from automotive to aerospace to consumer electronics –
develop and maintain complex families of software systems in the form of product lines,
which can yield billions of distinct products. It is infeasible to create evidence and assure
each possible product individually; thus, there is a clear need for new approaches for
assuring software product lines.

In this talk, I will discuss approaches for reuse of analyses and evidence through the
formal process of lifting. I will provide an overview of recent results in this space and
identify future challenges.

Contents

Research Papers

Symbolic Path-Guided Test Cases for Models with Data and Time 3
Boutheina Bannour, Arnault Lapitre, Pascale Le Gall, and Thang Nguyen

Model-Based Testing of Asynchronously Communicating Distributed
Controllers . 23

Bence Graics, Milán Mondok, Vince Molnár, and István Majzik

A Mechanized Semantics for Component-Based Systems in the HAMR
AADL Runtime . 45

Stefan Hallerstede and John Hatcliff

A Formal Web Services Architecture Model for Changing PUSH/PULL
Data Transfer . 65

Naoya Nitta, Shinji Kageyama, and Kouta Fujii

Joint Use of SysML and Reo to Specify and Verify the Compatibility
of CPS Components . 84

Perla Tannoury, Samir Chouali, and Ahmed Hammad

From Reversible Computation to Checkpoint-Based Rollback Recovery
for Message-Passing Concurrent Programs . 103

Germán Vidal

Anniversary Papers

Formal Model Engineering of Distributed CPSs Using AADL: From
Behavioral AADL Models to Multirate Hybrid Synchronous AADL 127

Kyungmin Bae and Peter Csaba Ölveczky

Challenges Engaging Formal CBSE in Industrial Applications 153
Yi Li and Meng Sun

Formal Aspects of Component Software: An Overview on Concepts
and Relations of Different Theories . 168

Zhiming Liu, Jiadong Teng, and Bo Liu

Overview on Constrained Multiparty Synchronisation in Team Automata 194
José Proença

xxii Contents

Embedding Formal Verification in Model-Driven Software Engineering
with Slco: An Overview . 206

Anton Wijs

Author Index . 229

Research Papers

Symbolic Path-Guided Test Cases
for Models with Data and Time

Boutheina Bannour1(B), Arnault Lapitre1, Pascale Le Gall2,
and Thang Nguyen2

1 Université Paris-Saclay, CEA, List, 91120 Palaiseau, France
boutheina.bannour@cea.fr

2 Université Paris-Saclay, CentraleSupélec, MICS, 91192 Gif-sur-Yvette, France

Abstract. This paper focuses on generating test cases from timed sym-
bolic transition systems. At the heart of the generation process are sym-
bolic execution techniques on data and time. Test cases look like finite
symbolic trees with verdicts on their leaves and are based on a user-
specified finite symbolic path playing the role of a test purpose. Gener-
ated test cases handle data involved in time constraints and uninitialized
parameters, leveraging the advantages of symbolic execution techniques.

Keywords: model-based testing · timed input/output symbolic
transition systems · symbolic execution · tioco conformance relation ·
test purpose · test case generation · uninitialized parameters

1 Introduction

Context. Symbolic execution [7,13,15,20] explores programs or models’ behaviors
using formal parameters instead of concrete values and computes a logical con-
straint on them, the so-called path condition. Interpretations of these parameters
satisfying the constraint yield inputs that trigger executions along the desired
path. Symbolic execution’s primary application is test case generation, where
considering test cases guided by different symbolic paths facilitates achieving
high coverage across diverse behaviors. Symbolic execution has been defined
first for programs [20] and extended later to models [3,4,8,13,15,27] in par-
ticular to symbolic transition systems where formal parameters abstract values
of uninitialized data variables [4,15], values of received data from the system’s
environment [1,3,4,8,13,15,27], and durations stored in clock variables [4,27].
Contribution. In this paper, we investigate test case generation from models
given as symbolic transition systems that incorporate both data and time. Time
is modeled with explicit clock variables, which are treated as a particular case of
data variables that occur in guards and constrain the transitions’ firing. Our app-
roach allows for general logical reasoning that mixes data and time through sym-
bolic execution, typically compared to Timed Automata [2], which are models
dedicated to time and use tailored zone-based abstraction techniques to handle
time. Test cases are built based on a test purpose, defined as a selected symbolic
path of the model. We require test purposes to be deterministic, i.e. any system
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Cámara and S.-S. Jongmans (Eds.): FACS 2023, LNCS 14485, pp. 3–22, 2024.
https://doi.org/10.1007/978-3-031-52183-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52183-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-52183-6_1

4 B. Bannour et al.

behavior expressed as a trace cannot be executed both on the test purpose and
on another symbolic path. By leveraging this determinism property and sym-
bolic execution techniques, we define test cases as tree-like structures [19,24],
presenting the following advantages: (i) data and time benefit from compara-
ble property languages, seamlessly handled with the same symbolic execution
techniques; (ii) input communication channels are partitioned into controllable
input channels enabling the test case to stimulate the system under test, and
uncontrollable input channels enabling observation of data from third parties;
(iii) state variables do not need to be initialized, and finally (iv), test cases can
be easily executed on systems under test, typically achieved through behavioral
composition techniques, such as employing TTCN-3 [26], or by maintaining a
test case state at runtime using on-the-fly test case execution [8,12,15]. In either
case, our test cases are coupled with constraint solving to assess the satisfiability
of test cases’ progress or verdict conditions. We provide a soundness result of our
test case execution on the system under test in the framework of the timed con-
formance relation tioco [21] issued from the well-established relation ioco [28].
Finally, we implement our test case generation in the symbolic execution plat-
form Diversity [9].
Paper Plan. We devote Sect. 2 to present timed symbolic transition systems mix-
ing data and time, and in Sect. 3, we define their symbolic execution serving as
the foundation for our test case generation. In Sect. 4, we give the main elements
of the testing framework: the conformance relation tioco and test purposes. In
Sect. 5, we detail the construction of symbolic path-guided test cases. In Sect. 6,
we provide some links to related work. In Sect. 7, we provide concluding words.

2 Timed Input/Output Symbolic Transition Systems

Preliminaries on Data Types. For two sets A and B, we denote BA, the set of
applications from A to B. We denote

∐
i∈{1,...n} Ai the disjoint union of sets A1,

. . . , and An. For a set A, A∗ (resp. A+) denotes the set of all (resp. non-empty)
finite sequences of elements of A, with ε being the empty sequence. For any two
sequences w,w′ ∈A∗, we denote w.w′ ∈A∗ their concatenation.

A data signature is a pair Ω = (S,Op) where S is a set of type names
and Op is a set of operation names provided with a profile in S+. We denote
V =

∐
s∈S Vs the set of typed variables in S with type : V → S the function that

associates variables with their type. The set TΩ(V) =
∐

s∈S TΩ(V)s of Ω-terms
in V is inductively defined over V and operations Op of Ω as usual and the
function type is extended to TΩ(V) as usual. The set FΩ(V) of typed equational
Ω-formulas over V is inductively defined over the classical equality and inequality
predicates t � t′ with �∈ {<,≤,=,≥, >} for any t, t′ ∈TΩ(V)s and over usual
Boolean constants and connectives True, False, ¬, ∨, ∧ and quantifiers ∀x, ∃x
with x a variable of V . We may use the syntax ∃{x1, . . . , xn} for the expression
∃x1 . . . ∃xn. A substitution over V is a type-preserving application ρ : V →
TΩ(V). The identity substitution over V is denoted idV and substitutions are
canonically extended on terms and formulas.

Symbolic Path-Guided Test Cases for Models with Data and Time 5

An Ω-model M = (
∐

s∈S Ms, (fM)f∈Op) provides a set of values Ms for each
type s in S and a concrete operation fM : Ms1 × · · · × Msn

→ Ms for each
operation name f : s1 . . . sn → s in Op. An interpretation ν : V → M associates
a value in M with each variable v ∈ V , and is canonically extended to TΩ(V)
and FΩ(V) as usual. For ν an interpretation in MV , x a variable in V and v a
value in M , ν[x
→ v] is the interpretation ν′ ∈ MV which sends x on the value
v and coincides with ν for all other variables in V . For ν ∈ MV and ϕ ∈ FΩ(V),
the satisfaction of ϕ by ν is denoted M |=ν ϕ and is inductively defined w.r.t.
the structure of ϕ as usual. We say a formula ϕ∈FΩ(V) is satisfiable, denoted
Sat(ϕ), if there exists ν ∈MV such that M |=ν ϕ.

In the sequel, we consider a data signature Ω = (S,Op) with time ∈ S to rep-
resent durations and Op containing the usual operations <: time.time → Bool
and + : time.time → time, . . . An Ω-model M being given, Mtime is denoted D
and is isomorphic to the set of non-negative real numbers. <: time.time → Bool
and + : time.time → time are mapped to their usual meanings.
Timed Input/Output Symbolic Transition Systems (TIOSTS) are automata han-
dling data and time, and defined over a signature Σ = (A,K,C), where:

– A =
∐

s∈S As and K are pairwise disjoint sets of variables representing respec-
tively data variables and clock variables of type time

– and C =
∐

s∈S Cs is a set of communication channels with the convention
type(c) = s for any c ∈ Cs. Moreover, channels of type s∈S are partitioned
into input and output channels, i.e., Cs=Cin

s

∐
Cout

s .

We denote Cin =
∐

s∈S Cin
s , resp. Cout =

∐
s∈S Cout

s , the set of all input, resp.
output, channels, regardless of their type.

Interactions of TIOSTS with the environment are expressed in terms of com-
munication actions. The set of communication actions over Σ is Act(Σ) =
I(Σ) ∪ O(Σ) where:

– I(Σ) = {c?x | c∈Cin, x∈Atype(c)} is the set of input actions, and
– O(Σ) = {c!t | c∈Cout, t∈TΩ(A ∪ K)type(c)} is the set of output actions.

c?x denotes the reception of a value to be stored in x through channel c. c!t
denotes the emission of the value corresponding to the current interpretation of
term t through channel c. The set of concrete communication actions over C is
Act(C) = I(C) ∪ O(C) where:
I(C) = {c?v | c∈Cin, v∈Mtype(c)} and O(C) = {c!v | c∈Cout, v∈ Mtype(c)}

Notations. For a ∈ Act(Σ) (resp. a ∈ Act(C)) of the form c?y or c!y, chan(a)
and val(a) denote c and y respectively. For expressiveness concerns, we also use
extensions of those actions: either carrying n pieces of data, i.e. c!(t1, . . . , tn) or
c?(x1, . . . , xn), and simple signals c! or c? which are actions carrying no-data.

Definition 1 (TIOSTS). A TIOSTS over Σ = (A,K,C) is a triple G =
(Q, q0,Tr), where

– Q is the set of states,
– q0∈Q is the initial state,

6 B. Bannour et al.

Fig. 1. Example TIOSTS of an ATM

– Tr is the set of transitions of the form (q, act, φ,K, ρ, q′) with q, q′ ∈ Q,
act ∈ Act(Σ), φ ∈ FΩ(A ∪ K), K ⊆ K and ρ : A → TΩ(A ∪ K) is a type-
preserving function.

In the sequel, given a transition tr of the form (q, act, φ,K, ρ, q′), we will access its
components by their name, for example, act(tr) for its communication action.
We comment on the ingredients of a TIOSTS through the TIOSTS given in
Example 1.

Example 1. The TIOSTS G=(Q, q0, T r) in Fig. 1 represents a simple Automatic
Teller Machine (ATM) with Q={q0, . . . , q4} and Tr={tr1, . . . , tr11}. Its signa-
ture introduces two clocks (wclock, rclock), 7 data variables (rid, amt, tb, fee,
rid_ret, stat, mid_ret) and 6 channels including 2 input channels (Transc,
Auth) and 4 output channels (Debit, Abort, Cash and Log).

Transition tr1 : q0
Transc?(amt,tb),[True],{wclock},〈rid:=rid+1〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q1 represents a recep-

tion on channel Transc of a client withdrawal request for a given amount stored
in variable amt and the corresponding bound on processing time stored in vari-
able tb, which can vary due to bank security checks. tr1 is unconditionally fired
(due to the guard True), resets clocks in K={wclock} and updates variable rid
with rid+1. tr1 abstracts client interaction and bank processing time retrieval.
Transition tr2 :

q1
Debit!(rid,amt+fee,ATM_ID),[wclock≤1∧tb≥4∧fee>0∧10≤amt≤1000],{},〈〉−−→ q2

represents an emission of (bank) debit request on channel Debit of the value of
rid, the value of the term amt+fee, and the value of the constant ATM_ID. tr2

Symbolic Path-Guided Test Cases for Models with Data and Time 7

can be fired if and only if the duration since wclock reset is less than or equal 1,
the processing time bound is greater than or equal 4, the ATM fee is strictly
positive, and the withdrawal amount in some range (between 10 and 1000).

Other transitions represent debit authorization reception (tr3), cash return
(tr4), logging non-involved debit authorization (tr5 and tr9), cancellation upon
timeout (tr6) or debit refusal (tr7), cancellation due to amount out of range
or inappropriate processing time bound (tr10), reception of non-involved debit
authorization (tr8), and feeless debit request (tr11).

3 Symbolic Execution of TIOSTS

We use symbolic execution techniques for defining the semantics of TIOSTS:
transitions are executed not for concrete values but rather using fresh variables
and accumulating constraints on them. Given an TIOSTS G = (Q, q0, T r) over
Σ = (A,K,C), we consider a set F of fresh variables disjoint from TIOSTS
variables, i.e. F ∩ (A ∪ K) = ∅, and partitioned with the following subsets:

– F ini a set of variables dedicated to initialize variables of G ;
– F in = (F in

c)c∈Cin verifying that variables in F in
c are of type type(c);

– F out = (F out
c)c∈Cout verifying that variables in F out

c are of type type(c);
– F dur a set of variables of type time.

For the signature ΣF = (F, ∅, C), the set Evt(ΣF) of symbolic events over
ΣF is Ftime × (Act(ΣF) ∪ {_}) with _ for indicating the absence of an action.
For ev = (z, act) in Evt(ΣF), delay(ev) and act(ev) denote resp. z and act.
Intuitively, z is the duration elapsed between the action preceding act and act.

An Execution Context (EC) ec is a data structure of the form (q, π, λ, ev, pec)
composed of pieces of information about symbolic execution:

– q ∈ Q, a state (control point) of the TIOSTS reached so far,
– π ∈ FΩ(F), a constraint on variables in F , the so-called path condition, to be

satisfiable by the symbolic execution to reach ec,
– λ : A ∪ K → TΩ(F), a substitution,
– ev ∈ Evt(ΣF), a symbolic event that has been executed to reach ec,
– pec a predecessor of ec useful to build a symbolic tree in which nodes are ECs

and edges connect predecessor ECs to ECs themselves.

For any execution context ec, we note q(ec), π(ec), λ(ec), ev(ec) and pec(ec)
to denote the corresponding elements in ec. In the same line, we also
note act(ec), delay(ec) and chan(ec) for resp. act(ev(ec)), delay(ev(ec)) and
chan(act(ev(ec))). For convenience, Sat(π(ec)) will be denoted Sat(ec).

Initial ECs are of the form ec0 = (q0, T rue, λ0,_, self) with: λ0 associating
to every variable of A a distinct fresh variable of F ini, and to variables of K
the constant 0; "_" an identifier indicating the absence of an action to start the
system; and self an identifier indicating that , the predecessor of an initial EC
is the initial context itself. EC(G) denotes the set of all ECs of a TIOSTS G.

8 B. Bannour et al.

For a non-initial execution context ec, we use the notation pec(ec) ev(ec)−−−−→ ec or
pec(ec) ev(ec)−−−−→ ec ∈ EC if ec and its predecessor are both in a subset EC of EC(G).

Transitions are executed symbolically from an EC. An example execution on
the TIOSTS of Fig. 1 is provided before presenting the general definition.

Example 2. The symbolic execution of transition tr2 (given in Example 1) from
execution context ec1 results in a successor context ec2 as follows:

ec1
(z1,Debit!(y1

D1
,y1

D2
,y1

D3
))

−−−−−−−−−−−−−−−−−→ ec2.
Figure 2 provides a summary of both contexts. In the execution context ec1, the
variables fee, rid, rid_ret, stat, and mid_ret are evaluated with fresh initial
parameters. The successor context ec2 is computed by associating the clock
wclock with a new duration z1 in F dur, indicating the time elapsed since the
previous event.

The emission event (z1,Debit!(y1
D1

,y1
D2

,y1
D3

)) corresponds to the outcome
of the symbolic evaluation of the transition action act(tr2) =Debit!(rid, amt +
fee,ATM_ID). The variables y1

D1
, y1

D2
and y1

D3
are respectively in F out

Debit,1,
F out
Debit,2 and F out

Debit,3
The evaluation of the transition guard φ(tr2) = wclock ≤ 1∧ tb ≥ 4∧fee >

0∧10≤amt≤1000 yields the formula z1≤1∧tb1≥4∧fee0>0∧10≤amt1≤1000
which together with identification conditions y1

D1
=rid0+1, y1

D2
=amt1+ fee0

and y1
D3

=ATM_ID constitutes π(ec2), the path condition of ec2. Identification
conditions result from the transition action evaluation.

Fig. 2. Symbolic execution of a TIOSTS
transition

Definition 2 will make clear the
computation of the EC’s successors
from TIOSTS transitions. While in
Example 2, we have illustrated the
symbolic execution of a unique transi-
tion (tr2), we will define symbolic exe-
cution by simultaneously executing all
the outgoing transitions from a given
EC. Following this approach, we can
introduce the same symbolic variables
for all outgoing transitions as far as
they have the same role. Typically, the
same fresh duration is employed to rep-
resent the time passing in the compu-
tation of all the EC’s successors.

Generically, given an execution
context ec in EC(G), we will access the
symbolic variables introduced by the
executions from ec with the following
notations: f in

c (ec) for c ∈ Cin, fout
c (ec)

for c ∈ Cout, and fdur(ec). For conve-
nience, all such fresh variables are available by default with every execution

Symbolic Path-Guided Test Cases for Models with Data and Time 9

context ec, even if there is no outgoing transition from q(ec) carrying on a given
channel c. For α ∈ {in, out}, fα(ec) = {fα

c (ec) | c ∈ Cα}. In Def 2, to make it
easier to read, f in

c (ec), fout
c (ec) and fdur(ec) are respectively denoted as xc, yc

and z.

Definition 2 (Symbolic Execution of a TIOSTS). Let G=(Q, q0,Tr) be
a TIOSTS, ec = (q, π, λ, ev, pec) be an execution context in EC(G), and xc be
a fresh variable in F in

c for any c ∈ Cin, yc be a fresh variable in F out
c for any

c ∈ Cout and let z be a fresh variable in F dur.
The successors of ec are all execution contexts ec′ of the form

(q′, π′, λ′, ev′, ec) verifying that there exists a transition tr = (q, act, φ,K, ρ, q′)
in Tr and constituents λ′, ev′ and π′ of ec′ are defined as follows:

– the substitution λ′ : A ∪ K → TΩ(F):

λ′(w) =

⎧
⎪⎨

⎪⎩

λ′
0(ρ(w)) if w ∈ A

0 if w ∈ K

λ′
0(w) else i.e. if w ∈ K \ K

(1)

where λ′
0 : A ∪ K → TΩ(F) is the auxiliary function defined as:

λ′
0(w) =

⎧
⎪⎨

⎪⎩

xc if act = c?w
λ(w) + z if w ∈ K

λ(w) else
(2)

– ev′ is (z, c?xc) if act = c?w and is (z, c!yc) if act = c!t for a given channel c
– π′ is the formula π ∧ λ′

0(φ) if act = c?w and is π ∧ λ′
0(φ) ∧ (yc = λ′

0(t)) if
act = c!t for a given channel c.

The symbolic execution SE(G) of G is a couple (ec0,EC) where: ec0 is an
arbitrary initial EC, and EC is the smallest set of execution contexts containing
ec0 and all successors of its elements.

Most of the time (e.g., if it is possible to run a cycle of G for an arbitrarily long
time), EC is an infinite set. The computation of the successors of an execution
context translates the standard execution of a transition from that context: λ′

0 is
an intermediate substitution that advances all clocks by the same fresh duration
z to indicate time passing, assigns to a data variable w a fresh variable xc if w is
the variable of a reception (c?w) and leaves the other data variables unchanged.
Then, λ′ is defined, for the data variables, by applying λ′

0 on the terms defined
by the substitution ρ introduced by tr and, for the clock variables, by resetting
the variables of K to zero and advancing the other clocks using λ′

0. The event
action is either c?xc (case of a reception c?w) or c!yc (case of an emission c!t).
The path condition π′ is obtained by the accumulation of the condition π of the
predecessor context ec and of the guard φ of the transition evaluated using λ′

0.
Moreover, in case of an emission, π′ keeps track of the identification condition
matching yc with the evaluation λ′

0(t) of the emitted term t.
In the sequel, we will denote tr(ec) the transition that allows building the

execution context ec. By convention, tr(ec) is undefined for initial contexts.

10 B. Bannour et al.

Example 3. Fig. 3 illustrates parts of the symbolic execution of the ATM example
TIOSTS given in Fig. 1.

So far, we have defined the symbolic execution of a TIOSTS without any
adjustments related to our testing concerns from TIOSTS. In the following, we
will complete the symbolic execution with quiescent configurations, i.e., iden-
tifying situations where the system can remain silent. The system is usually
expected to react by sending messages when it receives a message from its envi-
ronment. However, sometimes, it cannot emit an output from any given state
[4,15,18,25,28]. In such a case, the inability of the system to react becomes a
piece of information. To make this fact clear we enrich symbolic execution by
adding a special output action δ! to denote the absence of output in those specific
deadlock situations.

Definition 3 (Quiescence enrichment). The quiescence enrichment
SE(G)δ of SE(G) = (ec0,EC) is (ec0,ECδ) where EC

δ is the set EC enriched
by new execution contexts ecδ. For each context ec = (q, π, λ, ev, pec) in EC, a
new context ecδ = (q, π ∧ πδ, λ, (fdur(ec), δ!), ec) is considered where1:

πδ =
∧

pec(ec′)=ec

chan(ec′)∈Cout

(
∀fdur(ec).∀fout

chan(ec′)(ec).¬π(ec′)
)

Let us emphasize that πδ is satisfiable only for contexts ec where there is
no choice of values for the variables for triggering from ec a transition carry-
ing an emission. The context could not be considered quiescent if such a choice
were possible, i.e. if there would exist an output transition towards an execu-
tion context ec′, for which there is an instantiation of variables fdur(ec) and
fout

chan(ec′)(ec) making the condition π(ec′) true.

Example 4. We discuss some examples from Fig. 3. The execution context
ec0 does not have successors with outputs (πδ is True) which denotes that
the ATM is awaiting withdrawal requests or non-involved debit authoriza-
tions. This quiescent situation is captured by adding the context ecδ

0 =
(q0, T rue, λ(ec0), (z0, δ!), ec0). The execution context ec1 has three successors
with outputs, ec2, ec9 and ec10. Then, πδ is:

∧

j∈{2,9,10}
∀fdur(ec1).∀fout

chan(ecj)
(ec1).¬π(ecj)

which is not satisfiable. Thus, there is no need to add a quiescent transition from
ec1. The same applies to ec2 and ec3.

A symbolic path of SE(G)δ = (ec0,ECδ) is a sequence p = ec0.ec1 . . . ecn

where ec0 is the initial context, for i ∈ [1, n], eci ∈ EC
δ, and pec(eci) = eci−1.

Paths(SE(G)δ) denotes the set of all such paths. We will use the notation tgt(p)

1 with the convention that
∧

quantified over empty conditions is the formula True.

Symbolic Path-Guided Test Cases for Models with Data and Time 11

to refer to ecn, the last context of p. We define the set of traces of a symbolic
path p in Paths(SE(G)δ) by:

Traces(p) =
⋃

ν∈MF

{
ν(p) | M |=ν ∃F ini.π(tgt(p))

}

where ν applies to a path p of the form p′.ec as ν(p) = ν(p′).ν(ev(ec)) with the
convention ν(ev(ec0)) = ε and ν(ev(ec)) = (ν(z), c?ν(x)) (resp. (ν(z), c!ν(y)) or
(ν(z), δ!)) if ev(ec) is of the form (z, c?x) (resp. (z, c!y) or (z, δ!)).

By solving the path condition of a given path, we can evaluate all symbolic
events occurring in the path and extract the corresponding trace. The set of
traces of G is defined as :

Traces(G) =
⋃

p∈Paths(SE(G)δ)

Traces(p)

Fig. 3. Symbolic execution of the ATM TIOSTS of Fig. 1

12 B. Bannour et al.

4 Conformance Testing

Conformance testing aims to check that a system under test behaves correctly
w.r.t a reference model, a TIOSTS G in our case. The test case stimulates the
system with inputs and observes the system’s outputs, their temporalities, and
the quiescent situations to compare them to those specified by G. For generality,
we propose test cases that control some inputs of the system under test while
leaving other inputs driven by systems in its environment. We assume that the
test case selects inputs and observes outputs on some channels while it can only
observe inputs and outputs on other channels of the system under test. Illus-
trating with the ATM, a test case provides the ATM with withdrawal requests,
and observes withdrawal authorizations received from the bank.

We characterize a Localized System Under Test (LUT) (terminology from [6,
14]) tested in a context where some inputs are not controllable. For this, we
partition Cin = CCin � UCin where:

– CCin is the set of controllable input channels and
– UCin is the set of uncontrollable input channels.

For a set of channels C, we denote Evt(C) = D × Act(C) the set of all concrete
events that can occur in a trace: an event (d, act) indicates that the occurrence
of action act happens d units of time after the previous event. In model-based
testing, a LUT is a black box and as such, is abstracted by a set of traces
LUT ⊆ Evt(Cδ)∗ with Cδ = C ∪ {δ} satisfying additional hypotheses, denoted
as H, ensuring its consistency. Hypotheses H gather the following 3 properties,
where for σ1, σ2 in Evt(C)∗, d in D and ev ∈ Evt(C) we have:

– stable by prefix: σ1.σ2 ∈ LUT ⇒ σ1 ∈ LUT
– quiescence: for any d < delay(ev), σ1.ev ∈ LUT ⇒ σ1.(d, δ!) ∈ LUT
– input complete: for any d < delay(ev), c ∈ CCin, v ∈ M ,

σ1.ev ∈ LUT ⇒ σ1.(d, c?v) ∈ LUT

The first hypothesis simply states that every prefix of a system trace is also
a system trace. The hypothesis on quiescence states that if an event ev whose
action is in act(C) occurs in LUT , then LUT can remain quiescent for any
duration strictly less than the delay of the event. The hypothesis on input com-
pleteness enables LUT to receive any input on a controllable channel, i.e., an
input received from the test case, during the delay of any ev in the LUT .

The semantics of a TIOSTS G, denoted by Sem(G), will include traces with
the admissible temporary observation of quiescence: if an event ev = (d, act) is
specified in G then quiescence can be observed for any duration d′ < d. Sem(G)
is then defined as the smallest set containing Traces(G) and such that for any
σ ∈ Evt(C)∗, ev ∈ Evt(C), for any d < delay(ev):

σ.ev ∈ Traces(G) ⇒ σ.(d, δ!) ∈ Sem(G)
As other previous works [23,29] have already done to suit their needs, we are

now slightly adapting the conformance relation of [21]:

Symbolic Path-Guided Test Cases for Models with Data and Time 13

Definition 4 (tioco). Let C be a set of channels. Let G and LUT be resp. a
TIOSTS defined on C and a subset of Evt(Cδ)∗ satisfying H.
LUT tioco G iff for all σ ∈ Sem(G), for any ev ∈ Evt(Cout ∪ {δ}), we have:

σ.ev ∈ LUT ⇒ σ.ev ∈ Sem(G)

The relation tioco states that LUT is in conformance with G, if and only if after
a specified sequence σ observed on LUT , any event produced by LUT as an
output or a delay of quiescence, leads to a sequence σ.ev of sem(G).

Test case generation is often based on the selection of a test purpose which
permits to choose a particular behavior in G to be tested [4,8,15,17]. As sym-
bolic execution plays a key role both for the semantics of TIOSTS and for testing
issues in general, whether it is for the test case generation or the verdict com-
putation, our test purposes will be paths tp ∈ Paths(SE(G)δ) with satisfiable
path conditions, i.e. verifying Sat(tgt(tp)). As outputs are involved in the tioco
relation, we require tp to end with an output event, i.e., chan(tgt(tp)) ∈ Cout.

Contrary to [15], our test purposes are simple paths and not (finite) sub-
trees, simplifying the construction of test cases. We will not need to consider
the case where the observed behavior on LUT corresponds to several symbolic
paths simultaneously. By taking it a step further, to avoid such tricky situa-
tions completely, we restrict ourselves to symbolic paths that do not induce non-
determinism. In line with [3,19], we forbid that there are two outgoing transitions
of an execution context concerning the same channel which can be covered by
the same trace. Unlike [3,19] which impose determinism conditions at the state
level, we deal with uninitialized variables at the path level:

Definition 5 (Test purpose). Let tp ∈ Paths(SE(G)δ) be a symbolic path
verifying Sat(tgt(tp)) and chan(tgt(tp)) ∈ Cout. Let EC(tp) be its set of execu-
tion contexts.
tp is a test purpose for G if tp satisfies the so-called trace-determinism property:
for ec in EC(tp) and ec′ in EC(G) s.t. Sat(ec′), pec(ec) = pec(ec′), tr(ec) �=
tr(ec′), and chan(ec) = chan(ec′), the following formula is unsatisfiable:

(
∃F ini.π(ec)

) ∧ (
∃F ini.π(ec′)

)

The trace-determinism property simply expresses that from any intermediate
execution context of tp, it is impossible to deviate in G with a common trace,
independently of the initial conditions.

Example 5. The test purpose tp = ec0.ec1 . . . ec4 given in Fig. 3 satisfies trace-
determinism. To support our comments, let us consider a simpler TIOSTS with
three transitions (tr1, tr2 and tr3), with two of them, tr2 and tr3, creating a
non-deterministic situation:
tr1 : q0

Transc?amt−−−−−−−→ q1, tr2 : q1
Debit!amt−−−−−−→ q2 and tr3 : q1

[fee>0] ,Debit!amt+fee−−−−−−−−−−−−−−−−→ q3
The TIOSTS symbolic execution for some initial execution context ec0 (F ini =
{amt0, fee0}) can reach execution contexts ec1 (tr(ec1) = tr1, pec(ec1) = ec0),
ec2 (tr(ec2) = tr2, pec(ec2) = ec1), and ec3 (tr(ec3) = tr3, pec(ec3) = ec1),

14 B. Bannour et al.

building 2 symbolic paths ec0.ec1.ec2 and ec0.ec1.ec3. Respective path conditions
are π(ec2) = (y1

D = amt1) and π(ec3) = (fee0 > 0)∧(y1
D = amt1+fee0) where

amt1 binds the value received on the channel Transc (f in
Transc(ec0) = amt1) and

y1
D binds the value emitted on the channel Debit (fout

Debit(ec1) = y1
D).

Given tp = ec0.ec1.ec2, execution contexts ec2 and ec3 share the same out-
put channel Debit and the same predecessor context ec1. tp satisfies the trace-
determinism property. Indeed, the formula:(
∃{fee0,amt0}.(y1

D=amt1)
) ∧ (

∃{fee0,amt0}.(fee0>0) ∧ (y1
D=amt1+fee0)

)

is not satisfiable because amt1 < amt1 + fee0 holds as we have fee0 > 0. A
trace cannot belong to distinct paths: if the debit value is the same as what is
requested for withdrawal then the trace covers ec2, else ec3 is covered.

5 Path-Guided Test Cases

Roughly speaking, a test case TC will be a mirror TIOSTS of a TIOSTS G,
restricted by tp, a test purpose of G, intended to interact with a LUT that we
wish to check its conformance to G up to tp. TC will be a tree-like TIOSTS with
tp of G as a backbone, incorporating the following specific characteristics:

– execution contexts in EC(tp) constitute the main branch,
– sink states or leaves are assimilated with a test verdict. Notably, the last

execution context tgt(tp) of tp will be assimilated with the PASS verdict,
– from each ec in EC(tp) other than tgt(tp), the outgoing arcs outside tp decline

all ways to deviate from tp and directly lead to a verdict state, either an
inconclusive verdict or a failure verdict. In Definition 6, we will specify the
different ways of constructing these arcs from tp states, leading to a verdict.

In Definition 6, we define TC by enumerating the different cases of transitions
to be built according to channel type and tp membership. We now give a few
indications for enhancing the readability.

– Channel roles are reversed: channels in CCin as well as channel δ (resp.
Cout ∪ UCin) become output (resp. input) channels;

– Variables of TC will be symbolic variables involved in tp and will be used to
store successive concrete events observed on LUT ;

– Any observation on LUT will be encoded as an input transition in TC,
whether it is an emission from a channel of Cout, a reception on a channel of
UCin or a time-out observation.

On the latter, it is conventional to consider that a system that does not react
before a certain delay, chosen to be long enough, is in a state of quiescence.
The only notable exception is when input transitions of tp give rise to output
transitions for TC, modeling a situation in which TC stimulates LUT by sending
it data. The choice of the data to send is conditioned by two constraints: (i)
taking into account the information collected so far and stored in the variables
of TC in the first steps, and (ii) the guarantee of being able to reach the last

Symbolic Path-Guided Test Cases for Models with Data and Time 15

EC of tp, i.e. the verdict PASS. This will be done by ensuring the satisfiability
of the path condition of tp, leaving aside the variables already binded.

We will refer to variables of a symbolic path as follows: for2 α ∈ {in, out},
fα(p) =

⋃
i∈[1,n) fα(eci) will denote all introduced fresh variables in Fα used to

compute a symbolic path p = ec0.ec1 . . . ecn. Similarly, fdur(p) = {fdur(eci)|i ∈
[1, n)}. Moreover, for a target execution context ecn = tgt(p), we denote f

α
(ecn)

and f(ecn) resp. for fα(p) and f(p).

Definition 6 (Path-guided test case). Let tp be a test purpose for a TIOSTS
G. Let us consider the signature Σ̂ = (Â, K̂, Ĉ) where:

– Â = f in(tp) ∪ fout(tp),
– K̂ = fdur(tp),
– Ĉ = Cδ such that Ĉin = Cout ∪ UCin and Ĉout = CCin ∪ {δ}

A test case guided by tp is a TIOSTS TC = (Q̂, q̂0, T̂ r) over Σ̂ where:

– Q̂ =
(
EC(tp) \ {tgt(tp)}

)
∪ V where:

V = { PASS, FAILout, FAILdur, INCout, INCdur, INCucIn
spec , INCucIn

uspec },
– q̂0 = ec0,

– T̂ r is defined by a set R of 10 rules of the form
H

tr∈ T̂ r

(Ri)
LABEL for i ∈ [1, 10].

Such a rule reads as follows: the transition tr is added due to rule Ri to T̂ r
provided that hypothesis H holds and Sat(φ(tr)).

In writing the rules of R, we will use the following formulas

φstim : ∃F ini ∪ f(tgt(tp)) \ f(ec′).π(tp)

φobs
spec : fdur(ec) < TM ∧ (∃F ini.π(ec′))

φobs
uspec : fdur(ec) < TM ∧

∧
pec(ec′)=ec
chan(ec′)=c

(∀F ini.¬π(ec′))

φδ
spec : fdur(ec) ≥ TM ∧

∨
pec(ec′)=ec

chan(ec′)∈Cout∪UCin∪{δ}
(∃F ini.π(ec′))

φδ
uspec : fdur(ec) ≥ TM ∧

∧
pec(ec′)=ec

chan(ec′)∈Cout∪UCin∪{δ}
(∀F ini.¬π(ec′))

where the constant TM (Time-out) sets the maximum waiting-time for
observing outputs or uncontrollable inputs.

ec
(z,c?x)−−−−→ ec′ ∈ EC(tp) c ∈ CCin

(
ec, c!x, φstim, {fdur(ec)}, id

̂A, ec′)∈ T̂ r

(R1)
SKIP

ec
(z,c!y)−−−−→ ec′ ∈ EC(tp)

ec′ �= tgt(tp) c ∈ Cout

(
ec, c?y, φobs

spec, {fdur(ec′)}, id
̂A, ec′)∈ T̂ r

(R2)
SKIP

ec
(z,c!y)−−−−→ ec′ ∈ EC(tp)

ec′ = tgt(tp) c ∈ Cout

(
ec, c?y, φobs

spec, ∅, id
̂A,PASS

)
∈ T̂ r

(R3)
PASS

2 For i and j in N verifying i < j, [i, j) contains the integers from i to j − 1 included.

16 B. Bannour et al.

ec
(z,c!y)−−−−→ ec′ ec ∈ EC(tp) \ {tgt(tp)}

ec′ �∈ EC(tp) c ∈ Cout

(
ec, c?y, φobs

spec, ∅, id
̂A, INCout

)
∈ T̂ r

(R4)
INCout

ec
(z,c!y)−−−−→ ec′ ec ∈ EC(tp) \ {tgt(tp)}

ec ∈ EC(tp) c ∈ Cout

(
ec, c?fout

c (ec), φobs
uspec, ∅, id

̂A,FAILout
)
∈ T̂ r

(R5)
FAILout

ec
(z,c?x)−−−−→ ec′ ∈ EC(tp)

c ∈ UCin

(
ec, c?x, φobs

spec, {fdur(ec′)}, id
̂A, ec′)∈ T̂ r

(R6)
SKIP

ec
(z,c?x)−−−−→ ec′ ec ∈ EC(tp) \ {tgt(tp)}

ec′ �∈ EC(tp) c ∈ UCin

(
ec, c?x, φobs

spec, ∅, id
̂A, INCucIn

spec

)
∈ T̂ r

(R7)
INCucIn

spec

ec ∈ EC(tp) c ∈ UCin

(
ec, c?f in

c (ec), φobs
uspec, ∅, id

̂A, INCucIn
uspec

)
∈ T̂ r

(R8)
INCucIn

uspec

ec ∈ EC(tp)
(
ec, δ!, φδ

spec, ∅, id
̂A, INCdur

)
∈ T̂ r

(R9)
INCdur

ec ∈ EC(tp)
(
ec, δ!, φδ

uspec, ∅, id
̂A,FAILdur

)
∈ T̂ r

(R10)
FAILdur

A verdict PASS is reached when tp is covered, verdicts INCm
n are reached

when traces deviate from tp while remaining in G, and verdicts FAILm denote
traces outside G. The annotations n and m provide additional information on
the cause of the verdict. Rules R1, R2 and R6, grouped together under the label
SKIP, allow advancing along tp, resp. by stimulating LUT with the sending of
data, observing an emission on Cout and observing a reception on UCin. Rule
R3 indicates that the last EC of tp, thus the PASS verdict, has been reached.
Rules R4, R7, R8 and R9, each with a label INCm

n indicate that the observed
event causes LUT to leave tp, without leaving G, resp. by observing an output,
an input specified in G, an input not specified in G and a time-out observation.
Lastly, rules R5 and R10, resp. labeled by FAILout and FAILdur, raise a FAIL
verdict, for resp. an unauthorized output and an exceeded time-out.

Example 6. In Fig. 4, the test case for tp = ec0.ec1 . . . ec4 (see Example 5) is
depicted. Certain verdict states are repeated for readability, and defining rules
annotate the transitions. The test case utilizes the Transc channel as a control-
lable input channel for stimulation while observing all other channels. For space
considerations, we comment only on some rules.
Rule R1 defines a stimulation action Transc!(amt1, tb1) (transition from ec0
to ec1) constrained by π(tp) to select an appropriate value for amt1 and tb1

together with a time of stimulation z0 that allows to follow the test purpose.
Within π(tp), amt1 is limited to some range (10 ≤ amt1 ≤ 1000), tb1 is greater
than or equal 4, while z0 is unconstrained (a duration measured with clock z0).
Non-revealed variables, i.e., other than z0, amt1 and tb1 appearing in π(tp) are
bound by the existential quantifier due to their unknown values at this execution
point. The clock z1 is reset to enable reasoning on subsequent actions’ duration
(measured on z1). Rule R2 defines an observation action Debit?(y1

D1
,y1

D2
,y1

D3
)

constrained by (z1<TM) ∧ ∃fee0.π(ec2) (transition from ec1 to ec2) while rule
R5 defines the same observation constrained by (z1 < TM) ∧ ∀fee0.¬π(ec2) ∧

Symbolic Path-Guided Test Cases for Models with Data and Time 17

∀{fee0} .¬π(ec9) (transition from ec1 to FAILout). Both situations are pos-
sible: Trace (0,Transc!(50, 4)).(0,Debit?(1, 51,ATM_ID)) reaches ec2 whereas
FAILout is reached by traces (0,Transc!(50, 4)).(0,Debit?(1, 0,ATM_ID)) and
(0,Transc!(50, 4)).(2,Debit?(1, 51,ATM_ID)) due resp. to data and time non-
compliance. Rule R6 defines an unspecified quiescence δ! constrained by (z1 ≥
TM)∧ ∀fee0 .¬π(ec2)∧ ∀fee0 .¬π(ec9)∧ ∀fee0 .¬π(ec10) (transition from ec1 to
FAILdur). The trace (0,Transc!(50, 4)).(5, δ!) reaches FAILdur (time-out TM is
set to 5): the time-out is exceeded without the mandatory output on the channel
Debit being observed. Rule R9 defines a specified quiescence δ! (transition from
ec1 to INCdur not drawn for space). This case arises when there is still sufficient
time to reach ec2, ec9 or ec10 (no quiescence applies from ec1, see Example 4).

Fig. 4. Test case for ATM

18 B. Bannour et al.

A test case TC interacts with a LUT , designed to comply with a TIOSTS
G, to issue a verdict about a test purpose tp. TC is therefore defined as a mirror
image of G: emissions (receptions) in TC correspond to receptions (emissions) of
G (cf. rules R1 and R2), except uncontrollable channels whose actions are not
reversed (cf rule R6). Given a concrete action act (with v for value received or
sent), we denote act its mirror action, defined as follows: c!v = c?v for c ∈ Cout,
c?v = c!v for c ∈ CCin and c?v = c?v for c ∈ UCin.

We introduce an execution relation that abstracts a synchronized execution
of a trace with TC:

Definition 7 (Relation execution �TC). Let G be a TIOSTS and tp a test
purpose for G with TC = (Q̂, q̂0, T̂ r) the test case guided by tp.

The execution relation �TC⊆
(
Evt(Cδ)∗ × Q̂ × MF

)2 is defined by:
for ev.σ ∈ Evt(Cδ)∗, q, q′ ∈ Q̂ and for ν, ν′ ∈ MF , (ev.σ, q,

ν) �TC (σ, q′, ν′) holds iff there exists tr ∈ T̂ r s.t. src(tr) = q, tgt(tr) = q′,
ν′(act(tr)) = act(ev) and M |=ν′ φ(tr) with ν′ defined as:

– if ev=(d, c?v) and chan(tr)=c then ν′=ν[fdur(q)
→d][f in
c (q)
→v] ;

– if ev=(d, c!v) and chan(tr)=c then ν′=ν[fdur(q)
→d][fout
c (q)
→v] ;

– else, i.e., ev=(d, δ!) and chan(tr)=δ, ν′ = ν[fdur(q)
→d].

Intuitively, a step (ev.σ, q, ν) �TC (σ, q′, ν′) consists in:

– reading the first element ev of a trace from a test case state q and an inter-
pretation ν synthesizing the known information about the variables in F ;

– finding a transition tr in T̂ r whose action matches the mirror action of ev;
– building a new triple with σ the trace remaining to be read, q′ a successor

state of q in Q̂, and ν′ the updated interpretation of the variables F .

The execution relation simulates a parallel composition between timed input
output systems, synchronizing inputs and outputs. Our formulation deviates
from the one in [22] for two essential reasons: the symbolic nature of the test
case requires the intermediate interpretations of variables to be memorized, and
uncontrollable channels require to adapt the synchronization [11].

Let LUT be a subset of Evt(Cδ)∗ satisfying H and ∗�TC be the reflexive and
transitive closure of �TC. Given a LUT trace σ0, we apply the execution relation
iteratively from an initial triplet consisting of σ0 a trace, q̂0 the initial state and
ν0 an arbitrary interpretation, to obtain the corresponding test verdict for tp, so
that the verdict set obtained from the execution of TC on LUT is defined by:
vdt(LUT,TC) = {V | ∃σ0 ∈ LUT, ν0 ∈ MF , (σ0, q̂0, ν0)

∗�TC (σ,V, ν)}.
Theorem 1 states the soundness of the test case execution for detecting errors

through the FAILout and FAILdur verdicts. A proof can be found in [5]. Com-
parable results can be formulated for the other verdicts. Still, those relating to
FAIL verdicts are the only ones to guarantee that any discarded system under
test does not satisfy the tioco conformance relation.

Symbolic Path-Guided Test Cases for Models with Data and Time 19

Theorem 1. Let C be a set of channels. Let G and LUT be resp. a TIOSTS
defined on C and a subset of Evt(Cδ)∗ satisfying H.
If LUT tioco G then for any test purpose tp for G with TC as test case guided
by tp, we have FAILout �∈ vdt(LUT,TC) and FAILdur �∈ vdt(LUT,TC).

The test case generation is implemented as a module in the Diversity symbolic
execution platform [9]. Resulting test cases are expressed in Diversity’s entry
language, allowing their exploration through symbolic execution with the SMT-
solver Z3 [10]. For easier execution, we export the test cases from Diversity in
JSON format, with transition guards expressed in the SMT-LIB input format for
SMT-solvers. Our experiments involved applying this test case generation to the
ATM example on an Intel Core i7 processor. Varying the size of the test purposes
up to 100 transitions, we observed successful trace-determinism verification for
all test purposes. We noted a noticeable increase in generation duration as the
test purpose size grew while still remaining feasible. Generating the TIOSTS
test case (513 transitions) for the test purpose of 100 transitions took more than
40s, in contrast to only 500 ms for the test purpose of size 4 in Example 6 (31
transitions) resp. 8s for the test purpose of size 50 (138 transitions).

6 Related Work

Existing works for (t)ioco conformance test cases from symbolic models employs
two main generation methods: online and offline. Online generation [8,12,15]
involves dynamically generating test cases while exploring the model during exe-
cution on the system under test. In contrast, offline generation [3,4,16] focuses
on deriving test cases from the model before executing them on the system under
test. Some works [8,12,15] propose online test case generation using symbolic
execution. Yet, these works did not consider time constraints, and in particu-
lar, work [8] did not consider quiescence. In [8], a test purpose is a finite path,
while in [15], it is a finite symbolic subtree. Both works require maintaining a set
of reached symbolic states during test case execution to avoid inconsistent ver-
dicts in case of non-determinism, at the expense of computational resources for
tracking the symbolic states and solving their path conditions. Work [4] proposes
offline test case generation using a path to compute a timed stimulation sequence
for the system under test. The recorded timed output sequence is then analyzed
for conformance. This approach lacks control over the value and timing of the
next stimulation relative to the observed system behavior, potentially resulting
in greater deviations from the test purpose. In [16], objective-centered testers
for timed automata are built using game theory. Works [3,19] propose offline
test case generation as tree-like symbolic transition systems and thus restricted
to determinism as we do. The test case generation in [19] relies on abstract
interpretation to reinforce test case guards on data to keep chances of staying
in the test purpose and does not consider time. In [3], symbolic execution tech-
niques are used for data handling, while zone-based abstraction techniques are
employed for time. This separation results in less expressive and flexible models,
as it cannot extend to incorporate data parameters in the time constraints.

20 B. Bannour et al.

7 Conclusion

This paper presents an offline approach to conformance test case generation
from models of timed symbolic transition systems using symbolic execution to
handle data and time. Our test purpose is a symbolic path in the model that
fulfills a determinism condition to enable the generation of sound tree-like test
cases. By distinguishing between controllable inputs (from the test case) and
uncontrollable inputs (from other systems), our approach enhances the usability
of test cases when the system interacts with other systems (remote in general).
This allows our test cases to be used in more liberal configurations, typically
those that may appear for distributed systems. It’s worth noting that our test
cases include configurations where the resolution time exceeds the stimulation
time or overlaps the arrival of an observation. These points will be the subject
of future work. Similarly, the experiments described in this paper concern the
computation of test cases derived from models that have not yet been used to
test systems. This is another avenue for future work.

References

1. Aichernig, B.K., Tappler, M.: Symbolic input-output conformance checking for
model-based mutation testing. In: USE@FM 2015, Elsevier (2015). https://doi.
org/10.1016/j.entcs.2016.01.002

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. (1994).
https://doi.org/10.1016/0304-3975(94)90010-8

3. Andrade, W.L., Machado, P.D.L., Jéron, T., Marchand, H.: Abstracting time and
data for conformance testing of real-time systems. In: ICST Workshops (2011).
https://doi.org/10.1109/ICSTW.2011.82

4. Bannour, B., Escobedo, J.P., Gaston, C., Le Gall, P.: Off-line test case generation
for timed symbolic model-based conformance testing. In: ICTSS (2012). https://
doi.org/10.1007/978-3-642-34691-0_10

5. Bannour, B., Lapitre, A., Le Gall, P., Nguyen, T.: Symbolic path-guided test cases
for models with data and time, version of this paper extended with appendix
(2023). https://doi.org/10.48550/arXiv.2309.06840

6. Benharrat, N., Gaston, C., Hierons, R.M., Lapitre, A., Le Gall, P.: Constraint-
based oracles for timed distributed systems. In: Yevtushenko, N., Cavalli, A.R.,
Yenigün, H. (eds.) ICTSS 2017. LNCS, vol. 10533, pp. 276–292. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-67549-7_17

7. de Boer, F.S., Bonsangue, M.: On the nature of symbolic execution. In: ter Beek,
M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 64–80.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8_6

8. van den Bos, P., Tretmans, J.: Coverage-based testing with symbolic transition
systems. In: Beyer, D., Keller, C. (eds.) TAP 2019. LNCS, vol. 11823, pp. 64–82.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31157-5_5

9. CEA: diversity, eclipse formal modeling project. https://projects.eclipse.org/
proposals/eclipse-formal-modeling-project (2023)

10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

https://doi.org/10.1016/j.entcs.2016.01.002
https://doi.org/10.1016/j.entcs.2016.01.002
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/ICSTW.2011.82
https://doi.org/10.1007/978-3-642-34691-0_10
https://doi.org/10.1007/978-3-642-34691-0_10
https://doi.org/10.48550/arXiv.2309.06840
https://doi.org/10.1007/978-3-319-67549-7_17
https://doi.org/10.1007/978-3-030-30942-8_6
https://doi.org/10.1007/978-3-030-31157-5_5
https://projects.eclipse.org/proposals/eclipse-formal-modeling-project
https://projects.eclipse.org/proposals/eclipse-formal-modeling-project
https://doi.org/10.1007/978-3-540-78800-3_24

Symbolic Path-Guided Test Cases for Models with Data and Time 21

11. Escobedo, J.P., Gaston, C., Gall, P.L., Cavalli, A.R.: Testing web service orches-
trators in context: a symbolic approach. In: SEFM, pp. 257–267. IEEE Computer
Society (2010)

12. Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test generation based on symbolic
specifications. In: FATES (2004). https://doi.org/10.1007/978-3-540-31848-4_1

13. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A symbolic framework for model-
based testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV
-2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006). https://doi.org/
10.1007/11940197_3

14. Gaston, C., Hierons, R.M., Le Gall, P.: An implementation relation and test frame-
work for timed distributed systems. In: ICTSS (2013). https://doi.org/10.1007/
978-3-642-41707-8_6

15. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for
test purpose definition. In: TestCom (2006). https://doi.org/10.1007/11754008_1

16. Henry, L., Jéron, T., Markey, N.: Control strategies for off-line testing of timed
systems. Formal Methods Syst. Des. (2022). https://doi.org/10.1007/s10703-022-
00403-w

17. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: FORTEST (2008). https://doi.org/
10.1007/978-3-540-78917-8_3

18. Janssen, R., Tretmans, J.: Matching implementations to specifications: the corner
cases of ioco. In: Hung, C., Papadopoulos, G.A. (eds.) SAC. ACM (2019). https://
doi.org/10.1145/3297280.3297496

19. Jéron, T.: Symbolic model-based test selection. In: Machado, P.D.L. (ed.) SBMF.
Elsevier (2008). https://doi.org/10.1016/j.entcs.2009.05.051

20. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

21. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In:
Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24732-6_8

22. Krichen, M., Tripakis, S.: Interesting properties of the real-time conformance
relation tioco. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006.
LNCS, vol. 4281, pp. 317–331. Springer, Heidelberg (2006). https://doi.org/10.
1007/11921240_22

23. Luthmann, L., Göttmann, H., Lochau, M.: Compositional liveness-preserving con-
formance testing of timed I/O automata. In: Arbab, F., Jongmans, S.-S. (eds.)
FACS 2019. LNCS, vol. 12018, pp. 147–169. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-40914-2_8

24. Marsso, L., Mateescu, R., Serwe, W.: TESTOR: a modular tool for on-the-fly
conformance test case generation. In: Beyer, D., Huisman, M. (eds.) TACAS 2018.
LNCS, vol. 10806, pp. 211–228. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89963-3_13

25. Rusu, V., Marchand, H., Jéron, T.: Automatic verification and conformance testing
for validating safety properties of reactive systems. In: Fitzgerald, J., Hayes, I.J.,
Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 189–204. Springer, Heidelberg
(2005). https://doi.org/10.1007/11526841_14

26. Standard, E.: Methods for testing and specification (MTS); the testing and test
control notation version 3; Part 1: TTCN-3 core language (2005)

https://doi.org/10.1007/978-3-540-31848-4_1
https://doi.org/10.1007/11940197_3
https://doi.org/10.1007/11940197_3
https://doi.org/10.1007/978-3-642-41707-8_6
https://doi.org/10.1007/978-3-642-41707-8_6
https://doi.org/10.1007/11754008_1
https://doi.org/10.1007/s10703-022-00403-w
https://doi.org/10.1007/s10703-022-00403-w
https://doi.org/10.1007/978-3-540-78917-8_3
https://doi.org/10.1007/978-3-540-78917-8_3
https://doi.org/10.1145/3297280.3297496
https://doi.org/10.1145/3297280.3297496
https://doi.org/10.1016/j.entcs.2009.05.051
https://doi.org/10.1007/978-3-540-24732-6_8
https://doi.org/10.1007/11921240_22
https://doi.org/10.1007/11921240_22
https://doi.org/10.1007/978-3-030-40914-2_8
https://doi.org/10.1007/978-3-030-40914-2_8
https://doi.org/10.1007/978-3-319-89963-3_13
https://doi.org/10.1007/978-3-319-89963-3_13
https://doi.org/10.1007/11526841_14

22 B. Bannour et al.

27. von Styp, S., Bohnenkamp, H., Schmaltz, J.: A conformance testing relation for
symbolic timed automata. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS
2010. LNCS, vol. 6246, pp. 243–255. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15297-9_19

28. Tretmans, J.: Test generation with inputs, outputs, and quiescence. In: Margaria,
T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 127–146. Springer, Hei-
delberg (1996). https://doi.org/10.1007/3-540-61042-1_42

29. Tretmans, J., Janssen, R.: Goodbye ioco. In: a journey from process algebra via
timed automata to model learning. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-15629-8_26

https://doi.org/10.1007/978-3-642-15297-9_19
https://doi.org/10.1007/978-3-642-15297-9_19
https://doi.org/10.1007/3-540-61042-1_42
https://doi.org/10.1007/978-3-031-15629-8_26
https://doi.org/10.1007/978-3-031-15629-8_26

Model-Based Testing of Asynchronously
Communicating Distributed Controllers

Bence Graics(B), Milán Mondok, Vince Molnár, and István Majzik

Department of Measurement and Information Systems, Budapest University of
Technology and Economics, Műegyetem rkp. 3., 1111 Budapest, Hungary

{graics,molnarv,majzik}@mit.bme.hu

Abstract. Programmable controllers are gaining prevalence even in dis-
tributed safety-critical infrastructures, e.g., in the railway and aerospace
industries. Such systems are generally integrated using multiple loosely-
coupled reactive components and must satisfy various critical require-
ments. Thus, their systematic testing is an essential task, which can be
encumbered by their distributed characteristics. This paper presents a
model-based integration test generation approach leveraging hidden for-
mal methods based on the collaborating statechart models of the com-
ponents. Statecharts can be integrated using various composition modes
(e.g., synchronous and asynchronous) and then transformed (via a sym-
bolic transition systems formalism – XSTS) into the input formalisms of
model checker back-ends, namely UPPAAL, Theta and Spin in an auto-
mated way. The model checkers are utilized for test generation based
on multiple coverage criteria. The approach is implemented in our open
source Gamma Statechart Composition Framework and evaluated on
industrial-scale distributed controller subsystems from the railway indus-
try.

Keywords: Model-based integration testing · Collaborating
statecharts · Asynchronous communication · Hidden formal methods ·
Tool suite

1 Introduction

Software-intensive programmable controllers are becoming increasingly wide-
spread in safety-critical infrastructure, including railway interlocking systems
(RIS) [25,32] and onboard computers of satellites [1,29,41]. Such systems are
commonly integrated using multiple components that may communicate in dif-
ferent ways, e.g., synchronously or asynchronously. This way, these components
form a loosely coupled distributed architecture. In general, these systems are
embedded into their environments and system components must cooperate to
conduct complex tasks in response to external commands and environmental or
internal events (e.g., changes in the context or component failures) to reach their
objectives. Thus, they are often referred to as reactive systems.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Cámara and S.-S. Jongmans (Eds.): FACS 2023, LNCS 14485, pp. 23–44, 2024.
https://doi.org/10.1007/978-3-031-52183-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52183-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-52183-6_2

24 B. Graics et al.

The distributed architecture of these systems may complicate their devel-
opment, necessitating precise means to describe the functional behavior of the
components, as well as their integration, including their execution (e.g., sequen-
tial, concurrent or parallel) and communication modes (e.g., signal- or message-
based). In addition, as these systems carry out safety-critical tasks, testing their
implementation in a systematic way is vital. Nonetheless, the verification of com-
ponent interactions is often encumbered by the imprecise, informal definition and
interpretation of their execution and communication modes.

To aid the development of complex distributed systems, model-based
and component-based systems engineering (MBSE and CBSE) [3,21,27,39]
approaches advocate the application of reusable models and components based
on high-level modeling languages, e.g., SysML and UML. These modeling lan-
guages allow for the platform-independent description of functional behavior
in terms of components, e.g., statecharts [19] for reactive behavior, as well as
structure, e.g., block diagrams to define the (hierarchical) integration of system
components.

In turn, most MBSE and CBSE approaches do not provide refined and exten-
sible tool-centric means for the automated and systematic testing of the system
implementation [30]. These insufficiencies may stem from informal model seman-
tics or the lack of sound and efficient verification methods, e.g., the lack of inte-
gration between the high-level models and verification back-ends [9,31].

Consequently, verification-oriented MBSE and CBSE approaches for devel-
oping distributed control systems should support – in an integrated tool suite –
i) high-level modeling languages with precise semantics to describe the behavior
of standalone components, and component integration (composition) based on
different modes of execution and communication, ii) automated model transfor-
mations with traceability that map these models into different model checkers
to support the exhaustive verification of functional behavior in a flexible and
reusable way, and iii) test generation algorithms suitable for large-scale systems
based on various coverage criteria to test the system implementation efficiently.

To address these challenges, we propose a fully automated model-based test-
ing (MBT) approach in our open source Gamma Statechart Composition Frame-
work1 [34]. At its core, the approach builds on a high-level statechart language
(GSL) [12] and a composition language (GCL) [17] with precise semantics to
describe the functional behavior of standalone components, as well as their inte-
gration using various execution and communication modes (jointly, referred to as
composition modes) to support the modeling of synchronous and asynchronous
systems. The emergent models are automatically mapped into a low-level formal-
ism, called EXtended Symbolic Transition Systems (XSTS), serving as a common
formal representation to capture reactive behavior. Formal verification based on
temporal properties is supported by mapping XSTS models and properties into
the input formalisms of different model checker back-ends; so far, UPPAAL [4]
and Theta [40] have been supported. The mappings feature model reduction

1 More information about the framework (e.g., preprints) and the source code can be
found at http://gamma.inf.mit.bme.hu/ and https://github.com/ftsrg/gamma/.

http://gamma.inf.mit.bme.hu/
https://github.com/ftsrg/gamma/

Model-Based Testing of Asynchronous Controllers 25

and model slicing algorithms to allow for the verification of large-scale systems.
Back-annotation facilities automatically map the verification results into a high-
level trace language (GTL) [17]. Building on the formal verification and back-
annotation functionalities [10], the approach generates integration tests based
on customizable structural (model element-based), dataflow-based and behavior-
based (interactional) coverage criteria. Test cases are optimized and concretized
to different platforms, e.g., C or Java, to detect faults in the implementation
of components (e.g., missing implementation of states or transitions), incorrect
variable definitions and uses or component interactions.

Our previous works [16,17,34] focused on the design and verification of timed
systems (with UPPAAL) and reactive systems featuring signal- and shared vari-
able based communication (with Theta). The already presented version of the
framework featured GSL and GCL, the model transformations into the UPPAAL
and Theta model checker back-ends along with the model reduction and slicing
algorithms, and automated test generation based on the coverage criteria. This
work extends the framework to support asynchronous systems with message-
based communication and integrates the open source Spin [23,24] model checker,
which is tailored to verifying models with such characteristics. The integration
necessitates i) a mapping between the framework’s behavioral representation
(XSTS) and Promela (the input language of Spin) and ii) the validation of our
approach, including the evaluation of its performance. The results show that Spin
provides additional versatility and thus, is a valuable addition to the framework.

The novel contributions of the paper are as follows:

1. the EXtended Symbolic Transition Systems (XSTS) formalism (see Sect. 4) as
a general representation for reactive components and their integration that
supports high-level control structures (see their application in Sect. 5) to facil-
itate efficient verification;

2. a nontrivial mapping between the XSTS and Promela languages (see Sect. 6)
integrating the open source Spin model checker into Gamma, including two
message queue representation modes for asynchronous communication using
i) arrays and ii) native asynchronous channels in Promela; and

3. the evaluation of our extended approach on real-life distributed controller
subsystems from the railway industry, comparing the UPPAAL, Theta and
Spin integrated model checkers and their underlying algorithms (see Sect. 7).

2 Related Work

The main features of our approach revolve around i) a low-level analysis lan-
guage (XSTS) to describe reactive behavior and allow for formal verification
using model checkers and ii) an end-to-end integrated MBT approach for com-
posite high-level engineering models using hidden formal methods (i.e., users
do not have to familiarize themselves with the underlying analysis models and
algorithms). Thus, we present related work according to these aspects.

26 B. Graics et al.

Analysis Languages. BoogiePL [6], as the input formalism of the Boogie model
checker, is a generic intermediate language for verifying object-oriented pro-
grams. The language is coarsely typed and offers constructs such as procedures
and arrays. The main distinguishing feature of BoogiePL compared to XSTS is
that it was specifically tailored to fit computer programs, not reactive behavior,
and offers constructs for this specific domain (like procedures).

PVS [36] is a specification and verification language based on classical, typed
higher-order logic and can be used for theorem proving, a lower-level approach
to construct and maintain large formalizations and logical proofs.

The Symbolic Analysis Laboratory (SAL) [38] language is an intermediate
language tailored to concurrent transition systems. It is intended to be the tar-
get for translators that extract the behavior descriptions from other languages,
and a common source for different analysis tools. It is supported by the SAL
toolset that includes symbolic (BDD-based) and bounded (SAT/SMT-based)
model checkers. In turn, SAL provides limited support for traceability and back-
annotation with respect to the integration of high-level modeling languages.

In comparison, we offer XSTS, an extension of symbolic transition systems
close to the input formalisms of model checkers, which also includes control
structures to retain several characteristics of the engineering models that can
be utilized in mappings for model checking (e.g., parallel execution), and also
supports easy traceability and back-annotation regarding the verification results.

Integrated Test Generation Approaches. The idea of using hidden formal methods
to generate tests based on integrated models has been applied in several tool-
based approaches. The CompleteTest tool [8] analyzes software written in the
Function Block Diagram (FBD) language. The approach generates tests based
on logical coverage criteria (e.g., MC/DC) by mapping FBD into UPPAAL.

Literature [33] introduces the AutoMOTGen toolset that allows for the map-
ping of Simulink/Stateflow models into the SAL framework and the model check-
ing based test generation based on different logical coverage criteria.

AGEDIS [20] is an MBT toolset for component-based distributed systems.
It integrates model and test suite editors, test simulation and debugging tools,
test coverage and defect analysis tools, and report generators. Test models can
be defined using UML class, state machine and object diagrams. Test generation
uses the so-called TGV engine [26] and supports state and transition coverage.

Smartesting CertifyIt [28] is also an MBT toolset, which integrates editors for
defining requirements and traceability, test adapters and test models. Test mod-
els are composed of UML class diagrams (for data description), state machines
and object diagrams (initial states of executions), as well as Business Process
Model and Notations (BPMN). Tests are generated with the CertifyIt Model
Checker, which supports state, transition and transition-pair coverage criteria.

Our Gamma framework is unique from the aspect that it supports various
composition modes [17] (including support for asynchronous communication),
formally defined but configurable test coverage criteria with model reduction and
slicing algorithms [16], and model checkers integrated via the XSTS formalism.

Model-Based Testing of Asynchronous Controllers 27

3 Extended Model-Based Testing Approach

This section first overviews the underlying modeling languages that support our
extended model-based testing (MBT) approach for component-based reactive
systems. Next, the section details the steps (user activities and automated inter-
nal model transformations) that constitute the i) model design ii) formal verifi-
cation and iii) test generation phases of our approach in Gamma.

– The Gamma Statechart Language (GSL) is a UML/SysML-inspired con-
figurable formal statechart [19] language supporting different semantic vari-
ants of statecharts, e.g., different kinds of priorities for transitions [12].

– The Gamma Composition Language (GCL) is a composition lan-
guage for the formal hierarchical composition of state-based (GSL) com-
ponents according to multiple execution and communication (composition)
modes [17]. It supports synchronous systems where components communicate
with sampled signals and are executed concurrently (synchronous-reactive)
or sequentially (cascade), as well as asynchronous systems where components
communicate with queued messages and are executed sequentially (scheduled
asynchronous-reactive [14]) or in parallel (asynchronous-reactive).

– The Gamma Genmodel Language (GGL) is a configuration language
for configuring model transformations, e.g., to select the model checker for
verification or the coverage criteria for test generation.

– The Gamma Property Language (GPL) is a property language support-
ing the definition of CTL* [7] properties and thus, the formal specification of
requirements regarding (composite) component behavior.

– The EXtended Symbolic Transition Systems (XSTS) (Sect. 4) is a low-
level formalism tailored to formal verification that supports the description
of reactive behavior based on a set of variables, the values of which represent
system states, and transitions that describe the possible state changes.

– The Gamma Trace Language (GTL) is a high-level trace language for
reactive systems, supporting the description of execution traces, i.e., reached
state configurations, variable values and output events in response to input
events, time lapse and scheduling from the environment [17]. Such execution
traces are also interpretable as abstract tests as the language also supports
the specification of general assertions targeting the values of variables.

Figure 1 depicts the modeling languages, modeling artifacts and the model
transformations of our MBT approach in Gamma. In the following, we overview
the steps of the workflow, i.e., model design, formal verification and test gener-
ation; for more details regarding the formalization of the test coverage criteria
and model reduction and slicing algorithms, we direct the reader to [16].

Model Design. The model design phase consists of three steps. As an optional
step, external component models, i.e., statecharts created (Step 0) in integrated
modeling tools (front-ends), are imported to Gamma by model transformations
(Step 1) that map these models into GSL statecharts. Currently, the import of
Yakindu [15], MagicDraw, SCXML [37], and XSML [14] models are supported.

28 B. Graics et al.

Fig. 1. Modeling languages and transformation chains of our approach in Gamma.

Next, the GSL models can be hierarchically integrated in GCL (Step 2) according
to different (and potentially mixed) execution and communication modes [17].

Formal Verification. The integrated GCL model can be formally verified using a
sequence of automated model transformations that map the model and verifiable
properties (specified in GPL – Step 3) into inputs of model checker back-ends
via XSTS, i.e., UPPAAL, Theta or the newly integrated Spin. The mappings
are configured using GGL (Step 4) to select back-ends, add optional constraints
(e.g., scheduling) and set reduction and slicing algorithms [16]. The selected
model checker exhaustively explores the model’s state space with respect to the
given property (Step 5) and potentially returns a diagnostic trace that is back-
annotated to the GCL model, creating a representation in GTL.

Test Generation. If the verification results are satisfactory, implementation from
the models can be derived manually or automatically using the code generators of
Gamma or the integrated modeling front-ends (Step 6). Integration tests for the
implementation can be generated based on the GCL model using the aforemen-
tioned formal verification facilities [10]. Test generation is driven by customizable
dataflow-based, structural (model element-based) and behavior-based (interac-
tional) coverage criteria (Step 7), which are formalized as reachability properties
in GPL representing test targets (see [16] for their formalization), and control the
model checkers to compute test target (criterion) covering paths during model
traversal; model checking time can be limited by timeouts to discard uncoverable
test targets. These paths, i.e., returned witnesses for satisfying the reachability
properties, are represented as GTL execution traces (Step 8) and, in a testing
context, are regarded as abstract test cases for the property based on which they

Model-Based Testing of Asynchronous Controllers 29

are generated. Optimization algorithms are used to i) prevent starting model
checking runs for already covered test targets and ii) remove unnecessary tests
that do not contribute to the coverage of the specified criteria [16]. The abstract
tests are concretized (Step 9) to execution environments (e.g., JUnit) by gen-
erating concrete calls to provide test inputs, time delay and schedule system
execution, and then retrieve and evaluate outputs to check the conformance of
the system model and implementation for these particular traces.

Fig. 2. Excerpt of the spacecraft component model.

For example, if we aim to cover with tests each state node in a GCL model,
we can use the state-coverage keyword (with potential include and exclude con-
straints regarding the targeted state nodes) in a GGL analysis model transfor-
mation task besides selecting the model checker back-end for test generation.
As a result, GPL reachability properties are generated for every targeted state
node (in the form of E F state regionName.stateNodeName) besides the analy-
sis model, which are, one by one, translated into the input property formalism of
the selected model checker and checked on the generated analysis model. In case
the targeted state node is reachable, the model checker returns a diagnostic trace
consisting of a series of steps (alternating sequence of states and input events)
leading to its coverage. This diagnostic trace is automatically back-annotated to
GTL, creating an abstract test case that serves as a basis for test concretization.

Note that the architecture of the framework supports the parallel running of
multiple model checkers (model checker portfolio) for test generation, this way,
tackling the problem of finding the most suitable back-end for a given model.

4 EXtended Symbolic Transition Systems

The symbolic transition systems (STS) formalism [22] is a commonly used low-
level representation, e.g., for hardware model checking. STS models consist of
two SMT [2] formulas that describe the set of initial states and the transition
relation. Our novel EXtended Symbolic Transition Systems (XSTS) formalism

30 B. Graics et al.

introduced here is built on top of STS, and serves as a formal representation for
the behavior of component-based reactive systems.

The key contributions of our XSTS formalism compared to STS are as follows:

– XSTS introduces an imperative layer on top of SMT formulas, i.e., a set of
control structures with operational semantics, having two advantages:
1. It allows for the direct mapping of XSTS models into STS models, and

thus, into SMT formulas (see the Appendix for details) for their verifica-
tion by SMT-based model checkers. As a key feature, the mapping can
exploit variable substitution techniques [35] to increase the efficiency of
verification by reducing the size and complexity of SMT formulas (e.g.,
by eliminating unreachable branches based on conditions) given to the
back-end solvers. Control structures in the XSTS model facilitate the
efficiency of model checking, as model mappings can utilize the capabili-
ties of target model checkers that may have specific support for handling
certain control structures (e.g., partial order reduction to handle parallel
behavior), or peculiar abstraction for havoc structures (see below).

2. It supports the concrete execution of XSTS models (i.e., simulation func-
tionalities) and code generation from XSTS models.

– XSTS introduces annotations to variables to support metadata attachments
(e.g., to identify control variables). Annotations support traceability between
source and target models (e.g., GCL and derived XSTS models) that can be
leveraged during verification (e.g., special handling of the control variables).

– XSTS introduces clock variables to support time-dependent behavior.
– XSTS partitions the transition relation of STS to allow for distinguishing

between the behavior of the environment and that of the modeled system.
This feature can be leveraged during verification (back-annotation of diag-
nostic traces to higher-level models) and also during test generation by sep-
arating the steps of the environment and that of the modeled system in a
generated execution trace, which is important when mapping to concrete test
calls.

In the following, we introduce the elements of the XSTS language based on
an example spacecraft statechart model (see Fig. 2) originally defined in [16]
that transmits data to a ground station while managing its battery. Note that
in general, the XSTS language has all the features necessary to capture in a
semantic-preserving way the behavior of integrated GSL and GCL models.

Type Declarations. An XSTS model (see the left snippet of Fig. 3) begins with
custom type declarations (type keyword) that contain literals, similarly to enum
types in programming languages.

Variable Declarations. Type declarations are followed by global variable decla-
rations (var keyword) with integer, boolean, clock, and the previously discussed
custom types. The language also supports array types, which are mathematical
SMT arrays, similar to the map data structure of programming languages (see
Line 12). Variable declarations can optionally contain an initial value (Line 8).

Model-Based Testing of Asynchronous Controllers 31

Variables annotated with the ctrl keyword (Lines 6–7) are control variables, indi-
cating that these variables contain control information, which can be exploited
during verification (e.g., in Theta when using different abstraction algorithms).

Transitions. Model behavior is defined by three transitions, which are atomic,
i.e., they are either executed in their entirety or not at all. The system’s internal
behavior is described by the trans transition (Lines 14–44), while the behavior
of the system’s environment is described by the env transition (Lines 48–58).
The init transition (Lines 45–47) initializes the system. Regarding their execu-
tion order, the init transition is executed first, after which the env and trans
transitions alternate. In our example, the init transition sets the statechart’s
initial state, while the env transition places a random message (more precisely,
its identifier) in its queue. The trans transition pops a message from the queue,
which is processed in both regions (see Sect. 6 for the details of queue handling).

Basic Statements. The detailed behavior of transitions is captured via state-
ments. Assign statements (see Line 19) assign a value of its domain to a single
variable. Assume statements (Line 34) act as guards; they can be executed only
if their condition holds. Havoc statements assign a nondeterministically selected
value of its domain to a variable (Line 55). Local variable declarations can be
used to create transient variables that are only accessible in the scope they were
created in and are not part of the system’s state vector (Line 54).

Composite Statements. Composite statements contain other statements (oper-
ands), and can be used to describe complex control structures. Sequences are
lists of statements that are executed sequentially; each statement operates on
the result of the previous statement. Choice statements (see Line 33) model non-
deterministic choices between multiple statements; only one branch is selected
for execution, which cannot contain failing assumptions, i.e., if every branch
contains failing assumptions, then the choice statement also fails. Parallel state-
ments support the parallel execution of the operands (Lines 24–44). If-else state-
ments are deterministic choices based on a condition (see Lines 25–31) with an
optional else branch. XSTS also supports deterministic for loops over ranges
(Line 30).

5 Transforming Asynchronous GCL Models into XSTS

The XSTS-Promela mapping (to be presented in Sect. 6) exploits the traits of
the GCL-XSTS transformation (see the transformations related to Steps 4 and 5
in Sect. 3). Thus, we first overview the relevant parts of this automated trans-
formation before moving onto the XSTS-Promela mapping in the next section.

Synchronous statechart components (defined in GSL) are the basic building
blocks of GCL models (see Step 2 in Sect. 3). Asynchronous components are
created from simple or composite synchronous ones (i.e., synchronous-reactive
or cascade composite components) by wrapping them using a so-called asyn-
chronous adapter [17]: an adapter maps signals used in the synchronous domain

32 B. Graics et al.

Fig. 3. XSTS and Promela representations of the spacecraft component of Fig. 2.

Model-Based Testing of Asynchronous Controllers 33

into messages and related message queues in the asynchronous domain and vice
versa, i.e., the two representations of events in the two domains.

The transformation uses the same steps for every asynchronous adapter
(detailed in [13]). Here, we overview the relevant parts of this procedure related
to asynchronous communication based on the standalone spacecraft component
and its (automatically generated) XSTS representation described in Fig. 3.

As for GSL statecharts, the XSTS elements corresponding to the transitions
are created (Lines 24–43), e.g., parallel statements corresponding to orthogonal
regions, containing if-else structures and choice statements corresponding to the
transitions of state nodes (considering hierarchy) in the particular regions. Note
that literals of a custom type declaration stored in a control variable correspond
to the state nodes of a region.

As for composite (GCL) synchronous components, their execution and inter-
actions are handled by (hierarchically) composing the created XSTS statements
corresponding to the contained components, and defining shared variable based
communication (corresponding to signal transmission) using assign statements.

Fig. 4. XSTS-Promela mapping’s two supported message queue representation modes.

For the asynchronous adapters defined in GCL, the related XSTS constructs
“wrap” the statements representing synchronous behavior by introducing and
handling additional variables related to the representation of message queues
(see Lines 15–23). For a single message queue in an asynchronous adapter, the
transformation introduces one or more annotated array variables (denoting that
the variable represents a queue) depending on whether the queue stores only non-
parameterized messages (msgQueue array, Line 12) or also message parameter
values, i.e., payload (one or more argQueue arrays for every parameter type to
enable storing each parameter value of each message; Line 13). In addition,
an integer variable with an annotation is introduced (len, see Line 11) storing
the number of messages present in the queue (the annotation denotes that the
variable stores the size of a queue). In general, every message type stored in
the queue is assigned an integer identifier that is appended to the msgQueue
array, modeling the append of the message instance to the corresponding message

34 B. Graics et al.

queue (see Line 53). In case the message is parameterized, the parameter value
is appended to the corresponding argQueue array (see Line 56).

Asynchronous message handling is defined using the nonempty, peek and
pop message queue operations (the Promela representation of these operations
is summarized in the left snippet of Fig. 4). An if statement is created that
checks whether the msgQueue variable corresponding to the message queue is
nonempty (len > 0 condition, see Line 15), and if so, the stored message identifier
is retrieved (peek and pop, see Lines 16–17) and based on it, the corresponding
input event (signal) variable is set to true (Line 19). Potentially, the parameter
values are also loaded from the argQueues to the corresponding input parameter
variables (peek and pop, see Lines 20–21). Finally, the constructs representing
the synchronous behavior are wrapped into the created if statement.

Regarding the verification of the emergent XSTS models, the different model
checkers (i.e., corresponding mappings) integrated into Gamma support slightly
different subsets of the XSTS language, as well as different property languages,
i.e., supported subsets of the GPL language (see Table 1): UPPAAL fully sup-
ports the verification of time-dependent behavior with a restricted CTL property
language, whereas Spin fully supports the verification of parallel behavior (see
parallel statements in Sect. 6) and LTL [7]; in turn, Theta has experimental sup-
port for these features and supports only reachability properties. Nonetheless,
every model checker supports the XSTS constructs used for asynchronous com-
munication as presented in this section, as well as the specification of reachability
properties to capture test targets in our MBT approach.

Table 1. Overview of features of the mappings and underlying model checkers sup-
ported by our MBT approach in Gamma. � = full support; �–= experimental

Model checker
(back-end)

Model
representation

Parallel
behavior

Timed
behavior

Asynchronous
communication

Property
language

Theta XSTS �– �– � Reachability

UPPAAL Timed
automata

� � Restricted CTL

Spin Promela
process
models

� � LTL

6 Mapping XSTS Models into Promela

The integration of Spin into the Gamma framework relies on a semantic-
preserving mapping between XSTS and Promela. The mapping distinguishes
XSTS elements (see Sect. 4) that i) do have or ii) do not have a direct semantic
equivalent in Promela, as well as iii) constructs related to asynchronous com-
munication. The only XSTS element whose semantic-preserving mapping is not
supported is clock variable, as Promela does not support time-dependent behav-
ior: for such variables, the mapping introduces integer variables in the Promela

Model-Based Testing of Asynchronous Controllers 35

model and “discretizes” component execution according to user-defined con-
straints.

In the case of i), the mapping is simple and creates a single Promela element
with the same semantics, as presented in Table 2. Note that several constructs are
optimized, e.g., the mapping resets local variable declarations at the end of their
declaring scope and uses d step for the sequences of assignments. Contrarily, in
the case of ii) and iii), multiple Promela elements are created to preserve the
semantics of the original XSTS elements and asynchronous communication.

In the following, we consider XSTS constructs related to ii) and iii). First, we
present the mapping of XSTS transitions, havoc and parallel statements based
on the spacecraft model represented in Fig. 3. Then, we describe asynchronous
communication supported by two message queue representation modes.

Table 2. XSTS elements and their direct semantic equivalent element(s) in Promela.

XSTS Promela

boolean, integer, custom, array type bit, int, mtype, array type

(local) variable declaration (local) variable declaration (+ resets)

assume statement boolean expression (in if construct)

assignment statement assignment statement

sequence (of statements) sequence (of statements) (+ d step)

choice statement nondeterministic multiary if construct

if-else statement binary if construct with else

loop statement for deterministic iteration statement

Mapping Elements Without a Direct Semantic Equivalent. The init transition
is mapped into Promela’s init process (see Lines 55–57 in the Promela code),
which, after executing the mapped initialization statements, runs the EnvTrans
process (Line 34). The EnvTrans process comprises (in a cycle) the statements
of the env and trans transitions; the corresponding statements are wrapped in
atomic blocks and labeled ENV (Line 35) and TRANS (Line 46). The states of
execution are indicated by the isStable and flag (meta)variables (Line 7): the
former is true iff trans has finished, but the execution of env has not started yet
(needed to specify valid end states in property specifications – Line 35), while
the latter encodes which transition is under execution: 0 – init, 1 – env and 2 –
trans (needed for back-annotation – Lines 46 and 52).

Havoc statements describe nondeterministic assignments from the targeted
variable’s domain and thus, they are mapped into nondeterministic multiary
if selection constructs whose options describe the possible values based on the
variable’s type (see Line 38). For boolean variables, true and false (0 and 1)
values, for custom types, the declared literals are included. Integer variables are
handled only if their domain is restricted, e.g., in the case of stored message
identifiers; otherwise this construct is not supported in the Promela mapping.

Parallel statements (i.e., their operands; see Lines 8 and 22) are mapped into
Promela processes and synchronization constructs. First, the local variables (if

36 B. Graics et al.

any) referenced from the operands are identified, which are mapped into param-
eter declarations in the corresponding processes (assignments to local variables
are not supported). Next, synchronization channels are created (Lines 4–5) to
allow for synchronization between the caller and the parallelly running processes:
the caller waits for the started processes to finish execution (Lines 47–50).

Mapping Elements of Asynchronous Communication. As for asynchronous com-
munication, the XSTS-Promela mapping builds on the traits of the GCL-XSTS
transformation (see Sect. 5), in particular, the annotated array variables (msg-
Queue and argQueue) and len variables, jointly representing the message queues
of asynchronous adapters. As a configuration option, the mapping features two
(fixed capacity) message queue representation modes based on i) arrays and ii)
native asynchronous channels in Promela. Note that the former can be consid-
ered as a straightforward mapping (resembling the one to UPPAAL), whereas
the latter serves as an experiment in the context of Promela, potentially being
more efficient (see Sect. 7). Figure 4 summarizes how the nonempty, append, peek,
pop and size queue handling operations are represented in the two message queue
representation modes. Note that Fig. 3 uses the array-based mode, but the other
version could be easily reproduced based on Fig. 4.

In the former case, the mapping is straightforward: the XSTS array variables
and len variables are mapped into Promela array variables and integer variables.
The statements that refer to these variables and correspond to message queue
operations are also mapped according to the rules presented in Table 2.

The latter mode uses the asynchronous channel construct of Promela that
natively supports the size queue operation using the built-in len function, disre-
garding the XSTS integer variable len. To support the nonempty, append, peek
and pop message queue operations, the mapping traverses the XSTS model and
identifies the corresponding statements (i.e., the constructs of the left snippet of
Fig. 4) based on variable annotations and pattern matching, which are mapped
to native message queue related constructs in Promela (right snippet of Fig. 4).

7 Practical Evaluation

This section evaluates our extended MBT approach, focusing on the features
of the model mappings via the XSTS formalism and their performance in the
context of the integrated model checker back-ends, Theta, UPPAAL and Spin.

We conduct this evaluation in alignment with the needs of our industrial part-
ner that develops railway control systems in the context of customized MBSE
and CBSE approaches. During development, our partner must conform to safety
standards (cf. EN 50128 [5]), which require (among others) integration test gen-
eration based on these models to check the system implementation. Thus, our
partner has interest in conducting this task in an automated and efficient way.

In regard to test generation, we already showed the feasibility of our approach
for synchronous models in [16] using the UPPAAL and Theta model checkers.
Nevertheless, our partner uses different composition semantics at different hier-
archy levels of a system model (considering different deployment modes), and is

Model-Based Testing of Asynchronous Controllers 37

interested in generating tests for components with asynchronous communication,
too. Accordingly, our partner needs information regarding the characteristics of
the supported model checkers and message queue representations.

Thus, we formulated the following research questions (RQ) for our evaluation:
how efficient are the integrated model checkers of Gamma for test generation, in
terms of generation time and generated test set size, on

RQ-1. synchronous models (shared variable based communication), and
RQ-2. asynchronous models (message queue based communication) using a i)

native channel based (relevant only in the case of Spin), and ii) array-
based mapping of GCL/XSTS message queues?

Models. We evaluated the RQ on two system models received from our indus-
trial partner, namely railway signaller subsystem (RSS) and railway interlocking
system (RIS), each corresponding to the characteristics of a specific RQ.2

RSS comprises the model of a subsystem used in railway traffic control sys-
tems [11]. It builds on statechart components (two antivalence checkers con-
nected to a signaller) communicating in a synchronous (signal-based) way with
many interaction points (dispatch/reception of signals in different states). Thus,
it is a relevant model for generating tests that check interactions. RSS consists
of 26 state nodes, 97 transitions and 5 variables.

The RIS model [11] defines an industrial communication protocol used in
RIS, and comprises three components defined in the proprietary XSML language
(integrated to Gamma in [14]), namely control center, dispatcher and object
handler. The components are executed sequentially, and communicate with their
messages stored in local message queues; the control center and object handler
can communicate only via the dispatcher. Thus, testing interactions based on
messages besides covering state nodes and transitions is relevant in this model’s
context. The model contains 38 state nodes, 118 transitions and 23 variables.

Measurement Settings. We used different composition modes in the different
models to capture the components’ expected execution and communication
modes. For the RSS model, we used the cascade and synchronous-reactive
composition modes [17]. For RIS, we used the scheduled asynchronous-reactive
mode [14] and the capacity of 4 for internal message queues between compo-
nents. The message queues storing external messages had a capacity of 1 as
only the head of the queue was of interest during execution (one message can
be processed in an execution cycle). Regarding verification and test generation
settings, we used all model reduction and slicing techniques, and test optimiza-
tion algorithms of Gamma [14,16] to achieve the best results our framework can
provide.

Each measurement was run five times (we calculated their median) on the
following configuration: Intel Core (TM) i5-1135G7 @ 2.40GHz, DDR4 16GB

2 Model descriptions and measurement results can be found at https://github.com/
ftsrg/gamma/tree/v2.9.0/examples/, as well as [16] (RSS) and [14] (RIS).

https://github.com/ftsrg/gamma/tree/v2.9.0/examples/
https://github.com/ftsrg/gamma/tree/v2.9.0/examples/

38 B. Graics et al.

@ 3.2GHz, SSD 500GB. The model checkers were run with the following argu-
ments:

– Theta (DX): java -jar theta –domain PRED CART –refinement SEQ ITP
– predicate abstraction based algorithms (most suitable for XSTS);

– UPPAAL (XU): verifyta -t0 – set to generate “some trace” (with default
BFS traversal) as predictably, this is the “fastest” option (the “shortest trace”
option, according to our preliminary measurements, results in “slightly”
shorter generated traces but “significantly” longer generation time);

– Spin: we used three different sets of arguments (settings):
1. XP: spin -search -I -m250000 -w32 – DFS approximate iterative shorten-

ing, increased bound (larger than the state space’s estimated maximum
“diameter”) and increased hash size for better performance: compared to
the next setting, this one provides longer (not optimal, but still sound)
traces but shorter generation time (see exact results later);

2. XP-i: spin -search -i -m250000 -w32 – non-approximate iterative short-
ening algorithm variant of the previous option;

3. XP-B: spin -search -bfs -w32 – BFS traversal of the state space.

Regarding the Spin-related arguments, the XP setting worked for both mod-
els; the other two worked only for the RSS model. For RIS, the XP-B option
ran out of memory within 10 s, whereas XP-i ran out of the 300-s time limit
(timeout) for certain model-property pairs.

Table 3. Number of test targets, generated tests and steps; median end-to-end test gen-
eration time and average test generation time for a single test target for full interaction
coverage in the cascade and synchronous-reactive RSS model.

Cascade Synchronous

#Test targets 49 49

#Generated tests (DX/XU/XP/XP-B/XP-i) 9/7/6/6/6 -/7/5/6/6

#Steps in tests (DX/XU/XP/XP-B/XP-i) 41/30/172/27/27 -/37/600/33/33

ΣT (DX/XU/XP/XP-B/XP-i) (s) 467/54/179/188/340 -/102/174/220/1102

T (DX/XU/XP/XP-B/XP-i) (s) 9.5/1.1/3.7/3.8/6.9 -/2.1/3.6/4.5/22.5

Addressing RQ-1. Table 3 shows test generation results for the RSS model aiming
at covering each interaction [14] between the antivalence checkers (event raises)
and signaller components (execution of transitions triggered by the correspond-
ing event) in two model variants using the cascade and synchronous-reactive
composition modes. As illustrated, there were 49 test targets (captured using
injected boolean variables and reachability properties for each interaction [16] in
the form of E F var eventRaised and var correspondingTransitionFired)
that could potentially be covered by the Theta (DX), UPPAAL (XU) and Spin
(XP, XP-B and XP-i) back-ends.

Regarding test generation time, Theta was the slowest in the cascade model
variant and could not handle the more complex synchronous-reactive variant.

Model-Based Testing of Asynchronous Controllers 39

As for UPPAAL and Spin, the former was significantly faster (70% and 42% for
XP) considering end-to-end generation time. Nonetheless, Spin seemed to scale
better as the synchronous-reactive model variant did not pose a greater challenge
for the XP setting compared to the cascade variant – in contrast to UPPAAL.

Regarding the generated test size, the XP-B and XP-i Spin settings generated
the smallest test sets (least number of summed steps in tests), even though the
former setting was much more efficient in terms of generation time. UPPAAL
generated 10% longer traces on average, as expectable, considering that it uses
a BFS-based model traversal mode aimed at “some trace.” In addition, Theta
(in the cascade variant) returned a 37% larger test set compared to UPPAAL.
The XP setting returned significantly larger test sets compared to the other
model checkers, even though it used the approximate DFS iterative shortening
algorithm. In turn, these longer generated tests were utilized by the test opti-
mization algorithms to cover the same interactions with fewer test cases.

To answer RQ-1, the experiment showed that even though Spin is slightly
slower in terms of test generation (verification) time than its fastest counterpart
(UPPAAL), it seems to be able to handle more complex interactions more effi-
ciently, and thus, it has advantages for such models in the framework. Regarding
the generated test set size, the length of the traces returned by Spin differ largely
depending on the used settings. The results also show that there is a trade-off
between the length of generated traces and generation time.

Addressing RQ-2. Table 4 shows test generation results aiming at covering each
state node, transition and interaction in the asynchronous RIS model using the
XU (with array-based mapping of message queues into UPPAAL), and the native
channel-based (XP-N) and array-based (XP-A) mappings of GCL/XSTS mes-
sage queues into Promela. The table does not include results for the DX mapping
as Theta was unable to handle this model.

Table 4. Number of test targets, generated tests and steps; median end-to-end test
generation time and average test generation time for a single test target for full state
node, transition and interaction coverage in the integrated RIS model.

State Transition Interaction

#Test targets 38 118 387

#Generated tests (XU/XP-N/XP-A) 4/5/5 26/34/34 22/24/24

#Steps in tests (XU/XP-N/XP-A) 30/119/119 230/870/870 240/808/808

ΣT (XU/XP-N/XP-A) (s) 243/140/135 950/1777/1653 5377/8315/7840

T (XU/XP-N/XP-A) (s) 6.4/3.7/3.6 8.1/15.1/14.0 13.9/21.4/20.3

The data show that test generation time increased for each verification back-
end as the test coverage criteria got finer. This phenomenon can be explained
by the complexity of annotated model elements capturing the criteria, and the
increasing number of test targets [16]. Surprisingly, Spin was on average 43%
faster than UPPAAL in the case of state node coverage even though the result

40 B. Graics et al.

was reversed for transition and interaction coverage (45% and 34% slower on
average). Regarding the two message queue representation modes, the array-
based one was slightly faster in each case, having a 5% advantage on average.

As for the size of the generated test sets, the results were similar to that of
the RSS model: Spin returned significantly longer traces compared to UPPAAL
due to the underlying algorithms; however, in this case the number of generated
tests was also larger. Also, there was no difference in the two message queue
representation modes in this regard; Spin returned the same traces in each case.

To answer RQ-2, the experiment showed that Spin is an efficient and useful
element of the framework and can provide additional flexibility in the case of
different models and test coverage criteria. Regarding our message queue repre-
sentation modes, our native asynchronous channel based solution does not bring
benefits compared to our array-based solution. Regarding generated test set size,
the results are very similar to that of RQ-1: Spin with the XP setting returns
significantly longer diagnostic traces, resulting in larger test sets.

8 Conclusion and Future Work

In this paper, we presented an MBT approach for distributed (control-oriented)
reactive systems with asynchronous communication. Our approach builds on the
Gamma framework and features precise statechart and composition languages
for component design and their integration, and hidden formal methods (model
checkers) for model-based test generation. As a novelty, we integrated the open
source Spin model checker to the Gamma framework via the EXtended Symbolic
Transition Systems formalism, a verification-oriented low-level representation of
reactive behavior. Our evaluation showed that Spin is efficient at generating tests
and can complement the other integrated model checkers for different models.

For future work, we plan to examine the capabilities of Spin for models with
parallel behavior, and how we can exploit its property language supporting linear
temporal logic (LTL) [7] to capture more sophisticated test targets – two features
not supported by the other integrated model checkers.

Acknowledgements. We would like to thank the anonymous reviewers for their thor-
ough and constructive feedback. This work was partially supported by New National
Excellence Program of the Ministry for Innovation and Technology, ÚNKP-23-4-I.
Project no. 2019-1.3.1-KK-2019-00004 has been implemented with the support pro-
vided from the National Research, Development and Innovation Fund of Hungary,
financed under the 2019-1.3.1-KK funding scheme.

Appendix: XSTS-STS Mapping

Symbolic transition system [18] models consist of two SMT [2] formulas. The
set of initial states are described by a formula over the model variables, e.g.,
x = 0. The transition relation is described by a formula over the primed and
unprimed versions of the model variables; the primed versions refer to the newly

Model-Based Testing of Asynchronous Controllers 41

Table 5. XSTS elements and their equivalent STS formulas.

Statement XSTS example STS equivalent nextIndex

Assignment x := y x’ = y x → 1, y → 0

Assumption assume x > 5 x > 5 x → 0

Havoc havoc x true (x′ is unconstrained) x → 1

Sequence x := y
assume x > y
y := 3

x′ = y ∧
x′ > y ∧
y′ = 3

x → 1, y → 1

Choice choice { x := y }
or { x := y + 1 }

(temp = 0 ∧ x′ = y) ∨
(temp = 1 ∧ x′ = y + 1)

x → 1, y → 0

If-else if (x > y) { x := 0 }
else { x := 1 }

(x > y ⇒ x′ = 0) ∧
(x ≤ y ⇒ x′ = 1)

x → 1, y → 0

Loop for i from 0 to 1 do {
x := i }

(i′ = 0 ∧ x′ = i′) ∧
(i′′ = 1 ∧ x′′ = i′′)

x → 2, i → 2

assigned values of the variables, e.g., x′ = x+1, meaning that x variable’s value
gets incremented by 1. To allow multiple assignments to the same variable in
the transition, we allow variables to appear with more than one prime sign and
annotate the transition relation with a function (nextIndex), describing which
primed version corresponds to the variable’s value in the next state after the
transition; e.g., if the transition formula is x′ = 1 ∧ x′′ = 2 and the nextIndex
function is x → 2, then the x variable’s value will be 2 after the transition.

Table 5 shows the mapping between the statements of the XSTS language
and their equivalent STS transition formulas through examples. An assignment
simply asserts that the next value of the left-hand-side is equal to the value of
the right-hand-side. Assumptions translate directly into SMT formulas, while a
havoc statement introduces the next value of the variable, but does not constrain
it (therefore it can have any value from its domain).

Composite statements compose the mapping of their constituent statements.
A sequence maps to a conjunction of its statements, but each statement will
use the current primed versions of the variables. A choice statement requires an
unconstrained temporary variable – the assignment of this variable by the solver
will also determine which branch may be true (at most exactly one). An if-else,
on the other hand, uses implication to select the branch that is asserted to be
true, the else statement meaning the negation of the conjunction of all other
branch conditions. A for loop is unfolded into a sequence, but this is done by
the model checking algorithm, so the number of iterations may depend on the
current state (but not the execution of the statement itself).

References

1. Ambrosi, G., Bartocci, S., Basara, L., et al.: The electronics of the high-energy
particle detector on board the CSES-01 satellite. Nucl. Instrum. Methods Phys.
Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1013, 165639 (2021). https://
doi.org/10.1016/j.nima.2021.165639

2. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8 11

https://doi.org/10.1016/j.nima.2021.165639
https://doi.org/10.1016/j.nima.2021.165639
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11

42 B. Graics et al.

3. Basu, A., et al.: Rigorous component-based system design using the BIP frame-
work. IEEE Softw. 28(3), 41–48 (2011). https://doi.org/10.1109/MS.2011.27

4. Behrmann, G., et al.: UPPAAL 4.0. In: Proceedings of the 3rd International Con-
ference on the Quantitative Evaluation of Systems, QEST 2006, pp. 125–126. IEEE
Computer Society, USA (2006). https://doi.org/10.1109/QEST.2006.59

5. Boulanger, J.L.: CENELEC 50128 and IEC 62279 Standards. Wiley, Hoboken
(2015)

6. DeLine, R., Leino, K.R.M.: BoogiePL: a typed procedural language for checking
object-oriented programs. Technical report. MSR-TR-2005-70, Microsoft Research
(2005)

7. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branch-
ing versus linear time temporal logic. J. ACM 33(1), 151–178 (1986). https://doi.
org/10.1145/4904.4999

8. Enoiu, E.P., Čaušević, A., Ostrand, T.J., Weyuker, E.J., Sundmark, D., Pettersson,
P.: Automated test generation using model checking: an industrial evaluation. Int.
J. Softw. Tools Technol. Transfer 18(3), 335–353 (2016). https://doi.org/10.1007/
s10009-014-0355-9

9. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H.: Systematic evaluation and
usability analysis of formal methods tools for railway signaling system design.
IEEE Trans. Software Eng. 48(11), 4675–4691 (2022). https://doi.org/10.1109/
TSE.2021.3124677

10. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: a survey.
Softw. Test. Verification Reliab. 19(3), 215–261 (2009). https://doi.org/10.1002/
stvr.402

11. Golarits, Z., Sinka, D., Jávor, A.: Proris - a new interlocking system for regional and
moderate-traffic lines. Signal+DRAHT-Signal. Datacommun. (114), 28–36 (2022)

12. Graics, B.: Documentation of the Gamma Statechart Composition Framework v0.9.
Technical report, Budapest University of Technology and Economics, Department
of Measurement and Information Systems (2016). https://tinyurl.com/yeywrkd6

13. Graics, B.: Mixed-semantic composition and verification of reactive components.
Technical report, Budapest University of Technology and Economics, Department
of Measurement and Information Systems (2023). https://tinyurl.com/2p9dae58

14. Graics, B., Majzik, I.: Integration test generation and formal verification for dis-
tributed controllers. In: Renczes, B. (ed.) Proceedings of the 30th Ph.D. Minisym-
posium. Budapest Univesity of Technology and Economics, Department of Mea-
surement and Information Systems (2023). https://doi.org/10.3311/minisy2023-
001

15. Graics, B., Molnár, V.: Formal compositional semantics for Yakindu statecharts.
In: Pataki, B. (ed.) Proceedings of the 24th PhD Mini-Symposium, pp. 22–25.
Budapest University of Technology and Economics, Department of Measurement
and Information Systems, Budapest, Hungary (2017)

16. Graics, B., Molnár, V., Majzik, I.: Integration test generation for state-based com-
ponents in the Gamma framework. Preprint (2022). https://tinyurl.com/4dhubca4

17. Graics, B., Molnár, V., Vörös, A., Majzik, I., Varró, D.: Mixed-semantics compo-
sition of statecharts for the component-based design of reactive systems. Softw.
Syst. Model. 19(6), 1483–1517 (2020). https://doi.org/10.1007/s10270-020-00806-
5

18. Hajdu, Á., Tóth, T., Vörös, A., Majzik, I.: A configurable CEGAR framework with
interpolation-based refinements. In: Albert, E., Lanese, I. (eds.) FORTE 2016.
LNCS, vol. 9688, pp. 158–174. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-39570-8 11

https://doi.org/10.1109/MS.2011.27
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/4904.4999
https://doi.org/10.1007/s10009-014-0355-9
https://doi.org/10.1007/s10009-014-0355-9
https://doi.org/10.1109/TSE.2021.3124677
https://doi.org/10.1109/TSE.2021.3124677
https://doi.org/10.1002/stvr.402
https://doi.org/10.1002/stvr.402
https://tinyurl.com/yeywrkd6
https://tinyurl.com/2p9dae58
https://doi.org/10.3311/minisy2023-001
https://doi.org/10.3311/minisy2023-001
https://tinyurl.com/4dhubca4
https://doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1007/978-3-319-39570-8_11
https://doi.org/10.1007/978-3-319-39570-8_11

Model-Based Testing of Asynchronous Controllers 43

19. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987). https://doi.org/10.1016/0167-6423(87)90035-9

20. Hartman, A., Nagin, K.: The AGEDIS tools for model based testing. ACM Sigsoft
Softw. Eng. Notes 29 (2004). https://doi.org/10.1145/1007512.1007529

21. Heineman, G.T., Councill, W.T.: Component-based software engineering. Putting
the Pieces Together. Addison Wesley (2001). https://doi.org/10.5555/379381

22. Henzinger, T.A., Majumdar, R.: A classification of symbolic transition systems. In:
Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 13–34. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-46541-3 2

23. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional, Harlow (2011)

24. Holzmann, G.: The model checker SPIN. IEEE Trans. Software Eng. 23(5), 279–
295 (1997). https://doi.org/10.1109/32.588521

25. Huang, L.: The past, present and future of railway interlocking system. In: 2020
IEEE 5th International Conference on Intelligent Transportation Engineering
(ICITE), pp. 170–174 (2020). https://doi.org/10.1109/ICITE50838.2020.9231438

26. Jéron, T., Morel, P.: Test generation derived from model-checking. In: Halbwachs,
N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 108–122. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48683-6 12

27. Ke, X., Sierszecki, K., Angelov, C.: COMDES-II: a component-based framework
for generative development of distributed real-time control systems. In: 13th
IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), pp. 199–208 (2007). https://doi.org/10.1109/RTCSA.
2007.29

28. Legeard, B., Bouzy, A.: Smartesting CertifyIt: model-based testing for enterprise
IT. In: 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation, pp. 391–397 (2013). https://doi.org/10.1109/ICST.2013.55

29. Li, J., Post, M., Wright, T., Lee, R.: Design of attitude control systems for CubeSat-
class nanosatellite. J. Control Sci. Eng. 2013 (2013). https://doi.org/10.1155/
2013/657182

30. Li, W., Le Gall, F., Spaseski, N.: A survey on model-based testing tools for test
case generation. In: Itsykson, V., Scedrov, A., Zakharov, V. (eds.) TMPA 2017.
CCIS, vol. 779, pp. 77–89. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-71734-0 7

31. Lukács, G., Bartha, T.: Formal modeling and verification of the functionality of
electronic urban railway control systems through a case study. Urban Rail Transit.
8 (2022). https://doi.org/10.1007/s40864-022-00177-8

32. Martinez, S., Pereira, D.I.D.A., Bon, P., Collart-Dutilleul, S., Perin, M.: Towards
safe and secure computer based railway interlocking systems. Int. J. Transp. Dev.
Integr. 4(3), 218–229 (2020)

33. Mohalik, S., Gadkari, A.A., Yeolekar, A., Shashidhar, K., Ramesh, S.: Automatic
test case generation from Simulink/Stateflow models using model checking. Softw.
Test. Verif. Reliab. 24, 155–180 (2014). https://doi.org/10.1002/stvr.1489

34. Molnár, V., Graics, B., Vörös, A., Majzik, I., Varró, D.: The Gamma Statechart
Composition Framework. In: 40th International Conference on Software Engineer-
ing (ICSE), Gothenburg, Sweden, pp. 113–116. ACM (2018). https://doi.org/10.
1145/3183440.3183489

35. Mondok, M.: Efficient abstraction-based model checking using domain-specific
information. Technical report, Budapest University of Technology and Economics,
Department of Measurement and Information Systems (2021). https://tinyurl.
com/yh4b8w98

https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1145/1007512.1007529
https://doi.org/10.5555/379381
https://doi.org/10.1007/3-540-46541-3_2
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/ICITE50838.2020.9231438
https://doi.org/10.1007/3-540-48683-6_12
https://doi.org/10.1109/RTCSA.2007.29
https://doi.org/10.1109/RTCSA.2007.29
https://doi.org/10.1109/ICST.2013.55
https://doi.org/10.1155/2013/657182
https://doi.org/10.1155/2013/657182
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1007/s40864-022-00177-8
https://doi.org/10.1002/stvr.1489
https://doi.org/10.1145/3183440.3183489
https://doi.org/10.1145/3183440.3183489
https://tinyurl.com/yh4b8w98
https://tinyurl.com/yh4b8w98

44 B. Graics et al.

36. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

37. Radnai, B.: Integration of SCXML state machines to the Gamma framework. Tech-
nical report, Budapest University of Technology and Economics, Department of
Measurement and Information Systems (2022). https://tinyurl.com/4mmtsw7v

38. Jéron, T., Morel, P.: Test generation derived from model-checking. In: Halbwachs,
N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 108–122. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48683-6 12

39. Sztipanovits, J., Bapty, T., Neema, S., Howard, L., Jackson, E.: OpenMETA: a
model- and component-based design tool chain for cyber-physical systems. In:
Bensalem, S., Lakhneck, Y., Legay, A. (eds.) ETAPS 2014. LNCS, vol. 8415, pp.
235–248. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54848-
2 16

40. Tóth, T., Hajdu, A., Vörös, A., Micskei, Z., Majzik, I.: Theta: a framework for
abstraction refinement-based model checking. In: Stewart, D., Weissenbacher, G.
(eds.) Proceedings of the 17th Conference on Formal Methods in Computer-Aided
Design, pp. 176–179 (2017). https://doi.org/10.23919/FMCAD.2017.8102257

41. Zhou, J., Hu, Q., Friswell, M.I.: Decentralized finite time attitude synchronization
control of satellite formation flying. J. Guid. Control. Dyn. 36(1), 185–195 (2013).
https://doi.org/10.2514/1.56740

https://doi.org/10.1007/3-540-55602-8_217
https://tinyurl.com/4mmtsw7v
https://doi.org/10.1007/3-540-48683-6_12
https://doi.org/10.1007/978-3-642-54848-2_16
https://doi.org/10.1007/978-3-642-54848-2_16
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.2514/1.56740

A Mechanized Semantics
for Component-Based Systems
in the HAMR AADL Runtime

Stefan Hallerstede1 and John Hatcliff2(B)

1 Aarhus University, Aarhus, Denmark
2 Kansas State University, Manhattan, KS 66506, USA

hatcliff@ksu.edu

Abstract. Many visions for model-driven component-based develop-
ment emphasize models as the “single source of truth” by which dif-
ferent forms of analysis, specification, verification, and code generation
are integrated. Such a vision depends strongly on a clear modeling lan-
guage semantics that provides different tools and stakeholders with a
common understanding of a model’s meaning. In this paper, we report
on a mechanization of a formal semantics in the Isabelle theorem prover
for key aspects of the SAE standard AADL modeling language. A pri-
mary goal of this semantics is to support component-oriented contract
specification and verification as well as code generation implemented in
the HAMR AADL model-driven development tool chain. We provide
formal definitions of run-time system state, execution steps, reachable
states, and property verification. Use of the mechanization for real-world
applications is supported by automated HAMR translation from AADL
models into the Isabelle specifications. In addition to general verifica-
tion support, we define well-formedness properties and associated proofs
for models, system states, and traces that are automatically proven for
HAMR-generated Isabelle models.

1 Introduction

Model-driven development tools continue to gain traction for building and assur-
ing safety-critical systems. The Architecture Analysis and Design Language
(AADL) [1] stands out among other standardized modeling languages due to
its stronger semantic interpretation of modeling elements. Stronger emphasis on
semantics has led to AADL’s use in numerous large-scale industrial research
projects, particularly those prioritizing formal methods. An ecosystem of tool-
ing has developed around AADL that includes analyses for behavior specification
and verification, resource utilization and timing, trade space exploration, hazard
analysis, code generation, and assurance case development.

Despite this emphasis on semantics, semantic descriptions in the current
version of the standard are presently mostly in narrative form, or with limited
use of timed automata that are not strongly integrated with other descriptions.
This makes it more difficult to establish the soundness of model-based analyses
and verification, the correctness of code generation, and a consistent semantic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Cámara and S.-S. Jongmans (Eds.): FACS 2023, LNCS 14485, pp. 45–64, 2024.
https://doi.org/10.1007/978-3-031-52183-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52183-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-52183-6_3

46 S. Hallerstede and J. Hatcliff

interpretation across multiple tools. Recently, Hugues has led an effort within
the AADL committee to develop a road map for integrating formal definitions
of semantics into the standard. This is supported in part by an open source
mechanization of the AADL static semantics and various supporting analyses in
the Coq theorem prover [22].

In an accompanying coordinated effort, Hatcliff, Hugues and others [19] devel-
oped a rule-based specification of important elements of the AADL Run-Time
Services (RTS). The AADL RTS aim to (a) hide the details of specific RTOS
and communication substrates (e.g., middleware) and (b) provide AADL-aligned
system implementations with canonical platform-independent actions that real-
ize key steps in the integration and coordination of component application logic.
Though it is designed to be implementation-independent, traceability to the RTS
formalization in [19] has been emphasized in the High Assurance Modeling and
Rapid engineering framework (HAMR) AADL code generation framework [17]
as a guide in developing consistent code generation on multiple platforms and in
designing integrated model and code behavior contract specification and verifi-
cation [21] and property-based testing [18]. HAMR provides code generation in
C and in Slang [26] (a safety-critical subset of Scala, that can also be translated
to C) and system deployments can be generated for the JVM, Javascript, Linux,
and the seL4 microkernel.

To improve the utility, feature coverage, and confidence in the formaliza-
tion in [19], we are developing a suite of interconnected artifacts including an
executable version of the semantics (to serve as an abstract reference implemen-
tation, e.g., to use in model-based testing) and an encoding of the semantics
in the Isabelle theorem prover. One of HAMR’s code generation targets is the
seL4 micro-kernel whose semantics and correctness properties have been formally
specified and proved in Isabelle – providing one of the most significant applica-
tions of formal methods to date [23]. One of the motivations for chosing Isabelle
over another theorem prover is to provide semantic specifications for AADL and
HAMR that can eventually be connected to the seL4 formalization.

In this paper, we report on the Isabelle-based mechanization of AADL seman-
tics, inspired by the definitions in [19], as well as several significant novel exten-
sions that provide foundations for verification and refinements of the framework
to address characteristics of HAMR code generation target platforms. We refer to
this mechanization as AADL-HSM (AADL HAMR Semantics Mechanization).
The specific contributions of this paper are as follows.

– We provide a mechanization of the notions of port, thread, and system states
as well as the AADL run-time services given in [19].

– We give definitions of AADL communication that accommodate AADL port-
based communication properties and that can be instantiated to the commu-
nication semantics of different deployment platforms.

– We give definitions for thread scheduling that can accomodate, e.g. the static
cyclic scheduling used by HAMR on recent industry projects [5].

– We introduce basic definitions of a property framework for reasoning about
threads and system properties. This lays the formal foundation for addressing

A Mechanized Semantics for HAMR AADL Runtime 47

the rationale and soundness for the GUMBO contract framework for compo-
nent verification [21] and testing [18].

– We extend the HAMR code generator to translate core AADL instance models
and HAMR initial system states into the mechanization.

This paper summarizes the approach and key aspects of the above contri-
butions, but the primary artifacts substantiating the results are our Isabelle
specifications publicly available at [29]. These are formatted and commented
using Isabelle’s documentation framework to provide a 100+ page PDF read-
able guide to the semantics of the AADL subset supported by HAMR. The
HAMR distribution is available at [28].

2 AADL Background

SAE International standard AS5506C [1] defines the AADL core language for
expressing the structure of embedded, real-time systems via definitions of com-
ponents, their interfaces, and their communication.

AADL provides a precise, tool-independent, and standardized modeling
vocabulary of common embedded software and hardware elements using a
component-based approach. Components have a category that defines a stan-
dard interpretation. Categories include software (e.g., threads, processes), hard-
ware (e.g., processor, bus), and system (interacting hardware and software).
Each category also has a distinct set of standardized properties that can be
used to configure the specific component’s semantics for various aspects: timing,
resources, etc.

Fig. 1. Temperature Control Example (excerpts) – AADL Graphical View

Figure 1 presents a portion of the AADL standard graphical view for a simple
thermostat that maintains a temperature according to a set point structure.
The system (not shown) contains a process called tempControlProcess. This
process consists of three threads: tempSensor, tempControl, and fan, shown
in the figure from left to right. Passing data from one thread to another is
done through the use of ports. Each port can be classified as an event port
(e.g., to model interrupt signals or other notification-oriented messages without
payloads), a data port (e.g. modeling shared memory between components or
distributed memory services where an update to a distributed memory cell is

48 S. Hallerstede and J. Hatcliff

automatically propagated to other components that declare access to the cell),
or an event data port (e.g., to model asynchronous messages with payloads,
such as in publish-subscribe frameworks). We refer to these classifications as
the port’s kind. Inputs to event and event data ports are buffered. The buffer
sizes and overflow policies can be configured per port using standardized AADL
properties. Because of these similarities, we introduce the term event-like to refer
collectively to event and event data ports. Inputs to data ports are not buffered;
newly arriving data overwrites the previous value.

The periodic tempSensor thread measures the current temperature, e.g.,
from memory-mapped IO, which is not shown in the diagram, and transmits the
reading on its currentTemp data port. If it detects that the temperature has
changed since the last reading, then it sends a notification to the sporadic (that
is, event driven) tempControl thread on its tempChanged event port. When the
tempControl thread receives a tempChanged event, it will read the value on its
currentTemp data port and compare it with the most recent set points. If the
current temperature exceeds the high set point, it sends a command to the fan
thread to turn on. Similarly, if the current temperature is low, it will send an
off fan command. In either case, fan acknowledges whether it was able to fulfill
the command by sending user-defined data types FanAck.Ok or FanAck.Error
on its fanAck event data port.

AADL provides a textual view to accompany the graphical view. The fol-
lowing listing illustrates the component type declaration for the tempControl
thread for the example above. The data transmitted over ports are of specific
types, and properties such as Dispatch Protocol and Period configure the
tasking semantics of the thread.

thread TempControl
features
currentTemp: in data port TempSensor::Temperature.i;
tempChanged: in event port;
fanAck: in event data port CoolingFan::FanAck;
setPoint: in event data port SetPoint.i;
fanCmd: out event data port CoolingFan::FanCmd;

properties
Dispatch_Protocol => Sporadic;
Period => 500 ms; -- the min sep between incoming msgs

end TempControl;

The next listing illustrates integration of subcomponents. The body of pro-
cess TempControlProcess type has no declared features because the component
does not interact with its context in this simplified example. The implementation
of TempControlProcess specifies subcomponents and subcomponent communi-
cations over declared connections between ports.

process TempControlProcess
-- no features; no interaction with context

end TempControlProcess;

process implementation TempControlProcess.i
subcomponents
tempSensor : thread TempSensor::TempSensor.i;
fan : thread CoolingFan::Fan.i;
tempControl: thread TempControl.i;
operatorInterface: thread OperatorInterface.i;

A Mechanized Semantics for HAMR AADL Runtime 49

connections
c1:port tempSensor.currentTemp -> tempControl.currentTemp;
c2:port tempSensor.tempChanged -> tempControl.tempChanged;
c3:port tempControl.fanCmd -> fan.fanCmd;
c4:port fan.fanAck -> tempControl.fanAck;
end TempControlProcess.i;

AADL provides many standard property sets including those used to config-
ure the core semantics of AADL, e.g., thread dispatching or port-based commu-
nication. Developer-specified property sets enable one to define project-specific
configuration parameters.

In this paper (following [19]) and in our AADL-HSM mechanization in
Isabelle, we limit our semantics presentation to thread components since almost
all of AADL’s run-time services are associated with threads and port-based com-
munication.1

3 Model Representation

The HAMR tool chain uses a similar approach to many AADL tools: it processes
an AADL instance model [15, Section 4.1.6] as generated by the AADL OSATE
Integrated Development Environment (IDE). The instance model indicates spe-
cific component implementations to be used in a system build, and it provides
connection topologies directly in terms of thread component ports (thus “flatten-
ing” the model and emphasizing threads as the primary run-time entities of the
system). Within its generated code, HAMR includes data structures representing
model information such as thread interfaces, port declarations, connection infor-
mation, and associated AADL properties referenced within the run-time system.
AADL-HSM has a corresponding representation of model information centered
around thread and port descriptors, CompDescr and PortDescr respectively,
record CompDescr =
name :: string
id :: CompId
portIds :: PortIds
dispatchProtocol :: DispatchProtocol
dispatchTriggers :: PortIds

compVars :: Vars

record PortDescr =
name :: string
id :: PortId
compId :: CompId
direction :: PortDirection
kind :: PortKind
size :: nat

urgency :: nat

Like many modeling tools, HAMR autogenerates unique identifiers for model
elements. Types are introduced for component identifiers and port identi-
fiers in the code, and corresponding types CompId and PortId appear in the
AADL-HSM definitions. PortIds is a type for a set of port identifiers. The top-
level Model structure contains a mapping from component identifiers to compo-
nent descriptors (similarly for ports),
record Model =

modelCompDescrs :: (CompId , CompDescr) map
modelPortDescrs :: (PortId , PortDescr) map

modelConns :: Conns

1 Other categories of components, see [1], will be treated in later work.

50 S. Hallerstede and J. Hatcliff

Connections are represented as a map from a connection source PortId to a set
of one or more target PortIds,
type-synonym Conns = (PortId , PortIds) map

Functions isInCDPID and isInCIDPID are two of approximately 40 helper
functions for accessing model elements in AADL-HSM specifications:
fun isInCDPID :: Model ⇒ CompDescr ⇒ PortId ⇒ bool

where isInCDPID m cd p = (p ∈ portIds cd ∧ isInPD(modelPortDescrs m $ p))
fun isInCIDPID :: Model ⇒ CompId ⇒ PortId ⇒ bool

where isInCIDPID m c = isInCDPID m (modelCompDescrs m $ c)

These two examples are predicates that hold for a model m when a port with
identifier p is an input port in a component with descriptor cd (or alternatively
for a component with identifier c). The functions use Isabelle record, set, and
map operations. Isabelle maps are defined as functions from a “key” domain to
an option “val” domain of type “key ⇒ option val”. We add an infix operator
$ whose application will reduce (via the Isabelle simplifier tactic) to a value v
when a map lookup operation returns Some v (if lookup returns None, then the
expression will fail to produce a canonical value).

A number of model well-formedness properties are included with the base
model specification. The following example property specifies that connections
only go from out ports to in ports of matching kinds:
definition wf-Model-ConnsPortCategories :: Model ⇒ bool

where wf-Model-ConnsPortCategories m ≡
(∀ p ∈ dom (modelConns m). isOutPID m p ∧
(∀ p ′ ∈ (modelConns m $ p). isInPID m p ′ ∧ (kindPID m p = kindPID m p ′)))

When HAMR translates a system representation into AADL-HSM, it also gen-
erates proofs that the model satisfies the well-formedness properties (which are
first established by the HAMR OSATE IDE plug-in). Due to the architecture
of the theory, these proofs only need to use the Isabelle simplifier tactics. This
organization provides the foundation for specializations of the semantics to be
defined (e.g., for AADL subsets that only use a particular set of features, or that
require AADL properties relevant to a particular development pipeline). For
example, by adding additional well-formedness properties, we can indicate the
modeling sublanguage used on the DARPA CASE program for an seL4-based
platform. [29] illustrates model-based specifications and well-formedness proofs
for several system examples.

4 State Representation and Application Logic

A key contribution of [19] was a mathematical description of key elements of
an AADL-based system’s run-time state. In this section, we summarize our
mechanization of those notions as well as various enhancements and extensions.
Figure 2 presents the graphical summary from [19] of thread state concepts.
Many of AADL’s thread execution concepts are based on long-established task
patterns and principles for achieving analyzeable real-time systems [9]. Following

A Mechanized Semantics for HAMR AADL Runtime 51

Fig. 2. Thread and Port State Concepts

these principles, at each activation of a thread, the application code of the thread
will abstractly compute a function from its input port values and local variables
to output port values while possibly updating its local variables. In AADL ter-
minology, dispatching a thread refers to the thread becoming ready for execu-
tion from a OS scheduler perspective, and the semantics for dispatch is deter-
mined by several thread properties specified in the AADL (captured formally as
indicated in the definition CompDescr above). The thread Dispatch Protocol
property selects among several strategies for determining when a thread should
be dispatched. In this paper, we consider only Periodic, which dispatches a
thread when a certain time interval is passed, and Sporadic, which dispatches
a thread upon arrival of messages to input ports specified as dispatch triggers.
When a thread is dispatched, information describing the reason for its dispatch
is stored in the thread’s state and is retrievable via the Dispatch Status RTS
(diagrammed in Fig. 2 and formalized below). For example, in a sporadic compo-
nent, Dispatch Status returns information indicating which port triggered the
dispatch. This may be used in either the component application or infrastructure
code to branch to a message handler method dedicated to processing messages
arriving on the particular port.

Figure 2 illustrates that a thread’s state includes the state of its ports, local
variables, and dispatch status, and this is formalized in the ThreadState defini-
tion below.

52 S. Hallerstede and J. Hatcliff

record ′a ThreadState =
tvar :: ′a VarState
infi :: ′a PortState
appi :: ′a PortState
appo :: ′a PortState
info :: ′a PortState
disp :: DispatchStatus

datatype DispatchStatus =
NotEnabled

| Periodic PortIds
| Sporadic PortId ∗ PortIds

In AADL-HSM, we represent thread local variable state VarState as a map
from variable ids to values of an abstract type ′a as shown below.

type-synonym ′a VarState = (Var , ′a) map

The polymorphic type ′a reflects the fact that the run-time semantics is orthog-
onal to the actual types of data being manipulated by application code. In an
instantiation to the HAMR run-time, ′a would be instantiated to HAMR’s uni-
versal type structure used to represent values constructed according to the AADL
Data Modeling annex. This universal type structure enables HAMR to map val-
ues to and provide interoperability between the different programming language
type systems supported by HAMR code generation.

One of the most important aspects of the thread state are the various buffers
and memory blocks used to storing incoming and outgoing data for ports. In
AADL-HSM, these are represented uniformally using values from the PortState
type, which map from PortIds to ′a Queues.

type-synonym ′a PortState = (PortId , ′a Queue) map

Queues encapsulate lists with a bound and overflow policy as described in the
AADL standard. We enhance the definitions in [19] with various properties
proven about queue behavior.

Figure 2 illustrates that the state of each port is decomposed into the Infras-
tructure Port State (IPS) and the Application Port State (APS). The IPS rep-
resents the communication infrastructure’s perspective of the port. The APS
represents the thread application code’s perspective of the port. The Thread-
State definition includes input IPS and APS (infi and appi) and output IPS and
APS (info and appo). The distinction between IPS and APS is used to represent
AADL’s notions of port freezing and port variable as presented in more detail
in [14].

Typically, when a thread is dispatched, the component infrastructure uses
the Receive Input RTS (referenced in Sect. 5) to move one or more values from
the IPS of input ports into the input APS. Then the component application code
is called and the APS values remain “frozen” as the code executes. This pro-
vides the application a consistent view of inputs even though input IPS may be
concurrently updated by communication infrastructure behind the scenes. The
application code writes to the output APS throughout execution. Our intended
design for this is that when the application code completes, the component
infrastructure will call the Send Output RTS to move output values from the

A Mechanized Semantics for HAMR AADL Runtime 53

output APS to the IPS, thus releasing the output values all at once to the com-
munication infrastructure for propagation to consumers.

For input event data ports, the IPS typically would be a queue into which
the middleware would insert arriving values following overflow policies speci-
fied for the port. For input data ports, the IPS typically would be a memory
block large enough to hold a single value. For output ports, the IPS represents
pending value(s) to be propagated by the communication infrastructure to con-
nected consumer ports. At the component’s external interface, this execution
pattern follows the Read Inputs; Compute; Write Outputs structure championed
by various real-time system methods (e.g., [9]) enabling analyzeability.

The AADL standard indicates that a thread’s application code is organized
into entry points (e.g., subprograms that are invoked from the AADL run-time).
For example, the Initialize Entry Point (InitEP) is called during the system’s
initialization phase, the Compute Entry Point (ComputeEP) is called during the
system’s “normal” compute phase. The behavior of entry point application logic
is formalized in an App record as constraints on the thread state variables and
the application port state.
record ′a App =

appInit :: ′a VarState ⇒ ′a PortState ⇒ bool
appCompute :: ′a VarState ⇒ ′a PortState ⇒ DispatchStatus ⇒

′a VarState ⇒ ′a PortState ⇒ bool

The definitions indicate that a thread’s ComputeEP behavior relates its input
application port state, variable state, and dispatch status, to output application
port state and possible updated variable state. The Initialize entry point has no
“inputs”; it simply provides initial values for the output application port state
and variable state. These definitions are strongly aligned with the GUMBO con-
tract language for AADL. [21] illustrates how the Logika SMT-based verifier
can automatically verify that a thread’s component entry point code conforms
to thread contracts. Alternatively, property-based testing can test that imple-
mentations conform to executable versions of the contracts [18]. Semantically,
the contracts for each thread collectively give rise to contraints on the thread
state as typed above. In a preliminary investigation, we have hand-translated
GUMBO contracts into Isabelle using a shallow embedding. A fully automated
translation of contracts will eventually enable us to carry out Isabelle proofs of
system properties based on component behaviors derived from contracts that
have been tested or proven, e.g., by Logika, to correctly summarize component
behavior code.

Each thread is associated to its application logic behavior via a mapping
from CompIds to Apps.
type-synonym ′a CIDApp = (CompId , ′a App) map

As one example of a number of well-formed state properties, threads must
only access their thread-local variable and port states as specified in the Model.
This can be exspressed for a CIDApp ca, a Model m, a thread component c of
the model m and an application a with a = ca $ c,

54 S. Hallerstede and J. Hatcliff

∀ vs ps d ws qs. appCompute a vs ps d ws qs −→
(∀ v . v ∈ dom vs ∪ dom ws −→ isVarOfCID m c v)

We wish to distinguish the specifications that the developer supplies for an
application (e.g., model information and thread application logic) from the state
and execution logic of the AADL run-time and underlying execution platform.
Accordingly, we introduce a record type AppModel for developer-supplied infor-
mation that aggregates the structural model information (Model) and behav-
ior specifications for each thread (CIDApp). Further separating the developer’s
structural specifications and behavior specifications permits AADL-HSM to sup-
port an approach for model refinement where the structural model remains
unchanged but the application logic can be considered at different abstraction
levels.
record ′a AppModel =

appModel :: Model

appModelApp :: ′a CIDApp

Finally, the system state includes thread states (systemThread), the state of
the communication substrate infrastructure (systemComms), and information
for phasing and scheduling as discussed in Sect. 5.
record (′u, ′a) SystemState =
systemThread :: (CompId , ′a ThreadState) map
systemComms :: ′u
systemState :: (CompId , ScheduleState) map
systemPhase :: Phase
systemExec :: Exec

datatype Phase =
Initializing | Computing

datatype ScheduleState =
Waiting | Ready | Running

datatype Exec =
Initialize CompId list |
Compute CompId

systemComms is designed as an abstraction that can be instantiated to
specific behavior rules based on the nature of a particular deployment plat-
form (e.g., distributed communication via middleware, local communication via
shared memory) and even different fault models regarding message loss, reorder-
ing, etc. This also supports the AADL standard’s philosophy of not specifying
precisely the implementation of communication, but instead constraining it (or
stating assumptions about it), using various model properties. We only require
particular instantiations to provide operations comPush and comPull to push
data into the substrate and pull data out of the substrate. The two operations
share the same signature. Taking the substrate state ′u, a port state of a com-
ponent ′a Portstate and the port connections Conns, they yield a set of possible
updates to the substrate and the port state. The signatures are symmetric and
pass all available information to achieve a high degree of freedom for different
instantiations.
record (′u, ′a) Communication =

comPush :: ′u ⇒ ′a PortState ⇒ Conns ⇒ (′u × ′a PortState) set

comPull :: ′u ⇒ ′a PortState ⇒ Conns ⇒ (′u × ′a PortState) set

The least constraining substrate CommonComm permits any amount of
pushing into and pulling out of the substrate (including doing nothing) that

A Mechanized Semantics for HAMR AADL Runtime 55

respect the queue capacities of the ports. The representation follows that of [22],
storing tuples (p, v, p ′, t) where p is the sending port, v is a value, p ′ is the
receiving port and t is a token that gives a unique identity to each message in
the substrate. CommonComm does not impose any ordering of messages in the
substrate.
definition CommonComm :: ((PortId ∗ ′a ∗ PortId ∗ nat) set , ′a) Communication

where CommonComm = (| comPush= . . . , comPull= . . . |)
The motivation for this approach to expressing the substrate is to support

verification of very basic properties using CommonComm and require other sub-
strates to refine it. In particular, well-formedness properties of the state should
be inherited from CommonComm so that they do not have to be proved for other
more specific substrates related to specific AADL execution and communication
models (e.g., AADL’s distinction between delayed and immediate communica-
tion).

5 System Behavior and Properties

As noted in [19], the current AADL standard underspecifies coordination
between threads and the underlying scheduling and communications. The stan-
dard uses hybrid automata to specify constraints and timing aspects on the oper-
ational life-cycle of a thread (e.g., through initialization, compute, and finaliza-
tion phases, along with mode changes and error recovery). Guarded transitions
in the automata correspond to checks on the thread state, interactions with the
scheduler, etc. Since the focus of the automaton is on a single thread, broader
aspects of the system state, including the scheduling dimension and communi-
cation substrate, are not reflected in the standard.

In addition to specifying how HAMR interprets these concepts from the stan-
dard, AADL-HSM embodies a proposal to the broader AADL community for
how these concepts may be formalized. Reflecting the standard’s emphasis on
the thread operational life-cycle, AADL-HSM first presents rules2 correspond-
ing to transitions in the standard’s automata.3 One important contribution of
our work that supports reasoning about component and system behaviors is a
formalization of application logic (which was not addressed in the standard) in
the definition of a thread’s execution steps.
Thread Behavior: The following rules illustrate some of the key aspects of
thread execution. The AADL standard specifies that system execution is orga-
nized into (a) an initialization phase during which thread Initialize entry points
are executed to initialize thread local variables and output ports and (b) a com-
pute phase in which thread Compute entry points are executed according to

2 The rules are defined inductive to have access to the associated proof support that
Isabelle offers. Sequences of transitions are modeled by transitive closure of the rules.

3 Our life-cycle steps are simplified because we omit AADL mode switching and error
recovery since HAMR does not currently support these features.

56 S. Hallerstede and J. Hatcliff

the scheduling policy. We divide the thread execution step rules to match this
phasing.

The main rule for thread execution in the initialization phase shown below
“lifts” the thread application logic (which only constrains the thread local vari-
ables tvar and application’s view of output ports appo) to the entire thread
state.
inductive stepInit for a :: ′a App and t :: ′a ThreadState

where initialize: appInit a vs ps =⇒ stepInit a t (t(| tvar := vs, appo:= ps |))
The main rule for thread execution in the compute phase is shown below. The

rule is parameterized on several auxiliary elements. t is the thread state for the
thread undergoing a transition. Given the input infrastructure port state (infi)
for the thread, the function cd computes a set of dispatch status for the thread
– indicating the possible scenarios in which it is dispatchable. We realize cd as
a collection of Isabelle functions that formalizes the informally described rules
in the AADL standard for thread dispatch. ap is the application logic for the
thread. ca is a relation indicating that transitions between the thread’s schedul-
ing state (roughly corresponding to states in the life-cycle diagrams presented in
the AADL standard). The three rules dispatch, compute, and complete are con-
strained to follow the life cycle evolution order. dispatch moves an enabled thread
from its “waiting for dispatch” state to be ready for execution. The receiveIn-
put auxillary rule formalizes the AADL RTS Receive Input as shown in Fig. 2
used to move incoming data from the infrastructure ports of thread (infi) into
the view of the application logic (in appi) The specific ports to receive data
on are retrieved from the dispatch status via the dispatchInputPorts function
(see [19] for a detailed discussion). The compute rule represents the execution
step of thread task, and relationship between application input ports, variables,
dispatch status, and output ports is determined by the application logic. In the
post state, the input application port state is cleared. The complete rule releases
the output port contents to the infrastructure, and moves the thread back to the
waiting state. Together, the rules integrate the Receive Input RTS, the applica-
tion logic, and Send Output RTS, to realize the Read Inputs; Compute; Write
Outputs pattern described in Sect. 4.
inductive stepThread for cd :: ′a PortState ⇒ DispatchStatus set

and pk :: PortId ⇒ PortKind
and ap :: ′a App
and ca :: ScheduleState ∗ ScheduleState
and t :: ′a ThreadState where

dispatch: [[ca = (Waiting , Ready); dsp ∈ cd (infi t); dsp
= NotEnabled ;
receiveInput pk (dispatchInputPorts dsp) (infi t) (appi t) infi ′ appi ′]]

=⇒ stepThread cd pk ap ca t (t(| infi := infi ′, appi := appi ′, disp:= dsp |)) |
compute: [[ca = (Ready , Running); appCompute ap (tvar t) (appi t) (disp t) ws qs]]

=⇒ stepThread cd pk ap ca t (t(| tvar := ws, appo:= qs,
appi := clearAll (dom (appi t)) (appi t) |)) |

complete: [[ca = (Running , Waiting); sendOutput (appo t) (info t) appo ′ info ′]]
=⇒ stepThread cd pk ap ca t (t(| appo:= appo ′, info:= info ′,

disp:= NotEnabled |))

A Mechanized Semantics for HAMR AADL Runtime 57

System Behavior: The following rules illustrate some of the key aspects of
system execution. This presentation is a significant evolution in design beyond
the non-mechanized rule excepts in [19]. The rules are parameterized on the
combined model structure and application logic, the semantics for the commu-
nication substrate, and the system state. To connect with how AADL / HAMR
was applied on the recent DARPA CASE project with Collins Aerospace, we
show a variant of the rules instantiated to a static cyclic scheduling regime
where sc is a data structure specifying the schedule.
inductive stepSys for am :: ′a AppModel

and cm :: (′u, ′a) Communication
and sc :: SystemSchedule
and s :: (′u, ′a) SystemState where

initialize: [[isInitializing s; systemExec s = Initialize (c#cs);
stepInit (appModelApp am $ c) (systemThread s $ c) t]]

=⇒ stepSys am cm sc s (s(| systemThread := (systemThread s)(c �→t),
systemExec:= Initialize cs |)) |

switch: [[isInitializing s; systemExec s = Initialize []; c ∈ scheduleFirst sc]]
=⇒ stepSys am cm sc s (s(| systemPhase:= Computing ,

systemExec:= Compute c |)) |
push: [[isComputing s; systemThread s c = Some t ;

(sb, it) ∈ comPush cm (systemComms s) (info t) (appModelConns am)]]
=⇒ stepSys am cm sc s (s(| systemComms:= sb,

systemThread := (systemThread s)(c �→(t(| info:= it |)))|)) |
pull : [[isComputing s; systemThread s c = Some t ;

(sb, it) ∈ comPull cm (systemComms s) (infi t) (appModelConns am)]]
=⇒ stepSys am cm sc s (s(| systemComms:= sb,

systemThread := (systemThread s)(c �→(t(| infi := it |)))|)) |
execute: [[isComputing s; systemExec s = Compute c; c ′ ∈ scheduleComp sc $ c;

stepThread (computeDispatchStatus (appModel am) c)
(appModelPortKind am) (appModelApp am $ c)
(systemState s $ c, a) (systemThread s $ c) t]]

=⇒ stepSys am cm sc s (s(| systemThread := (systemThread s)(c �→t),
systemState:= (systemState s)(c �→a),

systemExec:= Compute c ′ |))
The initialize rule can apply when the system is in the initialization phase

(isInitializing s): executing the Initialize Entry Point code of a thread component
with id c, is represented by applying the application logic thread using the
previously defined stepInit rule. Given that the Initialize entry point code does
not read any state values, we are able to formally prove that the ordering of
threads given by the thread id initialization list Initialize cs is irrelevant. The
switch rule moves the system from initialization phase to the compute phase
when the thread initialization list is empty.

Within the compute phase (isComputing s), in this most general (i.e., most
abstract) version of the semantics, we do not constrain communication steps to
a particular system schedule, which corresponds to the expected behavior, e.g.,
when using an independent middleware framework like the OMG Data Distri-
bution Service (DDS) with its own notion of threading to move data between

58 S. Hallerstede and J. Hatcliff

components. Thus, rules for moving data onto the communication substrate from
a thread’s output infrastructure ports (push) and for moving data off of the com-
munication substrate to a thread’s input infrastructure ports (push) are allowed
to interleave arbitrarily with the execution steps of a thread (execute). In the
execute rule, the thread with id c that appears next in the static schedule is
stepped using the stepThread rule. The system state is updated to reflect the
updated thread state, system state, and next thread component to be scheduled.

As indicated in Sect. 4, these rules are designed to be abstract, with various
properties being provable about the most general case, but then refined to more
specific notions of execution where stronger properties can be proved. For exam-
ple, the most general communication rules do not guarantee message delivery,
or any notion of delivery fairness.

Given the rules above, notions of transitive system transitions and reachable
states can be defined as follows.
definition stepsSys where stepsSys am cm sc = (stepSys am cm sc)∗∗

definition reachSys where
reachSys am cm sc y ≡ ∃ x . initSys (appModel am) x ∧ stepsSys am cm sc x y

Property Framework: Following the semantics definitions above, properties
of AADL models can be verified starting provided definitions of application logic
(e.g., as might be automatically derived from AADL GUMBO contracts for each
thread component). For instance, each application might establish some property
P as described by appInitProp.
definition appInitProp where

appInitProp a P ≡ ∀ s ′ p ′. appInit a s ′ p ′ −→ P (s ′, p ′)

This implies that a family of such properties P c must be established for all
thread components c on system level.
definition sysInitProp where sysInitProp am P ≡ ∀ c ∈ appModelCIDs am.

∀ t t ′. stepInit (appModelApp am $ c) t t ′ −→ P c (tvar t ′, appo t ′)

A lemma of the accompanying theory characterises this relationship between
application initialisations more precisely. Given a well-formed AADL instance
model, a family of system initialisation properties is established, if we can prove
that each initialisation establishes one of those. The latter is described as a
family of verification conditions that must be established for the property on
the system level to hold.
lemma initSysFromApps:

assumes wf : wf-AppModel am

and vc:
∧
c. c ∈ appModelCIDs am =⇒ appInitProp (appModelApp am $ c) (P c)

shows sysInitProp am P

This approach permits to reason as much as possible locally on the level of
applications lifting these properties to the system level, ignoring its complexity at
this stage. One can proceed similarly with the computation parts of applications,
starting with application properties, and so on.

A Mechanized Semantics for HAMR AADL Runtime 59

definition appInvProp where appInvProp a I P ≡
∀ x x ′ d p p ′. I x ∧ appCompute a x p d x ′ p ′ −→ I x ′ ∧ P (x ′, p ′)

Supporting theories, e.g., on queues and states (i.e., maps to values or queues)
are developed that are used to prove properties of the semantics. For instance,
the proof that the order of the thread initialisations is irrelevant uses a theory
on “merging” states that provides commutative merging operators on states. In
this paper we focus on the presentation of the semantics and do not have space
to discuss supporting theory.

6 Related Work

This work is part of a broader effort by members of the AADL community to
increase the scope and precision of the modeling language’s semantic definition.
Most closely related is the work by Hugues et al. [22] that provides a mechaniza-
tion of AADL model structures and standardized property (attribute) sets in the
Coq proof assistant. A key goal of this ongoing work is to organize and document
modeling language features to support the AADL standard committee and stake-
holders, and the lay a foundation for eventually incorporating the formalism in
the standard itself. The paper [22] focuses on syntactic and structural elements,
but an accompanying open source repository also includes a number of inter-
esting extensions and auxiliary material such as connections to Coq-specified
real-time scheduling algorithms and initial work on representing the semantics
of AADL threads in a Coq formalization of the DEVS discrete event simulator
input language syntax. Our work is complementary in that it concentrates less
on the structural aspects of AADL, but more on formalizing the execution state
and run-time services (while clarifying aspects of these presented in the stan-
dard) to enable traceability and eventual proofs of correctness of AADL-driven
code generation and run-time libraries. Other differences include our formaliza-
tion of application logic and our initial framework for property-based reasoning
(which are not present in [22]). This provides the foundation for future proofs of
soundness of AADL contract languages such as GUMBO [21] and for mapping
contracts down into code (e.g., as needed to fully justify property-based based
testing against AADL model-based contracts as presented in our recent work
[18]). Finally, we have placed more of an emphasis on designing aspects of the
formalism as abstractions that can be formally refined towards specific platform
and middleware semantics. There is no barrier to a deeper merging of the lines
of work in either Coq or Isabelle.

While the above work has focused on mechanizations of AADL in theorem
provers, there are many other contributions to the formal specification, analysis,
and verification of AADL models and annexes. These works, whether implicitly
or explicitly, identify a target model checker or simulation framework with its
own semantics, and then encode aspects of AADL into the semantics of the
target framework. Some contributions focus on static semantics of models [4,31]
while others consider run-time behavior and use model translation to extract
executable specifications from AADL models, e.g., [6,7,10,16,33]. Rolland et al.

60 S. Hallerstede and J. Hatcliff

[27] formalized aspects of AADL’s coordination and timing behavior through the
translation of AADL models into the Temporal Logic of Actions (TLA+) [25].
Many related works formalize a subset of AADL (e.g., for synchronous systems
only) or focus on analyzing an aspect of the system, such as schedulability [30],
behavioral [8,32], or dependability analyses [13].

7 Conclusion

The mechanized semantics that we have presented for AADL execution is sub-
stantial, and it provides a foundation for designing and verifying infrastructure
for AADL-aligned model-driven development. Its immediate impact is realized
in the HAMR framework, which is being used in a number of industrial research
projects. It complements other recent work [22] on mechanized AADL semantics
by providing specifications and proofs for run-time state, including formaliza-
tions of key aspects of AADL run-time services, as well as property frameworks
for component-level and end-to-end system reasoning. A valuable contribution is
the holistic integration of these semantic aspects (component and system state,
contracts, run-time services) to better support clean design and integration of
accompanying tooling including contract-based verification of components [21],
property-based testing of components [18], and multi-platform code generation
[17]. Our approach emphasizes setting up abstract definitions, e.g., for commu-
nication, contracts, scheduling, that can subsequently be specialized via formal
refinement to definitions for particular platforms and deployment scenarios.

AADL is a large modeling language, and we treat only a subset – chosing
to omit at present more complicated features such as AADL modes and error
recovery. In particular, we hope to include in the near future notions related
to timing to be able to provide an interpretation for AADL’s timing-related
properties and to justify contract language features for time. We have found
it challenging enough to obtain a formalization for our selected features and
align them with our experience in code generation for multiple platforms and
our implementation of contract-based verification and testing. We believe that
our scope is reasonable because it aligns with features that have been used
to support US defense-related research projects at Collins Aerospace that use
AADL and HAMR to implement, e.g., prototypes of subsystems for the CH-47
Chinook military helicopter platform [11]. One aspect of our current formalism
includes showing how the static cyclic scheduling used on those projects could
be incorporated with other dimensions of the semantics.

8 Future Work

This work lays for the foundation for several important next steps.

Mechanized Proofs of Soundness for GUMBO Contract Framework:
In previous work, Hatcliff et al. developed the AADL contract language that
enables compositional reason about AADL systems. GUMBO is supported by

A Mechanized Semantics for HAMR AADL Runtime 61

both SMT-based verification [21] and property-based testing [18] tools that can
be used to demonstrate that component application code written in the Slang
subset of Scala [26] conforms to GUMBO contracts. GUMBO is inspired by ideas
from the AGREE [12] and BLESS [24] but puts a greater emphasis on aligning
with the AADL run-time semantics and threading structure and with enabling
application code to be verified against model-level component contracts. We are
building the contract representations in AADL-HSM to formalize the semantics
of GUMBO component contracts and to enhance the current notions of com-
positionality in GUMBO to support system-level properties and proofs. This
includes both proving the soundness of the verification condition generation for
SMT-based reasoning [21] as well as the generation of executable contracts used
in the accompanying property-based testing framework [18]. We are extending
the HAMR generation of Isabelle AADL-HSM artifacts to include translation
of GUMBO contracts. Although this would allow system properties of AADL
models to be proved directly in Isabelle, we believe that greater end-user usabil-
ity will be achieved if we use experience with the Isabelle-based definitions to
design and prove the soundness of a highly automated deduction framework for
application logic composition that would be incorporated as an extension to the
Logika verification framework [26] (allowing developers to work directly in indus-
trial IDEs instead of in Isabelle). AADL models and contracts from the Open
PCA Pump medical device project [20] are being used as a driver for this work.
It also seems possible to use AADL-HSM to address soundness of AADL-level
contracts for secure information flow [2,3].

Guidance for New Platform Backends: HAMR backends for seL4 and Linux
are being refined and extended in ongoing industry projects. We are working on
AADL-HSM extensions that specify the semantics of the AADL run-time at
lower levels of abstraction corresponding to the different HAMR-based imple-
mentations on specific platforms. We intend that the AADL-HSM design will
enable us to show these lower-level mechanization to be formal refinements of
the general specifications. We are particularly interested over the long term in
developing refinements to the Isabelle-based specifications of seL4. Our previous
and ongoing collaborations with the seL4 team at ProofCraft and University
of New South Wales on the DARPA CASE project are enabling preliminary
planning for this effort [5].

Traceability and Correctness of HAMR Code Generation: Many aspects
of HAMR code generation are already aligned with our semantics, e.g., one can
inspect the data types for HAMR’s port state and thread state and the imple-
mentation of AADL RTS and observe the correspondence with AADL-HSM
specifications. We are continuing to refactor both HAMR code generation to
achieve stronger traceability, as well as the ability to translate arbitrary HAMR
run-time states (as captured via logging) into Isabelle. Our ultimate and rather
ambitious aim is to prove the soundness of HAMR code generation with respect
to AADL-HSM. This would require utilizing, e.g., the C mechanized semantics
infrastructured used in the seL4 proof base. HAMR code generation is factored
through Slang [26] (a safety-critical subset of Scala support by the Logika veri-

62 S. Hallerstede and J. Hatcliff

fier). Some aspects of the HAMR AADL run-time, e.g., the thread dispatch logic
are written in a purely functional subset of Slang, while other sections (e.g., run-
time service implementations) are amenable to Logika specification and verifi-
cation. As a nearer-term goal, we are investigating translating purely functional
Slang into Isabelle functions and making a stronger connection between Logika
specifications and verification conditions and our Isabelle definitions.

References

1. Architecture analysis and design language (AADL), SAE AS5506 Rev. C (2017)
2. Amtoft, T., et al.: A certificate infrastructure for machine-checked proofs of condi-

tional information flow. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS,
vol. 7215, pp. 369–389. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28641-4 20

3. Amtoft, T., Hatcliff, J., Rodŕıguez, E., Robby, Hoag, J., Greve, D.: Specification
and checking of software contracts for conditional information flow. In: Cuellar, J.,
Maibaum, T., Sere, K. (eds.) FM 2008. Formal Methods, vol. 5014, pp. 229–245.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68237-0 17

4. Backes, J., Cofer, D., Miller, S., Whalen, M.W.: Requirements analysis of a quad-
redundant flight control system. In: Havelund, K., Holzmann, G., Joshi, R. (eds.)
NFM 2015. LNCS, vol. 9058, pp. 82–96. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-17524-9 7

5. Belt, J., et al.: Model-driven development for the seL4 microkernel using the HAMR
framework. J. Syst. Architect. 134, 102789 (2022)

6. Berthomieu, B., Bodeveix, J.-P., Chaudet, C., Dal Zilio, S., Filali, M., Vernadat,
F.: Formal verification of AADL specifications in the topcased environment. In:
Kordon, F., Kermarrec, Y. (eds.) Ada-Europe 2009. LNCS, vol. 5570, pp. 207–221.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01924-1 15

7. Berthomieu, B., et al.: Formal verification of AADL models with fiacre and tina.
In: ERTSS 2010-Embedded Real-Time Software and Systems, pp. 1–9 (2010)

8. Besnard, L., et al.: Formal semantics of behavior specifications in the architecture
analysis and design language standard. In: Nakajima, S., Talpin, J.-P., Toyoshima,
M., Yu, H. (eds.) Cyber-Physical System Design from an Architecture Analysis
Viewpoint, pp. 53–79. Springer, Singapore (2017). https://doi.org/10.1007/978-
981-10-4436-6 3

9. Burns, A., Wellings, A.: Analysable Real-Time Systems: Programmed in Ada. Cre-
ateSpace (2016)

10. Chkouri, M.Y., Robert, A., Bozga, M., Sifakis, J.: Translating AADL into BIP -
application to the verification of real-time systems. In: Chaudron, M.R.V. (ed.)
MODELS 2008. LNCS, vol. 5421, pp. 5–19. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01648-6 2

11. Cofer, D.D., et al.: Cyberassured systems engineering at scale. IEEE Secur. Priv.
20(3), 52–64 (2022)

12. Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Compo-
sitional verification of architectural models. In: Goodloe, A.E., Person, S. (eds.)
NFM 2012. LNCS, vol. 7226, pp. 126–140. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28891-3 13

13. Feiler, P., Rugina, A.: Dependability modeling with the architecture analysis and
design language (AADL). Carnegie-Mellon University of Pittsburgh PA Software
Engineering INST, Technical report (2007)

https://doi.org/10.1007/978-3-642-28641-4_20
https://doi.org/10.1007/978-3-642-28641-4_20
https://doi.org/10.1007/978-3-540-68237-0_17
https://doi.org/10.1007/978-3-319-17524-9_7
https://doi.org/10.1007/978-3-319-17524-9_7
https://doi.org/10.1007/978-3-642-01924-1_15
https://doi.org/10.1007/978-981-10-4436-6_3
https://doi.org/10.1007/978-981-10-4436-6_3
https://doi.org/10.1007/978-3-642-01648-6_2
https://doi.org/10.1007/978-3-642-01648-6_2
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-28891-3_13

A Mechanized Semantics for HAMR AADL Runtime 63

14. Feiler, P.H.: Efficient embedded runtime systems through port communication opti-
mization. In: 13th IEEE International Conference on Engineering of Complex Com-
puter Systems, pp. 294–300. IEEE (2008)

15. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley, Boston
(2013)

16. Hadad, A.S.A., Ma, C., Ahmed, A.A.O.: Formal verification of AADL models by
event-B. IEEE Access 8, 72814–72834 (2020)

17. Hatcliff, J., Belt, J., Robby, Carpenter, T.: HAMR: an AADL multi-platform code
generation toolset. In: Margaria, T., Steffen, B. (eds.) ISoLA 2021. LNCS, vol.
13036, pp. 274–295. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
89159-6 18

18. Hatcliff, J., Belt, J., Robby, Legg, J., Stewart, D., Carpenter, T.: Automated
property-based testing from AADL component contracts. In: Cimatti, A., Titolo,
L. (eds.) FMICS 2023. LNCS, vol. 14290, pp. 131–150. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-43681-9 8

19. Hatcliff, J., Hugues, J., Stewart, D., Wrage, L.: Formalization of the AADL run-
time services. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13702,
pp. 105–134. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19756-7 7

20. Hatcliff, J., Larson, B.R., Carpenter, T., Jones, P.L., Zhang, Y., Jorgens, J.: The
open PCA pump project: an exemplar open source medical device as a community
resource. SIGBED Rev. 16(2), 8–13 (2019)

21. Hatcliff, J., Stewart, D., Belt, J., Robby, Schwerdfeger, A.: An AADL contract
language supporting integrated model- and code-level verification. In: Proceedings
of the 2022 ACM Workshop on High Integrity Language Technology. HILT 2022
(2022)

22. Hugues, J., Wrage, L., Hatcliff, J., Stewart, D.: Mechanization of a large DSML:
an experiment with AADL and coq. In: 20th ACM-IEEE International Conference
on Formal Methods and Models for System Design, MEMOCODE 2022, pp. 1–9.
IEEE (2022)

23. Klein, G., et al.: Comprehensive formal verification of an OS microkernel. ACM
Trans. Comput. Syst. 32(1), 1–70 (2014)

24. Larson, B.R., Chalin, P., Hatcliff, J.: BLESS: formal specification and verification
of behaviors for embedded systems with software. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 276–290. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38088-4 19

25. Merz, S.: The specification language TLA+. In: Bjørner, D., Henson, M.C. (eds.)
Logics of Specification Languages. MTCSAES, pp. 401–451. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-74107-7 8

26. Robby, Hatcliff, J.: Slang: the sireum programming language. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2021. LNCS, vol. 13036, pp. 253–273. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-89159-6 17

27. Rolland, J.F., Bodeveix, J.P., Chemouil, D., Filali, M., Thomas, D.: Towards a
formal semantics for AADL execution model. In: Embedded Real Time Software
and Systems (ERTS2008) (2008)

28. SAnToS Laboratory: HAMR project website (2022). https://hamr.sireum.org
29. SAnToS Laboratory: AADL HAMR semantics mechanization - git repository

(2023). https://github.com/santoslab/AADL-HSM
30. Sokolsky, O., Lee, I., Clarke, D.: Schedulability analysis of AADL models. In: Pro-

ceedings 20th IEEE International Parallel & Distributed Processing Symposium,
p. 8. IEEE (2006)

https://doi.org/10.1007/978-3-030-89159-6_18
https://doi.org/10.1007/978-3-030-89159-6_18
https://doi.org/10.1007/978-3-031-43681-9_8
https://doi.org/10.1007/978-3-031-19756-7_7
https://doi.org/10.1007/978-3-642-38088-4_19
https://doi.org/10.1007/978-3-540-74107-7_8
https://doi.org/10.1007/978-3-030-89159-6_17
https://hamr.sireum.org
https://github.com/santoslab/AADL-HSM

64 S. Hallerstede and J. Hatcliff

31. Stewart, D., Liu, J.J., Whalen, M., Cofer, D., Peterson, M.: Safety annex for archi-
tecture analysis design and analysis language. In: ERTS 2020: 10th European Con-
ference Embedded Real Time Systems, p. 10 (2020)

32. Tan, Y., Zhao, Y., Ma, D., Zhang, X.: A comprehensive formalization of AADL
with behavior annex. Sci. Program. 2022, 2079880 (2022)

33. Yang, Z., Hu, K., Ma, D., Bodeveix, J.P., Pi, L., Talpin, J.P.: From AADL to timed
abstract state machines: a verified model transformation. J. Syst. Softw. 93, 42–68
(2014)

A Formal Web Services Architecture
Model for Changing PUSH/PULL Data

Transfer

Naoya Nitta(B), Shinji Kageyama, and Kouta Fujii

Konan University, 8-9-1 Okamoto, Kobe, Japan
n-nitta@konan-u.ac.jp, m2124002@a.konan-u.ac.jp, m2224001@s.konan-u.ac.jp

Abstract. Deciding how data should be transferred among Web services
is an important part of their architecture design. Basically, each piece
of data is transferred in either PUSH or PULL style. The architect’s
selection of data transfer methods generally has a great impact on both
the overall structure and performance of Web services. However, little
work has been done on helping architects to select suitable data transfer
methods. In this paper, we present a formal model to abstract some parts
of Web services architecture that are not affected by the selection of data
transfer methods, and based on the model, we propose an architecture
level refactoring for changing data transfer methods. Also, we present an
algorithm to generate prototypes of Web services from the architecture
model and selected data transfer methods, and proved the correctness of
the algorithm. Furthermore, we developed a tool that provides a graph-
based UI for the refactoring and can generate executable prototypes of
Web services. To evaluate our method, we conducted case studies for
several Web applications and confirmed that the generated prototypes
can be used to estimate the performance.

Keywords: Web services architecture model · PUSH/PULL data
transfer · Architecture model refactoring

1 Introduction

Many kinds of data are created, changed and transferred among Web services.
Between two Web services, each piece of data is basically transferred in either
PUSH or PULL style. In PUSH-style, the source side service sends data to the
destination side one as a parameter of an API call, but in PULL-style, the
destination side one gets data from the source side one as a response of an API
call. Generally, selection of data transfer methods has a great impact on both
the overall structure and performance of Web services. However, little work has
been done on helping architects to select suitable data transfer methods.

In this paper, we present a formal architecture model to support selection of
data transfer methods among Web services. Before explaining the model, first,
we think about the meaning of selection of data transfer methods. For example,
consider the case of transferring data from service A to service B. If PUSH-style

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Cámara and S.-S. Jongmans (Eds.): FACS 2023, LNCS 14485, pp. 65–83, 2024.
https://doi.org/10.1007/978-3-031-52183-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52183-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-52183-6_4

66 N. Nitta et al.

has been selected for the transfer, then B’s API is called by A and the control
flows in the same direction of the data-flow, but in PULL-style, A’s API is called
by B and the control flows in the reverse direction. Therefore, selection of a data
transfer method corresponds to selection of the direction of the control-flow.

If some ‘control-independent’ parts of Web services architecture can be spec-
ified before selecting data transfer methods, then their selection and reselection
tasks will be simplified. However, many formal architecture models [1,6,8] can-
not be used for the purpose because they are basically process-centric and the
process based descriptions are control-dependent. Here, by control-dependent,
we mean that the model contains some information about control-flow and its
descriptions are affected by a change of the structure of control-flow. Therefore in
this paper, we introduce a formal architecture model in which control-dependent
information is abstracted away. To make the model control-independent, each
component of the model is assumed to have no temporal state and no internal
transition. Therefore in the model, every state transition of every component is
always observable and the states of all components are assumed to be changed
synchronously. On the basis of the architecture model, selection of data trans-
fer methods is regarded as addition of the information about the directions of
control-flow to the model, and at least at the architecture level, the data transfer
methods can be refactored simply by changing the added information. In this
paper, we present an algorithm to generate a prototype of Web services from
our architecture model and the added information, and prove the correctness
of the algorithm. We also designed a simple architecture description language
(ADL for short) to specify the architecture model, and developed a tool that
can read a model file written in the ADL, provides a graph-based UI to select
data transfer methods and can generate executable JAX-RS prototypes so that
they are used to estimate the impact of selection of data transfer methods on
the performance. To evaluate our method, we conducted case studies for several
simple Web applications and confirmed that the generated prototypes can be
used to estimate the performance.

2 Motivating Example

First, we show an example of Web services in which data transfer methods can
be changed to PUSH or PULL-style. The subject services are simple weather
observation services (in the following, WOS for short). For the simplicity, we
assume that the services deal with only a single weather station. The functional
requirements are as follows. Whenever the station observes the weather, the
temperature in Fahrenheit is measured and that in Celsius is instantly calculated
from the measured temperature. At the same time, the value of the highest
temperature (in Fahrenheit) is updated using the measured temperature. In
addition, the highest temperature is reset every time a date changes.

Here, assume that the services are planned to be constructed as RESTful
[3] Web services and consist of three resources; the temperature in Fahrenheit
(denoted by temp_f), the temperature in Celsius (denoted by temp_c) and the

A Formal Web Services Architecture Model for PUSH/PULL Data Transfer 67

Fig. 1. Dataflow Graph of WOS System

Fig. 2. Possible Implementations of Data Transfer in WOS System

highest temperature (denoted by highest). We show the data-flow among the
resources in Fig. 1. In a RESTful style of architecture, each resource corresponds
to a piece of information on the Web that can be identified by a URI. Each
resource can provide HTTP methods such as GET, PUT, POST and DELETE.
The GET method is assumed to be safe, which means that the state of the
resource is not changed by applying the method, and the GET, PUT and
DELETE methods are assumed to be idempotent, which means that its mul-
tiple applications to the resource cause the same effects on the resource as its
single application. Typically, the GET method is used to obtain the state of a
resource, and the PUT and POST methods are used to update the state of a
resource.

First, consider to implement the data transfer between the temp_f and
temp_c resources in PUSH-style (see Fig. 2(a)). For each resource, the latest

68 N. Nitta et al.

state is stored within the resource and its GET method is implemented to return
the state as its response. The method that is used to set a new state to temp_f
is PUT since more than one application of the method does not change its state.
Here, recall that the state of temp_c can be calculated from that of temp_f.
Therefore in PUSH-style, whenever PUT method of temp_f is called, it also
calls PUT method of temp_c so that its internal state is kept up-to-date.

Second, consider to implement the same data transfer in PULL-style (see
Fig. 2(b)). As is the case with the PUSH-style, the latest state of temp_f is stored
within the resource and it is returned by calling its GET method. However in
PULL-style, the latest state of temp_c is not stored anywhere because it can
be directly calculated from that of temp_f. Therefore, GET method of temp_c
always calls GET method of temp_f to obtain its latest state. On the other
hand, PUT method of temp_f does not call any other method.

Last, consider to implement the data transfer between the temp_f and the
highest resources. Its PUSH-style implementation is similar to the above case
(see Fig. 2(c)). However, the state of highest should be updated by POST
method because every application of the method may change its state. The most
remarkable thing about this data transfer is that it cannot be implemented safely
in PULL-style. The reason is that the latest state of highest cannot be calcu-
lated only from that of temp_f. It should be recalculated whenever temp_f is
updated and the previous state of highest is always needed in the recalculation.
Therefore, highest should be notified of every update of temp_f and the latest
state of highest should be stored within the resource. Note that periodic PULL-
style data transfer to poll the latest state of temp_f is not a solution because not
all updates of temp_f may be monitored. With respect to the daily reset opera-
tion of highest, the corresponding method can be implemented as PUT because
the operation satisfies idempotency. By comparing the above implementations,
we can make the following observations.

– Some data transfer method cannot be changed to PULL-style. In
the example of WOS, the data transfer from temp_f to highest cannot be
implemented safely in PULL-style, but that from temp_f to temp_c can be.
Just looking at the data-flow in Fig. 1, we cannot distinguish these properties
of data transfer. To determine the property, we need to know the concrete
relation between the source and destination resources of the data transfer.
Therefore, in the next section, we present a formal model that can represent
the relation among state changes of the relevant resources.

– Some resource’s state should be stored within the resource and
the other ones do not need to be stored. At the implementation level,
the state of a resource may not be stored within the resource even if it is
always observable from the outside of the system and its value can always
be obtained. For example, the state of temp_c is not stored anywhere in the
PULL-style implementation although it is stored within the resource in the
PUSH-style implementation. We can say that the state of a resource should
be stored within the resource if it is updated by PUSH-style transfer.

A Formal Web Services Architecture Model for PUSH/PULL Data Transfer 69

– Data transfer methods will affect the non-functional properties of
the services. Selection of the data transfer methods is tightly associated
with the non-functional properties of the services. For example in a PUSH-
style implementation, since the states of the destination resources should
be stored in the memory or storage, it will increase the consumption. The
communication load to update the resource’s state is higher in PUSH-style
than in PULL-style, but that to observe the resource’s state is the opposite.

3 Overview of Architecture Model

In this paper, we present a formal architecture model in which control-dependent
information is abstracted away. In this section, we explain its overview. Its for-
mal definition is given in the next section. As stated in Sect. 1, process based
descriptions are generally control-dependent. For example, consider the case that
process P sends message b in response to receiving message a. In process-based
models like CCS [7], P is modeled as having a halfway state where it has received
a but still has not sent b. From the state, by performing an internal action,
which is unobservable from the outside, P sends b and becomes the next state.
We think such a halfway state and internal action make the computation model
control-dependent. Therefore in our model, each component is assumed to have
no halfway state and no internal transition. In addition, every state transition
of every component is observable and the states of all components are changed
synchronously. In our model, a resource is a software component c that satisfies:

1. c is identifiable from the outside of the system,
2. c seems to have its own state and the state is always observable from the

outside of the system,
3. the state of c changes only when c receives or sends some message.

Note that these are just architecture level assumptions. By adding control-
dependent information to the model, each component can be implemented to
have halfway states and internal transitions.

We illustrate our architecture model based on the WOS explained in the
previous section. In our architecture model, a resource is modeled as a state
transition system whose state is changed by receiving or sending a message. In
several existing architecture models (e.g. [5]), each component is modeled as a
labeled transition system (LTS). However, since the state space of LTS is limited
to finite, it does not have sufficient expressive power to represent many kinds of
data structure such as natural numbers and lists. In addition, LTS is not suitable
for generating a readable program since the state changes will be translated as
a large number of conditional branches. Therefore in our model, we do not limit
the state space of transition systems to finite. For example, we model the state
transition of temp_f by calling its PUT method with parameter x as:

temp_f(f, x) = x.

70 N. Nitta et al.

Each state transition function takes a state of a resource and a message as its first
and second arguments, and returns its next state. Similarly, the state transition
functions to update temp_c and highest can be modeled as follows.

temp_c(c, x) = (x − 32)/1.8.
highest(h, x) = if(x > h, x, h).

In these definitions, we directly use the name of each resource as the name of
its state transition function, and assume that these resources receive the same
message x synchronously.

The above formulas may seem too concrete to be used in an architecture
model. However, as discussed in the previous section, without knowing the con-
crete relationship between the source and destination resources, it is impossible
to know whether the data transfer method can be changed to PULL-style or
not. For example, consider why the data transfer from temp_f to temp_c can
be implemented in PULL-style. In the above formulas, x corresponds to a new
state of temp_f. As we can see from the formulas, the next state of temp_c (i.e.,
(x − 32)/1.8) can be calculated only from x, but to calculate the next state of
highest (i.e., if(x > h, x, h)), in addition to x, its current state h is also needed.
This difference determines the implementability of data transfer in PULL-style.
More generally, with respect to data transfer from resource s to resource d, if
there exists a homomorphism that maps the state transition of s to that of d,
then the data transfer can be implemented in PULL-style (see Sect. 5.3 for the
detail). For example with respect to the data transfer from temp_f to temp_c,
a function h(x) = (x − 32)/1.8 is a homomorphism since it satisfies:

h(temp_f(f, x)) = h(x) = (x − 32)/1.8 = temp_c(h(f), x).

By using h, the data transfer can be implemented in PULL-style. On the other
hand, since there is no homomorphism from the state transition of temp_f to that
of highest, it cannot be implemented in PULL-style. In this way, whether each
data transfer can be implemented in PULL-style or not can be determined by
comparing the state transition functions of the source and destination resources.

To make the source side and the destination side state transition functions
comparable, in our architecture model, the formulas that define these functions
are grouped by a channel. A channel is defined for each data transfer, and in
each channel, we assume that the states of the source and destination resources
are changed synchronously by the same message on the channel. Each channel
is assumed to have three ports; the input, output and reference ports, and the
source and destination resources are assumed to connect to its input and output
ports, respectively. The state of a resource connected to the reference port does
not change by the message on the channel. Semantically, these assumptions mean
that a message is transferred from the input side and reference side resources to
an output side one through the channel instantaneously, and the state change
on the input side resource, the data transfer and the state change on the output
side resource are all synchronized. Such assumptions make the architecture model
capable of representing data-flow but independent of control-flow. Here, assume

A Formal Web Services Architecture Model for PUSH/PULL Data Transfer 71

that data from temp_f to temp_c is transferred through a channel named c1.
Then, in our architecture model, the data transfer can be represented as:

temp_fc1,I(f, y) = y,

temp_cc1,O(c, y) = (y − 32)/1.8.

In these formulas, the superscript of each function consists of the channel and
its port I, O or R that the resource connects to. In this data transfer, y is the
transferred message from temp_f to temp_c on channel c1 and the message is
calculated from the next state of temp_f, which is the input side resource of c1.
In general, multiple resources can connect to the input and reference ports of a
channel, and a message on the channel is calculated from the current and next
states of the input side resources and the current states of the reference side
resources. For example, consider the following channel c.

pos_xc,I(x, 〈dx, dy〉) = x + dx = x′,
pos_yc,I(y, 〈dx, dy〉) = y + dy = y′,

distancec,O(d, 〈dx, dy〉) = d +
√

dx2 + dy2 = d′.

The input side resources pos_x and pos_y represent the 2D position of something
and the output side resource distance represents its travel distance. In this
case, the message 〈dx, dy〉 is calculated from x, x′, y and y′ as 〈x′ − x, y′ − y〉.
However, such a calculation may seem counterintuitive because the constraints
that the calculation requires are a kind of inverse mapping of the input side
state transition functions but the given constraints are in the form of state
transition functions themselves. The reasons why we define such constraints for
each channel separately and in the form of state transition functions are as
follows.

– Since the massages sent on each channel generally differ depending on the
channel, the input side constraints used to calculate the messages also differ
depending on the channel, and should be defined separately.

– As stated before, to determine the changeability of the data transfer method
to PULL-style, both the input side and output side constraints should be
given in the state transition function form.

– When multiple resources connect to input and/or reference ports, as an
inverse mapping, the constraints must be given in a multi valued inverse
mapping for each resource (e.g., x, x′ �→ 〈x′ − x, dy〉 for pos_x), or a
single valued inverse mapping of all input/reference side resources (e.g.,
x, x′, y, y′ �→ 〈x′ − x, y′ − y〉). However, both definitions also seem counterin-
tuitive.

– If both the input side and output side constraints have the same form, then
flipping their sides can flexibly be done.

The interactions between the system and its environment except for the observa-
tion of each resource’s state are done through special channels for input events.

72 N. Nitta et al.

Table 1. Connection between Channels and Resources in WOS

Channel Input side resource Output side resource

cevt1 temp_f

cevt2 highest

c1 temp_f temp_c

c2 temp_f highest

Fig. 3. Data Transfer Architecture Model of WOS

The observation of the state is assumed to be done directly from the environment
without going through any channel.

In the following, we explain how the whole WOS can be modeled as an
architecture model. In this example, we use channels cevt1 , cevt2 , c1 and c2, and let
cevt1 and cevt2 be event channels. We show the connection between the resources
and the channels in Table 1. The state transition functions of the resources are
defined in Fig. 3. In our model, the state transition function of the same resource
seems to be multiply defined in different channels, but they are just different
images of the same function. Therefore, the first arguments of them and their
function values are always identical, respectively. For example in Fig. 3, always
x = y = z holds. The whole system reacts in response to a message from the
environment through an event channel. For example, if message 68 is input to
the WOS through channel cevt1 , then temp_fcevt1 ,O(f, 68) is evaluated and the
next state of temp_f is shown to be 68. Since temp_fcevt1 ,O, temp_fc1,I and
temp_fc2,I are different images of the same function, we have x = y = z = 68.
By these equations, both messages sent on c1 and c2 become 68. Finally, the
states of temp_c and highest respectively become 20 and 68 if the previous
state of highest is less than 68.

4 Data Transfer Architecture Model

4.1 Basic Definitions

We define a data transfer architecture model as R = 〈R,C, ρ,D, τ, μ,Δ, s0〉
where:

A Formal Web Services Architecture Model for PUSH/PULL Data Transfer 73

– R: a finite set of resources,
– C: a finite set of channels,
– ρ (ρ : C × {I,O,R} → 2R): a connection map that maps a channel and its

port (input, output or reference) to the set of all connecting resources,
– D: a finite/infinite set of data values,
– τ (τ : R → 2D): a map from a resource to the set of its all states,
– μ (μ : C → 2D): a map from a channel to the set of all messages that can be

transferred on the channel,
– Δ = 〈δc,d

r 〉c∈C,d∈{I,O,R},r∈ρ(c,d): a finite set of state transition functions,
– s0: the initial state (s0(r) ∈ τ(r) for each r ∈ R).

The details of the model will be explained in the following.

4.2 Resource and Channel

A resource is a component that seems to have its own state and the state is always
observable from the outside of the system. The set of all resources within the
system is denoted by R. In this paper, we assume that the number of all resources
is fixed and no resource is either created or deleted at runtime. However, each
resource can have an infinite state space. A channel is used to synchronize the
state changes in relevant resources. The set of all channels in the system is
denoted by C. Each channel in C can have one input, one output and one
reference ports, and to each port, an arbitrary number of resources can connect.
For each channel c ∈ C, ρ(c, I), ρ(c,O) and ρ(c,R) represent the sets of all
resources that connect to the input, output and reference ports of c, respectively.
These sets are assumed to be disjoint. For simplicity, we call r ∈ ρ(c, I), r′ ∈
ρ(c,O) and r′′ ∈ ρ(c,R) an input side, output side and reference side resources
of c, respectively. If the state of an input side resource of a channel c is changed,
then a message m is sent on c and the state of an output side resource of c
is changed by receiving m. C always contains non-empty set Cevt. Every event
channel cevt ∈ Cevt has no input side resource, that is, ρ(cevt, I) = ∅.

4.3 States and Messages

In our architecture model, a data value is either a state of a resource or a message
on a channel. The set of all data values is denoted by D. For each resource r ∈ R,
τ(r) represents the set of all possible states of r, and for each channel c ∈ C, μ(c)
represents the set of all possible messages that can be transferred on c. For each
c ∈ C, an identity element ec ∈ μ(c) that represents no operation is defined.

4.4 State Transition Functions

Δ is a finite set of state transition functions. It contains exactly one function for
each connection of a resource to a channel. If a resource r connects to d side of a
channel c (that is, r ∈ ρ(c, d)), then we denote the corresponding state transition
function by δc,d

r : τ(r) × μ(c) → τ(r). Each function takes a previous state of

74 N. Nitta et al.

r and a message on c as the first and second arguments, and returns the next
state of r. For each c ∈ C and r ∈ R, δc,O

r is always total and single valued, δc,I
r

may be partial and/or multi valued, and δc,R
r is always multi valued and may

be partial. Especially for δc,I
r and δc,R

r , a more explanation would be needed. If
δc,R
r (x, y) = z holds, then the value of y is always uniquely determined from the

value of x regardless of the value of z, and thus δc,R
r is multi valued and may

be partial. On the other hand, if δc,I
r (x, y) = z holds, then there can be some

constraint on y and z such that the value of y is uniquely determined from the
value of z, and thus δc,I

r may be multi valued and may be partial. For example,
consider δc,I

history(h,max(h2)) = h2 where history is a resource whose state is a
list of something and max(x) is the maximum value of the elements in list x. In
this case, h2 is not uniquely determined from h and max(h2), and δc,I

history is multi
valued. For a channel c ∈ C, let {r1, . . . , rl} = ρ(c, I), and {r′

1, . . . , r
′
k} = ρ(c,R).

Then, to guarantee that a message on c can always be calculated from the current
and next states of input side resources and the current states of reference side
resources, there must be a message generation function δ−1,c that satisfies for
any sr1 ∈ τ(r1), . . . , srl

∈ τ(rl), sr′
1

∈ τ(r′
1), . . . , sr′

k
∈ τ(r′

k),

m = δ−1,c(sr1 , δ
c,I
r1
(sr1 ,m), . . . , srl

, δc,I
rl
(srl

,m), sr′
1
, . . . , sr′

k
). (1)

4.5 Dataflow Graph and Validity of Architecture Model

For a given data transfer architecture model R, a dataflow graph is a directed
graph GR = (NR, NC , E) such that NR = R, NC = C and E = {〈c, r〉 | c ∈
C, r ∈ ρ(c,O)} ∪ {〈r, c〉 | c ∈ C, r ∈ ρ(c, I)}. For each event channel c ∈ Cevt, a
dynamic dataflow graph is the maximum subgraph GR,c of GR such that every
node in GR,c is reachable from node c ∈ NC . We say R is valid when all of the
following conditions are satisfied.

– GR has no strongly connected component.
– For any event channel cevt ∈ Cevt, GR,cevt is a directed tree.
– For any channel c ∈ C and r ∈ ρ(c,R), if r is contained in GR,cevt , then r is

a descendant of c on GR,cevt .

4.6 State Transition of the Whole System

A state of the whole system is a composition of states of all resources. We model
a state s of the whole system as a map from the resources to their states. That
is, for each resource r ∈ R, s satisfies s(r) ∈ τ(r). Also the initial state s0 of the
system satisfies the same condition.

The whole system reacts in response to a message from the environment
through an event channel. More specifically, if the state of R changes from s

to s′ by receiving a message m on cevt ∈ Cevt, then we write s
〈m,cevt〉→

R
s′, and

the state change is possible if and only if there exists a message assignment
π : C → D such that:

A Formal Web Services Architecture Model for PUSH/PULL Data Transfer 75

– for every c ∈ C, π(c) ∈ μ(c),
– π(cevt) = m,
– for each c ∈ C, if c is contained in GR,cevt , then for d ∈ {I,O,R} and r ∈

ρ(c, d),

δc,d
r (s(r), π(c))

{
= s′(r) (δc,d

r is single valued)
	 s′(r) (δc,d

r is multi valued),
(2)

– for each c ∈ C, if c is not contained in GR,cevt , then π(c) = ec and s(r) = s′(r)
for each r such that:

• r ∈ ρ(c, I), or
• r ∈ ρ(c,O) and r is not contained in GR,cevt .

For example, with respect to the architecture model explained in Sect. 3,

{temp_f �→ 66.2, temp_c �→ 19,highest �→ 67.1} 〈68,cevt1 〉−→
R

{temp_f �→ 68,

temp_c �→ 20,highest �→ 68} holds since cevt2 is not contained in GR,cevt1
and

there exists a message assignment π = {cevt1 �→ 68, cevt2 �→ ecevt2
, c1 �→ 68, c2 �→

68}. In the following, for an input sequence σ = 〈m1, c1〉 · · · 〈mn, cn〉, we write a

concatenation of transition relations
〈m1,c1〉−→

R
· · · 〈mn,cn〉−→

R
as σ=⇒

R
.

5 RESTful Web Services Generation from Architecture
Model and Selected Data Transfer Methods

As stated in Sect. 3, our architecture model is designed to be control-independent
and not to be affected by changes of data transfer methods. Therefore, based on
the architecture model, selection of data transfer methods is regarded as addition
of the information about control-flow to the model. By adding such information,
a prototype of RESTful Web services can be generated. In this section, we show
a method to generate executable Web services from a data transfer architecture
model and data transfer methods selected by a user. The generated prototype
may be used to estimate the impact of selection of data transfer methods on the
services performance.

5.1 Common Structure of RESTful Web Services for PUSH
and PULL Data Transfer

As RESTful Web services, we consider to generate an executable prototype of
JAX-RS Web application. JAX-RS is a Java API for RESTful Web services. Gen-
erally, a JAX-RS application consists of multiple resource classes, which are Java
classes with some annotations. Let R = 〈R,C, ρ,D, τ, μ,Δ, s0〉 be an arbitrary
data transfer architecture model. Since R has no information about control-flow,
selection of data transfer methods is required to generate a JAX-RS prototype.
Let EPLL be the set of all data transfer methods where PULL-style are selected,
that is, EPLL def= {〈r, c〉 | r ∈ R, c ∈ C, r ∈ ρ(c, I), and the data transfer method
between r and c is PULL-style}. Basically, from R, a JAX-RS prototype PR is

76 N. Nitta et al.

generated by mapping R to resource classes. For each resource r ∈ R, let Pr be
the resource class corresponding to r. We define InC(r)

def= {c ∈ C | r ∈ ρ(c,O)}
and OutC(r)

def= {c ∈ C | r ∈ ρ(c, I)}. Also for any subset C ′ ⊆ C of chan-
nels, we define InR(C ′) def=

⋃
c∈C′ ρ(c, I) and OutR(C ′) def=

⋃
c∈C′ ρ(c,O). Then,

for any resource r ∈ R, Pr always has one getter (GET), |InC(r) ∩ Cevt| input
(PUT/POST), and at most |InR(InC(r)\Cevt)| update (PUT/POST) methods.

5.2 Generation of PUSH-First RESTful Web Services

Let R be an arbitrary data transfer architecture model. For any data transfer
method in R, we can always select PUSH-style. The JAX-RS prototype that is
generated by selecting PUSH-style for every data transfer method (i.e., EPLL =
∅) is called PUSH-first prototype and written as PPSH

R . In this subsection, we
will explain how to generate PPSH

R from R.
First, for each resource r ∈ R, Pr always has a state field, that is a field to

store its own state. The getter method of Pr is defined as follows.
public TypeOf_r get() {

return this.stateOf_r; // the state field of r
}

Next, let {r1, . . . , rl} = InR(InC(r)). Then, for each j (1 ≤ j ≤ l), Pr has a
cache field of rj , that is a field to store the cache of the latest state of rj .

Last, we define the update and input methods of Pr. Let {r′
1, . . . , r

′
k} =

OutR(OutC(r)) and consider each channel c ∈ InC(r). If c �∈ Cevt, then |InR({c})|
update methods are defined for c. More concretely, for each rj ∈ InR({c}) (here,
j satisfies 1 ≤ j ≤ l), an update method of Pr for rj is defined as follows.

public void update_from_rj(TypeOf_rj rj) {
this.stateOf_r = δc,Or (this.stateOf_r,

δ−1,c(this.cacheOf_r1, this.cacheOf_r1, . . . ,this.cacheOf_rj ,
rj , . . .));

this.cacheOf_rj = rj;
r′
1.update_from_r(this.stateOf_r);

...
r′
k.update_from_r(this.stateOf_r);

}

If c ∈ Cevt, then the input method for c is defined as follows.
public void input_on_c(TypeOf_m m) {

this.stateOf_r = δc,Or (this.stateOf_r, m);
r′
1.update_from_r(this.stateOf_r);

...
r′
k.update_from_r(this.stateOf_r);

}

A Formal Web Services Architecture Model for PUSH/PULL Data Transfer 77

5.3 Generation of PULL-Containing Web Services

In this subsection, we consider to change each data transfer method in PPSH
R to

PULL-style. Let r be a resource. For convenience of explanation, we assume that
OutC(r) = {c′} for some c′ ∈ C and let {r′

1, . . . , r
′
k} = OutR({c′}). If 〈r, c′〉 ∈

EPLL, then the generated prototype should satisfy the following conditions.
First, each resource class Pr′

i
(1 ≤ i ≤ k) has no state field and no update

method. The getter method of Pr′
i

is redefined as:
public TypeOf_r′

i get() {
return fr′

i
(. . . , r.get(), . . .);

}
where fr′

i
is a homomorphism that calculates the latest state of r′

i and will be
explained below. Pr′

i
has no cache field of r.

Next, each update method of Pr is redefined as follows.
public void update_from_rj(TypeOf_rj rj) {

this.stateOf_r = δc,Or (this.stateOf_r,
δ−1,c(this.cacheOf_r1, this.cacheOf_r1, . . . ,this.cacheOf_rj ,

rj , . . .));
this.cacheOf_rj = rj;

}
By changing more than one data transfer method in PPSH

R to PULL-style as
the above, we can generate a PULL-containing prototype PR. However, as dis-
cussed in Sect. 2, not all data transfer methods can be safely changed to PULL-
style. In the following, we call the prototype in which as many data transfer
methods as possible are changed to PULL-style PULL-first. In the next section,
we will prove that PPSH

R and any PULL-containing prototype PR are equivalent
if PR and R satisfy the following conditions.

Condition 1. For every resource r ∈ R and channel c ∈ OutC(r), if 〈r, c〉 ∈
EPLL, then for every resource r′ ∈ OutR({c}) and channel c′ ∈ OutC(r′),

1. 〈r′, c′〉 ∈ EPLL,
2. InC(r′) = {c}, and
3. ρ(c,R) = ∅ holds.

Condition 2. For every channel c ∈ C, let {r1, . . . , rl} = InR({c}) and if
〈rj , c〉 ∈ EPLL for some j (1 ≤ j ≤ l), then for each resource r′ ∈ OutR({c}),

s0(r′) = fr′(s0(r1), . . . , s0(rl)), (3)

and for any state s of R and any message m ∈ μ(c) on c,

δc,O
r′ (fr′(s(r1), . . . , s(rl)),m) = fr′(δc,I

r1
(s(r1),m), . . . , δc,I

rl
(s(rl),m)). (4)

This means that there exists a homomorphism fr′ from the state transition sys-
tems of the source resources of c to that of each destination resource of c.

78 N. Nitta et al.

6 Equivalence of RESTful Web Services and Data
Transfer Architecture Model

In this section, we give a brief outline of the proofs of the equivalence between
a data transfer architecture model and any JAX-RS prototype generated from
the model (for the details of the proofs, see the online appendix1). In advance of
the proofs, first, we define some notations. Let R be an arbitrary data transfer
architecture model and PR be a JAX-RS prototype generated from R. For PR, a
communication m(r, x1, . . . , xn)/v is a pair of a request m(r, x1, . . . , xn) and its
response v where m is a method of a resource r and x1, . . . , xn are parameters.
Also for PR, we consider a communication sequence ̂〈m, cevt〉 that corresponds
to a message 〈m, cevt〉 for R. Let {r1, . . . , rk} = ρ(cevt,O). Then,

̂〈m, cevt〉 def= input_on_cevt(r1,m)/void · · · input_on_cevt(rk,m)/void.

In addition, let σ̂ = ̂〈m1, c1〉 · · · ̂〈mn, cn〉 if σ = 〈m1, c1〉 · · · 〈mn, cn〉 is an input
sequence for R. For any state s of R, we write a state of PR as PR(s) if for
each resource class Pr of a resource r, s(r) is stored in the state field in Pr and
s(r′) is stored in any cache field of r′ in Pr. If the state of PR can be changed
from PR(s) to PR(s′) by a communication m(r, x1, . . . , xn)/v, then we write

PR(s)
m(r,x1,...,xn)/v−→ PR(s′). For a communication sequence ω = α1 · · · αn, we

write a concatenation of transition relations α1→ · · · αn→ as ω⇒.
Here, we prove the equivalence between a data transfer architecture model

and the generated PUSH-first prototype.

Theorem 1. Let R = 〈R,C, ρ,D, τ, μ,Δ, s0〉 be an arbitrary valid data transfer
architecture model. Then, for any input sequence σ, PPSH

R (s0)
σ̂=⇒ PPSH

R (s) iff
s0

σ=⇒
R

s.

Proof Sketch. The theorem is proved by the definition of PPSH
R and induction

on the number n = |R| of the resources. For the induction step, R′ = R\{r}
(where OutC(r) = ∅) is selected, and that the value stored in the state field of
the resource class of r always equals to s(r) is shown. ��

Next, we prove the equivalence between the PUSH-first prototype and any
PULL-containing prototype generated from the same model.

Theorem 2. Let R = 〈R,C, ρ,D, τ, μ,Δ, s0〉 be an arbitrary valid data transfer
architecture model, and PR be any JAX-RS prototype generated from R and
satisfying conditions 1 and 2. Then, PPSH

R and PR satisfy

∀σ.∀r∈R. {sr | ∃s.PPSH
R (s0)

σ⇒ PPSH
R (s)

get(r)/sr=⇒ PPSH
R (s)}

= {s′
r | ∃s′ .PR(s0)

σ⇒ PR(s′)
get(r)/s′

r=⇒ PR(s′)}.

1 https://nitta-lab.github.io/appendix_FACS2023.

https://nitta-lab.github.io/appendix_FACS2023

A Formal Web Services Architecture Model for PUSH/PULL Data Transfer 79

Proof Sketch. The theorem is proved by double induction on the length of σ and
the number n = |R| of the resources. For the induction on n, also R′ = R\{r}
(where OutC(r) = ∅) is selected, and that the responses of the getter methods
of r in PPSH

R and that in PR are always equal is shown. ��
Last, we prove the equivalence between a data transfer architecture model

and any generated JAX-RS prototype.

Theorem 3. Let R = 〈R,C, ρ,D, τ, μ,Δ, s0〉 be an arbitrary valid data transfer
architecture model, and PR be any JAX-RS prototype generated from R and
satisfying conditions 1 and 2. For an arbitrary input sequence σ, s0

σ=⇒
R

s holds

if and only if there exists a state s′ of PR such that PR(s0)
σ̂⇒ PR(s′)

get(r)/s(r)
=⇒

PR(s′) holds for any resource r ∈ R.

Proof. The theorem follows from Theorems 1 and 2. ��

7 Architecture Level Refactoring for Changing Data
Transfer Methods

As stated in the previous section, from any valid data transfer architecture model
R, the PUSH-first JAX-RS prototype PPSH

R can be directly generated. Also, any
PULL-containing JAX-RS prototype PR, in which more than one data transfer
method is changed to PULL-style can be generated from PPSH

R . In this section,
as an architecture level refactoring, we consider regenerating the PUSH-first or a
PULL-containing JAX-RS prototype directly from R. In the refactoring process,
a user is required to select one combination of data transfer methods from all
safe ones that satisfy the conditions shown in Sect. 5.3. The whole process of the
refactoring is summarized as follows.

1. Check the validity of R.
2. For each data transfer, PULL-style is determined to be selectable if the con-

clusion parts of condition 1-(2), condition 1-(3) and condition 2 are satisfied,
and every data transfer method is initialized to PUSH-style.

3. Ask the user if he/she wants to change each data transfer method to PULL-
style if possible. Throughout the selection process, condition 1-(1) is always
checked, and the selection that violates the condition is not asked.

4. Generate a JAX-RS prototype based on the algorithm shown in Sect. 5.
5. Back to step 3 if the user wants to reselect other data transfer methods.

Among the above steps, only the check of the conclusion part of condition 2 in
step 2 is considered difficult because determining the existence of a homomor-
phism is generally hard. Therefore in this paper, we consider to check a sufficient
condition, right unaryness of the input and output side state transition functions.
A function f is called right unary if f satisfies

f(x, z) = f(y, z) (5)

80 N. Nitta et al.

for any x and y. The sufficiency of the right unaryness can be shown as follows.
Let c be a channel, and assume that {r1, . . . , rl} = ρ(c, I) and r′ ∈ ρ(c,O). If for
every i (1 ≤ i ≤ l), δc,I

ri
is right unary, then there exists a function δ−1 such that:

m = δ−1(δc,I
r1
(s1,m), . . . , δc,I

rl
(sl,m)),

and if δc,O
r′ is also right unary, then a function fr′ that satisfies

fr′(s′
1, . . . , s

′
l) = δc,O

r′ (z, δ−1(s′
1, . . . , s

′
l))

for any constant z becomes homomorphic and satisfies Eq. (4).

8 Tool Implementation

We defined a simple architecture description language (ADL for short) based on
many-sorted algebra [4], and developed a graph-based refactoring tool2 shown
in Fig. 4. The tool first reads a model file written in the ADL and performs the
steps 1 and 2 of the process shown in the previous section. Then, a data-flow
graph is displayed on the tool and the user is allowed to select a safe combination
of data transfer methods through pull-down menus. Last, the tool generates an
executable JAX-RS prototype. In JAX-RS prototype generation, if the state
transition function of a resource is right unary, then an API to update the
resource state is implemented as PUT method otherwise POST method.

Fig. 4. Graph-based Tool To Refactor Data Transfer Methods

9 Case Studies and Discussion

9.1 Case Studies

As case studies, we designed the architectures of the following three applications
and wrote the model files in the ADL.
2 https://github.com/nitta-lab/DataTransferModelingTool.

https://github.com/nitta-lab/DataTransferModelingTool

A Formal Web Services Architecture Model for PUSH/PULL Data Transfer 81

– WOS (Weather Observation Services): As a case study, we used the
WOS explained in Sect. 3.

– Inventory Management Services: As another case study, we wrote a
model file for inventory management services for a liquor store. The ser-
vices take receiving reports and shipping requests as input and keep track of
warehouse inventory and the waiting list.

– Online Card Game: The last one is an online game based on Algo. In Algo,
each player is dealt a certain number of uniquely numbered cards. The cards
are laid face-down and each player is required to guess the number of another
player’s card in turn. The player who is guessed all the cards loses the game.

Table 2. Total lines of model files and generated JAX-RS prototypes

Application # of resources Model File PUSH-first PULL-first

WOS 3 14 77 73
Inventory Management 7 43 361 346
Online Card Game 15 113 635 577

We generated the PULL-first/PUSH-first JAX-RS prototypes. The number
of resources and the total lines of the model files and generated prototypes are
summarized in Table 2. To confirm the effectiveness of the generated prototypes
for performance estimation, we measured the computation time of each API
call on the generated PULL-first/PUSH-first prototypes of the WOS. For the
experiments, we deployed each JAX-RS prototype and a client program on the
same PC3, and measured the time to perform 10,000 iterations of API call five
times and calculated the averaged value. We show the results in Fig. 5.

Fig. 5. Computation Time on JAX-RS Prototypes of WOS

3 CPU: E5-1603 v4 2.80 GHz, RAM: 32.0 GB, JVM: jdk-12, Spring Boot: v2.4.1.

82 N. Nitta et al.

9.2 Discussion

As shown in Table 2, the generated prototypes were almost five times larger than
the original descriptions. Furthermore, the implementations of the PULL-first
and PUSH-first prototypes were significantly different. This suggests that addi-
tion of the control-dependent information can bridge a certain part of the gap
between the abstraction levels of the architecture models and their implemen-
tations. In Fig. 5, the communication load to update a state is higher in PUSH-
style than PULL-style, but that to obtain the state is higher in PULL-style than
PUSH-style. These results conform to the tendency of the performance expected
in Sect. 2. Therefore, we can expect that the generated prototypes can be used
to estimate the impact of the selection on the resulting services performance.

10 Related Work

Little work has been done on helping architects to select suitable data transfer
methods. In [12], Zhao presented a model of computation for push/pull commu-
nications. Compared to our model, the model has a less theoretical basis and
does not cover components’ behavior. However, some constraint on push and pull
combinations (which is discussed in Sect. 5.3) was also discussed in the paper. In
the context of parallel graph computation, Besta et al. [2] exhaustively analyzed
the performance of push/pull variants of various graph algorithms.

Most of the formal architecture models (cf. [1,6,8]) are process-centric. The
abstraction level of process-centric models is considered lower than ours because
process-centric models are control-dependent. In fact, by adding the informa-
tion about the control-flow to our model, CCS processes can be derived and
the equivalence of derived processes can also be proved. In [5], labeled transi-
tion systems (LTLs) are used to represent and check behavior of RESTful Web
applications. Since the state space of LTL is limited to finite, many temporal
properties of the model can be automatically verified, but it does not have suffi-
cient expressive power to represent many kinds of data structure such as natural
numbers and lists. In contrast, our model can have infinite state space and can
generate executable prototypes.

Dataflow programming [9–11] has been studied for about five decades. A
dataflow program internally uses a directed graph that represents the set of all
instructions and dataflow among the instructions. Both the representation and
the semantics of dataflow programming are similar to ours, and in fact, our model
can be implemented as a dataflow program rather straightforwardly. However,
the abstraction level of our model is higher than that of dataflow programming
in terms of the following three aspects. First, unlike dataflow programming, in
our model, we assume that the states of all resources are synchronously changed
and the updating process is not observable. Second, in our model, whether the
state of a resource is stored or not is determined by analyzing the description of
the model, but in dataflow programming, it should be explicitly specified in the
program as a kind of self-loop. Last, each data transfer method in a dataflow
program is fixed to PUSH-style.

A Formal Web Services Architecture Model for PUSH/PULL Data Transfer 83

11 Conclusion

We have presented a formal architecture model to abstract some control-
independent parts of architecture designs that are not affected by changes of data
transfer methods and an architecture level refactoring for changing data transfer
methods. We have also developed an algorithm to generate JAX-RS prototypes
from the architecture model and selected data transfer methods, and proved the
correctness of the algorithm. Furthermore, we have implemented a graph-based
refactoring tool and conducted case studies using the tool. The results indicate
that the generated prototypes can be used to estimate the impact of the selection
on the resulting services performance.

As future work, we want to develop an implementation level refactoring for
changing data transfer methods. Extending our architecture model to capture
runtime resource creation and deletion is also an important issue.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Method 6(3), 213–249 (1997)

2. Besta, M., Podstawski, M., Groner, L., Solomonik, E., Hoefler, T.: To push or to
pull: on reducing communication and synchronization in graph computations. In:
Proceedings of the 26th International Symposium on High-Performance Parallel
and Distributed Computing, pp. 93–104 (2017)

3. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis, University of California, Irvine (2000)

4. Joseph Goguen, J.T., Wagner, E.: An initial algebra approach to the specification,
correctness, and implementation of abstract data types. Technical report, IBM, TJ
Watson Research Center (1976)

5. Klein, U., Namjoshi, K.S.: Formalization and automated verification of RESTful
behavior. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
541–556. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_43

6. Magee, J., Kramer, J., Giannakopoulou, D.: Behaviour analysis of software archi-
tectures. In: Proceedings of Working IEEE/International Federation for Informa-
tion Processing Conference on Software Architecture, pp. 35–49 (1999)

7. Milner, R.: Communication and Concurrency. Prentice-Hall, Hoboken (1990)
8. Pelliccione, P., Inverardi, P., Muccini, H.: Charmy: a framework for designing

and verifying architectural specifications. IEEE Trans. Softw. Eng. 35(3), 325–346
(2009)

9. Sousa, T.B.: Dataflow programming: concept, languages and applications. In: Pro-
ceedings of 7th Doctoral Symposium on Informatics Engineering (2012)

10. Sutherland, W.R.: Online graphical specification of computer procedures. Ph.D.
thesis, MIT (1966)

11. Veen, A.H.: Dataflow machine architecture. ACM Comput. Surv. 18, 365–396
(1986)

12. Zhao, Y.: A model of computation with push and pull processing. Technical report
UCB/ERL M03/51, EECS Department, University of California, Berkeley (2003).
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2003/4192.html

https://doi.org/10.1007/978-3-642-22110-1_43
https://doi.org/10.1007/978-3-642-22110-1_43
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2003/4192.html

Joint Use of SysML and Reo to Specify
and Verify the Compatibility of CPS

Components

Perla Tannoury(B), Samir Chouali, and Ahmed Hammad

University of Bourgogne Franche-Comté, FEMTO-ST Institute - UMR CNRS 6174,
Besançon, France

{perla.tannoury,schouali,ahammad}@femto-st.fr

Abstract. Modeling and verifying the behavior of Cyber-Physical Sys-
tems (CPS) with complex interactions is challenging. Traditional lan-
guages such as SysML diagrams are not enough to capture CPS coordi-
nation. In this paper, we propose a novel approach called SysReo, which
extends SysML diagrams (RD, BDD, IBD, SD) with the Reo coordi-
nation language. Our main objective is to enhance the interoperability
of CPS by providing a more precise representation of system behavior
and interaction protocols. To achieve this goal, we extend the SysML
sequence diagram (SD) with Reo to create the SysReo SD. Through this
integration, we bridge the gap between traditional modeling languages
and the coordination demands of CPS. We develop an algorithm to gen-
erate Constraint Automata (CA) from SysReo SD, which ensures that
CPS components can seamlessly work together. These automata are used
in a verification tool that checks formulas expressed in Linear Temporal
Logic (LTL). By leveraging LTL and Constraint Automata, we enhance
the precision and rigor of CPS verification processes, while guaranteeing
that CPS components can seamlessly work together. Furthermore, we
apply our approach to a medical CPS case study, illustrating its effec-
tiveness in identifying design flaws early and ensuring system behavior
aligns with desired properties.

Keywords: CPS · SysReo · SysML · Reo · Constraint Automata ·
LTL · Specification · Verification

1 Introduction

In today’s technologically advanced world, Cyber-Physical Systems (CPS) have
become crucial in a range of applications, such as autonomous vehicles [37], mod-
eling smart city software interactions [38], and healthcare systems [1]. These sys-
tems combine the physical and digital worlds, resulting in improved automation,
control, and data processing. Despite the importance of CPS, modeling them can
be challenging, especially in the healthcare and medical sectors, as it involves
integrating various system components, behaviors, and interaction protocols. In
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Cámara and S.-S. Jongmans (Eds.): FACS 2023, LNCS 14485, pp. 84–102, 2024.
https://doi.org/10.1007/978-3-031-52183-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52183-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-52183-6_5

SysReo to Specify and Verify CPS Components 85

addition, collaborative efforts between designers, developers, and stakeholders
are required to address these challenges. As CPSs continue to become more
complex, it is essential to establish an environment that facilitates the modeling
process while highlighting their fundamental, structural, and behavioral aspects.

Several languages and formalisms are used to model CPS [17,23,33,34]. In
our research, we have opted to use the System Modeling Language (SysML) [36]
language due to its ability to model heterogeneous systems that combine hard-
ware and software components. We aim to develop an approach that enables
users to easily create specifications using SysML, while taking into account both
verification and validation processes. SysML is widely used in industrial applica-
tions to model various aspects of a system, including its architecture, behavior,
and requirements. However, CPSs are typically composed of various components
that interact through various protocols, leading to complex system behaviors.
While SysML is a valuable language for describing CPS, it may not be sufficient
to formally specify and verify the complex interactions between CPS compo-
nents. To tackle this problem, we have proposed in our previous work [39,40]
a new domain-specific language (DSL) called SysReo that effectively uses the
strengths of both semi-formal and formal languages to improve the validation
and verification of CPS.

SysReo, is used to overcome the challenges in designing a CPS by clearly
expressing its interaction protocols at any design stage. By extending SysML,
a semi-formal language, with Reo [5], a formal coordination language, in the
SysReo framework, it becomes possible to model the complex components of a
CPS in an effective manner. This integration provides a powerful tool for repre-
senting component interactions, allowing for more precise and accurate modeling
of complex systems. SysReo empowers CPS designers to model all facets of a
CPS while explicitly defining the conditions under which data can flow between
components. However, it should be noted that SysReo has limitations in formally
specifying and verifying the behavioral aspects of CPS. In contrast, the SysML
Sequence Diagram (SD) [36] excels in representing component interactions over
time in CPS. Nonetheless, SD is semi-formal and lacks direct verification capa-
bilities. On the other hand, Reo offers a formal representation of component
coordination and allows for system property analysis. However, stakeholders may
find Reo challenging to comprehend due to its complex representation.

In this paper, we first introduce a novel approach called “SysReo Sequence
Diagram (SysReo SD)” that enhances the modeling and analysis of CPS. By
extending the SysML Sequence Diagram (SD) with Reo notation, we create a
“semi-formal-formal” model that captures the behavior and coordination of CPS
components using an exogenous protocol. Unlike traditional SysML SD, which
focuses on internal system behavior, SysReo SD imposes an external order on the
flow of data between components without directly affecting their behavior. The
SysReo SD model serves two main purposes: first, it bridges the gap between
visual representation and formal modeling, providing a comprehensive view of
system behavior and interaction protocols. Second, it enables the formal verifica-
tion and analysis of the interoperability and correctness of the CPS. To facilitate

86 P. Tannoury et al.

the verification process, we develop an algorithm that generates Reo Constraint
Automata (CA) [15] directly from the SysReo SD model. In the next phase, we
use the generated automaton CA as input in the vereofy [12] model checking tool
to formally verify Linear Temporal Logic (LTL) [11] properties. This allows us
to effectively verify the interoperability of CPS components, confirm compliance
with specified requirements, and ensure correct system behavior. To demonstrate
the effectiveness of our approach, we conducted a case study involving a smart
medical bed, showcasing its potential for real-world applications in the medical
CPS domain.

To the best of our knowledge, no previous research has comprehensively
explored the extension of SysML Sequence Diagram (SD) with Reo to effectively
model the behavior and interaction protocols of CPS. Existing approaches either
resulted in verbose and less readable Reo circuits derived from scenario speci-
fications [7,9], or encountered difficulties in establishing correlations between
Reo circuits and the original specifications [35]. Our work addresses this gap by
enhancing SysML SD with the coordination capabilities of Reo and introduc-
ing a novel algorithm that directly generates Constraint Automata (CA) from
SysReo SD diagrams. This is followed by a formal verification process to ensure
CPS interoperability and validate design correctness.

The paper is structured as follows. Section 2 provides a concise introduction
to Reo, Constraint Automata, and SysReo, highlighting their key concepts and
features. In Sect. 3, we present the related works. Moving forward, Sect. 4 offers
an in-depth case study that showcases the practical application of our SysReo
model, focusing on the specification and verification processes involved. Finally,
Sect. 5 concludes the paper and briefly discusses future work.

2 Preliminaries

In this section, we give a brief introduction to Reo, constraint automata (CA),
and SysReo.

2.1 Reo and Constraint Automata (CA) in a Nutshell

Reo, as described by Arbab in [5], is an external coordination model that pri-
oritizes efficient communication and coordination among different components.
It achieves this by using channel-based connectors to establish complex coordi-
nators. However, Reo does not focus on internal activities and communications
within individual components. Instead, its main emphasis is on the coordination
and interaction between components. The fundamental elements of Reo con-
sist of components, channels, nodes, and ports, working in harmony to enable
seamless data exchange and synchronization between these components [5,8,10].

The formal semantics of Reo are rigorously captured through the use of
Constraint Automata (CA) [15]. CA provides a systematic representation of
interactions among anonymous components, describing behavior and data flow
in coordination models. This formalism involves labeling transitions with sets

SysReo to Specify and Verify CPS Components 87

of ports that are triggered simultaneously, complemented by data constraints
applied to these ports. As a result, constraint automata offers a powerful means
to precisely specify and analyze component interactions within the Reo coordi-
nation model.

Definition 1. Constraint Automata (CA): A constraint automaton B =
(S,S0,N,δ) is composed of:

– S: set of states (or locations).
– S0: initial state where S0 ∈ S.
– N : set of port names.
– δ: transition relation δ ⊆ S × 2N × DC × S, where DC is the set of Data

Constraints (DC) over a finite data domain Data.

An example of a constraint automata B is illustrated in Fig. 6 step2, where
B = ({S0, S1}, S0, {(A,V), (B,W)}, {(S0, (A,V), [A] = |V |, S1), (S1, (B,W),
[B] = |W |, S0)}).

2.2 SysReo

Fig. 1. From SysML diagrams to SysReo diagrams.

SysReo was introduced in [39,40] as a powerful modeling language that com-
bines the strengths of both SysML and Reo to provide a more comprehensive
and flexible approach to model a CPS. One of the main advantages of SysReo
is its ability to model all facets of CPS, from requirements to architecture and
interaction protocols, which is essential for designing complex heterogeneous sys-
tems. Figure 1 represents the process of transforming the SysML Block Definition

88 P. Tannoury et al.

Diagram (BDD) and Internal Block Diagram (IBD) into SysReo Extended Block
Definition Diagram (ExtBDD) and Reo Internal Block Diagram (Reo IBD). The
transformation consists of two parts:

(A) The SysML BDD (Fig. 1 A-1) is transformed into SysReo ExtBDD (Fig. 1 A-
2) by using SysML BDD meta-models and dividing the CPS hierarchy into
two levels. The first level presents the abstract model of the CPS, where the
primary components of the system are modeled as main blocks. The second
level presents the concrete components of the CPS, where they are modeled
as sub-blocks. Overall, the traditional SysML BDD offers a high-level view
of the system being designed, whereas the Extended BDD offers a more in-
depth view of the system structure. Using multiple levels of abstraction and
additional information in the ExtBDD can help to control the complexity
of the system being designed and ensure that the system design meets the
intended requirements.

(B) The SysML IBD (Fig. 1 B-1) is converted into SysReo Reo IBD (Fig. 1 B-2)
by using SysML IBD meta-models and replacing the IBD connectors with
“Reo connectors”. This replacement allows for more explicit representation
of the internal composition of components and their interaction protocols
by setting constraints on data flow, whereas SysML IBD connectors only
provide a generic way of depicting the interactions between components.
With Reo connectors, the CPS designer can more accurately capture the
specific communication and synchronization patterns between components,
and thereby improve the reliability, safety, and performance of the system. In
addition, Reo connectors have formal semantics, making them precise and
verifiable using formal methods. Overall, the Reo IBD diagram improves
system reliability and can save time and cost by detecting errors early in
the development process.

In summary, SysReo offers a more comprehensive and adaptable approach to
system design, which results in more effective and reliable CPS. The use of
ExtBDD provides a more precise and detailed hierarchical view of the system,
while Reo IBD allows for explicit modeling of the internal composition of the
system and the interaction protocols among its components. Although SysReo
has many advantages in modeling the structure and internal composition of the
CPS, it falls short of capturing the behavioral and coordination aspects of the
CPS. To bridge this gap, we present a new approach named SysReo SD in this
paper. Section 4.3 provides a comprehensive overview of SysReo SD, focusing on
its ability to effectively address the behavioral and coordination challenges in
CPS.

3 Related Works

CPSs are networks of different embedded systems connected in a physical envi-
ronment, making their specification and formal verification difficult due to their
complex and large-scale computing infrastructure.

SysReo to Specify and Verify CPS Components 89

Previous works in [3,22,26,32] proposed different approaches to model dif-
ferent aspects of CPS with SysML. To formally verify critical safety systems,
the authors in [18,19] proposed to extend the SysML sequence diagram (SD)
and automate consistency verification using the Clock Constraint Specification
Language (CCSL) [4]. Additionally, an approach was proposed [16] to transform
SD into interface automata (IA) to verify the compatibility and consistency of
components modeled with SysML. However, these works take an endogenous
approach to coordination and neglect the coordination of message exchanges,
leading to communication problems within CPSs. To address this problem, Reo
is proposed as a coordination language to fill the interfacing gaps and enhance
the modeling and coordination of CPSs.

Various researchers explored different approaches to model CPS using Reo
and have demonstrated its effectiveness through formal analysis techniques.
These include co-algebraic semantics [10], operational semantics [15] using con-
straint automata [15] and timed constraint automata [6,30], coloring seman-
tics [21], and converting Reo models to other formal models such as Alloy [28]
and mCRL2 [31] to leverage existing verification tools. Despite its advantages,
Reo remains complex for stakeholders to comprehend due to its lack of semi-
formal representation.

To our knowledge, there is no prior research that explores the extension of
SysML Sequence Diagrams (SD) with Reo to effectively model behavior and
interaction protocols in CPS. Previous approaches resulted in complex and less
comprehensible Reo circuits derived from scenario specifications [7,9], or faced
challenges in establishing connections between the Reo circuits and the original
specifications [35]. In our work, we bridge this gap by enhancing SysML SD with
Reo’s coordination capabilities and introducing a novel algorithm that directly
generates Constraint Automata (CA) from SysReo SD diagrams. This is followed
by a formal verification process to ensure interoperability of the CPS and validate
the accuracy of the design, addressing the limitations of existing approaches.

4 Case Study: Smart Medical Bed (SMB)

In this section, we present our case study of the Smart Medical Bed (SMB)
system. First, we begin by briefly introducing the SMB system. Then, we gather
information about the SMB system and analyze it using our SysReo models. This
process involves specifying the system’s requirements, designing its structure
and internal composition, and modeling the system’s behavior and interaction
protocol. Finally, we move on to the verification phase, where we rigorously verify
the correctness of our SysReo models.

90 P. Tannoury et al.

4.1 SMB Overview

Fig. 2. Smart medical bed architecture.

A Smart Medical bed (SMB) is equipped with various sensors and monitor-
ing devices that collect data on vital signs of the patient, such as heart rate,
blood pressure, temperature, oxygen saturation, and other key indicators of their
health. These data are then transmitted to a Remote Terminal Unit (RTU), where
it can be stored and analyzed by healthcare providers as we can see in Fig. 2. RTU
plays a key role in connecting, controlling, analyzing, and communicating data
from the smart bed to the nursing station, providing valuable information to the
healthcare team and ultimately improving patient care. Continuous monitoring
helps identify potential health issues early, leading to informed decision-making
and efficient care delivery. The SMB infrastructure comprises the following com-
ponents: (1) the Smart Bed (SB), where the patient resides, (2) the Remote
Terminal Unit (RTU), where the collected data are stored, processed and ana-
lyzed, and (3) the Nursing Station (NS), where the monitoring system and
the healthcare team are located. In this article, we focus on modeling and veri-
fying the requirement, structure, behavior, and interaction protocol between the
Smart Bed (SB) and the RTU in the SMB system. Using our model-driven app-
roach, SysReo, we can analyze the system’s requirements, model the architecture
and internal structure of the SMB. To handle complexity, we introduce SysReo
SD, an extension for modeling complex component behavior and interaction
protocols.

4.2 Modeling SMB with SysReo

In this section, we focus on our modeling approach. As shown in Fig. 3, the pro-
cess is broken down into two phases. During the first phase, the CPS designer
begins by collecting requirements about the system and analyzing it. Using our
SysReo model, the designer then specifies the system’s needs, which results in
three main diagrams: (1) The requirement diagram that models the functional
and non-functional needs of the system. (2.1) The ExtBDD diagram that repre-
sents the hierarchical structure of the system as blocks, followed by (2.2) the Reo
IBD diagram that is used to model the system’s internal structure and interac-
tion protocols. (3) The SysReo sequence diagram (SysReo SD) used to model

SysReo to Specify and Verify CPS Components 91

Fig. 3. Specification and verification process.

the behavior and coordination of CPS components. Finally, to satisfy our prede-
fined requirements, we link them to the Reo IBD diagram, and to verify them,
we establish a link to SysReo SD.

In the second phase, we focus on the verification process. To verify the inter-
operability of CPS components, SysReo SD is translated into CA through our
algorithm that directly generates CA from SysReo SD. Then the requirements to
Reo IBD are formally defined through property formulas such Linear Temporal
Logic (LTL) [11] for verification. This step is crucial to achieve the objective
of our modeling approach: creating a precise representation of the CPS sys-
tem’s needs, behavior, and coordination. By generating CA and translating the
requirements into LTL formulas, the CPS designer can ensure both the interoper-
ability of the CPS components and the accurate representation of requirements.
Furthermore, the formal verification of these requirements can be seamlessly
conducted using specialized verification tools like vereofy [12,14]. This helps to
guarantee that the CPS system will function as intended and meets the designer’s
requirements.

After evaluating the verification results, the CPS designer checks if there are
any specification errors. If so, the process returns to the SysReo model specifi-
cation phase until a correct CPS model is obtained.

4.3 Specification Process: SysReo Models

Requirement. The design process for any system is crucial for ensuring its
functionality and usability. The first step in this process is to identify the specific
needs of the system, as outlined in the requirements table such as Table 1. In

92 P. Tannoury et al.

this table, we only present two functional requirements of the SMB system to
guarantee the proper flow of data between its components. This is essential to
ensure that the system runs smoothly and meets the needs of its users. For
example in Table 1, requirement R1 states that the smart bed must constantly
send temperature data to the RTU component. This requirement ensures that
the RTU receives up-to-date temperature readings from the smart bed (SB) and
it is satisfied by the SB component.

Table 1. Requirement table of SMB.

Req ID Requirement description Satisfied by

R1 The “SB” must constantly send temperature
data to the “RTU” component using
“sendTempData” message

SB

R2 The “RTU” shall respond to the “SB”
component with an “ack” message.

RTU

Based on the requirements of Table 1, we can identify the main components
of the SMB system that are the Smart Bed (SB) and the Remote Terminal Unit
(RTU). In the next section (Sect. 4.3), these components will be used to create a
hierarchical view of the SMB system, to better understand the relationships and
overall functioning of the system.

Fig. 4. The ExtBDD model of the SMB system.

ExtBDD. The Extended Block Definition Diagram is used to model the hier-
archical view of the SMB system where each component is modeled as a block.

SysReo to Specify and Verify CPS Components 93

The block defines a component by describing its internal operations as private
operations of the block and also its required and offered services as follows. Each
block is decorated by two proxy ports: 1) Input port that provides informa-
tion on the services that are available. These services are listed in an interface
block which specifies the type of the port. 2) Output port that describes the
required services in a similar manner. Figure 4[A] represents the abstract part
of the system by only showing the main components. It consists of the block
named "SMB" that represents the system as a whole. It is decomposed into two
sub-blocks: Smart Bed (SB) and the Remote Terminal Unit (RTU), in which
it is linked to them by the composition relationship. Figure 4[B] shows the con-
crete level of the SMB system. It depicts the sub-components that make up each
main component. As an example, the smart bed component is broken down into
two blocks, a Temperature Sensor and a Gateway. The main function of the
Temperature Sensor is to continuously measure, record, gather and transmit
the measured data to the Gateway.

Fig. 5. Reo IBD of SMB, SB, and RTU.

Reo IBD. The Reo Internal Block Diagram is a combination of the coordination
language Reo and the SysML Internal Block Diagram (IBD) [24] where the IBD’s
connectors are translated into Reo circuits. Reo IBD is used to characterize the
internal components and structure of a system block, including its properties,
parts, connections, and interaction protocols. It explicitly specifies the rules and
conditions of the data that can be transferred from the component’s input to its
output through channels. In Fig. 5(a), two different channels are used to model
the interaction protocols among the following main components: the Smart Bed
(SB) and Remote Terminal Unit (RTU).

1. FIFO channel: for example, two FIFO channels “sendTempData()” and
“ack()” are used to model the asynchronous communication between the two
components “SB” and “RTU”. The FIFO channel helps to efficiently man-
age memory in a real-time system by processing the oldest data first, thus
preventing loss of information.

2. Sync channel: used to model the synchronization properties among compo-
nents.

Figure 5(b) models the internal structure of the smart bed. First of all, the
“Temperature Sensor (TS)” sends the vital signs data of the patients to the

94 P. Tannoury et al.

“Gateway” component via the “TempDataOut()” flow port using a sync channel.
Once received, the “Gateway” component sends the data, which has been pre-
processed, to the RTU through the “Medical Data Base (MDB)” component
using a FIFO channel “SendTempData()”. Once it is received, the MBD replies
to the smart bed component with an “ack()” using a fifo channel. Then in
Fig. 5(c), the “MDB” component analyzes the data and sends “analyzeData()”
to xrouter component (

⊗
) via a filter channel where it models the routing

replication of data to“Patient Alerts (PA)” or to “Patient Update (PU)”. Once
data enters the xrouter component, it is sent either to “PA” or to “PU” but
never to both.

Reo IBD has many advantages when it comes to modeling a CPS. Such as
effectively modeling component connections, characterizing message flow, satis-
fying predefined requirements, and enabling design flexibility while simplifying
documentation with its graphical representation. However, it is limited to mod-
eling temporal behaviors and formally verifying predefined requirements, which
are crucial aspects in correctly modeling a CPS. Therefore, in the next section,
we will extend the SysML sequence diagram (SD) with Reo and explore its
benefits on CPSs.

SysReo SD. SysReo Sequence Diagram extends SysML SD with Reo notation,
including the introduction of the Reo Sequencer as an intermediary component.
This integration enriches the representation of message exchange, coordination,
and synchronization in a unified manner. In contrast to conventional SysML
sequence diagrams, SysReo SD facilitates the explicit specification of protocols,
eliminating the need for manual implementation of locks and buffers. This app-
roach enhances accuracy, efficiency, and mitigates errors typically associated with
manual synchronization mechanisms. As a result, SysReo SD offers a robust and
comprehensive approach for specifying protocols in system behavior, particu-
larly advantageous for capturing communication flow and coordination patterns
within a single diagram. Figure 6(A) presents a simple example of a SysML SD,

Fig. 6. Extending SysML SD with Reo then translating SysReo SD to CA.

SysReo to Specify and Verify CPS Components 95

demonstrating the behavior and message exchange between the two components
of SMB, smart bed (SB) and RTU. This coordination follows an endogenous app-
roach where protocols are implicitly expressed within the embedded code frag-
ments. However, modifying these protocols can be challenging and may require
extensive changes to multiple software components, potentially impacting pre-
viously validated properties.

On the other hand, exogenous methods like Reo offer a more explicit and
modular approach to define protocols. In the given scenario Fig. 6(A), where
components SB and RTU need to exchange messages, an endogenous approach
would involve directly implementing the exchange within their respective code.
However, in Fig. 6(B) illustrates a different strategy, where a separate compo-
nent called the “Reo sequencer” explicitly defines the message exchange protocol
between SB and RTU. For example, SB sends “sendTempData()” to RTU using
reo ports {A, V} (depicted as red circles), and the Reo sequencer coordinates
this message exchange. This decoupling allows for easier protocol modifications
without affecting the implementation of SB and RTU. Employing Reo connectors
in exogenous approaches provides more flexibility and simplifies the specification
and adjustment of complex protocols in CPS.

The next step involves converting SysReo SD into constraint automata. To
achieve this, we will first present a formal definition of SysReo SD. Subsequently,
in Sect. 4.4, we will outline an algorithm that facilitates the automatic generation
of constraint automata from SysReo SD.

Formal Definitions of SysReo SD. This section presents the formal defini-
tion of SysReo message and SysReo SD.

Definition 2 (SysReoMes). A SysReo message is a tuple SysReoMes = (comps,
action, compf , P, Σ) where:

– comps: is the source component of the SysReo message.
– action: is the called method.
– compf : is the target component of the SysReo message.
– P : is the set of Reo ports.
– Σ = input, output is the set of synchronization constraints, specifying the

allowed input/output actions on Reo ports.

For example in Fig. 6(B) a SysReo message between the component SB and RTU
can be defined as SysReoMes = (SB, sendTempData, RTU, {A, V}, {[A],|V |}).

Definition 3 (SysReo SD). A SysReo SD is defined as tuple B = (IM, SysRe-
oMes, ReoSeq, ReoLoop, ReoAlt) is composed of:

– IM : is the initial message.
– SysReoMes: the set of messages in SysReo SD.
– ReoSeq = (ReoSeq1, ...,ReoSeqi, ... ,ReoSeqn) is the list of reo sequencer

combined fragments. ReoSeqi = (obj1, ... , obji, ...,objn), obji is message or
a fragment and card(ReoSeqi) ≥ 2.

96 P. Tannoury et al.

– ReoLoop = (ReoLoop1, ...,ReoLoopi, ... ,ReoLoopn) is the list of reo loop
combined fragments. ReoLoopi = (obj1, ... , obji, ...,objn), obji is message or
a fragment and card(ReoLoopi) ≥ 1.

– ReoAlt = (ReoAlt1, ...,ReoAlti, ... ,ReoAltn) is the list of reo alternator
combined fragments. ReoAlti = (obj1, ... , obji, ...,objn), obji is message or a
fragment and card(ReoAlti) ≥ 2.

In this paper, we focus on the Reo sequencer from the SysReo SD fragments
(ReoSeq, ReoLoop, and ReoAlt) mentioned above. Our main objective is to
translate SysReoSD = (IM, SysReoMes,ReoSeq) into reo constraint automata
using our algorithm. This automaton will serve as input to vereofy tool where we
can formally verify the correctness and interoperability of SMB system through
LTL properties.

4.4 Verification Process: CA, Vereofy, LTL

This section outlines the verification process of SysReo. First, we start by propos-
ing an algorithm to construct CA from SysReo SD diagram. Then, the resulting
automaton is used as input for the vereofy tool to assess the accuracy and inter-
operability of the SMB system through the application of LTL properties.

Algorithm. SysReo SD is a visual representation of the SMB system, which
consists of components and their interactions. However, to analyze and verify
the system formally, it is necessary to transform this visual representation into
a more structured and formal representation. Therefore through our algorithm,
we provide a systematic and automated approach to convert the SysReo SD into
constraint automata, which are well-suited for formal analysis.

Algorithm 1 is developed to transform a SysReo SD into a Constraint
Automaton (CA), using a SysReo message and fragment list as inputs. The
resulting CA comprises a set of states (S), an initial state (S0), a set of port
names (N), and a set of transitions (δ). The algorithm begins by initializing the
set of states, checking for emptiness, and creating a new state as the initial state
(cf. Algorithm 1, lines 2–7). It then iterates through each object in the list. If
the object is part of a Reo sequencer fragment, the algorithm recursively calls
itself with the corresponding sub-list representing that fragment (cf. Algorithm
1, lines 8–13). When encountering a SysReo message object (SysReoMes), the
algorithm creates a new state s′ if the message is not the last object in the list
(cf. Algorithm 1, lines 14–18). If it is the last object, s′ is designated as the
initial state s0. The algorithm then populates the sets S and N in the CA with
the newly created state and the ports of the SysReoMes, respectively. A new
transition is created from the previously added state s to s′, incorporating the
port name and constraints from the SysReoMes, and it is subsequently added
to the set of transitions δ. This process continues until there are no remaining
objects in the list to be processed (cf. Algorithm 1 line 19→30).

The algorithm, SysReoSDtoCA, has a linear complexity dependent on the
size of the objects set l in the SysReoSD diagram specification. When we apply

SysReo to Specify and Verify CPS Components 97

Algorithm 1: Mapping SysReoSD to CA algorithm
1 Function SysReoSDtoCA(SysReoSD, l, CA)

Input: SysReoSD = (IM, SysReoMes, ReoSeq);
l: a list of objects in SysReoSD;
l = (obj1, ..., obji, ..., objn),
obji is a message or a fragment in SysReoSD.
Output: CA=(S,S0, N, δ)

2 Begin
3 if S = ∅ then
4 s = createNewState()
5 S = S ∪ {s} // add s to S (the set of states in CA)

6 S0 = s // set the initial state S0 to s

7 end
8 while (l �= ∅) do
9 Let obj the first element in l

10 if obj ∈ ReoSeq then
11 Let l’ be a list of objects composing the Reo sequencer fragment
12 SysReoSDtoCA(SysReoSD, l’, CA)

13 end
14 else
15 if obj ∈ SysReoMes then
16 if card(l) > 1 then
17 s’= createNewState()
18 end
19 else
20 s’= S0

21 end
22 S=S ∪ {s, s′} // the set of states

23 N=N ∪ obj.P // the set of port names

24 δ= δ ∪ (s, obj.P, obj.Σ, s’) // the set of transitions

25 s=s’ // initial state

26 end

27 end
28 l=l’- {obj}
29 end
30 End SysReoSDtoCA

this algorithm to the formal model of the SysReoSD diagram example, as pre-
sented in Fig. 6B, we obtain the constraint automata CA = (S,S0,N,δ) described
in Fig. 6 step2. The CA is characterized by the following components:

1. Set of states: S={S0, S}.
2. Initial state: S0 = S0.
3. Set of port names: N= {(A,V), (B,W)}.
4. Set of transitions: δ= S x 2A,V x DC x S0 where DC = [A], |V |, and the

second δ= S0 x 2B,W x DC x S where DC = [B], |W |.

98 P. Tannoury et al.

Upon analyzing the resulting constraint automaton, we can observe the sys-
tem’s behavior when component SB sends the SysReoMes “sendTempData” to
component RTU. This communication is coordinated by the Reo sequencer and
specified by the transition labeled with reo ports {A, V} and input/output action
interfaces [A], |V |. As a response, component RTU sends the SysReoMes “ack”
back to component SB through the reo sequencer ports {B, W} and input/out-
put action interfaces [B], |W |.

Vereofy Tool. Vereofy [12,14], developed at the University of Dresden, is a pow-
erful model checking tool specifically designed for analyzing and verifying Reo
connectors. It supports two input languages: the Reo Scripting Language (RSL)
for specifying coordination protocols, and the Constraint Automata Reactive
Module Language (CARML), a textual representation of constraint automata
used to define component behavior. With vereofy, one can verify temporal prop-
erties expressed in LTL [11] and CTL-like logics [29]. Distinguishing itself from
other model checkers [2,20,25], vereofy places a primary focus on verifying coor-
dination aspects, communication, and interactions at the behavioral interface
level. It employs a symbolic representation based on binary decision diagrams
(BDDs) to facilitate efficient verification algorithms. For a detailed understand-
ing of the modeling languages and verification techniques employed by vereofy,
refer to [12,13].

Next, we present the CARML code corresponding to the generated Con-
straint Automaton (CA) from SysReoSD. The code module provided below
specifically defines a sysreoCA. Initially, the sysreoCA is in an empty state
denoted as S0. When the sysreoCA is not in a full state S1, and a data value is
written to its input port A, the data is stored in the ‘sendTempData’ variable,
and the internal state changes from S0 to S1. Another component reading data
from the output port V resets the internal state back to S0. The data domain
has been locally set to the integer range (0,1). Although it is possible to set the
data domain to any other available datatype, it can only be done once across
the included files or as a runtime argument. The data flow within the system
may depend on the value of a variable of type ‘Data’, as illustrated in the second
transition, where the ‘sendTempData’ stored is written to the output port V,
represented as: #V == sendTempData.

#Vereofy CARML code :
TYPE Data = in t (0 , 1) ;

MODULE sysreoCA{
// i n i t i a l i z i n g the I /O por t s {A,V} and { B,W}
in : A;
out : V;
in : B;
out : W;

// d e f i n i n g the s e t o f s t a t e s that are S0 and S1

SysReo to Specify and Verify CPS Components 99

var : enum {S0 , S1} s t a t e := S0 ;

// d e f i n i n g the messages that should be exchanged
var : Data sendTempData := 0 ;
var : Data ack := 0 ;

//drawing the t r a n s i t i o n s from So to S1 and from S1 to S0
s t a t e = = S0 −[{A}]−> s t a t e :=S1 & sendTempData:=#A;
s t a t e = = S1 −[{V} & #V = = sendTempData]−> s t a t e :=S0 ;

s t a t e = = S0 −[{B}]−> s t a t e :=S1 & ack:=#B;
s t a t e = = S1 −[{W} & #W = = ack]−> s t a t e :=S0 ;

}

Verification of LTL Properties. LTL-based model checking rigorously veri-
fies system properties, boosts confidence in correctness and reliability, and iden-
tifies design flaws for improvements. To verify the correctness of the specified
protocol and the interoperability between the smart bed and RTU, we propose
to check the following LTL properties in vereofy tool:

p1:LTL<<G(("{A}" & "#A==1")->X("state==S1"& "sendTempData==1"))>>
/*PASSED*/

p2:LTL<< G(("{W}" & "#W==1")-> X("state==S0" & "ack==1"))>>
/*PASSED*/

The evaluated LTL property in “p1” ensures that when port A is active once,
the subsequent state must satisfy two conditions: the state variable should be S1

(indicating a transition from S0 to S1) and the ‘sendTempData’ variable should
be 1 (indicating successful message transmission). The result, “PASSED”, con-
firms that this property holds for all execution traces. The same thing applies
for the evaluated LTL property in “p2” where it indicates the successful trans-
mission of the “ack” message.

5 Conclusion

Our paper introduces a novel diagram called “SysReo SD” that enhances CPS
modeling and analysis. By extending SysML with Reo, we create a powerful
“semi-formal-formal” model that effectively captures the behavior and coordina-
tion of CPS components using an exogenous protocol. This allows us to ensure
CPS interoperability, meet specific design requirements, and validate the cor-
rectness of the system behavior. Furthermore, we illustrate the applicability of

100 P. Tannoury et al.

our approach through a case study in the medical CPS domain, showcasing the
potential benefits of employing SysReo.

Looking ahead, we are planning to explore the application of SysReo in Digi-
tal Twins (DT) [27] where we can accurately capture the interactions and behav-
iors of the components of a physical system in a virtual environment. With the
use of SysReo models, we can continuously monitor and optimize the perfor-
mance of the digital twin.

References

1. Al-Jaroodi, J., Mohamed, N., Abukhousa, E.: Health 4.0: on the way to realizing
the healthcare of the future. IEEE Access 8, 211189–211210 (2020)

2. Alur, R., et al.: jMocha: a model checking tool that exploits design structure. In:
Proceedings of the 23rd International Conference on Software Engineering. ICSE
2001, pp. 835–836. IEEE (2001)

3. Amálio, N., Payne, R., Cavalcanti, A., Brosse, E.: Foundations of the SysML profile
for CPS modelling. Deliverable D2. 1a, version 1 (2015)

4. André, C.: Syntax and semantics of the clock constraint specification language
(CCSL). Ph.D. thesis, INRIA (2009)

5. Arbab, F.: Reo: a channel-based coordination model for component composi-
tion. Math. Struct. Comput. Sci. 14(3), 329–366 (2004). https://doi.org/10.1017/
S0960129504004153

6. Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and temporal logical specifi-
cations for timed component connectors. Softw. Syst. Model. 6, 59–82 (2007)

7. Arbab, F., Baier, C., de Boer, F., Rutten, J., Sirjani, M.: Synthesis of Reo circuits
for implementation of component-connector automata specifications. In: Jacquet,
J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp. 236–251.
Springer, Heidelberg (2005). https://doi.org/10.1007/11417019 16

8. Arbab, F., Baier, C., Rutten, J., Sirjani, M.: Modeling component connectors in
Reo by constraint automata. Electron. Notes Theoret. Comput. Sci. 97, 25–46
(2004)

9. Arbab, F., Meng, S.: Synthesis of connectors from scenario-based interaction spec-
ifications. In: Chaudron, M.R.V., Szyperski, C., Reussner, R. (eds.) CBSE 2008.
LNCS, vol. 5282, pp. 114–129. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-87891-9 8

10. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In:
Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755,
pp. 34–55. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40020-
2 2

11. Babenyshev, S., Rybakov, V.: Linear temporal logic LTL: basis for admissible rules.
J. Log. Comput. 21(2), 157–177 (2011)

12. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: Formal verification for com-
ponents and connectors. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 82–101. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04167-9 5

13. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A uniform framework for
modeling and verifying components and connectors. In: Field, J., Vasconcelos, V.T.
(eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 247–267. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02053-7 13

https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1007/11417019_16
https://doi.org/10.1007/978-3-540-87891-9_8
https://doi.org/10.1007/978-3-540-87891-9_8
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1007/978-3-642-04167-9_5
https://doi.org/10.1007/978-3-642-04167-9_5
https://doi.org/10.1007/978-3-642-02053-7_13

SysReo to Specify and Verify CPS Components 101

14. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S., Leister, W.: Design and ver-
ification of systems with exogenous coordination using vereofy. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 97–111. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16561-0 15

15. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

16. Bouaziz, H., Chouali, S., Hammad, A., Mountassir, H.: SysML model-driven app-
roach to verify blocks compatibility. Int. J. Comput. Aided Eng. Technol. 11(2),
206–231 (2019)

17. Bouskela, D., et al.: Formal requirements modeling for cyber-physical systems engi-
neering: an integrated solution based on form-l and modelica. Requirements Eng.
27(1), 1–30 (2022)

18. Chen, X., Liu, Q., Mallet, F., Li, Q., Cai, S., Jin, Z.: Formally verifying consis-
tency of sequence diagrams for safety critical systems. Sci. Comput. Program. 216,
102777 (2022)

19. Chen, X., Mallet, F., Liu, X.: Formally verifying sequence diagrams for safety criti-
cal systems. In: 2020 International Symposium on Theoretical Aspects of Software
Engineering (TASE), pp. 217–224. IEEE (2020)

20. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
verifier. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–
499. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 44

21. Clarke, D., Costa, D., Arbab, F.: Connector colouring i: synchronisation and con-
text dependency. Sci. Comput. Program. 66(3), 205–225 (2007)

22. DeTommasi, G., Vitelli, R., Boncagni, L., Neto, A.C.: Modeling of MARTe-based
real-time applications with sysML. IEEE Trans. Industr. Inf. 9(4), 2407–2415
(2012)

23. Genius, D., Apvrille, L.: Hierarchical design of cyber-physical systems. In: Model-
sward (2023)

24. 0 Hause, M., et al.: The SysML modelling language. In: Fifteenth European Sys-
tems Engineering Conference, vol. 9, pp. 1–12 (2006)

25. Holzmann, G.J.: The model checker spin. IEEE Trans. Software Eng. 23(5), 279–
295 (1997)

26. Huang, P., Jiang, K., Guan, C., Du, D.: Towards modeling cyber-physical systems
with SysML/MARTE/pCCSL. In: 2018 IEEE 42nd Annual Computer Software
and Applications Conference (COMPSAC), vol. 1, pp. 264–269. IEEE (2018)

27. Juarez, M.G., Botti, V.J., Giret, A.S.: Digital twins: review and challenges. J.
Comput. Inf. Sci. Eng. 21(3), 030802 (2021)

28. Khosravi, R., Sirjani, M., Asoudeh, N., Sahebi, S., Iravanchi, H.: Modeling and
analysis of Reo connectors using alloy. In: Lea, D., Zavattaro, G. (eds.) COORDI-
NATION 2008. LNCS, vol. 5052, pp. 169–183. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-68265-3 11

29. Kokash, N., Arbab, F.: Formal design and verification of long-running transac-
tions with extensible coordination tools. IEEE Trans. Serv. Comput. 6(2), 186–200
(2011)

30. Kokash, N., Jaghoori, M.M., Arbab, F.: From timed Reo networks to networks of
timed automata. Electron. Notes Theoret. Comput. Sci. 295, 11–29 (2013)

31. Kokash, N., Krause, C., De Vink, E.: Reo+ mCRL2: a framework for model-
checking dataflow in service compositions. Formal Aspects Comput. 24(2), 187–216
(2012)

https://doi.org/10.1007/978-3-642-16561-0_15
https://doi.org/10.1007/3-540-48683-6_44
https://doi.org/10.1007/978-3-540-68265-3_11
https://doi.org/10.1007/978-3-540-68265-3_11

102 P. Tannoury et al.

32. Larsen, P.G., et al.: Integrated tool chain for model-based design of cyber-physical
systems: the into-cps project. In: 2016 2nd International Workshop on Modelling,
Analysis, and Control of Complex CPS (CPS Data), pp. 1–6. IEEE (2016)

33. Lin, J., Sedigh, S., Miller, A.: Modeling cyber-physical systems with semantic
agents. In: 2010 IEEE 34th Annual Computer Software and Applications Con-
ference Workshops, pp. 13–18. IEEE (2010)

34. Mallet, F.: MARTE/CCSL for modeling cyber-physical systems. In: Drechsler, R.,
Kühne, U. (eds.) Formal Modeling and Verification of Cyber-Physical Systems, pp.
26–49. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-09994-7 2

35. Meng, S., Arbab, F., Baier, C.: Synthesis of Reo circuits from scenario-based inter-
action specifications. Sci. Comput. Program. 76(8), 651–680 (2011)

36. OMG: OMG System Modeling Language. https://www.omg.org/spec/SysML/.
Accessed 10 Feb 2023

37. Panahi, V., Kargahi, M., Faghih, F.: Control performance analysis of automotive
cyber-physical systems: a study on efficient formal verification. ACM Trans. Cyber-
Phys. Syst. (2022)

38. Pundir, A., Singh, S., Kumar, M., Bafila, A., Saxena, G.J.: Cyber-physical systems
enabled transport networks in smart cities: challenges and enabling technologies of
the new mobility era. IEEE Access 10, 16350–16364 (2022)

39. Tannoury, P.: An Incremental Model-Based Design Methodology to Develop CPS
with SysML/OCL/Reo. In: Journées du GDR GPL. Vannes, France (2022).
https://hal.science/hal-03893454

40. Tannoury, P., Chouali, S., Hammad, A.: Model driven approach to design an auto-
motive CPS with SysReo language. In: Proceedings of the 20th ACM International
Symposium on Mobility Management and Wireless Access, pp. 97–104 (2022)

https://doi.org/10.1007/978-3-658-09994-7_2
https://www.omg.org/spec/SysML/
https://hal.science/hal-03893454

From Reversible Computation
to Checkpoint-Based Rollback Recovery

for Message-Passing Concurrent
Programs

Germán Vidal(B)

VRAIN, Universitat Politècnica de València, Valencia, Spain

gvidal@dsic.upv.es

Abstract. The reliability of concurrent and distributed systems often
depends on some well-known techniques for fault tolerance. One such
technique is based on checkpointing and rollback recovery. Checkpointing
involves processes to take snapshots of their current states regularly,
so that a rollback recovery strategy is able to bring the system back
to a previous consistent state whenever a failure occurs. In this paper,
we consider a message-passing concurrent programming language and
propose a novel rollback recovery strategy that is based on some explicit
checkpointing operators and the use of a (partially) reversible semantics
for rolling back the system.

Keywords: reversible computation · message-passing · concurrency ·
rollback recovery · checkpointing

1 Introduction

The reliability of concurrent and distributed systems often depends on some
well-known techniques for fault tolerance. In this context, a popular approach is
based on checkpointing and rollback recovery (see, e.g., the survey by Elnozahy
et al. [3]). Checkpointing requires each process to take a snapshot of its state
at specific points in time. This state is stored in some stable memory so that
it can be accessed in case of a failure. Then, if an unexpected error happens,
a recovery strategy is responsible of rolling back the necessary processes to a
previous checkpoint so that we recover a consistent state of the complete system
and normal execution can be safely resumed.

In this paper, we consider the definition of a rollback recovery strategy based
on three explicit operators: check, commit, and rollback. The first operator, check,
is used to define a checkpoint, thus saving the current state of a process. The

This work has been partially supported by grant PID2019-104735RB-C41 funded by
MCIN/AEI/ 10.13039/501100011033, by French ANR project DCore ANR-18-CE25-
0007, and by Generalitat Valenciana under grant CIPROM/2022/6 (FassLow).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Cámara and S.-S. Jongmans (Eds.): FACS 2023, LNCS 14485, pp. 103–123, 2024.
https://doi.org/10.1007/978-3-031-52183-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52183-6_6&domain=pdf
https://doi.org/10.1007/978-3-031-52183-6_6

104 G. Vidal

checkpoint is assigned a fresh identifier τ . Then, one can either commit the
computation performed so far (up to the checkpoint), commit(τ), or roll back to
the state immediately before the checkpoint, rollback(τ).

There are several possible uses for these operators. For example, the func-
tional and concurrent language Erlang [5] includes the usual try catch expression,
which in its simplest form is as follows: “try e catch : → e′ end.” Here, if the
evaluation of expression e terminates with some value, then try catch reduces
to this value. Otherwise, if an exception is raised (no matter the exception in
this example since “ : ” catches all of them), the execution jumps to the catch
statement and e′ is evaluated instead. However, the actions performed during
the incomplete evaluation of e are not undone, which may give rise to an incon-
sistent state of the system. Using the above operators, we could write down a
safer version of the try catch expression above as follows:

try T = check, X = e, commit(T), X catch : → rollback(T), e′ end

In this case, we first introduce a checkpoint which reduces to a fresh (unique)
identifier, say τ , and saves the current state of the process as a side-effect; variable
T is bound to τ . Then, if the evaluation of expression e completes successfully,
we gather the computed value in variable X, which is returned after commit(τ)
removes the checkpoint.1 Otherwise, if an exception is raised, the execution
jumps to the catch statement and rollback(τ) rolls back the process to the state
saved by checkpoint τ (possibly also rolling back other processes in order to get
a causally consistent state; see below).

Our approach to rollback recovery is based on the notion of reversible com-
putation (see [1,13] and references therein). Most programming languages are
irreversible, in the sense that the execution of a statement cannot generally be
undone. This is the case of Erlang, for instance. Nevertheless, in these languages,
one can still define a so-called Landauer embedding [19] so that computations
become reversible. Intuitively speaking, this operation amounts to defining an
instrumented semantics where states carry over a history with past states. While
this approach may seem impractical at first, there are several useful reversibi-
lization techniques that are roughly based on this idea (typically including some
optimization to reduce the amount of saved information, as in, e.g., [28,32]).

While the notion of reversible computation is quite natural in a sequential
programming language, the extension to concurrent and distributed languages
presents some additional challenges. Danos and Krivine [2] first introduced the
notion of causal consistency in the context of a reversible calculus (Milner’s
CCS [30]). Essentially, in a causal consistent reversible setting, an action cannot
be undone until all the actions that causally depend on this action have been
already undone. E.g., we cannot undo the spawning of a process until all the
actions of this process have been already undone; similarly, we cannot undo the
1 Binding a temporal variable X to the evaluation of expression e is required so that the

try catch expression still reduces to the same value of the original try catch expres-
sion; if we had just “T = check, e, commit(T)” then this sequence would reduce to
the value returned by commit in Erlang, thus changing the original semantics.

From Reversible Computation to Checkpoint-Based Rollback Recovery 105

sending of a message until its reception (and the subsequent actions) have been
undone. This notion of causality is closely related with Lamport’s “happened
before” relation [18]. In our work, we use a similar notion of causality to either
propagate checkpoints and to perform causal consistent rollbacks.

Our main contributions are the following. First, we propose the use of three
explicit operators for rollback recovery and provide their semantics. They can
be used for defining a sort of safe transactions, as mentioned above, but not
only. For instance, they could also be used as the basis of a reversible debugging
scheme where only some computations of interest are reversible, thus reducing
the run time overhead. Then, we define a rollback semantics for the extended
language that may proceed both as the standard semantics (when no checkpoint
is active) or as a reversible semantics (otherwise).

2 A Message-Passing Concurrent Language

In this work, we consider a simple concurrent language that mainly follows the
actor model [16]. Here, a running system consists of a number of processes
(or actors) that can (dynamically) create new processes and can only inter-
act through message sending and receiving (i.e., no shared memory). This is the
case, e.g., of (a significant subset of) the functional and concurrent language
Erlang [5].

In the following, we will ignore the sequential component of the language
(e.g., a typical eager functional programming language in the case of Erlang)
and will focus on its concurrent actions:

– Process spawning. A process may spawn new processes dynamically. Each
process is identified by a pid (a shorthand for process identifier), which is
unique in a running system.

– Message sending. A process can send a message to any other process as long
as it knows the pid of the target process. This action is asynchronous.

– Message reception. Messages need not be immediately consumed by the tar-
get process; rather, they are stored in an associated mailbox until they are
consumed (if any). We consider so-called selective receives, i.e., a process does
not necessarily consume the messages in its mailbox in the same order they
were delivered, since receive statements may impose additional constraints.
When no message matches any constraint, the execution of the process is
blocked until a matching message reaches its mailbox.

In the following, we let s, s′, . . . denote states, typically including some environ-
ment, an expression (or statement) to be evaluated and, in some case, a stack.
The structure of states is not relevant for the purpose of this paper, though.

A process configuration is denoted by a tuple of the form 〈p, s〉, where p is
the pid of the process and s is its current state. Messages have the form (p, p′, v)
where p is the pid of the sender, p′ that of the receiver, and v is the message
value. A system is then denoted by a parallel composition of both processes and
(floating) messages, as in [20,26] (instead of using a global mailbox, as in [23,25]).

106 G. Vidal

Fig. 1. Standard semantics

A floating message thus represents a message that has been already sent but not
yet delivered (i.e., the message is in the network). Furthermore, in this work,
process mailboxes are abstracted away for simplicity, thus a floating message
can also represent a message that is actually stored in a process mailbox.2

Systems range over by S, S′, S1, etc. Here, the parallel composition oper-
ator is denoted by “|” and considered commutative and associative. Therefore,
two systems are considered equal if they are the same up to associativity and
commutativity.

As in [23,25], the semantics of the language is defined in a modular way, so
that the labeled transition relations −→ and � model the evaluation of expres-
sions (or statements) and the evaluation of systems, respectively.

In the following, we skip the definition of the local semantics (→) since it
is not necessary for our developments; we refer the interested reader to [14,23].
The rules of the operational semantics that define the reduction of systems is
shown in Fig. 1. The transition steps are labeled with the pid of the selected
process and the considered action: seq, send, rec, or spawn(p′), where p′ is the
pid of the spawned process. Let us briefly explain these rules:

– Sequential, local steps are dealt with rule Seq. Here, we just propagate the
reduction from the local level to the system level.

– Rule Send applies when the local evaluation requires sending a message as a

side effect. The local step s
send(p′,v)−−−−−−→ s′ is labeled with the information that

must flow from the local level to the system level: the pid of the target process,
p′, and the message value, v. The system rule then adds a new message of

2 In Erlang, the order of messages sent directly from process p to process p′ is preserved
when they are all delivered; see [7, Sect. 10.8]. We ignore this constraint for simplicity,
but could be ensured by introducing triples of the form (p, p′, vs) where vs is a queue
of messages instead of a single message.

From Reversible Computation to Checkpoint-Based Rollback Recovery 107

the form (p, p′, v) to the system, where p is the pid of the sender, p′ the pid
of the target process, and v the message value.

– In order to receive a message, the situation is somehow different. Here, we
need some information to flow both from the local level to the system level
(the clauses cs of the receive statement) and vice versa (the selected clause
csi). For this purpose, in rule Receive, the label of the local step includes a
special variable κ —a sort of future— that denotes the position of the receive
expression within state s. The rule then checks if there is a floating message v
addressed to process p that matches one of the constraints in cs. This is done
by the auxiliary function matchrec, which returns the selected clause csi of
the receive statement in case of a match (the details are not relevant here).
Then, the reduction proceeds by binding κ in s′ with the selected clause csi,
which we denote by s′[κ ← csi].

– Rule Spawn also requires a bidirectional flow of information. Here, the label
of the local step includes the future κ and the state of the new process s0.
The rule then produces a fresh pid, p′, adds the new process 〈p′, s0〉 to the
system, and updates the state s′ by binding κ to p′ (since spawn reduces to
the pid of the new process), which we denote by s′[κ ← p′].

– Finally, rule Par is used to lift an evaluation step to a larger system [26]. The
auxiliary function id takes a system S and returns the set of pids in S, in
order to ensure that new pids are indeed fresh in the complete system.

In the following, �∗ denotes the transitive and reflexive closure of �. Given
systems S0, Sn, we let S0 �∗ Sn denote a derivation under the standard seman-
tics. When we want to consider the individual steps of a derivation, we often
write S0 �p1,aa

S1 �p2,a2 . . . �pn,an
Sn. A reduction step usually consists of a

number of applications of rule Par until a process, or a combination of a process
and a message, is selected, so that one of the remaining rules can be applied
(Seq, Send, Receive or Spawn). We often omit the steps with rule Par and only
show the reductions on the selected process, i.e., ai ∈ {seq, send, rec, spawn(p′)}.

An initial system has the form 〈p, s0〉, i.e., it contains a single process. A
system S′ is reachable if there exists a derivation S �∗ S′ such that S is an
initial system. A derivation S �∗ S′ is well-defined under the standard semantics
if S is a reachable system.

The semantics in Fig. 1 applies to a significant subset of the programming
language Erlang [5], as described, e.g., in [14,25]. However, for clarity, we will
consider in the examples a much simpler notation which only shows some relevant
information regarding the concurrent actions performed by each process. This
is just a textual representation which makes explicit process interaction but is
not the actual program. In particular, we describe the concurrent actions of a
process by means of the following items:

– p←spawn(), for process spawning, where p is the (fresh) pid returned by the
call to spawn and assigned to the new process;

108 G. Vidal

– send(p, v), for sending a message, where p is the pid of the target process and
v the message value (which could be a tuple including the process own pid in
order to get a reply, a common practice in Erlang);

– rec(v), for receiving message v.

We will ignore sequential actions in the examples since they are not relevant for
the purpose of this paper.

Fig. 2. Textual and graphical representation of the concurrent actions of a program
(time flows from top to bottom)

Example 1. Consider, for instance, a system with three processes with pids p1
(the initial one), p2, and p3, which perform the actions shown in Fig. 2 (a).
A (partial) derivation under the standard semantics (representing a particular
interleaving of the processes’ actions) may proceed as follows, where we under-
line the selected process and message (if any) at each step:

〈p1, s[p2←spawn()]〉
�p1,spawn(p2) 〈p1, s[send(p2, v1)]〉 | 〈p2, s[p3←spawn()]〉
�p2,spawn(p3) 〈p1, s[send(p2, v1)]〉 | 〈p2, s[rev(v1)]〉 | 〈p3, s[rec(v2)]〉
�p1,send 〈p1, s[send(p2, v3)]〉 | 〈p2, s[rec(v1)]〉 | 〈p3, s[rec(v2)]〉 | (p1, p2, v1)
�p2,rec 〈p1, s[send(p2, v3)]〉 | 〈p2, s[send(p3, v2)]〉 | 〈p3, s[rec(v2)]〉
�p2,send 〈p1, s[send(p2, v3)]〉 | 〈p2, s[rec(v3)]〉 | 〈p3, s[rec(v2)]〉 | (p2, p3, v2)
�p3,rec 〈p1, s[send(p2, v3)]〉 | 〈p2, s[rec(v3)]〉 | 〈p3, s[send(p2, v4)]〉
�p1,send 〈p1, s[send(p2, v5)]〉 | 〈p2, s[rec(v3)]〉 | 〈p3, s[send(p2, v4)]〉 | (p1, p2, v3)
� . . .

where a state of the form s[op] denotes an arbitrary state where the next opera-
tion to be reduced is op. We omit some intermediate steps which are not relevant
here. A graphical representation of the reduction can be found in Fig. 2 (b).

We note that programs can exhibit an iterative behavior through recursive func-
tion calls. E.g., a typical server process is defined by a function that waits for a
client request, process it, and then makes a recursive call, possibly with a mod-
ified state (a common pattern in Erlang). This is hidden in our examples since
we do not show sequential operations explicitly.

From Reversible Computation to Checkpoint-Based Rollback Recovery 109

Fig. 3. Rollback recovery operators

3 Checkpoint-Based Rollback Recovery

In this section, we present our approach to rollback recovery in a message-passing
concurrent language. Essentially, our approach is based on defining an instru-
mented semantics with two modes: a “normal” mode, which proceeds similarly
to the standard semantics, and a “reversible” mode, where actions can be undone
and, thus, can be used for rollbacks.

3.1 Basic Operators

We consider three explicit operators to control rollback recovery: check, commit,
and rollback. Intuitively speaking, they proceed as follows:

– check introduces a checkpoint for the current process. The reduction of check
returns a fresh identifier, τ , associated to the checkpoint; note that nested
checkpoints are possible.

– commit(τ) can then be used to discard the state saved in checkpoint τ . In our
context, check implies turning the reversible mode on and commit turning it
off (when no more active checkpoints exist).

– Finally, rollback(τ) starts a backward computation, undoing all the actions of
the process (and their causal dependencies from other processes) up to the
call to check (including) that introduced τ .

The local reduction rules for the new operators are very simple and can be found
in Fig. 3. Here, we consider that a local state consists of an environment (a vari-
able substitution) and an expression (to be evaluated), but it could be straight-
forwardly extended to other state configurations (e.g., configurations that also
include a stack, as in [15]).

Rule Check reduces the call to a future, κ, which also occurs in the label of the
transition step. As we will see in the next section, the corresponding rule in the
system semantics will perform the associated side-effect (creating a checkpoint)
and will also bind κ with the (fresh) identifier for this checkpoint. Rules Commit
and Rollback just pass the corresponding information to the system semantics in
order to do the associated side effects. Both rules reduce the call to the constant
“ok” (an atom used in Erlang when a function call does not return any value).

Example 2. Consider again a program that performs the concurrent actions of
Example 1, where we now add a couple of checkpoints, a commit, and a rollback
to process p1, as shown in Fig. 4. Here, we let τ ← check denote that τ is the

110 G. Vidal

Fig. 4. Concurrent actions of a program including check, commit, and rollback

Fig. 5. Graphical representation: before and after the rollback

(fresh) identifier returned by the call to check. A graphical representation of a
particular execution can be found in Fig. 5. Intuitively speaking, it proceeds as
follows:

– Process p1 calls function check, which creates a checkpoint with identifier τ1.
This checkpoint is propagated to p2 when sending message v3, so p2 turns the
reversible mode on too.

– Then, p1 creates another checkpoint, τ2, so we have two active checkpoints.
These checkpoints are propagated to p2 by message v5 and also to p3 by
message v6. At this point, all three processes have the reversible mode on.

– Now, p1 calls commit(τ2), so checkpoint τ2 is not active anymore in p1. This
is also propagated to both p1 and p2. Nevertheless, the reversible mode is still
on in all three processes since τ1 is still alive.

– Then, p1 calls rollback(τ1) so p1 undoes all its actions up to (and including)
the first call to check. For this rollback to be causal consistent, p2 rolls back
to the point immediately before receiving message v3, and p3 to the point
immediately before receiving message v6.

From Reversible Computation to Checkpoint-Based Rollback Recovery 111

– Finally, all three processes are back to normal, irreversible mode (no check-
point is active), and p3 sends message v7 to p2. The actions in the second
diagram are all irreversible.

3.2 A Reversible Semantics for Rollback Recovery

Let us now consider the design of a reversible semantics for rollback recovery.
Essentially, the operators can be modeled as follows:

– The reduction of check creates a checkpoint, which turns on the reversible
mode of a process as a side-effect (assuming it was not already on). As in
[23,25], reversibility is achieved by defining an appropriate Landauer embed-
ding [19], i.e., by adding a history of the computation to each process con-
figuration.3 A checkpoint is propagated to other processes when a causally
dependent action is performed (i.e., spawn and send); following the terminol-
ogy of [3], these checkpoints are called forced checkpoints.

– A call of the form commit(τ) removes τ from the list of active checkpoints of
a process, turning the reversible mode off when the list of active checkpoints
is empty. Forced checkpoints in other processes with the same identifier τ (if
any) are also removed from the corresponding sets of active checkpoints.

– Finally, the reduction of rollback(τ) involves undoing all the steps of a given
process up to the checkpoint τ in a causal consistent way, i.e., possibly also
undoing causally dependent actions from other processes.

Unfortunately, this apparently simple model presents a problem. Consider, for
instance, a process p that performs the following actions:

p := {
︷ ︸︸ ︷

check(τ1), send(p′, v), check(τ2), . . . , commit(τ1), . . . , rollback(τ2)
︸ ︷︷ ︸

, . . .}
(*)

Here, we can observe that the pairs check-commit and check-rollback are not well
balanced. As a consequence, we commit checkpoint τ1 despite the fact that a
rollback like rollback(τ2) may bring the computation back to the point immedi-
ately before check(τ2), where τ1 should be alive, thus producing an inconsistent
state. We could recover τ1 when undoing the call commit(τ1). However, this is
not only a local problem, since commit(τ1) may have also removed the checkpoint
from other processes (p′, in the example).

We could solve the above problem by considering that a call to commit may
introduce new causal dependencies. Intuitively speaking, one could treat the
propagation of commit to other process as the sending of a message. Therefore,
a causal consistent rollback would often require undoing all subsequent actions
in these processes before undoing the call to commit. Unfortunately, this solution

3 For clarity of exposition, the complete state is saved at each state. Nevertheless, an
optimized history could also be defined; see, e.g., [28,32].

112 G. Vidal

would require all processes to keep the reversible mode on all the time, which is
precisely what we want to avoid.

A very simple workaround comes immediately to mind: require the program-
mer to write well-balanced pairs check-commit and check-rollback. In this case,
a rollback that undo a call to commit will also undo the corresponding call to
check, so the inconsistent situation above would no longer be possible. How-
ever, this solution is not acceptable when forced checkpoints come into play. For
instance, in example (*) above, if we replace check(τ2) by a receive operation
from some process where checkpoint τ2 is active, the same inconsistent state can
be reproduced. In this case, though, we cannot require the programmer to avoid
such situations since they are unpredictable.

For all the above, in this work we do not impose any constraint on the use of
the new operators but propose the following solution: When a call of the form
commit(τ) occurs, we check in the process’ history whether τ is the last active
checkpoint of the process (either proper or forced). If this is the case, the commit
is executed. Otherwise, it is delayed until the condition is met.

Our configurations will now have three additional fields: the set of active
checkpoints, the set of delayed commits, and a history (for reversibility):

Definition 1 (rollback configuration). A forward configuration is defined
as a tuple (C,D, h, 〈p, s〉) where C is a set of (active) checkpoint identifiers, D
is a set of delayed commits, h is a history, and 〈p, s〉 is a pid and a (local)
state, similarly to the standard semantics. A backward configuration has the
form ((C,D, h, 〈p, s〉))τ where τ is the target of a rollback request.

A (rollback) configuration is either a forward or a backward configuration.

As for the messages, they now have the form (C, p, p′, {�, v}). Here, we can
distinguish two differences w.r.t. the standard semantics: first, we add a set
of active checkpoints, C, which should be propagated to the receiver as forced
checkpoints; secondly, the message value is wrapped with a tag to uniquely
identify it (as in [23], in order to distinguish messages with the same value).

As in the standard semantics, a system is then a parallel composition of
(rollback) configurations and floating messages.

In the following, we let [] denote an empty list and x : xs a list with head
x and tail xs. A process history h is then represented by a list of the following
elements: seq, send, rec, spawn, check, and commit. Each one is denoted by a
term containing enough information to undo the corresponding reduction step,4

except for the case of commit, whose side-effects are irreversible, as argued above.
To be more precise,

– all terms store the current state (s).
– for sending a message, the corresponding term also stores the pid of the target

process (p′) and the message tag (�);
– for receiving a message, the term also stores two sets of active checkpoints

(the active ones and those received from a message as forced checkpoints),
the pid of the sender (p′), the message tag (�), and the message value (v);

4 The reader can compare the rules in Fig. 6 and their inverse counterpart in Fig. 7.

From Reversible Computation to Checkpoint-Based Rollback Recovery 113

– for spawning a process, the corresponding term also includes the fresh pid of
the new process (p′);

– and, finally, for check and commit, it also stores the checkpoint identifier (τ).

A delayed commit is represented as a triple 〈τ, h, P 〉, where τ is a checkpoint
identifier, h is a history, and P is a set of pids (the pids of the processes where
a forced checkpoint τ has been propagated).

Fig. 6. Rollback recovery semantics: forward rules

Forward Rules. The forward reduction rules of the rollback semantics are
shown in Fig. 6. The main difference with the standard semantics is that, now,
some process configurations include a history with enough information to undo
any reduction step. Here, we follow the same strategy as in [23,25] in order to
define a scheme for reversible debugging.5

5 In contrast to [23,25], however, we do not need to undo every possible step, but only
those steps that are performed when there is at least one active checkpoint. This
is why we added C: to store the set of active checkpoints (i.e., checkpoints without
a corresponding commit/rollback yet). Observe that we might have several active
checkpoints not only because nested checkpoints are possible, but because of forced
checkpoints propagated by process spawning and message sending.

114 G. Vidal

Essentially, the first four rules of the semantics can behave either as the
standard semantics or as a reversible semantics, depending on whether C is
empty or not. For conciseness, we avoid duplicating all rules by introducing
the auxiliary function add to update the history only when there are active
checkpoints: addC(a, h) = h if C = ∅, and addC(a, h) = a :h otherwise.

As mentioned above, the reversible mode is propagated through message
sending and receiving. This is why messages now include the set of active check-
points C. As can be seen in rule Receive, the process receiving the message
updates its active checkpoints with those in the message. This is necessary for
rollbacks to be causally consistent. Note that, in the associated term in the his-
tory, rec(C′ \ C, C′, s, p′, �, v), C′ \ C denotes the forced checkpoints introduced by
the received message.

Similarly, the reversible mode is also propagated by process spawning: rule
Spawn adds the current set of active checkpoints C (which might be empty) to
the new process.

As for the new rules, Check produces a fresh identifier, τ , and binds the future,
κ, to this identifier. It also adds τ to the current set of active checkpoints. Note
that, if C is empty, this step turns the reversible mode on.

Commit includes two transition rules, depending on whether the commit can
be done or it should be delayed. We use the auxiliary Boolean function last so
that lastτ (h) checks whether τ is the last checkpoint of the process according
to history h, i.e., whether the last check or rec term in h has either the form
check(τ, s′) or rec(C′, . . .) with τ ∈ C′. Note that we do not need to consider forced
checkpoints introduced by process spawning since they cannot occur after a call
to check (they are always introduced when spawning the process). If the call to
function last returns true, we remove the checkpoint identifier from C and from
all processes where this checkpoint was propagated (as a forced checkpoint).
Here, the auxiliary function dpτ takes a history and returns all pids which have
causal dependencies with the current process according to h, i.e.,

– p ∈ dpτ (h) if spawn(s, p) occurs in h;
– p ∈ dpτ (h) if send(s, p, �) occurs in h.

Now, we want to propagate the effect of commit to all processes in dpτ (h) in order
to remove τ from their set of active checkpoints. One could formalize this process
with a few more transition rules and a new kind of configuration. However, for
simplicity, we represent it by means of an auxiliary function propagate so that
propagate(τ, P) always returns true and performs the following side-effects:

1. for each p′ ∈ P , we look for the process with pid p′, say (C′,D′, h′, 〈p′, s′〉);
2. if τ �∈ C′ (it is not an active checkpoint of process p′), we are done;
3. otherwise (τ ∈ C′), we remove τ from C′ and repeat the process, i.e., we

compute P ′ = dpτ (h′) and call propagate(τ, P ′).

Termination is ensured since the number of processes is finite and a process where
τ is not active will eventually be reached. In practice, commit propagation can
be implemented by sending (asynchronous) messages to the involved processes.

From Reversible Computation to Checkpoint-Based Rollback Recovery 115

Fig. 7. Rollback recovery semantics: backward rules

Note that the semantics would be sound even if commit operations were not
propagated, so doing it is essentially a matter of efficiency (a sort of garbage
collection to avoid recording actions that are not really necessary).

On the other hand, if the call to function last returns false, the checkpoint
is moved from C to D as a delayed commit (second rule of Commit). Eventually,
rule Delay becomes applicable and proceeds similarly to the first rule of Commit
but considering the delayed commit. We do not formalize a particular strategy
for firing rule Delay, but a simple strategy would only fire this rule only when
some checkpoint is removed from the set of active checkpoints of a process.

Rule Rollback simply changes the forward configuration to a backward con-
figuration, also adding the superscript τ to drive the rollback. Therefore, the
forward rules are no longer applicable to this process (and the backward rules
in Fig. 7 can be applied instead).

Finally, rule Par is identical to that in the standard semantics. The only
difference is that, now, function id(S) returns the set of pids, message tags, and
checkpoints in S.

116 G. Vidal

Backward Rules. Let us now present the backward rules of the rollback seman-
tics, which are shown in Fig. 7.

First, rule Seq applies when the history is headed by a term of the form
seq(s). It simply removes this element from the history and recovers state s.

Rule Send distinguishes two cases. If the message with tag � is a floating mes-
sage (so it has not been received), then we remove the message from the system
and recover the saved state. Otherwise (i.e., the message has been consumed by
the target process p′), the rollback mode is propagated to process p′, which will
go backwards up to the receiving of the message; once the floating message is
back into the system, the first rule applies.

Rule Receive also distinguishes two cases. In both of them, the message is put
back into the system as a floating message and the recorded state is recovered.
They differ in that the first rule considers the case where τ is a forced checkpoint
introduced by the received message. In this case, we undo the step and the
process resumes its forward computation.6 Otherwise (i.e., τ was introduced
somewhere else), we undo the step but keep the rollback mode for the process.

Rule Spawn proceeds in a similar way as rule Send: if the spawned process is
already in its initial state with an empty history, it is simply removed from the
system. Otherwise, the reversible mode is propagated to the spawned process p′.

Rule Check applies when we reach a checkpoint in the process’ history. If the
checkpoint has the same identifier of the initial rollback operator, τ , the job is
done and the process resumes its forward computation after undoing one last
step.7 Otherwise (i.e., the checkpoint in the history has a different identifier, τ ′),
we undo the step, also removing τ ′ from the set of active checkpoints, but keep
the rollback mode.

Finally, rule Commit considers two cases: either the commit has been exe-
cuted (and, thus, the rollback will eventually undo the associated check too), or
the commit was delayed (see Example 3 below).

Example 3. Consider again the program in Example 2, where we now switch the
arguments of commit and rollback in process p1 in order to illustrate the use of
delayed commits (p2 and p3 remain the same as before). The concurrent actions
of the modified program are shown in Fig. 8, where the terms send and rec now
include message tags instead of values. In this case, the sequence of configurations
of p1 would be as shown in Fig. 9. Here, the call commit(τ1) cannot be executed
since the last checkpoint of process p1 is τ2. Therefore, it is added as a delayed

6 Here, we assume that rule Send has a higher priority than rule Receive, so once a
message is put back into the network, the corresponding message sending is undone
(rather than being received again).

7 We note that, in its current formulation, we would recover the state immediately
before the checkpoint and, then, would perform the same actions—up to the non-
determinism of the language—. If the goal was to implement a safer try catch (as
illustrated in Sect. 1), then we could slightly modify the rules so that, when the roll-
back is done, we update the recovered state by replacing the next expression to be
evaluated by the expression after the call to rollback (that in s′ in rule Rollback).
We leave this particular extension as future work.

From Reversible Computation to Checkpoint-Based Rollback Recovery 117

Fig. 8. Concurrent actions of the program in Example 3

Fig. 9. Sequence of configurations of p1 (Example 3), where some arguments of history
items and other information (not relevant for the example) are omitted

checkpoint. Then, we have a call rollback(τ2) which undo the last steps of p1 (as
well as some steps in p2 and p3 in order to keep causal consistency, which we do
not show for simplicity).

Soundness. In the following, we assume a fair selection strategy for processes,
so that each process is eventually reduced. Furthermore, we only consider well-
defined derivations where the calls commit(τ) and rollback(τ) can only be made
by the same process that created the checkpoint τ , and a process can only have
one action for every checkpoint τ , either commit(τ) or rollback(τ), but not both.

Soundness is then proved by projecting the configurations of the rollback
semantics to configurations of either the standard semantics (function sta) or a
pure reversible semantics (function rev). Then, we prove that every step under
the rollback semantics has a counterpart either under the standard or under the
reversible semantics, after applying the corresponding projections. Formally,8

8 We denote by →= the reflexive closure of a binary relation →, i.e., (→=) = (→ ∪ =).
We consider the reflexive closure in the claim of Theorem 1 since some steps under the
rollback semantics have no counterpart under the standard or reversible semantics.
In these cases, the projected configurations remain the same.

118 G. Vidal

Theorem 1. Let d be a well-defined derivation under the rollback semantics. For
each step S ↪→ S′ in d we have either sta(S) �= sta(S′) or rev(S) �= rev(S′).

We have also proved that every computation between a checkpoint and the
corresponding rollback is indeed reversible for well-defined derivations; see the
companion technical report, [37], for more details. We leave the study of other
interesting results of our rollback semantics (e.g., minimality and some partial
completeness) for future work.

4 Related Work

There is abundant literature on checkpoint-based rollback recovery to improve
fault tolerance (see, e.g., the survey by Elnozahy et al [3] and references there in).
In contrast to most of these approaches, our distinctive features are the extension
of the underlying language with explicit operators for rollback recovery, the auto-
matic generation of forced checkpoints (somehow similarly to communication-
induced checkpointing [35]), and the use of a reversible semantics. Also, we share
some similarities with the checkpointing technique for fault-tolerant distributed
computing of [8,17], although the aim is in principle different: their goal is the
definition of a new programming model where globally consistent checkpoints
can be created (rather than extending an existing message-passing program-
ming language with explicit operators for rollback recovery). Indeed, the use of
some form of reversibility is mentioned in [8] as future work.

The idea of using reversible computation for rollback recovery is not new.
E.g., Perumalla and Park [33] already suggested it as an alternative to other tra-
ditional techniques based on checkpointing. In contrast to our work, the authors
focus on empirically analyzing the trade-off between fault tolerance based on
checkpointing and on reversible computation (i.e., memory vs run time), using a
particular example (a particle collision application). Moreover, since the appli-
cation is already reversible, no Landauer embedding is required.

The introduction of a rollback construct in a causal-consistent concurrent
formalism can be traced back to [11,12,21,22,27]. In these works, however, the
authors focus on a different formalism and, moreover, no explicit checkpointing
operator is considered. These ideas are then transferred to an Erlang-like lan-
guage in [23,31], where an explicit checkpoint operator is introduced. However,
in contrast to our work, all actions are recorded into a history (i.e., it has no
way of turning the reversible mode off). In other words, a checkpoint is just a
mark in the execution, but it is not propagated to other processes (as our forced
checkpoints) and cannot be removed (as a call to commit does in our approach).
More recent formulations of the reversible semantics for an Erlang-like language
include [20,24–26], but the checkpoint operator has not been considered (the
focus is on reversible debugging).

From Reversible Computation to Checkpoint-Based Rollback Recovery 119

The standard semantics in Fig. 1 is trivially equivalent to that considered in
[25] except for some minor details: First, we follow the simpler and more elegant
formulation of [26]. For instance, following the style of [25], rule Send would have
the following form:

s
send(p′,v)−−−−−−→ s′

Γ ; 〈p, s〉 | Π �p,send(�) Γ ∪ {(p, p′, v)}; 〈p, s′〉 | Π

In this case, messages are stored in a global mailbox, Γ , and an expression like
“〈p, s〉 | Π” represents all the processes in the system, i.e., 〈p, s〉 is a distin-
guished process (where reduction applies) and Π is the parallel composition of
the remaining processes. In contrast, we have floating messages and select a pro-
cess to be reduced by applying (repeatedly) rule Par. The possible reductions,
though, are the same in both cases. There are other, minor differences, like con-
sidering a rule to deal with the predefined function self (which returns the pid
of a process), and representing a state by a pair θ, e (environment, expression).

Another difference with the reversible semantics in [23,25] is that we consider
a single transition relation for systems (↪→). This relation aims at modeling an
actual execution in which a process proceeds normally forwards but a call to
rollback forces it to go backwards temporarily (a situation that can be propa-
gated to other processes in order to be causally consistent). In contrast, [23,25]
considers first an uncontrolled semantics (⇀ and ↽) which models all possible
forward and backward computations. Then, a controlled semantics is defined on
top of it to drive the steps of the uncontrolled semantics in order to satisfy both
replay and rollback requests.

On a different line of work, Vassor and Stefani [36] formally studied the
relation between rollback recovery and causal-consistent reversible computa-
tion. In particular, they consider the relation between a distributed check-
point/rollback scheme based on (causal) logging (Manetho [4]) and a causally-
consistent reversible version of π-calculus with a rollback operator [21]. Their
main conclusion is that the latter can simulate the rollback recovery strategy of
Manetho. Our aim is somehow similar, since we also simulate a checkpoint-based
rollback recovery strategy using a reversible semantics, but there are also some
significant differences: the considered language is different (a variant of π-calculus
vs an Erlang-like language), they only consider a fixed number of processes (while
we accept dynamic process spawning) and, moreover, no explicit operators are
considered (i.e., our approach is more oriented to introduce a new programming
feature rather than proving a theoretical result).

Very recently, Mezzina, Tiezzi and Yoshida [29] introduced a rollback recov-
ery strategy for session-based programming. Besides considering a different set-
ting (a variant of π-calculus), their approach is also limited to a fixed number of
parties (no dynamic processes can be added at run time), and nested checkpoints
are not allowed. Furthermore, the checkpoints of [29] are not automatically prop-
agated to other causally consistent processes (as our forced checkpoints); rather,
they introduce a compliance check at the type level to prevent undesired situa-
tions.

120 G. Vidal

Our work also shares some similarities with [34], which presents a hybrid
model combining message-passing concurrency and software transactional mem-
ory. However, the underlying language is different and, moreover, their transac-
tions cannot include process spawning (which must be delayed).

Finally, Fabbretti, Lanese and Stefani [6] introduced a calculus to formally
model distributed systems subject to crash failures, where recovery mechanisms
can be encoded by a small set of primitives. This work can be seen as a reworking
and extension of the previous work by Francalanza and Hennessy [9]. Here,
a variant of π-calculus is considered. Furthermore, the authors focus on crash
recovery without relying on a form of checkpointing, in contrast to our approach.

5 Conclusions and Future Work

In this work, we have defined a rollback-recovery strategy for a message-passing
concurrent programming language without the need for a central coordination.
For this purpose, we have extended the underlying language with three explicit
operators: check, commit, and rollback. Our approach is based on a reversible
semantics where every process may go both forwards and backwards (during
a rollback). Checkpoints are automatically propagated to other processes so
that backward computations are causally consistent. The ability to turn the
reversible mode on/off is useful not only to model rollback recovery, but can
also constitute the basis of a safer try catch (as illustrated in Sect. 1) and a
selective reversible debugging scheme, where only some computations—those of
interest—are traced, thus making it easier to scale to larger applications.

As for future work, we will consider the definition of a shortcut version of the
rollback semantics where only the state in a checkpoint is recorded (rather than
all the states between a checkpoint and the corresponding commit/rollback) so
that a rollback recovers the saved state in one go. This extension will be essential
to make our approach feasible in practice. In the context of Erlang, a prototype
implementation of the proposed operators (check, commit, and rollback) could be
carried out through a program instrumentation. It will likely require introducing
a wrapper for each process in order to record the process’ history, turning the
reversible mode on/off, propagating forced checkpoints and commits, etc. For
this purpose, one could explore the use of the run-time monitors of [10], which
play a similar role in their scheme for reversible choreographies.

Acknowledgements. The author would like to thank Ivan Lanese and Adrián Pala-
cios for their useful remarks and discussions on a preliminary version of this work. I
would also like to thank the anonymous reviewers and the participants of FACS 2023
for their suggestions to improve this paper.

From Reversible Computation to Checkpoint-Based Rollback Recovery 121

References

1. Aman, B., et al.: Foundations of reversible computation. In: Ulidowski, I., Lanese,
I., Schultz, U.P., Ferreira, C. (eds.) Reversible Computation: Extending Horizons
of Computing - Selected Results of the COST Action IC1405. LNCS, vol. 12070,
pp. 1–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47361-7 1

2. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8 19

3. Elnozahy, E.N., Alvisi, L., Wang, Y., Johnson, D.B.: A survey of rollback-recovery
protocols in message-passing systems. ACM Comput. Surv. 34(3), 375–408 (2002)

4. Elnozahy, E.N., Zwaenepoel, W.: Manetho: transparent rollback-recovery with low
overhead, limited rollback, and fast output commit. IEEE Trans. Comput. 41(5),
526–531 (1992). https://doi.org/10.1109/12.142678

5. Erlang website (2021). https://www.erlang.org/
6. Fabbretti, G., Lanese, I., Stefani, J.B.: A behavioral theory for crash failures and

erlang-style recoveries in distributed systems. Technical report. RR-9511, INRIA
(2023). https://hal.science/hal-04123758

7. Frequently Asked Questions about Erlang (2018). http://erlang.org/faq/academic.
html

8. Field, J., Varela, C.A.: Transactors: a programming model for maintaining globally
consistent distributed state in unreliable environments. In: Palsberg, J., Abadi, M.
(eds.) Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2005), pp. 195–208. ACM (2005)

9. Francalanza, A., Hennessy, M.: A theory of system behaviour in the presence of
node and link failure. Inf. Comput. 206(6), 711–759 (2008). https://doi.org/10.
1016/j.ic.2007.12.002

10. Francalanza, A., Mezzina, C.A., Tuosto, E.: Reversible choreographies via moni-
toring in Erlang. In: Bonomi, S., Rivière, E. (eds.) Proceedings of the 18th IFIP
WG 6.1 International Conference on Distributed Applications and Interoperable
Systems (DAIS 2018), Held as Part of DisCoTec 2018. LNCS, vol. 10853, pp. 75–92.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93767-0 6

11. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8 26

12. Giachino, E., Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility in
a tuple-based language. In: Daneshtalab, M., Aldinucci, M., Leppänen, V., Lilius,
J., Brorsson, M. (eds.) Proceedings of the 23rd Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing, PDP 2015, pp. 467–475.
IEEE Computer Society (2015)

13. Glück, R., et al.: Towards a taxonomy for reversible computation approaches. In:
Kutrib, M., Meyer, U. (eds.) Reversible Computation, pp. 24–39. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-38100-3 3

14. González-Abril, J.J., Vidal, G.: Causal-consistent reversible debugging: improv-
ing CauDEr. Technical report, DSIC, Universitat Politècnica de València (2020).
https://gvidal.webs.upv.es/confs/padl21/tr.pdf

15. González-Abril, J.J., Vidal, G.: Causal-consistent reversible debugging: improving
CauDEr. In: Morales, J.F., Orchard, D.A. (eds.) Proceedings of the 23rd Interna-
tional Symposium on Practical Aspects of Declarative Languages (PADL 2021).
LNCS, vol. 12548, pp. 145–160. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-67438-0 9

https://doi.org/10.1007/978-3-030-47361-7_1
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1109/12.142678
https://www.erlang.org/
https://hal.science/hal-04123758
http://erlang.org/faq/academic.html
http://erlang.org/faq/academic.html
https://doi.org/10.1016/j.ic.2007.12.002
https://doi.org/10.1016/j.ic.2007.12.002
https://doi.org/10.1007/978-3-319-93767-0_6
https://doi.org/10.1007/978-3-642-54804-8_26
https://doi.org/10.1007/978-3-031-38100-3_3
https://gvidal.webs.upv.es/confs/padl21/tr.pdf
https://doi.org/10.1007/978-3-030-67438-0_9
https://doi.org/10.1007/978-3-030-67438-0_9

122 G. Vidal

16. Hewitt, C., Bishop, P.B., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Nilsson, N.J. (ed.) Proceedings of the 3rd International
Joint Conference on Artificial Intelligence, pp. 235–245. William Kaufmann (1973).
http://ijcai.org/Proceedings/73/Papers/027B.pdf

17. Kuang, P., Field, J., Varela, C.A.: Fault tolerant distributed computing using asyn-
chronous local checkpointing. In: Boix, E.G., Haller, P., Ricci, A., Varela, C. (eds.)
Proceedings of the 4th International Workshop on Programming Based on Actors
Agents & Decentralized Control (AGERE! 2014), pp. 81–93. ACM (2014)

18. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978). https://doi.org/10.1145/359545.359563

19. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

20. Lanese, I., Medic, D.: A general approach to derive uncontrolled reversible
semantics. In: Konnov, I., Kovács, L. (eds.) 31st International Conference on
Concurrency Theory, CONCUR 2020. LIPIcs, vol. 171, pp. 33:1–33:24. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/
LIPIcs.CONCUR.2020.33

21. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in
Higher-Order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol.
6901, pp. 297–311. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23217-6 20

22. Lanese, I., Mezzina, C.A., Stefani, J.: Reversibility in the higher-order π-calculus.
Theor. Comput. Sci. 625, 25–84 (2016)

23. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang.
J. Log. Algebraic Methods Program. 100, 71–97 (2018). https://doi.org/10.1016/
j.jlamp.2018.06.004

24. Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay debugging for mes-
sage passing programs. In: Pérez, J.A., Yoshida, N. (eds.) Proceedings of the
39th IFIP WG 6.1 International Conference on Formal Techniques for Distributed
Objects, Components, and Systems (FORTE 2019). LNCS, vol. 11535, pp. 167–
184. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21759-4 10

25. Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay reversible semantics
for message passing concurrent programs. Fundam. Informaticae 178(3), 229–266
(2021). https://doi.org/10.3233/FI-2021-2005

26. Lanese, I., Sangiorgi, D., Zavattaro, G.: Playing with bisimulation in Erlang. In:
Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and
Tools for Concurrent and Distributed Programming – Essays Dedicated to Rocco
De Nicola on the Occasion of His 65th Birthday. LNCS, vol. 11665, pp. 71–91.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21485-2 6

27. Lienhardt, M., Lanese, I., Mezzina, C.A., Stefani, J.B.: A reversible abstract
machine and its space overhead. In: Giese, H., Rosu, G. (eds.) Proceedings of
the Joint 14th IFIP WG International Conference on Formal Techniques for Dis-
tributed Systems (FMOODS 2012) and the 32nd IFIP WG 6.1 International Con-
ference (FORTE 2012). LNCS, vol. 7273, pp. 1–17. Springer, Cham (2012). https://
doi.org/10.1007/978-3-642-30793-5 1

28. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
Hinze, R., Ramsey, N. (eds.) Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2007, pp. 47–58. ACM (2007)

http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.1145/359545.359563
https://doi.org/10.4230/LIPIcs.CONCUR.2020.33
https://doi.org/10.4230/LIPIcs.CONCUR.2020.33
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1016/j.jlamp.2018.06.004
https://doi.org/10.1016/j.jlamp.2018.06.004
https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.3233/FI-2021-2005
https://doi.org/10.1007/978-3-030-21485-2_6
https://doi.org/10.1007/978-3-642-30793-5_1
https://doi.org/10.1007/978-3-642-30793-5_1

From Reversible Computation to Checkpoint-Based Rollback Recovery 123

29. Mezzina, C.A., Tiezzi, F., Yoshida, N.: Rollback recovery in session-based pro-
gramming. In: Jongmans, S., Lopes, A. (eds.) Proceedings of the 25th IFIP WG
6.1 International Conference on Coordination Models and Languages, COORDI-
NATION 2023. LNCS, vol. 13908, pp. 195–213. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-35361-1 11

30. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

31. Nishida, N., Palacios, A., Vidal, G.: A reversible semantics for Erlang. In:
Hermenegildo, M., López-Garćıa, P. (eds.) Proceedings of the 26th International
Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR
2016). LNCS, vol. 10184, pp. 259–274. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63139-4 15

32. Nishida, N., Palacios, A., Vidal, G.: Reversible computation in term rewriting. J.
Log. Algebraic Methods Program. 94, 128–149 (2018). https://doi.org/10.1016/j.
jlamp.2017.10.003

33. Perumalla, K.S., Park, A.J.: Reverse computation for rollback-based fault tolerance
in large parallel systems - evaluating the potential gains and systems effects. Clust.
Comput. 17(2), 303–313 (2014). https://doi.org/10.1007/s10586-013-0277-4

34. Swalens, J., Koster, J.D., Meuter, W.D.: Transactional actors: communication in
transactions. In: Jannesari, A., de Oliveira Castro, P., Sato, Y., Mattson, T. (eds.)
Proceedings of the 4th ACM SIGPLAN International Workshop on Software Engi-
neering for Parallel Systems, SEPSSPLASH 2017, pp. 31–41. ACM (2017). https://
doi.org/10.1145/3141865.3141866

35. Tsai, J., Wang, Y.: Communication-induced checkpointing protocols and rollback-
dependency trackability: a survey. In: Wah, B.W. (ed.) Wiley Encyclopedia
of Computer Science and Engineering. Wiley (2008). https://doi.org/10.1002/
9780470050118.ecse059

36. Vassor, M., Stefani, J.B.: Checkpoint/Rollback vs Causally-consistent reversibil-
ity. In: Kari, J., Ulidowski, I. (eds.) Reversible Computation, pp. 286–303.
Springer, Cham (2018). 978-3-319-99498-7 20, https://doi.org/10.1007/978-3-319-
99498-7 20

37. Vidal, G.: From reversible computation to checkpoint-based rollback recovery
for message-passing concurrent programs. CoRR abs/2309.04873 (2023). https://
arxiv.org/abs/2309.04873

https://doi.org/10.1007/978-3-031-35361-1_11
https://doi.org/10.1007/978-3-031-35361-1_11
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1016/j.jlamp.2017.10.003
https://doi.org/10.1016/j.jlamp.2017.10.003
https://doi.org/10.1007/s10586-013-0277-4
https://doi.org/10.1145/3141865.3141866
https://doi.org/10.1145/3141865.3141866
https://doi.org/10.1002/9780470050118.ecse059
https://doi.org/10.1002/9780470050118.ecse059
https://doi.org/10.1007/978-3-319-99498-7_20
https://doi.org/10.1007/978-3-319-99498-7_20
https://arxiv.org/abs/2309.04873
https://arxiv.org/abs/2309.04873

Anniversary Papers

Formal Model Engineering of Distributed
CPSs Using AADL: From Behavioral
AADL Models to Multirate Hybrid

Synchronous AADL

Kyungmin Bae1(B) and Peter Csaba Ölveczky2

1 Pohang University of Science and Technology, Pohang, South Korea
kmbae@postech.ac.kr

2 University of Oslo, Oslo, Norway

Abstract. A promising way of integrating formal methods into indus-
trial system design is to endow industrial modeling tools with automatic
formal analyses. In this paper we identify some challenges for providing
such formal methods “backends” for cyber-physical systems (CPSs), and
argue that Maude could meet these challenges. We then give an overview
of our research on integrating Maude analysis into the OSATE tool envi-
ronment for the industrial CPS modeling standard AADL.

Since many critical distributed CPSs are “logically synchronous,” a
key feature making automatic formal analysis practical is the use of syn-
chronizers for CPSs. We identify a sublanguage of AADL to describe
synchronous CPS designs. We can then use Maude to effectively verify
such synchronous designs, which under certain conditions also verifies
the corresponding asynchronous distributed systems, with clock skews
and communication delays. We then explain how we have extended our
methods to multirate systems and to CPSs with continuous behaviors.

We illustrate the effectiveness of Maude-based formal model engineer-
ing of industrial CPSs on avionics control systems and collections of
drones. Finally, we identify future directions in this line of research.

1 Introduction and Overview

Modern cyber-physical systems (CPSs) are complex and safety-critical systems.
Formal methods should therefore be an integral part of their design process.
However, despite the availability of powerful formal tools, there still seems to be
a barrier in industry to using formal methods. This could have many reasons,
including lack of available formal methods experts, perceived need to be an
expert to use formal methods, and lack of user-friendly and robust formal tools.

Formal Model Engineering. Maybe the most promising way of integrating for-
mal methods into industrial model development processes is to provide auto-
matic “push-button” formal analysis as an “under-the-hood backend” which is
integrated into the designer’s model development environment. The modeler can
then continue to use her favorite modeling language and IDE without worrying
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Cámara and S.-S. Jongmans (Eds.): FACS 2023, LNCS 14485, pp. 127–152, 2024.
https://doi.org/10.1007/978-3-031-52183-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52183-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-52183-6_7

128 K. Bae and P. C. Ölveczky

about formal methods, and still get powerful formal analyses for free. Edward
Lee calls such model development formal model engineering in [8].

Enabling such formal model engineering requires:

– Targeting a modeling language widely used in industrial model development.
– Identifying a useful significant subset of the industrial modeling language.
– A formal semantics for the (subset of the) industrial modeling language.
– Defining an intuitive property specification language in which the developer

can easily express properties about her model, without knowing anything
about formal methods or the formal representation of her model, and without
having to master the syntax of the formal method.

– Integrating automatic formal analyses of the user’s model into her tool.
– Presenting the result of the formal analysis in an intuitive way.

Challenges. Endowing industrial modeling environments for CPSs, which are
distributed (real-time) embedded systems, with effective under-the-hood formal
analysis is very challenging, due to factors that include:

1. Industrial modeling languages by their very nature tend to be large and
expressive. The target formalism must therefore be very expressive to pro-
vide a formal semantics for the source language.

2. However, in formal methods usually only less expressive, often decidable, for-
malisms (such as timed automata for real-time systems) provide automatic
analyses, whereas more expressive formalisms (such as differential dynamic
logic [61]) typically only support interactive theorem proving analysis, which
is not desired for formal model engineering.

3. Automatic model checking verification of industrial distributed CPSs quickly
becomes infeasible due to the many interleavings caused by distribution.

4. Industrial CPSs may have both continuous behaviors and complex discrete
control programs, in addition to clock skews, network delays, and so on.

5. The need to provide a query language in which requirements can be intuitively
expressed without knowing the formal representation of the model.

6. Verification typically applies to a specific deployment scenario, and small
changes (such as network delays) can invalidate the verification result.

Maude as a Formal Model Engineering Backend for CPSs. We argue that
Maude [27], with its Real-Time Maude [58,59] and Maude-SMT [72] extensions,
is a suitable formal framework for formal model engineering of industrial CPSs.

Maude is formal modeling language and high-performance formal analysis
tool based on rewriting logic [48,50]. Rewriting logic is an expressive logic for
concurrency where the static parts of the system (data types, etc.) are defined
by algebraic equational specifications, and where dynamic behavior is defined
by rewrite rules. Maude is particularly suitable to model distributed systems in
an object-oriented style. Maude provides a range of explicit-state formal analy-
sis methods, including rewriting for simulation, reachability analysis, and linear
temporal logic (LTL) model checking. Real-time systems can also be specified

Formal Model Engineering of Distributed CPSs Using AADL 129

and analyzed in Real-Time Maude, which provides time-bounded analysis com-
mands and timed CTL model checking [44]. Maude has recently integrated SMT
solving, which enables symbolic reasoning that manipulates symbolic states; i.e.,
state patterns with variables that represent possibly infinitely many concrete
states.

Maude addresses the challenges 1, 2, 4, and 5 above as follows:

1. Rewriting logic is well known to be expressive (see, e.g., [50] for a dated
overview of some applications), and can capture complex control program
languages—evidenced, e.g., by rewriting logic providing semantics to program-
ming languages like C, Java, LLVM, EVM, Scheme, and so on [53]—and a
wide range of communication forms, including sophisticated communication
models for wireless sensor networks [60] and mobile ad hoc networks [46].

2. Maude and Real-Time Maude combine this expressive and general modeling
formalism with providing a range of automatic analysis methods, including
reachability analysis and LTL and timed CTL model checking.

3. The recent integration of SMT solving into Maude allows us to analyze sys-
tems with continuous behaviors (and clock skews) symbolically in Maude.

4. In contrast to many formal tools, Maude supports parametric atomic propo-
sitions, which are needed to define intuitive property specification languages
(which are parametric in the input model), as illustrated below.

(Logically) Synchronous CPSs. We target CPSs, which, by definition, are net-
works of embedded systems that typically interact using message passing. Many
industrial (distributed) CPSs are logically synchronous: at the end of each period
all components read messages, perform transitions, and generate output to be
read at the end of the next period. Examples of such logically synchronous
systems include avionics and automotive systems [9,43,67], networked medical
devices [7,36], and other distributed control systems such as the steam-boiler
benchmark [1]. However, they have to be realized in a distributed setting, with
imprecise local clocks, messaging delays, execution times, and so on.

Note that clock synchronization is well understood (e.g., IEEE 1588 [30]); we
can therefore often guarantee a bound on the drift of the local clocks. Further-
more, the infrastructure of many critical CPSs—such as cars, airplanes, manu-
facturing plants, robots, etc.—guarantee bounds on the communication delays.

Synchronizers for CPSs: Taming the Design and Model Checking Complexity.
Challenge (3) still remains: model checking distributed CPSs quickly becomes
infeasible due to the many different behaviors caused by interleavings.

One way of making model checking of logically synchronous distributed
CPSs feasible is to apply synchronizers for CPSs, such as the time-triggered
architecture (TTA) [38,65], PALS (“physically asynchronous, logically syn-
chronous”) [3,52], and their generalization MSYNC [13]. The idea is that an ide-
alized fully synchronous design SD (without distribution, message delays, clock
skews, execution times, etc.) under some assumptions Γ about the underlying
infrastructure is “logically equivalent” to the desired asynchronous distributed
system async(SD , Γ).

130 K. Bae and P. C. Ölveczky

Fig. 1. A Ptolemy II DE model of a traffic light system.

Synchronizers for CPSs also address Challenge (6): By verifying the syn-
chronous design, we also prove the correctness of the corresponding “implemen-
tations” for all deployments satisfying the TTA/PALS/MSYNC constraint.

PALS was motivated by an avionics system developed by Rockwell Collins,
where model checking even very simplified versions of the (asynchronous) CPS
design took more than 30 h, whereas model checking the logically equivalent
synchronous design takes less than 0.1 s.

AADL. In [15] we provided a Real-Time Maude formal analysis backend for
discrete-event (DE) models of UC Berkeley’s Ptolemy II tool [62], which has
industrial users (e.g., Bosch). As shown in Fig. 1, the user can develop her model
using the excellent graphical interface of Ptolemy II. She can then click on the
blue button to generate a Real-Time Maude model and can enter her Real-Time
Maude query, all while staying inside Ptolemy II. Such Real-Time Maude timed
CTL model checking revealed a previously unknown flaw in a model of a traffic
light system in Ptolemy II’s model repository [44] (Fig. 2).

Formal Model Engineering of Distributed CPSs Using AADL 131

Fig. 2. Real-Time Maude timed CTL model checking inside Ptolemy II.

We wanted to target industrial tools widely used by designers of safety-critical
CPSs. In particular, due to our collaboration with Rockwell Collins on avionics
applications, we targeted a modeling standard for CPSs used in avionics. The
Architecture Analysis and Design Language (AADL) [31] is an industrial mod-
eling standard for avionics, automotive, and cyber-physical systems developed
and used by companies and organizations such as Carnegie Mellon University,
US Army, Honeywell, Rockwell Collins, Lockheed Martin, General Dynamics,
Airbus, the European Space Agency, Dassault, EADS, Ford, and Toyota. Model
development in AADL is supported by the Open Source AADL Tool Environ-
ment (OSATE).

Overview. This invited paper on “the evolution of our software-component-
based” research first provides brief preliminaries to Maude and its extensions,
and to AADL. Section 3 introduces two avionics applications that motivated this
work.

Section 4 summarizes the first step towards providing Maude-based formal
analysis of CPSs via AADL: a Real-Time Maude semantics of a “behavioral sub-
set” of AADL [55]. This can be used to verify AADL models of distributed
systems. However, explicit-state model checking of distributed CPSs quickly
becomes infeasible: The above-mentioned active standby avionics system has
only three components, and 10 boolean-valued messages are sent/received in

132 K. Bae and P. C. Ölveczky

each round. There are therefore 10! different orders in which messages can be
received in each round, and hence a similar number of different states, so that
model checking the AADL model of active standby was not feasible [56].

This inspired work by us and colleagues at UIUC and Rockwell Collins to
develop complexity-reducing formal design and verification patterns—the topic
of an invited FACS 2011 talk [49,51]—for logically synchronous CPSs that have
to be realized in a distributed setting while meeting critical timing constraints.
In Sect. 5 we summarize the PALS formal pattern/synchronizer for CPSs. PALS
allows us to design and verify the much simpler underlying synchronous design
SD—without asynchrony, message delays, clock skews, etc.—so that SD satisfies
a property φ if and only if the distributed realization PALS(SD , p, Γ) does so.
We also mention the huge performance gains obtained by using PALS.

Section 6 presents the Synchronous AADL modeling language and the Syn-
chAADL2Maude tool. Synchronous AADL allows designers to model syn-
chronous designs of CPSs in general, and synchronous PALS and TTA mod-
els in particular, in AADL. We also present an intuitive property specification
language for such AADL models, define the Real-Time Maude semantics of Syn-
chronous AADL, and integrate Synchronous AADL modeling and Real-Time
Maude analysis of such models into the OSATE tool environment for AADL.

PALS and much work in the field assume synchronous systems where all
components act in synchrony, and therefore operate at the same frequency. How-
ever, some CPSs are composed of different kinds of “off-the-shelf” components
which operate at different frequencies. One prototypical example is an aircraft:
The aileron controllers of commercial aircrafts typically operate at frequency
30–100 Hz, whereas the rudder controller operates at 30–50 Hz [2], yet they (and
other controllers) need to synchronize to make a safe turn. With José Meseguer
we therefore extended PALS (in a FACS 2012 paper [11]), Synchronous AADL,
and the SynchAADL2Maude tool to the multi-rate setting. In one application,
we use Euler approximations of continuous dynamics to analyze a textbook algo-
rithm for turning an airplane. This work is summarized in Sect. 7.

The airplane turning example emphasizes that many CPSs have continu-
ous environments. Defining synchronizers in this case is tricky, since we can no
longer abstract from the exact time when a continuous environment is sampled
and actuated; times which depend on the imprecise local clocks. To capture all
possible behaviors depending on imprecise local clocks, and continuous environ-
ments, we combine Maude analysis with SMT solving. We summarize this Hybrid
PALS synchronizer and the Maude+SMT-based formal analysis of logically syn-
chronous hybrid CPSs that we have integrated into OSATE in Sect. 8.

Finally, we discuss future directions in this line of research in Sect. 9, and
give some concluding remarks in Sect. 10.

2 Preliminaries

AADL. The Architecture Analysis & Design Language (AADL) [31] is an indus-
trial modeling standard used in avionics, aerospace, automotive, medical devices,

Formal Model Engineering of Distributed CPSs Using AADL 133

and robotics to describe an embedded real-time system as an assembly of soft-
ware components mapped onto a hardware platform. A component type specifies
the component’s interface (e.g., ports) and properties (e.g., periods), and a com-
ponent implementation specifies its internal structure as a set of subcomponents
and a set of connections linking their ports. An AADL construct may have prop-
erties describing its parameters, declared in property sets. The OSATE modeling
environment provides a set of Eclipse plug-ins for AADL.

Software components include threads that model the application software
and data components representing data types. System components are the top-
level components. A port is a data port, an event port, or an event data port.
A component can have different modes and mode-specific property values, sub-
components, etc. Mode transitions are triggered by events.

Thread behavior is modeled as a guarded transition system with local vari-
ables using AADL’s Behavior Annex [32]. A periodic thread is activated at fixed
time intervals, and an aperiodic thread is activated when it receives an event.
When a thread is activated, transitions are applied until a complete state is
reached (or the thread suspends). The actions performed when a transition is
applied may update local variables, generate outputs, and/or suspend the thread.
Actions are built from basic actions using sequencing, conditionals, and finite
loops.

Maude and Real-Time Maude. Maude [27] is a an executable formal specification
language and high-performance analysis tool for distributed systems. A Maude
module specifies a rewrite theory [48] R = (Σ,E,L,R), where:

– Σ is an algebraic signature, i.e., a set of sorts, subsorts, and function symbols.
– (Σ,E) is an order-sorted equational logic theory [35] specifying the system’s

data types, with E a set of (possibly conditional) equations and axioms.
– L is a set of rule labels.
– R is a collection of labeled conditional rewrite rules crl [l] : t => t′ if cond ,

with t, t′ Σ-terms and l ∈ L, that specify the system’s local transitions.

A one-step rewrite t −→R t′ [48] holds iff t can be rewritten to t′ by a rewrite
rule in R, and −→∗

R denotes the reflexive-transitive closure of −→R.
A declaration class C | att1 : s1, . . . , attn : sn declares an object

class C with attributes att1 to attn of sorts s1 to sn. An object of class C is a
term < o : C | att1 : val1, . . . , attn : valn >, where o (of sort Oid) is the object’s
identifier, and val1 to valn are the current values of the attributes att1 to attn.
Messages are terms of sort Msg. A system state is modeled as a term of sort
Configuration, and consists of a multiset of objects and messages. The system’s
transitions are specified using rewrite rules.

The rewrite command simulates one behavior of the system. The command
search [n] t0 =>* pattern such that cond searches for at most n states reach-
able from state t0 that match pattern and satisfy the condition cond . Maude’s
linear temporal logic (LTL) model checker checks whether all paths from the
initial state satisfy an LTL formula. Such formulas are constructed by (possibly

134 K. Bae and P. C. Ölveczky

parametric) state propositions of sort Prop, and the usual LTL operators True,
˜ (negation), \/, /\, ->, [] (“always”), <> (“eventually”), U (“until”), and O
(“next”).

To specify real-time systems, Real-Time Maude [57,59] adds tick rewrite
rules crl [l] : {t1} => {t2} in time τ if cond to model time elapse, where
the whole state has the form {t}. This rule specifies that it takes time τσ for the
state {t1σ} to evolve to the state {t2σ}, provided that the condition cond holds
for the matching substitution σ. Since the whole state has the form {t}, and
{_} cannot appear in a subterm of t, the form of the tick rewrite rules ensures
that time elapses in the entire state when a tick rule is applied. Other (non-
tick) rewrite rules are considered to take zero time. Real-Time Maude provides
a range of time-bounded and unbounded search, LTL, and timed CTL model
checking commands [44,57]; the time-bounded LTL model checking command is
written (mc t0 |=t formula in time <= τ).

Maude+SMT. Constrained terms [20,63] symbolically represent (possibly infi-
nite) sets of system states. A constrained term is a pair φ ‖ t of a constraint
φ(x1, . . . , xn) and a term t(x1, . . . , xn) over SMT variables x1, . . . , xn. It repre-
sents the set �φ ‖ t� of all instances of the pattern t such that φ holds.

A one-step symbolic rewrite φt ‖ t �R φu ‖ u on constrained terms [63]
symbolically represents a (possibly infinite) set of system transitions. We denote
by �∗

R the reflexive-transitive closure of �R. For a symbolic rewrite φt ‖ t �∗
R

φu ‖ u, there exists a “concrete” rewrite t′ −→∗
R u′ with t′ ∈ �φt ‖ t� and

u′ ∈ �φu ‖ u�. Conversely, for any concrete rewrite t′ −→∗
R u′ with t′ ∈ �φt ‖ t�,

there exists a symbolic rewrite φt ‖ t �∗
R φu ‖ u with u′ ∈ �φu ‖ u�.

Maude provides SMT solving and symbolic reachability analysis for con-
strained terms, using connections to Yices2 [28] and CVC4 [21]. Maude supports
SMT theories for Booleans, integers, and reals in the SMT-LIB standard [22].

3 Two Motivating Applications

Even though the methods summarized in this paper are applicable to many
CPSs, much of the work was motivated by two (classes of) avionics applications:

1. An avionics control system developed at Rockwell Collins whose modeling
and, in particular, NuSMV model checking was much harder than expected.

2. Together with a student, Joshua Krisiloff, at the UIUC aeronautics depart-
ment we wanted to investigate to what degree formal methods could be used
to analyze control algorithms for airplanes, for example for turning an air-
plane.

The Active Standby System. There are multiple physically separated cab-
inets (“main computer systems”) on an aircraft, so that physical damage does
not take out the computer system. The active standby system [54] developed at
Rockwell Collins focuses on the logic for deciding which of two cabinets is active.

Formal Model Engineering of Distributed CPSs Using AADL 135

Fig. 3. The active standby system. Fig. 4. Turning an airplane.

The two sides/cabinets receive inputs through communication channels. Each
side can fail, and recover after failure. If one side fails, the non-failed side should
be the active side. The pilot can also toggle the active status of these sides.
The full functionality of each side is dependent on the two sides’ perception of
the availability of other system components. The architecture of the system is
shown in Fig. 3. The system consists of three components: Side 1, Side 2, and
Environment. The Environment component is an abstract representation of other
components that interact with Side 1 and Side 2. The components have the
same period and dispatch at the same time. Each time Environment dispatches,
it sends five Boolean (nondeterministically generated) values, denoting, respec-
tively, whether side i is failed or not fully available, and whether the pilot wants
to change the active side (“manualSelection”). The connections between the two
sides are “delayed;” a message sent in one round is read in the next round.

There are five important properties that active standby should satisfy [52,54].
One of them is: A side that is not fully available should not be the active side if
the other side is fully available (provided neither side has failed, the availability
of a side has not changed, and the pilot has not made a manual selection).

Turning an Airplane. An airplane turns by rolling in the direction of the
turn by moving its two ailerons (flaps attached to each wing), and reduces the
adverse yaw caused by the rolling by moving its rudder (flap attached to the
vertical stabilizer). To achieve a smooth turn these devices should synchronize,
even though their controllers have different periods.

A controller orchestrates these devices to turn an aircraft [9,16]. As shown
in Fig. 4, there are four components. The main controller has period 60ms, the
aileron subcontrollers have period 15ms, and the rudder subcontroller has period
20ms. Each component interacts with its physical environment.

Each subcontroller M ∈ {L, T,R} determines the moving rate rM to move its
surface towards the goal angle gM provided by the main controller. It also sends
the “sampled” angle αM to the main controller. Its physical environment EM

specifies the continuous behavior of the surface angle xM by the control command
rM . The angle xM gradually changes according to the ODE: ẋM = rM .

The main controller determines the goal angles for the subcontrollers to make
a coordinated turn, given a goal direction goalψ and the sampled surface angles

136 K. Bae and P. C. Ölveczky

(αL, αT , αR) from the subcontrollers. The physical environment EMain specifies
the current direction ψ, the roll angle φ, and the yaw angle β. The lateral dynam-
ics of an aircraft can be modeled as the following ODEs [69]:

ψ̇ = (g/V) tan φ, β̇ = Y (β,
x)/mV − r + (g/V) cos β sin φ,

φ̇ = p ṗ = (c1r + c2p) · r tan φ + c3L(β,
x) + c4N(β,
x),
ṙ = (c8p − c2r) · r tan φ + c4L(β,
x) + c9N(β,
x),

where g is the gravitational constant, m is the mass of the aircraft, V is the
velocity of the aircraft, p is the rolling moment, r is the yawing moment, and Y ,
L, and N are linear functions of β and the surface angles
x = (xL, xV , xR).

The yaw angle should be close to 0 during a turn, and the airplane should
reach the goal direction with both roll angle and yaw angle close to 0 [9].

4 Formal Semantics and Analysis for “Behavioral AADL”

Although AADL is an industrial (SAE, Society of Automotive Engineers) stan-
dard modeling language for safety-critical embedded systems, it lacks a formal
semantics. In [55], with colleagues at UIUC and Leicester, we therefore defined,
for the first time (see [55] for a discussion on related work) an executable formal
semantics for what we call a “behavioral subset” of AADL, in Real-Time Maude.

AADL is a huge and complex standard. Formal approaches therefore target
limited fragments of AADL. We targeted a behavioral subset of AADL suitable
to define distributed software designs—with all software structuring mechanisms
of AADL (system, process, and thread components); (event, event data, and
data) ports and their connections; mode-specific properties; mode transitions;
and both periodic, aperiodic, sporadic, and background thread dispatch; and so
on. We did not target the “hardware platform” part of AADL. Thread behaviors
are modeled using AADL’s Behavior Annex standard [32].

In [55] we defined the Real-Time Maude semantics for this subset of AADL.
AADL components are hierarchical ; the formal model should reflect the hierar-
chical structure, e.g., for understanding or “mapping back” analysis results.

Some key Real-Time Maude features that are crucial to define a decently
effective semantics for this fragment of AADL include:

– An expressive formalism is needed to capture this rich subset of AADL, includ-
ing a Turing-complete programming language used to define transitions.

– Hierarchical objects (an object attribute may have sort Configuration and
therefore contain subconfigurations) allow us to define the semantics in an
object-based style, yet preserve the hierarchical structure of AADL models.

– Rewriting logic’s division into equations and rewrite rules—where only the lat-
ter contribute to the state space—is crucial to provide an efficient semantics.
For example, “executing” the program associated with each AADL transition
can be done equationally (i.e., in one atomic step).

Real-Time Maude Semantics. We can only give a very brief sample of our
semantics, and refer to [56] for details. The key observation is that the semantics

Formal Model Engineering of Distributed CPSs Using AADL 137

of a component-based language naturally can be defined in an object-oriented
style, where each component instance is modeled as an object. As mentioned, the
hierarchical structure of AADL components is reflected in the nested structure of
objects. Any AADL component instance is represented as an object instance of a
subclass of the following class Component, which contains the attributes common
to all kinds of components (systems, processes, threads, etc.):

class Component | features : Configuration, subcomponents : Configuration,
properties : Properties, connections : ConnectionSet,
modes : Modes, inModes : ModeNameSet .

The attribute features denotes the features of a component (i.e., its ports);
subcomponents denotes the subcomponents of the object; properties denotes its
properties, such as the dispatch protocol for threads; connections denotes the
set of port connections of the object; modes contains the object’s mode transition
system; and inModes gives the set of modes (of the immediate supercomponent)
in which the component is available. The Thread class is declared as follows:

class Thread | behavior : ThreadBehavior, status : ThreadStatus,
deactivated : Bool .

subclass Thread < Component .

The behavior attribute denotes the transition system associated with the thread.
The status indicates the current status of the thread (active, completed,
suspended, etc.). The attribute deactivated indicates whether the thread is
deactivated because it is not in the current “active” modes of the system.

The following rewrite rule specifies the execution of an active thread. If the
thread is in state L1, a transition from L1 whose guard evaluates to true is
executed. The resulting status is sleeping(...) if the statement list SL contains
delay statements; otherwise, the thread is completed or inactive if the resulting
state L2 is a complete state, and remains active if not:

crl [apply-transition] :
< O : Thread | status : active, deactivated : B, features : PORTS,

behavior : states current: L1 complete: LS1 others: LS2
state variables VAL
transitions (L1 -[GUARD]-> L2 {SL}) ; TRANSITIONS >

=>
< O : Thread | status : (if SLEEP-TIME > 0 then sleeping(SLEEP-TIME) else

(if (not L2 in LS1) then active else
(if B then inactive else completed fi) fi) fi),

features : NEW-PORTS,
behavior : states current: L2 complete: LS1 others: LS2

state variables NEW-VAL
transitions (L1 -[GUARD]-> L2 {SL}) ; TRANSITIONS >

if evalGuard(GUARD, PORTS, VAL)
/\ transResult(NEW-PORTS, NEW-VAL, SLEEP-TIME) :=

executeTransition(L1 -[GUARD]-> L2 {SL}, PORTS, VAL) .

138 K. Bae and P. C. Ölveczky

The (equationally defined) function executeTransition executes a transition
with PORTS the states of the ports and VAL the values of the state variables. The
function returns a triple transResult(p, σ, t), where p is the state of the ports
after the execution, σ is the resulting values of the state variables, and t is the
sum of the delays in the transition actions. The transitions are modeled as a
multiset; therefore, any enabled transition can be applied in the rule.

Tool Support. This first work did not fully integrate formal analysis into the
OSATE tool environment for AADL: The ADDL2Maude OSATE plugin used
OSATE’s code generation facilities to automatically generate Real-Time Maude
models from AADL specifications. However, the analysis required running com-
mands in Real-Time Maude. Nevertheless, the user did not have to know the
Real-Time Maude representation of her AADL model, since we provided conve-
nient syntax for defining state patterns. The term

value of v in component fullComponentName in globalComponent

gives the value of the state variable v in the thread identified by the full compo-
nent name fullComponentName in the system in state globalComponent , and

location of component fullComponentName in globalComponent

gives the current location/state of the transition system in the given thread. For
LTL model checking, we pre-defined parametric atomic propositions such as full
thread name @ location, which holds when the thread is in state location.

Applications. We used AADL2Maude and Real-Time Maude analysis of the
generated model to analyze an AADL model developed at UIUC of a network
of medical devices consisting of a controller, a ventilator machine that assists
a patient’s breathing during surgery, and an X-ray device. When a button is
pushed to take an X-ray, and the ventilator machine has not paused in the past
10 min, the ventilator machine pauses for two seconds, starting one second after
the button is pushed, and the X-ray should be taken after two seconds.

To execute the system, we added a test activator that pushes the button every
second. We then used reachability analysis to check whether an undesired state,
where the X-ray thread is in state xray (X-ray being taken) and the ventilator
is not in state paused, can be reached (which leads to blurry pictures):

Maude> (search [1] initialize({MAIN system Wholesys . impl}) =>* {CONF}
such that ((location of component (MAIN -> Xray -> xmPr -> xmTh)

in CONF) == xray and (location of component (MAIN ->
Ventilator -> vmPr -> vmTh) in CONF) =/= paused) .)

Solution 1 CONF --> ...

Formal Model Engineering of Distributed CPSs Using AADL 139

(The unexpected result showed that such a bad state can indeed be reached.)
We used time-bounded LTL model checking to verify that an X-ray must be
taken within three seconds of the start of the system (surprisingly, this command
returned a counterexample revealing a subtle and previously unknown error):

Maude> (mc initialize({MAIN system Wholesys . impl}) |=t
<> ((MAIN -> Xray -> xmPr -> xmTh) @ xray) in time <= 3 .)

We also wanted to verify an AADL model of the active standby system.
However, no serious analysis finished within reasonable time, as explained in [56].

Nevertheless, this work defines a formal semantics of a useful subset of AADL,
and could be used to find subtle flaws in existing AADL models.

5 The PALS Synchronizer for CPSs

Model checking even simplified versions (e.g., without clock drifts and commu-
nication delays) of the active standby system turned out to be unfeasible. Even
designing the system, to ensure that messages are read in the correct round in
the presence of fast and slow local clocks and message delays, required modeling
buffering of both incoming and outgoing messages and subtle use of (local-clock-
based) timers to read and transmit messages at the correct times.

The active standby system shares many characteristics with (distributed)
CPSs in fields such as avionics, cars, robotics, and other control systems:

– The “underlying logic” is synchronous: At the beginning/end of each “period”
all components should in lockstep read incoming messages and perform local
transitions, which change the state of each component and generate messages
for the next iteration. However, the system has to be realized in a distributed
setting, with message delays, imprecise local clocks, execution times, etc.

– Cars, airplanes, factories, robots, etc., typically use dedicated local networks
where network delays are bounded.

– Clock synchronization is well understood; e.g., the Precision Time Proto-
col (IEEE 1588) achieves sub-microsecond clock accuracy on local area net-
works [29]. We can therefore often give a bound ε on the skew of the clocks.

All of this inspired us and colleagues at UIUC and Rockwell Collins to define
the PALS (“physically asynchronous, logically synchronous”) formal pattern [51]
to greatly simplify both the design and the verification of these “logically syn-
chronous” (distributed) CPSs when the infrastructure guarantees bounds μ, α,
and ε on the communication delays, transition computation times, and clock
drifts, respectively [3,52,66]. For such bounds Γ = (μ, α, ε), PALS is a mapping

(SD , p, Γ) �→ PALS(SD , p, Γ)

where SD is the underlying synchronous design, p is the period of the com-
ponents, and PALS(SD , p, Γ) is the corresponding distributed system model.
SD is formalized as the synchronous composition of a collection of state

140 K. Bae and P. C. Ölveczky

(“Mealy”) machines, each with typed input and output ports, whose ports
are connected by a wiring diagram. Each machine M has a transition relation
δM ⊆ (inputs × State) × (State, outputs) and performs one transition in each
iteration of the system. The distributed real-time system PALS(SD , p, Γ) is for-
malized in [52] using Real-Time Maude. It is proved in [52] that as long as the
PALS constraint p ≥ μ + 2ε + max(2ε, α) is satisfied (the difference between
two clocks is always less than 2ε), then SD and PALS(SD , p, Γ) satisfy the same
CTL∗ formulas. (The constraint in [52] also takes into account the minimum
network delay.)

It is therefore sufficient to specify and verify the much simpler underlying
synchronous model. PALS then provides the corresponding distributed model,
which satisfies the same properties as the synchronous design.

Synchronizers (like GALS and LTTA) relating synchronous and asyn-
chronous systems are well known. However, very few, such as the time-triggered
architecture (TTA) [38,65], target CPSs with bounded network delays and
clock skews, and therefore do not guarantee timeliness of the resulting asyn-
chronous system (see [52] for details). TTA has similar assumptions as PALS,
but has a significantly longer optimal period p than PALS, and some other dif-
ferences [13,52,68].

Effectiveness and Application. In [52] we modeled the synchronous PALS
design of active standby in Maude, as well as a much simplified asynchronous
model, with perfect clocks and no execution times: The synchronous model has
185 reachable states and could be model checked in less than a second. The
asynchronous model has 3,047,832 reachable states when message delays are
0; a simple reachability command explores these states in 2,000 s. When the
message delay could be 0 or 1, attempts at exploring the state space aborted.

With PALS we could easily analyze the requirements of active standby using
LTL model checking: most did not hold. Inspecting the counterexamples, we
came up with, and verified, modified properties, which were the properties ones
found by the Rockwell Collins team using NuSMV and the PALS methodology.

6 Synchronous AADL

Synchronous AADL [14] is a subset of AADL in which synchronous designs in
general, as well as synchronous PALS models, can be specified. Synchronous
AADL is defined as a behavioral subset of AADL explained in Sect. 4, together
with syntactic constraints to identify AADL models that can be considered syn-
chronous: e.g., threads have periodic dispatch; components have only data ports;
and connections between threads are delayed. Each AADL construct in the sub-
set has the same meaning in AADL and Synchronous AADL, and properties
specific to Synchronous AADL are declared using the property set SynchAADL.

The formal semantics of Synchronous AADL is defined in Real-Time Maude,
but now specifies the synchronous composition of AADL components.

Formal Model Engineering of Distributed CPSs Using AADL 141

Real-Time Maude analysis of Synchronous AADL models is integrated
into OSATE using the SynchAADL2Maude plugin [18]. Given a Synchronous
AADL model SD , the tool checks whether SD is a valid Synchronous AADL
model, generates the corresponding Real-Time Maude model, and invokes
Real-Time Maude to analyze whether SD satisfies given LTL properties. Syn-
chAADL2Maude provides predefined atomic propositions to easily specify sys-
tem properties, and LTL properties to be analyzed are managed by an XML
file. Figure 5 shows an example of such properties and the SynchAADL2Maude
window for the active standby system, where the analysis results are shown in
the Maude Console.

7 Multirate PALS and MR-SynchAADL

Whereas PALS, TTA, and synchronous systems in general require that all compo-
nents have the same period, different (“off-the-shelf”) controllers often operate at
different frequencies, yet need to synchronize, as in the airplane turning system
in Sect. 3. We have therefore extended PALS, the Synchronous AADL modeling
language, and the SynchAADL2Maude tool to the multirate setting [11,12,17].

Composing components with different periods is tricky, since a controller with
period 30ms receives and sends messages every 30ms, whereas one with period
with 50ms only does so every 50ms. We address this as follows:

– A component may only communicate with components whose period is a
multiple of its own period (possibly through a hierarchy); or vice versa.

– User-defined input adaptors turn one output value from a slow component to
k input values for a connecting component which is k times faster. Likewise,
the slow component’s input adaptor turns k outputs from the fast component
into a single input to the slow component.

Fig. 5. Properties in the XML format (left) and SynchAADL2Maude window (right).

142 K. Bae and P. C. Ölveczky

Fig. 6. A hierarchical multirate system. Fig. 7. A multirate synchronous design.

Since a synchronous system can be represented as a single machine [12,52], we
can have hierarchical models. Figure 6 shows an example of multirate systems,
and Fig. 7 shows its corresponding hierarchical synchronous design, where each
machine and its local environment are annotated with its period.

Multirate PALS. We “slow down” the faster components, so that all compo-
nents in a multirate synchronous design operate in lock-step as in the single-rate
case. A fast component slowed down by a factor k performs k internal transi-
tions during one (slow) period. It consumes k inputs and produces k outputs at
each port in each slow step. A slow controller, which should only read one input
(in each input port) during such a slow step, therefore uses an input adaptor
to transform such a k-tuple output into a single input value; and vice versa for
slow-to-fast connections.

For a multirate synchronous design SD , bounds Γ , and a global period p,
Multirate PALS gives the distributed real-time system MPALS(SD , p, Γ) where
each component operates according to its own period [11,12]. However, a fast
machine may not be able to finish all of its k internal transitions in a slow period
p before the output messages must be sent. If only kf < k outputs can be sent
before the deadline, the input adaptor must ignore the last k − kf values in a
k-tuple input. MPALS(SD , p, Γ) and SD satisfy the same properties when all
input adaptors satisfy this condition and the PALS constraint is satisfied [12].

Multirate Synchronous AADL. To specify hierarchical multirate syn-
chronous designs in AADL, we defined the Multirate Synchronous AADL lan-
guage [17] as a sublanguage of AADL with a property set MR SynchAADL. The
MR-SynchAADL plugin supports modeling and formal analysis of Multirate
Synchronous AADL models within OSATE, with a dedicated property specifica-
tion language fully integrated with the OSATE editor (e.g., supporting syntax
highlighting).

Multirate Synchronous AADL extends Synchronous AADL by allowing dif-
ferent components to have different periods (satisfying the above conditions),
and by allowing us to associate an input adaptor α to an input port using the
property MR SynchAADL::InputAdaptor=> α. 1-to-k input adaptors map a sin-
gle value to a k-vector of values, and k-to-1 input adaptors map a k-vector of
values to a single value. Multirate Synchronous AADL provides a collection of

Formal Model Engineering of Distributed CPSs Using AADL 143

predefined input adaptors, including repeat input—mapping v to (v, v, . . . , v)—
, and last—mapping (v1, . . . , vk) to vk—, and so on. The formal semantics of
Multirate Synchronous AADL is also defined in Real-TIme Maude.

Application. In [9,12,17], we modeled and analyzed the Multirate PALS syn-
chronous model of the airplane example in Sect. 3 using Real-Time Maude. The
continuous behavior was numerically approximated using Euler’s method. The
formal analysis revealed a flaw that caused an unsafe turn. This led to a redesign
of the system, which was verified using model checking. Again, (bounded) model
checking of a highly simplified asynchronous model was unfeasible due to the
many interleavings caused. The airplane example was also modeled in Multirate
Synchronous AADL and analyzed using MR-SynchAADL in [17].

8 Hybrid PALS and HybridSynchAADL

CPS controllers may interact with physical environments, whose continuous
dynamics can be modeled as ordinary differential equations (ODEs). To precisely
analyze such CPSs with the PALS methodology, we have developed the Hybrid
PALS synchronizer [16] and the HybridSynchAADL language and tool [40,41].

Hybrid PALS extends Multirate PALS to CPSs with continuous dynamics.
In contrast to (Multirate) PALS, we cannot abstract away the times at which
physical states are sampled and actuated. We must also to take into account
imprecise local clocks, since such sampling and actuating times depend on them.

A formal analysis of such CPSs involves an infinite number of continuous
trajectories depending on imprecise local clocks. We therefore use Maude com-
bined with SMT solving to symbolically encode all possible continuous behaviors,
and define a symbolic (Maude with SMT) semantics for HybridSynchAADL lan-
guage.

Hybrid PALS. We consider multirate systems consisting of discrete controllers
and physical environments, as shown in Fig. 8. A controller M is a nondetermin-
istic machine parameterized by any behavior of its physical environment EM .
Environments can also be physically correlated (dashed lines in Fig. 8), meaning
that changes in one environment immediately affect another.

A state of a physical environment EM is a valuation of real-valued parameters

x = (x1, . . . , xl). The continuous behavior of EM is modeled by systems of
ODEs that specify different trajectories of
x over time. A control command
from its controller M defines which trajectories EM follows. In Fig. 9, EM follows
trajectory τ1 from state v1 for duration t2 − t1 when command a1 is received.

Let cM (i) denote the global time when the i-th period of a controller M
begins according to its local clock. M samples the state of EM at time cM (i)+ts,
where ts is a value in its sampling time interval. M then performs a transition
and determines a new control command. EM receives the new command at time
cM (i) + ta, where ta is a value in its actuating (or response) time interval.

144 K. Bae and P. C. Ölveczky

Fig. 8. A hybrid multirate system. Fig. 9. A controlled physical environment.

A hybrid synchronous design SD � E is composed of a multirate synchronous
design SD and a collection E of physical environments. The “discrete” behavior
is given by the synchronous design SD restricted by the behavior of E, and the
“continuous” behavior is given by a set of trajectories of E realizable by control
commands from SD .

For a hybrid synchronous design SD � E, a global period p, and bounds
Γ , Hybrid PALS produces the distributed hybrid system MPALS(SD , p, Γ) � E,
where each controller interacts with its physical environment in E. Hybrid PALS
ensures that both the synchronous design SD � E and the distributed hybrid
system MPALS(SD , p, Γ) � E exhibit exactly the same set of trajectories of E.

HybridSynchAADL. The HybridSynchAADL language and tool [39–41]
extends (Multirate) Synchronous AADL and MR-SynchAADL to hybrid
synchronous designs. A physical environment is modeled as an environ-
ment component in HybridSynchAADL, and can have different modes
to specify different trajectories. The continuous dynamics in is speci-
fied using the property Hybrid SynchAADL::ContinuousDynamics. Figure 10
shows an example of an environment components with two modes. A con-
troller is an ordinary software component. It declares the three properties
Hybrid SynchAADL::Max Clock Deviation, Hybrid SynchAADL::Sampling Time,
and Hybrid SynchAADL::Response Time to specify the maximal clock skew, and
sampling and actuating time intervals.

Fig. 10. An environment component.

We defined the Maude+SMT semantics of HybridSynchAADL for single-
rate designs. A constrained object of the form φ || obj symbolically represents

Formal Model Engineering of Distributed CPSs Using AADL 145

(infinitely many) instances of obj satisfying the constraint φ. The behavior of
individual components for one synchronous iteration is specified by the operation
executeStep, defined by rewrite rules on constrained terms. The synchronous
step of the entire system is then formalized by the following rule, which captures
all possible behaviors from any instance of {φ || obj}:

crl [step]: {PHI || < C : System | features : none >} => {PHI’ || OBJ’}
if executeStep(PHI || < C : System | >) => PHI’ || OBJ’ .

Tool Support. HybridSynchAADL supports Maude+SMT reachability analysis
of single-rate hybrid synchronous designs within OSATE. The property specifi-
cation language allows the user to specify reachability properties of the form

reachability ϕinit ==> ϕgoal in time τ ,

which holds if a state satisfying ϕgoal is reachable from a state satisfying ϕinit

within time τ . The tool provides three analysis methods: symbolic reachability
analysis using Maude+SMT; randomized simulation, which repeatedly runs the
model by randomly choosing concrete data values, sampling and actuating times,
etc.; and portfolio analysis, which invokes randomized simulation and symbolic
reachability analysis in parallel using multithreading.

Fig. 11. HybridSynchAADL window in OSATE.

Applications. We used HybridSynchAADL to model and analyze distributed
drones that collaborate to perform rendezvous, formation control, and packet
delivery [39–41]. For rendezvous, we symbolically analyzed two time-bounded
properties: drones do not collide within time 500 ([safety]), and all drones
gather together within time 500 ([rendezvous]). These properties use three
user-defined propositions init, collide, and gather, and are defined as follows
in our property specification language:

invariant [safety]: ?initial ==> not ?collide in time 500;
reachability [rendezvous]: ?initial ==> ?gather in time 500;

146 K. Bae and P. C. Ölveczky

Figure 11 shows the tool interface that is fully integrated into OSATE, where
the analysis results are shown in the Result view. We compare the performance
of HybridSynchAADL’s symbolic analysis with four hybrid systems reachability
analysis tools, such as [25,26,33,37]. The experiments showed that (in most
cases) HybridSynchAADL outperforms these state-of-the-art tools.

9 Future Research Directions

We briefly mention some future research directions on three key components of
our formal model engineering approach to developing reliable distributed CPSs:
(1) synchronizers to reduce the design and analysis complexity; (2) “AADL-
based” modeling languages with formal semantics; and (3) formal analysis tech-
niques.

Synchronizers. The MSYNC synchronizer [13] generalizes Multirate PALS
and TTA, and should be extended to CPSs with continuous dynamics. We should
also extend other synchronizers, such as loosely time-triggered architectures [23,
70], to the multirate setting with continuous dynamics.

AADL-based Modeling Languages with Formal Semantics. We should extend
the Maude-SMT semantics of Hybrid Synchronous AADL to multirate systems.
The Maude-SMT analysis in HybridSynchAADL can only deal with polynomial
continuous dynamics. To support general classes of ODEs, we should integrate
Maude with ODE solvers, such as dReal [34]. The airplane turning algorithm in
Sect. 3 could then be symbolically analyzed using HybridSynchAADL. We should
also support more AADL language constructs and the modeling of (Hybrid)
MSYNC models. Language extensions should be guided by more applications,
such as the steam-boiler controller [1] and aerospace systems [24,47].

Formal Analysis. We should support formal analysis methods beyond explicit-
state LTL/TCTL model checking and symbolic reachability analysis, e.g., STL
model checking [10,42,73] and statistical model checking [4,45,64].

HybridSynchAADL employs state merging [19,20] to improve the perfor-
mance of Maude+SMT symbolic analysis. We can further improve the perfor-
mance by applying incremental rewriting modulo SMT [71]. Abstracting away
imprecise local clocks in Hybrid PALS, e.g., by over-approximation, should also
significantly improve the scalability of the analysis.

Maude+SMT analysis opens up the possibility of having parametric initial
states, and automatically synthesizing parameter values that make the system
satisfy desired properties, as we have done for timed automata and Petri nets [5,
6]. We should explore such parameter synthesis for logically synchronous CPSs.

10 Concluding Remarks

Equipped with the expressive Maude and Real-Time Maude formalisms—which
should be able to capture the semantics of industrial modeling languages—whose
tools nevertheless provide powerful automatic formal analyses, our goal is to

Formal Model Engineering of Distributed CPSs Using AADL 147

integrate formal analysis of CPSs into modeling tools used in industry, so that
a designer can formally analyze her models without knowing formal methods.

Motivated by projects at UIUC, and having access to AADL models of a
network of medical devices and of a Rockwell Collins-developed avionics system,
we decided to target the component-based industrial modeling standard AADL.
In this paper we give, for the first time, an overview of this effort.

We first gave a Real-Time Maude semantics to a significant subset of the
“software” parts of AADL, and used Real-Time Maude analysis to find subtle
flaws in the AADL model of the medical system. However, we could not analyze
the avionics system, whose NuSMV model checking also caused major problems.

Observing that the active standby system and many other CPSs have “logi-
cally synchronous” designs but have to be realized as distributed systems on local
area networks, we developed the PALS formal pattern as one of the first “synchro-
nizers for CPSs.”1 It is therefore sufficient to model and verify the much simpler
underlying synchronous designs. In particular, PALS reduced the intractable
task of model checking active standby to one that could be done in less than a
second.

To make PALS-based formal analysis of “logically synchronous” distributed
systems on local area networks available to AADL modelers, we identified an
annotated sublanguage of AADL, called Synchronous AADL, that can be used
by AADL modelers not only to model synchronous PALS models, but also syn-
chronous systems in general, and integrated Real-Time Maude analysis of Syn-
chronous AADL models into the OSATE tool environment for AADL.

Since controllers may operate at different frequencies, yet need to synchronize,
we extended PALS and Synchronous AADL to the multirate setting. Multirate
PALS, introduced in a FACS 2012 paper, was, to the best of our knowledge,
the first synchronizer for multirate CPSs. We applied our methodology to an
airplane turning control algorithm and found that it did not provide a safe yaw.

The airplane turning example emphasized that many CPSs interact with con-
tinuous environments. We therefore extended our methods to hybrid systems.
Hybrid PALS cannot abstract from the times when sensing and actuating such
environments happen, which depend on local clocks with bounded but unknown
skews. The recent integration of SMT solving with Maude allows us to capture
all the possible continuous behaviors symbolically. We defined the HybridSyn-
chAADL language and integrated Maude+SMT-based simulation and reacha-
bility analysis into OSATE. Experiments on collaborating UAVs showed that
HybridSynchAADL analysis in many cases outperforms state-of-the-art hybrid
systems reachability tools such as HyComp, Flow*, SpaceEx, and dReach [41].

Finally, we outlined some future directions in this line of work.

Acknowledgments. We thank Olga Kouchnarenko and the organizers of FACS 2023
for inviting us to present this work summarizing some of our “software component-
based” research to celebrate the 20th anniversary of the FACS conference. In this paper

1 We do not have space to discuss related work in this overview paper, but our papers
have extensive discussions of related work that justify our claims.

148 K. Bae and P. C. Ölveczky

we report on research initiated by some of us and Darren Cofer and Steven Miller at
Rockwell Collins and José Meseguer and Lui Sha at University of Illinois at Urbana-
Champaign; we sincerely thank them all, as well as the coauthors of all the papers
summarized in this paper. Bae was supported by the National Research Foundation of
Korea(NRF) grants funded by the Korea government(MSIT) (No. 2021R1A5A1021944
and No. RS-2023-00251577).

References

1. Abrial, J.-R., Börger, E., Langmaack, H. (eds.): Formal Methods for Industrial
Applications. LNCS, vol. 1165. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0027227

2. Al-Nayeem, A., Sha, L., Cofer, D.D., Miller, S.M.: Pattern-based composition
and analysis of virtually synchronized real-time distributed systems. In: 2012
IEEE/ACM Third International Conference on Cyber-Physical Systems, pp. 65–74.
IEEE (2012)

3. Al-Nayeem, A., Sun, M., Qiu, X., Sha, L., Miller, S.P., Cofer, D.D.: A formal
architecture pattern for real-time distributed systems. In: Proceedings of RTSS,
pp. 161–170. IEEE, USA (2009)

4. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22944-2 28

5. Arias, J., Bae, K., Olarte, C., Ölveczky, P.C., Petrucci, L., Rømming, F.: Rewrit-
ing logic semantics and symbolic analysis for parametric timed automata. In: 8th
ACM SIGPLAN International Workshop on Formal Techniques for Safety-Critical
Systems (FTSCS 2022), pp. 3–15. ACM (2022)

6. Arias, J., Bae, K., Olarte, C., Ölveczky, P.C., Petrucci, L., Rømming, F.: Symbolic
analysis and parameter synthesis for time Petri nets using Maude and SMT solving.
In: Gomes, L., Lorenz, R. (eds.) Application and Theory of Petri Nets and Con-
currency. PETRI NETS 2023. LNCS, vol. 13929. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-33620-1 20

7. Arney, D., Jetley, R., Jones, P., Lee, I., Sokolsky, O.: Formal methods based devel-
opment of a PCA infusion pump reference model: Generic infusion pump (GIP)
project. In: HCMDSS-MDPnP, pp. 23–33. IEEE (2007)

8. Bae, K., Ölveczky, P.C., Feng, T.H., Tripakis, S.: Verifying Ptolemy II discrete-
event models using Real-Time Maude. In: Breitman, K., Cavalcanti, A. (eds.)
ICFEM 2009. LNCS, vol. 5885, pp. 717–736. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-10373-5 37

9. Bae, K., Krisiloff, J., Meseguer, J., Ölveczky, P.C.: Designing and verifying dis-
tributed cyber-physical systems using Multirate PALS: an airplane turning control
system case study. Sci. Comput. Program. 103, 13–50 (2015)

10. Bae, K., Lee, J.: Bounded model checking of signal temporal logic properties using
syntactic separation. Proc. ACM Program. Lang. 3(POPL), 1–30 (2019)

11. Bae, K., Meseguer, J., Ölveczky, P.C.: Formal patterns for multi-rate distributed
real-time systems. In: Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS, vol.
7684, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
35861-6 1

12. Bae, K., Meseguer, J., Ölveczky, P.C.: Formal patterns for multirate distributed
real-time systems. Sci. Comput. Program. 91, 3–44 (2014)

https://doi.org/10.1007/BFb0027227
https://doi.org/10.1007/BFb0027227
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-031-33620-1_20
https://doi.org/10.1007/978-3-031-33620-1_20
https://doi.org/10.1007/978-3-642-10373-5_37
https://doi.org/10.1007/978-3-642-10373-5_37
https://doi.org/10.1007/978-3-642-35861-6_1
https://doi.org/10.1007/978-3-642-35861-6_1

Formal Model Engineering of Distributed CPSs Using AADL 149

13. Bae, K., Ölveczky, P.C.: MSYNC: a generalized formal design pattern for virtually
synchronous multirate cyber-physical systems. ACM Trans. Embed. Comput. Syst.
(TECS) 20(5s), 1–26 (2021)

14. Bae, K., Ölveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous AADL and its
formal analysis in Real-Time Maude. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS,
vol. 6991, pp. 651–667. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24559-6 43

15. Bae, K., Ölveczky, P.C., Feng, T.H., Lee, E.A., Tripakis, S.: Verifying hierarchical
Ptolemy II discrete-event models using Real-Time Maude. Sci. Comput. Program.
77(12), 1235–1271 (2012)

16. Bae, K., Ölveczky, P.C., Kong, S., Gao, S., Clarke, E.M.: SMT-based analysis of
virtually synchronous distributed hybrid systems. In: Proceedings of HSCC, pp.
145–154. ACM, New York, NY, USA (2016)

17. Bae, K., Ölveczky, P.C., Meseguer, J.: Definition, semantics, and analysis of Mul-
tirate Synchronous AADL. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 94–109. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-06410-9 7

18. Bae, K., Ölveczky, P.C., Meseguer, J., Al-Nayeem, A.: The SynchAADL2Maude
tool. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 59–62.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2 4

19. Bae, K., Rocha, C.: Guarded terms for rewriting modulo SMT. In: Proença, J.,
Lumpe, M. (eds.) FACS 2017. LNCS, vol. 10487, pp. 78–97. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68034-7 5

20. Bae, K., Rocha, C.: Symbolic state space reduction with guarded terms for rewrit-
ing modulo SMT. Sci. Comput. Program. 178, 20–42 (2019)

21. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

22. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-LIB standard: Version 2.0. In:
SMT. vol. 13, p. 14 (2010)

23. Baudart, G., Benveniste, A., Bourke, T.: Loosely time-triggered architectures:
improvements and comparisons. ACM Trans. Embed. Comput. Syst. (TECS)
15(4), 1–26 (2016)

24. Bozzano, M., Bruintjes, H., Cimatti, A., Katoen, J.-P., Noll, T., Tonetta, S.: For-
mal methods for aerospace systems. In: Nakajima, S., Talpin, J.-P., Toyoshima,
M., Yu, H. (eds.) Cyber-Physical System Design from an Architecture Analysis
Viewpoint, pp. 133–159. Springer, Singapore (2017). https://doi.org/10.1007/978-
981-10-4436-6 6

25. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

26. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: an SMT-based model
checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 52–67. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46681-0 4

27. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

https://doi.org/10.1007/978-3-642-24559-6_43
https://doi.org/10.1007/978-3-642-24559-6_43
https://doi.org/10.1007/978-3-319-06410-9_7
https://doi.org/10.1007/978-3-319-06410-9_7
https://doi.org/10.1007/978-3-642-28872-2_4
https://doi.org/10.1007/978-3-319-68034-7_5
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-981-10-4436-6_6
https://doi.org/10.1007/978-981-10-4436-6_6
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-662-46681-0_4
https://doi.org/10.1007/978-3-662-46681-0_4
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1

150 K. Bae and P. C. Ölveczky

28. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

29. Eidson, J.: https://www.nist.gov/document/tutorial-basicpdf/ (2005). Accessed
16 Jul 2023

30. Eidson, J.C., Fischer, M., White, J.: IEEE-1588™ standard for a precision clock
synchronization protocol for networked measurement and control systems. In: Pro-
ceedings of the 34th Annual Precise Time and Time Interval Systems and Appli-
cations Meeting, pp. 243–254 (2002)

31. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis and Design Language. Addison-Wesley, USA
(2012)

32. França, R., Bodeveix, J.P., Filali, M., Rolland, J.F., Chemouil, D., Thomas, D.: The
AADL Behaviour Annex - experiments and roadmap. In: Proceedings of ICECCS
2007. IEEE, USA (2007)

33. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

34. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 14

35. Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple
inheritance, overloading, exceptions and partial operations. Theoret. Comput. Sci.
105, 217–273 (1992)

36. Kim, C., Sun, M., Mohan, S., Yun, H., Sha, L., Abdelzaher, T.F.: A framework for
the safe interoperability of medical devices in the presence of network failures. In:
ICCPS, pp. 149–158 (2010)

37. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

38. Kopetz, H., Bauer, G.: The time-triggered architecture. Proc. IEEE 91(1), 112–126
(2003)

39. Lee, J., Bae, K., Ölveczky, P.C.: An extension of HybridSynchAADL and its appli-
cation to collaborating autonomous UAVs. In: Margaria, T., Steffen, B. (eds.)
Leveraging Applications of Formal Methods, Verification and Validation. Adapta-
tion and Learning. ISoLA 2022. LNCS, vol. 13703. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-19759-8 4

40. Lee, J., Bae, K., Ölveczky, P.C., Kim, S., Kang, M.: Modeling and formal analysis
of virtually synchronous cyber-physical systems in AADL. Int. J. Softw. Tools
Technol. Transfer 24(6), 911–948 (2022)

41. Lee, J., Kim, S., Bae, K., Ölveczky, P.C.: Hybrid SynchAADL: modeling and for-
mal analysis of virtually synchronous CPSs in AADL. In: Silva, A., Leino, K.R.M.
(eds.) CAV 2021. LNCS, vol. 12759, pp. 491–504. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81685-8 23

42. Lee, J., Yu, G., Bae, K.: Efficient SMT-based model checking for signal temporal
logic. In: 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 343–354. IEEE (2021)

43. Leen, G., Heffernan, D., Dunne, A.: Digital networks in the automotive vehicle.
Comput. Control Eng. J. 10(6), 257–266 (1999)

https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://www.nist.gov/document/tutorial-basicpdf/
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-031-19759-8_4
https://doi.org/10.1007/978-3-031-19759-8_4
https://doi.org/10.1007/978-3-030-81685-8_23
https://doi.org/10.1007/978-3-030-81685-8_23

Formal Model Engineering of Distributed CPSs Using AADL 151

44. Lepri, D., Ábrahám, E., Ölveczky, P.C.: Sound and complete timed CTL model
checking of timed Kripke structures and real-time rewrite theories. Sci. Comput.
Program. 99, 128–192 (2015)

45. Liu, S., Meseguer, J., Ölveczky, P.C., Zhang, M., Basin, D.: Bridging the seman-
tic gap between qualitative and quantitative models of distributed systems. Proc.
ACM Program. Lang. 6(OOPSLA2), 315–344 (2022)

46. Liu, S., Ölveczky, P.C., Meseguer, J.: Modeling and analyzing mobile ad hoc net-
works in Real-Time Maude. J. Log. Algebraic Methods Program. 85(1), 34–66
(2016). https://doi.org/10.1016/j.jlamp.2015.05.002

47. Mavridou, A., Stachtiari, E., Bliudze, S., Ivanov, A., Katsaros, P., Sifakis,
J.: Architecture-based design: a satellite on-board software case study. In:
Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 260–
279. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57666-4 16

48. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret.
Comput. Sci. 96(1), 73–155 (1992)

49. Meseguer, J.: Taming distributed system complexity through formal patterns. In:
Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253, pp. 1–2. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35743-5 1

50. Meseguer, J.: Twenty years of rewriting logic. J. Logic Algebraic Program. 81(7),
721–781 (2012)

51. Meseguer, J.: Taming distributed system complexity through formal patterns. Sci.
Comput. Program. 83, 3–34 (2014)

52. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS architec-
tural pattern for distributed real-time systems. Theoret. Comput. Sci. 451, 1–37
(2012)

53. Meseguer, J., Roşu, G.: The rewriting logic semantics project: a progress report.
Inf. Comput. 231, 38–69 (2013)

54. Miller, S., Cofer, D., Sha, L., Meseguer, J., Al-Nayeem, A.: Implementing logical
synchrony in integrated modular avionics. In: Proceedings of IEEE/AIAA 28th
Digital Avionics Systems Conference. IEEE, USA (2009)

55. Ölveczky, P.C., Boronat, A., Meseguer, J.: Formal semantics and analysis of behav-
ioral AADL models in Real-Time Maude. In: Hatcliff, J., Zucca, E. (eds.) FMOOD-
S/FORTE -2010. LNCS, vol. 6117, pp. 47–62. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13464-7 5

56. Ölveczky, P.C., Boronat, A., Meseguer, J., Pek, E.: Formal semantics and
analysis of behavioral AADL models in Real-Time Maude. https://olveczky.se/
RealTimeMaude/AADL/webTechRep.pdf (2010)

57. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
High.-Order Symbolic Compu. 20(1–2), 161–196 (2007)

58. Ölveczky, P.C., Meseguer, J.: The Real-Time Maude Tool. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 23

59. Ölveczky, P.C.: Real-Time Maude and its applications. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 42–79. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-12904-4 3

60. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theor.
Comput. Sci. 410(2–3), 254–280 (2009). https://doi.org/10.1016/j.tcs.2008.09.022

61. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008)

https://doi.org/10.1016/j.jlamp.2015.05.002
https://doi.org/10.1007/978-3-319-57666-4_16
https://doi.org/10.1007/978-3-642-35743-5_1
https://doi.org/10.1007/978-3-642-13464-7_5
https://doi.org/10.1007/978-3-642-13464-7_5
https://olveczky.se/RealTimeMaude/AADL/webTechRep.pdf
https://olveczky.se/RealTimeMaude/AADL/webTechRep.pdf
https://doi.org/10.1007/978-3-540-78800-3_23
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1016/j.tcs.2008.09.022

152 K. Bae and P. C. Ölveczky

62. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org (2014). http://ptolemy.org/books/Systems

63. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system
analysis. J. Logical Algebraic Methods Program. 86(1), 269–297 (2017)

64. Rubio, R., Mart́ı-Oliet, N., Pita, I., Verdejo, A.: QMaude: quantitative specification
and verification in rewriting logic. In: Chechik, M., Katoen, JP., Leucker, M. (eds.)
Formal Methods. FM 2023. LNCS, vol. 14000. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-27481-7 15

65. Rushby, J.: Systematic formal verification for fault-tolerant time-triggered algo-
rithms. IEEE Trans. Software Eng. 25(5), 651–660 (1999)

66. Sha, L., Al-Nayeem, A., Sun, M., Meseguer, J., Ölveczky, P.C.: PALS: Physically
asynchronous logically synchronous systems. Tech. rep., Department of Computer
Science, University of Illinois at Urbana-Champaign (2009). http://hdl.handle.net/
2142/11897

67. Steiner, W., Bauer, G., Hall, B., Paulitsch, M., Varadarajan, S.: TTEthernet
dataflow concept. In: 2009 Eighth IEEE International Symposium on Network
Computing and Applications, pp. 319–322. IEEE (2009)

68. Steiner, W., Rushby, J.: TTA and PALS: Formally verified design patterns for
distributed cyber-physical systems. In: 2011 IEEE/AIAA 30th Digital Avionics
Systems Conference, pp. 7B5–1. IEEE (2011)

69. Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation. John Wiley & Sons
(2003)

70. Tripakis, S., Pinello, C., Benveniste, A., Sangiovanni-Vincent, A., Caspi, P., Di
Natale, M.: Implementing synchronous models on loosely time triggered architec-
tures. IEEE Trans. Comput. 57(10), 1300–1314 (2008)

71. Whitters, G., Nigam, V., Talcott, C.L.: Incremental rewriting modulo SMT. In:
Pientka, B., Tinelli, C. (eds.) Automated Deduction – CADE 29. CADE 2023.
LNCS, vol. 14132. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
38499-8 32

72. Yu, G., Bae, K.: Maude-SE: A tight integration of Maude and SMT solvers. Proc,
International Workshop on Rewriting Logic and its Applications (2020)

73. Yu, G., Lee, J., Bae, K.: STLMC: robust STL model checking of hybrid systems
using SMT. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification. CAV
2022. LNCS, vol. 13371. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-13185-1 26

http://ptolemy.org/books/Systems
https://doi.org/10.1007/978-3-031-27481-7_15
https://doi.org/10.1007/978-3-031-27481-7_15
http://hdl.handle.net/2142/11897
http://hdl.handle.net/2142/11897
https://doi.org/10.1007/978-3-031-38499-8_32
https://doi.org/10.1007/978-3-031-38499-8_32
https://doi.org/10.1007/978-3-031-13185-1_26
https://doi.org/10.1007/978-3-031-13185-1_26

Challenges Engaging Formal CBSE
in Industrial Applications

Yi Li1 and Meng Sun2(B)

1 Huawei, Beijing, China
2 School of Mathematical Sciences, Peking University, Beijing, China

sunm@pku.edu.cn

Abstract. Component-based software engineering (CBSE) is a widely
used software development paradigm. With software systems becoming
increasingly sophisticated, CBSE provides an effective approach to con-
struct reusable, extensible, and maintainable software systems. Formal
verification provides a rigorous and systematic approach to validate the
correctness of software systems by mathematically proving properties or
checking them exhaustively against specified requirements. Using for-
mal verification techniques in component-based development can further
enhance the correctness of the development process. However, the adop-
tion of component-based development supported by formal methods is
hardly widespread in the industry. It serves to a limited extent in domains
with stringent requirements for safety and reliability. In this paper, we
aim to analyze the successful application scenarios of formal methods in
component-based development, identify the challenges faced during their
application, and explore methods to further broaden their adoption.

Keywords: Formal Methods · Component-based Software Engineering

1 Introduction

The ever-increasing demand for more sophisticated and efficient software systems
has necessitated the exploration of novel development methodologies. Among
these methodologies, Component-Based Software Engineering (CBSE) [23,39]
has emerged as a promising approach that focuses on the development of soft-
ware systems by assembling pre-existing, self-contained software components.
This paradigm shifting from traditional monolithic software development to a
component-based approach offers numerous advantages in terms of flexibility,
reusability, and modularity.

CBSE does address the issue of code reusability to some extent, and the
repeated use and validation of the same components across different projects does
improve their reliability. However, it does not fundamentally solve the problem of
the correctness of the components and the systems themselves. In recent years,
complex software has become increasingly involved in and deeply integrated
into people’s daily lives, such as autonomous vehicles [13], smart cities [41], and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Cámara and S.-S. Jongmans (Eds.): FACS 2023, LNCS 14485, pp. 153–167, 2024.
https://doi.org/10.1007/978-3-031-52183-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52183-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-52183-6_8

154 Y. Li and M. Sun

smart homes [17]. The correctness of such systems has a significant impact on
the safety of human life and property. Formal methods provide a rigorous and
systematic approach to software development, ensuring correctness, reliability,
and robustness of the system. Therefore, introducing formal methods as an aid
in CBSE is of great importance in enhancing software quality and correctness.

A list of impressive research on formal methods in CBSE has been proposed
[3,5,23,27,37]. However, in industrial practice, we find that such application is
relatively niche. And its usage scenarios are also somewhat limited. In this paper
we present the main obstacles, as observed by the authors, that hinder the appli-
cation of formal methods in the field of component-based software development.

The paper is organized as follows. Section 2 briefly introduces some necessary
background knowledge. Section 3 shows some popular industrial examples where
formal methods are engaged in CBSE. Section 4 lists major challenges when
scaling formal methods to more scenarios. And Sect. 5 discusses and proposes
some ideas to tackle the challenges.

2 Background

In this section we introduce some background knowledge to provide readers with
a better understanding of the challenges that will be discussed in the following
sections.

2.1 Software Development Process

Neither component-based software development nor formal verification is a silver
bullet. They are not powerful enough to take over the software development
processes [43] widely used in the field today. In typical industrial applications,
CBSE is only applied to part of the steps in the whole software development
process.

Therefore, for researchers who are interested in applying formal verification
techniques or component-based software development approaches in practical
applications, it is crucial to understand the actual software development process.
Only then can we determine which part of the process our designed methods and
developed tools can be applied to and whether they might have any negative
impact on the remaining parts of the software development process.

Popular software development processes include the V-model, waterfall
model, spiral model, agile development model, and others. Different models are
usually associated with different business scenarios. In actual development pro-
cesses, development teams often customize these processes to align with their
specific needs. Therefore, instead of focusing on a specific development model,
here we only focus on some common steps in these development models, as shown
in Fig. 1.

In the software development process, the steps are all linked with one another.
As a result, when we want to use a tool or a methodology to “optimize” some
steps, it is extremely important to evaluate its side-effect.

Challenges Engaging Formal CBSE in Industrial Applications 155

Fig. 1. Software Development Process

For example, if we use a code generator to synthesize an implementation from
the module design, then the developers have to read the generated code to write
the unit test cases. In this case, the readability of the generated code could
become a major obstacle. Similarly, using formal models to represent system
designs and module designs makes it harder for test engineers to write integration
test cases and function test cases. Usually extra documentation is needed to make
it work.

2.2 CBSE, MDE and Others

Component-based software engineering (CBSE) and model-driven engineering
(MDE) are two distinct methodologies from a design perspective. However, in
practical applications, these two approaches have a close relationship and can
easily be confused. Given that this relationship is derived from the involvement
of formal methods (the topic discussed in this article), we provide a brief expla-
nation based on our view.

From a design perspective, CBSE emphasizes the relationship between the
whole and its parts, with the goal of maximizing reusability. On the other hand,
MDE focuses on the relationship between abstraction and concreteness (e.g.,
requirements and design, domain-specific and generic), with the aim of building
tool-chains for analysis and verification, and reducing the complexity of software
development.

In the field of model-driven development, models typically have strict for-
mal semantics. Additionally, since abstract models often do not need to address
specific details, they naturally exhibit better reusability.

Taking programming languages as an example, interfaces (in object-oriented
programming languages) and function declarations (in procedure-oriented pro-
gramming languages) themselves are abstractions, yet their presence allows for
flexible and interchangeable implementations that serve as reusable components.

Therefore, model-driven development and component-based development are
highly compatible. Conversely, once there is the involvement of strict formal
semantics in the paradigm of CBSE, it naturally introduces the paradigm of
model-driven development, as the relationship between components and the sys-
tem itself corresponds to that of concreteness and abstraction.

156 Y. Li and M. Sun

Although CBSE and MDE are two different development paradigms, when
formal semantics are introduced, they often converge in engineering practice.
Therefore, while we discuss the challenges of component-based development,
there will also be many concepts derived from the field of model-driven develop-
ment in the subsequent sections.

3 Applications of Formal CBSE

The CBSE methodology has gained wide attention and application in the indus-
try. However, the integration of formal methods and CBSE (referred as Formal
CBSE in the following) is still limited to very specific domains. Some examples
are introduced in this section.

3.1 Avionics and Railway Software

The avionics and railway software are representative sectors for safety-critical
software systems. Software of this type are characterized by long development
cycles, high cost of upgrades, and severe consequences in case of failures. Sim-
ilar industries also include aerospace software, nuclear power control software,
etc., but they will not be separately mentioned here due to their lower level of
commercialization.

Avionics Software. Various tools such as SCADE (Safety Critical Application
Development Environment) [7] with its model checking capabilities, Simulink
and Event-B have been applied in the development of the aircraft control and
display systems. For example, [18] used SCADE and its formal verification com-
ponent, the Design Verifier, to assess the design correctness of a sensor voter
algorithm. The algorithm is representative of embedded software used in many
aircraft systems.

Railway Software. B-Method [6] and Event-B [42] have been successfully applied
to modeling and code generation for subway systems. The work in [26] combines
Event-B with a component-based reuse strategy realized with session types, and
ensures global safety of railway interlocking systems by the local verification
of entities. [32] used a subset of the SysML language for modeling of railway
systems, automatically transformed the models to Event-B and finally imported
the models into the RODIN platform [1] for formal verification.

3.2 Automobile Software

Vehicle software is a domain that requires a high demand for both component-
based development and formal verification.

On one hand, due to the complex architecture and numerous devices (chips,
peripherals, etc.) involved in the automotive industry, which have relatively sta-
ble accompanying software, it makes the field highly suitable for component-
based development. The emergence of the AUTOSAR standard [21] further pro-
motes the application of component-based development in the domain of vehicle

Challenges Engaging Formal CBSE in Industrial Applications 157

software. The AUTOSAR standard divides vehicle software into three layers:
Application Layer, Runtime Environment, and Basic Software. Each layer is
further divided into several abstract components, with constraints defined in the
standard. For example, the Basic Software is further divided into different layers
such as Services, ECU Abstraction, Microcontroller Abstraction and Complex
Drivers, and these layers are further divided into functional groups. Examples
of Services include System, Memory and Communication Services. Such a lay-
ered architecture allows software and hardware suppliers to design components
according to AUTOSAR specifications, ensuring that these components can be
integrated together to form a complete system.

On the other hand, the automotive industry has stringent requirements for
safety and reliability, creating ample opportunities for formal methods. In the
functional safety standard ISO 26262, formal verification is considered an impor-
tant added advantage. Currently, widely used CBSE tools that integrate formal
verification capabilities include model-driven development tools like SCADE [7]
and Ptolemy [10], which are based on synchronous data flow. Some modern tools
targeting at automatic end-to-end compositional verification of automotive soft-
ware system properties have been developed as well, such as EVA [14].

3.3 Industrial Manufacturing Software

Advanced industrial manufacturing, particularly in the modeling and analysis of
control algorithms, is a typical application area for component-based develop-
ment. Among this area, Matlab Simulink [19] and LabVIEW [9] are among the
most general-purpose component-based development tools.

In this domain, formal methods find application mainly in the following two
areas:

1. Verification of control logics. Large-scale industrial manufacturing processes
often involve multiple concurrent control logics with complex interaction
behaviors. Methods such as model checking can be employed to mitigate
issues like deadlock and reduce failure rates, thereby enhancing overall sta-
bility of the manufacturing assembly line [47].

2. Semantical analysis of control logics and algorithms. This includes evaluating
and analyzing the execution time [34] of control algorithms, stability analysis
of controlled physical systems, optimization and synthesis of controllers [36],
etc. By analyzing the results, algorithm optimization can be guided to improve
efficiency and yield rates of the manufacturing assembly line.

It is worth noting that although Simulink has integrated basic formal verifi-
cation capabilities such as Simulink Design Verifier [30] for quite some time, it
is rare to see developers using them in practical applications. More often, devel-
opers choose domain-specific formal analysis tools based on the specific require-
ments of their scenarios, such as Coco Platform [15] and LSAT [35]. (Besides,
there are much more domain-specific or proprietary formal analysis tools devel-
oped by large companies, but many of them are not publicly available.)

158 Y. Li and M. Sun

4 Challenges

After finishing the previous sections, attentive readers may now raise the follow-
ing question:

“The domains that have been listed above are quite familiar to the CBSE
researchers. So, how to evaluate the applications of CBSE, especially
equipped with formal methods, in the broader software industry?”

Objectively speaking, the CBSE methodology has already had a significant
and far-reaching impact on the software industry. Derivatives such as cloud com-
puting and micro-services architecture have emerged based on this idea [22,28].
However, the widespread application of component-based software engineering
combined with formal verification remains challenging. This section primarily
focuses on the challenges in this aspect.

4.1 Hard to Keep Consistency Between Implementations
and Models

Large-scale industrial software is typically developed through collaborative
efforts, resulting in a fast-paced development cycle. If formal CBSE methods
fail to cover the entire process ranging from design to code implementation (as
mentioned in Sect. 2.1), potential inconsistencies could exist between the formal
models and their corresponding implementations. For example,

– As the software evolves, new features can not be formalized using the formal
model. This usually happens when the developers used a simpler formal model
in order to simplify the verification.

– The benefits of formal verification have been claimed at the first time when
the software is released to the customers. After that, continuous investment
on formal verification does not produce comparable commercial value. Con-
sequently, some teams choose to use formal methods in the prototype devel-
opment and use traditional methods (or CBSE but without formal methods)
to develop the released versions.

While the initial design models undergo comprehensive formal verification,
ensuring the correctness of the software, we have observed that, as development
speed accelerates, most development teams do not consistently invest manpower
in model construction and verification. As a result, this eventually leads to dis-
parities between the released software and the verified models in terms of formal
semantics.

Unfortunately, this challenge is not exclusive to the application of formal ver-
ification in component-based software engineering. To the best of our knowledge,
in most formal verification scenarios we are suffering from the same situation.

Challenges Engaging Formal CBSE in Industrial Applications 159

4.2 Lack of Life-Cycle Maintainability

When aiming to address the aforementioned issue of semantic inconsistencies, it
is natural to consider the introduction of code generation tools to directly gener-
ate executable code from formally verified models. Currently, many component-
based engineering tools, whether or not equipped with formal proof capabilities,
support this functionality.

However, it is unfortunate that additional engineering maintainability issues
are introduced by code generation. For example,

– Poor readability of generated implementations. Automatically generated code
often lacks readability. For developers such generated codes are hard to read
and comprehend. The problem becomes even worse without automated test-
case generation techniques.

– Increased integration complexity. Industrial software projects often involve
the incorporation of third-party components. It is typically difficult to invoke
these third-party components from the code generated by CBSE tools. In
practice, developers often need to develop compatibility layers to invoke third-
party components. Conversely, the introduction of such compatibility lay-
ers and third-party libraries significantly increases the risk of inconsistencies
between the models and their implementations.

– Lengthened error-fixing cycles. If the code is automatically generated by a
tool, it implies that developers cannot manually modify the code itself (as
any changes would be overwritten in the next model modification). Conse-
quently, when clients discover bugs in the software, even minor issues require
modifications starting from the models, leading to a longer overall repair pro-
cess and an inability to achieve prompt customer response.

On the other hand, if any bug is found in the code generation methodology
itself, it is usually hard to motivate the tool developers (community or com-
mercial entities) to fix the bug. For developers, an unavoidable fatal error may
impede the entire CBSE development process, posing significant risks to com-
mercial software.

4.3 Fragmented Requirements from Developers

One interesting aspect of component-based development is the introduction of
various development roles during the development process, each with different
tool requirements. For example, in the field of control algorithms, developers
of specific components (such as PID controllers, various filters, etc.) are often
more concerned about their runtime efficiency and may optimize them for specific
hardware mechanisms. On the other hand, the algorithm designers, who combine
these components, focus more on the performance of the algorithm itself, such
as convergence speed and other parameters. They also want to validate the
component’s parameters to prevent potential configuration errors. Developers
working on higher-level business logic focus on the correctness and stability of

160 Y. Li and M. Sun

the entire business chain, such as the presence of deadlocks or the yield rate of
the production line.

Fragmented requirements often lead to two possible outcomes. Either the
blind accumulation of numerous features increases the learning cost of the tool
significantly, diminishing its performance and usability, or different domains start
customizing the tool themselves, leading to changes in data structures due to the
addition of functionalities, resulting in siloed deliveries and a fragmented tool
ecosystem. Both outcomes are detrimental to the promotion of component-based
development.

4.4 Extra Learning Cost for Various Tools

Introducing new tools requires extra learning cost, and due to the inherent knowl-
edge requirements of formal methods, the learning cost can be relatively high.
What’s worse is that fragmented domain demands often introduce a plethora of
different tools. These tools may have different input languages, output formats,
and user interfaces that may vary significantly in terms of user experience. In
such cases, the learning cost incurred may offset the benefits.

5 Discussion

Based on the our academic research and practical experience in component-based
development in the past decades, we present some open ideas in this section
and hope that they can facilitate the broader application of component-based
development methods based on the formal theories in the software development
domain.

5.1 LLM-Aided Explanation of Codes and Exceptions

The idea aims to tackle the challenges in Sect. 4.1 and Sect. 4.2.

To the best of our knowledge, it is difficult to find mature solutions to main-
tain consistency between specification models and their implementations. One
typical approach in industry is to extract models from black-box implementa-
tions through model extraction, e.g. using active learning [24,33]. However, such
model extraction algorithms usually fail on complex implementations.

Program synthesis is the process of automatically generating a program or
code snippet that is consistent with a given model, a formal specification or
a natural language description. It involves a family of techniques such as deep
reinforcement learning [44], constraint solving [16] and symbolic execution [38].
The goal of program synthesis is to minimize human intervention in the coding
process, reduce program errors and complexity, and improve productivity.

Recently, the rapid evolution of Large-Language Models (LLMs [46]) brings
us a new chance. Large-language models, literally, are artificial intelligence mod-
els that relies on huge parameters sets to achieve general-purpose language tasks,

Challenges Engaging Formal CBSE in Industrial Applications 161

Fig. 2. Integrating LLM in CBSE Workflow

such as language understanding and generation. Modern LLMs (e.g. ChatGPT,
Llama2 [40], etc.) has been fine-tuned to perform program-related tasks [40] like
code generation and explanation.

On one direction, the Github Copilot [4], built by Microsoft, has already
proved its ability to understand and synthesize programs. On the other direc-
tion, there are already promising research on using LLMs in reversed engineer-
ing [31]. With the help of LLMs, it would be possible to increase the readability
of generated code and help the developers to quickly locate the root cause in the
models when bugs are reported. A possible integration of LLM into the CBSE
workflow is shown in Fig. 2.

In this example the LLM is mainly used to help with:

– Code polishing. Automatically generated or synthesized code are usually lack
of readability. However, with the background knowledge given (domain knowl-
edge and the algorithm of code generation, etc.), the LLM is able to under-
stand the behavior of the code, and then perform semantically equivalent
code transformation.

– Error locating. When errors happen in generated programs, with the back-
ground knowledge (the same as above) a LLM could be able to help locating
the root cause of the error in higher level specifications. So that the developer
would be able to easily fix the error by updating the specification (instead of
directly updating the generated code). This is helpful to keep a short iteration
cycle even in software developed by formal CBSE methodology.

5.2 Decoupling Formal Specification from Verification

This idea aims to tackle the challenges in Sect. 4.1 and Sect. 4.2. Its core
motivation is to enrich the formal model so that it can cover the specifi-
cations in various domains and abstraction levels.

Formal methods are mathematically rigorous techniques for the specification,
development, analysis, and verification of software and hardware systems [11]
where formal specification serves as the fundamental model for the remaining
parts.

162 Y. Li and M. Sun

To formalize complex large-scale systems, we need an expressive formal model
to capture their specifications. However, expressive models are usually harder to
validate or verify (sometimes even impossible to verify). Consequently, some
research tends to restrict the expressive power of their models to ensure the
feasibility of formal verification. However, the limitation in model expressive
power significantly reduces the usability of the tools, which often forces devel-
opers to resort to hacks like using Single-State State Machines (SSSM [45]) as a
workaround. This compromises the maintainability of the model.

Decoupling formal specification from formal verification means using highly
expressive formal semantics in component-based development tools and inte-
grating them throughout the entire development life-cycle. For safety-critical
and reliability-critical components, we can require developers to use a verifiable
subset, while allowing more flexible and complex models in other parts. For other
components, we can engage other light-weighted methods such as bounded model
checking, model-driven testing, and static analysis to enhance software reliabil-
ity.

5.3 Layered Modeling Through Domain-Specific Languages

This idea aims to tackle the challenge in Sect. 4.3. It also provides a tech-
nical basis for the idea discussed in Sect. 5.4.

Hiding unnecessary complexity can significantly improve development effi-
ciency and reduce potential errors. This is an undeniable truth in the field of
software development. Principles such as the Dependency Inversion Principle in
software architecture are aimed at hiding unnecessary complexity. Considering
the example of different roles mentioned in the previous section, if we hide for-
mal semantics, analysis, and verification features that are irrelevant to each role
during component-based development, it can alleviate the issues of fragmented
domain requirements and high learning costs.

To achieve this goal, introducing Domain-Specific Languages (DSLs) is
undoubtedly a good approach. Compared to general-purpose programming lan-
guages, DSLs are designed specifically for certain domains and provide simple
and intuitive programming languages that are only used to describe domain-
specific data objects or program behavior. For example, JSON and SQL# can
be considered typical DSLs for data modeling and querying [25,29], respectively.

By using DSLs, we can layer the tool framework for component-based devel-
opment, including a foundational model layer and a domain model layer. The
foundational model layer consists of a more expressive formal semantic model,
on which various common capabilities can be built, such as analysis, verification,
and code generation. On top of the foundational model, there can be multiple
modeling domains, each based on a DSL, including model transformation algo-
rithms and a set of domain-specific functionalities. Through these algorithms, the
domain models can be transformed into the foundational model, thereby reusing
the capabilities of the foundational model, while also enabling the construction
of domain-specific analysis capabilities. The foundational model is invisible to

Challenges Engaging Formal CBSE in Industrial Applications 163

ordinary users. In this way, by sinking common capabilities and data structures
as much as possible, this architecture can hide complexity while ensuring that
fragmented domain requirements are met, as illustrated in Fig. 3.

Fig. 3. Domain-specific Layered Modeling

There are quite a few previous works where domain-specific languages are
applied to component-based development. For example, AADL (Architecture
Analysis and Design Language) [20] supports an annex mechanism which can
be used to extend its semantics [2]. However, such examples often focus on
using DSLs to enhance the extensibility of the framework rather than hiding
unnecessary complexity.

The primary purpose of using DSLs in these cases is to provide a special-
ized language that captures the domain-specific concepts and features required
for component-based development. This allows developers to express their ideas
and intentions in a more concise and natural way, improving productivity and
reducing errors. DSLs can also provide higher-level abstractions that hide low-
level details and technical complexities, making the development process more
accessible to domain experts.

5.4 Providing Multi-Domain Integrated Development Environment

This idea aims to tackle the challenge in Sect. 4.4.

To reduce the extra learning effort required for users, a possible approach is
to provide similar user experiences and logical workflows across different tools.

Taking Matlab as an example, we can use Simulink to build data flow mod-
els and Stateflow to construct state machines for controlling the data flow. This
approach reduces the learning curve for users while enhancing their overall expe-
rience. SCADE takes it a step further by integrating requirements management

164 Y. Li and M. Sun

(which can be considered as another domain, but not necessarily formal) and
UI design into the same tool platform. This allows users to complete end-to-end
design and implementation in certain scenarios using SCADE.

To make Formal CBSE tools applicable to a wider range of scenarios, we need
a highly extensible framework that allows the introduction of various tool plug-
ins through secondary development based on the foundation modeling language
and domain-specific languages mentioned earlier. Here the foundation modeling
language is a general (compared with the domain-specific languages above) and
expressive modeling language, upon which we can build different domains.

There are already many open-source initiatives working in this direction,
such as Jetbrains’ Meta Programming System (MPS [12]) and Eclipse Xtext [8].
However, a common issue in practice is that these platforms focus too much on
generality, resulting in a high learning curve for secondary development. In this
case, a more promising solution to build specialized platforms with a limited
level of scalability, which in turn makes it possible to add more domain-specific
features to make it easier to use. The SCADE Suite also employs this idea
where the instrument and physical simulation system give an intuitive view for
controller designers.

6 Conclusion

This paper is not exactly a scientific research paper but rather resembles list of
open topics to the researchers in the area of component-based software engineer-
ing, especially formal aspects of component software. We outline several typical
scenarios in the industry where formal methods are used in conjunction with
component-based development. It summarizes some of the challenges faced in
the practical application of component-based development with formal methods
and presents open viewpoints that may aid in the promotion of component-based
development methods. The intention is for these challenges and perspectives to
provide researchers and tool developers with insights into the current state of
component-based development in industrial applications, helping them identify
valuable research directions.

Acknowledgements. This research was sponsored by the National Natural Science
Foundation of China under Grant No. 62172019, and CCF-Huawei Populus Grove
Fund.

References

1. Abrial, J., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010)

2. Ahmad, E., Dong, Y., Wang, S., Zhan, N., Zou, L.: Adding formal meanings to
AADL with hybrid annex. In: Lanese, I., Madelaine, E. (eds.) FACS 2014. LNCS,
vol. 8997, pp. 228–247. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15317-9_15

https://doi.org/10.1007/978-3-319-15317-9_15
https://doi.org/10.1007/978-3-319-15317-9_15

Challenges Engaging Formal CBSE in Industrial Applications 165

3. Arbab, F.: Coordination for component composition. In: Liu, Z., Barbosa, L.S.
(eds.) Proceedings of the International Workshop on Formal Aspects of Component
Software, FACS 2005, Macao, 24–25 October 2005. Electronic Notes in Theoretical
Computer Science, vol. 160, pp. 15–40. Elsevier (2005)

4. Barke, S., James, M.B., Polikarpova, N.: Grounded copilot: how programmers inter-
act with code-generating models. Proc. ACM Program. Lang. 7(OOPSLA1), 85–
111 (2023)

5. Basu, A., et al.: Rigorous component-based system design using the BIP frame-
work. IEEE Softw. 28(3), 41–48 (2011)

6. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application
of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999.
LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48119-2_22

7. Berry, G.: Synchronous design and verification of critical embedded systems using
SCADE and Esterel. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916,
p. 2. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79707-4_2

8. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing Ltd., Birmingham (2016)

9. Bitter, R., Mohiuddin, T., Nawrocki, M.: LabVIEW: Advanced Programming Tech-
niques. CRC Press, Boca Raton (2006)

10. Buck, J.T., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: a framework for
simulating and prototyping heterogenous systems. Int. J. Comput. Simul. 4(2)
(1994)

11. Butler, R.W.: What is formal methods? NASA LaRC Formal Methods Program
(2001)

12. Campagne, F.: The MPS Language Workbench: Volume I, vol. 1. Fabien Campagne
(2014)

13. Chouali, S., Boukerche, A., Mostefaoui, A., Merzoug, M.A.: Ensuring the compati-
bility of autonomous electric vehicles components through a formal approach based
on interaction protocols. IEEE Trans. Veh. Technol. 72(2), 1530–1544 (2023)

14. Cimatti, A., et al.: EVA: a tool for the compositional verification of AUTOSAR
models. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023. LNCS,
vol. 13994, pp. 3–10. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
30820-8_1

15. Cocotec.io: Cocotec: All systems go. https://cocotec.io/
16. Colón, M.A.: Schema-guided synthesis of imperative programs by constraint solv-

ing. In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol. 3573, pp. 166–181. Springer,
Heidelberg (2005). https://doi.org/10.1007/11506676_11

17. Criado, J., Asensio, J.A., Padilla, N., Iribarne, L.: Integrating cyber-physical sys-
tems in a component-based approach for smart homes. Sensors 18(7), 2156 (2018)

18. Dajani-Brown, S., Cofer, D., Bouali, A.: Formal verification of an avionics sensor
voter using SCADE. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -
2004. LNCS, vol. 3253, pp. 5–20. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30206-3_3

19. Simulation and model-based design (2020). https://www.mathworks.com/
products/simulink.html

20. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL - An Introduction
to the SAE Architecture Analysis and Design Language. SEI Series in Software
Engineering. Addison-Wesley (2012)

21. Fürst, S., Bechter, M.: Autosar for connected and autonomous vehicles: the autosar
adaptive platform. In: Proceedings of DSN-w 2016, pp. 215–217. IEEE (2016)

https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/978-3-540-79707-4_2
https://doi.org/10.1007/978-3-031-30820-8_1
https://doi.org/10.1007/978-3-031-30820-8_1
https://cocotec.io/
https://doi.org/10.1007/11506676_11
https://doi.org/10.1007/978-3-540-30206-3_3
https://doi.org/10.1007/978-3-540-30206-3_3
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

166 Y. Li and M. Sun

22. De Giacomo, G., Lenzerini, M., Leotta, F., Mecella, M.: From component-based
architectures to microservices: a 25-years-long journey in designing and realizing
service-based systems. In: Aiello, M., Bouguettaya, A., Tamburri, D.A., van den
Heuvel, W.-J. (eds.) Next-Gen Digital Services. A Retrospective and Roadmap for
Service Computing of the Future. LNCS, vol. 12521, pp. 3–15. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-73203-5_1

23. Jifeng, H., Li, X., Liu, Z.: Component-based software engineering. In: Van Hung,
D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 70–95. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11560647_5

24. Hendriks, D., Aslam, K.: A systematic approach for interfacing component-based
software with an active automata learning tool. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2022. LNCS, vol. 13702, pp. 216–236. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-19756-7_13

25. Hu, Y., Jiang, H., Tang, H., Lin, X., Hu, Z.: SQL#: a language for maintainable
and debuggable database queries. Int. J. Softw. Eng. Knowl. Eng. 33(5), 619–649
(2023)

26. Kiss, T., Janosi-Rancz, K.T.: Developing railway interlocking systems with session
types and Event-B. In: 11th IEEE International Symposium on Applied Compu-
tational Intelligence and Informatics, SACI 2016, Timisoara, Romania, 12–14 May
2016, pp. 93–98. IEEE (2016)

27. Li, Y., Sun, M.: Component-based modeling in mediator. In: Proença, J., Lumpe,
M. (eds.) FACS 2017. LNCS, vol. 10487, pp. 1–19. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68034-7_1

28. Liu, C., Yu, Q., Zhang, T., Guo, Z.: Component-based cloud computing service
architecture for measurement system. In: 2013 IEEE International Conference on
Green Computing and Communications (GreenCom) and IEEE Internet of Things
(iThings) and IEEE Cyber, Physical and Social Computing (CPSCom), Beijing,
China, 20–23 August 2013, pp. 1650–1655. IEEE (2013)

29. McNutt, A.M.: No grammar to rule them all: a survey of JSON-style DSLs for
visualization. IEEE Trans. Vis. Comput. Graph. 29(1), 160–170 (2023)

30. Miranda, B., Masini, H., Reis, R.: Using simulink design verifier for automatic
generation of requirements-based tests. In: Bjørner, N., de Boer, F. (eds.) FM
2015. LNCS, vol. 9109, pp. 601–604. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-19249-9_42

31. Pearce, H., Tan, B., Krishnamurthy, P., Khorrami, F., Karri, R., Dolan-Gavitt,
B.: Pop quiz! can a large language model help with reverse engineering? CoRR
abs/2202.01142 (2022). https://arxiv.org/abs/2202.01142

32. Salunkhe, S., Berglehner, R., Rasheeq, A.: Automatic transformation of SysML
model to event-B model for railway CCS application. In: Raschke, A., Méry, D.
(eds.) ABZ 2021. LNCS, vol. 12709, pp. 143–149. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-77543-8_14

33. Sanchez, L., Groote, J.F., Schiffelers, R.R.H.: Active learning of industrial software
with data. In: Hojjat, H., Massink, M. (eds.) FSEN 2019. LNCS, vol. 11761, pp.
95–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31517-7_7

34. van der Sanden, B., et al.: Compositional specification of functionality and timing
of manufacturing systems. In: Drechsler, R., Wille, R. (eds.) Proceedings of FDL
2016, pp. 1–8. IEEE (2016)

35. van der Sanden, B., Blankenstein, Y., Schiffelers, R.R.H., Voeten, J.: LSAT: spec-
ification and analysis of product logistics in flexible manufacturing systems. In:
Proceedings of CASE 2021, pp. 1–8. IEEE (2021)

https://doi.org/10.1007/978-3-030-73203-5_1
https://doi.org/10.1007/11560647_5
https://doi.org/10.1007/978-3-031-19756-7_13
https://doi.org/10.1007/978-3-031-19756-7_13
https://doi.org/10.1007/978-3-319-68034-7_1
https://doi.org/10.1007/978-3-319-68034-7_1
https://doi.org/10.1007/978-3-319-19249-9_42
https://doi.org/10.1007/978-3-319-19249-9_42
https://arxiv.org/abs/2202.01142
https://doi.org/10.1007/978-3-030-77543-8_14
https://doi.org/10.1007/978-3-030-77543-8_14
https://doi.org/10.1007/978-3-030-31517-7_7

Challenges Engaging Formal CBSE in Industrial Applications 167

36. van der Sanden, B., Geilen, M., Reniers, M.A., Basten, T.: Partial-order reduction
for supervisory controller synthesis. IEEE Trans. Autom. Control 67(2), 870–885
(2022)

37. Sifakis, J.: Component-based construction of real-time systems in BIP. In: Boua-
jjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 33–34. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02658-4_4

38. Ströder, T.: Symbolic execution and program synthesis: a general methodology for
software verification. Ph.D. thesis, RWTH Aachen University, Germany (2019)

39. Szyperski, C., Gruntz, D., Murer, S.: Component Software – Beyond Object-
Oriented Programming, 2nd edn. Publishing House of Electronics Industry (2003)

40. Touvron, H., et al.: Llama 2: open foundation and fine-tuned chat models. CoRR
abs/2307.09288 (2023). https://doi.org/10.48550/arXiv.2307.09288

41. Trivedi, P., Zulkernine, F.H.: Componentry analysis of intelligent transportation
systems in smart cities towards a connected future. In: 22nd IEEE International
Conference on High Performance Computing and Communications; 18th IEEE
International Conference on Smart City; 6th IEEE International Conference on
Data Science and Systems, HPCC/SmartCity/DSS 2020, Yanuca Island, Cuvu,
Fiji, 14–16 December 2020, pp. 1073–1079. IEEE (2020)

42. Ait Wakrime, A., Ben Ayed, R., Collart-Dutilleul, S., Ledru, Y., Idani, A.: For-
malizing railway signaling system ERTMS/ETCS using UML/Event-B. In: Abdel-
wahed, E.H., Bellatreche, L., Golfarelli, M., Méry, D., Ordonez, C. (eds.) MEDI
2018. LNCS, vol. 11163, pp. 321–330. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00856-7_21

43. Whitten, J.L., Bentley, L.D., Ho, T.I.: Systems Analysis & Design Methods. Times
Mirror/Mosby College Publishing (1986)

44. Yang, M., Zhang, D.: Deep reinforcement learning guided decision tree learning
for program synthesis. In: Zhang, T., Xia, X., Novielli, N. (eds.) IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering, SANER
2023, Taipa, Macao, 21–24 March 2023, pp. 925–932. IEEE (2023)

45. Yang, N., Cuijpers, P.J.L., Schiffelers, R.R.H., Lukkien, J., Serebrenik, A.: Single-
state state machines in model-driven software engineering: an exploratory study.
Empir. Softw. Eng. 26(6), 124 (2021)

46. Zhao, W.X., et al.: A survey of large language models. CoRR abs/2303.18223
(2023)

47. Zheng, Z., Tian, J., Zhao, T.: Refining operation guidelines with model-checking-
aided FRAM to improve manufacturing processes: a case study for aeroengine
blade forging. Cogn. Technol. Work 18(4), 777–791 (2016)

https://doi.org/10.1007/978-3-642-02658-4_4
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.1007/978-3-030-00856-7_21
https://doi.org/10.1007/978-3-030-00856-7_21

Formal Aspects of Component Software
An Overview on Concepts and Relations of Different Theories

Zhiming Liu , Jiadong Teng, and Bo Liu(B)

School of Computer and Information Science, Southwest University, Chongqing, China
liubocq@swu.edu.cn

Abstract. The International Symposium on Formal Aspects of Component Soft-
ware (FACS) was inaugurated two decades ago in response to the major software
development paradigm shift from structured development and object-oriented
development to component-based software development (CBSD) and service-
oriented architecture (SOA). FACS is dedicated to fostering a deeper under-
standing of the distinctive aspects, promoting research, education, technological
advancement, and the practical application of CBSD technology. On the 20th
anniversary of FACS, it is appropriate to briefly recall its background and history,
thereby highlighting its contributions to the community. Taking this opportunity,
we focus on the discussion to elucidate the important aspects of component soft-
ware that require to be and have been considered in formal theories. Leveraging
the refinement of component and object-oriented systems (rCOS) as a frame-
work, we provide an overview of these formal theories and discuss their rela-
tionships. We intend to express a vision that different theories and methods are
required for different aspects in a CBSD process, and also different formal theo-
ries are required even for a particular aspect. However, ensuring their consistent
application remains a major challenge and this is a main barrier to the effective
industry adoption of CBSD. Furthermore, we delineate emerging challenges and
prospects associated with integrating formal methods for modelling and design
human-cyber-physical systems (HCPS) - hybrid integration encompassing cyber
systems, physical systems, and the mixed human and machine intelligence.

Keywords: Component-Based Software · Formal Aspects ·
Human-Cyber-Physical Systems · Linking Formal Methods · rCOS

1 Introduction

In general, we understand software development or software engineering as being about
transforming processes carrying out by instances of domain concepts into their pro-
gramming models through activities of software requirements analysis, design, verifi-
cation, implementation, deployment and maintenance (now possibly better to say evo-
lution). It was at the turn of the last century and this century when a major software
development paradigm shift from structured development and object-oriented develop-
ment to component-based development (CBD) and service-oriented architecture (SOA)

Supported by the Chinese National NSF grant (No. 62032019) and the Southwest University
Research Development grant (No. SWU116007).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Cámara and S.-S. Jongmans (Eds.): FACS 2023, LNCS 14485, pp. 168–193, 2024.
https://doi.org/10.1007/978-3-031-52183-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52183-6_9&domain=pdf
http://orcid.org/0000-0001-9771-3071
http://orcid.org/0000-0002-9026-2543
https://doi.org/10.1007/978-3-031-52183-6_9

Formal Aspects of Component Software 169

was happening. By then, the academic community had gained quite a mature under-
standing and plenty practice of structured software development and object-oriented
software development. It was in that background that International Symposium on For-
mal Aspects of Component Software (FACS) started first as a workshop. In this section,
we introduce the key ideas, concepts and aspects of component-based software systems
and their development. As a paper for FACS anniversary track, however, we first give a
brief summary of the 20 years of the workshops and conferences of FACS1.

Table 1. 20 years of the FACS workshops and conferences

FACS Year [References] Venue Editors of Proceedings Invited speakers No. accepted papers

FACS 2022 [68] Virtual Event S.L.T. Tarifa and J. Proença C. Baier, R. Neves and V. Stolz 13

FACS 2021 [65] Virtual Event G. Salaün and A. Wijs R. Calinescu and C. Pasareanu 9

FACS 2020 Cancelled due to Covid Pandemic

FACS 2019 [4] Amsterdam, The Netherlands F. Arbab and S-S. Jongmans C. Ghezzi, K.G. Larsen, and W. Fokkink 14

FACS 2018 [6] Pohang, South Korea K. Bae and P.C. Ölveczky E.A. Lee and G. Rosu 15

FACS 2017 [63] Braga, Portugal J. Proença and M. Lumpe D. Costa and C. Palamidessi 14

FACS 2016 [30] Besançon, France O. Kouchnarenko, R. Khosravi H. Giese and K-K. Lau 16

FACS 2015 [9] Niterói, Brazil C. Braga and P.C. Ölveczky M. Wirsing, D. Déharbe, and R. Cerqueira 17

FACS 2014 [32] Bertinoro, Italy I. Lanese and E. Madelaine H. Veith, R. de Nicola, and J-B. Stefani 22

FACS 2013 [19] Nanchang, China J.L. Fiadeiro, Z. Liu and J. Xue C. Zhou, A. Legay and J. Misra 22

FACS 2012 [62] Mountain View, CA, USA C.S. Păsăreanu and G. Salaün T. Bultan and S. Qadeer 16

FACS 2011 [5] Oslo, Norway F. Arbab and P.C. Ölveczky J. Meseguer, J. Rushby, and K. Stølen 21

FACS 2010 [8] Guimarães, Portugal L.S. Barbosa and M. Lumpe S. Seshia and L. Caires 20

FACS 2009 [57] Eindhoven, the Netherlands M. Sun, B. Schätz G. Döhmen and J. Rutten 12

FACS 2008 [12] Malaga, Spain C. Canal, C.S. Pasareanu Lack of data 13

FACS 2007 [52] Sophia-Antipolis, France M. Lumpe, E. Madelaine C. Pasareanu and E. Zimeo 17

FACS 2006 [56] Prague, Czech Republic V. Mencl, F.S. de Boer P. Van Roy and D. Caromel 16

FACS 2005 [38] Macao, China Z. Liu, L.S. Barbosa F. Arbab, P. Ciancarini, J. He and R. Hennicker 22

FACS 2003 [44] Pisa, Italy, Z. Liu and He J M. Broy and T. Maibaum 11

1.1 International Symposium on Formal Aspects of Component Software

The first FACS workshop was an one-day event associated with the 12th International
Symposium of Formal Methods Europe (FME), now called International Symposium
of Formal Methods (FM), which was held September 8–14, 2003 in Pisa of Italy. The
purpose of the workshop was to promote understanding of the software paradigm shift
and to explore how formal methods can augment understanding of component-based
technology, thereby encouraging further research and educational pursuits in formal
methods and tools for the component-based construction of software systems. The pro-
gram consisted of two invited talks by Manfred Broy and Tom Maibaum and a few
regular presentations. An edited volume “Mathematical Frameworks for Component
Software” [44] was then published with 11 chapters, including the refined versions of
the invited talks, presentations at the workshop, and some other papers submitted in
response to the call for contributions of the volume. The papers focus on mathematical
models that identify the “core” concepts as their first-class modelling elements, includ-
ing interfaces, contracts, connectors, and services. Each chapter provides a clear defi-
nition of components, articulated through a set of key aspects, and discusses challenges

1 The first author of this paper is the founder of FACS.

170 Z. Liu et al.

related to the specification and verification of these aspects. Moreover, some papers
delve into issues concerning the refinement, composition, coordination, and orches-
tration of software components in both individual software components and broader
component-based software system development.

Originally, there were no intention to establish the FACS workshop as a recurring
annual event. However, the overwhelming expression of interest led to its organisation
again in 2005. Consequently, FACS workshop series have been conducted annually,
with proceedings being published in Springer Electronic Notes in Theoretical Computer
Science (ENTCS). In 2010, the FACS workshop series evolved into an international
symposium. Subsequently, the proceedings have been documented in Springer Lecture
Notes in Computer Sciences, and select papers have been chosen for publication in
scholarly journals, predominantly in the Science of Computer Programming (JSCP).

Over the last two decades, FACS workshops and conferences have made good con-
tributions to advancing research, education, and application in component-based soft-
ware technology. The summary presented in Table 1 alongside the papers featured in
the proceedings highlight the attraction of these FACS events for a number of excel-
lent scientists and researchers who have showcased their work. Acknowledgements are
extended to colleagues who have served as members of the steering committee, event
organisers, members of the program committees, the reviewers, and editors of the pro-
ceedings. The utmost appreciation is reserved for the authors for their invaluable con-
tributions. In this paper, we endeavour to cite proceedings from FACS workshops and
conferences wherever possible to demonstrate their far-reaching impact.

Throughout the past 20 years, FACS workshops and conferences FACS have made
their contributions to promote the research, education, and application in component-
based software technology. The summary in Table 1 and the papers in the proceedings
show that the FACS events have attracted a large number of excellent scientists and
researchers to present their work there. We would like to pay tributes to the colleagues
who have served as members of the steering committee, organisers of the events, mem-
bers of the program committees, the reviewers and editors of the proceedings, and most
of all to the authors, for their contributions. In this paper, we cite proceedings of FACS
workshops and conferences wherever we can with the intention to show their impact.

1.2 Component-Based Software Development

Component-based software or component software generally refers to software con-
structed from individual components. This idea has been present since the advent of
assembly programming, which is perceived as the craft of assembling instructions or
“components” to create programs.Wheeler’s subroutines, also known asWheeler jump-
ing routines [69], can be considered as sizable, reusable “components” of that era2.
Subsequent to this, more generalised abstractions of functions and procedures were
implemented in high-level programming languages such as FORTRAN and PASCAL.

It is widely agreed that the idea of developing software systems by using avail-
able software components was first proposed by Douglas McIlroy in his invited talk,
mass-produced software components [55], during the NATO conference on software

2 At a time when there is lack of hardware support to remember the return address of the routine.

Formal Aspects of Component Software 171

engineering. The conference was held in Garmisch, Germany, in 1968, to address the
problem of “software crisis”. There, he called for the development of a “software com-
ponent industry” to produce components which can be used in different jobs of software
development.

The philosophy of constructing large software systems from components is also
foundational to Structured Programming [18]. It is the cornerstone of object-oriented
programming [20,58] too. Indeed, it is reasonable to affirm that every programming
language incorporates some form of abstraction mechanism that facilitates the design
and composition of components.

Thus, researchers in CBSD frequently find themselves addressing the question of
whether CBSD distinctly differs from structured and object-oriented development. In
other words, answering the following questions:

1. What characteristics distinguish components in CBSD from program instructions,
routines, functions, classes, objects, libraries of classes or routines, and packages?

2. What distinctions exist between the“components”, “composition”, and “refinement”
of components in CBSD and the analogous “components”, “composition”, and
“refinement” of programs in structured and object-oriented programming?

In this paper, our goal is to demonstrate how research on the formal aspects of com-
ponent software can elucidate the aforementioned differences and relations. To accom-
plish this, we employ the rCOS method as the framework to identify various aspects of
software components, component-based software systems, and their development, illus-
trating the methods to formalise, refine, decompose, and compose them. This allows for
a clear comparison with the facets of structured and object-oriented software systems.
Moreover, we argue for the need for various formal theories for modelling different
aspects, and even different formal theories for the same aspects. We engage in a dis-
cussion on the interoperable use of these diverse formal theories. In addition, we out-
line research challenges and opportunities in component-based modelling and design
of human-cyber-physical systems (HCPSs), which are networked systems with mixed
intelligence.

1.3 Organisation

In Sect. 2, we introduce the key characteristics of software components and present
the calculi of designs and reactive designs as preliminaries. These will serve as the
semantic basis for our discussions in subsequent sections. Section 3 follows, defining
interfaces and contracts. The main content is housed in Sect. 4, where we provide an
overview of formal models of aspects and discuss their support for the separation of
concerns in CBSE. In Sect. 5, we outline the processes of software component devel-
opment and system development in CBSE, discussing the principal shortcomings in the
current state of the art and challenges to industrial adoption. In Sect. 6, we propose a
future research direction for CBSE-specifically, component-based design and evolution
of human-cyber-physical systems (HCPSs)-and discuss related challenges. We draw
conclusions at the end of this section.

172 Z. Liu et al.

2 Preliminaries

In this section, we discuss the key characteristics of software components and introduce
the basics of design calculus [46], which will serve as the semantic basis for linking
different formal theories and techniques in modelling and verification of various aspects
of component-based software.

2.1 Characteristics of Software Components

To address the two questions raised at the end of the previous section, we consider the
definition of software component given by Szyperski in his book [66]:

A software component is a unit of composition with contractually specified inter-
faces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties.

This definition characterises the requirements for a “component” to be reusable
in different software systems, which is also the major concern expressed in McIlroy’s
talk [55]. As highlighted in [28], the concept of reusability defined herein contrasts with
the “reusability” achieved through generalisation in object-oriented programming. The
latter necessitates the “rewriting” of classes (either generalised or specialised) being
reused. The discussion in paper [28] extends further to apply the above four criteria
to discern whether elements like an assembly language instruction, a library routine,
a class in a library, or a package can qualify as software components. In this context,
it is concluded that an assembly language instruction does not qualify as a component
due to its inability to be independently deployed. Library routines and classes may be
considered components, but a package, lacking an interface, does not meet the criteria
for a component. However, this reasoning is somewhat unconvincing, primarily due to
a lack of rigour in both syntax and semantics.

It is important to note that the four characteristics must be described in the models
of different kind of requirements of components. Each kind of requirements is called an
aspect [28]. Components of different types of software systems have different aspects -
be they sequential, concurrent and distributed, real-time, or embedded systems. Ques-
tions are raised, for instance, about the aspects that need specification in the interface
contract for a component within concurrent or embedded systems.

In this paper, we take the above four basic characteristics of components as the
basis and describe them in a formal model of interface contracts. An interface contract
of a component is defined in the design calculus of UTP [46] and it can be factorised
into specifications of different aspects. We show how different aspects embraced in an
interface contract of a component can be refined in different stages of the component
development, from the requirements, through the design, to coding and evolution.

2.2 Designs

We use the notion of contracts to characterise the different aspects of components. There
are different theories for different aspects, and a single aspect can also be modelled

Formal Aspects of Component Software 173

using various theories. For instance, when developing reactive components, Hoare logic
can be applied to specify functionality, the theory of I/O automata can model reactive
behaviuor, and sequence diagram notation can represent interactions with the environ-
ment. Nonetheless, Hoare logic is often used in conjunction with traces for interactions
to compose reactive components. Moreover, models or specifications, whether address-
ing identical or differing aspects, must maintain consistent relations. Hence, there’s a
requirement for a model that facilitates the definition and verification of their consis-
tency. To provide a formal definition of contracts and formalise various aspects, we first
introduce the notations of design and reactive designs. These are deployed to define the
meanings of sequential and reactive programs [22,23,46], respectively.

Definition 1 (Design). Given a set of state variables X , a design D over X is first-
order predicate of the form p � Q with free variables in X ∪ {ok} and X ′ = {x′ | x ∈
X}∪{ok′} The semantics of the design is defined as the implication (ok∧p) → Q∧ok′,
where

– a variable x ∈ X represents the initial value of x in the state when the program
starts to execute, and the x′ ∈ X ′ the value of x in the state when the execution
terminates;

– p is predicate which is called the precondition and it only refers to free variables in
X , and Q the postcondition and only refers to free variablesin X and X ′; and

– ok and ok′ are Boolean variables representing the observations about if the execu-
tion terminates, and the program is in a terminated state when ok is true, and the
execution terminates when ok′ is true.

The set X of variables is called the alphabet of the design D. A state of D is a mapping
s which assigns each variable x in X a value an ok a Boolean value. The precondition p
and postcondition Q of a design are interpreted on the set of pairs (s, s′) of states. The
meaning (ok ∧ p) → Q ∧ ok′ of p � Q says that if the execution starts well in a state s
(i.e. ok is true in s) in which the precondition p holds, the execution will terminates in
a state s′ (i.e. ok′ is true in s) such that the postcondition Q holds for (s, s′).

Let X = {x, y, z} be a set of integer variables, the design

x > 0 � (x′ = (x − 1)) ∧ (y′ = x) ∧ (z′ = z)

specifies a program such that

– from any state s in which the value of x is positive, i.e. s(x) > 0, its execution ter-
minates and the execution decrements the initial value x by 1, assigns y to the initial
value of x, and does not change the initial value of z, i.e. the execution terminates in
a state s′ such that (s′(x) = s(x) − 1) ∧ (s′(y) = s(x)) ∧ (s′(z) = s(z)); and

– from any state s in which the value of x is not positive, i.e. s(x) ≤ 0, any execution
is possible (acceptable), including non-terminating execution.

Program if (x > 0) then (y := x;x := x−1) correctly implements this specification.
Notice the difference between this design from the design below

x > 0 � x′ = (x − 1) ∧ (y′ = x′)

174 Z. Liu et al.

Note that the set of designs over X form a proper subset of first-order predicates with
free variables inX ,X ′ and {ok, ok′}. We thus require that the set of designs is closed to
the common structure operations of programs, such as assignments, sequencing, choice,
and iteration. To this end, we define the following primitives and operations on the set
PX = {D | D is a design over X}

– skip: skip
def
= true � ∧x∈X(x′ = x), that is, program skip always terminates but

its execution does not change any variables;

– chaotic program: chaos
def
= fale � true, that is, program chaos behaves as chaos

and may exhibit any behaviour;

– assignment: x := e
def
= true � (x′ = e)∧y∈X−{x}(y′ = y), namely, this assignment

always terminates, and its execution only changes the variable x to the value of
expression x obtained in the initial, keeping the other variables unchanged (it has
no side effect);

– sequencing: (D1;D2)
def
= ∃(Xo, b).(D1[Xo/X ′, b/ok′] ∧ D1[Xo/X, b/ok]), that

is, this sequence statement first executes D1 and reaches a state (Xo, b) and then it
executes D2 from this state;

– conditional choice: D1�B�D2
def
= (B∧D1)∨(¬B∧D2), that is, this conditional

choice statement behaves like D1 if B is evaluated to true in the initial state, it
behaves like D2, otherwise;

– loop: (B ∗ D)
def
= μX .(D;X) � B � skip, that is, the loop statement is the least

fixed point of the recursion X = (D;X) � B � skip.

The above formalisation is given based on the following assumptions.

1. For the assignment, the type of x and that of e are compatible, and the value of e in
the initial state is defined. These conditions can be explicitly expressed in precondi-
tion. We omit them for simplicity.

2. Similarly, the expression B in the conditional choice and loop is also assumed to be
evaluated as a Boolean value.

For the sequence statement, b is either true or false. In former case, the execution of D1

terminates well and execution of D2 starts well (i.e. ok = true), and in the latter case
the execution of D1 is chaotic, and so is the whole sequence statement.

It is important to note that the existence of (least) fixed-point for the loop is proved
based on the theorem that the partial order (P,�), forms a complete lattice. In the
lattice, the partial order � of the lattice is called the refinement relation among designs,
and it is defined as D1 � D2 if D2 → D1 is valid. The bottom element is chaos
and the top element is the angelic design defined by true � false, denoted as angel.
Thus, per Tarski’s fixed-point theorem, the least fixed point of the loop indeed exists.
We proceed to present the ensuing theorem about designs [46].

Theorem 1. The set PX of designs over X is closed with respect to the program struc-
ture operations. That is, given any two design D, D1 and D2 and any Boolean expres-
sionB such thatB only mentions variables inX , the formulas defined for skip, chaos,
assignment, sequencing, conditional choice and loop are also designs.

Formal Aspects of Component Software 175

We can add the non-deterministic choice operation (D1 � D2), which is defined by
(D1 ∨ D2), for nondeterministic programming language.

We notice that while both the left zero law ((chaos;D) = chaos) and the left
unit law ((skip,D) = D) hold for designs, neither the right zero law ((D; chaos) =
chaos) nor the right unit law ((D; skip) = D) generally apply. We enforce these laws
as healthiness conditions on the set of designs [46]. Furthermore, the assumption of side
effect freedom for assignments in OO programming is generally not valid. In rCOS, we
have developed a calculus of designs tailored for OO programming languages [23].

The design calculus is used to define the semantics of imperative (or procedu-
ral) programming languages, which are utilised for the implementation of components
within the paradigm of structured software engineering. Meanwhile, the OO extension
of the calculus in rCOS [23] can be employed to define the semantics of OO pro-
gramming languages for implementing components within an OO software develop-
ment paradigm [17]. Nonetheless, components implemented using these languages lack
abstractions for concurrency and synchronisation.

2.3 Reactive Designs

To model communication and synchronisation, we define the notion of reactive design.
This is done by incorporating two fresh Boolean variables, wait and wait′, to repre-
sent observables of synchronisation. A design D on an alphabet X with observables
{ok, ok′,wait,wait′} is called a reactive design if it satisfies the healthiness condition
W(D) = D, where the transformation W is defined as follows:

W(D)
def
= (true � wait′ ∧ ((X ′ = X) ∧ ok = ok′))) � wait � D

To specify a reactive program, it’s necessary to specify the synchronisation condi-
tions of an activity with other activities, as well as the functionality of the activities. To
this end, we introduce the concept of guarded designs represented as g&D, where D is
a design, and g is a Boolean expression of the given X , called the guard of the design.
The semantics of g&D is defined as D � g � (true � wait′ ∧ (X ′ = X)∧ (ok = ok′)),
where X is the alphabet of the design D.

It is straightforward to prove that the transformation W is monotonic (with respect
to the implication), thereby establishing that the set of reactive designs constitutes a
complete lattice. Moreover, the subsequent properties are valid for reactive designs.

Theorem 2. For a given set of variables X ,

(1) For any design D, W2(D) = W(D);
(2) W is (nearly) closed for sequencing: (W(D1);W)(D2) = W(D1;W(D2)).
(3) W is closed for non-deterministic choice: (W(D1) ∨ W(D2)) = W(D1 ∨ D2);
(4) W is closed for conditional choice: (W(D1)� b � W(D2)) = W(D1 � b � D2).

Note that “=” stands for logical equivalence. Furthermore, the following properties
hold for guarded designs.

176 Z. Liu et al.

Theorem 3. For a given set of variables X and if D, D1 and D2 are reactive designs,

1. g&D is a reactive design;
2. (g&D1 ∨ g&D2) = g&(D1 ∨ D2);
3. (g1&D1 � B � g2&D2) = (g1 � b � g2)&(D1 � B � D2);
4. (g1&D1; g2&D2) = g1&(D1; g2&D2).

These properties, together with the subsequent transformations for programming com-
mands, enable us to define a reactive program c as reactive designs of the form g&W(c),
where c is defined as follows:

c ::= skip | stop | chaos | x := e | c � B � c | B ∗ c

And

W(skip)
def
= W(true � ¬wait′ ∧ (X ′ = X))

W(stop)
def
= W(true � wait’ ∧ (X ′ = X))

W(chaos)
def
= W(fale � true)

W(x := e)
def
= W(true � ¬wait′ ∧ (x′ = e) ∧

∧

y∈X−{x}
(y′ = y))

W(c1 � B � c2)
def
= W(W(c1) � B � W(c2))

W(B ∗ c) = μ.X .(W(c);X) � B � W(skip)

3 Interfaces and Contracts

We hold the view that there should be few restrictions on what qualifies as a component.
A component can be, for instance, a few lines of code for a function, procedures, a ser-
vice provider, a substantial component for internet search or managing databases, or a
reactive system. Regardless, they should be deployable for execution and ought to have
specified interfaces, which serve as the sole interaction points with the environment.

Interfaces are most important for components and their composition. Thus, we
define them as the first-class model elements in our rCOS modelling theory [22,41].

Definition 2 (Interfaces). An interface is a triple I = (T,X,O), where T is a set of
type definitions, X a set of state variables with their types defined in T , and O is a set
of operation signatures of the form m(T1 x;T2 y) with an input parameter of type T1

and an output parameter of type T2.

We permit T to encompass a set of class definitions in an OO programming language,
facilitating the object-oriented implementation of components. Either the input param-
eter x or the output parameter y, can be vectors, possibly empty. The set X of variables
denotes the state encapsulated in the component and can also be empty. A component
is termed stateless when X is empty and stateful otherwise. The names in an interface
are designated as the syntactic aspects of types, states, and functionality. These names

Formal Aspects of Component Software 177

must be derived from predefined formal languages. For instance, elements of T are
names of defined types within a type theory; elements in X are well-defined identifiers
in a specified programming language, and elements in O are signatures from an Inter-
face Definition Language (IDL). These stipulations ensure syntactic consistency and
well-formedness checking.

It is important to note that a component can have multiple interfaces. In rCOS,
we handle this requirement at the syntactic level by defining “merging” or “union” of
interfaces [22]. We now give the definition of interface contracts.

Definition 3 (Contracts). A contract is a tuple C = (I, θ, Φ), where

– I = (T,X,O) is an interface,
– θ is a first order predicate on X which is the set of state variables of interface I
specifying the allowable initial states of the program, called the initial condition,

– Φ is a mapping which assigns each interface operation m(T1 x;T2 : y) ∈ O a
guarded deign with input alphabet X ∪ x and output alphabet X ′ ∪ y′.

We observe that the contract of an interface generally defines a model for con-
current (or reactive) programs. Such models can be specified in a well-established
formal theory, for instance, in the temporal logic of actions (TLA) [31] as a normal
form θ ∧ �[

∨
m()∈O Φ(m())]X . A well-established formal theory for concurrent pro-

grams, like TLA, facilitates the development of concurrent systems from scratch. Other
renowned theories in this domain include UNITY [13], Event-B [1], and the stream cal-
culus [10]. Such as theory can be used for the development of concurrent systems from
scratch by going through a whole process of specification, decomposition, composition
and verification. However, these theories often do not provide explicit support for the
separation of concerns or for black-box integration (whether composition or assembly).
Moreover, event-based theories, such as those based on input/output automata [54],
CSP [27,64], CCS [59], and other process algebras [7], predominantly emphasize inter-
action and concurrency aspects.

We believe that these limitations play a significant role in the industry’s lukewarm
adoption of component-based development technologies. More effort should be dedi-
cated to creating integrated development environments (IDEs) that support consistent
use of various theories, techniques, and tools for diverse aspects. In the next section, we
identify these aspects and identify the formal theories for their specification, decompo-
sition, verification, and refinement.

4 Models of Aspects of Contracts

To address the aforementioned limitations, component-based development should ide-
ally support the composition of components based on interface specifications in a black-
box manner. Furthermore, it should enable an interface model to be divided into models
addressing different aspects, thereby facilitating the separation of concerns in the devel-
opment process. We will now delve into such a factorisation, drawing upon the interface
model defined in the preceding section.

178 Z. Liu et al.

In general, a formal theory of each aspect is a mathematical logic system or a uni-
versal many-sorted algebra, which consists of a formal language, its semantics (inter-
pretations), and a proof system defined by axioms and inference rules. We now discuss
the aspects interface contracts and their formal theories.

4.1 Type Systems

Definitions 2&3 show that an interface contract is based on a type system. This rep-
resents a formal theory essential for addressing the data aspect, ensuring consistency
checks for data representations of states in X , signatures of operations, and the expres-
sions in guards and designs. The type system for an interface contract can be distinct
from the type systems in various programming languages utilised for the component
implementations. Nonetheless, transformations must be defined to bridge the abstract
type system at the interface level with those in the programming languages. Established
theories of abstract data types (ADT) and algebraic specification, such as [11], serve
this purpose effectively.

Here we highlight the rCOS method [23,29,43,72], which provides a semantic
theory for OO programs, encompassing an object-oriented type system. This theory
extends the design calculus, offering the subsequent features:

– Variables are categorised as public, protected, or private. The types of variable val-
ues can either be primitive types or classes.

– An object is recursively defined as a graph structure. Nodes represent objects, while
directed edges, labelled by the attribute names in the source node, denote references
from one node to another (akin to a UML object diagram). Such a graph contains a
unique root node, symbolising the current object.

– The system supports type casting through dynamic type binding of method invoca-
tions and type safety analysis.

– At any given execution moment, the program’s state is an object graph termed the
state graph. This represents the main program’s object, implying the root is the main
class’s object. The object nodes within this state graph encapsulate the dynamic
object types.

– Program command execution transitions from one state to another by either adding
a new object to the graph (e.g., opening a new account in either a small or large bank
system), altering attribute values of certain graph objects (like the transfer() action
in a banking system), or modifying graph edges (such as enabling customer access to
a shared account). Thus, the command’s semantics (including method invocations)
is expressed as a relation between states in UTP design form.

– To bolster incremental program development, a class declaration is also specified as
a design, capturing changes in the program’s static class structure. This can be seen
as a textual formalisation of a UML class diagram. The class declaration is an action
undertaken prior to program compilation.

Drawing from this semantic theory,OO refinement is articulated across three dimen-
sions: refinement of commands, which encompasses method invocations, refinement
of classes (also dubbed OO structure refinement), and refinement of programs. Class

Formal Aspects of Component Software 179

refinement also signifies sub-typing. Program refinement includes both the extension
and modification of the program’s class declarations, coupled with the refinement of
the main method and other class methods. This research is elaborated in the paper [23].
The rCOS theory of OO semantics is also applicable to components within an OO pro-
gramming paradigm. The soundness and (relative) completeness of the OO refinement
are proven in [72].

4.2 Functionality and Synchronisation Behaviour

This model of interface contracts defines the requirements of a component, including
both functional requirements and synchronisations conditions of each individual inter-
face operation. From an operational perspective, we can divide this model into three
parts:

– R: Represents the functional aspects of the contract. It is a mapping that assigns a
design (not a reactive design) to each operation m().

– S: Denotes a labelled state transition system. Using symbolic states, it characterises
the reactive behaviour.

– A: Captures the data state aspects of the contract. It is a mapping that associates
each state s of the transition statement with a (or a set of) predicate formula A(s).

R, A and the state transition system are related such that for any state transition

s
m()→ s′ from s to s′ by an operation m() of the interface I, it is required that the guard

g holds in s and that design Φ(m()) holds for (s, s′). Here, we say that g holds in s if
A(s) → g, and (s, s′) holds for Φ(m()), if p → A(s) and A(s′) → Q, where p and Q
are the precondition and postcodnition of Φ(m()), respectively.

Therefore, the functional aspect is specified, analysed, refined, and verified within
its own theory, be it Hoare Logic [26], the design calculus in the Unifying Theory of
Programming (UTP) [46], or the rCOS OO design calculus in [23]. On the other hand,
the synchronisation aspect is modelled, designed, refined and verified using its dedi-
cated theory, such as labelled state transition systems, interface automata [2], or UML
state diagrams. It is important to note that there is not an automatic method (neither
an algorithm nor syntactic rules) to factor a given contract. Typically, we construct the
models for these aspects using a use-case driven approach, then merge them into a con-
tract using the syntactic rules presented in [14], followed by a consistency check (refer
to Sect. 5).

4.3 Interaction Protocols

When assembling components, checking interaction compatibility between them often
benefits from a declarative protocol specification based on a set of allowable traces
rather than an operational model. Consider a buffer with a capacity of one: it only
permits interaction traces that alternate between put() and get(), beginning with put().
More generally, a buffer with capacity n would accept traces that start with put(). In
any prefix of such traces, the number of get() occurrences should not exceed that of
put(), and the count of put() should not be greater than n times the number of get().

180 Z. Liu et al.

This aspect can be addressed using the theory of regular expressions, process calculi,
or sequence charts.

Often, we can express the specification of an interface contract in the simplified
form (I, θ,R, T), where:

– I represents the interface,
– θ denotes the initial condition,
– R assigns a design to each operation signature m() for its functionality aspect, and
– T is a set of traces of the form 〈?m1(x1), . . . , ?mk(xk)〉, representing the interac-

tion protocol between the contract and its environment. Here, ?mi(xij) signifies an
invocation event of service mi with the input value xi.

One might wonder how such a specification relates to a contract defined in Defi-
nition 3. To our knowledge, no transformation directly from such a specification to a
contract has been defined. However, one can envision a design of the component by ini-
tially designing the functionality of services without synchronisation control, followed
by the design of the interaction protocol for the constraints of the invocations. Subse-
quently, we define the semantics of the design in terms of reactive designs. Essentially,
the environment should not be blocked if it invokes the provider services following any
of the traces in T , and the execution of the invocation should be correct with respect to
the functionality aspect R. Several well-established theories support the specification
and design of interaction protocols, including process calculi and sequence charts.

The main theme we propose here is the separation of the functionality and syn-
chronisation aspects of communications. This separation enables the flexible combina-
tion of a simpler theory of functional design and component development, such as the
rCOS relational calculus of components [42], with theories for component coordination,
e.g. [3], and component orchestration, e.g. [60], for system assembly.

4.4 Dynamic Behaviour

A component interacts with its environment through its interfaces, which serve as access
points. Its behaviour can be described by potential sequences of alternating events of
invocations and returns of provided operations (or services). It’s often necessary to spec-
ify potential failures that can occur during execution, namely, deadlock and livelock (or
divergence). In this context, we define the dynamic behaviour of a contract C, as out-
lined in Definition 3, as a pair of sets BC = (DC ,FC) representing divergences and
failures. In this section, we provide only informal definitions of DC and FC , and direct
the reader to the paper [22] for a more formal discussion.

Definition 4 (Divergences). Given a contract C, the set DC of divergences for C con-
sists of sequences of invocations 〈?m1(x1)!m1(y1) . . .?mk(xk)!mk(yk)〉 of provided
operations mi(). These sequences end in a divergent state, meaning the execution of
θ;m1(x1; y1); . . . ;mi(xi; yi) in a prefix of the sequence from an initial state results in
ok′ being false. Here, xi and yi represent the actual input and output parameters of the
invocation mi(), respectively.

Notice that each pair of events ?mi(xi)!mi(yi) in the sequence corresponds the execu-
tion of an method invocation mi(xi; yi).

Formal Aspects of Component Software 181

Definition 5 (Failures). Given a contract C, the set FC of failures for C consists of
pairs (tr,M). Here, tr is a finite sequence of invocations 〈?m1(x1)!m1(y1) . . .〉 of pro-
vided operations, and M is a set of service invocations. One of the following conditions
must hold:

(1) tr is the empty sequence, and M consists of invocations m(v) for which the guards
of their designs are false in the initial condition θ.

(2) tr is a trace 〈?m1(x1)!m1(y1) . . .?mk(xk)!mk(yk)〉, and M includes the invo-
cations m(v) such that after executing the invocations m1(x1, y1) . . . mk(xk, yk)
from an initial state, the guard of m(v) is false, i.e., θ;m1(x1, y1); . . . ;mk(xk, yk)
implies ¬g′ for the guard g of the design of m().

(3) tr is a trace 〈?m1(x1)!m1(y1) . . .?mk(xk)〉 where the execution of the invocation
mk(v) has not yet delivered an output, and M includes all invocations.

(4) tr is a trace 〈?m1(x1)!m1(y1) . . .?mk(xk)〉, and the execution of the invocation
mk(v) has entered a wait state, and M comprises all invocations.

(5) tr is a divergence in DC , and M contains all invocations (all invocations can be
refused after the execution diverges).

We now establish the relationship between a protocol T defined in the previous subsec-
tion, and the dynamic behavior. This, in turn, relates to the contract defined in Defini-
tion 3. First, we define the set of traces for a contract C based on its failures.

Trace(C) def= {tr | there exists a M such that (tr,M) ∈ FC}

Then, a protocol T is a subset of Prot(C) def= {tr ↓? | tr ∈ Trace(C)}.

Definition 6 (Consistent Protocol of Contract). A protocol T is consistent with
(DC ,FC) (and hence with contract C),if executing any prefix of any invocation sequence
sq in T does not lead to a state where all invocations to the provided services are
rejected. That is, for any sq ∈ T and any (tr,M) ∈ FC such that sq = tr ↓?, we must
have M �= {m(v) | m() ∈ O} if tr ↓?.

We have the following theorem for the consistency between protocols and contracts.

Theorem 4. Given a contract C and its protocols T1 and T2, we have:

(1) If T1 is consistent with C and T2 ⊆ T1, T2 is consistent with C.
(2) If both T1 and T2 are consistent with C, so is T1 ∪ T2.
(3) If C1 = (I, θ1, Φ1) is another contract of interface I and θ � θ1 and Φ(m()) �

Φ1(m()) for every operation m() of the interface, then T1 is consistent with C1 if
it is consistent with C.

It is important to note that a largest protocol (or weakest protocol) of a contract exists
and can be derived from the contract. We refer to [22] for technical details. The impor-
tance of the notion of consistency and its properties lies in ensuring the correct use of
components in various interaction environments. Furthermore, this allows for the design
of functional aspects and the tailoring of communication protocols (i.e., coordination
and orchestration) to be separated.

182 Z. Liu et al.

In rCOS [16,17], we demonstrated how protocols are specified using sequence dia-
grams, with their semantics defined in terms of CSP [35]; dynamic behaviour is mod-
elled using UML state diagrams, and their semantics is also defined in terms of the
failure-divergence semantics of CSP [64]. As a result, consistency can be automatically
checked [48]. However, with UTP as its semantic foundation, other theories for differ-
ent aspects can be utilised and their integration can be defined in the model of contracts
defined in Definition 3. The sustainability of components is supported by the refinement
calculus of contracts.

Definition 7 (Contract refinement). A contract C1 is refined by a contract C2, denoted
as C1 � C2, if they have same interface, and

(1) C2 is not more likely to diverge, i.e. DC2 ⊆ DC1; and
(2) C2 is not more likely to block the environment, i.e. FC2 ⊆ DC1 .

There is an effective and complete method to prove that one contract refines another
using downward simulation and upward simulation. We refer to our paper [22] for tech-
nical details.

4.5 Other Aspects

There are other aspects of components, including real-time and security, and even power
consumption. In theory, these can be incrementally integrated into the above framework.
For example, time can be represented using the timed sequence in RT-UML, timed
transition systems [24], or timers or clocks defined in TLA [45]. We also believe that
component-based architecture is quite effective for imposing various security policies,
e.g. [47]. However, we leave these topics out of this paper due to the page limit.

5 Component-Based Development

It is widely agreed that component-based system development comprises both the cre-
ation of individual components and the system development using these available com-
ponents. Components are expected to be heterogeneous, indicating that they can be soft-
ware developed within various paradigms (potentially by different teams using distinct
programming languages). Moreover, components can be hierarchical, suggesting that
they can be assembled from other components. We assume that a component developer
can construct hierarchical components, but the system developer might not necessarily
be aware of these hierarchies. Nevertheless, the development process of component-
based systems does involve specifying the architecture for component composition or
integration. It is worth noting that the composition language (e.g., Orc [60] or Reo [3])
might differ from the languages utilized in component development.

It is a common contention that the system development process should be bottom-
up, with the system assembled from pre-implemented or even pre-deployed compo-
nents. However, such a stance is somewhat idealistic and not always practical, given
the ever-evolving nature of applications. Additionally, we assert that there is always a
necessity for a system requirements specification when developing a new system, even

Formal Aspects of Component Software 183

if it is based on an existing one. Moreover, there’s a need to design a system architec-
ture model derived from this requirements specification. This design would facilitate
the identification of existing components, their interfaces, and protocols, ideally within
a component repository equipped with management tool support. A significant chal-
lenge lies in the identification process. This involves mapping naming schemes from
the requirements model to the architecture model and subsequently to pre-implemented
components, such as those in component repositories. Arguably, this challenge is the
most significant barrier to the effective industrial adoption of component-based tech-
nology.

Nevertheless, rCOS offers a framework for OO component-based software devel-
opment, emphasising use case-driven system requirements specifications. From these
specifications, a model of the system architecture is derived. Each use case is articulated
as an interface contract, and the relationships among use cases, represented in UML use-
case diagrams, are formalised as dependencies between interfaces. This forms an initial
model of the system architecture. We will now provide an overview of this development
process. For a more detailed discussion, we refer readers to our papers [17,37].

Fig. 1. An example of a conceptual class diagram

5.1 Use Case as Components

A requirements model comprises a set of interrelated use cases identified from the appli-
cation domain. Each use case is modeled as an interface contract for a component. In
the following discussion, we will briefly outline the steps to create a model of a use
case as an interface contract. For technical details, readers are referred to rCOS-related
papers, specifically the two cited here [15,17].

184 Z. Liu et al.

Identify and Represent the Interface of a Use Case.As demonstrated in the papers, an
informal description of the use case is first provided using structured natural language.
The operations of the provided interface for the component corresponding to a use case
consist of interactions with the actors, and their symbolic names are then assigned.
State variables serve as symbolic representations of the objects that must be recorded,
checked, and updated, in accordance with the need to know policy [33,36].

Identify Classes and Their Associations. The use case describe a domain process
and the description involves domain concepts and objects, which the use cane needs
to record, check, modify and communicates. Then an initial class diagram can then be
constructed by giving symbolic names to this concepts and their relations. Figure 1 is
the initial class diagram for use case “Process Sale” of the CoCoMe Example [25,50].

Representing the Interaction Protocol. An interaction of an actor and the component
is the possible events with which the actor triggers the system for the execution of
an interface action. The interaction protocol between the actors and the component is
represented by a sequence diagram and it is created based on the description of the use-
case. Figure 2 is the initial sequence diagram use case “Process Sale” of the CoCoMe
Example.

Specify Functionality of Interface Operations. The functionality of each interface
operation is specified by a design, which consists of a pair of pre- and post-conditions.
These conditions can initially be described informally and later formalised for consis-
tency checking and validation. The preconditions emphasise the properties of existing
objects that need to be checked, while the postconditions focus on describing what new
objects are created, what changes are made to attributes, what new links between objects
are formed. For examples informal descriptions of functionality of interface operations
and their formalisation, we refer the reader to the papers [17,25,50].

Represent Dynamic Behaviour. The dynamic behavior of a use case is modeled using
a state diagram. This model aids in the verification of system properties, including both
safety and liveness, by employing model checking techniques.

The models for the aforementioned aspects of a component, corresponding to a
use case, collectively form the interface contract for that use case. Completion and
consistency checks must be conducted within the framework of the rCOS interface
contracts discussed in Sect. 3. With the interface contracts of the components of the use
cases, we can create the UML component diagram as the diagrammatic representation
of the system architecture at the requirements modelling phase.

5.2 Component Development Process

We propose that the design process for a component begins with an OO design app-
roach and concludes by transforming the OO design models of certain components into
component-based design models. Due to space limitations, we will only outline the
steps of the OO design process for a component, illustrating what models should be
produced:

Formal Aspects of Component Software 185

Fig. 2. An example of use-case sequence diagram

1. Begin the process by taking each use-case component and designing each of its pro-
vided operations according to its pre- and post-conditions using the OO refinement
rules, especially the four patterns of GRASP [17,33].

2. Decompose the functionality of each use-case operation into internal object inter-
action and computation, refining the use-case sequence diagram into an object
sequence diagram for the use-case [17,35].

3. During the decomposition of the functionality of use-case operations to internal
object interaction and computation, refine the requirements class model into a design
class model. This involves adding methods and visibilities in classes based on
responsibility assignments and direction of method invocations [17].

4. Select some of the objects in an object sequence diagram as candidate component
controllers. These candidates should pass an automatic check ensuring they meet six
given invariant properties. Following this, transform the design sequence diagram
into a component-sequence diagram [34].

5. Generate a component diagram for each use-case (this can be done automatically).
This diagram should depict a decomposition of the use-case component from the
requirements model into a composition of sub-components. From this, the complete
component-based architecture model at the requirements level is decomposed into a
component-based design architecture model [34].

186 Z. Liu et al.

6. Coding from the design architecture model is straightforward and can largely be
automated [51,70].

The model transformations involved in the development process for a use-case compo-
nent are depicted in Fig. 3.

Fig. 3. Transformations from requirements to design of a component

5.3 System Development

For a given application domain, we assume a repository exists containing implemented
components for a multitude of use cases, their contract specifications, information on
context dependencies, and possibly their sub-components3.

Broadly speaking, system development begins with the creation of a requirements
model based on contract use cases. These use case contracts are then refined and/or
decomposed into component compositions to form a system architecture model. From
this point, we search the repository for candidate components that could match a com-
ponent in the architecture and verify if their contracts are refinements of the compo-
nent’s contract within the architecture. The checks for functional requirements and
synchronization requirements can be performed separately. Additionally, they can be
refined individually by adding connectors and coordinators, respectively.

It is possible that for some component contracts within the architecture, there are no
suitable components that can be easily adapted for implementation. In such cases, we

3 However, it should be noted that we are not aware of such an existing repository.

Formal Aspects of Component Software 187

must use the method of component development discussed in the previous subsection.
The primary features of component and system development in rCOS are shown in
Fig. 4.

Fig. 4. Features of the rCOS modelling and development

Note that domain knowledge is crucial for providing the requirements model in
terms of use cases, designing the architecture, and mapping them to components in
the repository. The primary challenge in formalising the mapping and developing tool
support stems from the varying naming schemes used in the requirements models, the
architectural design, and the representations of the component models in the repository.
In our opinion, significant effort is required in this area.

6 Future Development and Conclusion

From the discussions in the previous sections, it’s evident that the modelling theories
and design methods for transitional component-based software development are rela-
tively mature. However, there are significant shortcomings in bridging the models in
requirements, design, and those utilised in component repositories. These gaps are pri-
mary sources of challenges for industry adoption.

At the same time, computer systems are rapidly evolving to be more networked,
hybrid, and larger in scale. Consequently, their software systems also become more
intricate. Consider scenarios where components can be cyber-physical system (CPS)
devices, artificial neural networks, or even humans. These systems are widely called
Human-Cyber-Physical Systems (HCPS).

188 Z. Liu et al.

6.1 Extend rCOS for Model Human-Cyber-Physical Systems

We are currently working on a project titled Theory of Human-Cyber-Physical Com-
puting and Software Defined Methodology. Our aim is to extend the rCOS component-
based modelling notation to model software architectures of HCPS. We view the archi-
tecture of an HCPS as comprising cyber systems, communication networks, physical
processes, human processes, and interfaces. Specifically:

– Physical processes can encompass various operations, such as mechanical, electri-
cal, and chemical processes.

– Cyber systems (or information systems) are computing entities. Within this:
• Some are dedicated to data collection and processing.
• Others, termed controlling systems, are responsible for making control decisions
based on the data provided by the aforementioned systems to manage physical
processes.

– Human processes involve making control decisions based on information received
from information systems to guide physical processes.

– Interfaces serve as middleware between physical systems, cyber systems, and
humans. These include sensors, actuators, A/C and C/A converters, among others.

– Sensors detect the physical processes, gather data about the behavior of these pro-
cesses, and relay this data to the information systems via the network.

– Control decisions made by both computers and humans are dispatched as commands
through the network to the appropriate actuators, which then execute the correspond-
ing control actions.

There is a need for system software to coordinate and orchestrate the behaviors
of the component systems, as well as for scheduling the physical, network, hardware,
human, and software resources. Specifically, components that can facilitate the switch-
ing of control between human and computer controllers are crucial.

Our primary challenge is to extend the rCOS contracts of interfaces to accommodate
cyber-physical interfaces (CP-interfaces) or hybrid interfaces. A CP-interface incorpo-
rates field variables that include both signals-representing information about the states
of physical processes-and program variables. It encompasses both program operations
and signals for interaction with the component’s environment. Additionally, a signal
can be either discrete or continuous. A contract for a CP-interface comprises a provided
CP interface, a required CP interface, and a specification detailing the functionality
of the program operations as well as the behaviour (expressed through differential or
difference equations) of the signals in the interfaces.

We suggest defining the dynamic behavior of such a contract using two hybrid
input/output automata [53]. These include one for the provided CP interface and another
for the required CP interface. They should be specifiable in Hybrid CSP [21] and
analysable using Hybrid Hoare logic [73]. Our preliminary ideas on this extension can
be found in [39,40,49], with a proof-of-concept example provided in [61].

A significant challenge in modelling HCPS is the absence of a computational model
and theory for human interactions with cyber and physical systems. We propose a
model of human-cyber-physical automata (HCPA). In this model, human behaviour
is represented by a neural network, and the controller responsible for control switching

Formal Aspects of Component Software 189

between human and machine is depicted as an oracle with an associated learning model.
Importantly, we are not aiming to model generalised human intelligence but rather the
behaviour of a human in a specific application when executing their tasks. Researching
a comprehensive theory will require addressing the complexities of integrating tradi-
tional computational models with AI models. We have given an initial definition to
HCPA that includes only one human process to control a physical process in tandem
with digital controllers. This model, along with a proof-of-concept case study, is pre-
sented in the extended abstract of the invited talk [71]. A full and extended version of
this work is now available in the paper [67]. For further exploration of the research
challenges in this project, we direct readers to the editorial paper [49] and the lecture
notes available at [39]. The research will significantly encompass the controllability and
composability of AI systems, their integration with traditional computational systems,
and the reliability of these hybrid systems.

6.2 Conclusions

To commemorate the 20th anniversary of FACS, we aim to elucidate the meaning of
“formal aspects of component software”. In doing so, we provide an overview of the
formal models and methods that can be used for different aspects of software compo-
nents and component-based software systems. The central theme we wish to emphasise
is, however, that the engineering principles of separation of concerns and divide and
conquer necessitate the consistent application of various theories and methods tailored
to distinct aspects. Using the rCOS framework as an example, we demonstrate these the-
ories and methods, illustrating how and when they are applied consistently throughout
development. From our discussion, it is evident that while the concepts and theories are
robust, there remains a gap in the evolution of engineering techniques and tool support.
Moreover, we recognise that research in CBSE must advance in tandem with develop-
ments in computer-based systems, notably in areas like human-cyber-physical systems
(HCPS).

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press, Cambridge (2010)

2. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes 26(5), 109–
120 (2001)

3. Arbab, F.: Coordinated composition of software components. In: Liu, Z., He, J. (eds.) Math-
ematical Frameworks for Component Software, pp. 35–68. World Scientific (2006)

4. Arbab, F., Jongmans, S.-S. (eds.): FACS 2019. LNCS, vol. 12018. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-40914-2

5. Arbab, F., Ölveczky, P.C. (eds.): FACS 2011. LNCS, vol. 7253. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35743-5

6. Bae, K., Ölveczky, P.C. (eds.): FACS 2018. LNCS, vol. 11222. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-02146-7

7. Baeten, J.C.M., Bravetti, M.: A generic process algebra. In: Algebraic Process Calculi: The
First Twenty Five Years and Beyond. BRICS Notes Series NS-05-3 (2005)

https://doi.org/10.1007/978-3-030-40914-2
https://doi.org/10.1007/978-3-642-35743-5
https://doi.org/10.1007/978-3-030-02146-7

190 Z. Liu et al.

8. Barbosa, L.S., Lumpe, M. (eds.): FACS 2010. LNCS, vol. 6921. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-27269-1

9. Braga, C., Ölveczky, P.C. (eds.): FACS 2015. LNCS, vol. 9539. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-28934-2

10. Broy, M.: A theory for requirements specifications and architecture design. In: Liu, Z., He,
J. (eds.) Mathematical Frameworks for Component Software, pp. 119–154. World Scientific
(2006)

11. Broy, M., Wirsing, M.: On the algebraic extensions of abstract data types. In: Dı́az, J., Ramos,
I. (eds.) ICFPC 1981. LNCS, vol. 107, pp. 244–251. Springer, Heidelberg (1981). https://doi.
org/10.1007/3-540-10699-5 101

12. Canal, C., Pasareanu, C.S. (eds.): Proceedings of the 5th International Workshop on Formal
Aspects of Component Software, FACS 2008, Malaga, Spain, 10–12 September 2008,
Electronic Notes in Theoretical Computer Science, vol. 260. Elsevier (2010). https://www.
sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/260/suppl/
C

13. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley, Reading
(1988)

14. Chen, X., Liu, Z., Mencl, V.: Separation of concerns and consistent integration in require-
ments modelling. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H.,
Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 819–831. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69507-3 71

15. Chen, Z., et al.: Modelling with relational calculus of object and component systems - rCOS.
In: Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component Mod-
eling Example. LNCS, vol. 5153, pp. 116–145. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85289-6 6

16. Chen, Z., Li, X., Liu, Z., Stolz, V., Yang, L.: Harnessing rCOS for tool support—the
CoCoME experience. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods and
Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 83–114. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75221-9 5

17. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verification in component-
based model driven design. Sci. Comput. Program. 74(4), 168–196 (2009)

18. Dahl, O., Dijkstra, E., Hoare, C.: Structured Programming. Academic Press, Cambridge
(1972)

19. Fiadeiro, J.L., Liu, Z., Xue, J. (eds.): FACS 2013. LNCS, vol. 8348. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07602-7

20. Goldberg, A., Robson, D.: Smalltalk-80: The Language and Its Implementation. Addison-
Wesley Longman Publishing Co. Inc., Boston (1983)

21. He, J.: From CSP to hybrid systems. In: The Proceedings of A Classical Mind: Essays in
Honour of C. A. R. Hoare. Prentice-Hall (1994)

22. He, J., Li, X., Liu, Z.: A theory of reactive components. Electr. Notes Theor. Comput. Sci.
160, 173–195 (2006)

23. He, J., Liu, Z., Li, X.: rCOS: a refinement calculus of object systems. Theoret. Comput. Sci.
365(1–2), 109–142 (2006)

24. Henzinger, T.A., Manna, Z., Pnueli, A.: Temporal proof methodologies for timed transition
systems. Inf. Comput. 112(2), 273–337 (1994)

25. Herold, S., et al.: CoCoME - the common component modeling example. In: Rausch, A.,
Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component Modeling Example.
LNCS, vol. 5153, pp. 16–53. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85289-6 3

26. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969)

https://doi.org/10.1007/978-3-642-27269-1
https://doi.org/10.1007/978-3-319-28934-2
https://doi.org/10.1007/3-540-10699-5_101
https://doi.org/10.1007/3-540-10699-5_101
https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/260/suppl/C
https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/260/suppl/C
https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/260/suppl/C
https://doi.org/10.1007/978-3-540-69507-3_71
https://doi.org/10.1007/978-3-540-85289-6_6
https://doi.org/10.1007/978-3-540-85289-6_6
https://doi.org/10.1007/978-3-540-75221-9_5
https://doi.org/10.1007/978-3-319-07602-7
https://doi.org/10.1007/978-3-540-85289-6_3
https://doi.org/10.1007/978-3-540-85289-6_3

Formal Aspects of Component Software 191

27. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677
(1978)

28. Holmegaard, J.P., Knudsen, J., Makowski, P., Ravn, A.P.: Formalisization in component-
based developmen. In: Liu, Z., He, J. (eds.) Mathematical Frameworks for Component Soft-
ware, pp. 271–295. World Scientific (2006)

29. Ke, W., Liu, Z., Wang, S., Zhao, L.: A graph-based generic type system for object-oriented
programs. Front. Comput. Sci. 7(1), 109–134 (2013)

30. Kouchnarenko, O., Khosravi, R. (eds.): FACS 2016. LNCS, vol. 10231. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57666-4

31. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16(3), 872–
923 (1994)

32. Lanese, I., Madelaine, E. (eds.): FACS 2014. LNCS, vol. 8997. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-15317-9

33. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process, 2nd edn. Prentice-Hall, Upper Saddle River (2001)

34. Li, D., Li, X., Liu, Z., Stolz, V.: Interactive transformations from object-oriented models to
component-based models. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253,
pp. 97–114. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35743-5 7

35. Li, X., Liu, Z., He, J.: A formal semantics of UML sequence diagram. In: 15th Australian
Software Engineering Conference (ASWEC 2004), 13–16 April 2004, Melbourne, Australia,
pp. 168–177. IEEE Computer Society (2004)

36. Liu, Z.: Software development with UML. Technical report 259, IIST, United Nations Uni-
versity, P.O. Box 3058, Macao (2002)

37. Liu, Z.: Linking formal methods in software development - a reflection on the development
of rCOS. In: Bowen, J., Li, Q., Xu, Q. (eds.) Theories of Programming and Formal Methods.
LNCS, vol. 14080, pp. 52–84. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
40436-8 3

38. Liu, Z., Barbosa, L.S. (eds.): Proceedings of the International Workshop on Formal Aspects
of Component Software, FACS 2005, Macao, 24–25 October 2005. Electronic Notes in
Theoretical Computer Science, vol. 160. Elsevier (2006). https://www.sciencedirect.com/
journal/electronic-notes-in-theoretical-computer-science/vol/160/suppl/C

39. Liu, Z., Bowen, J.P., Liu, B., Tyszberowicz, S., Zhang, T.: Software abstractions and human-
cyber-physical systems architecture modelling. In: Bowen, J.P., Liu, Z., Zhang, Z. (eds.)
SETSS 2019. LNCS, vol. 12154, pp. 159–219. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-55089-9 5

40. Chen, X., Liu, Z.: Towards interface-driven design of evolving component-based archi-
tectures. In: Hinchey, M.G., Bowen, J.P., Olderog, E.-R. (eds.) Provably Correct Systems.
NMSSE, pp. 121–148. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48628-
4 6

41. Liu, Z., Jifeng, H., Li, X.: Contract oriented development of component software. In: Levy,
J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 349–366. Springer,
Boston, MA (2004). https://doi.org/10.1007/1-4020-8141-3 28

42. Liu, Z., He, J., Li, X.: rCOS: a relational calculus for components. In: Liu, Z., He, J. (eds.)
Mathematical Frameworks for Component Software, pp. 207–238. World Scientific (2006)

43. Liu, Z., Jifeng, H., Li, X., Chen, Y.: A relational model for formal object-oriented require-
ment analysis in UML. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol. 2885,
pp. 641–664. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39893-6 36

44. Liu, Z., Jifeng, H. (eds.): Mathematical Frameworks for Component Software. World Scien-
tific (2006)

45. Liu, Z., Joseph, M.: Specification and verification of fault-tolerance, timing, and scheduling.
ACM Trans. Program. Lang. Syst. 21(1), 46–89 (1999)

https://doi.org/10.1007/978-3-319-57666-4
https://doi.org/10.1007/978-3-319-15317-9
https://doi.org/10.1007/978-3-642-35743-5_7
https://doi.org/10.1007/978-3-031-40436-8_3
https://doi.org/10.1007/978-3-031-40436-8_3
https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/160/suppl/C
https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/160/suppl/C
https://doi.org/10.1007/978-3-030-55089-9_5
https://doi.org/10.1007/978-3-030-55089-9_5
https://doi.org/10.1007/978-3-319-48628-4_6
https://doi.org/10.1007/978-3-319-48628-4_6
https://doi.org/10.1007/1-4020-8141-3_28
https://doi.org/10.1007/978-3-540-39893-6_36

192 Z. Liu et al.

46. Liu, Z., Kang, E., Zhan, N.: Composition and refinement of components. In: Butterfield, A.
(ed.) Post Event Proceedings of UTP08. LNCS, vol. 5713. Springer, Berlin (2009)

47. Liu, Z., Morisset, C., Stolz, V.: A component-based access control monitor. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 339–353. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88479-8 24

48. Liu, Z., Stolz, V.: The rCOS method in a nutshell. In: Fitzgerald, J., Larsen, P.G., Sahara,
S. (eds.) Modelling and Analysis in VDM: Proceedings of the Fourth VDM/Overture Work-
shop. No. CS-TR-1099 in Technical Report Series, Newcastle University (2008)

49. Liu, Z., Wang, J.: Human-cyber-physical systems: concepts, challenges, and research oppor-
tunities. Frontiers Inf. Technol. Electron. Eng. 21(11), 1535–1553 (2020)

50. Liu, Z., Zhang, Z. (eds.): SETSS 2014. LNCS, vol. 9506. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29628-9

51. Long, Q., Liu, Z., Li, X., He, J.: Consistent code generation from UML models. In: Aus-
tralian Software Engineering Conference, pp. 23–30. IEEE Computer Society (2005)

52. Lumpe, M., Madelaine, E. (eds.): Proceedings of the 4th International Work-
shop on Formal Aspects of Component Software, FACS 2007, Sophia-Antipolis,
France, 19–21 September 2007. Electronic Notes in Theoretical Computer Sci-
ence, vol. 215. Elsevier (2008). https://www.sciencedirect.com/journal/electronic-notes-in-
theoretical-computer-science/vol/215/suppl/C

53. Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Inf. Comput. 185, 105–157
(2003)

54. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Q. 2(3), 219–246
(1989)

55. McIlroy, M.D.: Mass produced software components. In: Software Engineering: Report of a
Conference Sponsored by the NATO Science Committee, Garmisch, Germany, 7–11 October
1968. Scientific Affairs Division, NATO (1969)

56. Mencl, V., de Boer, F.S. (eds.): Proceedings of the Third International Work-
shop on Formal Aspects of Component Software, FACS 2006, Prague, Czech
Republic, 20–22 September 2006. Electronic Notes in Theoretical Computer Sci-
ence, vol. 182. Elsevier (2007). https://www.sciencedirect.com/journal/electronic-notes-in-
theoretical-computer-science/vol/182/suppl/C

57. Meng, S., Schätz, B. (eds.): Proceedings of the 6th International Workshop on
Formal Aspects of Component Software, FACS@FMWeek 2009, Eindhoven, The
Netherlands, 2–3 November 2009. Electronic Notes in Theoretical Computer Sci-
ence, vol. 263. Elsevier (2010). https://www.sciencedirect.com/journal/electronic-notes-in-
theoretical-computer-science/vol/263/suppl/C

58. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall, Hoboken (1997)
59. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle River (1989)
60. Misra, J.: Orchestration. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol.

8348, pp. 5–12. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07602-7 2
61. Palomar, E., Chen, X., Liu, Z., Maharjan, S., Bowen, J.P.: Component-based modelling

for scalable smart city systems interoperability: a case study on integrating energy demand
response systems. Sensors 16(11), 1810 (2016)

62. Păsăreanu, C.S., Salaün, G. (eds.): FACS 2012. LNCS, vol. 7684. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35861-6

63. Proença, J., Lumpe, M. (eds.): FACS 2017. LNCS, vol. 10487. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68034-7

64. Roscoe, A.W.: Theory and Practice of Concurrency. Prentice-Hall, Upper Saddle River
(1997)

65. Salaün, G., Wijs, A. (eds.): FACS 2021. LNCS, vol. 13077. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-90636-8

https://doi.org/10.1007/978-3-540-88479-8_24
https://doi.org/10.1007/978-3-319-29628-9
https://doi.org/10.1007/978-3-319-29628-9
https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/215/suppl/C
https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/215/suppl/C
https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/182/suppl/C
https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/182/suppl/C
https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/263/suppl/C
https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/263/suppl/C
https://doi.org/10.1007/978-3-319-07602-7_2
https://doi.org/10.1007/978-3-642-35861-6
https://doi.org/10.1007/978-3-319-68034-7
https://doi.org/10.1007/978-3-030-90636-8
https://doi.org/10.1007/978-3-030-90636-8

Formal Aspects of Component Software 193

66. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edn.
Addison-Wesley Longman Publishing Co. Inc., Boston (2002)

67. Tang, X., Zhang, M., Liu, W., Du, B., Liu, Z.: Towards a model of human-cyber-physical
automata and a synthesis framework for control policies. J. Syst. Archit. 144, 102989 (2023)

68. Tarifa, S.L.T., Proença, J. (eds.): FACS 2022. LNCS, vol. 13712. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-20872-0

69. Wheeler, D.J.: The use of sub-routines in programmes. In: Proceedings of the 1952 ACM
National Meeting, Pittsburgh, USA, p. 235. ACM (1952)

70. Yang, Y., Li, X., Ke, W., Liu, Z.: Automated prototype generation from formal requirements
model. IEEE Trans. Reliab. 69(2), 632–656 (2020)

71. Zhang, M., Liu, W., Tang, X., Du, B., Liu, Z.: Human-cyber-physical automata and their
synthesis. In: Seidl, H., Liu, Z., Pasareanu, C.S. (eds.) ICTAC 2022. LNCS, vol. 13572, pp.
36–41. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17715-6 4

72. Zhao, L., Liu, X., Liu, Z., Qiu, Z.: Graph transformations for object-oriented refinement.
Formal Aspects Comput. 21(1–2), 103–131 (2009)

73. Zou, L., Zhan, N., Wang, S., Fränzle, M., Qin, S.: Verifying simulink diagrams via a hybrid
hoare logic prover. In: Ernst, R., Sokolsky, O. (eds.) Proceedings of the International Con-
ference on Embedded Software, EMSOFT 2013, Montreal, QC, Canada, 29 September–4
October 2013, pp. 9:1–9:10. IEEE (2013). https://doi.org/10.1109/EMSOFT.2013.6658587

https://doi.org/10.1007/978-3-031-20872-0
https://doi.org/10.1007/978-3-031-17715-6_4
https://doi.org/10.1109/EMSOFT.2013.6658587

Overview on Constrained Multiparty
Synchronisation in Team Automata

José Proença(B)

CISTER and University of Porto, Porto, Portugal
jose.proenca@fc.up.pt

Abstract. This paper provides an overview on recent work on Team
Automata, whereby a network of automata interacts by synchronising
actions from multiple senders and receivers. We further revisit this notion
of synchronisation in other well known concurrency models, such as Reo,
BIP, Choreography Automata, and Multiparty Session Types.

We address realisability of Team Automata, i.e., how to infer a net-
work of interacting automata from a global specification, taking into
account that this realisation should satisfy exactly the same properties
as the global specification. In this analysis we propose a set of inter-
esting directions of challenges and future work in the context of Team
Automata or similar concurrency models.

1 Introduction

Many different formal models for concurrent systems exist, each with its own
advantages and disadvantages. This short paper provides an overview on recent
work on Team Automata (TA), and takes a step back to relate the constrained
multiparty synchronisation of TA with other popular models in this community
studying fundamentals of component-based software.

TA were initially proposed by ter Beek et al. [9], inspired by similar
approaches such as I/O automata [31] and interface automata [23], whereby a
network of automata with input and output labels interacts. This interaction in
TA involves multiparty synchronisations, whereas multiple senders and receivers
can participate in a single atomic global transition. It is also constrained because
it is parameterised by a synchronisation policy that, for each label, specifies the
possible number of senders and of receivers that it can have.

Composing a network of components in a team, using constrained multiparty
synchronisation, yields a new transition system whose labels are interactions con-
sisting of (i) a message name or type, (ii) a set of components that send this
message, and (iii) a set of components that receive this message. Only valid
interactions are allowed, i.e., that obey the associated synchronisation policy.
Many topics have been investigated in the context of TA since 2003, including
security [15,17], composition and expressivity [10,13], variability [8], and com-
patibility of components [6,7,11,22]. Labels of early versions of TA include only
message names, and were later extended to explicitly capture which components
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Cámara and S.-S. Jongmans (Eds.): FACS 2023, LNCS 14485, pp. 194–205, 2024.
https://doi.org/10.1007/978-3-031-52183-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52183-6_10&domain=pdf
http://orcid.org/0000-0003-0971-8919
https://doi.org/10.1007/978-3-031-52183-6_10

Overview on Constrained Multiparty Synchronisation in Team Automata 195

Fig. 1. Race example: a controller asks simultaneously 2 runners to start and receives
a finish message once each is of them is done

participate in system transitions [11], giving rise to a concurrent semantics. This
idea has been also used in Vector TA [14], where actions include active partici-
pants. In this paper we use these extended labels in TA.

We revisit several kinds of interactions in the orchestration models Reo [29]
and BIP [20], and attempt to frame this multiparty synchronisation in the
context of choreographic models such as choreographic automata [3] and (syn-
chronous) multiparty session types [36]. We further address realisation of TA,
i.e. how to obtain a set of interacting components from a global transition sys-
tem over interactions, given the synchronisation policy. This last part is ongo-
ing work [12], in collaboration with Rolf Hennicker and Maurice ter Beek, and
include a detour on how to specify properties of interest, and how to guarantee
that these are preserved when realising a global specification.

The explanations in this paper are relatively informal, driven mainly by
examples. We proceed by introducing an example used throughout this paper.

Motivating Example. We use as a running example a Race system (Fig. 1),
borrowed from previous work [16], consisting of 3 communicating components: a
controller Ctrl and two runners R1, R2. Each is an automaton with input actions
(?start and ?finish), output actions (!start and !finish), and internal actions (run).
Interactions are subject to the following synchronisation policy: (i) the 3 actions
start must synchronise, i.e., must be performed atomically, representing a simul-
taneous start of both runners; and (ii) the 3 actions finish must synchronise in
pairs, i.e., each runner should atomically notify the controller that s/he finished,
but the controller must receive each message one at a time. The internal action
run is not involved in any interaction.

The composition of these 3 automata combined with the synchronisation
restrictions of the start and finish actions yields what we call a team automaton [5,
26]. Labels of our team automaton are interactions involving the senders, the
receivers, and the action name. E.g., “Ctrl → {R1,R2} : start” is an interaction
that labels a transition in our team automaton, which follows our synchronisation
policy stating that start should always have one sender and two receivers.

Many studies on TA investigate whether the components of a system will ever
fail when trying to send a particular message (receptiveness), or to receive a set of
possible messages (responsiveness) [6,8,10]. Another topic of interest addressed
in this paper, in the context of TA or other similar systems, regards realisability
or decomposition, i.e., whether these 3 components can be discovered given a
description of the global behaviour capturing the same behaviour.

196 J. Proença

Organisation of the Paper. Section 2 investigates how the multiparty syn-
chronisation of our Race example can be captured by other formalisms in the
literature, considering both orchestration and choreographic languages. Section 3
addresses how to specify properties of interest for TA and proposes ideas and
challenges regarding the realisation of TA. Section 4 concludes this paper.

2 Related Models

This section provides an overview of alternative approaches to model our race
example with existing models that describe interaction patterns. We start with
orchestration models, where a naive implementation of the interaction patterns
leads to a centralised component controlling the interactions. We continue with
choreographic models, which focus on how to describe the interaction contracts
that each computational component must obey to derive an intended communi-
cation protocol, without relying on a dedicated component with the interaction
logic. The precise distinction between orchestration and choreographic models
is not consensual among researchers, whereas one can provide arguments why
a given orchestration model can be considered to be a choreographic one and
vice-versa.

Unlike the models listed below, TA identify which actions from composed
components can interact by considering (1) the name of the action, (2) the
direction of dataflow, and (3) the synchronisation policy (i.e., for each action,
how many inputs and outputs are required or allowed). Some models below
assume that all names are distinct, and that the interaction models must relate
them (e.g., as an enumeration of possible sets of actions that must synchronise),
sometimes leading to a more exhaustive description of the possible interactions.
Other models below require interactions to be always 1-to-1 (called peer-to-
peer in [9]), possibly requiring more intermediate components to capture the
intended behaviour.

2.1 Orchestration

Models and languages that orchestrate components focus on how to group the
interaction logic in a connector, restricting how the components can interact.
This section analyses our race example in the context of the Reo [29] and the
BIP [20] coordination models, since they focus on the analysis of interactions of
systems with synchronous interactions that involve multiple participants. These
have been compared in more detailed by Dokter et al. [24].

Reo. Reo is a graphical modelling to orchestrate components based on the
synchronous composition of a set of primitive connectors [29]. Many different
semantic formalisms exist to provide a semantics to Reo connectors – we focus
here on constraint automata [2].

We encode our race example as a Reo connector on the left side of Fig. 2, and
its semantics given by a constraint automaton on the right side. This semantics

Overview on Constrained Multiparty Synchronisation in Team Automata 197

Fig. 2. Reo approach: the connector (left) built compositionally describing valid
sequences of interactions from participants, and its semantics given by a constraint
automata (right)

(and most Reo semantics) is stateful, i.e., the next set of possible interactions
depends on the previously taken interactions. Reo is highly compositional, in
the sense that the global interaction patterns result from composing simpler
connectors. In our example from Fig. 2, we count 2 FIFO channels (), 2
synchronous barriers (), 3 replicators (after strC, finR1, and finR2), and

1 interleaving merger (before finC). Each of these has a defined semantics
given by constraint automata [2], and composing these 8 automata (and hiding
internal names) yields the constraint automata on the right of Fig. 2. Here each
arc is labelled with a set of ports that must synchronise and a constraint over
the data that must flow in each port. The direction of dataflow is not captured
by constraint automata.

Reo focuses on the connector and not on the components. This means that the
connector dictates which ports are active and inactive at each moment, allowing
only desirable patterns of interaction. Hence, the precise behaviour of a runner,
e.g., is not explicit in this model, including other internal actions that s/he
may perform. When connecting a concrete runner to this connector one should
verity whether it is compliant, i.e., if its possible patterns of interaction are
consistent with the patterns imposed by the connector. This compliance check
can be regarded as a type check against a behavioural type, as used in Session
Types, described in the next section, and investigated less in the context of Reo.

BIP. BIP [20] is a language to specify the expected behaviour of compo-
nents and of component architectures. A program in BIP consists of a labelled
state machine for each component (Behaviour), a set of possible synchronous
Interactions between transitions of different components, and a possible partial
order among interactions (Priority). Semantic models, such as the algebra of
connectors [20], formalise the semantics of interactions.

Our race example is modelled in BIP in Fig. 3. Similarly to TA, the com-
ponents describe the core behaviour of a system, here represented as labelled
transition systems (also 1-safe Petri Nets can be used in some tools). The set of
valid interactions is stateless, and are depicted by connecting ports that must
synchronise; the dotted connection is an alternative to the its solid counterpart,
connecting R2.finish instead of R1.finish. Trigger ports, not used here, can also

198 J. Proença

Fig. 3. BIP approach: individual components are labelled by actions, which are subject
to the set of valid rendez-vous interaction constraints imposed by the middle (stateless)
connector

be used instead of rendez-vous ports () to denote broadcasts, i.e., all siblings
of a trigger in an interaction that are ready to synchronise will do so, and the
trigger will always succeed.

TA share some concepts with BIP: the behaviour of the components and
some synchronisation restrictions are modelled separately. Unlike TA, there is
no explicit direction of dataflow. Interactions are often enriched with descriptions
of how the dataflow should be updated, meaning that different connectors may
treat the same ports as inputs or outputs. Unlike BIP, TA do not support any
combination of synchronising ports, but only those that share the same name.

2.2 Choreographies

We consider a choreographic model to be a language or a calculus that describes
the global set of valid interactions. Each interaction is typically described by
(i) the name that identifies the interface, (ii) the sender, and (iii) the receiver.
This richer representation of interactions, with respect to the ones used in the
previous subsection, allows the behaviour of each participant to be derived from
the global model, which is often the ultimate goal of these models. Most of
these support only a single sender and a single receiver, and are not meant
for multiparty synchronisations, although it is possible to lift many of these
models to the latter case. In contrast, Reo is typically agnostic to the concrete
components connected to the ports of a connector, and describes only their valid
patterns of interaction, and BIP avoids specifying explicitly the global behaviour
(focusing on the local behaviour).

This section provides an overview of choreographic automata [33] to illustrate
an approach to reason over deterministic automata in these rich interactions, and
of synchronous multiparty session types [36]. When modelling our Race example
we use a variation that allows multiple senders and receivers, without providing
its formal semantics.

Overview on Constrained Multiparty Synchronisation in Team Automata 199

Fig. 4. Choreographic Automaton (left), extended with multiple senders and receivers,
and composed TA (right) of the automata in Fig. 1

Choreographic Automata (CA). CA [3] are automata with labels that
describe interactions, including a sender, a receiver, and a message name.

Our race example is encoded as a variation of CA on the left of Fig. 4, where
we use a set of senders and receivers at each interaction to match the semantics
of our composed TA. For comparison, the composed TA of our running example
is depicted on the right of Fig. 4, where each state is a triple with the states of the
local components, and the labels are interactions following the notation in [11].
We drop the curly brackets of singleton sets in the CA for simplicity. We also
avoid representing the internal action run, although this could have been done
with our extension to sets of senders and receivers, e.g., writing {R1} → {} : run
to denote a send by R1 with no receivers. This would have resulted in a larger
set of states capturing possible interleavings.

Multiparty Session Types (MPST). MPST use a calculus to describe global
behaviour. We can represent our race example using a variation of the global
type of a synchronous MPST [28,36] as follows.

λX · Ctrl→{R1,R2} :
{
start.

(
R1→Ctrl : finish.
R2→Ctrl : finish.X

)
, start.

(
R2→Ctrl : finish.
R1→Ctrl : finish.X

)}

This example uses a fixed point (λX) to iterate [28]. Interactions are written
as {A} → {B} : {msgi.Ci}i∈I, for any sets of participants A, B and I, messages
msgi, and continuations Ci of the choreography; we omit curly brackets when
there is only one element. The set of messages and continuations denotes the
choices after communications.

This example does not follow the usual MPST syntax: it uses a set of receivers
in the first interaction, and includes two choices of messages inside the big curly
brackets that start with the same message start. Most work on MPST supports
only a single sender and receiver in each interaction, and choices with syntactic
restrictions, such as the need to distinguish the first message. Up to our knowl-
edge, without these extensions and without introducing new messages the Race
example cannot be faithfully modelled.

A global choreography of our reference synchronous MPST [28,36], to be
valid, must obey several properties, including the need to have different messages
at the start of each choice, and it must be possible to produce a projection for
each participant whereas each participant does not (syntactically) distinguish
choices made by other participants.

200 J. Proença

3 Behavioural Properties and Realisability

Having a TA (or another model of constrained interactions) allows us to reason
over desired behavioural properties. Our properties of interest can target either
a specific scenario, e.g., that a runner must always run before finishing, or be
more general, e.g., no component can ever fail to send or receive messages.
Hence we believe that dynamic logic provides the right level of abstraction to
describe valid sequences of actions, which excels at capturing what actions can
and cannot be performed throughout an execution. Other alternatives, such as
traditional linear time logic (LTL) and computation tree logic (CTL), often
focus on reachability of states and not on sequences of actions, making these less
optimal for our properties of interest.

A simpler alternative to dynamic logics could be the use of regular expressions
to model valid patterns of interactions. This is aligned with existing approaches
such as CA that focus on the languages accepted by these automata [4] to reason
over properties of such systems. The choice of using dynamic logics, regular
expressions, or other model to specify properties, impacts realisability, since it is
desirable for global models and their realisations to satisfy the same properties.

Many model checkers exist to verify temporal properties of concurrent sys-
tems, including mCRL2 [21] and Uppaal [18]. These support either dynamic logic
(mCRL2) or CTL. Both Reo and TA have been encoded as mCRL2 processes
to exploit its powerful model-checking engine [16,30,35]. The notion of synchro-
nisation types, describing the number of possible senders and receivers by each
message, can be captured using mCRL2, although it requires constructing the
set of all concrete combinations of ports that can synchronise. This notion can-
not directly be mapped to Uppaal, which supports only pairwise communication
or a form of broadcast that differs from the one in TA (c.f. [9]).

3.1 Propositional Dynamic Logic

In our Race example it is desirable that, for any runner that starts running, it
should be possible to finish her/his run. This can be expressed by the dynamic
logic formula below, using regular expressions over interactions as actions, and
writing some to denote the non-deterministic choice over any interaction:

[
some∗;Ctrl→ {R1,R2} : start

] (〈some∗;R1→Ctrl : finish〉 true ∧
〈some∗;R2→Ctrl : finish〉 true

)

Informally, [α]ψ holds if, after any of the sequence of interactions covered by the
regular expression α, ψ holds. Similarly, 〈α〉 ψ holds if it is possible to perform
any of the sequence of interactions covered by the regular expression α, and end
up in a state where ψ holds. The formula above means that, after any sequence of
interactions that ends in Ctrl→{R1,R2} : start, there must exist either a sequence
of interactions ending in R1→Ctrl : finish or in R2→Ctrl : finish.

These formulas can be expressed by the modal (μ-calculus) logic used by
mCRL2. Furthermore, we exploited in recent work [16] how to generate, given a

Overview on Constrained Multiparty Synchronisation in Team Automata 201

set of components of a team automaton and its synchronisation policies, both a
mCRL2 model and a set of formulas that can guarantee progress. I.e., that any
component who want to send a message can do so, and any component that is
ready to receive messages can receive at least one of them. These two concepts
are known in the literature as receptiveness and responsiveness [6], respectively.

3.2 Realisability Challenges

Realising a global specification means inferring the local behaviour of each of
the involved participants, under some assumptions regarding their communica-
tion channels. We claim that realisations should satisfy the same properties of
their original global models. Hence we should rely on bisimulation to compare
their behaviour when using dynamic logic, since satisfaction of (propositional)
dynamic logic formulas is invariant under bisimulation [19]. The choice of a dif-
ferent logic would lead to different equivalence notions.

Realisability has been extensively studied in the context of MPST, often
guided by strict syntactic restrictions over the global protocol. These restric-
tions facilitate the process of building the local behaviour of each participant,
by projecting the interactions to each of these participants, and provide compu-
tationally simpler mechanisms to guarantee correctness of the realisation.

Realisability has also been studied for CA [4] and for TA [13]; in both cases
addressing language equivalence rather than bisimulation equivalence when com-
paring behaviours. In CA [4] building a local behaviour for a given participant P
means producing an automaton that uses only interactions in which P is involved,
such that the language is the same as the language of the global model restricted
to these interactions. For instance, it is enough to hide interactions in which P
does not appear (replacing them by τ), and minimise the automata collaps-
ing these transitions. In TA [13] the language of a TA is characterised by the
so-called synchronised shuffling of the behaviour of its components. Doing so,
however, does not guarantee in neither cases that the realisation will satisfy the
same (dynamic) logical formulas as the global protocol. As a matter of fact, some
formulas in dynamic logic may satisfy either the global protocol or the composed
system (exclusively) if these are language equivalent but not bisimilar.

This leads us to our ongoing effort to calculate a realisation from a global
behaviour [12], i.e., from the semantics of TA with interactions as labels. Unlike
the work on MPST, we try to avoid imposing syntactic restrictions on our global
model, allowing our starting point to be any transition system labelled by inter-
actions with multiple participants, instead of targeting a more practical subclass
of global models. And unlike the work on CA, we try to guarantee that the
realisations are bisimilar to the original model.

We identify a set of challenges when reasoning over realisability of TA.

– How rich are the local labels? Our initial motivating example in Fig. 1
uses labels consisting of a message name and a direction (input or output).
In constraint automata (Fig. 2) there is no direction (less information), and

202 J. Proença

in both CA and MPST the local participants use in each label the name, the
direction, and the other participants involved (more information). Hence there
will be global specifications that can be realised when producing participants
with richer labels, but that cannot be realised when some information is lost
(such as all participants involved). Conversely, having less information in the
labels enables more compact local participants, e.g., our controller does not
need to distinguish the finish from any of the two runners, while the controller
derived from MPST needs to consider any interleaving of these two.

– How to specify global specifications? Building an automaton labelled by
interactions can easily become too large due to all the combinations of con-
current actions. Hence a more compact model, such as a calculus for chore-
ographies (with multiple senders and receivers) with a parallel operator, or
other useful operators, seems to be preferable. Alternatively models based on
event structures [1] or Petri Nets could also provide a compact representa-
tion of concurrent actions. Regarding the latter, the Vector Team Automata
variation of TA [14], where vectors of local labels restrict which components
participate in each global label, has a composed semantics given by a form of
labelled Petri Net called Individual Token Net Controllers.

– Active learning? Active learning approaches [25] try to infer the behaviour
of a system by observing the actions of an input-deterministic black-box,
assuming some mechanism to discover that the inferred model is good enough.
Hence, a technique to infer the behaviour of local agents from traversing a
(potentially large) global state could also be adapted to infer the behaviour
of a set of agents from observing and reacting to ongoing interactions. This
would be an alternative to produce the global state from a given model.

– Other communication channels? TA focus on synchronous interactions.
Relaxing this to asynchronous interactions with many participants would
largely increase the complexity of the realisability analysis. Furthermore,
many variations are considered in the literature, usually fixed upfront. E.g.,
assuming a single sorted queue between each pair of participants (blocking if
the first message cannot be processed), assuming there is no order on mes-
sages, assuming there is an order that gives priority to earlier messages (but
allows skipping messages), and so on. Better understanding the impact of
these, or even supporting the combination of these channel mechanisms, could
improve the scope of applicability of existing tools and analysis.

– How to model families of global specifications? Variability has been
studied in TA [8] and in other models such as BIP [27], Reo [34], and Petri
Nets [32]. Variability in TA, BIP, and Petri Nets meant annotating transitions
with conditions over a set of features that describe whether they should be
included in a given configuration. However, these are not meant to describe,
e.g., a family of systems with a number n of runners, for any n > 0. This was
attempted with Reo [34], but using a complex calculus and not targetting
automatic analysis. Hence finding a good model to describe variability on the
number of participants, and exploit it in the analysis of TA or providing tool

Overview on Constrained Multiparty Synchronisation in Team Automata 203

support, could be a good fit for TA, which already describes desired numbers
of participants involved in each channel.

4 Conclusions

This paper revisits the constrained multiparty synchronisation present in Team
Automata, relating it to other popular concurrency models, guided by a race
example. It further addresses verification of TA via dynamic logics, and pro-
vides a direction and challenges on how to realise team automata from global
specifications. By avoiding technical details and following an example-first app-
roach, we expect this paper to be a nice introduction to concurrency models that
can synchronise multiple participants, and to provide inspiration on topics and
directions that we find relevant in this area.

Acknowledgments. This work was supported by the CISTER Research Unit
(UIDP/UIDB/-04234/-2020), financed by National Funds through FCT/MCTES (Por-
tuguese Foundation for Science and Technology) and by project IBEX (PTDC/CCI-
COM/-4280/-2021) financed by national funds through FCT. It is also a result of
the work developed under the project Route 25 (ref. TRB/2022/00061 – C645463824-
00000063) funded by NextGenerationEU, within the Recovery and Resilience Plan
(RRP).

References

1. Arbach, Y., Karcher, D.S., Peters, K., Nestmann, U.: Dynamic causality in event
structures. Log. Methods Comput. Sci. 14(1) (2018). https://doi.org/10.23638/
LMCS-14(1:17)2018

2. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006).
https://doi.org/10.1016/j.scico.2005.10.008

3. Barbanera, F., Lanese, I., Tuosto, E.: Choreography automata. In: Bliudze, S.,
Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp. 86–106. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-50029-0_6

4. Barbanera, F., Lanese, I., Tuosto, E.: Formal choreographic languages. In: ter
Beek, M.H., Sirjani, M. (eds.) COORDINATION. LNCS, vol. 13271, pp. 121–139.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08143-9_8

5. ter Beek, M.H.: Team automata: a formal approach to the modeling of collaboration
between system components. Ph.D. thesis, Leiden University (2003)

6. ter Beek, M.H., Carmona, J., Hennicker, R., Kleijn, J.: Communication require-
ments for team automata. In: Jacquet, J.-M., Massink, M. (eds.) COORDINA-
TION 2017. LNCS, vol. 10319, pp. 256–277. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-59746-1_14

7. ter Beek, M.H., Carmona, J., Kleijn, J.: Conditions for compatibility of compo-
nents. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 784–
805. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_55

8. ter Beek, M.H., Cledou, G., Hennicker, R., Proença, J.: Featured team automata.
In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp.
483–502. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90870-6_26

https://doi.org/10.23638/LMCS-14(1:17)2018
https://doi.org/10.23638/LMCS-14(1:17)2018
https://doi.org/10.1016/j.scico.2005.10.008
https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.1007/978-3-031-08143-9_8
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-319-47166-2_55
https://doi.org/10.1007/978-3-030-90870-6_26

204 J. Proença

9. ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Synchronizations in team
automata for groupware systems. Comput. Sup. Coop. Work 12(1), 21–69 (2003).
https://doi.org/10.1023/A:1022407907596

10. ter Beek, M.H., Gadducci, F., Janssens, D.: A calculus for team automata. ENTCS
195, 41–55 (2008). https://doi.org/10.1016/j.entcs.2007.08.022

11. ter Beek, M.H., Hennicker, R., Kleijn, J.: Compositionality of safe communication
in systems of team automata. In: Pun, V.K.I., Stolz, V., Simao, A. (eds.) ICTAC
2020. LNCS, vol. 12545, pp. 200–220. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64276-1_11

12. ter Beek, M.H., Hennicker, R., Proença, J.: Realisability of global models of inter-
action. In: Ábrahám, E., Dubslaff, C., Tarifa, S.L.T. (eds.) Theoretical Aspects of
Computing – ICTAC 2023. LNCS, vol. 14446, pp. 236–255. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-47963-2_15

13. ter Beek, M.H., Kleijn, J.: Team automata satisfying compositionality. In: Araki,
K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 381–400.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45236-2_22

14. ter Beek, M.H., Kleijn, J.: Vector team automata. Theor. Comput. Sci. 429, 21–29
(2012). https://doi.org/10.1016/j.tcs.2011.12.020

15. ter Beek, M.H., Lenzini, G., Petrocchi, M.: Team automata for security: a survey.
Electron. Notes Theor. Comput. Sci. 128(5), 105–119 (2005). https://doi.org/10.
1016/j.entcs.2004.11.044

16. ter Beek, M.H., Cledou, G., Hennicker, R., Proença, J.: Can we communicate?
Using dynamic logic to verify team automata. In: Chechik, M., Katoen, J.P.,
Leucker, M. (eds.) Proceedings of the 25th International Symposium on Formal
Methods (FM 2023). LNCS, vol. 14000. Springer, Cham (2023). https://doi.org/
10.1007/978-3-031-27481-7_9

17. ter Beek, M.H., Lenzini, G., Petrocchi, M.: A team automaton scenario for the
analysis of security properties of communication protocols. J. Autom. Lang. Comb.
11(4), 345–374 (2006). https://doi.org/10.25596/jalc-2006-345

18. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems, Interna-
tional School on Formal Methods for the Design of Computer, Communication and
Software Systems, SFM-RT 2004, Bertinoro, Italy, 13–18 September 2004, Revised
Lectures. LNCS, vol. 3185, pp. 200–236. Springer, Cham (2004). https://doi.org/
10.1007/978-3-540-30080-9_7

19. van Benthem, J., van Eijck, J., Stebletsova, V.: Modal logic, transition systems and
processes. J. Log. Comput. 4(5), 811–855 (1994). https://doi.org/10.1093/logcom/
4.5.811

20. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in
BIP. IEEE Trans. Comput. 57(10), 1315–1330 (2008). https://doi.org/10.1109/
TC.2008.26

21. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: TACAS.
LNCS, vol. 11428, pp. 21–39. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-17465-1_2

22. Carmona, J., Kleijn, J.: Compatibility in a multi-component environment. Theor.
Comput. Sci. 484, 1–15 (2013). https://doi.org/10.1016/j.tcs.2013.03.006

23. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE, pp. 109–120.
ACM (2001). https://doi.org/10.1145/503209.503226

24. Dokter, K., Jongmans, S., Arbab, F., Bliudze, S.: Combine and conquer: relating
BIP and Reo. J. Log. Algebraic Methods Program. 86(1), 134–156 (2017). https://
doi.org/10.1016/j.jlamp.2016.09.008

https://doi.org/10.1023/A:1022407907596
https://doi.org/10.1016/j.entcs.2007.08.022
https://doi.org/10.1007/978-3-030-64276-1_11
https://doi.org/10.1007/978-3-030-64276-1_11
https://doi.org/10.1007/978-3-031-47963-2_15
https://doi.org/10.1007/978-3-540-45236-2_22
https://doi.org/10.1016/j.tcs.2011.12.020
https://doi.org/10.1016/j.entcs.2004.11.044
https://doi.org/10.1016/j.entcs.2004.11.044
https://doi.org/10.1007/978-3-031-27481-7_9
https://doi.org/10.1007/978-3-031-27481-7_9
https://doi.org/10.25596/jalc-2006-345
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1093/logcom/4.5.811
https://doi.org/10.1093/logcom/4.5.811
https://doi.org/10.1109/TC.2008.26
https://doi.org/10.1109/TC.2008.26
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1016/j.tcs.2013.03.006
https://doi.org/10.1145/503209.503226
https://doi.org/10.1016/j.jlamp.2016.09.008
https://doi.org/10.1016/j.jlamp.2016.09.008

Overview on Constrained Multiparty Synchronisation in Team Automata 205

25. al Duhaiby, O., Groote, J.F.: Active learning of decomposable systems. In: Bae, K.,
Bianculli, D., Gnesi, S., Plat, N. (eds.) FormaliSE@ICSE 2020: 8th International
Conference on Formal Methods in Software Engineering, Seoul, Republic of Korea,
13 July 2020, pp. 1–10. ACM (2020). https://doi.org/10.1145/3372020.3391560

26. Ellis, C.A.: Team automata for groupware systems. In: Proceedings of the 1st Inter-
national ACM SIGGROUP Conference on Supporting Group Work (GROUP), pp.
415–424. ACM (1997). https://doi.org/10.1145/266838.267363

27. Farhat, S., Bliudze, S., Duchien, L., Kouchnarenko, O.: Toward run-time coordi-
nation of reconfiguration requests in cloud computing systems. In: Jongmans, S.,
Lopes, A. (eds.) Coordination Models and Languages - 25th IFIP WG 6.1 Interna-
tional Conference, COORDINATION 2023, Held as Part of the 18th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2023, Lis-
bon, Portugal, 19–23 June 2023, Proceedings. LNCS, vol. 13908, pp. 271–291.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35361-1_15

28. Ghilezan, S., Jaksic, S., Pantovic, J., Scalas, A., Yoshida, N.: Precise subtyping
for synchronous multiparty sessions. J. Log. Algebraic Methods Program. 104,
127–173 (2019). https://doi.org/10.1016/j.jlamp.2018.12.002

29. Jongmans, S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci.
Ann. Comput. Sci. 22(1), 201–251 (2012). https://doi.org/10.7561/SACS.2012.1.
201

30. Kokash, N., Krause, C., de Vink, E.P.: Reo + mCRL2: a framework for model-
checking dataflow in service compositions. Formal Aspects Comput. 24(2), 187–216
(2012). https://doi.org/10.1007/s00165-011-0191-6

31. Lynch, N.A., Tuttle, M.R.: An introduction to Input/Output automata. CWI Q.
2(3), 219–246 (1989). https://ir.cwi.nl/pub/18164

32. Muschevici, R., Proença, J., Clarke, D.: Feature Nets: behavioural modelling of
software product lines. Softw. Sys. Model. 15(4), 1181–1206 (2016). https://doi.
org/10.1007/s10270-015-0475-z

33. Orlando, S., Pasquale, V.D., Barbanera, F., Lanese, I., Tuosto, E.: Corinne, a
tool for choreography automata. In: Salaün, G., Wijs, A. (eds.) Formal Aspects of
Component Software - 17th International Conference, FACS 2021, Virtual Event,
28–29 October 2021, Proceedings. LNCS, vol. 13077, pp. 82–92. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-90636-8_5

34. Proença, J., Clarke, D.: Typed connector families. In: Braga, C., Ölveczky, P.C.
(eds.) Formal Aspects of Component Software - 12th International Conference,
FACS 2015, Niterói, Brazil, 14–16 October 2015, Revised Selected Papers. LNCS,
vol. 9539, pp. 294–311. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
28934-2_16

35. Proença, J., Madeira, A.: Taming hierarchical connectors. In: Hojjat, H., Massink,
M. (eds.) Fundamentals of Software Engineering - 8th International Conference,
FSEN 2019, Tehran, Iran, 1–3 May 2019, Revised Selected Papers. LNCS, vol.
11761, pp. 186–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31517-7_13

36. Severi, P., Dezani-Ciancaglini, M.: Observational equivalence for multiparty ses-
sions. Fundam. Informaticae 170(1–3), 267–305 (2019). https://doi.org/10.3233/
FI-2019-1863

https://doi.org/10.1145/3372020.3391560
https://doi.org/10.1145/266838.267363
https://doi.org/10.1007/978-3-031-35361-1_15
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.7561/SACS.2012.1.201
https://doi.org/10.7561/SACS.2012.1.201
https://doi.org/10.1007/s00165-011-0191-6
https://ir.cwi.nl/pub/18164
https://doi.org/10.1007/s10270-015-0475-z
https://doi.org/10.1007/s10270-015-0475-z
https://doi.org/10.1007/978-3-030-90636-8_5
https://doi.org/10.1007/978-3-319-28934-2_16
https://doi.org/10.1007/978-3-319-28934-2_16
https://doi.org/10.1007/978-3-030-31517-7_13
https://doi.org/10.1007/978-3-030-31517-7_13
https://doi.org/10.3233/FI-2019-1863
https://doi.org/10.3233/FI-2019-1863

Embedding Formal Verification
in Model-Driven Software Engineering

with SLCO: An Overview

Anton Wijs(B)

Eindhoven University of Technology, Eindhoven, The Netherlands
a.j.wijs@tue.nl

Abstract. In 2009, the Simple Language of Communicating Objects
(Slco) Domain-Specific Language was designed. Since then, a range of
tools have been developed around this language to conduct research
on a wide range of topics, all related to the construction of com-
plex, component-based software, with formal verification being applied
in every development step. In this paper, we present this range, and
draw connections between the various, at first glance disparate, research
results. We discuss the current status of the Slco framework, i.e., the
language in combination with the tools, and plans for future work.

Keywords: Domain-Specific Language · Model-Driven Software
Engineering · formal verification · parallel software · component-based
software

1 Introduction

The development of complex software, such as component-based software, is
time-consuming and error-prone. One methodology aimed at making software
development more transparent and efficient is Model-Driven Software Engineer-
ing (MDSE) [38]. In a typical MDSE workflow, software is (mostly automati-
cally) constructed by first creating a high-level description of the system under
development, by means of a model. Such a model is often expressed in a Domain-
Specific Language (DSL). This initial model is subsequently gradually refined via
model transformations, to add information to the model in a structured way, and
finally, once the model is detailed enough, derive source code that implements
the low-level description of the final model (see Fig. 1). Such a workflow is also
used in some low-code application development platforms [22].

Model transformations can be viewed as artefacts that accept a model as
input, and either produce a new model (model-to-model) or code (model-to-code)
as output.1 Once defined, they can be applied automatically on models. Ideally,
once the initial model has been created, and the necessary model transformations
identified or designed, the MDSE procedure is fully automatic, resulting in source
code that exactly implements the intended functionality, or at least requires only
minor manual alteration.
1 Model-to-code transformations are also known as code generators.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Cámara and S.-S. Jongmans (Eds.): FACS 2023, LNCS 14485, pp. 206–227, 2024.
https://doi.org/10.1007/978-3-031-52183-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52183-6_11&domain=pdf
http://orcid.org/0000-0002-2071-9624
https://doi.org/10.1007/978-3-031-52183-6_11

Embedding Formal Verification in MDSE with Slco: An Overview 207

Fig. 1. Verification in a Model-Driven Software Engineering workflow.

Automatically developing software via MDSE goes a long way in reducing
the introduction of errors and making software development more efficient. How-
ever, functional correctness of the developed software is not guaranteed. About
15 years ago, researchers in the Software Engineering & Technology group at
the Eindhoven University of Technology, started to investigate in which ways
software verification techniques could be embedded in MDSE in a seamless
way [7,25]. After a collaboration with industry, it soon became clear that in
order to structurally perform this research, the starting point needed to be a
DSL that is relatively simple, yet expressive enough to model the basic function-
ality of software consisting of multiple interacting components. This lead to the
creation of the Simple Language of Communicating Objects (Slco) [5].

The development of Slco and its model transformations was originally moti-
vated by research questions addressing the internal and external quality of model
transformations. The internal quality refers to the definition of a model trans-
formation, while the external quality considers the process of applying a trans-
formation on a model [4]. By analysing the impact of a model transformation on
a given Slco model, or the potential impact of a transformation on an arbitrary
Slco model, the external quality is assessed. Soon, however, Slco was used
for research on embedding formal verification techniques throughout the entire
MDSE workflow, so that not only the initial model, but all produced artefacts
can be formally verified (see the green ticks in Fig. 1).

In this paper, we present an overview of the research conducted in the last 15
years with Slco on formal verification techniques to verify the various MDSE
artefacts. While the individual results have already been published, such an
overview allows viewing the bigger picture, and the directions in which the
research as a whole is going in the future.

2 A DSL for Component-Based Software

In 2009, Slco version 1.0 was developed to address a particular case study,
namely the generation of Not Quite C (NQC) code for a controller of a con-
veyor belt built in Lego Mindstorms [6,7]. The key part of this platform is a
programmable controller called RCX. It has an infrared port for communica-
tion and is connected by wires to sensors and motors for environment interac-
tion. This imposes particular restrictions, such as the fact that communication
is asynchronous and unreliable, i.e., messages may get lost. These restrictions

208 A. Wijs

Fig. 2. The general structure of an Slco model.

influenced the design of Slco 1.0. For instance, besides reliable synchronous and
asynchronous channels, Slco also has an unreliable asynchronous channel as a
building block. In addition, as NQC does not support arrays, these were also
not added to Slco 1.0. Finally, as NQC allows working with timers, Slco was
equipped with a delay statement, to allow expressing that a component should
wait a specified number of milliseconds.

The general structure of an Slco model is presented in Fig. 2. In a model, one
or more classes are defined, which can be instantiated as objects. In a class, local
variables are defined, which can be of one of the primitive types: Boolean, Integer
or String. In addition, a class has a finite number of state machines. Each state
machine contains a finite number of states, one of which being the initial state,
and transitions, and optionally local variables of the primitive types. Finally, a
class possibly has one or more ports, to which channels can be connected.

Within an object, i.e., a class instance, the state machines can interact via
the variables defined at the object level. State machines in different objects
can communicate via channels. In this way, Slco can be used both for the
specification of shared-memory, parallel systems and distributed systems.

Channels are connected between the ports of their respective objects. Mes-
sages sent over these channels contain a signal, i.e., a header, and a fixed number
of values, each of a primitive type. When a channel instance is created, the type
of the messages for this channel is defined, and it is specified whether the channel
is synchronous or asynchronous, and in the latter case, what the size of its FIFO
buffer is, and whether it is lossless or lossy.

State machines can exhibit behaviour. At any time, one of the states of a state
machine is its current state, which initially is the initial state. If an outgoing
transition of this current state is enabled, the state machine can fire the transition
and move to the target state of that transition. With each transition, a list of
zero or more statements are associated. If a transition has no statements, it is
always enabled. If it has at least one statement, it is enabled iff its first statement

Embedding Formal Verification in MDSE with Slco: An Overview 209

is enabled. Firing a transition means considering each associated statement, in
the order defined by the list, for execution. In Slco 1.0, the following statement
types are available:

– Assignment (x := E): assign to variable x the value defined by the expression
E. Variable x can be any variable in the scope of the state machine, i.e.,
it can be either state machine local or local to the object containing the
state machine. In expression E, references to variables in the scope of the
state machine and constants can be combined with the usual operators. The
expression must evaluate to a value of the same type as x. Assignments are
always enabled.

– (Boolean) Expression: If an expression E evaluates to a Boolean value, it can
be used as a stand-alone statement, and act as a guard. Such a statement is
enabled iff it evaluates to true.

– Send (send <message> to <port>): send the given message via the channel
connected to <port>. In case the channel is synchronous, this statement is
enabled iff at least one other state machine can receive the message via the
other port of the channel. If the channel is asynchronous, the statement is
enabled iff the buffer of the channel is not yet full. When fired, the message is
either sent to a receiving state machine (synchronous) or added to the FIFO
buffer of the associated channel (asynchronous).

– Receive (receive <message>|<guard> from <port>): if there is a message avail-
able to be received, its signal matches the one specified, and the (Boolean
expression) guard, which may refer to the message to be received via the
variable(s) in which the message value(s) is/are to be stored, evaluates to
true, then the receive statement is enabled, and when executed, results in
the message of the sender being received (synchronous) or the first message
in the FIFO buffer of the channel being received and removed from the buffer
(asynchronous).

– Delay (after <time> ms): wait for time milliseconds. This statement is always
enabled.

Each statement is atomic, i.e., its execution cannot be interrupted. Regarding
concurrency, Slco has an interleaving semantics.

The fact that a transition can have a list with more than one statement may
lead to situations in which a transition is fired, but its execution cannot termi-
nate, due to the execution reaching a statement that is not enabled. For instance,
the sequence x := 0; y := 1; x = y cannot terminate, unless another state
machine interferes with x and y to make the expression x = y evaluate to true.
If the execution of a transition cannot terminate, the state machine is stuck in
an intermediate state, in-between the source and target states of the fired tran-
sition. To make it simpler to reason about this, a fragment of Slco is referred
to as ‘simple Slco’, which only differs from Slco in the fact that at most
one statement can be associated with each transition. A model-to-model trans-
formation has been defined, that can transform Slco models to semantically
equivalent simple Slco models, by introducing additional states and transitions
where needed.

210 A. Wijs

1 model ex_chan {
2 classes
3 P {
4 variables
5 Integer x
6 ports Out
7 state machines
8 SM1 {
9 initial R0 states R1

10 transitions
11 R0 -> R1 { x = 0; x := 1 }
12 R1 -> R0 { send M(x) to Out }
13 }
14 }
15
16 Q {
17 variables
18 Integer result
19 ports In
20 state machines
21 SM2 {
22 initial S0
23 transitions
24 S0 -> S0 { receive M(result | result % 2 = 1) from In }
25 }
26 }
27 objects p: P(), q: Q()
28 channels c (Integer) sync between p.Out and q.In
29 }

Fig. 3. An Slco model of a distributed system.

Finally, before we discuss the research conducted with Slco, we present
an example Slco model in Fig. 3. The name of the model is defined at line 1.
Furthermore, classes P and Q are defined at lines 3–26, and instantiated to objects
p and q at line 27. In each class, variables and ports are defined (lines 4–5 and 17–
18, and lines 6 and 19, respectively). Each class contains one state machine. The
states of these state machines are defined at lines 9 and 22, and their transitions
are listed at lines 10–12 and 23–24. Finally, a synchronous channel between the
ports of objects p and q is defined at line 28. Note that q can successfully receive
one message from p, as the sent message has a matching signal M and contains the
value 1, which meets the requirement of q that the value must be odd. Also, only
a single message can be sent, since after sending, state machine SM1 returns to
state R0, at which point execution is permanently blocked, since the expression
x = 0 evaluates to false, and once set to 1, x is never set to 0 again.

3 Verifying Model-to-Model Transformations

3.1 Reverification of Models

To investigate the ability to reason about the external quality of model-to-
model transformations, a number of model-to-model transformations were devel-
oped for Slco, using the Xtend and Atl model transformation languages and
the Xpand tool [10,35], to be applied in the Lego Mindstorms conveyor belt

Embedding Formal Verification in MDSE with Slco: An Overview 211

case study. Some of these addressed refactoring aspects, such as the automatic
removal of unused variables, channels and classes, changing object-local vari-
ables to state machine local ones in case they are only accessed by a single state
machine, and merging objects together into a single object. The latter also affects
interaction between state machines: as state machines from different objects are
moved to the same object, any interaction via channels between them is trans-
formed to interaction via shared variables. For Lego Mindstorms, this model
transformation allowed to meet the criterion that the number of objects in the
final model has to match the number of RCXs in the system setup.

In addition, model-to-model transformations affecting the semantics were
defined, such as a transformation that introduces delays in a given set of
transitions, a transformation that achieves synchronous communication with
asynchronous channels, a transformation that achieves broadcasting messages
between more than two state machines via a number of channels, a transforma-
tion that introduces the Alternating Bit Protocol (ABP) [26] to deal with lossy
channels, and a transformation that makes the sender of a message explicit in
each message.

Finally, a number of model transformations were defined to transform Slco
models to artefacts written in other languages, such as a transformation to
Promela to allow the model checking of Slco models with the Spin model
checker [32], a transformation to dot to allow the visualisation of state machines,
and, of course, a code generator for NQC to produce source code.

The model-to-model transformation from Slco to Promela was used in a
first attempt to verify model-to-model transformations [6]. Since verifying the
model-to-model transformations themselves would require new verification tech-
niques, the approach was to verify a given Slco model, and reverify it each
time a model-to-model transformation that produced a refined Slco model had
been applied to it. This approach does not verify that a given model-to-model
transformation is guaranteed to produce correct models in general, but at least it
allows to verify that it works correctly on a case-by-case basis. After every trans-
formation application, the resulting Slco model was transformed to a Promela
model, to be verified with Spin.

However, a major drawback of this method is its limited scalability. Table 1
shows the impact of model-to-model transformations on the size of the state
space of a simple Slco model with a producer and a consumer object, i.e.,
a model very similar to the one of Fig. 3, in which one state machine sends
messages and another one receives those messages [6,25]. Changing the initially
synchronous channels to asynchronous ones doubles the size of the state space,
but making this channel lossy, and introducing the ABP protocol has a significant
impact on the state space size. Finally, adding delays to the transitions further
increases the state space by a factor 10. Considering that this is only a model
with a single channel, one can imagine the impact on models with many more
channels. Because of this state space explosion, and the fact that model-to-model
transformations by themselves are actually relatively small and typically only
impact a particular part of a model, the ambition was soon formulated to conduct

212 A. Wijs

Table 1. State space sizes of models specifying a producer and a consumer.

Model # States # Transitions

Synchronous 4 6
Asynchronous 8 11
Lossy + ABP 114,388 596,367
Delays 1,009,856 5,902,673

research on verifying model-to-model transformation definitions themselves, and
reason about their impact on models in general.

3.2 Direct Verification of Model-to-Model Transformations

In 2011, research was started on directly verifying the impact of model-to-model
transformations on models in general [60,61,64]. Contrary to the majority of the
work on model transformation verification at that moment [3,55], which focussed
on wellformedness of transformations, i.e., that model transformations produce
syntactically correct output, and questions such as whether a model transforma-
tion is terminating and/or confluent, we decided to focus on the semantical guar-
antees that model-to-model transformations can provide.2 In particular, since in
model checking, models are checked w.r.t. given functional properties formalised
in temporal logic, we were interested in verifying whether model-to-model trans-
formations preserve those properties. Being able to conclude this would mean
that reverification of models would no longer be needed.

Inspired by action-based model checking, we decided to reason about the
semantics of Slco models by means of Labelled Transition Systems (LTSs), as
defined in Definition 1.

Definition 1 (Labelled Transition System). A Labelled Transition System
L is a tuple 〈S,A, T, ŝ〉, with

– S a finite set of states;
– A a set of actions;
– T ⊆ S × A × S a transition relation;
– ŝ ∈ S the initial state.

Slco has a formal semantics, and it was straightforward to map that seman-
tics to LTSs. Actually, since model-to-model transformations for component-
based systems tend to transform individual components, we reasoned about the
semantics of component-based systems by means of LTS networks [41]. In such
a network, the potential behaviour of each individual component is represented
by an LTS, and the potential interaction between these components is defined

2 Other works addressing the semantical impact of transformations include [28,33,46].

Embedding Formal Verification in MDSE with Slco: An Overview 213

1

Π1

2

V =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(〈a, a〉, a)
(〈b, d〉, e)
(〈c, •〉, c),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

b

43c d

a a a a

Π2

(a) An LTS network N .

1 2

3 4

GN

c

a a

(b) The system LTS of N .

Fig. 4. An example LTS network and its corresponding system LTS.

by a set of synchronisation laws V that expresses which actions of the individual
LTSs need to synchronise with each other, and which do not. An LTS network
semantically corresponds with an individual system LTS, in which the potential
behaviour of the components is interleaved, and synchronisations are applied
where needed. Figure 4 presents an example LTS network (Fig. 4a) and its corre-
sponding system LTS (Fig. 4b): How LTSs Π1 and Π2 should (not) synchronise
is given by the three laws in V: action a needs to be performed by both LTSs
together, leading to an a-transition in the system LTS, b and d of Π1 and Π2,
respectively, need to synchronise to an e-transition in the system LTS, and c can
be performed by Π1 independently.

In this setting, model-to-model transformations can be formalised by means
of LTS transformation rule systems, inspired by double pushout graph rewrit-
ing [24]. Here, we explain the basics by means of an example. A formal treatment
can be found in [51,60]. Figure 5 shows an example LTS G on the left (Fig. 5a),
with state 1 the initial state. A transformation rule is a pair of LTSs 〈L,R〉, with
L and R having some states in common, called the glue in-states and glue exit-
states. In the example, the round grey states are glue in-states and the square
grey states are glue exit-states. The example rule (Fig. 5b) expresses the follow-
ing: a sequence of two a-transitions should be replaced by a τ -transition, followed
in sequence by two a′-transitions. Moreover, the rule can only be matched on a
sequence of two a-transitions in G if that sequence satisfies the following criteria:

1. The first state does not have any additional outgoing transitions (expressed
by the glue in-state of L);

2. The last state does not have any additional incoming transitions (expressed
by the glue exit-state of L);

3. The intermediate state has no additional in- or outgoing transitions
(expressed by the fact that state 2̃ of L is not present in R, meaning that
a state matched on 2̃ is supposed to be removed and replaced by two new

214 A. Wijs

1

2

a

3

a

4 5

a b

G

(a) Input LTS.

1̃

2̃

a

a

1̃

7̃

a

a

R

3̃

3̃

L

6̃

τ

(b) Transformation rule.

1

7

a

3

a

4 5

a b

T (G)

τ

6

(c) Output LTS.

Fig. 5. An example of applying an LTS transformation rule on an LTS. Round grey
state: glue in-state, square grey state: glue exit-state.

states 6̃ and 7̃, plus the fact that the removal of states in an LTS may not
affect its transitions in ways not addressed by the transformation rule).

The rule 〈L,R〉 is applicable on G, and applying it results in the LTS T (G)
given in Fig. 5c.

Model-to-model transformations formalised by means of LTS transformation
rule systems can be reasoned about without considering a particular LTS on
which they are applied. We only assume that such an LTS satisfies particular
functional properties of interest. For instance, if an LTS satisfies the property
“Always eventually c occurs”, expressed in an action-based temporal logic, then
it is clear that the transformation rule given in Fig. 5 preserves this property
when applied on that LTS, regardless of the latter’s structure. The property
is preserved as the rule does not transform c-transitions, nor does it affect the
reachability of states in the LTS.

The model-to-model transformation verification technique developed in [50,
51,62] considers functional properties expressed in the modal μ-calculus [39].
Given a μ-calculus formula ϕ, actions in L and R of a transformation rule are
automatically abstracted away, i.e., replaced by the silent action τ , if they are
considered irrelevant for ϕ [45]. After this, if L and R, extended to make explicit
that they represent embeddings in a larger LTS on which they are applied, are
divergent-preserving branching bisimilar [29], which is an equivalence for LTSs
sensitive to τ -transitions while still considering the branching structure and τ -
loops of the LTSs, then it can be concluded that ϕ will be satisfied by the
LTS produced by the transformation. Although highly non-trivial, this can be

Embedding Formal Verification in MDSE with Slco: An Overview 215

extended to LTS transformation rule systems that transform the synchronising
behaviour between LTSs. In [51], a formalisation of this technique is presented
in detail that has been proven correct with the Coq Proof Assistant [9].

Performance-wise, model-to-model transformation verification is a great
improvement over reverifying models. All the considered example transforma-
tions could be verified w.r.t. property-preservation practically instantly [51]. The
approach has one main drawback, though: sometimes, functional properties can
only be expressed, and only become relevant, once the model has obtained a cer-
tain amount of detail. If a property must be expressed about the behaviour intro-
duced by one or more model-to-model transformations, property-preservation is
not relevant, and verification of the current model seems inevitable.

To possibly even avoid reverification in such cases, more recently, we con-
ducted research on reasoning about the effect of an individual LTS transfor-
mation rule r on a system property ψ [21], expressed in Action-based Linear
Temporal Logic (ALTL) [27,49], when applied on a component satisfying that
property. First, a representative LTS Lψ for components satisfying an ALTL for-
mula ψ is constructed, by creating the cross-product of a representative LTS L
for all LTSs on which r is applicable with an action-based Büchi automaton Bψ

encoding ψ [18]. On Lψ, r is applied, resulting in action-based Büchi automa-
ton T (Lψ). After detecting and removing non-accepting cycles of T (Lψ), and
minimising the resulting Büchi automaton using standard minimisation tech-
niques [23], a characteristic formula for the action-based Büchi automaton is
created in the form of a system of μ-calculus equations. Similar to property-
preservation checking, this approach works practically instantly. To generalise
it to the setting of [51], in future work, rule systems consisting of multiple LTS
transformation rules should be considered, and functional properties written in
the modal μ-calculus, more expressive than ALTL, should be supported. This
approach is promising, but still restricted to updating temporal logic formulae
expressed originally for the initial model. If entirely new properties become rel-
evant for a model at a later stage in the MDSE workflow, verification of that
model is unavoidable.

Challenges and Directions for Future Work. The developed technique to
formally verify model-to-model transformations reasons about the semantics of
component-based systems by focussing on LTSs and their transformation, but
a suitable formalism to express Slco-to-Slco transformations in a way com-
patible with this is yet to be identified. One direction for future work is to find
such a model transformation language. Existing general-purpose transformation
languages, such as Atl and Xtend, may be suitable, or a Domain-Specific
Transformation Language could be developed that directly involves the Slco
constructs. Extending the technique to reason about the effect of a transforma-
tion on a system property will be further investigated as addressed above.

216 A. Wijs

SLC O model Java code

Model checking:
verify functional properties of
model (deadlock freedom,
absence of out-of-bound
array accesses, etc.)

fix model

Equivalence checking:
check bisimulation of
CFGs of model and code

Code verification:
verify semantics
preservation of individual
statement blocks

generated
code
incorrect!

generated
code
correct!

transform

Code verification:
verified generic

constructs (locking, etc.)

Fig. 6. Verified generation of multi-threaded Java code.

4 Verifying Code Generators

When applied on an Slco model, a code generator should produce code that
is (as much as possible) semantically equivalent to the model. In 2014, a new
project started, focussed on the model-driven development of multi-threaded
software. It was decided to develop a code generator for multi-threaded Java
code. Java being more elaborate than NQC, it was soon clear that Slco needed
to be extended. Version 2.0 of the language [53] introduced the following features:

– Support for the Byte primitive type, and arrays of the primitive types;
– Transition priorities. These allow expressing that the outgoing transitions of

a state must be considered for firing in a fixed order;
– An Action statement (do <action>): this allows assigning arbitrary action

labels to transitions, which can represent particular events, such as calling
external functions. Action statements are always enabled.

– A Composite statement ([<expr>;<assgn_1>;...;<assgn_n>]): this allows
combining certain statements into a single, atomically executed, statement.
It starts with an expression, which may be true, and a sequence of one or
more assignments. The statement is enabled iff the expression is enabled.

The general workflow of producing multi-threaded Java code in a verified
way is presented in Fig. 6, while an example Slco model and part of its Java
implementation is given in Fig. 7. The Slco-to-Java code generator creates one
thread for each state machine in the objects of the given Slco model. In Fig. 7,
some of the code for a thread executing the transitions of state machine SM1 of
object p is given. Each thread has access to a lock keeper (lines 6–7 of the Java
code), which manages the locks used to avoid data races when accessing object-
local variables. This lock keeper uses an ordered locking scheme that prevents
circular lock dependencies between threads.

A thread executes according to the associated state machine as follows: the
initial state is defined by the constructor method at line 10. In the exec method
(line 26), the current state of the state machine is repeatedly checked (lines

Embedding Formal Verification in MDSE with Slco: An Overview 217

1 model ex_shr {
2 actions a
3 classes
4 P {
5 variables
6 Integer x
7 state machines
8 SM1 {
9 initial R0 states R1

10 transitions
11 R0 -> R1 { [x = 0; x := 1] }
12 R1 -> R0 { do a }
13 }
14 SM2 {
15 initial S0
16 transitions
17 S0 -> S0 { x % 2 = 1 }
18 }
19 }
20 objects p: P()
21 }

1 ...
2 class java_SM1Thread extends Thread {
3 private Thread java_t;
4
5 private ex_shr.java_State java_cState;
6
7 private ex_shr.java_Keeper java_kp;
8
9

10 java_SM1Thread (ex_shr.java_Keeper java_k) {
11 java_cState = ex_shr.java_State.R0;
12 java_kp = java_k;
13 }
14
15
16 boolean execute_R0_0() {
17
18 if (!(x == 0)) { java_kp.unlock(1); return false; }
19 x = 1;
20 java_kp.unlock(1);
21 return true;
22 }
23 boolean execute_R1_0() { a(); return true; }
24
25
26 public void exec() {
27 while(true) {
28 switch(java_cState) {
29 case ex_shr.java_State.R0:
30 if (execute_R0_0()) { java_cState = ex_shr.java_State.R1; }
31 break;
32 case ex_shr.java_State.R1:
33 if (execute_R1_0()) { java_cState = ex_shr.java_State.R0; }
34 break;
35 default: return;
36 }}}
37 ...

Fig. 7. An Slco shared memory system (top) and derived Java code (bottom).

218 A. Wijs

27–28), and depending on its value, one or more functions are executed that
correspond one-to-one with a transition in the Slco model. At lines 16–22,
the function execute_R0_0 is given, which corresponds with the transition at
line 11 of the Slco model. First, it is attempted to acquire a lock for variable
x. Once this is achieved, it is checked whether the expression of the composite
statement evaluates to true (line 18). If it does not, the lock is released and false
is returned. If it does, x is updated, the lock released, and true is returned. If
a transition function returns true, the thread updates its state and continues
checking the current state. Note at line 23 that the action a is mapped to some
external function with the same name.

Complete formal verification of a code generator is very challenging [72].
First, we focussed on proving correctness of the model-independent parts of the
code: we proved that the lock keeper does not introduce deadlocks due to threads
waiting for each other [73], that the Java channels work as specified by the Slco
channels [16], and that a safety construct called Failbox works as intended [15].
For this, the VeriFast code verifier was used, which allows verifying that Java
code adheres to pre- and post-conditions specified in separation logic [34]. These
verified constructs can be safely used in generated code (see Fig. 6).

The next step was to verify model-specific code. Verifying that a code gener-
ator always produces correct model-specific code would require reasoning about
all possible inputs, i.e., Slco models. As this is very complex, we focussed on try-
ing to verify automatically that for a given Slco model, the produced Java code
correctly implements it, i.e., adheres to the semantics of the model. We achieved
this in a two-step approach [67]: first, the control flows of both a thread and its
corresponding state machine are extracted. After some straightforward trans-
formations that bring the two control flow graphs conceptually closer together,
they are stored in a common graph structure. It is then checked whether those
graphs are bisimilar. If they are, then we have established that the thread and
the state machine perform their steps in equivalent ways. What remains is to
establish that the individual steps of the thread indeed correspond with the indi-
vidual steps of the state machine. For this, code verification is used again. The
individual Java transition functions are automatically annotated with pre- and
post-conditions in separation logic, expressing the semantics of the correspond-
ing Slco statements. This time, we used the VerCors verifier to perform the
verification [12]. As the pre- and post-conditions are generated automatically,
performing the verification only requires pushing a button.

Finally, we investigated techniques to check whether an implementation
would still adhere to Slco’s semantics if a platform with a weak memory model
was targeted [52]. Such a model allows out-of-order execution of instructions,
which may violate the intended functionality. In related work, this problem has
been addressed in two different ways: in one, a dependency graph is constructed
by statically analysing the code [2,57]. This graph encodes which instructions
depend on each other due to them accessing the same variables. Next, cycles in
this graph that meet certain criteria, depending on the targeted memory model,
represent violations of that model. The other way is to apply model checking,

Embedding Formal Verification in MDSE with Slco: An Overview 219

considering both the usual possible executions, with instructions occurring in the
specified order, and executions in which the instructions have been reordered,
insofar allowed by the memory model [1,44]. The drawback of the first approach
is its imprecision, while the drawback of the second approach is a state space
explosion that is typically even much worse than in standard model checking.

Our contribution was to combine the two approaches: first, explore the state
space of the Slco model, but only considering the executions with instructions
in the specified order, and derive from this a dependency graph. Second, apply
cycle detection analysis on this dependency graph. For the state space explo-
ration step, a model-to-model transformation from Slco to mCRL2 [19] was
devised. As the produced graphs tend to be more precise than when using static
analysis, the results in our experiments were of higher quality, and the overall
runtime was often even faster. As the number of elementary cycles in a graph can
grow exponentially, constructing a more accurate dependency graph can avoid
introducing many cycles that an over-approximation of the potential behaviour
would introduce. This reduced number of cycles greatly impacts the processing
time, often compensating for the time it takes to explore the state space.

Challenges and Directions for Future Work. The main challenge in this
research line is to achieve full verification of code generators. In related work on
compiler and code generator verification, full verification has been achieved with
theorem proving [11,14,40,43,58], but this is a labour-intensive approach that
is not very flexible w.r.t. updates of the compiler or generator. We plan to work
on techniques that allow flexible maintenance of correctness proofs.

Another direction currently investigated involves the generation of code for
graphics processing units (GPUs) [30]. For many-core programs, however, Slco
is not directly suitable. Array languages, on the other hand, have been designed
with parallel array processing in mind, which aligns very well with typical GPU
functions. We are currently investigating how to embed program verification
into the Halide language, a language to express image and tensor computa-
tions [54]. This language separates what a program should do, i.e., its function-
ality, from how it should do it, i.e., the scheduling that involves performance
optimisations. Besides making development more insightful, this separation also
positively affects verifiability. Verification of the functional correctness of a pro-
gram can be separated from verifying that optimisations applied to it preserve
that correctness. In other work, we focus on updating pre- and post-conditions
when code is automatically optimised, to allow for push-button reverification of
the code [56].

5 GPU-Accelerated Model Checking

We addressed the verification of model-to-model transformations and code gener-
ators, but proving their correctness ultimately depends on the input models being
correct. Hence, verifying the correctness of Slco models cannot be avoided, and
sometimes needs to be performed multiple times in an MDSE workflow, as dis-
cussed in Sect. 3.2. Initially, we developed an Slco-to-mCRL2 transformation

220 A. Wijs

Fig. 8. The workflow from Slco model to GPUexplore model checking.

for this, to apply the mCRL2 toolset [19] for the model checking of (untimed)
Slco models. Recently, we integrated Slco in another line of research that
started in 2013, focussed on accelerating model checking with GPUs [20,47,69–
71].

The research on GPU-acceleration of model checking is motivated first of all
by the fact that for a seamless integration of formal verification in MDSE, it is
crucial that models can be verified efficiently. If verification takes a long time,
this hinders development. Second of all, as hardware developments are increas-
ingly focussed on dedicated devices such as GPUs and adding cores to processors,
as opposed to making individual cores faster, computationally intensive compu-
tations, such as model checking, require massively parallel algorithms [42].

Figure 8 presents the workflow of formally verifying the correctness of Slco
models with the model checker GPUexplore version 3.0 [65,66]. First, an Slco
model is analysed by a CUDA code generator. CUDA, the Compute Unified
Device Architecture, is a parallel computing platform and application program-
ming interface developed by NVIDIA, that can be used to develop programs
for their GPUs. The generator produces CUDA C++ code that implements an
explicit-state model checker for that specific Slco model: it includes generated
functions that allow the evaluation and firing of Slco transitions by directly
executing instructions corresponding with the associated Slco statements.

The generated code can be compiled with NVIDIA’s NVCC compiler. Note in
Fig. 8 that the compiler combines generic, model-independent code, with model-
specific code, similar to the Slco-to-Java transformation (Sect. 4).

On the right of Fig. 8, the main concepts of a GPUexplore program are
mapped to a GPU architecture: A GPU consists of many streaming multipro-
cessors (SM) that each have a limited amount of fast, on-chip shared memory,
and one shared pool of global memory. Typically, a GPU program consists of a
program, executed by one or more CPU threads, in which GPU functions, called
kernels, are launched. These kernels are typically executed by many thousands of
threads simultaneously. Threads are grouped into blocks. A block is executed by
an SM, and the threads in a block share a specified amount of shared memory.
It is not possible for the threads in one block to access the shared memory of
another block. Finally, all blocks share the global memory. In GPUexplore,
this memory is used to maintain a large hash table, in which the Slco model
states are stored as they are reached, starting with the initial state.

Embedding Formal Verification in MDSE with Slco: An Overview 221

Table 2. State space exploration speed of Spin, LTSmin and GPUexplore, in mil-
lions of states per second. -o.m.-: out of memory (32 GB).

Model Nr. states Spin 4-core LTSmin 4-core GPUexplore

adding.50+ 529,767,730 -o.m.- 5.36 148.28
anderson.6 18,206,917 1.36 1.31 31.57
at.6 160,589,600 0.87 2.39 40.56
frogs.5 182,772,126 1.05 2.63 10.31
lamport.8 62,669,317 1.78 2.19 34.92
peterson.6 174,495,861 0.76 2.45 33.58
szymanski.5 79,518,740 1.57 1.82 18.34

An Slco model state is a vector defining a state of the model, i.e., it defines
for each state machine its current state, and for each variable its current value.
Each block repeatedly fetches unexplored states, i.e., states for which the out-
going transitions of the corresponding current states of the state machines have
not yet been considered for firing. Exploring these states leads to the creation of
successors, i.e., states reachable by firing a transition. This is conducted in par-
allel by the threads in a block; GPUexplore runs blocks of 512 threads each.
Successors are temporarily stored in shared memory, in which a block-local hash
table is maintained. This prevents blocks from frequently accessing slow global
memory (which is typically a major performance bottleneck). Once a batch of
new successors has been generated, their presence in the global memory hash
table is checked. States not yet present are added, ready to be explored in the
next round. This procedure is repeated until no more states are generated.

Currently, GPUexplore supports deadlock checking, with support for the
verification of Linear Temporal Logic (LTL) [49] formulae being planned for the
near future. Table 2 presents some results obtained when comparing the state
space exploration speed of GPUexplore with Spin and the model checker
LTSmin [36]. Both Spin and LTSmin support CPU multi-core explicit-state
model checking. The models listed here are all Slco models obtained by trans-
lating the model in the Beem benchmark suite [48] of the same name from the
DVE language to Slco, except for adding.50+, which was obtained by scaling
up the adding models present in that benchmark suite. We used a machine with
a four-core CPU i7-7700 (3.6GHz), 32 GB RAM, and an NVIDIA Titan RTX
GPU with 24 GB global memory, running Linux Mint 20 and CUDA 11.4.

As LTSmin achieves near-linear speedups as the number of used cores is
increased [59], these numbers indicate how many cores would be needed to match
the speed of GPUexplore. GPUexplore can reach impressive speeds up to
148 million states per second. However, what stands out is that the achieved
speed differs greatly between models, more than with Spin and LTSmin. In the
near future, we will inspect the models and their state spaces, to identify the
cause for these differences, and improve the reliability of GPUexplore.

222 A. Wijs

Challenges and Directions for Future Work. The first aspect to address
is the verification of temporal logic formulae. First, we will focus on LTL. How-
ever, state-of-the-art sequential LTL verification algorithms rely on Depth-First
Search (DFS) of the state spaces, as they involve cycle detection. Since DFS is
not suitable for GPUs, GPUexplore applies a greedy, Breadth-First Search
based exploration algorithm, in which cycle detection cannot be integrated as
straightforwardly. In the past, we have investigated algorithms for this that are
incomplete [68]. Designing an alternative that is complete remains a challenge.

Another line of research is to achieve GPU acceleration of probabilis-
tic model checking [8]. In the past, this has been partially accelerated with
GPUs [13,17,37,63]: once the state space has been generated, verification of a
probabilistic property, formalised in Probabilistic Computation Tree Logic [31],
involves repeated matrix-vector multiplications, which GPUs can perform very
rapidly. Also accelerating the state space generation will likely be a major step
forward, not only because the generation itself will become faster, but also
because it will remove the need to transfer a matrix, representing the state
space, from the main memory to the GPU memory.

6 Conclusions

We presented an overview of the research conducted in the last decade on inte-
grating formal verification into an MDSE workflow centered around the Slco
DSL. For an effective integration, efficient verification of models, model-to-
model transformations and code generators is crucial. In the three research lines
focussing on each of these three types of MDSE artefacts, important steps have
been made, and open challenges remain for the (near) future.

One particular challenge bridging the first two lines concerns identifying ways
to combine model verification and model-to-model transformation verification,
ideally to achieve an automatic verification technique that, depending on the
property, the model, and the transformation to be applied, can derive how the
transformed model relates to that property. We envision that in order to derive
this, a number of verification results need to be established, of which some could
possibly be determined via model verification, while for others, model-to-model
transformation verification could be more efficient.

References

1. Abdulla, P.A., Atig, M.F., Ngo, T.-P.: The best of both worlds: trading efficiency
and optimality in fence insertion for TSO. In: Vitek, J. (ed.) ESOP 2015. LNCS,
vol. 9032, pp. 308–332. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46669-8_13

2. Alglave, J., Kroening, D., Nimal, V., Poetzl, D.: Don’t sit on the fence: a static
analysis approach to automatic fence insertion. ACM Trans. Progr. Lang. Syst.
39(2), 6 (2017)

https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-46669-8_13

Embedding Formal Verification in MDSE with Slco: An Overview 223

3. Amrani, M., et al.: Formal verification techniques for model transformations: a
tridimensional classification. J. Object Technol. 14(3), 1–43 (2015). https://doi.
org/10.5381/jot.2015.14.3.a1

4. van Amstel, M.: Assessing and improving the quality of model transformations.
Ph.D. thesis, Eindhoven University of Technology (2011)

5. van Amstel, M., van den Brand, M., Engelen, L.: An exercise in iterative domain-
specific language design. In: EVOL/IWPSE, pp. 48–57. ACM Press (2010)

6. van Amstel, M., van den Brand, M., Engelen, L.: Using a DSL and fine-grained
model transformations to explore the boudaries of model verification. In: MVV,
pp. 120–127. IEEE Computer Society Press (2011)

7. van Amstel, M., van den Brand, M., Protić, Z., Verhoeff, T.: Model-driven soft-
ware engineering. In: Hamberg, R., Verriet, J. (eds.) Automation in Warehouse
Development, pp. 45–58. Springer, London (2011). https://doi.org/10.1007/978-0-
85729-968-0_4

8. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
9. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development,

Coq’ Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

10. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend, 2nd
edn. Packt Publishing, Birmingham (2016)

11. Blech, J., Glesner, S., Leitner, J.: Formal verification of java code generation from
UML models. In: Fujaba Days 2005, pp. 49–56 (2005)

12. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1_7

13. Bošnački, D., Edelkamp, S., Sulewski, D., Wijs, A.: Parallel probabilistic model
checking on general purpose graphics processors. STTT 13(1), 21–35 (2011).
https://doi.org/10.1007/s10009-010-0176-4

14. Bourke, T., Brun, L., Dagand, P.E., Leroy, X., Pouzet, M., Rieg, L.: A formally
verified compiler for Lustre. In: PLDI. ACM SIGPLAN Notices, vol. 52, pp. 586–
601. ACM (2017)

15. Bošnački, D., et al.: Dependency safety for java: implementing failboxes. In: PPPJ:
Virtual Machines, Languages, and Tools, pp. 15:1–15:6. ACM (2016)

16. Bošnački, D., et al.: Towards modular verification of threaded concurrent exe-
cutable code generated from DSL models. In: FACS, pp. 141–160 (2015)

17. Bošnački, D., Edelkamp, S., Sulewski, D., Wijs, A.: GPU-PRISM: an extension of
PRISM for general purpose graphics processing units. In: PDMC, pp. 17–19. IEEE
(2010). https://doi.org/10.1109/PDMC-HiBi.2010.11

18. Büchi, J.: On a decision method in restricted second order arithmetic. In: CLMPS,
pp. 425–435. Stanford University Press (1962)

19. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1_2

20. Cassee, N., Neele, T., Wijs, A.: On the scalability of the GPUexplore explicit-state
model checker. In: GaM. EPTCS, vol. 263, pp. 38–52. Open Publishing Association
(2017)

21. Chaki, R., Wijs, A.: Formally characterizing the effect of model transformations
on system properties. In: Tapia Tarifa, S.L., Proença, J. (eds.) FACS 2022. LNCS,

https://doi.org/10.5381/jot.2015.14.3.a1
https://doi.org/10.5381/jot.2015.14.3.a1
https://doi.org/10.1007/978-0-85729-968-0_4
https://doi.org/10.1007/978-0-85729-968-0_4
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/s10009-010-0176-4
https://doi.org/10.1109/PDMC-HiBi.2010.11
https://doi.org/10.1007/978-3-030-17465-1_2

224 A. Wijs

vol. 13712, pp. 39–58. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
20872-0_3

22. Di Ruscio, D., Kolovos, D., de Lara, J., Pierantonio, A., Tisi, M., Wimmer, M.:
Low-code development and model-driven engineering: two sides of the same coin?
Softw. Syst. Model. 21, 437–446 (2022)

23. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8

24. Ehrig, H., Pfender, M., Schneider, H.: Graph-grammars: an algebraic approach. In:
SWAT, pp. 167–180. IEEE Computer Society Press (1973)

25. Engelen, L.: From napkin sketches to reliable software. Ph.D. thesis, Eindhoven
University of Technology (2012)

26. Feijen, W., van Gasteren, A.: The alternating bit protocol. In: Feijen, W., van
Gasteren, A. (eds.) On a Method of Multiprogramming. Monographs in Computer
Science, pp. 333–345. Springer, New York (1999). https://doi.org/10.1007/978-1-
4757-3126-2_30

27. Giannakopoulou, D.: Model checking for concurrent software architectures. Ph.D.
thesis, University of London (1999)

28. Giese, H., Lambers, L.: Towards automatic verification of behavior preservation for
model transformation via invariant checking. In: Ehrig, H., Engels, G., Kreowski,
H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 249–263. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33654-6_17

29. van Glabbeek, R., Luttik, S., Trčka, N.: Branching bisimilarity with explicit diver-
gence. Fundam. Inf. 93(4), 371–392 (2009)

30. van den Haak, L.B., Wijs, A., van den Brand, M., Huisman, M.: Formal methods
for GPGPU programming: is the demand met? In: Dongol, B., Troubitsyna, E.
(eds.) IFM 2020. LNCS, vol. 12546, pp. 160–177. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-63461-2_9

31. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

32. Holzmann, G.: The model checker spin. IEEE Trans. Software Eng. 23(5), 279–295
(1997). https://doi.org/10.1109/32.588521

33. Hülsbusch, M., König, B., Rensink, A., Semenyak, M., Soltenborn, C., Wehrheim,
H.: Showing full semantics preservation in model transformation - a comparison of
techniques. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 183–198.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16265-7_14

34. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5_4

35. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MODELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006).
https://doi.org/10.1007/11663430_14

36. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0_61

https://doi.org/10.1007/978-3-031-20872-0_3
https://doi.org/10.1007/978-3-031-20872-0_3
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-1-4757-3126-2_30
https://doi.org/10.1007/978-1-4757-3126-2_30
https://doi.org/10.1007/978-3-642-33654-6_17
https://doi.org/10.1007/978-3-030-63461-2_9
https://doi.org/10.1007/978-3-030-63461-2_9
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/978-3-642-16265-7_14
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/11663430_14
https://doi.org/10.1007/978-3-662-46681-0_61

Embedding Formal Verification in MDSE with Slco: An Overview 225

37. Khan, M.H., Hassan, O., Khan, S.: Accelerating SpMV multiplication in proba-
bilistic model checkers using GPUs. In: Cerone, A., Ölveczky, P.C. (eds.) ICTAC
2021. LNCS, vol. 12819, pp. 86–104. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-85315-0_6

38. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture(TM): Practice and Promise. Addison-Wesley Professional, Boston (2005)

39. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27(3),
333–354 (1983)

40. Kumar, R., Myreen, M., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: POPL. ACM SIGPLAN Notices, vol. 49, pp. 179–191. ACM
(2014)

41. Lang, F.: Exp.Open 2.0: a flexible tool integrating partial order, compositional,
and on-the-fly verification methods. In: Romijn, J., Smith, G., van de Pol, J. (eds.)
IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005). https://doi.
org/10.1007/11589976_6

42. Leiserson, C.E., et al.: There’s plenty of room at the top: what will drive com-
puter performance after Moore’s law? Science 368(6495) (2020). https://doi.org/
10.1126/science.aam9744

43. Leroy, X.: Formal proofs of code generation and verification tools. In: Gian-
nakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 1–4. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10431-7_1

44. Linden, A., Wolper, P.: A verification-based approach to memory fence insertion in
PSO memory systems. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS,
vol. 7795, pp. 339–353. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36742-7_24

45. Mateescu, R., Wijs, A.: Property-dependent reductions adequate with divergence-
sensitive branching bisimilarity. Sci. Comput. Program. 96(3), 354–376 (2014)

46. Narayanan, A., Karsai, G.: Towards verifying model transformations. In: Proceed-
ings of 7th International Workshop on Graph Transformation and Visual Modeling
Techniques (GT-VMT 2008). ENTCS, vol. 211, pp. 191–200. Elsevier (2008)

47. Neele, T., Wijs, A., Bošnački, D., van de Pol, J.: Partial-order reduction for GPU
model checking. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS,
vol. 9938, pp. 357–374. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46520-3_23

48. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73370-6_17

49. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (FOCS), pp. 46–57. IEEE Computer Society (1977)

50. de Putter, S., Wijs, A.: Verifying a verifier: on the formal correctness of an LTS
transformation verification technique. In: Stevens, P., Wąsowski, A. (eds.) FASE
2016. LNCS, vol. 9633, pp. 383–400. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49665-7_23

51. de Putter, S., Wijs, A.: A formal verification technique for behavioural model-
to-model transformations. Form. Asp. Comput. 30(1), 3–43 (2018). https://link.
springer.com/article/10.1007/s00165-017-0437-z

52. de Putter, S., Wijs, A.: Lock and fence when needed: state space exploration +
static analysis = improved fence and lock insertion. In: Dongol, B., Troubitsyna, E.
(eds.) IFM 2020. LNCS, vol. 12546, pp. 297–317. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-63461-2_16

https://doi.org/10.1007/978-3-030-85315-0_6
https://doi.org/10.1007/978-3-030-85315-0_6
https://doi.org/10.1007/11589976_6
https://doi.org/10.1007/11589976_6
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1007/978-3-319-10431-7_1
https://doi.org/10.1007/978-3-642-36742-7_24
https://doi.org/10.1007/978-3-642-36742-7_24
https://doi.org/10.1007/978-3-319-46520-3_23
https://doi.org/10.1007/978-3-319-46520-3_23
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/978-3-662-49665-7_23
https://doi.org/10.1007/978-3-662-49665-7_23
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s00165-017-0437-z
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s00165-017-0437-z
https://doi.org/10.1007/978-3-030-63461-2_16
https://doi.org/10.1007/978-3-030-63461-2_16

226 A. Wijs

53. de Putter, S., Wijs, A., Zhang, D.: The SLCO framework for verified, model-driven
construction of component software. In: Bae, K., Ölveczky, P.C. (eds.) FACS 2018.
LNCS, vol. 11222, pp. 288–296. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-02146-7_15

54. Ragan-Kelley, J., et al.: Halide: decoupling algorithms from schedules for high-
performance image processing. Commun. ACM 61(1), 106–115 (2017). https://
doi.org/10.1145/3150211

55. Rahim, L., Whittle, J.: A survey of approaches for verifying model transformations.
Softw. Syst. Model. 1–26 (2013). https://doi.org/10.1007/s10270-013-0358-0

56. Şakar, Ö., Safari, M., Huisman, M., Wijs, A.: Alpinist: an annotation-aware GPU
program optimizer. In: TACAS 2022. LNCS, vol. 13244, pp. 332–352. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99527-0_18

57. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share
memory. ACM Trans. Program. Lang. Syst. 10(2), 282–312 (1988)

58. Stenzel, K., Moebius, N., Reif, W.: Formal verification of QVT transformations for
code generation. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS,
vol. 6981, pp. 533–547. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24485-8_39

59. van der Vegt, S., Laarman, A.: A parallel compact hash table. In: Kotásek, Z.,
Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.) MEMICS 2011.
LNCS, vol. 7119, pp. 191–204. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-25929-6_18

60. Wijs, A.: Define, verify, refine: correct composition and transformation of con-
current system semantics. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013.
LNCS, vol. 8348, pp. 348–368. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07602-7_21

61. Wijs, A., Engelen, L.: Efficient property preservation checking of model refine-
ments. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
565–579. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7_41

62. Wijs, A., Engelen, L.: REFINER: towards formal verification of model transfor-
mations. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp.
258–263. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06200-6_21

63. Wijs, A.J., Bošnački, D.: Improving GPU sparse matrix-vector multiplication for
probabilistic model checking. In: Donaldson, A., Parker, D. (eds.) SPIN 2012.
LNCS, vol. 7385, pp. 98–116. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31759-0_9

64. Wijs, A., Engelen, L.: Incremental formal verification for model refining. In: MoD-
eVVa, pp. 29–34. ACM Press (2012)

65. Wijs, A., Osama, M.: GPUexplore 3.0: GPU accelerated state space exploration
for concurrent systems with data. In: Caltais, G., Schilling, C. (eds.) SPIN 2023.
LNCS, vol. 13872, pp. 188–197. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-32157-3_11

66. Wijs, A., Osama, M.: A GPU tree database for many-core explicit state space
exploration. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023, Part I.
LNCS, vol. 13993, pp. 684–703. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-30823-9_35

67. Wijs, A., Wiłkowski, M.: Modular indirect push-button formal verification of multi-
threaded code generators. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. LNCS,
vol. 11724, pp. 410–429. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30446-1_22

https://doi.org/10.1007/978-3-030-02146-7_15
https://doi.org/10.1007/978-3-030-02146-7_15
https://doi.org/10.1145/3150211
https://doi.org/10.1145/3150211
https://doi.org/10.1007/s10270-013-0358-0
https://doi.org/10.1007/978-3-030-99527-0_18
https://doi.org/10.1007/978-3-642-24485-8_39
https://doi.org/10.1007/978-3-642-24485-8_39
https://doi.org/10.1007/978-3-642-25929-6_18
https://doi.org/10.1007/978-3-642-25929-6_18
https://doi.org/10.1007/978-3-319-07602-7_21
https://doi.org/10.1007/978-3-319-07602-7_21
https://doi.org/10.1007/978-3-642-36742-7_41
https://doi.org/10.1007/978-3-642-36742-7_41
https://doi.org/10.1007/978-3-319-06200-6_21
https://doi.org/10.1007/978-3-642-31759-0_9
https://doi.org/10.1007/978-3-642-31759-0_9
https://doi.org/10.1007/978-3-031-32157-3_11
https://doi.org/10.1007/978-3-031-32157-3_11
https://doi.org/10.1007/978-3-031-30823-9_35
https://doi.org/10.1007/978-3-031-30823-9_35
https://doi.org/10.1007/978-3-030-30446-1_22
https://doi.org/10.1007/978-3-030-30446-1_22

Embedding Formal Verification in MDSE with Slco: An Overview 227

68. Wijs, A.: BFS-based model checking of linear-time properties with an application
on GPUs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
472–493. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_26

69. Wijs, A., Bošnački, D.: GPUexplore: many-core on-the-fly state space exploration
using GPUs. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 233–247. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8_16

70. Wijs, A., Bošnački, D.: Many-core on-the-fly model checking of safety properties
using GPUs. STTT 18(2), 169–185 (2016). https://doi.org/10.1007/s10009-015-
0379-9

71. Wijs, A., Neele, T., Bošnački, D.: GPUexplore 2.0: unleashing GPU explicit-state
model checking. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 694–701. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6_42

72. Zhang, D., et al.: Towards verified java code generation from concurrent state
machines. In: AMT@MoDELS, pp. 64–69 (2014)

73. Zhang, D., et al.: Verifying atomicity preservation and deadlock freedom of a
generic shared variable mechanism used in model-to-code transformations. In:
Hammoudi, S., Pires, L.F., Selic, B., Desfray, P. (eds.) MODELSWARD 2016.
CCIS, vol. 692, pp. 249–273. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-66302-9_13

https://doi.org/10.1007/978-3-319-41540-6_26
https://doi.org/10.1007/978-3-642-54862-8_16
https://doi.org/10.1007/978-3-642-54862-8_16
https://doi.org/10.1007/s10009-015-0379-9
https://doi.org/10.1007/s10009-015-0379-9
https://doi.org/10.1007/978-3-319-48989-6_42
https://doi.org/10.1007/978-3-319-48989-6_42
https://doi.org/10.1007/978-3-319-66302-9_13
https://doi.org/10.1007/978-3-319-66302-9_13

Author Index

B
Bae, Kyungmin 127
Bannour, Boutheina 3

C
Chouali, Samir 84

F
Fujii, Kouta 65

G
Gall, Pascale Le 3
Graics, Bence 23

H
Hallerstede, Stefan 45
Hammad, Ahmed 84
Hatcliff, John 45

K
Kageyama, Shinji 65

L
Lapitre, Arnault 3
Li, Yi 153
Liu, Bo 168
Liu, Zhiming 168

M
Majzik, István 23
Molnár, Vince 23
Mondok, Milán 23

N
Nguyen, Thang 3
Nitta, Naoya 65

O
Ölveczky, Peter Csaba 127

P
Proença, José 194

S
Sun, Meng 153

T
Tannoury, Perla 84
Teng, Jiadong 168

V
Vidal, Germán 103

W
Wijs, Anton 206

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
J. Cámara and S.-S. Jongmans (Eds.): FACS 2023, LNCS 14485, p. 229, 2024.
https://doi.org/10.1007/978-3-031-52183-6

https://doi.org/10.1007/978-3-031-52183-6

	 Message from the PC Chairs
	 Message from the Anniversary Chair: Exploring the Available FACS Impact (2003–2023)
	 Organization
	Keynotes
	 Model Checking for Safe Autonomy
	 Assurance for Software Product Lines Through Lifting and Reuse
	 Contents

	Research Papers
	Symbolic Path-Guided Test Cases for Models with Data and Time
	1 Introduction
	2 Timed Input/Output Symbolic Transition Systems
	3 Symbolic Execution of TIOSTS
	4 Conformance Testing
	5 Path-Guided Test Cases
	6 Related Work
	7 Conclusion
	References

	Model-Based Testing of Asynchronously Communicating Distributed Controllers
	1 Introduction
	2 Related Work
	3 Extended Model-Based Testing Approach
	4 EXtended Symbolic Transition Systems
	5 Transforming Asynchronous GCL Models into XSTS
	6 Mapping XSTS Models into Promela
	7 Practical Evaluation
	8 Conclusion and Future Work
	References

	A Mechanized Semantics for Component-Based Systems in the HAMR AADL Runtime
	1 Introduction
	2 AADL Background
	3 Model Representation
	4 State Representation and Application Logic
	5 System Behavior and Properties
	6 Related Work
	7 Conclusion
	8 Future Work
	References

	A Formal Web Services Architecture Model for Changing PUSH/PULL Data Transfer
	1 Introduction
	2 Motivating Example
	3 Overview of Architecture Model
	4 Data Transfer Architecture Model
	4.1 Basic Definitions
	4.2 Resource and Channel
	4.3 States and Messages
	4.4 State Transition Functions
	4.5 Dataflow Graph and Validity of Architecture Model
	4.6 State Transition of the Whole System

	5 RESTful Web Services Generation from Architecture Model and Selected Data Transfer Methods
	5.1 Common Structure of RESTful Web Services for PUSH and PULL Data Transfer
	5.2 Generation of PUSH-First RESTful Web Services
	5.3 Generation of PULL-Containing Web Services

	6 Equivalence of RESTful Web Services and Data Transfer Architecture Model
	7 Architecture Level Refactoring for Changing Data Transfer Methods
	8 Tool Implementation
	9 Case Studies and Discussion
	9.1 Case Studies
	9.2 Discussion

	10 Related Work
	11 Conclusion
	References

	Joint Use of SysML and Reo to Specify and Verify the Compatibility of CPS Components
	1 Introduction
	2 Preliminaries
	2.1 Reo and Constraint Automata (CA) in a Nutshell
	2.2 SysReo

	3 Related Works
	4 Case Study: Smart Medical Bed (SMB)
	4.1 SMB Overview
	4.2 Modeling SMB with SysReo
	4.3 Specification Process: SysReo Models
	4.4 Verification Process: CA, Vereofy, LTL

	5 Conclusion
	References

	From Reversible Computation to Checkpoint-Based Rollback Recovery for Message-Passing Concurrent Programs
	1 Introduction
	2 A Message-Passing Concurrent Language
	3 Checkpoint-Based Rollback Recovery
	3.1 Basic Operators
	3.2 A Reversible Semantics for Rollback Recovery

	4 Related Work
	5 Conclusions and Future Work
	References

	Anniversary Papers
	Formal Model Engineering of Distributed CPSs Using AADL: From Behavioral AADL Models to Multirate Hybrid Synchronous AADL
	1 Introduction and Overview
	2 Preliminaries
	3 Two Motivating Applications
	4 Formal Semantics and Analysis for ``Behavioral AADL''
	5 The PALS Synchronizer for CPSs
	6 Synchronous AADL
	7 Multirate PALS and MR-SynchAADL
	8 Hybrid PALS and HybridSynchAADL
	9 Future Research Directions
	10 Concluding Remarks
	References

	Challenges Engaging Formal CBSE in Industrial Applications
	1 Introduction
	2 Background
	2.1 Software Development Process
	2.2 CBSE, MDE and Others

	3 Applications of Formal CBSE
	3.1 Avionics and Railway Software
	3.2 Automobile Software
	3.3 Industrial Manufacturing Software

	4 Challenges
	4.1 Hard to Keep Consistency Between Implementations and Models
	4.2 Lack of Life-Cycle Maintainability
	4.3 Fragmented Requirements from Developers
	4.4 Extra Learning Cost for Various Tools

	5 Discussion
	5.1 LLM-Aided Explanation of Codes and Exceptions
	5.2 Decoupling Formal Specification from Verification
	5.3 Layered Modeling Through Domain-Specific Languages
	5.4 Providing Multi-Domain Integrated Development Environment

	6 Conclusion
	References

	Formal Aspects of Component Software
	1 Introduction
	1.1 International Symposium on Formal Aspects of Component Software
	1.2 Component-Based Software Development
	1.3 Organisation

	2 Preliminaries
	2.1 Characteristics of Software Components
	2.2 Designs
	2.3 Reactive Designs

	3 Interfaces and Contracts
	4 Models of Aspects of Contracts
	4.1 Type Systems
	4.2 Functionality and Synchronisation Behaviour
	4.3 Interaction Protocols
	4.4 Dynamic Behaviour
	4.5 Other Aspects

	5 Component-Based Development
	5.1 Use Case as Components
	5.2 Component Development Process
	5.3 System Development

	6 Future Development and Conclusion
	6.1 Extend rCOS for Model Human-Cyber-Physical Systems
	6.2 Conclusions

	References

	Overview on Constrained Multiparty Synchronisation in Team Automata
	1 Introduction
	2 Related Models
	2.1 Orchestration
	2.2 Choreographies

	3 Behavioural Properties and Realisability
	3.1 Propositional Dynamic Logic
	3.2 Realisability Challenges

	4 Conclusions
	References

	Embedding Formal Verification in Model-Driven Software Engineering with Slco: An Overview
	1 Introduction
	2 A DSL for Component-Based Software
	3 Verifying Model-to-Model Transformations
	3.1 Reverification of Models
	3.2 Direct Verification of Model-to-Model Transformations

	4 Verifying Code Generators
	5 GPU-Accelerated Model Checking
	6 Conclusions
	References

	Author Index

