
On the Parameterized Complexity
of Minus Domination

Sriram Bhyravarapu1(B), Lawqueen Kanesh2(B), A Mohanapriya3(B),
Nidhi Purohit4(B), N. Sadagopan3(B), and Saket Saurabh1,4(B)

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
{sriramb,saket}@imsc.res.in

2 Indian Institute of Technology, Jodhpur, Jodhpur, India
lawqueen@iitj.ac.in

3 Indian Institute of Information Technology, Design and Manufacturing,
Kancheepuram, Chennai, India

{coe19d003,sadagopan}@iiitdm.ac.in
4 University of Bergen, Bergen, Norway

Nidhi.Purohit@uib.no

Abstract. Dominating Set is a well-studied combinatorial problem.
Given a graph G = (V, E), a dominating function f : V (G) → {0, 1} is a
labeling of the vertices of G such that

∑
w∈N [v] f(w) ≥ 1 for each vertex

v ∈ V (G), where N [v] = {v} ∪ {u | uv ∈ E(G)}. We study a general-
ization of Dominating Set called Minus Domination (in short, MD)
where f : V (G) → {−1, 0, 1}. Such a function is said to be a minus dom-
inating function if for each vertex v ∈ V (G), we have

∑
w∈N [v] f(w) ≥ 1.

The objective is to minimize the weight of a minus domination function,
which is f(V) =

∑
u∈V (G) f(u). The problem is NP-hard even on bipar-

tite, planar, and chordal graphs.
In this paper, we study MD from the perspective of parameterized

complexity. After observing the complexity of the problem with the nat-
ural parameters such as the number of vertices labeled 1, −1 and 0,
we study the problem with respect to structural parameters. We show
that MD is fixed-parameter tractable when parameterized by twin-cover
number, neighborhood diversity or the combined parameters component
vertex deletion set and size of the largest component. In addition, we give
an XP-algorithm when parameterized by distance to cluster number.

Keywords: Minus Domination · fixed-parameter tractability ·
twin-cover · neighborhood diversity · disjoint paths deletion · cluster
vertex deletion

1 Introduction

Given a graph G = (V,E), a dominating function f : V (G) → {0, 1} is a
labeling of V (G) from {0, 1} such that for each vertex v ∈ V (G) we have∑

w∈N [v] f(w) ≥ 1, where N [v] = {v} ∪ {u | uv ∈ E(G)}. The weight of f

is denoted by f(V) =
∑

u∈V (G) f(u). The Dominating Set (in short, DS)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 96–110, 2024.
https://doi.org/10.1007/978-3-031-52113-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_7&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_7

On the Parameterized Complexity of Minus Domination 97

problem asks to find a dominating function of minimum weight. Several vari-
ants of DS have been studied in literature, some of which include independent,
total, global, perfect and k-dominating [1,12,13]. In this paper, we study another
variant of domination called Minus Domination (in short, MD) which was
introduced by Dunbar et al. in 1996 [6]. Given a graph G = (V,E), a minus
dominating function f : V (G) → {−1, 0, 1} is an assignment of labels to the
vertices of G such that for each v ∈ V (G), the sum of labels assigned to the
vertices in the closed neighborhood of v (denoted by N [v]) is at least one, i.e.,∑

w∈N [v] f(w) ≥ 1. The weight of a minus dominating function f denoted by
f(V) is

∑
v∈V (G) f(v). Given a graph G, Minus Domination asks to compute

the minimum weight of a minus dominating function of G. The decision ver-
sion of the problem takes as input a graph G and an integer k, and outputs
whether there exists a minus dominating function of weight at most k. MD has
applications in electrical networks, social networks, voting, etc. [6,19].

The weight of a minus dominating function can be negative. For example,
consider a clique on n vertices and for each edge uv in the clique, add a private
vertex adjacent to only u and v. Consider the minus dominating function f
that assigns all the clique vertices the label 1 and all the private vertices the
label −1. The clique vertices have as many private neighbors as they have clique
neighbors while the private vertices have exactly two clique neighbors. Thus, for
each vertex v, we have f(N [v]) ≥ 1 and f(V) = n−n(n−1)/2 < 0 for a large n.
The authors in [6] show that given a positive integer k there exists a bipartite,
chordal and outer-planar graphs with weight at most −k.

Minus Domination is NP-complete in general [8] and NP-complete even on
chordal bipartite graphs, split graphs, and bipartite planar graphs of degree at
most 4 [3,6,8,17]. The problem is polynomial-time solvable on trees, graphs of
bounded rank-width, cographs, distance hereditary graphs and strongly chordal
graphs [6,8]. Given the hardness results for the problem, it is natural to ask
for ways to confront this hardness. Parameterized complexity is an approach
towards solving NP-hard problems in “feasible” time. Parameterized problems
that admit such an algorithm are called fixed-parameter tractable (in short,
FPT). For more details, we refer the reader to the book by Cygan et al. [2] and
Downey and Fellows [4].

Minus Domination has been studied from the realm of parameterized com-
plexity. On subcubic graphs, MD is FPT when parameterized by weight [18].
As far as near-optimal solutions are concerned, the minimum weight of a minus
dominating function cannot be approximated in polynomial time within (1+ ε),
for some ε > 0, unless P �= NP [3]. The problem is APX-hard on graphs of max-
imum degree 7 [18]. Several combinatorial bounds for the problem on regular
graphs, and small degree graphs (Δ ≤ 3 or Δ ≤ 4) have been studied [3,7].

A parameter may originate from the formulation of the problem itself (called
natural parameters) or it can be a property of the input graph (called structural
parameters). Dominating Set when parameterized by solution size is W[2]-hard
[4]; however, when parameterized by structural parameters such as tree-width [2],
modular-width, or distance to cluster (size of the cluster vertex deletion set) [11],

98 S. Bhyravarapu et al.

the problem is fixed-parameter tractable. MD has various natural parameters
such as n−1, n0, n1 and f(V) (where n−1 = |f−1(−1)|, n0 = |f−1(0)|, and
n1 = |f−1(1)| for a minus dominating function f) and it was shown in [8] that
the problem is para-NP-hard when parameterized by f(V).

Domination vs Minus Domination: One may think that the ideas used for
solving DS can be extended to MD. But this is not the case always. There are
graphs for example connected cographs, wheel graphs, windmill graphs, chain
graphs, etc. where dominating set size is constant and the corresponding set can
be found trivially. However, it is not the case with MD.

On graphs of bounded tree-width, the dynamic programming based FPT
algorithm for DS when parameterized by tree-width (tw) focuses on guessing
vertices from each bag that are in the dominating set. However, for MD, just
guessing the labels 1, −1 and 0 for the vertices of a bag does not suffice. We may
also need to store the information about the sum that each vertex in the bag
receives from its subtree to be able to extend to the rest of the graph. Since the
degree of a vertex can be unbounded, the sum it receives from the subtree can
be unbounded. This gives us an nO(tw) time algorithm. Notice that this gives us
an FPT algorithm when parameterized by maximum degree and tree-width. The
authors of [8] believe that MD is not FPT when parameterized by tree-width or
rank-width. To the best of our knowledge, the FPT status of minus domination
with respect to tree-width is still open.

Our Contribution: First, we analyse the problem on natural parameters. We
obtain the following result, the proof of which is not hard and follows from
Dominating Set and its well-known variants.

Theorem 1 (�).1 Minus Domination when parameterized by n−1 or n0 is
para-NP-hard, when parameterized by n1 or n−1 + n1 is W[2]-hard, and when
parameterized by n0 + n1 is FPT.

Neighborhood diversityTwin-cover

Clique-width

Distance to cluster

Modular-width

Tree-width

Distance to disjoint paths

Vertex cover

FPT

Distance to disjoint paths
of bounded length

XP

Fig. 1. Hasse diagram of graph parameters for MD. A directed edge from the parameter
a to the parameter b indicates that a ≤ g(b) for some computable function g. The
parameters below the blue curve are those for which MD is FPT while the parameters
between the red and blue curves are those for which XP algorithms are known for MD.
(Color figure online)

1 Due to space constraints, all the proofs of the results marked (�) will be presented
in the full version of the paper.

On the Parameterized Complexity of Minus Domination 99

We shift our focus to various structural graph parameters. In Sect. 3, we
show that MD is FPT when parameterized by twin-cover number. The next
parameter to consider is distance to cluster number, which is a generalization of
twin-cover number. In Sect. 4, we obtain an XP-algorithm when parameterized
by distance to cluster number. Then we move our attention to a more general
parameter: the size of component vertex deletion set. In Sect. 5, we study the
problem on this parameter and obtain an FPT algorithm when parameterized
by the size of component vertex deletion set and the size of a largest component.
This implies an FPT algorithm for MD when parameterized by (i) distance to
cluster number and the size of a largest clique, (ii) distance to disjoint paths and
the size of a largest path, or (iii) feedback vertex set number and the size of a
largest tree component. We also show that MD is FPT when parameterized by
the parameter neighborhood diversity. An illustration of the results is given in
Fig. 1. We now state the theorems of the above discussed results.

Theorem 2. Minus Domination can be solved in 2O(k·2k)nO(1) time, where k
is the twin cover number of the graph.

Theorem 3. Minus Domination can be solved in time g(k) · n2k+6, where k
is the distance to cluster number.

Theorem 4 (�). Let G be a graph and S ⊆ V (G) of size k be such that G − S
is a disjoint union of components where each component has at most d vertices.
Then, Minus Domination is FPT when parameterized by k and d.

Theorem 5 (�). Minus Domination can be solved in time tO(t)nO(1), where
t is the neighborhood diversity of the graph.

Open Question: What is the parameterized complexity of MD when parame-
terized by distance to cluster, tree-width or feedback vertex set, or distance to
disjoint paths?

2 Preliminaries

In this paper, we consider finite, undirected and connected graphs. If the graph
is disconnected, then we apply our algorithms on each of the components inde-
pendently. Given a graph G = (V,E), we use V (G) and E(G) to denote the
vertex and the edge sets of G. For a vertex v ∈ V (G), we use N(v) (open neigh-
borhood of v) to denote the neighbors of v in G. The closed neighborhood of v
is denoted by N [v] = N(v) ∪ {v}. For a vertex v ∈ V (G) and a set C ⊆ V (G),
we denote NC(v) = N(v) ∩ C. For a pair of vertices u, v ∈ V (G), we say u and
v are true twins, if and only if N [u] = N [v]. We say that a vertex v satisfies the
sum property, if

∑
u∈N [v] f(u) ≥ 1. For a set X ⊆ V (G) and a vertex w, we say

w receives the sum s from X if
∑

v∈N [w]∩X f(v) = s.
The size of a minus dominating function is the number of vertices assigned

the label 1. For a nonempty subset S ⊆ V (G), we denote by G[S] the subgraph

100 S. Bhyravarapu et al.

of G induced by S. Let f : X → Y be a function. If A ⊆ X then the restriction
of f to A is the function f |A : A → Y given by f |A(x) = f(x), for x ∈ A. We
say a labeling f : X → {−1, 0, 1} extends g : Y → {−1, 0, 1} if Y ⊆ X and for
each w ∈ Y , we have f(w) = g(w). We use O∗ notation to hide factors that are
polynomial in the input size.

Definition 1 (Twin-cover [10]). Given a graph G, a set S ⊆ V (G) is called a
twin cover of G if the following conditions hold: (i) G[V \S] is a disjoint union
of cliques, and (ii) each pair of vertices of a clique in G[V \S] are true twins in
G. We then say that G has twin cover number k if k is the minimum possible
size of a twin cover of G.

Definition 2 (Distance to cluster [14]). A cluster graph is a disjoint union
of cliques. Given a graph G, a set of vertices S ⊆ V (G) is called a cluster vertex
deletion set of G if G − S is a cluster graph. The size of the smallest set S for
which G − S is a cluster graph is referred to as distance to cluster number.

Definition 3 (Neighborhood diversity [16]). Let G = (V,E) be a graph.
Two vertices u, v ∈ V (G) are said to have the same type if and only if
N(u)\{v} = N(v)\{u}. A graph G has neighborhood diversity at most t, if there
exists a partition of V (G) into at most t sets V1, V2, . . . , Vt such that all the
vertices in each set have the same type.

Ganian [10] showed that a twin-cover of size k can be found in time
O∗(1.2738k). Hüffner et al. [14] showed that showed that a cluster vertex dele-
tion set of size k can be computed in O∗(1.811k) time. Lampis [16] showed that
the neighborhood diversity of a graph can be found in polynomial time. Thus
we will assume that a twin-cover, a cluster vertex deletion set and a partition of
vertex set into types of vertices are given as input, in the respective sections.

We use Integer Linear Programming (ILP) feasibility problem, stated in [15]
as subroutine in some of our results.

Theorem 6 ([15]). An integer linear programming instance of size L with p
variables can be solved using

O(p2.5p+o(p) · (L + log Mx) log(MxMc))

arithmetic operations and space polynomial in L+log Mx, where Mx is an upper
bound on the absolute value a variable can take in a solution, and Mc is the
largest absolute value of a coefficient in the vector c.

Lemma 1. Let f : V (G) → {−1, 0, 1} be a minus dominating function and
u, v ∈ V (G) be true twins such that f(u) = 1 and f(v) = −1. Then there
exists a minus dominating function g : V (G) → {−1, 0, 1} of weight f(V) and
g(u) = g(v) = 0.

Proof. We construct a function g : V (G) → {−1, 0, 1} as follows: g(u) = g(v) = 0
and g(z) = f(z), for each z ∈ V (G)\{u, v}. We claim that g is the minus

On the Parameterized Complexity of Minus Domination 101

dominating function of weight f(V). It is easy to see that g(V) = f(V) because
g(u) + g(v) = f(u) + f(v) = 0 and the remaining vertices are assigned the same
labels in both the labelings. Now we show that g is a minus dominating function.
It is easy to see that for each vertex w ∈ V (G) that is not adjacent to either u
or v,

∑
y∈N [w] g(y) =

∑
y∈N [w] f(y) ≥ 1, as u and v are the only vertices whose

labels are changed. Since u and v are true twins, for each w ∈ N(u) ∪ N(v),

∑

y∈N [w]

g(y) =g(u) + g(v) +
∑

y∈N [w]\{u,v}
g(y) = f(u) + f(v) +

∑

y∈N [w]\{u,v}
f(y)

=
∑

y∈N [w]

f(y) ≥ 1.

Thus, g is a minus dominating function.
�

3 Twin-Cover

Let G be a graph and S ⊆ V (G) be a twin cover of G of size k. Let
C1, C2, . . . , C� be the set of maximal cliques in G − S. From the definition
of twin cover, we have that each vertex of a clique C in G[V \S] has the
same neighborhood in S. We denote the neighborhood of a clique C in S by
NS(C), i.e., NS(C) = N(C) ∩ S. We partition the cliques in G[V \S] based
on its neighborhood in S. For each non-empty subset A ⊆ S, we denote by
TA = {C | C is a maximal clique in G[V \S] and NS(C) = A ⊆ S} the set of
cliques where each clique is adjacent to every vertex in A. We call TA a clique
type. Notice that the number of clique types is at most 2k. Consider the case
when A = ∅. If TA �= ∅ then G is disconnected. Since we are considering con-
nected graphs, we can assume that A �= ∅ throughout this section. In addition,
we only consider A ⊆ S for which |TA| ≥ 1, or TA is non-empty.

Next, we show that for each A ⊆ S, the vertices of cliques in set TA receive
their labeling from a fixed set of labels.

Lemma 2 (�). Let f : V (G) → {−1, 0, 1} be any minus dominating func-
tion with minimum weight. Then there exists a minus dominating function
g : V (G) → {−1, 0, 1} with weight f(V) such that for each A ⊆ S, vertices
in TA receives labels from exactly one of the three sets {−1, 0}, {0, 1} or {0}.

Proof (Proof of Theorem 2). Let G be a graph and S ⊆ V (G) be a twin cover
of G of size k. Let f : V (G) → {−1, 0, 1} be a minus dominating function of
minimum weight. WLOG we can assume that f is a minus dominating function
such that for each A ⊆ S, the vertices in TA receive the labels from exactly one
of the three sets {−1, 0}, {0, 1} or {0}, as any minus dominating function can
be converted to the function satisfying the above said conditions using Lemma
2. Recall that there are 2k − 1 many clique types.

For each A ⊆ S, we denote bA ∈ {{−1, 0}, {0, 1}, {0}} to be the set
of labels that the vertices of the cliques in TA are labeled with. We say

102 S. Bhyravarapu et al.

b̂ = {bA : A is non-empty and |TA| ≥ 1} respects f if for each non-empty A ⊆ S
with |TA| ≥ 1, the vertices of the cliques in TA are assigned the labels from bA.

We guess the tuple (f |S , b̂, ŝ), where ŝ = f(V) =
∑

v∈V (G) f(v) is the mini-
mum weight and −n < ŝ ≤ n. For each guess, we formulate the problem as an
ILP feasibility problem. Let cA =

∑
v∈A f |S(v) denote the sum that each ver-

tex in the clique type TA receives from A ⊆ S. Let �A represent the number of
cliques in each clique type TA and dA = min{|D| : D is a clique in TA} represent
the minimum size of a clique in TA. Let mA denote the total number of vertices
over all the cliques in the clique type TA.

From now on, we work with a fixed guess (f |S , b̂, ŝ). Observe that for each
A ⊆ S, cA, �A, dA and mA are constants. We say a guess (f |S , b̂, ŝ) is invalid if
for any A ⊆ S, one of the following holds: (i) cA ≤ 1 and bA = {−1, 0} (i.e., the
vertices of TA are assigned the labels from {−1, 0}), (ii) cA ≤ 0 and bA = {0},
and (iii) bA = {0, 1} and cA ≤ −dA. Otherwise, we call (f |S , b̂, ŝ) a valid guess.

For a valid guess (f |S , b̂, ŝ), we formulate an instance of the ILP problem.
The goal of ILP is to obtain an assignment of the variables such that each vertex
v ∈ V (G) satisfies its sum property respecting b̂ and ŝ. For each A ⊆ S, let n−1,A,
n0,A and n1,A be the variables of the ILP instance that denote the number of
vertices assigned −1, 0 and 1 respectively in the clique type TA. Notice that the
number of variables is at most 3 · 2k. We now describe the constraints of ILP for
each A ⊆ S as follows.

(C1) The number of vertices from TA assigned the labels from {−1, 0, 1} is mA.
That is,

n−1,A + n0,A + n1,A = mA.

(C2) If bA = {0} and cA ≥ 1, then

n−1,A = n1,A = 0, and n0,A = mA.

(C3) If bA = {0, 1} and cA > −dA, then

n−1,A = 0, n0,A ≥ 0 and (1 − cA)�A ≤ n1,A ≤ mA.

(C4) If bA = {−1, 0} and cA > 1, then

n1,A = 0, n0,A ≥ 0, and

0 ≤ n−1,A ≤
�A∑

j=1

min{cA − 1, |Bj |}.

where B1, B2, . . . , B�A are the cliques of the type TA.
(C5) For each v ∈ S, the sum property is satisfied. That is,

∑

A:v∈A

(n1,A − n−1,A) +
∑

w:w∈N [v]∩S

f(w) ≥ 1.

On the Parameterized Complexity of Minus Domination 103

(C6) Weight of our desired minus dominating function is ŝ,
∑

A

n1,A − n−1,A +
∑

v∈S

f(v) = ŝ.

We next show a one-to-one correspondence between feasible assignments of
ILP and minus dominating functions of G.

Lemma 3. ILP has a feasible assignment if and only if there exists a minus
dominating function with weight ŝ.

Proof. Suppose that there is a feasible assignment returned by ILP. We show
that there exists a minus dominating function f : V (G) → {−1, 0, 1} respecting
f |S , b̂ and ŝ. For each A ⊆ S, we assign the labels to the vertices of the clique
type TA in the following manner. Let V (TA) be the vertices of the cliques in TA.

– Case 1: bA = {0}.
Assign f(v) = 0 for each vertex v in the cliques of TA.

– Case 2: bA = {0, 1} and cA > −dA.
We have the following subcases.

• cA ≥ 1.
Choose n1,A vertices arbitrarily from the cliques of TA and assign the
label 1 to them. Rest of the vertices (if any) are assigned the label 0.

• cA ≤ 0.
Choose (1− cA) vertices arbitrarily from each clique of TA and assign the
label 1 to them. From the constraint (C3), we have that n1,A ≥ (1−cA)�A.
The remaining n1,A − (1 − cA)�A vertices are picked arbitrarily from the
unassigned vertices of the cliques of TA.

– Case 3: bA = {−1, 0} and cA ≥ 2.
For each clique Bj ∈ TA, choose min{cA − 1, |Bj |} many vertices and assign
the label −1 to each of them. Remaining vertices (if any) are assigned the
label 0.

Clearly, the labeling f : V (G) → {−1, 0, 1} respects b̂, ŝ and the fact that the
vertices in each clique type TA receive the set of labels from exactly one of the
three sets {−1, 0}, {0, 1} or {0} from the constraints (C1), (C2), (C3), (C4) and
(C6). The sum property for each vertex v ∈ S is satisfied because of Constraint
(C5). Therefore it is sufficient to show that for each v ∈ V (G), the sum property
is satisfied.

Consider a vertex v from TA. If TA falls under Case 1, then v receives its
positive sum from A from constraint (C2). If TA falls under Case 2 and cA ≥ 1,
then v receives its positive sum from A irrespective of whether v is assigned 0 or
1, because of constraint (C3). Else if TA falls under Case 2 and cA ≤ 0, then we
ensured that each clique in TA has at least (1− cA) vertices assigned the label 1,
from constraint (C3), making the total sum in neighborhood of v to be at least
1. If TA falls under Case 3, then we ensured that the number of vertices assigned
−1 in each clique Bj of TA is min{cA −1, |Bj |} from constraint (C4), making the

104 S. Bhyravarapu et al.

closed neighborhood sum to be at least 1 for v. Notice that the above argument
works irrespective of the label assigned to v.

Conversely, let f : V (G) → {−1, 0, 1} be a minus dominating func-
tion respecting f |S , b̂ and ŝ. Thus the constraint (C6) is satisfied. The variables
are assigned as follows depending on the labeling of TA.

– bA = {0}.
Assign n0,A = mA and n−1,A = n1,A = 0.

– bA = {0, 1} and cA ≥ −dA.
Assign n−1,A = 0, n0,A = f−1(0) ∩ V (TA) and n1,A = f−1(1) ∩ V (TA).

– bA = {−1, 0} and cA ≥ 2.
Assign n1,A = 0, n0,A = f−1(0) ∩ V (TA) and n−1,A = f−1(−1) ∩ V (TA).

Each vertex from TA is assigned a label from {−1, 0, 1} and hence constraint
(C1) is satisfied. The assignment of labels to vertices in V \S is such that every
vertex in V satisfies sum property. Thus the constraints (C2), (C3) and (C4) are
satisfied. Each vertex in S satisfied the sum property in f . Thus the constraint
(C5) is satisfied.
�

We run ILP over all the valid guesses and check whether there exists an
assignment leading to a minus dominating function. Over all such assignments
we pick the assignment that has the minimum ŝ.

Running Time: Guessing a labeling of S, the set of labels the vertices in each
TA can receive, and the weight ŝ, takes time O(3k · 32

k · n). For each of the
above guesses, we run the ILP feasibility problem where the number of variables
is at most 3 · 2k. Thus from Lemma 3 and Theorem 6, the total time taken is
2O(k·2k) · nO(1).
�

4 Cluster Vertex Deletion Set

Let G be a graph and S ⊆ V (G) be a cluster vertex deletion set of size k. Also
let C1, C2, . . . , C� be the maximal cliques of G − S. We partition the vertices of
each clique Ci, i ∈ [�], based on its neighborhood in S. For each A ⊆ S, we use
Ci,A = {v | v ∈ Ci and N(v) ∩ S = A} to denote the set of vertices from Ci

that are adjacent to each vertex in A. Next, we show that for each clique Ci, the
vertices in Ci,A receive their labels from a fixed set of labels, for each A ⊆ S.
Notice that A could be an empty set.

Lemma 4. Let f : V (G) → {−1, 0, 1} be a minus dominating function. Then
there exists a minus dominating function of weight f(V) such that in each clique
Ci, for each A ⊆ S and a non-empty Ci,A, the vertices of Ci,A receive labels
from exactly one of the three sets {−1, 0}, {0, 1} or {0}.

Proof. If all vertices in Ci,A are assigned the label 0 then the claim is trivially
satisfied. For each i ∈ {1, . . . , �} and A ⊆ S, if f assigns the vertices of Ci,A

from the labels {1, 0} or {−1, 0}, then we conclude that f is the desired function.

On the Parameterized Complexity of Minus Domination 105

Otherwise, there exists a clique Ci and an A ⊆ S with vertices u and v in Ci,A

such that f(u) = 1 and f(v) = −1 or f(u) = −1 and f(v) = 1. WLOG let
f(u) = 1 and f(v) = −1 (similar arguments apply for the other case). Since u
and v are true twins, we apply Lemma 1 and obtain a minus dominating function
of weight f(V) with u and v assigned the label 0.

After repeated application of Lemma 1 on each Ci,A, where A ⊆ S and i ∈ [t],
all vertices in Ci,A are either assigned labels from exactly one of the three sets
{−1, 0}, {0, 1} or {0}.
�

From now on, we can assume that in any minus dominating function, for
each A ⊆ S and a clique Ci, the vertices in Ci,A are assigned labels from exactly
one of the three sets {−1, 0}, {0, 1} or {0}.

We now look at the following lemma. Suppose that we are given a labeling
of S, the number of vertices in a clique Ci assigned the labels −1 and 1, and
the sum each vertex in S receives from Ci. Then we can decide whether there
exists a assignment of labels to Ci extending the labeling of S and satisfying the
assumptions.

Lemma 5. Let f : S → {−1, 0, 1} be a labeling of S and Ci be a clique in G−S.
Let ai, bi ∈ N∪{0}. Also let Xi = (xi

1, . . . , x
i
k) be a tuple where xi

j corresponds to
vj ∈ S. Then there is an algorithm that runs in O∗(2O(k·2k)) and either returns
a labeling g : S ∪ Ci → {−1, 0, 1} that extends f with the following properties,

– ai = |g−1(1) ∩ Ci|, bi = |g−1(−1) ∩ Ci|,
– ∀vj ∈ S, xi

j =
∑

u∈NCi
(vj)

g(u),
– for each A ⊆ S and a non-empty Ci,A, the vertices of Ci,A receive the labels

from exactly one of the three sets {−1, 0}, {0, 1} or {0}, and
– for each v ∈ Ci,

∑
w∈NCi

[v] g(w) ≥ 1,

or returns that there is no labeling g extending f satisfying the properties.

Proof. Given a labeling f : S → {−1, 0, 1}, a clique Ci, Xi = (xi
1, . . . , x

i
k), and

two integers ai and bi, the goal is to find a labeling g : S ∪ Ci → {−1, 0, 1}
extending f satisfying some constraints. We formulate this as an ILP feasibility
problem with the variables: n1,A, n−1,A and n0,A that denote the number of
vertices in Ci,A, for each A ⊆ S, that are assigned the labels −1, 0 and 1
respectively. The number of variables is at most 3 · 2k. We now present the
constraints.

(C1) For each A ⊆ S, the number of vertices assigned the labels −1, 0, and 1 in
Ci,A is at least 0 and at most |Ci,A|. In addition, each vertex is assigned
some label.

0 ≤ n−1,A, n1,A, n0,A ≤ |Ci,A| and n−1,A + n1,A + n0,A = |Ci,A|.
(C2) For each vj ∈ S, the sum it receives from Ci is xi

j .
∑

A : vj∈A

n1,A − n−1,A = xi
j .

106 S. Bhyravarapu et al.

(C3) For each A ⊆ S, the vertices in Ci,A are assigned the labels from exactly
one of the three sets {−1, 0}, {0, 1} or {0}.

n1,A > 0 =⇒ n−1,A = 0,

n−1,A > 0 =⇒ n1,A = 0.

(C4) Total sum of vertices assigned the labels 1 and −1 are ai and bi respec-
tively.

∑

A

n1,A = ai, and
∑

A

n−1,A = bi.

(C5) For each A ⊆ S, the sum property for vertices in Ci,A is satisfied.
∑

A : v∈A

f(v) + ai − bi ≥ 1.

We now have to show that there is a feasible assignment of ILP if and only if
there is a labeling g that extends f and satisfying the properties.

Feasibility Implies Labeling: Let there be a feasible assignment of values to
variables returned by the ILP. In each Ci,A, choose n1,A, n0,A and n−1,A many
vertices arbitrarily and assign them the label 1, 0 and −1, respectively. Notice
that each vertex is assigned a label because of Constraint (C1). For each vj ∈ S,
the sum it receives from Ci is xi

j , which is ensured from Constraint (C2). For
each A ⊆ S, the vertices in Ci,A are assigned labels from exactly one of the three
sets {−1, 0}, {0, 1} or {0} which is ensured by Constraint (C3) and Constraint
(C1). The number of vertices assigned 1 and −1 is ai and bi respectively and is
ensured by Constraint (C4). Every vertex in Ci satisfies the sum property and
this is ensured by Constraint (C5).

Labeling Implies Feasibility: Let g : S ∪Ci → {−1, 0, 1} be an extension of f
satisfying the properties of ai, bi, x

i
j , the set of labels used in each Ci,A and the

sum property for each vertex in Ci with respect to g. Using Lemma 4, we convert
g to be a labeling such that each Ci,A receives the labels from exactly one of the
three sets {−1, 0}, {1, 0} or {0}. We obtain a feasible assignment for variables
in ILP as follows. For each A ⊆ S, we set n−1,A = |g−1(−1) ∩ Ci,A|, n0,A =
|g−1(0) ∩ Ci,A|, and n1,A = |g−1(1) ∩ Ci,A|. By definition of g, the constraints
(C1), (C2), (C3), (C4), and (C5) are satisfied.

Since the number of variables is at most 3 · 2k, from Theorem 6, the running
time of our algorithm is 2O(k·2k)nO(1).
�

We say a tuple (ai, bi,X
i) is feasible for Ci if Lemma 5 returns a feasible

labeling of Ci extending the labeling of S. Else we call it infeasible. We now
proceed to the proof of Theorem 3.

Proof (Proof of Theorem 3). Let G be a graph and S ⊆ V (G) of size k be such
that G − S is a disjoint union of cliques. Let C1, C2, . . . , C� be the cliques of
G − S. Let g : V (G) → {−1, 0, 1} be a minus dominating function of minimum

On the Parameterized Complexity of Minus Domination 107

weight. The first step of the algorithm is to guess the labeling g|S of S. For
each clique Ci in G − S, we try to obtain a labeling of Ci (if one exists) that
extends g|S using Lemma 5. Towards this, we guess the following: ai and bi,
which are the number of vertices assigned the labels 1 and −1 respectively in
Ci, and Xi = (xi

1, . . . , x
i
k) the tuple where xi

p corresponds to the sum that the
vertex vp ∈ S receives from Ci. Thus for each of the guesses, we should able to
decide whether there exists a labeling of Ci ∪ S extending g|S that satisfies the
sum property for each vertex in Ci.

We give a bottom-up dynamic programming based algorithm to find g.
An entry T [i, a, b,X] in the table is set to 1 if there exists a labeling of the

vertices in C1, C2, · · · , Ci such that

– a is the number of vertices labelled 1 over the cliques from C1 to Ci,
– b is the number of vertices labelled −1 over the cliques from C1 to Ci,
– X = (x1, x2, · · · , xk) is the tuple where xj corresponds to the sum the vertex

vj ∈ S receives from the cliques C1 to Ci, and
– each vertex in C1 ∪ C2 ∪ · · · ∪ Ci satisfies the sum property.

Otherwise, we store T [i, a, b,X] = 0.
We now define the recurrence. For an entry T [i, a, b,X], we go over all feasible

tuples of Ci and look at the corresponding subproblem over the cliques C1 to
Ci−1. That is,

T [i, a, b,X] =
∨

feasible tuples (ai,bi,Xi) of Ci

T [i− 1, a− ai, b− bi, (x1 − xi
1, . . . , xk − xi

k)].

Notice that in a feasible tuple we have n ≥ a ≥ ai ≥ 0, n ≥ b ≥ bi ≥ 0 and
n ≥ xj ≥ xi

j ≥ −n for all j. The base case of the recurrence is obtained at the
clique C1, which is computed as follows:

T [1, a, b,X] =

{
1 (a, b,X) is a feasible tuple for C1,

0 otherwise.

The correctness of the algorithm follows from the description. We now compute
the running time of the algorithm. The number of labelings g|S is at most 3k

and the number of feasible tuples for a clique Ci is at most nk+2. Using Lemma
5, we can decide if a tuple is feasible or not in time 2O(k·2k)nO(1). The number
of entries in T is at most nk+3. For each of the entry in T , we go over all feasible
tuples of Ci and thus the total running time is 2O(k·2k)n2k+6.
�

5 Distance to Disjoint Components and Component Size

Let G be a graph and k, d ∈ N be two integers. We consider the problem of
computing a set S ⊆ V (G) of size at most k such that G−S is a disjoint union of
connected components where each connected component has at most d vertices.
This problem is known in literature as d-Component Order Connectivity

108 S. Bhyravarapu et al.

(in short, d-COC) [9]. Notice that when d = 1, d-COC is the Vertex Cover
problem. There is a O(log d)-approximation algorithm for d-COC [5,9].

In this section, we consider MD when parameterized by k and d where the
input is a graph G, an integer � and a set S ⊆ V (G) of size k such that G − S is
a disjoint union of components each of size at most d vertices. The objective is
to check whether there exists a minus dominating function of weight at most �.

Towards this, we consider the solution set obtained from the approximation
algorithm of d-COC as our modulator set S. Notice that |S| ≤ O(k log d), if a
solution exists for d-COC. We now provide a proof sketch of Theorem 4.

Proof Sketch of Theorem 4. Let C = {C | C is a component in G−S} denote
the set of components in G−S. Notice that for each C ∈ C, we have 1 ≤ |C| ≤ d.
Let V (C) = {u1, u2, . . . , ud′}, d′ ≤ d. For each component C ∈ C, we apply the
following procedure.

– We find the equivalence class of C based on its neighborhood in S∪V (C). Let
T = {TA | A ⊆ S ∪ V (C)}. Since |S| = k and |C| ≤ d, we have |T | = 2k+d.
An equivalence class is defined by the function g : C → T d. Note that the
number of equivalence classes is at most 2(k+d)d.
The equivalence class g(C) is denoted by (TA1 , TA2 , . . . , TA|d′|) where for each
ui ∈ V (C) we have N(ui) ∩ S = Ai.

– We now consider all possible labelings h : V (C) → {−1, 0, 1} of C. We say
a labeling h is feasible for C, when the vertices of C are assigned the labels
from h and each vertex v of C satisfies the sum property (i.e., the sum that
v receives from C ∪ S is at least one).
The set of feasible labelings Hg(C) = {h | h is feasible for C and C belongs to
the equivalence class g(C)} is constructed. Notice that all the components that
belong to an equivalence class g(C) have the same set of feasible labelings.

– We formulate an ILP feasibility instance using the above information. The
variables of ILP represent the number of components in G − S belonging
to an equivalence class that receive a particular labeling from the feasible
list of labelings (of that equivalence class). The number of variables for each
equivalence class g(C) is equal to |Hg(C)|.

The running time of the algorithm is majorly dependent on the running time of
the ILP which in turn depends on the number of variables which is 2(k+d)d3d.
�

Using Theorem 4, we get the following results when the components are
cliques and trees respectively.

Corollary 1. MD is FPT when parameterized by (i) cluster vertex deletion
number and size of a largest clique, or (ii) feedback vertex set number and size
of a largest tree.

On the Parameterized Complexity of Minus Domination 109

Acknowledgement. We would like to thank the anonymous reviewers for their help-
ful comments. The first author acknowledges SERB-DST for supporting this research
via grant PDF/2021/003452. The fifth author acknowledges NBHM for supporting this
research via project NBHM-02011/24/2023/6051. The fifth author would also like to
acknowledge DST for supporting this research via project CRG/2023/007127.

References

1. Chang, G.J.: Algorithmic aspects of domination in graphs. In: Pardalos, P.M., Du,
D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 221–282.
Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1 26

2. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

3. Damaschke, P.: Minus domination in small-degree graphs. Discrete Appl. Math.
108(1), 53–64 (2001). Workshop on Graph Theoretic Concepts in Computer Sci-
ence

4. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in
Computer Science, Springer, London (2013). https://doi.org/10.1007/978-1-4471-
5559-1

5. Drange, P.G., Dregi, M., van ’t Hof, P.: On the computational complexity of vertex
integrity and component order connectivity. Algorithmica 76(4), 1181–1202 (2016).
https://doi.org/10.1007/s00453-016-0127-x

6. Dunbar, J., Goddard, W., Hedetniemi, S., McRae, A., Henning, M.A.: The algo-
rithmic complexity of minus domination in graphs. Discrete Appl. Math. 68(1),
73–84 (1996)

7. Dunbar, J., Hedetniemi, S., Henning, M.A., McRae, A.A.: Minus domination in
regular graphs. Discrete Math. 149(1), 311–312 (1996)

8. Faria, L., Hon, W.-K., Kloks, T., Liu, H.-H., Wang, T.-M., Wang, Y.-L.: On com-
plexities of minus domination. Discrete Optim. 22, 6–19 (2016). SI: ISCO 2014

9. Fomin, F.V., Gaspers, S., Kratsch, D., Liedloff, M., Saurabh, S.: Iterative com-
pression and exact algorithms. Theor. Comput. Sci. 411(7), 1045–1053 (2010)

10. Ganian, R.: Twin-cover: beyond vertex cover in parameterized algorithmics. In:
Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 259–271.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28050-4 21

11. Goyal, D., Jacob, A., Kumar, K., Majumdar, D., Raman, V.: Structural parame-
terizations of dominating set variants. In: Fomin, F.V., Podolskii, V.V. (eds.) CSR
2018. LNCS, vol. 10846, pp. 157–168. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-90530-3 14

12. Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs.
CRC Press, Boca Raton (1998)

13. Hedetniemi, S.T., Laskar, R.C.: Bibliography on domination in graphs and some
basic definitions of domination parameters. Discrete Math. 86(1), 257–277 (1990)

14. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-
rithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010).
https://doi.org/10.1007/s00224-008-9150-x

15. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

16. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64(1), 19–37 (2012). https://doi.org/10.1007/s00453-011-9554-x

https://doi.org/10.1007/978-1-4419-7997-1_26
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/s00453-016-0127-x
https://doi.org/10.1007/978-3-642-28050-4_21
https://doi.org/10.1007/978-3-319-90530-3_14
https://doi.org/10.1007/978-3-319-90530-3_14
https://doi.org/10.1007/s00224-008-9150-x
https://doi.org/10.1007/s00453-011-9554-x

110 S. Bhyravarapu et al.

17. Lee, C.-M., Chang, M.-S.: Variations of Y-dominating functions on graphs. Discret.
Math. 308(18), 4185–4204 (2008)

18. Lin, J.-Y., Liu, C.-H., Poon, S.-H.: Algorithmic aspect of minus domination on
small-degree graphs. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS,
vol. 9198, pp. 337–348. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21398-9 27

19. Zheng, Y., Wang, J., Feng, Q.: Kernelization and lower bounds of the signed domi-
nation problem. In: Fellows, M., Tan, X., Zhu, B. (eds.) AAIM/FAW -2013. LNCS,
vol. 7924, pp. 261–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38756-2 27

https://doi.org/10.1007/978-3-319-21398-9_27
https://doi.org/10.1007/978-3-319-21398-9_27
https://doi.org/10.1007/978-3-642-38756-2_27
https://doi.org/10.1007/978-3-642-38756-2_27

	On the Parameterized Complexity of Minus Domination
	1 Introduction
	2 Preliminaries
	3 Twin-Cover
	4 Cluster Vertex Deletion Set
	5 Distance to Disjoint Components and Component Size
	References

