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Abstract. In this study, we investigate the computational complexity
of some variants of generalized puzzles. We are provided with two sets S1

and S2 of polyominoes. The first puzzle asks us to form the same shape
using polyominoes in S1 and S2. We demonstrate that this is polynomial-
time solvable if S1 and S2 have constant numbers of polyominoes, and
it is strongly NP-complete in general. The second puzzle allows us to
make copies of the pieces in S1 and S2. That is, a polyomino in S1 can
be used multiple times to form a shape. This is a generalized version of
the classical puzzle known as the common multiple shape puzzle. For two
polyominoes P and Q, the common multiple shape is a shape that can be
formed by many copies of P and many copies of Q. We show that the sec-
ond puzzle is undecidable in general. The undecidability is demonstrated
by a reduction from a new type of undecidable puzzle based on tiling.
Nevertheless, certain concrete instances of the common multiple shape
can be solved in a practical time. We present a method for determining
the common multiple shape for provided tuples of polyominoes and out-
line concrete results, which improve on the previously known results in
the puzzle community.

Keywords: Common shape puzzle · shape logic · least common
multiple shape · NP-completeness · polyform compatibility ·
polypolyomino · SAT-based solver · undecidability

1 Introduction

Research on the computational complexity of puzzles and games has become
increasingly important in theoretical computer science (see [13] for a comprehen-
sive survey). Since the 1990s, numerous puzzles have been demonstrated to be
NP-complete in general. These results provide a certain amount of some common
intuition of the properties of the NP class. However, it has not been possible to
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capture certain puzzles, among which the sliding block puzzle is representative.
The complexity of these kinds of puzzles had remained an open problem since
Martin Gardner pointed out in the 1960s that some certain theory is required to
understand such puzzles. However, after 40 years, Hearn and Demaine proposed
a framework known as constraint logic, and demonstrated that these puzzles are
PSPACE-complete [8,9] (some related work was also done by Flake and Baum
[5]). Combinatorial reconfiguration problems have been investigated towards an
understanding of the PSPACE class [10].

With the developments in theoretical computer science in the past decade,
new series of puzzles have been developed in the puzzle community. In compar-
ison to classical packing puzzles, one major property of these puzzles is that
the target shape is not explicitly stated. The first example is the symmetric
shape puzzle. This puzzle asks us to form a symmetric shape using a given set
of pieces. It is extremely challenging to solve such a puzzle because we cannot
be sure whether or not we are approaching the goal. This property makes the
puzzle very difficult, and in fact, only a few pieces are sufficient to cause this
difficulty [4]. The second example is the anti-slide puzzle. This puzzle asks us
to interlock a given set of pieces. A typical instance asks us to pack the given
pieces into a frame so that no piece can be slid in the frame. This puzzle is also
difficult because the goal is not explicitly stated. The computational complexity
of this puzzle was recently investigated by [11].

Fig. 1. Shape Logic (commercial prod-
uct by ThinkFun).

Fig. 2. Copies of a pentomino and a
tetromino share a large common shape.

In this study, we focus on such a puzzle that is known as the common shape
puzzle. Many instances of this puzzle are available in the puzzle community,
and a commercial product named “Shape Logic” exists. (The authors confirmed
that this puzzle was named “Top This!” in 2008 (Fig. 1), “ShapeOmetry” in
2012, and “Shape Logic” more recently by the same puzzle maker. The puzzle
“Top This!” won three awards in 2008.1 However, in this paper, we use the most
recent name.) In the shape logic puzzle, we are provided with two sets S1 and

1 https://www.thinkfun.com/about-us/awards/.

https://www.thinkfun.com/about-us/awards/
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S2 of polygons. We must find a polygon X that can be formed by the pieces in
S1 and S2, respectively, as in the classic silhouette puzzle Tangram. The main
difference between the Tangram and the shape logic puzzle is that the target
shape X is not provided, which drastically increases the difficulty of the puzzles.

Hereafter, we suppose that max{ |S1| / |S2| , |S2| / |S1| } is bounded from
above by a constant. We note that if S1 contains only one piece, the target
shape X is fixed to it. Therefore, it is equivalent to the classic puzzle Tangram
for S2, and it is NP-complete even if all pieces in S1 and S2 are rectangles [3].

We first demonstrate that it is polynomial-time solvable if |S1| + |S2| is
a constant. Subsequently, we show that the shape logic puzzle is strongly NP-
complete even if all the pieces in S1 and S2 are small rectangles. We state that
a rectangle in S1 ∪ S2 is small if its size is polynomial in ( |S1| + |S2| ).

Next, we focus on a similar puzzle named the common multiple shape puzzle,
which has been investigated in the puzzle community for a long time under a
few different names such as “polypolyomino”2 and “polyform compatibility”3.
We propose the term “the (least) common multiple shape” based on the term
“the least common multiple,” which is the corresponding Japanese name used
in Japanese puzzle community.4 An instance of this puzzle is as follows: We are
provided with two polygons P and Q. The puzzle asks us to find the (smallest
area) shape X that can be tiled by P , and also tiled by Q. That is, we can
use any number of copies of P and Q, and find the common shape X that can
be filled by only copies of P , as well as only copies of Q. This puzzle aims at
finding the minimum shape, however, it is known that some pairs result in a huge
solution (e.g., Fig. 2). The problem of finding a small common multiple shape of
the T-pentomino and O-tetromino (shown in Fig. 2) was first proposed by Robert
Wainright as a problem at the conference of games and puzzles competitions on
computers5 in 2005 and 2011. A solution with an area of 600 was found in 2011,
and it was improved to 340 in 2011.6 However, it remains open whether or not
this shape with an area of 340 in Fig. 2 is the smallest.

We naturally consider the (least) common multiple shape variant of the shape
logic puzzle. That is, for given sets S1 and S2 of polygons, the puzzle asks us to
find a small common shape X that can be filled by copies of pieces in S1 (and
S2, respectively). We show that this puzzle is undecidable even if each set of
S1 and S2 contains small polyominoes. As a corollary, we also demonstrate that
the following problem is undecidable: For a given set S of small polyominoes,
determine whether a rectangle can be formed using copies of the pieces in S.

In this study, we also present a formulation of these puzzles and verify the
feasibility with a computer. We recently discovered that such puzzles can be
solved by SAT-based solvers with sophisticated modeling far more efficiently

2 https://www.iread.it/Poly/.
3 https://sicherman.net/polycur.html.
4 In Japan, we use (least common multiple shape) following
(least common multiple number).

5 http://hp.vector.co.jp/authors/VA003988/gpcc/gpcc.htm.
6 http://deepgreen.game.coocan.jp/MCFG/MCFG index.htm.

https://www.iread.it/Poly/
https://sicherman.net/polycur.html
http://hp.vector.co.jp/authors/VA003988/gpcc/gpcc.htm
http://deepgreen.game.coocan.jp/MCFG/MCFG_{}index.htm
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than when using other methods [1]. By determining an efficient formulation
of this puzzle and using a SAT-based solver, we also improve several known
instances of the common multiple shapes that have been investigated in the
puzzle community.

2 Preliminaries

A polyomino is a polygon that can be obtained by joining one or more unit
squares edge to edge [7]. In this study, we only consider simple polyominoes
(without holes) as polygons. (We note that even if all pieces are simple, the
solution may have holes, as indicated in Fig. 2.) If a polyomino P is formed by
k unit squares, we refer to P as a k-omino. For a specific k, we also refer to
it as a monomino, domino, tromino, tetromino, pentomino, and hexomino for
k = 1, 2, 3, 4, 5, 6, respectively.

A set S1 of polyominoes is said to be a set of small polyominoes when the
maximum polyomino in S1 is a k-omino for k = O( |S1| c) for a positive constant
c. In this case, we assume that the input size of the problem is bounded by
O(p(n)) for a polynomial function p, where n = |S1| + |S2| .

In this study, we consider two problems on polyominoes. The first problem
is the shape logic puzzle. Given two sets of S1 and S2 of small polyominoes, the
puzzle asks us to form a common polyomino X using all pieces in S1 and all
pieces in S2, respectively. The goal shape X is not provided. Clearly, the shape
logic puzzle is in NP when all pieces are small as we can guess X and verify the
feasibility of the given packing of S1 and S2 on X in polynomial time.

The second problem is the common multiple shape puzzle. Given two finite
sets S1 and S2 of polyominoes, the puzzle asks us to form a common polyomino
X with a positive area using copies of the pieces in S1 and copies of the pieces in
S2, respectively. This puzzle generalizes both of the shape logic puzzle and the
puzzle known as the polypolyomino (also referred to as polyform compatibility).
The latter puzzle is the case in which |S1| = |S2| = 1. It can be extended from
two sets to three or more sets naturally. (See Sect. 5 in this case).

For a finite set S of polyominoes, we define a set Ŝ of polyominoes P such that
P can be formed by copies of the pieces in S. Clearly, Ŝ is infinite and countable.
That is, the common multiple shape puzzle asks whether or not Ŝ1 ∩ Ŝ2 �= ∅.
When Ŝ1 ∩ Ŝ2 �= ∅, we refer to an element in Ŝ1 ∩ Ŝ2 as a common multiple
shape. Among the common multiple shapes, the smallest one is the least common
multiple shape.

3 Complexity of Shape Logic Puzzle

In this section, we focus on the generalized shape logic puzzle. That is, given
two sets S1 and S2 of polyominoes, we need to decide if all pieces in S1 (and in
S2) can form a common polyomino X.
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Observation 1. When |S1| + |S2| is a constant k, the generalized shape logic
puzzle can be solved in time polynomial in n, where n is the total number of
vertices in S1 ∪ S2.

Proof (Outline). We solve the problem by brute force using the same technique
as in [4, Section 3]. In [4, Section 3], they presented a method for solving the
symmetric assembly puzzle, which asks us to form a symmetric shape by using
the pieces in a set of (general) simple polygons in polynomial time.

The generalized shape logic puzzle can be reduced to the symmetric shape
puzzle in polynomial time as follows: Suppose that the generalized shape logic
puzzle has a solution and the pieces in S1 forms a polygon P , which can also be
formed by the pieces in S2. Then, without loss of generality, P can be placed so
that its rightmost vertex v is on ∂P ; that is, any point in P is not right of v.
At this point, we obtain a symmetric shape by joining P and its mirror image
PR at vertex v with its mirror image on ∂PR. That is, when the shape logic
puzzle with S1 and S2 has a solution, the symmetric shape puzzle also has a
solution for S1 ∪S2 such that the left half of the symmetric shape consists of the
pieces in S1 and the right half of the symmetric shape consists of the pieces in
S2. The proof in [4, Section 3] is based on brute force. Therefore, we can restrict
our search to a symmetric shape that also provides a solution for the shape logic
puzzle in S1 ∪ S2. As the original brute force algorithm for the symmetric shape
puzzle runs in time polynomial in n, so does our algorithm. ��

We note that the brute force algorithm in the proof of Observation 1 runs
in O(nf(k)) for some polynomial function f . That is, the generalized shape logic
puzzle problem is fixed parameter tractable.

Theorem 2. The shape logic puzzle is strongly NP-complete even if all pieces
in S1 and S2 are small rectangles.

Proof. According to the definition of a small polyomino, the problem is in NP.
Thus, we demonstrate the NP-hardness using a reduction from the 3-partition
problem. In the 3-partition problem, we are provided with a multiset of 3m
positive integers A = {a1, a2, . . . , a3m}, where the ais are bounded from above by
a polynomial of m. The goal is to partition the multiset A into m triples such that
every triple has the same sum B = (

∑3m
i=1 ai)/m. It is known that the 3-partition

problem is strongly NP-complete even if every ai satisfies B/4 < ai < B/2
[6, SP16]. Without loss of generality, we assume that ai > 3 for each i and
B = 3mB′ for a positive integer B′. Then, the set S1 consists of 3m rectangles
of size 1 × (ai + 3m2) for each i = 1, 2, . . . , 3m. Furthermore, S2 consists of
3m congruent rectangles of size m × (B/(3m) + 3m). The construction can be
computed in time polynomial in m.

Subsequently, we observe that 3m < B/(3m)+3m < B/4+3m2 < ai +3m2

for each i, as 3m pieces exist in S1, ai > 3, and ai > B/4. That is, (1) B/(3m)+
3m is larger than 3m, which is the number of long and slender rectangles in S1,
and (2) each length ai + 3m2 cannot fit into any rectangle that is formed by
the pieces in S2 except if a rectangle with a width of m is created. Therefore,



60 M. Banbara et al.

the only means of forming the same shape using the pieces in S1 and the pieces
in S2 is to form a rectangle with a size of m × (B + 9m2) using the pieces in
S2 and to pack long rectangles with a size of 1 × (ai + 3m2) into this frame.
The arrangement of pieces in S1 directly provides the solution to the original
instance of the 3-partition problem. ��

4 Undecidability of Common Multiple Shape Puzzle

In this section, we demonstrate that the common multiple shape puzzle is unde-
cidable. We first show that a generalized jigsaw puzzle is undecidable. In this
puzzle, each edge is colored, which will be modified to polygonal shapes without
color.

4.1 Undecidability of a Generalized Jigsaw Puzzle

We first consider a generalized jigsaw puzzle. We borrow several notions from
[2]. Each piece is a square with four edges and has its own color. We denote
the set of colors as C = {0, 1, 2, . . . , c, 1̄, 2̄, . . . , c̄}. In our jigsaw puzzle, we tile
the pieces into a rectangular frame so that each edge is shared by two adjacent
pieces with colors i and ī, except for the boundary of the frame. A special color
0 exists, which should match to the frame. That is, when we tile the pieces, the
outer boundary has the color 0, and no inside edge has the color 0.

In our jigsaw puzzle, we are allowed to use copies of a piece in S multiple
times, which is the significant difference between our puzzle and that in [2].
Therefore, for a given finite set S, we have infinitely countable means of tiling
the pieces. Subsequently, the jigsaw puzzle problem is defined as follows:

Input: A set S of unit square pieces such that each piece has four colors in C
on its four edges.

Output: Decide if there is a polyomino region R such that R can be tiled by
copies of pieces in S in which each inner edge is shared by two adjacent pieces
of colors i and ī (with i > 0), and each edge on the boundary ∂R has the
color 0. 0
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Fig. 3. Jigsaw puzzle
in a rectangle.

We first present the following lemma. Intuitively, the
rectangle in the following lemma will be used as a template
for the other set of pieces.

Lemma 1. There exists a finite set S of jigsaw puzzle
pieces such that the area R is tiled by copies of the pieces
in S with the boundary color 0 along ∂R if and only if R
is a rectangle with a size of at least 3 × 3.

Proof. We consider the set of 11 jigsaw puzzle pieces
depicted in Fig. 3. For ease of reference, we use some letters such as H, V ,
etc. instead of the numbers 1, 2, etc. in the figure. As every piece contains H,
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H̄, H ′, H̄ ′, h, or h̄, without loss of generality, we can assume that one piece is
placed so that its H̄, H̄ ′, or h̄ is on its left, and all the pieces are then aligned in
the same direction, as indicated in the figure. The boundary of the jigsaw puzzle
is labeled by 0. We observe that we cannot form a rectangle with a size of 2 × n
(and n×2) for any n because V ′ and V̄ (and H ′ and H̄) do not match. Further-
more, we observe that an edge is colored by h or v if and only if it is not incident
to a vertex on the boundary. In particular, we cannot create a corner with the
angle 270◦; to achieve this, we must place one “corner boundary” piece inside,
which results in the color 0 being inside the shape, and this is not permitted. ��

We show that our jigsaw puzzle problem is undecidable.

Lemma 2. There exists a finite set S of pieces of the jigsaw puzzle such that
the jigsaw puzzle is undecidable.

Proof (Outline). We present a polynomial-time reduction from the following Post
Correspondence (PC) problem:

Input: A sequence of pairs of strings s1 = (t1; b1), s2 = (t2; b2), . . . , sn = (tn, bn).
We define T (si) = ti,B(si) = bi for a pair si = (ti; bi).

Question: Decide if there exists a sequence of pairs si1 , si2 , si3 , . . . , sik of strings
such that T (si1)T (si2)T (si3) · · · T (sik) = B(si1)B(si2)B(si3) · · · B(sik).

Let Σ be an alphabet, namely the set of letters that is used in the sequence. We
note that we can use each pair si can be used any number of times. It is well
known that the PC problem is undecidable even if |Σ| is a constant [12].
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We demonstrate the reduction by using a concrete example Σ = {a, b, c},
s1 = (b; ca), s2 = (a; ab), s3 = (ca; a), s4 = (abc; c) (Fig. 4). We prepare one
piece, one piece, two pieces, and three pieces of jigsaw puzzle for each string
t1 = b, t2 = a, t3 = ca, and t4 = abc, respectively. We set each string to be
uniquely constructible: two pieces for t3 = ca have their own color (distinct from
any other color) between them, and three pieces for t4 = abc have their own two
colors between a and b, and b and c (these are blank in Fig. 4). The top color is
0, the left color is H̄, and the right color is H for each piece. (As in the proof of
Lemma 1, we regard certain letters as numbers greater than n). Hereafter, we
consider these strings as rectangular pieces that are represented by sizes of 1×1,
1×1, 2×1, and 3×1, respectively. The leftmost bottom color of the rectangular
piece ti is the color i, which is referred to as the ID of this rectangular piece.
The color of the other edge corresponds to the letter in the string. That is, the
second and the third pieces of the rectangle representing t4 = abc have the colors
b and the color c, respectively. (We regard these letters as unique numbers in the
color set C. As the size of the alphabet Σ is a constant, regarding these letters
as numbers has no influence on our arguments).

Subsequently, we prepare two, two, one, and one pieces for the strings b1 = ca,
b2 = ab, b3 = a, and b4 = c, respectively. As with the strings ti, b1, b2, b3, b4 each
corresponds to a rectangular piece with a size of 2 × 1, 2 × 1, 1 × 1, and 1 × 1,
respectively. The bottom color is 0, the left color is H̄, and the right color is H for
these rectangular pieces. The top colors of the rectangular piece are represented
by the letters, except for the leftmost edge, which has the color ID ī′′ for the
string bi.

Next, we prepare to join two pieces with the IDs i and i′′. Hereafter, we use
(cu, cb, cl, cr) to denote the top color cu, bottom color cb, left color cl, and right
color cr of a piece. Furthermore, we assume that the top letter of ti is xi and
the top letter of bi is yi. We first prepare a piece with colors (̄i, i, h̄, h), which
is a wire of the ID in the vertical direction. We also prepare a piece with colors
(̄i, xi, h̄, i′), which turns the ID to the right, and a piece with colors (̄i, xi, ī′, h),
which turns the ID to the left. The ID is turned to the right or left using one
of these pieces and runs horizontally. The prime symbol ′ means that the ID
turns once. Thereafter, we prepare two pieces with the colors (ȳi, i′′, h̄, i′) and
(ȳi, i′′, ī′, h) to turn the ID downwards. In this case, the symbol ′′ means that
the ID turns twice. Furthermore, we prepare a piece with the color (j̄, j, ī′, i′) for
each letter j ∈ Σ to propagate the ID in the horizontal direction. We also add a
piece with the color (ī′′, i′′, h̄, h) to pass the ID downwards after turning twice.
In a special case, an ID can directly move from top to bottom without turning.
We prepare a piece with the color (̄i, i′′, h̄, h) to deal with this case. Thus, we
prepare a total of eight pieces for the IDs i and i′′.

Subsequently, we prepare pieces to form the left and right sides of the rect-
angular frame. We prepare six pieces with the colors (0, V, 0,H), (0, V, H̄, 0),
(V̄ , V, 0, h), (V̄ , V, h̄, 0), (V̄ , 0, 0,H), and (V̄ , 0, H̄, 0). Finally, we prepare pieces
(j̄, j, h̄, h) for each j ∈ Σ to fill the holes in the frame.
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We prepare
∑n

i=1( |ti| + |bi| ) + 8n + 6 + |Σ| pieces in total. Therefore,
the jigsaw puzzle can be constructed in time polynomial in the size of a given
instance of the PC problem.

We demonstrate that the instance s1 = (t1; b1), s2 = (t2; b2), . . . , sn = (tn, bn)
of the PC problem has a solution if and only if the jigsaw puzzle has a solution
such that a rectangular area R is filled with copies of the pieces with the color
0 only on ∂R.
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Fig. 5. Construction of a solution of the jigsaw puzzle from a solution of the instance
of the PC problem.

We first assume that the sequence si1 , . . . , sik is a solution, from which we
construct a rectangular shape using the set of pieces of the jigsaw puzzle. We



64 M. Banbara et al.

use s1 = (b; ca), s2 = (a; ab), s3 = (ca; a), s4 = (abc; c) as an example (Fig. 5).
Intuitively, we verify that two corresponding IDs are joined by a zig-zag path
with two (or zero) turns, these zig-zag paths do not cross one another, and the
corresponding letters are joined by vertical matching pieces.

We first align the rectangular pieces ti1 , ti2 , . . . , tik on the top row and
bi1 , bi2 , . . . , bik on the bottom row following the solution si1 , . . . , sik of the PC
problem. (As a reminder, each string ti (and si) produces unique rectangular
pieces.) Thus, we obtain 0s on the top and bottom boundaries, and we can join
all rectangular pieces by matching h and h̄. Subsequently, we join all correspond-
ing pairs of IDs using the prepared pieces. When the gap between the top and
bottom rows is sufficiently large, each joining path for each ID i can be created
in one of the following manners:

(1) The pair of the corresponding IDs i and i′′ in the same column is directly
joined vertically,

(2) When the ID i′′ of bi is left of the ID i of ti, the ID i first moves down
vertically, turns left once, moves horizontally, turns right once, and moves
downwards to the ID i′′, and

(3) When the ID i′′ of bi is right of the ID i of ti, the ID i first moves down
vertically, turns right once, moves horizontally, turns left once, and moves
downwards to the ID i′′.

Any of these procedures can be performed using the pieces prepared as above.
Note that in the case (2), the first letter xi of the string ti appears at the corner
when we use the piece (̄i, xi, ī′, h) is used to turn left, and the first letter yi of
the string bi appears at the corner when (ȳi, i′′, h̄, i′) is used. In the case (3), the
pieces (̄i, xi, h̄, i′) and (ȳi, i′′, ī′, h) are used for this purpose.

Following all the above steps, we can observe that each corresponding pair
of IDs is joined by either a straight vertical path in case (1) or a zig-zag path
with two turns in cases (2) or (3). Moreover, the ith letter in the common string
that is produced by the sequence si1 , . . . , sik appears on all the horizontal edges
of the ith piece (from left), except its boundary and pieces on the vertical line
that join two corresponding IDs. At this holds even for the holes, we can fill
all of the holes using the pieces that have been prepared for filling. Finally, we
can complete the frame by arranging the pieces that have been prepared for the
frame with the color 0 on the boundary.

We assume that the jigsaw puzzle has a solution. The pieces that correspond
to ti and bi form the respective rectangles as they have their unique colors. As all
pieces have the color h or h̄, therefore, every piece is arranged so that h̄ appears
on the left side and h appears on the right side. Because the color 0 matches no
other colors, the rectangles for ti and the corner pieces of color 0 on the upper
edges are arranged on the top row, as are the rectangles for bi and the corner
pieces of color 0 on the lower edges. We need to form a rectangle using the pieces
of the color 0 on the left or right side. (Although it may appear that we can form
any polyomino other than rectangles, we cannot create any concave corner of
270◦ because an edge with the color 0 cannot be placed inside the polyomino).
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According to the color properties, the ID color of each rectangle correspond-
ing to ti should be connected to the ID color of each rectangle for bi, and these
k paths cannot cross. If a path has no turn, it is necessary to use some copies
of the piece with the color (̄i, i, h̄, h), one copy of the piece (̄i, i′′, h̄, h), and some
copies of the piece (ī′′, i′′, h̄, h). If a path has turns, the only possible solution is
that the color i of ti starts vertically, is changed to i′ after one 90◦ turn, moves
horizontally, is changed to i′′ after one 90◦ turn, and moves down to the piece in
the rectangle corresponding to bi. The colors of ti and bi appear at each turn on
a horizontal edge. Thus, the remaining holes should be packed using the pieces
with the color (j̄, j, h̄, h) for the matching color j, and each pair of IDs of ti and
bi should match.

Therefore, when the jigsaw puzzle has a solution, the pieces form a rectangle,
the pieces for ti are arranged on the top, the pieces for bi are arranged on the
bottom, the corresponding pairs of IDs of ti and bi match, and a consistent
letter is obtained along each vertical line of the pieces. Thus, si can be arranged
following the sequence, and the same sequence of letters that is produced by
the sequences of ti and bi can be obtained, which provides a solution to the PC
problem, thereby completing the proof. ��

4.2 Undecidability of the Common Multiple Shape Puzzle

0 3 3211 2

Fig. 6. Colored jigsaw piece for a poly-
omino. Each color i corresponds to a zigzag
pattern that represents the integer i in the
binary system. The color ī is its negative.

We now turn to the common multiple
shape puzzle. Lemmas 1 and 2 imply
the following Theorem.

Theorem 3 For two finite sets S1

and S2 of small polyominoes, the com-
mon multiple shape puzzle for S1 and
S2 is undecidable.

Proof (Outline). We first demonstrate
how to represent each piece of the jigsaw puzzle in Lemmas 1 and 2 using a small
polyomino. The basic concept is explained in [3, Fig. 7]. Each color is represented
by its original zig-zag pattern. See Fig. 6 for an example of the representation.
Using the binary system, the size of the polyomino is O((log |C| )2), where C is
the set of colors.

We consider the set S1 of jigsaw pieces in Lemma 1 and the set S2 of jigsaw
pieces in Lemma 2. Different colors can be used for each set, except the common
color 0. Subsequently, according to Lemma 1, a solution to the common multiple
shape puzzle is a shape that corresponds to a rectangle. Moreover, according to
Lemma 2, whether it can be constructed using the pieces in S2 is undecidable.
The number of colors used in S1 ∪S2 is linear with the size n of the input. Thus,
each polyomino has an area of O((log n)2), which means that it is small. This
completes the proof. ��
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5 Improved Solutions for Common Multiple Shapes

In this section, we provide a brief formulation of generalized common shape
puzzles. The rep-tile problem,7 which is a type of packing puzzle on polyominoes,
has been formulated and examined using several different computer methods
[1] recently. In [1], the authors demonstrated that the rep-tile problem can be
formulated in a natural form that can be handled using various methods. They
compared a well-known puzzle solver, a few algorithms based on dancing links,
an MIP solver, and a SAT-based solver with respect to for solving the packing
puzzles. In [1], the authors concluded that the SAT-based solver is significantly
faster than the other methods. The common shape puzzle has similar properties
to the rep-tile problem. Therefore, we examined several instances of the common
shape puzzle that are available online,8 and improved some of the known results
by using the SAT-based solver used in [1].

For example, the previous best known shape for F5Q4T4 on https://www.
iread.it/Poly/ was a 760-omino, and our new shape is only 160-omino (Fig. 7).
(Here, “F5Q4T4” means that this problem asks for finding a common shape of
using copies of F-pentomino, Q-tetromino, and T-tetromino, respectively, which
are commonly used in the puzzle society. See https://www.iread.it/lz/pttomini.
html for details.) The previous best known shape for T5L4Q4 on https://
sicherman.net/n445com/n445com.html, which was a 560-omino, is improved
to 480-omino (Fig. 8). In addition to them, we improved the following cases:
The previous best known shapes for I5P5T5, I5P5Z5, L5P5X5, and P5U5V5
on https://sicherman.net/rosp/triplep.html were 120-omino, 200-omino, 400-
omino, and 160-omino, respectively. We obtain new better shapes of 110-
omino for I5P5T5, 150-omino for I5P5Z5, 360-omino for L5P5X5, 120-omino
for P5U5V5, respectively.

Fig. 7. Tiling patterns for F5Q4T4 improved from 760-omino to 160-omino.

Two main differences exist between the formulations of the common shape
puzzle and the packing puzzle in [1]. The first one is that the goal shape is not

7 A polygon P is called a rep-tile if it can be divided into congruent polygons with
each other similar to P .

8 https://www.iread.it/Poly/ and https://sicherman.net/polycur.html.

https://www.iread.it/Poly/
https://www.iread.it/Poly/
https://www.iread.it/lz/pttomini.html
https://www.iread.it/lz/pttomini.html
https://sicherman.net/n445com/n445com.html
https://sicherman.net/n445com/n445com.html
https://sicherman.net/rosp/triplep.html
https://www.iread.it/Poly/
https://sicherman.net/polycur.html
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Fig. 8. Tiling patterns for T5L4Q4 improved from 560-omino to 480-omino.

provided in the common shape puzzle, whereas it is provided in the packing
puzzle. The second is that we must create a common (or congruent) shape using
two different sets S1 and S2 of pieces in the common shape puzzle, whereas we
have only one set of pieces in the packing puzzle.

To address the first point, we fix the bounding box of the goal shape. We first
fix the number of pieces (or |S1| and |S2| ), and we attempt to create possible
bounding boxes that contains these pieces.

In the packing puzzle, we can assume that each unit square of a goal shape
is covered exactly once by a piece. However, in the common shape puzzle, each
unit square of a bounding box is covered by either 0 or 2 pieces. Moreover, when
the square is covered by 2 pieces, these should be in S1 and S2.

We can modify the formulation of the packing puzzle in [1] to that for the
common shape puzzle using these concepts. Furthermore, it is straightforward
to extend the problem from two sets S1 and S2 to three sets S1, S2, and S3 (and
more).

6 Concluding Remarks

We have considered the computational complexities of generalized common
shape puzzles, in which the goal shapes are not provided. The puzzle is tractable
when the number of pieces is a constant; however, it is strongly NP-complete
even if the piece sets consist of small rectangles. Moreover, if we are allowed to
use the copies of the pieces repeatedly, the problem becomes undecidable. It is
possible to formulate the puzzle for several different solvers in a natural form,
and we improved some known records for concrete instances using a SAT-based
solver. However, we have not yet succeeded in confirming that the results are
the minimum solutions. For example, we verified the pattern in Fig. 2 for each
boundary box with a size of i×	625/i
 using 1 ≤ i ≤ 25 and confirmed that there
are no smaller patterns in these boundary boxes. However, this does not imply
that the pattern in Fig. 2 is the smallest area pattern. Thus, efficient searching
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for the minimum solution remains open. We have only considered the polyomi-
noes in this study, and thus, the extension to general polygons is a natural topic
for future work.
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