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Abstract. We consider a generalization of the distance polymatrix coordination
games to hypergraphs. The classic polymatrix coordination games and the suc-
cessive distance polymatrix coordination games are usually modelled by means
of undirected graphs, where nodes represent agents, and edges stand for binary
games played by the agents at their extremes. The utility of an agent depends at
different scales on the outcome of a suitably defined subset of all binary games,
plus the preference she has for her action.

We propose the new class of generalized distance polymatrix games, properly
generalizing distance polymatrix coordination games, in which each subgame can
be played by more than two agents. They can be suitably modelled by means of
hypergraphs, where each hyperedge represents a subgame played by its agents.
Moreover, as for distance polymatrix coordination games, the overall utility of a
player x also depends on the payoffs of the subgames where the involved players
are far, at most, a given distance from x. As for the original model, we discount
these payoffs proportionally by factors depending on the distance of the related
hyperedges.

After formalizing and motivating our model, we first investigate the existence
of exact and approximate strong equilibria. Then we study the degradation of the
social welfare by resorting to the standard measures of Price of Anarchy and Price
of Stability, both for general and bounded-degree graphs.
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1 Introduction

Polymatrix games [25] are well-known games that have been deeply investigated for
decades. They are multi-player games and belong to the class of graphical games [26]
since it is possible to represent player interactions using an interaction graph. In this
graph, nodes correspond to players, while edges correspond to bimatrix games played
by the agents at the extremes.
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Each player chooses a pure strategy from a finite set, which she will play in all the
binary games she is involved in. In the subclass of polymatrix coordination games [30],
the interaction graph is undirected since the outcome of a binary game is the same for
both players. An extension of this classic model is presented in [2], where the utility of
an agent x depends not only on the games (edges) in which x is involved but also on
the games (edges) played by agents that are at most a distance of d away from x.

In this paper, we present and study a new, more general model, generalized distance
polymatrix games, where each local game can concern more than two players, and the
utility of an agent x can also depend on the games at a distance bounded by d. In
this new model, the interaction graph becomes an undirected hypergraph, where every
hyperedge corresponds to a game played by the players it contains. Following the idea
proposed in [2], the utility of an agent x is the sum of the outcomes of the games she
plays plus a fraction of the outcomes of the games played by other players at a distance
at most d from x. Each agent x also gets an additional payoff that is a function of her
chosen strategy. Our new model is interesting both from a theoretical and a practical
point of view since it is able to represent scenarios that previous models did not cover.

On the one hand, extending a local game to more than two players is reason-
able because, in many natural social environments (e.g., economics, politics, sports,
academia, etc.), people get a payoff from activities that involve more than two players.

As an example, in a scientific community, a project or a paper often involves more
than two researchers, and its outcome depends on the choice made by each person. This
can be modelled by using a hyperedge for each project/paper, with a weight (payoff)
depending on the participants’ strategies.

On the other hand, any individual also gets a benefit, albeit to a smaller degree, when
her close colleagues succeed in some project or publish a quality paper that she is not
personally a part of. This is quite obvious when considering the student-advisor rela-
tionship, but also noticeable for the collective evaluation and reputation of the depart-
ment or institution where the researchers are working, for instance, in terms of increased
assignment of resources and positions. We can model these indirect relationships by
introducing distances and discount factors.

Our framework can also be used to key out a local economy interaction. It is well
known that the businesses of a small town or an area of a city strictly depend on each
other. In many cases, the interaction is positive; if a business grows, it attracts cus-
tomers and also positively influences the nearby ones. When small businesses are placed
throughout an area, townspeople are likelier to shop around from one business to the
next. An example is provided in Sect. 3.

Once formalized our new model, we provide some conditions for the existence of
β-approximate k-strong Nash equilibria. Then we focus on the degradation of the social
welfare when k players can simultaneously change their strategies. We analyze the Price
of Anarchy and Stability for β-approximate k-strong Nash equilibria, determining tight
lower and upper bounds.

1.1 Related Work

Polymatrix games were introduced more than forty years ago [25] and have since
received considerable attention in the scientific literature, as they are a very general
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model that can be applied to many different real-world scenarios and can be used to
derive several relevant games (e.g., hedonic games [17], max-cut [22]). Some seminal
papers on the topic are [18,23,24,27], and more recent studies are [4,11,16,30], where
the authors showed results mainly concerning equilibria and their computational issues.

Our model is related to polymatrix coordination games [4,30] and the more recent
distance polymatrix coordination games [2], where the authors introduced the idea of
distances. Polymatrix coordination games are, in turn, an extension of a previously
introduced model that did not include individual preferences [12]. Some preliminary
results can be found in [1].

Our studies are also related to (symmetric) additively separable hedonic games [17]
and hypergraph hedonic games [3], where there are no preferences, and the weights of
the interaction graph are independent of the players’ strategies, except being null when
concerning agents playing different strategies. Our model can also be seen as a general-
ization of the hypergraph hedonic games [3], introducing preferences and increasing the
expressiveness of the weight function (also allowing weight related to different strate-
gies to be non-null).

Pure Nash equilibria have been studied for synchronization games [31], which are a
generalization of polymatrix coordination games to hypergraphs. However, they do not
investigate the degradation of the social welfare, and they do not consider distances.

Another closely related model is the group activity selection problem [10,14,15],
which is positioned somewhat between polymatrix coordination games and hedonic
games.

Our model is also related to the social context games [5,8], where the players’ util-
ities are computed from the payoffs based on the neighbourhood graph and an aggrega-
tion function. We take into account more than just the neighbourhood of an agent, we
account for the player’s preference only for her utility, and we extend payoffs of local
games to more than two agents.

The idea of obtaining utility from non-neighbouring players has also been analyzed
for distance hedonic games [21], a variant of hedonic games that are non-additively
separable since payoffs also depend on the size of the coalitions. They generalize frac-
tional hedonic games [6,9,13,19,28] similarly as distance polymatrix games and our
model do with polymatrix games.

Some negative results for our problem can be inherited from additively separable
hedonic games. For instance, computing a Nash stable outcome is PLS-complete [12],
while the problems of finding an optimal solution and determining the existence of a
core stable, strict core stable, Nash stable, or individually stable outcome are all NP-
hard [7].

2 Our Contribution

After formalizing our new model, we analyse the existence of β-approximate k-strong
equilibria and investigate the degradation of social welfare when a deviation from the
current strategy profile can involve up to k agents. Consequently, we compute tight
bounds on the resulting Price of Anarchy and Stability. To the best of our knowledge,
there are no previous results of this kind in the literature that would apply to our model.
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In particular, in Sect. 4, we analyze the existence of β-approximate k-strong equilib-
ria. In Sect. 5, we provide tight bounds on the Price of Anarchy for general hypergraphs.
In Sect. 6, we prove a suitable lower bound on the Price of Stability for general hyper-
graphs, which is asymptotically equivalent to the upper bound of the Price of Anarchy
when β = 1, meaning that the inefficiency of 1-approximate k-strong equilibria is fully
characterized. Finally, in Sect. 7, we give upper and lower bounds for bounded-degree
hypergraphs, with the gap being reasonably small. Some of our results are summarized
in Table 1. Due to space constraints, some proofs are only sketched or omitted, while
all the details are deferred to the full version.

Table 1. Summary of some of our results, where UB and LB stand for the upper and lower bound,
respectively. Furthermore, Δ and r denote the maximal vertex degree and the maximum arity in
the bounded-degree case, respectively, and αh, h ∈ [d], is the discounting factor for hyperedges
at distance h−1. The arrows denote that a result follows from an adjacent result in the table. The
question mark stands for an open problem.

general bounded-degree

PoAβ
k (LB) β

(n−1)r−1
(k−1)r−1

(r + α2(n − r)) Ω(β(Δ − 1)d/2(r − 1)d/2)

PoAβ
k (UB) β

(n−1)r−1
(k−1)r−1

(r + α2(n − 2)) βr
∑

h∈[d] αhΔ((Δ − 1)r)h−1

PoSβ
k (UB) ↓ ↓

PoS1
k(LB)

n−r
n−1

(n−1)r−1
(k−1)r−1

(r+α2(n−r))
2(1+α2)

?

3 Preliminaries

Given two integers r ≥ 1 and n ≥ 1, let [n] = {1, 2, . . . , n} and (n)r := n · (n − 1) ·
. . .·(n−r+1) be the falling factorial. A weighted hypergraph is a triple H = (V,E,w)
consisting of a finite set V = [n] of nodes, a collection E ⊆ 2V of hyperedges, and
a weight w : E → R associating a real value w(e) with each hyperedge e ∈ E. For
simplicity, when referring to weighted hypergraphs, we omit the term weighted.

The arity of a hyperedge e is its size |e|. An r-hypergraph is a hypergraph such that
the arity of each hyperedge is at most r, where 2 ≤ r ≤ n. A complete r-hypergraph is a
hypergraph (V,E,w) such that E := {U ⊆ V : |U | ≤ r}. A uniform r-hypergraph is a
hypergraph such that the arity of each hyperedge is r. An undirected graph is a uniform
2-hypergraph. A hypergraph is said to be Δ-regular if each of its nodes is contained in
exactly Δ hyperedges. It is said to be linear if any two of its hyperedges share at most
one node. A hypergraph is called a hypertree if it admits a host graph T such that is a
tree. Given two distinct nodes u and v in a hypergraph H, a u − v simple path of length
l in H is a sequence of distinct hyperedges (e1, . . . , el) of H, such that u ∈ e1, v ∈ el,
ei ∩ ei+1 �= ∅, for every i ∈ [l − 1], and ei ∩ ej = ∅ whenever j > i + 1. The distance
from u to v, d(u, v), is the length of the shortest u − v simple path in H. A cycle
in a hypergraph H is defined as a simple path (e1, . . . , el), but the further condition
e1 ∩ el �= ∅ must hold (that is, the first and the last hyperedge of the path must intersect,
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while in a simple path they are disjoint). This definition of cycle is originally due to
Berge, and it can be also stated as an alternating sequence of v1, e1, v2, . . . , vn, en of
distinct vertices vi and distinct hyperedges ei so that each ei contains both vi and vi+1.
The girth of a hypergraph is the length of the shortest cycle it contains.

Generalized Distance Polymatrix Games. A generalized distance polymatrix game
(or GDPG) G = (H, (Σx)x∈V , (we)e∈E , (px)x∈V , (αh)h∈[d]), is a game based on an
r-hypergraph H, and defined as follows:

Agents: The set of agents is V = [n], i.e., each node corresponds to an agent. We
reasonably assume that n ≥ r ≥ 2.

Strategy profile or outcome: For any x ∈ V , Σx is a finite set of strategies of player
x. A strategy profile or outcome σ = (σ1, . . . , σn) is a configuration in which each
player x ∈ V plays strategy σx ∈ Σx.

Weight function: For any hyperedge e ∈ E, let we : ×x∈eΣx → R≥0 be the weight
function that assigns, to each subset of strategies σe played respectively by every
x ∈ e, a weight we(σe) ≥ 0. In what follows, for the sake of brevity, given any
strategy profile σ, we will often denote we(σe) simply as we(σ).

Preference function: For any x ∈ V , let px : Σx → R≥0 be the player-preference
function that assigns, to each strategy σx played by player x, a non-negative real
value px(σx), called player-preference. In what follows, for the sake of brevity, given
any strategy profile σ, we will often denote px(σx) simply as px(σ).

Distance-factors sequence: Let (αh)h∈[d] be the distance-factors sequence of the game,
that is a non-negative sequence of real parameters, called distance-factors, such that
1 = α1 ≥ α2 ≥ . . . ≥ αd ≥ 0.

Utility function: For any h ∈ [d], let Eh(x) be the set of hyperedges e such that the
minimum distance between x and one of the players v ∈ e is exactly h − 1. Then,
for any x ∈ V , the utility function ux : ×x∈V Σx → R of player x, for any strategy
profile σ is defined as ux(σ) := px(σ) +

∑
h∈[d] αh

∑
e∈Eh(x)

we(σ).

The social welfare SW(σ) of a strategy profile σ is defined as the sum of all the
agents’ utilities in σ, i.e., SW(σ) :=

∑
x∈V ux(σ). A social optimum of game G

is a strategy profile σ∗ that maximizes the social welfare. We denote by OPT(G) =
SW(σ∗) the corresponding value.

β-approximate k-strong Nash Equilibrium. Given two strategy profiles σ =
(σ1, . . . , σn) and σ∗ = (σ∗

1 , . . . , σ
∗
n), and a subset Z ⊆ V , let σ

Z→ σ∗ be the strategy
profile σ′ = (σ′

1, . . . , σ
′
n) such that σ′

x = σ∗
x if x ∈ Z, and σ′

x = σx otherwise. Given
k ≥ 1, a strategy profile σ is a β-approximate k-strong Nash equilibrium (or (β, k)-
equilibrium) of G if, for any strategy profile σ∗ and any Z ⊆ V such that |Z| ≤ k, there

exists x ∈ Z such that βux(σ) ≥ ux(σ
Z→ σ∗). We say that a player x β-improves

from a deviation σ
Z→ σ∗ if βux(σ) < ux(σ′). Informally, σ is a (β, k)-equilibrium

if, for any coalition of at most k players deviating, there exists at least one player in
the coalition that does not β-improve her utility by deviating. We denote the (possibly
empty) set of (β, k)-equilibria of G by NEβ

k(G). Clearly, if β = 1, NEβ
k(G) contains

all the k-strong equilibria, and when β = 1 and k = 1, it contains the classic Nash
equilibria.
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Fig. 1. Three shops in a shopping area.

(β, k)-Price of Anarchy (PoA) and (β, k)-Price of Stability (PoS). The (β, k)-Price
of Anarchy of a game G is defined as PoAβ

k(G) := maxσ∈NEβ
k(G)

OPT(G)
SW(σ) , i.e., it is

the worst-case ratio between the optimal social welfare and the social welfare of a
(β, k)-equilibrium. The (β, k)-Price of Stability of game G is defined as PoSβ

k(G) :=
minσ∈NEβ

k(G)
OPT(G)
SW(σ) , i.e., it is the best-case ratio between the optimal social welfare

and the social welfare of a (β, k)-Nash equilibrium. Clearly, PoSβ
k(G) ≤ PoAβ

k(G),
whereas both quantities are not defined if NEβ

k(G) = ∅.

Example 1. We give here an example of GDPG applied to the local economy of a city’s
shopping area where the shops are one beside the other. Figure 1 schematizes three
of the shops in the area, which are represented by three light blue hyperedges ({1, 2},
{3, 4, 5}, {6, 7, 8, 9}). They are positioned in the area like in Fig. 1, where the light grey
hyperedges are just auxiliary hyperedges with null weights for every strategy profile. In
this case, the distances are physical distances. Each node stands for the manager of a
category of products sold. The manager’s strategy is to choose a brand for her product
category. A strategy profile σ corresponds to the brands the managers chose.

All the preferences are null while the weight we(σ) is the number of customers
visiting the shop e for a specific strategy profile σ. It is reasonable that the number of
customers we(σ) strictly depends on the brand chosen by the agents.

Since the three shops are beside each other, if a person goes to {1, 2}, she will
probably enter {3, 4, 5} and enter {6, 7, 8, 9} with less probability. This means that part
of the people that visit {1, 2} will stop at the other two shops, inversely proportional to
the physical distance.

The utility of an agent is the number of received views. This number is strictly
related to profit in the economy. We set α2 = α3 and α4 = α5 because of the auxiliary
light grey hyperedges, which are not real shops. We can now compute the utilities of
the agents. For example, agent 6 has u6(σ) = w{6,7,8,9}(σ) + α3 · w{3,4,5}(σ) +
α5 · w{1,2}(σ), which equals the number of customers that shop {6, 7, 8, 9} gets for
σ{6,7,8,9} plus part (α3) of the number of customers got by shop {3, 4, 5}, plus part
(α5) of the number of customers got by shop {1, 2}. Clearly, this example cannot be
modelled using previous polymatrix models, i.e., without using hypergraphs and the
distance factors sequence.

4 Existence of (β, k)-Equilibria

This section analyzes the existence of (β, k)-equilibria. First, we notice that (β, k)-
equilibria may not exist since they cannot always exist even in polymatrix coordination
games [4,30]. In the following (Theorem 1), we give some conditions on β that guar-
antee the existence. These results extend the ones shown in [4,30].
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We say that a game G has a finite (β, k)-improvement property (or (β, k)-FIP for
short) if every sequence of (β, k)-improving deviations is finite. In such a case, we
necessarily have that any (β, k)-FIP ends in a (β, k)-equilibrium, which implies the
latter’s existence, too. To show that the (β, k)-FIP holds (and then the existence of a
(β, k)-equilibrium), we resort to a potential function argument [29]. A function Φ that
associates each strategy profile with a real number is called potential function if, for

any strategy profile σ and (β, k)-improving deviation σ′ = σ
Z→ σ∗, we have that

Φ(σ′) − Φ(σ) > 0. Thus, since any (β, k)-improving deviation increases the potential
function and the number of strategy profiles is finite, any sequence of (β, k)-improving
deviations cannot cycle and must necessarily meet a (β, k)-equilibrium after a finite
number of steps.

For a given hyperedge e and a subsetZ ⊆ V , let nZ
h (e) := |{x ∈ Z : e ∈ Eh(x)}|,

i.e., nZ
h (e) is the number of players x ∈ Z that are at distance h − 1 from e.

Theorem 1. Let G be a GDPG. Then: i) G has the (β, 1)-FIP for every β ≥ 1; ii) G has
the (β, k)-FIP for every β ≥ maxZ⊆V :

|Z|=k

{maxe∈E{
∑

h∈[d] αhnZ
h (e)}} and for every k.

Proof (Proof sketch). To prove both i) and ii) we show that Φ(σ) =
∑

x∈V px(σ) +∑
e∈E we(σ) is a potential function. Proof of i) is left to the full version.

Proof Sketch of ii). Consider a (β, k)-improving deviation σ′ = σ
Z→ σ∗.

Let Z = V \ Z. Let also SWZ(σ) be the social welfare related to the deviat-
ing agents, that is SWZ(σ) =

∑
x∈Z ux(σ). We can rewrite this social welfare

as SWZ(σ) =
∑

x∈Z px(σ) +
∑

e∈E:e�⊆Z aewe(σ) +
∑

e∈E:e⊆Z aewe(σ), where
ae =

∑
h∈[d] αhnZ

h (e). It follows that

β
∑

x∈Z

px(σ
′) +

∑

e∈E:e�⊆Z

βwe(σ
′) +

∑

e∈E:e⊆Z

βaewe(σ
′) (1)

≥SWZ(σ
′) (2)

>β · SWZ(σ) (3)

≥β
∑

x∈Z

px(σ) +
∑

e∈E:e�⊆Z

βwe(σ) +
∑

e∈E:e⊆Z

βaewe(σ) (4)

where (2) is due to β ≥ 1 and β ≥ ae for any e ∈ E, (3) holds sinceσ′ is a β-improving
deviation; (4) is due to ae ≥ 1 for every e ∈ E such that e �⊆ Z. From (1) > (4) and∑

e⊆Z we(σ′) =
∑

e⊆Z we(σ), we can derive Φ(σ′) − Φ(σ) > 0. 
�

The value
∑

h∈[d] αhnZ
h (e) strictly depends on d and nZ

h (e). When d = 1, we have
∑

h∈[d] αhnZ
h (e) = nZ

1 (e) ≤ |e| for every e ∈ E and Z ⊆ V , so we can assume

β ≥ r. When the hypergraph of a game is a hyperlist, we have
∑

h∈[d] αhnZ
h (e) ≤

2r
∑

h∈[d] αh, for every e ∈ E, and Z ⊆ V . When the hypergraph of a game is a hyper-

three of maximum degree Δ, we have
∑

h∈[d] αhnZ
h (e) ≤ r

∑
h∈[d] αhrh−1Δh−1, for

every e ∈ E, and Z ⊆ V .
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5 (β, k)-PoA of General Graphs

In this section, we provide tight upper and lower bounds for the (β, k)-Price of Anarchy
when the hypergraph H of a game G is general, that is there is no particular assumption
on it. Such bounds depend on β, k, the number of players n, the maximum arity r, and
the value α2 of the distance-factors sequence.

Theorem 2. For any integers β ≥ 1, r ≥ 2, k < r, and n ≥ r, there exists a simple
GDPG G with n agents such that PoAβ

k(G) = ∞.

Thus, in the rest of the paper, we will only take into account the estimation of the
(β, k)-PoA for k ≥ r ≥ 2 since it is not possible to bound the (β, k)-PoA for k < r,
not even for bounded-degree graphs and not even when Δ = 1.

5.1 (β, k)-PoA: Upper Bound

We now provide three results that we will use to compute the upper bound of the (β, k)-
Price of Anarchy (Theorem 3). The first result is an upper bound to the social welfare
of any strategy profile.

Lemma 1. For any strategy profile σ, it holds that SW(σ) ≤
∑

x∈V px(σ)+(r+α2 ·
(n − 2)) ·

∑
e∈E we(σ).

Before providing the other two preliminary results, we write Inequality (5), which
is a necessary condition for an outcome σ to be a (β, k)-equilibrium. For a fixed inte-
ger k ≥ r, let σ and σ∗ be a (β, k)-equilibrium and a social optimum of G respec-
tively. Since σ is a (β, k)-equilibrium, for every subset Z ⊆ V of at most k agents,

there exists an agent z1(Z) ∈ Z such that βuz1(Z)(σ) ≥ uz1(Z)(σ
Z→ σ∗). More-

over, let Z(2) := Z \ {z1}, there exists another agent z2(Z) ∈ Z(2) such that

βuz2(Z)(σ) ≥ uz2(Z)(σ
Z(2)→ σ∗). We can iterate this process for every zi(Z) ∈

Z(i) := Z \ {z1(Z), . . . , zi−1(Z)}, obtaining the following inequality.

βuzi(Z)(σ) ≥ uzi(Z)(σ
Z(i)→ σ∗) (5)

By summing the previous inequality’s left and right parts for every possible subset
of Z of k players, we derive the following two results needed for Theorem (3).

Lemma 2. For every (β, k)-equilibrium σ and every subset K ⊆ V , with |K| = k, it
holds that β ·

(
n−1
k−1

)
· SW(σ) =

∑
Z⊆V
|Z|=k

∑
i∈[k] β · uzi(Z)(σ).

Proof (Proof sketch). By summing βuZ(i)(σ) for every Z ⊆ V of cardinality k and
for every i ∈ [k], it is easy to see that the utility of an agent x ∈ V is counted exactly(
n−1
k−1

)
times, which is the number of subsets K in V containing x. 
�

Lemma 3. For every (β, k)-equilibrium σ and every subset K ⊆ V , with |K| = k,

it holds that
∑

Z⊆V
|Z|=k

∑
i∈[k] uzi(Z)(σ

Z(i)→ σ∗) ≥
(
n−r
k−r

) (∑
x∈V px(σ∗) +

∑
e∈E we

(σ∗))
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Proof (Proof sketch). For every subset K ⊆ V , with |K| = k, it holds that
∑

i∈[k] uzi(Z)(σ
Z(i)→ σ∗) ≥

∑
x∈Z px(σ∗) +

∑
e⊆Z we(σ∗). To establish this, we

discarded the weights of all the hyperedges, far at least one from zi(Z), and used
the fact that every hyperedge in Z is counted exactly once. By summing the previ-

ous inequality for every subset Z, we obtain
∑

Z⊆V
|Z|=k

∑
i∈[k] uzi(Z)(σ

Z(i)→ σ∗) ≥
(
n−1
k−1

) ∑
x∈V px(σ∗) +

(
n−r
k−r

) ∑
e∈E we(σ∗), thus showing the claim. 
�

Finally, we can state the theorem for the upper bound of the (β, k)-Price of Anarchy.

Theorem 3. For any β ≥ 1, any integer k ≥ r and any GDPG G having a distance-
factors sequence (αh)h∈[d], it holds that PoA

β
k(G) ≤ β (n−1)r−1

(k−1)r−1
(r + α2(n − 2)).

Proof (Proof sketch). By using the results given in Lemmas 1, 2, and 3 we obtain

β ·
(

n − 1

k − 1

)

· SW(σ) =
∑

Z⊆V :|Z|=k

∑

i∈[k]

β · uzi(Z)(σ) (6)

≥
∑

Z⊆V :|Z|=k

∑

i∈[k]

uzi(Z)(σ
Z(i)→ σ∗) (7)

≥
(

n − r

k − r

) (
∑

x∈V

px(σ
∗) +

∑

e∈E

we(σ
∗)

)

(8)

≥
(

n − r

k − r

)

· (r + α2 · (n − 2))−1 · SW(σ∗) (9)

where (6), (7), (8), and (9) derive from Lemma 2, Eq. (5), Lemma 3, and Lemma 1,
respectively. Concluding, from (6) and (9), we can get the upper bound for PoAβ

k(G). 
�

5.2 (β, k)-PoA: Lower Bound

We continue by showing the following tight lower bound.

Theorem 4. For every β ≥ 1, every integers r ≥ 2, k ≥ r, d ≥ 1, n ≥ k, and
every d-distance-factors sequence (αh)h∈[d], there is a GDPG G with PoAβ

k(G) ≥
β (n−1)r−1

(k−1)r−1
(r + α2(n − r)).

Proof (Proof sketch). The idea is to use a GDPG game instance G with n players where:
(i) the underlying hypergraph H is a hyperstar in which all the players x ≥ 2 are only
connected to player 1; (ii) each hyperedge contains 1 and r − 1 other players; (iii) each
agent has only two strategies, {s, s∗}; (iii) we(σ) = β if every agent in e chooses s∗

under outcome σ, and we(σ) = 0 otherwise; (iv) p1(σ) =
(
k−1
r−1

)
if agent 1 chooses s

under outcome σ, and p1(σ) = 0 otherwise; and (v) px(σ) = 0 for every x ≥ 2 and
outcome σ. We call σ and σ∗ the two outcomes where all the agents choose s and s∗,
respectively. Since σ is a (β, k)-equilibrium, we use the ratio of the social welfare of
σ∗ and σ to get the result.
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6 (1, k)-PoS of General Graphs

This section shows a lower bound for the (1, k)-Price of Stability asymptotically equal
to the upper bound for the (1, k)-Price of Anarchy given in Theorem 3. This means that
we can use this upper bound also for the (1, k)-Price of Stability and close our study
for general hypergraphs for the case β = 1.

The basic idea is to start from the lower bound instance of Theorem 4, then trans-
form it to a new instance with the property of having every outcome with social welfare
different from the minimum unstable.

Theorem 5. For any n ≥ 6, there exists a GDPG G such that
PoS1k(G) ≥ n−r

n−1
(n−1)r−1
(k−1)r−1

(r+α2(n−r))
2(1+α2)

Proof. Let H = (V,E,w) be the interaction hypergraph of G, with |V | = n and |E| =
2
(
n−2
r−1

)
+ 1. Furthermore, let the set of hyperedges E be divided into {1, 2}, E1, and

E2, where Ei, with i ∈ {1, 2}, has
(
n−2
r−1

)
hyperedges of arity r, each containing node

i and r − 1 nodes different from 1 and 2. Hypergraph H is a kind of hyperstar with two
roots connected by an edge of arity 2. Each agent x has a set Σx = {1, 2, 3} of three
possible strategies. We call bottom layer, medium layer, and top layer the outcome in
which every player plays strategy 3, 2, and 1, respectively.

Finally, all the non-null weights and preferences are defined as follows. For the
bottom layer, p1(3) = p2(3) = (1+2ε)+

(
k−1
r−1

)
(1+α2)(1+ ε). For the medium layer,

w{1,2}(2, 2) = we∈E1(σ) = we∈E2(σ) = (1 + ε). For the top layer, p1(1) = p2(1) =
1, we∈E1(σ) = we∈E2(σ) = 1 + ε. Non-null hyperedges between the layers are only
w{1,2}(1, 2) = 2ε, we∈E1(σ) = 1+ ε, and we∈E2(σ) = 1+ ε, when some players play
strategy 1 and all the others play strategy 2 in σ. Please note that every hyperedge with
some players in the bottom layer and all the others out of the bottom layer have a null
weight. 
�
Lemma 4. The bottom layer is a (1, k)-equilibrium with social welfare 2(1 + 2ε) +
2
(
k−1
r−1

)
(1 + α2)(1 + ε).

Lemma 5. All the (1, k)-equilibria have the same social welfare 2(1+2ε)+2
(
n−1
k−1

)
(1+

α2)(1 + ε).

Proof (Proof sketch). We only need to check the case where no one agent is in the
bottom. In fact, any other outcome is either unstable or has a social welfare equal to the
one given in Lemma 4. When all the players are out of the bottom, the utility of agents
1 and 2 can change only when one or both of them change layer. Now, if both 1 and 2
are in the top layer, they both prefer to go to the medium one because they get an extra
ε each. Then, agent 1 goes back to the top layer, increasing her utility of an ε more.
From this state, agent 2 goes back to the top layer. The last state is when agent 1 is in
the medium layer and 2 is in the top layer. Then, 1 goes to the top layer. 
�

Lemma 6. PoS1k(G) = n−r
n−1

(n−1)r−1
(k−1)r−1

(r+α2(n−r))
2(1+α2)

.

Proof (Proof sketch). We use the ratio between the social welfare of the medium and
the bottom layers to get the lower bound. 
�

The proof of Theorem 5 is complete. 
�
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7 (β, k)-PoA of Bounded-Degree Graphs

In this section, we analyze the (β, k)-Price of Anarchy for games whose hypergraphs
have bounded-degree.1 We also say that a game G is Δ-bounded degree if the degree of
every node in the underlying hypergraph is at most Δ. Here, we will only focus on the
cases where k ≥ r, as observed in Theorem 2, and Δ ≥ 2, since the case when Δ = 1
is encompassed by Sect. 5.

7.1 (β, k)-PoA: Upper Bound

As we did for general hypergraphs, we first show an upper bound on the social welfare
of every outcome.

Lemma 7. Given a Δ-bounded-degree GDPG G, for every (β, k)-equilibrium σ it
holds that SW(σ) ≤

∑
x∈V px(σ) + r

∑
h∈[d] αh · (Δ − 1)h−1rh−1 ·

∑
e∈E we(σ).

We can now state the main theorem on the upper bound.

Theorem 6. For every Δ-bounded-degree GDPG G, with distance-factor sequence
(αh)h∈[d], and for every k ≥ r, it holds that PoAβ

k(G) ≤ β · r
∑

h∈[d] αh · Δ · (Δ −
1)h−1rh−1.

Proof (Proof sketch). First, we write some necessary conditions for every outcome σ to
be a (β, k)-equilibrium. Since the maximum arity is at most equal to k, if σ is a (β, k)-
equilibrium, then for every hyperedge e, there must exist a player z1(e) ∈ e such that
(i): βuz1(e)(σ) ≥ uz1(σ

e→ σ∗) ≥ pz1(e)(σ
∗) + we(σ∗). Moreover, since a (β, k)-

equilibrium is also a (β, 1)-equilibrium, for every other zi(e) ∈ e, with zi(e) �= z1(e),

it must hold (ii): βuzi(e)(σ) ≥ uzi(e)(σ
zi(e)→ σ∗) ≥ pzi(e)(σ

∗). By summing Eq. (i)
plus all the inequalities (ii) for every hyperedge e ∈ E, and by using Lemma 7, we get

β ·
∑

e∈E

⎛

⎝
∑

zi(e)

uzi(e)(σ)

⎞

⎠ ≥

⎛

⎝r
∑

h∈[d]

αh · (Δ − 1)h−1rh−1

⎞

⎠

−1

· SW(σ∗) (10)

We notice now that it holds that
∑

e∈E

(∑
zi(e)

, uzi(e)(σ)
)

≤
∑

x∈V Δ ·
ux(σ) = Δ · SW(σ) because in the left-hand part, the utility of each player
x is counted at most Δ times, which is the maximum number of edges con-
taining x. By using both (10) and the last inequality, we obtain SW(σ) ≥
β−1Δ−1

(
r
∑

h∈[d] αh · (Δ − 1)h−1rh−1
)−1

SW(σ∗).

Remark 1. Please note that Theorem 6 implies that the (β, k)-price of anarchy of Δ-
bounded-degree GDPG, as a function of d, grows at most as O(β · (Δ − 1)d · rd).

1 A hypergraph H has degree bounded by Δ if the degree of every node x of H is at most Δ.
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7.2 (β, k)-PoA: Lower Bound

In the following theorem, we provide a lower bound on the (β, k)-Price of Anarchy
relying on a nice result from graph theory.

Theorem 7. For every β ≥ 1, any integers k ≥ r, Δ ≥ 3, d ≥ 1, and any distance-
factors sequence (αh)h∈[d], there exists a Δ-bounded-degree GDPG G such that

PoAβ
k(G) ≥ β·∑h∈[d] αhΔ(Δ−1)h−1bh−1

1+
∑d−1

h=1 αh+1(2(Δ−1)�(h+1)/2�(r−1)�(h+1)/2�−1+2(Δ−1)�h/2�−1(r−1)�h/2�)
.

Proof. In Lemma 3 of [20], they state that for every integers Δ, r, and γ0 ≥ 3, it
is always possible to find a Δ-regular r-uniform hypergraph H of girth at least γ0.
By using this result, given integers k ≥ r, Δ ≥ 3 and d ≥ 1, a distance-factors
sequence (αh)h∈[d], and a Δ-regular linear hypergraph H = (V,E) of girth at least
γ0 := max{2d + 1, k + 1}, we can build a Δ-bounded-degree GDPG G, such that (i)
H is its underlying hypergraph; (ii) (αh)h∈[d] is its distance-factors sequence; (iii) each
player x has two strategies, s and s∗; (iv) for every hyperedge e ∈ E and outcome σ,
we(σ) = β if all the nodes in e play s∗ in σ, and 0 otherwise; and (v) for every x ∈ V ,
px(σ) = 1 +

∑d−1
h=1 αh+1

(
1 + Δ (Δ−1)p(r−1)p−1

(Δ−1)(r−1)−1
+ r (Δ−1)q(r−1)q−1

(Δ−1)(r−1)−1

)
if x plays s in σ,

where p = (h + 1)/2� and q = h/2�, otherwise px(σ) = 0.
Let σ and σ∗ be the strategy profiles in which all players play strategy s and s∗,

respectively. First, we show that σ is an (β, k)-equilibrium of G.

Lemma 8. σ is a (β, k)-equilibrium.

Proof (Proof sketch). If σ is not a (β, k)-equilibrium, then there must exist a subset

Z ⊆ V , |Z| ≤ k, such that ux(σ
Z→ σ∗) > β · ux(σ) for every x ∈ Z.

We can assume w.l.o.g. that the subhypergraph T induced by Z in H, rooted in xr,
is a perfect linear hypertree of height d because y cannot get utility from hyperedges
that are far more than d − 1 from y, and each node has degree Δ. We will assume
w.l.o.g. that y is one of the r −1 leftmost leaves, that is one of the leaves in the leftmost
hyperedge.

Let (e0, e1, . . . , ed) be a path P from the leftmost leaf y to the root, where e0 is the
leftmost hyperedge containing y, ed is the one containing the root xr, and el−1∩el = vl

for every other l ∈ [d − 1]. Clearly, each hyperedge el is made up of vl, vl+1, and other
r−2 nodes that we call v′

l. The distance between y and any vl is l−1, while the distance
between y and v′

l is l. The root is at distance d − l − 1 from vl and any v′
l, and there is a

subhypertree having vl or any v′
l as root and height l. Let Tl be the subhypertree having

root vl, and all the descendant nodes without the ones in P . Let also T ′
l be one of the

r − 2 hypertrees with one of the nodes v′
l as root. Both Tl and any T ′

l have height l. The
number of hyperedges El,t at level t of Tl is (Δ − 2)(Δ − 1)t−1(r − 1)t−1, while the
number of hyperedges E′

l,t at level t of any T ′
l is (Δ − 1)t(r − 1)t−1.

All the hyperedges that are at distance h ≥ 1 from y are eh, plus Eh,1 ∪ Eh−1,2 ∪
. . . ∪ E	(h+1)/2
,�(h+1)/2�, plus E′

h−1,1 ∪ E′
h−2,2 ∪ . . . ∪ E′

	h/2
,�h/2� for the (r − 2)
hypertrees T ′

l . When h = 0, there is only the hyperedge e0 at distance h from y.
Therefore, using the already defined p and q, the number of hyperedges at distance
h ≥ 1 from y is 1 + Δ (Δ−1)p(r−1)p−1

(Δ−1)(r−1)−1 + r (Δ−1)q(r−1)q−1
(Δ−1)(r−1)−1 .



Generalized Distance Polymatrix Games 37

We can conclude that the utility that a leftmost leaf y gets from the deviation

uy(σ
Z→ σ∗) is β · px(σ), which is equal to β · uy(σ), so y does not profit from

the deviation, and σ is a (β, k)-equilibrium. 
�

Lemma 9. ux(σ∗) = β
∑

h∈[d] αhΔ(Δ − 1)h−1(r − 1)h−1 for any x ∈ V .

From Lemma 8 and 9, we obtain the lower bound for PoAβ
k(G), which concludes

the proof of the theorem. 
�

Remark 2. Please note that, if all the distance-factors are not lower than a constant
c > 0, from Theorem 7 we can conclude that the (β, k)-price of anarchy of Δ-bounded-
degree GDPG, as a function of d, can grow as Ω(β(Δ − 1)d/2(r − 1)d/2).

8 Conclusion and Future Works

This study leaves some open problems, such as (i) closing the gap between the upper
and the lower bound on the Price of Anarchy for bounded-degree hypergraphs; (ii)
extending the results on the Price of Stability to values of β greater than one; and (iii)
computing a lower bound on the Price of Stability for bounded-degree hypergraphs.
Concerning the latter problem, we are confident that it is possible to use the same modus
operandi described in Sect. 6.

Another relevant open problem we consider worth investigating concerns finding
particular classes of games which guarantee the existence of equilibria. We believe the
class of games with a hypertree as underlying hypergraph are a good candidate. About
the existence of β-approximate k-strong equilibria, we conjecture that the condition
stated in Theorem 1 is necessary, and can be proven with some ad-hoc game instances.

Another interesting research direction is studying our model with respect to differ-
ent social welfare functions, e.g., using the Lp-norm for the different values of p.
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