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Abstract. A crossing-free morph is a continuous deformation between
two graph drawings that preserves straight-line pairwise noncrossing
edges. Motivated by applications in 3D morphing problems, we initi-
ate the study of morphing graph drawings in the plane in the presence
of stationary point obstacles, which need to be avoided throughout the
deformation. As our main result, we prove that it is NP-hard to decide
whether such an obstacle-avoiding 2D morph between two given draw-
ings of the same graph exists. This is in sharp contrast to the classical
case without obstacles, where there is an efficiently verifiable (necessary
and sufficient) criterion for the existence of a morph.

Keywords: Graph morphing · Point obstacles · NP-hard · Planar
graph · Straight-line drawing

1 Introduction

In the field of Graph Drawing, a (crossing-free) morph between two straight-
line drawings Γ1 and Γ2 of the same graph is a continuous deformation that
transforms Γ1 into Γ2 while preserving straight-line pairwise noncrossing edges
at all times. Morphing (beyond the above, strict definition in Graph Drawing)
has applications in animation and computer graphics [12]. In this paper, we
initiate the study of morphing graph drawings in the presence of stationary
point obstacles, which need to be avoided throughout the motion.

Related Work. An obvious necessary condition for the existence of a crossing-
free morph in R

2 between two straight-line drawings Γ1 and Γ2 is that these
drawings represent the same plane graph (i.e., a planar graph equipped with fixed
combinatorial embedding and a distinguished outer face). It has been established
long ago [7,16] that this (efficiently verifiable) criterion is also sufficient, i.e., a
crossing-free morph in R

2 between two straight-line drawings of the same plane
graph always exists.
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More recent work [2,14] focuses on the efficient computation of such morphs.
In particular, this involves producing a discrete description of the continuous
motion. Typically, this is done in form of so-called piecewise linear morphs. In
a linear morph, each vertex moves along a straight-line segment at a constant
speed (which depends on the length of the segment) such that it arrives at its
final destination at the end of the morph. The (unique) linear morph between Γ1

and Γ2 is denoted by 〈Γ1, Γ2〉. A piecewise linear morph is created by concatenat-
ing several linear morphs, which are referred to as (morphing) steps. A piecewise
linear morph consisting of k steps can be encoded as a sequence of k + 1 draw-
ings. Alamdari et al. [2] showed that two straight-line drawings of the same
n-vertex plane graph always admit a crossing-free piecewise linear morph in R

2

with O(n) steps, which is best-possible. Their proof is constructive and corre-
sponds to an O(n3)-time algorithm, which was later sped up to O(n2 log n) time
by Klemz [14].

Other works are concerned with finding crossing-free morphs in R
2 between

two given drawings while preserving certain additional properties, such as con-
vexity [3], upward-planarity [10], or edge lengths1 [9], or with constructing
crossing-free morphs in R

2 that transform a given drawing to achieve cer-
tain properties, such as vertex visibilities [1] or convexity [13], while being in
some sense monotonic, in order to preserve the so-called “mental map” [15]
of the viewer.

Quite recent works [4–6] are concerned with transforming two drawings Γ1, Γ2

in the plane into each other by means of crossing-free morphs in the space R
3.

Such 2D–3D–2D morphs are always possible [6]—even if Γ1 and Γ2 have different
combinatorial embeddings—and they sometimes require fewer morphing steps
than morphs that are restricted to the plane R

2 [4,5]. Due to connections to the
notoriously open Unknot problem, 3D–3D–3D morphs are not well understood
and have, so far, only been considered for trees [4,5].

Our Model and Motivation. In this paper, we introduce and study a natural
variant of the 2-dimensional morphing problem: given two crossing-free straight-
line drawings Γ1 and Γ2 as well as a finite set of points P in R

2, called obstacles,
construct (or decide whether there exists) a crossing-free morph in R

2 between Γ1

and Γ2 that avoids P , i.e., at no point in time throughout the deformation, the
drawing is allowed to intersect any of the obstacles, which remain stationary. In
particular, this problem naturally arises when constructing 2D–3D–2D morphs,
where it is tempting to apply strategies for the classical 2-dimensional case on a
subdrawing induced by the subset of the vertices contained in a plane π. Note
that every edge between vertices on different sides of π intersects π in a point,
which then acts as an obstacle for the 2-dimensional morph.

Contribution and Organization. We begin by stating some basic observations and
preliminary results in Sect. 2. In particular, we observe that the necessary and
sufficient condition for the classical case without obstacles is no longer sufficient

1 In the fixed edge length scenario, the drawings are also known as linkages.
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for our model (even when interpreting the obstacles as isolated vertices) and
we present a stronger necessary condition (we say that the obstacles need to be
“compatible” with the drawings), which is, however, still not sufficient. In fact,
as our main result, we show that even if our condition is satisfied, it is NP-hard
to decide whether an obstacle-avoiding morph exists (see Sect. 3):

Theorem 1. Given a plane graph G, a set of obstacles P , and two crossing-free
straight-line drawings Γ and Γ ′ in R

2, it is NP-hard to decide whether there
exists an obstacle-avoiding crossing-free morph in R

2 between Γ and Γ ′. The
problem remains NP-hard when restricted to the case where G is connected, the
drawings Γ and Γ ′ are identical except for the positions of four vertices, and the
obstacles P are compatible with Γ and Γ ′. (These statements hold regardless of
whether the morph is required to be piecewise linear or not.)

We remark that it is an essential part of the challenge to keep the edges
straight-line during the morph – when dropping this requirement (i.e., when
allowing edges to be deformed into arbitrary crossing-free curves or polylines),
the problem can be solved efficiently [8]. The proof of Theorem 1 (by reduction
from 3-SAT) is somewhat unusual from a Graph Drawing perspective: given a
Boolean formula Φ, we describe the construction of a set of obstacles P and two
(almost identical) drawings Γ1, Γ2 that exist irrespectively of the satisfiability
of Φ, which instead corresponds to the existence of the obstacle-avoiding morph
between the two drawings. In particular, we had to overcome the somewhat
intricate challenge of designing gadgets that behave in a synchronous way. We
conclude by discussing several open questions in Sect. 4. Claims marked with a
clickable “�” are proved in the full version of this article [11].

Conventions. In the remainder of the paper, we consider only morphs in the
plane R

2. We write “drawing” as a short-hand for “straight-line drawing in the
plane R

2” and, similarly, we write “(planar) morph” rather than “(crossing-free)
morph in R

2”. For any positive integer n, we define [n] = {1, 2, . . . , n}.

2 Preliminaries and Basic Observations

Let Γ1 and Γ2 be two drawings of the same plane graph G, and let P be a set of
obstacles. We say that Γ1 and Γ2 are blocked by P if there is no planar morph
between Γ1 and Γ2 that avoids P . Moreover, Γ1 and Γ2 are blockable if there
exists a set of obstacles that blocks them. We start by observing that cycles are
necessary to block drawings.

Proposition 1 (�). Let Γ1 and Γ2 be two drawings of the same plane forest F .
Then Γ1 and Γ2 are not blockable.

Proof (sketch). We describe how to construct a morph that avoids an arbitrary
set of obstacles. Assume for now that F consists of a single tree, which we root at
an arbitrary vertex r. We construct an obstacle-avoiding planar morph from Γ1

http://arxiv.org/abs/2311.14516
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Fig. 1. The two simple closed curves Γ1 and Γ2 in (a) cannot be continuously deformed
into each other without passing over one of the obstacles and while preserving simplic-
ity. (The corresponding continuous deformation of the geodesic joining the two internal
obstacles [blue crosses] within the closed curve would transform the curve g1 into g2
while keeping the endpoints fixed and without passing over the external obstacle [red
star], which is impossible.) Consequently, the two drawings of a 4-cycle in (b) are
blocked by the set of three obstacles; it is not compatible with the two drawings.
(Color figure online)

to a drawing Γ ′
1 located in a disk that (i) is centered on the position of r in Γ1,

(ii) contains no obstacles, and (iii) whose radius is smaller than the distance
between any pair of obstacles. This can be done by “contracting” the tree along
its edges in a bottom-up fashion (i.e., starting from the leaves). We also morph Γ2

into an analogously defined drawing Γ ′
2. The drawings Γ ′

1 and Γ ′
2 can now be

translated (far enough) away from the obstacles without intersecting them so
that they can be transformed into each other by means of morphing techniques
for the classical non-obstacle case [2,7,14,16].

If F contains multiple trees, it is easy to augment Γ1 and Γ2 to drawings of
the same plane tree by inserting additional vertices and edges, thus reducing to
the case of a single tree. ��

We now turn our attention to the case when G may contain cycles. Recall that
an obvious necessary condition for the existence of planar morph between two
drawings is that they represent the same plane graph. Interpreting the obstacles
in the set P as (isolated) vertices reveals that a planar morph between Γ1 and
Γ2 that avoids P is possible only if each obstacle p ∈ P is located in the same
face in Γ1 and Γ2. However, as Fig. 1 shows, this condition is not sufficient.
We say that P is compatible with Γ1 and Γ2 if there is a continuous deformation
that transforms Γ1 into Γ2 while avoiding P and preserving pairwise noncrossing
(not necessarily straight-line) edges at all times. The compatibility of P with Γ1

and Γ2 is obviously a necessary condition for the existence of a planar obstacle-
avoiding morph. This condition can be checked efficiently [8]; note that it is
violated in Fig. 1.

Compatibility is unfortunately still not sufficient for the existence of obstacle-
avoiding morphs—even if the considered graph is just a cycle. In the following,
we study and discuss this case in more detail. Let Cn denote the simple cycle with
n vertices. Let Γ and Γ ′ be drawings of a plane Cn such that (i) Γ and Γ ′ are
distinct (as mappings of Cn to the plane), but (ii) the closed curves realizing Γ
and Γ ′ are identical, and (iii) the set of points of R2 used to represent vertices
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is the same in Γ and Γ ′. Note that there exists an offset o ∈ [n − 1] such that,
for every i ∈ [n], vertex i in Γ is at the same location as vertex i + o (modulo
n) in Γ ′. Therefore, we say that Γ ′ is a shifted version of Γ . Due to (ii), every
set of obstacles is compatible with Γ and Γ ′.

Proposition 2 (�). Let n ≥ 6 be an even integer. Then there exists a drawing Γ
of Cn such that, for every shifted version Γ ′ of Γ , the drawings Γ and Γ ′ are
blockable by seven obstacles that are compatible with Γ and Γ ′ (for an illustration,
see Fig. 2).

Fig. 2. A schematic drawing of Cn with vertices v1, . . . , vn

(here n = 14) that cannot be morphed to a shifted version
of it in a planar way while avoiding the two internal obstacles
(blue crosses) and the five external obstacles (red stars). (Color
figure online)

Fig. 3. Five obstacles
suffice to block shifted
versions of C3.

It is plausible that Proposition 2 can be strengthened: even three obstacles
seem to be sufficient for blocking two shifted drawings of an even-length cycle
(we chose to use seven obstacles to simplify the proof). In contrast, mainly due
to convexity, more obstacles are needed to block shifted drawings of C3.

Proposition 3 (�). Two drawings Γ1 and Γ2 of C3 are not blockable by four
obstacles that are compatible with Γ1 and Γ2.

Proof (sketch). We perform a case distinction on the number of obstacles that are
located in the interior of the cycle. Here, we only sketch the case with two inner
obstacles p1 = (x1, y1) and p2 = (x2, y2). Assume without loss of generality
that x1 = x2 and y1 > y2. There exists an ε > 0 such that the rectangle
R = [x1 − ε, x1 + ε]× [y2 − ε, y1 + ε] lies in the interiors of Γ1 and Γ2 and, hence,
does not contain any of the outer obstacles. Then, for any triangle Γ ∈ {Γ1, Γ2},
there is a planar morph that moves the vertices of Γ onto the boundary of R
while avoiding the line segment p1p2 and the region exterior to Γ . Finally, we
show that two triangles with these properties can always be morphed into each
other while staying in the closure of R and avoiding p1p2. ��

Our proof for (at most) two inner obstacles does not depend on the number
of outer obstacles, which implies a partially stronger statement.

We have a tight upper bound for the number of obstacles needed to block
drawings of C3; see Fig. 3.

http://arxiv.org/abs/2311.14516
http://arxiv.org/abs/2311.14516
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Proposition 4 (�). Let Γ be a drawing of C3, and let Γ ′ be a shifted version
of Γ . Then Γ and Γ ′ are blockable by five obstacles compatible with Γ and Γ ′.

We now state a sufficient condition for the existence of planar obstacles-
avoiding morphs between shifted drawings of a cycle. We call a degree-2 vertex
in a drawing free if its two incident edges lie on a common line.

Proposition 5 (�). Let Γ be a drawing of Cn, and let Γ ′ be a shifted version
of Γ . If Γ contains a free vertex, then Γ and Γ ′ are not blockable by obstacles
that are compatible with Γ and Γ ′.

Fig. 4. Two drawings of C8. If the shaded regions are densely filled with obstacles, the
drawing on the left is essentially locked in place—it cannot be morphed planarly to a
substantially different drawing without intersecting the obstacle regions. In particular,
it cannot be morphed to the drawing on the right, even though this drawing contains
two free vertices (and the obstacles are compatible with the two drawings).

Free vertices are helpful in other specific cases as well (in particular, they
play a crucial role in our NP-hardness proof), but their usefulness is limited in
general: their existence is not a sufficient condition for the existence of obstacle-
avoiding morphs even when it comes to plane cycles; see Fig. 4.

Finally, we observe that two obstacles are not enough to block two draw-
ings (with which the obstacles are compatible), regardless of the class of the
represented graph.

Proposition 6 (�). Let Γ1 and Γ2 be two drawings of the same plane graph G,
and let P be a set of obstacles that are compatible with Γ1 and Γ2. If |P | ≤ 2,
then there exists a planar morph from Γ1 to Γ2 that avoids P .

Proof (sketch). We interpret the (up to) two obstacles as isolated vertices of our
plane graph (by compatibility, each obstacle belongs to the same face in Γ1

and Γ2). By known results [2,7,14,16], there is a morph M in which Γ1 is
deformed to Γ2 without introducing crossings and without intersecting the obsta-
cles. However, since the obstacles are treated as vertices, their positions might

http://arxiv.org/abs/2311.14516
http://arxiv.org/abs/2311.14516
http://arxiv.org/abs/2311.14516
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change over time. We can transform M into the desired morph by translat-
ing, rotating, and scaling the frame of reference as time goes on to ensure that
the obstacles become fixpoints (one can think of this as moving, rotating, and
zooming the camera in a suitable fashion). ��

In view of the remark after Proposition 2, it seems that Proposition 6 is best-
possible. In particular, the proof strategy does not generalize to three obstacles
as affine transformations preserve the cyclic orientations of point triples.

3 Proof of Theorem 1

In this section, we show our main result.

Theorem 1. Given a plane graph G, a set of obstacles P , and two crossing-free
straight-line drawings Γ and Γ ′ in R

2, it is NP-hard to decide whether there
exists an obstacle-avoiding crossing-free morph in R

2 between Γ and Γ ′. The
problem remains NP-hard when restricted to the case where G is connected, the
drawings Γ and Γ ′ are identical except for the positions of four vertices, and the
obstacles P are compatible with Γ and Γ ′. (These statements hold regardless of
whether the morph is required to be piecewise linear or not.)

Proof. We reduce from the classical NP-hard problem 3-SAT. Given a Boolean
formula Φ =

∧m
i=1 ci in conjuctive normal form over variables x1, x2, . . . , xn

whose clauses c1, c2, . . . , cm consist of three literals each, we construct a plane
graph G, two planar drawings Γ and Γ ′ of G, and a set P of obstacles that
are compatible with Γ and Γ ′. We show that there exists an obstacle-avoiding
planar morph from Γ to Γ ′ if and only if Φ is satisfiable.

Fig. 5. General grid structure used in our NP-hardness reduction. Here, we use the
formula Φ = c1 ∧c2 ∧c3, where c1 = (�11 ∨�21 ∨�31) = (x2 ∨x1 ∨¬x3), c2 = (�12 ∨�22 ∨�32) =
(¬x1 ∨ x3 ∨ x2), and c3 = (�13 ∨ �23 ∨ �33) = (¬x3 ∨ ¬x2 ∨ ¬x1). There are variable
gadgets (left), clause and literal gadgets (top), split gadgets (S), crossing gadgets (C),
and a synchronization gadget (sync) spanning over all clause gadgets. The gadgets have
various states and orientations; dependencies are marked by triangular arrows.
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Overview. In our reduction, we arrange obstacles, vertices, and edges such that
we obtain a grid-like structure where we have two rows for each variable (one
for each literal of the variable) and three columns for every clause (one for each
literal in the clause); see Fig. 5. We then use several gadgets arranged within
this grid-like structure. On the left side, the two rows of a variable terminate at
a variable gadget. A variable gadget is in one of the states true, false, or unset.
On the top side, the three columns of a clause are connected via three literal
gadgets to a clause gadget. Each literal gadget and each clause gadget is in one
of the states true or false. All clause gadgets are connected by a synchronization
gadget. Within the column of each literal, we have a split gadget in one of the
two rows of the corresponding variable xi – in the upper row if the literal is
xi and in the lower row if the literal is ¬xi. In all other grid cells, we have
crossing gadgets. Every split gadget and every crossing gadget has a horizontal
orientation (left/right) and a vertical orientation (bottom/top).

We first describe the general mechanism of our reduction. Independently
of each other, every variable gadget can be morphed to reach any of its three
states. In Γ and Γ ′, all crossing and split gadgets have the orientations left
and bottom. A crossing or split gadget α can have orientation right only if the
crossing/split gadget to the left of α has orientation right, too, or if α is adjacent
to a variable gadget with state true (false) and α is in the upper (lower) row
of the corresponding variable. Moreover, a crossing gadget can have orientation
top only if the neighboring crossing/split gadget below has orientation top, too,
and a split gadget can have orientation top only if it can also have orientation
right. A literal gadget can be in the state true only if the gadget below it has
orientation top. A clause gadget is in the state true if and only if at least one
of its three literal gadgets is in the state true. Moreover, we can reach the final
drawing Γ ′, where only the synchronization gadget differs from its drawing in
Γ , if and only if all clause gadgets have state true simultaneously at some point
in time. This ensures the correctness of our construction.

We now describe and visualize the geometric realization of our gadgets.

Forbidden Areas. In each gadget, we have forbidden areas where the vertices and
edges cannot be drawn (henceforth drawn solid red). They are used to create
a system of tunnels and cavities in which the edges of our drawings are placed
and move; see, e.g., Fig. 6. We achieve this by densely filling the forbidden areas
with obstacles, which are placed on a fine grid (as explained in more detail in
the paragraph “Number and placement of obstacles” on page 12).

Variable Gadget. The variable gadget has a comparatively simple structure; see
the three red boxes on the left side of Fig. 6. It has three vertices enclosed in
a straight vertical tunnel of the forbidden area with one exit on the top right
and one exit on the bottom right. As it is a straight tunnel, the middle vertex,
which we call decision vertex, is a free (see Sect. 2 for the definition) vertex (see
the thick blue–white vertex of x3 in Fig. 6 for the arrangement in Γ and Γ ′).
We say that the variable gadget is in the state true (false) if this decision vertex
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Fig. 6. Full construction for the instance Φ = (x2 ∨x1 ∨¬x3)∧ (¬x1 ∨x3 ∨x2)∧ (¬x3 ∨
¬x2 ∨ ¬x1). Gadgets with orientation right/top/true use thicker strokes.

is moved to the top (bottom) position, and it is in the state unset otherwise.
Consequently, we can move the top (bottom) vertex out of the tunnel if and
only if we are in the state true (false). This, in turn, yields a free vertex for the
adjacent row of crossing and split gadgets, which we describe next.

Split Gadget. A split gadget consists of a central vertex c of degree 3 together
with paths to the left, right, and top; see Fig. 7. They are enclosed in a system
of tunnels formed by the forbidden area. Figure 7a shows a split gadget σ in the
base state as it appears in Γ and Γ ′. If the crossing/split/variable gadget to
the left of σ, which shares the vertex l with σ, has a free2 vertex, then l can be
moved to the next corner of the tunnel. Then, in turn, c can be moved to the
bottom right corner of the white (obstacle-free) triangle in σ (see Fig. 7b), and
the two other neighbors of c can be pushed one position to the right and one
position up. In this case we say that the horizontal (vertical) orientation of σ is
right (top). Otherwise, the horizontal (vertical) orientation of σ is left (bottom).

Crossing Gadget. A crossing gadget has a similar structure as a split gadget.
However, we now have a central vertex c′ of degree 4 with paths to the neigh-
2 Here, this means that it is a crossing/split gadget that is oriented to the right or it is

a variable gadget in its top row with state true or in its bottom row with state false.
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Fig. 7. Split gadget: from a horizontal row transporting a truth value, we “copy” the
same truth value up to a vertical column.

Fig. 8. Crossing gadget: we transport truth values horizontally and vertically without
influencing each other. The four possible combinations of orientations are illustrated.

boring gadgets to the left, right, top, and bottom. In the center of the crossing
gadget χ in Fig. 8, there is a white (obstacle-free) square. In Γ and Γ ′, c′ is
placed in the top left corner of this square (see Fig. 8a). This is the base state
of χ. If the gadget on the left of χ has a free vertex, we can push the adjacent
vertices to the next corners of the tunnel such that c′ can move to the bottom
side of the square (see Figs. 8b and 8d). Only then, we can push the vertices of
the path leaving the gadget on the right side to the next corner of the tunnel. In
this case we say that the horizontal orientation of the crossing gadget is right;
otherwise it is left. Symmetrically, if the gadget below χ has a free vertex, we can
move c′ to the right side of the square (see Figs. 8c and 8d). Only then we can
push the vertices of the path leaving χ through the top side to the next corner of
the tunnel. In this case we say that the vertical orientation of the crossing gad-
get is top; otherwise it is bottom. Observe that the states of the gadgets on the
left and below χ independently determine the horizontal and vertical orientation
of χ. This property assures that we can transport information along routes that
cross each other, but do not influence each other.

Literal Gadget. Figure 9 shows a literal gadget λ in its base state. It consists of
five vertices, one of which, r, is shared with the gadget β below; see Fig. 9. Only
if the vertical orientation of β is top, vertex r can move to the original position
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Fig. 9. Literal gadget: Depending on the crossing or split gadget below, it can be in
two different states. Only in the state true, vertex t does not pop out of the gadget.

of s and s can move up. This in turn allows vertex t to move into the interior
of λ. In this case, we say that λ has the state true; otherwise it has the state
false. If a cycle in Γ contains obstacles, we call the cycle an anchor. Observe that
the anchor 〈t, w, y〉 restricts the area where we can move t.

Clause Gadget. Each clause ci (i ∈ [m]) is represented by a clause gadget, which
consists of a path of length 9 whose endpoints are anchored by two 3-cycles; see
Fig. 10. In the base situation occurring in Γ and Γ ′, we have exactly one free
vertex (denoted by y), which is at the bottom of a large rectangular obstacle-free
region, which is also part of the synchronization gadget. Observe that, within
this area, we cannot move y (up to a tiny bit) to the left or right due to its
neighbors lying at (essentially) fixed positions (see Fig. 10a).

However, if one of the incident literal gadgets is in the state true, we get a
second free vertex, due to which we can move z, which is a neighbor of y, onto
the base position of y (see Fig. 10b). Now we can move y arbitrarily far to the
right within this obstacle-free region (unless y is blocked by the edges of another
clause gadget). Only when this is done for all clause gadgets simultaneously, the
synchronization gadget (see below) can be morphed as desired. Thus, we say
that a clause gadget is in the state true if at least one of its literal gadgets is in
the state true; otherwise it is in the state false.

Synchronization Gadget. The synchronization gadget is a 4-cycle 〈v1, v2, v3, v4〉;
see Fig. 6. In the base situation occurring in Γ , this cycle is drawn as an isosceles
trapezoid T . In Γ ′, the 4-cycle is drawn as a shifted version (see Sect. 2 for the
definition) of T . All sides of T except for the short parallel side are fixed by
tunnels of the forbidden area. In particular, v1 and v4 can only be moved in an
ε-region (for some small ε > 0) around their initial position, while v2 and v3
can potentially be moved to the right into the large obstacle-free rectangular
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Fig. 10. Clause gadget together with three literal gadgets: If at least one of the literal
gadgets is in the state true, the clause gadget is also in the state true. The obstacle-
free region shared with the synchronization gadget is depicted in hatched green (Color
figure online).

area (that is shared with all clause gadgets) within a small corridor (see the
blue strips in Fig. 6). These corridors extend the legs of T , which have a specific
angle depending on the number of clauses m such that the corridors intersect
at a region I to the right side of all clause gadgets. Note that we cannot simply
“rotate” T , since each of the ε-regions around the positions of v1 and v4 in Γ
need to contain at least one vertex at any time. To reach a shifted version, there
needs to be an intermediate drawing that has a third vertex within the tunnel
between these ε-regions. Therefore, only one vertex remains to close the 4-cycle
on the right side. That vertex needs to be placed inside I. Hence, we can reach
the shifted version if and only if all of the clause gadgets are in the state true:
in this case, for each clause gadget, we can move its vertex y into I so that
the edges incident to y do not intersect the triangle 	v1Ileftv4, where Ileft is the
leftmost point of I. Thus, we can place v2 onto Ileft to make v3 a free vertex and,
therefore, reach the shifted drawing of the 4-cycle (cf. Proposition 5). In contrast,
if a clause gadget is in the state false, at least one of the edges incident to its
vertex y intersects 	v1Ileftv4 and, thus, v2 and v3 cannot reach the corridors of
each other.

Correctness. In summary, if Φ admits a satisfying truth assignment, we can
describe a (piecewise linear) morph from Γ to Γ ′ by moving the decision ver-
tices in the variable gadgets according to the truth assignment, which allows to
transport these truth values via the split and crossing gadgets to the literal and
the clause gadgets. As all clause gadgets can reach the state true at the same
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time, we can morph the drawing of the 4-cycle in the synchronization gadget to
its shifted version and then move all other vertices back to their original position.

For the other direction, if a morph from Γ to Γ ′ exists, then we know by
our construction that at some point, all clause gadgets were in the state true
simultaneously (as this is necessary to morph the drawing of the 4-cycle in the
synchronization gadget to its shifted version), which means the variable gadgets
represent at the same time a satisfying truth assignment for Φ.

Number and Placement of Obstacles. While the grid-like arrangement of our
gadgets depends on Φ, the design of the variable/clause/literal/crossing/split
gadgets does not. Therefore, each of these gadgets uses only O(1) obstacles, the
overall number of obstacles then is O(nm), and the encoding of their coordinates
requires only polynomially many bits in total. Similarly, the synchronization
gadget also uses only O(1) obstacles, which, for the most part, can be placed on
the grid that is also used by the remaining gadget types. As an exception, two
obstacles (in the top-right and bottom-right corner of the obstacles area interior
to the 4-cycle) need to be placed on a refined grid to ensure that the area I lies to
the right of all clause gadgets. Since vertices v1 and v2 have constant (horizontal)
distance, we use an obstacle that lies O(1/m) units below the highest possible
position of v1 and on the same x-coordinate as v2 in Γ in order to bound the
slope of the v1v2-tunnel from below. We bound the slope of the v3v4-tunnel
symmetrically from above. As a result, the area I lies Ω(m) units to the right
of the vertical line segment v2v3. Since the width of the whole construction is
O(m), this suffices.

Thus, the encoding of the coordinates of the involved obstacles and the coor-
dinates of the drawing of the 4-cycle requires only polynomially many bits.

Connectivity. So far, the graph in our reduction has Ω(m) connected compo-
nents: a large connected component comprising all variable, split, crossing and
literal gadgets, a connected component for all clause gadgets, as well as another
connected component for the synchronization gadget. We can merge these com-
ponents by adding edges without influencing the behavior of our gadgets: We
add the edges v2y1, y1y2, . . . , ym−1ym together with a path from ym to the large
connected component of the other gadgets (e.g., in Fig. 6 from y3 to q). ��

4 Open Problems

1. In general, the considered decision problem is NP-hard (Theorem 1), but it
can be solved efficiently for forests (Proposition 1). Are there other meaningful
graph classes where this is the case? In particular, what about cycles or
triangulations? It is conceivable that the latter case is actually easier since
the placement of obstacles that are compatible with the two given drawings
is quite limited. Regarding cycles, we emphasize that the existence of a free
vertex is not a sufficient condition for the existence of a morph (cf. Fig. 4).

2. Does the problem lie in NP? Is it ∃R-hard?
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3. Does the problem become easier if there are only constantly many obstacles?
4. The drawings Γ and Γ ′ produced by our reduction are identical except for the

position of four vertices. It seems quite plausible that our construction can
be modified so that only three vertices change positions. Does the problem
become easier when only up to two vertices may change positions?

5. It is easy to observe that if our reduction is applied to a satisfiable formula Φ
with n variables and m clauses, there is a piecewise linear obstacle-avoiding
morph between the produced drawings Γ and Γ ′ with Θ(n+m) steps, which is
also necessary. Note that this number is not independent from the output size
of the reduction. This motivates the following family of questions. Let k be
a fixed arbitrary constant. Given two planar straight-line drawings Γ and Γ ′

of the same plane graph and a set of obstacles compatible with Γ and Γ ′,
decide whether there exists a piecewise linear obstacle-avoiding morph from
Γ to Γ ′ with at most k steps. For which values of k can this decision problem
be answered efficiently?

6. Given two drawings of the same plane graph, how many compatible obstacles
are necessary and sufficient to block them? Can this be computed efficiently?
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