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Abstract. We lift the notion of Dyck language from words to 2-dimensional
arrays of symbols, i.e., pictures. We define the Dyck crossword language DCk

as the row-column combination of Dyck word languages, which prescribes that
each column and row is a Dyck word over an alphabet of size 4k. The standard
relation between matching parentheses is represented in DCk by an edge of the
matching graph situated on the picture array. Such edges form a circuit, of path
length multiple of four, where row and column matches alternate. Length-four
circuits are rectangular patterns, while longer ones exhibit a large variety of pat-
terns.DCk languages are not recognizable by the Tiling Systems of Giammarresi
and Restivo. DCk contains pictures where circuits of unbounded length occur,
and where any Dyck word occurs in a row or in a column. We prove that the
only Hamiltonian circuits of the matching graph of DCk have length four. A
proper subset of DCk, called quaternate, includes only the rectangular patterns;
we define a proper subset of quaternate pictures that (unlike the general ones)
preserves a characteristic property of Dyck words: availability of a cancellation
rule based on a geometrical partial order relation between rectangular circuits.
Open problems are mentioned.

1 Introduction

The Dyck language is a fundamental concept in formal language theory. Its alphabet
{a1, . . . , ak, b1, . . . , bk}, for any k≥1, is associated with the pairs [a1, b1], . . . , [ak, bk].
The language is the set of all words that can be reduced to the empty word by cancella-
tions of two coupled letters: aibi → ε. Dyck words represent the last-in-first-out order
of events, a fundamental concept for theoretical computer science and especially for
formal language and automata theory, where the Chomsky-Schützenberger theorem [1]
states that any context-free language is the homomorphic image of the intersection of a
Dyck language and a regular one.

Motivated by our interest in the theory of two-dimensional (2D) or picture lan-
guages (from now on simply “languages”), we investigate the possibility to transport the
Dyck concept from one dimension to 2D. When moving from 1D to 2D, most formal
language concepts and relationships drastically change. In particular, in 2D the Chom-
sky hierarchy of languages is blurred because the notions of regularity and context-
freeness cannot be formulated for pictures without giving up some characteristic prop-
erties that hold for words. In fact, it is known [7] that the three equivalent definitions of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 139–153, 2024.
https://doi.org/10.1007/978-3-031-52113-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_10&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_10


140 S. Crespi Reghizzi et al.

regular languages by means of finite-state recognizers, by regular expressions, and by
the homomorphism of local languages, produce in 2D three distinct language families.
The third one gives the family of tiling system recognizable languages (REC) [7], that
is perhaps the best known definition for regularity in 2D.

The situation is less satisfactory for context-free languages, of which Dyck lan-
guages are a notable example, where a transposition in 2D remains problematic. None
of the existing proposals of “context-free” picture grammars ([3,5,9–12], a survey is
[2]) match the expressiveness and richness of formal properties of 1D context-free
grammars. In particular, we are not aware of any existing definitions of 2D Dyck lan-
guages,1 and we hope that the present one will open a new direction of research on
(picture) languages.

It is time to describe our proposal. We consider the picture languages obtained by
the row-column combination, also known as crossword, of two Dyck word languages
over the same alphabet. In such a combination, all rows and all columns are Dyck
words. Crosswords have been studied for regular languages (e.g., in [6,8]) but not, to
our knowledge, for context-free ones. In particular it is known [8] that the REC family
coincides with the projection of the crosswords of two regular languages.

The family of Dyck crosswords over an alphabet of size 4k, denoted by DCk, k ≥1,
represents, for reasons later explained, a rather general case. It includes a spectrum of
pictures where a surprising variety of complex patterns may occur. To analyze them,
we introduce the matching graph of a picture, where the array cells are the nodes and
the matching relation defines the edges. The graph is partitioned into simple (disjoint)
circuits, made by alternating horizontal and vertical edges, representing a Dyck match
on a row and on a column. A circuit label is a word of length multiple of 4. The edges of
a circuit path may cross each other–the case of zero crossings is the length 4 circuit or
rectangle. Pictures containing just such rectangular circuits may present quite evident
geometrical analogies with the Dyck word case.

We prove that DCk is not in REC and we positively answer the question whether
each Dyck word can occur in DCk pictures. We present some interesting types of Dyck
crosswords that contain multiple circuits including complex ones, but much remains
to be understood about the general patterns that are possible and the trade-off between
circuit length and the number of circuits that cover a picture. We show that the only
pictures covered by one circuit (i.e., Hamiltonian) have size 2 × 2; furthermore, we
prove that for any h ≥ 0 there exist pictures in DCk featuring a circuit of length 4 + 8h,
i.e., the circuit length is unbounded.

As said, the structure of pictures, called quaternate, such that their circuits are rect-
angular, is intuitively similar to the structure of Dyck words since the vertexes of a
rectangle delimit a subpicture much as two coupled parentheses delimit a substring. To
formalize such an intuition, we introduce a further subset of Dyck crosswords charac-
terized by a variant of the Dyck cancellation rule. First, we transform cancellation into
a neutralization rule that maps the four vertex letters of a rectangle on a new neutral

1 We just know of a particular example, the Chinese box language in [3], that intuitively consists
of embedded or concatenated rectangles, and was proposed to illustrate the expressiveness of
the grammars there introduced. But that language is not a satisfactory proposal, since it is in
the family REC, hence “regular” rather than “context-free”.
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(i.e., non-coupled) letter N . Then a quaternate picture is neutralizable if it reduces to a
picture over alphabet {N} by applying neutralization steps. We prove that neutralizable
pictures are a subset of quaternate ones. The analogy between Dyck words and neu-
tralizable pictures is thus substantiated by the fact that both use neutralization rules for
recognition, but there is a difference. The partial order of neutralization is a tree order
for words, while for pictures it is a directed acyclic graph that represents the geometric
relation of partial containment between rectangles.

Section 2 lists basic concepts of picture languages and Dyck word languages.
Section 3 introduces the DCk languages, exemplifies the variety of circuits they may
contain, proves formal properties, and defines the quaternate subclass. Section 4 studies
the neutralizable case. Section 5 mentions open problems.

2 Preliminaries

All the alphabets considered are finite. The concepts and notations for picture languages
follow mostly [7]. We assume some familiarity with the basic theory of the family REC
of tiling system languages, defined as the projection of a local 2D language; the relevant
properties of REC will be reminded when needed. A picture is a rectangular array of
letters over an alphabet. The set of all non-empty pictures over Σ is denoted by Σ++.

A domain d of a picture p is a quadruple (i, j, i′, j′), with 1 ≤ i ≤ i′ ≤ |p|row, and
1 ≤ j ≤ j′

≤ |p|col, where |p|row and |p|col denote the number of rows and columns,
respectively. The subpicture of p with domain d = (i, j, i′, j′), denoted by subp(p, d)
is the (rectangular) portion of p defined by the top-left coordinates (i, j) and by the
bottom-right coordinates (i′, j′).

Let p, q ∈Σ++. The horizontal concatenation of p and q is denoted as p⦶ q and it is
defined when |p|row= |q|row. Similarly, the vertical concatenation p⊖q is defined when
|p|col = |q|col. We also use the power operations p⊖k and p⦶k, k ≥ 1, their closures p⊖+,
p⦶+ and the closure under both concatenations p⊖+,⦶+; concatenations and closures are
extended to languages in the obvious way.

The notation Nm,n, where N is a symbol and m,n > 0, stands for a homogeneous
picture in N++ of size m,n. For later convenience, we extend this notation to the case
where either m or n are 0, to introduce identity elements for vertical and horizontal
concatenations: given a picture p of size (m,n), by definition p⦶Nm,0

=Nm,0
⦶ p = p

and p ⊖N0,n
=N0,n

⊖ p = p.

Dyck Alphabet and Language. The definition and properties of Dyck word languages
are basic concepts in formal language theory. Let Γk, k≥1, be an alphabet of cardinality
2k. Γk is called a Dyck alphabet if it is associated with a partition into two sets Γ ′, Γ ′′

of cardinality k and with a one-to-one total mapping, called coupling, from Γ ′ into Γ ′′.
If the pair [a, b] is in the coupling, a ∈ Γ ′, b ∈ Γ ′′, then it is called coupled pair and the
coupled letters a, b are called, respectively, open and closed. The Dyck language Dk

over alphabet Γk is the set of words congruent to ε, via the cancellation rule aibi → ε
that erases two adjacent coupled letters. A pair of coupled letters occurring in a word is
called matching if it is erased by the same cancellation rule application. Notice that the
number of letters between the two letters of a matching pair is always even.



142 S. Crespi Reghizzi et al.

3 Row-Column Combination of Dyck Languages

In this section we define the languages, called simple Dyck Crosswords (DC), such
that their pictures have Dyck words in rows and in columns. They may be viewed as
analogous in 2D of Dyck 1D languages. Following [7] we introduce the row-column
combination operation that takes two word languages and produces a picture language.

Definition 1 (row-column combination a.k.a. crossword). Let S′, S′′
⊆ Σ∗ be two

word languages, resp. called row and column component languages. The row-column
combination or crossword of S′ and S′′ is the language L such that a picture p ∈ Σ++

belongs to L if, and only if, the words corresponding to each row (in left-to-right order)
and to each column (in top-down order) of p belong to S′ and S′′, respectively.

The crossword of regular languages has received attention in the past since its alphabetic
projection coincide with the REC family [7]; some complexity issues for this case are
recently addressed in [6] where the crosswords are called “regex crosswords”.

Remark 1. Given two regular languages S′, S′′, it is undecidable to establish whether
their crossword is empty. This implies that in general there are crosswords that do not
saturate their components, i.e., such that the set of all rows (or the set of all columns)
occurring in pictures of the crossword is a proper subset of the row component language
(or of the column component language).

We investigate the properties of the crossword of a fundamental type of context-free,
non-regular languages, the Dyck ones. First, we discuss the alphabet size and couplings.

Theorem 1 (Alphabet size of crosswords of Dyck languages). Let D′,D′′ be two
Dyck languages over the same alphabet Δ (with possibly distinct couplings over Δ).

i) If Δ has fewer than four letters, then the crossword of D′,D′′ is empty.
ii) If Δ has four letters, then (up to isomorphism) there is one and only one coupling

for D′ and for D′′ such that the crossword of D′,D′′ is not empty.
iii) If the number of letters of Δ is a multiple of four, then there is a coupling for D′

and for D′′ such that the crossword of D′,D′′ is not empty.

Proof. Part (i): a Dyck alphabet has an even number of letters, hence the only relevant
case is the binary alphabet, e.g., {a, b}. If the coupling for the row language is, say,
[a, b], then [a, b] or [b, a] is the coupling for the columns. Given a picture with an occur-
rence of a, say, in the leftmost column, a letter b must occur in the same column, which
would require a coupling [b, a] for rows, a contradiction.
Part (ii): let {a, b, c, d} be a Dyck alphabet of four letters. As in Part (i), in the top
left corner of any picture there is a letter, say, a, which is an open letter for both rows
and columns. Hence, the row language has a coupled pair, say, [a, b] and the column
language has a coupled pair, say, [a, c]–we proved above that the couplings [a, b] or
[b, a] for columns would lead to an empty language. The letter b is thus on the first row,
hence it is an open letter for the column language, therefore the latter must include the
coupled pair [b, d] and similarly the row language must include the coupled pair [c, d]:
there is no other letter left and any other choice than d for the closed letter in either case
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would again lead to the empty language. The corresponding crossword is not empty

since, among others, it includes all pictures of the form:

(
a b
c d

)
⦶+,⊖+

.

Part (iii): The cardinality of Δ is 4k, for some k ≥ 1. It is enough to partition Δ in k
subsets of four elements and then for each subset use the same coupling of Part (ii). ��
In particular, the alphabet used in the proof of Part (ii) of Theorem 1 can be denoted as
Δ1 = {a, b, c, d}, with the coupling {[a, b][c, d]} for the rows and {[a, c][b, d]} for the
columns. The corresponding (unique) crossword is denoted as DC1. A simple example
of a picture in DC1 is in Fig. 1.

We now generalize the definition of DC1 to alphabets of any cardinality multiple of
4 (as in the proof of Part (iii) of Theorem 1).

Definition 2 (Dyck crossword alphabet and language). The Dyck crossword alpha-
bet Δk is a set of quadruplets, namely {ai, bi, ci, di | 1 ≤ i ≤ k}, together with the
following couplings of the Dyck row alphabet ΔRow

k for the row component language
DRow

k , and of the column alphabet ΔCol
k for the column component language DCol

k :{
for ΔRow

k : {[ai, bi] | i ≤ 1 ≤ k} ∪ {[ci, di] | 1 ≤ i ≤ k}
for ΔCol

k : {[ai, ci] | i ≤ 1 ≤ k} ∪ {[bi, di] | 1 ≤ i ≤ k} . (1)

The simple2 Dyck crossword DCk is the row-column combination of DRow
k and DCol

k .

For brevity, we later drop “simple” when referring to Dyck crosswords.
It is easy to notice that, for every k≥1, the language DCk is closed under horizontal

and vertical concatenation and their closures, and that for every n,m ≥ 1 there exist
pictures of DCk of size (2n, 2m).

We prove that DCk is not recognizable by a tiling system, hence it is not in REC.

Theorem 2 (Comparison with REC). For every k ≥ 1, the language DCk is not in
the REC family.

Proof. By contradiction, assume that DCk is in REC. Without loss of generality, we

consider only the case k = 1. Consider the following picture p in DC1:
a b
c d

. From

closure properties of REC, the language p⦶+ is in REC, hence also the language:

R =
(
a⦶+ ⦶ b⦶+

)
⊖

(
(a ⊖ c) ⦶ p⦶+ ⦶ (b ⊖ d)

)
⊖

(
c⦶+ ⦶ d⦶+

)
.

A picture in R has a+b+ in the top row and c+d+ in the bottom row. Let T =DC1∩R⊖+.
By closure properties of REC, both T and T⊖+ are in REC. The first row of every
picture in T⊖+ has the form anbn, since it is the intersection of Dyck word language
over {a, b}with the regular language a+b+. By applying the Horizontal Iteration Lemma
of [7] (Lemma 9.1) to T⊖+, there exists a (suitably large) picture t in T⊖+ which can
be written as the horizontal concatenation of the three (non empty) pictures x, q, y, i.e.,
t = x ⦶ q ⦶ y, such that x ⦶ qi⦶

⦶ y is also in T⊖+, thus contradicting the fact that the
top row of the pictures in T⊖+ must have the form anbn. ��
2 More general definitions of Dyck crosswords are possible if the component languages have
different alphabets.
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A question, related to Remark 1, to be positively answered, is whether the row
and column languages of DCk, respectively, saturate the row and column components
DRow

k ,DCol
k . Let P ⊆ Δ++ be a language over an alphabet Δ; the row language of P

is: ROW(P ) = {w ∈Δ+ | there exist p ∈P, p′, p′′
∈Δ++ such that p = p′

⊖w⊖ p′′}. The
column language of P , COL(P ), is analogously defined.

Theorem 3 (Saturation of components). ROW(DCk) =DRow
k , COL(DCk) =DCol

k .

Proof. It is enough to prove that DRow
k ⊆ ROW(DCk), since the other inclusion is

obvious and the case for columns is symmetrical. Without loss of generality, we con-
sider only the case k = 1. We prove by induction on n ≥ 2, that for every word
w ∈ DRow

1 of length n there exists a picture p ∈ DC1 of the form w1 ⊖ w2 ⊖ w ⊖ w3

for w1, w2, w3 ∈ DRow
1 . There are two base cases, the words ab and cd. The word ab

is (also) the third row in the DC1 picture ab ⊖ cd ⊖ ab ⊖ cd, while cd is (also) the
third row in the DC1 picture ab ⊖ ab ⊖ cd ⊖ cd. The induction step has three cases: a
word w ∈DRow

1 of length n > 2 has the form w′w′′, or the form aw′b or the form cw′d,
for some w′, w′′

∈ DRow
1 of length less than n. Let p′, p′′ be the pictures verifying the

induction hypothesis for w′ and w′′, respectively. The case of concatenation w′w′′ is
obvious (just consider the picture p′

⦶ p′′). The case aw′b can be solved by considering
the picture (a ⊖ c ⊖ a ⊖ c) ⦶ p′

⦶ (b ⊖ d ⊖ b ⊖ d), which is in DC1. Similarly, for the
case cw′d just consider the DC1 picture (a ⊖ a ⊖ c ⊖ c) ⦶ p′

⦶ (b ⊖ b ⊖ d ⊖ d). ��

3.1 Matching-Graph Circuits

Fig. 1. (Left) A DC1 picture whose cells are partitioned into 4 quadruples of matching sym-
bols, identified by the same node size (color). (Middle) An alternative visualization by a graph
using edges that connect matching symbols (see Definition 3). (Right) The use of corner symbols
instead of letters highlights the row and column couplings of rectangle vertexes. (Color figure
online)

Indeed, some interesting and surprising patterns may occur in DCk pictures. The sim-
plest patterns are found in pictures that are partitioned into rectangular circuits connect-
ing four elements, see, e.g., Fig. 1, middle, where an edge connects two symbols on the
same row (or column) which match in the row (column) Dyck word. Notice that the
graph made by the edges contains four disjoint circuits of length four, called rectangles
for brevity. Three of the circuits are nested inside the outermost one.

We formally define the graph, situated on the picture grid, made by such circuits.
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Definition 3 (Matching graph). The matching graph associated with a picture p ∈
DCk, of size (m,n), is a pair (V,E) where the set V of nodes is the set {1, . . . n} ×
{1 . . . m} with the obvious labeling over Dk, and the set E of edges is partitioned in
two sets of row and column edges defined as follows, for all 1 ≤ i ≤ n, 1 ≤ j ≤m:

– for all pairs of matching letters pi,j , pi,j′ in ΔRow
k , with j < j′

≤m, there is a row
(horizontal) edge connecting (i, j) and (i, j′),

– for all pairs of matching letters pi,j , pi′,j in ΔCol
k , with i < i′ ≤ n, there is a column

(vertical) edge connecting (i, j) and (i′, j).

Therefore, there is a horizontal edge connecting two matching letters ai, bi or ci, di that
occur in the same row; analogously, there is a vertical edge connecting two matching
letters ai, ci or bi, di, that occur in the same column.

Theorem 4 (Matching circuits). Let p be a picture in DCk. Then:

1. its matching graph is partitioned into simple circuits, called matching circuits;
2. for all 1 ≤ j ≤ k, the clockwise visit of a matching circuit, starting from any of its

nodes with label aj , yields a word in (ajbjdjcj)+, called the circuit label.

Proof. Part (1): By Definition 3, every node of G has degree 2, with one row edge and
one column edge, since its corresponding row and column in picture p are Dyck words.
Every node must be on a circuit, otherwise there would be a node of degree 1. Each
circuit must be simple and the sets of nodes on two circuits are disjoint, else one of the
nodes would have degree greater than 2. Part (2) is obvious, since from a node labeled
aj there is a row edge connecting with a node labeled bj , for which there is a column
edge connecting with a dj , then a row edge connecting dj with cj , etc., finally closing
the circuit with a column edge connecting a cj with the original aj . ��
Notice that when a picture on Δ1 is represented by its matching graph, the node labels
are redundant since they are uniquely determined on each circuit.

Theorem 4 has a simple interpretation in the case of Dyck words: the associated
matching graph of a Dyck word is the well-known, so-called rainbow representation,
e.g.,

a a b a b b

of the syntax tree of the word. A matching graph then corresponds to the binary relation
induced by the rainbow arcs and a matching circuit just to an arc.

Remark 2. The following elementary property of Dyck words immediately generalizes
to crosswords. Let x ai y bi w be a Dyck word, where ai, bi match; then, for any
coupled pair aj , bj , 1 ≤ j ≤ k, the string x aj y bj w is a Dyck word. For crosswords,
the statement is that, by replacing a matching circuit labeled ai bi di ci in a picture in
DCk with a matching circuit labeled aj bj dj cj , the result is still in DCk.

A natural question is whether there are pictures with more complex matching cir-
cuits than rectangular ones. It is maybe unexpected that moving from 1D to 2D the
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circuit length is not just 2× 2, but may increase without an upper bound. Two examples
of pictures in DC1 with matching circuits longer than four are in Fig. 2: (left), with a
circuit of length 12 labeled by the word (abdc)3, and (right) with a circuit of length 36.

The pictures of DCk, like the ones in Figs. 1 and 4, that are devoid of circuits longer
than four make a proper subset that we define for later convenience.

Definition 4 (Quaternate DCk). A Dyck crossword picture such that all its matching
circuits are of length 4 is called quaternate; the corresponding language, denoted by
DQk, is the quaternate Dyck language.

Corollary 1. Quaternate Dyck languages DQk are strictly included in Dyck cross-
words DCk for all k ≥ 1.

The structure of quaternate pictures having only rectangular circuits is made more evi-
dent by an alternative typography for the Dyck alphabet, using so-called corner symbols
instead of Latin letters. Let Δ1 be the alphabet {I,G,C,A} with the correspon-

dence: a =I, b =G, c =C, d =A. Thus, the picture I G

C A

I G

C A
is the same as a b

c d
a b
c d

.

Another example is in Fig. 1, right.
Section 4 studies the quaternate pictures and defines a sublanguage where the con-

tainment relation of rectangles defines a partial order.

Fig. 2. Two pictures in DC1. (Left) The picture is partitioned into two circuits of length 12 and
4. (Right) The picture includes a circuit of length 36 and seven rectangular circuits. Its pattern
embeds four partial copies (direct or rotated) of the left picture; in, say, the NW copy of the
evidenced “triangle”, the letters b, d, c have been changed to a, a, a, also evidenced by larger
dots. Such a transformation can be reiterated to grow a series of pictures.

We continue with the study of longer circuits.

Theorem 5 (Unbounded circuit length). For all h ≥ 0 there exist a picture p(h) in
DCk that contains a matching circuit of length 4 + 8h.
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Fig. 3. (Left) Picture p(1) used as induction basis of Theorem 5. It is covered by a circuit of
length 4 + 8 · 1 = 12 and by 3 rectangles (not shown). (Middle) Picture p(1) ⊖ p(1), the four arcs
to be deleted are in green (solid lines), and the four nodes to be relabeled are in blue (also larger
dots). (Right) Inductive step: picture p(2) is obtained from p(1)⊖p(1) by canceling the four green
arcs, relabeling the four larger blue nodes as shown (the corresponding rectangle is in blue) and
finally adding two solid arcs (blue) that join the double-noose circuits. A circuit of length 4+8 ·2
results. All length 4 circuits of p(h−1) and p(1) (not shown for clarity) are unchanged in p(h).
(Color figure online)

Proof. We prove the statement for DC1, since DC1 ⊆DCk. The case h = 0 is obvious.
The case h > 0 is proved by induction on a sequence of pictures p(1), . . . p(h) using as
basis the DC1 picture p(1) in Fig. 3 (left), that has size (m(1), 6), where m(1) = 4, and
contains a circuit of length 12 = 4 + 8, referred to as double-noose.

Induction step. It extends picture p(h−1), h > 1, by appending a copy of p(1) under-
neath and making a few changes essentially defined in Fig. 3 (right). It is easy to see
that the result is a picture p(h) of size (m(h−1) + 4, 6) such that: p(h) ∈ DC1 and p(h)
contains a circuit of length 4 + 8h. ��
Another series of pictures that can be enlarged indefinitely is the one in Fig. 2, where
the first two terms of the series are shown.

An examination of Fig. 3 in the next example shows that there are subsets of DCk

that are in REC, yet they contain quite complex matching circuits.

Example 1. The language L composed of all pictures p(h), for all h ≥ 1, of Theorem 5
is in the REC family. We first extend the alphabet of L to {a, b, c, d, a1, b1, c1, d1} so
that the circuits longer than 4 are over the alphabet {a1, b1, c1, d1} and the remaining
circuits are over {a, b, c, d}. The resulting pictures p′

(h), constituting a language L′,
have only 6 distinct rows, here identified (from top to bottom) with the letters 1, . . . , 6:

1: a1aa1b1bb1, 2: c1abd1ab, 3: a1cdb1cd, 4: acc1d1db, 5: caa1b1bd, 6: c1cc1d1dd1 .

It is clear from the construction of the pictures ph for h > 1 that L′ can be defined as
1⊖(2⊖3⊖4⊖5)∗⊖2⊖3⊖6. Since each of rows 1, . . . , 6 can be seen as a finite language
(thus, in REC) and tiling systems are closed by vertical concatenation and closure, also
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L′ is in REC. By closure of REC under projection, also L is in REC (by projecting a1

to a, b1 to b, etc.)

From an elementary property of Dyck word languages it follows that the distance
on the picture grid between two nodes connected by an edge is an odd number, to let
room for an even number of letters. This suggests the following Lemma 1.

Given a picture p over an alphabet Γ , let x=pi,j , for x∈Γ . We say that the occurrence
of x in position (i, j) has row parity 1 if i is even, row parity −1 otherwise; similarly,
x in (i, j) has column parity 1 if j is even, column parity −1 otherwise.

Lemma 1 (Circuit property). Let γ be a matching circuit of a picture in DCk, with
label in (aibidici)+.

i) All occurrences of ai and bi have the same row parity, but they have opposite row
parity to every occurrence of ci and di;

ii) All occurrences of ai and ci have the same column parity, but they have opposite
column parity to every occurrence of bi and di.

Proof. Without loss of generality, let k = 1. Let an occurrence of a in γ be in a position
row (r, s). The vertical matching symbol c of a (in the same column s) must occur in
a row of the form 2n + 1 + r, for some n ≥ 0, since there must be an even number of
positions in p between the occurrence of a and c. The same happens for the symbol d
matching c and for the b matching the above occurrence of a. The circuit γ continue
alternating between odd and even rows, and between odd and even columns, without
modifying the row and column parity of each occurrence of the same letter. ��
An application of Lemma 1 follows.

Let p be a picture in DCk and G its matching graph. A matching circuit that visits
all the nodes of G is called Hamiltonian.

Theorem 6 (Hamiltonian circuits). The only existing DCk pictures with a Hamilto-

nian matching circuit are defined by the set

{
ai bi

ci di
| 1 ≤ i ≤ k

}
.

Proof. Without loss of generality, let k = 1. By contradiction, assume that a picture
p ∈ DC1, of size greater than (2, 2), has a Hamiltonian circuit. The first row of any
picture is a Dyck word over {a, b} and the leftmost column is a (vertical) word over
{a, c}. By Lemma 1, the second row must be a word over {c, d} and the second column
from the left is over {b, d}. Therefore, the subpicture (p(1, 1) ⊖ p(2, 1)) must be a ⊖ c
(a cannot occur in the second row, therefore the row must begin with the open letter c
for rows) and similarly the subpicture (p(1, 2) ⊖ p(2, 2)) is b ⊖ d.

Therefore p contains the subpicture
a b
c d

in the top, left corner, i.e., it has a matching

circuit of length 4, a contradiction with the existence of a Hamiltonian circuit for a
picture of size greater than (2, 2). ��



Row-Column Combination of Dyck Words 149

Fig. 4. Both pictures are quaternate but not partially ordered, hence not neutralizable by Theo-
rem 7. (Left) To avoid clogging, the rectangles in the specular right half of the left picture are not
drawn. (Right) The vertexes relevant for illustrating partial containment are indexed.

4 A Sublanguage Preserving Characteristic Dyck Words
Properties

This section only deals with quaternate pictures, whose circuits we call “rectangles”.
We show that the standard definition of Dyck words by means of the cancellation rule3

can be extended to a sublanguage of quaternate pictures that is characterized by a geo-
metrical relation of containment between the rectangles.

The absence of long and intricate circuits will permit to define a partial containment
relation between the rectangles present in a picture, and then to define a partial order
if such a relation is acyclic. The corresponding language is called partially ordered
quaternate, DPOk. We also define a subset of Dyck crosswords, named neutralizable
(DNk), by means of a cancellation rule suitably transformed into a neutralization oper-
ation. At last we prove that the partially ordered and the neutralizable languages are the
same, and we list some of their properties.

Preliminarily, we transform the cancellation rule for words aibi → ε, which erases
innermost matching letters, into a length preserving rule, since in 2D the erasure of an
internal subpicture would create a “hole”, producing an object that no longer qualifies
as a picture. The Dyck cancellation rule is rephrased as the neutralization rule aibi →
NN , where N is a new “neutral” (i.e., not coupled) letter; in this way a Dyck word is
mapped to a word in N+ by a series of neutralization steps.

Geometrical Containment Relation. Consider two rectangles R1 and R2 with vertexes,
resp., a1, b1, c1, d1 and a2, b2, c2, d2 (the letters are distinct to simplify reference).

We say that R1 is partially contained in R2, writing R1 < R2, if some vertexes of
R1 are inside or on a side of R2. The partial containment relation of a picture is the set
of all such relations. Notice that the number of vertexes contained in R2 may be 1, 2 or
4, but not 3 which is geometrically impossible.

3 In [4] the property of well nesting of parentheses is also reformulated for quaternate pictures.
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Figure 4, left, illustrates (among others) the following containment relations: R1 <

R2, R2 <R1, R3 <R1, R3 <R2, R4 <R1.

Definition 5 (Partially ordered quaternate picture). A quaternate picture in DQk is
called partially ordered if its partial containment relation “<” is acyclic. The language
of such pictures is denoted by DPQk.

We observe that the pictures in Fig. 4 are not partially ordered, because they respectively
contain the cycles R1 < R2 < R1 and R1 < R2 < R3 < R4 < R1. On the other hand, the
picture presented in Example 2 below is partially ordered since its partial containment
relation (displayed in the example) is acyclic.

Neutralizable Dyck Languages
We introduce a neutralization rule mapping the letters in a quadruple, representing the
corners of a subpicture, to a new neutral letter N . The neutralizable Dyck language
DNk is obtained by iterating neutralization, starting from 2-by-2 subpictures, until the

picture is wholly neutralized. Given a picture p, all subpictures of the form
I G

C A
are

neutralized, i.e., replaced in p by the subpicture
N N
N N

. If p includes a subpicture with

four matching corners and having its interior and sides completely neutralized, then also

the four corners are neutralized. This is schematized by the subpicture

I N . . . N G

N . . . N
... N . . . N

...
N . . . N

C N . . . N A

that

is replaced by a subpicture of the same size having only N as letters. The procedure
successfully terminates when the resulting picture is in N++.

Definition 6 (Neutralizable Dyck language). Let N be a new symbol not in Δk. The
neutralization relation

ν−→ ⊆ ({N} ∪ Δk)
++

× ({N} ∪ Δk)
++, is the smallest relation

such that for every pair of pictures p, p′ in ({N} ∪ Δk)
++, p

ν→ p′ if there are m,n ≥ 2
and 1 ≤ i ≤ k, such that p′ is obtained from p by replacing a subpicture of p of the form:

(ai ⊖Nm−2,1
⊖ ci) ⦶Nm,n−2

⦶ (bi ⊖Nm−2,1
⊖ di). (2)

with the picture (of the same size) Nm,n.
The neutralizable Dyck language, denoted by DNk ⊆ Δ++k , is the set of pictures p

such that there exists p′
∈N++ with p

ν→+

p′.

To sum up, a DNk picture is transformed into a picture in N++ by a series of neutral-
izations, applied in any order. Clearly, every neutralizable picture is a quaternate.

Example 2 (Neutralizations). The following picture p on the alphabet Δ1 is in DN1

since it reduces to the neutral one by means of a sequence of six neutralization steps:

p =

I I G I G G

I I G C A G

C C A I G A

C C A C A A

ν→
I I G I G G

I N N C A G

C N N I G A

C C A C A A

ν→
I N N I G G

I N N C A G

C N N I G A

C N N C A A
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ν→
I N N N N G

I N N N N G

C N N I G A

C N N C A A

ν→
I N N N N G

I N N N N G

C N N N N A

C N N N N A

ν→
I N N N N G

N N N N N N
N N N N N N

C N N N N A

ν→
N N N N N N
N N N N N N
N N N N N N
N N N N N N

Neutralizations have been applied in a left to right order.
We show the partial containment relation “<”, with the numbering below.

The relation represented by the graph is acyclic and defines a partial order on the set of
rectangles, thus proving that this picture is in DPO1.

It is no coincidence that the picture of Example 2 is both neutralizable and partially
ordered; the next theorem proves that the two definitions define the same set of pictures.

Theorem 7 (Partially ordered equals neutralizable). A quaternate picture is neu-
tralizable if, and only if, it is partially ordered, i.e., DNk =DPOk.

Proof. Let relation < be acyclic. Then sort the rectangles in topological order and
apply neutralization starting from a rectangle without predecessors. When a rectangle
is checked, all of its predecessors have already been neutralized, and neutralization can
proceed until all rectangles are neutralized. The converse is obvious: if relation < has a
cycle, no rectangle in the cycle can be neutralized. ��
This result supports the analogy between the neutralization rule for Dyck words and the
rule of the same name for pictures: both rely on a partial order relation such that any
topological sorting order can be applied to perform neutralization. For Dyck words, the
order is a tree partial order, whereas for pictures it is a directed acyclic graph.

Properties of Neutralizable Picture Languages. The result on row/column language
saturation (Theorem 3) remains valid, i.e., ROW(DNk)=DRow

k , COL(DNk)=DCol
k ,

since the languages used in the proof of that theorem are also in DNk.
Similarly, by a proof almost identical to the one of Theorem 2, since the language

T⊖+ can be obtained from DNk by intersection with a recognizable language, we have:

Theorem 8 (Comparison with REC). The languages DNk and DQk are not in REC
for every k ≥ 1.

From Theorem 7 and from the examples of Fig. 4, we have the inclusions:

Theorem 9 (Hierarchy). DNk � DQk � DCk.
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5 Conclusion

In our opinion, the mathematical study of the properties of 2D Dyck languages is a
promising research area, where much remains to be understood, for the general case
of (simple) Dyck crosswords containing matching circuits of any length. Very diverse
patterns may occur in such crosswords, that we have been able to start classifying just
in the simpler case of rectangular circuits. In fact, the variety of patterns depends on
quite a few circuit parameters such as the circuit length, the number of crossings in a
circuit or between different circuits, and, more vaguely, the relative positions of circuits
on the grid. We mention a few specific open problems.

First, by Theorem 4 the length of circuits in DC1 pictures is unbounded, of the form
4 + 8h for all values h ≥ 0. The question is whether, for each n ≥ 1, there is a DC1

picture containing a circuit of length 4n.
Second, it seems that every picture in DCk has at least one circuit of length 4.
Third, the number of circuits present in a picture is unbounded for the picture series

used in the proof of Theorem 4. This raises the more general question whether, by
bounding the number of circuits present in a picture, the number of such pictures is also
bounded. (Theorem 6 bounds the number of pictures with only one circuit.)

Another question concerns the properties of those DCk sublanguages that are in
REC. For instance, Example 1, though visually complex, satisfies such a hypothesis.

At last, we mention a related future research direction on context-free cross-
words, having as baseline the present work on Dyck crosswords and the variant of
the Chomsky-Schützenberger Theorem [1] that characterizes the context-free word lan-
guages as the non-erasing homomorphism of the intersection of a Dyck language and a
regular one.

References

1. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages. In: Braf-
ford, H. (ed.) Computer Programming and Formal Systems, pp. 118–161. North-Holland,
Amsterdam (1963)

2. Crespi Reghizzi, S., Giammarresi, D., Lonati, V.: Two-dimensional models. In: Pin, J. (ed.)
Handbook of Automata Theory, pp. 303–333. European Mathematical Society Publishing
House (2021)

3. Crespi-Reghizzi, S., Pradella, M.: Tile rewriting grammars and picture languages. Theor.
Comput. Sci. 340(1), 257–272 (2005). https://doi.org/10.1016/j.tcs.2005.03.041

4. Crespi Reghizzi, S., Restivo, A., San Pietro, P.: Two-dimensional Dyck words. CoRR
abs/2307.16522 (2023)

5. Drewes, F.: Grammatical Picture Generation: A Tree-Based Approach. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-32507-7
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