
The Information Extraction Framework
of Document Spanners - A Very Informal

Survey

Markus L. Schmid(B)

Humboldt-Universität zu Berlin, Berlin, Germany
MLSchmid@MLSchmid.de

Abstract. This document provides an intuitive and high-level survey
of the information extraction framework of document spanners (Fagin,
Kimelfeld, Reiss, and Vansummeren (PODS 2013, J. ACM 2015)). Orig-
inally, document spanners were presented as a formalisation of the query
language AQL, which is used in IBM’s information extraction engine Sys-
temT, and over the last decade this framework is heavily investigated in
the database theory community. The research topic of document span-
ners combines classical results from areas like formal languages, algo-
rithms and database theory, while at the same time posing challenging
new research questions.

This survey is aimed at a general theoretical computer science audi-
ence that is not necessarily familiar with database theory. Its focus are
the topics of an invited talk at SOFSEM 2024.

Disclaimer

This survey particularly aims at providing an intuitive introduction to the topic
of document spanners, and a list of pointers to the relevant literature. Whenever
possible, we will neglect formal definitions, explain technical concepts with only
examples, and discuss theoretical results in an intuitive way. We do not assume
the reader to be familiar with aspects of data management that would exceed the
common knowledge of most computer scientists. For more technically detailed
surveys (that are particularly directed at a database theory audience), the reader
is referred to [1,28].

1 Document Spanners

Document spanners are a relatively new research area that has received a lot of
attention in the database theory community over the last ten years or so. An
interesting fact is that the topic is motivated by practical considerations, but its
theoretical foundation uses very classical and old concepts from theoretical com-
puter science, like regular expressions, finite automata and, in general, regular
languages. In order to substantiate the claim that document spanners constitute
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 3–22, 2024.
https://doi.org/10.1007/978-3-031-52113-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_1&domain=pdf
http://orcid.org/0000-0001-5137-1504
https://doi.org/10.1007/978-3-031-52113-3_1

4 M. L. Schmid

a quite relevant research area, we will just state a long list of recent papers (all
of them published within the last 10 years) that all have to do with this topic.
Here it comes: [2–4,6–15,19–24,26,27,29].1 Let us now explain what document
spanners are.

Document spanners have been introduced in [9], and they are a framework for
extracting information from texts (i.e., strings, sequences or words, or, as is the
common term in the data management community, documents); it is therefore
called an information extraction framework. Since strings are not tables as we
known them from relational databases, the information they represent is usually
considered by database people as being not structured, or, to use a less deroga-
tory term, to be only semi-structures.2 Therefore, we would like to process a
string (or let’s try to stick to the term document in the following (but we keep
in mind that documents are nothing but strings in the sense of finite sequences
of elements from a finite alphabet)), so we would like to process a document and
extract (some of) its information in a structured way, i.e., as a table as found
in relational databases, so with a fixed label for every column. Relevant parts
of the string should then appear as entries of the cells (put into relation by the
rows of the table as usual), but we are not really interested in having substrings
of our document in the cells of the table. Instead we use just pointers to sub-
strings, which are represented by the start and the endpoint of the substring.
Such a ‘pointer-to-substring’ is called a span. So the span (2, 4) represents the
first occurrence of the substring ana in the document D = banana, and (4, 6)
represents the second occurrence of ana.3 Not very surprisingly, we are not just
interested in the existence of substrings, but also where they occur; thus, the
span representation is useful. In the following, we use the notation D[i, j] to
refer to the content of span (i, j) of document D, so for D = banana, we have
D[2, 4] = D[4, 6] = ana.

In order to say how this table of spans that we want to extract from the
document looks like, we also have to label its columns (thereby also postulating
how many columns we have), and we do this by simply giving a set of variables,
e.g., X = {x, y, z}. So with respect to X , a possible table to be extracted from
a document can look like the table here to the right (such tables are also called
X -span relations, and their rows are called span tuples (or X -span tuples)):

1 Whether a research area should be considered important or not is always quite
subjective. At the very least we can observe that many researchers like to work in
the area of document spanners right now.

2 The fate of representing data in a way that is only semi-structured is also shared by
trees and graphs.

3 In the literature, the span (4, 6) is actually represented as [4, 7〉, which has some
reasons, but in this survey we abstract from several such details that are not needed
on this high level discussion.

Document Spanners - A Very Informal Survey 5

D = abbabccabc =⇒

x y z

(2, 5) (4, 7) (1, 10)
(3, 5) (5, 8) (4, 7)
(1, 3) (3, 10) (2, 4)
...

...
...

Any function that, for a fixed set X of variables, maps each document to a
(possibly empty) X -span relation is called a spanner (or document spanner, if
there is no page limit), and actually we should add X somewhere and rather say
X -spanner, because the set of variables is obviously relevant. The little picture
above demonstrates this scenario (and the reader should play the fun game of
finding all the factors of abbabccabc the spans of the table point to).

But let’s not overdo it with the informal style of this survey and maybe fix
at least some more precise notation. A span of a document D is an element
(i, j) ∈ {1, 2, . . . , |D|} × {1, 2, . . . , |D|} with i ≤ j, a span tuple is a mapping
from X to the set of spans, and a spanner is a function that maps a document to
a set of span tuples. Since it is awkward to write span tuples as functions, we use
a tuple notation, i.e., we write t = ((2, 5), (4, 7), (1, 10)) instead of t(x) = (2, 5),
t(y) = (4, 7) and t(z) = (1, 10) (this only works if we fix some linear order for X ,
but this will always be clear from the context).

This brief and informal explanation of the concept of document spanners is a
sufficient basis for explaining the further concepts and results that are to follow.
On the other hand, it is overly simplistic and makes the model look somewhat
primitive, which does not do justice to the original paper [9], which is indeed a
seminal paper. In particular, besides establishing some important conventions
about spans and spanners and documents as data sources, the paper [9] also
convincingly explains (also for researchers not too familiar with database theory),
why document spanners cover relevant information extraction and therefore data
management tasks. There is no need to further motivate document spanners
here, since this has been done by [9] and the many papers that followed (we will,
however, cite more actual literature later on).

2 Representations of Document Spanners

An important point is of course how to represent document spanners (so far, they
are just abstractly defined as functions), and, as is common in database theory,
we are not only interested in a mathematically rigorous formalisation, but we
also want to provide a language for describing spanners that can be easily learned
and applied by users (let’s keep in mind that even though the theoretical research
on document spanners is somewhat dominating, their original motivation was to
describe a practically relevant information extraction framework, so a tool for
users to tackle real-world data management tasks).

Historically, document spanners were defined by a two stage approach: First
we use classes of regular language descriptors, like regular expressions and
automata, to define spanners, and then we apply some relational algebra (i.e.,

6 M. L. Schmid

operations on tables) on top of the span-relations that can be produced by those
“regular spanners” (this term will be in quotation marks until we define it more
formally, which will happen later on). This first stage makes a lot of sense from
a data management perspective, because it means that if we throw a bunch
of “regular spanners” at a document, then we actually turn it into a relational
database. Using regular language descriptors is a great idea, since they are well
understood, they have very nice algorithmic properties, they are still powerful
enough to describe relevant computational tasks, and they are so simple that
we can even teach them to students in the first year of their studies. Regarding
the second stage: Everybody working in data management is able to manipulate
relational tables with relational algebra or similar languages like SQL. So this
approach is just natural.

2.1 Regular Spanners

Now how can regular language descriptors be used for describing document span-
ners? Well, just use a finite automaton, e.g., the following one:

Σ �x

ab

�x Σ �y

cc

�y Σ

This is an automaton over the alphabet Σ = {a, b, c}, but for the variable x it
has a special “please start the span for variable x here”-symbol �x , and a special
“please let the span for variable x end here, thank you”-symbol �x, and analogous
special symbols for variable y (it’s helpful to see them as a pair of parentheses

�x . . . �x). Intuitively, it is clear what’s going on: The automaton reads some
input over Σ and whenever it takes an �x -arc, a span for x is created that ends
when a �x-arc is traversed, and similar for y. When exactly such special-arcs are
traversed obviously depends on the nondeterminism of the automaton, so the
automaton can perform several different accepting runs on a fixed input, which
yields several ways of extracting an {x, y}-span tuple from the input. As is easy to
see, the automaton describes the spanner that, for any document D, produces
the table of all span-tuples ((i, j), (k, l)), where j ≤ k and D[i, j] = (ab)m

and D[k, l] = (cc)n with m,n ≥ 0. In a similar way, the regular expression
Σ∗ �x (ab)∗ �xΣ∗ �y (cc)∗ �yΣ∗ describes the same spanner (note that it describes
the same regular language over Σ ∪ { �x , �x, �y , �y} as the automaton).

However, in order to gain a better theoretical understanding of the model,
it is somewhat more convenient to refrain from thinking about specific classes
of spanner representations for a moment, and establish a quite general way of
how document spanners can be described (so any possible functions that maps
documents to span-relations, even undecidable ones). The most relevant class of
“regular spanners” can then be easily obtained by just saying the word “regular”
at the right place.

Document Spanners - A Very Informal Survey 7

Spanners are functions with Σ∗ as their domain, where Σ∗ is the set of all
words over the alphabet Σ. Consequently, it makes sense to describe the concept
of spanners in a purely language theoretic setting, which is quite convenient.4

A word w and an X -span-tuple t can be merged into a single string by
simply marking in w the beginning of the span for x by the symbol �x and the
end of the span for x by the symbol �x (and obviously in the same way for
all other variables from X), which is then a word over the alphabet Σ ∪ ΓX ,
where ΓX = { �x , �x | x ∈ X}. So merging the word banana and the span-tuple
((2, 4), (4, 6)) yields b �x an �y a �x na�y. Words like this – i.e., words over Σ ∪ΓX
that encode a word and an X -span-tuple for this word – are called subword-
marked words (because that’s just what they are).5 In particular, we note that
from such a subword-marked word, we can easily get the document it describes
(by just deleting the special symbols from ΓX), and the span tuple it describes
(by just looking up the positions of �x and �x for every x ∈ X).

The important point is now that every set L of subword-marked words (over
X), which we also call a subword-marked language, describes an X -document
spanner. Why? Because for any given document D, we can simply collect all
subword-marked words w ∈ L that represent D and put the span-tuple rep-
resented by w in a table. So any subword-marked language L (over X) has
a natural interpretation as a function �L� that maps documents to X -span
relations, i.e., a spanner. As a concrete example, consider the subword-marked
language {b �x an �y a �x na�y, b �x anana�x}, which extracts the span-relation
{((2, 4), (4, 6)), ((2, 6),⊥)} from banana (note that ⊥ means undefined), and the
empty span relation from any other document. Or the subword-marked language
{ �x b �x u | b ∈ Σ,w ∈ Σ∗}, which represents a spanner that extracts the first
symbol of any document in a span for variable x. Or the subword-marked lan-
guage {u1 �x (ab)m �xu2 �y (cc)n �yu3 | u1, u2, u3 ∈ Σ∗,m, n ≥ 0} which describes
the spanner also represented by the automaton from above.

But it also works the other way around. Let S be some X -document span-
ner, so some function that maps documents to X -span relations without any
further restriction. Then S maps every given document to a set {t1, t2, . . . , tn}
of X -span tuples (note that this set is always finite, since X is, but for our con-
siderations this is not even important, it’s just more practically sane to have only
finitely many variables). So we can simply merge D with each of the span-tuples
t1, t2, . . . , tn to obtain subword-marked words w1, w2, . . . , wn, and if we collect
all these subword-marked words that we can obtain like this from every possi-
ble document, we have a huge subword-marked language LS , which describes
exactly the spanner S in the way explained in the previous paragraph, i.e., S
equals the spanner interpretation �LS� of LS .

A Brief Interlude about Subword-marked Words: In the literature on
spanners, subword-marked words are usually called ref-words. This has histori-

4 Maybe a bit confusingly, but justified by the fact that we are now in the realm of
formal languages, we use the term word instead of document for a short while.

5 Obviously, we have to formalise when exactly a word over Σ∪ΓX is a proper subword-
marked word, but this is not difficult.

8 M. L. Schmid

cal reasons: Ref-words have originally been used in [25] (in the context of regular
expressions with backreferences) as words that contain references x to some of
their subwords, which are explicitly marked by brackets �x · · · �x. So these ref-
words from [25] are strings in which subwords can be marked, but they can
also contain references to marked substrings, represented by variable symbols in
the string. The literature has adapted this technical tool for formalising docu-
ment spanners, but for this, we only need the “subword-marking”-property, not
the “subword-referencing”-property. However, the term “ref-word” has been used
anyway and it stuck. Using the terms subword-marked words and ref-words syn-
onymously is fine, as long as we only want to represent markings of subwords
and no references. But in [26] – which we shall discuss in more detail below – it
has been shown that the ref-words in the sense of [25] (so not only with marked
subwords but also with reference-symbols) can be used for formalising a certain
class of spanners. Hence, we need to distinguish between the ref-words that only
mark subwords (and we call them subword-marked words here) on the one hand,
and the ref-words from [25] that can also contain references to marked subwords.
End of the interlude.

So we saw that subword-marked languages (over X) and X -document span-
ners are the same thing.6 In particular, we can now conveniently define certain
classes of spanners by simply stating the underlying class of subword-marked
languages. Like this: The regular spanners are exactly the spanners �L�, where
L is a regular subword-marked language. The reader is encouraged to try it
for herself by replacing “regular” with her favourite language class (literally any
language class! No judging!).

Obviously, for the applicability of a spanner class, the algorithmic properties
of the underlying class of subword-marked languages is important. So for rep-
resenting regular spanners, we can use automata or regular expressions or just
anything that describes regular languages (note that we can always filter out
strings over Σ ∪ ΓX that are not valid subword-marked words by intersection
with a regular language (note that for doing this, we do not have to parse a
well-formed parenthesised expression, we only have to check that if �x occurs,
then it is followed by one occurrence of �x, and that this happens at most once)).
6 Note that this is not a one-to-one correspondence. While every subword-marked

language L uniquely describes the spanner �L�, there are in general several ways of
representing a spanner by a subword-marked language. This is due to the fact that
two subword marked words like a �x �y b �y �x c and a �y �x b �x �y c are different
strings, but they nevertheless describe the same pair of document and span-tuple.
Unfortunately, this can be very annoying from a technical point of view, and it
can even lead to some problems for algorithms on spanners. But since there is no
peer-reviewing for this article, we keep quiet and simple pretend that we did not
notice this little flaw. This issue is anyway much discussed in the actual literature
on document spanners and everybody is aware of it, we just neglect it in this survey
because nobody stops us. For example, in order solve this issue, [7] introduces a fixed
order on the consecutive occurrences of the symbols from ΓX , while [2,27] simply
replace sequences of symbols from ΓX by sets of the symbols, thus using subsets of
ΓX as symbols. This was a long footnote, but better than having another “interlude”.

Document Spanners - A Very Informal Survey 9

Coming back to the example automaton above: If interpreted as an NFA over
Σ ∪ΓX , it obviously represents a regular subword-marked language, which is the
same language represented by the regular expression Σ∗ �x (ab)∗ �xΣ∗ �y (cc)∗ �y

Σ∗, and it is easy to see that if we interpret this subword-marked language as
a spanner, it is exactly the one described above, so all span-tuples ((i, j), (k, l)),
where j ≤ k and D[i, j] = (ab)m and D[k, l] = (cc)n with m,n ≥ 0.

Whether we interpret the �x and �x transitions as special operations that
trigger the construction of the span tuple, or whether we consider them as normal
input symbols so that the automaton is a string-acceptor is merely a matter of
taste. Although the second point of view seems to fit better to this general
perspective of spanners as subword-marked languages.

Note that [9] also considers a proper subclass of regular spanners defined
by so-called regex formulas, which is a certain class of regular expressions. The
point is that regex formulas can enclose only proper sub-expressions in brackets
�x and �x. As a result, this formalism cannot describe overlapping spans.

2.2 Core-Spanners

Recall that the regular spanners describe just the first step of the original spanner
framework from [9]. So let’s move on to the second stage.

Assume that we have extracted from a string a span relation or several span
relations by regular spanners. We could now manipulate these tables with rela-
tional algebra operations, and in [9], we use union, natural join, projection and –
let us make a dramatic pause here, because this operation is a real game changer
– string equality selection. Union is just the set union of span relations, natural
join sort of glues together tables on their common attributes (if you know how
natural join is defined, you are probably annoyed by this superficial explanation
and would be bored by a detailed one, if you don’t know it, you can google it)
and projection just deletes columns. Now these are typical operations for rela-
tional data and they are not specific to our framework of information extraction
of textual data. The string equality selection, on the other hand, is tailored to
the situation that our tables are not just any tables, but span relations, so their
entries are pointers to substrings of a document. The string equality selection
is an operator that is parameterised by some subset Y ⊆ X . It looks at every
span tuple of the span relation and checks whether all the spans of the variables
in Y point to an occurrence of the same substring. Although this is obvious, let
us briefly observe that different spans might represent occurrences of the same
substring, like (2, 4) and (4, 6) both represents the ana in banana. Every span
tuple where this is not the case will be kicked out by this operator, so it selects
span tuples from a span relation according to the equality of the substrings of
certain spans. The next example shows what the string equality selector does
with respect to Y = {x, y} on the following table that has been extracted from
banana:

10 M. L. Schmid

x y

(1, 2) (4, 6)
(2, 4) (4, 6)
(3, 4) (5, 6)
(2, 3) (5, 6)

⇒
x y

(2, 4) (4, 6)
(3, 4) (5, 6)

The so-called core spanners are those spanners that can be obtained by first
extracting a span relation from a document by a regular spanner, and then
apply a finite sequence of any of the relational operators from above (including
the string equality selection). As shown in [9], the operators of union, natural
join and projection (but not string equality selection!) can all directly be pushed
into the automaton for the regular spanner, meaning that tables extracted by
a regular spanner followed by any sequence of these operators can also directly
be extracted by a single regular spanner. Or, putting it differently, these simpler
relational operators are “regular”. As a consequence, core spanners have a normal
form: Every core spanner can be described by a regular spanner followed by a
finite sequence of string equality selections followed by one projection.

Why the string equality selection makes such a huge difference (i.e., why core
spanners are much more powerful than regular spanners) will be discussed in the
next section. From an intuitive point of view, this is not surprising, since string
equality selection is an inherently non-regular feature. For example, we can use a
regular spanner over X = {x, y} that extracts from a document D all span tuples
((1, k), (k + 1, |D|) for every k ∈ {1, 2, . . . , |D|} (so it can arbitrarily split the
document and store the two parts in the spans of the two variables), and then
uses a string equality selection with respect to X . This will turn every given
document D into the span-relation {((1, |D|/2), (|D|/2 + 1, |D|)} if D = ww
(i.e., D is a square) and into the span-relation ∅ if D is not a square. So it
somehow recognises the non-regular copy language. But this is nothing! We can
also get crazy and apply string equality selections to several spans that overlap
each other in complicated ways to describe spanners that are not funny anymore
(see [12] for further details).

The majority of the papers on document spanners is concerned with regular
spanners, probably because core spanners have some issues with complexity and
decidability. However, there are also several papers concerned with core spanners;
see [11,12,14,23,26].

3 Problems on Regular Spanners and Core Spanners

Regular spanners are mild and core spanners are wild. Putting it more formally,
regular spanners have excellent algorithmic properties (i.e., good complexities),
while core spanners exhibit intractability and even undecidability for many of
their relevant computational problems. As an example, let us consider some
relevant problems like model checking (deciding whether a given span tuple
t is in S(D) for a given spanner S and document D), non-emptiness (check
whether S(D)
= ∅ for a given spanner S and document D), satisfiability (for

Document Spanners - A Very Informal Survey 11

given spanner S, decide whether there is a document D with S(D)
= ∅), or
inclusion (for given spanners S1 and S2, decide whether S1(D) ⊆ S2(D) for
every document D).

For regular spanners, algorithms for model checking, non-emptiness and sat-
isfiability have quite good polynomial running times (see, e.g., [2,9,10,26]). The
reason is that these problems reduce to problems on regular languages or finite
automata (i.e., the good algorithmic properties of regular languages carry over to
regular spanners). Moreover, inclusion for regular spanners is PSPACE-complete,
which is not exactly tractable, but inclusion for regular languages is also PSPACE-
complete, and the inclusion problem for regular spanners covers the inclusion
problem for regular languages (see [19]). For core-spanners, the inclusion problem
is even undecidable, and model checking, non-emptiness and satisfiability, which
can be solved quite efficiently for regular spanners, are all NP-hard (see [12]).

All the aforementioned problems are typical decision problems, but in
database theory, which always has an eye towards application, there is also a
substantial interest in practically motivated problems. One key observation is
that a computer program that merely says “yes” or “no” to Boolean database
queries is of little use in the real world. Moreover, a program that computes the
huge set (of potentially exponential size) of all possible answers to the query
is also of questionable practical relevance. Therefore, it is common to investi-
gate query evaluation (this term somewhat abstractly covers all scenarios where
we want to evaluate a given query with respect to a given database, even if
the database is just a single string) in terms of an enumeration problem. This
means that we are interested in algorithms that produce a list of all answers to
the queries (obviously, without repetitions). Such an algorithm is particularly
worthwhile if it starts producing the list very fast, and if we do not have to wait
too long to receive the next element. The optimal scenario here is therefore that
the first element is produced after a running time that is only linear in the size
of the data, which is called linear preprocessing. Note that the algorithm must
somehow process the data that is queried, so assuming at least preprocessing
linear in the size of the data is fair. Moreover, after one answer is produced, we
would like the time we have to wait for the next element (which we call delay)
to be completely independent from the size of the data, so the running time we
need here is only a function of the size of the query (which is then called con-
stant delay). We should mention here that these complexity requirements use
the so-called data-complexity perspective, which measures running time only in
the size of the data, and considers the size of the query as being constant. This
is a quasi-standard in many areas of database theory, and it makes a lot of sense,
since the data can be assumed to be quite large, while the query, in comparison,
is tiny. The assumption that the data is large is justified by the buzzword “big
data”. The queries are assumed to be small since they are – in most scenarios
– written by human users. Of course, linear preprocessing and constant delay
is not always possible, but it is the holy-grail for enumeration algorithms of
query evaluation problems. See [31,32] for surveys on the topic of enumeration
algorithms in database theory, and [30] for a recent paper.

12 M. L. Schmid

Coming back to document spanners, we are looking for an algorithm that,
for some document D and a spanner S, makes some preprocessing that is linear
in |D| and then enumerates all span tuples from S(D) with constant delay. For
regular spanners, this is possible, but it does not directly follow from known
algorithmic results about automata (see [2,10] for details). Let us briefly discuss
this on an intuitive level.

Assume that the spanner S is given by an NFA M that accepts a subword-
marked language L (over Σ and X) with �L� = S. Now we are interested in
all possible ways of shuffling the symbols ΓX = { �x1 , �x1 , �x2 , �x2 , . . .} into D
such that we get a subword-marked word that is accepted by M , since these
subword-marked words represent the span-tuples of S(D). But these subword-
marked words are represented by paths in M from the start state to an accepting
state that are labelled with D (and some symbols from ΓX). In fact, it is better
to consider the DAG of nodes (p, i), where p is a state of M and i is a position of
D, there is a D[i+1]-labelled edge from (p, i) to (q, i+1) if in M we can change
from p to q by reading D[i+1], and there is a γ-labelled edge from (p, i) to (q, i)
if in M we can change from p to q by reading some symbol γ ∈ ΓX (actually,
we could even drop the edge labels from Σ, since they are not relevant). In this
DAG, we are interested in all paths from (qi, 0), where q0 is the start state, to
some (qf , |D|), where qf is some accepting state. The labels from ΓX on such
paths represents the span-tuples that we enumerate. So we simply enumerate
those paths, but this is a bit tricky because, firstly, there might be different
paths representing the same span-tuple and, secondly, the paths are rather long
(well, of size |D| actually), so we cannot afford to construct them explicitly,
because this would break our bound on the delay. In other words, we have to
enumerate those paths, but we have to efficiently skip over the parts of the paths
that are labelled with symbols from D.

4 An Approach to Tame Core Spanners

We called core spanners wild earlier in this article, because with this term in
mind, it is appropriate to think about how we can tame them. And taming now
means to make them a bit more like regular spanners in terms of their algorithmic
properties, while still maintaining the most important features of their expressive
power. An approach towards this goal has been presented in [26], which we shall
now briefly explain.

A nice property of regular spanners is that we can purely describe them as
special regular languages (i.e., regular subword marked languages), which means
that we can use classical tools like regular expressions and finite automata to
handle them. So it is worth thinking about to what extent we can use the same
approach also for (subclasses of) core spanners. In particular, the goal is to
describe core-spanners again just by certain regular languages (obviously, the
subword-marked languages are not suitable for this, since the subword-marked
languages of core-spanners are not necessarily regular languages).

Let LS be the subword-marked language for a regular spanner S. If we use on
S a string equality selection (i.e., we consider a core-spanner), say with respect
to variables Y = {y, z}, then any subword-marked word of LS can be considered

Document Spanners - A Very Informal Survey 13

irrelevant, if �y . . . �y and �z . . . �z enclose different factors. So with the application
of the string equality selection in mind, we wish to directly get rid of such
irrelevant words of LS , and we achieve this by replacing every �z u�z factor of
a subword-marked word by �z y�z, where the symbol y is used as a reference
signifying that the word enclosed by �y . . . �y is to be repeated here (otherwise,
the subword-marked word would describe a span-tuple that would be killed by
the string equality relation anyway).

As an example, consider the subword-marked language described by the reg-
ular expression

r := �x a∗b �y c �x b∗ �x′
a∗bc �x

′
�y �y′

cb∗a∗bc�y
′
,

and assume that we want to apply a string equality selection with respect to
{x, x′} followed by a string equality selection with respect to {y, y′}. The resulting
core-spanner can as well be represented by the regular expression r′ := �x a∗b �y

c �x b∗ �x′
x �x

′
�y �y′

y�y
′
, i.e., we simply replace �x′

a∗bc�x
′
and �y′

cb∗a∗bc�y
′

by �x′
x�x

′
and �y′

y�y
′
, respectively. Now, we have represented a non-regular

core-spanner “somehow” as a regular language (note that with help of the string
equality selection, this core spanner checks whether some unbounded factors are
repeated, which is an inherently non-regular property). But how exactly does the
regular language describe the core spanner? Very easy: The regular expression
r′ can generate words like �x aab �y c �x b �x′

x �x
′
�y �y′

y�y
′
and �x aaaab �y c �x

bbbb �x′
x �x

′
�y �y′

y�y
′
and so on. So these words are almost subword-marked

words, but they have occurrences of references x and y, which we need to replace.
Hence, we interpret each such word as the subword-marked word that we get by
simply replacing all the references. Applied to �x aab �y c �x b �x′

x �x
′
�y �y′

y�y
′
,

the replacement x �→ aabc gives us �x aab �y c �x b �x′
aabc �x

′
�y �y′

y�y
′
, and

then the replacement y �→ cbaabc gives us the subword-marked word �x aab �y

c �xb �x′
aabc �x

′
�y �y′

cbaabc�y
′
. And this final subword-marked word describes

a document and a span-tuple in the usual way.
So what we do is that we also allow the variables from X to occur in subword-

marked words, and we call such words then ref-words (since these variables
function a references to marked subwords). Then we consider regular languages
of ref-words, and we interpret such ref-languages as spanners by first resolving all
the references in all the ref-words (as sketched above) to get a subword-marked
languages, which then describes a spanner as before. While the ref-language is
necessarily regular (by definition), the subword-marked language that we get
from it by resolving all references is not necessarily a regular language anymore
(non-regularity must creep in somewhere, if we want to describe non-regular
core-spanners).

Those so-called refl-spanners can still describe all regular spanners, but also
many non-regular core-spanners.7

7 Technically, the formalism also allows to create an unbounded number of references
by using a variable symbol under a Kleene-star, which results in spanners that are
not even core-spanners. But since the formalism is introduced for describing a large
class of core-spanners by regular languages, we ignore this issue.

14 M. L. Schmid

Model-checking and satisfiability for refl-spanners can be solved as efficiently
as for regular spanners (while for core-spanners these problems are intractable).
On the other hand, non-emptiness for refl-spanners is NP-hard as for core span-
ners. Moreover, refl-spanner allow a certain restriction that yields decidable
inclusion (recall that inclusion is undecidable for core-spanners).

It is intuitively clear that refl-spanners cannot describe all core-spanners.
Note that the construction sketched above where we replaced parts of the regular
spanner by references only works in special cases.

For example, let s, t and r be some regular expressions, and consider the
regular spanner described by �x r �x �y s �y �z t�z. If we want to describe the
core-spanner that we get by applying a string equality selection with respect
to {x, y, z}, then we cannot simply replace each of s and t by an occurrence
of x, since this would also represent ref-words �x u �x �y x �y �z x�z, where
u ∈ L(r), but u /∈ L(s) or u /∈ L(t), which gives us the subword-marked word
�x u �x �y u �y �z u�z, which describes a span-tuple for the document uuu that

should not be in the span-relation. However, in this case, we can use the refl-
spanner �x h �x �y x �y �z x�z, where h is a regular expression that describes
the intersection of L(r), L(s) and L(t) (note that this construction causes an
exponential blow-up).

Another problem arises when we want to replace some �x s�x by �x y�x,
but s also contains symbols from ΓX , which we cannot afford to simply delete.
Interestingly, in such cases it can help to first cut all the overlapping regions
enclosed by the brackets �x . . . �x into smaller parts (thereby introducing new
variables, but only polynomially many), then, depending on the string equality
selection, translating it into a ref-language, which then not quite describes the
intended core spanner, but almost: It describes the core-spanner with the only
difference that some spans are cut into a several smaller spans. This difference
can then easily be repaired by just combining certain columns into one column
and gluing the respective spans of those columns together. This result points out
that refl-spanner can describe a large class of core-spanners.

5 Regular Spanners on SLP-Compressed Data

Since big data is so big, it is a good idea to compress it. The classical motivation
is that compressed data can be stored in less space, or send somewhere in less
time. But what about directly querying data in compressed form, i.e., without
decompressing it? This would be very convenient, since then we do not have to
decompress our data when we want to work with it, and algorithms for querying
the data might even be faster, since their running times depend on the size of the
compressed data, which might be much smaller than the uncompressed data size.
Theoretically, any polynomial time algorithm that works on compressed data
may outperform even a linear time algorithm for the uncompressed data, in the
special case where the compressed data has size logarithmic in the uncompressed
data (so measured in the uncompressed data it’s polylogarithmic running time
vs. linear running time).

Document Spanners - A Very Informal Survey 15

This paradigm of algorithmics on compressed inputs is well-developed in the
realm of string algorithms (see the explanations in [27,29] and the general sur-
vey [18]), and since spanner evaluation is a string problem, it makes sense to
investigate it in this compressed setting as well. More precisely, we are inter-
ested in evaluating a document spanner over a document that is compressed,
and which should not be decompressed for this purpose. Moreover, the most
relevant form of evaluation problem is enumeration (as explained above), and
the best running time is linear preprocessing (but now linear with respect to the
compressed size of the document!) and constant delay.

Before outlining some respective results, let us discuss the underlying com-
pression scheme in this setting. A particularly fruitful approach to algorithmics
on compressed strings are so-called straight-line programs (SLPs). The simplicity
of SLPs is very appealing: We compress a string w by a context-free grammar (for
convenience in Chomsky normal form) that describes the language {w} (i.e., it
can generate exactly one string, which happens to be w). This calls for an exam-
ple: The string aabbabaabaabbab can be described by a context-free grammar
with the rules shown here on the left (we use S,A,B,C,D,E as non-terminals,
where S is the start non-terminal):

S DE
D AC
E BD
A Bb
C ab
B aC

S
E

D

A

C

a b

B

S

D E

A C B D

B b a b a C A C

a C a b B b a b

a b a C

a b

Above in the middle, it is demonstrated that we can interpret each SLP as a
DAG in which each rule A → BC is represented by a node A with left successor
B (indicated by dotted arrows) and right successor C (indicated by dashed
arrows). Note that this is due to the fact that we assume the Chomsky normal
form (without the Chomsky normal form, the outdegree of the nodes would be
larger and we would need some way of expressing an order on the outgoing
edges). The only possible derivation in this SLP (i.e., starting with S and then
just applying the rules until we have a string over {a, b}) yields the compressed
string aabbabaabaabbab. As is typical for derivations in context-free grammars,
we can also consider the derivation tree, which is displayed above on the right
(note, however, that the derivation tree is not a compressed representation, since
it is at least as large as the string).

For the size of an SLP, we can take its number of rules (obviously, this
ignores a factor of 3, but that’s okay if we measure asymptotically). In order to
see how the compression works, take a look at the derivation tree (recall that the
derivation tree is an uncompressed representation): Here, we have to explicitly
spell out each application of a rule in the construction of the string, while the
actual SLP representation mentions each rule exactly once. Intuitively speaking,

16 M. L. Schmid

an SLP just tells us how to replace repeating substrings by variables in a clever
way (and this is hierarchical in the sense that substrings already containing
variables are again replaced by variables and so on). Obviously, this should be
called clever only if it achieves a decent compression.

An SLP might be much smaller than the string it represents; in fact, even
exponentially smaller (to see this, just consider an SLP which just doubles a
string in every rule). There are also strings that are not well compressible, but
experimental analyses have shown that the compression achieved by SLPs on
natural inputs is very good. On an intuitive level, this is not surprising: Texts
in natural language have many repeating words, and the same syllables occur
over and over again in different words. But also for any artificial string over a
finite alphabet (e.g., the alphabet {A,G,C, T} of DNA nucleobases), we will get
repeating substrings if the string is long enough.

The success of SLP-compression for strings is due to the fact that SLPs
achieve good compression (already mentioned above), but also that there are
very fast approximation algorithms that achieve these good compression ratios.8
And, most importantly, there are many algorithms capable of solving basic,
but important string problems directly on compressed strings (see [18] for an
overview). As an example, let us recall that pattern matching (i.e., finding a given
string P as substring in another string T) can be solved in time O(|P |+ |T |) by
classical algorithms (the well-known Knuth-Morris-Pratt algorithm for example).
But if T is given by an SLP S, so in SLP-compressed form, we can still solve
pattern matching in linear time, but without having to decompress S, i.e., in
time O(|P | + |S|) (note that if |S| |T |, then this directly translates into a
faster running time); this has recently been shown in [16]. Although this is not
always trivial to show, it often turns out that certain string problems can still
be solved efficiently, even if we get the input string in form of an SLP. And it is
the same for regular spanner evaluation (investigated in [20,27,29]).

For spanners (recall that we are in a data management setting), we assume
that we have a whole database of documents, which is just a set of documents,
e.g., D = {D1,D2,D3} = {ababbcabca, bcabcaabbca, ababbca}). Such docu-
ment databases can also be compressed by an SLP, for example, this one:

A1

A2

B

D

C

E

a

F

A3

b
c

8 Full disclosure: Computing a minimal SLP for a string is NP-complete [5]. But this
is no problem at all, due to these fast practical approximate compressors.

Document Spanners - A Very Informal Survey 17

Recall that dotted arrows point to the left successors and dashed arrows point
to the right successors. Here, the non-terminals A1, A2 and A3 derive exactly
the documents D1, D2 and D3 of the example document database D mentioned
above (the reader is welcome to verify this, although it is a bit painful).

We now get some regular spanner S and some index i ∈ {1, 2, . . . , |D|} (indi-
cating the document that we want to query), and after a preprocessing linear
in the size of D, we want to be able to enumerate the elements of S(Di). This
is in fact possible, but with a delay of log(|Di|). The delay is therefore not
constant and depends on the size of the uncompressed data, but only logarith-
mically. An important fact is that this delay is always at most logarithmic in
|Di| independent of the actual compression achieved by the SLP. In order to
understand where this log-factor comes from, let us sketch the general approach
of this algorithm (see [27] for details).

In the uncompressed setting, the enumeration of regular spanners relies on
enumerating all subword-marked versions of the document that are accepted
by the automaton that represents the spanner. So in the compressed setting, we
have to enumerate all subword-marked versions of the derivation tree for Di that
describe subword-marked documents accepted by the automaton. A subword-
marked version of Di’s derivation tree is obtained by placing the symbols from
ΓX at their corresponding places into the derivation tree of Di. Of course, we
cannot just naively construct Di’s derivation tree, because it is too big, but it
is enough to sufficiently expand only those branches of the derivation tree that
reveal positions of Di where symbols from ΓX have to be placed. This means that
we have to expand only O(|X |) branches of the derivation tree (recall that, due
to the data-complexity perspective, |X | is a constant for us), and we do not have
to expand branches completely, just a long path leading to the desired position
of the document. However, each of these paths may lead to a position that is
buried deep, deep down in Di’s derivation tree. So these branches leading to the
positions that must be marked with symbols from ΓX may be long. To clarify
this, take a look again at our first example of an SLP from above (Page 13). The
fourth letter b of the compressed document can be reached from S by a path of
length 3, i.e., the path S,D,A, b, while the 11th letter a needs a path of length
6. Hence, the cost of producing the next subword-marked variant of the (still
partially compressed) derivation tree, can be rather high, when we have to mark
symbols deep down in the derivation tree. In fact, the length of such a path can
be Ω(|Di|), which is bad.

We solve this, by first balancing our SLP, where an SLP is balanced if the
longest path from a non-terminal to a leaf is bounded logarithmically in the size
of the string derived by that non-terminal. In particular, this means that all
paths of Di’s derivation tree would be bounded by log(|Di|). So if the SLP is
balanced, then constructing these subword-marked and partially decompressed
variants of Di’s derivation tree can be done in time log(|Di|) which explains our
logarithmic delay. But what if the SLP is not balanced? In this case, we can just
balance it, which is possible in linear time (see [17]).

18 M. L. Schmid

There is also a different approach to regular spanner evaluation over SLP-
compressed documents that improves the logarithmic delay to constant delay
(see [20]).

5.1 Updates

In addition to the enumeration perspective, another practically motivated per-
spective of query evaluation problems is the so-called dynamic case. This is
based on the observation that in practice we usually query a fixed database that
is updated from time to time. Hence, the same queries are evaluated over just
slightly different versions of the same database (i.e., a few tuples are added,
a few tuples are deleted, but it is relatively safe to assume that the database
that we query today is quite similar to the database that we query tomorrow).
Consequently, it would be nice if for a query q and a database D, it is enough
to run the preprocessing for q and D only once (this preprocessing provides us
with the necessary data structures to evaluate q on D efficiently), and whenever
we update the database, we also update directly what we have computed in the
preprocessing without repeating the complete preprocessing. Obviously, since an
update changes just a tiny bit of our data, the work to be done after an update
should be much less in comparison to re-running the complete preprocessing.

Document spanner evaluation in the SLP-compressed setting is particularly
well-suited for this dynamic setting. Let us sketch why this is the case (see [29]
for details).

In an uncompressed setting, we perform an update to the database (like
adding or deleting some data element), which is easy, and then we have to take
care of how to maintain the preprocessing data structures under the updates. In
a compressed scenario, on the other hand, we also have to update the compressed
representation of our data. And, needless to say, we do not want to completely
decompress the data, make the update and then compress it again. But, for-
tunately, an SLP that represents a document database is somehow suitable for
such updates. Take a look at the example SLP from above for the document
database D = {D1,D2,D3} = {ababbcabca, bcabcaabbca, ababbca} (actually,
take a look below, where we repeat this SLP, but now with some updates).

A1

A2

B

D

C

E

a

F

A3

b
c

A4A5

G

Document Spanners - A Very Informal Survey 19

In this SLP, non-terminals A1 and A2 represent document D1 and D2. So
by adding a new non-terminal A4 with rule A4 → A2A1 (as shown above),
we automatically add the new document D2D1 = bcabcaabbcaababbcabca
to our document database. Adding the non-terminals A5 and G with rules
A5 → BG and G → DB adds the more complicated document DBDDDB =
abbcabcaabbcaabbca, where DB = abbca is the document represented by non-
terminal B and DD = bcaabbca is the document represented by non-terminal
D. So as long as we want to add documents that can be pieced together from
strings already represented by non-terminals, this is simply done by adding a few
more non-terminals and rules. By slightly more complicated operations, we can
also cut some already present document into two parts (meaning that we con-
struct non-terminals that derive exactly the left and right part), and with such
an operation, we can realise operations like copying factors and inserting them
somewhere else etc. In summary, updates that consist in adding new documents
that can be created from existing documents by a sequence of copy-and-paste-
like operations (note that this is how we usually work with text documents) can
be easily done for SLP-compressed document databases. But how much effort is
this really?

On close inspection, we can see that for implementing any of these copy-
and-paste-like operations, it is sufficient to manipulate a constant number of
paths in the SLP. But how long is a path? Well, if the SLP is balanced, it
is not so long, i.e., logarithmic in the (uncompressed) size of the represented
document database. So updates can be performed in time logarithmic in the
size of the uncompressed data (multiplied by the number of individual copy-
and-paste-operations, should our desired update require several of those). The
only catch is that our updates may destroy the balancedness property, so we
should implement them in such a way that balancedness is maintained. This
is possible, at least if we require a stronger balancedness property. The weaker
balancedness property that we used for the enumeration algorithm only requires
that every path that starts in a non-terminal A is logarithmically bounded in
the size of the string represented by A, the stronger variant requires for every
rule A → BC that the longest path from B and the longest path from C differ
by at most one. The advantage of the weaker property is that we can transform
any SLP in an equivalent weakly balanced one of asymptotically the same size
in linear time, whereas the stronger property requires time m log(n), where m is
the size of the SLP and n is the (uncompressed) size of the represented document
database. But the stronger property can be maintained by our updates, so that
we can guarantee that all our updates only cost time logarithmic in the size of
the uncompressed data.

Nice, but this only updates the SLP. However, the data structures that we
have computed in the preprocessing and that we need for enumerating the regular
document spanner are basically just certain information for every non-terminal
of the SLP, and we can easily update those while performing our updates on the
SLP. Hence, as long as we have a strongly balanced SLP (which we can always
get by paying with a logarithmic factor), we can make a preprocessing linear in

20 M. L. Schmid

the size of the compressed data (which, potentially, is logarithmic in the actual
data), then enumerate a regular spanner with delay that is guaranteed logarith-
mic in the data, then perform updates in time logarithmic in the data, then
again enumerate the spanner with delay logarithmic in the data (but without
re-running the preprocessing) and so forth. We only have to spend again prepro-
cessing time linear in the compressed data if we want to evaluate a completely
new query. Thus, we could also initially preprocess a finite set of document span-
ners (this costs time linear in the compressed data multiplied by the number of
spanners) and then we can always enumerate any of these spanners with a delay
logarithmic in the (current) data, which we can manipulate with updates that
cost us time logarithmic in the (current) data.

References

1. Amarilli, A., Bourhis, P., Mengel, S., Niewerth, M.: Constant-delay enumeration for
nondeterministic document spanners. SIGMOD Rec. 49(1), 25–32 (2020). https://
doi.org/10.1145/3422648.3422655

2. Amarilli, A., Bourhis, P., Mengel, S., Niewerth, M.: Constant-delay enumeration
for nondeterministic document spanners. ACM Trans. Database Syst. 46(1), 2:1–
2:30 (2021). https://doi.org/10.1145/3436487

3. Amarilli, A., Jachiet, L., Muñoz, M., Riveros, C.: Efficient enumeration for anno-
tated grammars. In: PODS ’22: International Conference on Management of Data,
Philadelphia, PA, USA, 12–17 June 2022, pp. 291–300 (2022). https://doi.org/10.
1145/3517804.3526232

4. Bourhis, P., Grez, A., Jachiet, L., Riveros, C.: Ranked enumeration of MSO logic
on words. In: 24th International Conference on Database Theory, ICDT 2021, 23–
26 March 2021, Nicosia, Cyprus, pp. 20:1–20:19 (2021). https://doi.org/10.4230/
LIPICS.ICDT.2021.20

5. Casel, K., Fernau, H., Gaspers, S., Gras, B., Schmid, M.L.: On the complexity of
the smallest grammar problem over fixed alphabets. Theory Comput. Syst. 65(2),
344–409 (2021). https://doi.org/10.1007/S00224-020-10013-W

6. Doleschal, J., Bratman, N., Kimelfeld, B., Martens, W.: The complexity of aggre-
gates over extractions by regular expressions. In: 24th International Conference on
Database Theory, ICDT 2021, 23–26 March 2021, Nicosia, Cyprus, pp. 10:1–10:20
(2021). https://doi.org/10.4230/LIPICS.ICDT.2021.10

7. Doleschal, J., Kimelfeld, B., Martens, W., Nahshon, Y., Neven, F.: Split-correctness
in information extraction. In: Proceedings of the 38th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS 2019, Amsterdam,
The Netherlands, June 30–5 July 2019, pp. 149–163 (2019). https://doi.org/10.
1145/3294052.3319684

8. Doleschal, J., Kimelfeld, B., Martens, W., Peterfreund, L.: Weight annotation in
information extraction. In: 23rd International Conference on Database Theory,
ICDT 2020, March 30–2 April 2020, Copenhagen, Denmark, pp. 8:1–8:18 (2020).
https://doi.org/10.4230/LIPIcs.ICDT.2020.8

9. Fagin, R., Kimelfeld, B., Reiss, F., Vansummeren, S.: Document spanners: a formal
approach to information extraction. J. ACM 62(2), 12:1–12:51 (2015)

10. Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., Vrgoc, D.: Efficient
enumeration algorithms for regular document spanners. ACM Trans. Database
Syst. 45(1), 3:1–3:42 (2020). https://doi.org/10.1145/3351451

https://doi.org/10.1145/3422648.3422655
https://doi.org/10.1145/3422648.3422655
https://doi.org/10.1145/3436487
https://doi.org/10.1145/3517804.3526232
https://doi.org/10.1145/3517804.3526232
https://doi.org/10.4230/LIPICS.ICDT.2021.20
https://doi.org/10.4230/LIPICS.ICDT.2021.20
https://doi.org/10.1007/S00224-020-10013-W
https://doi.org/10.4230/LIPICS.ICDT.2021.10
https://doi.org/10.1145/3294052.3319684
https://doi.org/10.1145/3294052.3319684
https://doi.org/10.4230/LIPIcs.ICDT.2020.8
https://doi.org/10.1145/3351451

Document Spanners - A Very Informal Survey 21

11. Freydenberger, D.: A logic for document spanners. Theory Comput. Syst. 63(7),
1679–1754 (2019). https://doi.org/10.1007/s00224-018-9874-1

12. Freydenberger, D., Holldack, M.: Document spanners: from expressive power to
decision problems. Theory Comput. Syst. 62(4), 854–898 (2018)

13. Freydenberger, D.D., Kimelfeld, B., Peterfreund, L.: Joining extractions of regular
expressions. In: Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, Houston, TX, USA, 10–15 June 2018, pp.
137–149 (2018). https://doi.org/10.1145/3196959.3196967

14. Freydenberger, D.D., Thompson, S.M.: Dynamic complexity of document spanners.
In: 23rd International Conference on Database Theory, ICDT 2020, March 30–
2 April 2020, Copenhagen, Denmark, pp. 11:1–11:21 (2020). https://doi.org/10.
4230/LIPIcs.ICDT.2020.11

15. Freydenberger, D.D., Thompson, S.M.: Splitting spanner atoms: a tool for acyclic
core spanners. In: 25th International Conference on Database Theory, ICDT 2022,
March 29 to 1 April 2022, Edinburgh, UK (Virtual Conference), pp. 10:1–10:18
(2022). https://doi.org/10.4230/LIPIcs.ICDT.2022.10

16. Ganardi, M., Gawrychowski, P.: Pattern matching on grammar-compressed strings
in linear time. In: Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference/Alexandria, VA, USA, 9–12 January
2022, pp. 2833–2846 (2022). https://doi.org/10.1137/1.9781611977073.110

17. Ganardi, M., Jez, A., Lohrey, M.: Balancing straight-line programs. J. ACM 68(4),
27:1–27:40 (2021). https://doi.org/10.1145/3457389

18. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex.
Cryptol. 4(2), 241–299 (2012). https://doi.org/10.1515/gcc-2012-0016

19. Maturana, F., Riveros, C., Vrgoc, D.: Document spanners for extracting incom-
plete information: expressiveness and complexity. In: Proceedings of the 37th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Hous-
ton, TX, USA, 10–15 June 2018, pp. 125–136 (2018). https://doi.org/10.1145/
3196959.3196968

20. Muñoz, M., Riveros, C.: Constant-delay enumeration for SLP-compressed docu-
ments. In: 26th International Conference on Database Theory, ICDT 2023, 28–
31 March 2023, Ioannina, Greece, pp. 7:1–7:17 (2023). https://doi.org/10.4230/
LIPICS.ICDT.2023.7

21. Peterfreund, L.: The Complexity of Relational Queries over Extractions from Text.
Ph.D. thesis (2019)

22. Peterfreund, L.: Grammars for document spanners. In: 24th International Confer-
ence on Database Theory, ICDT 2021, 23–26 March 2021, Nicosia, Cyprus, pp.
7:1–7:18 (2021). https://doi.org/10.4230/LIPIcs.ICDT.2021.7

23. Peterfreund, L., ten Cate, B., Fagin, R., Kimelfeld, B.: Recursive programs for
document spanners. In: 22nd International Conference on Database Theory, ICDT
2019, 26–28 March 2019, Lisbon, Portugal, pp. 13:1–13:18 (2019)

24. Peterfreund, L., Freydenberger, D.D., Kimelfeld, B., Kröll, M.: Complexity bounds
for relational algebra over document spanners. In: Proceedings of the 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2019, Amsterdam, The Netherlands, June 30–5 July 2019, pp. 320–334 (2019)

25. Schmid, M.L.: Characterising REGEX languages by regular languages equipped
with factor-referencing. Inf. Comput. (I&C) 249, 1–17 (2016)

26. Schmid, M.L., Schweikardt, N.: A purely regular approach to non-regular core
spanners. In: 24th International Conference on Database Theory, ICDT 2021, 23–26
March 2021, Nicosia, Cyprus, pp. 4:1–4:19 (2021). https://doi.org/10.4230/LIPIcs.
ICDT.2021.4

https://doi.org/10.1007/s00224-018-9874-1
https://doi.org/10.1145/3196959.3196967
https://doi.org/10.4230/LIPIcs.ICDT.2020.11
https://doi.org/10.4230/LIPIcs.ICDT.2020.11
https://doi.org/10.4230/LIPIcs.ICDT.2022.10
https://doi.org/10.1137/1.9781611977073.110
https://doi.org/10.1145/3457389
https://doi.org/10.1515/gcc-2012-0016
https://doi.org/10.1145/3196959.3196968
https://doi.org/10.1145/3196959.3196968
https://doi.org/10.4230/LIPICS.ICDT.2023.7
https://doi.org/10.4230/LIPICS.ICDT.2023.7
https://doi.org/10.4230/LIPIcs.ICDT.2021.7
https://doi.org/10.4230/LIPIcs.ICDT.2021.4
https://doi.org/10.4230/LIPIcs.ICDT.2021.4

22 M. L. Schmid

27. Schmid, M.L., Schweikardt, N.: Spanner evaluation over SLP-compressed docu-
ments. In: PODS’21: Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, Virtual Event, China, 20–25 June
2021, pp. 153–165 (2021). https://doi.org/10.1145/3452021.3458325

28. Schmid, M.L., Schweikardt, N.: Document spanners - a brief overview of concepts,
results, and recent developments. In: PODS ’22: International Conference on Man-
agement of Data, Philadelphia, PA, USA, 12–17 June 2022, pp. 139–150 (2022).
https://doi.org/10.1145/3517804.3526069

29. Schmid, M.L., Schweikardt, N.: Query evaluation over SLP-represented document
databases with complex document editing. In: PODS ’22: International Conference
on Management of Data, Philadelphia, PA, USA, 12–17 June 2022, pp. 79–89
(2022). https://doi.org/10.1145/3517804.3524158

30. Schweikardt, N., Segoufin, L., Vigny, A.: Enumeration for FO queries over nowhere
dense graphs. J. ACM 69(3), 22:1–22:37 (2022). https://doi.org/10.1145/3517035

31. Segoufin, L.: A glimpse on constant delay enumeration (invited talk). In: 31st
International Symposium on Theoretical Aspects of Computer Science (STACS
2014), STACS 2014, 5–8 March 2014, Lyon, France, pp. 13–27 (2014). https://doi.
org/10.4230/LIPICS.STACS.2014.13

32. Segoufin, L.: Constant delay enumeration for conjunctive queries. SIGMOD Rec.
44(1), 10–17 (2015)

https://doi.org/10.1145/3452021.3458325
https://doi.org/10.1145/3517804.3526069
https://doi.org/10.1145/3517804.3524158
https://doi.org/10.1145/3517035
https://doi.org/10.4230/LIPICS.STACS.2014.13
https://doi.org/10.4230/LIPICS.STACS.2014.13

	The Information Extraction Framework of Document Spanners - A Very Informal Survey
	1 Document Spanners
	2 Representations of Document Spanners
	2.1 Regular Spanners
	2.2 Core-Spanners

	3 Problems on Regular Spanners and Core Spanners
	4 An Approach to Tame Core Spanners
	5 Regular Spanners on SLP-Compressed Data
	5.1 Updates

	References

