
49th International Conference on Current Trends
in Theory and Practice of Computer Science, SOFSEM 2024
Cochem, Germany, February 19–23, 2024, Proceedings

SOFSEM 2024:
Theory and Practice
of Computer ScienceLN

CS
 1

45
19

AR
Co

SS
Henning Fernau
Serge Gaspers
Ralf Klasing (Eds.)

Lecture Notes in Computer Science 14519

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Henning Fernau • Serge Gaspers •

Ralf Klasing
Editors

SOFSEM 2024:
Theory and Practice
of Computer Science
49th International Conference on Current Trends
in Theory and Practice of Computer Science, SOFSEM 2024
Cochem, Germany, February 19–23, 2024
Proceedings

123

Editors
Henning Fernau
University of Trier
Trier, Germany

Serge Gaspers
UNSW Sydney
Sydney, NSW, Australia

Ralf Klasing
CNRS and University of Bordeaux
Talence, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-52112-6 ISBN 978-3-031-52113-3 (eBook)
https://doi.org/10.1007/978-3-031-52113-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024, corrected publication 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-4444-3220
https://orcid.org/0000-0002-6947-9238
https://doi.org/10.1007/978-3-031-52113-3

Preface

A Good Tradition

The 49th International Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM 2024) was organized by the University of Trier, Ger-
many, during February 19th–23rd, 2024. It was held in Cochem, a town on the Moselle
river, about 100 km downstream from Trier and 150 km downstream from Schengen.
SOFSEM (originally the SOFtware SEMinar) is an annual international winter con-
ference, originally devoted to the theory and practice of computer science. Its aim was
to present the latest developments in research to professionals from academia and
industry working in leading areas of computer science. While now a well-established
and fully international conference, SOFSEM also maintains the best of its original
Winter School aspects, such as a high number of invited talks, in-depth coverage of
selected research areas, and ample opportunity to discuss and exchange new ideas, but
it has turned its focus more towards the theoretical aspects of computer science.

The series of SOFSEM conferences began in 1974 as a winter seminar for computer
scientists and software engineers in former Czechoslovakia. SOFSEM soon became the
foremost national seminar devoted to theoretical and practical problems of software
systems. Later on, international experts were also invited, to present series of lectures
on recent topics. Each SOFSEM conference consisted of several series of invited
lectures, complemented by selected contributions of participants. Until 1994, the total
duration of every SOFSEM conference was two weeks. Gradually, SOFSEM trans-
formed from a mainly national seminar into an international conference. From 1995
onwards, the SOFSEM proceedings were included in the series Lecture Notes in
Computer Science of Springer. The duration of SOFSEM was shortened to eight days.
In 2016 the SOFSEM Steering Committee mandated that, from then on, SOFSEM
conferences could be organized by colleagues anywhere in Europe, i.e., not limited to
the Czech or Slovak Republics anymore. The most recent venues have been:

– 2023: Nový Smokovec, Slovak Republic
– 2021: Bozen-Bolzano, Italy (virtual)
– 2020: Limassol, Cyprus

The break during the Covid pandemic was used to renew the scope and format of
SOFSEM. Now, it is focused entirely on original research and challenges in the
foundations of computer science including algorithms, AI-based methods, computa-
tional complexity, and formal models.

The Newest Edition: Cochem 2024

The Program Committee of SOFSEM 2024 (with three PC Chairs) included in total 36
scientists from 22 countries and was chaired by Henning Fernau (Trier University,
Germany), Serge Gaspers (UNSW Sydney, Australia), and Ralf Klasing (CNRS,
University of Bordeaux, France).

This volume contains the accepted papers of SOFSEM 2024. We received 89
abstract submissions in total. Each full paper received at least three reviews per sub-
mission in a single-blind review. As a result, the PC selected 33 papers for presentation
to the conference and publication in these proceedings, evaluated based on quality,
originality, and relevance to the symposium. The reviewing process was supported by
using the EasyChair conference system.

Highlights of the Conference

The Program Committee selected two papers to receive the Best Paper Award and one
for the Best Student Paper Award, respectively. These awards were sponsored by
Springer. The awardees are:

– Best Paper Award: Tesshu Hanaka, Hironori Kiya, Michael Lampis, Hirotaka Ono
and Kanae Yoshiwatari. Faster Winner Determination Algorithms for (Colored)
Arc Kayles

– Best Paper Award: Jesper Nederlof and Krisztina Szilágyi. Algorithms and Turing
Kernels for Detecting and Counting Small Patterns in Unit Disk Graphs

– Best Student Paper Award: Christoph Grüne, Tom Janssen and Janosch Fuchs. The
Complexity of Online Graph Games

The conference audience enjoyed five invited talks, given below in alphabetical
order of the speakers:

– Edith Elkind, Univ. Oxford, UK: Fairness in Multiwinner Voting
– Sevag Gharibian, Univ. Paderborn, Germany: Quantum algorithms and complexity

theory: Does theory meet practice?
– Rob van Glabbeek, Univ. Edinburgh, UK & Stanford Univ., USA & UNSW

Sydney, Australia: Modeling Time Qualitatively in Process Algebra and Concur-
rency Theory

– Markus L. Schmid, HU Berlin, Germany: The Information Extraction Framework
of Document Spanners - An Overview of Concepts, Results, and Recent
Developments

– Sandra Zilles, Univ. Regina, Canada: Machine Teaching - A Combinatorial
Approach to Machine Learning from Small Amounts of Data

vi Preface

Finally, Big Thanks …

We would like to thank all invited speakers for accepting to give a talk at the con-
ference, all Program Committee members who graciously gave their time and energy,
and the more than 100 external reviewers for their expertise. Also, we are grateful to
Springer for sponsoring the best (student) paper awards and for publishing the pro-
ceedings of SOFSEM 2024 in their ARCoSS subline of the LNCS series. Personal
thanks go to all who helped with organizing the event.

February 2024 Henning Fernau
Serge Gaspers
Ralf Klasing

Preface vii

Organization

Organizing Chair

Henning Fernau Universität Trier, Germany

Program Committee

Petra Berenbrink Universität Hamburg, Germany
Maike Buchin Ruhr Universität Bochum, Germany
Elisabet Burjons York University, Canada
Maria Chudnovsky Princeton University, USA
Sanjana Dey National University of Singapore, Singapore
Sigrid Ewert University of the Witwatersrand, Johannesburg,

South Africa
Henning Fernau (Co-chair) Universität Trier, Germany
Paola Flocchini University of Ottawa, Canada
Florent Foucaud LIMOS - Université Clermont Auvergne, Aubière,

France
Robert Ganian TU Wien, Austria
Luisa Gargano Università di Salerno, Italy
Leszek Gąsieniec University of Liverpool, UK
Serge Gaspers (Co-chair) UNSW Sydney, Australia
Mingyu Guo The University of Adelaide, Australia
Diptarama Hendrian Tohoku University, Japan & Tokyo Medical and

Dental University, Japan
Ling-Ju Hung National Taipei University of Business, Taiwan
Tomasz Jurdziński University of Wrocław, Poland
Philipp Kindermann Universität Trier, Germany
Ralf Klasing (Co-chair) CNRS and University of Bordeaux, Talence, France
Mikko Koivisto University of Helsinki, Finland
Rastislav Královič Comenius University, Bratislava, Slovakia
Dominik Köppl Universität Münster, Germany & University of

Yamanashi, Japan
Yaping Mao Qinghai Normal University, China
Kitty Meeks University of Glasgow, UK
Hirotaka Ono Nagoya University, Japan
Marina Papatriantafilou Chalmers University of Technology, Gothenburg,

Sweden
Tomasz Radzik King’s College London, UK
Peter Rossmanith RWTH Aachen University, Germany
Sasha Rubin The University of Sydney, Australia
Maria Serna Universitat Politècnica de Catalunya, Barcelona, Spain

Hadas Shachnai Technion, Haifa, Israel
Ulrike Stege University of Victoria, Canada
Frank Stephan National University of Singapore, Singapore
Jan van Leeuwen Utrecht University, The Netherlands
Jiří Wiedermann Institute of Computer Science of the Czech Academy

of Sciences, Prague, Czech Republic
Petra Wolf University of Bergen, Norway & LaBRI - University of

Bordeaux, Talence, France

Steering Committee

Barbara Catania University of Genova, Italy
Leszek A. Gąsieniec University of Liverpool, UK
Mirosław Kutyłowski NASK – National Research Institute, Poland
Tiziana Margaria University of Limerick, Ireland
Branislav Rovan Comenius University, Bratislava, Slovakia
Petr Šaloun Palacky University Olomouc, Czech Republic
Július Štuller (Chair) Institute of Computer Science of the Czech Academy

of Sciences, Prague, Czech Republic
Jan van Leeuwen Utrecht University, The Netherlands

Additional Reviewers

Abu-Khzam, Faisal
Alvin, Yan Hong Yao
Ardévol Martínez, Virginia
Arrighi, Emmanuel
Arseneva, Elena
Aruleba, Kehinde
Avanzini, Martin
Baccini, Edoardo
Barsukov, Alexey
Bentert, Matthias
Berndt, Sebastian
Binucci, Carla
Biswas, Arindam
Björklund, Johanna
Bok, Jan
Bordihn, Henning
Brand, Cornelius
Brinkmann, Gunnar
Casas Torres, David Fernando
Chakraborty, Dipayan
Chalopin, Jérémie
Chen, Li-Hsuan

Chen, Po-An
Chenxu, Yang
Cooper, Linus
D’Antoni, Loris
Dailly, Antoine
Dal Lago, Ugo
Damaschke, Peter
Das, Himika
Das, Soura Sena
de Castro Mendes Gomes, Guilherme
Di Crescenzo, Antonio
Dijk, Thomas C. Van
Dobrev, Stefan
Drange, Pål Grønås
Drewes, Frank
Duvignau, Romaric
Eiben, Eduard
Elder, Murray
Faliszewski, Piotr
Ferens, Robert
Gawrychowski, Pawel
Gehnen, Matthias

x Organization

Goel, Diksha
Gruner, Stefan
Guaiana, Giovanna
Hanaka, Tesshu
He, Mengmeng
Hesterberg, Adam
Hilgendorf, Martin
Hoffmann, Michael
Hoffmann, Stefan
Inamdar, Tanmay
Islam, Sk Samim
Jana, Satyabrata
Janczewski, Wojciech
Ji, Zhen
Karthik, C. S.
Kitaev, Sergey
Klawitter, Jonathan
Kleer, Pieter
Kobayashi, Koji M.
Kobayashi, Yasuaki
Kolay, Sudeshna
Kostolányi, Peter
Kunz, Pascal
Kurita, Kazuhiro
Kuske, Dietrich
Kuszmaul, John
Lambert, Dakotah
Laurenti, Luca
Lee, Chuan-Min
Lee, Troy
Leofante, Francesco
Levis, Edison
Li, Wen
Liang, Jinxia
Lin, Chuang-Chieh
Lin, Patrick
Lotze, Henri
Madathil, Jayakrishnan
Mande, Nikhil S.

Mengya, He
Mock, Daniel
Mömke, Tobias
Mráz, František
Murphy, Charlie
Nakajima, Tamio-Vesa
Nederlof, Jesper
Ngo, Quang Huy
Ortali, Giacomo
Pardubska, Dana
Pathirage Don, Thilina Chathuranga
Pellegrino, Maria Angela
Pighizzini, Giovanni
Prusa, Daniel
Pyatkin, Artem
Rebentrost, Patrick
Riquelme, Fabián
S, Taruni
Saarela, Aleksi
Sanders, Ian
Serra, Thiago
Shur, Arseny
Siemer, Stefan
Simon, Hans Ulrich
Šuppa, Marek
Szykuła, Marek
Tison, Sophie
Tsai, Meng-Tsung
Tzevelekos, Nikos
Uetz, Marc
Urbina, Cristian
von Geijer, Kåre
Wang, Xiumin
Weltge, Stefan
Yamakami, Tomoyuki
Zaborniak, Tristan
Zhang, Ayun
Zhang, Zhao
Zilles, Sandra

Organization xi

Contents

Invited Paper

The Information Extraction Framework of Document Spanners -
A Very Informal Survey . 3

Markus L. Schmid

Contributed Papers

Generalized Distance Polymatrix Games . 25
Alessandro Aloisio, Michele Flammini, and Cosimo Vinci

Relaxed Agreement Forests . 40
Virginia Ardévol Martínez, Steven Chaplick, Steven Kelk,
Ruben Meuwese, Matúš Mihalák, and Georgios Stamoulis

On the Computational Complexity of Generalized Common Shape Puzzles . . . 55
Mutsunori Banbara, Shin-ichi Minato, Hirotaka Ono,
and Ryuhei Uehara

Fractional Bamboo Trimming and Distributed Windows Scheduling 69
Arash Beikmohammadi, William Evans, and Seyed Ali Tabatabaee

New Support Size Bounds and Proximity Bounds for Integer
Linear Programming . 82

Sebastian Berndt, Matthias Mnich, and Tobias Stamm

On the Parameterized Complexity of Minus Domination 96
Sriram Bhyravarapu, Lawqueen Kanesh, A Mohanapriya,
Nidhi Purohit, N. Sadagopan, and Saket Saurabh

Exact and Parameterized Algorithms for Choosability 111
Ivan Bliznets and Jesper Nederlof

Parameterized Algorithms for Covering by Arithmetic Progressions. 125
Ivan Bliznets, Jesper Nederlof, and Krisztina Szilágyi

Row-Column Combination of Dyck Words . 139
Stefano Crespi Reghizzi, Antonio Restivo, and Pierluigi San Pietro

Group Testing in Arbitrary Hypergraphs and Related Combinatorial
Structures. 154

Annalisa De Bonis

On the Parameterized Complexity of the Perfect Phylogeny Problem 169
Jorke M. de Vlas

Data Reduction for Directed Feedback Vertex Set on Graphs Without Long
Induced Cycles . 183

Jona Dirks, Enna Gerhard, Mario Grobler, Amer E. Mouawad,
and Sebastian Siebertz

Visualization of Bipartite Graphs in Limited Window Size 198
William Evans, Kassian Köck, and Stephen Kobourov

Outerplanar and Forest Storyplans . 211
Jiří Fiala, Oksana Firman, Giuseppe Liotta, Alexander Wolff,
and Johannes Zink

The Complexity of Cluster Vertex Splitting and Company 226
Alexander Firbas, Alexander Dobler, Fabian Holzer, Jakob Schafellner,
Manuel Sorge, Anaïs Villedieu, and Monika Wißmann

Morphing Graph Drawings in the Presence of Point Obstacles 240
Oksana Firman, Tim Hegemann, Boris Klemz, Felix Klesen,
Marie Diana Sieper, Alexander Wolff, and Johannes Zink

Word-Representable Graphs from a Word’s Perspective 255
Pamela Fleischmann, Lukas Haschke, Tim Löck, and Dirk Nowotka

The Complexity of Online Graph Games . 269
Janosch Fuchs, Christoph Grüne, and Tom Janßen

Removable Online Knapsack with Bounded Size Items 283
Laurent Gourvès and Aris Pagourtzis

Faster Winner Determination Algorithms for (Colored) Arc Kayles 297
Tesshu Hanaka, Hironori Kiya, Michael Lampis, Hirotaka Ono,
and Kanae Yoshiwatari

Automata Classes Accepting Languages Whose Commutative Closure
is Regular . 311

Stefan Hoffmann

xiv Contents

Shortest Characteristic Factors of a Deterministic Finite Automaton
and Computing Its Positive Position Run by Pattern Set Matching 326

Jan Janoušek and Štěpán Plachý

Query Learning of Minimal Deterministic Symbolic Finite Automata
Separating Regular Languages . 340

Yoshito Kawasaki, Diptarama Hendrian, Ryo Yoshinaka,
and Ayumi Shinohara

Apportionment with Thresholds: Strategic Campaigns are Easy in the
Top-Choice but Hard in the Second-Chance Mode . 355

Christian Laußmann, Jörg Rothe, and Tessa Seeger

Local Certification of Majority Dynamics. 369
Diego Maldonado, Pedro Montealegre, Martín Ríos-Wilson,
and Guillaume Theyssier

Complexity of Spherical Equations in Finite Groups 383
Caroline Mattes, Alexander Ushakov, and Armin Weiß

Positive Characteristic Sets for Relational Pattern Languages 398
S. Mahmoud Mousawi and Sandra Zilles

Algorithms and Turing Kernels for Detecting and Counting Small Patterns
in Unit Disk Graphs . 413

Jesper Nederlof and Krisztina Szilágyi

The Weighted HOM-Problem Over Fields . 427
Andreea-Teodora Nász

Combinatorics of Block-Parallel Automata Networks 442
Kévin Perrot, Sylvain Sené, and Léah Tapin

On the Piecewise Complexity of Words and Periodic Words 456
M. Praveen, Ph. Schnoebelen, J. Veron, and I. Vialard

Distance Labeling for Families of Cycles . 471
Arseny M. Shur and Mikhail Rubinchik

On the Induced Problem for Fixed-Template CSPs . 485
Rustem Takhanov

Correction to: Parameterized Algorithms for Covering by Arithmetic
Progressions . C1

Ivan Bliznets, Jesper Nederlof, and Krisztina Szilágyi

Author Index . 501

Contents xv

Invited Paper

The Information Extraction Framework
of Document Spanners - A Very Informal

Survey

Markus L. Schmid(B)

Humboldt-Universität zu Berlin, Berlin, Germany
MLSchmid@MLSchmid.de

Abstract. This document provides an intuitive and high-level survey
of the information extraction framework of document spanners (Fagin,
Kimelfeld, Reiss, and Vansummeren (PODS 2013, J. ACM 2015)). Orig-
inally, document spanners were presented as a formalisation of the query
language AQL, which is used in IBM’s information extraction engine Sys-
temT, and over the last decade this framework is heavily investigated in
the database theory community. The research topic of document span-
ners combines classical results from areas like formal languages, algo-
rithms and database theory, while at the same time posing challenging
new research questions.

This survey is aimed at a general theoretical computer science audi-
ence that is not necessarily familiar with database theory. Its focus are
the topics of an invited talk at SOFSEM 2024.

Disclaimer

This survey particularly aims at providing an intuitive introduction to the topic
of document spanners, and a list of pointers to the relevant literature. Whenever
possible, we will neglect formal definitions, explain technical concepts with only
examples, and discuss theoretical results in an intuitive way. We do not assume
the reader to be familiar with aspects of data management that would exceed the
common knowledge of most computer scientists. For more technically detailed
surveys (that are particularly directed at a database theory audience), the reader
is referred to [1,28].

1 Document Spanners

Document spanners are a relatively new research area that has received a lot of
attention in the database theory community over the last ten years or so. An
interesting fact is that the topic is motivated by practical considerations, but its
theoretical foundation uses very classical and old concepts from theoretical com-
puter science, like regular expressions, finite automata and, in general, regular
languages. In order to substantiate the claim that document spanners constitute
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 3–22, 2024.
https://doi.org/10.1007/978-3-031-52113-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_1&domain=pdf
http://orcid.org/0000-0001-5137-1504
https://doi.org/10.1007/978-3-031-52113-3_1

4 M. L. Schmid

a quite relevant research area, we will just state a long list of recent papers (all
of them published within the last 10 years) that all have to do with this topic.
Here it comes: [2–4,6–15,19–24,26,27,29].1 Let us now explain what document
spanners are.

Document spanners have been introduced in [9], and they are a framework for
extracting information from texts (i.e., strings, sequences or words, or, as is the
common term in the data management community, documents); it is therefore
called an information extraction framework. Since strings are not tables as we
known them from relational databases, the information they represent is usually
considered by database people as being not structured, or, to use a less deroga-
tory term, to be only semi-structures.2 Therefore, we would like to process a
string (or let’s try to stick to the term document in the following (but we keep
in mind that documents are nothing but strings in the sense of finite sequences
of elements from a finite alphabet)), so we would like to process a document and
extract (some of) its information in a structured way, i.e., as a table as found
in relational databases, so with a fixed label for every column. Relevant parts
of the string should then appear as entries of the cells (put into relation by the
rows of the table as usual), but we are not really interested in having substrings
of our document in the cells of the table. Instead we use just pointers to sub-
strings, which are represented by the start and the endpoint of the substring.
Such a ‘pointer-to-substring’ is called a span. So the span (2, 4) represents the
first occurrence of the substring ana in the document D = banana, and (4, 6)
represents the second occurrence of ana.3 Not very surprisingly, we are not just
interested in the existence of substrings, but also where they occur; thus, the
span representation is useful. In the following, we use the notation D[i, j] to
refer to the content of span (i, j) of document D, so for D = banana, we have
D[2, 4] = D[4, 6] = ana.

In order to say how this table of spans that we want to extract from the
document looks like, we also have to label its columns (thereby also postulating
how many columns we have), and we do this by simply giving a set of variables,
e.g., X = {x, y, z}. So with respect to X , a possible table to be extracted from
a document can look like the table here to the right (such tables are also called
X -span relations, and their rows are called span tuples (or X -span tuples)):

1 Whether a research area should be considered important or not is always quite
subjective. At the very least we can observe that many researchers like to work in
the area of document spanners right now.

2 The fate of representing data in a way that is only semi-structured is also shared by
trees and graphs.

3 In the literature, the span (4, 6) is actually represented as [4, 7〉, which has some
reasons, but in this survey we abstract from several such details that are not needed
on this high level discussion.

Document Spanners - A Very Informal Survey 5

D = abbabccabc =⇒

x y z

(2, 5) (4, 7) (1, 10)
(3, 5) (5, 8) (4, 7)
(1, 3) (3, 10) (2, 4)
...

...
...

Any function that, for a fixed set X of variables, maps each document to a
(possibly empty) X -span relation is called a spanner (or document spanner, if
there is no page limit), and actually we should add X somewhere and rather say
X -spanner, because the set of variables is obviously relevant. The little picture
above demonstrates this scenario (and the reader should play the fun game of
finding all the factors of abbabccabc the spans of the table point to).

But let’s not overdo it with the informal style of this survey and maybe fix
at least some more precise notation. A span of a document D is an element
(i, j) ∈ {1, 2, . . . , |D|} × {1, 2, . . . , |D|} with i ≤ j, a span tuple is a mapping
from X to the set of spans, and a spanner is a function that maps a document to
a set of span tuples. Since it is awkward to write span tuples as functions, we use
a tuple notation, i.e., we write t = ((2, 5), (4, 7), (1, 10)) instead of t(x) = (2, 5),
t(y) = (4, 7) and t(z) = (1, 10) (this only works if we fix some linear order for X ,
but this will always be clear from the context).

This brief and informal explanation of the concept of document spanners is a
sufficient basis for explaining the further concepts and results that are to follow.
On the other hand, it is overly simplistic and makes the model look somewhat
primitive, which does not do justice to the original paper [9], which is indeed a
seminal paper. In particular, besides establishing some important conventions
about spans and spanners and documents as data sources, the paper [9] also
convincingly explains (also for researchers not too familiar with database theory),
why document spanners cover relevant information extraction and therefore data
management tasks. There is no need to further motivate document spanners
here, since this has been done by [9] and the many papers that followed (we will,
however, cite more actual literature later on).

2 Representations of Document Spanners

An important point is of course how to represent document spanners (so far, they
are just abstractly defined as functions), and, as is common in database theory,
we are not only interested in a mathematically rigorous formalisation, but we
also want to provide a language for describing spanners that can be easily learned
and applied by users (let’s keep in mind that even though the theoretical research
on document spanners is somewhat dominating, their original motivation was to
describe a practically relevant information extraction framework, so a tool for
users to tackle real-world data management tasks).

Historically, document spanners were defined by a two stage approach: First
we use classes of regular language descriptors, like regular expressions and
automata, to define spanners, and then we apply some relational algebra (i.e.,

6 M. L. Schmid

operations on tables) on top of the span-relations that can be produced by those
“regular spanners” (this term will be in quotation marks until we define it more
formally, which will happen later on). This first stage makes a lot of sense from
a data management perspective, because it means that if we throw a bunch
of “regular spanners” at a document, then we actually turn it into a relational
database. Using regular language descriptors is a great idea, since they are well
understood, they have very nice algorithmic properties, they are still powerful
enough to describe relevant computational tasks, and they are so simple that
we can even teach them to students in the first year of their studies. Regarding
the second stage: Everybody working in data management is able to manipulate
relational tables with relational algebra or similar languages like SQL. So this
approach is just natural.

2.1 Regular Spanners

Now how can regular language descriptors be used for describing document span-
ners? Well, just use a finite automaton, e.g., the following one:

Σ �x

ab

�x Σ �y

cc

�y Σ

This is an automaton over the alphabet Σ = {a, b, c}, but for the variable x it
has a special “please start the span for variable x here”-symbol �x , and a special
“please let the span for variable x end here, thank you”-symbol �x, and analogous
special symbols for variable y (it’s helpful to see them as a pair of parentheses

�x . . . �x). Intuitively, it is clear what’s going on: The automaton reads some
input over Σ and whenever it takes an �x -arc, a span for x is created that ends
when a �x-arc is traversed, and similar for y. When exactly such special-arcs are
traversed obviously depends on the nondeterminism of the automaton, so the
automaton can perform several different accepting runs on a fixed input, which
yields several ways of extracting an {x, y}-span tuple from the input. As is easy to
see, the automaton describes the spanner that, for any document D, produces
the table of all span-tuples ((i, j), (k, l)), where j ≤ k and D[i, j] = (ab)m

and D[k, l] = (cc)n with m,n ≥ 0. In a similar way, the regular expression
Σ∗ �x (ab)∗ �xΣ∗ �y (cc)∗ �yΣ∗ describes the same spanner (note that it describes
the same regular language over Σ ∪ { �x , �x, �y , �y} as the automaton).

However, in order to gain a better theoretical understanding of the model,
it is somewhat more convenient to refrain from thinking about specific classes
of spanner representations for a moment, and establish a quite general way of
how document spanners can be described (so any possible functions that maps
documents to span-relations, even undecidable ones). The most relevant class of
“regular spanners” can then be easily obtained by just saying the word “regular”
at the right place.

Document Spanners - A Very Informal Survey 7

Spanners are functions with Σ∗ as their domain, where Σ∗ is the set of all
words over the alphabet Σ. Consequently, it makes sense to describe the concept
of spanners in a purely language theoretic setting, which is quite convenient.4

A word w and an X -span-tuple t can be merged into a single string by
simply marking in w the beginning of the span for x by the symbol �x and the
end of the span for x by the symbol �x (and obviously in the same way for
all other variables from X), which is then a word over the alphabet Σ ∪ ΓX ,
where ΓX = { �x , �x | x ∈ X}. So merging the word banana and the span-tuple
((2, 4), (4, 6)) yields b �x an �y a �x na�y. Words like this – i.e., words over Σ ∪ΓX
that encode a word and an X -span-tuple for this word – are called subword-
marked words (because that’s just what they are).5 In particular, we note that
from such a subword-marked word, we can easily get the document it describes
(by just deleting the special symbols from ΓX), and the span tuple it describes
(by just looking up the positions of �x and �x for every x ∈ X).

The important point is now that every set L of subword-marked words (over
X), which we also call a subword-marked language, describes an X -document
spanner. Why? Because for any given document D, we can simply collect all
subword-marked words w ∈ L that represent D and put the span-tuple rep-
resented by w in a table. So any subword-marked language L (over X) has
a natural interpretation as a function �L� that maps documents to X -span
relations, i.e., a spanner. As a concrete example, consider the subword-marked
language {b �x an �y a �x na�y, b �x anana�x}, which extracts the span-relation
{((2, 4), (4, 6)), ((2, 6),⊥)} from banana (note that ⊥ means undefined), and the
empty span relation from any other document. Or the subword-marked language
{ �x b �x u | b ∈ Σ,w ∈ Σ∗}, which represents a spanner that extracts the first
symbol of any document in a span for variable x. Or the subword-marked lan-
guage {u1 �x (ab)m �xu2 �y (cc)n �yu3 | u1, u2, u3 ∈ Σ∗,m, n ≥ 0} which describes
the spanner also represented by the automaton from above.

But it also works the other way around. Let S be some X -document span-
ner, so some function that maps documents to X -span relations without any
further restriction. Then S maps every given document to a set {t1, t2, . . . , tn}
of X -span tuples (note that this set is always finite, since X is, but for our con-
siderations this is not even important, it’s just more practically sane to have only
finitely many variables). So we can simply merge D with each of the span-tuples
t1, t2, . . . , tn to obtain subword-marked words w1, w2, . . . , wn, and if we collect
all these subword-marked words that we can obtain like this from every possi-
ble document, we have a huge subword-marked language LS , which describes
exactly the spanner S in the way explained in the previous paragraph, i.e., S
equals the spanner interpretation �LS� of LS .

A Brief Interlude about Subword-marked Words: In the literature on
spanners, subword-marked words are usually called ref-words. This has histori-

4 Maybe a bit confusingly, but justified by the fact that we are now in the realm of
formal languages, we use the term word instead of document for a short while.

5 Obviously, we have to formalise when exactly a word over Σ∪ΓX is a proper subword-
marked word, but this is not difficult.

8 M. L. Schmid

cal reasons: Ref-words have originally been used in [25] (in the context of regular
expressions with backreferences) as words that contain references x to some of
their subwords, which are explicitly marked by brackets �x · · · �x. So these ref-
words from [25] are strings in which subwords can be marked, but they can
also contain references to marked substrings, represented by variable symbols in
the string. The literature has adapted this technical tool for formalising docu-
ment spanners, but for this, we only need the “subword-marking”-property, not
the “subword-referencing”-property. However, the term “ref-word” has been used
anyway and it stuck. Using the terms subword-marked words and ref-words syn-
onymously is fine, as long as we only want to represent markings of subwords
and no references. But in [26] – which we shall discuss in more detail below – it
has been shown that the ref-words in the sense of [25] (so not only with marked
subwords but also with reference-symbols) can be used for formalising a certain
class of spanners. Hence, we need to distinguish between the ref-words that only
mark subwords (and we call them subword-marked words here) on the one hand,
and the ref-words from [25] that can also contain references to marked subwords.
End of the interlude.

So we saw that subword-marked languages (over X) and X -document span-
ners are the same thing.6 In particular, we can now conveniently define certain
classes of spanners by simply stating the underlying class of subword-marked
languages. Like this: The regular spanners are exactly the spanners �L�, where
L is a regular subword-marked language. The reader is encouraged to try it
for herself by replacing “regular” with her favourite language class (literally any
language class! No judging!).

Obviously, for the applicability of a spanner class, the algorithmic properties
of the underlying class of subword-marked languages is important. So for rep-
resenting regular spanners, we can use automata or regular expressions or just
anything that describes regular languages (note that we can always filter out
strings over Σ ∪ ΓX that are not valid subword-marked words by intersection
with a regular language (note that for doing this, we do not have to parse a
well-formed parenthesised expression, we only have to check that if �x occurs,
then it is followed by one occurrence of �x, and that this happens at most once)).
6 Note that this is not a one-to-one correspondence. While every subword-marked

language L uniquely describes the spanner �L�, there are in general several ways of
representing a spanner by a subword-marked language. This is due to the fact that
two subword marked words like a �x �y b �y �x c and a �y �x b �x �y c are different
strings, but they nevertheless describe the same pair of document and span-tuple.
Unfortunately, this can be very annoying from a technical point of view, and it
can even lead to some problems for algorithms on spanners. But since there is no
peer-reviewing for this article, we keep quiet and simple pretend that we did not
notice this little flaw. This issue is anyway much discussed in the actual literature
on document spanners and everybody is aware of it, we just neglect it in this survey
because nobody stops us. For example, in order solve this issue, [7] introduces a fixed
order on the consecutive occurrences of the symbols from ΓX , while [2,27] simply
replace sequences of symbols from ΓX by sets of the symbols, thus using subsets of
ΓX as symbols. This was a long footnote, but better than having another “interlude”.

Document Spanners - A Very Informal Survey 9

Coming back to the example automaton above: If interpreted as an NFA over
Σ ∪ΓX , it obviously represents a regular subword-marked language, which is the
same language represented by the regular expression Σ∗ �x (ab)∗ �xΣ∗ �y (cc)∗ �y

Σ∗, and it is easy to see that if we interpret this subword-marked language as
a spanner, it is exactly the one described above, so all span-tuples ((i, j), (k, l)),
where j ≤ k and D[i, j] = (ab)m and D[k, l] = (cc)n with m,n ≥ 0.

Whether we interpret the �x and �x transitions as special operations that
trigger the construction of the span tuple, or whether we consider them as normal
input symbols so that the automaton is a string-acceptor is merely a matter of
taste. Although the second point of view seems to fit better to this general
perspective of spanners as subword-marked languages.

Note that [9] also considers a proper subclass of regular spanners defined
by so-called regex formulas, which is a certain class of regular expressions. The
point is that regex formulas can enclose only proper sub-expressions in brackets
�x and �x. As a result, this formalism cannot describe overlapping spans.

2.2 Core-Spanners

Recall that the regular spanners describe just the first step of the original spanner
framework from [9]. So let’s move on to the second stage.

Assume that we have extracted from a string a span relation or several span
relations by regular spanners. We could now manipulate these tables with rela-
tional algebra operations, and in [9], we use union, natural join, projection and –
let us make a dramatic pause here, because this operation is a real game changer
– string equality selection. Union is just the set union of span relations, natural
join sort of glues together tables on their common attributes (if you know how
natural join is defined, you are probably annoyed by this superficial explanation
and would be bored by a detailed one, if you don’t know it, you can google it)
and projection just deletes columns. Now these are typical operations for rela-
tional data and they are not specific to our framework of information extraction
of textual data. The string equality selection, on the other hand, is tailored to
the situation that our tables are not just any tables, but span relations, so their
entries are pointers to substrings of a document. The string equality selection
is an operator that is parameterised by some subset Y ⊆ X . It looks at every
span tuple of the span relation and checks whether all the spans of the variables
in Y point to an occurrence of the same substring. Although this is obvious, let
us briefly observe that different spans might represent occurrences of the same
substring, like (2, 4) and (4, 6) both represents the ana in banana. Every span
tuple where this is not the case will be kicked out by this operator, so it selects
span tuples from a span relation according to the equality of the substrings of
certain spans. The next example shows what the string equality selector does
with respect to Y = {x, y} on the following table that has been extracted from
banana:

10 M. L. Schmid

x y

(1, 2) (4, 6)
(2, 4) (4, 6)
(3, 4) (5, 6)
(2, 3) (5, 6)

⇒
x y

(2, 4) (4, 6)
(3, 4) (5, 6)

The so-called core spanners are those spanners that can be obtained by first
extracting a span relation from a document by a regular spanner, and then
apply a finite sequence of any of the relational operators from above (including
the string equality selection). As shown in [9], the operators of union, natural
join and projection (but not string equality selection!) can all directly be pushed
into the automaton for the regular spanner, meaning that tables extracted by
a regular spanner followed by any sequence of these operators can also directly
be extracted by a single regular spanner. Or, putting it differently, these simpler
relational operators are “regular”. As a consequence, core spanners have a normal
form: Every core spanner can be described by a regular spanner followed by a
finite sequence of string equality selections followed by one projection.

Why the string equality selection makes such a huge difference (i.e., why core
spanners are much more powerful than regular spanners) will be discussed in the
next section. From an intuitive point of view, this is not surprising, since string
equality selection is an inherently non-regular feature. For example, we can use a
regular spanner over X = {x, y} that extracts from a document D all span tuples
((1, k), (k + 1, |D|) for every k ∈ {1, 2, . . . , |D|} (so it can arbitrarily split the
document and store the two parts in the spans of the two variables), and then
uses a string equality selection with respect to X . This will turn every given
document D into the span-relation {((1, |D|/2), (|D|/2 + 1, |D|)} if D = ww
(i.e., D is a square) and into the span-relation ∅ if D is not a square. So it
somehow recognises the non-regular copy language. But this is nothing! We can
also get crazy and apply string equality selections to several spans that overlap
each other in complicated ways to describe spanners that are not funny anymore
(see [12] for further details).

The majority of the papers on document spanners is concerned with regular
spanners, probably because core spanners have some issues with complexity and
decidability. However, there are also several papers concerned with core spanners;
see [11,12,14,23,26].

3 Problems on Regular Spanners and Core Spanners

Regular spanners are mild and core spanners are wild. Putting it more formally,
regular spanners have excellent algorithmic properties (i.e., good complexities),
while core spanners exhibit intractability and even undecidability for many of
their relevant computational problems. As an example, let us consider some
relevant problems like model checking (deciding whether a given span tuple
t is in S(D) for a given spanner S and document D), non-emptiness (check
whether S(D)
= ∅ for a given spanner S and document D), satisfiability (for

Document Spanners - A Very Informal Survey 11

given spanner S, decide whether there is a document D with S(D)
= ∅), or
inclusion (for given spanners S1 and S2, decide whether S1(D) ⊆ S2(D) for
every document D).

For regular spanners, algorithms for model checking, non-emptiness and sat-
isfiability have quite good polynomial running times (see, e.g., [2,9,10,26]). The
reason is that these problems reduce to problems on regular languages or finite
automata (i.e., the good algorithmic properties of regular languages carry over to
regular spanners). Moreover, inclusion for regular spanners is PSPACE-complete,
which is not exactly tractable, but inclusion for regular languages is also PSPACE-
complete, and the inclusion problem for regular spanners covers the inclusion
problem for regular languages (see [19]). For core-spanners, the inclusion problem
is even undecidable, and model checking, non-emptiness and satisfiability, which
can be solved quite efficiently for regular spanners, are all NP-hard (see [12]).

All the aforementioned problems are typical decision problems, but in
database theory, which always has an eye towards application, there is also a
substantial interest in practically motivated problems. One key observation is
that a computer program that merely says “yes” or “no” to Boolean database
queries is of little use in the real world. Moreover, a program that computes the
huge set (of potentially exponential size) of all possible answers to the query
is also of questionable practical relevance. Therefore, it is common to investi-
gate query evaluation (this term somewhat abstractly covers all scenarios where
we want to evaluate a given query with respect to a given database, even if
the database is just a single string) in terms of an enumeration problem. This
means that we are interested in algorithms that produce a list of all answers to
the queries (obviously, without repetitions). Such an algorithm is particularly
worthwhile if it starts producing the list very fast, and if we do not have to wait
too long to receive the next element. The optimal scenario here is therefore that
the first element is produced after a running time that is only linear in the size
of the data, which is called linear preprocessing. Note that the algorithm must
somehow process the data that is queried, so assuming at least preprocessing
linear in the size of the data is fair. Moreover, after one answer is produced, we
would like the time we have to wait for the next element (which we call delay)
to be completely independent from the size of the data, so the running time we
need here is only a function of the size of the query (which is then called con-
stant delay). We should mention here that these complexity requirements use
the so-called data-complexity perspective, which measures running time only in
the size of the data, and considers the size of the query as being constant. This
is a quasi-standard in many areas of database theory, and it makes a lot of sense,
since the data can be assumed to be quite large, while the query, in comparison,
is tiny. The assumption that the data is large is justified by the buzzword “big
data”. The queries are assumed to be small since they are – in most scenarios
– written by human users. Of course, linear preprocessing and constant delay
is not always possible, but it is the holy-grail for enumeration algorithms of
query evaluation problems. See [31,32] for surveys on the topic of enumeration
algorithms in database theory, and [30] for a recent paper.

12 M. L. Schmid

Coming back to document spanners, we are looking for an algorithm that,
for some document D and a spanner S, makes some preprocessing that is linear
in |D| and then enumerates all span tuples from S(D) with constant delay. For
regular spanners, this is possible, but it does not directly follow from known
algorithmic results about automata (see [2,10] for details). Let us briefly discuss
this on an intuitive level.

Assume that the spanner S is given by an NFA M that accepts a subword-
marked language L (over Σ and X) with �L� = S. Now we are interested in
all possible ways of shuffling the symbols ΓX = { �x1 , �x1 , �x2 , �x2 , . . .} into D
such that we get a subword-marked word that is accepted by M , since these
subword-marked words represent the span-tuples of S(D). But these subword-
marked words are represented by paths in M from the start state to an accepting
state that are labelled with D (and some symbols from ΓX). In fact, it is better
to consider the DAG of nodes (p, i), where p is a state of M and i is a position of
D, there is a D[i+1]-labelled edge from (p, i) to (q, i+1) if in M we can change
from p to q by reading D[i+1], and there is a γ-labelled edge from (p, i) to (q, i)
if in M we can change from p to q by reading some symbol γ ∈ ΓX (actually,
we could even drop the edge labels from Σ, since they are not relevant). In this
DAG, we are interested in all paths from (qi, 0), where q0 is the start state, to
some (qf , |D|), where qf is some accepting state. The labels from ΓX on such
paths represents the span-tuples that we enumerate. So we simply enumerate
those paths, but this is a bit tricky because, firstly, there might be different
paths representing the same span-tuple and, secondly, the paths are rather long
(well, of size |D| actually), so we cannot afford to construct them explicitly,
because this would break our bound on the delay. In other words, we have to
enumerate those paths, but we have to efficiently skip over the parts of the paths
that are labelled with symbols from D.

4 An Approach to Tame Core Spanners

We called core spanners wild earlier in this article, because with this term in
mind, it is appropriate to think about how we can tame them. And taming now
means to make them a bit more like regular spanners in terms of their algorithmic
properties, while still maintaining the most important features of their expressive
power. An approach towards this goal has been presented in [26], which we shall
now briefly explain.

A nice property of regular spanners is that we can purely describe them as
special regular languages (i.e., regular subword marked languages), which means
that we can use classical tools like regular expressions and finite automata to
handle them. So it is worth thinking about to what extent we can use the same
approach also for (subclasses of) core spanners. In particular, the goal is to
describe core-spanners again just by certain regular languages (obviously, the
subword-marked languages are not suitable for this, since the subword-marked
languages of core-spanners are not necessarily regular languages).

Let LS be the subword-marked language for a regular spanner S. If we use on
S a string equality selection (i.e., we consider a core-spanner), say with respect
to variables Y = {y, z}, then any subword-marked word of LS can be considered

Document Spanners - A Very Informal Survey 13

irrelevant, if �y . . . �y and �z . . . �z enclose different factors. So with the application
of the string equality selection in mind, we wish to directly get rid of such
irrelevant words of LS , and we achieve this by replacing every �z u�z factor of
a subword-marked word by �z y�z, where the symbol y is used as a reference
signifying that the word enclosed by �y . . . �y is to be repeated here (otherwise,
the subword-marked word would describe a span-tuple that would be killed by
the string equality relation anyway).

As an example, consider the subword-marked language described by the reg-
ular expression

r := �x a∗b �y c �x b∗ �x′
a∗bc �x

′
�y �y′

cb∗a∗bc�y
′
,

and assume that we want to apply a string equality selection with respect to
{x, x′} followed by a string equality selection with respect to {y, y′}. The resulting
core-spanner can as well be represented by the regular expression r′ := �x a∗b �y

c �x b∗ �x′
x �x

′
�y �y′

y�y
′
, i.e., we simply replace �x′

a∗bc�x
′
and �y′

cb∗a∗bc�y
′

by �x′
x�x

′
and �y′

y�y
′
, respectively. Now, we have represented a non-regular

core-spanner “somehow” as a regular language (note that with help of the string
equality selection, this core spanner checks whether some unbounded factors are
repeated, which is an inherently non-regular property). But how exactly does the
regular language describe the core spanner? Very easy: The regular expression
r′ can generate words like �x aab �y c �x b �x′

x �x
′
�y �y′

y�y
′
and �x aaaab �y c �x

bbbb �x′
x �x

′
�y �y′

y�y
′
and so on. So these words are almost subword-marked

words, but they have occurrences of references x and y, which we need to replace.
Hence, we interpret each such word as the subword-marked word that we get by
simply replacing all the references. Applied to �x aab �y c �x b �x′

x �x
′
�y �y′

y�y
′
,

the replacement x �→ aabc gives us �x aab �y c �x b �x′
aabc �x

′
�y �y′

y�y
′
, and

then the replacement y �→ cbaabc gives us the subword-marked word �x aab �y

c �xb �x′
aabc �x

′
�y �y′

cbaabc�y
′
. And this final subword-marked word describes

a document and a span-tuple in the usual way.
So what we do is that we also allow the variables from X to occur in subword-

marked words, and we call such words then ref-words (since these variables
function a references to marked subwords). Then we consider regular languages
of ref-words, and we interpret such ref-languages as spanners by first resolving all
the references in all the ref-words (as sketched above) to get a subword-marked
languages, which then describes a spanner as before. While the ref-language is
necessarily regular (by definition), the subword-marked language that we get
from it by resolving all references is not necessarily a regular language anymore
(non-regularity must creep in somewhere, if we want to describe non-regular
core-spanners).

Those so-called refl-spanners can still describe all regular spanners, but also
many non-regular core-spanners.7

7 Technically, the formalism also allows to create an unbounded number of references
by using a variable symbol under a Kleene-star, which results in spanners that are
not even core-spanners. But since the formalism is introduced for describing a large
class of core-spanners by regular languages, we ignore this issue.

14 M. L. Schmid

Model-checking and satisfiability for refl-spanners can be solved as efficiently
as for regular spanners (while for core-spanners these problems are intractable).
On the other hand, non-emptiness for refl-spanners is NP-hard as for core span-
ners. Moreover, refl-spanner allow a certain restriction that yields decidable
inclusion (recall that inclusion is undecidable for core-spanners).

It is intuitively clear that refl-spanners cannot describe all core-spanners.
Note that the construction sketched above where we replaced parts of the regular
spanner by references only works in special cases.

For example, let s, t and r be some regular expressions, and consider the
regular spanner described by �x r �x �y s �y �z t�z. If we want to describe the
core-spanner that we get by applying a string equality selection with respect
to {x, y, z}, then we cannot simply replace each of s and t by an occurrence
of x, since this would also represent ref-words �x u �x �y x �y �z x�z, where
u ∈ L(r), but u /∈ L(s) or u /∈ L(t), which gives us the subword-marked word
�x u �x �y u �y �z u�z, which describes a span-tuple for the document uuu that

should not be in the span-relation. However, in this case, we can use the refl-
spanner �x h �x �y x �y �z x�z, where h is a regular expression that describes
the intersection of L(r), L(s) and L(t) (note that this construction causes an
exponential blow-up).

Another problem arises when we want to replace some �x s�x by �x y�x,
but s also contains symbols from ΓX , which we cannot afford to simply delete.
Interestingly, in such cases it can help to first cut all the overlapping regions
enclosed by the brackets �x . . . �x into smaller parts (thereby introducing new
variables, but only polynomially many), then, depending on the string equality
selection, translating it into a ref-language, which then not quite describes the
intended core spanner, but almost: It describes the core-spanner with the only
difference that some spans are cut into a several smaller spans. This difference
can then easily be repaired by just combining certain columns into one column
and gluing the respective spans of those columns together. This result points out
that refl-spanner can describe a large class of core-spanners.

5 Regular Spanners on SLP-Compressed Data

Since big data is so big, it is a good idea to compress it. The classical motivation
is that compressed data can be stored in less space, or send somewhere in less
time. But what about directly querying data in compressed form, i.e., without
decompressing it? This would be very convenient, since then we do not have to
decompress our data when we want to work with it, and algorithms for querying
the data might even be faster, since their running times depend on the size of the
compressed data, which might be much smaller than the uncompressed data size.
Theoretically, any polynomial time algorithm that works on compressed data
may outperform even a linear time algorithm for the uncompressed data, in the
special case where the compressed data has size logarithmic in the uncompressed
data (so measured in the uncompressed data it’s polylogarithmic running time
vs. linear running time).

Document Spanners - A Very Informal Survey 15

This paradigm of algorithmics on compressed inputs is well-developed in the
realm of string algorithms (see the explanations in [27,29] and the general sur-
vey [18]), and since spanner evaluation is a string problem, it makes sense to
investigate it in this compressed setting as well. More precisely, we are inter-
ested in evaluating a document spanner over a document that is compressed,
and which should not be decompressed for this purpose. Moreover, the most
relevant form of evaluation problem is enumeration (as explained above), and
the best running time is linear preprocessing (but now linear with respect to the
compressed size of the document!) and constant delay.

Before outlining some respective results, let us discuss the underlying com-
pression scheme in this setting. A particularly fruitful approach to algorithmics
on compressed strings are so-called straight-line programs (SLPs). The simplicity
of SLPs is very appealing: We compress a string w by a context-free grammar (for
convenience in Chomsky normal form) that describes the language {w} (i.e., it
can generate exactly one string, which happens to be w). This calls for an exam-
ple: The string aabbabaabaabbab can be described by a context-free grammar
with the rules shown here on the left (we use S,A,B,C,D,E as non-terminals,
where S is the start non-terminal):

S DE
D AC
E BD
A Bb
C ab
B aC

S
E

D

A

C

a b

B

S

D E

A C B D

B b a b a C A C

a C a b B b a b

a b a C

a b

Above in the middle, it is demonstrated that we can interpret each SLP as a
DAG in which each rule A → BC is represented by a node A with left successor
B (indicated by dotted arrows) and right successor C (indicated by dashed
arrows). Note that this is due to the fact that we assume the Chomsky normal
form (without the Chomsky normal form, the outdegree of the nodes would be
larger and we would need some way of expressing an order on the outgoing
edges). The only possible derivation in this SLP (i.e., starting with S and then
just applying the rules until we have a string over {a, b}) yields the compressed
string aabbabaabaabbab. As is typical for derivations in context-free grammars,
we can also consider the derivation tree, which is displayed above on the right
(note, however, that the derivation tree is not a compressed representation, since
it is at least as large as the string).

For the size of an SLP, we can take its number of rules (obviously, this
ignores a factor of 3, but that’s okay if we measure asymptotically). In order to
see how the compression works, take a look at the derivation tree (recall that the
derivation tree is an uncompressed representation): Here, we have to explicitly
spell out each application of a rule in the construction of the string, while the
actual SLP representation mentions each rule exactly once. Intuitively speaking,

16 M. L. Schmid

an SLP just tells us how to replace repeating substrings by variables in a clever
way (and this is hierarchical in the sense that substrings already containing
variables are again replaced by variables and so on). Obviously, this should be
called clever only if it achieves a decent compression.

An SLP might be much smaller than the string it represents; in fact, even
exponentially smaller (to see this, just consider an SLP which just doubles a
string in every rule). There are also strings that are not well compressible, but
experimental analyses have shown that the compression achieved by SLPs on
natural inputs is very good. On an intuitive level, this is not surprising: Texts
in natural language have many repeating words, and the same syllables occur
over and over again in different words. But also for any artificial string over a
finite alphabet (e.g., the alphabet {A,G,C, T} of DNA nucleobases), we will get
repeating substrings if the string is long enough.

The success of SLP-compression for strings is due to the fact that SLPs
achieve good compression (already mentioned above), but also that there are
very fast approximation algorithms that achieve these good compression ratios.8
And, most importantly, there are many algorithms capable of solving basic,
but important string problems directly on compressed strings (see [18] for an
overview). As an example, let us recall that pattern matching (i.e., finding a given
string P as substring in another string T) can be solved in time O(|P |+ |T |) by
classical algorithms (the well-known Knuth-Morris-Pratt algorithm for example).
But if T is given by an SLP S, so in SLP-compressed form, we can still solve
pattern matching in linear time, but without having to decompress S, i.e., in
time O(|P | + |S|) (note that if |S| |T |, then this directly translates into a
faster running time); this has recently been shown in [16]. Although this is not
always trivial to show, it often turns out that certain string problems can still
be solved efficiently, even if we get the input string in form of an SLP. And it is
the same for regular spanner evaluation (investigated in [20,27,29]).

For spanners (recall that we are in a data management setting), we assume
that we have a whole database of documents, which is just a set of documents,
e.g., D = {D1,D2,D3} = {ababbcabca, bcabcaabbca, ababbca}). Such docu-
ment databases can also be compressed by an SLP, for example, this one:

A1

A2

B

D

C

E

a

F

A3

b
c

8 Full disclosure: Computing a minimal SLP for a string is NP-complete [5]. But this
is no problem at all, due to these fast practical approximate compressors.

Document Spanners - A Very Informal Survey 17

Recall that dotted arrows point to the left successors and dashed arrows point
to the right successors. Here, the non-terminals A1, A2 and A3 derive exactly
the documents D1, D2 and D3 of the example document database D mentioned
above (the reader is welcome to verify this, although it is a bit painful).

We now get some regular spanner S and some index i ∈ {1, 2, . . . , |D|} (indi-
cating the document that we want to query), and after a preprocessing linear
in the size of D, we want to be able to enumerate the elements of S(Di). This
is in fact possible, but with a delay of log(|Di|). The delay is therefore not
constant and depends on the size of the uncompressed data, but only logarith-
mically. An important fact is that this delay is always at most logarithmic in
|Di| independent of the actual compression achieved by the SLP. In order to
understand where this log-factor comes from, let us sketch the general approach
of this algorithm (see [27] for details).

In the uncompressed setting, the enumeration of regular spanners relies on
enumerating all subword-marked versions of the document that are accepted
by the automaton that represents the spanner. So in the compressed setting, we
have to enumerate all subword-marked versions of the derivation tree for Di that
describe subword-marked documents accepted by the automaton. A subword-
marked version of Di’s derivation tree is obtained by placing the symbols from
ΓX at their corresponding places into the derivation tree of Di. Of course, we
cannot just naively construct Di’s derivation tree, because it is too big, but it
is enough to sufficiently expand only those branches of the derivation tree that
reveal positions of Di where symbols from ΓX have to be placed. This means that
we have to expand only O(|X |) branches of the derivation tree (recall that, due
to the data-complexity perspective, |X | is a constant for us), and we do not have
to expand branches completely, just a long path leading to the desired position
of the document. However, each of these paths may lead to a position that is
buried deep, deep down in Di’s derivation tree. So these branches leading to the
positions that must be marked with symbols from ΓX may be long. To clarify
this, take a look again at our first example of an SLP from above (Page 13). The
fourth letter b of the compressed document can be reached from S by a path of
length 3, i.e., the path S,D,A, b, while the 11th letter a needs a path of length
6. Hence, the cost of producing the next subword-marked variant of the (still
partially compressed) derivation tree, can be rather high, when we have to mark
symbols deep down in the derivation tree. In fact, the length of such a path can
be Ω(|Di|), which is bad.

We solve this, by first balancing our SLP, where an SLP is balanced if the
longest path from a non-terminal to a leaf is bounded logarithmically in the size
of the string derived by that non-terminal. In particular, this means that all
paths of Di’s derivation tree would be bounded by log(|Di|). So if the SLP is
balanced, then constructing these subword-marked and partially decompressed
variants of Di’s derivation tree can be done in time log(|Di|) which explains our
logarithmic delay. But what if the SLP is not balanced? In this case, we can just
balance it, which is possible in linear time (see [17]).

18 M. L. Schmid

There is also a different approach to regular spanner evaluation over SLP-
compressed documents that improves the logarithmic delay to constant delay
(see [20]).

5.1 Updates

In addition to the enumeration perspective, another practically motivated per-
spective of query evaluation problems is the so-called dynamic case. This is
based on the observation that in practice we usually query a fixed database that
is updated from time to time. Hence, the same queries are evaluated over just
slightly different versions of the same database (i.e., a few tuples are added,
a few tuples are deleted, but it is relatively safe to assume that the database
that we query today is quite similar to the database that we query tomorrow).
Consequently, it would be nice if for a query q and a database D, it is enough
to run the preprocessing for q and D only once (this preprocessing provides us
with the necessary data structures to evaluate q on D efficiently), and whenever
we update the database, we also update directly what we have computed in the
preprocessing without repeating the complete preprocessing. Obviously, since an
update changes just a tiny bit of our data, the work to be done after an update
should be much less in comparison to re-running the complete preprocessing.

Document spanner evaluation in the SLP-compressed setting is particularly
well-suited for this dynamic setting. Let us sketch why this is the case (see [29]
for details).

In an uncompressed setting, we perform an update to the database (like
adding or deleting some data element), which is easy, and then we have to take
care of how to maintain the preprocessing data structures under the updates. In
a compressed scenario, on the other hand, we also have to update the compressed
representation of our data. And, needless to say, we do not want to completely
decompress the data, make the update and then compress it again. But, for-
tunately, an SLP that represents a document database is somehow suitable for
such updates. Take a look at the example SLP from above for the document
database D = {D1,D2,D3} = {ababbcabca, bcabcaabbca, ababbca} (actually,
take a look below, where we repeat this SLP, but now with some updates).

A1

A2

B

D

C

E

a

F

A3

b
c

A4A5

G

Document Spanners - A Very Informal Survey 19

In this SLP, non-terminals A1 and A2 represent document D1 and D2. So
by adding a new non-terminal A4 with rule A4 → A2A1 (as shown above),
we automatically add the new document D2D1 = bcabcaabbcaababbcabca
to our document database. Adding the non-terminals A5 and G with rules
A5 → BG and G → DB adds the more complicated document DBDDDB =
abbcabcaabbcaabbca, where DB = abbca is the document represented by non-
terminal B and DD = bcaabbca is the document represented by non-terminal
D. So as long as we want to add documents that can be pieced together from
strings already represented by non-terminals, this is simply done by adding a few
more non-terminals and rules. By slightly more complicated operations, we can
also cut some already present document into two parts (meaning that we con-
struct non-terminals that derive exactly the left and right part), and with such
an operation, we can realise operations like copying factors and inserting them
somewhere else etc. In summary, updates that consist in adding new documents
that can be created from existing documents by a sequence of copy-and-paste-
like operations (note that this is how we usually work with text documents) can
be easily done for SLP-compressed document databases. But how much effort is
this really?

On close inspection, we can see that for implementing any of these copy-
and-paste-like operations, it is sufficient to manipulate a constant number of
paths in the SLP. But how long is a path? Well, if the SLP is balanced, it
is not so long, i.e., logarithmic in the (uncompressed) size of the represented
document database. So updates can be performed in time logarithmic in the
size of the uncompressed data (multiplied by the number of individual copy-
and-paste-operations, should our desired update require several of those). The
only catch is that our updates may destroy the balancedness property, so we
should implement them in such a way that balancedness is maintained. This
is possible, at least if we require a stronger balancedness property. The weaker
balancedness property that we used for the enumeration algorithm only requires
that every path that starts in a non-terminal A is logarithmically bounded in
the size of the string represented by A, the stronger variant requires for every
rule A → BC that the longest path from B and the longest path from C differ
by at most one. The advantage of the weaker property is that we can transform
any SLP in an equivalent weakly balanced one of asymptotically the same size
in linear time, whereas the stronger property requires time m log(n), where m is
the size of the SLP and n is the (uncompressed) size of the represented document
database. But the stronger property can be maintained by our updates, so that
we can guarantee that all our updates only cost time logarithmic in the size of
the uncompressed data.

Nice, but this only updates the SLP. However, the data structures that we
have computed in the preprocessing and that we need for enumerating the regular
document spanner are basically just certain information for every non-terminal
of the SLP, and we can easily update those while performing our updates on the
SLP. Hence, as long as we have a strongly balanced SLP (which we can always
get by paying with a logarithmic factor), we can make a preprocessing linear in

20 M. L. Schmid

the size of the compressed data (which, potentially, is logarithmic in the actual
data), then enumerate a regular spanner with delay that is guaranteed logarith-
mic in the data, then perform updates in time logarithmic in the data, then
again enumerate the spanner with delay logarithmic in the data (but without
re-running the preprocessing) and so forth. We only have to spend again prepro-
cessing time linear in the compressed data if we want to evaluate a completely
new query. Thus, we could also initially preprocess a finite set of document span-
ners (this costs time linear in the compressed data multiplied by the number of
spanners) and then we can always enumerate any of these spanners with a delay
logarithmic in the (current) data, which we can manipulate with updates that
cost us time logarithmic in the (current) data.

References

1. Amarilli, A., Bourhis, P., Mengel, S., Niewerth, M.: Constant-delay enumeration for
nondeterministic document spanners. SIGMOD Rec. 49(1), 25–32 (2020). https://
doi.org/10.1145/3422648.3422655

2. Amarilli, A., Bourhis, P., Mengel, S., Niewerth, M.: Constant-delay enumeration
for nondeterministic document spanners. ACM Trans. Database Syst. 46(1), 2:1–
2:30 (2021). https://doi.org/10.1145/3436487

3. Amarilli, A., Jachiet, L., Muñoz, M., Riveros, C.: Efficient enumeration for anno-
tated grammars. In: PODS ’22: International Conference on Management of Data,
Philadelphia, PA, USA, 12–17 June 2022, pp. 291–300 (2022). https://doi.org/10.
1145/3517804.3526232

4. Bourhis, P., Grez, A., Jachiet, L., Riveros, C.: Ranked enumeration of MSO logic
on words. In: 24th International Conference on Database Theory, ICDT 2021, 23–
26 March 2021, Nicosia, Cyprus, pp. 20:1–20:19 (2021). https://doi.org/10.4230/
LIPICS.ICDT.2021.20

5. Casel, K., Fernau, H., Gaspers, S., Gras, B., Schmid, M.L.: On the complexity of
the smallest grammar problem over fixed alphabets. Theory Comput. Syst. 65(2),
344–409 (2021). https://doi.org/10.1007/S00224-020-10013-W

6. Doleschal, J., Bratman, N., Kimelfeld, B., Martens, W.: The complexity of aggre-
gates over extractions by regular expressions. In: 24th International Conference on
Database Theory, ICDT 2021, 23–26 March 2021, Nicosia, Cyprus, pp. 10:1–10:20
(2021). https://doi.org/10.4230/LIPICS.ICDT.2021.10

7. Doleschal, J., Kimelfeld, B., Martens, W., Nahshon, Y., Neven, F.: Split-correctness
in information extraction. In: Proceedings of the 38th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS 2019, Amsterdam,
The Netherlands, June 30–5 July 2019, pp. 149–163 (2019). https://doi.org/10.
1145/3294052.3319684

8. Doleschal, J., Kimelfeld, B., Martens, W., Peterfreund, L.: Weight annotation in
information extraction. In: 23rd International Conference on Database Theory,
ICDT 2020, March 30–2 April 2020, Copenhagen, Denmark, pp. 8:1–8:18 (2020).
https://doi.org/10.4230/LIPIcs.ICDT.2020.8

9. Fagin, R., Kimelfeld, B., Reiss, F., Vansummeren, S.: Document spanners: a formal
approach to information extraction. J. ACM 62(2), 12:1–12:51 (2015)

10. Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., Vrgoc, D.: Efficient
enumeration algorithms for regular document spanners. ACM Trans. Database
Syst. 45(1), 3:1–3:42 (2020). https://doi.org/10.1145/3351451

https://doi.org/10.1145/3422648.3422655
https://doi.org/10.1145/3422648.3422655
https://doi.org/10.1145/3436487
https://doi.org/10.1145/3517804.3526232
https://doi.org/10.1145/3517804.3526232
https://doi.org/10.4230/LIPICS.ICDT.2021.20
https://doi.org/10.4230/LIPICS.ICDT.2021.20
https://doi.org/10.1007/S00224-020-10013-W
https://doi.org/10.4230/LIPICS.ICDT.2021.10
https://doi.org/10.1145/3294052.3319684
https://doi.org/10.1145/3294052.3319684
https://doi.org/10.4230/LIPIcs.ICDT.2020.8
https://doi.org/10.1145/3351451

Document Spanners - A Very Informal Survey 21

11. Freydenberger, D.: A logic for document spanners. Theory Comput. Syst. 63(7),
1679–1754 (2019). https://doi.org/10.1007/s00224-018-9874-1

12. Freydenberger, D., Holldack, M.: Document spanners: from expressive power to
decision problems. Theory Comput. Syst. 62(4), 854–898 (2018)

13. Freydenberger, D.D., Kimelfeld, B., Peterfreund, L.: Joining extractions of regular
expressions. In: Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, Houston, TX, USA, 10–15 June 2018, pp.
137–149 (2018). https://doi.org/10.1145/3196959.3196967

14. Freydenberger, D.D., Thompson, S.M.: Dynamic complexity of document spanners.
In: 23rd International Conference on Database Theory, ICDT 2020, March 30–
2 April 2020, Copenhagen, Denmark, pp. 11:1–11:21 (2020). https://doi.org/10.
4230/LIPIcs.ICDT.2020.11

15. Freydenberger, D.D., Thompson, S.M.: Splitting spanner atoms: a tool for acyclic
core spanners. In: 25th International Conference on Database Theory, ICDT 2022,
March 29 to 1 April 2022, Edinburgh, UK (Virtual Conference), pp. 10:1–10:18
(2022). https://doi.org/10.4230/LIPIcs.ICDT.2022.10

16. Ganardi, M., Gawrychowski, P.: Pattern matching on grammar-compressed strings
in linear time. In: Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference/Alexandria, VA, USA, 9–12 January
2022, pp. 2833–2846 (2022). https://doi.org/10.1137/1.9781611977073.110

17. Ganardi, M., Jez, A., Lohrey, M.: Balancing straight-line programs. J. ACM 68(4),
27:1–27:40 (2021). https://doi.org/10.1145/3457389

18. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex.
Cryptol. 4(2), 241–299 (2012). https://doi.org/10.1515/gcc-2012-0016

19. Maturana, F., Riveros, C., Vrgoc, D.: Document spanners for extracting incom-
plete information: expressiveness and complexity. In: Proceedings of the 37th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Hous-
ton, TX, USA, 10–15 June 2018, pp. 125–136 (2018). https://doi.org/10.1145/
3196959.3196968

20. Muñoz, M., Riveros, C.: Constant-delay enumeration for SLP-compressed docu-
ments. In: 26th International Conference on Database Theory, ICDT 2023, 28–
31 March 2023, Ioannina, Greece, pp. 7:1–7:17 (2023). https://doi.org/10.4230/
LIPICS.ICDT.2023.7

21. Peterfreund, L.: The Complexity of Relational Queries over Extractions from Text.
Ph.D. thesis (2019)

22. Peterfreund, L.: Grammars for document spanners. In: 24th International Confer-
ence on Database Theory, ICDT 2021, 23–26 March 2021, Nicosia, Cyprus, pp.
7:1–7:18 (2021). https://doi.org/10.4230/LIPIcs.ICDT.2021.7

23. Peterfreund, L., ten Cate, B., Fagin, R., Kimelfeld, B.: Recursive programs for
document spanners. In: 22nd International Conference on Database Theory, ICDT
2019, 26–28 March 2019, Lisbon, Portugal, pp. 13:1–13:18 (2019)

24. Peterfreund, L., Freydenberger, D.D., Kimelfeld, B., Kröll, M.: Complexity bounds
for relational algebra over document spanners. In: Proceedings of the 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2019, Amsterdam, The Netherlands, June 30–5 July 2019, pp. 320–334 (2019)

25. Schmid, M.L.: Characterising REGEX languages by regular languages equipped
with factor-referencing. Inf. Comput. (I&C) 249, 1–17 (2016)

26. Schmid, M.L., Schweikardt, N.: A purely regular approach to non-regular core
spanners. In: 24th International Conference on Database Theory, ICDT 2021, 23–26
March 2021, Nicosia, Cyprus, pp. 4:1–4:19 (2021). https://doi.org/10.4230/LIPIcs.
ICDT.2021.4

https://doi.org/10.1007/s00224-018-9874-1
https://doi.org/10.1145/3196959.3196967
https://doi.org/10.4230/LIPIcs.ICDT.2020.11
https://doi.org/10.4230/LIPIcs.ICDT.2020.11
https://doi.org/10.4230/LIPIcs.ICDT.2022.10
https://doi.org/10.1137/1.9781611977073.110
https://doi.org/10.1145/3457389
https://doi.org/10.1515/gcc-2012-0016
https://doi.org/10.1145/3196959.3196968
https://doi.org/10.1145/3196959.3196968
https://doi.org/10.4230/LIPICS.ICDT.2023.7
https://doi.org/10.4230/LIPICS.ICDT.2023.7
https://doi.org/10.4230/LIPIcs.ICDT.2021.7
https://doi.org/10.4230/LIPIcs.ICDT.2021.4
https://doi.org/10.4230/LIPIcs.ICDT.2021.4

22 M. L. Schmid

27. Schmid, M.L., Schweikardt, N.: Spanner evaluation over SLP-compressed docu-
ments. In: PODS’21: Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, Virtual Event, China, 20–25 June
2021, pp. 153–165 (2021). https://doi.org/10.1145/3452021.3458325

28. Schmid, M.L., Schweikardt, N.: Document spanners - a brief overview of concepts,
results, and recent developments. In: PODS ’22: International Conference on Man-
agement of Data, Philadelphia, PA, USA, 12–17 June 2022, pp. 139–150 (2022).
https://doi.org/10.1145/3517804.3526069

29. Schmid, M.L., Schweikardt, N.: Query evaluation over SLP-represented document
databases with complex document editing. In: PODS ’22: International Conference
on Management of Data, Philadelphia, PA, USA, 12–17 June 2022, pp. 79–89
(2022). https://doi.org/10.1145/3517804.3524158

30. Schweikardt, N., Segoufin, L., Vigny, A.: Enumeration for FO queries over nowhere
dense graphs. J. ACM 69(3), 22:1–22:37 (2022). https://doi.org/10.1145/3517035

31. Segoufin, L.: A glimpse on constant delay enumeration (invited talk). In: 31st
International Symposium on Theoretical Aspects of Computer Science (STACS
2014), STACS 2014, 5–8 March 2014, Lyon, France, pp. 13–27 (2014). https://doi.
org/10.4230/LIPICS.STACS.2014.13

32. Segoufin, L.: Constant delay enumeration for conjunctive queries. SIGMOD Rec.
44(1), 10–17 (2015)

https://doi.org/10.1145/3452021.3458325
https://doi.org/10.1145/3517804.3526069
https://doi.org/10.1145/3517804.3524158
https://doi.org/10.1145/3517035
https://doi.org/10.4230/LIPICS.STACS.2014.13
https://doi.org/10.4230/LIPICS.STACS.2014.13

Contributed Papers

Generalized Distance Polymatrix Games

Alessandro Aloisio1(B) , Michele Flammini2 , and Cosimo Vinci3

1 Universitá degli Studi Internazionali di Roma, Rome, Italy
alessandro.aloisio@unint.it

2 Gran Sasso Science Institute, L’Aquila, Italy
michele.flammini@gssi.it
3 Universitá del Salento, Lecce, Italy
cosimo.vinci@unisalento.it

Abstract. We consider a generalization of the distance polymatrix coordination
games to hypergraphs. The classic polymatrix coordination games and the suc-
cessive distance polymatrix coordination games are usually modelled by means
of undirected graphs, where nodes represent agents, and edges stand for binary
games played by the agents at their extremes. The utility of an agent depends at
different scales on the outcome of a suitably defined subset of all binary games,
plus the preference she has for her action.

We propose the new class of generalized distance polymatrix games, properly
generalizing distance polymatrix coordination games, in which each subgame can
be played by more than two agents. They can be suitably modelled by means of
hypergraphs, where each hyperedge represents a subgame played by its agents.
Moreover, as for distance polymatrix coordination games, the overall utility of a
player x also depends on the payoffs of the subgames where the involved players
are far, at most, a given distance from x. As for the original model, we discount
these payoffs proportionally by factors depending on the distance of the related
hyperedges.

After formalizing and motivating our model, we first investigate the existence
of exact and approximate strong equilibria. Then we study the degradation of the
social welfare by resorting to the standard measures of Price of Anarchy and Price
of Stability, both for general and bounded-degree graphs.

Keywords: Polymatrix Games · Price of Anarchy · Price of Stability

1 Introduction

Polymatrix games [25] are well-known games that have been deeply investigated for
decades. They are multi-player games and belong to the class of graphical games [26]
since it is possible to represent player interactions using an interaction graph. In this
graph, nodes correspond to players, while edges correspond to bimatrix games played
by the agents at the extremes.

This work is partially supported by GNCS-INdAM and European Union, PON Ricerca e Inno-
vazione 2014-20 TEBAKA - Fondo Sociale Europeo 2014-20.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 25–39, 2024.
https://doi.org/10.1007/978-3-031-52113-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_2&domain=pdf
http://orcid.org/0000-0003-3911-4008
http://orcid.org/0000-0003-0327-3728
http://orcid.org/0000-0001-7741-9342
https://doi.org/10.1007/978-3-031-52113-3_2

26 A. Aloisio et al.

Each player chooses a pure strategy from a finite set, which she will play in all the
binary games she is involved in. In the subclass of polymatrix coordination games [30],
the interaction graph is undirected since the outcome of a binary game is the same for
both players. An extension of this classic model is presented in [2], where the utility of
an agent x depends not only on the games (edges) in which x is involved but also on
the games (edges) played by agents that are at most a distance of d away from x.

In this paper, we present and study a new, more general model, generalized distance
polymatrix games, where each local game can concern more than two players, and the
utility of an agent x can also depend on the games at a distance bounded by d. In
this new model, the interaction graph becomes an undirected hypergraph, where every
hyperedge corresponds to a game played by the players it contains. Following the idea
proposed in [2], the utility of an agent x is the sum of the outcomes of the games she
plays plus a fraction of the outcomes of the games played by other players at a distance
at most d from x. Each agent x also gets an additional payoff that is a function of her
chosen strategy. Our new model is interesting both from a theoretical and a practical
point of view since it is able to represent scenarios that previous models did not cover.

On the one hand, extending a local game to more than two players is reason-
able because, in many natural social environments (e.g., economics, politics, sports,
academia, etc.), people get a payoff from activities that involve more than two players.

As an example, in a scientific community, a project or a paper often involves more
than two researchers, and its outcome depends on the choice made by each person. This
can be modelled by using a hyperedge for each project/paper, with a weight (payoff)
depending on the participants’ strategies.

On the other hand, any individual also gets a benefit, albeit to a smaller degree, when
her close colleagues succeed in some project or publish a quality paper that she is not
personally a part of. This is quite obvious when considering the student-advisor rela-
tionship, but also noticeable for the collective evaluation and reputation of the depart-
ment or institution where the researchers are working, for instance, in terms of increased
assignment of resources and positions. We can model these indirect relationships by
introducing distances and discount factors.

Our framework can also be used to key out a local economy interaction. It is well
known that the businesses of a small town or an area of a city strictly depend on each
other. In many cases, the interaction is positive; if a business grows, it attracts cus-
tomers and also positively influences the nearby ones. When small businesses are placed
throughout an area, townspeople are likelier to shop around from one business to the
next. An example is provided in Sect. 3.

Once formalized our new model, we provide some conditions for the existence of
β-approximate k-strong Nash equilibria. Then we focus on the degradation of the social
welfare when k players can simultaneously change their strategies. We analyze the Price
of Anarchy and Stability for β-approximate k-strong Nash equilibria, determining tight
lower and upper bounds.

1.1 Related Work

Polymatrix games were introduced more than forty years ago [25] and have since
received considerable attention in the scientific literature, as they are a very general

Generalized Distance Polymatrix Games 27

model that can be applied to many different real-world scenarios and can be used to
derive several relevant games (e.g., hedonic games [17], max-cut [22]). Some seminal
papers on the topic are [18,23,24,27], and more recent studies are [4,11,16,30], where
the authors showed results mainly concerning equilibria and their computational issues.

Our model is related to polymatrix coordination games [4,30] and the more recent
distance polymatrix coordination games [2], where the authors introduced the idea of
distances. Polymatrix coordination games are, in turn, an extension of a previously
introduced model that did not include individual preferences [12]. Some preliminary
results can be found in [1].

Our studies are also related to (symmetric) additively separable hedonic games [17]
and hypergraph hedonic games [3], where there are no preferences, and the weights of
the interaction graph are independent of the players’ strategies, except being null when
concerning agents playing different strategies. Our model can also be seen as a general-
ization of the hypergraph hedonic games [3], introducing preferences and increasing the
expressiveness of the weight function (also allowing weight related to different strate-
gies to be non-null).

Pure Nash equilibria have been studied for synchronization games [31], which are a
generalization of polymatrix coordination games to hypergraphs. However, they do not
investigate the degradation of the social welfare, and they do not consider distances.

Another closely related model is the group activity selection problem [10,14,15],
which is positioned somewhat between polymatrix coordination games and hedonic
games.

Our model is also related to the social context games [5,8], where the players’ util-
ities are computed from the payoffs based on the neighbourhood graph and an aggrega-
tion function. We take into account more than just the neighbourhood of an agent, we
account for the player’s preference only for her utility, and we extend payoffs of local
games to more than two agents.

The idea of obtaining utility from non-neighbouring players has also been analyzed
for distance hedonic games [21], a variant of hedonic games that are non-additively
separable since payoffs also depend on the size of the coalitions. They generalize frac-
tional hedonic games [6,9,13,19,28] similarly as distance polymatrix games and our
model do with polymatrix games.

Some negative results for our problem can be inherited from additively separable
hedonic games. For instance, computing a Nash stable outcome is PLS-complete [12],
while the problems of finding an optimal solution and determining the existence of a
core stable, strict core stable, Nash stable, or individually stable outcome are all NP-
hard [7].

2 Our Contribution

After formalizing our new model, we analyse the existence of β-approximate k-strong
equilibria and investigate the degradation of social welfare when a deviation from the
current strategy profile can involve up to k agents. Consequently, we compute tight
bounds on the resulting Price of Anarchy and Stability. To the best of our knowledge,
there are no previous results of this kind in the literature that would apply to our model.

28 A. Aloisio et al.

In particular, in Sect. 4, we analyze the existence of β-approximate k-strong equilib-
ria. In Sect. 5, we provide tight bounds on the Price of Anarchy for general hypergraphs.
In Sect. 6, we prove a suitable lower bound on the Price of Stability for general hyper-
graphs, which is asymptotically equivalent to the upper bound of the Price of Anarchy
when β = 1, meaning that the inefficiency of 1-approximate k-strong equilibria is fully
characterized. Finally, in Sect. 7, we give upper and lower bounds for bounded-degree
hypergraphs, with the gap being reasonably small. Some of our results are summarized
in Table 1. Due to space constraints, some proofs are only sketched or omitted, while
all the details are deferred to the full version.

Table 1. Summary of some of our results, where UB and LB stand for the upper and lower bound,
respectively. Furthermore, Δ and r denote the maximal vertex degree and the maximum arity in
the bounded-degree case, respectively, and αh, h ∈ [d], is the discounting factor for hyperedges
at distance h−1. The arrows denote that a result follows from an adjacent result in the table. The
question mark stands for an open problem.

general bounded-degree

PoAβ
k (LB) β

(n−1)r−1
(k−1)r−1

(r + α2(n − r)) Ω(β(Δ − 1)d/2(r − 1)d/2)

PoAβ
k (UB) β

(n−1)r−1
(k−1)r−1

(r + α2(n − 2)) βr
∑

h∈[d] αhΔ((Δ − 1)r)h−1

PoSβ
k (UB) ↓ ↓

PoS1
k(LB)

n−r
n−1

(n−1)r−1
(k−1)r−1

(r+α2(n−r))
2(1+α2)

?

3 Preliminaries

Given two integers r ≥ 1 and n ≥ 1, let [n] = {1, 2, . . . , n} and (n)r := n · (n − 1) ·
. . .·(n−r+1) be the falling factorial. A weighted hypergraph is a triple H = (V,E,w)
consisting of a finite set V = [n] of nodes, a collection E ⊆ 2V of hyperedges, and
a weight w : E → R associating a real value w(e) with each hyperedge e ∈ E. For
simplicity, when referring to weighted hypergraphs, we omit the term weighted.

The arity of a hyperedge e is its size |e|. An r-hypergraph is a hypergraph such that
the arity of each hyperedge is at most r, where 2 ≤ r ≤ n. A complete r-hypergraph is a
hypergraph (V,E,w) such that E := {U ⊆ V : |U | ≤ r}. A uniform r-hypergraph is a
hypergraph such that the arity of each hyperedge is r. An undirected graph is a uniform
2-hypergraph. A hypergraph is said to be Δ-regular if each of its nodes is contained in
exactly Δ hyperedges. It is said to be linear if any two of its hyperedges share at most
one node. A hypergraph is called a hypertree if it admits a host graph T such that is a
tree. Given two distinct nodes u and v in a hypergraph H, a u − v simple path of length
l in H is a sequence of distinct hyperedges (e1, . . . , el) of H, such that u ∈ e1, v ∈ el,
ei ∩ ei+1 �= ∅, for every i ∈ [l − 1], and ei ∩ ej = ∅ whenever j > i + 1. The distance
from u to v, d(u, v), is the length of the shortest u − v simple path in H. A cycle
in a hypergraph H is defined as a simple path (e1, . . . , el), but the further condition
e1 ∩ el �= ∅ must hold (that is, the first and the last hyperedge of the path must intersect,

Generalized Distance Polymatrix Games 29

while in a simple path they are disjoint). This definition of cycle is originally due to
Berge, and it can be also stated as an alternating sequence of v1, e1, v2, . . . , vn, en of
distinct vertices vi and distinct hyperedges ei so that each ei contains both vi and vi+1.
The girth of a hypergraph is the length of the shortest cycle it contains.

Generalized Distance Polymatrix Games. A generalized distance polymatrix game
(or GDPG) G = (H, (Σx)x∈V , (we)e∈E , (px)x∈V , (αh)h∈[d]), is a game based on an
r-hypergraph H, and defined as follows:

Agents: The set of agents is V = [n], i.e., each node corresponds to an agent. We
reasonably assume that n ≥ r ≥ 2.

Strategy profile or outcome: For any x ∈ V , Σx is a finite set of strategies of player
x. A strategy profile or outcome σ = (σ1, . . . , σn) is a configuration in which each
player x ∈ V plays strategy σx ∈ Σx.

Weight function: For any hyperedge e ∈ E, let we : ×x∈eΣx → R≥0 be the weight
function that assigns, to each subset of strategies σe played respectively by every
x ∈ e, a weight we(σe) ≥ 0. In what follows, for the sake of brevity, given any
strategy profile σ, we will often denote we(σe) simply as we(σ).

Preference function: For any x ∈ V , let px : Σx → R≥0 be the player-preference
function that assigns, to each strategy σx played by player x, a non-negative real
value px(σx), called player-preference. In what follows, for the sake of brevity, given
any strategy profile σ, we will often denote px(σx) simply as px(σ).

Distance-factors sequence: Let (αh)h∈[d] be the distance-factors sequence of the game,
that is a non-negative sequence of real parameters, called distance-factors, such that
1 = α1 ≥ α2 ≥ . . . ≥ αd ≥ 0.

Utility function: For any h ∈ [d], let Eh(x) be the set of hyperedges e such that the
minimum distance between x and one of the players v ∈ e is exactly h − 1. Then,
for any x ∈ V , the utility function ux : ×x∈V Σx → R of player x, for any strategy
profile σ is defined as ux(σ) := px(σ) +

∑
h∈[d] αh

∑
e∈Eh(x) we(σ).

The social welfare SW(σ) of a strategy profile σ is defined as the sum of all the
agents’ utilities in σ, i.e., SW(σ) :=

∑
x∈V ux(σ). A social optimum of game G

is a strategy profile σ∗ that maximizes the social welfare. We denote by OPT(G) =
SW(σ∗) the corresponding value.

β-approximate k-strong Nash Equilibrium. Given two strategy profiles σ =
(σ1, . . . , σn) and σ∗ = (σ∗

1 , . . . , σ
∗
n), and a subset Z ⊆ V , let σ

Z→ σ∗ be the strategy
profile σ′ = (σ′

1, . . . , σ
′
n) such that σ′

x = σ∗
x if x ∈ Z, and σ′

x = σx otherwise. Given
k ≥ 1, a strategy profile σ is a β-approximate k-strong Nash equilibrium (or (β, k)-
equilibrium) of G if, for any strategy profile σ∗ and any Z ⊆ V such that |Z| ≤ k, there

exists x ∈ Z such that βux(σ) ≥ ux(σ
Z→ σ∗). We say that a player x β-improves

from a deviation σ
Z→ σ∗ if βux(σ) < ux(σ′). Informally, σ is a (β, k)-equilibrium

if, for any coalition of at most k players deviating, there exists at least one player in
the coalition that does not β-improve her utility by deviating. We denote the (possibly
empty) set of (β, k)-equilibria of G by NEβ

k(G). Clearly, if β = 1, NEβ
k(G) contains

all the k-strong equilibria, and when β = 1 and k = 1, it contains the classic Nash
equilibria.

30 A. Aloisio et al.

Fig. 1. Three shops in a shopping area.

(β, k)-Price of Anarchy (PoA) and (β, k)-Price of Stability (PoS). The (β, k)-Price
of Anarchy of a game G is defined as PoAβ

k(G) := maxσ∈NEβ
k(G)

OPT(G)
SW(σ) , i.e., it is

the worst-case ratio between the optimal social welfare and the social welfare of a
(β, k)-equilibrium. The (β, k)-Price of Stability of game G is defined as PoSβ

k(G) :=
minσ∈NEβ

k(G)
OPT(G)
SW(σ) , i.e., it is the best-case ratio between the optimal social welfare

and the social welfare of a (β, k)-Nash equilibrium. Clearly, PoSβ
k(G) ≤ PoAβ

k(G),
whereas both quantities are not defined if NEβ

k(G) = ∅.

Example 1. We give here an example of GDPG applied to the local economy of a city’s
shopping area where the shops are one beside the other. Figure 1 schematizes three
of the shops in the area, which are represented by three light blue hyperedges ({1, 2},
{3, 4, 5}, {6, 7, 8, 9}). They are positioned in the area like in Fig. 1, where the light grey
hyperedges are just auxiliary hyperedges with null weights for every strategy profile. In
this case, the distances are physical distances. Each node stands for the manager of a
category of products sold. The manager’s strategy is to choose a brand for her product
category. A strategy profile σ corresponds to the brands the managers chose.

All the preferences are null while the weight we(σ) is the number of customers
visiting the shop e for a specific strategy profile σ. It is reasonable that the number of
customers we(σ) strictly depends on the brand chosen by the agents.

Since the three shops are beside each other, if a person goes to {1, 2}, she will
probably enter {3, 4, 5} and enter {6, 7, 8, 9} with less probability. This means that part
of the people that visit {1, 2} will stop at the other two shops, inversely proportional to
the physical distance.

The utility of an agent is the number of received views. This number is strictly
related to profit in the economy. We set α2 = α3 and α4 = α5 because of the auxiliary
light grey hyperedges, which are not real shops. We can now compute the utilities of
the agents. For example, agent 6 has u6(σ) = w{6,7,8,9}(σ) + α3 · w{3,4,5}(σ) +
α5 · w{1,2}(σ), which equals the number of customers that shop {6, 7, 8, 9} gets for
σ{6,7,8,9} plus part (α3) of the number of customers got by shop {3, 4, 5}, plus part
(α5) of the number of customers got by shop {1, 2}. Clearly, this example cannot be
modelled using previous polymatrix models, i.e., without using hypergraphs and the
distance factors sequence.

4 Existence of (β, k)-Equilibria

This section analyzes the existence of (β, k)-equilibria. First, we notice that (β, k)-
equilibria may not exist since they cannot always exist even in polymatrix coordination
games [4,30]. In the following (Theorem 1), we give some conditions on β that guar-
antee the existence. These results extend the ones shown in [4,30].

Generalized Distance Polymatrix Games 31

We say that a game G has a finite (β, k)-improvement property (or (β, k)-FIP for
short) if every sequence of (β, k)-improving deviations is finite. In such a case, we
necessarily have that any (β, k)-FIP ends in a (β, k)-equilibrium, which implies the
latter’s existence, too. To show that the (β, k)-FIP holds (and then the existence of a
(β, k)-equilibrium), we resort to a potential function argument [29]. A function Φ that
associates each strategy profile with a real number is called potential function if, for

any strategy profile σ and (β, k)-improving deviation σ′ = σ
Z→ σ∗, we have that

Φ(σ′) − Φ(σ) > 0. Thus, since any (β, k)-improving deviation increases the potential
function and the number of strategy profiles is finite, any sequence of (β, k)-improving
deviations cannot cycle and must necessarily meet a (β, k)-equilibrium after a finite
number of steps.

For a given hyperedge e and a subsetZ ⊆ V , let nZ
h (e) := |{x ∈ Z : e ∈ Eh(x)}|,

i.e., nZ
h (e) is the number of players x ∈ Z that are at distance h − 1 from e.

Theorem 1. Let G be a GDPG. Then: i) G has the (β, 1)-FIP for every β ≥ 1; ii) G has
the (β, k)-FIP for every β ≥ maxZ⊆V :

|Z|=k

{maxe∈E{
∑

h∈[d] αhnZ
h (e)}} and for every k.

Proof (Proof sketch). To prove both i) and ii) we show that Φ(σ) =
∑

x∈V px(σ) +∑
e∈E we(σ) is a potential function. Proof of i) is left to the full version.

Proof Sketch of ii). Consider a (β, k)-improving deviation σ′ = σ
Z→ σ∗.

Let Z = V \ Z. Let also SWZ(σ) be the social welfare related to the deviat-
ing agents, that is SWZ(σ) =

∑
x∈Z ux(σ). We can rewrite this social welfare

as SWZ(σ) =
∑

x∈Z px(σ) +
∑

e∈E:e�⊆Z aewe(σ) +
∑

e∈E:e⊆Z aewe(σ), where
ae =

∑
h∈[d] αhnZ

h (e). It follows that

β
∑

x∈Z

px(σ
′) +

∑

e∈E:e�⊆Z

βwe(σ
′) +

∑

e∈E:e⊆Z

βaewe(σ
′) (1)

≥SWZ(σ
′) (2)

>β · SWZ(σ) (3)

≥β
∑

x∈Z

px(σ) +
∑

e∈E:e�⊆Z

βwe(σ) +
∑

e∈E:e⊆Z

βaewe(σ) (4)

where (2) is due to β ≥ 1 and β ≥ ae for any e ∈ E, (3) holds sinceσ′ is a β-improving
deviation; (4) is due to ae ≥ 1 for every e ∈ E such that e �⊆ Z. From (1) > (4) and∑

e⊆Z we(σ′) =
∑

e⊆Z we(σ), we can derive Φ(σ′) − Φ(σ) > 0.
�

The value
∑

h∈[d] αhnZ
h (e) strictly depends on d and nZ

h (e). When d = 1, we have
∑

h∈[d] αhnZ
h (e) = nZ

1 (e) ≤ |e| for every e ∈ E and Z ⊆ V , so we can assume

β ≥ r. When the hypergraph of a game is a hyperlist, we have
∑

h∈[d] αhnZ
h (e) ≤

2r
∑

h∈[d] αh, for every e ∈ E, and Z ⊆ V . When the hypergraph of a game is a hyper-

three of maximum degree Δ, we have
∑

h∈[d] αhnZ
h (e) ≤ r

∑
h∈[d] αhrh−1Δh−1, for

every e ∈ E, and Z ⊆ V .

32 A. Aloisio et al.

5 (β, k)-PoA of General Graphs

In this section, we provide tight upper and lower bounds for the (β, k)-Price of Anarchy
when the hypergraph H of a game G is general, that is there is no particular assumption
on it. Such bounds depend on β, k, the number of players n, the maximum arity r, and
the value α2 of the distance-factors sequence.

Theorem 2. For any integers β ≥ 1, r ≥ 2, k < r, and n ≥ r, there exists a simple
GDPG G with n agents such that PoAβ

k(G) = ∞.

Thus, in the rest of the paper, we will only take into account the estimation of the
(β, k)-PoA for k ≥ r ≥ 2 since it is not possible to bound the (β, k)-PoA for k < r,
not even for bounded-degree graphs and not even when Δ = 1.

5.1 (β, k)-PoA: Upper Bound

We now provide three results that we will use to compute the upper bound of the (β, k)-
Price of Anarchy (Theorem 3). The first result is an upper bound to the social welfare
of any strategy profile.

Lemma 1. For any strategy profile σ, it holds that SW(σ) ≤
∑

x∈V px(σ)+(r+α2 ·
(n − 2)) ·

∑
e∈E we(σ).

Before providing the other two preliminary results, we write Inequality (5), which
is a necessary condition for an outcome σ to be a (β, k)-equilibrium. For a fixed inte-
ger k ≥ r, let σ and σ∗ be a (β, k)-equilibrium and a social optimum of G respec-
tively. Since σ is a (β, k)-equilibrium, for every subset Z ⊆ V of at most k agents,

there exists an agent z1(Z) ∈ Z such that βuz1(Z)(σ) ≥ uz1(Z)(σ
Z→ σ∗). More-

over, let Z(2) := Z \ {z1}, there exists another agent z2(Z) ∈ Z(2) such that

βuz2(Z)(σ) ≥ uz2(Z)(σ
Z(2)→ σ∗). We can iterate this process for every zi(Z) ∈

Z(i) := Z \ {z1(Z), . . . , zi−1(Z)}, obtaining the following inequality.

βuzi(Z)(σ) ≥ uzi(Z)(σ
Z(i)→ σ∗) (5)

By summing the previous inequality’s left and right parts for every possible subset
of Z of k players, we derive the following two results needed for Theorem (3).

Lemma 2. For every (β, k)-equilibrium σ and every subset K ⊆ V , with |K| = k, it
holds that β ·

(
n−1
k−1

)
· SW(σ) =

∑
Z⊆V
|Z|=k

∑
i∈[k] β · uzi(Z)(σ).

Proof (Proof sketch). By summing βuZ(i)(σ) for every Z ⊆ V of cardinality k and
for every i ∈ [k], it is easy to see that the utility of an agent x ∈ V is counted exactly(
n−1
k−1

)
times, which is the number of subsets K in V containing x.
�

Lemma 3. For every (β, k)-equilibrium σ and every subset K ⊆ V , with |K| = k,

it holds that
∑

Z⊆V
|Z|=k

∑
i∈[k] uzi(Z)(σ

Z(i)→ σ∗) ≥
(
n−r
k−r

) (∑
x∈V px(σ∗) +

∑
e∈E we

(σ∗))

Generalized Distance Polymatrix Games 33

Proof (Proof sketch). For every subset K ⊆ V , with |K| = k, it holds that
∑

i∈[k] uzi(Z)(σ
Z(i)→ σ∗) ≥

∑
x∈Z px(σ∗) +

∑
e⊆Z we(σ∗). To establish this, we

discarded the weights of all the hyperedges, far at least one from zi(Z), and used
the fact that every hyperedge in Z is counted exactly once. By summing the previ-

ous inequality for every subset Z, we obtain
∑

Z⊆V
|Z|=k

∑
i∈[k] uzi(Z)(σ

Z(i)→ σ∗) ≥
(
n−1
k−1

) ∑
x∈V px(σ∗) +

(
n−r
k−r

) ∑
e∈E we(σ∗), thus showing the claim.
�

Finally, we can state the theorem for the upper bound of the (β, k)-Price of Anarchy.

Theorem 3. For any β ≥ 1, any integer k ≥ r and any GDPG G having a distance-
factors sequence (αh)h∈[d], it holds that PoA

β
k(G) ≤ β (n−1)r−1

(k−1)r−1
(r + α2(n − 2)).

Proof (Proof sketch). By using the results given in Lemmas 1, 2, and 3 we obtain

β ·
(

n − 1

k − 1

)

· SW(σ) =
∑

Z⊆V :|Z|=k

∑

i∈[k]

β · uzi(Z)(σ) (6)

≥
∑

Z⊆V :|Z|=k

∑

i∈[k]

uzi(Z)(σ
Z(i)→ σ∗) (7)

≥
(

n − r

k − r

) (
∑

x∈V

px(σ
∗) +

∑

e∈E

we(σ
∗)

)

(8)

≥
(

n − r

k − r

)

· (r + α2 · (n − 2))−1 · SW(σ∗) (9)

where (6), (7), (8), and (9) derive from Lemma 2, Eq. (5), Lemma 3, and Lemma 1,
respectively. Concluding, from (6) and (9), we can get the upper bound for PoAβ

k(G).
�

5.2 (β, k)-PoA: Lower Bound

We continue by showing the following tight lower bound.

Theorem 4. For every β ≥ 1, every integers r ≥ 2, k ≥ r, d ≥ 1, n ≥ k, and
every d-distance-factors sequence (αh)h∈[d], there is a GDPG G with PoAβ

k(G) ≥
β (n−1)r−1

(k−1)r−1
(r + α2(n − r)).

Proof (Proof sketch). The idea is to use a GDPG game instance G with n players where:
(i) the underlying hypergraph H is a hyperstar in which all the players x ≥ 2 are only
connected to player 1; (ii) each hyperedge contains 1 and r − 1 other players; (iii) each
agent has only two strategies, {s, s∗}; (iii) we(σ) = β if every agent in e chooses s∗

under outcome σ, and we(σ) = 0 otherwise; (iv) p1(σ) =
(
k−1
r−1

)
if agent 1 chooses s

under outcome σ, and p1(σ) = 0 otherwise; and (v) px(σ) = 0 for every x ≥ 2 and
outcome σ. We call σ and σ∗ the two outcomes where all the agents choose s and s∗,
respectively. Since σ is a (β, k)-equilibrium, we use the ratio of the social welfare of
σ∗ and σ to get the result.

34 A. Aloisio et al.

6 (1, k)-PoS of General Graphs

This section shows a lower bound for the (1, k)-Price of Stability asymptotically equal
to the upper bound for the (1, k)-Price of Anarchy given in Theorem 3. This means that
we can use this upper bound also for the (1, k)-Price of Stability and close our study
for general hypergraphs for the case β = 1.

The basic idea is to start from the lower bound instance of Theorem 4, then trans-
form it to a new instance with the property of having every outcome with social welfare
different from the minimum unstable.

Theorem 5. For any n ≥ 6, there exists a GDPG G such that
PoS1k(G) ≥ n−r

n−1
(n−1)r−1
(k−1)r−1

(r+α2(n−r))
2(1+α2)

Proof. Let H = (V,E,w) be the interaction hypergraph of G, with |V | = n and |E| =
2
(
n−2
r−1

)
+ 1. Furthermore, let the set of hyperedges E be divided into {1, 2}, E1, and

E2, where Ei, with i ∈ {1, 2}, has
(
n−2
r−1

)
hyperedges of arity r, each containing node

i and r − 1 nodes different from 1 and 2. Hypergraph H is a kind of hyperstar with two
roots connected by an edge of arity 2. Each agent x has a set Σx = {1, 2, 3} of three
possible strategies. We call bottom layer, medium layer, and top layer the outcome in
which every player plays strategy 3, 2, and 1, respectively.

Finally, all the non-null weights and preferences are defined as follows. For the
bottom layer, p1(3) = p2(3) = (1+2ε)+

(
k−1
r−1

)
(1+α2)(1+ ε). For the medium layer,

w{1,2}(2, 2) = we∈E1(σ) = we∈E2(σ) = (1 + ε). For the top layer, p1(1) = p2(1) =
1, we∈E1(σ) = we∈E2(σ) = 1 + ε. Non-null hyperedges between the layers are only
w{1,2}(1, 2) = 2ε, we∈E1(σ) = 1+ ε, and we∈E2(σ) = 1+ ε, when some players play
strategy 1 and all the others play strategy 2 in σ. Please note that every hyperedge with
some players in the bottom layer and all the others out of the bottom layer have a null
weight.
�
Lemma 4. The bottom layer is a (1, k)-equilibrium with social welfare 2(1 + 2ε) +
2
(
k−1
r−1

)
(1 + α2)(1 + ε).

Lemma 5. All the (1, k)-equilibria have the same social welfare 2(1+2ε)+2
(
n−1
k−1

)
(1+

α2)(1 + ε).

Proof (Proof sketch). We only need to check the case where no one agent is in the
bottom. In fact, any other outcome is either unstable or has a social welfare equal to the
one given in Lemma 4. When all the players are out of the bottom, the utility of agents
1 and 2 can change only when one or both of them change layer. Now, if both 1 and 2
are in the top layer, they both prefer to go to the medium one because they get an extra
ε each. Then, agent 1 goes back to the top layer, increasing her utility of an ε more.
From this state, agent 2 goes back to the top layer. The last state is when agent 1 is in
the medium layer and 2 is in the top layer. Then, 1 goes to the top layer.
�

Lemma 6. PoS1k(G) = n−r
n−1

(n−1)r−1
(k−1)r−1

(r+α2(n−r))
2(1+α2)

.

Proof (Proof sketch). We use the ratio between the social welfare of the medium and
the bottom layers to get the lower bound.
�

The proof of Theorem 5 is complete.
�

Generalized Distance Polymatrix Games 35

7 (β, k)-PoA of Bounded-Degree Graphs

In this section, we analyze the (β, k)-Price of Anarchy for games whose hypergraphs
have bounded-degree.1 We also say that a game G is Δ-bounded degree if the degree of
every node in the underlying hypergraph is at most Δ. Here, we will only focus on the
cases where k ≥ r, as observed in Theorem 2, and Δ ≥ 2, since the case when Δ = 1
is encompassed by Sect. 5.

7.1 (β, k)-PoA: Upper Bound

As we did for general hypergraphs, we first show an upper bound on the social welfare
of every outcome.

Lemma 7. Given a Δ-bounded-degree GDPG G, for every (β, k)-equilibrium σ it
holds that SW(σ) ≤

∑
x∈V px(σ) + r

∑
h∈[d] αh · (Δ − 1)h−1rh−1 ·

∑
e∈E we(σ).

We can now state the main theorem on the upper bound.

Theorem 6. For every Δ-bounded-degree GDPG G, with distance-factor sequence
(αh)h∈[d], and for every k ≥ r, it holds that PoAβ

k(G) ≤ β · r
∑

h∈[d] αh · Δ · (Δ −
1)h−1rh−1.

Proof (Proof sketch). First, we write some necessary conditions for every outcome σ to
be a (β, k)-equilibrium. Since the maximum arity is at most equal to k, if σ is a (β, k)-
equilibrium, then for every hyperedge e, there must exist a player z1(e) ∈ e such that
(i): βuz1(e)(σ) ≥ uz1(σ

e→ σ∗) ≥ pz1(e)(σ
∗) + we(σ∗). Moreover, since a (β, k)-

equilibrium is also a (β, 1)-equilibrium, for every other zi(e) ∈ e, with zi(e) �= z1(e),

it must hold (ii): βuzi(e)(σ) ≥ uzi(e)(σ
zi(e)→ σ∗) ≥ pzi(e)(σ

∗). By summing Eq. (i)
plus all the inequalities (ii) for every hyperedge e ∈ E, and by using Lemma 7, we get

β ·
∑

e∈E

⎛

⎝
∑

zi(e)

uzi(e)(σ)

⎞

⎠ ≥

⎛

⎝r
∑

h∈[d]

αh · (Δ − 1)h−1rh−1

⎞

⎠

−1

· SW(σ∗) (10)

We notice now that it holds that
∑

e∈E

(∑
zi(e), uzi(e)(σ)

)
≤

∑
x∈V Δ ·

ux(σ) = Δ · SW(σ) because in the left-hand part, the utility of each player
x is counted at most Δ times, which is the maximum number of edges con-
taining x. By using both (10) and the last inequality, we obtain SW(σ) ≥
β−1Δ−1

(
r
∑

h∈[d] αh · (Δ − 1)h−1rh−1
)−1

SW(σ∗).

Remark 1. Please note that Theorem 6 implies that the (β, k)-price of anarchy of Δ-
bounded-degree GDPG, as a function of d, grows at most as O(β · (Δ − 1)d · rd).

1 A hypergraph H has degree bounded by Δ if the degree of every node x of H is at most Δ.

36 A. Aloisio et al.

7.2 (β, k)-PoA: Lower Bound

In the following theorem, we provide a lower bound on the (β, k)-Price of Anarchy
relying on a nice result from graph theory.

Theorem 7. For every β ≥ 1, any integers k ≥ r, Δ ≥ 3, d ≥ 1, and any distance-
factors sequence (αh)h∈[d], there exists a Δ-bounded-degree GDPG G such that

PoAβ
k(G) ≥ β·∑h∈[d] αhΔ(Δ−1)h−1bh−1

1+
∑d−1

h=1 αh+1(2(Δ−1)�(h+1)/2�(r−1)�(h+1)/2�−1+2(Δ−1)�h/2�−1(r−1)�h/2�)
.

Proof. In Lemma 3 of [20], they state that for every integers Δ, r, and γ0 ≥ 3, it
is always possible to find a Δ-regular r-uniform hypergraph H of girth at least γ0.
By using this result, given integers k ≥ r, Δ ≥ 3 and d ≥ 1, a distance-factors
sequence (αh)h∈[d], and a Δ-regular linear hypergraph H = (V,E) of girth at least
γ0 := max{2d + 1, k + 1}, we can build a Δ-bounded-degree GDPG G, such that (i)
H is its underlying hypergraph; (ii) (αh)h∈[d] is its distance-factors sequence; (iii) each
player x has two strategies, s and s∗; (iv) for every hyperedge e ∈ E and outcome σ,
we(σ) = β if all the nodes in e play s∗ in σ, and 0 otherwise; and (v) for every x ∈ V ,
px(σ) = 1 +

∑d−1
h=1 αh+1

(
1 + Δ (Δ−1)p(r−1)p−1

(Δ−1)(r−1)−1
+ r (Δ−1)q(r−1)q−1

(Δ−1)(r−1)−1

)
if x plays s in σ,

where p = (h + 1)/2� and q = h/2�, otherwise px(σ) = 0.
Let σ and σ∗ be the strategy profiles in which all players play strategy s and s∗,

respectively. First, we show that σ is an (β, k)-equilibrium of G.

Lemma 8. σ is a (β, k)-equilibrium.

Proof (Proof sketch). If σ is not a (β, k)-equilibrium, then there must exist a subset

Z ⊆ V , |Z| ≤ k, such that ux(σ
Z→ σ∗) > β · ux(σ) for every x ∈ Z.

We can assume w.l.o.g. that the subhypergraph T induced by Z in H, rooted in xr,
is a perfect linear hypertree of height d because y cannot get utility from hyperedges
that are far more than d − 1 from y, and each node has degree Δ. We will assume
w.l.o.g. that y is one of the r −1 leftmost leaves, that is one of the leaves in the leftmost
hyperedge.

Let (e0, e1, . . . , ed) be a path P from the leftmost leaf y to the root, where e0 is the
leftmost hyperedge containing y, ed is the one containing the root xr, and el−1∩el = vl

for every other l ∈ [d − 1]. Clearly, each hyperedge el is made up of vl, vl+1, and other
r−2 nodes that we call v′

l. The distance between y and any vl is l−1, while the distance
between y and v′

l is l. The root is at distance d − l − 1 from vl and any v′
l, and there is a

subhypertree having vl or any v′
l as root and height l. Let Tl be the subhypertree having

root vl, and all the descendant nodes without the ones in P . Let also T ′
l be one of the

r − 2 hypertrees with one of the nodes v′
l as root. Both Tl and any T ′

l have height l. The
number of hyperedges El,t at level t of Tl is (Δ − 2)(Δ − 1)t−1(r − 1)t−1, while the
number of hyperedges E′

l,t at level t of any T ′
l is (Δ − 1)t(r − 1)t−1.

All the hyperedges that are at distance h ≥ 1 from y are eh, plus Eh,1 ∪ Eh−1,2 ∪
. . . ∪ E	(h+1)/2
,�(h+1)/2�, plus E′

h−1,1 ∪ E′
h−2,2 ∪ . . . ∪ E′

	h/2
,�h/2� for the (r − 2)
hypertrees T ′

l . When h = 0, there is only the hyperedge e0 at distance h from y.
Therefore, using the already defined p and q, the number of hyperedges at distance
h ≥ 1 from y is 1 + Δ (Δ−1)p(r−1)p−1

(Δ−1)(r−1)−1 + r (Δ−1)q(r−1)q−1
(Δ−1)(r−1)−1 .

Generalized Distance Polymatrix Games 37

We can conclude that the utility that a leftmost leaf y gets from the deviation

uy(σ
Z→ σ∗) is β · px(σ), which is equal to β · uy(σ), so y does not profit from

the deviation, and σ is a (β, k)-equilibrium.
�

Lemma 9. ux(σ∗) = β
∑

h∈[d] αhΔ(Δ − 1)h−1(r − 1)h−1 for any x ∈ V .

From Lemma 8 and 9, we obtain the lower bound for PoAβ
k(G), which concludes

the proof of the theorem.
�

Remark 2. Please note that, if all the distance-factors are not lower than a constant
c > 0, from Theorem 7 we can conclude that the (β, k)-price of anarchy of Δ-bounded-
degree GDPG, as a function of d, can grow as Ω(β(Δ − 1)d/2(r − 1)d/2).

8 Conclusion and Future Works

This study leaves some open problems, such as (i) closing the gap between the upper
and the lower bound on the Price of Anarchy for bounded-degree hypergraphs; (ii)
extending the results on the Price of Stability to values of β greater than one; and (iii)
computing a lower bound on the Price of Stability for bounded-degree hypergraphs.
Concerning the latter problem, we are confident that it is possible to use the same modus
operandi described in Sect. 6.

Another relevant open problem we consider worth investigating concerns finding
particular classes of games which guarantee the existence of equilibria. We believe the
class of games with a hypertree as underlying hypergraph are a good candidate. About
the existence of β-approximate k-strong equilibria, we conjecture that the condition
stated in Theorem 1 is necessary, and can be proven with some ad-hoc game instances.

Another interesting research direction is studying our model with respect to differ-
ent social welfare functions, e.g., using the Lp-norm for the different values of p.

References

1. Aloisio, A.: Distance hypergraph polymatrix coordination games. In: Proceedings of the
22nd Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 2679–
2681 (2023)

2. Aloisio, A., Flammini, M., Kodric, B., Vinci, C.: Distance polymatrix coordination games.
In: Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI-
21, pp. 3–9 (2021)

3. Aloisio, A., Flammini, M., Vinci, C.: The impact of selfishness in hypergraph hedonic games.
In: Proceedings of the 34th Conference on Artificial Intelligence (AAAI), pp. 1766–1773
(2020)

4. Apt, K.R., de Keijzer, B., Rahn, M., Schäfer, G., Simon, S.: Coordination games on graphs.
Int. J. Game Theory 46(3), 851–877 (2017)

5. Ashlagi, I., Krysta, P., Tennenholtz, M.: Social context games. In: Papadimitriou, C., Zhang,
S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 675–683. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-92185-1_73

6. Aziz, H., Brandl, F., Brandt, F., Harrenstein, P., Olsen, M., Peters, D.: Fractional hedonic
games. ACM Trans. Econ. Comput. 7(2), 6:1–6:29 (2019)

https://doi.org/10.1007/978-3-540-92185-1_73
https://doi.org/10.1007/978-3-540-92185-1_73

38 A. Aloisio et al.

7. Aziz, H., Brandt, F., Seedig, H.G.: Optimal partitions in additively separable hedonic games.
In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI),
pp. 43–48 (2011)

8. Bilò, V., Celi, A., Flammini, M., Gallotti, V.: Social context congestion games. Theor. Com-
put. Sci. 514, 21–35 (2013)

9. Bilò, V., Fanelli, A., Flammini, M., Monaco, G., Moscardelli, L.: Nash stable outcomes in
fractional hedonic games: existence, efficiency and computation. J. Artif. Intell. Res. 62,
315–371 (2018)

10. Bilò, V., Fanelli, A., Flammini, M., Monaco, G., Moscardelli, L.: Optimality and Nash sta-
bility in additive separable generalized group activity selection problems. In: Proceedings
of the 28th International Joint Conference on Artificial Intelligence (IJCAI), pp. 102–108
(2019)

11. Cai, Y., Candogan, O., Daskalakis, C., Papadimitriou, C.H.: Zero-sum polymatrix games: a
generalization of minmax. Math. Oper. Res. 41(2), 648–655 (2016)

12. Cai, Y., Daskalakis, C.: On minmax theorems for multiplayer games. In: Proceedings of the
22nd Symposium on Discrete Algorithms (SODA), pp. 217–234 (2011)

13. Carosi, R., Monaco, G., Moscardelli, L.: Local core stability in simple symmetric fractional
hedonic games. In: Proceedings of the 18th International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), pp. 574–582 (2019)

14. Darmann, A., Elkind, E., Kurz, S., Lang, J., Schauer, J., Woeginger, G.J.: Group activity
selection problem. In: Proceedings of the 8th International Workshop Internet & Network
Economics (WINE), vol. 7695, pp. 156–169 (2012)

15. Darmann, A., Lang, J.: Group activity selection problems. In: Trends in Computational
Social Choice, pp. 385–410 (2017)

16. Deligkas, A., Fearnley, J., Savani, R., Spirakis, P.G.: Computing approximate Nash equilibria
in Polymatrix games. Algorithmica 77(2), 487–514 (2017)

17. Drèze, J.H., Greenberg, J.: Hedonic coalitions: optimality and stability. Econometrica 48(4),
987–1003 (1980)

18. Eaves, B.C.: Polymatrix games with joint constraints. SIAM J. Appl. Math. 24(3), 418–423
(1973)

19. Elkind, E., Fanelli, A., Flammini, M.: Price of pareto optimality in hedonic games. Artif.
Intell. 288, 103357 (2020)

20. Ellis, D., Linial, N.: On regular hypergraphs of high girth. Electron. J. Comb. 21(1), 1 (2014)
21. Flammini, M., Kodric, B., Olsen, M., Varricchio, G.: Distance hedonic games. In: Proceed-

ings of the 19th Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pp. 1846–1848 (2020)

22. Gourvès, L., Monnot, J.: On strong equilibria in the max cut game. In: Leonardi, S. (ed.)
WINE 2009. LNCS, vol. 5929, pp. 608–615. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-10841-9_62

23. Howson, J.T.: Equilibria of polymatrix games. Manag. Sci. 18(5), 312–318 (1972)
24. Howson, J.T., Rosenthal, R.W.: Bayesian equilibria of finite two-person games with incom-

plete information. Manag. Sci. 21(3), 313–315 (1974)
25. Janovskaja, E.: Equilibrium points in polymatrix games. Lith. Math. J. 8(2), 381–384 (1968)
26. Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game theory. In: Proceedings

of the 17th International Conference on Uncertainty in Artificial Intelligence (UAI), pp. 253–
260 (2001)

27. Miller, D.A., Zucker, S.W.: Copositive-plus Lemke algorithm solves polymatrix games.
Oper. Res. Lett. 10(5), 285–290 (1991)

28. Monaco, G., Moscardelli, L., Velaj, Y.: Stable outcomes in modified fractional hedonic
games. Auton. Agents Multi Agent Syst. 34(1), 4 (2020)

https://doi.org/10.1007/978-3-642-10841-9_62
https://doi.org/10.1007/978-3-642-10841-9_62

Generalized Distance Polymatrix Games 39

29. Monderer, D., Shapley, L.S.: Potential games. Games Econom. Behav. 14(1), 124–143
(1996)

30. Rahn, M., Schäfer, G.: Efficient equilibria in polymatrix coordination games. In: Italiano,
G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 529–541.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48054-0_44

31. Simon, S., Wojtczak, D.: Synchronisation games on hypergraphs. In: Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJCAI), pp. 402–408 (2017)

https://doi.org/10.1007/978-3-662-48054-0_44

Relaxed Agreement Forests

Virginia Ardévol Mart́ınez2, Steven Chaplick1, Steven Kelk1(B),
Ruben Meuwese1, Matúš Mihalák1, and Georgios Stamoulis1

1 Department of Advanced Computing Sciences, Maastricht University,
Maastricht, The Netherlands

steven.kelk@maastrichtuniversity.nl
2 Université Paris-Dauphine, PSL University, CNRS, LAMSADE, Paris, France

Abstract. The phylogenetic inference process can produce, for multiple
reasons, conflicting hypotheses of the evolutionary history of a set X of
biological entities, i.e., phylogenetic trees with the same set of leaf labels
X but with distinct topologies. It is natural to wish to quantify the dif-
ference between two such trees T1 and T2. We introduce the problem of
computing a maximum relaxed agreement forest (MRAF) and use this as
a proxy for the dissimilarity of T1 and T2, which in this article we assume
to be unrooted and binary. MRAF asks for a partition of the leaf labels
X into a minimum number of blocks S1, . . . , Sk such that the two sub-
trees induced in T1 and T2 by every Si are isomorphic up to suppression
of degree-2 nodes and taking the labels X into account. Unlike the ear-
lier introduced maximum agreement forest (MAF) model, the subtrees
induced by the Si are allowed to overlap. We prove that it is NP-hard to
compute MRAF, by reducing from the problem of partitioning a permu-
tation into a minimum number of monotonic subsequences (PIMS). We
further show that MRAF has a O(log n)-approximation algorithm where
n = |X| and permits exact algorithms with single-exponential running
time. When one of the trees is a caterpillar, we prove that testing whether
a MRAF has size at most k can be answered in polynomial time when
k is fixed. We also note that on two caterpillars the approximability of
MRAF is related to that of PIMS. Finally, we establish a number of
bounds on MRAF, compare its behaviour to MAF both theoretically
and experimentally and discuss a number of open problems.

1 Introduction

The central challenge of phylogenetics, which is the study of phylogenetic (evo-
lutionary) trees, is to infer a tree whose leaves are bijectively labeled by a set of
species X and which accurately represents the evolutionary events that gave rise
to X [23]. There are many existing techniques to infer phylogenetic trees from
biological data and under a range of different objective functions [19]. The com-
plexity of this problem arises from the fact that we typically only have indirect

R. Meuwese was supported by NWO grant Deep kernelization for phylogenetic discor-
dance OCENW.KLEIN.305.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 40–54, 2024.
https://doi.org/10.1007/978-3-031-52113-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_3&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_3

Relaxed Agreement Forests 41

Fig. 1. The two trees, while isomorphic, are not isomorphic when taking the leaf-
labeling into account, and thus both MRAF and MAF cannot be of size one. A MRAF
has 2 blocks, e.g., {1, 2, 3} and {4, 5}. A MAF has 3 blocks, e.g., {1, 2, 3}, {4}, and {5}.

data available, such as DNA sequences of the species X. Different techniques
regularly yield trees with differing topologies, or the same technique constructs
different trees depending on which part of a genome the DNA data is extracted
from [21]. Hence, it is insightful to formally quantify the dissimilarity between
(pairs of) phylogenetic trees, stimulating research into various distance measures.

Here we propose a new dissimilarity measure between unrooted phylogenetic
trees T1, T2 which is conceptually related to the well-studied agreement forest
abstraction. An agreement forest (AF) is a partition of X into blocks which
induce, in the two input trees, non-overlapping isomorphic subtrees, modulo
edge subdivision and taking the labels X into account; computing such a forest
of minimum size (a MAF) is NP-hard [14] although it can be computed reason-
ably well in practice [26]. The AF abstraction originally derives its significance
from the fact that, in unrooted (respectively, rooted) phylogenetic trees, an AF
of minimum size models Tree Bisection and Reconnection (TBR) (respectively,
rooted Subtree Prune and Regraft, rSPR) distance [1,6]. For background on AFs
we refer to recent articles such as [7,8]. Here we propose the relaxed agreement
forest abstraction (RAF). The only difference is that we no longer require the
partition of X to induce non-overlapping subtrees; they only have to be iso-
morphic (see Fig. 1). We write MRAF to denote a relaxed agreement forest of
minimum size. As we will observe, in the worst case MRAF can be constant
while MAF grows linearly |X|.

The fact that RAFs are allowed to induce overlapping subtrees is potentially
interesting from the perspective of biological modelling. Unlike an AF, multiple
subtrees of the RAF can pass through a single branch of T1 (or T2). This allows
us to view T1 and T2 as the union of several interleaved, overlapping, common
evolutionary histories. It is beyond the scope of this article to expound upon
this, but it is compatible with the trend in the literature of phylogenetic trees (or
networks) having multiple distinct histories woven within them which sometimes
evolve “in parallel” due to phenomena such as incomplete lineage sorting [9,15,
21]. This greater modelling flexibility, rather than computational tractability
issues, is our primary reason for studying MRAF.

Our results are as follows. First, we show that it is NP-hard to compute a
MRAF. We reduce from the problem of partitioning a permutation into a min-
imum number of monotone subsequences (PIMS). We show that MRAF has a
O(log n)-approximation algorithm where n = |X| and permits exact algorithms
with single-exponential running time. When one of the two trees is a cater-
pillar, we prove that “Is there a RAF with at most k components?” can be
answered in polynomial time when k is fixed, i.e., in XP parameterized by k.

42 V. Ardévol Mart́ınez et al.

We also relate the approximability of MRAF to that of PIMS. Along the way
we establish a number of bounds on MRAF, compare its behaviour to MAF and
undertake an empirical analysis on two existing datasets. Due to page limits
some proofs/details are deferred to an appendix in a preprint of this article [2].

2 Preliminaries, Basic Properties and Bounds

Let X be a set of labels (taxa) representing species. An unrooted binary phylo-
genetic tree T on X is a simple, connected, and undirected tree whose leaves are
bijectively labeled with X and whose other vertices all have degree 3. When it
is clear from the context we will simply write (phylogenetic) tree for shorthand.
For two trees T and T ′ both on the same set of taxa X, we write T = T ′ if there
is an isomorphism between T and T ′ that preserves the labels X. Tree T is a
caterpillar if deleting the leaves of T yields a path. We say that two distinct taxa
{a, b} ⊆ X form a cherry of a tree T if they have a common parent. The identity
caterpillar on n leaves is simply the caterpillar with leaves 1, . . . n in ascending
order with the exception of the two cherries {1, 2} and {n−1, n} at its ends; see
e.g. the tree on the left in Fig. 1. Note that caterpillars are almost total orders,
but not quite: the leaves in the cherries at the ends are incomparable. Managing
this subtle difference is a key aspect of our results.

A quartet is an unrooted binary phylogenetic tree with exactly four leaves.
Let T be a phylogenetic tree on X. If {a, b, c, d} ⊆ X are four distinct leaves, we
say that quartet ab|cd is induced by (or simply ‘is a quartet of ’) T if in T the
path from a to b does not intersect the path from c to d. Note that, for any four
distinct leaves a, b, c, d ∈ X, exactly one of the three quartets ab|cd, ac|bd, ad|bc
will be a quartet of T . It is well-known that T1 = T2 if and only if both trees
induce exactly the same set of quartet topologies [23]. For example, in Fig. 1 12|45
is a quartet of the first tree but not a quartet of the second tree. For X ′ ⊆ X,
we write T [X ′] to denote the unique, minimal subtree of T that connects all
elements in the subset X ′. We use T |X ′ to denote the phylogenetic tree on X ′

obtained from T [X ′] by suppressing degree-2 vertices. If T1|X ′ = T2|X ′ then we
say that the subtrees of T1, T2 induced by X ′ are homeomorphic.

Let T1 and T2 be two phylogenetic trees on X. Let F = {S1, . . . , Sk} be a
partition of X, where each block Si, is referred to as a component of F . We say
that F is an agreement forest (AF) for T1 and T2 if these conditions hold:

1. For each i ∈ {1, 2, ..., k} we have T1|Si = T2|Si.
2. For each pair i, j ∈ {1, 2, ..., k} with i �= j, we have that T1[Si] and T1[Sj] are

vertex-disjoint in T , and T2[Si] and T2[Sj] are vertex-disjoint in T2.

The size of F is simply its number of components, i.e., k. Moreover, an AF with
the minimum number of components (over all AFs for T1 and T2) is called a
maximum agreement forest (MAF) for T1 and T2. For ease of reading, we will
also write MAF to denote the size of a MAF. This is NP-hard to compute [1,14].

A relaxed agreement forest (RAF) is defined similarly to an AF, except with-
out condition 2. A RAF with a minimum number of components is a maximum
relaxed agreement forest (MRAF). We also use MRAF for the size of a MRAF.

Relaxed Agreement Forests 43

Maximum Relaxed Agreement Forest (MRAF)
Input: Two unrooted binary phylogenetic trees T1, T2 on the same leaf set X,

and a number k.
Task: Partition X into at most k sets S1, . . . , Sk where T1|Si=T2|Si for each i.

Observation 1 follows directly from the definitions. Observation 2 shows that
MAF and MRAF can behave very differently.

Observation 1. (a) A RAF with at most �n
3 � components always exists, where

n = |X|, because if |X ′| = 3 and X ′ ⊆ X we have T1|X ′ = T2|X ′ irrespective of
X ′ or the topology of T1 and T2. (b) MRAF is 0 if and only if T1 = T2. (c) A
partition {S1, . . . , Sk} of X is a RAF of T1, T2 if and only if, for each Si, the set
of quartets induced by T1|Si is identical to the set of quartets induced by T2|Si.

Observation 2. There are instances where MAF is arbitrarily large, Ω(n),
while MRAF is constant.

Proof. Let T be an arbitrary unrooted phylogenetic binary tree on n taxa. We
create two trees T1 and T2, both on 4n taxa. We build T1 by replacing each
leaf x in T with a subtree on {ax, bx, cx, dx} in which ax, bx form a cherry and
cx, dx form a cherry. The construction of T2 is similar except that ax, cx form a
cherry and bx, dx form a cherry. Note that T1|{ax, bx, cx, dx} �= T2|{ax, bx, cx, dx}.
MRAF here is 2 because we can take one component containing all the ax, bx

taxa and one containing all the cx, dx taxa. However, MAF is at least n. This
is because in any AF at least one of the four taxa in {ax, bx, cx, dx} must be a
singleton component, and there are n subsets of the form {ax, bx, cx, dx}. ��

Given two trees T1, T2 on X we say that X ′ ⊆ X induces a maximum agree-
ment subtree (MAST) if T1|X ′ = T2|X ′ and X ′ has maximum cardinality ranging
over all such subsets. Clearly, � n

MAST � is a lower bound on MRAF, since each
component of a RAF is no larger than a MAST. A MAST can be computed
in polynomial time [24]. The trivial upper bound on MRAF of �n

3 � (see Obser-
vation 1), which already contrasts sharply with the fact that the MAF of two
trees can be as large as n(1 − o(1)) [3], can easily be strengthened via MASTs.
For example, it can be verified computationally or analytically that for any two
trees on 6 or more taxa, a MAST has size at least 4. We can thus repeatedly
choose and remove a homeomorphic size-4 subtree, until there are fewer than 6
taxa left, giving a loose upper bound on MRAF of n/4 + 2. In fact, it is known
that the size of a MAST on two trees with n leaves is Ω(log n) [20] (and that
this bound is asymptotically tight). In particular, the lower bound on MAST
grows to infinity as n grows to infinity. Hence, the upper bound of n/4 + 2 can
be strengthened to n/c + f(c) for any arbitrary constant c > 1 where f is a
function that only depends on c; this is thus n/c + O(1). In fact, by iteratively
removing Ω(log n′) of the remaining number of taxa n′ we obtain a (slightly)
sublinear upper bound on the size of a MRAF. Namely, while n′ ≥ log n+O(1),
each iteration removes at least d log n′ ≥ d log log n leaves for some constant d,
giving an upper bound of n

d log log n + log n + O(1) which is O(n
log log n).

44 V. Ardévol Mart́ınez et al.

Regarding lower bounds, one can generate pairs of trees on n leaves where a
MAST has O(log n) leaves [18,20]. A MRAF will thus have size Ω(n

log n).

3 Hardness of MRAF

We discuss a related NP-hard problem regarding partitioning permutations [25].

Partition into Monotone Subsequences (PIMS)
Input: A permutation π of {1, . . . , n}, and a number k.
Task: Partition {1, . . . , n} into at most k sets such that each set occurs mono-

tonically in π, i.e., either as an increasing or a decreasing sequence.

Due to the classical Erdős Szekeres Theorem [10], for any n-element permu-
tation there is a monotone sequence in π with at least

√
n elements. This can be

used to efficiently partition π into at most 2
√

n monotone sequences [4]. Thus,
we may assume that the k in the problem statement is always at most 2

√
n.

Theorem 1. MRAF is NP-hard.

Proof. Let (π, k) be an input to the PIMS problem, i.e., k is an integer greater
than 1 and π is a permutation of {1, . . . , n}, where we use πi to denote the
ith element of π. As remarked before, k is at most 2

√
n. This will imply that

our constructed instance of MRAF will have linear size in terms of the given
permutation π, and as such any lower bounds, e.g., arising from the Exponential
Time Hypothesis (ETH), will carry over from the PIMS problem to the MRAF
problem. For each pair of integers (α, β) where α + β = k and α, β ≥ 11, we
will construct an instance (T1, T2) of MRAF such that (T1, T2) has a solution
consisting of k trees if and only if π can be partitioned into α increasing sequences
and β decreasing sequences. The trees T1 and T2 are described as follows.

Recall that a caterpillar is a tree T where the subtree obtained by removing
all leaves of T is a path. The path here is called the spine of the caterpillar.
Note that, in the caterpillars used to construct T1 and T2, some spine vertices
will have degree 2. However, to make proper binary trees one should contract
any such vertex into one of its neighbors.

We first construct a leaf set v1, . . . , vn corresponding to the permutation. We
create an identity caterpillar I whose spine is the n-vertex path (x1, . . . , xn) such
that xi is adjacent to vi. Next, we create a caterpillar P whose spine is the n-
vertex path (y1, . . . , yn) such that yi is adjacent to vπi

. Observe that already for
the MRAF instance (I, P), any (r, s) partition of π leads to a solution to (I, P)
consisting of k trees. However, the converse is not yet enforced. In particular, if
the input to MRAF is (I, P), then the components in a MRAF (which are cater-
pillars) have cherries at their ends which, crucially, might be ordered differently
in I than in P . This can violate monotonicity. To counter this we extend I and P
to obtain T1, T2 as shown in Fig. 2. For T1, we construct 8k caterpillars. First, for
1 α = 0 or β = 0 makes the problem easy.

Relaxed Agreement Forests 45

Fig. 2. The two trees T1, T2 constructed from an instance of PIMS in the NP-hardness
proof. The dark (light) grey leaves are used to induce increasing (decreasing) subse-
quences in the permutation-encoding taxa in the centre of the trees.

the increasing sequences, we construct 4k caterpillars L1, . . . , L2k, R1, . . . , R2k

each having 2α leaves and 2α spine vertices. Namely, for each i,

– Li is the caterpillar with leaf set {li1, . . . , l
i
2α} and spine (wi

1, . . . , w
i
2α) where,

for each j, lij is adjacent to wi
j ; and

– Ri is the caterpillar with leaf set {ri
1, . . . , r

i
2α} and spine (zi

1, . . . , z
i
2α) where,

for each j, ri
j is adjacent to zi

j .

For the decreasing sequences, we similarly construct 4k caterpillars L̂1, . . . , L̂2k,
R̂1, . . . , R̂2k each having 2β leaves and 2β spine vertices. Namely, for each i,

– L̂i is the caterpillar with leaf set {l̂i1, . . . , l̂
i
2β} and spine (ŵi

1, . . . , ŵ
i
2β) where,

for each j, l̂ij is adjacent to ŵi
j ; and

– R̂i is the caterpillar with leaf set {r̂i
1, . . . , r̂

i
2β} and spine (ẑi

1, . . . , ẑ
i
2β) where,

for each j, r̂i
j is adjacent to ẑi

j .

To form T1, we create two (4k + 1)-paths Qstart = (ŝ1, . . . , ŝk, s1, . . . , sk, s∗,
s2k, . . . , sk+1, ŝ2k, . . . , ŝk+1) and Qend = (t̂k, . . . , t̂1) tk, . . . , t1, t∗, tk+1, . . . , t̂2k

t̂k+1, . . . , t̂2k) such that s∗ is adjacent to x1 (i.e., to the “start” of I) and t∗ is
adjacent to xn (i.e., to the “end” of I), and for each i ∈ {1, . . . , 2k}:

46 V. Ardévol Mart́ınez et al.

– si is adjacent to wi
2α, i.e., the “end” of Li is attached to si, and ti is adjacent

to zi
1, i.e., the “start” of Ri is attached to ti; and

– ŝi is adjacent to ŵi
2α, i.e., the “end” of L̂i is attached to ŝi, and t̂i is adjacent

to ẑi
1, i.e., the “start” of R̂i is attached to t̂i.

To build T2, we use the same 8k caterpillars Li, Ri, L̂i, R̂i but attach them
differently to the “central” path P of T2. First we make an adjustment to Qstart

and Qend. In T2, these become: Qstart = (s1, . . . , sk, ŝ1, . . . , ŝk, s∗, ŝ2k, . . . , ŝk+1

s2k, . . . , sk+1) and Qend = (tk, . . . , t1, t̂k, . . . , t̂1, t∗, t̂k+1, . . . , t̂2k, tk+1, . . . , t̂2k)
– this swap is done to highlight that in T2 the L̂i, R̂i caterpillars are closer to
the central path P than the Li, Ri caterpillars. Similar to T1, in T2, we have s∗

adjacent to y1 (i.e., the “start” of P) and t∗ is adjacent to yn (i.e., the “end”
of P). The next part is where we see a difference regarding how we attach the
caterpillars (Li, Ri) of the increasing sequences vs. those (L̂i, R̂i) of decreasing
sequences.

For each i ∈ {1, . . . , 2k}:

– si is adjacent to wi
1, i.e., the “start” of Li is attached to si and as such Li

occurs “reversed” in T2 with respect to T1, and
– ti is adjacent to zi

2α, i.e., the “end” of Ri is attached to ti.

For each i ∈ {1, . . . , k}:

– ŝk−i+1 (ŝ2k−i+1) is adjacent to ẑi
2β (ẑk+i

2β), i.e., the “end” of R̂i (R̂i+k) is
attached to ŝk−i+1 (and ŝ2k−i+1) and as such R̂i (R̂k+i) occurs “on the oppo-
site side” in T2 with respect to its location in T1, and

– t̂k−i+1 (t̂2k−i+1) is adjacent to ŵi
1 (ŵk+i

1), i.e., the “start” of L̂i (L̂k+i) is
attached to t̂k−i+1 (t̂2k−i+i).

This completes the construction of T1 and T2 from π. It is easy to see that this
construction can be performed in polynomial time and that our trees contain
precisely 16k2 +8k +4+4n vertices, i.e., since k ≤ 2

√
n, our instance of MRAF

has O(n) size.
Suppose π can be partitioned into α increasing sequences τ1, . . . , τα and β

decreasing sequences σ1, . . . , σβ . The leaf set corresponding to τi consists of
{vp : p ∈ τi} together with two leaves from each of Lj and Rj (j ∈ {1, . . . , 2k}),
i.e., lj2i−1, l

j
2i, r

j
2i−1, r

j
2i−1. Similarly, the leaf set corresponding to σi consists of

{vp : p ∈ σi} together with two leaves from each of L̂j and R̂j (j ∈ {1, . . . , 2k}),
i.e., l̂j2i−1, l̂

j
2i, r̂

j
2i−1, r̂

j
2i. It can be verified that this is a valid solution to MRAF.

Now suppose that we have a solution S1, . . . , Sk to MRAF (T1, T2). We need
to show that this leads to a solution to the PIMS problem on π consisting of (at
most) α increasing sequences and (at most) β decreasing sequences. The proof
of the following lemma is in the appendix.

Lemma 1. If some Sj uses three leaves of any caterpillar C ∈ {Li, Ri, L̂i, R̂i :
i ∈ {1, . . . , 2k}} then all elements of Sj are leaves of C.

Relaxed Agreement Forests 47

A consequence of this lemma is that if some Sj uses more than two leaves
from any single one of our left/right caterpillars, then Sj can contain at most
max{2α, 2β} < 2k elements. In the next part we will see that every Sj must
contain precisely 8k leaves from our left/right caterpillars in order to cover them
all. In particular, this means that no Sj contains more than two leaves from any
single left/right caterpillar. Note that, the total number of leaves is n + 4k ·2α +
4k·2β = n+8k2 where the set of n leaves is {v1, . . . , vn} (i.e., corresponding to the
permutation) and the 8k2 leaves are the leaves of the left/right caterpillars. We
now define the following eight leaf sets related to our caterpillars Li, Ri, L̂i, R̂i.

– L1 = {l : l is a leaf of some Li, i ∈ {1, . . . , k}},
– L2 = {l : l is a leaf of some Li, i ∈ {k + 1, . . . , 2k}},
– R1 = {r : r is a leaf of some Ri, i ∈ {1, . . . , k}},
– R2 = {r : r is a leaf of some Ri, i ∈ {k + 1, . . . , 2k}}.

The definition of L̂1, L̂2, R̂1, R̂2 is analogous. The proof of the following is also
deferred to the appendix.

Lemma 2. No Sj can contain five elements where each one belongs to a different
set among: L1,L2,R1,R2, L̂1, L̂2, R̂1, R̂2.

Now, observe that a component Sj can contain at most 2k taxa from each
of the 8 sets listed above. That is because each of the 8 sets is formed from k
caterpillars (e.g., L1 is formed from the caterpillars L1, ..., Lk) and each of these
k caterpillars contributes at most 2 taxa to a RAF component. (If one of the
k caterpillars contributed more than 2 taxa, we would automatically be limited
to at most 2k taxa, by Lemma 1.) It follows from this that a component Sj can
in total intersect with at most 4 × 2k = 8k taxa ranging over all the 8 sets:
intersecting with more would require intersecting with at least 5 of the 8 sets,
which as we have shown in Lemma 2 is not possible.

Given that there are k components in the RAF, and T1, T2 have n + 8k2

taxa, each of the k components must therefore contain exactly 8k taxa from the
8 sets, and each component intersects with exactly 4 of the 8 sets (as this is
the only way to achieve 8k). In the appendix we prove that the only way for
Sj to intersect with four sets and a permutation-encoding taxon vi, is if the
four sets are {L1,L2,R1,R2} or {L̂1, L̂2, R̂1, R̂2}. The permutation-encoding
taxa vi contained in components of the first type, necessarily induce increasing
subsequences, and those contained in the second type are descending. There can
be at most α components of the first type, and at most β of the second, which
means that the permutation π can be partitioned into at most α increasing and
β decreasing sequences. This concludes the proof. ��

4 Exact Algorithms

We now observe a single-exponential exact algorithm for MRAF and then show
that when one input tree is a caterpillar, MRAF is in XP parameterized by k.

Recall that the NP-hard Set Cover problem (U,F), where F consists of sub-
sets of U , is to compute a minimum-size subset of F whose union is U .

48 V. Ardévol Mart́ınez et al.

Observation 3. Let T1, T2 be two unrooted binary phylogenetic trees on X. Let
U = X and let F be the set of all subsets of X that induce homeomorphic trees
in T1, T2. Each RAF of T1, T2 is a set cover of (U,F), and each set cover of
(U,F) can be transformed in polynomial time into a RAF of T1, T2 with the same
or smaller size, by allocating each element of X to exactly one of the selected
subsets. In particular, any optimum solution to the set cover instance (U,F) can
be transformed in polynomial time to yield a MRAF of T1, T2 of the same size.

Lemma 3. MRAF can be solved in time O(cn), n = |X|, for some constant c.

Proof. The construction in Observation 3 yields |U | = n and |F | ≤ 2n. Minimum
set cover can be solved in time O(2|U | · (|U | + |F |)O(1)) thanks to [5]. ��

Lemma 3 concerns general instances. When one of the given trees is a cater-
pillar, we can place MRAF into XP (parameterized by the solution size k). We
use dynamic programming for this. We will assume that n > 3k, as otherwise an
arbitrary partition S1, . . . , Sk where each Si has at most three taxa is a MRAF.
For n > 3k it follows that if there is a MRAF for T1 and T2, then there always is
a MRAF S1, . . . , Sk where no Si is a singleton. To see this, observe that for any
MRAF with a singleton Si, it must contain a component Sj with |Sj | ≥ 3 (since
n > 3k), and moving any element from Sj to Si gives another MRAF where Si

is not a singleton.
We let T1 be the caterpillar, and T2 an arbitrary tree. Similarly to our hard-

ness result, we consider, without loss of generality, T1 to consist of a spine (a
path) (y1, . . . , yn) and leaves v1, . . . , vn, where leaf vi, i = 1, . . . , n is adjacent
to vertex yi. See Fig. 3 for an illustration. The spine naturally orders the leaves
(up to arbitrarily breaking ties on the end cherry taxa) and this will guide our
dynamic-programming approach. We write u ≺ v for two leaves u and v, if u
appears before v in the considered ordering along the spine of T1. We decide
whether a MRAF S1, . . . , Sk of T1 and T2 exists as follows: we enumerate over
all possible pairs of vertices li, ri, i = 1, . . . , k, and check (compute) whether
there exists a MRAF where the first leaf of Si, i = 1, . . . , k, is li and the last leaf
of Si is ri. We call such MRAF a MRAF constrained by li, ri, i = 1, . . . , k, or
simply a constrained MRAF if li and ri are clear from the context. If for one of
the guesses (enumerations) we find a constrained MRAF, we output YES, and
otherwise (if for all guesses we do not find a MRAF) we output NO.

We now present our algorithm to decide, for input T1, T2, and pairs li, ri,
i = 1, . . . , k, whether a constrained MRAF exists. We define L := {l1, . . . , ln}
and R := {r1, . . . , rn}. We view the process of computing constrained MRAF
S1, . . . , Sk as an iteration over vi, i = 1, . . . , n, and assigning vi /∈ (L ∪ R) to
one of the components S1, . . . , Sk (every taxon vi ∈ (L∪R) is already assigned).
Figure 3 illustrates this by the gray arrows from each taxon to one of the sets
Si. In the constrained MRAF, taxon vi can only be assigned to component Sj

if and only if lj ≺ vi ≺ rj .
Tree T2 further limits how taxon vi can be assigned to components Sj

(because we want that T1|Sj = T2|Sj). Clearly, for any Sj ⊂ X, T1|Sj is a
caterpillar of maximum degree at most three. Thus, since lj and rj are the first

Relaxed Agreement Forests 49

Fig. 3. Caterpillar T1 induces a natural ordering on the taxa (leaves). The gray vertical
arrows assign each taxa to one of the sets S1, S2, S3. At iteration i, the question marks
denote possible assignment of vi.

Fig. 4. A bag Bw on the (lj , rj)-path Pj . At most one of va, va′ can occur in Sj .

and last leaf in T1|Sj , they also need to be first and last in T2|Sj . Hence, the
inner vertices of the unique path Pj from lj to rj in T2 is the subdivision of the
spine of T2|Sj . For a vertex w ∈ Pj that has a neighbor w′ /∈ Pj we define a bag
Bw of P2 to be the maximal subtree of T2 rooted at w′ that does not include
w. See Fig. 4 for an illustration. Observe that for any bag Bw of Pj , at most
one taxon from Bw can be assigned to Sj . (Because if two taxa va, va′ ∈ Bw,
a < a′, are assigned to Sj then ljva|va′rj will not be a quartet of T2|Sj , while it
is a quartet of T1|Sj , and thus T1|Sj �= T2|Sj .) The path Pj of T2|Sj naturally
orders all bags of Pj . It follows that for two bags Bw and Bw′ where Bw appears
before Bw′ in the ordering along Pj , we can select taxa va ∈ Bw and vb ∈ Bw′

into Sj if and only if va ≺ vb, i.e., if va appears before vb in the caterpillar T1.
We write v ≺Pj

v′ for taxa v, v′ such that v is from a bag Bw and v′ is from a
bag Bw′ , and Bw appears before bag Bw′ along path Pj . Relation ≺Pj

is thus
a partial ordering of X, where any two taxa from the same bag are uncompa-
rable. Observe now that any assignment of taxa to Sj that satisfies the above
conditions, i.e., (i) for every vi ∈ Sj , lj ≺ viri, (ii) for every bag Bw of Pj there
is at most one vertex vi ∈ Bw ∩ Sj , and (iii) for any two taxa vp, vq ∈ Sj , p < q,
vp ≺Pj

vq, we have T1|Sj = T2|Sj .
We can thus assign taxon vi to component Sj whenever the previously

assigned taxon vi′ to Sj satisfies vi′ ≺Pj
vi. We thus do not need to know all

previously assigned taxa to Sj , only the last assigned. We compute a (partial)
restricted MRAF for taxa Xi := {1, 2, . . . , i} ∪ E iteratively for i = 1, 2, . . . , k.
We set X0 := L∪R. For z = (z1, . . . , zk) ∈ (X \ (L∪R))k and i = 0, 1, . . . , k we
define a boolean function craf(i)(z) as follows: craf(i)(z) := TRUE if and only if

50 V. Ardévol Mart́ınez et al.

there exists a constrained MRAF Si
1, S

i
2, . . . , S

i
k of Xi such that the last taxon

from Xi \ R in Si
�, � = 1, . . . , k, is z�.

Clearly, craf(0)(z) = TRUE if and only if z = (l1, l2, . . . , lk). Also observe
that if no zj is equal to taxon vi, then craf(i)(z1, . . . , zk) is FALSE, because in
every partition of Xi, the last element vi of Xi \ R needs to be last in one of
the sets Sj . Now, whenever one of zj is equal to vi, the function crafi can be
computed recursively as follows:

craf(i)(z1, . . . , zj−1, zj = vi, zj+1 . . . , zk) =
∨

z∈Xi−1\R
z≺Pj

=vi

craf(i−1)(z1, . . . , zj−1, z, zj+1, . . . , zk) (1)

This recurrence follows simply because removing vi from every constrained
MRAF of Xi gives a constrained MRAF of Xi−1. Now we can compute craf(i)

bottom-up using the dynamic programming. For every value i = 1, . . . , k we
enumerate O(nk) vectors z, and compute the value craf(i)(z) using the recursive
relation from Eq. (1), thus looking at at most O(n) different entries of craf(i−1).
This thus leads to the overall runtime of O(k · nk · n). Accounting for the enu-
meration of the O(n2k) pairs li, ri, i = 1, . . . , k results in the following theorem.

Theorem 2. MRAF can be computed in time O(k · n3k+1) whenever one of the
trees is a caterpillar.

5 Approximation Algorithms

We now provide a polytime approximation algorithm for MRAF (Lemma 4) and
relate the approximability of PIMS to that of MRAF on caterpillars (Lemma 5).

Lemma 4. There is a O(log n)-approximation algorithm for computing MRAF,
where n = |X|. This algorithm cannot be better than a (4/3) approximation.

Proof. Given an instance (U,F) of Set Cover, the natural greedy algorithm
yields a O(log |U |) approximation. Recall the encoding of MRAF as a Set Cover
instance in Observation 3. We cannot construct this directly, since |F | is poten-
tially exponential in n, but this is not necessary to simulate the greedy algorithm.
Let X ′ be the set of currently uncovered elements of X, initially X = X ′. We
compute a MAST of T1|X ′ and T2|X ′ in polynomial time [24]. Let S be the
leaf-set of this MAST; we add this to our RAF. We then delete S from X ′ and
iterate this process until X ′ is empty. Figure 6 (in the appendix) shows that this
algorithm cannot be better than a (4/3) approximation. ��
Lemma 5. Let π be a permutation of {1, . . . , n} and let T1 and T2 be two cater-
pillars on leaves {1, . . . n} where T1 is the identity caterpillar and the ith leaf of
T2 is π(i). For any solution to the MRAF problem of size k, there is a corre-
sponding solution to the PIMS problem of size at most k + 2

√
2k.

Relaxed Agreement Forests 51

Proof. We start with an agreement forest for the two caterpillars; each compo-
nent is itself a caterpillar. We “cut off” one leaf from each end of the components
in this forest. (This is because the “interior” of each component induces a mono-
tonic subsequence, but the cherries at the end of each component potentially
violate this). This leaves behind a subpermutation of π of length 2k, which can
always be partitioned into at most 2

√
2k monotone subsequences. ��

We can create an instance of PIMS from a caterpillar instance of MRAF by
treating one caterpillar as the identity and the other as the permutation. Any
solution for this PIMS instance yields a feasible MRAF solution. Hence:

MRAF ≤ PIMS ≤ MRAF + 2
√

2 · MRAF.

Recall that MRAF on caterpillars is in XP by Theorem 3. PIMS is also in XP.
Specifically, the PIMS problem is equivalent to the co-chromatic number problem
on permutation graphs, i.e., partitioning the vertices of a permutation graph into
cliques and independent sets. When a graph can be partitioned into r cliques and
s independent sets it is sometimes called an (r, s)-split graph. It is known that the
perfect (r, s)-split graphs can be characterized by a finite set of forbidden induced
subgraphs [17]. This implies that their recognition is in XP parameterized by
r and s, i.e., when r and s are fixed, (r, s)-split graphs can be recognized in
polynomial time—this was later improved to FPT [13]. These XP results are
relevant here because they mean that if one of the problems has a polynomial
time c-approximation, c constant, then for each fixed constant ε > 0 the other
has a polynomial-time (c + ε)-approximation. For example, given a polynomial-
time c-approximation for MRAF, and ε > 0, we first use the XP algorithm for
PIMS to check in polynomial time whether PIMS ≤ 8c

ε2 . If so, we are done.
Otherwise, the described transformation of MRAF solutions to PIMS solutions
yields a (c + ε)-approximation. The direction from PIMS to MRAF is similar.
PIMS has a polynomial-time 1.71-approximation [11]. Hence, for every constant
ε > 0 MRAF on caterpillars has a polynomial-time (1.71 + ε)-approximation.

6 Implementation and Experimental Observations

MRAF can be modelled as the weak chromatic number of hypergraph: the mini-
mum number of colours assigned to vertices, such that no hyperedge is monochro-
matic. The set of vertices is X and there is a hyperedge {a, b, c, d} whenever the
two trees have a different quartet topology on {a, b, c, d}, leveraging Observation
1. We implemented this as a constraint program (CP) using MiniZinc [22]. For
trees with ≤ 30 leaves the CP solves quickly. Code is available at https://github.
com/skelk2001/relaxed agreement forests. We used this to extend the analysis of
[16] on the grass dataset of [12], consisting of fifteen pairs of trees. See Table 1; as
expected MRAF grows more slowly than MAF. An FPT algorithm parameter-
ized by MRAF, if it exists, might therefore scale well in practice. FPT algorithms
for MAF struggle for MAF ≥ 25 [26]. In fact, MRAF seems more comparable to
the treewidth of the display graph of the input tree pair (obtained by identifying

https://github.com/skelk2001/relaxed_agreement_forests
https://github.com/skelk2001/relaxed_agreement_forests

52 V. Ardévol Mart́ınez et al.

Table 1. Comparison of MAF and MRAF for the fifteen tree pairs in the data set [12]
analysed in [16]. We also include MAST, the lower bound on MRAF given by � n

MAST
�,

and tw(D) which is the treewidth of the display graph obtained from the tree pair.

tree pair |X| = n MAF MRAF tw(D) MAST �n/MAST �
00 rpoC waxy.txt 10 2 2 3 8 2

01 phyB waxy.txt 14 3 2 3 11 2

02 phyB rbcL.txt 21 5 3 3 14 2

03 rbcL waxy.txt 12 4 2 3 9 2

04 phyB rpoC.txt 21 5 2 3 15 2

05 waxy ITS.txt 15 6 3 4 10 2

06 phyB ITS.txt 30 8 4 4 17 2

07 ndhF waxy.txt 19 5 3 4 11 2

08 ndhF rpoC.txt 34 9 3 5 20 2

09 rbcL rpoC.txt 26 7 4 5 14 2

10 ndhF rbcL.txt 36 7 4 3 20 2

11 rbcL ITS.txt 29 11 4 5 17 2

12 ndhF phyB.txt 40 7 3 3 30 2

13 rpoC ITS.txt 31 11 4 6 16 2

14 ndhF ITS.txt 46 16 5 6 20 3

vertices with the same leaf label: the treewidth of this graph is bounded by a
function of MAF [16]). We obtained similar results on a more challenging dataset
comprising the 163 tree pairs from the dataset in [26] that had at ≤ 50 leaves
after pre-processing. See Table 2 in the appendix.

7 Discussion and Open Problems

It remains unclear whether it is NP-hard to compute MRAF on caterpillars,
although it seems likely. Can the finite forbidden obstructions that characterize
solutions to PIMS be mapped to MRAF on caterpillars and then generalized
to general trees? Indeed, how far can MRAF be viewed as a generalization of
the PIMS problem to partial orders? Is MRAF on caterpillars FPT? Does it (or
PIMS) have a polynomial kernel? What should reduction rules look like, given
that rules for MAF seem of limited use (see Appendix A.2)? Strikingly, we do not
know whether it is NP-hard to determine whether MRAF ≤ 2 for two general
trees, so the FPT landscape is also unclear. How far can the logarithmic approx-
imation for MRAF on general trees, and the 1.71 approximation for MRAF on
caterpillars (equivalently, PIMS) be improved? Finally, it will be instructive to
elucidate the biological interpretation of this model and to explore MRAF on
multiple and/or non-binary trees; such generalisations exist for MAF [7].

Relaxed Agreement Forests 53

References

1. Allen, B., Steel, M.: Subtree transfer operations and their induced metrics on
evolutionary trees. Ann. Comb. 5, 1–15 (2001)

2. Ardevol Martinez, V., Chaplick, S., Kelk, S., Meuwese, R., Mihalák, M., Stamoulis,
G.: Relaxed agreement forests. arXiv:2309.01110 [cs.DS] (2023)

3. Atkins, R., McDiarmid, C.: Extremal distances for subtree transfer operations in
binary trees. Ann. Comb. 23, 1–26 (2019)

4. Bar-Yehuda, R., Fogel, S.: Partitioning a sequence into few monotone subsequences.
Acta Inform. 35(5), 421–440 (1998)

5. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. Comput. 39(2), 546–563 (2009)

6. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree
prune and regraft distance. Ann. Comb. 8(4), 409–423 (2005)

7. Bulteau, L., Weller, M.: Parameterized algorithms in bioinformatics: an overview.
Algorithms 12(12), 256 (2019)

8. Chen, J., Shi, F., Wang, J.: Approximating maximum agreement forest on multiple
binary trees. Algorithmica 76, 867–889 (2016)

9. Degnan, J., Rosenberg, N.: Gene tree discordance, phylogenetic inference and the
multispecies coalescent. Trends Ecol. Evol. 24(6), 332–340 (2009)

10. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2,
463–470 (1935)

11. Fomin, F., Kratsch, D., Novelli, J.C.: Approximating minimum cocolorings. Inf.
Process. Lett. 84(5), 285–290 (2002)

12. Grass Phylogeny Working Group, et al.: Phylogeny and subfamilial classification
of the grasses (Poaceae). Ann. Missouri Botanical Garden 88(3), 373–457 (2001)

13. Heggernes, P., Kratsch, D., Lokshtanov, D., Raman, V., Saurabh, S.: Fixed-
parameter algorithms for cochromatic number and disjoint rectangle stabbing via
iterative localization. Inf. Comput. 231, 109–116 (2013)

14. Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolu-
tionary trees. Discret. Appl. Math. 71(1–3), 153–169 (1996)

15. Iersel, L.V., Jones, M., Scornavacca, C.: Improved maximum parsimony models for
phylogenetic networks. Syst. Biol. 67(3), 518–542 (2018)

16. Kelk, S., van Iersel, L., Scornavacca, C., Weller, M.: Phylogenetic incongruence
through the lens of monadic second order logic. J. Graph Algorithms Appl. 2,
189–215 (2016)

17. Kézdy, A., Snevily, H., Wang, C.: Partitioning permutations into increasing and
decreasing subsequences. J. Comb. Theory Ser. A 73(2), 353–359 (1996)

18. Kubicka, E., Kubicki, G., McMorris, F.: On agreement subtrees of two binary trees.
Congressus Numerantium 217 (1992)

19. Lemey, P., Salemi, M., Vandamme, A.M.: The Phylogenetic Handbook: A Practical
Approach to Phylogenetic Analysis and Hypothesis Testing. Cambridge University
Press (2009)

20. Markin, A.: On the extremal maximum agreement subtree problem. Discret. Appl.
Math. 285, 612–620 (2020)

21. Nakhleh, L.: Computational approaches to species phylogeny inference and gene
tree reconciliation. Trends Ecol. Evol. 28(12), 719–728 (2013)

22. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

http://arxiv.org/abs/2309.01110
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38

54 V. Ardévol Mart́ınez et al.

23. Steel, M.: Phylogeny: Discrete and Random Processes in Evolution. SIAM (2016)
24. Steel, M., Warnow, T.: Kaikoura tree theorems: computing the maximum agree-

ment subtree. Inf. Process. Lett. 48(2), 77–82 (1993)
25. Wagner, K.: Monotonic coverings of finite sets. J. Inf. Process. Cybern. 20(12),

633–639 (1984)
26. van Wersch, R., Kelk, S., Linz, S., Stamoulis, G.: Reflections on kernelizing and

computing unrooted agreement forests. Ann. Oper. Res. 309(1), 425–451 (2022)

On the Computational Complexity
of Generalized Common Shape Puzzles

Mutsunori Banbara1 , Shin-ichi Minato2 , Hirotaka Ono1 ,
and Ryuhei Uehara3(B)

1 Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
banbara@nagoya-u.ac.jp, ono@i.nagoya-u.ac.jp

2 Kyoto University, Kyoto, Japan
minato@i.kyoto-u.ac.jp

3 School of Information Science, Japan Advanced Institute of Science and
Technology, Asahidai, Nomi, Ishikawa 923-1292, Japan

uehara@jaist.ac.jp

Abstract. In this study, we investigate the computational complexity
of some variants of generalized puzzles. We are provided with two sets S1

and S2 of polyominoes. The first puzzle asks us to form the same shape
using polyominoes in S1 and S2. We demonstrate that this is polynomial-
time solvable if S1 and S2 have constant numbers of polyominoes, and
it is strongly NP-complete in general. The second puzzle allows us to
make copies of the pieces in S1 and S2. That is, a polyomino in S1 can
be used multiple times to form a shape. This is a generalized version of
the classical puzzle known as the common multiple shape puzzle. For two
polyominoes P and Q, the common multiple shape is a shape that can be
formed by many copies of P and many copies of Q. We show that the sec-
ond puzzle is undecidable in general. The undecidability is demonstrated
by a reduction from a new type of undecidable puzzle based on tiling.
Nevertheless, certain concrete instances of the common multiple shape
can be solved in a practical time. We present a method for determining
the common multiple shape for provided tuples of polyominoes and out-
line concrete results, which improve on the previously known results in
the puzzle community.

Keywords: Common shape puzzle · shape logic · least common
multiple shape · NP-completeness · polyform compatibility ·
polypolyomino · SAT-based solver · undecidability

1 Introduction

Research on the computational complexity of puzzles and games has become
increasingly important in theoretical computer science (see [13] for a comprehen-
sive survey). Since the 1990s, numerous puzzles have been demonstrated to be
NP-complete in general. These results provide a certain amount of some common
intuition of the properties of the NP class. However, it has not been possible to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 55–68, 2024.
https://doi.org/10.1007/978-3-031-52113-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_4&domain=pdf
http://orcid.org/0000-0002-5388-727X
http://orcid.org/0000-0002-1397-1020
http://orcid.org/0000-0003-0845-3947
http://orcid.org/0000-0003-0895-3765
https://doi.org/10.1007/978-3-031-52113-3_4

56 M. Banbara et al.

capture certain puzzles, among which the sliding block puzzle is representative.
The complexity of these kinds of puzzles had remained an open problem since
Martin Gardner pointed out in the 1960s that some certain theory is required to
understand such puzzles. However, after 40 years, Hearn and Demaine proposed
a framework known as constraint logic, and demonstrated that these puzzles are
PSPACE-complete [8,9] (some related work was also done by Flake and Baum
[5]). Combinatorial reconfiguration problems have been investigated towards an
understanding of the PSPACE class [10].

With the developments in theoretical computer science in the past decade,
new series of puzzles have been developed in the puzzle community. In compar-
ison to classical packing puzzles, one major property of these puzzles is that
the target shape is not explicitly stated. The first example is the symmetric
shape puzzle. This puzzle asks us to form a symmetric shape using a given set
of pieces. It is extremely challenging to solve such a puzzle because we cannot
be sure whether or not we are approaching the goal. This property makes the
puzzle very difficult, and in fact, only a few pieces are sufficient to cause this
difficulty [4]. The second example is the anti-slide puzzle. This puzzle asks us
to interlock a given set of pieces. A typical instance asks us to pack the given
pieces into a frame so that no piece can be slid in the frame. This puzzle is also
difficult because the goal is not explicitly stated. The computational complexity
of this puzzle was recently investigated by [11].

Fig. 1. Shape Logic (commercial prod-
uct by ThinkFun).

Fig. 2. Copies of a pentomino and a
tetromino share a large common shape.

In this study, we focus on such a puzzle that is known as the common shape
puzzle. Many instances of this puzzle are available in the puzzle community,
and a commercial product named “Shape Logic” exists. (The authors confirmed
that this puzzle was named “Top This!” in 2008 (Fig. 1), “ShapeOmetry” in
2012, and “Shape Logic” more recently by the same puzzle maker. The puzzle
“Top This!” won three awards in 2008.1 However, in this paper, we use the most
recent name.) In the shape logic puzzle, we are provided with two sets S1 and

1 https://www.thinkfun.com/about-us/awards/.

https://www.thinkfun.com/about-us/awards/

On the Computational Complexity of Generalized Common Shape Puzzles 57

S2 of polygons. We must find a polygon X that can be formed by the pieces in
S1 and S2, respectively, as in the classic silhouette puzzle Tangram. The main
difference between the Tangram and the shape logic puzzle is that the target
shape X is not provided, which drastically increases the difficulty of the puzzles.

Hereafter, we suppose that max{ |S1| / |S2| , |S2| / |S1| } is bounded from
above by a constant. We note that if S1 contains only one piece, the target
shape X is fixed to it. Therefore, it is equivalent to the classic puzzle Tangram
for S2, and it is NP-complete even if all pieces in S1 and S2 are rectangles [3].

We first demonstrate that it is polynomial-time solvable if |S1| + |S2| is
a constant. Subsequently, we show that the shape logic puzzle is strongly NP-
complete even if all the pieces in S1 and S2 are small rectangles. We state that
a rectangle in S1 ∪ S2 is small if its size is polynomial in (|S1| + |S2|).

Next, we focus on a similar puzzle named the common multiple shape puzzle,
which has been investigated in the puzzle community for a long time under a
few different names such as “polypolyomino”2 and “polyform compatibility”3.
We propose the term “the (least) common multiple shape” based on the term
“the least common multiple,” which is the corresponding Japanese name used
in Japanese puzzle community.4 An instance of this puzzle is as follows: We are
provided with two polygons P and Q. The puzzle asks us to find the (smallest
area) shape X that can be tiled by P , and also tiled by Q. That is, we can
use any number of copies of P and Q, and find the common shape X that can
be filled by only copies of P , as well as only copies of Q. This puzzle aims at
finding the minimum shape, however, it is known that some pairs result in a huge
solution (e.g., Fig. 2). The problem of finding a small common multiple shape of
the T-pentomino and O-tetromino (shown in Fig. 2) was first proposed by Robert
Wainright as a problem at the conference of games and puzzles competitions on
computers5 in 2005 and 2011. A solution with an area of 600 was found in 2011,
and it was improved to 340 in 2011.6 However, it remains open whether or not
this shape with an area of 340 in Fig. 2 is the smallest.

We naturally consider the (least) common multiple shape variant of the shape
logic puzzle. That is, for given sets S1 and S2 of polygons, the puzzle asks us to
find a small common shape X that can be filled by copies of pieces in S1 (and
S2, respectively). We show that this puzzle is undecidable even if each set of
S1 and S2 contains small polyominoes. As a corollary, we also demonstrate that
the following problem is undecidable: For a given set S of small polyominoes,
determine whether a rectangle can be formed using copies of the pieces in S.

In this study, we also present a formulation of these puzzles and verify the
feasibility with a computer. We recently discovered that such puzzles can be
solved by SAT-based solvers with sophisticated modeling far more efficiently

2 https://www.iread.it/Poly/.
3 https://sicherman.net/polycur.html.
4 In Japan, we use (least common multiple shape) following
(least common multiple number).

5 http://hp.vector.co.jp/authors/VA003988/gpcc/gpcc.htm.
6 http://deepgreen.game.coocan.jp/MCFG/MCFG index.htm.

https://www.iread.it/Poly/
https://sicherman.net/polycur.html
http://hp.vector.co.jp/authors/VA003988/gpcc/gpcc.htm
http://deepgreen.game.coocan.jp/MCFG/MCFG_{}index.htm

58 M. Banbara et al.

than when using other methods [1]. By determining an efficient formulation
of this puzzle and using a SAT-based solver, we also improve several known
instances of the common multiple shapes that have been investigated in the
puzzle community.

2 Preliminaries

A polyomino is a polygon that can be obtained by joining one or more unit
squares edge to edge [7]. In this study, we only consider simple polyominoes
(without holes) as polygons. (We note that even if all pieces are simple, the
solution may have holes, as indicated in Fig. 2.) If a polyomino P is formed by
k unit squares, we refer to P as a k-omino. For a specific k, we also refer to
it as a monomino, domino, tromino, tetromino, pentomino, and hexomino for
k = 1, 2, 3, 4, 5, 6, respectively.

A set S1 of polyominoes is said to be a set of small polyominoes when the
maximum polyomino in S1 is a k-omino for k = O(|S1| c) for a positive constant
c. In this case, we assume that the input size of the problem is bounded by
O(p(n)) for a polynomial function p, where n = |S1| + |S2| .

In this study, we consider two problems on polyominoes. The first problem
is the shape logic puzzle. Given two sets of S1 and S2 of small polyominoes, the
puzzle asks us to form a common polyomino X using all pieces in S1 and all
pieces in S2, respectively. The goal shape X is not provided. Clearly, the shape
logic puzzle is in NP when all pieces are small as we can guess X and verify the
feasibility of the given packing of S1 and S2 on X in polynomial time.

The second problem is the common multiple shape puzzle. Given two finite
sets S1 and S2 of polyominoes, the puzzle asks us to form a common polyomino
X with a positive area using copies of the pieces in S1 and copies of the pieces in
S2, respectively. This puzzle generalizes both of the shape logic puzzle and the
puzzle known as the polypolyomino (also referred to as polyform compatibility).
The latter puzzle is the case in which |S1| = |S2| = 1. It can be extended from
two sets to three or more sets naturally. (See Sect. 5 in this case).

For a finite set S of polyominoes, we define a set Ŝ of polyominoes P such that
P can be formed by copies of the pieces in S. Clearly, Ŝ is infinite and countable.
That is, the common multiple shape puzzle asks whether or not Ŝ1 ∩ Ŝ2 �= ∅.
When Ŝ1 ∩ Ŝ2 �= ∅, we refer to an element in Ŝ1 ∩ Ŝ2 as a common multiple
shape. Among the common multiple shapes, the smallest one is the least common
multiple shape.

3 Complexity of Shape Logic Puzzle

In this section, we focus on the generalized shape logic puzzle. That is, given
two sets S1 and S2 of polyominoes, we need to decide if all pieces in S1 (and in
S2) can form a common polyomino X.

On the Computational Complexity of Generalized Common Shape Puzzles 59

Observation 1. When |S1| + |S2| is a constant k, the generalized shape logic
puzzle can be solved in time polynomial in n, where n is the total number of
vertices in S1 ∪ S2.

Proof (Outline). We solve the problem by brute force using the same technique
as in [4, Section 3]. In [4, Section 3], they presented a method for solving the
symmetric assembly puzzle, which asks us to form a symmetric shape by using
the pieces in a set of (general) simple polygons in polynomial time.

The generalized shape logic puzzle can be reduced to the symmetric shape
puzzle in polynomial time as follows: Suppose that the generalized shape logic
puzzle has a solution and the pieces in S1 forms a polygon P , which can also be
formed by the pieces in S2. Then, without loss of generality, P can be placed so
that its rightmost vertex v is on ∂P ; that is, any point in P is not right of v.
At this point, we obtain a symmetric shape by joining P and its mirror image
PR at vertex v with its mirror image on ∂PR. That is, when the shape logic
puzzle with S1 and S2 has a solution, the symmetric shape puzzle also has a
solution for S1 ∪S2 such that the left half of the symmetric shape consists of the
pieces in S1 and the right half of the symmetric shape consists of the pieces in
S2. The proof in [4, Section 3] is based on brute force. Therefore, we can restrict
our search to a symmetric shape that also provides a solution for the shape logic
puzzle in S1 ∪ S2. As the original brute force algorithm for the symmetric shape
puzzle runs in time polynomial in n, so does our algorithm. ��

We note that the brute force algorithm in the proof of Observation 1 runs
in O(nf(k)) for some polynomial function f . That is, the generalized shape logic
puzzle problem is fixed parameter tractable.

Theorem 2. The shape logic puzzle is strongly NP-complete even if all pieces
in S1 and S2 are small rectangles.

Proof. According to the definition of a small polyomino, the problem is in NP.
Thus, we demonstrate the NP-hardness using a reduction from the 3-partition
problem. In the 3-partition problem, we are provided with a multiset of 3m
positive integers A = {a1, a2, . . . , a3m}, where the ais are bounded from above by
a polynomial of m. The goal is to partition the multiset A into m triples such that
every triple has the same sum B = (

∑3m
i=1 ai)/m. It is known that the 3-partition

problem is strongly NP-complete even if every ai satisfies B/4 < ai < B/2
[6, SP16]. Without loss of generality, we assume that ai > 3 for each i and
B = 3mB′ for a positive integer B′. Then, the set S1 consists of 3m rectangles
of size 1 × (ai + 3m2) for each i = 1, 2, . . . , 3m. Furthermore, S2 consists of
3m congruent rectangles of size m × (B/(3m) + 3m). The construction can be
computed in time polynomial in m.

Subsequently, we observe that 3m < B/(3m)+3m < B/4+3m2 < ai +3m2

for each i, as 3m pieces exist in S1, ai > 3, and ai > B/4. That is, (1) B/(3m)+
3m is larger than 3m, which is the number of long and slender rectangles in S1,
and (2) each length ai + 3m2 cannot fit into any rectangle that is formed by
the pieces in S2 except if a rectangle with a width of m is created. Therefore,

60 M. Banbara et al.

the only means of forming the same shape using the pieces in S1 and the pieces
in S2 is to form a rectangle with a size of m × (B + 9m2) using the pieces in
S2 and to pack long rectangles with a size of 1 × (ai + 3m2) into this frame.
The arrangement of pieces in S1 directly provides the solution to the original
instance of the 3-partition problem. ��

4 Undecidability of Common Multiple Shape Puzzle

In this section, we demonstrate that the common multiple shape puzzle is unde-
cidable. We first show that a generalized jigsaw puzzle is undecidable. In this
puzzle, each edge is colored, which will be modified to polygonal shapes without
color.

4.1 Undecidability of a Generalized Jigsaw Puzzle

We first consider a generalized jigsaw puzzle. We borrow several notions from
[2]. Each piece is a square with four edges and has its own color. We denote
the set of colors as C = {0, 1, 2, . . . , c, 1̄, 2̄, . . . , c̄}. In our jigsaw puzzle, we tile
the pieces into a rectangular frame so that each edge is shared by two adjacent
pieces with colors i and ī, except for the boundary of the frame. A special color
0 exists, which should match to the frame. That is, when we tile the pieces, the
outer boundary has the color 0, and no inside edge has the color 0.

In our jigsaw puzzle, we are allowed to use copies of a piece in S multiple
times, which is the significant difference between our puzzle and that in [2].
Therefore, for a given finite set S, we have infinitely countable means of tiling
the pieces. Subsequently, the jigsaw puzzle problem is defined as follows:

Input: A set S of unit square pieces such that each piece has four colors in C
on its four edges.

Output: Decide if there is a polyomino region R such that R can be tiled by
copies of pieces in S in which each inner edge is shared by two adjacent pieces
of colors i and ī (with i > 0), and each edge on the boundary ∂R has the
color 0. 0

0
V'

H'
0

H
v

H
0

H
V

0

0
V

v V
0

0
0

H
0

H
v

H
0

H 0

V

Vv

V V

h

h h h

0
H'

v
H

0
V
V'

h

Fig. 3. Jigsaw puzzle
in a rectangle.

We first present the following lemma. Intuitively, the
rectangle in the following lemma will be used as a template
for the other set of pieces.

Lemma 1. There exists a finite set S of jigsaw puzzle
pieces such that the area R is tiled by copies of the pieces
in S with the boundary color 0 along ∂R if and only if R
is a rectangle with a size of at least 3 × 3.

Proof. We consider the set of 11 jigsaw puzzle pieces
depicted in Fig. 3. For ease of reference, we use some letters such as H, V ,
etc. instead of the numbers 1, 2, etc. in the figure. As every piece contains H,

On the Computational Complexity of Generalized Common Shape Puzzles 61

H̄, H ′, H̄ ′, h, or h̄, without loss of generality, we can assume that one piece is
placed so that its H̄, H̄ ′, or h̄ is on its left, and all the pieces are then aligned in
the same direction, as indicated in the figure. The boundary of the jigsaw puzzle
is labeled by 0. We observe that we cannot form a rectangle with a size of 2 × n
(and n×2) for any n because V ′ and V̄ (and H ′ and H̄) do not match. Further-
more, we observe that an edge is colored by h or v if and only if it is not incident
to a vertex on the boundary. In particular, we cannot create a corner with the
angle 270◦; to achieve this, we must place one “corner boundary” piece inside,
which results in the color 0 being inside the shape, and this is not permitted. ��

We show that our jigsaw puzzle problem is undecidable.

Lemma 2. There exists a finite set S of pieces of the jigsaw puzzle such that
the jigsaw puzzle is undecidable.

Proof (Outline). We present a polynomial-time reduction from the following Post
Correspondence (PC) problem:

Input: A sequence of pairs of strings s1 = (t1; b1), s2 = (t2; b2), . . . , sn = (tn, bn).
We define T (si) = ti,B(si) = bi for a pair si = (ti; bi).

Question: Decide if there exists a sequence of pairs si1 , si2 , si3 , . . . , sik of strings
such that T (si1)T (si2)T (si3) · · · T (sik) = B(si1)B(si2)B(si3) · · · B(sik).

Let Σ be an alphabet, namely the set of letters that is used in the sequence. We
note that we can use each pair si can be used any number of times. It is well
known that the PC problem is undecidable even if |Σ| is a constant [12].

O
H

1
H

O
H

2
H

O
H

3

O
a

H

O
a

O
H

4
O
b

O
c

H H

t1=b t2=a t3=ca t4=abc

OH
1''

O
b

H
OH
2''

OH
4''

H
OH
3''

H

b1=ca b2=ab b4=cb3=a

1h
1

h
1''

h
c

1'
1''

h
c

1' 1' 1'
a
a

1' 1'
b
b

1' 1'
c
c

1
h

b
1' 1 h

b
1'

Jigsaw puzzle pieces for joining 1

2h
2

h
2''

h
a

2'
2''

h
a

2' 2' 2'
a
a

2' 2'
b
b

2' 2'
c
c

2
h

a
2' 2 h

a
2'

Jigsaw puzzle pieces for joining 2

3h
3

h
3''

h
a

3'
3''

h
a

3' 3' 3'
a
a

3' 3'
b
b

3' 3'
c
c

3
h

c
3' 3 h

c
3'

Jigsaw puzzle pieces for joining 3

4h
4

h
4''

h
c

4'
4''

h
c

4' 4' 4'
a
a

4' 4'
b
b

4' 4'
c
c

4
h

a
4' 4 h

a
4'

Jigsaw puzzle pieces for joining 4

O
O

V
H

O
H

V
O

OH
V

O
OO
V

Hh
V

OO
V

h
VV

h h
a
a

h h
b
b

h h
c
c

Jigsaw puzzle pieces for framing both sides Jigsaw puzzle pieces for filling inside

1' 1'
a
a

1' 1'
b
b

1' 1'
c
c

2' 2'
a
a

2' 2'
b
b

2' 2'
c
c

3' 3'
a
a

3' 3'
b
b

3' 3'
c
c

4' 4'
a
a

4' 4'
b
b

4 4'
c
c

1''
h

1''
h

2''
h

2''
h

3''
h

3''
h

4''
h

4''
h

1''
h

1
h

2''
h

2
h

3''
h

3
h

4''
h

4
h

Fig. 4. A reduction from the PC problem to the jigsaw puzzle problem.

62 M. Banbara et al.

We demonstrate the reduction by using a concrete example Σ = {a, b, c},
s1 = (b; ca), s2 = (a; ab), s3 = (ca; a), s4 = (abc; c) (Fig. 4). We prepare one
piece, one piece, two pieces, and three pieces of jigsaw puzzle for each string
t1 = b, t2 = a, t3 = ca, and t4 = abc, respectively. We set each string to be
uniquely constructible: two pieces for t3 = ca have their own color (distinct from
any other color) between them, and three pieces for t4 = abc have their own two
colors between a and b, and b and c (these are blank in Fig. 4). The top color is
0, the left color is H̄, and the right color is H for each piece. (As in the proof of
Lemma 1, we regard certain letters as numbers greater than n). Hereafter, we
consider these strings as rectangular pieces that are represented by sizes of 1×1,
1×1, 2×1, and 3×1, respectively. The leftmost bottom color of the rectangular
piece ti is the color i, which is referred to as the ID of this rectangular piece.
The color of the other edge corresponds to the letter in the string. That is, the
second and the third pieces of the rectangle representing t4 = abc have the colors
b and the color c, respectively. (We regard these letters as unique numbers in the
color set C. As the size of the alphabet Σ is a constant, regarding these letters
as numbers has no influence on our arguments).

Subsequently, we prepare two, two, one, and one pieces for the strings b1 = ca,
b2 = ab, b3 = a, and b4 = c, respectively. As with the strings ti, b1, b2, b3, b4 each
corresponds to a rectangular piece with a size of 2 × 1, 2 × 1, 1 × 1, and 1 × 1,
respectively. The bottom color is 0, the left color is H̄, and the right color is H for
these rectangular pieces. The top colors of the rectangular piece are represented
by the letters, except for the leftmost edge, which has the color ID ī′′ for the
string bi.

Next, we prepare to join two pieces with the IDs i and i′′. Hereafter, we use
(cu, cb, cl, cr) to denote the top color cu, bottom color cb, left color cl, and right
color cr of a piece. Furthermore, we assume that the top letter of ti is xi and
the top letter of bi is yi. We first prepare a piece with colors (̄i, i, h̄, h), which
is a wire of the ID in the vertical direction. We also prepare a piece with colors
(̄i, xi, h̄, i′), which turns the ID to the right, and a piece with colors (̄i, xi, ī′, h),
which turns the ID to the left. The ID is turned to the right or left using one
of these pieces and runs horizontally. The prime symbol ′ means that the ID
turns once. Thereafter, we prepare two pieces with the colors (ȳi, i′′, h̄, i′) and
(ȳi, i′′, ī′, h) to turn the ID downwards. In this case, the symbol ′′ means that
the ID turns twice. Furthermore, we prepare a piece with the color (j̄, j, ī′, i′) for
each letter j ∈ Σ to propagate the ID in the horizontal direction. We also add a
piece with the color (ī′′, i′′, h̄, h) to pass the ID downwards after turning twice.
In a special case, an ID can directly move from top to bottom without turning.
We prepare a piece with the color (̄i, i′′, h̄, h) to deal with this case. Thus, we
prepare a total of eight pieces for the IDs i and i′′.

Subsequently, we prepare pieces to form the left and right sides of the rect-
angular frame. We prepare six pieces with the colors (0, V, 0,H), (0, V, H̄, 0),
(V̄ , V, 0, h), (V̄ , V, h̄, 0), (V̄ , 0, 0,H), and (V̄ , 0, H̄, 0). Finally, we prepare pieces
(j̄, j, h̄, h) for each j ∈ Σ to fill the holes in the frame.

On the Computational Complexity of Generalized Common Shape Puzzles 63

We prepare
∑n

i=1(|ti| + |bi|) + 8n + 6 + |Σ| pieces in total. Therefore,
the jigsaw puzzle can be constructed in time polynomial in the size of a given
instance of the PC problem.

We demonstrate that the instance s1 = (t1; b1), s2 = (t2; b2), . . . , sn = (tn, bn)
of the PC problem has a solution if and only if the jigsaw puzzle has a solution
such that a rectangular area R is filled with copies of the pieces with the color
0 only on ∂R.

O
H

2
H

t2

O
b

H
OH
2''

b2

O
H

1
H

t1

O
a

H
OH
1''

b1

O
H

3
O
a

H

t3

OH
3''

H

b3

O
H

2
H

t2

O
b

H
OH
2''

b2

O
H

4
O
b

O
c

H

t4

OH
4''

H

b4

O
H

2
H

t2

O
b

H
OH
2''

b2

O
H

1
H

t1

O
a

H
OH
1''

b1

O
H

3
O
a

H

t3

OH
3''

H

b3

O
H

2
H

t2

O
b

H
OH
2''

b2

O
H

4
O
b

O
c

H

t4

OH
4''

H

b4

4
h

a
4' 4' 4'

b
b 4''

h
c

4'

4
4
4''h
4''

h

4
4
4''h
4''

h

2h
2

h

2
h

a
2'

2''
h

a
2'

3
h

c
3'

3''
h

a
3'3' 3'

a
a

1h
1

h
3h
3

h

3h
3

h
1h
1

h

1h
1

h

1
h

b
1'

1''
h

c
1'

4
4
4''h
4''

h
3
3
3''h
3''

h

2''h
2''

h

2''h
2''

h

2
2
2h
2

h

2
2
2h
2

h

2
2
2h
2

h

2
2
2''h
2

h

O
H

2
H

t2

O
b

H
OH
2''

b2

O
H

1
H

t1

O
a

H
OH
1''

b1

O
H

3
O
a

H

t3

OH
3''

H

b3

O
H

2
H

t2

O
b

H
OH
2''

b2

O
H

4
O
b

O
c

H

t4

OH
4''

H

b4

4
h

a
4' 4' 4'

b
b 4''

h
c

4'

4
4
4''h
4''

h

4
4
4''h
4''

h

2h
2

h

2
h

a
2'

2''
h

a
2'

3
h

c
3'

3''
h

a
3'3' 3'

a
a

1h
1

h
3h
3

h

3h
3

h
1h
1

h

1h
1

h

1
h

b
1'

1''
h

c
1'

4
4
4''h
4''

h
3
3
3''h
3''

h

2''h
2''

h

2''h
2''

h

2
2
2h
2

h

2
2
2h
2

h

2
2
2h
2

h

2
2
2''h
2

h
a
a

h h
a
a

a
a

h h
a
a

a
a

h h
a
a

h h
b
b

h h
b
b

h h
b
b

O
O

V
H

O
H

V
O

OH
V

O
OO
V

H

h
V

OO
V

h
VV

O
V

h
V

O
V

h
V

O
V

h
V

h
V

O
V

h
V

O
V

h
V

O
V

Fig. 5. Construction of a solution of the jigsaw puzzle from a solution of the instance
of the PC problem.

We first assume that the sequence si1 , . . . , sik is a solution, from which we
construct a rectangular shape using the set of pieces of the jigsaw puzzle. We

64 M. Banbara et al.

use s1 = (b; ca), s2 = (a; ab), s3 = (ca; a), s4 = (abc; c) as an example (Fig. 5).
Intuitively, we verify that two corresponding IDs are joined by a zig-zag path
with two (or zero) turns, these zig-zag paths do not cross one another, and the
corresponding letters are joined by vertical matching pieces.

We first align the rectangular pieces ti1 , ti2 , . . . , tik on the top row and
bi1 , bi2 , . . . , bik on the bottom row following the solution si1 , . . . , sik of the PC
problem. (As a reminder, each string ti (and si) produces unique rectangular
pieces.) Thus, we obtain 0s on the top and bottom boundaries, and we can join
all rectangular pieces by matching h and h̄. Subsequently, we join all correspond-
ing pairs of IDs using the prepared pieces. When the gap between the top and
bottom rows is sufficiently large, each joining path for each ID i can be created
in one of the following manners:

(1) The pair of the corresponding IDs i and i′′ in the same column is directly
joined vertically,

(2) When the ID i′′ of bi is left of the ID i of ti, the ID i first moves down
vertically, turns left once, moves horizontally, turns right once, and moves
downwards to the ID i′′, and

(3) When the ID i′′ of bi is right of the ID i of ti, the ID i first moves down
vertically, turns right once, moves horizontally, turns left once, and moves
downwards to the ID i′′.

Any of these procedures can be performed using the pieces prepared as above.
Note that in the case (2), the first letter xi of the string ti appears at the corner
when we use the piece (̄i, xi, ī′, h) is used to turn left, and the first letter yi of
the string bi appears at the corner when (ȳi, i′′, h̄, i′) is used. In the case (3), the
pieces (̄i, xi, h̄, i′) and (ȳi, i′′, ī′, h) are used for this purpose.

Following all the above steps, we can observe that each corresponding pair
of IDs is joined by either a straight vertical path in case (1) or a zig-zag path
with two turns in cases (2) or (3). Moreover, the ith letter in the common string
that is produced by the sequence si1 , . . . , sik appears on all the horizontal edges
of the ith piece (from left), except its boundary and pieces on the vertical line
that join two corresponding IDs. At this holds even for the holes, we can fill
all of the holes using the pieces that have been prepared for filling. Finally, we
can complete the frame by arranging the pieces that have been prepared for the
frame with the color 0 on the boundary.

We assume that the jigsaw puzzle has a solution. The pieces that correspond
to ti and bi form the respective rectangles as they have their unique colors. As all
pieces have the color h or h̄, therefore, every piece is arranged so that h̄ appears
on the left side and h appears on the right side. Because the color 0 matches no
other colors, the rectangles for ti and the corner pieces of color 0 on the upper
edges are arranged on the top row, as are the rectangles for bi and the corner
pieces of color 0 on the lower edges. We need to form a rectangle using the pieces
of the color 0 on the left or right side. (Although it may appear that we can form
any polyomino other than rectangles, we cannot create any concave corner of
270◦ because an edge with the color 0 cannot be placed inside the polyomino).

On the Computational Complexity of Generalized Common Shape Puzzles 65

According to the color properties, the ID color of each rectangle correspond-
ing to ti should be connected to the ID color of each rectangle for bi, and these
k paths cannot cross. If a path has no turn, it is necessary to use some copies
of the piece with the color (̄i, i, h̄, h), one copy of the piece (̄i, i′′, h̄, h), and some
copies of the piece (ī′′, i′′, h̄, h). If a path has turns, the only possible solution is
that the color i of ti starts vertically, is changed to i′ after one 90◦ turn, moves
horizontally, is changed to i′′ after one 90◦ turn, and moves down to the piece in
the rectangle corresponding to bi. The colors of ti and bi appear at each turn on
a horizontal edge. Thus, the remaining holes should be packed using the pieces
with the color (j̄, j, h̄, h) for the matching color j, and each pair of IDs of ti and
bi should match.

Therefore, when the jigsaw puzzle has a solution, the pieces form a rectangle,
the pieces for ti are arranged on the top, the pieces for bi are arranged on the
bottom, the corresponding pairs of IDs of ti and bi match, and a consistent
letter is obtained along each vertical line of the pieces. Thus, si can be arranged
following the sequence, and the same sequence of letters that is produced by
the sequences of ti and bi can be obtained, which provides a solution to the PC
problem, thereby completing the proof. ��

4.2 Undecidability of the Common Multiple Shape Puzzle

0 3 3211 2

Fig. 6. Colored jigsaw piece for a poly-
omino. Each color i corresponds to a zigzag
pattern that represents the integer i in the
binary system. The color ī is its negative.

We now turn to the common multiple
shape puzzle. Lemmas 1 and 2 imply
the following Theorem.

Theorem 3 For two finite sets S1

and S2 of small polyominoes, the com-
mon multiple shape puzzle for S1 and
S2 is undecidable.

Proof (Outline). We first demonstrate
how to represent each piece of the jigsaw puzzle in Lemmas 1 and 2 using a small
polyomino. The basic concept is explained in [3, Fig. 7]. Each color is represented
by its original zig-zag pattern. See Fig. 6 for an example of the representation.
Using the binary system, the size of the polyomino is O((log |C|)2), where C is
the set of colors.

We consider the set S1 of jigsaw pieces in Lemma 1 and the set S2 of jigsaw
pieces in Lemma 2. Different colors can be used for each set, except the common
color 0. Subsequently, according to Lemma 1, a solution to the common multiple
shape puzzle is a shape that corresponds to a rectangle. Moreover, according to
Lemma 2, whether it can be constructed using the pieces in S2 is undecidable.
The number of colors used in S1 ∪S2 is linear with the size n of the input. Thus,
each polyomino has an area of O((log n)2), which means that it is small. This
completes the proof. ��

66 M. Banbara et al.

5 Improved Solutions for Common Multiple Shapes

In this section, we provide a brief formulation of generalized common shape
puzzles. The rep-tile problem,7 which is a type of packing puzzle on polyominoes,
has been formulated and examined using several different computer methods
[1] recently. In [1], the authors demonstrated that the rep-tile problem can be
formulated in a natural form that can be handled using various methods. They
compared a well-known puzzle solver, a few algorithms based on dancing links,
an MIP solver, and a SAT-based solver with respect to for solving the packing
puzzles. In [1], the authors concluded that the SAT-based solver is significantly
faster than the other methods. The common shape puzzle has similar properties
to the rep-tile problem. Therefore, we examined several instances of the common
shape puzzle that are available online,8 and improved some of the known results
by using the SAT-based solver used in [1].

For example, the previous best known shape for F5Q4T4 on https://www.
iread.it/Poly/ was a 760-omino, and our new shape is only 160-omino (Fig. 7).
(Here, “F5Q4T4” means that this problem asks for finding a common shape of
using copies of F-pentomino, Q-tetromino, and T-tetromino, respectively, which
are commonly used in the puzzle society. See https://www.iread.it/lz/pttomini.
html for details.) The previous best known shape for T5L4Q4 on https://
sicherman.net/n445com/n445com.html, which was a 560-omino, is improved
to 480-omino (Fig. 8). In addition to them, we improved the following cases:
The previous best known shapes for I5P5T5, I5P5Z5, L5P5X5, and P5U5V5
on https://sicherman.net/rosp/triplep.html were 120-omino, 200-omino, 400-
omino, and 160-omino, respectively. We obtain new better shapes of 110-
omino for I5P5T5, 150-omino for I5P5Z5, 360-omino for L5P5X5, 120-omino
for P5U5V5, respectively.

Fig. 7. Tiling patterns for F5Q4T4 improved from 760-omino to 160-omino.

Two main differences exist between the formulations of the common shape
puzzle and the packing puzzle in [1]. The first one is that the goal shape is not

7 A polygon P is called a rep-tile if it can be divided into congruent polygons with
each other similar to P .

8 https://www.iread.it/Poly/ and https://sicherman.net/polycur.html.

https://www.iread.it/Poly/
https://www.iread.it/Poly/
https://www.iread.it/lz/pttomini.html
https://www.iread.it/lz/pttomini.html
https://sicherman.net/n445com/n445com.html
https://sicherman.net/n445com/n445com.html
https://sicherman.net/rosp/triplep.html
https://www.iread.it/Poly/
https://sicherman.net/polycur.html

On the Computational Complexity of Generalized Common Shape Puzzles 67

Fig. 8. Tiling patterns for T5L4Q4 improved from 560-omino to 480-omino.

provided in the common shape puzzle, whereas it is provided in the packing
puzzle. The second is that we must create a common (or congruent) shape using
two different sets S1 and S2 of pieces in the common shape puzzle, whereas we
have only one set of pieces in the packing puzzle.

To address the first point, we fix the bounding box of the goal shape. We first
fix the number of pieces (or |S1| and |S2|), and we attempt to create possible
bounding boxes that contains these pieces.

In the packing puzzle, we can assume that each unit square of a goal shape
is covered exactly once by a piece. However, in the common shape puzzle, each
unit square of a bounding box is covered by either 0 or 2 pieces. Moreover, when
the square is covered by 2 pieces, these should be in S1 and S2.

We can modify the formulation of the packing puzzle in [1] to that for the
common shape puzzle using these concepts. Furthermore, it is straightforward
to extend the problem from two sets S1 and S2 to three sets S1, S2, and S3 (and
more).

6 Concluding Remarks

We have considered the computational complexities of generalized common
shape puzzles, in which the goal shapes are not provided. The puzzle is tractable
when the number of pieces is a constant; however, it is strongly NP-complete
even if the piece sets consist of small rectangles. Moreover, if we are allowed to
use the copies of the pieces repeatedly, the problem becomes undecidable. It is
possible to formulate the puzzle for several different solvers in a natural form,
and we improved some known records for concrete instances using a SAT-based
solver. However, we have not yet succeeded in confirming that the results are
the minimum solutions. For example, we verified the pattern in Fig. 2 for each
boundary box with a size of i×	625/i
 using 1 ≤ i ≤ 25 and confirmed that there
are no smaller patterns in these boundary boxes. However, this does not imply
that the pattern in Fig. 2 is the smallest area pattern. Thus, efficient searching

68 M. Banbara et al.

for the minimum solution remains open. We have only considered the polyomi-
noes in this study, and thus, the extension to general polygons is a natural topic
for future work.

References

1. Banbara, M., et al.: Solving rep-tile by computers: performance of solvers and
analyses of solutions. arXiv:2110.05184 (2021)

2. Bosboom, J., Demaine, E.D., Demaine, M.L., Hesterberg, A., Manurangsi, P., Yod-
pinyanee, A.: Even 1× n edge matching and jigsaw puzzles are really hard. J. Inf.
Process. 25, 682–694 (2017)

3. Demaine, E.D., Demaine, M.L.: Jigsaw puzzles, edge matching, and polyomino
packing: connections and complexity. Graphs Combin. 23(Suppl 1), 195–208
(2007). https://doi.org/10.1007/s00373-007-0713-4

4. Demaine, E.D., et al.: Symmetric assembly puzzles are hard, beyond a few pieces.
Comput. Geom.: Theory Appl. 90, 101648, 1–11 (2020). https://doi.org/10.1016/
j.comgeo.2020.101648

5. Flake, G.W., Baum, E.B.: Rush hour is PSPACE-complete, or “why you should
generously tip parking lot attendants”. Theoret. Comput. Sci. 270, 895–911 (2002)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability—A Guide to the Theory
of NP-Completeness. Freeman (1979)

7. Golomb, S.W.: Polyominoes. Princeton University Press, Princeton (1994)
8. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A K Peters Ltd.

(2009)
9. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and

other problems through the nondeterministic constant logic model of computation.
Theoret. Comput. Sci. 343(1–2), 72–96 (2005)

10. Ito, T., et al.: On the complexity of reconfiguration problems. Theoret. Comput.
Sci. 412, 1054–1065 (2011)

11. Minamisawa, K., Uehara, R., Hara, M.: Mathematical characterizations and com-
putational complexity of anti-slide puzzles. Theor. Comput. Sci. 939, 216–226
(2023). https://doi.org/10.1016/j.tcs.2022.10.026

12. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Amer. Math. Soc.
52, 264–268 (1946). https://doi.org/10.1090/S0002-9904-1946-08555-9

13. Uehara, R.: Computational complexity of puzzles and related topics. Interdisc. Inf.
Sci. 29(2), 119–140 (2023). https://doi.org/10.4036/iis.2022.R.06

http://arxiv.org/abs/2110.05184
https://doi.org/10.1007/s00373-007-0713-4
https://doi.org/10.1016/j.comgeo.2020.101648
https://doi.org/10.1016/j.comgeo.2020.101648
https://doi.org/10.1016/j.tcs.2022.10.026
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://doi.org/10.4036/iis.2022.R.06

Fractional Bamboo Trimming
and Distributed Windows Scheduling

Arash Beikmohammadi1, William Evans2, and Seyed Ali Tabatabaee2(B)

1 Department of Computer Science, Simon Fraser University, Burnaby, Canada
arash beikmohammadi@sfu.ca

2 Department of Computer Science, University of British Columbia,
Vancouver, Canada

{will,salitaba}@cs.ubc.ca

Abstract. This paper studies two related scheduling problems: frac-
tional bamboo trimming and distributed windows scheduling. In the
fractional bamboo trimming problem, we are given n bamboos with dif-
ferent growth rates and cut fractions. At the end of each day, we can
cut a fraction of one bamboo. The goal is to design a perpetual sched-
ule of cuts to minimize the height of the tallest bamboo ever. For this
problem, we present a 2-approximation algorithm. In addition, we prove
upper bounds on the approximation factors of well-known algorithms
Reduce-Max and Reduce-Fastest(x) for this problem. In the closely
related windows scheduling problem, given a multiset of positive integers
W = {w1, ..., wn}, we want to schedule n pages on broadcasting channels
such that the time interval between any two consecutive appearances of
the i-th page (1 ≤ i ≤ n) is at most wi. The goal of this problem
is to minimize the number of channels. We provide an algorithm for

the windows scheduling problem that uses at most
⌈

d(W)+1
0.75

⌉
channels,

where d(W) =
∑n

i=1
1

wi
. When d(W) ≤ 46, our algorithm guarantees

a smaller upper bound on the number of channels than the best-known
algorithm in the literature. We also describe the first approximation algo-
rithm for the windows scheduling problem in a distributed setting, where
input data is partitioned among a set of m machines. Furthermore, we
introduce patterns of some multisets with d(W) ≤ 1 for which windows
scheduling on one channel (i.e., pinwheel scheduling) is impossible.

Keywords: Scheduling problems · Bamboo trimming · Windows
scheduling · Distributed algorithms

1 Introduction

Scheduling problems have numerous applications across various areas of com-
puter science, including operating systems, computer networks, and parallel pro-
cessing. The bamboo trimming [19] and windows scheduling [6] problems are two

This work was partially funded by NSERC Discovery Grants.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 69–81, 2024.
https://doi.org/10.1007/978-3-031-52113-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_5

70 A. Beikmohammadi et al.

prominent and closely related examples of scheduling problems. The bamboo
trimming problem and its generalizations have applications in cloud systems [2],
network-switch buffer management [20], and quality of service guarantees [1].
The windows scheduling problem can be utilized in media-on-demand [33] and
push systems [3].

In the bamboo trimming problem (BT), we are given n bamboos with growth
rates r1, ..., rn whose initial heights are 0. At the end of each day, we can cut
one bamboo whose height becomes 0 while the height of every uncut bamboo i
increases by ri. The goal is to design a perpetual schedule of cuts to minimize
the height of the tallest bamboo ever. We introduce a natural generalization of
BT that considers cut fractions q1, ..., qn (positive numbers less than or equal
to 1), meaning that cutting the i-th bamboo (1 ≤ i ≤ n) at any time will
multiply its height by (1− qi). We refer to this problem as the fractional bamboo
trimming problem (FBT). In this problem, we let q = min1≤i≤n qi. Two natural
greedy algorithms for BT and FBT are Reduce-Max and Reduce-Fastest(x).
Reduce-Max cuts the bamboo with the maximum height at the end of each day.
Reduce-Fastest(x), on the other hand, cuts the bamboo with the highest growth
rate among the ones that have height at least the threshold x · ∑n

i=1 ri.
In the windows scheduling problem (WS), we are given a multiset of positive

integers W = {w1, ..., wn}, where each element of the multiset is called a window.
We want to schedule n pages on broadcasting channels (one page per channel at
each time slot) such that the interval between any two consecutive appearances
of the i-th page (1 ≤ i ≤ n) is at most wi slots. The goal is to minimize the
number of channels. The density of W is defined as d(W) =

∑n
i=1

1
wi

. WS for
a single broadcasting channel is called the pinwheel scheduling problem (PS).
WS and BT are closely related. If we modify BT (where all cut fractions are
equal to 1) to allow more than one bamboo to be cut at the end of each day and
aim to minimize the number of cuts per day while preventing the height of any
bamboo from exceeding a certain given amount, we obtain WS. In the distributed
windows scheduling problem (DWS), the input multiset W is partitioned among
a set of m machines, where the k-th machine (1 ≤ k ≤ m) has a subset Wk

(which is itself a multiset) of the input, and the goal is to design collaboratively
a perpetual schedule of pages on broadcasting channels for the whole multiset
W .

In this paper, we provide the following results:

– We present a 2-approximation algorithm for FBT.
– We prove the upper bound of 6

q on the approximation factor of Reduce-Max
for FBT. For the same problem, we also prove the upper bound of x+1 on the
approximation factor of Reduce-Fastest(x) for all x ≥ 3−q

q . This shows that
3
q is an upper bound on the approximation factor of Reduce-Fastest(3−q

q).
Thus, if q is fixed, both algorithms can have constant approximation factors
for FBT.

– We provide an algorithm for WS that uses at most
⌈

d(W)+1
0.75

⌉
channels. When

d(W) ≤ 46, our algorithm provides a better guarantee than the best-known
algorithm in the literature.

Fractional Bamboo Trimming and Distributed Windows Scheduling 71

– We present an algorithm for DWS that uses at most min(d(W)
0.75 + 7m

3 , d(W)+
e · ln (d(W)) ·m+7.3595 ·m, (2+ ε) ·d(W)+1) channels. The communication
complexity of the algorithm is O(m · log (1ε)).

– We describe some infinite patterns of instances of PS with d(W) ≤ 1 that do
not have a pinwheel schedule, augmenting those of Holte et al. [22].

The rest of this paper is organized as follows. Section 2 provides background
information on BT and WS. Section 3 studies different algorithms for FBT.
Section 4 presents algorithms for WS and DWS. Finally, Sect. 5 concludes the
results provided in this paper.

2 Background

BT has been the subject of several research projects in recent years [13,18,19,
21,26,32]. The best known algorithm for BT has an approximation factor of
10
7 [21]. Reduce-Max has been shown to provide the approximation guarantee
of 4 for this problem [26]. The same work proved the upper bound of x + 1
on the approximation factor of Reduce-Fastest(x) for all x ≥ 2 [26]. The best
known approximation guarantee achieved by Reduce-Fastest(x) is 3+

√
5

2 < 2.62
for x = 1+ 1√

5
[13]. There is a close relationship between BT and PS [14,17,22],

and this relationship has been used to design algorithms for BT [19,32]. BT has
also been viewed as a variation of the cup game [1,10–12,23,27–29]. Kuszmaul
[26] explained this connection in detail. Anily et al. [4] considered a problem that
shares similarities with BT but has a different objective function: to minimize the
long-run average height of the bamboos, whereas in BT, the goal is to minimize
the height of the tallest bamboo ever.

WS [6,8] is classified as a variant of periodic scheduling problems [30]. A
restricted version of WS has been proved to be NP-hard, but it is unknown
whether or not the main version of the problem is also NP-hard [8]. It has been
shown that �d(W)� is a lower bound on the minimum number of required broad-
casting channels [6]. The best known algorithm for WS uses d(W)+O(ln d(W))
channels [6]. WS for a single broadcasting channel is known as PS [14,17,22].
A necessary condition for having a pinwheel schedule is d(W) ≤ 1 [22]. On
the other hand, d(W) ≤ 0.75 is a sufficient condition for having a pinwheel
schedule [17]. The harmonic windows scheduling problem (HWS) [6] is another
related problem where for a given number c, the goal is to maximize n such that
W = {1, ..., n} can be scheduled on c channels. HWS has applications in media-
on-demand [7]. Furthermore, the relationship between WS and a special case of
bin packing [15], known as the unit fractions bin packing problem (UFBP) [8],
has been investigated in the literature. In UFBP, the size of each input item is
a reciprocal of an integer.

Distributed computation has been used to process massive datasets. The
Massively Parallel Computation (MPC) model is frequently used to study such
computation [5,9,25]. The MPC model provides an abstraction of frameworks
such as MapReduce [16] for processing datasets in a distributed manner. In

72 A. Beikmohammadi et al.

MPC, data is processed in multiple rounds carried out by several machines of
strongly sublinear space in the input size. In every round, each machine performs
polynomial-time computations on its given data, and the results are communi-
cated with other machines to be used by those machines in the next round of the
algorithm. The total size of messages sent or received by each machine in each
round should not exceed its memory. Moreover, it is desired to keep the number
of rounds low, ideally constant. Distributed algorithms have been devised for
various problems in the MPC model and techniques such as using composable
coresets have been proposed to address some of those problems [24,31]. The idea
of using composable coresets is to extract a small subset of data, called a coreset,
from each machine in a way that the union of the coresets represents a summary
of the whole data.

3 Fractional Bamboo Trimming

In this section, we present an algorithm with an approximation factor of 2 for
FBT. We then provide upper bounds on the approximation factors of Reduce-
Max and Reduce-Fastest(x) for this problem.

Theorem 1. There exists a 2-approximation algorithm for FBT.

Proof. Let M be the height of the tallest bamboo ever for the optimal algorithm.
Moreover, let Ci,t denote the number of times the optimal algorithm cuts the
i-th bamboo (1 ≤ i ≤ n) within the first t days (t ≥ 1). Every time the optimal
algorithm cuts the i-th bamboo, the height of the bamboo decreases by at most
qiM . Hence, for any t ≥ 1, the optimal algorithm must maintain t·ri−Ci,t·qiM ≤
M , which is a necessary condition for preventing the height of the i-th bamboo
from exceeding M within the first t days. As a result, we have ri

qiM
− 1

qit
≤ Ci,t

t .

Thus, we deduce that
∑n

i=1
ri

qiM
− ∑n

i=1
1

qit
≤ ∑n

i=1
Ci,t

t = 1 (for any t ≥ 1).
Therefore, considering that limt→∞

∑n
i=1

1
qit

= 0, we must have
∑n

i=1
ri

qiM
≤ 1,

which means that
∑n

i=1
ri

qi
≤ M .

Let us define R =
∑n

i=1
ri

qi
and W = {w1, ..., wn} such that for 1 ≤ i ≤

n, wi is the smallest power of 2 greater than or equal to qiR
ri

. Since d(W) =
∑n

i=1
1

wi
≤ ∑n

i=1
ri

qiR
= 1 and all elements of W are powers of 2, W has a

pinwheel schedule [22]. If we cut the i-th bamboo (1 ≤ i ≤ n) exactly once every
wi days, the height of that bamboo will never exceed Hi = wiri

qi
. We can easily

prove this by arguing that the height of the i-th bamboo at time 0 or after a
cut is at most (1 − qi)Hi and the height increases by wiri = qiHi between two
consecutive cuts, which means that it will never exceed (1 − qi)Hi + qiHi = Hi.
We have Hi = wiri

qi
≤ 2qiR

ri
· ri

qi
= 2R ≤ 2M . Consequently, a pinwheel schedule

for W indicates a perpetual schedule of cuts to keep the bamboos’ heights at
most 2M by cutting the i-th bamboo (1 ≤ i ≤ n) once every wi days. ��

We note that the (127)-approximation algorithm for BT [32] (the best approx-
imation algorithm known at the time of writing this article) cannot be used to

Fractional Bamboo Trimming and Distributed Windows Scheduling 73

achieve the same approximation guarantee for FBT. That solution uses the fact
that in BT with more than one bamboo, the lowest possible height of the tallest
bamboo ever is at least twice the maximum growth rate among the bamboos
(in the notation of the proof of Theorem 1, M ≥ 2max1≤i≤n ri), and thus no
bamboo needs to be cut more frequently than every two days. However, this is
not the case in FBT. Let us consider an example with two bamboos where r1 is
a large integer (at least 7), r2 = 1, q1 = q2, and cut fractions are approaching 0.
Assume we cut the second bamboo exactly once every r1 + 1 days and cut the
first bamboo every day except on the days we cut the second bamboo. This way,
the height of the second bamboo will never exceed H2 = r1+1

q2
= r1

q1
+ r2

q2
= R,

which as we saw in the proof of Theorem 1 is a lower bound for the height
of the tallest bamboo ever. Moreover, for the maximum height H1 of the first
bamboo, we have H1 = r1 + r1

∑r1−1
i=0 (1 − q1)i + (1 − q1)r1H1 and thereby,

H1 = r1
q1

+ r1
1−(1−q1)r1

. Consequently, we have H1
R = r1+r1/

∑r1−1
i=0 (1−q1)

i

r1+1 , which
means that limq1→0

H1
R = 1. However, if we cut the first bamboo every two days,

its height will approach 2r1
q1

> R as the number of days approaches infinity. This
example shows that in FBT with more than one bamboo, we might need to cut
a bamboo more frequently than every two days to minimize the height of the
tallest bamboo ever.

Now, we show that 6
q is an upper bound on the approximation factor of

Reduce-Max for FBT. The proof of the following proposition is inspired by the
proof of Theorem 2.1 of [26].

Proposition 1. Reduce-Max is a (6q)-approximation algorithm for FBT.

Proof. Without loss of generality, we assume that r1 ≥ ... ≥ rn and
∑n

i=1 ri = 1.
We let hk,t be the height of the k-th bamboo (1 ≤ k ≤ n) at the end of the t-th
day (t ≥ 0), immediately after a bamboo has been cut (note that hk,0 = 0). For
1 ≤ i ≤ n and t ≥ 0, we define the volume function V (i, t) =

∑i
k=1 hk,t and the

potential function

Φ(i, t) =
∑

1≤k≤i
3(k−1)/q<V (i,t)/2

rk · min(
3
q
,
V (i, t)

2
− 3(k − 1)

q
).

The potential function is a weighted sum of r1, ..., ri. Each weight is less than
or equal to 3

q . To maximize the weighted sum, the higher growth rates are given
as much weight as possible. Since

∑n
k=1 rk = 1, we have 0 ≤ Φ(i, t) ≤ 3

q for all
1 ≤ i ≤ n and t ≥ 0.

We use induction to show that for 1 ≤ i ≤ n and t ≥ 0, we have hi,t ≤
6
q −Φ(i, t). The base case of t = 0 holds because for every i, hi,0 = 0 ≤ 6

q −Φ(i, 0).
The induction hypothesis states that for some t ≥ 0, and every 1 ≤ i ≤ n, we have
hi,t ≤ 6

q −Φ(i, t), and we want to prove that the inequality hi,t+1 ≤ 6
q −Φ(i, t+1)

holds for every i. Let us consider j to be the index of the bamboo that Reduce-
Max cuts at the end of the (t + 1)-th day. If the height of the j-th bamboo right

74 A. Beikmohammadi et al.

before that cut is less than 3
q , then for every i we have hi,t+1 < 3

q ≤ 6
q −Φ(i, t+1).

Therefore, we consider the cases where hj,t + rj ≥ 3
q .

For the i-th bamboo, where i ≥ j, we have

V (i, t + 1) = V (i, t) +
i∑

k=1

rk − qj(hj,t + rj) ≤ V (i, t) + 1 − q
3
q

= V (i, t) − 2.

Consequently, we obtain that Φ(i, t + 1) ≤ Φ(i, t) − ri (since we know that
ri = min1≤k≤i rk). As a result, we have

hi,t+1 ≤ hi,t + ri ≤ 6
q

− Φ(i, t) + ri ≤ 6
q

− Φ(i, t + 1) − ri + ri =
6
q

− Φ(i, t + 1).

Otherwise, if i < j, we have

V (i, t + 1) = V (i, t) +
i∑

k=1

rk ≤ V (i, t) + 1 − rj

≤ V (i, t) +
3
q

− rj − 2 ≤ V (i, t) + hj,t − 2 ≤ V (j, t) − 2.

Hence, we deduce that Φ(i, t + 1) ≤ Φ(j, t) − rj (since rj = min1≤k≤j rk). Thus,
we have

hi,t+1 ≤ hj,t + rj ≤ 6
q

− Φ(j, t) + rj ≤ 6
q

− Φ(i, t + 1) − rj + rj =
6
q

− Φ(i, t + 1).

Therefore, the inequality hi,t+1 ≤ 6
q − Φ(i, t + 1) holds for 1 ≤ i ≤ n. In

addition, we can derive hj,t + rj ≤ 6
q − Φ(j, t + 1) from the inequalities related

to the case i ≥ j. Thus, Reduce-Max keeps the heights of the bamboos from
exceeding 6

q at any time. On the other hand, the height of the tallest bamboo
ever for the optimal algorithm is at least R =

∑n
i=1

ri

qi
≥ 1 and this completes

the proof. ��
We now prove an upper bound on the approximation factor of Reduce-

Fastest(x) for FBT. This proof is inspired by the proof of Theorem 3.1 of [26].

Proposition 2. For all x ≥ 3−q
q , Reduce-Fastest(x) is an (x+1)-approximation

algorithm for FBT.

Proof. Suppose, towards a contradiction, that for some 1 ≤ k ≤ n, the k-th
bamboo is the first to achieve the height of h2 = (x + 1)

∑n
i=1 ri during the

day d2. Moreover, let d1 be the closest day before d2 during which the height
of the k-th bamboo reaches the threshold h1 = x

∑n
i=1 ri. This means that the

algorithm does not cut the k-th bamboo at the end of any day between d1 and
d2 − 1, as otherwise the height of the bamboo would fall below (1 − qk)h2 ≤
(1− q)(x+1)

∑n
i=1 ri ≤ (x+1− q 3

q)
∑n

i=1 ri < h1. For 1 ≤ j ≤ n, let mj denote

Fractional Bamboo Trimming and Distributed Windows Scheduling 75

the number of times Reduce-Fastest(x) cuts the j-th bamboo between days d1
and d2 − 1.

For 1 ≤ j ≤ n, we show that rj ≥ mjrk. If mj = 0, it is trivial that rj ≥ 0·rk.
If mj = 1, we have rj ≥ 1 · rk because the algorithm cuts the j-th bamboo at a
time when the height of the k-th bamboo is at least h1. Otherwise, if mj ≥ 2, we
have h2−h1

rk
≥ (h1−(1−qj)h2)(mj−1)

rj
because the j-th bamboo must regrow from

a height of at most (1 − qj)h2 to a height of at least h1 at least mj − 1 times
before the height of the k-th bamboo grows from h1 to h2. We deduce that

∑n
i=1 ri

rk
≥ (x

∑n
i=1 ri − (1 − qj)(x + 1)

∑n
i=1 ri)(mj − 1)

rj

and consequently, rj ≥ (x − (1 − qj)(x + 1))(mj − 1)rk. Considering that x −
(1 − qj)(x + 1) = qj(x + 1) − 1 ≥ q 3

q − 1 = 2 and mj ≥ 2, we have

rj ≥ (x − (1 − qj)(x + 1))(mj − 1)rk ≥ 2(mj − 1)rk ≥ mjrk.

As a result, we have

d2 − d1 =
n∑

i=1

mi ≤ 1
rk

∑

1≤i≤n
i�=k

ri =
∑n

i=1 ri

rk
− 1.

Since d2 − d1 is an integer, we have d2 − d1 ≤ �
∑n

i=1 ri

rk
	 − 1. The height of the

k-th bamboo at the end of the day d1 is less than h1 + rk. Thus, the height of
that bamboo at the end of the day d2 is less than

h1 + rk + (d2 − d1)rk ≤ h1 + rk +
(⌊∑n

i=1 ri

rk

⌋

− 1
)

rk ≤ h1 +
n∑

i=1

ri = h2.

For this reason, the k-th bamboo does not achieve the height of h2 during the
day d2, which is a contradiction. On the other hand, the height of the tallest
bamboo ever for the optimal algorithm is at least R =

∑n
i=1

ri

qi
≥ ∑n

i=1 ri;
thereby, Reduce-Fastest(x) is an (x + 1)-approximation algorithm for FBT. ��

As a result of the preceding proposition, Reduce-Fastest(3−q
q) achieves the

approximation guarantee of 3
q for FBT.

4 Distributed Windows Scheduling

In this section, we provide approximation algorithms for WS and DWS. In addi-
tion, we present some instances of PS with densities at most 1 that do not have
a pinwheel schedule.

First, we give an algorithm for WS that uses at most
⌈

d(W)+1
0.75

⌉
channels.

When d(W) ≤ 46, our algorithm achieves a better guarantee than the best known
algorithm in the literature, which uses at most d(W) + e · ln (d(W)) + 7.3595
channels [6]. The proof of the upper bound on the number of channels used by
our algorithm is inspired by the proof of Theorem 3.1 of [8].

76 A. Beikmohammadi et al.

Proposition 3. There exists an algorithm for WS that uses at most
⌈

d(W)+1
0.75

⌉

channels.

Proof. We begin by describing our algorithm. First, we sort the pages in non-
descending order of their windows (w1 ≤ ... ≤ wn). Initially, no channel is open.
Starting with the first page, we assign the pages to channels, one by one, and
open new channels along the way. For every page, if we can assign it to an
open channel such that the density of the windows of the pages assigned to that
channel remains less than or equal to 0.75, we do so. Else, if we can assign the
page to an open channel whose assigned pages all have windows equivalent to
the window of this page and the density of the windows of the pages assigned
to the channel remains less than or equal to 1, we do so. Otherwise, we open a
new channel and assign the page to that channel. In the end, it is possible to
pinwheel schedule both types of channels: those with pages of equivalent windows
and density at most 1 [22] and those with pages of windows of density at most
0.75 [17].

Now, we prove that our algorithm uses at most
⌈

d(W)+1
0.75

⌉
channels. We first

use induction to show that for k ≥ 1, after including all pages whose correspond-
ing windows are equivalent to k, we have at most k − 1 channels with density
less than 0.75. The base case of k = 1 holds because for each page with a unit
window, we need to open a new channel only for that page, and the density
assigned to that channel will be exactly 1. By the induction hypothesis, for some
k ≥ 1, we know that after including all pages with windows equivalent to k,
there are at most k−1 channels with density less than 0.75. When including the
pages with windows equivalent to k + 1 (in case there are any), we will never
have more than one channel with density less than 1, such that the windows of
all pages assigned to it are equivalent to k + 1 (because until this channel has
k + 1 pages and density equal to 1, the algorithm will not open another one).
Therefore, after including all pages with windows equivalent to k + 1, there are
at most k channels with density less than 0.75, which completes the induction
step.

Let i be the index of the last page for which the algorithm opened a new
channel (1 ≤ i ≤ n). If wi = 1, then the total number of channels that the
algorithm uses is d(W) ≤

⌈
d(W)+1

0.75

⌉
. Otherwise, the number of channels with

density less than 0.75 that were opened before including any pages with windows
equivalent to wi is at most wi−2. Moreover, all those channels have density more
than 0.75 − 1

wi
because the algorithm could not assign the i-th page to any of

them. As a consequence, the total number of channels that the algorithm uses
is less than or equal to

⌈
d(W)+(wi−2)/wi

0.75

⌉
≤

⌈
d(W)+1

0.75

⌉
. ��

We now leverage the idea of composable coresets to devise an algorithm
for DWS in the MPC model, where each of the m machines uses sublinear
memory. Our algorithm requires three MPC rounds. As well as acting as a regular
machine, the first machine in our algorithm acts as the central machine. We
show that our algorithm uses at most min(d(W)

0.75 + 7m
3 , d(W) + e ln (d(W))m +

Fractional Bamboo Trimming and Distributed Windows Scheduling 77

7.3595m, (2 + ε)d(W) + 1) channels. We also argue that the communication
complexity of the algorithm is O(m log (1ε)).

Theorem 2. There exists an MPC algorithm for DWS that uses at most
min

(
d(W)
0.75 + 7m

3 , d(W) + e ln (d(W))m + 7.3595m, (2 + ε)d(W) + 1
)
channels.

Proof. The algorithm runs in three rounds. In the first round, for 1 ≤ k ≤ m, the
k-th machine runs the algorithms from Proposition 3 of this paper and Sect. 3.4
of [6] on Wk and chooses the algorithm that would use fewer channels (note that
both algorithms schedule all appearances of each page on the same channel).
The k-th machine opens each channel, suggested by the chosen algorithm, with
a density of at least 0.5 and then sorts the remaining pages in non-descending
order of their corresponding windows. The k-th machine creates a new channel
(but does not open it right away) and assigns the remaining pages (one by one,
starting from the first page in the sorted order) to that channel until the density
assigned to the channel becomes at least 0.5 or no more page is left. If at any
point, the density assigned to the channel becomes greater than or equal to
0.5, the k-th machine finds a pinwheel schedule for the pages assigned to that
channel, opens that channel, creates a new channel, and continues assigning
the remaining pages to the new channel. It can be easily seen that the density
assigned to each channel opened during this process is less than or equal to 0.75,
and hence finding a pinwheel schedule is indeed possible.

If the density assigned to the last created channel is less than 0.5, the k-
th machine does not open that channel and instead sends a summary of the
remaining pages to the central machine (which is actually the first machine).
Let W ′

k be a multiset containing the windows of the remaining pages. We know
that d(W ′

k) < 0.5. Also, let Ŵk be a multiset that has the same size as W ′
k such

that for each w′ ∈ W ′
k, there exists a corresponding ŵ ∈ Ŵk, where ŵ is the

greatest power of 2 less than or equal to w′. Furthermore, consider a positive
integer p as a parameter of the algorithm, which is universally known by all
machines. We define the summary Sk to be a set of at most p unique positive
integers such that all elements of the set are powers of 2, d(Sk) ≥ d(Ŵk), and
d(Sk) is the lowest possible. From this, we deduce that d(Sk) − d(Ŵk) ≤ d(Ŵk)

2p−1 .
The k-th machine sends Sk to the central machine.

In the second round of the algorithm, if �∑m
k=1 d(Sk)� is greater than

the number of machines that sent non-empty summaries, the central machine
instructs every machine to open a channel for its own remaining pages in the
subsequent round. Otherwise, the central machine finds a perfect schedule with
�∑m

k=1 d(Sk)� channels for the imaginary pages with corresponding windows
in summaries received from all machines (according to Lemma 4 of [6], this is
possible). In a perfect schedule, the time interval between any two consecutive
appearances of each page is equivalent to its corresponding window. The central
machine then sends the information of slots allocated for the imaginary pages
with corresponding windows in Sk to the k-th machine, for 1 ≤ k ≤ m. Finally,
in the third round, the k-th machine (1 ≤ k ≤ m) schedules its remaining

78 A. Beikmohammadi et al.

pages, one by one and in a non-descending order of their corresponding win-
dows, on the allocated slots. It is easy to check that using the first-fit strategy,
the k-th machine can schedule the remaining pages in a way that the time inter-
val between any two consecutive appearances of each page is equivalent to the
greatest power of 2 less than or equal to the window of that page.

Next, we give upper bounds on the number of channels used by our algorithm.
This number is less than or equal to the number of channels used if all machines
separately ran the algorithm from Proposition 3 of this paper or if they all ran
the algorithm from Sect. 3.4 of [6]. Hence, the number of channels used by our
algorithm is less than or equal to

m∑

k=1

⌈
d(Wk) + 1

0.75

⌉

≤
m∑

k=1

d(Wk) + 1.75
0.75

=
d(W)
0.75

+
7m

3
.

Furthermore, this number is less than or equal to

m∑

k=1

(d(Wk) + e ln (d(Wk)) + 7.3595) ≤ d(W) + e ln (d(W))m + 7.3595m.

We know that d(Sk) ≤ (1 + 1
2p−1)d(Ŵk) ≤ 2(1 + 1

2p−1)d(W ′
k). Therefore, by

setting ε = 1
2p−2 , we have d(Sk) ≤ (2 + ε)d(W ′

k). In addition, if W̃ denotes the
multiset of the windows of all pages assigned to the channels that were opened
in the first round across all machines, then the number of channels that contain
such pages is at most 2d(W̃). This is because each of those channels has a density
of at least 0.5. Consequently, the number of channels used by our algorithm is
at most
⌈

m∑

k=1

d(Sk)

⌉

+ 2d(W̃) ≤
⌈

(2 + ε)
m∑

k=1

d(W ′
k)

⌉

+ (2 + ε)d(W̃) ≤ (2 + ε)d(W) + 1.

Finally, we analyze the communication complexity of our algorithm. The size
of the data that each machine sends to the central machine at the end of the
first round is O(p). Also, the size of the data that the central machine sends to
each machine at the end of the second round is O(p). Thus, the communication
complexity of the algorithm is O(mp) = O(m log (1ε)). ��

Next, we introduce some instances of PS with density at most 1 for which
there exists no pinwheel schedule. These provide further examples, beyond those
of Holte et al. [22], of unschedulable low-density instances. Before proceeding,
we need to establish some notation. For a positive integer c and a multiset
of positive integers A = {a1, ..., an}, we define M(c,A) = {ca1, ..., can}. For
two multisets of positive integers A = {a1, ..., an} and B = {b1, ..., bm}, we
define A + B = {a1, ..., an, b1, ..., bm}. Furthermore, for a positive integer c and
a multiset of positive integers A = {a1, ..., an}, we define R(c,A) = A + ... + A

︸ ︷︷ ︸
c times

.

Fractional Bamboo Trimming and Distributed Windows Scheduling 79

Proposition 4. Let k and g be integers such that k ≥ 2 and g is arbitrarily
large (much larger than k). Furthermore, let U be a multiset of positive integers
with d(U) ≤ 1 that does not have a pinwheel schedule. The following instances
of PS do not have a pinwheel schedule, even though their densities are less than
or equal to 1:

– W1 = {k} + R(k − 1, {k + 1}) + {g}
– W2 = R(k − 1, {k}) + {2k − 1, g}
– W3 = R(k − 1, {k}) + M(k, U)

Proof. We prove by contradiction that W1, W2, and W3 do not have pinwheel
schedules. If there exists a pinwheel schedule for W1, then for some t1 > k,
the page with window g appears in slot t1. In addition, the page with window
k must appear in some slot t2, where t1 < t2 ≤ t1 + k − 1. Furthermore, the
page with window k must appear in some other slot t0, where t2 − k ≤ t0 < t2.
Consequently, the pages with windows k and g must appear at least twice and
once, respectively, in the interval [t2 − k, t2]. Hence, at least one of the k − 1
pages whose windows are equivalent to k+1 cannot appear in that interval. This
contradicts our assumption that W1 has a pinwheel schedule.

If W2 has a pinwheel schedule then for some t1 > k−1, the page with window
g appears in slot t1. Each of the k − 1 pages whose windows are equivalent to
k must appear in the interval [t1 − k + 1, t1 − 1]. Similarly, each of those pages
must appear in the interval [t1 + 1, t1 + k − 1]. Hence, the page with window
2k − 1 cannot appear in the interval [t1 − k + 1, t1 + k − 1], which contradicts
the existence of a pinwheel schedule for W2.

If W3 has a pinwheel schedule, consider any slot t1 such that a page whose
window is in M(k, U) appears in that slot (t1 ≥ 1). Therefore, each of the
k − 1 pages whose windows are equivalent to k must appear in the interval
[t1 + 1, t1 + k − 1]. This means that the interval between any two consecutive
appearances of the pages with windows in M(k, U) is at least k slots. On the
other hand, for any u ∈ U , the interval between any two consecutive appearances
of the page with window ku is at most ku slots. Consequently, there are at most
u− 1 appearances of the other pages with windows in M(k, U) between any two
consecutive appearances of the page with window ku. As a result, a pinwheel
schedule for W3 implies a pinwheel schedule for U . This is a contradiction as U
does not have a pinwheel schedule. ��

5 Conclusion

In this paper, we introduced FBT and presented a 2-approximation algorithm
for it. We also proved upper bounds on the approximation factors of well-known
algorithms Reduce-Max and Reduce-Fastest(x) for FBT. For WS, we designed
an algorithm that uses at most

⌈
d(W)+1

0.75

⌉
channels. We argued that our algorithm

works better than the best-known algorithm in the literature when d(W) ≤ 46.
In addition, we designed the first approximation algorithm for DWS in the MPC

80 A. Beikmohammadi et al.

model. Our algorithm can be implemented in O(1) rounds of MapReduce and
leads to a streaming algorithm with O(1) passes. Finally, we introduced patterns
of some instances of PS with d(W) ≤ 1 that do not have a pinwheel schedule.

It remains open whether it is possible to find algorithms with better approx-
imation guarantees for FBT, WS, and DWS. It is also interesting to see if there
exist better upper bounds on the approximation factors of Reduce-Max and
Reduce-Fastest(x) for FBT. Another open problem is to find other instances of
PS with densities of at most 1 for which there exists no pinwheel schedule. We
believe finding such instances can help us determine the requirements for having
a pinwheel schedule.

References

1. Adler, M., Berenbrink, P., Friedetzky, T., Goldberg, L.A., Goldberg, P., Paterson,
M.: A proportionate fair scheduling rule with good worst-case performance. In:
Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms and
Architectures, pp. 101–108 (2003)

2. Alshamrani, S.: How reduce max algorithm behaves with symptoms appearance on
virtual machines in clouds. In: 2015 International Conference on Cloud Computing
(ICCC), pp. 1–4. IEEE (2015)

3. Ammar, M.H., Wong, J.W.: The design of teletext broadcast cycles. Perform. Eval.
5(4), 235–242 (1985)

4. Anily, S., Glass, C.A., Hassin, R.: The scheduling of maintenance service. Discrete
Appl. Math. 82(1–3), 27–42 (1998)

5. Assadi, S.: Combinatorial optimization on massive datasets: streaming, distributed,
and massively parallel computation. University of Pennsylvania (2018)

6. Bar-Noy, A., Ladner, R.E.: Windows scheduling problems for broadcast systems.
SIAM J. Comput. 32(4), 1091–1113 (2003)

7. Bar-Noy, A., Ladner, R.E., Tamir, T.: Scheduling techniques for media-on-demand.
In: SODA, pp. 791–80 (2003)

8. Bar-Noy, A., Ladner, R.E., Tamir, T.: Windows scheduling as a restricted version
of bin packing. ACM Trans. Algorithms (TALG) 3(3), 28-es (2007)

9. Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel query process-
ing. J. ACM (JACM) 64(6), 1–58 (2017)

10. Bender, M.A., Farach-Colton, M., Kuszmaul, W.: Achieving optimal backlog in
multi-processor cup games. In: Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, pp. 1148–1157 (2019)

11. Bender, M.A., et al.: The minimum backlog problem. Theor. Comput. Sci. 605,
51–61 (2015)

12. Bender, M.A., Kuszmaul, W.: Randomized cup game algorithms against strong
adversaries. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 2059–2077. SIAM (2021)

13. Bilò, D., Gualà, L., Leucci, S., Proietti, G., Scornavacca, G.: Cutting bamboo down
to size. Theoret. Comput. Sci. 909, 54–67 (2022)

14. Chan, M.Y., Chin, F.Y.L.: General schedulers for the pinwheel problem based on
double-integer reduction. IEEE Trans. Comput. 41(06), 755–768 (1992)

15. Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing problems:
a survey. In: Ausiello, G., Lucertini, M. (eds.) Analysis and Design of Algorithms
in Combinatorial Optimization. ICMS, vol. 266, pp. 147–172. Springer, Vienna
(1981). https://doi.org/10.1007/978-3-7091-2748-3 8

https://doi.org/10.1007/978-3-7091-2748-3_8

Fractional Bamboo Trimming and Distributed Windows Scheduling 81

16. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

17. Fishburn, P.C., Lagarias, J.C.: Pinwheel scheduling: achievable densities. Algorith-
mica 34(1), 14–38 (2002)

18. Gasieniec, L., et al.: Perpetual maintenance of machines with different urgency
requirements. J. Comput. Syst. Sci. 139, 103476 (2024)

19. G ↪asieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bam-
boo garden trimming problem (perpetual maintenance of machines with different
attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J.,
Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0 18

20. Goldwasser, M.H.: A survey of buffer management policies for packet switches.
ACM SIGACT News 41(1), 100–128 (2010)

21. Höhne, F., van Stee, R.: A 10/7-approximation for discrete bamboo gar-
den trimming and continuous trimming on star graphs. In: Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik
(2023)

22. Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-time
scheduling problem. In: Proceedings of the 22nd Hawaii International Conference
of System Science, pp. 693–702 (1989)

23. Im, S., Moseley, B., Zhou, R.: The matroid cup game. Oper. Res. Lett. 49(3),
405–411 (2021)

24. Indyk, P., Mahabadi, S., Mahdian, M., Mirrokni, V.S.: Composable core-sets for
diversity and coverage maximization. In: Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pp. 100–108
(2014)

25. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce.
In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 938–948. SIAM (2010)

26. Kuszmaul, J.: Bamboo trimming revisited: Simple algorithms can do well too.
In: Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 411–417 (2022)

27. Kuszmaul, W.: Achieving optimal backlog in the vanilla multi-processor cup game.
In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1558–1577. SIAM (2020)

28. Kuszmaul, W.: How asymmetry helps buffer management: achieving optimal tail
size in cup games. In: Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pp. 1248–1261 (2021)

29. Kuszmaul, W., Westover, A.: The variable-processor cup game. arXiv preprint
arXiv:2012.00127 (2020)

30. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM (JACM) 20(1), 46–61 (1973)

31. Mirjalali, K., Tabatabaee, S.A., Zarrabi-Zadeh, H.: Distributed unit clustering. In:
CCCG, pp. 236–241 (2019)

32. van Ee, M.: A 12/7-approximation algorithm for the discrete bamboo garden trim-
ming problem. Oper. Res. Lett. 49(5), 645–649 (2021)

33. Viswanathan, S., Imielinski, T.: Metropolitan area video-on-demand service using
pyramid broadcasting. Multimed. Syst. 4, 197–208 (1996)

https://doi.org/10.1007/978-3-319-51963-0_18
http://arxiv.org/abs/2012.00127

New Support Size Bounds and Proximity
Bounds for Integer Linear Programming

Sebastian Berndt1 , Matthias Mnich2(B) , and Tobias Stamm2

1 University of Lübeck, Institute for Theoretical Computer Science, Lübeck, Germany
s.berndt@uni-luebeck.de

2 Hamburg University of Technology, Institute for Algorithms and Complexity,
Hamburg, Germany

{matthias.mnich,tobias.stamm}@tuhh.de

Abstract. Integer linear programming (ILP) is a fundamental research
paradigm in algorithms. Many modern algorithms to solve structured
ILPs efficiently follow one of two main approaches. The first one is to
prove a small upper bound on the support size of the ILP, which is the
number of variables taking non-zero values in an optimal solution, and
then to only search for ILP solutions of small support. The second one
is to apply an augmentation algorithm using Graver elements to an ini-
tial feasible solution obtained from a small proximity bound for the ILP,
which is the distance between an optimal solution of the ILP and that
of its LP relaxation.

Our first contribution are new lower bounds for the support size of
ILPs. Namely, we discover a connection between support sizes and an old
number-theoretic conjecture by Erdős on subset-sum distinct sets. Fur-
ther, we improve the previously best lower bounds on the support size of
ILPs with m constraints and largest absolute value Δ of any coefficient in
the constraint matrix from Ω(m log(Δ)) to Ω(m log(

√
mΔ)). This new

lower bound asymptotically matches the best-known upper bounds.
Our second contribution are new bounds on the size of Graver ele-

ments and on the proximity for ILPs. We first show nearly tight lower
and upper bounds for g1(A), the largest 1-norm ‖g‖1 of any Graver
basis element g of the constraint matrix A. Then we show that the prox-
imity of any ILP in standard form with support size s is bounded by
s · c1(A), where c1(A) is the largest 1-norm ‖c‖1 of any circuit c of A.
This improves over the known proximity bound of n · g1(A), as s and
c1(A) can be much smaller than n and g1(A), respectively.

Keywords: Integer linear programming · proximity bounds · Graver
bases

1 Introduction

Integer linear programming (ILP) is one of the most studied approaches in mod-
elling and solving combinatorial optimization problems, both from a theoretical
and a practical perspective. ILPs model these problems through a system of n

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 82–95, 2024.
https://doi.org/10.1007/978-3-031-52113-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_6&domain=pdf
https://orcid.org/0000-0003-4177-8081
https://orcid.org/0000-0002-4721-5354
https://orcid.org/0000-0002-5381-4935
https://doi.org/10.1007/978-3-031-52113-3_6

New Support Size Bounds and Proximity Bounds for ILPs 83

variables linked through m constraints and an objective function, such that an
optimal assignment of integer values to the variables which satsfies all constraints
recovers amn optimal solution to the optimization problem. Due to it’s strong
expressivity, it allows to formulate problems from a wide range of domains in a
schematic and succinct way.

On the one hand, there are ILP solvers for which one observes practically fast
run times for ILPs even for very large n and m, which thus allows to solve the
optimization problem fast on real-world instances. However, these solvers usually
do not come with (good) theoretical guarantees with regard to their run time in
terms of n and m. On the other hand, ILP solvers with theoretical guarantees
in terms of n and m are known for several decades, but their practical run time
can be very high [23,25]. This gap between theoretical and practical performance
motivates the study of solving of ILPs through parameterized algorithms [11];
these algorithms discover structures in the problem instances which crucially
influence the problem complexity and therefore the run time of algorithms. These
structures are measured in terms of parameters, which thus lead to a fine-grained
analysis of run times that has the potential to narrow gap between theoretically
proven and practically observed run times.

Parameterized algorithms for ILPs have been studied intensively, and for
structured ILPs—i.e., ILPs for which good parameter bounds on the struc-
tures are known—the resulting algorithms allowed for drastic run-time improve-
ments [15,24] when compared to algorithms focusing on general ILPs. Many of
these algorithms solve structured ILPsfollow one of two possible approaches. The
first approach uses the fact that the support size s of structured ILPs is typi-
cally bounded by some function of the parameters, i.e., there exists an optimal
solution that assigns non-zero values to only few (s � n) variables and assigns
zero to all other variables. These bounds thus allows to restrict the search space
heavily by only considering solutions with small support size [2,21]. Clearly, the
smaller the support size is, the more restricted the search space becomes, and
thus the faster algorithms can be designed. In the second approach, one starts by
some feasible, but not necessarily optimal, solution, and gradually augments it
by so-called Graver elements [14]. Such elements are special integral elements of
the kernel of the underlying ILP. The two major bottlenecks of this approach are
thus to (i) find the augmenting Graver elements and (ii) find the initial solution.
As in the first approach, the existence of small Graver elements allows to restrict
the search space, and thus to speed up the ILP solver. To find the initial solu-
tion, a phenomenon called proximity is often used that guarantees that solutions
of ILPs are close to solutions of the fractionally relaxed linear program (LP).
Hence, to find a feasible initial solution, one can solve the LP in polynomial time
and then search for neighboring integral solutions. Equivalently, this allows to
reduce the right-hand side of the ILP significantly.

Our Results. In this work, we give a fine-grained analysis of the limits of the
two approaches mentioned above for solving structured ILPs. To do so, we study
the three important parameters of ILPs: their support sizes, bounds on the sizes
of their Graver elements, and bounds on their proximity. On the one hand, we

84 S. Berndt et al.

improve the best-known upper bounds on all of these quantities in terms of the
parameters of the structured ILPs. This allows for more efficient algorithms as
the search space can be shrunk dramatically. On the other hand, we prove strong
lower bounds on these quantities in terms of the parameters, thereby establishing
limitations of the aforementioned algorithmic approaches for solving ILPs. While
this does not rule out faster algorithms based on other approaches, it identifies
the bottlenecks of the algorithms and, simultaneously, shows the tightness of
the upper bounds. Finally, we provide results based on extensive computational
experiments to show the optimality of our bounds for small parameter values.

SSD sets: To improve the bounds on the support size of ILPs, we reveal a close
relation to largest elements in certain subset sum distinct (SSD) sets, which
are sets where the sum of any subset of items is unique. In the one-dimensional
case, bounds on the largest elements of SSD sets have been well-studied due
to a long-standing (and still open) conjecture by Erdős from 1931. How-
ever, multi-dimensional SSD sets have received less attention. We remedy
this situation by giving upper and lower bounds on the largest element Δ
and the largest 1-norm ‖A‖1 := maxa∈A ‖a‖1 of any vector of m-dimensional
SSD sets of size n. Our upper bounds show that ‖A‖1 ≤ (1/2) · 2�n/m� and
Δ ≤ (1/

√
2m)2�n/m�, and our lower bounds show that ‖A‖1 ≥ (1/2) ·

2n/m/
√

n/m and Δ ≥ (1/
√
2m)2n/m.

Support size bounds: Based on our analysis of SSD sets, we first show that
a long-standing conjecture of Erdős would imply an optimal upper bound of
log(cΔ) on the support size of any single-constraint ILP with largest absolute
coefficient Δ in their constraint matrix A, for some universal constant c. Using
the best-known bounds on the size of SSD sets, we then improve a best known
upper bound for single-constraint ILPs to 1.1 log(2.02Δ), unconditionally. For
ILPs with m > 1 constraints, we improve the lower bound on their support
size from m log(Δ) from Berndt et al. [5] to m log(

√
mΔ). We also improve

the upper bound on the support size from 2m log(1.46‖A‖1), by Berndt et
al. [4], to 2m log(

√
2‖A‖1).

Graver bases: For single constraint ILPs (e.g., Knapsack), tight bounds on
the size of the largest Graver basis element were found by Diaconis, Graham
and Sturmfels [12] in the 1990s. We derive lower and upper bounds on the size
of the largest Graver basis element for ILPs with m > 1 constraints. On the
one hand, we give constructions yielding lower bounds (2Δ − 1)(Δ + 1)m−1

and (2(‖A‖1 − 1)m+1 − ‖A‖1)/(‖A‖1 − 2). On the other hand, we show the
upper bounds (2mΔ − 1)m and (2e · (‖A‖1 + 1))m. These bounds depend
exponentially on m. For ‖A‖1 = 2, we show a linear upper bound of 2m+ 1.

Proximity: For the proximity we first show an upper bound of s · c1(A) on the
proximity of ILPs with support size s and largest circuit 1-norm c1(A). For
s � n, this significantly improves the bound n · g1(A) given by Hemmecke et
al. [22]. Secondly we show how the Steinitz lemma gives a bound of m · g1(A)
on the proximity of any m-constraint ILP.

We defer all proofs of statements to a full version of this paper.

New Support Size Bounds and Proximity Bounds for ILPs 85

2 Subset Sum Distinct Sets

Subset sum distinct (SSD) sets are sets of vectors such that no two subsets have
the same sum of elements. In this work, we only consider vectors of integers.

Definition 1. A set S ∈ Z
m is subset sum distinct (SSD) if the sum function

is injective on 2S, i.e., if
∑

s∈S1
s =

∑
s∈S2

s implies S1 = S2 for all S1, S2 ⊆ S.

Equivalently, we can think of SSD sets as linear equations S · {−1, 0, 1}|S| = 0
with a unique solution 0, as the {−1, 0, 1}|S| vectors are bijective to disjoint
subset pairs (S1, S2). Consequently, the SSD property is invariant under negation
of any element, and 0 is never part of an SSD set. Additionally, the SSD property
is invariant under any permutation applied to all vectors, i.e., swapping rows.

2.1 One-Dimensional Subset Sum Distinct Sets

In dimension m = 1, the problem of constructing SSD sets reduces to studying
subsets of positive integers, S ⊂ N. As such, it has been a long-standing subject
of number theory. On the one hand, for any n ∈ N there is an SSD set S of size n
with maxa∈S a ≤ 2n/2, because the powers of two form SSD sets, as any subset
then gives a distinct number in binary. On the other hand, for any SSD set S
of size n it holds that maxa∈S a ≥ (2n − 1)/n, as the n numbers in S have to
reach 2n distinct points. Such constructions naturally raise the question about
the smallest possible maximum element in an n-element SSD set.

Definition 2. Let (an)n∈N be the sequence an := minS⊂(Nn),SSD(S) maxa∈S a of
smallest numbers for which there is an SSD set of size n with largest entry an.

The sequence (an)n is denoted as A276661 in the online encyclopedia
of integer sequences [27]. For n ≤ 8, the values an were found by Lun-
non [26], the value a9 was found by Borwein and Mossinghof [9]. By com-
puter search, we found a10 = 309, with the unique minimal SSD set
{309, 308, 307, 305, 302, 296, 285, 265, 225, 148}. The asymptotic growth of an has
been an open problem for almost a century, with Erdős [16] calling it his “first
serious conjecture” and offering $500 for a proof or disproof:

Erdős’ Conjecture (1931). There is a constant c̃ ∈ R such that an ≥ 2n+c̃.

In 1967, Conway and Guy [10] (cf. [27, A005318]) constructed a series of
sets, which they conjectured to be SSD. Yet, only in 1996 did Bohman [6] prove
that all Conway-Guy sets are SSD. The Conway-Guy sets give an upper bound
of an < 0.23513 · 2n for n ≥ 352. Surprisingly, for n ≤ 10 the Conway-Guy
construction gives SSD sets with optimal largest entry an. For n = 11, our com-
puter search did not yield a better set. For n = 12, the Conway-Guy set has
largest entry 1164, whereas a construction by Bohmann [7] gives the SSD set
S2,12 = {1159, 1157, 1156, 1155, 1151, 1145, 1134, 1112, 1073, 995, 845, 556}. Cur-
rently, the best construction [7] has an ≤ 0.22002 · 2n, for sufficiently large n.

86 S. Berndt et al.

The best known lower bounds are all of the form a1 ≥ (c̃−o(1)) ·2n/
√

n, with
a long history of improvements on c, well summarized by Steinerberger [31]. In
such a lower bound, any c̃ > 0.5 can only hold asymptotically, because of the
value a1 = 1. A particularly elegant, simple and short proof of the currently best
constant shows:

Proposition 1 (Dubroff, Fox, Xu [13]). For any one dimensional SSD-set
of size n the largest entry Δ satisfies Δ ≥ (

n
�n/2�

) ≥ (
√
2/π − o(1)) · 2n/

√
n.

2.2 Higher-Dimensional Subset Sum Distinct Sets

For higher-dimensional SSD sets, there is only little research. There are three
common ways to define the largest “number” in a set S of vectors: (i) the largest
absolute value Δ := maxa∈S ‖a‖∞ of any entry; (ii) the largest sum of absolute
values ‖A‖1 := maxa∈S ‖a‖1 of any vector; and (iii) the largest subdeterminant δ
of any square subset of vectors. In this work, we mainly consider Δ and ‖A‖1.
Upper Bounds. To obtain upper bounds on the size of SSD sets, we consider
constructions which iteratively generate larger SSD sets from smaller SSD sets.
For starters, we show that any SSD set can be enlarged by doubling Δ/‖A‖1.
Observation 1. For any SSD set S the set 2S + I is also SSD.

Consequently, any SSD set of size n with largest entry Δ can be used to create
a set of size n + k with largest entry Δ · 2k. As there is no construction for an

in o(2n) so far, all known one-dimensional construction converge to this method
of set enlargement. If we double the dimension m instead, then interestingly the
behavior of the parameters Δ and ‖A‖1 differs. For the parameter Δ, doubling
the dimension m allows for a construction analogous to Hadamard matrices,
with the addition of further set elements.

Observation 2. For any SSD set S, the set
(

S S I
S −S 0

)
is also SSD.

Hence, an SSD set of size n in dimension m generates one of size 2n + m in
dimension 2m. Thus, the doubling of m allows for a superlinear gain in the size
of the SSD set for Δ. For ‖A‖1, a different construction works:

Observation 3. For any two SSD sets S and T , the set
(

S 0
0 T

)
is also SSD.

Obviously, Observation 2 only works for Δ and doubling the dimension. In
contrast, Observation 3 works for both Δ and ‖A‖1 and also allows for combining
sets of distinct dimensions. These constructions directly give upper bounds for
the smallest Δ or ‖A‖1 needed for an n-element SSD set in m dimensions.
Corollary 1. For all n,m ∈ N there is an SSD set with ‖A‖1 ≤ (1/2) · 2�n/m�.

Corollary 2. For all n ∈ N and m = 2i, i ∈ N there is an SSD set with largest
entry Δ ≤ max(c/(2

√
m)) · 2�n/m�, 1) and c = 1 for i even, c =

√
2 for i odd.

However, in general these constructions do not achieve optimal SSD sets. For

example,
(
2 2 2 1 0
1 −1 0 0 3

)
with ‖A‖1 = 3 and m = 2 is an SSD set of size 5.

New Support Size Bounds and Proximity Bounds for ILPs 87

Lower Bounds. In multiple dimensions, any single dimension does not need
to form an SSD set by itself, as a duplicate value in one dimension might be
distinguished by another dimension. We adapt the approach of Aliev et al. [1]
to use Siegel’s lemma for the derivation of our bounds.

Proposition 2 (Siegel’s lemma, Bombieri and Vaaler [8]). The linear sys-
tem A · x = 0 with A ∈ Z

m×n, n > m and the rows of A linearly independent
has a non-zero integer solution y ∈ Z

n with ‖y‖∞ ≤ √
det(AAT)

1/(n−m)
.

The equation interpretation of SSD sets directly bounds their size:

Lemma 1. Any SSD set S ⊂ Z
m of size n satisfies 2n ≤ 2m

√
det(SST).

Because the matrix SST is symmetric and positive semidefinite, its determi-
nant is smaller than the product of the diagonal entries of SST . Using this fact,
we obtain the following lower bounds of the form c · 2n/m/

√
n/m:

Lemma 2. Any SSD set S ⊂ Z
m of size n satisfies Δ ≥ 1/(2

√
m)·2n/m/

√
n/m.

Lemma 3. Any SSD set S ⊂ Z
m of size n satisfies ‖A‖1 ≥ (1/2) ·2n/m/

√
n/m.

The asymptotic difference between the known lower and upper bounds is a
factor of 1/

√
n/m, just like in the one-dimensional case.

For ‖A‖1 = 1, the identity matrix I is obviously the largest SSD set. For
‖A‖1 = 2, we show that, surprisingly,

(
2I I

)
is still a largest SSD set.

Theorem 1. If n/m > 2 then ‖A‖1 ≥ 3 for any SSD set S ⊂ Z
m of size n.

2.3 Numerical Results

Our approach to find SSD sets S in dimension m = 11 bears similarity to that
of Lunnon [26]. We performed a depth first search for the elements Si of the set.
The search is trivially parallelizable, which we did. To keep track of the SSD
property, we maintained a bitvector of the currently reachable points. That way
duplicates are easily detected by the bitwise AND operation on the bitvector
and its shift by the current number. If there is no duplicate, the new bitvector is
simply the bitwise OR of the original and shifted bitvector. We obtained faster
implementations by searching for decreasing sets with Si ≥ Sj for i ≤ j, instead
of increasing. The smaller values of an were used as lower bounds Sn−i ≥ ai

for the elements which needed to be considered. In our implementation, the use
of bounds like Borwein and Mossinghoff [9] or number theoretical results about
the sums of reciprocals of SSD sets resulted in no significant speedup. Searching
numbers descendingly gave all solutions relatively quickly, with the majority of
the compute time spend checking that no more solutions exist. Hence, if one
could prove that in an SSD set for an most elements are almost as large as an,
as suggested by Steinerberger [31], the search could be sped up significantly.

For dimensions m > 1, we kept an explicit list of the reachable points, instead
of implementing multi-dimensional bit vectors. We also did not implement sym-
metry reductions, which would give a speedup of m!.

We list the smallest possible parameters ‖A‖1 and Δ for an SSD set S ⊂ Z
m

of size n in Table 1 and Table 2 respectively.

88 S. Berndt et al.

Table 1. Smallest possible ‖A‖1, given m
and n.

m\n 1 2 3 4 5 6 7 8 9 10

1 1 2 4 7 13 24 44 84 161 309
2 1 1 2 2 3 4 6 7 10 13
3 1 1 1 2 2 2 3 4 4 5
4 1 1 1 1 2 2 2 2 3 3
5 1 1 1 1 1 2 2 2 2 2

Table 2. Smallest possible Δ, given m
and n.

m\n 1 2 3 4 5 6 7 8 9 10

1 1 2 4 7 13 24 44 84 161 309
2 1 1 1 2 2 3 4 5 7 10
3 1 1 1 1 1 2 2 2 3 3
4 1 1 1 1 1 1 1 1 2 2
5 1 1 1 1 1 1 1 1 1 1

3 Support Size Bounds for Integer Linear Programming

For matrix A ∈ Z
m×n and vectors b ∈ Z

m, c ∈ Z
n, the ILP in standard form is

max cT · x subject to A · x = b, x ∈ Z
n
≥0. (1)

For simplicity, we only consider ILPs with optimal solutions, i.e., we assume that
our ILPs are feasible and bounded in the direction of the objective function and
denote such ILPs by (A, b, c). We are interested in the support size of the ILP (1),
which we define as the smallest s := |supp(x)| := |{i ∈ {1, . . . , n} | xi > 0}| for
any optimal solution x. In other words, we want to know the smallest number of
necessary non-zero variables among all optimal solutions. For ILPs in standard
form there exists a vertex solution with equal or larger objective value, and equal
or smaller support size, than any other solution. Hence, we only need to consider
vertex solutions. However, vertex solutions of ILPs have an important property.

Proposition 3 (Berndt, Jansen, Klein [5]). For any ILP (A, b, c) with ver-
tex solution x, the 0-vector is the only feasible solution for Asupp(x) · y = 0 with
y ∈ {−1, 0, 1}s and Asupp(x) the matrix of columns Ai with non-zero xi.

The crucial connection between SSD sets and minimal support optimal solu-
tion, which lets us use the results of Sect. 2, is the following theorem.

Theorem 2. For any ILP (A, b, c) a minimal support optimal solution x with
support size s forms an SSD set Asupp(x) of size s with the columns of A.

3.1 Single-Constraint ILPs

ILPs with a single constraint (m = 1) already model important combinatorial
optimization problems, such as Knapsack. Our goal is to bound the support
size s of single-constraint ILPs by s ≤ log(cΔ). From our study of SSD sets, we
can relate this task to Erdős’ conjecture and give a conditional answer.

Corollary 3. If Erdős’ conjecture holds with constant c̃, then any ILP with con-
straint matrix A ∈ Z

1×n and largest absolute value Δ of any coefficient in A has
support size s ≤ log(Δ/2c̃).

New Support Size Bounds and Proximity Bounds for ILPs 89

For m = 1, Proposition 1 can be used to give a strong support size bound.

Theorem 3. Any single-constraint ILP with largest absolute value Δ of any
coefficient in the constraint matrix has support size s ≤ 1.1 log(2.02Δ).

3.2 ILPs with Multiple Constraints

Another indicator of the close connection between SSD sets and support solutions
is that the exact same constructions from Sect. 2 also work for the support.

We first establish a set of lower bounds.

Theorem 4. For any ILP (A, b, c) with support size s there is a vector c̃ such
that the ILP (

(
2A I

)
, 2b+ 1, c̃) has support size s + m.

Theorem 5. For any ILP (A, b, c) with support size s there is a vector c̃ such

that the ILP
((

A A I
A −A 0

)
,

(
2b+ 1

0

)
, c̃

)
has support size 2s + m.

Theorem 6. For any ILPs (A, b, c) and (A′, b′, c′) with support sizes s and t,

respectively, the ILP
((

A 0
0 A′

)
,

(
b
b′

)
,
(
c c′)

)
has support size s + t.

For the parameter ‖A‖1, Berndt et al. [4] showed the asymptotically optimal
lower bound s ≥ m · log(‖A‖1) by using the matrix which results from the
combination of Theorem 4 and Theorem 6.

Corollary 4. For m a power of two there is an m-constraint ILP (A, b, c) with
support size s ≥ m(log(2

√
m) +
log(Δ)�) ≥ m log(

√
mΔ).

Upper Bounds. Gribanov et al. [19] gave a support size bound of the form
s ≤ m(log(

√
mΔ) + O(log(log(

√
mΔ))). They were thereby the first to achieve

a leading coefficient of 1. Our lower bounds show that a leading coefficient of 1
is asymptotically optimal and that

√
mΔ is indeed the best attainable result

inside the logarithm. Berndt et al. [4] gave a parametric bound of the form
s ≤ m(log(

√
mΔ) + O(

√
log(

√
mΔ))) with leading coefficient 1 and raised the

question, whether a bound of the form s ≤ m log(c
√

mΔ) for a constant c is
possible. We made progress towards this question with Corollary 3 in dimension
one. In terms of bounds with greater leading coefficient, Berndt et al. [4] showed
s ≤ 2m log(1.46 · √mΔ) and s ≤ 1.1m log(3.42 · √mΔ). For a leading coefficient
of 2 we show an optimal factor of

√
2 inside the logarithm.

Theorem 7. Any ILP (A, b, c) with m constraints and largest absolute value Δ
of any coefficient in A has support size s ≤ 2m · log(√2 · √

mΔ).

Theorem 8. Any ILP (A, b, c) with m constraints has support size s ≤ 2m ·
log(

√
2 · ‖A‖1).

90 S. Berndt et al.

3.3 Numerical Results

As elaborated before, the columns of minimal support solutions form SSD sets.
The following insight is useful for finding SSD sets with minimal parameter.

Lemma 4. Consider any ILP (A, b, c) and let x be an optimal solution with
minimum support. Then for the ILP (Asupp(x), Asupp(x) ·1, csupp(x)), the vector 1
is an optimal solution with minimum support.

Hence, we can find an optimal solution with minimum support by testing SSD
sets. Note that ILPs are not invariant under sign change of columns. So for every
SSD set S, we need to test 2|S|−1 many sign combinations (−1 because −x is
optimal for (−A,−b,−c)). To test a matrix A resulting from a sign configuration
of an SSD set, we set up the following LP and ILP:

{c ∈ R
n | G · c ≤ −1} {g ∈ Z

n | A · g = 0, cT · g ≥ 0, g �= 0}
The LP tries to find a direction such that no known augmentation improves the
objective. The ILP tries to find an augmentation relative to the current objec-
tive. An objective c found by the LP is used in the ILP and an augmentation
step g is added to the set G used in the LP. If the ILP becomes infeasible, then 1
is an optimal solution of minimal support. If the LP becomes infeasible, it is not.
Some care needs to be taken to avoid an infinite loop for unbounded ILPs. We
used GuRoBi [20] to successively solve the LPs and ILPs. For any SSD set, the
augmentation steps were stored and reused for other sign combinations, if appli-
cable, which significantly sped up the process. We found performance decreases
from GuRoBi multithreading or multithreading on more than half of the physical
cores, suggesting memory speed as the bottleneck of the computation.

We list the smallest possible parameters ‖A‖1 and Δ for an ILP with m
constraints and support size s in Table 3 and Table 4 respectively.

Table 3. Smallest possible ‖A‖1, given m
and s.

m\s 1 2 3 4 5 6 7 8 9 10

1 1 2 4 7 13 24 46 90 176 345
2 1 1 2 2 3 4 6 7 10 13
3 1 1 1 2 2 2 3 4 4 5
4 1 1 1 1 2 2 2 2 3 3
5 1 1 1 1 1 2 2 2 2 2

Table 4. Smallest possible Δ, given m
and s.

m\s 1 2 3 4 5 6 7 8 9 10

1 1 2 4 7 13 24 46 90 176 345
2 1 1 1 2 2 3 4 5 7 10
3 1 1 1 1 1 2 2 2 3 3
4 1 1 1 1 1 1 1 1 2 2
5 1 1 1 1 1 1 1 1 1 1

4 Bounds on Largest Graver Basis Elements

Graver [18] introduced the concept now known as Graver bases to study augmen-
tation in integer programs. For an integer matrix A, the Graver basis G(A) is

New Support Size Bounds and Proximity Bounds for ILPs 91

the set of inclusion-minimal non-zero integer solutions x to A ·x = 0. A solution
to an ILP is optimal if and only if it cannot be improved by addition of a vector
in the Graver basis of the constraint matrix [18]. An equivalent characterization
of Graver bases as primitive partition identities was given by Diaconis, Graham
and Sturmfels [12]. A (multi-)set A ∈ Z

m is a primitive partition identity if∑
a∈A a = 0 and for all non-empty B � A it holds

∑
a∈B a �= 0. Another inter-

pretation of Graver bases is as cycles on the integer points Z
m, where each edge

is a column vector of A and there is no rearrangement into two cycles [15]. Hence,
if we take any column vector for a Graver basis element g, all other column vec-
tors for g have to be necessary to return to the origin 0. We are interested in
bounds on the size of the largest Graver basis elements:

Definition 3. For any matrix A let g1(A) := maxg∈G(A) ‖g‖1 be the largest
1-norm of any Graver basis element g in the Graver basis G(A) of A.

For a matrix A, let δ(A) be the absolute value of its largest subdetermi-
nant. Using the third interpretation of Graver bases, Diaconis et al. [12]
showed g1(A) ≤ (2m)m(m + 1)m+1 · δ(A). This extended the earlier result
g1(A) ≤ n · (n − m) · δ(A) by Sturmfels [32]. Onn [28] gave the bound
g1(A) ≤ (n−m) ·δ(A). Sturmfels and Onn’s bounds use the number n of distinct
columns, which can be as large as (2Δ + 1)m. Recently, Eisenbrand et al. [14]
showed g1(A) ≤ (2Δm + 1)m.

We first consider single-constraint ILPs that model problems like Knapsack.
For dimension m = 1, Diaconis et al. [12] characterized g1(A) as follows:

Proposition 4. Any matrix A ∈ Z
1×n with largest absolute entry Δ satisfies

g1(A) ≤ 2Δ − 1 for Δ > 1 and g1(A) ≤ 2 for Δ = 1.

Next, we deal with ILPs with multiple constraints. Regarding lower bounds,
Graver bases elements in dimension m directly allow for the construction of
larger Graver bases elements in dimension m + 1.

Theorem 9. For any matrix A ∈ Z
m×n with largest absolute entry Δ and any

Graver basis element g ∈ G(A) there is a matrix A′ ∈ Z
(m+1)×(n+1) with largest

absolute entry Δ and Graver basis element g̃ ∈ G(A′) with ‖g̃‖1 = ‖g‖1(1 + Δ).

Even for very restricted matrices, Theorem 9 already implies exponential
growth in the size of Graver basis elements.

Corollary 5. For all m ∈ N there is a matrix A ∈ {−1, 0, 1}m×m+1 with
g1(A) ≥ 2m.

Starting at m = 3, the construction of Corollary 5 is no longer optimal, as
1 · (

1 −1 −1
)T + 2 · (

1 1 0
)T + 3 · (−1 1 −1

)T + 4 · (
0 −1 1

)T = 0 is a Graver
basis element of length 10 > 8. Our best lower bounds do not have m in the
basis when considering the parameter Δ, a gap we closed in the support case.

Corollary 6. For all m ∈ N and all Δ ≥ 2 there is an m-row matrix A with
largest absolute entry Δ such that g1(A) ≥ (2Δ − 1)(Δ + 1)m−1.

92 S. Berndt et al.

However, for ‖A‖1 we are able to construct an almost matching lower bound:

Theorem 10. For all m ∈ N and all ‖A‖1 > 2 there is an m-row matrix A such
that g1(A) ≥ (2(‖A‖1 −1)m+1 −‖A‖1)/(‖A‖1 −2), and with g1(A) = 2m+1 for
‖A‖1 = 2.

For ‖A‖1, there is no black-box extension method like Theorem 9, as already
for m = 2 and ‖A‖1 = 3 the only largest Graver element, up to symmetry and

sign changes, is
(
3 −2 −1
0 1 −2

)
· (5 6 3

)T =
(
0
0

)
. Hence there are optimal solutions

to which we can not attach anything without increasing the norm, because all
column vectors already have the largest allowed 1-norm.

Upper Bounds. The third interpretation of Graver bases suggests using
Steinitz type rearrangement lemmas to derive bounds on g1(A), as shown by
Diaconis et al. [12]. The idea of the Steinitz lemma is that any cycle of vectors of
limited size admits a rearrangement such that each partial sum is also of limited
size.

Proposition 5 (Steinitz Lemma). Given x1, . . . ,xn ∈ R
m with

∑n
i=1 xi = 0

and ‖xi‖ ≤ Δ, there is a permutation π ∈ Sn such that ‖∑k
i=1 xπ(i)‖ ≤ C(m)·Δ

holds for all k = 1, . . . , n.

Eisenbrand et al. [14] used the bound C(m) ≤ m proved by Sevast’janov [29].
Banaszczyk [29] is credited with the improved bound C(m) ≤ m−1+1/m. Sev-
ast’janov [30] gave a constructive proof (cf. de Gelder [17] for a non-constructive
proof). As a consequence, there is a slightly better bound on Graver basis ele-
ments. Using the techniques of Eisenbrand et al. [14], we show:

Theorem 11. For any matrix A ∈ Z
m×n with largest absolute entry Δ it holds

that g1(A) ≤ (2mΔ − 1)m.

Interestingly, Bárány [3] conjectured C(m) ∈ O(
√

m), which would directly
improve the Graver bounds. Further, every Hadamard matrix of dimension m+1
gives C(m) ≥ √

m/2(1 + 1/m), as shown by Bárány [3] and de Gelder [17]. The
achievable bounds in terms of ‖A‖1 are asymptotically smaller than mO(m) for
‖A‖1 ∈ mo(1), which can occur for sparse constraint matrices.

Theorem 12. For any matrix A ∈ Z
m×n, its largest Graver basis element size

is bounded by g1(A) ≤ ∑m
k=0 2

k
(
m
k

)(�‖A‖1(m−1+1/m)�
k

) ≤ (2e · (‖A‖1 + 1))m.

The case ‖A‖1 = 2 is special, similar to Theorem 10, and only gives a linear
bound, whereas ‖A‖1 = 1 is trivial and ‖A‖1 > 2 is exponential. In fact, we can
show that g1(A) ≤ 2m+1 for matrices A with ‖A‖1 ≤ 2, and in the process also
classify all Graver elements for such matrices.

Theorem 13. For any matrix A with ‖A‖1 = 2, any Graver basis element
g ∈ G(A) either uses no ±ei vectors with ‖g‖1 ≤ 2m, or uses two ±ei vectors
with ‖g‖1 ≤ 2m+1. The non-zero entries in a row of the partition identity of g
are, up to sign, {2,−1,−1}, {1, 1,−1,−1}, {2,−2}, {1,−1} or ∅.

New Support Size Bounds and Proximity Bounds for ILPs 93

4.1 Numerical Results

To find the largest Graver basis element for any parameter bound, we calculated
the Graver bases for the matrix of all admissible vectors with 4ti2 [33]. This app-
roach quickly became computationally infeasible, used large amounts of RAM,
is single-threaded, and does not utilize symmetry reductions. We thus generated
longer Graver basis elements by letting GuRoBi generate solutions to A · g = 0
of specified length. Then we used GuRoBi to check that no g′

� g is already
a Graver basis element. If g′ exists, we add the smaller of g′ and g − g′ as a
forbidden subset to the original model. We list the largest found g1(A) for given
dimension m and parameters ‖A‖1 and Δ in Table 5 and Table 6 respectively.

Table 5. Largest possible g1(A), given m
and Δ.

m\Δ 1 2 3 4 5

1 2 3 5 7 9
2 4 13 34 ≥61 ≥98
3 10 ≥79 ≥160
4 ≥30
5 ≥90

Table 6. Largest possible g1(A), given m
and ‖A‖1.

m\‖A‖1 1 2 3 4 5

1 2 3 5 7 9
2 2 5 14 25 46
3 2 7 38 ≥89 ≥206
4 2 9 ≥86
5 2 11

4.2 Proximity

We show two types of results regarding the proximity of optimal fractional solu-
tions to optimal integral solutions of linear programs. First, we improve the
bound of n · g1(A) by Hemmecke et al. [22] via a bound on the support size of
optimal integer solutions. Second, we show that a Graver basis element bound
in the style of Eisenbrand et al. [14] can be used to obtain a proximity bound
in the style of Eisenbrand and Weismantel [15] with a small additional factor
of m. The circuits of a matrix A are the elements of its Graver basis of minimum
support. Let c1(A) := maxc∈C(A) ‖c‖1 be the largest circuit 1-norm of A. The
inequality c1(A) ≤ (m + 1)δ(A) is useful for deriving bounds.

Theorem 14. For any m-constraint ILP (A, b, c) with an optimal solution and
any optimal vertex fractional solution x̃ there is, for any support size bound f(A),
an optimal integer solution z̃ ∈ Z

n satisfying ‖z̃ − x̃‖1 ≤ f(A) · c1(A).

For matrices A with bounded Δ or bounded 1-norm ‖A‖1 this directly yields:

Corollary 7. For any m-constraint ILP (A, b, c) with an optimal solution and
any optimal vertex fractional solution x̃ there is an optimal integer solution
z̃ ∈ Z

n satisfying ‖z̃ − x̃‖1 ≤ 2m log(
√
2mΔ) · (m + 1) · (√mΔ)m.

Corollary 8. For any m-constraint ILP (A, b, c) with an optimal solution and
any optimal vertex fractional solution x̃ there is an optimal integer solution
z̃ ∈ Z

n satisfying ‖z̃ − x̃‖1 ≤ 2m log(
√
2‖A‖1) · (m + 1) · (‖A‖1)m.

94 S. Berndt et al.

For small or fixed values of m better bounds can be obtained with an app-
roach based on the Steinitz lemma.

Theorem 15. For any m-constraint ILP (A, b, c) with an optimal solution and
any optimal vertex fractional solution x̃ there is an optimal integer solution
z̃ ∈ Z

n satisfying ‖z̃ − x̃‖1 ≤ m · (2mΔ − 1)m.

Theorem 16. For any m-constraint ILP (A, b, c) with an optimal solution and
any optimal vertex fractional solution x̃ there is an optimal integer solution
z̃ ∈ Z

n satisfying ‖z̃ − x̃‖1 ≤ m · (2e(‖A‖1 + 1))m.

Contrarily, the proximity does not bound the circuit length:

Observation 4. For all m ∈ N there is a matrix A ∈ Z
m×m+1 with proximity 0

and largest circuit 1-norm c1(A) = m + 1.

Naturally, a proximity bound directly implies bounds the integrality gap:

Corollary 9. For any ILP (A, b, c) the absolute integrality gap is bounded by

cT · (x̃ − z̃) ≤ ‖c‖∞ · ‖z̃ − x̃‖1.

References

1. Aliev, I., De Loera, J.A., Oertel, T., O’Neill, C.: Sparse solutions of linear Dio-
phantine equations. SIAM J. Appl. Algebra Geom. 1(1), 239–253 (2017)

2. Bansal, N., Oosterwijk, T., Vredeveld, T., van der Zwaan, R.: Approximating vector
scheduling: almost matching upper and lower bounds. Algorithmica 76(4), 1077–
1096 (2016). https://doi.org/10.1007/s00453-016-0116-0

3. Bárány, I.: On the power of linear dependencies. In: Grötschel, M., Katona, G.O.H.,
Sági, G. (eds.) Building Bridges. BSMS, vol. 19, pp. 31–45. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85221-6_1

4. Berndt, S., Brinkop, H., Jansen, K., Mnich, M., Stamm, T.: New support size
bounds for integer programming, applied to makespan minimization on uniformly
related machines. In: Proceedings of ISAAC 2023 (2023). https://drops.dagstuhl.
de/entities/document/10.4230/LIPIcs.ISAAC.2023.13

5. Berndt, S., Jansen, K., Klein, K.M.: New bounds for the vertices of the integer
hull. In: Proceedings of SOSA 2021, pp. 25–36 (2021)

6. Bohman, T.: A sum packing problem of Erdős and the Conway-Guy sequence.
Proc. Am. Math. Soc. 124(12), 3627–3636 (1996)

7. Bohman, T.: A construction for sets of integers with distinct subset sums. Electron.
J. Comb. 5, 14 (1998). Research Paper 3

8. Bombieri, E., Vaaler, J.: On Siegel’s lemma. Inventiones Math. 73, 11–32 (1983).
https://doi.org/10.1007/BF01393823

9. Borwein, P., Mossinghoff, M.J.: Newman polynomials with prescribed vanishing
and integer sets with distinct subset sums. Math. Comput. 72(242), 787–800 (2003)

10. Conway, J.H., Guy, R.K.: Sets of natural numbers with distinct subset sums. Not.
Am. Math. Soc. 15, 345 (1968)

11. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

https://doi.org/10.1007/s00453-016-0116-0
https://doi.org/10.1007/978-3-540-85221-6_1
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.13
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.13
https://doi.org/10.1007/BF01393823
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3

New Support Size Bounds and Proximity Bounds for ILPs 95

12. Diaconis, P., Graham, R.L., Sturmfels, B.: Primitive partition identities. In: Com-
binatorics, Paul Erdős is Eighty, vol. 2 (Keszthely, 1993), Bolyai Soc. Math. Stud.,
vol. 2, pp. 173–192 (1996)

13. Dubroff, Q., Fox, J., Xu, M.W.: A note on the Erdős distinct subset sums problem.
SIAM J. Discrete Math. 35(1), 322–324 (2021)

14. Eisenbrand, F., Hunkenschröder, C., Klein, K.M.: Faster algorithms for integer pro-
grams with block structure. In: Proceedings of ICALP 2018. Leibniz International
Proceedings in Informatics, vol. 107, p. 13 (2018). Article No. 49

15. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer
programming using the Steinitz lemma. ACM Trans. Algorithms 16(1), 14 (2020).
Article 5

16. Erdős, P.: Problems and results on extremal problems in number theory, geometry,
and combinatorics. In: Proceedings of the 7th Fischland Colloquium, I, Wustrow,
no. 38, pp. 6–14 (1989)

17. de Gelder, M.: Investigating various upper and lower bounds of the Steinitz con-
stant. Bachelor thesis, TU Delft, Delft Institute of Applied Mathematics (2016)

18. Graver, J.E.: On the foundations of linear and integer linear programming. I. Math.
Program. 9(2), 207–226 (1975). https://doi.org/10.1007/BF01681344

19. Gribanov, D., Shumilov, I., Malyshev, D., Pardalos, P.: On Δ-modular integer
linear problems in the canonical form and equivalent problems. J. Glob. Optim.
1–61 (2022). https://doi.org/10.1007/s10898-022-01165-9

20. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023)
21. Haase, C., Zetzsche, G.: Presburger arithmetic with stars, rational subsets of graph

groups, and nested zero tests. In: Proceedings of LICS 2019, pp. 1–14 (2019)
22. Hemmecke, R., Köppe, M., Weismantel, R.: Graver basis and proximity techniques

for block-structured separable convex integer minimization problems. Math. Pro-
gram. 145(1), 1–18 (2014). https://doi.org/10.1007/s10107-013-0638-z

23. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

24. Knop, D., Koutecký, M., Mnich, M.: Combinatorial n-fold integer programming
and applications. Math. Program. 184(1–2), 1–34 (2020). https://doi.org/10.1007/
s10107-019-01402-2

25. Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8(4), 538–548 (1983)

26. Lunnon, W.F.: Integer sets with distinct subset-sums. Math. Comput. 50(181),
297–320 (1988)

27. OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences (2023).
Published electronically at http://oeis.org

28. Onn, S.: Nonlinear discrete optimization. In: Zurich Lectures in Advanced Mathe-
matics (2010)

29. Sevast’janov, S.: On the approximate solution of some problems of scheduling the-
ory. Metody Diskretnogo Analiza 32 (1978)

30. Sevast’janov, S.: On the compact summation of vectors. Diskret. Mat. 3(3), 66–72
(1991)

31. Steinerberger, S.: Some remarks on the Erdős distinct subset sums problem. Int.
J. Number Theory 19(08), 1783–1800 (2023)

32. Sturmfels, B.: Gröbner bases of toric varieties. Tohoku Math. J. 43(2), 249–261
(1991)

33. 4ti2 team: 4ti2–a software package for algebraic, geometric and combinatorial prob-
lems on linear spaces. https://4ti2.github.io/

https://doi.org/10.1007/BF01681344
https://doi.org/10.1007/s10898-022-01165-9
https://doi.org/10.1007/s10107-013-0638-z
https://doi.org/10.1007/s10107-019-01402-2
https://doi.org/10.1007/s10107-019-01402-2
http://oeis.org
https://4ti2.github.io/

On the Parameterized Complexity
of Minus Domination

Sriram Bhyravarapu1(B), Lawqueen Kanesh2(B), A Mohanapriya3(B),
Nidhi Purohit4(B), N. Sadagopan3(B), and Saket Saurabh1,4(B)

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
{sriramb,saket}@imsc.res.in

2 Indian Institute of Technology, Jodhpur, Jodhpur, India
lawqueen@iitj.ac.in

3 Indian Institute of Information Technology, Design and Manufacturing,
Kancheepuram, Chennai, India

{coe19d003,sadagopan}@iiitdm.ac.in
4 University of Bergen, Bergen, Norway

Nidhi.Purohit@uib.no

Abstract. Dominating Set is a well-studied combinatorial problem.
Given a graph G = (V, E), a dominating function f : V (G) → {0, 1} is a
labeling of the vertices of G such that

∑
w∈N [v] f(w) ≥ 1 for each vertex

v ∈ V (G), where N [v] = {v} ∪ {u | uv ∈ E(G)}. We study a general-
ization of Dominating Set called Minus Domination (in short, MD)
where f : V (G) → {−1, 0, 1}. Such a function is said to be a minus dom-
inating function if for each vertex v ∈ V (G), we have

∑
w∈N [v] f(w) ≥ 1.

The objective is to minimize the weight of a minus domination function,
which is f(V) =

∑
u∈V (G) f(u). The problem is NP-hard even on bipar-

tite, planar, and chordal graphs.
In this paper, we study MD from the perspective of parameterized

complexity. After observing the complexity of the problem with the nat-
ural parameters such as the number of vertices labeled 1, −1 and 0,
we study the problem with respect to structural parameters. We show
that MD is fixed-parameter tractable when parameterized by twin-cover
number, neighborhood diversity or the combined parameters component
vertex deletion set and size of the largest component. In addition, we give
an XP-algorithm when parameterized by distance to cluster number.

Keywords: Minus Domination · fixed-parameter tractability ·
twin-cover · neighborhood diversity · disjoint paths deletion · cluster
vertex deletion

1 Introduction

Given a graph G = (V,E), a dominating function f : V (G) → {0, 1} is a
labeling of V (G) from {0, 1} such that for each vertex v ∈ V (G) we have∑

w∈N [v] f(w) ≥ 1, where N [v] = {v} ∪ {u | uv ∈ E(G)}. The weight of f

is denoted by f(V) =
∑

u∈V (G) f(u). The Dominating Set (in short, DS)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 96–110, 2024.
https://doi.org/10.1007/978-3-031-52113-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_7&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_7

On the Parameterized Complexity of Minus Domination 97

problem asks to find a dominating function of minimum weight. Several vari-
ants of DS have been studied in literature, some of which include independent,
total, global, perfect and k-dominating [1,12,13]. In this paper, we study another
variant of domination called Minus Domination (in short, MD) which was
introduced by Dunbar et al. in 1996 [6]. Given a graph G = (V,E), a minus
dominating function f : V (G) → {−1, 0, 1} is an assignment of labels to the
vertices of G such that for each v ∈ V (G), the sum of labels assigned to the
vertices in the closed neighborhood of v (denoted by N [v]) is at least one, i.e.,∑

w∈N [v] f(w) ≥ 1. The weight of a minus dominating function f denoted by
f(V) is

∑
v∈V (G) f(v). Given a graph G, Minus Domination asks to compute

the minimum weight of a minus dominating function of G. The decision ver-
sion of the problem takes as input a graph G and an integer k, and outputs
whether there exists a minus dominating function of weight at most k. MD has
applications in electrical networks, social networks, voting, etc. [6,19].

The weight of a minus dominating function can be negative. For example,
consider a clique on n vertices and for each edge uv in the clique, add a private
vertex adjacent to only u and v. Consider the minus dominating function f
that assigns all the clique vertices the label 1 and all the private vertices the
label −1. The clique vertices have as many private neighbors as they have clique
neighbors while the private vertices have exactly two clique neighbors. Thus, for
each vertex v, we have f(N [v]) ≥ 1 and f(V) = n−n(n−1)/2 < 0 for a large n.
The authors in [6] show that given a positive integer k there exists a bipartite,
chordal and outer-planar graphs with weight at most −k.

Minus Domination is NP-complete in general [8] and NP-complete even on
chordal bipartite graphs, split graphs, and bipartite planar graphs of degree at
most 4 [3,6,8,17]. The problem is polynomial-time solvable on trees, graphs of
bounded rank-width, cographs, distance hereditary graphs and strongly chordal
graphs [6,8]. Given the hardness results for the problem, it is natural to ask
for ways to confront this hardness. Parameterized complexity is an approach
towards solving NP-hard problems in “feasible” time. Parameterized problems
that admit such an algorithm are called fixed-parameter tractable (in short,
FPT). For more details, we refer the reader to the book by Cygan et al. [2] and
Downey and Fellows [4].

Minus Domination has been studied from the realm of parameterized com-
plexity. On subcubic graphs, MD is FPT when parameterized by weight [18].
As far as near-optimal solutions are concerned, the minimum weight of a minus
dominating function cannot be approximated in polynomial time within (1+ ε),
for some ε > 0, unless P �= NP [3]. The problem is APX-hard on graphs of max-
imum degree 7 [18]. Several combinatorial bounds for the problem on regular
graphs, and small degree graphs (Δ ≤ 3 or Δ ≤ 4) have been studied [3,7].

A parameter may originate from the formulation of the problem itself (called
natural parameters) or it can be a property of the input graph (called structural
parameters). Dominating Set when parameterized by solution size is W[2]-hard
[4]; however, when parameterized by structural parameters such as tree-width [2],
modular-width, or distance to cluster (size of the cluster vertex deletion set) [11],

98 S. Bhyravarapu et al.

the problem is fixed-parameter tractable. MD has various natural parameters
such as n−1, n0, n1 and f(V) (where n−1 = |f−1(−1)|, n0 = |f−1(0)|, and
n1 = |f−1(1)| for a minus dominating function f) and it was shown in [8] that
the problem is para-NP-hard when parameterized by f(V).

Domination vs Minus Domination: One may think that the ideas used for
solving DS can be extended to MD. But this is not the case always. There are
graphs for example connected cographs, wheel graphs, windmill graphs, chain
graphs, etc. where dominating set size is constant and the corresponding set can
be found trivially. However, it is not the case with MD.

On graphs of bounded tree-width, the dynamic programming based FPT
algorithm for DS when parameterized by tree-width (tw) focuses on guessing
vertices from each bag that are in the dominating set. However, for MD, just
guessing the labels 1, −1 and 0 for the vertices of a bag does not suffice. We may
also need to store the information about the sum that each vertex in the bag
receives from its subtree to be able to extend to the rest of the graph. Since the
degree of a vertex can be unbounded, the sum it receives from the subtree can
be unbounded. This gives us an nO(tw) time algorithm. Notice that this gives us
an FPT algorithm when parameterized by maximum degree and tree-width. The
authors of [8] believe that MD is not FPT when parameterized by tree-width or
rank-width. To the best of our knowledge, the FPT status of minus domination
with respect to tree-width is still open.

Our Contribution: First, we analyse the problem on natural parameters. We
obtain the following result, the proof of which is not hard and follows from
Dominating Set and its well-known variants.

Theorem 1 (�).1 Minus Domination when parameterized by n−1 or n0 is
para-NP-hard, when parameterized by n1 or n−1 + n1 is W[2]-hard, and when
parameterized by n0 + n1 is FPT.

Neighborhood diversityTwin-cover

Clique-width

Distance to cluster

Modular-width

Tree-width

Distance to disjoint paths

Vertex cover

FPT

Distance to disjoint paths
of bounded length

XP

Fig. 1. Hasse diagram of graph parameters for MD. A directed edge from the parameter
a to the parameter b indicates that a ≤ g(b) for some computable function g. The
parameters below the blue curve are those for which MD is FPT while the parameters
between the red and blue curves are those for which XP algorithms are known for MD.
(Color figure online)

1 Due to space constraints, all the proofs of the results marked (�) will be presented
in the full version of the paper.

On the Parameterized Complexity of Minus Domination 99

We shift our focus to various structural graph parameters. In Sect. 3, we
show that MD is FPT when parameterized by twin-cover number. The next
parameter to consider is distance to cluster number, which is a generalization of
twin-cover number. In Sect. 4, we obtain an XP-algorithm when parameterized
by distance to cluster number. Then we move our attention to a more general
parameter: the size of component vertex deletion set. In Sect. 5, we study the
problem on this parameter and obtain an FPT algorithm when parameterized
by the size of component vertex deletion set and the size of a largest component.
This implies an FPT algorithm for MD when parameterized by (i) distance to
cluster number and the size of a largest clique, (ii) distance to disjoint paths and
the size of a largest path, or (iii) feedback vertex set number and the size of a
largest tree component. We also show that MD is FPT when parameterized by
the parameter neighborhood diversity. An illustration of the results is given in
Fig. 1. We now state the theorems of the above discussed results.

Theorem 2. Minus Domination can be solved in 2O(k·2k)nO(1) time, where k
is the twin cover number of the graph.

Theorem 3. Minus Domination can be solved in time g(k) · n2k+6, where k
is the distance to cluster number.

Theorem 4 (�). Let G be a graph and S ⊆ V (G) of size k be such that G − S
is a disjoint union of components where each component has at most d vertices.
Then, Minus Domination is FPT when parameterized by k and d.

Theorem 5 (�). Minus Domination can be solved in time tO(t)nO(1), where
t is the neighborhood diversity of the graph.

Open Question: What is the parameterized complexity of MD when parame-
terized by distance to cluster, tree-width or feedback vertex set, or distance to
disjoint paths?

2 Preliminaries

In this paper, we consider finite, undirected and connected graphs. If the graph
is disconnected, then we apply our algorithms on each of the components inde-
pendently. Given a graph G = (V,E), we use V (G) and E(G) to denote the
vertex and the edge sets of G. For a vertex v ∈ V (G), we use N(v) (open neigh-
borhood of v) to denote the neighbors of v in G. The closed neighborhood of v
is denoted by N [v] = N(v) ∪ {v}. For a vertex v ∈ V (G) and a set C ⊆ V (G),
we denote NC(v) = N(v) ∩ C. For a pair of vertices u, v ∈ V (G), we say u and
v are true twins, if and only if N [u] = N [v]. We say that a vertex v satisfies the
sum property, if

∑
u∈N [v] f(u) ≥ 1. For a set X ⊆ V (G) and a vertex w, we say

w receives the sum s from X if
∑

v∈N [w]∩X f(v) = s.
The size of a minus dominating function is the number of vertices assigned

the label 1. For a nonempty subset S ⊆ V (G), we denote by G[S] the subgraph

100 S. Bhyravarapu et al.

of G induced by S. Let f : X → Y be a function. If A ⊆ X then the restriction
of f to A is the function f |A : A → Y given by f |A(x) = f(x), for x ∈ A. We
say a labeling f : X → {−1, 0, 1} extends g : Y → {−1, 0, 1} if Y ⊆ X and for
each w ∈ Y , we have f(w) = g(w). We use O∗ notation to hide factors that are
polynomial in the input size.

Definition 1 (Twin-cover [10]). Given a graph G, a set S ⊆ V (G) is called a
twin cover of G if the following conditions hold: (i) G[V \S] is a disjoint union
of cliques, and (ii) each pair of vertices of a clique in G[V \S] are true twins in
G. We then say that G has twin cover number k if k is the minimum possible
size of a twin cover of G.

Definition 2 (Distance to cluster [14]). A cluster graph is a disjoint union
of cliques. Given a graph G, a set of vertices S ⊆ V (G) is called a cluster vertex
deletion set of G if G − S is a cluster graph. The size of the smallest set S for
which G − S is a cluster graph is referred to as distance to cluster number.

Definition 3 (Neighborhood diversity [16]). Let G = (V,E) be a graph.
Two vertices u, v ∈ V (G) are said to have the same type if and only if
N(u)\{v} = N(v)\{u}. A graph G has neighborhood diversity at most t, if there
exists a partition of V (G) into at most t sets V1, V2, . . . , Vt such that all the
vertices in each set have the same type.

Ganian [10] showed that a twin-cover of size k can be found in time
O∗(1.2738k). Hüffner et al. [14] showed that showed that a cluster vertex dele-
tion set of size k can be computed in O∗(1.811k) time. Lampis [16] showed that
the neighborhood diversity of a graph can be found in polynomial time. Thus
we will assume that a twin-cover, a cluster vertex deletion set and a partition of
vertex set into types of vertices are given as input, in the respective sections.

We use Integer Linear Programming (ILP) feasibility problem, stated in [15]
as subroutine in some of our results.

Theorem 6 ([15]). An integer linear programming instance of size L with p
variables can be solved using

O(p2.5p+o(p) · (L + log Mx) log(MxMc))

arithmetic operations and space polynomial in L+log Mx, where Mx is an upper
bound on the absolute value a variable can take in a solution, and Mc is the
largest absolute value of a coefficient in the vector c.

Lemma 1. Let f : V (G) → {−1, 0, 1} be a minus dominating function and
u, v ∈ V (G) be true twins such that f(u) = 1 and f(v) = −1. Then there
exists a minus dominating function g : V (G) → {−1, 0, 1} of weight f(V) and
g(u) = g(v) = 0.

Proof. We construct a function g : V (G) → {−1, 0, 1} as follows: g(u) = g(v) = 0
and g(z) = f(z), for each z ∈ V (G)\{u, v}. We claim that g is the minus

On the Parameterized Complexity of Minus Domination 101

dominating function of weight f(V). It is easy to see that g(V) = f(V) because
g(u) + g(v) = f(u) + f(v) = 0 and the remaining vertices are assigned the same
labels in both the labelings. Now we show that g is a minus dominating function.
It is easy to see that for each vertex w ∈ V (G) that is not adjacent to either u
or v,

∑
y∈N [w] g(y) =

∑
y∈N [w] f(y) ≥ 1, as u and v are the only vertices whose

labels are changed. Since u and v are true twins, for each w ∈ N(u) ∪ N(v),

∑

y∈N [w]

g(y) =g(u) + g(v) +
∑

y∈N [w]\{u,v}
g(y) = f(u) + f(v) +

∑

y∈N [w]\{u,v}
f(y)

=
∑

y∈N [w]

f(y) ≥ 1.

Thus, g is a minus dominating function.
�

3 Twin-Cover

Let G be a graph and S ⊆ V (G) be a twin cover of G of size k. Let
C1, C2, . . . , C� be the set of maximal cliques in G − S. From the definition
of twin cover, we have that each vertex of a clique C in G[V \S] has the
same neighborhood in S. We denote the neighborhood of a clique C in S by
NS(C), i.e., NS(C) = N(C) ∩ S. We partition the cliques in G[V \S] based
on its neighborhood in S. For each non-empty subset A ⊆ S, we denote by
TA = {C | C is a maximal clique in G[V \S] and NS(C) = A ⊆ S} the set of
cliques where each clique is adjacent to every vertex in A. We call TA a clique
type. Notice that the number of clique types is at most 2k. Consider the case
when A = ∅. If TA �= ∅ then G is disconnected. Since we are considering con-
nected graphs, we can assume that A �= ∅ throughout this section. In addition,
we only consider A ⊆ S for which |TA| ≥ 1, or TA is non-empty.

Next, we show that for each A ⊆ S, the vertices of cliques in set TA receive
their labeling from a fixed set of labels.

Lemma 2 (�). Let f : V (G) → {−1, 0, 1} be any minus dominating func-
tion with minimum weight. Then there exists a minus dominating function
g : V (G) → {−1, 0, 1} with weight f(V) such that for each A ⊆ S, vertices
in TA receives labels from exactly one of the three sets {−1, 0}, {0, 1} or {0}.

Proof (Proof of Theorem 2). Let G be a graph and S ⊆ V (G) be a twin cover
of G of size k. Let f : V (G) → {−1, 0, 1} be a minus dominating function of
minimum weight. WLOG we can assume that f is a minus dominating function
such that for each A ⊆ S, the vertices in TA receive the labels from exactly one
of the three sets {−1, 0}, {0, 1} or {0}, as any minus dominating function can
be converted to the function satisfying the above said conditions using Lemma
2. Recall that there are 2k − 1 many clique types.

For each A ⊆ S, we denote bA ∈ {{−1, 0}, {0, 1}, {0}} to be the set
of labels that the vertices of the cliques in TA are labeled with. We say

102 S. Bhyravarapu et al.

b̂ = {bA : A is non-empty and |TA| ≥ 1} respects f if for each non-empty A ⊆ S
with |TA| ≥ 1, the vertices of the cliques in TA are assigned the labels from bA.

We guess the tuple (f |S , b̂, ŝ), where ŝ = f(V) =
∑

v∈V (G) f(v) is the mini-
mum weight and −n < ŝ ≤ n. For each guess, we formulate the problem as an
ILP feasibility problem. Let cA =

∑
v∈A f |S(v) denote the sum that each ver-

tex in the clique type TA receives from A ⊆ S. Let �A represent the number of
cliques in each clique type TA and dA = min{|D| : D is a clique in TA} represent
the minimum size of a clique in TA. Let mA denote the total number of vertices
over all the cliques in the clique type TA.

From now on, we work with a fixed guess (f |S , b̂, ŝ). Observe that for each
A ⊆ S, cA, �A, dA and mA are constants. We say a guess (f |S , b̂, ŝ) is invalid if
for any A ⊆ S, one of the following holds: (i) cA ≤ 1 and bA = {−1, 0} (i.e., the
vertices of TA are assigned the labels from {−1, 0}), (ii) cA ≤ 0 and bA = {0},
and (iii) bA = {0, 1} and cA ≤ −dA. Otherwise, we call (f |S , b̂, ŝ) a valid guess.

For a valid guess (f |S , b̂, ŝ), we formulate an instance of the ILP problem.
The goal of ILP is to obtain an assignment of the variables such that each vertex
v ∈ V (G) satisfies its sum property respecting b̂ and ŝ. For each A ⊆ S, let n−1,A,
n0,A and n1,A be the variables of the ILP instance that denote the number of
vertices assigned −1, 0 and 1 respectively in the clique type TA. Notice that the
number of variables is at most 3 · 2k. We now describe the constraints of ILP for
each A ⊆ S as follows.

(C1) The number of vertices from TA assigned the labels from {−1, 0, 1} is mA.
That is,

n−1,A + n0,A + n1,A = mA.

(C2) If bA = {0} and cA ≥ 1, then

n−1,A = n1,A = 0, and n0,A = mA.

(C3) If bA = {0, 1} and cA > −dA, then

n−1,A = 0, n0,A ≥ 0 and (1 − cA)�A ≤ n1,A ≤ mA.

(C4) If bA = {−1, 0} and cA > 1, then

n1,A = 0, n0,A ≥ 0, and

0 ≤ n−1,A ≤
�A∑

j=1

min{cA − 1, |Bj |}.

where B1, B2, . . . , B�A are the cliques of the type TA.
(C5) For each v ∈ S, the sum property is satisfied. That is,

∑

A:v∈A

(n1,A − n−1,A) +
∑

w:w∈N [v]∩S

f(w) ≥ 1.

On the Parameterized Complexity of Minus Domination 103

(C6) Weight of our desired minus dominating function is ŝ,
∑

A

n1,A − n−1,A +
∑

v∈S

f(v) = ŝ.

We next show a one-to-one correspondence between feasible assignments of
ILP and minus dominating functions of G.

Lemma 3. ILP has a feasible assignment if and only if there exists a minus
dominating function with weight ŝ.

Proof. Suppose that there is a feasible assignment returned by ILP. We show
that there exists a minus dominating function f : V (G) → {−1, 0, 1} respecting
f |S , b̂ and ŝ. For each A ⊆ S, we assign the labels to the vertices of the clique
type TA in the following manner. Let V (TA) be the vertices of the cliques in TA.

– Case 1: bA = {0}.
Assign f(v) = 0 for each vertex v in the cliques of TA.

– Case 2: bA = {0, 1} and cA > −dA.
We have the following subcases.

• cA ≥ 1.
Choose n1,A vertices arbitrarily from the cliques of TA and assign the
label 1 to them. Rest of the vertices (if any) are assigned the label 0.

• cA ≤ 0.
Choose (1− cA) vertices arbitrarily from each clique of TA and assign the
label 1 to them. From the constraint (C3), we have that n1,A ≥ (1−cA)�A.
The remaining n1,A − (1 − cA)�A vertices are picked arbitrarily from the
unassigned vertices of the cliques of TA.

– Case 3: bA = {−1, 0} and cA ≥ 2.
For each clique Bj ∈ TA, choose min{cA − 1, |Bj |} many vertices and assign
the label −1 to each of them. Remaining vertices (if any) are assigned the
label 0.

Clearly, the labeling f : V (G) → {−1, 0, 1} respects b̂, ŝ and the fact that the
vertices in each clique type TA receive the set of labels from exactly one of the
three sets {−1, 0}, {0, 1} or {0} from the constraints (C1), (C2), (C3), (C4) and
(C6). The sum property for each vertex v ∈ S is satisfied because of Constraint
(C5). Therefore it is sufficient to show that for each v ∈ V (G), the sum property
is satisfied.

Consider a vertex v from TA. If TA falls under Case 1, then v receives its
positive sum from A from constraint (C2). If TA falls under Case 2 and cA ≥ 1,
then v receives its positive sum from A irrespective of whether v is assigned 0 or
1, because of constraint (C3). Else if TA falls under Case 2 and cA ≤ 0, then we
ensured that each clique in TA has at least (1− cA) vertices assigned the label 1,
from constraint (C3), making the total sum in neighborhood of v to be at least
1. If TA falls under Case 3, then we ensured that the number of vertices assigned
−1 in each clique Bj of TA is min{cA −1, |Bj |} from constraint (C4), making the

104 S. Bhyravarapu et al.

closed neighborhood sum to be at least 1 for v. Notice that the above argument
works irrespective of the label assigned to v.

Conversely, let f : V (G) → {−1, 0, 1} be a minus dominating func-
tion respecting f |S , b̂ and ŝ. Thus the constraint (C6) is satisfied. The variables
are assigned as follows depending on the labeling of TA.

– bA = {0}.
Assign n0,A = mA and n−1,A = n1,A = 0.

– bA = {0, 1} and cA ≥ −dA.
Assign n−1,A = 0, n0,A = f−1(0) ∩ V (TA) and n1,A = f−1(1) ∩ V (TA).

– bA = {−1, 0} and cA ≥ 2.
Assign n1,A = 0, n0,A = f−1(0) ∩ V (TA) and n−1,A = f−1(−1) ∩ V (TA).

Each vertex from TA is assigned a label from {−1, 0, 1} and hence constraint
(C1) is satisfied. The assignment of labels to vertices in V \S is such that every
vertex in V satisfies sum property. Thus the constraints (C2), (C3) and (C4) are
satisfied. Each vertex in S satisfied the sum property in f . Thus the constraint
(C5) is satisfied.
�

We run ILP over all the valid guesses and check whether there exists an
assignment leading to a minus dominating function. Over all such assignments
we pick the assignment that has the minimum ŝ.

Running Time: Guessing a labeling of S, the set of labels the vertices in each
TA can receive, and the weight ŝ, takes time O(3k · 32

k · n). For each of the
above guesses, we run the ILP feasibility problem where the number of variables
is at most 3 · 2k. Thus from Lemma 3 and Theorem 6, the total time taken is
2O(k·2k) · nO(1).
�

4 Cluster Vertex Deletion Set

Let G be a graph and S ⊆ V (G) be a cluster vertex deletion set of size k. Also
let C1, C2, . . . , C� be the maximal cliques of G − S. We partition the vertices of
each clique Ci, i ∈ [�], based on its neighborhood in S. For each A ⊆ S, we use
Ci,A = {v | v ∈ Ci and N(v) ∩ S = A} to denote the set of vertices from Ci

that are adjacent to each vertex in A. Next, we show that for each clique Ci, the
vertices in Ci,A receive their labels from a fixed set of labels, for each A ⊆ S.
Notice that A could be an empty set.

Lemma 4. Let f : V (G) → {−1, 0, 1} be a minus dominating function. Then
there exists a minus dominating function of weight f(V) such that in each clique
Ci, for each A ⊆ S and a non-empty Ci,A, the vertices of Ci,A receive labels
from exactly one of the three sets {−1, 0}, {0, 1} or {0}.

Proof. If all vertices in Ci,A are assigned the label 0 then the claim is trivially
satisfied. For each i ∈ {1, . . . , �} and A ⊆ S, if f assigns the vertices of Ci,A

from the labels {1, 0} or {−1, 0}, then we conclude that f is the desired function.

On the Parameterized Complexity of Minus Domination 105

Otherwise, there exists a clique Ci and an A ⊆ S with vertices u and v in Ci,A

such that f(u) = 1 and f(v) = −1 or f(u) = −1 and f(v) = 1. WLOG let
f(u) = 1 and f(v) = −1 (similar arguments apply for the other case). Since u
and v are true twins, we apply Lemma 1 and obtain a minus dominating function
of weight f(V) with u and v assigned the label 0.

After repeated application of Lemma 1 on each Ci,A, where A ⊆ S and i ∈ [t],
all vertices in Ci,A are either assigned labels from exactly one of the three sets
{−1, 0}, {0, 1} or {0}.
�

From now on, we can assume that in any minus dominating function, for
each A ⊆ S and a clique Ci, the vertices in Ci,A are assigned labels from exactly
one of the three sets {−1, 0}, {0, 1} or {0}.

We now look at the following lemma. Suppose that we are given a labeling
of S, the number of vertices in a clique Ci assigned the labels −1 and 1, and
the sum each vertex in S receives from Ci. Then we can decide whether there
exists a assignment of labels to Ci extending the labeling of S and satisfying the
assumptions.

Lemma 5. Let f : S → {−1, 0, 1} be a labeling of S and Ci be a clique in G−S.
Let ai, bi ∈ N∪{0}. Also let Xi = (xi

1, . . . , x
i
k) be a tuple where xi

j corresponds to
vj ∈ S. Then there is an algorithm that runs in O∗(2O(k·2k)) and either returns
a labeling g : S ∪ Ci → {−1, 0, 1} that extends f with the following properties,

– ai = |g−1(1) ∩ Ci|, bi = |g−1(−1) ∩ Ci|,
– ∀vj ∈ S, xi

j =
∑

u∈NCi
(vj)

g(u),
– for each A ⊆ S and a non-empty Ci,A, the vertices of Ci,A receive the labels

from exactly one of the three sets {−1, 0}, {0, 1} or {0}, and
– for each v ∈ Ci,

∑
w∈NCi

[v] g(w) ≥ 1,

or returns that there is no labeling g extending f satisfying the properties.

Proof. Given a labeling f : S → {−1, 0, 1}, a clique Ci, Xi = (xi
1, . . . , x

i
k), and

two integers ai and bi, the goal is to find a labeling g : S ∪ Ci → {−1, 0, 1}
extending f satisfying some constraints. We formulate this as an ILP feasibility
problem with the variables: n1,A, n−1,A and n0,A that denote the number of
vertices in Ci,A, for each A ⊆ S, that are assigned the labels −1, 0 and 1
respectively. The number of variables is at most 3 · 2k. We now present the
constraints.

(C1) For each A ⊆ S, the number of vertices assigned the labels −1, 0, and 1 in
Ci,A is at least 0 and at most |Ci,A|. In addition, each vertex is assigned
some label.

0 ≤ n−1,A, n1,A, n0,A ≤ |Ci,A| and n−1,A + n1,A + n0,A = |Ci,A|.
(C2) For each vj ∈ S, the sum it receives from Ci is xi

j .
∑

A : vj∈A

n1,A − n−1,A = xi
j .

106 S. Bhyravarapu et al.

(C3) For each A ⊆ S, the vertices in Ci,A are assigned the labels from exactly
one of the three sets {−1, 0}, {0, 1} or {0}.

n1,A > 0 =⇒ n−1,A = 0,

n−1,A > 0 =⇒ n1,A = 0.

(C4) Total sum of vertices assigned the labels 1 and −1 are ai and bi respec-
tively.

∑

A

n1,A = ai, and
∑

A

n−1,A = bi.

(C5) For each A ⊆ S, the sum property for vertices in Ci,A is satisfied.
∑

A : v∈A

f(v) + ai − bi ≥ 1.

We now have to show that there is a feasible assignment of ILP if and only if
there is a labeling g that extends f and satisfying the properties.

Feasibility Implies Labeling: Let there be a feasible assignment of values to
variables returned by the ILP. In each Ci,A, choose n1,A, n0,A and n−1,A many
vertices arbitrarily and assign them the label 1, 0 and −1, respectively. Notice
that each vertex is assigned a label because of Constraint (C1). For each vj ∈ S,
the sum it receives from Ci is xi

j , which is ensured from Constraint (C2). For
each A ⊆ S, the vertices in Ci,A are assigned labels from exactly one of the three
sets {−1, 0}, {0, 1} or {0} which is ensured by Constraint (C3) and Constraint
(C1). The number of vertices assigned 1 and −1 is ai and bi respectively and is
ensured by Constraint (C4). Every vertex in Ci satisfies the sum property and
this is ensured by Constraint (C5).

Labeling Implies Feasibility: Let g : S ∪Ci → {−1, 0, 1} be an extension of f
satisfying the properties of ai, bi, x

i
j , the set of labels used in each Ci,A and the

sum property for each vertex in Ci with respect to g. Using Lemma 4, we convert
g to be a labeling such that each Ci,A receives the labels from exactly one of the
three sets {−1, 0}, {1, 0} or {0}. We obtain a feasible assignment for variables
in ILP as follows. For each A ⊆ S, we set n−1,A = |g−1(−1) ∩ Ci,A|, n0,A =
|g−1(0) ∩ Ci,A|, and n1,A = |g−1(1) ∩ Ci,A|. By definition of g, the constraints
(C1), (C2), (C3), (C4), and (C5) are satisfied.

Since the number of variables is at most 3 · 2k, from Theorem 6, the running
time of our algorithm is 2O(k·2k)nO(1).
�

We say a tuple (ai, bi,X
i) is feasible for Ci if Lemma 5 returns a feasible

labeling of Ci extending the labeling of S. Else we call it infeasible. We now
proceed to the proof of Theorem 3.

Proof (Proof of Theorem 3). Let G be a graph and S ⊆ V (G) of size k be such
that G − S is a disjoint union of cliques. Let C1, C2, . . . , C� be the cliques of
G − S. Let g : V (G) → {−1, 0, 1} be a minus dominating function of minimum

On the Parameterized Complexity of Minus Domination 107

weight. The first step of the algorithm is to guess the labeling g|S of S. For
each clique Ci in G − S, we try to obtain a labeling of Ci (if one exists) that
extends g|S using Lemma 5. Towards this, we guess the following: ai and bi,
which are the number of vertices assigned the labels 1 and −1 respectively in
Ci, and Xi = (xi

1, . . . , x
i
k) the tuple where xi

p corresponds to the sum that the
vertex vp ∈ S receives from Ci. Thus for each of the guesses, we should able to
decide whether there exists a labeling of Ci ∪ S extending g|S that satisfies the
sum property for each vertex in Ci.

We give a bottom-up dynamic programming based algorithm to find g.
An entry T [i, a, b,X] in the table is set to 1 if there exists a labeling of the

vertices in C1, C2, · · · , Ci such that

– a is the number of vertices labelled 1 over the cliques from C1 to Ci,
– b is the number of vertices labelled −1 over the cliques from C1 to Ci,
– X = (x1, x2, · · · , xk) is the tuple where xj corresponds to the sum the vertex

vj ∈ S receives from the cliques C1 to Ci, and
– each vertex in C1 ∪ C2 ∪ · · · ∪ Ci satisfies the sum property.

Otherwise, we store T [i, a, b,X] = 0.
We now define the recurrence. For an entry T [i, a, b,X], we go over all feasible

tuples of Ci and look at the corresponding subproblem over the cliques C1 to
Ci−1. That is,

T [i, a, b,X] =
∨

feasible tuples (ai,bi,Xi) of Ci

T [i− 1, a− ai, b− bi, (x1 − xi
1, . . . , xk − xi

k)].

Notice that in a feasible tuple we have n ≥ a ≥ ai ≥ 0, n ≥ b ≥ bi ≥ 0 and
n ≥ xj ≥ xi

j ≥ −n for all j. The base case of the recurrence is obtained at the
clique C1, which is computed as follows:

T [1, a, b,X] =

{
1 (a, b,X) is a feasible tuple for C1,

0 otherwise.

The correctness of the algorithm follows from the description. We now compute
the running time of the algorithm. The number of labelings g|S is at most 3k

and the number of feasible tuples for a clique Ci is at most nk+2. Using Lemma
5, we can decide if a tuple is feasible or not in time 2O(k·2k)nO(1). The number
of entries in T is at most nk+3. For each of the entry in T , we go over all feasible
tuples of Ci and thus the total running time is 2O(k·2k)n2k+6.
�

5 Distance to Disjoint Components and Component Size

Let G be a graph and k, d ∈ N be two integers. We consider the problem of
computing a set S ⊆ V (G) of size at most k such that G−S is a disjoint union of
connected components where each connected component has at most d vertices.
This problem is known in literature as d-Component Order Connectivity

108 S. Bhyravarapu et al.

(in short, d-COC) [9]. Notice that when d = 1, d-COC is the Vertex Cover
problem. There is a O(log d)-approximation algorithm for d-COC [5,9].

In this section, we consider MD when parameterized by k and d where the
input is a graph G, an integer � and a set S ⊆ V (G) of size k such that G − S is
a disjoint union of components each of size at most d vertices. The objective is
to check whether there exists a minus dominating function of weight at most �.

Towards this, we consider the solution set obtained from the approximation
algorithm of d-COC as our modulator set S. Notice that |S| ≤ O(k log d), if a
solution exists for d-COC. We now provide a proof sketch of Theorem 4.

Proof Sketch of Theorem 4. Let C = {C | C is a component in G−S} denote
the set of components in G−S. Notice that for each C ∈ C, we have 1 ≤ |C| ≤ d.
Let V (C) = {u1, u2, . . . , ud′}, d′ ≤ d. For each component C ∈ C, we apply the
following procedure.

– We find the equivalence class of C based on its neighborhood in S∪V (C). Let
T = {TA | A ⊆ S ∪ V (C)}. Since |S| = k and |C| ≤ d, we have |T | = 2k+d.
An equivalence class is defined by the function g : C → T d. Note that the
number of equivalence classes is at most 2(k+d)d.
The equivalence class g(C) is denoted by (TA1 , TA2 , . . . , TA|d′|) where for each
ui ∈ V (C) we have N(ui) ∩ S = Ai.

– We now consider all possible labelings h : V (C) → {−1, 0, 1} of C. We say
a labeling h is feasible for C, when the vertices of C are assigned the labels
from h and each vertex v of C satisfies the sum property (i.e., the sum that
v receives from C ∪ S is at least one).
The set of feasible labelings Hg(C) = {h | h is feasible for C and C belongs to
the equivalence class g(C)} is constructed. Notice that all the components that
belong to an equivalence class g(C) have the same set of feasible labelings.

– We formulate an ILP feasibility instance using the above information. The
variables of ILP represent the number of components in G − S belonging
to an equivalence class that receive a particular labeling from the feasible
list of labelings (of that equivalence class). The number of variables for each
equivalence class g(C) is equal to |Hg(C)|.

The running time of the algorithm is majorly dependent on the running time of
the ILP which in turn depends on the number of variables which is 2(k+d)d3d.
�

Using Theorem 4, we get the following results when the components are
cliques and trees respectively.

Corollary 1. MD is FPT when parameterized by (i) cluster vertex deletion
number and size of a largest clique, or (ii) feedback vertex set number and size
of a largest tree.

On the Parameterized Complexity of Minus Domination 109

Acknowledgement. We would like to thank the anonymous reviewers for their help-
ful comments. The first author acknowledges SERB-DST for supporting this research
via grant PDF/2021/003452. The fifth author acknowledges NBHM for supporting this
research via project NBHM-02011/24/2023/6051. The fifth author would also like to
acknowledge DST for supporting this research via project CRG/2023/007127.

References

1. Chang, G.J.: Algorithmic aspects of domination in graphs. In: Pardalos, P.M., Du,
D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 221–282.
Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1 26

2. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

3. Damaschke, P.: Minus domination in small-degree graphs. Discrete Appl. Math.
108(1), 53–64 (2001). Workshop on Graph Theoretic Concepts in Computer Sci-
ence

4. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in
Computer Science, Springer, London (2013). https://doi.org/10.1007/978-1-4471-
5559-1

5. Drange, P.G., Dregi, M., van ’t Hof, P.: On the computational complexity of vertex
integrity and component order connectivity. Algorithmica 76(4), 1181–1202 (2016).
https://doi.org/10.1007/s00453-016-0127-x

6. Dunbar, J., Goddard, W., Hedetniemi, S., McRae, A., Henning, M.A.: The algo-
rithmic complexity of minus domination in graphs. Discrete Appl. Math. 68(1),
73–84 (1996)

7. Dunbar, J., Hedetniemi, S., Henning, M.A., McRae, A.A.: Minus domination in
regular graphs. Discrete Math. 149(1), 311–312 (1996)

8. Faria, L., Hon, W.-K., Kloks, T., Liu, H.-H., Wang, T.-M., Wang, Y.-L.: On com-
plexities of minus domination. Discrete Optim. 22, 6–19 (2016). SI: ISCO 2014

9. Fomin, F.V., Gaspers, S., Kratsch, D., Liedloff, M., Saurabh, S.: Iterative com-
pression and exact algorithms. Theor. Comput. Sci. 411(7), 1045–1053 (2010)

10. Ganian, R.: Twin-cover: beyond vertex cover in parameterized algorithmics. In:
Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 259–271.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28050-4 21

11. Goyal, D., Jacob, A., Kumar, K., Majumdar, D., Raman, V.: Structural parame-
terizations of dominating set variants. In: Fomin, F.V., Podolskii, V.V. (eds.) CSR
2018. LNCS, vol. 10846, pp. 157–168. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-90530-3 14

12. Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs.
CRC Press, Boca Raton (1998)

13. Hedetniemi, S.T., Laskar, R.C.: Bibliography on domination in graphs and some
basic definitions of domination parameters. Discrete Math. 86(1), 257–277 (1990)

14. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-
rithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010).
https://doi.org/10.1007/s00224-008-9150-x

15. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

16. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64(1), 19–37 (2012). https://doi.org/10.1007/s00453-011-9554-x

https://doi.org/10.1007/978-1-4419-7997-1_26
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/s00453-016-0127-x
https://doi.org/10.1007/978-3-642-28050-4_21
https://doi.org/10.1007/978-3-319-90530-3_14
https://doi.org/10.1007/978-3-319-90530-3_14
https://doi.org/10.1007/s00224-008-9150-x
https://doi.org/10.1007/s00453-011-9554-x

110 S. Bhyravarapu et al.

17. Lee, C.-M., Chang, M.-S.: Variations of Y-dominating functions on graphs. Discret.
Math. 308(18), 4185–4204 (2008)

18. Lin, J.-Y., Liu, C.-H., Poon, S.-H.: Algorithmic aspect of minus domination on
small-degree graphs. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS,
vol. 9198, pp. 337–348. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21398-9 27

19. Zheng, Y., Wang, J., Feng, Q.: Kernelization and lower bounds of the signed domi-
nation problem. In: Fellows, M., Tan, X., Zhu, B. (eds.) AAIM/FAW -2013. LNCS,
vol. 7924, pp. 261–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38756-2 27

https://doi.org/10.1007/978-3-319-21398-9_27
https://doi.org/10.1007/978-3-319-21398-9_27
https://doi.org/10.1007/978-3-642-38756-2_27
https://doi.org/10.1007/978-3-642-38756-2_27

Exact and Parameterized Algorithms
for Choosability

Ivan Bliznets1(B) and Jesper Nederlof2

1 University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands
i.bliznets@rug.nl

2 Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
j.nederlof@uu.nl

Abstract. In the Choosability problem (or list chromatic number
problem), for a given graph G, we need to find the smallest k such that
G admits a list coloring for any list assignment where all lists contain
at least k colors. The problem is tightly connected with the well-studied
Coloring and List Coloring problems. However, the knowledge of the
complexity landscape for the Choosability problem is pretty scarce.
Moreover, most of the known results only provide lower bounds for its
computational complexity and do not provide ways to cope with the
intractability. The main objective of our paper is to construct the first
non-trivial exact exponential algorithms for the Choosability problem,
and complete the picture with parameterized results.

Specifically, we present the first single-exponential algorithm for the
decision version of the problem with fixed k. This result answers an
implicit question from Eppstein on a stackexchange thread discussing
upper bounds on the union of lists assigned to vertices. We also present
a 2n

2
poly(n) time algorithm for the general Choosability problem.

In the parameterized setting, we give a polynomial kernel for the prob-
lem parameterized by vertex cover, and algorithms that run in FPT
time when parameterized by clique-modulator and by the dual param-
eterization n − k. Additionally, we show that Choosability admits a
significant running time improvement if it is parameterized by cutwidth
in comparison with the parameterization by treewidth studied by Marx
and Mitsou [ICALP’16]. On the negative side, we provide a lower bound
parameterized by a modulator to split graphs under assumption of the
Exponential Time Hypothesis.

Keywords: choosability · cutwidth · exact exponential

1 Introduction

For an undirected graph G, we call k a choice number of G (or choosability
number) if under any list assignment of length at least k to the vertices, it is

Supported by the project CRACKNP that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No. 853234).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 111–124, 2024.
https://doi.org/10.1007/978-3-031-52113-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_8&domain=pdf
http://orcid.org/0000-0003-2291-2556
http://orcid.org/0000-0003-1848-0076
https://doi.org/10.1007/978-3-031-52113-3_8

112 I. Bliznets and J. Nederlof

possible to find a proper list coloring. In the Choosability problem, the goal is
to find a choice number of an input graph. Sometimes the choosability number
is also called the list chromatic number. Choosability was introduced by Viz-
ing [24] and independently by Erdős, Rubin, and Taylor [9]. It is known that the
problem is Πp

2 -complete even for very restricted classes of graphs. For example,
k-Choosability (the version of Choosability where k is a fixed parameter) is
Πp

2 -complete in bipartite graphs for any k [16], 4-Choosability is Πp
2 -complete

in planar graphs [15], 3-choosability is Πp
2 -complete in planar triangle-free

graphs [15] and in graphs that are a union of two forests [15]. Moreover, 3-
Choosability is one of the first natural problems for which a double exponen-
tial lower bound parameterized by treewidth was established [20]. There is an
enormous amount of combinatorial results for Choosability [1,2,6,9,19,21,22].
Generally, these results provide bounds on the choice number or describe situa-
tions where a graph is k-choosable. However, the number of algorithmic results
is surprisingly small. Besides the mentioned lower bounds on the computational
complexity of the problem, the following algorithmic results were established: k-
Choosability is Fixed Parameter Tractable (for short FPT, recall this means
that instances (x, k) of the problem can be solved f(k)|x|O(1) time for some
function f) in P5-free graphs parameterized by k [12,13], k-Choosability
admits a linear algorithm for fixed k on H-free graphs where H is a disjoint
union of paths [14], Choosability admits an FPT-algorithm parameterized by
treewidth [10,20].

One might expect that the Choosability problem has a similar behavior
to Coloring or List Coloring problems, and that results for these prob-
lems can be easily carried over to Choosability. Surprisingly, this is not the
case. For example, List Coloring is W [1]-hard parameterized by treewidth
(even parameterized by vertex cover) [7,10], while Choosability admits an
FPT-algorithm [10,20]. The addition of a universal vertex always increases the
chromatic number but this is not true for the choice number. Moreover, even the
choice number of bipartite graphs is unbounded. k-Coloring and List Col-
oring with lists’ length bounded by k are trivially solvable in O∗(kn) time.
However, it is not trivial to construct a single-exponential algorithm for k-
Choosability for a fixed k. The existence of a single-exponential algorithm
for k-Choosability implicitly was asked by Eppstein in a stackexchange post.1
There, it was noted that it is easy to construct such an algorithm if we know that
the total number of different colors used in lists is bounded by some function
f(k). Unfortunately, it was shown that there are no such functions [19], and our
algorithm cannot build on this argument. Nevertheless, we show:

Theorem 1. Let G be an undirected graph on n vertices and k be an integer
given as input.

1. k-Choosability can be solved in f(k)O(n) for some function f ,
2. Choosability can be solved in O∗(2n2

) time.
1 https://cstheory.stackexchange.com/questions/2661/how-many-distinct-colors-are-

needed-to-lower-bound-the-choosability-of-a-graph.

https://cstheory.stackexchange.com/questions/2661/how-many-distinct-colors-are-needed-to-lower-bound-the-choosability-of-a-graph
https://cstheory.stackexchange.com/questions/2661/how-many-distinct-colors-are-needed-to-lower-bound-the-choosability-of-a-graph

Exact and Parameterized Algorithms for Choosability 113

The constructed single-exponential algorithm is based on the fact that in
k-choosable graphs the average degree is bounded by some function f(k). Our
second exact exponential algorithm for the choice number with running time
2n2

poly(n) provides an improvement upon a slightly naive 2O(n2 log n) time algo-
rithm. It should be noted that this run time does not show up often for graph
problems; one exception we are aware of is the List Edge Coloring prob-
lem [18]. A key combinatorial ingredient of our algorithm is the fact that in
some sense we can bound the total number of colors by n. We note that the
obtained running time is significantly worse than the running time of the Sub-
set Convolution algorithm for the Coloring and List Coloring problems
from [3]. That is why one can consider the question whether there exists an
improvement on the 2n2

poly(n) time algorithm or a lower bound that excludes
such improvement based on the Exponential Time Hypothesis (ETH) to be an
interesting open question.

In this paper, we also consider different parameterizations of Choosability.
The most important such result is for Choosability parameterized by cutwidth.
Specifically, we prove the following theorem.

Theorem 2. Let G be an undirected graph on n vertices given along with a
cutwidth ordering of width w. Then Choosability can be solved in time 22

O(w)
n

time.

We note that parameterization by cutwidth allows us to obtain a signif-
icant improvement over the parameterization by treewidth for which only a
2kO(tw)

poly(n) time algorithm is known [10,20]. We know that for parameter-
ization by cutwidth, there is a matching lower bound under the assumption of
the ETH (however, the result is not published yet [5]). To prove Theorem 2, we
build on the method from [17] that computes the chromatic number of a graph
in O(2wn) time, when given a cutwidth ordering of width w. That algorithm
used an argument based on matrix rank to show the table size of the natural
dynamic programming algorithm can be sparsified (i.e. we view a dynamic pro-
gramming table as a family of partial solutions, and with sparsifying we mean
that some partial solutions are omitted) in such a way that global solutions
remain detected. We show that this approach can also be employed for the
Choosability problem.

We also provide a polynomial kernel for k-Choosability parameterized by
vertex cover if k is fixed. Recall a g(p)-kernel is a polynomial time algorithm
that, given an instance x with parameter p, outputs an equivalent instance of
the same problem of size (measured here in terms of the number of vertices)
g(p). Formally we prove the following.

Theorem 3. k-Choosability admits a kernel with O(wk) vertices for a fixed
integer k, where w is the size of a vertex cover of the input graph G.

Using Ohba’s Conjecture (proved by Noel et al. in [22]) that connects the
chromatic number with the choice number in case of a very large chromatic
number, we construct an FPT-algorithm for Choosability parameterized by

114 I. Bliznets and J. Nederlof

clique-modulator and a linear compression for k-Choosability parameterized
by n − k. Here the term G-modulator of a graph G, for some graph class G,
refers to a vertex subset X of G such that G − X is in G. A g(p)-compression
is a polynomial time algorithm that, given an instance x with parameter p,
outputs an equivalent instance of a possibly different computational problem of
size (measured here in terms of the number of vertices) g(p).

Precisely, we prove the following FPT algorithms that show some instances
of Choosability can be solved efficiently:

Theorem 4. k-Choosability under the dual parametrization by n − k can be
compressed into an instance of k-Choosability or into an instance of Dual-
Coloring. Moreover, number of vertices in the compressed instance is at most
3(n − k).

Theorem 5. Choosability admits an FPT-algorithm parameterized by clique-
modulator d.

Given Theorem 5 and the easy observation that Choosability is solvable
in polynomial time on split graphs (recall, split graphs are graphs whose vertex
set can be partitioned in one clique and one independent set), one may wonder
whether Choosability also has an efficient algorithm when parameterized with
the size of a modulator to a split graph.

We employ Ohba’s Conjecture to show a lower bound for Choosability
assuming ETH, to temper expectation here:

Theorem 6. Unless ETH fails there is no constant θ such that Choosability
is solvable in O∗(θd) time where d denotes size of a modulator to split graphs.

Organization of the Paper. The rest of this paper is organized as follows. In
Sect. 2 we set up notation. In Sect. 3 we present exact exponential algorithms
for k-Choosability and Choosability (Theorem 1). Section 3 is dedicated to
k-Choosability parameterized by cutwidth (Theorem 2). In Sect. 5 we provide
a linear compression for k-Choosability parameterized by n − k (Theorem 4),
an FPT-algorithm for Choosability parameterized by clique-modulator (The-
orem 5), and lower bound for Choosability parameterized by modulator to
split graphs (Theorem 6). Proofs of Lemma’s and Theorem’s marked with (�)
are deferred to the full version of this paper.

2 Preliminaries

In this paper, we consider only simple graphs. Used notation for graphs is stan-
dard and can be found in [8]. We also use standard definitions (FPT-algorithm,
kernel, compression) and notation from parameterized complexity, for details we
refer the interested reader to the textbook [7]. For a natural number k, we denote
by [k] the set {1, . . . , k}. Generally by n we denote number of vertices in a graph
unless stated otherwise and if the graph is clear from the context. Similarly, by

Exact and Parameterized Algorithms for Choosability 115

m we denote number of edges in a graph. NG(v) denotes the open neighborhood
of vertex v in a graph G, we omit subscript G if the graph is clear from the
context.

For a graph G, function c : V (G) → C for some set C is called a proper
coloring if for any edge uw ∈ E(G) we have c(u) �= c(w). If a proper coloring
exists for the set C = [k], then we call graph k-colorable. For a graph G, we
call a function L a list assignment if for each vertex v ∈ V (G) the function
assigns a set/list of colors. For a list assignment L, we call graph L-colorable
if there is a proper coloring c of vertices such that for any vertex v we have
c(v) ∈ L(v). A graph G is called k-choosable if it is L-colorable for any list
assignment L such that |L(v)| = k for any v ∈ V (G). The choosability number
(choice number, list chromatic number) of a graph G is the smallest integer k
such that G is k-choosable. By ch(G) we denote the choosability number of the
graph G. Similarly, by χ(G) we denote chromatic number of the graph G, i.e.
the smallest integer k such that G is k-colorable. As one of the central studied
parameters is cutwidth we provide its definition below.

Definition 1. The cutwidth of a graph G is the smallest k such that its vertices
can be arranged in a sequence v1, . . . , vn such that for every i ∈ [n−1], there are
at most k edges between {v1, . . . , vi} and {vi+1, . . . , vn}.

A split graph is a graph G such that V (G) = C ∪ I, C ∩ I = ∅, G[C] is a
clique, G[I] is an independent set. We call a subset of vertices D in a graph G a
modulator to split graphs if subgraph G\D is a split graph.

Formal definitions of Dual-Coloring, List Coloring, k-Choosability,
Choosability can be found below.

Dual-Coloring
Input: A graph G and an integer k.
Question: Is graph G (n − k)-colorable?

List Coloring
Input: A graph G and a list assignment L.
Question: Is graph G L-colorable?

k-Choosability
Input: A graph G and an integer k.
Question: Is graph G k-choosable?

Choosability
Input: A graph G.
Question: What is the smallest k such that G is k-choosable?

For the construction of a polynomial kernel, we are using the fact that bipar-
tite graph Kk,kk is not k-choosable. It is a well known fact, but nevertheless
we present a proof in order to provide some intuition about the Choosability
problem.

116 I. Bliznets and J. Nederlof

Lemma 1 (�, Folklore). The bipartite graph Kk,kk is not k-choosable.

Lemma 1 shows that choice number and chromatic number can be very dif-
ferent. However, in some situations values of these numbers coincide. In these
cases we can determine the choice number by finding the chromatic number. One
of such cases is described by Ohba’s conjecture, proved by Noel, Reed, Wu [22].

Theorem 7 (Ohba’s conjecture, [22]). If |V (G)| ≤ 2χ(G) + 1, then G is
chromatic-choosable, i.e. ch(G) = χ(G).

3 Exact Algorithms

In this section we provide exact exponential algorithms for k-Choosability
and Choosability. Before we proceed we provide some definitions and lemmas
mainly used only in this section.

For a list assignment L, we denote by L[c] the induced subgraph of G that
contains all vertices v such that c ∈ L(v).
Lemma 2. If a graph G is not L-colorable for some list assignment L, then
there is a list assignment L′ such that |L′(v)| = |L(v)| for all v ∈ V (G) and for
any color c the induced subgraph L′[c] is a connected subgraph in G.

Proof. If for some c the subgraph L[c] contains p > 1 connected components
C1, C2, . . . , Cp, then we create new colors c1, . . . , cp, and for v ∈ Ci in L′ we use
color ci instead of color c like it is in the assignment L. Clearly, for any color c′,
the induced subgraph L′[c′] is connected. If the graph G admits a list-coloring
under assignment L′, then it also admits list-coloring under the list assignment
L. Namely, it is enough to re-color vertices colored in ci into color c. Adjacent
vertices u, v cannot be colored in ci and cj so we have a proper L-coloring.

We need the following theorem bounding the average degree in a k-choosable
graph [1].

Theorem 8 ([1]). Let G be a simple graph with average degree at least d. If
d > 4

(
k4

k

)
log(2

(
k4

k

)
) and k is an integer, then ch(G) > k.

Now we have all ingredients to prove main result of this section. We will first
restate it for convenience:

Theorem 1. Let G be an undirected graph on n vertices and k an integer given
as input.

1. k-Choosabilitycan be solved in f(k)O(n) for some function f ,
2. Choosabilitycan be solved in O∗(2n2

) time.

Proof. Throughout the proof we identify colors with integers. We assume that
V (G) = {v1, v2, . . . , vn}.

Exact and Parameterized Algorithms for Choosability 117

First of all we present an algorithm for k-Choosability with f(k)O(n) run-
ning time. Recall that if a graph G is not k-choosable, then there is a list assign-
ment L′ with |L′(vi)| = k,∀i ∈ [n] such that the graph G is not L′-colorable. We
show how to find such an assignment in 2O(n) running time. By Lemma 2 we can
assume that for each color c the graph L′[c] is connected. Without loss of gen-
erality we can consider only assignments that satisfy the following property: if
p ∈ L′(vi), then for any positive integer q < p there is j ≤ i such that q ∈ L′(vj)
(otherwise we can simply rename colors). Under this assumption, for example,
we have that L′(v1) = {1, 2, 3, . . . , k}. Moreover, L′ with this property satisfy
the following: for any l we have L′(v1)∪L′(v2)∪· · ·∪L′(vl) = {1, 2, 3, . . . , c′} for
some positive integer c′. For each i, we order colors in L′(vi) in increasing order.
Denote by L′(vi)[�] the �-th element in the list L′(vi). Taking into account that
list L′(vi) is ordered we have L′(vi)[1] < L′(vi)[2] < · · · < L′(vi)[k].

Taking into account Theorem 8 we may assume that our input graph has
at most 4

(
k4

k

)
log(2

(
k4

k

)
)n edges, otherwise G is not k-choosable. Note that the

number 4
(
k4

k

)
log(2

(
k4

k

)
)n is O(n) for a fixed integer k.

For a list assignment L and edge e = vivj ∈ E(G), we denote by SL
ij a set of

pairs {(a1, b1), (a2, b2), . . . , (a�, b�)} such that L(vi)[aq] = L(vj)[bq] for all q ∈ [�].
Note that without loss of generality we can assume that a1 < a2 < · · · < a� and
b1 < b2 < · · · < b�. This means that the number of such sets of pairs is bounded
by

∑k
�=1

(
k
�

)2 ≤ 22k. In order to determine L′ for each edge vivj we consider all
possible values of SL′

ij . It creates at most (22k)|E(G)| sub-branches which is 2O(n)

for a fixed k. Knowing the SL′
ij for each edge vivj and the fact that for each l ∈ [n]

we have L′(v1) ∪ L′(v2) ∪ · · · ∪ L′(vl) = {1, 2, 3, . . . , c′} for some positive integer
c′ we can recover L′. Indeed, having this information we can identify induced
subgraphs L′[1],L′[2], . . . ,L′[k]. After that we can find the smallest i such that
k + 1 ∈ L′(vi). Having information on edges about common colors on endpoints
we find L′[k + 1], since subgraph L′[k + 1] is connected. Then we repeat the
process for color k+2 and so on. Finally, we realize that either our branch is not
valid and such list assignment do not exists or we obtain a list assignment. We
check that the obtained assignment L′ contains exactly k colors for each vertex.
Recall that list coloring can be solved in O∗(2n). It is enough to use a subset
convolution method [4] for this. Therefore, after recovering L′ from Sij we run
the algorithm for list-coloring and check if G is L′-colorable or not. If G is not
L′-colorable, then G is not k-choosable. However, if in all our subbranches we
either failed to recover L′ or G was L′-colorable, then we conclude that G is
k-choosable. So, the overall running time is at most O∗((22k)|E(G)| · 2n), which
is sufficient since |E(G)| = O(n) for fixed k.

Now we provide an algorithm for Choosability with O∗(2n2
) running time.

It is known [23] that if a graph G is not k-choosable for some k, then there is a
list assignment L containing at most n−1 colors in the union L(v1)∪L(v2)∪· · ·∪
L(vn) such that for each vertex v we have |L(v)| = k and G is not L-colorable.
Therefore, in order to find such L it is enough to brute-force all 2n possibilities
of L[i] for each color i ∈ [n−1]. This step creates 2n(n−1) subcases, we eliminate

118 I. Bliznets and J. Nederlof

those that have unequal length of lists assigned to vertices and then run the
O∗(2n) time algorithm for list coloring in each subcase. Overall, the running
time will be at most O∗(2n2

).

4 Cutwidth

The goal of this section is to prove the following theorem.

Theorem 2. Let G be an undirected graph on n vertices given along with a
cutwidth ordering of width w. Then Choosabilitycan be solved in time 22

O(w)
n

time.
We want to solve k-choosability on graphs of cutwidth w. Let q be the max-

imum assigned number showing up in a list. In Lemma 1 from [10] it was shown
that it is enough to consider q ≤ (2tw + 1)k < 4k · w (tw is the treewidth of the
graph) which is at most 4kw since cutwidth is larger than treewdith. We can
assume k ≤ w since otherwise the answer is automatically yes (because a greedy
algorithm can always find a list coloring if each list is of size at least w+1). Hence,
we can assume that q is at most 4w2. Let {v1, . . . , vn} = V (G) be an ordering
of cutwidth at most w, and let Gi be the prefix graph G[{v1, . . . , vi}]. Denote
Vi = {v1, . . . , vi} for the set of vertices of Gi. Consider the i’th cut and the corre-
sponding bipartite graph Hi with sides Li and Ri. Thus, |Li|, |Ri| ≤ |E(Hi)| ≤ w,
and E(Hi) = {{vh, vj} : h ≤ i ≤ j}. Note that Li ⊆ Li−1 ∪ {vi} and
Ri−1 ⊆ Ri ∪ {vi}.

We will use the following standard vector and function notation: For sets
A,B, we let AB denote the set of vectors with values from A indexed by B.
We will interchangeably address these vectors as functions f : B → A and use
function notation f(·) and its inverse f−1(·) (if it exists). For f ∈ AB (or thus,
equivalently, f : B → A), we denote the projection f|B′ for the unique vector
f ′ ∈ AB′

that agrees with f on all its values, i.e. f ′(b) = f(b) for all b ∈ B′. If
f : B1 → A1 and g : B2 → A2 and B1 and B2 are disjoint we denote f ∪ g for
the unique vector with domain B1 ∪ B2 that agrees with both f and g on all
values. We use the shorthand b �→ a for the vector f with co-domain {b} with
f(b) = a.

The standard dynamic programming algorithm that solves k-choosability in
2qw

nO(1) time defines for each i = 1, . . . , n and list assignment l : Li → (
[q]
k

)
the

table entry Ti[l] to be the set

{
{f|Li

: f is a list coloring of (Gi, l
′)}

∣
∣
∣ l′ : V (Gi) →

(
[q]
k

)

s.t. ∀v ∈ Li, l′(v) = l(v)
}

. (1)

Exact and Parameterized Algorithms for Choosability 119

Then we have that T0[∅] = {∅}, where ∅ denotes the empty (zero-dimensional)
vector. For i > 0, we have that Ti[l] equals to

⋃

l̂:Li−1\Li→([q]k)

⋃

A∈Ti−1[(l∪l̂)|Li
]

{ ⋃

c∈l(vi)

{f|Li
∪(vi �→ c)|f ∈ A, f−1(c)∩N(vi) = ∅}

}
.

(2)
Intuitively, this expression first iterates over all list assignments l̂ of Li−1\Li

and subsequently over all sets of colorings A that are the result of some list
assignment of Vi consistent with this list assignment. For each such combination,
we need to extend A with all possible colorings c ∈ l(vi) of the new vertex vi

(where vi is “new” in the sense that it is the only vertex in Li but not in Li−1).
Since Ti[l] ⊆ [q]Li we have that |Ti[l]| ≤ 2[q]

Li , and the number of possibilities
for l is at most

(
q
k

)w ≤ 2O(w3). Thus number of table entries is at most 2O(qw).
Computing table entries by following (2) in the naïve way, this results in a
2O(qw) time algorithm. We will now show how to improve this using the idea of
representation.

Definition 2 (Definition 8 from [17], paraphrased). Fix a bipartite graph
H with parts L and R. A family F ′ ⊆ [q]L H-represents another family F ⊆ [q]L

if F ′ ⊆ F and for each coloring b ∈ [q]R the following holds: there exists a ∈ F
such that a ∪ b is a proper coloring of H if and only if there exists an a′ ∈ F ′

such that a′ ∪ b is a proper coloring of H.

Theorem 11 (Lemma 10 from [17], paraphrased). For every F ⊆ [q]L,
there exists an F ′ ⊆ F that H-represents F such that |F ′| ≤ 2|E(H)|. Moreover,
given |F|, such an F ′ can be computed in time |F|2O(w), where w is an upper
bound on the number of edges of H.

We refer to a table as an element from 2[q]
Li .

Definition 3 (Representation of tables). Fix a bipartite graph H with parts
L and R. A table T ′ ⊆ 2[q]

L

H-represents another table T ⊆ 2[q]
L

if

1. for each A ∈ T there is an A′ ∈ T ′ that H-represents A,
2. for each A′ ∈ T ′ there is an A ∈ T such that A′ H-represents A.

If H is clear from the context, we simply say that T ′ represents T . It is easy to
see (and recorded as Observation 9 in [17]) that the H-representation relation of
families of colorings is transitive: If A′′ represents A′ and A′ represents A, then
A′′ also represents A. Using this, it is also easy to see that the H-representation
relation of tables is transitive: If T ′′ represents T ′ and T ′ represents T , then T ′′

also represents T .

Theorem 12. Given T , we can compute a table T ′ in time
∑

A∈T |A|2O(w) such
that |T ′| ≤ ∑2w

i=0

(
qw

i

) ≤ 2w
(
qw

2w

)
and T ′ H-represents T , where w is an upper

bound on the number of edges of H.

120 I. Bliznets and J. Nederlof

Proof. We can simply apply Theorem 11 on each member of T , and remove
copies.

Lemma 3. Let 0 < i ≤ n. Suppose that T ′
i−1[l] Hi−1-represents Ti−1[l] for each

l. We define T ′
i [l] as

⋃

l̂:Li−1\Li→([q]k)

⋃

A∈T ′
i−1[(l∪l̂)|Li

]

{ ⋃

c∈l(vi)

{f|Li
∪(vi �→ c)|f ∈ A, f−1(c)∩N(vi) = ∅}

}
.

(3)
Then T ′

i [l] Hi-represents Ti[l] for each l.

Proof. We prove the statement by induction on i. For i = 0, we define T0[∅] =
T ′
0[∅] = {∅}, and therefore the base case trivially holds.

Suppose that A ∈ Ti[l]. Thus by the definition in (1) we have that

A = {f|Li
: f is a list coloring of (Gi, l

′)},

for some l′ : V (Gi) → (
[q]
k

)
that agrees with l on all vertices in Li. Consider the

corresponding family A0 ∈ Ti−1[l′|Li−1
]:

A0 = {f|Li−1 : f is a list coloring of (Gi−1, l
′
|Vi−1

)}.

Since T ′
i−1[l

′
|Li−1

] by assumption Hi−1-represents Ti−1[l′|Li−1
], there is some l∗

that agrees with l′ on all vertices in Li−1 such that T ′
i−1[l

′
|Li−1

] contains a set

A∗
0 = {f|Li−1 : f is a list coloring of (Gi−1, l

∗)}.

that Hi−1-represents A0. We claim that the set A∗ defined below, which is in
T ′

i [l] by (3),

A∗ =
⋃

c∈l(vi)

{f|Li
∪ (vi �→ c)|f ∈ A∗

0, f
−1(c) ∩ N(vi) = ∅}

Hi-represents A.
First note that A∗

0 ⊆ A0, and since A∗ is obtained from A∗
0 by assigning

all possible colors not in {l(u) : u ∈ N(vi)} to vi it also assigns to l(vi) at
some point. Thus A∗ ⊆ A. Now, suppose there exists an a ∈ A and a b ∈ [q]Ri

such that a ∪ b is a proper coloring of Hi. That means there is an f that is
a list coloring of (G, l′) such that f|Li

= a and l′ agrees with l on all vertices
in Li. Then f|Li−1 ∪ (f ∪ b)|Ri−1 forms a proper coloring of the bipartite graph
Hi−1. Since f|Li−1 ∈ A0 and A∗

0 is Hi−1-representing A0, there also is a g ∈ A∗
0

that forms a proper coloring of Hi−1 together with (b ∪ f)|Ri−1 . Now g ∪ (vi �→
l(vi)) ∈ A∗ since A∗ is constructed in (3) by mapping v to each allowed color,
and (g ∪ (vi �→ l(vi)))Li

forms a proper coloring with b of Hi. Thus A∗ indeed
represents A.

It remains to prove item 2 of Definition 3. Suppose A′ ∈ T ′
i [l]. Then

A′ =
⋃

c∈l(vi)

{f|Li
∪ (vi �→ c)|f ∈ A′

0, f
−1(c) ∩ N(vi) = ∅},

Exact and Parameterized Algorithms for Choosability 121

for some l̂ and A′
0 ∈ T ′

i−1[(l∪ l̂)|Li
]. We know that there exists an A0 ∈ Ti−1[(l∪

l̂)|Li
] with the property that A′

0 Hi−1-represents A0. Then, similarly as before,
we have that A′ Hi-represents

A =
⋃

c∈l(vi)

{f|Li
∪ (vi �→ c)|f ∈ A0, f

−1(c) ∩ N(vi) = ∅}.

Now we are ready to combine all parts:

Proof (Proof of Theorem 2). The algorithm is as follows: First, set T ′
0[∅] = {∅}.

Then, for i = 1, . . . , n, compute T ′
i [l] for each l ∈ [q]Li from the table entries

T ′
i−1 using Lemma 3 and before increasing i in each round, replace T ′

i [l] with
a table that Hi-represents it and with the property that |T ′

i [l]| ≤ 2w
(
qw

2w

)
using

Theorem 12.
Afterwards, we can conclude that the choice number is at least k if T ′

n[vn] �= ∅,
since it Hn-represents Tn. Doing this for every k, we solve the Choosability
problem.

For the running time, the number of table entries we work with is at most
n · (

q
k

)w ≤ n2q·w ≤ n2O(w3). Since we apply Theorem 12 each step before we
compute new table entries, using (3) takes time at most 2w

(
qw

2w

)
2O(w3), even

when done in the naïve way. Using
(
n
k

) ≤ nk and q ≤ 4w2, we get that

2w

(
qw

2w

)
2O(w3)n ≤ qw2w

2O(w3)n ≤ 2(log q)w2w

2O(w3)n ≤ 22
O(w)

n.

5 Other Structural Parametrizations

In algorithms of this section we use the following simple lemma.

Lemma 4. Let G be a graph and v a vertex in the graph such that deg(v) < k.
We claim that G is k-choosable if and only if G\v is k-choosable.

Proof. It is obvious that if G\v is not k-choosable, then G is also not k-choosable.
We show that if G\v is k-choosable, then G is also k-choosable. First of all

we assign colors to all vertices except v since G\v is k-choosable. After this we
assign color to vertex v. It is possible to do so since the list of vertex v contains
k different colors and deg(v) ≤ k − 1. Hence, there is at least one color in which
vertex v can be colored.

5.1 Polynomial Kernel Parameterized by Vertex Cover

Theorem 3. k-Choosabilityadmits a kernel with O(wk) vertices for a fixed
integer k, where w is the size of a vertex cover of the input graph G. For conve-
nience, we assume that vertex cover C ′ is provided with the input.

Proof. Since a 2-approximation of a vertex cover can be found in polynomial time
assumption that a vertex cover is provided with the input is not very restrictive.

122 I. Bliznets and J. Nederlof

We need the following simple reduction rule.

Reduction Rule 1. If v ∈ V (G) and deg(v) < k, then replace graph G by
graph G\v.

The correctness of the above rule follows from Lemma 4. It is easy to see that
exhaustive application of the rule requires at most polynomial time. We note
that the size of the vertex cover can only decrease after application of Reduction
Rule 1 and vertex cover of the final graph equals to C ′ without deleted vertices.

After exhaustive application of Reduction Rule 1 we partition vertices of
the graph into vertex cover C ⊆ C ′ and independent set I. We claim that if
|I| ≥ (

w
k

) · kk, then G is a No-instance, which immediately leads to O(wk)
polynomial kernel since |C| ≤ w and k is a fixed integer. In order to prove the
claim we note that deg(u) ≥ k for all u ∈ I. We prove that if |I| ≥ (

w
k

) · kk,
then G contains Kk,kk as an induced subgraph which is not k-choosable by
Lemma 1. In order to do this, for each subset S ⊆ C of size k we assign a subset
NS = {u|u ∈ I, S ⊆ N(u)}. If for some S′ of size k we have that NS′ ≥ kk, then
we have found an induced subgraph Kk,kk (take S′ as one part and kk arbitrary
vertices from NS′ as a second part). Since

∑
S⊆C |NS | ≥ |I| ≥ (

w
k

) · kk we
conclude that such S′ exists. Hence we obtained the desired kernel with O(wk)
vertices.

We note that by trivial AND-composition (see [11]) to itself we get the fol-
lowing result.

Note 1. If NP �⊆ coNP/poly, then k-Choosability does not admit a polyno-
mial kernel under parametrizations by treewidth, pathwidth, cutwidth, treedepth
and all parameters p that satisfy p(H1 H2 · · · H�) ≤ max�

i=1p(Hi) + const
where denotes disjoint union.

5.2 Dual Parameterization

Theorem 4 (�). k-Choosabilityunder the dual parametrization by n − k can
be compressed into an instance of k-Choosabilityor into an instance of Dual-
Coloring . Moreover, the number of vertices in the compressed instance is at most
3(n − k).

5.3 Clique-Modulator Parameterization

Theorem 5. Choosabilityadmits an FPT-algorithm parameterized by clique-
modulator d. For convenience, we assume that a clique-modulator of size d is
provided with the input.

Proof. We note that even though we assume that a clique-modulator D is pro-
vided together with the input this fact does no lead to significant restriction.
Since a clique-modulator is a vertex cover in the complement graph Ḡ and 2-
approximation of a vertex cover can be found in polynomial time.

Exact and Parameterized Algorithms for Choosability 123

Denote by C = G\D. Since D is a clique-modulator we have that C is a
clique. We consider two cases: (i) |C| ≤ d, (ii) |C| > d.

In the first case we have |V (G)| = |C|+ |D| ≤ 2d. Therefore using algorithm
from Theorem 1 we find the choosability number in O∗(24d2

) time.
In the second case we have χ(G) ≥ |C| and 2χ(G) > V (G). So by Theorem 7,

we know that ch(G) = χ(G). Hence, it is enough to find the chromatic number
of G. Note that n ≥ χ(G) ≥ |C|. So in order to determine the ch(G) we simply
check for each p ∈ [|C|, n] whether χ(G) = p.

For each vertex v ∈ V (G), we create a list of potential colors Lv =
{1, 2, . . . , p}. Without loss of generality we may assume that vertices from the
clique C are colored in colors {1, 2, . . . , |C|}. After that for each vertex u ∈ D
we delete color i from the list L(u) if there is a vertex v ∈ C ∩ N(u) with color
i. If after these modifications a vertex w has a list of length larger than d, then
we delete vertex w. Namely, such a vertex can be easily colored after we color
other vertices. We also remove all vertices from the clique C, as a result we get
a graph G′ with list of length at most d for each vertex. It is easy to see that
the graph G′ admits a list coloring if and only if the chromatic number of G
was at most p. List Coloring can be solved in O∗(2d) by subset convolution
method [4]. So, we obtain that ch(G) can be found in O∗(24d2

).

5.4 Split Graphs

Lemma 5 (�). Choosability on split graphs can be solved in polynomial time.

Since Choosability is solvable in polynomial time on split graphs, it is nat-
ural to investigate the parameterization by distance to split graphs. We denote
by d the size of modulator to split graphs. We prove the following theorem.

Theorem 6 (�). Unless ETH fails there is no constant θ such that Choosabil-
ityis solvable in O∗(θd) time where d denotes size of modulator to split graphs.

6 Conclusion

In this paper we constructed a O∗(2n2
)-time algorithm for Choosability. We

think that existence of algorithm with running time O∗(2n2−ε

) for some ε > 0
for the Choosability problem is an interesting open question.

References

1. Alon, N.: Restricted colorings of graphs. Surv. Comb. 187, 1–33 (1993)
2. Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12, 125–

134 (1992). https://doi.org/10.1007/BF01204715
3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast

subset convolution. In: Johnson, D.S., Feige, U. (eds.) Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, San Diego, California, USA,
11–13 June 2007, pp. 67–74. ACM (2007)

https://doi.org/10.1007/BF01204715

124 I. Bliznets and J. Nederlof

4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast
subset convolution. In: Proceedings of the Thirty-Ninth Annual ACM Symposium
on Theory of Computing, pp. 67–74 (2007)

5. Bliznets, I., Hecher, M.: Private communication (2023)
6. Bonamy, M., Kang, R.J.: List coloring with a bounded palette. J. Graph Theory

84(1), 93–103 (2017)
7. Cygan, M., et al.: Parameterized Algorithms, vol. 5. Springer, Cham (2015).

https://doi.org/10.1007/978-3-319-21275-3
8. Diestel, R.: Graph Theory. Electronic Library of Mathematics, Springer, Heidelberg

(2006)
9. Erdos, P., Rubin, A.L., Taylor, H.: Choosability in graphs. In: Proceedings of

the West Coast Conference on Combinatorics, Graph Theory and Computing,
Congressus Numerantium, vol. 26, pp. 125–157 (1979)

10. Fellows, M.R., et al.: On the complexity of some colorful problems parameterized
by treewidth. Inf. Comput. 209(2), 143–153 (2011)

11. Fomin, F., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of
Parameterized Preprocessing. Cambridge University Press, Cambridge (2019).
Publisher Copyright: Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and
Meirav Zehavi 2019

12. Golovach, P.A., Heggernes, P.: Choosability of P5-free graphs. In: Královič, R.,
Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 382–391. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03816-7_33

13. Golovach, P.A., Heggernes, P.: Choosability of P5-free graphs. Bull. Syktyvkar
Univ. Ser. 1. Math. Mech. Comput. Sci. (11), 126–139 (2010)

14. Golovach, P.A., Heggernes, P., van’t Hof, P., Paulusma, D.: Choosability on H-free
graphs. Inf. Process. Lett. 113(4), 107–110 (2013)

15. Gutner, S.: The complexity of planar graph choosability. Discrete Math. 159(1–3),
119–130 (1996)

16. Gutner, S., Tarsi, M.: Some results on (a: b)-choosability. Discrete Math. 309(8),
2260–2270 (2009)

17. Jansen, B.M., Nederlof, J.: Computing the chromatic number using graph decom-
positions via matrix rank. Theor. Comput. Sci. 795, 520–539 (2019)

18. Kowalik, L., Socala, A.: Tight lower bounds for list edge coloring. In: Eppstein, D.
(ed.) 16th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT
2018. LIPIcs, Malmö, Sweden, 18–20 June 2018, vol. 101, pp. 28:1–28:12. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2018)

19. Král’, D., Sgall, J.: Coloring graphs from lists with bounded size of their union. J.
Graph Theory 49(3), 177–186 (2005)

20. Marx, D., Mitsou, V.: Double-exponential and triple-exponential bounds for choos-
ability problems parameterized by treewidth (2016)

21. Molloy, M.: The list chromatic number of graphs with small clique number. J.
Comb. Theory Ser. B 134, 264–284 (2019)

22. Noel, J.A., Reed, B.A., Wu, H.: A proof of a conjecture of Ohba. J. Graph Theory
79(2), 86–102 (2015)

23. Reed, B., Sudakov, B.: List colouring when the chromatic number is close to the
order of the graph. Combinatorica 25(1), 117–123 (2004)

24. Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz
29(3), 10 (1976)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-642-03816-7_33

Parameterized Algorithms for Covering
by Arithmetic Progressions

Ivan Bliznets1 , Jesper Nederlof2 , and Krisztina Szilágyi2(B)

1 University of Groningen, Groningen, The Netherlands
i.bliznets@rug.nl

2 Utrecht University, Utrecht, The Netherlands
{j.nederlof,k.szilagyi}@uu.nl

Abstract. An arithmetic progression is a sequence of integers in which
the difference between any two consecutive elements is the same. We inves-
tigate the parameterized complexity of two problems related to arithmetic
progressions, called Cover by Arithmetic Progressions (CAP) and
Exact Cover by Arithmetic Progressions (XCAP). In both prob-
lems, we are given a set X consisting of n integers along with an integer
k, and our goal is to find k arithmetic progressions whose union is X. In
XCAP we additionally require the arithmetic progressions to be disjoint.
Both problems were shown to be NP-complete by Heath [IPL’90].

We present a 2O(k2)poly(n) time algorithm for CAP and a 2O(k3)

poly(n) time algorithm for XCAP. We also give a fixed parameter
tractable algorithm for CAP parameterized below some guaranteed solu-
tion size. We complement these findings by proving that CAP is Strongly
NP-complete in the field Zp, if p is a prime number part of the input.

Keywords: Arithmetic Progressions · Set Cover · Parameterized
Complexity · Number Theory

1 Introduction

In the Set Cover problem one is given a universe U and a set system S ⊆ 2U

of subsets of U , along with an integer k. The challenge is to detect whether
there exist sets S1, . . . , Sk ∈ S such that

⋃k
i=1 Si = U . Unfortunately, the prob-

lem is W [2]-hard parameterized by k [11, Theorem 13.28], and thus we do not
expect an algorithm with Fixed Parameter Tractable (FPT) runtime, i.e. run-
time f(k)|x|O(1) for some function f and input size |x|.

However, Set Cover is incredibly expressive, and it contains many well-
studied parameterized problems such as d-Hitting Set (for a constant d),
Vertex Cover and Feedback Vertex Set (see [11]), albeit the last problem
requires an exponential number of elements. While all these mentioned special

Supported by the project CRACKNP that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No. 853234).
The original version of the chapter has been revised. The name of the author Jesper
Nederlof has been corrected. A correction to this chapter can be found at
https://doi.org/10.1007/978-3-031-52113-3_35
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024, corrected publication 2024

H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 125–138, 2024.

https://doi.org/10.1007/978-3-031-52113-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_9&domain=pdf
http://orcid.org/0000-0003-2291-2556
http://orcid.org/0000-0003-1848-0076
http://orcid.org/0000-0003-3570-0528
https://doi.org/10.1007/978-3-031-52113-3_35
https://doi.org/10.1007/978-3-031-52113-3_9

126 I. Bliznets et al.

cases are FPT parameterized by k, many other special cases of Set Cover
remain W [1]-hard, and the boundary between special cases that are solvable in
FPT and W [1]-hard has been thoroughly studied already (see e.g. Table 1 in [6]).
An especially famous special case is the Point Line Cover problem, in which
one is given points U ⊆ Z

2 and asked to cover them with at most k line segments.
While it is a beautiful and commonly used exercise to show this problem is FPT
parameterized by k,1 many slight geometric generalizations (such as generalizing
it to arbitrary set systems of VC-dimension 2 [6]) are already W [1]-hard.

In this paper we study another special case of Set Cover, related to Arith-
metic Progressions (APs). Recall that an AP is a sequence of integers of the
form a, a + d, a + 2d, . . . , a + xd, for some integers x, start value a and differ-
ence d. We study two computational problems: Cover by APs (abbreviated
with CAP) and Exact Cover by APs (abbreviated with XCAP). In both
problems we are given a set of integers X = {x1, x2, . . . , xn}, and our goal is
to find the smallest number of APs s1, s2, . . . , sk consisting of only elements in
X such that their union covers2 exactly the set X. In the XCAP problem, we
additionally require that the APs do not have common elements. While CAP
and XCAP are already known to be weakly NP-complete since the 90’s [14], the
problems have been surprisingly little studied since then.

The study of the parameterized complexity of CAP and XCAP can be
motivated from several perspectives.

– The Set Cover perspective: CAP and XCAP are natural special cases
of Set Cover for which the parameterized complexity is unclear. While the
problem looks somewhat similar to Point Line Cover, the crucial insight1
towards showing it is FPT in k does not apply since an AP can be covered
with 2 other AP’s. In order to understand the jump in complexity from FPT
to W [1]-hardness of restricted Set Cover problems better, it is natural to
wonder whether properties weaker than the one of Point Line Cover1 also
are sufficient for getting FPT algorithms.

– The practical perspective: There is a connection between these problems
and some problems that arise during the manufacture of VLSI chips [13].
The connection implies the NP-hardness of the latter problems. Bast and
Storandt [3,4] used heuristics for these problems to compress bus timetables
and speed up the process of finding the shortest routes in public transporta-
tion networks.

– The additive number theory perspective: The extremal combinatorics
of covers with (generalized) APs is a very well studied in the field of addi-
tive combinatorics. This study already started in the 50’s with conjectures
made by among others Erdös (see [9] and the references therein), and recently
results in spirit of covering sets of integers with sets of low additive energy
(of which APs are a canonical example) such as Freiman’s Theorem and the
Balog-Szemerédi-Gowers Theorem also found algorithmic applications [7,8].

1 A crucial insight is that any line containing at least k+1 points must be in a solution..
2 We frequently interpret APs as sets by omitting the order, and “covers” can be read

as “contains”.

Parameterized Algorithms for Covering by Arithmetic Progressions 127

– The “not about graphs” perspective: Initially, applications of FPT algo-
rithms were mostly limited to graph problems.3 More recently, FPT algo-
rithms have significantly expanded the realm of their applicability. It now
includes geometry, computational social choice, scheduling, constraint sat-
isfiability, and many other application domains. However, at this stage the
interaction of number theory and FPT algorithms seems to be very limited.

Our Contributions. Our main results are FPT algorithms for CAP and XCAP:

Theorem 1. CAP admits an algorithm running in time 2O(k2)poly(n).

On a high level, this theorem is proved with a bounded search tree technique
(similar to Point Line Cover): In each recursive call we branch on which AP to
use. Since k is the number of APs in any solution the recursion depth is at most
k. The difficulty however, is to narrow down the number of recursive calls made
by each recursive call. As mentioned earlier, the crucial insight1 does not apply
since an AP can be covered with 2 other AP’s. We achieve this by relying non-
trivially on a result (stated in Theorem 5) by Crittenden and Vanden Eynden [9]
about covering an interval of integers with APs, originally conjectured by Erdös.
The proof of this theorem is outlined in Sect. 3.

Theorem 2. XCAP admits an algorithm running in time 2O(k3)poly(n).

On a high level, the proof of this theorem follows the proof of Theorem 1.
However, to accomodate the requirement that the selected APs are disjoint we
need a more refined recursion strategy. The proof of this theorem is outlined in
Sect. 4.

We complement these algorithms with a new hardness result. Already in the
1990s, the following was written in the paper that proved weak NP-hardness of
CAP and XCAP:

“ Because the integers used in our proofs are exponentially larger than |X|,
we have not shown our problems to be NP-complete in the strong sense
[..]. Therefore, there is hope for a pseudopolynomial time algorithm for
each problem. ”— Heath [14]

While we do not directly make progress on this question, we show that two
closely related problems are strongly NP-hard. Specifically, if p is an integer, we
define an AP in Zp as a sequence of the form

a, a + d (mod p), a + 2d (mod p), . . . , a + xd (mod p).

In the Cover by Arithmetic Progressions in Zp problem one is given
as input an integer p and a set X ⊆ Zp and asked to cover X with APs in
Zp that are contained in X that cover X. In Exact Cover by Arithmetic
Progressions in Zp we additionally require the APs to be disjoint. We show
the following:
3 There has even been a series of workshops titled “Parameterized Complexity: Not-

About-Graphs” (link) to extend the FPT framework to other fields.

http://fpt.wdfiles.com/local--files/upcoming-conferences-dagstuhl-seminars-and-workshops/Description.pdf.pdf

128 I. Bliznets et al.

Theorem 3. Cover by Arithmetic Progressions in Zp and Exact
Cover by Arithmetic Progressions in Zp are strongly NP-complete.

While this may hint at strong NP-completeness for CAP and XCAP as well,
since often introducing a (big) modulus does not incur big jumps in complexity
in number theoretic computational problems (confer e.g. k-SUM, Partition,
etc.), we also show that our strategy cannot directly be used to prove CAP
and XCAP to be strongly-NP. Thus this still leaves the mentioned question of
Heath [14] open. This result is proven in Sect. 5.

Finally, we illustrate that CAP is generalized by a variant of Set Cover
that allows an FPT algorithm for a certain below guarantee parameterization.
In particular, CAP always has a solution consisting of |X|/2 APs that cover all
sets.

Theorem 4. There is an 2O(k)nO(1) time algorithm that detects if a given set
X of integers can be covered with at most |X|/2 − k APs.

This result is proved in Sect. 6. Proofs that are omitted due to space restric-
tions (indicated with †) can be found in the full version on arXiv.

2 Preliminaries

For integers a, b we denote by [a, b] a set {a, a + 1, . . . , b}, for a = 1 instead of
[1, b] we use a shorthand [b], i.e. [b] = {1, 2, . . . , b}. For integers a, b we write
a|b to show that a divides b. For integers a1, . . . , an we denote their greatest
common divisor by gcd(a1, . . . , an).

An arithmetic progression (AP) is a sequence of numbers such that the dif-
ference of two consecutive elements is the same. While AP is a sequence, we will
often identify an AP with the set of its elements. We say an AP stops in between
l and r if it largest element is in between l and r. We say it covers a set A if all
integers in A occur in it. Given an AP a, a+d, a+2d, . . . we call d the difference.
We record the following easy observation:

Observation. The intersection of two APs is an AP.
If X is a set of integers, we denote

X>c = {x|x ∈ X,x > c}, X≥c = {x|x ∈ X,x ≥ c},

X<c = {x|x ∈ X,x < c}, X≤c = {x|x ∈ X,x ≤ c}.

Given a set X and an AP A = {a, a + d, a + 2d, . . . }, we denote by A � X
the longest prefix of A that is contained in X. In other words, X � A = {a, a +
d, . . . , a + �d}, where � is the largest integer such that a + �′d ∈ X for all
�′ ∈ {0, . . . , �}.

For a set of integers X and integer p we denote by Xp = 〈x mod p|x ∈ X〉.
Here the 〈〉 symbols indicate that we build a multiset instead of a set (so each
number is replaced with its residual class mod p and we do not eliminate copies).

Parameterized Algorithms for Covering by Arithmetic Progressions 129

We call an AP s infinite if there are integers a, d such that s = (a, a+ d, a+
2d, . . .). Note that under this definition, the constant AP containing only one
number and difference 0 is also infinite.

The following result by Crittenden and Vanden Eynden will be crucial for
many of our results:

Theorem 5 [9]. Any k infinite APs that cover the integers {1, . . . , 2k} cover
the whole set of positive integers.

3 Algorithm for Cover By Arithmetic Progressions
(CAP)

Before describing the algorithm, we introduce an auxiliary lemma. This lemma
will be crucially used to narrow down the number of candidates for an AP to
include in the solution to at most 2k.

Lemma 1 (†). Let s0 be an AP with at least t + 1 elements. Let s1, . . . , sk be
APs that cover the elements s0(0), . . . , s0(t−1), but not s0(t). The APs s1, . . . , sk

may contain other elements. Suppose that each AP s1, . . . , sk has an element
larger than s0(t). Then we have t < 2k.

Equipped with Lemma 1 we are ready to prove our first main theorem:

Theorem 1. CAP admits an algorithm running in time 2O(k2)poly(n).

Proof. Denote the set of integers given in the input by X. Without loss of gen-
erality we can consider only solutions where all APs are inclusion-maximal, i.e.
solutions where none of the APs can be extended by an element of X. In par-
ticular, given an element a and difference d, the AP is uniquely determined: it
is equal to {a − �d, . . . , a − d, a, a+ d, . . . , a+ rd}, where �, r are largest integers
such that a − �′d ∈ X for all �′ ∈ [�] and a + r′d ∈ X for all r′ ∈ [r].

Our algorithm consists of a recursive function Covering(C, k1, k2). The algo-
rithm takes as input a set C of elements and assumes there are APs s1, . . . , sk1

whose union equals C, so the elements of C are ‘covered’ already. With this
assumption, it will detect correctly whether there exist k2 additional APs that
cover all remaining elements X \C from the input. Thus Covering(∅, 0, k) indi-
cates whether the instance is a Yes-instance. At Line 4 we solve the subproblem,
in which set C is already covered, in 2k2

poly(n) time if |X \ C| ≤ k2. This
can be easily done by writing the subproblem as an equivalent instance of Set
Cover (with universe U = X \ C and a set for each AP in U) and run the
2|U |poly(n) = 2k2

poly(n) time algorithm for Set Cover from [5].
For larger instances, we consider the k2 + 1 smallest uncovered elements

u1, . . . , uk2+1 in Line 6, and guess (i.e. go over all possibilities) ui and uj such
that ui and uj both belong to some AP s in a solution and none of the AP’s
s1, . . . , sk1 stops (i.e., has its last element) in between ui and uj . In order to
prove correctness of the algorithm, we will show later in Claim 1 such ui and uj

exist.

130 I. Bliznets et al.

Note that ui and uj are not necessarily consecutive in s, so we can only
conclude that the difference of s divides uj − ui. We use Lemma 1 to lower
bound the difference of s with (uj − ui)/2k, and after we guessed the difference
we recurse with the unique maximal AP with the guessed difference containing
ui (and uj). In pseudocode, the algorithm works as follows:

Algorithm 1. Algorithm for CAP
1: Algorithm Covering(C, k1, k2)
2: Let k = k1 + k2

3: if |X \ C| ≤ k2 then
4: Use the algorithm for Set Cover from [5]
5: else
6: Let u1, . . . , uk2 be the k2 + 1 smallest elements of X \ C
7: for i = 1 . . . k2 do
8: for j = i + 1 . . . k2 + 1 do
9: Let D = uj − ui

10: for � = 1 . . . 2k do
11: if � divides D then
12: Let s = MakeAP(ui, D/�)
13: if Covering(C ∪ s, k1 + 1, k2 − 1) then
14: return true
15: return false

The procedure MakeAP(a, d) returns the AP {a − �1d, . . . , a − d, a, a +
d, . . . , a + �2d}, where �1 (respectively, �2) are the largest numbers such that
a − �′d ∈ X for all �′ ≤ �1 (respectively, a+ �′d ∈ X for all �′ ≤ �2). It is easy to
see that if Algorithm1 outputs true, we indeed have a covering of size k: Since
we only add elements to C if they are indeed covered by an AP, and each time
we add elements to C because of an AP we decrease our budget k2.

For the other direction of correctness, we first claim that our algorithm will
indeed at some moment consider an AP of the solution.

Claim 1. Suppose there exist an AP-covering s1, . . . , sk, and let k1 ∈ {0, . . . , k}
be an integer and let ∪k1

i=1si = C. Then in the recursive call Covering(C, k1, k−
k1) we have in some iteration of the for-loops s = sh at Line 12, for some
h ∈ {k1 + 1, . . . , k}.

Proof of Claim. Consider the set B consisting of the k2 + 1 smallest elements
of X \ C. By the pigeonhole principle, there is an h ∈ {j + 1, . . . , k} such that
sh covers at least k +1 elements of B. Thus, there are two consecutive elements
of B ∩ sh, sh(α) and sh(β), between which no AP s1, . . . , sk1 ends. Without
loss of generality, we may assume that sh(α) and sh(β) are the closest such pair
(i.e. the pair such that |sh(α) − sh(β)| is minimal). By applying Lemma 1, we
conclude that there are at most 2k − 1 elements of sh between sh(α) and sh(β).
In other words, the difference of sh is a divisor of sh(β) − sh(α) and at least
(sh(β) − sh(α))/2k. Therefore, in some iteration of the for-loops we get s = sh.

��

Parameterized Algorithms for Covering by Arithmetic Progressions 131

Using the above claim, it directly follows by induction on k2 = 0, . . . , k that
if there is a covering s1, . . . , sk of X such that ∪k1

i=1si = C, then the function
Covering(C, k − k2, k2) returns true.

Let us now analyse the running time of the above algorithm. The recursion
tree has height k (since we reduce k by one on every level). The maximum degree
is 2kk4, so the total number of nodes is 2O(k2). The running time at each node
is at most 2O(k2)poly(n). Therefore, the overall running time is 2O(k2)poly(n). ��

4 FPT Algorithm for Exact Cover by Arithmetic
Progressions

Now we show that XCAP is Fixed Parameter Tractable as well. Note that
this problem is quite different in character than CAP. For example, as opposed
to CAP, in XCAP we cannot describe an AP with only one element and its
difference. Namely, it is not always optimal to take the longest possible AP: for
example, if X = {0, 4, 6, 7, 8, 9}, the optimal solution uses the progression 0, 4
rather than 0, 4, 8. While we still apply a recursive algorithm, we significantly
need to modify our structure lemma (shown below in Lemma 2) and the recursive
strategy.

Before we proceed with presenting the FPT algorithm for Exact Cover by
Arithmetic Progressions (XCAP) we state an auxiliary lemma.

Lemma 2 (†). Let s1, s2, . . . , sk be a solution of an instance of XCAP with
input set X. Let s be an AP that is contained in X. For each i ∈ [k], we denote
by ti the intersection of s and si. Suppose that for some i, ti has at least k +
1 elements. Then there are at most 2k−1 − 1 elements of s between any two
consecutive elements of ti.

Now we have all ingredients to prove the main theorem of this section.

Theorem 2. XCAP admits an algorithm running in time 2O(k3)poly(n).

Proof. Let X = {a1, . . . , an} be the input set. Without loss of generality, we
may assume that a1 < · · · < an. Assume that the input instance has a solution
with k APs: o1, . . . , ok. Let d′

i be the difference of oi. Our algorithm partition
recursively calls itself and is described in Algorithm 2. The algorithm has the
following parameters: T1, . . . , Tk, P1, . . . , Pk, d1, d2, . . . , dk. The sets Ti describe
the elements that are in oi (i.e. the elements that are definitely covered by oi).
The integer di is either 0 or equal to the guessed value of the difference of the
AP oi. Once we assign a non-zero value to di, we never change it within future
recursive calls. We denote by Pi the set of “potentially covered” elements. Infor-
mally, Pi consists of elements that could be covered by oi unless oi is interrupted
by another AP. Formally, if for an AP oi we know two elements a, b ∈ oi (a < b),
and the difference di then Pi = {b+ di, b+2di, . . . b+ �di} where � is the largest
number such that: {b + di, b + 2di, . . . b + �di} ⊂ X and none of the elements of
the set {b + di, b + 2di, . . . b + �di} belong to Tj for some j �= i, j ∈ [k].

132 I. Bliznets et al.

Algorithm 2. Algorithm for XCAP
1: Algorithm Partition(X, T1, . . . Tk, P1, . . . , Pk, d1, . . . , dk)
2: if there are i, j ∈ [k] s.t. i �= j and Pi ∩ Pj �= ∅ then
3: Let c be the smallest element s.t. ∃i, j, c ∈ Pi ∩ Pj , and i < j
4: Partition(X, T1, . . . , Tk, P1, . . . , Pi−1, P

<c
i , Pi+1, . . . , Pk, d1, . . . , dk)

5: Partition(X, T1, . . . , Tk, P1, . . . , Pj−1, P
<c
j , Pj+1, . . . , Pk, d1, . . . , dk)

6: else if there is an i such that Ti = {aα, aβ} and di = 0 then
7: for (b1, . . . , bk) ∈ {0, 1, . . . , 2k + 1}k do
8: g ← gcd(aβ − aα, b1d1, . . . bkdk)
9: Di ← {g, g

2
, . . . , g

k(k+1)
}

10: for d ∈ Di and d is integer do
11: di ← d
12: Ti ← {aα, aα + di, . . . , aβ}
13: C∞ ← {aβ + di, aβ + 2di, . . . }
14: Pi ← C∞
 X
15: if for all j ∈ [k] \ {i} we have Ti ∩ Tj = ∅ then
16: for j ∈ [k] \ {i} do
17: Pj ← Update(Pj , Ti) � remove ints larger than min(Pj ∩ Ti)
18: Partition(X, T1, . . . , Tk, P1, . . . , Pk, d1, . . . , dk)

19: else if X \ (P ∪ T) = ∅ then
20: return o1 = T1 ∪ P1, . . . , ok = Tk ∪ Pk

21: else
22: aβ ← min(X \ (T ∪ P))
23: if there is an i such that |Ti| < 2 then
24: J ← {i|i ∈ [k] and |Ti| < 2}
25: for i ∈ J do
26: Ti ← Ti ∪ {aβ}
27: Partition(X, T1, . . . , Tk, P1, . . . , Pk, d1, . . . , dk)

28: else
29: abort � this branch does not generate a solution

Initially, we call the algorithm partition with parameters T1 = {a1}, T2 =
· · · = Tk = P1 = · · · = Pk = ∅, d1 = d2 = · · · = dk = 0. We denote by T = ∪iTi

and P = ∪iPi. Let aβ be the smallest element of the input sequence that does
not belong to T ∪ P . For each i ∈ [k] such that |Ti| ≤ 1, we recursively call
partition(T1, . . . , Ti−1, T

′
i , Ti+1, . . . , Tk, P1, . . . , Pk), where T ′

i = Ti ∪ {aβ}. In
other words, we consider all possible APs that cover aβ . We do not assign aβ to
i-th AP with |Ti| ≥ 2 as for such APs we know that aβ �∈ oi (since aβ �∈ Pi).

If in the input for some i we have |Ti| = 2 and di = 0 then we branch on
the value of the difference of the i-th AP. Let Ti = {aα, aβ}, where aβ > aα.
By construction (specifically, by the choice of aβ), all elements of the sequence
B = {aα+1, aα+2, . . . , aβ−1} belong to P ∪ T , i.e. can be covered by at most k
APs. Note that purely based on the knowledge of two elements aα, aβ ∈ oi

we cannot determine immediately the difference of oi, because aα, aβ might
not be consecutive elements of oi. In other words, it could happen that some
elements of B belong to oi. Therefore we need to consider cases when potentially

Parameterized Algorithms for Covering by Arithmetic Progressions 133

covered elements from some Pj actually belong to oi instead of oj . We note
that the number of elements between aα and aβ can be very large, so a simple
consideration of all cases where the difference of oi is a divisor of aβ − aα will
not provide an FPT-algorithm.

Instead of considering all divisors we use Lemma 2 and bound the number
of candidates for value of the difference of oi. Note that we allow integers to be
0 here, and define that all integers are a divisor of 0. Hence a|0 is always true
and gcd(0, y1, y2, . . .) = gcd(y1, y2, . . .).

Informally, for all known differences dj up to this point (i.e. all dj �= 0)
we branch on the smallest positive value bj such that d′

i|bjdj , where d′
i is the

difference of the i-th AP in the solution that we want to find. We treat all cases
when bj > 2k + 1 at once, and instead of the actual value we assign 0 to a
variable responsible for storing value of bj . Intuitively, bj describes the number
of elements of oj between two consecutive interruptions by oi. By Lemma 2, if
bj is large (larger than 2k + 1), each of these interruptions implies that an AP
stops.

Formally, for each k-tuple (b1, . . . , bk) ∈ {0, . . . , 2k+1}k, we do the following.
Let g = gcd(aβ −aα, b1d1, . . . , bkdk). From the definition of bj it follows that d′

i|g.

Claim 2. If all previous branchings are consistent with a solution o1, . . . , ok then
d′

i ≥ g
k(k+1) .

Proof of Claim. Indeed, if d′
i = g/t and t > k(k+1) then between aα and aα+g

there are at least k(k + 1) elements from oi. All these elements are covered by
sets P1, . . . , Pi−1, Pi+1, . . . , Pk. Therefore, by the pigeonhole principle there is an
index q such that Pq contains at least k + 1 elements. This means that Pq and
oi have at least k + 1 common elements (Pq is intersected by oi at least k + 1
times). Denote these common elements by c1, . . . , ct and let e be the number of
elements of Pq between c� and c�+1 (e does not depend on � as Pq and oi are
APs). First of all, recall that c�, c�+1 are from interval (aα, aα + g). Therefore,
(e + 1)dq = c�+1 − c� < g. Moreover, by Lemma 2 (applied with s = Pq and
si = oi), we have e ≤ 2k−1 − 1. Taking into account that d′

i|(e + 1)dq and
e ≤ 2k−1 − 1 we have that g divides (e+1)dq which contradicts (e+1)dq < g. ��

From the previous claim it follows that d′
i ∈ {g, g/2, . . . , g/k(k + 1)} and

we have the desired bound on the number of candidates for the value of the
difference of oi. We branch on the value of d′

i, i.e. in each branch we assign to
di some integer value from the set {g, g/2, . . . , g/k(k + 1)}. In other words, for
each d ∈ {g, g/2, . . . , g/k(k + 1)} we call

partition(T1, . . . , T
′
i , . . . , Tk, P ′

1, . . . , P
′
k, d1, . . . , di−1, d, di+1, . . . , dk),

where Cd = {aα, aα + d, . . . , aβ − d, aβ}, C∞
d = {aβ + t, aβ + 2t, . . . }, T ′

i =
Ti ∪ Cd, P ′

i = C∞
d � X and for j �= i we set P ′

j = Update(Pj , Ti). The function
Update(A,B) returns A<x, where x = min(A∩B) (if A∩B = ∅, it returns A).
If in some branch the sequence aα, aα +di, . . . , aβ −di, aβ intersects T , we abort

134 I. Bliznets et al.

this branch. Overall, in order to determine the difference of oi after discovering
aα, aβ ∈ oi we create at most (2k + 2)k · k(k + 1) = 2O(k2) branches.

Let us now compute the number of nodes in the recursion tree. Observe that
we never remove elements from T . Consider a path from the root of the tree to a
leaf. It contains at most 2k nodes of degree at most k (adding two first elements
to Ti), at most k2 nodes of degree 2 (resolving the intersections of two APs,
lines 2–5 in pseudocode) and at most k nodes of degree 2O(k2) (determining the
difference of an AP that contains two elements). Hence, the tree has at most
k2k · 2k2 · (2O(k2))k = 2O(k3) leaves. Therefore, the overall number of nodes in
the recursion tree and the running time of the algorithm is 2O(k3)poly(n).

Claim 2 proves that we iterate over all possibilities. Hence, our algorithm is
correct. ��

5 Strong NP-Hardness of Cover by Arithmetic
Progressions in Zp

A natural question to ask, in order to prove Strong NP-hardness for CAP, is
whether we can replace an input set X with an equivalent set which has smaller
elements. Specifically, could we replace the input number with numbers poly-
nomial in |X|, while preserving the set of APs? This intuition can be further
supported by result on Simultaneous Diophantine approximation that exactly
achieve results in this spirit (though with more general properties and larger
upper bounds) [12]. However, it turns out that this is not always the case, as
we show in Lemma 3. This means that one of the natural approaches for prov-
ing strong NP-hardness of CAP does not work: namely, not all sets X can be
replaced with set X ′ of polynomial size which preserves all APs in X.

Lemma 3 (†). Let x1 = 0, xi = 2i−2 for i ≥ 2 and Xn = {x1, . . . , xn+2}.
Then for any polynomial p there exists an integer n such that there is no set
An = {a1, . . . , an+2} that satisfies the following criteria:

– ai ≤ p(n) for all i ∈ [n + 2],
– For all i, j, k ∈ [n + 2], the set {xi, xj , xk} forms an AP if and only if

{ai, aj , ak} forms an AP.

Unfortunately, we do not know how to directly circumvent this issue and
improve the weak NP-hardness proof of Heath [14] to strong NP-hardness.
Instead, we work with a small variant of the problem in which we work in Zp.
The definition of APs naturally carries over to Zp. It is easy to see that APs are
preserved:

Claim 3 (†). Let p be a prime and let X be a set of integers that forms an AP.
Then the multiset Xp generates AP in the field Zp.

However, the converse does not hold. Formally, if for some p the multiset Xp

is an AP in Zp it is not necessarily true that X is an AP in Z.

Parameterized Algorithms for Covering by Arithmetic Progressions 135

We now show strong NP-completeness for the modular variants of CAP and
XCAP. In the Cover by Arithmetic Progressions in Zp problem one is
given as input an integer p and a set X ⊆ Zp and asked to cover X with APs in
Zp that are contained in X that cover X. In Exact Cover by Arithmetic
Progressions in Zp we additionally require the APS to be disjoint.

Theorem 3. Cover by Arithmetic Progressions in Zp and Exact
Cover by Arithmetic Progressions in Zp are strongly NP-complete.

Proof. We recall that Heath [14] showed that CAP and XCAP are weakly NP-
complete via reduction from Set Cover. Moreover, the instances of CAP and
XCAP, obtained after reduction from Set Cover, consist of numbers that are
bounded by 2q(n) for some polynomial q(n). To show that Cover by Arith-
metic Progressions in Zp and Exact Cover by Arithmetic Progres-
sions in Zp are strongly NP-complete we take a prime p and convert instances
of CAP and XCAP with set S into instances of Cover by Arithmetic Pro-
gressions in Zp and Exact Cover by Arithmetic Progressions in Zp

respectively with a set Sp (we can guarantee that the multiset Sp contains no
equal numbers) and modulo p.

As shown in Claim 3, under such transformation a Yes-instance is converted
into a Yes-instance. However, if we take an arbitrary p then a No-instance can
be mapped to a Yes-instance or Sp can become a multiset instead of a set. In
order to prevent this, we carefully pick the value of p.

We need to guarantee that if X is not an AP then Xp also does not generate
an AP in Zp. Suppose Xp = {y1, y2, . . . , yk} generates an AP in Zp exactly in
this order. We assume that xi maps into yi, i.e. xi ≡p yi. Since Xp is an AP in
Zp, we have

y2 − y1 ≡p y3 − y2 ≡p · · · ≡p yk − yk−1.

Since X is not an AP there exists an index j such that xj − xj−1 �= xj+1 − xj .
Therefore, we have that 2xj − xj−1 − xj+1 �= 0 and 2yj − yj−1 − yj+1 ≡p 0.
Since xi ≡p yi we conclude that p divides 2xj − xj−1 − xj+1. Hence if we want
to choose p that does not transform a No-instance into a Yes-instance, it is
enough to choose p such that p is not a divisor of 2x − y − z where x, y, z are
any numbers from the input and 2x− y − z �= 0. Similarly, if we want Sp to be a
set instead of a multiset, then for any different x, y the prime p should not be a
divisor of x − y. Note that the number of different non-zero values of 2x − y − z
and x − y is at most O(n3). Since all numbers are bounded by 2q(n) the values
of 2x − y − z �= 0 and x − y are bounded by 2q(n)+2. Note that any integer N
has at most logN different prime divisors. Therefore at most O(n3)(q(n) + 2)
prime numbers are not suitable for our reduction. In order to find a suitable
prime number we do the following:

– for each number from 2 to n6(q(n) + 2)2 check if it is prime (it can be done
in polynomial time [1]),

– for each prime number p′ ≤ n6(q(n) + 2)2 check if there are integers x, y, z
from the input such that (2x − y − z �= 0 and 2x − y − z ≡p 0) or x ≡p y if
such x, y, z exist go to the next prime number,

136 I. Bliznets et al.

– when the desired prime p′ is found output instance Sp′ with modulo p′.

Note that number of primes not exceeding N is at least N
2 log N for large

enough N . Hence by pigeonhole principle we must find the desired p′ as we con-
sider all numbers smaller than n6(q(n)+2)2 and n6(q(n)+2)2

log(n6(q(n)+2)2) > O(n3)(q(n)+2)
for sufficiently large n.

Therefore, in polynomial time we can find p′ that is polynomially bounded
by n and Cover by Arithmetic Progressions in Zp with input (Sp′ , p′) is
equivalent to CAP with input S (similarly for Exact Cover by Arithmetic
Progressions in Zp and XCAP). Hence, Cover by Arithmetic Progres-
sions in Zp and Exact Cover by Arithmetic Progressions in Zp are
strongly NP-complete. ��

6 Parameterization Below Guarantee

In this section we present an FPT algorithm parameterized below guarantee
for a problem that generalizes CAP, namely t-Uniform Set Cover. The t-
Uniform Set Cover is a special case of the Set Cover problem in which
all instances S, U satisfy the property that {A ⊆ U : |A| = t } ⊆ S. Clearly
the solution for the t-Uniform Set Cover problem is at most �n

t � where n
is the size of universe. Note that CAP is a special case of 2-Uniform Set
Cover since any pair of element forms an AP. Thus we focus on presenting a
fixed parameter tractable algorithm for the t-Uniform Set Cover problem
parameterized below �n

t � (we consider t to be a fixed constant). We note that
for a special case with t = 1 the problem was considered in works [2,10].

We will use the deterministic version of color-coding, which uses the following
standard tools:

Definition 1. For integers n, k a (n, k)-perfect hash family is a family F of
functions from [n] to [k] such that for each set S ⊆ [n] of size k there exists a
function f ∈ F such that {f(v) : v ∈ S} = [k].

Lemma 4 [15]. For any n, k ≥ 1, one can construct an (n, k)-perfect hash family
of size ekkO(log k) log n in time ekkO(log k)n log n.

Now we are ready to state and prove the main result of this section:

Theorem 6. There is an 2O(k)poly(n)-time algorithm that for constant t and
a given instance of t-Uniform Set Cover determines the existence of a set
cover of size at most �n

t � − k where k is an integer parameter and n is the size
of the universe.

Proof. In the first stage of our algorithm we start picking sets greedily (i.e. in
each step, we pick the set that covers the largest number of previously uncovered
elements) until there are no sets that cover at least t + 1 previously uncovered
elements. If during this stage we pick s sets and cover at least st + tk elements
then our instance is a Yes-instance. Indeed, we can cover the remaining elements

Parameterized Algorithms for Covering by Arithmetic Progressions 137

using �n−st−tk
t � sets. In total, such a covering has at most �n−st−tk

t �+s = �n
t �−k

subsets. Intuitively, each set picked during this greedy stage covers at least one
additional element. Therefore, if we pick more than tk subsets then our input
instance is a Yes-instance. This means that after the greedy stage we either
immediately conclude that our input is a Yes-instance or we have used at most
tk subsets and covered at most tk · t + tk = O(k) elements, for a fixed t. Let us
denote the subset of all covered elements by G. Note that there is no subset that
covers more than t elements from U \ G.

If there is a covering of size �n
t � − k then there are s′ ≤ |G| ≤ tk · t + tk

subsets that cover G and at least s′t + tk − |G| elements of U \ G. Moreover, if
such subsets exist then our input is a Yes-instance.

Hence, it is enough to find s′ such subsets. For each s′′ ∈ [|G|] we attempt to
find subsets S1, S2, . . . , Ss′′ such that G ⊂ S1∪S2∪· · ·∪Ss′′ and S1∪S2∪· · ·∪Ss′′

contains at least s′′t + tk − |G| elements from U \ G. Assume that for some s′′

such sets exist. Let H be an arbitrary subset of (S1 ∪ S2 ∪ · · · ∪ Ss′′) \ G of size
s′′t+tk−|G|. Note that we do not know the set H. However, we employ the color-
coding technique, and construct a (n, |H|)-perfect hash family F . We iterate over
all f ∈ F . Recall that |H| = s′′t+ tk−|G|. Now using dynamic programming we
can find H in time 2O(k) in a standard way. In order to do that, we consider a new
universe U ′ which contains elements from the set G and elements corresponding
to |H| colors corresponding to values assigned by f to U \G. Moreover, if a subset
P was a subset that can be used for covering in t-Uniform Set Cover then
we replace it with (P ∩G)∪{all values f assign to elements in P ∩ (U \G)}. We
replace our t-Uniform Set Cover instance with an instance of Set Cover
with a universe of size |G|+ |H| ≤ |G|+s′′t+ tk−|G| ≤ |G| · t+ tk ≤ (tk · t+ tk) ·
t+ tk = O(k). It is easy to see that our original instance is a Yes-instance if and
only if the constructed instance of Set Cover admits a covering by at most
s′′ sets (under the assumption that f indeed assigns distinct values to elements
of H). If f does not assign distinct values then a Yes-instance can be become
a No-instance. However, a No-instance cannot become a Yes-instance. Since
|H| = O(k), the overall running time is 2O(k)poly(n). ��
As a corollary of the previous theorem we get the following result.

Theorem 4. There is an 2O(k)nO(1) time algorithm that detects if a given set
X of integers can be covered with at most |X|/2 − k APs.

References

1. Agrawal, M., Kayal, N., Saxena, N.: Primes is in P. Ann. Math. 160, 781–793
(2004)

2. Basavaraju, M., Francis, M.C., Ramanujan, M., Saurabh, S.: Partially polynomial
kernels for set cover and test cover. SIAM J. Discret. Math. 30(3), 1401–1423
(2016)

3. Bast, H., Storandt, S.: Frequency data compression for public transportation net-
work algorithms. In: Proceedings of the International Symposium on Combinatorial
Search, vol. 4, pp. 205–206 (2013)

138 I. Bliznets et al.

4. Bast, H., Storandt, S.: Frequency-based search for public transit. In: Proceedings of
the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pp. 13–22 (2014)

5. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. Comput. 39(2), 546–563 (2009)

6. Bringmann, K., Kozma, L., Moran, S., Narayanaswamy, N.S.: Hitting set in hyper-
graphs of low VC-dimension. CoRR abs/1512.00481 (2015). http://arxiv.org/abs/
1512.00481

7. Bringmann, K., Nakos, V.: Top-k-convolution and the quest for near-linear output-
sensitive subset sum. In: Makarychev, K., Makarychev, Y., Tulsiani, M., Kamath,
G., Chuzhoy, J. (eds.) Proceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2020, Chicago, IL, USA, 22–26 June 2020, pp.
982–995. ACM (2020). https://doi.org/10.1145/3357713.3384308

8. Chan, T.M., Lewenstein, M.: Clustered integer 3SUM via additive combina-
torics. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR,
USA, 14–17 June 2015, pp. 31–40. ACM (2015). https://doi.org/10.1145/2746539.
2746568

9. Crittenden, R.B., Vanden Eynden, C.: Any n arithmetic progressions covering the
first 2n integers cover all integers. Proc. Am. Math. Soc. 24(3), 475–481 (1970)

10. Crowston, R., Gutin, G., Jones, M., Raman, V., Saurabh, S.: Parameterized com-
plexity of MaxSat above average. Theoret. Comput. Sci. 511, 77–84 (2013)

11. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

12. Frank, A., Tardos, E.: An application of simultaneous Diophantine approximation
in combinatorial optimization. Combinatorica 7(1), 49–65 (1987). https://doi.org/
10.1007/BF02579200

13. Grobman, W., Studwell, T.: Data compaction and vector scan e-beam system
performance improvement using a novel algorithm for recognition of pattern step
and repeats. J. Vac. Sci. Technol. 16(6), 1803–1808 (1979)

14. Heath, L.S.: Covering a set with arithmetic progressions is NP-complete. Inf. Pro-
cess. Lett. 34(6), 293–298 (1990)

15. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomiza-
tion. In: 36th Annual Symposium on Foundations of Computer Science, Milwau-
kee, Wisconsin, USA, 23–25 October 1995, pp. 182–191. IEEE Computer Society
(1995). https://doi.org/10.1109/SFCS.1995.492475

http://arxiv.org/abs/1512.00481
http://arxiv.org/abs/1512.00481
https://doi.org/10.1145/3357713.3384308
https://doi.org/10.1145/2746539.2746568
https://doi.org/10.1145/2746539.2746568
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/BF02579200
https://doi.org/10.1007/BF02579200
https://doi.org/10.1109/SFCS.1995.492475

Row-Column Combination of Dyck Words

Stefano Crespi Reghizzi1, Antonio Restivo2, and Pierluigi San Pietro1(B)

1 DEIB - Politecnico di Milano, Milan, Italy
{stefano.crespireghizzi,pierluigi.sanpietro}@polimi.it

2 Dipartimento di Matematica e Informatica, Università di Palermo, Palermo, Italy
antonio.restivo@unipa.it

Abstract. We lift the notion of Dyck language from words to 2-dimensional
arrays of symbols, i.e., pictures. We define the Dyck crossword language DCk

as the row-column combination of Dyck word languages, which prescribes that
each column and row is a Dyck word over an alphabet of size 4k. The standard
relation between matching parentheses is represented in DCk by an edge of the
matching graph situated on the picture array. Such edges form a circuit, of path
length multiple of four, where row and column matches alternate. Length-four
circuits are rectangular patterns, while longer ones exhibit a large variety of pat-
terns.DCk languages are not recognizable by the Tiling Systems of Giammarresi
and Restivo. DCk contains pictures where circuits of unbounded length occur,
and where any Dyck word occurs in a row or in a column. We prove that the
only Hamiltonian circuits of the matching graph of DCk have length four. A
proper subset of DCk, called quaternate, includes only the rectangular patterns;
we define a proper subset of quaternate pictures that (unlike the general ones)
preserves a characteristic property of Dyck words: availability of a cancellation
rule based on a geometrical partial order relation between rectangular circuits.
Open problems are mentioned.

1 Introduction

The Dyck language is a fundamental concept in formal language theory. Its alphabet
{a1, . . . , ak, b1, . . . , bk}, for any k≥1, is associated with the pairs [a1, b1], . . . , [ak, bk].
The language is the set of all words that can be reduced to the empty word by cancella-
tions of two coupled letters: aibi → ε. Dyck words represent the last-in-first-out order
of events, a fundamental concept for theoretical computer science and especially for
formal language and automata theory, where the Chomsky-Schützenberger theorem [1]
states that any context-free language is the homomorphic image of the intersection of a
Dyck language and a regular one.

Motivated by our interest in the theory of two-dimensional (2D) or picture lan-
guages (from now on simply “languages”), we investigate the possibility to transport the
Dyck concept from one dimension to 2D. When moving from 1D to 2D, most formal
language concepts and relationships drastically change. In particular, in 2D the Chom-
sky hierarchy of languages is blurred because the notions of regularity and context-
freeness cannot be formulated for pictures without giving up some characteristic prop-
erties that hold for words. In fact, it is known [7] that the three equivalent definitions of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 139–153, 2024.
https://doi.org/10.1007/978-3-031-52113-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_10&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_10

140 S. Crespi Reghizzi et al.

regular languages by means of finite-state recognizers, by regular expressions, and by
the homomorphism of local languages, produce in 2D three distinct language families.
The third one gives the family of tiling system recognizable languages (REC) [7], that
is perhaps the best known definition for regularity in 2D.

The situation is less satisfactory for context-free languages, of which Dyck lan-
guages are a notable example, where a transposition in 2D remains problematic. None
of the existing proposals of “context-free” picture grammars ([3,5,9–12], a survey is
[2]) match the expressiveness and richness of formal properties of 1D context-free
grammars. In particular, we are not aware of any existing definitions of 2D Dyck lan-
guages,1 and we hope that the present one will open a new direction of research on
(picture) languages.

It is time to describe our proposal. We consider the picture languages obtained by
the row-column combination, also known as crossword, of two Dyck word languages
over the same alphabet. In such a combination, all rows and all columns are Dyck
words. Crosswords have been studied for regular languages (e.g., in [6,8]) but not, to
our knowledge, for context-free ones. In particular it is known [8] that the REC family
coincides with the projection of the crosswords of two regular languages.

The family of Dyck crosswords over an alphabet of size 4k, denoted by DCk, k ≥1,
represents, for reasons later explained, a rather general case. It includes a spectrum of
pictures where a surprising variety of complex patterns may occur. To analyze them,
we introduce the matching graph of a picture, where the array cells are the nodes and
the matching relation defines the edges. The graph is partitioned into simple (disjoint)
circuits, made by alternating horizontal and vertical edges, representing a Dyck match
on a row and on a column. A circuit label is a word of length multiple of 4. The edges of
a circuit path may cross each other–the case of zero crossings is the length 4 circuit or
rectangle. Pictures containing just such rectangular circuits may present quite evident
geometrical analogies with the Dyck word case.

We prove that DCk is not in REC and we positively answer the question whether
each Dyck word can occur in DCk pictures. We present some interesting types of Dyck
crosswords that contain multiple circuits including complex ones, but much remains
to be understood about the general patterns that are possible and the trade-off between
circuit length and the number of circuits that cover a picture. We show that the only
pictures covered by one circuit (i.e., Hamiltonian) have size 2 × 2; furthermore, we
prove that for any h ≥ 0 there exist pictures in DCk featuring a circuit of length 4 + 8h,
i.e., the circuit length is unbounded.

As said, the structure of pictures, called quaternate, such that their circuits are rect-
angular, is intuitively similar to the structure of Dyck words since the vertexes of a
rectangle delimit a subpicture much as two coupled parentheses delimit a substring. To
formalize such an intuition, we introduce a further subset of Dyck crosswords charac-
terized by a variant of the Dyck cancellation rule. First, we transform cancellation into
a neutralization rule that maps the four vertex letters of a rectangle on a new neutral

1 We just know of a particular example, the Chinese box language in [3], that intuitively consists
of embedded or concatenated rectangles, and was proposed to illustrate the expressiveness of
the grammars there introduced. But that language is not a satisfactory proposal, since it is in
the family REC, hence “regular” rather than “context-free”.

Row-Column Combination of Dyck Words 141

(i.e., non-coupled) letter N . Then a quaternate picture is neutralizable if it reduces to a
picture over alphabet {N} by applying neutralization steps. We prove that neutralizable
pictures are a subset of quaternate ones. The analogy between Dyck words and neu-
tralizable pictures is thus substantiated by the fact that both use neutralization rules for
recognition, but there is a difference. The partial order of neutralization is a tree order
for words, while for pictures it is a directed acyclic graph that represents the geometric
relation of partial containment between rectangles.

Section 2 lists basic concepts of picture languages and Dyck word languages.
Section 3 introduces the DCk languages, exemplifies the variety of circuits they may
contain, proves formal properties, and defines the quaternate subclass. Section 4 studies
the neutralizable case. Section 5 mentions open problems.

2 Preliminaries

All the alphabets considered are finite. The concepts and notations for picture languages
follow mostly [7]. We assume some familiarity with the basic theory of the family REC
of tiling system languages, defined as the projection of a local 2D language; the relevant
properties of REC will be reminded when needed. A picture is a rectangular array of
letters over an alphabet. The set of all non-empty pictures over Σ is denoted by Σ++.

A domain d of a picture p is a quadruple (i, j, i′, j′), with 1 ≤ i ≤ i′ ≤ |p|row, and
1 ≤ j ≤ j′

≤ |p|col, where |p|row and |p|col denote the number of rows and columns,
respectively. The subpicture of p with domain d = (i, j, i′, j′), denoted by subp(p, d)
is the (rectangular) portion of p defined by the top-left coordinates (i, j) and by the
bottom-right coordinates (i′, j′).

Let p, q ∈Σ++. The horizontal concatenation of p and q is denoted as p⦶ q and it is
defined when |p|row= |q|row. Similarly, the vertical concatenation p⊖q is defined when
|p|col = |q|col. We also use the power operations p⊖k and p⦶k, k ≥ 1, their closures p⊖+,
p⦶+ and the closure under both concatenations p⊖+,⦶+; concatenations and closures are
extended to languages in the obvious way.

The notation Nm,n, where N is a symbol and m,n > 0, stands for a homogeneous
picture in N++ of size m,n. For later convenience, we extend this notation to the case
where either m or n are 0, to introduce identity elements for vertical and horizontal
concatenations: given a picture p of size (m,n), by definition p⦶Nm,0

=Nm,0
⦶ p = p

and p ⊖N0,n
=N0,n

⊖ p = p.

Dyck Alphabet and Language. The definition and properties of Dyck word languages
are basic concepts in formal language theory. Let Γk, k≥1, be an alphabet of cardinality
2k. Γk is called a Dyck alphabet if it is associated with a partition into two sets Γ ′, Γ ′′

of cardinality k and with a one-to-one total mapping, called coupling, from Γ ′ into Γ ′′.
If the pair [a, b] is in the coupling, a ∈ Γ ′, b ∈ Γ ′′, then it is called coupled pair and the
coupled letters a, b are called, respectively, open and closed. The Dyck language Dk

over alphabet Γk is the set of words congruent to ε, via the cancellation rule aibi → ε
that erases two adjacent coupled letters. A pair of coupled letters occurring in a word is
called matching if it is erased by the same cancellation rule application. Notice that the
number of letters between the two letters of a matching pair is always even.

142 S. Crespi Reghizzi et al.

3 Row-Column Combination of Dyck Languages

In this section we define the languages, called simple Dyck Crosswords (DC), such
that their pictures have Dyck words in rows and in columns. They may be viewed as
analogous in 2D of Dyck 1D languages. Following [7] we introduce the row-column
combination operation that takes two word languages and produces a picture language.

Definition 1 (row-column combination a.k.a. crossword). Let S′, S′′
⊆ Σ∗ be two

word languages, resp. called row and column component languages. The row-column
combination or crossword of S′ and S′′ is the language L such that a picture p ∈ Σ++

belongs to L if, and only if, the words corresponding to each row (in left-to-right order)
and to each column (in top-down order) of p belong to S′ and S′′, respectively.

The crossword of regular languages has received attention in the past since its alphabetic
projection coincide with the REC family [7]; some complexity issues for this case are
recently addressed in [6] where the crosswords are called “regex crosswords”.

Remark 1. Given two regular languages S′, S′′, it is undecidable to establish whether
their crossword is empty. This implies that in general there are crosswords that do not
saturate their components, i.e., such that the set of all rows (or the set of all columns)
occurring in pictures of the crossword is a proper subset of the row component language
(or of the column component language).

We investigate the properties of the crossword of a fundamental type of context-free,
non-regular languages, the Dyck ones. First, we discuss the alphabet size and couplings.

Theorem 1 (Alphabet size of crosswords of Dyck languages). Let D′,D′′ be two
Dyck languages over the same alphabet Δ (with possibly distinct couplings over Δ).

i) If Δ has fewer than four letters, then the crossword of D′,D′′ is empty.
ii) If Δ has four letters, then (up to isomorphism) there is one and only one coupling

for D′ and for D′′ such that the crossword of D′,D′′ is not empty.
iii) If the number of letters of Δ is a multiple of four, then there is a coupling for D′

and for D′′ such that the crossword of D′,D′′ is not empty.

Proof. Part (i): a Dyck alphabet has an even number of letters, hence the only relevant
case is the binary alphabet, e.g., {a, b}. If the coupling for the row language is, say,
[a, b], then [a, b] or [b, a] is the coupling for the columns. Given a picture with an occur-
rence of a, say, in the leftmost column, a letter b must occur in the same column, which
would require a coupling [b, a] for rows, a contradiction.
Part (ii): let {a, b, c, d} be a Dyck alphabet of four letters. As in Part (i), in the top
left corner of any picture there is a letter, say, a, which is an open letter for both rows
and columns. Hence, the row language has a coupled pair, say, [a, b] and the column
language has a coupled pair, say, [a, c]–we proved above that the couplings [a, b] or
[b, a] for columns would lead to an empty language. The letter b is thus on the first row,
hence it is an open letter for the column language, therefore the latter must include the
coupled pair [b, d] and similarly the row language must include the coupled pair [c, d]:
there is no other letter left and any other choice than d for the closed letter in either case

Row-Column Combination of Dyck Words 143

would again lead to the empty language. The corresponding crossword is not empty

since, among others, it includes all pictures of the form:

(
a b
c d

)
⦶+,⊖+

.

Part (iii): The cardinality of Δ is 4k, for some k ≥ 1. It is enough to partition Δ in k
subsets of four elements and then for each subset use the same coupling of Part (ii). ��
In particular, the alphabet used in the proof of Part (ii) of Theorem 1 can be denoted as
Δ1 = {a, b, c, d}, with the coupling {[a, b][c, d]} for the rows and {[a, c][b, d]} for the
columns. The corresponding (unique) crossword is denoted as DC1. A simple example
of a picture in DC1 is in Fig. 1.

We now generalize the definition of DC1 to alphabets of any cardinality multiple of
4 (as in the proof of Part (iii) of Theorem 1).

Definition 2 (Dyck crossword alphabet and language). The Dyck crossword alpha-
bet Δk is a set of quadruplets, namely {ai, bi, ci, di | 1 ≤ i ≤ k}, together with the
following couplings of the Dyck row alphabet ΔRow

k for the row component language
DRow

k , and of the column alphabet ΔCol
k for the column component language DCol

k :{
for ΔRow

k : {[ai, bi] | i ≤ 1 ≤ k} ∪ {[ci, di] | 1 ≤ i ≤ k}
for ΔCol

k : {[ai, ci] | i ≤ 1 ≤ k} ∪ {[bi, di] | 1 ≤ i ≤ k} . (1)

The simple2 Dyck crossword DCk is the row-column combination of DRow
k and DCol

k .

For brevity, we later drop “simple” when referring to Dyck crosswords.
It is easy to notice that, for every k≥1, the language DCk is closed under horizontal

and vertical concatenation and their closures, and that for every n,m ≥ 1 there exist
pictures of DCk of size (2n, 2m).

We prove that DCk is not recognizable by a tiling system, hence it is not in REC.

Theorem 2 (Comparison with REC). For every k ≥ 1, the language DCk is not in
the REC family.

Proof. By contradiction, assume that DCk is in REC. Without loss of generality, we

consider only the case k = 1. Consider the following picture p in DC1:
a b
c d

. From

closure properties of REC, the language p⦶+ is in REC, hence also the language:

R =
(
a⦶+ ⦶ b⦶+

)
⊖

(
(a ⊖ c) ⦶ p⦶+ ⦶ (b ⊖ d)

)
⊖

(
c⦶+ ⦶ d⦶+

)
.

A picture in R has a+b+ in the top row and c+d+ in the bottom row. Let T =DC1∩R⊖+.
By closure properties of REC, both T and T⊖+ are in REC. The first row of every
picture in T⊖+ has the form anbn, since it is the intersection of Dyck word language
over {a, b}with the regular language a+b+. By applying the Horizontal Iteration Lemma
of [7] (Lemma 9.1) to T⊖+, there exists a (suitably large) picture t in T⊖+ which can
be written as the horizontal concatenation of the three (non empty) pictures x, q, y, i.e.,
t = x ⦶ q ⦶ y, such that x ⦶ qi⦶

⦶ y is also in T⊖+, thus contradicting the fact that the
top row of the pictures in T⊖+ must have the form anbn. ��
2 More general definitions of Dyck crosswords are possible if the component languages have
different alphabets.

144 S. Crespi Reghizzi et al.

A question, related to Remark 1, to be positively answered, is whether the row
and column languages of DCk, respectively, saturate the row and column components
DRow

k ,DCol
k . Let P ⊆ Δ++ be a language over an alphabet Δ; the row language of P

is: ROW(P) = {w ∈Δ+ | there exist p ∈P, p′, p′′
∈Δ++ such that p = p′

⊖w⊖ p′′}. The
column language of P , COL(P), is analogously defined.

Theorem 3 (Saturation of components). ROW(DCk) =DRow
k , COL(DCk) =DCol

k .

Proof. It is enough to prove that DRow
k ⊆ ROW(DCk), since the other inclusion is

obvious and the case for columns is symmetrical. Without loss of generality, we con-
sider only the case k = 1. We prove by induction on n ≥ 2, that for every word
w ∈ DRow

1 of length n there exists a picture p ∈ DC1 of the form w1 ⊖ w2 ⊖ w ⊖ w3

for w1, w2, w3 ∈ DRow
1 . There are two base cases, the words ab and cd. The word ab

is (also) the third row in the DC1 picture ab ⊖ cd ⊖ ab ⊖ cd, while cd is (also) the
third row in the DC1 picture ab ⊖ ab ⊖ cd ⊖ cd. The induction step has three cases: a
word w ∈DRow

1 of length n > 2 has the form w′w′′, or the form aw′b or the form cw′d,
for some w′, w′′

∈ DRow
1 of length less than n. Let p′, p′′ be the pictures verifying the

induction hypothesis for w′ and w′′, respectively. The case of concatenation w′w′′ is
obvious (just consider the picture p′

⦶ p′′). The case aw′b can be solved by considering
the picture (a ⊖ c ⊖ a ⊖ c) ⦶ p′

⦶ (b ⊖ d ⊖ b ⊖ d), which is in DC1. Similarly, for the
case cw′d just consider the DC1 picture (a ⊖ a ⊖ c ⊖ c) ⦶ p′

⦶ (b ⊖ b ⊖ d ⊖ d). ��

3.1 Matching-Graph Circuits

Fig. 1. (Left) A DC1 picture whose cells are partitioned into 4 quadruples of matching sym-
bols, identified by the same node size (color). (Middle) An alternative visualization by a graph
using edges that connect matching symbols (see Definition 3). (Right) The use of corner symbols
instead of letters highlights the row and column couplings of rectangle vertexes. (Color figure
online)

Indeed, some interesting and surprising patterns may occur in DCk pictures. The sim-
plest patterns are found in pictures that are partitioned into rectangular circuits connect-
ing four elements, see, e.g., Fig. 1, middle, where an edge connects two symbols on the
same row (or column) which match in the row (column) Dyck word. Notice that the
graph made by the edges contains four disjoint circuits of length four, called rectangles
for brevity. Three of the circuits are nested inside the outermost one.

We formally define the graph, situated on the picture grid, made by such circuits.

Row-Column Combination of Dyck Words 145

Definition 3 (Matching graph). The matching graph associated with a picture p ∈
DCk, of size (m,n), is a pair (V,E) where the set V of nodes is the set {1, . . . n} ×
{1 . . . m} with the obvious labeling over Dk, and the set E of edges is partitioned in
two sets of row and column edges defined as follows, for all 1 ≤ i ≤ n, 1 ≤ j ≤m:

– for all pairs of matching letters pi,j , pi,j′ in ΔRow
k , with j < j′

≤m, there is a row
(horizontal) edge connecting (i, j) and (i, j′),

– for all pairs of matching letters pi,j , pi′,j in ΔCol
k , with i < i′ ≤ n, there is a column

(vertical) edge connecting (i, j) and (i′, j).

Therefore, there is a horizontal edge connecting two matching letters ai, bi or ci, di that
occur in the same row; analogously, there is a vertical edge connecting two matching
letters ai, ci or bi, di, that occur in the same column.

Theorem 4 (Matching circuits). Let p be a picture in DCk. Then:

1. its matching graph is partitioned into simple circuits, called matching circuits;
2. for all 1 ≤ j ≤ k, the clockwise visit of a matching circuit, starting from any of its

nodes with label aj , yields a word in (ajbjdjcj)+, called the circuit label.

Proof. Part (1): By Definition 3, every node of G has degree 2, with one row edge and
one column edge, since its corresponding row and column in picture p are Dyck words.
Every node must be on a circuit, otherwise there would be a node of degree 1. Each
circuit must be simple and the sets of nodes on two circuits are disjoint, else one of the
nodes would have degree greater than 2. Part (2) is obvious, since from a node labeled
aj there is a row edge connecting with a node labeled bj , for which there is a column
edge connecting with a dj , then a row edge connecting dj with cj , etc., finally closing
the circuit with a column edge connecting a cj with the original aj . ��
Notice that when a picture on Δ1 is represented by its matching graph, the node labels
are redundant since they are uniquely determined on each circuit.

Theorem 4 has a simple interpretation in the case of Dyck words: the associated
matching graph of a Dyck word is the well-known, so-called rainbow representation,
e.g.,

a a b a b b

of the syntax tree of the word. A matching graph then corresponds to the binary relation
induced by the rainbow arcs and a matching circuit just to an arc.

Remark 2. The following elementary property of Dyck words immediately generalizes
to crosswords. Let x ai y bi w be a Dyck word, where ai, bi match; then, for any
coupled pair aj , bj , 1 ≤ j ≤ k, the string x aj y bj w is a Dyck word. For crosswords,
the statement is that, by replacing a matching circuit labeled ai bi di ci in a picture in
DCk with a matching circuit labeled aj bj dj cj , the result is still in DCk.

A natural question is whether there are pictures with more complex matching cir-
cuits than rectangular ones. It is maybe unexpected that moving from 1D to 2D the

146 S. Crespi Reghizzi et al.

circuit length is not just 2× 2, but may increase without an upper bound. Two examples
of pictures in DC1 with matching circuits longer than four are in Fig. 2: (left), with a
circuit of length 12 labeled by the word (abdc)3, and (right) with a circuit of length 36.

The pictures of DCk, like the ones in Figs. 1 and 4, that are devoid of circuits longer
than four make a proper subset that we define for later convenience.

Definition 4 (Quaternate DCk). A Dyck crossword picture such that all its matching
circuits are of length 4 is called quaternate; the corresponding language, denoted by
DQk, is the quaternate Dyck language.

Corollary 1. Quaternate Dyck languages DQk are strictly included in Dyck cross-
words DCk for all k ≥ 1.

The structure of quaternate pictures having only rectangular circuits is made more evi-
dent by an alternative typography for the Dyck alphabet, using so-called corner symbols
instead of Latin letters. Let Δ1 be the alphabet {I,G,C,A} with the correspon-

dence: a =I, b =G, c =C, d =A. Thus, the picture I G

C A

I G

C A
is the same as a b

c d
a b
c d

.

Another example is in Fig. 1, right.
Section 4 studies the quaternate pictures and defines a sublanguage where the con-

tainment relation of rectangles defines a partial order.

Fig. 2. Two pictures in DC1. (Left) The picture is partitioned into two circuits of length 12 and
4. (Right) The picture includes a circuit of length 36 and seven rectangular circuits. Its pattern
embeds four partial copies (direct or rotated) of the left picture; in, say, the NW copy of the
evidenced “triangle”, the letters b, d, c have been changed to a, a, a, also evidenced by larger
dots. Such a transformation can be reiterated to grow a series of pictures.

We continue with the study of longer circuits.

Theorem 5 (Unbounded circuit length). For all h ≥ 0 there exist a picture p(h) in
DCk that contains a matching circuit of length 4 + 8h.

Row-Column Combination of Dyck Words 147

Fig. 3. (Left) Picture p(1) used as induction basis of Theorem 5. It is covered by a circuit of
length 4 + 8 · 1 = 12 and by 3 rectangles (not shown). (Middle) Picture p(1) ⊖ p(1), the four arcs
to be deleted are in green (solid lines), and the four nodes to be relabeled are in blue (also larger
dots). (Right) Inductive step: picture p(2) is obtained from p(1)⊖p(1) by canceling the four green
arcs, relabeling the four larger blue nodes as shown (the corresponding rectangle is in blue) and
finally adding two solid arcs (blue) that join the double-noose circuits. A circuit of length 4+8 ·2
results. All length 4 circuits of p(h−1) and p(1) (not shown for clarity) are unchanged in p(h).
(Color figure online)

Proof. We prove the statement for DC1, since DC1 ⊆DCk. The case h = 0 is obvious.
The case h > 0 is proved by induction on a sequence of pictures p(1), . . . p(h) using as
basis the DC1 picture p(1) in Fig. 3 (left), that has size (m(1), 6), where m(1) = 4, and
contains a circuit of length 12 = 4 + 8, referred to as double-noose.

Induction step. It extends picture p(h−1), h > 1, by appending a copy of p(1) under-
neath and making a few changes essentially defined in Fig. 3 (right). It is easy to see
that the result is a picture p(h) of size (m(h−1) + 4, 6) such that: p(h) ∈ DC1 and p(h)
contains a circuit of length 4 + 8h. ��
Another series of pictures that can be enlarged indefinitely is the one in Fig. 2, where
the first two terms of the series are shown.

An examination of Fig. 3 in the next example shows that there are subsets of DCk

that are in REC, yet they contain quite complex matching circuits.

Example 1. The language L composed of all pictures p(h), for all h ≥ 1, of Theorem 5
is in the REC family. We first extend the alphabet of L to {a, b, c, d, a1, b1, c1, d1} so
that the circuits longer than 4 are over the alphabet {a1, b1, c1, d1} and the remaining
circuits are over {a, b, c, d}. The resulting pictures p′

(h), constituting a language L′,
have only 6 distinct rows, here identified (from top to bottom) with the letters 1, . . . , 6:

1: a1aa1b1bb1, 2: c1abd1ab, 3: a1cdb1cd, 4: acc1d1db, 5: caa1b1bd, 6: c1cc1d1dd1 .

It is clear from the construction of the pictures ph for h > 1 that L′ can be defined as
1⊖(2⊖3⊖4⊖5)∗⊖2⊖3⊖6. Since each of rows 1, . . . , 6 can be seen as a finite language
(thus, in REC) and tiling systems are closed by vertical concatenation and closure, also

148 S. Crespi Reghizzi et al.

L′ is in REC. By closure of REC under projection, also L is in REC (by projecting a1

to a, b1 to b, etc.)

From an elementary property of Dyck word languages it follows that the distance
on the picture grid between two nodes connected by an edge is an odd number, to let
room for an even number of letters. This suggests the following Lemma 1.

Given a picture p over an alphabet Γ , let x=pi,j , for x∈Γ . We say that the occurrence
of x in position (i, j) has row parity 1 if i is even, row parity −1 otherwise; similarly,
x in (i, j) has column parity 1 if j is even, column parity −1 otherwise.

Lemma 1 (Circuit property). Let γ be a matching circuit of a picture in DCk, with
label in (aibidici)+.

i) All occurrences of ai and bi have the same row parity, but they have opposite row
parity to every occurrence of ci and di;

ii) All occurrences of ai and ci have the same column parity, but they have opposite
column parity to every occurrence of bi and di.

Proof. Without loss of generality, let k = 1. Let an occurrence of a in γ be in a position
row (r, s). The vertical matching symbol c of a (in the same column s) must occur in
a row of the form 2n + 1 + r, for some n ≥ 0, since there must be an even number of
positions in p between the occurrence of a and c. The same happens for the symbol d
matching c and for the b matching the above occurrence of a. The circuit γ continue
alternating between odd and even rows, and between odd and even columns, without
modifying the row and column parity of each occurrence of the same letter. ��
An application of Lemma 1 follows.

Let p be a picture in DCk and G its matching graph. A matching circuit that visits
all the nodes of G is called Hamiltonian.

Theorem 6 (Hamiltonian circuits). The only existing DCk pictures with a Hamilto-

nian matching circuit are defined by the set

{
ai bi

ci di
| 1 ≤ i ≤ k

}
.

Proof. Without loss of generality, let k = 1. By contradiction, assume that a picture
p ∈ DC1, of size greater than (2, 2), has a Hamiltonian circuit. The first row of any
picture is a Dyck word over {a, b} and the leftmost column is a (vertical) word over
{a, c}. By Lemma 1, the second row must be a word over {c, d} and the second column
from the left is over {b, d}. Therefore, the subpicture (p(1, 1) ⊖ p(2, 1)) must be a ⊖ c
(a cannot occur in the second row, therefore the row must begin with the open letter c
for rows) and similarly the subpicture (p(1, 2) ⊖ p(2, 2)) is b ⊖ d.

Therefore p contains the subpicture
a b
c d

in the top, left corner, i.e., it has a matching

circuit of length 4, a contradiction with the existence of a Hamiltonian circuit for a
picture of size greater than (2, 2). ��

Row-Column Combination of Dyck Words 149

Fig. 4. Both pictures are quaternate but not partially ordered, hence not neutralizable by Theo-
rem 7. (Left) To avoid clogging, the rectangles in the specular right half of the left picture are not
drawn. (Right) The vertexes relevant for illustrating partial containment are indexed.

4 A Sublanguage Preserving Characteristic Dyck Words
Properties

This section only deals with quaternate pictures, whose circuits we call “rectangles”.
We show that the standard definition of Dyck words by means of the cancellation rule3

can be extended to a sublanguage of quaternate pictures that is characterized by a geo-
metrical relation of containment between the rectangles.

The absence of long and intricate circuits will permit to define a partial containment
relation between the rectangles present in a picture, and then to define a partial order
if such a relation is acyclic. The corresponding language is called partially ordered
quaternate, DPOk. We also define a subset of Dyck crosswords, named neutralizable
(DNk), by means of a cancellation rule suitably transformed into a neutralization oper-
ation. At last we prove that the partially ordered and the neutralizable languages are the
same, and we list some of their properties.

Preliminarily, we transform the cancellation rule for words aibi → ε, which erases
innermost matching letters, into a length preserving rule, since in 2D the erasure of an
internal subpicture would create a “hole”, producing an object that no longer qualifies
as a picture. The Dyck cancellation rule is rephrased as the neutralization rule aibi →
NN , where N is a new “neutral” (i.e., not coupled) letter; in this way a Dyck word is
mapped to a word in N+ by a series of neutralization steps.

Geometrical Containment Relation. Consider two rectangles R1 and R2 with vertexes,
resp., a1, b1, c1, d1 and a2, b2, c2, d2 (the letters are distinct to simplify reference).

We say that R1 is partially contained in R2, writing R1 < R2, if some vertexes of
R1 are inside or on a side of R2. The partial containment relation of a picture is the set
of all such relations. Notice that the number of vertexes contained in R2 may be 1, 2 or
4, but not 3 which is geometrically impossible.

3 In [4] the property of well nesting of parentheses is also reformulated for quaternate pictures.

150 S. Crespi Reghizzi et al.

Figure 4, left, illustrates (among others) the following containment relations: R1 <

R2, R2 <R1, R3 <R1, R3 <R2, R4 <R1.

Definition 5 (Partially ordered quaternate picture). A quaternate picture in DQk is
called partially ordered if its partial containment relation “<” is acyclic. The language
of such pictures is denoted by DPQk.

We observe that the pictures in Fig. 4 are not partially ordered, because they respectively
contain the cycles R1 < R2 < R1 and R1 < R2 < R3 < R4 < R1. On the other hand, the
picture presented in Example 2 below is partially ordered since its partial containment
relation (displayed in the example) is acyclic.

Neutralizable Dyck Languages
We introduce a neutralization rule mapping the letters in a quadruple, representing the
corners of a subpicture, to a new neutral letter N . The neutralizable Dyck language
DNk is obtained by iterating neutralization, starting from 2-by-2 subpictures, until the

picture is wholly neutralized. Given a picture p, all subpictures of the form
I G

C A
are

neutralized, i.e., replaced in p by the subpicture
N N
N N

. If p includes a subpicture with

four matching corners and having its interior and sides completely neutralized, then also

the four corners are neutralized. This is schematized by the subpicture

I N . . . N G

N . . . N
... N . . . N

...
N . . . N

C N . . . N A

that

is replaced by a subpicture of the same size having only N as letters. The procedure
successfully terminates when the resulting picture is in N++.

Definition 6 (Neutralizable Dyck language). Let N be a new symbol not in Δk. The
neutralization relation

ν−→ ⊆ ({N} ∪ Δk)
++

× ({N} ∪ Δk)
++, is the smallest relation

such that for every pair of pictures p, p′ in ({N} ∪ Δk)
++, p

ν→ p′ if there are m,n ≥ 2
and 1 ≤ i ≤ k, such that p′ is obtained from p by replacing a subpicture of p of the form:

(ai ⊖Nm−2,1
⊖ ci) ⦶Nm,n−2

⦶ (bi ⊖Nm−2,1
⊖ di). (2)

with the picture (of the same size) Nm,n.
The neutralizable Dyck language, denoted by DNk ⊆ Δ++k , is the set of pictures p

such that there exists p′
∈N++ with p

ν→+

p′.

To sum up, a DNk picture is transformed into a picture in N++ by a series of neutral-
izations, applied in any order. Clearly, every neutralizable picture is a quaternate.

Example 2 (Neutralizations). The following picture p on the alphabet Δ1 is in DN1

since it reduces to the neutral one by means of a sequence of six neutralization steps:

p =

I I G I G G

I I G C A G

C C A I G A

C C A C A A

ν→
I I G I G G

I N N C A G

C N N I G A

C C A C A A

ν→
I N N I G G

I N N C A G

C N N I G A

C N N C A A

Row-Column Combination of Dyck Words 151

ν→
I N N N N G

I N N N N G

C N N I G A

C N N C A A

ν→
I N N N N G

I N N N N G

C N N N N A

C N N N N A

ν→
I N N N N G

N N N N N N
N N N N N N

C N N N N A

ν→
N N N N N N
N N N N N N
N N N N N N
N N N N N N

Neutralizations have been applied in a left to right order.
We show the partial containment relation “<”, with the numbering below.

The relation represented by the graph is acyclic and defines a partial order on the set of
rectangles, thus proving that this picture is in DPO1.

It is no coincidence that the picture of Example 2 is both neutralizable and partially
ordered; the next theorem proves that the two definitions define the same set of pictures.

Theorem 7 (Partially ordered equals neutralizable). A quaternate picture is neu-
tralizable if, and only if, it is partially ordered, i.e., DNk =DPOk.

Proof. Let relation < be acyclic. Then sort the rectangles in topological order and
apply neutralization starting from a rectangle without predecessors. When a rectangle
is checked, all of its predecessors have already been neutralized, and neutralization can
proceed until all rectangles are neutralized. The converse is obvious: if relation < has a
cycle, no rectangle in the cycle can be neutralized. ��
This result supports the analogy between the neutralization rule for Dyck words and the
rule of the same name for pictures: both rely on a partial order relation such that any
topological sorting order can be applied to perform neutralization. For Dyck words, the
order is a tree partial order, whereas for pictures it is a directed acyclic graph.

Properties of Neutralizable Picture Languages. The result on row/column language
saturation (Theorem 3) remains valid, i.e., ROW(DNk)=DRow

k , COL(DNk)=DCol
k ,

since the languages used in the proof of that theorem are also in DNk.
Similarly, by a proof almost identical to the one of Theorem 2, since the language

T⊖+ can be obtained from DNk by intersection with a recognizable language, we have:

Theorem 8 (Comparison with REC). The languages DNk and DQk are not in REC
for every k ≥ 1.

From Theorem 7 and from the examples of Fig. 4, we have the inclusions:

Theorem 9 (Hierarchy). DNk � DQk � DCk.

152 S. Crespi Reghizzi et al.

5 Conclusion

In our opinion, the mathematical study of the properties of 2D Dyck languages is a
promising research area, where much remains to be understood, for the general case
of (simple) Dyck crosswords containing matching circuits of any length. Very diverse
patterns may occur in such crosswords, that we have been able to start classifying just
in the simpler case of rectangular circuits. In fact, the variety of patterns depends on
quite a few circuit parameters such as the circuit length, the number of crossings in a
circuit or between different circuits, and, more vaguely, the relative positions of circuits
on the grid. We mention a few specific open problems.

First, by Theorem 4 the length of circuits in DC1 pictures is unbounded, of the form
4 + 8h for all values h ≥ 0. The question is whether, for each n ≥ 1, there is a DC1

picture containing a circuit of length 4n.
Second, it seems that every picture in DCk has at least one circuit of length 4.
Third, the number of circuits present in a picture is unbounded for the picture series

used in the proof of Theorem 4. This raises the more general question whether, by
bounding the number of circuits present in a picture, the number of such pictures is also
bounded. (Theorem 6 bounds the number of pictures with only one circuit.)

Another question concerns the properties of those DCk sublanguages that are in
REC. For instance, Example 1, though visually complex, satisfies such a hypothesis.

At last, we mention a related future research direction on context-free cross-
words, having as baseline the present work on Dyck crosswords and the variant of
the Chomsky-Schützenberger Theorem [1] that characterizes the context-free word lan-
guages as the non-erasing homomorphism of the intersection of a Dyck language and a
regular one.

References

1. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages. In: Braf-
ford, H. (ed.) Computer Programming and Formal Systems, pp. 118–161. North-Holland,
Amsterdam (1963)

2. Crespi Reghizzi, S., Giammarresi, D., Lonati, V.: Two-dimensional models. In: Pin, J. (ed.)
Handbook of Automata Theory, pp. 303–333. European Mathematical Society Publishing
House (2021)

3. Crespi-Reghizzi, S., Pradella, M.: Tile rewriting grammars and picture languages. Theor.
Comput. Sci. 340(1), 257–272 (2005). https://doi.org/10.1016/j.tcs.2005.03.041

4. Crespi Reghizzi, S., Restivo, A., San Pietro, P.: Two-dimensional Dyck words. CoRR
abs/2307.16522 (2023)

5. Drewes, F.: Grammatical Picture Generation: A Tree-Based Approach. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-32507-7

6. Fenner, S.A., Padé, D., Thierauf, T.: The complexity of regex crosswords. Inf. Comput. 286,
104777 (2022). https://doi.org/10.1016/j.ic.2021.104777

7. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-59126-6 4

8. Latteux, M., Simplot, D.: Recognizable picture languages and domino tiling. Theor. Comput.
Sci. 178(1–2), 275–283 (1997). https://doi.org/10.1016/S0304-3975(96)00283-6

https://doi.org/10.1016/j.tcs.2005.03.041
https://doi.org/10.1007/3-540-32507-7
https://doi.org/10.1016/j.ic.2021.104777
https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1016/S0304-3975(96)00283-6

Row-Column Combination of Dyck Words 153

9. Matz, O.: Regular expressions and context-free grammars for picture languages. In: Reis-
chuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 283–294. Springer, Heidel-
berg (1997). https://doi.org/10.1007/BFb0023466

10. Nivat, M., Saoudi, A., Subramanian, K.G., Siromoney, R., Dare, V.R.: Puzzle grammars and
context-free array grammars. Int. J. Pattern Recogn. Artif. Intell. 5, 663–676 (1991)

11. Průša, D.: Two-dimensional Languages. Ph.D. thesis, Charles University, Faculty of Mathe-
matics and Physics, Czech Republic (2004)

12. Siromoney, R., Subramanian, K.G., Dare, V.R., Thomas, D.G.: Some results on picture lan-
guages. Pattern Recogn. 32(2), 295–304 (1999)

https://doi.org/10.1007/BFb0023466

Group Testing in Arbitrary Hypergraphs
and Related Combinatorial Structures

Annalisa De Bonis(B)

Dipartimento di Informatica, Università di Salerno, Fisciano, SA, Italy

adebonis@unisa.it

Abstract. We consider a generalization of group testing where the
potentially contaminated sets are the members of a given hypergraph
F = (V,E). This generalization finds application in contexts where con-
taminations can be conditioned by some kinds of social and geographi-
cal clusterings. We study non-adaptive algorithms, two-stage algorithms,
and three-stage algorithms. Non-adaptive group testing algorithms are
algorithms in which all tests are decided beforehand and therefore can be
performed in parallel, whereas two-stage and three-stage group testing
algorithms consist of two stages and three stages, respectively, with each
stage being a completely non-adaptive algorithm. In classical group test-
ing, the potentially infected sets are all subsets of up to a certain number
of elements of the given input set. For classical group testing, it is known
that there exists a correspondence between non-adaptive algorithms and
superimposed codes, and between two-stage group testing and disjunc-
tive list-decoding codes and selectors. Bounds on the number of tests for
those algorithms are derived from the bounds on the dimensions of the
corresponding combinatorial structures. Obviously, the upper bounds for
the classical case apply also to our group testing model. In the present
paper, we aim at improving on those upper bounds by leveraging on the
characteristics of the particular hypergraph at hand. In order to cope
with our version of the problem, we introduce new combinatorial struc-
tures that generalize the notions of classical selectors and superimposed
codes.

1 Introduction

Group testing consists in detecting the defective members of a set of objects
O by performing tests on properly chosen subsets (pools) of the given set O. A
test yields a “yes” response if the tested pool contains one or more defective
elements, and a “no” response otherwise. The goal is to find all defectives by
using as few tests as possible. Group testing origins date back to World War II
when it was introduced as a possible technique for mass blood testing [4]. Since
then, group testing has become a fundamental problem in computer science and
has been widely investigated in the literature both for its practical implications
and for the many theoretical challenges it poses. Applications of group testing
span a wide variety of situations ranging from conflict resolution algorithms for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 154–168, 2024.
https://doi.org/10.1007/978-3-031-52113-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_11&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_11

Group Testing in Arbitrary Hypergraphs 155

multiple-access systems [19], fault diagnosis in optical networks [9], quality con-
trol in product testing [17], failure detection in wireless sensor networks [13],
data compression [10], and many others. Among the modern applications of
group testing, some of the most important ones are related to the field of molec-
ular biology, where group testing is especially employed in the design of screening
experiments. Du and Hwang [5] provide an extensive coverage of the most rele-
vant applications of group testing in this area. In classical group testing, the set
of defectives is any of the possible subsets of size less than or equal to a certain
parameter d. In the present paper, we consider a more general version of group
testing parameterized by a hypergraph F = (V,E), with the contaminated set
being one of the hyperedges of E.

Related Work and Our Contribution. Classical group testing has been
studied very thoroughly both with respect to adaptive strategies, i.e. algorithms
that at each step decide which group to test by looking at the responses of
previous tests, and with respect to non-adaptive strategies, i.e., strategies in
which all tests are decided beforehand. It is well-know that the best adaptive
strategies achieve the information theoretic lower bound Ω(d log(n/d)), where
n is the total number of elements and d is the upper bound on the number of
defectives. Further, it is known that non-adaptive strategies for classical group
testing are much more costly than their adaptive counterparts. The minimum
number of tests used by the non-adaptive procedures is estimated by the mini-
mum length of certain combinatorial structures known under the name of d-cover
free families, or equivalently, d-superimposed codes and strongly selective families
[1], [6,7,12]. The known bounds for these combinatorial structures [6,16] imply
that the number of tests of any non-adaptive group testing algorithm is lower
bounded by Ω((d2/ log d) log n) and that there exist non-adaptive group testing
algorithms that use O(d2 log n) tests. Of particular practical interest in the field
of biological screening are two-stage group testing procedures, i.e., procedures
consisting of two stages each of which is a completely non-adaptive algorithm.
As far as it concerns classical group testing, the best two-stage algorithms [3]
are asymptotically as efficient as the best completely adaptive strategy in that
they achieve the information theoretic lower bound Ω(d log(n/d)).

In this paper, we focus on non-adaptive group testing and two-stage group
testing. In particular, we are interested in trivial two-stage group testing algo-
rithms, i.e., two-stage algorithms that in the second stage are allowed only to
perform tests on individual elements. These algorithms are very useful in prac-
tice since in many applications confirmatory tests on individual elements are
needed anyway to ensure that they are really defective. We also give existential
results for three-stage group testing algorithms, i.e., algorithms that consist of
three stages, each of which is a non-adaptive algorithm.

The version of group testing considered in the present paper has been ini-
tiated only recently in [8] and continued in [18]. Similar search models were
previously considered by the authors of [15] who assumed a known community
structure in virtue of which the population is partitioned into separate fami-
lies and the defective hyperedges are those that contain elements from a certain

156 A. De Bonis

number of families. While in that paper the information on the structure of
potentially infected groups is used to improve on the efficiency of the group test-
ing algorithms, other papers, [11,20], exploit this knowledge to improve on the
efficiency of decoding the tests’ responses. A formal definition of group testing
in general hypergraphs has been given in [8]. The authors of [8] consider both
adaptive and non-adaptive group testing. For the adaptive setting, when hyper-
edges in E are of size exactly d, they give an O(log |E| + d log2 d) algorithm
that is close to the Ω(log |E| + d) lower bound they also prove in the paper. In
the non-adaptive setting, they exploit a random coding technique to prove an
O(d

p log |E|) bound on the number of tests, where d is the maximum size of a
set e ∈ E and p is a lower bound on the size of the difference e′ \ e between any
two hyperedges e, e′ ∈ E. In [18] the author presents a new adaptive algorithm
for generalized group testing, which is asymptotically optimal if d = o(log2 |E|)
and, for d = 2, gives an asymptotically optimal algorithm that works in three
stages.

In this paper, we formally define combinatorial structures that are substan-
tially equivalent to non-adaptive algorithms for group testing in general hyper-
graphs. The combinatorial structures introduced in this paper extend the above-
mentioned classical superimposed codes [12] in a way such that the desired prop-
erty is not enforced for all subsets of up to a certain number of codewords but
only for subsets of codewords associated to the hyperedges of the given hyper-
graph. Constructions for these generalized superimposed codes allow to achieve,
in the non-adaptive setting, the same O(d

p log |E|) upper bound obtained in [8]. In
order to design our algorithms, we introduce a notion of selectors, also param-
eterized by the set of hyperedges E, that generalizes the notion of (k,m, n)-
selector introduced in [3]. For particular values of the involved parameters, our
selectors correspond to non-adaptive algorithms for our group testing problem,
These selectors are also at the basis of our two-stage and three-stage algorithms.
In particular, we give a trivial two-stage algorithm that uses O(qd

χ log |E| + dq)
tests, where χ is a lower bound on |⋃q

i=1 e′
i \e|, for any q +1 distinct hyperedges

e, e′
1 . . . , e′

q. If for a given constant q ≥ 1, it holds that |⋃q
i=1 e′

i \ e| = Ω(d),
then this algorithm asymptotically achieves the above-mentioned Ω(log |E| + d)
lower bound. Further, we give an O(

√
d log |E| + d) three-stage group testing

algorithm.

2 Notations and Terminology

For any positive integer m, we denote by [m] the set of integers {1, . . . , m}. A
hypergraph is a pair F = (V,E), where V is a finite set and E is a family of
subsets of V . The elements of E will be called hyperedges. If all hyperedges of
E have the same size d then the hypergraph is said to be d-uniform.

In the present paper, the hypergraph specifying the set of potentially conta-
minated sets is assumed to have V = [n]. Let F = ([n], E) be a given hypergraph,
and let χ = min{|⋃q

i=1 e′
i \ e|, for any q + 1 distinct e, e′

1, . . . , e
′
q ∈ E}. For any

hyperedge e ∈ E and any q distinct hyperedges e′
1, . . . , e

′
q ∈ E \ {e}, we denote

Group Testing in Arbitrary Hypergraphs 157

by Se,(e′
1,...,e′

q)
the set of d+χ integers in [n] such that d of these integers are the

elements of e whereas the remaining are the χ smallest elements in
⋃q

i=1 e′
i \ e.

In order to properly define the combinatorial structures related to our group
testing problem, we extend the definition of Se,(e′

1,...,e′
q)

to arbitrary hypergraphs
without assuming any lower bound on the size of the unions

⋃q
i=1 e′

i \ e. To this
aim, we augment the set of vertices [n] with χ dummy vertices in+1, . . . in+χ,
with χ this time being any positive integer smaller than or equal to n − d, and
define Se,(e′

1,...,e′
q),χ

as follows: Se,(e′
1,...,e′

q),χ
is defined exactly as Se,(e′

1,...,e′
q)

if
|⋃q

i=1 e′
i \ e| ≥ χ; otherwise it is defined as the subset of d + χ integers in [n]

such that d of these integers are the vertices of e and the remaining are the
integers in (

⋃q
i=1 e′

i \ e) ∪ {in+1, . . . , in+χ−| ⋃q
i=1 e′

i\e|}.
For q = 1, we will denote Se,(e′

1,...,e′
q)

and Se,(e′
1,...,e′

q),χ
with Se,e′ and Se,e′,χ,

respectively. Notice that given two hyperedges e, e′ ∈ E, the set Se,e′,χ contains
one or more dummy vertices if and only if |e′ \ e| < χ.

Notice that there are at most |E|(|E|−1
q

)
distinct sets Se,(e′

1,...,e′
q)

since for
a given (q + 1)-tuple of distinct hyperedges (e, e′

1, . . . , e
′
q+1) any permutation

of e′
1, . . . , e

′
q+1 does not affect Se,(e′

1,...,e′
q)

. Moreover, for any positive χ, this
estimate holds also for the number of distinct sets Se,(e′

1,...,e′
q),χ

since the indices
of the dummy vertices that are eventually added to Se,(e′

1,...,e′
q)

, in order to obtain
Se,(e′

1,...,e′
q,χ), are fixed once the hyperedges e, e′

1, . . . , e
′
q have been chosen. More

precisely, they are the smallest χ − |⋃q
i=1 e′

i \ e| integers in {in+1, . . . in+χ}.
We remark that in our group testing problem, given an input hypergraph

F = ([n], E), every vertex of [n] is contained in at least one hyperedge of E. If
otherwise, one could remove the vertex from the hypergraph without changing
the collection of potentially defective hyperedges. As a consequence, for a given
hypergraph F = ([n], E) we need only to specify its set of hyperedges E to
characterize both the input of the problems and the related combinatorial tools.

3 Non-adaptive Group Testing for General Hypergraphs

In this section, we illustrate the correspondence between non-adaptive group
testing algorithms for an input set of size n and families of n subsets. Indeed,
given a family F = {F1, . . . , Fn} with Fi ⊆ [t], we design a non-adaptive
group testing strategy as follows. We denote the elements in the input set
by the integers in [n] = {1, . . . , n}, and for i = 1, . . . , t, we define the group
Ti = {j : i ∈ Fj}. Obviously, T1, . . . , Tt can be tested in parallel and there-
fore the resulting algorithm is non-adaptive. Conversely, given a non-adaptive
group testing strategy for an input set of size n that tests T1, . . . , Tt, we define
a family F = {F1, . . . , Fn} by setting Fj = {i ∈ [t] : j ∈ Ti}, for j = 1, . . . , n.
Alternatively, any non-adaptive group testing algorithm for an input set of size
n that performs t tests can be represented by a binary code of size n, with
each codeword being a binary vector of length t. This is due to the fact that
any family of size n on the ground set [t] is associated with the binary code of
length t whose codewords are the characteristic vectors of the members of the

158 A. De Bonis

family. Given such a binary code C = {c1, . . . , cn}, one has that j belongs to
pool Ti if and only if the i-th entry cj(i) of cj is equal to 1. Such a code can
be represented by a t × n binary matrix M such that M [i, j] = 1 if and only
if element j belongs to Ti. We represent the responses to tests on T1, . . . , Tt by
a binary vector whose i-th entry is equal to 1 if and only if Ti tests positive.
We call this vector the response vector. For any input set of hyperedges E on
[n], the response vector is the bitwise OR of the columns associated with the
vertices of the defective hyperedge e ∈ E. It follows that a non-adaptive group
testing strategy successfully detects the defective hyperedge in E if and only if
for any two distinct hyperedges e, e′ ∈ E we obtain two different response vec-
tors. In terms of the associated binary matrix M , this means that the bitwise
OR of the columns with indices in e and the OR of the columns with indices in
e′ are distinct. As for the two-stage algorithm, the non-adaptive algorithm used
in the first stage should guarantee to “separate” at least a certain number of
non-defective hyperedges from the defective one.

4 Combinatorial Structures for Group Testing
in Arbitrary Hypergraphs

The following definition provides a combinatorial tool which is essentially equiv-
alent to a non-adaptive group testing algorithm in our search model.

Definition 1. Given a hypergraph F = (V,E) with V = [n] with hyperedges
of size at most d, we say that a t × n matrix M with entries in {0, 1} is an E-
separable code if for any two distinct hyperedges e, e′ ∈ E, it holds that

∨
j∈e cj �=∨

j∈e′ cj, where cj denotes the column of M with index j. The integer t is the
length of the E-separable code.

Having in mind the correspondence between binary codes and non-adaptive algo-
rithms illustrated in Sect. 3, one can see that a non-adaptive algorithm success-
fully determines the contaminated hyperedge in E if and only if the binary code
associated to the algorithm is E-separable. Therefore, the minimum number of
tests of such an algorithm coincides with the minimum length of an E-separable
code. Our existential results for E-separable codes are in fact based on existential
results for the combinatorial structure defined below.

Definition 2. Given a d-uniform hypergraph F = (V,E) with V = [n] and two
integers p and m with 1 ≤ p ≤ n − d and 1 ≤ m ≤ d + p, we say that a t × n
matrix M with entries in {0, 1} is an (E, p,m)-selector of size t if for any two
distinct hyperedges e, e′ ∈ E, the submatrix of M consisting of the columns with
indices in Se,e′,p contains at least m distinct rows of the identity matrix Id+p.

We will see in Sect. 5.1 that for m = d+1 and p = min{|e′\e| : e, e′ ∈ E and e �=
e′}, an (E, p,m)-selector is indeed an E-separable code. The following definition
generalizes Definition 2 and is at the basis of our two-stage algorithm.

Group Testing in Arbitrary Hypergraphs 159

Definition 3. Given a d-uniform hypergraph F = (V,E) with V = [n] and
integers q, m and χ such that 1 ≤ q ≤ |E| − 1 and 1 ≤ m ≤ χ + d ≤ n, we say
that a t×n matrix M with entries in {0, 1} is an (E, q,m, χ)-selector of size t if,
for any e ∈ E and any other q distinct hyperedges e′

1, . . . , e
′
q ∈ E, the submatrix

of M consisting of the columns with indices in Se,(e′
1,...,e′

q),χ
contains at least m

distinct rows of the identity matrix Id+χ.

For q = 1 and χ = p, an (E, q,m, χ)-selector is indeed an (E, p,m)-selector.
We remark that even if the combinatorial objects in the present section are

defined for uniform hypergraphs, the algorithms we build upon them work also
for non-uniform hypergraphs.

5 Upper Bound on the Size of (E, q, m, χ)-Selectors

Let E be a set of hyperedges, each consisting of d vertices in [n] and, for a
given q, 1 ≤ q ≤ |E| − 1, let χ and m be positive integers with χ ≤ n − d
and m ≤ d + χ. We will show how to define a hypergraph H = (X,B), with X
being a set of vectors of length n, in such a way that the vectors of any cover
of H = (X,B) are the rows of an (E, q,m, χ)-selector. We recall that, given a
hypergraph H = (X,B), a cover of H is a subset T ⊆ X such that for any
hyperedge B ∈ B we have T ∩ B �= ∅. In order to avoid confusion with the
hyperedges of the input hypergraph E, here we denote the hyperedges of the
above said hypergraph H = (X,B) by using the letter B. The following upper
bound on the minimum size τ(H) of a cover of a hypergraph H = (X,B) is due
to Lovász [14]:

τ(H) <
|X|

minB∈B |B| (1 + lnΔ), (1)

where Δ = maxx∈X |{B: B ∈ B and x ∈ B}|.
In the following, for e, e′

1, . . . , e
′
q ∈ E, we write (i1, . . . , id+χ) = Se,(e′

1,...,e′
q),χ

to refer to the tuple of the elements in Se,(e′
1,...,e′

q),χ
arranged in increasing order.

We will show that (E, q,m, χ)-selectors are covers of the hypergraph defined
below. Let X be the set of all binary vectors x = (x1, . . . , xn) of length n
containing � n

d+χ� entries equal to 1. For any integer i, 1 ≤ i ≤ d + χ, let us
denote by ai the binary vector of length d + χ having all components equal to
zero but that in position i, that is, a1 = (1, 0, . . . , 0), a2 = (0, 1, . . . , 0), . . . ,
ad+χ = (0, 0, . . . , 1). For any (q + 1)-tuple (e, e′

1, . . . , e
′
q) of q + 1 distinct hyper-

edges in E and, for any binary vector a = (a1, . . . , ad+χ) ∈ {a1, . . . ,ad+χ},
let us define the set of binary vectors Ba,e,(e′

1,...,e′
q)

= {x = (x1, . . . , xn) ∈
X : xi1 = a1, . . . , xid+χ

= ad+χ, with (i1, . . . , id+χ) = Se,(e′
1,...,e′

q),χ
}. For any

set A ⊆ {a1, . . . ,ad+χ} of size s, 1 ≤ s ≤ d + χ, and any set Se,(e′
1,...,e′

q),χ
,

for e, e′
1, . . . , e

′
q ∈ E, let us define BA,e,(e′

1,...,e′
q)

=
⋃

a∈A Ba,e,(e′
1,...,e′

q)
. For any

s = 1, . . . , d + χ, we define Bs = {BA,e,(e′
1,...,e′

q)
: A ⊂ {a1, . . . ,ad+χ}, |A| =

s, and e, e′
1, . . . , e

′
q ∈ E} and the hypergraph Hs = (X,Bs). We claim that any

cover T of Hd+χ−m+1 is an (E, q,m, χ)-selector, that is, for any e, e′
1, . . . , e

′
q ∈ E,

the submatrix of d + χ columns of T with indices in Se,(e′
1,...,e′

q),χ
contains

160 A. De Bonis

at least m distinct rows of the identity matrix Id+χ. The proof is by con-
tradiction. Assume that there exist q + 1 hyperedges e, e′

1, . . . , e
′
q ∈ E such

that the submatrix of the columns of T with indices in the (d + χ)-tuple
(i1, . . . , id+χ) = Se,(e′

1,...,e′
q),χ

contains at most m − 1 distinct rows of Id+χ.
Let such rows be aj1 , . . . ,ajg

, with g ≤ m − 1, and let A be any subset of
{a1, . . . ,ad+χ} \ {aj1 , . . . ,ajg

} of cardinality |A| = d + χ − m + 1. By defi-
nition of Hd+χ−m+1, the hyperedge BA,e,(e′

1,...,e′
q)

of Hd+χ−m+1 is such that
T ∩ BA,e,(e′

1,...,e′
q)

= ∅, thus contradicting the fact that T is a cover for
Hd+χ−m+1.

To prove the following theorem, we exploit Lovász’s result (1) to derive an
upper bound on the minimum size of a cover of the hypergraph Hd+χ−m+1.

Theorem 1. Let E be a set of hyperedges of size d with vertices in [n]. Moreover,
let q, m and χ be integers such that 1 ≤ q ≤ |E| − 1 and 1 ≤ m ≤ χ + d ≤ n.
There exists an (E, q,m, χ)-selector of size t with

t <
2e(d + χ)

d + χ − m + 1

(

1 + ln
((

d + χ − 1
d + χ − m

)

α

))

, (2)

where α = min
{

eq|E|
(

|E|−1
q

)q

, ed+χ−1
(

n
d+χ−1

)d+χ
}

and e = 2.7182... is the

base of the natural logarithm.

Proof. Let Hd+χ−m+1 = (X,Bd+χ−m+1) be the hypergraph defined in the dis-
cussion preceding the statement of the theorem. Inequality (1) implies that

τ(Hd+χ−m+1) <
|X|

min{|B| : B ∈ Bd+χ−m+1} (1 + lnΔ), (3)

where Δ = maxx∈X |{B: B ∈ Bd+χ−m+1 and x ∈ B}|.
In order to derive the stated upper bound on t, we estimate the quantities

that appear on the right hand side of (3), that is, we evaluate the quantities

|X|, min{|B| : B ∈ Bd+χ−m+1}, and Δ,

for the hypergraph Hd+χ−m+1. Since X is the set of all binary vectors of
length n containing � n

d+χ� entries equal to 1, it holds that |X| =
(

n
� n

d+χ �
)
.

Each Ba,e,(e′
1,...,e′

q)
has size

(
n−d−χ

� n
d+χ �−1

)
since this is the number of vectors, with

� n
d+χ� entries equal to 1, for which one has that the entries with indices in

(i1, . . . , id+χ) = Se,(e′
1,...,e′

q),χ
form the vector a. Moreover, each hyperedge

BA,e,(e′
1,...,e′

q)
of Hd+χ−m+1 is the union of d + χ − m + 1 disjoint sets

Ba,e,(e′
1,...,e′

q)
, and therefore it has cardinality

|BA,e,(e′
1,...,e′

q)
| = (d+χ−m+1) · |Ba,e,(e′

1,...,e′
q)

| = (d+χ−m+1)
(

n − d − χ

� n
d+χ� − 1

)

.

Group Testing in Arbitrary Hypergraphs 161

Therefore, one has that |X|
min{|B| :B∈Bd+χ−m+1} =

(n
� n

d+χ
�)

(d+χ−m+1)(n−d−χ
� n

d+χ
�−1)

, and simple

calculations imply that

|X|
min{|B| : B ∈ Bd+χ−m+1} ≤ 2e(d + χ)

d + χ − m + 1
. (4)

We refer the reader to [2] for details of calculations that lead to (4). To compute
Δ, we notice that each x ∈ X belongs to at most

min
{

|E|
(|E| − 1

q

)

,

(� n
d+χ�
1

)(
n − � n

d+χ�
d + χ − 1

)}

(5)

distinct sets Ba,e,(e′
1,...,e′

q)
. Indeed, as observed in Sect. 2, the number of dis-

tinct sets Se,(e′
1,...,e′

q),χ
is at most |E|(|E|−1

q

)
. Notice that, for a vector a =

(a1, . . . , ad+χ), the actual number of (d+χ)-tuples (i1, . . . , id+χ) = Se,(e′
1,...,e′

q),χ

for which it holds that xi1 = a1, . . . , xid+χ
= ad+χ might be significantly smaller

than the total number of (d + χ)-tuples (i1, . . . , id+χ) = Se,(e′
1,...,e′

q),χ
, but this

estimate is sufficient to obtain the first value in the “min” in the expression of α
that appears in the statement of the theorem. However, if |E| is close to

(
n
d

)
, i.e.,

it contains almost all hyperedges of size d on [n], then it might be convenient to
upper bound the number of distinct hyperedges Ba,e,(e′

1,...,e′
q)

containing a given

vector x ∈ X by
(� n

d+χ �
1

)(n−� n
d+χ �

d+χ−1

)
which is obtained by considering all possible

ways of choosing (d + χ) positions in x so that exactly one of those positions
corresponds to a 1-entry of x, whereas the others correspond to 0-entries.

Now observe that each Ba,e,(e′
1,...,e′

q)
belongs to

(
d+χ−1
d+χ−m

)
distinct hyperedges

BA,e,(e′
1,...,e′

q)
. Therefore, (5) implies that the maximum degree of vertices in

Hd+χ−m+1 is

Δ ≤
(

d + χ − 1
d + χ − m

)

min
{

|E|
(|E| − 1

q

)

,

(� n
d+χ�
1

)(
n − � n

d+χ�
d + χ − 1

)}

. (6)

In order to estimate our upper bound, we resort to the following well known
inequality: (

a

b

)

≤ (ea/b)b. (7)

Applying inequality (7) to
(|E|−1

q

)
and to

(n−� n
d+χ �

d+χ−1

)
in the upper bound (6) on

Δ, we get that

Δ ≤
(

d + χ − 1
d + χ − m

)

min

{

eq|E|
(|E| − 1

q

)q

, ed+χ−1

(
n

d + χ − 1

)d+χ
}

. (8)

Please see [2] for detailed calculations that lead to (8). By plugging into (3) the
upper bound (8) on Δ and the upper bound (4) on |X|

min{|B| :B∈Bd+χ−m+1} , we
obtain the stated upper bound on t.

162 A. De Bonis

5.1 A Non-adaptive Group Testing Algorithm for General
Hypergraph

In order to prove the upper bound on the minimum number of tests of non-
adaptive algorithms, we prove a more general result that can be exploited also
to prove existential results for the three-stage algorithms.

Theorem 2. Let F = (V,E) be a hypergraph with V = [n] with all hyperedges
in E of size at most d. For any positive integer p ≤ d, there exists a non-adaptive
algorithm that allows to discard all but those hyperedges e such that |e \ e∗| < p,
where e∗ is the defective hyperedge, and uses t = O

(
d
p log E

)
tests.

Proof. Let E denote the input set of hyperedges. First we consider the case when
all hyperedges of E have size exactly d and show that in this case an (E, p, , d+1)-
selector corresponds to a non-adaptive algorithm that allows to discard all but
those hyperedges e ∈ E such that |e \ e∗| < p. Then we will consider the case of
hypergraphs that are not necessarily uniform. Let M be an (E, p, d+1)-selector.
By Definition 2, for any two distinct hyperedges e and e′, the submatrix M ′ of M
formed by the d+p columns with indices in Se,e′,p contains at least d+1 rows of
the identity matrix Id+p. At least one of these rows has 0 at the intersection with
each of the d columns with index in e and an entry equal to 1 at the intersection
with one of the p columns with indices in Se,e′,p \ e. By definition of Se,e′,p, if
|e′\e| ≥ p then Se,e′,p\e ⊆ e′\e, and consequently the above said entry equal to 1
is at the intersection with one column with index in e′ \e. It follows that the OR
of the d columns associated to vertices in e is different from that of the d columns
associated to vertices in e′. Now suppose that e∗ be the defective hyperedge and
e′ be an arbitrary hyperedge such that |e′ \ e∗| ≥ p. From the above argument,
there exists a row index, say r, such that at least one column associated to a
vertex in e′ has an entry equal to 1 in position r, whereas all columns associated
to vertices in e∗ have 0 in that position. It follows that the response vector has
an entry equal to 0 in position r whereas at least one element of e′ \ e∗ is in the
pool associated to the row of M with index r, thus showing that e′ is not the
defective hyperedge. By inspecting each column of the (E, p, d + 1)-selector and
comparing it with the response vector, one can identify those columns that have
an entry equal to 1 in a position where the response vector has 0 and get rid
of all hyperedges containing one of the vertices associated to those columns. By
the above argument one gets rid of all hyperedges e′ such that |e′ \ e∗| ≥ p.

Now let us consider a not necessarily uniform hypergraph E with hyperedges
of size at most d. We add dummy vertices to each hyperedge of size smaller than
d, so as to obtain a set Ẽ of hyperedges all having size d. We will see that a
non-adaptive group testing based on an (Ẽ, p, d+1)-selector allows to discard all
non-defective hyperedges e such that |e \ e∗| ≥ p. Let {in+1, . . . , in+d−1} be the
dummy vertices. Notice that these dummy vertices do not need to be different
from those we have used in the definition of the sets Se,e′,p’s, as we will see
below. For each e ∈ E, we denote with ẽ the corresponding hyperedge in Ẽ. The
hyperedge ẽ is either equal to e, if |e| = d, or equal to e ∪ {in+1, . . . , in+d−|e|}, if

Group Testing in Arbitrary Hypergraphs 163

|e| < d. Obviously, Ẽ has all hyperedges of size d and it holds that |Ẽ| = |E|. Let
M be an (Ẽ, p, d + 1)-selector. By Definition 2, for any two distinct hyperedges
ẽ and ẽ′, the submatrix M ′ of M formed by the d + p columns with indices
in Sẽ,ẽ′,p contains at least d + 1 rows of the identity matrix Id+p. At least one
of these rows, say the row with index r, has 0 at the intersection with all the
columns with index in ẽ and an entry equal to 1 at the intersection with one of
the remaining columns of M ′. If |ẽ′ \ ẽ| ≥ p, it holds that Sẽ,ẽ′,p = Sẽ,ẽ. In other
words, all column indices in Sẽ,ẽ′,p that are not in ẽ, are in fact all contained in
ẽ′ \ ẽ and consequently the above said entry equal to 1 in the row with index
r is at the intersection with one of the columns in ẽ′ \ ẽ. Now, let e∗ denote
the defective hyperedge in the original set of hyperedges E and let us replace
e with e∗ in the above discussion. Suppose that a hyperedge e′ of the original
hypergraph is such that |e′ \e∗| ≥ p. Since for each e ∈ E it holds that e ⊆ ẽ and
e∩{in+1, . . . in+χ} = ∅, it follows that ẽ \ ẽ′ ⊇ e \ e′. This implies that |ẽ′ \ ẽ∗| is
larger than or equal to p, and consequently, from the above discussion, it follows
that the submatrix M ′ formed by the columns of M with index in Sẽ,ẽ′ contains
a row that has 0 at the intersection with each of the columns with index in ẽ∗ and
an entry equal to 1 at the intersection with one of columns with index in ẽ′ \ ẽ∗.
We need to show that this index does not correspond to a dummy vertex, i.e., we
need to show that it belongs to e′ \ e∗. To see this, we recall that Sẽ∗,ẽ ∩ (ẽ \ ẽ∗)
consists of the smallest p vertices in ẽ′ \ ẽ∗ and since |e′ \ e∗| ≥ p, it holds that
these p vertices belong all to e′ \ e∗. Therefore, we have proved that there exists
a row in M ′, that contains 0 at the intersection with all the columns with index
in ẽ∗ and an entry equal to 1 at the intersection with a column associated to a
vertex in e′ \ e∗. Since ẽ∗ ⊇ e∗, this row has all 0’s at the intersection with the
columns with index in e∗. As a consequence, for any non-defective hyperedge e′

with |e′ \ e∗| ≥ p, there exists a row index r such that at least one column with
index in e′ has a 1-entry in position r, whereas the response vector has a 0-entry
in that position. In other words there is an element x in e′ that is contained in
a pool that tests negative, and consequently, e′ is not the defective hyperedge.

Notice that decoding can be achieved by inspecting all columns of the selector
that are associated with non-dummy vertices. Indeed, as we have just seen, any
non-defective hyperedge e′ such that |e′\e∗| ≥ p contains a vertex that is included
in a pool that tests negative, i.e., a vertex associated with a column with a 1 in a
position that corresponds to a 0 in the response vector. By inspecting all columns
of the selectors, the decoding algorithm finds all columns with a 1 in a position
corresponding to a negative response and gets rid of all hyperedges that contain
one or more vertices associated with those columns. In this way, the decoding
algorithm discards any non-defective hyperedge e′ such that |e′ \ e∗| ≥ p.

Finally, we observe that the dummy vertices added to the hyperedges of E
do not need to be different from those used in the definition of the sets Se,e′,p
in Sect. 2. The fact that some of the dummy vertices used to define the sets
Se,e′,p’s might be contained in some of the hyperedges of Ẽ might lead to a
fault in the above discussion only if |ẽ′ \ ẽ| < p and we need to include dummy
vertices in Sẽ,ẽ′,p. Indeed, some dummy vertices might be also included in ẽ and

164 A. De Bonis

we could end up at adding some vertices twice to the set Sẽ,ẽ′,p. However, this
cannot happen since in the above discussion we have exploited the property of
(Ẽ, p, d+1)-selectors only in reference to pairs of hyperedges ẽ and ẽ′ associated
to vertices e and e′ of E such that |e \ e′| ≥ p. We have seen that this implies
not only that Sẽ,ẽ′,p is equal to Sẽ,ẽ′ but also that Sẽ,ẽ′ ∩ (ẽ′ \ ẽ) ⊆ e′ \e. In other
words, the only dummy vertices possibly involved in the definition of Sẽ,ẽ′,p are
those in ẽ.

The upper bound in the statement of the theorem then follows from the
upper bound Theorem 1 with χ = p, q = 1, and m = d + 1. Notice that we have
replaced n with n+d−1 in that bound, since we have added up to d−1 dummy
vertices to [n] in order to obtain the set of hyperedges Ẽ.

The following corollary is an immediate consequence of Theorem 2.

Corollary 1. Let d and n be integers with 1 ≤ d ≤ n, and let E be a set of
hyperedges of size at most d on [n]. Moreover, let p be an integer such that 1 ≤
p ≤ min{|e′ \e| : e, e′ ∈ E}. There exists a non-adaptive group testing algorithm
that finds the defective hyperedge in E and uses at most t = O

(
d
p log |E|

)
tests.

Proof. If for any two distinct hyperedges e, e′ ∈ E it holds that min{|e′ \ e| :
e, e′ ∈ E} ≥ p, then the non-adaptive algorithm of Theorem 2 discards all non-
defective hyperedges.

5.2 A Two-Stage Group Testing Algorithm for General
Hypergraphs

Theorem 3. Let F = (V,E) be a hypergraph with V = [n] and all hyperedges
in E of size at most d. Moreover, let q and χ be positive integers such that 1 ≤
q ≤ |E| − 1 and χ = min{|⋃q

i=1 e′
i \ e|, for any q + 1 distinct e, e′

1, . . . , e
′
q ∈ E}.

There exists a (trivial) two-stage algorithm that uses a number of tests t with

t <
2e(d + χ)

χ

(

1 + ln
((

d + χ − 1
d + χ − d − 1

)

β

))

+ dq,

where β = min
{

eq|E|
(

|E|−1
q

)q

, ed+χ−1
(

n+d−1
d+χ−1

)d+χ
}

and e = 2.7182... is the

base of the natural logarithm.

Proof. Let E be a set of hyperedges each consisting of at most d vertices in [n]. As
in the proof of Theorem 2, let us denote with Ẽ the set of hyperedges obtained by
replacing in E any hyperedge e of size smaller than d by e ∪ {in+1, . . . , in+d−|e|}.
For each e ∈ E, we denote with ẽ the corresponding hyperedge in Ẽ. This
hyperedge is either equal to e, if |e| = d, or is equal to e ∪ {in+1, . . . , in+d−|e|}, if
|e| < d. Let us consider the non-adaptive algorithm that tests the pools having
as characteristic vectors the rows of an (Ẽ, q, d + 1, χ)-selector M . We will show
that after executing this non-adaptive algorithm, one is left with at most q
hyperedges that are candidate to be the defective hyperedge. Let e∗ be the

Group Testing in Arbitrary Hypergraphs 165

defective hyperedge and let us suppose by contradiction that, after executing
the algorithm associated with M , there are at least q hyperedges, in addition
to e∗, that are still candidate to be the defective one. Let us consider q such
hyperedges, say e′

1, . . . , e
′
q.

By Definition 3, it holds that the submatrix M ′ of M consisting of the
columns with indices in Sẽ∗,(ẽ′

1,...,ẽ′
q),χ

contains at least d + 1 distinct rows of
the identity matrix Id+χ. This implies that at least one of these rows, say the
row with index r, has a 0 at the intersection with each column with index in ẽ∗

and 1 at the intersection with one of the remaining columns of Sẽ∗,(ẽ′
1,...,ẽ′

q),χ
.

Since for each e ∈ E it holds that e ⊆ ẽ and e ∩ {in+1, . . . in+χ} = ∅, it follows
that

⋃q
i=1 ẽ′

i \ ẽ∗ ⊇ ⋃q
i=1 e′

i \ e∗. Consequently, the hypothesis |⋃q
i=1 e′

i \ e∗| ≥ χ
implies that |⋃q

i=1 ẽ′
i \ ẽ∗| ≥ χ. This means that Sẽ∗,(ẽ′

1,...,ẽ′
q),χ

= Sẽ∗,(ẽ′
1,...,ẽ′

q)
,

i.e., that the columns with index in Sẽ∗,(ẽ′
1,...,ẽ′

q),χ
that are not in ẽ∗, are in fact

all contained in
⋃q

i=1 ẽ′
i \ ẽ∗. Therefore, the above said entry equal to 1 in the

row with index r is at the intersection with one of the columns in
⋃q

i=1 ẽ′
i \ ẽ∗.

Now we need to prove that this entry equal to 1, in fact, intersects a column
associated with a non-dummy vertex, i.e., a vertex in

⋃q
i=1 e′

i \ e∗. By defini-
tion of Sẽ∗,(ẽ′

1,...,ẽ′
q),χ

, the set Sẽ∗,(ẽ′
1,...,ẽ′

q),χ
consists of the smallest χ integers in

⋃q
i=1 ẽ′

i \ ẽ∗. Moreover, since
⋃q

i=1 e′
i \ e∗ ⊆ ⋃q

i=1 ẽ′
i \ ẽ∗ and |⋃q

i=1 e′
i \ e∗| ≥ χ,

one has that Sẽ∗,(ẽ′
1,...,ẽ′

q),χ
∩ (

⋃q
i=1 ẽ′

i \ ẽ∗) ⊆ ⋃q
i=1 e′

i \ e∗, thus implying that the
above said entry equal to 1 of the row with index r is at the intersection with a
column associated to a vertex in

⋃q
i=1 e′

i \e∗. We also observe that since e∗ ⊆ ẽ∗,
all columns in e∗ have zeros at the intersection with the row with index r. Let
Tr be the pool having this row as characteristic vector. From what we have just
said, it holds that |Tr ∩ e∗| = 0 and |T ∩ ⋃q

i=1 e′
i \ e∗| ≥ 1. As a consequence,

Tr contains at least one element belonging to one of the hyperedges e′
1, . . . , e

′
q

whereas the result of the test on Tr is negative, thus indicating that at least one
of e′

1, . . . , e
′
q is non-defective.

Let us consider now a two-stage algorithm whose first stage consists in the
non-adaptive group testing algorithm associated with the rows of the (Ẽ, q, d +
1, χ)-selector M . From the above argument, after the first stage, we are left with
at most q hyperedges that are still candidate to be the defective hyperedge.
Therefore, in order to determine the defective hyperedge, one needs only to
perform individual tests on at most dq elements. Notice that these tests can be
performed in parallel.

As for the decoding algorithm that identifies the non-defective hyperedges
from the responses to the tests performed in stage 1, the algorithm needs only
to inspect each column of the selector and every time finds a column with a
1-entry in a position corresponding to a 0-entry in the response vector, discards
the hyperedges that contain the vertex associated with that column. The stated
upper bound follows by the upper bound of Theorem 1 by replacing m with d+1
and n with n + d − 1 since the set of vertices of E has been augmented with at
most d − 1 dummy vertices.

Corollary 2. Let d and n be integers with 1 ≤ d ≤ n, and let E be a set of
hyperedges of size at most d on [n]. If there exists a constant q ≥ 1 such that for

166 A. De Bonis

any q + 1 distinct hyperedges e, e′
1, . . . , e

′
q ∈ E, |⋃q

i=1 e′
i \ e| = Ω(d), then there

exists a trivial two-stage algorithm that finds the defective hyperedge in E and
uses t = O(log |E|) tests.

5.3 A Three-Stage Group Testing Algorithm for General
Hypergraphs

The following theorem furnishes an upper bound on the minimum number of
tests of three-stage algorithms. An interesting feature of this upper bound is that
it holds independently of the size of the pairwise intersections of the hyperedges.

Theorem 4. Let F = (V,E) be a hypergraph with V = [n] with hyperedges of
size at most d and let b be any positive integer smaller than d. There exists
a three-stage algorithm that finds the defective hyperedge in E and uses t =
O(d

b log |E| + b log |E|) tests.

Proof. Let us describe the three stage algorithm that achieves the stated upper
bound. The first two stages aim at restricting the set of potentially defective
hyperedges to hyperedges with at most b − 1 vertices. From Theorem 2, one has
that there is an O(d

b log |E|) non-adaptive algorithm A that discards all but the
hyperedges e such that |e \ e∗| < b, where e∗ is the defective hyperedge. Stage
1 consists in running algorithm A. If all hyperedges that have not be discarded
by A have size smaller than b, then the algorithm skips stage 2 and proceeds
to stage 3. If otherwise, the algorithm chooses a hyperedge e of maximum size
among those that have not been discarded by A and proceeds to stage 2 where
it performs in parallel individual tests on the vertices of e. Since e has not been
discarded, it means that |e \ e∗| < b and therefore at least |e| − b + 1 ≥ 1 of
the individual tests yield a positive response. Let i1, . . . , if denote the vertices
of e that have been tested positive. The algorithm looks at the intersection
between e and any other not yet discarded hyperedge e′ and discards e′ if it
either contains one or more of the vertices of e that have been tested negative,
or if {i1, . . . , if} �⊆ e′. In other words, after this second stage the algorithm is left
only with the hyperedges e′ such that e∩e′ = {i1, . . . , if}. The vertices i1, . . . , if
are removed from all these hyperedges since it is already known that they are
defective. Each hyperedge e′ that has not been discarded in stage 2 is therefore
replaced by a hyperedge of size |e′| − f ≤ |e′| − |e| + b − 1 ≤ b − 1. The last
inequality is a consequence of having chosen e as a hyperedge of maximum size
among those that have not been discarded in stage 1. In stage 3, the algorithm is
left with a hypergraph with hyperedges of at most b−1 vertices and, by Corollary
1 with d being replaced by b − 1, the defective hyperedge can be detected non-
adaptively using O(b log |E|) tests. In applying Corollary 1, we do not make any
assumption on the size of the set differences between hyperedges and take p in
the bound of that corollary as small as 1. Notice that the algorithm of Corollary
1 might end up with more that one hyperedge if there exist hyperedges that are
proper subsets of the defective one. However, in this eventuality, the algorithm
would choose the largest hyperedge among those that have not be discarded.

Group Testing in Arbitrary Hypergraphs 167

By setting b =
√

d in Theorem 4, we get the following corollary.

Corollary 3. Let E be a hypergraph with V = [n] with hyperedges of size at
most d. There exists a three-stage algorithm that finds the defective hyperedge in
E and uses t = O(

√
d log |E|) tests.

References

1. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 709–718 (2001)

2. De Bonis, A.: Group testing in arbitrary hypergraphs and related combinatorial
structures (2023). https://arxiv.org/abs/2307.09608

3. De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group
testing problems. SIAM J. Comput. 34(5), 1253–1270 (2005)

4. Dorfman, R.: The detection of defective members of large populations. Ann. Math.
Statist. 14, 436–440 (1943)

5. Du, D.Z., Hwang, F.K.: Pooling Design and Nonadaptive Group Testing. Series
on Applied Mathematics, vol. 18. World Scientific (2006)

6. D’yachkov, A.G., Rykov, V.V.: A survey of superimposed code theory. Probl.
Control Inform. Theory 12, 229–242 (1983)

7. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Israel J. Math. 51, 79–89 (1985)

8. Gonen, M., Langberg, M., Sprintson, A.: Group testing on general set-systems.
IEEE Trans. Inf. Theory 2022, 874–879 (2022)

9. Harvey, N.J.A., Patrascu, M., Wen, Y., Yekhanin, S., Chan, V.W.S.: Non-adaptive
fault diagnosis for all-optical networks via combinatorial group testing on graphs.
In: 26th IEEE International Conference on Computer Communications, pp. 697–
705 (2007)

10. Hong, E.S., Ladner, R.E.: Group testing for image compression. IEEE Trans.
Image Process. 11(8), 901–911 (2002)

11. Goenka, R., Cao, S.J., Wong, C.W., Rajwade, A., Baron, D.: Contact tracing
enhances the efficiency of COVID-19 group testing. In: ICASSP 2021, pp. 8168–
8172 (2021)

12. Kautz, W.H., Singleton, R.C.: Nonrandom binary superimposed codes. IEEE
Trans. Inf. Theory 10, 363–377 (1964)

13. Lo, C., Liu, M., Lynch, J.P., Gilbert, A.C.: Efficient sensor fault detection using
combinatorial group testing. In: 2013 IEEE International Conference on Dis-
tributed Computing in Sensor Systems, pp. 199–206 (2013)

14. Lovàsz, L.: On the ratio of optimal integral and fractional covers. Discrete Math.
13, 383–390 (1975)

15. Nikolopoulos, P., Srinivasavaradhan, S.R., Guo T., Fragouli, C., Diggavi S.: Group
testing for connected communities. In: The 24th International Conference on Arti-
ficial Intelligence and Statistics, vol. 130, pp. 2341–2349. PMLR (2021)

16. Ruszinkó, M.: On the upper bound of the size of the r-cover-free families. J.
Combin. Theory Ser. A 66, 302–310 (1994)

17. Sobel, M., Groll, P.A.: Group testing to eliminate efficiently all defectives in a
binomial sample. Bell Syst. Tech. J. 38, 1179–1252 (1959)

18. Vorobyev, I.: Note on generalized group testing (2022). https://doi.org/10.48550/
arXiv.2211.04264

https://arxiv.org/abs/2307.09608
https://doi.org/10.48550/arXiv.2211.04264
https://doi.org/10.48550/arXiv.2211.04264

168 A. De Bonis

19. Wolf, J.: Born again group testing: multiaccess communications. IEEE Trans. Inf.
Theory 31, 185–191 (1985)

20. Zhu, J., Rivera, K., Baron, D.: Noisy pooled PCR for virus testing (2020). https://
doi.org/10.48550/arXiv.2004.02689

https://doi.org/10.48550/arXiv.2004.02689
https://doi.org/10.48550/arXiv.2004.02689

On the Parameterized Complexity
of the Perfect Phylogeny Problem

Jorke M. de Vlas1,2(B)

1 Utrecht University, Utrecht, The Netherlands
jorkedevlas@gmail.com

2 Linköping Universitet, Linköping, Sweden

Abstract. This paper categorizes the parameterized complexity of the
algorithmic problems Perfect Phylogeny and Triangulating Col-

ored Graphs when parameterized by the number of genes and colors,
respectively. We show that they are complete for the parameterized com-
plexity class XALP using a reduction from Tree-chained Multicolor

Independent Set and a proof of membership. We introduce the prob-
lem Triangulating Multicolored Graphs as a stepping stone and
prove XALP-completeness for this problem as well. We also show that,
assuming the Exponential Time Hypothesis, there exists no algorithm
that solves any of these problems in time f(k)no(k), where n is the input
size, k the parameter, and f any computable function.

Keywords: Perfect phylogeny · Triangulated graphs · XALP ·
Parameterized complexity · W-hierarchy

1 Introduction

A phylogeny is a tree that describes the evolution history of a set S of species.
Every vertex corresponds to a species: leafs correspond to species from S, and
internal vertices correspond to hypothetical ancestral species. Species are char-
acterized by their gene-variants, and the quality of a phylogeny is determined
by how well it represents those variants. In particular, a phylogeny is perfect if
each gene-variant was introduced at exactly one point in the tree. That is, the
subset of vertices that contain the variant is connected. Perfect Phylogeny

is the algorithmic problem of determining the existence of a perfect evolutionary
tree. It has large implications on determining the evolutionary history of genetic
sequences and is therefore of major importance. This application is not limited
to biology: it can also be used to determine the history of languages or cultures.

The concept of phylogenies as an algorithmic problem has been well
researched since the 60s. The first formal definition of Perfect Phylogeny

was given by Estabrook [10]. In 1974, Buneman showed that the problem can
be reduced to the more combinatorial Triangulating Colored Graphs [6]
which by itself has also become an important, well-studied problem. An inverse

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 169–182, 2024.
https://doi.org/10.1007/978-3-031-52113-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_12&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_12

170 J. M. de Vlas

reduction, and thus equivalence, was given by Kannan and Warnow [11]. In 1992,
Bodlaender et al. showed that Perfect Phylogeny is NP-complete [3].

After Downey and Fellows introduced parameterized complexity [8], people
have tried to determine the complexity of Perfect Phylogeny when seen as a
parameterized problem. There are two main ways to parameterize the problem:
either by using the number of genes or by using the maximum number of variants
for each gene. In the second case, the problem becomes FPT [12]. In the first
case, the parameterized complexity was unknown. There are some partial results:
On one hand, it was shown that the problem is W [t]-hard for every t [2]. On
the other hand, there exists an algorithm that runs in O(nk+1) time and space
(where n is the input size and k the parameter) which implies that the problem
is contained in XP [13].

In this paper we will close this gap and show that Perfect Phylogeny

is complete for the complexity class XALP, which is a relatively new param-
eterized complexity class that was introduced by Bodlaender et al. in [5]. We
will show XALP-completeness by giving a reduction from the XALP-complete
problem Tree-chained Multicolor Independent Set, using Triangulat-

ing Multicolored Graphs as a stepping stone. This makes Perfect Phy-

logeny the first example of a “natural” problem that is XALP-complete and
allows it to be used as a starting point for many other XALP-hardness proofs.
Finally, we use the same reduction to give some lower bounds dependent on the
Exponential Time Hypothesis.

2 Definitions and Preliminary Results

All problems in this paper are parameterized. This means that the input contains
a parameter separate from the rest of the input which allows us to analyze the
runtime as a function of both the input and the parameter. If a parameterized
problem with input size n and parameter k can be solved in O(f(k)nc) time (with
f any computable function and c any constant), we say that it is Fixed Parame-
ter Tractable (FPT). A parameterized reduction is an algorithm that transforms
instances of one parameterized problem into instances of another parameterized
problem, runs in FPT time, and whose new parameter is only dependent on
the old parameter. A log-space reduction is a parameterized reduction that addi-
tionally only uses O(f(k) log(n)) space. These reductions form the base of all
parameterized complexity classes: all classes are defined up to equivalence under
one of these reductions.

We use the following definition of Perfect Phylogeny, which is a param-
eterized version of the original definition from Estabrook [10].

On the Parameterized Complexity of the Perfect Phylogeny Problem 171

Perfect Phylogeny (PP)
Input: A set G of genes, for each gene g ∈ G a set Vg of variants, and a set
S of species, where each species is defined as a tuple of gene-variants (exactly
one per gene)
Parameter: The number of genes
Question: Does there exist a tree T of species (not necessarily from S) that
contains all species from S and where the subtree of species containing a specific
gene-variant is connected?

Triangulated and Colored Graphs. A graph is colored if every vertex is
assigned a color. The graph is properly colored if there are no edges between
vertices of the same color. For any cycle C in a graph, a chord is an edge between
two vertices of C that are not neighbors on C. A graph is triangulated if every
cycle of length at least four contains a chord. A triangulation of a graph is a
supergraph that is triangulated. We now define the problem Triangulating

Colored Graphs, which was first given by Buneman [6].

Triangulating Colored Graphs (TCG)
Input: A colored graph G
Parameter: The number of colors used
Question: Does there exist a properly colored triangulation of G?

We now introduce a multicolored variant of this problem. A graph is multi-
colored if every vertex is assigned a (possibly empty) set of colors. The graph is
properly multicolored if there are no edges between vertices which share a color.
This gives us the following problem:

Triangulating Multicolored Graphs (TMG)
Input: A multicolored graph G
Parameter: The number of colors used
Question: Does there exist a properly multicolored triangulation of G?

This problem is equivalent to Triangulating Colored Graphs under
parameterized reductions. The general idea is to replace every multicolored ver-
tex with a clique of normally colored vertices. A full proof is given in the appendix
of the ArXiv version. We now define a tree decomposition and state some well-
known properties of triangulated colored graphs.

Definition 1 (Tree Decomposition). Given a graph G = (V,E), a tree
decomposition is a tree T where each vertex (bag) is associated with a subset of
vertices from T . This tree must satisfy three conditions:

– For each vertex v ∈ V , there is at least one bag that contains v.
– For each edge e ∈ V , there is at least one bag that contains both endpoints of

e.
– For each vertex v ∈ V , the subgraph of bags that contain v is connected.

172 J. M. de Vlas

Proposition 1. Let G be a (multi)colored graph and C be a cycle.

(i) Suppose there exist two colors such that every vertex from C is colored
with at least one of these colors. Then G admits no properly (multi)colored
triangulation.

(ii) Let v be any vertex from C. In every triangulation of G there is either an
edge between v’s neighbors (in C) or a chord between v and some non-
neighbor vertex from C.

(iii) G admits a properly colored triangulation if and only if G admits a tree
decomposition where each bag contains each color at most once.

Proof. Omitted. Included as an appendix in the ArXive version of this paper. ��

XALP. A new complexity class in parameterized complexity theory is XALP [5].
Intuitively, it is the natural home of parameterized problems that are W [t]-hard
for every t and contain some hidden tree-structure. For Perfect Phylogeny,
this tree-structure is the required phylogeny. For Triangulating Colored

Graphs, it is the tree decomposition arising from Proposition 1(iii).
Formally, XALP is the class of parameterized problems that are solvable

on an alternating Turing machine using O(f(k) log(n)) memory and at most
O(f(k) + log(n)) co-nondetermenistic computation steps, where n is the input
size and k is the parameter. It is closed under log-space reductions. On Downey
and Fellows’ W -hierarchy, it lies between W [t] and XP: XALP-hardness implies
W [t]-hardness for every t and XALP membership implies XP-membership.

An example of an XALP-complete problem is Tree-chained Multicolor

Independent Set [5]. It is defined as a tree-chained variant of the well-known
Multicolor Independent Set problem.

Multicolor Independent Set (MIS)
Input: A colored graph G
Parameter: The number of colors used
Question: Does G contain an independent set consisting of exactly one vertex
of each color?

Tree-Chained Multicolor Independent Set (TCMIS)
Input: A binary tree T , for each vertex (bag) B ∈ T a colored graph
GB = (VB , EB) which we view as an instance of Multicolor Independent

Set, and for each edge e ∈ T a set of extra edges Ee between the graphs cor-
responding to the endpoints of e.
Parameter: The maximum number of colors used in each instance of MIS
Question: Does there exist a solution to each instance of MIS such that for
each of the extra edges at most one of the endpoints is contained in the solu-
tion?

3 Main Results

In this section we will state the main result and explore some of its corollaries.
We postpone the proof to the next sections.

On the Parameterized Complexity of the Perfect Phylogeny Problem 173

Theorem 1. Triangulating Colored Graphs is contained in XALP.

Theorem 2. There exists a log-space reduction from Tree-chained Multi-

color Independent Set to Triangulating Multicolored Graphs. This
reduction has a linear change of parameter.

We will prove Theorem 1 in Sect. 4. For Theorem 2, we describe the reduction
in Sect. 6 together with an intuitive reasoning on the correctness. The full proof
is omitted and can be seen in the ArXive version of this paper.

Theorem 3 (Main Result). The problems Perfect Phylogeny, Trian-

gulating Colored Graphs and Triangulating Multicolored Graphs

are all XALP-complete.

Proof. Combine Theorem 1, Theorem 2 and the equivalences between these three
problems. ��

We now use these complexity results to show some lower bounds on the space
and time usage of Perfect Phylogeny. In the remainder of this section, let
n be the input size, k the parameter, f any computable function and c any
constant. We start with a bound on the runtime based on the Exponential Time
Hypothesis.

Proposition 2. Assuming ETH, the problems Perfect Phylogeny, Trian-

gulating Colored Graphs and Triangulating Multicolored Graphs

cannot be solved in f(k)no(k) time.

Proof. We use as a starting point that, assuming ETH, the problem Multi-

color Independent Set cannot be solved in f(k)no(k) time [7]. A trivial
reduction to Tree-chained Multicolor Independent Set using a single-
vertex tree then shows the same for that problem. Since the reduction given in
Theorem 2 has a linear change in parameter we obtain the same lower bound
for Triangulating Multicolored Graphs. Finally, using the equivalences
between TMG, TCG and PP (all with no change in parameter), the result fol-
lows. ��

We now bound the space usage based on the Slice-wise Polynomial Space
Conjecture (SPSC). This conjectures that Longest Common Subsequence

cannot be solved in both nf(k) time and f(k)nc space [14].

Corollary 1. Assuming SPSC, the problems Perfect Phylogeny, Trian-

gulating Colored Graphs or Triangulating Multicolored Graphs

cannot be solved in both nf(k) time and f(k)nc space.

Proof. This proof uses the parameterized complexity class XNLP, which is
defined as the class of parameterized problems that are solvable on a deter-
menistic Turing machine using O(f(k) log(n)) memory. Comparing this with the
definition of XALP shows that XALP-hardness implies XNLP-hardness. Since
Largest Common Subsequence is XNLP-complete [9], SPSC applies to all
XNLP-hard problems and consequently also to all XALP-hard problems such as
the three problems from this corollary. ��

174 J. M. de Vlas

Compared with the existing algorithm that runs in O(nk+1) time and
space [13], these are close but not tight gaps.

4 XALP Membership of Triangulating Colored Graphs

In this section we will prove Theorem 1.
Recall that Triangulating Colored Graphs asks us to determine

whether a colored graph can be triangulated. Because of Proposition 1(iii), this
is equivalent to finding a tree decomposition where each bag contains each color
at most once. We claim that it is equivalent to find a tree decomposition where
each bag contains each color exactly once.

Lemma 1. A colored graph admits a tree decomposition where each bag contains
each color at most once, if and only if it admits a tree decomposition where each
bag contains each color exactly once.

Proof. Omitted. Included as an appendix in the ArXive version of this paper. ��
We can now prove XALP membership.

Proof (of Theorem 1). We construct an alternating Turing machine (ATM)
that, given an instance of Triangulating Colored Graphs, determines
whether there exists a tree decomposition that contains each color exactly once.
As a refresher, an ATM is a Turing machine that has access to both nonde-
termenistic and co-nondeterministic branching steps. A nondetermenistic step
leads to ACCEPT if at least one successor state leads to ACCEPT and a co-
nondetermenistic step leads to ACCEPT if all successor states lead to ACCEPT.

Our Turing machine is based on the XP-time algorithm we mentioned
before [13]. We use the following claim without proof: given a graph G, a
deterministic Turing machine can determine the whether two vertices belong to
the same connected component in logarithmic space and polynomial time [15].
Repeated application of this result allows us to branch on all connected compo-
nents of a graph using several co-nondeterministic steps.

Let G be any colored graph. The Turing machine will use nondeterminis-
tic steps to determine how to modify each bag compared to its parent and
co-nondeterministic steps to simultaneously verify all subtrees. A precise formu-
lation is given below:

– Using k nondeterministic steps, determine an initial bag S which contains
one vertex of each color. During computations that lead to ACCEPT, each
S will be a bag from the tree decomposition.

– Keep track of some vertex i that is initially NULL. This will signify the parent
of the current bag S.

– Repeat the following until an ACCEPT or REJECT state is reached:
• Determine all components of G \ S. Using a co-nondeterministic step, we

branch into every component except the one that contains i. If this results
in zero branches (e.g. when there are no other components), ACCEPT.

On the Parameterized Complexity of the Perfect Phylogeny Problem 175

• Let C be the component our current branch is in. We determine a vertex
v ∈ C with a nondeterministic step.

• Determine the vertex w ∈ S that has the same color as v. Since S contains
one vertex of every color, w exists.

• If w is adjacent to any vertex from C, REJECT. This means that the
current guess for how to modify S is incorrect.

• Modify S by adding v and removing w. Set i to w.

Overall, this alternating Turing machine constructively determines a rooted tree
decomposition if one exists and thus solves Triangulating Colored Graphs.
It also satisfies the memory requirement: the only memory usage is the set S,
a constant number of extra vertices, and the memory needed to branch on con-
nected components. Since memory of a vertex uses O(log(n)) space and |S| = k,
we need O(k log(n)) space. We also use polynomial time: the time usage in the
computation of each bag is a constant plus the time needed to find the connected
components which results in polynomial time overall. Finally, we require at most
O(n) co-nondeterministic computation steps: each co-nondeterministic step cor-
responds to branching into a subtree of the eventual (rooted) tree decomposition.
Since each subtree introduces at least one vertex that is used nowhere else in
the tree, there are at most O(n) subtrees.

Overall, we conclude that Triangulating Colored Graphs is contained
in XALP. ��

5 Zipper Chains and Gadgets

In this section we will introduce two multicolored graph components, the zipper
chain and the zipper gadget. Their most important property is Proposition 4
which says that a zipper gadget has a fixed number of triangulations. This will
be used in the XALP-hardness proof to represent a choice.

Definition 2. A zipper chain is a multicolored graph that consists of two paths
P and Q, not necessarily of the same length. The vertices of P and Q are respec-
tively labeled as p1, p2, . . . and q1, q2,

The vertices are colored in 7 colors, with 2 colors per vertex. For ease of
explanation, the colors are grouped in three groups with sizes 1, 2, and 4. The
first group contains one color a which is added to odd-labeled vertices from P and
even-labeled vertices from Q. The second group contains the color bP which is
added to even-labeled vertices of P and the color bQ which is added to odd-labeled
vertices of Q. The third group contains four colors c1, c2, c3 and c4 where ci is
added to vertices in P whose index is equivalent to i (mod 4) and vertices in Q
whose index is equivalent to i + 2 (mod 4).

To summarize: the colors on path P are ac1, bP c2, ac3, bP c4, ac1, . . . and those
of Q are bQc3, ac4, bQc1, ac2, bQc3, This is visualized in Fig. 1.

This color pattern repeats every four vertices. We call such a repetition a
tooth of the zipper chain. If a triangulation of the zipper chain contains an edge
between some tooth of P and some tooth of Q and at least one endpoint of this
edge contains the color a, we say that these two teeth are locked together.

176 J. M. de Vlas

Proposition 3. Let G be a graph containing a zipper chain (P,Q) and assume
that there is a cycle that fully contains both P and Q. Any triangulation of G
satisfies the following properties. Because of symmetry, all properties also hold
with P and Q reversed.

(i) There is no edge between two non-adjacent vertices of P .
(ii) If there exist two edges between P and Q which share an endpoint in P ,

then the common endpoint in P is connected to all vertices of Q that lie
between the other two endpoints.

(iii) If (pi, qj) is an edge, then either (pi+1, qj) or (pi, qj+1) is also an edge (as
long as either pi+1 or qj+1 exists).

(iv) If (pi, qj) is an edge and pi contains the color a, then (pi+1, qj+1) is also an
edge (as long as both pi+1 and qj+1 exist). Here, qj+1 contains the color a.

(v) If the i-th tooth of P and the j-th tooth of Q are locked together, then the
i + 1-th tooth of P and the j + 1-th tooth of Q are also locked together.

(vi) Each tooth from P is locked together with at most one tooth from Q.

Proof. We prove the statements in order.

(i) If, to the contrary, such an edge does exist, then this edge together with the
rest of P forms a cycle whose vertices alternate between the colors a and
bP . Because of Proposition 1(i) such a cycle cannot be triangulated.

(ii) Because of part (i), the cycle formed by these two edges and the path
between the two endpoints on Q can only be triangulated by adding edges
with an endpoint in P .

(iii) If (pi+1, qj) is not an edge then Proposition 1(ii) shows that pi must be
connected to another vertex in the cycle. Because of part (i) this neighbor
is a vertex from Q. Because of part (ii) pi must then also be connected to
qj+1.

(iv) Without loss of generality, say that pi also contains the color c1. Then, qj

must have the colors bQ and c3: all other color combinations share a color
with pi. Since qj+1 and pi both contain the color a there is no edge between
them so part (iii) implies that there is one between pi+1 and qj . Since pi+2

and qj share the color c3, the same argument implies that there is an edge
between pi+1 and qj+1 (Fig. 2).

Fig. 1. A zipper chain.

On the Parameterized Complexity of the Perfect Phylogeny Problem 177

Fig. 2. A possible triangulation of a zipper chain.

Fig. 3. A zipper gadget of size 2 and skew 1.

(v) Apply part (iv) four times to the edge connecting the i-th and j-th teeth
of P and Q (respectively) to obtain an edge connecting the i + 1-th and
j + 1-th teeth of P and Q (respectively).

(vi) Suppose to the contrary that a tooth from P is locked together with two
teeth from Q. After some applications of parts (iii) and (iv) we find that
the last vertex from the tooth from P (which has colors bP and c3) is
connected to the last vertex from both teeth from Q. Because of part (ii), it
is connected to all four vertices of the tooth from Q with the higher index.
At least one of these also contains the color c3 so this is a contradiction. ��

Zipper Gadgets. We now introduce the zipper gadget. It is a zipper chain with
a specific length and a head and tail. An example is given in Fig. 3.

Definition 3. A zipper gadget of size n and skew s (satisfying n > 0, s ≥ 0) is
a zipper chain with the following modifications:

– The path P contains 4n − 1 vertices, and thus n teeth. The last tooth misses
one vertex.

– The path Q contains 4(n + s) vertices, and thus n + s teeth.
– There are two additional vertices with just the color bP : a head h and a tail

t. The head is connected to the first vertices of P and Q and the tail to the
last vertices of P and Q.

Proposition 4. There are exactly s+1 ways to triangulate a zipper gadget with
skew s. These ways are identified by the offset at which the teeth lock together.

Proof. Observe that the entire gadget forms a cycle, so Proposition 3 applies.
Consider a vertex from P that contains the color a. Its neighbors share the color
bP , so Proposition 1(ii) shows that this vertex must be connected to some other

178 J. M. de Vlas

Fig. 4. One of the two triangulations of the zipper gadget from Fig. 3. This one has
offset 0.

vertex from the cycle. This cannot be h, t or another vertex from P since that
would introduce a cycle containing only the colors a and bP . Hence, the other
endpoint must be a vertex from Q. This shows that each tooth from P is locked
together with at least one tooth from Q.

Proposition 3(vi) now shows that each tooth from P is locked together with
exactly one tooth from Q. Let Δ be the index of the tooth locked together with
the first tooth of P . Proposition 3(v) now shows that any tooth with index i
must be connected to tooth i + Δ. Since Q has s more teeth than P , the offset
Δ must be between 0 and s. We conclude that there are at most s + 1 ways to
triangulate a zipper gadget with offset s and that these ways are identified by
the offset.

To complete the proof, we now show that each case can actually be extended
into a triangulation of the zipper gadget. Let Δ be the target offset. We add the
following edges:

– An edge between the head h and every vertex from the first Δ teeth from Q.
– Edges between the i-th tooth from path P and the i + Δ-th tooth from Q

according to the pattern described in parts (iii) and (iv) of Proposition 3.
This includes one overlap edge between the last vertex of each tooth from P
and the first vertex from the next tooth from Q.

– An edge between the tail t and every vertex from the last s−Δ teeth from Q.

An example of such a triangulation is given in Fig. 4. One can observe that this
construction indeed triangulates the zipper gadget. ��

6 XALP-Hardness of Triangulating Multicolored Graphs

In this section we describe the reduction from Theorem 2. The intuition is as
follows. We want to reduce from Tree-chained Multicolor Independent

Set, which comes down to selecting a vertex from each color for each instance of
Multicolor Independent Set. These choices must be compatible: we may
not choose two vertices which share an edge. The selection of a vertex will be
done by creating zipper gadgets and interpreting each possible triangulation as a
choice of a vertex. The compatibility checks will be done by combining two zipper
gadgets in a way that makes it impossible to simultaneously triangulate both

On the Parameterized Complexity of the Perfect Phylogeny Problem 179

zipper gadgets in the respective choices. This construction borrows a technique,
namely on how to create and combine gadgets from the TCMIS tree, from the
XALP-completeness proof for Tree Partition Width from [4]. The actual
gadgets and their combination procedure are new.

Let an instance of TCMIS be given. Let T and k be the (binary) tree and
parameter from this instance. For any node n ∈ T , we have an associated instance
of Multicolor Independent Set consisting of a set of vertices Sc for each
color c. Without loss of generality, we can assume that all sets Sc have the same
size, say r + 1: if not, then we can add extra vertices to Sc that are connected
to all other vertices and thus never occur in an independent set. We also assume
that Sc is ordered in some way. This allows us to refer to vertices as vn,c,i where
n is the node from T , c is the color, and i is the index in Sc (which, for ease
of explanation, is zero-based). We also have a set of edges E, which we again
assume to be ordered in some way. Each edge connects two vertices vn1,c1,i1 and
vn2,c2,i2 where n1 and n2 are either the same node or neighbors in T and where
c1 and c2 are distinct if n1 = n2. Let m := |E| be the total number of edges.

First, we transform T into a rooted tree T ′ by choosing any node u ∈ T ,
adding two new nodes v and w and two edges (u, v) and (v, w), and setting w
as the root. This way, each node from the original tree T has a parent and a
grandparent in T ′. We now construct a graph G which will be an instance of
TMG. It will consist of several zipper gadgets in which some vertices have been
identified with each other: that is, where some vertices with distinct colors are
merged into one vertex with the combined set of colors. For each node n in T
and each color c in its associated instance of Multicolor Independent Set,
we add a zipper gadget zn,c of size 2mr + 1 and skew r. The middle tooth of
path P (with index mr + 1) is special: we call it the middle. We now say that
this zipper gadget starts in n, passes through the parent of n and ends in the
grandparent of n. This is supported with some vertex identifications: for each
node n in T ′, we identify the heads of all zipper gadgets starting at n, the tails
of all zipper gadgets ending at n, and the last vertex of the middles (with colors
c4 and bP) of all zipper gadgets that pass through n. Observe that the path P
of each zipper gadget now consists of m sets of r teeth between its head and
middle, and also m sets of r teeth between its middle and tail.

Each zipper gadget is assigned its own set of 7 colors such that no two zipper
gadgets which start, pass through, or end in a common node share a color. We
claim that this can be done using at most 7k sets of 7 colors. Assign colors to
nodes in order of distance to the root of T ′ (closest to the root first). Let n be
the current node. All zipper gadgets that have already been assigned colors and
intersect with zipper gadgets starting from n are those that start at either: n’s
parent, the other child of n’s parent (n’s sibling), n’s grandparent, the other
child of n’s grandparent (n’s uncle), or any of the two children from that vertex
(n’s cousins). In total, this is at most 6k other zipper gadgets. To color the k
zipper gadgets starting at n, we can thus use the remaining 7k − 6k = k sets of
7 colors.

180 J. M. de Vlas

In a triangulation of G, each zipper gadget will represent a choice of a vertex
from Sc: if the zipper gadget is triangulated with offset Δ, then we choose the
vertex with index Δ from Sc. Each of the m sets of r teeth between head and
middle or between middle and tail will represent a restriction regarding one of
the edges. For each edge ei (with index i) with endpoints vn1,c1,i1 and vn2,c2,i2

we want to exclude the possibility of simultaneously triangulating the zipper
gadget zn1,c1 with offset i1 and the zipper gadget zn2,c2 with offset i2. This is
done as follows.

Let (P1, Q1) and (P2, Q2) be the paths which form the zipper gadgets. We
now identify two vertices from P1 and P2 and add a new color d to some vertices
from Q1 and Q2. This is visualized in Fig. 5. The idea is that if we would trian-
gulate both zipper gadgets in a way that adds edges between the vertices with
color d and the merged vertex, then any triangulation of both zipper gadgets
together forces an edge between the vertices with the color d which is impossible.
We now describe exactly which vertices should be modified.

We consider two cases: either n1 and n2 are the same node or they are
neighbors in T . In the first case, we consider the tooth with index ir from both
P1 and P2 and identify the first vertex from these teeth with each other. We also
consider tooth ir + i1 from Q1 and tooth ir + i2 from Q2 and add a new color
d to the first vertex of these teeth. In the second case, we assume without loss
of generality that n1 is the parent of n2. We do almost the same as in the first
case, except that we use the second half of the zipper gadget zn2,c2 : we identify
the first vertex of tooth ir from P1 and tooth mr + 1 + ir from P2, and we add
color d to the first vertex of tooth ir + i1 from Q1 and tooth mr + 1 + ir + i2
from Q2.

This completes the construction. Observe that this construction uses 49k +1
colors (7k sets of 7 colors for the zipper gadgets and one for the extra color d) and
thus that the change in parameter is linear. Also observe that the construction
can be performed in logarithmic working space since the creation and merging
of the zipper gadgets only require local information from the original TCMIS
instance. This shows that we indeed have a logspace reduction.

The proof that this TMG instance admits a triangulation if and only if the
original TCMIS instance admits a solution is a direct result of the intuitive
insights mentioned during the construction and thus omitted from the main
text. A full proof is given in the appendix of the ArXive version of the paper.

7 Future Research

Let n be the input size, k the parameter, f any computable function, c any con-
stant, and ε any small positive constant. We have shown that Perfect Phy-

logeny and Triangulating Colored Graphs are XALP-complete and that
(assuming ETH) there exist no algorithms that solve any of them in f(k)no(k)

time. This increases the number of “natural” problems in the complexity class
XALP and gives more reason to determine properties of this complexity class.
Additionally, these problems can be used as a starting point for XALP-hardness
reductions for other parameterized problems.

On the Parameterized Complexity of the Perfect Phylogeny Problem 181

Fig. 5. How two zipper gadgets are combined: two vertices from P1 and P2 are merged
into one vertex and two vertices from Q1 and Q2 are given the extra color d.

Another future research direction might be to close or reduce the gaps
between the current upper and lower bounds on space and time usage. For the
time gap, there is a lower bound of f(k)no(k) (assuming ETH) and an upper
bound of O(nk+1) [13]. For the space gap on algorithms that run in nf(k) time,
there is a lower bound of f(k)nc (assuming SPSC) and an upper bound of again
O(nk+1) [13]. One way to close the time gap could be by assuming the Strong
Exponential Time Hypothesis (SETH). We expect that, assuming SETH, a lower
bound like f(k)nk−ε should be possible.

We also rule out a research direction. Triangulating a colored graph comes
down to finding a tree decomposition where each bag contains each color at most
once. A similar problem would be to instead look for a path decomposition where
each bag contains each color at most one. This problem, known as Intervaliz-

ing Colored Graphs, is already NP-complete for the case k = 4 [1].

Acknowledgements. This paper was written as a master thesis at Utrecht University.
I wish to thank my supervisors Hans L. Bodlaender and Carla Groenland for the
discussions and guidance.

References

1. Bodlaender, H.L., de Fluiter, B.: On intervalizing k-colored graphs for DNA phys-
ical mapping. Discret. Appl. Math. 71(1), 55–77 (1996). https://doi.org/10.1016/
S0166-218X(96)00057-1

2. Bodlaender, H.L., Fellows, M.R., Hallett, M.T., Wareham, H., Warnow, T.J.: The
hardness of perfect phylogeny, feasible register assignment and other problems on
thin colored graphs. Theoret. Comput. Sci. 244(1), 167–188 (2000). https://doi.
org/10.1016/S0304-3975(98)00342-9

3. Bodlaender, H.L., Fellows, M.R., Warnow, T.J.: Two strikes against perfect phy-
logeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9 80

https://doi.org/10.1016/S0166-218X(96)00057-1
https://doi.org/10.1016/S0166-218X(96)00057-1
https://doi.org/10.1016/S0304-3975(98)00342-9
https://doi.org/10.1016/S0304-3975(98)00342-9
https://doi.org/10.1007/3-540-55719-9_80

182 J. M. de Vlas

4. Bodlaender, H.L., Groenland, C., Jacob, H.: On the parameterized complexity of
computing tree-partitions. In: Dell, H., Nederlof, J. (eds.) 17th International Sym-
posium on Parameterized and Exact Computation, IPEC 2022. LIPIcs, vol. 249,
pp. 7:1–7:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022). https://
doi.org/10.4230/LIPIcs.IPEC.2022.7

5. Bodlaender, H.L., Groenland, C., Jacob, H., Pilipczuk, M., Pilipczuk, M.: On the
complexity of problems on tree-structured graphs. In: Dell, H., Nederlof, J. (eds.)
17th International Symposium on Parameterized and Exact Computation, IPEC
2022. LIPIcs, vol. 249, pp. 6:1–6:17. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik (2022). https://doi.org/10.4230/LIPIcs.IPEC.2022.6

6. Buneman, P.: A characterisation of rigid circuit graphs. Discret. Math. 9(3), 205–
212 (1974). https://doi.org/10.1016/0012-365X(74)90002-8

7. Chen, J., et al.: Tight lower bounds for certain parameterized NP-hard problems.
In: 19th IEEE Annual Conference on Computational Complexity, vol. 19, pp. 150–
160 (2004). https://doi.org/10.1109/CCC.2004.1313826

8. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I:
basic results. SIAM J. Comput. 24(4), 873–921 (1995). https://doi.org/10.1137/
S0097539792228228

9. Elberfeld, M., Stockhusen, C., Tantau, T.: On the space and circuit complexity of
parameterized problems: classes and completeness. Algorithmica 71(3), 661–701
(2015). https://doi.org/10.1007/s00453-014-9944-y

10. Estabrook, G., Johnson, C., McMorris, F.: A mathematical foundation for the
analysis of cladistic character compatibility. Math. Biosci. 29(1), 181–187 (1976).
https://doi.org/10.1016/0025-5564(76)90035-3

11. Kannan, S., Warnow, T.: Inferring evolutionary history from DNA sequences. In:
31st Annual Symposium on Foundations of Computer Science, FOCS 1990, vol. 1,
pp. 362–371 (1990). https://doi.org/10.1109/FSCS.1990.89555

12. Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration of
perfect phylogenies. SIAM J. Comput. 26(6), 1749–1763 (1997). https://doi.org/
10.1137/S0097539794279067

13. McMorris, F.R., Warnow, T.J., Wimer, T.: Triangulating vertex-colored
graphs. SIAM J. Discret. Math. 7(2), 296–306 (1994). https://doi.org/10.1137/
S0895480192229273

14. Pilipczuk, M., Wrochna, M.: On space efficiency of algorithms working on struc-
tural decompositions of graphs. ACM Trans. Comput. Theory 9(4), 18:1–18:36
(2018). https://doi.org/10.1145/3154856

15. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 1–24 (2008).
https://doi.org/10.1145/1391289.1391291

https://doi.org/10.4230/LIPIcs.IPEC.2022.7
https://doi.org/10.4230/LIPIcs.IPEC.2022.7
https://doi.org/10.4230/LIPIcs.IPEC.2022.6
https://doi.org/10.1016/0012-365X(74)90002-8
https://doi.org/10.1109/CCC.2004.1313826
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1007/s00453-014-9944-y
https://doi.org/10.1016/0025-5564(76)90035-3
https://doi.org/10.1109/FSCS.1990.89555
https://doi.org/10.1137/S0097539794279067
https://doi.org/10.1137/S0097539794279067
https://doi.org/10.1137/S0895480192229273
https://doi.org/10.1137/S0895480192229273
https://doi.org/10.1145/3154856
https://doi.org/10.1145/1391289.1391291

Data Reduction for Directed Feedback
Vertex Set on Graphs Without Long

Induced Cycles

Jona Dirks1, Enna Gerhard1, Mario Grobler1, Amer E. Mouawad2,
and Sebastian Siebertz1(B)

1 University of Bremen, Bremen, Germany
{dirks2,gerhard,grobler,siebertz}@uni-bremen.de

2 American University of Beirut, Beirut, Lebanon
aa368@aub.edu.lb

Abstract. We study reduction rules for Directed Feedback Ver-
tex Set (DFVS) on instances without long cycles. A DFVS instance
without cycles longer than d naturally corresponds to an instance of d-
Hitting Set, however, enumerating all cycles in an n-vertex graph and
then kernelizing the resulting d-Hitting Set instance can be too costly,
as already enumerating all cycles can take time Ω(nd). To the best of
our knowledge, the kernelization of DFVS on graphs without long cycles
has not been studied in the literature, except for very restricted cases,
e.g., for tournaments, in which all induced cycles are of length three.
We show how to compute a kernel with at most 2dkd vertices and at
most d3dkd induced cycles of length at most d (which however, cannot
be enumerated efficiently). We then study classes of graphs whose under-
lying undirected graphs have bounded expansion or are nowhere dense;
these are very general classes of sparse graphs, containing e.g. classes
excluding a minor or a topological minor. We prove that for such classes
without induced cycles of length greater than d we can compute a ker-
nel with Od(k) and Od,ε(k

1+ε) vertices for any ε > 0, respectively, in
time Od(n

O(1)) and Od,ε(n
O(1)), respectively, where k is the size of a

minimum directed feedback vertex set. The most restricted classes we
consider are planar graphs without any (induced or non-induced) long
cycles. We show that strongly connected planar graphs without long
cycles have bounded treewidth and hence DFVS on such graphs can be
solved in time 2O(d) ·nO(1). We finally present a new data reduction rule
for general DFVS and prove that the rule together with a few standard
rules subsumes all the rules applied by Bergougnoux et al. to obtain a
polynomial kernel for DFVS[FVS], i.e., DFVS parameterized by the
feedback vertex set number of the underlying (undirected) graph.

1 Introduction

A directed feedback vertex set of a directed n-vertex graph G is a subset S ⊆
V (G) of vertices such that every directed cycle of G intersects with S. In the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 183–197, 2024.
https://doi.org/10.1007/978-3-031-52113-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_13&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_13

184 J. Dirks et al.

Directed Feedback Vertex Set (DFVS) problem, we are given a directed
graph G and an integer k, and the objective is to determine whether G admits
a directed feedback vertex set of size at most k. In what follows, unless stated
otherwise, when we speak of a graph we always mean a directed graph, and when
we speak of a cycle we mean a directed cycle.

DFVS is one of Karp’s 21 NP-complete problems [28]. Its NP-completeness
follows easily by a reduction from Vertex Cover, which is a special case
of DFVS where every edge lies on an induced cycle of length two. The
fastest known exact algorithm for DFVS, due to Razgon [37], runs in time
O(1.9977n · nO(1)). Chen et al. [7] proved that the problem is fixed-parameter
tractable when parameterized by solution size k; providing an algorithm run-
ning in time O(k!4kk4nm) = 2O(k log k) · nm, for digraphs with n vertices and m
edges. The dependence on the input size has been improved to O(k!4kk5(n+m))
by Lokshtanov et al. [32]. The problem has also been studied under different
parameterizations. Bonamy et al. [6] proved that one can solve the problem in
time 2O(t log t) · nO(1), where t denotes the treewidth of the underlying undi-
rected graph. They also proved that this running time is tight assuming the
exponential-time hypothesis (ETH). On planar graphs the running time can be
improved to 2O(t) · nO(1). A natural question is whether these results extend to
directed width measures, e.g., whether the problem is fixed-parameter tractable
when parameterized by directed treewidth. This is not the case: DFVS remains
NP-complete even on very restricted classes of graphs such as graphs of cycle
rank at most four (which in particular have bounded directed treewidth), as
shown by Kreutzer and Ordyniak [29], and hence the problem is not even in XP
when parameterized by cycle rank.

The question whether DFVS parameterized by solution size k admits a poly-
nomial kernel, i.e., an equivalent polynomial-time computable instance of size
polynomial in k, remains one of the central open questions in the area of ker-
nelization. Bergougnoux et al. [4] showed that the problem admits a kernel of
size O(f4) in general graphs and O(f) in graphs embeddable on a fixed surface,
where f denotes the size of a minimum undirected feedback vertex set in the
underlying undirected graph. Note that f can be arbitrarily larger than k. More
generally, for an integer η, a subset M ⊆ V (G) of vertices is called a treewidth η-
modulator if G−M has treewidth at most η. Lokshtanov et al. [33] showed that
when given a graph G, an integer k, and a treewidth η-modulator of size �, one
can compute a kernel with (k · �)O(η2) vertices. This result subsumes the result
of Bergougnoux et al. [4], as the parameter k+ � is upper bounded by O(f) and
can be arbitrarily smaller than f . On the other hand, unless NP ⊆ coNP/poly,
for η ≥ 2, there cannot exist a polynomial kernel when we parameterize by the
size of a treewidth-η modulator alone, as even Vertex Cover cannot have
a polynomial kernel when parameterized by the size of a treewidth-2 modula-
tor [8]. Polynomial kernels are known for several restricted graph classes, see
e.g. [2,11,20].

From the viewpoint of approximation, the best known algorithms for DFVS

are based on integer linear programs whose fractional relaxations can be solved

Data Reduction for DFVS on Graphs Without Long Induced Cycles 185

efficiently. It was shown by Seymour [38] that the integrality gap for DFVS

is at most O(log k∗ log log k∗), where k∗ denotes the optimal value of a frac-
tional directed feedback vertex set. Note that the linear programming for-
mulation of DFVS may contain an exponential number of constraints. Even
et al. [16] circumvented this obstacle and provided a related combinatorial
polynomial-time algorithm yielding an O(log k∗ log log k∗) ⊆ O(log k log log k)-
approximation. Assuming the Unique Games Conjecture (UGC), the prob-
lem does not admit a polynomial-time computable constant-factor approxima-
tion algorithm [25,26,39]. Lokshtanov et al. [31] showed how to compute a 2-
approximation in time 2O(k) · nO(1).

This work was initiated after successfully participating in the PACE 2022
programming challenge [24]. In the scope of a student project at the University
of Bremen, we participated in the competition and our solver ranked second in
the exact track [3]. In this paper we present our theoretical findings, whereas an
empirical evaluation of the implemented rules will be presented in future work.

We first study DFVS instances without long cycles, which is intimately linked
to the study of the Hitting Set problem. Many of the known data reduction
rules for DFVS are special cases of general reduction rules for Hitting Set. A
hitting set in a set system G with ground set V (G) and edge set E(G), where each
S ∈ E(G) is a subset of V (G), is a subset H ⊆ V (G) such that H ∩ S �= ∅ for
all S ∈ E(G). Given a graph G, a directed feedback vertex set in G corresponds
one-to-one to a hitting set for the set system G where V (G) = V (G) and E(G) =
{V (C) | C is a cycle in G}. The main difficulty in applying reduction rules
designed for Hitting Set is that we first need to efficiently convert an instance
of DFVS to an instance of Hitting Set. However, in general, we want to
avoid computing G from G, as |E(G)| may be super-polynomial in the size of the
vertex set, i.e., super-polynomial in |V (G)| = |V (G)|. One simple reduction rule
for Hitting Set is to remove all sets S ∈ E(G) such that there exists S′ ∈ E(G)
with S′ ⊆ S. Instances of Hitting Set that do not contain such pairs of sets are
called vertex induced. The remaining minimal sets in the corresponding DFVS

instance are the induced cycles of G. It follows that in a DFVS instance it
suffices to hit all induced cycles. Unfortunately, it is NP-complete to detect if a
vertex or an edge lies on an induced cycle [18] even on planar graphs, implying
that it is not easy to exploit this property for DFVS directly. Overcoming this
obstacle requires designing data reduction rules based on sufficient conditions
guaranteeing that a vertex or an edge does not lie on an induced cycle and can
therefore be safely removed.

An instance of DFVS without cycles of length greater than d naturally
corresponds to an instance of d-Hitting Set. As shown in [1], d-Hitting Set

admits a kernel with k+(2d−1)kd−1 vertices, which can be efficiently computed
when the d-Hitting Set instance is explicitly given as input. This is known to
be near optimal, as d-Hitting Set does not admit a kernel of size O(kd−ε) unless
the polynomial hierarchy collapses [9]; note that here size refers to the total size
of the instance and not to the number of vertices. The question of whether there
exists a kernel for d-Hitting Set with fewer elements is considered to be one

186 J. Dirks et al.

of the most important open problems in kernelization [5,11,21,22,42]. However,
even in this restricted case we cannot efficiently generate the d-Hitting Set

instance from the DFVS instance, as even testing if a vertex lies on an induced
cycle of length at most d is W[1]-hard [27] when parameterized by d. We hence
have to avoid computing a Hitting Set instance explicitly but must rather
work on the implicit graph representation of a DFVS instance. To the best of
our knowledge the kernelization of DFVS on graphs without long cycles has
not been studied in the literature, except for some very restricted cases, e.g., on
tournaments in which all induced cycles are of length three [5,11,20]. We remark
that due to the hardness of deciding whether a graph contains an induced cycle
of length greater than d, we need to be given the promise that the input graph
does not contain such induced cycles.

We show that after applying standard reduction rules we can compute in
polynomial time a superset W of the vertices that lie on induced cycles of length
at most d and which is of size at most 2dkd. As it suffices to hit all induced
cycles, G[W] is an equivalent instance. Up to a factor k and constants depend-
ing only on d this matches the best known bounds (stated above) for the kernel-
ization of d-Hitting Set. Potentially in the kernelized instance we could have
(2dkd)d = 2d2

kd2
induced cycles. Based on the classical sunflower lemma, we

prove however, that kernelized instances contain at most d3dkd induced cycles
of length at most d, for any fixed d ≥ 2. In light of the question whether DFVS

admits a polynomial kernel, we pose as a question whether it admits a kernel
of size Od(kO(1)) computable in time Od(nO(1)) on instances without induced
cycles of length greater than d.

We then turn our attention to restricted graph classes for which we can effi-
ciently test whether a vertex lies on an induced cycle of length at most d, e.g.,
by efficient algorithms for first-order model-checking [13,23]. We study classes
of graphs whose underlying undirected graphs have bounded expansion or are
nowhere dense. We show that DFVS on classes of bounded expansion admits
a kernel with Od(k) vertices, and a kernel with Od,ε(k1+ε) vertices, for any
ε > 0, on nowhere dense classes, respectively, computable in time Od(nO(1))
and Od,ε(nO(1)), respectively. This answers our above question for very general
classes of sparse graphs. Our method is based on the approach of [12,14] for
the kernelization of the Distance-r Dominating Set problem on bounded
expansion and nowhere dense classes. We conclude our study of restricted graph
classes by observing that a strongly connected planar graph without any long
(induced or non-induced) cycles has bounded treewidth. We observe that after
the application of some reduction rules, weak components are equal to strong
components. Hence, the DAG of strong components in fact is a tree. Then, if
each strong component has bounded treewidth, we can combine the tree decom-
positions of the strong components with the tree of strong components to derive
that the whole graph after application of the rules has bounded treewidth and
solve it efficiently.

We proceed by designing a new data reduction rule that provides a sufficient
condition for a vertex or edge to lie on an induced cycle. The new rule con-

Data Reduction for DFVS on Graphs Without Long Induced Cycles 187

veniently generalizes many of the complicated rules presented by Bergougnoux
et al. [4] to establish a kernel of size O(f4), where f is the size of a minimum
feedback vertex set for the underlying undirected graph. In addition to being
simpler, our rule does not require the initial computation of a feedback vertex
set for the underlying undirected graph.

Due to space constraints not all proofs can be presented in this conference
version. They can be found in the full version of the paper [10].

2 Preliminaries

A graph G consists of a (non-empty) vertex set V (G) and edge set E(G) ⊆
V (G)×V (G). For vertices u, v ∈ V (G) we write uv for the edge directed from u
to v. An edge vv is called a loop. We denote the in- and out-neighborhood of
v ∈ V (G) by N−

G (v) = {u | uv ∈ E(G)} and N+
G (v) = {u | vu ∈ E(G)},

respectively. The neighborhood of v is denoted by NG(v) = N−
G (v) ∪ N+

G (v). A
cycle C in a graph G is a sequence of vertices v1v2 . . . v�+1 such that v1 = v�+1,
vi �= vj for all i �= j ≤ �, and vivi+1 ∈ E(G) for all i ≤ �. We denote the set
of vertices that appear in C by V (C) = {v1, . . . , v�}. We denote by � the length
of C. A u-v-path is a sequence of vertices v1v2 . . . v�+1 of pairwise distinct vertices
such that v1 = u and v�+1 = v. Likewise, we define V (P) = {v1, . . . , v�+1} and
call � the length of the path, that is, the number of edges of P . For a u-v-path
P and a v-w-path Q we write PQ for the u-w-walk obtained by concatenating
P and Q (removing the repetition of v in the middle). Recall that a u-w-walk
in a graph G implies the existence of a u-w-path in G using a subset of the
vertices and edges of the walk. By a slight abuse of notation, we sometimes use
PQ to denote the u-w-path. For a set S ⊆ V (G), we write Nd+

G [S] to denote the
d-out-neighborhood of S in G and Nd−

G [S] to denote the d-in-neighborhood of S

in G. That is, Nd+
G [S] contains all vertices of G that are reachable from some

vertex in S via a path of length at most d ≥ 0, and Nd−
G [S] contains all vertices

of G that can reach some vertex in S via a path of length at most d. Note that
since paths of length zero are allowed, we have S ⊆ Nd+

G [S] ∩ Nd−
G [S].

For a vertex subset U ⊆ V (G), we denote by G[U] the graph induced by U ,
that is the graph obtained from G where we only keep the vertices in U and
the edges incident on them. We write G − U for the graph G[V (G)\U] and for
a singleton vertex set {v} we write G − v instead of G − {v}. For an edge uv
we write G + uv and G − uv for the graph obtained by adding or removing the
edge uv, respectively. A cycle C is an induced cycle if the graph G[V (C)] is
isomorphic to a cycle and a path P is an induced path if the graph G[V (P)] is
a path. We call a u-v-path almost induced if P is an induced path in G − vu.
Slightly abusing notation, when u, v are distinct vertices on an induced cycle C,
we will say that C decomposes into an induced u-v-path and an induced v-u-
path, even though this is not true if uv ∈ E(G), in which case the u-v-path is
almost induced.

We call a set S ⊆ V (G) a directed feedback vertex set, dfvs for short, if G−S
does not contain any (directed) cycle. An input of the Directed Feedback

188 J. Dirks et al.

Vertex Set problem consists of a graph G and a positive integer k. The goal
is to determine whether G admits a dfvs of size at most k. We will constantly
make use of the following simple lemma.

Lemma 2.1. Let G be a graph without induced cycles of length greater than d
and let k be a positive integer. Then, we can compute in polynomial time either
a dfvs of size at most dk or decide that there is no dfvs of size at most k in G.

3 DFVS in Graphs Without Long Induced Cycles

We begin our study of DFVS in graphs without induced cycles of length greater
than d. Unfortunately, it is NP-complete to determine if a vertex lies on an
induced cycle [18]. In fact, this is even W[1]-hard when parameterized by d [27].
By Lemma 2.1 we can approximate a small dfvs S. As a first rule we can delete
all vertices that do not lie in Nd+

G [S]∩Nd−
G [S]. It would be even better to delete

all vertices that do not lie on an induced path of length at most d between two
vertices u, v ∈ S (making a copy of u (and its incident edges) when dealing with
the case u = v). Since G − S is acyclic, one could hope that this is possible
in time Od(nO(1)), however, as we show next even this is not possible. The
Directed Chordless (s, v, t)-Path problem asks, given a graph G, vertices
s, v, t, and integer d, whether there exists an induced s-t-path in G of length
at most d containing v. The W[1]-hardness of the problem on general (directed
and undirected) graphs was proved in [27]. We show hardness on directed acyclic
graphs via a reduction from Grid Tiling.

Lemma 3.1. The Directed Chordless (s, v, t)-Path problem parameterized
by the length d of a path is W[1]-hard even restricted to directed acyclic graphs.

By inspecting the proof of Lemma 3.1 we obtain the following corollaries.

Corollary 3.1. It is W[1]-hard to decide if a vertex lies on an induced cycle of
length at most d even on graphs that become acyclic after the deletion of a single
edge.

Corollary 3.2. It is W[1]-hard to decide if a graph contains an induced cycle
of length at least d even on graphs that become acyclic after the deletion of a
single edge.

We will rely on the following sunflower-like rule which was presented as Rule 3
in [4] and the special case of u = v as Rule 6 in [19].

Rule 1. Let u, v ∈ V (G). If u and v are connected by more than k internally
vertex-disjoint u-v-paths, then insert the edge uv.

We assume that Rule 1 has been applied exhaustively, i.e., reiterated after
any successful application of the rule. We slightly abuse notation and use G to
denote the resulting graph, which we call a reduced graph.

Data Reduction for DFVS on Graphs Without Long Induced Cycles 189

We now consider graphs that have no induced cycles of length greater than d.
We start with a high-level description of our strategy as well as the obstacles that
we need to overcome. Given a reduced graph G, we first compute a dfvs S of size
at most dk as guaranteed by Lemma 2.1. Since we assume that G has no induced
cycles of length greater than d, all vertices of G that are at distance d + 1 or
more from every vertex in S can be discarded as they cannot belong to induced
cycles of length at most d that intersect with S. Hence, in what follows, we let
G = G[Nd+

G [S] ∩ Nd−
G [S]] (which can be easily computed in polynomial time by

standard breadth-first searches). The vertex set of G = G[Nd+
G [S] ∩ Nd−

G [S]] is
partitioned into S and R = V (G)\S, where |S| ≤ dk and every vertex in R is
at distance at most d to some vertex in S. Note that we would like to check
for each w ∈ R whether there exists an induced path of length at most d from
some u ∈ S to w and back. However, this is not possible due to Lemma 3.1,
since it implies that we cannot efficiently iterate through the vertices of R one
by one and decide if they belong to some induced path. Our solution consists of
adopting a “relaxed approach”. That is, for u ∈ S let Id

u ⊆ V (G) denote the set
of all vertices that belong to some induced cycle of length at most d containing
u. We shall compute, for each vertex u ∈ S, a set W d

u ⊇ Id
u. In other words,

we compute a superset, which we call W d
u , of the vertices that share an induced

cycle of length at most d with u. We call W d
u the set of d-weakly relevant vertices

for u. Most crucially, we show that each W d
u can be computed efficiently and

will be of bounded size. We let W d
S =

⋃
u∈S W d

u and we call W d
S the set of d-

weakly relevant vertices for S. It is not hard to see that G[S ∪ W d
S] is indeed an

equivalent instance (to G) as it includes all vertices that participate in induced
cycles of length at most d.

We describe the construction of W d
u for a single vertex. That is, we fix a

non-reducible directed graph G, an integer k ≥ 2, a constant d ≥ 2, a dfvs S of
size at most dk, and a vertex u ∈ S. We first construct a graph Hd

u as follows:

– We begin by setting Hd
u = G[Nd+

G [u]].
– Then, we add a new vertex v to Hd

u and make all the in-neighbors of u become
in-neighbors of v instead, i.e., u will only have out-neighbors and v will only
have in-neighbors.

– Next, we delete all vertices in Hd
u that do not belong to some directed path

from u to v of length at most d.

Note that Hd
u can be computed in polynomial time. Moreover, there exists

an induced cycle of length at most d containing u in G if and only if there
exists an induced u to v path of length at most d in Hd

u. By a slight abuse of
notation, we also denote the graph Hd

u by Hd
u,v to emphasize the source and

sink vertices. We call a directed graph k-nice whenever any two vertices x, z
are either connected by the directed edge xz or by a set of at most k pairwise
internally vertex-disjoint (directed) paths. In particular, either xz is an edge
or there exists a set Y (disjoint from {x, z}) of at most k vertices that hits
every directed path from x to z. Observe that Hd

u is indeed k-nice (since Rule
1 has been exhaustively applied on G). Given a k-nice graph Hd

u, two vertices

190 J. Dirks et al.

Algorithm 1. Algorithm for computing weakly relevant vertices for u ∈ S

procedure WeaklyRelevant(G, S, u, d)
return Recurse(Hd

u,v, u, v, {}, d) � Returns W d
u

end procedure

procedure Recurse(H, x, z, W, d)
if |V (H)\{x, z}| ≤ k or d == 2 then

return W ∪ (V (H)\{x, z})
end if
Y ← VertexSeparator(H, x, z) � Recall that |Y | ≤ k and x, z �∈ Y
W ← W ∪ Y
for y ∈ Y do

W ← W ∪ Recurse(Hd−1
x,y , x, y, W, d − 1) ∪ Recurse(Hd−1

y,z , y, z, W, d − 1)
end for
return W

end procedure

x, z ∈ V (Hd
u), and 2 ≤ d′ < d, we let Hd′

x,z denote the (k-nice) graph obtained
from Hd

u by deleting all incoming edges of x, deleting all outgoing edges of z,
and deleting all vertices that do not belong to a path of length at most d′ from
x to z. We are now ready to compute W d

u , for u ∈ S, recursively as described
in Algorithm 1. Recall that since Rule 1 is not applicable in G, there do not
exist k internally vertex-disjoint (directed) paths between any two non-adjacent
vertices of G (and any Hd′

x,z resulting from the recursive calls). Hence, whenever
we compute (via a flow algorithm) a set Y separating two non-adjacent vertices
we know that Y will be of size at most k.

Lemma 3.2. For u ∈ S, every induced cycle Cu of length at most d including
u only includes vertices that are d-weakly relevant for u, i.e., V (Cu) ⊆ W d

u .

Lemma 3.2 immediately implies the safeness of the following rule.

Rule 2. If a vertex w �∈ S is not d-weakly relevant for some vertex u ∈ S then
remove w from G.

It remains to prove that the rule can be efficiently implemented and that its
application leads to a small kernel.

Lemma 3.3. For u ∈ S and 2 < � ≤ d we have |W �
u| ≤ k(2|W �−1

u | + 1) ≤
2�−1k�−1.

Lemma 3.4. Rule 2 is safe and, if 2dkd ≤ nO(1), it can be implemented in
polynomial time.

Theorem 3.1. DFVS parameterized by solution size k and restricted to graphs
without induced cycles of length greater than d admits a kernel with 2dkd vertices
computable in polynomial time.

Data Reduction for DFVS on Graphs Without Long Induced Cycles 191

We further study the structure of kernelized instances and count how many
induced cycles we can find. Our key tool is the classical sunflower lemma. A
sunflower with � petals and a core Y is a collection of sets S1, . . . , S� ∈ E(G)
such that Si ∩ Sj = Y for all i �= j ≤ �. The sets Si\Y are called petals and
we require none of them to be empty (while the core Y may be empty). Erdös
and Rado [15] proved in their famous sunflower lemma that every hypergraph
with edges of size at most d with at least sun(d, k) = d!kd edges contains a
sunflower with at least k + 1 petals. Kernelization for d-Hitting Set based on
the sunflower lemma yields a kernel with at most O(d!kd) sets on hypergraphs
with hyperedges of size at most d, see e.g. [17,40]. We can prove the following
lemma.

Lemma 3.5. Kernelized instances of DFVS contain at most d3dkd induced
cycles of length at most d.

4 Nowhere Dense Classes Without Long Induced Cycles

We now improve the general kernel construction for DFVS on graphs without
induced cycles of length greater than d by additionally restricting the class of (the
underlying undirected) graphs. We obtain a kernel with Od(k) vertices on classes
with bounded expansion and Od,ε(k1+ε) vertices, for any ε > 0, on nowhere
dense classes of graphs (when we say G belongs to a class C of graphs we in
fact mean that the underlying undirected graph belongs to C). We present the
proof for nowhere dense classes since it subsumes the bounded expansion case.
To keep the presentation clean we omit the details for the latter case since the
required modifications are negligible. We refer the reader to [34,35] for formal
definitions of bounded expansion and nowhere dense classes of graphs. We only
need the following properties, which will also motivate our additional reduction
rule. Recall that every class of bounded expansion is also nowhere dense. For
every nowhere dense class of graphs C there exists a positive integer t > 0 such
that Kt,t (the complete biparite graph with t vertices in each part) is not a
subgraph of any G ∈ C .

Let us fix an approximate solution S as described in Lemma 2.1. Let X ⊆
V (G) and let u ∈ V (G)\X. The undirected d-projection of u onto X is defined
as the set Πd(u,X) of all vertices w ∈ X for which there exists an undirected
path P of length at most d in G that starts in u, ends in w, with internal vertices
not in X.

Lemma 4.1 ([14]). Let C be a nowhere dense class of graphs. There exists
a polynomial time algorithm that given a graph G ∈ C , d, ε > 0 and X ⊆
V (G), computes the d-projection-closure of X, denoted by X◦, with the following
properties:

1. X ⊆ X◦,
2. |X◦| ≤ κd,ε · |X|1+ε for a constant κd,ε depending only on d and ε,
3. |Πd(u,X◦)| ≤ κd,ε · |X|ε for each u ∈ V (G)\X◦, and

192 J. Dirks et al.

4. |{Πd(u,X) : u ∈ V (G)\X◦}| ≤ κd,ε · |X|1+ε.

We need the following strengthening for �-tuples [36]. For a set X ⊆ V (G)
and an �-tuple x̄ of vertices we call the tuple (N [x̄1] ∩ X, . . . , N [x̄�] ∩ X) the
undirected projection of x̄ onto X. We say that X̄ = (X1, . . . , X�) is realized as
a projection if there is a tuple x̄ whose projection is equal to X̄.

Lemma 4.2 ([36]). Let C be a nowhere dense class of graphs and let � be a
natural number. Let G ∈ C and X ⊆ V (G). Then, for every ε > 0 there exists a
constant τ�,ε such that there are at most τ�,ε · |X|�+ε different realized undirected
projections of �-tuples.

Let X ⊆ V (G) and let x, y ∈ X. Let P = u1, . . . , u� be an almost induced x-y-
path with |V (P)| = � ≤ d and let ui ∈ V (P). Then, the X-path-projection profile
of (P, u) is the tuple (i,N−(u1)∩X,N+(u1)∩X, . . . , N−(u�)∩X,N+(u�)∩X).
The X-path-projection profile of vertex u is the set of all X-path-projection
profiles (P, u), where P is any almost induced x-y-paths on at most d vertices
and x, y ∈ X are any two vertices in X. Two vertices u, v are equivalent over X
if they have the same X-path-projection profiles.

Lemma 4.3. Let C be a nowhere dense class of graphs and let t > 0 be some
fixed positive integer such that Kt,t �⊆ G, for all G ∈ C . Let G ∈ C and X ⊆
V (G). Then, for every ε > 0, there exists a constant χd,t,ε such that the number
of X-path-projection profiles for u ∈ V (G)\X is bounded by χd,t,ε · |X|d+ε.

Rule 3. If we can find in polynomial time sets B,X ⊆ V (G) such that the
following holds:

1. the d + 1-neighborhoods in G − X of distinct vertices from B are disjoint,
2. every induced cycle using a vertex of Nd

G[B] also uses a vertex of X,
3. vertices in B are pairwise equivalent over X, i.e., they have the same X-

path-projection profile (in particular, if one vertex of B lies on an x-y-path
of length � ≤ d, then all vertices of B do as well), and

4. |B| > c + d + 1 and |X| ≤ c, for some fixed constant c.

Then choose an arbitrary vertex of B and delete it from G.

Lemma 4.4. Rule 3 is safe.

Lemma 4.5. Given a graph G, X ⊆ V (G) and u ∈ V (G), we can test in time
Od,ε(nO(1)) whether every induced cycle (on at most d vertices) using a vertex
of Nd

G[u] also uses a vertex of X. Furthermore, we can decide in the same time
if two vertices u, v have the same X-path-projection profile.

We now use a property of nowhere dense classes of graphs called uniformly
quasi-wideness [30,35,36] to prove our main theorem.

Theorem 4.1. Rule 3 can be efficiently applied until the reduced graph has
Od,ε(k1+ε) vertices.

Data Reduction for DFVS on Graphs Without Long Induced Cycles 193

5 DFVS in Planar Graphs Without Long Cycles

One may wonder whether the stronger assumption that a graph does not contain
long cycles, induced or non-induced, leads to even more efficient algorithms. We
show that this is indeed the case when considering planar graphs. We show that
strongly connected planar graphs without cycles of length d have treewidth O(d).
We observe in Corollary 6.1 that after the application of Rule 7 (stated below),
weak components are equal to strong components. Hence, the DAG of strong
components in fact is a tree. Then, if each strong component has bounded
treewidth, we can combine the tree decompositions of the strong components
with the tree of strong components to derive that the whole graph after appli-
cation of Corollary 6.1 has bounded treewidth. We can then use the algorithm
of Bonamy et al. [6] to solve the instance in time 2O(d) · nO(1).

Theorem 5.1. Let G be a strongly connected planar graph without cycles of
length greater than d. Then, G has treewidth at most 30d.

6 Long Induced Cycles

In this section we prove that Rule 1, Rule 4, Rule 5, and Rule 7 lead to a
kernel of size O(f4), where f is the size of a minimum feedback vertex set in the
underlying undirected graph. In fact, we prove the stronger bound of O(f3k).
Our analysis is based on the analysis of Bergnouxnoux et al. [4]. Essentially, we
prove that all complicated rules of Bergnouxnoux et al. are subsumed by Rule 7.
In the full version we also present and attribute special cases that may be more
efficiently computable.

Rule 4 is presented, e.g., as Rule 1 in [19].

Rule 4. If v ∈ V (G) lies on a loop then add v to the solution, remove v from G,
and decrease the parameter by one.

Rule 5 is based on a folklore rule for Hitting Set, which in the literature
is often attributed to [41]. If there are two vertices u, v ∈ V (G) such that u
appears in every hyperedge in which v appears then remove v. We say that u
dominates v. Removing an element from the universe of G almost corresponds
to the following operation in G. For v ∈ V (G), we write G
 v for the graph
obtained by connecting all in-neighbors of v with all out-neighbors of v and then
removing v, or simply removing v if it has no in- or out-neighbors. We say that
G
 v is obtained from G by shortcutting v. Shortcutting may introduce new
cycles that cannot be recovered in G by re-inserting v. However, shortcutting
cannot introduce new induced cycles (that did not exist in G).

Rule 5. If there are distinct vertices u, v ∈ V (G) such that u appears on every
cycle on which v appears then shortcut v in G.

Finally, we state the following conditional rule and then present a special
case that is efficiently implementable.

194 J. Dirks et al.

Rule 6. Remove all vertices and edges for which we can decide in polynomial
time that do not lie on induced cycles.

We now formulate a modified depth-first search rule. We say that a cycle
C = v1, . . . , v� for � ≥ 4 is induced on an initial segment of length i (for some
3 ≤ i < �) if v1, . . . vi induce a path in G[V (C)] (or a cycle in case i = 3) and
only vi can have out-neighbors among vi+1, . . . , v�−1 and only v1 can have in-
neighbors among vi+1, . . . , v�−1. Note that this definition depends on the vertex
that we distinguish as v1 on the cycle. Note also that by definition every cycle of
length three is induced on an initial segment of length three. We say that an edge
uv ∈ E(G), which does not lie on an induced cycle of length 2, lies on a cycle that
is induced on an initial segment of length i if there exists a cycle C = v1, . . . , v�

that is induced on an initial segment of length i such that (v1, v2) = (u, v).

Lemma 6.1. If uv ∈ E(G), which does not lie on an induced path of length 2,
does not lie on a cycle that is induced on an initial segment of length i for some
i ≥ 3, then uv does not lie on an induced cycle of G. Furthermore, we can test
this property in time O(ni−2(n + m)).

Proof. The first statement is immediate from the fact that an induced cycle of
length � is induced on an initial segment of length � − 1 (independent of the
choice of initial vertex v1). Moreover, if a cycle is induced on an initial segment
of length i, then it is induced on an initial segment of length j for every 3 ≤ j ≤ i.

For the running time we consider an algorithm that non-deterministically
guesses vertices v3, . . . , vi such that v1, . . . , vi is an induced path in G. We remove
all vertices that are out-neighbors of one of the vj for 1 ≤ j ≤ i − 1 and all
vertices that are in-neighbors of one of the vj for 2 ≤ j ≤ i and carry out a
regular depth-first search from vi. If we find v1 in this search, say by visiting
the vertices vi+1, . . . , v� = v1 we return the cycle v1, . . . , v�, which is induced
on the initial segment of length i by construction. Otherwise, we return that uv
does not lie on such a cycle. A deterministic version of the algorithm iterates
through all possible sets v3, . . . , vi in time O(ni−2). For each set, the algorithm
constructs the graph with deleted vertices and carries out a depth-first search in
time O(n + m).

We prove that testing for containment in cycles that are induced on an initial
segment of length three subsumes many non-trivial reduction rules of Bergoug-
noux et al. [4]. Hence, we state the following reduction rule, though rules with
larger i may be interesting to consider.

Rule 7. If an edge uv ∈ E(G), which does not lie on an induced cycle of
length 2, does not lie on a cycle that is induced on an initial segment of length
three, then remove uv from G.

Lemma 6.2. Rule 7 is safe and can be implemented in time O(nm(n + m)).

From the proof we note the following corollary that we used in the previous
section.

Data Reduction for DFVS on Graphs Without Long Induced Cycles 195

Corollary 6.1. After exhaustive application of Rule 7 every weak component is
strongly connected.

Finally, we prove that Rule 1, Rule 4, Rule 5, and Rule 7 lead to a kernel of
size O(f3k), where f is the size of a minimum feedback vertex set in the under-
lying undirected graph. Our analysis is based on the analysis of Bergnouxnoux
et al. [4]. Essentially, we prove that all complicated rules of Bergnouxnoux et al.
are subsumed by Rule 7.

Theorem 6.1. After the exhaustive application of Rule 4, Rule 5, Rule 1 and
Rule 7 we obtain a kernel with O(f3k) vertices.

References

1. Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst.
Sci. 76(7), 524–531 (2010)

2. Bang-Jensen, J., Maddaloni, A., Saurabh, S.: Algorithms and kernels for feed-
back set problems in generalizations of tournaments. Algorithmica 76(2), 320–343
(2016)

3. Bergenthal, M., et al.: Pace solver description: Grapa-java. In: IPEC 2022. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2022)

4. Bergougnoux, B., Eiben, E., Ganian, R., Ordyniak, S., Ramanujan, M.: Towards a
polynomial kernel for directed feedback vertex set. Algorithmica 83(5), 1201–1221
(2021)

5. Bessy, S., et al.: Kernels for feedback arc set in tournaments. JCSS 77(6), 1071–
1078 (2011)

6. Bonamy, M., Kowalik, Ł, Nederlof, J., Pilipczuk, M., Socała, A., Wrochna, M.:
On directed feedback vertex set parameterized by treewidth. In: Brandstadt, A.,
Kohler, E., Meer, K. (eds.) WG 2018. LNCS, vol. 11159, pp. 65–78. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00256-5_6

7. Chen, J., Liu, Y., Lu, S., O’sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. In: STOC 2008, pp. 177–186 (2008)

8. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On the
hardness of losing width. Theory Comput. Syst. 54(1), 73–82 (2014)

9. Dell, H., Van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. JACM 61(4), 1–27 (2014)

10. Dirks, J., Gerhard, E., Grobler, M., Mouawad, A.E., Siebertz, S.: Data reduction
for directed feedback vertex set on graphs without long induced cycles. arXiv
preprint arXiv:2308.15900 (2023)

11. Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truß, A.: Fixed-parameter
tractability results for feedback set problems in tournaments. J. Discrete Algo-
rithms 8(1), 76–86 (2010)

12. Drange, P.G., et al.: Kernelization and sparseness: the case of dominating set. In:
STACS 2016, LIPIcs, vol. 47, pp. 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2016)

13. Dreier, J., Mählmann, N., Siebertz, S.: First-order model checking on structurally
sparse graph classes. In: STOC 2023, pp. 567–580. ACM (2023)

14. Eickmeyer, K., et al.: Neighborhood complexity and kernelization for nowhere
dense classes of graphs. In: ICALP 2017, LIPIcs, vol. 80, pp. 63:1–63:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2017)

https://doi.org/10.1007/978-3-030-00256-5_6
http://arxiv.org/abs/2308.15900

196 J. Dirks et al.

15. Erdös, P., Rado, R.: Intersection theorems for systems of sets. J. London Math.
Soc. 1(1), 85–90 (1960)

16. Even, G., Schieber, B., Sudan, M.: Approximating minimum feedback sets and
multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)

17. Fafianie, S., Kratsch, S.: A shortcut to (sun)flowers: kernels in logarithmic space
or linear time. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015.
LNCS, vol. 9235, pp. 299–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48054-0_25

18. Fellows, M.R., Kratochvíl, J., Middendorf, M., Pfeiffer, F.: The complexity of
induced minors and related problems. Algorithmica 13(3), 266–282 (1995)

19. Fleischer, R., Wu, X., Yuan, L.: Experimental study of FPT algorithms for the
directed feedback vertex set problem. In: Fiat, A., Sanders, P. (eds.) ESA 2009.
LNCS, vol. 5757, pp. 611–622. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04128-0_55

20. Fomin, F.V., Le, T., Lokshtanov, D., Saurabh, S., Thomassé, S., Zehavi, M.: Sub-
quadratic kernels for implicit 3-hitting set and 3-set packing problems. TALG
15(1), 1–44 (2019)

21. Fomin, F.V., Le, T., Lokshtanov, D., Saurabh, S., Thomasse, S., Zehavi, M.: Lossy
kernelization for (implicit) hitting set problems. arXiv preprint arXiv:2308.05974
(2023)

22. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of
Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)

23. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere
dense graphs. JACM 64(3), 1–32 (2017)

24. Großmann, E., Heuer, T., Schulz, C., Strash, D.: The pace 2022 parameterized
algorithms and computational experiments challenge: directed feedback vertex
set. In: IPEC 2022. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022)

25. Guruswami, V., Håstad, J., Manokaran, R., Raghavendra, P., Charikar, M.: Beat-
ing the random ordering is hard: Every ordering CSP is approximation resistant.
SICOMP 40(3), 878–914 (2011)

26. Guruswami, V., Lee, E.: Simple proof of hardness of feedback vertex set. Theory
Comput. 12(1), 1–11 (2016)

27. Haas, R., Hoffmann, M.: Chordless paths through three vertices. TCS 351(3),
360–371 (2006)

28. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103. Springer, Heidelberg (1972).
https://doi.org/10.1007/978-1-4684-2001-2_9

29. Kreutzer, S., Ordyniak, S.: Digraph decompositions and monotonicity in digraph
searching. TCS 412(35), 4688–4703 (2011)

30. Kreutzer, S., Rabinovich, R., Siebertz, S.: Polynomial kernels and wideness prop-
erties of nowhere dense graph classes. ACM Trans. Algorithms 15(2), 24:1–24:19
(2019)

31. Lokshtanov, D., Misra, P., Ramanujan, M., Saurabh, S., Zehavi, M.: FPT-
approximation for FPT problems. In: SODA 2021, pp. 199–218. SIAM (2021)

32. Lokshtanov, D., Ramanujan, M.S., Saurabh, S.: A linear time parameterized algo-
rithm for directed feedback vertex set. CoRR abs/1609.04347 (2016)

33. Lokshtanov, D., Ramanujan, M.S., Saurabh, S., Sharma, R., Zehavi, M.: Wannabe
bounded treewidth graphs admit a polynomial kernel for DFVS. In: Friggstad, Z.,
Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 523–537.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9_38

https://doi.org/10.1007/978-3-662-48054-0_25
https://doi.org/10.1007/978-3-662-48054-0_25
https://doi.org/10.1007/978-3-642-04128-0_55
https://doi.org/10.1007/978-3-642-04128-0_55
http://arxiv.org/abs/2308.05974
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-030-24766-9_38

Data Reduction for DFVS on Graphs Without Long Induced Cycles 197

34. Nešetřil, J., Ossona de Mendez, P.: Grad and classes with bounded expansion i.
decompositions. Eur. J. Comb 29(3), 760–776 (2008)

35. Nešetřil, J., de Mendez, P.O.: On nowhere dense graphs. Eur. J. Comb. 32(4),
600–617 (2011)

36. Pilipczuk, M., Siebertz, S., Toruńczyk, S.: On the number of types in sparse graphs.
In: LICS 2018, pp. 799–808. ACM (2018)

37. Razgon, I.: Computing minimum directed feedback vertex set in o ∗ (1.9977n). In:
TCS, pp. 70–81. World Scientific (2007)

38. Seymour, P.D.: Packing directed circuits fractionally. Combinatorica 15(2), 281–
288 (1995)

39. Svensson, O.: Hardness of vertex deletion and project scheduling. In: Gupta, A.,
Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM -2012. LNCS, vol.
7408, pp. 301–312. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32512-0_26

40. Van Bevern, R.: Towards optimal and expressive kernelization for d-hitting set.
Algorithmica 70(1), 129–147 (2014)

41. Weihe, K.: Covering trains by stations or the power of data reduction. ALEX, 1–8
(1998)

42. You, J., Wang, J., Cao, Y.: Approximate association via dissociation. Discret.
Appl. Math. 219, 202–209 (2017)

https://doi.org/10.1007/978-3-642-32512-0_26
https://doi.org/10.1007/978-3-642-32512-0_26

Visualization of Bipartite Graphs
in Limited Window Size

William Evans1, Kassian Köck2, and Stephen Kobourov3(B)

1 Department of Computer Science, University of British Columbia, Vancouver,
Canada

will@cs.ubc.ca
2 Department of Computer Science, University of Passau, Passau, Germany

koeckk@fim.uni-passau.de
3 Department of Computer Science, University of Arizona, Tucson, AZ, USA

kobourov@cs.arizona.edu

Abstract. Bipartite graphs are commonly used to visualize objects and
their features. An object may possess several features and several objects
may share a common feature. The standard visualization of bipartite
graphs, with objects and features on two (say horizontal) parallel lines
at integer coordinates and edges drawn as line segments, can often be dif-
ficult to work with. A common task in visualization of such graphs is to
consider one object and all its features. This naturally defines a drawing
window, defined as the smallest interval that contains the x-coordinates
of the object and all its features. We show that if both objects and fea-
tures can be reordered, minimizing the average window size is NP-hard.
However, if the features are fixed, then we provide an efficient polyno-
mial time algorithm for arranging the objects, so as to minimize the
average window size. Finally, we introduce a different way of visualizing
the bipartite graph, by placing the nodes of the two parts on two con-
centric circles. For this setting we also show NP-hardness for the general
case and a polynomial time algorithm when the features are fixed.

Keywords: bipartite graphs · NP-hardness · two-layer drawing · circle
layout

1 Introduction

Bipartite graphs arise in many applications and are usually visualized with 2-
layer drawings, where vertices are drawn as points at integer coordinates on
two distinct parallel lines, and edges are straight-line segments between their
endpoints. Such drawings occur as components in layered drawings of directed
graphs [19] and also as final drawings, e.g., in tanglegrams for phylogenetic
trees [6,11].

A common task in the exploration of such bipartite graphs G = (P ∪ C,E),
where P is the set of parent (object) vertices and C is the set of child (feature)
vertices, is to identify the neighbors (children) of a parent vertex of interest. A
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 198–210, 2024.
https://doi.org/10.1007/978-3-031-52113-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_14&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_14

Visualization of Bipartite Graphs in Limited Window Size 199

typical approach is to click on this parent and highlight the edges to its children,
while hiding/shading the rest of the graph. Naturally, it is desirable that the
highlighted edges fit in the display. This motivates work on placing the vertices
at integer coordinates so as to minimize the maximum window, i.e. the smallest
x-interval that contains a parent and all its children, over all parents. Bekos et
al. [4] show that minimizing the maximum window size can be solved efficiently
when the children C are fixed and the parents P can be placed, and is NP-
hard when the parents are fixed and the children can be placed. Note that this
asymmetry is due to the windows being defined only for parents P . As a side
effect of the underlying greedy approach, the algorithm of Bekos et al. [4] often
results in a much larger than optimal average window size in order to minimize
the max window. So if the max window exceeds the display size, many parents
may have windows that exceed that size. In this paper, we consider the problem
of minimizing the average window size directly.

Unlike our approach, methods for constructing 2-layer drawings often try to
minimize the number of edge crossings, which is an NP-hard problem even when
the order of one layer is fixed [10]. Vertex splitting provides another alternative
approach to reduce the number of crossings, by replacing some vertices on one
layer by multiple copies and distributing incident edges among these copies [9]. In
bipartite graphs arising in domain applications, such as visualizing relationships
between anatomical structures and cell types in the human body [1], vertex
splitting makes sense only on one side of the layout. Several variants of optimizing
such layouts have been recently studied [2,3,17].

Formally, the input consists of a bipartite graph G = (P∪C,E). The output is
a 2-layer drawing of G in which the vertices in P and in C are located at
distinct integer coordinates on two parallel lines �P and �C , respectively (w.l.o.g.,
�P : y = 1 is the parent layer and �C : y = 0 is the child layer). The drawing
is specified by a function x : P ∪ C → Z≥0 which defines the x-coordinate of
each vertex in the drawing. No two parents can have the same x-coordinate
and neither can two children; so x is injective when restricted to P or C. The
objective is to minimize the average window size of the parents in the drawing
(defined by) x. The window w(p) of a parent p ∈ P is the smallest x-interval
that contains the locations of p and its neighbors (children) in G. Its size is its
length, i.e., maxa,b∈S |x(a) − x(b)| where S = {c | (p, c) ∈ G} ∪ {p}. Note that
the smallest window size is 0 for a parent with no children or one child that
shares its parent’s x-coordinate. The span s(p) of a parent p ∈ P is the smallest
x-interval that contains the children of p (s(p) ⊆ w(p)). Motivated by common
assumptions in layered graph drawing [8,15] we consider two variants: one when
we can choose the x-coordinates of the vertices of both P and C and the other
when the x-coordinates of one of them is fixed. The Minimum Average Window
Problem takes as input a graph G = (P ∪ C,E) and a value σ and determines
if G has a drawing in which the average window size of the parents is at most
σ. We focus on the equivalent Minimum Window Sum Problem (MWS) which
determines if the sum of the window sizes can be at most some given Σ.

200 W. Evans et al.

We also consider the same problem when the drawing maps parents and
children to two concentric circles: parents to the inner circle and children to the
outer circle. A 2-ring drawing of G is specified by an integer size r ≥ 0 and a
function x : P ∪ C → Zr (the integers mod r) which determines the locations of
the vertices: The polar coordinates for p ∈ P are (1, 2π

r x(p)) and for c ∈ C are
(2, 2π

r x(c)). Again, we require x to be injective when restricted to P or C (so
|P |, |C| ≤ r). The distance between two vertices a and b with locations specified
by x is d(a, b) = min{|x(a) − x(b)| mod r, |x(b) − x(a)| mod r}, i.e., the smallest
of the clockwise or counter-clockwise distances from x(a) to x(b). The window
w(p) of parent p ∈ P is the smallest interval of the circle that contains the angle
locations of p and its children. Its size is measured in units of 2π

r radians. The
span s(p) of parent p ∈ P is the smallest circle interval that contains the angle
locations of the children of p (s(p) ⊆ w(p)). See Fig. 1 for an example of 2-layer
and 2-ring drawing (with size r = 7) of the same bipartite graph with parents
A,B, . . . ,H and children a, b, . . . , h.

Fig. 1. An even cycle represented using a 2-layer drawing with minimum total window
sum 14 and using a 2-ring drawing with minimum total window sum 8.

Our Contributions

In this paper we present the following results.
In the 2-layer setting:

– Minimizing the average window size is NP-hard when we can choose the
locations of both parents and children.

– When the children are fixed, determining whether every parent can be placed
in its span can be done in polynomial time.

– When the children are fixed, placing the parents to minimize the average
window size can be done in polynomial time.

In the 2-ring setting:

– Minimizing the average window size is NP-hard when we can choose the
locations of both parents and children.

– When the children are fixed, placing the parents to minimize the average
window size can be done in polynomial time.

Visualization of Bipartite Graphs in Limited Window Size 201

2 The Two Layer Setting

We begin by showing the NP-hardness of minimizing the average window size
when both parents and children can be placed, and then provide two polynomial
time algorithms for the case when the children are fixed.

2.1 Hardness of Minimizing Average Window Size.

The Linear Arrangement Problem (LAP) takes as input an undirected graph
G = (V,E) and an integer W and decides whether there is a bijection x : V →
{0, 1, . . . , |V | − 1} such that

∑
(u,v)∈E |x(u) − x(v)| ≤ W . In other words, LAP

decides whether there is a straight-line drawing of G with vertices at integer
coordinates on the x-axis so that the sum of the edge lengths is at most W . LAP
is a classic NP-complete problem [13].

Fig. 2. Example illustrating the reduction from the linear arrangement problem to the
problem of minimizing the window sum.

Theorem 1. Deciding whether a given a bipartite graph G = (P ∪ C,E) has a
2-layer drawing with average window size σ when vertices in both P and C can
be placed is NP-complete.

Proof. We show the equivalent statement that Minimum Window Sum (MWS)
is NP-complete. MWS is in NP since it takes time polynomial in the size of the

202 W. Evans et al.

input graph to verify that, for a given drawing x : P ∪ C → Z≥0, the sum of the
window sizes of p ∈ P is at most W .

To show that MWS is NP-hard, we reduce LAP to it. We construct an input
G′ = (P ∪ C,E′), Σ to MWS from an input G = (V,E), W to LAP as follows:

– Let k be an odd number with k ≥ 3|E|2 + |E| + 2|V |.
– The children C in G′ are the vertices V in G.
– The parents P in G′ are one edge parent puv (which is shorthand for p{u,v})

for each (u, v) ∈ E with edges (puv, u) and (puv, v) in G′; and k block parents
v1, v2, . . . , vk for each vertex v ∈ V , with edges (v1, v), (v2, v), . . . , (vk, v) in
G′.

– Let Σ = |V |k2−1
4 + |E|2 + kW .

This construction takes time polynomial in the size of G. It remains to show
that G = (V,E) has a linear arrangement of total edge length at most W if and
only if G′ = (P ∪ C,E′) has a drawing with window size sum at most Σ.

We first show that if G has a linear arrangement v(0), v(1), . . . , v(|V |) (where
v(i) is the ith vertex in the arrangement) of total edge length at most W then
G′ has a drawing with window size sum at most Σ.

We construct a bipartite drawing of G′ by placing the k block parents of
v(i), starting with i = 0, consecutively (on line �P) followed (in any order) by
the edge parents pv(i)v(j) for all edges (v(i), v(j)) ∈ E with j > i, and then
repeating this process for i = i + 1 until all block parents and edge parents are
placed. We place each child v(i) (on line �C) below the middle block parent of
v(i). Thus, the sum of the window sizes of the block parents of any child v(i) is
k−1
2 +

(
k−1
2 − 1

)
+ · · · +1+0+1+ · · · + (

k−1
2 − 1

)
+ k−1

2 = k2−1
4 since k is odd.

See Fig. 2.
The window size for an edge parent pv(i)v(j) (with i < j) is at most (j − i)k

for the block parents in the window plus at most |E| for the edge parents in the
window. The total window sum is at most:

|V |k
2 − 1
4

+
∑

{v(i),v(j)}∈E
i<j

((j − i)k + |E|) ≤ |V |k
2 − 1
4

+ |E|2 + kW = Σ

since the sum of (j − i) over all edges is the total edge length of the linear
arrangement v(0), v(1), . . . , v(|V |), which we assumed to be at most W .

We next show that if G′ has a 2-layer drawing with total window sum at
most Σ then G has a linear arrangement with total edge length at most W . This
requires establishing several properties of any optimal drawing x of G′:

Property 1. We may assume, by relabeling block parents if necessary, that if
x(u) < x(v) for u, v ∈ C then x(ui) < x(vj) for all block parents for u and v
where i, j ∈ [k].

Proof. Suppose x(ui) > x(vj) for some i, j ∈ [k]. If we switch ui and vj , the sum
of the window sizes of these two block parents remains the same if ui and vj are
both to the left of u or both to the right of v, and decreases otherwise.

Visualization of Bipartite Graphs in Limited Window Size 203

Property 2. Child v lies strictly within the x-interval of its block parents, i.e.,
for all v ∈ C, x(v1) < x(v) < x(vk), where we have assumed (by renumbering)
that vi is the ith leftmost block parent of v in the realization.

Proof. Suppose x(v) ≤ x(v1) (a symmetric argument applies when x(vk) ≤
x(v)). There must be an empty spot s for v with s ∈ {x(v1) + 1, x(v1) +
2, . . . , x(v1) + |V |} since there are only |V | children in G′ and x(v) is not in
that set. Moving v from x(v) to s can increase the window size of any edge
parent by at most s − x(v). It can increase the window size of any block parent
p with x(v1) ≤ x(p) < s by at most s − x(v) as well. It decreases the window
size of any block parent p with s ≤ x(p) ≤ x(vk) by at least s − x(v). Since
k > |E| + 2|V |, there are more than |E| + |V | block parents whose windows
decrease (by at least s − x(v)) and at most |E| edge parents plus at most |V |
block parents whose windows increase (by at most s − x(v)) as a result of mov-
ing child v to s. Thus the sum of the window sizes decreases and the original
realization cannot be optimal.

Fig. 3. Switching edge parent puv with leftmost block parent v1 of v so that puv lies
between u and v.

Property 3. The location x(puv) of edge parent puv lies strictly between the
locations of u and v.

Proof. We may assume by renaming that x(u) < x(v). Suppose x(v) ≤ x(puv) (a
similar symmetric argument applies when x(puv) ≤ x(u)). Switch the locations
of the leftmost block parent v1 of v with puv to obtain a new drawing x′ with
window sizes w′ (see Fig. 3). Note that x′ differs from x only in that x′(v1) =
x(puv) and x′(puv) = x(v1). Since (by Properties 1 and 2) v1 lies strictly between
u and v in realization x, the new location of puv in realization x′ lies strictly
between u and v, decreasing the window size of puv by x(puv) − x(v). The new
window size of v1 is at most x(puv) − x(v) and since the original window size of
v1 is at least 1 (by Property 2), the sum of window sizes in realization x′ is less
than in x. Thus, x cannot be optimal.

Property 4. The parents P occupy k|V | + |E| consecutive locations.

Proof. Suppose there is an empty spot s with parents to the left and right of s.
No child v has x(v) = s otherwise we could move a block parent of v to location
s and decrease the window size sum. Thus we can decrement the location of all

204 W. Evans et al.

parents and children located to the right of s by 1 to create a new realization (no
two parents or two children at the same location) with no increase in window
size sum, and a strict decrease if G is connected.

Property 5. The block parents of v are consecutive, i.e., x(v1+i) = x(v1) + i for
all i ∈ [k − 1] and v ∈ V .

Proof. Suppose an edge parent puv is in the x-interval of the block parents of a
vertex t, i.e., x(t1) < x(puv) < x(tk). It can’t be in the x-interval of the block
parents of more than one vertex by Property 1. By Property 3, x(u) ≤ x(puv) ≤
x(v). Swapping puv with t1 or tk thus keeps puv in its span (since at least one
of t1 or tk is in the span of puv), but out of the x-interval of any vertex’s block
parents. It also decreases the window size of the swapped block parent (t1 or tk)
by at least one.

With these properties established, we continue with the proof of the theorem.
Let x be an optimal 2-layer drawing of G′ with window sum at most Σ. We
claim that the order v(0), v(1), . . . , v(|V | − 1) of the children on line �C (where
x(v(i)) < x(v(j)) for all i < j) is a linear arrangement of the vertices of G with
total edge length at most W .

By Property 4, we may assume that the parents occupy k|V |+|E| consecutive
locations and, by Property 5, that the block parents of each child v form a
consecutive x-interval in this sequence. Furthermore, by Property 2, child v lies
within the x-interval of its block parents. Thus the window of any edge parent
pv(i)v(j) (i < j) extends from some position in the x-interval of the block parents
of v(i) to some position in the x-interval of the block parents of v(j). To minimize
the sum of the window sizes of the block parents of child v requires placing v in
the middle of the x-interval of its block parents, resulting in a total contribution
of v’s block parents to the window sum of at least k2−1

4 . To minimize the sum
of all window sizes, including the windows of edge parents, an optimal drawing
may place v at a location that is not in the middle of the x-interval of its block
parents. However, if v is placed at distance d from the middle, the sum of the
window sizes of the block parents of v increases by d2 (by symmetry, the edge
lengths after v is moved are the same as the lengths before the move, except for
the lengths to the furthest d block parents after the move, which each increase
by d), while the decrease in the window sum of all |E| edge parents is at most
d|E|. Thus, v must be placed at distance d ≤ |E| from the middle of its block
parents in an optimal drawing. Even with this placement of v, the window size
of pv(i)v(j) is at least

(j − i − 1)k + 2
(

k − 1
2

− d

)

≥ (j − i)k − (2|E| + 1).

The total contribution of block parents and edge parents to the window sum is
thus at least

|V |k
2 − 1
4

+
∑

{v(i),v(j)}∈E
i<j

((j − i)k − 2|E| − 1) .

Visualization of Bipartite Graphs in Limited Window Size 205

Since this is at most Σ = |V |k2−1
4 + |E|2 + kW , we know

|V |k
2 − 1
4

+
∑

{v(i),v(j)}∈E
i<j

((j − i)k − 2|E| − 1) ≤ |V |k
2 − 1
4

+ |E|2 + kW

and thus ∑

{v(i),v(j)}∈E
i<j

(j − i)k ≤ 3|E|2 + |E| + kW.

Since k ≥ 3|E|2 + |E| + 2|V |,
∑

{v(i),v(j)}∈E
i<j

(j − i) ≤ W + 1 − 2|V |
k

and since the sum and W are integers,
∑

{v(i),v(j)}∈E
i<j

(j − i) ≤ W.

So G has a linear arrangement with total edge length at most W .

2.2 Minimizing Average Window Size for Fixed Children

When the children are fixed, the best possible solution to the minimum average
window problem is to place every parent in the span of its children. We first
observe how to efficiently test if such a solution exists. After that, we show that
even when it is not possible to place every parent in the span of its children we
can still find a solution that minimizes the average window size in polynomial
time.

Placing Parents in Their Span. If the children C of a bipartite graph G =
(P ∪ C,E) have already been placed at distinct integer x-coordinates then the
span of every parent p is fixed: s(p) = [lo(p),hi(p)] where lo(p) is the smallest
x-coordinate of a child of p and hi(p) is the largest x-coordinate of a child of p.
Our problem is to determine if it is possible to place each parent at an integer
coordinate within its span without placing two parents at the same location. This
is an instance of a matching problem in a convex bipartite graph A = (P ∪S, F)
where F = {(p, �)|p ∈ P, � ∈ s(p)} and S =

⋃
p∈P s(p) (so S is a set of integers).

The bipartite graph A = (P ∪ S, F) is convex (in S) since there is an ordering
of S (the integer order “<” in this case) such that if (p, a) ∈ F and (p, c) ∈ F
then (p, b) ∈ F for b ∈ S with a < b < c. Graph A is defined by the parents P
and the pairs lo(p), hi(p) for p ∈ P , which in our case can be calculated from G
in O(|E|) time.

206 W. Evans et al.

The problem of finding a maximum matching in a convex (in S) bipartite
graph (P ∪ S, F) has a long history starting with Glover’s O(|P ||S|) time algo-
rithm from 1967 [14] and ending with the O(|P |) time algorithm of Steiner and
Yeomans [18]. Using the latter algorithm, we observe that:

Observation 1. Given a bipartite graph G = (P ∪C,E) where the x-coordinates
of the children C are fixed, finding a placement of parents p ∈ P where every
parent is in its span, or determining that no such placement exists, takes O(|P |+
|E|) time.

Fig. 4. Using min-weight maximum size matching to find an optimal drawing when
children are fixed.

Minimizing Average Window Size. If we cannot place every parent in its
span, we would like to place parents as close to their span as possible to minimize
their average window size. We adopt a similar technique of finding a matching
in a convex bipartite graph to determine the parents’ locations. However, in this
case the edges in the matching are weighted and we ask for a minimum weight
maximum matching.

Theorem 2. Minimizing the average window size of a 2-layer drawing of a given
bipartite graph G = (P ∪ C,E), when the locations of the children C are fixed,
but the parents P can be placed, can be accomplished in O(|P |2+o(1) + |E|) time.

Visualization of Bipartite Graphs in Limited Window Size 207

Proof. Given the fixed locations of the children C, for each parent p ∈ P , com-
pute the x-coordinate of the midpoint between its children’s smallest and largest
locations, and let M(p) be the set of |P | potential parent locations closest to
this midpoint. We do not need to place p outside of M(p) when minimizing the
average window size for p since M(p) contains the locations that result in the
|P | smallest window sizes for p and we’re guaranteed to find at least one empty
spot among them since there are only |P | − 1 other parents.

We construct a weighted bipartite graph B between parents P and their
possible locations M(P) =

⋃
p∈P M(p) with edges (p, �) for every parent p and

� ∈ M(p). (See Fig. 4.) There are exactly |P |2 edges in the graph B and each
edge (p, �) has weight corresponding to the size of parent p’s window if p were
placed at location �. The construction of B takes O(|E| + |P |2) time. We then
find a min cost matching in B using the algorithm of Chen et al. [7] in time
O(|P |2+o(1)).

3 The Two Ring Setting

In this setting we are given two concentric circles, with the parents on the inner
circle and the children on the outer circle.

The problems here are similar to the two layer setting, but sufficiently dif-
ferent that neither result in the previous section directly works here. It might
appear that we can extract an optimal 2-layer drawing x of G = (P ∪ C,E)
from an optimal 2-ring drawing x′ of G by simply setting x(v) = x′(v) for all
v ∈ P ∪ C. However, Fig. 1 illustrates a difficulty: the 2-ring setting allows us
to measure the distance from a parent to its child in two ways, clockwise or
counter-clockwise around the inner ring. This creates the possibility of a smaller
window sum in the 2-ring setting than in the 2-layer setting. We can do such
an extraction if the 2-ring drawing has a point at which we can “split” the two
circles and straighten them into two parallel lines.

Definition 1. A 2-ring drawing x of a graph G = (P ∪ C,E) of size r is split-
table at s ∈ Zr if s + 1/2 (and thus the open interval (s, s + 1 mod r)) is not in
the window w(p) for any p ∈ P .

Remark 1. A 2-ring drawing x′ of G = (P ∪C,E) of size r that is splittable at s
can be converted into a 2-layer drawing x with the same window sum by setting
x(v) = (x′(v) − s) mod r for all v ∈ P ∪ C.

Theorem 3. Deciding whether a given bipartite graph G = (P ∪ C,E) has a
2-ring drawing with average window size σ when vertices in both P and C can
be placed is NP-complete.

Proof. We show the equivalent statement that the window sum version of the
problem, with target sum Σ, is NP-complete. The problem is in NP since it
takes polynomial time to verify that, for a given drawing x : P ∪ C → Zr, the
sum of the window sizes of p ∈ P is at most Σ. We reduce the 2-layer version,

208 W. Evans et al.

shown to be NP-complete in the proof of Theorem 1, to this setting by making
every non-splittable 2-ring drawing of G prohibitively expensive. We do this by
adding k = |P |(|P | + |C|) + 1 independent edges to G.

Given an input G = (P ∪ C,E), Σ to the 2-layer minimum sum problem,
we create a new graph G′ = (P ′ ∪ C ′, E′) where P ′ = P ∪ {u1, u2, . . . , uk},
C ′ = C ∪ {v1, v2, . . . , vk}, and E′ = E ∪ {(ui, vi)|i ∈ [k]}. We claim that G has
a 2-layer drawing with window sum at most Σ if and only if G′ has a 2-ring
drawing with window sum at most Σ.

If G has a 2-layer drawing x with window sum at most Σ then it is safe
to assume by translating that the drawing places vertices at x-coordinates in
[0, 1, . . . , |P | + |C| − 1]. Otherwise, if the drawing x exceeds this interval then
there is a common empty spot s in both the parents and children in x and
decreasing the positions of parents and children to the right of s by one results
in a drawing whose window size sum is at most the original sum. We construct
a 2-ring drawing x′ from x by setting r = |P | + |C| + k and x′(v) = x(v) for all
v ∈ P ∪C and x′(ui) = x′(vi) = |P |+ |C|+ i−1 for all i ∈ [k]. Since the window
sum for all parents ui is zero the window sum of the 2-ring drawing is at most
Σ.

If G′ has a 2-ring drawing x′ of size r with window sum at most Σ then if
x′ is splittable at s, Remark 1 implies we can extract a 2-layer drawing x of G
from it with window sum at most Σ by setting x(v) = (x′(v) − s) mod r for all
v ∈ P ∪C. The addition to G of the (many) independent edges (ui, vi) to create
G′ ensures that the optimal drawing of G′ when restricted to the vertices of G
is splittable. Let x∗ be this optimal 2-ring drawing of G. Suppose, for the sake
of contradiction, that x∗ is not splittable, then every interval between adjacent
children in x∗ is contained in the window w∗(p) for some parent p ∈ P . Since the
children of the independent edges lie in these intervals, the sum of the window
sizes in the 2-ring drawing x∗ is at least k. Since x∗ is a subdrawing of x′, the
window sum of drawing x′ of G′ is also at least k. However, k is chosen to be
larger than the window sum of the optimal 2-ring drawing of any graph G with
|P | parents and |C| children along with k independent edges. To see this, note
that one possible 2-ring drawing of such a graph starts with a 2-layer drawing
of G in which every parent has a window of size at most |P | + |C|; followed by
k independent edges each with window size 0. Placing these vertices, in order
around two concentric circles of size |P | + |C| + k creates a 2-ring drawing with
window sum of |P |(|P | + |C|) < k. Thus the 2-ring drawing x′ of G′ is splittable
and by Remark 1 G has a 2-layer drawing of size Σ.

Theorem 4. Minimizing the average window size of a 2-ring drawing of size r
of a given bipartite graph G = (P ∪ C,E), when the locations of the children C
are fixed, but the parents can be placed, takes O(|P |2+o(1)) time.

Proof. This is identical to the proof of Theorem 2 with the understanding that
ring size r is large enough to place the parents P and that the window size
associated with a potential location of p ∈ P is measured in the ring setting,
i.e. as the smallest angle of a sector containing that potential location and p’s
children measured in units of 2π

r radians.

Visualization of Bipartite Graphs in Limited Window Size 209

4 Conclusions and Open Problems

The visualization of bipartite graphs on displays of limited size is motivated by
real-world applications. Minimizing the largest window size of any parent pro-
vides a reasonable solution but only if that largest size is at most the display size.
We consider minimizing the average window size. Our solution may not obey the
display size limit for all parents (even if such a solution exists), but it produces
smaller parent windows on average, which might be preferable. We showed that
in the general setting the problem is NP-hard, while for more restricted settings
we provide efficient polynomial time algorithms.

The matching re-formulation of the problem is broad enough to be applied
to several related problems in both the 2-layer and 2-ring settings. For example,
in the 2-ring setting when the children are fixed, we can find an optimal solution
using the same graph matching formulation as in Theorem 4 but instead of using
a solution to the min cost matching problem on graph B, we use a solution
technique for the bottleneck matching problem. This, in effect, replaces the min-
average computation with a min-max computation.

Observation 2. In the 2-ring setting, minimizing the maximum window size
over all parents for a given bipartite graph G = (P ∪ C,E), when the size
of the ring r and the children C are fixed, but parents P can be placed, takes
O(|P | log |P | + |E|) time.

Proof. Let B be the graph defined in the proof of Theorem 2 for the ring size r.
If we restrict this graph to edges of weight at most w, we obtain a circular convex
bipartite graph B(w) for which the neighbors of a parent p ∈ P form a contiguous
interval around the ring. For such graphs, Liang and Blum [16] describe an algo-
rithm to find a maximum matching based on two runs of a maximum matching
algorithm for a regular convex bipartite subgraph of this graph. Using a binary
search technique credited to Bhat [5] by Gabow and Tarjan [12], we can find the
smallest w ∈ [0, |P |] so that B(w) contains a maximum matching (of size |P |
in our case). After a single O(|E|)-time preprocessing step, the running time is
O(|P |) for each test of whether the restricted graph B(w) contains a maximum
matching [16,18]. The total time is thus O(|P | log |P | + |E|).

We conclude with two natural open problems. First, is there a faster algo-
rithm for minimizing the average window size when children are fixed but parents
can be placed? Second, what is the complexity of minimizing the average window
size when parents are fixed, but children can be placed?

References

1. https://hubmapconsortium.github.io/ccf-asct-reporter/
2. Ahmed, R., et al.: Splitting vertices in 2-layer graph drawings. IEEE Comput.

Graph. Appl. (2023)
3. Baumann, J., Pfretzschner, M., Rutter, I.: Parameterized complexity of vertex

splitting to pathwidth at most 1. arXiv preprint arXiv:2302.14725 (2023)

https://hubmapconsortium.github.io/ccf-asct-reporter/
http://arxiv.org/abs/2302.14725

210 W. Evans et al.

4. Bekos, M.A., et al.: On the 2-layer window width minimization problem. In: Gasie-
niec, L. (ed.) SOFSEM 2023. LNCS, vol. 13878, pp. 209–221. Springer, Cham
(2023)

5. Bhat, K.V.S.: An O(n2.5 log2 n) time algorithm for the bottleneck assignment prob-
lem. unpublished. AT&T Bell Laboratories, Napiendle, IL (1984)

6. Buchin, K., et al.: Drawing (complete) binary tanglegrams. Algorithmica 62(1–2),
309–332 (2012). https://doi.org/10.1007/s00453-010-9456-3

7. Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum
flow and minimum-cost flow in almost-linear time. In 2022 IEEE 63rd Annual Sym-
posium on Foundations of Computer Science (FOCS), pp. 612–623. IEEE (2022)

8. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Hoboken (1999)

9. Eades, P., de Mendonça N, C.F.X.: Vertex splitting and tension-free layout. In:
Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 202–211. Springer, Heidel-
berg (1996). https://doi.org/10.1007/BFb0021804

10. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algo-
rithmica 11(4), 379–403 (1994)

11. Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization.
J. Comput. Syst. Sci. 76(7), 593–608 (2010). https://doi.org/10.1016/j.jcss.2009.
10.014

12. Gabow, H.N., Tarjan, R.E.: Algorithms for two bottleneck optimization problems.
J. Algorithms 9, 411–417 (1988)

13. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph
problems. Theoret. Comput. Sci. 1(3), 237–267 (1976)

14. Glover, F.: Maximum matching in convex bipartite graphs. Naval Res. Logistic Q.
14, 313–316 (1967)

15. Kaufmann, M., Wagner, D.: Drawing Graphs, Methods and Models, vol. 2025.
Springer, Cham (2001). https://doi.org/10.1007/3-540-44969-8

16. Liang, Y.D., Blum, N.: Circular convex bipartite graphs: maximum matching and
Hamiltonian circuits. Inf. Process. Lett. 56(4), 215–219 (1995)

17. Nöllenburg, M., Sorge, M., Terziadis, S., Villedieu, A., Wu, H.Y., Wulms, J.: Pla-
narizing graphs and their drawings by vertex splitting. In: Angelini, P., von Hanxle-
den, R. (eds.) GD 2022. LNCS, vol. 13764, pp. 232–246. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-22203-0 17

18. Steiner, G., Yeomans, J.S.: A linear time algorithm for determining maximum
matchings in convex, bipartite graphs. Comput. Math. Appl. 31, 91–96 (1996)

19. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981).
https://doi.org/10.1109/TSMC.1981.4308636

https://doi.org/10.1007/s00453-010-9456-3
https://doi.org/10.1007/BFb0021804
https://doi.org/10.1016/j.jcss.2009.10.014
https://doi.org/10.1016/j.jcss.2009.10.014
https://doi.org/10.1007/3-540-44969-8
https://doi.org/10.1007/978-3-031-22203-0_17
https://doi.org/10.1109/TSMC.1981.4308636

Outerplanar and Forest Storyplans

Jiří Fiala1 , Oksana Firman2(B) , Giuseppe Liotta3 , Alexander Wolff2 ,
and Johannes Zink2

1 Charles University, Prague, Czech Republic
2 Universität Würzburg, Würzburg, Germany

oksana.firman@uni-wuerzburg.de
3 Università degli Studi di Perugia, Perugia, Italy

Abstract. We study the problem of gradually representing a complex
graph as a sequence of drawings of small subgraphs whose union is the
complex graph. The sequence of drawings is called storyplan, and each
drawing in the sequence is called a frame. In an outerplanar storyplan,
every frame is outerplanar; in a forest storyplan, every frame is acyclic.

We identify graph families that admit such storyplans and families
for which such storyplans do not always exist. In the affirmative case, we
present efficient algorithms that produce straight-line storyplans.

1 Introduction

A possible approach to the visual exploration of large and complex networks is
to gradually display them by showing a sequence of frames, where each frame
contains the drawing of a portion of the graph. When going from one frame to
the next, some vertices and edges appear while others disappear. To preserve
the mental map, the geometric representation of vertices and edges that are
shared by two consecutive frames must remain the same. Informally speaking,
a storyplan for a graph consists of a sequence of frames such that every vertex and
edge of the graph appears in at least one frame. Moreover, there is a consistency
requirement (as for the labels in a zoomable digital map [2]): once a vertex
disappears, it may not re-appear. Hence, after a vertex appears, it remains visible
until all its incident edges are represented; then it disappears in the transition
to the next frame. See Fig. 1 for a storyplan.

Since edge crossings are a natural obstacle to the readability of a graph
layout [10], Binucci at al. [4] introduced and studied the planar storyplan problem
that asks whether a graph G admits a storyplan such that every frame is a
crossing-free drawing and in every frame a single new vertex appears. Binucci
et al. showed that the problem is NP-complete in general and fixed-parameter
tractable w.r.t. the vertex cover number. They also proved that every graph of
treewidth at most 3 admits a planar storyplan.

Motivated by the research of Binucci et al., we forward the idea of represent-
ing a graph with a storyplan such that each frame is a drawing whose visual
inspection is as simple as possible. Specifically, we study the outerplanar sto-
ryplan problem and the forest storyplan problem, which are defined analogously
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 211–225, 2024.
https://doi.org/10.1007/978-3-031-52113-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_15&domain=pdf
http://orcid.org/0000-0002-8108-567X
http://orcid.org/0000-0002-9450-7640
http://orcid.org/0000-0002-2886-9694
http://orcid.org/0000-0001-5872-718X
http://orcid.org/0000-0002-7398-718X
https://doi.org/10.1007/978-3-031-52113-3_15

212 J. Fiala et al.

1

4

2
3

5

6

7
8

9

10

1
4

2
3

5

6

7
8

9
1
4

2
3

5

6

7
81

4

2
3

5

6

7

1
4

2
3

5

6

1 1

2

1

2
3

1
4

2
3

1
4

2
3

5

Fig. 1. A forest storyplan of the Petersen graph.

to the planar storyplan problem (see Definition 1 below). We let the classes
of graphs that admit planar, outerplanar and forest storyplans be denoted by
Gplanar, Gouterpl, and Gforest, respectively. Clearly, Gforest ⊆ Gouterpl ⊆ Gplanar ⊆ G,
where G is the class of all graphs. To further simplify visual inspection, our algo-
rithms draw all frames with straight-line edges. We call storyplans with this
property straight-line storyplans.

Beside the work of Binucci et al., our research relates to the graph drawing
literature that assumes either dynamic or streaming models (see, e.g., [1,3,6,7])
and to recent work about graph stories (see, e.g., [5,9]). The key difference to
our work is that these papers (except [4]) assume that the order of the vertices
is given as part of the input. We now summarize our contribution, using �-free
as shorthand for triangle-free.

– We establish the chain of strict containment relations Gforest � Gouterpl �

Gplanar � G (see Fig. 2) by showing that
• there is a �-free 6-regular graph that does not admit a planar storyplan;
• there is a K4-free 4-regular planar graph that (trivially) admits a planar

storyplan, but does not admit an outerplanar storyplan; and
• there is a �-free 4-regular (nonplanar) graph that admits an outerplanar

storyplan, but does not admit a forest storyplan.
Recall that a triangulation is a maximal planar graph; it admits a planar
drawing where every face is a triangle. We show that no triangulation (except
for K3) admits an outerplanar storyplan; see Sect. 3.

– We show that every partial 2-tree and every subcubic graph except K4 admits
an outerplanar straight-line storyplan (in linear time); see Sect. 4. In our
construction for subcubic graphs, every frame contains at most five edges.

– A graph must be �-free in order to admit a forest storyplan. We show that
�-free subcubic graphs (as the Petersen graph in Fig. 1), and �-free planar
graphs admit straight-line forest storyplans (which we can compute in linear
and polynomial time, respectively); see Sect. 5.

We start with some preliminaries in Sect. 2 and close with open problems in
Sect. 6. The full proofs of statements with a “�” are in the full version of this
paper [12]. Given a positive integer n, we use [n] as shorthand for {1, 2, . . . , n}.

Outerplanar and Forest Storyplans 213

Gforest Gouterpl Gplanarbipartite

�-free planar

triangulations
except K3

C2,2,2,2,2 (Fig. 3c):
4-regular and �-free

Kn for n ≥ 5 [4]

G

C3,3,3,3,3 (Fig. 3a):
6-regular and �-free

3-trees [4]

2-trees

subcubic except K4

�-free subcubic

Fig. 2. Overview: existing [4] and new storyplan results, implying Gforest � Gouterpl �

Gplanar � G. (For simplicity, we mention 2-/3-trees rather than partial 2-/3-trees.)

2 Preliminaries

Our definitions of a planar, an outerplanar, and a forest storyplan are based on
the definition of a planar storyplan of Binucci et al. [4].

Definition 1. A planar storyplan S = 〈τ, (Di)i∈[n]〉 of G is a pair defined as
follows. The first element is a bijection τ : V → [n] that represents a total order of
the vertices of G. For a vertex v ∈ V , let iv = τ(v) and let jv = maxu∈N [v] τ(u),
where N [v] is the set containing v and its neighbors. The interval [iv, jv] is the
lifespan of v. We say that v appears at step iv, is visible at step i for each
i ∈ [iv, jv], and disappears at step jv + 1. Note that a vertex disappears only
when all its neighbors have appeared. The second element of S is a sequence of
drawings (Di)i∈[n], called frames of S, such that, for i ∈ [n]: (i) Di is a drawing
of the graph Gi induced by the vertices visible at step i, (ii) Di is planar, (iii) the
point representing a vertex v is the same over all drawings that contain v, and
(iv) the curve representing an edge e is the same over all drawings that contain e.

We emphasize that though for the definition of a storyplan we allow that
edges could be represented by curves, our constructions use only straight-line
segments. For an outerplanar storyplan and a forest storyplan, we strengthen
requirement (ii) to Di being outerplanar and Di being a crossing-free drawing
of a forest, respectively. In what follows, we will sometimes use a slight variant
of Definition 1, in which we enrich the sequence (Di)i∈[n] of frames by explicitly
representing the portions of the drawings that consecutive frames have in com-
mon. More precisely, for i ∈ [n − 1], let D′

i = Di ∩ Di+1. Then, a storyplan is a
sequence of drawings 〈D1,D

′
1, . . . , Dn−1,D

′
n−1,Dn〉, where in each step i < n,

we first introduce a vertex (in Di) and then remove all completed vertices (in D′
i),

214 J. Fiala et al.

that is, the vertices that disappear in the next step. Similar to D′
i, we define G′

i

for i ∈ [n− 1] as the graph induced by the vertices of V (Gi)∩V (Gi+1). We now
list some useful observations.

Property 1. If a graph G admits a planar, an outerplanar, or a forest storyplan,
then the same holds for any subgraph of G. Conversely, if a graph G does not
admit a planar, an outerplanar, or a forest storyplan, then the same holds for
all supergraphs of G.

Lemma 1 ([4]). Let Ka,b = (A ∪ B,E) be a complete bipartite graph with a =
|A|, b = |B|, and 3 ≤ a ≤ b. Let S = 〈τ, {Di}i∈[a+b]〉 be a planar storyplan of
Ka,b. Exactly one of A and B is such that all its vertices are visible at some
i ∈ [a + b].

Example 1. Every bipartite graph admits a forest storyplan: first add all vertices
of one set of the bipartition and then, one by one, the vertices of the other set.
Note that each vertex of the second set is visible in only one frame.

3 Separation of Graph Classes

Trivially, triangulations admit planar storyplans, but as we show now, no trian-
gulation (except for K3) admits an outerplanar storyplan.

Theorem 1. No triangulation (except for K3) admits an outerplanar storyplan.

Proof. For a triangulation, the closed neighborhood of each vertex induces a
wheel, which is not outerplanar. For the first vertex that disappears accord-
ing to a given storyplan, however, its whole closed neighborhood, which is not
outerplanar, must be visible. ��
Example 2 (Platonic graphs). According to Theorem 1, the tetrahedron, the
octahedron, and the icosahedron do not admit outerplanar storyplans because
they are triangulations. The cube is bipartite; hence, it admits a forest storyplan
due to Example 1. The dodecahedron is �-free and cubic; hence, it admits a
forest storyplan due to Theorem 5.

We now separate the graph classes Gforest, Gouterpl, Gplanar, and G; see Fig. 2.

Theorem 2. The following statements hold:

1. There is a �-free 6-regular graph that does not admit a planar storyplan;
hence Gplanar � G.

2. There is a K4-free 4-regular planar graph that does not admit an outerplanar
storyplan; hence Gouterpl � Gplanar.

3. There is a �-free 4-regular (nonplanar) graph that admits an outerplanar
storyplan, but does not admit a forest storyplan; hence Gforest � Gouterpl.

Outerplanar and Forest Storyplans 215

Fig. 3. Three graphs from the proof of Theorem 2. The graph in (a) is �-free and
does not admit any planar storyplan. The octahedron graph in (b) does not admit
any outerplanar storyplan. The graph in (c) is �-free and does not admit any forest
storyplan (but the vertex numbering corresponds to an outerplanar storyplan – if
vertex 8 is placed at the position of vertex 6, which will have disappeared by then).

Proof. 1. The graph C3,3,3,3,3 (see Fig. 3a) is �-free and 6-regular, but does not
admit a planar storyplan as we will now show. Let V (G) = V1 ∪ · · · ∪ V5

be the partition of the vertex set into independent sets of size 3. Note that,
for i ∈ {1, 2, 3, 4, 5}, G[Vi ∪ V(i mod 5)+1] is isomorphic to K3,3. For K3,3 =
G[V1 ∪ V2], we know by Lemma 1 that, in any planar storyplan, either all
vertices of V1 or all vertices of V2 are shown simultaneously, say, those of V1.
Hence, for a frame to be planar, the vertices of V2 and V5 cannot be shown
simultaneously. This, in turn, means that the vertices of V3 and V4 must be
shown simultaneously. But then there must be a frame with a drawing of the
non-planar graph G[V3 ∪ V4] = K3,3.

2. Observe that the octahedron (see Fig. 3b) is planar, 4-regular, and K4-free,
but does not admit an outerplanar storyplan due to Example 2.

3. The graph C2,2,2,2,2 (see Fig. 3c) is �-free and 4-regular, but does not admit
a forest storyplan. The proof is analogous to the one above. There needs to
be a frame with a drawing of K2,2, which is not a tree. On the other hand,
the order of the vertices shown in Fig. 3c yields an outerplanar storyplan.
Note that we cannot use the vertex positions exactly as in the figure, but if
we place vertex 8 at the position of vertex 6 (which will have disappeared by
then), every frame is crossing-free. ��

4 Outerplanar Storyplans

In this section we present families of graphs that admit outerplanar storyplans.

Theorem 3. Every partial 2-tree admits a straight-line outerplanar storyplan,
and such a storyplan can be computed in linear time.

216 J. Fiala et al.

Fig. 4. A 2-tree G with a stacking order (a); its tree decomposition yields a vertex order
σ = 〈1, 2, 3, 4, 8, 5, 6, 7, 9〉 (b); and an embedding of G that together with σ defines an
outerplanar storyplan (c).

Proof. Due to Property 1, it suffices to prove the statement for 2-trees.
Let G be a 2-tree. Hence, there exists a stacking order σ = 〈v1, . . . , vn〉 of

the vertex set V (G). In other words, G can be constructed as follows: we start
with v1, v2, v3 forming a K3 and then, for i ≥ 4, vi is stacked on an edge vkv�

with k, � < i, that is, vi is connected to vk and v� by edges. We claim that we
can choose a vertex order σ′ and an embedding E of G such that σ′ (together
with E) defines an outerplanar storyplan. Moreover, we can obtain a straight-line
drawing of G with embedding E in linear time [8,14]. Let Γ be such a drawing.
For the outerplanar storyplan that we construct we use the positions of vertices
and edges as in Γ . This yields a straight-line storyplan. Figure 4(a) shows a 2-tree
with a stacking order (that is not an outerplanar storyplan).

To show that an outerplanar storyplan always exists, we create a tree decom-
position TG,σ of G. The root of TG,σ represents the triangle Δv1v2v3 given by
the first three vertices of σ. For i = 4, 5, . . . , let vi of σ be stacked onto the edge
vkv� with k < � < i. We add a node to TG,σ that represents vi and is a child of
the node representing v�. Note that if � ≤ 3, then this new node is a child of the
root. Figure 4(b) shows a tree decomposition of the 2-tree in Fig. 4(a).

From TG,σ, we obtain a vertex order σ′ = 〈v′
1, v

′
2, . . . , v

′
n〉 being an outerplanar

storyplan as follows; see Fig. 4(c). Let v′
1 = v1, v′

2 = v2, and v′
3 = v3. Now, we

traverse the nodes of TG,σ in (depth-first) pre-order and add the represented
vertices of G to σ′. We claim that for σ′, we can choose an embedding E (defined
implicitly next) of G such that all frames are outerplanar. Note that the first
three vertices form a triangle, which always admits an outerplanar drawing. Now
consider v′

i for i = 4, 5, Our invariant is that, before the i-th frame starts, the
parent p of v′

i in TG,σ has degree 2 in the current outerplanar drawing and lies on
the outer face. This implies that v′

i can be added to the outer face because it is
stacked onto an edge of the outer face resulting again in an outerplanar drawing.
Of course, for i = 4, our invariant is satisfied. If p = v′

i−1, then our invariant is
trivially satisfied. Otherwise, let p = v′

j for some j < i − 1. Observe that, for

Outerplanar and Forest Storyplans 217

k ∈ {j + 1, . . . , i − 1}, each v′
k will have disappeared by the end of the (i − 1)-th

frame. This is due to the fact that v′
k is not an ancestor of vi, which means

that all of the neighbors of v′
k have already been introduced to the storyplan

due to the depth-first pre-order traversal. Essentially, every frame given by σ′

shows a subpath of TG,σ, which is a sequence of stacked triangles admitting an
outerplanar drawing. ��
Theorem 4 (�). Every subcubic graph except K4 admits a straight-line outer-
planar storyplan with at most five edges in each frame, and such a storyplan can
be computed in linear time.

Proof. Due to Property 1, it suffices to prove the statement for cubic graphs.
We can assume that the given cubic graph G (which is not K4) is connected;

otherwise we consider each connected component separately. For an outerpla-
nar storyplan, we will order the vertices v1, . . . , vn of G such that the result-
ing sequence of graphs 〈G1, G

′
1 . . . , Gn−1, G

′
n−1, Gn〉 has the following property:

for 4 ≤ i ≤ n−1, G′
i has at most two edges. Only for i = 3, G′

i may be a triangle
and would thus contain three edges. Then we show how to obtain outerplanar
drawings D1,D

′
1 . . . , Dn−1,D

′
n−1,Dn of the graphs G1, G

′
1 . . . , Gn−1, G

′
n−1, Gn,

respectively. For i ∈ [n], let Hi = G[{v1, . . . , vi}].
We pick the first vertex v1 arbitrarily. For 1 < i ≤ n, let v denote a vertex of

G′
i−1 with maximum degree in Hi−1. If there are more choices, let v additionally

have maximum degree in G′
i−1. We then select vi ∈ V (G) \ {v1, . . . , vi−1} as a

neighbor of v in G. Note that v always has such a neighbor, otherwise v would
already be completed and, hence, would not be in G′

i−1. The intuition behind
this choice is that we want to remove v from the drawing as soon as possible.

We claim that, for 4 ≤ i ≤ n − 1, the graph G′
i contains at most two edges.

In addition, if G′
i contains two edges, then these edges are both incident with vi.

This would mean that, for i ∈ [n], Gi contains at most five edges. Indeed, even
if G′

3 has three edges (that is, G′
3 is a triangle), then G4 still has at most five

edges since G is not K4. Clearly, D1 and D2 have at most two edges.
We consider three cases depending on the degree of v in G′

i−1; see Fig. 5.

(C1) Vertex v does not have any neighbors in G′
i−1. By the choice of v, this

implies that there are no edges in G′
i−1 because Hi−1 is connected and, for

an edge in G′
i−1, Hi−1 contains an incident degree-2 vertex. Note that all

edges in Gi are new and incident with vi. If vi has three neighbors in Gi,
then vi will disappear, and there are no more edges in G′

i. Hence, G′
i has

at most two edges. Note that both edges are incident with vi.
(C2) Vertex v has one neighbor in G′

i−1. If v has degree 2 in Hi−1, then v
disappears in the next step and G′

i does not contain it. Since vi has at
most one edge that stays in G′

i, the number of edges in G′
i is not larger

than in G′
i−1. If v has degree 1 in Hi−1, then, by construction, all other

vertices in Gi−1 have also degree at most 1 in Hi−1. Hence, i = 3, that is,
v and its neighbor are the first two vertices that we introduced.

218 J. Fiala et al.

Fig. 5. Cases considered in the proof of Theorem 4. In all of them, the number of edges
in G′

i is maximized. Gray vertices and edges were visible in some previous steps.

(C3) Vertex v has two neighbors in G′
i−1. In this case, the two edges incident

with v are the only edges in G′
i−1. Then v disappears as vi is its last neigh-

bor. Therefore, G′
i contains at most one edge that vi may have introduced.

We have shown that, in each case, the number of visible edges in G′
i, for

4 ≤ i ≤ n − 1, is at most two. Note that, if there are two edges, then they share
an endpoint. In the full version [12], we also show that we can always find a
position of the vertices such that each frame is outerplanar and straight-line.

To see the linear runtime, note that we can choose vi and update Hi in
amortized constant time by using a suitable data structure [13]. The other steps
of our construction require constant time for each vertex vi. ��

5 Forest Storyplans

Clearly, any triangle is an obstruction for a graph to admit a forest storyplan.
Interestingly, for planar and subcubic graphs this is the only obstruction for the
existence of a forest storyplan as we show now.

Theorem 5 (�). Every �-free subcubic graph admits a straight-line forest sto-
ryplan. Such a storyplan can be computed in linear time and has at most five
edges per frame.

Proof Sketch. We use the storyplan from the proof of Theorem 4. By construc-
tion, we never get a cycle since we consider triangle-free graphs. ��

As a warm-up for our main result, we briefly show the following weaker result.

Observation 1. Every �-free outerplanar graph admits a straight-line forest
storyplan, and such a storyplan can be computed in linear time.

Proof. Let G be a �-free outerplanar graph, and let Γ be an outerplanar
straight-line drawing of G. Let σ = 〈v1, v2, . . . , vn〉 be the circular order of the
vertices along the outer face of Γ (which can easily be determined in linear
time [11]). We claim that σ yields a forest storyplan of G. (Note that the posi-
tions of the vertices in Γ will make this storyplan straight-line.)

Outerplanar and Forest Storyplans 219

To this end, we show that there is no frame where a complete face of Γ is
visible. If this is true, then no frame contains a complete cycle. This is due to
the fact that, in outerplanar graphs, the vertex set of every cycle contains the
vertex set of at least one face. Let F = 〈vi1 , vi2 , . . . , vik〉 with i1 < i2 < · · · < ik
be a face of G. Since G is �-free, we have k ≥ 4. Note that vi1 and vi3 as well
as vi2 and vi4 are not adjacent. Since G is outerplanar, vi2 may be adjacent only
to vertices that appear in σ between (and including) vi1 and vi3 . Therefore, vi2

disappears before vi4 appears. Hence it is indeed not possible that all vertices of
the same face appear in a frame. ��

Now we improve upon the simple result above. Note, however, that we do
not guarantee a linear running time any more.

Theorem 6. Every �-free planar graph admits a straight-line forest storyplan,
and such a storyplan can be computed in polynomial time.

Proof. Let G be a �-free planar graph, and let Γ be a planar straight-line
drawing of G. In the desired forest storyplan for G, we use the position of the
vertices in Γ .

We first give a rough outline of our iterative algorithm and then describe the
details. In each iteration (which spans one or more steps of the storyplan that
we construct), we pick a vertex on the current outer face, which means that we
add it and its neighbors (if they are not visible yet) to the storyplan one by one.
In this way, after each iteration, at least one vertex disappears, namely the one
we picked.

Let G1 = G and, for i ∈ {1, 2, . . . }, let vi be the vertex that we pick in
iteration i, and let Gi+1 be the subgraph of Gi that we obtain after removing
the vertices (and the edges incident to them) that disappear in iteration i; see
Fig. 7b. The algorithm terminates as soon as Gi is a forest and adds the remaining
vertices in arbitrary order to the storyplan under construction. We call vertices
and edges incident with the (current) outer face outer. The others are inner.

We always pick outer vertices. For this reason, only two types of vertices
are problematic for avoiding cycles: the endpoints of chords (i.e., inner edges
incident with two outer vertices) and the endpoints of half-chords (i.e., length-2
paths that connect two outer vertices via an inner vertex).

Let G′
i be the (embedded) subgraph of Gi (embedded according to Γ) that

consists of all vertices and edges that lie on a simple cycle that bounds the outer
face of Gi, plus every edge that connects two cycles, plus all chords and half-
chords (and, thus, plus the inner vertices that lie on the half-chords) of Gi; see
Figs. 6 and 7c. For example, the edges e and e′ of G2 in Fig. 7b are not part
of G′

2. We say that a vertex of G′
i is free if it lies on the outer face and is not

part of a chord or a half-chord.
Let Hi be the weak dual of G′

i (see Fig. 7c), i.e., the (embedded) multigraph
that has a vertex for each inner face of G′

i and an edge for each pair of inner
faces that are incident with a common edge of G′

i. Note that Hi is outerplane
(since the inner vertices of G′

i form an independent set) and that Hi has no loops
(since G′

i does not have leaves). We maintain the following invariants:

220 J. Fiala et al.

Fig. 6. From an embedded �-free planar graph Gi (black & gray), we obtain G′
i (black).

Note that G′
i decomposes into seven simple cycles and two connected components. The

outer edges and vertices of these connected components form cactus graphs. (Color
figure online)

Fig. 7. A �-free planar graph G where (a) shows a forest storyplan computed by our
algorithm, (b) shows the result of the first iteration of the algorithm, and (c) shows
the auxiliary graph for the second iteration. Subscripts refer to the iteration in which
a vertex is picked. Red crosses mark vertices that may not be picked. (Color figure
online)

(I1) At no point in time, the set of visible edges on the outer face forms a cycle.
(I2) During iteration i, the only inner vertices that may be visible are those

that are adjacent to vi and to no other visible vertex on the outer face.
(I3) During iteration i, the only inner edges that may be visible are those that

are incident with vi and to no other vertex on the outer face.
(I4) At the end of each iteration (after removing the vertices that are not visible

any more and before picking a new one), only vertices and edges incident
with the outer face are visible.

Obviously, if the invariants hold, the set of visible edges in each frame forms
a forest. In order to guarantee that the invariants hold, we use the following
rules that determine which vertices we may not pick; see Fig. 8. We call a vertex
observing these rules good. Note that we always pick a good vertex on the outer
face of G′

i – we will later argue that there always is one.

(R1) Do not pick a vertex v whose extended neighborhood N [v] = {v}∪{u : uv ∈
E(Gi)} contains all invisible vertices of the outer face of G′

i.
(R2) Do not pick an endpoint of a chord.
(R3) Do not pick a neighbor of an endpoint of a chord if the other endpoint of

that chord is visible.
(R4) Do not pick an endpoint of a half-chord if the other endpoint is visible.

Outerplanar and Forest Storyplans 221

Fig. 8. Rules that determine which vertices may not be picked (marked by red crosses).
Black squares represent visible vertices, white squares represent invisible vertices, and
gray disks represent vertices that may be visible or invisible. (Color figure online)

Rule (R1) ensures that we do not close a cycle on the outer face, thus,
invariant (I1) holds. Rule (R4) ensures that none of the visible inner vertices is
adjacent to two visible vertices on the outer face (including the picked vertex),
thus, invariant (I2) holds. Rules (R2) and (R3) ensure that no chords are visible.
Together with rule (R4) and the fact that G is �-free, they ensure that the inner
edges that are visible are incident with the picked vertex and no other vertex
on the outer face. Thus, invariant (I3) holds. Invariant (I4) holds because we
always pick a vertex on the outer face and remove it. As a result, the faces
incident with the picked vertex become part of the outer face and the previously
inner neighbors (if any) of the picked vertex become incident with the outer face.

It remains to prove that, as long as Gi is not a forest (and the algorithm
terminates), there exists a vertex that can be picked without violating any of
our rules. Our proof is constructive; we show how to find a vertex to pick.

We first show that Hi is a (collection of) cactus graph(s), that is, every edge
of Hi lies on at most one cycle. Suppose that Hi contains an edge e1 that lies
on at least two simple cycles. If the interiors of the two cycles are disjoint, then
e1 is not incident to the outer face of Hi (contradicting Hi being outerplane).
Otherwise, one of the cycles has at least one edge e2 �= e1 in the interior of the
other cycle, again contradicting Hi being outerplane.

We show in two steps that Gi (actually even G′
i) always contains a good

vertex, which we pick. First, we show how to find a good vertex in the base
case, that is, if the outer face of G′

i is a simple cycle. Then, we consider the
general case where the outer face of G′

i is a (collection of) cactus graph(s). Here,
we repeatedly apply the argument of the base case to find a good vertex. So,
assume that the outer face of G′

i is a simple cycle and, hence, Hi is connected.
In the trivial case that the weak dual Hi is a single vertex, G′

i is a cycle of at
least four free vertices. Due to invariant (I1), there is an invisible vertex v ∈ G′

i.
Any non-neighbor of v in G′

i is a good vertex, which we can pick.
If Hi has a vertex of degree 1, which corresponds to a face f of G′

i, it means
that f is incident with exactly one chord and to no half-chords. Since G is �-
free, there are at least two free vertices in f . Note that at most one endpoint of
the chord is visible (due to invariant (I3)). If one endpoint is indeed visible, then

222 J. Fiala et al.

Fig. 9. Cases when there is no chord in G′
i. We always find a good vertex.

its unique neighbor on the boundary of f that is not incident with the chord
observes all rules and can be picked. If none of the endpoints of the chord is
visible, then any free vertex of f can be picked.

Otherwise, all vertices of Hi have degree at least 2. Let F be the set of faces
of G′

i that are incident with exactly one half-chord and to an arbitrary number
of outer edges (but to no other inner edge). Note that in Hi, F corresponds to
a set of vertices of degree 2. We now use the following two helpful claims. Their
proofs are in the full version [12].

Claim 1 (�). The set F has cardinality at least 2.

Claim 2 (�). Let the edge e (or the edge pair {e1, e2}) be any chord (half-chord)
of G′

i, let F1 be the set of inner faces on the one side, and let F2 be the set of
inner faces on the other side of e (or {e1, e2}, resp.). Then, F1 ∩ F �= ∅ and
F2 ∩ F �= ∅.

We continue to show that there is a good vertex on the outer face of G′
i,

which we can pick. Assume first that G′
i does not have chords. Thus, all vertices

of G′
i trivially observe rules (R2) and (R3). Let f ∈ F , and let u and w be the

endpoints of the unique half-chord incident with f . If there is a free vertex v
in f such that N [v] does not contain the last invisible vertices of the outer face
of G′

i, then we pick v. Rules (R1) and (R4) are observed by the definition of v.
If, for every free vertex v in f , N [v] contains all invisible vertices of the outer
face of G′

i, consider the following three cases; see Fig. 9. The cases are ordered
by priority; if we fulfill the conditions of multiple cases, the first case applies.

(C1) Both u and w are visible. Then, consider a face f ′ ∈ F different from f ,
which exists by Claim 1. Clearly, all of its vertices are visible, and we can
pick any free vertex v′ of f ′ without violating the rules.

(C2) Exactly one of {u,w} is visible. W.l.o.g., assume that u is visible and w is
invisible. We claim that u observes all rules. Since w remains invisible after
picking u, u observes rule (R1). If there was another half-chord incident
with u, either it would again be incident with w, which does not violate
rule (R4), or it would be incident with another vertex of G′

i, which is

Outerplanar and Forest Storyplans 223

visible. By Claim 2, however, there is another face f ′ ∈ F on the other
side of that half-chord. As all of the vertices of f ′ on the outer face are
visible, we would be in case (C1) instead.

(C3) Both u and w are invisible. We claim that u observes the rules. Similar
to case (C2), u observes rule (R1) (since w stays invisible) and rule (R4)
(if there was another half-chord incident with u whose other endpoint is
visible, we would be in case (C1) or in case (C2)).

Now assume that G′
i has one or more chords. Of course, each of these chords

has at most one visible endpoint. The chords with exactly one visible endpoint
divide G′

i into several subgraphs. Observe that at least one of these subgraphs
contains no such chord in its interior and is bounded by only one of them (or
no chord has a visible endpoint, then there is only one subgraph, namely G′

i).
We call this subgraph Ĝ′

i and we let u and w denote the visible and invisible
endpoints of the bounding chord e, respectively (or if there is only one subgraph,
then u and w are just neighbors). By a case distinction on the facets incident to
u and w, we can show that there is always a good vertex on the outer face of Ĝ′

i,
and hence on the outer face of G′

i. The details are in the full version [12].

Claim 3 (�). There is a good vertex on the outer face of Ĝ′
i.

We have shown that there is always a good vertex on the outer face of G′
i

if the outer face of G′
i is a simple cycle. Now assume that the outer face of G′

i

is not just a simple cycle, but consists of one or multiple cactus graphs. If we
have multiple cactus graphs, we can consider them individually. So, it suffices
to consider the case where the outer face of G′

i is one (connected) cactus graph.
Still, Hi may be disconnected. Let C1, C2, . . . be the connected components
of Hi, and let G̃1, G̃2, . . . be the corresponding subgraphs of G′

i. Two subgraphs
G̃j and G̃k may be connected by at most one common vertex or via a single edge.
Otherwise, we consider them as non-connected (if they are connected by a path
of length ≥ 2 in Gi, they are independent because the neighborhood of G̃j does
not overlap G̃k and vice versa; these parts remain as a forest in the end). Let T
be a graph with a vertex for each G̃1, G̃2, . . . where two vertices are adjacent
if and only if the corresponding subgraphs are connected. Since the outer face
of G′

i is a cactus graph, T is a forest. Consider the subgraph G̃1 and use the
algorithm above to find a good vertex v. If v is a cut vertex, then check if it is
also a good vertex in all subgraphs from {G̃1, G̃2, . . . } where it is contained as
well. Further, check for each neighbor w of v that is contained in a subgraph G̃j

distinct from G̃1 whether making w visible violates one of the invariants (note
that this is a weaker criterion than checking if w is a good vertex and it implies
that w and its neighbors in G̃j are not good vertices). If there is a subgraph G̃j

where picking v breaks at least one rules (or making a neighbor of v visible
breaks an invariant), then find a good vertex in G̃j (recall that there exists at
least one good vertex) and proceed in the same way. Since T does not contain
cycles, this procedure always terminates with a (globally) good vertex.

Concerning the running time, note that, if we maintain the outer face, we can
find, for each vertex, its incident chords and half-chords in linear time. Further,

224 J. Fiala et al.

our constructive proof can be turned into a polynomial-time algorithm as it
includes only graph traversal and graph construction operations that can be
executed in polynomial time. ��

6 Open Problems

1. What is the complexity of deciding whether a given graph admits an outer-
planar or a forest storyplan? We conjecture that recognition is NP-hard.

2. While we extended the existing planar storyplan problem into the direction
of less powerful but easier-to-understand storyplans, one could also go into
the opposite direction and investigate more powerful storyplans in order to
be able to construct such storyplans for larger classes of graphs. For example,
1-planar storyplans would be a natural direction for future research.

References

1. Abdelaal, M., Lhuillier, A., Hlawatsch, M., Weiskopf, D.: Time-aligned edge plots
for dynamic graph visualization. In: Banissi, E., et al. (eds.) Proceedings of 24th
International Conference Information Visualisation (IV 2020), pp. 248–257 (2020).
https://doi.org/10.1109/IV51561.2020.00048

2. Been, K., Nöllenburg, M., Poon, S.-H., Wolff, A.: Optimizing active ranges for
consistent dynamic map labeling. Comput. Geom. 43(3), 312–328 (2010). https://
doi.org/10.1016/j.comgeo.2009.03.006

3. Binucci, C., et al.: Drawing trees in a streaming model. Inf. Process. Lett. 112(11),
418–422 (2012). https://doi.org/10.1016/j.ipl.2012.02.011

4. Binucci, C., et al.: On the complexity of the storyplan problem. In: Angelini,
P., von Hanxleden, R. (eds.) GD 2022. LNCS, vol. 13764, pp. 304–318. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-22203-0_22. https://arxiv.org/
abs/2209.00453

5. Borrazzo, M., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Graph
stories in small area. J. Graph Algorithms Appl. 24(3), 269–292 (2020). https://
doi.org/10.7155/jgaa.00530

6. Burch, M.: The dynamic graph wall: visualizing evolving graphs with multiple
visual metaphors. J. Vis. 20(3), 461–469 (2017). https://doi.org/10.1007/s12650-
016-0360-z

7. Da Lozzo, G., Rutter, I.: Planarity of streamed graphs. Theor. Comput. Sci. 799,
1–21 (2019). https://doi.org/10.1016/j.tcs.2019.09.029

8. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990). https://doi.org/10.1007/BF02122694

9. Di Battista, G., et al.: Small point-sets supporting graph stories. In: Angelini,
P., von Hanxleden, R. (eds.) GD 2022. LNCS, vol. 13764, pp. 289–303. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-22203-0_21. https://arxiv.org/
abs/2208.14126

10. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Hoboken (1999)

11. Di Battista, G., Frati, F.: Small area drawings of outerplanar graphs. Algorithmica
54(1), 25–53 (2009). https://doi.org/10.1007/11618058_9

https://doi.org/10.1109/IV51561.2020.00048
https://doi.org/10.1016/j.comgeo.2009.03.006
https://doi.org/10.1016/j.comgeo.2009.03.006
https://doi.org/10.1016/j.ipl.2012.02.011
https://doi.org/10.1007/978-3-031-22203-0_22
https://arxiv.org/abs/2209.00453
https://arxiv.org/abs/2209.00453
https://doi.org/10.7155/jgaa.00530
https://doi.org/10.7155/jgaa.00530
https://doi.org/10.1007/s12650-016-0360-z
https://doi.org/10.1007/s12650-016-0360-z
https://doi.org/10.1016/j.tcs.2019.09.029
https://doi.org/10.1007/BF02122694
https://doi.org/10.1007/978-3-031-22203-0_21
https://arxiv.org/abs/2208.14126
https://arxiv.org/abs/2208.14126
https://doi.org/10.1007/11618058_9

Outerplanar and Forest Storyplans 225

12. Fiala, J., Firman, O., Liotta, G., Wolff, A., Zink, J.: Outerplanar and forest sto-
ryplans. arXiv report (2023). http://arxiv.org/abs/2311.13523

13. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM 30(3), 417–427 (1983). https://doi.org/10.1145/2402.322385

14. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of 1st ACM-
SIAM Symposium Discrete Algorithms (SODA 1990), pp. 138–148 (1990). https://
dl.acm.org/doi/10.5555/320176.320191

http://arxiv.org/abs/2311.13523
https://doi.org/10.1145/2402.322385
https://dl.acm.org/doi/10.5555/320176.320191
https://dl.acm.org/doi/10.5555/320176.320191

The Complexity of Cluster Vertex
Splitting and Company

Alexander Firbas(B), Alexander Dobler(B), Fabian Holzer, Jakob Schafellner,
Manuel Sorge(B), Anaïs Villedieu(B), and Monika Wißmann

TU Wien, Vienna, Austria
{alexander.firbas,alexander.dobler}@tuwien.ac.at,

{manuel.sorge,avilledieu}@ac.tuwien.ac.at

Abstract. Clustering a graph when the clusters can overlap can be
seen from three different angles: We may look for cliques that cover the
edges of the graph with bounded overlap, we may look to add or delete
few edges to uncover the cluster structure, or we may split vertices to
separate the clusters from each other. Splitting a vertex v means to
remove it and to add two new copies of v and to make each previous
neighbor of v adjacent with at least one of the copies. In this work, we
study underlying computational problems regarding the three angles to
overlapping clusterings, in particular when the overlap is small. We show
that the above-mentioned covering problem is NP-complete. We then
make structural observations that show that the covering viewpoint and
the vertex-splitting viewpoint are equivalent, yielding NP-hardness for
the vertex-splitting problem. On the positive side, we show that splitting
at most k vertices to obtain a cluster graph has a problem kernel with
O(k) vertices. Finally, we observe that combining our hardness results
with the so-called critical-clique lemma yields NP-hardness for Cluster
Editing with Vertex Splitting, which was previously open (Abu-Khzam
et al. [ISCO 2018]) and independently shown to be NP-hard by Arrighi et
al. [IPEC 2023]. We observe that a previous version of the critical-clique
lemma was flawed; a corrected version has appeared in the meantime on
which our hardness result is based.

1 Introduction

In classical graph-clustering, we want to partition the input graph into clusters
that are densely connected, while there are few connections between different
clusters. However, in clusterings of real-world graphs the clusters often over-
lap [14]. We are interested here in exact algorithms for and complexity of such
overlapping clustering problems. Without overlap, these are well-studied (see
the survey [7]), but less so if we allow overlap [2,3,5,9]. In some applications,
clusters may overlap but not very strongly. We focus mainly on this case.

A. Dobler—Supported by the Vienna Science and Technology Fund (WWTF) under
grant 10.47379/ICT19035.
M. Sorge—Partly supported by the Alexander von Humboldt Foundation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 226–239, 2024.
https://doi.org/10.1007/978-3-031-52113-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_16&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_16

The Complexity of Cluster Vertex Splitting and Company 227

To understand the complexity, a basic formulation of a clustering with small
overlaps can focus on perfect clusterings, i.e., clusters are cliques and all edges
of the input graph occur in a cluster. This leads to the Sigma Clique Cover
(SCC) problem, where we seek a covering of the input graph by induced cliques
and we want to minimize the total number of times the vertices are covered by
the cliques (see Sect. 3 for a formal definition). SCC was previously studied in the
context of displaying information in bioinformatics [11] and in combinatorics [8].
To our knowledge, its complexity was not known. We prove that SCC is NP-
complete (Theorem 3.5).

An alternative view on overlapping clustering with small overlaps is that of
splitting vertices: A vertex split is a graph operation that takes a vertex v and
replaces it by two copies such that the union of the neighborhoods of the copies
is equal to the neighborhood of the original vertex v. Given a graph and an
integer k, we may then ask to perform at most k vertex-splitting operations in
order to obtain a cluster graph (a disjoint union of cliques). The cliques in the
obtained cluster graph then correspond to the clusters in the original graph. This
yields the Cluster Vertex Splitting (CVS) problem. In Sect. 4 we show that
SCC and CVS are indeed equivalent, and thus both are NP-complete. On the
positive side, we show that CVS is fixed-parameter tractable with respect to the
number k of allowed splits, that is, it can be solved in f(k) ·nO(1) time where f is
a computable function and n the number of vertices. Indeed, in Sect. 5 we show
a stronger result, namely, that CVS admits an O(k)-vertex problem kernel, that
is, we may produce with polynomial processing time an equivalent instance that
contains O(k) vertices (see Theorem 5.6). This result relies on an analysis of the
structure of the so-called critical cliques of the input graph. Informally, a critical
clique is an induced clique in the input graph with vertex set C such that all
vertices in C have pairwise the same neighbors outside of C and such that there
is no critical clique that strictly contains C.1

The Cluster Editing With Vertex Splitting (CEVS) problem [3] is
closely related to the above two problems. The difference is that the underlying
clustering model allows the clusters to be imperfect, that is, the clusters may
miss a small number of edges and there may be a small number of edges that are
not contained in any cluster. More precisely, in CEVS we are given a graph G
and an integer k and we want to obtain a cluster graph from G by at most
k modifications. As modifications we are allowed to split vertices and to add
or delete edges. It was previously open whether CEVS is NP-hard [3] which
has been independently and in parallel to our work been shown to be true [5].
Our impetus was to show NP-hardness of CEVS, too, and, indeed, combin-
ing our NP-hardness result for SCC with a so-called critical-clique lemma [3,4]
yields NP-hardness of CEVS (see Sect. 7). We refrained from publishing this
result at first, because the critical-clique lemma as stated by Abu-Khzam et al.
[3,4] and used in references [5,6] is incorrect, see the counterexample in Sect. 6.
Fortunately, after the appearance of our counterexample, a corrected variant of

1 Alternatively, a critical clique is a maximal set of pairwise true twins.

228 A. Firbas et al.

the critical-clique lemma appeared [1], completing our alternative NP-hardness
proof of CEVS.

Due to space constraints, statements marked with � are proved in the arXiv
version of this paper [10].

2 Preliminaries

For a positive integer n ∈ N we use [n] to denote {1, 2, . . . , n}. For a set X, we
denote by P(X) its power set. Moreover, for a family of sets X , we write

⋃ X for
the union of all sets member of X , that is,

⋃
X∈X X. We denote disjoint unions by

·∪. Unless explicitly mentioned otherwise, all graphs are undirected and without
parallel edges or self-loops. Given a graph G with vertex set V (G) and edge set
E(G), we denote the neighborhood of a vertex v ∈ V (G) by NG(v). If the graph G
is clear from the context, we omit the subscript G. For V ′ ⊂ V (G), we write
G[V ′] for the graph induced by the vertices V ′. For u, v ∈ V (G) we write uv as a
shorthand for {u, v}, G − v for G[V \{v}], and dG(v) for |NG(v)|. The graph Kn

is the complete graph on n vertices. We write G � H if a graph G is isomorphic
to H. A cluster graph is a graph in which every connected component is a clique.
Equivalently, a cluster graph does not contain a path P3 with three vertices as
an induced subgraph. A vertex split operation applied to a graph G = (V,E)
and u ∈ V results in a graph G′ = (V ′, E′) such that V ′ = V \{u} ∪ {v, w}
with v, w �∈ V , and E′ is obtained from E by making each vertex adjacent to u
adjacent to at least one of v and w; that is, NG′(v) ∪ NG′(w) = NG(u).

3 NP-Completeness of SIGMA CLIQUE COVER

To start, we will fix some notation. Leading up to the formulation of the sigma
clique cover problem, we first define the notion of a sigma clique cover:

Definition 3.1. Let G be a graph. Then, C ⊆ P(V) is called a sigma clique
cover of G if 1. G[C] is a clique for all C ∈ C and 2. for each e ∈ E(G), there
is C ∈ C such that e ∈ E(G[C]), that is, all edges of G are “covered” by some
clique of C. The weight of a sigma clique cover C is wgt(C) :=

∑
C∈C |C|.

Now, we can formulate the associated decision problem:

Sigma Clique Cover (SCC)
Input: A tuple (G, s), where G is a graph and s ∈ N.
Question: Is there a sigma clique cover C of G with wgt(C) ≤ s?

Note that SCC is not equivalent to the well-studied Edge Clique Cover
problem, whose optimization goal is to minimize |C| rather than wgt(C). To
show that SCC is NP-hard, we reduce from the Node Clique Cover problem.
Analogous to the case of SCC, to define said problem formally, we first need
introduce the notion of a node clique cover:

The Complexity of Cluster Vertex Splitting and Company 229

Fig. 1. Example for our reduction from NCC to SCC. Covers are marked in gray.

Definition 3.2. Let G be a graph. Then, C ⊆ P(V) is called a node clique cover
of G if 1. G[C] is a clique for all C ∈ C and 2. for each v ∈ V (G), there is C ∈ C
such that v ∈ V (G[C]), that is, all vertices of G are “covered” by some clique
C ∈ C. The size of a node clique cover C is |C|.

With this, we can formulate the NP-hard [12] Node Clique Cover problem:

Node Clique Cover (NCC)
Input: A tuple (G, k), where G is a graph and k ∈ N.
Question: Is there a node clique cover C of G with |C| ≤ k?

To formulate our reduction from NCC to SCC, we introduce notation to
extend a graph with independent universal vertices.

Definition 3.3. Let G = (V,E) be a graph and � ∈ N. Using a set {u1, . . . , u�}
of � new vertices called universal vertices, we construct a new graph G� with

G� := (V ∪ {u1, . . . , u�}, E ∪ {uiv | 1 ≤ i ≤ �, v ∈ V }) .

Note that universal vertices themselves are not adjacent to each other. Infor-
mally, the main intuition behind our reduction from NCC is to add a sufficient
number of universal vertices to the instances of NCC, such that concerning the
derived instances of SCC, it will be “combinatorially favorable” to select cliques
that contain a universal vertex. Refer to Fig. 1 for an example of the reduction.

Lemma 3.4. Let G = (V,E) be a graph and � := 2|E| + 1. Then, (G, s) is
a positive instance of NCC if and only if

(
G�, � (|V | + s + 1) − 1

)
is a positive

instance of SCC.

Proof (⇒) : Let C be a node clique cover of G with |C| ≤ s. Without loss
of generality, we assume that C is a partition of V —for otherwise if there are

230 A. Firbas et al.

distinct C ′, C ′′ ∈ C with C ′ ∩ C ′′ �= ∅, then C′ := (C\{C ′})∪ {C ′\C ′′} is a node
clique cover of G with |C′| = |C| and the number of nodes that are contained in
more than one clique strictly less. Thus, applying this observation a sufficient
number of times always yields a partition of V .

Let

A := {C ∪ {ui} | C ∈ C, 1 ≤ i ≤ �} and
B := {{v1, v2} | v1v2 ∈ E} .

We claim that A ·∪ B is a sigma clique cover of G� with wgt(A ·∪ B) ≤
�(|V | + s + 1) − 1. First, we verify that A ·∪ B conforms to Definition 3.1, that
is, it indeed is a sigma clique cover of G�. To that end, we begin by verifying
that G[C] is a clique for all C ∈ A ·∪B. By construction, we need to differentiate
two cases: Firstly, let C ∪ {ui} ∈ A. Since G[C] is a clique, E ⊆ E(G�) and
∀v ∈ V : uiv ∈ E(G�), it follows that G�[C ∪ {ui}] is also a clique. Secondly,
let {v1, v2} ∈ B. Similarly, since G[{v1, v2}] � K2 and E ⊆ E(G�), we have
G�[{v1, v2}] � K2.

Now, we prove that all edges of G� are “covered” by A ·∪ B. Two cases need
to be verified: Consider any v1v2 ∈ E, i.e., those edges that are “inherited” from
G to G�. We see that {v1, v2} ⊆ B by definition. Furthermore, consider any
uiv ∈ E(G�)\E, i.e., those edges added to G in the construction of G�. Observe
that since ∃C ∈ C with v ∈ C, we have {ui, v} ⊆ C ∪ {ui} ∈ A.

We conclude that A ·∪ B is a sigma clique cover of G� and proceed to verify
that the claimed bound on the weight holds. By definition of A, we obtain

The Complexity of Cluster Vertex Splitting and Company 231

Thus, the forward direction of the proof is established.
(⇐) : Let S be a sigma clique cover of G� with

wgt(S) ≤ �(|V | + s + 1) − 1,

and let

u∗ ∈ argmin
u∈{u1,...,u�}

wgt ({C ∈ S | u ∈ C}) ,

X := {C ∈ S | u∗ ∈ C} , and
N := {C\{u∗} | C ∈ X} .

We claim that N is a node clique cover of G with |N | ≤ s.
First, we verify that N conforms to Definition 3.2, i.e., it indeed is a node

clique cover of G.
To accomplish this, we begin by showing that G[C] is a clique for all C ∈ N .

Let C\{u∗} ∈ N . By construction, we have C ∈ X , and since X ⊆ S with
the assumption that S is a sigma clique cover, we obtain that G�[C] is a
clique. Because the clique-graph-property is hereditary, G�[C\{u∗}] too is a
clique. Observe that {u1, . . . , u�} ∩ V (G�[C\{u∗}]) = ∅, for otherwise there
would be an edge between two universal nodes of G�, and G ≤ G�, yielding
G�[C\{u∗}] = G[C\{u∗}]. Hence, G[C\{u∗}] is a clique.

Next, we verify that all vertices of G are “covered” by N . Let v ∈ V . Since
S is a sigma clique cover of G� and vu∗ ∈ E(G�), there is some C ∈ S s.t.
{v, u∗} ⊆ C. It immediately follows that v ∈ C\{u∗} ∈ N .

Finally, we establish that |N | ≤ s. To that end, first, we derive wgt(X) ≤
|V | + s. Towards a contradiction, suppose that wgt(X) ≥ |V | + s + 1. Observe
that since no C ∈ S can contain two different universal nodes of G� we get

In total, this yields wgt(S) ≥ wgt(S) + 1, hence wgt(X) ≤ |V | + s.

232 A. Firbas et al.

Now, towards the final contradiction, suppose |N | ≥ s + 1. We obtain

Thus, we have derived both wgt(X) ≥ |V | + s + 1 and wgt(X) ≤ |V | + s, a
contradiction. Hence, we conclude that |N | ≤ s. ��

Using this preliminary work, the NP-completeness proof is straightforward:

Theorem 3.5 (�). Sigma Clique Cover is NP-complete.

4 NP-Completeness of CLUSTER VERTEX SPLITTING

We use Theorem 3.5 to show that also CVS is NP-complete:

Cluster Vertex Splitting (CVS)
Input: A tuple (G, k), where G is a graph and k ∈ N.
Question: Is there a sequence of at most k vertex splits that transforms G

into a cluster graph?

The basic idea is to show that, in an n-vertex graph, finding a sigma clique
cover with weight n + k is equivalent to finding k vertices to split such that
the resulting graph is a cluster graph: Given such a sigma clique cover, we may
look at each clique and its overlap to the rest of the graph. We can split each
such clique off the rest of the graph by splitting all vertices in the overlap. This
results in splitting each vertex a number of times equal to the number of times
it is covered by a clique minus one, that is, overall k vertex splits. In the other
direction, taking a cluster graph obtained by splitting and projecting it onto the
original vertices in the input graph will yield a sigma clique cover. Its weight
corresponds to the sum of the sizes of the clusters, which is exactly the number
of copies we have created, that is, n + k. See the full version of this paper [10]
for a formal proof.

Theorem 4.1 (�). Cluster Vertex Splitting is NP-complete.

The Complexity of Cluster Vertex Splitting and Company 233

5 A Linear Kernel for CLUSTER VERTEX SPLITTING

We first introduce some basic notions in Sect. 5.1. In Sect. 5.2, we establish the
groundwork for the first data-reduction rule of the kernel, which allows us to
reduce certain critical cliques in a Sigma Clique Cover instance. The sec-
ond rule of the kernel is based on Sect. 5.3, where we determine that Sigma
Clique Cover instances that have been exhaustively reduced using the previ-
ously explored mechanism and still contain more than 3k vertices are negative
instances. We then give the kernel in Sect. 5.4.

5.1 The Notions of Valency and Critical Cliques

We will frequently have to prove lower bounds for the weight that a sigma clique
cover needs to have at minimum. This we will do by observing that particular
vertices must be covered by at least a certain number of cliques each. For this,
valency of a vertex v with respect to a sigma clique cover C counts the number
of cliques that contain v that is, valC(v) := |{C ∈ C | v ∈ C}|.

With this notation, we can express the weight of a sigma clique cover in an
alternative manner: Via the definition of wgt(·) (Definition 3.1) and the principle
of double counting, we obtain wgt(C) = ∑

C∈C |C| = ∑
v∈V (G) valC(v).

Another key tool that we will use in this section is the concept of critical
cliques, coined by Lin et al. [13]. The closed neighborhood of a vertex v in a
graph G is NG(v) ∪ {v}. This allows us to consider an equivalence relation,
where vertices of a graph are in the same class if and only if their closed neigh-
borhoods coincide. The equivalence classes under this relation are called the
critical cliques of G. Consider a critical clique C of G. Observe that it is fully
connected “internally”, that is, G[C] is a clique, and that NG(v)\C = NG(w)\C
for any v, w ∈ C, which means that the vertices of C share a common “external
neighborhood”.

If we delete all but one vertex from each critical clique, we obtain a graph
isomorphic to what we will call the critical clique graph of G; we will use the
shorthand CC(G) to refer to it. Formally:

Definition 5.1. Let G be a graph. Consider the equivalence relation RG ⊆
V (G) × V (G) where (v, w) ∈ RG if and only if N(v) ∪ {v} = N(w) ∪ {w}.
We use [v]G to denote the equivalence class generated by v ∈ V (G) and RG. The
critical clique graph of G, referred to using CC(G), is given by

V (CC(G)) := {[v]G | v ∈ V (G)} and
E(CC(G)) := {[v]G[w]G | vw ∈ E(G) ∧ [v]G �= [w]G} .

The main intuition we make use of here is that members of the same critical
clique are essentially “clones” of one another. Thus, it seems reasonable that,
provided certain conditions are met, we are allowed to “shrink” certain critical
cliques without removing a significant amount of “computational complexity”
when solving the combinatorial problems we are interested in.

234 A. Firbas et al.

5.2 Towards a Rule to Shrink Critical Cliques

Consider the critical clique graph CC(G) of a graph G. We distinguish between
two kinds of critical cliques:

1. Critical cliques [v]G such that their neighborhood, that is, NCC(G)([v]G),
forms a clique in CC(G), and

2. critical cliques [v]G, where said neighborhood does not form a clique.

In this section, we show that, with respect to the sigma clique cover problem,
critical cliques of the first kind consisting of at least two vertices, can either safely
be reduced in size, or deleted altogether (Lemma 5.4). Correspondingly, we will
refer to them as reducible critical cliques. The second kind of critical cliques we
will call irreducible critical cliques.

To help prove Lemma 5.4, we first observe that in any minimum-weight
sigma clique cover of a graph, a vertex member of a critical clique of the first
kind is always covered by precisely one clique. Furthermore, this clique can be
determined explicitly (Lemma 5.3). We start with a useful observation:

Lemma 5.2 (�). Let G be a graph, C a sigma clique cover of G, and v ∈ C ∈ C.
Then, C ⊆ NG(v) ∪ {v}.

Now, we are ready to prove our auxiliary lemma that offers insight into the
structure of minimum-weight sigma clique covers:

Lemma 5.3 (�). Let G be a graph without isolated vertices and let [v]G be a
critical clique in G such that CC(G)[NCC(G)([v]G)] is a clique. Furthermore, let
C be a minimum-weight sigma clique cover of G and let C∗ := NG(v) ∪ {v}.
Then, C∗ is contained in C. Moreover, C∗ is the only clique of C that covers v.

The next lemma shows the correctness of reducing reducible critical cliques:

Lemma 5.4 (�). Let G be a graph without isolated vertices and let [v]G be one
of its critical cliques such that |[v]G| ≥ 2 and CC(G)[NCC(G)([v]G)] is a clique.
Then, (G, |V (G)|+k) is a positive instance of SCC if and only if (G−v, |V (G−
v)| + k) is.

5.3 Towards a Rule to Recognize Negative Instances

In the previous section, we laid the foundation for a rule that minimizes the
sizes of reducible critical cliques. Consider an instance (G, |V (G)|+k) of Sigma
Clique Cover that has been exhaustively reduced using the aforementioned
rule. We now observe that, if this instance has more than 3k vertices, then it is a
negative instance. This will serve as the basis for Rule II defined in Theorem 5.6.

We proceed as follows: We assume that G has more than 3k vertices and
consider an arbitrary sigma clique cover C of G. Then, we provide two separate
lower bounds on wgt(C). One bound is based on reducible critical cliques, while
the other bound is based on irreducible critical cliques. Each lower bound indi-
vidually is too weak, but the maximum of both will be greater than |V (G)| + k
in all cases, yielding that (G, |V (G)| + k) is a negative instance.

The Complexity of Cluster Vertex Splitting and Company 235

Lemma 5.5 (�). Let G be a graph such that none of its connected components
are cliques and k ∈ N. We divide V (CC(G)) into the partition A ·∪B where v ∈ A
if and only if CC(G)[NCC(G)(v)] is a clique. Furthermore, we set A :=

⋃
A and

B :=
⋃

B, that is, the partition of V (G) induced by A ·∪ B. If |A| = |A| and
|V (G)| > 3k, then (G, |V (G)| + k) is a negative instance of SCC.

5.4 Deriving the Kernel

In the two preceding sections, we essentially derived two data reduction rules
for the sigma clique cover problem. It remains to compile our results into a
polynomial kernelization procedure for Cluster Vertex Splitting. Essen-
tially, we convert a given instance (G, k) of Cluster Vertex Splitting into
an equivalent instance of Sigma Clique Cover, apply the two reduction rules
exhaustively, until finally converting the reduced instance back to an instance of
Cluster Vertex Splitting. Refer to Fig. 2 for an example.

Theorem 5.6. Cluster Vertex Splitting admits a problem kernelization
mapping an instance (G, k) to an equivalent instance (G′, k′) satisfying |V (G′)| ≤
3k + 3 and k′ ≤ k.

Proof. Let an instance of Cluster Vertex Splitting be given through (G, k)
and let G0 be obtained from G by removing all isolated vertices. Observe that
(G, k) is equivalent to (G0, k =: k0) with respect to CVS. By the equivalence
of CVS and Sigma Clique Cover, (G0, k0) is a positive instance of CVS if
and only if (G0, |V (G0)| + k0) is a positive instance of Sigma Clique Cover.
Next, we construct the sequences G0, . . . and k0, . . . by exhaustively applying
the following set of rules:

Rule I: If there is a critical clique [v]Gi
∈ V (CC(Gi)) such that [v]Gi

contains
at least two vertices and CC(Gi)[NCC(Gi)([v]Gi

)] is a clique, then Gi+1 :=
(Gi − v)− I and ki+1 := ki, where I is the set of isolated vertices in Gi − v.

Rule II: If Rule I is not applicable to Gi, Rule II has not been used so far, and
|V (Gi)| > 3ki, then Gi+1 := P3 and ki+1 := 0.

The running time and kernel size are proven in the full version of this
paper [10]. We claim that Rule I and Rule II are correct, that is, the instances
(Gi, |V (Gi)|+ki) and (Gi+1, |V (Gi+1)|+ki+1) are equivalent with respect to the
SCC problem for all i ∈ {0, . . . , � − 1}. Let Gi such that Gi+1 was obtained by
applying Rule I, and let v as well as I as used in the definition of Rule I. First,
consider the case when I �= ∅. Let w ∈ I. We have that dGi

(w) ≥ 1, because w
is not isolated in Gi. At the same time, we know that dGi

(w) < 2, for otherwise
w would not be isolated in Gi − v. Thus, dGi

(w) = 1, which forces |[v]Gi
| = 2.

Since w �∈ [v]Gi
would imply dGi

(w) ≥ 2, we conclude that [v]Gi
= {v, w},

that is, Gi[{v, w}] � K2 is a connected component of Gi. Now, it is easy to
see that (Gi, |V (Gi)| + k) is equivalent to (Gi+1, |V (Gi+1)| + k) with respect
to the SCC problem. Otherwise, I = ∅. By construction, Gi is free of isolated
vertices. Thus, applying Lemma 5.4 yields that (Gi, |V (Gi)| + k) is equivalent

236 A. Firbas et al.

Fig. 2. Two instances of CVS and their corresponding kernel as given by Theorem 5.6.
Reducible critical cliques are marked in green with dashed outlines, while irreducible
critical cliques are marked in red with solid outlines. (Color figure online)

to (Gi − v, |V (Gi − v)| + k) = (Gi+1, |V (Gi+1)| + k) with respect to the SCC
problem. Hence, Rule I is correct.

The correctness of Rule II essentially follows from Lemma 5.5; the proof is
given in the full version [10]. In total, we have that (G�, |V (G�)|+k�) is a positive
instance of SCC if and only if (G0, |V (G0)|+k0) is. By the equivalence between
CVS and Sigma Clique Cover (G�, |V (G�)| + k�) is a positive instance of
SCC if and only if (G�, k�) is a positive instance of CVS. Finally, we conclude
that (G, k) is equivalent to (G�, k�) with respect to the CVS problem. ��

6 The Critical-Clique Lemma

We now consider the critical-clique lemma for Cluster Editing With Vertex
Splitting (CEVS) mentioned in the introduction. Let us first formally state
the problem. In the following, by a graph modification we mean a vertex split,
an edge addition, or an edge deletion.

Cluster Editing With Vertex Splitting
Input: A tuple (G, k), where G is a graph and k ∈ N.
Question: Is there a sequence of at most k graph modifications that transforms

G into a cluster graph?

To state the critical-clique lemma, we first need an equivalence between the
sequence of modifications in CEVS and a cover of the input graph by clusters.

The Complexity of Cluster Vertex Splitting and Company 237

Fig. 3. Counterexample to the critical-clique lemma.

A cover of a graph G is a collection C of subsets of V (G) such that
⋃

C∈C C =
V (G). The cost cstG(C) of a cover C is the number of non-edges contained in a
set of C plus the number of edges not contained in any set of C plus the number
of times each vertex is covered by a set beyond the first time. In formulas,

cstG(C) =
∣
∣
∣
∣

{

uv ∈
(

V

2

)

\E(G) | ∃C ∈ C : {u, v} ⊆ C

}∣
∣
∣
∣ +

|{uv ∈ E(G) | ∀C ∈ C : {u, v} � C}| +
(

∑

C∈C
|C|

)

− |V (G)|.

Herein,
(
V
2

)
denotes the set of all two-element subsets of V . If G is clear from

the context, we omit the subscript G in cstG.
The following lemma has been used implicitly by Abu-Khzam et al. [3] but

we are not aware of a formal proof.

Lemma 6.1 (�). Let G be a graph and k a positive integer. There is a sequence
of at most k graph modifications to obtain from G a cluster graph if and only if
G admits a cover of cost at most k.

Recall the definition of critical cliques from Definition 5.1. The critical-clique
lemma as stated by Abu-Khzam et al. [3] (see their Lemma 8) is as follows:

Lemma 6.2 (Incorrect). Let G be a graph and C a cover of G of minimum
cost. For each C ∈ C and each critical clique of G with vertex set K we have
either C ∩ K = ∅ or K ⊆ C.

As far as we are aware, Lemma 6.2 is being used in references [3–6]. However, the
example in Fig. 3 shows that Lemma 6.2 is incorrect: The left shows the input
graph with marked critical cliques. The right shows a minimum-cost cover in
which the left cover set contains the central critical clique only partially. Dashed
edges are removed, dotted edges added, and vertices in both sets are split. The
cost of the cover is 6.

Proposition 6.3. The graph shown on the left in Fig. 3 needs at least 6 modi-
fications to turn it into a cluster graph.

238 A. Firbas et al.

Proof. We show that there is a modification-disjoint packing of six induced P3s.
In the following, we denote a P3 by xyz, where x, y, and z are its three vertices
and y is the center vertex. Two P3s xyz and abc are modification disjoint if
|{a, b, c} ∩ {x, y, z}| ≤ 1 and y �= b. A modification-disjoint packing of P3s is a
collection of induced P3s that are pairwise modification disjoint. Note that, if
a graph admits a modification-disjoint packing of � P3s then we need at least �
modifications to turn the graph into a cluster graph.

Consider the following P3s in the graph in Fig. 3: abc, cde, ahg, gfe, hcf ,
bgd. Note that they form a modification-disjoint packing. Thus we need at least
6 modifications to turn the graph into a cluster graph. ��
There are other solutions of cost 6 that do not cut critical cliques. Thus, it is
tempting to assume that, although not necessarily every optimal solution does
not cut critical cliques, that there is always such an optimal solution. Indeed,
after the appearance of our counterexample above, this has been proved to be
true:

Lemma 6.4 (Abu-Khzam et al. [1]). Let G be a graph and k a positive inte-
ger. If (G, k) admits a solution for CEVS, then there is a cover C of cost at
most k such that for each critical clique K of G and each set C ∈ C we have
either K ⊆ C or K ∩ C = ∅.

7 The Complexity of CLUSTER EDITING WITH

VERTEX SPLITTING

Based mainly on our NP-hardness proof of Cluster Vertex Splitting in
conjunction with the corrected critical-clique lemma we obtain NP-hardness of
Cluster Editing With Vertex Splitting:

Theorem 7.1 (�). There is a polynomial-time many-one reduction from CVS
to CEVS, showing that CEVS is NP-hard.

8 Conclusion

We conclude with directions for future research. The constants in our kernel-
ization for CVS (at most 3k + 3 vertices, see Theorem 5.6) are already quite
small, but it would be interesting to see whether they can be further improved.
A problem kernel with a linear number of edges would also be interesting. A
straightforward brute-force search on the kernel yields an algorithm solving CVS
in 2O(k2) · nO(1) time, which can be improved to 2O(k log k) · nO(1) with further
observations. Is it possible to obtain 2O(k) ·nO(1) time as well? Finally, we focused
here on the case where the overlap between clusters is small. There are applica-
tions where the overlap is relatively large [14]. Thus, to get efficient algorithms
in this case, it would be interesting to study parameterizations dual to k that
measure the non-overlapping parts of the clustering.

The Complexity of Cluster Vertex Splitting and Company 239

References

1. Abu-Khzam, F.N., et al.: Cluster editing with vertex splitting. CoRR,
abs/1901.00156v2 (2023). arxiv.org/abs/1901.00156v2

2. Abu-Khzam, F.N., Barr, J.R., Fakhereldine, A., Shaw, P.: A greedy heuristic for
cluster editing with vertex splitting. In: Proceedings of the 4th International Con-
ference on Artificial Intelligence for Industries (AI4I 2021), pp. 38–41. IEEE (2021).
https://doi.org/10.1109/AI4I51902.2021.00017

3. Abu-Khzam, F.N., Egan, J., Gaspers, S., Shaw, A., Shaw, P.: Cluster editing with
vertex splitting. In: Lee, J., Rinaldi, G., Mahjoub, A.R. (eds.) ISCO 2018. LNCS,
vol. 10856, pp. 1–13. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96151-4_1

4. Abu-Khzam, F.N., Egan, J., Gaspers, S., Shaw, A., Shaw, P.: On the parameterized
cluster editing with vertex splitting problem. CoRR, abs/1901.00156v1 (2019).
arxiv.org/abs/1901.00156v1

5. Arrighi, E., Bentert, M., Drange, P.G., Sullivan, B., Wolf, P.: Cluster editing with
overlapping communities. In: Proceedings of the 18th International Symposium on
Parameterized and Exact Computation (IPEC 2023) (2023). Accepted for publi-
cation

6. Askeland, G.: Overlapping community detection using cluster editing with vertex
splitting. Master’s thesis, University of Bergen (2022)

7. Crespelle, C., Drange, P.G., Fomin, F.V., Golovach, P.A.: A survey of parameter-
ized algorithms and the complexity of edge modification. Comput. Sci. Rev. 48,
100556 (2023). https://doi.org/10.1016/j.cosrev.2023.100556

8. Davoodi, A., Javadi, R., Omoomi, B.: Edge clique covering sum of graphs. Acta
Math. Hungar. 149(1), 82–91 (2016). https://doi.org/10.1007/s10474-016-0586-1

9. Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-
based data clustering with overlaps. Discrete Optim. 8(1), 2–17 (2011). https://
doi.org/10.1016/j.disopt.2010.09.006

10. Firbas, A., et al.: The complexity of cluster vertex splitting and company. CoRR,
abs/2309.00504 (2023). https://doi.org/10.48550/ARXIV.2309.00504

11. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R., Piepho, H.-P., Schmid, R.: Algo-
rithms for compact letter displays: comparison and evaluation. Comput. Stat. Data
Anal. 52(2), 725–736 (2007). https://doi.org/10.1016/j.csda.2006.09.035

12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Com-
puter Computations. The IBM Research Symposia Series, pp. 85–103. Plenum
Press, New York (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

13. Lin, G.-H., Kearney, P.E., Jiang, T.: Phylogenetic k -root and steiner k -root. In:
Goos, G., Hartmanis, J., van Leeuwen, J., Lee, D.T., Teng, S.-H. (eds.) ISAAC
2000. LNCS, vol. 1969, pp. 539–551. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-40996-3_46

14. Yang, J., Leskovec, J.: Structure and overlaps of ground-truth communities in
networks. ACM Trans. Intell. Syst. Technol. 5(2), 26:1–26:35 (2014). https://doi.
org/10.1145/2594454

http://arxiv.org/1901.00156v2
https://doi.org/10.1109/AI4I51902.2021.00017
https://doi.org/10.1007/978-3-319-96151-4_1
https://doi.org/10.1007/978-3-319-96151-4_1
http://arxiv.org/1901.00156v1
https://doi.org/10.1016/j.cosrev.2023.100556
https://doi.org/10.1007/s10474-016-0586-1
https://doi.org/10.1016/j.disopt.2010.09.006
https://doi.org/10.1016/j.disopt.2010.09.006
https://doi.org/10.48550/ARXIV.2309.00504
https://doi.org/10.1016/j.csda.2006.09.035
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/3-540-40996-3_46
https://doi.org/10.1007/3-540-40996-3_46
https://doi.org/10.1145/2594454
https://doi.org/10.1145/2594454

Morphing Graph Drawings in the Presence
of Point Obstacles

Oksana Firman , Tim Hegemann , Boris Klemz , Felix Klesen ,
Marie Diana Sieper(B) , Alexander Wolff , and Johannes Zink

Institut für Informatik, Universität Würzburg, Würzburg, Germany
{oksana.firman,tim.hegemann,boris.klemz,felix.klesen,marie.sieper,

johannes.zink}@uni-wuerzburg.de

Abstract. A crossing-free morph is a continuous deformation between
two graph drawings that preserves straight-line pairwise noncrossing
edges. Motivated by applications in 3D morphing problems, we initi-
ate the study of morphing graph drawings in the plane in the presence
of stationary point obstacles, which need to be avoided throughout the
deformation. As our main result, we prove that it is NP-hard to decide
whether such an obstacle-avoiding 2D morph between two given draw-
ings of the same graph exists. This is in sharp contrast to the classical
case without obstacles, where there is an efficiently verifiable (necessary
and sufficient) criterion for the existence of a morph.

Keywords: Graph morphing · Point obstacles · NP-hard · Planar
graph · Straight-line drawing

1 Introduction

In the field of Graph Drawing, a (crossing-free) morph between two straight-
line drawings Γ1 and Γ2 of the same graph is a continuous deformation that
transforms Γ1 into Γ2 while preserving straight-line pairwise noncrossing edges
at all times. Morphing (beyond the above, strict definition in Graph Drawing)
has applications in animation and computer graphics [12]. In this paper, we
initiate the study of morphing graph drawings in the presence of stationary
point obstacles, which need to be avoided throughout the motion.

Related Work. An obvious necessary condition for the existence of a crossing-
free morph in R

2 between two straight-line drawings Γ1 and Γ2 is that these
drawings represent the same plane graph (i.e., a planar graph equipped with fixed
combinatorial embedding and a distinguished outer face). It has been established
long ago [7,16] that this (efficiently verifiable) criterion is also sufficient, i.e., a
crossing-free morph in R

2 between two straight-line drawings of the same plane
graph always exists.

Work partially supported by DFG grants WO 758/9-1 and WO 758/11-1.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 240–254, 2024.
https://doi.org/10.1007/978-3-031-52113-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_17&domain=pdf
http://orcid.org/0000-0002-9450-7640
http://orcid.org/0009-0008-4770-3391
http://orcid.org/0000-0002-4532-3765
http://orcid.org/0000-0003-1136-5673
http://orcid.org/0009-0003-7491-2811
http://orcid.org/0000-0001-5872-718X
http://orcid.org/0000-0002-7398-718X
https://doi.org/10.1007/978-3-031-52113-3_17

Morphing Graph Drawings in the Presence of Point Obstacles 241

More recent work [2,14] focuses on the efficient computation of such morphs.
In particular, this involves producing a discrete description of the continuous
motion. Typically, this is done in form of so-called piecewise linear morphs. In
a linear morph, each vertex moves along a straight-line segment at a constant
speed (which depends on the length of the segment) such that it arrives at its
final destination at the end of the morph. The (unique) linear morph between Γ1

and Γ2 is denoted by 〈Γ1, Γ2〉. A piecewise linear morph is created by concatenat-
ing several linear morphs, which are referred to as (morphing) steps. A piecewise
linear morph consisting of k steps can be encoded as a sequence of k + 1 draw-
ings. Alamdari et al. [2] showed that two straight-line drawings of the same
n-vertex plane graph always admit a crossing-free piecewise linear morph in R

2

with O(n) steps, which is best-possible. Their proof is constructive and corre-
sponds to an O(n3)-time algorithm, which was later sped up to O(n2 log n) time
by Klemz [14].

Other works are concerned with finding crossing-free morphs in R
2 between

two given drawings while preserving certain additional properties, such as con-
vexity [3], upward-planarity [10], or edge lengths1 [9], or with constructing
crossing-free morphs in R

2 that transform a given drawing to achieve cer-
tain properties, such as vertex visibilities [1] or convexity [13], while being in
some sense monotonic, in order to preserve the so-called “mental map” [15]
of the viewer.

Quite recent works [4–6] are concerned with transforming two drawings Γ1, Γ2

in the plane into each other by means of crossing-free morphs in the space R
3.

Such 2D–3D–2D morphs are always possible [6]—even if Γ1 and Γ2 have different
combinatorial embeddings—and they sometimes require fewer morphing steps
than morphs that are restricted to the plane R

2 [4,5]. Due to connections to the
notoriously open Unknot problem, 3D–3D–3D morphs are not well understood
and have, so far, only been considered for trees [4,5].

Our Model and Motivation. In this paper, we introduce and study a natural
variant of the 2-dimensional morphing problem: given two crossing-free straight-
line drawings Γ1 and Γ2 as well as a finite set of points P in R

2, called obstacles,
construct (or decide whether there exists) a crossing-free morph in R

2 between Γ1

and Γ2 that avoids P , i.e., at no point in time throughout the deformation, the
drawing is allowed to intersect any of the obstacles, which remain stationary. In
particular, this problem naturally arises when constructing 2D–3D–2D morphs,
where it is tempting to apply strategies for the classical 2-dimensional case on a
subdrawing induced by the subset of the vertices contained in a plane π. Note
that every edge between vertices on different sides of π intersects π in a point,
which then acts as an obstacle for the 2-dimensional morph.

Contribution and Organization. We begin by stating some basic observations and
preliminary results in Sect. 2. In particular, we observe that the necessary and
sufficient condition for the classical case without obstacles is no longer sufficient

1 In the fixed edge length scenario, the drawings are also known as linkages.

242 O. Firman et al.

for our model (even when interpreting the obstacles as isolated vertices) and
we present a stronger necessary condition (we say that the obstacles need to be
“compatible” with the drawings), which is, however, still not sufficient. In fact,
as our main result, we show that even if our condition is satisfied, it is NP-hard
to decide whether an obstacle-avoiding morph exists (see Sect. 3):

Theorem 1. Given a plane graph G, a set of obstacles P , and two crossing-free
straight-line drawings Γ and Γ ′ in R

2, it is NP-hard to decide whether there
exists an obstacle-avoiding crossing-free morph in R

2 between Γ and Γ ′. The
problem remains NP-hard when restricted to the case where G is connected, the
drawings Γ and Γ ′ are identical except for the positions of four vertices, and the
obstacles P are compatible with Γ and Γ ′. (These statements hold regardless of
whether the morph is required to be piecewise linear or not.)

We remark that it is an essential part of the challenge to keep the edges
straight-line during the morph – when dropping this requirement (i.e., when
allowing edges to be deformed into arbitrary crossing-free curves or polylines),
the problem can be solved efficiently [8]. The proof of Theorem 1 (by reduction
from 3-SAT) is somewhat unusual from a Graph Drawing perspective: given a
Boolean formula Φ, we describe the construction of a set of obstacles P and two
(almost identical) drawings Γ1, Γ2 that exist irrespectively of the satisfiability
of Φ, which instead corresponds to the existence of the obstacle-avoiding morph
between the two drawings. In particular, we had to overcome the somewhat
intricate challenge of designing gadgets that behave in a synchronous way. We
conclude by discussing several open questions in Sect. 4. Claims marked with a
clickable “�” are proved in the full version of this article [11].

Conventions. In the remainder of the paper, we consider only morphs in the
plane R

2. We write “drawing” as a short-hand for “straight-line drawing in the
plane R

2” and, similarly, we write “(planar) morph” rather than “(crossing-free)
morph in R

2”. For any positive integer n, we define [n] = {1, 2, . . . , n}.

2 Preliminaries and Basic Observations

Let Γ1 and Γ2 be two drawings of the same plane graph G, and let P be a set of
obstacles. We say that Γ1 and Γ2 are blocked by P if there is no planar morph
between Γ1 and Γ2 that avoids P . Moreover, Γ1 and Γ2 are blockable if there
exists a set of obstacles that blocks them. We start by observing that cycles are
necessary to block drawings.

Proposition 1 (�). Let Γ1 and Γ2 be two drawings of the same plane forest F .
Then Γ1 and Γ2 are not blockable.

Proof (sketch). We describe how to construct a morph that avoids an arbitrary
set of obstacles. Assume for now that F consists of a single tree, which we root at
an arbitrary vertex r. We construct an obstacle-avoiding planar morph from Γ1

http://arxiv.org/abs/2311.14516

Morphing Graph Drawings in the Presence of Point Obstacles 243

Fig. 1. The two simple closed curves Γ1 and Γ2 in (a) cannot be continuously deformed
into each other without passing over one of the obstacles and while preserving simplic-
ity. (The corresponding continuous deformation of the geodesic joining the two internal
obstacles [blue crosses] within the closed curve would transform the curve g1 into g2
while keeping the endpoints fixed and without passing over the external obstacle [red
star], which is impossible.) Consequently, the two drawings of a 4-cycle in (b) are
blocked by the set of three obstacles; it is not compatible with the two drawings.
(Color figure online)

to a drawing Γ ′
1 located in a disk that (i) is centered on the position of r in Γ1,

(ii) contains no obstacles, and (iii) whose radius is smaller than the distance
between any pair of obstacles. This can be done by “contracting” the tree along
its edges in a bottom-up fashion (i.e., starting from the leaves). We also morph Γ2

into an analogously defined drawing Γ ′
2. The drawings Γ ′

1 and Γ ′
2 can now be

translated (far enough) away from the obstacles without intersecting them so
that they can be transformed into each other by means of morphing techniques
for the classical non-obstacle case [2,7,14,16].

If F contains multiple trees, it is easy to augment Γ1 and Γ2 to drawings of
the same plane tree by inserting additional vertices and edges, thus reducing to
the case of a single tree. ��

We now turn our attention to the case when G may contain cycles. Recall that
an obvious necessary condition for the existence of planar morph between two
drawings is that they represent the same plane graph. Interpreting the obstacles
in the set P as (isolated) vertices reveals that a planar morph between Γ1 and
Γ2 that avoids P is possible only if each obstacle p ∈ P is located in the same
face in Γ1 and Γ2. However, as Fig. 1 shows, this condition is not sufficient.
We say that P is compatible with Γ1 and Γ2 if there is a continuous deformation
that transforms Γ1 into Γ2 while avoiding P and preserving pairwise noncrossing
(not necessarily straight-line) edges at all times. The compatibility of P with Γ1

and Γ2 is obviously a necessary condition for the existence of a planar obstacle-
avoiding morph. This condition can be checked efficiently [8]; note that it is
violated in Fig. 1.

Compatibility is unfortunately still not sufficient for the existence of obstacle-
avoiding morphs—even if the considered graph is just a cycle. In the following,
we study and discuss this case in more detail. Let Cn denote the simple cycle with
n vertices. Let Γ and Γ ′ be drawings of a plane Cn such that (i) Γ and Γ ′ are
distinct (as mappings of Cn to the plane), but (ii) the closed curves realizing Γ
and Γ ′ are identical, and (iii) the set of points of R2 used to represent vertices

244 O. Firman et al.

is the same in Γ and Γ ′. Note that there exists an offset o ∈ [n − 1] such that,
for every i ∈ [n], vertex i in Γ is at the same location as vertex i + o (modulo
n) in Γ ′. Therefore, we say that Γ ′ is a shifted version of Γ . Due to (ii), every
set of obstacles is compatible with Γ and Γ ′.

Proposition 2 (�). Let n ≥ 6 be an even integer. Then there exists a drawing Γ
of Cn such that, for every shifted version Γ ′ of Γ , the drawings Γ and Γ ′ are
blockable by seven obstacles that are compatible with Γ and Γ ′ (for an illustration,
see Fig. 2).

Fig. 2. A schematic drawing of Cn with vertices v1, . . . , vn

(here n = 14) that cannot be morphed to a shifted version
of it in a planar way while avoiding the two internal obstacles
(blue crosses) and the five external obstacles (red stars). (Color
figure online)

Fig. 3. Five obstacles
suffice to block shifted
versions of C3.

It is plausible that Proposition 2 can be strengthened: even three obstacles
seem to be sufficient for blocking two shifted drawings of an even-length cycle
(we chose to use seven obstacles to simplify the proof). In contrast, mainly due
to convexity, more obstacles are needed to block shifted drawings of C3.

Proposition 3 (�). Two drawings Γ1 and Γ2 of C3 are not blockable by four
obstacles that are compatible with Γ1 and Γ2.

Proof (sketch). We perform a case distinction on the number of obstacles that are
located in the interior of the cycle. Here, we only sketch the case with two inner
obstacles p1 = (x1, y1) and p2 = (x2, y2). Assume without loss of generality
that x1 = x2 and y1 > y2. There exists an ε > 0 such that the rectangle
R = [x1 − ε, x1 + ε]× [y2 − ε, y1 + ε] lies in the interiors of Γ1 and Γ2 and, hence,
does not contain any of the outer obstacles. Then, for any triangle Γ ∈ {Γ1, Γ2},
there is a planar morph that moves the vertices of Γ onto the boundary of R
while avoiding the line segment p1p2 and the region exterior to Γ . Finally, we
show that two triangles with these properties can always be morphed into each
other while staying in the closure of R and avoiding p1p2. ��

Our proof for (at most) two inner obstacles does not depend on the number
of outer obstacles, which implies a partially stronger statement.

We have a tight upper bound for the number of obstacles needed to block
drawings of C3; see Fig. 3.

http://arxiv.org/abs/2311.14516
http://arxiv.org/abs/2311.14516

Morphing Graph Drawings in the Presence of Point Obstacles 245

Proposition 4 (�). Let Γ be a drawing of C3, and let Γ ′ be a shifted version
of Γ . Then Γ and Γ ′ are blockable by five obstacles compatible with Γ and Γ ′.

We now state a sufficient condition for the existence of planar obstacles-
avoiding morphs between shifted drawings of a cycle. We call a degree-2 vertex
in a drawing free if its two incident edges lie on a common line.

Proposition 5 (�). Let Γ be a drawing of Cn, and let Γ ′ be a shifted version
of Γ . If Γ contains a free vertex, then Γ and Γ ′ are not blockable by obstacles
that are compatible with Γ and Γ ′.

Fig. 4. Two drawings of C8. If the shaded regions are densely filled with obstacles, the
drawing on the left is essentially locked in place—it cannot be morphed planarly to a
substantially different drawing without intersecting the obstacle regions. In particular,
it cannot be morphed to the drawing on the right, even though this drawing contains
two free vertices (and the obstacles are compatible with the two drawings).

Free vertices are helpful in other specific cases as well (in particular, they
play a crucial role in our NP-hardness proof), but their usefulness is limited in
general: their existence is not a sufficient condition for the existence of obstacle-
avoiding morphs even when it comes to plane cycles; see Fig. 4.

Finally, we observe that two obstacles are not enough to block two draw-
ings (with which the obstacles are compatible), regardless of the class of the
represented graph.

Proposition 6 (�). Let Γ1 and Γ2 be two drawings of the same plane graph G,
and let P be a set of obstacles that are compatible with Γ1 and Γ2. If |P | ≤ 2,
then there exists a planar morph from Γ1 to Γ2 that avoids P .

Proof (sketch). We interpret the (up to) two obstacles as isolated vertices of our
plane graph (by compatibility, each obstacle belongs to the same face in Γ1

and Γ2). By known results [2,7,14,16], there is a morph M in which Γ1 is
deformed to Γ2 without introducing crossings and without intersecting the obsta-
cles. However, since the obstacles are treated as vertices, their positions might

http://arxiv.org/abs/2311.14516
http://arxiv.org/abs/2311.14516
http://arxiv.org/abs/2311.14516

246 O. Firman et al.

change over time. We can transform M into the desired morph by translat-
ing, rotating, and scaling the frame of reference as time goes on to ensure that
the obstacles become fixpoints (one can think of this as moving, rotating, and
zooming the camera in a suitable fashion). ��

In view of the remark after Proposition 2, it seems that Proposition 6 is best-
possible. In particular, the proof strategy does not generalize to three obstacles
as affine transformations preserve the cyclic orientations of point triples.

3 Proof of Theorem 1

In this section, we show our main result.

Theorem 1. Given a plane graph G, a set of obstacles P , and two crossing-free
straight-line drawings Γ and Γ ′ in R

2, it is NP-hard to decide whether there
exists an obstacle-avoiding crossing-free morph in R

2 between Γ and Γ ′. The
problem remains NP-hard when restricted to the case where G is connected, the
drawings Γ and Γ ′ are identical except for the positions of four vertices, and the
obstacles P are compatible with Γ and Γ ′. (These statements hold regardless of
whether the morph is required to be piecewise linear or not.)

Proof. We reduce from the classical NP-hard problem 3-SAT. Given a Boolean
formula Φ =

∧m
i=1 ci in conjuctive normal form over variables x1, x2, . . . , xn

whose clauses c1, c2, . . . , cm consist of three literals each, we construct a plane
graph G, two planar drawings Γ and Γ ′ of G, and a set P of obstacles that
are compatible with Γ and Γ ′. We show that there exists an obstacle-avoiding
planar morph from Γ to Γ ′ if and only if Φ is satisfiable.

Fig. 5. General grid structure used in our NP-hardness reduction. Here, we use the
formula Φ = c1 ∧c2 ∧c3, where c1 = (�11 ∨�21 ∨�31) = (x2 ∨x1 ∨¬x3), c2 = (�12 ∨�22 ∨�32) =
(¬x1 ∨ x3 ∨ x2), and c3 = (�13 ∨ �23 ∨ �33) = (¬x3 ∨ ¬x2 ∨ ¬x1). There are variable
gadgets (left), clause and literal gadgets (top), split gadgets (S), crossing gadgets (C),
and a synchronization gadget (sync) spanning over all clause gadgets. The gadgets have
various states and orientations; dependencies are marked by triangular arrows.

Morphing Graph Drawings in the Presence of Point Obstacles 247

Overview. In our reduction, we arrange obstacles, vertices, and edges such that
we obtain a grid-like structure where we have two rows for each variable (one
for each literal of the variable) and three columns for every clause (one for each
literal in the clause); see Fig. 5. We then use several gadgets arranged within
this grid-like structure. On the left side, the two rows of a variable terminate at
a variable gadget. A variable gadget is in one of the states true, false, or unset.
On the top side, the three columns of a clause are connected via three literal
gadgets to a clause gadget. Each literal gadget and each clause gadget is in one
of the states true or false. All clause gadgets are connected by a synchronization
gadget. Within the column of each literal, we have a split gadget in one of the
two rows of the corresponding variable xi – in the upper row if the literal is
xi and in the lower row if the literal is ¬xi. In all other grid cells, we have
crossing gadgets. Every split gadget and every crossing gadget has a horizontal
orientation (left/right) and a vertical orientation (bottom/top).

We first describe the general mechanism of our reduction. Independently
of each other, every variable gadget can be morphed to reach any of its three
states. In Γ and Γ ′, all crossing and split gadgets have the orientations left
and bottom. A crossing or split gadget α can have orientation right only if the
crossing/split gadget to the left of α has orientation right, too, or if α is adjacent
to a variable gadget with state true (false) and α is in the upper (lower) row
of the corresponding variable. Moreover, a crossing gadget can have orientation
top only if the neighboring crossing/split gadget below has orientation top, too,
and a split gadget can have orientation top only if it can also have orientation
right. A literal gadget can be in the state true only if the gadget below it has
orientation top. A clause gadget is in the state true if and only if at least one
of its three literal gadgets is in the state true. Moreover, we can reach the final
drawing Γ ′, where only the synchronization gadget differs from its drawing in
Γ , if and only if all clause gadgets have state true simultaneously at some point
in time. This ensures the correctness of our construction.

We now describe and visualize the geometric realization of our gadgets.

Forbidden Areas. In each gadget, we have forbidden areas where the vertices and
edges cannot be drawn (henceforth drawn solid red). They are used to create
a system of tunnels and cavities in which the edges of our drawings are placed
and move; see, e.g., Fig. 6. We achieve this by densely filling the forbidden areas
with obstacles, which are placed on a fine grid (as explained in more detail in
the paragraph “Number and placement of obstacles” on page 12).

Variable Gadget. The variable gadget has a comparatively simple structure; see
the three red boxes on the left side of Fig. 6. It has three vertices enclosed in
a straight vertical tunnel of the forbidden area with one exit on the top right
and one exit on the bottom right. As it is a straight tunnel, the middle vertex,
which we call decision vertex, is a free (see Sect. 2 for the definition) vertex (see
the thick blue–white vertex of x3 in Fig. 6 for the arrangement in Γ and Γ ′).
We say that the variable gadget is in the state true (false) if this decision vertex

248 O. Firman et al.

Fig. 6. Full construction for the instance Φ = (x2 ∨x1 ∨¬x3)∧ (¬x1 ∨x3 ∨x2)∧ (¬x3 ∨
¬x2 ∨ ¬x1). Gadgets with orientation right/top/true use thicker strokes.

is moved to the top (bottom) position, and it is in the state unset otherwise.
Consequently, we can move the top (bottom) vertex out of the tunnel if and
only if we are in the state true (false). This, in turn, yields a free vertex for the
adjacent row of crossing and split gadgets, which we describe next.

Split Gadget. A split gadget consists of a central vertex c of degree 3 together
with paths to the left, right, and top; see Fig. 7. They are enclosed in a system
of tunnels formed by the forbidden area. Figure 7a shows a split gadget σ in the
base state as it appears in Γ and Γ ′. If the crossing/split/variable gadget to
the left of σ, which shares the vertex l with σ, has a free2 vertex, then l can be
moved to the next corner of the tunnel. Then, in turn, c can be moved to the
bottom right corner of the white (obstacle-free) triangle in σ (see Fig. 7b), and
the two other neighbors of c can be pushed one position to the right and one
position up. In this case we say that the horizontal (vertical) orientation of σ is
right (top). Otherwise, the horizontal (vertical) orientation of σ is left (bottom).

Crossing Gadget. A crossing gadget has a similar structure as a split gadget.
However, we now have a central vertex c′ of degree 4 with paths to the neigh-
2 Here, this means that it is a crossing/split gadget that is oriented to the right or it is

a variable gadget in its top row with state true or in its bottom row with state false.

Morphing Graph Drawings in the Presence of Point Obstacles 249

Fig. 7. Split gadget: from a horizontal row transporting a truth value, we “copy” the
same truth value up to a vertical column.

Fig. 8. Crossing gadget: we transport truth values horizontally and vertically without
influencing each other. The four possible combinations of orientations are illustrated.

boring gadgets to the left, right, top, and bottom. In the center of the crossing
gadget χ in Fig. 8, there is a white (obstacle-free) square. In Γ and Γ ′, c′ is
placed in the top left corner of this square (see Fig. 8a). This is the base state
of χ. If the gadget on the left of χ has a free vertex, we can push the adjacent
vertices to the next corners of the tunnel such that c′ can move to the bottom
side of the square (see Figs. 8b and 8d). Only then, we can push the vertices of
the path leaving the gadget on the right side to the next corner of the tunnel. In
this case we say that the horizontal orientation of the crossing gadget is right;
otherwise it is left. Symmetrically, if the gadget below χ has a free vertex, we can
move c′ to the right side of the square (see Figs. 8c and 8d). Only then we can
push the vertices of the path leaving χ through the top side to the next corner of
the tunnel. In this case we say that the vertical orientation of the crossing gad-
get is top; otherwise it is bottom. Observe that the states of the gadgets on the
left and below χ independently determine the horizontal and vertical orientation
of χ. This property assures that we can transport information along routes that
cross each other, but do not influence each other.

Literal Gadget. Figure 9 shows a literal gadget λ in its base state. It consists of
five vertices, one of which, r, is shared with the gadget β below; see Fig. 9. Only
if the vertical orientation of β is top, vertex r can move to the original position

250 O. Firman et al.

Fig. 9. Literal gadget: Depending on the crossing or split gadget below, it can be in
two different states. Only in the state true, vertex t does not pop out of the gadget.

of s and s can move up. This in turn allows vertex t to move into the interior
of λ. In this case, we say that λ has the state true; otherwise it has the state
false. If a cycle in Γ contains obstacles, we call the cycle an anchor. Observe that
the anchor 〈t, w, y〉 restricts the area where we can move t.

Clause Gadget. Each clause ci (i ∈ [m]) is represented by a clause gadget, which
consists of a path of length 9 whose endpoints are anchored by two 3-cycles; see
Fig. 10. In the base situation occurring in Γ and Γ ′, we have exactly one free
vertex (denoted by y), which is at the bottom of a large rectangular obstacle-free
region, which is also part of the synchronization gadget. Observe that, within
this area, we cannot move y (up to a tiny bit) to the left or right due to its
neighbors lying at (essentially) fixed positions (see Fig. 10a).

However, if one of the incident literal gadgets is in the state true, we get a
second free vertex, due to which we can move z, which is a neighbor of y, onto
the base position of y (see Fig. 10b). Now we can move y arbitrarily far to the
right within this obstacle-free region (unless y is blocked by the edges of another
clause gadget). Only when this is done for all clause gadgets simultaneously, the
synchronization gadget (see below) can be morphed as desired. Thus, we say
that a clause gadget is in the state true if at least one of its literal gadgets is in
the state true; otherwise it is in the state false.

Synchronization Gadget. The synchronization gadget is a 4-cycle 〈v1, v2, v3, v4〉;
see Fig. 6. In the base situation occurring in Γ , this cycle is drawn as an isosceles
trapezoid T . In Γ ′, the 4-cycle is drawn as a shifted version (see Sect. 2 for the
definition) of T . All sides of T except for the short parallel side are fixed by
tunnels of the forbidden area. In particular, v1 and v4 can only be moved in an
ε-region (for some small ε > 0) around their initial position, while v2 and v3
can potentially be moved to the right into the large obstacle-free rectangular

Morphing Graph Drawings in the Presence of Point Obstacles 251

Fig. 10. Clause gadget together with three literal gadgets: If at least one of the literal
gadgets is in the state true, the clause gadget is also in the state true. The obstacle-
free region shared with the synchronization gadget is depicted in hatched green (Color
figure online).

area (that is shared with all clause gadgets) within a small corridor (see the
blue strips in Fig. 6). These corridors extend the legs of T , which have a specific
angle depending on the number of clauses m such that the corridors intersect
at a region I to the right side of all clause gadgets. Note that we cannot simply
“rotate” T , since each of the ε-regions around the positions of v1 and v4 in Γ
need to contain at least one vertex at any time. To reach a shifted version, there
needs to be an intermediate drawing that has a third vertex within the tunnel
between these ε-regions. Therefore, only one vertex remains to close the 4-cycle
on the right side. That vertex needs to be placed inside I. Hence, we can reach
the shifted version if and only if all of the clause gadgets are in the state true:
in this case, for each clause gadget, we can move its vertex y into I so that
the edges incident to y do not intersect the triangle 	v1Ileftv4, where Ileft is the
leftmost point of I. Thus, we can place v2 onto Ileft to make v3 a free vertex and,
therefore, reach the shifted drawing of the 4-cycle (cf. Proposition 5). In contrast,
if a clause gadget is in the state false, at least one of the edges incident to its
vertex y intersects 	v1Ileftv4 and, thus, v2 and v3 cannot reach the corridors of
each other.

Correctness. In summary, if Φ admits a satisfying truth assignment, we can
describe a (piecewise linear) morph from Γ to Γ ′ by moving the decision ver-
tices in the variable gadgets according to the truth assignment, which allows to
transport these truth values via the split and crossing gadgets to the literal and
the clause gadgets. As all clause gadgets can reach the state true at the same

252 O. Firman et al.

time, we can morph the drawing of the 4-cycle in the synchronization gadget to
its shifted version and then move all other vertices back to their original position.

For the other direction, if a morph from Γ to Γ ′ exists, then we know by
our construction that at some point, all clause gadgets were in the state true
simultaneously (as this is necessary to morph the drawing of the 4-cycle in the
synchronization gadget to its shifted version), which means the variable gadgets
represent at the same time a satisfying truth assignment for Φ.

Number and Placement of Obstacles. While the grid-like arrangement of our
gadgets depends on Φ, the design of the variable/clause/literal/crossing/split
gadgets does not. Therefore, each of these gadgets uses only O(1) obstacles, the
overall number of obstacles then is O(nm), and the encoding of their coordinates
requires only polynomially many bits in total. Similarly, the synchronization
gadget also uses only O(1) obstacles, which, for the most part, can be placed on
the grid that is also used by the remaining gadget types. As an exception, two
obstacles (in the top-right and bottom-right corner of the obstacles area interior
to the 4-cycle) need to be placed on a refined grid to ensure that the area I lies to
the right of all clause gadgets. Since vertices v1 and v2 have constant (horizontal)
distance, we use an obstacle that lies O(1/m) units below the highest possible
position of v1 and on the same x-coordinate as v2 in Γ in order to bound the
slope of the v1v2-tunnel from below. We bound the slope of the v3v4-tunnel
symmetrically from above. As a result, the area I lies Ω(m) units to the right
of the vertical line segment v2v3. Since the width of the whole construction is
O(m), this suffices.

Thus, the encoding of the coordinates of the involved obstacles and the coor-
dinates of the drawing of the 4-cycle requires only polynomially many bits.

Connectivity. So far, the graph in our reduction has Ω(m) connected compo-
nents: a large connected component comprising all variable, split, crossing and
literal gadgets, a connected component for all clause gadgets, as well as another
connected component for the synchronization gadget. We can merge these com-
ponents by adding edges without influencing the behavior of our gadgets: We
add the edges v2y1, y1y2, . . . , ym−1ym together with a path from ym to the large
connected component of the other gadgets (e.g., in Fig. 6 from y3 to q). ��

4 Open Problems

1. In general, the considered decision problem is NP-hard (Theorem 1), but it
can be solved efficiently for forests (Proposition 1). Are there other meaningful
graph classes where this is the case? In particular, what about cycles or
triangulations? It is conceivable that the latter case is actually easier since
the placement of obstacles that are compatible with the two given drawings
is quite limited. Regarding cycles, we emphasize that the existence of a free
vertex is not a sufficient condition for the existence of a morph (cf. Fig. 4).

2. Does the problem lie in NP? Is it ∃R-hard?

Morphing Graph Drawings in the Presence of Point Obstacles 253

3. Does the problem become easier if there are only constantly many obstacles?
4. The drawings Γ and Γ ′ produced by our reduction are identical except for the

position of four vertices. It seems quite plausible that our construction can
be modified so that only three vertices change positions. Does the problem
become easier when only up to two vertices may change positions?

5. It is easy to observe that if our reduction is applied to a satisfiable formula Φ
with n variables and m clauses, there is a piecewise linear obstacle-avoiding
morph between the produced drawings Γ and Γ ′ with Θ(n+m) steps, which is
also necessary. Note that this number is not independent from the output size
of the reduction. This motivates the following family of questions. Let k be
a fixed arbitrary constant. Given two planar straight-line drawings Γ and Γ ′

of the same plane graph and a set of obstacles compatible with Γ and Γ ′,
decide whether there exists a piecewise linear obstacle-avoiding morph from
Γ to Γ ′ with at most k steps. For which values of k can this decision problem
be answered efficiently?

6. Given two drawings of the same plane graph, how many compatible obstacles
are necessary and sufficient to block them? Can this be computed efficiently?

References

1. Aichholzer, O.: Convexifying polygons without losing visibilities. In: Aloupis, G.
Bremner, (eds.) CCCG, pp. 229–234 (2011). http://www.cccg.ca/proceedings/
2011/papers/paper70.pdf

2. Alamdari, S., et al.: How to morph planar graph drawings. SIAM J. Comput. 46(2),
824–852 (2017). https://doi.org/10.1137/16M1069171

3. Angelini, P., Da Lozzo, G., Frati, F., Lubiw, A., Patrignani, M., Roselli, V.: Opti-
mal morphs of convex drawings. In: Arge, L., Pach, J., (eds.) SoCG. LIPIcs, vol. 34
pp. 126–140. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015). https://
doi.org/10.4230/LIPIcs.SOCG.2015.126

4. Arseneva, E., et al.: Pole dancing: 3D morphs for tree drawings. J. Graph Algo-
rithms Appl. 23(3), 579–602 (2019). https://doi.org/10.7155/jgaa.00503

5. Arseneva, E., Gangopadhyay, R., Istomina, A.: Morphing tree drawings in a small
3D grid. J. Graph Algorithms Appl. 27(4), 241–279 (2023). https://doi.org/10.
7155/jgaa.00623

6. Buchin, K., et al.: Morphing planar graph drawings through 3D. In: Gąsieniec, L.
(ed.) SOFSEM 2023. LNCS, vol. 13878, pp. 80–95. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-23101-8_6

7. Cairns, S.: Deformations of plane rectilinear complexes. Am. Math. Monthly 51(5),
247–252 (1944)

8. Colin de Verdiére, É., de Mesmay, A.: Testing graph isotopy on surfaces. Discrete
Comput. Geom. 51, 171–206 (2014). https://doi.org/10.1007/s00454-013-9555-4

9. Connelly, R., Demaine, E.D., Rote, G.: Straightening polygonal arcs and convexi-
fying polygonal cycles. Discrete Comput. Geom. 30, 205–239 (2003). https://doi.
org/10.1007/s00454-003-0006-7

10. Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli, V.: Upward planar
morphs. Algorithmica 82(10), 2985–3017 (2020). https://doi.org/10.1007/s00453-
020-00714-6

http://www.cccg.ca/proceedings/2011/papers/paper70.pdf
http://www.cccg.ca/proceedings/2011/papers/paper70.pdf
https://doi.org/10.1137/16M1069171
https://doi.org/10.4230/LIPIcs.SOCG.2015.126
https://doi.org/10.4230/LIPIcs.SOCG.2015.126
https://doi.org/10.7155/jgaa.00503
https://doi.org/10.7155/jgaa.00623
https://doi.org/10.7155/jgaa.00623
https://doi.org/10.1007/978-3-031-23101-8_6
https://doi.org/10.1007/978-3-031-23101-8_6
https://doi.org/10.1007/s00454-013-9555-4
https://doi.org/10.1007/s00454-003-0006-7
https://doi.org/10.1007/s00454-003-0006-7
https://doi.org/10.1007/s00453-020-00714-6
https://doi.org/10.1007/s00453-020-00714-6

254 O. Firman et al.

11. Firman, O., et al.: Morphing graph drawings in the presence of point obstacles.
ArXiv report (2023). http://arxiv.org/abs/2311.14516

12. Gomes, J., Darsa, L., Costa, B., Velho, L.: Warping & Morphing of Graphical
Objects. Morgan Kaufmann, Burlington (1999)

13. Kleist, L., Klemz, B., Lubiw, A., Schlipf, L., Staals, F., Strash, D.: Convexity-
increasing morphs of planar graphs. Comput. Geom. 84, 69–88 (2019). https://
doi.org/10.1016/j.comgeo.2019.07.007

14. Klemz, B.: Convex drawings of hierarchical graphs in linear time, with applications
to planar graph morphing. In: Mutzel, P., Pagh, R., Herman, G., (eds.) ESA,
LIPIcs, vol. 204, pp. 57:1–57:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik
(2021). https://doi.org/10.4230/LIPIcs.ESA.2021.57

15. Purchase, H.C., Hoggan, E., Görg, C.: How important is the “mental map”? – an
empirical investigation of a dynamic graph layout algorithm. In: Kaufmann, M.,
Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 184–195. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70904-6_19

16. Thomassen, C.: Deformations of plane graphs. J. Combin. Theory Ser. B 34(3),
244–257 (1983). https://doi.org/10.1016/0095-8956(83)90038-2

http://arxiv.org/abs/2311.14516
https://doi.org/10.1016/j.comgeo.2019.07.007
https://doi.org/10.1016/j.comgeo.2019.07.007
https://doi.org/10.4230/LIPIcs.ESA.2021.57
https://doi.org/10.1007/978-3-540-70904-6_19
https://doi.org/10.1016/0095-8956(83)90038-2

Word-Representable Graphs
from a Word’s Perspective

Pamela Fleischmann(B), Lukas Haschke, Tim Löck, and Dirk Nowotka

Kiel University, Kiel, Germany
{fpa,lha,dn}@informatik.uni-kiel.de, stu229765@mail.uni-kiel.de

Abstract. Word-representable graphs were introduced in 2008 by
Kitaev and Pyatkin in the context of semigroup theory. Graphs are called
word-representable if there exists a word with the graph’s nodes as letters
such that the letters in the word alternate iff there is an edge between
them in the graph. Until today numerous works investigated the word-
representability of graphs but mostly from the graph perspective. In
this work, we change the perspective to the words, i.e., we take classes
of words and investigate the represented graphs. Our first subject of
interest are the conjugates of words: we determine exactly which graphs
are represented if we rotate the word. Afterwards, we look at k-local
words introduced by Day et al. in 2017 in order to gain more insights
into this class of words. Here, we investigate especially which graphs are
represented by 1-local words. Lastly, we prove that the language of all
words representing a graph is regular. We were also able to characterise
k-representable graphs, solving an open problem.

1 Introduction

Word-representable graphs are graphs which can be encoded linearly by a word
where the nodes of the graphs are the word’s letters. For each two adjacent nodes
in the graph, the associated letters must alternate in the word, and for each
two nodes not connected by an edge, the associated letters must not alternate,
e.g., the triangle graph, i.e. the complete graph with three nodes, is represented
by the word alfalfa since all three letters alternate pairwise with each other
witnessed by the projections alala, afafa, and lflf. Here, the projection of
a word onto a set of letters is the word obtained by deleting all other letters,
and two letters alternate if none of them occurs at consecutive positions in the
appropriate projection of the word. The word banana also represents a graph
with three nodes (it has three different letters), but only a and n are connected
by an edge; b and a (and b, n resp.) are not adjacent since aa (and nn resp.)
occurs in the projection baaa (and bnn resp.).

The theory of word-representable graphs was introduced in 2008 by Kitaev
and Pyatkin [18] motivated as a tool for semigroup theory (cf. [19]). By
now, word-representable graphs have applications in periodic scheduling [11,16],
topology [22], and the power domination problem from physics [1]. From a theo-
retical point of view they are of interest since they generalise several important
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 255–268, 2024.
https://doi.org/10.1007/978-3-031-52113-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_18&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_18

256 P. Fleischmann et al.

classes of graphs such as circle graphs, 3-colourable graphs, and comparability
graphs. An introduction to word-representable graphs can be found in [14,16].
There are also several generalisations of word-representable graphs in the liter-
ature. Graphs representable by pattern-avoiding words have been heavily inves-
tigated in e.g. [12,15]. Other generalisations were presented in [2,13].

However, not all graphs are word-representable, witnessed by a pentagon with
an additional node connected to all of the pentagon’s nodes [18]. Thus, a line of
research started to determine the graphs which are word-representable. A funda-
mental result was shown by Halldórsson et al. in [10], where they proved that a
graph is word-representable iff it admits a semi-transitive orientation. For results
about operations preserving word-representability, see [3,16] and the references
therein. An asymptotic result about the number of word-representable graphs
can be found in [4]. There is a lot of research about the word-representability
of specific graph classes like grid graphs (cf. [9] and the references therein) and
split graphs (cf. [17] and the references therein). From an algorithmic point of
view it is important to note that deciding word-representability is NP-complete,
and classical graph problems like vertex colouring remain NP-hard. An excep-
tion to this is the maximum clique problem, which is solvable in polynomial time
(cf. [16]).

Still from the graphs perspective but with a focus on words, the minimal
length representation of a graph is of interest. While Gaetz and Ji investigated
this in the general case in [8], the research is often restricted to k-uniform words
(each letter occurs exactly k times). Graphs that can be represented by a k-
uniform word are called k-representable. For k = 1 and k = 2, k-representable
graphs are well studied and coincide with the classes of complete graphs and
circle graphs (cf. [16]). For higher values of k, no characterisation is known.

Our Contribution. First, we solve the open problem about a characterisation
of k-representability by introducing the notion of circle-representation and inves-
tigating the cuts of edges. Afterwards, we investigate word-representable graphs
from the perspective of combinatorics on words. Rotating a word gives the class
of conjugate words, which is well studied, e.g., since the lexicographically small-
est word in this class is the Lyndon word. We characterise, given a word, how the
represented graphs change on rotating the word and present an efficient algo-
rithm to compute them. Then, we show that palindromes present exactly a form
of star graphs. Based on this result, we look in detail at the set of k-local words
[5,7] and the graphs they represent. Here, we focus mainly on 1-local words since
they are tightly related to palindromes, and we prove that every graph repre-
sented by a 1-local word is a comparability graph, respectively. Lastly, we show
that all words representing the same graph form a regular language.

Structure of the Work. In Sect. 2 we introduce the basic definitions and
notations. In Sect. 3 we present the characterisation for k-representability. The
next two sections contain the results on the graphs represented by rotations of
a given word and by k-local words. The proof of the regularity of the language
of all words representing a graph can be found in Sect. 6.

Word-Representable Graphs from a Word’s Perspective 257

2 Preliminaries

Let N denote the set of natural numbers {1, 2, 3, . . . }, and let N0 := N∪{0}. We
define [i, j] := {n ∈ N | i ≤ n ≤ j} for i, j ∈ N, and set [n] := [1, n] for n ∈ N and
[n]0 := [0, n]. For a set M and k ∈ N0, let

(
M
k

)
be the set of all of M ’s subsets of

cardinality k. By ∪̇ we denote the disjoint union of sets. We first introduce the
notations from combinatorics on words and graph theory before we present the
basic definitions from the domain of word-representable graphs.

An alphabet is a finite set Σ = {a1, . . . , a�} of � ∈ N symbols, called letters.
Σ∗ denotes the set of all finite words over Σ, i.e., the free monoid over Σ. The
empty word is denoted by ε and Σ+ = Σ∗ \ {ε}. The length of a word w is
denoted by |w|. Define Σk := {w ∈ Σ∗ | |w| = k} for a k ∈ N. The number
of occurrences of a letter a ∈ Σ in a word w ∈ Σ∗ is denoted by |w|a, and w
is called k-uniform for some k ∈ N if |w|a = k for all a ∈ Σ. Define the set of
letters occurring in w ∈ Σ∗ by alph(w) = {a ∈ Σ | |w|a > 0}. The ith letter of
a word w is given by w[i] for i ∈ [|w|]. For a given word w ∈ Σn, the reversal
of w is defined by wR = w[n]w[n − 1] · · · w[2]w[1]. The powers of w ∈ Σ∗ are
defined recursively by w0 = ε, wn = wwn−1 for n ∈ N. A word u ∈ Σ∗ is a
factor of w ∈ Σ∗, if w = xuy holds for some words x, y ∈ Σ∗. Here, u is a suffix
of w if y = ε holds. The set of factors of w is denoted by Fact(w). The factor
w[i]w[i+1] · · · w[j] of w is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|. A letter square
in w is a factor u of length 2 with u[1] = u[2]. A word w is a palindrome if
w = wR. A function f : Σ∗ → Σ∗ is called a morphism, if f(xy) = f(x)f(y) for
all x, y ∈ Σ∗ (notice that for a morphic function it suffices to have the images
of all letters from Σ). We define the projective morphism πΓ : Σ∗ → Σ∗ onto
Γ ⊆ Σ by πΓ(a) = a if a ∈ Γ and πΓ(a) = ε otherwise for all a ∈ Σ. Two words
w1, w2 ∈ Σ∗ are called conjugate (w1 ∼ w2) if there exist x, y ∈ Σ∗ such that
w1 = xy and w2 = yx. For further definitions from combinatorics on words, we
refer to [20].

An undirected graph is a tuple G = (V,E) with a finite set V of nodes
and a set E ⊆ (

V
2

)
of edges. A graph G = (V,E) is directed, if E ⊆

{(v1, v2) ∈ V 2 | v1 �= v2}. The set
(
V
2

)\E is called the set of anti-edges of a given
undirected graph. The vertex set of a graph G is denoted by V (G) and the edge
set by E(G). An orientation of an undirected graph is a directed graph that
results from assigning a direction to each edge. An orientation of a graph is
transitive if for all edges (u, v) and (v, z) there is also an edge (u, z). A graph is a
comparability graph if it admits a transitive orientation. A star graph is a graph
(V ∪̇{x}, {{x, v} | v ∈ V }), i.e., there is a node x called the centre with edges to
all other vertices, and there are no other edges in the graph. A graph G = (V,E)
is an extended star graph, if there exists U ⊆ V such that (U,E) is a star graph,
i.e., in addition to the star graph, we can have isolated (not incident with any
edge) nodes. A complete graph is a graph without anti-edges. Given k ∈ N, a
k-colouring of a graph G = (V,E) is a function f : V → [k] with f(a) �= f(b) for
all {a, b} ∈ E. A graph is k -colourable if there is a k-colouring for it.

258 P. Fleischmann et al.

Definition 1. Two letters a, b ∈ Σ alternate in a word w ∈ Σ∗ if π{a,b}(w) is
(ab)n, (ab)na, (ba)n, or (ba)nb for some n ∈ N0.

In other words, a and b alternate if no letter occurs at consecutive positions
in the projection to a and b. Notice that a or b do not necessarily have to occur.
For example, consider the word rotator. All letters (but a itself) alternate with
a, but every other pair of letters does not, since we have, e.g., π{r,t}(rotator) =
rttr.

Definition 2. A graph G = (V,E) is represented by a word w ∈ Σ∗ if
alph(w) = V and for all a, b ∈ V , a and b alternate in w iff {a, b} ∈ E. A
graph is word-representable iff there is a word representing it. A graph is k-
representable for some k ∈ N iff there exists a k-uniform word representing it.
The graph represented by a word w is denoted by G(w).

Since a alternates with every other letter and no other pair of letters alter-
nates, the word rotator represents the graph depicted in Fig. 1.

Fig. 1. Graph represented by the word rotator

The computational model we use is the standard unit-cost RAM with loga-
rithmic word size.

3 k-Circle Representation

In this short section, we present a classical result on word-representable graphs.
So far, there are well-known characterisations of k-representable graphs for k ≤ 2
but none for k ≥ 3. It is known that 2-representable graphs are exactly the 2-
polygon-circle graphs, better known as circle graphs. However, this cannot be
generalised to k-representable graphs being k-polygon-circle-graphs, as shown in
[6]. In order to give a characterisation for k ≥ 3, we take a different but similar
approach to [6] and define the notion of a k-circle representation.

Definition 3. For k ∈ N, a k-circle representation of a graph G is a circle with
an inscribed k-gon (i.e. a k-gon with all the vertices being on the circle) for every
vertex of G such that the sides of any two k-gons intersect 2k times iff there is
an edge between the related vertices in the graph (cf. Fig. 2).

Lemma 4. The sides of two k-gons inscribed into a circle cannot have more
than 2k intersections.

Word-Representable Graphs from a Word’s Perspective 259

Fig. 2. A graph and a 3-circle-representation of it

By Lemma 4, we get a characterisation for k-representability for all k ≥ 3.

Theorem 5. For k ≥ 3, a graph is k-representable iff there is a k-circle repre-
sentation of it.

Proof. Let k ≥ 3. Let G = (V,E) be k-representable by the k-uniform word
w ∈ V ∗. We choose k · |V | distinct points on the circle. Starting at any of them,
we go around the circle clockwise and label each point with a letter in w such
that the order of the word’s letters is preserved. Let ai be the ith point labelled
with a for every a ∈ V and i ∈ [k]. Connecting every point ai with ai+1 and ak

with a1 for i ∈ [k − 1] yields an inscribed k-gon for every vertex. Let a, b ∈ V
and let A,B be the polygons related to a and b. First, consider {a, b} ∈ E, i.e., a
and b alternate in w. Let i ∈ [k] and j = (i+1)mod k. There is exactly one point
bl between ai and aj , i.e., it was labelled after ai and before aj . Thus, both of
B’s sides connected with bl intersect the side between ai and aj . Because there
are k pairs ai and aj , there are 2k intersections. Now, consider {a, b} /∈ E, i.e.,
a and b do not alternate in w. There exists i ∈ [k] with j = (i + 1)mod k such
that there is no bl between ai and aj . This means the line from ai to aj does
not intersect with any side of B. Because every of the k sides of A cannot have
more than 2 intersections with B, A and B have less than 2k intersections. This
concludes that we have a k-circle representation of G.

For the other direction assume G = (V,E) has a k-circle representation. Now,
we pick some point on the circle. We start with the empty word, go clockwise
around the circle, and for any corner we pass, we append the graph’s vertex
related to the corner’s polygon. Once we reach our starting point we have a
k-uniform word w with alph(w) = V . For the same reason as above we have 2k
intersections between the polygons A,B iff the related letters a and b alternate
in w. Therefore, w represents G.
�

By Theorem 5, we can construct a k-circle representation of G(w) given a k-
uniform word w by writing the letters on a circle and connecting all occurrences
of the same letters as an inscribed polygon. Also, given a k-circle-representation
we can determine a word representing the associated graph by reading the letters
on the circle, starting with any letter. For example, the graph from Fig. 2 is
represented by the word cabcacbab and all of its conjugates.

4 Graphs of Conjugate Words

Motivated by the k-circle representation in the last section, in this section we
mainly investigate the graphs represented by the conjugates of a given word.

260 P. Fleischmann et al.

These conjugacy classes are a very well studied part of combinatorics on words
since for instance the lexicographically smallest words in such a class are the
famous Lyndon words [21]. All words in a conjugacy class can be obtained by
writing the letters of the given word on a circle (cf. Sect. 3) and reading the
words from each possible starting point. Thus, now our goal is to investigate the
class of graphs represented by the conjugates of a given word w. Notice that for
some k ∈ N two k-uniform conjugates always represent the same graph, cf. [18].
However in the general case, two conjugates do not necessarily represent the
same graph, since by rotating the word, letter squares may appear or disappear.
Consider for instance w = abcba representing a graph with the edges {a, c},
{b, c}. The conjugate u = bcbaa has still the edge {b, c} but not the edge
{a, c}.

Before we further investigate conjugates, we start with a straightforward
result about a representative with all letter squares moved to the end.

Lemma 6. Let w ∈ Σ∗ with aa ∈ Fact(w) for a letter a ∈ Σ. Then, w and
πΣ\{a}(w)aa represent the same graph.

Lemma 6 guarantees that the following definition is well-defined, and the
proposition afterwards shows that we can compute this representative in linear
time in w’s length if the alphabet’s size is smaller than the word’s length.

Definition 7. Let w ∈ Σ∗ and S = {a ∈ Σ | aa ∈ Fact(w)}. Set w′ =
∏

s∈S s2

as the concatenation of all letters from S squared obeying some fixed order on
S. Define the separated representative of w by sep(w) = πΣ\S(w)w′.

Remark 8. By Lemma 6, sep(w) represents the same graph as w.

Proposition 9. Given w ∈ Σ∗, sep(w) can be computed in time O(|w| + |Σ|),
and we have | sep(w)| ≤ |w| − ∑

a∈Σ,a2∈Fact(w)(|w|a − 2).

The representative sep(w) makes the letter squares in a word explicit by
stating them grouped at the end of the word. As mentioned above, conjugates of
words may have letter squares while the word itself does not contain any. This
can only occur if there is a conjugate yx of xy such that x[1] = y[|y|] for some
x, y ∈ Σ∗. To capture this property, we define the notion of a circular square.

Definition 10. A pair (a, i) is a circular square in w ∈ Σ∗ with | alph(w)| > 1
if w[i] = w[1 + imod |w|] = a.

Consider again the word w = rotator having the circular square (r, 7).
Besides w itself the conjugacy class contains the words otatorr, tatorro,
atorrot, torrota, orrotat, rrotato all having only r as a square at differ-
ent positions.

Lemma 11. The number of circular squares in w ∈ Σ∗ is the same as in every
conjugate of w.

Word-Representable Graphs from a Word’s Perspective 261

Remark 12. Given w ∈ Σ∗, (w[|w|], |w|) is the only possibility for a circular
square which is not a letter square. Note that for each letter square there exists
exactly one conjugate of w such that the letter square becomes a circular square
which is not a letter square: lossless has two letter squares, and the conjugates
slesslos and slossles have circular squares which are not letter squares.

The following theorem characterises exactly for each given pair of letters
a, b ∈ alph(w) whether there are conjugates of w representing graphs with and
without the edge {a, b}.

Theorem 13. Let w ∈ Σ∗ and a, b ∈ alph(w) with a �= b. Set u = π{a,b}(w).
Let k be the number of circular squares in u.

1. There is a conjugate of w representing a graph with an edge {a, b} iff k ≤ 1.
2. There is a conjugate of w representing a graph without an edge {a, b} iff

k ≥ 1.

Proof. First, let w′ be a conjugate of w representing a graph with an edge {a, b}.
Choose x, y ∈ Σ∗ with w′ = xy and w = yx. Set u′ = π{a,b}(w′), which is a
conjugate of u. We know that a and b alternate in xy, which means there is no
letter square and at most one circular square in u′. Therefore, we have k ≤ 1.
For the other direction, assume k ≤ 1. If there is no letter square in u, a and
b alternate and there is an edge {a, b} in G(w). Otherwise, we can assume aa
is a factor of u w.l.o.g. There are x, y ∈ Σ∗ with w = xy such that (a, |u′|) is a
circular square in u′ = π{a,b}(yx). Since k ≤ 1, there is no letter square in u′,
and a and b alternate in yx. It follows that G(yx) has an edge {a, b}.

For the second claim, let w′ be a conjugate of w representing a graph without
the edge {a, b}. Define u′ = π{a,b}(w′), which is a conjugate of u. We know that a
and b do not alternate in w′, which means there is a letter square and a circular
square in u′. Therefore, we have k ≥ 1. For the other direction, assume k ≥ 1.
If there is a letter square in u, the word w is a conjugate of itself, and there is
no edge {a, b} in G. Otherwise, we have u[1] = u[|u|]. There are x, y ∈ Σ∗ with
xy = w such that aa is factor of u′ = π{a,b}(yx) w.l.o.g. Hence, yx is a conjugate
of w representing a graph without the edge {a, b}.
�

In order to further investigate the set of graphs represented by the conjugates
of a given word w ∈ Σ∗, we introduce the notion of optional edges. These edges
are exactly the edges in G that can be removed or added by the conjugates of
w.

Definition 14. Let w ∈ Σ∗ and a, b ∈ alph(w) with a �= b. We say that {a, b}
is an optional edge of w if there is exactly one circular square in π{a,b}(w).

In Fig. 3 the graph with optional edges for the word decide is depicted.
Notice that we are investigating conjugates of words and obtain their graphs.
Thus, we are talking about optional edges in words since representatives of the
same graph can have different optional edges, e.g., the words aab and aabb both
represent the same graph, but the edge {a, b} is only optional in aab.

262 P. Fleischmann et al.

Fig. 3. Graph with optional edges in the word decide as edges

Lemma 15. If (a, i) is the only circular square in a word w with alph(w) =
{a, b}, we have |w|a = |w|b + 1.

Proposition 16. Let w ∈ Σ∗ be a word representing the graph G =
(alph(w), E) and E′ be the set of optional edges of w. Then, (alph(w), E′) is
2-colourable.

Corollary 17. For a graph G, there is a word w ∈ Σ∗ representing G with
every edge and anti-edge of G being an optional edge of w iff G has at most two
nodes.

Before we present an algorithm that computes the graphs represented by
the conjugates of a word, we investigate in more detail which conjugate con-
tains a particular edge. For w ∈ Σ∗ and a, b ∈ Σ with a �= b, define
the set of w’s indices such that the rotation contains the edge {a, b} by
Iw({a, b}) = {i ∈ [|w|] | {a, b} ∈ E(G(w[i + 1..|w|]w[1..i]))}. For all u, v ∈ Σ∗

with a, b ∈ alph(uv) and a �= b, we have immediately {a, b} ∈ E(G(vu)) iff
|u| ∈ Iuv({a, b}). On the other hand, given w ∈ Σ∗ and G = (alph(w), E),
there is a conjugate of w representing G iff there is i ∈ [|w|] with {a, b} ∈ E iff
i ∈ Iw({a, b}). This leads to the following theorem.

Theorem 18. Let w ∈ Σ∗ represent G = (alph(w), E), a, b ∈ alph(w) with
a �= b, and u = π{a,b}(w). Let k be the number of circular squares in u.

1. If k = 0, Iw({a, b}) = [|w|] holds.
2. If k = 1, there exist n,m ∈ [|w|] with w[n] = w[m] and either

π{a,b}(w[n..m]) = w[n]w[m] or π{a,b}(w[n..|w|]w[1..m]) = w[n]w[m]. In the
former case Iw({a, b}) = [n,m−1] holds, else Iw({a, b}) = [n, |w|]∪[1,m−1].

3. If k > 1, Iw({a, b}) = ∅ holds.

Since the complete graph with two nodes has every edge and anti-edge as
an optional edge, we investigate complete graphs in more detail from a word’s
perspective.

Lemma 19. Every word w representing a complete graph with n nodes is of the
form (w[1] . . . w[n])kw[1] . . . w[|w|mod n] for some k ∈ N.

By Lemma 19, we can present a full characterisation of the graphs that are
represented by the conjugates of a word representing a complete graph.

Theorem 20. Let w = uv with w, u, v ∈ Σ∗ and |u| > 0 represent the complete
graph (V,E) with n nodes. For m = |w|mod n, vu represents (V,E \ E′) with

Word-Representable Graphs from a Word’s Perspective 263

1. E′ = {{w[i], w[j]} | i ∈ [|u|], j ∈ [m + 1, n]} if |u| < m,
2. E′ = {{w[i], w[j]} | i ∈ [m], j ∈ [m + 1, n]} if m ≤ |u| ≤ |w| − m,
3. E′ = {{w[i], w[j]} | i ∈ [|u| − |w| + m + 1,m], j ∈ [m + 1, n]} if |w| − m < |u|.

Due to Theorem 18, we can construct an efficient algorithm to compute Iw.
It uses a matrix C to save indices of possible circular squares and an array first
to save each letter’s first occurrence. This is needed to detect circular squares in
the projection that are not letter squares.

Proposition 21. Let w ∈ Σ∗. Iw can be computed in O(| alph(w)||w|) time.

We conclude this section by presenting an algorithm for efficient computation
of the graphs represented by a word’s conjugates.

Proposition 22. Let w = aw′ with a ∈ Σ and w′ ∈ Σ∗ represent the graph
G = (alph(w), E). G(w′a) is computable in O(| alph(w)|) time given G and Iw.

It suffices to calculate Iw from Proposition 22 once for all conjugates. How-
ever, after the computation of a conjugate’s graph, Iw needs to be updated by
reducing every entry by 1. This can be avoided by using an offset, which is
applied to every entry. Since the computation of Iw takes O(| alph(w)||w|) time
according to Proposition 21, we obtain the following theorem, which applies
Proposition 22 |w| − 1 times for a given w ∈ Σ∗ using an offset to update Iw.

Theorem 23. Given w ∈ Σ∗ and G(w), all graphs represented by w’s conju-
gates can be computed in time O(| alph(w)||w|).

5 Graphs Represented by k-Local Words

In this section, we investigate the graphs represented by k-local words. The
notion of k-locality was introduced in [5] in the context of pattern matching
and further investigated on words in [7]. Here, we connect 1-local words with
comparability graphs. Before we introduce the notion of k-locality and show
that each graph represented by a k-local word is 2k-representable, we have a
look at graphs represented by palindromes. Palindromes play an important role
in 1-locality [5]. As a first result, we show that two letters in a palindrome can
only alternate if one of them is in the palindrome’s centre, which is at 1

2 |w|�,
implying that every non-empty palindrome represents an extended star graph.

Lemma 24. Let w ∈ Σ+ be a palindrome and k = 1
2 |w|�. If a, b ∈ Σ alternate

in w, then w[k] ∈ {a, b}.
Proposition 25. Let w ∈ Σ+ be a palindrome, U ⊆ Σ be the set of letters
alternating with w[k] for k = 1

2 |w|�, and let G = (alph(w), E) be the graph
represented by w. Then, (U ∪̇{w[k]}, E) is a star graph with centre w[k].

The next proposition characterises the palindromes representing star graphs.

264 P. Fleischmann et al.

Proposition 26. Let G be a star graph with centre c and vertex set U ∪̇{c} for
|U | > 1. The palindromes representing G are exactly the words

swn−1c...w1cw0c(w0)R(w1c)R...(wn−1c)RsR

with n ∈ N, w0, ..., wn ∈ U∗ 1-uniform, and s ∈ (U ∪̇{c})∗ being a suffix of wnc.

Applying Proposition 25, we can characterise when two palindromes represent
the same graph. As expected, the centres of the palindromes play the key role.

Proposition 27. Let w1, w2 ∈ Σ+ be palindromes with alph(w1) = alph(w2).
Let U1, U2 be the sets of letters alternating with w1[k1] and w2[k2] for k1 =
 1

2 |w1|� and k2 = 1
2 |w2|�. The words w1 and w2 represent the same graph iff

1. U1 = U2 and w1[k1] = w2[k2] or
2. U1 = {w2[k2]} and U2 = {w1[k1]} or
3. U1 = U2 = ∅.
Theorem 28. Non-empty palindromes represent exactly extended star graphs.

Now, we are investigating the graphs represented by k-local words. Before we
introduce these words formally, we give an example to give an understanding.
Consider w = banana and the enumeration s = (b, a, n). Now, we mark letters: in
a first step, we mark all occurrences of b and obtain banana. We call a consecutive
factor of marked letters a block, and thus, we have one marked block. Now, we
mark all occurrences of a, resulting in banana having three marked blocks. In a
last step, we mark the occurrences of n and get with banana one marked block.
Since the highest number of marked blocks we saw is 3, we say that w is 3-local.
Notice that banana is also 2-local, witnessed by (n, a, b). Now, we introduce these
notions formally.

Definition 29. Let Σ = {x | x ∈ Σ} be the set of marked letters. For a word
w ∈ Σ∗, a marking sequence of the letters occurring in w, is an enumeration
s = (x1, x2, ..., x| alph(w)|) of alph(w). A letter xi is called marked at stage k ∈ N

if i ≤ k. Moreover, we define wk, the marked version of w at stage k, as the
word obtained from w by replacing all xi with i ≤ k by xi. A factor of wk is a
marked block if it only contains elements from Σ and the letters to the left and
right (if existing) are from Σ. A word w ∈ Σ∗ is k-local for k ∈ N0 if there exists
a marking sequence (x1, ..., x| alph(w)|) of alph(w) such that for all i ≤ | alph(w)|,
we have that wi has at most k marked blocks. A word is called strictly k-local if
it is k-local but not (k − 1)-local.

Before we present the results on the graphs represented by k-local words, we
need a property of k-local words.

Lemma 30. Let w ∈ Σ∗ be k-local with |w|a > 2k for some a ∈ Σ and k ∈ N.
Then, aa ∈ Fact(w).

Our first results about k-local words connect k-locality and k-representability.

Word-Representable Graphs from a Word’s Perspective 265

Proposition 31. For a given k ∈ N, a graph represented by a k-local word is
2k-representable.

Corollary 32. There is no k such that every word-representable graph can be
represented by a k-local word.

Proposition 33. Let w ∈ Σ∗ with | alph(w)| > 1 be a strictly k-local word
representing a graph G. There is a strictly (k + 1)-local word representing G.

Now, we have a more detailed look into the graphs represented by 1-local
words. These words have a specific palindromic-like structure shown in [5]. While
in [5] they concluded that it suffices to look at the condensed form of a word,
we here need to keep letter squares in the middle of the word since it indicates
that we do not have an edge in the corresponding graph. Therefore, we define
the notion of the 1-local normal form of a word.

Definition 34. A 1-local word w ∈ Σ∗ is in normal form (1l-NF) if we have
either w = ε or if there exist a ∈ Σ, n,m ∈ {0, 1}, and w′ ∈ (Σ\{a})∗ in 1l-NF
such that w = anw′am.

Remark 35. Let w ∈ Σ+ be in 1l-NF with a marking sequence s starting with
x ∈ Σ witnessing the locality, i.e., w = w1xw2 or w = w1xxw2 for some w1, w2 ∈
(Σ\{x})∗. From [7], we obtain inductively for all y ∈ Σ\ alph(w), that w1xyyw2

or w1xyyxw2 are also in 1l-NF. Also based on [7], we can assume w1 and w2 to
be condensed, thus 1-uniform on their respective alphabets.

The following results connect 1-local words and word-representability by
words in 1l-NF, leading to the main theorem of this section.

Proposition 36. Every graph representable by a 1-local word can be represented
by a word in 1l-NF.

Lemma 37. Let w = w1aw2aw3 ∈ Σ+ with a ∈ Σ, w1, w2, w3 ∈ (Σ\{a})∗.
If w1w3 represents G = (V,E) and w1 and w3 are 1-uniform, then w1aaw3

represents (V ∪ {a}, E) and w1a and aw3 are 1-uniform.

Lemma 38. Let w ∈ Σ∗ be 1-local with w = w1aw2w3 or w = w1w2aw3 for a
letter a ∈ Σ and w1, w2, w3 ∈ (Σ\{a})∗. If w1w3 represents G = (V,E) and w1

and w3 are 1-uniform, then w1aw3 represents (V ∪ {a}, E ∪ {{a, v} | v ∈ V })
and w1a and aw3 are 1-uniform.

We finish this section with a characterisation of the graphs represented by
1-local words. Therefore, we define the notion of 1-local-representable graphs.

Definition 39. We inductively define 1-local-representable graphs as follows: the
empty graph is 1-local-representable, and if (V,E) is 1-local-representable, then
(V ∪ {x}, E) and (V ∪ {x}, E ∪ {{x, v} | v ∈ V }) are both 1-local-representable.

Theorem 40. 1-local words represent exactly the 1-local-representable graphs.

Proof. Let w1 ∈ Σ∗ be a 1-local word representing the graph G. By Proposition
36, there is a word w2 ∈ (alph(w1))∗ in 1l-NF representing G. Thus, there exist

266 P. Fleischmann et al.

a letter a ∈ alph(w1) and a word w3 ∈ (alph(w1)\{a})∗ in 1l-NF such that
w2 ∈ {ε, aw3a, aw3, w3a}. Note that ε represents the empty graph, which is by
definition 1-local-representable. Now, we can inductively apply Lemmas 37 and
38 and get that w2 represents a 1-local-representable graph.

For the other direction, let G be a 1-local-representable graph. If G is
empty, it is represented by the 1-local empty word. Otherwise, there are a 1-
local-representable graph (V,E) and a such that either G = (V ∪̇{a}, E) or
G = (V ∪̇{a}, E∪̇{{a, v} | v ∈ V }). We can assume by induction that there
is a 1-local word w ∈ V ∗ in 1l-NF that represents (V,E) and has a mini-
mal marking sequence s starting with the letter x. There are 1-uniform words
w1, w2 ∈ (V \ {x})∗ such that w = w1xw2 or w = w1xxw2. Consider first
G = (V ∪̇{a}, E). If w = w1xw2, then w1xaaw2 represents G, since a does not
alternate with any letter in this word. If w = w1xxw2, w1xaaxw2 represents G
for the same reason. For both words a ◦ s is a marking sequence witnessing the
1-locality. Secondly, consider G = (V ∪̇{a}, E∪̇{{a, v} | v ∈ V }). If w = w1xw2,
then w1xaw2 represents G, since w1, w2 are 1-uniform and a alternates with
every letter in the word. Analogously, if w = w1xxw2, then w1xaxw2 represents
G. Again, a ◦ s is a witness for the 1-locality.
�
Corollary 41. Every 1-local-representable graph is a comparability graph.

Proof. If G = (V,E) is 1-local-representable, then (V ∪{x}, E∪{{x, v} | v ∈ V })
is also 1-local-representable and thus word-representable. The claim follows from
[18].
�

6 The Language of a Graph

In this section, we show that the language of all words representing a given
graph G is regular by constructing a deterministic finite automaton accepting
this language. We firstly introduce the needed notions of finite automata.

A deterministic finite automaton is a 5-tuple A = (Q,Σ, δ, q0, F) with a finite
set of states Q, an alphabet Σ, a transition function δ : Q × Σ → Q, an initial
state q0 ∈ Q, and a set of accepting states F ⊆ Q. A word w ∈ Σ∗ is accepted
by A if there is a sequence of states q0, q1, q2, ..., q|w| such that δ(qi−1, w[i]) = qi

for all i ∈ [|w|] and q|w| ∈ F . The language of words accepted by A is denoted by
L(A). A language is regular if there is a deterministic finite automaton accepting
it. We define δ∗ : Q × Σ∗ → Q by δ∗(q, ε) = q and δ∗(q, aw′) = δ∗(δ(q, a), w′)
for a ∈ Σ and w′ ∈ Σ∗.

In a first step, we construct a deterministic finite automaton A{a,b} accepting
exactly the language of all words over Σ where a, b ∈ Σ alternate. In addition,
we need a deterministic finite automaton Aa which accepts exactly the words
containing an a ∈ Σ.

Definition 42. For a, b ∈ Σ, define A{a,b} = (Q,Σ, δ, q0, Q\{q3}) with Q =
{q0, q1, q2, q3} as given by Fig. 4 on the left hand side with additional transi-
tions δ(q, c) = q for all q ∈ Q and c ∈ Σ\{a, b}. Moreover, define Aa =
(Q′, Σ, δ′, q′

0, {q′
1}) with Q′ = {q′

0, q
′
1} as given by Fig. 4 on the right hand side

with additional transitions δ′(q′, c) = q′ for all q′ ∈ Q′ and c ∈ Σ\{a}.

Word-Representable Graphs from a Word’s Perspective 267

Fig. 4. Left hand side: A{a,b} and δ(q, c) = q for all q ∈ Q, c ∈ Σ\{a, b}. Right hand
side: Aa and δ(q, c) = q for all q ∈ Q′, c ∈ Σ\{a}.

Lemma 43. Let w ∈ Σ∗. Then, w ∈ L(A{a,b}) iff a and b alternate in w, and
w ∈ L(Aa) iff a ∈ alph(w).

In the following theorem we combine these kinds of automata to construct
an automaton accepting all words representing a given graph. Here, it is crucial
that regular languages are closed under intersection and complement.

Theorem 44. The language of words representing a given graph is regular.

7 Conclusion

Our first result gives a geometrical characterisation of k-representability for
k ≥ 3. For this we introduced the notion of a k-circle representation of a graph.
This notion led to the investigation of the graphs represented by the conjugates
of a word. Here, we were able to fully characterise the graphs by defining circu-
lar squares. We also gave an efficient algorithm which calculates all associated
graphs. In a next step, we investigated the graphs represented by palindromes.
Based on these results, we had a look into k-local words. For us, interestingly,
representability by k-local words and k-representability are closely related. Also,
we were able to characterise the graphs represented by 1-local words, which are
tightly related to palindromes. This raises the hope that k-local words for an
arbitrary k ∈ N can also be characterised by a special form of graphs in order to
understand k-local words better. Moreover, since it is proven to be NPC whether
a word is k-local, fragments of these words may turn out to be determinable in
P by using insights about graphs. We finished our work by showing that the lan-
guage of words representing the same graph is regular. This might allow counting
the number of words representing a given graph using automata theory. In future
research several of our results could be transferred to generalisations of word-
representable graphs.

References

1. Chandrasekaran, S., Sulthana, A.: k-Power domination of crown graph. IJAER
14(13), 3066–3068 (2019)

2. Cheon, G.-S., Kim, J., Kim, M., Kitaev, S., Pyatkin, A.: On k-11-representable
graphs. J. Comb. 10(3) (2019)

268 P. Fleischmann et al.

3. Choi, I., Kim, J., Kim, M.: On operations preserving semi-transitive orientability
of graphs. J. Comb. Optim. 37(4), 1351–1366 (2018)

4. Collins, A., Kitaev, S., Lozin, V.V.: New results on word-representable graphs.
Discret. Appl. Math. 216, 136–141 (2017)

5. Day, J.D., Fleischmann, P., Manea, F., Nowotka, D.: Local patterns. In: FSTTCS.
LIPIcs, vol. 93, pp. 24:1–24:14 (2017)

6. Enright, J.A., Kitaev, S.: Polygon-circle and word-representable graphs. Electron.
Notes Discret. Math. 71, 3–8 (2019)

7. Fleischmann, P., Haschke, L., Manea, F., Nowotka, D., Tsida, C.T., Wiedenbeck,
J.: Blocksequences of k -local words. In: Bureš, T., et al. (eds.) SOFSEM 2021.
LNCS, vol. 12607, pp. 119–134. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-67731-2_9

8. Gaetz, M., Ji, C.: Enumeration and extensions of word-representants. Discret.
Appl. Math. 284, 423–433 (2020)

9. Glen, M.E.: Colourability and word-representability of near-triangulations.
abs/1605.01688 (2018)

10. Halldórsson, M.M., Kitaev, S., Pyatkin, A.: On representable graphs, semi-
transitive orientations, and the representation numbers. CoRR, abs/0810.0310
(2008)

11. Halldórsson, M.M., Kitaev, S., Pyatkin, A.: Graphs capturing alternations in
words. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp.
436–437. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14455-
4_41

12. Jones, M.E., Kitaev, S., Pyatkin, A.V., Remmel, J.B.: Representing graphs via
pattern avoiding words. Electron. J. Comb. 22(2), 2 (2015)

13. Kenkireth, B.G., Malhotra, A.S.: On word-representable and multi-word-
representable graphs. In: Drewes, F., Volkov, M. (eds.) DLT 2023. LNCS, vol.
13911, pp. 156–167. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
33264-7_13

14. Kitaev, S.: A comprehensive introduction to the theory of word-representable
graphs. In: Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017. LNCS, vol. 10396,
pp. 36–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62809-7_2

15. Kitaev, S.: Existence of u-representation of graphs. J. Graph Theory 85(3), 661–
668 (2017)

16. Kitaev, S., Lozin, V.V.: Words and Graphs. Monographs in Theoretical Computer
Science. An EATCS Series (2015)

17. Kitaev, S., Pyatkin, A.: On semi-transitive orientability of split graphs. CoRR,
abs/2110.08834 (2021)

18. Kitaev, S., Pyatkin, A.V.: On representable graphs. J. Autom. Lang. Comb. 13(1),
45–54 (2008)

19. Kitaev, S., Seif, S.: Word problem of the Perkins semigroup via directed acyclic
graphs. Order 25(3), 177–194 (2008)

20. Lothaire, M.: Combinatorics on Words. Cambridge Mathematical Library (1997)
21. Lyndon, R.C.: On Burnside’s problem. Trans. Am. Math. Soc. 77(2), 202–215

(1954)
22. Oliveros, D., Torres, A.: From word-representable graphs to altered Tverberg-type

theorems. CoRR, abs/2111.10038 (2021)

https://doi.org/10.1007/978-3-030-67731-2_9
https://doi.org/10.1007/978-3-030-67731-2_9
https://doi.org/10.1007/978-3-642-14455-4_41
https://doi.org/10.1007/978-3-642-14455-4_41
https://doi.org/10.1007/978-3-031-33264-7_13
https://doi.org/10.1007/978-3-031-33264-7_13
https://doi.org/10.1007/978-3-319-62809-7_2

The Complexity of Online Graph Games

Janosch Fuchs , Christoph Grüne(B) , and Tom Janßen

Department of Computer Science, RWTH Aachen University, Aachen, Germany
{fuchs,gruene,janssen}@algo.rwth-aachen.de

Abstract. Online computation is a concept to model uncertainty where
not all information on a problem instance is known in advance. An online
algorithm receives requests which reveal the instance piecewise and has
to respond with irrevocable decisions. Often, an adversary is assumed
that constructs the instance knowing the deterministic behavior of the
algorithm. Thus, the adversary is able to tailor the input to any online
algorithm. From a game theoretical point of view, the adversary and the
online algorithm are players in an asymmetric two-player game.

To overcome this asymmetry, the online algorithm is equipped with
an isomorphic copy of the graph, which is referred to as unlabeled map.
By applying the game theoretical perspective on online graph problems,
where the solution is a subset of the vertices, we analyze the complexity
of these online vertex subset games. For this, we introduce a frame-
work for reducing online vertex subset games from TQBF. This frame-
work is based on gadget reductions from 3-Satisfiability to the corre-
sponding offline problem. We further identify a set of rules for extending
the 3-Satisfiability-reduction and provide schemes for additional gad-
gets which assure that these rules are fulfilled. By extending the gadget
reduction of the vertex subset problem with these additional gadgets, we
obtain a reduction for the corresponding online vertex subset game.

At last, we provide example reductions for online vertex subset games
based on Vertex Cover, Independent Set, and Dominating Set,
proving that they are PSPACE-complete. Thus, this paper establishes
that the online version with a map of NP-complete vertex subset prob-
lems form a large class of PSPACE-complete problems.

Keywords: Online Algorithms · Computational Complexity · Online
Algorithms Complexity · Two-Player Games · NP-complete Graph
Problems · PSPACE-completeness · Gadget Reduction

1 Introduction

Online computation is an intuitive concept to model real time computation
where the full instance is not known beforehand. In this setting, the instance

This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – GRK 2236/1, WO 1451/2-1. The full version of this paper can be found
on arXiv [6].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 269–282, 2024.
https://doi.org/10.1007/978-3-031-52113-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_19&domain=pdf
http://orcid.org/0000-0003-3993-222X
http://orcid.org/0000-0002-7789-8870
http://orcid.org/0000-0003-4617-3540
https://doi.org/10.1007/978-3-031-52113-3_19

270 J. Fuchs et al.

is revealed piecewise to the online algorithm and each time a piece of informa-
tion is revealed, an irrevocable decision by the online algorithm is required. To
analyze the worst-case performance of an algorithm solving an online problem,
a malicious adversary is assumed.

The adversary constructs the instance while the online algorithm has to react
and compute a solution. This setting is highly asymmetric in favor of the adver-
sary. Thus, for most decision problems, the adversary is able to abuse the imbal-
ance of power to prevent the online algorithm from finding a solution that is close
to the optimal one. To overcome the imbalance, there are different extensions of
the online setting in which the online algorithm is equipped with some form of
a priori knowledge about the instance. In this work, we analyze the influence of
knowing an isomorphic copy of the input instance, which is also called an unla-
beled map. With the unlabeled map, the algorithm is able to recognize unique
structures while the online instance is revealed – like a vertex with unique degree
– but it cannot distinguish isomorphic vertices or subgraphs.

The relation between the online algorithm and the adversary corresponds
to players in an asymmetric two-player game, in which the algorithm wants
to maximize its performance and the adversary’s goal is to minimize it. The
unlabeled map can be considered as the game board. One turn of the game
consists of a move by the adversary followed by a move of the online algorithm.
Thereby, the adversary reveals a vertex together with its neighbors and the
online algorithm has to irrevocably decide whether to include this vertex in the
solution or not. The problem is to evaluate whether the online algorithm has a
winning strategy, that is, it is able to compute a solution of size smaller/greater
or equal to the desired solution size k, for all possible adversary strategies.

Papadimitriou and Yannakakis make use of the connection between games
and online algorithms for analyzing the canadian traveler problem in [13], which
is an online problem where the task is to compute a shortest s-t-path in an a
priori known graph in which certain edges can be removed by the adversary. They
showed that the computational problem of devising a strategy that achieves a
certain competitive ratio is PSPACE-complete by giving a reduction from True

Quantified Boolean Formula, short TQBF.
Independently, Halldórsson [8] introduced the problems online coloring and

online independent set on a priori known graphs, which is equivalent to having an
unlabeled map. He studies how the competitive ratios improve compared to the
model when the graph is a priori not known. Based on these results, Halldórsson
et al. [9] continued the work on the online independent set problem without a
priori knowing the graph. These results are then applied by Boyar et al. [3] to
derive a lower bound for the advice complexity of the online independent set
problem. Furthermore, they introduce the class of asymmetric online covering
problems (AOC) containing Online Vertex Cover, Online Independent

Set, Online Dominating Set and others. Boyar et al. [4] analyze the complex-
ity of these problems as graph property, namely the online vertex cover number,
online independence number and online domination number, by showing their
NP-hardness.

The Complexity of Online Graph Games 271

Moreover based on the work by Halldórsson [8], Kudahl [12] shows PSPACE-
completeness of the decision problem Online Chromatic Number with Pre-

coloring on an a priori known graph, which asks whether some online algorithm
is able to color G with at most k colors for every possible order in which G is pre-
sented while having a precolored part in G. This approach is then improved by
Böhm and Veselý [2] by showing that Online Chromatic Number is PSPACE-
complete by giving a reduction from TQBF.

Our contribution is to analyze the computational complexity of a subclass
of AOC problems that consider graph problems where the solution is a subset
of the vertices. Similar to the problem Online Chromatic Number, we equip
the online algorithm with an unlabeled map in order to apply and formalize the
ideas of Böhm and Veselý. We call these problems online vertex subset games
due to their relation to two-player games. While symmetrical combinatorial two-
player games are typically PSPACE-complete [5], this principle does not apply
to our asymmetrical setting. We are still able to prove PSPACE-completeness
for the online vertex subset games based on Vertex Cover, Independent

Set and Dominating Set by designing reductions such that the adversary’s
optimal strategy corresponds to the optimal strategy of the ∀-player in TQBF.

In order to derive reductions from TQBF to online vertex subset games, we
identify properties describing the revelation or concealment of information to cor-
rectly simulate the ∀- and ∃-decisions as well as the evaluation of the quantified
Boolean formula in the online vertex subset game. This simulation is modeled by
disjoint and modular gadgets, which form a so-called gadget reduction – similar
to already known reductions between NP-complete problems. Different forms
of gadget reductions are described by Agrawal et al. [1] who formalize AC0-
gadget-reductions in the context of NP-completeness and by Trevisan et al. [15]
who describe gadgets in reductions of problems that are formalized as linear
programs. By formalizing gadgets capturing the above mentioned properties, we
provide a framework to derive reductions for other online vertex subset games,
which are based on problems that are gadget-reducible from 3-Satisfiability.

Paper Outline. First, we explain the online setting that we use throughout the
paper and important terms, e.g., the online game, the problem class and the
reveal model of our online problems. Secondly, we define the gadget reduction
framework to reduce 3-Satisfiability to vertex subset problems. In the third
section, we extend the framework to the online setting by identifying a set of
important properties that must be fulfilled in the reduction. We also provide a
scheme for gadgets that enforce these properties to generalize the framework to
arbitrary vertex subset problems. In the fourth section, we detail the applica-
tion of this framework to the problem Vertex Cover. Lastly, we apply the
framework to the problems Independent Set and Dominating Set in the
fifth section. At the end, we summarize the results and give a prospect on future
possible work.

Neighborhood Reveal Model. Each request of the online problem reveals infor-
mation about the instance for the online algorithm. The amount of information

272 J. Fuchs et al.

in each step is based on the reveal model. For an online problem with a map,
the subgraph that arrives in one request is called revelation subgraph.

The neighborhood reveal model, which we use in this paper, was introduced
by Harutyunyan et al. [10]. Within that model, the online algorithm gains infor-
mation about the complete neighborhood of the revealed vertex. Nevertheless,
the online algorithm has to make a decision on the current revealed vertex only
but not on the exposed neighborhood vertices. All exposed but not yet revealed
neighborhood vertices have to be revealed in the process of the online problem
such that a decision can be made upon them. We denote the closed neighborhood
of v with N [v], that is, the set of v and all vertices adjacent to v.

Definition 1 (Neighborhood Reveal Model). The neighborhood reveal mo-
del is defined by an ordering of graphs (Vi, Ai, Ei)i≤|V |. The reveal order of the
adversary is defined by adv ∈ S|V |, where S|V | is the symmetric group of size
|V |. The graph Gi is defined by

V0 = E0 = ∅,

Vi = Vi−1 ∪ N [vadv(i)], for 0 < i ≤ |V |
Ei = Ei−1 ∪ {(vadv(i), w) ∈ E | w ∈ Vi}, for 0 < i ≤ |V |.

The revelation subgraph G′ in the neighborhood reveal model is the subgraph of
Gi defined by G′ = (V ′, E′) with V ′ = N [vadv(i)] and E′ = {{vadv(i), w} ∈ E}.
The online algorithm has to decide whether vadv(i) is in the solution or not.

Online Vertex Subset Games. Throughout the paper, we consider a special
class of combinatorial graph problems. The question is to find a vertex subset,
whereby the size should be either smaller or equals, for minimization problems,
or greater or equals, for maximization problems, some k, which is part of the
input. Thereby, the vertex set needs to fulfill some constraints based on the
specific problem. We call these problems vertex subset problems. Well-known
problems like Vertex Cover, Independent Set and Dominating Set are
among them.

We denote the online version with a map of a vertex subset problem PV S

with PV S
o and define them as follows.

Definition 2 (Online Vertex Subset Game). An online vertex subset game
PV S

o has a graph G and a k ∈ N as input. The question is, whether the online
algorithm is able to find a vertex set of size smaller (resp. greater) or equals k,
which fulfills the constraints of PV S for all strategies of the adversary. Thereby,
the online algorithm has access to an isomorphic copy of G and the adversary
reveals the vertices according to the neighborhood reveal model.

2 Gadget Reductions

Gadget reductions are a concept to reduce combinatorial problems in a modu-
lar and structured way. For the context of the paper, we define gadget reduc-
tions from 3-Satisfiability to vertex subset problems. The 3-Satisfiability

The Complexity of Online Graph Games 273

instances ϕ = (L,C) are defined by their literals L and their clauses C. We
use a literal vertex v� for all � ∈ L to represent a literal in the graph. There
are implicit relations over the literals besides the explicit relation C, in that the
reduction may be decomposed. For example, the relation between a literal and
its negation, which is usually implicitly used to build up a variable gadget. These
variable gadgets are connected by graph substructures that assemble the clauses
as clause gadgets.

Definition 3 (Gadget Reduction from 3-Satisfiability to Vertex Sub-
set Problems). A gadget reduction Rgadget(PV S) from a 3-Satisfiability

formula ϕ = (L,C) to a vertex subset problem with graph Gϕ = (V,E) is a tuple
containing functions from the literal set and all relations of the 3-Satisfiability

formula to the vertex set and all relations of the vertex subset problem. In the
following, we denote the gadget based on element x to be Gx := (Vx, Ex) with Vx

being a set of vertices and Ex a set of edges, whereby the edges are potentially
incident to vertices of a different gadget.

The literal set of a 3-Satisfiability formula �1, �2, . . . , �|L|−1, �|L| is mapped
to the vertex set of the graph problem. Thereby, each literal is mapped to exactly
one vertex:

RL→V
gadget(P

V S) : L → V, � 	→ G�

The following relations on the literals are mapped as well.
(1) Literal - Negated Literal: RL,L

gadget(P
V S) : R(L,L) → (V,E), (�, �) 	→ G�,�

(2) Clause: RC
gadget(P

V S) : R(C) → (V,E), Cj 	→ GCj

(3) Literal - Clause: RL,C
gadget(P

V S) : R(L,C) → (V,E), (�, Cj) 	→ G�,Cj

(4) Negated Literal - Clause: RL,C
gadget(P

V S) : R(L,C) → (V,E), (�, Cj) 	→ G�,Cj

Additionally, the following mapping allows for constant parts that do not change
depending on the instance: Rconst

gadget(P
V S) : ∅ → (V,E), ∅ 	→ Gconst. Thereby, the

vertices and edges of all gadgets are pairwise disjoint.

We use the more coarse grained view of variable gadgets as well. These com-
bine the mappings RL→V

gadget and RL,L
gadget to RX

gadget, and RL,C
gadget and RL,C

gadget to
RX,C

gadget, where X is the set of n variables.
The important function of the variable gadget is to ensure that only one of the

literals of �, � ∈ L is chosen. On the other hand, the function of the clause gadget
is to ensure together with the constraints of the vertex subset problem PV S that
the solution encoded on the literals fulfill the 3-Satisfiability-formula if and
only if the literals induce a correct solution. These functionalities are utilized
in the correctness proof of the reduction by identifying the logical dependencies
between the literal vertices v� for � ∈ L and all other vertices based on the
graph and the constraints of PV S together with combinatorial arguments on the
solution size. We denote these logical dependencies as solution dependencies as
they are logical dependencies on the solutions of PV S . Due to the asymmetric
nature of the online problems, the adversary can reveal a solution dependent
vertex before revealing the corresponding literal vertex. Thus, a decision on
the solution dependent vertex is implicitly also a decision on the literal vertex,

274 J. Fuchs et al.

although it has not been revealed. We address this specific problem later in the
description of the framework.

Definition 4 (Solution dependent vertices). Given a gadget reduction, the
following vertices of the reduction graph are solution dependent:

1. All literal vertices are solution dependent on their respective variable.
2. For a literal � (resp. its negation �), we denote the set of vertices that need

to be part of the solution if v� (resp. v�) is part of the solution with V� (resp.
V�). Then the vertices, that are in one but not both of these sets, i.e. V�
 V�,
are solution dependent on the corresponding variable.

All vertices that are not solution dependent on any variable are called solution
independent.

For example, in the reduction from 3-Satisfiability to Vertex Cover [7],
the following solution dependencies apply: For each literal, the vertices v� and
v� are solution dependent on their respective variable. Furthermore, if a literal
is part of the solution, all clause vertices representing its negation must also
be part of the solution. Thus all clause vertices are solution dependent on their
respective variable. Consequently, all vertices of the reduction graph for vertex
cover are solution dependent.

3 A Reduction Framework for Online Vertex Subset
Games

In this section, we present a general framework for reducing TQBF Game to
an arbitrary online vertex subset game PV S

o with neighborhood reveal model.
The TQBF Game is played on a fully quantified Boolean formula, where one
player decides the ∃-variables and the other decides the ∀-variables, in the order
they are quantified. Deciding whether the ∃-player has a winning strategy is
PSPACE-complete [14], and thus this reduction proves PSPACE-hardness for
PV S

o . We assume that the TQBF Game consists of clauses with at most three
literals, which is also known to be PSPACE-complete [7].

Before we describe the reduction, we prove that the online game version of
each vertex covering graph problem in NP is in PSPACE.

Theorem 1. If PV S is in NP, then PV S
o is in PSPACE.

This framework uses an (existing) gadget reduction of the vertex subset prob-
lem PV S from 3-Satisfiability and extends it in order to give the online algo-
rithm the ability to recognize the current revealed vertex. Due to the quantifi-
cation of variables, we call the variable gadget of a ∀-variable a ∀-gadget (resp.
∃-gadget for an ∃-variable). Based on this, the online algorithm can use a one-to-
one correspondence between the solution of the TQBF Game instance and the
PV S

o instance. The one-to-one correspondence between the ∀-variables and the
∀-gadgets is ensured by the knowledge of the adversary about the deterministic
online algorithm. It simulates the response of the algorithm on the ∀-gadget.

The Complexity of Online Graph Games 275

Extension Gadgets. We extend the reduction graph Gϕ of the offline problem
with gadgets to a reduction graph for the online problem. These gadgets extend
Gϕ by connecting to a subset of its vertices. We denote these gadgets Gext as
extension gadgets.

Definition 5 (Graph Extension). A graph extension of a graph G = (V,E)
by an extension gadget Gext = (Vext, Eext, Econ) with the set of connecting edges
Econ ⊆ V × Vext is defined as H = G ◦ Gext, whereby

V (H) = V ∪ Vext,

E(H) = E ∪ Eext ∪ Econ.

We further define G◦i∈I Gi
ext :=

(
. . .

((
G ◦ Gi1

ext

) ◦ Gi2
ext

) ◦ . . .
) ◦ G

i|I|
ext.

We also need the notion of self-contained gadgets. These do not influence the
one-to-one correspondence between solutions of the online vertex subset game
PV S

o and TQBF Game. In other words, optimal solutions on the graph and
the extension gadget can be disjointly merged to obtain an optimal solution
on the extended graph. Due to this independence, we are able to provide local
information to the online algorithm via the map without changing the underlying
formula. An example for self-contained extension gadgets is provided in Fig. 1.
Note that, it can occur that self-containment depends on the extended graph.

Fig. 1. On the left, there is an example for an extension gadget that is self-contained
w.r.t. the dominating set problem: No matter the solution on G, at least one vertex of
Gext has to be chosen. Additionally, choosing the black vertex of Gext dominates all
vertices attached to G, and thus any solution on G remains valid. On the right, there
is an example for an extension gadget that is not self-contained w.r.t. the dominating
set problem: If the solution on G contains the black vertices, it is also a solution for
H, but the optimal solution on Gext contains one vertex.

For our reduction framework, we introduce three types of self-contained
extension gadgets: fake clause gadgets, dependency reveal gadgets and ID gad-
gets. The goal of these gadgets is that it is optimal for the adversary to reveal
variables in the order of quantification, and that the online algorithm is able to
assign the value of the ∃-variables, while the adversary is able to assign the value
of the ∀-variables.

276 J. Fuchs et al.

Fake Clause Gadgets. The number of occurrences of a certain literal in clauses
is information that may allow the online algorithm to distinguish the literals of
some ∀-variables, allowing the online algorithm to decide the assignment instead
of the adversary. To avoid this information leak, we add gadgets for all pos-
sible non-existing clauses to the reduction graph. A fake clause gadget is only
detectable if and only if a vertex, which is part of that clause gadget, is revealed
by the adversary. The gadget needs to be self-contained such that the one-to-
one correspondence between the solutions of the PV S

o and TQBF Game is not
affected.

Definition 6 (Fake Clause Gadget). A fake clause gadget Gfc(C ′
j) for a non-

existing clause C ′
j /∈ C is an extension gadget that is self-contained. The fake

clause gadgets are connected to the variable gadgets like the clause gadgets are
to the variable gadgets according to the original gadget reduction, see Definition
3.

All fake clause gadgets are pairwise disjoint. Let Gϕ be the gadget reduction
graph and

G′
ϕ := Gϕ ◦

C′
j /∈C

Gfc(C ′
j).

After adding fake clause gadgets for all clauses C ′
j /∈ C to Gϕ, the revelation

subgraphs of all vertices v ∈ V (G′
ϕ), which are part of a literal gadget, are

pairwise isomorphic.

Dependency Reveal Gadgets. The two functions of the dependency reveal gadgets
are that the adversary chooses the reveal order to be the order of quantification
and the online algorithm knows the decision on the ∀-variables after the decision
is made by the adversary. If the adversary deviates from the quantification order,
the ∀-decision degenerates to an ∃-decision for the online algorithm. On the other
hand, since the adversary forces the online algorithm to blindly choose the truth
value of a ∀-quantified variable, the online algorithm does not know the chosen
truth value. Thus, we need to reveal the truth value to the online algorithm
whenever a solution dependent vertex of the next variables is revealed.

Definition 7 (Dependency Reveal Gadget). A dependency reveal gadget
Gdr(xi) for ∀-variable xi is an extension gadget that is self-contained with the
property: Let �, � be the literals of xi. If a solution dependent vertex of xj with
j ≥ i is revealed to the online algorithm, the online algorithm is able to uniquely
identify the vertices v� and v�.

ID Gadgets. At last, the online algorithm needs information on the currently
revealed vertex to identify it with the help of the map. For this, we introduce
ID gadgets, which make the revelation subgraph of vertices distinguishable to a
certain extent. Thus, the online algorithm is able to correctly encode the TQBF
solution into the solution of the vertex subset game. The ID gadget is always
connected exactly to the vertex it identifies, thus they are pairwise disjoint.

The Complexity of Online Graph Games 277

Definition 8 (ID Gadget). An identification gadget Gid(v) is a self-contained
extension gadget connected to v such that the revelation subgraph of v is isomor-
phic to revelation subgraphs of vertices within a distinct vertex set V ′ ⊆ V .

The General Reduction for Online Vertex Subset Games. With the gadget
schemes defined above, we are able to construct a gadget reduction from TQBF

Game to PV S
o . The idea of the reduction is to construct the optimal game

strategy for the online algorithm to compute the solution to the TQBF Game

formula. Furthermore, encoding the solution to the TQBF Game into the PV S
o

instance is a winning strategy by using the equivalence of the ∃- and ∀-gadgets
to the ∃- and ∀-variables. At last, there is a one-to-one correspondence between
the reduction graph solution of PV S and the 3-Satisfiability-solution.

A gadget reduction from 3-Satisfiability to vertex subset problem PV S

can be extended such that PV S
o is reducible from TQBF Game as follows. Recall

that Gϕ is the gadget reduction graph of a fixed but arbitrary instance of PV S .

1. Add fake clause gadgets for all clauses
that are not in the TQBF Game instance

G′
ϕ = Gϕ◦

c′ /∈C

Gfc(c′) .

2. Add dependency reveal gad-
gets for all ∀-variables x

G′′
ϕ = G′

ϕ◦
x∈X

x is ∀

Gdr(x) .

3. Add ID gadgets to all vertices

G′′′
ϕ = G′′

ϕ ◦
v∈V (G′′

ϕ)

Gid(v) .

Then, if all gadgets can be constructed in polynomial time, G′′′
ϕ is the cor-

responding reduction graph of PV S
o . The gadget reduction also implies the fol-

lowing gadget properties, which individually have to be proven for a specific
problem.

1. The fake clause gadgets are self-contained.
2. The dependency reveal gadgets are self-contained.
3. The ID gadgets are self-contained.
4. In G′′′

ϕ , each solution dependent vertex which is not in a literal gadget of a
∀-variable has a unique revelation subgraph.

5. In G′′′
ϕ , the two literal vertices of a ∀-variable have the same revelation sub-

graph, but different from vertices of any other gadget.
6. In G′′′

ϕ , each vertex that is solution independent or part of an extension gadget
has a revelation subgraph that allows for an optimal decision.

From the above construction, the following Lemmas 1 to 3, are fulfilled such
that PV S

o is proven to be PSPACE-hard in the following Theorem 2.

Lemma 1. In the construction of the reduction, there is a one-to-one correspon-
dence between the solution of the problem PV S

o and TQBF Game, if there is
a one-to-one correspondence between the solutions in the gadget reduction from
PV S and 3-Satisfiability. The equivalence is computable in PTIME.

278 J. Fuchs et al.

In the following, we show that the adversary has to reveal one literal vertex
of each variable gadget before revealing vertices of other gadgets (except ID
gadgets). Furthermore, the adversary has to adhere to the quantification order
of the variables when revealing the first literal vertices of each gadget. If the
adversary deviates from this strategy, it may allow the online algorithm to decide
the truth assignment of ∀-variables. This may allow the algorithm to win a game
based on an unsatisfiable formula. Thus, an optimal adversary strategy always
follows the quantification order.

Lemma 2. Every optimal game strategy for the adversary adheres to the reveal
ordering

G�1 or G�1
< G�2 or G�2

< · · · < G�n
or G�n

, (1)

G� or G� < Gc(Cj), for all � ∈ Cj ∈ C, (2)

G� or G� < Gfc(C ′
j), for all � ∈ C ′

j /∈ C, (3)

G� or G� < Gdr(x), for all x ∈ X. (4)

Lemma 3. The vertex assignments of an ∃-variable gadget (resp. ∀-variable
gadget) are equivalent to the decision of the ∃-player (resp. ∀-player) on an
∃-quantifier (resp. ∀-quantifier) in the TQBF Game. The equivalence is com-
putable in PTIME.

Therefore, the solutions to the formula in the TQBF Game and the solutions
to the online vertex subset game are equivalent. Thus, the reduction graph G′′′

ϕ

is a valid reduction from TQBF Game because the one-to-one correspondence
between solutions is preserved, which concludes the proof of Theorem 2. At last,
the online algorithm is able to win the game if and only if the TQBF Game is
winnable.

Theorem 2. If PV S is gadget reducible from 3-Satisfiability and Lemmas 1
to 3 hold, then PV S

o is PSPACE-complete.

4 Vertex Cover

In this section, we use our reduction framework to show that the online ver-
tex subset game based on the Vertex Cover problem, the Online Vertex

Cover Game, is PSPACE-complete. Vertex Cover was originally shown to
be NP-complete by Karp [11] with a reduction from Clique. However, since
our reduction framework extends reductions from 3-Satisfiability, we use an
alternative reduction from Garey and Johnson [7].

Let ϕ be the 3-Satisfiability-formula, let X be the set of n variables and let
C be the set of m clauses of ϕ. We construct the following graph Gϕ = (V,E): For
each variable xi, introduce a variable gadget consisting of two vertices, connected
by an edge. One of these vertices represents the positive literal, while the other
represents the negative literal. Thus we refer to these vertices as literal vertices.

The Complexity of Online Graph Games 279

For each clause Cj , J ∈ {1, . . . ,m}, we construct a clause gadget, which is a
triangle of vertices, where each vertex represents one of the literals in Cj . Finally,
each vertex of a clause is connected to the literal it represents. An example of
this construction is shown in Fig. 2.

Fig. 2. The reduction graph for the reduction from 3-Satisfiability to Vertex

Cover for instance ϕ = (x1 ∨ x1 ∨ x2).

The dependencies in Gϕ are of the type if a literal vertex is not contained in a
solution, then all clause vertices representing the same literal must be contained
in that solution. Therefore, all vertices in Gϕ are solution dependent.

The Online Vertex Cover Game has a graph G and a k ∈ N as input.
It asks whether there is a winning strategy for the online algorithm, that is, it
finds a vertex cover of size at most k for every reveal order while knowing an
isomorphic copy of G.

Theorem 3. The Online Vertex Cover Game with the neighborhood reveal
model and a map is PSPACE-complete.

The containment of Online Vertex Cover Game in PSPACE is already
established by Theorem 1. To show hardness, we extend the above reduction for
Vertex Cover according to our framework. Therefore, we need to introduce
fake clause gadgets, dependency reveal gadgets, and ID gadgets and prove that
they fulfill the gadget properties, required by Lemmas 1 to 3.

An example for a fake clause gadget is shown in Fig. 3. Any optimal vertex
cover on the fake clause gadget has size 3 and contains exactly the triangle
representing the clause. In the neighborhood reveal model, fake clause gadgets
can not be distinguished from real clause gadgets, as long as only vertices of
variable gadgets are revealed by the adversary. However, as soon as a vertex
of the fake clause gadget is revealed, it can be distinguished from a real clause
gadget, as the vertex degrees are different.

The dependency reveal gadget reveals the solution dependencies to the online
algorithm. An example is depicted in Fig. 4a. Since both the literal vertices and
the vertices of clause gadgets are solution dependent, the online algorithm needs
to be able to identify which variable they correspond to, and in the case of ∃-
variables also which literal they correspond to. For that, we look at the degrees
of all vertices in the graph G′′

ϕ. The optimal solution for the dependency reveal
gadget always contains exactly the center vertex of the star.

Finally, we define ID gadgets for literal vertices and all vertices in clause
gadgets as they are solution dependent. An example is presented in Fig. 4b. The

280 J. Fuchs et al.

Fig. 3. The reduction graph for the reduction from 3-Satisfiability to Vertex

Cover for instance ϕ = (x1 ∨ x1 ∨ x2). The clause (x1 ∨ x1 ∨ x2) does not exist and
is represented by a fake clause gadget Gfc. The blue dashed edges are the set Econ for
the fake clause gadget. (Color figure online)

task of the ID gadget is to enable the algorithm to uniquely identify vertices of
∃-quantified literals and solution dependent vertices as well as to identify the
∀-quantified literals such that the literal vertices of one ∀-quantified variable are
indistinguishable.

Fig. 4. Dependency reveal gadget and ID gadget for Vertex Cover.

Since all constructions are polynomial time computable, we established the
requirements for Theorem 2, thus Theorem 3 is proven. The full construction of
G′′′

ϕ is shown in Fig. 5.

5 More Vertex Subset Problems

In this section, we apply Theorem 2 to the Online Independent Set Game

and Online Dominating Set Game. Like the Online Vertex Cover Game,
they take a graph G and a number k ∈ N as input. They ask whether there is
a winning strategy for the online algorithm, that is, it finds an independent set
(resp. dominating set) of size at least (resp. most) k for every reveal order while
knowing an isomorphic copy of G.

Theorem 4. The Online Independent Set Game with the neighborhood
reveal model and a map is PSPACE-complete.

Theorem 5. The Online Dominating Set Game with the neighborhood
reveal model and a map is PSPACE-complete.

The Complexity of Online Graph Games 281

Fig. 5. Complete view on the reduction for the TQBF-instance ∀x1∃x2 (x1 ∨ x1 ∨ x2)
to Online Vertex Cover Game. The thick vertices and edges represent the original
reduction. The blue dashed edges are the connecting edges of the extension gadgets.
There are optimal solutions that contain all the gray vertices and none of the black
vertices. Whether the white vertices are contained depends on the feasible solutions
for the TQBF-formula.

6 Conclusion

We derived online games from the typical online setting in order to analyze their
computational complexity. Furthermore, we developed a framework for online
versions of vertex subset problems with neighborhood reveal model that allows
reductions from TQBF Game to show that these are PSPACE-complete. We
showed particularly that the online versions Vertex Cover, Independent

Set and Dominating Set with neighborhood reveal model are PSPACE-
complete.

The gap between the complexity analysis that started with the NP-hardness
for the problems from AOC under the vertex arrival model and our PSPACE-
completeness results need to be closed. From our results the questions arises
if the three problems Vertex Cover, Independent Set and Dominating

Set are actually PSPACE-complete under the vertex arrival model. One way
to show the PSPACE-completeness is to use our reduction framework and add
a type of error correction gadget. However, the missing knowledge in the vertex
arrival model might increase the asymmetry in favor of the adversary such that
the complexity decreases and it remains NP-hard.

Additionally, the presented framework may be extended to more general
subset problems from AOC where the solution is not a vertex subset.

References

1. Agrawal, M., Allender, E., Impagliazzo, R., Pitassi, T., Rudich, S.: Reducing the
complexity of reductions. In: Leighton, F.T., Shor, P.W. (eds.) Proceedings of the

282 J. Fuchs et al.

Twenty-Ninth Annual ACM Symposium on the Theory of Computing, pp. 730–738
(1997). https://doi.org/10.1145/258533.258671

2. Böhm, M., Veselý, P.: Online chromatic number is pspace-complete. Theory Com-
put. Syst. 62(6), 1366–1391 (2018). https://doi.org/10.1007/s00224-017-9797-2

3. Boyar, J., Favrholdt, L.M., Kudahl, C., Mikkelsen, J.W.: The advice complexity of
a class of hard online problems. Theory Comput. Syst. 61(4), 1128–1177 (2017).
https://doi.org/10.1007/s00224-016-9688-y

4. Boyar, J., Kudahl, C.: Adding isolated vertices makes some greedy online algo-
rithms optimal. Discret. Appl. Math. 246, 12–21 (2018). https://doi.org/10.1016/
j.dam.2017.02.025

5. Fraenkel, A.S., Goldschmidt, E.: Pspace-hardness of some combinatorial games.
J. Comb. Theory Ser. A 46(1), 21–38 (1987). https://doi.org/10.1016/0097-
3165(87)90074-4

6. Fuchs, J., Grüne, C., Janßen, T.: The complexity of online graph games (2023)
7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman (1979)
8. Halldórsson, M.M.: Online coloring known graphs. Electron. J. Comb. 7 (2000).

https://doi.org/10.37236/1485
9. Halldórsson, M.M., Iwama, K., Miyazaki, S., Taketomi, S.: Online independent

sets. Theor. Comput. Sci. 289(2), 953–962 (2002). https://doi.org/10.1016/S0304-
3975(01)00411-X

10. Harutyunyan, H.A., Pankratov, D., Racicot, J.: Online domination: the value of
getting to know all your neighbors. In: Bonchi, F., Puglisi, S.J. (eds.) 46th Inter-
national Symposium on Mathematical Foundations of Computer Science, MFCS,
vol. 202, pp. 57:1–57:21 (2021). https://doi.org/10.4230/LIPIcs.MFCS.2021.57

11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations. IRSS, pp. 85–103.
Springer, Cham (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

12. Kudahl, C.: Deciding the on-line chromatic number of a graph with pre-coloring
is PSPACE-complete. In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS,
vol. 9079, pp. 313–324. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
18173-8 23

13. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theor. Com-
put. Sci. 84(1), 127–150 (1991). https://doi.org/10.1016/0304-3975(91)90263-2

14. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: pre-
liminary report. In: Aho, A.V., et al. (eds.) Proceedings of the 5th Annual ACM
Symposium on Theory of Computing, pp. 1–9 (1973). https://doi.org/10.1145/
800125.804029

15. Trevisan, L., Sorkin, G.B., Sudan, M., Williamson, D.P.: Gadgets, approximation,
and linear programming (extended abstract). In: 37th Annual Symposium on Foun-
dations of Computer Science, pp. 617–626 (1996). https://doi.org/10.1109/SFCS.
1996.548521

https://doi.org/10.1145/258533.258671
https://doi.org/10.1007/s00224-017-9797-2
https://doi.org/10.1007/s00224-016-9688-y
https://doi.org/10.1016/j.dam.2017.02.025
https://doi.org/10.1016/j.dam.2017.02.025
https://doi.org/10.1016/0097-3165(87)90074-4
https://doi.org/10.1016/0097-3165(87)90074-4
https://doi.org/10.37236/1485
https://doi.org/10.1016/S0304-3975(01)00411-X
https://doi.org/10.1016/S0304-3975(01)00411-X
https://doi.org/10.4230/LIPIcs.MFCS.2021.57
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-319-18173-8_23
https://doi.org/10.1007/978-3-319-18173-8_23
https://doi.org/10.1016/0304-3975(91)90263-2
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029
https://doi.org/10.1109/SFCS.1996.548521
https://doi.org/10.1109/SFCS.1996.548521

Removable Online Knapsack
with Bounded Size Items

Laurent Gourvès1(B) and Aris Pagourtzis2,3

1 Université Paris Dauphine-PSL, CNRS, LAMSADE, 75016 Paris, France
laurent.gourves@dauphine.fr

2 National Technical University of Athens, 15780 Zografou, Greece
pagour@cs.ntua.gr

3 Archimedes Research Unit, Athena RC, 15125 Marousi, Greece

Abstract. In the online unweighted knapsack problem, some items
arrive in sequence and one has to decide to pack them or not into a
knapsack of given capacity. The objective is to maximize the total size
of packed items. In the traditional setting, decisions are irrevocable, and
the problem cannot admit any ρ-competitive algorithm. The removable
nature of the items allows to withdraw previously packed elements of
the current solution. This feature makes the online knapsack problem
amenable to competitive analysis under the ratio of (

√
5 − 1)/2, which

is at the same time the best possible performance guarantee [12]. This
article deals with refinements of the best possible competitive ratio of the
online unweighted knapsack problem with removable items when either
an upper or a lower bound on the size of the items is known.

Keywords: Online Algorithms · Knapsack · Competitive analysis

1 Introduction

This article deals with online computation where an instance is revealed over
time and an irrevocable decision has to be made each time a portion of the
input is known [1]. The problem under study in this work is knapsack [14]. In its
online version, we are given the capacity C of a knapsack, and items are disclosed
sequentially. Each item has a positive size and a positive weight. The goal is,
as usual, to pack items into the knapsack so as to maximize their total weight,
under the constraint that the total size of packed items does not exceed C. The
online knapsack problem is appealing since it models many real life situations,
and many articles have been devoted to it (see for example [2–5,7,12,13,15,
16]). Unfortunately, one can rapidly observe that no deterministic algorithm
can exhibit a bounded competitive ratio, which is a worst case performance
guarantee of an online algorithm against an ideal procedure which always makes

Aris Pagourtzis has been partially supported for this work by project MIS 5154714 of
the National Recovery and Resilience Plan Greece 2.0 funded by the European Union
under the NextGeneration EU Program.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 283–296, 2024.
https://doi.org/10.1007/978-3-031-52113-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_20&domain=pdf
http://orcid.org/0000-0002-5076-1583
http://orcid.org/0000-0002-6220-3722
https://doi.org/10.1007/978-3-031-52113-3_20

284 L. Gourvès and A. Pagourtzis

the optimal decision. This bad news holds even in the unweighted case (a.k.a.
subset sum) where the weight of every item is equal to its size. Indeed, think of an
unweighted instance where the first item is very small, say ε · C with 1 � ε > 0.
If the item is not packed, and no other item is disclosed, then the competitive
ratio is 0/(ε · C) = 0. If the item is packed, but a second item of size C arrives,
then the first item prevents the second one from being packed. The competitive
ratio is (ε · C)/C = ε because the right decision would be to pack the second
item. In any case, the competitive ratio is at most ε, which can be arbitrarily
small.

Then, how can we bypass this difficulty? Quoting the authors of [14], we
need “to find suitable restrictions on the pure online formulation which make
sense from a real-world point of view and permit the construction and analysis
of more successful algorithms.” Many successful directions have been proposed
for knapsack, including the notion of removable items introduced by Iwama and
Taketomi [12]. An item is removable if its insertion in the knapsack is a revoca-
ble decision. In this setting, a deterministic

√
5−1
2 -competitive online algorithm

exists, along with a proof that
√
5−1
2 is the best possible competitive ratio [12].

In the present work, we aim at going further and combine item removability
with an additional information on item sizes in order to devise a more accu-
rate competitive analysis. The previously mentioned example comprises two
“extreme” items whose size relative to the capacity is either very small or very
big (ε · C and C, respectively). Such an instance may poorly represent the full
spectrum of concrete situations that require to solve an online knapsack prob-
lem. In practice, one can expect to deal with instances where the items’ sizes are
less heterogeneous. Moreover, especially when a decision maker has already faced
several instances in the past, she or he may be knowledgeable of a bound on the
size of every item. Therefore, we propose to exploit the existence and knowledge
of such a bound towards a refined analysis of the best possible competitive ratio
of deterministic algorithms for the online unweighted knapsack problem with
removable items.

Setting and Contribution. As in [3,7,12,13], we consider the online
unweighted knapsack (a.k.a. subset sum) problem. Consider a capacity C (a.k.a.
budget) of 1 and some removable items disclosed online o1, o2, Each item oi

has a size |oi| ∈ (0, 1] and an identical weight of |oi|. Assuming that C = 1 and
|oi| ∈ (0, 1] for all i is without loss of generality since dividing everything by
C does not affect the competitive ratio. The number of items is not known in
advance. Starting from an initial empty set S, an item oi is revealed at every
time step i (also called round), and one has to decide if oi is packed in S or
not. Elements inserted during previous rounds can be removed, but discarded
items (i.e., items that were directly rejected or removed after their insertion)
cannot be included afterwards. The value of S, denoted by v(S) and defined as∑

oi∈S |oi|, should never exceed the capacity. The objective is to maximize v(S)
when no more items are disclosed. The competitive ratio ρA of a deterministic
online algorithm A is the worst case ratio between the value of the solution
SA built by A and the value of an optimal solution S∗ which maximizes v(S∗):

Removable Online Knapsack with Bounded Size Items 285

ρA := v(SA)/v(S∗). The online unweighted knapsack problem with removable
items admits a t-competitive online algorithm where

t :=
√

5 − 1
2

≈ 0.618 (1)

is the golden ratio conjugate, and no deterministic online algorithm can be (t+ε)-
competitive for any positive ε [12].1 Our contribution is to go beyond this result
and propose refined bounds on the best competitive ratio based on known bounds
on the size of the items. All the results of this article apply to deterministic
algorithms for the removable online unweighted knapsack problem. In Sect. 2,
some parameter u ∈ (0, 1] such that any item’s size is upper bounded by u is given,
and we provide both lower and upper bounds on the best possible competitive
ratio ρ(u). In Sect. 3, a lower bound � ∈ (0, 1] on the size of every item is known,
and we characterize the best possible competitive ratio ρ(�).

Due to space constraints, some technical elements are skipped and will be
made available in an extended version of the article.

Related Work. The online knapsack problem was first studied by Marchetti-
Spaccamela and Vercellis who made an average case analysis of the expected
difference between the optimal and the approximate value [16]. A follow-up arti-
cle, with a similar approach, is authored by Luecker [15].

Iwama and Taketomi introduced the notion of removable items and proved
that the unweighted online knapsack problem admits a deterministic t-competi-
tive algorithm, where t is the best possible performance guarantee [12]. Unfor-
tunately, no competitive algorithm can exist for the online weighted knapsack
with removable items [13]. Sometimes, removing a packed item comes with a cost
which is equal to f times the item’s size where f > 1 is a given buyback factor.
The objective is to maximize the worth of packed items minus the cost paid for
items which were removed after been packed. In this case, Han et al. studied
the unweighted online knapsack problem [7] whereas Babaioff et al. considered a
more general setting including the online weighted knapsack problem [2]. Their
results include deterministic and randomized algorithms whose competitive ratio
depends on f .

Other randomized algorithms for the online knapsack problem can be found
in [5,8] when f = 0. For the weighted case (resp., unweighted case), the com-
petitive ratio for removable items is between 0.5 and e

1+e ≈ 0.73 (resp., between
0.7 and 0.8). When items cannot be removed, the best competitive ratio for the
weighted and unweighted cases are 0 and 0.5, respectively.

In [13], the authors consider the online knapsack problem under the resource
augmentation framework where the online knapsack is R ≥ 1 times larger than
its offline counterpart. Their results consist of bounds on the competitive ratio as
a function of R for removable or weighted items. In the same vein, an alternative
model supposes that the items can be placed in a buffer of size K > 1 before a
selection of them is put in a knapsack of size 1 [10].

1 Every competitive ratio of this article is in [0, 1].

286 L. Gourvès and A. Pagourtzis

Sometimes, the items can be split and partially included in the knapsack.
Han and Makino exploited this opportunity to derive a k/(k + 1)-competitive
online algorithm for the removable weighted case and a matching upper bound
[11]. Here, k is the maximum number of times that an item can be cut.

In [4], Böckenhauer et al. explore the advice complexity of the online knap-
sack problem, where the goal is to evaluate the possible improvements on the
competitive ratio provided by some additional information about the complete
instance.

In a recent article by Böckenhauer et al. [3] on the online unweighted knapsack
problem, the possibility to reserve an item (i.e., postpone the decision about it)
is studied. Given α ∈ (0, 1), reserving an item costs α times its value. This
model is closely related to the one with removal cost [2,7] but, as opposed to
“bought back” items, reserved items are not temporarily put into the knapsack.
Thus, there is no hard capacity constraint. The authors characterize the best
competitive ratio for all possible value of α [3].

The present work combines removable items with an additional informa-
tion about the range of the items size. Having upper bounds on the worth of
objects has already been done for analysing fair allocations of indivisible goods
[6]. Concerning the online weighted knapsack problem, Babaioff et al. have used
a parameter γ ∈ (0, 1] which restricts the size of any item to γ · C. They gave
a deterministic algorithm for the case γ < 1/2 whose competitive ratio tends to
1 − 2γ when the buyback factor goes to 0. The work of Chakrabarty et al. on
the weighted knapsack problem also makes assumptions about both the size of
objects and their weight-to-size ratio [17].

2 Upper Bounded Item Size

Given an upper bound u ∈ (0, 1] on the size of every item, we aim at determining
the best possible competitive ratio ρ(u) of deterministic online algorithms for the
unweighted knapsack problem with removable items. Our results are depicted in
Fig. 1. The lower (solid) and upper (dotted) bounds on ρ(u) are non increasing
functions u. One can observe that the competitive ratio is always above t, and
the performance guarantee increases (and tends to 1) as the size of the items
reduces. The curves of Fig. 1 meet for many values of u all over the interval (0, 1]
but some gaps remain to be filled.

In this section, we begin with lower bounds on ρ(u) obtained with a single
parametric algorithm (cf. Sect. 2.1), followed by upper bounds on ρ(u) induced
by a family of instances (cf. Sect. 2.2).

2.1 Lower Bounds on the Competitive Ratio

Throughout our presentation we will say that an item is rejected if it is discarded
immediately after its disclosure; if the item is first inserted in the solution and it
is discarded at a later step then we say that it is removed. We consider a single

Removable Online Knapsack with Bounded Size Items 287

Fig. 1. Lower (solid) and upper (dotted) bounds on the competitive ratio ρ as a function
of u.

parametric online algorithm described in Algorithm 1. For every positive integer
k, the competitive ratio of Algorithm 1 is either a constant γk defined as

γk =
k − 2 +

√
k2 + 4

2k
, (2)

or a decreasing function of u equal to 1−u
(k−1)u .

Note that γk belongs to (0, 1] for all positive integers k. It increases with k,
and γ1 =

√
5−1
2 = t. The rationale of γk originates from the following equality

which will be interpreted and exploited later on.

(k − 1)(1 − γk) +
1 − γk

γk
= γk (3)

Other useful technical properties of γk (valid for all positive integers k) are the
following four (their proof will appear in an extended version of this article).

0 < 1 − γk ≤ 1 − γk

γk
< 1/k ≤ 1 − γk

γ2
k

(4)

(k − 1)
1 − γk

γ2
k

≤ 1 (5)

(k + 1)(1 − γk) ≥ γk (6)

1 − 1−γk

γ2
k

(k − 1) 1−γk

γ2
k

= γk (7)

Our analysis of the competitive ratio of Algorithm 1 is divided into two
theorems for the sake of clarity. Theorems 1 and 2 correspond to intervals where
the proposed lower bound on the competitive ratio is constant and decreasing
with u, respectively. On Fig. 1, the i-th constant part of the solid curve, when
counting from the right, corresponds to Theorem 1 when i = k and u ≤ (1 −

288 L. Gourvès and A. Pagourtzis

Algorithm 1
1: S ← ∅
2: while a new item oi arrives do
3: if v(S) ≥ γk then
4: Reject oi {S is not changed afterwards}
5: else
6: S ← S ∪ {oi}
7: if v(S) > 1 then
8: Let B = {o ∈ S : |o| > 1 − γk}
9: if v(B) > 1 then

10: if B contains a subset Ŝ such that 1 ≥ v(Ŝ) ≥ γk then
11: S ← Ŝ {S is not changed afterwards}
12: else
13: Remove the largest item of S
14: end if
15: else
16: while v(S) > 1 do
17: Remove from S one element of S \ B {chosen arbitrarily}
18: end while
19: end if
20: end if
21: end if
22: end while

γk)/γ2
k. The i-th decreasing part of the solid curve, still counting from the right,

corresponds to Theorem 2 when i = k − 1 and u ≤ 1/(k − 1).
The solid curve depicted on Fig. 1 corresponds, for every possible value of

u ∈ (0, 1], to the best (i.e., largest) lower bound offered by either Theorem 1 or
Theorem 2, with an appropriate choice of the parameter k.

Theorem 1. For all positive integers k, Algorithm 1 is γk-competitive when
u ∈ (0, 1−γk

γ2
k

].

Proof. Let Bi, Ŝi, Si, and S∗
i denote B, Ŝ, S and an optimal solution at the end

of round i of Algorithm 1 (i.e., when o1 to oi have been disclosed), respectively.
We are going to prove that v(Si) ≤ 1 and v(Si)

v(S∗
i)

≥ γk hold for all i.

An item o is said to be small if 0 < |o| ≤ 1−γk, medium if 1−γk < |o| ≤ 1−γk

γk
,

large if 1−γk

γk
< |o| ≤ k−1, and extra-large if k−1 < |o| ≤ 1−γk

γ2
k

. Note that the
extra-large category does not exist when k = 1. The categories lead to the
following useful interpretation of Eq. (3): k − 1 medium items plus one large
or extra-large item constitute a desirable set because its total size is between
(k − 1)(1 − γk) + 1−γk

γk
= γk and (k − 1) 1−γk

γk
+ 1−γk

γ2
k

= 1, i.e., it is a feasible set
satisfying the guarantee γk.

The proof is by induction and we begin with the base case (i = 1). Since
S1 = S∗

1 = {o1}, we have that v(S1) ≤ 1 and v(S1)
v(S∗

1)
= 1 ≥ γk. In order to prove

Removable Online Knapsack with Bounded Size Items 289

v(Si) ≤ 1 and v(Si)
v(S∗

i)
≥ γk when i > 1, we make the induction hypotheses that

both v(Si−1) ≤ 1 and v(Si−1)
v(S∗

i−1)
≥ γk hold.

If v(Si−1) ≥ γk at line 4 of the algorithm, then Si = Si−1 (item oi is rejected).
Since v(S∗

i) ≤ 1, the competitive ratio satisfies v(Si)
v(S∗

i)
≥ γk. The solution is not

modified afterwards. Otherwise (v(Si−1) < γk), the algorithm puts the new
item oi in the current solution (cf. line 6): Si = Si−1 ∪ {oi}. If oi fits (i.e.,
v(Si) ≤ 1 holds after the insertion of oi), then v(Si) = v(Si−1)+ |oi| and v(S∗

i) ≤
v(S∗

i−1) + |oi|. We get that v(Si)
v(S∗

i)
≥ v(Si−1)+|oi|

v(S∗
i−1)+|oi| ≥ v(Si−1)

v(S∗
i−1)

≥ γk where the last
inequality derives from the induction hypothesis.

From now on, suppose that v(Si) > 1 holds after the insertion of oi. We know
from v(Si−1) < γk and v(Si) > 1 that |oi| > 1 − γk. In other words, oi is not
a small item. By construction, Bi is the subset of non-small items of Si and it
contains oi. If v(Bi) ≤ 1, then the algorithm executes the while loop containing
line 17. The while loop starts with v(Si) > 1 and removes small items of Si

until v(Si) ≤ 1. Since a small item has size at most 1 − γk, we end up with a
solution satisfying γk ≤ v(Si) ≤ 1. Therefore, v(Si)

v(S∗
i)

≥ γk and the solution is not
modified afterwards. If v(Bi) > 1, then the algorithm tries to find in Bi a subset
of non-small items Ŝi such that 1 ≥ v(Ŝi) ≥ γk, and sets Si to Ŝi if Ŝi exists.
In this case, the competitive ratio is reached and the solution is not modified
afterwards.

Let us explain that verifying the existence of Ŝi is not difficult. Bi contains
at most k+1 items for the following reasons: |Bi|−1 non-small items of Bi were
already present in Si−1. Using v(Si−1) < γk, and the fact that a non-small item
has size at least 1−γk, we get that |Bi|−1 ≤ k (indeed, Inequality (6) indicates
that k+1 items of size 1−γk have a total size of at least γk), which is equivalent
to |Bi| ≤ k + 1. Inequality (5) indicates that a set of k − 1 items of the largest
possible size fits in the budget of 1. Together with v(Bi) > 1, we deduce that
Bi cannot contain k − 1 (or less) non-small items. Thus, Bi contains k or k + 1
non-small items. Taking k−1 items of Bi gives a feasible solution (cf. Inequality
(5)). By taking the k − 1 biggest items of Bi, we can verify whether γk can be
reached. If not, Ŝi possibly requires k items (when |Bi| = k + 1), which requires
to test k + 1 possibilities. In all, at most k + 2 solutions are tested, where k is
upper bounded by the number of disclosed items.

So far we have considered the cases where the algorithm was able to find a
subset of items whose total size is between γk and 1. In these cases, the solution
is not changed afterwards because the expected guarantee is reached, whichever
item comes subsequently. Hereafter, we analyse the case where Ŝi ⊆ Bi such
that 1 ≥ v(Ŝi) ≥ γk does not exist. In this situation, the largest element is
removed (cf. line 13). Note that line 13 is executed for round i, and line 13
was possibly executed during previous rounds. However, line 11 or the while
loop were not previously executed because, so far, the guarantee has not been
reached (v(Si−1) < γk).

We have seen that Bi contains either k or k + 1 non-small items at line 8 of
the algorithm. Let us make some observations which are valid for both cases.

290 L. Gourvès and A. Pagourtzis

(i) So far, the algorithm has not rejected or removed a small item. Only items
of Bi were removed by the possible execution of line 13 (by construction,
Bi is the set of non-small items).

(ii) The algorithm has not switched from one case to the other. If |Bi| = k,
then it could not be |Bj | = k + 1 in a previous round j < i. Similarly, if
|Bi| = k + 1, then it could not be |Bj | = k in a previous round j < i.
Indeed, suppose we have |Bi|
= |Bi−1|.2 Since we removed one item from
Bi−1, and oi was inserted afterwards to yield Bi, we get that |Bi| = |Bi−1|,
contradiction.

(iii) We have v(Si) ≤ 1 after the largest element of Bi is removed (line 13).
Indeed, Si is built as follows: take Si−1, add an item oi, and remove its
largest item. We get that v(Si) ≤ v(Si−1) and v(Si−1) ≤ 1 holds by induc-
tion hypothesis.

(iv) An optimal (offline) solution contains at most |Bi|−1 non-small items. Since
the algorithm keeps the smallest non-small items in Bi, and until now v(Bi)
is always strictly larger than 1, it is not possible to find |Bi| non-small items
(within the set of non-small items already disclosed) whose total size is at
most 1.

It remains to prove v(Si)
v(S∗

i)
≥ γk in both cases, namely |Bi| ∈ {k, k +1} at line

8 of the algorithm.

Case |Bi| = k. The current solution Si contains all the small items disclosed
so far (cf. observation (i)). The total size of non-small items of Si is at least
1 − 1−γk

γ2
k

because we had v(Bi) > 1 and one item of size at most 1−γk

γ2
k

has been
removed. Meanwhile, observation (iv) says that the optimum contains at most
|Bi| − 1 = k − 1 non-small items, each of which has size at most 1−γk

γ2
k

, and
possibly all the small items disclosed so far. Therefore, the competitive ratio is
lower bounded by

v({o : 0 < |o| ≤ 1 − γk}) + 1 − 1−γk

γ2
k

v({o : 0 < |o| ≤ 1 − γk}) + (k − 1) 1−γk

γ2
k

≥
1 − 1−γk

γ2
k

(k − 1) 1−γk

γ2
k

= γk

where the last equality is due to (7).

Case |Bi| = k + 1. Every item of Bi is medium. Indeed, exactly k items of Bi

come from Si−1 and we know that v(Si−1) < γk. If the non-small items of Si−1

were not exclusively medium items, then its total size would be at least (k −
1)(1−γk)+ 1−γk

γk
, which is equal to γk by (3), contradiction. The item of Bi\Bi−1

(i.e., oi) must be medium because the algorithm failed to find Ŝi. Indeed, if oi

were large or extra-large, then one could combine it with k − 1 medium items of
Bi and create Ŝi whose total size is between γk and 1 (cf. interpretation of (3)).
No large or extra-large item was disclosed so far, because either this large or
2 The assumption that the change in the size of B occurs between rounds i − 1 and i

is made without loss of generality because we can apply the arguments to the round
(possibly prior to i) during which the size of B is modified for the first time.

Removable Online Knapsack with Bounded Size Items 291

extra-large item could be used to produce Ŝi with k − 1 medium items already
present in the solution (contradiction with the non-existence of Ŝi), or such a
large or extra-large item was removed in a previous round j, but it corresponds
to an incompatible situation where |Bj | = k
= |Bi|, and we have seen that the
algorithm does not switch from one case to the other (cf. observation (ii)).

The algorithm has kept all the small items disclosed so far and the k smallest
medium items. The optimum S∗

i possibly contains all the small items disclosed
so far, and at most k non-small items (cf. observation (iv)) which are medium
because no large or extra-large item has been disclosed. The size of a medium
item being between 1−γk and 1−γk

γk
, the competitive ratio can be lower bounded

as follows.

v({o : 0 < |o| ≤ 1 − γk}) + k(1 − γk)
v({o : 0 < |o| ≤ 1 − γk}) + k 1−γk

γk

≥ k(1 − γk)
k(1−γk

γk
)

= γk ��

When k = 1, Theorem 1 indicates that Algorithm 1 is t-competitive for all
u ∈ (0, 1] because γ1 = t and 1−γ1

γ2
1

= 1, thus generalizing the result of [12].

When k ≥ 2, Inequality (5) indicates that 1−γk

γ2
k

≤ 1
k−1 so we can consider in

the following theorem how Algorithm 1 performs when u ∈ (1−γk

γ2
k

, 1
k−1].

Theorem 2. For all integers k ≥ 2, Algorithm 1 is 1−u
(k−1)u -competitive when

u ∈ (1−γk

γ2
k

, 1
k−1].

Proof. We keep the same notations as in the proof of Theorem 1. Only the notion
of extra-large item changes: o is said to be extra-large if k−1 < |o| ≤ u. All the
cases of the proof of Theorem 1 remain unchanged and lead to a competitive
ratio of γk except when Ŝi such that γk ≤ v(Ŝi) ≤ 1 does not exist, and |Bi| = k.
In this case, the current solution Si contains all the small items disclosed so far.
The total size of non-small items of Si is at least 1−u because we had v(Bi) > 1
and one item of size at most u has been removed. Meanwhile, the optimum
contains at most |Bi|−1 = k−1 non-small items, each of which has size at most
u, and possibly all the small items disclosed so far. Note that k − 1 items of size
at most u fit in the budget since u ≤ 1

k−1 holds by assumption. The competitive
ratio is lower bounded by

v({o : 0 < |o| ≤ 1 − γk}) + 1 − u

v({o : 0 < |o| ≤ 1 − γk}) + (k − 1)u
≥ 1 − u

(k − 1)u
.

Using (7) and 1−γk

γ2
k

≤ u, we get that γk = 1−(1−γk)/γ2
k

(k−1)(1−γk)/γ2
k

≥ 1−u
(k−1)u . Therefore,

the competitive ratio is 1−u
(k−1)u in the worst case. ��

To conclude this part, the combination of Theorems 1 and 2 gives the lower
bounds on the competitive ratio depicted in solid on Fig. 1. Sometimes, the
intervals of the theorems intersect for consecutive values of k. In this case, the
best (i.e., largest) lower bound on the competitive ratio is retained.

292 L. Gourvès and A. Pagourtzis

2.2 Upper Bounds on the Competitive Ratio

Our upper bounds, depicted in dotted on Fig. 1, are obtained from instances
showing that no deterministic online algorithm can have a competitive ratio
larger than some specified value. We will often use the following simple observa-
tion: If the instances employed to show an upper bound of r on the competitive
ratio only contain items of size at most x, then the competitive ratio is at most
r for all u ∈ [x, 1].

Let us first suppose that u ∈ [47 , 1], and consider the following instance.

Instance 1. The first item o1 has size u. If o1 is not taken, then the competitive
ratio is zero. The second item o2 has size 1 − u + ε. Note that there exists an
ε such that 1 − u + ε ≤ u because u > 0.5. Since |o1| + |o2| > 1, either o1 or
o2 is kept, but not both. If o2 replaces o1, then no more item is disclosed. The
competitive ratio is 1−u+ε

u which tends to 1−u
u when ε goes to zero. Otherwise, o1

is kept and a last item o3 of size u − ε is disclosed. Again, the two items o1 and
o3 do not fit. Since |o1| ≥ |o3|, we can consider that o1 is kept. The competitive
ratio in this case is u because the optimum {o2, o3} has value 1.

Proposition 1. Instance 1 gives an upper bound of 1−u
u on the competitive ratio

when u ∈ [47 , t], and an upper bound of t when u ∈ [t, 1].

Proof. The upper bound is 1−u
u when u ∈ [47 , t] because 1−u

u ≥ u in that interval.
Since t =

√
5−1
2 is a root of 1−u

u = u, an upper bound of t on the competitive
ratio is derived from Instance 1 (fix u to t in the instance), and it is valid for all
u ∈ [t, 1] by the aforementioned observation. ��

Note that the upper bound of t corresponds to one given in [12, Theorem 2].
Now suppose that u ∈ (12 , 4

7) and consider the following instance.

Instance 2. The first 2 items o1, o2 have size 1
4 − ε, where ε > 0, and 1

4 , respec-
tively. If any of them is not taken, then the competitive ratio tends to 1

2 . The
next item o3 has size 1

2 + 2ε. If o3 is kept, then one of o1, o2 must be removed.
Then an item o4 of size 1

2 + ε is disclosed, which does not fit in the current
solution and can only replace o3, leading to a solution of smaller value; hence,
o4 is not included, which gives a competitive ratio that tends to 3

4 when ε goes
to zero. Indeed, the total size of the current solution is at most 3

4 + 2ε, while the
optimal value is 1

4 − ε+ 1
4 + 1

2 + ε = 1. If, on the other hand, o3 is removed, then
the instance is terminated, leading to a competitive ratio of 1/4−ε+1/4

1/4+1/2+2ε = 1/2−ε
3/4+2ε

that tends to 2
3 as ε goes to zero.

Proposition 2. Instance 2 provides an upper bound of 3
4 on the competitive

ratio when u ∈ (12 , 4
7).

Proof. The largest item of Instance 2 has size 1/2 + 2ε. The two cases lead to
competitive ratios of 3/4 + 2ε and 1/2−ε

3/4+2ε , so we retain the largest one which
tends to 3/4 when ε goes to zero. By the above observation, the upper bound of
3/4 is valid for u > 1/2. ��

Removable Online Knapsack with Bounded Size Items 293

We finally consider a family of instances parameterized by an integer k such
that k ≥ 2, and the interval covered by each individual instance is (1

k+1 , 1
k].

Thus, the family allows us to cover the case u ∈ (0, 1
2].

Instance 3. The first k items o1, . . . , ok have size 1−u
k + ε each where ε is a

small positive real satisfying

0 < ε ≤ 1
k

(

u − 1
k + 1

)

. (8)

If the first k items are not all taken, then the competitive ratio is at most k−1
k .

The next item ok+1 has size u. Note that u ≥ 1−u
k +ε because of u > 1

k+1 and (8).
Since

∑k+1
i=1 |oi| > 1, either {o1, . . . , ok} is kept (case A), or ok+1 replaces oi for

some i ∈ {1, . . . , k} (case B). If case A occurs, then keep disclosing items of size
u until (i) either k items of size u have been disclosed but none of them entered
the current solution, or (ii) one item of size u is put into the solution (hence,
an item of size 1−u

k + ε has been removed). If case A(ii) or case B occurs, then
disclose an item of size 1−u

k + ε. One cannot improve the value of the current
solution with this last item (it does not fit, and its size is smaller than the size
of any other item of the current solution). The competitive ratio under case A(i)

is k(1−u
k +ε)

ku which tends to 1−u
ku when ε goes to zero. The competitive ratio under

cases A(ii) and B is (k−1)(1−u
k +ε)+u

(k+1)(1−u
k +ε)

which tends to (k−1)(1−u
k)+u

(k+1)(1−u
k)

= k−1+u
(k+1)(1−u)

when ε goes to zero.

Proposition 3. Instance 3 provides an upper bound of 1−u
ku when u ∈ (1

k+1 , ck],
and an upper bound of 1−ck

kck
for u ≥ ck, where

ck :=
(
k2 + k + 2 − √

(k2 + k + 2)2 − 4(k + 1)
)

/2.3

Proof. The upper bound derived from Instance 3 is max
(

k−1
k , 1−u

ku , k−1+u
(k+1)(1−u)

)
.

Since u ≤ 1
k , we know that k−1

k ≤ 1−u
ku . Thus, the upper bound is max(1−u

ku ,
k−1+u

(k+1)(1−u)) where 1−u
ku is a decreasing function of u while k−1+u

(k+1)(1−u) is increas-
ing. The cut point of these functions is ck ∈ (1

k+1 , 1
k]. By the aforementioned

observation, we have an upper bound on the competitive ratio of 1−ck
kck

when
u ≥ ck. ��

The combination of Propositions 1, 2 and 3 leads to the upper bounds
depicted in dotted on Fig. 1.

3 Lower Bounded Item Size

Given a lower bound � ∈ (0, 1] on the size of every item, we are going to show
that the best possible competitive ratio ρ(�) of deterministic online algorithms
for the unweighted knapsack problem with removable items is as follows.
3 Note that 1−ck

kck
= γk+1 and ck =

1−γk+1
γ2
k+1

.

294 L. Gourvès and A. Pagourtzis

ρ(�) =

⎧
⎨

⎩

t, if 0 ≤ � ≤ 1 − t√
�, if 1 − t < � ≤ 1/2

1, if 1/2 < � ≤ 1
(9)

See (1) for the definition of t. One can observe that the competitive ratio is
always above t. As for Sect. 2 where an upper bound was known, we begin with
lower bounds on ρ(�) followed by upper bounds on ρ(�). Together, they constitute
a characterization of ρ(�) since there is no gap.

3.1 Lower Bounds on the Competitive Ratio

When � ∈ [0, 1 − t], the characterization of ρ(�) given in (9) indicates a com-
petitive ratio of t which can be obtained with either Algorithm 1 (k = 1), or
with the algorithm of Iwama and Taketomi [12]. If � > 1/2, then there exists
a simple algorithm with competitive ratio 1: maintain in the current solution
the largest item encountered thus far. Since any solution contains at most one
item, this simple algorithm is optimal. It remains to provide a

√
�-competitive

algorithm for the case � ∈ [1− t, 1/2], cf. Algorithm 2 and Theorem 3. The proof
of Theorem 3 is deferred to an extended version of this article.

Algorithm 2. A
√

�-competitive algorithm for the case 1 − t ≤ � ≤ 1/2
1: S ← ∅
2: while a new item oi arrives do
3: if v(S) ≥ √

� then
4: Reject oi {S is not changed afterwards}
5: else if |oi| ≥ √

� then
6: S ← {oi} {S is not changed afterwards}
7: else if v(S) + |oi| ≤ 1 then
8: S ← S ∪ {oi}
9: else

10: Let o be the unique item in S
11: S gets the item of minimum size between o and oi

12: end if
13: end while

Theorem 3. Algorithm 2 is
√

�-competitive when � ∈ [1 − t, 1/2].

3.2 Upper Bounds on the Competitive Ratio

Let us begin with � ∈ (0, 1 − t].

Proposition 4. The competitive ratio of deterministic online algorithms is at
most t when � ∈ (0, 1 − t].

Removable Online Knapsack with Bounded Size Items 295

Proof. We can reuse the bound provided by Iwama and Taketomi [12, Theorem
2]. Let us give the corresponding instance for the sake of readability. The first
item o1 has size 1 − t. If o1 is not taken, then the competitive ratio is zero. The
second item o2 has size t + ε where ε is a tiny positive real. Items o1 and o2
cannot be both taken without exceeding the budget. If o2 does not replace o1,
then stop. The competitive ratio tends to 1−t

t when ε goes to zero. Otherwise o2
replaces o1, and a new item o3 of size t is disclosed. The optimum {o1, o3} has
value 1 while the algorithm’s solution has value at most t + ε. The competitive
ratio is either 1−t

t which is equal to t, or t + ε, so we have an upper bound of t.
In the instance, every item has size at least 1 − t because t + ε ≥ t ≥ 1 − t, so
the upper bound on the competitive ratio holds for all � ∈ (0, 1 − t]. ��

The next step concerns the interval (1 − t, 1
2].

Proposition 5. The competitive ratio of deterministic online algorithms is at
most

√
� when � ∈ (1 − t, 1

2].

Proof. Consider the following instance. The first item o1 has size �. If o1 is not
taken, then the competitive ratio is zero. The second item o2 has size

√
� + ε.

Since � ≤ 1, we know that
√

� + ε ≥ �. Moreover, � +
√

� + ε > 1 holds when
� ≥ 1 − t, so no feasible solution can contain both items. If o2 does not replace
o1, then stop. The competitive ratio tends to �/

√
� =

√
� when ε goes to zero.

Otherwise o2 replaces o1, and a new item o3 of size 1 − � is disclosed. The
optimum {o1, o3} has value 1 while the algorithm’s solution has value at most√

� + ε because
√

� + ε ≥ 1 − � holds when � > 1 − t, leading to a competitive
ratio which tends to

√
� when ε goes to zero. Thus, both cases lead to the same

upper bound of
√

�. ��
No upper bound is needed when � > 1/2 because an optimal algorithm has

been presented in the previous section.

4 Conclusion and Directions for Future Work

We have considered the removable online unweighted knapsack problem with
bounded size items (denoted by u and � for upper bound and lower bound,
respectively). Our contribution consists of lower and upper bounds on the best
competitive ratio for deterministic algorithms. The optimal ratio tends to 1 when
the parameter u goes to 0. A direct extension to our work would be to close the
gap for all possible values of u.

The reader may wonder what the situation is when the items are not remov-
able but their size is bounded. Given an upper bound u (resp., lower bound �) on
the item sizes, the best possible competitive ratio is 1 − u (resp., �) and simple
deterministic algorithms can achieve these ratios.

For the future, we believe that it would be interesting to combine bounded
item sizes with other approaches such as resource augmentation [13], buffering
[10], reservation [3], advice [4], or item splitting [11]. Other possible extensions of

296 L. Gourvès and A. Pagourtzis

the present work can be: exploring randomized online algorithms (as in [2,5,7,8])
with bounded size items, exploiting a possible prediction of the total number of
disclosed items, or dealing weighted items restricted to convex functions of the
size (as in [9]).

References

1. Albers, S.: Online algorithms: a survey. Math. Program. 97(1–2), 3–26 (2003)
2. Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling ad campaigns: online algo-

rithms with cancellations. In: Chuang, J., Fortnow, L., Pu, P. (eds.) Proceedings
10th ACM Conference on Electronic Commerce (EC-2009), Stanford, California,
USA, 6–10 July 2009, pp. 61–70. ACM (2009)

3. Böckenhauer, H., Burjons, E., Hromkovic, J., Lotze, H., Rossmanith, P.: Online
simple knapsack with reservation costs. In: Bläser, M., Monmege, B. (eds.) STACS
2021, 16–19 March 2021, Saarbrücken, Germany (Virtual Conference). LIPIcs, vol.
187, pp. 16:1–16:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

4. Böckenhauer, H., Komm, D., Královic, R., Rossmanith, P.: The online knapsack
problem: advice and randomization. Theor. Comput. Sci. 527, 61–72 (2014)

5. Cygan, M., Jez, L., Sgall, J.: Online knapsack revisited. Theory Comput. Syst.
58(1), 153–190 (2016)

6. Demko, S., Hill, T.P.: Equitable distribution of indivisible objects. Math. Soc. Sci.
16(2), 145–158 (1988)

7. Han, X., Kawase, Y., Makino, K.: Online unweighted knapsack problem with
removal cost. Algorithmica 70(1), 76–91 (2014)

8. Han, X., Kawase, Y., Makino, K.: Randomized algorithms for online knapsack
problems. Theor. Comput. Sci. 562, 395–405 (2015)

9. Han, X., Kawase, Y., Makino, K., Guo, H.: Online removable knapsack problem
under convex function. Theor. Comput. Sci. 540, 62–69 (2014)

10. Han, X., Kawase, Y., Makino, K., Yokomaku, H.: Online knapsack problems with
a resource buffer. In: Lu, P., Zhang, G. (eds.) ISAAC 2019, 8–11 December 2019,
Shanghai University of Finance and Economics, Shanghai, China. LIPIcs, vol. 149,
pp. 28:1–28:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

11. Han, X., Makino, K.: Online removable knapsack with limited cuts. Theor. Com-
put. Sci. 411(44–46), 3956–3964 (2010)

12. Iwama, K., Taketomi, S.: Removable online knapsack problems. In: ICALP 2002,
Malaga, Spain, 8–13 July 2002, Proceedings, pp. 293–305 (2002)

13. Iwama, K., Zhang, G.: Online knapsack with resource augmentation. Inf. Process.
Lett. 110(22), 1016–1020 (2010)

14. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin
(2004). https://doi.org/10.1007/978-3-540-24777-7

15. Lueker, G.S.: Average-case analysis of off-line and on-line knapsack problems. J.
Algorithms 29(2), 277–305 (1998)

16. Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems.
Math. Program. 68, 73–104 (1995)

17. Zhou, Y., Chakrabarty, D., Lukose, R.: Budget constrained bidding in keyword
auctions and online knapsack problems. In: Papadimitriou, C., Zhang, S. (eds.)
WINE 2008. LNCS, vol. 5385, pp. 566–576. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-92185-1 63

https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1007/978-3-540-92185-1_63
https://doi.org/10.1007/978-3-540-92185-1_63

Faster Winner Determination Algorithms
for (Colored) Arc Kayles

Tesshu Hanaka1 , Hironori Kiya2 , Michael Lampis3 , Hirotaka Ono4 ,
and Kanae Yoshiwatari4(B)

1 Department of Informatics, Faculty of Information Science and Electrical
Engineering, Kyushu University, Fukuoka, Japan

hanaka@inf.kyushu-u.ac.jp
2 Department of Informatics, Department of Core Informatics,

Osaka Metropolitan University, Osaka, Japan
kiya@omu.ac.jp

3 Université Paris-Dauphine, PSL University, CNRS, LAMSADE,
75016 Paris, France

michail.lampis@lamsade.dauphine.fr
4 Department of Mathematical Informatics, Graduate School of Informatics,

Nagoya University, Nagoya, Japan
yoshiwatari.kanae.w1@s.mail.nagoya-u.ac.jp, ono@nagoya-u.jp

Abstract. Arc Kayles and Colored Arc Kayles, two-player games
on a graph, are generalized versions of well-studied combinatorial games
Cram and Domineering, respectively. In Arc Kayles, players alter-
nately choose an edge to remove with its adjacent edges, and the player
who cannot move is the loser. Colored Arc Kayles is similarly played
on a graph with edges colored in black, white, or gray, while the black
(resp., white) player can choose only a gray or black (resp., white) edge.
For Arc Kayles, the vertex cover number (i.e., the minimum size of
a vertex cover) is an essential invariant because it is known that twice
the vertex cover number upper bounds the number of turns of Arc
Kayles, and for the winner determination of (Colored) Arc Kayles,

2O(τ2)nO(1)-time algorithms are known, where τ is the vertex cover num-
ber and n is the number of vertices. In this paper, we first give a polyno-
mial kernel for Colored Arc Kayles parameterized by τ , which leads
to a faster 2O(τ log τ)nO(1)-time algorithm for Colored Arc Kayles. We
then focus on Arc Kayles on trees, and propose a 2.2361τnO(1)-time
algorithm. Furthermore, we show that the winner determination Arc
Kayles on a tree can be solved in O(1.3831n) time, which improves the
best-known running time O(1.4143n). Finally, we show that Colored
Arc Kayles is NP-hard, the first hardness result in the family of the
above games.

Keywords: Arc Kayles · Combinatorial Game Theory · Exact
Exponential-Time Algorithm · Vertex Cover

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 297–310, 2024.
https://doi.org/10.1007/978-3-031-52113-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_21&domain=pdf
http://orcid.org/0000-0001-6943-856X
http://orcid.org/0000-0002-0742-4477
http://orcid.org/0000-0002-5791-0887
http://orcid.org/0000-0003-0845-3947
http://orcid.org/0000-0001-5259-7644
https://doi.org/10.1007/978-3-031-52113-3_21

298 T. Hanaka et al.

1 Introduction

Arc Kayles is a combinatorial game played on a graph. In Arc Kayles, a
player chooses an edge of an undirected graph G and then the selected edge and
its neighboring edges are removed from G. In other words, a player chooses two
adjacent vertices to occupy. The player who cannot choose adjacent two vertices
loses the game.

Node Kayles, a vertex version of Arc Kayles, and Arc Kayles were
introduced in 1978 by Schaefer [14]. The complexity of Node Kayles is shown
to be PSPACE-complete, whereas the complexity of Arc Kayles is remains
open. An important aspect of Arc Kayles is that it is a graph generalization
of Cram, which is a well-studied combinatorial game introduced in [8]. Cram is
a simple board game: two people alternately put a domino on a checkerboard, and
the player who cannot place a domino will lose the game. Cram is interpreted
as Arc Kayles, when a graph is a two-dimensional grid graph. Though Cram
is quite more restricted than Arc Kayles, its complexity remains open. Since
an algorithm for Arc Kayles also works for Cram, a study for Arc Kayles
would help the study for Cram.

This paper presents new winner-determination algorithms together with elab-
orate running time analyses. The running time of our algorithms is parameterized
by the vertex cover number of a graph. Note that the vertex cover number of
a graph is strongly related to the number of turns of Arc Kayles, which is
the total number of actions taken by two players, as seen below. Intuitively,
the number of turns tends to reflect the complexity of a game because it is
the depth of the game tree, and it is reasonable to focus on it when we design
winner-determination algorithms.

The relation between the number of turns of Arc Kayles and the vertex
cover number of the graphs it is played on is observed as follows. During a game
of Arc Kayles, edges chosen by the players form a matching, and the player
who completes a maximal matching wins; the number of turns in a game is the
size of the corresponding maximal matching. Since the maximum matching size
is at most twice the minimum maximal matching size, which is also at most
twice the minimum vertex cover number, the number of turns of Arc Kayles
is linearly upper and lower bounded by the vertex cover number.

1.1 Partisan Variants of ARC KAYLES

In this paper, we also study partisan variants of Arc Kayles: Colored Arc
Kayles and BW-Arc Kayles. In combinatorial game theory, a game is said
to be partisan if some actions are available to one player and not to the other.
Colored Arc Kayles, introduced in [19], is played on an edge-colored graph
G = (V,EB ∪ EW ∪ EG), where EB, EW, EG are disjoint. The subscripts B, W,
and G of EB, EW, and EG respectively stand for black, white, and gray. For
every edge e ∈ EB ∪ EW ∪ EG, let c(e) be the color of e, that is, B if e ∈ EB, W
if e ∈ EW, and G if e ∈ EG. If {u, v} �∈ EB ∪ EW ∪ EG, we set c({u, v}) = ∅ for
convenience. Since the first (black or B) player can choose black or gray edges,

Faster Winner Determination Algorithms for (Colored) Arc Kayles 299

and the second (white or W) player can choose white or gray edges, Colored
Arc Kayles is a partisan game. Note that Colored Arc Kayles with empty
EB and EW is actually Arc Kayles, which is no longer a partisan and is said to
be impartial. We also name Colored Arc Kayles with empty EG BW-Arc
Kayles, which is still partisan. This paper presents a fixed-parameter tractable
(FPT) winner-determination algorithm also for Colored Arc Kayles, which
is parameterized by vertex cover number.

Here, we introduce another combinatorial game called Domineering. Dom-
ineering is a partisan version of Cram; one player can place a domino only
vertically, and the other player can place one only horizontally. As Arc Kayles
is a graph generalization of Cram, BW-Arc Kayles is a graph generalization
of Domineering. Note that Domineering is also a well-studied combinato-
rial game. In fact, several books of combinatorial game theory (e.g., [1]) use
Domineering as a common example of partisan games, though its time com-
plexity is still unknown in general. Our algorithm mentioned above works for
Domineering.

1.2 Related Work

Node Kayles and Arc Kayles. As mentioned above, Node Kayles and Arc
Kayles were introduced in [14]. Node Kayles is the vertex version of Arc
Kayles; the action of a player in Node Kayles is to select a vertex instead of an
edge, and then the selected vertex and its neighboring vertices are removed. The
winner determination of Node Kayles is known to be PSPACE-complete in
general [14], though it can be solved in polynomial time by using Sprague-Grundy
theory [2] for graphs of bounded asteroidal number, such as comparability graphs
and cographs. For general graphs, Bodlaender et al. propose an O(1.6031n)-time
algorithm [3]. Furthermore, they show that the winner of Node Kayles can
be determined in time O(1.4423n) on trees. In [11], Kobayashi sophisticates
the analysis of the algorithm in [3] from the perspective of the parameterized
complexity and shows that it can be solved in time O∗(1.6031μ), where μ is
the modular width of an input graph1. He also gives an O∗(3τ)-time algorithm,
where τ is the vertex cover number, and a linear kernel when parameterized by
neighborhood diversity.

Different from Node Kayles, the complexity of Arc Kayles has remained
open for more than 45 years. Even for subclasses of trees, not much is known.
For example, Huggans and Stevens study Arc Kayles on subdivided stars
with three paths [10]. To the best of our knowledge, until a few years ago no
exponential-time algorithm for Arc Kayles existed except for an O∗(4τ2

)-time
algorithm proposed in [13]. In [9,19], the authors showed that the winner of
Arc Kayles on trees can be determined in O∗(2n/2) = O(1.4143n) time, which
improves O∗(3n/3)(= O(1.4423n)) by a direct adjustment of the analysis of Bod-
laender et al.’s O∗(3n/3)-time algorithm for Node Kayles on trees.

1 The O∗(·) notation suppresses polynomial factors in the input size.

300 T. Hanaka et al.

BW-Arc Kayles and Colored Arc Kayles. BW-Arc Kayles and
Colored Arc Kayles were introduced in [9,19]. The paper presented an
O∗(1.4143τ2+3.17τ)-time algorithm for Colored Arc Kayles, where τ is
the vertex cover number. The algorithm runs in time O∗(1.3161τ2+4τ) and
O∗(1.1893τ2+6.34τ) for BW-Arc Kayles and Arc Kayles, respectively. This
is faster than the previously known time complexity O∗(4τ2

) in [13]. They also
give a bad instance for the proposed algorithm, which implies the running time
analysis is asymptotically tight. Furthermore, they show that the winner of Arc
Kayles can be determined in time O∗((n/ν + 1)ν), where ν is the neighborhood
diversity of an input graph. This analysis is also asymptotically tight.

Cram and Domineering. Cram and Domineering are well-studied in the
field of combinatorial game theory. In [8], Gardner gives winning strategies for
some simple cases. For Cram on an a×b board, the second player can always win
if both a and b are even, and the first player can always win if one of a and b is
even and the other is odd. This can be easily shown by the so-called Tweedledum
and Tweedledee strategy. For specific sizes of boards, computational studies have
been conducted [17]. In [16], Cram’s endgame databases for all board sizes with
at most 30 squares are constructed. As far as the authors know, the complexity
to determine the winner for Cram on general boards still remains open.

Finding the winning strategies of Domineering for specific sizes of boards
by using computer programs is well studied. For example, the cases of 8 × 8
and 10 × 10 are solved in 2000 [4] and 2002 [5], respectively. The first player
wins in both cases. Currently, the status of boards up to 11 × 11 is known [15].
In [18], endgame databases for all single-component positions up to 15 squares
for Domineering are constructed. The complexity of Domineering on general
boards also remains open. Lachmann, Moore, and Rapaport show that the win-
ner and a winning strategy of Domineering on m × n board can be computed
in polynomial time for m ∈ {1, 2, 3, 4, 5, 7, 9, 11} and all n [12].

1.3 Our Contribution

In this paper, we present FPT winner-determination algorithms with the min-
imum vertex cover number τ as a parameter, which is much faster than the
existing ones. To this end, we show that Colored Arc Kayles has a polyno-
mial kernel parameterized by τ , which leads to a 2O(τ log τ)nO(1) time algorithm
where n is the number of the vertices (Sect. 2); this improves the previous time
complexity 2O(τ2)nO(1). For Arc Kayles on trees, we show that the winner
determination can be done in time O∗(5τ/2)(= O(2.2361τ)) (Sect. 3), together
with an elaborate analysis of time O∗(7n/6)(= O(1.3831n)), which improves the
previous bound O∗(2n/2)(= O(1.4142n)) (Sect. 4). Finally, Sect. 5 shows that
BW-Arc Kayles is NP-hard, and thus so is Colored Arc Kayles. Note
that this might be the first hardness result on the family of the combinatorial
games shown in Sect. 1.2 except for Node Kayles.

Faster Winner Determination Algorithms for (Colored) Arc Kayles 301

1.4 Preliminaries

Let G = (V,E) be an undirected graph. We denote n = |V | and m = |E|,
respectively. For an edge e = {u, v} ∈ E, we define Γ(e) = {e′ ∈ E | e ∩ e′ �= ∅}.
For a graph G = (V,E) and a vertex subset V ′ ⊆ V , we denote by G[V ′] the
subgraph induced by V ′. For simplicity, we denote by G−v instead of G[V \{v}]
the graph obtained by deleting a vertex v, and by G − V ′ instead of G[V \ V ′]
the graph obtained by deleting all vertices in V ′, respectively. For an edge subset
E′, we also denote by G − E′ the subgraph obtained from G by removing all
edges in E′ from G. A vertex set S is called a vertex cover if e ∩ S �= ∅ for every
edge e ∈ E. Let τ denote the size of a minimum vertex cover of G, which is also
called the vertex cover number of G. For the basic definitions of parameterized
complexity such as fixed-parameter tractability, polynomial kernels, and graph
parameters, we refer the reader to the standard textbook [7].

2 A Polynomial Kernel for Colored Arc Kayles

Our main result in this section is that Colored Arc Kayles admits a poly-
nomial kernel when parameterized by the size τ of a given vertex cover. Since
Colored Arc Kayles generalizes standard Arc Kayles and our kerneliza-
tion algorithm proceeds by deleting edges of the input graph, we obtain the same
result for Arc Kayles.

Before we proceed, let us give some intuition about the main idea. To make
things simpler, let us first consider (standard) Arc Kayles parameterized by
the size of a vertex cover τ . One way in which we could hope to obtain a kernel
could be via the following observation: if a vertex x ∈ C, where C is the vertex
cover, has high degree (say, degree at least τ +1), then we can guarantee that this
vertex can always be played, or more precisely, that it is impossible to eliminate
this vertex by playing on edges incident with its neighbors, since the game cannot
last more than τ rounds. One could then be tempted to argue that, therefore,
when a vertex has sufficiently high degree, we can delete one of its incident edges.
If we thus bound the maximum degree of vertices of C, we obtain a polynomial
kernel.

Unfortunately, there is a clear flaw in the above intuition: suppose that x is
a high-degree vertex of C as before, xy an edge, and x′y another edge of the
graph, for x′ ∈ C. If x′ is a low-degree vertex, then deciding whether to play xy
or another edge incident with x is consequential, as the player needs to decide
whether the strategy is to eliminate x′ by playing one of its incident edges, or
by playing edges incident with its neighbors. We therefore need a property more
subtle than simply a vertex that has high degree.

To avoid the flaw described in the previous paragraph, we therefore look for
a dense sub-structure: a set of vertices X ⊆ C such that there exists a set of
vertices Y ⊆ V \ C where all vertices of X have many neighbors in Y and at
the same time vertices of Y have no neighbors outside X. In such a structure
the initial intuition does apply: playing an edge xy with x ∈ X and y ∈ Y is
equivalent to playing any other edge xy′ with y′ ∈ Y , because other vertices of

302 T. Hanaka et al.

X “don’t care” which vertices of Y have been eliminated (since vertices of X
have high degree), while vertices outside of X “don’t care” because they are not
connected to Y . Our main technical tool is then to give a definition (Definition 1)
which captures and generalizes this intuition to the colored version of the game:
we are looking for (possibly non-disjoint) sets XW ,XB ⊆ C and Y ⊆ V \ C,
such that each vertex of XW and XB has many edges playable by White or
Black respectively with the other endpoint in Y , while edges incident with Y
have their other endpoint in some appropriate part of XW ∪XB (white edges in
XW , black edges in XB , and gray edges in XW ∩ XB). We show that if we can
find such a structure, then we can safely remove an edge (Lemma 1) and then
show that in polynomial time we can either find such a structure or guarantee
that the size of the graph is bounded to obtain the main result (Theorem 1).

Definition 1. Let G = (V,E) be an instance of Colored Arc Kayles, with
E = EW ∪ EB ∪ EG, C ⊆ V be a vertex cover of G of size τ , and I = V \ C.
Then, for three sets of vertices XW ,XB , Y we say that (XW ,XB , Y) is a dense
triple if we have the following: (i) XW ,XB ⊆ C and Y ⊆ I (ii) for each x ∈ XW

(respectively x ∈ XB) there exist at least τ + 1 edges in EW ∪ EG (respectively
in EB ∪ EG) incident with x with the other endpoint in Y (iii) for all y ∈ Y
all edges of EG incident with y have their second endpoint in XW ∩ XB (iv) for
all y ∈ Y all edges of EW (respectively of EB) incident with y have their second
endpoint in XW (respectively in XB).

Lemma 1. Let G = (V,E) be an instance of Colored Arc Kayles and
C ⊆ V be a vertex cover of G of size τ . Then, for any edge e ∈ E incident with
a vertex of Y and any r > 0 we have the following: a player (Black or White)
has a strategy to win Arc Kayles in G in at most r moves if and only if the same
player has a strategy to win Arc Kayles in G − e in at most r moves.

Proof. We prove the lemma by induction on the size τ of C. For τ = 0 the
lemma holds, as there are no edges to delete. We therefore start with τ = 1, so
C contains a single vertex, say C = {x}. Suppose without loss of generality that
Black is playing first (the other case is symmetric). If XB = ∅ and XW = ∅, then
Y may only contain isolated vertices, so again there is no edge e that satisfies
the conditions of the lemma, so the claim is vacuous. If XB = ∅ and XW = {x},
then any e that satisfies the conditions of the lemma must have e ∈ EW . Clearly,
deleting such an edge does not affect the answer, as this edge cannot be played.
If on the other hand, XB = {x}, then |EB |+ |EG| ≥ 2 (to satisfy condition (ii)),
hence the current instance is a win for Black in one move, and removing any
edge does not change this fact.

For the inductive step, suppose the lemma is true for all graphs with vertex
cover at most τ −1. We must prove that optimal strategies are preserved in both
directions. To be more precise, the optimal strategy of a player is defined as the
strategy which guarantees that the player will win in the minimum number of
rounds if the player has a winning strategy, or guarantees that the game will
last as long as possible if the player has no winning strategy.

Faster Winner Determination Algorithms for (Colored) Arc Kayles 303

For the easy direction, suppose that the first player has an optimal strategy
in G − e which starts by playing an edge f = ab. This edge also exists in G,
so we formulate a strategy in G that is at least as good for the first player by
again initially playing f in G. Now, let G1 = G − {a, b} be the resulting graph,
and G2 = G − e − {a, b} be the resulting graph when we play in G − e. If e has
an endpoint in {a, b}, then G1, G2 are actually isomorphic, so clearly the first
player’s strategy in G is at least as good as her strategy in G − e and we are
done. Otherwise, G2 = G1 − e and we claim that we can apply the inductive
hypothesis to G1 and G2, proving that the two graphs have the same winner
in the same number of moves and hence our strategy is winning for G. Indeed,
G1 has a vertex cover of size at most τ − 1. Furthermore, if (XW ,XB , Y) is a
dense triple of G, then (XW \ {a, b},XB \ {a, b}, Y \ {a, b}) is a dense triple of
G1, because Y contains at most one vertex from {a, b}, hence each vertex of
XW ∪XB has lost at most one edge connecting it to Y . Therefore, the inductive
hypothesis applies, as G2 = G1 − e and e is an edge incident with Y \ {a, b}.

For the more involved direction, suppose that the first player has an optimal
strategy in G for which we consider several cases:

1. The optimal strategy in G initially plays an edge f that shares no endpoints
with e.

2. The optimal strategy in G initially plays an edge f that shares exactly one
endpoint with e.

3. The optimal strategy in G initially plays e.

For the first case, let G1 be the graph resulting from playing f in G, and
G2 be the graph resulting from playing f in G − e. Again, as in the previous
direction, we observe that we can apply the inductive hypothesis on G1, G2, and
therefore playing f is an equally good strategy in G − e.

For the second case, it is even easier to see that playing f is an equally good
strategy in G − e, as G1, G2 are now isomorphic (playing f in G removes the
edge e that distinguishes G from G − e).

Finally, for the more involved case, suppose without loss of generality that
Black is playing first in G and has an optimal strategy that begins by playing e,
therefore e ∈ EB ∪ EG. Let e = xy with x ∈ XB and y ∈ Y . We will attempt to
find an equally good strategy for Black in G − e. By condition (ii) of Definition
1, x has τ > 1 other incident edges that Black can play, whose second endpoint
is in Y . Let e′ = xy′ be such an edge, with y′ ∈ Y . Let G1 = G − {x, y} and
G2 = G − {x, y′}. It is sufficient to prove that G1 and G2 have the same winner
in the same number of moves, if White plays first on both graphs. For this, we
will again apply the inductive hypothesis, though this time it will be slightly
more complicated, since G1, G2 may differ in many edges. We will work around
this difficulty by adding (rather than removing) edges to both graphs, so that
we eventually arrive at isomorphic graphs, without changing the winner.

Take G1 and observe that (XW \ {x},XB \ {x}, Y \ {y}) is a dense triple, as
the vertex cover of G1 has size at most τ − 1, and each vertex of XB ∪ XW has
lost at most one neighbor in Y . Add the vertex y to G1 as an isolated vertex

304 T. Hanaka et al.

(this clearly does not affect the winner). Furthermore, (XW \ {x},XB \ {x}, Y)
is a dense triple of the new graph. We now observe that adding a white edge
from y to XW \ {x}, or a black edge from y to XB \ {x}, or a gray edge from
y to (XW ∩ XB) \ {x} does not affect the fact that (XW \ {x},XB \ {x}, Y) is
a dense triple. Hence, by inductive hypothesis, it does not affect the winner or
the number of moves needed to win. Repeating this, we add to G1 all the edges
incident with y in G2. We then take G2, add to it y′ as an isolated vertex, and
then use the same argument to add to it all edges incident to y′ in G1 without
changing the winner. We have thus arrived at two isomorphic graphs. 	

Theorem 1. There is a polynomial time algorithm which takes as input an
instance G of Colored Arc Kayles and a vertex cover of G of size τ and
outputs an instance G′, such that G′ has O(τ3) edges, and for all r > 0 a player
(Black or White) has a strategy to win in r moves in G if and only if the same
player has a strategy to win in r moves in G′. Hence, Colored Arc Kayles
admits a kernel with O(τ3) edges.

Proof. We describe an algorithm that finds a dense triple, if one exists, in the
input graph G = (V,E). If we find such a triple, we can invoke Lemma 1 to
delete an edge from the graph, without changing the answer, and then repeat
the process. Otherwise, we will argue that the G must already have the required
number of edges. We assume that we are given a vertex cover C of G of size
τ ≥ 1 and I = V \ C. If not, a 2-approximate vertex cover can be found in
polynomial time using standard algorithms.

The algorithm executes the following rules exhaustively, until no rule can be
applied, always preferring to apply lower-numbered rules.

1. If C contains an isolated vertex, delete it.
2. If there exists x ∈ C such that x is incident with at most τ edges of EB ∪EG

and at most τ edges of EW ∪ EG, then delete N(x) ∩ I from G.
3. If there exists x ∈ C such that x is incident with at least 1 and at most τ

edges of EB ∪ EG, then for each y ∈ I such that xy ∈ EB ∪ EG, delete y
from G.

4. If there exists x ∈ C such that x is incident with at least 1 and at most τ
edges of EW ∪ EG, then for each y ∈ I such that xy ∈ EW ∪ EG, delete y
from G.

The rules above can clearly be executed in polynomial time. We now first
prove that the rules are safe via the following two claims.

Claim. If G contains a dense triple (XW ,XB , Y), then applying any of the rules
will result in a graph where (XW ,XB , Y) is still a dense triple.

Proof. It is in fact sufficient to prove that the rules will never delete a vertex of
XW ∪XB ∪Y , because if we only delete vertices outside a dense triple, the dense
triple remains valid. Vertices removed by the first rule clearly cannot belong to
XB ∪ XW . For the second rule, we observe that if x satisfies the conditions of

Faster Winner Determination Algorithms for (Colored) Arc Kayles 305

the rule, then x �∈ XW ∪ XB , as that would violate condition (ii) of Definition
1. Since x �∈ XW ∪ XB , for any y ∈ I such that xy ∈ E, it must be the case
that y �∈ Y , therefore it is safe to delete such vertices. For the third rule, we
observe that x �∈ XB , because that would violate condition (ii) of Definition 1.
Therefore, if y ∈ I such that xy ∈ EB ∪ EG, we have y �∈ Y by conditions (iii)
and (iv) of Definition 1, and it is safe to delete such vertices. The last rule is
similar. 	

Claim. If, after applying the rules exhaustively, the resulting graph is not edge-
less, then we can construct a dense triple.

Proof. We can construct a dense triple (XW ,XB , Y) as follows: place all remain-
ing vertices of C which are still incident with an edge of EW (respectively of
EB) into XW (respectively into XB), place all vertices of C still incident with
an edge of EG into both XW and XB , and place all remaining vertices of I into
Y . The dense triple thus constructed is also a dense triple in the original graph.

We prove the claim by induction on the number of rule applications. Let
G0 = G,G1, G2, . . . , G� be the sequence of graphs we obtain by executing the
algorithm, where Gi+1 is obtained from Gi by applying a rule. We first show
that (XW ,XB , Y) is a dense triple in the final graph G�. Consider a vertex
x ∈ XW \ XB . By construction x is incident with an edge of EW in G� but on
no edge of EB ∪ EG. We can see that x satisfies condition (ii) of Definition 1
because if it were incident with at most k edges of EW , the second rule would have
applied. Similarly, vertices of XB \XW satisfy condition (ii). For x ∈ XW ∩XB ,
by construction either x is incident with an edge of EG or it is incident with
edges from both EW and EB . Therefore, x is incident with at least 1 edge of
EW ∪EG and at least 1 edge of EB ∪EG. As a result, if x violated condition (ii),
the third or fourth rules would have applied. Condition (iii) is satisfied because
we placed all vertices of C incident with an edge of EG into XW ∩XB . Condition
(iv) is satisfied because we placed all vertices of C incident with an edge of EW

into XW (similarly for EB).
Having established the base case, suppose we have some r < � such

that (XW ,XB , Y) is a dense triple in all of Gr+1, . . . , G�. We will show that
(XW ,XB , Y) is also a dense triple in Gr. If Gr+1 is obtained from Gr by apply-
ing the first rule, this is easy to see, as adding an isolated vertex to Gr+1 does
not affect the validity of the dense triple. If on the other hand, we obtained Gr+1

by applying one of the other rules, then we deleted from Gr some vertices of I.
However, adding to Gr+1 some vertices to I does not affect the validity of the
dense triple, as the vertices of Y do not obtain new neighbors (hence conditions
(iii) and (iv) remain satisfied), while condition (ii) is unaffected. We conclude
that the constructed triple is valid in G. 	

The last claim shows how to construct a dense triple in G if after applying
the rules exhaustively the remaining graph is not edge-less. The kernelization
algorithm is then the following: apply the rules exhaustively. When this is no
longer possible, if the remaining graph is not edge-less, construct a dense triple

306 T. Hanaka et al.

and invoke Lemma 1 to remove an arbitrary edge of that triple. Run the ker-
nelization algorithm on the remaining graph and return the result. Otherwise, if
the graph obtained after applying all the rules is edge-less, we return the initial
graph G.

What remains is to prove that when the kernelization algorithm ceases to
make progress (that is, when applying all rules produces an edge-less graph), this
implies that the given graph must have O(τ3) edges. To see this, observe that to
apply any rule, we need a vertex x ∈ C which satisfies certain conditions. Once we
apply that rule to x, the same rule cannot be applied to x a second time, because
we delete an appropriate set of its neighbors. As a result, the algorithm will
perform O(τ) rule applications. Each rule application deletes either an isolated
vertex or at most O(τ) vertices of I. Each vertex of I is incident with O(τ) edges
(since the other endpoint of each such edge must be in C). Therefore, each rule
application removes O(τ2) edges from the graph and after O(τ) rule applications
we arrived at an edge-less graph. We conclude that the given graph contained
O(τ3) edges. 	

Corollary 1. Colored Arc Kayles can be solved in time τO(τ) + nO(1) on
graphs on n vertices, where τ is the size of a minimum vertex cover of the input
graph.

Proof. Suppose that we have a vertex cover C of size τ (otherwise one can be
found with standard FPT algorithms such as [6] in the time allowed). We first
apply the algorithm of Theorem 1 in polynomial time to reduce the graph to
O(τ3) edges. Then, we apply the simple brute force algorithm which considers
all possible edges to play for each move. Since the game cannot last for more
than τ rounds (as each move decreases the size of the vertex cover), this results
in a decision tree of size τO(τ). 	

Finally, a corollary of the above results is that Arc Kayles also admits a
polynomial kernel when parameterized by the number of rounds. This follows
because the first player has a strategy to win in a small number of rounds
only if the graph has a small vertex cover. Notice that this corollary cannot
automatically apply to the colored version of the game, because if Black has a
strategy to win in a small number of rounds, this only implies that the graph
induced by the edge of EW ∪ EG (that is, the edges playable by White) has a
small vertex cover.

Corollary 2. Arc Kayles admits a kernel of O(r3) edges and can be solved
in time rO(r) + nO(1), where the objective is to decide if the first player has a
strategy to win in at most r rounds.

Proof. Given an instance of Arc Kayles G we first compute a maximal match-
ing of G. If the matching contains at least 2r + 1 edges, then we answer no, as
the game will go on for at least r + 1 rounds, no matter which strategy the
players follow. Otherwise, by taking both endpoints of all edges in the matching
we obtain a vertex cover of size at most 4r, and we can apply Theorem 1 and
Corollary 1. 	

Faster Winner Determination Algorithms for (Colored) Arc Kayles 307

3 Arc Kayles for Trees Parameterized by Vertex Cover
Number

In [3], Bodlaender et al. showed that the winner of Node Kayles on trees
can be determined in time O∗(3n/3) = O(1.4423n). Based on the algorithm
of Bodlaender et al., Hanaka et al. showed an O∗(2n/2) = O(1.4143n) time
algorithm to determine the winner of Arc Kayles and Node Kayles on trees
in [9]. This improvement is achieved by not considering the ordering of subtrees.
Now, we show that the improved algorithm in [9] also runs in time O∗(5τ/2) =
O(2.2361τ), where τ is the vertex cover number.

We start with an introduction to the algorithm. The algorithm is based on
the algorithm for Node Kayles of Bodlaender et al. [3], which uses the Sprague-
Grundy theory. Any position of a game can be assigned a non-negative integer
called nimber. 0 is assigned to a position P if and only if the second player wins
in P in the game. Thus, in Arc Kayles nimber of a graph G is 0 when G has
no edge. When a graph has some edges, we calculate mex(S). mex(S) is the
smallest non-negative integer which is not contained in S, where S is the set of
non-negative integers. In a general game, for a position P where the winner is
not trivial, S consists of nimbers of positions reachable from P in one move, and
the nimber of P is mex(S). Thus, in Arc Kayles a nimber of a graph G with
some edges is mex(S), where S is the set of the nimbers of graphs which are
reachable from G in one move. In addition, when the graph G is disconnected,
the nimber of G can be obtained by computing bitwise XOR of the nimbers for
each connected component.

The algorithm to determine the winner for Arc Kayles on trees using
Sprague-Grundy theory is as follows: Like a DFS, we calculate the nimber of
input graph by calculating the nimbers of graphs which are reachable from input
graph in one move, and so on. Once the position has been examined, the calcu-
lation result is held and is not calculated again. In memoization, each connected
component of a tree is memorized and when for any vertex only the order of its
children is different, it is regarded as the same tree.

The exponential part of the running time of the algorithm depends on the
number of connected components that can be played in the game. When we play
Arc Kayles on a input graph T , which is a tree and the vertex cover number
of T is τ , we claim that the number of connected components that can be played
in the game is O∗(5τ/2) = O(2.2361τ) (See appendix for details).

Theorem 2. The winner of Arc Kayles on a tree whose vertex cover number
is τ can be determined in time O∗(5τ/2)(= O(2.2361τ)).

4 Arc Kayles for Trees

Continued from Sect. 3, we further analyze the winner determination algorithm
in [9] for Arc Kayles on trees. In [9], Hanaka et al. showed an O∗(2n/2) =
O(1.4143n)-time algorithm to determine the winner of Arc Kayles and Node

308 T. Hanaka et al.

Kayles on trees, and we gave another running time of the algorithm of [9] with
respect to vertex cover number in Sect. 3. Now, we improve the estimation of the
running time of the algorithm and show that the winner of Arc Kayles and
Node Kayles on trees can be determined in time O∗(7n/6)(= O(1.3831n)).

Theorem 3. The winner of Arc Kayles on a tree with n vertices can be
determined in time O∗(7n/6) = O(1.3831n).

Theorem 4. The winner of Node Kayles on a tree with n vertices can be
determined in time O∗(7n/6)(= O(1.3831n)).

5 NP-Hardness of BW-Arc Kayles

The complexity to determine the winner of combinatorial games is expected to
be PSPACE-hard, though no hardness results are known for (Colored) Arc
Kayles so far. In this section, we prove that Bw-Arc Kayles is NP-hard.

Theorem 5. BW-Arc Kayles is NP-hard.

Proof. We give a polynomial-time reduction from Vertex Cover, which is
the problem to decide whether G has a vertex cover of size at most τ . Let
G = (V,E) and τ be an instance of Vertex Cover. Now we construct an
edge-colored graph G′ from G such that the black player has a winning strategy
on G′ playing first if and only if G has a vertex cover of size at most τ .

We construct G′ as follows. The graph G′ consists of three layers as shown
in Fig. 1. The bottom layer corresponds to G = (V,E); the vertex and edge sets
are copies of V and E, which we call with the same name V and E. The edges in
E are colored in white. The middle layer is a clique with size 2τ − 1, where the
vertex set is U = {u1, . . . , u2τ−1} and all edges are colored in black. The top layer
consists of two vertex sets B = {b1, . . . , b2τ−1} and W = {w1, . . . , w2τ−1}, where
they are independent. The bottom and middle layers are completely connected
by black edge set EV,U = {{v, u} | v ∈ V, u ∈ U}. The middle and top layers are
connected by black edge set EU,B = {{ui, bi} | i = 1, . . . , 2τ − 1} and white edge
set EU,W = {{ui, wi} | i = 1, . . . , 2τ − 1}.

Let S be a vertex cover of G of size τ . For S, we define ES,U = {{v, u} ∈
EV,U | v ∈ S}. Note that the second (white) player can choose only edges in
EU,W or E. The strategy of the first (black) player is as follows. In the first
turn, the black player just chooses an edge in ES,U . After that, the black player
chooses an edge according to which edge the white player chooses right before
the black turn. If the white player chooses an edge in EU,W , let the black player
choose an edge in ES,U in the next black turn. Otherwise, i.e., the white player
chooses an edge in E, let the black player choose an edge in the middle layer in
the next black turn. This is the strategy of the black player.

We now show that this is a winning strategy for the black player. If the
black player following this strategy can choose an edge in every turn right after
the white player’s action, the black player is the winner. In fact, this procedure
continues at most 2τ − 1 turns because exactly two vertices in U and at least

Faster Winner Determination Algorithms for (Colored) Arc Kayles 309

Fig. 1. The constructed graph G′.

one vertex in S are removed in every two turns (a white turn and the next black
turn) under this strategy; after 2τ − 1 turns, no white edge is left and the next
player is the white player. Thus what we need to show here is that the black
player following this strategy can choose an edge in every turn right after the
white player’s action. Under this strategy, E can become empty before 2τ − 1
turns. In this case, the black player chooses an edge in EU,B instead of an edge
in ES,U if the white player chooses an edge EU,W . This makes that exactly two
vertices in U are removed in every two turns. Then, the black player wins in the
same way as above.

Next, we show that the white player has a winning strategy if G does not
have a vertex cover of size τ , i.e. |S| ≥ τ + 1. The white player can win the
game by selecting an edge in EU,W in every turn. Under this strategy, exactly
one vertex in U is removed in white player’s turn, and then the black player can
play at most τ times because the size of U is 2τ − 1. An edge which black player
can choose in his turn is EU,B or EV,U , then the black player can remove vertices
in S at most τ times. Therefore, after 2τ − 1 turns there are some vertices and
white edges in the bottom layer and there is no black edge because U is empty.
The winner is the white player. 	

Now, we consider Colored Arc Kayles. Colored Arc Kayles is gen-
eralized of Arc Kayles and BW-Arc Kayles; edges are colored black, white
and gray, and the black (resp., white) edges are selected by only the black (resp.,
white) player, while both the black and white players can select gray edges. Since
Colored Arc Kayles includes BW-Arc Kayles, we also obtain the follow-
ing corollary.

Corollary 3. Colored Arc Kayles is NP-hard.

References

1. Albert, M., Nowakowski, R., Wolfe, D.: Lessons in Play: An Introduction to Com-
binatorial Game Theory (2007)

2. Bodlaender, H.L., Kratsch, D.: Kayles and nimbers. J. Algorithms 43(1), 106–119
(2002)

310 T. Hanaka et al.

3. Bodlaender, H.L., Kratsch, D., Timmer, S.T.: Exact algorithms for kayles. Theoret.
Comput. Sci. 562, 165–176 (2015)

4. Breuker, D.M., Uiterwijk, J.W.H.M., van den Herik, H.J.: Solving 8×8 domineer-
ing. Theoret. Comput. Sci. 230(1), 195–206 (2000)

5. Bullock, N.: Domineering: solving large combinatorial search spaces. ICGA J.
25(2), 67–84 (2002)

6. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoret.
Comput. Sci. 411(40–42), 3736–3756 (2010)

7. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

8. Gardner, M.: Mathematical games: cram, crosscram and quadraphage: new games
having elusive winning strategies. Sci. Am. 230(2), 106–108 (1974)

9. Hanaka, T., Kiya, H., Ono, H., Yoshiwatari, K.: Winner determination algorithms
for graph games with matching structures. Algorithmica (2023)

10. Huggan, M.A., Stevens, B.: Polynomial time graph families for arc kayles. Integers
16, A86 (2016)

11. Kobayashi, Y.: On structural parameterizations of node kayles. In: Akiyama, J.,
Marcelo, R.M., Ruiz, M.-J.P., Uno, Y. (eds.) JCDCGGG 2018. LNCS, vol. 13034,
pp. 96–105. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90048-9 8

12. Lachmann, M., Moore, C., Rapaport, I.: Who wins domineering on rectangular
boards? arXiv preprint math/0006066 (2000)

13. Lampis, M., Mitsou, V.: The computational complexity of the game of set and its
theoretical applications. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol.
8392, pp. 24–34. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54423-1 3

14. Schaefer, T.J.: On the complexity of some two-person perfect-information games.
J. Comput. Syst. Sci. 16(2), 185–225 (1978)

15. Uiterwijk, J.W.H.M.: 11 × 11 domineering is solved: the first player wins. In: Plaat,
A., Kosters, W., van den Herik, J. (eds.) CG 2016. LNCS, vol. 10068, pp. 129–136.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50935-8 12

16. Uiterwijk, J.W.H.M.: Construction and investigation of cram endgame databases.
ICGA J. 40(4), 425–437 (2018)

17. Uiterwijk, J.W.H.M.: Solving cram using combinatorial game theory. In: Cazenave,
T., van den Herik, J., Saffidine, A., Wu, I.C. (eds.) ACG 2019. LNCS, vol. 12516,
pp. 91–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-65883-0 8

18. Uiterwijk, J.W.H.M., Barton, M.: New results for domineering from combinatorial
game theory endgame databases. Theoret. Comput. Sci. 592, 72–86 (2015)

19. Yoshiwatari, K., Kiya, H., Hanaka, T., Ono, H.: Winner determination algorithms
for graph games with matching structures. In: Bazgan, C., Fernau, H. (eds.)
IWOCA 2022. LNCS, vol. 13270, pp. 509–522. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-06678-8 37

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-030-90048-9_8
https://doi.org/10.1007/978-3-642-54423-1_3
https://doi.org/10.1007/978-3-642-54423-1_3
https://doi.org/10.1007/978-3-319-50935-8_12
https://doi.org/10.1007/978-3-030-65883-0_8
https://doi.org/10.1007/978-3-031-06678-8_37
https://doi.org/10.1007/978-3-031-06678-8_37

Automata Classes Accepting Languages
Whose Commutative Closure is Regular

Stefan Hoffmann(B)

Universität Trier, Behringstraße 21, 54296 Trier, Germany
hoffmanns.tcs@gmail.com

Abstract. The commutative closure operation, which corresponds to
the Parikh image, is a natural operation on formal languages occurring
in verification and model-checking. Commutative closures of regular lan-
guages correspond to semilinear sets and, by Parikh’s theorem, to the
commutative closures of context-free languages. The commutative clo-
sure is not regularity-preserving on the class of regular languages, for
example already the commutative closure of the simple language (ab)∗

is not regular. Here, we show that the commutative closure of a binary
regular language accepted by a circular automaton yields a regular lan-
guage. Then, we deduce a sufficient condition on the cycles in automata
for regularity of the commutative closure. This yields this property, for
example, for the following classes of automata: automata with threshold
one transformation semigroups, automata with simple idempotents and
almost-group automata. The fact that the commutative closure on group
languages and polynomials of group languages is regularity-preserving is
known in the literature. Polynomials of group languages correspond to
level one-half of the group hierarchy. We also show that on the next level
in this hierarchy, i.e., level one, this property is lost and the commutative
closure is no longer regularity-preserving. Lastly, we give a binary cir-
cular automaton not contained in the largest proper positive variety W
closed under shuffle and commutative closure.

Keywords: Automata Classes · Regularity-Preserving Operation ·
Regular Language · Commutative Closure · Commutation · Parikh
Image

1 Introduction

Having applications in regular model checking [5,7,8], or arising naturally in the
theory of traces [12,39] (one model for parallelism), the (partial) commutative
closure has been extensively studied [5,7–9,11,13,14,16,17,19,22,28,29,36,37,
39].

The full commutative closure corresponds to the Parikh image, i.e., the image
of the Parikh map [30] that counts the multiplicities of each letter in a word.
Languages whose Parikh image equals the Parikh image of some regular lan-
guage are called slip languages [15]. So, slip languages in a representation from
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 311–325, 2024.
https://doi.org/10.1007/978-3-031-52113-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_22&domain=pdf
http://orcid.org/0000-0002-7866-075X
https://doi.org/10.1007/978-3-031-52113-3_22

312 S. Hoffmann

which we can effectively obtain a regular language with the same Parikh image
have decidable emptiness problem [35]. Examples of classes of slip languages
with decidable emptiness problem are the context-free languages [30], reversal-
bounded multicounter machines [24] or Parikh automata [25] and, due to decid-
ability of emptiness, these languages are of interest in model checking and verifi-
cation. Regularity of the commutative closure of regular languages is, in general,
a decidable problem [13,16]. Here we investigate regularity of the commutative
closure on regular languages, a question that has been investigated intensively
before, see Sect. 3 or, for example [17] and the literature mentioned therein.

Contribution. First, we show that the commutative closure of a binary lan-
guage accepted by a circular automaton yields a regular language. This result
fails over larger alphabets. Indeed, the fact that results on the commutative clo-
sure might be sensitive to the alphabet size was known before in other instances.
For example, Latteux [27] and Rigo [37] proved that the commutative closure of
a binary slip language yields a context-free language, a result that is also false for
larger alphabets. We then proceed to state general (and alphabet-independent)
sufficient conditions for the regularity of the commutative closure of regular lan-
guages in terms of structural properties of accepting automata. The commutative
closure of a polynomial of group languages, a language from the first half-level
of the group hierarchy, yields a regular language [17]. We give a language show-
ing that this is optimal in terms of the group hierarchy, i.e., a language on the
next level with non-regular commutative closure. It is known, and in fact easily
seen, that for the analogously defined Straubing-Thérien hierarchy [33,41,42],
the commutative closure is regularity-preserving up to level three-half and this
is optimal [23]. However, that level one-half is optimal in the group hierarchy
does not appear to be stated in the literature and the witness language is not
obvious. Lastly, we give a binary circular automaton accepting a language not
in the positive variety W, which is closed under commutative closure [17]. As
binary circular automata are not contained in the other known classes of lan-
guages closed for commutative closure, this shows that languages accepted by
binary circular automata yield a genuinely new class of regular languages with
regular commutative closures.

2 Preliminaries

By Σ we denote a finite alphabet and by Σ∗ the set of finite sequences with
concatenation. The elements of Σ∗ are also called words. Let u ∈ Σ∗ and a ∈
Σ. By |u| we denote the length of u and by |u|a we denote the number of
occurrences of the letter a in u. The empty word, i.e., the word of length zero,
is denoted by ε. A language is a subset of Σ∗. Given L ⊆ Σ∗, the Kleene plus
is L+ = {u1 · · · un | n > 0 ∧ ∀i ∈ {1, . . . , n} : ui ∈ L} and the Kleene star
is L∗ = L+ ∪ {ε}. Let Γ be an alphabet. A morphism is a map ϕ : Σ∗ → Γ ∗

such that ϕ(uv) = ϕ(u)ϕ(v) for u, v ∈ Σ∗. The projection morphism (on Γ) for
Γ ⊆ Σ is πΓ : Σ∗ → Γ ∗ given by πΓ (x) = ε for x ∈ Σ \ Γ , πΓ (x) = x for x ∈ Γ
and πΓ (x1 · · · xn) = πΓ (x1)πΓ (x2) · · · πΓ (xn) for x1, . . . , xn ∈ Σ.

Automata Classes and Regularity of Commutation 313

The shuffle operation, denoted by , is defined by

u v = {w ∈ Σ∗ | w = x1y1x2y2 · · · xnyn for some words
x1, . . . , xn, y1, . . . , yn ∈ Σ∗ such that u = x1x2 · · · xn and v = y1y2 · · · yn}

for u, v ∈ Σ∗ and L1 L2 :=
⋃

x∈L1,y∈L2
(x y) for L1, L2 ⊆ Σ∗. The positive

iterated shuffle of L1 is L1 ∪ L1 L1 ∪ L1 L1 L1 ∪ . . ., the iterated shuffle
adds {ε} to it.

Let u ∈ Σ∗. The commutation operation, or commutative closure, is [u] =
{v ∈ Σ∗ | ∀a ∈ Σ : |u|a = |v|a}. This notation is taken from [17]. If L ⊆ Σ∗,
then we set [L] =

⋃
u∈L[u]. A language is called commutative if [L] = L.

A finite, deterministic and complete automaton over Σ (or automaton for
short) is a quintuple A = (Q,Σ, δ, q0, F) such that Σ is the input alphabet, Q
the finite state set, δ : Q × Σ → Q is a total transition function, q0 the start
(or initial) state and F the set of final states. We can extend δ to a function
δ̂ : Q×Σ∗ → Q in the usual way by setting δ̂(q, ε) = q and δ̂(q, ua) = δ(δ̂(q, u), a)
for u ∈ Σ∗, a ∈ Σ and q ∈ Q. This function is also denoted by δ in the following.
For S ⊆ Q and u ∈ Σ∗, we set δ(S, u) = {δ(q, u) | q ∈ S}. We call A a
permutation automaton if for every letter a ∈ Σ the map q �→ δ(q, a) permutes
the states.

By L(A) = {u ∈ Σ∗ | δ(q0, u) ∈ F} we denote the language recognized
(or accepted) by A. A language L ⊆ Σ∗ is called regular if there exists an
automaton A such that L = L(A).

A class of languages C is a correspondence that associates with each alpha-
bet Σ a set of languages C(Σ∗) over Σ.

We say a class C is closed for some operation if the operation, applied to
languages from C(Σ∗), yields a language in C(Σ∗). We say C is a class of regular
languages if C(Σ∗) is a set of regular languages for each Σ.

A positive variety [32] V is a class of regular languages such that, for all
alphabets Σ and Γ ,

1. V is a lattice of languages, i.e., closed under finite intersections and finite
unions,

2. for every morphism ϕ : Σ∗ → Γ ∗, if L ∈ V(Γ ∗), then ϕ−1(L) ∈ V(Σ∗),
3. for every L ∈ V(Σ∗) and u ∈ Σ∗ we have u−1L ∈ V(Σ∗) and Lu−1 ∈ V(Σ∗).

As V is a lattice of languages we have {∅, Σ∗} ⊆ V(Σ∗). We call V a variety
if V(Σ∗) is also closed under complement.

Let C be a class languages. A marked product of languages over C(Σ∗) is
a language of the form L0a0L1a1 · · · akLk with k ≥ 0, a1, . . . , ak ∈ Σ and
L1, . . . , Lk ∈ C(Σ∗). A polynomial over languages in C(Σ∗) is a finite union
of marked products over C(Σ∗). By Pol(C) we denote the class of polynomials
over C, i.e., L ∈ Pol(C)(Σ∗) iff L is a polynomial over languages in C(Σ∗).

Example 1. Let Σ be an alphabet.

1. The class of all regular languages is a variety also closed under morphisms
and shuffle.

314 S. Hoffmann

2. The class of all regular commutative languages Com is a variety of languages.
3. The variety of group languages G is given by, for Σ,

G(Σ∗) = {L ⊆ Σ∗ | L is accepted by a permutation automaton over Σ}.

4. Let I(Σ∗) = {∅, Σ∗}. Then (Pol(I))(Σ∗) are finite unions of languages of the
form Σ∗a1Σ

∗ · · · anΣ∗, a1, . . . , an ∈ Σ.
5. The class J of piecewise testable languages [40] is the Boolean closure of

Pol(I) and a variety.
6. The class J − of complements of languages in Pol(I), which is a positive

variety.

We can build up a hierarchy of languages over C(Σ∗) by setting C0(Σ∗) =
C(Σ∗) and, for n ≥ 0, let Cn+ 1

2
(Σ∗) be the polynomials over languages in Cn(Σ∗)

and let Cn+1(Σ∗) be the Boolean closure of languages from Cn+ 1
2
(Σ∗).

By starting at level zero with the finite or cofinite1 languages over Σ we obtain
the dot-depth hierarchy [10], by starting with C0(Σ∗) = {∅, Σ∗} we obtain the
Straubing-Thérien hierarchy [41,42] and by starting from G we obtain the group
hierarchy. See [33] for more information on concatenation hierarchies.

We need the following lemma, which is an easy application of the pigeonhole
principle.

Lemma 2.1. Let a1, . . . , an ∈ N0. Then there exists a subset of {a1, . . . , an}
whose sum is divisible by n.

3 Known Results

For the following classes of regular languages results for the commutation oper-
ation are known:

1. Pol(G), Pol(I), J , J −, Pol(J), Pol(Com),
2. the unique maximal positive variety W of languages that does not contain

the language (ab)∗ for every a �= b [18],
3. the class SE(G), defined as the closure of G under shuffle, iterated shuffle,

concatenation, union and Kleene star [20].

Languages from Pol(J) can be written as finite unions of languages of the
form Σ∗

0a1Σ
∗
1 · · · anΣ∗

n with Σi ⊆ Σ and a1, . . . , an ∈ Σ (see Arfi [1, Thm. 1.3])
and are also known as Alphabetical Pattern Constraints [5].

The next theorem summarizes results from Guaiana, Restivo and Salemi [19],
Bouajjani, Muscholl and Touili [5], Cécé, Héam and Mainier [7,8], Cano, Guaiana
and Pin [17] and Hoffmann [20].

Theorem 3.1. The following properties hold:

1 A language is cofinite if its complement is finite.

Automata Classes and Regularity of Commutation 315

1. the classes Pol(G), W, Pol(I), J , J −, Pol(J) and Pol(Com) are all closed
under commutation,

2. commutation on SE(G) is regularity-preserving.

Actually, a couple of the results mentioned in Theorem 3.1 hold for more
general partial commutation closures (sometimes also called trace closures [12]).
However, as in this work we are only concerned with the (full) commutative
closure, we do not introduce this more general notion and instead refer to the
literature [12,17].

4 Circular Automata over a Binary Alphabet

The alphabet Σ is said to be a binary alphabet if |Σ| = 2. An automaton A =
(Q,Σ, δ, q0, F) is called circular if there exists b ∈ Σ cyclically permuting the
states, i.e., δ(q, b|Q|) = q and Q = {δ(q, bi) | i ≥ 0} for some (and hence all)
q ∈ Q. So, the states can be arranged in a cycle traversed by the letter b.

Here, we show that for circular automata over a binary alphabet, the com-
mutative closure yields a regular language. This result does not hold for larger
alphabets, see Fig. 1. First, after introducing the positive variety Com+ and a
characterization of it, we show a lemma about the regularity of the commutative
closure of certain regular languages over a binary alphabet and another lemma
on the commutative closure of languages accepted by circular automata over a
binary alphabet. Then we prove the result as a consequence of both lemmas.

Fig. 1. A circular automaton A over Σ = {a, b, c} such that the commutative closure of
the recognized language is not regular, as [L(A)]∩{a, b}∗ = {u ∈ {a, b}∗ : |u|a = |u|b}}.
The final state is marked by a double circle.

Pin [32] introduced the positive variety Com+ where Com+(Σ∗) equals the
lattice of languages generated by sets of the form F (a, t) = {u ∈ Σ+ : |u|a ≥ t}
and F (a, r, n) = {u ∈ Σ∗ : |u|a ≡ r (mod n)} for a ∈ Σ, t ≥ 0 and 0 ≤ r < n.
Every language in Com+(Σ∗) is regular and the following characterization of
those languages in Com+(Σ∗) was obtained by Hoffmann [21, Thm. 31].

Theorem 4.1 ([21, Thm. 31]). Let L ⊆ Σ∗ be commutative. Then we have
L ∈ Com+(Σ∗) if and only if there exists P > 0 such that for all a ∈ Σ and
u ∈ L we have uaP ∈ L.

316 S. Hoffmann

Observe that for commutative L ⊆ Σ∗ we have uaP ∈ L iff [u] aP ⊆ L.

Lemma 4.2. Let L ⊆ {a, b}∗ be a regular language. Then for each n ≥ 0 the
language (bn a∗) ∩ [L] = {u ∈ [L] : |u|b = n} is regular.

Proof. We have (bn a∗)∩ [L] = bn {a|u|a : |u|b = n∧u ∈ L}. As {a|u|a : |u|b =
n ∧ u ∈ L} = π{a}(L ∩ (bn a∗)) and the regular languages are closed under
morphisms, the shuffle operation and intersection, it follows that (bn a∗)∩ [L]
is regular. ��
Lemma 4.3. Suppose A = (Q, {a, b}, δ, q0, F) is a circular automaton. Then
there exists N > 0 such that

{u ∈ Σ∗ : |u| ≥ N and [u] = [v] for some v ∈ L(A)}
is in Com+({a, b}∗).

Proof. Assume the letter b cyclically permutes the states. By finiteness, the
letter a must induce at least one cycle on the states, i.e., there exist q ∈ Q and
l > 0 such that δ(q, al) = q. In the following, we present the proof for the special
case l = 2, which is perfectly general as it contains the basic proof idea while
avoiding the notational burden of introducing additional indices. However, at
the end we indicate how to adapt the proof for general l > 0.

Set L = L(A), n = |Q|, N = 2n4 and P = 1 · 2 · 3 · · · n. Let u ∈ [L]. Then
[u] = [v] for some v ∈ L. As the letter b circularly permutes the states, it is
δ(q0, v) = δ(q0, vbn). Hence, we have vbn ∈ L and so [u] bn = [vbn] ⊆ [L]. As P
is a multiple of n we also get [u] bP ⊆ [L]. In the remaining proof, we show that
u ∈ [L] with |u| ≥ N implies u aP ⊆ [L], which gives the claim by Theorem 4.1.
Let u ∈ [L] with |u| ≥ N . Then there exists v ∈ L with [u] = [v] and we also
have |v| ≥ N . We divide the first N symbols of v into blocks of length n, i.e. we
write v = v1v2 · · · v2n3w with |vi| = n for each i ∈ {1, . . . , 2n3} and w ∈ Σ∗. By
finiteness, for each i ∈ {1, . . . , 2n3}, there exist xi, yi, zi ∈ Σ∗ and pi ∈ Q such
that vi = xiyizi, |yi| > 0, pi = δ(q0, v1 · · · vi−1xi) and δ(pi, yi) = pi.

First, assume yi = am for some i ∈ {1, . . . , 2n3} and 0 < m ≤ n. As we can
“pump up” the factor yi and still end up at the same state, we find

δ(q0, v1 · · · vi−1xiyiy
P/m
i zivi+1 · · · v2n3w) = δ(q0, v) ∈ F.

Furthermore, [v1 · · · vi−1xiyiy
P/m
i zivi+1 · · · v2n3w] = [v] aP and so [u] aP =

[v] aP ⊆ [L].
Next, suppose |yi|b > 0 for all i ∈ {1, . . . , 2n3}. By the strong pigeonhole

principle, at least 2n2 states among the states p1, . . . , p2n3 are equal. Without
loss of generality, assume p1 = . . . = p2n2 . As |yi| ≤ n (and so |yi|b ≤ n) for
all i ∈ {1, . . . , 2n3}, using the strong pigeonhole principle again, we conclude
that 2n factors among the factors y1, . . . , y2n2 have the same number of b’s.
Without loss of generality, assume |y1|b = . . . = |y2n|b. Set

x = |y1 · · · yn|a and y = |yn+1 · · · y2n|a.

Automata Classes and Regularity of Commutation 317

At least one of the numbers x, y, x+y must be even, for if x and y are odd, then
x+y is even. Without loss of generality, assume x is even. Now, as, by the above
choice, the factors y1, . . . , yn start and end at the same state, i.e., p1 = . . . = pn

with pi = δ(q0, v1 · · · vi−1xi) and δ(pi, yi) = pi for i ∈ {1, . . . , n}, we can move
them all into the first block and get a word in L (for the case that y is even we
would use the same reasoning with yn+1 · · · y2n and if x+y is even we would use
y1, . . . , y2n with the same reasoning in the following). More precisely,

δ(q0, x1y1y2 · · · ynz1x2z2 · · · xnznvn+1 · · · v2n3w) = δ(q0, v) ∈ F.

Now, consider the state q ∈ Q with δ(q, al) = q from above. As b cyclically
permutes the states, we can choose 0 ≤ M < n such that δ(q0, x1b

M) = q. Then,
as x is even, and so δ(q, ax) = q, P is a multiple of l, |y1|b > 0 and b cyclically
permutes the states, we have

δ(q0, x1) = δ(q0, x1b
|y1|b·n)

= δ(q0, x1b
M+(|y1|b·n−M))

= δ(q0, x1b
Maxb|y1|b·n−M)

= δ(q0, x1b
Max+P b|y1|b·n−M).

Hence, with |y1 · · · yn|b = |y1|b · n we get

δ(q0, x1b
Max+P b|y1···yn|b−Mz1x2z2 · · · xnznvn+1 · · · v2n3w)

= δ(q0, x1z1x2z2 · · · xnznvn+1 · · · v2n3w)
= δ(q0, x1y1y2 · · · ynz1x2z2 · · · xnznvn+1 · · · v2n3w)
= δ(q0, v) ∈ F.

So, x1b
Max+P b|y1···yn|b−Mz1x2z2 · · · xnznvn+1 · · · v2n3w ∈ L. Furthermore, it is

[bMaxb|y1···yn|b−M] = [y1 · · · yn] and so

[x1b
Maxb|y1···yn|b−Mz1x2z2 · · · xnznvn+1 · · · v2n3w] = [v],

[x1b
Max+P b|y1···yn|b−Mz1x2z2 · · · xnznvn+1 · · · v2n3w] = [v] aP .

Hence, we find [u] aP = [v] aP ⊆ [L].
Lastly, we indicate the argument for general l > 0, which uses the same idea

as in the case l = 2. In this case, we consider N = l · n4 and for u ∈ [L] with
|u| ≥ N and [u] = [v] for some v ∈ L we find nonempty factors y1, · · · , yln

in v ∈ L as above all having the same number of b’s and looping at the same
state in A. If |yi|b = 0 for some i ∈ {1, . . . , ln}, then we can pump up P times
the letter a. Otherwise, we consider the l numbers xi = |yin+1 · · · yin+n|a for
i ∈ {0, 1, . . . , l − 1} and all their sums. By Lemma 2.1 there exists a sum s that
is a multiple of l. Then we argue as above using the yi’s corresponding to this
sum by moving them to the front, rearrange the b’s to reach the state q ∈ Q
with δ(q, al) = q and pump up s + P times the letter a to obtain a word in L
with the same number of a’s and b’s as vaP . ��

318 S. Hoffmann

Theorem 4.4. Let Σ = {a, b}. If A = (Q,Σ, δ, q0, F) is a circular automaton,
then the language [L(A)] is regular.

Proof. Set L = L(A) an let N > 0 be the number according to Lemma 4.3. We
have

[L] =

(
N−1⋃

i=0

([L] ∩ (bi a∗))

)

∪ ([L] ∩ {u ∈ Σ∗ : |u|b ≥ N}).

By Lemma 4.2 the languages [L]∩ (bi a∗) for i ∈ {0, 1, . . . , N − 1} are regular.
Furthermore, it is

[L] ∩ {u ∈ Σ∗ : |u|b ≥ N} = [L] ∩ {u ∈ Σ∗ : |u| ≥ N} ∩ bNb∗ a∗.

By Lemma 4.3 the language [L] ∩ {u ∈ Σ∗ : |u| ≥ N} is regular. So, we find
that [L] is regular. ��

5 Structural Conditions on Automata

Here, we show that if each word accepted by a given automaton visits, for each
letter a ∈ Σ in the word, some state contained in a cycle labelled exclusively
by a, then the automaton accepts a language whose commutative closure is
regular. As a consequence we conclude that automata A = (Q,Σ, δ, q0, F) such
that δ(Q, aa) = δ(Q, a) for a ∈ Σ accept languages whose commutative closure
is regular. We then list a few automata families from the literature to which
this result applies. Binary circular automata are not covered by the conditions
mentioned in this section.

Hoffmann [21] introduced the positive variety Com+
S . By [21, Cor. 12] it

follows that L ⊆ Com+
S (Σ

∗) if and only if L is a finite union of languages
from {U | U ∈ Com+(Γ ∗) for some Γ ⊆ Σ.}. In [21, Thm. 33] the following
characterization was obtained.

Theorem 5.1 ([21, Thm. 33]). Let L ⊆ Σ∗ be commutative. Then we have
L ∈ Com+

S (Σ
∗) if and only if there exists P > 0 such that for all a ∈ Σ and

u ∈ L with |u|a > 0 we have uaP ∈ L.

Theorem 5.2. Let A = (Q,Σ, δ, q0, F) be an automaton with the property that
for every word u ∈ L(A) and letter a ∈ Σ with |u|a > 0, there exists a prefix
v ∈ Σ∗ of u and p > 0 such that δ(δ(q0, v), ap) = δ(q0, v), i.e., the state δ(q0, v)
is contained in a cycle whose transitions are solely labeled with the letter a. Then
[L(A)] is in Com+

S (Σ
∗).

Proof. For each a ∈ Σ, let Pa > 0 be the least common multiple of the minimal
a-cycle lengths in the automaton, i.e., set

Pa = lcm{p > 0 | ∃q ∈ Q : q = δ(q, ap) ∧ p = min{p > 0 | δ(q, ap) = q}},

Then set P = lcm{Pa | a ∈ Σ}.

Automata Classes and Regularity of Commutation 319

Let u ∈ [L(A)] and a ∈ Σ with |u|a > 0. Then there exists v ∈ [u] such that
δ(q0, v) ∈ F . By assumption, we can write v = ww′ with w,w′ ∈ Σ∗ and such
that δ(δ(q0, w), aP) = δ(q0, w). Hence δ(q0, waP w′) ∈ F . So, as waP w′ ∈ L(A)
and [waP w′] = [u] aP , we can deduce [u] aP ⊆ [L(A)]. Then Theorem 5.1
gives the claim. ��

For a binary circular automata every state is in a cycle for the letter cyclically
permuting the states. However, as the other letter can be chosen arbitrarily, it
is easy to give examples of binary circular automata accepting infinitely many
words where the condition from Theorem 5.2 does not apply. For example, when
the other letter maps every state to the predecessor state for the cycle except
one state that is mapped to itself and appropriately chosen start state and final
states.

Theorem 5.3. Let A = (Q,Σ, δ, q0, F) be an automaton such that δ(Q, aa) =
δ(Q, a) for each letter a ∈ Σ. Then the commutative closure [L(A)] is a regular
language2 in Com+

S (Σ
∗).

Proof. Let u ∈ [L(A)]. Then there exists v ∈ L(A) with v ∈ [u]. We can suppose
u �= ε. Then let a ∈ Σ be such that we can write v = waw′. Set S = δ(Q, a). Now
δ(q0, wa) ⊆ S and, as by assumption δ(S, a) = S, the state set S is permuted
by the letter a ∈ Σ. So, as each permutation can be partitioned into disjoint
cycles [6], each state in S is contained in a cycle for the letter a , i.e., there exists
p > 0 such that δ(δ(q0, wa), ap) = δ(q0, wa). Hence, the commutative closure is
regular by Theorem 5.2. ��

The minimal automaton for the language (ab)∗ (this is the automaton from
Fig. 1 but with the transitions for the letter c removed) fulfills δ(Q, aaa) =
δ(Q, aa) but [(ab)∗] = {u ∈ {a, b}∗ : |u|a = |u|b} is not regular.

Let A = (Q,Σ, δ, q0, F) be with n states. Then A is called an almost-group
automaton [3], if there exists a unique letter a ∈ Σ with |δ(Q, a)| = n − 1 and
δ(Q, aa) = δ(Q, a) (or equivalently for precisely n − 1 states q ∈ Q there exists
p > 0 such that q = δ(q, ap)) and every other letter b ∈ Σ \ {a} acts as a
permutation, i.e., δ(Q, b) = Q. A letter a is called a simple idempotent letter, if
|δ(Q, a)| = |Q| − 1 and δ(q, aa) = δ(q, a) for each q ∈ Q. An automaton A is
called an automaton with simple idempotents [38] if every letter a ∈ Σ is either a
simple idempotent or permutes the state set. Both types of automata arise in the
study of synchronizing automata, see [43] for more information on synchronizing
automata. We say A has a threshold one transformation semigroup [2] if for each
u ∈ Σ∗ and q ∈ Q there exists p > 0 such that δ(q, uup) = δ(q, u), equivalently
δ(Q,uu) = δ(Q,u) for each u ∈ Σ∗.

By the previous results, the next statement follows immediately.

Corollary 5.4. Let A = (Q,Σ, δ, q0, F). Then [L(A)] is regular in the following
cases:
2 We note that this result can be stated a little more general using so-called chains of

simple semigroups and well-quasi order arguments due to Kunc [26] but which we
leave out due to space.

320 S. Hoffmann

1. A has a threshold one transformation semigroup,
2. A is an automaton with simple idempotents,
3. A is an almost-group automaton,
4. A is a permutation automaton (already known, see [17, Thm. 5.3] & [28,

Thm. 5]),
5. ∀q ∈ F ∀a ∈ Σ ∃p > 0 : δ(q, ap) = q, i.e., the final states are contained in

cycles for the letters.

6 The Group Hierarchy

The commutative closure is regularity-preserving on languages of level one-half
in the group hierarchy, i.e., languages in Pol(G) [17]. The commutative closure
in the related Straubing-Thérien hierarchy has been investigated in [19]. Here,
by giving an example language, we show that this operation is not regularity-
preserving on languages from the next level in the group hierarchy.3

Theorem 6.1. Let Σ = {a, b} and set L = {u ∈ Σ∗ : |u| ≡ 0 (mod 2)}. Then
the following is true.

1. Σ∗aLaΣ∗ is a polynomial of group languages.
2. The language Σ∗aLaΣ∗ equals b∗ ∪ b∗{abi |i odd}∗ab∗ = b∗ ∪ b∗(a(bb)∗b)∗ab∗.
3. [Σ∗aLaΣ∗] = {u ∈ {a, b}∗ : |u|b ≥ |u|a − 1} is not regular.

Proof. We omit (1) because it is easy to see.
(2) First, suppose u /∈ Σ∗aLaΣ∗ and u /∈ b∗ ∪ b∗ab∗. Then if u ∈ Σ∗abiaΣ∗,

we must have that i is odd. This gives the inclusion Σ∗aLaΣ∗ ⊆ b∗ ∪ b∗{abi |
i odd}∗ab∗.

Conversely, let u ∈ b∗ ∪ b∗{abi | i odd}∗ab∗. Obviously, b∗ ∪ b∗ab∗ ⊆
Σ∗aLaΣ∗. So, assume we can write u = bi0abi1a · · · bim−1abim with m ≥ 2 and
i1, . . . , im−1 > 0 being odd numbers. Now, let u = u1au2au3 for u1, u2, u3 ∈ Σ∗.
Then u2 = bisabis+1 · · · abit for two numbers 0 < s ≤ t < m. So, we have

|u2| = |u2|a + |u2|b = (t − s) + is + . . . + it.

If t − s is odd (resp. even), then is + . . . + it is a sum with an even (resp. odd)
number of summands where each summands is an odd number, so this gives an
even (resp. odd) number and hence the total sum as a sum of an odd and an
even (resp. even and an odd) number is odd. So there exists no factorization
u1au2au3 such that |u2| is even and we have u ∈ Σ∗aLaΣ∗.

(3) Let u ∈ Σ∗ with |u|b ≥ |u|a − 1. We can suppose |u|a ≥ 1. Set v =
(ab)|u|a−1ab|u|b−|u|a+1. Then [u] = [v] and v ∈ Σ∗aLaΣ∗ by (2).

Conversely, let u ∈ [Σ∗aLaΣ∗]. If |u|a ≤ 1, then clearly |u|b ≥ |u|a − 1.
Otherwise, let v ∈ Σ∗aLaΣ∗ with [u] = [v]. By (2) we have v = bi0abi1 · · · abim

3 See Sect. 8 for a simpler example due to an anonymous reviewer.

Automata Classes and Regularity of Commutation 321

with m ≥ 2 and i1, . . . , im−1 being odd. In particular, we have i1, . . . , im−1 > 0.
This gives |u|b ≥ m − 1 and as |u|a = m we have |u|b ≥ |u|a − 1.

So, we have [Σ∗aLaΣ∗] = {u ∈ {a, b}∗ : |u|b ≥ |u|a − 1}. This language
is not regular, as can be seen by applying the pumping lemma to anbn+1 with
pumping constant n. ��

The language Σ∗aLaΣ∗ can also be characterized as the language of those
words that either contain at most one a or where two instances of the letter a are
at positions of the same parity. For example, ababa ∈ Σ∗aLaΣ∗ or bababbbaba ∈
Σ∗aLaΣ∗.

7 The Positive Variety W
Denote by W the unique maximal positive variety that does not contain the
language (ab)∗ [18]. Cano, Guaiana & Pin [17] have shown that W is closed
under commutation, and as the commutation of (ab)∗ gives a non-regular lan-
guage it follows that it is the largest positive variety of languages with regular
commutative closures (and so these closures are in W again). Here, we give a
binary circular automaton accepting a language not in W.4 So Theorem 4.4 is
not implied by closure of W under commutation; hence languages accepted by
binary circular automata yield a genuinely new class of regular languages with
regular commutative closures not covered by the classes in the literature.

Gómez & Pin [18] introduced the positive variety W and obtained the fol-
lowing alternative characterizations:

1. W is the largest proper positive variety in the variety of regular languages
closed under shuffle.

2. W is the largest proper positive variety closed under length preserving mor-
phisms, i.e., mappings ϕ : Σ∗ → Γ ∗ with ϕ(uv) = ϕ(u)ϕ(v) and |ϕ(u)| = |u|
for u, v ∈ Σ∗.

3. A subset I ⊆ M in a monoid5 M is an ideal if MIM ⊆ I. A nonempty ideal
is minimal if for every nonempty ideal J of M with J ⊆ I we have J = I.
Let a, b ∈ M . Then b is an inverse of a if aba = a and bab = b. The syntactic
ordered monoid of L ⊆ Σ∗ is Σ∗/≡L with the order ≤L /≡L induced from
the order ≤L given by u ≤L v if

∀x, y ∈ Σ∗ : xvy ∈ L ⇒ xuy ∈ L

and u ≡L v if and only if u ≤L v and v ≤L u for u, v ∈ Σ∗. Then for a
regular language L ⊆ Σ∗ we have L ∈ W(Σ∗) if and only if for any pair
a, b of mutually inverse elements of its syntactic ordered monoid and any

4 We note that it follows easily from results in the literature that languages accepted
by binary circular automata are not in the other classes mentioned in this work
closed for commutation.

5 For the definition of monoids and semigroups and their relation to automata and
formal language theory we refer to the literature, for example [32].

322 S. Hoffmann

element z of the minimal ideal of the submonoid generated by a and b we
have (abzab)ω ≤L ab where xω in a finite monoid M and x ∈ M denotes the
unique idempotent6 element of the form xi for some i ≥ 0.

The latter condition is quite involved, but it implies that membership in W is
decidable. The class W is also closed under concatenation and length-decreasing
morphisms. As Pol(J), Pol(Com) and Pol(G) are positive varieties not contain-
ing (ab)∗ they are contained in W.

Cano, Guaiana & Pin [17] gave (ab)∗(a∗ + b∗) as an example language not
in W whose commutative closure equals {a, b}∗ and so is regular. Next, we show
that languages accepted by circular binary automata are also, in general, not
in W.

Theorem 7.1. There exists a circular binary automaton accepting a language
not in W.

Proof. Let A = (Q, {a, b}, δ, 0, F) with Q = {0, 1, 2}, F = {0}, δ(q, b) = (q +
1) mod 3 for q ∈ {0, 1, 2} and δ(0, a) = 2, δ(1, a) = 0, δ(2, a) = 2. The syntactic
ordered monoid equals the monoid generated by the transformations induced
by a and b, and, for two transformations δu, δv : Q → Q induced by words u
and v, respectively, the order is given by δu ≤ δv if

∀q ∈ Q : δ(q, v) ∈ F ⇒ δ(q, u) ∈ F.

This is actually a canonical construction to obtain the syntactic ordered monoid
outlined in [17, Sect. 1.4]. In the following, we also let each word w stand for
the induces transformation δw on the states and we refer to the words as if they
are transformations. Set u = babbabb. Then a and u are mutually inverse trans-
formations on the states and they generate the submonoid {b3, a, u, aa, au, ua}
which has {aa} as its minimal ideal. Now (uaaaua)ω = (aa)ω = aa. However, as
aa /∈ L(A) but ua ∈ L(A), i.e., δ(0, aa) /∈ F but δ(0, ua) ∈ F , we have aa �≤ ua.
So, the characterization for languages in W via the syntactic ordered monoid is
not fulfilled for L(A). ��

8 Conclusion

Languages in level one of the group hierarchy are accepted by so-called block
groups [31]. A reviewer pointed out that the syntactic monoid of (ab)∗ is the six-
element Brandt monoid and is a block group, which follows by any of the many
characterizations of this class of semigroups [31] (we refer to the literature for
the definitions of the mentioned notions). As the commutative closure of (ab)∗ is
a non-regular language this gives an easier example than the one given in Sect. 6
of a language in level one of the group hierarchy with non-regular commutative
closure.

6 An element y ∈ M is idempotent if yy = y.

Automata Classes and Regularity of Commutation 323

The precise relation of the classes of languages given by the structural con-
dition on automata from Sect. 5 to W remains a topic for future investigations.
Also, relations to so-called basic varieties of languages [4] or conjunctive varieties
of languages [34].

Acknowledgement. I thank the anonymous reviewers for careful reading and spot-
ting typos. I also thank one reviewer for mentioning the simpler argument for the result
from Sect. 6 (see the conclusion, Sect. 8).

References

1. Arfi, M.: Opérations polynomiales et hiérarchies de concaténation. Theoret. Com-
put. Sci. 91(1), 71–84 (1991). https://doi.org/10.1016/0304-3975(91)90268-7

2. Beaudry, M.: Membership testing in threshold one transformation monoids. Inf.
Comput. 113(1), 1–25 (1994). https://doi.org/10.1006/inco.1994.1062

3. Berlinkov, M.V., Nicaud, C.: Synchronizing almost-group automata. Int.
J. Found. Comput. Sci. 31(8), 1091–1112 (2020). https://doi.org/10.1142/
S0129054120420058

4. Birkmann, F., Milius, S., Urbat, H.: On language varieties without boolean oper-
ations. In: Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C. (eds.) LATA
2021. LNCS, vol. 12638, pp. 3–15. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-68195-1_1

5. Bouajjani, A., Muscholl, A., Touili, T.: Permutation rewriting and algorithmic ver-
ification. Inf. Comput. 205(2), 199–224 (2007). https://doi.org/10.1016/j.ic.2005.
11.007

6. Cameron, P.J.: Permutation Groups. London Mathematical Society Student
Texts. Cambridge University Press, Cambridge (1999). https://doi.org/10.1017/
CBO9780511623677

7. Cécé, G., Héam, P., Mainier, Y.: Clôtures transitives de semi-commutations et
model-checking régulier. Technique et Science Informatiques 27(1–2), 7–28 (2008).
https://doi.org/10.3166/tsi.27.7-28

8. Cécé, G., Héam, P., Mainier, Y.: Efficiency of automata in semi-commutation ver-
ification techniques. RAIRO Theor. Inform. Appl. 42(2), 197–215 (2008). https://
doi.org/10.1051/ITA:2007029

9. Clerbout, M., Latteux, M.: Semi-commutations. Inf. Comput. 73(1), 59–74 (1987).
https://doi.org/10.1016/0890-5401(87)90040-X

10. Cohen, R.S., Brzozowski, J.A.: Dot-depth of star-free events. J. Comput. Syst. Sci.
5(1), 1–16 (1971). https://doi.org/10.1016/S0022-0000(71)80003-X

11. Cori, R., Perrin, D.: Automates et commutations partielles. RAIRO Theor. Inform.
Appl. 19(1), 21–32 (1985). https://doi.org/10.1051/ita/1985190100211

12. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore
(1995). https://doi.org/10.1142/2563

13. Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proc. Am. Math. Soc. 17(5),
1043–1049 (1966). https://doi.org/10.2307/2036087

14. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pac.
J. Math. 16(2), 285–296 (1966). https://doi.org/10.2140/pjm.1966.16.285

15. Ginsburg, S., Spanier, E.H.: AFL with the semilinear property. J. Comput. Syst.
Sci. 5(4), 365–396 (1971). https://doi.org/10.1016/S0022-0000(71)80024-7

https://doi.org/10.1016/0304-3975(91)90268-7
https://doi.org/10.1006/inco.1994.1062
https://doi.org/10.1142/S0129054120420058
https://doi.org/10.1142/S0129054120420058
https://doi.org/10.1007/978-3-030-68195-1_1
https://doi.org/10.1007/978-3-030-68195-1_1
https://doi.org/10.1016/j.ic.2005.11.007
https://doi.org/10.1016/j.ic.2005.11.007
https://doi.org/10.1017/CBO9780511623677
https://doi.org/10.1017/CBO9780511623677
https://doi.org/10.3166/tsi.27.7-28
https://doi.org/10.1051/ITA:2007029
https://doi.org/10.1051/ITA:2007029
https://doi.org/10.1016/0890-5401(87)90040-X
https://doi.org/10.1016/S0022-0000(71)80003-X
https://doi.org/10.1051/ita/1985190100211
https://doi.org/10.1142/2563
https://doi.org/10.2307/2036087
https://doi.org/10.2140/pjm.1966.16.285
https://doi.org/10.1016/S0022-0000(71)80024-7

324 S. Hoffmann

16. Gohon, P.: An algorithm to decide whether a rational subset of Nk is recog-
nizable. Theoret. Comput. Sci. 41, 51–59 (1985). https://doi.org/10.1016/0304-
3975(85)90059-3

17. Gómez, A.C., Guaiana, G., Pin, J.É.: Regular languages and partial commutations.
Inf. Comput. 230, 76–96 (2013). https://doi.org/10.1016/j.ic.2013.07.003

18. Gómez, A.C., Pin, J.: Shuffle on positive varieties of languages. Theoret. Comput.
Sci. 312(2–3), 433–461 (2004). https://doi.org/10.1016/j.tcs.2003.10.034

19. Guaiana, G., Restivo, A., Salemi, S.: On the trace product and some families of
languages closed under partial commutations. J. Autom. Lang. Comb. 9(1), 61–79
(2004). https://doi.org/10.25596/jalc-2004-061

20. Hoffmann, S.: The commutative closure of shuffle languages over group languages
is regular. In: Maneth, S. (ed.) CIAA 2021. LNCS, vol. 12803, pp. 53–64. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-79121-6_5

21. Hoffmann, S.: Regularity conditions for iterated shuffle on commutative regular
languages. Int. J. Found. Comput. Sci. 34(08), 923–957 (2023). https://doi.org/
10.1142/S0129054123430037

22. Hoffmann, S.: State complexity bounds for the commutative closure of group lan-
guages. J. Autom. Lang. Comb. 28(1–3), 27–57 (2023). https://doi.org/10.25596/
JALC-2023-027

23. Hoffmann, S.: State complexity of permutation and the language inclusion problem
up to parikh equivalence on alphabetical pattern constraints and partially ordered
nfas. Int. J. Found. Comput. Sci. 34(08), 959–986 (2023). https://doi.org/10.1142/
S0129054123430025

24. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116–133 (1978). https://doi.org/10.1145/322047.322058

25. Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten,
J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS,
vol. 2719, pp. 681–696. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45061-0_54

26. Kunc, M.: Regular solutions of language inequalities and well quasi-orders. Theoret.
Comput. Sci. 348(2–3), 277–293 (2005). https://doi.org/10.1016/j.tcs.2005.09.018

27. Latteux, M.: Cônes rationnels commutatifs. J. Comput. Syst. Sci. 18(3), 307–333
(1979). https://doi.org/10.1016/0022-0000(79)90039-4

28. Commutative closures of regular semigroups of languages: L’vov, M. Cybern. Syst.
Anal. (Cybern.) 9, 247–252 (1973). https://doi.org/10.1007/BF01069078. trans-
lated (original in Russian) from Kibernetika (Kiev), No. 2, pp. 54–58, March-April,
1973

29. Muscholl, A., Petersen, H.: A note on the commutative closure of star-free lan-
guages. Inf. Process. Lett. 57(2), 71–74 (1996). https://doi.org/10.1016/0020-
0190(95)00187-5

30. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966). https://doi.
org/10.1145/321356.321364

31. Pin, J.É.: PG = BG, a success story. In: Fountain, J. (ed.) NATO Advanced Study
Institute, Semigroups, Formal Languages and Groups, pp. 33–47. Kluwer Academic
Publishers (1995)

32. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages, pp. 679–746. Springer, Heidelberg (1997). https://doi.org/
10.1007/978-3-642-59136-5_10

33. Place, T., Zeitoun, M.: Generic results for concatenation hierarchies. Theory Com-
put. Syst. 63(4), 849–901 (2019). https://doi.org/10.1007/s00224-018-9867-0

https://doi.org/10.1016/0304-3975(85)90059-3
https://doi.org/10.1016/0304-3975(85)90059-3
https://doi.org/10.1016/j.ic.2013.07.003
https://doi.org/10.1016/j.tcs.2003.10.034
https://doi.org/10.25596/jalc-2004-061
https://doi.org/10.1007/978-3-030-79121-6_5
https://doi.org/10.1142/S0129054123430037
https://doi.org/10.1142/S0129054123430037
https://doi.org/10.25596/JALC-2023-027
https://doi.org/10.25596/JALC-2023-027
https://doi.org/10.1142/S0129054123430025
https://doi.org/10.1142/S0129054123430025
https://doi.org/10.1145/322047.322058
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1016/j.tcs.2005.09.018
https://doi.org/10.1016/0022-0000(79)90039-4
https://doi.org/10.1007/BF01069078
https://doi.org/10.1016/0020-0190(95)00187-5
https://doi.org/10.1016/0020-0190(95)00187-5
https://doi.org/10.1145/321356.321364
https://doi.org/10.1145/321356.321364
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.1007/s00224-018-9867-0

Automata Classes and Regularity of Commutation 325

34. Polák, L.: A classification of rational languages by semilattice-ordered monoids.
Archivum Mathematicum 040(4), 395–406 (2004)

35. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J.
Res. Dev. 3(2), 114–125 (1959). https://doi.org/10.1147/rd.32.0114

36. Redko, V.N.: On the commutative closure of events. Doklady Akademija Nauk
Ukrainskoj SSR (Kiev), also Dopovidi Akademij Nauk Ukrajnskoj RSR (= Reports
of the Academy of Sciences of the Ukrainian SSR), pp. 1156–1159 (1963). (in
Russian)

37. Rigo, M.: The commutative closure of a binary slip-language is context-free: a
new proof. Discret. Appl. Math. 131(3), 665–672 (2003). https://doi.org/10.1016/
S0166-218X(03)00335-4

38. Rystsov, I.K.: Estimation of the length of reset words for automata with simple
idempotents. Cybern. Syst. Anal. 36(3), 339–344 (2000). https://doi.org/10.1007/
BF02732984

39. Sakarovitch, J.: The “last” decision problem for rational trace languages. In: Simon,
I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 460–473. Springer, Heidelberg (1992).
https://doi.org/10.1007/BFb0023848

40. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/
3-540-07407-4_23

41. Straubing, H.: A generalization of the Schützenberger product of finite
monoids. Theoret. Comput. Sci. 13, 137–150 (1981). https://doi.org/10.1016/
0304-3975(81)90036-0

42. Thérien, D.: Classification of finite monoids: the language approach. Theoret. Com-
put. Sci. 14, 195–208 (1981). https://doi.org/10.1016/0304-3975(81)90057-8

43. Volkov, M.V., Kari, J.: Černý’s conjecture and the road colouring problem. In: Pin,
J.É. (ed.) Handbook of Automata Theory, Volume I, pp. 525–565. European Math-
ematical Society Publishing House (2021). https://doi.org/10.4171/automata-1/15

https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1016/S0166-218X(03)00335-4
https://doi.org/10.1016/S0166-218X(03)00335-4
https://doi.org/10.1007/BF02732984
https://doi.org/10.1007/BF02732984
https://doi.org/10.1007/BFb0023848
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1016/0304-3975(81)90036-0
https://doi.org/10.1016/0304-3975(81)90036-0
https://doi.org/10.1016/0304-3975(81)90057-8
https://doi.org/10.4171/automata-1/15

Shortest Characteristic Factors
of a Deterministic Finite Automaton

and Computing Its Positive Position Run
by Pattern Set Matching

Jan Janoušek and Štěpán Plachý(B)

Faculty of Information Technology, Czech Technical University in Prague, Prague,
Czech Republic

{Jan.Janousek,Stepan.Plachy}@fit.cvut.cz

Abstract. Given a deterministic finite automaton (DFA) A, we present
a simple algorithm for constructing four deterministic finite automata
that accept the shortest forbidden factors, the shortest forbidden suffixes,
the shortest allowed suffixes, and the shortest forbidden prefixes. We refer
to these automata as the shortest characteristic factors of automaton A.
If the given automaton is local, and therefore the language it accepts
is strictly locally testable, the sets of its shortest characteristic factors
are finite, and these four automata are acyclic. This approach simplifies
existing methods for the extraction of forbidden factors and also gener-
alizes it for all classes of input DFAs. Furthermore, we demonstrate that
this type of extraction can be used for a sublinear run of an automaton
for certain inputs. We define a positive position run of a deterministic
finite automaton, representing all positions in an input string where the
automaton reaches a final state. Finally, we present an algorithm for com-
puting the positive position run of the automaton, which utilizes pattern
set matching of its shortest forbidden factors and its shortest allowed
suffixes, provided that the sets are finite. We showcase the computation
of the positive position run of a local automaton using backward pattern
matching, which can achieve sublinear time.

Keywords: Finite automata · Local finite automata · Shortest
characteristic factors · Strictly locally testable languages · Pattern
matching · Positive position run of automata

1 Introduction

Finite automaton (FA) is a fundamental model of computation, widely studied
in Computer Science and used in many applications [10,18]. The FA can also be
used as a useful formalism in the process of creating a new algorithm for a regular

The authors acknowledge the support of the OP VVV MEYS funded project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 326–339, 2024.
https://doi.org/10.1007/978-3-031-52113-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_23&domain=pdf
http://orcid.org/0000-0001-9329-1000
http://orcid.org/0000-0003-3783-8870
https://doi.org/10.1007/978-3-031-52113-3_23

Shortest Characteristic Factors of a Deterministic Finite Automaton 327

language problem [2,13,14], especially because of its simplicity, efficiency and the
availability of many operations on FA, such as determinisation, minimisation or
construction for union, intersection, complement, product, iteration and reverse
of regular languages. The outputs of the algorithm created as an FA and their
positions during the reading of the input string are typically represented by the
final states of the FA.

A strictly locally k-testable language (SLTL), k ≥ 1, introduced in [12] and
further studied in [3,6,21], is a language characterized by its factors of length k
such that a string of length at least k is in the language if its prefix of length
k −1, suffix of length k −1 and each factor of length k belong to a set of allowed
prefixes, of allowed suffixes and of allowed factors, respectively. Such property
of each part of the string can be equivalently defined using a forbidden set of
factors having the same length. We note that in the definition there are no
restrictions for strings shorter than k. For SLTL, since the length of the shortest
such factors is bounded by k, the sets defining the language are finite. The class
of SLTLs is accepted by local DFAs, where each string of length at least k − 1
is synchronizing. The k is the smallest possible if the DFA is minimal.

A problem of extraction of the shortest forbidden factors, i.e. given a DFA
finding the set of the shortest factors of a specific type (be it prefix, suffix, or inner
factor) that guarantee non-acceptance when they are found in the input string,
has been studied in the past and has its practical use-cases. Béal et al. [4] describe
a quadratic-time algorithm to compute the set of minimal forbidden words of
a factorial regular language. Rogers and Lambert [16,17] present algorithms for
extracting the shortest forbidden factors and suffixes from a local DFA, which
arose from a practical need in their research of analyzing stress patterns in human
languages. They also mention the possibility of extracting the shortest forbidden
prefixes by extracting suffixes from a DFA accepting reversed language.

Our improvement is based on the approach of Rogers and Lambert. Their
algorithm works by constructing a powerset graph of the input DFA (i.e. a
directed labeled graph where nodes are subsets of states and edges labeled with
input symbols lead to a node containing destination states of any transition from
a source state on the symbol) and looking for specific paths in the graph which
correspond to the resulting words. This is done by traversing the graph from a
specific state against the direction of edges. Since there can be multiple edges
with the same symbol leading to the same state, each word can have multiple
paths in such traversal. The traversal is therefore designed to go through all of
these paths while also filtering them on the go to ensure we only get the shortest
factors. A prerequisite of the traversal is also that the powerset graph is acyclic
(on nodes of size at least 2), which is the case if and only if the DFA is local and
as a result the shortest forbidden factors are finite.

We, however, show that no special traversal is needed if we modify the pow-
erset construction in the right way. Our modification causes each word to have
only one path, therefore we effectively create a DFA and its language is exactly
the resulting set we want, or more precisely its reverse. A standard BFS or DFS
is then sufficient to obtain the result if it is finite. With our approach, we can
in a very straightforward way create DFAs for the shortest forbidden suffixes

328 J. Janoušek and Š. Plachý

and factors, but also prefixes without the need to create a DFA for the reversed
language, and we can also create a DFA for the shortest allowed suffixes. We will
call these sets the shortest characteristic factors of the DFA.

Another advantage is that our extraction works for any DFA, not just local
ones. If the shortest characteristic factors are finite then the DFAs are acyclic.
Otherwise, they describe an infinite language. As mentioned, the language is the
reverse of the result. If an unreversed result is needed, it is straightforward for
DFAs with finite languages; otherwise, the standard construction of a DFA for
the reversed language would be necessary.

Furthermore, we describe that extraction of the shortest characteristic fac-
tors can also be used to achieve a sublinear time of some FA-based algorithms
by utilizing exact string pattern set matching. Pattern matching is a fundamen-
tal and widely studied problem [1,11]. Given a text and patterns, the pattern
matching searches for all factors of the text that match the patterns. Among the
most efficient pattern matching algorithms in practice are those based on back-
ward pattern matching [7,8]. Although the time complexity of backward string
pattern matching is generally O(n∗m) in the worst case (for a text and a pattern
of size n and m, respectively), due to the ability of the backward string pattern
matching algorithms to skip parts of the text, they often perform sublinearly in
practice [19,20].

We define a positive position run (PPR) of a deterministic finite automaton,
which represents all positions in an input string in which the automaton reaches
a final state. This notion commonly corresponds to the output of FA-based
algorithms. Certain string pattern matching problems can for example be solved
by FAs where positions of final states represent the occurrences of matches in the
input string [9,14]. We then show the computation of PPR by matching sets of
the shortest forbidden factors and the shortest allowed suffixes, if they are finite.
The running time is then inherited from the pattern matching algorithm used,
therefore with a backward pattern matching algorithm it can be sublinear for
certain inputs. We demonstrate this using the Commentz-Walter algorithm. We
are not aware of any algorithms computing runs of DFAs using pattern matching.

2 Basic Notions

An alphabet is a finite set of symbols. A string (or a word) w over an alphabet
Σ is a sequence w = a1a2 . . . an such that ai ∈ Σ,n ≥ i ≥ 1. w[i] denotes the
i-th symbol of w, |w| is the length of w, wR is the reverse of w, ε denotes the
string of length 0 and Σ∗ denotes the set of all string over Σ. A language over
an alphabet Σ is a set L ⊆ Σ∗ and LR denotes the reverse of the language. A
prefix and a suffix of w is a string u such that w = uv and w = vu, respectively,
for some v ∈ Σ∗. The prefix and the suffix is proper if |u| < |w|. A factor of w is
a string u such that w = tuv for some t, u, v ∈ Σ∗ and it is proper if |u| < |w|.

A (partial) deterministic finite automaton (DFA) over an alphabet Σ is a
5-tuple A = (Q,Σ, δ, q0, Qf), where Q is a finite set of states, δ : Q × Σ → Q is
a partial transition function, q0 ∈ Q is an initial state, and Qf ⊆ Q is a set of
final states. The DFA is complete if δ is total. An extended transition function

Shortest Characteristic Factors of a Deterministic Finite Automaton 329

δ∗ : Q × Σ∗ → Q is a partial function such that for each q ∈ Q : δ∗(q, ε) = q and
if δ(q, a) and δ∗(δ(q, a), w) exist, then δ∗(q, aw) = δ∗(δ(q, a), w), where a ∈ Σ
and w ∈ Σ∗. Otherwise δ∗(q, aw) is undefined. A DFA A = (Q,Σ, δ, q0, Qf) is
said to accept a word w ∈ Σ∗ if δ∗(q0, w) ∈ Qf . A language of a state q ∈ Q
is L(q) = {w ∈ Σ∗ | δ∗(q, w) ∈ Qf}. A language accepted by the DFA A is
L(A) = L(q0). A state q ∈ Q is reachable if δ∗(q0, w) = q for some w ∈ Σ∗. In
this paper we will consider only DFAs without unreachable states. A is minimal
if all states are reachable and ∀q1, q2 ∈ Q : L(q1) �= L(q2). A is complete if δ
is complete. A useless state for A is any state q ∈ Q such that L(q) = ∅. A
minimal complete DFA has at most one useless state. AR is a DFA such that
L(AR) = L(A)R. A run of the DFA on word w ∈ Σ∗ is a sequence q0, . . . , q|w|
such that qi = δ∗(q0, wi), where wi is a prefix of w and |wi| = i.

For a DFA A = (Q,Σ, δ, q0, Qf) a word w is synchronizing to a set of states
S ⊆ Q if ∀q ∈ Q : δ∗(q, w) ∈ S if δ∗(q, w) exists. The DFA is k-local if each word
of length at least k are synchronizing to a single state. If the DFA is k-local for
some k then it is said to be local.

A forbidden factor of A is a word w ∈ Σ∗ such that ∀q ∈ Q : δ∗(q, w) is not
defined or L(δ∗(q, w)) = ∅. FF(A) is the set of all forbidden factors of A and
w ∈ FF(A) is a shortest forbidden factor iff u /∈ FF(A) for all proper factors u
of w. SFF(A) ⊆ FF(A) is the set of all the shortest forbidden factors of A.

A forbidden suffix of A is a word w ∈ Σ∗ such that ∀q ∈ Q : δ∗(q, w) /∈ Qf

or δ∗(q, w) is undefined. FS(A) is the set of all forbidden suffixes of A and w is
a shortest forbidden suffix iff w /∈ FF(A) and u /∈ FS(A) for all proper suffixes
u of w. SFS(A) ⊆ FS(A) is the set of all the shortest forbidden suffixes of A.

An allowed suffix of A is a word w ∈ Σ∗ such that w /∈ FF(A) and ∀q ∈ Q :
δ∗(q, w) ∈ Qf or δ∗(q, w) is not defined or L(δ∗(q, w)) = ∅. AS(A) is the set of
all allowed suffixes of A and w is a shortest allowed suffix iff u /∈ AS(A) for all
proper suffixes u of w. SAS(A) ⊆ AS(A) is the set of all the shortest allowed
suffixes of A.

A forbidden prefix of A is a word w ∈ Σ∗ such that δ∗(q0, w) is undefined
or L(δ∗(q0, w)) = ∅. FP(A) is the set of all forbidden prefixes of A and w is a
shortest forbidden prefix iff w /∈ FF(A) and u /∈ FP(A) for all proper prefixes
u of w. SFP(A) ⊆ FP(A) is the set of all the shortest forbidden prefixes of A.

If a DFA A is local then SFF(A), SFS(A), SAS(A) and SFP(A) are finite
and L(A) is strictly locally testable. We call these sets the shortest characteristic
factors of A. An example of a local DFA and information on the sets of its
characteristic factors can be found on Fig. 1.

We note that the shortest forbidden prefixes and suffixes are disjoint with the
shortest forbidden factors since for characterization of the corresponding strictly
locally testable language such prefix or suffix would be redundant. We also note
that allowed suffixes are words that starting from any state always either end in
a final state or fail (either by a missing transition or reaching a useless state).
If however they only fail, then it’s a forbidden factor instead. Therefore at least
one path needs to end in a final state.

330 J. Janoušek and Š. Plachý

Fig. 1. Example of an incomplete 6-local DFA over alphabet {a, b, c, d, e, f}. Dashed
transitions are for all symbols without explicit transition. The shortest charac-
teristic factors are: SFP(A) = ∅, SFF(A) = {abcdefa, abcdefb} and SAS(A) =
{abcde, abcdef}. SFS(A) contains 49 strings.

In Sect. 4 we introduce a pattern set matching approach to computing a
version of an automaton run. As a consequence, the algorithm inherits properties
of the pattern matching algorithm used. We demonstrate it using Commentz-
Walter algorithm, which is a backwards pattern set matching algorithm that can
skip over parts of the input string, which allows it to run in sublinear time for
certain inputs and experiments indicate this is the case on average. The reversed
pattern set is preprocessed into a trie structure with some additional information
in each vertex, like functions shift1 and shift2, which are used by the algorithm
to determine how far to shift in the input after a mismatch. We however strongly
emphasize that any pattern set matching algorithm can be used and the choice
is important only for the properties. For this reason, we do not describe the
Commentz-Walter and all its notions in detail. For that see [8]. We consider a
slight modification that matching certain patterns will cause the algorithm to
terminate.

3 Extracting the Shortest Characteristic Factors
with the Use of Finite Automaton

We first describe some properties of synchronizing strings and characteristic
factors, which will serve as the basis of our constructions. The following lemmas
describe how such strings behave in a DFA with a complete transition function.
If the automaton’s transition function is not complete, we can complete it by
adding a new special useless state. Instead of all missing transitions, we add
transitions to this useless state. We can equivalently state the synchronization
property of a DFA after completing the transition function in the following way.

Lemma 1. Let A = (Q,Σ, δ, q0, Qf) be a DFA without useless states and A′ =
(Q ∪ U,Σ, δ′, q0, Qf) be a complete DFA such that U is a set of useless states,
δ ⊆ δ′ and L(A) = L(A′). A word w ∈ Σ∗ is synchronizing to a set of states
S ⊆ Q in A if and only if it is synchronizing to S ∪ U in A′.

Consequently, the following lemmas hold.

Shortest Characteristic Factors of a Deterministic Finite Automaton 331

Lemma 2. Let A = (Q,Σ, δ, q0, Qf) be a complete DFA with U ⊆ Q being a
set of useless states. A word w ∈ Σ∗ is a forbidden factor of A if and only if w
is synchronizing to U in A.

Lemma 3. Let A = (Q,Σ, δ, q0, Qf) be a complete DFA. A word w ∈ Σ∗ is a
forbidden suffix of A if and only if w is synchronizing to Q \ Qf .

Lemma 4. Let A = (Q,Σ, δ, q0, Qf) be a complete DFA with U ⊆ Q being a
set of useless states. A word w ∈ Σ∗ is an allowed suffix of A if and only if w is
synchronizing to Qf ∪ U and is not synchronizing to U .

Corollary 1. Let A = (Q,Σ, δ, q0, Qf) be a complete DFA with U ⊆ Q being
a set of useless states. A word w ∈ Σ∗ is an allowed suffix of A if and only
if w is synchronizing to Qf ∪ U in A and there exists a state q ∈ Q such that
δ∗(q, w) ∈ Qf .

Lemma 5. Let A = (Q,Σ, δ, q0, Qf) be a complete DFA with U ⊆ Q being a
set of useless states. A word w ∈ Σ∗ is a forbidden prefix of A if and only if
δ∗(q0, w) ∈ U .

3.1 The Shortest Characteristic Factors DFAs

Given a DFA A, we present new definitions for four simple DFAs that accept the
shortest forbidden factors, the shortest forbidden suffixes, the shortest allowed
suffixes and the shortest forbidden prefixes of the automaton A. If the DFA has
these sets finite, which is guaranteed for local DFAs, the constructed DFAs are
acyclic and extraction can then be done by some basic graph traversal algorithm,
such as BFS or DFS.

The forbidden factors are all strings which, starting from all states, reach
any useless state. For such a factor to be shortest, it cannot contain any other
forbidden factor as a factor. If the factor contains an unnecessary suffix, then
paths from all states will reach a useless state before reading the suffix. Therefore,
at least one path must reach a useless state only at its end. Allowed suffixes are
all strings that from all states end in either a final state or a useless state.
However, at least one path must end in a final state, otherwise it would be a
forbidden factor. Forbidden suffixes follow similar logic. Neither type of factor
should contain an unnecessary prefix to be shortest. We note that the shortest
characteristic suffix can contain another as a factor, as long as it’s not a suffix.

Definition 1 (A shortest synchronizing template automaton).
̂A(A, q̂0) = (̂Q,Σ, ̂δ, q̂0, ̂Qf) for some complete DFA A = (Q,Σ, δ, q0, Qf)

with a set of useless states U ⊆ Q and some q̂0 ∈ ̂Q such that:

– ̂Q = {q̂ | q̂ : Q′ → {0, 1}, Q′ ⊆ Q}
– For S ∈ ̂Q : dom(S) = {q | (q, x) ∈ S, x ∈ {0, 1}}
– ̂δ is a partial function ̂Q × Σ → ̂Q such that if dom(S) �= Q then ̂δ(S, a) =

{(q, x) | δ(q, a) ∈ dom(S)}, where x =
(

(

δ (q, a) , 1
) ∈ S ∧ q /∈ U

)

332 J. Janoušek and Š. Plachý

– ̂Qf = {S | S ∈ ̂Q ∧ dom(S) = Q ∧ (∃q ∈ Q : (q, 1) ∈ S)}

Based on the shortest synchronizing template automaton, we can define
automata accepting the shortest forbidden factors, the shortest allowed suffixes,
and the shortest forbidden suffixes and prove the correctness of their languages.

Definition 2. For a complete DFA A = (Q,Σ, δ, q0, Qf) with a set of useless
states U ⊆ Q :

– ̂ASFF (A) = ̂A(A, q̂0), where q̂0 = U × {1}
– ̂ASAS(A) = ̂A(A, q̂0), where q̂0 = (U × {0}) ∪ (Qf × {1})
– ̂ASFS(A) = ̂A(A, q̂0), where q̂0 = (U × {0}) ∪ (Q \ (Qf ∪ U) × {1})

Figures 3 and 4 show automata for the shortest forbidden factors and the
shortest allowed suffixes, respectively, of DFA in Fig. 2.

Lemma 6. Let A = (Q,Σ, δ, q0, Qf) be a complete DFA with a set of useless
states U ⊆ Q and ̂A(A, q̂0) = (̂Q,Σ, ̂δ, q̂0, ̂Qf) for some q̂0 ∈ ̂Q. Then ∀w ∈
Σ∗, S ∈ ̂Q : ̂δ∗(q̂0, w) = S iff:

1. Q �= dom
(

̂δ(q̂0, u)
)

for all proper prefixes u of w
2. dom(S) = {q | δ∗(q, wR) ∈ dom(q̂0)}
3. ∀(q, x) ∈ S : x =

(

(

δ∗(q, wR), 1
) ∈ q̂0 ∧ (

w = a′v =⇒ δ∗(q, vR) /∈ U
)

)

for
all a′ ∈ Σ, v ∈ Σ∗

Proof. We prove both implications inductively starting with the left-to-right.
For w = ε since ̂δ(q̂0, ε) = q̂0 all conditions trivially apply. For w = w′a where
w′ ∈ Σ∗, a ∈ Σ let S′ = ̂δ∗(q̂0, w′).

1. If S′ exists then Q �= dom
(

̂δ(q̂0, u′)
)

for all proper prefixes u′ of w′. If Q �=
dom(S′) then Q �= dom

(

̂δ(q̂0, w′)
)

as well. Otherwise, if Q = dom(S′) then
by definition ̂δ(S′, a) does not exist. In such case or if S′ does not exist then
̂δ∗(q̂0, w′a) does not exist either, which contradicts that ̂δ∗(q̂0, w) = S.

2. dom(S) = {q | δ(q, a) ∈ dom(S′)}
= {q | δ∗(δ(q, a), w′R) ∈ dom(q̂0)}
= {q | δ∗(q, aw′R) ∈ dom(q̂0)}

3. Let v′ ∈ Σ∗. For each (q, x) ∈ S applies:

x =
(

δ(q, a), 1
) ∈ S′ ∧ q /∈ U

=
(

δ∗(δ(q, a), w′R), 1
) ∈ q̂0 ∧ (w′ = a′v′ =⇒ δ∗(δ(q, a), v′R) /∈ U) ∧ q /∈ U

=
(

δ∗(q, aw′R), 1
) ∈ q̂0 ∧

(

w = a′v =⇒
{

q /∈ U v = ε

δ∗(q, av′R) /∈ U v = v′a

)

=
(

δ∗(q, wR), 1
) ∈ q̂0 ∧ (

w = a′v =⇒ δ∗(q, vR) /∈ U
)

Shortest Characteristic Factors of a Deterministic Finite Automaton 333

For the right-to-left implication for w = ε all conditions trivially imply that
S = q̂0. For w = w′a where w′ ∈ Σ∗, a ∈ Σ let S′ = ̂δ∗(q̂0, w′).

1. If Q �= dom
(

̂δ∗(q̂0, u)
)

holds for all proper prefixes u of w then it also holds
Q �= dom

(

̂δ∗(q̂0, u′)
)

and Q �= dom
(

̂δ∗(q̂0, w′)
)

for all proper prefixes u′ of w′.
That implies Q �= dom(S′).

2. If dom(S) = {q | δ∗(q, aw′R) ∈ dom(q̂0)} then by reversing equations in proof
of the left-to-right implication we obtain dom(S) = {q | δ(q, a) ∈ dom(S′)}.

3. Similarly from the 3rd condition we obtain ∀(q, x) ∈ S : x =
(

(

δ(q, a), 1
) ∈

S′ ∧ q /∈ U
)

All of these conditions by definition of ̂δ imply that ̂δ(S′, a) = S which therefore
means ̂δ

(

̂δ∗(q̂0, w′), a
)

= ̂δ∗(q0, w′a) = S. ��
Theorem 1. Let A = (Q,Σ, δ, q0, Qf) be a complete DFA and q̂0 = (Q0 × 0)∪
(Q1 × 1) for some Q0, Q1 ⊆ Q,Q0 ∩ Q1 = ∅. L(̂A(A, q̂0))R is a set of all words
w ∈ Σ∗ such that w is a shortest word synchronizing to Q0 ∪ Q1 in A and there
exists a state q′ ∈ Q such that δ∗(q′, w) ∈ Q1 and if w = ua for some u ∈ Σ∗

and a ∈ Σ then δ∗(q′, u) /∈ U .

Proof. Let ̂A(A, q̂0) = (̂Q,Σ, ̂δ, q̂0, ̂Qf). If a q̂f ∈ ̂Qf then Q = dom(q̂f) and there
exists at least one q′ ∈ Q such that (q′, 1) ∈ q̂f . Then Lemma 6 ensures that
̂δ(q̂0, wR) = q̂f applies for all words w satisfying that ∀q ∈ Q : δ∗(q, w) ∈ Q0∪Q1,
which implies that w is a synchronizing word to Q0∪Q1, and Q �= dom(̂δ(q̂0, vR))
for all proper suffixes v of w, which implies w is the shortest synchronizing
word since none of its proper suffixes synchronizes all states, and finally that
δ∗(q′, w) ∈ Q1 and if w = ua, then δ∗(q′, u) /∈ U . ��

Combining Theorem 1 with Lemma 2, Corollary 1 and Lemma 3 respectively
we can infer the following theorems for characteristic factors DFAs.

Theorem 2. L(̂ASFF (A))R = SFF (A) for a complete DFA A.

Theorem 3. L(̂ASAS(A))R = SAS(A) for a complete DFA A.

Theorem 4. L(̂ASFS(A))R = SFS(A) for a complete DFA A.

For extracting the shortest forbidden prefixes, the matching of which we do
not use in the algorithm computing the positive position run of a DFA, a direct
approach can also be used, which is achieved by just modifying the set of final
states in the automaton for the shortest forbidden factors. For a prefix to be
forbidden, the string must reach a useless state from the initial state according
to Lemma 5. That is a weaker condition than the one for forbidden factors,
where we require a useless state to be reached from all states. For the prefix to
be shortest, it can’t contain another as a prefix, so the path from the initial state
should reach a useless state only at its end. It also can’t be a forbidden factor.
Therefore, we define the following automaton.

334 J. Janoušek and Š. Plachý

Fig. 2. The complete DFA over alphabet {a, b, c, d, e, f} with a single useless state u,
which is equivalent to the incomplete DFA in Fig. 1. Dashed transitions are for all
symbols without explicit transition.

Fig. 3. DFA ̂ASFF (A) of reverse of minimal forbidden factors of the DFA A in Fig. 2.
Dashed transitions are for all symbols without explicit transition. Gray states are use-
less states and their transitions are omitted. Bottom dash within a state indicates that
in a pair (q, x) x is 1. ̂ASFP (A) would be identical except with no final states in this
case.

Fig. 4. DFA ̂ASAS(A) of reverse of minimal allowed suffixes of the DFA A in Fig. 2.
Dashed transitions are for all symbols without explicit transition. Gray states are use-
less states and their transitions are omitted. Bottom dash within a state indicates that
in a pair (q, x) x is 1.

Definition 3. Let ̂ASFF (A) = (̂Q,Σ, ̂δ, q̂0, ̂Qf) for a complete DFA A =
(Q,Σ, δ, q0, Qf). ̂ASFP(A) = (̂Q,Σ, ̂δ, q̂0, ̂Q′

f) where ̂Q′
f = {S ∈ ̂Q} such that

dom(S) �= Q and (q0, 1) ∈ S.

Shortest Characteristic Factors of a Deterministic Finite Automaton 335

The following theorem can be inferred from Lemma 5 and Lemma 6.

Theorem 5. L(̂ASFP (A))R = SFP (A) for a complete DFA A.

The shortest synchronizing template automaton is a variant of a subset con-
struction, similar to Rogers and Lambert [17], and its size is therefore exponential
in the worst case. More precisely, | ̂Q| ≤ 3|Q| for some ̂A(A, q̂0) = (̂Q,Σ, ̂δ, q̂0, ̂Qf)
where A = (Q,Σ, δ, q0, Qf). Given the properties of its language, however, in
each DFA for the shortest characteristic factors the part of the automaton with
useful states is proportional to the size of the characteristic set, if the set is finite
and, according to experiments of Rogers and Lambert [17], it is reasonable in
practice.

4 Positive Position Run and Its Computation Using
Pattern Matching of Characteristic Factors

We define a positive run and a positive position run of a DFA, which represents
all configurations and all positions in an input string, respectively, in which the
automaton reaches a final state. An example can be found in Table 1.

Definition 4. Let r = q0, . . . , q|w| be a run of a DFA A = (Q,Σ, δ, q0, Qf) on
a string w ∈ Σ∗. A positive run of the DFA on w is the set of all pairs (qi, i)
such that qi ∈ Qf . A positive position run of the DFA on w is the set of all
indices i such that qi ∈ Qf .

We describe how the positive position run of a DFA can be computed with
the use of exact pattern set matching of forbidden factors and of allowed suffixes
in an input string, provided the automaton has its shortest characteristic factors
finite, which is guaranteed for local automata. We can use any existing matching
algorithm for the matching of a finite set of patterns and the computation will
share its properties. Because of certain pattern matching algorithms capable
of skipping parts of input, the computation can perform sublinearly, which we
demonstrate using the Commentz-Walter algorithm [8] with such a property. If
the shortest characteristic sets are not finite, then the computation does not
use pattern matching and the computation behaves as in the case of a standard
implementation of the original automaton.

If a DFA has a finite set of the shortest characteristic factors, its language
is strictly locally k-testable for some k ≥ 1, and therefore if it is to accept an
input string of length at least k, its prefix cannot be forbidden, there can’t be
any occurrence of a forbidden factor and the suffix must be allowed. Finding an
occurrence of a forbidden factor therefore means that the run has failed, and
any occurrence of an allowed suffix before a forbidden factor is found indicates
that the automaton reached a final state. If the characteristic factors are finite
it is possible to use some matching algorithm for a finite set of patterns for
such task. The prefix is sufficient to check using the standard DFA run. This is
covered in Algorithm 2. Figure 5 shows preprocessed trie of patterns for DFA in

336 J. Janoušek and Š. Plachý

Algorithm 1: Preprocessing of DFA
Require: Complete DFA A = (Q, Σ, δ, q0, Qf) with useless states U ⊆ Q
Ensure : k for which L(A) is strictly locally (k + 1)-testable (minimal if A is

minimal DFA). If k is finite, then also SFF(A) and SAS(A)

1 ̂ASFF ← ̂A(A, U × {1})
2 ̂ASAS ← ̂A(A, (U × {0}) ∪ (Qf × {1}))
3 Obtain ̂ASFP from ̂ASFF

4 if ̂ASFF or ̂ASAS contains cycles then return k ← ∞
5 SFF(A) ← L(̂ASFF)

R

6 SAS(A) ← L(̂ASAS)
R

7 k ← max({|p| | p ∈ L(̂ASFP)} ∪ {|p| − 1 | p ∈ SFF (A)} ∪ {|p| | p ∈ SAS(A)})

Algorithm 2: Computing positive position run of DFA
Require: Complete DFA A = (Q, Σ, δ, q0, Qf) with useless states U ⊆ Q, input

string w
Ensure : Positive position run PPR of A on s, i.e. set of indices where A

reaches a final state in w
1 Using Algorithm 1 obtain k, SFF (A) and SAS(A).
2 q ← q0
3 if q0 ∈ Qf then PPR ← {0}
4 if q0 ∈ U then return
5 for i ← 1 to min(|w|, k) do
6 q ← δ(q, w[i])
7 if q ∈ Qf then PPR ← PPR ∪ {i}
8 if q ∈ U then return
9 if |w| ≤ k then return // DFA for non-SLTL never gets past here

10 Using a pattern set matching algorithm match SFF (A) and SAS(A) in w. If a
forbidden factor is matched, then end. If an allowed suffix is matched, then
add the end position index to PPR.

Fig. 5. Trie of the shortest forbidden factors and the shortest allowed suffixes of the
DFA in Fig. 2. Solid final states represent forbidden patterns while dashed represent
allowed patterns. Numbers in each node represent values of functions shift1 and shift2
as described in [8].

Shortest Characteristic Factors of a Deterministic Finite Automaton 337

Table 1. Demonstration of running Algorithm 2 with the use of Commentz-Walter
algorithm [8] for the input string in the second top row and the DFA in Fig. 2. In the
second top row the orange cells mark separately handled prefix, the green cells mark
positions of final states and the red cell marks match of a forbidden factor. The third
row shows the run of the DFA on the input string. The other rows show the alignment of
patterns stored in the trie in Fig. 5 during the Commentz-Walter algorithm. The green
cells mark examined symbols that are matching and the red cells those where mismatch
occurs. The positive position run for the DFA and the input string is {23, 24, 38, 39}.
and the positive run is {(6, 23), (7, 24), (6, 38), (7, 39)}.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
a b c d f e a a a b a a b d d e f b a b c d e f g a b d d c d a b a b c d e f b a b

1 2 3 4 5 1 1 2 2 2 3 2 2 3 1 1 1 1 1 2 3 4 5 6 7 1 2 3 4 1 1 1 2 3 2 3 4 5 6 7 u u u
a b c d e f a
a b c d e f b
a b c d e f
a b c d e

a b c d e f a
a b c d e f b
a b c d e f
a b c d e

a b c d e f a
a b c d e f b

a b c d e f
a b c d e

a b c d e f a
a b c d e f b

a b c d e f
a b c d e

a b c d e f a
a b c d e f b

a b c d e f
a b c d e

a b c d e f a
a b c d e f b

a b c d e f
a b c d e

a b c d e f a
a b c d e f b

a b c d e f
a b c d e

a b c d e f a
a b c d e f b

a b c d e f
a b c d e

a b c d e f a
a b c d e f b

a b c d e f
a b c d e

a b c d e f a
a b c d e f b

a b c d e f
a b c d e
a b c d e f a
a b c d e f b

a b c d e f
a b c d e

a b c d e f a
a b c d e f b

a b c d e f
a b c d e
a b c d e f a
a b c d e f b

a b c d e f
a b c d e

a b c d e f a
a b c d e f b

a b c d e f
a b c d e

a b c d e f a
a b c d e f b

a b c d e f
a b c d e

Fig. 2 and Fig. 1 shows the matching phase of Algorithm 2 with the use of the
Commentz-Walter algorithm.

We note that for strings shorter than k there is no specific characteriza-
tion given by the definition of SLTL. For such strings, it is a necessary but not

338 J. Janoušek and Š. Plachý

sufficient condition that there is no occurrence of a forbidden characteristic fac-
tor. Similarly, the occurrence of an allowed suffix is not necessary. The same
logic applies to cases when k is unbounded. In such case every input string falls
into this category.

Theorem 6. Given a complete DFA A and an input string w Algorithm 2
correctly computes the positive position run of A on w.

5 Conclusion and Future Work

We have presented a simplified method of extraction of characteristic factors
of a DFA and also generalized it for all input DFAs. We have presented a new
algorithm for computing the positive position run of a DFA, which uses exact
finite set pattern matching provided the DFA has those characteristic factors
finite, which is guaranteed for local DFAs. The position run of a DFA, which
also provides the final states in the run of the DFA, can be computed in a
similar way: Instead of constructing the single automaton ̂ASAS with its initial
state containing all the final states of the original automaton, we would construct
multiple automata for each final state separately.

Synchronization and locality have also recently been generalized for tree
automata [5,15]. The generalization of concepts presented in this paper for tree
automata can be a topic of future work.

References

1. Apostolico, A., Galil, Z. (eds.): Pattern Matching Algorithms. Oxford Uni-
versity Press, Oxford (1997). https://global.oup.com/academic/product/pattern-
matching-algorithms-9780195113679

2. Baeza-Yates, R.: A unified view to string matching algorithms. In: Jeffery, K.G.,
Král, J., Bartošek, M. (eds.) SOFSEM 1996. LNCS, vol. 1175, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0037393

3. Béal, M.P., Senellart, J.: On the bound of the synchronization delay of a local
automaton. Theoret. Comput. Sci. 205(1), 297–306 (1998). https://doi.org/10.
1016/S0304-3975(98)80011-X

4. Béal, M., Crochemore, M., Mignosi, F., Restivo, A., Sciortino, M.: Computing for-
bidden words of regular languages. Fundam. Informaticae 56(1–2), 121–135 (2003).
http://content.iospress.com/articles/fundamenta-informaticae/fi56-1-2-08

5. Blažej, V., Janoušek, J., Plachý, Š: On the smallest synchronizing terms of finite
tree automata. In: Nagy, B. (ed.) CIAA 2023. LNCS, vol. 14151, pp. 79–90.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-40247-0_5

6. Caron, P.: Families of locally testable languages. Theoret. Comput. Sci. 242(1),
361–376 (2000). https://doi.org/10.1016/S0304-3975(98)00332-6

7. Cleophas, L.G., Watson, B.W., Zwaan, G.: A new taxonomy of sublinear right-to-
left scanning keyword pattern matching algorithms. Sci. Comput. Program. 75(11),
1095–1112 (2010). https://doi.org/10.1016/j.scico.2010.04.012

8. Commentz-Walter, B.: A string matching algorithm fast on the average. In: Maurer,
H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 118–132. Springer, Heidelberg (1979).
https://doi.org/10.1007/3-540-09510-1_10

https://global.oup.com/academic/product/pattern-matching-algorithms-9780195113679
https://global.oup.com/academic/product/pattern-matching-algorithms-9780195113679
https://doi.org/10.1007/BFb0037393
https://doi.org/10.1016/S0304-3975(98)80011-X
https://doi.org/10.1016/S0304-3975(98)80011-X
http://content.iospress.com/articles/fundamenta-informaticae/fi56-1-2-08
https://doi.org/10.1007/978-3-031-40247-0_5
https://doi.org/10.1016/S0304-3975(98)00332-6
https://doi.org/10.1016/j.scico.2010.04.012
https://doi.org/10.1007/3-540-09510-1_10

Shortest Characteristic Factors of a Deterministic Finite Automaton 339

9. Crochemore, M., Hancart, C.: Automata for matching patterns. In: Rozenberg,
G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 399–462. Springer,
Heidelberg (1997). https://doi.org/10.1007/978-3-662-07675-0_9

10. Crochemore, M., Hancart, C.: Pattern matching in strings. In: Algorithms
and Theory of Computation Handbook. Chapman & Hall/CRC Applied Algo-
rithms and Data Structures Series. CRC Press (1999). https://doi.org/10.1201/
9781420049503-c12

11. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, Oxford
(1994). http://www-igm.univ-mlv.fr/%7Emac/REC/B1.html

12. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge
(1971)

13. Melichar, B.: String matching with k differences by finite automata. In: ICPR 1996,
Vienna, Austria, 25–19 August 1996, pp. 256–260. IEEE Computer Society (1996).
https://doi.org/10.1109/ICPR.1996.546828

14. Melichar, B., Holub, J.: 6D classification of pattern matching problems. In: Pro-
ceedings of the Prague Stringology Club Workshop 1997, pp. 24–32 (1997)

15. Plachý, Š, Janoušek, J.: On synchronizing tree automata and their work–optimal
parallel run, usable for parallel tree pattern matching. In: Chatzigeorgiou, A., et al.
(eds.) SOFSEM 2020. LNCS, vol. 12011, pp. 576–586. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-38919-2_47

16. Rogers, J., Lambert, D.: Extracting forbidden factors from regular stringsets. In:
Proceedings of the 15th Meeting on the Mathematics of Language, London, UK,
pp. 36–46. Association for Computational Linguistics (2017). https://doi.org/10.
18653/v1/W17-3404

17. Rogers, J., Lambert, D.: Extracting subregular constraints from regular stringsets.
J. Lang. Model. 7, 143 (2019). https://doi.org/10.15398/jlm.v7i2.209

18. Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Course Technol-
ogy, Boston (2013)

19. Watson, B.W., Zwaan, G.: A taxonomy of sublinear multiple keyword pattern
matching algorithms. Sci. Comput. Program. 27(2), 85–118 (1996). https://doi.
org/10.1016/0167-6423(96)00008-1

20. Watson, B.: Taxonomies and toolkits of regular language algorithms. Ph.D. thesis,
Mathematics and Computer Science (1995). https://doi.org/10.6100/IR444299

21. Zalcstein, Y.: Locally testable languages. J. Comput. Syst. Sci. 6(2), 151–167
(1972). https://doi.org/10.1016/S0022-0000(72)80020-5

https://doi.org/10.1007/978-3-662-07675-0_9
https://doi.org/10.1201/9781420049503-c12
https://doi.org/10.1201/9781420049503-c12
http://www-igm.univ-mlv.fr/%7Emac/REC/B1.html
https://doi.org/10.1109/ICPR.1996.546828
https://doi.org/10.1007/978-3-030-38919-2_47
https://doi.org/10.18653/v1/W17-3404
https://doi.org/10.18653/v1/W17-3404
https://doi.org/10.15398/jlm.v7i2.209
https://doi.org/10.1016/0167-6423(96)00008-1
https://doi.org/10.1016/0167-6423(96)00008-1
https://doi.org/10.6100/IR444299
https://doi.org/10.1016/S0022-0000(72)80020-5

Query Learning of Minimal Deterministic
Symbolic Finite Automata Separating

Regular Languages

Yoshito Kawasaki(B), Diptarama Hendrian, Ryo Yoshinaka,
and Ayumi Shinohara

Tohoku University, Sendai, Japan

yoshito.kawasaki.t6@dc.tohoku.ac.jp

Abstract. We propose a query learning algorithm for constructing a
minimal DSFA M that separates given two regular languages L+ and
L−, i.e., L+ ⊆ L(M) and L− ∩ L(M) = ∅. Our algorithm extends the
algorithm for learning separating DFAs by Chen et al. (TACAS 2009)
embedding the algorithm for learning DSFAs by Argyros and D’Antoni
(CAV 2018). Since the problem of finding a minimal separating automa-
ton is NP-hard, we also propose two heuristic methods to learn a sepa-
rating DSFA which is not necessarily minimal. One runs faster and the
other outputs smaller separating DSFAs. So, one of those can be chosen
depending on the application requirement.

1 Introduction

Query learning is a prominent active learning model to obtain an unknown
concept first proposed by Angluin [1]. In her setting, the learner’s goal is to
learn an unknown regular language by making queries to a Minimally Adequate
Teacher, who answers two types of queries. A membership query asks whether
an arbitrary string is in the target language, and an equivalence query asks
whether the learner’s hypothesis represents the target language and the teacher
returns a counterexample if it does not. Her algorithm L∗ terminates with a
minimal Deterministic Finite Automaton (DFA) accepting the target language
after posing a polynomial number of queries in the number of the states of the
DFA and the maximum length of given counterexamples.

Since then, query learning has been extensively studied because of the wide
variety of applications such as pattern recognition, model checking, program
verification, etc. (see e.g. [7]). In practice, it is often the case that an answer
to a membership query can be neither “yes” nor “no”, but “don’t care” (or
“don’t know”), due to the nature of the application or the teacher’s compu-
tational limitations. Learning automata under such a situation has also been
studied [10,12,14]. Among those, Chen et al. [4] tackled the problem of finding
a minimal contextual assumption in an assume-guarantee rule in compositional
verification. This requires to find an automaton M that separates two disjoint

D. Hendrian—He is currently working in Tokyo Medical and Dental University.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 340–354, 2024.
https://doi.org/10.1007/978-3-031-52113-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_24&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_24

Query Learning of Minimal DSFA Separating Regular Languages 341

regular languages L+ and L−; that is, M accepts every string in L+ and no
string in L−. They proposed to use membership queries and containment queries
instead of equivalence queries. Finding a minimal separating DFA is known to
be an NP-hard problem [6]. They proposed an algorithm LSep for exactly solving
the problem and a heuristic variant of it for quickly finding a relatively small
separating DFA.

On the other hand, recently, symbolic finite automata (SFAs), a general-
ization of classical automata, have been attracting much attention. In many
applications like XML processing and program analysis involve huge or infi-
nite alphabets. Symbolic automata have transition edges labeled with guard
predicates, which concisely represent potentially infinite sets of concrete charac-
ters. Several query learning algorithms for different kinds of deterministic SFAs
(DSFAs) have been proposed [2,3,5,11]. Among those, Argyros and D’Antoni’s
work [2] is prominent. They proposed an algorithm MAT∗ that learns DSFAs
using membership queries and equivalence queries with the aide of a predicate
learner. It learns minimal DSFAs over any query learnable algebra.

In this paper, we propose an algorithm for finding a minimal DSFA that
separates two disjoint languages over a huge or infinite alphabet. Our algorithm
MATsep extends Lsep embedding MAT∗. Since the computational cost of the
proposed algorithm is high, we also propose two heuristic methods to construct
a relatively small separating DSFA. One runs faster and the other’s outputs are
smaller. So, one of those can be chosen depending on the application requirement.

2 Preliminaries

2.1 Boolean Algebras and Symbolic Automata

Symbolic automata have transitions that carry predicates over an effective
Boolean algebra [2]. An effective Boolean algebra A is a tuple (D, Ψ, � �) where
D is a domain set, Ψ is a set of predicates and � � : Ψ → 2D is a denota-
tion function. The predicate set Ψ is closed under Boolean operations. For any
predicates ϕ1, ϕ2 ∈ Ψ , one can find ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, and ¬ϕ1 in Ψ such that
�ϕ1 ∨ ϕ2� = �ϕ1� ∪ �ϕ2�, �ϕ1 ∧ ϕ2� = �ϕ1� ∩ �ϕ2�, and �¬ϕ1� = D \ �ϕ1�, respec-
tively. There are special predicates ⊥,	 ∈ Ψ with �⊥� = ∅ and �	� = D. It
is decidable whether �ϕ� = ∅ for any ϕ ∈ Ψ and moreover there is an efficient
procedure to find an element of �ϕ� if exists. We assume each predicate ϕ is
assigned a positive integer |ϕ|, called the size.

Example 1 (Interval Algebra). The interval algebra over 32-bit non-negative
integers D = {i ∈ N | 0 ≤ i < 232} is the Boolean closure of atomic predicates
l ∈ D which denotes �l� = {x ∈ D | l ≤ x}. Examples of predicates in this algebra
include 1∧¬10∨ 100∧¬1000, which denotes [1, 10)∪ [100, 1000) = {x ∈ D | 1 ≤
x < 10 or 100 ≤ x < 1000}. Every predicate ψ has integers l1, r1, . . . , lk, rk such
that 0 ≤ l1 < r1 < · · · < lk < rk ≤ 232 and �ψ� =

⋃
1≤i≤k[li, ri).

Definition 1 (Three-valued symbolic finite automata). A three-valued
symbolic finite automata (3SFA) M is a tuple (A, Q, q0, Q+, Q−, Q?,Δ) where

342 Y. Kawasaki et al.

A = (D, Ψ, � �) is an effective Boolean algebra; Q is a finite set of states; q0 ∈ Q
is a state called the initial state; Q+, Q−, Q? ⊆ Q partition Q and they are
respectively called accepting, rejecting, and don’t-care states; and Δ : Q2 → Ψ is
a transition guard function.

A two-valued SFA (i.e., a usual SFA) is a 3SFA with no don’t-care states, which
is often specified as a quintuple (A, Q, q0, Q+,Δ), where Q− = Q \ Q+ and
Q? = ∅ are implicit.

A 3SFA M is deterministic if, for all q ∈ Q, �Δ(q, q1)� ∩ �Δ(q, q2)� = ∅ for
any distinct states q1 and q2. It is total if, for all q ∈ Q,

⋃
q′∈Q�Δ(q, q′)� = D. All

3SFAs throughout this paper are total and deterministic. When a 3SFA is total
and deterministic, Δ induces a function δ from Q×D to Q defined by δ(q, a) = r
iff a ∈ �Δ(q, r)�. The function δ is naturally extended to Q×D∗ → Q by δ(q, ε) =
q, where ε is the empty string, and δ(q, ua) = δ(δ(q, u), a) for u ∈ D∗ and a ∈ D.
We furthermore extend δ to 2Q × D∗ → 2Q by δ(Q′, s) = {δ(q, s) | q ∈ Q′}. A
word u ∈ D∗ is accepted and rejected by M if δ(q0, u) ∈ Q+ and δ(q0, u) ∈ Q−,
and the languages accepted and rejected by M are L+(M) = {u ∈ D∗ | δ(q0, u) ∈
Q+} and L−(M) = {u ∈ D∗ | δ(q0, u) ∈ Q−}, respectively. A language L is said
to be A-regular if L is accepted (equivalently, rejected) by some SFA M over A.
We say that a 3SFA M separates two disjoint languages L+ and L− if and only
if L+ ⊆ L+(M) and L− ⊆ L−(M). If M separates L+(M ′) and L−(M ′) for a
3SFA M ′, we simply say M separates M ′.

We give a characterization of two 3SFAs of which one separates the other.
The following definitions and theorems are originally given for Mealy machines
by Paull and Unger [15]. Here we translate their discussions for 3SFAs.

Definition 2 (Closed grouping, compatibles). Let M be a 3SFA and G =
{G1, . . . Gm} be a collection of sets of states of M . We say G is a closed grouping
if (i) there exists G ∈ G such that q0 ∈ G, (ii) for all G ∈ G, G ⊆ Q+ ∪ Q? or
G ⊆ Q− ∪ Q? and (iii) for all (G, a) ∈ G × D, there exists G′ ∈ G such that
δ(G, a) ⊆ G′. A state set G ⊆ Q is said to be a compatible if there exists a closed
grouping G such that G ∈ G. A compatible G is maximal if there exists no larger
compatible that includes G.

Theorem 1. A subset G ⊆ Q is a compatible if and only if every pair of states
in G forms a compatible.

Theorem 2. Suppose every state of 3SFA M is reachable from the initial state.

– If an SFA N separates M , there exists a closed grouping G of M such that
|G| ≤ |N |.

– For any closed grouping G of M , there exists an SFA with |G| states that
separates M .

2.2 Equivalence Class and Representatives for 3SFA

Let us say that two characters a, b ∈ D are equivalent in a 3SFA M if and only if
for any predicate ψ used in M , either {a, b} ⊆ �ψ� or {a, b}∩�ψ� = ∅. A collection

Query Learning of Minimal DSFA Separating Regular Languages 343

D of characters that includes at least one element of each equivalence class is
said to be a representative set. To decide the condition (iii) of the closedness of
a grouping G (Definition 2), it suffices to check it for all (G, a) ∈ G × D rather
than all (G, a) ∈ G × D.

Proposition 1. Every 3SFA M with n states has at most nn equivalence
classes, given by the following partition P:

P = {�Δ(q1, p1) ∧ . . . ∧ Δ(qn, pn)� | p1, . . . , pn ∈ Q} \ {∅}. (1)

There is a Boolean algebra A for which this upper bound is tight.

Example 2 (Representatives in Interval Algebra). Using Eq. (1) in Proposition 1,
one can obtain the equivalence classes and a set of representatives. If a 3SFA
M is over the interval algebra in Example 1, one can more efficiently find a
set of representatives than naively implementing Eq. (1). Every guard predicate
denotes a set [l1, r1)∪· · ·∪ [lk, rk), where 0 ≤ l1 < r1 < l2 < · · · < lk < rk ≤ 232.
Then all such li from all transition guards form a representative set. The size of
the set is bounded by

∑
(q,q′)∈Q2 |Δ(q, q′)|. The representative set obtained this

way is not necessarily minimal, but minimization is easy.

2.3 Learning Model

This paper tackles the problem of finding a smallest SFA separating given A-
regular languages L+ and L−. Hereafter, we fix two A-regular languages L+ and
L− so that we do not have to mention L+ and L− explicitly.

Our algorithm MATsep obtains a separating SFA using queries on the A-
regular languages L+ and L− and a query learning algorithm Λ for the Boolean
algebra A. The kinds of queries asked by the main algorithm MATsep and those
by the predicate learner Λ are different. The main algorithm MATsep asks (lan-
guage) membership, completeness, and soundness queries, which are always con-
cerned with L+ and L−. On the other hand, the predicate learner Λ asks (pred-
icate) membership and equivalence queries, which are about some character set
represented by a predicate of the Boolean algebra.

A (language) membership query asks whether a string u ∈ D∗ belongs to either
of the language L+ or L−. The answer to the query is + if u ∈ L+; − if
u ∈ L−; and ? otherwise.

A completeness query asks whether M is complete with L+ and L−, i.e.,
L+(M) ⊆ L+ and L−(M) ⊆ L−. If not, the oracle gives a counterexam-
ple string in (L+(M) \ L+) ∪ (L−(M) \ L−).

A soundness query asks whether M is sound with L+ and L−, i.e., L+ ⊆ L+(M)
and L− ⊆ L−(M). If not, the oracle gives a counterexample string in (L+ \
L+(M)) ∪ (L− \ L−(M)).

Our goal is to find an SFA M on which the soundness query is answered “yes”.

344 Y. Kawasaki et al.

Fig. 1. Overview of MATSep. The whole can be seen as a symbolic extension of LSep. The
3SFA generator computes a 3SFA extending (the hypothesis construction of) MAT∗.

A (predicate) membership query concerning a set D ⊆ D asks whether a letter
a ∈ D belongs to D. The answer to the query is + if u ∈ D, and − otherwise.

An equivalence query asks whether �ψ� = D for an arbitrary predicate ψ ∈ Ψ .
In the case where �ψ� = D, the oracle gives a counterexample string in
(�ψ� \ D) ∪ (D \ �ψ�).

The goal of a predicate learner Λ is, for any predicate ϕ ∈ Ψ , after some amount
of queries, to guess a predicate ψ ∈ Ψ such that �ψ� = �ϕ�.

3 Our Proposed Algorithm

Our learning algorithm MATSep can be viewed as a symbolic version of the
algorithm LSep by Chen et al. [4] for learning separating DFAs from 3DFAs.
Their algorithm first “loosely” learns a 3DFA M which is complete, i.e., it holds
L+(M) ⊆ L+ and L−(M) ⊆ L−. Since the goal is to obtain a DFA separating L+

and L−, exact identification of L+ and L− is not needed. Then, LSep computes a
minimal DFA that separates M , based on the technique by Paull and Unger [15].
The obtained DFA N separates L+(M) and L−(M) but not necessarily L+ and
L−. If the 3DFA M is too “loose”, it is quite likely that the DFA N does not
separate L+ and L−, i.e., L+ � L+(N) or L− � L−(N) holds. In case N is not
sound, we refine M using a counterexample in (L+ \ L+(N)) ∪ (L− \ L−(N)). If
N is sound, N is a minimal DFA separating L+ and L−. The correctness of the
above algorithm is supported by the following lemma.

Lemma 1 ([4]). Let M be a 3DFA complete with L+ and L−, N̂ a minimal
DFA separating L+ and L−, and N a minimal DFA separating L+(M) and
L−(M). Then, N has no more states than N̂ .

Our algorithm follows this outline and is illustrated in Fig. 1. Lemma 1 holds
for symbolic automata as well. The important challenge is that we must per-
form the learning process over symbolic automata, manipulating predicates. We
construct a complete 3SFA M by modifying Argyros and D’Antoni’s SFA learn-
ing algorithm MAT∗. For computing a minimal separating SFA N , we design a
symbolic version of Paull and Unger’s algorithm.

3.1 3SFA Generator

Our 3SFA generator computes a 3SFA M using queries and a predicate learner Λ
for the Boolean algebra A. While LSep extends Angluin’s DFA learning algorithm

Query Learning of Minimal DSFA Separating Regular Languages 345

L∗, ours extends Argyros and D’Antoni’s algorithm MAT∗ [2], which is based on
the TTT algorithm [9] rather than L∗. Like most DFA learners do, the TTT
algorithm finds strings u which have different Brzozowski derivatives u−1L =
{v | uv ∈ L} of the learning target language L and uses them as states of the
hypothesis automaton. Counterexamples are used for finding a new string whose
Brzozowski derivative is different from any of those of the current state strings.
The algorithm MAT∗ spawns instances Λ(u,v) of a predicate learner Λ for all pairs
(u, v) of states and tries to let them learn the character set {a ∈ D | (ua)−1L =
v−1L}, where the main algorithm tries to play the role of a teacher answering
membership and equivalence queries asked by those predicate learner instances,
though the answers to queries may be sometimes incorrect. The predicate in an
equivalence query raised by Λ(u,v) is used as the label of the transition from u
to v in the hypothesis 3SFA.

In our case, differently from MAT∗, (i) we use completeness and soundness
queries rather than equivalence queries, and (ii) we construct 3SFAs rather than
SFAs. The first point introduces no new difficulties, since every counterexample
to a completeness or soundness query is a counterexample to an equivalence
query. Modifying the TTT algorithm to be a 3DFA learner is straightforward [8].
The state construction will be based on the Brzozowski derivatives of both L+

and L−. That is, we make two strings u and v two different states if u−1L+ =
v−1L+ or u−1L− = v−1L−. We then spawn predicate learner instances Λ(u,v)

for all pairs (u, v) of states and tries to let them learn the character set {a ∈
D | (ua)−1L+ = v−1L+ and (ua)−1L− = v−1L−}. Other than those, our 3SFA
generator is essentially the same as MAT∗.

3.2 Finding a Minimal Separating SFA

Suppose we have obtained a 3SFA M which is complete with L+ and L−. Our
next task is to find a minimal SFA N separating L+(M) and L−(M). By The-
orem 2, a minimal SFA separating M can be obtained from a minimal closed
grouping of M . Finding a minimal separating SFA, i.e., finding a closed grouping,
is an NP-hard problem. We use a SAT solver for this task.

Finding a Minimal Closed Grouping with SAT Solver. Here we give our
SAT formulation for finding a closed grouping of a 3SFA. It takes as inputs a
3SFA M , a set D of representative characters for M , and a size m of the output
closed grouping G = {G1, . . . , Gm}. The constraints are formulated based on
Definition 2 except that the domain is D instead of the universal set D. We try
to find a solution to the following SAT formulation by increasing m from one by
one. When we find a solution, it represents a minimal closed grouping through the
interpretation presented below. The formula given below is not necessarily in the
conjunctive normal form (CNF), but the standard technique transforms it into
an equisatisfiable CNF formula of linear size. That is, if we have a subformula of
the form

∨
i

∧
j Fi,j , we introduce new variables fi, replace the subformula with∨

i fi, and add the formula of the form
∧

j(¬fi ∨Fi,j)∧∨
j(fi ∨¬Fi,j). Applying

this procedure recursively, we obtain a CNF formula.

346 Y. Kawasaki et al.

Algorithm 1. Build an SFA from a closed grouping
Require: 3SFA M = (A, Q, q0, Q+, Q−, Q?,Δ) and its closed grouping G
Ensure: N is an SFA separating M
1: G0 ← some G ∈ G such that q0 ∈ G
2: F ← {G ∈ G | G ∩ Q+ = ∅}
3: Δ̂(G,G′) ← ⊥ for all (G,G′) ∈ G2

4: for G ∈ G do
5: ψ ← ⊥
6: for G′ ∈ G do
7: ϕ ←

(∧
q∈G

∨
q′∈G′ Δ(q, q′)

)
∧ ¬ψ

8: Δ̂(G,G′) ← ϕ
9: ψ ← ψ ∨ ϕ

10: N ← (A,G, G0, F, Δ̂)

We prepare variables S[q, i] meaning q ∈ Gi and constants T0[q, a, q′] meaning
δ(q, a) = q′ for q, q′ ∈ Q, a ∈ D, and i ∈ [m] = {1, . . . ,m}. The SAT formula is
given as follows.

S[q0, 1] (2)

∧
∧

i∈[m]

∧

q∈Q+

∧

q′∈Q−

¬ (S[q, i] ∧ S[q′, i]) (3)

∧
∧

i∈[m]

∧

a∈D

∨

j∈[m]

∧

q∈Q

(
¬S[q, i] ∨

∨

q′∈Q

S[q′, j] ∧ T0[q, a, q′]
)

(4)

The restrictions (2), (3), and (4) correspond to (i), (ii), and (iii) of Defini-
tion 2, respectively, where

∧
q∈Q

(
¬S[q, i] ∨ ∨

q′∈Q S[q′, j] ∧ T0[q, a, q′]
)

means
δ(Gi, a) ⊆ Gj . Letting n = |Q|, the size of the obtained formula is evaluated
as O(1 + mn2 + m2n2|D|) = O(m2n2|D|). One may assume |D| ∈ O(nn) by
Proposition 1.

Constructing an SFA from a Closed Grouping. After finding a minimal
closed grouping G, we build an SFA N by Algorithm 1. A running example is
shown in Fig. 2. We define N = (A,G, G0, F, Δ̂), where G0 is an arbitrary set
in G that includes the initial state of M and F = {G ∈ G | G ∩ Q+ = ∅}.
In accordance with Paull and Unger’s algorithm, we want δ̂(G, a) to be any
G′ ∈ G such that δ(G, a) ⊆ G′ for each a ∈ D. One might think defining Δ̂
by Δ̂(G,G′) =

∧
q∈G

∨
q′∈G′ Δ(q, q′) would be the symbolic counterpart of their

construction. Actually, this yields a separating but non-deterministic automaton.
We make Δ̂ deterministic using ¬ψ at Line 7 of Algorithm 1, where ψ is the
disjunction of the predicates on the edges from G determined so far. Then, the
resulting SFA N is deterministic and separates the input 3SFA M .

Query Learning of Minimal DSFA Separating Regular Languages 347

Fig. 2. A running example of Algorithm 1. (a) The input 3SFA M is over the interval
algebra in Example 1. Here, the accepting, rejecting and don’t-care states are rep-
resented by single, double and dashed circles, respectively. For ease of understanding,
predicates are written in more intuitive forms, like ‘1 ≤ x < 100’ instead of 1∧¬100. The
3SFA M has a minimal closed grouping {G1, G2} with G1 = {q0, q2} and G2 = {q1, q2}.
(b) The label of the self-loop of G1 is obtained by taking the disjunction of the predi-
cates on edges from each state in G1 and taking their conjunction. (c) The label of the
edge from G1 to G2 is determined in the same way, but in addition we need to exclude
the characters on the self-loop edge of G1 to make the resulting SFA deterministic. (d)
The other edge labels are determined in the same way and we obtain a separating SFA.

4 Correctness and Query Complexity

By Theorem 2 and Lemma 1, MATSep gives a minimal separating SFA when it
terminates. The termination follows from the finiteness of the number of queries
discussed below.

The query complexity of MATSep depends on that of the predicate learner
Λ, just like MAT∗ does. Actually the complexity can be evaluated exactly the
same as MAT∗, since ternary classification is not more difficult than the binary
case (e.g., [8]), and our learning process may stop before exactly identifying the
ternary classification L+, L− and D∗ \ (L+ ∪L−). Let MΛ(n) and EΛ(n) denote
the upper bounds on the numbers of MQs and EQs, respectively, raised by Λ for
learning a target represented by a predicate of size at most n. Let B(M∗) =
maxq∈Q maxP⊆Q

∣
∣∨

p∈P Δ(q, p)
∣
∣ for a 3SFA M∗ = (A, Q, q0, Q+, Q−, Q?,Δ).

This is the maximum size of a predicate that Λ may be expected to learn during
the execution of the algorithm when L+(M∗) = L+ and L−(M∗) = L−.

Theorem 3. Let M∗ = (A, Q, q0, Q+, Q−, Q?,Δ) be a minimal 3SFA such that
L+(M∗) = L+ and L−(M∗) = L−. Then, MATSep will learn a minimal SFA sep-

348 Y. Kawasaki et al.

Algorithm 2. Greedily find a small closed grouping from maximal compatibles
Require: 3SFA M = (A, Q, q0, Q+, Q−, Q?,Δ) and

the set of its maximal compatibles Gmax

Ensure: Ĝ ⊆ Gmax is a closed grouping
1: G0 ← arg maxG∈{G∈G|q0∈G} |G|
2: Ĝ ← {G0}
3: V ← stack with a single element G0

4: while V is not empty do
5: ψ ← ⊥
6: for G′ ∈ Ĝ do
7: ψ ← ψ ∨

(∧
q∈G

∨
q′∈G′ Δ(q, q′)

)

8: for G′ in Gmax \ Ĝ in descending order of the size do

9: ϕ ←
(∧

q∈G

∨
q′∈G′ Δ(q, q′)

)
∧ ¬ψ

10: if �ϕ� = ∅ then
11: Ĝ ← Ĝ ∪ {G′}
12: Push(V,G′)
13: ψ ← ψ ∨ ϕ

arating L+ and L− using Λ with O(|Q|2|Δ|MΛ(k)+(|Q|2+ |Q| log m)|Δ|EΛ(k)
)

membership queries1 and O(|Q||Δ|EΛ(k)
)

completeness and soundness queries,
where k = B(M∗), |Δ| denotes the number of state pairs (q, q′) ∈ Q2 with
Δ(q, q′) = ⊥, and m is the length of the longest counterexample given to MATSep.

5 Heuristics for Finding a Closed Grouping

In this section, we introduce a heuristic method for quickly computing a rel-
atively small closed grouping. Although it is guaranteed that the output of
MATSep is a minimal separating SFA, it is computationally expensive mainly
to find a minimal closed grouping. Many applications require to quickly find a
small separating SFA, which is not necessarily the smallest.

Greedy Heuristics. Chen et al. [4] proposed a greedy heuristic method to
find a relatively small closed grouping of a 3DFA by considering only maximal
compatibles. Note that Theorem 1 implies that compatibles correspond to cliques
(therefore maximal compatibles correspond to maximal cliques) on the graph
where the vertices are the states and the edges are the compatible pairs. We
can identify incompatible pairs based on the following recursive nature of the
incompatibility: (i) every pair of an accepting state and a rejecting state is
incompatible and (ii) every pair that transitions to an incompatible pair by

1 Argyros and D’Antoni’s theorem claims a less tight bound O(|Q|2|Δ|MΛ(k) +
|Q|2 log m|Δ|EΛ(k)) but they proved the bound presented here.

Query Learning of Minimal DSFA Separating Regular Languages 349

the same character is also incompatible. While the original algorithm [4,15]
checks transitions for each character, our algorithm processes the predicates on
the transition edges. That is, if a state pair (p, q) ∈ Q × Q has already been
recognized to be incompatible and we have �Δ(p′, p) ∧ Δ(q′, q)� = ∅, then the
pair (p′, q′) is also incompatible.

Let Gmax be the set of maximal compatibles of a 3DFA M . Their algorithm
first picks one of the largest compatibles G0 from Gmax that includes the initial
state q0 of M and let Ĝ = {G0}. Then, for each compatible G ∈ Ĝ and each
character a, it picks one of the largest compatibles G′ from Gmax such that
δ(G, a) ⊆ G′ and puts G′ into Ĝ, until Ĝ converges. Then, the obtained set Ĝ is
a closed grouping.

Algorithm 2 is our symbolic extension, where we modified their algorithm
so that a compatible in Gmax is added to Ĝ only when we know that a current
grouping Ĝ is not closed for some characters. While their algorithm expands Ĝ
as soon as it finds that Ĝ does not contain the largest compatible G′ ∈ Gmax such
that δ(G, a) ⊆ G′ for some G ∈ Ĝ and a ∈ D, our algorithm does not perform
this if Ĝ has some G′ ∈ Ĝ such that δ(G, a) ⊆ G′. This modification sometimes
reduces but never increases the size of a resulting closed grouping.

Hybrid Heuristics. We propose another heuristic method, which can be seen
as a hybrid of the exact method and the above greedy heuristics. Limiting our
candidates for components of a closed grouping to be only maximal compatibles
like the greedy method, we pick the fewest possible compatibles to form a closed
grouping using a SAT solver. The size of this formula is O(Nm + |D|m2). This
bound might appear worse than the size bound O(N2n2|D|) of the formulas
used in the exact method, since m can be as big as (n/3)n/3 [13]. However, in
our experiments, m did not grow much compared to n, and thus the formulas
used in this hybrid method were not too big.

6 Evaluation

In this section, we present some experimental results on our algorithm MATSep.
We consider SFAs over the interval algebra in Example 1. Any predicates con-
sisting of k intervals can be learned with O(k log |D|) membership queries and
O(k) equivalence queries. Each time a counterexample is given, a learner can
find two ends of some intervals by �log |D|� membership queries respectively.

We chose MiniSat2 for the SAT solver used in the exact and the hybrid
heuristic methods. All experiments were run on a machine with Intel R©CoreTM

i9-7980XE CPU @ 2.60GHz and 64GB RAM, and were implemented in Dart
based on the open source library symbolicautomata3. Section 6.1 compares the
performances of the exact and the heuristic methods. Section 6.2 compares the
numbers of queries raised by MATSep and LSep for different alphabet sizes.

2 http://minisat.se.
3 https://github.com/lorisdanto/symbolicautomata.

http://minisat.se
https://github.com/lorisdanto/symbolicautomata

350 Y. Kawasaki et al.

6.1 Comparison in Separation: Exact vs Heuristic Methods

Here, we compare the performances of the exact and the heuristic methods for
separation with respect to the total computation times and the sizes of the output
SFAs. Input 3SFAs M over the interval algebra A in Example 1 are constructed,
based on [4], from two randomly generated SFAs X and Y with two parameters:
the number of states n and a partition P = {D1, . . . ,Dm} of the domain D.
Those SFAs X and Y are constructed by the following procedure.

1. Let Q = {q0, . . . , qn−1} and Δ(qi, qj) = ⊥;
2. Each state q ∈ Q is added to F at 50% probability;
3. For each source state q ∈ Q,

(a) each state q′ ∈ Q is put into a successor set Sq at 50% probability,
(b) for each subdomain Dj ∈ P, a successor state q′ ∈ Sq is randomly chosen,

and update Δ(q, q′) by Δ(q, q′) ∨ ϕj where �ϕj� = Dj ;
4. If the generated SFA Z = (A, Q, q0, F,Δ) is not a minimal one accepting

L+(Z), we restart the procedure from the beginning. Otherwise, Z is output.

The 3SFA M is defined so that L+(M) = L+(X) ∩ L+(Y) and L−(M) =
L−(X) ∩ L−(Y). One can compute M by the standard technique of product
automata. The parameters for generating X and Y can be different. We gener-
ated 3SFAs with parameters (nX , nY ,P), where X and Y were generated with
parameters (nX ,P) and (nY ,P), respectively. It is often the case that M and
minimal SFAs for L+(M) and for L−(M) have nXnY states but sometimes
less. Therefore, it is guaranteed that a minimal separating SFA has at most
min{nX , nY } states, and finding such a small SFA is not trivial.

Our first experiment was conducted with the following parameters:

– P =
{
[0, 100), [100, 101), . . . , [107, 108), [108, 232)

}
(fixed)

– nX = 5 (fixed)
– nY = 1, 2, . . . , 10

We generated and tested on 100 instances for each parameter (nX , nY ,P). The
results are shown in Fig. 3a.

Next, we compared the performances by varying the number m of equivalence
classes of characters. The parameters are set as follows:

– nX = nY = 5 (fixed)
– m = 2, 10, 20, 30, . . . , 100
– Pm = {Dj | 1 ≤ j ≤ m} where Dj =

[� j−1
m d�, � j

md�) for d = |D| = 232.

We generated and tested on 100 instances for each parameter (m,nX , nY ,Pm).
The results are shown in Fig. 3b.

Figures 3a and 3b show that in both cases, the performance of the hybrid
heuristic method is between the exact and the greedy method with respect to
the computation time and the obtained SFA sizes. While the greedy method
failed to find minimal SFAs in about 5% cases, it was only about 1% in the
hybrid method. The greedy method runs roughly hundred times faster than the
hybrid method, which runs roughly ten times faster than the exact method.

Thereby we used the greedy heuristic method in the following experiments.

Query Learning of Minimal DSFA Separating Regular Languages 351

Fig. 3. Comparison of the exact and the two heuristic methods. The scatter plots on
the left figures compare the computation times of the three methods w.r.t. the input
parameters. The heatmaps on the right figures depict the distributions of the sizes
of the output SFAs, where 0’s are omitted. For example, the cell at ((15, 20], 4) in the
top-right table shows that the exact, hybrid, and greedy methods respectively obtained
99, 96, and 95 separating SFAs of size 4, when the size of the input 3SFA is more than
15 and at most 20. (For each cell, x-range is left-exclusive and right-inclusive.) The cell
at ((60, 70], 4) in the bottom-right table shows that those three methods respectively
obtained 3, 3, and zero separating SFAs of size 4, when the partition number m is in
(60, 70]. While the greedy method failed to find minimal SFAs in 26 settings out of
1000 (a) and 69 out of 1000 (b), it was only in 11 (a) and 13 (b) settings by the hybrid
method. The black curve shows the average numbers of maximal compatibles.

6.2 Comparison in Learning: SFA vs DFA

We compared the learning times and the numbers of queries of MATSep and the
TTT version of LSep under different sizes of the domain alphabet. While the
original version of LSep uses observation tables for computing complete 3DFAs,

352 Y. Kawasaki et al.

Fig. 4. Comparison of learning efficiency by alphabet sizes. The left figure depicts the
average learning times for each alphabet size when learned as DFAs by LSep (striped
gray) and as SFAs by MATSep (solid orange) from the same teacher, in which the thin
color shows the total times and the thick color shows the times spent on separating
3SFAs. The right figure depicts the average numbers of queries raised by LSep (dotted
gray) and MATSep (solid orange) for each alphabet size, in which o- and x-markers
represent the numbers of membership queries and soundness queries, respectively. Note
that in eath figure, both the x- and y-axes are on a log scale. (Color figure online)

in this experiment we let it use the TTT algorithm, which is known to be practi-
cally more efficient [9]. In these experiments, we gave up the exact method, and
both algorithms used the greedy heuristics for computing separating SFAs/DFAs
from 3SFAs/3DFAs. Moreover, following Chen et al. [4], we did not perform com-
pleteness checking for further speed up.

We used the following parameters to generate random 3SFAs M over the
interval algebra A in Example 1 with different domain sizes d.

– d = 10, 30, 100, 300, . . . , 100000 and let D = {i ∈ N | 0 ≤ i < d}
– Pd = {Dj | 1 ≤ j ≤ 10} where Dj =

[
j−1
10 d, j

10d
)

– nX = nY = 4 (fixed)

We generated and tested on 100 instances for each parameter (d, nX , nY ,Pd).
The results are described in Fig. 4. One can observe that both the learning

times and the numbers of queries by MATSep were almost independent of the
domain size d, while those were linear in d for LSep.

7 Concluding Remarks

This paper has presented a learning algorithm MATSep to obtain a minimal
separating SFA for given A-regular languages L+ and L−, by combining the
algorithm LSep for learning separating DFAs by Chen et al. [4] and the one
MAT∗ for learning SFAs by Argyros and D’Antoni [2]. We have also proposed
two heuristic algorithms. One is a slight improvement of the greedy heuristic
algorithm by Chen et al. and the other is a hybrid of this and the exact method.
The new heuristic algorithm shows an intermediate performance, so this can be

Query Learning of Minimal DSFA Separating Regular Languages 353

used when one needs an algorithm that runs faster than the exact algorithm
and that outputs a smaller SFA than the greedy algorithm. It is future work to
demonstrate the performance of our algorithm using real data.

Acknowledgment. The authors are grateful to the anonymous reviewers for their
helpful comments. This work is supported in part by JSPS KAKENHI Grant Numbers
JP18K11150 (RY), JP20H05703 (RY), and JP21K11745 (AS).

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Argyros, G., D’Antoni, L.: The learnability of symbolic automata. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 427–445. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 23

3. Argyros, G., Stais, I., Kiayias, A., Keromytis, A.D.: Back in black: towards formal,
black box analysis of sanitizers and filters. In: IEEE Symposium on Security and
Privacy, pp. 91–109 (2016)

4. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning minimal
separating DFA’s for compositional verification. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00768-2 3

5. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Margaria, T.
(eds.) TACAS 2017. LNCS, vol. 10205, pp. 173–189. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54577-5 10

6. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control
37(3), 302–320 (1978)

7. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, Cambridge (2010)

8. Isberner, M.: Foundations of active automata learning: an algorithmic perspective.
Ph.D. thesis, Technical University of Dortmund (2015)

9. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

10. Leucker, M., Neider, D.: Learning minimal deterministic automata from inex-
perienced teachers. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol.
7609, pp. 524–538. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34026-0 39

11. Maler, O., Mens, I.-E.: A generic algorithm for learning symbolic automata from
membership queries. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A.,
Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp.
146–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9 8

12. Moeller, M., Wiener, T., Solko-Breslin, A., Koch, C., Foster, N., Silva, A.:
Automata learning with an incomplete teacher (artifact). Dagstuhl Artifacts Ser.
9(2), 21:1–21:3 (2023)

13. Moon, J., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)

https://doi.org/10.1007/978-3-319-96145-3_23
https://doi.org/10.1007/978-3-642-00768-2_3
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-642-34026-0_39
https://doi.org/10.1007/978-3-642-34026-0_39
https://doi.org/10.1007/978-3-319-63121-9_8

354 Y. Kawasaki et al.

14. Neider, D.: Computing minimal separating DFAs and regular invariants using SAT
and SMT solvers. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp.
354–369. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-
6 28

15. Paull, M.C., Unger, S.H.: Minimizing the number of states in incompletely specified
sequential switching functions. IRE Trans. Electron. Comput. EC–8(3), 356–367
(1959)

https://doi.org/10.1007/978-3-642-33386-6_28
https://doi.org/10.1007/978-3-642-33386-6_28

Apportionment with Thresholds: Strategic
Campaigns are Easy in the Top-Choice but Hard

in the Second-Chance Mode

Christian Laußmann, Jörg Rothe , and Tessa Seeger(B)

Heinrich-Heine-Universität Düsseldorf, MNF, Institut für Informatik, Düsseldorf, Germany
{christian.laussmann,rothe,tessa.seeger}@hhu.de

Abstract. In apportionment elections, a fixed number of seats in a parliament
are distributed to parties according to their vote counts. Common procedures are
divisor sequence methods like D’Hondt or Sainte-Laguë. In many countries, an
electoral threshold is used to prevent very small parties from entering the par-
liament. Parties with fewer than a given number of votes are simply removed.
We (experimentally) show that by exploiting this threshold, the effectiveness of
strategic campaigns (where an external agent seeks to change the outcome by
bribing voters) can be increased significantly, and prove that it is computationally
easy to determine the required actions. To resolve this, we propose an alternative
second-chance mode where voters of parties below the threshold receive a sec-
ond chance to vote for another party. We establish complexity results showing
that this makes elections more resistant to strategic campaigns.

Keywords: Apportionment · Bribery · Computational Complexity

1 Introduction

In parliamentary elections, votes are cast for parties which in turn compete for a fixed
number of seats in parliament. An apportionment method is then used to apportion
the seats to the parties according to their vote counts. Usually, such methods aim at
apportioning the seats in a way that makes the parliament form a small but somehow
proportional representation of the voters. Such a representative parliament can then effi-
ciently discuss topics and decide laws in the name of the voters. In many countries, the
basic procedure is extended by a so-called legal electoral threshold (simply threshold,
for short)—a minimum number of votes a party must receive to participate in the appor-
tionment process at all. For instance, in Germany, Poland, and Scotland a party must
receive at least 5% of the total vote count to participate in the apportionment process.

Electoral thresholds are important for the government to quickly form and allow for
effective decision-making by minimizing the effects of fragmentation of the parliament,
i.e., by reducing the number of parties in it (see [16] for a study of how mechanical
and psychological effects reduce fragmentation). Undoubtedly, with fewer parties in
the parliament compromises can be made more efficiently. However, a disadvantage of
the threshold is that voters supporting a party that did not make it above the threshold

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 355–368, 2024.
https://doi.org/10.1007/978-3-031-52113-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_25&domain=pdf
http://orcid.org/0000-0002-0589-3616
http://orcid.org/0000-0003-2604-264X
https://doi.org/10.1007/978-3-031-52113-3_25

356 C. Laußmann et al.

are not represented in the parliament at all because their votes are simply ignored. For
example, more than 19% of the votes in the French election of the European Parliament
in 2019 were lost due to a threshold of 5%, i.e., “of five votes, just four become effective,
and one is discarded as ineffective” [15, p. 30].

Apart from these benefits and drawbacks of thresholds, we want to find out to what
extent they can be exploited in strategic campaigns. In such scenarios, an external agent
intends to change the election outcome in her favor by bribing voters within a certain
budget to change their vote. That is, an external agent seeks to change a minimum
number of votes in order to either ensure a party she supports receives at least � seats
in the parliament (constructive case), or to limit the influence of a party she despises by
ensuring it receives no more than � seats (destructive case).

Today’s possibilities to process enormous amounts of data from social networks,
search engines, etc., make it possible to predict the voting behavior of individuals and
to target them with individualized (political) advertising. Because of this, strategic cam-
paigns attract increasing attention in political elections. Given that these attempts are
already being used in the real world, it is critical to understand the threat they pose. To
assess these risks, it is essential to know how effective such campaigns can be and how
easy it is to find optimal campaigns. Additionally, if there is a high risk, it is desirable
to improve apportionment procedures to make them more resistant to such campaigns.

Related Work. The research line on bribery, a.k.a. strategic campaigns, was initiated by
Faliszewski et al. [8]. Even earlier, Bartholdi et al. [3] introduced and studied electoral
control where, in particular, either voters or candidates can be added to or deleted from
an election by the election chair so as to make a preferred candidate win (see [12]
for destructive control attacks where the goal is to preclude a despised candidate from
winning). Bribery and control have been studied for a wide range of voting rules, as
surveyed by Faliszewski and Rothe [11] and Baumeister and Rothe [5].

While both bribery and control have been mainly investigated for single-winner and
multiwinner voting rules, Bredereck et al. [6] only recently initiated the study of bribery
in apportionment elections. They show that an optimal strategic campaign for appor-
tionment elections without a threshold can be computed in polynomial time. Their study
is most closely related to our work. For the more general study of apportionment meth-
ods in mathematical and political context, we refer to the works by Pukelsheim [17] and
Balinski and Young [1,2].

Our Contribution. Our first contribution is incremental to the work of Bredereck et
al. [6]: We adapt their algorithm to run for apportionment elections with thresholds,
and use binary search techniques for significantly accelerating the computation. Both
improvements are important for the practical usability of the algorithms since most real-
world (parliamentary) apportionment elections include a threshold, and the vote count
is often in the order of 10 million, so algorithmic efficiency is of great importance. By
testing the improved algorithm on real-world elections we observe that the campaigns
can exploit the electoral threshold and significantly benefit from it. Further, we intro-
duce the destructive variant of strategic campaigns. Our second and completely novel
contribution is a simple extension of the usual apportionment procedure with electoral
threshold: Voters who supported a party below the threshold can reuse their vote for one

Apportionment with Thresholds: Strategic Campaigns 357

of the remaining parties above the threshold. These voters thus get a second chance. We
provide complexity results showing that this modification renders the corresponding
problems intractable, thus providing some protection of the election.

2 Preliminaries

We begin by introducing the following two notations. Throughout this paper, we denote
the set P \{X} by P−X , and we write [x] as a shorthand for {1, . . . ,x}.

We now turn to the apportionment setting. There already exist simpler definitions
of apportionment instances in the literature, but to treat the electoral threshold and the
extension which we will propose in Sect. 5 conveniently, we propose the following def-
inition that is close to the classical ones from single-winner and multiwinner voting
and works in a two-stage process. An apportionment instance I = (P,V ,τ,κ) con-
sists of the set of m parties P , a list of n votes V over the parties in P , a threshold
τ ∈ N = {0,1,2, . . .}, and the seat count κ ∈ N. Each vote in V is a strict ranking of
the parties from most to least preferred, and we write A �v B if voter v prefers party A
to B (where we omit the subscript v when it is clear from the context). We sometimes
refer to the most preferred party of a voter v as v’s top choice. We make the very natural
assumption that we have more votes than we have both parties and seats. Note that in
reality an electoral threshold is usually given as a relative threshold in percent (e.g., a
5% threshold). However, we can easily convert such a relative threshold into an absolute
threshold, as required by our definition1.

An apportionment instance will be processed in two steps: First, we compute a
support allocation σ , then we compute a seat allocation α . The support allocation
σ : P → N describes how many voters support each party. Depending on this support,
the parties later receive a corresponding number of seats in the parliament. In classical
apportionment settings (which we consider in Sects. 3 and 4), the support for each party
is simply the number of top choices the party receives if the party receives at least τ top
choices, otherwise, the support is 0. That is, votes for parties that receive less than τ top
choices are ignored, and the voters have no opportunity to change their vote. We refer
to this as the top-choice mode2. An alternative mode will be proposed in Sect. 5.

Example 1 (Support Allocation). Consider τ = 10, P = {A,B,C,D}, and

V = (8× A � B � C � D, 12×B � A � C � D, 5×B � D � C � A,
25× C � A � D � B, 10×D � B � A � C).

In the top-choice mode, we obtain σ(A) = 0, σ(B) = 17, σ(C) = 25, and σ(D) = 10.

Given a support allocation, we can now determine the seat allocation by employ-
ing an apportionment method. As input, such a method takes the support allocation

1 Note that in strategic campaigns, as we define them, the total number of voters never changes
but only which party they vote for. Thus the threshold is also constant.

2 Note that in the top-choice mode it would be sufficient to know the top choice of each voter.
However, we need the full preference later in the second-chance mode. So for convenience,
we assume complete rankings for both modes.

358 C. Laußmann et al.

σ and the seat count κ , and computes the seat allocation α : P → {0, . . . ,κ} satisfy-
ing ∑A∈P α(A) = κ . Note that the threshold does not matter for apportionment methods
because it was already applied in the computation of the support allocation. In this study,
we focus on the class of divisor sequence apportionment methods including, for exam-
ple, the D’Hondt method (also known as the Jefferson’s method), and the Sainte-Laguë
method (also known as the Webster method). A divisor sequence method is defined by
a sequence d = (d1,d2, . . . ,dκ) ∈ R

κ with di < d j for all i, j ∈ {1, . . . ,κ} with i < j,

and d1 ≥ 1. For each party P ∈ P , we compute the fraction list
[

σ(P)
d1

, σ(P)
d2

, . . . , σ(P)
dκ

]
.

Then we go through the fraction lists of all parties to find the highest κ values (where
ties are broken by some tie-breaking mechanism). Each party receives one seat for each
of its list values that is among the κ highest values. D’Hondt is defined by the sequence
(1,2,3, . . .) and Sainte Laguë is defined by (1,3,5, . . .).

Example 2 (D’Hondt). Suppose we allocate κ = 6 seats to the parties, party 1 has sup-
port 1104, party 2 has 363, party 3 has 355, and party 4 has 178. Then, the resulting
D’Hondt fraction lists are:

party 1 : [1104, 552, 368, 276, 220.8, 184],
party 2 : [363, 181.5, 121, 90.8, 72.6, 60.5],
party 3 : [355, 177.5, 118.3, 88.8, 71, 59.2],
party 4 : [178, 89, 59.3, 44.5, 35.6, 29.7].

The κ = 6 highest values are highlighted in boldface. Party 1 thus receives four seats,
parties 2 and 3 receive one seat each, and party 4 receives no seats at all.

Now we define strategic campaigns, modeled as a bribery scenario. We are given an
apportionment instance, a budget K, and a number � indicating the minimum number
of seats we want to achieve for a distinguished party P∗. By bribing at most K voters
to change their vote in our favor (i.e., we can alter their votes as we like), we seek to
ensure that party P∗ receives at least � seats. To study whether finding successful cam-
paigns (and checking whether there exist any at all) is tractable, we define the following
decision problem (see [6,8]).

R-THRESHOLD-APPORTIONMENT-BRIBERY

Given: An apportionment instance (P,V ,τ,κ), a distinguished party P∗ ∈ P , and inte-
gers �, 1 ≤ � ≤ κ , and K, 0 ≤ K ≤ |V |.

Question: Is there a successful campaign, that is, is it possible to make P∗ receive at least � seats
using apportionment method R by changing at most K votes in V ?

Note that since |V | ≥ κ ≥ � and |V | ≥ K, the encoding of κ , �, and K does not mat-
ter for the complexity analysis. R-DESTRUCTIVE-THRESHOLD-APPORTIONMENT-
BRIBERY is defined analogously. This time, however, we ask whether it is possible
that by changing at most K votes P∗ receives at most � seats, i.e., we want to limit the
parliamentary influence of our target party. In both the constructive and the destructive
cases, we assume tie-breaking to be to the advantage of P∗. That is, if P∗ and another
party P have the same value in their lists and only one seat is left for them, P∗ will
receive it.

Apportionment with Thresholds: Strategic Campaigns 359

3 Classical Top-Choice Mode

We start by analyzing the complexity of the two problems just defined in the classical
top-choice mode of apportionment. We will see that for all divisor sequence methods
both deciding whether a successful campaign exists and, if so, computing such a cam-
paign can be done in polynomial time, in both the constructive and the destructive case.

Theorem 1. Let R be a divisor sequence method. Then R-THRESHOLD-APPORTION-
MENT-BRIBERY and R-DESTRUCTIVE-THRESHOLD-APPORTIONMENT-BRIBERY

are in P.

The proof of Theorem 1 is presented in the remainder of this section and relies on
the lemmas we will present now. Algorithm 1 for R-THRESHOLD-APPORTIONMENT-
BRIBERY is given explicitly; we later describe how to adapt it for the destructive case.
Note that both algorithms can also easily be adapted to compute an actual campaign (if
one exists). The following lemma is crucial for the correctness of the algorithms.

Lemma 1. The following two statements hold for all divisor sequence methods.

1. The maximum number of additional seats for party P∗ by bribing at most K votes
can always be achieved by convincing exactly K voters from parties in P−P∗ to vote
for P∗ instead.

2. The maximum number of seats we can remove from party P∗ by bribing at most K
votes can always be achieved by convincing exactly K voters from P∗ to vote for
parties in P−P∗ instead.

Proof. Note that when a party receives additional support, the parties fraction list values
increase, while they decrease when the support is decreased.

We begin with the first claim. Let’s assume we found a way to convice voters to
change their vote (in the following called a bribery action) such that P∗ receives X
additional seats. Case 1: There are parties other than P∗ which receive additional votes.
Let Pi �= P∗ be such a party. Now consider that we move all votes that were moved to
Pi to P∗ instead. Clearly, P∗’s fraction list values increase, while those of Pi decrease.
Thus P∗ receives at least as many seats in this modified bribery action as in the original.
Case 2: Votes are only moved from parties in P−P∗ to P∗. By moving (some) voters
to party Pi instead of to P∗, the fraction list values of P∗ would decrease, while those
of Pi would increase. Therefore, P∗ cannot receive more seats in this alternative bribery
action compared to the original one. Finally, note that by the monotonicity of divisor
sequence methods, moving more voters to P∗ never makes P∗ lose any seats. Thus we
can spend the whole budget K on moving voters to P∗. This together with the two given
cases implies that the best possible number of additional seats can always be achieved
by moving K voters only from P−P∗ to P∗ (although there might be other solutions
which are equally good).

To prove the second claim, just swap the roles of P∗ and the other parties. 	

Lemma 1 is crucial for the correctness of the algorithms because it implies that we

should exhaust the whole budget K for moving voters from other parties to P∗ in the

360 C. Laußmann et al.

Algorithm 1. Deciding whether Threshold-Apportionment-Bribery is possible.
Input: P , V , τ , κ , P∗, K, �

1: K ← min{n−σ(P∗),K}
2: if σ(P∗)+K < τ then
3: return NO

4: end if
5: compute γ {γ[P][x] is the minimum bribery budget needed to ensure that P receives exactly x seats before P∗ gets � seats}

6: initialize table tab with κ − � columns and m rows,
7: where tab[0][0] ← 0 and the other entries are ∞.
8: let o : {1, . . . , |P−P∗ |} → P−P∗ be an ordering
9:
10: for i ← 1 to |P−P∗ | do
11: for s ← 0 to κ − � do
12: for (x,cost) ∈ γ[o(i)] do
13: if s− x ≥ 0 then
14: tmp ← tab[i−1][s− x]+ cost
15: if tmp < tab[i][s] then
16: tab[i][s] = tmp
17: end if
18: end if
19: end for
20: end for
21: end for
22:
23: for s ← 0 to κ − � do
24: if tab[|P−P∗ |][s] ≤ K then
25: return YES

26: end if
27: end for
28: return NO

constructive case, and for moving voters from P∗ to other parties in the destructive case.
That is, we do not need to consider moving voters within P−P∗ .

Algorithm 1 decides whether a successful campaign exists in the constructive case.
The algorithm works with every divisor sequence method. We now describe the algo-
rithm intuitively. We first set K to the minimum of n−σ(P∗) and K because this is the
maximum number of votes we can move from other parties to P∗. Should it be impos-
sible for P∗ with this K to reach the threshold, we can already answer NO, as P∗ never
receives any seat at all. The crucial part of the algorithm is computing the γ dictionary:
As commented, γ[P][x] gives the minimum number of votes that must be removed from
party P so that P receives only x seats before P∗ receives the �-th seat, assuming P∗
has exactly K additional votes in the end. Note that γ can be efficiently computed. We
describe this in detail later. Note that we now define an order o over the parties. This
can be any order; we just use it to identify each party with a row in the table which
we now begin to fill. For each i, 1 ≤ i ≤ |P−P∗ |, and each s, 0 ≤ s ≤ κ − �, the cell
tab[i][s] contains the minimum number of votes needed to be moved away from parties
o(1), . . . ,o(i) such that o(1), . . . ,o(i) receive s seats in total before P∗ is assigned its
�-th seat (again, assuming P∗ has exactly K additional votes in the end). This table can
also be efficiently computed with dynamic programming, as we describe later. Finally,
we check if there exists a value of at most K in the last row of the table. If this holds,
we answer YES because there do exist bribes that do not exceed K and ensure that the
other parties leave the �-th seat for P∗.

Apportionment with Thresholds: Strategic Campaigns 361

Note that by tracing back through the table tab we can find the individual numbers of
voters we need to move from each party to P∗ for a successful campaign. This number
does not sum up to K in many cases. If so, we can simply remove the remaining votes
from arbitrary parties (except P∗).

Lemma 2. Algorithm 1 decides R-THRESHOLD-APPORTIONMENT-BRIBERY for
every divisor sequence method R in polynomial time.

Proof. We first prove that the algorithm indeed runs in polynomial time. For most of
the algorithm this is easy to see: We essentially fill a table with |P| rows and at most κ
columns. Since κ ≤ |V |, the table size is indeed polynomial in the input size. However,
it is yet unclear how γ is computed. Computing γ works with a binary search for the
jumping points of a function φ . Thereby, φ is defined as the number of seats a party
with y votes receives before P∗ receives � seats, assuming P∗ has exactly K additional
votes in the end. Let q be the final vote count of P∗ (i.e., with the K additional votes).
Then, for a divisor sequence method with the sequence d = (d1,d2, . . . ,dκ) we have

φ(y) =

⎧
⎪⎨
⎪⎩

0 if y ≤ τ
0 if y ≤ q/d�

max{z ∈ {1, . . . ,κ} | y/dz > q/d�} otherwise

.

Finding the jumping points with binary search is in O(κ · log(K)).
We now prove the correctness of the algorithm. Starting in the beginning, setting K

to the minimum of n − σ(P∗) and K is necessary to ensure that we never move more
voters from parties in P−P∗ than allowed. Setting K higher than that would result in
false positive results. For the remainder of this proof, we assume all K votes are moved
from P−P∗ to P∗, i.e., P∗ receives K additional votes in the end. This is optimal accord-
ing to Lemma 1. The first if-statement returns NO if P∗ cannot reach the threshold. This
answer is correct since P∗ can never get any seat as long as it is below the threshold,
i.e., in this case the bribe is unsuccessful.

In the middle part of the algorithm, we fill a table. Recall that for each i, 1 ≤ i ≤
|P−P∗ |, and each s, 0 ≤ s ≤ κ − �, the cell tab[i][s] contains the minimum number of
votes needed to be removed from parties o(1), . . . ,o(i) such that o(1), . . . ,o(i) receive s
seats in total before P∗ is assigned its �-th seat. The values are computed dynamically
from the previous row to the next row. This is possible because the seats that parties
o(1), . . . ,o(i) receive in total before P∗ is assigned its �-th seat are exactly the sum
of the number of seats the parties receive individually before P∗ receives its �-th seat.
Further, since this number can be computed directly by comparing the divisor list of the
party with the divisor list of P∗ (i.e., the φ function of each party is independent of other
parties’ support) the required bribery budget is also exactly the sum of the individual
bribes. Thus the values in the list are indeed computed correctly.

Finally, if in the last row there exists a value of at most K, we correctly answer YES,
by the following argument. Suppose we have a value of at most K in cell tab[|P−P∗ |][s].
Then there are bribes that do not exceed K and ensure that the other parties receive at
most s seats before P∗ is assigned its �-th seat. Since there are a total of κ seats available,
and the other parties get s ≤ κ − � seats before P∗ receives the �-th seat, P∗ will indeed

362 C. Laußmann et al.

receive its �-th seat. However, if all cells of the last row contain a value greater than K,
the given budget is too small to ensure that the other parties receive at most κ − � seats
before P∗ receives its �-th seat. Thus the other parties receive at least κ − �+1 seats in
this case, which leaves at most �−1 seats for P∗, so we correctly answer NO. 	

We can easily adapt Algorithm 1 for the destructive case. This time, we remove
min{K,σ(P∗)} voters from party P∗ and add them to the other parties. Of course, when
P∗ is pushed below the threshold, we immediately answer YES. For the destructive
case, φ and γ need to be defined slightly different. Here, we define φ(y) as the number
of seats a party with y votes receives before P∗ is assigned its (�+1)-th seat (what we
try to prevent). And γ[P][x] is defined as the minimum number of votes we need to add
to party P such that it receives at least x seats before P∗ is assigned its (�+ 1)-th seat.
Again, we fill the table with dynamic programming but this time, whenever we have
filled a row completely, we check if it is possible for the parties corresponding to all
yet filled rows to receive at least κ − � seats before P∗ receives its (�+ 1)-th seat by
bribery. That is, we check whether we filled the last cell in the current row with a value
of at most K or whether it would be possible to fill a cell beyond the last table cell
in the current row with such a value. In that case we answer YES, since there are not
enough seats left for P∗ to be assigned its (�+1)-th seat with this bribery action. If this
was never possible, we answer NO because the best we could do is to occupy at most
κ − �− 1 seats with parties in P−P∗ , which still leaves the (�+1)-th seat for P∗. This
sketches the proof of the following lemma and completes the proof of Theorem 1.

Lemma 3. For every divisor sequence method R, Algorithm 1 (adapted as described)
decides R-DESTRUCTIVE-THRESHOLD-APPORTIONMENT-BRIBERY in polynomial
time.

Note that since we can decide in polynomial time whether there exists a successful
campaign guaranteeing P∗ at least � seats by bribing at most K voters, we can also find
the maximum number of seats we can guarantee for P∗ with a budget of K (using a
simple binary search) in polynomial time. Analogously, for the destructive variant, it is
possible to efficiently determine the maximum number of seats we can steal from P∗.
We do this in the experiments of the following section to test the effectiveness of the
campaigns on real-world elections.

4 Experiment

As we showed in the previous section, computing successful and even optimal cam-
paigns is computationally tractable. This indicates that such an attack would be rela-
tively simple for a campaign manager to execute (at least from a computational stand-
point). An immediate question that arises is whether the campaign is effective enough to
be worth to be executed, i.e., how many seats can we actually gain for P∗ in an optimal
constructive campaign, and how many seats can we take away from P∗ in an optimal
destructive campaign?

In our experiment, we use three datasets from recent elections shown in Table 1.
GREECE2023 is the Greek parliamentary election 2023 with 300 seats to allocate

Apportionment with Thresholds: Strategic Campaigns 363

Table 1. The ten largest parties in datasets GREECE2023 (Greek parliamentary election 2023),
IKE2022 (Israel Knesset election 2022), and BUL2023 (2023 Bulgarian parliament election).

GREECE2023 IKE2022 BUL2023

New Democracy (40.8%) Likud (23.4%) GERB-SDS (26.5%)

Syriza (20.1%) Yesh Atid (17.8%) PP-DB (24.6%)

PASOK (11.5%) Religious Zionism (10.8%) Revival (14.2%)

Communist (7.2%) National Unity (9.1%) Rights and Freedoms (13.8%)

Greek Solution (4.5%) Shas (8.3%) BSP (8.9%)

Victory (2.9%) United Torah (5.9%) Such a People (4.1%)

Freedom (2.9%) Yisrael Beiteinu (4.5%) Bulgarian Rise (3.1%)

MeRA25 (2.6%) United Arab List (4.1%) The Left! (2.2%)

Subversion (0.9%) Hadash-Ta’al (3.8%) Neutral Bulgaria (0.4%)

National Creation (0.8%) Labor (3.7%) Together (0.4%)

and a 3% threshold, IKE2022 is the Israel Knesset election 2022 with 120 seats
and a threshold of 3.25%, and BUL20233 is the 2023 Bulgarian parliament elec-
tion with 240 seats and a 4% threshold. The datasets were taken from the respective
Wikipedia sites4, with original language data available at https://votes25.bechirot.gov.il/
nationalresults, https://ekloges.ypes.gr/current/v/home/parties/, and https://results.cik.
bg/ns2023/rezultati/index.html.

We conducted our experiments as follows. In all three elections, we focus on a
budget K equal to 0.25% of the total vote count. This is a relatively small fraction of the
voters, and we find it plausible that a campaign manager could be able to influence that
many voters. To show the effect of the threshold on the effectiveness of a campaign, we
gradually raise the threshold in our experiment. As the distinguished party P∗ we always
choose the party with the highest voter support in the election, since it reaches all tested
thresholds and is thus always present in the parliament. Lastly, we use D’Hondt in our
experiments as a representative of the divisor sequence methods, since it is one of the
most widely used in apportionment elections. We also conducted the same experiments
with Sainte-Laguë with similar results.

Figure 1 illustrates the effectiveness of both the constructive (top row) and destruc-
tive (bottom row) campaigns run on the three real-world elections. One would expect
some kind of proportionality, e.g., that 0.25% of the voters control approximately 0.25%
of the seats. This is indeed what we observe for many values of the threshold. However,
there are some spikes where with only 0.25% of voters one can make P∗ gain some-
times 5% or even 10% of all seats on top in the constructive case. This is considerably
more that one can expect from our small budget. Note that the spikes always occur at
thresholds where a party is directly above the threshold. For instance, in BUL2023 we

3 Here, we removed votes from the dataset which are labeled ‘none of the above’.
4 https://en.wikipedia.org/wiki/May_2023_Greek_legislative_election#Preliminary_results,

https://en.wikipedia.org/wiki/2022_Israeli_legislative_election#Results, https://en.wikipedia.
org/wiki/2023_Bulgarian_parliamentary_election#Results.

https://votes25.bechirot.gov.il/nationalresults
https://votes25.bechirot.gov.il/nationalresults
https://ekloges.ypes.gr/current/v/home/parties/
https://results.cik.bg/ns2023/rezultati/index.html
https://results.cik.bg/ns2023/rezultati/index.html
https://en.wikipedia.org/wiki/May_2023_Greek_legislative_election#Preliminary_results
https://en.wikipedia.org/wiki/2022_Israeli_legislative_election#Results
https://en.wikipedia.org/wiki/2023_Bulgarian_parliamentary_election#Results
https://en.wikipedia.org/wiki/2023_Bulgarian_parliamentary_election#Results

364 C. Laußmann et al.

Fig. 1. The x-axis shows a variety of thresholds in percent of the number of voters n. The y-axis
shows the maximally achievable number of additional seats (respectively, prevented seats) for the
strongest party by D’HONDT-THRESHOLD-APPORTIONMENT-BRIBERY in the top row and by
D’HONDT-DESTRUCTIVE-THRESHOLD-APPORTIONMENT-BRIBERY in the bottom row, each
with a given budget of K = 0.0025 ·n.

see a peak at thresholds 2.0%, 2.9%, 3.9%, and 8.7%, which are exactly the values
where The Left!, Bulgarian Rise, Such a People, and BSP are slightly above the thresh-
old (see Table 1). This indicates that at these thresholds the campaign is focused on
pushing a party below the threshold and free up its seats. For the destructive case, we
can see similar peaks as in the constructive campaigns. However, this time the peaks are
at thresholds where a party is just below the threshold. That is, the campaign is focused
on raising a party above the threshold to steal seats from P∗.

Note that we also ran the experiments for other values for the bribe budget K and
observed the following: For smaller budgets, we see narrower (and sometimes lower)
peaks right at the thresholds where a party is just above it (respectively, just below it, in
the destructive case), while for larger budgets, the peaks become wider (and sometimes
also higher). Lastly, we again observe similar results when we choose the second- or
third-strongest party instead of the strongest as our distinguished party P∗. Only with
the third-strongest party as the distinguished party do we see a large spike when it is
just below the threshold (or just above, in the destructive case), which, however, is in
line with what one would expect.

5 The Second-Chance Mode

From the previous section we know that it is quite problematic if optimal campaigns are
easy to compute, because it makes it very simple for a campaign manager to exert an
enormous influence on the election outcome. Therefore, it would be of great advantage
if there was a modification to the usual apportionment setting that makes the com-
putation of optimal campaigns intractable. As mentioned in the introduction, another

Apportionment with Thresholds: Strategic Campaigns 365

general problem of apportionment elections with thresholds is that voters for parties
below the threshold are completely ignored. As a result, the parliament tends to be less
representative. We now introduce the second-chance mode of voting in apportionment
elections which will help resolve both of these problems at once. Unlike in the top-
choice mode, in the second-chance mode voters for parties below the threshold get a
second chance to vote. That is, we first determine the parties P̂τ that have at least τ
top choices, i.e., the parties that make it above the threshold. Each voter now counts as
a supporter for their most preferred party in P̂τ . The second-chance voting process is
reminiscent of the single transferable vote (STV) rule. However, it differs as STV is a
single- or multiwinner voting rule and is not used for computing support allocations.

Example 3 (Second-Chance Voting). Consider τ = 2, P = {A,B,C,D}, and

V = (A � B � C � D, A � B � C � D, A � B � C � D,

D � C � B � A, C � B � D � A, B � C � A � D,

B � D � A � C, B � A � C � D).

Parties A and B receive three top choices each, whereas C and D both only receive one.
Thus only A and B are above the threshold. Instead of ignoring the votes C � B � D � A
and D � C � B � A, in the second-chance mode we check which of A and B is more
preferred in these votes. As in this example it is B in both votes, we add those two to
the support of B, giving a total support of σ(A) = 3, σ(B) = 5, and σ(C) = σ(D) = 0.

Note that similar voting systems are already being used in Australia e.g. for the
House of Representative and Senate5. In those elections, voters rank the candidates
or parties from most to least preferred and votes for excluded choices are transferred
according to the given ranking until the vote counts. In Sect. 3, we showed that in
the classical apportionment setting, bribery can be solved efficiently for each divisor
sequence method. To show that these problems are NP-hard in the second-chance mode,
we provide reductions from the NP-complete HITTING SET problem [13].

HITTING SET

Given: A set U = {u1, . . . ,up}, a collection S = {S1, . . . ,Sq} of nonempty subsets of U , and
an integer K, 1 ≤ K ≤ min{p,q}.

Question: Is there a hitting set U ′ ⊆ U , |U ′| ≤ K, i.e., a set U ′ such that U ′ ∩ Si �= /0 for each
Si ∈ S?

Instead of just focusing on specific apportionment methods, in the following we
generalize our results to a whole class of apportionment methods. We call an appor-
tionment method majority-consistent if no party in P with less support than A receives
more seats than A, where A ∈ P is a party with the highest support. Undoubtedly,
this is a criterion every reasonable apportionment method should satisfy. Note that all
divisor sequence methods and also the common Largest-Remainder-Method (LRM)
(see, e.g., [6]) are majority-consistent. We now show that the second-chance mode of
apportionment voting makes computing an optimal strategic campaign computationally
intractable, and thus can prevent attempts of running such campaigns.

5 https://www.aec.gov.au/learn/preferential-voting.htm.

https://www.aec.gov.au/learn/preferential-voting.htm

366 C. Laußmann et al.

Theorem 2. For each majority-consistent apportionment method R, R-THRESHOLD-
APPORTIONMENT-BRIBERY and R-DESTRUCTIVE-THRESHOLD-APPORTIONMENT-
BRIBERY are NP-hard in the second-chance mode. They are NP-complete if R is
polynomial-time computable.

Proof. Membership of both problems in NP is obvious whenever R is polynomial-time
computable. We show NP-hardness of R-THRESHOLD-APPORTIONMENT-BRIBERY

by a reduction from HITTING SET. Let (U,S,K) = ({u1, . . . ,up},{S1, . . . ,Sq},K) be an
instance of HITTING SET with q ≥ 4. In polynomial time, we construct an instance of
R-THRESHOLD-APPORTIONMENT-BRIBERY with parties P = {c,c′}∪U , a threshold
τ = 2q+1, � = 1 desired seat, κ = 1 available seat, and the votes

V = (4q+2 votes c � ·· · ,
4q+K +2 votes c′ � · · · , (1)

for each j ∈ [q],2 votes S j � c′ � · · · , (2)

for each i ∈ [p],q− γi votes ui � c � ·· · , (3)

for each i ∈ [p],q− γi votes ui � c′ � · · ·), (4)

where S j � c′ denotes that each element in S j is preferred to c′, but we do not care
about the exact order of the elements in S j. Further, 2γi is the number of votes from
group (2), in which ui is at the first position. That is, it is guaranteed that each ui receives
exactly 2γi +(q− γi)+(q− γi) = 2q < τ top choices, while c has 4q+2 ≥ τ and c′ has
4q+K +2 ≥ τ top choices. Note that the voters in groups (2) and (4) use their second
chance to vote for c′, and those in group (3) use it to vote for c. It follows that c′ currently
receives exactly 2q+K more votes than c and thus wins the seat. We now show that we
can make the distinguished party P∗ = c win the seat by bribing at most K voters if and
only if there is a hitting set of size at most K.

(⇐⇐⇐) Suppose there exists a hitting set U ′ ⊆ U of size exactly K (if |U ′| < K, it can
be padded to size exactly K by adding arbitrary elements from U). For each ui ∈ U ′,
we bribe one voter from group (1) to put ui at their first position. These ui now each
receive the 2q+ 1 top choices required by the threshold, i.e., they participate in the
further apportionment process. Each ui can receive a support of at most 4q+ 1. Since
the support of c is not affected by any bribes, no ui can win the seat against c. Groups (3)
and (4) do not change the support difference between c and c′ and thus can be ignored.
However, since U ′ is a hitting set, all 2q voters in group (2) now vote for a party in U ′
instead of c′, reducing the difference between c and c′ by 2q. Further, we have bribed
K voters from group (1) to not vote for c′, which reduces the difference between c and
c′ by another K votes. Therefore, c and c′ now have the same support, and since we
assume tie-breaking to prefer c, party c wins the seat.

(⇒⇒⇒) Suppose the smallest hitting set has size K′ > K. That is, with only K elements
of U we can hit at most q − 1 sets from S. It follows that by bribing K voters from
group (1) to vote for some ui ∈ U instead of c′, we can only prevent up to 2(q − 1)
voters from group (2) to use their second chance to vote for c′. Thus we reduce the
difference between c and c′ by at most 2(q−1)+K, which is not enough to make c win
the seat. Now consider that we do not use the complete budget K on this strategy, i.e.,
to bribe voters of group (1), but only K′′ < K. Note that by bringing only K′′ parties

Apportionment with Thresholds: Strategic Campaigns 367

from U above the threshold, we can only hit up to 2(q − 1 − (K − K′′)) sets from S.
So the difference between c and c′ is reduced by at most 2(q − 1 − (K − K′′)) +K′′
using this strategy. However, we now have a budget of K −K′′ left to bribe voters, e.g.,
from group (2), to vote primarily for c without bringing any additional ui above the
threshold. It is easy to see that we will only reduce the difference between c and c′ by at
most 2(K −K′′) with this strategy as, in the best case, c gains one supporter and c′ loses
one with a single bribery action. Thus we cannot reduce the difference between c and c′
by more than 2(q − 1 − (K − K′′))+K′′ +2(K − K′′) = 2(q − 1)+K′′ with this mixed
strategy. For each K′′ ≤ K, we have 2(q − 1)+K′′ < 2q+K. Therefore, if there is no
hitting set of size at most K, we cannot make the distinguished party c win against c′.
The proof for the destructive variant works by swapping the roles of c and c′. 	

6 Conclusions

We have studied strategic campaigns for apportionment elections with thresholds and
introduced the second-chance mode of voting, where voters for parties below the thresh-
old get a second chance to vote. The second-chance mode makes computing strategic
campaigns intractable while they are easy to compute in the classical top-choice mode.

As future work, we propose to study other types of strategic campaigns (e.g.,
cloning of parties; see [7,14,18]). We already studied electoral control problems, in
particular constructive and destructive control by adding or deleting parties or votes. It
turns out that both, top-choice and second-chance mode are resistant to all four party
control problems. For the proofs, it suffices to adapt the proofs of Bartholdi et al. [3] and
Hemaspaandra et al. [12] showing that plurality voting is resistant to the corresponding
control problems. For vote control in the top-choice mode, Algorithm 1 can be adapted
showing that all four cases of vote control are in P for divisor sequence methods. How-
ever, this only works when the threshold is fixed, i.e., not given as percent of n. Regard-
ing the second-chance mode, we have been able to show that all majority-consistent
apportionment methods are resistant to vote control if the threshold is fixed. Another
direction for future research is to study the complexity of these problems in restricted
domains such as (nearly) single-peaked preferences [9,10]. Also, studying the effec-
tiveness of strategic campaigns in the second-chance mode using ILPs or approximation
algorithms is an interesting direction for the future.

To make our strategic campaigns even more realistic, we propose to study more
sophisticated cost functions such as distance bribery [4] where the cost of bribing a
voter depends on how much we change the vote. We conjecture the problem to be harder
under the assumption of distance bribery because of the observation that Lemma 1 no
longer holds. That is, there are cases where it is more effective to move votes within
P−P∗ than to move them to P∗. To illustrate this, suppose we have two seats, σ(P∗)= 7,
σ(PA) = 4, and σ(PB) = 2 with τ < 2. According to D’Hondt, P∗ and PA each receive
one seat. Say K = 1 but the cost for changing a vote from PA to P∗ is 2, and the cost for
changing a vote from PB to P∗ is even higher. We thus cannot move a single voter to P∗,
i.e., we cannot gain any seats for P∗ by this strategy. However, if the cost for moving a
voter from PA to PB is 1, we gain one seat for P∗ by moving a voter from PA to PB.

While NP-hardness is desirable in the context of strategic campaigns, in the context
of, e.g., margin of victory or robustness, the interpretations can be flipped, which can

368 C. Laußmann et al.

also be studied as future work. Finally, we suggest studying the extent to which voters’
satisfaction with the parliament increases when the second-chance mode is used.

Acknowledgements. This work was supported in part by DFG grant RO-1202/21-1. We thank
Niclas Boehmer, Robert Bredereck, and Martin Bullinger for their helpful comments during a
seminar at Schloss Dagstuhl.

References

1. Balinski, M., Young, H.: The quota method of apportionment. Am. Math. Mon. 82(7), 701–
730 (1975)

2. Balinski, M., Young, H.: Fair Representation: Meeting the Ideal of One Man, One Vote. Yale
University Press, New Haven (1982)

3. Bartholdi, J., III., Tovey, C., Trick, M.: How hard is it to control an election? Math. Comput.
Model. 16(8/9), 27–40 (1992)

4. Baumeister, D., Hogrebe, T., Rey, L.: Generalized distance bribery. In: Proceedings of the
33rd AAAI Conference on Artificial Intelligence, pp. 1764–1771. AAAI Press (2019)

5. Baumeister, D., Rothe, J.: Preference aggregation by voting. In: Rothe, J. (ed.) Economics
and Computation. STBE, pp. 197–325. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-47904-9_4

6. Bredereck, R., Faliszewski, P., Furdyna, M., Kaczmarczyk, A., Lackner, M.: Strategic cam-
paign management in apportionment elections. In: Proceedings of the 29th International Joint
Conference on Artificial Intelligence, pp. 103–109. ijcai.org (2020)

7. Elkind, E., Faliszewski, P., Slinko, A.: Cloning in elections: finding the possible winners. J.
Artif. Intell. Res. 42, 529–573 (2011)

8. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: How hard is bribery in elections? J.
Artif. Intell. Res. 35, 485–532 (2009)

9. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: The complexity of manipulative
attacks in nearly single-peaked electorates. In: Proceedings of the 13th Conference on The-
oretical Aspects of Rationality and Knowledge, pp. 228–237. ACM Press (2011)

10. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: The shield that never was:
societies with single-peaked preferences are more open to manipulation and control. Inf.
Comput. 209(2), 89–107 (2011)

11. Faliszewski, P., Rothe, J.: Control and bribery in voting. In: Brandt, F., Conitzer, V., Endriss,
U., Lang, J., Procaccia, A. (eds.) Handbook of Computational Social Choice, chap. 7, pp.
146–168. Cambridge University Press (2016)

12. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: the complexity of pre-
cluding an alternative. Artif. Intell. 171(5–6), 255–285 (2007)

13. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.)
Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

14. Neveling, M., Rothe, J.: The complexity of cloning candidates in multiwinner elections. In:
Proceedings of the 19th International Conference on Autonomous Agents and Multiagent
Systems, pp. 922–930. IFAAMAS (2020)

15. Oelbermann, K.F., Pukelsheim, F.: The European Elections of May 2019: electoral systems
and outcomes (2020). https://doi.org/10.2861/129510. Study for the European Parliamentary
Research Service

16. Pellicer, M., Wegner, E.: The mechanical and psychological effects of legal thresholds. Elect.
Stud. 33, 258–266 (2014)

17. Pukelsheim, F.: Proportional Representation. Springer, Heidelberg (2017)
18. Tideman, N.: Independence of clones as a criterion for voting rules. Soc. Choice Welfare

4(3), 185–206 (1987)

https://doi.org/10.1007/978-3-662-47904-9_4
https://doi.org/10.1007/978-3-662-47904-9_4
https://doi.org/10.2861/129510

Local Certification of Majority Dynamics

Diego Maldonado1, Pedro Montealegre2, Mart́ın Ŕıos-Wilson2(B),
and Guillaume Theyssier3

1 Facultad de Ingenieŕıa, Universidad Católica de la Sant́ısima Concepción,
Concepción, Chile

dmaldonado@ucsc.cl
2 Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile

{p.montealegre,martin.rios}@uai.cl
3 Aix-Marseille Université, CNRS, I2M (UMR 7373), Marseille, France

guillaume.theyssier@cnrs.fr

Abstract. In majority voting dynamics, a group of n agents in a social
network are asked for their preferred candidate in a future election
between two possible choices. At each time step, a new poll is taken, and
each agent adjusts their vote according to the majority opinion of their
network neighbors. After T time steps, the candidate with the majority
of votes is the leading contender in the election. In general, it is very
hard to predict who will be the leading candidate after a large number
of time-steps.

We study, from the perspective of local certification, the problem of
predicting the leading candidate after a certain number of time-steps,
which we call Election-Prediction. We show that in graphs with
sub-exponential growth Election-Prediction admits a proof labeling
scheme of size O(log n). We also find non-trivial upper bounds for graphs
with a bounded degree, in which the size of the certificates are sub-linear
in n.

Furthermore, we explore lower bounds for the unrestricted case, show-
ing that locally checkable proofs for Election-Prediction on arbitrary
n-node graphs have certificates on Ω(n) bits. Finally, we show that our
upper bounds are tight even for graphs of constant growth.

Keywords: Local Certification · Majority Dynamics · Proof Labeling
Schemes

1 Introduction

Understanding social influence, including conformity, opinion formation, peer
pressure, leadership, and other related phenomena, has long been a focus of

This research was partially supported by Centro de Modelamiento Matemático (CMM),
FB210005, BASAL funds for centers of excellence from ANID-Chile (P.M), FONDE-
CYT 1230599 (P.M.), Programa Regional STIC-AMSUD (CAMA) cod. 22-STIC-02
(P.M, M.R-W, G.T), ECOS project C19E02 (G.T., M.R-W.) and ANID FONDECYT
Postdoctorado 3220205 (M.R-W).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 369–382, 2024.
https://doi.org/10.1007/978-3-031-52113-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_26&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_26

370 D. Maldonado et al.

research in sociology [26,27]. With the advent of online social network platforms,
researchers have increasingly turned to graph theory and network analysis to
model social interactions [1]. In particular, opinion formation and evolution have
been extensively studied in recent years [5].

One of the simplest and most widely studied models for opinion formation is
the majority rule [6]. In this model, the opinion of an individual evolves based
on the opinion of the majority of its neighbors. Specifically, consider an election
with two candidates, labeled as 0 and 1, and let G be an undirected, connected,
and finite graph representing the social network. Each node in the graph rep-
resents an individual with a preference for the candidate they will vote for. We
call this preference an opinion. A particular assignment of opinions to each node
is called a configuration. At the beginning, we consider that an initial configu-
ration is given, representing the personal beliefs of each individual about their
vote intentions. The configuration evolves in synchronous time-steps, where each
individual updates its opinion according to the opinion of the majority of its
neighbors. If the majority of its neighbors plan to vote for candidate 1, the node
changes its opinion to 1. Conversely, if the majority of its neighbors prefer 0,
the node switches to 0. In the event of a tie, where exactly half of the neighbors
favor 1 and the other half favor 0, the individual retains their current opinion.

All graphs have configurations in which every node has the same opinion as
the majority of its neighbors. These configurations are called fixed points since
each node retains its opinion in subsequent time-steps. Interestingly, every graph
admit non-trivial fixed points, where the local majority opinion of some nodes is
different from the global majority. In general, the initial majority opinion among
all nodes is not preserved when the opinions evolve in the majority dynamics. In
fact, the majority opinion can switch between the two candidates in non-trivial
ways, which depend on the graph properties as well as how the initial opinions
are spread in the graph.

In fact, some initial configurations never converge to a fixed point. A very
simple example that illustrate this point is the one of a network consisting of
only two vertices connected by an edge, where one vertex initially has opin-
ion 0 and the other has opinion 1, the two nodes exchange their opinions at
each time-step, never reaching a fixed point. Configurations with this dynamical
behavior are called limit cycles of period 2. Formally, a limit cycle of period 2 is a
pair of configurations that mutually evolve into one another under the majority
dynamics. In [23], it was shown that for any initial configuration on any graph,
the majority dynamics either converge to a fixed point or a limit cycle of period
2. The results of [23] also imply that the described limit configuration (called
attractor) is reached after a number of time-steps that is at most the number of
edges in the input graph.

Therefore, even assuming that the global opinion of the society (represented
by the network) evolves according to the majority rule, deciding who wins the
election is a non-trivial task. During the last 25 years, there has been some effort
in characterizing the computational complexity of this problem [22,32]. In this
article we tackle this problem from the perspective of distributed algorithms and
local decision.

Local Certification of Majority Dynamics 371

Local Decision. Let G = (V,E) be a simple connected n-node graph. A dis-
tributed language L is a (Turing-decidable) collection of tuples (G, id, In), called
network configurations, where In : V → {0, 1}∗ is called an input function and
id : V → [nc] is an injective function that assigns to each vertex a unique iden-
tifier in {1, . . . , nc} with c > 1. In this article, all our distributed languages are
independent of the id assignments. In other words, if (G, id, In) ∈ L for some id,
then (G, id′, In) ∈ L for every other id′.

Given t > 0, a local decision algorithm for a distributed language L is an algo-
rithm on instance (G, id, In), each node v of V (G) receives the subgraph induced
by all nodes at distance at most t from v (including their identifiers and inputs).
The integer t > 0 depends only on the algorithm (not of the size of the input).
Each node performs unbounded computation on the information received, and
decides whether to accept or reject, with the following requirements:

– When (G, id, In) ∈ L then every node accepts.
– When (G, id, In) /∈ L there is at least one vertex that rejects.

Distributed Languages for Majority Dynamics. Given a graph G and an
initial configuration x. The orbit of x, denoted Orbit(x), is the sequence of con-
figurations {xt}t>0 such that x0 = x and for every t > 0, xt is the configuration
obtained from xt−1 after updating the opinion of every node under the majority
dynamics. We denote by Election-Prediction the set of triplets (G, x, T),
where the majority of the nodes vote 1 on time-step T starting from configura-
tion x. Formally,

Election-Prediction =

⎧
⎨

⎩
(G, (x, T)) :

x is a configuration of V (G),
T > 0,

and
∑

v∈V (G) xT
v > |V (G)|

2 .

⎫
⎬

⎭

It is easy to see that there are no local decision algorithms for Elec-
tion-Prediction. That is, there are no algorithms in which every node of
a network exchange information solely with nodes in its vicinity, and outputs
which candidate wins the election. Intuitively, a local algorithm solving Elec-
tion-Prediction requires the nodes to count the states of other nodes in remote
locations of the input graph. In fact, this condition holds even when there is no
dynamic, i.e. T = 0. In that sense, the counting difficulty of problem Elec-
tion-Prediction hides the complexity of predicting the majority dynamics.
For that reason, we also study the following problem:

Reachability =
{

(G, (x, y, T)) :
x is a configuration of V (G),
T > 0, and xT = y.

}

.

Problem Reachability is also hard from the point of view of local decision
algorithms. Indeed, the opinion of a node v after t time-steps depends on the
initial opinion of all the nodes at distance at most t from v. There are graphs for
which the majority dynamics stabilizes in a number of time-steps proportional

372 D. Maldonado et al.

to the number of edges of the graph [23]. Therefore, no local algorithm will be
able to even decide the opinion of a single vertex in the long term.

Local Certification. A locally checkable proof for a distributed language L
is a prover-verifier pair where the prover is a non-trustable oracle assigning
certificates to the nodes, and the verifier is a distributed algorithm enabling
the nodes to check the correctness of the certificates by a certain number of
communication rounds with their neighbors. Note that the certificates may not
depend on the instance G only, but also on the identifiers id assigned to the nodes.
In proof-labeling schemes, the information exchanged between the nodes during
the verification phase is limited to the certificates. Instead, in locally checkable
proofs, the nodes may exchange extra-information regarding their individual
state (e.g., their inputs In or their identifiers, if not included in the certificates,
which might be the case for certificates of sub-logarithmic size). The prover-
verifier pair must satisfy the following two properties.

Completeness: Given (G, In) ∈ L, the non-trustable prover can assign certifi-
cates to the nodes such that the verifier accepts at all nodes;

Soundness: Given (G, In) /∈ L, for every certificate assignment to the nodes by
the non-trustable prover, the verifier rejects in at least one node.

The main complexity measure for both locally checkable proofs, and proof-
labeling schemes is the size of the certificates assigned to the nodes by the
prover. Another complexity measure is the number of communication rounds exe-
cuted during the verification step. In this article, all our upper-bounds are valid
for Proof Labeling Schemes with one-round certification, while all our lower-
bounds apply to locally ceckable proofs with an arbitrary number of rounds of
verification.

1.1 Our Results

We show that in several families of graphs there are efficient certification proto-
cols for Reachability. More precisely, we show that there is a proof labeling
scheme for Reachability with certificates on O(log n) bits in n-node networks
of sub-exponential growth.

A graph has sub-exponential growth if, for each node v, the cardinality of the
set of vertices at distance at most r from v growths as a sub-exponential function
in r, for every r > 0. Graphs of sub-exponential growth have bounded degree,
and include several structured families of graphs such as the d-dimensional grid,
for every d > 0. Nevertheless, not every class of graphs of bounded degree is
of sub-exponential growth. For instance, a complete binary tree has exponential
growth.

For graphs of bounded degree, we show that Reachability admits proof
labeling schemes with certificates of sub-linear size. More precisely, we show
that there is a proof labeling scheme for Reachability with certificates on
O(log2 n) bits in n-node networks of maximum degree 3. Moreover, for each Δ >
3 there exists ε > 0 such that is a proof labeling scheme for Reachability with

Local Certification of Majority Dynamics 373

certificates on O(n1−ε) bits in n-node networks of maximum degree Δ > 3. Then,
we show that all our upper-bounds are also valid for Election-Prediction.

Then, we focus on lower-bounds. First, we show that in unrestricted families
of graphs every, locally-checkable proof for the problem Reachability as well
as Election-Prediction requires certificates of size Ω(n). We also show that
even restricted to graphs of degree 2 and constant growth, every locally-checkable
proof for Reachability requires certificates of size Ω(n).

Our Techniques. Our upper bounds for the certification of Reachability are
based on an analysis of the maximum number of time-steps on which an indi-
vidual may change its opinion during the majority dynamics. This quantity is in
general unbounded. For instance, in an attractor which is a cycle of period two
an oscillating node switches its state an infinite number of time-steps. However,
when we look to two consecutive iterations of the majority dynamic, we obtain
that the number of changes of a given node depends on the topology of the net-
work. We show that the in the dynamic induced by two consecutive iterations of
the majority dynamic (or, alternatively, looking one every two time-steps of the
majority dynamics), the number of times that a node switches is state is con-
stant on graphs of sub-exponential growth, logarithmic on graphs of maximum
degree 3 and sublinear on graphs of bounded degree. The bound for graphs of
sub-exponential growth was observed in [18], while the other two bounds can
be obtained by a careful analysis of the techniques used in [18] (see Sect. 3 for
further details). Roughly speaking, the idea consists in defining a function that
assigns to each configuration a real value called the energy of the configuration.
This energy function is strictly decreasing in the orbit of a configuration before
reaching an attractor. In fact, through the definition of such function it can be
shown that the majority dynamics reaches only fixed points or limit cycles of
period two, in at most a polynomial number of time-steps [23]. In this article, we
analyze a different energy function proposed in [18], from which we obtain the
upper-bounds for the number of times that a node can switch states in two-step
majority dynamic.

Our efficient proof labeling schemes are then defined by simply giving each
vertex the list of time-steps on which it switches it state. From that information
the nodes can reconstruct their orbit. We show that the nodes can use the
certificates of the neighbors to verify that the recovered orbit corresponds to its
real orbit under the majority dynamic. Our upper bounds for the certification of
Election-Prediction follow from the protocol used to certify Reachability,
and the use of classical techniques of local certification to count the total number
of nodes in the graph, as well as the number of vertices that voted for each
candidate.

Our lower-bounds are obtained using two different techniques. First, we show
that in unrestricted families of graphs, every locally-checkable proof for the prob-
lem Reachability or Election-Prediction requires certificates of size Ω(n)
by a reduction to the disjointedness problem in non-deterministic communi-
cation complexity. Then, we prove that restricted to graphs of degree 2 and
constant growth, every locally-checkable proof for Reachability requires cer-

374 D. Maldonado et al.

tificates of size Ω(n) by using a locally-checkable proof for Reachability to
design a locally-checkable proof that accepts only if a given input graph is a
cycle. In [24] it is shown that any locally checkable proof for the problem of
distinguishing between a path of a cycle requires certificates of size Ω(log n),
implying that certifying Reachability on graphs of degree at most 2 and con-
stant growth (a cycle or a path) also requires Ω(log n) certificates.

1.2 Related Work

Majority Dynamics for Modeling Social Influence. Numerous studies have
been conducted on the majority dynamics. In [31], the authors studied how noise
affects the formation of stable patterns in the majority dynamics. They found
that the addition of noise can induce pattern formation in graphs that would
otherwise not exhibit them. In [34] the authors explore opinion dynamics on com-
plex social networks, finding that densely-connected networks tend to converge
to a single consensus, while sparsely-connected networks can exhibit coexistence
of different opinions and multiple steady states. Node degree influences the final
state under different opinion evolution rules. Variations of the majority dynam-
ics have been proposed and studied, such as the noisy majority dynamics [35],
where agents have some probability of changing their opinion even when they
are in the local majority, and the bounded confidence model [8,25], where agents
only interact with others that have similar opinions.

Complexity of Majority Dynamics. Our results are in the line of a series of
articles that aim to understand the computational complexity of the majority
rule by studying different variants of the problem. In that context, two perspec-
tives have been taken in order to show the P-Completeness. In [20] it is shown
that the prediction problem for the majority rule is P-Complete, even when the
topology is restricted to planar graphs where every node has an odd number of
neighbors. The result is based in a crossing gadget that use a sort of traffic lights,
that restrict the flow of information depending on the parity of the time-step.
Then in [19] it is shown that the prediction problem for the majority rule is
P-Complete when the topology is restricted to regular graphs of degree 3 (i.e.
each node has exactly three neighbors). In [21], the authors study the majority
rule in two dimensional grids where the edges have a sign. The signed majority
consists in a modification of the majority rule, where the most represented state
in a neighborhood is computed multiplying the state of each neighbor by the cor-
responding sign in the edge. The authors show that when the configuration of
signs is the same on every site (i.e. we have an homogeneous cellular automata)
then the dynamics and complexity of the signed majority is equivalent to the
standard majority. Interestingly, when the configuration of signs may differ from
site to site, the prediction problem is P-Complete.

Local Certification. Since the introduction of PLSs [29], different variants
were introduced. As we mentioned, a stronger form of PLS are locally check-
able proofs [24], where each node can send not only its certificates, but also

Local Certification of Majority Dynamics 375

its state and look up to a given radious. Other stronger forms of local certifi-
cations are t-PLS [12], where nodes perform communication at distance t ≥ 1
before deciding. Authors have studied many other variants of PLSs, such as
randomized PLSs [17], quantum PLSs [15], interactive protocols [7,28,33], zero-
knowledge distributed certification [3], PLSs use global certificates in addition
to the local ones [14], etc. On the other hand, some trade-offs between the size of
the certificates and the number of rounds of the verification protocol have been
exhibited [12]. Also, several hierarchies of certification mechanisms have been
introduced, including games between a prover and a disprover [2,11].

PLSs have been shown to be effective for recognizing many graph classes.
For example, there are compact PLSs (i.e. with logarithmic size certificates) for
the recognition of acyclic graphs [29], planar graphs [13], graphs with bounded
genus [9], H-minor-free graphs (as long as H has at most four vertices) [4], etc.
In a recent breakthrough, Bousquet et al. [10] proved a “meta-theorem”, stating
that, there exists a PLS for deciding any monadic second-order logic property
with O(log n)-bit certificates on graphs of bounded tree-depth. This result has
been extended by Fraigniaud et al [16] to the larger class of graphs with bounded
tree-width, using certificates on O(log2 n) bits.

Up to our knowledge, this is the first work that combines the study of major-
ity dynamics and local certification.

2 Preliminaries

Let G = (V,E) be a graph. We denote by NG(v) the set of neighbors of v,
formally NG(v) = {u ∈ V : {u, v} ∈ E}. The degree of v, denoted dG(v) is the
cardinality of NG(v). The maximum degree of G, denoted ΔG, is the maximum
value of dG(v) taken over all v ∈ V . We say that two nodes u, v ∈ V are
connected if there exists a path in G joining them. In the following, we only
consider connected graphs. The distance between u, v, denoted dG(u, v) is the
minimum length (number of edges) of a path connecting them. The diameter of
G is the maximum distance over every pair of vertices in G. For a node v, and
k ≥ 0, the ball of radius k centered in v, denoted by B(v, k) is the set of nodes
at distance at most k from v. Formally,

BG(v, k) = {u ∈ V : dG(v, u) ≤ k}

We also denote by ∂BG(v, k) = BG(v, k) \ BG(v, k − 1) the border of BG(v, k).
In the following, we omit the sub-indices when they are obvious by the context.

Let G = (V,E) be a graph, v ∈ V be an arbitrary node and f : N → R a
function. We say that v has a f -bounded growth if there exist constants c1, c2 > 0
such that, for every k > 0, c1f(k) ≤ |∂B(v, k)| ≤ c2f(k) . We also say that
G has f -bounded growth if every node v has f -bounded growth. A family of
graphs G has f - bounded growth if every graph in G has f -bounded growth.
A family of graphs G has constant-growth (respectively linear, polynomial, sub-
exponential, exponential)-growth if G has f -bounded growth, with f a constant

376 D. Maldonado et al.

(resp. linear, polynomial, sub-exponential, exponential) function. Observe that
since B(v, 1) = N(v), for every f -bounded graph G we have that Δ(G) ≤ f(1).

2.1 Majority and Finite State Dynamics

Let G = (V,E) be a connected graph. We assign to each node in G an initial
opinion v �→ xv ∈ {0, 1}. We call x a configuration for the network G. We call
x(t) the configuration of the network in time t. We define the majority dynamics
in G by the following local rules for u ∈ V and t ≥ 0:

xt+1
u =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if
∑

v∈N(u)

xt
v > d(v)

2 ,

xt
u if

∑

v∈N(u)

xt
v = d(v)

2 ,

0 otherwise.

where x0 = x is called an initial configuration. Notice that in the tie case (i.e. a
node observe the same number of neighbors in each state), we consider that the
node remains in its current state. Therefore, nodes of even degree may depend
on their own state while nodes of odd degree do not. Therefore, we can also
define the local rule of the majority dynamics as follows:

xt+1
u = sgn

(
∑

v∈V

auvxt
v − d(u)

2

)

where auv =

⎧
⎪⎨

⎪⎩

1 if uv ∈ E,

1 if u = v and d(u) is even,
0 otherwise.

and sgn(z) is the function that equals 1 when z > 0 and 0 otherwise.
Given a configuration x of a graph G and a vertex v ∈ V (G), we define the

orbit of x as the sequence of states that Orbit(x) = (x0 = x, x1, x2, . . .) that the
majority dynamics visit when the initial configuration is x. We also define the
orbit of vertex v as the sequence Orbit(x) = (x0

v = xv, x1
v, x2

v, . . . ,).
Observe that the orbit of every configuration is finite and periodic. In other

words, there exist non-negative integers T = T (G, x) p = p(G, x) such that
xT+p = xT . Indeed, in an n-node graph it is possible to define exactly 2n possible
configurations. Therefore, in every orbit there is at least one configuration that
is visited twice. The minimum T and p satisfying previous condition are denoted,
respectively, the transient length and the period of configuration x.

Let x a configuration satisfying that T (x,G) = 0 is called an attractor. An
attractor x satisfying p(x,G) = 1 is denoted a fixed point. Otherwise, it is denote
a limit-cycle of period p(x,G).

3 Certification Upper-Bounds

In this section, we give our certification upper bounds. Our analysis is based on
the results of [18], where the authors aim to study the asymptotic behavior of

Local Certification of Majority Dynamics 377

the majority dynamics on infinite graphs. Our goal is to bound the number of
changes in the two-step majority dynamics. We consider a variant of the energy
operator. More precisely, for each t > 0 and u ∈ V , we aim to bound the number
of time-steps on which the quantity ct

u(x) = |xt+1
u − xt−1

u | is non-zero.

Theorem 1. Let G be a graph and x be an arbitrary configuration. Then, for
every r ∈ V and every T > 0, it holds:

1. If G is a graph of sub-exponential growth, then
T∑

t=1

ct
r(x) = O(1).

2. If G is a graph of maximum degree 3, then
T∑

t=1

ct
r(x) = O(log n).

3. If G is a graph of maximum degree Δ, then
T∑

t=1

ct
r(x) = O(n1−ε), where

ε =
(

log(Δ + 2)
log(Δ)

− 1
)

>
1

Δ log(Δ)
.

Proof. We show (1). The proofs of (2) and (3) can be found in the full version.
We define an energy operator relative to r, giving weights to the edges of G that
decrease exponentially with the distance from r. Formally, we denote by Et

r the
energy operator centered in r, defined as follows:

Et
r(x) =

∑

u,v∈V

ãu,v|xt+1
u − xt

v|

where ãu,v = au,v · αδ(u,v), with α ∈ (0, 1) a constant that we will fix later, and
δ(u, v) = min{d(r, u), d(r, v)}. Then,

Et+1
r (x) − Et

r(x) =
∑

{u,v}∈E

αδ(u,v)|xt+1
u − xt

v| −
∑

{u,v}∈E

αδ(u,v)|xt
u − xt−1

v |

=
∑

{u,v}∈E

αδ(u,v)
(|xt+1

u − xt
v| − |xt−1

u − xt
v|)

We aim to upper bound Et+1
r (x) − Et

r(x). Observe that for u ∈ ∂B(r, i) and
v ∈ N(u), the value of δ(u, v) is either i − 1 or i. Suppose that ct

u �= 0. We have
that

(|xt+1
u − xt

v| − |xt−1
u − xt

v|) is maximized when almost half of the neighbors
of u are in a different state than u in t − 1, and exactly those neighbors are
connected with edges of weight αi−1. Therefore,

378 D. Maldonado et al.

Et+1
r (x) − Et

r(x) =
∞∑

i=0

∑

u∈∂B(r,i)

∑

v∈N(u)

αδ(u,v)
(|xt+1

u − xt
v| − |xt−1

u − xt
v|)

≤ − ct
r(x)

+
∞∑

i=1

∑

u∈∂B(r,i)
d(u) is even

ct
u(x)

((
d(u)

2

)

αi−1 −
(

d(u)
2

+ 1
)

αi

)

+
∞∑

i=1

∑

u∈∂B(r,i)
d(u) is odd

ct
u(x)

((
d(u) − 1

2

)

αi−1 −
(

d(u) + 1
2

)

αi

)

We now choose α. We impose that for each u ∈ V \ {r} such that d(u) is
even, (

d(u)
2

)

αi−1 −
(

d(u)
2

+ 1
)

αi ≤ 0 ⇒ α ≥ d(u)
d(u) + 2

; (1)

and for each u ∈ V \ {r} such that d(u) is odd,
(

d(u) − 1
2

)

αi−1 −
(

d(u) + 1
2

)

αi ≤ 0 ⇒ α ≥ d(u) − 1
d(u) + 1

. (2)

Picking α =
Δ

Δ + 2
we obtain that conditions 1 and 2 are satisfied for every

u ∈ V \ {r}. Then,
Et+1

r (x) − Et
r(x) ≤ −ct

r.

Using that Et
r(x) ≥ 0 for every t > 0, we obtain

T∑

t=1

ct
r(x) ≤

T∑

t=1

(
Et

r(x) − Et+1
r (x)

)
= E1

r (x) − ET
r (x) ≤ E1

r (x)

To obtain our bound for
∑T

t=1 ct
r(x), we upper bound E1

r (x). Observe that

E1
r (x) =

∑

{u,v}∈E

αδ(u,v)|xt+1
u − xt

v| =
∞∑

i=0

∑

u∈∂B(r,i)

∑

v∈N(u)

αδ(u,v)|x1
u − x0

v|

We have that the previous expression is maximized when, for each u ∈ V ,
almost half of the neighbors v of u satisfy x0

v �= x1
u, and the edge connecting

such neighbors has the maximum possible weight. In that case, we obtain:

E1
r (x) ≤ Δ

2

(

1 +
∞∑

i=1

f(i)αi−1

)

Local Certification of Majority Dynamics 379

Since f(i) is sub-exponential, we have that there exists a large enough 	 > 0

such that f() ≤
(

Δ + 1
Δ

)�

. Then,

E1
r (x) ≤ Δ

2

(
1 +

∞∑
i=1

f(i)αi−1

)

=
Δ

2

(
1 +

�∑
i=1

f(i)αi−1 +
∞∑

i=i∗+1

f(i)αi−1

)

≤ Δ

2
+

Δ + 2

2

((
Δ + 1

Δ

)�

·
�∑

i=1

(
Δ

Δ + 2

)i

+
∞∑

i=�+1

(
Δ + 1

Δ + 2

)i
)

=
Δ

2
+

Δ(Δ + 2)

4
·
(

Δ + 1

Δ

)�

·
(

1 −
(

Δ

Δ + 2

)�
)

+
(Δ + 2)2

2

(
Δ + 1

Δ + 2

)�+1

Since Δ ≤ f(1), we deduce that
T∑

t=1

ct
r(x) ≤ E1

r (x) = O(1).

For a graph G let us define Changes(G) = maxx

(
maxv

∑
t>0 ct

v(x)
)
. For a

set of graphs G we define Changes(G) = maxG∈G Changes(G). Our proof labelling
scheme for Reachability consists in giving each node u the sequence of time-
steps t on which ct

u �= 0. From its own certificate and the certificate of its
neighbors, a node v can compute its orbit.

Lemma 1. For each n-node graph G there is a proof labeling scheme for problem
Reachability with certificates of size O(Changes(G) · log n).

Theorem 1 pipelined with Lemma 1 gives the main result of this section.

Theorem 2.

1. There is a 1-round proof labeling scheme for Reachability with certificates
on O(log n) bits in n-node networks of sub-exponential growth.

2. There is a 1-round proof labeling scheme for Reachability with certificates
on O(log2 n) bits in n-node networks of maximum degree 3.

3. There is a 1-round proof labeling scheme for Reachability with certificates
on O(n1−ε log n) bits in n-node networks of maximum degree Δ > 2, where
ε = 1/Δ log(Δ).

3.1 Upper-Bound for ELECTION-PREDICTION

We now show the proof labeling schemes for Election-Prediction. Our
bounds of the size of the certificates is obtained from Theorem 2 and the fol-
lowing result. Let us define Count-Ones as the problem of deciding, given a
configuration x and a constant k, if in the graph there are exactly k nodes in
state 1. In [29] it is shown that there is a PLS for Count-Ones with certificates
of size O(log n).

380 D. Maldonado et al.

Lemma 2. (see [29]) There is a proof labeling scheme for Count-Ones with
certificates of size O(log n).

Roughly, the idea of the PLS of Lemma 2 the following: the certificate of a
node v is a tuple (root, parent, distance, count) where root is the identifier of the
root of a rooted spanning tree τ of G, parent is the identifier of the parent of v
in τ , distance is the distance of v to the root and count is the number of nodes in
state 1 in the subgraph of G induced by the descendants of v in τ . Then, every
vertex checks the local coherence of the certificates, and the root also checks
whether count equals k. The upper bounds for Election-Prediction follow
directly from Theorem 2 and Lemma 2.

Theorem 3.

1. There is a 1-round proof labeling scheme for Election-Prediction with
certificates on O(log n) bits in n-node networks of sub-exponential growth.

2. There is a 1-round proof labeling scheme for Election-Prediction with
certificates on O(log2 n) bits in n-node networks of maximum degree 3.

3. There is a 1-round proof labeling scheme for Election-Prediction with
certificates on O(n1−ε log n) bits in n-node networks of maximum degree Δ >
2, where ε = 1/Δ log(Δ).

4 Lower-Bounds

We first prove that every locally checkable proof for problems Reachability
or Election-Prediction on arbitrary n-node graphs require certificates of
size Ω(n). The proof is a reduction from the disjointedness problem in non-
deterministic communication complexity. In this problem, Alice receives a vector
a ∈ {0, 1}n and Bob a vector b ∈ {0, 1}n. The players can perform a series of
communication rounds and have the task of deciding whether there exists a
coordinate i ∈ {1, . . . , n} such that ai = bi. In [30] it is shown that the non-
deterministic communication complexity of this problem is Ω(n).

Theorem 4. Every locally checkable proof certifying Election-Prediction or
Reachability on arbitrary n-node graphs has certificates on Ω(n) bits.

With respect to bounded degree graphs, we study the case in which G2 is
the class of graphs with maximum degree at most 2. In other words, we focus in
studying path graphs and cycle graphs. In this case, we show that Reachability
admits proof-label schemes of size Ω(log n). We accomplish this task by a reduc-
tion to the task of verifying if G is a path or a cycle. More precisely, we define
the problem

Cycle = {G ∈ G2 : G is a path graph.}
Lemma 3. Let us suppose that Reachability restricted to G2 admits a locally
checkable proof with certificates of size L. Then, Cycle admits a locally check-
able proof with certificates of size 2L.

Local Certification of Majority Dynamics 381

In [24] it is shown that every locally checkable proof for Cycle has certificates
of size Ω(log n). We obtain the following theorem.

Theorem 5. Every locally checkable proof for Reachability on n-node graphs
of maximum degree 2 has certificates on Ω(log n) bits.

References

1. Asuncion, A.U., Goodrich, M.T.: Turning privacy leaks into floods: surreptitious
discovery of social network friendships and other sensitive binary attribute vectors.
In: Proceedings of the 9th Annual ACM Workshop on Privacy in the Electronic
Society, pp. 21–30 (2010)

2. Balliu, A., D’Angelo, G., Fraigniaud, P., Olivetti, D.: What can be verified locally?
J. Comput. Syst. Sci. 97, 106–120 (2018)

3. Bick, A., Kol, G., Oshman, R.: Distributed zero-knowledge proofs over networks.
In: 33rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2426–2458
(2022)

4. Bousquet, N., Feuilloley, L., Pierron, T.: Local certification of graph decompo-
sitions and applications to minor-free classes. In: 25th International Conference
on Principles of Distributed Systems (OPODIS). LIPIcs, vol. 217, pp. 22:1–22:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

5. Bredereck, R., Elkind, E.: Manipulating opinion diffusion in social networks. In:
IJCAI International Joint Conference on Artificial Intelligence. International Joint
Conferences on Artificial Intelligence (2017)

6. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics.
Rev. Mod. Phys. 81(2), 591 (2009)

7. Crescenzi, P., Fraigniaud, P., Paz, A.: Trade-offs in distributed interactive proofs.
In: 33rd International Symposium on Distributed Computing (DISC). LIPIcs,
vol. 146, pp. 13:1–13:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

8. Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among inter-
acting agents. Adv. Complex Syst. 3(01n04), 87–98 (2000)

9. Esperet, L., Lévêque, B.: Local certification of graphs on surfaces. Theor. Comput.
Sci. 909, 68–75 (2022)

10. Feuilloley, L., Bousquet, N., Pierron, T.: What can be certified compactly? Com-
pact local certification of MSO properties in tree-like graphs. In: Proceedings of
the 2022 ACM Symposium on Principles of Distributed Computing, pp. 131–140
(2022)

11. Feuilloley, L., Fraigniaud, P., Hirvonen, J.: A hierarchy of local decision. Theor.
Comput. Sci. 856, 51–67 (2021)

12. Feuilloley, L., Fraigniaud, P., Hirvonen, J., Paz, A., Perry, M.: Redundancy in
distributed proofs. Distrib. Comput. 34(2), 113–132 (2021)

13. Feuilloley, L., Fraigniaud, P., Montealegre, P., Rapaport, I., Rémila, É., Todinca,
I.: Compact distributed certification of planar graphs. Algorithmica 1–30 (2021)

14. Feuilloley, L., Hirvonen, J.: Local verification of global proofs. In: 32nd Interna-
tional Symposium on Distributed Computing. LIPIcs, vol. 121, pp. 25:1–25:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

15. Fraigniaud, P., Gall, F.L., Nishimura, H., Paz, A.: Distributed quantum proofs for
replicated data. In: 12th Innovations in Theoretical Computer Science Conference
(ITCS). LIPIcs, vol. 185, pp. 28:1–28:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2021)

382 D. Maldonado et al.

16. Fraigniaud, P., Montealegre, P., Rapaport, I., Todinca, I.: A meta-theorem for
distributed certification. In: Parter, M. (ed.) SIROCCO 2022. LNCS, vol. 13298,
pp. 116–134. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09993-9 7

17. Fraigniaud, P., Patt-Shamir, B., Perry, M.: Randomized proof-labeling schemes.
Distrib. Comput. 32(3), 217–234 (2019)

18. Ginosar, Y., Holzman, R.: The majority action on infinite graphs: strings and
puppets. Discret. Math. 215(1–3), 59–71 (2000)

19. Goles, E., Montealegre, P.: Computational complexity of threshold automata net-
works under different updating schemes. Theoret. Comput. Sci. 559, 3–19 (2014)

20. Goles, E., Montealegre, P.: The complexity of the majority rule on planar graphs.
Adv. Appl. Math. 64, 111–123 (2015)

21. Goles, E., Montealegre, P., Perrot, K., Theyssier, G.: On the complexity of two-
dimensional signed majority cellular automata. J. Comput. Syst. Sci. 91, 1–32
(2018)

22. Goles, E., Montealegre, P., Salo, V., Törmä, I.: Pspace-completeness of majority
automata networks. Theoret. Comput. Sci. 609, 118–128 (2016)

23. Goles-Chacc, E., Fogelman-Soulié, F., Pellegrin, D.: Decreasing energy functions
as a tool for studying threshold networks. Discret. Appl. Math. 12(3), 261–277
(1985)

24. Göös, M., Suomela, J.: Locally checkable proofs in distributed computing. Theory
Comput. 12(1), 1–33 (2016)

25. Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence models,
analysis and simulation. J. Artif. Soc. Soc. Simul. 5(3) (2002)

26. Heider, F.: Attitudes and cognitive organization. J. Psychol. 21(1), 107–112 (1946)
27. Kelman, H.C.: Compliance, identification, and internalization three processes of

attitude change. J. Conflict Resolut. 2(1), 51–60 (1958)
28. Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: ACM Sym-

posium on Principles of Distributed Computing, pp. 255–264. ACM (2018)
29. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),

215–233 (2010)
30. Kushilevitz, E.: Communication complexity. In: Advances in Computers, vol. 44.

Elsevier (1997)
31. Mobilia, M., Redner, S.: Majority versus minority dynamics: phase transition in

an interacting two-state spin system. Phys. Rev. E 68, 046106 (2003)
32. Moore, C.: Majority-vote cellular automata, ising dynamics, and p-completeness.

J. Stat. Phys. 88, 795–805 (1997)
33. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interac-

tive proofs. In: 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
1096–115. SIAM (2020)

34. Nguyen, V.X., Xiao, G., Xu, X.J., Wu, Q., Xia, C.Y.: Dynamics of opinion forma-
tion under majority rules on complex social networks. Sci. Rep. 10(1), 456 (2020)

35. Vieira, A.R., Crokidakis, N.: Phase transitions in the majority-vote model with
two types of noises. Phys. A 450, 30–36 (2016)

https://doi.org/10.1007/978-3-031-09993-9_7

Complexity of Spherical Equations
in Finite Groups

Caroline Mattes1(B), Alexander Ushakov2 , and Armin Weiß1

1 Universität Stuttgart, Institut für Formale Methoden der Informatik,
Stuttgart, Germany

caroline.mattes@fmi.uni-stuttgart.de
2 Stevens Institute of Technology, Hoboken, USA

Abstract. In this paper we investigate computational properties of the
Diophantine problem for spherical equations in some classes of finite
groups G. We classify the complexity of different variations of the prob-
lem, e.g., when G is fixed and when G is a part of the input.

When the group G is constant or given as multiplication table, we show
that the problem can always be solved in polynomial time. On the other
hand, for the permutation groups Sn (with n part of the input), the prob-
lem is NP-complete. The situation for matrix groups is quite involved:
while we exhibit sequences of 2-by-2 matrices where the problem is NP-
complete, in the full group GL(2, p) (p prime and part of the input) it can
be solved in polynomial time. We also find a similar behaviour with sub-
groups of matrices of arbitrary dimension over a constant ring.

Keywords: Diophantine problem · finite groups · matrix groups ·
spherical equations · complexity · NP-completeness

2010 Mathematics Subject Classification. 20F10 · 68W30

1 Introduction

The study of equations has a long history in all of mathematics. Some of the
first explicit general decidability results in group theory are due to Makanin [21]
showing that equations over free groups are decidable. Let F (Z) denote the free
group on countably many generators Z = {zi}∞

i=1. For a group G, an equation
over G with variables in Z is a formal equality of the form W = 1, where

W = zi1g1 · · · zikgk ∈ F (Z) ∗ G, with zij ∈ Z and gj ∈ G

and ∗ denotes the free product. We refer to {zi1 , . . . , zik} as the set of variables
and to {g1, . . . , gk} as the set of constants (or coefficients) of W = W (z1, . . . , zk).
A solution to an equation W (z1, . . . , zk) = 1 over G is an assignment to the
variables z1, . . . , zk that makes W (z1, . . . , zk) = 1 true. The Diophantine problem
(also called equation satisfiability or polynomial satisfiability problem) in a group
G for a class of equations C is an algorithmic question to decide if a given
equation W = 1 in C has a solution or not.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 383–397, 2024.
https://doi.org/10.1007/978-3-031-52113-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_27&domain=pdf
http://orcid.org/0000-0001-9042-7857
http://orcid.org/0000-0002-7645-5867
https://doi.org/10.1007/978-3-031-52113-3_27

384 C. Mattes et al.

One class of equations over groups that has generated much interest is the
class of quadratic equations: equations where each variable z appears exactly
twice (as either z or z−1). It was observed in the early 80 s [8,25] that such
equations have an affinity with the theory of compact surfaces (for instance, via
their associated van Kampen diagrams). This geometric point of view sparked
the initial interest in their study and has led to many interesting results, par-
ticularly in the realm of quadratic equations over free groups: solution sets were
studied in [12], NP-completeness was proved in [9,16]. These results stimulated
more interest in quadratic equations in various classes of (infinite) groups such
as hyperbolic groups (solution sets described in [13], NP-complete by [17]), the
first Grigorchuk group (decidability proved in [18], commutator width computed
in [5]), free metabelian groups (NP-hard by [19], in NP for orientable equations
by [20]), metabelian Baumslag–Solitar groups (NP-complete by [22]), etc.

Let us introduce some terminology: We say that quadratic equations W = 1
and V = 1 are equivalent if there is an automorphism φ ∈ Aut(F (Z) ∗ G) such
that φ is the identity on G and φ(W) = V . It is a well-known consequence
of the classification of compact surfaces that any quadratic equation over G is
equivalent, via an automorphism φ computable in time O(|W |2), to an equation
in exactly one of the following three standard forms (see, [6,12]):

k∏

j=1

z−1
j cjzj = 1, (k ≥ 1), (1)

g∏

i=1

[xi, yi]

k∏

j=1

z−1
j cjzj = 1,

g∏

i=1

x2
i

k∏

j=1

z−1
j cjzj = 1, (g ≥ 1, k ≥ 0) (2)

with variables xi, yi and zi. The number g is the genus of the equation, and both
g and k (the number of constants) are invariants. The standard forms are called,
respectively, spherical (1), orientable of genus g and non-orientable of genus g
(2) according to the compact surfaces they correspond to.

In this paper we investigate spherical equations in finite groups. Let us remark
that spherical equations naturally generalize fundamental (Dehn) problems of
group theory, as the word and the conjugacy problem, if we allow the constants
to be given as words over the generators. The complexity of solving equations
in finite groups has been first studied by Goldmann and Russell [11] showing
that the Diophantine problem in a fixed finite nilpotent group can be decided in
polynomial time, while it is NP-complete in every finite non-solvable group.

Contribution. Here we study the complexity of solving spherical equations in
finite groups both in the case that the group is fixed as well as that it is part of
the input. In the latter case, we consider various different input models as well
as different classes of groups. In particular, we show (here SphEq(G) denotes
the Diophantine problem for the class G of groups):

– In a fixed group the satisfiable spherical equations form a regular language
with commutative syntactic monoid – in particular, the Diophantine problem
can be decided in linear time (Theorem 7).

Complexity of Spherical Equations in Finite Groups 385

– If the Cayley table is part of the input, we can solve the Diophantine problem
in nondeterministic logarithmic space and, thus, in P (Proposition 8).

– For (symmetric) groups given as permutation groups the problem is NP-
complete (Theorem 11).

– SphEq((ET(2, n))n∈N) is NP-complete (here, ET(2, n) denotes the upper tri-
angular matrices with diagonal entries in {±1}, Corollary 15).

– SphEq((T(2, p))p∈P) is in P (here, T(2, p) are the upper triangular matrices
and P the set of primes, Theorem 16).

– SphEq((GL(2, p))p∈P) is in P (Theorem 22).
– SphEq((UT(4, p))p∈P) is in P where UT(4, p) denotes the uni-triangular 4-

by-4 matrices modulo p (Theorem 25).
– SphEq((H(p)

n)(n,p)∈N×P) is in P (here H
(p)
n denotes the n-dimensional discrete

Heisenberg group modulo p – note that the dimension and the prime field are
both part of the input, Theorem 24).

– For every constant m ≥ 5, we exhibit sequences of subgroups G′
n ≤ Hn ≤

Gn ≤ GL(n,m) such that SphEq((G′
n)n∈N) and SphEq((Gn)n∈N) are in

P but SphEq((Hn)n∈N) is NP-complete (Corollary 27). In particular, NP-
hardness does not transfer to super- nor sub-groups!

Due to space constraints many proofs are omitted or only short sketches are
given. Full proofs can be found in the full version on arXiv [23].

2 Notation and Problem Description

By P we denote the set of all prime numbers. With [k .. �] for k, � ∈ Z we denote
the interval of integers {k, . . . , �}.

We assume the reader to be familiar with basic group theory. Recall that
each finite group embeds into some permutation or matrix group. A group can
be presented by its Cayley table (or multiplication table). The Cayley table of
a finite group G is a square matrix with rows and columns indexed by the
elements of G. Row g and column h contains the product gh ∈ G. For a group
G and g1, . . . , g� ∈ G, 〈g1, . . . , g�〉 denotes the subgroup generated by g1, . . . , g�.
If g ∈ G we say that g is conjugate to h in G if gz := z−1gz = h for some z ∈ G.
Throughout, Zn is the ring of integers modulo n or the corresponding additive
group; we use C2 to denote the multiplicative group of units {1,−1} of Z.

Permutation Groups. The symmetric group on n elements, denoted by Sn, is
the group of order n! of all bijective maps (aka. permutations) on the set [1 .. n].
Here, An denotes the subgroup of Sn of all even permutations (see e.g. [3]).
As a function, it maps ij �→ ij+1 and ik �→ i1. Let σ, σ1, . . . , σk ∈ Sn. Set
mov(σ) = { i ∈ [1 .. n] | σ(i)
= i } and smov(σ1, . . . , σk) =

∑k
i=1 |mov(σi)|. We

say that σ1, σ2 ∈ Sn are disjoint if mov(σ1) ∩ mov(σ2) = ∅.

Lemma 1 ([3], (15.2)). Disjoint cycles in Sn commute. Moreover, every ele-
ment in Sn can be written as the product of disjoint cycles in a unique way (up
to the order of the cycles). This is called the disjoint cycle representation.

386 C. Mattes et al.

We say that Cyc(σ) = [j1, . . . , j�] is the cycle structure of σ if it is the product
of � disjoint cycles of lengths j1, . . . , j� and denote by |Cyc(σ)| = � the length of
this cycle decomposition. The following lemma is an easy observation.

Lemma 2. Let σ1, σ2 ∈ Sn. Then, |mov(σ1σ2)| ≤ smov(σ1, σ2). Moreover,
mov(σ1) ∩ mov(σ2)
= ∅ if and only if |mov(σ1σ2)| < smov(σ1, σ2).

Lemma 3 ([3], (15.3)). Let σ, τ ∈ Sn. Then σ is conjugated to τ in Sn if and
only if Cyc(σ) = Cyc(τ) (up to a permutation of the ji).

Matrix groups. The general linear group GL(n, p) over the prime field Zp is the
group of all invertible n-by-n matrices. Further, let T(n, p) be the subgroup of
GL(n, p) of upper triangular matrices. By ET(n, p) we denote the subgroup of
T(n, p) of all matrices having only ±1 on the diagonal (note that this is not a
standard definition). Finally, let UT(n, p) be the group of all matrices A ∈ T(n, p)
having only 1 on the diagonal. We denote the identity matrix by I or In.

Complexity and NP-Complete Problems. We assume the reader to be
familiar with the complexity classes NL (nondeterministic logarithmic space),
P and NP as well as NP-completeness (with respect to LOGSPACE reductions).
It is well known that the following problems are NP-complete (see [10]):
3-Partition: Input: a list S = (a1, . . . , a3k) of unary-encoded positive integers
with L

4 < ai < L
2 for L = 1

k

∑3k
i=1 ai. Question: Is there a partition of [1 .. 3k]

into k (disjoint) sets Ai = {i1, i2, i3} with ai1 + ai2 + ai3 = L for all i ∈ [1 .. k] ?
Partition: Input: a list S = (a1, . . . , ak) of binary-encoded positive integers.
Question: Is there a subset A ⊆ [1 .. k] such that

∑
i∈A ai =

∑
i�∈A ai?

3-ExactSetCover: Input: a set A and subsets A1, . . . , A� ⊆ A with |Ai| ≤ 3.
Question: Is there a set I ⊆ [1 .. �] with

⋃
i∈I Ai = A and Ai ∩ Aj = ∅ for all

i
= j in I? This is still NP-hard if each element occurs in at most 3 sets Ai.

Spherical Equations. Let G be a group. A spherical equation over G is an
equation as defined in (1):

∏k
i=1 z−1

i cizi = 1 with ci ∈ G and zi being variables
for i ∈ [1 .. k]. We write:

SphEq(G) = {(c1, . . . , ck) ∈ Gk | k ∈ N,∃zi ∈ G :
∏k

i=1 z−1
i cizi = 1}.

Note that this is a formal language over the alphabet G (we write (c1, . . . , ck)
instead of c1 · · · ck as usual for formal languages to differentiate it from the
product c1 · · · ck in G). Using this notation, we write (c1, . . . , ck) ∈ SphEq(G)
if (1) has a solution. We identify SphEq(G) with the computation problem

Input: c1, . . . , ck ∈ G.
Question: Is (c1, . . . , ck) ∈ SphEq(G)?
Note that we do not allow the individual ci to be words over the generators

as, for example, it is usual for the word and conjugacy problem; hence, these
problems do not necessarily reduce to solving spherical equations.

Complexity of Spherical Equations in Finite Groups 387

Lemma 4. Let π : { 1, . . . , k } → { 1, . . . , k } be a permutation. Then (c1, . . . , ck)
∈ SphEq(G) if and only if (cπ(1), . . . , cπ(k)) ∈ SphEq(G).

Proof. We have x−1cx y−1dy = ỹ−1dỹ x−1cx for ỹ = yx−1c−1x. Thus, we can
exchange ci and ci+1. By induction we can apply any permutation to the ci. ��

Let c ∈ G and
∏k

i=1 czi
i = c. This is indeed a spherical equation: Conjugating

by z, multiplying by z−1cz and inserting zz−1 we obtain an equation as in (1).
In the following we study this problem also with the group as part of the input.
There are several ways how to represent a finite group as part of the input:

Input Models for Finite Groups. For a class/sequence of groups G =
(Gn)n∈N we define the satisfiability problem (or Diophantine problem) for spher-
ical equations for G, denoted by SphEq(G), as follows:

Input: n ∈ N, a description of Gn and elements c1, . . . , ck ∈ Gn.
Question: Is (c1, . . . , ck) ∈ SphEq(Gn)?
We use the following representations of the input, which are frequently used

in literature and computational algebra software [15]:

Constant. In this model, G is not part of the input but fixed. Thus, SphEq(G)
is defined as above.

Cayley Table. The problem SphEqCayT has the following input:
Input: The Cayley table of a group G and elements c1, . . . , ck in G.

Permutation groups. The problem SphEq((Sn)n∈N) has the following input:
Input: n ∈ N in unary and elements c1, . . . , ck ∈ Sn given as permutations.

Matrix Groups. For matrix groups we have two parameters, the dimension n and
q for the ring Zq. Both can be either fixed or variable. Usually, the dimension n
is given in unary and q as well as the entries of the matrices are given in binary.
We describe the input for SphEq((GL(n, q))q∈N), but it is defined analogously
for other matrix groups or if n is part of the input or q is fixed.

Input: q ∈ N in binary and matrices c1, . . . , ck in GL(n, q).
Note that in the cases of SphEq((GL(n, q))n,q∈N) and SphEq((Sn)n∈N) it is

natural to give n in unary since, if n is given in binary, we cannot even write
down a single element of GL(n, q) or Sn in polynomial space.

Subgroups. Let G be a sequence of groups (defined as above). By SphEq(Sgr(G))
we denote the problem to decide whether (c1, . . . , ck) ∈ SphEq(〈g1, . . . , g�〉) on
input of a group G ∈ G, elements g1, . . . , g� ∈ G and c1, . . . , ck ∈ 〈g1, . . . , g�〉.
Note that this is a promise problem: we need that c1, . . . , ck ∈ 〈g1, . . . , g�〉.

A straightforward guess-and-check algorithm shows the following proposition.
In the subgroup model we need to apply the reachability Lemma [4, Lemma 3.1].

Proposition 5. Let G denote any class/sequence of groups given as matrix or
permutation groups as above. Then SphEq(G) and SphEq(Sgr(G)) are in NP.

388 C. Mattes et al.

3 Fixed Finite Groups and Cayley Tables

Before we consider the complexity, let us mention an interesting property of
spherical equations in finite simple groups:

Proposition 6. If G is a finite non-abelian simple group, then every spherical
equation of length (number of non-trivial ci) at least |G|3−|G|+1 has a solution.

Next, let us turn to the complexity of spherical equations in a fixed finite
group. The classes AC0 and ACC0 are defined in terms of circuit complexity, see
[26, Def. 4.5, 4.34]. We have uniform AC0 ⊆ uniform ACC0 ⊆ LOGSPACE ⊆ P.

Theorem 7. Let G be a fixed finite group. Then the set of satisfiable spherical
equations in G forms a regular language with commutative syntactic monoid. In
particular, SphEq(G) can be solved in linear time and is in uniform ACC0.

Note that Proposition 6 implies that SphEq(G) is a regular language with an
aperiodic syntactic monoid for every finite non-abelian simple group G; hence,
it in AC0 meaning that it is even easier than in the general case.

Proof. We view G as a finite alphabet. Then a spherical equation
∏k

i=1 czi
i = 1

can be identified with the word c1 · · · ck ∈ G∗. Let φ : G∗ → P(G) (the power
set of G, which is a monoid) denote the monoid homomorphism defined by g �→
{

x−1gx | x ∈ G
}
. By Lemma 4, φ(G∗) is commutative. Further,

∏k
i=1 czi

i = 1
is satisfiable if and only if 1 ∈ φ(c1 · · · ck) as outlined above. Thus, the set of
satisfiable spherical equations is recognized by φ. By [24] all languages recognized
by commutative (or solvable) monoids are in ACC0. As spherical equations are a
regular language (P(G) is finite), satisfiability can be decided in linear time. ��

We can reduce satisfiability of a spherical equation
∏k

i=1 z−1
i cizi = 1 to

reachability in the graph defined by V = G × [0 .. k] with edges from (g, i − 1)
to (gz−1ciz, i) for all z ∈ G and i ∈ [1 .. k]. This yields the following result:

Proposition 8. SphEqCayT is in NL and it can be solved in time k · |G|2 on a
random access machine.

Note that, if G,H are finite groups and gi ∈ G, hi ∈ H for i ∈ [1 .. k], then
((g1, h1), . . . , (gk, hk)) ∈ SphEq(G × H) if and only if (g1, . . . , gk) ∈ SphEq(G)
and (h1, . . . , hk) ∈ SphEq(H). Hence, we get the following corollary.

Corollary 9. Let G be a fixed finite group, and let G = (Gn)n∈N, n given in
unary with Gn = G × · · · × G

︸ ︷︷ ︸
n times

. Then, SphEq(G) ∈ ACC0.

Remark 10. By Proposition 8, SphEq((Gn)n∈N) ∈ P if |Gn| is polynomial in
the size of the description of Gn, the input model allows for a polynomial-
time multiplication of group elements, and they are reasonably encoded: First,
on input of the group Gn and a spherical equation, compute the Cayley
table of Gn, then apply Proposition 8. On the other hand, by Corollary 9
there are classes/sequences of groups such that |Gn| is exponential in n but
SphEq((Gn)n∈N) is in ACC0.

Complexity of Spherical Equations in Finite Groups 389

4 The Groups Sn and An

Theorem 11. SphEq((Sn)n∈N) is NP-complete.

Proof (sketch). By Proposition 5, SphEq((Sn)n∈N) is in NP. For the NP-
hardness we reduce from 3-Partition (see Sect. 2): Let A = (a1, . . . , a3k) be
an instance of 3-Partition with L = 1

k

∑3k
i=1 ai, L

4 < ai < L
2 . We define cycles

c1, . . . , c3k ∈ Sn for n = k(L + 1) and a product of disjoint L + 1-cycles c∗:
c� = (1, . . . , a� + 1),

c∗ =

k∏

i=1

((i − 1)(L + 1) + 1, . . . , i(L + 1)). (3)

We claim that the equation
∏3k

i=1 czi
i = c∗ has a solution in Sn if and only if A

is a positive instance of 3-Partition.
Let the sets Ai = {i1, i2, i3} be a partition of [1 .. 3k] and ai1 + ai2 + ai3 = L

(by a slight abuse of notation we use indices i1, i2, i3 for elements of Ai). Cycles
of the same length are conjugated (Lemma 3), so there are xi, yi, vi ∈ Sn such
that

((i − 1)(L + 1) + 1, . . . , i(L + 1)) = v−1
i ci1vix

−1
i ci2xiy

−1
i ci3yi.

Hence, by (3) and Lemma 4 we have a solution.
Assume that a solution exists. Since |Cyc(c∗)| = k, the cycles czi

i are not all dis-
joint. Starting with

∏3k
i=1 czi

i we multiply (at least 2k) non-disjoint cycles and per-
mute disjoint ones until we get c∗ (Lemma 1). By Lemma 2, smov(cz1

1 , . . . , cz3k
3k)

decreases by at least 2k. Since |mov(c∗)| = k(L + 1), no more multiplications of
non-disjoint cycles are possible. It follows that for each i ∈ [1 .. k] there exists
Ai = {i1, . . . , ihi

} with
∏hi

μ=1 c
ziµ

iµ
= ((i − 1)(L + 1) + 1, . . . , i(L + 1)). Thus,

∑hi

μ=1 aiµ ≥ L and ai < L
2 imply hi ≥ 3. So, hi = 3 for all i ∈ [1 .. k]. Since

kL =
∑3k

i=1 ai, we conclude ai1 + ai2 + ai3 = L for all i. ��
Corollary 12. SphEq((An)n∈N) is NP-complete.

Thus, there is a sequence of simple groups G such that SphEq(G) is NP-hard
though Proposition 6 suggests that it might be easy for simple groups. Notice
that |An|3 − |An| + 1 is not polynomial in n.

5 Spherical Equations in Dihedral Groups

The dihedral group Dn of order 2n can be found as a subgroup of GL(2, n): Let
R =

(
1 1
0 1

)
, S =

(
1 0
0 −1

)
. Then, Dn

∼= 〈R,S〉. Note that 〈R〉 ∼= Zn and 〈S〉 ∼= C2.
We can present Dn as semidirect product: Dn

∼= Zn � C2 with C2 acting on Zn

by (k, δ) �→ δk. So, Dn = { (k, δ) | k ∈ Zn, δ = ±1 } with multiplication defined
by (k1, δ1)(k2, δ2) = (k1 + δ1k2, δ1 · δ2). The neutral element is denoted by (0, 1).

390 C. Mattes et al.

Let (h�, γ�), (k�, δ�) ∈ Dn for � ∈ [1 ..m]. Write Δm =
∏m

�=1 δ�. By induction,
m∏

�=1

(h�, γ�)(k�, δ�)(h�, γ�)
−1 =

(m∑

�=1

Δ�−1γ�k� +
m∑

�=1

Δ�−1(1 − δ�)h�, Δm
)

(4)

Theorem 13. SphEq((Dn)n∈N), n given in binary, is NP-complete.

Note that if we give n in unary notation, then SphEq((Dn)n∈N) can be solved
in P. This follows from Proposition 8 because |Dn| is 2n and, hence, polynomial.

Proof. By Proposition 5, SphEq((Dn)n∈N) ∈ NP. For the NP-hardness we show
that (a1, . . . , ak) ∈ N

k for some k ∈ N is a positive instance of Partition (see
Sect. 2) if and only if ((a1, 1), . . . , (ak, 1)) ∈ SphEq(Dn) with n = 1 +

∑k
i=1 ai.

Assume that there exists A ⊆ [1 .. k] with
∑

i∈A ai =
∑

i/∈A ai. Let zi = (0, 1) if
i ∈ A and zi = (0,−1) if i /∈ A. Then

∏k
i=1 zi(ai, 1)z−1

i = (0, 1) is a solution.
Now assume that ((a1, 1), . . . , (ak, 1)) ∈ SphEq(Dn). By (4) there exist γi ∈

Zn such that
∑k

i=1 γiai = r · n for some r ∈ Z. Let A = {i | γi = 1}. Then
∑

i∈A

ai −
∑

i/∈A

ai = r · n = r ·
(
1 +

∑

i∈[1..k]

ai

)
. (5)

Thus, r = 0. Hence, by (5), (a1, . . . , ak) is a positive instance of
Partition. ��
Choosing n as a power of two, this reduction shows that SphEq((D2n)n∈N) is
NP-complete. Thus, there is a sequence of nilpotent groups such that SphEq(G)
is NP-hard (compared to [11] where it is in P for each fixed nilpotent group).

Remark 14. Let pn be the n-th prime number. By Cramers conjecture [7], pn+1−
pn ∈ O((log pn)2). Assume that this conjecture is true and let m =

∑
ai+1. Then

we can find p ∈ P, p ∈ [m .. m + (log(m))2] in polynomial time [2]. Choosing
n = p in the proof of Theorem 13 would yield that SphEq((Dp)p∈P) is NP-hard.

Let Qm be the generalized Quaternion group of order 4m. With the same
reduction as for Dn we can show that SphEq((Qm)m∈N) is NP-complete.

6 Spherical Equations for Two-by-Two Matrices

In this section we study 2-by-2 matrix groups with our main result Theorem 22
that SphEq((GL(2, p))p∈P) ∈ P. Let us first examine the case of upper triangular
matrices. Using the embedding of Dn into ET(2, n), we obtain:

Corollary 15. SphEq((ET(2, n))n∈N) is NP-complete.

It also follows that SphEq(Sgr((GL(m, q))q∈N)) and SphEq(Sgr((T(m, q))q∈N)) are
NP-complete for every m ∈ N \ {0, 1}.

On the first thought it seems that making the groups of interest bigger
increases the complexity. However, this is not the case due to Theorem 16. Its
proof is a reduction to solving linear equations. Be aware that we need p ∈ P.

Theorem 16. SphEq((T(2, p))p∈P) is in P.

Complexity of Spherical Equations in Finite Groups 391

6.1 Spherical Equations in GL(2, p)

For a matrix
(

a b
c d

)
∈ GL(2, p) the determinant det(A) is ad − bc, its trace

tr(A) is a + d. If λ1, λ2 are the eigenvalues of A, λ1, λ2 ∈ Zp or λ1, λ2 ∈
Zp[

√
(tr(A))2 − 4 det(A)] = Zp[

√
ξ] for any quadratic non-residue ξ ∈ Zp. More-

over, tr(A) = λ1+λ2 and det(A) = λ1λ2. Let K be a field extension of Zp. Matri-
ces A,B ∈ GL(2,K) are called similar if A = X−1BX for some X ∈ GL(2,K),
where K is the algebraic closure of K. Then, det(A) = det(B) and tr(A) = tr(B).
In our analysis we distinguish matrices of four types. We say that A is

– scalar if it is diagonal and λ1 = λ2 ∈ Zp.
– of type-I if λ1, λ2 ∈ Zp and λ1
= λ2. In this case A is similar to its standard

form
(

λ1 0
0 λ2

)
.

– of type-II if λ1, λ2 /∈ Zp and λ1
= λ2. Then A is similar to its standard form(
s t
1 s

)
with s, t ∈ Zp, t not a quadratic residue, det(A) = s2 − t, tr(A) = 2 s.

– of type-III if A is not scalar, λ1, λ2 ∈ Zp and λ1 = λ2. In this case A is similar

to its standard form
(

λ1 1
0 λ1

)
.

Every A ∈ GL(2, p) classifies as a matrix of one of these types. Note that A and
A−1 have the same type. If A is non-scalar, its conjugacy class is uniquely defined
by tr(A) and det(A) (however, scalar matrices can have the same trace and deter-
minant as type-III matrices). For S ⊆ GL(2, p) define tr(S) = { tr(A) | A ∈ S }.
Since the trace is invariant under conjugation, for any A,B ∈ GL(2, p),

tr(
{

AY BZ | Y,Z ∈ GL(2, p)
}
) = tr(

{
ABZ | Z ∈ GL(2, p)

}
).

For matrices A,B we write T (A,B) = tr(
{

ABZ | Z ∈ GL(2, p)
}
).

Lemma 17. The following problems are in polynomial time:

(a) Given A,B ∈ GL(2, p), decide whether they are conjugate.
(b) Given A ∈ GL(2, p), determine its type.
(c) Given A ∈ GL(2, p) of type-II or type-III, compute its standard form.

The following problems are in random polynomial time:

(d) Given A ∈ GL(2, p) of type-I, compute its standard form.
(e) Given A,B ∈ GL(2, p), compute a matrix Z ∈ GL(2, p) with A = BZ .

In the following lemmas we will investigate T (A,B). We distinguish three
cases according to the type of B. We will write Z =

(
v x
y z

)
.

Lemma 18 (Type-I). Let A be non-scalar and B of type-I. Then T (A,B) =
Zp. Furthermore, given A and B as well as k ∈ Zp one can find Z ∈ GL(2, p)
satisfying tr(ABZ) = k in polynomial time.

392 C. Mattes et al.

Lemma 19 (Type-II). For two matrices A and B of type-II we have
T (A,B) = Zp. Furthermore, given A and B as well as k ∈ Zp one can find
a matrix Z ∈ GL(2, p) satisfying tr(ABZ) = k in random polynomial time.

Proof (sketch). Write A =
(

a b
1 a

)
and B =

(
s t
1 s

)
and δ = vz − xy. We compute

T (A, B) =
{

1
δ
(v2b − x2 − y2bt + z2t) + 2as | v, x, y, z ∈ Zp with δ �= 0

}

⊇ {
1

vz
(v2b − x2 + z2t) + 2as | v, z �= 0, x ∈ Zp

}
(set y = 0)

=
{

v
z
b + z

v
t − z

v
x2 + 2as | v, z �= 0, x ∈ Zp

}
(replace x by zx)

Note that t and b are quadratic non-residues. Using a counting argument, we
can show that T (A,B) = Zp. Moreover, by applying an algorithm by Adleman,
Estes, McCurley [1] a solution can be computed in random polynomial time. ��

Lemma 20 (Type-III). Let A =
(

a b
c d

)
be non-scalar and B =

(
s 1
0 s

)
of type-

III. Then, Zp \ {s(a + d)} ⊆ T (A,B) and it can be decided in polynomial time
whether s(a + d) ∈ T (A,B). Furthermore, a matrix Z ∈ GL(2, p) satisfying
tr(ABZ) = k for a given k ∈ Zp can be found in random polynomial time.

Proof (sketch). By matrix multiplication we obtain that

T (A, B) =
{

1
δ

(
y2(−b) + yz(a − d) + z2c

)
+ as + sd | y �= 0 or z �= 0

}
.

If A is not scalar, then y2(−b) + yz(a − d) + z2c
= 0 for some (not both trivial)
y and z. Varying v and x we can get any nontrivial value for δ without changing
y2(−b)+yz(a−d)+z2c and attain all values in Zp\{s(a+d)}. Finally, we obtain
that s(a + d) ∈ T (A,B) if and only if (a − d)2 + 4bc is a quadratic residue of p,
which can be checked in polynomial time [14, Theorem 83]. ��

Now, consider a special case when A and B are of type–III. In this case,

T (A, B) =
{

− y2

δ
+ 2as | y ∈ Zp, δ �= 0

}
= Zp

and, hence, if C is of type-I or type-II, then the equation ABZ = CY always
has a solution because the conjugacy class is uniquely determined by det(C) and
tr(C). Thus it remains to consider C of type-III.

Lemma 21 (3x Type-III). Let A,B,C ∈ GL(2, p) be of type-III such that
det(AB) = det(C). Then ABZ2 = CZ3 always has a solution for Z2, Z3 ∈
GL(2, p). Moreover, Z2 and Z3 can be found in random polynomial time.

Theorem 22. SphEq((GL(2, p))p∈P) ∈ P. Furthermore, a solution (if it exists)
can be found in random polynomial time.

The algorithm computing a solution might refuse an answer with a small proba-
bility. By repeated execution we obtain a polynomial time Las Vegas algorithm
(always correct and expected polynomial running time).

Complexity of Spherical Equations in Finite Groups 393

Proof (sketch). By Theorem 7 we can assume p ≥ 5. Let C1, . . . , Ck ∈ GL(2, p).
We may assume that each Ci is non-scalar and that det(C1 · · · Ck) = 1 and k ≥ 2.
If k = 2, we need to solve an instance of the conjugacy problem (Lemma 17).
If k = 3, write the equation as C1C

Z2
2 = CZ3

3 . For C3 not of type-III, det(C3)
and tr(C3) uniquely define its conjugacy class. By Lemma 18–20, we can decide if
tr(C3) ∈ T (C1, C2) and, hence, if a solution exists. Otherwise, apply Lemma 21.
If k ≥ 4, first multiply matrices until only three matrices C1, C2, C3 remain.
If none or all are of type-III, apply Lemma 18, 19 or 21. Otherwise, let C3 be
not of type-III. By Lemma 20, T (C1, C2) ⊇ Zp \ {tr(C1) · tr(C2)/2}. If tr(C3) /∈
T (C1, C2), let i ∈ {1, 2, 3} such that Ci = DE for some D,E ∈ GL(2, p). Since
p ≥ 5, by Lemma 18–20 there is U ∈ GL(2, p) with tr(DEU)
= tr(Ci) and
(tr(DEU))2
= 4det(DEU). So DEU is not of type-III or scalar and a solution
exists. By Lemma 17–21 we can find a solution (if it exists) in random polynomial
time. Note that we need to find the standard forms only for finding solutions. ��

7 Matrix Groups in Higher Dimensions

In this section we are again in the matrix group input model considering the
generalized Heisenberg groups (6) as well as the uni-triangular 4-by-4 matrices.
Let us first consider matrices of arbitrary dimension in the subgroup model.
Using the embedding of Sn into GL(n, q), we obtain the following:

Corollary 23. For every constant q ∈ N \ {0, 1}, SphEq(Sgr((GL(n, q))n∈N))
is NP-complete.

Heisenberg Groups. The generalized Heisenberg group H
(p)
n of dimension n

over Zp is the group

H(p)
n =

⎧
⎨

⎩

⎛

⎝
1 α1 a2

0 I α3

0 0 1

⎞

⎠
∣∣∣ α1 ∈ Z

1×(n−2)
p , a2 ∈ Zp, α3 ∈ Z

(n−2)×1
p

⎫
⎬

⎭ . (6)

Observe that H
(p)
3 = UT(3, p) and H

(p)
n ≤ UT(n, p) for each n and p.

Theorem 24. SphEq((H(p)
n)(n,p)∈N×P), p given in binary, is in P.

The proof of Theorem 24 shows that spherical equations in H
(p)
n can be

reduced to linear equations. Notice that H = (H(p)
n)(n,p)∈N×P is a sequence of

non-abelian matrix groups with SphEq(H) ∈ P even if the dimension n and the
prime field Zp are both part of the input.

394 C. Mattes et al.

The Sequence (UT(4, p))p∈P

Theorem 25. SphEq((UT(4, p))p∈P) is in P.

Proof. Consider a spherical equation
∏k

i=1 XiCiX
−1
i = 1. Write Di = XiCiX

−1
i ,

Ai =
∏i

h=1 Dh and

Xi =

⎛

⎜
⎜
⎝

1 xi wi ui

0 1 zi vi

0 0 1 yi

0 0 0 1

⎞

⎟
⎟
⎠ , Ai =

⎛

⎜
⎜
⎜
⎝

1 a
(1)
i a

(2)
i a

(3)
i

0 1 a
(4)
i a

(5)
i

0 0 1 a
(6)
i

0 0 0 1

⎞

⎟
⎟
⎟
⎠

.

The entries of Ci and Di are denoted in the same way as the ones of Ai.
Then,

a
(j)
i =

i∑

h=1

c
(j)
h for j ∈ {1, 4, 6}, a

(2)
i =

i∑

h=1

d
(2)
h + c

(4)
h a

(1)
h−1,

a
(5)
i =

i∑

h=1

d
(5)
h + a

(4)
h−1c

(6)
h , a

(3)
i =

i∑

h=1

d
(3)
h + a

(1)
h−1d

(5)
h + a

(2)
h−1c

(6)
h .

The entries of Xi are variables. We have to check if the system of equations
a
(j)
k = 0, j ∈ [1 .. 6] (in the following denoted by (∗)) has a solution. Clearly, we

need that
∑k

i=1 c
(�)
i = 0 for � ∈ {1, 4, 6}. We show that for each i both vi and wi

appear only linearly and only in a
(3)
k with coefficients c

(1)
i or c

(6)
i . So if c

(1)
i
= 0

or c
(6)
i
= 0 for some i, then (∗) is solvable. Further, (∗) is linear if c

(4)
i = 0 for

all i (hence, we can decide in polynomial time whether a solution exists). So,
let c

(1)
i = c

(6)
i = 0 for all i. W.l.o.g. let c

(4)
1
= 0. The equation a

(2)
k = 0 (resp.

a
(5)
k = 0) has only xi (resp. yi) as variables. Thus, we can write x1 (resp. y1) as

linear combination of the other xi (resp. yi) and insert this into a
(3)
k . We get

∑

i,j

αijxiyj +
∑

i

(βixi + δiyi) + ζ = 0. (7)

with constants αij , βi, δi, ζ. Assume that there is αi0j0
= 0. Otherwise, (7)
is linear. Setting xi = yj = 0 for i
= i0, j
= j0, (7) becomes αi0j0xi0yj0 +
βi0xi0 + δi0yi0 + ζ = 0. Choose yj0 such that αi0,j0yj0 + βi0
= 0. Then, xi0 =
(−ζ − δi0yi0)(bi0j0yj0 + βi0)

−1. So also in this case (∗) is solvable. ��

7.1 The Groups Z
k
m � C2

As before let C2 = {±1}. Then C2 acts on Zm by (x, a) �→ x·a. The corresponding
semidirect product Zm � C2 is precisely the dihedral group Dm. We can define
also the semidirect product Z

k
m � C2 = {(a, x) | a ∈ Z

k
m, x = ±1} with C2

operating componentwise on Z
k
m meaning that the multiplication is given by

Complexity of Spherical Equations in Finite Groups 395

((a1, . . . , ak), x) · ((b1, . . . , bk), y) = ((a1 + x · b1, . . . , ak + x · bk), x · y). (8)

The neutral element is ((0, . . . , 0), 1), which we also denote by (0, 1).

Theorem 26. Let m = 3 or m ≥ 5 be fixed. Then SphEq((Zk
m � C2)k∈N) is

NP-complete.

Before we prove Theorem 26 we explain one of its consequences. Consider
the group (Zm � C2)k = Dk

m. We can embed Z
k
m � C2 into (Zm � C2)k via

((a1, . . . , ak), x) �→ ((a1, x), . . . , (ak, x)).

As Dm embeds into GL(2,m), we also obtain an embedding of Z
k
m � C2 into

GL(2k,m). Because m is fixed, Zm � C2 and Zm are fixed finite groups. Thus,
according to Corollary 9, SphEq(((Zm � C2)k)k∈N) and SphEq((Zk

m)k∈N) are
in P for k given in unary. So we have the following corollary:

Corollary 27. There exist sequences of groups G′ = (G′
n)n∈N, H = (Hn)n∈N

and G = (Gn)n∈N such that G′
n ≤ Hn ≤ Gn for all n ∈ N, SphEq(G′) and

SphEq(G) are in P but SphEq(H) is NP-complete.

Proof (of Theorem 26). We reduce from 3-ExactSetCover (see Sect. 2). Let
A1, . . . , A� be subsets of [1 .. k]. Let H = Z

k+�
m � C2 and write ai,j for the j-th

entry of ai ∈ Z
k+�
m . We define 2� elements ci = (ai, 1) ∈ H. For i ∈ [1 .. �],

j ∈ [1 .. k] we set ai,j = a�+i,j = 1 if j ∈ Ai, a�+i,k+i = 1 and ai,j = 0 otherwise.
We show that the equation

2�∏

i=1

ziciz
−1
i = ((2, . . . , 2︸ ︷︷ ︸

k times

, 1, . . . , 1︸ ︷︷ ︸
� times

), 1) (9)

has a solution if and only if [1 .. k] together with A1, . . . , A� is a positive instance
of 3-ExactSetCover. Let β = (0,−1) and observe that

βciβ
−1c�+i = ((0, . . . , 0︸ ︷︷ ︸

k+i−1 times

, 1, 0, . . . , 0), 1). (10)

Let I ⊆ [1 .. �] such that {Ai | i ∈ I} is an exact covering. By the choice of
the ci, we have ai,j + a�+i,j ∈ {0, 2} for all i ∈ I and j ∈ [1 .. k]. So (10) implies

∏

i∈I

ci · c�+i ·
∏

i�∈I

βciβ
−1 · c�+i = ((2, . . . , 2

︸ ︷︷ ︸
k times

, 1, . . . , 1
︸ ︷︷ ︸
� times

), 1).

Thus, according to Lemma 4 there exists a solution to (9).
If (9) has a solution, there is one with zi = (0,±1) for all i. Then, z�+j =
(0, 1) for j ∈ [1 .. �]. Otherwise we get a −1 in the last � entries. Let I =
{ i ∈ [1 .. �] | zi = (0, 1) }. By (9) and (10),

∑
i∈I(ai,j + a�+i,j) = 2 for j ∈ [1 .. k]

(in Zm). We have ai,j + a�+i,j ∈ {0, 2} for i ∈ [1 .. �], j ∈ [1 .. k]. For each j,
|{i ∈ [1 .. �] | ai,j + a�+i,j = 2}| ≤ 3. Since m = 3 or m ≥ 5 for each j there is
exactly one i ∈ I with ai,j = 1. So the Ai, i ∈ I are an exact covering of [1 .. k]. ��

396 C. Mattes et al.

8 Open Problems

– What is the complexity of SphEq((GL(n, p))p∈P) for n ≥ 3? We conjecture
that for every n there is a number fn such that every spherical equation over
GL(n, p) consisting of at least fn non-scalar matrices has a solution – so for
each fixed n the problem would be still solvable in polynomial time. However,
this might change if the dimension n is part of the input.

– What is the role of prime vs. arbitrary integer as modulus? In particular, is
SphEq((Dp)p∈P) NP-hard? An affirmative answer to this question seems very
unlikely without solving deep number-theoretic questions (see Remark 14).
On the other hand, is it possible to extend the polynomial-time algorithm for
SphEq((GL(2, p))p∈P) to SphEq((GL(2, n))n∈N)? A possible obstacle here
might be that one might have to factor n.

– What makes spherical equations difficult? Clearly the groups must be non-
abelian – but on the other hand the example of GL(2, p) shows that “too far
from abelian” might be also easy.

Funding Information. Armin Weiß has been funded by DFG Grant WE 6835/1-2.

References

1. Adleman, L.M., Estes, D., McCurley, K.S.: Solving bivariate quadratic congruences
in random polynomial time. Math. Comput. 48, 17–28 (1987)

2. Agrawal, M., Kayal, N., Saxena, N.: Primes is in P. Ann. Math. 160, 781–793
(2004)

3. Aschbacher, M.: Finite Group Theory. Cambridge Studies in Advanced Mathemat-
ics, 2nd edn. Cambridge University Press, Cambridge (2000)

4. Babai, L., Szemerédi, E.: On the complexity of matrix group problems i. In: IEEE
Annual Symposium on Foundations of Computer Science (1984)

5. Bartholdi, L., Groth, T., Lysenok, I.: Commutator width in the first Grigorchuk
group. Groups Geom. Dyn. 16, 493–522 (2022)

6. Comerford, L.P., Edmunds, C.C.: Quadratic equations over free groups and free
products. J. Algebra 68, 276–297 (1981)

7. Cramér, H.: On the order of magnitude of the difference between consecutive prime
numbers. Acta Arithmetica 2(1), 23–46 (1936). http://eudml.org/doc/205441

8. Culler, M.: Using surfaces to solve equations in free groups. Topology 20(2), 133–
145 (1981)

9. Diekert, V., Robson, J.: Quadratic Word Equations, pp. 314–326. Springer, Hei-
delberg (1999). https://doi.org/10.1007/978-3-642-60207-8 28

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

11. Goldmann, M., Russell, A.: The complexity of solving equations over finite groups.
Inf. Comput. 178(1), 253–262 (2002)

12. Grigorchuk, R., Kurchanov, P.: On quadratic equations in free groups. In: Pro-
ceedings of the International Conference on Algebra Dedicated to the Memory of
A. I. Malcev. Contemporary Mathematics, vol. 131, pp. 159–171. AMS (1992)

http://eudml.org/doc/205441
https://doi.org/10.1007/978-3-642-60207-8_28

Complexity of Spherical Equations in Finite Groups 397

13. Grigorchuk, R., Lysionok, I.: A description of solutions of quadratic equations in
hyperbolic groups. Int. J. Algebra Comput. 2(3), 237–274 (1992)

14. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 4th edn.
Oxford (1975)

15. Holt, D.F., Eick, B., O’Brien, E.A.: Handbook of Computational Group Theory.
Chapman and Hall, Boca Raton (2005)

16. Kharlampovich, O., Lysenok, I., Myasnikov, A.G., Touikan, N.: The solvability
problem for quadratic equations over free groups is NP-complete. Theor. Comput.
Syst. 47, 250–258 (2010)

17. Kharlampovich, O., Mohajeri, A., Taam, A., Vdovina, A.: Quadratic equations in
hyperbolic groups are NP-complete. Trans. AMS 369(9), 6207–6238 (2017)

18. Lysenok, I., Miasnikov, A., Ushakov, A.: Quadratic equations in the Grigorchuk
group. Groups Geom. Dyn. 10, 201–239 (2016)

19. Lysenok, I., Ushakov, A.: Spherical quadratic equations in free metabelian groups.
Proc. Am. Math. Soc. 144, 1383–1390 (2016)

20. Lysenok, I., Ushakov, A.: Orientable quadratic equations in free metabelian groups.
J. Algebra 581, 303–326 (2021)

21. Makanin, G.: Equations in a free group. Izvestiya AN SSSR, Ser. Mat. 46, 1199–
1273 (1982). (Russian, English translation in Math USSR Izvestiya, 21, 3 (1983))

22. Mandel, R., Ushakov, A.: Quadratic equations in metabelian Baumslag-Solitar
groups. Int. J. Algebra Comput. (2023)

23. Mattes, C., Ushakov, A., Weiß, A.: Complexity of spherical equations in finite
groups. arXiv eprints arxiv:2308.12841 (2023). https://doi.org/10.48550/arXiv.
2308.12841

24. McKenzie, P., Péladeau, P., Thérien, D.: NC1: the automata-theoretic viewpoint.
Comput. Complex. 1, 330–359 (1991)

25. Schupp, P.E.: Quadratic equations in groups, cancellation diagrams on compact
surfaces, and automorphisms of surface groups. In: Word Problems, II (Conference
on Decision Problems in Algebra, Oxford, 1976), Stud. Logic Foundations Math,
North-Holland, Amsterdam, vol. 95, pp. 347–371 (1980)

26. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer,
Berlin (1999). https://doi.org/10.1007/978-3-662-03927-4

http://arxiv.org/abs/2308.12841
https://doi.org/10.48550/arXiv.2308.12841
https://doi.org/10.48550/arXiv.2308.12841
https://doi.org/10.1007/978-3-662-03927-4

Positive Characteristic Sets for Relational
Pattern Languages

S. Mahmoud Mousawi and Sandra Zilles(B)

University of Regina, Regina, Canada
sandra.zilles@uregina.ca

Abstract. In the context of learning formal languages, data about an
unknown target language L is given in terms of a set of (word,label) pairs,
where a binary label indicates whether or not the given word belongs
to L. A (polynomial-sized) characteristic set for L, with respect to a
reference class L of languages, is a set of such pairs that satisfies cer-
tain conditions allowing a learning algorithm to (efficiently) identify L
within L. In this paper, we introduce the notion of positive characteristic
set, referring to characteristic sets of only positive examples. These are
of importance in the context of learning from positive examples only. We
study this notion for classes of relational pattern languages, which are of
relevance to various applications in string processing.

Keywords: Learning formal languages · Relational pattern
languages · Characteristic sets

1 Introduction

Many applications in machine learning and database systems, such as, e.g., the
analysis of protein data [3], the design of algorithms for program synthesis [12], or
problems in pattern matching [4], deal with the problem of finding and describing
patterns in sets of strings. From a formal language point of view, one way to
address this problem is with the study for so-called pattern languages [1,14].

A pattern is a finite string of variables and terminal symbols. For instance, if
the alphabet of terminal symbols is Σ = {a, b}, and x1, x2, . . . , denote variables,
then p = ax1bax1x2 is a pattern. The language generated by this pattern consists
of all words that are obtained when replacing variables with finite words over Σ,
where multiple occurrences of the same variable are replaced by the same word.
Angluin [1] further required that no variable be replaced by the empty string,
resulting in the notion of non-erasing pattern language, while Shinohara’s eras-
ing pattern languages allow erasing variables. For the pattern p above, the non-
erasing language is {aw1baw1w2 | w1, w2 ∈ Σ+}, while the erasing language is
{aw1baw1w2 | w1, w2 ∈ Σ∗}. The latter obviously contains the former.

The repetition of the variable x1 in p sets the words replaced for the two
occurrences of x1 in equality relation. Angluin already noted that relations other
than equality could be studied as well— a thought that was later on explored by
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 398–412, 2024.
https://doi.org/10.1007/978-3-031-52113-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_28&domain=pdf
http://orcid.org/0000-0001-7834-8574
https://doi.org/10.1007/978-3-031-52113-3_28

Positive Characteristic Sets for Relational Pattern Languages 399

Geilke and Zilles [6]. For example, the reversal relation requires that the words
replaced for the two occurrences of x1 are the reverse of one another, which can
be useful for modeling protein folding or behaviour of genes [6]. To the best of
our knowledge, the first work to focus on specific relations aside from equality
is that of Holte et al. [9], which studies the relations reversal as well as equal
length, in the non-erasing setting. As the name suggests, equal length stipulates
that the words replaced for the two occurrences of x1 in p are of the same length.

Holte et al. focused on the question whether the equivalence of two patterns
can be decided efficiently. While deciding equivalence is quite simple for non-
erasing pattern languages with the equality relation [1], the situation is more
complex for reversal and equal length relations. Holte et al.’s proposed decision
procedure, which tests only a small number of words for membership in the
two pattern languages under consideration, has applications beyond deciding
equivalence. In particular, the sets of tested words serve as so-called teaching
sets in the context of machine teaching [15] as well as characteristic sets in the
context of grammatical inference from positive and negative data [8].

We continue this line of research in two ways: firstly, we study reversal and
equal length relations for erasing pattern languages; secondly, we focus on the
concept of characteristic set rather than the equivalence problem. From that
perspective, there is a direct connection of our work to the theory of learning
relational pattern languages. Our contributions are as follows:

(a) We introduce the notion of positive characteristic sets. Classical characteris-
tic sets contain positive and negative examples, i.e., words over Σ together
with a label indicating whether or not the word belongs to a target language
to be learned. While characteristic sets are crucial for studying the (efficient)
learnability of formal languages from positive and negative data [8], they are
not suited to the study of learning from positive examples only. Positive char-
acteristic sets are an adjustment to account for learning from only positive
examples.

(b) Perhaps not surprisingly, we show that the existence of positive character-
istic sets is equivalent to the existence of telltale sets, which are known to
characterize classes of languages learnable from positive data in Gold’s [7]
model of learning in the limit [2]. Moreover, small positive characteristic
sets yield small telltales. We thus make connections between grammatical
inference from characteristic sets and learning in the limit using telltales.

(c) Holte et al. conjectured that the class of non-erasing pattern languages under
the reversal relation possesses a system of small sets which, in our terminol-
ogy, would be linear-size positive characteristic sets. We prove that, in the
erasing case under the reversal relation, no system of positive characteristic
sets exists (let alone a system of small such sets) when |Σ| = 2.

(d) For equal length, Holte et al. showed that, what we call a system of linear-
size positive characteristic sets, exists for the class of non-erasing pattern
languages, assuming |Σ| ≥ 3. While their proof carries over to the erasing
case as well, our main result states that even if |Σ| = 2, the class of erasing
pattern languages under the equal length relation has linear-size positive

400 S. M. Mousawi and S. Zilles

characteristic sets (and thus also linear-size telltales). The proof techniques
required for obtaining this result are vastly different from those used for the
case |Σ| ≥ 3.

2 Notation and Preliminary Results

Throughout this paper, we use Σ to denote an arbitrary finite alphabet. A
language over Σ is simply a subset of Σ∗, and every string in Σ∗ is called a
word. We denote the empty string/word by ε. The reverse operation on a word
w = w1 . . . wl ∈ Σ∗, with l ∈ N and wi ∈ Σ, is defined by wrev := wl . . . w1. For
any set Z and any string s ∈ Z∗, we use |s| to refer to the length of s.

Let L be a language over Σ. A set S ⊆ Σ∗ × {0, 1} is consistent with L
iff ((s, 1) ∈ S implies s ∈ L) and ((s, 0) ∈ S implies s /∈ L). When learning
a language L from positive and negative examples (without noise), a learning
algorithm is presented with a set S ⊆ Σ∗ × {0, 1} that is consistent with L;
from this set it is supposed to identify L. We refer the reader to [8] for details of
learning formal languages; the present paper will focus on structural properties
of classes of formal languages that allow for efficient learning of formal languages
from only positive examples; in particular, we consider sets S ⊆ Σ∗ × {1}.

2.1 Positive Characteristic Sets

While learning languages from positive examples is well-studied [2,7,11], we
build a bridge between learnability from positive examples (via so-called tell-
tales [2]) and (efficient) learnability from positive and negative examples (via
(polynomial-size) characteristic sets [8]).

Definition 1 (adapted from [8]). Let L = (Li)i∈N be a family of languages
over Σ. A family (Ci)i∈N of finite subsets of Σ∗ × {0, 1} is called a family of
characteristic sets for L iff:

1. Ci is consistent with Li for all i ∈ N.
2. If Li �= Lj, and Ci is consistent with Lj, then Cj is not consistent with Li.

If, in addition, Ci ⊆ Σ∗ × {1} for all i ∈ N, then (Ci)i∈N is called a family of
positive characteristic sets for L.

In the context of machine teaching, characteristic sets have also been called
non-clashing teaching sets [5].

Every family L = (Li)i∈N possesses a family of characteristic sets; it suffices
to include in Ci, for each j < i with Lj �= Li, one example from the symmetric
difference of Lj and Li, labelled according to Li. In the literature, the size and
effective computability of characteristic sets are therefore the main aspects of
interest, and relate to notions of efficient learning of languages [8]. However, the
mere existence of a family of positive characteristic sets is a non-trivial property.
We will show below that it is equivalent to the existence of so-called telltales.

Positive Characteristic Sets for Relational Pattern Languages 401

Definition 2 ([2]). Let L = (Li)i∈N be a family of languages over Σ. A family
(Ti)i∈N of finite subsets of Σ∗ is called a family of telltales for L iff:

1. Ti ⊆ Li for all i ∈ N.
2. If i, j ∈ N, Li �= Lj, and Ti ⊆ Lj, then Lj �⊂ Li.

For families L = (Li)i∈N with uniformly decidable membership, the existence
of a family of telltales is equivalent to the learnability of L from positive examples
only, in Gold’s [7] model of learning in the limit [2]. We connect telltales to
characteristic sets by observing that the existence of a telltale family is equivalent
to the existence of a family of positive characteristic sets.

Proposition 1. Let L = (Li)i∈N be a family of languages over Σ. Then the
following two statements are equivalent.

1. L possesses a family of positive characteristic sets.
2. L possesses a family of telltales.

Proof. To show that Statement 1 implies Statement 2, let (Ci)i∈N be a family of
positive characteristic sets for L. Define C ′

i = {s | (s, 1) ∈ Ci} for all i ∈ N. We
argue that (C ′

i)i∈N is a family of telltales for L. To see this, suppose there are
i, j ∈ N such that Li �= Lj , C ′

i ⊆ Lj , and Lj ⊂ Li. Then C ′
j ⊂ Li, so that Cj is

consistent with Li. Further, C ′
i ⊆ Lj implies that Ci is consistent with Lj . This

is a contradiction to (Ci)i∈N being a family of positive characteristic sets for L.
Hence no such i, j ∈ N exist, i.e., (C ′

i)i∈N is a family of telltales for L.
To verify that Statement 2 implies Statement 1, let (Ti)i∈N be a family of

telltales for L. The following (possibly non-effective) procedure describes the
construction of a set Ci for any i ∈ N, starting with Ci = ∅:

– For each s ∈ Ti, add (s, 1) to Ci.
– For each j < i, if Li �⊆ Lj , pick any sj ∈ Li \ Lj and add (sj , 1) to Ci.

Obviously, Ci is finite. Now suppose there are i, j with j < i and Li �= Lj , such
that Ci ∪ Cj is consistent with Li and Lj . If Li �⊆ Lj , then, by construction,
Ci contains (sj , 1) for some sj /∈ Lj , so that Ci is not consistent with Li—a
contradiction. So Li ⊆ Lj . As Cj is consistent with Li, we have Tj ⊆ Li ⊆ Lj .
By the telltale property, this yields Li = Lj—again a contradiction. 	

While the existence of a family of characteristic sets is trivially fulfilled, not
every family L = (Li)i∈N has a family of positive characteristic sets. For example,
it was shown that the family containing Σ∗ as well as each finite subset of Σ∗

does not possess a family of telltales [2]. Therefore, by Proposition 1, it does not
possess a family of positive characteristic sets.

In our study below, the size of positive characteristic sets (if any exist) will
be of importance. The term family of polynomial-sized positive characteristic
sets/telltales refers to a family of positive characteristic sets/telltales in which
the size of the set Ci/Ti assigned to language Li is bounded by a polynomial in
the size of the underlying representation of Li. The proof of Proposition 1 now
has an additional consequence of interest in the context of efficient learning:

402 S. M. Mousawi and S. Zilles

Corollary 1. Let L = (Li)i∈N be a family of languages over Σ. If L possesses a
family of polynomial-sized positive characteristic sets then L possesses a family
of polynomial-sized telltales.

This corollary motivates us to focus our study on positive characteristic sets
rather than on telltales—bounds on the size of the obtained positive character-
istic sets then immediately carry over to telltales.

2.2 Relational Pattern Languages

Let X = {x1, x2, . . .} be a countably infinite set of variables, disjoint from Σ.
Slightly deviating from Angluin’s notation, a finite non-empty string p over Σ∪X
is called a pattern, if no element from X occurs multiple times in p; the set of
variables occurring in p is then denoted by Var(p). For instance, for Σ = {a, b},
the string p = x1ax2abx3x4b is a pattern with Var(p) = {x1, . . . , x4}. A pattern
p generates words over Σ if we substitute each variable with a word, i.e., we apply
a substitution ϕ to p. A substitution is a mapping (Σ ∪ X)+ → Σ∗ that acts as
a morphism with respect to concatenation and is the identity when restricted to
Σ+. The set of words generated from a pattern p by applying any substitution is
a regular language, unless one constrains the substitutions. In the above example,
p generates the regular language {w1aw2abw3w4b | wi ∈ Σ∗ for 1 ≤ i ≤ 4}.

One way of constraining substitutions is to force them to obey relations
between variables. Angluin [1] allowed any subsets of variables to be in equality
relation, requiring that all variables in equality relation must be substituted by
identical strings. Furthermore, she constrained substitutions to be non-erasing,
i.e., they map every variable to a non-empty string over Σ. For example, the
pattern p = x1ax2abx3x4b, under the constraint that x3, x4 are in equality rela-
tion and only non-erasing substitutions are allowed, generates the (non-regular!)
language {w1aw2abw3w3b | wi ∈ Σ+ for 1 ≤ i ≤ 3}. Later, Shinohara removed
the constraint of non-erasing substitutions, resulting in so-called erasing pat-
tern languages [14]. Aside from equality, two relations that were studied in the
context of non-erasing pattern languages are reversal and equal length [9]. We
denote by eq, rev, and len, resp., the relations on Σ∗ that correspond to equal-
ity, reversal, and equal length, resp. If w, v ∈ Σ∗, then (i) (w, v) ∈ eq iff w = v;
(ii) (w, v) ∈ rev iff w = vrev; (iii) (w, v) ∈ len iff |w| = |v|. For instance,
(ab, bb) ∈ len \ (rev ∪ eq), (aab, baa) ∈ (rev ∪ len) \ eq, (ab, ab) ∈ (eq ∪ len) \ rev,
and (aa, aa) ∈ eq ∩ rev ∩ len. Clearly, rev ∪ eq ⊆ len.

In general, a relational pattern is a pair (p,R), where p is a pattern and
R is a binary relation over X. If r is a fixed binary relation over Σ∗ and ϕ
is any substitution, we say that ϕ is valid for R (or ϕ is an R-substitution),
if (x, y) ∈ R implies (ϕ(x), ϕ(y)) ∈ r. For example, if r = len, ϕ(x) = bb,
ϕ(y) = ab, and ϕ(z) = aaa, then ϕ would be valid for R = {(x, y)}, but not for
R′ = {(x, z)} or for R′′ = {(x, y), (x, z)}.

If (p,R) is a relational pattern, then a group in (p,R) is any maximal set of
variables in p that are pairwise related via the transitive closure of the symmetric
closure of R over Var(p). For example, when p = ax1x2bax3abx4x5x6 and R =

Positive Characteristic Sets for Relational Pattern Languages 403

{(x1, x3), (x1, x4), (x2, x6)}, then the groups are {x1, x3, x4}, {x2, x6}, {x5}. The
group of a variable x is the group to which it belongs; we denote this group by
[x]. A variable is free if its group is of size 1, like x5 in our example.

3 Reversal Relation

In this section, we will fix r = rev. Note that a substitution that is valid for
{(x, y), (y, z), (x, z)}, where x, y, z are three mutually distinct variables, must
replace x, y, z all with the same string, and this string must be a palindrome.
For convenience of the formal treatment of the rev relation, we avoid this special
situation and consider only reversal-friendly relational patterns; a relational pat-
tern (p,R) is reversal-friendly, if the transitive closure of the symmetric closure
of R does not contain any subset of the form {(y1, y2), (y2, y3), . . . , (yn, y1)} for
any odd n ≥ 3.

Note that, for a reversal-friendly pattern (p,R), any group [x] is partitioned
into two subsets [x]rev and [x]=. The former consists of the variables in [x]
for which any R-substitution ϕ is forced to substitute ϕ(x)rev, while the latter
contains variables in [x] which ϕ replaces with ϕ(x) itself.

If (p,R) is a reversal-friendly relational pattern, then εLrev(p,R) := {ϕ(p) |
ϕ is an R -substitution }. The class of (erasing) reversal pattern languages is now
given by εLrev = {εLrev(p,R) | (p,R) is a reversal-friendly relational pattern}.

In the literature [9], so far only the non-erasing version of these languages was
discussed: Lrev(p,R) := {ϕ(p) | ϕ is a non-erasing R -substitution}. The class of
non-erasing reversal pattern languages is then defined as Lrev = {Lrev(p,R) |
(p,R) is a reversal-friendly relational pattern}. From [9], it is currently still open
whether or not polynomially-sized positive characteristic sets exist. Using basic
results on telltales, one can easily show that, for any alphabet size, the class Lrev

has a family of positive characteristic sets.

Proposition 2. Let Σ be any countable alphabet. Then Lrev has a family of
positive characteristic sets.

Proof. Let w be any word in Lrev(p,R). Since non-erasing substitutions generate
words at least as long as the underlying pattern, we have |p′| ≤ |w| for all p′

for which there is some R′ with w ∈ Lrev(p′, R′). Thus, there are only finitely
many languages L ∈ Lrev with w ∈ L. It is known that any family for which
membership is uniformly decidable (like Lrev), and which has the property that
any word w belongs to at most finitely many members of the family, possesses
a family of telltales [2]. By Proposition 1, thus Lrev has a family of positive
characteristic sets. 	

When allowing erasing substitutions, we obtain a contrasting result. In par-
ticular, we will show that, when |Σ| = 2, the class εLrev does not have a family
of positive characteristic sets.

For convenience of notation, for a relational pattern (p,R), we will write
y = xrev and use xrev interchangeably with y, when (x, y) ∈ R, where x, y

404 S. M. Mousawi and S. Zilles

are variables in p. Thus, we can rewrite a relational pattern (p,R) in alternate
form (p,R). For example, we can write (p,R) = x1x

rev
1 x2x

rev
2 x3x

rev
3 instead of

(p,R) = (x1y1x2y2x3y3, {(x1, y1), (x2, y2), (x3, y3)}). The reverse operation on a
string of variables is defined as

(ν1ν2 . . . νl−1νl)rev := (νl)rev(νl−1)rev . . . (ν2)rev(ν1)rev ,

where νi ∈ {xi, x
rev
i } for all 1 ≤ i ≤ l. Note that (xrev

i)rev := xi and (xi)rev :=
xrev

i . Now let X̄ = X ∪ {xrev | x ∈ X}.
Let R be any binary relation over X. A reversal-obedient morphism for R

is a mapping φ : (Σ ∪ X̄)∗ → (Σ ∪ X̄)∗ that acts as a morphism with respect
to concatenation, leaves elements of Σ unchanged, and satisfies the following
property for all p ∈ (Σ ∪ X̄)∗: if x, y ∈ X̄ occur in p and (x, y) ∈ R then
φ(x) = φ(y)rev. For example, if R = {(x, y)} and a ∈ Σ, such a mapping φ could
be defined by φ(σ) = σ for all σ ∈ Σ, φ(x) = x1x2, φ(y) = x2x1, and φ(z) = ax3.
This mapping φ would yield φ(axyaz) = φ(axxrevaz) = ax1x2x2x1aax3.

The following lemma is helpful for establishing that positive characteristic
sets do not in general exist for εLrev. An analogous version for the equality
relation was proven in [10]; our proof for the reversal relation is almost identical,
and omitted due to space constraints.

Lemma 1. Let |Σ| ≥ 2. Suppose (p,R), (p′, R′) are two arbitrary relational pat-
terns where p, p′ ∈ X+. Then εLrev(p,R) ⊆ εLrev(p′, R′) if and only if there
exists a reversal-obedient morphism φ for R′ such that φ(p′, R′) = (p,R).

Theorem 1. Let |Σ| = 2. Then εLrev does not possess a family of positive
characteristic sets.

Proof. Fix Σ = {a, b}. We will show that εLrev(x1x
rev
1 x2x

rev
2 x3x

rev
3) does not

have a positive characteristic set with respect to εLrev. Our proof follows a con-
struction used by Reidenbach [13] to show that εLeq(x1x1x2x2x3x3) does not
have a telltale with respect to εLeq. Let (p,R) = x1x

rev
1 x2x

rev
2 x3x

rev
3 . In partic-

ular, we will show that for any finite set T ⊆ εLrev(p,R) there exists a relational
pattern (p′, R′) with p′ ∈ X+ such that T ⊆ εLrev(p′, R′) ⊂ εLrev(p,R). This
implies that T ×{1} cannot be used as a positive characteristic set for εLrev(p,R)
with respect to εLrev, which proves the theorem.

Fix T = {w1, . . . , wn} ⊆ εLrev(p,R). For each wi ∈ T , define
←−
θi : Σ∗ −→ X∗

by
←−
θi (σ1 . . . σz) =

←−
θi (σ1) . . .

←−
θi (σz), for σ1, . . . , σz ∈ Σ, where, for c ∈ Σ, we set

←−
θi (c) =

{
x2i−1, c = a

x2i, c = b

T ⊆ εL(p,R) implies for every i ∈ {1, . . . , n} the existence of a substitution
θi (valid for R) such that wi = θi(p). For each wi ∈ T we construct three strings
of variables αi,1, αi,2, αi,3 ∈ X∗, such that a concatenation of these strings in a
specific way produces a pattern other than (p,R) that generates wi. These αi,k

will be the building blocks for the desired pattern (p′, R′). Consider two cases:

Positive Characteristic Sets for Relational Pattern Languages 405

(i) Some σ ∈ Σ appears in θi(x3) exactly once while θi(x1), θi(x2) ∈ {σ′}∗ for
σ′ �= σ, σ′ ∈ Σ. Here we construct strings of variables as follows:
αi,1 :=

←−
θi (θi(x1)θi(x2))

αi,2 :=
←−
θi (θi(x3))

αi,3 := ε

(ii) Not (i). In this case we simply set αi,k :=
←−
θi (θi(xk)) where 1 ≤ k ≤ 3.

In each case, wi ∈ εL(αi,1α
rev
i,1 αi,2α

rev
i,2 αi,3α

rev
i,3).

Now define (p′, R′) := y1y
rev
1 y2y

rev
2 y3y

rev
3 where yk := α1,kα2,k . . . αn,k ∈ X+

for 1 ≤ k ≤ 3. To conclude the proof, we show T ⊆ εLrev(p′, R′) ⊂ εLrev(p,R).
To see that T ⊆ εLrev(p′, R′), note wi ∈ εLrev(αi,1α

rev
i,1 αi,2α

rev
i,2 αi,3α

rev
i,3),

and thus wi can be generated from (p′, R′) by replacing all variables in αj,k,
j �= i, 1 ≤ k ≤ 3, with the empty string.

To verify εLrev(p′, R′) ⊆ εL(p,R), it suffices to provide a reversal-obedient
morphism Φ : X∗ −→ X∗ such that Φ(p,R) = (p′, R′). The existence of such Φ is
obvious from our construction, namely Φ(xk) = α1,kα2,k . . . αn,k for 1 ≤ k ≤ 3.

Finally, we prove εLrev(p′, R′) ⊂ εLrev(p,R). By way of contradiction, using
Lemma 1, suppose there is a morphism Ψ : X∗ −→ X∗ with Ψ(p′, R′) = (p,R).

By construction, (p′, R′) has no free variables, i.e., the group of each variable
in p′ has size at least 2. Hence we can decompose Ψ into two morphisms ψ and
ψ′ such that Ψ(p′, R′) = ψ′(ψ(p′, R′)) = (p,R) and, for each vj ∈ Var(p′): (i)
ψ(vj) = ε, if |[vj]| > 2, (ii) ψ(vj) = vj , if |[vj]| = 2. Since (p′, R′) = Φ(p,R)
and either [Φ(x3)] = ∅ or |[Φ(x3)]| ≥ 4 (see cases (i) and (ii)), we conclude that
ψ(Φ(x3)) = ε. Therefore,

ψ(p′, R′) =
ψ(Φ(x1))︷ ︸︸ ︷

vj1vj2 . . . vjt

ψ(Φ(xrev
1))︷ ︸︸ ︷

vrev
jt

vrev
jt−1

. . . vrev
j1

ψ(Φ(x2))︷ ︸︸ ︷
vjt+1vjt+2 . . . vjt+�

ψ(Φ(xrev
2))︷ ︸︸ ︷

vrev
jt+�

vrev
jt+�−1

. . . vrev
jt+1

ψ(Φ(x3))︷︸︸︷
ε

ψ(Φ(xrev
3))︷︸︸︷

ε

where t, ≥ 1 and vjζ
�= vjη

for ζ �= η, 1 ≤ ζ, η ≤ t + . To obtain a pattern
with the same Parikh vector as of (p,R), ψ′ must replace all except six variables
with ε. By the structure of ψ(p′, R′), the only possible options up to renaming
of variables are (p1, R1) := x1x2x

rev
2 xrev

1 x3x
rev
3 , (p2, R2) := x1x

rev
1 x2x3x

rev
3 xrev

2

and (p3, R3) := x1x2x3x
rev
3 xrev

2 xrev
1 . None of these are equivalent to (p,R). This

is because there are words of the form a2κbba2ξ with κ > ξ > 0 that witness
εLrev(p,R) �⊆ εLrev(p1, R1), and εLrev(p,R) �⊆ εLrev(p3, R3); with 0 < κ < ξ
we obtain witnesses for εLrev(p,R) �⊆ εLrev(p2, R2). Hence there is no morphism
ψ′ such that (p,R) = ψ′(ψ((p′, R′))), and no Ψ such that Ψ((p′, R′)) = (p,R).
This is a contradiction and therefore εLrev(p′, R′) ⊂ εLrev(p,R). 	

Example 1. Consider the set T := {w1, w2, w3, w4} with

w1 = a︸︷︷︸
θ1(x1)

a︸︷︷︸
θ1(xrev

1)

a︸︷︷︸
θ1(x2)

a︸︷︷︸
θ1(xrev

2)

b︸︷︷︸
θ1(x3)

b︸︷︷︸
θ1(xrev

3)

406 S. M. Mousawi and S. Zilles

w2 = ba︸︷︷︸
θ2(x1)

ab︸︷︷︸
θ2(xrev

1)

a︸︷︷︸
θ2(x2)

a︸︷︷︸
θ2(xrev

2)

ab︸︷︷︸
θ2(x3)

ba︸︷︷︸
θ2(xrev

3)

w3 = b︸︷︷︸
θ3(x1)

b︸︷︷︸
θ3(xrev

1)

bb︸︷︷︸
θ3(x2)

bb︸︷︷︸
θ3(xrev

2)

bb︸︷︷︸
θ3(x3)

bb︸︷︷︸
θ3(xrev

3)

w4 = aab︸︷︷︸
θ4(x1)

baa︸︷︷︸
θ4(xrev

1)

b︸︷︷︸
θ4(x2)

b︸︷︷︸
θ4(xrev

2)

bab︸︷︷︸
θ4(x3)

bab︸︷︷︸
θ4(xrev

3)

A pattern (p′, R′) generating these four strings and generating a proper subset
of εL(x1x

rev
1 x2x

rev
2 x3x

rev
3) is constructed as follows.

α1=

α1,1︷︸︸︷
x1x1︸︷︷︸

←−
θ1(a a)

ᾱ1,1︷︸︸︷
x1x1︸︷︷︸

←−
θ1(a a)

α1,2︷︸︸︷
x2︸︷︷︸

←−
θ1(b)

ᾱ1,2︷︸︸︷
x2︸︷︷︸

←−
θ1(b)

α1,3︷︸︸︷
ε

ᾱ1,3︷︸︸︷
ε α2=

α2,1︷︸︸︷
x4x3︸︷︷︸
←−
θ2(ba)

ᾱ2,1︷︸︸︷
x3x4︸︷︷︸
←−
θ2(ab)

α2,2︷︸︸︷
x3︸︷︷︸

←−
θ2(a)

ᾱ2,2︷︸︸︷
x3︸︷︷︸

←−
θ2(a)

α2,3︷︸︸︷
x3x4︸︷︷︸
←−
θ2(ab)

ᾱ2,3︷︸︸︷
x4x3︸︷︷︸
←−
θ2(ba)

α3=

α3,1︷︸︸︷
x6︸︷︷︸

←−
θ3(b)

ᾱ3,1︷︸︸︷
x6︸︷︷︸

←−
θ3(b)

α3,2︷︸︸︷
x6x6︸︷︷︸
←−
θ3(bb)

ᾱ3,2︷︸︸︷
x6x6︸︷︷︸
←−
θ3(bb)

α3,3︷︸︸︷
x6x6︸︷︷︸
←−
θ3(bb)

ᾱ3,3︷︸︸︷
x6x6︸︷︷︸
←−
θ3(bb)

α4=

α4,1︷︸︸︷
x7x7x8︸ ︷︷ ︸
←−
θ4(aab)

ᾱ4,1︷︸︸︷
x8x7x7︸ ︷︷ ︸
←−
θ4(baa)

α4,2︷︸︸︷
x8︸︷︷︸

←−
θ4(b)

ᾱ4,2︷︸︸︷
x8︸︷︷︸

←−
θ4(b)

α4,3︷︸︸︷
x8x7x8︸ ︷︷ ︸
←−
θ4(bab)

ᾱ4,3︷︸︸︷
x8x7x8︸ ︷︷ ︸
←−
θ4(bab)

Hence, the pattern (p′, R′) is of the form:

(p′, R′) =
α1,1︷︸︸︷
x1x1

α2,1︷︸︸︷
x4x3

α3,1︷︸︸︷
x6

α4,1︷ ︸︸ ︷
x7x7x8︸ ︷︷ ︸

Φ(x1)

αrev
4,1︷ ︸︸ ︷

xrev
8 xrev

7 xrev
7

αrev
3,1︷︸︸︷

xrev
6

αrev
2,1︷ ︸︸ ︷

xrev
3 xrev

4

αrev
1,1︷ ︸︸ ︷

xrev
1 xrev

1︸ ︷︷ ︸
Φ(xrev

1)

α1,2︷︸︸︷
x2

α2,2︷︸︸︷
x3

α3,2︷︸︸︷
x6x6

α4,2︷︸︸︷
x8︸ ︷︷ ︸

Φ(x2)

αrev
4,2︷︸︸︷

xrev
8

αrev
3,2︷ ︸︸ ︷

xrev
6 xrev

6

αrev
2,2︷︸︸︷

xrev
3

αrev
1,2︷︸︸︷

xrev
2︸ ︷︷ ︸

Φ(xrev
2)

α2,3︷︸︸︷
x3x4

α3,3︷︸︸︷
x6x6

α4,3︷ ︸︸ ︷
x8x7x8︸ ︷︷ ︸

Φ(x3)

αrev
4,3︷ ︸︸ ︷

xrev
8 xrev

7 xrev
8

αrev
3,3︷ ︸︸ ︷

xrev
6 xrev

6

αrev
2,3︷ ︸︸ ︷

xrev
4 xrev

3︸ ︷︷ ︸
Φ(xrev

3)

Obviously, S = {s1, s2, s3, s4} ⊆ εL(p′, R′) and εL(p′, R′) ⊆ εL(p,R). How-
ever, aa bb aaaa ∈ εL(p,R) \ εL(p′, R′).

4 Equal-Length Relation

This section assumes r = len, i.e., variables in relation are replaced by words of
equal length, independent of the actual symbols in those words. Recent work by
Holte et al. [9] implies that, for non-erasing pattern languages, substitutions that
replace each variable with a word of length at most 2 form positive characteristic
sets, if the underlying alphabet has at least three symbols. In particular, without
using the term “positive characteristic sets”, Holte et al. showed that, if |Σ| ≥ 3

Positive Characteristic Sets for Relational Pattern Languages 407

and S2(p,R) ⊆ Llen(p′, R′), then Llen(p,R) ⊆ Llen(p′, R′). Here Llen(p,R) refers
to the non-erasing language generated by (p,R), i.e., the subset of εLlen(p,R)
that results from applying only valid R-substitutions ϕ to p that do not erase
any variable, i.e., |ϕ(x)| ≥ 1 for all x ∈ Var(p). Moreover, S2(p,R) denotes the
set of words in Llen(p,R) that are generated by R-substitutions ϕ satisfying
∃x ∈ Var(p) [∀y ∈ [x] |ϕ(y)| = 2 ∧ ∀y ∈ Var(p) \ [x] |ϕ(y)| = 1]. Note that the
positive characteristic sets S2(p,R) used by Holte et al. are of size linear in |p|.

For learning-theoretic purposes, by contrast with r = eq or r = rev, there is
no real technical difference between the erasing and the non-erasing case when
r = len. In particular, the result by Holte et al. carries over to the erasing
case without any substantial change to the proof. Where substitutions replacing
variables with strings of length either 1 or 2 were crucial in Holte et al.’s result,
in the erasing case, it is sufficient to consider substitutions replacing variables
with strings of length either 0 or 1. To formulate this result, we first define, for
any relational pattern (p,R) and any ∈ N \ {0}:

Sε,	(p,R) = {ϕ(p) | ∃x ∈ Var(p) [∀y ∈ [x] |ϕ(y)| = ∧ ∀y /∈ [x] ϕ(y) = ε]} .

Proposition 3. Let |Σ| ≥ 3. If Sε,1(p,R) ⊆ εLlen(p′, R′), then εLlen(p,R) ⊆
εLlen(p′, R′). In particular, Sε,1(p,R) is a linear-size positive characteristic set
for εLlen(p,R) with respect to εLlen.

Proof. Holte et al. [9] showed for the non-erasing case: If S2(p,R) ⊆ Llen(p′, R′),
then Llen(p,R) ⊆ Llen(p′, R′). Their proof carries over directly to obtain: If
Sε,1(p,R) ⊆ εLlen(p′, R′), then εLlen(p,R) ⊆ εLlen(p′, R′).

Now suppose Sε,1(p,R) ⊆ εLlen(p′, R′) and Sε,1(p′, R′) ⊆ εLlen(p,R). Then
we obtain εLlen(p,R) ⊆ εLlen(p′, R′) and εLlen(p′, R′) ⊆ εLlen(p,R), so that
εLlen(p,R) = εLlen(p′, R′). This implies that Sε,1(p,R) is a positive character-
istic set for εLlen(p,R) with respect to εLlen. 	

The premise |Σ| ≥ 3 in this result (both in our Proposition 3 and in Holte et
al.’s result for the non-erasing case) plays a crucial role in the proof. This raises
the question whether the result generalizes to binary alphabets. The main con-
tribution of this section is to show that Proposition 3 holds for binary alphabets
if we replace Sε,1 by Sε,2.

Theorem 2. Let |Σ| = 2. If Sε,2(p,R) ⊆ εLlen(p′, R′), then εLlen(p,R) ⊆
εLlen(p′, R′). In particular, Sε,2(p,R) is a linear-size positive characteristic set
for εLlen(p,R) with respect to εLlen.

The remainder of this section is devoted to proving Theorem 2. We begin
with the erasing version of [9, Lemma 8]; its proof is straightforward:

Lemma 2. Suppose (p,R) is a relational pattern, where p = q1xixi+1q2 with
q1, q2 ∈ (Σ ∪ X)∗. Then εLlen(p,R) = εLlen(p,R′), where R′ is obtained from
R by swapping xi with xi+1 in all relations.

Using Lemma 2, we define a canonical way of representing relational pattern
languages where the underlying relation is len.

408 S. M. Mousawi and S. Zilles

Definition 3. Suppose (p,R) is a pattern where p is of the general form p =
�x1ω1�x2ω2 . . . �xnωn�xn+1, with n ≥ 0, �x1, �xn+1 ∈ X∗, �x2, . . . , �xn ∈ X+, and
ω1, . . . , ωn ∈ Σ+.1 Suppose [y1], . . . , [yκ] are all the groups in (p,R), listed in
a fixed order. The equal-length normal form of (p,R) is given by (pnf , R) where

pnf = �x1(1) . . . �x1(κ)ω1 . . . ωn−1�xn(1) . . . �xn(κ)ωn�xn+1(1) . . . �xn(κ) ,

where �xi(j) is the unique2 string of all variables in Var(�xi) ∩ [yj], written in
increasing order of their indices in X = {x1, x2, . . .}.

By Lemma 2 we have εLlen(p,R) = εLlen(pnf , R).

Example 2. Let p = x1x2 a x3 b x4x5x6 bba x7x8x9 aa, R = {(x1, x2), (x1, x8),
(x3, x7), (x5, x8), (x4, x6)}. The groups in (p,R) are {x1, x2, x5, x8}, {x3, x7},
{x4, x6}, {x9}. Then pnf = x1x2 a x3 b x5x4x6 bba x8x7x9 aa.

The sets Sε,	(p,R) for = 1, 2 turn out to be a core tool for deciding the
equivalence of erasing relational pattern languages under the equal-length rela-
tion. Lemmas 3 through 7 are special cases of Theorem 2 which state that, for
binary alphabets and for patterns of specific shapes, these sets form systems of
positive characteristic sets.

Lemma 3. Let Σ = {a, b}, a �= b, ni ∈ N, �x1, �x
′
1, �x3, �x

′
3 ∈ X∗, �x2, �x

′
2 ∈ X+.

1. Let p = �x1a
n1bn2+n3�x2a�x3 and p′ = �x′

1a
n1bn2�x′

2b
n3a�x′

3. Fix R,R′. Then
Sε,1(p,R) ⊆ εLlen(p′, R′) implies εLlen(p,R) ⊆ εLlen(p′, R′).

2. Let p = �x1abn1�x2b
n2an3�x3 and p′ = �x′

1a�x′
2b

n1+n2an3�x′
3. Fix R,R′. Then

Sε,1(p′, R′) ⊆ εLlen(p,R) implies εLlen(p′, R′) ⊆ εLlen(p,R).

Proof. Let c ∈ {1, 2, 3}. If x ∈ Var(p), then dc(x) := |[x]R ∩ Var(�xc)| denotes
the number of positions in �xc that correspond to variables in [x]R. Likewise, for
x ∈ Var(p′), we write d′

c(x) := |[x]R′ ∩ Var(�x′
c)|.

We only prove the first statement; the second one is proved analogously. So
suppose Sε,1(p,R) ⊆ εLlen(p′, R′). Without loss of generality, assume (p,R) is
in equal-length normal form. First, we will establish the following claim.

Claim. Let x ∈ Var(p), and let α, β ∈ N satisfy α + β = d2(x). Then there
is some t > 0 and a family (yi)1≤i≤t of variables in p′ such that the vector
〈d1(x), α, d3(x) + β〉 is a linear combination of 〈d′

1(yi), d′
2(yi), d′

3(yi)〉, 1 ≤ i ≤ t.
Proof of Claim. Since (p,R) is in equal-length normal form, �x2 contains

a (possibly empty) substring of the form z1 . . . zd2(x), where [x] ∩ Var(�x2) =
{z1, . . . , zd2(x)}. Let φ be the substitution that erases every variable not con-
tained in [x], and replaces variables y ∈ [x] as follows: if y ∈ [x] ∩ (Var(�x1) ∪

1 Note that n = 0 results in a pattern in X+.
2 Uniqueness is given only modulo the fixed order [y1], . . . , [yκ] over all groups in p.

There are canonical ways to define such an order, so that, for our purposes, we can
consider the normal form of a pattern (p,R) to be unique.

Positive Characteristic Sets for Relational Pattern Languages 409

Var(�x3)) or if y ∈ {z1, . . . , zα}, then φ(y) = b; if y ∈ {zα+1, . . . , zd2(x)}, then
φ(y) = a. This substitution is valid for R; applied to p it generates the word

φ(p) = bd1(x) an1 bn2+n3+α aβ+1 bd3(x) .

By definition of φ, we have φ(p) ∈ Sε,1(p,R) and thus φ(p) ∈ εL(p′, R′). Thus,
there exists an R′-substitution φ′ such that φ′(p′) = φ(p). Due to the shape of
p′, this implies φ′(�x′

1) = bd1(x), φ′(�x′
2) = bα, and φ′(�x′

3) = aβbd3(x). For φ′ to
be valid for R′, this entails the existence of a family (yi)1≤i≤t of variables in p′

such that the vector 〈d1(x), α, d3(x) + β〉 is a linear combination of the vectors
〈d′

1(yi), d′
2(yi), d′

3(yi)〉, 1 ≤ i ≤ t. �(Claim.)
With this claim in hand, we can prove εL(p,R) ⊆ εL(p′, R′). To this end, let

w ∈ εL(p,R). There are w1, w2, w3 ∈ Σ∗ such that w = w1 an1 bn2+n3 w2 a w3.
Now define α and β as follows. If w2 ∈ {b}∗, then α = |w2|. Otherwise, α is fixed
such that w2 = bαaw′

2 for some w′
2 ∈ Σ∗. In either case, β := |w2|−α = |w′

2|+1.
Since w ∈ εL(p,R), there is some u > 0 and a family (zj)1≤j≤u of variables

in p such that the vector 〈|w1|, |w2|, |w3|〉 is a linear combination of the vectors
〈d1(zj), d2(zj), d3(zj)〉, 1 ≤ j ≤ u. Now choose α1, . . . , αu ≥ 0 such that αj ≤
d2(zj) for all j, and let βj := d2(zj) − αj . By the claim above, there is a family
(yj

i)1≤i≤tj
of variables in p′ such that the vector 〈d1(zj), αj , d3(zj)+βj〉 is a linear

combination of the vectors 〈d′
1(y

j
i), d

′
2(y

j
i), d

′
3(y

j
i)〉, 1 ≤ i ≤ tj . Thus, the vector

〈|w1|, α, |w3| + β〉 is a linear combination of the vectors 〈d′
1(y

j
i), d

′
2(y

j
i), d

′
3(y

j
i)〉,

1 ≤ j ≤ u, 1 ≤ i ≤ tj . Hence w ∈ εL(p′, R′), which completes the proof. 	

Using similar techniques, we obtain the following series of lemmas, whose

proofs are omitted due to space constraints.

Lemma 4. Let Σ = {a, b}, a �= b, n1, n2 ∈ N, �x1, �x
′
1, �x3, �x

′
3 ∈ X∗, �x2, �x

′
2 ∈ X+.

– Let p = �x1a
n1bn2�x2a

n3�x3 and p′ = �x′
1a

n1bn2−1�x′
2ba

n3�x′
3. Fix R,R′. Then

Sε,1(p,R) ⊆ εLlen(p′, R′) implies εLlen(p,R) ⊆ εLlen(p′, R′).
– Let p = �x1a

n1b�x2b
n2−1an3�x3, and p′ = �x′

1a
n1�x′

2b
n2an3�x′

3. Fix R,R′. Then
Sε,1(p′, R′) ⊆ εLlen(p,R) implies εLlen(p′, R′) ⊆ εLlen(p,R).

Lemma 5. Let Σ = {a, b} and a �= b. Let p = �x1a
n1bn2�x2a

n3�x3 and p′ =
�x′
1a

n1�x′
2b

n2an3�x′
3, where n1, n2, n3 ∈ N, �x1, �x

′
1, �x3, �x

′
3 ∈ X∗ and �x2, �x

′
2 ∈ X+.

Let R and R′ be arbitrary relations over X. Then:

1. Sε,2(p,R) ⊆ εLlen(p′, R′) implies εLlen(p,R) ⊆ εLlen(p′, R′).
2. Sε,2(p′, R′) ⊆ εLlen(p,R) implies εLlen(p′, R′) ⊆ εLlen(p,R).

Lemma 6. Suppose p = �x1a
n1bm1�x2a

n2bm2 . . . �xta
ntbmt�xt+1 and

p′ = �x′
1a

n1�x′
2b

m1an2 . . . �x′
tb

mt−1ant�x′
t+1b

mt�x′
t+2 ,

where ni,mj ∈ N, �xk, �x′
k′ ∈ X+ and �x1, �x

′
1, �xt+1, �x

′
t+2 ∈ X∗, for all i, j ∈

{1, . . . , t}, all k ∈ {2, . . . , t}, and all k′ ∈ {2, . . . , t+1}. Suppose (n1 = 1 or m1 =
1), (nt = 1 or mt+1 = 1), and for each 1 ≤ i ≤ (t−1), mi = 1 or ni+1 = 1. Then,
for any two relations R and R′ on X, Sε,2(p,R) ⊆ εLlen(p′, R′) ⊆ εLlen(p,R)
implies εLlen(p,R) = εLlen(p′, R′).

410 S. M. Mousawi and S. Zilles

Lemma 6 motivates the following definition.

Definition 4. Let t ≥ 1. Let π = �x1a
n1bm1�x2a

n2bm2 . . . �xta
ntbmt�xt+1 and

π′ = �x′
1a

n1�x′
2b

m1an2 . . . �x′
tb

mt−1ant�x′
t+1b

mt�x′
t+2 ,

where m1, ni,mj ∈ N\{0}, n1, nt,mt ∈ N, �xk, �x′
k′ ∈ X+, and �x1, �x

′
1, �xt+1, �x

′
t+2 ∈

X∗, for all i, j ∈ {2, . . . , t − 1}, all k ∈ {2, . . . , t}, and all k′ ∈ {2, . . . , t + 1}.
Then π and π′ are called telltale conjugates provided that (n1 = 1 or m1 = 1),

(nt = 1 or mt = 1), and (mi = 1 or ni+1 = 1) for each 1 ≤ i ≤ (t − 1).

The main missing technical ingredient of the proof of Theorem 2 is the fol-
lowing lemma, which can be proven with a lengthy case analysis.

Lemma 7. Let (p,R) and (p′, R′) be arbitrary patterns over Σ = {a, b}. Suppose
there do not exist telltale conjugates π, π′ such that π is a substring of p and π′ is
a substring of p′. Let Sε,2(p,R) ⊆ εLlen(p′, R′) ⊆ εLlen(p,R). Then there exists
an n ∈ N such that p, p′ ∈ X∗ω1X

+ω2 . . . X+ωnX∗, where ω1, . . . , ωn ∈ Σ+. In
particular, Llen(p′, R′) = εLlen(p,R).

Now, we can put everything together to prove Theorem 2.
Proof of Theorem 2. If p, p′ do not contain any telltale conjugates as substrings
then Theorem 2 holds by Lemma 7. If p, p′ are telltale conjugates, then The-
orem 2 holds by Lemma 6. Now, suppose p, p′ contain telltale conjugates p̄,
p̄′ as substrings. Let p = �x1p�x2π�x3 and p′ = �x′

1p
′�x′

2π
′�x′

3 where �x2, �x
′
2 ∈ X+,

�x1, �x
′
1, �x3, �x

′
3 ∈ X∗. Without loss of generality, the subpatterns p, p′, π, π′ start

and end with terminal letters. Theorem 2 holds, if π and π′ are either identical or
telltale conjugates. So suppose they are neither identical nor telltale conjugates.

Let π = w1�y1w2 . . . �yn−1wn and π′ = w′
1�y

′
1w

′
2 . . . �y′

n′−1w
′
n′ where n, n′ ≥

1, w1, . . . , wn, w′
1, . . . , w

′
n′ ∈ Σ+, and �y1, . . . , �yn−1, �y

′
1, . . . , �y

′
n′−1 ∈ X+. Now

w1 . . . wn = w′
1 . . . w′

n′ (else the proof is completed as Sε,2(p,R) ⊆ εLlen(p′, R′) ⊆
εLlen(p,R) is violated). Pick the minimum i such that wi �= w′

i. Without loss
of generality, suppose |wi| < |w′

i|. Select a variable z ∈ Var(�xi). Then, one
can show that there is either an R-substitution θ such that θ(v) = σ ∈ Σ
for v ∈ [z] and θ(v′) = ε for v′ �∈ [z], or, an R-substitution ψ such that
∃vj ∈ [z] [ψ(vj) ∈ {σ̄σ, σσ̄} ∧ ∀v ∈ [z] \ {vj} ψ(v) = σ2], where σ̄ �= σ, and
ψ(v′) = ε for v′ �∈ [z]. Since θ(v1 . . . vm) ∈ {σ}+ and ψ(v1 . . . vm) ∈ {σ}+σ̄{σ}+,
there is no other R′-substitution φ that can generate θ(p) or ψ(p) by means of
padding other variables. Since π and π′ are not identical or telltale conjugates,
then θ(p) ∈ Sε,2(p,R) \ εLlen(p′, R′) or ψ(p) ∈ Sε,2(p,R) \ εLlen(p′, R′).

The case p = �x1p�x2π�x3 and p′ = �x′
1π

′�x′
2p

′�x′
3 and symmetric cases can be

handled by complete analogy. This completes the proof. 	

5 Conclusions

This paper provided insights into the connections between learning with charac-
teristic sets and learning with telltales, via the notion of positive characteristic

Positive Characteristic Sets for Relational Pattern Languages 411

set. Its main contribution is to provide new (non-)learnability results for erasing
relational pattern languages, again with a focus on positive characteristic sets.

To show that erasing pattern languages under the reversal relation have no
positive characteristic sets (for binary alphabets), we used a construction that
Reidenbach [13] devised to show the corresponding statement for the equality
relation. An interesting open question from this construction is the following:
Is it true that a relational pattern (p,R) has a telltale with respect to εLrev iff
it has a telltale with respect to εLeq? If yes, is there a constructive proof that
shows how to transform telltales for either relation into telltales for the other?

Our main result states that, for binary alphabets, linear-size positive charac-
teristic sets exist for erasing pattern languages under the equal length relation.
A related open question is whether the same result holds true for the non-erasing
case. Our proof makes use of the erasing property, and might need substantial
adjustments for the non-erasing case.

Different real-world applications might give rise to different relations to study
in the context of learning relational pattern languages. This paper analyzed only
two of a multitude of possibilities; much future work is needed to gain a better
understanding of the effects of various kinds of relations on learnability.

Acknowledgements. We thank R. Holte as well as the anonymous reviewers for
helpful feedback. This work was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC), both in the Canada Research Chairs program
and in the Discovery Grants program. S. Zilles further acknowledges support through
a Canada CIFAR AI Chair, held at the Alberta Machine Intelligence Institute (Amii).

References

1. Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci.
21, 46–62 (1980)

2. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Con-
trol 45, 117–135 (1980)

3. Arikawa, S., Miyano, S., Shinohara, A., Kuhara, S., Mukouchi, Y., Shinohara, T.:
A machine discovery from amino acid sequences by decision trees over regular
patterns. New Gener. Comput. 11, 361–375 (1993)

4. Clifford, R., Harrow, A.W., Popa, A., Sach, B.: Generalised matching. In: SPIRE,
pp. 295–301 (2009)

5. Fallat, S., Kirkpatrick, D., Simon, H., Soltani, A., Zilles, S.: On batch teaching
without collusion. J. Mach. Learn. Res. 24, 1–33 (2023)

6. Geilke, M., Zilles, S.: Learning relational patterns. In: ALT, pp. 84–98 (2011)
7. Gold, E.: Language identification in the limit. Inf. Control 10, 447–474 (1967)
8. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Mach.

Learn. 27(2), 125–138 (1997)
9. Holte, R.C., Mousawi, S.M., Zilles, S.: Distinguishing relational pattern languages

with a small number of short strings. In: ALT, pp. 498–514 (2022)
10. Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns. J.

Comput. Syst. Sci. 50(1), 53–63 (1995)
11. Lange, S., Zeugmann, T., Zilles, S.: Learning indexed families of recursive languages

from positive data: a survey. Theor. Comput. Sci. 397(1–3), 194–232 (2008)

412 S. M. Mousawi and S. Zilles

12. Nix, R.: Editing by example. ACM Trans. Program. Lang. Syst. 7, 600–621 (1985)
13. Reidenbach, D.: A negative result on inductive inference of extended pattern lan-

guages. In: ALT, pp. 308–320 (2002)
14. Shinohara, T.: Polynomial time inference of extended regular pattern languages. In:

Proceedings of RIMS Symposia on Software Science and Engineering, pp. 115–127
(1982)

15. Zhu, X., Singla, A., Zilles, S., Rafferty, A.: An overview of machine teaching. ArXiv
arxiv:1801.05927 (2018)

http://arxiv.org/abs/1801.05927

Algorithms and Turing Kernels
for Detecting and Counting Small
Patterns in Unit Disk Graphs

Jesper Nederlof and Krisztina Szilágyi(B)

Utrecht University, Utrecht, The Netherlands
{j.nederlof,k.szilagyi}@uu.nl

Abstract. In this paper we investigate the parameterized complexity of
the task of counting and detecting occurrences of small patterns in unit
disk graphs: Given an n-vertex unit disk graph G with an embedding of
ply p (that is, the graph is represented as intersection graph with closed
disks of unit size, and each point is contained in at most p disks) and a
k-vertex unit disk graph P , count the number of (induced) copies of P
in G.

For general patterns P , we give an 2O(pk/ log k)nO(1) time algorithm for
counting pattern occurrences. We show this is tight, even for ply p = 2
and k = n: any 2o(n/ logn)nO(1) time algorithm violates the Exponential
Time Hypothesis (ETH).

For most natural classes of patterns, such as connected graphs and
independent sets we present the following results: First, we give an
(pk)O(

√
pk)nO(1) time algorithm, which is nearly tight under the ETH

for bounded ply and many patterns. Second, for p = kO(1) we provide a
Turing kernelization (i.e. we give a polynomial time preprocessing algo-
rithm to reduce the instance size to kO(1)).

Our approach combines previous tools developed for planar sub-
graph isomorphism such as ‘efficient inclusion-exclusion’ from [Nederlof
STOC’20], and ‘isomorphisms checks’ from [Bodlaender et al. ICALP’16]
with a different separator hierarchy and a new bound on the number of
non-isomorphic separations of small order tailored for unit disk graphs.

Keywords: Unit disk graphs · Subgraph isomorphism · Parameterized
complexity

1 Introduction

A well-studied theme within the complexity of computational problems on
graphs is how much structure within inputs allows faster algorithms. One of
the most active research directions herein is to assume that input graphs are

Supported by the project CRACKNP that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No 853234).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 413–426, 2024.
https://doi.org/10.1007/978-3-031-52113-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_29&domain=pdf
http://orcid.org/0000-0003-1848-0076
http://orcid.org/0000-0003-3570-0528
https://doi.org/10.1007/978-3-031-52113-3_29

414 J. Nederlof and K. Szilágyi

geometrically structured. The (arguably) two most natural and commonly stud-
ied variants of this are to assume that the graph can be drawn on R

2 without
crossings (i.e., it is planar) or it is the intersection graph of simple geometric
objects. While this last assumption can amount to a variety of different models,
a canonical and most simple model is that of unit disk graphs: Each vertex of
the graph is represented by a disk of unit size and two vertices are adjacent if
and only if the two associated disks intersect.

The computational complexity of problems on planar graphs has been a very
fruitful subject of study: It led to the development of powerful tools such as Bak-
ers layering technique and bidimensionality that gave rise to efficient approxi-
mation schemes and fast (parameterized) sub-exponential time algorithms for
many NP-complete problems. One interesting example of such an NP-complete
problem is (induced) subgraph isomorphism: Given a k-vertex pattern P and
n-vertex host graph G, detect or count the number of (induced) copies of P
inside G, denoted with sub(P,G) (respectively, ind(P,G)). Here we think of k as
being much smaller than n, and therefore it is very interesting to obtain running
times that are only exponential in k (i.e. Fixed Parameter Tractable time). This
problem is especially appealing since it generalizes many natural NP-complete
problems (such as Independent Set, Longest Path and Hamiltonian Cycle) in a
natural way, but its generality poses significant challenges for the bidimension-
ality theory: It does not give sub-exponential time algorithms for this problem.

Only recently, it was shown in a combination of papers ([4,7] and subse-
quently [13]) that, on planar graphs, subgraph isomorphism can be solved in
2O(k/ log k) time1 for general patterns, and in 2Õ(

√
k)nO(1) time for many natural

pattern classes, complementing the lower bound of 2o(n/ log n) time from [4] based
on the Exponential Time Hypothesis (ETH). It was shown in [13] that (induced)
pattern occurrences can even be counted in sub-exponential parameterized (i.e.
2o(k)nO(1)) time.

Unfortunately, most of these methods do not immediately work for (induced)
subgraph isomorphism on geometric intersection graphs: Even unit disk graphs
of bounded ply2 are not H-minor free for any graph H (which significantly under-
mines the bidimensionality theory approach), and unit disk graphs of unbounded
ply can even have arbitrary large cliques. This hardness is inherent to the graph
class: Independent Set is W [1]-hard on unit disk graphs and, unless ETH fails,
and it has no f(k)no(

√
k)-time algorithm for any computable function f [6,

Theorem 14.34]. On the positive side, it was shown in [14] that for bounded
expansion graphs and fixed patterns, the subgraph isomorphism problem can be
solved in linear time, which implies that subgraph isomorphism is fixed param-
eter tractable on unit disk graphs; however, their method relies on Courcelle’s
theorem and hence the dependence of k in their running time is very large and
far from optimal.

1 We let Õ() omit polylogarithmic factors in its argument.
2 The ply of an embedded unit disk graph is defined as the maximum number of times

any point of the plane is contained in a disk.

Detecting and Counting Small Patterns in Unit Disk Graphs 415

Therefore, a popular research topic has been to design such fast (parameter-
ized) sub-exponential time algorithms for specific problems such as Independent
Set, Hamiltonian Cycle and Steiner Tree [2,3,10,16].

In this paper we continue this research line by studying the complexity of
the decision and counting version of (induced) subgraph isomorphism. While
some general methods such as contraction decompositions [15] and pattern cov-
ering [12] were already designed for graph classes that include (bounded ply) unit
disk graphs, the fine-grained complexity of the subgraph problem itself restricted
to unit disk graphs has not been studied and is still far from being understood.

Our Results. To facilitate the formal statements of our results, we need the
following definitions: Given two graphs P and G, we define

ind(P,G) = {f : V (P) → V (G) : f is injective, uv ∈ E(P) ⇔ f(u)f(v) ∈ E(G)}
sub(P,G) = {f : V (P) → V (G) : f is injective, uv ∈ E(P) ⇒ f(u)f(v) ∈ E(G)}
Our main theorem reads as follows:

Theorem 1. There is an algorithm that takes as input unit disk graphs P and
G on k vertices and n vertices respectively, together with disk embeddings of ply
p. It outputs |sub(P,G)| and |ind(P,G)| in (pk)O(

√
pk)σO(

√
pk)(P)2nO(1) time.

In this theorem, the parameter σs is a somewhat technical parameter of the
pattern graph P that is defined as follows:

Definition 1 ([13]). Given a graph P , we say that (A,B) is a separation of P
of order s if A ∪ B = V (P), |A ∩ B| = s and there are no edges between A \ B
and B \ A. We say that (A,B) and (C,D) are isomorphic separations of P if
there is a bijection f : V (P) → V (P) such that

– For any u, v ∈ V (P), uv ∈ E(P) ⇔ f(u)f(v) ∈ E(P)
– f(A) = C, f(B) = D,
– For any u ∈ A ∩ B, f(u) = u

We denote by Ss(P) a maximal set of pairwise non-isomorphic separations of P
of order at most s. We define σs(P) = |Ss(P)| as the number of non-isomorphic
separations of P of order at most s.

Note that σs(P) ≥ (
k
s

)
s!. For ply p = O(1) and many natural classes of patterns

such as independent sets, cycles, or grids, it is easy to see that σO(
√

k)(P) is

at most 2Õ(
√

k) and therefore Theorem 1 gives a 2Õ(
√

k)nO(1) time algorithm for
computing |sub(P,G)| and |ind(P,G)|. We also give the following new non-trivial
bounds on σs(P) whenever P is a general (connected) unit disk graph3:

Theorem 2. Let P be a k-vertex unit disk graph with given embedding of ply p,
and s be an integer. Then: (a) σs(P) is at most 2O(s log k+pk/ log k), and (b) If P
is connected, then σs(P) ≤ 2O(s log k).
3 The proof of Theorem 2 can be found in the full version of the paper.

416 J. Nederlof and K. Szilágyi

Using Theorem 1, this allows us to conclude the following result.

Corollary 1. There is an algorithm that takes as input a k-vertex unit disk
graph P and an n-vertex unit disk graph G, together with their unit disk embed-
dings of ply p, and outputs |sub(P,G)| and |ind(P,G)| in 2O(pk/ log k)nO(1) time.

We show that this cannot be significantly improved even if k = n:

Theorem 3. Assuming ETH, there is no algorithm to determine if sub(P,G)
(ind(P,G) respectively) is nonempty for given n-vertex unit disk graphs P and
G in 2o(n/ log n) time, even when P and G have a given embedding of ply 2.

Note that the ply of G is 1 if and only if G is an independent set so the assumption
on the ply in the above statement is necessary. To our knowledge, this is the first
lower bound based on the ETH excluding 2O(

√
n) time algorithms for problems

on unit disks graphs (of bounded ply), in contrast to previous bounds that only
exclude 2o(

√
n) time algorithms.

Clearly, a unit disk graph G of ply p has a clique of size p, i.e. its clique number
ω(G) is at least p. On the other hand, it was shown in [8] that p ≥ ω(G)/5. In
other words, parameterizations by ply and clique number are equivalent up to a
constant factor.

1.1 Our Techniques

Our approach heavily builds on the previous works [4,7,13]: Theorem 1 is proved
by using the dynamic programming technique from [4] that stores representatives
of non-isomorphic separations to get the runtime dependence down from 2O(k) to
σO(

√
pk)(P), and the Efficient Inclusion-Exclusion technique from [13] to solve

counting problems (on top of decision problems) as well.4 We combine these
techniques with a divide and conquer strategy that divides the unit disk graph
in smaller graphs using horizontal and vertical lines as separators. As a first
step in our proof, we give an interesting Turing kernelization for the counting
problems that uses efficient inclusion-exclusion. Theorem 2 uses a proof strategy
from [4] combined with a bound from [5] on the number of non-isomorphic
unit disk graphs. Theorem 3 builds on a reduction from [4], although several
alterations are needed to ensure the graph is a unit disk graph of bounded ply.

Organization. In Sect. 2 we provide additional notation and some preliminary
lemmas. In Sect. 3 we provide a Turing kernel. In Sect. 4 we build on Sect. 3 to
provide the proof of Theorem 1. In Sect. 5 we give an outline of the proof of
Theorem 3. We finish with some concluding remarks in Sect. 6. The proofs that
are omitted due to space restrictions (indicated with †) are provided in the full
version on arXiv.

4 Similar to what was discussed in [13], this technique seems to be needed even for
simple special cases of Theorem 1 such as counting independent sets on subgraphs
of (subdivided) grids.

Detecting and Counting Small Patterns in Unit Disk Graphs 417

2 Preliminaries

Notation. Given a graph G and a subset A of its vertices, we define G[A] as the
subgraph of G induced by A. Given a unit disk graph G, we say that G has ply
p if there is an embedding of G such that every point in the plane is contained
in at most p disks of G. Let P and G be unit disk graphs and let |V (G)| = n,
|V (P)| = k.

We denote all vectors by bold letters, the all ones vector by 1 and the all
zeros vector by 0. We use the Iverson bracket notation: for a statement P , we
define [P] = 1 if P is true and [P] = 0 if P is false. We define [k] = {1, . . . , k}.
Given a function f : A → B and C ⊆ A, we define the restriction of f to C as
f |C : C → B, f |C(c) = f(c) for all c ∈ C. If g = f |C for some C then we say
that f extends g.

Definition 2. For integers b, h, we say a unit disk graph G of ply p can be
drawn in a (b × h)-box with ply p if it has an embedding of ply p as unit disk
graph in a b × h rectangle.

Throughout this paper, we assume that the sides of the box are axis parallel,
and the lower left corner is at (0, 0). We assume that if a graph G can be drawn
in a (b × h)-box then we are given such an embedding.

Lemma 1 (†). Given a unit disk graph G with a drawing in a (b × h)-box with
ply p, one can construct in polynomial time a path decomposition of G of width
4(min{b, h} + 1)p.

Lemma 2 (Theorem 6.1 from [5]). Let a non-decreasing bound b = b(n) be
given, and let Un denote the set of unlabeled unit disk graphs on n vertices with
maximum clique size at most b. Then |Un| ≤ 212(b+1)n.

Subroutines. The following lemma can be shown with standard dynamic pro-
gramming over tree decompositions:

Lemma 3 (†). Given P,G, a subset P ′ ⊆ V (P), a path decomposition of G
of width t, and a function f : P ′ → V (G), we can count |{g ∈ sub(P,G) :
g extends f}| and |{g ∈ ind(P,G) : g extends f}| in time σt(P)ttnO(1).

The following lemma simply states that a long product of matrices can be
evaluated quickly, but is nevertheless useful in a subroutine in the ‘efficient
inclusion-exclusion’ technique.

Lemma 4 ([13]). Given a set A, an integer h and a value T [x, x′] ∈ Z for every
x, x′ ∈ A, the value

∑

x1,...,xh∈A

h−1∏

i=1

T [xi, xi+1] (1)

can be computed in O(h|A|2) time.

418 J. Nederlof and K. Szilágyi

Non-isomorphic Separations. In this paper we will work with non-
isomorphic separations of small order, as defined in Definition 1. For separations
(C1,D1), (C2,D2) ∈ Ss(P), we define

μ((C1,D1), (C2,D2)) = |{(C,D) : (C,D) is a separation of P such that

C ⊆ C2 and (C,D) isomorphic to (C1,D1)}|
Lemma 5 (†). Given a graph P , one can compute Ss(P) and for each pair of
separations (C1,D1), (C2,D2) ∈ Ss(P) the multiplicity μ((C1,D1), (C2,D2)) in
time σs(P)nO(1).

3 Turing Kernel

We will now present a preprocessing algorithm for computing |sub(P,G)| (the
algorithm for |ind(P,G)| is analogous) that allows us to assume that G can be
drawn in a (k × k)-box with ply p, i.e. that |V (G)| ≤ k2p. This can be seen as
a polynomial Turing kernel in case p and σ0(P) are polynomial in k. A Turing
kernel of size f is an algorithm that solves the given problem in polynomial time,
when given access to an oracle that solves instances of size at most f(k) in a
single step.

Lemma 6 describes how to reduce the width of G (and analogously the height
of G). To prove it, we use the shifting technique. This general technique was first
used by Baker [1] for covering and packing problems on planar graphs and by
Hochbaum and Maass [9] for geometric problems stemming from VLSI design
and image processing.

Intuitively, we draw the graph on a grid, and delete all the disks that intersect
certain columns of the grid. After doing that, the remaining graph will consist
of several small disconnected “building blocks”. Each connected component of
the pattern will be fully contained in one of the blocks, and since the blocks are
small we can use the oracle to count the number of these occurrences. We take
advantage of the fact that we can group together connected components that are
isomorphic. We use Lemma 6 twice, to reduce the width and height of G to k.

Lemma 6. Suppose we have access to an oracle that computes |sub(P,G)| in
constant time, where the host graph G can be drawn in a (O(k)×O(k))-box with
ply p. Then we can compute |sub(P,G′)| for host graphs G′ that can be drawn
in a box of height k with ply p in time n · poly(k) · σ0(P)2.

Proof. For i ∈ {0, . . . , k} let Ci = {(x, y) ∈ R
2 : x ≡ i (mod k + 1)}. Informally,

we draw a grid and select every (k + 1)th vertical gridline. Let Pi be the set of
all subgraphs of G that are isomorphic to P and are disjoint from Ci.

Note that every subgraph Q of G that is isomorphic to P is fully contained
in at least one Pi. Indeed, every disk in Q can intersect at most one vertical grid
line, so Q is disjoint from Ci for at least one value of i.

Detecting and Counting Small Patterns in Unit Disk Graphs 419

By the inclusion-exclusion principle,
∣
∣
∣
⋃k

i=0 Pi

∣
∣
∣ equals

∑

∅⊂C⊆{0,...,k}
(−1)|C|

∣
∣
∣
∣
∣

⋂

i∈C

Pi

∣
∣
∣
∣
∣
=

k+1∑

�=1

(−1)�
∑

0≤c1<···<c�≤k

∣
∣
∣
∣
∣
∣

⋂

j∈{c1,...,c�}
Pj

∣
∣
∣
∣
∣
∣
. (2)

Let us show how we can compute | ∩j∈{c1,...,c�} Pj | quickly. For a, b ∈
{0, . . . , k}, we define B[a, b] as the subgraph of G contained by (open) stripes
bounded by Ca and Cb. Formally, define B[a, b] to be

{
{(x, y) ∈ R

2 : (∃t ∈ N0) a + (k + 1)t < x < b + (k + 1)t}, if a ≤ b,

{(x, y) ∈ R
2 : (∃t ∈ N0) a + (k + 1)(t − 1) < x < b + (k + 1)t}, if a > b.

We define B[a, b] as the induced subgraph of G such that all its disks are
fully contained in B[a, b]. These sets are our “building blocks”: after deleting
Cc1 , . . . Cc�

, the remaining graph is ∪�
α=1B[cα, cα+1], where we define c�+1 = c1.

Let t be the number of non-isomorphic connected components of P and let
C0(P) = {P1, . . . ,Pt} be the set of representatives of all isomorphism classes of
connected components of P . We can encode P as vector p = (p1, . . . , pt), where
pi is the size of the isomorphism class of Pi.

Let U = {0, . . . , p1} × · · · × {0, . . . , pt}. For a t-dimensional vector
(v1, . . . , vt) ∈ U we define P [(v1, . . . , vt)] as the subgraph of P that contains
vi copies of Pi.

We would like to count in how many ways can we distribute the connected
components of P to the building blocks. Equivalently, we can count the number
of ways to assign a vector vα ∈ U to each block B[cα, cα+1] such that

∑
vα = p.

Thus we have
∣
∣
∣
∣
∣
∣

⋂

j∈{c1,...,c�}
Pj

∣
∣
∣
∣
∣
∣
=

∑

v1+···+v�=p

�∏

α=1

|sub(P [vα],B[cα, cα+1])|. (3)

Note that |U | = (p1 + 1) · · · (pt + 1) = σ0(P): indeed, every vector u ∈ U
corresponds to a unique separation (V (P ′), V (P − P ′)) of order 0, where P ′

consists of ci copies of Pi. Combining (2) and (3), we get that
∣
∣
∣
∣
∣

k⋃

i=0

Pi

∣
∣
∣
∣
∣
=

k∑

�=1

(−1)�T�,

where

T� =
∑

0≤c1<···<c�≤k

v1+···+v�=p

�∏

α=1

|sub(P [vα],B[cα, cα+1])|. (4)

Suppose for now that we have computed |sub(P [vα],B[a, b])| for all a, b ∈
{0, . . . , k}, vα ∈ U , and that we want to compute T� quickly.

420 J. Nederlof and K. Szilágyi

To apply Lemma 4, we have to rewrite the sum (4) in such a way that
the variables are pairwise independent. We replace the condition ci < ci+1 by
multiplying with [ci < ci+1]. To replace the condition on the variables vi, we
will re-index these variables by u1, . . . ,u�, where ui =

∑i
j=1 v

j for i ∈ [� − 1]
and u� = p − u�−1, u0 = 0. Therefore, we have

T� =
∑

c1,...,c�∈{0,...,k}
u1,...,u�−1∈U

|sub(P [p − u�−1],B[c�, c1])|
�−1∏

i=1

[ci < ci+1] · [ui−1 ≤ ui]

·|sub(P [ui − ui−1],B[ci, ci+1])|.

By Lemma 4, we can compute T� in time � · (k · σ0(P))2 if we are given
|sub(P [u],B[a, b])| for all u ∈ U , a, b ∈ {0, . . . , k}.

It remains to show how we can compute |sub(P [u],B[a, b])| for given u ∈ U ,
a, b ∈ {0, . . . , k}. Let C1, . . . , Cd be the connected components of B[a, b]. Note
that each Ci can be drawn in a (k × k)-box with ply p, so we can use the oracle
to compute |sub(P [w], Ci)| for all w ∈ U , i ∈ [d]. We would like to distribute
the connected components of P [u] to C1, . . . Cd. We can do this by dynamic
programming. For i ∈ [d] and w ∈ U , we define

T ′[i,w] = |sub(P [w], C1 ∪ · · · ∪ Ci)|

The recurrence is as follows:

T ′[i,w] =
∑

w′≤w

|sub(P [w′], Ci)| · T [i − 1,w − w′],

where w ≤ w’ indicates that w is in each coordinate smaller than w’. Thus we
can compute T ′[i,u] in time d|U |2 = dσ0(P)2 ≤ (n/k)σ0(P)2.

Therefore, we can compute |sub(P,G)| in time n · poly(k) · σ0(P)2 for host
graphs that can be drawn in a box of width k with ply p. �
Theorem 4. For unit disk graphs P and G with given embedding of ply p,
|sub(P,G)| can be computed in time σ0(P)2 · n · poly(k) when given access to
an oracle that computes |sub(P,G)| where the host graph has size O(k2p) in
constant time. In particular, there is a Turing kernel for computing |sub(P,G)|
when σ0(P) and p are polynomial in k.

Proof. By Lemma 6, if G can be drawn in a box of width k with ply p, we
can compute |sub(P,G)| in time n · poly(k) · σ0(P)2. If not, we use the same
approach as in the proof of Lemma 6. The obtained building blocks will be
disjoint unions of subgraphs that can be drawn in a box of width k with ply p.
Using dynamic programming and applying Lemma 6, we conclude that we can
compute |sub(P,G)| in time n · poly(k) · σ0(P)2. �

Detecting and Counting Small Patterns in Unit Disk Graphs 421

4 Proof of Theorem 1: The Algorithm

We present only the proof for sub(P,G), since the proof for ind(P,G) is analo-
gous. Before we start with the proof, we need to give a number of definitions:
Suppose that a unit disk embedding of G in a (b × h)-box with ply p is given.
For integers 0 ≤ x ≤ x′ ≤ b, we define G〈x, x′〉 as the induced subgraph of G
whose vertex set consists are all vertices of G associated with disks in the unit
disk embedding that are (partially) in between vertical lines x and x′, i.e. the
set of all disks that intersect the set {(a, b) ∈ R

2 : x ≤ a ≤ x′}. We denote
G〈x〉 = G〈x, x〉.

Given functions f1 : D1 → R1 and f2 : D2 → R2, we say f1 and f2 are
compatible if

– for all u ∈ D1 ∩ D2, f1(u) = f2(u), and
– for all r ∈ R1 ∩ R2, we have f−1

1 (r) = f−1
2 (r).

If f1, f2 are compatible, we define f = f1 ∪ f2 as f |D1 = f1 and f |D2 = f2.
Note that in the above definition, the ranges of f1 and f2 matter. For example,

the identity functions f1 : {1} → {1} and f2 : {2} → {2} are compatible, but
the same functions are not compatible if we replace both ranges with {1, 2}.

Using Theorem 4, we can assume that G can be drawn in a O(k)×O(k) box
with ply p. We will use dynamic programming. We will first define the sets of
partial solutions that are counted in this dynamic programming algorithm. For
variables

– integers 0 ≤ x < x′ ≤ b,
– separation (A,B) of P of order at most 2

√
pk,

– injective f : A∩B → G〈x〉∪G〈x′〉 such that |f−1(G〈x〉)|, |f−1(G〈x′〉)| ≤ √
pk

we define

T [x, x′, (A,B), f] = {g ∈ sub(P [A], G〈x, x′〉) : g extends f}.

Note that T is indexed by any separation of P of order 2
√

pk. We will later
replace this with a set of non-isomorphic separations to obtain the claimed
dependence σ2

√
pk(P) in the running time.

Informally, T [x, x′, (A,B), f] is the set of all patterns P [A] in G〈x, x′〉 such
that f describes their behaviour on the “boundary” G〈x〉 ∪ G〈x′〉. We will now
show how to compute the table entries. We consider two cases, depending on
whether x′ − x is less than

√
k/p or not.

Case 1: x′ − x ≤ √
k/p

Note that in this case, the pathwidth of G〈x, x′〉 is O(
√

pk) by Lemma 1. Using
Lemma 3, we can compute |sub(P,G)| in time (pk)

√
pkσO(

√
pk)(P)nO(1).

Case 2: x′ − x >
√

k/p
Let g ∈ T [x, x′, (A,B), f] , and let Q be the image of g. For m ∈ {x+1, . . . , x′−1},
we say that Q is sparse at m if |Q ∩ G〈m〉| ≤ √

pk, i.e. the vertical line at m

422 J. Nederlof and K. Szilágyi

intersects at most
√

pk disks in Q. Since |Q| ≤ k and x′ − x >
√

k/p, there is at
least one m such that Q is sparse at m by the averaging principle. Therefore,

T [x, x′, (A,B), f] =
x′−1⋃

m=x+1

{g ∈ T [x, x′, (A,B), f] : g(A) is a sparse at m}.

By the inclusion-exclusion principle, |T [x, x′, (A,B), f]| is equal to
∑

∅⊂X⊆{x+1,...,x′−1}
(−1)|X| |{g ∈ T [x, x′, (A,B), f] : g(A) is sparse at all m ∈ X}| .

Denoting X = {x1, . . . , x�}, where x1 < · · · < x�, we further rewrite this into

x′−x−2∑

�=1

(−1)�
∑

x<x1<···<x�<x′

|{g ∈ T [x, x′, (A,B), f] : g(A) is sparse at x1, . . . , x�}|.

Now we claim that, since Q∩G〈m〉 is a separator of G[Q], |T [x, x′, (A,B), f]|
can be further rewritten to express it recursively as follows:

Claim.

|T [x, x′, (A,B), f]| =
x′−x−2∑

�=1

(−1)�
∑

(∗)

�∏

i=0

|T [xi, xi+1, (Ai, Bi), fi]|,

where we let x0 = x and x�+1 = x′ for convenience and the sum (∗) goes over

– integers x < x1 < · · · < x� < x′,
– separations (Ai, Bi) of P of order 2

√
pk for each i = 0, . . . , �, such that

• ∪�
i=0Ai = A, and

• Ai \ Bi and Aj \ Bj are disjoint for each 0 ≤ i < j ≤ �,
– functions fi : Ai ∩ Bi → G〈xi〉 ∪ G〈xi+1〉 for each i = 0, . . . , � such that

f, f1, . . . , f� are pairwise compatible and |f−1
i (G〈xi〉)|, |f−1

i (G〈xi+1〉)| ≤ √
pk.

Proof of Claim. To prove this claim, consider first a function g ∈
T [x, x′, (A,B), f] such that g(A) is sparse at x1, . . . , x�. We describe how to find
the separations (Ai, Bi) and functions fi that correspond to g (for an example,
see Fig. 1). Let Ai = g−1(G〈xi, xi+1〉), Bi = (P−Ai)∪g−1(G〈xi〉)∪g−1(G〈xi+1〉).
Note that, since g(A) is sparse at xi and xi+1, (Ai, Bi) is a separation of order
at most 2

√
pk. It is easy to see that ∪Ai = g−1(G〈x, x′〉) = A. Also, note that

Ai \ Bi = g−1(G〈xi, xi+1〉) \ (g−1(G〈xi〉) ∪ g−1(G〈xi+1〉)), so for any i �= j,
Ai \ Bi and Aj \ Bj are disjoint. We define fi : Ai ∩ Bi → G〈xi〉 ∪ G〈xi+1〉 as
fi = g|Ai∩Bi

. By construction, f, f1, . . . , f� are pairwise compatible.
Conversely, given pairwise compatible functions g0, . . . , g� such that

gi ∈ T [xi, xi+1, (Ai, Bi), fi], we show how to construct a function g ∈
T [x, x′, (A,B), f]. Since gi are compatible, we can define g = g0 ∪ · · · ∪ g� :
A → G〈x, x′〉. Since f, g1, g� are pairwise compatible, g extends f . It is easy to
see that this correspondence is one to one, which proves the claim.

Detecting and Counting Small Patterns in Unit Disk Graphs 423

Fig. 1. The function g : {p1, . . . , p6} → G〈x, x′〉 defined by g(pi) = vi, corresponds
to functions g1 : A1 → G〈x, x1〉 and g2 : A2 → G〈x1, x

′〉, where g1(pi) = vi and
g2(pi) = vi.

The next step is to rewrite the sum (∗) to match the form of Lemma 4. The
only difference is that in (1) the summation is over variables that are pairwise
independent.

Formally, let us define a square matrix M whose indices Mind are of the form
(xi, (Ai, Bi), fi), where xi ∈ {x, . . . , x′}, (Ai, Bi) ∈ S2

√
pk(P) and fi : Ai ∩ Bi →

G〈xi〉 ∪ G〈x0〉. Let Ii = f−1
i (G〈xi〉), Ij = f−1

j (G〈xj〉).
If xj ≥ xi, fi, fj compatible and |Ii|, |Ij | ≤ √

pk we define
M [(xi, (Ai, Bi), fi), (xj , (Aj , Bj), fj)] as

μ((Ai, Bi), (Aj , Bj)) · T [xi, xj , ((Aj \ Ai) ∪ Ii, Bj ∪ Ai), fi|Ii
∪ fj |Ij

],

and zero otherwise.
Intuitively, M [(xi, (Ai, Bi), fi), (xj , (Aj , Bj), fj)] describes the number of

ways to embed P [Aj \ Ai] between lines xi and xj , where fi and fj describe
the behaviour of these embeddings on lines xi an xj respectively. We observe
that we can group isomorphic separations together, i.e. that instead of indexing
by every separation, we can index by their representatives and take into account
the multiplicities, which are described by μ.

Now we can rewrite the sum (∗) as
∑

(∗∗)
M [(x�, (A \ A�−1, B \ B�−1), f�−1), (x′, (A,B), f)]

�−2∏

i=0

M [(xi, (Ai, Bi), fi), (xi+1, (Ai+1, Bi+1, fi+1))],

where the sum (∗∗) goes over (x0, (A0, B0), f0), . . . , (x�−1, (A�−1, B�−1), f�−1) ∈
Mind. Now by Lemma 4, we can compute the sum (∗) in time � · |Mind|2. Let
us bound the size of Mind. Recall that |S2

√
pk(P)| = σ2

√
pk(P) and note that

G〈xi〉 contains at most k2p disks (since we can assume that G can be drawn in
a (O(k2) × O(k2))-box with ply p by Theorem 4). Thus we have

424 J. Nederlof and K. Szilágyi

|Mind| ≤ k2σ2
√

pk(P) · (k2p)
√

pk,

Therefore, we can compute |sub(P,G)| in time kO(
√

pk) · pO(
√

pk) · σO(
√

pk)(P)2.

5 Theorem 3: Lower Bound

In this section, we give a proof overview of Theorem 3, showing that under
ETH there is no algorithm deciding whether |sub(P,G)| > 0 (|ind(P,G)| > 0
respectively) in time 2o(n/ log n) even when the ply is two. The formal proof can
be found in the full version. We will use a reduction from the String 3-Groups
problem similar to the one in [4].

Definition 3. The String 3-Groups problem is defined as follows. Given sets
A,B,C ⊆ {0, 1}6�log n+1 of size n, find n triples (a, b, c) ∈ A × B × C such that
for all i, ai + bi + ci ≤ 1 and each element of A,B,C occurs exactly once in a
chosen triple.

We call the elements of A,B,C strings. It was shown in [4] that, assuming
the ETH, there is no algorithm that solves String 3-Groups in time 2o(n).
Given an instance (A,B,C) of String 3-Groups problem, we construct the
corresponding host graph G and pattern P . Firstly, we modify slightly the strings
in A,B,C to facilitate the construction of P and G. Let m be the length of
the (modified) strings. For each a ∈ A, the connected component in G that
corresponds to it consists of two paths p1 . . . pm and q1 . . . qm, where pi and qi

are connected by paths of length 3 if ai = 0. For each b ∈ B, the connected
component in P that corresponds to it consists of a path t1 . . . tm, where there
is a path of length two attached to ti if bi = 1. The connected components
corresponding to elements in C are constructed in a similar way. Finally, we add
gadgets (triangles and 4-cycles) to each connected component in P and G to
ensure we cannot “flip” the components in P . For an example, see Fig. 2.

Fig. 2. Connected components corresponding to a = 0111010 ∈ A (left), b = 1000001 ∈
B (middle), c = 0000100 ∈ C (right).

Detecting and Counting Small Patterns in Unit Disk Graphs 425

6 Concluding Remarks

We gave (mostly) sub-exponential parameterized time algorithms for comput-
ing |sub(P,G)| and |ind(P,G)| for unit disk graphs P and G. Since the fine-
grained parameterized complexity of the subgraph isomorphism problem was
only recently understood for planar graphs, we believe our continuation of the
study for unit disk graphs is very natural, we hope it inspires further general
results.

While our algorithms are tight in many regimes, they are not tight in all
regimes. In particular, the (sub)-exponential dependence of the runtime in the
ply is not always necessary: We believe the answer to this question may be
quite complicated: For detecting some patterns, such as paths, 2O(

√
k)nO(1) time

algorithms are known [16], but it seems hard to extend it to the counting problem
(and to all patterns with few non-isomorphic separations of small order).

For counting induced occurrences with bounded clique size our method can
be easily adjusted to get a better dependence in the ply: I.e. our method can be
used to a get a (kp)O(

√
k) time algorithm for counting independent sets of size k

in unit disk graphs of ply p (which is optimal under the ETH by [11]); is there
such an improved independence on the ply for each pattern P?

Finally, we note it would be interesting to study the complexity of com-
puting |sub(P,G)| and |ind(P,G)| for various pattern classes and various other
geometric intersection graphs as well. Our results can be adapted to disk graphs
where the ratio of the largest and smallest radius is constant (using a slight
modification of Lemma 2). A possible direction for further research would be to
determine for which patterns can one compute the above values on bounded ply
disk graphs? Recent work [10] shows some problems admit algorithms running
in sub-exponential time parameterized time.

References

1. Baker, B.S.: Approximation algorithms for np-complete problems on planar graphs.
J. ACM (JACM) 41(1), 153–180 (1994)

2. de Berg, M., Bodlaender, H.L., Kisfaludi-Bak, S., Marx, D., van der Zanden, T.C.:
A framework for exponential-time-hypothesis-tight algorithms and lower bounds in
geometric intersection graphs. SIAM J. Comput. 49(6), 1291–1331 (2020). https://
doi.org/10.1137/20M1320870

3. Bhore, S., Carmi, P., Kolay, S., Zehavi, M.: Parameterized study of steiner tree on
unit disk graphs. Algorithmica 85(1), 133–152 (2023). https://doi.org/10.1007/
s00453-022-01020-z

4. Bodlaender, H.L., Nederlof, J., Zanden, T.C.V.D.: Subexponential time algorithms
for embedding H-minor free graphs, vol. 55. Schloss Dagstuhl- Leibniz-Zentrum fur
Informatik GmbH, Dagstuhl Publishing, August 2016. https://doi.org/10.4230/
LIPIcs.ICALP.2016.9

5. Borgs, C., Chayes, J., Kahn, J., Lovász, L.: Left and right convergence of graphs
with bounded degree. Random Struct. Algorithms 42, 1–28 (2013). https://doi.
org/10.1002/rsa.20414

https://doi.org/10.1137/20M1320870
https://doi.org/10.1137/20M1320870
https://doi.org/10.1007/s00453-022-01020-z
https://doi.org/10.1007/s00453-022-01020-z
https://doi.org/10.4230/LIPIcs.ICALP.2016.9
https://doi.org/10.4230/LIPIcs.ICALP.2016.9
https://doi.org/10.1002/rsa.20414
https://doi.org/10.1002/rsa.20414

426 J. Nederlof and K. Szilágyi

6. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

7. Fomin, F.V., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.:
Subexponential parameterized algorithms for planar and apex-minor-free graphs
via low treewidth pattern covering. SIAM J. Comput. 51(6), 1866–1930 (2022).
https://doi.org/10.1137/19m1262504

8. Har-Peled, S., et al.: Stabbing pairwise intersecting disks by five points. Discret.
Math. 344(7), 112403 (2021)

9. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM (JACM) 32(1), 130–136 (1985)

10. Lokshtanov, D., Panolan, F., Saurabh, S., Xue, J., Zehavi, M.: Subexponential
parameterized algorithms on disk graphs (extended abstract). In: Naor, J.S., Buch-
binder, N. (eds.) Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference/Alexandria, VA, USA, 9–12 January
2022, pp. 2005–2031. SIAM (2022). https://doi.org/10.1137/1.9781611977073.80

11. Marx, D.: On the optimality of planar and geometric approximation schemes. In:
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007),
20–23 October 2007, Providence, RI, USA, Proceedings, pp. 338–348. IEEE Com-
puter Society (2007). https://doi.org/10.1109/FOCS.2007.50

12. Marx, D., Pilipczuk, M.: Subexponential parameterized algorithms for graphs of
polynomial growth. In: Pruhs, K., Sohler, C. (eds.) 25th Annual European Sym-
posium on Algorithms, ESA 2017, 4–6 September 2017, Vienna, Austria. LIPIcs,
vol. 87, pp. 59:1–59:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017).
https://doi.org/10.4230/LIPIcs.ESA.2017.59

13. Nederlof, J.: Detecting and counting small patterns in planar graphs in subex-
ponential parameterized time. In: Makarychev, K., Makarychev, Y., Tulsiani, M.,
Kamath, G., Chuzhoy, J. (eds.) Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, 22–26 June
2020, pp. 1293–1306. ACM (2020). https://doi.org/10.1145/3357713.3384261

14. Nešetřil, J., De Mendez, P.O.: Sparsity: Graphs, Structures, and Algorithms, vol.
28. Springer Science & Business Media, Berlin, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-27875-4

15. Panolan, F., Saurabh, S., Zehavi, M.: Contraction decomposition in unit disk
graphs and algorithmic applications in parameterized complexity. In: Chan, T.M.
(ed.) Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, 6–9 January 2019, pp. 1035–
1054. SIAM (2019). https://doi.org/10.1137/1.9781611975482.64

16. Zehavi, M., Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: ETH-tight
algorithms for long path and cycle on unit disk graphs. J. Comput. Geom. 12(2),
126–148 (2021). https://doi.org/10.20382/jocg.v12i2a6

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/19m1262504
https://doi.org/10.1137/1.9781611977073.80
https://doi.org/10.1109/FOCS.2007.50
https://doi.org/10.4230/LIPIcs.ESA.2017.59
https://doi.org/10.1145/3357713.3384261
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1137/1.9781611975482.64
https://doi.org/10.20382/jocg.v12i2a6

The Weighted HOM-Problem Over Fields

Andreea-Teodora Nász(B)

Faculty of Mathematics and Computer Science, Universität Leipzig,
PO box 100 920, 04009 Leipzig, Germany

nasz@informatik.uni-leipzig.de

Abstract. The HOM-problem, which asks whether the image of a regu-
lar tree language under a tree homomorphism is again regular, is known
to be decidable. In this paper, we prove the weighted HOM-problem for
all fields decidable, provided that the tree homomorphism is tetris-free (a
condition that generalizes injectivity). To this end, we reduce the prob-
lem to a property of the device representing the homomorphic image in
question; to prove this property decidable, we then derive a pumping
lemma for such devices from the well-known pumping lemma for regular
tree series over fields, proved by Berstel and Reutenauer in 1982.

1 Introduction

The well-known model of finite-state automata has seen various extensions over
the past decades. On the one hand, the qualitative evaluation of these acceptors
was generalized to a quantitative one, leading to weighted automata [29]. Such
devices assign a weight to each input word, and are thus suited to model numer-
ical factors related to the input, such as costs, probabilities and consumption
of resources or time. The research community focused on automata theory has
studied weighted automata consistently and fruitfully [9,10,28]. Thereby, the
favoured domains for weight calculations are often semirings [16,18], as they are
both quite general and computationally efficient due to their distributivity.

Another dimension of generalization for finite-state automata targets their
input, allowing them to handle more complex data structures such as infinite
words [25], trees [5], graphs [4] and pictures [27]. In particular, finite-state tree
automata and the regular tree languages they recognize were introduced inde-
pendently in [7,31,32]. These devices find applications in a variety of areas like
natural language processing [19], picture generation [8] and compiler construc-
tion [33]. Unsurprisingly, combining both types of generalizations leads to intri-
cate yet fruitful research areas, and so several variants of weighted tree automata
(WTA) and the regular tree series they recognize continue to be studied [11].

Tree homomorphisms are widely used in the context of term rewriting [13]
and XML types [30]. A tree homomorphism is a structure-preserving transfor-
mation on trees which can duplicate subtrees, so the trees in the homomorphic
image might have identical subtrees. Unfortunately, tree automata have limited
memory, so they cannot ensure that certain subtrees are equal [12] (much like

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 427–441, 2024.
https://doi.org/10.1007/978-3-031-52113-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_30&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_30

428 A.-T. Nász

the classical (string) automata cannot ensure that the numbers of a’s and of b’s
in a word are equal). Therefore, unlike in the word case, regular tree languages
are not closed under tree homomorphisms. It was a long-standing open question
if, given a regular tree language L and a tree homomorphism h as input, it is
decidable whether h(L) is again regular. This HOM-problem was finally solved
in [6,14,15], with the help of a well-studied extension called tree automata with
constraints; these devices can explicitely require certain subtrees to be equal,
and can thus handle the duplications performed by h.

In the weighted HOM-problem, a regular tree series and a tree homomor-
phism are given as input. By its nature, this question requires a customized
investigation for different semirings. Most recently, this problem was proved
decidable for different scenarios [22,23], but in both cases, the semiring must be
zero-sum free; this strong condition already excludes essential rings such as Z.
In this paper, we decide the weighted HOM-problem for all fields (and thus,
all subspaces of fields), provided that the tree homomorphism is tetris-free, a
property that generalizes injectivity.

The paper is structured as follows: In Sect. 2 we represent the homomorphic
image of the input tree series by a WTA with constraints (WTAh). In Sect. 4
we show that, if the input tree homomorphism is tetris-free, then the weighted
HOM-problem is equivalent to a certain decidable property of this WTAh. Prov-
ing said decidability relies on a pumping lemma for WTAh over fields, which we
derive in Sect. 3 from the well-known pumping lemma for (regular) WTA over
fields [1]. Finally, we present an example that illustrates why the approach is
unsuited for non-tetris-free tree homomorphisms.

2 Preliminaries and Technical Background

We denote the set {0, 1, 2, . . .} by N, and we let [k] = {1, . . . , k} for every k ∈ N.
Let A and B be sets. We write |A| for the cardinality of A, and A∗ for the set of
finite strings over A. The empty string is ε and the length of a string w is |w|.

A ranked alphabet is a pair (Σ, rk) that consists of a finite set Σ and a
rank mapping rk: Σ → N. For every k ≥ 0, we define Σk = rk−1(k), and
we sometimes write σ(k) to indicate that σ ∈ Σk. We often abbreviate (Σ, rk)
by Σ, leaving rk implicit. Let Z be a set disjoint with Σ. The set of Σ-trees
over Z, denoted by TΣ(Z), is the smallest set T that satisfies (i) Σ0 ∪ Z ⊆ T
and (ii) σ(t1, . . . , tk) ∈ T for every k ∈ N, σ ∈ Σk and t1, . . . , tk ∈ T . We
abbreviate TΣ(∅) simply to TΣ , and call any subset L ⊆ TΣ a tree language.
Consider t ∈ TΣ(Z). The set pos(t) ⊆ N

∗ of positions of t is defined by pos(t) =
{ε} for every t ∈ Σ0 ∪ Z, and by pos

(
σ(t1, . . . , tk)

)
= {ε} ∪ ⋃

i∈[k]{ip | p ∈
pos(ti)} for all k ∈ N, σ ∈ Σk and t1, . . . , tk ∈ TΣ(Z). The set of positions
of t inherits the lexicographic order ≤lex from N

∗. The size |t| of t is defined by
|t| = |pos(t)| and the height ht(t) of t by ht(t) = maxp∈pos(t) |p|. For p ∈ pos(t),
the label t(p) of t at p, the subtree t|p of t at p and the substitution t[t′]p of t′

into t at p are defined for t ∈ Σ0 ∪ Z by t(ε) = t|ε = t and t[t′]ε = t′, and for
t = σ(t1, . . . , tk) by t(ε) = σ, t(ip′) = ti(p′), t|ε = t, t|ip′ = ti|p′ , t[t′]ε = t′,

The Weighted HOM-Problem Over Fields 429

and finally t[t′]ip′ = σ(t1, . . . , ti−1, ti[t′]p′ , ti+1, . . . , tk) for every k ∈ N, σ ∈ Σk,
t1, . . . , tk ∈ TΣ(Z), i ∈ [k] and p′ ∈ pos(ti). For every subset S ⊆ Σ ∪ Z, we
let posS(t) = {p ∈ pos(t) | t(p) ∈ S} and we abbreviate pos{s}(t) by poss(t)
for every s ∈ Σ ∪ Z. Let X = {x1, x2, . . .} be a fixed, countable set of formal
variables. For k ∈ N we denote by Xk the subset {x1, . . . , xk}. For any t ∈ TΣ(X)
we let var(t) = {x ∈ X | posx(t) 	= ∅}. For t ∈ TΣ(Z), a subset V ⊆ Z and a
mapping θ : V → TΣ(Z), we define the substitution tθ applied to t by vθ = θ(v)
for v ∈ V , zθ = z for z ∈ Z \ V , and σ(t1, . . . , tk)θ = σ

(
t1θ, . . . , tkθ

)
for all

k ∈ N, σ ∈ Σk and t1, . . . , tk ∈ TΣ(Z). If V = {v1, . . . , vn}, we write θ explicitly
as [v1 ← θ(v1), . . . , vn ← θ(vn)], or simply as [θ(x1), . . . , θ(xn)] if V = Xn.

A (commutative) semiring [16,17] is a tuple (S,+, · , 0, 1) that satisfies the
following conditions: (S,+, 0) and (S, ·, 1) are commutative monoids, · distributes
over +, and 0 · s = 0 for all s ∈ S. Examples include N =

(
N,+, · , 0, 1

)
, Z =(

Z,+, · , 0, 1
)
, Q =

(
Q,+, · , 0, 1

)
, the Boolean semiring B =

({0, 1},∨,∧, 0, 1
)

and the arctic semiring A =
(
N ∪ {−∞},max,+,−∞, 0

)
. When there is no risk

of confusion, we refer to a semiring (S,+, · , 0, 1) simply by its carrier set S. A
semiring is a field if it is (i) a ring, i.e. there exists −1 ∈ S such that 1+(−1) = 0,
and (ii) a semifield, i.e. for every a ∈ S \ {0} there exists a multiplicative inverse
a−1 such that a · a−1 ∈ S. Let F be a field, then S is a subsemiring of F if S ⊆ F

and the operations of S are embeddable in F, i.e., (+F)|S = +S, (· F)|S = · S,
0S = 0F and 1S = 1F. The semirings N and Z are subsemirings of Q, but not B.

Let Σ be a ranked alphabet and Z a set. Any mapping ϕ : TΣ(Z) → S is called
a tree series over S, and its support is the set supp(ϕ) = {t ∈ TΣ(Z) | ϕ(t) 	= 0}.

Given ranked alphabets Σ and Δ, let h′ : Σ → TΔ(X) be a mapping such
that for all k ∈ N and σ ∈ Σk, we have h′(σ) ∈ TΔ(Xk). We extend h′ to a
mapping h : TΣ → TΔ by h(α) = h′(α) ∈ TΔ(X0) = TΔ for all α ∈ Σ0, and
by h(σ(s1, . . . , sk)) = h′(σ)[x1 ← h(s1), . . . , xk ← h(sk)] for all k ∈ N, σ ∈ Σk,
and s1, . . . , sk ∈ TΣ . The mapping h is called the tree homomorphism induced
by h′, and we identify h′ and its induced tree homomorphism h. We call h

– nonerasing if h(σ) /∈ X for all σ ∈ Σ,
– nondeleting if σ ∈ Σk implies var(h′(σ)) = Xk for all k ∈ N,
– input-finitary if the preimage h−1(t) is finite for every t ∈ TΔ, and
– tetris-free if it is nondeleting, nonerasing and for s, s′ ∈ TΣ , h(s) = h(s′)

implies (i) pos(s) = pos(s′) and (ii) h
(
s(p)

)
= h

(
s′(p)

)
for all p ∈ pos(s).

In other words, a nondeleting and nonerasing h : TΣ → TΔ is tetris-free if
we cannot combine the building blocks h(σ), σ ∈ Σ in different ways to build
the same tree. Thus if we list all possible trees that can be generated from these
building blocks, no tree will occur twice. This condition was introduced in [23]
and generalizes injectivity: Intuitively, if a tree homomorphism h is tetris-free,
then any non-injective behaviour of h is located entirely at the symbol level.

Example 1. Let Σ = {α(0), β(0), ψ(2)} and Δ = {a(0), f (3)}. Consider the tree
homomorphism h : TΣ → TΔ that is induced by the mapping h(α) = h(β) = a
and h(ψ) = f(x2, x1, x1). While h is not injective, it is tetris-free. However,

430 A.-T. Nász

the tree homomorphism h′ : TΣ → TΔ induced by h′(α) = a, h′(β) = f(a, a, a)
and h′(ψ) = f(x2, x1, a) is not: ψ(α, α) and β violate the tetris-free condition.

If h : TΣ → TΔ is nonerasing and nondeleting, then for every s ∈ h−1(t),
we have |s| ≤ |t|. In particular, h is then input-finitary. Let A : TΣ → S be a
tree series. Its homomorphic image under h is the tree series h(A) : TΔ → S

defined for every t ∈ TΔ by h(A)(t) =
∑

s∈h−1(t) A(s). This relies on h to be
input-finitary, otherwise the defining sum is not finite, so h(A)(t) might not be
well-defined. For this reason, we only consider nondeleting and nonerasing tree
homomorphisms.

Recently it was shown [20,21] that such homomorphic images of regular tree
languages can be represented efficiently using weighted tree automata with hom-
constraints (WTAh) which were defined in [20], and first introduced for the
Boolean case in [14]. All following concepts are illustrated in Example 5 below.

Definition 2 (cf. [21, Definition 1]). Let S be a commutative semiring. A
weighted tree automaton over S with hom-constraints (WTAh) is a tuple of the
form A =

(
Q,Σ,F,R,wt

)
where Q is a finite set of states, Σ is a ranked alpha-

bet, F ⊆ Q is the set of final states, R is a finite set of rules of the form (�, q, E)
such that � ∈ TΣ(Q) \ Q, q ∈ Q and E is an equivalence relation on posQ(�),
and wt: R → S assigns a weight to each rule.

Rules of WTAh are typically depicted as r = �
E−→wt(r) q. The components of

such a rule are the left-hand side �, the target state q, the set E of constraints and
the weight wt(r). A constraint (p, p′) ∈ E is listed as “p = p′ ”, and if p is different
from p′, then p and p′ are called constrained positions. The equivalence class of p
in E is denoted [p]≡E

. We generally omit the trivial constraints (p, p) ∈ E.
The WTAh is a weighted tree grammar (WTG) if E = ∅ (strictly speaking,

E is the identity relation) for every rule �
E−→ q, and a WTA in the classical

sense [5] if additionally posΣ(�) = {ε}. WTG and WTA are equally expressive,
as WTG can be translated straightforwardly into WTA using additional states.

We are particularly interested in a specific subclass of WTAh, namely the eq-
restricted WTAh [21]. In such a device, there is a designated sink-state whose
sole purpose is to neutrally process copies of identical subtrees. More precisely,
whenever subtrees are mutually constrained, there is one leading copy among
them that can be processed as usual with arbitrary states and weights, while
every other copy is handled exclusively by the weight-neutral sink-state.

Definition 3. A WTAh
(
Q,Σ,F,R,wt

)
is eq-restricted if it has a so-

called sink state ⊥ ∈ Q \ F such that (i) σ(⊥, . . . ,⊥) →1 ⊥ belongs to R

for all σ ∈ Σ, and no other rules target ⊥, and (ii) for every rule �
E−→ q

with q 	= ⊥, if posQ(�) = {p1, . . . , pn} and qi = �(pi) for i ∈ [n], the following
conditions hold:

1. For each i ∈ [n], the set {qj | pj ∈ [pi]≡E
} \ {⊥} is a singleton.

2. There exists exactly one pj ∈ [pi]≡E
such that qj 	= ⊥.

The Weighted HOM-Problem Over Fields 431

In other words, among each E” equivalence class there is only one occurrence of
a state different from ⊥, and every other E” related position is labelled by ⊥.
Moreover, ⊥ processes every possible tree with weight 1. We denote the state
sets of WTAh by Q∪̇{⊥} instead of Q � ⊥ to point out the sink-state.

Next, let us recall the semantics of WTAh from [21, Definitions 2 and 3].

Definition 4. Let A =
(
Q,Σ,F,R,wt

)
be a WTAh. A run of A is a tree over

the ranked alphabet Σ∪R where the rank of a rule is rk(� E−→ q) = rk
(
�(ε)

)
, and

it is defined inductively. Consider t1, . . . , tn ∈ TΣ, q1, . . . , qn ∈ Q and suppose
that �i is a run of A for ti to qi with weight wt(�i) = ai for each i ∈ [n]. Assume
there exists �

E−→a q in R such that � = σ(�1, . . . , �m), posQ(�) = {p1, . . . , pn}
with �(pi) = qi, and that ti = tj for all (pi, pj) ∈ E. Let t = �[t1]p1 · · · [tn]pn

,

then � =
(
�

E−→a q
)
(�1, . . . , �m)[�1]p1 · · · [�n]pn

is a run of A for t to q. Its
weight wt(�) is computed as a · ∏

i∈[n] ai. If wt(�) 	= 0, then � is valid, and if
in addition, q ∈ F for its target state q, then � is accepting. The value wtq(t)
is the sum of all weights wt(�) of runs of A for t to q. Finally, the tree series
‖A‖ : TΣ → S recognized by A is defined simply by ‖A‖ : t �→ ∑

q∈F wtq(t).

Since the weights of rules are multiplied, we assume wlog wt(r) 	= 0 for
all r ∈ R.

Example 5. Let Δ = {a(0), g(2), f (3)} and A′ =
(
Q∪̇{⊥},Δ, F ′, R′,wt

)
be the

WTGh over Z with Q = {q, qf}, F ′ = {qf} and the set of rules and weights

R′ =
{

a →1 q , g(a, q) →2 q , f(q, q,⊥) 2=3−→1 qf ,

a →1 ⊥ , g(⊥,⊥) →1 ⊥ , f(⊥,⊥,⊥) →1 ⊥ } .

The constrained positions 2, 3 in the third rule satisfy (ii) from Definition 3, and
the ⊥” rules are as required in (i), so A′ is eq-restricted. If we replace the third
rule with f(q, q, q) 2=3−→1 qf , then the resulting WTAh is not eq-restricted any
more. Let t = f

(
a, g(a, a), g(a, a)

) ∈ TΔ. A′ has a unique accepting run � for t:

t : f

a g

a a

g

a a

� : f(q, q, ⊥) 2=3−→1 qf

a →1 q g(a, q) →2 q

a a →1 q

g(⊥,⊥) →1 ⊥

a →1 ⊥ a →1 ⊥

We have wt(�) = 2 despite |posg(t)| = 2 because due to the eq-restriction,
the duplicated subtree t|3 is processed exclusively in the state ⊥ with weight 1.

If a tree series is recognized by a WTA, it is called regular, and if it is recognized
by an eq-restricted WTAh, then it is called hom-regular. This choice of name
hints at the fact that eq-restricted WTAh are tailored to represent homomorphic
images of regular tree series. The following example demonstrates this property.

432 A.-T. Nász

Example 6. Consider Σ = {α(0), γ(1), ψ(2)} and let A =
({q, qf}, Σ, {qf}, R,wt

)

be the WTA over Z with the following set of rules:

R =
{
α →1 q, γ(q) →2 q, ψ(q, q) →1 qf

}
.

It is supp(‖A‖) =
{
ψ

(
γn(α), γm(α)

) | n,m ∈ N
}

=
{
s ∈ TΣ | posψ(s) = {ε}}

and ‖A‖ : ψ
(
γn(α), γm(α)

) �→ 2n+m = 2|posγ(s)|. Let Δ = {a(0), g(2), f (3)} and
let h : TΣ → TΔ be the tetris-free tree homomorphism induced by

h(α) = a , h(γ) = g(a, x1) and h(ψ) = f
(
x2, x1, x1

)
.

Then the eq-restricted WTAh A′ from Example 5 recognizes h(‖A‖) defined by
supp

(
h(‖A‖)

)
=

{
t ∈ TΔ | posf (t) = {ε}} and h(‖A‖) : t �→ 2|posg(t)\posg(t|3)|.

The rules in R′ are obtained from the rules in R by applying h to their left-hand
sides, and the duplicated subtree at position 3 below f targets ⊥ instead of q to
avoid distorting the weight with an additional factor 2n.

Formally, the following statement was shown in [20].

Lemma 7 (see [20, Theorem 19]). Let A =
(
Q,Σ,F,R,wt

)
be a WTA over

a commutative semiring S and h : TΣ → TΔ a nondeleting and nonerasing tree
homomorphism. There is an eq-restricted WTAh A′ that recognizes h(‖A‖).

As illustrated in Examples 5 and 6, the WTAh A′ for the homomorphic image
of a WTA A replaces each symbol σ in a rule of A by h(σ), and preserves the
original state behaviour, only adding ⊥ along the duplicated subtrees. Thus, we
can define a mapping that traces the runs of A to the runs of A′.

Definition 8 (see [23, Definition 9]). Let A =
(
Q,Σ,F,R,wt

)
be a WTA over

a commutative semiring S and h : TΣ → TΔ a nondeleting and nonerasing tree
homomorphism. Let A′ be the WTAh for h(‖A‖) provided by Lemma 7. Consider
a rule r = σ(q1, . . . , qk) → q of A and let h(σ) = δ(u1, . . . , un), then we set

hR(r) = δ(u1, . . . , un)�q1, . . . , qk�
E−→ q,

where the substitution �q1, . . . , qk� replaces for every i ∈ [k] only the ≤lex” min-
imal occurrence of xi in δ(u1, . . . , un) by qi, and every other occurrence by ⊥.
The constraint set is defined as E =

⋃
i∈[k]

[
posxi

(
δ(u1, . . . , un)

)]2.
The assignment hR extends naturally to the runs of A: For a run of the

form ϑ = r = (α → q) with α ∈ Σ0, we set hR(ϑ) = hR(r). For ϑ = r(ϑ1, . . . , ϑk)
with r = σ(q1, . . . , qk) → q and h(σ) = δ(u1, . . . , un) we set

hR(ϑ) =
(
hR(r)

)
(u1, . . . , un)�hR(ϑ1), . . . , hR(ϑk)�;

here, the substitution �hR(ϑ1), . . . , hR(ϑk)� replaces for every i ∈ [k] only the
≤lex” minimal occurrence of xi in

(
hR(r)

)
(u1, . . . , un) by hR(ϑi), and all other

occurrences by the respective unique run to ⊥ for the tree processed by ϑi.

Let us see how hR acts on our example from above.

The Weighted HOM-Problem Over Fields 433

Example 9. Recall the WTA A and WTAh A′ from Examples 5 and 6. We have

hR : ψ(q, q) → qf �→ f
(
q, q,⊥) 2=3−→ qf ,

and for the unique run of A for the tree ψ
(
γ(α), α

)
, the image under hR is

ψ(q, q) →1 qf

γ(q) →2 q

α →1 q

α →1 q �→

f(q, q, ⊥) 2=3−→1 qf

a →1 q g(a, q) →2 q

a a →1 q

g(⊥,⊥) →1 ⊥

a →1 ⊥ a →1 ⊥ .

The following statement is a direct consequence of the proof of Lemma 7.

Lemma 10. The mapping hR from Definition 8 is well-defined on R, although
not necessarily injective. Its image is hR(R) = {r′ ∈ R′ | r′ targets some q 	= ⊥}.
If ϑ is a run of A for s ∈ TΣ, then hR(ϑ) is a run of A′ for h(s); conversely, for
every run � of A′ for some t ∈ TΔ to some q 	= ⊥, there exists s ∈ h−1(t) and a
run ϑ of A for s to q such that hR(ϑ) = �, but wt(ϑ) and wt′(�) may differ.

3 A Pumping Lemma Over Fields

The weighted HOM-problem takes a WTA A and a nondeleting, nonerasing
tree homomorphism h as input, and asks whether h(‖A‖) is again regular. As
mentioned earlier, the N” variant of this problem was shown to be decidable
in [22]. The proof presented there makes two assumptions on the semiring used
for the weight calculations: First, it must be a subsemiring of a field, and second,
it must be zero-sum free; the only common semiring that satisfies both conditions
is N. Remarkably, the strong condition of zero-sum freeness is only used to prove
a pumping lemma for h(‖A‖). In this section, we derive an alternative pumping
lemma over fields, provided that h is tetris-free. This way, we bypass the zero-sum
freeness assumption, which allows us to lift the proof of [22] to the HOM-problem
over fields, for tetris-free tree homomorphisms.

We begin by establishing a notation for the tree fragment read by a rule.

Definition 11. Let A′ =
(
Q∪̇{⊥},Δ, F,R,wt

)
be an eq-restricted WTAh and

let r = �
E−→ q be a rule of A′ with some q 	= ⊥. Let posQ\{⊥}(�) = {p1, . . . , pk}.

The Δ part of r is the tree �̂ = �[⊥]p1 · · · [⊥]pk
∈ TΔ({⊥}).

The Δ part of a rule extracts the tree fragment from its left-hand side and
overwrites every state label (for convenience simply with ⊥). Note that � can be
easily recovered from �̂, E and the states �(p1), . . . , �(pk) in the correct order.

To prove the desired pumping lemma for our WTAh, we reduce it to the
pumping lemma for WTA over fields proved by Berstel and Reutenauer in [1].
For this, we must construct a WTA related to the WTAh A′ for h(‖A‖). The

434 A.-T. Nász

naive idea to simply use the input WTA A falls short: If h is not injective, there
may be s, s′ ∈ supp(‖A‖) with h(s) = h(s′) /∈ supp(‖A′‖) since in fields, different
runs for h(s) might cancel each other out, so we cannot lift the pumping lemma
from A to A′. Instead, we fabricate a new WTA that traces the behaviour of A′

but ignores duplicated subtrees in order to remain regular. We will argue the
well-definedness of this construction using some technical lemmas below.

Definition 12. Let A′ =
(
Q∪̇{⊥},Δ, F,R,wt

)
be the eq-restricted WTAh from

Lemma 7 for a WTA and a tetris-free tree homomorphism. Consider the ranked
alphabet Δ̂ = {�̂ | � is the left-hand side of some r ∈ R} with the rank function
r̂k(�̂) = |posQ\{⊥}(�)|. We define the WTA Â =

(
Q \ {⊥}, Δ̂, F, R̂, ŵt

)
such

that if r = �
E−→ q ∈ R with q 	= ⊥ and posQ\{⊥}(�) = {p1, . . . , pk} ordered

lexicographically with �(pi) = qi for all i ∈ [k], then �̂(q1, . . . , qk) → q ∈ R̂ with
weight wt(r). No other rules are in R̂.

The translation A′ �→ Â induces a mapping t �→ t̂ defined inductively as fol-
lows: Consider t ∈ TΔ, a run � of A′ for t with �(ε) = �

E−→ q and let posQ\{⊥}(�)

be the set {p1, . . . , pk} in lexicographic order. Then t̂ = �̂
(
t̂|p1 , . . . , t̂|p2

) ∈ T
̂Δ.

The WTA Â reinterprets the trees t ∈ TΔ as trees t̂ ∈ T
̂Δ which, instead of

symbols δ ∈ Δ, are now composed of the Δ parts of the rules of A′. As the
WTA Â, without the instrument of constraints at hand, cannot ensure equality
of subtrees, all ⊥” processed copies are discarded, and ⊥ is not a state anymore.

Example 13. Recall the WTAh A′ from Example 5. The ranked alphabet Δ̂
is the set Δ̂ = {a(0), [g(a,⊥)](1), [f(⊥,⊥,⊥)](2)}, and the WTA Â is defined
by Â =

(
Q, Δ̂, F ′, R̂, ŵt

)
with the following set of rules and weights:

R̂ =
{

a →1 q , [g(a,⊥)](q) →2 q , [f(⊥,⊥,⊥)](q, q) →1 qf

}
.

For t = f
(
a, g(a, a), g(a, a)

) ∈ TΔ it is t̂ = [f(⊥,⊥,⊥)]
(
a, [g(a,⊥)](a)

) ∈ T
̂Δ :

t :

f

a g

a a

g

a a

�→ t̂ :

f

⊥ ⊥ ⊥

g

a ⊥

.

ammm
.

a

The following two lemmas are the basis for the correctness of our translation
above. Unlike in a WTA where trees are read symbol-by-symbol, a rule of a
WTAh processes an entire tree fragment; in general, there may be different ways
to assemble a certain tree from these Δ parts of the rules of the WTAh, but by
definition, tetris-free tree homomorphisms exclude this ambiguity.

The Weighted HOM-Problem Over Fields 435

Lemma 14. Let A′ =
(
Q∪̇{⊥},Δ, F,R,wt

)
be the eq-restricted WTAh from

Lemma 7 for a WTA and a tetris-free tree homomorphism. For every t ∈ TΔ,
the runs of A′ for t differ only in the states they process, but neither in the
Δ part of the rules they use, nor in their constraints. In particular, the set of
positions related to any p′′ ∈ pos(t) by the constraints of the rules used in a run
coincides for all runs of A′ for t, i.e. it is uniquely determined by t.

Proof. Let � and �′ be runs of A′ for some t ∈ TΔ. By Lemma 10, there are two
runs ϑ and ϑ′ of A for some s and s′, respectively, such that h(s) = h(s′) = t,
and hR(ϑ) = � and hR(ϑ′) = �′. Since h is tetris-free, it is pos(s) = pos(s′) and
h
(
s(p)

)
= h

(
s′(p)

)
at every p ∈ pos(s). By the definition of hR, these identical

terms h
(
s(p)

)
and h

(
s′(p)

)
already determine the Δ parts of the rules used by �

and �′. Moreover, the constraint sets are implicit to these terms, therefore �
and �′ can only differ in the states they process. ��

The next lemma is again a consequence of the tetris-freeness. For details on
the proof, we refer the reader to the full-length version [24].

Lemma 15. Let A′ be the eq-restricted WTAh from Lemma 7 for a WTA and
a tetris-free tree homomorphism. If A′ has two rules r, r′ with the same Δ parts,
then their constraint sets coincide as well.

We are now ready prove that our translation A′ �→ Â is correct:

Lemma 16. The WTA Â from Definition 12 is well-defined. The mapping t �→ t̂
induced by it is also well-defined and injective, and ‖A′‖(t) = ‖Â‖(t̂).

Proof. First, recall that � can be recovered from �̂, E and the states q1, . . . , qk.
While �̂ and q1, . . . , qk are preserved in the rules of Â, E is uniquely determined
by �̂ as stated in Lemma 15. Thus the weight function ŵt is well-defined.

Let t ∈ TΔ. By Lemma 14, all runs of A′ for t have the same Δ parts, and
these are precisely the alphabet symbols for t̂ ∈ T

̂Δ. Thus, the mapping t �→ t̂
is well-defined. Since E (and thus the positioning of every direct subtree) is
uniquely determined by �̂ via Lemma 15, the mapping is also injective. Finally, Â
preserves the state behaviour and weights, so every run of A′ for t to some q 	= ⊥
corresponds to a run of Â for t̂ to q, and vice versa, which proves the claim.

For illustration purposes, consider cases where Lemmas 14 and 15 do not hold.

Example 17. Recall the WTAh A′ recognizing h(‖A‖) from Examples 5 and 6.
Since h is tetris-free, A′ satisfies Lemmas 14 and 15. If we add ϕ(2) to the input
alphabet Σ, extend A to, say, B by adding the rule ϕ(q, q) →−2 qf , and extend h
to h� via h�(ϕ) = f

(
x1, g(a, x2), g(a, x1)

)
, then h� is not tetris-free. The eq-

restricted WTAh B′ for h�(‖B‖) has the rule f
(
q, g(a, q), g(a,⊥)

) 1=32−→−2 qf ,
which allows an additional run �� for our tree t = f

(
a, g(a, a), g(a, a)

)
:

436 A.-T. Nász

�� :

f q, g(a, q), g(a,⊥)
) 1=32−→−2 qf

a →1 q g

a a →1 q

g

a a →1 ⊥ .

It is wt(�) + wt(��) = 0, hence t /∈ supp(‖B′‖). The rules at �(ε) and ��(ε)
have different Δ parts, so the statement in Lemma 14 does not hold. Indeed if
we construct B̂, we obtain the new symbol

[
f
(⊥, g(a,⊥), g(a,⊥)

)](2) ∈ Δ̂ which
provides a second tree t̂� ∈ T

̂Δ related to t:

t̂� :

f

⊥ g

a ⊥

g

a ⊥.

amm mma

So, while the translation t �→ t̂ is still injective, it is not well-defined anymore.
Moreover, it is t̂, t̂� ∈ supp(‖B̂‖), despite t /∈ supp(‖B′‖).

On the other hand, instead of ϕ(2) let us add β(0) and κ(2) to Σ, and b
to Δ. We extend A to, say, C by adding the rules β →1 q and κ(q, q) →1 qf ,
and h to h� by setting h�(β) = b and h�(κ) = f(x2, x1, x2). As before, h� is
not tetris-free. The WTAh C′ has, compared to A′, the additional rules b →1

q, b →1 ⊥ and f(q, q,⊥) 1=3−→1 qf , so it does not satisfy Lemma 15. When
constructing Ĉ, we only add the symbol b to Δ̂, but now there are two different
rules whose Δ part is f(⊥,⊥,⊥). It is h�

(
κ(α, β)

)
= f(b, a, b) 	= f(b, a, a) =

h�
(
ψ(α, β)

)
; however, we have ̂f(b, a, b) = ̂f(b, a, a) =

[
f(⊥,⊥,⊥)

]
(b, a). Not

only is it unclear which weight the rule
[
f(⊥,⊥,⊥)

]
(q, q) → qf should have

in Ĉ, but because the translation t �→ t̂ is not injective, we cannot recover
‖C′‖ from ‖Ĉ‖ anymore.

Next, we want to derive a pumping lemma for our WTAh A′, which will
be the foundation for deciding the weighted HOM-problem over fields. To this
end, we apply the well-known pumping lemma for WTA proved by Berstel and
Reutenauer [1] to the WTA Â. We require one more definition: that of a context.

Definition 18. Let Δ be a ranked alphabet and � /∈ Δ. Any C ∈ TΔ({�}) \TΔ

is called a multi-context. If |pos�(C)| = 1, then C is a context. For a multi-
context C with pos�(C) = {p1, . . . , pn} and t1, . . . , tn ∈ TΣ({�}), we abbreviate
C[t1]p1 · · · [tn]pn

to C[t1, . . . , tn], and if t1 = . . . = tn = t, we simply write C[t].

Let us now recall the pumping lemma for WTA over fields with a slight adjust-
ment, namely that the pumping takes place below a certain position.

The Weighted HOM-Problem Over Fields 437

Theorem 19 (cf. [1, Theorem 9.2]). Let F be a field, Σ a ranked alphabet and B
a WTA over F and Σ. There exists N ∈ N s.t. for every context C and t0 ∈ TΣ

such that C[t0] ∈ supp(‖B‖) and ht(t0) ≥ N , there exists a sequence of pairwise
distinct trees t1, t2, . . . such that C[ti] ∈ supp(‖B‖) for all i ∈ N.

From this, we obtain the desired pumping lemma for the WTAh A′.

Proposition 20 (Pumping Lemma). Let F be a field and A′ the eq-restricted
WTAh from Lemma 7 for a WTA over F and Σ, and a tetris-free tree homo-
morphism h : TΣ → TΔ. There exists N ∈ N such that for every multi-context C
and t0 ∈ TΔ such that t := C[t0] ∈ supp(‖A′‖), ht(t0) ≥ N , and pos�(C) is
an equivalence class of mutually constrained positions in t, there exist infinitely
many pairwise distinct trees t1, t2, . . . such that C[ti] ∈ supp(‖A′‖) for all i ∈ N.

Proof. Recall from Lemma 14 that the equivalence relation of positions that are
mutually constrained by a run of t, is uniquely determined by t. Let Â be the
WTA for A′ from Definition 12 and let N̂ be the pumping constant for Â from
Theorem 19. We set N = N̂ · maxσ∈Σ ht

(
h(σ)

)
. Let t be as in the statement,

then t̂ ∈ supp(Â) is of the form t̂ = Ĉ[t̂0] with a context Ĉ and ht(t̂0) ≥ N̂ .
Thus by Theorem 19, there is a sequence of trees t̂1, t̂2, . . . such that Ĉ[t̂i] ∈
supp(‖Â‖) for all i ∈ N. In turn, each t̂i has a unique preimage ti under the
mapping t �→ t̂, and Ĉ translates uniquely back to C. Thus we obtain ti, i ∈ N

with ‖A′‖(
C[ti]

)
= ‖Â‖(

Ĉ[ti]
)

= ‖Â‖(
Ĉ[t̂i]

) 	= 0 for all i ∈ N. ��

4 The Tetris-Free Weighted HOM-Problem

In this section, we prove that the weighted HOM-problem over fields, restricted to
tetris-free homomorphisms, is decidable. Formally, we show the following result.

Theorem 21. Let F be a field, A a WTA over F and Σ, and h : TΣ → TΔ a
tetris-free tree homomorphism. It is decidable whether h(‖A‖) is regular.

The approach to prove this result is quite natural: Nonregularity of h
(‖A‖)

is reduced to the following decidable property of the WTAh A′ for h(‖A‖).

Definition 22 (see [22, Definition 10]). Let A′ =
(
Q∪̇{⊥},Δ, F,R,wt

)
be the

eq-restricted WTAh from Lemma 7 for a WTA over a field and a tetris-free tree
homomorphism, and let N be the pumping constant of A′. We say that A′ has
the large duplication property (LDP) if there exists t ∈ supp(‖A′‖) with an
accepting run �, a position p ∈ posR(�) where �(p) has a nontrivial constraint
set E, and a position p′ that is constrained by E such that ht(t|pp′) ≥ N .

A constraint that only acts on finitely many trees is expendable, since we can
process these particular trees manually using additional states. If, however, A′

has the LDP, then by our pumping lemma we obtain infinitely many trees to
which a nontrivial constraint E applies, so we cannot bypass E. Thus, the LDP
indicates that the constraints are indeed indispensable for representing ‖A′‖,
and in turn these constraints cause nonregularity, as stated in Proposition 24.

438 A.-T. Nász

The decision procedure of [22] for input A and h as above is now as follows.

1. Construct an eq-restricted WTAh A′ recognizing h(‖A‖) via Lemma 7.
2. If A′ has the LDP, then h

(‖A‖)
is not regular.

3. If A′ does not have the LDP, then h
(‖A‖)

is regular.

For this procedure to be correct, the LDP must be (i) decidable and (ii)
equivalent to the nonregularity of ‖A′‖. While proving (ii) only requires technical
adaptations compared to [22], (i) presents new challenges since the pumping
lemma for fields is weaker. We prove (i) indirectly by examining the WTA Â.

Proposition 23 (cf. [22, Lemma 11]). Given as input a WTA A over a field,
and a tetris-free tree homomorphism h, it is decidable whether the eq-restricted
WTAh A′ for h(‖A‖) from Lemma 7 has the LDP.

Proof. Adopting the notation from Definition 22, let t0 = t|pp′ . We will not
decide the existence of a tree t = C[t0] in supp(‖A′‖) as in the LDP directly, but
instead decide whether its counterpart Ĉ[t0] exists in supp(‖Â‖). Consider thus
the WTA Â for A′ constructed in Definition 12. We modify Â by implementing
a counter into its state set, which ensures that only trees of height less than N
are attached to positions that are constrained in A′. Then we check if any trees
have been lost from supp(‖Â‖) in the process. If so, then the counterparts of
these lost trees in A′ confirm the LDP, otherwise A′ does not have the LDP.

Formally, let q 	= ⊥ and �
E−→ q a rule of A′ with posQ\{⊥}(�) = {p1, . . . , pk}

ordered lexicographically, and �(pi) = qi for all i ∈ [k]. Suppose that pi1 , . . . , pij

are the positions constrained by E. Then A′ has the rule �̂(q1, . . . , qk) → q,
and we replace it by the collection of all �̂

(〈q1, n1〉, . . . , 〈qk, nk〉) → 〈q, n〉 such
that n1, . . . , nk, n ∈ [N], n = min

{
maxi∈[k](ni + |pi|), N

}
and ni1 , . . . , nij

< N .
All these new rules have the same weight as �̂(q1, . . . , qk) → q. This operation is
well-defined since by Lemma 15, the constraint E is uniquely determined by �̂.
We proceed this way for every rule of Â and denote the resulting WTA by B̂.

Consider now the WTA recognizing ‖Â‖ − ‖B̂‖ defined by a disjoint union.
Subtracting ‖B̂‖ removes all t̂ from supp(‖Â‖) s.t. all subtrees of t ∈ supp(‖A′‖)
pending from constrained positions are of height less than N ; thus, the WTA
for ‖Â‖ − ‖B̂‖ only accepts trees whose counterparts in A′ satisfy the LDP. It
remains to decide whether ‖Â‖ − ‖B̂‖ is the zero function by minimizing the
WTA for it [2,3] and checking whether it has zero states. If indeed ‖Â‖ = ‖B̂‖,
then A′ has no tree that satisfies the condition of the LDP. If, however, there
exists t̂ ∈ supp(‖Â‖) \ supp(‖B̂‖), then its counterpart t satisfies the LDP. ��

Finally, we can complete the proof of Theorem 21. The following statement,
whose proof applies Ramsey’s Theorem [26], was first presented in [22] for the
case of N” weights (without the assumption of tetris-freeness). We have adapted
the proof to our case and included it in the full-length version [24].

The Weighted HOM-Problem Over Fields 439

Proposition 24 (cf. [22, Prop. 13 and Thm. 17]). Let A be a WTA over
a field F, h a tetris-free tree homomorphism, and A′ the WTAh for h(‖A‖)
constructed in Lemma 7. Then h(‖A‖) is regular iff A′ does not have the LDP.

Restrictihg the HOM-problem over fields to tetris-free tree homomorphisms
is of essence: On the one hand, we use this assumption to construct a well-
defined WTA Â when proving that the LDP is decidable in Proposition 23. On
the other hand, the statement of Proposition 24, which reduces the weighted
HOM-problem to the LDP, also does not hold if h is not tetris-free:

Example 25. Consider A′ =
({q, qf , q′

f ,⊥}, {a(0), g(1), f (2)}, {qf , q′
f}, R,wt

)

with

R = { a →1 q, g(q) →1 q, f(q, q) →3 qf ,

f(q,⊥) 1=2−→2 qf , f(q,⊥) 1=2−→−2 q′
f } ∪ R⊥

where R⊥ = {a →1 ⊥, g(⊥) →1 ⊥, f(⊥,⊥) →1 ⊥}.
The WTAh A′ represents the image of a WTA under a suitable tree homo-

morphism, but not under any tetris-free one since A′ does not satisfy Lemma 14.
It is easy to see that A′ has the LDP, e.g. with C = f(�,�) and the
sequence ti = gi(a). However, the accepting runs for C[ti] that use constraints
cancel each other out. Despite A′ having the LDP, ‖A′‖ is the regular tree series
with supp(‖A′‖) =

{
t | posf (t) = {ε}} and ‖A′‖ : f

(
gi(a), g(j(a)

) �→ 3 for all
i, j ∈ N. Thus, without the tetris-free assumption, Proposition 24 does not hold.

5 Conclusion

In this paper, we have proved that the weighted HOM-problem over fields for
tetris-free tree homomorphisms is decidable. Formally, for a WTA A over a field,
and a tetris-free tree homomorphism h as input, it is decidable whether h(‖A‖)
is again regular. A tree homomorphism is tetris-free if its non-injective behaviour
is located only at the symbol level, thus this property generalizes injectivity.

Our proof strategy is similar to [22]: We have reduced the HOM-problem
to a decidable property of (the WTAh that recognizes) h(‖A‖). The homomor-
phism h has the ability to duplicate subtrees of its input trees, and we have
shown that h(‖A‖) is regular iff h duplicates only finitely many subtrees of trees
accepted by A. This limited duplication is in turn decidable, and proving its
decidability is our main contribution. For this, we presented a pumping lemma
for the WTAh recognizing h(‖A‖), by translating it into a WTA and applying
the pumping lemma for WTA over fields proved in [1].

Finally, we illustrate in our last example why our proof strategy for fields –
unlike in the integer case [22] – requires tetris-freeness.

440 A.-T. Nász

References

1. Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theor. Com-
put. Sci. 18(2), 115–148 (1982)

2. Bozapalidis, S.: Effective construction of the synthetic algebra of a recognizable
series on trees. Acta Informatica 28(4), 351–363 (1991)

3. Bozapalidis, S., Alexandrakis, A.: Représentations matricielles des séries d’arbre
reconnaissables. RAIRO-Theor. Inform. Appl. 23(4), 449–459 (1989)

4. Bozapalidis, S., Kalampakas, A.: Graph automata. Theor. Comput. Sci. 393(1–3),
147–165 (2008). https://doi.org/10.1016/j.tcs.2007.11.022

5. Comon, H., et al.: Tree automata – Techniques and applications (2007)
6. Creus, C., Gascón, A., Godoy, G., Ramos, L.: The HOM problem is EXPTIME-

complete. In: Proceedings of the 27th Annual IEEE Symposium on Logic in Com-
puter Science, pp. 255–264. IEEE (2012). https://doi.org/10.1109/LICS.2012.36

7. Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci.
4(5), 406–451 (1970). https://doi.org/10.1016/S0022-0000(70)80041-1

8. Drewes, F.: Grammatical Picture Generation. Springer, Berlin, Heidelberg (2006).
https://doi.org/10.1007/3-540-32507-7

9. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer,
Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-5

10. Droste, M., Kuske, D.: Weighted automata (2021)
11. Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Hand-

book of Weighted Automata [9], chap. 9, pp. 313–403. https://doi.org/10.4171/
Automata-1/4

12. Gécseg, F., Steinby, M.: Tree automata. Tech. Rep. 1509.06233, arXiv (2015)
13. Gilleron, R., Tison, S.: Regular tree languages and rewrite systems. Fund. Inform.

24(1–2), 157–175 (1995)
14. Godoy, G., Giménez, O.: The HOM problem is decidable. J. ACM 60(4), 1–44

(2013)
15. Godoy, G., Giménez, O., Ramos, L., Àlvarez, C.: The HOM problem is decidable.

In: Proceedings of the 42nd ACM Symposium on Theory of Computing, pp. 485–
494. ACM (2010). https://doi.org/10.1145/1806689.1806757

16. Golan, J.S.: Semirings and their Applications. Kluwer Academic, Dordrecht (1999).
https://doi.org/10.1007/978-94-015-9333-5

17. Hebisch, U., Weinert, H.J.: Semirings. World Scientific (1998). https://doi.org/10.
1142/3903

18. Hebisch, U., Weinert, H.J.: Semirings: algebraic theory and applications in com-
puter science, vol. 5. World Scientific (1998)

19. Jurafsky, D., Martin, J.H.: Speech and Language Processing. Prentice Hall, Hobo-
ken (2008)

20. Maletti, A., Nász, A.T.: Weighted tree automata with constraints. In: Diekert,
V., Volkov, M. (eds.) Developments in Language Theory. DLT 2022. LNCS, vol.
13257, pp. 226–238. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
05578-2 18

21. Maletti, A., Nász, A.T.: Weighted tree automata with constraints. Theory Comput.
Syst. 1–28 (2023). https://arxiv.org/abs/2302.03434

22. Maletti, A., Nász, A., Paul, E.: Weighted HOM-problem for nonnegative integers
(2023). https://doi.org/10.48550/arXiv.2305.04117

23. Nász, A.T.: Solving the weighted HOM-problem with the help of unambiguity. In:
Gazdag, Z., Iván, S. (eds.) Proceedings of the 16th International Conference on
Automata and Formal Languages, p. 200. Open Publishing Association (2023)

https://doi.org/10.1016/j.tcs.2007.11.022
https://doi.org/10.1109/LICS.2012.36
https://doi.org/10.1016/S0022-0000(70)80041-1
https://doi.org/10.1007/3-540-32507-7
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.4171/Automata-1/4
https://doi.org/10.4171/Automata-1/4
https://doi.org/10.1145/1806689.1806757
https://doi.org/10.1007/978-94-015-9333-5
https://doi.org/10.1142/3903
https://doi.org/10.1142/3903
https://doi.org/10.1007/978-3-031-05578-2_18
https://doi.org/10.1007/978-3-031-05578-2_18
https://arxiv.org/abs/2302.03434
https://doi.org/10.48550/arXiv.2305.04117

The Weighted HOM-Problem Over Fields 441

24. Nász, A.T.: The weighted HOM-problem over fields (2023). https://doi.org/10.
48550/arXiv.2311.11067

25. Perrin, D.: Recent results on automata and infinite words. In: Chytil, M.P.,
Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 134–148. Springer, Heidel-
berg (1984). https://doi.org/10.1007/BFb0030294

26. Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. 30, 1–24
(1930)

27. Rosenfeld, A.: Picture Languages: Formal Models for Picture Recognition. Aca-
demic Press, Cambridge (2014)

28. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer, New York (1978). https://
doi.org/10.1007/978-1-4612-6264-0

29. Schützenberger, M.P.: On the definition of a family of automata. Inform. Control
4(2–3), 245–270 (1961). https://doi.org/10.1016/S0019-9958(61)80020-X

30. Schwentick, T.: Automata for xml-a survey. J. Comput. Syst. Sci. 73(3), 289–315
(2007)

31. Thatcher, J.W.: Characterizing derivation trees of context-free grammars through
a generalization of finite automata theory. J. Comput. Syst. Sci. 1(4), 317–322
(1967). https://doi.org/10.1016/S0022-0000(67)80022-9

32. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an applica-
tion to a decision problem of second-order logic. Math. Syst. Theory 2(1), 57–81
(1968). https://doi.org/10.1007/BF01691346

33. Wilhelm, R., Seidl, H., Hack, S.: Compiler Design – Syntactic and Semantic Analy-
sis. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-17540-
4

https://doi.org/10.48550/arXiv.2311.11067
https://doi.org/10.48550/arXiv.2311.11067
https://doi.org/10.1007/BFb0030294
https://doi.org/10.1007/978-1-4612-6264-0
https://doi.org/10.1007/978-1-4612-6264-0
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1016/S0022-0000(67)80022-9
https://doi.org/10.1007/BF01691346
https://doi.org/10.1007/978-3-642-17540-4
https://doi.org/10.1007/978-3-642-17540-4

Combinatorics of Block-Parallel
Automata Networks

Kévin Perrot1,2, Sylvain Sené1,2, and Léah Tapin2(B)

1 Université publique, Marseille, France
2 Aix Marseille Univ, CNRS, LIS, Marseille, France

leah.tapin@lis-lab.fr

Abstract. Automata networks are finite collections of entities (the
automata), each automaton having its own set of possible states, which
interact with each other over discrete time, interactions being defined as
local functions allowing the automata to change their state according to
the states of their neighbourhoods. Inspired by natural phenomena, the
studies on this very abstract and expressive model of computation have
underlined the very importance of the way (i.e. the schedule) according
to which the automata update their states, namely the update modes
which can be deterministic, periodic, fair, or not. Indeed, a given net-
work may admit numerous underlying dynamics, these latter depending
highly on the update modes under which we let the former evolve. In this
paper, we focus on a new kind of deterministic, periodic and fair update
mode family introduced recently in a modelling framework, called the
block-parallel update modes by duality with the well-known and stud-
ied block-sequential update modes. We compare block-parallel to block-
sequential update modes, then count them: (1) in absolute terms, (2)
by keeping only representatives leading to distinct dynamics, and (3) by
keeping only representatives giving rise to non-isomorphic limit dynam-
ics. Put together, this paper constitutes a first theoretical analysis of
these update modes and their impact on automata networks dynamics.

1 Introduction

Automata networks originated at the beginning of modern computer science in
the 1940s, notably through the seminal works of McCulloch and Pitts on neural
networks, and von Neumann on cellular automata, which have become since then
widely studied models of computation. The former are classically embedded in a
finite and heterogeneous structure (a graph) whereas the latter are embedded in
an infinite but regular structure (a lattice). Whilst there exist deep differences
between them, they both belong to the family of automata networks. This family
groups together all distributed models of computation defined locally by means
of automata which interact with each other over discrete time, so that the global
computations they perform emerge from these local interactions governing them.

The end of the 1960s has underlined the prominent role of finite automata
networks on which we focus in this paper, in the context of genetic regula-
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 442–455, 2024.
https://doi.org/10.1007/978-3-031-52113-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_31&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_31

Combinatorics of Block-Parallel Automata Networks 443

tion modelling [9,15]. The profiles of limit behaviours emerging from the sys-
tem can represent for instance phenotypes, cellular types, or even biological
rhythms [2,10]. The update modes have decisive effects on the dynamics of
automata networks. Acquiring a better understanding of their influence has
become a hot topic in the domain since Robert’s seminal works on discrete itera-
tions [14], leading to numerous further studies in the last two decades [1,11,12].
Works addressing the role of periodic update modes focused on block-sequential
update modes, namely modes in which automata are partitioned into a list of
subsets such that the automata of a same subset update their state all at once
in parallel while the subsets are iterated sequentially.

We still do not know which “natural schedules” govern gene expression and
regulation, although chromatin dynamics seems to play a key role [6,8]. In [4] an
unexplored family, dual to the block-sequential one, is introduced and motivated,
namely the family of block-parallel update modes. Rather than as as lists of sets,
they are defined as sets of lists, or “partitioned orders”, so that the automata
of a list update their state sequentially according to the period of the list while
the lists are triggered all in parallel at the initial time step. As highlighted by
the authors, block-parallel update modes allow to capture endogenous biological
timers/clocks of genetic or physiological origin, such as the aforementioned chro-
matin dynamics. Furthermore, they allow to break the property of fixed point set
invariance (local update repetitions into a period are notably possible), letting
automata networks have a richer range of dynamics. We give a first theoreti-
cal analysis of these modes, building a basis to further analyse their power of
expressiveness.

Definitions are introduced in Sect. 2. Section 3 develops our main contribu-
tions and is divided into five parts. Section 3.1 characterises the update modes
that are both block-sequential and block-parallel. We then address with closed
formulas the counting of block-parallel modes: in absolute terms (Sect. 3.2), in
terms of automata network dynamics (Sect. 3.3), up to isomorphic limit dynamics
(Sect. 3.4). Numerical experiments are exposed in Sect. 3.5, suggesting that the
number of block-parallel update modes to consider may be drastically reduced,
when one is specifically interested in the asymptotic (limit) behaviour of dynami-
cal systems. Perspectives are discussed in Sect. 4. Omitted and incomplete proofs
can be found in the full version of this work [13].

2 Definitions

Let �n� = {0, . . . , n − 1}, let B = {0, 1}, let xi denote the i-th component of
vector x ∈ B

n, let xI denote the projection of x onto an element of B|I| for some
subset I ⊆ �n�, let ei be the i-th base vector, and ∀x, y ∈ B

n, let x + y denote
the bitwise addition modulo two. Let ∼ denote the graph isomorphism, i.e. for
G = (V,A) and G′ = (V ′, A′) we have G ∼ G′ if and only if there is a bijection
π : V → V ′ such that (u, v) ∈ A ⇐⇒ (π(u), π(v)) ∈ A′.

Automata Networks. An automata network (AN) of size n is composed of a set
of n automata �n�, each holding a state from a finite alphabet Xi for i ∈ �n�. A

444 K. Perrot et al.

configuration is an element of X =
∏

i∈�n� Xi. An AN is defined by a function
f : X → X, decomposed into n local functions fi : X → Xi for i ∈ �n�, where
fi is the i-th component of f . To obtain a discrete dynamical system on X, one
must define when the automata update their state using their local function,
which can be done in multiple ways, called update modes.

Block-Sequential Update Modes. A sequence (W�)�∈�p� with W� ⊆ �n� for all
� ∈ �p� is an ordered partition if and only if

⋃
�∈�p� W� = �n� and ∀i, j ∈ �p�, i 	=

j =⇒ Wi ∩ Wj = ∅. An update mode μ = (W�)�∈�p� is called block-sequential
when μ is an ordered partition, and the W� are called blocks. The set of block-
sequential update modes of size n is denoted BSn. The update of f under μ ∈ BSn

is given by f(μ) : X → X as follows:

f(μ)(x) = f(Wp−1) ◦ · · · ◦ f(W1) ◦ f(W0)(x),

where ∀i ∈ �n�, f(W�)(x)i =

{
fi(x) if i ∈ W�,
xi otherwise.

Block-Parallel Update Modes. In a block-sequential update mode, the automata
in a block are updated simultaneously while the blocks are updated sequentially.
A block-parallel update mode is based on the dual principle: the automata in
a block are updated sequentially while the blocks are updated simultaneously.
Instead of being defined as a sequence of unordered blocks, a block-parallel
update mode will thus be defined as a set of ordered blocks. A set {Sk}k∈�s�

with Sk = (ik0 , . . . , i
k
nk−1) a sequence of nk > 0 distinct elements of �n� for all

k ∈ �s� is a partitioned order if and only if
⋃

k∈�s� Sk = �n� and ∀i, j ∈ �s�, i 	=
j =⇒ Si ∩ Sj = ∅. An update mode μ = {Sk}k∈�s� is called block-parallel when
μ is a partitioned order, and the sequences Sk are called o-blocks (for ordered-
blocks). The set of block-parallel update modes of size n is denoted BPn. With
p = lcm(n1, . . . , ns), the update of f under μ ∈ BPn is given by f{μ} : X → X
as follows: f{μ}(x) = f(Wp−1) ◦ · · · ◦ f(W1) ◦ f(W0)(x), where for all � ∈ �p� we
define W� = {ik� mod nk

| k ∈ �s�}.

Basic Considerations. There is a natural way to convert a block-parallel update
mode {Sk}k∈�s� with Sk = (ik0 , . . . , i

k
nk−1

) into a sequence of blocks of length
p = lcm(n1, . . . , ns). We define it as ϕ:

ϕ({Sk}k∈�s�) = (W�)�∈�p� with W� = {ik� mod nk
| k ∈ �s�}.

In order to differentiate between sequences of blocks and sets of o-blocks, we
denote by f(μ) (resp. f{μ}) the dynamical system induced by f and μ when μ
is a sequence of blocks (resp. a set of o-blocks), and simply fμ when it is clear
from the context. Moreover, abusing notations, we denote by ϕ(BPn) the set of
partitioned orders of �n� as sequences of blocks.

Block-sequential and block-parallel update modes are periodic (the same
update procedure is repeated at each step), and fair (each automaton is updated

Combinatorics of Block-Parallel Automata Networks 445

Fig. 1. Illustration of the execution along time of local transition functions according
to block-parallel updating mode µbp = {(0), (2, 1)}.For the odd steps, we picture the
blocks, and for the even steps, we picture the o-blocks.

at least once per step). We distinguish the concepts of step and substep. A step
is the interval between x and f(μ)(x) (or f{μ}(x)), and can be divided into
p = |μ| (or p = |ϕ(μ)| = lcm(n1, . . . , ns)) substeps, corresponding to the elemen-
tary intervals in which only one block of automata is updated. The most basic
update mode is the parallel μpar which updates simultaneously all automata
at each step. It is the element (�n�) ∈ BSn and {(i) | i ∈ �n�} ∈ BPn, with
ϕ({(i) | i ∈ �n�}) = (�n�).

Remark 1. Observe that in block-sequential update modes, each automaton is
updated exactly once during a step, whereas in block-parallel update modes,
some automata can be updated multiple times during a step. Update repetitions
may have many consequences on the limit dynamics. For instance, the network
of n = 3 automata such that fi(x) = xi−1 mod n under the update mode μ =
({1, 2}, {0, 2}, {0, 1}), where each automaton is updated twice during a step, has
4 fixed points, among which 2, namely 010 and 101, cannot be obtained with
block-sequential update modes (in this example, μ /∈ BPn).

Remark 2. Let μ = {Sk}k∈�s� be a block-parallel update mode. Each block of
ϕ(μ) is of the same size, namely s, and furthermore each block of ϕ(μ) is unique.

Fixed Points, Limit Cycles and Attractors. Let fμ be the dynamical system
defined by an AN f of size n and an update mode μ. Let p ≥ 1. A sequence
of configurations x0, . . . , xp−1 ∈ X is a limit cycle of fμ if and only if ∀i ∈
�p�, fμ(xi) = xi+1 mod p. A limit cycle of length p = 1 is a fixed point. The
sequence of configurations x0, x1, . . . , xp−1 ∈ X is an attractor if and only if it
is a limit cycle and there exist x ∈ X and i ∈ �p� such that fμ(x) = xi but
x /∈ {x0, . . . , xp−1}.

Example 1. Let f : �3� ×B×B → �3� ×B×B the automata network defined as:

f(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

f0(x) =

⎧
⎪⎨

⎪⎩

0 if ((x0 = 0) ∧ (x1 = x2)) ∨ (x0 = x1 = x2 = 1)
1 if x1 + x2 mod 2 = 1
2 otherwise

f1(x) = (x0 	= 0) ∨ x1 ∨ x2

f2(x) = ((x0 = 1) ∧ x1) ∨ (x0 = 2)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

446 K. Perrot et al.

Fig. 2. The dynamics of f(µbs) (left) and f{µbp} (right) from 1.

Let μbs = ({1}, {0, 2}) and μbp = {(0), (2, 1)}. The update mode μbs is block-
sequential and μbp is block-parallel, with ϕ(μbp) = ({0, 2}, {0, 1}) as depicted in
Fig. 1. Systems f(μbs) and f{μbp} have different dynamics, as depicted in Fig. 2.
They both have the same two fixed points and one limit cycle, but the similarities
stop there. The limit cycle of f(μbs) is of size 4, while that of f{μbp} is of size 2.
Moreover, neither of the fixed points of f{μbp} is an attractor, while one of f(μbs),
namely 211, is. Both of these update modes’ dynamics are unique in BP3 ∪BS3.

3 Counting Block-Parallel Update Modes

For the rest of this section, let p(n) denote the number of integer partitions of
n (multisets of integers summing to n), let d(i) be the maximal part size in the
i-th partition of n, let m(i, j) be the multiplicity of the part of size j in the
i-th partition of n. As an example, let n = 31 and assume the i-th partition is
(2, 2, 3, 3, 3, 3, 5, 5, 5), we have d(i) = 5 and m(i, 1) = 0, m(i, 2) = 2, m(i, 3) = 4,
m(i, 4) = 0, m(i, 5) = 3. A partition will be the support of a partitioned order,
where each part is an o-block. In our example, we can have:

{(0, 1), (2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, 15),
(16, 17, 18, 19, 20), (21, 22, 23, 24, 25), (26, 27, 28, 29, 30)},

and we picture it as the following matrix-representation:

(
0 1
2 3

)
⎛

⎜
⎜
⎝

4 5 6
7 8 9
10 11 12
13 14 15

⎞

⎟
⎟
⎠

⎛

⎝
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30

⎞

⎠ .

We call matrices the elements of size j · m(i, j) and denote them M1, . . . ,Md(i),
where Mj has m(i, j) rows and j columns (Mj is empty when m(i, j) = 0). The
partition defines the dimensions of the matrices, and each row is an o-block.

Combinatorics of Block-Parallel Automata Networks 447

For the comparison, the block-sequential update modes (ordered partitions
of �n�) are given by the ordered Bell numbers, sequence OEIS A000670. A closed
formula for it is:

|BSn| =
p(n)∑

i=1

n!
∏d(i)

j=1(j!)m(i,j)
·
(∑d(i)

j=1 m(i, j)
)
!

∏d(i)
j=1 m(i, j)!

.

Intuitively, an ordered partition of n gives a support to construct a block-
sequential update mode: place the elements of �n� up to permutation within
the blocks. This is the left fraction: n! divided by j! for each block of size j,
taking into account multiplicities. The right fraction corrects the count because
we sum on p(n) the (unordered) partitions of n: each partition of n can give rise
to different ordered partitions of n, by ordering all blocks (numerator, where the
sum of multiplicities is the number of blocks) up to permutation within blocks of
the same size which have no effect (denominator). The first ten terms are (n = 1
onward): 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563.

3.1 Intersection of Block-Sequential and Block-Parallel Modes

In order to be able to compare block-sequential with block-parallel update
modes, both of them will be written here in their sequence of blocks form
(the usual form of block-sequential update modes and the rewritten form of
block-parallel modes). First, ϕ(BPn) ∩ BSn 	= ∅, since it contains at least
μpar = (�n�) = ϕ({(0), (1), . . . , (n − 1)}). However, neither BSn ⊆ ϕ(BPn) nor
ϕ(BPn) ⊆ BSn are true. Indeed, μs = ({0, 1}, {2}) ∈ BS3 but μs /∈ ϕ(BP3)
since a block-parallel cannot have blocks of different sizes in its sequential form.
Symmetrically, μp = ϕ({(1, 2), (0)}) = ({0, 1}, {0, 2}) ∈ BP3 but μp /∈ BS3 since
automaton 0 is updated twice. Nonetheless, we can precisely define their inter-
section.

Lemma 1. μ ∈ (BSn ∩ ϕ(BPn)) if and only if μ is an ordered partition with p
blocks of the same size s, if and only if there exists a partitioned order μ′ with s
o-blocks of the same size p such that ϕ(μ′) = μ.

Proof. Let n ∈ N. We prove the first equivalence, the second follows directly.
(=⇒) Let μ ∈ (BSn ∩ ϕ(BPn)). Since μ ∈ BSn, μ is an ordered partition.

Furthermore, μ ∈ ϕ(BPn) so all the μ’s blocks are of the same size (Remark 2).
(⇐=) Let μ = (W�)�∈�p� be an ordered partition of �n� with all its blocks

having the same size, denoted by s. Since μ is an ordered partition, μ ∈ BSn.
For each � ∈ �p�, we can number arbitrarily the elements of W� from 0 to s − 1
as W� = {W 0

� , . . . ,W s−1
� }. Now, let us define the set of sequences {Sk}k∈�s� the

following way: ∀k ∈ �s�, Sk = {W k
� | � ∈ �p�}. It is a partitioned order such that

ϕ({Sk}k∈�s�) = μ, which means that μ ∈ ϕ(BPn). ��
As a consequence of Lemma 1, given n ∈ N, the set SEQn of sequential update

modes such that every automaton is updated exactly once by step and only one
automaton is updated by substep, is a subset of (BSn ∩ ϕ(BPn)). Moreover, we
can count the number of sequences of blocks in the intersection.

https://oeis.org/A000670

448 K. Perrot et al.

Proposition 1. Given n ∈ N, we have |BSn ∩ ϕ(BPn)| =
∑

d|n
n!

(n
d !)d .

Proof. The proof derives directly from the sequence OEIS A061095, which
counts the number of ways of dividing n labeled items into labeled boxes with an
equal number of items in each box. In our context, the “items” are the automata,
and the “labeled boxes” are the blocks of the ordered partitions. ��

3.2 Partitioned Orders

A block-parallel update mode is given as a partitioned order, i.e. an (unordered)
set of (ordered) sequences. This concept is recorded as sequence OEIS A000262,
described as the number of “sets of lists”. A nice closed formula for it is:

|BPn| =
p(n)∑

i=1

n!
∏d(i)

j=1 m(i, j)!
.

Intuitively, for each partition, fill all matrices (n! ways to place the elements of
�n�) up to permutation of the rows within each matrix (matrix Mj has m(i, j)
rows). Another closed formula is presented in Proposition 2, which is used as the
basis of implementations in Sect. 3.5. The first ten terms are (n = 1 onward): 1,
3, 13, 73, 501, 4051, 37633, 394353, 4596553, 58941091.

Proposition 2. For any n ≥ 1 we have:

|BPn| =
p(n)∑

i=1

d(i)∏

j=1

(
n − ∑j−1

k=1 k · m(i, k)
j · m(i, j)

)

· (j · m(i, j))!
m(i, j)!

.

Proof. Each partition is a support to generate different partitioned orders (sum
on i), by considering all the combinations, for each matrix (product on j), of
the ways to choose the j · m(i, j) elements of �n� it contains (binomial coeffi-
cient, chosen among the remaining elements), and all the ways to order them
up to permutation of the rows (ratio of factorials). Observe that developing the
binomial coefficients with

(
x
y

)
= x!

y!·(x−y)! gives

d(i)∏

j=1

(
n − ∑

k

j · m(i, j)

)

· (j · m(i, j))! =
d(i)∏

j=1

(n − ∑
k)!

(n − ∑
k −j · m(i, j))!

=
n!
0!

= n!,

where
∑

k is a shorthand for
∑j−1

k=1 k · m(i, k), which leads to retrieve the OEIS
formula. ��

https://oeis.org/A061095
https://oeis.org/A000262

Combinatorics of Block-Parallel Automata Networks 449

3.3 Partitioned Orders up to Dynamical Equality

As for block-sequential update modes, given an AN f and two block-parallel
update modes μ and μ′, the dynamics of f under μ can be the same as that
of f under μ′. To go further, in the framework of block-parallel update modes,
there exist pairs of update modes μ, μ′ such that for any AN f , the dynamics
f{μ} is the exact same as f{μ′}. As a consequence, in order to perform exhaustive
searches among the possible dynamics, it is not necessary to generate all of them.
We formalise this with the following equivalence relation.

Definition 1. For μ, μ′ ∈ BPn, we denote μ ≡0 μ′ when ϕ(μ) = ϕ(μ′).

Example 2. Let μ1 = {(0, 1), (2, 3)} and μ2 = {(2, 1), (0, 3)}. μ1 and μ2 are
different partitioned orders, but ϕ(μ1) = ϕ(μ2) = ({0, 2}, {1, 3}). Thus μ1 ≡0 μ2.

The following theorem shows that this equivalence relation is necessary and
sufficient in the general case of ANs of size n, i.e. ≡0 captures the dynamical
equivalence among block-parallel update modes.

Theorem 1. For any μ, μ′ ∈ BPn, μ ≡0 μ′ ⇐⇒ ∀f : X → X, f{μ} = f{μ′}.

Proof. Let μ and μ′ be two block-parallel update modes of BPn.
(=⇒) Let us consider that μ ≡0 μ′, and let f : X → X be an AN. Then, we

have f{μ} = f(ϕ(μ)) = f(ϕ(μ′)) = f{μ′}.
(⇐=) Let us consider that ∀f : X → X, f{μ} = f{μ′}. Let us assume for the

sake of contradiction that ϕ(μ) 	= ϕ(μ′). For ease of reading, we will denote as tμ,i

the substep at which automaton i is updated for the first time with update mode
μ. Then, there is a pair of automata (i, j) such that tμ,i ≤ tμ,j , but tμ′,i > tμ′,j .
Let f : Bn → B

n be a Boolean AN such that f(x)i = xi ∨xj and f(x)j = xi, and
x ∈ B

n such that xi = 0 and xj = 1. We will compare f{μ}(x)i and f{μ′}(x)i, in
order to prove a contradiction. Let us apply f{μ} to x. Before step tμ,i the value
of automaton i is still 0 and, most importantly, since tμ,i ≤ tμ,j , the value of j is
still 1. This means that right after step tμ,i, the value of automaton i is 1, and
will not change afterwards. Thus, we have f{μ}(x)i = 1. Let us now apply f{μ′}
to x. This time, tμ′,i > tμ′,j , which means that automaton j is updated first
and takes the value of automaton i at the time, which is 0 since it has not been
updated yet. Afterwards, neither automata will change value since 0 ∨ 0 is still
0. This means that f{μ′}(x)i = 0. Thus, we have f{μ} 	= f{μ′}, which contradicts
our earlier hypothesis. ��

Let BP0
n = BPn/ ≡0 denote the corresponding quotient set, i.e. the set of

block-parallel update modes to generate for exhaustive computer analysis of the
possible dynamics in the general case of ANs of size n.

450 K. Perrot et al.

Theorem 2. For any n ≥ 1, we have:

|BP0
n| =

p(n)∑

i=1

n!
∏d(i)

j=1 (m(i, j)!)j
(1)

=
p(n)∑

i=1

d(i)∏

j=1

j∏

�=1

(
n − ∑j−1

k=1 k · m(i, k) − (� − 1) · m(i, j)
m(i, j)

)

(2)

=
p(n)∑

i=1

d(i)∏

j=1

((
n − ∑j−1

k=1 k · m(i, k)
j · m(i, j)

)

·
j∏

�=1

(
(j − � + 1) · m(i, j)

m(i, j)

))

. (3)

Proof. Formula 1 is a sum for each partition of n (sum on i), of all the ways to
fill all matrices up to permutation within each column (m(i, j)! for each of the
j columns of Mj). Formula 2 is a sum for each partition of n (sum on i), of the
product for each column of the matrices (products on j and �), of the choice of
elements (among the remaining ones) to fill the column (regardless of their order
within the column). Formula 3 is a sum for each partition of n (sum on i), of the
product for each matrix (product on j), of the choice of elements (among the
remaining ones) to fill this matrix, multiplied by the number of ways to fill the
columns of the matrix (product on �) with these elements (regardless of their
order within each column).

The equality of these three formulas is presented in [13] To prove that they
count |BP0

n|, we now argue that for any pair μ, μ′ ∈ BPn, we have μ ≡0 μ′ if
and only if their matrix-representations are the same up to a permutation of the
elements within columns (the number of equivalence classes is then counted by
Formula 1). In the definition of ϕ, each block is a set constructed by taking one
element from each o-block. Given that nk in the definition of ϕ corresponds to
j in the statement of the theorem, one matrix corresponds to all the o-blocks
having the same size nk. Hence, the � mod nk operations in the definition of ϕ
amounts to considering the elements of these o-blocks which are in a common
column in the matrix representation. Since blocks are sets, the result follows. ��

The first ten terms of the sequence (|BP0
n|)n≥1 are: 1, 3, 13, 67, 471, 3591,

33573, 329043, 3919387, 47827093. They match the sequence OEIS A182666
(defined by its exponential generating function), and it is proven in [13] that
they are indeed the same sequence.

3.4 Partitioned Orders up to Isomorphism on the Limit Dynamics

The following equivalence relation defined over block-parallel update modes
turns out to capture exactly the notion of having isomorphic limit dynamics.
It is analogous to ≡0, except that a circular shift of order i may be applied on
the sequences of blocks.

Let σi denote the circular-shift of order i ∈ Z on sequences (shifting the
element at position 0 towards position i).

https://oeis.org/A182666

Combinatorics of Block-Parallel Automata Networks 451

Definition 2. For μ, μ′ ∈ BPn, we denote μ ≡� μ′ when ϕ(μ) = σi(ϕ(μ′)) for
some i ∈ �|ϕ(μ′)|� called the shift. Note that μ ≡0 μ′ =⇒ μ ≡� μ′.

Notation 1. Given f{μ} : X → X, let Ωf{μ} =
⋂

t∈N
f t

{μ}(X) denote its limit
set (abusing the notation of f{μ} to sets of configurations), and fΩ

{μ} : Ωf{μ} →
Ωf{μ} its restriction to its limit set. Dynamics are deterministic, hence fΩ

{μ} is
bijective.

The next theorem shows that, if one is interested in the limit behaviour
of ANs under block-parallel updates, then studying a representative from each
equivalence class of the relation ≡� is necessary and sufficient to get the full
spectrum of possible limit dynamics (recall that ∼ denotes graph isomorphism,
which corresponds to the notion of conjugacy in dynamical system theory).

Theorem 3. For any μ, μ′ ∈ BPn, μ ≡� μ′ ⇐⇒ ∀f : X → X, fΩ
{μ} ∼ fΩ

{μ′}.

Proof (sketch). Let μ and μ′ be two block-parallel update modes of BPn.
(=⇒) Let μ, μ′ be such that μ ≡� μ′ of shift ı̂ ∈ �p�, with ϕ(μ) = (W�)�∈�p�,
ϕ(μ′) = (W ′

�)�∈�p� and p = |ϕ(μ)| = |ϕ(μ′)|. It means that ∀i ∈ �p�, we have
W ′

i = Wi+ı̂ mod p, and for any AN f , we deduce that π = f(W0,...,Wı̂−1) is the
desired isomorphism from Ωf{μ} to Ωf{μ′} .
(⇐=) We prove the contrapositive, from μ 	≡� μ′, by case analysis. In each case
we build an AN f such that fΩ

{μ} is not isomorphic to fΩ
{μ′}. In this sketch we

detail only the simplest case.

(1) If in ϕ(μ) and ϕ(μ′), there is an automaton ı̂ which is not updated the same
number of times α and α′ in μ and μ′ respectively, then we assume without
loss of generality that α > α′ and consider the AN f such that:
• Xı̂ = �α� and Xi = {0} for all i 	= ı̂; and
• fı̂(x) = (xı̂ + 1) mod α and fi(x) = xi for all i 	= ı̂.
It follows that fΩ

{μ} has only fixed points since +1 mod α is applied α times,
whereas fΩ

{μ′} has no fixed point because α′ < α.
(2) If in ϕ(μ) and ϕ(μ′), all the automata are updated the same number of

times, then the transformation from μ to μ′ is a permutation on �n� which
preserves the matrices of their matrix representations. This case is harder
and is fully presented in [13] through three subcases, in order to get extra
hypotheses allowing to design specific ANs contradicting the isomorphism.

��

452 K. Perrot et al.

Let BP�
n = BPn/ ≡� denote the corresponding quotient set, i.e. the set of

block-parallel update modes to generate for exhaustive computer analysis of the
possible limit dynamics in the general case of ANs of size n.

Theorem 4. Let lcm(i) = lcm({j ∈ {1, . . . , d(i)} | m(i, j) ≥ 1}). For any
n ≥ 1, we have:

|BP�
n| =

p(n)∑

i=1

n!
∏d(i)

j=1 (m(i, j)!)j
· 1
lcm(i)

. (4)

Proof. Let μ, μ′ ∈ BPn two update modes such that μ ≡� μ′. Then their sequen-
tial forms are of the same length, and each automaton appears the same number
of times in both of them. This means that, if an automaton is in an o-block of
size k in μ’s partitioned order form, then it is also in an o-block of the same size
in μ′’s. We deduce that two update modes of size n can only be equivalent as
defined in Definition 2 if they are generated from the same partition of n.

Let μ ∈ BP0
n, generated from partition i of n. Then ϕ(μ) is of length lcm(i).

Since no two elements of BP0
n have the same block-sequential form, the equiv-

alence class of μ in BP0
n contains exactly lcm(i) elements, all generated from

the same partition i (all the blocks of ϕ(μ) are different). Thus, the number of
elements of BP�

n generated from a partition i is the number of elements of BP0
n

generated from partition i, divided by the number of elements in its equivalence
class for BP�

n, namely lcm(i). ��
Remark 3. Formula 4 can actually be obtained from any formula in Theorem 2
by multiplying by 1

lcm(i) inside the sum on partitions (from i = 1 to p(n)).

3.5 Implementations

Proof-of-concept Python implementations of three underlying enumeration algo-
rithms for BPn, BP0

n and BP�
n are available on the following repository: https://

framagit.org/leah.tapin/blockpargen. We have conducted numerical experiments
on a laptop, presented in Fig. 3. It shows the result of numerical experiments for
n from 1 to 12.

Observe that the sizes of BPn and BP0
n are comparable, whereas an order of

magnitude is gained with BP∗
n, which may be significant for advanced numerical

experiments regarding limit dynamics under block-parallel udpate modes. Enu-
merating BPn, BP0

n and BP�
n up to n = 8 takes less than one second. For greater

values, the time gain is significant when enumerating only the elements of BP�
n.

https://framagit.org/leah.tapin/blockpargen
https://framagit.org/leah.tapin/blockpargen

Combinatorics of Block-Parallel Automata Networks 453

n BPn BP0
n BPn

1 1 1 1
- - -

2 3 3 2
- - -

3 13 13 6
- - -

4 73 67 24
- - -

5 501 471 120
- - -

6 4051 3591 795
- - -

7 37633 33573 5565
- 0.103s -

8 394353 329043 46060
0.523s 0.996s 0.161s

9 4596553 3919387 454860
6.17s 12.2s 1.51s

10 58941091 47827093 4727835
1min24s 2min40s 16.3s

11 824073141 663429603 54223785
21min12s 38min31s 3min13s

12 12470162233 9764977399 734932121
5h27min38s 9h49min26s 45min09s

Fig. 3. Numerical experiments of our Python implementations on a standard laptop
(processor Intel-CoreTM i7 @ 2.80 GHz). For n from 1 to 12, the table (left) presents
the size of BPn, BP0

n and BP∗
n and running time to enumerate their elements (one

representative of each equivalence class; a dash represents a time smaller than 0.1
second), and the graphics (right) depicts their respective sizes on a logarithmic scale.

4 Conclusion and Perspectives

In this article we settle the theoretical foundations to the study of block-parallel
update modes in the AN setting. We first characterise their intersection with the
classical block-sequential modes. Then, we provide closed formulas for counting:
notably (1) a minimal set of representatives of block-parallel update modes that
allow to generate the full spectrum of possible distinct dynamics, (2) a minimal
set of representatives of block-parallel update modes that allow to generate the
full spectrum of possible distinct limit dynamics up to isomorphism (i.e. the limit
cycles lengths and distribution). Numerical experiments show that the compu-
tational gain is significant, in particular for the exhaustive study of how/when
the fixed point invariance property is broken.

A major feature of block-parallel update modes is that they allow local
update repetitions during a period. This is indeed the case for all block-parallel
update modes which are not block-sequential (i.e. modes with at least two blocks
of distinct sizes when defined as a partitioned order, cf. Lemma 1). Since we

454 K. Perrot et al.

know that local update repetitions can break the fixed point invariance property
which holds in block-sequential ANs (cf. the example given in Remark 1), it
would be interesting to characterise the conditions relating these repetitions to
the architecture of interactions (so called interaction graph) giving rise to the
existence of new fixed points. More generally, as a complement to the results of
Sect. 3.4, the following problem can be studied: given an AN f , to which extent
is f block-parallel sensitive/robust? In [1], the authors addressed this question
on block-sequential Boolean ANs by developing the concept of update digraphs
which allows to capture conditions of dynamical equivalence at the syntactical
level. However, this concept does not apply as soon as local update repetitions
are at stake. Hence, creating a new concept of update digraphs in the general
context of periodic update modes would be an essential step forward to explain
and understand updating sensitivity/robustness of ANs.

Another track of research would be to understand how basic interaction cycles
of automata evolve under block-parallel updates. For instance, the authors of [7]
have shown that such cycles in the Boolean setting are somehow very robust
to block-sequential update modes variations: the number of their limit cycles of
length p is the same as that of a smaller cycle (of same sign) evolving in parallel.
Together with the combinatorial analysis of [3], this provides a complete analysis
of the asymptotic dynamics of Boolean interaction cycles. This gives rise to the
following question: do interaction cycles behave similarly under block-parallel
update modes variations? The local update repetitions should again play an
essential role. In this respect, the present work sets the foundations for theoretical
developments and computer experiments (Theorems 3 and 4). Such a study could
constitute a first approach of the more general problem raised above, since it is
well known that cycles are the behavioural complexity engines of ANs [14].

Eventually, since block-parallel schedules form a new family of update modes
of which the field of investigation is still largely open today, we think that a
promising perspective of our work would consist in dealing with the computa-
tional complexity of classical decision problems for ANs, in the lines of [5] about
reaction systems. The general question to be addressed here is: do local update
repetitions induced by block-parallel update modes make such decision problems
take place at a higher level in the polynomial hierarchy, or even reach polynomial
space completeness? We have early evidence of the latter.

Acknowledgments. The authors were funded mainly by their salaries as French State
agents.This work has been secondarily supported by ANR-18-CE40-0002 FANs project
(KP & SS), ECOS-Sud C19E02 SyDySy project (SS), and STIC AmSud 22-STIC-02
CAMA project (KP, LT & SS), and the MSCA-SE-101131549 ACANCOS (KP, LT &
SS).

Combinatorics of Block-Parallel Automata Networks 455

References

1. Aracena, J., Goles, E., Moreira, A., Salinas, L.: On the robustness of update sched-
ules in Boolean networks. Biosystems 97, 1–8 (2009)

2. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence
of fission yeast. PLoS ONE 3, e1672 (2008)

3. Demongeot, J., Noual, M., Sené, S.: Combinatorics of Boolean automata circuits
dynamics. Disc. Appl. Math. 160(4–5), 398–415 (2012)

4. Demongeot, J., Sené, S.: About block-parallel Boolean networks: a position paper.
Nat. Comput. 19, 5–13 (2020)

5. Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E.: Complexity of the dynam-
ics of reaction systems. Inf. Comput. 267, 96–109 (2019)

6. Fierz, B., Poirier, M.G.: Biophysics of chromatin dynamics. Ann. Rev. Biophys.
48, 321–345 (2019)

7. Goles, E., Noual, M.: Block-sequential update schedules and Boolean automata
circuits. In: Proceedings of AUTOMATA 2010, pp. 41–50. DMTCS (2010)

8. Hübner, M.R., Spector, D.L.: Chromatin dynamics. Ann. Rev. Biophys. 39, 471–
489 (2010)

9. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22, 437–467 (1969)

10. Mendoza, L., Alvarez-Buylla, E.R.: Dynamics of the genetic regulatory network for
Arabidopsis thaliana flower morphogenesis. J. Theor. Biol. 193, 307–319 (1998)

11. Noual, M.: Updating automata networks. PhD thesis, École normale supérieure de
Lyon (2012)

12. Paulevé, L., Sené, S.: Systems Biology Modelling and Analysis: Formal Bioinfor-
matics Methods and Tools, Chapter Boolean Networks and their Dynamics: the
Impact of Updates, pp. 173–250. Wiley, Hoboken (2022)

13. Perrot, K., Sené, S., Tapin, L.: On countings and enumerations of block-parallel
automata networks. Preprint on arXiv:2304.09664 (2023)

14. Robert, F.: Discrete iterations: a metric study. Springer Series in Computational
Mathematics, vol. 6. Springer, Heidelberg (1986). https://doi.org/10.1007/978-3-
642-61607-5

15. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42,
563–585 (1973)

http://arxiv.org/abs/2304.09664
https://doi.org/10.1007/978-3-642-61607-5
https://doi.org/10.1007/978-3-642-61607-5

On the Piecewise Complexity of Words
and Periodic Words

M. Praveen1,2, Ph. Schnoebelen3(B), J. Veron3, and I. Vialard3

1 Chennai Mathematical Institute, Chennai, India
2 CNRS, ReLaX, IRL 2000, Chennai, India

3 Laboratoire Méthodes Formelles, Univ. Paris-Saclay, Gif-sur-Yvette, France
phs@lmf.cnrs.fr

Abstract. The piecewise complexity h(u) of a word is the minimal
length of subwords needed to exactly characterise u. Its piecewise mini-
mality index ρ(u) is the smallest length k such that u is minimal among
its order-k class [u]k in Simon’s congruence.

We study these two measures and provide efficient algorithms for com-
puting h(u) and ρ(u). We also provide efficient algorithms for the case
where u is a periodic word, of the form u = vn.

1 Introduction

For two words u and v, we write u � v when u is a subword, i.e., a subsequence, of
v. For example SIMON � STIMULATION while HEBRARD �� HAREBRAINED. Subwords
and subsequences play a prominent role in many areas of computer science. Our
personal motivations come from descriptive complexity and the possibility of
characterising words and languages via some short witnessing subwords.

Fifty years ago, and with similar motivations, I. Simon introduced piecewise-
testable (PT) languages in his doctoral thesis (see [Sim72,Sim75,SS83]): a lan-
guage L is PT if there is a finite set of words F such that the membership
of a word u in L depends only on which words from F are subwords of u.
PT languages have since played an important role in the algebraic and logi-
cal theory of first-order definable languages, see [Pin86,DGK08,Klí11] and the
references therein. They also constitute an important class of simple regular
languages with applications in learning theory [KCM08], databases [BSS12], lin-
guistics [RHF+13], etc. The concept of PT languages has been extended to vari-
ant notions of “subwords” [Zet18], to trees [BSS12], infinite words [PP04,CP18],
pictures [Mat98], or any combinatorial well-quasi-order [GS16].

When a PT language L can be characterised via a finite F where all words
have length at most k, we say that L is piecewise-testable of height k, or k-PT.
Equivalently, L is k-PT if it is closed under ∼k, Simon’s congruence of order k,
defined via u ∼k v

def⇔ u and v have the same subwords of length at most k. The

Work supported by IRL ReLaX. J. Veron supported by DIGICOSME ANR-11-LABX-
0045.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 456–470, 2024.
https://doi.org/10.1007/978-3-031-52113-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_32&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_32

On the Piecewise Complexity of Words and Periodic Words 457

piecewise complexity of L, denoted h(L) (for “height”), is the smallest k such
that L is k-PT. It coincides with the minimum number of variables needed in
any BΣ1 formula that defines L [DGK08].

The piecewise complexity of languages was studied by Karandikar and Sch-
noebelen in [KS19] where it is a central tool for establishing elementary upper
bounds for the complexity of the FO2 fragment of the logic of subwords.

In this paper we focus on the piecewise complexity of individual words. For
u ∈ A∗, we write h(u) for h({u}), i.e., the smallest k s.t. [u]k = {u}, where [u]k
is the equivalence class of u w.r.t. ∼k. We also introduce a new measure, ρ(u),
defined as the smallest k such that u is minimal in [u]k (wrt subwords).

We have two main motivations. Firstly it appeared in [KS19] that bounding
h(L) for a PT language L relies heavily on knowing h(u) for specific words u in
and out of L. For example, the piecewise complexity of a finite language L is
exactly maxu∈L h(u) [KS19], and the tightness of many upper bounds in [KS19]
relies on identifying a family of long words with small piecewise complexity. See
also [HS19, Sect. 4]. Secondly the piecewise complexity of words raises challenging
combinatorial or algorithmic questions. To begin with we do not yet have a
practical and efficient algorithm that computes h(u).

Our Contribution. Along h(u), we introduce a new measure, ρ(u), the piece-
wise minimality index of u, and initiate an investigation of the combinatorial and
algorithmic properties of both measures. The new measure ρ(u) is closely related
to h(u) but is easier to compute. Our main results are (1) theoretical results con-
necting h and ρ and bounding their values in contexts involving concatenation,
(2) efficient algorithms for computing h(u) and ρ(u), and (3) an analysis of peri-
odicities in the arch factorization of periodic words that leads to a simple and
efficient algorithm computing h(un) and ρ(un) for periodic words un. Our moti-
vation for computing h(un) and ρ(un) is that we see it as preparatory work for
computing subword complexity measures on compressed data, see [SV23].

Related Work. In the literature, existing works on h mostly focus on h(L) for
L a PT-language, and provide general bounds (see, e.g., [KS19,HS19]). We are
not aware of any practical algorithm computing h(L) for L a PT-language given,
e.g., via a deterministic finite-state automaton A, and it is known that deciding
whether h(L(A)) ≤ k is coNP-complete [MT15].

Regarding words, there is a rich literature on algorithms computing δ(u, v),
the piecewise distance between two words: see [Sim03,FK18,BFH+20,GKK+21]
and the references therein. Computing h(u) and ρ(u) amounts to maximising
δ(u, v) over the set of all words v distinct from u —when computing h(u)—or a
subset of these—for ρ(u)—.

Outline of the Paper. After recalling the necessary background in Sect. 2, we
define the new measures h(u) and ρ(u) in Sect. 3 and prove some first elemen-
tary properties like monotonicity and convexity. In Sect. 4 we give efficient algo-
rithms computing h(u) and ρ(u). In Sect. 5 we prove simple but new connections

458 M. Praveen et al.

between Simon’s side distance functions r, � and Hébrard’s arch factorization.
This motivates the study of the arch factorization of periodic words and leads to
a simple and efficient algorithm computing h(un) and ρ(un). For lack of space,
most proofs are missing from this extended abstract: they can be found in the
full version of the paper, available as arXiv:2311.15431 [cs.FL].

2 Words, Subwords and Simon’s Congruence

We consider finite words u, v, . . . over a finite alphabet A. The empty word is
denoted with ε, the mirror (or reverse) of u with uR, and we write |u| for the
length of u. We also write |u|a for the number of times the letter a appears in
u. For a word u = a1a2 · · · aL of length L we write Cuts(u) = {0, 1, 2, . . . , L} for
the set of positions between the letters of u. For i ≤ j ∈ Cuts(u), we write u(i, j)
for the factor ai+1ai+2 · · · aj . Note that u(0, L) = u, u(i1, i2) ·u(i2, i3) = u(i1, i3)
and that |u(i, j)| = j − i. We write u(i) as shorthand for u(i − 1, i), i.e., ai, the
i-th letter of u. With alph(u) we denote the set of letters that occur in u. We
often abuse notation and write “a ∈ u” instead of “a ∈ alph(u)” to say that a
letter a occurs in a word u.

We say that u = a1 · · · aL is a subword of v, written u � v, if v can be
factored under the form v = v0a1v1a2 · · · vL−1aLvL where the vi’s can be any
words (and can be empty). We write ↓ u for the set of all subwords of u: e.g.,
↓ ABAA = {ε, A, B, AA, AB, BA, AAA, ABA, BAA, ABAA}.

Factors are a special case of subwords: u is a factor of v if v = v′uv′′ for some
v′, v′′. Furthermore, when v = v′uv′′ we say that u is a prefix of v when v′ = ε,
and is a suffix of v when v′′ = ε.

When u �= v, a word s is a distinguisher (or a separator) if s is subword of
exactly one word among u and v [Sim72].

For k ∈ N we write A≤k for the set of words over A that have length at most
k, and for any words u, v ∈ A∗, we let u ∼k v

def⇔ ↓ u∩A≤k = ↓ v ∩A≤k. In other
words, u ∼k v if u and v have the same subwords of length at most k. For example
ABAB ∼1 AABB (both words use the same letters) but ABAB �∼2 AABB (BA is a
subword of ABAB, not of AABB). The equivalence ∼k, introduced in [Sim72,Sim75],
is called Simon’s congruence of order k. Note that u ∼0 v for any u, v, and
u ∼k u for any k. Finally, u ∼k+1 v implies u ∼k v for any k, and there is a
refinement hierarchy ∼0 ⊇ ∼1 ⊇ ∼2 · · · with

⋂
k∈N

∼k= IdA∗ . We write [u]k for
the equivalence class of u ∈ A∗ under ∼k. Note that each ∼k, for k = 0, 1, 2, . . .,
has finite index [Sim75,SS83,KKS15].

We further let u �k v
def⇔ u ∼k v ∧ u � v. Note that �k is stronger than

∼k. Both relations are (pre)congruences: u ∼k v and u′ ∼k v′ imply uu′ ∼k vv′,
while u �k v and u′ �k v′ imply uu′ �k vv′.

The following properties will be useful:

Lemma 2.1. For all u, v, v′, w ∈ A∗ and a, b ∈ A:

1. If u ∼k v and u � w � v then u �k w �k v;

On the Piecewise Complexity of Words and Periodic Words 459

2. When k > 0, u ∼k uv if, and only if, there exists a factorization u =
u1u2 · · · uk such that alph(u1) ⊇ alph(u2) ⊇ · · · ⊇ alph(uk) ⊇ alph(v);

3. If uav ∼k ubv′ and a �= b then ubav ∼k ubv′ or uabv′ ∼k uav (or both);
4. If u ∼k v then there exists w ∈ A∗ such that u �k w and v �k w;
5. If u ∼k v and |u| < |v| then there exists some v′ with |v′| = |u| and such that

u ∼k v′ � v;
6. If uv ∼k uav then uv ∼k uamv for all m ∈ N;
7. Every equivalence class of ∼k is a singleton or is infinite.

Proof. (1) is by combining ↓ u ⊆ ↓ w ⊆ ↓ v with the definition of ∼k; (2–4) are
Lemmas 3, 5, and 6 from [Sim75]; (5) is an immediate consequence of Theorem 4
from [Sim72, p. 91], showing that all minimal (wrt �) words in [u]k have the
same length —see also [SS83, Theorem 6.2.9] or [FK18]—; (6) is in the proof of
Corollary 2.8 from [SS83]; (7) follows from (1), (4) and (6). �

The fundamental tools for reasoning about piecewise complexity were devel-
oped in Simon’s thesis [Sim72]. First, there is the concept of “subword distance”1
δ(u, v) ∈ N ∪ {∞}, defined for any u, v ∈ A∗, via

δ(u, v) def= max{k | u ∼k v} (1)

=

{
∞ if u = v,

|s| − 1 if u �= v and s is a shortest distinguisher.
(2)

Derived notions are the left and right distances [Sim72, p72], defined for any
u, t ∈ A∗, via

r(u, t) def= δ(u, ut) = max{k | u ∼k ut} , (3)

�(t, u) def= δ(tu, u) = max{k | tu ∼k u} . (4)

Clearly r and � are mirror notions. One usually proves properties of r only,
and (often implicitly) deduce symmetrical conclusions for � by the mirror rea-
soning.

Lemma 2.2 ([SS83, Lemma 6.2.13]). For any words u, v ∈ A∗ and letter
a ∈ A

δ(uv, uav) = δ(u, ua) + δ(av, v) = r(u, a) + �(a, v) . (5)

3 The Piecewise Complexity of Words

In this section we define the complexity measures h(u) and ρ(u), give characteri-
sations in terms of the side distance functions r and �, compare the two measures
and establish some first results on the measures of concatenations.
1 In fact δ(u, v) is a measure of similarity and not of difference, between u and v. The

associated distance is actually d(u, v)
def
= 2−δ(u,v) [SS83].

460 M. Praveen et al.

3.1 Defining Words via Their Subwords

The piecewise complexity of PT languages was defined in [KS16,KS19]. Formally,
for a language L over A, h(L) is the smallest index k such that L is ∼k-saturated,
i.e., closed under ∼k. For a word u ∈ A∗, this becomes h(u) def= min{n | ∀v :
u ∼n v =⇒ u = v}: we call it the piecewise complexity of u.

Proposition 3.1. For any u ∈ A∗,

h(u) = max
u=u1u2

a∈A

δ(u, u1au2) + 1 (6)

= max
u=u1u2

a∈A

r(u1, a) + �(a, u2) + 1 . (H)

3.2 Reduced Words and the Minimality Index

Definition 3.2 ([Sim72, p. 70]). Let m > 0, a word u ∈ A∗ is m-reduced if
u �∼m u′ for all strict subwords u′ of u.

In other words, u is m-reduced when it is a minimal word in [u]m. This leads to
a new piecewise-based measure for words, that we call the minimality index :

ρ(u) def= min{m | u is m-reduced} . (7)

Lemma 3.3 ([Sim72, p. 72]). A non-empty word u is m-reduced iff r(u1, a)+
�(a, u2) < m for all factorizations u = u1au2 with a ∈ A and u1, u2 ∈ A∗.

This has an immediate corollary:

Proposition 3.4. For any non-empty word u ∈ A∗

ρ(u) = max
u=v1av2

a∈A

r(v1, a) + �(a, v2) + 1 . (P)

Note the difference between Equations (H) and (P): h(u) can be computed by
looking at all ways one would insert a letter a inside u while for ρ(u) one is
looking at all ways one could remove some letter from u.

3.3 Fundamental Properties of Side Distances

The characterisations given in Propositions 3.1 and 3.4 suggest that computing
h(u) and ρ(u) reduces to computing the r and � side distance functions on
prefixes and suffixes of u. This will be confirmed in Sect. 4.

For this reason we now prove some useful combinatorial results on r and �.
They will be essential for proving more general properties of h and ρ in the rest
of this section, and in the analysis of algorithms in later sections.

On the Piecewise Complexity of Words and Periodic Words 461

Lemma 3.5. For any word u ∈ A∗ and letters a, b ∈ A:

r(ua, b) ≤ 1 + r(u, a) . (8)

The following useful lemma provides a recursive way of computing r(u, t).

Lemma 3.6 ([Sim72, p. 71–72]). For any u, t ∈ A∗ and a ∈ A:

r(u, t) = min
{
r(u, a) | a ∈ alph(t)

}
, (R1)

r(u, a) = 0 if a does not occur in u , (R2)
r(u, a) = 1 + r(u′, au′′) if u = u′au′′ with a �∈ alph(u′′) . (R3)

Corollary 3.7. For any u, v, t, t′ ∈ A∗ and a ∈ A

alph(t) ⊆ alph(t′) =⇒ r(u, t) ≥ r(u, t′) and �(t, u) ≥ �(t′, u) , (9)
a �∈ alph(v) =⇒ r(uv, a) ≤ r(u, a) and �(a, vu) ≤ �(a, u) . (10)

Lemma 3.8. (Monotonicity of r and �). For all u, v, t ∈ A∗

r(v, t) ≤ r(uv, t) , �(t, u) ≤ �(t, uv) . (11)

Observe that r(u, a) can be strictly larger than r(uv, a), e.g., r(aa, a) = 2 >
r(aab, a) = 1. However, inserting a letter in u cannot increase r or � by more
than one:

Lemma 3.9. For any u, v ∈ A∗ and a, b ∈ A

r(uav, b) ≤ 1 + r(uv, b) , �(b, uav) ≤ 1 + �(b, uv) . (12)

3.4 Relating h and ρ

Theorem 3.10. h(u) ≥ 1 + ρ(u) for any word u.

The above inequality is an equality in the special case of binary words.

Theorem 3.11. Assume |A| = 2. Then h(u) = ρ(u) + 1 for any u ∈ A∗.

Remark 3.12. Theorem 3.11 cannot be generalised to words using 3 or more
different letters. For example, with A = {A, B, C} and u = CAACBABA, one has
h(u) = 5 and ρ(u) = 3. Larger gaps are possible: u = CBCBCBCBBCABBABABAAA
has h(u) = 10 and ρ(u) = 6. �

3.5 Subword Complexity and Concatenation

While the subwords of uv are obtained by concatenating the subwords of u and
the subwords of v, there is no simple relation between h(uv) or ρ(uv) on one
hand, and h(u), h(v), ρ(u) and ρ(v) on the other hand.

However, we can prove that h and ρ are monotonic and convex wrt concate-
nation.

We start with convexity.

462 M. Praveen et al.

Theorem 3.13 (Convexity). For all u, v ∈ A∗

ρ(uv) ≤ ρ(u) + ρ(v) , h(uv) ≤ max
{
h(u) + ρ(v), ρ(u) + h(v)

}
. (13)

Note that the second inequality entails h(uv) ≤ h(u) + h(v) − 1 and is in fact
stronger.

Theorem 3.14 (Monotonicity). For all u, v ∈ A∗

h(u) ≤ h(uv) , h(v) ≤ h(uv) , (14)
ρ(u) ≤ ρ(uv) , ρ(v) ≤ ρ(uv) . (15)

4 Computing h(u) and ρ(u)

Thanks to Propositions 3.1 and 3.4, computing h and ρ reduces to computing r
and �. For r and � we may rephrase Lemma 3.6 in the following recursive form:

r(u, a) =

{
0 if a �∈ u,

1 + min
b∈au2

r(u1, b) if u = u1au2 and a �∈ u2.
(16)

with a mirror formula for �.
We now derive a reformulation that leads to more efficient algorithms.

Lemma 4.1. For any word u ∈ A∗ and letters a, b ∈ A

r(ub, a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if a �∈ ub,

1 + r(u, a) if a = b,

min

{
1 + r(u1, b)

r(u, a)

}

if a �= b and u = u1au2 with a �∈ u2.

(17)

The recursion in Eq. (16) involves the prefixes of u. We define the r-table of u
as the rectangular matrix containing all the r(u(0, i), a) for i = 0, 1, . . . , |u| and
a ∈ A. In practice we write just r(i, a) for r(u(0, i), a).

Example 4.2. Let u = ABBACCBCCABAABC over A = {A, B, C}. The r-table of u is

As an exercise in reading Eq. (17), let us check that the values in this r-table
are correct. First r(0, a) = 0 for all letters a ∈ A since a does not occur in
u(0, 0) = ε which is empty. Since u(0, 1) = A does not contain B, we further have
r(1, B) = 0. And since u(0, 4) = ABBA does not contain C, we have r(i, C) = 0 for
all i = 0, . . . , 4.

On the Piecewise Complexity of Words and Periodic Words 463

Let us now check, e.g., r(6, a) for all a ∈ A. Since u(0, 6) = ABBACC ends with
b = C, the second case in Eq. (17) gives r(6, C) = 1 + r(5, C) = 1 + 1 = 2. For
a = A, we find that the last occurrence of A in u(0, 6) is at position 4. So r(6, A) is
the minimum of r(5, A) and 1+ r(3, C), which gives 1. For a = B, and since B last
occurs at position 3 in u(0, 6), r(6, B) is obtained as min

(
r(5, B), 1 + r(2, C)

)
=

min(1, 1 + 0) = 1. �
It is now clear that Eq. (17) directly leads to a O(|A| · |u|) algorithm for

computing r-tables. The following code builds the table from left to right. While
progressing through i = 0, 1, 2, . . ., it maintains a table locc storing, for each
a ∈ A, the position of its last occurrence so far.

'''Algorithm computing the r-table of u'''
init locc & r[0,..]:
for a in A: locc[a]=0; r[0,a]=0
fill rest of r & maintain locc[..]:
for i from 1 to |u|:

b = u[i]; locc[b] = i;
for a in A:

if a == b:
r[i,a] = 1 + r[i-1,a]

else:
r[i,a] = min(r[i-1,a], 1 + r[locc[a],b])

Corollary 4.3. h(u) can be computed in bilinear time O(|A| · |u|).
Proof. The r-table and the �-table of u are computed in bilinear time as we just
explained. Then one finds maxa∈A maxi=0,...,|u| r(u(0, i), a)+�(a, u(i, |u|))+1 by
looping over these two tables. As stated in Proposition 3.1, this gives h(u). �
For ρ(u), we compute the r- and �-vectors.

Definition 4.4 (r-vector, �-vector, [Sim72, p. 73]). The r-vector of u =
a1 · · · am is 〈r1, . . . , rm〉 defined with ri = r(a1 · · · ai−1, ai) for all i = 1, . . . , m.
The �-vector of u is 〈�1, . . . , �m〉 defined with �i = �(ai, ai+1 · · · am) for all
i = 1, . . . ,m.

Remark 4.5. The attribute of u defined in [FK18, § 3] is exactly the juxtaposition
of Simon’s r- and �-vectors with all values shifted by 1. �
Example 4.6. Let us continue with u = ABBACCBCCABAABC. Its r-vector and �-
vector are, respectively:

r-vector: 〈0, 0, 1, 1, 0, 1, 1, 2, 3, 1, 2, 2, 3, 3, 2〉
�-vector: 〈3, 4, 3, 2, 4, 3, 2, 2, 1, 2, 1, 1, 0, 0, 0〉

464 M. Praveen et al.

By summing the two vectors, looking for a maximum value, and adding 1, we
quickly obtain

max
i=1,...,|u|

r
(
u(0, i − 1), u(i)

)
+ �

(
u(i), u(i, |u|)) + 1 = 5 ,

which provides ρ(u) as stated in Proposition 3.4. �
One could extract the r- and �-vectors from the r- and �-tables but there is a
faster way.

The following algorithm that computes the r-vector of u is extracted from the
algorithm in [BFH+20] that computes the canonical representative of u modulo
∼k. We refer to [BFH+20] for its correctness. Its running time is O(|A| + |u|)
since there is a linear number of insertions in the stack L and all the positions
read from L are removed except the last read.

'''Algorithm computing the r-vector of u'''
init locc & L
for a in A: locc[a]=0;
L.push(0)
fill rest of r & maintain locc[..]:
for i from 1 to |u|:

a = u[i];
while (head(L) >= locc[a]):

j = L.pop()
r[i] = 1+r[j] if j>0 else 0
L.push(j)
L.push(i)
locc[a]=i

With a mirror algorithm, the �-vector is also computed in linear time.

Corollary 4.7. ρ(u) can be computed in linear time O(|A| + |u|).

5 Arch Factorizations and the Case of Periodic Words

In this section we analyse periodicities in the arch decomposition of un and
deduce an algorithm for h(un) and ρ(un) that runs in time O(|A|2|u| + log n).

Let A be some alphabet. An A-arch (or more simply an “arch” when A is
understood) is a word s ∈ A∗ such that s contains all letters of A while none
of its strict prefixes does. In particular the last letter of s occurs only once in
s. A co-arch is the mirror image of an arch. The arch factorization of a word
w ∈ A∗ is the unique decomposition w = s1 · s2 · · · sm · t such that s1, . . . , sm are
arches and t, called the rest of w, is a suffix that does not contain all letters of
A [Héb91]. If its rest is empty, we say that w is fully arched.

For example, ABBACCBCCABAABC used in Example 4.2 factorizes as ABBAC ·
CBCCA · BAABC · ε, with 3 arches and an empty rest. It is fully arched.

On the Piecewise Complexity of Words and Periodic Words 465

Reconsidering the r-table from Example 4.2 with the arch factorization per-
spective, we notice that, at the beginning of each arch, the value of r(i, a) coin-
cides with the arch number:

There is in fact a more general phenomenon at work:

Lemma 5.1. For any word u ∈ A∗, letter a in A, and A-arch s:

r(s u, a) = 1 + r(u, a) . (18)

Proof. By induction on the length of u. We consider two cases.
Case 1: If a does not occur in u then r(u, a) = 0 so the right hand side of (18) is
1. Since s is an arch it can be factored as s = s1as2 with a not occurring in s2.
Then r(su, a) = 1 + minb∈as2u r(s1, b). Necessarily, the last letter of s, call it c,
occurs in as2u and since the last letter of an arch occurs only once in the arch, c
does not occur in s1, i.e., r(s1, c) = 0, entailing minb∈as2u r(s1, b) = 0 and thus
r(su, a) = 1 as needed to establish (18).
Case 2: If a occurs in u, then

1 + r(u, a) = 1 + 1 + min
b∈au2

r(u1, b)

for a factorization u = u1au2 of u

i.h.= 1 + min
b∈au2

r(su1, b) = r(su, a) .

�
Corollary 5.2. Let v, u, t ∈ A∗. If v is fully arched with k arches then

r(v u, t) = k + r(u, t) , �(t, u vR) = k + �(t, u) . (19)

5.1 Arch-Jumping Functions

Seeing how Simon’s r and � func‘to the arches and co-arches of a word, the
arch-jumping functions from [SV23] will be helpful.

Definition 5.3 (α and β: arch-jumping functions). Fix some alphabet A
and some word w over A. For a position i ∈ Cuts(w) we let α(i) be the smallest
j > i such that w(i, j) is an arch. Note that α(i) is undefined if w(i, |w|) does
not contain all letters of A.

Symmetrically, we let β(i) be the largest j < i such that w(j, i) is a co-arch.
This too is a partial function.

466 M. Praveen et al.

The following picture shows α and β on w = ABBACCBCCABAABC from Example
4.2: α(2) = 5, α(3) = 7, α is undefined on {13, 14, 15} and β on {0, 1, 2, 3, 4}.

0 5 10 15

A B B A C C B C C A B A A B C

α

β

Lemma 5.4 ([SV23]). When the values are defined, the following inequalities
hold:

i + |A| ≤ α(i) , (20)
α(i) ≤ α(i + 1) , (21)

i ≤ βα(i) , (22)
α(i) = αβα(i) , (23)

i ≤ βnαn(i) ≤ βn+1αn+1(i) ≤ α(i) . (24)

The arch factorization w = s1 · s2 · · · sm · t of w can be defined in terms of α:
m is the largest number such that αm(0) is defined, each si is w

(
αi−1(0), αi(0)

)

and r = w(αm(0), |w|) [SV23]. Co-arch factorizations can be defined similarly in
terms of the β function.

5.2 Arch Factorization of Periodic Words

We now turn to periodic words, of the form u · u · · · u, i.e., un, where n > 0 is
the number of times u is repeated. We let L

def= |u| denote the length of u. Our
first goal is to exhibit periodic patterns in the arch factorization of un.

Assume that u �= ε, with alph(u) = A. In order to study the arch factoriza-
tion of un as a function of n, we set w = uω and consider the (infinite) arch
factorization uω = s1 · s2 · · · sm · · · : since w is infinite and since all the letters in
A occur in u, α is defined everywhere over N. For any k ∈ N, we write λk for
αk(0), i.e., the cumulative length of w’s first k arches.

Note that, over uω, α(i + L) = α(i) + L since w is a periodic word. We say
that p ∈ N is an arch-period for uω starting at i if there exists k such that
αk(i) ≡ αk+p(i) mod L. Such a period must exist for any i ∈ N: the sequence
α0(i), α1(i), . . . , αL(i) contains two values αk(i) and αk′

(i) that are congruent
modulo L and, assuming k < k′, one can pick p = k′ − k.

Note that, since α(i+L) = α(i)+L for any i, having αk(i) ≡ αk+p(i) mod L
entails αk′

(i) ≡ αk′+p(i) mod L for all k′ ≥ k. In fact, the span Δ, defined as
αk+p(i) − αk(i), does not depend on k once k is large enough.

Proposition 5.5. There exists some integer pu > 0 such that, for any i ∈ N,
the set of arch-periods starting at i are exactly the multiples of pu.
Consequently pu is called the arch-period of u.

On the Piecewise Complexity of Words and Periodic Words 467

Example 5.6. The following picture illustrates the case where u = AABBCC and
L = 6. Starting at i = 0, one has α(0) = λ1 = 5 and α4(0) = λ4 = 17, so
α1(0) ≡ α4(0) mod L and pu = 3 is the arch-period. �

u u u u0 L 2L 3L

A A B B C C A A B B C C A A B B C C A A B B

λ0
α λ1 λ2 λ3 λ4 λ5

Recall that if u can be factored as u = u1u2 then u2u1 is a conjugate of u.

Proposition 5.7.
If v is a conjugate of u then u and v have the same arch-period.
If v is the mirror of u then u and v have the same arch-period.

Note that while pu does not depend on the starting point i, the smallest k
such that αk(i) ≡ αk+pu(i) usually does. In Example 5.6 one has k = 1 when
starting from i = 0. But α3(1) = 13 ≡ 1 = α0(1), so k = 0 works when starting
from i = 1.

In the following, we shall always start from 0: the smallest k such that αk(0) ≡
αk+pu(0) mod L is denoted by Ku and we further define Tu = λKu

= αKu(0)
and Δu = λKu+pu

− λKu
= αKu+pu(0) − αKu(0). Note that Δu is a multiple of

L, and we let Δu = δuL. Together, Tu and Δu are called the transient and the
span of the periodic arch factorization. The slope σu is δu/pu: after the transient
part, moving forward by pu arches in w is advancing through δu copies of u. In
the above example, we have pu = 3, T = 5 and Δ = 2L = 12, hence σ = 2

3 (here
and below, we omit the u subscript when this does not cause ambiguities).

The reasoning proving the existence of an arch-period for u shows that at
most L arches have to be passed before we find αk+p(i) ≡ αk(i) mod L, so
k + p ≤ L, entailing Ku + pu ≤ L and δu ≤ L. However, while pu = L is always
possible, this does not lead to an L2 upper bound for the span Δu. One can
show the following:

Proposition 5.8 (Bounding span and transient). For any u ∈ A∗, Tu +
Δu ≤ (|A| + 1) · L.

5.3 Piecewise Complexity of Periodic Words

Theorem 5.9. Assume alph(u) = A and write L for |u|. Further let T , Δ
(= δL) and p be the transient, span and arch-period associated with u, and T ′

be the transient associated with uR.
If n ≥ T+T ′

L then h(un+δ) = h(un) + p and ρ(un+δ) = ρ(un) + p.

Theorem 5.9 leads to a simple and efficient algorithm for computing h(un)
and ρ(un) when n is large. We first compute pu, Δu, Tu by factoring u|A| into

468 M. Praveen et al.

arches. We obtain TuR in a similar way. We then find the largest m such that
(n−m)δuL ≥ Tu+TuR +Δu. Writing n0 for n−mpuδu, we then compute h(un0)
and ρ(un0) using the algorithms from Sect. 4. Finally we use h(un) = h(un0)+mp
and ρ(un) = ρ(un0) + mp.

Note that it is not necessary to compute the transients since we can replace
them with the |A| · L upper bound. However we need p and δ, which can be
obtained in time O(|A| · |u|) thanks to the bound from Proposition 5.8. Com-
puting h(un0) takes time O(|A|2 · |u|) since n0 is in O(|A|), thanks again to the
bound on T and Δ. Finally the algorithm runs in time O(|A|2|u|+ log n), hence
in linear time when A is fixed.

6 Conclusion

In this paper we focused on the piecewise complexity of individual words, as
captured by the piecewise height h(u) and the somewhat related minimality
index ρ(u), a new measure suggested by [Sim72] and that we introduce here.

These measures admit various characterisations, including Propositions 3.1
and 3.4 that can be leveraged into efficient algorithms running in bilinear time
O(|A| · |u|) for h(u) and linear time O(|A| + |u|) for ρ(u). Our analysis fur-
ther allows to establish monotonicity and convexity properties for h and ρ, e.g.,
“ρ(u) ≤ ρ(uv) ≤ ρ(u) + ρ(v)”, and to relate h and ρ.

In a second part we focus on computing h and ρ on periodic words of the form
un. We obtain an elegant solution based on exhibiting periodicities in the arch
factorization of un and as-yet-unnoticed connections between arch factorization
and the side distance functions, and propose an algorithm that runs in polyno-
mial time O(|A|2 ·|u|+log n), hence in linear time in contexts where the alphabet
A is fixed. This suggests that perhaps computing h and ρ on compressed data
can be done efficiently, a question we intend to attack in future work.

References

[BFH+20] Barker, L., Fleischmann, P., Harwardt, K., Manea, F., Nowotka, D.: Scat-
tered factor-universality of words. In: Jonoska, N., Savchuk, D. (eds.) DLT
2020. LNCS, vol. 12086, pp. 14–28. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-48516-0_2

[BSS12] Bojańczyk, M., Segoufin, L., Straubing, H.: Piecewise testable tree lan-
guages. Logical Methods Comput. Sci. 8(3), 1–32 (2012)

[CP18] Carton, O., Pouzet, M.: Simon’s theorem for scattered words. In: Hoshi,
M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 182–193. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98654-8_15

[DGK08] Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-
order logic over finite words. Int. J. Found. Comput. Sci. 19(3), 513–548
(2008)

[FK18] Fleischer, L., Kufleitner, M.: Testing Simon’s congruence. In: Proceedings
of MFCS 2018, vol. 117 of Leibniz International Proceedings in Informatics,
pp. 62:1–62:13. Leibniz-Zentrum für Informatik (2018)

https://doi.org/10.1007/978-3-030-48516-0_2
https://doi.org/10.1007/978-3-030-48516-0_2
https://doi.org/10.1007/978-3-319-98654-8_15

On the Piecewise Complexity of Words and Periodic Words 469

[GKK+21] Gawrychowski, P., Kosche, M., Koß, T., Manea, F., Siemer, S.: Efficiently
testing Simon’s congruence. In: Proceedings of STACS 2021, vol. 187 of
Leibniz International Proceedings in Informatics, pp. 34:1–34:18. Leibniz-
Zentrum für Informatik (2021)

[GS16] Goubault-Larrecq, J., Schmitz, S.: Deciding piecewise testable separability
for regular tree languages. In: Proceedings of ICALP 2016, vol. 55 of Leibniz
International Proceedings in Informatics, pp. 97:1–97:15. Leibniz-Zentrum
für Informatik (2016)

[Héb91] Hébrard, J.-J.: An algorithm for distinguishing efficiently bit-strings by
their subsequences. Theor. Comput. Sci. 82(1), 35–49 (1991)

[HS19] Halfon, S., Schnoebelen, Ph.: On shuffle products, acyclic automata and
piecewise-testable languages. Inf. Process. Lett. 145, 68–73 (2019)

[KCM08] Kontorovich, L., Cortes, C., Mohri, M.: Kernel methods for learning lan-
guages. Theor. Comput. Sci. 405(3), 223–236 (2008)

[KKS15] Karandikar, P., Kufleitner, M., Schnoebelen, Ph.: On the index of Simon’s
congruence for piecewise testability. Inf. Process. Lett. 115(4), 515–519
(2015)

[Klí11] Klíma, O.: Piecewise testable languages via combinatorics on words. Disc.
Math. 311(20), 2124–2127 (2011)

[KS16] Karandikar, P., Schnoebelen, Ph.: The height of piecewise-testable lan-
guages with applications in logical complexity. In Proceedings of CSL 2016,
vol. 62 of Leibniz International Proceedings in Informatics, pp. 37:1–37:22.
Leibniz-Zentrum für Informatik (2016)

[KS19] Karandikar, P., Schnoebelen, Ph.: The height of piecewise-testable lan-
guages and the complexity of the logic of subwords. Logical Methods Com-
put. Sci. 15(2) (2019)

[Mat98] Matz, O.: On piecewise testable, starfree, and recognizable picture lan-
guages. In: Nivat, M. (ed.) FoSSaCS 1998. LNCS, vol. 1378, pp. 203–210.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053551

[MT15] Masopust, T., Thomazo, M.: On the complexity of k -piecewise testability
and the depth of automata. In: Potapov, I. (ed.) DLT 2015. LNCS, vol.
9168, pp. 364–376. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-21500-6_29

[Pin86] Pin, J.É.: Varieties of Formal Languages. Plenum, New-York (1986)
[PP04] Perrin, D., Pin, J.-É.: Infinite words: Automata, Semigroups, Logic and

Games, vol. 141 of Pure and Applied Mathematics Series. Elsevier (2004)
[RHF+13] Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., Wibel, S.: Cognitive

and sub-regular complexity. In: Morrill, G., Nederhof, M.-J. (eds.) FG 2012-
2013. LNCS, vol. 8036, pp. 90–108. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39998-5_6

[Sim72] Simon, I.: Hierarchies of Event with Dot-Depth One. PhD thesis, University
of Waterloo, Waterloo, ON, Canada (1972)

[Sim75] Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung
1975. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://
doi.org/10.1007/3-540-07407-4_23

[Sim03] Simon, I.: Words distinguished by their subwords. In: Proceedings of
WORDS 2003 (2003)

[SS83] Sakarovitch, J., Simon, I.: Subwords. In: Lothaire, M. (ed.) Combinatorics
on Words, vol. 17 of Encyclopedia of Mathematics and Its Applications,
chap. 6, pp. 105–142. Cambridge University Press (1983)

https://doi.org/10.1007/BFb0053551
https://doi.org/10.1007/978-3-319-21500-6_29
https://doi.org/10.1007/978-3-319-21500-6_29
https://doi.org/10.1007/978-3-642-39998-5_6
https://doi.org/10.1007/978-3-642-39998-5_6
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23

470 M. Praveen et al.

[SV23] Schnoebelen, Ph., Veron, J.: On arch factorization and subword universal-
ity for words and compressed words. In: Proceedings of WORDS 20123,
vol. 13899 of Lecture Notes in Computer Science, pp. 274–287. Springer,
Heidelberg (2023). https://doi.org/10.1007/978-3-031-33180-0_21

[Zet18] Zetzsche, G.: Separability by piecewise testable languages and downward
closures beyond subwords. In: Proceedings of LICS 2018, pp. 929–938.
ACM Press (2018)

https://doi.org/10.1007/978-3-031-33180-0_21

Distance Labeling for Families of Cycles

Arseny M. Shur1(B) and Mikhail Rubinchik2

1 Bar Ilan University, Ramat Gan, Israel
shur@datalab.cs.biu.ac.il

2 SPGuide Online School in Algorithms, Karmiel, Israel

Abstract. For an arbitrary finite family of graphs, the distance labeling
problem asks to assign labels to all nodes of every graph in the family in
a way that allows one to recover the distance between any two nodes of
any graph from their labels. The main goal is to minimize the number of
unique labels used. We study this problem for the families Cn consisting
of cycles of all lengths between 3 and n. We observe that the exact
solution for directed cycles is straightforward and focus on the undirected
case. We design a labeling scheme requiring n

√
n√
6

+ O(n) labels, which is
almost twice less than is required by the earlier known scheme. Using the
computer search, we find an optimal labeling for each n ≤ 17, showing
that our scheme gives the results that are very close to the optimum.

Keywords: Distance labeling · Graph labeling · Cycle

1 Introduction

Graph labeling is an important and active area in the theory of computing.
A typical problem involves a parametrized finite family Fn of graphs (e.g., all
planar graphs with n nodes) and a natural function f on nodes (e.g., distance for
distance labeling or adjacency for adjacency labeling). The problem is to assign
labels to all nodes of every graph in Fn so that the function f can be computed
solely from the labels of its arguments. Note that the algorithm computing f
knows Fn but not a particular graph the nodes belong to. The main goal is to
minimize the number of distinct labels or, equivalently, the maximum length of
a label in bits. Additional goals include the time complexity of computing both
f and the labeling function. In this paper, we focus solely on the main goal.

The area of graph labeling has a rather long history, which can be traced back
at least to the papers [6,7]. The main academic interest in this area is in finding
the limits of efficient representation of information. For example, the adjacency
labeling of Fn with the minimum number of labels allows one to build the small-
est “universal” graph, containing all graphs from Fn as induced subgraphs. Sim-
ilarly, the optimal distance labeling of Fn gives the smallest “universal” matrix,
containing the distance matrices of all graphs from Fn as principal minors.

The first author is supported by the grant MPM no. ERC 683064 under the EU’s
Horizon 2020 Research and Innovation Programme and by the State of Israel through
the Center for Absorption in Science of the Ministry of Aliyah and Immigration.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 471–484, 2024.
https://doi.org/10.1007/978-3-031-52113-3_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_33&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_33

472 A. M. Shur and M. Rubinchik

The distributed nature of labeling makes it also interesting for practical appli-
cations such as distributed data structures and search engines [2,8,12], routing
protocols [9,20] and communication schemes [21].

The term distance labeling was coined by Peleg in 1999 [19], though some of
the results are much older [15,21]. Let us briefly recall some remarkable achieve-
ments. For the family of all undirected graphs with n nodes it is known that the
labels of length at least n

2 bits are necessary [16,18]. The first labeling scheme
with O(n)-bit labels was obtained by Graham and Pollak [15]. The state-of-the-
art labeling by Alstrup et al. [2] uses labels of length log 3

2 n+o(n) bits1 and allows
one to compute the distances in O(1) time (assuming the word-RAM model).

For planar graphs with n nodes, the lower bound of Ω(3
√

n) bits per label
and a scheme using O(

√
n log n) bits per label were presented in [13]. Recently,

Gawrychowski and Uznanski [14] managed to shave the log factor from the upper
bound. Some reasons why the gap between the lower and upper bounds is hard
to close are discussed in [1].

For trees with n nodes, Peleg [19] presented a scheme with Θ(log2 n)-bits
labels. Gavoille et al. [13] proved that 1

8 log2 n bits are required and ≈ 1.7 log2 n

bits suffice. Alstrup et al. [4] improved these bounds to 1
4 log2 n and 1

2 log2 n
bits respectively. Finally, Freedman et al. [10] reached the upper bound (14 +
o(1)) log2 n, finalizing the asymptotics up to lower order terms.

Further, some important graph families require only polynomially many
labels and thus O(log n) bits per label. Examples of such families include interval
graphs [11], permutation graphs [5], caterpillars and weighted paths [4].

Cycles are among the simplest graphs, so it may look surprising that graph
labeling problems for the family Cn of all cycles up to length n are not settled
yet. A recent result [3] states that n+ 3

√
n labels are necessary and n+

√
n labels

are sufficient for the adjacency labeling of Cn. Still, there is a gap between the
lower and the upper bounds. (As in the case of planar graphs, this is the gap
between 3

√
n and

√
n, though at a different level).

For the distance labeling of the family Cn, the upper bound O(n3/2) and the
lower bound Ω(n4/3) on the minimal number of labels were proved in [17]. Apart
from this paper, there are somewhat simpler folklore constructions leading to the
same upper2 and lower3 bounds; note yet another gap between 3

√
n and

√
n.

In this paper we argue that the upper estimate is correct. We describe a
distance labeling scheme for Cn that uses almost twice less labels than the folklore
scheme. While this is a rather small improvement, we conjecture that our scheme
produces labelings that are optimal up to an additive O(n) term. To support
this conjecture, we find the optimal number of labels for the families Cn up to
n = 17. Then we compare the results of our scheme with an extrapolation of the
optimal results, demonstrating that the difference is a linear term with a small
constant. Finally, we describe several improvements to our scheme that further
reduce this constant.

1 Throughout the paper, log stands for the binary logarithm.
2 E. Porat, private communication.
3 S. Alstrup, private communication.

Distance Labeling for Families of Cycles 473

2 Preliminaries

Given two nodes u, v in a graph, the distance d(u, v) is the length of the shortest
(u, v)-path. Suppose we are given a finite family F = {(V1, E1), . . . , (Vt, Et)}
of graphs and an arbitrary set L, the elements of which are called labels. A
distance labeling of F is a function φ : V1 ∪ · · · ∪ Vt → L such that there exists
a function d′ : L2 → Z satisfying, for every i and each u, v ∈ Vi, the equality
d′(φ(u), φ(v)) = d(u, v). Since d(u, u) = 0, no label can appear in the same cycle
twice. Thus for every single graph in F we view labels as unique names for nodes
and identify each node with its label when speaking about paths, distances, etc.

In the rest of the paper, labeling always means distance labeling. A labeling
scheme (or just scheme) for F is an algorithm that assigns labels to all nodes
of all graphs in F . A scheme is valid if it outputs a distance labeling.

We write Cn for the undirected cycle on n nodes and let Cn = {C3, . . . , Cn}.
The family Cn is the main object of study in this paper. We denote the minimum
number of labels in a labeling of Cn by λ(n).

2.1 Warm-Up: Labeling Directed Cycles

Consider a distance labeling of the family C�
n = {C�

3 , . . . , C�
n } of directed cycles.

Here, the distance between two vertices is the length of the unique directed path
between them. We write λD(n) for the minimum number of labels needed to
label C�

n . A bit surprisingly, the exact formula for λD(n) can be easily found.

Proposition 1. λD(n) = n2+2n+n mod 2
4 .

Proof. Let u and v be two labels in C�
i . Then d(u, v) + d(v, u) = i. Hence u

and v cannot appear together is any other cycle. Thus every two cycles have at
most one label in common. Then C�

n−1 contains at least n − 2 labels unused for
C�

n , C�
n−2 contains at least n − 4 labels unused for both C�

n and C�
n−1, and so

on. This gives the total of at least n + (n − 2) + (n − 4) + · · · + n mod 2
labels, which sums up exactly to the stated formula. To build a labeling with
this number of labels, label cycles in decreasing order; labeling C�

i , reuse one
label from each of the larger cycles such that neither label is reused twice. ��

2.2 Basic Facts on Labeling Undirected Cycles

From now on, all cycles are undirected, so the distance between two nodes in
a cycle is the length of the shortest of two paths between them. The maximal
distance in Ci is 	i/2
. We often view a cycle as being drawn on a circumference,
with equal distances between adjacent nodes, and appeal to geometric properties.

We say that a set {u, v, w} of labels occurring in a cycle is a triangle if each
of the numbers d(u, v), d(u,w), d(v, w) is strictly smaller than the sum of the
other two. Note that three nodes are labeled by a triangle if and only if they
form an acute triangle on a circumference (see Fig. 1).

Lemma 1. In a labeling of a family of cycles each triangle appears only once.

474 A. M. Shur and M. Rubinchik

Proof. If {u, v, w} is a triangle in Ci, then d(u, v) + d(u,w) + d(v, w) = i. ��
Lemma 1 implies the known lower bound on the number of labels for Cn.

Proposition 2 ([17]). Each labeling of Cn contains Ω(n4/3) distinct labels.

Proof. As n tends to infinity, the probability that a random triple of labels of
Cn forms a triangle approaches the probability that three random points on a
circumference generate an acute triangle. The latter probability is 1/4: this is a
textbook exercise in geometric probability. Thus, the set of labels of Cn contains
Ω(n3) triangles. By Lemma 1, the whole set of labels contains Ω(n4) distinct
triangles; they contain Ω(n4/3) unique labels. ��

u

v

w

z

Fig. 1. Triangles in a labeled
cycle. The sets {u, w, z} and
{v, w, z} are triangles, while
{u, v, w} and {u, v, z} are not.

By diameter of a cycle Ci we mean not only
the maximum length of a path between its nodes
(i.e., 	i/2
) but also any path of this length. From
the context it is always clear whether we speak of
a path or of a number.

Lemma 2. For any labeling of two distinct cycles
Ci and Cj there exist a diameter of Ci and a diam-
eter of Cj such that every label appearing in both
cycles belongs to both these diameters.

Proof. Let i > j and let L be the set of common
labels of Ci and Cj . We assume #L ≥ 3 as other-
wise the diameters trivially exist. By Lemma 1, L
contains no triangles. Hence for every triple of elements of L the maximum dis-
tance is the sum of the two other distances. Let u, v be labels with the maximum
distance in L. We have d(u, v) ≤ i/2�−1, because there are no larger distances in
Cj . Then the shortest (u, v)-path in Ci is unique. Since d(u, v) = d(u,w)+d(w, v)
for any w ∈ L by the maximality of d(u, v), all labels from L appear on this
unique path, and hence on any diameter containing this path.

Though Cj may contain two shortest (u, v)-paths, all labels from L appear
on one of them. Indeed, let w, z ∈ L\{u, v}. Considering the shortest (u, v)-path
in Ci, we have w.l.o.g. d(u,w) + d(w, z) + d(z, v) = d(u, v). This equality would
be violated if w and z belong to different shortest (u, v)-paths in Cj . Thus, Ci

has a diameter, containing the shortest (u, v)-path with all labels from L on it.
��

The best known upper bound for cycle labeling is based on the following
folklore labeling scheme, which is more economical than the scheme from [17].
For each Ci ∈ Cn we choose arbitrary adjacent nodes u and v and cover Ci by two
disjoint paths: the path P1 contains i/2� nodes, including u, while P2 contains
	i/2
 nodes, including v (see the example in Fig. 2). Each node from P1 gets the
label (1, d1,m1), where d1 is the distance to u and m1 = i mod

⌈√
n
⌉
; each node

from P2 gets the label (2, d2,m2), where d2 is the distance to v, m2 =
⌊
i/

⌈√
n
⌉⌋

.

Distance Labeling for Families of Cycles 475

Proposition 3 (folklore). The folklore scheme is valid and uses 3
4n

√
n+O(n)

labels to label Cn.

Proof. We prove the validity describing a procedure that derives the distance
between two nodes from their labels (for illustration, see Fig. 2). Suppose that
the labels (b, d,m) and (b′, d′,m′) appear together in some (unknown) cycle. If
b = b′, the two labels belong to the same path, so the distance between them is
|d−d′|. If b �= b′, we compute the length i of the cycle from the pair (m,m′). The
two analysed labels are connected by a path of length d + d′ + 1 and by another
path of length i − d − d′ − 1; comparing these lengths, we get the distance.

To compute the number of triples (b, d,m) used for labeling, note that there
are two options for b, 	n/2
 + 1 options for d, and

⌈√
n
⌉

options for m, for the
total of n

√
n + O(n) options. However, some triples are never used as labels.

The label (b, d,m) is unused iff for every number i ≤ n compatible with m, the
length of the path Pb in Ci is less than d. If b = 1, the maximum i compatible
with m is i = (√n� − 1)√n� + m, which is O(

√
n) away from n. Therefore,

each of O(
√

n) values of m gives O(
√

n) unused labels, for the total of O(n). Let
b = 2. The maximum i compatible with m is i = (m+1)√n�−1. The number of
impossible values of d for this m is (n/2
−1)−(i/2
−1) =

√
n−m
2 ·√n+O(

√
n).

Summing up these numbers for m = 0, . . . , √n�−1, we get n
√

n
4 +O(n) unused

labels. In total we have n
√

n
4 + O(n) unused labels out of n

√
n + O(n) possible;

the difference gives us exactly the stated bound. ��

3 More Efficient Labeling Scheme and Its Analysis

Fig. 2. Folklore scheme: labeling C9

in the family C10. One has �√10� = 4,
m1 = 9 mod 4 = 1, m2 = �9/4� = 2.

We start with more definitions related to
labeled cycles. An arc is a labeled path,
including the cases of one-node and empty
paths. The labels on the arc form a string
(up to reversal), and we often identify the
arc with this string. In particular, we speak
about substrings and suffixes of arcs. “To
label a path P with an arc a” means to
assign labels to the nodes of P to turn P
into a copy of a.

By intersection of two labeled cycles we
mean the labeled subgraph induced by all
their common labels. Clearly, this subgraph is a collection of arcs. Lemma 2
says that the intersection is a subgraph of some diameter of each cycle. The
intersections of two arcs and of a cycle and an arc are defined in the same way.

An arc labeling of a family of cycles is a labeling with the property that the
intersection of any two cycles is an arc. Arc labelings are natural and easy to work
with. Note that the folklore scheme produces an arc labeling: the intersection of
two cycles is either empty or coincides with the path P1 or the path P2 of the
smaller cycle. The schemes defined below produce arc labelings as well.

476 A. M. Shur and M. Rubinchik

2-Arc Labeling Scheme. In this auxiliary scheme, cycles are labeled sequentially.
The basic step is “label a cycle with two arcs”. Informally, we partition the cycle
into two paths of equal or almost equal length and label each of them with an
arc (or with its substring of appropriate length). To specify details and reduce
ambiguity, we define this step in the function label(a1, a2, Cj) below.

1: function label(a1, a2, Cj)
2: if |a1| + |a2| < j or min{|a1|, |a2|} < �j/2� − 1 then
3: return error � not enough labels for Cj

4: else
5: label any path in Cj of length min{|a2|, �j/2� + 1} by a suffix of a2

6: label the remaining path in Cj by a suffix of a1

The definition says that we label with suffixes (rather than arbitrary sub-
strings) of arcs and use the longest possible suffix of the second arc. By default,
we suppose that both suffixes can be read on the cycle in the same direction
(i.e., the last labels from a1 and a2 are at the distance ≈ j/2).

Fig. 3. Example: 2-arc labeling for the family C5.

The 2-arc scheme
starts with a set A of m
pairwise disjoint arcs of
sufficient length.

It calls the function
label() for each pair of
arcs in A. As a result,
it produces a family of
up to m(m+1)

2 labeled cycles. Lemma 3 below proves that the result is a labeling;
we call it the 2-arc labeling. In Fig. 3, such a labeling of the family C5 is shown.

Lemma 3. The 2-arc labeling scheme is valid and produces arc labelings.

Proof. The intersection of two cycles is an arc (possibly, empty) by construction,
so it suffices to prove that the output of the 2-arc scheme is a labeling. Thus
we need to define the function d′ on labels. This is possible iff for every two
labels u, v the distance d(u, v) is the same for each cycle containing both u and
v. Since the scheme uses each pair of arcs once, the labels u, v sharing several
cycles belong to some arc a ∈ A. The intersection of a cycle Ci with a is at
most the diameter of Ci. Hence d(u, v) in Ci is the same as d(u, v) in a, and this
property holds for any cycle shared by u and v. Thus the scheme is valid. ��
Remark 1. For a 2-arc labeling of the family Cn one can take

√
2n + O(1) arcs

of length n
2 + O(1) each, to the total of n

√
n√
2

+ O(n) labels. So the 2-arc labeling

beats the folklore labeling, which requires 3n
√

n
4 + O(n) labels by Proposition 3.

Next, we develop the idea of 2-arc labeling to obtain a scheme that, as we
believe, produces asymptotically optimal labelings for the families Cn.

Distance Labeling for Families of Cycles 477

Chain Labeling Scheme. First we present the 2-arc labeling scheme for the family
Cn as greedy Algorithm 1, which labels cycles in the order of decreasing length
and proceeds in phases until all cycles are labeled. Each phase starts with creat-
ing a new arc with the function create(arc, length); then the function label() is
called in a cycle, each time using the new arc and one of the earlier created arcs.
The length of the new arc is taken to barely pass the length condition for the
first call to label(). In the preliminary phase 1 (lines 1–3), two arcs are created
and the largest cycle is labeled. Other phases are iterations of the while cycle
in lines 4–10. See Fig. 3 for the example.

Algorithm 1 : Greedy 2-arc labeling scheme for Cn

1: create(a0, �n/2�); create(a1, �n/2�)
2: label(a0, a1, Cn)
3: i ← 2; j ← n − 1 � next arc to create; next cycle to label
4: while j > 2 do � start of ith phase
5: create(ai, �j/2� − 1) � minimum length of an arc needed to label Cj

6: k ← 0 � next arc to use
7: while k < i and j > 2 do
8: label(ak, ai, Cj)
9: j ← j − 1; k ← k + 1

10: i ← i + 1

The chain scheme is a modification of Algorithm 1 that allows to use previ-
ously created arcs more efficiently. The difference is in the first parameter of the
label function (line 8). During phase i, a chain is a path labeled by the concate-
nation a0a1 · · · ai−1 of the strings labeling all previously created arcs. Though
formally the chain is an arc, the distance between labels in the chain may differ
from the distance between the same labels in the already labeled cycles. For
example, the string a0a1 labels both the cycle Cn with the diameter 	n/2
 + 1
and a path of diameter n − 1 in the chain. However, with some precautions the
chain can be used for labeling cycles. The chain scheme is presented below as
Algorithm 2. The auxiliary function trim(c) deletes the suffix of the chain c that
was used to label a cycle on the current iteration of the internal cycle.

Algorithm 2 : Chain labeling scheme for Cn

1: create(a0, �n/2�); create(a1, �n/2�)
2: label(a0, a1, Cn)
3: i ← 2; j ← n − 1 � next arc to create; next cycle to label
4: while j > 2 do � start of phase i
5: c ← a0a1 · · · ai−1 � chain for phase i
6: create(ai, �j/2� − 1) � minimum length of an arc needed to label Cj

7: while |c| ≥ �j/2� − 1 and j > 2 do
8: label(c, ai, Cj)
9: j ← j − 1; trim(c) � deleting the just used suffix from the chain

10: i ← i + 1

478 A. M. Shur and M. Rubinchik

To prove validity of the chain scheme, we need an auxiliary lemma.

Lemma 4. Let j be the length of the longest unlabeled cycle at the beginning of
i’th phase of Algorithm 2, i ≥ 2. Then every substring of length ≤ 	j/2
 + 1 of
the chain c = a0a1 · · · ai−1 labels an arc in a cycle Cj′ for some j′ > j.

Proof. Note that if a string labels an arc in an already labeled cycle, then every
its substring does the same. We proceed by induction on i. From line 2 we see
that each substring of length 	n/2
 + 1 of the string a0a1 labels a diameter in
Cn. Hence we have the base case i = 2. Since j decreases with each phase, the
inductive hypothesis implies that at the start of (i−1)th phase each substring of
length 	j/2
 + 1 of a0a1 · · · ai−2 labels an arc in some already labeled cycle. Let
Cĵ be the first cycle labeled at this phase. Then a diameter of Cĵ is labeled with
a suffix of a0a1 · · · ai−2, say, a′, and the remaining arc is labeled with the whole
string ai−1. Since ĵ > j, both the prefix a0a1 · · · ai−2 and the suffix a′ai−1 of the
chain c have the desired property: each substring of length ≤ 	j/2
 + 1 labels
an arc in an already labeled cycle. As these prefix and suffix of c intersect by
a substring a′ of length ≥ 	j/2
 + 1, the whole chain c has this property. This
proves the step case and the lemma. ��
Lemma 5. The chain labeling scheme is valid and builds an arc labeling.

Proof. To prove that Algorithm 2 builds a labeling, it suffices to check the fol-
lowing property: in every cycle Cj , each pair of labels either does not appear in
larger cycles or appears in some larger cycle at the same distance as in Cj . This
property trivially holds for Cn, so let us consider a cycle Cj labeled at i’th phase,
i ≥ 2. The cycle Cj is labeled by two arcs: a substring of the chain c = a0 · · · ai−1

and a suffix of the new arc ai. We denote them by c′ and a′
i respectively.

Suppose that a pair of labels (u, v) from Cj appeared in a larger cycle. Since
all substrings of c used for labeling together with ai are disjoint, u and v belong
to the same arc (c′ or a′

i). Then the shortest (u, v)-path in Cj is within this arc.
If u, v are in a′

i, then d(u, v) in Cj is the same as in the larger cycle containing
ai. If u, v are in c′, then d(u, v) in Cj is the same as in the larger cycle containing
the arc c′; as |c′| ≤ j/2� − 1, such a cycle exists by Lemma 4. Hence we proved
that Algorithm 2 indeed builds a labeling; it is an arc labeling by construction.

��
We call the labelings obtained by chain scheme chain labelings. Now we esti-

mate the efficiency of the scheme.

Theorem 1. A chain labeling of a family Cn of cycles uses n
√

n√
6

+ O(n) labels.

We first need a simpler estimate.

Lemma 6. Algorithm 2 labels Cn using O(
√

n) phases and O(n
√

n) labels.

Proof. Let us compare the runs of Algorithms 1 and 2 on the family Cn. Suppose
that �i is the length of ai for Algorithm 2 and Ni is the number of cycles labeled

Distance Labeling for Families of Cycles 479

by Algorithm 2 during the first i phases. For Algorithm 1, we denote the same
parameters by �′

i and N ′
i . Note that N1 = N ′

1 = 1.
Let i ≥ 2. If Ni−1 = N ′

i−1, then �i = �′
i as both algorithms begin the i’th

phase with the same value of j. During this phase, Algorithm 1 labels i cycles,
while Algorithm 2 labels at least i cycles (the length of the chain allows this),
and possibly more. Hence Ni ≥ N ′

i . If Ni−1 > N ′
i−1, Algorithm 2 begins the i’th

phase with smaller value of j compared to Algorithm 1. Then �i ≤ �′
i and again,

the length of the chain allows Algorithm 2 to label at least i cycles during the
i’th phase. Hence Ni > N ′

i (or Ni = N ′
i = n − 2 if both algorithms completed

the labeling during this phase). Therefore, Algorithm 2 uses at most the same
number of phases and at most the same number of labels as Algorithm 1. The
latter uses

√
2n + O(1) arcs and thus O(n

√
n) labels. The lemma is proved. ��

Proof (of Theorem 1). The idea is to count distinct pairs of labels and infer the
number of labels from the obtained result. First we count the pairs of labels that
appear together in some cycle. We scan the cycles in the order of decreasing
length and add “new” pairs (those not appearing in larger cycles) to the total.
After applying Algorithm 2 to Cn, each cycle Cj is labeled by two arcs of almost
equal length: one of them is a substring of the chain c and the other one is a suffix
of the current arc ai. All pairs from c in Cj are not new by Lemma 4. All pairs
between c and ai are new by construction, and their number is j2

4 +O(j). Over all
cycles Cj , this gives n3

12 +O(n2) distinct pairs in total. All pairs from ai are new
if and only if Cj is the first cycle labeled in a phase. By Lemma 6, Algorithm 2
spends O(

√
n) phases. Hence there are O(

√
n) arcs ai, each containing O(n2)

pairs of labels, for the total of O(n5/2) pairs. Therefore, the number of pairs that
appear together in a cycle is n3

12 + O(n5/2).
Next we count the pairs of labels that do not appear together. The labels

in such a pair belong to different arcs. Let u, v be from ai′ and ai respectively,
i′ < i. If u and v appear together, then the largest cycle containing both u and
v was labeled at phase i. Indeed, earlier phases have no access to v, and if u
and v share a cycle labeled at a later phase, then Lemma 4 guarantees that they
also appear in a larger cycle. Thus, to get the total number of pairs that do
not appear together we count, for each phase i, the pairs (u, v) such that u is
from the chain, v is from ai, and neither of the cycles labeled during this phase
contains both u and v.

There are three reasons why neither of the cycles labeled during phase i
contains both u from the chain c and v from ai. First, this can be the last phase,
which is too short to use u. Since |ai| < n and |c| = O(n

√
n) by Lemma 6, the

last phase affects O(n5/2) pairs. Second, u can belong to a short prefix of c that
remained unused during the phase due to the condition in line 7 of Algorithm 2.
This prefix is shorter than ai, so this situation affects less than |ai|2 pairs. As
the number of phases is O(

√
n) (Lemma 6), the total number of such pairs is

O(n5/2). Third, v can belong to a prefix of ai that was unused for the cycle
containing u. The number of labels from ai that were unused for at least one
cycle during phase i does not exceed |ai|−|ai+1|, which gives O(n) labels over all

480 A. M. Shur and M. Rubinchik

phases. Each such label v is responsible for O(n
√

n) pairs by Lemma 6, for the
total of O(n5/2) pairs. Thus there are O(n5/2) pairs that do not appear together.

Putting everything together, we obtain that a chain labeling of Cn contains
p = n3

12 + O(n5/2) pairs of labels. Hence the number ch(n) of labels is

ch(n) =
√

2p + O(1) =
n
√

n√
6

·
√

1 + O(n−1/2) + O(1) =
n
√

n√
6

+ O(n),

as required. ��

4 Chain Labelings vs Optimal Labelings

The chain labeling beats the folklore labeling almost twice in the number of labels
(Theorem 1 versus Proposition 3). However, it is not clear how good this new
labeling is, given that the known lower bound (Proposition 2) looks rather weak.
In this section we describe the results of an experimental study we conducted to
justify Conjecture 1, stating that the chain labeling is asymptotically optimal.

Conjecture 1. λ(n) = n
√

n√
6

+ O(n).

We proceed in three steps, which logically follows each other.

Step 1. Compute as many values of λ(n) as possible and compare them to n
√

n√
6

.

Outline of the Search Algorithm. To compute λ(n), we run a recursive depth-
first search, labeling cycles in the order of decreasing length. The upper bound
max on the total number of labels is a global variable. The recursive function
labelCycle(j, L,D) gets the length j of the cycle to label, the set L of existing
labels, and the table D of known distances between them. The function runs an
optimized search over all subsets of L. When it finds a subset X that is both

– compatible: all labels from X can be assigned to the nodes of Cj respecting
the distances from D, and

– large: labeling Cj with X ∪ Y , where the set Y of labels is disjoint with L,
holds the total number of labels below the upper bound max ,

it labels Cj with X∪Y , adds Y to L to get some L′, adds newly defined distances
to D to get some D′, and compares j to 3. If j = 3, the function reports (L′,D′),
sets max = #L′, and returns; otherwise, it calls labelCycle(j−1, L′,D′). The
value of max in the end of search is reported as λ(n). See [22] for the C++ code.

Results. We managed to find λ(n) for n ≤ 17; for n = 17 the algorithm made
over 5 ·1012 recursive calls, which is 30 times bigger than for n = 16. Computing
λ(18) would probably require a cluster. The witness labelings can be found in
the arXiv version (CoRR abs/2308.15242); the numbers λ(n) fit well in between
the bounds n

√
n√
6

and n(
√

n+1)√
6

(see Fig. 4). As a side result, we note that almost
all optimal labelings we discovered are arc labelings.

Distance Labeling for Families of Cycles 481

Fig. 4. Bound from Theorem 1 versus the optimal
numbers λ(n) of labels. The lower and upper bounds

are n
√
n√
6

and n(
√
n+1)√
6

respectively.

If we view the “corridor”
in Fig. 4 as an extrapolation
for λ(n) for big n, we have to
refer ch(n) to this corridor.

Step 2. Estimate the constant
in the O(n) term in Theo-
rem 1, to compare ch(n) to
the results of step 1.

Results. We computed ch(n)
for many values of n in the
range [103..107]. In all cases,
ch(n) ≈ n(

√
n+1.5)√
6

, which is
only n

2
√
6

away from the “cor-
ridor” in Fig. 4.

The natural next question
is whether we can do better.

Step 3. Find resources to
improve the chain scheme to
come closer to λ(n).

In order to reduce the
amount of resources “wasted”
by the chain scheme, we
describe three improving tricks.
An example of their use is an
optimal labeling of C14 pre-
sented in Fig. 5.

Trick 1: Reusing Ends of Arcs. During a phase, if a cycle is labeled with
the strings a1 · · · aj from the new arc and cx · · · cx+j or cx · · · cx+j+1 from the
chain, then it is correct to use for the next cycle the string cx−j+1 · · · cx (resp.,
cx−j · · · cx), thus reusing the label cx; for example see C13 and C12 in Fig. 5.

The function label() is defined so that the above situation happens only in
the beginning of the phase, so this trick saves 1 or 2 labels in the chain. Still,
sometimes this leads to labeling an additional cycle during a phase.

Trick 2: Using Chain Remainders. In the end of a phase, we memorize the
remainder c of the chain and the current arc a. Thus, at any moment we have
the set S of such pairs of strings (initially empty). Now, before labeling a cycle
we check whether S contains a pair (c, a) that can label this cycle. If yes, we
extract (c, a) from S and run a “mini-phase”, labeling successive cycles with c
as the arc and a as the chain; when the mini-phase ends, with a′ being the chain
remainder, we add the pair (a′, c) to S and proceed to the next cycle. Otherwise,
we label the current cycle as usual. In Fig. 5, the pair (12, abcdef) was added to
S after phase 2. Later, the cycles C6 and C5 were labeled during a mini-phase
with this pair; note that trick 1 was used to label C5.

482 A. M. Shur and M. Rubinchik

1
2

3

4

5

6

7
8

9

10

11

12

13

14

C14

8
9

10

11

12

13

14a
b

c

d

e

f

C13

8

7

6

5

4

3

a

b

c

d

e

f

C12

a

b

c

d

e

fv

w

x

y

z

C11

a

14

13

12

11

v

w

x

y

z

C10

7

8

9

10

vw

x

y

z

C9

3

4v
C3

3

2

1

v C4

c
b

a2

1 C5

c
d

e
f

2

1
C6

1
2
3

wx
y
z

C7

7 6
5

4wx
y
z
C8

Fig. 5. An optimal labeling of C14 by the enhanced chain scheme.

Trick 3: Two-Pass Phase. We combine the last two phases as follows. Let a be
the arc in the penultimate phase and the prefix a′ of a was unused for labeling
the last cycle during the phase. As this cycle consumed |a| − |a′| labels from
the arc, for the last phase we need the arc of the same (up to a small constant)
length. We create such an arc of the form âa′, where the labels from â are new
(if |a′| > |a|/2, no new labels are needed). During the last phase, we reverse both
the arc and the chain: the chain c is cut from the beginning, and the arc âa′ is
cut from the end. In this way, the labels from a′ will not meet the labels from c
for the second time, so the phase will finish correctly. An additional small trick
can help sometimes: for a cycle, we use one less symbol from the arc than the
maximum possible. This charges the chain by an additional label but this label
can be reused from the previous cycle by employing trick 1. In Fig. 5, this was
done for C8. As a result, a′ = v did not meet the labels 1, . . . , 6 from the chain
and we were able to label C4 and C3 without introducing an additional arc.

Results. We applied the enhanced chain scheme, which uses tricks 1–3, for label-
ing many families Cn for n ∈ [103..107]. In all cases, we get the number of labels
ch+(n) ≈ n(

√
n+1)√
6

, which is exactly the upper bound of the corridor in Fig. 4. In
Table 1, we compare the results of chain schemes to the known optima, starting
from the first nontrivial case n = 7.

Overall, the results gathered in Fig. 4 and Table 1 together with the behavior
of ch(n) and ch+(n) for big n give a substantial support to Conjecture 1.

5 Discussion and Future Work

The main open problem for distance labeling of the families Cn is the gap
between the lower bound λ(n) = Ω(n 3

√
n) and the upper bound λ(n) = O(n

√
n).

Our results suggest that the upper bound provides the correct asymptotics but
improving the lower bound will probably need a new approach.

Distance Labeling for Families of Cycles 483

Table 1. Comparison of chain and optimal labelings for small n. The columns ch(n),
ch+(n), λ(n) contain the number of labels for the chain scheme, enhanced chain scheme,
and the optimal labeling, respectively; ch++(n) refers to the hybrid scheme: we perform
the enhanced chain scheme till the two-pass phase, and replace this phase by a search
for an optimal labeling of remaining cycles.

n ch(n) ch+(n) ch++(n) λ(n)

7 10 10 10 10

8 13 12 11 11

9 14 14 14 14

10 17 17 16 16

11 19 18 18 18

12 21 21 20 20

n ch(n) ch+(n) ch++(n) λ(n)

13 24 23 22 22

14 28 25 25 25

15 30 29 28 27

16 33 33 31 30

17 35 34 33 32

18 38 38 36 35?

This is pretty alike the situation with the distance labeling of planar graphs.
Here, the gap (in terms of the length of a label in bits, i.e., in logarithmic scale)
is between Ω(3

√
n) and O(

√
n) and there is an evidence [1,14] that the upper

bound gives the correct asymptotics but the existing approach does not allow to
improve the lower bound. Another similar gap between the cubic root and the
quadratic root appears in the adjacency labeling problem for Cn [3].

As a possible approach to the improvement of the lower bound for λ(n) we
propose to study the number λk(n) of labels needed to label the family Cn,k =
{Cn, Cn−1, . . . , Cn−k+1}, starting from small k. Algorithm 1 and Lemma 2 imply
λ2(n) = λ3(n) = 1.5n+O(1) but already the next step is not completely trivial.

Acknowledgements. We are grateful to E. Porat for introducing the distance label-
ing problem to us. Our special thanks to A. Safronov for the assistance in computational
experiments.

References

1. Abboud, A., Gawrychowski, P., Mozes, S., Weimann, O.: Near-optimal compression
for the planar graph metric. In: Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2018, pp. 530–549. SIAM (2018)

2. Abiteboul, S., Alstrup, S., Kaplan, H., Milo, T., Rauhe, T.: Compact labeling
scheme for ancestor queries. SIAM J. Comput. 35(6), 1295–1309 (2006)

3. Abrahamsen, M., Alstrup, S., Holm, J., Knudsen, M.B.T., Stöckel, M.: Near-
optimal induced universal graphs for cycles and paths. Discret. Appl. Math. 282,
1–13 (2020)

4. Alstrup, S., Gørtz, I.L., Halvorsen, E.B., Porat, E.: Distance labeling schemes for
trees. In: 43rd International Colloquium on Automata, Languages, and Program-
ming, ICALP 2016. LIPIcs, vol. 55, pp. 132:1–132:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2016)

5. Bazzaro, F., Gavoille, C.: Localized and compact data-structure for comparability
graphs. Discret. Math. 309(11), 3465–3484 (2009)

484 A. M. Shur and M. Rubinchik

6. Breuer, M.A.: Coding the vertexes of a graph. IEEE Trans. Inf. Theory IT–12,
148–153 (1966)

7. Breuer, M.A., Folkman, J.: An unexpected result on coding vertices of a graph. J.
Math. Anal. Appl. 20, 583–600 (1967)

8. Cohen, E., Kaplan, H., Milo, T.: Labeling dynamic XML trees. SIAM J. Comput.
39(5), 2048–2074 (2010)

9. Eilam, T., Gavoille, C., Peleg, D.: Compact routing schemes with low stretch factor.
J. Algorithms 46(2), 97–114 (2003)

10. Freedman, O., Gawrychowski, P., Nicholson, P.K., Weimann, O.: Optimal distance
labeling schemes for trees. In: Proceedings of the ACM Symposium on Principles
of Distributed Computing, PODC 2017, pp. 185–194. ACM (2017)

11. Gavoille, C., Paul, C.: Optimal distance labeling for interval graphs and related
graph families. SIAM J. Discret. Math. 22(3), 1239–1258 (2008)

12. Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Distrib.
Comput. 16(2–3), 111–120 (2003)

13. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algo-
rithms 53(1), 85–112 (2004)

14. Gawrychowski, P., Uznanski, P.: Better distance labeling for unweighted planar
graphs. Algorithmica 85(6), 1805–1823 (2023)

15. Graham, R.L., Pollak, H.O.: On embedding graphs in squashed cubes. In: Alavi,
Y., Lick, D.R., White, A.T. (eds.) Graph Theory and Applications. Lecture Notes
in Mathematics, vol. 303, pp. 99–110. Springer, Heidelberg (1972). https://doi.org/
10.1007/BFb0067362

16. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Dis-
crete Math. 5(4), 596–603 (1992)

17. Korman, A., Peleg, D., Rodeh, Y.: Constructing labeling schemes through universal
matrices. Algorithmica 57, 641–652 (2010)

18. Moon, J.W.: On minimal n-universal graphs. Glasgow Math. J. 7(1), 32–33 (1965)
19. Peleg, D.: Proximity-preserving labeling schemes and their applications. In: Wid-

mayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 30–41.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46784-X 5

20. Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of the Thir-
teenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
2001, pp. 1–10. ACM (2001)

21. Winkler, P.M.: Proof of the squashed cube conjecture. Combinatorica 3, 135–139
(1983)

22. Distance labeling for small families of cycles, source code (2023). https://tinyurl.
com/tc8nd39s

https://doi.org/10.1007/BFb0067362
https://doi.org/10.1007/BFb0067362
https://doi.org/10.1007/3-540-46784-X_5
https://tinyurl.com/tc8nd39s
https://tinyurl.com/tc8nd39s

On the Induced Problem
for Fixed-Template CSPs

Rustem Takhanov(B)

Nazarbayev University, 53 Kabanbay Batyr Ave, Astana, Kazakhstan

rustem.takhanov@nu.edu.kz

Abstract. The Constraint Satisfaction Problem (CSP) is a problem of
computing a homomorphism R → Γ between two relational structures,
where R is defined over a domain 𝑉 and Γ is defined over a domain 𝐷.
In a fixed template CSP, denoted CSP(Γ), the right side structure Γ
is fixed and the left side structure R is unconstrained. In the last two
decades it was discovered that the reasons that make fixed template
CSPs polynomially solvable are of algebraic nature, namely, templates
that are tractable should be preserved under certain polymorphisms.
From this perspective the following problem looks natural: given a pre-
specified finite set of algebras B whose domain is 𝐷, is it possible to
present the solution set of a given instance of CSP(Γ) as a subalgebra of
A1 × ... × A

|𝑉 |
where A𝑖 ∈ B?

We study this problem and show that it can be reformulated as an
instance of a certain fixed-template CSP over another template ΓB .

We study conditions under which CSP(Γ) can be reduced to
CSP(ΓB

). This issue is connected with the so-called CSP with an input
prototype, formulated in the following way: given a homomorphism from
R to ΓB find a homomorphism from R to Γ. We prove that if B contains
only tractable algebras, then the latter CSP with an input prototype is
tractable. We also prove that CSP(ΓB

) can be reduced to CSP(Γ) if
the set B, treated as a relation over 𝐷, can be expressed as a primitive
positive formula over Γ.

Keywords: Lifted language · Lifted constraint instance · CSP with
input prototype · Constraint satisfaction problem · Tractability

1 Introduction

The constraint satisfaction problem (CSP) can be formalized in the variable-
value form as a problem of finding an assignment of values to a given set of
variables, subject to constraints. There is also an equivalent formulation of it as
a problem of finding a homomorphism ℎ : R → Γ for two given finite relational
structures R and Γ.

A special case, when the second relational structure is some fixed Γ (called
a template) and the domain of Γ is Boolean, was historically one of the first
NP-hard problems [6], and its study has attracted some attention since the
70 s [8,16]. Feder and Vardi [7] formulated the so-called dichotomy conjecture
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 485–499, 2024.
https://doi.org/10.1007/978-3-031-52113-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_34&domain=pdf
http://orcid.org/0000-0001-7405-8254
https://doi.org/10.1007/978-3-031-52113-3_34

486 R. Takhanov

that states that for a template Γ over an arbitrary finite domain, CSP(Γ) is either
polynomially solvable or NP-hard. In [11] Jeavons showed that the complexity
of CSP(Γ) is determined by the so-called polymorphisms of Γ. A polymorphism
of a relation 𝜚 ⊆ 𝐷𝑛 is defined as an 𝑚-ary function 𝑝 : 𝐷𝑚

→ 𝐷 such that 𝜚 is
closed under the operation 𝑝 that is applied component-wise to tuples from 𝜚.
A polymorphism of a template Γ is defined as a function that is a polymorphism
of all relations in Γ. Jeavons’s result implies that if two languages Γ and Γ′

have the same polymorphisms, then CSP(Γ) and CSP(Γ′
) are log-space inter-

reducible. Further development of this method [3,13,15,17] made it possible to
precisely delineate the borderline between the polynomial-time and NP-complete
templates of the CSP. Bulatov [4] and Zhuk [20] independently confirmed the
Feder-Vardi conjecture.

Polymorphisms are interesting objects by themselves. Obviously, if a template
Γ has a polymorphism 𝑝, then for any instance R the set of solutions is preserved
by 𝑝. In other words, any such polymorphism induces an algebra on the solution
set. Is there any simple generalization of that algebra that also takes into account
the structure R?

Inspired by this observation, we suggest generalizing algebras induced by
polymorphisms of Γ in the following way. Suppose that we have a finite set B

of similar algebras, i.e. every element A ∈ B is a tuple (𝐷, 𝑜A

1 , ..., 𝑜A

𝑘) where
𝑜A

𝑖 : 𝐷𝑛𝑖
→ 𝐷, 𝑖 ∈ 1, . . . , 𝑘. Now, any instance of CSP(Γ) corresponds to another

search problem, which we call the induced problem. More precisely, let (𝑉, 𝐶) be
an instance of CSP(Γ), where 𝑉 is a set of variables and 𝐶 is a set of constraints.
The goal of the induced problem is to assign an algebra A𝑣 ∈ B to each variable
𝑣 ∈ 𝑉 in such a way that for every constraint 〈(𝑣1, ..., 𝑣𝑘), 𝜚〉 ∈ 𝐶, the relation 𝜚
is a subalgebra of A𝑣1 × ... × A𝑣𝑝 . If we are able to find such an assignment, it
can be proved that the set of all solutions of the initial CSP instance (which is
a subset of 𝐷𝑉) is a subalgebra of

∏

𝑣∈𝑉
A𝑣.

Motivation. Green and Cohen [10] considered the following computational
problem which is a special case of the induced problem. Given a CSP over
𝐷 = {1, · · · , 𝑑}, they formulate a search problem: for any variable 𝑣 ∈ 𝑉 find
a permutation 𝜋𝑣 : 𝐷 → 𝐷 such that if an assignment to (𝑣1, ..., 𝑣𝑝) is con-
strained to be in 𝜚 ⊆ 𝐷 𝑝 (in the initial CSP), then the resultant permuted
relation 𝜚′ = {(𝜋𝑣1 (𝑥1), · · · , 𝜋𝑣𝑝 (𝑥𝑝)) |(𝑥1, · · · , 𝑥𝑝) ∈ 𝜚} is max-closed (i.e. has a
polymorphism max(𝑥, 𝑦)).

Indeed, suppose that we solved the described problem. Then, the initial CSP
can be modified by a simple substitute 𝜚 → 𝜚′ in every constraint. This new
CSP instance is called the permuted CSP. Then to any solution ℎ : 𝑉 → 𝐷 of the
permuted CSP (whose existence can be identified efficiently because the CSP is
max-closed), we correspond a solution of the initial one by ℎ′

(𝑣) = 𝜋−1
𝑣 (ℎ(𝑣)).

To find such permutations 𝜋𝑣 , 𝑣 ∈ 𝑉 is computationally difficult in general.
Green and Cohen’s construction is a special case of ours, if we define a set of
algebras

B = {A𝜋 |𝜋 is a permutation of 𝐷},

On the Induced Problem for Fixed-Template CSPs 487

where for any permutation 𝜋 of 𝐷 we set

A𝜋 =
(
𝐷, max 𝜋

)
, max 𝜋 (𝑥, 𝑦) = 𝜋−1 (max(𝜋(𝑥), 𝜋(𝑦))

)
.

The assignment of variables 𝑣 → 𝜋𝑣 corresponds to the assignment 𝑣 → A𝜋𝑣 in
our framework.

Our Results. First we prove that a search for an assignment 𝑣 → A𝑣 in the
induced problem is equivalent to solving another fixed-template CSP(ΓB

) and
study the relationship between CSP(Γ) and CSP(ΓB

). We prove that if the
family B is tractable, i.e. all algebras in B are tractable (individually), and we are
given a homomorphism R → ΓB , then a homomorphism ℎ : R → Γ can be found
efficiently (Theorem 1). This result generalizes the desirable property of Green
and Cohen’s construction, in which, given appropriate permutations of domains,
the initial CSP can be efficiently solved. As a corollary we obtain that if Γ maps
homomorphically to ΓB , then CSP(Γ) is reducible to CSP(ΓB

) (Theorem 2).
Further we prove that if the family B has a certain structure, namely, when a
certain relation defined by B (called the trace of B) is expressible as a primitive
positive formula over Γ, CSP(ΓB

) can be reduced to CSP(Γ) (Theorems 3, 4
and Corollary 1).

Organization. In Sect. 2 we give all necessary definitions and state some basic
facts that we need. In Subsect. 2.2 we describe the construction of the “lifted
language”, taken from [14], and we introduce a novel framework of CSPs with
input prototype. In Sect. 3 we introduce our main construction of the template
ΓB and give examples of this construction. In Sect. 4 we prove the main result
of the paper, that is an algorithm for CSP(Γ), given a homomorphism from
an instance to ΓB (Theorem 1). Section 5 is dedicated to a Karp reduction of
CSP(ΓB

) to a non-uniform CSP that has basically two types of relations—those
that are in Γ and a so called trace of B (Theorems 3 and 5). As a consequence
we obtain that CSP(ΓB

) can be reduced to CSP(Γ) if B is preserved under all
polymorphisms of Γ.

In Appendix one can find 7 examples demonstrating a usefullness of the
induced problem (besides Green and Cohen’s case). These examples show that
for an appropriately chosen B, the template ΓB is tractable by construction, for
any Γ. Any proof that is omitted in the main part of the paper can be found in
Appendix.

2 Preliminaries

A problem is called tractable if it can be solved in polynomial time. We assume
P ≠ NP. Typically, a finite domain of CSP is denoted by 𝐷 and a finite set
of variables is denoted by 𝑉 . We denote tuples in lowercase boldface such as
a = (𝑎1, . . . , 𝑎𝑘). Also for a mapping ℎ : 𝐴 → 𝐵 and a tuple a = (𝑎1, . . . , 𝑎𝑘),
where 𝑎 𝑗 ∈ 𝐴 for 𝑗 = 1, . . . , 𝑘, we will write b = (ℎ(𝑎1), . . . , ℎ(𝑎𝑘)) simply as
b = ℎ(a). Let ar(𝜚), ar(a) stand for the arity of a relation 𝜚 and the size of a

488 R. Takhanov

tuple a, respectively. A relational structure is a finite set and a tuple of relations
of finite arity defined on that set. The set {1, ..., 𝑘} is denoted by [𝑘].

Let us formulate the general CSP as a homomorphism problem.

Definition 1. Let R = (𝐷R, 𝑟R
1 , · · · , 𝑟R

𝑠) and R′ = (𝐷R′

, 𝑟R′

1 , · · · , 𝑟R′

𝑠) be rela-
tional structures with a common signature (that is ar(𝑟R

𝑖) = ar(𝑟R′

𝑖) for every
𝑖 ∈ [𝑠]). A mapping ℎ : 𝐷R

→ 𝐷R′

is called a homomorphism from R to
R′ if for every 𝑖 ∈ [𝑠] and for any (𝑥1, . . . , 𝑥ar(𝑟R

𝑖)
) ∈ 𝑟R

𝑖 we have that
(
(ℎ(𝑥1), . . . , ℎ(𝑥ar(𝑟R

𝑖)
)

)
∈ 𝑟R′

𝑖 . In this case, we write R
ℎ
→ R′ or just R → R′.

Also, we denote Hom(R, R′
) = {ℎ | R

ℎ
→ R′

}.

A finite relational structure Γ = (𝐷, 𝜚1, . . . , 𝜚𝑠) over a fixed finite domain 𝐷
is called a template.

Definition 2. Let 𝐷 be a finite set and Γ a template over 𝐷. Then the fixed
template CSP for template Γ, denoted CSP(Γ), is defined as follows: given a
relational structure R of the same signature as Γ, find a homorphism ℎ : R → Γ.1

For Γ = (𝐷, 𝜚1, . . . , 𝜚𝑠) we denote by Γ (without boldface) the set of relations
{𝜚1, . . . , 𝜚𝑠} (which is called the constraint language) and by CSP(Γ) we denote
CSP(Γ).

Definition 3. A language Γ is said to be tractable if CSP(Γ) is tractable. Also,
Γ is said to be NP-hard if CSP(Γ) is NP-hard.

Any language Γ over a domain 𝐷 can be associated with a set of operations
on 𝐷, known as the polymorphisms of Γ [1], defined as follows.

Definition 4. An operation 𝑔 : 𝐷𝑚
→ 𝐷 is a polymorphism of a relation 𝜚 ⊆

𝐷𝑛 (or “𝑔 preserves 𝜚”, or “𝜚 is preserved by 𝑔”) if, for any 𝑚×𝑛-matrix whose
columns are 𝑥1, . . . , 𝑥𝑛 and whose rows are all in 𝜚, we have

(
𝑔(𝑥1), . . . , 𝑔(𝑥𝑛)

)
∈

𝜚. For any constraint language Γ over a set 𝐷, we denote by Pol(Γ) the set of
all operations on 𝐷 which are polymorphisms of every 𝜚 ∈ Γ.

Let us denote the set of polymorphisms of Γ by Pol(Γ). Jeavons [11] showed
that the complexity of CSP(Γ) is fully determined by Pol(Γ), which was the first
step in developing the so-called algebraic approach to fixed template CSP. We
will also use the notation Pol(Γ), meaning Pol(Γ).

2.1 Multi-sorted CSPs

For any finite collection of finite domains D =
{
𝐷𝑖 |𝑖 ∈ 𝐼

}
, and any list of indices

(𝑖1, 𝑖2, ..., 𝑖𝑚) ∈ 𝐼𝑚, a subset 𝜚 of 𝐷𝑖1 × 𝐷𝑖2 × · · · × 𝐷𝑖𝑚 , together with the list
(𝑖1, 𝑖2, ..., 𝑖𝑚), is called a multi-sorted relation over D with arity 𝑚 and signature
(𝑖1, 𝑖2, ..., 𝑖𝑚). For any such relation 𝜚, the signature of 𝜚 is denoted 𝜎(𝜚).

1 Throughout the paper we define the CSP as a search problem, not as a decision
problem, taking into account that both formulations are equivalent [3,5].

On the Induced Problem for Fixed-Template CSPs 489

Definition 5. Let Γ be a set of multi-sorted relations over a collection of sets
D =

{
𝐷𝑖 |𝑖 ∈ 𝐼

}
. The multi-sorted constraint satisfaction problem over Γ, denoted

MCSP(Γ), is defined to be the search problem with:

Instance: A triple (𝑉 ; 𝛿;C) where

– 𝑉 is a set of variables;
– 𝛿 is a mapping from 𝑉 to 𝐼, called the domain function;
– C is a set of constraints, where each constraint 𝐶 ∈ C is a pair (𝑠, 𝜚), such

that
• 𝑠 = (𝑣1, ..., 𝑣𝑚𝐶) is a tuple of variables of length 𝑚𝐶 , called the constraint
scope;

• 𝜚 is an element of Γ with the arity 𝑚𝐶 and signature (𝛿(𝑣1), ..., 𝛿(𝑣𝑚𝐶))

called the constraint relation.

Question: Find a solution (or, indicate its nonexistence), i.e., a function 𝜙,
from 𝑉 to ∪𝑖∈𝐼𝐷𝑖 such that, for each variable 𝑣 ∈ 𝑉 , 𝜙(𝑣) ∈ 𝐷 𝛿 (𝑣) , and for each
constraint (𝑠, 𝜚) ∈ C, with 𝑠 = (𝑣1, ..., 𝑣𝑚), the tuple (𝜙(𝑣1), ..., 𝜙(𝑣𝑚)) belongs to
𝜚?

By construction a fixed template CSP, given in the form of a homomor-
phism problem, can be formulated as a multi-sorted CSP over a collection of
domains D =

{
𝐷
}
. The problem of finding a homomorphism ℎ : R → Γ where

R = (𝑉, 𝑟1, . . . , 𝑟𝑠) and Γ = (𝐷, 𝜚1, . . . , 𝜚𝑠), is equivalent to the following set of
constraints: {

(v, 𝜚𝑖) |𝑖 ∈ [𝑠], v ∈ 𝑟𝑖
}
. (1)

Definition 6. A set of multi-sorted relations, Γ is said to be tractable if
MCSP(Γ) is tractable.

Definition 7. Let D be a collection of sets. An 𝑚-ary multi-sorted operation 𝑡
on D is defined by a collection of interpretations

{
𝑡𝐷 |𝐷 ∈ D

}
, where each 𝑡𝐷 is

an 𝑚-ary operation on the corresponding set 𝐷. A multi-sorted operation 𝑡 on
D is said to be a polymorphism of an 𝑛-ary multi-sorted relation 𝜚 over D with
signature (𝛿(1), ..., 𝛿(𝑛)) if, for any 𝑚 × 𝑛-matrix [𝑥1, . . . , 𝑥𝑛] whose rows are all
in 𝜚, we have (

𝑡𝐷𝛿 (1)
(
𝑥1
)
, . . . , 𝑡𝐷𝛿 (𝑛)

(
𝑥𝑛
))

∈ 𝜚. (2)

For the set of multi-sorted relations Γ, MPol(Γ) denotes the set of all multi-sorted
operations that are polymorphisms of each relation in Γ.

2.2 The Lifted Language

Let Γ = (𝐷, 𝜚1, . . . , 𝜚𝑠) be a template and R = (𝑉, 𝑟1, . . . , 𝑟𝑠) be a relational
structure given as an input to CSP(Γ). The problem of finding a homomorphism
ℎ : R → Γ can be reformulated as an instance of the multi-sorted CSP in many
different ways. We choose the most straightforward one as it gives an insight into
the construction of the lifted language. We introduce for every variable 𝑣 ∈ 𝑉

490 R. Takhanov

its unique domain 𝐷𝑣 = {(𝑣, 𝑎) |𝑎 ∈ 𝐷}. Thus, we get a collection of domains
D = {𝐷𝑣 |𝑣 ∈ 𝑉}.

For tuples a = (𝑎1, . . . , 𝑎𝑝) ∈ 𝐷 𝑝 and v = (𝑣1, . . . , 𝑣𝑝) ∈ 𝑉 𝑝 denote 𝑑 (v, a) =
((𝑣1, 𝑎1), ..., (𝑣𝑝 , 𝑎𝑝)). Now for a relation 𝜚 ⊆ 𝐷 𝑝 and v = (𝑣1, . . . , 𝑣𝑝) ∈ 𝑉 𝑝 we
will define a multi-sorted relation 𝜚(v) over D with a signature (𝑣1, . . . , 𝑣𝑝) by

𝜚(v) =
{
𝑑 (v, y) |y ∈ 𝜚

}
. (3)

The set of constraints {

(
v, 𝜚𝑖 (v)

)
: 𝑖 ∈ [𝑠], v ∈ 𝑟𝑖} ∪ {(𝑣, 𝐷𝑣) : 𝑣 ∈ 𝑉}

defines an instance of the multi-sorted CSP whose solutions are in one-to-one
correspondence with homomorphisms from R to Γ. The correspondence between
ℎ : 𝑉 → 𝐷 and ℎ′ : 𝑉 → ∪D is established by the rule ℎ′

(𝑣) = (𝑣, ℎ(𝑣)).
Finally, we construct the language ΓR (which is called the lifted language)

that consists of multi-sorted relations over D

ΓR = {𝜚𝑖 (v) : 𝑖 ∈ [𝑠], v ∈ 𝑟𝑖} ∪ {𝐷𝑣 : 𝑣 ∈ 𝑉}. (4)

Note that, if all relations in R are nonempty, the lifted language ΓR contains all
information about a pair R, Γ. After ordering its relations we get the template ΓR.
A more general version of this language (formulated in terms of cost functions)
first appeared in the context of the hybrid CSPs which is an extension of the
fixed-template CSP framework (see Sect. 5.1 of [14]).

Note that this language defines MCSP(ΓR), in which every variable is paired
with its domain as in Definition 5. Sometimes the lifted language will be treated
as a set of relations over a common domain ∪𝑣𝐷𝑣 = 𝑉 ×𝐷 (i.e. not multi-sorted),
e.g. as in Theorem 4. Since all domains 𝐷𝑣 , 𝑣 ∈ 𝑉 are disjoint, MCSP(ΓR) and
CSP(ΓR) are Karp reducible to each other.

The following lemma plays a key role in our paper. It shows that MCSP(ΓR)

is equivalent to another problem formulation called the CSP with an input pro-
totype (see Sect. 6 of [18]).

Definition 8. For a given template Γ and a relational structure P, the CSP
with an input prototype P is a problem, denoted CSP+

P (Γ), for which: a) an
instance is a pair (R, 𝜒) where R is a relational structure and 𝜒 : R → P is a
homomorphism; b) the goal is to find a homomorphism ℎ : R → Γ.

E.g., when P = ([4],≠), Γ = ([3],≠), then CSP+

P (Γ) is a problem of finding a
3-coloring of a graph whose 4-coloring is given as part of input.

Lemma 1. MCSP(ΓP) and CSP+

P(Γ) are Karp reducible to each other in linear
time.

Proof. Karp reduction ofMCSP(ΓP) to CSP+

P (Γ). Let Γ =
(
𝐷, 𝜚1, ..., 𝜚𝑠

)
and

P = (𝑉, 𝑟1, . . . , 𝑟𝑠) be given. Let I be an instance of MCSP(ΓP) that consists of
a set of variables 𝑊 and a set of constraints 𝐶. For any 𝜚𝑖 (v) ∈ ΓP let us denote
𝑓 v
𝑖 = {v′

| (v′, 𝜚𝑖 (v)) ∈ 𝐶}. Thus, 𝐶 =
{
(v′, 𝜚𝑖 (v)) |𝑖 ∈ [𝑠], v ∈ 𝑟𝑖 , v

′
∈ 𝑓 v

𝑖

}
.

Also, we are given an assignment 𝛿 : 𝑊 → 𝑉 , that assigns each variable 𝑣 ∈ 𝑊
its domain 𝐷 𝛿 (𝑣) . Denote R = (𝑊, 𝑓1, ..., 𝑓𝑠), where 𝑓𝑖 = ∪v∈𝑟𝑖 𝑓 v

𝑖 .

On the Induced Problem for Fixed-Template CSPs 491

According to Definition 5, 𝜚𝑖 (v) is a relation with signature 𝛿(v′
), v′

∈ 𝑓 v
𝑖 .

Therefore, for any v′
∈ 𝑓 v

𝑖 its component-wise image 𝛿(v′
) is exactly the tuple

v. Since v ∈ 𝑟𝑖, we conclude R
𝛿
→P.

For ℎ : 𝑊 → 𝐷, let us define ℎ𝛿 : 𝑊 → 𝑉 × 𝐷 by ℎ𝛿
(𝑣) = (𝛿(𝑣), ℎ(𝑣)).

Vice versa, to every assignment 𝑔 : 𝑊 → 𝑉 × 𝐷 we will associate an assignment
𝑔 𝑓

(𝑥) = 𝐹 (𝑔(𝑥)) where 𝐹 is a “forgetting” function, i.e. 𝐹 ((𝑣, 𝑎)) = 𝑎. For any
assignment 𝑔 : 𝑊 → 𝑉 × 𝐷 that satisfies 𝑔(𝑣) ∈ 𝐷 𝛿 (𝑣) , by construction, we have
(𝑔 𝑓

)
𝛿 = 𝑔. By construction, 𝑔 is a solution of our multi-sorted CSP if and only

if R
𝑔 𝑓

→Γ. The latter is an instance of CSP+

P (Γ) with an input structure R and
a homomorphism 𝛿 : R → P given, and any solution ℎ of it corresponds to a
solution ℎ𝛿 of I. By construction, all computations are polynomial-time, so we
proved that MCSP(ΓP) can be polynomially reduced to CSP+

P(Γ).

Karp Reduction of CSP+

P (Γ) to MCSP(ΓP). Let Γ =
(
𝐷, 𝜚1, ..., 𝜚𝑠

)
, P =

(𝑉, 𝑟1, . . . , 𝑟𝑠). Suppose we are given an instance of CSP+

P (Γ) with an input
structure R = (𝑊, 𝑓1, ..., 𝑓𝑠) and a homomorphism 𝛿 : R → P, i.e. our goal is to
satisfy the set of constraints

{
(v, 𝜚𝑖) |𝑖 ∈ [𝑠], v ∈ 𝑓𝑖

}
. Let us construct an instance

of MCSP(ΓP):
{
(v, 𝜚𝑖 (𝛿(v))) |𝑖 ∈ [𝑠], v ∈ 𝑓𝑖

}
, {(𝑣, 𝐷 𝛿 (𝑣)) |𝑣 ∈ 𝑊}.

It is straightforward to check that if 𝑔 is a solution for this instance then ℎ = 𝑔 𝑓

is a solution for CSP+

P(Γ) and visa versa. It remains to note that
{
𝜚𝑖 (𝛿(v)) |𝑖 ∈

[𝑠], v ∈ 𝑓𝑖
}
⊆ ΓP. By construction both reductions take linear time on the size

of input. 	

3 The Construction

Suppose that we are given a list 𝑜1, ..., 𝑜𝑘 of symbols with prescribed arities
𝑛1, ..., 𝑛𝑘 . This list is called the signature and denoted 𝜎. An algebra with a
signature 𝜎 is a tuple A =

(
𝐷A, 𝑜A

1 , 𝑜A

2 , ..., 𝑜A

𝑘

)
, where 𝐷A denotes a finite domain

of the algebra and 𝑜A

𝑖 :
(
𝐷A

)𝑛𝑖
→ 𝐷A, 𝑖 ∈ [𝑘] denote its basic operations. Let us

denote by A
𝜎
𝐷 the set of algebras with one fixed signature 𝜎 and over a single

fixed domain 𝐷. Suppose we are given a collection B ⊆ A
𝜎
𝐷 and a relational

structure Γ =
(
𝐷, 𝜚1, ..., 𝜚𝑠

)
where 𝜚𝑖 is a relation over 𝐷.

Definition 9. Let 𝜚 be an 𝑚-ary relation over 𝐷. Let us define

𝜚B = {(A1, ...,A𝑚) ∈ B × · · · × B | 𝜚 is a subalgebra of A1 × · · · × A𝑚}.

In other words, we define the relation 𝜚B as a subset of B
𝑚 that consists of

tuples (A1, ...,A𝑚) ∈ B
𝑚 such that for any 𝑖 ∈ [𝑘],

(
𝑜A1
𝑖 , 𝑜A2

𝑖 , ..., 𝑜A𝑚

𝑖

)
is a

component-wise polymorphism of 𝜚.2 The last condition means that for any
matrix [𝑥1, . . . , 𝑥𝑚] ∈ 𝐷𝑛𝑖×𝑚 whose rows are all in 𝜚, we have

(
𝑜A1
𝑖 (𝑥1), 𝑜A2

𝑖 (𝑥2),
..., 𝑜A𝑚

𝑖 (𝑥𝑚)
)
∈ 𝜚.

2 𝜚B can be empty.

492 R. Takhanov

Definition 10. Given Γ and B, we define ΓB =
{
𝜚B

|𝜚 ∈ Γ
}
. Analogously, if Γ =

(
𝐷, 𝜚1, ..., 𝜚𝑠

)
where 𝜚𝑖 is a relation over 𝐷, then we define ΓB =

(
B, 𝜚B

1 , · · · , 𝜚B

𝑠

)
.

Now, given an instance R of CSP(Γ) we can consider R as an instance of
CSP(ΓB

). Let us decode Definitions 9 and 10. Any ℎ ∈ Hom(R, ΓB
) assigns to

every variable 𝑣 ∈ 𝑉 an algebra ℎ(𝑣) ∈ B. For 𝑗 ∈ [𝑠], v ∈ 𝑟 𝑗 our assignment
satisfies ℎ(v) ∈ 𝜚B

𝑗 , i.e. if v = (𝑣1, ..., 𝑣𝑝), then (𝑜ℎ (𝑣1)
𝑖 , ..., 𝑜

ℎ (𝑣𝑝)
𝑖) component-wise

preserves 𝜚 𝑗 . Suppose now that for any 𝑣 ∈ 𝑉 we create a unique copy of the
domain 𝐷, i.e. 𝐷𝑣 = {(𝑣, 𝑎) |𝑎 ∈ 𝐷}, and define 𝑚𝐷𝑣

𝑖 as an interpretation of 𝑜ℎ (𝑣)
𝑖

on this copy 𝐷𝑣, i.e.

𝑚𝐷𝑣

𝑖

(
(𝑣, 𝑎1), ..., (𝑣, 𝑎𝑛𝑖)

)
=
(
𝑣, 𝑜ℎ (𝑣)

𝑖 (𝑎1, ..., 𝑎𝑛𝑖)
)
.

Since for 𝑗 ∈ [𝑠] and v = (𝑣1, ..., 𝑣𝑝) ∈ 𝑟 𝑗 , (𝑜ℎ (𝑣1)
𝑖 , ..., 𝑜

ℎ (𝑣𝑝)
𝑖) component-wise

preserves 𝜚 𝑗 , operation 𝑚𝑖 preserves the multi-sorted relation 𝜚 𝑗 (𝑣1, ..., 𝑣𝑝) (see
Eq. (3)). In other words, 𝑚𝑖 is a multi-sorted polymorphism of the lifted language
ΓR. Thus, every assignment ℎ ∈ Hom(R, ΓB

) induces a system of multi-sorted
polymorphisms 𝑚1, ..., 𝑚𝑘 ∈ MPol(ΓR).

For special cases of B, the structure of the template ΓB has been studied
in [19].

3.1 Example: Binary and Conservative Operations

This example is a direct generalization of Proposition 36 from [10]. Let us define
B as the set of all algebras with a commutative and conservative binary operation
over 𝐷, i.e.

B = {(𝐷, 𝑏) |𝑏(𝑥, 𝑦) ∈ {𝑥, 𝑦}, 𝑏(𝑥, 𝑦) = 𝑏(𝑦, 𝑥)}.

It is a well-known fact that any commutative and conservative binary operation
corresponds to a tournament on 𝐷, i.e. to a complete directed graph with a set
of vertices 𝐷 in which antiparallel arcs are not allowed (an identity 𝑏(𝑥, 𝑦) = 𝑦
for distinct 𝑥, 𝑦 ∈ 𝐷 corresponds to an arc from 𝑥 to 𝑦 in the tournament). Thus,
|B| = 2(

|𝐷 |

2) . We define a ternary operation 𝑚 on the set B that acts as follows:

𝑚((𝐷, 𝑏1), (𝐷, 𝑏2), (𝐷, 𝑏3)) = (𝐷, 𝑏) ⇔ 𝑏(𝑥, 𝑦) = 𝑏1(𝑏2 (𝑥, 𝑦), 𝑏3 (𝑥, 𝑦)).

By construction 𝑚 outputs an element from B, i.e. 𝑚 : B3
→ B. It is straightfor-

ward to check that the following identities hold for conservative and commutative
operations:

𝑏1(𝑏1 (𝑥, 𝑦), 𝑏2 (𝑥, 𝑦)) = 𝑏1 (𝑏2 (𝑥, 𝑦), 𝑏1 (𝑥, 𝑦)) = 𝑏2 (𝑏1 (𝑥, 𝑦), 𝑏1(𝑥, 𝑦)) = 𝑏1 (𝑥, 𝑦)

or 𝑚(A,A,B) = 𝑚(A,B,A) = 𝑚(B,A,A) = A, ∀A,B ∈ B. Thus, 𝑚 is a majority
operation.

Now let us prove that for any 𝜚 ⊆ 𝐷𝑘 , 𝑚 is a polymorphism of 𝜚B . Indeed,
suppose that (A1, · · · ,A𝑘) ∈ 𝜚B , (B1, · · · ,B𝑘) ∈ 𝜚B and (C1, · · · ,C𝑘) ∈ 𝜚B . We

On the Induced Problem for Fixed-Template CSPs 493

denote A𝑖 = (𝐷, 𝑎𝑖),B𝑖 = (𝐷, 𝑏𝑖),C𝑖 = (𝐷, 𝑐𝑖). By definition of 𝜚B , we know that

𝑥 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑥1
· · ·

𝑥𝑘

⎤
⎥
⎥
⎥
⎥
⎦

, 𝑦 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑦1
· · ·

𝑦𝑘

⎤
⎥
⎥
⎥
⎥
⎦

∈ 𝜚 ⇒

⎡
⎢
⎢
⎢
⎢
⎣

𝑏1(𝑥1, 𝑦1)
· · ·

𝑏𝑘 (𝑥𝑘 , 𝑦𝑘)

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

𝑐1 (𝑥1, 𝑦1)
· · ·

𝑐𝑘 (𝑥𝑘 , 𝑦𝑘)

⎤
⎥
⎥
⎥
⎥
⎦

∈ 𝜚.

Therefore, component-wise application of (𝑎1, · · · , 𝑎𝑘) to the last two tuples also
will result in a tuple from 𝜚:

⎡
⎢
⎢
⎢
⎢
⎣

𝑎1 (𝑏1 (𝑥1, 𝑦1), 𝑐1 (𝑥1, 𝑦1))
· · ·

𝑎𝑘 (𝑏𝑘 (𝑥𝑘 , 𝑦𝑘), 𝑐𝑘 (𝑥𝑘 , 𝑦𝑘))

⎤
⎥
⎥
⎥
⎥
⎦

∈ 𝜚.

The latter implies that
(
𝑚(A1,B1,C1), · · · , 𝑚(A𝑘 ,B𝑘 ,C𝑘)

)
∈ 𝜚B .

Since, 𝑚 is a majority polymorphism of any 𝜚B , the problem CSP(ΓB
) is

tractable for any Γ [12]. Moreover, CSP(ΓB
) can be solved by a local consistency

checking algorithm. Note that if we define B
𝑜
⊂ B as the set of all tournament

pairs that correspond to total orders on 𝐷, then CSP(ΓB
𝑜
) is NP-hard in general

(see Proposition 38 from [10]).
This example shows that B can be such that CSP(ΓB

) is tractable for any
(possibly NP-hard) Γ. Other examples of this kind can be found in Appendix.

4 The Complexity of CSP+
ΓB (Γ)

Again, let Γ be a set of relations over 𝐷 and B ⊆ A
𝜎
𝐷 . In the previous section we

gave an example of a set of algebras B for which CSP(ΓB
) is tractable for any Γ

(possibly NP-hard). More such examples can be found in Appendix. Therefore,
asking what can be achieved by substituting Γ with another template Γ′ (e.g.
Γ′ = ΓB for an appropriate B), and the consequences of such substitutions, may
be a promising research direction.

First we will study the following problem: if we managed to find a homomor-
phism from the input structure R to ΓB , when can it help us to find ℎ : R → Γ?
In Subsect. 2.2 we called this problem the CSP with an input prototype and
denoted as CSP+

ΓB
(Γ). It was prove to be equivalent to CSP(ΓΓB). Thus, we will

start with identifying conditions for the tractability of ΓΓB .

4.1 Conditions for the Tractability of ΓΓB

From the definition of lifted languages it is clear that for any relation 𝑃 ∈ ΓΓB

there exists a relation 𝜚 ∈ Γ such that 𝑃 = 𝜚(A1, · · · ,A𝑝) where (A1, · · · ,A𝑝) ∈

𝜚B . Since 𝜚B
⊆ B

𝑝, we have A1 ∈ B, · · · ,A𝑝 ∈ B. From the definition of
𝜚(A1, · · · ,A𝑝) (see (3)) we obtain that

𝜚(A1, · · · ,A𝑝) ⊆ {(A1, 𝑥1) |𝑥1 ∈ 𝐷} × · · · × {(A𝑝 , 𝑥𝑝) |𝑥𝑝 ∈ 𝐷}.

For any algebra A ∈ B let us denote by A
c a copy of A, but with all operations

redefined on its new unique domain 𝐷A
c

= {(A, 𝑥) |𝑥 ∈ 𝐷} by

𝑜A
c

𝑙

(
(A, 𝑥1), · · · , (A, 𝑥𝑛𝑙)

)
= (A, 𝑜A

𝑙 (𝑥1, · · · , 𝑥𝑛𝑙)).

494 R. Takhanov

If we introduce a new collection of domains
{
𝐷A

c

|A ∈ B

}
parameterized by

algebras from B, then 𝜚(A1, · · · ,A𝑝) ⊆ 𝐷A
c
1 × · · · × 𝐷A

c
𝑝 becomes a multi-sorted

relation with signature (A1, · · · ,A𝑝). Thus, in the new notations, any relation
from ΓΓB becomes multi-sorted over a collection of sets

{
𝐷A

c

|A ∈ B

}
. Also,

denote B
c =

{
A

c
|A ∈ B

}
.

Definition 11. For a collection B, we define MInv(Bc
) as the set of all multi-

sorted relations 𝜚 over a collection of sets
{
𝐷A

c

|A ∈ B

}
such that for any 𝑙 ∈ [𝑘],

the 𝑛𝑙-ary multi-sorted operation
{
𝑜A

c

𝑙 |A ∈ B

}
is a polymorphism of 𝜚.

Lemma 2. ΓΓB understood as a multi-sorted language over a collection of
domains

{
𝐷A

c

|A ∈ B

}
is a subset of MInv(Bc

).

Proof. Let us check that 𝜚𝑖 (A1, ...,A𝑝) ∈ MInv(Bc
) whenever (A1, ...,A𝑝) ∈ 𝜚B

𝑖 .
The latter premise implies that for ℎ ∈ [𝑘],

(
𝑜A1
ℎ , ..., 𝑜

A𝑝

ℎ

)
is a component-wise

polymorphism of 𝜚𝑖, and therefore,
(
𝑜
A

c
1

ℎ , ..., 𝑜
A

c
𝑝

ℎ

)
is a component-wise polymor-

phism of 𝜚𝑖 (A1, ...,A𝑝). From the last we conclude that the multi-sorted oper-
ation

{
𝑜A

c

ℎ |A ∈ B

}
is a polymorphism of 𝜚𝑖 (A1, ...,A𝑝), or 𝜚𝑖 (A1, · · · ,A𝑝) ∈

MInv(Bc
). 	

The following definition is very natural.

Definition 12. A collection B is called tractable if MInv(Bc
) is a tractable

constraint language.

Thus, using Lemma 2 and Definition 12 we obtain the following key result.

Theorem 1. If a collection B is tractable, then MCSP(ΓΓB) is tractable.

Remark 1. We gave a definition of the tractable collection B that serves our
purposes. It can be shown that a collection B is tractable if and only if every
algebra A ∈ B is tractable (i.e. Inv({𝑜A

𝑙 |𝑙 ∈ [𝑘]}) is a tractable language). The
fact is well-known in CSP studies, so we omit a proof of it.

Remark 2. In examples given in Appendix, sets of algebras B, B1, Bcom, Bnu,
BM, Bwnu are tractable. Then, Theorem 1 and Lemma 1 give us the tractability of
CSP+

ΓB
(Γ), CSP+

ΓB1
(Γ), CSP+

ΓBcom (Γ), CSP+

ΓBnu (Γ), CSP+

ΓBM
(Γ), CSP+

ΓBwnu (Γ).
The only problem that remains now is finding a homomorphism from an input
structure to ΓB , ΓB1 , ΓBcom , ΓBnu , ΓBM , ΓBwnu . In the examples we discussed
that these tasks are all tractable.

Theorem 2. If a collection B is tractable and Γ → ΓB, then CSP(Γ) is poly-
nomial - time Turing reducible to CSP(ΓB

).

Proof. For an instance R of CSP(Γ), if Γ → ΓB , then we can replace the right
template Γ with ΓB and obtain a relaxed version of the initial CSP. Suppose
that we are able to solve CSP(ΓB

). If the solution set of the relaxed problem is
empty, then it all the more is empty for the initial one. But if we manage to find

On the Induced Problem for Fixed-Template CSPs 495

a single homomorphism from the input structure R to ΓB , then the problem of
finding a homomorphism R → Γ can be presented as an instance of CSP+

ΓB
(Γ),

or, by Lemma 1, of MCSP(ΓΓB). Now, from the tractability of B and Theorem 1
we get that MCSP(ΓΓB) is tractable and we efficiently find a homomorphism
ℎ : R → Γ. 	

Unfortunately, it is hard to satisfy the condition Γ → ΓB unless B contains
constants. In examples from Appendix (and in an example from Sect. 3.1) it is
not satisfied.

5 Reductions of CSP(ΓB) to CSP(Γ)
Let us now find some conditions on B under which CSP(ΓB

) is a fragment
of CSP(Γ). Again, we are given Γ =

(
𝐷, 𝜚1, ..., 𝜚𝑠

)
where 𝜚𝑙 is a relation over

𝐷, 𝑙 ∈ [𝑠] and B ⊆ A
𝜎
𝐷 . In this section we will show that under very natural

conditions on B, any instance of CSP(ΓB
) can be turned into an instance of

CSP(Γ). Let us introduce some natural definitions that will serve our purpose.3

Let 𝐷 = [𝑑]. Given 𝑛, let 𝛼𝑛 (1), 𝛼𝑛 (2), ..., 𝛼𝑛 (𝑑
𝑛
) be a lexicographic ordering of

𝐷𝑛.

Definition 13. The trace of B, denoted 𝑇𝑟 (B), is the relation
{(

𝑜A

1 (𝛼𝑛1 (1)), · · · , 𝑜A

1 (𝛼𝑛1 (𝑑
𝑛1
)), · · · , 𝑜A

𝑘 (𝛼𝑛𝑘 (1)), · · · , 𝑜A

𝑘 (𝛼𝑛𝑘 (𝑑
𝑛𝑘
))

)
| A ∈ B

}

.

The arity of 𝑇𝑟 (B) is κ(B) =
∑𝑘

𝑠=1 𝑑𝑛𝑠 .

Given a number 𝑛 and an 𝑚-ary relation 𝜚 over 𝐷, let us denote 𝜚𝑛 the
set of all tuples (𝑥1, ..., 𝑥𝑚), where 𝑥𝑙 ∈ 𝐷𝑛, 𝑙 ∈ [𝑚], such that all rows of the
matrix [𝑥1, ..., 𝑥𝑚] are in 𝜚. Note that 𝜚𝑛 is a relation over 𝐷𝑛. According to
the standard terminology of universal algebra, 𝜚𝑛 is a direct product

∏𝑛
𝑖=1 𝜚 of

𝑚-ary relations. It satisfies |𝜚𝑛
| = |𝜚 |𝑛. Also, let Γ � B =

(
𝐷, 𝜚1, · · · , 𝜚𝑠 , 𝑇𝑟 (B)

)
.

Theorem 3. CSP(ΓB
) is Karp reducible to CSP(Γ � B).

Proof. Suppose that we are given an instance of CSP(ΓB
), i.e. an input structure

R = (𝑉, 𝑟1, . . . , 𝑟𝑠). Our goal is to find a homomorphism ℎ : R → ΓB , i.e. to assign
every variable 𝑣 ∈ 𝑉 an algebra ℎ(𝑣) ∈ B in such a way that certain constraints
are satisfied. Let us define an instance of CSP(Γ � B) with a set of variables

𝑊 = {a[𝑣, 𝑖, 𝛼𝑛𝑖 (𝑗)] |𝑣 ∈ 𝑉, 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑑𝑛𝑖
]}.

All variables take their values in 𝐷. A value assigned to the variable a[𝑣, 𝑖, 𝛼𝑛𝑖 (𝑗)]

corresponds to 𝑜ℎ (𝑣)
𝑖 (𝛼𝑛𝑖 (𝑗)) for ℎ : R → ΓB . For any 𝑣 ∈ 𝑉 , an assignment of a

tuple of variables

𝑇 (𝑣) =
(
a[𝑣, 1, 𝛼𝑛1 (1)], ..., a[𝑣, 1, 𝛼𝑛1 (𝑑

𝑛1
)], ..., a[𝑣, 𝑘, 𝛼𝑛𝑘 (1)], ..., a[𝑣, 𝑘, 𝛼𝑛𝑘 (𝑑

𝑛𝑘
)]

)

3 The notion of the trace introduced below is used in a proof of Galois theory for
functional and relational clones.

496 R. Takhanov

is constrained to be in 𝑇𝑟 (B). Any such constraint models an assignment of an
algebra from B to 𝑣 in the initial instance of CSP(ΓB

). Indeed, an assignment
of an algebra ℎ(𝑣) ∈ A

𝜎
𝐷 to 𝑣 corresponds to assigning the tuple 𝑇 (𝑣) the value

(
𝑜ℎ (𝑣)
1 (𝛼𝑛1 (1)), ..., 𝑜ℎ (𝑣)

1 (𝛼𝑛1 (𝑑
𝑛1
)), ..., 𝑜ℎ (𝑣)

𝑘 (𝛼𝑛𝑘 (1)), ..., 𝑜ℎ (𝑣)
𝑘 (𝛼𝑛𝑘 (𝑑

𝑛𝑘
))

)
.

The latter tuple is in 𝑇𝑟 (B) if and only if ℎ(𝑣) ∈ B.
The second type of constraints are

〈

(
a[𝑣1, 𝑗 , 𝑥1], ..., a[𝑣𝑝 , 𝑗 , 𝑥𝑝]

)
, 𝜚𝑙〉

for all 𝑙 ∈ [𝑠], (𝑣1, ..., 𝑣𝑝) ∈ 𝑟𝑙, 𝑗 ∈ [𝑘] and (𝑥1, ..., 𝑥𝑝) ∈ (𝜚𝑙)
𝑛 𝑗 .

In the initial instance of CSP(ΓB
) we have constraints of the following kind:

assigned values for a tuple (𝑣1, ..., 𝑣𝑝) ∈ 𝑟𝑙 should be in 𝜚B

𝑙 , i.e.
(
𝑜ℎ (𝑣1)
𝑗 , ..., 𝑜

ℎ (𝑣𝑝)
𝑗

)

should component-wise preserve 𝜚𝑙 (for 𝑗 ∈ [𝑘]). This means that for any
(𝑥1, ..., 𝑥𝑝) ∈ (𝜚𝑙)

𝑛 𝑗 , we have
(
𝑜ℎ (𝑣1)
𝑗 (𝑥1), ..., 𝑜

ℎ (𝑣𝑝)
𝑗 (𝑥 𝑝)

)
∈ 𝜚𝑙. Thus, for any

𝑙 ∈ [𝑠], 𝑗 ∈ [𝑘], and any (𝑣1, ..., 𝑣𝑝) ∈ 𝑟𝑙, (𝑥1, ..., 𝑥𝑝) ∈ (𝜚𝑙)
𝑛 𝑗 , we restrict(

a[𝑣1, 𝑗 , 𝑥1], ..., a[𝑣𝑝 , 𝑗 , 𝑥 𝑝]
)

to take its values in 𝜚𝑙, and a conjunction of all
those constraints is equivalent to the initial constraints of CSP(ΓB

).
Thus, we described, given an instance of CSP(ΓB

), how to define a constraint
satisfaction problem with relations in constraints taken either from {𝑇𝑟 (B)}, or
from Γ. By construction, there is a one-to-one correspondence between solutions
of the initial CSP and the constructed CSP. 	

Let us denote by Γ∗ the set of all relations over 𝐷 that can be expressed as
a primitive positive formula over Γ, i.e. as a syntactically correct formula of the
form ∃v𝜚1 (v1) ∧ · · · ∧ 𝜚𝑙 (v𝑙) where 𝜚𝑖 ∈ Γ, 𝑖 ∈ [𝑙] and v, v𝑖 , 𝑖 ∈ [𝑙] are lists of
variables. From Theorem 3 and [11] we conclude:

Corollary 1. If 𝑇𝑟 (B) ∈ Γ∗, then CSP(ΓB
) is Karp reducible to CSP(Γ).

Let us translate the premise of Corollary 1 to the language of polymorphisms.
A well-known fact proved by Geiger [9] and by Bodnarchuk-Kalužnin-Kotov-
Romov [2] is that 𝜚 ∈ Γ∗ if and only if 𝜚 is preserved by all polymorphisms from
Pol(Γ). To reformulate Corollary 1 using this fact, we need to introduce some
definitions.

Let 𝑓 be an 𝑚-ary operation on 𝐷. An 𝑚-ary operation 𝑓 A
𝜎
𝐷 on A

𝜎
𝐷 is defined

by the following rule: 𝑓 A
𝜎
𝐷
(
A1, · · · ,A𝑚

)
= A if and only if for any 𝑗 ∈ [𝑘],

𝑜A

𝑗 (𝑥1, ..., 𝑥𝑛 𝑗) = 𝑓
(
𝑜A1
𝑗 (𝑥1, ..., 𝑥𝑛 𝑗), 𝑜A2

𝑗 (𝑥1, ..., 𝑥𝑛 𝑗), ..., 𝑜A𝑚

𝑗 (𝑥1, ..., 𝑥𝑛 𝑗)

)
. (5)

We say that 𝑓 A
𝜎
𝐷 preserves B if 𝑓 A

𝜎
𝐷
(
A1, ...,A𝑚

)
∈ B whenever A1, ...,A𝑚 ∈

B. The following lemma directly follows from the definition of the trace. For
completeness, its proof is given in Appendix.

Lemma 3. An operation 𝑝 : 𝐷𝑚
→ 𝐷 is a polymorphism of 𝑇𝑟 (B) if and only

if 𝑝A
𝜎
𝐷 preserves B.

On the Induced Problem for Fixed-Template CSPs 497

From Lemma 3 the following corollary is straightforward.

Corollary 2. If 𝑝A
𝜎
𝐷 preserves B for any 𝑝 ∈ Pol(Γ), then CSP(ΓB

) is
polynomial-time reducible to CSP(Γ).

Example 1. Let 𝐷 = {0, 1} and Γ = {{0}, {1}, 𝑥𝑦 → 𝑧}. It is well-known that
Γ∗ = Inv({∧}) is a set of Horn predicates. Therefore, if ∧A

𝜎
𝐷 preserves B, then

CSP(ΓB
) is polynomial-time solvable.

Theorem 3 can be slightly strengthened. In order to simplify our notation
we will consider a case when the signature 𝜎 contains only one 𝑛-ary opera-
tion symbol 𝑜. Recall that 𝜚(v) =

{
𝑑 (v, y) |y ∈ 𝜚

}
(see the Definition 3). Thus,

𝑇𝑟 (B)(𝛼𝑛 (1), · · · , 𝛼𝑛 (𝑑
𝑛
)) equals

{(
(𝛼𝑛 (1), 𝑦1), · · · , (𝛼𝑛 (𝑑

𝑛
), 𝑦𝑑𝑛)

)
| (𝑦1, · · · , 𝑦𝑑𝑛) ∈ 𝑇𝑟 (B)

}
.

Let us denote Γ𝑛 =
(
𝐷𝑛, 𝜚𝑛

1 , · · · , 𝜚𝑛
𝑠

)
(the notation 𝜚𝑛

𝑖 is introduced after Defini-
tion 13).

Theorem 4. CSP(ΓB
) is polynomial-time Karp reducible to

MCSP(ΓΓ𝑛 ∪ {𝑇𝑟 (B)(𝛼𝑛 (1), · · · , 𝛼𝑛 (𝑑
𝑛
))}).

Proof. Let us return to the proof of Theorem 3 and to the CSP that we con-
structed in that proof. Since we have only one operation symbol in 𝜎 we will omit
the second index in our variables. Recall that we had two types of constraints.
Constraints of the first type require a tuple of variables

(
a[𝑣, 𝛼𝑛 (1)], · · · , a[𝑣, 𝛼𝑛 (𝑑

𝑛
)]

)

to take its values in 𝑇𝑟 (B). Constraints of the second type are as follows: for any
𝑙 ∈ [𝑠] and any (𝑣1, ..., 𝑣𝑝) ∈ 𝑟𝑙, (𝑥1, ..., 𝑥𝑝) ∈ 𝜚𝑛

𝑙 ,
(
a[𝑣1, 𝑥1], ..., a[𝑣𝑝 , 𝑥𝑝]

)
should

take its values in 𝜚𝑙. Thus, in the homomorphism reformulation of CSP, we have
to find a homomorphism between a new pair of structures R′ = (𝑉 ′, 𝑟 ′1, . . . , 𝑟 ′𝑠 ,Ξ)
and Γ � B =

(
𝐷, 𝜚1, · · · , 𝜚𝑠 , 𝑇𝑟 (B)

)
where

𝑉 ′ = {a[𝑣, 𝛼𝑛 (𝑗)] |𝑣 ∈ 𝑉, 𝑗 ∈ [𝑑𝑛
]},

𝑟 ′𝑙 = {

(
a[𝑣1, 𝑥1], ..., a[𝑣𝑝 , 𝑥 𝑝]

)
| (𝑣1, ..., 𝑣𝑝) ∈ 𝑟𝑙 , (𝑥1, ..., 𝑥𝑝) ∈ 𝜚𝑛

𝑙 },

Ξ = {(a[𝑣, 𝛼𝑛 (1)], · · · , a[𝑣, 𝛼𝑛 (𝑑
𝑛
)]) |𝑣 ∈ 𝑉}.

Let us define Γ𝑛
𝜉 =

(
𝐷𝑛, 𝜚𝑛

1 , · · · , 𝜚𝑛
𝑠 , 𝜉

)
where 𝜉 = {(𝛼𝑛 (1), · · · , 𝛼𝑛 (𝑑

𝑛
))}. By con-

struction a mapping 𝛿 : 𝑉 ′
→ 𝐷𝑛, where 𝛿(a[𝑣, 𝑥]) = 𝑥, is a homomorphism from

R′ to Γ𝑛
𝜉 . Thus, we are given a homomorphism to Γ𝑛

𝜉 and our goal is to find a
homomorphism to Γ � B which is exactly the definition of CSP+

Γ𝑛
𝜉
(Γ � B).

According to Lemma 1, CSP+

Γ𝑛
𝜉
(Γ � B) is equivalent to MCSP((Γ �

B)Γ𝑛
𝜉
). There are 2 types of relations in (Γ � B)Γ𝑛

𝜉
: those that are in ΓΓ𝑛

and the relation 𝑇𝑟 (B)

(
𝛼𝑛 (1), · · · , 𝛼𝑛 (𝑑

𝑛
)

)
. Therefore, we reduced CSP(ΓB

) to
MCSP(ΓΓ𝑛 ∪ {𝑇𝑟 (B)(𝛼𝑛 (1), · · · , 𝛼𝑛 (𝑑

𝑛
))}). 	

498 R. Takhanov

To formulate a version of Theorem 4 for a general signature 𝜎 we need
the notion of the disjoint union of relational structures. Given similar struc-
tures T𝑖 = (𝐴𝑖 , 𝜚𝑖1, ..., 𝜚𝑖𝑘), 𝑖 ∈ [𝑞], their disjoint union, denoted �

𝑞
𝑖=1T𝑖, is

a structure (𝐵, 𝜋1, ..., 𝜋𝑘) with the domain 𝐵 = ∪
𝑞
𝑖=1{𝑖} × 𝐴𝑖 and relations

𝜋 𝑗 = ∪
𝑞
𝑖=1𝜏𝑖 𝑗 where 𝜏𝑖 𝑗 is a reinterpretation of 𝜚𝑖 𝑗 as a relation over {𝑖} × 𝐴𝑖,

i.e. 𝜏𝑖 𝑗 = {

(
(𝑖, 𝑎1), ..., (𝑖, 𝑎ar(𝜚𝑖 𝑗))

)
| (𝑎1, ..., 𝑎ar(𝜚𝑖 𝑗)) ∈ 𝜚𝑖 𝑗 }. We denote 𝐵 as �

𝑞
𝑖=1𝐴𝑖

and 𝜋 𝑗 as �𝑞
𝑖=1𝜚𝑖 𝑗 . Let us denote Γ𝜎 = �

𝑠
𝑖=1Γ

𝑛𝑖 . Let also 𝛾1, · · · , 𝛾𝑁 be the order-
ing of ∪𝑘

𝑖=1{𝑖} × 𝐷𝑛𝑖 (the domain of Γ𝜎) in which first elements from {1} × 𝐷𝑛1

go (in lexicographic order), second {2} ×𝐷𝑛2 (in lexicographic order), etc. Then,
a generalization of Theorem 4 is below. Its proof can be found in Appendix.

Theorem 5. CSP(ΓB
) is polynomial-time Karp reducible to

M𝐶𝑆𝑃(ΓΓ𝜎 ∪ {𝑇𝑟 (B)(𝛾1, · · · , 𝛾𝑁)}).

Remark 3. MCSP(ΓΓ𝜎) is tractable, because Γ𝜎
→ Γ and CSP+

Γ𝜎 (Γ) is a trivial
problem (Lemma 1). Therefore, CSP(ΓΓ𝜎) is tractable. Moreover, by construc-
tion {𝑇𝑟 (B)(𝛾1, · · · , 𝛾𝑁)} is also tractable. Thus, Theorem 5 describes a reduc-
tion to an NP-hard language only if the union of those two tractable languages
is NP-hard. We conducted some experimental studies with the latter constraint
language using the Polyanna software which can be found in Appendix.

6 Conclusions

As examples in Appendix show, the induced problem CSP(ΓB
) is often easier

that the initial CSP(Γ). If B is tractable and one manages to find a homo-
morphism 𝜒 : R → ΓB , then finding ℎ : R → Γ can be done efficiently. This
inspires the whole family of algorithms based on reducing CSP(Γ) to CSP(ΓB

).
This generalizes Green and Cohen’s reduction of CSPs to finding appropriate
permutations of domains.

It is an open research problem to generalize the construction of the template
ΓB to valued constraint languages (one such example can be found in Sect. 5
of [19]). Practical application of the reduction of CSP(Γ) to CSP(ΓB

) is another
topic of future research.

References

1. Barto, L., Krokhin, A., Willard, R.: Polymorphisms, and how to use them. In:
Krokhin, A., Zivny, S. (eds.) The Constraint Satisfaction Problem: Complexity
and Approximability, Dagstuhl Follow-Ups, vol. 7, pp. 1–44. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl (2017). https://doi.org/10.4230/DFU.
Vol7.15301.1, http://drops.dagstuhl.de/opus/volltexte/2017/6959

2. Bodnarchuk, V., Kalužnin, L., Kotov, V., Romov, B.: Galois theory for post alge-
bras. Cybernetics 5(1-2), 243–252 (1969)

3. Bulatov, A., Krokhin, A., Jeavons, A.: Classifying the complexity of constraints
using finite algebras. SIAM J. Comput. 34(3), 720–742 (2005)

https://doi.org/10.4230/DFU.Vol7.15301.1
https://doi.org/10.4230/DFU.Vol7.15301.1
http://drops.dagstuhl.de/opus/volltexte/2017/6959

On the Induced Problem for Fixed-Template CSPs 499

4. Bulatov, A.A.: A dichotomy theorem for nonuniform CSPS. CoRR abs/1703.03021
(2017). http://arxiv.org/abs/1703.03021

5. Cohen, D.A.: Tractable decision for a constraint language implies tractable search.
Constraints 9(3), 219–229 (2004). https://doi.org/10.1023/B:CONS.0000036045.
82829.94

6. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–
158 (1971)

7. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: a study through datalog and group theory. SIAM J.
Comput. 28(1), 57–104 (1998)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

9. Geiger, D.: Closed systems of functions and predicates. Pac. J. Math. 27(1), 95–100
(1968)

10. Green, M.J., Cohen, D.A.: Domain permutation reduction for constraint satisfac-
tion problems. Artif. Intell. 172(8), 1094–1118 (2008)

11. Jeavons, P.: On the algebraic structure of combinatorial problems. Theor. Comput.
Sci. 200(1–2), 185–204 (1998)

12. Jeavons, P.G.: On the algebraic structure of combinatorial problems. The-
oret. Comput. Sci. 200(1–2), 185–204 (1998). https://doi.org/10.1016/S0304-
3975(97)00230-2

13. Kearnes, K., Marković, P., McKenzie, R.: Optimal strong Mal’cev conditions for
omitting type 1 in locally finite varieties. Algebra Univers. 72(1), 91–100 (2014)

14. Kolmogorov, V., Roĺınek, M., Takhanov, R.: Effectiveness of structural restrictions
for hybrid CSPs. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol.
9472, pp. 566–577. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48971-0 48

15. Maróti, M., McKenzie, R.: Existence theorems for weakly symmetric operations.
Algebra Univers. 59(3–4), 463–489 (2008)

16. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, pp. 216–
226 (1978)

17. Siggers, M.H.: A strong Mal’cev condition for locally finite varieties omitting the
unary type. Algebra Univers. 64(1–2), 15–20 (2010)

18. Takhanov, R.: Hybrid (V)CSPS and algebraic reductions. CoRR abs/1506.06540v1
(2015). https://arxiv.org/abs/1506.06540v1

19. Takhanov, R.: Hybrid VCSPs with crisp and valued conservative templates. In:
Okamoto, Y., Tokuyama, T. (eds.) 28th International Symposium on Algorithms
and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 92, pp. 65:1–65:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl (2017). https://doi.org/10.4230/LIPIcs.ISAAC.2017.65, http://
drops.dagstuhl.de/opus/volltexte/2017/8247

20. Zhuk, D.: The proof of CSP dichotomy conjecture. CoRR abs/1704.01914 (2017).
http://arxiv.org/abs/1704.01914

http://arxiv.org/abs/1703.03021
https://doi.org/10.1023/B:CONS.0000036045.82829.94
https://doi.org/10.1023/B:CONS.0000036045.82829.94
https://doi.org/10.1016/S0304-3975(97)00230-2
https://doi.org/10.1016/S0304-3975(97)00230-2
https://doi.org/10.1007/978-3-662-48971-0_48
https://doi.org/10.1007/978-3-662-48971-0_48
https://arxiv.org/abs/1506.06540v1
https://doi.org/10.4230/LIPIcs.ISAAC.2017.65
http://drops.dagstuhl.de/opus/volltexte/2017/8247
http://drops.dagstuhl.de/opus/volltexte/2017/8247
http://arxiv.org/abs/1704.01914

Correction to: Parameterized Algorithms
for Covering by Arithmetic Progressions

Ivan Bliznets , Jesper Nederlof , and Krisztina Szilágyi

Correction to:
Chapter 9 in: H. Fernau et al. (Eds.): SOFSEM 2024:
Theory and Practice of Computer Science, LNCS 14519,
https://doi.org/10.1007/978-3-031-52113-3_9

In the originally published version of chapter 9, there was a typo in the name of the
author Jesper Nederlof. This has been corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-031-52113-3_9

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, p. C1, 2024.
https://doi.org/10.1007/978-3-031-52113-3_35

http://orcid.org/0000-0003-2291-2556
http://orcid.org/0000-0003-1848-0076
http://orcid.org/0000-0003-3570-0528
https://doi.org/10.1007/978-3-031-52113-3_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_35&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_35&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52113-3_35&domain=pdf
https://doi.org/10.1007/978-3-031-52113-3_9
https://doi.org/10.1007/978-3-031-52113-3_35

Author Index

A
Aloisio, Alessandro 25
Ardévol Martínez, Virginia 40

B
Banbara, Mutsunori 55
Beikmohammadi, Arash 69
Berndt, Sebastian 82
Bhyravarapu, Sriram 96
Bliznets, Ivan 111, 125

C
Chaplick, Steven 40
Crespi Reghizzi, Stefano 139

D
De Bonis, Annalisa 154
de Vlas, Jorke M. 169
Dirks, Jona 183
Dobler, Alexander 226

E
Evans, William 69, 198

F
Fiala, Jiří 211
Firbas, Alexander 226
Firman, Oksana 211, 240
Flammini, Michele 25
Fleischmann, Pamela 255
Fuchs, Janosch 269

G
Gerhard, Enna 183
Gourvès, Laurent 283
Grobler, Mario 183
Grüne, Christoph 269

H
Hanaka, Tesshu 297
Haschke, Lukas 255
Hegemann, Tim 240
Hendrian, Diptarama 340
Hoffmann, Stefan 311
Holzer, Fabian 226

J
Janoušek, Jan 326
Janßen, Tom 269

K
Kanesh, Lawqueen 96
Kawasaki, Yoshito 340
Kelk, Steven 40
Kiya, Hironori 297
Klemz, Boris 240
Klesen, Felix 240
Kobourov, Stephen 198
Köck, Kassian 198

L
Lampis, Michael 297
Laußmann, Christian 355
Liotta, Giuseppe 211
Löck, Tim 255

M
Maldonado, Diego 369
Mattes, Caroline 383
Meuwese, Ruben 40
Mihalák, Matúš 40
Minato, Shin-ichi 55
Mnich, Matthias 82
Mohanapriya, A 96
Montealegre, Pedro 369
Mouawad, Amer E. 183
Mousawi, S. Mahmoud 398

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
H. Fernau et al. (Eds.): SOFSEM 2024, LNCS 14519, pp. 501–502, 2024.
https://doi.org/10.1007/978-3-031-52113-3

https://doi.org/10.1007/978-3-031-52113-3

502 Author Index

N
Nász, Andreea-Teodora 427
Nederlof, Jesper 111, 125, 413
Nowotka, Dirk 255

O
Ono, Hirotaka 55, 297

P
Pagourtzis, Aris 283
Perrot, Kévin 442
Plachý, Štěpán 326
Praveen, M. 456
Purohit, Nidhi 96

R
Restivo, Antonio 139
Ríos-Wilson, Martín 369
Rothe, Jörg 355
Rubinchik, Mikhail 471

S
Sadagopan, N. 96
San Pietro, Pierluigi 139
Saurabh, Saket 96
Schafellner, Jakob 226
Schmid, Markus L. 3
Schnoebelen, Ph. 456
Seeger, Tessa 355
Sené, Sylvain 442
Shinohara, Ayumi 340
Shur, Arseny M. 471
Siebertz, Sebastian 183
Sieper, Marie Diana 240

Sorge, Manuel 226
Stamm, Tobias 82
Stamoulis, Georgios 40
Szilágyi, Krisztina 125, 413

T
Tabatabaee, Seyed Ali 69
Takhanov, Rustem 485
Tapin, Léah 442
Theyssier, Guillaume 369

U
Uehara, Ryuhei 55
Ushakov, Alexander 383

V
Veron, J. 456
Vialard, I. 456
Villedieu, Anaïs 226
Vinci, Cosimo 25

W
Weiß, Armin 383
Wißmann, Monika 226
Wolff, Alexander 211, 240

Y
Yoshinaka, Ryo 340
Yoshiwatari, Kanae 297

Z
Zilles, Sandra 398
Zink, Johannes 211, 240

	Preface
	A Good Tradition
	The Newest Edition: Cochem 2024
	Highlights of the Conference
	Finally, Big Thanks …

	Organization
	Contents
	Invited Paper
	The Information Extraction Framework of Document Spanners - A Very Informal Survey
	1 Document Spanners
	2 Representations of Document Spanners
	2.1 Regular Spanners
	2.2 Core-Spanners

	3 Problems on Regular Spanners and Core Spanners
	4 An Approach to Tame Core Spanners
	5 Regular Spanners on SLP-Compressed Data
	5.1 Updates

	References

	Contributed Papers
	Generalized Distance Polymatrix Games
	1 Introduction
	1.1 Related Work

	2 Our Contribution
	3 Preliminaries
	4 Existence of (,k)-Equilibria
	5 (,k)-PoA of General Graphs
	5.1 (,k)-PoA: Upper Bound
	5.2 (,k)-PoA: Lower Bound

	6 (1,k)-PoS of General Graphs
	7 (,k)-PoA of Bounded-Degree Graphs
	7.1 (,k)-PoA: Upper Bound
	7.2 (,k)-PoA: Lower Bound

	8 Conclusion and Future Works
	References

	Relaxed Agreement Forests
	1 Introduction
	2 Preliminaries, Basic Properties and Bounds
	3 Hardness of MRAF
	4 Exact Algorithms
	5 Approximation Algorithms
	6 Implementation and Experimental Observations
	7 Discussion and Open Problems
	References

	On the Computational Complexity of Generalized Common Shape Puzzles
	1 Introduction
	2 Preliminaries
	3 Complexity of Shape Logic Puzzle
	4 Undecidability of Common Multiple Shape Puzzle
	4.1 Undecidability of a Generalized Jigsaw Puzzle
	4.2 Undecidability of the Common Multiple Shape Puzzle

	5 Improved Solutions for Common Multiple Shapes
	6 Concluding Remarks
	References

	Fractional Bamboo Trimming and Distributed Windows Scheduling
	1 Introduction
	2 Background
	3 Fractional Bamboo Trimming
	4 Distributed Windows Scheduling
	5 Conclusion
	References

	New Support Size Bounds and Proximity Bounds for Integer Linear Programming
	1 Introduction
	2 Subset Sum Distinct Sets
	2.1 One-Dimensional Subset Sum Distinct Sets
	2.2 Higher-Dimensional Subset Sum Distinct Sets
	2.3 Numerical Results

	3 Support Size Bounds for Integer Linear Programming
	3.1 Single-Constraint ILPs
	3.2 ILPs with Multiple Constraints
	3.3 Numerical Results

	4 Bounds on Largest Graver Basis Elements
	4.1 Numerical Results
	4.2 Proximity

	References

	On the Parameterized Complexity of Minus Domination
	1 Introduction
	2 Preliminaries
	3 Twin-Cover
	4 Cluster Vertex Deletion Set
	5 Distance to Disjoint Components and Component Size
	References

	Exact and Parameterized Algorithms for Choosability
	1 Introduction
	2 Preliminaries
	3 Exact Algorithms
	4 Cutwidth
	5 Other Structural Parametrizations
	5.1 Polynomial Kernel Parameterized by Vertex Cover
	5.2 Dual Parameterization
	5.3 Clique-Modulator Parameterization
	5.4 Split Graphs

	6 Conclusion
	References

	Parameterized Algorithms for Covering by Arithmetic Progressions
	1 Introduction
	2 Preliminaries
	3 Algorithm for Cover By Arithmetic Progressions (CAP)
	4 FPT Algorithm for Exact Cover by Arithmetic Progressions
	5 Strong NP-Hardness of Cover by Arithmetic Progressions in Zp
	6 Parameterization Below Guarantee
	References

	Row-Column Combination of Dyck Words
	1 Introduction
	2 Preliminaries
	3 Row-Column Combination of Dyck Languages
	3.1 Matching-Graph Circuits

	4 A Sublanguage Preserving Characteristic Dyck Words Properties
	5 Conclusion
	References

	Group Testing in Arbitrary Hypergraphs and Related Combinatorial Structures
	1 Introduction
	2 Notations and Terminology
	3 Non-adaptive Group Testing for General Hypergraphs
	4 Combinatorial Structures for Group Testing in Arbitrary Hypergraphs
	5 Upper Bound on the Size of (E, q,m,)-Selectors
	5.1 A Non-adaptive Group Testing Algorithm for General Hypergraph
	5.2 A Two-Stage Group Testing Algorithm for General Hypergraphs
	5.3 A Three-Stage Group Testing Algorithm for General Hypergraphs

	References

	On the Parameterized Complexity of the Perfect Phylogeny Problem
	1 Introduction
	2 Definitions and Preliminary Results
	3 Main Results
	4 XALP Membership of Triangulating Colored Graphs
	5 Zipper Chains and Gadgets
	6 XALP-Hardness of Triangulating Multicolored Graphs
	7 Future Research
	References

	Data Reduction for Directed Feedback Vertex Set on Graphs Without Long Induced Cycles
	1 Introduction
	2 Preliminaries
	3 DFVS in Graphs Without Long Induced Cycles
	4 Nowhere Dense Classes Without Long Induced Cycles
	5 DFVS in Planar Graphs Without Long Cycles
	6 Long Induced Cycles
	References

	Visualization of Bipartite Graphs in Limited Window Size
	1 Introduction
	2 The Two Layer Setting
	2.1 Hardness of Minimizing Average Window Size.
	2.2 Minimizing Average Window Size for Fixed Children

	3 The Two Ring Setting
	4 Conclusions and Open Problems
	References

	Outerplanar and Forest Storyplans
	1 Introduction
	2 Preliminaries
	3 Separation of Graph Classes
	4 Outerplanar Storyplans
	5 Forest Storyplans
	6 Open Problems
	References

	The Complexity of Cluster Vertex Splitting and Company
	1 Introduction
	2 Preliminaries
	3 NP-Completeness of Sigma Clique Cover
	4 NP-Completeness of Cluster Vertex Splitting
	5 A Linear Kernel for Cluster Vertex Splitting
	5.1 The Notions of Valency and Critical Cliques
	5.2 Towards a Rule to Shrink Critical Cliques
	5.3 Towards a Rule to Recognize Negative Instances
	5.4 Deriving the Kernel

	6 The Critical-Clique Lemma
	7 The Complexity of Cluster Editing With Vertex Splitting
	8 Conclusion
	References

	Morphing Graph Drawings in the Presence of Point Obstacles
	1 Introduction
	2 Preliminaries and Basic Observations
	3 Proof of Theorem 1
	4 Open Problems
	References

	Word-Representable Graphs from a Word's Perspective
	1 Introduction
	2 Preliminaries
	3 k-Circle Representation
	4 Graphs of Conjugate Words
	5 Graphs Represented by k-Local Words
	6 The Language of a Graph
	7 Conclusion
	References

	The Complexity of Online Graph Games
	1 Introduction
	2 Gadget Reductions
	3 A Reduction Framework for Online Vertex Subset Games
	4 Vertex Cover
	5 More Vertex Subset Problems
	6 Conclusion
	References

	Removable Online Knapsack with Bounded Size Items
	1 Introduction
	2 Upper Bounded Item Size
	2.1 Lower Bounds on the Competitive Ratio
	2.2 Upper Bounds on the Competitive Ratio

	3 Lower Bounded Item Size
	3.1 Lower Bounds on the Competitive Ratio
	3.2 Upper Bounds on the Competitive Ratio

	4 Conclusion and Directions for Future Work
	References

	Faster Winner Determination Algorithms for (Colored) Arc Kayles
	1 Introduction
	1.1 Partisan Variants of Arc Kayles
	1.2 Related Work
	1.3 Our Contribution
	1.4 Preliminaries

	2 A Polynomial Kernel for Colored Arc Kayles
	3 Arc Kayles for Trees Parameterized by Vertex Cover Number
	4 Arc Kayles for Trees
	5 NP-Hardness of BW-Arc Kayles
	References

	Automata Classes Accepting Languages Whose Commutative Closure is Regular
	1 Introduction
	2 Preliminaries
	3 Known Results
	4 Circular Automata over a Binary Alphabet
	5 Structural Conditions on Automata
	6 The Group Hierarchy
	7 The Positive Variety W
	8 Conclusion
	References

	Shortest Characteristic Factors of a Deterministic Finite Automaton and Computing Its Positive Position Run by Pattern Set Matching
	1 Introduction
	2 Basic Notions
	3 Extracting the Shortest Characteristic Factors with the Use of Finite Automaton
	3.1 The Shortest Characteristic Factors DFAs

	4 Positive Position Run and Its Computation Using Pattern Matching of Characteristic Factors
	5 Conclusion and Future Work
	References

	Query Learning of Minimal Deterministic Symbolic Finite Automata Separating Regular Languages
	1 Introduction
	2 Preliminaries
	2.1 Boolean Algebras and Symbolic Automata
	2.2 Equivalence Class and Representatives for 3SFA
	2.3 Learning Model

	3 Our Proposed Algorithm
	3.1 3SFA Generator
	3.2 Finding a Minimal Separating SFA

	4 Correctness and Query Complexity
	5 Heuristics for Finding a Closed Grouping
	6 Evaluation
	6.1 Comparison in Separation: Exact vs Heuristic Methods
	6.2 Comparison in Learning: SFA vs DFA

	7 Concluding Remarks
	References

	Apportionment with Thresholds: Strategic Campaigns are Easy in the Top-Choice but Hard in the Second-Chance Mode
	1 Introduction
	2 Preliminaries
	3 Classical Top-Choice Mode
	4 Experiment
	5 The Second-Chance Mode
	6 Conclusions
	References

	Local Certification of Majority Dynamics
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Majority and Finite State Dynamics

	3 Certification Upper-Bounds
	3.1 Upper-Bound for Election-Prediction

	4 Lower-Bounds
	References

	Complexity of Spherical Equations in Finite Groups
	1 Introduction
	2 Notation and Problem Description
	3 Fixed Finite Groups and Cayley Tables
	4 The Groups Sn and An
	5 Spherical Equations in Dihedral Groups
	6 Spherical Equations for Two-by-Two Matrices
	6.1 Spherical Equations in GL(2,p)

	7 Matrix Groups in Higher Dimensions
	7.1 The Groups ZmkC2

	8 Open Problems
	References

	Positive Characteristic Sets for Relational Pattern Languages
	1 Introduction
	2 Notation and Preliminary Results
	2.1 Positive Characteristic Sets
	2.2 Relational Pattern Languages

	3 Reversal Relation
	4 Equal-Length Relation
	5 Conclusions
	References

	Algorithms and Turing Kernels for Detecting and Counting Small Patterns in Unit Disk Graphs
	1 Introduction
	1.1 Our Techniques

	2 Preliminaries
	3 Turing Kernel
	4 Proof of Theorem 1: The Algorithm
	5 Theorem 3: Lower Bound
	6 Concluding Remarks
	References

	The Weighted HOM-Problem Over Fields
	1 Introduction
	2 Preliminaries and Technical Background
	3 A Pumping Lemma Over Fields
	4 The Tetris-Free Weighted HOM-Problem
	5 Conclusion
	References

	Combinatorics of Block-Parallel Automata Networks
	1 Introduction
	2 Definitions
	3 Counting Block-Parallel Update Modes
	3.1 Intersection of Block-Sequential and Block-Parallel Modes
	3.2 Partitioned Orders
	3.3 Partitioned Orders up to Dynamical Equality
	3.4 Partitioned Orders up to Isomorphism on the Limit Dynamics
	3.5 Implementations

	4 Conclusion and Perspectives
	References

	On the Piecewise Complexity of Words and Periodic Words
	1 Introduction
	2 Words, Subwords and Simon's Congruence
	3 The Piecewise Complexity of Words
	3.1 Defining Words via Their Subwords
	3.2 Reduced Words and the Minimality Index
	3.3 Fundamental Properties of Side Distances
	3.4 Relating h and
	3.5 Subword Complexity and Concatenation

	4 Computing h(u) and (u)
	5 Arch Factorizations and the Case of Periodic Words
	5.1 Arch-Jumping Functions
	5.2 Arch Factorization of Periodic Words
	5.3 Piecewise Complexity of Periodic Words

	6 Conclusion
	References

	Distance Labeling for Families of Cycles
	1 Introduction
	2 Preliminaries
	2.1 Warm-Up: Labeling Directed Cycles
	2.2 Basic Facts on Labeling Undirected Cycles

	3 More Efficient Labeling Scheme and Its Analysis
	4 Chain Labelings vs Optimal Labelings
	5 Discussion and Future Work
	References

	On the Induced Problem for Fixed-Template CSPs
	1 Introduction
	2 Preliminaries
	2.1 Multi-sorted CSPs
	2.2 The Lifted Language

	3 The Construction
	3.1 Example: Binary and Conservative Operations

	4 The Complexity of CSP+B()
	4.1 Conditions for the Tractability of B

	5 Reductions of CSP(B) to CSP()
	6 Conclusions
	References

	Correction to: Parameterized Algorithms for Covering by Arithmetic Progressions
	Correction to: Chapter 9 in: H. Fernau et al. (Eds.): SOFSEM 2024: Theory and Practice of Computer Science, LNCS 14519, https://doi.org/10.1007/978-3-031-52113-3_9

	Author Index

