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Abstract. This study describes the application of four adaptive differ-
ential evolution algorithms to generate oblique decision trees. A popu-
lation of decision trees encoded as real-valued vectors evolves through
a global search strategy. Three schemes to create the initial popula-
tion of the algorithms are applied to reduce the number of redundant
nodes (whose test condition does not divide the set of instances). The
results obtained in the experimental study aim to establish that the four
algorithms have similar statistical behavior. However, using the dipole-
based start strategy, the JSO method creates trees with better accuracy.
Furthermore, the Success-History based Adaptive Differential Evolution
with linear population reduction (LSHADE) algorithm stands out for
inducing more compact trees than those created by the other variants in
the three initializations evaluated.

Keywords: Oblique Decision Trees · Differential Evolution ·
Initialization stage

1 Introduction

The growing interest in using machine learning (ML) techniques to solve predic-
tion problems and support decision-making in almost any area of human activity
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is undeniable. Using artificial neural networks (ANNs) has allowed novel appli-
cation development. However, ANNs are black-box models that require more
means to explain how they make predictions. Therefore, their use has begun to
be regulated to prevent wrong decisions supported using these methods in areas
such as medicine and economics [29]. This has driven the use of post hoc methods
to generate explanations of ANNs predictions [31]. Other ML strategies, such as
decision trees (DTs), are white-box models with high interpretability and trans-
parency levels. Among the DT types are those that use oblique hyperplanes in
their internal nodes, producing more compact DTs than those that use a single
attribute to make their partitions. However, traditional methods to induce DTs
present some drawbacks, such as overfitting, selection bias toward multi-valued
attributes, and instability to small changes in the training set [16]. For this
reason, other inducing techniques have been proposed that, instead of applying
recursive partitioning techniques, perform a search in the space of possible DTs.
Evolutionary algorithms (EAs), such as genetic algorithms and genetic program-
ming, have been widely applied to find near-optimal DTs that are more precise
than those created by traditional techniques [16].

Differential Evolution (DE) is an EA that has successfully solved numeri-
cal optimization problems, and its standard versions have also been applied to
induce DTs [6,9,18,24,25]. To the best of our knowledge, adaptive DE versions
have not been applied to induce oblique DTs. On the other hand, it has been
observed that an initial random population produces redundant internal nodes
that affect the size and precision of the induced model. In this study, we ana-
lyzed the effect of using four adaptive DE versions to induce oblique DTs (JADE,
SHADE, LSHADE, and JSO) and the effect on model precision and size when
two additional strategies are used to create the initial DE population: dipoles and
centroids. The experimental results establish that the four algorithms exhibit sim-
ilar statistical behavior. However, using the dipole-based start strategy, the JSO
method creates trees with better accuracy. Furthermore, the LSHADE algorithm
induces more compact trees in the three initializations evaluated.

The rest of this paper is organized into four additional sections. Section 2
introduces the oblique DT characteristics and the adaptive DE approaches are
described in Sect. 3. In Sect. 4, elements for the comparative study are detailed.
Section 5 presents the experimental details and results. Finally, in Sect. 6, the
conclusions of this study are presented, and some directions for future work are
defined.

2 Oblique Decision Trees

DTs are classification models that split datasets according to diverse crite-
ria, such as the distance between instances or the reduction of classification
error. These models create a hierarchical structure using test conditions (internal
nodes) and class labels (leaf nodes), allowing visualization of attribute impor-
tance in decisions and how they are used to classify an instance. DTs are the most
popular interpretable algorithm for classification and regression [13]. Depending
on the number of attributes evaluated in each internal node, two decision tree
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types are induced: univariate (axis parallel DTs) and multivariate (oblique and
non-linear DTs). In particular, oblique DTs (ODTs) use test conditions repre-
senting hyperplanes having an oblique orientation relative to the axes of the
instance space. ODTs are generally smaller and more accurate than univariate
DTs, but they are generally more difficult to interpret [4]. ID3 [22], C4.5 [23]
and CART [2] are the most popular methods for inducing univariate DTs, and
CART and OC1 [19] are well-known methods for creating oblique DTs. Figure 1
shows an example of an ODT. On the right of this figure, the instance space is
split using two oblique hyperplanes.

Fig. 1. Example of an oblique decision tree.

3 Adaptive Differential Evolution Approaches

DE is an EA evolving a population of real-valued vectors xi =
(
xi,1, xi,2, · · · ,

xi,n

)T of n variables, to find a near-optimal solution to an optimization problem
[21]. Instead of implementing traditional crossover and mutation operators, DE
applies a linear combination of several randomly selected individuals to produce
a new individual. Three randomly selected candidate solutions (xa, xb, and xc)
are linearly combined to yield a mutated solution xmut, as follows:

xmut = xa + F (xb − xc) (1)

where F is a scale factor for controlling the differential variation.
The mutated solution is utilized to perturb another candidate solution xcur

using the binomial crossover operator defined as follows:

xnew,j =

{
xmut,j if r ≤ Cr ∨ j = k

xcur,j otherwise
; j ∈ {1, . . . , n} (2)

where xnew,j , xmut,j and xcur,j are the values in the j-th position of xnew, xmut

and xcur, respectively, r ∈ [0, 1) and k ∈ {1, . . . , n} are uniformly distributed
random numbers, and Cr is the crossover rate.

Finally, xnew is selected as a member of the new population if it has a better
fitness value than that of xcur.

DE starts with a population of randomly generated candidate solutions whose
values are uniformly distributed in the range [xmin, xmax] as follows:

xi,j = xmin + r (xmax − xmin) ; i ∈ {1, . . . , NP} ∧ j ∈ {1, . . . , n} (3)

where NP is the population size.
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DE is characterized by using fewer parameters than other EAs and by its
spontaneous self-adaptability, diversity control, and continuous improvement [7].
Although DE requires fewer parameters than other EAs, its performance is sen-
sitive to the values selected for Cr, F, and NP [32]. In the literature, several
approaches exist to improve DE performance using techniques to adjust the
values of its parameters or combine the advantages of different algorithm vari-
ants. Methods that adjust the algorithm parameters can be considered global
approaches when the parameters are updated at the end of each generation, and
all population members use their values [5,17]. On the other hand, the most
successful approaches are those in which each individual uses a different value
of the control parameters [27,30]. Finally, there are other methods where differ-
ent mutation or recombination strategies are combined within the evolutionary
process [11,26]. In this study, four adaptive DE versions are used:

1) JADE: This DE variant introduces a successful mutation strategy and
an adaptive parameter method using Gaussian and Cauchy distributions
[30]. The current-to-pbest mutation, shown in Eq. (4), improves the balance
between search space exploration and exploitation by allowing the selection of
an individual (xpbest) from a subset of the p best individuals in the population
to create a mutant vector (xmut). An optional external archive is also used
to diversify the donor vectors. xa is chosen randomly from the current popu-
lation, and xb are selected from this external archive that recorded solutions
previously discarded during the evolutionary process.

xmut = xcur + Fi(xpbest − xcur) + Fi(xa − xb) (4)

JADE uses F and Cr parameter values adjusted to each i-th individual in the
population. Fi is selected from a Cauchy distribution, Fi = randci(µF , 0.1),
and Cri is generated using a normal distribution, Cri = randni(µCr, 0.1).
µCr is updated at the end of each generation using the arithmetic mean of
the set of all successful crossover probabilities. µF is similarly computed, but
the Lehmer mean of all successful scale factors is used.
2) SHADE: The Success-History based Adaptive DE (SHADE) is an
enhanced JADE version employing a historical record of the pair of µCr and
µF values [27]. These values are randomly selected to create each new indi-
vidual instead of using the same values in each generation.
3) LSHADE: A population size linear reduction strategy is applied in this
SHADE variant [28]. The population decreases linearly in each generation
until its size equals a minimum value.
4) JSO: This LSHADE improvement replaces the Fi parameter in the second
term of Eq. (4) for a weighted Fi value updated as a function of the number
of objective function evaluations [3].

Recursive-partitioning and global-search strategies to induce ODTs have
been implemented using DE-based approaches. In the first case, OC1-DE [25],
the Adapted JADE with Multivariate DT (AJADE-MDT) method [12], and the
Parallel-Coordinates (PA-DE) algorithm [6] evolve a population of real-valued
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individuals to find near-optimal hyperplanes. In the other case, two methods
implement a global search strategy to find a near-optimal ODT: (1) The Per-
ceptron DT (PDT) method [9,18], where the hyperplane coefficients of one DT
are encoded with a real-valued individual. Hyperplane-independent terms and
the class label of leaf nodes are stored in two additional vectors. In each DE
iteration, the mutation parameters are randomly altered. A group of new DTs
randomly created replaces the worst individuals in the population. (2) The DE
algorithm to build ODTs (DE-ODT) [24], where the size of the real-valued vec-
tor is computed as a factor of the number of internal nodes of an ODT estimated
using the number of dataset attributes.

4 Comparative Study Details

In this study, we use the mapping scheme introduced by the DE-ODT method
[24]. DE-ODT evolves a population of ODTs encoded in fixed-length real-valued
vectors. Figure 2 shows the scheme for converting a DE individual into an ODT.
The steps of this mapping scheme are described in the following paragraphs.

Fig. 2. Mapping scheme used on the DE-ODT method.

1) ODTs linear representation: Each candidate solution encodes only the
internal nodes of a complete binary ODT stored in a fixed-length real-valued
vector (xi). This vector represents the set of hyperplanes used as the ODT
test conditions. The vector size (n) is determined using both the number of
features (d) and the number of class labels (s) of the training set, as follows:

n = ne(d + 1) (5)

where ne = 2max(Hi,Hl)−1 − 1, Hi = �log2(d + 1)�, and Hl = �log2(s)�
2) Hyperplanes construction: Vector xi is used to build the vector wi

encoding the sequence of candidate internal nodes of a partial ODT. Since the
values of xi represent the hyperplane coefficients contained in these nodes,
the following criterion applies: Values {xi,1, . . . , xi,d+1} are assigned to the
hyperplane h1, the values {xi,d+2, . . . , xi,2d+2} are assigned to the hyperplane
h2, and so on. These hyperplanes are assigned to the elements of wi: h1 is
assigned to wi,1, h2 is assigned to wi,2, an so on.
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3) Partial ODT construction: A straightforward procedure is applied to
construct the partial DT (pTi) from wi: First, the element in the initial
location of wi is used as the root node of pTi. Next, the remaining elements
of wi are inserted in pTi as successor nodes of those previously added so that
each new level of the tree is completed before placing new nodes at the next
level, in a similar way to the breadth-first search strategy. Since a hyperplane
divides the instances into two subsets, each internal node has assigned two
successor nodes.
4) Decision tree completion: In the final stage, several leaf nodes are
added in pTi by evaluating the training set to build the final ODT Ti. One
instance set is assigned to one internal node (starting with the root node),
and by evaluating each instance with the hyperplane associated with the
internal node, two instance subsets are created and assigned to the successor
nodes. This assignment is repeated for each node in pTi. Two cases should
be considered: (1) If an instance set is located at the end of a branch of pTi,
two leaf nodes are created and designated as its successor nodes. (2) If the
instance set contains elements for the same class, the internal node is labeled
as a leaf node, and its successor nodes are removed if they exist. Furthermore,
an internal node is labeled as a leaf when it contains an empty instance subset.

As one example of this inducing approach, Fig. 3 shows two DT induced from
the well-known Iris dataset: The left DT is created using J48 method from
Weka library [8], and the right DT is and ODT induced using LSHADE-based
approach. The ODT is more compact and more accurate than the left DT.

Fig. 3. DTs for Iris dataset using J48 (Left) and LSHADE (Right).

On the other hand, three initialization strategies are analyzed in this work:

1) Random initialization: This is the classic initialization strategy previ-
ously described in Eq. (3). This approach generates many hyperplanes that
do not divide the instances into two subsets, producing redundant nodes
impacting the induced model’s size and precision.
2) Dipoles: A dipole is a pair of training instances. A mixed dipole occurs
when these instances have different classes [1]. Dipoles were first used to
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induce ODTs through a recursive partitioning strategy [15]. A hyperplane hi

must split a mixed dipole to divide the instances into two nonempty subsets.
Each individual of the initial population is built by creating hyperplanes
splitting randomly selected mixed dipoles from the training set. h1 uses a
mixed dipole chosen from the training set, h2 uses a mixed dipole from the
first subset created by h1, h3 from the second subset, and so on until the
number of internal nodes ne is completed. In particular, a random hyperplane
is created if an internal node contains an empty instance subset.
3) Centroids: This initialization strategy is proposed in this work. It is
similar to the previous one, but the hyperplanes are created using the centroid
of the instance set instead of a random mixed dipole. The centroid is a dummy
instance where each value is the middle between the instance set’s minimum
and maximum values.

5 Experiments and Results

In this section, the experimental study conducted to analyze and compare the
performance of the algorithms is presented. First, the datasets used in this study
and the validation technique applied in the comparative analysis are described.
Next, the experimental results and statistical tests are outlined. Finally, a discus-
sion about the results is provided. Thirteen datasets (shown in Table 1), from
the UCI machine learning repository are used in the experimental study [14].
These datasets have only numerical attributes since ODT internal nodes are a
linear combination of their values.

Table 1. Datasets description.

Dataset Instances Features Classes Dataset Instances Features Classes

Glass 214 9 7 Breast-tissue-6 106 9 6

Australian 690 14 2 Ionosphere 351 34 2

Iris 150 4 3 Balance-scale 625 4 3

Ecoli 336 7 8 Heart-statlog 270 13 2

Wine 178 13 3 Liver-disorders 345 6 2

Diabetes 768 8 2 Parkinsons 195 22 2

Seeds 210 6 3

The methods used in this study are implemented in the Java languaje,
using the JMetal [20] and Weka [8] libraries. The implemented algorithms run
30 times for each dataset and initialization scheme, using the ten-fold cross-
validation sampling strategy to estimate the precision and size of induced trees.
Subsequently, the Friedman test is applied to statistical analysis of the results
obtained. Friedman test is selected since it has been demonstrated that the con-
ditions to apply parametric tests are not satisfied to EA-based machine learning
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methods [10]. In the subsequent tables of this section, the best result for each
dataset is highlighted with bold numbers, and the numbers in parentheses refer
to the ranking reached by each method for each dataset. The last row in these
tables indicates the average ranking of each method.

Tables 2, 3, 4, 5, 6, and 7 show the average accuracy and the average size
(number of leaf nodes) of the trees obtained for each dataset and each DE variant,
respectively.

Table 2. Average accuracy of DE variants using random initialization.

Datasets DE JADE SHADE LSHADE JSO

Iris 96.31 (3) 96.04 (5) 96.53 (2) 96.76 (1) 96.20 (4)

Glass 60.75 (3) 61.12 (1) 60.34 (5) 60.37 (4) 60.78 (2)

Parkinsons 78.02 (2) 77.71 (4) 78.12 (1) 77.95 (3) 77.28 (5)

Diabetes 67.82 (4) 68.16 (1) 67.59 (5) 68.14 (2) 68.04 (3)

Australian 75.49 (3) 75.39 (4) 75.28 (5) 75.52 (2) 75.60 (1)

Ionosphere 89.32 (3) 89.03 (5) 89.23 (4) 89.56 (2) 89.65 (1)

Balance-scale 90.59 (1) 90.35 (4.5) 90.44 (2) 90.35 (4.5) 90.39 (3)

Ecoli 80.31 (1) 79.75 (5) 79.98 (4) 80.00 (2.5) 80.00 (2.5)

Heart-statlog 74.04 (1) 73.40 (3) 73.35 (4) 73.91 (2) 73.27 (5)

Liver-disorders 68.19 (1) 67.46 (5) 68.08 (4) 68.09 (3) 68.14 (2)

Wine 86.72 (2) 86.10 (5) 86.91 (1) 86.39 (4) 86.70 (3)

Breast-tissue-6 55.47 (4) 56.07 (1) 55.38 (5) 55.79 (2.5) 55.79 (2.5)

Seeds 90.75 (5) 90.90 (4) 91.10 (2) 91.38 (1) 91.06 (3)

Average ranking 2.538 3.654 3.385 2.577 2.846

Table 3. Average accuracy of DE variants using dipole-based initialization.

Datasets DE JADE SHADE LSHADE JSO

Iris 96.07 (5) 96.22 (4) 96.27 (3) 96.40 (1) 96.38 (2)

Glass 63.80 (5) 64.38 (2.5) 64.38 (2.5) 63.96 (4) 64.53 (1)

Parkinsons 83.30 (1) 83.16 (2) 83.09 (3) 82.87 (5) 82.89 (4)

Diabetes 74.01 (3) 74.00 (4) 73.78 (5) 74.21 (1) 74.02 (2)

Australian 84.52 (2) 84.26 (5) 84.43 (3) 84.37 (4) 84.58 (1)

Ionosphere 88.74 (5) 88.76 (4) 89.27 (1) 89.03 (2) 88.98 (3)

Balance-scale 90.22 (5) 90.34 (3) 90.41 (2) 90.31 (4) 90.51 (1)

Ecoli 82.20 (4) 82.10 (5) 82.38 (1) 82.25 (2.5) 82.25 (2.5)

Heart-statlog 78.75 (2) 77.95 (5) 77.96 (4) 78.83 (1) 78.70 (3)

Liver-disorders 69.18 (2) 69.06 (3.5) 69.04 (5) 69.06 (3.5) 69.33 (1)

Wine 81.16 (3) 80.39 (5) 81.24 (2) 81.91 (1) 80.43 (4)

Breast-tissue-6 54.43 (1) 52.74 (5) 53.30 (3) 53.14 (4) 53.71 (2)

Seeds 88.44 (4) 89.22 (1) 88.38 (5) 88.51 (3) 88.56 (2)

Average ranking 3.231 3.769 3.038 2.769 2.192
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Table 4. Average accuracy of DE variants using centroid-based initialization.

Datasets DE JADE SHADE LSHADE JSO

Iris 96.18 (1) 96.00 (4) 95.93 (5) 96.16 (2.5) 96.16 (2.5)

Glass 65.61 (2) 64.81 (5) 65.37 (4) 65.62 (1) 65.42 (3)

Parkinsons 82.44 (1) 82.19 (2) 82.15 (3) 91.97 (4) 81.88 (5)

Diabetes 72.02 (1) 71.88 (3) 71.92 (2) 71.85 (4) 71.77 (5)

Australian 78.00 (5) 78.45 (3) 78.71 (2) 78.81 (1) 78.38 (4)

Ionosphere 89.67 (5) 89.77 (4) 89.89 (3) 90.12 (1) 90.11 (2)

Balance-scale 45.76 (3) 45.76 (3) 45.76 (3) 45.76 (3) 45.76 (3)

Ecoli 82.88 (2) 82.62 (4) 82.67 (3) 82.92 (1) 82.45 (5)

Heart-statlog 77.35 (2) 76.46 (5) 77.68 (1) 76.93 (3) 76.60 (4)

Liver-disorders 69.60 (2) 69.15 (4) 69.29 (3) 69.81 (1) 68.62 (5)

Wine 81.24 (4) 81.67 (1) 81.50 (3) 81.57 (2) 81.07 (5)

Breast-tissue-6 54.43 (3) 53.14 (4) 52.92 (5) 54.75 (2) 54.94 (1)

Seeds 88.19 (4) 88.14 (5) 88.32 (2) 88.29 (3) 88.71 (1)

Average ranking 2.692 3.615 3.000 2.192 3.500

Table 5. Average size of DE variants using random initialization.

Datasets DE JADE SHADE LSHADE JSO

Iris 7.21 (4.5) 7.16 (1) 7.19 (3) 7.21 (4.5) 7.17 (2)

Glass 11.93 (3) 11.91 (2) 11.87 (1) 12.04 (4) 12.07 (5)

Parkinsons 12.64 (4) 12.48 (2) 12.39 (1) 12.59 (3) 12.73 (5)

Diabetes 21.44 (2) 21.5 (4) 21.63 (5) 20.99 (1) 21.47 (3)

Australian 20.08 (5) 19.27 (1) 19.62 (4) 19.48 (2) 19.51 (3)

Ionosphere 22.18 (4) 21.94 (3) 22.37 (5) 21.46 (1) 21.8 (2)

Balance-scale 12.53 (5) 12.32 (2) 12.49 (4) 12.21 (1) 12.41 (3)

Ecoli 14.18 (4) 14.27 (5) 14.03 (1) 14.16 (3) 14.12 (2)

Heart-statlog 8.41 (1) 8.71 (5) 8.60 (3) 8.48 (2) 8.64 (4)

Liver-disorders 12.56 (5) 12.29 (3) 12.22 (2) 12.19 (1) 12.31 (4)

Wine 6.84 (5) 6.82 (4) 6.78 (3) 6.56 (1) 6.61 (2)

Breast-tissue-6 17.47 (1) 17.53 (3) 17.5 (2) 17.74 (5) 17.67 (4)

Seeds 7.94 (3) 7.73 (1) 8.06 (5) 7.90 (2) 7.95 (4)

Average ranking 3.577 2.769 3.000 2.346 3.308
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Table 6. Average size of DE variants using dipole-based initialization..

Datasets DE JADE SHADE LSHADE JSO

Iris 6.56 (1) 6.68 (3) 6.70 (4) 6.62 (2) 6.77 (5)

Glass 23.93 (2) 23.96 (3) 23.98 (4) 23.90 (1) 24.16 (5)

Parkinsons 30.61 (4) 30.90 (5) 30.44 (2) 30.16 (1) 30.59 (3)

Diabetes 20.73 (5) 20.22 (1) 21.43 (4) 20.48 (2) 20.53 (3)

Australian 12.40 (1) 12.79 (5) 12.74 (4) 12.5 (2) 12.55 (3)

Ionosphere 24.74 (5) 24.05 (1) 24.10 (2) 24.33 (4) 24.16 (3)

Balance-scale 12.76 (2.5) 12.78 (4) 12.92 (5) 12.61 (1) 12.76 (2.5)

Ecoli 15.46 (2) 15.45 (1) 15.48 (3) 15.62 (5) 15.57 (4)

Heart-statlog 5.41 (3) 5.56 (4) 5.58 (5) 5.22 (1.5) 5.22 (1.5)

Liver-disorders 11.44 (2) 11.49 (3) 11.22 (1) 11.50 (4) 11.64 (5)

Wine 8.93 (1) 9.85 (5) 9.73 (4) 9.14 (2) 9.61 (3)

Breast-tissue-6 22.06 (5) 20.93 (1) 20.95 (2) 21.53 (4) 21.22 (3)

Seeds 11.52 (5) 11.32 (4) 11.19 (2) 11.16 (1) 11.28 (3)

Average ranking 2.884 3.077 3.308 2.346 3.385

Table 7. Average size of DE variants using centroid-based initialization.

Datasets DE JADE SHADE LSHADE JSO

Iris 7.00 (5) 6.97 (4) 6.89 (2) 6.87 (1) 6.91 (3)

Glass 24.17 (3) 24.13 (2) 24.20 (4) 24.05 (1) 24.21 (5)

Parkinsons 22.28 (4) 21.87 (1) 22.07 (2) 22.34 (5) 22.26 (3)

Diabetes 15.76 (2) 15.81 (3) 15.99 (5) 15.84 (4) 15.59 (1)

Australian 10.09 (4) 10.19 (5) 9.95 (1) 10.04 (2) 10.08 (3)

Ionosphere 19.09 (5) 19.04 (4) 18.89 (2) 18.93 (3) 18.79 (1)

Balance-scale 1.11 (3) 1.11 (3) 1.11 (3) 1.11 (3) 1.11 (3)

Ecoli 16.35 (4.5) 16.35 (4.5) 16.33 (3) 16.19 (1) 16.31 (2)

Heart-statlog 5.79 (1) 6.16 (5) 5.97 (2) 6.01 (3) 6.07 (4)

Liver-disorders 11.92 (2) 12.22 (5) 12.13 (3.5) 11.91 (1) 12.13 (3.5)

Wine 9.93 (5) 9.54 (2) 9.65 (3) 9.44 (1) 9.77 (4)

Breast-tissue-6 22.10 (3) 21.77 (1) 21.84 (2) 22.3 (5) 22.16 (4)

Seeds 11.04 (4) 11.18 (5) 10.84 (1) 11.02 (3) 10.96 (2)

Average ranking 3.500 3.423 2.577 2.538 2.962
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From Tables 2, 3, and 4, it is observed that the methods getting better
accuracy are: the standard DE using random initialization, JSO with dipole-
based initialization, and LSHADE with centroid-based start strategy. On the
other hand, Tables 5, 6, and 7 show that the LSHADE method produces more
compact ODTs using the three start strategies.

Tables 8 and 9 show the best results obtained by the DE versions for accuracy
and tree size, respectively.

Table 8. Accuracy for the best methods for each initialization strategy.

Datasets Classes Random DE Dipoles JSO Centroids LSHADE

Parkinsons 2 78.02 (3) 82.89 (1) 81.97 (2)

Diabetes 2 67.82 (3) 74.02 (1) 71.85 (2)

Australian 2 75.49 (3) 84.58 (1) 78.81 (2)

Ionosphere 2 89.32 (2) 88.98 (3) 90.12 (1)

Heart-statlog 2 74.04 (3) 78.70 (1) 76.93 (2)

Liver-disorders 2 68.19 (3) 69.33 (2) 69.81 (1)

Iris 3 96.31 (2) 96.38 (1) 96.16 (3)

Balance-scale 3 90.59 (1) 90.51 (2) 45.76 (3)

Wine 3 86.72 (1) 80.43 (3) 81.57 (2)

Seeds 3 90.75 (1) 88.56 (2) 88.29 (3)

Breast-tissue-6 6 55.47 (1) 53.71 (3) 54.75 (2)

Glass 7 60.75 (3) 64.53 (2) 65.62 (1)

Ecoli 8 80.31 (3) 82.25 (2) 82.92 (1)

Average ranking 2.231 1.846 1.923

Table 9. Tree size for the best methods for each initialization strategy.

Datasets Classes Random LSHADE Dipoles LSHADE Centroids LSHADE

Parkinsons 2 12.59 (1) 30.16 (3) 22.34 (2)

Diabetes 2 20.99 (3) 20.48 (2) 15.84 (1)

Australian 2 19.48 (3) 12.50 (2) 10.04 (1)

Ionosphere 2 21.46 (2) 24.33 (3) 18.93 (1)

Heart-starlog 2 8.48 (3) 5.22 (1) 6.01 (2)

Liver-disorders 2 12.19 (3) 11.50 (1) 11.91 (2)

Iris 3 7.21 (3) 6.62 (1) 6.87 (2)

Wine 3 6.56 (1) 9.14 (2) 9.44 (3)

Seeds 3 7.90 (1) 11.16 (3) 11.02 (2)

Balance-scale 3 12.21 (2) 12.61 (3) 1.11 (1)

Breast-tissue-6 6 17.74 (1) 21.53 (2) 22.30 (3)

Glass 7 12.04 (1) 23.90 (2) 24.05 (3)

Ecoli 8 14.16 (1) 15.62 (2) 16.19 (3)

Average ranking 1.923 2.077 2.000
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From the results on in Table 8, the Friedman test shows a p-value of 0.5836,
pointing out that the three methods behave similarly, but it is observed that,
on average, the JSO algorithm gets ODTs with better accuracy than the other
approaches. Also, Table 8 shows that JSO with dipoles finds more accurate ODTs
from datasets with two or three classes (Parkinsons, diabetes, Australian, Heart-
statlog, Iris), and LSHADE with centroids finds accurate ODTs from those with
two (Ionosphere, Liver-disorders) or with more than three classes (Glass, Ecoli).
On the other hand, Standard DE with random initialization induces better ODTs
for imbalanced datasets: Balance-scale has three classes with 288, 288, and 49
instances, respectively, and the Wine dataset has three classes with 59, 71, and
48 instances, respectively. Breast-tissue-6 has six classes with 22, 21, 14, 15, 16,
and 18 instances, and only Seeds is a balanced dataset with 70 instances per
class.

The statistic value computed by the Friedman test from results in Table 9
shows a p-value of 0.926, indicating that the three initialization strategies built
ODTs of similar sizes. The centroid initialization scheme produces the smallest
ODTs for datasets with two classes, and the random initialization creates more
tiny ODTs for multiclass datasets (Wine, Breast-tissue-t, Glass and Ecoli).

6 Conclusions and Future Work

The experimental results indicate that it is important to continue studying the
application of adaptive variants of DE to solve non-numerical optimization prob-
lems because it is necessary to analyze in detail the search space’s characteristics
and the strategies for mapping between DE individuals and their tree-like rep-
resentation. LSHADE and JSO obtained slightly better results than the other
approaches, which is to be expected since they are improved versions of SHADE
and JADE methods. In future work, we will integrate a tree-pruning strategy
and a more effective method to remove redundant nodes into the decision tree
induction process.
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