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VALIDATION OF LINEAR COVARIANCE ANALYSIS FOR NOVA-C
CISLUNAR TRAJECTORY DESIGN

Quinn Moon*, Donald H. Kuettel †, David K. Geller‡, Sam Welsh §, Shaun
Stewart ¶, Tim Crain ||

Nova-C is a lunar lander designed by the private company Intuitive Machines to
deliver small commercial payloads to the surface of the Moon. The first Nova-C
lander is manifested on the IM-1 mission in early 2022. A nominal deterministic
trajectory for the mission is being designed using NASA’s Copernicus software. In
this paper, linear covariance (LinCov) is used to assess orbit determination (OD)
performance based on the nominal trajectory and a selected ground-station track-
ing schedule. An assessment of OD performance for key mission events including
trajectory correction maneuvers (TCMs), lunar approach and lunar orbit insertion
(LOI), and descent orbit insertion (DOI) are presented. LinCov analysis is also
used to assess trajectory dispersion at each of these key mission events. Monte
Carlo analysis is employed to validate these results. The long-term goal of this re-
search is to develop and validate a fully integrated LinCov tool to simultaneously
determine trajectory dispersion, OD performance, and maneuver delta-v disper-
sion.

INTRODUCTION

Key elements of the Nova-C mission are trajectory design and performance analysis. This in-
cludes an assessment of expected orbit determination (OD) performance and trajectory dispersion.
The performance assessment is based upon expected initial trajectory dispersion and knowledge er-
rors, maneuver execution errors, modeling errors, and expected OD errors given the ground-station
tracking schedule and specifications. To achieve this, linear covariance (LinCov) analysis1, 2 is
employed and validated with Monte Carlo analysis.3, 4 LinCov tools have been previously devel-
oped and validated for several missions, including: orbital rendezvous,5 powered ascent,6 earth
atmospheric entry,7 Mars atmospheric entry,8 the Mars Pathfinder,9 and lunar descent.4 However,
LinCov tools for cislunar trajectories from translunar injection to lunar orbit insertion have not been
previously validated. The goal of this paper is to show that LinCov can be a viable tool for cislunar
navigation and dispersion analysis.
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REFERENCE TRAJECTORY AND GROUND-STATION TRACKING SCHEDULE

The Nova-C reference trajectory and maneuvers in Earth-Centered Inertial (ECI) coordinates
are shown in Figure 1. The nominal deterministic trajectory is generated by NASA’s Copernicus
software with midcourse correction maneuvers planned by Intuitive Machines. The ground-station
tracking schedule is generated using visibility reports from four ground-stations.

The trajectory shown in Figure 1 begins as the Nova-C lander separates from SpaceX’s launch
vehicle, referred to as launch vehicle separation (LVS). The trajectory is then divided using mid-
course corrections. These midcourse corrections consist of a larger commissioning maneuver (CM)
and three smaller trajectory correction maneuvers (TCM’s). The Nova-C lander is inserted into lu-
nar orbit using a lunar orbit insertion maneuver (LOI). After performing several orbits, the Nova-C
lander begins the descent orbit insertion maneuver (DOI) and descends to the lunar surface.

Figure 1: ECI Trajectory and Maneuvers

The maneuvers are further utilized to separate the trajectory into subsections, referred to as OD
segments. Each OD segment is analyzed separately to determine OD performance and trajectory
dispersion prior to each correction maneuver. To facilitate the Monte Carlo analysis in lunar orbit,
the analysis for low lunar orbit (LLO) is further divided into individual orbits.
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The contact schedule for ground-station tracking is shown in Figure 2. Four ground-stations
are used for this study: Karnataka, India (D32); Morehead, Kentucky, United States (DSS17);
Goonhilly, England (GHY6); Okinawa, Japan (OKN2). The contact schedule is planned such that
Nova-C remains in contact with a single ground-station at any given time, except during lunar
occultation.

Figure 2: Ground-Station Contact Schedule
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LINEAR COVARIANCE ANALYSIS

LinCov Equations

The LinCov state vector x consists of the Nova-C position and velocity vectors in J2000 inertial
coordinates, solar radiation pressure (SRP) acceleration disturbances, and measurement biases

x =


r
v

ϵSRP

br
bṙ


where the SRP acceleration and measurement biases are modeled as exponentially correlated ran-
dom variables (ECRV’s) with time-constants of approximately 10 days. The nonlinear dynamics
can be written in the compact form

ẋ(t) = f(x(t), t) +w

where w is the zero-mean Gaussian process noise. The system dynamics are linearized and dis-
cretized as follows

F =
∂f

∂x

Φ(tk+1, tk) = eF (tk+1−tk)

δx(tk+1) = Φ(tk+1,tk)δx(tk) +Υ(tk)wd,k

where Υk represents the mapping for the discrete process noise wd,k. The linearized equations
are then used to propagate the initial covariances. This paper studies both position and velocity
dispersions and knowledge errors. Given the initial knowledge error covariance P and the initial
dispersion covariance C, the covariances are propagated as follows10

P (tk+1) = Φ(tk+1, tk)P (tk)Φ
T (tk+1, tk) +ΥQd,pΥ

T

C(tk+1) = Φ(tk+1, tk)C(tk)Φ
T (tk+1, tk) +ΥQd,cΥ

T

where Qd,p and Qd,c represent the covariance of the discrete process noise:

Qd,p = E[wd,pw
T
d,p]

Qd,c = E[wd,cw
T
d,c]

In addition to being propagated, the covariance of the knowledge errors is updated when mea-
surements z(tk) are available at time tk:

z(tk) = h(x(tk), tk) + ν(tk)

Linearizing the nonlinear measurement equation yields:

H =
∂h

∂x
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Using a sequential Kalman10 filter, the covariance of the knowledge errors, P , is updated using the
equations below:

K(tk) = P−(tk)H
T (tk)

[
H(tk)P

−(tk)H
T (tk) +R

]−1

P+(tk) = [I −K(tk)H(tk)]P
−(tk) [I −K(tk)H(tk)]

T +K(tk)RK(tk)
T

The notations ”− ” and ”+” denote before and after measurement incorporation occurs, respec-
tively. The matrix R represents the strength of the measurement noise:

R = E[ν(tk)ν(tk)
T ]

MONTE CARLO ANALYSIS

A batch least squares estimator11within a Monte Carlo simulation12 is used to validate the Lin-
Cov results. More specifically, this work uses the batch filter capabilities of Goddard Space Flight
Center’s General Mission Analysis Tool (GMAT). A diagram of the individual navigation simula-
tions within the larger Monte Carlo simulation is shown in Figure 3. First, the nominal state of
the spacecraft is perturbed by ∆x, which is pulled from an initial state error covariance, to get the
“Truth” trajectory. Next, measurements are generated along the Truth trajectory. Then, with the
spacecraft thinking it’s on the reference trajectory, the batch filter processes the measurements to
provide an estimated state (xB,IC) and associated covariance of the spacecraft at the beginning of
the data arc. Next, the estimated state of the spacecraft is propagated to a desired epoch to get the
corrected trajectory.

The navigation error (δxP ) is calculated by differencing the corrected trajectory from the truth
trajectory at the desired epoch. This process is repeated N times and the statistics of the navigation
error of the spacecraft due to measurement noise is computed using the N samples of δxP . The
trajectory dispersion (δxC) is calculated by differencing the truth trajectory from the nominal tra-
jectory at the desired epoch. This process is repeated N times and the statistics of the trajectory
dispersion due to initial state errors, maneuver execution errors, and SRP disturbances is computed
using the N samples of δxC .

Figure 3: Monte Carlo Simulation
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PROBLEM SETUP AND PARAMETERS

Initial Trajectory Dispersion and Knowledge Errors

At LVS, a conservative representation of the trajectory dispersion in terms of orbital elements is:

σra = 10 km

σrp = 5 km

σi = .1 degrees

σΩ = .1 degrees

σω = .1 degrees

A conservative estimate of the initial knowledge errors is used:

Position error: σr = 10 km / axis

Velocity error: σv = 1 m/s / axis

Ground-Station Measurement Specifications

The ground-stations provide two-way range-rate and two-way range measurements. Conservative
estimates are used for the associated noise errors:

3-σrange = 10 m

3-σrange−rate = 1 cm/s

For the OD/navigation studies, a varying measurement duration is used to study the separate im-
pacts of range-rate and range measurements. Furthermore, a measurement cutoff prior to maneuver
execution is assumed. This cutoff accounts for the time needed for ground operations to process
tracking data, compute required maneuvers, and uplink the maneuvers to the Nova-C lander.

Maneuver Execution Errors

The Nova-C mission is accomplished using closed-loop, inertial-hold maneuvers. The goal of
each maneuver is to achieve a specified ∆v in inertial space under closed-loop control with inertial
measurement unit (IMU) feedback. This is accomplished via the IMU accelerometer and gyroscope
measurements. However, accelerometer and gyroscope measurement errors produce inline and lat-
eral maneuver execution errors. These maneuver execution errors are modeled mathematically and
included in the dispersion studies.
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The maneuver execution model is derived from the Nova-C lander’s IMU data (see Appendix
A). The Nova-C lander utilizes two IMU’s for redundancy and the worse case IMU performance
is assumed in the analysis. Using the IMU characteristics, a numerical analysis is performed by
varying the maneuver size from 3 m/s to 1,000 m/s and by varying the spacecraft mass from 1,430
kg to 1,920 kg. The results of the IMU numerical analysis for the varying maneuver sizes and
spacecraft masses are shown in Figure 4.

Figure 4: Polynomial fit of the inline and lateral 1-σ closed-loop maneuver execution error.

The inline (i) and lateral (l) maneuver error data is fitted using a least-squares polynomial fit
giving the following equations for the 1-σ ∆v error as a function of maneuver size:13

σi = 1.250× 10−11||∆v||3 − 8.914× 10−8||∆v||2 + 9.553× 10−4||∆v||+ 1.754× 10−2

σl = −1.065× 10−9||∆v||3 + 6.987× 10−6||∆v||2 + 7.328× 10−3||∆v||+ 2.397× 10−2

As Figure 4 shows, the cubic polynomials fit the maneuver execution data well regardless of
spacecraft mass. This shows the validity of the polynomial fit throughout the entire Nova-C mission
as the mass of the spacecraft changes. Finally, it is important to note that the maneuver execution
data is unavailable below 3 m/s because this is the smallest maneuver that can be executed in a
closed-loop fashion. For the purposes of the dispersion studies shown, a maneuver size of 3 m/s is
used.
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Environment Modeling Errors

Each OD segment includes gravitational effects from the Earth, Moon, and Sun. The LinCov
analysis treats each body as a point mass, while the Monte Carlo utilizes a 8 × 8 gravity model for
Earth and the Moon. This difference in modeling is negligible until LLO where the higher-order
terms of the lunar gravity model become important.

This study also includes the effects of SRP acceleration disturbances. The following data is given
to calculate the SRP acceleration acting on the Nova-C lander

Surface Area to Mass Ratio:
A

m
= .0035

m2

kg

Solar Flux: Sf = 1359.39 W

Speed of Light: c = 2.997× 108
m

s

Acceleration due to SRP:
Sf

c

A

m
ρ

where ρ is the area-varying coefficient of reflectivity. The value of ρ ranges from 0 to 2 and accounts
for both the spacecraft’s coefficient of reflectivity and the spacecraft’s attitude.

The LinCov analysis conservatively models the SRP acceleration as a constant random vector
(in 3-dimensions) with a mean value of 1.587 ×10−8 m/s2 (ρ = 1) and a standard deviation of
0.53 ×10−8 m/s2 1-σ/axis (ρ = 0.33). The Monte Carlo analysis more realistically models the SRP
acceleration as a constant random vector pointing opposite the Sun where ρ is sampled from a
uniform distribution between 0 and 2.

LINCOV OD PERFORMANCE ANALYSIS AND VALIDATION

Case Study Setup

This section presents the results of the LinCov OD performance analysis for each OD segment
and its validation with Monte Carlo analysis. The results are based on the nominal reference trajec-
tory, ground-station tracking schedule, and ground-station measurement errors. Seven different OD
segments are analyzed: five segments from LVS to LOI, and two LLO segments. The first five OD
segments are LVS to CM, CM to TCM1, TCM1 to TCM2, TCM2 to TCM3, and TCM3 to LOI.
Measurement cutoff occurs four hours prior to the end of each segment. The first LLO segment is
simply the 8th lunar orbit consisting of approximately one hour of measurements and 50 minutes
of propagation. The second LLO segment consists of the last three lunar orbits with approximately
one hour of measurements and four hours of propagation.

The LinCov analysis and the OD/Monte Carlo analysis are conducted for two case studies: 1) full
range-rate and range measurements for the duration of the OD segment up to measurement cutoff,
2) Full range-rate and only three hours of range measurements prior to measurement cutoff.
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Case 1: Full range-rate and range measurements

Case 1 entails analyzing each OD segment by incorporating both range-rate and range measure-
ments with their associated measurement noise (measurement biases are not included in this analy-
sis). Each OD segment is analyzed using a 10s measurement cadence. Measurement cutoff occurs
four hours prior to the end of each OD segment.

Figure 5 shows the time-history of the knowledge errors for OD segment 1 (LVS to CM) gener-
ated by the LinCov analysis. The first and second subplots show the 3-σ root sum squared (RSS)
knowledge errors of position and velocity, respectively. The third and fourth subplots show the
ground-station coverage and how each station provides range and range-rate measurements, respec-
tively. The diagonal elements of the covariance matrix P are extracted at the final time of each OD
segment and compared to the results of the OD Monte Carlo analysis.

Figure 5: LVS-CM: Time-history of knowledge errors based on LinCov analysis
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The inertial errors based on the LinCov analysis for each OD segment are reported in Table 1.

Table 1: Case 1: LinCov OD navigation results

OD Segment: 1 2 3 4 5 6.1 6.2
- LVS-CM CM-TCM1 TCM1-2 TCM2-3 TCM3-LOI Orbit 8 LLO-DOI

Errors:
3-σ rx [m] 17.22 15.01 14.37 13.05 134.03 86.00 79.87
3-σ ry [m] 23.33 18.17 19.26 26.05 51.76 128.53 192.28
3-σ rz [m] 37.39 27.92 35.04 42.38 103.13 241.61 162.55
3-σ vx [mm/s] 0.17 0.22 0.24 0.21 37.34 17.55 36.17
3-σ vy [mm/s] 0.33 0.24 0.23 0.29 90.88 242.59 206.01
3-σ vz [mm/s] 0.40 0.49 0.63 0.61 4.85 238.71 302.06

The LinCov results are then compared to the Monte Carlo results generated by GMAT software.
The results for each OD segment based on the Monte Carlo analysis are shown in Table 2.

Table 2: Case 1: Monte Carlo OD navigation results

OD Segment: 1 2 3 4 5 6.1 6.2
- LVS-CM CM-TCM1 TCM1-2 TCM2-3 TCM3-LOI Orbit 8 LLO-DOI

Errors:
3-σ rx [m] 17.13 15.01 14.38 13.00 134.89 89.72 94.59
3-σ ry [m] 23.22 18.17 19.25 25.97 51.36 133.34 221.11
3-σ rz [m] 38.46 27.92 35.14 42.44 103.66 242.68 187.57
3-σ vx [mm/s] 0.17 0.22 0.24 0.21 37.26 14.21 29.96
3-σ vy [mm/s] 0.33 0.24 0.23 0.29 91.79 244.98 230.73
3-σ vz [mm/s] 0.42 0.49 0.64 0.61 4.84 243.88 323.63

An analysis comparing the LinCov and Monte Carlo results indicate that the greatest difference in
the RSS knowledge errors, excluding the results for LLO to DOI, is 2.64%. The greatest difference
in the RSS knowledge errors for LLO to DOI is 13.39%. This difference is attributed to the different
gravity models and the four-hour propagation time prior to DOI.
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Case 2: Full range-rate with three hours of range measurements

Figure 6 shows the time-history of the knowledge errors for OD segment 1 (LVS to CM) based
on LinCov analysis. Note that unlike Case 1, the third subplot indicates that range measurements
are only incorporated three hours prior to measurement cutoff.

Figure 6: LVS-CM: Time-history of knowledge errors based on LinCov analysis with limited range
measurements
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The inertial errors based on the LinCov analysis for each OD segment are reported in Table 3.

Table 3: Case 2: LinCov OD navigation results

OD Segment: 1 2 3 4 5
- LVS-CM CM-TCM1 TCM1-2 TCM2-3 TCM3-LOI

Errors:
3-σ rx [m] 70.67 373.06 474.68 241.02 1,486.39
3-σ ry [m] 97.49 160.37 322.32 282.37 259.27
3-σ rz [m] 331.15 1,674.73 1,491.93 803.82 1,251.58
3-σ vx [mm/s] 1.13 4.56 5.06 3.14 495.92
3-σ vy [mm/s] 1.31 3.53 6.28 4.61 1,038.23
3-σ vz [mm/s] 3.93 7.19 5.63 5.76 36.57

The LinCov results are then compared to the Monte Carlo results generated by GMAT software.
The results for each OD segment based on the Monte Carlo analysis are shown in Table 4.

Table 4: Case 2: Monte Carlo OD navigation results

OD Segment: 1 2 3 4 5
- LVS-CM CM-TCM1 TCM1-2 TCM2-3 TCM3-LOI

Errors:
3-σ rx [m] 70.12 377.80 478.02 242.18 1,483.56
3-σ ry [m] 97.29 160.32 322.97 280.99 258.29
3-σ rz [m] 341.49 1,700.53 1,432.88 809.11 1,249.21
3-σ vx [mm/s] 1.19 4.59 5.07 3.14 490.43
3-σ vy [mm/s] 1.30 3.54 6.29 4.59 1,038.78
3-σ vz [mm/s] 4.05 7.26 5.63 5.77 38.45

An analysis comparing the LinCov and Monte Carlo results indicate that the greatest difference
in the RSS knowledge errors is 2.78%. Analysis and validation are not performed for LLO since the
resulting range measurement duration would be too small to make an accurate comparison between
the OD batch solutions and the sequential Kalman filter solutions.
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Case 2 generated further interest in studying the impact of range measurement duration and
ground-station location. Using LinCov analysis, Figures 7 and 8 show the 3-σ RSS knowledge
errors plotted against 0-12 hours of range measurement duration. Tracking station GHY6 is in used
for the first 4.5 hours, and then D32 is used for the remainder of this OD segment.

Figure 7: LVS-CM: RSS position knowledge errors as a function of range measurement duration

Figure 8: LVS-CM: RSS velocity knowledge errors as a function of range measurement duration

The red asterisks indicate the matching LinCov and Monte Carlo results from Cases 1 and 2.
Assuming that all other data points on the plot would be validated by Monte Carlo, LinCov provides
a fast tool that may be used to further study optimal range measurement duration.
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LINCOV TRAJECTORY DISPERSION ANALYSIS AND VALIDATION

This section presents the results of the LinCov trajectory dispersion analysis and validation using
Monte Carlo analysis. The error sources considered for the dispersion analysis are the initial state
dispersion, maneuver execution errors, and SRP disturbances. The initial state dispersion imple-
mented into the dispersion covariance matrix C are pulled from the final knowledge errors in the
navigation study. The position and velocity dispersions are analyzed from each TCM to LOI due to
the importance of being able to properly inject into lunar orbit in preparation for the final descent
and landing. The total dispersion is expected to be the RSS of the individual dispersions due to
initial state dispersions, maneuver execution errors, and the SRP disturbances.

The position and velocity dispersions at LOI based on LinCov analysis for TCM1 to LOI are
presented in Table 5.

Table 5: Position and velocity dispersions at LOI based on LinCov analysis for TCM1-LOI

Error Source: Initial State Maneuver Execution SRP Disturbances Total

Errors:
3-σ rx [km] 0.337 49.401 1.142 49.416
3-σ ry [km] 0.013 22.173 0.308 22.176
3-σ rz [km] 0.289 32.752 0.874 32.765
3-σ vx [m/s] 0.107 20.476 0.385 20.479
3-σ vy [m/s] 0.239 32.405 0.786 32.416
3-σ vz [m/s] 0.006 15.997 0.207 15.999

Position and velocity dispersions at LOI based on Monte Carlo analysis for TCM1 to LOI are
presented in Table 6.

Table 6: Position and velocity dispersions at LOI based on Monte Carlo analysis for TCM1-LOI

Error Source: Initial State Maneuver Execution SRP Disturbances Total

Errors:
3-σ rx [km] 0.350 49.841 0.965 49.852
3-σ ry [km] 0.015 22.778 0.173 22.790
3-σ rz [km] 0.301 33.037 0.541 33.152
3-σ vx [m/s] 0.112 20.832 0.260 21.015
3-σ vy [m/s] 0.248 32.430 0.629 32.562
3-σ vz [m/s] 0.005 16.484 0.217 16.085

An analysis comparing the LinCov and Monte Carlo results indicate that the greatest difference
in the RSS dispersions for initial state and maneuver execution errors is 3.76%. The difference in
the RSS dispersions for SRP is much larger, 35.81%. However, this larger difference is expected
due to the different SRP models used in the LinCov and Monte Carlo analysis. Furthermore, the
impact of SRP on the total dispersions is minimal.
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The position and velocity dispersions at LOI based on LinCov analysis for TCM2 to LOI are
presented in Table 7.

Table 7: Position and velocity dispersions at LOI based on LinCov analysis for TCM2-LOI

Error Source: Initial State Maneuver Execution SRP Disturbances Total

Errors:
3-σ rx [km] 0.281 29.330 0.442 29.334
3-σ ry [km] 0.019 13.455 0.125 13.455
3-σ rz [km] 0.247 21.133 0.342 21.137
3-σ vx [m/s] 0.099 13.225 0.155 13.227
3-σ vy [m/s] 0.200 19.540 0.305 19.547
3-σ vz [m/s] 0.008 8.971 0.079 8.967

Position and velocity dispersions at LOI based on Monte Carlo analysis for TCM2 to LOI are
presented in Table 8.

Table 8: Position and velocity dispersions at LOI based on Monte Carlo analysis for TCM2-LOI

Error Source: Initial State Maneuver Execution SRP Disturbances Total

Errors:
3-σ rx [km] 0.274 29.416 0.381 29.962
3-σ ry [km] 0.019 13.198 0.066 13.803
3-σ rz [km] 0.239 21.017 0.213 21.027
3-σ vx [m/s] 0.097 13.069 0.103 13.425
3-σ vy [m/s] 0.194 19.507 0.249 19.765
3-σ vz [m/s] 0.007 8.817 0.084 9.199

An analysis comparing the LinCov and Monte Carlo results indicate that the greatest difference
in the RSS dispersions for initial state and maneuver execution errors is 2.93%. The difference in
the RSS dispersions for SRP is much larger, 29.58%. Again, this larger difference is expected due
to the different SRP models used.

Validation of Linear Covariance Analysis for Nova-C Cislunar Trajectory Design 129



The position and velocity dispersions at LOI based on LinCov analysis for TCM3 to LOI are
presented in Table 9.

Table 9: Position and velocity dispersions at LOI based on LinCov analysis for TCM3-LOI

Error Source: Initial State Maneuver Execution SRP Disturbances Total

Errors:
3-σ rx [km] 0.137 11.611 0.067 11.612
3-σ ry [km] 0.025 5.791 0.023 5.791
3-σ rz [km] 0.124 8.517 0.051 8.518
3-σ vx [m/s] 0.057 5.720 0.026 5.721
3-σ vy [m/s] 0.097 7.786 0.046 7.786
3-σ vz [m/s] 0.006 3.609 0.013 3.609

Position and velocity dispersions at LOI based on Monte Carlo analysis for TCM3 to LOI are
presented in Table 10.

Table 10: Position and velocity dispersions at LOI based on Monte Carlo analysis for TCM3-LOI

Error Source: Initial State Maneuver Execution SRP Disturbances Total

Errors:
3-σ rx [km] 0.136 11.486 0.056 11.510
3-σ ry [km] 0.025 5.704 0.011 5.690
3-σ rz [km] 0.123 8.656 0.029 8.397
3-σ vx [m/s] 0.057 5.797 0.015 5.648
3-σ vy [m/s] 0.097 7.707 0.036 7.678
3-σ vz [m/s] 0.006 3.495 0.013 3.559

An analysis comparing the LinCov and Monte Carlo results indicate that the greatest difference
in the RSS dispersions for initial state and maneuver execution errors is 3.75%. The difference in
the RSS dispersions for SRP is much larger, 31.32%. Again, this larger difference is expected due
to the different SRP models used.
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Figure 9 shows the total trajectory dispersion in the B-Plane for each TCM to LOI. By analyzing
the trajectory dispersion in the B-Plane, ground operations can better determine whether a maneuver
is necessary. In Figure 9, the solid ellipses indicate the dispersions generated by LinCov and the
dashed ellipses indicate the dispersions generated by the Monte Carlo analysis.

Figure 9: Total B-Vector Dispersions

CONCLUSION

The results of this paper provided a preliminary validation of linear covariance analysis for cislu-
nar flight and lunar orbit using Monte Carlo analysis. Both OD/navigation performance and disper-
sion analysis were validated. The OD performance considered range-rate and range measurement
noise and measurement duration. The dispersion analysis considered initial state errors, maneuver
execution errors, and SRP disturbances. The LinCov results were validated using Monte Carlo anal-
ysis for the entire mission from launch vehicle separation to lunar orbit insertion to lunar descent
orbit insertion.
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APPENDIX

The maneuver execution error is divided into two parts: (1) errors from the accelerometers sens-
ing the non-gravitational acceleration experienced by the spacecraft during the maneuver and (2)
pointing errors during the execution of the maneuver from the gyroscopes. Both the accelerometer
and gyroscope measurement errors are a result of errors due to the misalignment of the IMU axes,
scale-factor uncertainties, random biases, and noise. Furthermore, the Nova-C mission uses two
IMUs for redundancy HG170014 and SDI-500-A.14 The mission needs to be accomplished with
either IMU, so the worse case IMU specifications shown in Table 11 are used in the maneuver
execution model.

Table 11: Nova-C IMU Characteristics

Parameter 1σ Value IMU

Gyro Bias, bg 7 deg/hr HG1700
Gyro Scale Factor, Sg 260 ppm HG1700
Gyro Angle Random Walk, ηg 0.17 deg/rt-hr HG1700
Accel Bias, ba 100 µg SDI-500-A
Accel Scale Factor, Sa 520 ppm HG1700
Accel Velocity Random Walk, ηa 58.3 µg/rt-hz HG1700
Accel Misalignment, Γa 0.0333 deg -
Initial Attitude Error, θ0 0.333 deg -
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