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Abstract. Distracted driving is a significant issue that has sparked extensive
research in detection and mitigation methods, with previous studies exploring
physiological sensors but finding them intrusive, leading to the rise of computer
vision techniques, particularly deep learning, for non-intrusive and real-timedetec-
tion. While recent research has demonstrated the accuracy of MobileNetV2-tiny
in detecting distracted driving using the State Farm Distracted Driver Detection
Dataset, there remains a need to address real-time mitigation strategies and cogni-
tive distractions. To bridge these gaps, this study developed the ‘Distracker’ proto-
type, an intelligent agent using deep learning and eye-tracking algorithms to detect
and mitigate manual, visual, and cognitive distractions in real-time, incorporating
multi-modal alerts to enhance road safety. Through real-life driving experiments,
participants engaged in various distracted driving tasks, and the Distracker proto-
type demonstrated a remarkable overall classification accuracy of 93.63%. These
findings highlight the potential practical implementation of the Distracker proto-
type in vehicles, making significant strides in detecting and mitigating distracted
driving and contributing to the larger goal of accident reduction and promoting
secure driving experiences for all.

Keywords: Distracker · Distracted Driving · Deep Learning · Confusion
Matrix · In-Vehicle Intelligent Assistant

1 Introduction

Recently, distracted driving has raised significant safety concerns in the automotive
industry, with increases of up to 22% in alarming road accidents, including both fatal
crashes and near-crashes [1]. Recent statistics reveal a concerning surge of 8% in road
accidents due to distracted driving over the course of five years, encompassing both fatal
collisions and alarming near-crash scenarios [2]. This trend translates to an approximate
average of 2,924 distraction-affected fatal traffic crashes per year [2]. This issue does
not only affect road safety but also has economic implications, resulting in substantial
losses in developing countries [3]. Moreover, distracted driving leads to higher rates of
road fatalities, injuries, and emotional distress for individuals and their loved ones [4].
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Despite the deployment of the Advanced Driver Assistance Systems (ADAS), dis-
tracted driving remains an ongoing challenge [5]. A recent study has shown that drivers
engage in distracting activities, even with ADAS features, leading to near-crashes or
crashes [6]. The study revealed that 68% of drivers using lane-keeping assistance were
still prone to distractions like texting or adjusting the radio, resulting in near-crashes or
crashes [6]. Similarly, another study identified that 45% of drivers involved in crashes
with vehicles equipped with lane departure warning and forward collision warning sys-
tems were distracted by activities such as using a mobile phone or reaching for an object,
leading to failures in responding to warnings [7].

Additionally, ADAS systems are often limited to premium vehicles, leaving a sig-
nificant number of drivers without access to these safety features [8]. Even in vehicles
equipped with high levels of driving autonomy, such as the autonomous Uber and Tesla
Model S vehicles, human drivers are susceptible to distraction, resulting in accidents [9].
Therefore, there is a critical need to detect and mitigate driver distraction in real-time
to ensure road safety. In order to address this overarching problem, a hybrid approach
is adopted by integrating Convolutional Neural Networks (CNNs) and eye movement
tracking. By leveraging these technologies, this study aims to detect and mitigate man-
ual, visual, and cognitive distractions in real-time through a proposed prototype, while
attempting to surpass limitations of previous approaches. As such, the outcome of this
study is expected to advance driver safety, reduce the impact of distracted driving, and
bring benefits to individuals, and societies.

This paper is structured as follows: In the next section, background on distracted
driving is provided and prior research is critically reviewed. Subsequently, the imple-
mentation process of the proposed prototype is thoroughly explained in Sect. 3 prior to
discussing the evaluation method used to rigorously assess the prototype’s effectiveness.
The paper then concludes with a concise summary of findings and discussions.

2 Background and Related Works

Distracted driving is a prevalent issue, with research indicating that a significant number
of drivers engage in secondary tasks while driving [10]. There are different types of
distraction, and these are:

• Manual distraction
Drivers are manually distracted when they take their hands off the steering wheel

to perform secondary tasks, such as using vehicle controls, drinking, eating, smoking,
reaching for in-vehicle objects, or manipulating mobile phones while driving.

• Visual distraction
Visual distraction occurs when a driver takes his eyes off the road, often due to

the presence of attention-grabbing stimuli. For example, a study sponsored by the
AAA Foundation which used in-vehicle video recordings of teen drivers found that
glancing away from the forward roadway for more than 2 s increased the risk of a
crash or near-crash to over two times that of normal driving [11].
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• Cognitive distraction
Cognitive distraction occurs when the focus required for safe driving is redirected

toward other secondary tasks, resulting in divided attention [12]. An example of
cognitive distraction during driving is when a driver’s mind is preoccupied with
thoughts, daydreaming, or engaging in complex mental tasks unrelated to driving.
This can include being deep in thought about personal issues, work-related stress,
planning future events, or even being engrossed in intense conversations or arguments
with passengers.Cognitive distractions divert the driver’s attention away from the road
and can impair their ability to react to sudden changes or hazards, increasing the risk
of accidents.

As related works, existing studies have utilized various physiological sensors to
detect cognitive distractions while driving. For example, Electroencephalography (EEG)
signals have been employed to measure brain activity [13], Electrocardiogram (ECG)
signals have recorded heart activity [14], and physical eye-tracking sensors have mon-
itored eye pupil diameter [15], providing valuable insights such readings fluctuations
during the detection process. However, these sensors can be intrusive and potentially
cause additional distractions for the driver [16]. In contrast, computer vision techniques,
particularly deep learning, have gained popularity for non-invasive, accurate and faster
real-time detection of distracted driving [17].

Recent research has focused on utilizing deep learning algorithms to detect driver
distraction using the State Farm Distracted Driver Detection Dataset, a comprehensive
and widely used dataset in the field [16, 18]. The dataset encompasses many driving
scenarios, providing valuable insights into real-world distracted driving situations [19].
Among the tested models in existing literature, the MobileNetV2-tiny has demonstrated
exceptional accuracy (99.88%) in detecting distracted driving [20].

This highlights the effectiveness of deep learningmodels in addressing the challenges
of distracted driving detection. Although previous studies have primarily focused on
detecting distracted driving, there exist gaps in simultaneously addressing mitigation
strategies and exploring cognitive distraction detection. Additionally, the utilization of
deep learning models to detect driver cognitive distractions using eye-tracking features
requires further investigation [21].

3 Implementation of the Distracker

To address the gaps discussed in the previous section, this study aims to develop an
in-vehicle smart agent prototype capable of accurately detecting and mitigating manual,
visual, and cognitive distractions in real-time using deep learning and eye-tracking algo-
rithms. By incorporating multimodal audio and visual alerts, the proposed system aims
to effectively reduce distracted driving instances, thus enhancing road safety, reducing
accidents, and improving driver focus and attention. By addressing these research gaps,
the study intends to contribute to the advancement of techniques for detecting and miti-
gating distracted driving, ultimately making driving a safer and more secure experience
for everyone on the road.

In order to fulfil the key objective of this paper, an in-vehicle assistant called ‘Dis-
tracker’ was designed and implemented. Distracker uses an eye-tracking algorithm and
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a deep learning model to detect distracted driving and issue real-time multi-modal warn-
ings to the driver in order to encourage safe driving. The architecture of the system is
depicted in Fig. 1. The Distracker utilizes a Raspberry Pi 3 B+ for data processing, with
two webcams capturing driver images from the front and side views of the driver. The
Driver Distraction Detection Algorithm analyses frames and triggers multi-modal warn-
ings (audio and LED) for distractions. Components include Logitech cameras, speakers,
a Max7219 LED matrix, and a Xiaomi power supply. The Distracker prototype was
developed using Python programming language and various open-source libraries such
as Dlib, OpenCV2, TensorFlow lite, Pygame, and Luma matrix library. Google Collab
Pro and Google Drive were also used for training the model and storing the dataset
respectively. The presentation of the two tables below provides a comprehensive insight
into the development process of the Distracker prototype (Tables 1 and 2).

Table 1. Libraries used in the development of the Distracker prototype and their corresponding
functions.

Libraries Used Description/Purpose

Dlib Employs precise machine learning techniques for accurate detection and
mitigation of distractions, covering tasks like facial recognition for
monitoring pupil movement and object detection

OpenCV2 Provides tools and algorithms for real-time vision tasks, aiding
distraction identification

TensorFlow lite Enables real-time execution of deep learning models for distraction
detection on embedded devices

Pygame Employs auditory alerts to engage users, enhancing the effectiveness of
the Distracker through immersive audio feedback

Luma matrix library Generates visual alert messages on LED matrices, translating distraction
insights into immediate and comprehensible visual cues

Google Collab Pro Enables model training and testing, enhancing the Distracker algorithm
development

Google Drive Facilitates secure storage for essential datasets and model checkpoints,
supporting the iterative development of the Distracker solution

To assemble this setup, the Raspberry Pi 3b+ was utilized, accompanied by its luma
LED matrix, power bank, speakers, and dual cameras. These elements were securely
installed on the car’s dashboard, as showcased in Fig. 2. The incorporation of flex tape
ensured stable attachment, preventing any risk of components detaching. Notably, the
two cameras were strategically positioned to effectively capture complete frames of the
individual.

In terms of the underlying mechanism to detect distractions, a hybrid approach
was adopted by integrating Convolutional Neural Networks (CNNs) and eye movement
tracking. As part of the integrated approach, Distracker uses the State Farm Distracted
Driver Detection (SFDDD) Dataset, which consists of 10 classes representing distracted
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Table 2. Components used in the development of theDistracker prototype and their corresponding
functions.

Hardware Components Used Description/Purpose

Dual Logitech webcams Capture real-world video frames for processing, aiding in
detecting driver distractions

Logitech audio speaker Generate audio alerts for timely and effective driver
warnings

Max7219 LED matrix Produce visual alerts, enhancing driver awareness

Raspberry Pi 3 B+ circuit board Process camera frames, facilitating distraction detection
and output provision

Xiaomi Power source Supply power to the Distracker, ensuring continuous
functionality

Fig. 1. Architecture of Distracker system.

driving scenarios [19]. The dataset includes 22,424 labelled training photos and 79,726
unlabelled test images. After the dataset was downloaded from Kaggle, pre-processing
was done. Imageswere horizontally flipped to the right-hand side for testing inMauritius,
where vehicles are driven on the right-hand side. The labelled train dataset was used
and split into 70% for training, 30% for validation, and 30% for testing. The resulting
train, validation, and test folders split consisted of 15,696, 3,363, and 3,363 images
respectively.

In addition, Distracker implements the MobileNetV2 architecture which is a deep-
learning model used to process images of specific dimensions. A representation of the
architecture is illustrated in Fig. 3 and it was applied to the State Farm Distracted Driver
Detection (SFDDD) dataset by resizing the images to meet the required dimensions.
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Fig. 2. Illustrates the positioning of various components within the setup.

The architecture includes bottleneck layers and an output dense activation layer. Trans-
fer learning was employed by training the MobileNetV2 model with the dataset and
modifying it for improved performance. This involved removing the original model’s
last layer and adding layers such as GlobalAveragePooling2D, Dense Activation Relu,
Dropout layer, and Softmax layer. Themodified architecture had ten classification nodes,
which was found to be suitable to transfer learning in this study.

Fig. 3. The MobileNetV2 model architecture applied to Distracker.

After preprocessing, the model was trained using high-performance serverless GPU
units on Google Collab Pro. Transfer learning and similar metrics from recent existing
research were employed to train additional layers integrated into the MobileNetV2 pre-
trainedmodel [20]. Categorical cross-entropywas chosen as the loss function, andmodel
checkpointing was utilized to save the best model based on validation loss. During the
training process, there was a notable improvement in accuracy. By the 30th epoch, the
model’s accuracy showed a substantial increase from 78.70% to 99.66%. The validation
accuracy began at a high level of 92.47% and reached 98.12% in the final epoch. Both
training and validation losses consistently decreased, with the validation loss reducing
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from 0.2344 to 0.0521. Overall, the model demonstrated exceptional performance in
effectively generalizing distracted driving scenarios (Fig. 4).

Fig. 4. a) Shows the training and validation loss curves for the trained MobileNetV2 model b)
Shows the training and validation accuracy curves for the trained MobileNetV2 model.

To further enhance themodel’s performance, the last 8 layers of the pre-trainedmodel
were unfrozen and fine-tuned using the validation dataset for 20 epochs. The fine-tuned
model achieved high accuracy values on both the training set 99.77% and the validation
set 99.45%, accompanied by low losses (0.0092 and 0.0244, respectively) (Fig. 5).

Fig. 5. a) Shows the training and validation loss curves for the fine-tuned MobileNetV2 model
b) Shows the training and validation accuracy curves for the fine-tuned MobileNetV2 model.

The fine-tuned model was converted to a TensorFlow lite format to enable deploy-
ment on the Raspberry Pi 3B+. During the conversion process, a technique called quan-
tization was applied. This involved removing unnecessary layers and optimizing the
model to achieve a favorable balance between accuracy and speed. The quantization
process ensured that the model maintained an average appropriate frame rate of 3.78 fps
and a memory size 13.819 megabytes (MB), making it well-suited for deployment on
the Raspberry Pi 3B+.

In the integrated approach utilized by Distracker, an eye-tracking algorithm is also
involved, and the schema is depicted in Fig. 6. In terms of the process involved, the algo-
rithm analyses the input image frames to identify faces and eyes using a face detector and
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facial landmarks shape predictor. The algorithm then converts the frames to grayscale,
focuses on a single face, and extracts the eye region by identifying specific points within
the facial landmarks. A calibration process determines the optimal threshold for convert-
ing the extracted eye frame into a binary image, ensuring accurate pupil extraction under
varying lighting conditions. Then, binarization is applied to enhance pupil recognition
by converting the eye frames into monochrome binary images, making the pupil stand
out as a distinguishable blob. Following this process, contours are identified in the iris,
and the centroid of the pupil is calculated using contour recognition and imagemoments,
providing information about the pupil’s position. Red crosshair marks are also added to
the original image frame, accurately indicating the positions of the left and right pupils.
In the final step, the algorithm calculates horizontal and vertical eye ratios to determine
the user’s gaze direction, comparing them with predefined thresholds. By analyzing the
ratios, the algorithm can establish whether the user is looking in different directions or
at the centre, ensuring reliable and precise gaze direction determination.

Fig. 6. The eye-tracking algorithm schema

The eye-tracking algorithm monitors the driver’s pupils to detect cognitive distrac-
tions by analysing eye fixations. A continuous fixation duration exceeding 300 ms indi-
cates cognitive distraction [21]. The algorithm tracks the position of the driver’s pupils
using red crosshair marks, enabling the analysis of pupil metrics for the detection of
cognitive distraction as shown in the Fig. 7a) and b) below.

The Distracker underwent hardware integration to seamlessly fit into the car and was
tested for its ability to generate real-time multimodal warnings, addressing functional
requirements. For non-functional requirements, the prototype was optimized for porta-
bility, real-time response, lightweightness, and accuracy.Accuracy and responsiveness of
distraction detectionwere quantitatively assessed and comparedwith ground truth data to
validate distracted driving detection. Moreover, the model’s accuracy and generalization
capabilities were rigorously tested against an independent validation dataset.
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Fig. 7. a) Shows user looking at centre b) Shows user cognitively distracted in eye fixations.

4 Evaluation Method

As part of evaluation, the accuracy of the Distracker prototype in detecting and mitigat-
ing manual, visual, and cognitive distractions in real-time was evaluated. For this, an
experimentwas conductedwhereby involving participantswho had to perform distracted
driving tasks on a straight rural road and then data on true/false positives/negatives were
collected based on the warnings produced by Distracker in order to derive the confusion
matrix. For the experiment, ethical clearance was obtained from theMauritius IT REC of
Middlesex University Mauritius campus to prioritize safety of the participants involved.
To conduct this assessment, an experiment was setup involving participants who were
recruited via email. These participants were then asked to complete a consent form,
signifying their interest in participating. Subsequently, they were provided with a health
screening form, and a driving license form. This comprehensive approach ensured that
participants met the necessary criteria for involvement.

A total of 20 participants, including 10 members of the public and 10 students from
Middlesex University Mauritius Campus, took part in the prototype evaluation to meet
the number requirements as past study [22]. The evaluation experiment was conducted
in Flic-en-Flac, Mauritius, specifically at Morcellement Ramiah, The Waterway Resi-
dence, and Jardin d’Anna on straight road. Health screenings were conducted to ensure
participants’ suitability for the study and their driving licenses were checked to ensure
their eligibility to participate in the experiment.

As key procedures of the experiment, participants received detailed information
about the experiment entailing driving a passenger car equipped with the Distracker
prototype on an actual road. Each participant then performed a series of distracted
driving tasks while following clear instructions. These tasks are listed as follows:

• C0: Safe Driving
• C1: Texting Right
• C2: Talking on the phone right
• C3: Texting left
• C4: Talking on the phone left
• C5: Operating radio
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• C6: Drinking
• C7: Reaching behind
• C8: Hair and Makeup
• C9: Talking to a passenger
• Cognitive distraction

The set of tasks underwent a repetition process twice, resulting in a total of 20
tasks performed (10 tasks for evaluating advisory multimodal warnings and 10 tasks
for assessing cautionary multimodal warnings). When assessing advisory multimodal
warnings, successful task completion necessitated participants to engage the brakes after
the initial multimodal alert. If braking took place before the alert, it was considered a
failure, requiring the task to be performed again.

Regarding the evaluation of cautionary multimodal warnings, accomplishing tasks
successfully required participants to apply the brakes after the intensified multimodal
alert. Conversely, if braking occurred before this heightened alert, it constituted a failure,
leading to the task being repeated. During the evaluation, the prototype’s performance
in deep learning, and the warnings it generated across different modes were captured.
The collected questionnaire data underwent careful examination to ensure reliability
and validity. The collected data were analysed using ANOVA in SPSS to compare the
means of the measured dependent variables. The Bonferroni test was used to identify
groups with significantly different means, guided by the ANOVA results. The p-value
was employed to test the null hypothesis and determine if there were any significant
differences between themeans. Eventually, accuracywas determined using the following
formula:

Accuracy = (True Positives+ True Negatives)

(True Positives+ False Positives+ True Negatives+ False Negatives)

5 Results and Discussions

5.1 Performance and Accuracy Assessment in Real-Life Context

The accuracy of the built-in distraction detection algorithm within Distracker was
assessed by analyzing the warnings it produced during real-life experiments, using the
evaluation method discussed in the previous section. A total of 20 distracted tasks were
performed, with 10 tasks used to generate advisory multi-modal warnings and another
10 tasks for generating cautionary multi-modal warnings. Additionally, the eye-tracking
algorithm’s performancewas evaluated using a cognitive distraction detection task called
the N-back task, as described by a previous study by Biondi et al. (2017) [23]. In this
evaluation, participants were required to memorize a sequence of digits presented audi-
bly through a speaker and spell out the second-to-last digit while driving. The evaluation
results were presented in a confusion matrix, which indicated the true positives and true
negatives for various distracted activities. These findings offer valuable insights into the
effectiveness of the integrated deep learning and eye-tracking algorithm for accurately
classifying distracted driving tasks in real-life situations (Fig. 8).
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Fig. 8. The classification confusionmatrix for all distracted driving tasks evaluated in the real-life
experiment.

Table 3. F1 score, Recall and Precision Results following experiment.

Classes Precision Recall F1 Score

C0: Safe Driving 0.6923 0.90 1

C1: Texting Right 1 0.9500 1

C2: Talking on the phone right 0.8333 0.75 1

C3: Texting left 1 0.85 1

C4: Talking on the phone left 1 1 1

C5: Operating radio 0.8695 1 1

C6: Drinking 1 1 1

C7: Reaching behind 1 1 1

C8: Hair and Makeup 1 0.95 1

C9: Talking to passenger 1 1 1

Cognitive distraction 1.0 0.90 1.0
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The results in real-life scenario achieved an impressive accuracy of 93.63%. Various
categories, including texting right, drinking, reaching behind, hair and makeup, talking
to passenger, and cognitive distraction, performed exceptionally well, with precision and
recall scores surpassing 0.9.

5.2 Perceptual Challenges and User Feedback

However, some anomalies in precision and recall were observed, as shown in Table 3
above. Differences were noted among groups regarding “warning perceptivity” and
“warning timeliness and accuracy” during the ANOVA test. Around 3.4% of the multi-
modal warnings were rated as “barely noticeable” and “not so effective”. 15% of partic-
ipants primarily perceived the audio warnings but found the visual display inadequate,
particularly in daylight conditions. Due to the well-lit conditions in laboratory settings
[24], the visual warning perceptions experienced in real-life scenarios differed, leading
to challenges in accurately perceiving the visual warnings. Another 2.7% of the multi-
modal warnings were considered “unnoticeable’ and “not at all effective”, primarily due
to device issues and misclassifications caused by changes in lighting conditions.

5.3 Comparative Performance and Significance

In comparison to Biondi et al. (2017), this study achieved significantly higher mean
ratings (20.35 vs. 14.58) for warnings being “highly noticeable” during N-back tasks.
Similarly, when compared to Maltz and Shinar (2007) [25], this study achieved higher
warnings perceptivity (95% vs. 66%) for cognitive distraction. The mean rating for
multi-modal warnings perceptivity for cognitively distracted tasks were also higher by
10% as compared to the previous study by Roberts, Ghazizadeh and Lee (2012) [26].
Although this study’s overall classification accuracy in real-life scenarios (93.63%) was
lower than that of existing non-real-life experiments conducted by previous studies [16,
18, 20], it demonstrated high accuracy even in real-life situations.

5.4 Quantized MobileNetV2 Model Outperforms

Furthermore, in comparison to Li et al. (2022) [16], whose modified YOLOv5s model
achieved a mean average precision of 95.60%, the quantizedMobileNetV2model in this
study surpassed their performance with a mean average precision of 99.46%. Despite Li
et al.’s higher frame rate of 70fps due to the use of a more powerful NVIDIAGEFORCE
RTX 3080 GPU, this study aimed to balance accuracy, detection speed, and lightweight
design.As a result, the quantizedMobileNetV2modelwas 13% lighter andmore accurate
in detection. Additionally, the quantized MobileNetV2 outperformed the unmodified
MobileNetV2 used by Hossain et al. (2022) [18] on the SFDDD dataset, achieving an
overall accuracy of 99.46% compared to their 98.12% for detecting distracted driving
activities, surpassing it by 1.3%. Furthermore, the quantizedMobileNetV2model in this
study outperformed themodified EfficientDet-D3model developed by Sajid et al. (2021)
[27] by 0.3% in mean average precision (mAP). The EfficientDet-D3 model achieved a
high mAP of 99.16% for detecting distracted driving activities on the SFDDD dataset.
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Nevertheless, it is worth noting that the modified MobileNetV2 model by Wang andWu
(2022) [20] achieved significantly higher accuracy of 99.88%, outperforming this present
study by 0.46%. However, this difference can be attributed to limited implementation
details and insufficient training of the MobileNetV2 model in this study. The model was
trained for only 50 epochs due to resource constraints and limited GPU availability for
intensive training. Nonetheless, the findings highlight the outstanding performance of
the quantizedMobileNetV2model in accurately classifying distracted driving behaviors.

5.5 Challenges and Limitations

Nevertheless, a few challenges and limitations were also identified during the evaluation
process. The current hardware utilized as part of the Distracker had relatively low per-
formance and thus there were unexpected shutdowns during the experiment, particularly
due to high temperatures. Moreover, 20% of participants found the warnings difficult
to understand due to unfamiliarity with the audio alerts, where half of the same group
claimed to have disliked the audio sound and also found it annoying. As such, further
studying usability of the solution can help to derive further insights on the application
of Distracker in practice.

6 Conclusion

To conclude, this study has developed an in-vehicle smart agent prototype that combines
deep learning and eye movement tracking to detect and address manual, visual, and
cognitive distractions in real-time. The analysis of distracted driving tasks showcased an
overall classification accuracy of 93.63% in real-life scenarios, including the detection
of cognitive distractions, which is a significant contribution of this research. Moreover,
the Distracker prototype, equipped with non-intrusive multi-modal mitigation warnings
aimed at enhancing its potential for practical implementation in vehicles.

Moving forward, future endeavours should prioritize addressing the identified limi-
tations. This entails utilizing embedded devices with enhanced processing power, imple-
menting advanced cooling systems, and exploring the possibility of powering the embed-
ded device through the car’s power supply to reduce reliance on external power sources.
Involving end-users in the design process and improving the visibility of warnings
through visual cues and adjustable audio volume are vital aspects to consider. Aug-
mented datasets, deep learning techniques, and strategic device placement should be
explored to optimize the performance of the eye-tracking algorithm. By pursuing these
future improvements, thefield of detecting andmitigatingdistracteddriving canprogress,
ultimately ensuring a safer and more secure driving experience for all individuals on the
road.
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