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Abstract. The cost of using cloud storage services is complex and often
an unclear structure, while it is one of the important factors for organisa-
tions adopting cloud storage. Furthermore, organisations take advantage
of multi-cloud or hybrid solutions to combine multiple public and/or pri-
vate cloud service providers to avoid vendor lock-in, achieve high avail-
ability and performance, optimise cost, etc. This complicated ecosystem
makes it even harder to understand and manage cost. Therefore, in this
paper, we provide a taxonomy of cloud storage cost in order to provide
a better understanding and insights on this complex problem domain.
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1 Introduction

Cost is one of the important factors for organisations while adopting cloud stor-
age; however, cloud storage providers offer complex pricing policies, including
the actual storage cost and the cost related to additional services (e.g., network
usage cost) [19]. Given the increasing use of storage as a service (StaaS) and its
rapidly growing economic value [18], cost optimisation for StaaS has become a
challenging endeavour for industry and also for research. Furthermore, while it is
rare, deploying an application in a multi-cloud environment, which involves util-
ising multiple public cloud service providers (CSPs), can add further complexity
to the cost structure. The goal is to minimise cost of data storage under complex
and diverse pricing policies coupled with varying storage and network resources
and services offered by CSPs [23]. Organisations take advantage of multi-cloud
or hybrid solutions [40] to combine multiple public and/or private cloud storage
providers to avoid vendor lock-in, to achieve high availability and performance,
optimising cost, etc. [37]. An application deployed using multiple public and/or
private cloud providers distributed over several regions can enhance the appli-
cation’s performance while reducing the cost. Nevertheless, the cost of using
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cloud storage services is complex and often unclear structure, particularly in a
multi-cloud or hybrid ecosystem.

The cloud storage providers tout ostensibly simple use-based pricing plans
when it comes to pricing; however, a practical cost analysis of cloud storage is
not straightforward [12], and there are a limited number of studies that focus on
cost optimisation across multiple CSPs with varying price policies [16]. Compre-
hensive models and mechanisms are required to optimise the cost of using cloud
storage services and storage service selection for data placement, for which it is
essential to understand this complex cost structure. In this context, we collected
and analysed data from the documentation of three major cloud service providers
to find commonalities and differences, to provide a comprehensive taxonomy of
cloud storage cost, and to provide a systematic and comprehensive framework
for analysing and comparing the cost of different cloud storage solutions. It fills
this gap by providing a structured approach, which can be used to develop a
software tool for cost optimisation. It also provides a basis for more meaningful
cost comparisons between cloud storage providers, which can help organisations
to make more informed decisions about their cloud storage strategy. We aim
that the work presented in this paper will provide researchers and practitioners
working on cost optimisation, cost modelling, cloud provider selection in a multi-
cloud or hybrid setting, etc., with a better understanding and insights regarding
this complex problem domain.

The rest of the paper is structured as follows. Section 2 provides an overview
of the key concepts, while Sect. 3 presents a taxonomy along with the related
work. Finally, Sect. 4 concludes the paper and presents the future work.

2 Overview

Data intensive applications processing large amounts of data are ideal candidates
for cloud deployment due to the need for higher storage and computing resources
[26]. A single cloud storage provider with multiple regions or, as discussed earlier,
due to concerns about cost, scalability, availability, performance, vendor lock-in,
etc., a (geo-)distributed approach through a multi-cloud or hybrid solution could
be opted for. In this paper, we will focus on a few of the major cloud service
providers worldwide, such as Amazon Web Services (AWS), Microsoft Azure
(Azure), and Google Cloud, among others like Alibaba Cloud and IBM Cloud.
However, there is no guarantee that one of these multinational CSPs alone is
optimal for an organisation’s needs.

In cloud storage, data is stored in the form of objects (files, blobs, enti-
ties, items, records), which are pieces of data that form a dataset (collection,
set, grouping, repository). Every object in cloud storage resides in a bucket.
The term “bucket” is used by AWS and Google Cloud, whereas Azure refers
to it as a “container”. Data could be stored and accessed in various structures,
abstractions, and formats [26,27]; users can choose the location where the stor-
age bucket will be placed. Data could be distributed over multiple data stores
to exploit the advantages of a multi-cloud and multi-region environment. It also
plays an essential role in data compliance issues, where data must be stored in
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particular geographical locations, e.g., GDPR [38], but it can also increase the
cost. Yet, realising distributed data intensive applications on the cloud is not
straightforward. Sharding and data replication [7] are the key concepts for data
distribution. Sharding refers to splitting and distributing data across different
nodes in a system, where each node holds a single copy of the data; it provides
scalability in terms of load balancing and storage capacity and high availability.
Data replication refers to continuous synchronisation of data or parts of it by
copying it to multiple nodes in a system; it provides high availability and dura-
bility. However, data replication increases the cost and introduces the issue of
data consistency due to synchronisation issues between the nodes under network
partitioning; therefore, a trade-off between availability and consistency emerges
[36]. CSPs offer storage services from datacenters located all around the world;
therefore, communication and coordination among nodes could be hindered due
to network issues in both cases, causing increased latency [8]. Data replication
and sharding with an adequate data distribution strategy could also provide
data locality and hence low latency by placing data closer to the computation
early-on rather than moving it as needed later [3].

The location of a cloud storage server is characterised by continent, region,
and availability zones (it is termed as zone by Google Cloud, replication zones by
Azure, and availability zone by AWS). A continent is a geographical region such
as North America, South America, the Middle East, etc. Each continent can have
one or more regions, and each region features availability zones deployed within
a latency-defined perimeter. They are connected through a dedicated regional
low-latency network. Availability zones are physically separate locations within
each region that are tolerant of local failures. A high-performance network con-
nects the availability zones with extremely low round-trip latency. Each region
often has three or more availability zones. Availability zones are designed so that
if one zone is affected, regional services, capacity, and high availability are sup-
ported by the remaining two zones. Network infrastructure constitutes a major
and integral part of the cloud continuum. Users are charged for using network
services, reading and writing data to and from cloud storage (for most CSPs,
data transfer-in is free). These are linked with data egress and ingress, while the
former refers to data leaving the data container, and the latter refers to data
entering a data container. Reading information or metadata from a cloud stor-
age bucket is an example of egress. Uploading files to a cloud storage bucket or
streaming data into a cloud-based data processing service are examples of data
ingress in the cloud. Especially when data is distributed over multiple geograph-
ical areas over a distributed infrastructure managed by multiple third parties
and transferred over the network, security and privacy concerns also need to be
addressed. This is particularly challenging in complex multi-cloud and hybrid set-
tings, as approaches that work seamlessly over multiple providers are required,
apart from the additional cost introduced. In multi-cloud and hybrid settings,
therefore, several challenges need to be addressed [8], such as multi-cloud man-
agement, security, workload and workflow management and cost optimisation
under different contexts and parameters.
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Cloud storage services offer a simple pay-as-you-go pricing plan; however,
they do offer various pricing models as well [43]. In the block-rate pricing model,
data ranges are defined, and each range has a different per GB price for storing
data. Some CSPs, such as Azure, also offer a reserved pricing plan that helps
lower the data storage cost by committing to and reserving storage for one year
or three years. In addition to all these, with almost all the CSPs, there is an
opportunity to directly contact the sales team and get a custom offer according
to the requirements. A cloud service provider offers several different services with
more or less the same functionality, but they cost differently because there’s a
difference in performance. For example, Amazon S3 and Reduced Redundancy
Storage (RRS) are online storage services, but the latter compromises redun-
dancy for lower cost [26]. An even more relevant example of this scenario is the
model of storage tiers or classes that are offered not only by AWS but also by
Google Cloud and Azure, i.e., the division or categorisation of storage services
within AWS S3. Another strategy that the CSPs use is the bundling of services.
It is not a strategy adopted recently, and not just by CSPs; it is being used
intensively by a wide variety of other economic sectors as well [6]. Although
the ultimate purpose of bundling is cost-effectiveness and increased customer
satisfaction [39], it is also a strategy that can discourage new competitors from
entering a market [31]. Following this strategy, CSPs bundle storage services
with other related services. For example, network services have lower costs if
data transfer between storage and other services is within the cloud environ-
ment, which means computing resources must also be from the same CSP.

3 A Taxonomy of Storage Cost

Cloud computing cost can be broken down into three groups: 1) storage cost con-
cerns the amount of data stored in the cloud and its duration; 2) data transport
cost concerns the amount of data moved over the cloud network; and 3) com-
pute cost concerns the use of computing resources from the cloud continuum
(e.g., VMs rented and duration). In this paper, we focus on storage cost and
data transfer cost. Figure 1 shows the proposed cloud cost structure taxonomy.
Storage costs comprise data storage, data replication, transaction, and network
usage costs, whereas data transfer costs comprise data replication, transaction
and network usage costs. In addition to that, storage cost also incorporates
optional data security cost. We discuss the elements of the cloud storage cost
structure based on how CSPs charge their users, including data storage, data
replication, transaction, network usage, and data encryption costs. Storage and
data transfer costs vary by storage tier, as discussed below. The taxonomy pre-
sented in this section is extracted by analysing the official pricing information
provided publicly by AWS1, Google Cloud2, and Azure3 in November 2022.

1 https://aws.amazon.com/s3/pricing/.
2 https://cloud.google.com/storage/pricing.
3 https://azure.microsoft.com/en-us/pricing/details/storage/blobs/.

https://aws.amazon.com/s3/pricing/
https://cloud.google.com/storage/pricing
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
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Fig. 1. Cloud computing cost taxonomy.

3.1 Storage Tiers

Every chunk of data stored in cloud storage uses a piece of information known
as a “storage tier”, specifying its availability level and pricing structure. Storage
servers on tiers don’t need to be connected to a virtual machine to store and read
data. For example, AWS Elastic Block Storage can only be used with AWS EC2
instances; however, data stored on AWS S3 (tiered storage) can be accessed
using a standard data transfer protocol. We collect storage tiers under four
categories: premium, hot, cold, and archive. A summarised comparison of tiers
offered by three different providers is shown in Table 1, whereas definitions and
key characteristics of each storage tier are explained in the followings.

Premium tier is better suited for data that is frequently accessed and/or is
only stored for short periods of time. This tier is called “Premium” in Azure,
“Standard” in Google cloud, and “S3 Standard” in AWS. The premium tier
costs more than the other tiers to store data but less to access the data. Hot
tier is suggested for storing the data that is frequently accessed and modified.
In Azure it is known as “Hot”, in Google cloud as “Nearline”, and in AWS as
“S3 Standard – Infrequent Access”. This tier also has a higher cost as compared
to the cold and archive storage tiers, but the associated network usage costs are
comparatively lower. Cold tier is designed for storing data that is accessed and
modified occasionally. For this tier, all cloud storage providers recommend that
data must be stored for a specific minimum amount of time. Storage costs are
less than premium and hot tiers, but network usage costs are higher. This tier
is referred to as “Cool” in Azure, “Coldline” in Google cloud, and “S3 Glacier
- Instant Retrieval” in AWS. Archive tier is designed for storing data that is
rarely accessed and is stored for a longer period of time – basically an offline
tier. Mostly, the data that is stored cannot be accessed immediately, but it
varies from CSP to CSP. That is why it is recommended to store data that has
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Table 1. Storage tiers comparison.

Tier Azure AWS Google
Cloud

Characteristics

Premium Premium S3 Standard, S3
Intelligent Tiering

Standard Frequent data access; Data stored
briefly; Expensive storage; Less
network usage cost; No minimum
storage time

Hot Hot S3 Standard
Infrequent, S3 One
Zone-IA

Nearline Infrequent data access; Lower cost
than Premium tier; Storage duration
requirement may vary

Cold Cool S3 Glacier Instant
Retrieval

Coldline Less frequent data access; Cheaper
than Premium and Hot tier storage;
Higher network usage cost; Storage
duration requirement may vary

Archive Archive S3 Glacier (Flexible
or Deep Archive)

Archive Rare data access; Long-term storage;
Flexible latency required; Minimum
storage time

flexibility in terms of latency requirements, i.e., on the order of hours. Unlike the
cold tier, the minimum storage time is not just recommended but required; e.g.,
for Azure, it is 180 days. Azure and Google cloud term this tier as “Archive”,
whereas AWS term the similar tiers as “S3 Glacier Flexible” and “S3 Glacier
Deep Archive”.

Storing a data object in only one tier at all times can be costly and inefficient.
Mansouri and Erradi [24] present an example where storing 30 GB of data (with
a large number of objects) and having 10K reads and 10K writes incur 1 GB of
data retrieval in the US-South central region of Azure blob storage. Based on the
pricing in January 2018, the cost in the cool tier is 79.55% more than that in the
hot tier. However, as the data size increases to 60 GB, while the number of read
and write requests approaches to zero, the cost of storing the blob in the cool tier
becomes 84% less than the cost in the hot tier. Other studies also provide cost
optimisation by moving data between different tiers during the data life cycle
[10]. Krumm and Hoffman [12] developed a tool designed specifically for cost and
usage estimation for laboratories performing clinical testing. It provides a way
to explore storage options from different CSPs, cost forecasts, data compression,
and mechanisms for rapid transfer to the cold tier. Jin et al. [11] developed
a framework for cost-effective video storage in cloud storage, while Mansouri
and Erradi [5] developed a cost optimisation algorithm for data storage and
migration between different storage tiers. Nguyen et al. [33] proposed a cost-
optimal two-tier fog storage technique for streaming services. Liu et al. [18–20]
developed multiple algorithms presented in various studies for cost optimisation
using multi-tier cloud storage.

Storage tiers can be effectively used to achieve high data durability and
availability. For example, Liu et al. [17] developed an algorithm (PMCR) and
did extensive numerical analysis and real-world experiments on Amazon S3.
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Extending the work on high availability, Wiera et al. [35] presents a unified
approach named Wier to achieve high availability and data consistency. Wier
makes it possible to set data management policies for a single data centre or for a
group of data centres. These policies let the user choose between different options
and get the best performance, reliability, durability, and consistency. In this kind
of situation, it finds the best place to store user data so that one can quickly find
the best way to balance different priorities, such as cost, availability, durability,
and consistency. Similarly, Zhang et al. [44] presents a bidding algorithm for
tiered cloud storage to achieve low latency.

3.2 Cost Structure

The cost structure for cloud storage can be broken down into four main groups: 1)
data storage, 2) data replication, 3) transaction, and 4) network usage. Figure 2
shows the cost taxonomy. The four elements mentioned above and those shown in
Fig. 2 with solid lines are mandatory cost elements that a user can optimise but
cannot altogether avoid. The other three elements, which are data management,
data backup, and data security, are optional. CSPs do not provide these for
free, but they are not mandatory. A user might have to pay for third-party data
management services as well in the context of a multi-cloud environment.

Fig. 2. Cloud storage cost taxonomy.

Data storage cost refers to storing data in the cloud. It is charged on a per-
GB-per-month basis. Each storage tier has different pricing. It also depends on
the amount of data that is being stored. Some CSPs offer block-rate pricing, i.e.
the larger the amount of data; the lower the unit costs are [30]. When it comes to
big data, data storage costs could be huge. However, data compression techniques
can reduce the size of the data by efficiently compressing the data, hence reducing
the storage cost. Hossain and Roy [9] developed a data compression framework
for IoT sensor data in cloud storage. In their two-layered compression framework,
they compressed the data up to 90% while maintaining an error rate of less
than 1.5% and no bandwidth wastage. On the other hand, distributed data
storage comes with its own challenges. One of the challenges of storing data in a
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distributed environment is the efficient repair of a failed node, i.e., minimising the
data required to recover the failed node. Coding theory has evolved to overcome
these challenges. Erasure encoding is used for reliable and efficient storage of
big data in a distributed environment [14]. Several erasure coding techniques
developed over time; Balaji et al. [2] present an overview of such methodologies
(Table 2).

Table 2. Storage cost terminology comparison for the three providers.

Cost element Definition Azure AWS Google
Cloud

Storage cost It refers to data storage costs and is
charged per GB per month.

Data
storage

Storage Data
storage

Data
replication
cost

It refers to the process of replicating
data from on-premises storage to the
cloud or from one cloud zone to
another. It is charged on a per GB
basis

Data
replication

Replication Operation
charges

Transaction
cost

Cost for requests made against
storage buckets and objects. They
are charged on the quantity of
requests. DELETE and CANCEL
requests are free. Types of requests
include PUT, COPY, POST, LISTS,
GET, SELECT. Data retrieval is
charged on a per GB basis

Operations
& data
transfer

Requests &
data
retrieval

Operation
charges and
retrieval
fees

Network
usage cost

Cost of all bandwidth, into and out
of the cloud storage server. It is also
charged on a per GB basis

Data
transfer

Data
transfer

Network
egress

Data replication cost refers to replicating data from on-premises storage to
the cloud or from one cloud zone to another. Data storage systems adopt a 3-
replicas data replication strategy by default, i.e., for each chunk of data that
is uploaded, three copies are stored, to achieve high data reliability and ensure
better disaster recovery (AWS S34, Azure Blob Storage5, Google Cloud Stor-
age6). This means that for users to store one gigabyte of data, they have to
pay for the cost of three gigabytes as well as the cost of making data copies,
known as “data replication”. This significantly affects the cost-effectiveness of
cloud storage [15]. The cost of data replication is charged on a per-GB basis.
Several data replication strategies are available to achieve various objectives.
For example, Mansouri et al. [25], Liu et al. [17], and Edwin et al. [4] developed
data replication strategies to achieve optimal cost. Mansouri and Javidi [22] and
Nannai and Mirnalinee [32] focused on achieving low access latency by devel-
oping dynamic data replication strategies. Ali et al. [1] presented a framework
4 https://aws.amazon.com/s3/faqs/.
5 https://docs.microsoft.com/en-us/azure/storage/blobs/storage-redundancy.
6 https://cloud.google.com/storage/docs/redundancy.

https://aws.amazon.com/s3/faqs/
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-redundancy
https://cloud.google.com/storage/docs/redundancy
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(DROP) to pull off maximum performance and security, whereas Tos et al. [41]
and Mokadem et al. [29] developed approaches to attain high performance and
increase providers’ profit.

Transaction cost refers to the costs for managing, monitoring, and control-
ling a transaction when reading or writing data to cloud storage [34]. Cloud
storage providers charge not only for the amount of data that is transferred over
the network but also for the number of operations it takes. Both READ and
WRITE operations have different costs. They are charged based on the number
of requests. DELETE and CANCEL requests are free. Other requests include
PUT, COPY, POST, LISTS, GET, and SELECT. On the other hand, data
retrieval is charged per GB basis. Google Cloud has a different term for transac-
tion costs, which is “operation charges”, defined as the cost of all requests made
to Google cloud storage.

Network usage cost refers to network consumption or usage based on the
quantity of data read from or sent between the buckets. Data transmitted by
cloud storage through egress is reflected in the HTTP response headers. Hence,
the term network usage cost is defined as the cost of bandwidth into and out
of the cloud storage server. It is charged on a per-GB basis. Google Cloud has
two tiers of network infrastructure: premium and standard. These differ from
Azure and AWS, as they only offer a single network tier. Although network
performance varies by storage tier, meaning CSPs have multiple network tiers,
users cannot explicitly choose between them. For Google Cloud, the cost to use
the premium network tier is more than the standard network tier, but it offers
better performance. The network usage cost is a complex combination involving
several factors, such as the route of data transfer, whether within the same
cloud or outside. In the case of the same cloud, the cost varies depending on
whether data is moved in regions within and across continents. Figure 3 shows
the taxonomy for the network usage cost.

Fig. 3. Network usage cost taxonomy.

Data encryption cost is an essential element of the security costs. Cloud stor-
age providers encrypt data using a key managed by the provider or the client,
with no extra cost for the server-managed key. However, customer-managed keys
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incur charges as they are stored on the provider’s infrastructure. The cost of key
management is categorised into monthly billed key cost, number of operations
using the key, and per hour billed HSM (hardware security module, a physi-
cal device that provides extra security for sensitive data). Key rotation is an
additional cost. Though optional, data encryption affects the total cost of cloud
storage. The cost of encryption and encryption/decryption keys is pretty much
similar for all providers, while HSM costs vary.

3.3 Redundancy Model

Redundancy implies the service provider replicates valuable and important data
in multiple locations. A client should ideally have several backups so that large
server failures won’t impair their ability to access information [21]. Cloud storage
providers offer to store data with three different redundancy options. In single-
region, data is stored in a single geo-graphic location such as eu-west. In a
dual-region mode, a user can store data in two geo-graphical locations of his
choice. For example, this mode can be a suitable option if the data is frequently
accessed in two different regions, such as Europe and the US. A multiple-region
mode can be selected if the data is frequently accessed from different regions.
The redundancy model not only improves the durability of the data, but also
the availability [28]. A summary of cloud storage redundancy models for three
providers is given in Table 3.

Table 3. Cloud storage redundancy options accross the three providers.

Region Azure AWS Google
Cloud

Single Locally redundant storage
(LRS), Geo-redundant
storage (GRS)

AWS Region Single

Dual Read-Access Geo Redundant
Storage (RA-GRS)

Cross-region. Replication
(CRR) (one way replication)

Dual-region

Multi Zone-redundant storage
(ZRS), Geo-zone-redundant
storage (GZRS)

Cross-region, Replication
(CRR) (two way replication)

Multi-
region

Moving from single-region to dual or multiple regions can reduce access
latency but comes at a cost. The higher the data redundancy, the higher the cost
of data storage, both storage and replication costs. To determine which redun-
dancy solution is ideal, it is advised to weigh the trade-offs between reduced costs
and higher availability. Azure offers two types of replication in dual and multi-
region replication. Using geo-replication, data is replicated to a secondary region
remote from the primary region to protect against local disasters. The data in
the secondary region can only be used for disaster recovery and has no read
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access. Using geo-replication with read access, a secondary region also provides
read access. Waibel et al. [42] formulated a system that incorporates multiple
cloud services to determine redundant yet cost-efficient storage by considering
factors such as storage and data transfer costs in different cloud providers. The
system recommends the most cost-effective and redundant storage solution. To
increase application performance, different parts of the dataset can be stored and
loaded from different availability zones or regions to ensure that the application’s
performance is not compromised due to network throughput bottlenecks.

Single-Region: A single geographic area, like Sao Paulo, is referred to as a single-
region. For data consumers, e.g., analytics pipelines [13], operated in the same
region, a single-region is utilised to optimise latency and network capacity. Since
there are no fees levied for data replication in regional locations, single-regions
are a particularly advantageous alternative for short-lived data. In comparison
to data kept in dual and multi-region, single-region has the lowest cost. Dual-
region: A particular pair of areas, such as Tokyo and Osaka, is referred to as a
dual-region. When single-region performance benefits are required but improved
availability from geo-redundancy is also desired, a dual-region is employed. High-
performance analytics workloads that can run active-active in both regions at
once are very well suited for dual-regions. This indicates that users will enjoy
good performance while reading and writing data in both regions to the same
bucket or data container. Due to the high consistency of dual-regions, the view
of the data remains constant regardless of where reads and writes are occurring.
Dual-region data storage is more expensive than single-region, but less expensive
than multi-region and provides better availability and low latency. Multi-region:
A vast geographic area, like the United States, that encompasses two or more
geographic locations is referred to as a multi-region. When a user has to provide
content to data consumers dispersed across a wide geographic area and not
connected to the cloud network, a multi-region approach is employed. Generally,
the data is kept near where the majority of the users are. The multi-region model
is the most expensive model of data storage; however, it also addresses a wide
range of security, privacy, availability, and data durability issues.

4 Conclusions

In this paper, we presented a storage cost taxonomy for the cloud to guide
practitioners and researchers. Our taxonomy confirms that storage cost for the
cloud is a complex structure, especially in a multi-cloud setting, where a broad
spectrum of differences may exist between CSPs. Furthermore, cost needs to be
considered inline with other quality of service (QoS) attributes and service level
agreements (SLAs), which may also affect the cost directly or indirectly (e.g.,
availability, consistency, etc.). Our future work will include analysis of cost in
relation with other QoS attributes, trade-offs between different cost elements
(e.g., computing vs. storage), as well as review of existing literature for cost
optimisation. These will provide a deeper understanding of cloud storage cost
and uncover the existing literature’s limitations and weaknesses.
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