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Abstract. Deploying multiple Unmanned Aerial Systems (UASs) is
beneficial for applications that survey large regions and require cooper-
ative redundancy. Range-only cooperative navigation has been proposed
to enhance positioning precision by exchanging navigation information,
especially in Global Navigation Satellite Systems (GNSS)-denied envi-
ronments. However, existing works do not consider the possible attacks
on range-only positioning in exceptionally adverse environments and do
not investigate the resilience of cooperative navigation. In this paper,
we consider the attacks on range measurements in the context of dis-
tributed range-only positioning using the Extended Kalman Filter (EKF)
and present an anti-attack approach by integrating the Inertial Measure-
ment Units (IMU) with the distributed position estimator. Moreover, this
paper evaluates the resilience of the cooperative navigation system under
Gaussian and non-Gausisian attacks. Extensive simulations on a coop-
erative task for multiple UASs to survey a target area demonstrate that
the range-only positioning by EKF is vulnerable to non-Gaussian attacks
and that the proposed anti-attack approach can detect the attacks with
a high probability and mitigate the performance degradation caused by
attacks.

Keywords: Resilient positioning · range-only positioning · distance
manipulation attacks · cooperative positioning

1 Introduction

Positioning is an essential utility for many cyber-physical system operations such
as smart vehicles and intelligent transportation. The Global Positioning Sys-
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tem (GPS) and other Global Navigation Satellite Systems (GNSS) are accurate
sources for positioning but may be vulnerable to intentional attacks [5,14,15].
There are two main types of attacks for GNSS systems: a) jamming [3] to affect
the availability of the GNSS satellite signals by generating powerful signals in
the GNSS band; and b) spoofing to deceive the GNSS user navigation by trans-
mitting signals that share the same characteristics with the legitimate GNSS
satellite signals [13]. GNSS spoofing can even take over the control of UASs that
rely on GNSS for navigation [20]. To detect attacks, signal processing techniques
based on the characterization of the attacks have been developed by checking
distortions or disruptions of signals [19]. Furthermore, the integration of inde-
pendent measurements and information has been considered for attack detection
by monitoring drifts of the receiver position and/or clock. Moreover, simultane-
ously using complementary strategies has been proposed to compensate for the
weaknesses of an individual attack detection technique that might be exploited
by a sophisticated spoofer.

Other methods to provide security for communications include blockchain
security, data encryption, user authentication, message hiding, and signal analy-
sis. Monitoring the signals analysis can only detect spoofing and cannot correct
the error [24]. A hidden message would require a larger channel capacity and
methods to resolve the true signal [9]. While authentication could be a solution
[26], if the signal is spoofed, it would require protocols that cause timing delays
amongst many sources requiring ID-based signature message recovery [31]. Since
navigation methods like GPS and automatic dependent surveillance-Broadcast
(ADS-B) could add authentication, there are still ways to send incorrect mes-
sages. Encryption is challenging as it is not backward compatible and would
require a fundamental alteration of the signals with standardized approaches
[25]. Currently, there are efforts towards secure distributed edge-based methods
[8] that could use blockchain which is popular for smart sensors [28]. Analysis of
blockchain for avionics shows promise, but increases the message size, reduces
timing, and requires more memory [27], and efforts are underway to make the
system lighter [29]. Hence the only current solution is to have another massage
source such as a designated radar signal that is typically only located at desig-
nated airports. Using another onboard edge sensing source to detect and correct
the spoofing as well as be available for GNSS jamming would provide a practical
solution for continuous navigation.

Range-only positioning provides an alternate source of position estimations
using relative distances to fixed or dynamic beacons [2]. In the case of multi-
ple UASs, cooperative navigation/positioning where individual UASs exchange
information to improve their own position estimation has been developed for
robust positioning [21]. For example, the authors [12] proposed a distributed
consensus-based distributed EKF approach for collaborative relative naviga-
tion. Furthermore, observability for range-only cooperative localization using
extended/unscented Kalman filters (KF) has been established [6] as well as
bearings-only tracking [10]. Trajectory planning for favorable network configu-
ration in terms of optimality measures has been studied to control the statistical
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properties of the localization error [17,30]. However, the existing works do not
consider the attacks on the range sensors or information exchange in adverse
environments which may cause large errors in range measurements besides the
normal measurement noise and thus degrade the positioning performance [22].
Moreover, since the commonly used extended/unscented KF assumes Gaussian
noise for range-only positioning, non-Gaussian attacks may cause severe perfor-
mance degradation and escape attack detections like the innovation testing [1]. In
this paper, we investigate the performance of distributed range-only positioning
systems under both Gaussian and non-Gasussian attacks.

To detect and mitigate the attacks on the range-only positioning, we use iner-
tial measurement units (IMU) as another source of positioning, similar to the
integration of GNSS and IMU for anti-attacks [7,19]. It is noted that dead reck-
oning based on IMU measurements cannot provide precise positioning without an
accurate previously determined position. However, the IMU is less susceptible
to signal/data attacks. Therefore, we can combine the range-only positioning
and IMU to detect attacks. By discarding the attacked UASs, the rest UASs
may still achieve accurate positioning when the unattacked nodes can ensure
the observability of the cooperative positioning system.

The main contribution of this paper lies in presenting a distributed EKF-
based approach integrated with IMU-based positioning for the detection and
mitigation of distance manipulation attacks on the range-only cooperative posi-
tioning of multiple UASs in GNSS-denied environments. The remainder of the
paper is organized as follows: Sect. 2 gives the problem formulation, including the
dynamic models and the preliminaries of the distributed EKF (DEKF); Sect. 3
introduces the distance manipulation attacks and anti-attack approach based
on DEKF and IMU; Sect. 4 provides experimental results; and finally, Sect. 5
summarizes this paper.

2 Problem Formulation

Consider a system of multiple UASs that consist of a leader node N0 and
Ns follower nodes where s = 1, · · · , S; the leader node is hovering at a posi-
tion/maintains high-precision positioning while the follower nodes need to fly
through a potential GPS-denied region towards a target area. Each UAS can
obtain the relative distance to the leader node and the neighboring UASs using
the time of arrival (TOA) mode via a data link during the flight. Moreover, the
data link may be spoofed and transmit misleading range measurements. Addi-
tionally, the UASs can obtain measurements of gyro rate and acceleration from
the onboard low-cost IMU, azimuth from the magnetometer, air speed measured
from a Pitot tube, and height (from the ground) from a baro-altimeter.

The problem addressed in this work is how to design a resilient scheme for
employing the range measurements and internal measurements to achieve an
acceptable estimation of positions in the GPS-denied and/or spoofing environ-
ments, as shown by Fig. 1.
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Fig. 1. Range-only positioning in GPS-denied environments under distance manipula-
tion attacks.

2.1 Dynamic Models and Measurements

Denote x0 as the 3-D coordinates of the leader node. Without loss of generality,
we use a global coordinate/frame without considering the transition from the
local frame to the global frame and x0 = [0, 0, 0]�. The dynamic process and the
local observation of each node i can be described using the following state-space
model:

xi(k + 1) :=
[
xi,1(k + 1) xi,2(k + 1) xi,3(k + 1)

]� (1a)

=

⎡

⎣
xi,1(k)
xi,2(k)
xi,3(k)

⎤

⎦ +

⎡

⎣
ui,1(k)
ui,2(k)
ui,3(k),

⎤

⎦dt + ωi(k), (1b)

yi,j(k) =
√

(xi(k) − xj(k))�(xi(k) − xj(k)) + νi(k), (1c)

i =1, · · · , Ns, j ∈ Ni(k), (1d)

where xi and ui denote the coordinates and velocities of the i-th node, respec-
tively; k ∈ N is the time instant and dt is the time increment; ωi ∈ R

3 is the
process noise with covariance matrix denoted by Q(k); yi,j is the range measure-
ments between node i and j and νi ∈ R

3 is measurement noise with covariance
matrix denoted by R(k) which is assumed to follow normal distribution; Ni is
the set of neighboring nodes for the node i. It is noted that Ni is varying as a
result of the dynamics of UASs. Moreover, the cardinality |Ni| (i.e., the num-
ber of neighbors) is a tuning parameter, which can be determined based on the
verification of the measurement data for resilience.

It is noted that yi,j = yj,i may not hold due to measurement errors. One
approach for positioning is a centralized method, i.e., the follower nodes transmit
the measurements to the leader and the leader uses the extended/unscented
Kalman filter to estimate the positions. However, regardless of the computational
and communication cost, this approach may not work in case parts of the nodes
fail to transmit reliable measurements to the leader node due to interruptions of
communications or spoofing.

Instead, we consider a distributed approach where each follower node uses
the range measurements w.r.t. the leader node and neighboring nodes for posi-
tioning such that an acceptable estimation can still be achieved in case of failures
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of partial nodes. It is assumed that the leader node is far enough away, has anti-
jamming and anti-spoofing extra analytic capabilities, and otherwise is resilient
to attacks. Moreover, the follower node can use internal measurements and pre-
vious estimations for positioning when attacks are detected and reliable range
measurements are not available.

2.2 Distributed Extended Kalman Filter

Range-only positioning requires a nonlinear state estimator due to the nonlin-
earity of Eq. (1c). EKF is an efficient approach for nonlinear state estimation. In
particular, the EKF linearizes the nonlinear measurement and/or state transition
functions using the first-order Taylor series at the current best state estimate
for filtering and predictions of states. Specifically, the linearized model at time
instant k is

x(k + 1) = F (k)x(k) + G(k)ω(k) + u(k), (2a)
ȳ(k) ≈ H(k)x(k) + ν(k), (2b)

where x = [x�
1 , · · · , x�

S ]� represents the augmented states that consist of the
states of all the follower nodes, F (k) = ∂f

∂x |x̂(k|k−1) with x(k + 1) = f(x(k)) +
G(k)ω(k)+u(k) denoting the state transition function; H(k) = ∂h

∂x |x̂(k|k−1) with
y = h(x) denoting the nonlinear measurement functions; ȳ(k) = y(k)−h(x̂(k|k−
1)) + H(k)x̂(k|k − 1). Then, at time instant k, the correct step based on the
measurements is

P (k|k) = (P−1(k|k − 1) + H�(k)R−1(k)H(k))−1, (3a)

x̂(k|k) = x̂(k|k − 1) + P (k|k)H�(k)R−1(k) (ȳ(k) − H(k)x̂(k|k − 1)) ; (3b)

the prediction step is

x̂(k + 1|k) = f(x̂(k|k)), (4a)

P (k + 1|k) = F (k)P (k|k)F�(k) + G(k)Q(k)G�(k). (4b)

Instead, the distributed EKF uses the local measurements for correction and
prediction and obtains an accurate estimate of the entire system state variables
based on consensus [4]. In particular, the consensus-based correct step [23] for
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the i-th node in a network of homogeneous nodes is

x̂l
i(k|k) =

(
1

N+
s

P−1
i (k|k − 1) + H�

i (k)R−1
i (k)Hi(k)

|N+
i |
μ

I

)−1

·
[
H�

i (k)R−1
i (k)ȳi(k) +

1
N+

s
P−1

i (k|k − 1)x̂i(k|k − 1)+

∑

j∈N+
i

(
zj(k)l−1

μ
+ λl−1

ij

) ]
(5a)

zi(k)l =
μ

|N+
i |

∑

j∈N+
i

(
1
μ
x̂l

j(k|k) − λl−1
ji

)
, (5b)

λl
ij = λl−1

ij − 1
μ

(
x̂l

i(k) − zl
j(k)

)
, (5c)

∀ i = 1, · · · , Ns, j ∈ N+
i , l = 1, · · · , L (5d)

where x̂l
i is Node i’s estimate of x using local Pi,Hi, and Ri at Node i for the

l-th iteration, and Pi(0|0) = P0; zl
i is the auxiliary variable with initialization

z0i (k) = x̂i(k|k − 1), λl
i,j is the Lagrange multiplier with initialization λ0

i,j = 0,
and μ is a scalar penalty parameter; zj , x̂j , j ∈ Ni are transmitted from the
|Nj | nearest neighbors of Node i based on the noisy range measurements; N+

s =
Ns + 1, and N+

i = Ni ∪ {i}; the correction of the covariance matrix is

Pi(k|k) =

(

P−1
i (k|k − 1) +

Ns∑

i=1

H�
i (k)R−1

i (k)Hi(k)

)−1

; (6)

The prediction step for the i-th node is

x̂i(k + 1|k) = f(x̂i(k|k)), (7a)

Pi(k + 1|k) = Fi(k)Pi(k|k)F�
i (k) + G(k)Q(k)G�(k). (7b)

The main advantage of the DEKF approach is that it can reduce the compu-
tational burden and communication overhead as compared to a centralized app-
roach. The DEKF can be more scalable and robust versus a centralized (CEKF),
especially in systems with a large number of sensors distributed across different
locations and limited, unreliable, or costly communication between nodes.

3 Distance Manipulation Attacks

In this section, we introduce the distance manipulation attacks on the range-only
cooperative positioning and present the proposed approaches to detecting and
preventing the attacks.
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3.1 Attacks on Range Measurements

The demand for ranging information is increasing for autonomous and cyber-
physical systems in various applications such as positioning and navigation,
which makes it a target of attackers with different motivations. Existing rang-
ing systems such as ultra-wideband (UWB) ranging systems are vulnerable to
distance manipulation attacks. Distance manipulation attacks can be performed
by manipulating the logical or physical layer. Logical-layer attacks manipulate
message bits while physical-layer attacks involve manipulating signal character-
istics to incorrectly measure the signal’s phase, amplitude, frequency, or arrival
time [22]. Additionally, distance manipulation attacks can be divided into dis-
tance reduction and enlargement attacks. An attacker may reduce the measured
distance by manipulating the time of arrival (ToA) estimation of the pream-
ble (via cicada attack [18] ) and the payload (via Early Detect Late Commit
(ED/LC) attack) [11] and enlarge the measured distance by preventing legiti-
mate payload detection by increasing the bit error by adding noise in the channel
or canceling some of the pulses. The availability of affordable radio devices like
the software-defined radio has opened up vast possibilities for cybersecurity and
infosec professionals to explore radio frequency (RF) communication and control
devices, enabling them to delve into hacking in this domain.

In the case of range-only positioning, we consider the distance manipula-
tion attacks introducing extra range measurement disturbances. Specifically, the
attacked range measurements

ỹi,j(k) =
{

yi,j(k) + bi,j(k), i ∈ AV (k), k ∈ AT

yi,j(k) otherwise , (8)

where bi,j(k) denotes the modification of Node i’s measurement of the range
between Node i and j at time k; AV (k) is the set of attacked nodes and AT

is the set of attacked time steps. Then, the centralized/distributed EKF use
ỹi,j(k) at each time step to correct positioning estimation, which may cause
large deviations from the real positioning.

3.2 Attack Detection and Mitigation

Using alternative positioning sources is a common strategy to detect and mitigate
attacks. In addition to the range measurements, IMU measurements can be used
for positioning. In particular, the raw IMU measurements can be utilized to
calculate position relative to a global reference frame via a method known as dead
reckoning. Using a previously determined position, dead reckoning can provide
an accurate current position by x̂(k) = x̂(k − 1) + δx̂(k − 1) where δx̂ denotes
the displacement computed by the data of IMU sensors. Moreover, the IMU is
less vulnerable to attacks than range-only positioning for which communications
between nodes are required. However, dead reckoning is subject to cumulative
errors over time and causes significant drifts over great distances.

For attack detection of GNSS and IMU, innovation testing [1] is widely used.
However, the EKF may mitigate the effects of attacks such that the differences
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between the position estimates of range and IMU measurements are unreliable
for detecting attacks on range measurements. In consequence, accumulating the
faults within a time window is needed to detect the slowly drifting faults intro-
duced by GNSS spoofing attacks [16], which may disable the in-time detection
and mitigation of attacks. Instead, we use the differences between the range mea-
surements and the range estimates based on the IMU measurements to detect
the attacks, as the dead reckoning can maintain high accuracy for a short period
and is less vulnerable to communication attacks. In particular,

1a
i (k) =

{
1, if ∃j s.t. |ŷi,j(k) − yi,j(k)| > γ
0 otherwise (9)

where 1a
i indicates whether the i-th node is attacked and γ is a predefined

threshold and ŷi,j(k) is the range estimates between Node i and Node j based on
the IMU measurements. It is noted that there can be detection errors including
false alarms and mis-detections.

Then, we combine range-based positioning and dead reckoning of IMU to
enhance the resilience of the positioning system. In particular, we use the range-
only positioning in the normal environment and IMU when attacks occur. To
avoid the drifts of IMU-based positioning, the IMU is calibrated using the range-
only positioning at a predefined frequency, when no attacks are detected. How-
ever, the IMU will not be calibrated once the attacks are detected, and dead
reckoning will be used for positioning until the attack alarms cease. The dif-
ference between the range measurements and estimates will be monitored in
real-time to detect attacks.

Furthermore, we consider two cases of reducing performance degradation
when the attacks are detected. First, when the number of unattacked nodes based
on the detection is greater than the number of nodes required for distributed
EKF, the information from the attacked nodes will be discarded to prevent the
adverse effects of incorrect measurements. The second case is when the number
of unattacked nodes is less than the number of nodes required for DEKF, the
attacked nodes use the IMU-based position estimates as their position estimates.
Additionally, the procedures for attack detection and mitigation are summarized
in Algorithm 1.

4 Experimental Results and Validation

4.1 Scenario Description

Table 1. Specifications of the UVA

Cruising Speed Range Endurance Height Field of View

30 km/h 10 km 1–1.5 h 0.15 km 31.5◦–6.7◦
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Algorithm 1. Detecting and Mitigating Distance Manipulation Attacks
Input: S: number of follower nodes; x(0): initial positions; xtarget: target coordi-
nates; ε: target radius; P̂i(0), initial estimate of state covariance matrix; Q: process
noise covariance matrix; R: measurement noise covariance matrix; |Ni|: the number
of neighboring nodes for Node i; NDEKF: the number of neighboring nodes required
for DEKF; T : maximum time step.
Output: xi(k), i = 1, · · · , S, k = 0, · · · , T .

1: Initialization: k = 0, 1IMU = False � 1IMU = False if calibrating IMU with the
range-only positioning, and 1IMU = True otherwise.

2: while maxi ‖xi(k) − xtarget‖ > ε and k < T do
3: Initialize N a(k) = ∅ at time instant k � N a(k): the set of attacked nodes.
4: for i ←− 1 to S do
5: Compute and apply control input ui(k) based on x̂i(k)
6: Obtain range and IMU measurements
7: if 1IMU then
8: Obtain IMU-based position estimates x̂IMU

i (k) using x̂IMU
i (k − 1)

9: else
10: Obtain IMU-based position estimates x̂IMU

i (k) using x̂i(k − 1)
11: end if
12: Obtaining IMU-based distance estimates based on x̂IMU

i (k)
13: if 1a

i then � Attack detection by Eq. (9).
14: Na(k) = Na(k) ∪ {i}
15: 1IMU = True
16: else
17: 1IMU = False
18: end if
19: end for
20: if |N ā(k)| ≥ NDEKF then � |N ā(k)|: the number of unattacked nodes.
21: for i ←− 1 to S do
22: Estimate x̂i(k) using the DEKF with N ā

i ∩ Ni

23: end for
24: else
25: for i ←− 1 to S do
26: x̂i(k) = x̂IMU

i (k)
27: end for
28: end if
29: k ←− k + 1
30: end while

We assume each UAS to be a point UAS and that there are no kinematic
restrictions on a UAS’s movement, similar to [17]. The UAV specifications1 are
summarized in Table 1. The leader node stays at x0 = [0 0 0]�(m). The initial
positions of the follower nodes xi(0) = [xi,1(0) xi,2(0) xi,3(0)]�+[0 0 150]� where
xi,j(0) are randomly drawn from the normal distribution N (0, 0.1). The target
is xtarget = [5000 5000 150]�(m). There are S2 range measurements, including

1 We refer to Raven� B RQ-11 at https://www.avinc.com/images/uploads/
product docs/Raven Datasheet 05 220825.pdf for the specifications.

https://www.avinc.com/images/uploads/product_docs/Raven_Datasheet_05_220825.pdf
https://www.avinc.com/images/uploads/product_docs/Raven_Datasheet_05_220825.pdf
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the measurements between the leader node and follower nodes and between each
two follower nodes. Each node adjusts the control inputs ui by

ui(k) =
x̂i(k|k) − xtarget

‖x̂i(k|k) − xtarget‖2 × 8 (m/s), (10)

where x̂i(k|k) is the position estimate at time k based on the measurements
and ‖ · ‖2 denotes the Euclidean norm. dt = 9 s. The covariance matrix R
of the measurement noises is diagonal and R = diag([σ1,0, · · · , σS,S−1]) where
σi,j denotes the standard deviation of the noise for node i’s range measurement
w.r.t. node j. A follower node finishes the task if ‖xi(k) − xtarget‖ ≤ 16 (m).
The maximal time steps for the task is 100. Additionally, the process noise is
not considered.

Moreover, spoofing can take place on the data during the flights. To thor-
oughly test the performance of the range-only cooperative positioning and
anti-attack techniques under various types of attacks, we consider both (1)
non-Gaussian attacks which add a fixed ya to the measurements of the |AV |
attacked follower nodes with a probability pa during the attack period from
time step 21 to 30; and (2) Gaussian attacks which add i.i.d. Gaussian noise
with ya ∼ N (0, σa) to the measurements of the |AV | attacked follower nodes
during the attack period. The non-Gaussian attacks are supposed to cause more
performance degradation and bring more challenges for anti-attacks than the
Gaussian attacks, as the EKF assumes Gaussian process and measurement noise.
Furthermore, since we assume homogeneous follower UAV nodes, the attacked
UAV nodes are randomly selected given a number of attacked nodes.

We use a measurement-level simulator which is sufficient for attack detec-
tion and impact moderation of spoofing. To evaluate the range-only positioning
approach, we use the average estimation errors computed by

ē =
1
M

M∑

l=1

1
S

S∑

i=1

1
K

K∑

k=1

∥
∥
∥x̂

(l)
i (k|k) − x

(l)
i (k)

∥
∥
∥
2
, (11)

where M is the number of Monte Carlo (MC) simulations, and K is the number
of time steps for the i-th node. Moreover, we evaluate the success rate which is
defined as the ratio of the number of follower nodes that reach the target area
over the total number of follower nodes in a simulation, and the average success
rate is the average of the success rates of M MC simulations.

4.2 Performance of Centralized EKF

The Centralized EKF (CEKF) requires the follower nodes to send their range
measurements to the leader node to estimate the positions of all the nodes.
Then, the leader node sends the position estimates to the follower nodes. In the
experiments, we assume the timing is synchronized for all the nodes and omit
the processing and communicating time to focus on the positioning problem.
First, we evaluate the performance of CEKF for different numbers of follower
nodes and different σν ’s.
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Fig. 2. The performance of CEKF for different numbers of follower nodes.

Results. Figure 2 shows the results of evaluating CEKF. The average estimation
errors decrease as the number of follower nodes increases and increase as the
standard deviation of the measurement noise increases. All the follower nodes
fulfilled the tasks for different measurement noises when no attacks took place,
which demonstrates the good performance of CEKF when its assumptions are
satisfied.

4.3 Performance of Distributed EKF

The distributed EKF (DEKF) requires each follower node to estimate positions
based on the consensus with the neighboring follower nodes. In particular, Node
i needs to update and transmit x̂l

i(k|k) and zl
i(k|k), l = 1, · · · , L for consensus.

We consider S = 10 for the following simulations. The parameters for consensus
in (5) are determined as L = 40,μ = 0.1. We assume all the follower nodes can
maintain the range measurements w.r.t. the leader node. First, we evaluate the
performance of the DEKF using different numbers of neighboring nodes.
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Fig. 3. The performance of DEKF for different numbers of neighboring nodes.

Results. Figure 3 shows the results of evaluating DEKF. The average estima-
tion errors decrease as the number of neighboring follower nodes increases and
are smaller than those of CEKF when the number of neighboring nodes is greater
than 3. All the follower nodes fulfilled the tasks for different measurement noises
when no attacks took place, which demonstrates that DEKF can achieve accept-
able precision without using all the measurements as CEKF.

4.4 Resilience Against Attacks

In this subsection, we evaluate the performance of range-only positioning under
attacks. First, we evaluate the performance degradation under different realiza-
tions of attacks and show the performance of dead reckoning using IMU. Then,
we validate the proposed attack detection and mitigation approach. Additionally,
the number of neighboring follower nodes for the experiments in this subsection
was set to 4 which is sufficient for DEKF to achieve comparable precision with
CEKF based on the results in Sect. 4.3 (Fig. 4).
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Fig. 4. The comparison between the performance of CEKF and DEKF under attacks.

Performance Under Attacks. As the number of attacked follower nodes
increases, the average estimation errors increase. Non-Gaussian attacks cause
more significant decreases in performance. The differences between the average
estimation errors of CEKF and DEKF were not significant. However, CEKF
achieved higher average success rates than DEKF without anti-attack tech-
niques.

Performance of Dead Reckoning. Since the considered attacks only impact
the range measurements, the IMU will not be affected but still suffer from the
drifts by dead reckoning. For simulations, we assume that the velocity esti-
mated from the IMU measurements suffers from an additive Gaussian noise with
σIMU = 0.1(m/s). The red line with downward-pointing triangle marks in Fig. 5
shows the average estimation errors over time using only IMU in one simulation.
The average estimation errors at a time step are the average of the estimation
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Fig. 5. The average estimation errors over time using only IMU for positioning.

errors of the 10 follower nodes at that time step. Additionally, the black line with
the square marks shows the result of DEKF without using the anti-attack tech-
nique in one simulation under non-Gaussian attacks with ya = 48 and |AV | = 5.
10 follower nodes finished the task using DEKF in that simulation.

Performance of the Anti-attack Approach. Figure 6 shows the validation
results of the anti-attack approach. We evaluated the detection errors of the
proposed attack detection approach. The detection error is the number of false
detections (including false positives and false negatives) in a simulation and the
average detection errors are the average of the detection errors of M simulations.
The average detection errors for Gaussian attacks were larger than those of
non-Gaussian attacks. The proposed detection approach correctly detected the
attacked nodes with a high probability (that is greater than 0.94 for all the
attacks), selected the unattacked neighboring nodes for consensus-based DEKF,
and achieved similar performance to the CEKF without attacks (black lines with
square marks).
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Fig. 6. Validation results of the anti-attack approach.
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5 Concluding Remarks

This paper presented a DEKF approach to detecting and mitigating distance
manipulation attacks on range-only positioning of multiple smart UASs with
IMU-based positioning. In particular, both Gaussian and non-Gaussian types
of attacks were considered. The attacks were detected based on the differences
between the IMU-based distance estimates and the range measurements and
the UAS exchanged information with adjacent UASs that were free of attacks
to enhance positioning precision. Experiments demonstrated that DEKF were
more robust to attacks than CEKF and using the anti-attack approach based
on DEKF and IMU further reduced the positioning errors and improved the
probability of fulfilling tasks.

In future works, we will consider other types of distance manipulation attacks
and enhance the attack detection and mitigation performance by statistical anal-
ysis and machine learning algorithms.
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