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Abstract. Given rapidly changing machine learning environments and
expensive data labeling, semi-supervised domain adaptation (SSDA) is
imperative when the labeled data from the source domain is statisti-
cally different from the partially labeled target data. Most prior SSDA
research is centrally performed, requiring access to both source and tar-
get data. However, data in many fields nowadays is generated by dis-
tributed end devices. Due to privacy concerns, the data might be locally
stored and cannot be shared, resulting in the ineffectiveness of existing
SSDA. This paper proposes an innovative approach to achieve SSDA
over multiple distributed and confidential datasets, named by Federated
Semi-Supervised Domain Adaptation (FSSDA). FSSDA integrates SSDA
with federated learning based on strategically designed knowledge dis-
tillation techniques, whose efficiency is improved by performing source
and target training in parallel. Moreover, FSSDA controls the amount of
knowledge transferred across domains by properly selecting a key param-
eter, i.e., the imitation parameter. Further, the proposed FSSDA can
be effectively generalized to multi-source domain adaptation scenarios.
Extensive experiments demonstrate the effectiveness and efficiency of
FSSDA design.
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1 Introduction

The data generated by end devices, such as IoT devices, are essential to creat-
ing machine intelligence and actively shaping the world. However, when using a
well-trained machine learning model, one common challenge is domain shift due
to the diverse data distribution. Taking object detection as an example, a model
trained for autonomous driving using data from sunny weather may perform
poorly on foggy or snowy days. Domain adaptation addresses such situations.
Typically, there is ample labeled data from the source domain to train the orig-
inal model (e.g., sunny day object detection) but little labeled data from the
target domain for domain adaptation (e.g., snowy day object detection). Given
the fast-changing machine learning environments and expensive labeling, it is
critical to develop domain adaptation approaches to handle the domain shift
when there is limited labeled data and abundant unlabeled data from the target
domain, i.e., semi-supervised domain adaptation (SSDA).

Prior SSDA efforts are mainly conducted in a centralized manner, requiring
access data from both source and target domains [6,8,33]. However, data in many
fields nowadays is generated by distributed end devices. Given the widespread
impact of recent data breaches [29], end users may become reluctant to share
their local data due to privacy concerns. Although federated learning (FL) [32]
offers a promising way to enable knowledge sharing across end devices without
migrating the private end data to a central server, it is non-trivial to marry exist-
ing SSDA approaches with the FL paradigm. First, data from both the source
and target domains is stored at end devices and cannot be shared in federated
settings, resulting in the ineffectiveness of the existing centralized SSDA. Second,
efficiency has been a well-recognized concern for FL. With distributed data from
both source and target domains, more iterations need to be involved in obtaining
a well-trained target model. Last but not least, the entangled knowledge across
domains may lead to negative transfer [22], which becomes more challenging in
federated settings with unavailable data from source and target domains across
devices.

Enlightened by a popular model fusion approach, knowledge distillation
(KD), that allows knowledge transfer across different models [14], we enable
knowledge transfer between models from different domains without accessing
the original domain data. Specifically, the target model can be learned with the
help of the soft labels that are predictions of target samples by using the source
model. Considering the distributed data from both source and target domains in
federated settings, instead of waiting for a well-trained source model, we propose
a parallel training paradigm to generate soft labels along with the source model
to improve SSDA efficiency. However, due to domain discrepancy, the soft labels
generated from the source model can be different from the ground truth target
labels. Moreover, the soft labels derived at the initial federated training stage
may perform poorly on SSDA. To address the above issues, we intend to align the
source and target domains by adaptively leveraging both soft labels and ground
truth labels. One major challenge here is the limited ground truth target labels in
SSDA. To effectively leverage the few ground truth labels, we balance the knowl-
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edge transferred from the soft and ground truth labels by properly selecting a key
parameter, i.e., the imitation parameter. Inspired by recent multi-task learning
research [21], we control the amount of knowledge transferred from the source
domain by adaptively selecting the imitation parameter based on the stochastic
multi-subgradient descent algorithm (SMSGDA). The adaptively derived imita-
tion parameters can be effectively used to handle multi-source SSDA problems
under federated settings.

By integrating the above ideas, we propose an innovative SSDA approach
for federated settings, named Federated Semi-Supervised Domain Adaptation
(FSSDA). To the best of our knowledge, the research we present here is the first
SSDA approach over distributed and confidential datasets. Our main contribu-
tions are summarized as follows: (i) To achieve SSDA over multiple distributed
and confidential datasets, we propose FSSDA to integrate SSDA and FL, which
enables knowledge transfer between a source domain(s) and target domain by
leveraging domain models rather than original domain data based on strate-
gically designed knowledge distillation techniques. (ii) Considering distributed
data from both source and target domains in federated settings, we develop a
parallel training paradigm to facilitate domain knowledge generation and domain
adaptation concurrently, improving the efficiency of FSSDA. (iii) Due to differ-
ent domain gaps in various SSDA problems, we control the amount of knowl-
edge transferred from different domains to avoid negative transfer, where the
imitation parameter, a key parameter of FSSDA, is properly selected based on
the SMSGDA algorithm. (iv) Extensive experiments are conducted on the office
dataset under both iid and non-iid federated environments. Experimental results
validate the effectiveness and efficiency of the proposed FSSDA approach.

2 Related Work

2.1 Semi-Supervised Domain Adaptation (SSDA)

SSDA intends to address the domain shift when the labeled data from the source
domain is statistically different from the partially labeled data from the target
domain [31]. Classical SSDA exploits the knowledge from the source domain by
mitigating the domain discrepancy [6,8,33]. Daumé et al. [6] proposed to com-
pensate for the domain discrepancy by augmenting the feature space of source
and target data. Donahue et al. [8] solved the domain discrepancy problem by
optimizing the auxiliary constraints on labeled data. Yao et al. [33] proposed
an SDASL framework to learn a subspace that can reduce the data distribu-
tion mismatch. Saito et al. [27] minimize the distance between unlabeled target
samples and class prototypes through minimax training on entropy. Some recent
research proposed adversarial-based methods, such as DANN [12], to adversari-
ally learn discriminative and domain-invariant representations. However, all the
above SSDA research requires access to both source and target domain data.
Although one recent work, GDSDA [2], relaxed the source data requirement, it
is designed to learn a shallow SVM model, and target samples are still required.
Hence, GDSDA is ineffective in deep learning-based SSDA over distributed and
confidential datasets from both source and target domains.
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2.2 Label-Limited Federated Learning (FL)

FL has gained popularity in transferring knowledge across distributed and con-
fidential datasets. Most existing FL focuses on supervised learning with ground-
truth labeled samples at end devices. However, end data is often unlabeled in
practice since annotating requires both time and domain knowledge [35,37].
Some recent research has focused on label-limited FL problems, mainly on semi-
supervised FL and unsupervised domain adaptation (UDA). To handle semi-
supervised FL, Albaseer et al. [1] proposed FedSem by developing distributed
processing schemes based on pseudo-labeling techniques. Similarly, Jeong et
al. [15] introduced the inter-client consistency loss to transfer labeling knowledge
from labeled samples to nearby unlabeled ones with high confidence. Another line
of label-limited FL on UDA problems is more challenging due to data require-
ments in prior centralized UDA research [31]. Peng et al. [23] proposed FADA
to transfer source knowledge across multiple distributed nodes to a target node
by using adversarial approaches. Peterson et al. [24] leveraged a prior domain
expert to guide per-user domain adaptation. Zhuang et al. [38] predicted pseudo
labels using a new clustering algorithm. However, the above UDA research tar-
gets either a single source or target dataset, while our design is under multiple
distributed sources and target datasets for a more general domain adaptation
setting. Moreover, UDA problems assume unknown target labels, making them
ineffective in extracting target knowledge from the target labels in SSDA.

2.3 Knowledge Distillation (KD)

KD was initially proposed to compress a large neural model (teacher) down
to a smaller model (student) [4,14]. Typically, KD compresses the well-trained
teacher model into an empty student model by steering the student’s prediction
towards the teacher’s prediction [25]. Urban et al. [30] used a small network to
simulate the output of large depths using layer-by-layer distillation. Similarly,
[18] used �2 loss to train a compressed student model from a teacher model for
face recognition. Previous works [3,11,34] also show distilling a teacher model
into a student model of the same architecture can improve student over teacher.
Furlanello et al. [11] and Bagherinezhad et al. [3] demonstrated that by training
the student using softmax outputs of the teacher as ground truth over genera-
tions. Some recent works [2,20,36] use KD to address domain adaptation prob-
lems through a teacher-student training strategy: train multiple teacher models
on the source domain and integrate them to train the target student model.
However, the above KD-based domain adaptation research requires access to
either source or target data, which cannot be used to solve SSDA over multiple
distributed and confidential datasets from both source and target domains.

3 Federated Semi-supervised Domain Adaptation

3.1 Problem Statement

As shown in Fig. 1, this work focuses on a typical SSDA problem over distributed
K confidential datasets. Each dataset Dk = {Dk

s ,Dk
t } includes data from two
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Fig. 1. FSSDA overview with three key modules.

domains, which is held by an end device k in a set of K, |K| = K. Specifically,
the source domain data at device k ∈ K is fully labeled and denoted by Dk

s =
(X k

s ,Yk
s ); the target domain data is partially labeled and denoted by Dk

t =
{Dk

tl
,Dk

tu}. In particular, the labeled target data Dk
tl

= (X k
tl
,Yk

tl
) is much less

than the unlabeled target data Dk
tu = (X k

tu). The datasets cannot be shared. The
ultimate goal of this work is to obtain a global target model Wt that performs
well on the distributed target domain data Dt = {Dk

t }k∈K without accessing any
data from both source and target domains D = {Dk}k∈K.

3.2 FSSDA Design

To achieve this goal, we propose Federated Semi-Supervised Domain Adapta-
tion (FSSDA), including three key modules. First, a semi-supervised knowledge
transfer module is developed to integrate SSDA with federated learning. Next,
to improve the efficiency of FSSDA, the parallel training module is proposed to
enable concurrent training between source and target domains. Finally, a key
parameter of FSSDA, i.e., the imitation parameter, is improved through the
imitation parameter selection module to further boost the domain adaptation
along with parallel training. The overall procedures of FSSDA are illustrated in
Algorithm 1. In the following, we elaborate on the key modules of FSSDA design,
respectively.

Semi-supervised Knowledge Transfer. Knowledge distillation (KD) [5,14]
has been a well-known technology to transfer knowledge from one or more mod-
els (teacher) into a new model (student). Typically, the student model is gener-
ated by mimicking the outputs of the teacher model on the same dataset. Note
that the dataset here is not necessarily the one on which the teacher model
was trained, which motivates our design for transferring knowledge in a semi-
supervised manner. In FSSDA, KD is used to exploit the knowledge of unlabeled
target data, where the source model is the teacher and the target model is the
student. Specifically, to enable SSDA, FSSDA assigns each target sample a hard
label yt and a soft label y∗

t . The hard label for a labeled target sample is its
actual label in a one-hot manner. For an unlabeled target sample, we use a “fake
label” strategy that assigns all 0s as the label. Thus, all samples in the target
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Algorithm 1: FSSDA
1 INPUT: for each device k ∈ K, source domain data Dk

s=(X k
s , Yk

s ) of size Nk
s

and target domain data Dk
t ={(X k

tl , Yk
tl), (X k

tu)} of size Nk
t ; the number of

rounds R.
2 OUTPUT: Wt

3 initialize the global source and target model as Ws(0) and Wt(0);

4 initialize the local source and target model as wk
s (0) and wk

t (0) for each device
k ∈ K;

5 for each round r = 1, 2, ...R do
6 for each device k ∈ K do // device source domain update

7 update wk
s using gradient descent.

8 end

9 Ws(r) ← ∑k
i=1

Ni
s

Ns
wi

s(r) // server update

10 for each device k ∈ K do // device target domain update

11 Compute y∗k using equation (1)

12 Calculate λk using equation (4) and Update wk
t using equation (2)

13 end

14 Wt(r) ← ∑k
i=1

Ni
t

Nt
wi

t(r) // server update

15 end

domain have hard labels. It should be mentioned that although the fake label
may introduce some noise, the impact is subtle and controllable. On the one
hand, only one class (the ground truth) will be affected among all classes (e.g.,
31 classes in the office datasets [26]). On the other hand, the noise from hard
labels can be controlled by properly selecting imitation parameters to balance
the uncertainty from both the hard and soft labels. More discussions can be
found in Sect. 15. Similar findings were shown in recent research [2]. Besides, the
soft label of a target sample is derived by the prediction of the source model,
which is a class probability value. By leveraging the source data and the target
data with hard and soft labels, the process of training the target model is as
follows: (i) Train the source model wk

s for device k ∈ K with Dk
s ; (ii) Use the

learned source model to generate the soft label y∗
t for each sample xt ∈ Xt in

the target domain using softmax function σ. The soft label is defined by

y∗
t = σ(Ws(xt)/T ), (1)

where Ws is the global source model by element-wise averaging local source
model wk

s for all device k ∈ K [19], and T is the temperature parameter to
control the smoothness of the soft label. (iii) Train the target model wk

t at
device k using the hard and soft labels for each target data by

arg min
1

Nk
t

Nk
t∑

i=1

[λk�t(yi
t, w

k
t (xi

t)) + (1 − λk)�t(y∗i
t , wk

t (xi
t))], (2)
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where Nk
t denotes the number of target domain samples at device k; �t is the loss

function; wt is the local target model; λk is the imitation parameter for device
k to balance the importance between the hard label yt and the soft label y∗

t .

Parallel Training Between Source and Target. Efficiency has been a well-
known concern in distributed machine learning. Since both source and target
data are distributed across devices, instead of waiting for a well-trained source
model, we propose a parallel training paradigm to accelerate FSSDA. As shown
in Algorithm 1 (line 6–10), each device trains the source and target model simul-
taneously. Although the source model does not perform well in the initial stage, it
still promotes domain alignment and thus accelerates the generation of the target
model. Thus the main purpose of parallel computing is to train the source and
target models simultaneously, speeding up the overall training process. Our par-
allel design is empirically evaluated in the experiment section below. It should be
mentioned that parallel training does not incur additional communication costs
since target model updates can be appended to source updates.

Adaptive Imitation Parameters. Although the semi-supervised knowledge
transfer module integrates SSDA and FL in Sect. 15, FSSDA suffers negative
transfer from the noisy hard and soft labels. Specifically, due to limited labeling
in the target domain (e.g., three labeled samples per class in the experiments),
most hard labels are fake ones with limited ground truth knowledge, which
restricts the domain alignment performance. Besides, the soft labels during par-
allel training upon the above module can be noisy during initial training. Due to
the domain gap between source and target, even the well-trained source model
may generate improper soft labels, and the entangled knowledge learned from
the source may lead to serious negative transfer [22]. These problems become
more challenging in federated settings, where target devices do not have access
to any source domain data. To properly balance the importance between hard
labels and soft labels, we develop an adaptive approach for selecting the imi-
tation parameter λ in (2). Specifically, the imitation parameter controls how
much knowledge can be transferred from the source domain, whose importance
has been shown in prior KD research [9,17]. However, prior research determines
the imitation parameter using either a brute-force search or domain knowledge,
which cannot flexibly handle different domain discrepancies and noisy labels
in FSSDA. Especially under heterogeneous federated settings, end devices have
statistically heterogeneous data (non-iid) for both source and target domains.

To effectively select imitation parameters to adaptively use the noisy soft and
hard labels, we consider problem (1) as a multi-task learning problem, where
the soft loss and hard loss are the two task objectives. Since, in each feder-
ated training iteration, each device holds its own target domain data and the
updated global source model, imitation parameters can be determined indepen-
dently on the device side, which also addresses the data heterogeneity concern
in federated settings. Specifically, we leverage the stochastic multi-subgradient
descent algorithm (SMSGDA) [21], a well-known multi-task learning approach,
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to adaptively select the imitation parameter at each federated iteration for each
individual device. The objective function can be given by

min
λ∈[0,1]

‖λ∇w�t(yt, wt(xt))+(1 − λ)∇w�t(y∗
t , wt(xt))‖2, (3)

where �t is the loss function, yt is the hard label, and y∗
t is the soft label generated

by the source model Ws for the target domain dataset. wt is the local target
model. The analytical solution to the above problem can be given by

λ = ∇w�t(y∗
t , wt(xt))× (∇w�t(y∗

t , wt(xt)) − ∇w�t(yt, wt(xt)))T

‖∇w�t(yt, wt(xt)) − ∇w�t(y∗
t , wt(xt))‖2 , (4)

where λ is clipped between [0,1]. Therefore, each device can efficiently derive its
local imitation parameter with the above closed-form solution.

3.3 FSSDA over Multi-source Domains

This part introduces the extension of the proposed FSSDA to multi-source sce-
narios. When the distributed source data includes multiple source domains, then
it is essential to extract the inter-domain knowledge to align the domain-specific
representations better. Define the total number of source domains by S. Thus,
the overall learning objective at device k ∈ K for S source domains can be
extended from (2) to

arg min
1

Nk
t

Nk
t∑

i=1

[λk
1�t(yi

t, w
k
t (xi

t)) +
S∑

j=1

λk
j+1�t(y

∗ij
t , wk

t (xi
t))], (5)

s.t.
∑

λk
i = 1,

where Nk
t is the total number of data samples in the target domain at device k, wt

is the local target model, y∗ij
t is the soft-label generated by the jth source model

W j
S for local data xi, and λk is the imitation parameter for device k ∈ K. In (5),

imitation parameters are used to control more than two objective functions, i.e.,
in total S + 1 losses, to jointly optimize the target model. Thus, given the new
condition for imitation parameters, problem (5) cannot be solved by the closed-
form solution in (4). We propose to use the Frank-Wolfe-based optimizer to solve
the constrained optimization, which can scale to high-dimensional problems with
low computational overhead [10,28].

4 Experiments

4.1 Experimental Setup

We evaluate our models on the office dataset [26], which is widely used in domain
adaptation. The office dataset includes 3 subsets: Webcam (795 samples) con-
tains images captured by the web camera, Amazon (2, 817 samples) contains
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Table 1. Performance comparison between FSSDA and baseline approaches. Six cases
are considered between Amazon (A), Webcam (W), and DSLR (D).

A → W A → D W → A W → D D → A D → W

SSDAOnly (iid) 66.83% 66.10% 56.98% 75.67% 49.67% 73.37%

FLOnly (iid) 64.08% 70.10% 41.07% 70.10% 41.07% 64.08%

FSSDA (iid) 83.01% 84.94% 66.23% 98.45% 71.39% 97.63%

SSDAOnly (non-iid) 64.81% 59.39% 52.51% 69.80% 46.83% 69.33%

FLOnly (non-iid) 52.47% 63.65% 38.71% 63.65% 38.71% 52.47%

FSSDA (non-iid) 82.15% 82.15% 66.09% 97.20% 69.67% 95.48%

images downloaded from amazon.com, and DSLR (498 samples) contains images
captured by a digital SLR camera, sharing 31 classes. In the following, we use
W, A, and D to represent the above three subsets, respectively.

We consider both iid and non-iid data distributions in federated settings. We
use the distribution-based label imbalance [16] to generate non-iid data distri-
butions, where each end device is allocated a proportion of the samples whose
labels follow Dirichlet distribution. Specifically, we sample pl ∼ DirN (β) and
allocate a pl,k proportion of the instances of class l to each device k. In our
setting, we set the β value as 0.1. Besides, we consider practical SSDA settings,
where limited labeled samples are given in the target domain. In iid and non-iid
settings, only 93 labeled examples (3 per class) are distributed across all the
end devices. We use ResNet-101 [13] for the baseline methods and the proposed
method. All models are pre-trained on ImageNet [7]. The model parameters are
optimized using stochastic gradient descent with a learning rate of 0.001.

For baseline approaches, existing SSDA requires access to data from different
domains, which is ineffective in federated settings. Besides, none of the existing
FL targets SSDA. Hence, to evaluate the proposed FSSDA, we consider two
baseline approaches. (i) SSDAOnly: Without using FL, device local knowledge
cannot be transferred due to privacy concerns. Each device performs SSDA to
generate a local target model with its own data but does not participate in
federated learning. (ii) FLOnly: Without effective SSDA in federated settings,
end devices can only leverage labeled target data to learn the target model
collaboratively. There is no knowledge transfer from the source domain.

4.2 Experimental Results

Effectiveness Evaluation. We consider six cases for domain adaptations
between Amazon, Webcam, and DSLR under both iid and non-iid federated set-
tings. As shown in Table 1, we observe that FSSDA outperforms both SSDAOnly
and FLOnly in all the cases. We get the most promising result in the case of
Webcam to DSLR both in iid and non-iid settings. The SSDAOnly and FLOnly
get around 70%, whereas our proposed FSSDA methods achieve more than
97% accuracy. FLOnly cannot leverage the unlabeled samples, resulting in the
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Fig. 2. Impact of the parallel training module of FSSDA (W → D).

worst performance in most cases. Although SSDAOnly leverages unlabeled tar-
get domains via knowledge transfer, SSDAOnly cannot utilize the shared knowl-
edge from other end-devices, which makes the learning ineffective. Especially
in the non-iid cases, the number of data varies for each end device; the per-
formance degradation of one of the local models affects the aggregated global
model. Both in iid and non-iid settings, DSLR as a target is able to achieve good
performance of over 82% accuracy even when the domain gap is large (A→ D).
Moreover, due to the large domain gap between Webcam/DSLR and Amazon
as well as the limited samples in Webcam/DSLR compared to Amazon, it is
challenging to transfer knowledge to Amazon (W→ A and D→ A). However, we
still achieve better results compared to baselines. SSDAOnly and FLOnly can
only get around 50% accuracy, while the FSSDA can achieve accuracy close to
70%, demonstrating the effectiveness of FSSDA in challenging SSDA scenarios.

Fig. 3. Impacts of imitation parameters for FSSDA with different domain gaps.

Efficiency Evaluation. We compare the parallel training discussed in Sect. 3
with the serial training between the source (Webcam) and target (DSLR) mod-
els, as shown in Fig. 2. In serial training, the target model starts SSDA under
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Fig. 4. FSSDA for multi-source SSDA (Target: Amazon).

federated settings until the source model is converged at around the 40th round.
We observe that parallel training continuously outperforms serial training, which
confirms the source model’s positive impact on SSDA. Compared with serial
training, the convergence rate of parallel training is significantly improved by
around 33%.

Impact of Imitation Parameters. We illustrate the impact of the imitation
parameter on FSSDA by using static and adaptive (SMSGDA) values. In our
design, a large λ indicates learning more knowledge from the target domain
(hard label) and less from the source domain (soft label), and vice versa. We
conduct experiments under two different domain shift scenarios in Fig. 3: the
small domain gap from Webcam to Amazon and the large domain gap from
DSLR to Amazon. We observe that when the domain gap is large (Fig. 3(b)),
at the initial stage, a lower value of the imitation parameter (λ = 0.1) will
speed up the performance of the target model, but at the end, performance
degrades, which shows the impact of negative transfer. Besides, a larger imitation
parameter (λ = 0.9) finally achieves good accuracy but does not converge quickly
compared to our adaptive design. From Fig. 3(a), when the domain gap is small,
the negative transfer will not be significant (λ = 0.1), and thus we can able
to rely more on the source domain. However, the proposed adaptive imitation
parameter scheme is irrespective of the domain difference, which performs well
for both small and large domain shifts. Overall, our adaptive design trains the
target model faster and converges quickly.

Effectiveness Evaluation for Multi-source SSDA. We evaluate the per-
formance of FSSDA under a multi-source scenario. We focus on FSSDA with
Amazon as the target since Amazon has a large domain gap compared to the
other two domains (DSLR and Webcam), which is the most challenging FSSDA
setting under the office dataset. As shown in Fig. 4, multi-source FSSDA out-
performs both single-source results from Webcam and DSLR, which demon-
strates the effectiveness of our FSSDA in multi-source scenarios. Meanwhile,
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multi-source FSSDA further speeds up the overall federated training process to
converge faster.

5 Conclusion

This paper proposed FSSDA to achieve semi-supervised domain adaptation
(SSDA) over multiple distributed and confidential datasets. FSSDA integrates
SSDA with federated learning based on adaptive and controllable knowledge
transfer techniques, which include three key modules: semi-supervised knowl-
edge transfer, parallel training, and adaptive imitation parameter selection.
FSSDA can be used in single- or multiple-source SSDA problems. We empir-
ically explored SSDA performance under iid and non-iid federated settings to
validate the effectiveness and efficiency of our design.
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