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Abstract. Network security remains a pressing concern in the digital
era, with the rapid advancement of technology opening up new avenues
for cyber threats. One emergent solution lies in the application of large
language models (LLMs), like OpenAIl’s ChatGPT, which harness the
power of artificial intelligence for enhanced security measures. As the
proliferation of connected devices and systems increases, the potential for
Distributed Denial of Service (DDoS) attacks—a prime example of net-
work security threats—grows as well. This article explores the potential
of LLMs in bolstering network security, specifically in detecting DDoS
attacks. This paper investigates the aptitude of large language models
(LLMs), such as OpenADl’s ChatGPT variants (GPT-3.5, GPT-4, and
Ada), in enhancing DDoS detection capabilities. We contrasted the effi-
cacy of LLMs against traditional neural networks using two datasets:
CICIDS 2017 and the more intricate Urban IoT Dataset. Our findings
indicate that LLMs, when applied in a few-shot learning context or
through fine-tuning, can not only detect potential DDoS threats with
significant accuracy but also elucidate their reasoning. Specifically, fine-
tuning achieved an accuracy of approximately 95% on the CICIDS 2017
dataset and close to 96% on the Urban IoT Dataset for aggressive DDoS
attacks. These results surpass those of a multi-layer perceptron (MLP)
trained with analogous data.
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1 Introduction

Network security is a critical aspect of the digital world, aiming to protect both
the integrity and privacy of data being transferred across networks. It encom-
passes several layers of protection, both hardware and software, designed to
fend off intruders and unauthorized access. Essential tools and methodologies,
like firewalls, intrusion detection systems, and encryption, work collectively to
ensure that transmitted data remains uncompromised and accessible only to its
intended recipients. As cyber threats evolve and become more sophisticated, the
significance of network security intensifies, requiring a continual adaptation of
defense strategies [16].
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In the realm of network security, Distributed Denial of Service (DDoS)
attacks in IoT systems have emerged as a significant concern which will be the
main focus of this paper. The integration of the Internet of Things (IoT) into
our daily lives and industrial applications has seen remarkable growth, spurred
on by the relentless progression of technology. A recent study by IoT Analytics
attests to this surge, revealing that the global count of connected IoT devices,
often referred to as ‘nodes’, has exceeded a staggering 16 billion [2]. Yet, this
widespread adoption doesn’t come without its own set of challenges. Notably,
there exists a conspicuous absence of robust security solutions tailored to these
IoT devices. This, when coupled with the absence of a standardized security
protocol, renders these devices both enticing and highly susceptible to cyber
adversaries [17,25]. Such vulnerabilities underscore the pressing need for accel-
erated advancements in IoT cybersecurity measures. It is paramount that as we
further the reach and capabilities of IoT, we concurrently prioritize and ensure
its secure and safe evolution.

Denial of service (DoS) is a type of attack in which an adversary makes
a computing or memory resource too active or too full to process legitimate
requests, thereby denying legitimate users access to a computer. In distributed
denial of service (DDoS) attacks, attackers use multiple vulnerable devices to
access and conduct attacks on the victim server, which significantly magnifies
the effect of DoS attack among IoT devices [24]. As an instance, Mirai botnet [3],
one of the most famous malicious software that can construct a botnet from IoT
devices, conducted a DDoS attack against the DNS provider Dyn by connecting
to over 100,000 malicious IoT devices, impacting major websites such as GitHub,
Twitter, and Reddit [22]. Defending against DDoS attacks in IoT networks has
now become an urgent area of research due to recent incidents like Mirai’s attack.

In the past, the security of the IoT was guaranteed by conventional
approaches and frameworks [1]. However, the majority of conventional meth-
ods are incapable of detecting and mitigating application layer attacks, whereas
machine learning-based solutions actively combat such attacks using efficient
and lightweight classification algorithms, which becomes the primary reason why
machine learning solutions satisfy the current IoT security requirements so well
[26]. Recent advancements in artificial intelligence (AI) have prompted the devel-
opment of innovative technologies such as Open AI’s ChatGPT, one of the largest
large language models (LLMs). These models have demonstrated remarkable
performance in a variety of natural language processing (NLP) tasks, including
language translation, text summarization, and question answering, given that
they have been pre-trained on enormous quantities of text data. [15] Due to
their remarkable model parameterization, data analysis and interpretation, sce-
nario generation, and model evaluation capabilities, LLMs, such as ChatGPT,
play a vital role in software development, education, healthcare, and even the
environment [4,5,23].

In this article, we explore the potential of Large Language Models (LLMs)
for cybersecurity, focusing specifically on DDoS attack detection in IoT Sys-
tem and contrasting their benefits against traditional neural networks. Utilizing
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OpenAl’'s GPT-3.5, GPT-4, and Ada models, we assessed LLMs’ capabilities in
identifying DDoS threats across two distinct datasets: CICIDS 2017 [20] and
the more complex Urban IoT Dataset [10]. By supplying context in few-shot
method or through fine-tuning, LLMs can analyze network data, detect poten-
tial DDoS attacks, and provide insights into their reasoning. Our evaluations
revealed that on the CICIDS 2017 dataset, few-shot LLM methods with only 10
prompt samples approached an accuracy of 90%, whereas fine-tuning with 70
samples achieved about 95%. On the challenging Urban IoT Dataset, in the case
of aggressive DDoS attacks, few-shot techniques attained a 70% accuracy, while
fine-tuning reached nearly 96%. When compared to a multi-layer perceptron
(MLP) model trained with a similar number of few-shot samples, LLMs out-
performed the MLP. Notably, LLMs demonstrated the ability to articulate the
basis of their DDoS detections in few-shot learning and showed great potential.
However, they were prone to hallucination in the fine-tuning method.

The rest of this paper is organized as follows: Sect.2 presents the related
work that have been done in this area. In Sect. 3, we present the DDoS detection
methodologies have been utilized in this research, including zero-shot, one-shot,
and few-shot LLMs and fine-tuning LLMs. In this research, we also compared
the performances between the traditional multi-layer perceptron (MLP) models
and LLMs. In this way, in Sect.4, we illustrate the procedure to create the
general training dataset to be used for training, and validating. The parameters
of MLP models and hyper-parameters of LLMs are also described in this section.
Section 5 shows the evaluation and analysis of the introduced models. Lastly,
Sect. 6 provides a summary of this work.

2 Related Works

With the advent of the Internet and the proliferation of mobile applications,
the digital landscape has seen a marked increase in vulnerabilities. Traditional
security protocols and measures have been rendered insufficient in the face of
these continuously evolving cyber threats. In this context, Machine Learning
(ML) offers innovative solutions to bolster cybersecurity. However, its efficacy
is still under scrutiny, especially since adversaries have found ways to exploit
inherent weaknesses in ML-based defenses [21].

Language modeling, a core component in computational linguistics, has
undergone significant transformations over the years. Earlier models were pre-
dominantly statistical. Today, the paradigm has shifted towards neural models,
especially with the advent of pre-trained language models (PLMs) that employ
the Transformer architecture on a large scale. When these models are scaled
up—both in terms of size and computational prowess—they metamorphose into
what are known as large language models (LLMs). These LLMs not only out-
perform their predecessors but also display a myriad of novel capabilities. An
exemplar in this category is ChatGPT [28]. Recent research suggests that LLMs
possess an inherent capability for reasoning. However, the exact bounds and
depth of this capability remain subjects of intensive research [11]. In the nexus
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between artificial intelligence and network security, LLMs hold the promise of a
formidable defense against cyber threats. By leveraging models like GPT-4, we
can significantly augment the resilience of cybersecurity systems, granted they
are implemented judiciously [12].

Despite the potential advantages, it’s imperative to note the nascent stage
of research in employing LLMs specifically for network security. A recent work
in this domain by Ferrag et al. [7] proposed SecurityLLM, an integrated model
that addresses cybersecurity threats. This model marries two distinct elements:
SecurityBERT, which focuses on threat detection, and FalconLLM, designed
for incident response. They embarked on the journey of fine-tuning an LLM,
grounded in the Transformer architecture, to discern potential threats. Further-
more, they engineered FalconLLM to craft responses to these detected threats.
However, a significant lacuna in their work is the absence of reasoning behind
identifying an attack. Moreover, the responses generated by FalconLLM tend
to be overarching and lack the specificity required for individual systems. Con-
trasting this, our approach aims to harness a pre-trained LLM, not only for the
purpose of detection but also to elucidate the reasoning behind identifying a
network security incident.

3 DDoS Detection Methodology

In this study, our primary approach employs both few-shot and fine-tuned Large
Language Models (LLMs) for the detection of DDoS attacks. This section offers a
comprehensive feasibility analysis on the efficacy of providing limited context to
LLMs in the few-shot approach or leveraging fine-tuned LLMs for DDoS attack
detection. Furthermore, we elucidate the methods for selecting optimal input
data as context and provide guidelines on training the fine-tuned model using
specific architectures.

3.1 Few-Shot LLM

Given the extensive pre-training of Large Language Models (LLMs) and their
proficiency in reasoning from language-based data, our aim is to evaluate their
performance in a few-shot setting. We postulated that LLMs could draw infer-
ences from minimal data, relying primarily on the semantic content presented.
The constrained context size inherent to LLMs does not pose significant chal-
lenges in a few-shot context. OpenAl’s research has already highlighted the
potency of LLMs in few-shot learning [6], further strengthening our inclina-
tion towards this approach. This subsection outlines the various techniques we
employed to train models on select portions of our dataset.

— LLM Random: Initially, we utilized the gpt-3.5-turbo model via the OpenAl
API, executed from a Python script. We introduced the model to a sample
of n random samples of few-shot data before prompting it to classify an
unlabeled sample as either “Benign” or “DDOS”. We varied n between 0 and
70 to observe performance variations as the model is exposed to increasing
amounts of data. We have termed this methodology “LLM Random”.
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— LLM Top K: A subsequent strategy involved the establishment of a Pinecone
index containing every labeled sample from the training data. During infer-
ence on a specific test data sample, we retrieved the top k training data sam-
ples for each label from Pinecone. These samples then served as the labeled
examples in the prompt context. By focusing on the “most relevant” data
subset, this method effectively addresses the challenge posed by restricted
context lengths.

— Fine-tuned: In this approach, we explored the performance of a fine-tuned
Ada model in detecting DDoS attacks when exposed to only a limited
data subset. This method stands in contrast to the gpt-3.5-turbo strategies
explained above, i.e. LLM Random and LLM Top K, rather than presenting
the training data within the context at inference, the model undergoes fine-
tuning on a pre-selected data subset before inference. The training process
involves pairs of prompts and responses, where each prompt represents an
unlabeled training data sample, and the response is its associated label.

— MLP Methods: As a benchmark, we trained a basic MLP (Multi-Layer
Perceptron) [19] model on the identical few-shot tasks. This model comprised
a single layer with 20 neurons, employing a ReLU activation function.

— General Prompt Engineering: In general, over several tests, certain addi-
tions to our prompting seemed to yield better results, so they were used when
collecting results. These include:

e Writing each feature’s name before its value on every row - instead of
presenting the rows in tabular form, in each row each feature label is
repeated before its value (e.g. Destination Port: 80).

e Using specific strings as separators and explaining their use in the prompt.
For example each feature is separated by a pipe symbol and each row is
separated by a newline. The training data and the test prompt are sepa-
rated by three consecutive # symbols. All of these symbols are explicitly
defined at the beginning of the prompt so that the model understands
their use as separators.

e Asking the model to explain its reasoning based on the data before out-
putting its predicted label. This allows the model to output observations
of the data and then “reason” on these observations before outputting a
prediction. With the inverse approach, the model tended to pick an out-
put and then hallucinate post hoc reasoning for its output, often lying
about the data.

e Asking for the output to follow a specific format every time. For exam-
ple, in the prompts we told the model “surround the predicted label
with’$$$” on each side”. This made it more likely for the model to output
a prediction as opposed to before where it occasionally refused to make
a prediction. Giving it a specific format to follow seems to ensure that
a prediction is made because it attempts to follow the format. Another
benefit of including this in the prompt is that it facilitates programmatic
extraction of the predicted label, as well as making the location of the
prediction clear within the response.
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3.2 Fine-Tuning LLM

The rise of deep learning has ushered in advancements in Transformer-based
large language models (LLMs), like the GPT series, leading to substantial
progress in natural language processing (NLP). Such LLMs are initially pre-
trained on vast and diverse public datasets, enabling them to generate responses
to a wide array of queries [27]. For specific tasks, fine-tuning these pre-trained
LLMs with smaller, task-centric datasets can notably elevate their performance
and response precision. In our research, we focus on fine-tuning OpenAl’s Ada
model to enhance its capacity to understand and assess the traffic data from IoT
devices, and to predict with greater accuracy whether these devices face DDoS
attacks.

3.3 Neural Network Model

To verify whether LLM has an advantage over conventional neural network mod-
els in the DDoS attack detection, we also construct a Multilayer Perceptron
(MLP) model to perform binary classification for detecting DDoS attacks on
IoT devices. Similar to the approach used in LLMs, we apply the Multilayer
Perceptron (MLP) model to do binary classification for detecting the DDoS
attack on the IoT devices. MLP model is the simplest feed-forward artificial
neural network model consisting of one input layer, one output layer, and one or
more hidden layers [18]. In this study, as Fig. 1 shows, the input layer is followed
by a single dense layer consisting of 10 neurons and using Rectified Linear Unit

(ReLU) activation.

Input Dense: 10 Nuerons Output

Fig. 1. Structure of MLP

4 Datasets

4.1 CIC-IDS 2017 Dataset

For our tests on few-shot learning, we focused on the CIC-IDS2017 [20] dataset,
specifically using the “Friday-WorkingHours-Afternoon-DDOS” pcap file. This
dataset contains samples of labeled data with each row containing 85 features
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and a label of either “Benign” or “DDOS”. Because of the limited context size of
LLMs, we reduced this dataset to 4 features per row using previously obtained
results on this task [13] so that we could train the model using larger amounts of
samples without exceeding the context length. The goal of this process is to retain
features that are important to the classification task, and have useful linguistic
meanings for the models to use in their inferences. After feature reduction, the
context could consistently contain up to 70 samples of training data without
reaching its limit.

4.2 TUrban IoT DDoS Dataset

In fine-tuning work, we employ the latest generation of the training dataset in our
recent work [10], which is more difficult to classify than CIC-IDS2017 [20]. This
dataset is derived from an anonymized dataset, consisting of real-trace data from
an urban deployment of 4060 IoT devices that records their binary activity [8].
This dataset includes the packet volume that each IoT device transmits at each
timestamp during their active periods [9], as well as the correlation information
of ToT nodes’ packet volume within each recorded instance.

For each training dataset sample, the node 1D, timestamp, packet volume
transmitted through that node in 10 min, and average packet volume with 30 min
to 4 h are documented. In addition to the packet volume of node ¢ in each sample
of the training dataset, the packet volumes of all other nodes in the training
dataset are also recorded. The result is that for each timestamp in the training
dataset, we possess information on the number of packets transferred via node
as well as all other nodes. Finally, each sample will be assigned a label indicating
whether this node is attacked or not. Table 1 shows the training dataset which
consists of two nodes. In this setting, P1 and P2 indicate the packet volumes
associated with nodes 1 and 2, respectively.

Table 1. An Example of Data Points in a Training Dataset

Node | Time P_1 | P2 | Attacked
0 2021-01-01 00:00:00 | 12 50 1

0 2021-01-01 00:10:00| 0O 1 0
1 2021-01-01 00:15:00 | 9 12 1
1 2021-01-01 00:30:00 | 8 1 0

Inspiring from A. Hekmati et al. [10], our study introduces two distinct archi-
tectures tailored for fine-tuning Large Language Models (LLMs). These are spe-
cially designed to either incorporate or omit the correlation information of nodes’
traffic information:

— One Model without Correlation (OM-NC): Within this architecture,
a singular LLM is employed for the fine-tuning process across all IoT nodes.
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Notably, this model does not factor in the correlation data associated with
nodes’ traffic information. Instead, it relies solely on the traffic information
of each node over time for training/inferencing purposes. To differentiate the
data of each node from others, we employ the node ID.

— One Model with Correlation (OM-WC): This architecture also utilizes
a singular LLM for the fine-tuning across all IoT nodes. Distinctively, all IoT
nodes leverage this model to detect DDoS attacks. Furthermore, this architec-
ture integrates the correlation data of nodes’ activity during fine-tuning. This
means that besides considering an individual node’s traffic information, the
traffic information of other nodes are also taken into account to capture the
inter-node activity correlations. Given that a single model is being fine-tuned
for all nodes, the node ID is again employed to differentiate the information
of each node.

Incorporating nodes’ correlation data in the OM-WC architecture could
enhance the LLM’s ability to predict DDoS attacks. This is because attack-
ers often exploit multiple IoT devices to orchestrate such attacks. Conversely, in
the OM-NC framework, the absence of correlation data may simplify the input,
allowing the LLM to more straightforwardly analyze individual behaviors and
make predictions.

5 Simulation Results

In this section, we present the results of our testing using LLMs for prediction
across different datasets and different tasks. We compare the results of different
methods, allowing us to assess the efficacy of LLMs on these tasks and how they
can be employed in the future.

5.1 Performance Analysis of DDoS Detection Method
on CIC-IDS2017 Dataset

Performance Metrics. Figure2 presents the results of 5 different approaches
to few-shot learning, fine-tuning, and MLP on the CIC-IDS2017 [20] dataset
in terms of accuracy versus the number of samples used as the context for the
few-shot method. The LLM Top K method tended to outperform other methods
in most few-shot scenarios, and in general, the LLM methods outperformed the
MLP-based methods. Recall that in this simulation, we will use the same number
of samples that we are using for few-shot context in order to train MLP model
to have fair comparison between the few-shot methods and MLP. The fine-tuned
LLM model, on the other hand, had the poorest performance until it reached
about 40 samples of data, after which it began to outperform the other methods
that we tested. In summary, we observe that fine-tuning with 70 samples can
reach an accuracy of %95 while the LLM Top K method reaches an accuracy
of 90% with only 10 samples. From this we hypothesize that fine-tuning an
LLM provides better performance over prompt engineering based methods, but
it requires more training data before it begins to perform well.
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Detection Reasoning. Another important observation from this comparison
that we observed was that the LLM prompting methods tended to produce
interesting and useful explanations behind their predictions as well as explicitly
stating their lack of confidence in certain predictions. Contrary to this, the fine-
tuned model, despite answering correctly more often, was more prone to adding
hallucinations that made little sense after its answer such as the ones shown in
Fig. 3.

GPT-4 LLM Model. Because of the prohibitive cost of GPT-4, we only ran
a single few-shot test with that model, which we based on the top-k with k =
20 samples of data approach, as we observed that a value for k in this range
is producing the best results with GPT-3.5. The result of this experiment has
an accuracy of 0.92 and fl-score of 0.93. Looking more closely at some of the
incorrect predictions it made, GPT-4 justified its answer by correctly pointing
out that the training data had a similar sample to the one it was predicting
for both labels, and saying that because of this it was unable to make a real
prediction and would choose a label arbitrarily. In this case, it was unable or
unwilling to take into account the fact that there were more identical samples of
one label than the other, so it struggled with weighting the frequency of certain
features in the training data it was shown.

Context Distribution. Following the conclusions of [14] we theorized that the
decrease in performance for our top-k method as k grows sufficiently large, could
have been due to the context growing too large, causing the most relevant data
to become “lost” in the context. To attempt to alleviate this, we performed a test
in which we presented the training samples to GPT-3.5 with the most relevant
data closer to the middle of the context and the least relevant data on either
end of the context. Then, we tested the inverse, i.e. the most relevant data was
placed in an alternating fashion at the beginning and end of the context with the
least relevant data ending up in the middle. The accuracy for these approaches
were 0.92 and 0.91 respectively. Again because of the prohibitive costs, we only
tested these approaches with k = 70 as it represents an extreme case of a close
to full context. The improvement over the previous method of placing the most
relevant data at the beginning seems to contradict [14]. We hypothesize that
this discrepancy is observed because in this case, all of the data is somewhat
relevant to the task, as opposed to the paper in which “distractor” data interferes
with a lookup. Furthermore, it seems that having the most relevant data more
evenly distributed within the context helps the model maintain a better internal
representation of the data compared to the approach of placing the most relevant
data at the start of the context. This merits further investigation in future work.
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Fig. 2. Comparison of accuracies of different methods for few-shot learning with dif-
ferent amounts of training data

An example test
row and
corresponding
output produced
by the LLM Top K
method

Destination Port: 53 | Packet Length Std: 104.5003987 | Total Length of Bwd
Packets: 232 | Subflow Bwd Bytes: 232

Based on the labeled data provided, it's noticeable that the benign behavior
usually occurs when the destination port is 53, the packet

length standard deviation is around 104.5, and both the total length of Bwd

packets and Subflow Bwd bytes are less than 240.

Given that the values in the unlabeled row match these characteristics, it is
probable that this unlabeled row represents benign behavior.

Hence, the prediction would be:\n\nDestination Port: 53 | Packet Length Std:
104.5003987 | Total Length of Bwd Packets: 232 | Subflow Bwd Bytes: 232 |

Label: $$$Benign$s$$

Examples of
hallucination in
the output
produced by the
Fine-Tuning
method

"text": " BENIGN BATCH LINES \u00d7 BENIGN BENIGN BENIGN BENIGN BEN"
"text": " DDOS BENIGN SOFTWARE BIRD STAYS ON OBSOFTWARE"

"text": " BENIGN BOS DDOS Advisory ID: peek@benigndos."

Fig. 3. Comparison of the outputs, including the explanation given by the LLM
prompting and LLM fine-tuning methods

5.2 Performance Analysis of DDoS Detection Method on Urban
IoT DDoS Dataset

In this subsection, the DDoS detection performance of fine-tuning, prompt engi-
neering LLMs, and MLP model will be analyzed on the urban IoT DDoS dataset
with different architectures, i.e. OM-NC and OM-WC. The performance of these
models is shown in terms of their binary accuracy, F1 score, and area under curve
(AUC) versus the attack parameter k over the testing data set.
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Few-Shot LLM on One Model with Correlation (OM-WC). After test-
ing the CIC-IDS2017 dataset with an accuracy greater than 0.90, we decided to
utilize the GPT-3.5 model to analyze the Urban IoT DDoS dataset, including
correlation information, i.e. OM-WC, to determine if some samples of it have
been subject to a DDoS attack. After combining the information from multi-
ple nodes together, like the previous approach mentioned in 5.1, we add labels
to all the data so that the GPT-3.5 can better understand what each data
point means. After tagging data, we compare the DDoS detection performance
of GPT-3.5 with tagged and untagged prompts, and the context is also bal-
anced, i.e. the number of positive and negative samples in the context are the
same. We used accuracy and F1 score as the metrics to evaluate the performance
of few-shot LLMs. As Fig.4 shows, with more samples in the context, for the
test with labeled data, both the accuracy and the F1 score of GPT-3.5 for the
detection of DDoS attacks increase substantially. With only 10 samples of data
in the context, both the accuracy and F1 score are up to 0.7. In contrast, for
the unlabeled group, the performance of GPT-3.5 to detect DDoS attacks does
not improve significantly after reaching 0.5; rather, it remains between 0.5-0.55,
which is not far off from random guesswork. We hypothesize that as the number
of samples in the context increases, especially for the labeled data, the perfor-
mance of the model will continue to improve. As with the CIC-IDS2017 dataset,
for the few-shot LLMs, we only need a small amount of training data to perform
well. However, since we use the data with correlation information, each prompt
uses a large number of tokens. due to the expensive cost of GPT-4 and GPT-3.5,
we just test the performance of GPT-3.5 with up to 10 samples in the context.
The situation of using GPT-4 and more samples’ context is not tested in this
work.

0.701 tagged data 0.71 —=— tagged data
—e— untagged data —— untagged data
0.65 0.6
2 0.60 | [
- 505
5 055 &
9 — 0.4
< 0504 i
0.451 0.3
0.401 0.2
2 3 4 5 6 1 8 10 2 3 4 5 6 1 8 10
Number of hints Number of hints
(a) Binary Accuracy (b) F1 Score

Fig. 4. Compare few-shot LLMs performance including the correlation information
learning with different amount of data

Detection Reasoning. For the urban IoT devices dataset, we similarly
requested an explanation for their predictions from GPT-3.5. The prompts and
outputs are shown in Table 2. Both the ”User” and ” Assistant” message in table
2a are generated according to dataset, while in table 2b and 2c, only the contents
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in ”Prompt” are from dataset, and the "Response” messages are the messages
from GPT-3.5, . It has been observed that although we provide certain and
identical formatting explanations, like the ” Assistant” message shown in table
2a when we give the context, however, as shown in table 2b, GPT-3.5 sometimes
generates explanations that diverge from the provided context, which demon-
strates the explanation ability of GPT-3.5 model with just a few-shot context,
instead of just "remember answers”. Additionally, table 2c¢ indicates GPT-3.5
could also express a sense of ambiguity regarding their prognostications. When
the quantity of samples inside the context increases, the range and ambiguity of
the provided explanations diminish correspondingly.

1.0 1.0
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o
o
o
=
208 508
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207 — 0.7
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£
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Attack Packet Volume Distribution Parameter (k) Attack Packet Volume Distribution Parameter (k)

(a) Binary Accuracy (b) F1 Score
1.0 1.0
0.9 0.9
k:) 0.8 8 0.8
g "4
< 0.7 <D( 0.7
0.6 0.6
0.5 0.5
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Attack Packet Volume Distribution Parameter (k) Attack Packet Volume Distribution Parameter (k)
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Fig. 5. Compare fine-tuning LLMs performance by using different attack packet volume
parameter (k) without correlation (OM-NC) architecture

Fine Tuning on One Model Without Correlation (OM-NC). Fig. 5 illus-
trates the fine-tuning result of the one model without correlation, i.e. OM-NC
models, using the OpenAl Ada model. During the process of fine-tuning, we
grouped the dataset based on the attack volume parameter, k, and selected 3,000
samples to feed and fine-tune the LLMs. It is clear to find that, as the value of k
increases, binary accuracy, F1 score, and AUC all increase significantly. When &
is equal to zero, the F1 score is less than 0.7, which is no significant improvement
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Table 2. LLM prompting outputs including the explanation on Urban IoT DDoS

Dataset

(a) Two examples of provided context

User

Time: 7; node 0: packet: 260, packet_30_min: 243.3333333, pkt_1_hr: 253.8333333,
pkt_2_hr: 276.75, pkt-4_hr: 271.2916667;node 1: packet: 167, packet_30_min:
230, pkt_1_hr: 253.1666667, pkt_2_hr: 246, pkt_4_hr: 251;node 2: packet: 266,
packet_30_min: 185, pkt_1_hr: 283.8333333, pkt_2_hr: 262.6666667, pkt_4_hr:
263.0416667;node 3: packet: 288, packet_30_min: 263.3333333, pkt_1_hr: 272.5,
pkt_2_hr: 208.3333333, pkt-4_hr: 230.2083333;node 4: packet: 0, packet_30_min: 0,
pkt_1_hr: 0, pkt_2_hr: 0, pkt_4_hr: 0; Predict node 3

Assistant

Node 3 is attacked since it has a high packet volume.

User

Time: 23; node 0: packet: 0, packet_30_min: 0, pkt_1_hr: 0, pkt_2_hr: 0, pkt_4_hr: O;node
1: packet: 0, packet_30_min: 0, pkt_1_hr: 0, pkt_2_hr: 0, pkt_4_hr: O;node 2: packet:
0, packet_30_min: 0, pkt_1_hr: 0, pkt_2_hr: 0, pkt_4_hr: 82.20833333;node 3: packet:
186, packet_30_min: 164.6666667, pkt_1_hr: 172.6666667, pkt_2_hr: 168.5, pkt_4_hr:
168.125;n0de 4: packet: 186, packet_30_min: 177.3333333, pkt_1_hr: 164.8333333,
pkt_2_hr: 154.75, pkt_4_hr: 177.4583333; Predict node 2

Assistant

Node 2 is not attacked since it has a low packet volume in 4 hours.

(b) Two responses from test with its corresponding prompts

Prompt

Time: 17; node 0: packet: 0, packet_30_min: 52, pkt_1_hr: 26, pkt_2_hr: 13, pkt_4_hr:
21.20833333;no0de 1: packet: 0, packet_30_min: 57, pkt_1_hr: 86, pkt_2_hr: 135.5833333,
pkt_4_hr: 129.0416667;node 2: packet: 169, packet_30_min: 156.6666667, pkt_1_hr:
154.6666667, pkt-2_hr: 164.3333333, pkt_4_hr: 157.8333333;node 3: packet: 123,
packet_30_min: 161.3333333, pkt_1_hr: 173.1666667, pkt_2_hr: 159.8333333, pkt_4_hr:
167.0833333;n0de 4: packet: 0, packet_30_min: 0, pkt_1_hr: 0, pkt_2_hr: 0, pkt_4_hr: 0;
Predict node 2

Response

Node 2 is not attacked because its packet volume is within normal range.

Prompt

Time: 6; node 0: packet: 141, packet_30_min: 136, pkt_1_hr: 123.1666667, pkt_2_hr:
144.3333333, pkt_4_hr: 163.375;node 1: packet: 0, packet_30_min: 0, pkt_1_hr: 0,
pkt_2_hr: 0, pkt_4_hr: O;node 2: packet: 0, packet_30_min: 0, pkt_1_hr: 0, pkt_2_hr: 0,
pkt_4_hr: O;node 3: packet: 265, packet_30_min: 263.3333333, pkt_1_hr: 281.8333333,
pkt_2_hr: 334.25, pkt_4_hr: 295.9166667;node 4: packet: 0, packet_30_min: 0, pkt_1_hr:
0, pkt_2_hr: 0, pkt_4_hr: 0; Predict node 3

Response

Node 3 is attacked because it has a high packet volume compared to the other nodes.

(c) Some other responses

Response

Node 3 is likely to be attacked because it has a significant increase in packet volume
compared to the previous time period.

Response

Node 0 is possibly attacked, but the prediction would require more information to be
more accurate.

over random guesswork. When k£ = 1, the average F1 score meets at 0.96 on 3000
samples, even greater than the Long Short-Term Memory (LSTM) model with
F1 score up to 0.86, proposed by A. Hekmati et al. [10].

Fine Tuning on One Model with Correlation (OM-WC). In this part, we
will illustrate the performance of fine-tuning LLMs with OM-WC architecture.
However, because of the budget limitation compared with the prohibitive cost
of fine-tuning, we only choose 5 IoT nodes in the system and the corresponding
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samples with attack volume parameter, & = 0.5, the proper packet volume which
is neither too easy nor too difficult to detect as being attacked. For LLMs with
OM-WC architecture, we first try to incrementally fine-tune the OM-WC models
to find the performance improvement as the number of feeding samples increases.
Figure6 shows the progress of incremental training from 300 samples to 900
samples. As we can see, since LLMs are pre-trained with massive amount of data,
even though we feed fewer than 1,000 samples to them, the binary accuracy and
F1 score of LLMs are mostly greater than that of MLP, regardless of whether
the numbers of positive and negative samples are balanced. Moreover, when we
feed the balanced samples to LLMs, a sample size of less than 1,000 is sufficient
to achieve a binary accuracy of 0.84, and an F1 score of 0.69. This performance
is close to that of MLP trained with whole dataset, which is 0.76 [10]. After
determining that fine-tuning LLMs perform better for detecting DDoS attacks
than conventional machine learning approaches such as MLP, we feed the entire
training dataset to the Ada model for fine-tuning in order to verify how powerful
fine-tuning LLMs are for detecting DDoS attacks with OM-WC architecture.
The result of feeding all samples in the dataset seems promising, which has a
binary accuracy up to 0.98, as well as an F1 score greater than 0.95. The above
results indicate that, by using the same training dataset, i.e. the data including
correlation information for all nodes, fine-tuning LLMs perform better than any
neural network model proposed by A. Hekmati et al. [10].
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0.80 /’\ : 0:65 N
3 s 0.60
® 075 : . :
3 @ 055
o
0 0701 0.50
< &
2065 o 0.45
©
£ ; 0.40{ :
m 0.60] —— LLMs with balanced samples —— LLMs with balanced samples
—— LLMs with unbalanced samples 0351 —— LLMs with unbalanced samples
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Number of samples Number of samples
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Fig. 6. Compare incrementally fine-tuned LLMs performance as the number of samples
increases

6 Conclusion

In this exploration into the realm of network security and the potential appli-
cations of large language models (LLMs) for DDoS attack detection, our study
sheds light on the growing complexity of threats that organizations face.
Diving into the nuances of DDoS detection, we detailed methodologies encom-
passing zero-shot, one-shot, and few-shot LLM approaches, along with insights
into the fine-tuning techniques of LLMs. A comparative analysis was drawn
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between traditional multi-layer perceptron (MLP) models and the advanced
capabilities of LLMs, leveraging platforms such as OpenAl's GPT-3.5, GPT-
4, and Ada models.

By employing two distinct datasets, namely CICIDS 2017 and the Urban IoT
Dataset, our evaluations showed that LLMs, with the right context and training,
could achieve impressive accuracies in DDoS detection. Specifically, using few-
shot methods on the CICIDS 2017 dataset, LLMs approached a 90% accuracy
with merely 10 prompt samples. This surged to around 95% when fine-tuned
with 70 samples. The more challenging Urban IoT Dataset showcased a similar
trend, where aggressive DDoS attacks saw LLMs achieving a 70% accuracy with
few-shot techniques and nearly 96% upon fine-tuning. Compared to traditional
MLP models trained on similar few-shot samples, LLMs consistently showcased
superior performance.

One of the most notable contributions of our study was the capability of
LLMs to articulate the basis behind their DDoS detections, especially in few-shot
learning scenarios. However, it is essential to note their tendency for hallucina-
tion in the case of fine-tuning, indicating that while LLMs promise significant
advances, careful application and ongoing scrutiny are paramount.
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