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Abstract. As the technology of autonomous vehicles advances, the
importance of automatic path planning also grows significantly. This
leads to the exploration of diverse algorithms and learning-based tech-
niques. While most methods safely and efficiently navigate vehicles to
their destinations, the comfort of a journey is often overlooked. To
address the issue, this paper focuses on a path planning algorithm that
integrates the hybrid A* path planner [2] and the Frenet Frame trajec-
tory generator [8]. We evaluate the performance of the proposed algo-
rithm in terms of travel efficiency and passenger comfort. The experi-
mental results demonstrate that the proposed algorithm better trades off
travel efficiency and passenger comfort, compared with the pure Frenet
Frame trajectory generator. The results also provide an insight that input
preprocessing, even if it is a simple one, can affect Frenet Frame trajec-
tory generator significantly, and it is worth future exploration.
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1 Introduction

With the advance of technology, the design of autonomous vehicles has grown
increasingly sophisticated. One critical challenge in autonomous driving is to
ensure safe and timely arrival at the destination. It requires vehicles to plan
paths from their current positions to the destinations.

Path planning in the context of autonomous driving has gathered consider-
able attention from researchers. Early efforts focused on searching algorithms,
which have evolved to incorporate techniques such as path planning using rein-
forcement learning [3]. These algorithms aim to generate paths that not only lead
to the destination safely without hitting obstacles but also adhere to the vehi-
cle dynamics for optimal performance in terms of time efficiency. Reinforcement
learning has emerged as a popular approach for path planning, as evidenced
by existing studies [4,9]. These learning models can simultaneously optimize
different objectives. The results obtained from applying reinforcement learning
to path planning are promising. However, one limitation is the relatively high
training time required for these learning models.
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Besides safety and efficiency which are usually the main objectives of existing
research, passenger comfort is also a crucial objective for path planning. Human
comfort is usually described as driving smoothly, which implies less changes in
acceleration [6]. For example, existing path planning algorithms may generate
paths that efficiently navigate twisted or tortuous roads and fit the road geome-
tries perfectly. However, these paths may not prioritize passenger comfort, where
passengers prefer a slightly longer but smoother and more stable path.

To address the issue, many studies have been conducted to smooth
planned paths. A post-processing approach which is based on the Pythagorean-
Hodograph cubic curve has been proposed to smooth the path generated from
a hybrid A* search algorithm [1]. A hybrid A* based motion planning method
is also proposed to improve a hybrid A* search algorithm with nonlinear opti-
mization and Catmull-Rom interpolation on post-processing the path [7]. In our
paper, we also aim to optimize the time efficiency and the passenger comfort
through a functional optimization approach. We explore a path planning algo-
rithm that integrates the hybrid A* path planner [2] and the Frenet Frame
trajectory generator [8]. By considering passenger comfort in the path planning
process, we can manage the trade-off between travel efficiency and passenger
comfort and achieve a good balance between them. The experimental results
demonstrate that the proposed algorithm better trades off travel efficiency and
passenger comfort, compared with the pure Frenet Frame trajectory generator.
The results also provide an insight that input preprocessing, even if it is a simple
one, can affect Frenet Frame trajectory generator significantly, and it is worth
future exploration.

The rest of the paper is organized as follows. Section 2 defines the problem.
Section 3 describes the proposed algorithm. Section 4 shows the experimental
results. Section 5 concludes this paper.

2 Problem Definition

Given a scenario which includes the starting point of a vehicle, the destination
of the vehicle, and the road structure and boundary, the path planning problem
is to compute a path from the starting point to the destination for the vehicle
and minimize two objectives:

– The time cost is defined as the total time for the vehicle to move from the
starting point to the destination.

– The comfort cost is defined as the average jerk, i.e., derivative of acceleration,
of each time step.

Although we do not consider safety in this paper, it can be modeled as constraints
like road boundaries. Given a scenario, an algorithm outperforms another algo-
rithm only if its time and comfort costs are both smaller than those of the other
one. Some example scenarios and path planning results are shown in Fig. 1.
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Fig. 1. Example scenarios and path planning results, where the blue solid lines are the
paths computed by the hybrid A* path planner, and the red dotted lines are the paths
outputted by the proposed algorithm at the blue triangles. (Color figure online)

Algorithm 1: The Proposed Algorithm
Input: starting point, destination, road structure;
Output: planned path P ;

1 P ′ = Hybrid-A*-Path-Planning(starting point, destination, road structure);
2 P = Frenet-Frame-Trajectory-Genration(P ′);

3 Algorithm

The overview of algorithm is listed in Algorithm 1. The main idea is to use
the hybrid A* path planner to generate a path. Then, the algorithm uses the
generated path as the central line for the Frenet Frame trajectory generator to
follow. The two steps are introduced in the following sections.

3.1 Hybrid A* Path Planning

Dolgov et al. introduced the hybrid A* algorithm [2], an extension of the tra-
ditional A* algorithm. It is designed to take into account the non-holonomic
nature of vehicles. It introduces a 3D state space of the vehicle < x, y, θ >
and a 4D search space < x, y, θ, r >, where x and y represents the position
of the vehicle, θ represents the orientation of the vehicle, and r is the current
direction of the vehicle. To calculate the cost of path planning, there are two
heuristics in forward searching. One is non-holonomic-without-obstacles which
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Algorithm 2: Hybrid-A*-Path-Planning
Input: starting point, destination, road structure;
Output: path computed by the hybrid A* path planner P ′;

1 P ′ = ∅;
2 Maintain a priority queue Q for all the expanding nodes;
3 Add the starting point to Q;
4 while True do
5 if Q �= ∅ then
6 Pop a node n with the minimal cost from Q;
7 Remove n from Q and mark n as expanded;
8 if n reaches the destination then
9 Return P ′;

10 end
11 for each unexpanded child m ∈ Analytic-Expansion(n) do
12 Update-Cost(m);
13 if m �∈ Q then
14 Add m to Q;
15 end

16 end
17 Update P ′;
18 end

19 end

can be precomputed since it is independent of real-time sensor data. The other is
holonomic-with-obstacles which reduces the number of expanded nodes and dis-
covers obstacles well. As for the node expansion, the Reeds-Shepp model is used
to make paths smoother and improve search speed. Since the path planning has
strict timing requirements, and the hybrid A* path planner is computationally
lightweight, we use it to compute the reference line (central line) for the Frenet
Frame trajectory generator.

Based on the reference [2], the hybrid A* path planner is listed in Algorithm 2.
Given a starting point, a destination, and a road structure, the algorithm main-
tains a priority queue Q based on the cost of each node. The algorithm applies
Analytic-Expansion() to expand nodes either by simulating kinematic models
within a short term or by generating an optimal Reeds-Shepp path to the des-
tination. Analytic-Expansion() can improve the planning accuracy and compu-
tational efficiency. The cost is updated by Update-Cost(), which considers two
heuristics, non-holonomic-without-obstacles and holonomic-with-obstacles.

3.2 Frenet Frame Trajectory Generation

There are many works on the path planning of autonomous vehicles, but there
are relatively less works considering travel efficiency and passenger comfort at
the same time. Werling et al. utilized the middle of the road as the central line for
the Frenet Frame [8], and the goal is to balance travel efficiency and passenger
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Algorithm 3: Frenet-Frame-Trajectory-Generation
Input: path computed by the hybrid A* path planner P ′;
Output: planned path P ;

1 Initialize a state S = P ′.starting-point
2 for each step do
3 Π = Generate-Path-Set(S, P ′)
4 P ′′ = Select-Minimum-Cost(Π)
5 if P ′′ == P ′.destination then
6 Return P ;
7 end
8 S = P ′′

9 end

comfort which can be quantified by the jerk, the derivative of the acceleration.
To describe the characteristic of a vehicle on the road with the state and the
environment, the traditional Cartesian Frame is replaced by Frenet Frame:

x(s(t), d(t)) = r(s(t)) + d(s(t)) · n(s(t)), (1)

where x is the Cartesian Coordinates, s is the central line of the Frenet Frame,
d is the perpendicular offset, r is the current position of the vehicle, and n
is the normal vector for the trajectory. The vehicle then generates lateral and
longitudinal movements, calculates jerk, and chooses the trajectory with the
minimum cost:

C = WT · T + WJ · J + WH · H, (2)

while C is the total cost, T is the time cost, J is the jerk (comfort cost), H is
the heuristic cost of next-step selection, and WT , WJ , and WH are the constant
weights for time cost, jerk cost, and heuristic cost, respectively. It is mentioned
that a pre-calculated path can serve as an alternative central line. Based on this
insight, we use the path computed by the hybrid A* path planner as the central
line for the Frenet Frame. Also, we set (WT ,WJ ,WH) = (2 − W,W, 1) in our
setting, where 0.5 ≤ W ≤ 1.5.

Based on the reference [8], the Frenet Frame trajectory generator is listed
in Algorithm 3. Given the path computed by the hybrid A* path planner, the
algorithm regards it as the central line of the road. The algorithm initializes the
state of the vehicle at the starting point, including the position, the speed, and
the acceleration of the vehicle. Before the vehicle reaches the destination, the
algorithm iteratively generates a set (Π) of possible paths along the central line
and selects the one (P ′′) with the minimum cost based on Eq. 2.

4 Experimental Results

We test our algorithm with 5 different scenarios as shown in Fig. 1. We record
the time cost (s) and the comfort cost (m/s3). The implementation is based on
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a Python code collection on path planning [5]. In Fig. 1, the blue solid lines are
the paths computed by the hybrid A* path planner, and the red dotted lines
are the paths outputted by the proposed algorithm at the blue triangles. The
proposed algorithm avoids sharp turns and lowers speeds, if needed, to lower
comfort cost. For twisted and narrow scenarios (Fig. 1 (c) and (e)), the Frenet
Frame trajectory generator modifies the paths more significantly.

)c()b()a(

)e()d(

Fig. 2. The experimental results. An x-axis represents the time cost (s), and a y-axis
represents the comfort cost (m/s3). A blue line shows the linear regression result of blue
dots, which are the results of the pure Frenet Frame trajectory generator (without the
hybrid A* path planner) with the weight W ∈ {0.5, 0.75, 1, 1.25, 1.5}. An orange line
shows the linear regression result of orange dots, which are the results of the proposed
algorithm with the weight W ∈ {0.5, 0.75, 1, 1.25, 1.5}. (Color figure online)

We compare the proposed algorithm with the pure Frenet Frame trajectory
generator (without the hybrid A* path planner). The experimental results are
shown in Fig. 2. An x-axis represents the time cost (s), and a y-axis represents
the comfort cost (m/s3). A blue line shows the linear regression result of blue
dots, which are the results of the pure Frenet Frame trajectory generator with
the weight W ∈ {0.5, 0.75, 1, 1.25, 1.5}. An orange line shows the linear regression
result of orange dots, which are the results of the proposed algorithm with the
weight W ∈ {0.5, 0.75, 1, 1.25, 1.5}. Each dot is the average of 10 runs.

For the three scenarios in Fig. 1 (a), (c), and (d), the proposed algorithm
outperforms the pure Frenet Frame trajectory generator. The trends in Fig. 2



An Efficient and Smooth Path Planner 81

(a), (c), and (d) show that, with the same time cost, the proposed algorithm has
a lower comfort cost, or, with the same comfort cost, the proposed algorithm
has a lower time cost. For the scenario in Fig. 1 (b), the trend in Fig. 2 (b) shows
that the proposed algorithm has similar but slightly worse results than the pure
Frenet Frame trajectory generator. For the scenario in Fig. 1 (e) which is an
extremely special case, the trend in Fig. 2 (e) shows that the proposed algorithm
has worse results than the pure Frenet Frame trajectory generator. We infer that
more obstacles bring challenges to Analytic-Expansion() in the hybrid A* path
planner.

The results indicate that the use of the hybrid A* path planner can improve
the objectives of path planning in most cases. Besides, we also observe that
the hybrid A* path planner performs better when there are more curves in the
scenario. The results also provide an insight that an alternative central line
can affect the Frenet Frame trajectory generator significantly, and it is worth
exploration.

5 Conclusion

In this paper, we focused on a path planning algorithm that integrates the hybrid
A* path planner and the Frenet Frame trajectory generator. We evaluated the
performance of the proposed algorithm in terms of travel efficiency and passenger
comfort. The experimental results demonstrated that the proposed algorithm
better trades off travel efficiency and passenger comfort, compared with the
pure Frenet Frame trajectory generator. The results also provided an insight
that input preprocessing, even if it is a simple one, can affect Frenet Frame
trajectory generator significantly, and it is worth future exploration.

Last but not least, the proposed algorithm provides a smoothing technique,
which can improve the robustness or even the security of path planning. For
example, if the position of a vehicle is faulty at a certain time, no matter the
source is malicious or not, the vehicle may deviate from its original path for
a short period. The the proposed algorithm can smooth the path and project
the vehicle against the fault. This usage of the proposed algorithm is also worth
more exploration.
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