Enabling Real-Time Restoration
of Compromised ECU Firmware
in Connected and Autonomous Vehicles

Josh Dafoe, Harsh Singh, Niusen Chen, and Bo Chen(®)

®

Check for
updates

Department of Computer Science, Michigan Technological University, Michigan, USA

1

bchen@mtu.edu

Abstract. With increasing development of connected and autonomous
vehicles, the risk of cyber threats on them is also increasing. Compared
to traditional computer systems, a CAV attack is more critical, as it does
not only threaten confidential data or system access, but may endanger
the lives of drivers and passengers. To control a vehicle, the attacker
may inject malicious control messages into the vehicle’s controller area
network. To make this attack persistent, the most reliable method is
to inject malicious code into an electronic control unit’s firmware. This
allows the attacker to inject CAN messages and exhibit significant con-
trol over the vehicle, posing a safety threat to anyone in proximity.

In this work, we have designed a defensive framework which allows
restoring compromised ECU firmware in real time. Our framework com-
bines existing intrusion detection methods with a firmware recovery
mechanism using trusted hardware components equipped in ECUs. Espe-
cially, the firmware restoration utilizes the existing FTL in the flash
storage device. This process is highly efficient by minimizing the neces-
sary restored information. Further, the recovery is managed via a trusted
application running in TrustZone secure world. Both the FTL and Trust-
Zone are secure when the ECU firmware is compromised. Steganography
is used to hide communications during recovery. We have implemented
and evaluated our prototype implementation in a testbed simulating the
real-world in-vehicle scenario.

Keywords: Connected and autonomous vehicles - ECU - CAN bus -
flash translation layer - TrustZone + Steganography

Introduction

With rapid growth of automotive industries, both automakers and associated
government agencies are taking initiatives to support the development and
deployment of connected and autonomous vehicles (CAVs). This includes efforts

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024

Published by Springer Nature Switzerland AG 2024. All Rights Reserved
Y. Chen et al. (Eds.): SmartSP 2023, LNICST 552, pp. 15-33, 2024.
https://doi.org/10.1007/978-3-031-51630-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51630-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-51630-6_2

16 J. Dafoe et al.

to improve CAV efficiency and implement public road infrastructures to sup-
port V2V (vehicle-to-vehicle) and V2I (vehicle-to-infrastructure) communica-
tions. As this technology continues to develop, CAVs have increasing communi-
cation pathways in order to make informed decisions in real time. In addition to
V2V and V2I developments, autonomous vehicles are increasingly equipped with
many sensors, providing input which will be processed in real time. Especially,
increased internal communication is observed, with over 70 electronic control
units (ECU) communicating via a in-vehicle network. Recently, in order to man-
age the numerous ECUs, over-the-air updates have been utilized [13,30]. While
these developments allow significant improvement in vehicle functions, they have
led to increased security vulnerabilities [17,41,47]. As a result, various attacks
on the vehicle systems have been performed by both researchers and real-world
hackers. For example, from 2010 to 2018, there were 170 reported automotive
attacks, with 60 of these happening in 2018. Further, a plurality of attacks were
remote which do not require physical access [39)].

One typical attack is performed by accessing the internal network of the vehi-
cle, gaining control over it. Adopted broadly, the controller area network (CAN)
provides internal communications among the in-vehicle computer systems. If any
malicious entity gains access to the CAN, many in-vehicle operations become
vulnerable to manipulation. A few methods have been identified by which the
aforementioned access may be gained. First, the attacker hacks remotely into the
infotainment system or telematics unit, which manage existing network commu-
nication with the outside world. They will then attempt to escalate privileges,
and enable the injection of malicious messages which control the victim vehi-
cle. This attack method was demonstrated in 2016 when the Keen Security Lab
hacked a Tesla model S [36]. Second, the attacker gains access to the CAN
bus physically or remotely via compromising the existing mechanisms for CAN
access provided by the on board diagnostics (OBD-II) port. The physical attack
occurs through connecting a device directly to the OBD-II port, such as a laptop.
However, this is often difficult, as during vehicle usage, the attacker cannot be
present, and gaining the initial physical access is challenging. The remote attack
through an OBD-II port is performed by compromising an OBD-II dongle that
the car owner or mechanic connects [16,31,44]. Also, there are now mobile apps
which remotely provide diagnostic services by accessing the CAN [24]. In all
the aforementioned attack scenarios, the CAN access is likely limited in time,
as the hacker cannot be physically present during the vehicle operation, or the
persistence of a remote connection is not guaranteed. Consequently, both the
remote and physical attackers would prefer to establish a persistent presence
within the CAN. To gain this persistent presence, a best choice for the attacker
is to inject malicious code into the internal firmware of ECUs. This occurs via
exploiting existing vulnerabilities during firmware updates (such as the over-
the-air updates [37]), or ECU programming via the OBD-II port [14]. This work
therefore focuses on recovering the ECU firmware which has been compromised
by such code injection attacks.

Enabling Real-Time Restoration of Compromised ECU Firmware 17

To defend against the ECU code injection attacks, a taxonomy with four
categories of CAV defense was established [41], including a passive defense
and an active defense. The passive defense framework is focused on detecting
and isolating CAV malware attacks, and some additional research has been
performed in this area. Specifically, to detect the presence of malicious CAN
activity, many intrusion detection systems with high success rates have been
evaluated [25-27]. These detection methods observe messages on the CAN bus
and establish a model for normal behaviors. Using this model, any malicious
deviations are detected. Further, the specific ECU that sent the malicious mes-
sages can be detected via analysis of signal characteristics [21,35,46]. In [32],
it is observed that relying solely on intrusion detection mechanisms results in
a delayed response, where a security update eventually may repair the attack,
which is insufficient in the CAV scenario. This is because in this scenario, each
moment an attack is active there is more threat posed to both the driver and
everyone around them. Since the real-time attack response is so essential, [32]
further proposes incorporating an active response by sending detection notifi-
cations to the infected ECUs, which will repair via switching to a safe mode
and rebooting. However, the specific mechanisms for enabling the restoration
of the ECU firmware are still missing. This work thus aims to bridge this gap.
Our key observation is that through leveraging trusted hardware components
equipped with the ECU, it is possible to enable a real-time restoration of the
ECU firmware, which has been compromised by the code injection attacks.

Typically, in-vehicle computers (e.g., ECUs) are equipped with low power
processors, including ARM Cortex-A or Cortex-M [1-4] CPUs which are broadly
equipped with TrustZone capabilities [10,11]. Further, these same computers
may use flash memory as external storage [5,8], which is typically managed by
the flash translation layer (FTL). The TrustZone is a hardware-level security fea-
ture provided by the processor, which can enable the establishment of a trusted
execution environment (TEE) isolated from the normal insecure execution envi-
ronment. In other words, even if the ECU OS is compromised, the execution
running in the TrustZone secure world remains uncompromised. The FTL is a
piece of trusted flash memory firmware encapsulated inside a flash storage device
(e.g., an SSD drive or a microSD card). It stays between the OS and the flash
memory hardware, transparently managing the unique hardware nature of flash
memory and exposing externally a block access interface. Therefore, the FTL
can also remain secure even if the ECU OS is compromised.

Combining the intrusion detection mechanism with the trusted hardware
components, we have established a framework which can efficiently restore the
ECU firmware to the version right before the code injection attack (note that we
refer to this as the “good prior state” or “good firmware version” throughout the
paper). After the compromised ECU is detected by a trusted detection module
(i.e., a detector), a notification message will be sent by the detector via the
CAN. The notification message will arrive at the compromised ECU and be
passed to the trusted application running in the TrustZone secure world via the
ECU OS. The trusted application will then collaborate with the trusted FTL to

18 J. Dafoe et al.

restore the firmware in real time. Our key insight is that whenever a firmware
update occurs (e.g., the code injection attack is performed), the FTL, having
ultimate control over the underlying storage hardware, can naturally retain an
old version of the firmware, due to the out-of-place update feature present in
modern flash storage devices. In this way, the FTL can immediately revert to
the old good firmware version after the attack. Such a reversion can happen
very efficiently as only a small amount of mapping data needs to be restored in
the FTL, perfectly meeting the real-time requirement. In addition, to prevent
the compromised ECU OS from being aware of the restoration process, all the
communications (between the detector and the trusted application, between the
trusted application and the FTL) are protected via steganography. In this way,
all the communications' among them can go through the untrusted ECU OS
with the actual purpose being hidden and, the compromised ECU OS typically
will not interrupt a seemingly normal process.

2 Background

2.1 Control Area Network

The controller area network (CAN) is a protocol for communication between
many nodes connected via two wires where each message is broadcast to all
other connected nodes (Fig.1). Through using this protocol, vehicles are able
to greatly reduce the wiring complexity and enable a variable internal network
topology. When a node sends a message on the CAN bus, the frame does not
include any sender information, but contains a message identifier which describes
its type and determines its priority. Based on this identifier, nodes connected to
the CAN bus filter out irrelevant messages and accepts those with relevant iden-
tifiers. Additionally, each CAN message contains up to 8 bytes of relevant data
and commands. The CAN bus is fully accessible, allowing devices or applications
to be connected via the on board diagnostics port (OBD-II). In vehicles, CAN
is the mechanism for sensors to send data to the main advanced driver assis-
tance systems (ADAS) computer, and for control signals to be sent from the
ADAS computer, brake and gas pedals, steering wheel, ignition, etc., to the var-
ious ECUs associated with the control operations. Additionally, ECU firmware
updates are ultimately sent directly through the CAN bus. Our observation is
that when a CAN message is accepted by an ECU, the associated data will be
quickly processed [6].

2.2 Flash Memory

Flash memory is broadly used as the external storage device for low-power
embedded systems like ECUs [5,8]. This is due to its high throughput, which
is necessary in the vehicle scenario, requiring real-time I/O capabilities. Flash

! Note that the detector should avoid directly communicating with the FTL via the
untrusted ECU OS, which is unusual and hence suspicious.

Enabling Real-Time Restoration of Compromised ECU Firmware 19

CAN Node 1 CAN Node 2 CAN Node N
CAN Controller CAN Controller CAN Controller
CAN Transceiver CAN Transceiver, CAN Transceiver

120 Q 1200

Fig. 1. The topology of a CAN network.

memory (Fig. 2) is organized into a collection of blocks, with each block consist-
ing of smaller pages. However, unique physical characteristics result in differing
behavior from hard drive disks (HDD). First, the read /write granularity of flash
storage is a page, while the erasure operates on full blocks. Second, each pro-
gram erase cycle performed on a given block wears down the associated hardware,
until a threshold is met and it is considered unreliable and unusable. Due to these
special characteristics, in-place updates are expensive. This is because when the
data in a single page should be updated, the entire encompassing block must be
erased, resulting in further wear. Therefore, an out-of-place update strategy is
preferred in which updates are performed by writing the data to a new physi-
cal location and marking the old data as invalid. It is also essential to spread
program erase cycles throughout the entire storage medium in order to prevent
quick wear in any location, so wear-leveling is implemented which handles this.
When blocks are invalidated, they are eventually sent to the garbage collector
to be erased. Unlike traditional HDDs, the out-of-place update strategy results
in different physical locations for the same logical address over time. This is
managed by maintaining mappings between physical and logical locations which
usually change after each invalidation. All of these firmware components together
make up the flash translation layer (FTL), which provides a block access inter-
face externally to the OS. Additionally, the FTL is isolated from the firmware
(OS) of its associated ECU by the storage hardware. This isolation provides a
guarantee that any computation performed in the FTL will not be compromised
even when the ECU firmware is compromised.

2.3 ARM TrustZone

Many ARM processors, such as Cortex-A and Cortex-M CPUs used within auto-
motive ECUs are ARM TrustZone enabled [1-4]. TrustZone establishes a trusted
execution environment within a untrusted host. The key idea is to run both

20 J. Dafoe et al.

block-based access interface

flash translation layer (FTL)

RAM processor

Fig. 2. The architecture of a flash-based block device.

secure (i.e., secure world) and non-secure (i.e., normal world) execution environ-
ments on a single processor. The secure world is used to run critical applications
with sensitive data, while the normal world can run non-sensitive applications.
The two modes are separated by isolating the CPU states and associated memory
regions. The architecture of ARM TrustZone is shown in Fig. 3. The communica-
tion and interaction between the secure world and the normal world is conducted
by secure monitor call (SMC). SMC works as a gateway to ensure invocation of
functions and services offered by the secure monitor or secure kernel within the
secure world. A salient advantage of TrustZone is that it comes together with
the embedded processor and, this hardware-level security feature can be simply
utilized without bringing in extra hardware.

2.4 Steganography

Steganography is a mechanism by which to hide some secret message inside of
normal data/communications. The secret message is embedded obscurely into
original data or messages, such that it goes unnoticed. Different from encryption,
this is intended to conceal the fact that a secret message is being sent at all.

3 System and Adversarial Model

3.1 System Model

We consider a connected vehicle with multiple ECUs communicating via the
CAN protocol. The ECU is assumed to be equipped with a NAND flash storage
device (e.g., an eMMC, a microSD, etc.) on which the ECU firmware is stored.
The flash storage device is managed by an FTL, which provides a read/write
interface to the ECU OS. The FTL is run on hardware isolated from the OS, so

Enabling Real-Time Restoration of Compromised ECU Firmware 21

Non-Secure Application Secure Application

Secure Monitor

Fig. 3. The architecture of ARM TrustZone.

the computation performed by it is assumed to be secure. Further, each ECU is
assumed to be equipped with an ARM processor (Cortex-A or Cortex-M) with
TrustZone enabled. Using TrustZone, a trusted world is running in the ECU,
on which trusted computation can occur. The trusted world, running trusted
applications (TAs) can communicate with untrusted client applications (CAs)
running in the untrusted OS (i.e., the potentially compromised ECU firmware).
The CAs can perform bidirectional communication with the TA, FTL, and CAN
bus. We assume the existence of a trusted in-vehicle computer (IDet) connected
to the CAN bus, which performs intrusion detection and signal analysis to detect
and localize adversarial ECUs. Note that IDet can communicate directly with the
CA via the CAN bus. IDet could be the main ADAS computer or an ECU dedi-
cated to intrusion detection. Our focus in this work is not on malware detection.
Therefore, we assume this trusted entity has successfully detected the adversar-
ial ECU [21,25-27,35,46] and we work with the TrustZone and the FTL in the
compromised ECU to restore its firmware to a good prior state.

3.2 Adversarial Model

We consider an adversary which can compromise the firmware of an ECU, i.e., by
injecting malicious code into the ECU OS. This can be done in a few ways, includ-
ing remote or physical access to CAN via the OBD-II port, or manipulation of
other existing firmware update mechanisms including over-the-air updates. Since
the ECU firmware itself is compromised, any detection and recovery mechanisms
running in the ECU OS can be averted. This is equivalent to a piece of OS-level
malware, which can control the OS of the victim ECU. However, this malware is
detectable via intrusion detection of the vehicle, as it must behave maliciously in
order to take control of the vehicle, e.g., sending a lot of spoofed CAN messages.

22 J. Dafoe et al.

We rely on a few assumptions: 1) The compromised ECU is not able to com-
promise the TAs running in the TrustZone secure world, which is protected by
the processor at the hardware level. This is a common assumption for TrustZone-
based applications [23]. 2) The compromised ECU is not able to hack into the
FTL, which is isolated by the storage hardware and only presents a limited
read/write interface. 3) Before the ECU is compromised, its firmware (OS) is
assumed to be healthy. 4) The compromised ECU will not perform DoS attacks,
e.g., blocking regular communication among CAN, CA, TA, and FTL. Mitigat-
ing DoS attacks itself is a hard problem and is out of the scope of this work. In
addition, the compromised ECU will not gain any benefits from performing the
DoS attacks, as a nonfunctional ECU is an immediate indication of being com-
promised. In our work, the communications for restoration process are hidden
stealthily in the regular communication messages.

4 Design

4.1 Design Overview

Our design consists of four major components (Fig.4): IDet, CA, TA, and FTL.
The IDet (intrusion detector) is running on top of trusted firmware in a secure
node, which can communicate with the victim ECU via CAN network. In the
victim ECU, there are three components, the CA (client application), the TA
(trusted application), and the FTL. The CA is running on top of the untrusted
firmware which may be compromised. The TA and the FTL are isolated from
the CA by TrustZone hardware and the storage hardware respectively, hence are
trusted. We collaborate the aforementioned components in order to restore the
compromised ECU firmware to a good prior state after it is compromised.

Our first idea is that the FTL has an ultimate control over the underlying
storage hardware and, the previous version of firmware may be maintained and
restored. Especially, due to the out-of-place update strategy (Sect. 2.2) in the
flash storage, the old version of firmware can be naturally retained in the flash
memory blocks, though they will be invalidated when an adversarial update
occurs. Since GC eventually erases these invalid blocks, it must be disabled
for the old firmware data. Additionally, since the FTL does not know where
the firmware is stored, it can be notified before any update occurs, because
the firmware is trusted at this point (Sect. 3.2). During recovery, an additional
challenge is to find the maintained blocks associated with the good firmware
version. These locations can be retrieved by using the mappings associated with
the old firmware version, which can be backed up by the FTL.

Our second idea is to securely manage the FTL to restore the ECU firmware
even if the entire ECU OS is untrusted. In a vehicle environment, the compro-
mised ECU is able to be identified by another entity (i.e., IDet) outside this ECU
in the same vehicle. The IDet needs to inform the FTL to launch the restora-
tion process, but such sensitive messages typically need to go through the CA
running on the compromised ECU OS, which will deliver the messages to the

Enabling Real-Time Restoration of Compromised ECU Firmware 23

FTL. The direct communication between the IDet and the FTL is very abnor-
mal and the compromised OS will be alerted. Having observed that the data
received from the CAN may be processed by the TA running in the TrustZone
secure world, and the TA may perform writes to the storage device through the
CA [29], our solution is to use the TA as a liaison to forward sensitive messages
between the IDet and the FTL. In addition, as the sensitive messages need to
go through the untrusted OS, they need to be protected in a plausible manner.
Steganography is therefore leveraged to hide the sensitive messages within the
regular communications.

Our third idea is to enable the restoration of the ECU firmware when the
malware is still present. This is due to the fact that it would be hard for the
vehicle user to block the ECU malware once being detected. Upon restoration,
the FTL will block all the write requests from the upper layer, and this blocking
operation will be canceled once the good firmware has been restored on the
external storage and the malware has been removed from the memory.

CAN

r-—-—-"—f~-~"~"~~TTT7=7=====77+7% 1

! I

: 1

|

Trusted ! Untrusted 1
Firmware : Firmware Trusted 05 1

|

IDet ¢ = CA .‘ TA I

T TL ¢ —? I

: 1

| FTL |

! 1

¢———> regular channel | 1
| NAND Flash I

4emsmmmmm=) cover channel : |
|

! 1

compromised ECU

Fig. 4. An overview of our design.

4.2 Design Details

4.2.1 Cover Communications via Steganography. We define a stegano-
graphic message M, € {0, 1}* to be the message produced when a secret message
B € {0,1}! is embedded within a regular cover message a € {0, 1}*, where [and

24 J. Dafoe et al.

k are both positive integers and [< k. Along with the steganographic message
are the steganographic algorithms associated with generating and decoding it.

To define the steganographic algorithms used in our design, we first introduce
the pseudo random permutation 7 and pseudo random function f, defined as
follows (where s is the length of a shared key):

m:{0,1}* x {0,1}os2k _ {0, 1}los2
A0y < {0,137 = {0,1°

Our steganographic algorithms used during the encoding and decoding pro-
cesses are defined in Algorithm 1 (SEncode) and 2 (SDecode) respectively. Note
that by fx(z) (or mr(z)) we mean applying f (or) over z using key k.

Algorithm 1. SEncode
Input: (3, a, key, counter
Output: M

1: M, +— «

2: stegKey < fiey(counter)
3: fori=0tol—1do
4: J < TstegKey (7/)
5
6

M (5] < Bli]
: return M,

Algorithm 2. SDecode
Input: M;, key, counter
Output: g

1: stegKey « fiey(counter)
2: fori=0tol—1do

3t J TstegKey(4)
4 Pli] — Mslj]
5

: return

After IDet detects and localizes a compromised ECU, it will send a stegano-
graphic message My indicating this detection result to the ECU. Since this
message will immediately be forwarded to the TA, a key and counter shared
between them are used as input to SEncode (Algorithm 1). Further, § is taken
to be some secret message, agreed by IDet, TA, and FTL to indicate a malware
detection, and a can be any cover message of length k. Unique to the vehicle
scenario is that the message is being transmitted over CAN, which has an 8 byte
data section that imposes security limitations if using a single CAN frame. Due
to this, IDet spreads the k bit message produced by SEncode over [k+64] CAN
messages.

Enabling Real-Time Restoration of Compromised ECU Firmware 25

After the CA forwards this message (i.e., a collection of [k + 64] CAN mes-
sages) to the TA, [is extracted using SDecode (Algorithm 2) and is checked
against its expected value. If they are identical, a new steganographic message
My is generated from 3 with a new «, along with a unique key and counter
shared between the TA and the FTL. The TA will send M, to CA, indicat-
ing that it should be written to the FTL. Upon receiving My, the FTL will
use SDecode to extract 3, and check this against its expected value. If they are
identical, then firmware restoration will be launched by the FTL. To avoid any
replay attacks, both the counter shared between the IDet and the TA, and the
counter shared between the TA and the FTL, should be increased by one after
each successful restoration.

4.2.2 Firmware Restoration. After receiving the detection notification in the
FTL, the old firmware should be restored quickly so that normal operations can
resume. To ensure that this is possible, there are two challenges. First, the old
firmware must still be present in a recoverable manner on the storage device.
Second, the old firmware should be restored quickly to the correct location.

To address the first challenge, we exploit the out-of-place updates feature
of NAND flash memory. Due to out-of-place updates, during a firmware update
the new firmware is written to a different physical location which results in
persistence of the old firmware. Normally, when the new data are written to a
new physical location, the old blocks are marked as invalid, the mapping from
logical address to physical location is updated, and garbage collection (GC) will
eventually delete the data. To ensure that the firmware is both maintained and
recoverable, we can 1) save the old mappings (from logical to physical location)
before an update occurs, and 2) block GC for the blocks associated to relevant
saved mappings.

For 1), the FTL reserves a special area for a back up mapping table which
stores the saved mappings. Since the ECU firmware is assumed to be trusted
prior to the firmware update, a command is sent to a reserved command area
by the CA. This command tells the FTL to back up the current mapping tables
to the special reserved area. By saving these mappings prior to the update, ref-
erences to the physical location of the old firmware are maintained. For 2), the
data at these physical locations should not be erased. To prevent this, GC is dis-
abled for all blocks invalidated during the firmware update. However, a problem
arises when there are multiple firmware updates, as many data blocks will be
maintained, but only the mapping tables associated with the last update are pre-
served. For this reason, GC should be re-enabled on the previously maintained
blocks before each firmware update.

To address the second challenge, the saved blocks need to be restored. Since
the firmware will always boot from the same location, the good firmware should
be reverted to this location. To achieve this, the mappings in the reserved area
which reference the prior firmware blocks can be restored. Due to this restoration,
the same address will now point to the old firmware blocks rather than the
malicious firmware. When booting, the ECU will read from the same logical

26 J. Dafoe et al.

Fig. 5. Our vehicle testbed.

location as before, but it will point to the physical location of the firmware prior
to the adversarial code injection.

4.2.3 Malware Removal. After returning the ECU firmware to the good
version prior to the code injection attack, the malware may still be running on
the CPU and contained in the ECU memory. A problem associated with this is
that the malware can again modify the ECU firmware being restored. Different
from the scenario of a real-world computer/mobile device [19], it is hard for the
user to block/remove the malware from the victim ECU before the firmware
restoration in the FTL after having detecting it. To account for this, once the
firmware restoration starts in the FTL, any writes on the FTL should be frozen
until the malware has been removed from the memory. To remove the malware
from the memory, we can reboot [7] the ECU immediately to clear the memory
after its firmware is restored and, after the reboot, the FTL can be notified to
cancel the freezing operation.

5 Implementation and Evaluation

To construct the testbed (Fig. 5) with all the necessary components for our imple-
mentation, we use two different electronic development boards: 1) Raspberry
Pi 3B+ [9] (With 1.4GHz 64-bit quad-core ARM Cortex-A53 CPU, and 1GB
LPDDR2 SDRAM) with a RS485 CAN HAT, and 2) a high speed USB header
development prototype board LPC-H3131 [33] (with ARM9 32-bit ARM926EJ-
S, 180Mhz, 32MB of SDRAM, and 512MB NAND flash). One Raspberry Pi
(RPil) is used as IDet, to generate a detection notification, embed it in regular
communication via steganography, and send this over the CAN network. The
second Raspberry Pi (RPi2) simply receives the CAN messages and forwards

Enabling Real-Time Restoration of Compromised ECU Firmware 27

them via a forwarding socket to the third Raspberry Pi?. The third raspberry
pi (RPi3) acts as the infected ECU and the LPC-H3131 is attached to it via a
USB2.0 interface. A client application has been developed to receive CAN mes-
sages and forward them to the TA (in RPi3). To develop the TA, we have ported
OP-TEE (Open Portable Trusted Execution Environment) [38] to RPi3. In the
TA, the forwarded message from the CA is received and the secret notification
is extracted. If it is a detection notification, a new message is generated with
the command embedded, which is sent back to the CA for writing to the FTL.
Additionally, we have ported [40] and modified an open source NAND flash man-
ager OpenNFM [22] to the LPC-H3131. Our OpenNFM modifications consist of
backing up the mapping table to a reserved area, reserving a special command
area, decoding the embedded command, and rolling back the previous mappings
to restore the original data. We choose n (number of CAN messages) to be 16,
so for the 64 bit data field of CAN messages, we embed a [= 64 bit notifica-
tion in a 1024 bit message. Consequently, for both embedding and extracting
the notification in IDet, TA, and FTL, we employ the feistel network cipher,
a pseudo-random permutation, with AES as the round function to produce a
log, 1024 = 10 bit output.

Evaluating Recovery and Communication. To evaluate the time for pro-
cessing the hidden communications and recovering the ECU firmware to before
an attack, we timed three phases: 1) time in IDet (encoding the detection noti-
fication), 2) time in TA (extracting the notification in TA, embedding the com-
mand in a new message, and sending the new message to FTL via a write request
to the CA), and 3) time in FTL (extracting the notification in the FTL and sub-
sequently performing recovery). The time of each phase has been measured 20
times and the results are summarized in Table 1. These results demonstrate that
after malicious CAN messages are detected via intrusion detection and signal
analysis mechanisms, a hidden detection notification can quickly be transmit-
ted to the compromised ECU and the firmware can be restored to the prior
version. Note that the majority of time spent in the FTL is for recovery, with
around .01s for decoding the notification. The time in TA is significantly more
than expected. This is likely due to the overhead from computation performed
(extracting the notification, generating a new message and embedding the com-
mand, sending this back to the CA), context switching overhead, and the limited
physical resources available in the secure world.

Table 1. Average time (measured in seconds) in IDet, TA, and FTL.

IDet Time (s) | TA Time (s) | FTL Time (s)
.0012988 7.1065939 1.4264553

2 This is necessary due to unresolved compatibility issues between the CAN drivers
and specific OP-TEE implementation.

28 J. Dafoe et al.

Throughput Evaluation To evaluate the impact of our solution on normal
operations with the flash storage device, we performed a throughput compar-
ison between the unmodified OpenNFM and our modified version. For these
benchmarks, we used the fio benchmarking tool [12] and performed random
write (RW), random read (RR), sequential write (SW), and sequential read (SR)
benchmarks. Our results from these tests are summarized in Fig. 6.

] = Modified FTL 2 OpenNFM \ = Modified FTL = OpenNFM \
sw | 2301 (| | 2,849
Wi 2,176 R 2,773

[1o I 2200
RW B 1,827 RR 92 067

(a) (b)

Fig. 6. Throughput comparison (KB/s).

To fully evaluate the impact of the observed differences, we perform a sta-
tistical analysis of the results. The values reflected in Fig.6 are the mean of
30 benchmarks for each type. Evaluations of the differences in throughput are
based on the mean values. Subsequently, a T-Test was performed to determine
the statistical significance of the observed results for RW (random write), RR
(random read), SW (sequential write), and SR (sequential read). The p values
were < .00001 for all tests, which is less than the .05 level, indicating a statisti-
cally significant difference in throughput. These throughput results demonstrate
that the implementation of our solution results in a small performance cost on
normal read/write operations. Evaluating the extent of these differences, the
average difference in throughput is 5.7%.

6 Related Work

6.1 Data Recovery in Embedded Systems

Chen et al. developed FFRecovery [18], an fine-grained data recovery system
specifically designed for flash memory devices. FFRecovery employs file system
forensics techniques to restore metadata, while utilizing the out-of-place update
feature in the flash translation layer to extract raw data. Xie et al. proposed
MobiDR, a data recovery framework for mobile devices [45]. MobiDR can recover
user data to the corruption point to defend against OS-level malware by utilizing
the cloud server’s version control capability and the hardware features of the local
device. Guan et al. introduced Bolt, a system aimed at restoring the operating
system without requiring a reboot. Bolt makes use of ARM TrustZone to backup

Enabling Real-Time Restoration of Compromised ECU Firmware 29

the memory snapshot and utilizes a customized firmware to save the snapshot
of flash memory. This approach enables efficient recovery of the system to a
clean state after it is compromised. Huang et al. presented FlashGuard [28], a
firmware-level recovery system against ransomware attacks that provides rapid
and efficient data recovery without the need for explicit backups. FlashGuard
makes use of the out-of-place update feature in solid state drive to retrieve data
encrypted by ransomware. Wang et al. designed TIMESSD [43]. To recover user
data that are compromised by the malware, TIMESSD leverages the out-of-
place update characteristics in SSD to retain the states of history storage, and
the recovery process is achieved via calling rollback functions. Furthermore, Baek
et al. [15], Wang et al. [42], and Min et al. [34] have integrated the ransomware
detection component into the flash translation layer. This integration can save
the space that would otherwise be allocated for backing up invalid data in local
storage if ransomware is not detected.

Different from the existing works for data recovery in the embedded systems,
our design targets the ECU firmware recovery in a vehicle system which is much
more critical than the traditional embedded systems. This type of critical sys-
tems has a much higher demand in a few aspects. First, it requires the restoration
to be performed in real time, i.e., the extra overhead caused by the design should
be minimized. Second, upon restoration, the malware is still present as it is diffi-
cult for the user/driver to block the malware in the compromised ECU, i.e., the
restoration needs to happen when the malware is still present. Third, the mal-
ware detector comes from another entity in the vehicle and the communication
between the detector and the FTL need to be adapted to the communication net-
work inside a vehicle. Also, it needs to be protected and avoids being disturbed
by the compromised ECU firmware.

6.2 CAN Intrusion and Malicious ECU Defenses

Kwon et al. proposed a mitigation mechanism against CAN intrusion by config-
uring impacted ECUs and ignoring malicious message IDs [32]. They proposed
using intrusion detection to send messages to malicious ECUs and reconfigured
them to a good state, but this state provides less functionality, and they did not
provide any implementation or mechanism toward providing these guarantees.
Han et al. evaluated the use of survival analysis for intrusion detection, with
higher than 97% detection accuracy over all tested vehicles [26]. Yang et al. [46]
designed a mechanism for detecting spoofing attacks from unrecognized ECUs by
authenticating CAN data frame IDs. Using a recurrent neural network (RNN),
they authenticated sender identity based on fingerprint signals. Further, Cho and
Shin used recursive least squares to construct a baseline of ECU clock behavior
for developing an anomaly-based intrusion detection system which identifies the
malicious ECU [20].

30

7

J. Dafoe et al.

Conclusion

In this work, we have designed a new framework for connected and autonomous
vehicles to defend against the ECU code injection attacks, by rolling back the
compromised ECU firmware to a good prior state. Our design has taken advan-
tage of various existing hardware features equipped with the ECU to securely
manage and efficiently perform the recovery process. We have implemented a
prototype for the proposed framework and demonstrated its effectiveness at per-
forming real-time recovery in a simulated in-vehicle testbed.

Acknowledgments. This work was supported by US National Science Foundation
under grant number 2225424-CNS, 1928349-CNS, and 2043022-DGE.

References

10.
11.
12.
13.

14.

. https://www.nxp.com/products/processors-and-microcontrollers/s32-

automotive-platform/s32z-and-s32e-real-time-processors:S32Z- E-REAL-TIME-
PROCESSORS
https://www.xilinx.com/products/boards-and-kits/zcul04.html#information
https://www.nxp.com/design/designs/s32g3- vehicle-networking-reference-design:
S32G-VNP-RDB3

. https://www.nxp.com/design/designs/s32k3-automotive-telematics-box-t-box-

reference-design-board:S32K3-T-BOX
Autonomous vehicle data storage - premio inc. https://premioinc.com/pages/
autonomous-vehicle-data-storage

. Can - Automotive Basics. https://automotivetechis.wordpress.com/2012-06-01-

can-basics-faq/

Everything you need to know about performing an ECU reset. https://www.way.
com/blog/ecu-reset/

Memory use in automotive - electronic products. https://www.electronicproducts.
com/memory-use-in-automotive/

Raspberry pi 3 model b+. https://www.raspberrypi.com/products/raspberry-pi-
3-model-b-plus/

Trustzone for cortex-a - arm®). https://www.arm.com/technologies/trustzone-for-
cortex-a

Trustzone for cortex-m - arm®. https://www.arm.com/technologies/trustzone-
for-cortex-m

fio (2014). http://freecode.com/projects/fio

Applying over-the-air updates in safely automotive ECUS (2021). https://www.
nxp.com/company/blog/applying-over-the-air-updates-in-safely-automotive-
ecus:BL-OTA-IN-AUTO-ECUS

ECU programming guide (2021). https://ecutek.zendesk.com/hc/en-gb/articles/
207345569- ECU-programming-guide

https://www.nxp.com/products/processors-and-microcontrollers/s32-automotive-platform/s32z-and-s32e-real-time-processors:S32Z-E-REAL-TIME-PROCESSORS
https://www.nxp.com/products/processors-and-microcontrollers/s32-automotive-platform/s32z-and-s32e-real-time-processors:S32Z-E-REAL-TIME-PROCESSORS
https://www.nxp.com/products/processors-and-microcontrollers/s32-automotive-platform/s32z-and-s32e-real-time-processors:S32Z-E-REAL-TIME-PROCESSORS
https://www.xilinx.com/products/boards-and-kits/zcu104.html#information
https://www.nxp.com/design/designs/s32g3-vehicle-networking-reference-design:S32G-VNP-RDB3
https://www.nxp.com/design/designs/s32g3-vehicle-networking-reference-design:S32G-VNP-RDB3
https://www.nxp.com/design/designs/s32k3-automotive-telematics-box-t-box-reference-design-board:S32K3-T-BOX
https://www.nxp.com/design/designs/s32k3-automotive-telematics-box-t-box-reference-design-board:S32K3-T-BOX
https://premioinc.com/pages/autonomous-vehicle-data-storage
https://premioinc.com/pages/autonomous-vehicle-data-storage
https://automotivetechis.wordpress.com/2012-06-01-can-basics-faq/
https://automotivetechis.wordpress.com/2012-06-01-can-basics-faq/
https://www.way.com/blog/ecu-reset/
https://www.way.com/blog/ecu-reset/
https://www.electronicproducts.com/memory-use-in-automotive/
https://www.electronicproducts.com/memory-use-in-automotive/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.arm.com/technologies/trustzone-for-cortex-m
http://freecode.com/projects/fio
https://www.nxp.com/company/blog/applying-over-the-air-updates-in-safely-automotive-ecus:BL-OTA-IN-AUTO-ECUS
https://www.nxp.com/company/blog/applying-over-the-air-updates-in-safely-automotive-ecus:BL-OTA-IN-AUTO-ECUS
https://www.nxp.com/company/blog/applying-over-the-air-updates-in-safely-automotive-ecus:BL-OTA-IN-AUTO-ECUS
https://ecutek.zendesk.com/hc/en-gb/articles/207345569-ECU-programming-guide
https://ecutek.zendesk.com/hc/en-gb/articles/207345569-ECU-programming-guide

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Enabling Real-Time Restoration of Compromised ECU Firmware 31

Baek, S., Jung, Y., Mohaisen, A., Lee, S., Nyang, D.: SSD-insider: internal defense
of solid-state drive against ransomware with perfect data recovery. In: 2018 IEEE
38th International Conference on Distributed Computing Systems (ICDCS), pp.
875-884. IEEE (2018)

Bielawski, R., Gaynier, R., Ma, D., Lauzon, S., Weimerskirch, A.: Cybersecurity
of firmware updates. Technical Report DOT HS 812 807, University of Michi-
gan. Transportation Research Institute and University of Michigan, Dearborn and
Volkswagen Group of America (Herndon, VA) (October 2020), https://rosap.ntl.
bts.gov/view/dot /55729

Chattopadhyay, A., Lam, K.Y., Tavva, Y.: Autonomous vehicle: Security by design.
IEEE Trans. Intell. Transp. Syst. 22(11), 7015-7029 (2021). https://doi.org/10.
1109/TITS.2020.3000797

Chen, N., Dafoe, J., Chen, B.: Poster: data recovery from ransomware attacks via
file system forensics and flash translation layer data extraction. In: Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security,
pp- 3335-3337 (2022)

Chen, N., Xie, W.; Chen, B.: Combating the OS-level malware in mobile devices
by leveraging isolation and steganography. In: Zhou, J., et al. (eds.) Applied Cryp-
tography and Network Security Workshops: ACNS 2021. LNCS, vol. 12809, pp.
397-413. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81645-2_23
Cho, K.T., Shin, K.G.: Fingerprinting electronic control units for vehicle intrusion
detection. In: 25th USENIX Security Symposium (USENIX Security 16), pp. 911—
927. USENIX Association, Austin (2016). https://www.usenix.org/conference/
usenixsecurity 16 /technical-sessions/presentation/cho

Choi, W., Jo, H.J., Woo, S., Chun, J.Y., Park, J., Lee, D.H.: Identifying ECUS
using inimitable characteristics of signals in controller area networks. IEEE
Trans. Veh. Technol. 67(6), 4757-4770 (2018). https://doi.org/10.1109/TVT.2018.
2810232

Code, G.: Opennfm. https://code.google.com/p/opennfm/

Guan, L., et al.: Supporting transparent snapshot for bare-metal malware anal-
ysis on mobile devices. In: Proceedings of the 33rd Annual Computer Security
Applications Conference, pp. 339-349 (2017)

Hackenberg, R., Weiss, N., Renner, S., Pozzobon, E.: Extending vehicle attack
surface through smart devices (2017)

Hamada, Y., Inoue, M., Ueda, H., Miyashita, Y., Hata, Y.: Anomaly-based intru-
sion detection using the density estimation of reception cycle periods for in-vehicle
networks. SAE Int. J. Transport. Cybersecur. Privacy 1 (2018). https://doi.org/
10.4271/11-01-01-0003

Han, M.L., Kwak, B.I., Kim, H.K.: Anomaly intrusion detection method for vehic-
ular networks based on survival analysis. Veh. Commun. 14, 52-63 (2018). https://
doi.org/10.1016/j.vehcom.2018.09.004

Hoppe, T., Kiltz, S., Dittmann, J.: Applying intrusion detection to automotive
it-early insights and remaining challenges. J. Inf. Assur. Secur. (JIAS) 4, 226-235
(2009)

Huang, J., Xu, J., Xing, X., Liu, P., Qureshi, M.K.: Flashguard: leveraging intrinsic
flash properties to defend against encryption ransomware. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pp.
2231-2244 (2017)

Kohler, J., Forster, H.: Trusted execution environments in vehicles. ATZelektronik
worldwide 11(5), 36-41 (2016). https://doi.org/10.1007/s38314-016-0074-y

https://rosap.ntl.bts.gov/view/dot/55729
https://rosap.ntl.bts.gov/view/dot/55729
https://doi.org/10.1109/TITS.2020.3000797
https://doi.org/10.1109/TITS.2020.3000797
https://doi.org/10.1007/978-3-030-81645-2_23
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cho
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cho
https://doi.org/10.1109/TVT.2018.2810232
https://doi.org/10.1109/TVT.2018.2810232
https://code.google.com/p/opennfm/
https://doi.org/10.4271/11-01-01-0003
https://doi.org/10.4271/11-01-01-0003
https://doi.org/10.1016/j.vehcom.2018.09.004
https://doi.org/10.1016/j.vehcom.2018.09.004
https://doi.org/10.1007/s38314-016-0074-y

32

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

J. Dafoe et al.

Kim, B., Park, S.: ECU software updating scenario using OTA technology through
mobile communication network. In: 2018 IEEE 3rd International Conference on
Communication and Information Systems (ICCIS), pp. 67-72. IEEE (2018)
Klinedinst, D.J., King, C.: On board diagnostics: Risks and vulnerabilities of the
connected vehicle. CERT Division, Software Engineering Institute, Carnegie Mel-
lon University, April, White paper (2016)

Kwon, H., Lee, S., Choi, J., Chung, B.H.: Mitigation mechanism against in-vehicle
network intrusion by reconfiguring ECU and disabling attack packet. In: 2018 Inter-
national Conference on Information Technology (InCIT), pp. 1-5 (2018). https://
doi.org/10.23919/INCIT.2018.8584882

Ltd., O.: Lpc-h3131. https://www.olimex.com/Products/ARM/NXP /LPC-
H3131/. Accessed 30 June 2023

Min, D.; et al.: Amoeba: an autonomous backup and recovery SSD for ransomware
attack defense. IEEE Comput. Archit. Lett. 17(2), 245-248 (2018)

Murvay, P.S., Groza, B.: Source identification using signal characteristics in con-
troller area networks. IEEE Signal Process. Lett. 21(4), 395-399 (2014). https://
doi.org/10.1109/LSP.2014.2304139

News, T.H.: Hackers take Remote Control of Tesla’s Brakes and Door locks from
12 Miles Away. https://thehackernews.com/2016/09/hack-tesla-autopilot.html
Nie, S., Liu, L., Du, Y., Zhang, W.: Over-the-air: how we remotely compromised
the gateway, BCM, and autopilot ECUs of tesla cars. Briefing, Black Hat, vol. 91
(2018)

OP-TEE. Op-tee documentation. https://optee.readthedocs.io/en/latest/general /
about.html Accessed 30 June 2023

Stevebell. A Pivotal Year for Black Hat Cyber Attacks on Connected Cars - TU
Automotive (2008). https://www.tu-auto.com/2018-a-pivotal-year-for-black-hat-
cyber-attacks-on-connected-cars/

Tankasala, D., Chen, N., Chen, B.: A step-by-step guideline for creating a testbed
for flash memory research via LPC-h3131 and opennfm (2020)

Thing, V.L., Wu, J.: Autonomous vehicle security: a taxonomy of attacks and
defences. In: 2016 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (Smart-
Data), pp. 164-170 (2016). https://doi.org/10.1109/iThings- GreenCom-CPSCom-
SmartData.2016.52

Wang, P., Jia, S., Chen, B., Xia, L., Liu, P.: Mimosaftl: adding secure and prac-
tical ransomware defense strategy to flash translation layer. In: Proceedings of
the Ninth ACM Conference on Data and Application Security and Privacy, pp.
327-338 (2019)

Wang, X., Yuan, Y., Zhou, Y., Coats, C.C., Huang, J.: Project almanac: a time-
traveling solid-state drive. In: Proceedings of the Fourteenth EuroSys Conference
2019, pp. 1-16 (2019)

Wen, H., Chen, Q.A., Lin, Z.: Plug-N-Pwned: comprehensive vulnerability
analysis of OBD-II dongles as a new Over-the-Air attack surface in auto-
motive IoT. In: 29th USENIX Security Symposium (USENIX Security 20),
pp- 949-965. USENIX Association (2020). https://www.usenix.org/conference/
usenixsecurity20/presentation/wen

Xie, W., Chen, N., Chen, B.: Enabling accurate data recovery for mobile devices
against malware attacks. In: 18th EAI International Conference on Security and
Privacy in Communication Networks (2022)

https://doi.org/10.23919/INCIT.2018.8584882
https://doi.org/10.23919/INCIT.2018.8584882
https://www.olimex.com/Products/ARM/NXP/LPC-H3131/
https://www.olimex.com/Products/ARM/NXP/LPC-H3131/
https://doi.org/10.1109/LSP.2014.2304139
https://doi.org/10.1109/LSP.2014.2304139
https://thehackernews.com/2016/09/hack-tesla-autopilot.html
https://optee.readthedocs.io/en/latest/general/about.html
https://optee.readthedocs.io/en/latest/general/about.html
https://www.tu-auto.com/2018-a-pivotal-year-for-black-hat-cyber-attacks-on-connected-cars/
https://www.tu-auto.com/2018-a-pivotal-year-for-black-hat-cyber-attacks-on-connected-cars/
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.52
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.52
https://www.usenix.org/conference/usenixsecurity20/presentation/wen
https://www.usenix.org/conference/usenixsecurity20/presentation/wen

46.

47.

Enabling Real-Time Restoration of Compromised ECU Firmware 33

Yang, Y., Duan, Z., Tehranipoor, M.: Identify a spoofing attack on an in-vehicle
can bus based on the deep features of an ECU fingerprint signal. Smart Cities 3(1),
17-30 (2020). https://doi.org/10.3390/smartcities3010002

Zhang, T., Antunes, H., Aggarwal, S.: Defending connected vehicles against mal-
ware: challenges and a solution framework. IEEE Internet Things J. 1(1), 10-21
(2014). https://doi.org/10.1109/JIOT.2014.2302386

https://doi.org/10.3390/smartcities3010002
https://doi.org/10.1109/JIOT.2014.2302386

	Enabling Real-Time Restoration of Compromised ECU Firmware in Connected and Autonomous Vehicles
	1 Introduction
	2 Background
	2.1 Control Area Network
	2.2 Flash Memory
	2.3 ARM TrustZone
	2.4 Steganography

	3 System and Adversarial Model
	3.1 System Model
	3.2 Adversarial Model

	4 Design
	4.1 Design Overview
	4.2 Design Details

	5 Implementation and Evaluation
	6 Related Work
	6.1 Data Recovery in Embedded Systems
	6.2 CAN Intrusion and Malicious ECU Defenses

	7 Conclusion
	References

