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Preface

We are delighted to introduce the proceedings of the 2023 European Alliance for
Innovation (EAI) International Conference on Security and Privacy in Cyber-Physical
Systems and Smart Vehicles (SmartSP). This conference brought together researchers
and developers from academia, industry, and government to present and discuss emerg-
ing ideas and trends in security and privacy issues in cyber-physical systems and smart
vehicles. SmartSP 2023 included papers on various aspects, from theoretical analysis to
real-world applications, encouraging both in-depth and preliminary contributions.

The SmartSP 2023 conference received 27 submissions, each has been reviewed
by three TPC members or invited reviewers following double blind review rule. The
technical program of SmartSP 2023 consisted of 11 full papers, including 6 invited
papers in oral presentation sessions at the main conference tracks. Aside from the high-
quality technical paper presentations, the technical program also featured two keynote
speeches and four invited talks. The two keynote speecheswere from IshfaqAhmad from
the University of Texas at Arlington, USA, and Alvaro A. Cardenas from the University
of California, Santa Cruz, USA. The four invited talks were presented by Qiben Yan
fromMichigan State University, USA, Fanxin Kong from the University of Notre Dame,
USA, Ronghua Xu fromMichigan Technological University, USA, and Xiaonan Zhang
from Florida State University, USA.

Coordination with the steering chair, Imrich Chlamtac, was essential for the success
of the conference.We sincerely appreciate his constant support and guidance. It was also
a great pleasure toworkwith such an excellent team for their hardwork in organizing and
supporting the conference. In particular, the Technical Program Committee, led by our
TPC Chair, Yu Chen, and TPC Co-Chair, Chung-Wei Lin, completed the peer-review
process of technical papers and made a high-quality technical program. We are also
grateful to all the authors who submitted their papers to the SmartSP 2023 conference.

We strongly believe that SmartSP provides a good forum for all researchers, devel-
opers, and practitioners to discuss all science and technology aspects that are relevant to
security and privacy in cyber-physical systems and smart vehicles. We also expect that
future SmartSP conferences will be as successful and stimulating, as indicated by the
contributions presented in this volume.

January 2024 Bo Chen
Qi Zhu



Organization

Steering Committee

Imrich Chlamtac University of Trento, Italy
Alvaro Cardenas University of California, Santa Cruz, USA
Bo Chen Michigan Technological University, USA
Mohamed Amine Ferrag Technology Innovation Institute, UAE
Hongxin Hu University at Buffalo, SUNY, USA
Peng Liu Pennsylvania State University, USA
Xiapu Luo Hong Kong Polytechnic University, China
Weizhi Meng Technical University of Denmark, Denmark
Indrajit Ray Colorado State University, USA
Yuqing Zhang University of Chinese Academy of Sciences,

China

Organizing Committee

General Chair

Bo Chen Michigan Technological University, USA

General Co-chair

Qi Zhu Northwestern University, USA

TPC Chairs and Co-Chairs

Yu Chen Binghamton University, USA
Chung-Wei Lin National Taiwan University, Taiwan

Sponsorship and Exhibit Chair

Kaichen Yang Michigan Technological University, USA



viii Organization

Local Chairs

Yue Duan Illinois Institute of Technology, USA
Filipo Sharevski DePaul University, USA
Muhammad Umer Huzaifa DePaul University, USA

Workshops Chair

Qiben Yan Michigan State University, USA

Publicity and Social Media Chairs

Xiali Hei University of Louisiana at Lafayette, USA
Soumyajit Dey Indian Institute of Technology Kharagpur, India

Publications Chairs

Ning Zhang Washington University in St. Louis, USA
Lan Zhang Michigan Technological University, USA

Web Chair

Shangqing Zhao University of Oklahoma, USA

Posters and PhD Track Chair

Chao Huang University of Liverpool, UK

Demos Chair

Rhongho Jang Wayne State University, USA

Tutorials Chair

Haitao Xu Zhejiang University, China

Technical Program Committee

Yu Chen Binghamton University, USA
Chung-Wei Lin National Taiwan University, Taiwan



Organization ix

Jayson Boubin Binghamton University, USA
Te-Chuan Chiu National Tsing Hua University, Taiwan
Stefano Ferretti University of Urbino, Italy
Najla Fourati CNAM, France
Agbotiname Imoize University of Lagos, Nigeria
Chin-Tser Huang University of South Carolina, USA
BaekGyu Kim Daegu Gyeongbuk Institute of Science and

Technology, South Korea
Hokeun Kim Arizona State University, USA
Xueping Liang Florida International University, USA
Seyed Yahya Nikouei CHEP North America, USA
Shantanu Pal Deakin University, Australia
Yuan-Yao Shih National Chung Cheng University, Taiwan
Zhou Su Xi’an Jiaotong University, China
Ali Tekeoglu Johns Hopkins University, USA
Deepak Tosh University of Texas at El Paso, USA
Chao Wang National Taiwan Normal University, Taiwan
Ronghua Xu Binghamton University, USA
Xiaonan Zhang Florida State University, USA



Contents

Main Track

Exploring Vulnerabilities in Voice Command Skills for Connected Vehicles . . . . 3
Wenbo Ding, Song Liao, Keyan Guo, Fuqiang Zhang, Long Cheng,
Ziming Zhao, and Hongxin Hu

Enabling Real-Time Restoration of Compromised ECU Firmware
in Connected and Autonomous Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Josh Dafoe, Harsh Singh, Niusen Chen, and Bo Chen

mmFingerprint: A New Application Fingerprinting Technique
via mmWave Sensing and Its Use in Rowhammer Detection . . . . . . . . . . . . . . . . . 34

Sisheng Liang, Zhengxiong Li, Chenxu Jiang, Linke Guo,
and Zhenkai Zhang

ADC-Bank: Detecting Acoustic Out-of-Band Signal Injection on Inertial
Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Jianyi Zhang, Yuchen Wang, Yazhou Tu, Sara Rampazzi, Zhiqiang Lin,
Insup Lee, and Xiali Hei

Invited Track

An Efficient and Smooth Path Planner Based on Hybrid A* Search
and Frenet Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Pin-Wen Wang, Yi-Chi Tseng, and Chung-Wei Lin

Application of Large Language Models to DDoS Attack Detection . . . . . . . . . . . 83
Michael Guastalla, Yiyi Li, Arvin Hekmati, and Bhaskar Krishnamachari

Embracing Semi-supervised Domain Adaptation for Federated Knowledge
Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Madhureeta Das, Zhen Liu, Xianhao Chen, Xiaoyong Yuan,
and Lan Zhang

A Lightweight Reputation System for UAV Networks . . . . . . . . . . . . . . . . . . . . . . 114
Simeon Ogunbunmi, Mohsen Hatmai, Ronghua Xu, Yu Chen,
Erik Blasch, Erika Ardiles-Cruz, Alexander Aved, and Genshe Chen



xii Contents

Resilient Range-Only Cooperative Positioning of Multiple Smart
Unmanned Aerial Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Yajie Bao, Dan Shen, Genshe Chen, Khanh Pham, and Erik Blasch

Securing the Future: Exploring Privacy Risks and Security Questions
in Robotic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Diba Afroze, Yazhou Tu, and Xiali Hei

Waves of Knowledge: A Comparative Study of Electromagnetic and Power
Side-Channel Monitoring in Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Michael Amar, Lojenaa Navanesan, Asanka P. Sayakkara, and Yossi Oren

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171



Main Track



Exploring Vulnerabilities in Voice
Command Skills for Connected Vehicles

Wenbo Ding1, Song Liao2, Keyan Guo1, Fuqiang Zhang2, Long Cheng2,
Ziming Zhao1, and Hongxin Hu1(B)

1 University at Buffalo, Buffalo, NY, USA
{wenbodin,keyanguo,zimingzh,hongxinh}@buffalo.edu

2 Clemson University, Clemson, SC, USA
{song,fuqianz,lcheng2}@clemson.edu

Abstract. Voice assistant platforms have revolutionized user interac-
tions with connected vehicles, providing the convenience of controlling
them through simple voice commands. However, this innovation also
brings about significant cyber-risks to voice-controlled vehicles. This
paper presents a novel attack that showcases the ability of a “malicious”
skill, utilizing the skill ranking system on the Alexa platform, to hijack
voice commands originally intended for a benign third-party connected
vehicle skill. Through our evaluation, we demonstrate the effectiveness
of this attack by successfully hijacking commonly used commands in
commercial connected vehicle skills.

Keywords: Alexa · Voice Assistant Skills · Connected Vehicle

1 Introduction

The introduction of Alexa skills for connected vehicles has revolutionized the
way users interact with their cars, offering a novel and voice-controlled approach.
However, this technological advancement also brings forth a range of emerging
cyber threats that pose risks to voice-controlled vehicles. While the convenience
of interacting with connected vehicles through voice commands is undoubtedly
significant, it is important to recognize that this progress has simultaneously
given rise to new vulnerabilities that users must contend with.

The “connected car” category on the Alexa platform currently lists 148
skills [3], while Google’s “control car” category offers 32 actions. The Alexa-
connected vehicle API [4] provides users with 10 sample commands to con-
trol their vehicles through voice interactions. Common voice commands include
actions like “start my car,” “open the window,” or “unlock the car.” When users
issue these voice commands, the Alexa platform identifies the most relevant con-
nected vehicle skill to fulfill the request. It then sends directives [2] to the car
vendor’s cloud platform, which subsequently transmits the commands to the
user’s car.

Even though these skills enhance user experience, they can also be manip-
ulated by malicious actors. Previous work, Wang et al. [15] has shown that

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024
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malicious skills can circumvent the vetting process and get published. Once a
malicious skill is employed by a user, it can define deceptive commands identical
to those of benign skills. When the Amazon Alexa system receives a voice com-
mand, it must first identify a skill to execute the command. If two or more skills
define the same commands, the Alexa platform must choose the most relevant
skill among the potential candidates. Attackers could employ certain strategies,
such as defining more similar commands, to masquerade their malicious skill
as more relevant. Consequently, Alexa may activate the malicious skill instead
of the original benign skill, thereby allowing the malicious skill to hijack voice
commands from other benign third-party skills.

In this paper, we identify a vulnerability within the Alexa system that per-
mits an over-privilege attack. This vulnerability could be exploited by attack-
ers to hijack benign third-party connected vehicle skills. Through an in-depth
analysis of the Alexa-connected car skill system and command processing, we
found that developers have the ability to define their own voice commands. Sur-
prisingly, these can be identical to Alexa’s official, built-in commands, leading
to potential conflicts between customized and official skills. Furthermore, these
third-party customized commands can take precedence over Alexa’s built-in com-
mands to control cars or related devices. Thus, an attacker could potentially
publish a malicious skill that would be invoked whenever users employ Alexa’s
built-in voice commands to control users’ devices.

We summarize our contributions as follows:

– We conduct a thorough analysis of the Alexa command processing and skill
ranking system, including a detailed examination of related parameters such
as categories, keywords, utterances, slots, and usages. Through this analy-
sis, we identify a potential vulnerability that arises due to conflicts between
the customized commands of third-party skills and built-in skills related to
connected vehicles.

– We discover that skills belonging to different categories, such as Q&A and
connected vehicle skills, are assigned varying priorities within the skill ranking
system. Building upon this insight, we propose and execute a practical attack
on an Alexa-connected vehicle skill. Specifically, we implemented this attack
on our own account, enabling us to hijack a third-party car remote control
skill installed on a Toyota Corolla. Through this attack, we demonstrate the
ability to interfere with critical commands, such as locking or starting the
car, thereby exposing potential risks.

Our work sheds light on vulnerabilities in the Alexa system and emphasizes the
importance of addressing conflicts between connected vehicle skills, prioritiza-
tion mechanisms, and potential threats to the execution of essential commands
through the Alexa system in connected vehicles.

2 Background

In this section, we provide an overview of the fundamental background concepts
and address potential issues related to connected vehicle skills.
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2.1 Voice Skills and Their APIs

Voice skills serve as applications for Alexa, enabling users to interact with various
functionalities through an intuitive voice interface. Alexa offers a hands-free
approach for users to perform everyday tasks such as checking the news, playing
music, or engaging in games. Furthermore, Alexa allows users to control cloud-
connected devices, enabling actions like adjusting lights or modifying thermostat
settings. These skills are accessible on Alexa-enabled devices such as Amazon
Echo, Amazon Fire TV, and devices produced by other manufacturers.

When a user utters the wake word, “Alexa,” and communicates with an
Alexa-enabled device, the device transmits the speech data to the Alexa service
in the cloud. In the cloud, Alexa processes the speech, comprehends the user’s
intent, and subsequently sends a request to invoke the corresponding skill capable
of fulfilling the user’s command. The Alexa service handles the crucial tasks of
speech recognition and natural language processing. On the other hand, your
skill functions as a service hosted on a cloud platform, facilitating communication
with Alexa via a request-response mechanism over the HTTPS interface. Upon
invocation of an Alexa skill, your skill receives a POST request comprising a
JSON body. Within this request body, the parameters required for your skill
to comprehend the user’s intent, execute its logic, and generate a response are
included.

Commands in the Alexa system are composed of three primary components:
intent, utterances, and slots. The commands in the Alexa system are referred to
as intent, for instance, “open the door” Within each intent, there can be several
similar utterances such as “open the door” “opens the door” or “open the front
door” Within each utterance, the developer can specify replaceable keywords as
slots, for example, “door” in this case.

2.2 Voice Command Skills for Cars

The Connected Vehicle Skill API includes capability interfaces developed specifi-
cally for connected vehicle use cases to simplify the skill-building process, without
having to build your own voice interaction model or write sample utterances.

As shown in Fig. 1, Alexa’s automotive skills leverage the robust capabili-
ties of Alexa. Automotive and smart home interfaces enable users to issue voice
commands to their connected vehicles. Whether it’s starting the engine, adjust-
ing temperature settings, or managing door locks, the convenience and ease of
use provided by Alexa automotive skills are transforming the way we engage
with our cars. The Amazon Echo Cloud receives voice command records from
the Alexa speaker and translates them into plain text. These texts will be pro-
cessed by a skill ranking algorithm, which is designed to choose the most relevant
skill to handle this command. Once a skill is decided, the skill’s backend code,
running on the AWS cloud, receives command directives from the ranking algo-
rithm. Then the backend code will transfer this directive to its vendor’s cloud
through an Oauth verification process. In the end, the connected vehicle receives
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commands from its vendor cloud by LTE or WIFI protocols and reports its new
status to the skill.

By utilizing the Alexa. Automotive and smart home interfaces, you can
develop Alexa automotive skills tailored for connected vehicles. These skills
empower users to interact with their vehicles using any Alexa device or the
Alexa app. Users can conveniently perform tasks such as starting or stopping
the engine, locking or unlocking the doors, and adjusting temperature settings in
different zones of the vehicle. For instance, imagine a scenario on a chilly morn-
ing where a user, while preparing for work, can simply instruct Alexa to turn on
their car and initiate the defrosting of the windshield. This seamless integration
between Alexa and connected vehicles enhances user convenience and offers an
intuitive and efficient way to manage their automotive needs.

Fig. 1. Overview of Alexa vehicle skill.

3 Threat Model

Our proposed threat model doesn’t necessitate direct attacks on intricate systems
like those of vehicles. Instead, the primary vulnerability we exploit resides within
the Alexa voice assistant ecosystem.

We mainly have one assumption for our attacks which is that malicious
voice assistant skills can be installed by users. Attackers can craft and pro-
mote malicious voice assistant skills that seemingly offer genuine functionalities.
Unsuspecting users, potentially drawn by utility or intrigue, can be led to install
these skills. For instance, a malicious skill could impersonate a popular IoT
skill, deceiving users into installing it through a squatting attack. Besides, the
malicious skill can be installed by users unknowingly in certain scenarios. For
example, when users issue voice commands, Alexa may recommend related skill
installations based on those commands. Users typically have limited knowledge
about the specific skills installed through voice installation.

Once installed, these malicious skills become primed to hijack voice com-
mands intended for legitimate skills, including those that control essential func-
tions such as vehicle operations. For example, when a user verbally commands
Alexa to “start the car,” our malicious skill might intercept this, causing either
a denial of the intended action or triggering an alternate, potentially harmful,
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action. This approach allows an attacker to indirectly manipulate or influence
car-related functions, not by hacking the car’s system directly, but by manipu-
lating the Alexa skill mechanism that users rely upon for remote car commands.

4 Vunlerbility Exploration

In this section, we detail our techniques and observations for attacking the car
skills by manipulating the skill ranking and selection process of Alexa. We try
to fool Alexa into believing our attacking skills are more “suitable” for the given
voice command.

There are two kinds of commands/utterances in the Alexa skills, the official
built-in intents, and the developer’s customized intents. In the IoT skill, the offi-
cial commands should have a higher trigger priority than 3rd-party commands,
which makes 3rd-party developers cannot override official commands in normal
usage scenarios. However, we find it is possible for 3rd-party commands to mis-
lead the command ranking algorithm for a higher execution priority, and then
they can take over the execution of official commands.

Alexa uses a two-step shortlisting and re-ranking [1,10] methods to find the
most relevant skill for a given utterance. The shortlisting algorithm uses a neu-
ral model to find a certain amount of suitable candidate skills for handling a
particular utterance, then the re-ranking step uses other contextual features to
find the most relevant among these suitable skills.

After translating users’ voices into text commands by the ASR, The short-
listing algorithm first gives top “K” intents according to the intent classifier.
The intent classifier is based on the model trained by the existing intent dataset
to find all skills that can understand this intent command. The contextual re-
ranking model considers many contextual signals, like the number of customers,
skill ratings, and reviews. Other factors include accurate descriptions and key-
words, the skill category, and the ability to parser the voice intent slot.

The original utterances amount is based on the given utterances from the
Alexa document examples. In our testing skills, we enable several new skills
with more utterances and slots in each intent and a well-explained description.
Then we test how many utterances a skill needs to be triggered prior to the
built-in intent.

Hijacking Car Skills’ Commands. We tested car skills on the Alexa Plat-
form. Since all car skills need account linking with its device vendor. We only
deployed a Drone mobile skill with a Compustar control unit.

To implement our attack, we deployed an additional skill with the same
utterances and added utterances and slots to our skill. In each utterance, we
implement two slots in each utterance based on the simple structure of the
utterances, e.g., the verb as actions and the noun as a targeted car. We keep
adding the utterances until our skill is triggered instead of the Drone mobile
skill. The detailed results are listed in the evaluation section. We also test the
influence of usage history of skills. We increase the usage of our skill to more than
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50 times by manually triggering the skill and then giving the built-in command
with no specifically assigned skill name. We did not notice any significant effect
from increased recent skill usage.

For built-in utterances, we tested all 8 exampled commands on the Alexa-
connected car API document [5] and we are able to hijack/redirect all of them.
However, we cannot hijack the skill-specific utterances that are directly sent to
the skill, e.g., ask Drone Mobile to lock my car. Based on the above findings, we
can perform attacks such as preventing car locking and opening the trunk while
driving by hijacking corresponding commands.

5 Implementation and Evaluation

5.1 Car Skill Implementation

Although the Amazon Alexa platform offers a skill simulator with a text-based
interface that accepts a textual input, and provides a textual output for skill
testing purposes, it is challenging to test connected vehicle skills using the sim-
ulator.

Fig. 2. DroneMobile devices and modified Carolla.

In our experiment, we first implemented a virtual device called “my car”,
which supports necessary commands, e.g., “turn on the car” or “lock the car”.
Only by implementing such a virtual device, the Alexa system can properly parse
a command to recognize related devices and skills. Otherwise, it cannot identify
potentially related skills and only responds with “Sorry, we did not find such
a device”. The virtual car device is implemented in a benign IoT skill, which
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contains the code for device discovery and voice command handling process. The
detailed discovery and command handling information is provided in the Alexa
document [4].

Later, we tested a connected car skill and its built-in commands on a real car.
Since all car skills need account linking with its device vendor, we deployed a
Drone mobile skill with Compustar controller [7] 4900 model with Drone Mobile
on a 2010 Corolla as shown in Fig. 2. Limited to device and car availability, we
are unable to deploy other connected car devices or skills. However, one skill
made us test built-in and 3rd-party car-related commands. In this skill, it can
implement commands like remote lock/unlock, remote start/stop the engine,
and open trunk.

Figure 3 displays the control panel of the Drone Mobile remote control sys-
tem, which shows a vehicle named “my car” connected to its cloud service. The
status page provides information on the car’s location, battery status, engine
condition, and even AC settings. The system also presents several commands on
this page, such as “start” and “lock” among others. These commands can be
activated via the Alexa skill using corresponding voice commands.

Fig. 3. Screenshot of the car control center.

5.2 Attack Results

Our attack is composed of one benign 3rd-party skill and one “malicious” skill.
For the benign skill, we modified the voice-interaction model of an open-source
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connected vehicle skill from GitHub [14] to enable eight common voice com-
mands, such as “lock/unlock my car” and “turn on my car”, according to the
Alexa development document. The attack objective is to hijack the invocation of
the benign skill with a malicious skill. Our attack scenario is different from the
voice squatting attacks [16], which leverage speech interpretation errors due to
linguistic ambiguity to surreptitiously route users to a malicious skill. Instead,
we exploited the skill discovery process to boost the invocation priority of the
malicious skill. We found that the skill discovery process in the Amazon Alexa
platform is done by matching the “intent” of the voice command with the known
intents pre-defined by skill developers, which can be exploited by malicious skill
developers.

We developed a “malicious” skill based on the benign skill with additional
intents and each intent has more semantically similar commands (user utter-
ances), such as “lock the car”, “lock my car”, and “secure the car”. As a result,
the Alexa system may consider that the malicious skill is more relevant than the
benign skill when receiving voice commands from users, and eventually invoke
the malicious skill to fulfill users’ requests. This “malicious” skill could contain
extra unwanted control actions in its back-end code. For example, if a user issues
the “start my car” command, the malicious skill can also open the window and
unlock the car in its back-end code.

Fig. 4. “Malicious” skill hijacks the invocation of the benign skill.

In Fig. 4, the first response is from the benign skill when the malicious skill
has not been enabled. The second response is from the malicious skill when
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both benign and malicious skills were enabled. Our experiment result shows the
malicious skill could hijack the benign skill to fulfill the “turn on my car” request.
We defined the malicious skill with a different backend code and also gave a
different text response as highlighted in the orange frame. Note that we added
these text responses to highlight the difference in responses. The experiment
was conducted exclusively within our development account, and the skills were
not made available to the public. Moreover, we have included a YouTube link
showcasing this attack: https://youtu.be/OrYLUcC7zx4. We have reported this
bug to Alexa and they have fixed this bug for given commands.

Table 1. Example commands in car skills.

Hijacked Normal Skills Hijacked Skill Normal Skills Hijacked Skill

Commands Utterances Number Utterances Number Slot Number Slots Number

Alexa, lock my car. 1 5 1 2

Alexa, unlock my car. 1 6 1 2

Alexa, turn on my car. 1 6 1 2

Alexa, start my car with PIN 1234. 2 7 1 3

Alexa, open my trunk. 1 5 1 2

Alexa, is my car running? 1 6 1 2

Alexa, ask Drone Mobile where is vehicle. 1 - 1 -

Alexa, ask Drone Mobile to lock my car. 1 - 1 -

Table 1 details the influence of utterance count on skill triggering. Initially,
we derived utterances from Alexa’s official documentation, which typically sug-
gested one or two utterances per intent. Through hands-on experimentation, we
activated new skills, augmenting the number of utterances per intent. This was
done while retaining a single slot and ensuring succinct descriptions. This pro-
cess allowed us to determine the critical number of utterances needed for a skill
to override the built-in intent.

Furthermore, we probed the ramifications of varying the number of slots
within each utterance. As depicted in Table 1, slot quantity significantly impacts
command interpretation. To bolster the granularity of command parsing, we
incremented the number of slots, strategically replacing specific words within
each command. Common terms like “car”, “trunk”, and “running” were swapped
for slots. Lacking intricate specifics of slot definitions, our focus was on finding
the minimal slots necessary for successful utterance hijacking.

6 Related Work

Current work in the field of voice assistant security predominantly concentrates
on squatting attacks, attacks on voice recognition, attacks on skills, and skill
vetting processes. This discussion sheds light on the vulnerabilities associated
with invocation squatting attacks.

https://youtu.be/OrYLUcC7zx4
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Invocation Squatting Attacks. Previous studies have unveiled frequently
occurring and predictable errors within Amazon Alexa’s speech recognition
engine. Exploiting these errors enables the creation of malicious skills that pos-
sess identical or analogous invocation phrases, ultimately hijacking voice com-
mands designated for legitimate skills. Kumar et al. [11] were pioneers in address-
ing skill squatting attacks. Zhang et al. [16] went a step further by unveiling
an additional strategy, where a counterfeit skill disguises itself as a genuine
entity. Further evolving this line of research, Zhang et al. [17] introduced lapsus
attacks, which capitalize on ubiquitous speech variations amongst individuals.
Central to these attacks is the attacker’s ability to systematically uncover com-
mon speech variations for specific phrases and subsequently register deceptive
skills. At their core, these methodologies epitomize voice-based confusion attacks,
primarily driven by the incongruence between a user’s verbal intent and the voice
assistant’s response.

Attacking Voice Recognition Model. Kumar et al. [11] classify errors
made by VPAs when interpreting a voice command into three categories: (i)
homophones are two words pronounced in the same way but with different
spelling; (ii) compound words can be split into their components, as in “out-
doors” and “out doors”; (iii) phonetic confusion is the misclassification of one
phoneme with a similar one, resulting in the transcription of a different word. The
authors also introduce the concept of Skill Squatting Attack, an attack where
Alexa opens a (potentially malicious) skill not meant by the user. Lentzsch et
al. [12] analyze over 90,000 skills to find out that the Skill Squatting Attack is
not being used systematically in the wild, and observe that multiple skills can
have the same invocation name, hence, the user could activate a wrong skill.

Security and Privacy in Voice App Skills. The ever-expanding domain
of voice app security and privacy has prompted various studies. Both Kumar
et al. [11] and Zhang et al. [16] examined threats such as squatting and voice
masquerading attacks. Meanwhile, Cheng et al. [6] and Wang et al. [15] assessed
the integrity of the skill certification process, uncovering potential loopholes
like post-certification code modifications. A notable extension to the voice mas-
querading attack called the “Alexa versus Alexa” attack, was presented by
Esposito [9]. Furthermore, privacy concerns have also received considerable
attention. Jide et al. [8] conducted a longitudinal study measuring privacy prac-
tices over three years. Other researchers, including Lentzsch et al. [13] examined
the comprehensiveness of skills’ privacy policies.

7 Discussion

In this study, we explored a specific attack vector targeting Alexa’s vehicle-
related skills. As we reflect on our findings, it is imperative to address the
boundaries of our research and highlight avenues for upcoming investigations.

Scope of Vehicle Skills Tested: Our inquiry predominantly centered
around the third-party DroneMobile skill, chosen primarily due to the accessibil-
ity it offered concerning vehicle availability. This selection inadvertently excluded
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car skills from other Original Equipment Manufacturers (OEMs), thereby not
fully encompassing the testing potential of Alexa’s official car API. We advocate
for subsequent studies to branch out and scrutinize skills from diverse OEMs
such as Toyota and Land Rover. Such a direction will offer a holistic view of
command hijacking threats, not just confined to third-party offerings.

Restrictions on Third-Party Skills: The prevailing market landscape
demands device and account linkages for most third-party skills. This stipulation
hampered our ability to assess customized third-party offerings exhaustively. We
are motivated, in our future endeavors, to delve into any potential conflicts or
command hijacking scenarios arising from interactions among diverse third-party
skills.

Limitations in Backend Manipulation: The nature of connected car
skills mandates rigorous developer verification. This precondition constrained
our liberties with backend code manipulation, inevitably capping the range of
exploratory actions. An ideal workaround would be to procure access to a devel-
oper account specializing in car skills. Such access would empower us to develop
and publish bespoke testing skills using Alexa’s official API, granting us unre-
strained oversight on backend code dynamics.

8 Conclusion

This paper focuses on the research objective of identifying potential vulnerabili-
ties in the Alexa connected vehicle skills. Our investigation has led to the discov-
ery of a novel vulnerability within the intent-matching process of Alexa. This vul-
nerability can be exploited to develop a new attack that enables the hijacking of
Alexa’s built-in voice commands, thereby triggering malicious Alexa-connected
vehicle skills. In our evaluation, we have provided evidence of the attack’s effec-
tiveness by successfully hijacking frequently utilized commands found in com-
mercially connected vehicle skills.

Acknowledgment. This material is based upon work supported in part by the
National Science Foundation (NSF) under Grant No. 2239605, 2129164, 2228617,
2120369, 2226339, and 2037798.
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Abstract. With increasing development of connected and autonomous
vehicles, the risk of cyber threats on them is also increasing. Compared
to traditional computer systems, a CAV attack is more critical, as it does
not only threaten confidential data or system access, but may endanger
the lives of drivers and passengers. To control a vehicle, the attacker
may inject malicious control messages into the vehicle’s controller area
network. To make this attack persistent, the most reliable method is
to inject malicious code into an electronic control unit’s firmware. This
allows the attacker to inject CAN messages and exhibit significant con-
trol over the vehicle, posing a safety threat to anyone in proximity.

In this work, we have designed a defensive framework which allows
restoring compromised ECU firmware in real time. Our framework com-
bines existing intrusion detection methods with a firmware recovery
mechanism using trusted hardware components equipped in ECUs. Espe-
cially, the firmware restoration utilizes the existing FTL in the flash
storage device. This process is highly efficient by minimizing the neces-
sary restored information. Further, the recovery is managed via a trusted
application running in TrustZone secure world. Both the FTL and Trust-
Zone are secure when the ECU firmware is compromised. Steganography
is used to hide communications during recovery. We have implemented
and evaluated our prototype implementation in a testbed simulating the
real-world in-vehicle scenario.

Keywords: Connected and autonomous vehicles · ECU · CAN bus ·
flash translation layer · TrustZone · Steganography

1 Introduction

With rapid growth of automotive industries, both automakers and associated
government agencies are taking initiatives to support the development and
deployment of connected and autonomous vehicles (CAVs). This includes efforts
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to improve CAV efficiency and implement public road infrastructures to sup-
port V2V (vehicle-to-vehicle) and V2I (vehicle-to-infrastructure) communica-
tions. As this technology continues to develop, CAVs have increasing communi-
cation pathways in order to make informed decisions in real time. In addition to
V2V and V2I developments, autonomous vehicles are increasingly equipped with
many sensors, providing input which will be processed in real time. Especially,
increased internal communication is observed, with over 70 electronic control
units (ECU) communicating via a in-vehicle network. Recently, in order to man-
age the numerous ECUs, over-the-air updates have been utilized [13,30]. While
these developments allow significant improvement in vehicle functions, they have
led to increased security vulnerabilities [17,41,47]. As a result, various attacks
on the vehicle systems have been performed by both researchers and real-world
hackers. For example, from 2010 to 2018, there were 170 reported automotive
attacks, with 60 of these happening in 2018. Further, a plurality of attacks were
remote which do not require physical access [39].

One typical attack is performed by accessing the internal network of the vehi-
cle, gaining control over it. Adopted broadly, the controller area network (CAN)
provides internal communications among the in-vehicle computer systems. If any
malicious entity gains access to the CAN, many in-vehicle operations become
vulnerable to manipulation. A few methods have been identified by which the
aforementioned access may be gained. First, the attacker hacks remotely into the
infotainment system or telematics unit, which manage existing network commu-
nication with the outside world. They will then attempt to escalate privileges,
and enable the injection of malicious messages which control the victim vehi-
cle. This attack method was demonstrated in 2016 when the Keen Security Lab
hacked a Tesla model S [36]. Second, the attacker gains access to the CAN
bus physically or remotely via compromising the existing mechanisms for CAN
access provided by the on board diagnostics (OBD-II) port. The physical attack
occurs through connecting a device directly to the OBD-II port, such as a laptop.
However, this is often difficult, as during vehicle usage, the attacker cannot be
present, and gaining the initial physical access is challenging. The remote attack
through an OBD-II port is performed by compromising an OBD-II dongle that
the car owner or mechanic connects [16,31,44]. Also, there are now mobile apps
which remotely provide diagnostic services by accessing the CAN [24]. In all
the aforementioned attack scenarios, the CAN access is likely limited in time,
as the hacker cannot be physically present during the vehicle operation, or the
persistence of a remote connection is not guaranteed. Consequently, both the
remote and physical attackers would prefer to establish a persistent presence
within the CAN. To gain this persistent presence, a best choice for the attacker
is to inject malicious code into the internal firmware of ECUs. This occurs via
exploiting existing vulnerabilities during firmware updates (such as the over-
the-air updates [37]), or ECU programming via the OBD-II port [14]. This work
therefore focuses on recovering the ECU firmware which has been compromised
by such code injection attacks.
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To defend against the ECU code injection attacks, a taxonomy with four
categories of CAV defense was established [41], including a passive defense
and an active defense. The passive defense framework is focused on detecting
and isolating CAV malware attacks, and some additional research has been
performed in this area. Specifically, to detect the presence of malicious CAN
activity, many intrusion detection systems with high success rates have been
evaluated [25–27]. These detection methods observe messages on the CAN bus
and establish a model for normal behaviors. Using this model, any malicious
deviations are detected. Further, the specific ECU that sent the malicious mes-
sages can be detected via analysis of signal characteristics [21,35,46]. In [32],
it is observed that relying solely on intrusion detection mechanisms results in
a delayed response, where a security update eventually may repair the attack,
which is insufficient in the CAV scenario. This is because in this scenario, each
moment an attack is active there is more threat posed to both the driver and
everyone around them. Since the real-time attack response is so essential, [32]
further proposes incorporating an active response by sending detection notifi-
cations to the infected ECUs, which will repair via switching to a safe mode
and rebooting. However, the specific mechanisms for enabling the restoration
of the ECU firmware are still missing. This work thus aims to bridge this gap.
Our key observation is that through leveraging trusted hardware components
equipped with the ECU, it is possible to enable a real-time restoration of the
ECU firmware, which has been compromised by the code injection attacks.

Typically, in-vehicle computers (e.g., ECUs) are equipped with low power
processors, including ARM Cortex-A or Cortex-M [1–4] CPUs which are broadly
equipped with TrustZone capabilities [10,11]. Further, these same computers
may use flash memory as external storage [5,8], which is typically managed by
the flash translation layer (FTL). The TrustZone is a hardware-level security fea-
ture provided by the processor, which can enable the establishment of a trusted
execution environment (TEE) isolated from the normal insecure execution envi-
ronment. In other words, even if the ECU OS is compromised, the execution
running in the TrustZone secure world remains uncompromised. The FTL is a
piece of trusted flash memory firmware encapsulated inside a flash storage device
(e.g., an SSD drive or a microSD card). It stays between the OS and the flash
memory hardware, transparently managing the unique hardware nature of flash
memory and exposing externally a block access interface. Therefore, the FTL
can also remain secure even if the ECU OS is compromised.

Combining the intrusion detection mechanism with the trusted hardware
components, we have established a framework which can efficiently restore the
ECU firmware to the version right before the code injection attack (note that we
refer to this as the “good prior state” or “good firmware version” throughout the
paper). After the compromised ECU is detected by a trusted detection module
(i.e., a detector), a notification message will be sent by the detector via the
CAN. The notification message will arrive at the compromised ECU and be
passed to the trusted application running in the TrustZone secure world via the
ECU OS. The trusted application will then collaborate with the trusted FTL to
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restore the firmware in real time. Our key insight is that whenever a firmware
update occurs (e.g., the code injection attack is performed), the FTL, having
ultimate control over the underlying storage hardware, can naturally retain an
old version of the firmware, due to the out-of-place update feature present in
modern flash storage devices. In this way, the FTL can immediately revert to
the old good firmware version after the attack. Such a reversion can happen
very efficiently as only a small amount of mapping data needs to be restored in
the FTL, perfectly meeting the real-time requirement. In addition, to prevent
the compromised ECU OS from being aware of the restoration process, all the
communications (between the detector and the trusted application, between the
trusted application and the FTL) are protected via steganography. In this way,
all the communications1 among them can go through the untrusted ECU OS
with the actual purpose being hidden and, the compromised ECU OS typically
will not interrupt a seemingly normal process.

2 Background

2.1 Control Area Network

The controller area network (CAN) is a protocol for communication between
many nodes connected via two wires where each message is broadcast to all
other connected nodes (Fig. 1). Through using this protocol, vehicles are able
to greatly reduce the wiring complexity and enable a variable internal network
topology. When a node sends a message on the CAN bus, the frame does not
include any sender information, but contains a message identifier which describes
its type and determines its priority. Based on this identifier, nodes connected to
the CAN bus filter out irrelevant messages and accepts those with relevant iden-
tifiers. Additionally, each CAN message contains up to 8 bytes of relevant data
and commands. The CAN bus is fully accessible, allowing devices or applications
to be connected via the on board diagnostics port (OBD-II). In vehicles, CAN
is the mechanism for sensors to send data to the main advanced driver assis-
tance systems (ADAS) computer, and for control signals to be sent from the
ADAS computer, brake and gas pedals, steering wheel, ignition, etc., to the var-
ious ECUs associated with the control operations. Additionally, ECU firmware
updates are ultimately sent directly through the CAN bus. Our observation is
that when a CAN message is accepted by an ECU, the associated data will be
quickly processed [6].

2.2 Flash Memory

Flash memory is broadly used as the external storage device for low-power
embedded systems like ECUs [5,8]. This is due to its high throughput, which
is necessary in the vehicle scenario, requiring real-time I/O capabilities. Flash

1 Note that the detector should avoid directly communicating with the FTL via the
untrusted ECU OS, which is unusual and hence suspicious.
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Fig. 1. The topology of a CAN network.

memory (Fig. 2) is organized into a collection of blocks, with each block consist-
ing of smaller pages. However, unique physical characteristics result in differing
behavior from hard drive disks (HDD). First, the read/write granularity of flash
storage is a page, while the erasure operates on full blocks. Second, each pro-
gram erase cycle performed on a given block wears down the associated hardware,
until a threshold is met and it is considered unreliable and unusable. Due to these
special characteristics, in-place updates are expensive. This is because when the
data in a single page should be updated, the entire encompassing block must be
erased, resulting in further wear. Therefore, an out-of-place update strategy is
preferred in which updates are performed by writing the data to a new physi-
cal location and marking the old data as invalid. It is also essential to spread
program erase cycles throughout the entire storage medium in order to prevent
quick wear in any location, so wear-leveling is implemented which handles this.
When blocks are invalidated, they are eventually sent to the garbage collector
to be erased. Unlike traditional HDDs, the out-of-place update strategy results
in different physical locations for the same logical address over time. This is
managed by maintaining mappings between physical and logical locations which
usually change after each invalidation. All of these firmware components together
make up the flash translation layer (FTL), which provides a block access inter-
face externally to the OS. Additionally, the FTL is isolated from the firmware
(OS) of its associated ECU by the storage hardware. This isolation provides a
guarantee that any computation performed in the FTL will not be compromised
even when the ECU firmware is compromised.

2.3 ARM TrustZone

Many ARM processors, such as Cortex-A and Cortex-M CPUs used within auto-
motive ECUs are ARM TrustZone enabled [1–4]. TrustZone establishes a trusted
execution environment within a untrusted host. The key idea is to run both
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Fig. 2. The architecture of a flash-based block device.

secure (i.e., secure world) and non-secure (i.e., normal world) execution environ-
ments on a single processor. The secure world is used to run critical applications
with sensitive data, while the normal world can run non-sensitive applications.
The two modes are separated by isolating the CPU states and associated memory
regions. The architecture of ARM TrustZone is shown in Fig. 3. The communica-
tion and interaction between the secure world and the normal world is conducted
by secure monitor call (SMC). SMC works as a gateway to ensure invocation of
functions and services offered by the secure monitor or secure kernel within the
secure world. A salient advantage of TrustZone is that it comes together with
the embedded processor and, this hardware-level security feature can be simply
utilized without bringing in extra hardware.

2.4 Steganography

Steganography is a mechanism by which to hide some secret message inside of
normal data/communications. The secret message is embedded obscurely into
original data or messages, such that it goes unnoticed. Different from encryption,
this is intended to conceal the fact that a secret message is being sent at all.

3 System and Adversarial Model

3.1 System Model

We consider a connected vehicle with multiple ECUs communicating via the
CAN protocol. The ECU is assumed to be equipped with a NAND flash storage
device (e.g., an eMMC, a microSD, etc.) on which the ECU firmware is stored.
The flash storage device is managed by an FTL, which provides a read/write
interface to the ECU OS. The FTL is run on hardware isolated from the OS, so
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Fig. 3. The architecture of ARM TrustZone.

the computation performed by it is assumed to be secure. Further, each ECU is
assumed to be equipped with an ARM processor (Cortex-A or Cortex-M) with
TrustZone enabled. Using TrustZone, a trusted world is running in the ECU,
on which trusted computation can occur. The trusted world, running trusted
applications (TAs) can communicate with untrusted client applications (CAs)
running in the untrusted OS (i.e., the potentially compromised ECU firmware).
The CAs can perform bidirectional communication with the TA, FTL, and CAN
bus. We assume the existence of a trusted in-vehicle computer (IDet) connected
to the CAN bus, which performs intrusion detection and signal analysis to detect
and localize adversarial ECUs. Note that IDet can communicate directly with the
CA via the CAN bus. IDet could be the main ADAS computer or an ECU dedi-
cated to intrusion detection. Our focus in this work is not on malware detection.
Therefore, we assume this trusted entity has successfully detected the adversar-
ial ECU [21,25–27,35,46] and we work with the TrustZone and the FTL in the
compromised ECU to restore its firmware to a good prior state.

3.2 Adversarial Model

We consider an adversary which can compromise the firmware of an ECU, i.e., by
injecting malicious code into the ECU OS. This can be done in a few ways, includ-
ing remote or physical access to CAN via the OBD-II port, or manipulation of
other existing firmware update mechanisms including over-the-air updates. Since
the ECU firmware itself is compromised, any detection and recovery mechanisms
running in the ECU OS can be averted. This is equivalent to a piece of OS-level
malware, which can control the OS of the victim ECU. However, this malware is
detectable via intrusion detection of the vehicle, as it must behave maliciously in
order to take control of the vehicle, e.g., sending a lot of spoofed CAN messages.
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We rely on a few assumptions: 1) The compromised ECU is not able to com-
promise the TAs running in the TrustZone secure world, which is protected by
the processor at the hardware level. This is a common assumption for TrustZone-
based applications [23]. 2) The compromised ECU is not able to hack into the
FTL, which is isolated by the storage hardware and only presents a limited
read/write interface. 3) Before the ECU is compromised, its firmware (OS) is
assumed to be healthy. 4) The compromised ECU will not perform DoS attacks,
e.g., blocking regular communication among CAN, CA, TA, and FTL. Mitigat-
ing DoS attacks itself is a hard problem and is out of the scope of this work. In
addition, the compromised ECU will not gain any benefits from performing the
DoS attacks, as a nonfunctional ECU is an immediate indication of being com-
promised. In our work, the communications for restoration process are hidden
stealthily in the regular communication messages.

4 Design

4.1 Design Overview

Our design consists of four major components (Fig. 4): IDet, CA, TA, and FTL.
The IDet (intrusion detector) is running on top of trusted firmware in a secure
node, which can communicate with the victim ECU via CAN network. In the
victim ECU, there are three components, the CA (client application), the TA
(trusted application), and the FTL. The CA is running on top of the untrusted
firmware which may be compromised. The TA and the FTL are isolated from
the CA by TrustZone hardware and the storage hardware respectively, hence are
trusted. We collaborate the aforementioned components in order to restore the
compromised ECU firmware to a good prior state after it is compromised.

Our first idea is that the FTL has an ultimate control over the underlying
storage hardware and, the previous version of firmware may be maintained and
restored. Especially, due to the out-of-place update strategy (Sect. 2.2) in the
flash storage, the old version of firmware can be naturally retained in the flash
memory blocks, though they will be invalidated when an adversarial update
occurs. Since GC eventually erases these invalid blocks, it must be disabled
for the old firmware data. Additionally, since the FTL does not know where
the firmware is stored, it can be notified before any update occurs, because
the firmware is trusted at this point (Sect. 3.2). During recovery, an additional
challenge is to find the maintained blocks associated with the good firmware
version. These locations can be retrieved by using the mappings associated with
the old firmware version, which can be backed up by the FTL.

Our second idea is to securely manage the FTL to restore the ECU firmware
even if the entire ECU OS is untrusted. In a vehicle environment, the compro-
mised ECU is able to be identified by another entity (i.e., IDet) outside this ECU
in the same vehicle. The IDet needs to inform the FTL to launch the restora-
tion process, but such sensitive messages typically need to go through the CA
running on the compromised ECU OS, which will deliver the messages to the
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FTL. The direct communication between the IDet and the FTL is very abnor-
mal and the compromised OS will be alerted. Having observed that the data
received from the CAN may be processed by the TA running in the TrustZone
secure world, and the TA may perform writes to the storage device through the
CA [29], our solution is to use the TA as a liaison to forward sensitive messages
between the IDet and the FTL. In addition, as the sensitive messages need to
go through the untrusted OS, they need to be protected in a plausible manner.
Steganography is therefore leveraged to hide the sensitive messages within the
regular communications.

Our third idea is to enable the restoration of the ECU firmware when the
malware is still present. This is due to the fact that it would be hard for the
vehicle user to block the ECU malware once being detected. Upon restoration,
the FTL will block all the write requests from the upper layer, and this blocking
operation will be canceled once the good firmware has been restored on the
external storage and the malware has been removed from the memory.

Fig. 4. An overview of our design.

4.2 Design Details

4.2.1 Cover Communications via Steganography. We define a stegano-
graphic message Ms ∈ {0, 1}k to be the message produced when a secret message
β ∈ {0, 1}l is embedded within a regular cover message α ∈ {0, 1}k, where l and
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k are both positive integers and l < k. Along with the steganographic message
are the steganographic algorithms associated with generating and decoding it.

To define the steganographic algorithms used in our design, we first introduce
the pseudo random permutation π and pseudo random function f , defined as
follows (where s is the length of a shared key):

π : {0, 1}s × {0, 1}log2 k → {0, 1}log2 k

f : {0, 1}s × {0, 1}∗ → {0, 1}s
Our steganographic algorithms used during the encoding and decoding pro-

cesses are defined in Algorithm 1 (SEncode) and 2 (SDecode) respectively. Note
that by fk(x) (or πk(x)) we mean applying f (or π) over x using key k.

Algorithm 1. SEncode
Input: β, α, key, counter
Output: Ms

1: Ms ← α
2: stegKey ← fkey(counter)
3: for i = 0 to l − 1 do
4: j ← πstegKey(i)
5: Ms[j] ← β[i]

6: return Ms

Algorithm 2. SDecode
Input: Ms, key, counter
Output: β
1: stegKey ← fkey(counter)
2: for i = 0 to l − 1 do
3: j ← πstegKey(i)
4: β[i] ← Ms[j]

5: return β

After IDet detects and localizes a compromised ECU, it will send a stegano-
graphic message Ms0 indicating this detection result to the ECU. Since this
message will immediately be forwarded to the TA, a key and counter shared
between them are used as input to SEncode (Algorithm 1). Further, β is taken
to be some secret message, agreed by IDet, TA, and FTL to indicate a malware
detection, and α can be any cover message of length k. Unique to the vehicle
scenario is that the message is being transmitted over CAN, which has an 8 byte
data section that imposes security limitations if using a single CAN frame. Due
to this, IDet spreads the k bit message produced by SEncode over �k÷64� CAN
messages.
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After the CA forwards this message (i.e., a collection of �k ÷ 64� CAN mes-
sages) to the TA, β is extracted using SDecode (Algorithm 2) and is checked
against its expected value. If they are identical, a new steganographic message
Ms1 is generated from β with a new α, along with a unique key and counter
shared between the TA and the FTL. The TA will send Ms1 to CA, indicat-
ing that it should be written to the FTL. Upon receiving Ms1, the FTL will
use SDecode to extract β, and check this against its expected value. If they are
identical, then firmware restoration will be launched by the FTL. To avoid any
replay attacks, both the counter shared between the IDet and the TA, and the
counter shared between the TA and the FTL, should be increased by one after
each successful restoration.

4.2.2 Firmware Restoration. After receiving the detection notification in the
FTL, the old firmware should be restored quickly so that normal operations can
resume. To ensure that this is possible, there are two challenges. First, the old
firmware must still be present in a recoverable manner on the storage device.
Second, the old firmware should be restored quickly to the correct location.

To address the first challenge, we exploit the out-of-place updates feature
of NAND flash memory. Due to out-of-place updates, during a firmware update
the new firmware is written to a different physical location which results in
persistence of the old firmware. Normally, when the new data are written to a
new physical location, the old blocks are marked as invalid, the mapping from
logical address to physical location is updated, and garbage collection (GC) will
eventually delete the data. To ensure that the firmware is both maintained and
recoverable, we can 1) save the old mappings (from logical to physical location)
before an update occurs, and 2) block GC for the blocks associated to relevant
saved mappings.

For 1), the FTL reserves a special area for a back up mapping table which
stores the saved mappings. Since the ECU firmware is assumed to be trusted
prior to the firmware update, a command is sent to a reserved command area
by the CA. This command tells the FTL to back up the current mapping tables
to the special reserved area. By saving these mappings prior to the update, ref-
erences to the physical location of the old firmware are maintained. For 2), the
data at these physical locations should not be erased. To prevent this, GC is dis-
abled for all blocks invalidated during the firmware update. However, a problem
arises when there are multiple firmware updates, as many data blocks will be
maintained, but only the mapping tables associated with the last update are pre-
served. For this reason, GC should be re-enabled on the previously maintained
blocks before each firmware update.

To address the second challenge, the saved blocks need to be restored. Since
the firmware will always boot from the same location, the good firmware should
be reverted to this location. To achieve this, the mappings in the reserved area
which reference the prior firmware blocks can be restored. Due to this restoration,
the same address will now point to the old firmware blocks rather than the
malicious firmware. When booting, the ECU will read from the same logical
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Fig. 5. Our vehicle testbed.

location as before, but it will point to the physical location of the firmware prior
to the adversarial code injection.

4.2.3 Malware Removal. After returning the ECU firmware to the good
version prior to the code injection attack, the malware may still be running on
the CPU and contained in the ECU memory. A problem associated with this is
that the malware can again modify the ECU firmware being restored. Different
from the scenario of a real-world computer/mobile device [19], it is hard for the
user to block/remove the malware from the victim ECU before the firmware
restoration in the FTL after having detecting it. To account for this, once the
firmware restoration starts in the FTL, any writes on the FTL should be frozen
until the malware has been removed from the memory. To remove the malware
from the memory, we can reboot [7] the ECU immediately to clear the memory
after its firmware is restored and, after the reboot, the FTL can be notified to
cancel the freezing operation.

5 Implementation and Evaluation

To construct the testbed (Fig. 5) with all the necessary components for our imple-
mentation, we use two different electronic development boards: 1) Raspberry
Pi 3B+ [9] (With 1.4GHz 64-bit quad-core ARM Cortex-A53 CPU, and 1GB
LPDDR2 SDRAM) with a RS485 CAN HAT, and 2) a high speed USB header
development prototype board LPC-H3131 [33] (with ARM9 32-bit ARM926EJ-
S, 180Mhz, 32MB of SDRAM, and 512MB NAND flash). One Raspberry Pi
(RPi1) is used as IDet, to generate a detection notification, embed it in regular
communication via steganography, and send this over the CAN network. The
second Raspberry Pi (RPi2) simply receives the CAN messages and forwards
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them via a forwarding socket to the third Raspberry Pi2. The third raspberry
pi (RPi3) acts as the infected ECU and the LPC-H3131 is attached to it via a
USB2.0 interface. A client application has been developed to receive CAN mes-
sages and forward them to the TA (in RPi3). To develop the TA, we have ported
OP-TEE (Open Portable Trusted Execution Environment) [38] to RPi3. In the
TA, the forwarded message from the CA is received and the secret notification
is extracted. If it is a detection notification, a new message is generated with
the command embedded, which is sent back to the CA for writing to the FTL.
Additionally, we have ported [40] and modified an open source NAND flash man-
ager OpenNFM [22] to the LPC-H3131. Our OpenNFM modifications consist of
backing up the mapping table to a reserved area, reserving a special command
area, decoding the embedded command, and rolling back the previous mappings
to restore the original data. We choose n (number of CAN messages) to be 16,
so for the 64 bit data field of CAN messages, we embed a l = 64 bit notifica-
tion in a 1024 bit message. Consequently, for both embedding and extracting
the notification in IDet, TA, and FTL, we employ the feistel network cipher,
a pseudo-random permutation, with AES as the round function to produce a
log2 1024 = 10 bit output.
Evaluating Recovery and Communication. To evaluate the time for pro-
cessing the hidden communications and recovering the ECU firmware to before
an attack, we timed three phases: 1) time in IDet (encoding the detection noti-
fication), 2) time in TA (extracting the notification in TA, embedding the com-
mand in a new message, and sending the new message to FTL via a write request
to the CA), and 3) time in FTL (extracting the notification in the FTL and sub-
sequently performing recovery). The time of each phase has been measured 20
times and the results are summarized in Table 1. These results demonstrate that
after malicious CAN messages are detected via intrusion detection and signal
analysis mechanisms, a hidden detection notification can quickly be transmit-
ted to the compromised ECU and the firmware can be restored to the prior
version. Note that the majority of time spent in the FTL is for recovery, with
around .01 s for decoding the notification. The time in TA is significantly more
than expected. This is likely due to the overhead from computation performed
(extracting the notification, generating a new message and embedding the com-
mand, sending this back to the CA), context switching overhead, and the limited
physical resources available in the secure world.

Table 1. Average time (measured in seconds) in IDet, TA, and FTL.

IDet Time (s) TA Time (s) FTL Time (s)

.0012988 7.1065939 1.4264553

2 This is necessary due to unresolved compatibility issues between the CAN drivers
and specific OP-TEE implementation.
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Throughput Evaluation To evaluate the impact of our solution on normal
operations with the flash storage device, we performed a throughput compar-
ison between the unmodified OpenNFM and our modified version. For these
benchmarks, we used the fio benchmarking tool [12] and performed random
write (RW), random read (RR), sequential write (SW), and sequential read (SR)
benchmarks. Our results from these tests are summarized in Fig. 6.

(a)

RW

SW

1,827

2,176

1,944

2,301

Modified FTL OpenNFM

(b)

RR

SR

2,067

2,773

2,249

2,849

Modified FTL OpenNFM

Fig. 6. Throughput comparison (KB/s).

To fully evaluate the impact of the observed differences, we perform a sta-
tistical analysis of the results. The values reflected in Fig. 6 are the mean of
30 benchmarks for each type. Evaluations of the differences in throughput are
based on the mean values. Subsequently, a T-Test was performed to determine
the statistical significance of the observed results for RW (random write), RR
(random read), SW (sequential write), and SR (sequential read). The p values
were < .00001 for all tests, which is less than the .05 level, indicating a statisti-
cally significant difference in throughput. These throughput results demonstrate
that the implementation of our solution results in a small performance cost on
normal read/write operations. Evaluating the extent of these differences, the
average difference in throughput is 5.7%.

6 Related Work

6.1 Data Recovery in Embedded Systems

Chen et al. developed FFRecovery [18], an fine-grained data recovery system
specifically designed for flash memory devices. FFRecovery employs file system
forensics techniques to restore metadata, while utilizing the out-of-place update
feature in the flash translation layer to extract raw data. Xie et al. proposed
MobiDR, a data recovery framework for mobile devices [45]. MobiDR can recover
user data to the corruption point to defend against OS-level malware by utilizing
the cloud server’s version control capability and the hardware features of the local
device. Guan et al. introduced Bolt, a system aimed at restoring the operating
system without requiring a reboot. Bolt makes use of ARM TrustZone to backup
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the memory snapshot and utilizes a customized firmware to save the snapshot
of flash memory. This approach enables efficient recovery of the system to a
clean state after it is compromised. Huang et al. presented FlashGuard [28], a
firmware-level recovery system against ransomware attacks that provides rapid
and efficient data recovery without the need for explicit backups. FlashGuard
makes use of the out-of-place update feature in solid state drive to retrieve data
encrypted by ransomware. Wang et al. designed TIMESSD [43]. To recover user
data that are compromised by the malware, TIMESSD leverages the out-of-
place update characteristics in SSD to retain the states of history storage, and
the recovery process is achieved via calling rollback functions. Furthermore, Baek
et al. [15], Wang et al. [42], and Min et al. [34] have integrated the ransomware
detection component into the flash translation layer. This integration can save
the space that would otherwise be allocated for backing up invalid data in local
storage if ransomware is not detected.

Different from the existing works for data recovery in the embedded systems,
our design targets the ECU firmware recovery in a vehicle system which is much
more critical than the traditional embedded systems. This type of critical sys-
tems has a much higher demand in a few aspects. First, it requires the restoration
to be performed in real time, i.e., the extra overhead caused by the design should
be minimized. Second, upon restoration, the malware is still present as it is diffi-
cult for the user/driver to block the malware in the compromised ECU, i.e., the
restoration needs to happen when the malware is still present. Third, the mal-
ware detector comes from another entity in the vehicle and the communication
between the detector and the FTL need to be adapted to the communication net-
work inside a vehicle. Also, it needs to be protected and avoids being disturbed
by the compromised ECU firmware.

6.2 CAN Intrusion and Malicious ECU Defenses

Kwon et al. proposed a mitigation mechanism against CAN intrusion by config-
uring impacted ECUs and ignoring malicious message IDs [32]. They proposed
using intrusion detection to send messages to malicious ECUs and reconfigured
them to a good state, but this state provides less functionality, and they did not
provide any implementation or mechanism toward providing these guarantees.
Han et al. evaluated the use of survival analysis for intrusion detection, with
higher than 97% detection accuracy over all tested vehicles [26]. Yang et al. [46]
designed a mechanism for detecting spoofing attacks from unrecognized ECUs by
authenticating CAN data frame IDs. Using a recurrent neural network (RNN),
they authenticated sender identity based on fingerprint signals. Further, Cho and
Shin used recursive least squares to construct a baseline of ECU clock behavior
for developing an anomaly-based intrusion detection system which identifies the
malicious ECU [20].
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7 Conclusion

In this work, we have designed a new framework for connected and autonomous
vehicles to defend against the ECU code injection attacks, by rolling back the
compromised ECU firmware to a good prior state. Our design has taken advan-
tage of various existing hardware features equipped with the ECU to securely
manage and efficiently perform the recovery process. We have implemented a
prototype for the proposed framework and demonstrated its effectiveness at per-
forming real-time recovery in a simulated in-vehicle testbed.
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Abstract. Application fingerprinting is a technique broadly utilized in
diverse fields such as cybersecurity, network management, and software
development. We discover that the mechanical vibrations of cooling fans
for both the CPU and power supply unit (PSU) in a system strongly cor-
relate with the computational activities of running applications. In this
study, we measure such vibrations with the help of mmWave sensing and
design a new application fingerprinting approach named mmFingerprint.
We create a prototype of mmFingerprint and demonstrate its effective-
ness in distinguishing between various applications. To showcase the use
of mmFingerprint in cybersecurity for defensive purposes, we deploy it in
a real computer system to detect the execution of reputable Rowhammer
attack tools like TRRespass and Blacksmith. We find that the detection
can reach a very high accuracy in practical scenarios. Specifically, the
accuracy is 89% when exploiting CPU fan vibrations and nearly 100%
when leveraging PSU fan vibrations.

Keywords: Application fingerprinting · mmWave sensing · physical
side-channel · Rowhammer detection

1 Introduction

Fingerprints are unique attributes that objects possess, and can be used to dif-
ferentiate one from another despite their similarities [1]. This concept naturally
extends into the digital world, where we see its application in the form of appli-
cation fingerprinting. Generally speaking, application fingerprinting is a process
that identifies, detects, and catalogs running applications based on distinctive
elements, such as patterns in data usage, computation/network behavior, or
specific configurations within the application’s code.
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In recent years, application fingerprinting techniques have been widely
employed in various areas, including cybersecurity, network management, and
software development. As representative examples in cybersecurity, not only can
these techniques be exploited for compromising user privacy [2,3], but they can
also be employed for defensive purposes, such as detecting the use of illicit pro-
grams (e.g., those for crypto mining and password cracking) on high-performance
computing systems [4,5] and identifying the execution of denial-of-service (DoS)
or other malicious software [6,7].

The practice of application fingerprinting leveraging side-channel informa-
tion has gained considerable popularity. This is because side-channel informa-
tion, such as power consumption [8], and electromagnetic radiation [3,9–11],
are inevitable byproducts of any computation and can be hardly suppressed by
external adversaries [12]. More importantly, the information correlates with the
ongoing computation activities, making side-channel-based application finger-
printing possible.

In this paper, we propose a novel approach leveraging certain physical side-
channel information obtained through mmWave sensing to achieve application
fingerprinting that can be used to replace or complement traditional application
fingerprinting methods as present in Fig. 1. The foundation of our approach is
built on the observation that different applications generate varying computation
activities, which modulate the speed of the cooling fan. These modulated cool-
ing fan speeds can reveal the computation activities. Therefore, accurately mea-
suring these speed variations becomes the key. Equipped with advanced range
and vibration sensing techniques, mmWave sensing, our method can measure
fine speed variations with high precision. By monitoring the vibration patterns
incurred by the speed of the cooling fan, our technique employs features engineer-
ing and deep neural networks to extract features and then uses a deep learning
classifier to distinguish the applications.

Compared to the conventional application fingerprinting methods using net-
work traffic statistics [13,14], our approach has the following advantages: (1)
We can indirectly monitor the computational actions of an application through
the fan’s status. This is particularly beneficial when the application does not
generate any network traffic or when some applications alter the characteristics
of the network traffic to make it seem legitimate [15]. (2) Our system provides
non-intrusive and remote monitoring. It cannot be easily suppressed by exter-
nal adversaries due to the contact-less fashion. (3) It does not add performance
overhead to the target computing system.

Alongside the introduction of our new application fingerprinting technique,
we also demonstrate its practical use in the field of detecting the execution
of malicious programs. Specifically, we show that our fingerprinting technique
can accurately identify potential Rowhammer attempts carried out by certain
existing tools. We concentrate on this type of threat for two main reasons: the
severity of Rowhammer attacks and the prevalent use of established tools in the
initial reconnaissance phase.
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Firstly, Rowhammer attacks pose substantial and ongoing threats to com-
puter systems, leading to numerous exploitations such as sandbox escaping,
privilege escalation [16,17], cryptography subversion [18], denial of service [19–
21], and even confidentiality breaches [22]. Although there are many mitigation
strategies proposed, including counter-based methods such as [23–25], and Tar-
get Row Refresh (TRR) that is implemented in the current off-the-shelf DDR4
DRAMs by major vendors. However, advanced Rowhammer attack techniques
such as TRRespass [26] and Blacksmith [27] have circumvented TRR. The effec-
tiveness of counter-based defenses becomes questionable for this new type of
many-sided Rowhammer attack.

Secondly, before launching a real Rowhammer attack, an attacker must
inspect and scan the system to determine if its memory is susceptible to the
Rowhammer effect. It is highly likely that during this reconnaissance phase, the
attacker will utilize one or more reputable and effective tools, such as TRRes-
pass [26] and Blacksmith [27], for such a purpose. These tools are known for their
efficiency in hammering standard DDR4 DRAM modules, even those under the
protection of TRR, aiding the attacker in swiftly identifying exploitable bits.

We evaluate mmFingerprint using data gathered from a CPU cooling fan and
a PSU cooling fan, each subjected to ten different applications. These include
two of the latest and most potent Rowhammer attack tools as well as harm-
less applications like the SPEC 2006 benchmark, YouTube, and system idle
states. mmFingerprint demonstrates robust performance across these applica-
tions, achieving accuracy ranging from 0.69 to 1.00 in various scenarios. Notably,
it can detect known Rowhammer attacks with near-perfect accuracy. Our find-
ings indicate that the approach we’ve introduced is a feasible method for detect-
ing Rowhammer attacks when established tools are used during the preliminary
reconnaissance phase.

Fig. 1. mmFingerprint is based on monitoring the fan status through mmWave sensing
and it can be used to detect if malicious applications are running.

The main contributions of this paper include:

– We introduce an innovative approach to application fingerprinting that cap-
italizes on side-channel information from cooling fans and mmWave sensing
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technology. This method identifies applications by picking up the subtle vibra-
tion differences on the cooling fan induced by the computation activities. To
the best of our knowledge, this is the first time that mmWave sensing has
been applied to the context of application fingerprinting.

– We exemplify its defensive application by illustrating how it can detect
Rowhammer attacks executed with recognized hammering tools during the
reconnaissance process. We are the first to introduce mmWave sensing in the
detection of Rowhammer attacks. It provides a new research vision in this
area.

– The proposed mmFingerprint can efficiently recognize the most sophisticated
Rowhammer attempts with reputable tools during the reconnaissance phase.
The accuracy of this method can reach up to 100% percent.

2 Background

2.1 Advanced Configuration and Power Interface

The Advanced Configuration and Power Interface (ACPI) specification is an
industry-wide standard that enables sophisticated operating system-directed
configuration and power management for both individual devices and whole
systems via the motherboard. [28]. It is comprised of both software and hard-
ware elements. Devices and processors can run on different states based on the
necessity to maintain a balance among power saving, heat dissipation, and per-
formance. For example, it defines four useful states for a processor: the C0 state,
where the CPU is doing useful work; the C1 (Halt) state, a light sleep state where
the processor isn’t executing instructions; the C2 (Stop-Clock) state, a deeper
sleep state where power to the core is shut off; and the C3 (Sleep) state, an even
deeper sleep state where the cache’s context is lost and power to the cache is
shut off. ACPI allows the OS to play a role in the thermal management of the
system while maintaining the platform’s ability to mandate cooling actions as
necessary. It defines two cooling modes, Active and Passive. In the passive cool-
ing mode, OS reduces the power consumption of devices at the cost of system
performance to reduce the temperature of the system. While in active cooling,
OS increases the power consumption of the system (for example, turning on a
fan) to reduce the temperature of the system [28].

The OS active cooling mode needs support from the hardware such as the
thermal sensor, cooling fan, and fan speed controller. The cooling fans are impor-
tant computer components that help dissipate the heat generated by electronic
components such as CPU, GPU, and the power electronics in the power supply.
Most modern computer systems use temperature-controlled fan speed control
mechanisms to regulate CPU and GPU cooling fan speeds. These mechanisms
use hardware sensors to monitor CPU temperature and adjust the fan speed
accordingly. Usually, the speed is a function of the temperature. This function
can be selected from different working modes in the BIOS of some modern moth-
erboards. The speed control approaches described include on-off, linear, and
pulse width modulation (PWM) [29].
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2.2 MmWave Sensing

The high-resolution frequency-modulated continuous-wave (FMCW) mmWave
radar has been widely used in automotive and industrial applications recently
due to the low cost [30]. It can be used to detect objects by estimating the range,
velocity, and angle [31]. The mmWave radar transmits serial FMCW signals and
receives the corresponding reflection signals from surrounding objects. Mixing
the transmitted signal and received signal produces an intermediate-frequency
(IF) signal, which can be used to estimate range, velocity, and angle. By tracking
changes in the estimated range over a specific time step, the variation can be
considered the object’s vibration. The derivation of vibration is widely used in
speech eavesdropping and reconstruction [32–34], vibration monitoring [35].

The estimation of range with coarse resolution can be achieved by applying a
range FFT to the IF signal. With a 4GHz bandwidth FMCW mmWave device,
the resolution stands at 3.75 cm [33]. This level of resolution suffices for many
applications, like detecting objects in automotive settings. However, it falls short
for applications that need a higher degree of detail, such as sound reconstruc-
tion and subtle vibration tracking, which typically require finer resolution. For
these applications, a high-resolution range (e.g. 1 mm or even smaller ) can be
extracted from the phase value corresponding to the target range.

2.3 Rowhammer Attacks

Rowhammer attacks are a class of security exploits that target a hardware vul-
nerability in dynamic random-access memory (DRAM). By repeatedly accessing
some DRAM rows, an attacker can cause unintended bit flips in neighboring
rows by accelerating capacitor charge leakage, potentially leading to unautho-
rized access or privilege escalation, etc. The execution of a Rowhammer attack
involves three phases by the attackers [12].

– Phase 1, the attacker scans the DRAM addresses by repeatedly accessing
certain DRAM rows to search for exploitable bit flips. For example, with
the addresses mapping information obtained by reverse engineering before
the attack, the attacker can explore Rowhammer scanning by accessing two
addresses from the same bank but not in the same row. When bit flips are
found, the attacker can record the corresponding physical address for later
use.

– Phase 2, The attacker redirects the target’s sensitive security data to the
vulnerable location identified in the first step.

– Phase 3, the attacker flips the bits when the security-critical data is placed
at the location where it is flippable according to the second step. Then, the
attacker can achieve his design goals such as privilege escalation, cryptography
subversion, denial of service, and confidentiality breaching from this step.

Major DRAM vendors have widely adopted the Targeted Row Refresh (TRR)
strategy to counteract Rowhammer attacks on the DDR4 memory. When the
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number of accesses to a particular row surpasses a set threshold, a refresh
(or activation) is issued to the neighboring rows. This action recharges these
adjacent rows, thereby safeguarding them from being flipped. However, several
advanced Rowhammer tools have recently been developed to bypass this TRR
mitigation strategy, implemented by leading manufacturers on certain DDR4
DRAMs. Examples of such tools include TRRespass [26] and Blacksmith [27].
These tools are typically employed by attackers during the reconnaissance phase
of a Rowhammer attack due to their efficacy. TRRespass utilizes a many-sided
hammering technique to trigger bit flips and circumvent the TRR by generating
a high volume of accesses to different DRAM rows in the same bank during
the refresh window. Meanwhile, Blacksmith optimizes the row access pattern to
achieve higher efficiency than TRRespass in triggering bit flips by adjusting the
offset and intensity of hammering.

3 mmFingerprint

In this section, we present a robust technique called mmFingerprint, designed
for application fingerprinting in systems that incorporate a CPU cooling fan or
a power supply fan. These applications impact the CPU temperature or power
electronics in the PSU, which subsequently alters the speed of the CPU fan or
PSU fan. The mmFingerprint tool is adept at identifying such minor shifts in
fan speed. The system can differentiate among various applications by analyzing
the vibrations in the CPU cooling fan or power supply unit (PSU) fan, without
requiring direct physical interaction. mmFingerprint employs advanced signal
processing methods to detect these subtle vibrations.

Fig. 2. mmWave FMCW chirps

3.1 Estimating Displacement Using MmWave Technology

mmWave radar adopts the Frequency Modulated Continuous Wave (FMCW)
chirps for distance measuring [31]. Estimating the distance between the trans-
mitter and receiver can be achieved by measuring the time delay and phase shift
of mmWave signals. Furthermore, mmWave sensing enables the determination
of object displacement by analyzing the range difference of the same object over
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a given time interval. For example, given a sinusoidal FMCW transmit signal
represented by

xT (t) = cos
(
2πfct + πSt2

)
, (1)

where fc is the start frequency of the chirp and S is the frequency slope of the
chirp. The time delay between the transmitter signal and the receiver signal can
be represented as

τ = 2d/c , (2)

where τ is the time delay; d is the distance from the antenna to the target; c
denotes the speed of light. The mixer combines the incoming and outgoing signals
to generate the intermediate frequency (IF) signal. After the high-frequency com-
ponents are eliminated by a low-pass filter, the low-frequency elements remain
in the IF signal, which can be represented by

xIF(t) = LPF {xT (t)xR(t)} = A cos (2πfIFt + φIF) . (3)

The intermediate frequency fIF can be represented by the difference between the
transmit signal frequency fT (t) and receiver signal frequency fR(t), as shown in

fIF = fT (t) − fR(t) = Sτ , (4)

which can be further represented by the chirp frequency slope S and time delay
τ according to the geometric relationship between the intermediate frequency
and the frequency slope of the chirp as presented in Fig. 2. The intermediate
signal initial phase can be determined from (1) at the time instant τ when the
reflected signal just arrives at the antenna, which can be represented as

φIF = 2πfcτ + πSτ2 ≈ 2πfcτ. (5)

It can be approximated because fc is much larger than Sτ [31].
Finally, from (2) and (4) the distance and frequency relation can be repre-

sented as

d = Sτ = cfIF/(2S). (6)

By performing the FFT operation to the intermediate signal (range FFT), the
ranges can be obtained according to this equation. However, the range resolution
is only 3.75 cm for a 4 GHz continuous bandwidth mmWave radar such as the
TI IWR1642BOOST since the range resolution is determined by c/(2B), where
B is the chirp bandwidth [36]. This resolution is enough for applications such
as distance detection in vehicles. However, it is not effective for applications
requiring 1-mm or even better resolution such as voice recovery. Fortunately, we
can derive a high-resolution range from phase based on (2) and (5), which can
be represented as

φIF = 2πfcτ = 4πd/λ , (7)
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where λ is the wavelength of mmWave signal at frequency fc. Differentiating
both sides of the Eq. (7) results in Δd = λΔφIF/4π, where Δd is the small
range displacement for a target during a short time; λ ≈ 4mm is mmWave
signal wavelength for a 77-81Ghz mmWave radar. ΔφIF is the corresponding
phase displacement for the same target. The displacement calculated through
phase yields a better range resolution than that derived from range FFT which
is 3.75 cm for a 4Ghz bandwidth mmWave radar.

3.2 Locate the Cooling Fan with MmWave Radar

First, mmFingerprint locates the target cooling fan with mmWave sensing.
mmFingerprint conducts a range-FFT over each chirp on the gathered Inter-
mediate Frequency (IF) data. Different frequency components represent distinct
reflective signals from various objects in the surrounding environment. Identify-
ing the desired frequency bin (range bin) among numerous bins can be challeng-
ing. We monitor various range bins across several consecutive frames, as shown
in Fig. 3. Each peak represents an object. We identify the correct range bin by
locating the right peak and verifying it with a measured distance from a ruler.
Second, once the target range bin has been located, mmFingerprint extracts the
phase value at the target bin by calculating the phase angle from the complex
values at the peak. According to Eq. (7), the phase value is proportional to the
target distance.

Fig. 3. Range-FFT across many chirps.
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3.3 Time Serials Trace Construction

Using the phase data from the designated bin, mmFingerprint initially creates
the distance-time series traces for a targeted object. It does this by joining
together the phase values obtained at the targeted bin from every chirp, over
a multitude of continuous frames. Then, range displacement is derived from
the distance-time series trace according to Δdn = dn+1 − dn, where dn+1 is
the distance at discrete time n + 1 and dn is the distance at discrete time n.
Therefore, the range displacement is sampled at the sample rate of the chirp
rate.

Removing the Spikes: The mmWave radar produces chirps in frames, in a
non-continuous fashion. There is a noticeable surge at the start of each frame
due to the first two data points, and these surges significantly exceed other phase
values as shown in Fig. 4(a). In order to mitigate the influence of these abnormal
data points on the classification process, we replace them with the final data
point from the preceding frame. This strategy facilitates a seamless transition
from one frame to the next. As shown in Fig. 4(b), the range displacement
trace oscillates around zero in a more symmetrical way. The useful side-channel
information encoded into the recovered time series trace can be exploited to infer
the computing activities.

Fig. 4. Reconstructed displacement time serials traces.
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3.4 Fan Responses and Correlations

A time series trace can be constructed from the displacement derived from the
phase with the aforementioned method. Applying the Fast Fourier Transform
(FFT) to the time domain signal is a common technique used to analyze fre-
quency components and extract features from signals. By converting the signal
from the time domain to the frequency domain, we can examine the distribution
of frequencies present in the signal and identify specific patterns or characteris-
tics. Figure 6 presents the frequency components of the two time-series traces for
different loads. The frequency distributions for these two traces display unique-
ness. When the CPU executes different applications, the computational tasks
vary, resulting in unique fan vibration patterns. We leverage these specific traits
to distinguish and classify various applications (Fig. 5).

Fig. 5. Frequency components of mmFingerprint responses to different fan speeds.

3.5 Features Extraction and Applications Classification

Numerous methods exist for extracting the features from time-series data. One
approach involves the manual extraction of these features by performing signal
analysis, such as Fast Fourier Transform (FFT). Another method is to utilize
deep neural networks (DNN) for feature extraction. By employing trained DNN
layers, we can extract complex features. Different applications are subsequently
categorized based on the features extracted from the mmWave vibration traces.
To eliminate the necessity for manual feature crafting, we opt for a machine-
learning approach to extract features and classify the workload traces. This job
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Fig. 6. Correlation between applications from fan response in the frequency domain.

can be accomplished using either a KNN classifier or deep neural networks. To
attain high precision, we choose state-of-the-art deep neural networks (DNN).

In terms of the DNN model, we choose to use Convolutional Neural Network
(CNN) over Recurrent Neural Network (RNN), even though the workload power
traces belong to time series data. One of the primary concerns is that RNN
usually suffers from the over-fitting problem more severely when training on
long time series [37]. To be specific, we use the ResNet10 architecture that is
described in [38] as the classifier in this work.

4 Evaluations

4.1 Experiment Setup

We use a Texas Instruments IWR1642BOOST evaluation board to transmit and
receive chirps. The IWR1642 chip can generate chirps with continuous frequency
bands of 76 ∼ 77 GHz and 77 ∼ 81 GHz. The evaluation board integrates two
Tx antennas and four Rx antennas. We use the two Tx channels sending out the
same FMCW chirps with a continuous band of 3.98 GHz. We use DCA1000EVM
evaluation board to extract data samples at a rate of 2.1 Msps. The frame
duration is 15 ms with 128 chirps in each frame. The antenna is placed 0.6 m
away from the CPU fan with no obstacles in between. The chirps are reflected off
the cooling fan and captured by the four Rx antennas. In each case, the positions
of the antenna and the target machine are kept constant to eliminate the effects
of position movement on the reflected signals.
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The targeted machine is equipped with a Gigabyte GA-H170-D3HP moth-
erboard, an i7-6700 CPU, an Intel E97379-003 CPU cooling fan, and an Apevia
ATX-SN1050W power supply. The deep learning classifier is built with Keras,
using Tensorflow as its backend. This classifier is implemented on a desktop com-
puter powered by an Intel i7-9700K CPU, with 64 GB of DRAM, and an Nvidia
RTX3090 GPU.

4.2 Threat Model for Detecting Rowhammer Attempts Using
Reputable Tools

Assume an attacker plans to initiate a Rowhammer attempt on a targeted com-
puter system equipped with DDR3 or DDR4, a CPU cooling fan, or a power sup-
ply cooling fan. Before the Rowhammer attack, the attacker must scan the mem-
ory addresses to determine if the computing systems are vulnerable to Rowham-
mer attacks. Due to their effectiveness, it is highly likely that the attacker used
the most advanced Rowhammer attack tools such as TRRespass and Blacksmith
for this reconnaissance process to circumvent the TRR implemented by major
vendors in DDR4 DRAMs. Considering the extremely low likelihood of discov-
ering exploitable bit flips within a short time, the attacker would need to scan
the DRAM intensively to identify vulnerable bits, recording this information for
future exploitation. This step typically requires a significant amount of time.
We can set up a millimeter-wave (mmWave) radar at a predetermined distance
from the cooling fan of either the CPU or power supply, ensuring that there are
no obstructions in the path. This arrangement is feasible for most desktops and
servers since their cooling fans are typically visible through ventilation openings.
With its high-precision detection capabilities, our system can discern even the
smallest variations in the vibrations of the cooling fan during computational
processes.

4.3 CPU Cooling Fan Side-Channel

We assess the CPU cooling fan side-channel across various applications, as out-
lined in Table 1. We select several benign applications and two of the most effec-
tive Rowhammer tools against TRR named TRRespass [26] and blacksmith [27].
These benign applications include system idle, playing a video with vlc player,
and opening the YouTube webpage. We also evaluate some SPEC 2006 bench-
marks including data compression application bzip2 (integer), quantum compu-
tation simulator libquantum (integer), playing the game of Go gobmk (integer),
fluid dynamics simulation lbm (floating-point), quantum chromodynamics sim-
ulationmilc (floating-point). For each workload, we construct 500 individual
traces, each lasting 0.96 s with 8192 equivalent samples.

Dataset. The dataset is composed of ten distinct classes, which are divided into
training and test sets at a proportion of 80% and 20%, respectively. The deep
learning classifier undergoes training for 500 epochs using the training dataset
and its performance is subsequently evaluated on the test dataset.
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Table 1. Evaluated applications

Label applications Notes

0 blacksmith Rowhammer

1 bzip2 CINT

2 gobmk CINT

3 idle

4 lbm CFP

5 libquantum CINT

6 milc CFP

7 TRRespass Rowhammer

8 vlc video

9 Youtube

Evaluation Metrics and Results. The effectiveness of mmFingerprint is
assessed using precision, recall, and F1-score as performance measures. The
evaluation confusion matrix is presented in Fig. 7(a) and the precision, recall,
and F1-score are shown in Table 2. The mmFingerprint has demonstrated an
impressive ability to categorize ten distinct classes with an overall accuracy rate
of 0.89. Additionally, it exhibits an almost flawless accuracy rate nearing 1.00
when distinguishing two specific Rowhammer tools, data compression bzip2,
and playing youtube from other applications. The classifier can recognize gobmk
with perfect precision, but a slightly lower recall of 0.93, which has lowered the
F1-score to 0.97. This suggests that the model occasionally misses true positives
for this class. mmFingerprint has relatively lower precision recognizing idle,
lbm, and libquantum, but the model has good recall for these classes. This indi-
cates the model occasionally misclassifies other instances as these classes, but
does well in identifying true instances of these classes. The lowest F1-scores on
distinguishing milc and vlc, suggesting that the model struggles the most with
these classes. When dealing with milc, the model struggles to correctly identify
all true instances (recall of 0.59), and for vlc, it frequently misclassifies other
instances as this class (precision of 0.92), leading to lower F1-scores. Overall,
mmFingerprint performs well on most classes, especially for Rowhammer tools.

4.4 Power Supply Cooling Fan Side-Channel

To assess the efficiency of mmFingerprint when dealing with power supply coil-
ing fan side-channel, we conduct evaluations using the same applications shown
in table 1. We collect 500 traces for each workload and they are split into training
and test sets at a proportion of 80% and 20%,

mmFingerprint performs well on the power supply cooling fan. The precision,
recall, and F1-score are presented in Table 3 and the confusion matrix is shown
in Fig. 7(b). A precision of 1.00 means there were no false positive instances. It
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Table 2. Evaluation of CPU Fan

Label precision recall f1-score

0 0.99 1 1

1 1 1 1

2 1 0.93 0.97

3 0.69 0.95 0.8

4 0.75 0.85 0.8

5 0.78 0.92 0.84

6 0.79 0.59 0.68

7 1 1 1

8 0.92 0.56 0.69

9 1 1 1

Table 3. Evaluation of Power Fan

Label precision recall f1-score

0 1 1 1

1 1 1 1

2 0.99 1 1

3 1 1 1

4 1 0.99 0.99

5 0.99 1 0.99

6 1 1 1

7 1 1 1

8 1 1 1

9 1 0.99 1

presents an almost absolute accuracy rate nearing 1.00 when classifying black-
smith, data compression bzip2, system idle, milc, TRRespass, and vlc from
other applications. It exhibits a slightly lower precision of 0.99 when classifying
gobmk and libquantum, which still indicates a high accuracy. Recall measures
the ratio of correctly predicted positive instances to all instances that are actu-
ally positive. Like precision, a recall of 1.00 indicates a perfect score. All classes
have a recall of 1.00, except for lbm and Youtube which have a slightly lower
recall of 0.99. Overall, mmFingerprint can recognize different applications with
high performance.

5 Related Work

mmWave Sensing. The ability of mmWave sensing to accurately detect micro-
vibrations underscores its effectiveness. It employs high-frequency radar waves,
which are adept at identifying minute alterations in the phase or amplitude of
reflected signals, enabling the detection of minute displacements, typically asso-
ciated with vibrations. We summarize the most recent and important findings
related to security and privacy, emphasizing the capabilities of mmWave sensing
technology.

These applications include speech recovery such as WaveEar [39], through
wall sound reconstruction such as Wavesdropper [40], eavesdropping speech of
phone call such as mmEve [33], mmSpy [34] mmEcho [32], construction of a
Covert Channel using the mmWave sensing of the status of cooling fan [41],
lunching a spoofing attack to vehicles [42], user verification for IoT devices [43].
However, to the best of our knowledge, no studies have yet utilized mmWave
sensing for the detection of malicious workloads.

Rowhammer. Ever since the inaugural Rowhammer attack [44], the spectrum
of these attacks has broadened with numerous variants coming to light. In
response, the research community and major DRAM vendors have put forward
a wide array of proposed defenses against these diverse Rowhammer onslaughts.
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Fig. 7. Confusion matrix.

The first category is performance counters based Rowhammer detection such
as [23,45,46]. A second category physically isolates all rows by making only every
second row accessible to programs [47]. This method can be circumvented by
half-double hammering [48]. Another important way is the Target Row Refresh
(TRR) adopted by major DRAM vendors for off-the-share DDR4 DRAMs. This
technique is proved to be ineffective for many-sided Rowhammer attacks [26] and
half-double hammering [48]. Researchers leveraged EM side-channel to detect the
Rowhammer attacks in [12]. But it is unclear whether this can detect the new,
sophisticated many-sided hammering and half-double hammering or not.
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6 Discussion

In this section, we discuss some situations mmFingerprint can be applied and
some limitations.

Although it can not always achieve a 100% detection accuracy, it can signif-
icantly improve the detection performance through this new detection method.
Moreover, it can complement other existing defense solutions. This system also
has the capability to monitor several cooling fans simultaneously. To illustrate,
after the application of range FFT, multiple range bins are generated, each cor-
responding to a specific distance. We can derive varied phase data from these
different range bins, which allows us to monitor objects at different distances,
thereby observing various cooling fans concurrently. Furthermore, the method
presented can potentially be expanded to encompass High-Performance Comput-
ing Centers, allowing for the monitoring of illicit applications. An illustration of
this would be its application in the detection of unauthorized Cryptocurrency
mining activities.

However, certain limitations exist. Detecting minute changes can be chal-
lenging, particularly when the execution time is short because the equivalent
sampling rate is about 10 kHz with the device we use. Based on the Nyquist
sampling theorem, the highest frequency it can sample is less than 5 kHz. The
sampling rate is insufficient for capturing applications that have a short execu-
tion time, such as those lasting only a few hundred microseconds or less.

7 Conclusion

In our study, we propose a novel application fingerprinting system capable of
detecting harmful applications based on the physical side-channel of a cooling
fan, specifically focusing on detecting Rowhammer attacks using reputable tools.
This system differentiates between the specific characteristics of various appli-
cations by utilizing millimeter-wave sensing technology and a machine learning
model. Our approach has undergone rigorous assessments, which include eval-
uations of applications encompassing advanced Rowhammer attack tools like
TRRespass and Blacksmith, as well as SPEC2006 benchmarks. These evalua-
tions confirm the high precision of our technique across various scenarios.
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Abstract. Inertial sensors are widely used in navigation, motion track-
ing, and gesture recognition systems. However, these sensors are vulner-
able to spoofing attacks, where an attacker injects a carefully designed
acoustic signal to trick the sensor readings. Traditional approaches to
detecting and mitigating attacks rely on module redundancy, i.e., adding
multiple sensor modules to increase robustness. However, this approach
is not always feasible due to the limited space and increased complexity
of current printed circuit boards.

This paper proposes a new method, ADC-Bank, to detect inertial
sensor spoofing attacks via acoustic out-of-band signals. Unlike other
multiple-sensor-based solutions, it is based on component redundancy
within one sensor, using multiple analog-to-digital converters (ADCs)
with different sampling rates to simultaneously sample the output of
the sensors. The different sample rates result in different aliasing fre-
quencies for out-of-band signals that can be used to detect attacks. The
proposed method is evaluated on off-the-shelf inertial sensors with com-
mercial ADCs, demonstrating its ability to detect the attacking signals
with relatively low cost and computation overhead.

Keywords: Spoof attack · Out-of-band acoustic signal injection ·
Inertial sensor · Multiple ADCs · Detection and correction

1 Introduction

Micro-electro-mechanical systems (MEMS) inertial sensors are known to be sus-
ceptible to acoustic out-of-band signal injections [4–6,9,30,36–38,40,41]. These
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attacks used acoustic signals at frequencies close to the sensor’s resonant fre-
quency to induce high-frequency analog signals in the sensor circuits. Ideally,
the injected signals should be filtered out because they are out-of-band signals.
However, attackers can still inject these signals into the system. The essential
feature of out-of-band signal injections is that the induced analog signals will be
undersampled, resulting in signal aliasing. When aliasing occurs, attackers can
change the output of sensors by maliciously generated stimuli, then deceive the
sensing and actuation systems into executing malicious actions accordingly [11].
For example, a self-balancing scooter can adjust direction and speed according
to its lean angles, which are described by inertial sensors. However, an attacker
can induce an intentional sound at the resonant frequencies of the gyroscope;
the output of the inertial sensor will be distorted, and the attacker can make
the scooter move in a corresponding opposite direction [38].

In recent years, several defense strategies have been studied to solve the prob-
lem of acoustic-based spoofing attacks. For example, shielding [3,16,30,41] was
recommended to mitigate out-of-band injections into inertial sensors. However,
shielding can cause heat dissipation, cost, size, and usability issues. Another
defense consists of low-pass filters that can filter out malicious high-frequency
signals and mitigate attack at inertial sensors [16,37,45]. In practice, implement-
ing ideal anti-aliasing filters that eliminate all out-of-band signals is trivial. For
example, a high-order filter that eliminates all signals above the cutoff frequency
will cause signals that change rapidly to ring on for a long time. Moreover, ana-
log filters lead to an unequal time delay as a function of frequency [33]. If the
phase delay introduced by filters is large, it is difficult to minimize this delay or
compensate for it in software [8]. Moreover, the integrated low-pass filter does
not have clear cut-offs [25,32]. An additional defense approach consists of using
high-frequency sampling of the analog signal. For instance, the inertial sensor
signal frequency induced by movement is generally below 20 Hz. If the sensor
designers choose ADCs with sampling rates high enough to handle the resonant
frequencies, it will increase the production costs and decrease the sampling res-
olution and the processing speed due to the over-wide bandwidth. Recent work
has studied purely software-based detection methods [35] and module redun-
dancy methods (multisensors for sensor fusion) [3,19,28,41–43]. However, false
positives/negatives can occur when external factors or injected data differ from
the assumed patterns. The researchers also noted that attacks with a directed
magnetic field that can precisely control both the magnetometer and the gyro-
scope would cause their sensor fusion-based detection method to fail [35].

In this paper, we present ADC-Bank, a novel out-of-band signal defense
method using component redundancy within a sensor in contrast to the work
mentioned above. Compared to other defense strategies, our method is easy
to manufacture and has fewer attack surfaces than module redundancy strate-
gies, such as multiple sensor-based methods. After implementing multiple circuit
components that simultaneously elaborate the physical stimulus under different
configurations and settings, we provide multiple metrics on the legitimacy of
the measurement at the software layer. This information is then used to detect
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the system from processing an altered signal. We evaluate our method on off-
the-shelf inertial MEMS sensors from three different vendors. Our experimental
results show that ADC-Bank can detect physical injection attacks via out-of-
band acoustic signals on all models of inertial MEMS sensors that we tested.

Despite many existing defense mechanisms against acoustic physical injec-
tion attacks at MEMS sensors, there is no fundamental solution to detect these
malicious transmissions and prevent vulnerabilities in the physics of a MEMS
sensor. Our work fills this gap through the following contributions:

1. We propose a component redundancy scheme to detect acoustic out-of-band
signal injection by elaborating and comparing the physical stimulus in differ-
ent settings.

2. We investigate how to extract the real physical stimulus from different results
of the redundant components.

3. We deploy our defense method on off-the-shelf inertial sensors with commer-
cial ADCs to evaluate our method.

4. We discuss how our strategy can be used in the design and manufacturing of
future sensors.

2 Background

2.1 MEMS Inertial Sensors

Almost all MEMS inertial sensors have a mass and a support spring, and they use
this mechanical structure to detect motion stimuli [26]. MEMS accelerometers
sense linear accelerations by displacement of the mass supported by springs and
measure the capacitance change between the mass and fixed electrodes [17,44].
MEMS gyroscopes are relatively complex. They have a continuously vibrating
mass that, like accelerometers, is supported by springs. They measure the Cori-
olis force generated by the applied angular velocity on the vibrating mass [29].

After transduction, the sensor output needs a series of additional processing
to interface with external components such as microcontrollers. In general, the
change in capacitance causes a change in voltage. For an analog sensor, this
analog signal is typically amplified and outputted directly from the amplifier.
For the digital sensor, the amplified signal is digitized via an analog-to-digital
converter (ADC) and then transferred to the control system by standard digital
interfaces like SPI, I2C, and UART. In this work, we consider analog inertial
sensors to explain our approach.

2.2 ADCs and Aliasing

After the sensor transforms the physical measurement into an analog signal, a
built-in ADC digitizes the sensor’s output. The analog signal that is continuous
in time should be converted at a certain rate by ADC, and this rate is defined
as the sampling rate or sampling frequency of the converter. According to the
Nyquist-Shannon sampling theorem, the sampling rate should be at least twice
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the signal’s maximum frequency when the original physical measurement can
be reconstructed from the discrete data by the mitigation filter. If the system
acquires data at an insufficient rate, called undersampling, the signal will be
incorrectly detected at a specified interval as a lower frequency [18]. Then aliasing
will occur.

2.3 Acoustic Injection

Because of its miniaturized mechanical and integrated electronic structure, these
sensors’ output could be changed to incorrect values by resonant acoustic inter-
ferences [37]. The successful modification relies on two vulnerabilities of the
MEMS inertial sensor: the mass-spring structure that works as the receiving
system for resonant acoustic signals and the non-linearity of electronic compo-
nents like the overdriven amplifier or under-sampling of an ADC. According to
the second vulnerability, the acoustic injection attack can be categorized into
two classes: output control attack and output biasing attack [37]. The output
control attack leverage signal clipping at the insecure amplifier to introduce a DC
component into the acceleration signal, which slips through any subsequent LPF
[15,27,39]. However, triggering this kind of attack requires a signal beyond the
amplifier’s capability, which means high power and deafening volume. Therefore,
it becomes impractical to generate the required loudness and attack the sensor
from a long distance [10].

3 Threat Model

We assume that the attackers’ objective is to spoof and manipulate the MEMS
inertial sensors’ output. To achieve this, attackers need to transmit specific
acoustic signals at the resonant frequencies to deceive the sensor and trigger
the control system’s actuation.

Attack Scenarios. We assume that attackers can use an off-the-shelf speaker or
transducer to generate the sound waveforms for the injection. Also, we assume
that they are able to induce the sound, at the resonant frequencies of these
sensors, at any position, distance, or angle. This might be done via means of
amplifiers and constant directivity horns. We assume that the attackers have
sufficient resources to optimize the power, directivity, and emitting area. More
powerful attackers may utilize customized acoustic equipment to improve the
effect. The signal source of attacks can be a built-in speaker, a function genera-
tor, an MCU board like Arduino, mini signal generator boards [24,31], or even
malicious codes in an email or webpage with JavaScript and autoplay audio
enabled. The attacker can also use long-distance acoustic devices to play the
sound waves as described by Tu et al. [38].

Attack Goals. We assume that attackers utilize the resonant acoustic signal
to inject the sensor output and deliver adversarial control to the system. Such
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Fig. 1. Scheme of an ADC-Bank’s signal processing. The measured output of the sensor
is a linear combination of the original signal, s(t), and the injection signal, sa(t).
Unlike legitimate signals, malicious out-of-band signals sampled by the ADCs generate
multiple frequency peaks. We can employ such an observation to detect and analyze
various attack scenarios.

attacks on the IMU sensors will pose security and safety risks to cyber-physical
systems like robots, stabilization systems, self-balancing scooters, drones, etc.

System Accessibility. We assume the attackers know the exact type and model
of the MEMS inertial sensors and can easily access the datasheet to know the
sensors’ components and structures.

4 Defense Approach

4.1 System Model

The system model of our proposed protection scheme is presented in Fig. 1. It
has two blocks, including a multi-ADCs part and a signal analysis module.

The multi-ADCs part consists of more than two ADCs whose sampling rates
have certain constraints like pairwise relatively prime. After sampling the sensor
output synchronously, these ADCs send their respective measurement results of
the same sensor to the signal analysis module.

The signal analysis module for spectral analysis consists of three parts: fre-
quency analysis, peak detection, and a calculation and reasoning phase. The
frequency analysis performs a Fast Fourier transform (FFT) on each measure-
ment result of the different ADCs and transfers the detection into the frequency
domain. According to the results of peak detection, ideally, there will be one
overlapped peak in the frequency domain, which means that the signal has nor-
mal behavior. Otherwise, multiple separated peaks would suggest the presence
of out-of-band physical signal injection attacks. In the calculation and reason-
ing phase, when no multiple peaks are found, which means that there is no
injection signal, the A/D conversion and the measurement value are considered
trustworthy. Hence, the actuation system knows the result is digitized from the
original sensor’s output. However, when the signal injection attack is detected,
we can calculate the approximate frequencies of the injection signal based on
prior knowledge of the intended frequency range of the attack (more details in
[38]).
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From the signal perspective, the sensor output generated by the real move-
ment is s(t) in the absence of attackers. The attack signal is sa(t) generated
by acoustic injection. We model the measured output of the sensor as a linear
combination of the original signal s(t) and the injection signal sa(t). Hence the
measured signal s̃(t) is:

s̃(t) = s(t) + sa(t) (1)

Since the mechanical structure of the sensor under resonance oscillates at
the same frequency as the attacking signal, we model the resulting signal with
a resonant frequency Fa and an initial phase φ as:

sa(t) = A · sin(2πFat + φ) (2)

where coefficients A = A0kaks. A0 is the amplitude of the attacking signal,
ka is the acoustics attenuation when the attacking signal is transmitted to the
target sensor, and ks is the sensitivity of the sensing mass. Substitute Eq. (2)
into Eq. (1), we have the measured value:

s̃(t) = s(t) + A · sin(2πFat + φ) (3)

Then, the combination signal will be sampled by multiple ADCs. Typically,
the sampling rate of the ADC in the inertial sensor system is designed to be
high enough to sample the movement signal, so the true sensor measurement s(t)
will be normally converted. However, the frequency of attacking signals injected
through resonance is usually much higher than the sampling rate. Therefore,
sampling these out-of-band high-frequency signals will cause aliasing. A sinu-
soidal analog signal with frequency F will be aliased to a digital signal with a
frequency of ε when F > 2FS , where FS is the sampling rate. We have

F = n · FS + ε (−1
2
FS < ε ≤ 1

2
FS , n ∈ Z

+) (4)

Therefore, assuming that Fa is the resonant frequency of the sensor, the
adversary uses it as the frequency of injection signals. For multiple ADCs, based
on Eq. (4), we have:

Fa = ni · FSi + εi (−1
2
FSi < εi ≤ 1

2
FSi, ni ∈ Z

+) (5)

where FSi is the sampling rate of the i-th ADC, and εi is the resulted frequency
of the corresponding ADC output. For simplicity, we assume that n in Eq. (4)
and Eq. (5) is the integer multiple of the sampling rate FS . Therefore, ni stays
the same when ε, FS changes slightly.

According to Eq. (5), these multiple ADCs with different sampling rates will
generate different results εi for the same input signal FS . Out-of-band signal
injections can be detected on the basis of this separation. Meanwhile, based on
these sampling rates, the possible ni can be traversed according to the reading,
and the approximate range of Fa in Eq. (5) can be found according to multiple
FSi and εi.
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5 Detection

Multi-ADCs. In the out-of-band signal injection attack against the MEMS
inertial sensor, under acoustic injection, malicious sound waves are transmitted
to the mechanical structure of the inertial sensor, forcing the sensing mass to
resonate.

In the analog-to-digital conversion process, the input signal is sampled. Only
when the sampling rate FS is greater than twice the highest frequency 2FMax in
the analog signal spectrum, the analog signal can be recovered without distor-
tion. Therefore, the ADC sampling rate in the inertial sensor system is designed
to be high enough to sample the movement signal. However, when inertial sen-
sors face ultrasound resonant signal injection, also known as out-of-band signal
injection attacks, the frequency of attacking signals is usually much higher than
the sampling rate.

The sampling rate in the inertial sensor system is usually in the tens or
hundreds, while the resonant frequency is usually higher than 2 kHz for the
accelerometer and 19 kHz for the gyroscope. Since the resonant frequency is much
higher than the sampling rate, signal aliasing will occur and be reconstructed
into a new low-frequency in-band signal.

To detect suspicious out-of-band signal injection attacks, we take advantage
of the phenomenon of undersampling. Specifically, the multi-ADC part consists
of more than two ADCs that sample the input signal, respectively. Then, recon-
structing these undersampled signals from the digital samples will cause signal
aliasing. Our defense solution consists of comparing such aliased signals to deter-
mine the reconstructed original signal.

The microcontroller of the control system can then be used to measure the
physical quantity and hence can detect the attack based on the outputs of the
ADCs. We suppose that the attacker remotely injects the malicious waveforms
into the inertial sensor circuit. After sampling and digitizing the stimulus by
multiple ADCs with different sampling rates, the control system can spot the
attack immediately since the results in the frequency domain are totally different.
With the help of well-designed parameters, we can not only detect the existence
of malicious signals, but also recover the real signal from the measurement of the
sensor’s outputs. In particular, if the sampling rates of multiple ADCs we selected
are pairwise relatively prime, according to the Chinese remainder theorem [21],
the microcontroller can easily calculate the range of attack frequencies. After
that, we can easily filter the frequencies induced by attack signals and provide
reliable measurements to the control system.

Frequency Analysis. In our defense approach, a key part is to analyze the fre-
quency of the reconstructed signal. When multi-ADCs sample and digitize the
input signal respectively, each measurement result of the different ADCs will be
performed frequency analysis via Fast Fourier transform (FFT) and transferred
the detection into the frequency domain. With the help of frequency domain
analysis, we can obtain the frequency information of the input signal immedi-
ately.
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If the input signal is generated by normal motion, the maximum frequency
of the input signal must be within half of the sampling rate of the ADCs, and it
will be able to be digitized normally. This means that the measurement results
of different ADCs will produce the same frequency component after FFT. When
faced with the injection of malicious acoustic signals, the situation will become
different. The input signals far beyond the sampling rate of ADCs will cause
aliasing. Because the sampling rates of ADCs are different from each other and
relatively prime to each other, the measurement results will produce different
frequencies after FFT. We use a simple peak detection algorithm to determine
the credibility of the measured sensor value.

Fig. 2. Scheme of an ADC-Bank’s attack detection. In contrast with legitimate signals,
malicious out-of-band signals sampled by the ADCs generate multiple frequency peaks.
This technique can be used to detect and analyze various attack scenarios.

Peak Detection. The peak detection algorithm is used to quickly measure
the results after FFT. Figure 2 shows the main peak detection process in the
frequency domain; we detect the peak of the FFT results of ADC measurements,
respectively. If only one overlapping peak is detected, it indicates that the signal
is not attacked and is credible for the subsequent actuation system. If there
are multiple separate peaks, that means that there is a potential attack. These
signals will not be able to be transmitted directly to the actuation system and
will need to be corrected.

6 Experiments

In this section, we try to prove the effectiveness of our method in a real-world
case study. To prove the effectiveness of our signal process scheme, we designed
a series of experiments. We have built an acoustic injection attack environment
to collect raw data and perform signal processing and analysis.
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We evaluate our approach from the following two situations. 1) To simulate
a real attack environment, we use a signal generator output to drive the speaker
and then interfere with the inertial sensor. Then we collect the motion signal and
the injection signal from the inertial sensor, respectively, using an NI USB-4431
Data Acquisition (DAQ) [14]. 2) We use ADCs and microcontroller units (MCUs)
to build a set of data acquisition environments. We use a signal generator output
to drive the speaker, and then interfere with the inertial sensor. Then we collect
and upload the sensor data to a PC for further signal processing.

6.1 Experimental Setup

Figure 3 shows the experimental setup. DG5300 signal generator is used to gen-
erate an acoustic signal [23]. Here, the output amplitude is set to 5 v. A power
amplifier is used to enhance signal power, and the Vifa speaker [2] is respon-
sible for outputting acoustic waves. The inertial sensor chip is mounted on an
evaluation board and driven by 3.3 v/5 v DC provided by the external Arduino
[1].

Fig. 3. Schematic of the experimental setup. The inertial sensor chip is mounted on
an evaluation board placed on the experimental platform. The attack range can be
between one and three meters in a real attack scenario [38].

After determining the resonant frequency of each inertial sensor chip, we
select the appropriate frequency to carry out an acoustic injection attack on each
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chip and then use the NI USB-4431 DAQ module and the A/D Data Acquisition
System we built to collect the senors’ output, respectively.

In the following experiments, ADXL335 is used as the target accelerometer
[7], and LPY550AL is used as the target gyroscope [34]. We also selected some
other inertial sensor models, as shown in Table 1.

Table 1. Resonant frequency and aliasing frequency results of inertial sensors in the
experiment

Chip Enterprise Chip Model Type Axis Resonant Frequency Attack Frequency Aliasing Frequency

NI USB-4431 DAQ Results A/D Results

280 Hz 700 Hz 1000 Hz 250 Hz 920 Hz

Murata ENC-03MB Gyro x 22 kHz 25.2 kHz 25135 Hz 215 Hz 65 Hz 135 Hz 115 Hz 295 Hz

Murata ENC-03RC Gyro x 30 kHz–33 kHz 32295 Hz 185 Hz 95 Hz 295 Hz 45 Hz 95 Hz

STMicroelectronics LPY550AL Gyro x 22 kHz–23 kHz 22785 Hz 105 Hz 315 Hz 215 Hz 35 Hz 215 Hz

STMicroelectronics LPY550AL Gyro y 22 kHz–23 kHz – – – – – –

ADI ADXL335 Acce x 4 kHz–5.5 kHz 4490 Hz 10 Hz 290 Hz 490 Hz 10 Hz 110 Hz

ADI ADXL335 Acce y 4 kHz–5.5 kHz – – – – – –

ADI ADXL335 Acce z 4 kHz–5.5 kHz – – – – – –

At the same time, in order to simulate the signal output generated by real
motion, we place the inertial sensor chip mounted on an evaluation board on
top of a vibration platform, where we set the vibrating frequency below 50 Hz,
then we use the above two acquisition systems to collect the signal output,
respectively.

6.2 Evaluation Experiment

Inertial Sensors with DAQ. In this set of experiments, we first put the chip
on the vibration platform and then set the vibration platform frequency to 16 Hz
to simulate a true motion. For each time sensor output, we sample the output
using three different sampling rates and analyze it in the frequency domain.

Firstly, we carried out experiments on an accelerometer, ADXL335. Figure 4
shows the detailed results of ADXL335. Figure 4a shows the raw data sampled by
the system in the time domain. We process the data before transforming them
to the frequency domain. First, we remove the DC component of the signal
because it has no significance for us in detecting the frequency of the sensor
output signal. Second, we normalize the data to make their amplitudes close.
Then we transform the data sampled at three different sampling rates into the
frequency domain, and the results are shown in Fig. 4b. We found that there
are overlapping peaks at 16 Hz in the spectrum. This is also consistent with the
frequency that we generate through the vibrating platform, which means that
this signal is a normal motion signal. Our signal processing scheme will give
the signal high confidence and let the signal enter the control system without
affecting the response of the actuation system.

Then, we conducted a similar experiment on a gyroscope, LPY550AL. The
environment settings are the same as ADXL335. The results are shown in Fig. 5.
Similarly, we can also see that in Fig. 5b), there is an overlapping peak at 16 Hz.
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Fig. 4. The testing results of ADXL335 with NI USB-4431 DAQ. a) shows the sampled
time domain raw data. In b), the raw time domain data is converted to the frequency
domain after data processing.

Fig. 5. The testing results of LPY550AL with NI USB-4431 DAQ. a) shows the sampled
time domain raw data. In b), the raw time domain data is converted to the frequency
domain after data processing.

Since the NI USB-4431 DAQ module has a good anti-aliasing filter, the reso-
nant signal beyond the sampling rate will not be collected. Therefore, we choose
a sampling rate of 70,000 Hz, which is much higher than the resonant frequency
and can sample normally, and then we simulate the aliasing process under dif-
ferent sampling rates by down-sampling.

For ADXL335, we use the signal generator to generate a 3,525 Hz signal,
which is also the resonant frequency of the inertial sensor. The signal is output
through the speaker to interfere with the accelerometer. By down-sampling, we
get the raw data sampled at three sampling rates. After the signal is processed,
we convert it to the frequency domain.

The data acquisition and frequency analysis results are shown in Fig. 6.
Figure 6 a), b), and c) are the raw time-domain data of resonant signal down-
sampled to 280 Hz, 700 Hz, and 1,000 Hz (due to the limitation of down-
sampling), respectively. Figure 6d) is data converted to the frequency domain
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Fig. 6. The testing results of ADXL335 with NI USB-4431 DAQ. Figure a, b and c show
the sampled time domain raw data. In Fig. d, the raw time domain data is converted
to the frequency domain after data processing.

after signal processing. We can clearly see in the spectrum that there are three
separate peaks because different sampling rates lead to different aliasing frequen-
cies. Therefore, we can determine that this abnormal signal needs filtering.

Regarding the gyroscope, we also performed experiments on an LPY550AL.
We generated a 22,700 Hz signal, which is also the resonant frequency of the
inertial sensor, through the signal generator and output by a speaker. The results
are shown in Fig. 7. In the spectrum diagram, we can see that there are only two
separated peaks, one of which is the overlapping peak, which is due to the same
aliasing frequency of the two sampling rates. However, it can still be determined
that the signal is abnormal.

In this set of experiments, we also tested other types of inertial sensor chips,
and the results are shown in Table 1. In fact, on all types of inertial sensor
chips, we can clearly distinguish whether there is abnormal signal input. This
also preliminarily proves that our detection method is applicable to real-world
actuation systems.

Inertial Sensors with commercial ADCs. The main difference between this
group of experiments and the previous group of experiments lies in the sampling
method. We did not use a professional DAQ module to collect the inertial sensor
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Fig. 7. The testing results of LPY550AL with NI USB- 4431 DAQ. Figure a, b and
c show the sampled time domain raw data. In Fig. d, the raw time domain data is
converted to the frequency domain after data processing.

output like before; instead, we will use a commercial ADC to collect the inertial
sensor output to fully simulate the situation in a real actuation system.

In this set of experiments, we also tested four different inertial sensor models,
as shown in Table 1, including the acquisition and analysis of normal motion
signals and abnormal resonant signals. The ADC model we use is ADS1015,
which has seven optional sampling rates. For normal motion signals, the sampling
rate is usually several hundred Hz. At the same time, to evaluate whether the two
ADCs can completely detect abnormal signals, we use two ADS1015, which are
connected to the Arduino microcontroller and configured with different sampling
rates. Here, we set the sampling rates of ADC to 250 Hz and 920 Hz (which are
two optional sampling rates for ADS1015), respectively. We use these two ADCs
with different sampling rates to sample the inertial sensor output simultaneously,
then upload the sampling data to a PC for further data processing and analysis.

Here, we take ADXL335 as an example, as shown in Fig. 8. For the normal
motion signal, we also select 16 Hz as the vibration frequency to simulate normal
motion. We observed overlapping peaks at 16 Hz in Fig. 8c. It can be seen that
the in-band, normal motion signals can be determined to be trustworthy by two
ADCs’ simultaneous sampling.
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Fig. 8. The testing results of ADXL335 with commercial ADCs. Figure a and b show
the sampled time domain raw data. In Fig. c, the raw time domain data is converted
to the frequency domain after data processing.

For an abnormal resonant signal, the resonant frequency is 4,485 Hz. The
results of signal sampling are shown in Fig. 9. As shown in Fig. 9c, two different
peaks are generated at two different sampling rates. In fact, there is a certain
deviation between the peak frequency and the theoretical aliasing frequency, but
we can still determine that there is an abnormal signal to be filtered.

6.3 Attack Frequency Analysis

During the previous data acquisition and processing, we set the attack signal
frequency through the signal generator, and then obtain the ADC sampling rate
and the frequency of an aliased in-band signal. According to the prior knowl-
edge, we have a known range of possible attack frequencies. For the sampling
rate of each ADC, we can traverse the possible small frequency ranges within
the possible attack frequency range according to the in-band signal frequency.
Then we find the intersection of the frequency ranges determined by different
ADCs, and can obtain a calculated attack frequency range. Through the previ-
ous experiments, we have collected data from some models of inertial sensors.
Next, we will calculate and analyze the specific data for example.

According to Eq. (5), the possible attack frequency ranges of several seg-
ments can be calculated according to the peak frequency obtained from ADC
of a certain sampling rate. We have a prior range of attack frequency, 2–5 kHz
for accelerometers and 19–27 kHz for gyroscopes. For multiple ADCs, we can
find different ranges of their peak frequencies, and get the intersections of these
ranges. Under the above experimental configuration, we try to calculate the
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Fig. 9. The testing results of ADXL335 with commercial ADCs. Figure a and b show
the sampled time domain raw data. In Fig. c, the raw time domain data is converted
to the frequency domain after data processing.

attack frequency range according to the aliasing frequency and ADC sampling
rate. We show the results as shown in Fig. 10.

Sampling Rate 920Hz

Sampling Rate 250Hz

2000Hz 5000Hz3500Hz Frequency/Hz

Sampling Rate/Hz

Potential Attack Frequency

Fig. 10. Frequency range determined by calculation. The black part in the figure is
the possible attack frequency range calculated within the range of 2–5 kHz. The red
line indicates the overlapping range calculated under the sampling rates of 250 Hz and
920 Hz. We regard the overlapping range as the potential attack frequency range. (Color
figure online)

As shown in Fig. 10, we can see that the attack frequency ranges determined
by multiple ADCs form an intersection. We compare the attack frequency set
by the signal generator with the calculated results, and it can be seen that the
actual attack frequency falls within the frequency range we calculated.
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7 Discussion

7.1 Adaptive Attacks and Frequency Drift

In acoustic-based spoofing attacks, slight frequency drift or sample rate jitter
could be amplified and cause significant deviation in the digital output of the
sensors [38]. Due to this drift, the frequency of the aliased output is not constant.

During adaptive attacks, if the attacker knows the details of the algorithm
and the sampling rate, and hopes to attack with acoustic signals whose frequency
is the common integer multiple of the sampling rates, it will be difficult to imple-
ment because the sampling rate is not completely accurate. Even if the attack
frequency is an integer multiple of the sampling rate, it will be recognized due to
frequency drift in a short time. Additionally, the common integer multiple of the
sampling rates may not fall within the resonant frequency range of the inertial
sensor. Increasing the number of ADCs will greatly reduce this possibility.

If the attacker wants to attack through frequency sweep and frequency hop-
ping, the attack cannot be implemented because the accurate sampling rate
cannot be known. In addition, in our defense method, we do not need to obtain
a certain constant frequency output. We focus on whether different ADCs at
the same time have the same output and then determine whether there is an
abnormal signal. As long as an attack occurs, there will be multiple different
peaks in the spectrum.

7.2 Consistency of ADC

In the experiment, we found that under the same sampling rate setting, the raw
data obtained beyond the sampling rate were different for the two ADCs with
the same model. Therefore, we have reason to believe that different ADCs of
the same models have consistent differences. This will also cause errors in the
aliasing frequency, which will affect the estimation of the attack frequency.

At the same time, we believe that, at the beginning of future sensor design,
ADC with integrated component redundancy will have better consistency and
help to reduce errors.

7.3 Future Design and Manufacturing

In our simulation and experiment, as the system is closer to reality, we built
our defense system using existing commercially available modules, and the sys-
tematic error of the data has increased. We believe this is due to the noise
generated by the connection between the modules. In the future sensor design
and manufacturing process based on our method, we believe that the integration
of various parts will help reduce the generation of systematic errors and improve
the accuracy of our defense methods. On the other hand, the manufacturing cost
does not increase linearly with the increase of components, which also makes us
believe that our defense method based on ADC redundancy is feasible.
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8 Related Work

Designing a secure sensor and actuator system is not an easy task. Ever since the
Ghost talk proposed by F. Kune et al. in 2013, which demonstrates that medical
devices can be inhibited pacing and induce defibrillation shocks by intentional
electromagnetic (EM) signals [16], attempts have been made to find defense
methods. In this section, we divide existing work into three categories: surround-
ing defense, module defense, and component defense. The surrounding defense
mainly depends on the shielding to mitigate injection. Sometimes, the researchers
may add specific materials as a physical barrier to attenuate the malicious signal.
In previous studies, barriers were built in conductor wires [16] optical EMI shield-
ing [20], or as sound damping [3,30,41]. Sometimes, researchers can increase
the difficulty of injection by selectively reducing the attack surface, increasing
the directivity [28], or limiting the duration of sensor exposures [22]. However,
some sensors are placed on high-density interconnect printed circuit boards (HDI
PCBs), and some sensors must be exposed to the external environment. Thus,
surrounding defenses may not always be applicable.

Regarding module defense, additional modules such as receivers, sensors, or
actuators are used to detect or dampen the targeted out-of-band signals. Z.
Wang [41] and C. Bolton [3] proposed the adoption of additional microphones to
detect resonating sounds, which are out-of-band signals, against MEMS inertial
sensors. In the same line, as suggested by Kune et al. [16], adopting the cardiac
probe and comparing the result of actuation can distinguish between induced
and measured signals. Furthermore, researchers utilized sensor fusion to enhance
resiliency against these injection attacks. Many prior work adopted redundant
sensors as a defense method when we can bear the cost and space of these sensors
[3,28,41–43].

The component defense is a more common strategy in the previous work.
New, modified, or improved components may be introduced into the signal con-
ditioning chain to reduce an attacker’s ability to exploit the injection. For exam-
ple, researchers can augment the circuit with an additional low-pass filter to
attenuate the signal outside the sensor’s baseband and hence cancel out the
aliasing by blocking the high-frequency, which possibly induces such problem
[16,37,45]. Meanwhile, an adaptive filter can be used when a simple low-pass
filter is not applicable. Y. Son et al. employed differential signaling to filter the
signal injected in the sensing pathway by referring to a dynamically measured
frequency [30]. However, some previous work demonstrated that the parasitic
characteristics caused by the surface mount components might convert the low-
pass filter into a band-stop filter. Attack signals above the cutoff frequency can
still be coupled to the circuit and cause aliasing [12,13]. Furthermore, some
researchers may choose to use a particular sampling pattern called out-of-phase
sampling to mitigate malicious out-of-band signals that are converted to in-band
frequencies after ADC [37]. Meanwhile, some researchers may improve the per-
formance of specific components. Trippel et al. proposed a secure amplifier whose
dynamic range is wide enough to cope with the exploited saturation [37]. Wang
et al. [41] and Son et al. [30] both proposed the redesigned MEMS gyroscopes,
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although they do not give specific approaches to move the resonant frequencies
to noncritical frequency bands. Furthermore, researchers may be able to apply
randomness in the receiver pathway to mitigate the influence of the attacker on
sensor output. Trippel et al. [37] suggested that using ADC with a random sam-
pling rate can effectively deal with DC aliasing since attackers often utilize the
predictable property, such as sampling rate, to bias and control the accelerometer
and gyroscope output.

9 Conclusion

We have presented a new solution, ADC-Bank, to address the issue of inertial
sensor spoofing attacks in embedded systems. Our method successfully detects
these attacks by identifying the aliasing frequency of the attack signal Our exper-
iments and evaluations, conducted on various types of inertial sensors, demon-
strate the effectiveness of ADC-Bank in protecting against spoofing attacks.
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Abstract. As the technology of autonomous vehicles advances, the
importance of automatic path planning also grows significantly. This
leads to the exploration of diverse algorithms and learning-based tech-
niques. While most methods safely and efficiently navigate vehicles to
their destinations, the comfort of a journey is often overlooked. To
address the issue, this paper focuses on a path planning algorithm that
integrates the hybrid A* path planner [2] and the Frenet Frame trajec-
tory generator [8]. We evaluate the performance of the proposed algo-
rithm in terms of travel efficiency and passenger comfort. The experi-
mental results demonstrate that the proposed algorithm better trades off
travel efficiency and passenger comfort, compared with the pure Frenet
Frame trajectory generator. The results also provide an insight that input
preprocessing, even if it is a simple one, can affect Frenet Frame trajec-
tory generator significantly, and it is worth future exploration.

Keywords: Autonomous Vehicles · Path Planning

1 Introduction

With the advance of technology, the design of autonomous vehicles has grown
increasingly sophisticated. One critical challenge in autonomous driving is to
ensure safe and timely arrival at the destination. It requires vehicles to plan
paths from their current positions to the destinations.

Path planning in the context of autonomous driving has gathered consider-
able attention from researchers. Early efforts focused on searching algorithms,
which have evolved to incorporate techniques such as path planning using rein-
forcement learning [3]. These algorithms aim to generate paths that not only lead
to the destination safely without hitting obstacles but also adhere to the vehi-
cle dynamics for optimal performance in terms of time efficiency. Reinforcement
learning has emerged as a popular approach for path planning, as evidenced
by existing studies [4,9]. These learning models can simultaneously optimize
different objectives. The results obtained from applying reinforcement learning
to path planning are promising. However, one limitation is the relatively high
training time required for these learning models.
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Besides safety and efficiency which are usually the main objectives of existing
research, passenger comfort is also a crucial objective for path planning. Human
comfort is usually described as driving smoothly, which implies less changes in
acceleration [6]. For example, existing path planning algorithms may generate
paths that efficiently navigate twisted or tortuous roads and fit the road geome-
tries perfectly. However, these paths may not prioritize passenger comfort, where
passengers prefer a slightly longer but smoother and more stable path.

To address the issue, many studies have been conducted to smooth
planned paths. A post-processing approach which is based on the Pythagorean-
Hodograph cubic curve has been proposed to smooth the path generated from
a hybrid A* search algorithm [1]. A hybrid A* based motion planning method
is also proposed to improve a hybrid A* search algorithm with nonlinear opti-
mization and Catmull-Rom interpolation on post-processing the path [7]. In our
paper, we also aim to optimize the time efficiency and the passenger comfort
through a functional optimization approach. We explore a path planning algo-
rithm that integrates the hybrid A* path planner [2] and the Frenet Frame
trajectory generator [8]. By considering passenger comfort in the path planning
process, we can manage the trade-off between travel efficiency and passenger
comfort and achieve a good balance between them. The experimental results
demonstrate that the proposed algorithm better trades off travel efficiency and
passenger comfort, compared with the pure Frenet Frame trajectory generator.
The results also provide an insight that input preprocessing, even if it is a simple
one, can affect Frenet Frame trajectory generator significantly, and it is worth
future exploration.

The rest of the paper is organized as follows. Section 2 defines the problem.
Section 3 describes the proposed algorithm. Section 4 shows the experimental
results. Section 5 concludes this paper.

2 Problem Definition

Given a scenario which includes the starting point of a vehicle, the destination
of the vehicle, and the road structure and boundary, the path planning problem
is to compute a path from the starting point to the destination for the vehicle
and minimize two objectives:

– The time cost is defined as the total time for the vehicle to move from the
starting point to the destination.

– The comfort cost is defined as the average jerk, i.e., derivative of acceleration,
of each time step.

Although we do not consider safety in this paper, it can be modeled as constraints
like road boundaries. Given a scenario, an algorithm outperforms another algo-
rithm only if its time and comfort costs are both smaller than those of the other
one. Some example scenarios and path planning results are shown in Fig. 1.
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Fig. 1. Example scenarios and path planning results, where the blue solid lines are the
paths computed by the hybrid A* path planner, and the red dotted lines are the paths
outputted by the proposed algorithm at the blue triangles. (Color figure online)

Algorithm 1: The Proposed Algorithm
Input: starting point, destination, road structure;
Output: planned path P ;

1 P ′ = Hybrid-A*-Path-Planning(starting point, destination, road structure);
2 P = Frenet-Frame-Trajectory-Genration(P ′);

3 Algorithm

The overview of algorithm is listed in Algorithm 1. The main idea is to use
the hybrid A* path planner to generate a path. Then, the algorithm uses the
generated path as the central line for the Frenet Frame trajectory generator to
follow. The two steps are introduced in the following sections.

3.1 Hybrid A* Path Planning

Dolgov et al. introduced the hybrid A* algorithm [2], an extension of the tra-
ditional A* algorithm. It is designed to take into account the non-holonomic
nature of vehicles. It introduces a 3D state space of the vehicle < x, y, θ >
and a 4D search space < x, y, θ, r >, where x and y represents the position
of the vehicle, θ represents the orientation of the vehicle, and r is the current
direction of the vehicle. To calculate the cost of path planning, there are two
heuristics in forward searching. One is non-holonomic-without-obstacles which
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Algorithm 2: Hybrid-A*-Path-Planning
Input: starting point, destination, road structure;
Output: path computed by the hybrid A* path planner P ′;

1 P ′ = ∅;
2 Maintain a priority queue Q for all the expanding nodes;
3 Add the starting point to Q;
4 while True do
5 if Q �= ∅ then
6 Pop a node n with the minimal cost from Q;
7 Remove n from Q and mark n as expanded;
8 if n reaches the destination then
9 Return P ′;

10 end
11 for each unexpanded child m ∈ Analytic-Expansion(n) do
12 Update-Cost(m);
13 if m �∈ Q then
14 Add m to Q;
15 end

16 end
17 Update P ′;
18 end

19 end

can be precomputed since it is independent of real-time sensor data. The other is
holonomic-with-obstacles which reduces the number of expanded nodes and dis-
covers obstacles well. As for the node expansion, the Reeds-Shepp model is used
to make paths smoother and improve search speed. Since the path planning has
strict timing requirements, and the hybrid A* path planner is computationally
lightweight, we use it to compute the reference line (central line) for the Frenet
Frame trajectory generator.

Based on the reference [2], the hybrid A* path planner is listed in Algorithm 2.
Given a starting point, a destination, and a road structure, the algorithm main-
tains a priority queue Q based on the cost of each node. The algorithm applies
Analytic-Expansion() to expand nodes either by simulating kinematic models
within a short term or by generating an optimal Reeds-Shepp path to the des-
tination. Analytic-Expansion() can improve the planning accuracy and compu-
tational efficiency. The cost is updated by Update-Cost(), which considers two
heuristics, non-holonomic-without-obstacles and holonomic-with-obstacles.

3.2 Frenet Frame Trajectory Generation

There are many works on the path planning of autonomous vehicles, but there
are relatively less works considering travel efficiency and passenger comfort at
the same time. Werling et al. utilized the middle of the road as the central line for
the Frenet Frame [8], and the goal is to balance travel efficiency and passenger
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Algorithm 3: Frenet-Frame-Trajectory-Generation
Input: path computed by the hybrid A* path planner P ′;
Output: planned path P ;

1 Initialize a state S = P ′.starting-point
2 for each step do
3 Π = Generate-Path-Set(S, P ′)
4 P ′′ = Select-Minimum-Cost(Π)
5 if P ′′ == P ′.destination then
6 Return P ;
7 end
8 S = P ′′

9 end

comfort which can be quantified by the jerk, the derivative of the acceleration.
To describe the characteristic of a vehicle on the road with the state and the
environment, the traditional Cartesian Frame is replaced by Frenet Frame:

x(s(t), d(t)) = r(s(t)) + d(s(t)) · n(s(t)), (1)

where x is the Cartesian Coordinates, s is the central line of the Frenet Frame,
d is the perpendicular offset, r is the current position of the vehicle, and n
is the normal vector for the trajectory. The vehicle then generates lateral and
longitudinal movements, calculates jerk, and chooses the trajectory with the
minimum cost:

C = WT · T + WJ · J + WH · H, (2)

while C is the total cost, T is the time cost, J is the jerk (comfort cost), H is
the heuristic cost of next-step selection, and WT , WJ , and WH are the constant
weights for time cost, jerk cost, and heuristic cost, respectively. It is mentioned
that a pre-calculated path can serve as an alternative central line. Based on this
insight, we use the path computed by the hybrid A* path planner as the central
line for the Frenet Frame. Also, we set (WT ,WJ ,WH) = (2 − W,W, 1) in our
setting, where 0.5 ≤ W ≤ 1.5.

Based on the reference [8], the Frenet Frame trajectory generator is listed
in Algorithm 3. Given the path computed by the hybrid A* path planner, the
algorithm regards it as the central line of the road. The algorithm initializes the
state of the vehicle at the starting point, including the position, the speed, and
the acceleration of the vehicle. Before the vehicle reaches the destination, the
algorithm iteratively generates a set (Π) of possible paths along the central line
and selects the one (P ′′) with the minimum cost based on Eq. 2.

4 Experimental Results

We test our algorithm with 5 different scenarios as shown in Fig. 1. We record
the time cost (s) and the comfort cost (m/s3). The implementation is based on
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a Python code collection on path planning [5]. In Fig. 1, the blue solid lines are
the paths computed by the hybrid A* path planner, and the red dotted lines
are the paths outputted by the proposed algorithm at the blue triangles. The
proposed algorithm avoids sharp turns and lowers speeds, if needed, to lower
comfort cost. For twisted and narrow scenarios (Fig. 1 (c) and (e)), the Frenet
Frame trajectory generator modifies the paths more significantly.

)c()b()a(

)e()d(

Fig. 2. The experimental results. An x-axis represents the time cost (s), and a y-axis
represents the comfort cost (m/s3). A blue line shows the linear regression result of blue
dots, which are the results of the pure Frenet Frame trajectory generator (without the
hybrid A* path planner) with the weight W ∈ {0.5, 0.75, 1, 1.25, 1.5}. An orange line
shows the linear regression result of orange dots, which are the results of the proposed
algorithm with the weight W ∈ {0.5, 0.75, 1, 1.25, 1.5}. (Color figure online)

We compare the proposed algorithm with the pure Frenet Frame trajectory
generator (without the hybrid A* path planner). The experimental results are
shown in Fig. 2. An x-axis represents the time cost (s), and a y-axis represents
the comfort cost (m/s3). A blue line shows the linear regression result of blue
dots, which are the results of the pure Frenet Frame trajectory generator with
the weight W ∈ {0.5, 0.75, 1, 1.25, 1.5}. An orange line shows the linear regression
result of orange dots, which are the results of the proposed algorithm with the
weight W ∈ {0.5, 0.75, 1, 1.25, 1.5}. Each dot is the average of 10 runs.

For the three scenarios in Fig. 1 (a), (c), and (d), the proposed algorithm
outperforms the pure Frenet Frame trajectory generator. The trends in Fig. 2
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(a), (c), and (d) show that, with the same time cost, the proposed algorithm has
a lower comfort cost, or, with the same comfort cost, the proposed algorithm
has a lower time cost. For the scenario in Fig. 1 (b), the trend in Fig. 2 (b) shows
that the proposed algorithm has similar but slightly worse results than the pure
Frenet Frame trajectory generator. For the scenario in Fig. 1 (e) which is an
extremely special case, the trend in Fig. 2 (e) shows that the proposed algorithm
has worse results than the pure Frenet Frame trajectory generator. We infer that
more obstacles bring challenges to Analytic-Expansion() in the hybrid A* path
planner.

The results indicate that the use of the hybrid A* path planner can improve
the objectives of path planning in most cases. Besides, we also observe that
the hybrid A* path planner performs better when there are more curves in the
scenario. The results also provide an insight that an alternative central line
can affect the Frenet Frame trajectory generator significantly, and it is worth
exploration.

5 Conclusion

In this paper, we focused on a path planning algorithm that integrates the hybrid
A* path planner and the Frenet Frame trajectory generator. We evaluated the
performance of the proposed algorithm in terms of travel efficiency and passenger
comfort. The experimental results demonstrated that the proposed algorithm
better trades off travel efficiency and passenger comfort, compared with the
pure Frenet Frame trajectory generator. The results also provided an insight
that input preprocessing, even if it is a simple one, can affect Frenet Frame
trajectory generator significantly, and it is worth future exploration.

Last but not least, the proposed algorithm provides a smoothing technique,
which can improve the robustness or even the security of path planning. For
example, if the position of a vehicle is faulty at a certain time, no matter the
source is malicious or not, the vehicle may deviate from its original path for
a short period. The the proposed algorithm can smooth the path and project
the vehicle against the fault. This usage of the proposed algorithm is also worth
more exploration.
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Abstract. Network security remains a pressing concern in the digital
era, with the rapid advancement of technology opening up new avenues
for cyber threats. One emergent solution lies in the application of large
language models (LLMs), like OpenAI’s ChatGPT, which harness the
power of artificial intelligence for enhanced security measures. As the
proliferation of connected devices and systems increases, the potential for
Distributed Denial of Service (DDoS) attacks—a prime example of net-
work security threats—grows as well. This article explores the potential
of LLMs in bolstering network security, specifically in detecting DDoS
attacks. This paper investigates the aptitude of large language models
(LLMs), such as OpenAI’s ChatGPT variants (GPT-3.5, GPT-4, and
Ada), in enhancing DDoS detection capabilities. We contrasted the effi-
cacy of LLMs against traditional neural networks using two datasets:
CICIDS 2017 and the more intricate Urban IoT Dataset. Our findings
indicate that LLMs, when applied in a few-shot learning context or
through fine-tuning, can not only detect potential DDoS threats with
significant accuracy but also elucidate their reasoning. Specifically, fine-
tuning achieved an accuracy of approximately 95% on the CICIDS 2017
dataset and close to 96% on the Urban IoT Dataset for aggressive DDoS
attacks. These results surpass those of a multi-layer perceptron (MLP)
trained with analogous data.

Keywords: Cybersecurity · DDoS Attack · Large Language Model

1 Introduction

Network security is a critical aspect of the digital world, aiming to protect both
the integrity and privacy of data being transferred across networks. It encom-
passes several layers of protection, both hardware and software, designed to
fend off intruders and unauthorized access. Essential tools and methodologies,
like firewalls, intrusion detection systems, and encryption, work collectively to
ensure that transmitted data remains uncompromised and accessible only to its
intended recipients. As cyber threats evolve and become more sophisticated, the
significance of network security intensifies, requiring a continual adaptation of
defense strategies [16].
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In the realm of network security, Distributed Denial of Service (DDoS)
attacks in IoT systems have emerged as a significant concern which will be the
main focus of this paper. The integration of the Internet of Things (IoT) into
our daily lives and industrial applications has seen remarkable growth, spurred
on by the relentless progression of technology. A recent study by IoT Analytics
attests to this surge, revealing that the global count of connected IoT devices,
often referred to as ‘nodes’, has exceeded a staggering 16 billion [2]. Yet, this
widespread adoption doesn’t come without its own set of challenges. Notably,
there exists a conspicuous absence of robust security solutions tailored to these
IoT devices. This, when coupled with the absence of a standardized security
protocol, renders these devices both enticing and highly susceptible to cyber
adversaries [17,25]. Such vulnerabilities underscore the pressing need for accel-
erated advancements in IoT cybersecurity measures. It is paramount that as we
further the reach and capabilities of IoT, we concurrently prioritize and ensure
its secure and safe evolution.

Denial of service (DoS) is a type of attack in which an adversary makes
a computing or memory resource too active or too full to process legitimate
requests, thereby denying legitimate users access to a computer. In distributed
denial of service (DDoS) attacks, attackers use multiple vulnerable devices to
access and conduct attacks on the victim server, which significantly magnifies
the effect of DoS attack among IoT devices [24]. As an instance, Mirai botnet [3],
one of the most famous malicious software that can construct a botnet from IoT
devices, conducted a DDoS attack against the DNS provider Dyn by connecting
to over 100,000 malicious IoT devices, impacting major websites such as GitHub,
Twitter, and Reddit [22]. Defending against DDoS attacks in IoT networks has
now become an urgent area of research due to recent incidents like Mirai’s attack.

In the past, the security of the IoT was guaranteed by conventional
approaches and frameworks [1]. However, the majority of conventional meth-
ods are incapable of detecting and mitigating application layer attacks, whereas
machine learning-based solutions actively combat such attacks using efficient
and lightweight classification algorithms, which becomes the primary reason why
machine learning solutions satisfy the current IoT security requirements so well
[26]. Recent advancements in artificial intelligence (AI) have prompted the devel-
opment of innovative technologies such as Open AI’s ChatGPT, one of the largest
large language models (LLMs). These models have demonstrated remarkable
performance in a variety of natural language processing (NLP) tasks, including
language translation, text summarization, and question answering, given that
they have been pre-trained on enormous quantities of text data. [15] Due to
their remarkable model parameterization, data analysis and interpretation, sce-
nario generation, and model evaluation capabilities, LLMs, such as ChatGPT,
play a vital role in software development, education, healthcare, and even the
environment [4,5,23].

In this article, we explore the potential of Large Language Models (LLMs)
for cybersecurity, focusing specifically on DDoS attack detection in IoT Sys-
tem and contrasting their benefits against traditional neural networks. Utilizing
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OpenAI’s GPT-3.5, GPT-4, and Ada models, we assessed LLMs’ capabilities in
identifying DDoS threats across two distinct datasets: CICIDS 2017 [20] and
the more complex Urban IoT Dataset [10]. By supplying context in few-shot
method or through fine-tuning, LLMs can analyze network data, detect poten-
tial DDoS attacks, and provide insights into their reasoning. Our evaluations
revealed that on the CICIDS 2017 dataset, few-shot LLM methods with only 10
prompt samples approached an accuracy of 90%, whereas fine-tuning with 70
samples achieved about 95%. On the challenging Urban IoT Dataset, in the case
of aggressive DDoS attacks, few-shot techniques attained a 70% accuracy, while
fine-tuning reached nearly 96%. When compared to a multi-layer perceptron
(MLP) model trained with a similar number of few-shot samples, LLMs out-
performed the MLP. Notably, LLMs demonstrated the ability to articulate the
basis of their DDoS detections in few-shot learning and showed great potential.
However, they were prone to hallucination in the fine-tuning method.

The rest of this paper is organized as follows: Sect. 2 presents the related
work that have been done in this area. In Sect. 3, we present the DDoS detection
methodologies have been utilized in this research, including zero-shot, one-shot,
and few-shot LLMs and fine-tuning LLMs. In this research, we also compared
the performances between the traditional multi-layer perceptron (MLP) models
and LLMs. In this way, in Sect. 4, we illustrate the procedure to create the
general training dataset to be used for training, and validating. The parameters
of MLP models and hyper-parameters of LLMs are also described in this section.
Section 5 shows the evaluation and analysis of the introduced models. Lastly,
Sect. 6 provides a summary of this work.

2 Related Works

With the advent of the Internet and the proliferation of mobile applications,
the digital landscape has seen a marked increase in vulnerabilities. Traditional
security protocols and measures have been rendered insufficient in the face of
these continuously evolving cyber threats. In this context, Machine Learning
(ML) offers innovative solutions to bolster cybersecurity. However, its efficacy
is still under scrutiny, especially since adversaries have found ways to exploit
inherent weaknesses in ML-based defenses [21].

Language modeling, a core component in computational linguistics, has
undergone significant transformations over the years. Earlier models were pre-
dominantly statistical. Today, the paradigm has shifted towards neural models,
especially with the advent of pre-trained language models (PLMs) that employ
the Transformer architecture on a large scale. When these models are scaled
up—both in terms of size and computational prowess—they metamorphose into
what are known as large language models (LLMs). These LLMs not only out-
perform their predecessors but also display a myriad of novel capabilities. An
exemplar in this category is ChatGPT [28]. Recent research suggests that LLMs
possess an inherent capability for reasoning. However, the exact bounds and
depth of this capability remain subjects of intensive research [11]. In the nexus
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between artificial intelligence and network security, LLMs hold the promise of a
formidable defense against cyber threats. By leveraging models like GPT-4, we
can significantly augment the resilience of cybersecurity systems, granted they
are implemented judiciously [12].

Despite the potential advantages, it’s imperative to note the nascent stage
of research in employing LLMs specifically for network security. A recent work
in this domain by Ferrag et al. [7] proposed SecurityLLM, an integrated model
that addresses cybersecurity threats. This model marries two distinct elements:
SecurityBERT, which focuses on threat detection, and FalconLLM, designed
for incident response. They embarked on the journey of fine-tuning an LLM,
grounded in the Transformer architecture, to discern potential threats. Further-
more, they engineered FalconLLM to craft responses to these detected threats.
However, a significant lacuna in their work is the absence of reasoning behind
identifying an attack. Moreover, the responses generated by FalconLLM tend
to be overarching and lack the specificity required for individual systems. Con-
trasting this, our approach aims to harness a pre-trained LLM, not only for the
purpose of detection but also to elucidate the reasoning behind identifying a
network security incident.

3 DDoS Detection Methodology

In this study, our primary approach employs both few-shot and fine-tuned Large
Language Models (LLMs) for the detection of DDoS attacks. This section offers a
comprehensive feasibility analysis on the efficacy of providing limited context to
LLMs in the few-shot approach or leveraging fine-tuned LLMs for DDoS attack
detection. Furthermore, we elucidate the methods for selecting optimal input
data as context and provide guidelines on training the fine-tuned model using
specific architectures.

3.1 Few-Shot LLM

Given the extensive pre-training of Large Language Models (LLMs) and their
proficiency in reasoning from language-based data, our aim is to evaluate their
performance in a few-shot setting. We postulated that LLMs could draw infer-
ences from minimal data, relying primarily on the semantic content presented.
The constrained context size inherent to LLMs does not pose significant chal-
lenges in a few-shot context. OpenAI’s research has already highlighted the
potency of LLMs in few-shot learning [6], further strengthening our inclina-
tion towards this approach. This subsection outlines the various techniques we
employed to train models on select portions of our dataset.

– LLM Random: Initially, we utilized the gpt-3.5-turbo model via the OpenAI
API, executed from a Python script. We introduced the model to a sample
of n random samples of few-shot data before prompting it to classify an
unlabeled sample as either “Benign” or “DDOS”. We varied n between 0 and
70 to observe performance variations as the model is exposed to increasing
amounts of data. We have termed this methodology “LLM Random”.



Application of Large Language Models to DDoS Attack Detection 87

– LLM Top K: A subsequent strategy involved the establishment of a Pinecone
index containing every labeled sample from the training data. During infer-
ence on a specific test data sample, we retrieved the top k training data sam-
ples for each label from Pinecone. These samples then served as the labeled
examples in the prompt context. By focusing on the “most relevant” data
subset, this method effectively addresses the challenge posed by restricted
context lengths.

– Fine-tuned: In this approach, we explored the performance of a fine-tuned
Ada model in detecting DDoS attacks when exposed to only a limited
data subset. This method stands in contrast to the gpt-3.5-turbo strategies
explained above, i.e. LLM Random and LLM Top K, rather than presenting
the training data within the context at inference, the model undergoes fine-
tuning on a pre-selected data subset before inference. The training process
involves pairs of prompts and responses, where each prompt represents an
unlabeled training data sample, and the response is its associated label.

– MLP Methods: As a benchmark, we trained a basic MLP (Multi-Layer
Perceptron) [19] model on the identical few-shot tasks. This model comprised
a single layer with 20 neurons, employing a ReLU activation function.

– General Prompt Engineering: In general, over several tests, certain addi-
tions to our prompting seemed to yield better results, so they were used when
collecting results. These include:
• Writing each feature’s name before its value on every row - instead of

presenting the rows in tabular form, in each row each feature label is
repeated before its value (e.g. Destination Port: 80).

• Using specific strings as separators and explaining their use in the prompt.
For example each feature is separated by a pipe symbol and each row is
separated by a newline. The training data and the test prompt are sepa-
rated by three consecutive # symbols. All of these symbols are explicitly
defined at the beginning of the prompt so that the model understands
their use as separators.

• Asking the model to explain its reasoning based on the data before out-
putting its predicted label. This allows the model to output observations
of the data and then “reason” on these observations before outputting a
prediction. With the inverse approach, the model tended to pick an out-
put and then hallucinate post hoc reasoning for its output, often lying
about the data.

• Asking for the output to follow a specific format every time. For exam-
ple, in the prompts we told the model “surround the predicted label
with’$$$’ on each side”. This made it more likely for the model to output
a prediction as opposed to before where it occasionally refused to make
a prediction. Giving it a specific format to follow seems to ensure that
a prediction is made because it attempts to follow the format. Another
benefit of including this in the prompt is that it facilitates programmatic
extraction of the predicted label, as well as making the location of the
prediction clear within the response.
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3.2 Fine-Tuning LLM

The rise of deep learning has ushered in advancements in Transformer-based
large language models (LLMs), like the GPT series, leading to substantial
progress in natural language processing (NLP). Such LLMs are initially pre-
trained on vast and diverse public datasets, enabling them to generate responses
to a wide array of queries [27]. For specific tasks, fine-tuning these pre-trained
LLMs with smaller, task-centric datasets can notably elevate their performance
and response precision. In our research, we focus on fine-tuning OpenAI’s Ada
model to enhance its capacity to understand and assess the traffic data from IoT
devices, and to predict with greater accuracy whether these devices face DDoS
attacks.

3.3 Neural Network Model

To verify whether LLM has an advantage over conventional neural network mod-
els in the DDoS attack detection, we also construct a Multilayer Perceptron
(MLP) model to perform binary classification for detecting DDoS attacks on
IoT devices. Similar to the approach used in LLMs, we apply the Multilayer
Perceptron (MLP) model to do binary classification for detecting the DDoS
attack on the IoT devices. MLP model is the simplest feed-forward artificial
neural network model consisting of one input layer, one output layer, and one or
more hidden layers [18]. In this study, as Fig. 1 shows, the input layer is followed
by a single dense layer consisting of 10 neurons and using Rectified Linear Unit
(ReLU) activation.

Fig. 1. Structure of MLP

4 Datasets

4.1 CIC-IDS 2017 Dataset

For our tests on few-shot learning, we focused on the CIC-IDS2017 [20] dataset,
specifically using the “Friday-WorkingHours-Afternoon-DDOS” pcap file. This
dataset contains samples of labeled data with each row containing 85 features



Application of Large Language Models to DDoS Attack Detection 89

and a label of either “Benign” or “DDOS”. Because of the limited context size of
LLMs, we reduced this dataset to 4 features per row using previously obtained
results on this task [13] so that we could train the model using larger amounts of
samples without exceeding the context length. The goal of this process is to retain
features that are important to the classification task, and have useful linguistic
meanings for the models to use in their inferences. After feature reduction, the
context could consistently contain up to 70 samples of training data without
reaching its limit.

4.2 Urban IoT DDoS Dataset

In fine-tuning work, we employ the latest generation of the training dataset in our
recent work [10], which is more difficult to classify than CIC-IDS2017 [20]. This
dataset is derived from an anonymized dataset, consisting of real-trace data from
an urban deployment of 4060 IoT devices that records their binary activity [8].
This dataset includes the packet volume that each IoT device transmits at each
timestamp during their active periods [9], as well as the correlation information
of IoT nodes’ packet volume within each recorded instance.

For each training dataset sample, the node ID, timestamp, packet volume
transmitted through that node in 10 min, and average packet volume with 30 min
to 4 h are documented. In addition to the packet volume of node i in each sample
of the training dataset, the packet volumes of all other nodes in the training
dataset are also recorded. The result is that for each timestamp in the training
dataset, we possess information on the number of packets transferred via node i
as well as all other nodes. Finally, each sample will be assigned a label indicating
whether this node is attacked or not. Table 1 shows the training dataset which
consists of two nodes. In this setting, P1 and P2 indicate the packet volumes
associated with nodes 1 and 2, respectively.

Table 1. An Example of Data Points in a Training Dataset

Node Time P 1 P 2 Attacked

0 2021-01-01 00:00:00 12 50 1

0 2021-01-01 00:10:00 0 1 0

1 2021-01-01 00:15:00 9 12 1

1 2021-01-01 00:30:00 8 1 0

Inspiring from A. Hekmati et al. [10], our study introduces two distinct archi-
tectures tailored for fine-tuning Large Language Models (LLMs). These are spe-
cially designed to either incorporate or omit the correlation information of nodes’
traffic information:

– One Model without Correlation (OM-NC): Within this architecture,
a singular LLM is employed for the fine-tuning process across all IoT nodes.
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Notably, this model does not factor in the correlation data associated with
nodes’ traffic information. Instead, it relies solely on the traffic information
of each node over time for training/inferencing purposes. To differentiate the
data of each node from others, we employ the node ID.

– One Model with Correlation (OM-WC): This architecture also utilizes
a singular LLM for the fine-tuning across all IoT nodes. Distinctively, all IoT
nodes leverage this model to detect DDoS attacks. Furthermore, this architec-
ture integrates the correlation data of nodes’ activity during fine-tuning. This
means that besides considering an individual node’s traffic information, the
traffic information of other nodes are also taken into account to capture the
inter-node activity correlations. Given that a single model is being fine-tuned
for all nodes, the node ID is again employed to differentiate the information
of each node.

Incorporating nodes’ correlation data in the OM-WC architecture could
enhance the LLM’s ability to predict DDoS attacks. This is because attack-
ers often exploit multiple IoT devices to orchestrate such attacks. Conversely, in
the OM-NC framework, the absence of correlation data may simplify the input,
allowing the LLM to more straightforwardly analyze individual behaviors and
make predictions.

5 Simulation Results

In this section, we present the results of our testing using LLMs for prediction
across different datasets and different tasks. We compare the results of different
methods, allowing us to assess the efficacy of LLMs on these tasks and how they
can be employed in the future.

5.1 Performance Analysis of DDoS Detection Method
on CIC-IDS2017 Dataset

Performance Metrics. Figure 2 presents the results of 5 different approaches
to few-shot learning, fine-tuning, and MLP on the CIC-IDS2017 [20] dataset
in terms of accuracy versus the number of samples used as the context for the
few-shot method. The LLM Top K method tended to outperform other methods
in most few-shot scenarios, and in general, the LLM methods outperformed the
MLP-based methods. Recall that in this simulation, we will use the same number
of samples that we are using for few-shot context in order to train MLP model
to have fair comparison between the few-shot methods and MLP. The fine-tuned
LLM model, on the other hand, had the poorest performance until it reached
about 40 samples of data, after which it began to outperform the other methods
that we tested. In summary, we observe that fine-tuning with 70 samples can
reach an accuracy of %95 while the LLM Top K method reaches an accuracy
of 90% with only 10 samples. From this we hypothesize that fine-tuning an
LLM provides better performance over prompt engineering based methods, but
it requires more training data before it begins to perform well.
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Detection Reasoning. Another important observation from this comparison
that we observed was that the LLM prompting methods tended to produce
interesting and useful explanations behind their predictions as well as explicitly
stating their lack of confidence in certain predictions. Contrary to this, the fine-
tuned model, despite answering correctly more often, was more prone to adding
hallucinations that made little sense after its answer such as the ones shown in
Fig. 3.

GPT-4 LLM Model. Because of the prohibitive cost of GPT-4, we only ran
a single few-shot test with that model, which we based on the top-k with k =
20 samples of data approach, as we observed that a value for k in this range
is producing the best results with GPT-3.5. The result of this experiment has
an accuracy of 0.92 and f1-score of 0.93. Looking more closely at some of the
incorrect predictions it made, GPT-4 justified its answer by correctly pointing
out that the training data had a similar sample to the one it was predicting
for both labels, and saying that because of this it was unable to make a real
prediction and would choose a label arbitrarily. In this case, it was unable or
unwilling to take into account the fact that there were more identical samples of
one label than the other, so it struggled with weighting the frequency of certain
features in the training data it was shown.

Context Distribution. Following the conclusions of [14] we theorized that the
decrease in performance for our top-k method as k grows sufficiently large, could
have been due to the context growing too large, causing the most relevant data
to become “lost” in the context. To attempt to alleviate this, we performed a test
in which we presented the training samples to GPT-3.5 with the most relevant
data closer to the middle of the context and the least relevant data on either
end of the context. Then, we tested the inverse, i.e. the most relevant data was
placed in an alternating fashion at the beginning and end of the context with the
least relevant data ending up in the middle. The accuracy for these approaches
were 0.92 and 0.91 respectively. Again because of the prohibitive costs, we only
tested these approaches with k = 70 as it represents an extreme case of a close
to full context. The improvement over the previous method of placing the most
relevant data at the beginning seems to contradict [14]. We hypothesize that
this discrepancy is observed because in this case, all of the data is somewhat
relevant to the task, as opposed to the paper in which “distractor” data interferes
with a lookup. Furthermore, it seems that having the most relevant data more
evenly distributed within the context helps the model maintain a better internal
representation of the data compared to the approach of placing the most relevant
data at the start of the context. This merits further investigation in future work.
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Fig. 2. Comparison of accuracies of different methods for few-shot learning with dif-
ferent amounts of training data

Fig. 3. Comparison of the outputs, including the explanation given by the LLM
prompting and LLM fine-tuning methods

5.2 Performance Analysis of DDoS Detection Method on Urban
IoT DDoS Dataset

In this subsection, the DDoS detection performance of fine-tuning, prompt engi-
neering LLMs, and MLP model will be analyzed on the urban IoT DDoS dataset
with different architectures, i.e. OM-NC and OM-WC. The performance of these
models is shown in terms of their binary accuracy, F1 score, and area under curve
(AUC) versus the attack parameter k over the testing data set.
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Few-Shot LLM on One Model with Correlation (OM-WC). After test-
ing the CIC-IDS2017 dataset with an accuracy greater than 0.90, we decided to
utilize the GPT-3.5 model to analyze the Urban IoT DDoS dataset, including
correlation information, i.e. OM-WC, to determine if some samples of it have
been subject to a DDoS attack. After combining the information from multi-
ple nodes together, like the previous approach mentioned in 5.1, we add labels
to all the data so that the GPT-3.5 can better understand what each data
point means. After tagging data, we compare the DDoS detection performance
of GPT-3.5 with tagged and untagged prompts, and the context is also bal-
anced, i.e. the number of positive and negative samples in the context are the
same. We used accuracy and F1 score as the metrics to evaluate the performance
of few-shot LLMs. As Fig. 4 shows, with more samples in the context, for the
test with labeled data, both the accuracy and the F1 score of GPT-3.5 for the
detection of DDoS attacks increase substantially. With only 10 samples of data
in the context, both the accuracy and F1 score are up to 0.7. In contrast, for
the unlabeled group, the performance of GPT-3.5 to detect DDoS attacks does
not improve significantly after reaching 0.5; rather, it remains between 0.5–0.55,
which is not far off from random guesswork. We hypothesize that as the number
of samples in the context increases, especially for the labeled data, the perfor-
mance of the model will continue to improve. As with the CIC-IDS2017 dataset,
for the few-shot LLMs, we only need a small amount of training data to perform
well. However, since we use the data with correlation information, each prompt
uses a large number of tokens. due to the expensive cost of GPT-4 and GPT-3.5,
we just test the performance of GPT-3.5 with up to 10 samples in the context.
The situation of using GPT-4 and more samples’ context is not tested in this
work.

Fig. 4. Compare few-shot LLMs performance including the correlation information
learning with different amount of data

Detection Reasoning. For the urban IoT devices dataset, we similarly
requested an explanation for their predictions from GPT-3.5. The prompts and
outputs are shown in Table 2. Both the ”User” and ”Assistant” message in table
2a are generated according to dataset, while in table 2b and 2c, only the contents
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in ”Prompt” are from dataset, and the ”Response” messages are the messages
from GPT-3.5, . It has been observed that although we provide certain and
identical formatting explanations, like the ”Assistant” message shown in table
2a when we give the context, however, as shown in table 2b, GPT-3.5 sometimes
generates explanations that diverge from the provided context, which demon-
strates the explanation ability of GPT-3.5 model with just a few-shot context,
instead of just ”remember answers”. Additionally, table 2c indicates GPT-3.5
could also express a sense of ambiguity regarding their prognostications. When
the quantity of samples inside the context increases, the range and ambiguity of
the provided explanations diminish correspondingly.

Fig. 5. Compare fine-tuning LLMs performance by using different attack packet volume
parameter (k) without correlation (OM-NC) architecture

Fine Tuning on One Model Without Correlation (OM-NC). Fig. 5 illus-
trates the fine-tuning result of the one model without correlation, i.e. OM-NC
models, using the OpenAI Ada model. During the process of fine-tuning, we
grouped the dataset based on the attack volume parameter, k, and selected 3,000
samples to feed and fine-tune the LLMs. It is clear to find that, as the value of k
increases, binary accuracy, F1 score, and AUC all increase significantly. When k
is equal to zero, the F1 score is less than 0.7, which is no significant improvement
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Table 2. LLM prompting outputs including the explanation on Urban IoT DDoS
Dataset

(a) Two examples of provided context

User Time: 7; node 0: packet: 260, packet 30 min: 243.3333333, pkt 1 hr: 253.8333333,
pkt 2 hr: 276.75, pkt 4 hr: 271.2916667;node 1: packet: 167, packet 30 min:
230, pkt 1 hr: 253.1666667, pkt 2 hr: 246, pkt 4 hr: 251;node 2: packet: 266,
packet 30 min: 185, pkt 1 hr: 283.8333333, pkt 2 hr: 262.6666667, pkt 4 hr:
263.0416667;node 3: packet: 288, packet 30 min: 263.3333333, pkt 1 hr: 272.5,
pkt 2 hr: 208.3333333, pkt 4 hr: 230.2083333;node 4: packet: 0, packet 30 min: 0,
pkt 1 hr: 0, pkt 2 hr: 0, pkt 4 hr: 0; Predict node 3

Assistant Node 3 is attacked since it has a high packet volume.

User Time: 23; node 0: packet: 0, packet 30 min: 0, pkt 1 hr: 0, pkt 2 hr: 0, pkt 4 hr: 0;node
1: packet: 0, packet 30 min: 0, pkt 1 hr: 0, pkt 2 hr: 0, pkt 4 hr: 0;node 2: packet:
0, packet 30 min: 0, pkt 1 hr: 0, pkt 2 hr: 0, pkt 4 hr: 82.20833333;node 3: packet:
186, packet 30 min: 164.6666667, pkt 1 hr: 172.6666667, pkt 2 hr: 168.5, pkt 4 hr:
168.125;node 4: packet: 186, packet 30 min: 177.3333333, pkt 1 hr: 164.8333333,
pkt 2 hr: 154.75, pkt 4 hr: 177.4583333; Predict node 2

Assistant Node 2 is not attacked since it has a low packet volume in 4 hours.

(b) Two responses from test with its corresponding prompts

Prompt Time: 17; node 0: packet: 0, packet 30 min: 52, pkt 1 hr: 26, pkt 2 hr: 13, pkt 4 hr:
21.20833333;node 1: packet: 0, packet 30 min: 57, pkt 1 hr: 86, pkt 2 hr: 135.5833333,
pkt 4 hr: 129.0416667;node 2: packet: 169, packet 30 min: 156.6666667, pkt 1 hr:
154.6666667, pkt 2 hr: 164.3333333, pkt 4 hr: 157.8333333;node 3: packet: 123,
packet 30 min: 161.3333333, pkt 1 hr: 173.1666667, pkt 2 hr: 159.8333333, pkt 4 hr:
167.0833333;node 4: packet: 0, packet 30 min: 0, pkt 1 hr: 0, pkt 2 hr: 0, pkt 4 hr: 0;
Predict node 2

Response Node 2 is not attacked because its packet volume is within normal range.

Prompt Time: 6; node 0: packet: 141, packet 30 min: 136, pkt 1 hr: 123.1666667, pkt 2 hr:
144.3333333, pkt 4 hr: 163.375;node 1: packet: 0, packet 30 min: 0, pkt 1 hr: 0,
pkt 2 hr: 0, pkt 4 hr: 0;node 2: packet: 0, packet 30 min: 0, pkt 1 hr: 0, pkt 2 hr: 0,
pkt 4 hr: 0;node 3: packet: 265, packet 30 min: 263.3333333, pkt 1 hr: 281.8333333,
pkt 2 hr: 334.25, pkt 4 hr: 295.9166667;node 4: packet: 0, packet 30 min: 0, pkt 1 hr:
0, pkt 2 hr: 0, pkt 4 hr: 0; Predict node 3

Response Node 3 is attacked because it has a high packet volume compared to the other nodes.

(c) Some other responses

Response Node 3 is likely to be attacked because it has a significant increase in packet volume
compared to the previous time period.

Response Node 0 is possibly attacked, but the prediction would require more information to be
more accurate.

over random guesswork. When k = 1, the average F1 score meets at 0.96 on 3000
samples, even greater than the Long Short-Term Memory (LSTM) model with
F1 score up to 0.86, proposed by A. Hekmati et al. [10].

Fine Tuning on One Model with Correlation (OM-WC). In this part, we
will illustrate the performance of fine-tuning LLMs with OM-WC architecture.
However, because of the budget limitation compared with the prohibitive cost
of fine-tuning, we only choose 5 IoT nodes in the system and the corresponding
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samples with attack volume parameter, k = 0.5, the proper packet volume which
is neither too easy nor too difficult to detect as being attacked. For LLMs with
OM-WC architecture, we first try to incrementally fine-tune the OM-WC models
to find the performance improvement as the number of feeding samples increases.
Figure 6 shows the progress of incremental training from 300 samples to 900
samples. As we can see, since LLMs are pre-trained with massive amount of data,
even though we feed fewer than 1,000 samples to them, the binary accuracy and
F1 score of LLMs are mostly greater than that of MLP, regardless of whether
the numbers of positive and negative samples are balanced. Moreover, when we
feed the balanced samples to LLMs, a sample size of less than 1,000 is sufficient
to achieve a binary accuracy of 0.84, and an F1 score of 0.69. This performance
is close to that of MLP trained with whole dataset, which is 0.76 [10]. After
determining that fine-tuning LLMs perform better for detecting DDoS attacks
than conventional machine learning approaches such as MLP, we feed the entire
training dataset to the Ada model for fine-tuning in order to verify how powerful
fine-tuning LLMs are for detecting DDoS attacks with OM-WC architecture.
The result of feeding all samples in the dataset seems promising, which has a
binary accuracy up to 0.98, as well as an F1 score greater than 0.95. The above
results indicate that, by using the same training dataset, i.e. the data including
correlation information for all nodes, fine-tuning LLMs perform better than any
neural network model proposed by A. Hekmati et al. [10].

Fig. 6. Compare incrementally fine-tuned LLMs performance as the number of samples
increases

6 Conclusion

In this exploration into the realm of network security and the potential appli-
cations of large language models (LLMs) for DDoS attack detection, our study
sheds light on the growing complexity of threats that organizations face.

Diving into the nuances of DDoS detection, we detailed methodologies encom-
passing zero-shot, one-shot, and few-shot LLM approaches, along with insights
into the fine-tuning techniques of LLMs. A comparative analysis was drawn
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between traditional multi-layer perceptron (MLP) models and the advanced
capabilities of LLMs, leveraging platforms such as OpenAI’s GPT-3.5, GPT-
4, and Ada models.

By employing two distinct datasets, namely CICIDS 2017 and the Urban IoT
Dataset, our evaluations showed that LLMs, with the right context and training,
could achieve impressive accuracies in DDoS detection. Specifically, using few-
shot methods on the CICIDS 2017 dataset, LLMs approached a 90% accuracy
with merely 10 prompt samples. This surged to around 95% when fine-tuned
with 70 samples. The more challenging Urban IoT Dataset showcased a similar
trend, where aggressive DDoS attacks saw LLMs achieving a 70% accuracy with
few-shot techniques and nearly 96% upon fine-tuning. Compared to traditional
MLP models trained on similar few-shot samples, LLMs consistently showcased
superior performance.

One of the most notable contributions of our study was the capability of
LLMs to articulate the basis behind their DDoS detections, especially in few-shot
learning scenarios. However, it is essential to note their tendency for hallucina-
tion in the case of fine-tuning, indicating that while LLMs promise significant
advances, careful application and ongoing scrutiny are paramount.
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1 Introduction

The data generated by end devices, such as IoT devices, are essential to creat-
ing machine intelligence and actively shaping the world. However, when using a
well-trained machine learning model, one common challenge is domain shift due
to the diverse data distribution. Taking object detection as an example, a model
trained for autonomous driving using data from sunny weather may perform
poorly on foggy or snowy days. Domain adaptation addresses such situations.
Typically, there is ample labeled data from the source domain to train the orig-
inal model (e.g., sunny day object detection) but little labeled data from the
target domain for domain adaptation (e.g., snowy day object detection). Given
the fast-changing machine learning environments and expensive labeling, it is
critical to develop domain adaptation approaches to handle the domain shift
when there is limited labeled data and abundant unlabeled data from the target
domain, i.e., semi-supervised domain adaptation (SSDA).

Prior SSDA efforts are mainly conducted in a centralized manner, requiring
access data from both source and target domains [6,8,33]. However, data in many
fields nowadays is generated by distributed end devices. Given the widespread
impact of recent data breaches [29], end users may become reluctant to share
their local data due to privacy concerns. Although federated learning (FL) [32]
offers a promising way to enable knowledge sharing across end devices without
migrating the private end data to a central server, it is non-trivial to marry exist-
ing SSDA approaches with the FL paradigm. First, data from both the source
and target domains is stored at end devices and cannot be shared in federated
settings, resulting in the ineffectiveness of the existing centralized SSDA. Second,
efficiency has been a well-recognized concern for FL. With distributed data from
both source and target domains, more iterations need to be involved in obtaining
a well-trained target model. Last but not least, the entangled knowledge across
domains may lead to negative transfer [22], which becomes more challenging in
federated settings with unavailable data from source and target domains across
devices.

Enlightened by a popular model fusion approach, knowledge distillation
(KD), that allows knowledge transfer across different models [14], we enable
knowledge transfer between models from different domains without accessing
the original domain data. Specifically, the target model can be learned with the
help of the soft labels that are predictions of target samples by using the source
model. Considering the distributed data from both source and target domains in
federated settings, instead of waiting for a well-trained source model, we propose
a parallel training paradigm to generate soft labels along with the source model
to improve SSDA efficiency. However, due to domain discrepancy, the soft labels
generated from the source model can be different from the ground truth target
labels. Moreover, the soft labels derived at the initial federated training stage
may perform poorly on SSDA. To address the above issues, we intend to align the
source and target domains by adaptively leveraging both soft labels and ground
truth labels. One major challenge here is the limited ground truth target labels in
SSDA. To effectively leverage the few ground truth labels, we balance the knowl-
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edge transferred from the soft and ground truth labels by properly selecting a key
parameter, i.e., the imitation parameter. Inspired by recent multi-task learning
research [21], we control the amount of knowledge transferred from the source
domain by adaptively selecting the imitation parameter based on the stochastic
multi-subgradient descent algorithm (SMSGDA). The adaptively derived imita-
tion parameters can be effectively used to handle multi-source SSDA problems
under federated settings.

By integrating the above ideas, we propose an innovative SSDA approach
for federated settings, named Federated Semi-Supervised Domain Adaptation
(FSSDA). To the best of our knowledge, the research we present here is the first
SSDA approach over distributed and confidential datasets. Our main contribu-
tions are summarized as follows: (i) To achieve SSDA over multiple distributed
and confidential datasets, we propose FSSDA to integrate SSDA and FL, which
enables knowledge transfer between a source domain(s) and target domain by
leveraging domain models rather than original domain data based on strate-
gically designed knowledge distillation techniques. (ii) Considering distributed
data from both source and target domains in federated settings, we develop a
parallel training paradigm to facilitate domain knowledge generation and domain
adaptation concurrently, improving the efficiency of FSSDA. (iii) Due to differ-
ent domain gaps in various SSDA problems, we control the amount of knowl-
edge transferred from different domains to avoid negative transfer, where the
imitation parameter, a key parameter of FSSDA, is properly selected based on
the SMSGDA algorithm. (iv) Extensive experiments are conducted on the office
dataset under both iid and non-iid federated environments. Experimental results
validate the effectiveness and efficiency of the proposed FSSDA approach.

2 Related Work

2.1 Semi-Supervised Domain Adaptation (SSDA)

SSDA intends to address the domain shift when the labeled data from the source
domain is statistically different from the partially labeled data from the target
domain [31]. Classical SSDA exploits the knowledge from the source domain by
mitigating the domain discrepancy [6,8,33]. Daumé et al. [6] proposed to com-
pensate for the domain discrepancy by augmenting the feature space of source
and target data. Donahue et al. [8] solved the domain discrepancy problem by
optimizing the auxiliary constraints on labeled data. Yao et al. [33] proposed
an SDASL framework to learn a subspace that can reduce the data distribu-
tion mismatch. Saito et al. [27] minimize the distance between unlabeled target
samples and class prototypes through minimax training on entropy. Some recent
research proposed adversarial-based methods, such as DANN [12], to adversari-
ally learn discriminative and domain-invariant representations. However, all the
above SSDA research requires access to both source and target domain data.
Although one recent work, GDSDA [2], relaxed the source data requirement, it
is designed to learn a shallow SVM model, and target samples are still required.
Hence, GDSDA is ineffective in deep learning-based SSDA over distributed and
confidential datasets from both source and target domains.
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2.2 Label-Limited Federated Learning (FL)

FL has gained popularity in transferring knowledge across distributed and con-
fidential datasets. Most existing FL focuses on supervised learning with ground-
truth labeled samples at end devices. However, end data is often unlabeled in
practice since annotating requires both time and domain knowledge [35,37].
Some recent research has focused on label-limited FL problems, mainly on semi-
supervised FL and unsupervised domain adaptation (UDA). To handle semi-
supervised FL, Albaseer et al. [1] proposed FedSem by developing distributed
processing schemes based on pseudo-labeling techniques. Similarly, Jeong et
al. [15] introduced the inter-client consistency loss to transfer labeling knowledge
from labeled samples to nearby unlabeled ones with high confidence. Another line
of label-limited FL on UDA problems is more challenging due to data require-
ments in prior centralized UDA research [31]. Peng et al. [23] proposed FADA
to transfer source knowledge across multiple distributed nodes to a target node
by using adversarial approaches. Peterson et al. [24] leveraged a prior domain
expert to guide per-user domain adaptation. Zhuang et al. [38] predicted pseudo
labels using a new clustering algorithm. However, the above UDA research tar-
gets either a single source or target dataset, while our design is under multiple
distributed sources and target datasets for a more general domain adaptation
setting. Moreover, UDA problems assume unknown target labels, making them
ineffective in extracting target knowledge from the target labels in SSDA.

2.3 Knowledge Distillation (KD)

KD was initially proposed to compress a large neural model (teacher) down
to a smaller model (student) [4,14]. Typically, KD compresses the well-trained
teacher model into an empty student model by steering the student’s prediction
towards the teacher’s prediction [25]. Urban et al. [30] used a small network to
simulate the output of large depths using layer-by-layer distillation. Similarly,
[18] used �2 loss to train a compressed student model from a teacher model for
face recognition. Previous works [3,11,34] also show distilling a teacher model
into a student model of the same architecture can improve student over teacher.
Furlanello et al. [11] and Bagherinezhad et al. [3] demonstrated that by training
the student using softmax outputs of the teacher as ground truth over genera-
tions. Some recent works [2,20,36] use KD to address domain adaptation prob-
lems through a teacher-student training strategy: train multiple teacher models
on the source domain and integrate them to train the target student model.
However, the above KD-based domain adaptation research requires access to
either source or target data, which cannot be used to solve SSDA over multiple
distributed and confidential datasets from both source and target domains.

3 Federated Semi-supervised Domain Adaptation

3.1 Problem Statement

As shown in Fig. 1, this work focuses on a typical SSDA problem over distributed
K confidential datasets. Each dataset Dk = {Dk

s ,Dk
t } includes data from two
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Fig. 1. FSSDA overview with three key modules.

domains, which is held by an end device k in a set of K, |K| = K. Specifically,
the source domain data at device k ∈ K is fully labeled and denoted by Dk

s =
(X k

s ,Yk
s ); the target domain data is partially labeled and denoted by Dk

t =
{Dk

tl
,Dk

tu}. In particular, the labeled target data Dk
tl

= (X k
tl
,Yk

tl
) is much less

than the unlabeled target data Dk
tu = (X k

tu). The datasets cannot be shared. The
ultimate goal of this work is to obtain a global target model Wt that performs
well on the distributed target domain data Dt = {Dk

t }k∈K without accessing any
data from both source and target domains D = {Dk}k∈K.

3.2 FSSDA Design

To achieve this goal, we propose Federated Semi-Supervised Domain Adapta-
tion (FSSDA), including three key modules. First, a semi-supervised knowledge
transfer module is developed to integrate SSDA with federated learning. Next,
to improve the efficiency of FSSDA, the parallel training module is proposed to
enable concurrent training between source and target domains. Finally, a key
parameter of FSSDA, i.e., the imitation parameter, is improved through the
imitation parameter selection module to further boost the domain adaptation
along with parallel training. The overall procedures of FSSDA are illustrated in
Algorithm 1. In the following, we elaborate on the key modules of FSSDA design,
respectively.

Semi-supervised Knowledge Transfer. Knowledge distillation (KD) [5,14]
has been a well-known technology to transfer knowledge from one or more mod-
els (teacher) into a new model (student). Typically, the student model is gener-
ated by mimicking the outputs of the teacher model on the same dataset. Note
that the dataset here is not necessarily the one on which the teacher model
was trained, which motivates our design for transferring knowledge in a semi-
supervised manner. In FSSDA, KD is used to exploit the knowledge of unlabeled
target data, where the source model is the teacher and the target model is the
student. Specifically, to enable SSDA, FSSDA assigns each target sample a hard
label yt and a soft label y∗

t . The hard label for a labeled target sample is its
actual label in a one-hot manner. For an unlabeled target sample, we use a “fake
label” strategy that assigns all 0s as the label. Thus, all samples in the target
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Algorithm 1: FSSDA
1 INPUT: for each device k ∈ K, source domain data Dk

s=(X k
s , Yk

s ) of size Nk
s

and target domain data Dk
t ={(X k

tl , Yk
tl), (X k

tu)} of size Nk
t ; the number of

rounds R.
2 OUTPUT: Wt

3 initialize the global source and target model as Ws(0) and Wt(0);

4 initialize the local source and target model as wk
s (0) and wk

t (0) for each device
k ∈ K;

5 for each round r = 1, 2, ...R do
6 for each device k ∈ K do // device source domain update

7 update wk
s using gradient descent.

8 end

9 Ws(r) ← ∑k
i=1

Ni
s

Ns
wi

s(r) // server update

10 for each device k ∈ K do // device target domain update

11 Compute y∗k using equation (1)

12 Calculate λk using equation (4) and Update wk
t using equation (2)

13 end

14 Wt(r) ← ∑k
i=1

Ni
t

Nt
wi

t(r) // server update

15 end

domain have hard labels. It should be mentioned that although the fake label
may introduce some noise, the impact is subtle and controllable. On the one
hand, only one class (the ground truth) will be affected among all classes (e.g.,
31 classes in the office datasets [26]). On the other hand, the noise from hard
labels can be controlled by properly selecting imitation parameters to balance
the uncertainty from both the hard and soft labels. More discussions can be
found in Sect. 15. Similar findings were shown in recent research [2]. Besides, the
soft label of a target sample is derived by the prediction of the source model,
which is a class probability value. By leveraging the source data and the target
data with hard and soft labels, the process of training the target model is as
follows: (i) Train the source model wk

s for device k ∈ K with Dk
s ; (ii) Use the

learned source model to generate the soft label y∗
t for each sample xt ∈ Xt in

the target domain using softmax function σ. The soft label is defined by

y∗
t = σ(Ws(xt)/T ), (1)

where Ws is the global source model by element-wise averaging local source
model wk

s for all device k ∈ K [19], and T is the temperature parameter to
control the smoothness of the soft label. (iii) Train the target model wk

t at
device k using the hard and soft labels for each target data by

arg min
1

Nk
t

Nk
t∑

i=1

[λk�t(yi
t, w

k
t (xi

t)) + (1 − λk)�t(y∗i
t , wk

t (xi
t))], (2)
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where Nk
t denotes the number of target domain samples at device k; �t is the loss

function; wt is the local target model; λk is the imitation parameter for device
k to balance the importance between the hard label yt and the soft label y∗

t .

Parallel Training Between Source and Target. Efficiency has been a well-
known concern in distributed machine learning. Since both source and target
data are distributed across devices, instead of waiting for a well-trained source
model, we propose a parallel training paradigm to accelerate FSSDA. As shown
in Algorithm 1 (line 6–10), each device trains the source and target model simul-
taneously. Although the source model does not perform well in the initial stage, it
still promotes domain alignment and thus accelerates the generation of the target
model. Thus the main purpose of parallel computing is to train the source and
target models simultaneously, speeding up the overall training process. Our par-
allel design is empirically evaluated in the experiment section below. It should be
mentioned that parallel training does not incur additional communication costs
since target model updates can be appended to source updates.

Adaptive Imitation Parameters. Although the semi-supervised knowledge
transfer module integrates SSDA and FL in Sect. 15, FSSDA suffers negative
transfer from the noisy hard and soft labels. Specifically, due to limited labeling
in the target domain (e.g., three labeled samples per class in the experiments),
most hard labels are fake ones with limited ground truth knowledge, which
restricts the domain alignment performance. Besides, the soft labels during par-
allel training upon the above module can be noisy during initial training. Due to
the domain gap between source and target, even the well-trained source model
may generate improper soft labels, and the entangled knowledge learned from
the source may lead to serious negative transfer [22]. These problems become
more challenging in federated settings, where target devices do not have access
to any source domain data. To properly balance the importance between hard
labels and soft labels, we develop an adaptive approach for selecting the imi-
tation parameter λ in (2). Specifically, the imitation parameter controls how
much knowledge can be transferred from the source domain, whose importance
has been shown in prior KD research [9,17]. However, prior research determines
the imitation parameter using either a brute-force search or domain knowledge,
which cannot flexibly handle different domain discrepancies and noisy labels
in FSSDA. Especially under heterogeneous federated settings, end devices have
statistically heterogeneous data (non-iid) for both source and target domains.

To effectively select imitation parameters to adaptively use the noisy soft and
hard labels, we consider problem (1) as a multi-task learning problem, where
the soft loss and hard loss are the two task objectives. Since, in each feder-
ated training iteration, each device holds its own target domain data and the
updated global source model, imitation parameters can be determined indepen-
dently on the device side, which also addresses the data heterogeneity concern
in federated settings. Specifically, we leverage the stochastic multi-subgradient
descent algorithm (SMSGDA) [21], a well-known multi-task learning approach,
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to adaptively select the imitation parameter at each federated iteration for each
individual device. The objective function can be given by

min
λ∈[0,1]

‖λ∇w�t(yt, wt(xt))+(1 − λ)∇w�t(y∗
t , wt(xt))‖2, (3)

where �t is the loss function, yt is the hard label, and y∗
t is the soft label generated

by the source model Ws for the target domain dataset. wt is the local target
model. The analytical solution to the above problem can be given by

λ = ∇w�t(y∗
t , wt(xt))× (∇w�t(y∗

t , wt(xt)) − ∇w�t(yt, wt(xt)))T

‖∇w�t(yt, wt(xt)) − ∇w�t(y∗
t , wt(xt))‖2 , (4)

where λ is clipped between [0,1]. Therefore, each device can efficiently derive its
local imitation parameter with the above closed-form solution.

3.3 FSSDA over Multi-source Domains

This part introduces the extension of the proposed FSSDA to multi-source sce-
narios. When the distributed source data includes multiple source domains, then
it is essential to extract the inter-domain knowledge to align the domain-specific
representations better. Define the total number of source domains by S. Thus,
the overall learning objective at device k ∈ K for S source domains can be
extended from (2) to

arg min
1

Nk
t

Nk
t∑

i=1

[λk
1�t(yi

t, w
k
t (xi

t)) +
S∑

j=1

λk
j+1�t(y

∗ij
t , wk

t (xi
t))], (5)

s.t.
∑

λk
i = 1,

where Nk
t is the total number of data samples in the target domain at device k, wt

is the local target model, y∗ij
t is the soft-label generated by the jth source model

W j
S for local data xi, and λk is the imitation parameter for device k ∈ K. In (5),

imitation parameters are used to control more than two objective functions, i.e.,
in total S + 1 losses, to jointly optimize the target model. Thus, given the new
condition for imitation parameters, problem (5) cannot be solved by the closed-
form solution in (4). We propose to use the Frank-Wolfe-based optimizer to solve
the constrained optimization, which can scale to high-dimensional problems with
low computational overhead [10,28].

4 Experiments

4.1 Experimental Setup

We evaluate our models on the office dataset [26], which is widely used in domain
adaptation. The office dataset includes 3 subsets: Webcam (795 samples) con-
tains images captured by the web camera, Amazon (2, 817 samples) contains
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Table 1. Performance comparison between FSSDA and baseline approaches. Six cases
are considered between Amazon (A), Webcam (W), and DSLR (D).

A → W A → D W → A W → D D → A D → W

SSDAOnly (iid) 66.83% 66.10% 56.98% 75.67% 49.67% 73.37%

FLOnly (iid) 64.08% 70.10% 41.07% 70.10% 41.07% 64.08%

FSSDA (iid) 83.01% 84.94% 66.23% 98.45% 71.39% 97.63%

SSDAOnly (non-iid) 64.81% 59.39% 52.51% 69.80% 46.83% 69.33%

FLOnly (non-iid) 52.47% 63.65% 38.71% 63.65% 38.71% 52.47%

FSSDA (non-iid) 82.15% 82.15% 66.09% 97.20% 69.67% 95.48%

images downloaded from amazon.com, and DSLR (498 samples) contains images
captured by a digital SLR camera, sharing 31 classes. In the following, we use
W, A, and D to represent the above three subsets, respectively.

We consider both iid and non-iid data distributions in federated settings. We
use the distribution-based label imbalance [16] to generate non-iid data distri-
butions, where each end device is allocated a proportion of the samples whose
labels follow Dirichlet distribution. Specifically, we sample pl ∼ DirN (β) and
allocate a pl,k proportion of the instances of class l to each device k. In our
setting, we set the β value as 0.1. Besides, we consider practical SSDA settings,
where limited labeled samples are given in the target domain. In iid and non-iid
settings, only 93 labeled examples (3 per class) are distributed across all the
end devices. We use ResNet-101 [13] for the baseline methods and the proposed
method. All models are pre-trained on ImageNet [7]. The model parameters are
optimized using stochastic gradient descent with a learning rate of 0.001.

For baseline approaches, existing SSDA requires access to data from different
domains, which is ineffective in federated settings. Besides, none of the existing
FL targets SSDA. Hence, to evaluate the proposed FSSDA, we consider two
baseline approaches. (i) SSDAOnly: Without using FL, device local knowledge
cannot be transferred due to privacy concerns. Each device performs SSDA to
generate a local target model with its own data but does not participate in
federated learning. (ii) FLOnly: Without effective SSDA in federated settings,
end devices can only leverage labeled target data to learn the target model
collaboratively. There is no knowledge transfer from the source domain.

4.2 Experimental Results

Effectiveness Evaluation. We consider six cases for domain adaptations
between Amazon, Webcam, and DSLR under both iid and non-iid federated set-
tings. As shown in Table 1, we observe that FSSDA outperforms both SSDAOnly
and FLOnly in all the cases. We get the most promising result in the case of
Webcam to DSLR both in iid and non-iid settings. The SSDAOnly and FLOnly
get around 70%, whereas our proposed FSSDA methods achieve more than
97% accuracy. FLOnly cannot leverage the unlabeled samples, resulting in the
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Fig. 2. Impact of the parallel training module of FSSDA (W → D).

worst performance in most cases. Although SSDAOnly leverages unlabeled tar-
get domains via knowledge transfer, SSDAOnly cannot utilize the shared knowl-
edge from other end-devices, which makes the learning ineffective. Especially
in the non-iid cases, the number of data varies for each end device; the per-
formance degradation of one of the local models affects the aggregated global
model. Both in iid and non-iid settings, DSLR as a target is able to achieve good
performance of over 82% accuracy even when the domain gap is large (A→ D).
Moreover, due to the large domain gap between Webcam/DSLR and Amazon
as well as the limited samples in Webcam/DSLR compared to Amazon, it is
challenging to transfer knowledge to Amazon (W→ A and D→ A). However, we
still achieve better results compared to baselines. SSDAOnly and FLOnly can
only get around 50% accuracy, while the FSSDA can achieve accuracy close to
70%, demonstrating the effectiveness of FSSDA in challenging SSDA scenarios.

Fig. 3. Impacts of imitation parameters for FSSDA with different domain gaps.

Efficiency Evaluation. We compare the parallel training discussed in Sect. 3
with the serial training between the source (Webcam) and target (DSLR) mod-
els, as shown in Fig. 2. In serial training, the target model starts SSDA under



110 M. Das et al.

Fig. 4. FSSDA for multi-source SSDA (Target: Amazon).

federated settings until the source model is converged at around the 40th round.
We observe that parallel training continuously outperforms serial training, which
confirms the source model’s positive impact on SSDA. Compared with serial
training, the convergence rate of parallel training is significantly improved by
around 33%.

Impact of Imitation Parameters. We illustrate the impact of the imitation
parameter on FSSDA by using static and adaptive (SMSGDA) values. In our
design, a large λ indicates learning more knowledge from the target domain
(hard label) and less from the source domain (soft label), and vice versa. We
conduct experiments under two different domain shift scenarios in Fig. 3: the
small domain gap from Webcam to Amazon and the large domain gap from
DSLR to Amazon. We observe that when the domain gap is large (Fig. 3(b)),
at the initial stage, a lower value of the imitation parameter (λ = 0.1) will
speed up the performance of the target model, but at the end, performance
degrades, which shows the impact of negative transfer. Besides, a larger imitation
parameter (λ = 0.9) finally achieves good accuracy but does not converge quickly
compared to our adaptive design. From Fig. 3(a), when the domain gap is small,
the negative transfer will not be significant (λ = 0.1), and thus we can able
to rely more on the source domain. However, the proposed adaptive imitation
parameter scheme is irrespective of the domain difference, which performs well
for both small and large domain shifts. Overall, our adaptive design trains the
target model faster and converges quickly.

Effectiveness Evaluation for Multi-source SSDA. We evaluate the per-
formance of FSSDA under a multi-source scenario. We focus on FSSDA with
Amazon as the target since Amazon has a large domain gap compared to the
other two domains (DSLR and Webcam), which is the most challenging FSSDA
setting under the office dataset. As shown in Fig. 4, multi-source FSSDA out-
performs both single-source results from Webcam and DSLR, which demon-
strates the effectiveness of our FSSDA in multi-source scenarios. Meanwhile,
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multi-source FSSDA further speeds up the overall federated training process to
converge faster.

5 Conclusion

This paper proposed FSSDA to achieve semi-supervised domain adaptation
(SSDA) over multiple distributed and confidential datasets. FSSDA integrates
SSDA with federated learning based on adaptive and controllable knowledge
transfer techniques, which include three key modules: semi-supervised knowl-
edge transfer, parallel training, and adaptive imitation parameter selection.
FSSDA can be used in single- or multiple-source SSDA problems. We empir-
ically explored SSDA performance under iid and non-iid federated settings to
validate the effectiveness and efficiency of our design.
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Abstract. Unmanned Aerial Vehicles (UAVs) have become indispens-
able components in the modern Internet of Things (IoT) ecosystem
and are increasingly popular for various applications, including delivery,
transporting, inspection, and mapping. However, the reliability, secu-
rity, and privacy of UAV devices are among the public’s top concerns
as they operate close to each other and other objects. This paper pro-
poses a LIghtweight Blockchain-based REputation (LIBRE) system to
improve the reliability and performance of a UAV network by monitor-
ing, tracking, and selecting the most appropriate individuals to carry out
tasks. In the LIBRE system, a reputation score is assigned to each newly
registered UAV device with limited network access. Exclusive access is,
therefore, given once the reputation is ascertained based on the behavior
and the feedback given by peer nodes that have interacted with it. An
algorithm was proposed to calculate the reputation score updated in the
Blockchain to provide fairness, immutability, and auditability. A proof-
of-concept prototype of LIBRE system architecture was implemented on
a private Ethereum Blockchain, and the extensive experimental study
has validated the effectiveness of the LIBRE scheme.

Keywords: Unmanned Aerial Vehicles (UAVs) · Reputation System ·
Reliability · Lightweight · Ethereum Blockchain

1 Introduction

From 2018 to 2023, the market of Unmanned Aerial Vehicles (UAVs), which are
also referred to as Drones, has grown from 69 billion dollars to 141 billion dollars
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[13]. Because of many attractive features, drones have been widely adopted for
both civilian and military applications including delivery, transporting, inspec-
tion, surveillance, and mapping [5,7,17]. In particular, data received through the
UAV devices is essential and crucial for carrying out emergency operations [2].
Different from other robotic vehicles, UAVs have demonstrated higher mobil-
ity and adaptivity, which are required for tasks conducted in remote worksites,
inconvenient or hazardous locations, or areas that lack communication infras-
tructure [29], leaving alone the capability of collecting high-quality images for
complex tasks. Essentially, each UAV unit is a complex Internet of Things (IoT)
system, which consists of sensors, antennae, embedded software, and a two-way
communication module. The whole system functions seamlessly to ensure the
Quality of Service (QoS) and the Quality of Experience (QoE) for applications
like remote control and monitoring [9,27].

The proliferation of UAV applications also made UAV networks attractive
targets. The past decades have witnessed variant attacks against UAV systems on
confidentiality, reputation, privacy, security, and reliability [1]. Compared to reg-
ular computers, UAV systems are more vulnerable to physical and cyber threats
due to their constrained computing resources and limited power supply [13]. To
manage behavioral evidence and enforce authorization, an effective access con-
trol layer is required in addition to authentication [4]. During encrypted data
exchange between UAV systems and unauthorized entities, sensitive and pri-
vate information, such as position, payload, and flight time, is made public [11],
making them highly vulnerable to attacks.

The reliability and credibility of UAV networks are of paramount impor-
tance. A reputation system aggregates the interactions among nodes and enables
the establishment of profiles that reflect system-level and individual-level per-
formance [10]. Reputation scores serve as indicators of security, privacy, and
decision-making confidence, providing valuable insights into the level of trustwor-
thiness. Since its introduction as a decentralized and transparent ledger technol-
ogy with characteristics such as audibility, immutability, traceability, and trans-
parency, Blockchain has garnered recognition as a promising solution to enhance
privacy and security in data transmission [6,27]. By incorporating peer-to-peer
and cryptography consensus algorithms, Blockchain has achieved transparency
characteristics between different non-trusted entities [22].

This paper introduces a LIghtweight Blockchain-based REputation (LIBRE)
system to enhance the reliability and performance of UAV networks. LIBRE
achieves this by monitoring, tracking, and selecting the most suitable individuals
for task execution. This protocol effectively eliminates malicious nodes from the
UAV network, allowing the network to reach a consensus when assessing the
overall system reliability [16]. The major contributions are listed below:

– A light-weight reputation system architecture is introduced with the details
of its key components and functionalities;

– A reputation contract to determine malicious or harmful devices that cause
attacks on the system was proposed; and

– A proof-of-concept prototype of LIBRE architecture is implemented and
tested, which validated the proposed architecture.
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The rest of the paper is structured as follows: Sect. 2 provides a concise
overview of the background knowledge and related works on UAV networks and
reputation systems. The proposed LIBRE design rationale and architecture are
presented in Sect. 3, and the experimental results are reported in Sect. 4. Finally,
Sect. 5 concludes the paper with a brief discussion of the ongoing efforts.

2 Background and Related Works

This section provides a brief overview of the background knowledge and related
works on Blockchain networks for UAVs, and the implementation of reputation
systems using different frameworks, models, and consensus protocols.

2.1 Blockchain in UAV Networks

Blockchain is based on a distributed database with a scalable list of data entries.
The information block includes the timestamp, encrypted hash value, and data
transaction from the preceding linked block [21]. In a blockchain network, when
nodes exchange information or assets, they initiate a transaction. The source
node creates a transaction file, which is broadcast to the network or specific
nodes for validation. Validated transactions are grouped into blocks and added
to the blockchain based on the consensus mechanism employed [20]. Numerous
researchers and organizations have contributed to the creation and improvement
of blockchain technology since it was first introduced with Bitcoin. Building
on the outlining of the original concept, there are variant blockchain systems
and versions that have been developed by diverse researchers today. Blockchain
technology has tremendous potential in various fields where trust is essential
between mutually dependent parties. Its applications include not just electronic
cash exchange systems like Bitcoin and Litecoin [3], but also rendering and
enabling secure communication amongst robotic swarm systems or even data
marketplaces [26]. There is sufficient literature that covers the taxonomy on the
use of blockchain for authentication in IoT networks [19] and the challenges of
adopting blockchain in IoT devices alongside some of their solutions to these
challenges [18].

Specifically, the integration of Blockchain technology has proven effective in
mitigating various attacks in UAV systems, including Sybil attacks, Man-in-the-
Middle attacks, jamming, Distributed Denial of Service (DDoS) attacks, and
more [25]. Integrating blockchain enables establishing trust and ensuring data
immutability and transparency within UAV systems. Several studies have high-
lighted the effectiveness of Blockchain in enhancing security and integrity. The
Autonomous Intelligent Robot Agent (AIRA) protocol is introduced to address
the limitations of a centralized system [15]. This protocol utilizes blockchain,
specifically the Ethereum platform, to manage economic interactions in a multi-
agent system. AIRA protocol combines smart contracts, Robot Operating Sys-
tem, InterPlanetary File System for data storage and Docker for virtualization.
Transactions in the system involve both Ethereum tokens and custom tokens
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[15]. The AIRA protocol was implemented in the Drone Employee project,
where UAVs were utilized for navigation, regulatory compliance, and economic
activities. The process involved service requests, smart contract creation, service
acceptance by UAV agents, and approval of air corridors by agent dispatchers
[15].

To address the constraints of IoT devices and support UAV-based applica-
tions to securely and autonomously receive sensor data, a decentralized platform
within the air-to-ground heterogeneous network is suggested [12], which enables
information storage and trading. A novel blockchain architecture is introduced
that effectively addresses computation and storage overhead while maintaining
privacy, security, and lightweight characteristics [12].

The significance of blockchain in the context of UAV-assisted IoT is high-
lighted and a data collection system is proposed in [28], which emphasizes secu-
rity and energy efficiency. Blockchain is introduced as a fundamental compo-
nent that enables UAVs to serve as edge data collection nodes. By leverag-
ing blockchain technology, the UAVs facilitate long-term network access for
IoT devices through regular cruises and recharging [28]. This integration of
blockchain with UAV-assisted IoT showcases the importance of blockchain in
creating a comprehensive framework that incorporates UAV edge computing,
UAV charging, and secure data handling.

Focusing on the common security and privacy concerns in IoT, a framework
is proposed that combines blockchain with IoT to address these issues effectively
[30]. By integrating blockchain technology, the framework offers robust security
and privacy measures, ensuring the integrity of IoT data and supporting vari-
ous functionalities such as authentication and decentralized payment. Potential
solutions are also presented based on blockchain and Ethereum to tackle security
challenges in IoT devices [30], including data sharing, data integrity, authenti-
cation, access control, and privacy. The use of blockchain serves as a promising
solution to enhance the overall security of IoT systems.

Blockchain technology plays a crucial role in addressing the issues associated
with centralized solutions by introducing the UGG/IPP and LPP algorithms for
dynamic encryption [21]. A decentralized architecture is proposed that leveraged
hash functions to enhance storage and processing efficiency utilizing blockchain.
The significance of blockchain in this context lies in its capability to provide
a secure and tamper-resistant framework for storing and managing identities.
The proposed architecture, with its periodic updates and calculation of real
identities, showcased improved system performance, reduced processing time,
and enhanced privacy protection [21].

2.2 Reputation Systems

Trust and reputation systems are critical in a variety of fields, including online
platforms, social networks, and distributed systems. They provide for the evalua-
tion of the trustworthiness and trust of entities such as users, service providers, or
peers based on their previous behavior, interactions, and feedback. Researchers
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have extensively researched the design, analysis, and assessment of trust and rep-
utation systems in journal publications to improve security, minimize assaults,
and improve decision-making processes.

A trust and reputation model is crucial for protecting large distributed sen-
sor networks in IoT/CPS from malicious node attacks. Such a model fosters
collaboration among distributed entities, aids in detecting untrustworthy enti-
ties, and assists in decision-making processes. After thoroughly exploring trust
establishment processes and comparing various methods, a trust and reputation
model called TRM-IoT is designed to promote cooperation among IoT/CPS
network things based on their behaviors [8]. The model’s accuracy, robustness,
and efficiency are validated through extensive simulations, demonstrating its
effectiveness in ensuring reliable and lightweight trust management in IoT/CPS
networks [8].

Researchers also proposed solutions for trust and reputation systems based
on Fog computing [23]. It utilizes Fog nodes to evaluate trust levels among
IoT devices, allowing interactions only with devices that meet a predefined
trust threshold. This evaluation process helps to prevent malicious devices from
impacting the system and compromising the quality of service while also safe-
guarding against various attacks such as Bad Mouthing, On-Off, and Self Pro-
moting attacks [23]. The paper includes simulation results demonstrating the
system’s behavior under these attacks. Additionally, the proposed solution is
well-suited for large-scale IoT systems. A comparison with related works reveals
that the proposed model outperforms previous approaches in terms of its suit-
ability for IoT systems and security.

An event-based reputation model is introduced aimed at filtering false event
messages in a multi-UAV network [14]. The proposed solution recognized two
distinct roles for each event and implemented a dynamic mechanism for role
development, reputation, and evaluation. The mechanism helped to determine
the trustworthiness of incoming messages and prevents the spread of false event
messages among UAVs in the network [14]. By employing this approach, the
system can effectively mitigate the impact of false information and maintain the
reliability of event communication in the multi-UAV environment.

An enhanced condensed hierarchical clustering method was proposed that
utilizes user preference similarity to enhance the accuracy of recommendation
trust [24]. This approach employed a cloud model-based technique to measure
similarities between users and then applied a hierarchical clustering method
to group users into different domains based on their similarities. This process
obtained the final recommendation trust, which includes both intra-domain and
extra-domain recommendation trust [24]. The overall trust in cloud services is
evaluated by considering both direct trust and recommended trust. Through
simulation experiments, the paper validated the accuracy and superiority of
the clustering algorithm. The experimental results demonstrated that the cloud
service selection method enhances transaction success rates and allows users to
choose more satisfactory cloud services.
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3 LIBRE: Rationale and Architecture

Aiming at assurance and reliability of UAV systems, LIBRE leverages reputation
system and Blockchain technology to enhance QoS and security requirements in
drone-based applications, like package delivery, smart surveillance, environment
monitoring, etc. Figure 1 demonstrates the LIBRE system architecture that con-
sists of four sub-systems: i) UAV network; ii) identity authentication; iii) repu-
tation system; and iv) Blockchain fabric.

Fig. 1. LIBRE System Architecture Overview.

3.1 The UAV Network

The UAV network serves as a physical infrastructure for LIBRE system, which
allows UAVs to connect, share data, and carry out specific functions to provide
intelligent air mobility applications. Key components and functions are described
as follows.

– Unmanned Aerial Vehicles: Unmanned Aerial Vehicles (UAVs) also known as
drones are responsible for sensing the environment, collecting data, and com-
municating with ground stations. Unmanned Aerial Vehicles (UAVs) have the
potential to radically improve speed, safety, and integration while completely
transforming communication and transportation networks. Drones are UAVs
that execute activities and services on the network. However, current events
have shown how vulnerable UAVs are to attacks made feasible by faulty or
malicious equipment operating within communication networks. To protect
UAVs in the airspace and lessen the risk of cyber attacks, this emphasizes
the urgent need for cybersecurity measures. Introducing a secure and reliable
networking architecture for UAV data, blockchain is a concept that addresses
this.
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– UAV Service Providers: UAV Service Providers are nodes that provide ser-
vices needed in the system and have the node registered on the network by
interacting with the registration contract. They are responsible for the main-
tenance and operation of the UAVs, as well as the provision of flight services
to users. They are used in making UAVs to perform tasks such as aerial
photography, surveillance, and delivery.

– Ground Stations: The ground stations are the stationary points on the ground
that control the UAVs. They are in charge of delivering commands to the
UAVs, receiving data from them, and providing power to them. The ground
stations serve as control centers for overseeing and directing drone operations
for simplifying data sharing and control centers or communication hubs for
managing and coordinating drone operations.

3.2 UAV Identity Authentication:

This component is in charge of ensuring the authenticity and identity verification
of UAVs in the network. It employs mechanisms to validate the identification of
each UAV, often through digital signatures, cryptographic keys, or other secure
means. Only registered, verified, and authenticated UAVs are able to access the
network and participate in its activities. This authentication mechanism assists
in the prevention of unauthorized access, potential security breaches, and the
involvement of malicious or untrustworthy entities.

3.3 Reputation System

The reputation system is critical to ensuring quick and secure service exchanges
inside the UAV network. Because of their demonstrated track record of depend-
ability and competency, providers with higher reputation scores are most likely
to be preferred for services. By assessing and regulating the dependability and
performance of UAVs, the reputation system is a fundamental component of
the architecture that fosters reliability and accountability among UAV network
members. Its purpose is to evaluate and maintain the reputation of the UAV ser-
vice providers based on their behavior, dependability, and adherence to network
rules. It tracks each UAV’s activities and performance and assigns reputation
ratings based on their actions and results. Provider reputation ratings may reflect
factors such as performance, responsiveness, task completion, interactions, hon-
esty, promptness in executing obligations, and adherence to safety regulations.

3.4 Blockchain

Blockchain is a decentralized network that provides a space where no one
organization has total authority. This enhances the network’s fault tolerance
and resilience since different drones may communicate and cooperate without
depending on a centralized authority. Additionally, blockchain provides trust
and transparency through its transparent and immutable ledger. In a drone net-
work, this ensures secure recording of flight data, including location, altitude,
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and mission parameters. Transparency builds trust among network participants
and safeguards the integrity of the collected data.

3.5 Architecture and Algorithm

Fig. 2. The process of gaining access to a network.

To manage the registration, verification, reputation calculation, and updating
of the reputation scores for service providers in UAV systems, the LIBRE system
architecture was implemented. With Remix IDE using Solidity version 0.8.20,
the solidity code was compiled using Remix VM (Shangbai), and the Reputation
Calculation Equation (Eq. 1) was used in this design to calculate the reputation
score of each device after each successful transaction made by each provider based
on their weight factors, rating and the number of tasks completed. Separate
smart contracts were developed to ensure separate reputation operations for the
UAV providers. For service providers, the ReputationSystem contract maintains
the reputation system and reputation management.
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The ReputationContract contract provides a different approach to determin-
ing reputation, taking into account elements like ratings, tasks completed, and
weight into consideration. Two interfaces were implemented by the smart con-
tracts to outline the functions of each smart contract used. the IReputationSys-
tem which was implemented by the Reputation Contracts, while the IUAVReg-
istration was implemented by the UAVRegistration contracts. The functions of
the smart contracts used for registration, verification and reputation calcula-
tions, and updating in the design are discussed as follows:

UAVRegistration Contract: The reputation system interface (IReputation-
System) is used in the UAVRegistration contract to implement the UAV registra-
tion, and verification, and initiate the reputation score updating process. From
the reputation system contract, an initial UAV’s reputation score is generated.
This smart contract allows the registration of the service provider with a given
specific name using a string parameter representing the UAV to be registered. It
is important to note that an empty name can not be accepted as a specific name
needs to be given to each registered UAV. It also checks if the UAV is registered
or verified by the name and the address used during registration. Once the reg-
istration and verification of the provider are completed, it sets the reputation
score and the prior reputation to zero which is mapped using the name and
address as the key. It returns a boolean output of the verification function to be
true if the UAV device is verified and returns false if not verified. Transactions
can not be done without a complete verification of the UAV device as shown in
Fig. 2.

Reputation Contract: The reputation score of a device can be increased or
decreased, which substantially affects the reputation, trustworthiness and the
scores of the UAV devices either positively or negatively after the Prior Repu-
tation calculation has been calculated as regarded in Eq. (1). Reviews/feedback
are given after each successful transaction based on different metrics, e.g., deliv-
ery level, performance, delivery time, meeting the set rules and regulations, and
reliability while we set our metrics to be timeliness and quality of delivery as
we assume that the quality of the service deliver is assumed to be highly effec-
tive than the timeliness of the delivery, thereby, the weight factor of quality of
delivery and timeliness of delivery is assumed to be 6 and 4 respectively. The
feedback given is based on the rating and weight factors and it is calculated and
updated using the reputation contract. The Reputation Score of each device is
therefore calculated using the equation in Eq. (1) by finding the summation of all
the prior reputation scores as regarded in Eq. (1) and then finding the division
of this sum with the total amount of task it has completed.

PR =
(WQ ∗ RQ) + (WT ∗ RT )

10
(1)
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Algorithm 1. UAVRegistration
1: registered names ← {}
2: verified uavs ← {}
3: procedure registerUAV(name)
4: if name �= None and name /∈ registered names and name /∈ verified uavs

then
5: registered names[name] ← False
6: end if
7: end procedure
8: procedure verifyUAV(name)
9: if name ∈ registered names and name /∈ verified uavs then

10: verified uavs[name] ← True
11: delete registered names[name]
12: end if
13: end procedure
14: function isUAVRegistered(name)
15: return name ∈ registered names
16: end function
17: function isUAVVerified(name)
18: return name ∈ verified uavs
19: end function

RS =
n∑

1

PR

TT
(2)

where:

WQ: the weight factor of Quality of Delivery

RQ: the reputation score of Quality of Delivery

WT : the weight factor of Timeliness

RT : the reputation score of Timeliness

TT : the Total Task Completed

PR: the Prior Reputation

RS: the Reputation Score

A node with a lower reputation score indicates that it has the potential
or has already produced services that cause attacks and harm to the system,
thereby the access of the node or such service provider is revoked to prevent
malicious attacks on the system. A malicious provider can pass through the
registration and verification process without being detected as malicious but
can be detected once service is been rendered on the system. The calculated
reputation score is then updated and saved on the blockchain to ensure the
immutability, transparency, and decentralization of the system.
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Algorithm 2. ReputationContract
1: struct UAV
2: struct Rating
3: mapping(address = UAV)
4: mapping(address = Rating[])
5: public reputationScores;
6: mapping(address = uint256) public priorReputations;
7: constantMAX SCORE = 5;
8: constantMAX RATING = 5;
9: constantMAL THRESHOLD = 2;

10: constantWEIGHT QUALITY = 6;
11: constantWEIGHT TIMELINESS = 4;
12: function submitRating(...)
13: end function
14: function calculateReputationScore(...)
15: end function

4 Experimental Results

4.1 Experimental Setup

The algorithms were tested using multiple scenarios of UAV systems and vari-
ous outputs based on the algorithm provided in Sect. 4. This is done with the
Remix IDE environment, a web-based integrated development environment, that
was employed for writing, testing, and deploying the smart contracts, which
gives valuable logs for checking the status and results of each operation when
debugged. The simulation was done on the Windows 10 operating system.
Python 3 is the programming language employed in this implementation. A
500 GB SSD drive was used to meet storage requirements, ensuring quick access
to data and low latency during operations and a 1 Gbps network link enabled
flawless communication between nodes. Ethereum, a well-known and widely uti-
lized blockchain platform, served as the foundation technology for building and
testing our smart contracts. In order to simulate the real-time interaction inher-
ent to blockchain-based systems, nodes interacted with one another through the
use of smart contracts issued on the Ethereum blockchain. Some of our nodes
served as Service Providers providing UAV services, while others were allocated
specialized duties. Five nodes were selected for the simulation and the reputa-
tion score was computed by taking into account the nodes shown in Fig. 3. The
reputation values for the 5 nodes are calculated using Equations (1) and (2) with
a reputation score of 5 being considered as being reliable and reputation score
below 3 is considered as malicious to the system and sending fake and wrong
messages to the network.

4.2 Results

After implementing the framework, precise results of a node’s reputation are
produced, which may be used to assess whether or not the node is to be trusted.
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According to Fig. 3, Node 1 and Node 2 have a balanced reputation in that they
provide both real and fake services in a balanced manner. Also, Node 3’s repu-
tation is continually being stabilized as a result of its constant genuine service
to the system with a constant rating being given to it. Because of its unreal ser-
vices, Node 5 reputation is continually deteriorating and unreal. However, Node
4 has a fluctuating reputation score as a result of having to deliver both real
and fake services to the system making the curves decrease as well as increase.
The level at which the communications are regarded trustworthy is assumed to
be 3.0, and relevant steps are performed. Devices that have a reputation score
below this limit are deemed untrustworthy and malicious to the system, thereby
they are discarded so as to prevent an attack on the system. Whether the node
is accepted or rejected, the reputation of each node is updated as shown in the
flow chart in Fig. 2. The closest the reputation score is to 5 which is assumed to
be the optimum reputation score, the most trustworthy the device is.

The processing time for registration, verification, and rating process of each
Unmanned Aerial Vehicle are plotted in Fig. 4. The graph shows that the pro-
cessing time of UAVs during registration takes an average of 3 s to be completed
for all the UAVs. This illustrates that differences in UAV models or other param-
eters have no significant effect on the registration process. A constant processing
time suggests that the registration system is well-designed and efficient for the
model. With an average processing time of 3 s, the registration procedure for
all UAVs is fast. An efficient registration system is essential for UAV operations
since it allows for quick deployment and eliminates downtime. It would also be
beneficial to compare the processing times of the verification and rating proce-

Fig. 3. Total task completed versus Reputation score
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Fig. 4. Processing time (second) versus UAVs

dures because they are both consistent and efficient. This can help enhance and
identify possible bottlenecks in UAV operations.

The verification technique takes an average of 2 s for each of the 5 UAVs,
whereas the rating procedure takes 1 s according to Fig. 4. The fact that these
processing times are minimal and quick indicates that the verification and rating
processes are both efficient. The timely completion of these tasks can contribute
to the overall efficiency of UAV operations. When the processing times are com-
pared, we can see that the verification and rating operations are both faster
than the registration process, which takes an average of 3 s. This suggests that
the registration process may be more complicated or include more steps than
verification and rating.

4.3 Discussions

Registration Reputation. The requester node gives feedback on the service
provider nodes it has interacted with. This approach will fail if the service
provider is not registered in the smart contract. Furthermore, the smart con-
tract’s state is restored if the submitted reputation values are outside of the
expected range.

However, if a UAV device has already been registered and verified on the
system, any attempt to register the account again either by its name or by the
address will cause the transaction to be reversed to its initial state while printing
out an error message “UAV is already registered”.



Lightweight Reputation System for UAV Networks 127

When a UAV device with no prior registration history aims at performing
some transactions on the network, a reversion to its initial state occurs indicating
that the UAV has not been registered.

ReputationContract Reputation. The aggregation of the past feedback and
present feedback after being calculated using the reputation calculation was
computed and updated on the Reputation Contract. This node acted in good
behavior by delivering honest and consistent evaluations in the majority of its
reputation score submissions.

Figure 3 shows that after the rating was submitted for each UAV the rep-
utation score was calculated. Plotting the reputation score per total task com-
pleted, it shows the interaction between the service providers after each success-
ful transaction which shows the behaviors of both the malicious devices and the
non-malicious devices.

Challenges of Blockchain on the UAV Network. Integrating blockchain
into UAV networks is still facing many challenges, even if a lightweight-
designed blockchain like Microchain. In ongoing efforts, we continue tailoring
the blockchain to fit in the resource-constrained UAVs from aspects below:
Energy Efficient: UAV networks are resource-constrained devices Blockchain
computational processes are intensive, and a large amount of energy is being
consumed during computations most especially for UAV devices operating in
real-time scenarios leading to the draining of the battery energy as fast as pos-
sible.
Connectivity: Most UAV operations occur in remote areas or hostile environ-
ments. Thereby connection to the blockchain networks in these environments
continuously is challenging which can enhance synchronization issues.
Storage: Resource constraint features of UAV devices make it an issue when
considering the storage of the devices. Having to store blockchain ledger on these
resource-constrained devices is a trade-off and seems impractical as a result of
the limited storage capacity which might hinder the up-to-date update of the
blockchain.
Scalability: As a result of the huge amount of data being sent and received in
a real-time scenario of UAV systems, scalability is a great issue on blockchain
networks because if the transactions load, and may find it hard to handle this
amount of data or load.

5 Conclusions

In this paper, we proposed a LIghtweight Blockchain-based REputation
(LIBRE) system to enhance the reliability and performance of UAV networks.
LIBRE system enables a UAV network to register, verify assignments, and
update the reputation score of a UAV service provider after assessing and observ-
ing its behavior and services provided based on the feedback received. Reputa-
tion scores are calculated using the blockchain-based algorithm that guarantees
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the reliability, immutability, and auditability of the score after being updated.
Based on the output of the reputation score calculated using the Reputation
Calculation Equation, there is either an increase or decrease in the global repu-
tation score which is visible to the public when the calculation and updating has
been done. Based on the reliability, security, and privacy of UAV networks have
been great issues being researched. A blockchain which is a type of lightweight
distributed ledger technology system that uses fewer nodes to ensure faster con-
sensus and transaction processing was implemented in the system as an under-
lying protocol for the reputation system. This lightweight method benefits UAV
systems since it concentrates on systems with fewer resources.
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Abstract. Deploying multiple Unmanned Aerial Systems (UASs) is
beneficial for applications that survey large regions and require cooper-
ative redundancy. Range-only cooperative navigation has been proposed
to enhance positioning precision by exchanging navigation information,
especially in Global Navigation Satellite Systems (GNSS)-denied envi-
ronments. However, existing works do not consider the possible attacks
on range-only positioning in exceptionally adverse environments and do
not investigate the resilience of cooperative navigation. In this paper,
we consider the attacks on range measurements in the context of dis-
tributed range-only positioning using the Extended Kalman Filter (EKF)
and present an anti-attack approach by integrating the Inertial Measure-
ment Units (IMU) with the distributed position estimator. Moreover, this
paper evaluates the resilience of the cooperative navigation system under
Gaussian and non-Gausisian attacks. Extensive simulations on a coop-
erative task for multiple UASs to survey a target area demonstrate that
the range-only positioning by EKF is vulnerable to non-Gaussian attacks
and that the proposed anti-attack approach can detect the attacks with
a high probability and mitigate the performance degradation caused by
attacks.

Keywords: Resilient positioning · range-only positioning · distance
manipulation attacks · cooperative positioning

1 Introduction

Positioning is an essential utility for many cyber-physical system operations such
as smart vehicles and intelligent transportation. The Global Positioning Sys-
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tem (GPS) and other Global Navigation Satellite Systems (GNSS) are accurate
sources for positioning but may be vulnerable to intentional attacks [5,14,15].
There are two main types of attacks for GNSS systems: a) jamming [3] to affect
the availability of the GNSS satellite signals by generating powerful signals in
the GNSS band; and b) spoofing to deceive the GNSS user navigation by trans-
mitting signals that share the same characteristics with the legitimate GNSS
satellite signals [13]. GNSS spoofing can even take over the control of UASs that
rely on GNSS for navigation [20]. To detect attacks, signal processing techniques
based on the characterization of the attacks have been developed by checking
distortions or disruptions of signals [19]. Furthermore, the integration of inde-
pendent measurements and information has been considered for attack detection
by monitoring drifts of the receiver position and/or clock. Moreover, simultane-
ously using complementary strategies has been proposed to compensate for the
weaknesses of an individual attack detection technique that might be exploited
by a sophisticated spoofer.

Other methods to provide security for communications include blockchain
security, data encryption, user authentication, message hiding, and signal analy-
sis. Monitoring the signals analysis can only detect spoofing and cannot correct
the error [24]. A hidden message would require a larger channel capacity and
methods to resolve the true signal [9]. While authentication could be a solution
[26], if the signal is spoofed, it would require protocols that cause timing delays
amongst many sources requiring ID-based signature message recovery [31]. Since
navigation methods like GPS and automatic dependent surveillance-Broadcast
(ADS-B) could add authentication, there are still ways to send incorrect mes-
sages. Encryption is challenging as it is not backward compatible and would
require a fundamental alteration of the signals with standardized approaches
[25]. Currently, there are efforts towards secure distributed edge-based methods
[8] that could use blockchain which is popular for smart sensors [28]. Analysis of
blockchain for avionics shows promise, but increases the message size, reduces
timing, and requires more memory [27], and efforts are underway to make the
system lighter [29]. Hence the only current solution is to have another massage
source such as a designated radar signal that is typically only located at desig-
nated airports. Using another onboard edge sensing source to detect and correct
the spoofing as well as be available for GNSS jamming would provide a practical
solution for continuous navigation.

Range-only positioning provides an alternate source of position estimations
using relative distances to fixed or dynamic beacons [2]. In the case of multi-
ple UASs, cooperative navigation/positioning where individual UASs exchange
information to improve their own position estimation has been developed for
robust positioning [21]. For example, the authors [12] proposed a distributed
consensus-based distributed EKF approach for collaborative relative naviga-
tion. Furthermore, observability for range-only cooperative localization using
extended/unscented Kalman filters (KF) has been established [6] as well as
bearings-only tracking [10]. Trajectory planning for favorable network configu-
ration in terms of optimality measures has been studied to control the statistical
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properties of the localization error [17,30]. However, the existing works do not
consider the attacks on the range sensors or information exchange in adverse
environments which may cause large errors in range measurements besides the
normal measurement noise and thus degrade the positioning performance [22].
Moreover, since the commonly used extended/unscented KF assumes Gaussian
noise for range-only positioning, non-Gaussian attacks may cause severe perfor-
mance degradation and escape attack detections like the innovation testing [1]. In
this paper, we investigate the performance of distributed range-only positioning
systems under both Gaussian and non-Gasussian attacks.

To detect and mitigate the attacks on the range-only positioning, we use iner-
tial measurement units (IMU) as another source of positioning, similar to the
integration of GNSS and IMU for anti-attacks [7,19]. It is noted that dead reck-
oning based on IMU measurements cannot provide precise positioning without an
accurate previously determined position. However, the IMU is less susceptible
to signal/data attacks. Therefore, we can combine the range-only positioning
and IMU to detect attacks. By discarding the attacked UASs, the rest UASs
may still achieve accurate positioning when the unattacked nodes can ensure
the observability of the cooperative positioning system.

The main contribution of this paper lies in presenting a distributed EKF-
based approach integrated with IMU-based positioning for the detection and
mitigation of distance manipulation attacks on the range-only cooperative posi-
tioning of multiple UASs in GNSS-denied environments. The remainder of the
paper is organized as follows: Sect. 2 gives the problem formulation, including the
dynamic models and the preliminaries of the distributed EKF (DEKF); Sect. 3
introduces the distance manipulation attacks and anti-attack approach based
on DEKF and IMU; Sect. 4 provides experimental results; and finally, Sect. 5
summarizes this paper.

2 Problem Formulation

Consider a system of multiple UASs that consist of a leader node N0 and
Ns follower nodes where s = 1, · · · , S; the leader node is hovering at a posi-
tion/maintains high-precision positioning while the follower nodes need to fly
through a potential GPS-denied region towards a target area. Each UAS can
obtain the relative distance to the leader node and the neighboring UASs using
the time of arrival (TOA) mode via a data link during the flight. Moreover, the
data link may be spoofed and transmit misleading range measurements. Addi-
tionally, the UASs can obtain measurements of gyro rate and acceleration from
the onboard low-cost IMU, azimuth from the magnetometer, air speed measured
from a Pitot tube, and height (from the ground) from a baro-altimeter.

The problem addressed in this work is how to design a resilient scheme for
employing the range measurements and internal measurements to achieve an
acceptable estimation of positions in the GPS-denied and/or spoofing environ-
ments, as shown by Fig. 1.
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Fig. 1. Range-only positioning in GPS-denied environments under distance manipula-
tion attacks.

2.1 Dynamic Models and Measurements

Denote x0 as the 3-D coordinates of the leader node. Without loss of generality,
we use a global coordinate/frame without considering the transition from the
local frame to the global frame and x0 = [0, 0, 0]�. The dynamic process and the
local observation of each node i can be described using the following state-space
model:

xi(k + 1) :=
[
xi,1(k + 1) xi,2(k + 1) xi,3(k + 1)

]� (1a)

=

⎡

⎣
xi,1(k)
xi,2(k)
xi,3(k)

⎤

⎦ +

⎡

⎣
ui,1(k)
ui,2(k)
ui,3(k),

⎤

⎦dt + ωi(k), (1b)

yi,j(k) =
√

(xi(k) − xj(k))�(xi(k) − xj(k)) + νi(k), (1c)

i =1, · · · , Ns, j ∈ Ni(k), (1d)

where xi and ui denote the coordinates and velocities of the i-th node, respec-
tively; k ∈ N is the time instant and dt is the time increment; ωi ∈ R

3 is the
process noise with covariance matrix denoted by Q(k); yi,j is the range measure-
ments between node i and j and νi ∈ R

3 is measurement noise with covariance
matrix denoted by R(k) which is assumed to follow normal distribution; Ni is
the set of neighboring nodes for the node i. It is noted that Ni is varying as a
result of the dynamics of UASs. Moreover, the cardinality |Ni| (i.e., the num-
ber of neighbors) is a tuning parameter, which can be determined based on the
verification of the measurement data for resilience.

It is noted that yi,j = yj,i may not hold due to measurement errors. One
approach for positioning is a centralized method, i.e., the follower nodes transmit
the measurements to the leader and the leader uses the extended/unscented
Kalman filter to estimate the positions. However, regardless of the computational
and communication cost, this approach may not work in case parts of the nodes
fail to transmit reliable measurements to the leader node due to interruptions of
communications or spoofing.

Instead, we consider a distributed approach where each follower node uses
the range measurements w.r.t. the leader node and neighboring nodes for posi-
tioning such that an acceptable estimation can still be achieved in case of failures
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of partial nodes. It is assumed that the leader node is far enough away, has anti-
jamming and anti-spoofing extra analytic capabilities, and otherwise is resilient
to attacks. Moreover, the follower node can use internal measurements and pre-
vious estimations for positioning when attacks are detected and reliable range
measurements are not available.

2.2 Distributed Extended Kalman Filter

Range-only positioning requires a nonlinear state estimator due to the nonlin-
earity of Eq. (1c). EKF is an efficient approach for nonlinear state estimation. In
particular, the EKF linearizes the nonlinear measurement and/or state transition
functions using the first-order Taylor series at the current best state estimate
for filtering and predictions of states. Specifically, the linearized model at time
instant k is

x(k + 1) = F (k)x(k) + G(k)ω(k) + u(k), (2a)
ȳ(k) ≈ H(k)x(k) + ν(k), (2b)

where x = [x�
1 , · · · , x�

S ]� represents the augmented states that consist of the
states of all the follower nodes, F (k) = ∂f

∂x |x̂(k|k−1) with x(k + 1) = f(x(k)) +
G(k)ω(k)+u(k) denoting the state transition function; H(k) = ∂h

∂x |x̂(k|k−1) with
y = h(x) denoting the nonlinear measurement functions; ȳ(k) = y(k)−h(x̂(k|k−
1)) + H(k)x̂(k|k − 1). Then, at time instant k, the correct step based on the
measurements is

P (k|k) = (P−1(k|k − 1) + H�(k)R−1(k)H(k))−1, (3a)

x̂(k|k) = x̂(k|k − 1) + P (k|k)H�(k)R−1(k) (ȳ(k) − H(k)x̂(k|k − 1)) ; (3b)

the prediction step is

x̂(k + 1|k) = f(x̂(k|k)), (4a)

P (k + 1|k) = F (k)P (k|k)F�(k) + G(k)Q(k)G�(k). (4b)

Instead, the distributed EKF uses the local measurements for correction and
prediction and obtains an accurate estimate of the entire system state variables
based on consensus [4]. In particular, the consensus-based correct step [23] for
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the i-th node in a network of homogeneous nodes is

x̂l
i(k|k) =

(
1

N+
s

P−1
i (k|k − 1) + H�

i (k)R−1
i (k)Hi(k)

|N+
i |
μ

I

)−1

·
[
H�

i (k)R−1
i (k)ȳi(k) +

1
N+

s
P−1

i (k|k − 1)x̂i(k|k − 1)+

∑

j∈N+
i

(
zj(k)l−1

μ
+ λl−1

ij

) ]
(5a)

zi(k)l =
μ

|N+
i |

∑

j∈N+
i

(
1
μ
x̂l

j(k|k) − λl−1
ji

)
, (5b)

λl
ij = λl−1

ij − 1
μ

(
x̂l

i(k) − zl
j(k)

)
, (5c)

∀ i = 1, · · · , Ns, j ∈ N+
i , l = 1, · · · , L (5d)

where x̂l
i is Node i’s estimate of x using local Pi,Hi, and Ri at Node i for the

l-th iteration, and Pi(0|0) = P0; zl
i is the auxiliary variable with initialization

z0i (k) = x̂i(k|k − 1), λl
i,j is the Lagrange multiplier with initialization λ0

i,j = 0,
and μ is a scalar penalty parameter; zj , x̂j , j ∈ Ni are transmitted from the
|Nj | nearest neighbors of Node i based on the noisy range measurements; N+

s =
Ns + 1, and N+

i = Ni ∪ {i}; the correction of the covariance matrix is

Pi(k|k) =

(

P−1
i (k|k − 1) +

Ns∑

i=1

H�
i (k)R−1

i (k)Hi(k)

)−1

; (6)

The prediction step for the i-th node is

x̂i(k + 1|k) = f(x̂i(k|k)), (7a)

Pi(k + 1|k) = Fi(k)Pi(k|k)F�
i (k) + G(k)Q(k)G�(k). (7b)

The main advantage of the DEKF approach is that it can reduce the compu-
tational burden and communication overhead as compared to a centralized app-
roach. The DEKF can be more scalable and robust versus a centralized (CEKF),
especially in systems with a large number of sensors distributed across different
locations and limited, unreliable, or costly communication between nodes.

3 Distance Manipulation Attacks

In this section, we introduce the distance manipulation attacks on the range-only
cooperative positioning and present the proposed approaches to detecting and
preventing the attacks.
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3.1 Attacks on Range Measurements

The demand for ranging information is increasing for autonomous and cyber-
physical systems in various applications such as positioning and navigation,
which makes it a target of attackers with different motivations. Existing rang-
ing systems such as ultra-wideband (UWB) ranging systems are vulnerable to
distance manipulation attacks. Distance manipulation attacks can be performed
by manipulating the logical or physical layer. Logical-layer attacks manipulate
message bits while physical-layer attacks involve manipulating signal character-
istics to incorrectly measure the signal’s phase, amplitude, frequency, or arrival
time [22]. Additionally, distance manipulation attacks can be divided into dis-
tance reduction and enlargement attacks. An attacker may reduce the measured
distance by manipulating the time of arrival (ToA) estimation of the pream-
ble (via cicada attack [18] ) and the payload (via Early Detect Late Commit
(ED/LC) attack) [11] and enlarge the measured distance by preventing legiti-
mate payload detection by increasing the bit error by adding noise in the channel
or canceling some of the pulses. The availability of affordable radio devices like
the software-defined radio has opened up vast possibilities for cybersecurity and
infosec professionals to explore radio frequency (RF) communication and control
devices, enabling them to delve into hacking in this domain.

In the case of range-only positioning, we consider the distance manipula-
tion attacks introducing extra range measurement disturbances. Specifically, the
attacked range measurements

ỹi,j(k) =
{

yi,j(k) + bi,j(k), i ∈ AV (k), k ∈ AT

yi,j(k) otherwise , (8)

where bi,j(k) denotes the modification of Node i’s measurement of the range
between Node i and j at time k; AV (k) is the set of attacked nodes and AT

is the set of attacked time steps. Then, the centralized/distributed EKF use
ỹi,j(k) at each time step to correct positioning estimation, which may cause
large deviations from the real positioning.

3.2 Attack Detection and Mitigation

Using alternative positioning sources is a common strategy to detect and mitigate
attacks. In addition to the range measurements, IMU measurements can be used
for positioning. In particular, the raw IMU measurements can be utilized to
calculate position relative to a global reference frame via a method known as dead
reckoning. Using a previously determined position, dead reckoning can provide
an accurate current position by x̂(k) = x̂(k − 1) + δx̂(k − 1) where δx̂ denotes
the displacement computed by the data of IMU sensors. Moreover, the IMU is
less vulnerable to attacks than range-only positioning for which communications
between nodes are required. However, dead reckoning is subject to cumulative
errors over time and causes significant drifts over great distances.

For attack detection of GNSS and IMU, innovation testing [1] is widely used.
However, the EKF may mitigate the effects of attacks such that the differences
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between the position estimates of range and IMU measurements are unreliable
for detecting attacks on range measurements. In consequence, accumulating the
faults within a time window is needed to detect the slowly drifting faults intro-
duced by GNSS spoofing attacks [16], which may disable the in-time detection
and mitigation of attacks. Instead, we use the differences between the range mea-
surements and the range estimates based on the IMU measurements to detect
the attacks, as the dead reckoning can maintain high accuracy for a short period
and is less vulnerable to communication attacks. In particular,

1a
i (k) =

{
1, if ∃j s.t. |ŷi,j(k) − yi,j(k)| > γ
0 otherwise (9)

where 1a
i indicates whether the i-th node is attacked and γ is a predefined

threshold and ŷi,j(k) is the range estimates between Node i and Node j based on
the IMU measurements. It is noted that there can be detection errors including
false alarms and mis-detections.

Then, we combine range-based positioning and dead reckoning of IMU to
enhance the resilience of the positioning system. In particular, we use the range-
only positioning in the normal environment and IMU when attacks occur. To
avoid the drifts of IMU-based positioning, the IMU is calibrated using the range-
only positioning at a predefined frequency, when no attacks are detected. How-
ever, the IMU will not be calibrated once the attacks are detected, and dead
reckoning will be used for positioning until the attack alarms cease. The dif-
ference between the range measurements and estimates will be monitored in
real-time to detect attacks.

Furthermore, we consider two cases of reducing performance degradation
when the attacks are detected. First, when the number of unattacked nodes based
on the detection is greater than the number of nodes required for distributed
EKF, the information from the attacked nodes will be discarded to prevent the
adverse effects of incorrect measurements. The second case is when the number
of unattacked nodes is less than the number of nodes required for DEKF, the
attacked nodes use the IMU-based position estimates as their position estimates.
Additionally, the procedures for attack detection and mitigation are summarized
in Algorithm 1.

4 Experimental Results and Validation

4.1 Scenario Description

Table 1. Specifications of the UVA

Cruising Speed Range Endurance Height Field of View

30 km/h 10 km 1–1.5 h 0.15 km 31.5◦–6.7◦
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Algorithm 1. Detecting and Mitigating Distance Manipulation Attacks
Input: S: number of follower nodes; x(0): initial positions; xtarget: target coordi-
nates; ε: target radius; P̂i(0), initial estimate of state covariance matrix; Q: process
noise covariance matrix; R: measurement noise covariance matrix; |Ni|: the number
of neighboring nodes for Node i; NDEKF: the number of neighboring nodes required
for DEKF; T : maximum time step.
Output: xi(k), i = 1, · · · , S, k = 0, · · · , T .

1: Initialization: k = 0, 1IMU = False � 1IMU = False if calibrating IMU with the
range-only positioning, and 1IMU = True otherwise.

2: while maxi ‖xi(k) − xtarget‖ > ε and k < T do
3: Initialize N a(k) = ∅ at time instant k � N a(k): the set of attacked nodes.
4: for i ←− 1 to S do
5: Compute and apply control input ui(k) based on x̂i(k)
6: Obtain range and IMU measurements
7: if 1IMU then
8: Obtain IMU-based position estimates x̂IMU

i (k) using x̂IMU
i (k − 1)

9: else
10: Obtain IMU-based position estimates x̂IMU

i (k) using x̂i(k − 1)
11: end if
12: Obtaining IMU-based distance estimates based on x̂IMU

i (k)
13: if 1a

i then � Attack detection by Eq. (9).
14: Na(k) = Na(k) ∪ {i}
15: 1IMU = True
16: else
17: 1IMU = False
18: end if
19: end for
20: if |N ā(k)| ≥ NDEKF then � |N ā(k)|: the number of unattacked nodes.
21: for i ←− 1 to S do
22: Estimate x̂i(k) using the DEKF with N ā

i ∩ Ni

23: end for
24: else
25: for i ←− 1 to S do
26: x̂i(k) = x̂IMU

i (k)
27: end for
28: end if
29: k ←− k + 1
30: end while

We assume each UAS to be a point UAS and that there are no kinematic
restrictions on a UAS’s movement, similar to [17]. The UAV specifications1 are
summarized in Table 1. The leader node stays at x0 = [0 0 0]�(m). The initial
positions of the follower nodes xi(0) = [xi,1(0) xi,2(0) xi,3(0)]�+[0 0 150]� where
xi,j(0) are randomly drawn from the normal distribution N (0, 0.1). The target
is xtarget = [5000 5000 150]�(m). There are S2 range measurements, including

1 We refer to Raven� B RQ-11 at https://www.avinc.com/images/uploads/
product docs/Raven Datasheet 05 220825.pdf for the specifications.

https://www.avinc.com/images/uploads/product_docs/Raven_Datasheet_05_220825.pdf
https://www.avinc.com/images/uploads/product_docs/Raven_Datasheet_05_220825.pdf
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the measurements between the leader node and follower nodes and between each
two follower nodes. Each node adjusts the control inputs ui by

ui(k) =
x̂i(k|k) − xtarget

‖x̂i(k|k) − xtarget‖2 × 8 (m/s), (10)

where x̂i(k|k) is the position estimate at time k based on the measurements
and ‖ · ‖2 denotes the Euclidean norm. dt = 9 s. The covariance matrix R
of the measurement noises is diagonal and R = diag([σ1,0, · · · , σS,S−1]) where
σi,j denotes the standard deviation of the noise for node i’s range measurement
w.r.t. node j. A follower node finishes the task if ‖xi(k) − xtarget‖ ≤ 16 (m).
The maximal time steps for the task is 100. Additionally, the process noise is
not considered.

Moreover, spoofing can take place on the data during the flights. To thor-
oughly test the performance of the range-only cooperative positioning and
anti-attack techniques under various types of attacks, we consider both (1)
non-Gaussian attacks which add a fixed ya to the measurements of the |AV |
attacked follower nodes with a probability pa during the attack period from
time step 21 to 30; and (2) Gaussian attacks which add i.i.d. Gaussian noise
with ya ∼ N (0, σa) to the measurements of the |AV | attacked follower nodes
during the attack period. The non-Gaussian attacks are supposed to cause more
performance degradation and bring more challenges for anti-attacks than the
Gaussian attacks, as the EKF assumes Gaussian process and measurement noise.
Furthermore, since we assume homogeneous follower UAV nodes, the attacked
UAV nodes are randomly selected given a number of attacked nodes.

We use a measurement-level simulator which is sufficient for attack detec-
tion and impact moderation of spoofing. To evaluate the range-only positioning
approach, we use the average estimation errors computed by

ē =
1
M

M∑

l=1

1
S

S∑

i=1

1
K

K∑

k=1

∥
∥
∥x̂

(l)
i (k|k) − x

(l)
i (k)

∥
∥
∥
2
, (11)

where M is the number of Monte Carlo (MC) simulations, and K is the number
of time steps for the i-th node. Moreover, we evaluate the success rate which is
defined as the ratio of the number of follower nodes that reach the target area
over the total number of follower nodes in a simulation, and the average success
rate is the average of the success rates of M MC simulations.

4.2 Performance of Centralized EKF

The Centralized EKF (CEKF) requires the follower nodes to send their range
measurements to the leader node to estimate the positions of all the nodes.
Then, the leader node sends the position estimates to the follower nodes. In the
experiments, we assume the timing is synchronized for all the nodes and omit
the processing and communicating time to focus on the positioning problem.
First, we evaluate the performance of CEKF for different numbers of follower
nodes and different σν ’s.
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Fig. 2. The performance of CEKF for different numbers of follower nodes.

Results. Figure 2 shows the results of evaluating CEKF. The average estimation
errors decrease as the number of follower nodes increases and increase as the
standard deviation of the measurement noise increases. All the follower nodes
fulfilled the tasks for different measurement noises when no attacks took place,
which demonstrates the good performance of CEKF when its assumptions are
satisfied.

4.3 Performance of Distributed EKF

The distributed EKF (DEKF) requires each follower node to estimate positions
based on the consensus with the neighboring follower nodes. In particular, Node
i needs to update and transmit x̂l

i(k|k) and zl
i(k|k), l = 1, · · · , L for consensus.

We consider S = 10 for the following simulations. The parameters for consensus
in (5) are determined as L = 40,μ = 0.1. We assume all the follower nodes can
maintain the range measurements w.r.t. the leader node. First, we evaluate the
performance of the DEKF using different numbers of neighboring nodes.
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Fig. 3. The performance of DEKF for different numbers of neighboring nodes.

Results. Figure 3 shows the results of evaluating DEKF. The average estima-
tion errors decrease as the number of neighboring follower nodes increases and
are smaller than those of CEKF when the number of neighboring nodes is greater
than 3. All the follower nodes fulfilled the tasks for different measurement noises
when no attacks took place, which demonstrates that DEKF can achieve accept-
able precision without using all the measurements as CEKF.

4.4 Resilience Against Attacks

In this subsection, we evaluate the performance of range-only positioning under
attacks. First, we evaluate the performance degradation under different realiza-
tions of attacks and show the performance of dead reckoning using IMU. Then,
we validate the proposed attack detection and mitigation approach. Additionally,
the number of neighboring follower nodes for the experiments in this subsection
was set to 4 which is sufficient for DEKF to achieve comparable precision with
CEKF based on the results in Sect. 4.3 (Fig. 4).
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Fig. 4. The comparison between the performance of CEKF and DEKF under attacks.

Performance Under Attacks. As the number of attacked follower nodes
increases, the average estimation errors increase. Non-Gaussian attacks cause
more significant decreases in performance. The differences between the average
estimation errors of CEKF and DEKF were not significant. However, CEKF
achieved higher average success rates than DEKF without anti-attack tech-
niques.

Performance of Dead Reckoning. Since the considered attacks only impact
the range measurements, the IMU will not be affected but still suffer from the
drifts by dead reckoning. For simulations, we assume that the velocity esti-
mated from the IMU measurements suffers from an additive Gaussian noise with
σIMU = 0.1(m/s). The red line with downward-pointing triangle marks in Fig. 5
shows the average estimation errors over time using only IMU in one simulation.
The average estimation errors at a time step are the average of the estimation
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Fig. 5. The average estimation errors over time using only IMU for positioning.

errors of the 10 follower nodes at that time step. Additionally, the black line with
the square marks shows the result of DEKF without using the anti-attack tech-
nique in one simulation under non-Gaussian attacks with ya = 48 and |AV | = 5.
10 follower nodes finished the task using DEKF in that simulation.

Performance of the Anti-attack Approach. Figure 6 shows the validation
results of the anti-attack approach. We evaluated the detection errors of the
proposed attack detection approach. The detection error is the number of false
detections (including false positives and false negatives) in a simulation and the
average detection errors are the average of the detection errors of M simulations.
The average detection errors for Gaussian attacks were larger than those of
non-Gaussian attacks. The proposed detection approach correctly detected the
attacked nodes with a high probability (that is greater than 0.94 for all the
attacks), selected the unattacked neighboring nodes for consensus-based DEKF,
and achieved similar performance to the CEKF without attacks (black lines with
square marks).
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Fig. 6. Validation results of the anti-attack approach.
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5 Concluding Remarks

This paper presented a DEKF approach to detecting and mitigating distance
manipulation attacks on range-only positioning of multiple smart UASs with
IMU-based positioning. In particular, both Gaussian and non-Gaussian types
of attacks were considered. The attacks were detected based on the differences
between the IMU-based distance estimates and the range measurements and
the UAS exchanged information with adjacent UASs that were free of attacks
to enhance positioning precision. Experiments demonstrated that DEKF were
more robust to attacks than CEKF and using the anti-attack approach based
on DEKF and IMU further reduced the positioning errors and improved the
probability of fulfilling tasks.

In future works, we will consider other types of distance manipulation attacks
and enhance the attack detection and mitigation performance by statistical anal-
ysis and machine learning algorithms.
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Abstract. The integration of artificial intelligence, especially large lan-
guage models in robotics, has led to rapid advancements in the field. We
are now observing an unprecedented surge in the use of robots in our
daily lives. The development and continual improvements of robots are
moving at an astonishing pace. Although these remarkable improvements
facilitate and enhance our lives, several security and privacy concerns
have not been resolved yet. Therefore, it has become crucial to address
the privacy and security threats of robotic systems while improving our
experiences. In this paper, we aim to present existing applications and
threats of robotics, anticipated future evolution, and the security and
privacy issues they may imply. We present a series of open questions for
researchers and practitioners to explore further.

Keywords: Robotics · Security · Privacy · Artificial Intelligence ·
Autonomous Device · Risk Analysis

1 Introduction

The twenty-first century is witnessing an unprecedented increase in the evo-
lution and utilization of robots. With the upcoming Industry 4.0 revolution,
we are approaching the era of robotics [39]. Currently, robotic systems play an
important role, from performing medical procedures to serving as salespeople
in shopping centers. Robots are now even replacing human companions. This
remarkable growth, from a simple machine to an autonomous humanoid robot,
has become possible because of the advancement of Artificial Intelligence, Nat-
ural Language Processing, Sensor Technology, and Processing Power.

To employ automation in work, different types of robots are used, designed
to suit the specific nature of the work. We can categorize three general types
of robots, i.e., Industrial Robots, Service Robots, and Specialized Robots [23].
Nowadays, these robots perform multipurpose applications seamlessly alongside
humans in industries as well as at home. They handle heavy, mundane tasks for
humans effortlessly. Additionally, they are becoming reliable in specialized tasks
like healthcare assistance, surveillance, space exploration, rescue missions, etc.
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Robots are also helping as nurses or companions for older people. The vehicle
industry is being revolutionized by the uprising of autonomous vehicles. All these
advancements illustrate the prospect of reducing the gap between science fiction
and reality.

As we embrace the help of robots in our daily lives, it may not be very
long before these intelligent machines start to co-exist with us in society in
every sector. Robotic help can undoubtedly simplify our lives, but it comes with
potential privacy and security risks to our personal and social lives. Therefore,
it is imperative to develop methods to prevent different kinds of privacy and
security threats of robots to humans. Existing versions of robots are not free
from threats, thereby indicating that future versions are unlikely to be different.
There are several questions concerning privacy and security that a robot must
answer before we may consider it to be safe to release in society. If we do not
ensure that robots’ mechanisms can answer these questions, we might have to
reassess the deployment of robot among humans due to the inherent risk it poses
to human life. In this paper, we explore a few of these questions.

In the following sections of this paper, we will address the growth of robotic
advancement and several privacy and security-related questions that need our
attention.

2 Literature Review

The proliferation of Robots is accelerating rapidly in our daily lives, and with it
comes a rise in potential dangers. From the beginning of the use of robots, back
in 1979, the first death induced by an industrial robot has been recorded [53].
After that, several deaths and injuries were caused by robots [25]. Even though
robot R&D companies are trying to implement policies for secure interaction
between humans and robots, new threats arise with the development of new
robot technologies.

Today, Robots are serving in many roles, such as security guards, salespeople,
helping hands at home, nurses, etc. In emergency situations, humans might not
follow the instructions of robots acting as security guards [2]. An open question
is: What would happen if people refused to take commands from robots? Will
the robot force humans or let them pass? Trust has not yet been fully established
for robot services. People are concerned about their security; They are skeptical
about letting unknown robots into their living spaces [8]. Trust also depends on
the appearance of robots; in some cases, people may feel threatened by humanoid
robots that perform better than them at work [57].

Robots are vulnerable to various forms of cyberattacks. Clark et al. present
different cyber attack scenarios [11], for example, buffer overflow attacks to take
control over companion robots, attacks on automated vehicles during firmware
updates by pushing corrupted updates, hardware backdoor attacks on mili-
tary drones, etc. Additionally, researchers show a comprehensive view of several
cybersecurity issues such as malware, Trojan, replay attacks, fault injection,
tampering attacks, etc. [28,54,58].
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Automated vehicles can be one of the targets of attackers. The attackers may
use jamming, high-brightness Infrared LEDs, Digital Radio Frequency Memory
(DRFM), etc. [40], to provide false navigation data. Additionally, autonomous
vehicles are generally connected to users’ smartphones. Sugawara et al. [46] pre-
sented an audio injection attack on the voice-controlled smartphone system con-
nected to automated Tesla and Ford cars. In addition, the classification system
of autonomous vehicles is at risk of potential attack. The work in [15,31] demon-
strated that a simple perturbation of the traffic signal could make the CNN
classification model misidentify the signal. This attack poses significant secu-
rity risks and can potentially cause chaos on roadways. Unmanned Automated
Vehicles (UAVs), such as drones and rovers, are also in danger of being attacked.
Dash et al. [13] demonstrated three attacks on UAVs protected by control invari-
ants (CI) [10] and the extended Kalman filter (EKF) [9]. The authors designed
the attacks on UAVs by injecting minor false data into the control system, which
caused the automated vehicle to change its position and angular orientations,
injecting time delays to make the UAV receive commands late, and lastly, inject-
ing malicious code to switch the mode of the UAVs. In [50], Tu et al. presented
two attacks (i.e., Side Swing [22], and DoS [21]) to cyber-physical systems, and
they manipulated two automatic self-balancing robots by spoofing embedded
Micro Electro Mechanical Systems (MEMS) inertial sensors.

Telerobots [38] come in handy in medical surgery, military operations, and
rescue missions. In [5,7], the authors elaborated that telerobots are vulnerable to
common cyber attacks such as viruses, worms, and malware. They also mention
security threats such as command manipulation, denial of service, and commu-
nication loss. Recently, several medical centers have filed lawsuits against Intu-
itive Surgical, a surgical robot manufacturer, alleging that they were coerced into
signing restrictive repair contracts, forcing them to buy new parts from the afore-
mentioned company [42]. An operation had to be postponed due to the usage
of third-party repair. This incident adds another dimension to the challenges of
surgical robots. Shah et al. [44] demonstrated a successful side-channel attack-
Fingeprint on surgical robots. Besides, other potential side-channel attacks on
robots are Radio-frequency attacks [45] and cache-based attacks on automated
vehicles [32].

Lutz et al. [33] observed robot usage from a different perspective, implying
that social robots might affect the psychological and social privacy of human
beings. Van et al. [17] express their concern about whether we are compromis-
ing privacy in exchange for robotic services. The Guardian reported [18] about
wifi-enabled Barbie dolls, which can be hacked and turned into a surveillance
device to spy and collect information without anyone’s knowledge. Robots are
also becoming companions of humans, sometimes as caregivers. However, some
authors are concerned about ethical issues. For example, the authors fear that
companion robots might create a hallucinatory reality for some people [6].
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3 Future Evolution and Security Questions

Robots are evolving and becoming more intelligent, precise, and human-like.
Understandably, people are apprehensive about whether robots are going to be
a threat to our lives, as depicted in science fiction movies. We are going to
elaborate on some sectors for possible futuristic advancements in robots and the
privacy and security questions that come with them.

– Cyber Security: Robots are now connected to wired and wireless net-
works for smooth data exchange and communication like any other device.
However, robots have a lot of security issues, such as lack of authorization,
authentication, secure network, tamper-resistant hardware, privacy, integrity,
etc. [54]. Robotic networks and computer networks are different in nature; the
same countermeasures in general computers may not work on robotics net-
works [52]. Robotic Operating System (ROS) is also becoming popular among
developers. Nevertheless, ROS is vulnerable to attacks such as DoS, DDoS
attacks, malware, buffer overflow, malicious code injection attacks, etc. [11].

Ransomware is another concern for robot users. In [34], Mayoral-Vilches et
al. show a ransomware attack-Akerbeltz on industrial robots, which locks and
encrypts the robot from its vendor network. The attack was carried out by
simply connecting a USB device to the robot or remotely accessing the adja-
cent network. Furthermore, another ransomware attack was demonstrated on
a SoftBank Robotics NAO humanoid robot [29].

Open Question 1: Is there a way to identify security vulnerabilities
early in robots? Is the robotic system software updated, or are security
patches issued promptly?

– IoT Connections: Robots are now becoming part of IoT and intercon-
necting with other devices. In homes, industries, and offices, it is common
to connect robots with home assistants, smartphones, and TVs. Consider
a scenario where an industrial robot integrates with other devices within a
multi-purpose company. If an unauthorized user takes control of the robot,
the whole system will be compromised. The attacker can take control of other
devices and perform dangerous tasks. For example, this security breach may
lead to injury, financial damage, and data theft. Thus, it is necessary to secure
the additional mobile attack interface - robots. Another scenario is depicted
by Amoozadeh et al. [4], where each vehicle receives beacon messages from the
immediately preceding vehicle using the IEEE 802.11p protocol. The authors
demonstrated security (e.g., message falsification attack, spoofing attack, dis-
tributed DoS, Radio jamming, etc.), system-level attacks (e.g., hardware or
software tempering), and privacy attacks (e.g., eavesdropping attack) on dif-
ferent layers of automated vehicle networks. A compromised network of vehi-
cles can endanger passengers in all connected vehicles. Moreover, the attacker
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can evade privacy by leaking personal information such as vehicle identity,
current vehicle position, speed, and acceleration.

Open Question 2: How can the robot immediately detect and
respond to a security breach? Can the robot alert the administrator
about the intruder?

– Mutual Authentication: Authentication has become one of the main con-
cerns in robotics. Mutual authentication is necessary to establish secure com-
munication between robots and humans. Several works have been done to
authenticate users, such as face recognition, voice recognition [52], behavior-
based recognition [3] etc. However, as we are employing an increasing number
of robots in our work, the robots’ identities need to be verified as well. Some
delivery robots [26,43,48] use OTP (One-Time Password) or mobile applica-
tions on users’ smartphones to authenticate to the user. But these methods
are insufficient because they are susceptible to attacks [36]. Adi et al. pro-
posed an unclonable identity for robots based on the work [1]. This identity
will be unique to human DNA. However, this process is complex, expensive,
and not feasible for mass production. Later, Gavrilova et al. [16] presented an
idea to use biometric principles (e.g., physical and behavioral characteristics)
to recognize and authenticate virtual avatars.

Open Question 3: Is it possible to assign unique biometrics for robot
authentication?

– Autonomous Robot: The current generation of robots is not fully autono-
mous; they depend on pre-programmed commands. However, several initia-
tives are underway to extend the perimeter and allow robots to have auton-
omy to some extent, e.g., unmanned vehicles, Tesla bot [49].

Military services are also trying to utilize autonomous robots in war, spying,
bomb defusal, and other dangerous jobs. However, the use of robots at war is
a controversial topic, as it can violate international Humanitarian law [47].
The question arises with the Robot at war, what happens when an order
contradicts the war robot ’s system. For example, if a robot receives an order to
attack a house, the robot detects with sensors that the house is full of children.
The order contradicts the robot’s system in minimizing civilian casualties.
Should the robot be allowed to have an awareness of these types of situations,
or should the order override the robot’s system [30]?

Open Question 4: What if autonomous robots start to make deci-
sions or refuse orders that might cause harm to humans, like kicking
back a human who kicks it?
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– Robot Learning: Robot Learning [12] is popular for teaching robots without
programming every movement explicitly. Robots can learn from demonstra-
tions, teleoperations, or observation [27]. Learning methods can be supervised,
unsupervised, transfer learning, and reinforcement learning [41]. The robots
adapt their decisions as they perceive the environment or dataset. The attack-
ers can intentionally manipulate the data during the learning process, such
as injecting poisonous data into the training set, spoofing sensor data (e.g.,
camera, audio), or changing learning conditions. Due to these attacks, robots
may learn unsolicited behaviors that can exhibit danger to their surround-
ings. For example, Yang et al. [55] demonstrated an adversarial attack on a
reinforcement learning-based robot learning system where the attacker uses a
pulse to generate random observations, degrading the learning performance.

Open Question 5: How can anomalies in robot training data be dis-
covered and addressed so that the robot does not learn and perpetuate
dangerous behavior?

– Integration with ChatGPT: Robots are expected to undergo revolution-
ary changes using ChatGPT, especially ChatGPT-4. We have seen some pro-
posed frameworks [19,51] in recent times. Vemprala et al. [51] suggested using
a ChatGPT prompt to write code automatically for non-technical users to
make the robot perform a certain task. In one scenario, the user asks the
robot to cook an omelet and serves it to the user’s grandfather. Recently,
Google DeepMind introduced Robotic Transformer 2 (RT-2), a novel vision-
language-action (VLA) model that learns from web-scale datasets [56]. This
model is built on the same tech as ChatGPT; It can interpret these data as
plain language instruction and execute it [14].

Open Question 6: If ChatGPT can be successfully implemented on
robots, what if robots can write code and modify themselves in an
unwanted way?

– Access Control: Certain robots (e.g., service robots in our homes) contin-
uously surveil us as part of their functions. These robots have access to our
personal data; they can take pictures and videos, and monitor our locations.
Nonetheless, if the vendor of these robots unethically grants access to the
robots’ system during manufacturing and takes advantage of our confidential
data, it can pose significant privacy and security risks. For example, unau-
thorized users can collect passwords and credit card information by simply
taking photos or videos when the user is entering the data.

Open Question 7: How can we effectively incorporate access control
in robots to protect the security and privacy of the end users?
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– Trolley Problem in Robotics: Imagine a scenario where a person is watch-
ing a runaway trolley heading towards a track where five people are standing,
and if nothing is done, these people will certainly die. There is another track
where he can divert the trolley, but there is another person standing on it that
will be killed. Here arises the ethical dilemma of whether killing one person is
okay instead of killing five people. As robots become more involved in society,
they will inevitably encounter many ethical dilemmas in decision-making. So,
it is essential to solve the trolley problem to mitigate any risks that an action
of the robot may pose.

Open Question 8: What would be the robot’s reaction during a
‘Trolley Problem’ [24] scenario?

4 Conclusion

The widespread adoption of robots signals the imminent revolution of robotics
technology. It may not be very long before we generalize the idea of coexist-
ing with robots. We must be prepared for the privacy and security risks to
embrace this transition fully. Robotic systems are made of different subsystems
and subcomponents. Securing the subcomponents is necessary but not sufficient
for protecting the whole system. This is because components are integrated with
one another and therefore, exhibit complex and subtle dependencies and inter-
actions [35]. We need to enforce a robotics framework and a universal policy for
developing or changing any robots. Such a comprehensive measure will ensure
that robots and their manufacturer follow the standard user safety practice.
European Commission has created a voluntary code of ethics and standards for
manufacturers and users of robotics technology [37]. IEEE undertakes a global
initiative-The IEEE Global Initiative on Ethics of Autonomous and Intelligent
Systems, which aims to ensure that the involved persons prioritize ethical con-
sideration and benefits of humankind [20]. However, as these policies are not
enforced as obligatory, the concerns still prevail.
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Abstract. In today’s interconnected world, Programmable Logic Con-
troller (PLC) devices play a crucial role in controlling and automating
critical processes across various sectors. This increased connectivity, how-
ever, also brings about significant security risks, including the threat of
the PLC’s control flow being subverted through malicious code injected
by state-level actors. This paper offers an exploration of the use of side
channels for control flow monitoring. By analyzing subtle variations in
system behavior, such as power consumption and electromagnetic radia-
tion, these side channels can be effectively leveraged to infer control flow
information, and thus identify potential attacks. To accomplish this, we
employ the emitted signals to train a machine learning model, and eval-
uate our detector by simulating two different types of attacks: malicious
code injection and sensitive data infiltration. Additionally, we provide a
unique comparison between the power consumption and electromagnetic
side channels, highlighting the primary benefits each signal type exhibits
in terms of detecting and preventing attacks. The results presented in
this paper can aid system manufacturers in selecting the most suitable
channel for defending their system, based on the specific requirements
and context of their PLC application.

Keywords: Physical side-channel analysis · Malware detection ·
Malware monitoring · PLC environment · Firmware verification

1 Introduction

The rise in use of cyber-physical systems (CPS), which include smart vehicles,
industrial systems, medical monitoring, robotics, and more, promises to modern-
ize society and to reduce the burden of human labor [5,7]. They typically consist
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of a large-scale, interconnected system of disparate elements that integrate com-
putation with physical processes. CPS may significantly increase the effectiveness
of industrial process control systems (ICS) [19]. Programmable logic controllers
(PLCs) are a vital component of the CPS. They are used by industrial control
systems (ICS) to link to and monitor critical infrastructure, employed in the
manufacturing and process industries to reduce costs and enhance quality, and
were created in response to the requirement to replace traditional programmed
relay panels [8]. PLCs are designed for specific tasks combining multiple func-
tionality in large industries. In recent times, PLCs have largely taken the place
of the control components that were formerly used to execute the logic of the
system [3]. PLCs gather data and communicate with sensors, motors, valves, and
other equipment positioned throughout massive industrial systems to automate
and control manufacturing processes. PLCs are operational devices – they are
directly connected to the physical system in supervisory control and data acqui-
sition (SCADA) in operational technology (OT) and information technology
(IT) [12]. The PLCs themselves are typically observed using a remote human-
machine interface [6,16].

The increasing reliance on industrial control systems (ICSs) has made them
an attractive target for attackers looking to disrupt operations or gain unau-
thorized access to sensitive information. PLCs are particularly susceptible to
attacks because of their widespread usage and lack of built-in security features.
An attacker who gains control of a PLC can directly interfere with the under-
lying industrial processor and influence its interactions with the physical world.
An attacker may also use this control of the PLC to exfiltrate secret data, such as
sensor readings, which are exposed to the PLC. One of the most famous attacks
on PLCs is the Stuxnet virus, that tampered with the code running on a PLC
and disrupted the Iranian nuclear program by changing the rotational speed of
the centrifuges [13]. Indeed, preventing attacks on the PLC environment is a very
important task. While traditional security measures, such as firewalls, intrusion
detection systems, and encryption, can help protect PLC environments they are
not foolproof. As a result, many works have suggested PLC-specific attack deter-
rence and prevention measures [4,20,21]. One measure which has been suggested
for detecting and preventing malware attacks on PLC environments is the use
of non-intrusive passive integrity monitors. Abadi et al. [2] define Control Flow
Integrity as ”security policy dictates that software execution must follow a path
of a Control-Flow Graph (CFG) determined ahead of time”; ensuring this policy
can protect software from control flow hijacking attacks caused by buffer over-
flow, code reuse, or similar attacks. One approach for building this monitor is
through the use of power or electromagnetic (EM) radiation side channels. An
anomalous signal would imply a deviation from the predefined CFG, and can be
an indication for an attack. Since the side channel-based monitor is air-gapped
from the rest of the PLC by design, it is not susceptible to the same attack
vectors as the PLC, thereby preventing any potential attacks on the monitor
through similar channels.

Common approaches for passive code monitoring are the power and EM
side channels. Both approaches have advantages and disadvantages, and were
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Fig. 1. The process of acquiring power and electromagnetic side-channel traces from the
target device and applying the deep-learning techniques to generate individual models
for anomaly detection.

suggested in several works previously, but they were never compared directly in
a PLC setting. Liu et al. [14] were able to recover the program execution flow
by observing the power consumption of a microcontroller; they inferred what
instruction is most likely executed with an improved hidden Markov model. Han
et al. [12] presented a non-intrusive EM based monitor, and trained an LSTM-
based detector for signals in the time and frequency domains. We adopt some of
their ideas as foundational concepts in our study.

In this paper, we investigate the suitability of physical side-channel analy-
sis to monitoring and preventing attacks in PLC environments. Our approach
leverages advanced signal processing and machine learning techniques to iden-
tify anomalous behavior in the physical signals produced by PLCs and detect
potential attacks. We compare the power and EM side-channel approaches to
identify the most effective side-channel medium to prevent and monitor attacks
on the PLC environment. We leverage both EM and power consumption side
channels to profile the behavior of our Device Under Test (DUT), and train a
machine learning model based on the acquired signals. A general overview of our
experimental environment can be seen in Fig. 1.

The contributions of this paper are as follows:

– We provide an anomaly detector to identify attacks against embedded con-
trollers in time critical environments. We simulate two types of attacks, and
evaluate our detector’s effectiveness in detecting them on a popular controller.

– We present a transformer-based model architecture that is agnostic to the
type of data used as input. The architecture is suitable for both EM and
power consumption signals.

– We perform a comparison between the EM and power side channels, and
provide criteria for choosing between them, considering the constraints of the
PLC environment.
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Our research, comparing the EM and power side channels, yields valuable
insights and guidance for decision-makers to strategically select the optimal mon-
itoring approach tailored to their unique environmental conditions. By leveraging
this research, organizations can confidently implement robust security measures,
fortifying their systems against potential attacks and safeguarding critical infras-
tructure with heightened resilience and effectiveness.

1.1 Background

The Power and EM Side Channels. A side channel can be defined as a
medium through which sensitive information can be inadvertently revealed dur-
ing the operation of a system. This medium can take various forms, such as
power consumption, EM radiation, timing, or sound. Attackers can exploit side
channels to extract sensitive information, such as cryptographic keys or pass-
words, without direct access to the system’s memory [10]. From the defender’s
perspective, side channels can provide insight into the code that is currently
being executed, allowing them to ensure the system’s reliability.

In modern processors, transistors are continually switching on and off, caus-
ing a varying current and resistance in the digital circuit. In addition to this
direct effect on power consumption, any metallic substance in proximity to the
circuit acts as an antenna and transmits an electromagnetic wave in response.
Usually the range of the EM waves is limited, and an amplifier is needed to
enhance the strength of the signal. The shape and characteristics of the signals
produced by these side channels are influenced by two main factors: the executed
instructions and the processed data [15].

This effect makes it possible to gain insights about the instructions and the
data by observing the side-channel trace, making this method a natural candi-
date for anomaly detection based on control flow monitoring. To demonstrate
the effectiveness of side-channel measurements in determining which code is cur-
rently being executed, we ran four different applications (AES encryption, Matrix
multiplication, Random number generator, Idle program) on our DUT, collected
the resulting EM signals and plotted the first 3 PCA coefficients of these signals
on a grid. As Fig. 2 shows, it is apparent that each application forms its own
cluster, emphasizing the distinct waves emitted by the DUT during execution.
As this pilot experiment illustrates, side-channel signals can clearly be analyzed
to infer information about the code being executed and the data being processed.

Transformer Networks. Transformers are a type of neural network architec-
ture that has gained popularity in recent years by improving the performance
of natural language processing (NLP) tasks. They were first introduced in 2017
by Vaswani et al. [18] as an approach to machine translation, and have since
then transformed the field of NLP. Previous approaches to NLP tasks involved
the use of recurrent neural networks (RNNs) or convolutional neural networks
(CNNs) to process sequences of words. However, these models have limitations in
capturing long-range dependencies and suffer from the vanishing and exploding
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Fig. 2. Scatter of four applications after performing PCA on their EM signals.

gradient problems. Transformers are designed to address these issues by utilizing
a self-attention mechanism that allows them to capture long-range dependencies
without the need for recurrence. The self-attention mechanism in transformers
allows the model to attend to different parts of the input sequence while pro-
cessing each element. This is achieved through the use of attention weights that
determine the importance of each input element to the output. One of the key
benefits of the transformer architecture is its ability to process input sequences
in parallel, making it much faster than traditional RNNs like LSTMs. LSTMs
may, however, suffer from vanishing and exploding gradient problem, and their
parallelization potential is limited since each time step depends on the previous
one. The detection technique in this paper is based on the work of Han et al. [12].
They employed an LSTM-based model, which utilized a hidden state vector to
represent the unobserved code, while the observables were the EM signals.

2 Methods

In order to establish a benchmark for comparing EM and power side channels,
we developed an agnostic detector that identifies the executed code sections and
also detects anomalies during runtime. Subsequently, we evaluated it using both
EM and power signals. The results presented in this paper can serve as a guide
for selecting the suitable monitoring medium based on the specific environmental
conditions of the operator.

To demonstrate this idea, we used the Traffic Alert and Collision Avoidance
System (TCAS) program provided by Han et al. [11]. The program is written
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in C and meant to prevent midair collisions between airplanes. It receives as
input information about the position and status of its own and approaching
airplanes. We modified the code by adding function calls which use the general
purpose input output (GPIO) pins of the DUT to signal the measurement tools
the start and end of each scan cycle. Scan cycle is the term used to describe
the repetitive manner in which PLCs operate: they execute a single program
in an infinite loop which reads sensor inputs (e.g. water level sensor), performs
control logic which defines the relations between the input and output values,
then updates the actuators (e.g. activate a pump). Since the control logic does
not change, and since the characteristics of the side signals are mainly influenced
by the instructions and processed data, similar input values should yield similar
side-channel emissions. In practice, however, a single program may have multiple
control flows. Thus, different input values may cause different instructions to be
executed, resulting in different side-channel emissions. To train a robust anomaly
detector, there is a need for a diverse dataset which contains traces that represent
multiple control flows of the program.

To accomplish that, Han et al. [11] fed the source code into the KLEE sym-
bolic execution engine, a static analysis tool that produced multiple sets of
variable assignments, where each set leads to a different execution path. For
example, Fig. 3 shows a transition from the source code into a CFG. To follow
the path 1→2→3→5→7→9 in that CFG, certain conditions have to be satisfied:
low ≤ high and x = v[mid]. This set of constraints was next fed into a Satisfia-
bility Modulo Theories (SMT) solver (e.g. Z3) which returns the exact values of
the variables to follow the desired path. This process can be repeated multiple
times to get full path coverage.

Fig. 3. Transition from source code to Control flow Graph.
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After generating the test cases, we executed each test case while collecting
the signals the controller emitted with dedicated equipment. The power and EM
traces were collected simultaneously, to ensure similar operating conditions. We
examined a total of 24 test cases representing different logic control flows.

The acquired signals form a dataset, where each sample is a side channel
signal, and each label is the execution path that was executed to create it.
This dataset was used to train a transformer-based classifier. If an attacker
were to modify the control logic or hijack the control flow, the emitted signals
would deviate from any known execution. In such case, the confidence of the
classifier for all the possible control flows would be low. Thus, if the maximum
confidence of the classifier over all possible control flows is lower than a pre-
defined threshold, this should trigger an alert. The benefit of this approach is that
the model can both observe the currently executed code and detect malicious
execution. Additionally, this approach doesn’t require any malicious samples for
the training process.

We used a Nordic NRF52-DK as our DUT. This system is equipped with an
ARM Cortex M4 processor running at 64 MHz with 64 KB RAM, and is designed
for the I/O and digital signal control markets [1]. The DUT was connected to a
Keysight B2962A low noise power source. For power consumption measurements,
we used a Keysight MSOS604A Oscilloscope with 1GSa/s with High Resolution
mode. We post-processed the power traces by averaging every 16 samples to
reduce noise. For EM measurements, we used a Tektronix RSA306 Spectrum
Analyzer together with a LANGER LF-U5 probe and PA 303 amplifier at a
sampling rate of 56MS/s.

Measuring power consumption and EM emissions requires a preparation
phase. To perform power measurements, the digital circuit needs to be modi-
fied by cutting the circuit and connecting a resistor and a probe in series to
the power supply. To properly capture EM traces, it is necessary to both find
the signal’s peak frequency and to find the location with the strongest emis-
sions. The peak frequency carries the most valuable features of the signal, and
is unknown in advance. To find the correct frequency the program is executed,
and the spectrum analyzer divides the input signal into its individual frequency
components and displays their amplitudes. The peak frequency corresponds to
the frequency with the highest amplitude. To find the location with the most
dominant signals, we carried out a device cartography step, in which we used
a Secure-IC XYZ positioning stage equipped with SMC100 single axis steppers
to move the probe over several components, including the SOC and the MCU,
and choose the component that showed the highest amplitude. We identified a
location about the processor which showed the most noticeable signals. After
performing these steps, the test cases corresponding to the different execution
paths were executed while collecting both EM and power signals simultaneously.
Each test case was executed 2000 times. The acquired traces are considered as
a behavioral baseline of our DUT.

We trained a transformer-based classifier separately for each signal type after
performing z-normalization, ensuring the signals are on the same scale. The
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architecture of the model is inspired by [17], it consists of 8 transformer encoder
blocks with 6 attention heads of size 256. Each block consists of two main compo-
nents: attention and feed-forward. The attention part consists of a normalization
layer followed by attention and dropout layers. The output of the attention com-
ponent is residually connected to the input sequence and then passed to the feed
forward layer. The feed forward component contains a convolutional layer fol-
lowed by a dropout, convolutional and normalization layers. The output of the
feed forward component is again residually connected to the output of the atten-
tion component. Finally, the output of the encoder blocks is fed into a global
average pooling layer and then to a fully connected layer for classification. The
model is trained using the AdaMax optimizer. Each model was trained for 10
epochs. We used 80% of the data for training and 20% for testing. The machine
learning tasks were implemented in TensorFlow 2.6 for Python 3.9 and run on a
cluster containing 58 NVIDIA GeForce GTX 1080 GPUs managed by the Slurm
Workload Manager.

3 Results

As noted above, we were motivated to compare the effectiveness of the power
and EM monitoring methods. Our models serve two purposes: monitoring the
executed code, and identifying deviations from the known control flows. As for
the ability of our models to correctly classify each signal to its relevant execution
path, both models showed good accuracy. The classification accuracy for the EM
and power consumption-based models was 91% and 78%, respectively, meaning
that for a given trace, the model was able to classify it to the correct execu-
tion path, and infer the instructions sequence that was executed. The confusion
matrices of the two classifiers are displayed in Fig. 4. The EM model shows good
classification results along with some confusion between specific classes, while
the power based model shows confusion between the same classes, along with
additional misclassification between other classes. It is important to note that
this confusion primarily arises because these classes possess only a few differing
instructions, making it challenging to differentiate between them. Nonetheless,
this confusion can be considered insignificant, since operational malware would
incorporate its unique logic and deviate significantly from the program’s known
behavior.

To evaluate the ability of the models to detect attacks, we simulated two
types of attacks: a code injection attack, and data exfiltration attack. The code
injection attack included injecting 5–10 assembly instructions to the source code,
modelling an attacker interested in modifying the behavior of the control logic.
In the second scenario, the data exfiltration attack, the UART pins of the device
were used to leak one byte of sensitive information outside the system. In the
presence of a signal that exhibits substantial deviations from the program’s
known behavior, the classifier’s confidence level in all classes would be rela-
tively low. Whenever the confidence level fell below a predefined threshold, we
categorized it as an anomaly and initiated an alert.
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Fig. 4. Confusion matrices of the models

Both models successfully detected most of the attack scenarios, even the
injection of only 5 assembly instructions. AUC reached 97% for the EM model
and 91% for the power model. Interestingly, even though the power model was
significantly less accurate than the EM model as a classifier, it is only slightly less
effective as an anomaly detector. This emphasizes our claim that this approach
would prove itself upon a case where the malware chunk has more volume. Garcia
et al. [9] assert that the average size of malware, designed with a particular
objective for embedded controllers (such as the corruption of the controller’s
output value), tends to be approximately 2 KB. For that reason, a confusion
between the correct control flows which slightly differ from each other, would be
negligible as the malware side signals become more dominant.

(a) EM-based model (b) Power-based model

Fig. 5. Effect of the sampling rate on the classification accuracy of the models.
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3.1 Performance Analysis

Sampling Rate: Obtaining high-precision equipment like an oscilloscope or a
spectrum analyzer is useful to get more detailed analysis with higher sampling
rates, but can also incur significant expenses. The sampling rate can impact other
aspects, such as the storage and processing requirements for the captured data.
Higher sampling rates generate larger amounts of data, which may necessitate
more storage capacity and computational resources. We wanted to check the
models’ performance by exploring the impact of varying sampling rates, and
retrained the models accordingly. Figure 5 shows the effect of the sampling rate
on the classification accuracy on each signal type. We gradually increased the
sampling rate of each signal, as shown on the x-axis. The scale of the x-axis in
the graphs differs due to the significantly lower maximum sampling rate of the
spectrum analyzer (Fig. 5a) compared to the oscilloscope (Fig. 5b). According to
the figure, the EM classifier requires a much lower sampling rate to reach higher
accuracy, reaching over 90% accuracy at a sampling rate of 56MS/s, whereas
the power model reaches 78% at 1GS/s. Also, while the EM accuracy gradually
improves with increasing sampling rate, the power models exhibit a sharp decline
around 45MS/s. A possible explanation is that another component of the DUT
operates at the same frequency, aliasing the captured signal. This phenomenon
is not reflected in the EM classifier, since the measurements are much more
localized and are focused only on the component in proximity to the probe.

Noise Resilience: The experiments in this research were conducted under ideal
conditions, with minimal electromagnetic interference or environmental noise
such as heat or humidity; in practice, however, noise is inevitable. To check the
robustness of each model type to noise, we generated white noise with a mean
of 0 and varying standard deviation and added it into the z-normalized signals.
Figure 6 shows how the noise influences the models’ performance. We varied σ,
the strength of the noise, from 0 to 9 as shown in the x-axis, the y-axis shows
the performance metrics (accuracy and AUC). The dashed orange line shows the
performance of the power model while the solid blue line shows the performance
of the EM model. When examining the figure, it becomes apparent that the EM
model demonstrates superior performance in the presence of minor noise, yet it
becomes surpassed as the noise level increases. This makes EM based monitoring
the preferred choice for clean environments with minimal interference to the
captured signal, where it is possible to place the probe in greater proximity to
the measured component, while monitoring through power consumption may be
in favor in rougher settings.
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4 Discussion

Despite numerous works which have previously suggested side channel monitor-
ing architectures in PLC environments, to the best of our knowledge, there was
no comparative study between the EM and power channels for the described
topic. This work provides a fair comparison of the power consumption and elec-
tromagnetic side channels. Often, due to budgetary and physical constraints, it
becomes necessary to determine the appropriate signal type for a given appli-
cation. The EM signals were much more centralized and precise, as the probe
is placed above a component of interest. The model that was trained on the
EM signals also showed higher performance metrics (e.g. accuracy, AUC) and
required much lower sampling rate to converge, leading to lighter storage and
computational requirements. On the other hand, EM capturing requires a prepa-
ration phase that includes finding the signal frequency of the examined program
and locating the physical position that emits the most distinguishing signals.
This process is unique to the DUT used, and must be repeated whenever the
hardware configuration of the bill of materials (BOM) changes. The performance
of the EM model was also decreased when faced with noisier samples, a realistic
risk when taking into account the noisy environments where PLCs are typically
found, as well as shielding and extra EM interference that other components
of the system may produce. The power model, on the other hand, showed high
resilience to noise, which is an important attribute, as often PLCs are exposed
extreme environmental conditions. For the downside, measuring power requires
a physical modification to the digital circuit which forces it to be shut down, a
step which may be impossible in some OT settings. Power traces also include
evidence about the consumption of the entire DUT rather than a single com-
ponent like the processor. Additionally, the power model required much higher
sampling rate to converge, resulting in high data volume and heavier processing
power.

Fig. 6. Impact of noise on the models performance.

Detecting anomalies and identifying potential attacks are of paramount
importance in ensuring the security of embedded controllers. Leveraging the
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power of side channels, this paper not only provides effective means for detect-
ing such attacks, but also offers valuable insights to guide the selection of the
most appropriate side channel medium, facilitating the design of robust defense
mechanisms.
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