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Abstract. We present a generic construction of an insider secure signcryption
scheme with non-interactive non-repudiation. Our construction uses as building
blocks a signature scheme, a key encapsulation mechanism (KEM), a keyed hash
function, a symmetric encryption scheme, and a pseudo-random function. We
show that our construction is insider secure in the dynamic multi-user model,
without resorting the random oracle or the key registration model. Our generic
scheme provides also non-interactive non-repudiation.
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1 Introduction

Signcryption schemes provide both the functionalities of signature and encryption sche-
mes. These schemes were proposed for the first time by Zheng [24]. Since Zheng’s
seminal work, many designs have been proposed, e.g. [2,5,7,8,10,12,18–22]. For the
analysis of signcryption schemes, two important lines of separations in the security
definitions are: two-party versus multi-party models, and outsider versus insider secu-
rity models [1,3,4]. Broadly, in a two-party security model, only one sender and one
receiver are considered. Whereas in a multi-party model, an attacker can use any pub-
lic key of its choice. In an outsider model, it is assumed that an attacker cannot access
a legitimate sender or receiver long-term secret. In an insider model, an attacker has
access to all the secrets except the one “being attacked”; for confidentiality, it is assumed
that the attacker knows the sender’s static private key, and for unforgeability that the
attacker knows the receiver’s static private key. The strongest among these models is
insider security in the (dynamic) multi-user model.

Some “natural” constructions of signcryption schemes are “encrypt and sign (E&S),
“Encrypt then Sign” (EtS) and Sign then Encrypt (StE). Unfortunately, these natu-
ral constructions do not yield secure signcryption schemes in the dynamic multi-user
insider model [1, Sect. 2.3]. For instance, In an E&S construction, the signature may
reveal the encrypted message, confidentiality is not then achieved. In the EtS and StE
constructions the difficulty is to maintain the security of the operation performed first.
For instance in the EtS construction, for confidentiality, an attacker (a probabilistic poly-
nomial time machine) which knows the sender’s static private key can resign and sub-
mit the resigned signcrypted text to a decryption oracle. In the StE construction, for
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unforgeability, an adversary which knows the receiver static private key can decrypt the
ciphertext and re-encrypt and submit the resulting signcrypted text as a forgery.

A nice property of signcryption schemes is Non-Interactive Non-Repudiation
(NINR), which allows a third party to settle a non-repudiation dispute without engaging
a costly protocol. NINR is a main advantage of signcryption schemes compared to one
pass key exchange protocols, which often outperform signcryption schemes.

Building high-level secure and efficient cryptographic schemes from low-level
primitives is a main focus in modern cryptography. In the case of signcryption schemes,
insider security appears to be the right security definition [3]. As far as we are aware,
there are only three works, that aim to propose generic insider secure constructions
of signcryption schemes in the dynamic multi-user model, [10,19] and [2]. Unfortu-
nately the designs from [19] and [2] are shown to be secure in the registered key model,
wherein an attacker has to show that it knows the private keys corresponding to the
public keys it uses. This model does not capture some realistic attacks on certificate
authorities, e.g. [11,13]. In [10], Chiba et al. propose two generic StE type construc-
tions that they show to be insider secure in the dynamic multi-user model, without
resorting the random oracle or registered key model. As their constructions are StE,
they inherit NINR from the base signature scheme.

In this work, we build a simple and efficient generic EtS signcryption scheme with
NINR (SCNINR), termed SN (Signcryption with Non-interactive non-repudiation). We
propose a detailed analysis of our construction, in the insider dynamic multi-user model,
without using the random oracle or registered key model.

This paper is organized as follows. In Sect. 2, we present some preliminaries on
signcryption schemes and on the building blocks we use in our design. In Sect. 3, we
propose our generic SCNINR scheme. In Sect. 4, we propose a detailed security analysis
of our construction in the dynamic multi-user model. We compare our design with the
previous proposals in Sect. 5.

2 Preliminaries

If S is a set, a←R S means that a is chosen uniformly at random from S; we write
a, b, c, · · · ←R S as a shorthand for a←R S; b ←R S, etc. We denote by sz(a) the number
of bits required to represent a. If S and S′ are two sets, Func(S, S′) denotes the set of
functions with domain S and range S′.

For a probabilistic algorithm A with parameters u1, · · · , un and output V ∈ V, we
write V ←R A(u1, · · · , un). We denote by {A(u1, · · · , un)} the set {v ∈ V : Pr(V =
v) �= 0}. If x1, x2, · · · , xk are objects belonging to different structures (group, bit-
string, etc.) (x1, x2, · · · , xk) denotes a representation as a bit-string of the tuple such
that each element can be unequivocally parsed. For a list L, Apd(L,X) adds X to L.
For a positive integer n, [n] denotes the set {1, 2, · · · , n}.

A Symmetric Encryption. A symmetric encryption scheme E = (E,D,K(k),M(k),
C(k)) is a pair of efficient algorithms (E,D), an encryption and a decryption algorithm,
together with a triple of sets (K,M,C), which depend on a security parameter k, such
that for all τ ∈ K and all m ∈ M, it holds that E(τ,m) ∈ C and m = D(τ,E(τ,m)).
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Definition 1. Let A = (A1,A2) be an adversary against E and let

Pr(Oi,i=0,1) = Pr

[
(m0, m1, st)←R A1(k); τ ←R K; c ←R E(τ, mi);

b̂ ←R A2(k, c, st)
: b̂ = 1

]

and AdvssA,E(k) denote the quantity

AdvssA,E(k) = |Pr(O0) − Pr(O1)| ,

where m0,m1 ∈ M are distinct messages of equal length. The scheme E is said to be
(t(k), ε(k))–semantically secure if for all adversaries A running in time t(k), it holds
that AdvssA,E(k) � ε(k).

We will need also the following definition.

Definition 2. Let E = (E,D,K(k),M(k),C(k)) be an encryption scheme. The
scheme E is said to be (t(k), ε(k))–secure against key clustering attacks if for all adver-
saries A running in time � t(k),

Pr [(m, τ, τ ′)←R A(k) : τ �= τ ′ and E(τ,m) = E(τ ′,m)] � ε(k).

Pseudo-Random Function (PRF). A PRF is a deterministic algorithm Prf together with
a triple of sets (K(k),D(k),R(k)) (which depends on the security parameter k) such
that for all τ ∈ K and all m ∈ D, Prf(τ,m) ∈ R. Notice that for all fixed τ ∈ K,
Prf(τ, ·) ∈ Func(D,R).

Definition 3. Let Prf be a pseudo-random function and A be an adversary,

Pr(O0) = Pr
[
τ ←R K; f ← Prf(τ, ·); b̂ ←R AOf (·)(k) : b̂ = 1

]
,

Pr(O1) = Pr
[
f ←R Func(D,R); b̂ ←R AOf (·)(k) : b̂ = 1

]
,

and
AdvA,Prf(k) = |Pr(O0) − Pr(O1)|.

The PRF Prf is said to be (t(k), ε(k))–secure if for all efficient adversaries A running
in time � t, it holds that AdvA,Prf(k) � ε(k).

Collision Resistant Hash Function. Let K(k), M′(k) and T(k) be sets which depend
on a security parameter k and H be a keyed hash function defined over (K,M′,T), i. e.
H takes as inputs τ0 ∈ K and m ∈ M′ and outputs t ∈ T; we write t ← H(τ0,m).

Definition 4. A keyed hash function H : K × M′ → T is said to be (t(k), ε(k))
collision resistant if for all efficient adversaries A running in time � t(k),

Pr [τ0 ←R K; (m0,m1)←R A(k, τ0) : m0 �= m1 ∧ H(τ0,m0) = H(τ0,m1)] � ε(k).
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Definition 5. Let H : K × M′ → T be a keyed hash function and Pfx be a subset of
{0, 1}∗. H is said to be (t(k), ε(k)) resistant to collisions with identical prefix from Pfx,
if for all efficient adversaries A running in time � t(k),

Pr

⎡
⎣τ0 ←R K; (p,m0,m1)←R A(k, τ0) :

⎧
⎨
⎩

p ∈ Pfx,
m0 �= m1 and
H(τ0, (p,m0)) = H(τ0, (p,m1))

⎤
⎦ � ε(k).

Notice that resistance to collisions with identical prefix may be a weaker assumption
than classical collision resistance. We consider now the following game parameterized
by a pseudo-random function Prf.

Game 1 Pre-image with chosen prefix and suffix

1) The challenger Chall chooses τ0 ←R K and sends τ0 to A.
2) A chooses p0 ∈ Pfx, s0 ∈ Sfx and m0 ∈ M and sends (p0,m0, s0) to Chall.
3) Chall chooses (τ, τ ′)←R K2, computes τ ′′ ← Prf(τ,m0) and m̂0 ←

H(τ0, (p0, τ, τ ′, τ ′′, s0)), and sends m̂0 to A.
4) A outputs (τ∗, τ ′∗) ∈ K2.
5) A succeeds if m̂0 = H(τ0, (p0, τ∗, τ ′∗, τ ′′∗, s0)) wherein τ ′′∗ ← Prf(τ∗,m0).

Definition 6. Let H : K × M′ → T be a keyed hash function and Pfx and Sfx be
respectively some sets of message prefixes and suffixes. For an adversary A playing
Game 1, let SuccA,H(k) denote the event “A wins Game 1”. H is said to be (t(k), ε(k))
secure against pre-image attacks with chosen prefix from Pfx and suffix from Sfx, if for
all efficient adversaries A running in time � t(k), Pr(SuccA,H(k)) � ε(k).

The following lemma shows that the pre-image resistance (from Definition 6) follows
from identical prefix collision resistance. The proof is given in the appendix.

Lemma 1. Let H : K × M′ → T be a keyed hash function. If H is (t(k), ε(k)) secure
against collisions with identical prefix from Pfx, then it is (t(k), ε′(k)) secure in the
sense of Definition 6, where

ε′(k) � |T|/|K|2 + ε(k).

Key Encapsulation Mechanism (KEM). A KEM is a four-tuple of efficient algorithms
K = (SetupK,GenK,Ecp,Dcp) together with a key space K′(k) and encapsulated keys
space C′, such that:

– SetupK is a probabilistic algorithm which takes as input a security parameter k and
outputs a domain parameter dpK;

– GenK is a key pair generator, it takes as input the domain parameter dpK and outputs
a key pair (skK, pkK);

– Ecp is a probabilistic algorithm which takes as input a public key pkK and outputs
a key τ ∈ K′ together with an encapsulated key c ∈ C′, we write (τ, c) ←R Ecp
(pkK);

– Dcp takes as inputs a private key skK together with an encapsulated key c and outputs
τ ∈ K′ or and error symbol ⊥.



An Efficient Generic Insider Secure Signcryption with NINR 121

It is required that for all k ∈ N
∗, all dpK ∈ {SetupK(k)}, all (skK, pkK) ∈ {GenK

(dpK)}, if (τ, c) ∈ {Ecp(pkK)}, Pr [Dcp(skK, c) = τ ] = 1.

Definition 7. Let K be a KEM, and A an adversary against K. Let

Pr(Ub,b=0,1) = Pr

⎡
⎣

dpK ←R SetupK(k); (skK, pkK)←R GenK(dpK);
(τ0, c)←R Ecp(pkK); τ1 ←R K′;
b̂ ←R AODcp(skK,·)(k, dpK, pkK, τb, c)

: b̂ = 1

⎤
⎦ (1)

wherein the notation AODcp(skK,·) means that A is given access to a decapsulation ora-
cle ODcp(skK, ·) which, on input c′ �= c, outputs Dcp(skK, c′) (A is not allowed to
issue Dcp(skK, c)). Let AdvccaA,K(k) = |Pr(U0) − Pr(U1)| . K is said to be (t(k), ε(k))
indistinguishable against chosen-ciphertext attacks (IND-CCA), if for all efficient adver-
saries A running in time � t(k), it holds that AdvccaA,K(k) � ε(k).

Remark 1. In a KEM security experiment, we refer to the challenge (τ0, c) and (τ1, c)
defined in (1) by ChallKE0

and ChallKE1
, respectively.

Digital Signature. A digital signature scheme is a four-tuple of efficient algorithms
S = (SetupS,GenS,Sign,Vrfy) together with a message space MS , such that:

– SetupS takes as input a security parameter k and outputs a domain parameter dpS;
– GenS is a probabilistic algorithm which takes as input a domain parameter dpS and

outputs a key pair (skS, pkS);
– Sign takes as inputs a secret key skS and a message m ∈ MS and outputs a signature

σ ∈ Σ;
– Vrfy is deterministic; it takes as inputs a public key pkS, a message m, and a signa-

ture σ and outputs d ∈ {0, 1}; and
– S is such that for all k ∈ N

∗, all dpS ∈ {SetupS(k)}, all (skS, pkS) ∈ {GenS(dpS)},
and all m ∈ MS , Pr [Vrfy(pkS,m,Sign(skS,m)) = 1] = 1.

Game 2 sUF-CMA security game

1) dpS ←R SetupS(k); (skS, pkS)←R GenS(dpS); L ← ().
2) For j = 1, 2, · · · , A submits mj ∈ MS to the challenger which:

a) outputs σj ←R Sign(skS,mj), and
b) appends (mj , σj) to L.

3) A outputs (m,σ) ∈ MS × Σ.
− A succeeds in sUF-CMA if: i) Vrfy(pkS,m, σ) = 1, and ii) (m,σ) /∈ L.

Definition 8. Let S be a signature scheme; S is said to be (t(k), QSign(k), ε(k))
strongly Unforgeable against Chosen Message Attacks if for any adversary A play-
ing Game 2, if A runs in time at most t(k) and issues at most QSign(k) queries to the
signing oracle, then it succeeds in the sUF-CMA game with probability � ε(k).

Notice that when ε(k) does not depend on QSign(k), we say simply that S is
(t(k), ε(k))–secure. We will need also the following notion, which is not captured in
the sUF-CMA security definition, although it seems naturally achieved by many usual
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signature schemes (which uses a hash function), such as the Full Domain Hash, for
instance.

Definition 9. A signature scheme is said to be (t(k), ε(k)) secure against colliding
signatures if for all efficient adversaries A running in time � t(k),

Pr

⎡
⎣dpS ←R SetupS(k);
(pkS,m1,m2, σ)←R A(dpS)

:

⎧
⎨
⎩

m1 �= m2,
Vrfy(pkS,m1, σ) = 1, and
Vrfy(pkS,m2, σ) = 1

⎤
⎦ � ε(k).

2.1 Insider Security for SCNINR

This subsection deals with the syntax of a SCNINR scheme and the insider security
definitions in the dynamic Multi-User model [2] (also termed the Flexible Signcryption/
Flexible Unsigncryption Oracle (FSO/FUO) model [5]).

Definition 10. A signcryption scheme is a quintuple of algorithms SC = (Setup,
Gensd,Genrcv,Sc,Usc) where:

a) Setup takes a security parameter k as input, and outputs a public domain parame-
ter dp;

b) Gensd takes as input dp and outputs a sender key pair (sksd, pksd), sksd is the sign-
crypting key;

c) Genrcv takes dp as input and outputs a receiver key pair (skrcv, pkrcv);
d) Sc takes as inputs a sender private key sksd, a receiver public key pkrcv, and a

message m, and outputs a signcryptext C; we write C ←R Sc(sksd, pkrcv,m);
e) Usc is a deterministic algorithm. It takes as inputs dp, a receiver secret key skrcv,

a sender public key pksd, and a signcryptext C, and outputs either a valid message
m ∈ M or an error symbol ⊥ �∈ M.

And, for all dp ∈ {Setup(k)}, all m ∈ M, all (sksd, pksd) ∈ {Gensd(dp)}, and all
(skrcv, pkrcv) ∈ {Genrcv(dp)}, m = Usc(skrcv, pksd,Sc(sksd, pkrcv,m)). The scheme is
said to provide NINR if there are two algorithms N and PV, a non-repudiation evidence
generation and a pubic verification algorithms, such that:

– N takes as inputs a receiver secret key skrcv, a sender public key pksd, and a sign-
crypted text C, and outputs a non-repudiation evidence nr or a failure symbol ⊥.

– PV takes as inputs a signcryptext C, a message m, a non-repudiation evidence nr,
a sender public key pksd, and a receiver public key pkrcv, and outputs d ∈ {0, 1}.

– For all dp ∈ {Setup(k)}, all C ∈ {0, 1}∗, all (sksd, pksd) ∈ {Gensd(dp)}, and
all (skrcv, pkrcv) ∈ {Genrcv(dp)}, if ⊥ �= m ← Usc(skrcv, pksd, C) and nr ←
N(skrcv, pksd, C) then 1 = d ← PV(C,m, nr, pksd, pkrcv).

Definition 11 (Confidentiality in the dM−IND−iCCA). A SCNINR SC is said to be
(t(k), qUsc(k), qN(k), ε(k)) dM−IND−iCCA-secure, if for all adversaries A playing
Game 3, running in time � t(k), and issuing at most respectively qUsc(k) and qN(k)
queries to the unsigncryption and non-repudiation evidence generation oracles,
Advcca2A,SC(k) � ε(k).
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Game 3 Insider Confidentiality in the Dynamic Multi–User model (dM−IND−iCCA)

We consider the experiments E0 and E1, described hereunder, wherein A = (A1, A2) is a two–
stage adversary against a SCNINR scheme.

1) The challenger generates dp ←R Setup(k) and (skrcv, pkrcv)←R Genrcv(dp).
2) A1 is provided with dp and pkrcv, and is given access to:

(a) an unsigncryption oracle OUsc(·, ·), which takes as inputs a sender public key pk and a
signcrypted text C, and outputs m ← Usc(skrcv, pk, C), and

(b) a non–repudiation evidence generation oracle ON(·, ·) which takes as inputs a sender
public key pk and a signcrypted text C and outputs nr ← N(skrcv, pk, C).

3) A1 outputs (m0, m1, sksd, pksd, st)←R AOUsc(·,·),ON(·,·)
1 (dp, pkrcv) where m0, m1 ∈ M,

m0 �= m1 and |m0| = |m1|, st is a state, and (sksd, pksd) ∈ {Gensd(dp)} is the attacked
sender key pair.

4) In the experiment Eb,b=0,1, the challenger computes C∗ ←R Sc(sksd, pkrcv, mb).
5) A2 outputs b′ ←R AOUsc(·,·),ON(·,·)

2 (C∗, st) (OUsc(·, ·) and ON(·, ·) are as in step 2).
6) For Eb,b=0,1, outb denotes the event: (i) A2 never issued OUsc(pksd, C

∗) or ON(pksd, C
∗),

and (ii) b′ = 1.

And, Advcca2A,SC(k) =| Pr(out0) − Pr(out1) | denotes A’s dM−IND−iCCA advantage.

Game 4 Strong Unforgeability in the Dynamic Multi–User model (dM−sUF−iCCA)
A is a forger against SC.

1) The challenger computes dp ←R Setup(k), (sksd, pksd)←R Gensd(dp), L ← ().
2) A runs with inputs (dp, pksd) and is given a flexible signcryption oracle OSc(·, ·), which on

inputs a valid public receiver key pk and a message m:
(i) computes C ←R Sc(sksd, pk, m),

(ii) appends (pk, m, C) to L,
(iii) and outputs C.

3) A outputs ((skrcv, pkrcv), C
∗)←R AOSc(·,·)(dp, pksd). A wins the game if:

(i) ⊥ �= m∗ ← Usc(skrcv, pksd, C
∗), and

(ii) (pkrcv, m
∗, C∗) �∈ L.

We denote by AdvsufA,SC(k) = Pr(SuccsufA ) the probability that A wins the game.

Definition 12 (Unforgeability in the dM−sUF−iCCA model). A SCNINR is said to
be (t(k), qSc(k), ε(k)) unforgeable in the dM−sUF−iCCA model if for all attackers
A playing Game 4, running in time � t(k), and issuing at most qSc(k) signcryption
queries, AdvsufA,SC(k) � ε(k).

Game 5 Soundness of non–repudiation

1) The challenger computes dp ←R Setup(k).
2) A runs with input dp and outputs (C∗, pksd, skrcv, pkrcv, m

′, nr∗)←R A(dp).
3) A wins the game if:

(i) ⊥ �= m ← Usc(skrcv, pksd, C
∗), and

(ii) m �= m′ and 1 = d ← PV(C∗, m′, nr∗, pksd, pkrcv).

We denote by AdvsnrA,SC(k) the probability that A wins the game.
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Definition 13 (Soundness of non-repudiation). A SCNINR is said to achieve
(t(k), ε(k))–computational soundness of non-repudiation if for any adversary A play-
ing Game 5 and running in time � t(k), AdvsnrA,SC(k) � ε(k).

Game 6 Unforgeability of non–repudiation evidence
A is an attacker against SC.

1) The challenger computes dp ←R Setup(k), (sksd, pksd)←R Gensd(dp); and
(skrcv, pkrcv)←R Genrcv(dp).

2) A runs with inputs (dp, pksd, pkrcv) and is given access to a signcryption, an
unsigncryption, and a non–repudiation evidence generation oracles. It outputs
(C∗, m∗, nr∗)←R AOSc(·,·),OUsc(·,·),ON(·,·)(dp, pksd, pkrcv).

3) A wins if:
(i) C∗ was generated through the OSc(·, ·) oracle on inputs (pkrcv, m) for some m,

(ii) 1 = d ← PV(C∗, m∗, nr∗, pksd, pkrcv), and
(iii) ON(pksd, C

∗) was not issued by A.

AdvunrA,SC(k) denotes the probability that A wins the game.

Definition 14 (Unforgeability of non-repudiation evidence). A SCNINR is said to
achieve (t, qSc, qUsc, qN, ε) unforgeability of non-repudiation evidence if for all adver-
saries A playing Game 6, running in time t, and issuing respectively qSc, qUsc, and qN
queries to the signcryption, unsigncryption, and non-repudiation evidence generation
oracles, AdvunrA,SC(k) � ε.

3 An Efficient Generic Insider Secure SCNINR

We present our generic SCNINR design termed SN; it uses as building blocks (i) a KEM
K = (SetupK,GenK,Ecp,Dcp), (ii) a symmetric encryption scheme E = (E,D,K,M,
C), (iii) a PRF Prf defined over (K,D,R = K), (iv) a hash function H defined over
(K,M′,T), and (v) a signature scheme S = (SetupS,GenS,Sign,Vrfy) with message
space MS . We assume that M ⊂ D, Σ ⊂ D, T ⊂ MS , and that for all (τ, τ ′, τ ′′) ∈
K2, all c′ ∈ C′, all c ∈ C, all pksd such that (sksd, pksd) ∈ {GenS(dp2)} for some sksd,
and all pkrcv such that (skrcv, pkrcv) ∈ {GenS(dp1)}, (pksd, τ, τ

′, τ ′′, c, c′, pkrcv) ∈ M′.
We assume that the KEM is such that K′ = K4 (this can be achieved by using, if
needed, an appropriate key derivation function and/or a pseudo-random generator), and
that dpK defines both K′ and C′.

In an encrypt-then-sign design (which aims also at NINR), the signed data cannot
be the plain-text m (or publicly depend on it), as otherwise even outsider confidentiality
cannot be achieved. Moreover, for insider confidentiality (wherein the attacker knows
the sender’s private key) it should not be possible to recover the signed data from the
sender’s private key, as an attacker could resign the data and submit the resulting sign-
crypted cipher-text for decryption, and then succeed in an insider confidentiality game.
To overcome these difficulties, we compute the signed data as a function of the encap-
sulated key and the plain text m such that it cannot be recovered by an attacker which
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does not know the receiver’s private key. Besides, we append a (PFR based MAC) tag
of the signature, to make a “re-signing attack” not feasible. The design we obtain is
described hereunder.

The Generic SN Signcryption Scheme

10 Setup(k): The algorithm computes dpK ←R SetupK(k); dpS ←R SetupS(k); it defines also

E = (E,D,K = {0, 1}k,M,C), a pseudo–random function Prf over (K,M,K), and a
hash function H over (K,M′,T).

11 τ0 ←R K; dp ← (dpK, dpS, E ,Prf,H, τ0); return dp;

12 Gensd(dp):
13 Parse dp as (dpK, dpS, E ,Prf,H, τ0); (sksd, pksd)←R GenS(dpS); return (sksd, pksd);

14 Genrcv(dp):
15 Parse dp as (dpK, dpS, E ,Prf,H, τ0); (skrcv, pkrcv)←R GenK(dpK); return (skrcv, pkrcv);

16 Sc(sksd, pkrcv, m):
17 ((τ1, τ

′
1, τ2, τ

′
2), c1)←R Ecp(pkrcv); c2 ←R E(τ1, m); τ3 ← Prf(τ2, m);

18 m̂ ← H(τ0, (pksd, τ2, τ
′
2, τ3, c1, c2, pkrcv)); σ ←R Sign(sksd, m̂);

19 t ← Prf(τ ′
1, σ); return (t, σ, c1, c2);

20 Usc(skrcv, pksd, C):
21 Parse C as (t, σ, c1, c2); (τ1, τ ′

1, τ2, τ
′
2, ) ← Dcp(skrcv, c1);

22 m ← D(τ1, c2); τ3 ← Prf(τ2, m);
23 m̂ ← H(τ0, (pksd, τ2, τ

′
2, τ3, c1, c2, pkrcv)); d ← Vrfy(pksd, m̂, σ); t′ ← Prf(τ ′

1, σ);
24 if d = 1 and t = t′ then return m; else return ⊥;

25 N(skrcv, pksd, C):
26 Parse C as (t, σ, c1, c2); (τ1, τ ′

1, τ2, τ
′
2) ← Dcp(skrcv, c1);

27 m ← D(τ1, c2); τ3 ← Prf(τ2, m);
28 m̂ ← H(τ0, (pksd, τ2, τ

′
2, τ3, c1, c2, pkrcv)); d ← Vrfy(pksd, m̂, σ); t′ ← Prf(τ ′

1, σ);
29 if d = 1 and t = t′ then return (τ1, τ

′
1, τ2, τ

′
2); else return ⊥;

30 PV(C, m, nr, pksd, pkrcv):
31 Parse C as (t, σ, c1, c2) and nr as (τ1, τ ′

1, τ2, τ
′
2); m′ ← D(τ1, c2);

32 if m′ �= m then return 0;

33 τ3 ← Prf(τ2, m); m̂ ← H(τ0, (pksd, τ2, τ
′
2, τ3, c1, c2, pkrcv));

34 d ← Vrfy(pksd, m̂, σ); t′ ← Prf(τ ′
1, σ);

35 if d = 1 and t = t′ then return 1; else return 0.

For the consistency of the scheme, one can observe that as Dcp(skrcv, c1) yields
(τ1, τ ′

1, τ2, τ
′
2), the receiver can compute τ3 ← Prf(τ2,m) and m̂, and then veri-

fy whether 1 = Vrfy(pksd, m̂, σ) and t = Prf(τ ′
1, σ) to accept or reject m. So,

for all dp ∈ {Setup(k)}, all m ∈ M, all (sksd, pksd) ∈ {Gensd(dp)}, and all
(skrcv, pkrcv) ∈ {Genrcv(dp)}, m = Usc(skrcv, pksd,Sc(sksd, pkrcv,m)). Besides, if
nr ← N(skrcv, pksd,Sc(sksd, pkrcv,m)) then 1 = d ← PV(C,m, nr, pksd, pkrcv). Our
construction is a signcryption scheme with non-interactive non-repudiation.
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4 Security Analysis of the SN Scheme

We propose in this section a detailed security analysis of our generic construction.

4.1 Insider Confidentiality

Theorem 1. If the encryption scheme E is (t(k), εss(k))–semantically secure, the
pseudo random function Prf is (t(k), εPrf(k))–secure, the key encapsulation mechanism
is (t(k), εK(k))–secure, and the signature scheme is (t(k), εS(k)) resistant against col-
liding signatures, then the SN signcryption scheme is (t(k), ε(k))–dM−IND−iCCA
secure, where

ε(k) � εss(k) + 2 (εK(k) + εS(k) + εH(k) + 2εPrf(k) + (qUsc + qN)/|K|) , (2)

wherein qUsc and qN are upper bounds on the number of unsigncryption and non-
repudiation evidence generation queries the attacker issues.

Proof. We denote the steps (1) and (2), (3) and (4), and (5) and (6) of Game 3 by PRE-
CHALLENGE, CHALLENGE, and POST-CHALLENGE stages respectively. We consider
the following simulator to answer A’s queries. The Initialization procedure is executed
once at the beginning of the game. The Finalization procedure is also executed once,
after A produces its output, at the end of the game. To keep the description simple, we
omit public key validations.

Simulation for the experiments E0 and E
(1)
0 , E

(2)
0 , and E

(3)
0 in the dM−IND−iCCA Game

100 Initialization: dp ← (dpK, dpS, E ,Prf,H, τ0)←R Setup(k);

101 (skrcv, pkrcv)←R Genrcv(dp);
E0

receive pkrcv from the KEM challenger;
E

(1)
0 , E

(2)
0 , E

(3)
0

102 ((τ̄1, τ̄
′
1, τ̄2, τ̄

′
2), c̄1)←R Ecp(pkrcv);

E0

((τ̄1, τ̄
′
1, τ̄2, τ̄

′
2), c̄1)←R ChallKE0

;

E
(1)
0

((τ̄1, τ̄
′
1, τ̄2, τ̄

′
2), c̄1)←R ChallKE1

;

E
(2)
0 , E

(3)
0

PRE–CHALLENGE PHASE A is provided with (dp, pkrcv) and is given access to the follow-
ing oracles.

103 OUsc(pk, C): ON(pk, C) :
104 Parse C as (t, σ, c1, c2); � Return ⊥ if the parsing fails

105 if c1 = c̄1 then return ⊥ ;
E

(1)
0 , E

(2)
0 , E

(3)
0

106 (τ1, τ
′
1, τ2, τ

′
2) ← Dcp(skrcv, c1);

E0

(τ1, τ
′
1, τ2, τ

′
2) ← ODcp(c1);

E
(1)
0 , E

(2)
0 , E

(3)
0

107 m ← D(τ1, c2); τ3 ← Prf(τ2, m); m̂ ← H(τ0, (pk, τ2, τ
′
2, τ3, c1, c2, pkrcv));

108 d ← Vrfy(pk, m̂, σ); t′ ← Prf(τ ′
1, σ);
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109 if d = 1 and t = t′ then return m;
OUsc

return (τ1, τ
′
1, τ2, τ

′
2);

ON

else return ⊥;

CHALLENGE PHASE

110 (m0, m1, sksd, pksd, st)←R AOUsc,N

1 (dp, pkrcv); � |m0| = |m1|
111 ((τ1, τ

′
1, τ2, τ

′
2), c1) ← ((τ̄1, τ̄

′
1, τ̄2, τ̄

′
2), c̄1);

112 c2 ←R E(τ1, m0);
E0, E

(i)
0 , i = 1, 2, 3

113 τ3 ← Prf(τ2, m0);
E0, E

(1)
0 , E

(2)
0

τ3 ←R K;
E

(3)
0

� τ3 ←R K is equivalent to f ←R Func(M,K); τ3 ← f(m0);

114 m̂ ← H(τ0, (pksd, τ2, τ
′
2, τ3, c1, c2, pkrcv)); σ ← Sign(sksd, m̂); t ← Prf(τ ′

1, σ);
C∗ ←R (t, σ, c1, c2);

POST–CHALLENGE PHASE

A2 runs with inputs (C∗, st). It has access to the oracles OUsc(·, ·), ON(·, ·),
The simulation aborts if A issues OUsc(pksd, C

∗) or ON(pksd, C
∗).

115 b̂ ←R AOUsc(·,·),ON(·,·)
2 (C∗, st);

116 Finalization: return b̂;

At lines 103 to 109 we describe simultaneously the OUsc(·, ·) and ON(·, ·) oracles.
When one of the oracles is queried, at line 109, the boxed instruction with corresponding
header is executed.

Besides the experiment E0 in the dM−IND−iCCA security game, we define three
other experiments E

(1)
0 , E

(2)
0 , and E

(3)
0 . For each experiment, at a line with boxed

codes, only the code with corresponding header is executed. The simulator is efficient
in all the experiments. We give a summary of the changes between the experiments
hereunder.

1) From E0 to E
(1)
0 :

a) in E
(1)
0 , the simulator Sim does not generate (skrcv, pkrcv), instead it receives

pkrcv from a KEM challenger (see at line 101),
b) to compute Dcp(skrcv, c1), the simulator sends c1 to the KEM challenger and

receives (τ1, τ ′
1, τ2, τ

′
2) ← Dcp(skrcv, c1) from the challenger (see at line 106),

c) and in the challenge phase, the value of ((τ1, τ ′
1, τ2, τ

′
2), c)←R Ecp(pkrcv) is

received from the KEM challenger; we note ((τ1, τ ′
1, τ2, τ

′
2), c) ← ChallKE0

.
d) Besides, in the Usc and N oracles, whenever A provides the simulator with a

signcrypted cipher-text C = (t, σ, c1, c2) with c1 = c̄1, the simulator considers
t as an invalid PRF based MAC and returns ⊥ (see at line 105).

2) From E
(1)
0 to E

(2)
0 , the only change is at line 102 of the challenge phase, wherein

the KEM challenger provides S with ChallKE1
instead of ChallKE0

.

3) From E
(2)
0 to E

(3)
0 , the change is in the challenge phase, where τ3 is computed as

τ3 ← Prf(τ2,m0) in E
(2)
0 , and as τ3 ←R K in E

(3)
0 (see at line 113). Notice that

τ3 ←R K is equivalent to f ←R Func(M,K); τ3 ← f(m).
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Let Pr(out0) and Pr(out(i)0 ), for i ∈ {1, 2, 3} denote the probability that A outputs 1

in the experiments E0 and E
(i)
0 , respectively. Notice that the FINALIZATION procedure

outputs exactly whatever A returns. Given the difference between E0 and E
(1)
0 , when-

ever A provides the OUsc or ON oracles with a valid C = (t, σ, c1, c2) with c1 = c̄1
then:

a) If this occurs before the challenge phase, t is a no-message (PRF-based) MAC
forgery.

b) If this occurs after the challenge phase (with the restriction C �= C∗), if
(t, σ) �= (t∗, σ∗), then (t∗, σ∗) is MAC forgery. Otherwise, we necessarily have
(pk, c1, c2) �= (pksd, c

∗
1, c

∗
2). And then, if m̂ = m̂∗, we have a H collision, otherwise

we have colliding signatures.

So, using [9, Theorem 6.2, p. 224], it holds that

|Pr(out0) − Pr(out(1)0 )| � εPrf(k) + (qUsc + qN)/|K| + εH(k) + εS(k). (3)

The difference between E
(1)
0 and E

(2)
0 is: in E

(1)
0 the simulator receives ChallKE0

from

the KEM challenger, while it receives ChallKE1
in E

(2)
0 . As K is (t(k), εK(k))–secure,

it follows that
|Pr(out(1)0 ) − Pr(out(2)0 )| � εK(k). (4)

Also, given that Prf is (t(k), εPrf(k))–secure, we have

|Pr(out(2)0 ) − Pr(out(3)0 )| � εPrf(k). (5)

Now, we consider the experiments E
(3)
1 , E

(2)
1 , E

(1)
1 and E1 where the only difference

between E1 (resp. E(3)
1 , E

(2)
1 , E

(1)
1 ) and E0 (resp. E(3)

0 , E
(2)
0 , E

(1)
0 ) is that the lines 112

and 113 in the challenge phase are modified, to use m1 instead of m0, as hereunder:

112 c2 ←R E(τ1, m1);
E1, E

(i)
1 , i = 1, 2, 3

113 τ3 ← Prf(τ2, m1);
E1, E

(1)
1 , E

(2)
1

τ3 ←R K
2;

E
(3)
1

With similar arguments, applied to the experiments E1 and E
(i)
1 , i = 1, 2, 3, we obtain

|Pr(out1) − Pr(out(1)1 )| � εPrf(k) + (qUsc + qN)/|K| + εH(k) + εS(k), (6)

|Pr(out(1)1 ) − Pr(out(2)1 )| � εK(k), (7)

and
|Pr(out(2)1 ) − Pr(out(3)1 )| � εPrf(k). (8)

We consider now, the challenge phases in the experiments E
(3)
b , b = 0, 1, wherein the

secret key τ1 is used only in the encryption c2 ←R E(τ1,mb). Recall that in E
(3)
b,b=0,1,

(τ1, τ ′
1, τ2, τ

′
2) is computed at the KEM challenger as (τ1, τ ′

1, τ2, τ
′
2)←R K3. Now,
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we consider the experiments E
(3a)
b,b=0,1, such that the difference between E

(3)
b,b=0,1 and

E
(3a)
b,b=0,1 is that in E

(3a)
b,b=0,1 the simulator ignores the value of τ1 generated by the KEM

challenger; it does not compute c2. Instead, it receives c2 from a semantic security chal-
lenger. The challenger computes c2 using the instructions: τ ←R K; c2 ←R E(τ,mb).
Given the change, it holds that

Pr(out(3)b ) = Pr(out(3a)
b ), for b = 0, 1 (9)

and the difference between E
(3a)
0 and E

(3a)
1 is that in E

(3a)
0 c2 is computed as

c2 ←R E(τ,m0) wherein τ ←R K, while in E
(3a)
0 it is computed as c2 ←R E(τ,m0), it

then follows that

|Pr(out(3)0 ) − Pr(out(3)1 )| = |Pr(out(3a)
0 ) − Pr(out(3a)

1 )| � εss(k). (10)

From the inequalities (3) to (10), we obtain

|Pr(out0)−Pr(out1)| � εss(k)+2 (εK(k) + εS(k) + εH(k) + 2εPrf(k) + (qUsc + qN)/|K|) .

	


4.2 Unforgeability of the SN Scheme

Theorem 2. If the signature scheme is (t(k), εS(k))–sUF-CMA secure and the hash
function H is (t(k), εH(k)) collision resistant, then the SN signcryption scheme is
(t(k), ε(k)) dM−sUF−iCCA–secure, where ε(k) � εH(k) + εS(k).

Proof. We consider the following simulation to answer A’s queries.

Simulation for the dM−sUF−iCCA security game

200 Initialization: dp ← (dpK, dpS, E ,Prf,H, τ0)←R Setup(k); L ← (); L1 ← (); L2 ← ();

201 (sksd, pksd)←R Gensd(dp);
E0

Get pksd from the challenger for signature unforgeability;
E1

202 OSc(pk, m):
203 ((τ1, τ

′
1, τ2, τ

′
2), c1)←R Ecp(pk); c2 ←R E(τ1, m);

204 τ3 ← Prf(τ2, m); m̂ ← H(τ0, (pksd, τ2, τ
′
2, τ3, c1, c2, pk));

205 σ ←R Sign(sksd, m̂);
E0

Send m̂ to the signing oracle and receive σ;
E1

206 t ← Prf(τ ′
1, σ)

207 Apd(L, (pk, m, (t, σ, c1, c2))); Apd(L1, (σ, m̂));
208 Apd(L2, (t, pksd, m, m̂, σ, τ1, τ

′
1, τ2, τ

′
2, τ3, c1, c2, pk));

return (t, σ, c1, c2);

209 Finalization:
210 if A outputs (skrcv, pkrcv, C

∗) such that
(i) ⊥ �= m∗ ← Usc(skrcv, pksd, C

∗) and
(ii) (pkrcv, m

∗, C∗) �∈ L
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then
211 Parse C∗ as (t∗, σ∗, c∗

1, c
∗
2);

212 (τ∗
1 , τ ′∗

1, τ
∗
2 , τ ′∗

2) ← Dcp(skrcv, c
∗
1); m∗ ← D(τ∗

1 , c∗
2); τ∗

3 ← Prf(τ∗
2 , m∗);

213 m̂∗ ← H(τ∗
0 , (pksd, τ

∗
2 , τ ′∗

2, τ
∗
3 , c∗

1, c
∗
2, pkrcv));

214 if (σ∗, m̂∗) �∈ L1 then
215 return (σ∗, m̂∗); � (σ∗, m̂∗) is a signature forgery;

216 else � (σ∗, m̂∗) ∈ L1

217 Find (t, pksd, m, m̂, σ, τ1, τ
′
1, τ2, τ

′
2, τ3, c1, c2, pk) ∈ L2 such that (σ, m̂) =

(σ∗, m̂∗);
218 x1 ← (pksd, τ

∗
2 , τ ′∗

2, τ
∗
3 , c∗

1, c
∗
2, pkrcv); x2 ← (pksd, τ2, τ

′
2, τ3, c1, c2, pk);

219 if (pk, c1, c2) �= (pkrcv, c
∗
1, c

∗
2) then

220 return (x1, x2); � This yields a collision, x1 �= x2 and H(τ0, x1) = H(τ0, x2).

221 else return ⊥; �
(σ∗, m̂∗) ∈ L1, pk = pkrcv, c1 = c∗

1 , and c2 = c∗
2 , so we have (τ1, τ ′

1, τ2, τ ′
2) = (τ∗

1 , τ ′∗
1 , τ∗

2 , τ ′∗
2), then

m = m∗ = D(τ1, c2), and then (pkrcv, m∗, C∗ = (t, σ∗, c∗
1 , c∗

2)) ∈ L; this cannot occur (see condition (ii) at

line 210).

In experiment E0 the simulator answers A′s queries exactly as in an
dM−sUF−iCCA security game. In E1, we modify the simulator such that it receives
pksd from a signature challenger, and whenever S needs a signature on some m̂, it sends
it to its signature challenger and receives the corresponding signature (see at line 205).
Let Evb,b=0,1 be the event: “the conditions (i) and (ii) in the FINALIZATION procedure
are satisfied in experiment Eb.” It is clear that Pr(Ev0) = Pr(Ev1). Let Coll be the
event simulator outputs (x1, x2) such that H(τ0, x1) = H(τ0, x2).

Pr(Ev1 ∧ Coll) � Pr(Coll) � εH(k).

And, if Ev1 ∧ ¬Coll occurs, the simulator outputs a signature forgery, ı. e.

Pr(Ev1 ∧ ¬Coll) � εS(k).

It follows that ε(k) = Pr(Ev) � εH(k) + εS(k). 	


4.3 Soundness of Non-Repudiation

Theorem 3. If the hash function H is (t(k), εH(k))–collision resistant and the signa-
ture scheme is (t(k), εS(k)) secure against colliding signatures, then the SN scheme
achieves (t(k), ε(k)) soundness of non-repudiation, where ε(k) � εH(k) + εS(k).

Proof. We consider the following simulator.

Simulation for Soundness of non–repudiation

300 Initialization: dp ← (dpK, dpS, E ,Prf,H, τ0)←R Setup(k);

301 The attacker A outputs (C∗, pksd, skrcv, pkrcv, m
′, nr∗)←R A(dp);

302 Finalization:
303 if A outputs (C∗, pksd, skrcv, pkrcv, m

′, nr∗) such that
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(i) ⊥ �= m ← Usc(skrcv, pksd, C
∗), and

(ii) m �= m′ and 1 = d ← PV(C∗, m′, nr∗, pksd, pkrcv);
then

304 Parse C∗ as (t∗, σ∗, c∗
1, c

∗
2) and nr∗ as (τ∗

1 , τ ′∗
1, τ

∗
2 , τ ′∗

2);
305 nr ← N(skrcv, pksd, C

∗); parse nr as (τ1, τ ′
1, τ2, τ

′
2);

306 τ∗
3 ← Prf(τ∗

2 , m′); τ3 ← Prf(τ2, m);
307 s1 ← (pksd, τ

∗
2 , τ ′∗

2, τ
∗
3 , c1, c2, pkrcv); m̂

∗ ← H(τ0, s1);
308 s2 ← (pksd, τ2, τ

′
2, τ3, c1, c2, pkrcv); m̂ ← H(τ0, s2); � As m �= m′ we necessarily have

τ1 �= τ∗
1 . Also, as m �= m′, τ2 = τ∗

2 implies τ3 �= τ∗
3 , so it holds that (τ2, τ3) �= (τ∗

2 , τ∗
3 );

309 if m̂ = m̂∗ then return (s1, s2); � A collision is found for H

310 else return (pksd, m̂, m̂∗, σ∗); � Colliding signatures for m̂ and m̂∗;

311 else return ⊥;

Clearly, our simulator is efficient and if A succeeds in the soundness of non-repudiation
game, its output (C∗, pksd, skrcv, pkrcv, C

∗,m′, nr∗) is such that the conditions (i)
and (ii) at line 303 are satisfied. Then the simulator outputs either (s1, s2) such that
s1 �= s2 and H(τ0, s1) = H(τ0, s2), or (pksd, m̂, m̂∗, σ∗) such that m̂ �= m̂∗ and
1 = Vrfy(pk, m̂, σ∗) = Vrfy(pk, m̂∗, σ∗). Hence, ε(k) � εH(k) + εS(k). 	


4.4 Unforgeability of Non-Repudiation Evidence

Theorem 4. If the encryption scheme is (t(k), εE(k)) resistant to clustering key
attacks, the signature scheme is (t(k), εS(k)) resistant to colliding signatures, the hash
function is (t(k), εH(k)) resistant to collisions with identical prefix, and the KEM is
(t(k), εK(k)) IND-CCA secure, then SN achieves (t(k), ε(k)) unforgeability of non-
repudiation evidence with

ε(k) � qSc(εPrf(k) + (qUsc + qN + 1)/|K| + εS(k) + εK(k) + 2εH(k)) (11)

wherein qSc, qUsc, and qN are upper bounds on the number of times the attacker issues
respectively the signcryption, unsigncryption, and non-repudiation evidence generation
oracles.

Proof. Let Ev be the event: A outputs (C∗,m∗, nr∗) such that the conditions

(i) C∗ ←R OSc(pkrcv,m) was issued by A, for some m ∈ M;
(ii) 1 = d ← PV(C∗,m∗, nr∗, pksd, pkrcv);

(iii) ON(pksd, C
∗) was never issued by A.

We consider the following simulation; when abort is set to true, the simulation aborts.

Simulation for Unforgeability of non–repudiation evidence

400 Initialization: dp ← (dpK, dpS, E ,Prf,H, τ0)←R Setup(k); L ← (); L1 ← ();
401 (skrcv, pkrcv)←R Genrcv(dp); (sksd, pksd)←R Gensd(dp);
402 i0 ←R [qSc]; cnt ← 0; abort ← false;
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403 ((τ̄1, τ̄
′
1, τ̄2, τ̄

′
2), c̄1)←R Ecp(pkrcv);

E0

((τ̄1, τ̄
′
1, τ̄2, τ̄

′
2), c̄1)←R ChallKE0

;

E1

((τ̄1, τ̄
′
1, τ̄2, τ̄

′
2), c̄1)←R ChallKE1

;

E2, E3

404 m0 ← ⊥; m̂0 ← ⊥; C0 ← ⊥;

405 OSc(pk, m):
406 cnt ← cnt+ 1;
407 if cnt = i0 then
408 if pk �= pkrcv then abort ← true; � The guess is incorrect.

409 ((τ1, τ
′
1, τ2, τ

′
2), c1) ← ((τ̄1, τ̄

′
1, τ̄2, τ̄

′
2), c̄1);

E0, E1, E2

τ1 ← τ̄1; τ ′
1 ← τ̄ ′

1; c1 ← c̄1;
E3

410 c2 ←R E(τ1, m);

411 τ3 ← Prf(τ2, m);
E0, E1, E2

Send (p, m, s) ← (pksd, m, (c1, c2, pkrcv)) to the pre–image challenger;
E3

412 m̂ ← H(τ0, (pksd, τ2, τ
′
2, τ3, c1, c2, pk));

E0, E1, E2

Receive m̂ from the pre–image challenger;
E3

413 m0 ← m; m̂0 ← m̂;
414 else
415 ((τ1, τ

′
1, τ2, τ

′
2), c1)←R Ecp(pk); c2 ←R E(τ1, m);

416 τ3 ← Prf(τ2, m); m̂ ← H(τ0, (pksd, τ2, τ
′
2, τ3, c1, c2, pk));

417 σ ←R Sign(sksd, m̂); t ← Prf(τ ′
1, σ); Apd(L, (pk, m, (t, σ, c1, c2));

418 if cnt = i0 then
419 C0 ← (t, σ, c1, c2);

420 return (t, σ, c1, c2);

421 OUsc(pk, C): ON(pk, C) :
422 if pk = pksd and C = C0 �= ⊥ then

423 return m0;
OUsc

abort ← 1;
ON

424 Parse C as (t, σ, c1, c2);

425 if c1 = c̄1 then return ⊥;
E1, E2, E3

426 (τ1, τ
′
1, τ2, τ

′
2) ← Dcp(skrcv, c1); m ← D(τ1, c2);

427 τ3 ← Prf(τ2, m); m̂ ← H(τ0, (pk, τ2, τ
′
2, τ3, c1, c2, pkrcv));

428 d ← Vrfy(pksd, m̂, σ); t′ ← Prf(τ ′
1, σ);

429 if d = 1 and t = t′ then

430 return m;
OUsc

nr ← (τ1, τ
′
1, τ2, τ

′
2); Apd(L1, (pk, nr, C)); return nr;

ON

431 else return ⊥;

432 Finalization:
433 if A outputs (C∗, m∗, nr∗) such that:

(i) (pkrcv, m, C∗) ∈ L for some m ∈ M, � C∗ was generated by OSc(·, ·) on input (pkrcv, m).

(ii) 1 = d ← PV(C∗, m∗, nr∗, pksd, pkrcv), and
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(iii) (pksd, nr∗, C∗) �∈ L1, � nr∗ was not generated by ON(·, ·) on a query on (pksd, C∗);

(iv) and C∗ = C0 = (t̄, σ̄, c̄1, c̄2); � the simulator guessed correctly;

then
434 Parse nr∗ as (τ∗

1 , τ ′∗
1, τ

∗
2 , τ ′∗

2); return (τ∗
2 , τ ′∗

2)
435 else return ⊥;

We consider the experiments Ei, for i = 0, 1, 2, 3. In E0 A plays Game 6; the simulator
guesses the execution of the signcryption oracle wherein C∗ will be generated, and
answers A’s queries consistently. Let Ev be the event A succeeds and Guess be the event
the simulator’s guess is correct. If Ev ∧ Guess occurs, the simulator outputs (τ∗

2 , τ ′∗
2)

such that m̂0 ← H(τ0, (pk, τ∗
2 , τ ′∗

2, τ
∗
3 , c1, c2, pkrcv)) wherein τ∗

3 ← Prf(τ∗
2 ,m0). As

the guess’s correctness is independent from A’s success,

Pr(Ev ∧ Guess) = Pr(Ev)/qSc. (12)

Let outi denote the event Ev ∧ Guess in experiment Ei, for i = 0, 1, 2, 3. We now
consider the experiment E1, wherein instead of generating (τ̄1, τ̄ ′

1, τ̄2, τ̄
′
2, c̄1) for the

guessed Sc query (see at lines 403 and 409), the simulator receives (τ̄1, τ̄ ′
1, τ̄2, τ̄

′
2, c̄1)

from a KEM challenger as ChallKE0
. In E1, when A provides the OUsc or ON ora-

cles with a signcrypted cipher text (t, σ, c1, c2) with c1 = c̄1, the simulator returns ⊥.
Indeed, for such a query to succeeds (except C0, which is allowed only for OUsc), it
must hold that t = t′ ← Prf(τ̄ ′

1, σ). As (t, σ, c1, c2) �= (t̄, σ̄, c̄1, c̄2), if (t, σ) �= (t̄, σ̄),
this yields a PRF MAC forgery, otherwise (we must have (c1, c2) �= (c̄1, c̄2)) we obtain
a collision for H or colliding signatures. Hence

|Pr(out0) − Pr(out1)| � εPrf(k) + (qUsc + qN)/|K| + εS(k) + εH(k).

We consider the experiment E2, where the only difference compared to E1 is that
(τ̄1, τ̄ ′

1, τ̄2, τ̄
′
2, c1) is received from a KEM challenger as ChallKE1

instead of ChallKE0
.

It holds that
|Pr(out1) − Pr(out2)| � εK(k).

In experiment E3, the challenger receives (τ̄1, τ̄ ′
1, τ̄2, τ̄

′
2, c1) as ChallKE1

from the KEM
challenger, however it does not use τ̄2 and τ̄ ′

2, instead the values of τ̄2 and τ̄ ′
2 are gener-

ated by a pre-image challenger, as τ̄2 and τ̄ ′
2 are generated following the same distribu-

tion as at the KEM challenger, it follows that

Pr(out2) = Pr(out3).

Now if out3 occurs, the simulator succeeds in its pre-image game. So, from Lemma 1,

Pr(out3) � 1/|K| + εH(k).

And then,

Pr(Ev)/qSc = Pr(out0) � |Pr(out0) − Pr(out1)| + |Pr(out1) − Pr(out3)| + Pr(out3)
� εPrf(k) + (qUsc + qN + 1)/|K| + εS(k) + εK(k) + 2εH(k).
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5 Comparison with Previous Constructions

As far as we are aware, only Chiba et al. [10] propose generic constructions of insider
secure signcryption schemes (in the dynamic multi-user model) in the standard model.
They propose two generic designs, we refer to by CMSM1 [10, Sect. 4.1] and CMSM2
[10, Sect. 4.2]. Both constructions use as building blocks:

– an IND-CCA–secure symmetric encryption scheme (only semantic security is
required for CMSM2), and

– a sUF-CMA–secure signature scheme.

The construction CMSM1 uses also an IND-CCA–secure tag–based–KEM (a KEM
which takes a tag as additional input for encapsulation/decapsulation).
The design CMSM2 uses as additional building blocks:

– an IND-CCA–secure KEM, and
– a one-to-one and sUF–OT secure MAC.

In comparison, in our design, we use as building blocks:

– a semantically secure symmetric encryption scheme,
– a sUF-CMA–secure signature scheme,
– an IND-CCA–secure KEM,
– a collision resistant hash function, and
– a secure pseudo-random function.

Although tag-based-KEMs can be built from any IND-CCA–secure public key encryp-
tion scheme [10], KEMs seem to be more common. For instance, cryptography stan-
dards, such as HPKE [6], use KEMs as building block, not tag-based-KEMs. And, any
tag-based KEM can be transformed into a KEM, by using an empty tag. In this respect,
compared to CMSM1, the SN scheme uses more common low level primitives.

The construction CMSM2 uses very common low level primitives. Unfortunately,
to achieve strong unforgeability, there is a significant restriction on the MAC, which is
required to be one-to-one, i. e. it is required that given a key τ and a message m, there
is one and only one t such that MAC(τ,m) = t. This requirement excludes a large
class of hash based MACs such as HMAC [16], UMAC [17], or KMAC [15]. The same
restriction exists on the encryption scheme; this precludes the use a randomized encryp-
tion scheme, such as a bloc cipher with a mode of operation using a (pseudo-)random
initialization vector, for instance. In comparison, in the SN construction, we require the
signature scheme to be resistant against colliding signatures and the encryption scheme
to be resistant against clustering key attacks. In many signatures, wherein the message
to be signed is hashed first (the Full Domain Hash [14], for instance), colliding sig-
natures yield a digest collision. The requirement is then naturally achieved in usual
signature schemes. And, given the commonly required avalanche effect in substitution
permutation network based encryption schemes (each cipher-text bit is changed with
probability 1/2, when a single bit of the key is modified), one can reasonably expect
common encryption schemes to be resistant against key clustering attacks. To instanti-
ate the PFR, given the public parameter τ0 and a secure block cipher, from the PFR–PRP
switching lemma [9, p. 134], Prf(τ, x) can be computed using the instructions:
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500 Prf(τ, x):
501 x′ ← H(τ0, x); t ← E(τ, x′); return t;

It appears that, compared to CMSM2, the SN scheme offers a wider range of choices
for an instantiation of the low level primitives. This may be of prime importance in a
constrained environment wherein only a limited number of low level primitives can be
implemented.

Contrary to Tan’s design [23] and the generic constructions from [2] and [19], the
SN scheme does not require the registered key model; it then offers a superior security.
Also, compared to the constructions from [20–22], SN does not use the random oracle
model. Another security advantage of the SN scheme compared to these constructions
is its generic nature; it can be instantiated with adequate present and future (including
quantum-resistant) primitives.

From an efficiency perspective, the computational cost of the CMSM1, CMSM2,
and SN schemes, comes mainly from the asymmetric operations (the cost of the sym-
metric operations is usually neglected): encapsulation and signature for signcryption,
and decapsulation and signature verification, for unsigncryption. Given that any tag-
based-KEM can be transformed (for free) into a KEM, for any instantiation of CMSM1
or CMSM2, there is an instantiation of SN that achieves the same efficiency for the
asymmetric operations, if not better. For a comparison with direct constructions [20–
23], SN can be instantiated with any signature scheme S and symmetric encryption
scheme E , and an appropriate KEM, PRF and hash function, provided S is strongly
unforgeable and S is semantically secure and the KEM is IND-CCA–secure. Given that
hash and PRF evaluations are negligible compared to signature and KEM operations,
SN will yield a comparable efficiency.

The bit length of a CMSM1 signcrypted cipher-text corresponding to a message
m is the bit length of m (assuming that the encryption scheme E is length pre-
serving) added with that of a signature on m and that of a encapsulated key, i.e.
sz(m)+sz(Sign(sksd,m))+sz(Ecp(sksd, pkrcv)), where sksd and pkrcv are respectively
the sender’s private key and the receiver’s public key. The CMSM2 and SN schemes add
to this quantity the size of a MAC (a PRF based MAC in the case of SN). So, the SN and
CMSM2 have the same communication overhead, which is slightly greater than that of
CMSM1.

An interesting feature of the SN scheme, is that all the security reductions are tight,
except for the unforgeability of non-repudiation evidence wherein we use a guessing
strategy. A concrete instance of SN may be re-analyzed for unforgeability of non-
repudiation evidence, if the underlying KEM is build upon a random self-reducible
problem.

A Proof of Lemma 1

Let A be an adversary playing Game 1. We build an adversary B against the collision
(with identical prefix) resistance of H a follows.

1) B receives τ0 ←R K from its challenger and sends τ0 to A.
2) When B receives (p0,m0, s0) from A, it chooses (τ, τ ′)←R K2 and computes τ ′′

0 ←
Prf(τ ′,m0), m̂0 ← H(τ0, (p0, τ, τ ′, τ ′′, s0)) and sends m̂0 to A.
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3) When A outputs (τ∗, τ ′∗) such that m̂0 = m̂∗
0 ← H(τ0, (p0, τ∗, τ ′∗, τ ′′∗, s0))

wherein τ ′′∗ ← Prf(τ ′∗,m0), if (τ, τ ′) �= (τ∗, τ ′∗) then B outputs (s, s′) wherein
s = (p0, τ, τ ′, τ ′′, s0) and s′ = (p0, τ∗, τ ′∗, τ ′′∗, s0) as messages with identical
prefix p0 and colliding hashes under τ0.

Let bad be the event: the chosen pair (τ, τ ′) is such that for all (τ̄ , τ̄ ′) �= (τ, τ ′),
m̂0 �= H(τ0, (p0, τ̄ , τ̄ ′, τ̄ ′′, s0)), i. e. there is no other pair (τ̄ , τ̄ ′) ∈ K2 such that
H(τ0, (p0, τ̄ , τ̄ ′, τ̄ ′′, s0)) = H(τ0, (p0, τ, τ ′, τ ′′, s0)). It holds that

Pr(bad) � |T|/|K|2.
If SuccA,H denotes the event A succeeds in Game 1,

Pr(SuccA,H) = Pr(SuccA,H ∧ bad) + Pr(SuccA,H ∧ ¬bad)
� Pr(bad) + Pr(SuccA,H ∧ ¬bad).

Now let Eq be the event (τ, τ ′) = (τ∗, τ ′∗).

Pr(SuccA,H ∧ ¬bad) = Pr(SuccA,H ∧ ¬bad ∧ Eq) + Pr(SuccA,H ∧ ¬bad ∧ ¬Eq).
Now, as if SuccA,H ∧ ¬bad occurs, there at least one (τ∗, τ ′∗) �= (τ, τ ′) such that
m̂0 = m̂∗

0 ← H(τ0, (p0, τ∗, τ ′∗, τ ′′∗, s0)), and A has no information about (τ, τ ′)
besides m̂0, it holds that

Pr(SuccA,H ∧ ¬bad ∧ Eq) � Pr(SuccA,H ∧ ¬bad ∧ ¬Eq).
Hence

Pr(SuccA,H) � |T|/|K|2 + 2Pr(SuccA,H ∧ ¬bad ∧ ¬Eq).
And, whenever SuccA,H ∧¬bad∧¬Eq occurs B outputs s, s′ with identical prefix such
that H(τ0, s) = H(τ0, s′). 	
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