
Francesco Regazzoni
Bodhisatwa Mazumdar
Sri Parameswaran (Eds.)

LN
CS

 1
44

12

13th International Conference, SPACE 2023
Roorkee, India, December 14–17, 2023
Proceedings

Security, Privacy, and
Applied Cryptography
Engineering

Lecture Notes in Computer Science 14412
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Francesco Regazzoni · Bodhisatwa Mazumdar ·
Sri Parameswaran
Editors

Security, Privacy, and
Applied Cryptography
Engineering
13th International Conference, SPACE 2023
Roorkee, India, December 14–17, 2023
Proceedings

Editors
Francesco Regazzoni
University of Amsterdam
Amsterdam, The Netherlands

Sri Parameswaran
The University of Sydney
Camperdown, NSW, Australia

Bodhisatwa Mazumdar
Indian Institute of Technology Indore
Indore, India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-51582-8 ISBN 978-3-031-51583-5 (eBook)
https://doi.org/10.1007/978-3-031-51583-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-51583-5

Preface

The 13th International Conference on Security, Privacy, and Applied Cryptographic
Engineering (SPACE 2023), was held during December 14–17, 2023 at Indian Institute
of TechnologyRoorkee, India. This annual event is devoted to various aspects of security,
privacy, applied cryptography, and cryptographic engineering. This is a challenging
field, requiring expertise from diverse domains, ranging frommathematics and computer
science to circuit design.

This year we received 45 submissions from authors in many different countries,
mainly from Asia and Europe. The submissions were evaluated based on their signifi-
cance, novelty, technical quality, and relevance to the SPACE conference. The submis-
sionswere each reviewed in a double-blindmode by at least twomembers of the Program
Committee, which consisted of 41 members from all over the world. After an extensive
review process, 14 papers were accepted for presentation at the conference, leading to
an acceptance rate of 31%.

The program also included four keynote talks and tutorial sessions on various aspects
of applied cryptology, security, and privacy delivered by world-renowned researchers:
Elena Dubrova, Arpita Patra, Divya Ravi, Subhadeep Banik, Benedikt Gierlichs, and
Mainack Mondal. We sincerely thank the invited speakers for accepting our invitations
in spite of their busy schedules. In addition, a workshop on post-quantum cryptography
was conducted by DebdeepMukhopadhyay and team from IIT Kharagpur, and Benedikt
Gierlichs and team from KU Leuven. Furthermore, a banquet talk at SPACE 2023 was
delivered by Siddharth Garg, Institute Associate Professor of ECE at NYU Tandon,
where he leads the EnSuRe Research group.

As in previous editions, SPACE 2023 was organized in cooperation with the Indian
Institute of TechnologyRoorkee.We are grateful to general chairs SugataGangopadhyay
and Debdeep Mukhopadhyay for their willingness to host it physically at IIT Roorkee.
There is a long list of volunteers who invested their time and energy to put together
the conference. We are grateful to all the members of the Program Committee and their
sub-reviewers for all their hard work in the evaluation of the submitted papers. We thank
our publisher Springer for agreeing to continue to publish the SPACE proceedings as
a volume in the Lecture Notes in Computer Science (LNCS) series. We are grateful to
the local Organizing Committee who invested a lot of time and effort in order for the
conference to run smoothly. Last, but not least, our sincere thanks go to all the authors
who submitted papers to SPACE 2023 and everyone who participated (either in person
or virtually).

December 2023 Francesco Regazzoni
Bodhisatwa Mazumdar

Sri Parameswaran

Organization

Program Committee

Subidh Ali Indian Institute of Technology Bhilai, India
N. Nalla Anandakumar Continental Automotive, Singapore
Utsav Banerjee Indian Institute of Science, India
Subhadeep Banik University of Lugano, Switzerland
Debapriya Basu Roy IIT Kanpur, India
Jakub Breier Silicon Austria Labs, Austria
Claude Carlet University of Paris 8, France
Rajat Subhra Chakraborty IIT Kharagpur, India
Urbi Chatterjee IIT Kanpur, India
Anupam Chattopadhyay Nanyang Technological University, Singapore
Lukasz Chmielewski Masaryk University, Czechia
Diego F. Aranha Aarhus University, Denmark
Sugata Gangopadhyay Indian Institute of Technology Roorkee, India
Maël Gay University of Stuttgart, Germany
Dirmanto Jap Nanyang Technological University, Singapore
Jayaprakash Kar LNM Institute of Information Technology, India
Kerstin Lemke-Rust Bonn-Rhein-Sieg University of Applied Sciences,

Germany
Bodhisatwa Mazumdar Indian Institute of Technology Indore, India
Silvia Mella Radboud University, The Netherlands
Marine Minier CITI INSA-Lyon, France
Mainack Mondal Indian Institute of Technology, Kharagpur, India
Debdeep Mukhopadhyay IIT Kharagpur, India
Ruben Niederhagen Academia Sinica, Taiwan, and University of

Southern Denmark, Denmark
Kostas Papagiannopoulos Radboud University, The Netherlands
Sri Parameswaran University of Sydney, Australia
Sikhar Patranabis IBM Research India, India
Guilherme Perin TU Delft, The Netherlands
Md Masoom Rabbani KU Leuven, Belgium
Chester Rebeiro Indian Institute of Technology Madras, India
Francesco Regazzoni University of Amsterdam, The Netherlands and

Università della Svizzera italiana, Switzerland
Ulrich Rührmair Ruhr University Bochum, Germany
Reihaneh Safavi-Naini University of Calgary, Canada

viii Organization

Dhiman Saha de.ci.phe.red Lab, Indian Institute of Technology
Bhilai, India

Kazuo Sakiyama University of Electro-Communications, Japan
Somitra Sanadhya IIT Jodhpur, India
Vishal Saraswat Bosch Global Software Technologies, India
Peter Schwabe Radboud University, The Netherlands
Sujoy Sinha Roy IIT Kharagpur, India
Marc Stöttinger RheinMain University of Applied Science,

Germany
Bohan Yang Tsinghua University, China
Amr Youssef Concordia University, Canada
Nusa Zidaric Leiden University, The Netherlands

Additional Reviewers

Aikata, Aikata
Badola, Ritwik
Chen, Xiangren
Das, Bijoy
Das, Reetwik
Hünseler, Marco
Kumar, Vikas

Lahr, Norman
Mandal, Suraj
Petri, Richard
Picek, Stjepan
Raya, Ali
Zhang, Tao
Zhao, Cankun

Contents

Results on the Key Space of Group-Ring NTRU: The Case of the Dihedral
Group . 1

Ali Raya, Vikas Kumar, Sugata Gangopadhyay,
and Aditi Kar Gangopadhyay

Token Open Secure and Post-quantum Updatable Encryption Based
on MLWE . 20

Yang Song, Haiying Gao, Keshuo Sun, and Chao Ma

Zero-Knowledge Proofs for SIDH Variants with Masked Degree or Torsion 48
Youcef Mokrani and David Jao

Post-quantum DNSSEC over UDP via QNAME-Based Fragmentation 66
Aditya Singh Rawat and Mahabir Prasad Jhanwar

Cryptanalysis of Short and Provable Secure Lattice-Based Signature
Scheme . 86

Ramakant Kumar, Sahadeo Padhye, and Swati Rawal

Cryptanalysis with Countermeasure on the SIS Based Signature Scheme 92
Komal Pursharthi and Dheerendra Mishra

Vulnerability of Dynamic Masking in Test Compression . 101
Yogendra Sao, Debanka Giri, Soham Saha, and Sk Subidh Ali

An Efficient Generic Insider Secure Signcryption with Non-Interactive
Non-Repudiation . 117

Ngarenon Togde and Augustin P. Sarr

High-Order Collision Attack Vulnerabilities in Montgomery Ladder
Implementations of RSA . 139

Arnaud Varillon, Laurent Sauvage, and Jean-Luc Danger

On the Masking-Friendly Designs for Post-quantum Cryptography 162
Suparna Kundu, Angshuman Karmakar, and Ingrid Verbauwhede

Spliced Region Detection and Localization in Digital Images Based
on CNN Learning Guided by Color Transitions and Surface Texture 185

Debjit Das, Ranit Das, and Ruchira Naskar

x Contents

UN-SPLIT: Attacking Split Manufacturing Using Link Prediction
in Graph Neural Networks . 197

Lilas Alrahis, Likhitha Mankali, Satwik Patnaik, Abhrajit Sengupta,
Johann Knechtel, and Ozgur Sinanoglu

Logarithmic-Size (Linkable) Ring Signatures from Lattice Isomorphism
Problems . 214

Xuan Thanh Khuc, Anh The Ta, Willy Susilo, Dung Hoang Duong,
Fuchun Guo, Kazuhide Fukushima, and Shinsaku Kiyomoto

“We Must Protect the Transformers”: Understanding Efficacy of Backdoor
Attack Mitigation on Transformer Models . 242

Rohit Raj, Biplab Roy, Abir Das, and Mainack Mondal

Author Index . 261

Results on the Key Space of Group-Ring
NTRU: The Case of the Dihedral Group

Ali Raya1(B) , Vikas Kumar2 , Sugata Gangopadhyay1,
and Aditi Kar Gangopadhyay2

1 Department of Computer Science and Engineering, IITR, Roorkee, Uttarakhand,
India

{ali_r,sugata.gangopadhyay}@cs.iitr.ac.in
2 Department of Mathematics, IITR, Roorkee, Uttarakhand, India

{v_kumar,aditi.gangopadhyay}@ma.iitr.ac.in

Abstract. NTRU-like schemes are among the most studied lattice-
based cryptosystems. Since the first scheme was introduced, many vari-
ants of NTRU have been developed in the literature. These variants
involve a high degree of freedom in designing the cryptosystem aspects,
from sampling the polynomials (representing the private key) to the
underlying ring used to build the structure. As a generalization of NTRU,
Group-ring NTRU describes how to create different variants of NTRU by
employing other groups. While most designs in literature are built over
a commutative group-ring, a non-commutative group can also be used.
Some groups can result in more efficient implementations or better resis-
tance against some attacks. However, introducing new groups triggers
fundamental questions related to the key space, encryption, decryption
failures, and correctness of the new scheme. This paper uses the non-
commutative dihedral group to explore the key space for a group-ring
NTRU. Our work investigates whether elements sampled according to
specific properties in the reference NTRU implementations can still be
used as a key space in the case of the dihedral group. We show that the
key space is suitable for building a non-commutative group-ring NTRU
based on the dihedral group. Experimental results are provided for poly-
nomials with different properties and compared to the results of reference
implementations of NTRU over well-defined parameter sets.

Keywords: Post-quantum cryptography · NTRU · Group-ring
NTRU · Dihedral group

1 Introduction

Many candidates have been proposed as post-quantum schemes to secure infor-
mation in the quantum era. The introduced schemes are defined over mathemat-
ical problems that are believed to be hard to solve by a quantum or classical
machine. Lattice-based cryptography is one of the promising families in building

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. Regazzoni et al. (Eds.): SPACE 2023, LNCS 14412, pp. 1–19, 2024.
https://doi.org/10.1007/978-3-031-51583-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51583-5_1&domain=pdf
http://orcid.org/0000-0001-5576-7039
http://orcid.org/0000-0002-1981-1984
https://doi.org/10.1007/978-3-031-51583-5_1

2 A. Raya et al.

quantum-secure cryptosystems. Most National Institute of Standards and Tech-
nology (NIST) competition submissions belong to this family [2,3,8,18]. NTRU
candidate is a lattice-based scheme that has undergone a long history of crypt-
analysis. Although NIST has not selected NTRU for standardization, NTRU has
been marked as an alternate for standardization in case the intellectual prop-
erty (IP) of Kyber, another lattice-based candidate, is not resolved [1]. In 1996,
Hoffstein, Pipher, and Silverman introduced the first variant of NTRU [12] as a
public key cryptosystem based on a ring of convolutional polynomials.

Since that time, many versions of NTRU have been developed. The security
of these systems relies on the hardness of factoring a given polynomial in the ring
(representing the public key) into a quotient of two polynomials (representing
the private key). Recovering the key of NTRU-based systems can be reduced to
solving some problems in a special sort of lattice (NTRU-lattice), and in this
regard, NTRU is related to lattice-based cryptography.

The polynomials representing the private key f, g are sampled with certain
properties (usually with small coefficients). Reviewing the literature, we can see
that the private polynomials have been sampled uniformly in different ways, from
binary polynomials [13] to ternary polynomials [9] with a certain number of non-
zero coefficients. Other works like NTRU-HPS [4] samples f to be any ternary
polynomial, while NTRU-HRSS [4] needs f to be a polynomial that follows the
“non-negative correlation” property. Other implementations based on NTRU like
BLISS [7] have sampled the private key from a set of polynomials with certain
number of coefficients in {+1,−1}, other coefficients in {+2,−2} and the remain-
ing coefficients in {0}, many more variants [10,22] have also sampled the key from
a space different from binary or ternary polynomials to increase the entropy of
the key and therefore provide better resistance against some attacks. The major-
ity of NTRU-like schemes in literature and NIST’s competition are based on com-
mutative rings of polynomials like R = Z[x]/(xN − 1) or R = Z[x]/(x2n + 1).
However, some other NTRU-like schemes have been proposed by replacing or
modifying the structure of R, which may result even in non-commutative rings.
The new rings can empower faster computations and result in smaller keys [15]
or achieve more resistance against some lattice attacks [19,23]. Yasuda et al. [24]
provided a general structure to represent NTRU-like schemes called Group-Ring
NTRU. Using the group-ring ZG, we can build an NTRU-like scheme for dif-
ferent finite groups G. The standard NTRU built over the commutative rings
of polynomials can be thought of as a group-ring NTRU based on the cyclic
group of order N . Similarly, different instantiations of NTRU can be built by
adapting other groups. This work looks at the group-ring NTRU based on the
dihedral group. Building the dihedral group-ring NTRU raises several questions
related to the adaptions needed to build the cryptosystem compared to reference
implementations. The first natural question is whether the key space used in the
existing schemes can still be used in the group-ring scheme based on the dihe-
dral group. This paper explores this problem by providing experimental results
on the key space of dihedral group-ring NTRU. The experiment tries to figure
out whether the polynomials sampled as private keys in the cyclic group-ring

Results on the Key Space of Group-Ring NTRU 3

NTRU are also invertible in the new setting of the dihedral group implemen-
tation (and, therefore, can serve as keys). Different polynomials sampled with
different properties are checked and compared to the reference implementations
of NTRU.

2 Motivation

Noncommutative group algebra can be another direction to provide better secu-
rity against attacks on lattice-based cryptosystems. When Coppersmith and
Shamir established their famous lattice attack against NTRU [6], they high-
lighted the importance of considering a noncommutative structure to build future
variants of NTRU. Furthermore, J. Kim and C. Lee [17] recently proposed a poly-
nomial time algorithm to break NTRU with multiple keys that break NTRU
learning problem [21, 4.4.4] and not the original problem of NTRU. A refined
analysis of their algorithm shows that the entire assumption worked due to the
underlying commutative group-ring of the standard NTRU.

Introducing a noncommutative structure usually comes with high costs
related to the practical implementation of a cryptosystem. The dihedral group,
as a noncommutative group, is closely related by definition to the cyclic group
and, therefore, can easily inherit many of the implementations and tricks that
have been constructed through the lengthy process of optimization and crypt-
analysis of the commutative schemes based on the cyclic group. Naturally, one
attempt has been considered to build a variant of NTRU based on the dihedral
group [23] that has been broken soon by [5]. Group-Ring NTRU (GR-NTRU) is
a different framework that enables building a noncommutative NTRU, which is
not vulnerable to the attack introduced in [5]. Our work considers GR-NTRU
based on the dihedral group and focuses on checking whether this variant can be
useful to build a noncommutative variant of NTRU by exploring the key space of
the elements sampled similarly to those used in standard and celebrated variants
of commutative NTRU based on the cyclic group.

3 Organization of Our Paper

Section 4 describes the notations used throughout this paper. Section 5 provides
the preliminaries of group-rings. Section 6 describes general steps to build an
NTRU-like cryptosystem and sketches the properties of the key elements for some
of the prominent NTRU-based schemes in the literature. Section 7 introduces the
group-ring NTRU and describes the matrix representation of elements in group-
rings, highlighting how this representation can be used to check the invertibility
(and therefore determine key space). Section 8 gives the experimental results by
mentioning the sampling procedures designed to sample elements from the space
and then showing the results compared to the well-defined parameter sets of the
prominent NTRU schemes. Finally, discussions and conclusions are drawn.

4 A. Raya et al.

4 Notations

– For a positive integer n, Zn = {0, 1, . . . , n − 1} is the ring of integers modulo
n.

– For x ∈ Zn, −x denotes the additive inverse of x modulo n given by n − x.
– Mn(R) is the ring of n × n matrices with entries from the ring R.
– Symbol � denotes the multiplication between two elements of the underlying

structure.
– #A denotes the cardinality of set A.
– �x� denotes the floor function that takes a real number x to the greatest

integer less than or equal to x, and �x� denotes the ceiling function that
maps x to the least integer greater than or equal to x.

– a ←$ A means element a is sampled uniformly at random from the set A.
– A circulant matrix is a square matrix whose rows have the same elements,

and each row vector is rotated one position with respect to the previous
row. If rotation happens toward the right, we call the matrix right circulant ;
otherwise, we call it left circulant.

5 Group-Rings

Let R be a ring and G be a group with identity element e. Consider the set of
formal sums

RG =

{∑
g∈G

ag[g] : ag ∈ R, ag = 0 for all except for finitely many g ∈ G
}

. (1)

Consider two elements α =
∑

g∈G ag[g] and β =
∑

g∈G bg[g] in RG. We have,
α = β if and only if ag = bg for all g ∈ G.

Define the sum of α and β as:

α + β =
∑
g∈G

ag[g] +
∑
g∈G

bg[g] =
∑
g∈G

(ag + bg)[g] (2)

The product is defined as the convolutional product:

α � β =
∑
g∈G

ag[g] �
∑
g∈G

bg[g] =
∑
g∈G

cg[g] (3)

where
cg =

∑
hk=g

ahbk (4)

Definition 1. ([20, Chapter 3]) The set RG forms a ring with respect to the
operations defined in (2) and (3), and we say that RG is the group-ring of G
over R.

Results on the Key Space of Group-Ring NTRU 5

If R has unity 1R, then RG is a ring with unity 1RG =
∑

g∈G ag[g], where
ae = 1R and ag = 0 for g �= e. We can make RG an R-module by defining the
scalar product of elements of RG with elements λ ∈ R as follows:

λα = λ

⎛
⎝∑

g∈G
ag[g]

⎞
⎠ =

∑
g∈G

(λag)[g] (5)

Moreover, if R is commutative, then RG is an R-algebra.

6 NTRU

The initial NTRU scheme is framed over the factor ring of a polynomial ring.
Let us give a simple description of the NTRU cryptosystem [11].

6.1 Parameters Selection

Let N, p, q, d be positive integers with N, p prime, p << q, gcd(N, q) =
gcd(p, q) = 1, and q > (6d + 1)p. Let R = Z[x]/(xN − 1), Rq = Zq[x]/(xN − 1),
and Rp = Zp[x]/(xN − 1).

For positive integers d1, d2,

T (d1, d2) =

⎧⎨
⎩f ∈ R

∣∣∣∣∣∣
f has d1 coefficients equal to 1
f has d2 coefficients equal to -1
rest coefficients are 0

⎫⎬
⎭

We call polynomials from T (d1, d2) to be ternary polynomials. Suppose f(x) ∈
Rq, then the centered lift of f(x) is the unique polynomial f ′(x) ∈ R whose
coefficients are in the interval

(
− q

2 , q
2

]
and f ′(x) (mod q) = f(x).

Message space consists of elements from R whose coefficients are between
−p

2 and p
2 . In other words, a message is an element in R that is the centered lift

of some element in Rp.

6.2 Key Generation

(i) Choose f ∈ T (d + 1, d) such that there exist fq ∈ Rq, fp ∈ Rp satisfying
f � fq ≡ 1 (mod q) and f � fp ≡ 1 (mod p).

(ii) Choose another element g ∈ T (d, d).
(iii) construct h ∈ Rq such that f � h ≡ g (mod q).
(iv) declare h, p, q to be public key.
(v) f and fp are private keys.

6.3 Encryption

To encrypt a message m, we first randomly choose φ ∈ T (d, d). Then, the cipher-
text is computed as follows:

c ≡ ph � φ + m (mod q).

6 A. Raya et al.

6.4 Decryption

First, compute a ≡ f � c (mod q). Then, choose the coefficients of a in the
interval

(
− q

2 , q
2

]
. Now, m can be recovered by computing fp � a (mod p) and

centerlifting it.

6.5 Correctness

We have a ≡ pg�φ+f �m (mod q). Since f, g, and φ are ternary and coefficients
of m lie between −p

2 to p
2 . Therefore, the largest coefficient of g � φ can be 2d,

and the largest coefficient of f � m can be (2d + 1)p2 . Consequently, the largest
coefficient of pg�φ+f �m is at most (6d+1)p2 . Thus, if q > (6d+1)p, computing
a ≡ f �c (mod q) and then centerlifting it gives exactly the element pg�φ+f �m.
Now, we can multiply this element with fp and reduce coefficients modulo p to
recover an element in Rp whose centered lift gives us the message m.

6.6 Prominent NTRU-Based Cryptosystems

The key generation of NTRU-like cryptosystems involves sampling polynomials
with specific properties and finding the inverse of some of these polynomials in
order to calculate and publish the public key.

In Sect. 6, we have provided the specification for one initial and fundamental
variant of NTRU. We can see that the key generation in the initial NTRU is
probabilistic, whose success depends on the invertibility of f , where f is a poly-
nomial of degree at most N − 1. So, to make the process deterministic, various
versions of NTRU are built over the same framework with few modifications to
the key generation process. However, the common step in the key generation of
all these schemes is to generate polynomials uniformly at random in the ring R
with some restrictions on coefficients and check their invertibility over different
quotient rings. This section briefly presents the structure of the polynomials used
in different schemes, whose invertibility plays a major role in the key generation.

(i) We have already seen that the NTRU system described in Sect. 6 samples
a polynomial f ∈ T (d + 1, d): ternary polynomial with d + 1 coefficients
equal +1, d coefficients equal −1 and other coefficients equal 0, we refer to
this property as (P1). The space size with property (P1) is #T (d+1, d) =(
N
d

)(
N−d
d+1

)
.

(ii) NTRU-HPS [4] involves inverting a polynomial f ∈ T : any randomly
sampled ternary polynomial, we refer to this property as (P2). The space
size with property (P2) is #T = 3N .

(iii) NTRU-HRSS [4] uses a polynomial f ∈ T+: ternary polynomial that
satisfies the non-negative correlation property. A ternary polynomial f =∑

i fix
i has the non-negative correlation property if

∑
i fifi+1 ≥ 0. We refer

to this property as (P3). Since flipping the sign of even indexed coefficients
of a non-negatively correlated polynomial gives a non-positively related
polynomial. Therefore, the space size with property (P3) is #T+ ≈ 3N

2 .

Results on the Key Space of Group-Ring NTRU 7

(iv) BLISS [7] given two real values called densities δ1 and δ2 ∈ [0, 1), the
polynomial f is sampled from P(w1, w2): polynomial with w1 coefficients
in {+1,−1}, w2 coefficients in {+2,−2}, and all other coefficients to be 0,
where w1 = �δ1N� and w2 = �δ2N�. We refer to this property as (P4).
The space size with property (P4) is #P(w1, w2) =

(
N
w1

)(
N−w1
w2

)
2w1+w2 .

(v) NTRUEncrypt [10] deals with inverting a polynomial f = 1 + 3F where
F ∈ PN (d1, d2, d3) = {A1 � A2 + A3 : Ai ∈ T (di, di)}. We refer to this
property as (P5). The space size with property (P5) is #PN (d1, d2, d3) =(
N
d1

)(
N−d1
d1

)(
N
d2

)(
N−d2
d2

)(
N
d3

)(
N−d3
d3

)
.

7 Group-Ring NTRU

It is straightforward to observe that the NTRU scheme in Sect. 6 can be refor-
mulated over the group-ring:

R(q,CN) = ZqCN

(
∼= Zq[x]/(xN − 1)

)
(6)

where CN is a cyclic group of order N .
In [24], following the same idea, Yasuda et al. have proposed variants of

NTRU by replacing the group CN with other groups G and working over the
group-ring R(q,G) = ZqG. They call this new version of NTRU Group-ring
NTRU. Group-ring NTRU can form a general framework to build different vari-
ants of NTRU-like systems where parameter selection, key generation, encryp-
tion, and decryption are almost similar to the original NTRU except that the
operations are now performed over the Group-ring R(q,G) instead of R(q,CN).

Our work will focus on the group-ring NTRU built over the group-ring of the
dihedral group DN , defined in 10, over Zq:

R(q,DN) = ZqDN

(
∼= Zq[x, y]〈

xN − 1, y2 − 1, yx − xN−1y
〉
)

(7)

Considering the technical details of implementing group-ring NTRU, we need
to figure out how to find inverses of elements in the new group-ring. These
elements play an essential role in generating the key in the NTRU-like systems.
In the case of reference implementations over ZqCN , there are fast algorithms in
literature to find the inverses of elements [16]. However, for group-ring ZqDN , to
the best of our knowledge, no algorithm can find the inverse efficiently. For this
purpose, we will rely on the method discussed in the following subsection that
describes the matrix representation of elements in group-rings and how that can
be used to find inverses, especially in the case of the dihedral group.

7.1 Matrix Representation of Group-Ring Elements

In [14], T. Hurley establishes an isomorphism between a group-ring RG and a
certain subring of n × n matrices over R. This relation is of immense use in

8 A. Raya et al.

determining the invertibility of group-ring elements by checking the invertibility
of matrices, which is a well-studied concept.

For a finite group G = {g1, g2, . . . , gn}, define the matrix of group as

MG =

⎛
⎜⎜⎜⎜⎝

g−1
1 g1 g−1

1 g2 g−1
1 gn

g−1
2 g1 g−1

2 g2 g−1
2 gn

...
...

. . .
...

g−1
n g1 g−1

n g2 g−1
n gn

⎞
⎟⎟⎟⎟⎠ (8)

We now construct the RG-matrix of an element α = (αg1 , αg2 , . . . , αgn) ∈ RG as
follows:

MRG(α) =

⎛
⎜⎜⎜⎜⎝

αg−1
1 g1

αg−1
1 g2

. αg−1
1 gn

αg−1
2 g1

αg−1
2 g2

. αg−1
2 gn

...
...

. . .
...

αg−1
n g1

αg−1
n g2

. αg−1
n gn

⎞
⎟⎟⎟⎟⎠ (9)

The set MRG = {MRG(α) : α ∈ RG} is the subring of the ring of n × n
matrices over R, denoted by Mn(R). We will say a matrix A ∈ Mn(R) is an
RG-matrix if there is an α ∈ RG such that A = MRG(α).

Theorem 1. ([14, Theorem 1]) The mapping τ : RG → MRG ⊂ Mn(R) defined
as τ(α) = MRG(α) is a bijective ring homomorphism, i.e., τ(α + β) = τ(α) +
τ(β) = MRG(α) + MRG(β), and τ(α � β) = τ(α) · τ(β) = MRG(α) · MRG(β),
where · denote the usual matrix multiplication. Furthermore, τ is a module R-
homomorphism, i.e., τ(λα) = λτ(α) = λMRG(α), for λ ∈ R.

Theorem 2. ([14, Theorem 2]) Let R be a ring with unity and G be a finite
group. Then, α ∈ RG is unit if and only if MRG(α) is invertible in Mn(R). In
that case, inverse of MRG(α) is also an RG-matrix.

Corollary 1. ([14, corollary 2]) When R is a commutative ring with unity, α
is a unit in RG if and only if det(τ(α)) is a unit in R. In case when R is a field,
then α is a unit if and only if det(τ(α)) �= 0.

7.2 The Case of the Dihedral Group

As discussed above, checking the invertibility of an element in a group-ring based
on a finite group of order N is equivalent to checking the invertibility of an N×N
matrix over the underlying ring. Also, the inverse of this matrix gives the inverse
of the corresponding element. However, in the case of the dihedral group, there
is a faster way to check the invertibility of elements in ZqDN . It is important to
point out that the following method helps to check the invertibility of elements
in ZqDN for all values of q but fails to give the inverse when q is even. As far
as the scope of this paper is concerned, we are interested in investigating the
size of the key space for the group-ring NTRU based on R(q,DN), which involves

Results on the Key Space of Group-Ring NTRU 9

just checking the invertibility of elements in the concerned group-ring. Thus, the
following fast method for checking the invertibility is of great help to us.

The dihedral group DN of order 2N is given by

DN =
〈
r, s : rN = s2 = 1, rs = sr−1

〉
, (10)

i.e., DN = {1, r, . . . , rN−1, s, . . . , srN−1}. It can be easily checked that the matrix
of DN and consequently the RG-matrix of any element α ∈ RDN is of the form

MRDN
(α) =

(
F G
G F

)
, where F is a circulant matrix and G is Hankel-type or

reverse circulant matrix, both of order N ([14, section 3.3]).

Let I =
(

IN IN
IN −IN

)
where IN is an N × N identity matrix over the ring R.

For a ring R with characteristic, not 2, I is invertible over R or over the field of
quotients of R. Conjugating MRDN

(α) by I, we get

I
(

F G
G F

)
I−1 =

(
F + G 0N

0N F − G

)
(11)

Here, the matrix I is independent of F and G. Therefore, if R is a commutative
ring with unity, then α ∈ RG is a unit if and only if det(F +G) and det(F − G)
is a unit in R. Consequently, it gives us a faster way to verify the invertibility
of any element from R(q,DN) by just checking the invertibility of two N × N
matrices instead of checking the invertibility of a 2N × 2N matrix over R.

This method can check invertibility faster. However, for finding the inverse,
the faster computations in the group-ring ZqDN can work only for odd values
of q. Refer to the Appendix for a detailed discussion.

8 Experimental Results

As we have seen in Sect. 6.6, in the case of working in the quotient ring R(q,CN),
the majority of the schemes do sampling for polynomials and calculate the inverse
of a polynomial f with one of the properties (P1) to (P5). To check the validity
of designing an NTRU-like cryptosystem over the group-ring R(q,DN), the first
question to answer is related to the proportion of the invertible elements which
can serve as a key space for the new cryptosystem. For reference, we compare the
proportion of invertible elements in R(q,DN) with the standard implementation
of NTRU-like cryptosystems built over R(q,CN) for equivalent parameter sets.

8.1 Sampling

Since the spaces of polynomials/elements that follow the patterns (P1) to (P5)
are extremely large for real-world parameters used to design cryptosystems, we
need to write sampling procedures that can do random uniform sampling for
elements of the space under check. After sampling enough samples (10, 000 in
our experiment), we can conclude whether the key space (i.e., the invertible

10 A. Raya et al.

elements) is large enough and uniformly distributed over the whole space of
elements under examination. Algorithms 1 to 5 mention the sampling procedures
written to run our experiment. The implementation of these routines is inspired
by the NIST NTRU submission [4].

Briefly, we will mention the intuition behind each sampling procedure. Algo-
rithm 1 samples a polynomial from T (d1, d2). To sample uniformly at random
such polynomials, 30 random bits are allocated to generate each coefficient. Let
t be the random value generated from the 30-bits allocated to the corresponding
coefficient, then d1 coefficients are set to be 4 × t + 1, d2 coefficients are set to
be 4× t+ 2, while other coefficients are set to be 4× t. By sorting the obtained
values in ascending order and then calculating the residue modulo 4 for each of
the coefficients, we get d1 coefficients equal 1, d2 coefficients equal 2, and the
remaining coefficients equal 0, distributed at random. Finally, by mapping 2 to
−1 ∈ Zq, we can obtain a ternary polynomial sampled uniformly at random from
T (d1, d2).

Algorithm 2 samples from T by allocating a random byte to each coefficient
and then calculating the value of this byte modulo 3. There are 86

256 chances of
getting 0, 85

256 of getting 1, and 85
256 of getting 2. By mapping 2 to −1 ∈ Zq, we

get a ternary polynomial sampled uniformly from T . Algorithm 3 samples from
P(w1, w2) simply by calling Algorithm 1 with (d1, d2) = (w1, w2) and then uni-
formly at random mapping 1 to ±1, and −1 to ±2. Algorithm 4 samples from T+

by calling Algorithm 2 and checking the correlation of the obtained polynomial.
If the returned polynomial is negatively correlated, we change the sign of the
even-indexed coefficients to get a non-negatively correlated polynomial. Finally,
Algorithm 5 returns polynomial f = 1 + 3F ;F ∈ PN (d1, d2, d3) by calling the
Algorithm 1 to sample three polynomials A1 ∈ T (d1, d2),A2 ∈ T (d2, d2), and
A3 ∈ T (d3, d3), respectively and calculate F = A1 � A2 + A3.

8.2 Parameter Sets

As seen in Sect. 6.6, there are different variants of NTRU-like cryptosystems.
The way of defining these variants determines the selection of the parameter
sets. The most-studied variants of NTRU in literature and NIST competition
are defined over the quotient ring R(q,CN), where the value of N is selected to be
the group order that satisfies the security levels defined by NIST, and the value
of q is selected to ensure the correctness for decryption.

For running the experiment, we will use the parameter sets of NTRU-HPS [4]
to check the uniformity of distribution for the key space when the key is sampled
from T or T (d+1, d). The recommended parameters of NTRU-HPS achieve the
security levels equivalent to key search on a block cipher with 128-,192- and
256- bit key for p = 3 and (N, q) equals (509, 2048), (677, 2048) and (821, 4096),

Results on the Key Space of Group-Ring NTRU 11

Algorithm 1: Sample f ∈ T (d1, d2)
Input: n: number of coefficients

d1: number of coefficients to set as +1
d2: number of coefficients to set as −1
randombytes[�(30 ∗ n + 7)/8�]: randomly generated bytes can be
written as a bit string (r0, r1, r2, . . . , r�−1)

// 30 bits are used to generate each single coefficient
Output: s[n]: an array of n coefficients represents an element f ∈ T (d1, d2)

1 set s = [0, 0, . . . 0]
2 for i = 0 to (d1 − 1) do
3 s[i] = 1 +

∑29
j=0 2

2+jr30i+j

4 for i = d1 to (d2 + d1 − 1) do
5 s[i] = 2 +

∑29
j=0 2

2+jr30i+j

6 for i = (d1 + d2) to n − 1 do
7 s[i] = 0 +

∑29
j=0 2

2+jr30i+j

8 sort(s)
for i = 0 to n − 1 do

9 s[i] = s[i] mod 4
if (s[i]==2) then

10 s[i] = −1 in Zq

11 return s

Algorithm 2: Sample f ∈ T
Input: n: number of coefficients

r[n]: n randomly generated bytes
Output: s[n]: an array of n coefficients represents an element f ∈ T

1 set s = [0, 0, . . . 0]
2 for i = 0 to n − 1 do
3 s[i] = r[i] mod 3

if (s[i]==2) then
4 s[i] = −1 in Zq

5 return s

respectively.1 For keys sampled from T+, the parameter set of NTRU-HRSS [4]
is used to run the experiment. The recommended parameter set for NTRU-
HRSS is defined in R(q,CN) with N = 701, q = 8192, and p = 3 to achieve the

1 The security of the parameter sets of NTRU-HPS have been evaluated according to
two models (local and non-local model): according to the local model, the parameters
achieve the security levels 1,3 and 5, while according to the non-local model, they
achieve lower levels of security.

12 A. Raya et al.

Algorithm 3: Sample f ∈ P(w1, w2)
Input: n: number of coefficients

r[�(30 ∗ n + 7)/8�]: randomly generated bytes
δ1, δ2: secret key densities ∈ [0, 1)

Output: s[n]: an array of n coefficients represents an element f ∈ P(w1, w2)
1 w1 = �δ1n�
2 w2 = �δ2n�
3 s ← Sample f ∈ T (w1, w2) // call Algorithm 1
4 for i = 0 to n − 1 do
5 if (s[i] == 1) then
6 s[i] ←$ {+1, −1}
7 else if (s[i] == -1) then
8 s[i] ←$ {+2, −2}

9 return s

Algorithm 4: Sample f ∈ T+

Input: n: number of coefficients
r[n]: randomly generated bytes

Output: s[n]: an array of n coefficients represents an element f ∈ T+

1 s ← Sample f ∈ T // call Algorithm 2
2 sum =

∑n−2
i=0 s[i] ∗ s[i + 1]

3 sign ← 1
4 if (sum<0) then
5 sign ← −1

6 i ← 0
7 while (i < n) do
8 s[i] = s[i] ∗ sign
9 i = i+2

10 return s

Algorithm 5: Sample f = 3F + 1;F ∈ PN (d1, d2, d3)
Input: n: number of coefficients

r[3 ∗ �(30n + 7)/8�]: randomly generated bytes
d1, d2, d3 : used to sample three polynomials A1, A2, A3 respectively
where Ai ∈ T (di, di)
// r can be compiled as r1||r2||r3 where length(ri) = �(30n + 7)/8�

Output: s[n]: an array of n coefficients represents an element f ∈ PN (d1, d2, d3)
1 A1 ← Sample f1 ∈ T (d1, d1) // call Algorithm 1
2 A2 ← Sample f2 ∈ T (d2, d2) // call Algorithm 1
3 A3 ← Sample f3 ∈ T (d3, d3) // call Algorithm 1
4 F = A1 � A2 + A3 // sum and convolutional product in the group-ring
5 s = 1 + 3F
6 return s

Results on the Key Space of Group-Ring NTRU 13

security level 3 (key search on a block cipher of 192-bit key)2 For keys sam-
pled from P(w1, w2), the parameter sets of BLISS [7] are used. For BLISS,
the parameter sets (N, q, δ1, δ2) have been chosen to be (512, 12289, 0.3, 0),
(512, 12289, 0.42, 0.03) and (512, 12289, 0.45, 0.06) to match the security levels
128-,160-, and 192-bit respectively.

Finally, to check keys sampled as f = 1 + 3F , where F ∈ PN (d1, d2, d3),
the parameter sets of NTRUEncrypt [10] are used to run the experiment. The
recommended parameters (N, q, d1, d2, d3) for NTRUEncrypt have the values:
(439, 2048, 9, 8, 5), (593, 2048, 10, 10, 8), and (743, 2048, 11, 11, 15) for the security
levels 128-,192-,256- bit respectively.

Since the order of the dihedral group DN that achieves a certain level of
security is two times the order of the cyclic group CN , to define a cryptosystem
in R(q′,DN) in a similar way to the scheme defined in R(q,CN), we need to double
the value of q for correctness (i.e., q′ = 2q).3

8.3 Results and Discussion

For each polynomial with one of the properties (P1) to (P5), we do sam-
pling (10,000 samples) from the corresponding polynomial spaces and check the
portion of the invertible elements (key space). The results for the group-ring
R(q′,DN) are reported and compared to the results in the group-ring R(q,CN) for
reference.

Key Space for Polynomials Sampled from T (d + 1, d): Table 1 shows the
results for the polynomials sampled with d + 1 coefficients equal 1, d coeffi-
cients equal −1, while the values of remaining coefficients are 0. The value of
d equals q/16 − 1 in the case of R(q,CN),R(P,CN) and q′/16 − 1 in the case of
R(p,DN),R(q′=2q,DN), where q′ = 2q for correctness reason. We can notice that
all the sampled polynomials are invertible when the underlying group is CN .
However, for DN , all the sampled polynomials are invertible for R(q′=2q,DN),
but not for R(p=3,DN).

Key Space for Polynomials Sampled from T : Table 2 shows the results
for the ternary polynomials sampled randomly where each coefficient can be
in {−1, 0, 1}. We can also notice that the percentage of the invertible elements
sampled from T is smaller for R(p=3,DN), while for R(q′=2q,DN), the percentage
is almost similar to R(q,CN).

Key Space for Polynomials Sampled from T+: Table 3 shows the results
for the parameter set of NTRU-HRSS that samples polynomials from T+ (i.e.,
achieving the non-negative correlation). We can also notice that the percentage
of the invertible elements sampled from T+ is smaller for the modulus p = 3 in

2 The parameter set of NTRU-HRSS matches the security level 3 according to the
local model and the level 1 according to the non-local model.

3 The order of the dihedral group DN is 2N; therefore, the number of coefficients in
the sampled element in R(q,DN) will be 2N.

14 A. Raya et al.

the case R(p=3,DN), while for the modulus q′, the percentage in R(q′=2q,DN) is
almost similar to R(q,CN).

Key Space for Polynomials Sampled from P(w1, w2): Table 4 highlights
the results for polynomials sampled randomly from P(w1, w2) according to the
parameter sets of BLISS and compares the percentage of the invertible elements
for both dihedral and cyclic group as underlying groups in the group-ring NTRU.

We can see that for the first parameter set, the one that samples polynomials
with one-third of the coefficients in {+1,−1} and others equal 0, none of the
samples were found to be invertible in R(q′,DN). While for the second and third
parameter sets, which increase the number of the coefficients in {+1,−1} and
add some in {+2,−2}, the percentage of invertible elements and, therefore, the
key space increases significantly.

Key Space for Polynomials Sampled as f = 1 + 3F ;F ∈ PN (d1, d2, d3):
Finally, Table 5 shows the results for the parameter sets of polynomials sampled
according to the way of designing the scheme of NTRUEncrypt [10]. Interestingly,
all the sampled elements were found to be invertible in R(q,CN) as well as in
R(q′=2q,DN).

We have to highlight some points from the previous results; the mentioned
percentages in Tables 1, 2, 3, 4 and 5 refer to the chance of hitting a key when
we pick a random sample from the corresponding space. However, the two spaces
in R(p,CN) and R(p,DN) have different sizes. For instance the entire space size
of T (d + 1, d) in R(p,CN) for the parameter set NTRU-HPS with (p, q,N) =
(3, 2048, 509) is #T (128, 127) =

(
509
127

)(
509−127

128

)
, and the key space approximately

has the same size. For the same parameter set in R(p,DN), the total space size
is #T (256, 255) =

(
1018
255

)(
1018−255

256

)
, which is much more than the corresponding

space of R(p,CN). However, the key space is almost 76% of the total space, which
is still huge. Therefore, the key space of R(p,DN) is larger than the key space of
R(p,CN). However, the chance of hitting a key is lower (remember, according to
this design of NTRU, the key needs to be an invertible element in both R(p,DN),
R(q,DN)). Similarly, for other spaces of T , T+, even though the percentage of key
elements in R(p,DN) is smaller, the absolute size of the key space is larger, i.e.,
a larger number of invertible elements with lower probability of selecting one of
them, compared to R(p,CN).

The case is different for the parameter sets of BLISS and NTRUEncrypt.
While the first parameter set of BLISS is not suitable for R(q′,DN), other param-
eter sets of (BLISS, NTRUEncrypt) provide higher throughput and higher or
equal probability of hitting keys. Figure 1 compares the percentage of invertible
elements versus the tested parameter sets.

Results on the Key Space of Group-Ring NTRU 15

Table 1. Experimental results for polynomials sampled from T (d + 1, d).

security level (p, q, N) % of invertible samples
R(p,CN) R(q,CN) R(p,DN) R(q,DN)

128-bit (3, 2048, 509) 100 100 76 100
192-bit (3, 2048, 677) 100 100 66 100
256-bit (3, 4096, 821) 100 100 61 100

Table 2. Experimental results for polynomials sampled from T .

security level (p, q, N) % of invertible samples
R(p,CN) R(q,CN) R(p,DN) R(q,DN)

128-bit (3, 2048, 509) 67 50 45 53
192-bit (3, 2048, 677) 67 49 46 52
256-bit (3, 4096, 821) 66 50 46 50

Table 3. Experimental results for polynomials sampled from T+.

security level (p, q, N) % of invertible samples
R(p,CN) R(q,CN) R(p,DN) R(q,DN)

192-bit (3, 8192, 701) 66 50 43 52

Table 4. Experimental results for polynomials sampled from P(w1, w2).

security level (q, N, δ1, δ2) % of invertible samples
R(q,CN) R(q,DN)

128-bit (12289, 512, 0.3, 0) 83.5 0
160-bit (12289, 512, 0.42, 0.03) 87.5 99
192-bit (12289, 512, 0.45, 0.06) 96 98

Table 5. Experimental results for polynomials sampled as f = 1 + 3F ;F ∈
PN (d1, d2, d3).

security level (q, N, δ1, δ2) % of invertible samples
R(q,CN) R(q,DN)

128-bit (2048, 439, 9, 8, 5) 100 100
192-bit (2048, 593, 10, 10, 8) 100 100
256-bit (2048, 743, 11, 11, 15) 100 100

16 A. Raya et al.

Fig. 1. Percentage of invertible elements (keyspace) vs. parameter sets.

9 Conclusions

Group-ring NTRU, in general, enables the building of different variants of
NTRU-like schemes. In this paper, we provide experimental results on the group-
ring NTRU based on the dihedral group, R(q′,DN). We compare these results to
the reference implementations of group-ring NTRU based on a cyclic group,
R(q,CN). We have investigated elements with different properties to see if they
can serve as a key space in R(q′,DN). The results show that the key space is
large for all properties (P1) to (P5); therefore, they are suitable for building a
group-ring NTRU based on the dihedral group. However, the second and third
parameter sets of property (P4) and all the parameter sets of property (P5) seem
to be the most promising.

Future work should explore the following:

– Since the matrix inversion method becomes time-consuming for larger dimen-
sions, extending the fast inversion algorithms used in NIST NTRU submission
to the new structure in this paper should be considered.

– Designing a full-fledged GR-NTRU over the dihedral group with appropriate
parameters.

– Thoroughly estimating the security of the proposed cryptosystem against
lattice attacks.

Appendix

Faster Computation of Inverses in RG = R(q,DN) when q is Odd

Let α ∈ R(q,DN) be an unit, where q is odd. Let MRG(α) =
(

F G
G F

)
, and

MRG(α−1) =
(

A B
B A

)
, two matrices of dimension 2N × 2N . We know that,

Results on the Key Space of Group-Ring NTRU 17

MRG(α−1) = MRG(α)−1, i.e.,
(

A B
B A

)
=

(
F G
G F

)−1

. Conjugating both sides by

I =
(

IN IN
IN −IN

)
gives

I
(

A B
B A

)
I−1 = I

(
F G
G F

)−1

I−1

(
A + B 0N

0N A − B

)
=

(
I

(
F G
G F

)
I−1

)−1

(
A + B 0N

0N A − B

)
=

(
(F + G)−1 0N

0N (F − G)−1

)

When q is odd, 2 is a unit in the ring Zq. Therefore, we get

A =
(F + G)−1 + (F − G)−1

2
and B =

(F + G)−1 − (F − G)−1

2

Finally, the first row of the matrix MRG(α−1) is precisely the coefficients of
α−1. This method will help in faster computations of inverses in R(q,DN) for
odd q as we need to invert two N × N matrices (F +G), (F − G) instead of big
matrix of 2N × 2N . Figure 2 refers to the time needed to find inverses using
the conventional matrix inversion versus the second approach that can find the
inverse faster for odd values of q. We can see that the second method gives
noticeable better results for larger values of q,N4.

Fig. 2. Matrix approach vs. faster approach of finding inverses for odd values of q.

4 The horizontal axis refers to the tested values of q, N denoted as q _N. We ran
the code using Sagemath on Jupyter Notebook on a machine powered by Intel(R)
Core(TM) i7-7700 CPU@3.60GHZ, running Windows 10 pro.

18 A. Raya et al.

References

1. Alagic, G., et al.: Status report on the third round of the NIST post-quantum
cryptography standardization process. US Department of Commerce, NIST (2022).
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934458

2. Avanzi, R., et al.: Crystals-Kyber algorithm specifications and supporting
documentation. NIST PQC Round (2020). https://csrc.nist.gov/Projects/post-
quantum-cryptography/post-quantum-cryptography-standardization/round-3-
submissions

3. Basso, A., et al.: SABER: Mod-LWR based KEM (round 3 submission). NIST
PQC Round (2020). https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions

4. Chen, C., et al.: NTRU: algorithm specifications and supporting documenta-
tion. NIST (2020). https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions

5. Coppersmith, D.: Attacking non-commutative NTRU. Technical report, IBM
research report, April 1997. Report (2006). https://dominoweb.draco.res.ibm.com/
d102d0885e971b558525659300727a26.html

6. Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0_5

7. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4_3

8. Fouque, P.A., et al.: Falcon: fast-fourier lattice-based compact signatures over
NTRU. NIST PQC Round (2020). https://csrc.nist.gov/Projects/post-quantum-
cryptography/post-quantum-cryptography-standardization/round-3-submissions

9. Hirschhorn, P.S., Hoffstein, J., Howgrave-Graham, N., Whyte, W.: Choosing
NTRUEncrypt parameters in light of combined lattice reduction and MITM
approaches. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 437–455. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01957-9_27

10. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang, Z.:
Choosing parameters for NTRUEncrypt. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-52153-4_1

11. Hoffstein, J., Pipher, J., Silverman, J.: An Introduction to Mathematical Cryp-
tography, 1st edn. Springer, New York (2008). https://doi.org/10.1007/978-0-387-
77993-5

12. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

13. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing parameter sets for
NTRUEncrypt with NAEP and SVES-3. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 118–135. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30574-3_10

14. Hurley, T.: Group rings and rings of matrices. Int. J. Pure Appl. Math. 31, 319–
335 (2006). https://www.researchgate.net/publication/228928727_Group_rings_
and_rings_of_matrices

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934458
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://dominoweb.draco.res.ibm.com/d102d0885e971b558525659300727a26.html
https://dominoweb.draco.res.ibm.com/d102d0885e971b558525659300727a26.html
https://doi.org/10.1007/3-540-69053-0_5
https://doi.org/10.1007/3-540-69053-0_5
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-642-01957-9_27
https://doi.org/10.1007/978-3-642-01957-9_27
https://doi.org/10.1007/978-3-319-52153-4_1
https://doi.org/10.1007/978-3-319-52153-4_1
https://doi.org/10.1007/978-0-387-77993-5
https://doi.org/10.1007/978-0-387-77993-5
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-540-30574-3_10
https://doi.org/10.1007/978-3-540-30574-3_10
https://www.researchgate.net/publication/228928727_Group_rings_and_rings_of_matrices
https://www.researchgate.net/publication/228928727_Group_rings_and_rings_of_matrices

Results on the Key Space of Group-Ring NTRU 19

15. Jarvis, K., Nevins, M.: ETRU: NTRU over the Eisenstein integers. Des. Codes
Crypt. 74(1), 219–242 (2015). https://doi.org/10.1007/s10623-013-9850-3

16. Joseph, S.H.: Almost inverses and fast NTRU key creation. NTRU cryptosystems
Technical Report (1999). https://ntru.org/f/tr/tr014v1.pdf

17. Kim, J., Lee, C.: A polynomial time algorithm for breaking NTRU encryption with
multiple keys. Des. Codes Cryptogr. 1–11 (2023)

18. Lyubashevsky, V., et al.: Crystals-dilithium: algorithm specifications and support-
ing documentation. NIST PQC Round (2020). https://csrc.nist.gov/Projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/
round-3-submissions

19. Malekian, E., Zakerolhosseini, A., Mashatan, A.: QTRU: a lattice attack resistant
version of NTRU. Cryptology ePrint Archive (2009). https://eprint.iacr.org/2009/
386

20. Milies, C., Sehgal, S.: An Introduction to Group Rings (2002). https://doi.org/10.
1007/978-94-010-0405-3

21. Peikert, C., et al.: A decade of lattice cryptography. Found. Trends R© Theor. Com-
put. Sci. 10(4), 283–424 (2016)

22. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_4

23. Truman, K.R.: Analysis and extension of non-commutative NTRU, Ph.D. thesis,
University of Maryland, College Park (2007)

24. Yasuda, T., Dahan, X., Sakurai, K.: Characterizing NTRU-variants using group
ring and evaluating their lattice security. IACR Cryptology ePrint Archive 1170
(2015). https://eprint.iacr.org/2015/1170

https://doi.org/10.1007/s10623-013-9850-3
https://ntru.org/f/tr/tr014v1.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2009/386
https://eprint.iacr.org/2009/386
https://doi.org/10.1007/978-94-010-0405-3
https://doi.org/10.1007/978-94-010-0405-3
https://doi.org/10.1007/978-3-642-20465-4_4
https://eprint.iacr.org/2015/1170

Token Open Secure and Post-quantum
Updatable Encryption Based on MLWE

Yang Song, Haiying Gao(B), Keshuo Sun, and Chao Ma

PLA SSF Information Engineering University, Zhengzhou, China
xdgaohaiying@163.com

Abstract. Updatable encryption (UE) allows a client to outsource
ciphertexts to some untrusted server and periodically rotate the encryp-
tion key. Recently, a Token Open security model is presented, which is
closer to the real attack scenario for UE. The existing post-quantum
secure UE schemes are all based on the LWE assumption without engi-
neering implementation. In this paper, we present a new model based on
the Token Open security model which reflects the characteristics of UE.
Then we construct an updatable encryption scheme based on the MLWE
assumption by using the key switching technology and ciphertext mask-
ing technology to achieve backward-leak uni-directional key update and
uni-directional ciphertext update. We show that the new scheme satisfies
our new model. In addition, we present the practical safety analysis of
the new scheme by engineering implementation.

Keywords: Updatable Encryption · MLWE assumption ·
backward-leak uni-directional key update

1 Introduction

1.1 Background

Updatable Encryption. As an emerging network storage technology in the
cloud era, cloud storage can make full use of the storage capacity of existing
hardware and provide nearly unlimited storage space for users. According to
SP800-57 [6] issued by NIST, keys have strict lifetimes and rotating keys regu-
larly is a common requirement in practice. When a user stores encrypted data
on a cloud server, the traditional way to rotate the key is to download the
old ciphertext, decrypt it with the old key, re-encrypt it with the new key and
re-upload the new ciphertext. This way is expensive because it requires lots of
computing cost and communication cost of the user. Updatable encryption (UE),
first proposed by Boneh et al. [1], provides a better solution for key rotation,
in which the period the key is valid is called an epoch. (Denote the index of an
epoch with e.) The user uploads the ciphertext encrypted by the UE scheme to
the cloud server. If the user needs to update the key, he computes an update
token (Δe+1) via the old key (ke) and the new key (ke+1) and sends it to the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. Regazzoni et al. (Eds.): SPACE 2023, LNCS 14412, pp. 20–47, 2024.
https://doi.org/10.1007/978-3-031-51583-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51583-5_2&domain=pdf
https://doi.org/10.1007/978-3-031-51583-5_2

Token Open Secure and Post-quantum Updatable 21

server. The server uses the update token to update the old ciphertext to the
ciphertext encrypted by the new key. Using the UE scheme can greatly reduce
the computing cost and communication cost of the user.

Classification of UE Schemes. According to the independence of cipher-
text, we categorize UE schemes into two types. One is the ciphertext-dependent
scheme. The user needs to pre-store or download the ciphertext or part of the
ciphertext from the cloud when generating tokens. The other is the ciphertext-
independent scheme. The user does not need ciphertext when generating tokens.
This paper focuses on the ciphertext-independent scheme.

According to the randomness of the ciphertext update, we categorize UE
schemes into two types. One is the det-update scheme. The ciphertext update
algorithm is deterministic so that the same ciphertexts are updated to the same
ciphertexts via the token. The other is the rand-update scheme. The ciphertext
update algorithm is randomized so that the same ciphertexts are updated to
different ciphertexts via the token.

According to the direction of the ciphertext update, we categorize UE
schemes into two types. One is the bi-directional ciphertext update scheme. The
user can update the ciphertext or downgrade the ciphertext via the token. The
other is the uni-directional ciphertext update scheme. The user can update the
ciphertext but cannot downgrade the ciphertext via the token.

According to the direction of the key update, we categorize UE schemes into
four types. The first is bi-directional key update scheme. The user can derive
ke+1 (the new key) from ke (the old key) and Δe+1 (the token), or derive ke

from ke+1 and Δe+1. The second is the forward-leak uni-directional key update
scheme (abbreviated as f-uni-directional). The user can only derive ke+1 from
ke and Δe+1. The third is the backward-leak uni-directional key update scheme
(abbreviated as b-uni-directional). The user can only derive ke from ke+1 and
Δe+1. The fourth is the no-directional key update scheme. The user cannot
derive keys from the token.

1.2 Related Work

In 2013, Boneh et al. [1] first constructed a UE scheme based on a key homomor-
phic pseudorandom function and a symmetric cryptographic algorithm, named
BLMR. Although it is a ciphertext-dependent scheme, its idea guides the design
of UE schemes. In 2018, Lehmann and Tackmann [2] constructed a ciphertext-
independent scheme based on the ElGamal scheme, named RISE. And they pre-
sented two indistinguishable security models, named IND-ENC and IND-UPD.
In 2019, Boyd et al. [3] constructed a ciphertext-independent UE scheme based
on the DDH assumption, named SHINE, and presented a new indistinguishable
security model, named IND-UE.

In 2020, Yao Jiang [4] presented the first post-quantum UE scheme based on
the LWE assumption, named LWEUE. She believed that the ideal UE scheme
should be no-directional key update and uni-directional ciphertext update. In
2021, Nishimaki [5] firstly constructed a no-directional key update UE scheme

22 Y. Song et al.

based on the indistinguishable obfuscation [11], named UEio. Nishimaki pre-
sented a new key update type named backward-leak uni-directional key update
setting and constructed the first b-uni-directional key update UE scheme based
on the LWE assumption, named RtR. In 2022, Song and Gao [13] presented a
new security model, named Token Open security model, which allows the adver-
sary to corrupt all update tokens.

We believe the newly presented security model in [13] is closer to the real
attack scenario, because in the practical application of UE, the user and the
server should use an open channel to transmit the update token. We improve
the study in [13]. In addition, the existing post-quantum UE schemes are all
based on the LWE assumption and remain at the theoretical research level.
According to the research status and the practical application, we hope to
design a ciphertext-independent UE scheme with backward-leak uni-directional
key update uni-directional ciphertext update and post-quantum secure property.
More importantly, the user and the server can use an open channel to transmit
update tokens.

1.3 Our Contribution

Our first work is improving the security model in [13] to the xx-TKOpen-atk
security model for UE. By our design, the adversary is allowed to corrupt tokens
of all epochs and keys of the past epochs. Then the adversary submits a plaintext
and an old ciphertext then obtains a new ciphertext and distinguishes whether
the ciphertext is the encryption of the plaintext or the updated ciphertext of
the old ciphertext. The new model conforms to the practical application of the
UE scheme that the user and the server use an open channel to transmit update
tokens.

Our second contribution is proving the relationship between the TKOpen
security model and the scheme update setting. We proved if a UE scheme
is TKOpen secure, it is a rand-update scheme with b-uni-directional or no-
directional key update and uni-directional ciphertext update. And in the
TKOpen security model, b-uni-directional key update and no-directional key
update are equivalent.

Our third contribution is constructing the first UE scheme based on the
MLWE assumption, named MLWEUE. Our update mechanism is a backward-
leak uni-directional key update because only the public key part of the key
at the next epoch is embedded in the token. Then, we design the ciphertext-
masking technique to re-randomize an updated ciphertext. To prove MLWEUE
is rand-TKOpen-CPA secure based on the MLWE assumption, we construct
the indistinguishable game sequences and embed the MLWE challenge in the
challenge epoch of the last game. Therefore, the user and the server can use an
open channel to transmit update tokens with post-quantum secure property.

Our fourth work is achieving the practical results of the post-quantum UE
scheme firstly. We took the lead in making breakthroughs in the practical appli-
cation of post-quantum UE scheme. We accomplish the software implementation
of MLWEUE by using the NTT technique to speed up the program. MLWEUE

Token Open Secure and Post-quantum Updatable 23

can update for 6 times with a decryption error rate of 2̂−122.3 in the ring
Rq = Z64513 [X] /

(
X256 + 1

)
. And the strength of MLWE against the prime

attack reaches 127/115 under the classic/quantum model and against the dual
attack reaches 126/115 under the classic/quantum model.

1.4 Organization

In Sect. 2 we introduce preliminaries and syntax. In Sect. 3 we present our new
security model TKOpen and prove the relationship between TKOpen security
model and scheme update setting. In Sect. 4 we give our new scheme, MLWEUE,
including the technique and design ideas behind its construction. In Sect. 5 we
prove MLWEUE is rand-TKOpen-CPA secure based on MLWE assumption. In
Sect. 6 we present the experimental results of MWLEUE.

2 Preliminaries

2.1 Notations

Polynomial Rings and Vectors. We denote by R the ring Z [X] / (Xn + 1)
and by Rq the ring Zq [X] / (Xn + 1), where n = 2n′−1 such that Xn + 1 is the
2n′ − th cyclotomic polynomial. Regular font letters denote elements in R or Rq

(which includes elements in Z and Zq). Bold lower-case letters represent vectors
with coefficients in R or Rq. Bold upper-case letters are matrices. For a vector
v (or matrix A), we denote by vT (or AT) its transpose.

Modular Reductions. For an even (resp. odd) positive integer α, we define
r′ = rmod±α to be the unique element r′ in the range −α

2 < r′ ≤ α
2 (resp.

−α−1
2 < r′ ≤ α−1

2) such that r′ = r mod α. For any positive integer α, we define
r′ = rmod+α to be the unique element r′ in the range 0 ≤ r′ < α such that
r′ = r mod α. When the exact representation is not important, we simply write
r mod α.

Rounding. For an elementx x ∈ Q we denote by 〈x〉 rounding of x to the closet
integer with ties being rounded up.

Sizes of Elements. For an element w ∈ Zq, we write ‖w‖∞ to mean
∣
∣wmod±q

∣
∣.

For w = w0 + w1x + ... + wn−1x
n−1 ∈ R, we define ‖w‖∞ = max ‖wi‖∞,

‖w‖ =
√

‖w0‖2 + ... + ‖wn−1‖2. For w = (w1, ..., wk) ∈ Rk, we define ‖w‖∞ =

max ‖wi‖∞, ‖w‖ =
√

‖w1‖2 + ... + ‖wk‖2.

Sets and Distributions. For a set Λ, we write a ← Λ to denote that a is chosen
uniformly at random from Λ. For a probability distribution S, we write s ← S
to denote that s is chosen according to the distribution S. Noise in our scheme
is sampled from a centered binomial distributionBβ . We define Bβ as follows.

Sample (a1, ..., aβ , b1, ..., bβ)← {0, 1}2β and output
β∑

i=1

(ai − bi). When we write

24 Y. Song et al.

that a polynomial f ∈ Rq or a vector of such polynomials is sampled from Bβ ,
we mean that each coefficient is sampled from Bβ .

Update Setting. For a UE scheme, we denote xx as the randomness of the
ciphertext update, kk as the direction of key update and cc as the direction of
ciphertext update, where xx ∈ {det, rand}, kk ∈ {no, f-uni, b-uni, bi}, cc ∈ {uni,
bi}.

Let negl denote as a negligible function. PPT stands for probabilistic poly-
nomial time.

2.2 Syntax of UE

An updatable encryption scheme UE consists of a tuple of PPT algorithms
described as follows:

(1) Setup algorithm UE.Setup
(
1λ

)
. Input a security parameter λ and output a

public parameter pp. (This algorithm is an option for UE).
(2) Key generation algorithm UE.KG (pp). Input a public parameter pp and

output an epoch key ke.
(3) Encryption algorithm UE.Enc (ke,M). Input an epoch key ke and a plain-

text M and output a ciphertext Ce.
(4) Decryption algorithm UE.Dec (ke, Ce). Input an epoch key ke and a cipher-

text Ce and output a plaintext M ′.
(5) Token generation algorithm UE.TG (ke, ke+1). Input two keys of successive

epochs ke and ke+1 and output a token Δe+1.
(6) Update algorithm UE.Upd (Δe+1, Ce). Input a token Δe+1 and a ciphertext

Ce and output an updated ciphertext Ce+1.

2.3 MLWE Assumption [12]

Definition 1. Let n = 2r, r ∈ Z
+, Rq = Zq [x] / (xn + 1), k, l ∈ Z

+, A ← Rk×l
q ,

s ∈ Rl
q and s ← Bl

β. The adversary A has (A,b) ∈ Rk×l
q × Rk

q , and A decides
as follows. If b = As+ e, for e ∈ Rk

q and e ← Bk
β, A outputs 1. If b follows the

uniform distribution on Rk
q , A outputs 0. We define that

AdvMLWE
k,l,β (n) = |Pr [A (A,As+ e mod q) = 1] − Pr [A (A,u) = 1]| ,

where u ← Rk
q .

MLWE assumption is that, for any PPT adversary A, we have
AdvMLWE

k,lA (n) ≤ negl (n).

3 TKOpen Security Model

In the practical application of UE, the user and the server should use an open
channel to transmit the update token. Otherwise, the user and the server need
to use a secure channel to transmit the update token (that is sharing another

Token Open Secure and Post-quantum Updatable 25

encryption scheme), which will bring great inconvenience. Aiming at the above
problems, the Token Open security model was presented recently in [13]. How-
ever, in the Token Open security model, the adversary submits two plaintexts
then obtains an encrypted ciphertext and distinguishes the original plaintext.
We improved it to TKOpen security model. In TKOpen, the adversary can cor-
rupt tokens of all epochs and keys of the past epochs. The adversary submits a
plaintext and an old ciphertext then obtains a new ciphertext and distinguishes
whether the challenge ciphertext is the encryption of the plaintext or the update
ciphertext of the old ciphertext. Thus, the TKOpen security model reflects the
characteristics of UE.

3.1 xx-TKOpen-atk Experiment

We describe the confidentiality experiment of TKOpen for a UE scheme. The
adversary A and the simulator B play Expxx−TKOpen−atk−b

UE,A (λ) as follows, where
xx ∈ {det, rand}, atk ∈ {CPA, CCA}.

(1) B does Setup.
(2) A can query O.Corr, O.Enc, (O.Dec) and O.Upd oracles and get a pair of

plaintext and ciphertext
(
M̄, C̄

)
.

(3) A sends
(
M̄, C̄

)
to B for querying O.Chall and gets a challenge ciphertext

C̃ẽ. B embeds a bit of information b in O.Chall.
(4) A continues to query O.Corr, O.Enc, (O.Dec) and O.Upd oracles.
(5) A makes a judgment. If C̃ẽ is encryption of M̄ , A outputs a bit b′ = 0. If C̃ẽ

is an update of C̄, A outputs a bit b′ = 1.

Only in the xx-TKOpen-CCA confidentiality experiment, the adversary has
access to O.Dec.

Definition 2. A UE scheme is xx-TKOpen-atk secure, if the following holds,
where xx ∈ {det, rand},atk ∈ {CPA, CCA}. For any PPT adversary A, we
have

Advxx−TKOpen−atk
UE,A (λ) =

∣
∣
∣Pr

[
Expxx−TKOpen−atk−1

UE,A = 1
]

− Pr
[
Expxx−TKOpen−atk−0

UE,A = 1
]∣∣
∣ ≤ negl(λ).

3.2 Oracles

Different from the oracles established in the IND-UE experiment, we design
more intuitive and efficient oracles in the TKOpen experiment. The simulator
generates all epoch keys and update tokens via Setup and randomly chooses
a challenge epoch ẽ. The adversary challenges in the challenge epoch ẽ via
O.Chall and gets a challenge ciphertext C̃ẽ. We call the challenge cipher-
text and its updated value the challenge-equal ciphertext. The adversary
can corrupt all epoch keys before the challenge epoch and all update tokens via
O.Corr. The adversary can encrypt arbitrary plaintext via O.Enc and decrypt
the non-challenge ciphertexts via O.Dec, but does not allow decrypting the

26 Y. Song et al.

challenge-equal ciphertexts. (The simulator uses set L̃∗ and set Q̃∗ to judge and
when querying the challenge-equal ciphertexts, it will return ⊥.) The adversary
can update ciphertexts via O.Upd.

Oracles the adversary is allowed to query in the xx-TKOpen-atk experiment
are as follows, where xx ∈ {det, rand},atk ∈ {CPA, CCA}.

(1) Setup
(
1λ

)
. Input a security parameter λ.

Generate pp := UE.Setup
(
1λ

)
. Let e, c = 0, L, L̃,K, T = ∅. Choose

the challenge epoch randomly ẽ ← {1, ..., n}. Generate k0, k1, ..., kn=
UE.KG (pp), Δ1, ...,Δn = UE.TG (ke, ke+1).

(2) O.Corr (inp, ê). Input a corruption type inp and a corruption epoch ê.
If ê ≤ n and inp = token, let T = T

⋃
{ê} and return Δê. If ê ≤ ẽ − 1 and

inp =key, let K = K
⋃

{ê} and return kê. Otherwise, return ⊥.
(3) O.Enc (M, ê). Input a plaintext M and a query epoch ê.

If ê ≤ ẽ, let c := c+1, compute C = UE.Enc (kê,M), let L = L
⋃

{(c, C, ê)}
and return a ciphertext C. Otherwise, return ⊥.

(4) O.Dec (C, ê). Input a ciphertext C and a query epoch ê.
If xx=det and (C, ê) /∈ L̃∗, compute M = UE.Dec (kê, C) return a plaintext
M . If xx=rand, compute M = UE.Dec (kê, C), and if (M, ê) /∈ Q̃∗, return
a plaintext M . Otherwise, return ⊥.

(5) O.Upd (Cê, ê). Input a ciphertext Cê and a query epoch ê.
If (j, Ce, ê;M) ∈ L, compute Cê+1 =UE.Upd (Δê+1, Cê), let L =
L

⋃
{(j, Cê+1, ê + 1)}, and return a new ciphertext Cê+1. If (Cê, ê) ∈ L̃,

compute C̃ê+1 = UE.Upd (Δê+1, C), let L̃ = L̃
⋃ {(

C̃ê+1, ê + 1
)}

, and

return a challenge-equal ciphertext C̃ê+1. Otherwise, return ⊥.
(6) O.Chall

(
M̄, C̄

)
. Input a plaintext M and a ciphertext C̄ at the epoch ẽ−1.

If
(
·, C̄, ẽ − 1; M̄1

)
/∈ L, return ⊥. If b = 0, compute C̃ẽ = UE.Enc

(
kẽ, M̄

)
.

If b = 1, compute C̃ẽ = UE.Upd
(
Δẽ, C̄

)
. Let L̃ = L̃

⋃ {(
C̃ẽ, ẽ

)}
and C =

C
⋃

{ẽ}. Return challenge ciphertext C̃ẽ.

3.3 Sets in TKOpen

The simulator builds a series of sets to record information that the adver-
sary knows when answering the oracles. The simulator uses these sets to check
whether the leaked information would cause the adversary to win the game with
probability 1. We record these sets in a similar way to [4], but the oracles inside
are different.

3.3.1 Sets of Epochs
We use the following sets to track epochs in which the adversary corrupts keys,
and tokens, or learns the challenge ciphertext.

K: Set of epochs in which the adversary corrupted the epoch key (from O.Corr).
T : Set of epochs in which the adversary corrupted the update token (from
O.Corr).

Token Open Secure and Post-quantum Updatable 27

C: Set of epochs in which the adversary learned a challenge-equal ciphertext
(from O.Chall or O.Upd).

We use K∗, T ∗, C∗ as the extended sets of K, T , C in which the adversary has
learned or inferred information via its known tokens.

Key Leakage. In addition to the set K, the adversary can infer more keys via
its known tokens. The size of K∗ is determined by the key update setting of
the UE scheme. In the no-directional key update setting, the adversary does not
have more information about keys except for this set. In the f-uni-directional
key update setting, if the adversary knows the key ke and the token Δe+1 it
can infer the next key ke+1. In the b-uni-directional key update setting, if the
adversary knows the key ke+1 and the token Δe+1 it can infer the last key ke. In
the bi-directional key update setting, if the adversary knows the key ke(or ke+1)
and the token Δe+1 it can infer the key ke+1(or ke).

In the kk-directional key update setting, where kk ∈ {no, f-uni, b-uni, bi},
denote the set K∗

kk as the extended set of K. We compute these sets as follows.

K∗
kk = {e ∈ {0, ..., l}|CorrK (e) = true} .

true = CorrK (e) ⇔
(e ∈ K) ∨ (CorrK (e + 1) ∧ e + 1 ∈ T)

︸ ︷︷ ︸
kk∈{b−uni,bi}

∨ (CorrK (e − 1) ∧ e ∈ T)
︸ ︷︷ ︸

kk∈{f−uni,bi}

.

Token Leakage. In addition to the set T , the adversary can compute more
tokens via two consecutive epoch keys.

In the kk-directional key update setting, where kk ∈ {no, f-uni, b-uni, bi},
denote the set T ∗

kk as the extended set of T . We compute these sets as follows.

T ∗
kk = {e ∈ {0, ..., l}| (e ∈ T) ∨ (e ∈ K∗

kk ∧ e − 1 ∈ K∗
kk)} .

Challenge-Equal Ciphertext Leakage. In addition to the set C, the adver-
sary can compute more challenge-equal ciphertext via its known tokens. The size
of C∗ is determined by the ciphertext update setting of the UE scheme. In the
uni-ciphertext update setting, if the adversary knows the ciphertext Ce and the
token Δe+1 it can infer the next ciphertext Ce+1. In the bi-ciphertext update
setting, if the adversary knows the ciphertext Ce(or Ce+1) and the token Δe+1

it can infer the ciphertext Ce+1(or Ce).
In the kk-directional key update and cc- directional ciphertext update setting,

where kk ∈ {no, f-uni, b-uni, bi}, cc ∈ {uni, bi}, denote the set C∗
kk,cc as the

extended set of C. We compute these sets as follows.

C∗
kk,cc = {e ∈ {0, ..., l}|ChallEq (e) = true} .

true = ChallEq (e) ⇔
(e ∈ C) ∨ (ChallEq (e − 1) ∧ e ∈ T ∗

kk) ∨ (ChallEq (e + 1) ∧ e + 1 ∈ T ∗
kk)︸ ︷︷ ︸

cc=bi

.

28 Y. Song et al.

3.3.2 Sets of Information
We use the following sets to track ciphertexts and their updates that can be
known to the adversary.

L: Set of non-challenge ciphertexts (c, C, e;m), where query identifier c is a
counter incremented with each new O.Enc query. The adversary learned these
ciphertexts from O.Enc or O.Upd.
L̃: Set of challenge-equal ciphertexts

(
C̃e, e

)
. The adversary learned these

ciphertexts from O.Chall or O.Upd.

In the det-update setting, we use L∗, L̃∗ as the extended (ciphertext) sets of
L, L̃ in which the adversary infers ciphertexts via its known tokens. In particular,
in L∗ we only need to record the ciphertext and the epoch, L∗ = {(C, e)}.

In the randomized-update setting, we use Q∗, Q̃∗ as the extended (plaintext)
sets of L, L̃ in which the adversary infers ciphertexts containing the correspond-
ing plaintext via its known tokens. We compute Q∗, Q̃∗ as follows.

Q∗: Set of plaintexts corresponding to non-challenge ciphertexts (M, e). The
adversary learned the ciphertexts corresponding to these plaintexts via its known
tokens.
Q̃∗: Set of plaintexts corresponding to challenge-equal ciphertexts

{(
M̄, e

)
,(

M̄1, e
)}

, where
(
M̄, C̄

)
is the input of O.Chall and M̄1 is the plaintext cor-

responding to C̄. The adversary learned the ciphertexts corresponding to these
plaintexts via its known tokens.

Based on the above discussion, it is easy to draw the following conclusions.

a.
(
C̃e, e

)
∈ L̃ ⇔ e ∈ C

b.
(
C̃e, e

)
∈ L̃∗ ⇔ e ∈ C∗ ⇔

(
M̄, e

)
,
(
M̄1, e

)
∈ Q̃∗

3.4 Relationship Between TKOpen and Settings of UE Schemes

According to the discussion in Sect. 1.1, UE schemes have 16 different settings.
We show the relationship between the TKOpen security model and the settings
of UE schemes.

Lemma 1. For a UE scheme in (kk,bi) setting, where kk ∈ {no, f-uni, b-uni,
bi} (bi-directional ciphertext update setting), there exists a PPT adversary A
such that

Advxx−TKOpen−atk
UE,A (λ) =

∣
∣
∣Pr

[
Expxx−TKOpen−atk−1

UE,A = 1
]

− Pr
[
Expxx−TKOpen−atk−0

UE,A = 1
]∣∣
∣ = 1,

where xx ∈ {det, rand}, atk ∈ {CPA, CCA}.

Token Open Secure and Post-quantum Updatable 29

Proof. For a UE scheme in bi-directional ciphertext update setting, there exists
a PPT downgrade algorithm UE.Upd−1 (Δe, Ce+1): Input a token Δe+1 and a
ciphertext Ce+1 and output a ciphertext Ce.

The adversary A and simulator B play Expxx−TKOpen−atk−b
UE,A (λ) as follows,

where xx ∈ {det, rand}, atk ∈ {CPA, CCA}.

(1) B does Setup.
(2) A can query O.Corr, O.Enc, (O.Dec) and O.Upd oracles and get a pair of

plaintext and ciphertext
(
M̄, C̄

)
.

(3) A sends
(
M̄, C̄

)
to B for querying O.Chall and gets a challenge ciphertext

C̃ẽ. B embeds a bit of information b in O.Chall.
(4) A has corrupted Δ1,Δ2, ...,Δn. A computes C̃ẽ−1 =UE.Upd−1

(
Δẽ, C̃ẽ

)
.

A has corrupted k0, k1, ..., kẽ−1, so that A computes
M ′ =UE.Dec

(
kẽ−1, C̃ẽ−1

)
.

(5) A compares M ′ with M̄ . If M ′ = M̄ , A outputs a bit b′ = 0. Else, A outputs
a bit b′ = 1.

Only in the TKOpen-CCA confidentiality experiment, the adversary has access
to O.Dec.

Since A has corrupted all the epoch keys before ẽ and the UE scheme is
bi-directional ciphertext update, the challenge ciphertext can be downgraded.
A decrypts C̃ẽ−1 to get M ′ via kẽ−1, compares M ′ with M̄ , and then wins the
game with probability 1.

Lemma 2. For a UE scheme in (f-uni,cc) setting, cc ∈ {uni, bi} (forward-leak
uni-directional key update setting), there exists a PPT adversary A such that

Advxx−TKOpen−atk
UE,A (λ)

=
∣
∣
∣Pr

[
Expxx−TKOpen−atk−1

UE,A = 1
]

− Pr
[
Expxx−TKOpen−atk−0

UE,A = 1
]∣∣
∣ = 1,

where xx ∈ {det, rand}, atk ∈ {CPA, CCA}.

Proof. For a UE scheme in forward-leak uni-directional key update setting, there
exists a PPT key derive algorithm UE.KD (Δe+1, ke): Input a token Δe+1 and
a key ke and output a key ke+1.

The adversary A and simulator B play Expxx−TKOpen−atk−b
UE,A (λ) as follows,

where xx ∈ {det, rand}, atk ∈ {CPA, CCA}.

(1) B does Setup.
(2) A can query O.Corr, O.Enc, (O.Dec) and O.Upd oracles and get a pair of

plaintext and ciphertext
(
M̄, C̄

)
.

(3) A sends
(
M̄, C̄

)
to B for querying O.Chall and gets a challenge ciphertext

C̃ẽ. B embeds a bit of information b in O.Chall.

30 Y. Song et al.

(4) A has corrupted and kẽ−1. computes kẽ = UE.KD (Δẽ, kẽ−1). decrypts C̃ẽ

via kẽ to get M ′ = UE.Dec
(
kẽ, C̃ẽ

)
.

(5) A compares M ′ with M̄ . If M ′ = M̄ , A outputs a bit b′ = 0. Else, A outputs
a bit b′ = 1.

Only in the TKOpen-CCA confidentiality experiment, the adversary has access
to O.Dec.

Since A has corrupted all the epoch keys before ẽ and the UE scheme is
f-uni-directional key update, A can compute kẽ. A decrypts C̃ẽ to get M ′ via
kẽ, compares M ′ with M̄ , and then wins the game with probability 1.

Lemma 3. For a UE scheme in (bi,cc) setting, cc ∈ {uni, bi} (bi-directional
key update setting), there exists a PPT adversary A such that

Advxx−TKOpen−atk
UE,A (λ) =

∣
∣
∣Pr

[
Expxx−TKOpen−atk−1

UE,A = 1
]

− Pr
[
Expxx−TKOpen−atk−0

UE,A = 1
]∣∣
∣ = 1,

where xx ∈ {det, rand}, atk ∈ {CPA, CCA}.

Proof. Similar to the proof of Lemma3.

Lemma 4. For a UE scheme in det-update setting, there exists a PPT adver-
sary A such that

Advdet−TKOpen−atk
UE,A (λ) =

∣
∣
∣Pr

[
Expdet−TKOpen−atk−1

UE,A = 1
]

− Pr
[
Expdet−TKOpen−atk−0

UE,A = 1
]∣∣
∣ = 1,

where atk ∈ {CPA, CCA}.

Proof. For a UE scheme in det-update setting, the update algorithm is deter-
ministic, so the updated ciphertext Ce+1 = UE.Upd (Δe+1, Ce) is deterministic.

The adversary A and simulator B play Expdet−TKOpen−atk−b
UE,A (λ) as follows,

where atk ∈ {CPA, CCA}.

(1) B does Setup.
(2) A can query O.Corr, O.Enc, (O.Dec) and O.Upd oracles and get a pair of

plaintext and ciphertext
(
M̄, C̄

)
.

(3) A sends
(
M̄, C̄

)
to B for querying O.Chall and get a challenge ciphertext

C̃ẽ. B embeds a bit of information b in O.Chall.
(4) A has corrupted Δẽ. A computes C̄ẽ = UE.Upd

(
Δẽ, C̄

)
.

(5) A compares C̄ẽ with C̃ẽ. If C̄ẽ = C̃ẽ, A outputs a bit b′ = 1. Else, A outputs
a bit b′ = 0.

Token Open Secure and Post-quantum Updatable 31

Only in the TKOpen-CCA confidentiality experiment, the adversary has access
to O.Dec.

Since A has corrupted the token of the challenge epoch Δẽ, A can compute
C̄ẽ := UE.Upd

(
Δẽ, C̄

)
. Since the UE scheme is det-update, the challenge cipher-

text C̃ẽ is deterministic as the updated value of the ciphertext C̄. A compares
C̄ẽ with C̃ẽ and then wins the game with probability 1.

Theorem 1. A UE scheme is in rand-(b-uni/no, uni) setting if the scheme is
TKOpen-atk secure, where atk ∈ {CPA, CCA}. That is, a UE scheme is in
rand-(b-uni/no, uni) setting if the following holds: For any PPT adversary A,
we have that AdvTKOpen−atk

UE,A (λ) =∣
∣
∣Pr

[
ExpTKOpen−atk−1

UE,A = 1
]

− Pr
[
ExpTKOpen−atk−0

UE,A = 1
]∣∣
∣ ≤ negl(λ).

Proof. According to Lemma 1, we know that the UE schemes in (kk,bi) setting,
kk ∈ {no, f-uni, b-uni, bi} are not TKOpen-atk secure. According to Lemma 2
and Lemma 3, we know that the UE schemes in (kk, uni) setting, kk ∈ {f-uni,
bi} are not TKOpen-atk secure. According to Lemma 4, we know that the UE
schemes in det-update setting are not TKOpen-atk secure.

Based on Theorem 1, we further discuss the relationship between no-
directional key update and backward-leak uni-directional key update. Intuitively,
no-directional key update is more secure than b-uni-directional key update. But
we show that in TKOpen security model, the security of these two key update
settings is equivalent, that is, an adversary in b-uni-directional key update set-
ting cannot obtain more information than in no-directional key update setting.

According to the discussion above, we know that if the UE scheme is bi-
directional ciphertext update, the adversary can win the TKOpen experiment
with probability 1 regardless of the key update setting. Therefore, we only need
to show the equivalence between no-directional key update and b-uni-directional
key update when the UE scheme is uni-directional ciphertext update.

Proposition 1. In TKOpen security model, the security of (no,uni) and (b-
uni,uni) settings is equivalent.

Proof. We consider the most information the adversary can learn in the TKOpen
security model.

In (no,uni) setting, the adversary can corrupt all epoch keys before and all
tokens, but it cannot learn more epoch keys or tokens because of the limitation
of no-directional key update. The adversary can learn all challenge-equal after
because of uni-directional ciphertext update. Thus, we have that

K∗
no = {0, .., ẽ − 1} , T ∗

no = {0, ..., n} , C∗
no,uni = {ẽ, ..., n} .

In (b-uni,uni) setting, the adversary can corrupt all epoch keys before ẽ
and all tokens, but it cannot learn more epoch keys or tokens because of the
limitation of backward-leak uni-directional key update. The adversary can learn

32 Y. Song et al.

all challenge-equal afterẽbecause of uni-directional ciphertext update. Thus, we
have that

K∗
b−uni = {0, .., ẽ − 1} , T ∗

b−uni = {0, ..., n} , C∗
b−uni,uni = {ẽ, ..., n} .

Now we know that no-directional key update and backward-leak uni-
directional key update reveal the same information to the adversary. Therefore,
for the UE scheme in no-directional key update setting, if the adversary can win
the TKOpen experiment, then in the UE scheme in backward-leak uni-directional
key update setting, the adversary can also win the TKOpen experiment. That
is, in TKOpen security model, the security of (no, uni) and (b-uni, uni) settings
is equivalent.

4 Description of Scheme

In this section, we first present a PKE scheme based on the MLWE assumption
and then construct our MLWEUE based on the PKE scheme. Our scheme is a
rand-update UE scheme in backward-leak uni-directional key update and uni-
directional ciphertext update settings. We will prove in the next section that
this UE scheme satisfies the TKOpen security model.

4.1 MLWE-PKE

Description of MLWE-PKE. We first present a PKE scheme based on the
MLWE assumption, and our PKE scheme is similar to Kyber [8].

(1) Setup algorithm PKE.Setup
(
1λ

)
. Input a security parameter λ.

Choose A ← Rk×l
q . Output a public parameter pp := (A, k, l, q, n, α).

(2) Key generation algorithm PKE.KG (pp). Input a public parameter pp.
Choose s ← Bl

α ∈ Rl×1
q and e ← Bk

α ∈ Rk×1
q . Compute b = As+ e mod q ∈

Rk×1
q . Output (sk, pk) := (s,b).

(3) Encryption algorithm PKE.Enc (pk,m). Input a public key pk and a plain-
text m ∈ Rq.
Choose r ← Bk

α, e1 ← B1×l
α and e2 ← Bα. Compute u = rA + e1 ∈ R1×l

q

and v = rb+ e2 + 〈q/2〉 · m ∈ Rq. Output a ciphertext c := (u, v).
(4) Decryption algorithm PKE.Dec (sk, c). Input a secret key sk and a cipher-

text c.

Parse c = (u, v). Compute m′ = (v − us). Output a plaintext m :=
〈(2/q) · m′〉 mod 2.

IND-CPA. We present the MLWE-PKE scheme constructed above is IND-CPA
under the MLWE assumption in the following theorem and the proof of which
is given in Appendix A.

Theorem 2. The MLWE-PKE scheme is IND-CPA under the MLWE assump-
tion. That is, for any PPT adversary A there exists an adversary B against
MLWE such that AdvIND−CPA

MLWEPKE,A (λ) ≤ 3AdvMLWE
k,l,B (λ).

Token Open Secure and Post-quantum Updatable 33

4.2 MLWEUE

Now we present the first UE scheme based on the MLWE assumption. Firstly,
we introduce the important technique used in construction – the key-switching
technique. We use the technique to ensure that the calculation result of the
ciphertext and the key remain unchanged while reducing the modulus of the
ciphertext, to control the size of the noise after the update.

4.2.1 Key-Switching Technique
We generalize the key-switching technique in [5,10] for our UE scheme, which
consists of two functions, which are the binary-decomposition algorithm BD (·)
and the powers-of-2 algorithm P2 (·). It holds that BD (a)·P2 (s) = a·s ∈ Rq for
any a ∈ R1×l

q , s ∈ Rl×1
q . (Element-to-element multiplication is the polynomial

multiplication in Rq). Let η = �lg q. We give a detailed description as follows.

(1) Binary-decomposition algorithm BD
(
a ∈ R1×l

q

)
.

Input a vector a ∈ R1×l
q . Output a vector group (u1, ...,uη) ∈ R1×lη

q , where

uk =
(
u
(k)
1 , ..., u

(k)
i

)
and u

(k)
i is a polynomial in Rq whose coefficients are

taken from {0,1}. Satisfy the equation a = 20u1 + 21u2 + · · · + 2η−1uη.
The calculation process of BD

(
a ∈ R1×l

q

)
is as follows.

Step 1. Input a = (a1, ..., al) ∈ R1×l
q , where ai ∈ Rq.

Let the polynomial representation of ai be ai = ai,1 + ai,2x+ ...+ ai,nxn−1,
where ai,j ∈ Zq.
Then a = (a1, ..., al)=((a1,1, · · · , a1,n), · · · , (al,1, · · · , al,n)) ∈ (Zn

q)
l.

Step 2. Let the binary decomposition of be ai,j = 20u(1)
i,j +21u(2)

i,j +...2η−1u
(η)
i,j ,

then

a
T

=

⎡
⎢⎣

a1
...

a2

⎤
⎥⎦ =

⎡
⎢⎣

(
a1,1, ..., a1,n

)
...(

al,1, ..., al,n
)

⎤
⎥⎦

=

⎡
⎢⎢⎣

((
20u

(1)
1,1 + 21u

(2)
1,1 + ...2η−1u

(η)
1,1

)
, ...,

(
20u

(1)
1,n + 21u

(2)
1,n + ...2η−1u

(η)
1,n

))

...((
20u

(1)
l,1 + 21u

(2)
l,1 + ...2η−1u

(η)
l,1

)
, ...,

(
20u

(1)
l,n

+ 21u
(2)
l,n

+ ...2η−1u
(η)
l,n

))

⎤
⎥⎥⎦

= 2
0

⎡
⎢⎢⎣

(
u
(1)
1,1, u

(1)
1,2, ..., u

(1)
1,n

)

...(
u
(1)
l,1 , u

(1)
l,2 , ..., u

(1)
l,n

)

⎤
⎥⎥⎦ + 2

1

⎡
⎢⎢⎣

(
u
(2)
1,1, u

(2)
1,2, ..., u

(2)
1,n

)

...(
u
(2)
l,1 , u

(2)
l,2 , ..., u

(2)
l,n

)

⎤
⎥⎥⎦ + ... + 2

η−1

⎡
⎢⎢⎣

(
u
(η)
1,1 , u

(η)
1,2 , ..., u

(η)
1,n

)

...(
u
(η)
l,1 , u

(η)
l,2 , ..., u

(η)
l,n

)

⎤
⎥⎥⎦

Let u
(k)
i =

(
u
(k)
i,1 , u

(k)
i,2 , ..., u

(k)
i,n

)
and u

(k)
i is a polynomial in Rq whose coef-

ficients are taken from {0,1}, then the polynomial representation of u
(k)
i is

u
(k)
i = u

(k)
i,1 + u

(k)
i,2 x + ... + u

(k)
i,nxn−1, u

(k)
i,j ∈ {0, 1}, 1 ≤ k ≤ η, 1 ≤ i ≤ l.

Then we have aT = 20

⎡

⎢
⎣

u
(1)
1

...

u
(1)
l

⎤

⎥
⎦ + 21

⎡

⎢
⎣

u
(2)
1

...

u
(2)
l

⎤

⎥
⎦ + ... + 2η−1

⎡

⎢
⎣

u
(η)
1

...

u
(η)
l

⎤

⎥
⎦= 20u1

T +

21u2
T + · · · + 2η−1uη

T , which is a=20u1 + 21u2 + · · · + 2η−1uη.

34 Y. Song et al.

Step 3. Output the vector group(u1, ...,uη) ∈ R1×lη
q , where uk =(

u
(k)
1 , ..., u

(k)
i

)
and u

(k)
i is a polynomial in Rq whose coefficients are taken

from {0,1}.
(2) Powers-of-2 algorithm P2

(
s ∈ Rl×1

q

)
.

Input a vector s ∈ Rl×1
q . Output a vector group

(
s; 2s; ...; 2η−1s

)
∈ Rlη×1

q .
The calculation process of P2

(
s ∈ Rl×1

q

)
is as follows.

Compute
(
1, 2, ..., 2η−1

)T ⊗ s =
[
s; 2s; ...; 2η−1s

]
=[

(s1, ..., sl)
T mod q; 2(s1, ..., sl)

T mod q; ...; 2η−1(s1, ..., sl)
T mod q

]
, where

⊗ denotes the standard tensor product.
According to the description above, we have BD (a) · P2 (s) = (u1, ...,uη) ·
[
s; 2s; ...; 2η−1s

]
=

(
u1 · s+ u2 · 2s+ ... + uη · 2η−1s

)
=

(
η∑

k=1

2k−1uk · s
)

=

a · s.

4.2.2 Design Ideas
The Construction Method of the Update Token. We show how our UE
scheme update token is constructed, and our construction method is inspired by
the RtR scheme in [5].

We begin with the simple bi-directional key update. Let se, se+1 ∈ Rl×1
q be

two secret keys at epoch e and e+1. We use the key-switching technique to get the
ciphertext at epoch e+1. The token construction and ciphertext update methods
are as follows. Me+1 =

[
A′|A′se+1 + γ

]
+ [O| − P2 (se)] ∈ R

lη×(l+1)
q , where

A′ ← Rlη×l
q , γ ← Rlη×1

q . We use (u, v) and Me+1 to generate the ciphertext
(u′, v′) at epoch e + 1. We compute

(
u′, v′) = (0, v) + BD (u)Me+1 = (0, v) + BD (u)

([
A′∣∣A′se+1 + γ

]
+ [O| − P2 (se)]

)

=
(
BD (u)A′, v − use + BD (u)A′se+1 + BD (u) γ

)
.

We use se+1 to decrypt the ciphertext (u′, v′) at epoch e + 1. We compute

v′ − u′se+1 = v − use + BD (u)A′se+1 + BD (u) γ − BD (u)A′se+1

= v − use + BD (u) γ.

Therefore, if the newly added noise BD (u)·γ is small enough, the decryption
is still correct.

Next, we consider implementing backward-leak uni-directional key update.
In fact, we can construct the update token Me+1 without se+1. Let the public
key at epoch e+ 1 be be+1, where be+1 = Ase+1+ee+1 mod q ∈ Rk

q . We choose
Re+1 ← {−1,+1}lη×k, AΔ ← Rk×l

q and eΔ ← Bk
α ∈ Rk×1

q . We compute bΔ ←
AΔse+1+eΔ mod q ∈ Rk×1

q . We construct the update token as follows.

Me+1 = Re+1 ·
[
A+AΔ

∣
∣be+1+bΔ

]
+ [O| − P2 (se)]

=
[
A′|A′se+1 + γ′] + [O| − P2 (se)] ,

Token Open Secure and Post-quantum Updatable 35

where A′ = Re+1 ·
[
A+AΔ

]
∈ Rlη×l

q , γ′ = Re+1 ·
[
ee+1 + eΔ

]
∈ Rlη×1

q .
It is easy to observe that the newly constructed token has the same structure

as above. Therefore, we can use Me+1 to update the ciphertext. Thus, even if
given the key se at epoch e and the token Me+1, we cannot infer se+1 since only
the public key part be+1 (this is pseudorandom by the MLWE assumption) of
the key at epoch e+ 1 is embedded in Me+1. Thus, this update mechanism is a
backward-leak uni-directional key update.

Ciphertext-Masking Technique. The update algorithm above is determinis-
tic. We use the ciphertext (ũ, ṽ) corresponding to the 0 plaintext to mask (u′, v′)
in the update algorithm to achieve the re-randomization of the updated cipher-
text. We call this method the ciphertext masking technique. In this way, we
can reduce the time complexity of token generation and the data complexity of
transmitting the token.

4.2.3 Description of MLWEUE
We use the PKE scheme in Sect. 4.1 in MLWEUE.

(1) Setup algorithm MLWEUE.Setup
(
1λ

)
. Input a security parameter λ.

Choose A ← Rk×l
q . Output a public parameter pp := (A, k, l, q, n, α).

(2) Key generation algorithm MLWEUE.KG (pp). Input a public parameter
pp.
Generate (se,be) = PKE.KG (pp). Output an epoch key ke := (ske, pke) =
(se,be).

(3) Encryption algorithm MLWEUE.Enc (ke,m). Input an epoch key ke and
a plaintext m.
Parse ke = (se,be). Generate (u, v) = PKE.Enc (be,m). Output a cipher-
text Ce := (u, v) ∈ R1×l

q × Rq.
(4) Decryption algorithm MLWEUE.Dec (ke, Ce). Input an epoch key ke and

a ciphertext Ce.
Parse ke = (se,be). Compute m = PKE.Dec (se, Ce). Output a plaintext
m.

(5) Token generation algorithm MLWEUE.TG (ke, ke+1). Input two keys of
successive epochs ke and ke+1.
Parse ke = (se,be), ke+1 = (se+1,be+1). Choose AΔ ← Rk×l

q , eΔ ←
Bk

α ∈ Rk×1
q . Compute bΔ = AΔse+1+eΔ mod q ∈ Rk×1

q . Compute Me+1 =
Re+1 ·

[
A+AΔ

∣
∣be+1+bΔ

]
+ [O| − P2 (se)], where Re+1 ← {−1,+1}lη×k.

OutputΔe+1 := (Me+1,be+1).
(6) Update algorithm MLWEUE.Upd (Δe+1, Ce). Input a token Δe+1 and a

ciphertext Ce.
Parse Δe+1 = (Me+1,be+1), Ce = (u, v). Compute (u′, v′) = BD (u)Me+1.
Compute (ũ, ṽ) = PKE.Enc (be+1, 0) = (r̃A+ ẽ1, r̃be+1 + ẽ2). Compute
(ū, v̄) = (u′ + ũ, v + v′ + ṽ). Output Ce+1 := (ū, v̄).

36 Y. Song et al.

4.2.4 Correctness of MLWEUE

Theorem 3. After MLWEUE updates for T times, the decryption error rate is

δ = Pr [‖e2 + ẽ2 + ree + r̃ee+1 − e1se − ẽ1se+1 + BD (u)Re+1ee+1

+BD (u)Re+1eΔ
∥
∥

∞ ≥ 〈q/4〉 /T
]
.

Proof. Let be and be+1 are the public key at e and e+1, where be = Ase+ee and
be+1 = Ase+1+ee+1. The update token from e to e+1 is generated as Me+1 =
Re+1 ·

[
A+AΔ

∣
∣be+1+bΔ

]
+ [O| − P2 (se)], where Re+1 ← {−1,+1}lη×k. We

consider a ciphertext Ce = (u, v) and an updated ciphertext Ce+1 = (ū, v̄) =
(u′ + ũ, v + v′ + ṽ). We have

(
u′, v′) = BD (u)Me+1 = BD (u)Re+1 ·

[
A+AΔ

∣∣
∣be+1+bΔ

]
+ [O| − P2 (se)]

= BD (u)
([

Re+1

(
A+AΔ

)∣
∣∣Re+1

(
be+1+bΔ

)]
+ [O| − P2 (se)]

)

=
(
BD (u)Re+1

(
A+AΔ

)
,BD (u)Re+1

(
be+1+bΔ

)
− use

)
,

(ũ, ṽ) = PKE.Enc (be+1, 0) = (r̃A+ ẽ1, r̃be+1 + ẽ2) .

In the decryption algorithm MLWEUE.Dec (ke+1, Ce+1), we compute

m′ = (v̄ − ūse+1) = (v + v′ + ṽ) − (u′ + ũ) se+1

=
(
v + BD (u)Re+1

(
be+1+bΔ

)
− use + r̃be+1 + ẽ2

)

−
(
BD (u)Re+1

(
A+AΔ

)
+ r̃A+ ẽ1

)
se+1

= v − use + BD (u)Re+1ee+1 + BD (u)Re+1eΔ + r̃ee+1 + ẽ2 − ẽ1se+1

= 〈q/2〉 · m + e2 + ẽ2 + ree + r̃ee+1 − e1se − ẽ1se+1 + BD (u)Re+1ee+1

+ BD (u)Re+1eΔ.

Let the error e2 + ẽ2 + ree + r̃ee+1 − e1se − ẽ1se+1 + BD (u)Re+1ee+1 +
BD (u)Re+1eΔ be μ. Let the update times be T. According to Theorem 2, if the
absolute values of the coefficients of error μ are all less than q/4, the ciphertext
can be decrypted correctly. If one of the absolute values of the coefficients of error
μis more than q/4, there is a decryption error corresponding to the ciphertext
after T times update, and the error rate is δ = Pr [‖μ‖∞ ≥ 〈q/4〉 /T].

5 Security Proof

We prove that MLWEUE is backward-leak uni-directional key update and
uni-directional ciphertext update and MLWEUE is rand-TKOpen-CPA in this
section.

Token Open Secure and Post-quantum Updatable 37

5.1 MLWEUE is (b-uni, uni)

Lemma 5. If MLWE-PKE is IND-CPA, the MLWEUE adversary cannot derive
ke+1 via ke and Δe+1, that is MLWEUE is backward-leak uni-directional key
update.

Proof. We construct an IND-CPA adversary B against MLWE-PKE by using an
adversary A that derives ke+1 via ke and Δe+1.

First, B plays the IND-CPA experiment, and B is given pke+1. B chooses a
pair of plaintext (m0,m1) and sends it to the IND-CPA challenger, then gets
the challenge ciphertext c∗ = PKE.Enc (pke+1,mb), where b ← {0, 1}. Next, B
simulators MLWEUE by using the public parameter in MLWE-PKE, generates
(ske, pke) = MLWEUE.KG (pp) and Δe+1 = MLWEUE.TG (ske, pke+1), and
sends (ke = (ske, pke) ,Δe+1) to A. A derives and outputske+1 = (ske+1, pke+1).
Then, B computes m′ = MLWE −PKE.Dec (ske, c

∗) by using ske and if m′ =
mb′ , it outputsb′. It is easy to see that if A can derive ke+1 via ke and Δe+1, B
outputs b′ = b to win IND-CPA.

Lemma 6. If MLWE-PKE is IND-CPA, the MLWEUE adversary cannot derive
ce via ce+1 and Δe+1, that is MLWEUE is uni-directional ciphertext update.

Proof. We construct an IND-CPA adversary B against MLWE-PKE by using an
adversary A that derives ce via ce+1 and Δe+1.

First, B plays the IND-CPA experiment, and B is given pke+1. B chooses
a pair of plaintext (m0,m1)and sends it to the IND-CPA challenger, then gets
the challenge ciphertext c∗ = PKE.Enc (pke+1,mb), where b ← {0, 1}. Next, B
simulators MLWEUE by using the public parameter in MLWE-PKE, generates
(ske, pke) = MLWEUE.KG (pp) and Δe+1 = MLWEUE.TG (ske, pke+1). B
sets ce+1 = c∗ and sends (ce+1,Δe+1) to A. A derives and outputs ce. Then, B
computes m′ = MLWE − PKE.Dec (ske, ce) by using ske and if m′ = mb′ , it
outputs b′. It is easy to see that if A can derive ce via ce+1 and Δe+1, B outputs
b′ = b to win IND-CPA.

Theorem 4. MLWEUE is (b-uni, uni) under the MLWE assumption.

Proof. According to Theorem 3, MLWE-PKE is IND-CPA under the MLWE
assumption. And according to Lemma 5 and Lemma 6, if MLWE-PKE is IND-
CPA, MLWEUE is backward-leak uni-directional key update and uni-directional
ciphertext update. Therefore, MLWEUE is (b-uni, uni) under the MLWE
assumption.

5.2 MLWEUE is rand-TKOpen-CPA

The security proof of MLWEUE is based on the indistinguishability between a
series of games and the MLWE assumption. We define the game sequences as
follows.

Gameb
0. The first game is the same as Exprand−TKOpen−CPA−b

UE,A .

38 Y. Song et al.

Gameb
1. The difference from Gameb

0 is that the public key at ẽ + 1 is replaced
with br

ẽ+1 ← Rk×1
q .

Gameb
2. The difference from Gameb

1 is that the token at ẽ + 1 is replaced with
Δr

ẽ+1 ← R
lη×(l+1)
q .

Gameb
3. The difference from Gameb

2 is that when the adversary queries
O.Enc (M, ẽ + 1), return Cr = (ur, vr) ← R1×l

q × Rq.
Gameb

4. The difference from Gameb
3 is that when the adversary queries

O.Upd (Cẽ, ẽ), return Cr
ẽ+1 = (ūr, v̄r) ← R1×l

q × Rq.

We show these games are indistinguishable in the following lemmas, then we
embed the MLWE challenge in the challenge epoch of Gameb

4 to complete our
proof. The proofs of lemmas are given in Appendix B.

Lemma 7. If the MLWE assumption holds, then Gameb
0 and Gameb

1 are indis-
tinguishable. That is

∣
∣Advb

0 (λ) − Advb
1 (λ)

∣
∣ ≤ AdvMLWE

k,l,α (n).

Lemma 8. Gameb
1 and Gameb

2 are indistinguishable. That is∣
∣Advb

1 (λ) − Advb
2 (λ)

∣
∣=0.

Lemma 9. If the MLWE assumption holds, then Gameb
2 and Gameb

3 are indis-
tinguishable. That is

∣
∣Advb

2 (λ) − Advb
3 (λ)

∣
∣ ≤ AdvMLWE

k,l,α (n).

Lemma 10. If the MLWE assumption holds, then Gameb
3 and Gameb

4 are indis-
tinguishable. That is

∣
∣Advb

3 (λ) − Advb
4 (λ)

∣
∣ ≤ AdvMLWE

k,l,α (n).

Lemma 11. If there exists a PPT adversary A that can win the Gameb
4 with

a non-negligible advantage, there exists a PPT adversary B that can solve the
MLWE problem. That is Advb

Game4 (λ) ≤ AdvMLWE
k,l,α (n).

Theorem 5. The MLWEUE scheme constructed above is rand-TKOpen-CPA
under the MLWE assumption. That is Advrand−TKOpen−CPA−b

MLWEUE,A (λ) =

∣
∣
∣Pr

[
Exprand−TKOpen−CPA−1

UE,A = 1
]

− Pr
[
Exprand−TKOpen−CPA−0

UE,A = 1
]∣∣
∣

≤ 4AdvMLWE
n,q,k,α (n) .

Proof. Under the TKOpen security model, the adversary’s attack advan-
tage on the MLWEUE scheme is the attack advantage on Gameb

0 .
From the relationship between the game sequences given above, we have
Advrand−TKOpen−CPA−b

MLWEUE,A (λ) = Advb
0 (λ)= Advb

0 (λ) − Advb
1 (λ) + Advb

1 (λ) −
Advb

2 (λ) + Advb
2 (λ) − Advb

3 (λ) + Advb
3 (λ) − Advb

4 (λ) + Advb
4 (λ)≤∣

∣Advb
0 (λ) − Advb

1 (λ)
∣
∣ +

∣
∣Advb

1 (λ) − Advb
2 (λ)

∣
∣ +

∣
∣Advb

2 (λ) − Advb
3 (λ)

∣
∣ +∣

∣Advb
3 (λ) − Advb

4 (λ)
∣
∣ + Advb

4 (λ).
According to Lemma 7, we have

∣
∣Advb

0 (λ) − Advb
1 (λ)

∣
∣ ≤ AdvMLWE

k,l,α (n).
According to Lemma 8, we have

∣
∣Advb

1 (λ) − Advb
2 (λ)

∣
∣ = 0. According to

Lemma 9, we have
∣
∣Advb

1 (λ) − Advb
2 (λ)

∣
∣ = AdvMLWE

k,l,α (n). According to

Token Open Secure and Post-quantum Updatable 39

Lemma 10, we have
∣
∣Advb

2 (λ) − Advb
3 (λ)

∣
∣ = AdvMLWE

k,l,α (n). According to
Lemma 11, we have Advb

4 (λ) ≤ AdvMLWE
k,l,α (n).

Then we have Advrand−TKOpen−CPA−b
MLWEUE,A (λ) ≤ 4AdvMLWE

n,q,k,α (n), that
MLWEUE is rand-TKOpen-CPA under the MLWE assumption.

6 Experiment

According to Theorem 4, we know that after MLWEUE updates T times, the
decryption error rate is δ = Pr [‖μ‖∞ ≥ 〈q/4〉 /T]. After a large number of exper-
iments, we give the recommended parameter of MLWEUE with a negligible error
rate in Table 1.

Table 1. Recommended parameter of MLWEUE.

q η n k l α T δ

64513 16 256 3 3 2 6 2̂−122.3

Different from the previous theoretical research, we implement MLWEUE
through software programming, use the NTT technique to achieve program accel-
eration, and make new progress in the practical application of UE. We give the
clock cycles of each algorithm under the recommended parameter of MLWEUE
in Table 2. The test platform is as follows. Operating System: Windows 7. CPU:
Inter Core i5-7200U 2.50GHz. Programming language: C++. Compilation plat-
form: Visual Studio 2019.

Table 2. Clock cycles of each algorithm under the recommended parameter of
MLWEUE

Setup KeyGen Enc Dec TokenGen Upd

220653 366682 401579 129385 3539053 4059817

Then, we analyze the security of MLWEUE against existing attacks. At
present, due to the ideal attack results of prime attack and dual attack [16],
they are considered to be the most effective attack method for the analysis
of cryptosystems on practical lattices. To evaluate the security strength of the
scheme against the original attack and the dual attack under the recommended
parameter, we will sequentially exhaust all possible sample numbers m and the
b value of the lattice reduction algorithm BKZ-b to represent the prime attack
and the dual attack. The optimal computational complexity, let it be 2sec. In
Table 3, we give the corresponding (m, b, sec) values.

40 Y. Song et al.

Table 3. Security strength of MLWEUE scheme against prime attack and dual attack.

Attack model Prime attack Dual attack

Classical model (713, 436, 127) (694, 434, 126)
Quantum model (713, 436, 115) (694, 434, 115)

Appendix A IND-CPA

IND-CPA Security Model of PKE [11]. We describe the confidentiality
experiment of IND-CPA for a public key encryption scheme Π. The adversary
A and simulator B play ExpIND−CPA

Π,A (λ) as follows:

(1) B does the key generation algorithm, and outputs a public key.
(2) A can query the encryption oracle and select a pair of plaintexts (m0,m1).

A sends (m0,m1) to B.
(3) B chooses a bit b← {0, 1}, encrypts mb to get the challenge ciphertext c,

and returns it to A.
(4) A continues to query the encryption oracle.
(5) A outputs a bit b′.

Definition A.1. A public key encryption scheme is IND-CPA secure if the fol-
lowing holds: For any PPTadversary A, we have

AdvIND−CPA
Π,A (λ) =

∣
∣
∣
∣Pr [b

′ = b] − 1
2

∣
∣
∣
∣ ≤ negl (λ) .

Theorem 3. The MLWE-PKE scheme is IND-CPA under MLWE assumption.
That is, for any PPT adversary A there exists an adversary B against MLWE
such that AdvIND−CPA

MLWEPKE,A (λ) ≤ 3AdvMLWE
k,l,B (λ).

Proof. We construct a series of games to complete the proof.

Game 0. The first game is the same as ExpIND−CPA
MLWEPKE,A, then we have that

AdvIND−CPA
MLWEPKE,A (λ) =

∣
∣
∣
∣Pr [b = b′]Game0 − 1

2

∣
∣
∣
∣ .

Game 1. The difference from Game 0 is the public key chosen uniformly at
random from Rk×1

q . (b ← Rk×1
q). It is easy to prove that for any PPT adversary

A, there exists an MLWE adversary B such that

[Pr [b = b′]Game0 − Pr [b = b′]Game1] ≤ AdvMLWE
k,l,B (λ) .

Game 2. The difference from Game 1 is the first part of challenge ciphertext
chosen uniformly at random fromR1×l

q .(u ← R1×l
q). It is easy to prove that for

any PPT adversary A, there exists an MLWE adversary B such that

[Pr [b = b′]Game1 − Pr [b = b′]Game2] ≤ AdvMLWE
k,l,B (λ) .

Token Open Secure and Post-quantum Updatable 41

Game 3. The difference from Game 2 is the second part of the challenge cipher-
text chosen uniformly at random from Rq. (v ← Rq). It is easy to prove that for
any PPT adversary A, there exists an MLWE adversary B such that

[Pr [b = b′]Game2 − Pr [b = b′]Game3] ≤ AdvMLWE
k,l,B (λ) .

In Game 3, the value of the challenge ciphertext is independent of b, thus
Pr [b = b′]Game3 = 1

2 .

Then we have AdvIND−CPA
MLWEPKE,A (λ) =

∣
∣Pr [b = b′]Game0 − 1

2

∣
∣

= |Pr [b = b′]Game0 − Pr [b = b′]Game1 + Pr [b = b′]Game1 − Pr [b = b′]Game2

+Pr [b = b′]Game2 − Pr [b = b′]Game3 + Pr [b = b′]Game3 − 1/2|
≤ |Pr [b = b′]Game0 − Pr [b = b′]Game1| + |Pr [b = b′]Game1 − Pr [b = b′]Game2|
+ |Pr [b = b′]Game2 − Pr [b = b′]Game3| + |Pr [b = b′]Game3 − 1/2|

≤ 3AdvMLWE
k,l,B (λ)

Appendix B Security Proof

Lemma B.1. If two random variables ξ and η are independent and distributed
uniformly on Zq, we have that ξ + η and ξ − η are distributed uniformly on Zq.

Proof. ξ and η are independent, then ∀z ∈ Zq, we have

Pr [ξ + η = z mod q] =
∑

i∈Zq

Pr [ξ = z − i mod q ∧ η = i mod q]

=
∑

i∈Zq

Pr [ξ = z − i mod q] × Pr [η = i mod q] .

ξ is distributed uniformly on Zq, so Pr [ξ = z − i mod q] = 1
q . Then, we have

that Pr [ξ + η = z mod q] = 1
q

∑

i∈Zq

Pr [η = i mod q] = 1
q , so ξ + η is distributed

uniformly on Zq. Similarly, ξ − η is distributed uniformly on Zq.

Proposition B.1. If ξ1, ξ2, ..., ξn are independent and distributed uniformly on

Zq, we have that
n∑

i=1

ki · ξi, ki← {−1,+1} is distributed uniformly on Zq.

Lemma 7. If the MLWE assumption holds, then and are indistinguishable. That
is

∣
∣Advb

0 (λ) − Advb
1 (λ)

∣
∣ ≤ AdvMLWE

k,l,α (n).

42 Y. Song et al.

Proof. The difference between Gameb
0 and Gameb

1 is the public key at ẽ + 1:

Gameb
0: bẽ+1 = Asẽ+1+eẽ+1 mod q ∈ Rk×1

q ,
where A ← Rk×l

q , sẽ+1 ← Bl
α ∈ Rl×1

q , eẽ+1 ← Bk
α ∈ Rk×1

q .
Gameb

1: br
ẽ+1 ← Rk×1

q .

If the adversary can distinguish two games with a non-negligible advan-
tage, it can solve the MLWE problem. Therefore,

∣
∣Advb

0 (λ) − Advb
1 (λ)

∣
∣ ≤

AdvMLWE
n,q,l,α (n).

Lemma 8. Gameb
1 and Gameb

2 are indistinguishable. That is∣
∣Advb

1 (λ) − Advb
2 (λ)

∣
∣=0.

Proof. The difference between Gameb
1 and Gameb

2 is the public key at ẽ + 1:
The difference betweenGameb

1andGameb
2 is the token atẽ + 1:

Gameb
1: Δẽ+1 := Mẽ+1, Mẽ+1 = Rẽ+1 ·

[
A+AΔ

∣
∣br

ẽ+1+bΔ
]
+ [O| − P2 (sẽ)],

whereRẽ+1 ← {−1,+1}lη×k.
Gameb

2: Δr
ẽ+1 := Mr

ẽ+1, M
r
ẽ+1 ← R

lη×(l+1)
q .

Note that the public key at ẽ + 1 in Gameb
1 has been replaced with br

ẽ+1.

(1) First, we prove that A+AΔ is uniformly distributed on Rk×l
q .

Let A =

⎡

⎢
⎣

a1,1 ... a1,l

...
. . .

...
ak,1 ... ak,l

⎤

⎥
⎦ ,AΔ =

⎡

⎢
⎣

aΔ
1,1 ... aΔ

1,l
...

. . .
...

aΔ
k,1 ... aΔ

k,l

⎤

⎥
⎦ and A + AΔ =

⎡

⎢
⎣

a∗
1,1 ... a∗

1,l
...

. . .
...

a∗
k,1 ... a∗

k,l

⎤

⎥
⎦, then a∗

i,j = ai,j + aΔ
i,j ∈ Rq.

Let ai,j = ai,j(0) + ai,j(1)x + ... + ai,j(n−1)x
n−1, aΔ

i,j = aΔ
i,j(0) + aΔ

i,j(1)x +
... + aΔ

i,j(n−1)x
n−1 and a∗

i,j = a∗
i,j(0) + a∗

i,j(1)x + ... + a∗
i,j(n−1)x

n−1, then
a∗

i,j(t) = aΔ
i,j(t) + ai,j(t) mod q, 0 ≤ t ≤ n − 1.

AΔ ← Rk×l
q , then aΔ

ij is uniformly distributed on Rq, so that aΔ
i,j(t) is uni-

formly distributed on Zq. ∀z ∈ Zq, we have that Pr
[
a∗

i,j(t) = z mod q
]
=

Pr
[
aΔ

i,j(t) + ai,j(t) = z mod q
]

= Pr
[
aΔ

i,j(t) = z − ai,j(t) mod q
]

= 1/q.
Therefore, a∗

i,j(t) is uniformly distributed on Zq, then a∗
i,j is uniformly dis-

tributed on Rq, so that A+AΔ is uniformly distributed on Rk×l
q .

Token Open Secure and Post-quantum Updatable 43

(2) Next, we prove that Re+1 ·
[
A+AΔ

]
is uniformly distributed onRlη×l

q .

Let Rẽ+1 =

⎡

⎢
⎣

r1,1 ... r1,k

...
. . .

...
rlη,1 ... rlη,k

⎤

⎥
⎦

lη×k

∈ {−1,+1}lη×k, A+AΔ =

⎡

⎢
⎣

a∗
1,1 ... a∗

1,l
...

. . .
...

a∗
k,1 ... a∗

k,l

⎤

⎥
⎦

and Rẽ+1 ·
[
A+AΔ

]
=

⎡

⎢
⎣

a1,1 ... a1,l

...
. . .

...
alη,1 ... alη,l

⎤

⎥
⎦

lη×l

, then αi,j =
k∑

s=1
ri,s · a∗

s,j ∈ Rq.

Let a∗
i,j = a∗

i,j(0) + a∗
i,j(1)x + ... + a∗

i,j(n−1)x
n−1 and αi,j = αi,j(0) +

αi,j(1)x + ... + αi,j(n−1)x
n−1, then αi,j(t) =

k∑

s=1
ri,s · a∗

s,j(t) mod q, 0 ≤ t ≤

n − 1, ri,s ∈ {−1,+1}. According to (1), we know that A+AΔ is uni-
formly distributed on Rk×l

q , then a∗
1,j(t), a

∗
2,j(t), ...a

∗
k,j(t) are k independent

random variables uniformly distributed on Zq. Rẽ+1 ← {−1,+1}lη×k, then
ri,j ← {−1,+1}. According to Lemma B.1 and Proposition B.1, we have that

αi,j(t) =
k∑

s=1
ri,s · a∗

s,j(t) is uniformly distributed on Zq, then αi,j is uniformly

distributed on Rq, so that Re+1 ·
[
A+AΔ

]
is uniformly distributed on Rlη×l

q .
(3) Similar to (1) and (2), br

ẽ+1 ← Rk×1
q , then Rẽ+1 ← {−1,+1}lη×k, so that

Rẽ+1 ·
[
br

ẽ+1 + bΔ
]

is uniformly distributed on Rlη×1
q . In addition, similar

to (1), Rẽ+1 ·
[
br

ẽ+1 + bΔ
]

is uniformly distributed on Rlη×1
q , then Rẽ+1 ·[

br
ẽ+1 + bΔ

]
− P2 (se) is uniformly distributed on Rlη×1

q .
(4) Now we know that Re+1 ·

[
A+AΔ

]
is uniformly distributed on Rlη×l

q

and Rẽ+1 ·
[
br

ẽ+1 + bΔ
]

− P2 (se) is uniformly distributed on Rlη×1
q .

We have Mẽ+1 = Rẽ+1 ·
[
A+AΔ

∣
∣br

ẽ+1+bΔ
]
+ [O| − P2 (sẽ)] =[

Rẽ+1 ·
[
A+AΔ

]∣∣Rẽ+1 ·
[
br

ẽ+1+bΔ
]

−P2 (sẽ)] is uniformly distributed on
R

lη×(l+1)
q .

According to the discussion above, in Gameb
1, Mẽ+1 is uniformly distributed

on R
lη×(l+1)
q . In Gameb

2, Mr
ẽ+1 ← R

lη×(l+1)
q is uniformly distributed on

R
lη×(l+1)
q . Therefore, the adversary cannot distinguish between the two

games, that is
∣
∣Advb

1 (λ) − Advb
2 (λ)

∣
∣ =0.

Lemma 9. If the MLWE assumption holds, then Gameb
2 and Gameb

3 are indis-
tinguishable. That is

∣
∣Advb

2 (λ) − Advb
3 (λ)

∣
∣ ≤ AdvMLWE

k,l,α (n).

Proof. The difference between Gameb
2 and Gameb

3 is the returned value when
the adversary queries O.Enc (M, ẽ + 1).

Gameb
2: When the adversary queries O.Enc (M, ẽ + 1),

return C = MLWEUE.Enc
(
br

ẽ+1,M
)
.

C =
(
rA+ e1, rbr

ẽ+1 + e2+ 〈q/2〉 · m0

)
, where A ← Rk×l

q , r ← Bk
α,

e1 ← Bk
α, e2 ← Bα and br

ẽ+1 ← Rk×1
q .

Gameb
3: When the adversary queriesO.Enc (M, ẽ + 1),

return Cr := (ur, vr) ← R1×l
q × Rq.

44 Y. Song et al.

If the adversary can distinguish two games with a non-negligible
advantage, it can distinguish

([
A|br

ẽ+1

]T
,
[
r
(
A|br

ẽ+1

)
+ (e1|e2)

]T)
and

([
A|br

ẽ+1

]T
, [ur|vr]T

)
with a non-negligible advantage, so it can solve the

MLWE problem. Therefore,
∣
∣Advb

2 (λ) − Advb
3 (λ)

∣
∣ ≤ AdvMLWE

k,l,α (n).

Lemma 10. If the MLWE assumption holds, then Gameb
3 and Gameb

4 are indis-
tinguishable. That is

∣
∣Advb

3 (λ) − Advb
4 (λ)

∣
∣ ≤ AdvMLWE

k,l,α (n).

Proof. The difference between Gameb
3 and Gameb

4 is the returned value when
the adversary queries O.Upd (Cẽ, ẽ).

Gameb
3: When the adversary queries O.Upd (Cẽ, ẽ),

return Cẽ+1 = MLWEUE.Upd
(
Δr

ẽ+1, Cẽ

)
.

Cẽ+1 = (ū, v̄) = (u′ + ũ, vẽ + v′ + ṽ) = (0, vẽ) + BD (uẽ)Mr
ẽ+1 +

PKE.Enc
(
br

ẽ+1, 0
)
, where Mr

ẽ+1 ← R
lη×(l+1)
q . Let the first l columns

of Mr
ẽ+1 be Ma

ẽ+1, the last column of Mr
ẽ+1 be Mb

ẽ+1, then we have

Cẽ+1 =
(
r̃A+ ẽ1 + BD (uẽ)Ma

ẽ+1, r̃b
r
ẽ+1 + ẽ2 + vẽ + BD (uẽ)Mb

ẽ+1

)
,

where A ← Rk×l
q , r̃, ẽ1 ← Bk

α, ẽ2 ← Bα, br
ẽ+1 ← Rk×1

q .
Gameb

4: When the adversary queries O.Upd (Cẽ, ẽ),
return Cr

ẽ+1 := (ūr, v̄r) ←R1×l
q × Rq.

If the adversary can distinguish two games with a non-negligible
advantage, it can distinguish

([
A|br

ẽ+1

]T
,
[
r̃
(
A|br

ẽ+1

)
+ (ẽ1|ẽ2)

]T)
and

([
A|br

ẽ+1

]T
, [ūr|v̄r]T

)
with a non-negligible advantage, so it can solve the

MLWE problem. Therefore,
∣
∣Advb

3 (λ) − Advb
4 (λ)

∣
∣ ≤ AdvMLWE

k,l,α (n).

So far, we have proved the indistinguishability of game sequences. Next, we
embed the MLWE challenge in the challenge epoch in Gameb

4. We construct
a simulator B of the MLWEUE scheme, which is an adversary to the MLWE
problem, and responds to queries from the TKOpen adversary A in Gameb

4.

Token Open Secure and Post-quantum Updatable 45

Lemma 11. If there exists a PPT adversary A that can win the Gameb
4 with

a non-negligible advantage, there exists a PPT adversary B that can solve the
MLWE problem. That is Advb

Game4 (λ) ≤ AdvMLWE
k,l,α (n).

Proof. We construct a simulator of MLWEUE B against the MLWE problem by
using an adversary A in Gameb

4. B has the MLWE challenge (A,bchall), it use
bchall as the public key at the challenge epoch ẽ, and use a random value to simu-
late the public key at ẽ+1 as Game 1. B doesn’t have the secret key at the challenge
epoch, then it cannot generate a real token at ẽ+1, so it uses a random value to sim-
ulate the token as Game 2. At ẽ+1, when A queries O.Enc (M, ẽ + 1), B returns
Cr := (ur, vr) ← R1×l

q × Rq to A as Game 3, and when A queries O.Upd (Cẽ, ẽ),
B returns Cr

ẽ+1 := (ūr, v̄r) ← R1×l
q × Rq to A as Game 4.

B modifies the rand-TKOpen-CPA oracles as follows.

Setup
(
1λ

)
:

receive the MLWE challenge
(A,bchall)
pp = UE.Setup

(
1λ

)

ẽ ← {1, ..., n}
k0, ..., kẽ−1, kẽ+1, ..., kn ← UE.KG (pp)
pkẽ := bchall(embed challenge)
pkẽ+1 := br

ẽ+1 ← Rk×1
q (Game1)

Δ1, ...,Δẽ−1 = UE.TG (ki, ki+1) , i ∈
{0, ..ẽ − 2}
Δẽ+2, ...,Δn = UE.TG (ki, ki+1) , i ∈
{ẽ + 1, ..., n − 1}
Δẽ = UE.TG (skẽ−1, pkẽ)
Δẽ+1 := Δr

ẽ+1 ← R
lη×(l+1)
q (Game2)

L, L̃, C,K, T = ∅

O.Corr (inp, ê) :
if inp = token and ê ≤ n then

T = T
⋃

{ê}, return Δê

if inp = key and ê ≤ ẽ − 1 then
K = K

⋃
{ê}, return kê

else
return ⊥

O.Enc (M, ê)
c = c + 1
if ê = ẽ + 1 then

C = Cr := (ur, vr) ← R1×l
q × Rq

(Game 3)
else

C = UE.Enc (kê,M)
L = L

⋃
{(c, C, ê;M)}

return C

O.Upd (Cê, ê) :
if (j, Ce, ê;M) ∈ L and ê = ẽ then

Cê+1 = Cr
ẽ+1 := (ūr, v̄r) ←

R1×l
q × Rq

(Game4)
L = L

⋃
{(j, Cê+1, ê + 1;M)}

return Cê+1

if (Cê, ê) ∈ L̃ and ê = ẽ then
C̃ê+1 = Cr

ẽ+1 := (ūr, v̄r) ←
R1×l

q × Rq

(Game 4)
C = C

⋃
{ê+1}

L̃ = L̃
⋃ {(

C̃ê+1, ê + 1
)}

return C̃ê+1

if (j, Ce, ê;M) ∈ L and ê �= ẽ then
Cê+1 = UE.Upd (Δê+1, Cê)
L = L

⋃
{(j, Cê+1, ê + 1;M)}

return Cê+1

if (Cê, ê) ∈ L̃ and ê �= ẽ then
C̃ê+1 = UE.Upd (Δê+1, Cê)
C = C

⋃
{ê+1}

L̃ = L̃
⋃ {(

C̃ê+1, ê + 1
)}

return C̃ê+1

else
return ⊥

46 Y. Song et al.

O.Chall
(
M̄, C̄

)
:

if
(
·, C̄, ẽ − 1; M̄1

)
/∈ L then

return ⊥
if b = 0 then

C̃ẽ = UE.Enc
(
pkẽ, M̄

)

if b = 1 then
C̃ẽ = UE.Upd

(
Δẽ, C̄

)

L̃ = L̃
⋃ {(

C̃ẽ, ẽ
)}

C = C
⋃

{ẽ}
return C̃ẽ

The adversary A and the simulator B play Gameb
4 as follows:

(1) B does Setup.
(2) A can query O.Corr, O.Enc and O.Upd oracles and get a pair of plaintext

and ciphertext
(
M̄, C̄

)
.

(3) A sends
(
M̄, C̄

)
to B for querying O.Chall and get a challenge ciphertext

C̃ẽ.
(4) A continues to query O.Corr, O.Enc and O.Upd oracles.
(5) A makes a judgment. If C̃ẽ is encryption of M̄ , A outputs a bit b′ = 0. If C̃ẽ

is an update of C̄, A outputs a bit b′ = 1.
(6) If b′ = b, B outputs 1. Else, B outputs 0.

In Gameb
4, if A can distinguish the challenge ciphertext with a non-negligible

advantage in PPT , then B can solve the MLWE problem with a non-negligible
advantage in PPT . That is Advb

Game4 (λ) ≤ AdvMLWE
k,l,α (n).

References

1. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4_23

2. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp.
685–716. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_22

3. Boyd, C., Davies, G.T., Gjøsteen, K., Jiang, Y.: Fast and secure updatable encryp-
tion. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp.
464–493. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_16

4. Jiang, Y.: The direction of updatable encryption does not matter much. In: Moriai,
S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 529–558. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_18

5. Nishimaki, R.: The direction of updatable encryption does matter. In: Hanaoka,
G., Shikata, J., Watanabe, Y. (eds.) PKC 2022. LNCS, vol. 13178, pp. 194–224.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97131-1_7

6. Barker, E.: Recommendation on Key Management SP800-57-Part-1-revised2
08 Mar 2007. NIST (2007). https://csrc.nist.gov/publications/nistpubs/800-57/
sp800-57-Part1-revised2_Mar08-2007.pdf

7. Kaltz, J., Lindell, Y.: Introduction to Modern Cryptography: Principles and Pro-
tocols. Chapman and Hall, Boca Raton (2008)

https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-030-56784-2_16
https://doi.org/10.1007/978-3-030-64840-4_18
https://doi.org/10.1007/978-3-030-97131-1_7
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf

Token Open Secure and Post-quantum Updatable 47

8. Bos, J., Ducas, L., Kiltz, E., et al.: CRYSTALS-Kyber: a CCA-secure module-
lattice-based KEM. In: 2018 IEEE European Symposium on Security and Pri-
vacy (EuroS&P), pp. 353–367. IEEE (2018). https://ieeexplore.ieee.org/abstract/
document/8406610/

9. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme.
IACR Trans. Cryptographic Hardw. Embed. Syst. 238–268. (2018). https://doi.
org/10.13154/tches.v2018.i1.238-268

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3),
1–36 (2014)

11. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2021. ACM (2021). https://doi.org/10.1145/3406325.3451093

12. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lat-
tices. Des. Codes Crypt. 75(3), 565–599 (2015). https://doi.org/10.1007/s10623-
014-9938-4

13. Song, Y., Gao, H.: Token open security model for updatable encryption. In: 2022
4th International Conference on Data Intelligence and Security (ICDIS), pp. 16–21
(2022). https://doi.org/10.1109/ICDIS55630.2022.00010

14. Song, Y., Gao, H., Wang, S., Ma, C., Sun, K.: Token Open Secure and Practical
NTRU-based Updatable Encryption, 26 May 2023, Preprint (Version 2). https://
doi.org/10.21203/rs.3.rs-2721947/v2

https://ieeexplore.ieee.org/abstract/document/8406610/
https://ieeexplore.ieee.org/abstract/document/8406610/
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1109/ICDIS55630.2022.00010
https://doi.org/10.21203/rs.3.rs-2721947/v2
https://doi.org/10.21203/rs.3.rs-2721947/v2

Zero-Knowledge Proofs for SIDH
Variants with Masked Degree or Torsion

Youcef Mokrani(B) and David Jao(B)

Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, ON N2L 3G1, Canada
{ymokrani,djao}@uwaterloo.ca

Abstract. The polynomial attacks on SIDH by Castryck, Decru, Maino,
Martindale and Robert have shown that, while the general isogeny prob-
lem is still considered unfeasible to break, it is possible to efficiently
compute a secret isogeny when given its degree and image on enough
torsion points. A natural response from many researchers has been to
propose SIDH variants where one or both of these possible extra pieces
of information is masked in order to obtain schemes for which a polyno-
mial attack is not currently known. Examples of such schemes include
M-SIDH, MD-SIDH and FESTA. Unfortunately, these SIDH variants are
still vulnerable to older adaptive attacks against SIDH where the adver-
sary sends public keys whose associated isogeny is either unknown or
inexistent. For the original SIDH scheme, one possible defense against
these attacks is to use zero-knowledge proofs that a secret isogeny has
been honestly computed. However, such proofs do not currently exist
for most SIDH variants. In this paper, we present new zero-knowledge
proofs for isogenies whose degree or torsion points have been masked.
The security of these proofs mainly relies on the hardness of DSSP.

Keywords: Elliptic curves · Supersingular isogenies · Zero-knowledge
proofs

1 Introduction

Since polynomial time attacks on SIDH have been discovered [5,13,14], multi-
ple attempts have been made to create SIDH variants that resist these known
attacks. It is important to note that these attacks only work on SIDH and not the
general isogeny problem, because they require extra information that is leaked
by SIDH, namely its degree and its mapping for a large enough set of auxiliary
points.

The core idea behind these new variants is to mask the degree or the auxiliary
points such that a shared secret can still be generated between honest parties
without leaking information that can be used by an attacker to break the scheme.
While these new variants are resistant to the currently known attacks on SIDH,
there are still vulnerable to older adaptive attacks [10,11] where an attacker
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. Regazzoni et al. (Eds.): SPACE 2023, LNCS 14412, pp. 48–65, 2024.
https://doi.org/10.1007/978-3-031-51583-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51583-5_3&domain=pdf
http://orcid.org/0000-0002-8073-1692
https://doi.org/10.1007/978-3-031-51583-5_3

Zero-Knowledge Proofs for SIDH Variants 49

sends invalid public keys in order to gain information about a victim’s secret
key if a key exchange is attempted.

In the context of SIDH, one way to protect against such attacks is to have
the parties prove the validity and knowledge of their secret using a Fiat-Shamir
signature based on a zero-knowledge proof for their secret isogeny. However,
the new masking techniques of the variants make the old zero-knowledge proofs
unusable. Hence there is a need for new proofs. In this paper, we present multiple
new zero-knowledge proofs for multiple SIDH variants. The collection of proofs
shown here can do any combination of the following:

– Either mask or prove the degree of the secret isogeny.
– Reveal no information about the mapping of torsion points, or prove the

honesty of the masked torsion point information when each torsion point is
scaled by the same constant (as in M-SIDH [10]) or different ones (as in
binSIDH [3] or the diagonal variant of FESTA [4]).

It is worth noting that none of the proofs in this paper requires knowledge
of any endomorphism rings, making them compatible with schemes that require
these rings to be unknown to all. For security, the zero-knowledge proofs in this
paper only require the DSSP assumption as well as a computationally binding
and statistically hiding commitment scheme.

In Sects. 2 and 3, we present the theorems, assumptions and notations used in
our protocols. The zero-knowledge proofs of this paper are presented in Sects. 4,
5, 6 and 7.

1.1 Related Papers

In cases where the prover has access to the endomorphism ring of the domain
curve, they can prove their knowledge of an isogeny between the claimed curves
using SQISign [9] or SQISignHD [6]. Since the isogeny revealed in the associated
zero-knowledge proof is independent of the secret isogeny, including its degree,
it stays zero-knowledge even when the degree of the secret isogeny is part of the
secret. However, in the context of using it to prove honest public keys for SIDH
variants, this technique cannot be used to prove that the claimed torsion point
information is correct. Also, there are protocols where the endomorphism ring
has to be kept unknown from all participants, and SQISign cannot be used in
these cases.

Fouotsa et al. have already proposed a zero-knowledge proof for M-SIDH [10].
However, this proof relies on a stronger assumption than DSSP. In this paper,
we present zero-knowledge proofs which are able to show the same properties
while only needing DSSP, at the cost of a slight loss in efficiency.

2 Background Knowledge and Assumptions

The security of the zero-knowledge proofs we are proposing in this paper rely on
the following two theorems. The first give us an upper bound on the probability

50 Y. Mokrani and D. Jao

to distinguish the codomain of a random isogeny from a random supersingular
curve, while the second gives a similar bound on the probability of distinguishing
the parallel isogeny in an SIDH square from a random one.

Theorem 2.1 ([12]). Let p, � be a prime numbers, e be a positive integer and
E0 be a supersingular elliptic curve of Fp2 . Let E be the codomain of a random
cyclic isogeny of degree �e and domain E0. Let Γ be the set of supersingular
elliptic curves over Fp2 . For every E′ ∈ Γ , we have that

∣
∣
∣
∣
P(E = E′) − 1

|Γ |
∣
∣
∣
∣
≤

(

2
√

�

� + 1

)e

Theorem 2.2 (Corollary of Theorem 11 of [2]). Let p, � be a prime num-
bers, A be a positive integer not divisible by �, and φ : E0 → E1 be cyclic isogeny
of degree A between two supersingular elliptic curves over Fp2 .

Let ψ be a random cyclic isogeny of degree �e and φ′ be the isogeny parallel
to φ in an SIDH square between φ and ψ.

As e grows to infinity, the domain E2 of φ′ converges towards a uniformly
random curve in Γ and φ′ converges towards a uniformly random cyclic isogeny
of degree A and domain E2. The convergence rate is exponential.

It is worth noting that Theorems 2.1 and 2.2 can be generalized so that we
still obtain exponential convergence towards uniform distributions when �e is
replaced with a positive integer B increasing to infinity. With the above results,
given large enough parameter sets, we can assume that the following problem is
hard.

Assumption 1 (DSSP) Let A and B be two large, relatively prime integers.
Given a cyclic isogeny φ : E0 → E1 of degree A, the decisional supersingular
product problem is to distinguish between the following two distributions:

1. D0 = {(E2, E3, φ
′)} such that there exists a cyclic subgroup G ⊆ E0[B] of

order B and E2
∼= E0/G and E3

∼= E1/φ(G), and φ′ : E2 → E3 is a degree A
cyclic isogeny.

2. D1 = {(E2, E3, φ
′)} such that E2 is a random supersingular elliptic curve

with the same cardinality as E0 and E3 is the codomain of a random cyclic
isogeny φ′ : E2 → E3 of degree A.

We assume that this problem is hard.

We also need to assume the existence of a function with the following security
properties.

Assumption 2 ([2]) We assume the existence of a function H which is a sta-
tistically hiding and computationally binding commitment scheme on the set of
binary strings. Denote by H the codomain of H.

In cases where we use H on arbitrary data, we implicitly assume that this data
is encoded in the form of a binary string using a suitable encoding scheme.

Zero-Knowledge Proofs for SIDH Variants 51

3 Additional Definitions and Notations

The protocols presented in this paper use multiple functions and mathematical
objects, many of these being used for more than one protocol. In order to avoid
repeating these definitions every time, we present them once in this section.

Definition 3.1. Given a cyclic isogeny φ : E → F , GeneratingPoint(φ)
return a point K generating the kernel of φ. Given an elliptic curve point K ∈ E,
IsogenyFromKernel(K) returns an isogeny whose kernel is generated by K.

Definition 3.2. Given a supersingular elliptic curve E and a positive integer
n, CyclicIsogeny(E,n) returns a random cyclic isogeny whose domain is E
and degree is n.

Definition 3.3. Given two isogenies φ : E → E1 and ψ : E → E2 of relatively
prime degrees, ParallelIsogeny(φ, ψ) returns the isogeny parallel to φ in the
isogeny square generated by φ and ψ.

Definition 3.4. Given an elliptic curve E and a positive integer n, E[n] is the
subgroup formed of the points of order dividing n while E[[n]] is the subset of the
points of order exactly n.

Definition 3.5. Given an elliptic curve E and a positive integer n, the function
RandomBasis(E,n) returns a uniformly random basis (P,Q) of E[n].

Definition 3.6. Given three elliptic curve points P,Q,R, DDLOG(P,Q,R)
returns a pair of integers (e, f) such that [e]P +[f]Q = R. Note that we only use
this function where a solution exists and is unique modulo a known integer. Also
note that we only use this function in groups whose order is smooth, making the
function efficient.

Definition 3.7. Given an isogeny φ : E → F , Codomain(φ) returns F .

Definition 3.8. Given a positive integer A and two integers (a, b),
InverPair(a, b, A) returns a pair of integers (a′, b′) such that a′b−b′a is invert-
ible modulo A. Note that we only use this function in cases where a valid solution
exists.

Definition 3.9. Given a positive integer A, FacSet(A) is the set of positive
factors of A. Given two positive integers A and B, FacSetTwo(A,B) is the set
of integers d such that A | D | B.

Definition 3.10. Given a possibly non-cyclic isogeny φ, Cycliphy(φ) return a
cyclic isogeny with the same domain and codomain. This can be easily obtained
by seeing φ as a walk on the isogeny graph and removing the backtracking.

Definition 3.11. The function IsoValid(E,F, φ) returns true if φ is a valid
isogeny from E to F and false otherwise.

52 Y. Mokrani and D. Jao

Definition 3.12. In this paper, we work on elliptic curves defined over a known
field F. Also, we consider to elliptic curves with the same j-invariant to be the
same. Let Γ be the set of supersingular elliptic curves defined over that field.

Definition 3.13. During the Verification step of the zero-knowledge proofs in
this paper, we use accept to note that the Verifier accepts and ⊥ to note refusal.

4 Masking the Degree

Suppose that we want to prove knowledge of an isogeny between two supersingu-
lar elliptic curves without revealing its degree. When possible, the most efficient
solution would be to use SQISign [9] or SQISignHD [6]. However, these protocols
both require the prover to know the endomorphism ring of the starting curve,
which limits the possible applications.

In protocols where the degree of an isogeny is part of the secret, a multiple of
said degree is usually publicly known. That is the case for both MD-SIDH [10]
and terSIDH [3]. In such cases, we can use rejection sampling first introduced
in the context of isogenies in SeaSign [8] in order to mask the degree during a
normal SIDH proof.

The core idea of MDISOZKP, when trying to prove knowledge of an isogeny
φ : E0 → E1, is to start by computing an isogeny φ′ : E1 → E′

1 of random and
potentially large degree with the same prime factors as the degree of φ.

We can then remove the backtracking appearing in φ′φ in order to obtain
the cyclic isogeny Φ : E0 → E′

1. The step is necessary to make sure that the
adversary does not learn anything about the secret isogeny since the degree of
backtracking is a non-trivial factor of the degree of φ.

We can then compute an isogeny ψL : E0 → E2 of degree relatively prime to
Φ and compute the SIDH square between the two in order to obtain the isogenies
Φ′ : E2 → E3 and ψR : E′

1 → E3. For the commitment, the prover can publish
a hash of E2 and E3 and, depending on the challenge, the prover either reveals
ψL, Φ′ or ψRφ′.

Since we use rejection sampling, in cases where the challenge asks for Φ′ to
be revealed, the prover needs to check that the degree respects some additional
conditions. Otherwise, the proof is aborted. Later in this section, we prove that
the probability of requiring an abort is low enough for a Fiat-Shamir signature
to be feasible.

E0 E1 E′
1

E2 E3

φ φ′

ψL

Φ′

ψR
Φ

Zero-Knowledge Proofs for SIDH Variants 53

Definition 4.1 (MDISOZKP). Let A =
∏s

i=1 qfi

i be a large integer such that
the qis are distinct primes dividing p + 1. Let B be a large positive integer rela-
tively prime to A. Let φ : E0 → E1 be a secret cyclic isogeny of degree A | A.

n is a positive integer representing the number of times the following proof
will be repeated. The challenge is a random chall ∈ {−1, 0, 1}.

Commitment
A

′ ←$FacSet(Asn
)

φ
′ ← CyclicIsogeny(E1, A

′
)

E
′
1 ← Codomain(φ

′
)

Φ ← Cycliphy(φ
′
φ)

KψL
←$E0[[B]]

ψL ← IsogenyFromKernel(KψL
)

E2 ← Codomain(ψL)

Φ
′ ← ParallelIsogeny(Φ, ψL)

KψR
← Φ(KψL

)

ψR ← IsogenyFromKernel(KψR
)

E3 ← Codomain(ψR)

r2, r3 ←$N

C2 ← H(E2, r2)

C3 ← H(E3, r3)

return (C2, C3)

Response
if chall = −1 :

return (E2, r2, ψL)

if chall = 0 :

return (E3, r3, ψRφ
′
)

if chall = 1 :

if deg(Φ) /∈ FacSetTwo(A, Asn
) : abort

return (E2, E3, r2, r3, Φ
′
)

Verification
if chall = −1 :

if C2 �= H(E2, r2) :⊥
if ¬IsoValid(E0, E2, ψL) :⊥

if chall = 0 :

if C3 �= H(E3, r3) :⊥
if ¬IsoValid(E1, E3, ψRφ

′
) :⊥

if chall = 1 :

if (C2, C3) �= (H(E2, r2), H(E3, r3)) :⊥
if ¬IsoValid(E2, E3, Φ

′
) :⊥

return true

Theorem 4.2. Given Assumption 2, MDISOZKP is 3-special sound for the
knowledge of an isogeny from E0 to E1.

Proof. Since H is computationally binding, the commitments are equivalent to
obtaining E2 and E3 directly when it comes to soundness. Given valid ψL, ψRφ′

and Φ′ for the same commitment (E2, E3), ˆψRφ′Φ′ψL is an isogeny from E0 to
E1.

Theorem 4.3. If MDISOZKP does not abort when chall = 1, then the degree
of Φ′ is a uniformly random element of FacSetTwo(A,Asn).

Proof. Let d = deg(φ′φ)
deg(Φ) . For any value of d, deg(φ)

d divides A. If we fix the value
of d, φ′ can have any degree dividing Ans. We also have that the degree of φ′

must divide Ans. Hence, since we are conditioning on the fact that MDISOZKP
does not abort and chall = 1, for any possible degree of φ and value of d, there
is a unique degree of φ′ for every target degree of Φ. This makes the degree of Φ
uniform, and since Φ and Φ′ have the same degree, the same holds for Φ′.

Theorem 4.4. Given Assumptions 1 and 2, if MDISOZKP does not abort, then
it is honest verifier zero-knowledge.

54 Y. Mokrani and D. Jao

Proof. For the proof, we can create a simulator S for outputting a commitment-
challenge-answer triple indistinguishable from that of honest parties. To do so,
we describe the simulator for each possible challenge. When chall = −1, S can
generate (KψL

, ψL, E2, r2) as would an honest party and generate an honest
commitment C2. Since H is statistically hiding, randomly sampling C3 from H
is indistinguishable from an honest computation. If chall = 0, S can generate
(A′, φ′, E′

1) as would an honest party. Since there is a bijection between E0[[B]]
and E′

1[[B]] in addition to the fact that KψL
is never revealed, directly sampling

KψR
is indistinguishable from an honest output. Using this value, S can generate

(ψR, E3, r3, C3) as normal and randomly sample C2. When chall = −1, S can
sample a random A′′ ∈ FacSetTwo(A,Asn), a random supersingular elliptic
curve E2 and then a random cyclic isogeny Φ′ using CyclicIsogeny(E2, A

′′). Given
Assumption 1, This construction is indistinguishable from an honest one. S can
then compute the other values as normal.

Theorem 4.5. Given n rounds of MDISOZKP, the probability that no abort
happens is at least 1

e .

Proof. For fixed φ and any value of d = deg(φ′φ)
deg(Φ) , there is always at least

∏s
i=1(ns − 2)fi possible degrees of φ′ that do not cause an abort. Hence, the

probability of the protocol not aborting in a given round can be lower bounded
by

2
3

+
1
3

∏s
i=1(ns − 2)fi

∏s
i=1(ns + 1)fi

=
2
3

+
1
3

(
ns − 2
ns + 1

)s

The probability of having no abort in any round can then be lower bounded
by

(
2
3

+
1
3

(
ns − 2
ns + 1

)s)n

=
1
e

+
2 s − 1
2ens

+ O

(
1
n2

)

>
1
e

5 Masked Torsion

M-SIDH [10] has been proposed as a possible fix for the attacks on SIDH [5,13,
14]. The main difference is that, for a secret isogeny φ : E0 → E1 of degree A
between two publicly known supersingular elliptic curve, M-SIDH also reveals
([α]φ(P0), [α]φ(Q0)) for an unknown random α where (P0, Q0) is a basis of E0[B].

This protocol creates the need of being to prove knowledge of an isogeny with
the above properties without leaking extra information. Basso [1] published a
3-sound zero-knowledge proof that does just that. However, that protocol relies
on a stronger assumption than DSSP. A 6-sound variation only relying on DSSP
is mentioned in the same paper but is dismissed for being too inefficient.

For the original SIDH protocol, De Feo et al. [7] proposed a 3-sound zero-
knowledge proof that relied on the double-DSSP assumption. Such an assump-
tion is too strong, as it can be broken by the same attacks as SIDH. However,

Zero-Knowledge Proofs for SIDH Variants 55

we can modify the protocol to only rely on the DSSP assumption at the cost of
now being 4-sound. Masking the torsion can be done easily by adding a random
scalar in the protocol.

The core idea of MTISOZKP consists in generating two cyclic isogenies ψL,i :
E0 → E2,i of degree B whose kernel generators form a basis of E[B]. These
isogenies can be used with φ to construct two SIDH squares sharing an edge. In
order to not leak information by doing so, we work with the dual of the isogenies
of degree B as well as random bases of E2,i. Also, we use H in order to force the
commitments to be honest without leaking information.

Definition 5.1 (MTISOZKP). Let A and B be two relatively prime positive
integers. Let φ : E0 → E1 be a secret isogeny of degree A such that φ(P0) = P1

and φ(Q0) = Q1 where P0 and Q0 are a basis of the E0[B]. Let α ←$ (Z/BZ)∗

be secret and (E0, E1, P0, Q0, [α]P1, [α]Q1) be public. The challenge is a random
chall ∈ {−1, 0, 1, 2}.

Commitment
(P

′
1, Q

′
1) ← ([α]P1, [α]Q1)

Kφ ← GeneratingPoint(φ)

(KψL,0 , KψL,1) ← RandomBasis(E0, B)

β ←$ (Z/BZ)
∗

(U, V) ← RandomBasis(E0, A)

(e, f) ← DDLOG(U, V, Kφ)

for i ∈ {0, 1} :

ψL,i ← IsogenyFromKernel(KψL,i
)

E2,i ← Codomain(ψL,i)

(P2,i, Q2,i) ← RandomBasis(E2,i, B)

Kφi
← ψi(Kφ)

φi ← IsogenyFromKernel(Kφi
)

ψR,i ← IsogenyFromKernel(φ(KψL,i
))

E3,i ← Codomain(φi)

(P3,i, Q3,i) ← ([β]φi(P2,i), [β]φi(Q2,i))

K ˆψL,i
← GeneratingPoint(ˆψL,i)

(ci, di) ← DDLOG(P2,i, Q2,i, K ˆψL,i
)

(c
′
i, d

′
i) ← InverPair(ci, di, B)

R0,i ← ˆψL,i([c
′
i]P2,i + [d

′
i]Q2,i)

(ai, bi) ← DDLOG(P0, Q0, R0,i)

U
′
i ← ψL,i(U)

V
′

i ← ψL,i(V)

rL,i, rR,i, rm,i, rw,i ←$N

CL,i ← H(E2,i, P2,i, Q2,i, rL,i)

CR,i ← H(E3,i, P3,i, Q3,i, rR,i)

Cm,i ← H(ci, di, c
′
i, d

′
i, ai, bi, rm,i)

Cw,i ← H(U
′
i , V

′
i , rw,i)

Commitment (cont.)
rA, rB , rE ←$N

γ ← αβ
−1

CA ← H(γ, rA)

CB ← H(β, rB)

CE ← H(e, f, rE)

C1 ← (CL,0, CR,0, Cm,0, Cw,0)

C2 ← (CL,1, CR,1, Cm,1, Cw,1)

C3 ← (CA, CB , CE)

return (C1, C2, C3)

Response
zL,0 ← (E2,0, P2,0, Q2,0, rL0)

zL,1 ← (E2,1, P2,1, Q2,1, rL1)

zR,0 ← (E3,0, P3,0, Q3,0, rR0)

zR,1 ← (E3,1, P3,1, Q3,1, rR1)

zw,0 ← (U
′
0, V

′
0 , rw,0)

zw,1 ← (U
′
1, V

′
1 , rw,1)

zm,0 ← (c0, d0, c1, d1, c
′
0, d

′
0, a0, b0, rm,0)

zm,1 ← (c
′
1, d

′
1, a1, b1, rm,1)

if chall = −1 :

return (zL,0, zL,1, zm,0, zm,1, zw,0, zw,1)

if chall = 0 :

return (zR,0, zR,1, zm,0, zm,1, (γ, rA))

if chall = 1 :

return (zw,0, (e, f, rE), zL,0, zR,0, (β, rB))

if chall = 2 :

return (zw,1, (e, f, rE), zL,1, zR,1, (β, rB))

56 Y. Mokrani and D. Jao

Verification
if chall = −1 :

for i ∈ {0, 1} :

if CL,i �= H(E2,i, P2,i, Q2,i, rL,i) :⊥
if (Cm,i, Cw,i) �= (H(ci, di, c

′
i, d

′
i, ai, bi, rm,i), H(U

′
i , V

′
i , rw,i)) :⊥

K ˆψL,i
← [ci]P2,i + [di]Q2,i

if K ˆψL,i
/∈ E2,i[[B]] :⊥

ˆψL,i ← IsogenyFromKernel(K ˆψL,i
)

E
′
0,i ← Codomain(ˆψL,i)

if E
′
0,i �= E0 :⊥

R
′
0,i ← ˆψL,i([c

′
i]P2,i + [d

′
]Q2,i)

if R
′
0,i �= [ai]P0 + [bi]Q0 :⊥

if (gcd(a0b1 − a1b0, B), gcd(c
′
idi − d

′
ici, B)) �= (1, 1) :⊥

if (ˆψL,0(U
′
0),

ˆψL,0(V
′
0)) �= (ˆψL,1(U

′
1),

ˆψL,1(V
′
1)) :⊥

if chall = 0 :

for i ∈ {0, 1} :

if (CR,i, CA) �= (H(E3,i, P3,i, Q3,i, rR,i), H(γ, rA)) :⊥
if Cm,i �= H(ci, di, c

′
i, d

′
i, ai, bi, rm,i) :⊥

K ˆψR,i
← [ci]P3,i + [di]Q3,i

if K ˆψR,i
/∈ E3,i[[B]] :⊥

ˆψR,i ← IsogenyFromKernel(K ˆψR,i
)

E
′
1,i ← Codomain(ˆψR,i)

if E
′
1,i �= E

′
1 :⊥

R
′
1,i ← ˆψR,i([c

′
i]P3,i + [d

′
]Q3,i)

if [γ]R
′
1,i �= [ai]P

′
1 + [bi]Q

′
1 :⊥

if (gcd(a0b1 − a1b0, B), gcd(c
′
idi − d

′
ici, B)) �= (1, 1) :⊥

else :

i ← chall − 1 :

KΦ′
i

← [e]U
′
i + [f]V

′
i

if (CL,i, CR,i) �= (H(E2,i, P2,i, Q2,i, rL,i), H(E3,i, P3,i, Q3,i, rR,i)) :⊥
if (Cw,i, CE , CB) �= (H(U

′
i , V

′
i , rw,i), H(e, f, rE), H(β, rB)) :⊥

if Kφ′
i

/∈ E2,i[[A]] :⊥
φ

′
i ← IsogenyFromKernel(Kφ′

i
)

E
′
3,i ← Codomain(Φ

′
i)

if (E
′
3,i, [β]φ

′
i(P2,i), [β]φ

′
i(Q2,i)) �= (E3,i, P3,i, Q3,i) :⊥

return true

Theorem 5.2 (Correctness). If the prover is honest, then the verification
algorithm will always return true.

Proof. If chall = −1, the properties checked by the verification algorithm were
directly computed by the prover. Hence, this case will always be correct.

If chall ∈ {1, 2}, the properties checked by the verification algorithm are all
respected by an honest [β]φchall−1. Hence, this case will always be correct.

Zero-Knowledge Proofs for SIDH Variants 57

If chall = 0, we are working with almost the same SIDH square as in [7]. The
main difference being that (P3,i, Q3,i) have an extra β factor and (P ′

1, Q
′
1) have

an extra α factor. This is dealt by multiplying ˆψR,i by [αβ−1].

Theorem 5.3 (Soundness). Given Assumption 2, MTISOZKP is 4-special
sound for the knowledge of a cyclic isogeny of the claimed degree between the
claimed curves with the claimed torsion point information.

Proof. We show that for a fixed commitment, if one obtains valid answers to
all 4 possible challenges, then they can compute an isogeny with the claimed
properties. Since H is a computationally binding commitment scheme, we can
assume that the four answers agree on the committed values.

The goal is to use the possible answers in order to compute and isogeny ρ :
E0 → E1 of degree A and an integer α such that (P ′

1, Q
′
1) = ([α]ρ(P0), [α]ρ(Q0)).

Looking at the isogeny square for each i ∈ {0, 1}, we are given the pair
(ci, di) which define the point K ˆψL,i

= [ci]P2,i + [di]Q2,i which in turn defines

the isogeny ˆψL,i : E2,i → E0 of degree B. We are also given Kφ′
i
= [e]U ′

i + [f]V ′
i

which defines an isogeny φ′
i : E2,i → E3,i of degree A. We can then complete

the (ˆψL,i, φ
′
i)-isogeny square to obtain a ρ candidate of degree A that we name

ρi : E0 → E1.
Next, we show that ρ0 and ρ1 have the same kernel and are therefore equiv-

alent. It is the case since

ker(ρ0) = ˆψL,0(ker(φ′
0)) =

〈

ˆψL,0([e]U ′
0 + [f]V ′

0)
〉

=
〈

ˆψL,1([e]U ′
1 + [f]V ′

1)
〉

= ˆψL,1(ker(φ′
1)) = ker(ρ1)

We also have an α candidate in γβ. All that remains is to show that ρ =
ρ0 = ρ1 has the correct torsion point images.

Recall that we are given pairs (ai, bi) such that R0,i = [ai]P0 + [bi]Q0 and

the matrix M :=
(

a0 b0
a1 b1

)

is invertible.

Hence, {R0,0, R0,1} is a basis of E0[B].
Also recall that R0,i = ˆψL,i([c′

i]P2,i +[d′
i]Q2,i), R1,i = ˆψR,i([c′

i]P3,i +[d′
i]Q3,i)

and (P3,i, Q3,i) = ([β]φi(P2,i), [β]φi(Q2,i)). Since ρ ˆψL,i = ˆψR,iφi, we have that
ρ(R0,i) = [β−1]R1,i. Hence:

(
R0,0

R0,1

)

= M

(
P0

Q0

)

=⇒
(

ρ(R0,0)
ρ(R0,1)

)

= M

(
ρ(P0)
ρ(Q0)

)

=⇒
(

[β−1]R1,0

[β−1]R1,1

)

= M

(
ρ(P0)
ρ(Q0)

)

=⇒ M−1

(
[β−1]R1,0

[β−1]R1,1

)

=
(

ρ(P0)
ρ(Q0)

)

=⇒
(

[γ−1β−1]P ′
1

[γ−1β−1]Q′
1

)

=
(

ρ(P0)
ρ(Q0)

)

=⇒
(

P ′
1

Q′
1

)

=
(

[βγ]ρ(P0)
[βγ]ρ(Q0)

)

and this completes the proof.

58 Y. Mokrani and D. Jao

Theorem 5.4 (Zero-knowledge). Given Assumptions 1 and 2, MTISOZKP
is zero-knowledge.

Proof. We prove it by showing a simulator S outputting valid a commitment-
challenge-answer tuple with the same distribution as an honest prover for each
possible challenge.

When the challenge is −1, value that is published without being masked by
H can be computed honestly. CR,0, CR,1, CA, and CB can be randomly sampled
from H while being indistinguishable from an honest output by Assumption 2.

When the challenge is 0, the simulator can use the homomorphism property
of isogenies to work on the right side of the SIDH squares instead of the left.
The masked values can once again be sampled randomly.

When the challenge is 1 or 2, the simulator can sample a random φi and β
and compute the rest using these values. The masked values are, again, sampled
randomly. Distinguishing this simulator from an honest output is equivalent to
solving the DSSP, which we assume to be hard.

6 Double Masked Subgroup

Instead of multiplying both torsion points images by the same constant, bin-
SIDH, terSIDH [3] and the diagonal variant of FESTA [4] multiply each point
by independent random scalars. This has the consequence of making MTISOZKP
hard to adapt in this case, as the correctness of the previous protocol relies on the
fact that the isogeny multiplying every point by the same constant commutes
with every isogeny. Needing to multiply each basis point by a different scalar
looses this commutative property, which means that we must look elsewhere for
a zero-knowledge proof.

DMSISOZKP is a zero-knowledge proving that a party known an isogeny
φ : E0 → E1 such that ([αP]φ(P0), [αQ]φ(Q0)) = (P1, Q1) for some unknown
values of αP and αQ. Similarly to MTISOZKP, DMSISOZKP consist of building
an SIDH square and using dual isogenies and hashed commitments to maintain
zero-knowledge and soundness. The main difference being that, in DMSISOZKP,
the generated isogenies are of degree C and the random basis is of order BC.
This is so that we can prove information on the B torsion. While only requiring
Assumptions 1 and 2 for its security, DMSISOZKP requires some additional
conditions on the field for it to be efficient. We need a field such that isogenies
of degree C can be efficiently computed while, at the same time, points of order
BC can be efficiently be computed and used in other computations. In practice,
this requires the chosen prime to be about 50% larger, as isogenies of degree C
must also be hard to attack.

Definition 6.1 (DMSISOZKP). Let A, B and C be two relatively prime
positive integers. Let φ : E0 → E1 be a secret isogeny of degree A such
that (φ(P0), φ(Q0)) = (P1, Q1) where (P1, Q1) form a basis of E0[B]. Let
αP , αQ ←$ (Z/(BC)Z)∗ be secret and (E0, E1, P0, Q0, [αP]P1, [αQ]Q1) be public.
The challenge is a random chall ∈ {−1, 0, 1}.

Zero-Knowledge Proofs for SIDH Variants 59

Commitment
(P

′
1, Q

′
1) ← ([αP]P1, [αQ]Q1)

Kφ ← GeneratingPoint(φ)

KψL
←$E[[C]]

KψR
← φ(KψL

)

ψL ← IsogenyFromKernel(KψL
)

ψR ← IsogenyFromKernel(KψR
)

E2 ← Codomain(ψL)

E3 ← Codomain(ψR)

(P2,P , Q2,P) ← RandomBasis(E2, BC)

(P2,Q, Q2,Q) ← RandomBasis(E2, BC)

βP , βQ ←$ (Z/(BC)Z)
∗

Kφ′ ← ψL(Kφ)

φ
′ ← IsogenyFromKernel(Kφ′)

(P3,P , Q3,P) ← ([βP]φ
′
(P2,P), [βP]φ

′
(Q2,P))

(P3,Q, Q3,Q) ← ([βQ]φ
′
(P2,Q), [βQ]φ

′
(Q2,Q))

Kψ̂L
← GeneratingPoint(ψ̂L)

(c, d) ← DDLOG(P2,P , Q2,P , Kψ̂L
)

(aP , bP) ← DDLOG(ψ̂L(P2,P), ψ̂L(Q2,P), P0)

(aQ, bQ) ← DDLOG(ψ̂L(P2,Q), ψ̂L(Q2,Q), Q0)

γP ← αP β
−1
P

γQ ← αQβ
−1
Q

rL, rR, rm, rA, rB ←$N

CL ← H(E2, P2,P , Q2,P , P2,Q, Q2,Q, rL)

CR ← H(E3, P3,P , Q3,P , P3,Q, Q3,Q, rR)

Cm ← H(aP , bP , aQ, bQ, c, d, rm)

CA ← H(γP , γQ, rA)

CB ← H(βP , βQ, rB)

return (CL, CR, Cm, CA, CB)

Response
zL ← (E2, P2,P , Q2,P , P2,Q, Q2,Q, rL)

zR ← (E3, P3,P , Q3,P , P3,Q, Q3,Q, rR)

zm ← (aP , bP , aQ, bQ, c, d, rm)

if chall = −1 :

return (zL, zm)

if chall = 0 :

return (zR, zm, γP , γQ, rA)

if chall = 1 :

return (zL, zR, βP , βQ, rB , Kφ′)

Verification
if chall = −1 :

if CL �= H(E2, P2,P , Q2,P , P2,Q, Q2,Q, rL) :⊥
if Cm �= H(aP , bP , aQ, bQ, c, d, rm) :⊥
if ¬IsBasis(P2,P , Q2,P , E2, BC) :⊥
if ¬IsBasis(P2,Q, Q2,Q, E2, BC) :⊥
Kψ̂L

← [c]P2,P + [d]Q2,P

if Kψ̂L
/∈ E2[[C]] :⊥

ψ̂L ← IsogenyFromKernel(Kψ̂L
)

E
′
0 ← Codomain(ψ̂L)

if E
′
0 �= E0 :⊥

if P0 �= [aP]ψ̂L(P2,P) + [bP]ψ̂L(Q2,P) :⊥
if Q0 �= [aQ]ψ̂L(P2,Q) + [bQ]ψ̂L(Q2,Q) :⊥

if chall = 0 :

if CR �= H(E3, P3,P , Q3,P , P3,Q, Q3,Q, rR) :⊥
if Cm �= H(aP , bP , aQ, bQ, c, d, rm) :⊥
if CA �= H(γP , γQ, rA) :⊥
if ¬IsBasis(P3,P , Q3,P , E3, BC) :⊥
if ¬IsBasis(P3,Q, Q3,Q, E3, BC) :⊥
Kψ̂R

← [c]P3,P + [d]Q3,P

if Kψ̂R
/∈ E3[[C]] :⊥

ψ̂R ← IsogenyFromKernel(Kψ̂R
)

E
′
1 ← Codomain(ψ̂R)

if E
′
1 �= E1 :⊥

if P
′
1 �= [aP γP]ψ̂R(P3,P) + [bP γP]ψ̂R(Q3,P) :⊥

if Q
′
1 �= [aQγQ]ψ̂R(P3,Q) + [bQγQ]ψ̂R(Q3,Q) :⊥

if chall = 1 :

if CL �= H(E2, P2,P , Q2,P , P2,Q, Q2,Q, rL) :⊥
if CR �= H(E3, P3,P , Q3,P , P3,Q, Q3,Q, rR) :⊥
if CB �= H(βP , βQ, rB) :⊥
if Kφ′ /∈ E2[[A]] :⊥
φ

′ ← IsogenyFromKernel(Kφ′)

E
′
3 ← Codomain(φ

′
)

if E
′
3 �= E3 :⊥

if P3,P �= [βP]φ
′
(P2,P) :⊥

if Q3,P �= [βP]φ
′
(Q2,P) :⊥

if P3,Q �= [βQ]φ
′
(P2,Q) :⊥

if Q3,Q �= [βQ]φ
′
(Q2,Q) :⊥

accept

Theorem 6.2 (Correctness). If the prover is honest, then the verification
algorithm will always return true.

Proof. If chall = −1, the properties checked by the verification algorithm were
directly computed by the prover. Hence, this case will always be correct.

60 Y. Mokrani and D. Jao

If chall = 1, the properties checked by the verification algorithm are all
respected by honest [βP]φ′ and [βQ]φ′. Hence, this case will always be correct.

If chall = 0, we have that ψ̂Rφ′ = φψ̂L since the four isogenies form an SIDH
square. Hence:

P ′
1 = [αP]φ(P0)

= [αP]φ([aP]ψ̂L(P2,P) + [bP]ψ̂L(Q2,P))

= [aP αP]φψ̂L(P2,P) + [bP αP]φψ̂L(Q2,P)

= [aP αP]ψ̂Rφ′(P2,P) + [bP αP]ψ̂Rφ′(Q2,P)

= [aP γP]ψ̂R(P3,P) + [bP γP]ψ̂R(Q3,P)

which is the equation that was to be checked. The same argument also shows
that Q′

1 = [aQγQ]ψ̂R(P3,Q) + [bQγQ]ψ̂R(Q3,Q).

Theorem 6.3 (Zero-knowledge). Given Assumptions 1 and 2, DMSISOZKP
is zero-knowledge.

Proof. We prove it by showing a simulator outputting valid a commitment-
challenge-answer tuple with the same distribution as an honest prover for each
possible challenge.

When the challenge is −1, the simulator can compute the revealed values
honestly and sample random values for the masked data, which is indistinguish-
able from random by Assumption 2.

When the challenge is 0, the simulator can use the homomorphism property
of isogenies to work on the right side of the SIDH squares instead of the left.
The masked values can one again be sampled randomly.

When the challenge is 1, the simulator can sample a random φ′ and (βP , βQ)
and compute the rest using these values. The masked values are, again, sampled
randomly. Distinguishing this simulator from an honest output is equivalent to
solving the DSSP, which we assume to be hard.

Theorem 6.4 (Soundness). Given Assumption 2, DMSISOZKP is 3-special
sound for the knowledge of a cyclic isogeny of the claimed degree between the
claimed curves with the claimed torsion point information.

Proof. We show that for a fixed commitment, if one obtains valid answers to
all 3 possible challenges, then they can compute an isogeny with the claimed
properties.

Since H is a computationally binding commitment scheme, we can assume
that the three answers agree on the committed values.

The goal is to use the possible answers in order to compute and isogeny
ρ : E0 → E1 of degree A and a pair of integers (αP , αP) such that (P ′

1, Q
′
1) =

([αP]ρ(P0), [αQ]ρ(Q0)).
We are given the pair (c, d) which define the point Kψ̂L

, which in turn defines
the isogeny ψ̂L : E2 → E0 of degree C. We are also given the point Kφ′ which

Zero-Knowledge Proofs for SIDH Variants 61

defines the isogeny φ′ : E2 → E3. We can then complete the (ψ̂L, φ′)-isogeny
square to obtain our ρ candidate.

We also have a (αP , αQ) candidate in (γP βP , γQβQ).
We have that ρ : E0 → E1 is of degree A, so we only need to check that it

respects the claimed mapping. Since ρ is constructed by completing an SIDH
square, we have that ρψ̂L = ψ̂Rφ′. Hence:

ρ(P0) = ρ([aP]ψ̂L(P2,P) + [bP]ψ̂L(Q2,P))

= [aP]ρψ̂L(P2,P) + [bP]ρψ̂L(Q2,P)

= [aP]ψ̂Rφ′(P2,P) + [bP]ψ̂Rφ′(Q2,P)

ρ(P0) = [β−1
P γ−1

P]P ′
1

[αP]ρ(P0) = P ′
1

The same arguments holds for [αQ]ρ(Q0) = Q′
1. Therefore, ρ is a valid secret

isogeny and this completes the proof.

7 Masked Degree and Double Subgroup

Section 4’s technique used to prove knowledge of an isogeny while masking its
degree can be combined with any of zero-knowledge proof in this paper in order
to prove the desired torsion point information. Since the combination method
and security proofs of every case are almost identical, we only explicitly present
one of them in this paper.

For applications such as terSIDH [3], we require a zero-knowledge proof that
that can prove knowledge of an isogeny with the given subgroup images without
leaking information about either the isogeny itself or its degree. In order to do
this, we start DMSISOZKP and add the random sampling technique presented
in MDISOZKP.

Definition 7.1 (MDTISOZKP). Let A =
∏s

i=1 qfi

i be a large integer such
that the qis are distinct primes dividing p + 1. Let B and C be large positive
integers relatively prime to A. Let φ : E0 → E1 be a secret cyclic isogeny of
degree A | A such that (φ(P0), φ(Q0)) = (P1, Q1) where (P1, Q1) form a basis of
E0[B]. Let αP , αQ ←$ (Z/(BC)Z)∗ be secret and (E0, E1, P0, Q0, [αP]P1, [αQ]Q1)
be public.

Let (P ′
1, Q

′
1) := ([αP]P1, [αQ]Q1) and let n be a positive integer representing

the number of times the following proof will be repeated. The challenge is a
random chall ∈ {−1, 0, 1}.

62 Y. Mokrani and D. Jao

Commitment
A

′ ←$ FacSet(Asn)

φ
′ ← CyclicIsogeny(E1, A

′)

E
′
1 ← Codomain(φ

′)

Φ ← Cycliphy(φ
′
φ)

A
′′ ← deg(Φ)

ξ ← A
′′

/(A × A
′)

KψL
←$E[[C]]

KψR
← Φ(KψL

)

ψL ← IsogenyFromKernel(KψL
)

ψR ← IsogenyFromKernel(KψR
)

E2 ← Codomain(ψL)

E3 ← Codomain(ψR)

(P2,P , Q2,P) ← RandomBasis(E2, BC)

(P2,Q, Q2,Q) ← RandomBasis(E2, BC)

βP , βQ ←$ (Z/(BC)Z)∗

Φ
′ ← ParallelIsogeny(Φ, ψL)

(P3,P , Q3,P) ← ([βP]Φ′(P2,P), [βP]Φ′(Q2,P))

(P3,Q, Q3,Q) ← ([βQ]Φ′(P2,Q), [βQ]Φ′(Q2,Q))

K
ψ̂L

← GeneratingPoint(ψ̂L)

(c, d) ← DDLOG(P2,P , Q2,P , K
ψ̂L

)

(aP , bP) ← DDLOG(ψ̂L(P2,P), ψ̂L(Q2,P), P0)

(aQ, bQ) ← DDLOG(ψ̂L(P2,Q), ψ̂L(Q2,Q), Q0)

γP ← αP β
−1
P

ξ
−1

γQ ← αQβ
−1
Q

ξ
−1

rL, rR, rm, rA, rB ←$N

CL ← H(E2, P2,P , Q2,P , P2,Q, Q2,Q, rL)

CR ← H(E3, P3,P , Q3,P , P3,Q, Q3,Q, rR)

Cm ← H(aP , bP , aQ, bQ, c, d, rm)

CA ← H(γP , γQ, rA)

CB ← H(βP , βQ, rB)

return (CL, CR, Cm, CA, CB)

Verification
if chall = −1 :

if CL �= H(E2, P2,P , Q2,P , P2,Q, Q2,Q, rL) :⊥

if Cm �= H(aP , bP , aQ, bQ, c, d, rm) :⊥

if ¬IsBasis(P2,P , Q2,P , E2, BC) :⊥

if ¬IsBasis(P2,Q, Q2,Q, E2, BC) :⊥

K
ψ̂L

← [c]P2,P + [d]Q2,P

if K
ψ̂L

/∈ E2[[C]] :⊥

ψ̂L ← IsogenyFromKernel(K
ψ̂L

)

E
′
0 ← Codomain(ψ̂L)

if E
′
0 �= E0 :⊥

if P0 �= [aP]ψ̂L(P2,P) + [bP]ψ̂L(Q2,P) :⊥

if Q0 �= [aQ]ψ̂L(P2,Q) + [bQ]ψ̂L(Q2,Q) :⊥

if chall = 0 :

if CR �= H(E3, P3,P , Q3,P , P3,Q, Q3,Q, rR) :⊥

if Cm �= H(aP , bP , aQ, bQ, c, d, rm) :⊥

if CA �= H(γP , γQ, rA) :⊥

if ¬IsBasis(P3,P , Q3,P , E3, BC) :⊥

if ¬IsBasis(P3,Q, Q3,Q, E3, BC) :⊥

K
ψ̂R

← [c]P3,P + [d]Q3,P

if K
ψ̂R

/∈ E3[[C]] :⊥

ψ̂R ← IsogenyFromKernel(K
ψ̂R

)

E
′
1 ← Codomain(ψ̂R)

if ¬IsoValid(E1, E
′
1, φ

′) :⊥

if deg(φ
′) � Asn :⊥

if φ
′(P

′
1) �= [aP γP]ψ̂R(P3,P) + [bP γP]ψ̂R(Q3,P) :⊥

if φ
′(Q

′
1) �= [aQγQ]ψ̂R(P3,Q) + [bQγQ]ψ̂R(Q3,Q) :⊥

if chall = 1 :

if CL �= H(E2, P2,P , Q2,P , P2,Q, Q2,Q, rL) :⊥

if CR �= H(E3, P3,P , Q3,P , P3,Q, Q3,Q, rR) :⊥

if CB �= H(βP , βQ, rB) :⊥

if ¬IsoValid(E2, E3, Φ
′) :⊥

if deg(Φ
′) /∈ FacSetTwo(A, Asn) :⊥

if (P3,P , Q3,P) �= ([βP]φ′(P2,P), [βP]φ′(Q2,P)) :⊥

if (P3,Q, Q3,Q) �= ([βQ]φ′(P2,Q), [βQ]φ′(Q2,Q)) :⊥

return true

Response
if chall = −1 :

return (E2, P2,P , Q2,P , P2,Q, Q2,Q, rL, aP , bP , aQ, bQ, c, d, rm)

if chall = 0 :

return (E3, P3,P , Q3,P , P3,Q, Q3,Q, rR, aP , bP , aQ, bQ, c, d, rm, γP , γQ, rA, φ
′)

if chall = 1 :

if A
′′

/∈ FacSetTwo(A, Asn) : abort

return (E2, P2,P , Q2,P , P2,Q, Q2,Q, rL, E3, P3,P , Q3,P , P3,Q, Q3,Q, rR, βP , βQ, rB, Φ
′)

Theorem 7.2 (Correctness). If the prover is honest and does not abort, then
the verification algorithm will always return true.

Zero-Knowledge Proofs for SIDH Variants 63

Proof. If chall = −1, the properties checked by the verification algorithm were
directly computed by the prover. Hence, this case will always be correct.

If chall = 1, the properties checked by the verification algorithm are all
respected by honest [βP]Φ′ and [βQ]Φ′. Hence, this case will always be correct.

If chall = 0, we have that ψ̂RΦ′ = Φψ̂L since the four isogenies form an SIDH
square. We also have that φφ′ = [ξ]Φ. Hence:

φ′(P ′
1) = [αP]φφ′(P0)

= [αP ξ]Φ(P0)

= [αP ξ]Φ([aP]ψ̂L(P2,P) + [bP]ψ̂L(Q2,P))

= [aP αP ξ]Φψ̂L(P2,P) + [bP αP ξ]Φψ̂L(Q2,P)

= [aP αP ξ]ψ̂RΦ′(P2,P) + [bP αP ξ]ψ̂RΦ′(Q2,P)

= [aP γP]ψ̂R(P3,P) + [bP γP]ψ̂R(Q3,P)

which is the equation that was to be checked. The same argument also shows
that φ′(Q′

1) = [aQγQ]ψ̂R(P3,Q) + [bQγQ]ψ̂R(Q3,Q).

Before proving the security of MDTISOZKP, it is important to remark that
Theorems 4.3 and 4.5 also hold for MDTISOZKP as the proof is identical. Hence,
the probability of the scheme not aborting during n rounds is at least 1

e .

Theorem 7.3 (Zero-knowledge). Given Assumptions 1 and 2, if the MDTI-
SOZKP protocol does not abort, then it is zero-knowledge.

Proof. We prove it by showing a simulator outputting valid a commitment-
challenge-answer tuple with the same distribution as an honest prover for each
possible challenge.

When the challenge is −1, the simulator can compute the revealed values
honestly and sample random values for the masked data, which is indistinguish-
able from an honest output by Assumption 2.

When the challenge is 0, the simulator can compute φ′ honestly. Then, we
can use the homomorphism property of isogenies to work on the right side of the
SIDH squares instead of the left. The masked values can one again be sampled
randomly.

When the challenge is 1, the simulator can sample a random Φ′ and (βP , βQ)
and compute the rest using these values. The masked values are, again, sampled
randomly. The degree of Φ′ is indistinguishable by Theorem 4.3. Hence, distin-
guishing this simulator from an honest output is equivalent to solving the DSSP,
which we assume to be hard.

Theorem 7.4 (Soundness). Given Assumption 2, MDTISOZKP is 3-special
sound for the knowledge of a cyclic isogeny between the claimed curves with the
claimed torsion point information.

Proof. We show that for a fixed commitment, if one obtains valid answers to
all 3 possible challenges, then they can compute an isogeny with the claimed
properties.

64 Y. Mokrani and D. Jao

Since H is a computationally binding commitment scheme, we can assume
that the three answers agree on the committed values.

We are given an isogeny φ′ : E1 → E′
1 of degree A′. Let P ′′

1 = φ′(P ′
1) and

Q′′
1 = φ′(Q′

1). Given an isogeny Φ : E0 → E′
1 such that Φ(P0) = [δP]P ′′

1 and
Φ(Q0) = [δQ]Q′′

1 , φ̂′Φ is a valid extractor.
Therefore, the goal is to use the possible answers in order to compute and

isogeny ρ : E0 → E′
1 of degree A′′ and a pair of integers (δP , δP) such that

(P ′′
1 , Q′′

1) = ([δP]ρ(P0), [δQ]ρ(Q0)).
We are given the pair (c, d) which define the point Kψ̂L

, which in turn defines
the isogeny ψ̂L : E2 → E0 of degree C. We are also an the isogeny Φ′ : E2 → E3

of degree A′′. We can then complete the (ψ̂L, Φ′)-isogeny square to obtain our ρ
candidate.

We also have a (δP , δQ) candidate in (γP βP , γQβQ).
We have that ρ : E0 → E′

1 is of degree A′′, so we only need to check that
it respects the claimed mapping. Since ρ is constructed by completing an SIDH
square, we have that ρψ̂L = ψ̂RΦ′. Hence:

ρ(P0) = ρ([aP]ψ̂L(P2,P) + [bP]ψ̂L(Q2,P))

= [aP]ρψ̂L(P2,P) + [bP]ρψ̂L(Q2,P)

= [aP]ψ̂RΦ′(P2,P) + [bP]ψ̂RΦ′(Q2,P)

= [aP β−1
P]ψ̂RP4,P + [bP β−1

P]ψ̂RQ3,P

ρ(P0) = [β−1
P γ−1

P]P ′′
1

[δP]ρ(P0) = P ′′
1

The same arguments hold for [δQ]ρ(Q0) = Q′′
1 . Therefore, ρ can be used to

generate a valid secret isogeny and this completes the proof.

8 Conclusion

Using the schemes in this paper, we can prove knowledge of isogenies with
masked torsion-point information while either proving the degree or masking
it, as desired.

The fact that the security of our scheme relies mainly on DSSP allows us to
obtain statistical zero-knowledge using large enough parameters as a consequence
of Theorems 2.1 and 2.2.

For further research, it is worth mentioning that some variants of FESTA use
non-diagonal matrices to masked their torsion point information. In those cases,
the schemes in this paper do not apply. However, the technique in DMSISOZKP
can probably be generalized for non-diagonal, but abelian families of matrices.

Acknowledgments. This research was supported by NSERC Alliance Consortia
Quantum Grant ALLRP 578463-2022.

Zero-Knowledge Proofs for SIDH Variants 65

References

1. Basso, A.: A post-quantum round-optimal oblivious PRF from isogenies. Cryptol-
ogy ePrint Archive, Paper 2023/225 (2023). https://eprint.iacr.org/2023/225

2. Basso, A., et al.: Supersingular curves you can trust. In: Hazay, C., Stam, M.
(eds.) EUROCRYPT 2023. LNCS, vol. 14005, pp. 405–437. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-30617-4 14

3. Basso, A., Fouotsa, T.B.: New SIDH countermeasures for a more efficient key
exchange. Cryptology ePrint Archive, Paper 2023/791 (2023). https://eprint.iacr.
org/2023/791

4. Basso, A., Maino, L., Pope, G.: FESTA: fast encryption from supersingular torsion
attacks. Cryptology ePrint Archive, Paper 2023/660 (2023). https://eprint.iacr.
org/2023/660

5. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay,
C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 423–447. Springer
Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4 15

6. Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: SQISignHD: new dimensions in
cryptography. Cryptology ePrint Archive, Paper 2023/436 (2023). https://eprint.
iacr.org/2023/436

7. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: SIDH proof of knowledge.
In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13792, pp. 310–339.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22966-4 11

8. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

9. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 64–93. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64837-4 3

10. Fouotsa, T.B., Moriya, T., Petit, C.: M-SIDH and MD-SIDH: countering SIDH
attacks by masking information. Cryptology ePrint Archive, Paper 2023/013
(2023). https://eprint.iacr.org/2023/013

11. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

12. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. J. Cryptol. 33(1), 130–175 (2020)

13. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. Cryp-
tology ePrint Archive, Paper 2022/1026 (2022). https://eprint.iacr.org/2022/1026

14. Robert, D.: Breaking SIDH in polynomial time. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023. LNCS, vol. 14008, pp. 472–503. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-30589-4 17

https://eprint.iacr.org/2023/225
https://doi.org/10.1007/978-3-031-30617-4_14
https://eprint.iacr.org/2023/791
https://eprint.iacr.org/2023/791
https://eprint.iacr.org/2023/660
https://eprint.iacr.org/2023/660
https://doi.org/10.1007/978-3-031-30589-4_15
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-64837-4_3
https://eprint.iacr.org/2023/013
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://eprint.iacr.org/2022/1026
https://doi.org/10.1007/978-3-031-30589-4_17

Post-quantum DNSSEC over UDP
via QNAME-Based Fragmentation

Aditya Singh Rawat and Mahabir Prasad Jhanwar(B)

Department of Computer Science, Ashoka University, Sonipat, India
{aditya.rawat_phd21,mahavir.jhawar}@ashoka.edu.in

Abstract. In a typical network, any DNS message exceeding the rec-
ommended size of 1232 bytes would 1) either be fragmented into several
UDP/IP packets 2) or require a re-transmission over TCP. Unfortunately,
IP fragmentation is considered unreliable and a non-trivial number of
nameservers do not support TCP. With the advent of DNSSEC, this
size constraint becomes even more pressing since DNS messages now
additionally carry digital signatures (and in some cases, public keys as
well). While signatures of classical schemes such as RSA and ECDSA are
sufficiently small to avoid size concerns, their much larger post-quantum
counterparts easily cause the DNSSEC message size to exceed 1232 bytes.

Multiple fragmentation schemes at the application (DNS) layer have
been proposed, with ARRF (CoRR’22) being the most recent, to address
the problem of transmitting large DNS messages. In this paper, we
propose a new DNS layer fragmentation solution for integrating post-
quantum cryptography in DNSSEC over UDP. Our scheme, called
QNAME-Based Fragmentation (QBF), can reconstruct the entire DNS
message in just 1 round trip while using only standard DNS resource
records. Our experiments show that in a simulated network of 10 ms
latency, with an EDNS(0) buffer size of 1232 and Falcon-512 as the
zone signing algorithm, a QBF-aware resolver and nameserver setup can
resolve Type A DNSSEC queries in 43 ± 1ms, beating both standard
DNS with TCP fallback (83 ± 1ms) and parallel ARRF (63 ± 1ms).

Keywords: Secure Networking Protocols · Post-quantum
Cryptography Implementations · DNSSEC

1 Introduction

A rapid advancement in quantum computing has motivated the need to replace
the classical cryptographic algorithms based on the believed hardness of integer
factorization and discrete logarithms. Currently, many applications rely on these
algorithms to 1) ensure message confidentiality and integrity, and 2) authenticate
the communicating parties. DNS Security Extensions (DNSSEC) [14], being one
such application, provides authenticity and integrity for messages exchanged in

Aditya Singh Rawat was supported by a research grant from MPhasis F1 Foundation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. Regazzoni et al. (Eds.): SPACE 2023, LNCS 14412, pp. 66–85, 2024.
https://doi.org/10.1007/978-3-031-51583-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51583-5_4&domain=pdf
https://doi.org/10.1007/978-3-031-51583-5_4

Post-quantum DNSSEC over UDP via QNAME-Based Fragmentation 67

the Domain Name System (DNS). In its main capacity, DNS helps computers
to translate human readable domain names like example.com to machine read-
able IP addresses like 128.45.90.21. Without DNSSEC, the recipients of a DNS
response cannot verify the integrity of the IP address contained in it, and thus
risk being misdirected to a malicious website. Presently, around 20% of the Inter-
net users rely on DNSSEC and the adoption thereof is consistently on the rise [3].
Unfortunately DNSSEC, owing to its use of classical public-key cryptography,
can be rendered completely ineffective by the upcoming quantum computers.

Since 2016, the National Institute of Standards and Technology (NIST) is
running an open Post-Quantum Cryptography standardization process [12] to
standardize quantum-resistant key encapsulation mechanisms (KEMs) and dig-
ital signatures. In July 2022, NIST finally selected Kyber [4] as KEM, and
Dilithium [9], Falcon [13], and SPHINCS+ [2] as digital signatures. While these
primitives provide the same core functionalities as their classical counterparts,
they feature strikingly different size and performance characteristics. Table 1
compares the public key and the signature sizes of the future NIST post-quantum
signature schemes with those of the classical algorithms currently deployed in
DNSSEC [20]: RSA-2048-SHA256 belonging to the most popular algorithm fam-
ily in DNSSEC [19] and ECDSA-P256-SHA256, an elliptic curve algorithm,
widely deployed because of its small signatures.

Table 1. A comparison of signature and public key sizes of various NIST post-quantum
signature schemes with those of their classical counterparts

Signature Algorithm Signature Size Public Key Size
ECDSA-P256-SHA256 64 64

RSA-2048-SHA256 256 260
Falcon-512 690 897
Dilithium2 2420 1312

SPHINCS+-SHA256-128S 7856 32

This increase in sizes of signatures and public keys (and consequently of
DNS messages) has major implications for DNSSEC [8]. Owing to its use of a
UDP transport, a DNS message exceeding 1232 bytes in size usually triggers IP
fragmentation on most network links [1,11]. This upper bound of 1232 has been
derived as follows: 1280 (IPv6 MTU) - 40 (IPv6 Header) - 8 (UDP Header). It is
evident that DNSSEC messages carrying post-quantum data will easily exceed
1232 bytes in size, and thus be fragmented by the network. Unfortunately, IP
fragmentation is considered to be both unreliable (fragments may never arrive)
and insecure (fragments can be spoofed). Moreover, Van den Broek et al. [18]
have noted that up to 10% of the resolvers fail to handle fragments correctly.

The other alternative of sending large DNS messages without resorting to
fragmentation is via TCP. When a DNS response exceeds the requester’s adver-

68 A. S. Rawat and M. P. Jhanwar

tised EDNS(0) buffer size (here, 1232), a truncated DNS message (with TC flag
set in header) is sent. Subsequently, the requester discards the received response
(resulting in a wasted trip) and re-tries the query over TCP. Unfortunately, up
to 11% of nameservers in [11] [19] have been shown to lack support for TCP.
Moreover, Mao et al. [10] found that up to 4.8% of the resolvers do not fallback
to TCP when requested by authoritative nameservers. Even in the case of an
available TCP support, the connection might fail to get established because of
intruding middle boxes [11]. Using a TCP transport also increases resolution
times because of the 3-way TCP handshake.

Related Work

Many proposals have been put forward which address the two aforementioned
issues of IP fragmentation and TCP non-availability by fragmenting at the appli-
cation (DNS) layer. The implication of this approach is that the DNS servers are
now responsible for fragmenting and re-assembling DNS messages rather than
the network layer.

The works of Sivaraman et al. [15] and Song et al. [16], fragmented the entire
DNS message as a unit and sent each fragment sequentially. Unfortunately, both
of these schemes failed to get standardized because they sent multiple packets
in response to a single request. Many firewalls are configured to accept only
one DNS response packet per query. In such a case, there is also a potential
risk of ICMP flooding since the dropped packets will generate multiple ICMP
‘destination unreachable’ messages.

A very recent work of Goertzen et al. [6], known as ARRF, fragmented DNS
resource records and addressed the principal shortcoming of earlier approaches
by sending additional messages only upon request. Since each additional response
has its own query, concerns about intruding firewalls and ICMP flooding are
mitigated. We review the ARRF design in Sect. 2.3.

Unfortunately, ARRF suffers from two major limitations as acknowledged by
its authors in [6]. Firstly, ARRF introduces a new type of DNS resource record
called ‘Resource Record Fragment (RRFRAG)’, which, being non-standard, has
the potential to be rejected by certain middle boxes handling DNS messages.
Secondly, ARRF is vulnerable to memory exhaustion attacks. Moreover, ARRF
needs a minimum of two round trips to reconstruct the full DNS message.

Our Contributions

In this work, we propose a DNS fragmentation solution called QNAME-Based Frag-
mentation (QBF). Similar to previous approaches, QBF also performs fragmenta-
tion at the application layer, thus eliminating concerns of IP fragmentation and
lack of TCP support. Additionally, QBF is request-based like ARRF in that
each additional DNS response has its own associated DNS query. Hence, mes-
sages sent by QBF are not susceptible to the issues of firewall filtering or ICMP
flooding. In contrast to ARRF [6] however, QBF offers the following benefits:

Post-quantum DNSSEC over UDP via QNAME-Based Fragmentation 69

– Full Backward Compatibility: Unlike ARRF [6] which uses a non-
standard resource record called RRFRAG, QBF uses only standard DNS
resource records while also respecting their wire format. Thus, QBF messages
are not susceptible to getting blocked by strict middle boxes which inspect
the resource records of a DNS message.

– Security against Memory Exhaustion Attacks: Owing to its design,
ARRF [6] exposes an attack surface in which an adversary can deplete the
memory of a resolver by inserting many malicious RRFRAGs in the initial
response. However, QBF is not vulnerable to such attacks since it does not
use RRFRAGs.

– 1-RTT Resolution: ARRF is bottle-necked by a minimum of 2 round trips
for reassembling the full DNS message. On the other hand, QBF can recon-
struct the complete DNS message in just 1 round trip.

Our implementation of QBF is a light-weight daemon that runs on top
of the DNS software (such as BIND9) of nameservers and resolvers. It frag-
ments/reassembles large DNS messages (as and when needed) and requires no
modifications to be made to the underlying DNS software or zone files.

2 Preliminaries

Notations: RR is shorthand for resource record. || represents concatenation.
X → Y denotes member Y of an abstract structure X. RTT stands for round trip
time. (A)NS is short for (authoritative) nameserver.

2.1 The Domain Name System

In this section, we briefly review the complete Domain Name System (DNS)
lookup process as well as the DNS message wire format. The DNS, being a mis-
sion critical service for the Internet, facilitates the navigation thereof by translat-
ing human-readable domain names into machine-understandable IP addresses.
Suppose a DNS client (technically called a ‘stub resolver’) contacts the local
DNS server to determine the IP address for the domain name example.com.
The local DNS server first contacts one of the root servers, which returns the IP
addresses of TLD servers for the top-level domain .com. The local DNS server
then contacts one of these TLD servers, which in turn returns the IP addresses of
the authoritative servers for example.com. Finally, it contacts one of the author-
itative servers for example.com, which in turn returns the exact IP address of
example.com. Once the resolved IP address is obtained, the local DNS server
returns the IP address to the client and also stores it in its cache for future use.

The top level format of a generic DNS message is divided into 5 sections:
Header, Question, Answer, Authority, and Additional. The Header section is
always present and includes fields that specify which of the remaining sections
are present, whether the message is a query or a response, a standard query
or some other opcode, etc. Table 2 presents the wire format of DNS Header.

70 A. S. Rawat and M. P. Jhanwar

The Question section contains the query made by a resolver to a nameserver
in order to obtain information about a specific domain name or resource record.
Each question entry consists of the following fields: QNAME (Contains the domain
name that the resolver is querying about. It is encoded in the standard DNS name
notation. For example, test.example is encoded as [4]test[7]example[0]),
QTYPE (specifies the type of DNS resource record (RR)), and QCLASS (specifies
the class of the query, set to IN in most cases). The last three sections have the
same format: a possibly empty list of concatenated DNS RRs.

The DNS resource records (RRs) are data entries within a DNS database that
provide various types of information about a domain name and its associated
data. These records are used to facilitate the translation of a domain name to an
IP address. The A, NS, and MX are some of the commonly used DNS records.
Each resource record has the following top level sections: NAME (specifies the
domain name to which the RR belongs), TYPE (indicates the type of RR), CLASS
(specifies the class of data), TTL (time to live), RDLENGTH (specifies the length, in
bytes, of the RR’s RDATA field), and RDATA (contains the actual data associated
with the RR). If NAME = example.com and TYPE=A, then RDATA contains the
32-bit IPv4 address of the example.com domain. If NAME = example.com and
TYPE=NS, then RDATA contains the domain names of the authoritative name
servers (ANS) for the example.com domain. The Answer section contains RRs
that answer the question; the Authority section contains RRs that point toward
an authoritative nameserver; the Additional section contains RRs which relate
to the query, but are not strictly answers for the question.

Table 2. DNS Message Header Format

Header

ID

QR Opcode AA TC

RD RA Z RCODE

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

The fields relevant to the present discussion are:
ID, used by requester to match a DNS response
to its query; QR, indicates whether message is a
query (0) or a response (1); TC, indicates whether
message is truncated (1) or not (0); and RCODE
denotes the response code - 0 indicates no error,
1 (FORMERR) indicates that query was malformed,
and 3 (NXDOMAIN) indicates that domain name
does not exist.

DNS Message Size. DNS messages are sent over the internet using a series
of layers. Initially, they are placed into UDP packets, which in turn are placed
inside IP packets. These IP packets become the payload of frames at the link
layer. However, there is a limit to the payload size of these frames based on
the Maximum Transmission Unit (MTU) of the link they are traveling over. If
a frame’s payload is too large for the link’s MTU, routers must break it into

Post-quantum DNSSEC over UDP via QNAME-Based Fragmentation 71

smaller IP packets, resulting in fragmentation of DNS messages. These frag-
mented IP packets travel independently to their destination. Since DNS relies
on UDP, which does not guarantee a reliable communication like TCP, any loss
of fragmented IP packets can cause transmission failures. Even when fragmen-
tation does work, it may not be secure. It is theoretically possible to spoof parts
of a fragmented DNS message, without an easy detection at the receiving end.
To address these issues, there are two solutions: a) configure servers to limit
the size of DNS messages sent over UDP to ensure they do not trigger frag-
mentation on typical network links; b) ensure that DNS servers can switch from
UDP to TCP when a DNS response is too large to fit within the limited buffer
size of UDP. Initially, DNS messages were limited to 512 bytes, a size that pre-
vented IP fragmentation. Most standard network links have MTUs large enough
to accommodate these DNS messages (considering an 8-byte UDP header and
a 40-byte IPv6 header, resulting in a maximum payload size of 560 bytes for
link layer frames). However, with the introduction of the Extension Mechanisms
for DNS (EDNS(0)) (see next paragraph), this limit theoretically increased to
64 kilobytes. Using EDNS(0), one can increase the size of DNS messages up to
any ‘k’ bytes, provided the MTU of the network link is greater than ‘k + 8 +
40’ bytes. Therefore, the optimum DNS message size to avoid IP fragmentation
while minimizing the use of TCP will depend on the MTU of all the physical
network links connecting two network endpoints. Unfortunately, there is not yet
a standard mechanism for DNS server implementors to access this information.
Until such a standard exists, it is usually recommended that the EDNS buffer
size should, by default, be set to a value small enough to avoid fragmentation
on the majority of network links in use today. An EDNS buffer size of 1232
bytes will avoid fragmentation on nearly all current networks. This is based on
an MTU of 1280, which is required by the IPv6 specification, minus 48 bytes for
the IPv6 and UDP headers. Therefore, the currently recommended DNS message
size over UDP is 1232 bytes.

EDNS(0). Extension Mechanisms for DNS (EDNS(0)) [5] facilitates the trans-
fer of DNS messages larger than the traditional size of 512 bytes. For this pur-
pose, EDNS(0) introduces a pseudo-RR called OPT (short for Options) in the
additional section of the DNS message. Note that unlike traditional RRs, pseudo-
RRs do not actually exist in the zone files and are created on the fly. In queries,
a requester specifies the maximum UDP payload size it is capable of handling
(known as EDNS(0) buffer size) in OPT → CLASS. In addition to this, the
requester also indicates its support for DNSSEC by setting the DO (DNSSEC
OK) bit to 1 in OPT → TTL. OPT also contains DNS cookies which provide a
limited security against certain off-path attacks such as denial of service, cache
poisoning, and answer forgery.

2.2 The DNS Security Extensions

DNS Security Extensions (DNSSEC) enhances the security of the DNS by ensur-
ing the authenticity and integrity of DNS data. It introduces new types of DNS

72 A. S. Rawat and M. P. Jhanwar

resource records, such as Resource Record Signature (RRSIG), DNS Public Key
(DNSKEY), and Delegation Signer (DS). In regular DNS, when a resolver gets a
DNS record from a server, it wants assurances that the record came from the right
server and has not been tampered with during transmission. With DNSSEC, a
server uses a cryptographic signature to sign the DNS records it provides (dig-
ital signature is applied to a group of DNS resource records, referred to as an
RRset, that have the same NAME, CLASS, and TYPE). This signature is created
using a secret key owned by the server. The server then creates an RRSIG record,
which contains the signature, details about the signing method used, and timing
information (like expiration date) for the signed DNS record. It also includes
a key identifier, which is a unique identifier for the public key needed to ver-
ify the signature. The public key is made available in the DNS zone through
DNSKEY records. These DNSKEY records are also cryptographically signed in a
multi-layered approach, building a chain of trust. When a DNS resolver receives
a DNS response with RRSIG records, it uses the associated DNSKEY records
to verify the RRSIG’s digital signature. If the signature matches, the resolver
accepts the DNS record as authentic and untampered.

We quickly go over the key points about how the new DNS resource records
(RRSIG, DNSKEY, and DS) are formatted. The various fields of the RDATA section
of a DNS RRSIG resource record is given in Table 3.

Table 3. DNS RR of Type RRSIG

DNS RR of Type RRSIG

Name Type = RRSIG Class TTL RDLENGTH

RDATA

RRSIG RR Wire Format

Type Covered
Algorithm Identifies the signature algorithm

Labels
Original TTL

Signature Expiration
Signature Inception

Key Tag Provides a mechanism for selecting a public key efficiently
Signer’s Name

Signature Contains the signature value computed on RRSIG → RDATA (excluding
the signature field) and an RRset containing a collection of resource
records RR(i)s. signature = sign(RRSIG → RDATA‖RR(1)‖RR(2)‖ . . .)

A DNSKEY record stores a public key. The wire format of DNSKEY → RDATA
is shown in Table 4. In DNSSEC, each DNS zone employs two types of keys: the
Zone Signing Key (ZSK) and the Key Signing Key (KSK). The ZSK is responsible
for signing the DNS resource records (RRs) within the zone. These records con-
tain information about specific domain names, such as A records. On the other
hand, the KSK’s primary role is to sign the DNSKEY records. These DNSKEY
records contain the public keys used for verifying the zone’s data.

The DS record (see Table 5 for its format) plays a vital role in establish-
ing a chain of trust between parent and child DNS zones. For example, it is

Post-quantum DNSSEC over UDP via QNAME-Based Fragmentation 73

Table 4. DNS RR of Type DNSKEY

DNS RR of Type DNSKEY

Name Type = DNSKEY Class TTL RDLENGTH

RDATA

DNSKEY RR wire format

Flags Specifies whether the key is a Zone Signing Key (ZSK) or a Key
Signing Key (KSK)

Protocol
Algorithm Specifies the signature algorithm used to generate the public key

Public Key Contains the actual public key

used when a top-level domain server acts as the parent, and an authoritative
nameserver serves as the child zone. When a resolver verifies an RRSIG record
using a corresponding DNSKEY record from a server, it must ensure the authen-
ticity of the server’s ZSK contained within the DNSKEY record. The DNSKEY
record is signed using the server’s KSK. Therefore, the resolver must also verify
the authenticity of the server’s KSK. To facilitate this, the server generates a
cryptographic hash of its public KSK and shares it with its parent servers in
a DS record. When a resolver is directed to a server by its parent server, the
parent server provides the DS record containing the hash of the child server’s
public KSK. Importantly, the parent server signs this DS record using its own
ZSK when sharing it with a resolver. As a result, when the resolver receives
RRSIG and DNSKEY responses from the child server, it employs the informa-
tion received from the parent server to authenticate the child server’s DNSKEY
record. This establishes a secure chain of trust, which is essential for DNSSEC
to ensure the integrity and authenticity of DNS data across hierarchical levels.

Table 5. DNS RR of Type DS

DNS RR of Type DS

Name Type = DS Class TTL RDLENGTH

RDATA

DS RR Wire Format

Key Tag
Algorithm

Digest Type
Digest digest = hash(DNSKEY Owner Name‖DNSKEY RR)

2.3 ARRF [6]

DNSSEC works seamlessly when the size of the DNS message does not exceed
the recommended UDP limit. However, post-quantum signature schemes have
larger public key and signature sizes that cannot fit within these limits. To handle
post-quantum cryptography in DNSSEC without relying on IP fragmentation or
TCP fallback, a recent solution called ARRF was introduced by Goertzen et al.

74 A. S. Rawat and M. P. Jhanwar

[6]. This approach avoids IP fragmentation and instead conducts fragmentation
at the application layer using a daemon running on top of the DNS software of
resolvers and DNS servers. ARRF introduces a new type of DNS resource record
called ‘Resource Record Fragment (RRFRAG),’ similar to the existing pseudo-
resource record OPT. RRFRAGs are not explicitly part of DNS zones; they are
created when needed and use the standard DNS resource record wire format
with some fields repurposed (see Table 6).

Table 6. DNS RR of Type RRFRAG: a) NAME must always be root (.); b) TYPE identifies
RRFRAG type; c) Class contains RRID identifying the particular DNS resource record that
is being fragmented; d) TTL contains CURIDX specifying the current index in the byte
array of the original resource record which is being fragmented; e) RDLENGTH contains
FRAGSIZE specifying the total number of bytes contained in RDATA; f) RDATA has two
parts: 1) RRSIZE: two bytes specifying the size of the original non-fragmented resource
record; and 2) FRAGDATA: the raw bytes of the fragment of the original resource record.

DNS RR of Type RRFRAG

Name = "." Type = RRFRAG Class ≡ RRID TTL ≡ CURIDX RDLENGTH ≡
FRAGSIZE

RDATA
RRFRAG →RDATA Wire Format

RRSIZE
FRAGDATA

When a DNS response is too large to fit within the advertised UDP size,
RRFRAGs are used to split the data across multiple queries, ensuring that each
response’s size remains below the threshold. RRFRAGs replace resource records
in place, maintaining the original message format. However, the OPT resource
record, containing important metadata like the DNS cookie, is not fragmented.

The initial response containing at least one RRFRAG acts as a ‘map’ of the
non-fragmented message. Requesters use this map to determine how to reassem-
ble the original large DNS message. They can identify missing fragments and
send new queries for those missing RRFRAGs. To specify which fragment they
want, the size of those fragments, and their starting positions, requesters add
RRFRAGs for each distinct RRID in the query’s additional section. When respon-
ders receive queries with RRFRAGs, they construct a standard DNS response by
inserting the corresponding RRFRAGs into the answers section. The FRAGDATA
being sent is a copy of the desired resource record’s bytes, starting at CURIDX
and ending at CURIDX+FRAGSIZE. This request/response cycle continues until
the requester successfully reassembles the original large, non-fragmented mes-
sage. Also, after receiving the initial response with the map, requesters can make
subsequent RRFRAG requests in parallel.

Unfortunately, ARRF suffers from two major limitations as acknowledged
by its authors in [6]. Firstly, RRFRAG is a non-standard DNS resource record
type which can potentially cause middle boxes to reject the DNS message. Sec-
ondly, ARRF is vulnerable to memory exhaustion attacks. An on-path adver-

Post-quantum DNSSEC over UDP via QNAME-Based Fragmentation 75

sary can insert many RRFRAGs in the initial response with very large RRSIZEs.
Since DNSSEC validation cannot take place until the full DNS message is recon-
structed, the requester has no choice but to allocate memory for storing interme-
diate fragments. ARRF also needs a minimum of two round trips to reconstruct
the full DNS message. This is because the resolver requires RRIDs for fetching
additional fragments. However, it only learns the RRIDs after receiving the initial
response.

3 QBF: QNAME-Based Fragmentation

In this section, we present our solution for retro-fitting post-quantum cryptogra-
phy in DNSSEC/UDP. Our scheme, called QNAME-Based Fragmentation (QBF),
fragments and reassembles large DNS messages using a daemon running on top
of the DNS software (here, BIND9) of resolvers and nameservers. The daemon
intercepts and modifies (if necessary) all the incoming and outgoing DNS pack-
ets. It is also able to construct and send a DNS query of its own. Unlike the
previous schemes, which fragmented the entire DNS message [15,16] or DNS
resource records [6], the QBF daemon only fragments the following data: 1) Raw
signature bytes stored in the field RRSIG → RDATA → Signature, and 2) Raw
public key bytes stored in the field DNSKEY → RDATA → Public Key. Thus,
QBF fragments resemble the original DNS response except insofar as they carry
partial signatures or public keys. To fetch an additional fragment, the requester
daemon constructs a new DNS query and provides information about the desired
fragment in QUESTION → QNAME.

QBF can be configured with the following operational modes: 1) Sequential:
Wait to receive a requested fragment before sending another request; 2) Parallel
2-RTT: Request and receive the first fragment. Then request and receive all other
fragments in parallel; and 3) Parallel 1-RTT: Request and receive all fragments
in parallel. We now proceed to delineate QBF in the following subsections.

QBF Fragmentation: Wire Format

When a DNSSEC response exceeds the requester’s advertised EDNS(0) buffer
size, the responder daemon puts partial signature or public key bytes while
keeping the rest of the message intact. We illustrate this by means of the following
example scenario. A requester sends a DNSSEC query asking for a Type A DNS
resource record containing the IPv4 address of a domain test.example. Assume
that the requester specifies a maximum EDNS(0) buffer size of y bytes (e.g. y =
1232 bytes, the recommended DNS message size over UDP) in OPT → CLASS. On
the responder side, the generated DNS response shown in Table 7 (Left). Assume
that the size of this response is z bytes. The answer section contains one Type A
RR holding the IPv4 address 1.2.3.4 for test.example and one RRSIG holding
a signature over the former Type A RR. The rest of the sections are empty
(except for OPT in the additional section). The responder daemon observes
that the response exceeds the requester’s UDP payload limit by 2 bytes (i.e.,

76 A. S. Rawat and M. P. Jhanwar

z = y+2). Hence, it removes 2 bytes from RRSIG → RDATA → Signature (i.e., if
RRSIG → RDLENGTH is x bytes, then after removing 2 bytes from the Signature,
it becomes x − 2) and sets the HEADER → TC flag to 1. The DNS response,
referred to as ‘Fragment 1,’ is displayed in Table 7 (Middle). Simultaneously,
the responder daemon prepares another DNS response, known as ‘Fragment 2,’
containing the remaining 2 bytes of the signature. At this juncture, the responder
stores Fragment 2 in its cache. When the requester subsequently queries the
additional fragment, the daemon retrieves it from its cache and transmits it
back. Further details regarding the format of additional fragments are elaborated
upon in the subsequent discussion. Note that the OPT record (which may hold
important DNS cookies) remains intact after fragmentation.

Table 7. Wire format: Original response (Left), Fragment 1 (Middle), Fragment 2
(Right)

Header Section
Question Section
QNAME = test.example
QTYPE = A
QCLASS
Answer Section
NAME
TYPE=A
...
RDLENGTH=4
RDATA=1.2.3.4

NAME
TYPE= RRSIG
...
RDLENGTH = x

RDATA
Type Covered
Algorithm
...
Signer’s Name
Signature=0x3a4b5c6d

Authority Section
Additional Section
RR : OPT

Header Section
Question Section
QNAME = test.example
QTYPE = A
QCLASS
Answer Section
NAME
TYPE=A
...
RDLENGTH=4
RDATA=1.2.3.4

NAME
TYPE= RRSIG
...
RDLENGTH = x − 2

RDATA
Type Covered
Algorithm
...
Signer’s Name
Signature=0x3a4b

Authority Section
Additional Section
RR : OPT

Header Section
Question Section
QNAME = ?2?test.example
QTYPE = A
QCLASS
Answer Section
NAME
TYPE= RRSIG
...
RDLENGTH = x − 2

RDATA
Type Covered
Algorithm
...
Signer’s Name
Signature=0x5c6d

Authority Section
Additional Section
RR : OPT

Note that when a generated DNS response contains multiple RRSIG records,
the QBF fragmenter removes an equal number of raw signature bytes from each
RRSIG. A similar logic is applied in case of multiple DNSKEY records.

Post-quantum DNSSEC over UDP via QNAME-Based Fragmentation 77

QBF Assembly: Additional Fragment Requests

After receiving Fragment 1, a requester daemon requests for additional frag-
ments by constructing a new DNS query and setting QUESTION → QNAME in
the following format:

〈DELIMITER〉〈fragnum〉〈DELIMITER〉〈domain〉
The DELIMITER is a non-valid domain name character such as ?, #, *, etc. The
first delimiter indicates to the responder daemon that the DNS query is for a
fragment. The second delimiter is used to mark the end of fragnum field since
domain names can also start with a number. We use ? as DELIMITER in all our
examples in this paper. The fragnum is the desired fragment number and must
be >1 since Fragment 1 is received as response to the original DNS query. The
domain is the domain name for which the fragment is required.

Thus, in the ongoing example, to retrieve ‘Fragment 2,’ the requester dae-
mon initiates a new DNS query with the QUESTION → QNAME field set to
?2?test.example (or in general, set to ?i?test.example for fetching the ith
fragment). The resulting DNS response is shown in Table 7 (Right). This spe-
cific DNS response, referred to as ‘Fragment 2,’ was originally prepared by the
responder daemon during the fragmentation process and subsequently cached.

Note that the responder daemon sets HEADER → TC flag in all the fragments
for maintaining backward compatibility. Furthermore, for all fragnum > 1, the
responder daemon removes all RRs except RRSIG, DNSKEY and OPT. This is an
efficiency measure to reclaim the space taken by the redundant RRs that were
already sent in Fragment 1.

If a requester daemon sends a fragment query that cannot be answered (for
example, a fragment with number fragnum is desired, but the entire message
requires only (fragnum − 1) fragments), the responder daemon returns an error
response with HEADER → RCODE set to FORMERR (indicating a problem with the
format of the DNS query).

3.1 QBF Execution Modes

We now describe the functioning of the QBF daemon in both the Parallel 2-RTT
(round-trip time) and Parallel 1-RTT modes. The discussion of the sequential
mode is omitted since it closely resembles Parallel 2-RTT, with the sole difference
being that the requester awaits a response before dispatching another request.

We begin with Parallel 2-RTT, as it lays the foundation for comprehending
Parallel 1-RTT. These execution modes explain how a DNSSEC query initiated
at a resolver is managed by the client-side QBF daemon deployed on the resolver
and the server-side QBF daemon running on a DNS server. In this context, we
assume the DNS server to be an Authoritative Name Server (ANS).

Parallel 2-RTT. Consider a scenario in which the resolver has initiated a
DNSSEC query, requesting a Type A DNS resource record with QUESTION →

78 A. S. Rawat and M. P. Jhanwar

QNAME set to test.example. The resolver, operating under the constraint of
processing DNS responses of a recommended size - specifically, a maximum of
1232 bytes - configures the EDNS(0) buffer size to 1232 within the OPT → CLASS
field. In the following section, we describe how QBF operates in its Parallel 2-
RTT mode to resolve the aforementioned query. The execution in Parallel 2-RTT
proceeds as follows (Fig. 1 gives a schematic view of the QBF daemon operating
in Parallel 2-RTT mode):

1. The resolver QBF daemon forwards the outgoing DNSSEC query as it is.
2. Upon receiving the DNSSEC query, the QBF daemon on the nameserver sets

OPT → CLASS to a large value (here 65507, the maximum UDP payload size
over IPv4) before forwarding the query to BIND9, the DNS server software
running at ANS. This value should be large enough so as to allow the retrieval
of the full DNS response from BIND9 without truncation.

3. The nameserver daemon observes that the size of the full response exceeds
1232 bytes. Hence, it removes the necessary number of bytes from RRSIG →
RDATA → Signature and marks the response as truncated before sending it
to the resolver as Fragment 1. Note that from the complete BIND9 response,
the nameserver QBF daemon also prepares and caches all other fragments for
a time interval (say, 5 s) within which it expects the resolver daemon to reach
out for them. In case, the nameserver daemon does not receive any fragment
requests from the resolver daemon within the time duration, it removes the
fragments from its cache.

4. On intercepting the first fragment, the resolver QBF daemon calculates the
required number of additional fragments as follows:
(a) It retrieves the signing algorithm from RRSIG → RDATA → Algorithm

and infers the size of a full signature (say, 690 bytes in case of Falcon).
(b) It computes the size of the original DNS response by counting RRSIG →

RDATA → Signature as having full size (690) instead of the partial size.
(c) Subsequently, it calculates the number of additional fragments required

based on the EDNS(0) buffer limit.
5. The resolver QBF daemon constructs the required number of extra fragment

queries (2 in this case, see Fig. 1) in the format described in Sect. 3 and sends
them in parallel.

6. On the nameserver side, the QBF daemon responds to the fragment queries
from its cache.

7. On receiving all the fragments, the resolver QBF daemon appends RRSIG →
RDATA → Signature from Fragment 2 and 3 (in sequence) to the correspond-
ing place in Fragment 1. It then forwards the complete DNSSEC message to
BIND9 for validation.

A similar procedure is followed for a response containing DNSKEY
records. In that case, the relevant sections are DNSKEY → RDATA →
Algorithm/Public Key.

Post-quantum DNSSEC over UDP via QNAME-Based Fragmentation 79

Fig. 1. QBF in Parallel 2-RTT mode

Parallel 1-RTT. It is important to note that the resolver’s QBF daemon has the
flexibility to send additional fragment requests in parallel with the original query.
The primary variable to consider is the precise number of these supplementary
queries to dispatch. Should the daemon send more queries than necessary, it
will simply receive a FORMERR response for each surplus query. Conversely, if the
daemon sends an inadequate number of queries, it can always calculate the exact
count of fragments based on the information provided in the first fragment (as
elaborated in Sect. 3.1) and subsequently retrieve any remaining fragments.

Assuming that the daemon possesses knowledge of the nameserver’s signing
algorithm, possibly from prior interactions, it becomes feasible to estimate an
upper-bound on the number of fragments. This estimation can be based on fac-
tors such as QUESTION → QTYPE and the EDNS(0) UDP limit. In Table 8 below,
we present the calculated number of extra queries needed in the running example
of a Type A DNSSEC query for test.example, for all NIST recommended post-
quantum signature algorithms. It is worth noting that this represents a worst-

80 A. S. Rawat and M. P. Jhanwar

case scenario (i.e., with minimal-responses disabled on the nameserver). For a
comprehensive understanding of the structure of a non-minimal DNS response
to a Type A DNSSEC query, please refer to Table 9.

Table 8. Number of additional queries required for Type A DNSSEC query for
test.example under a UDP constraint of 1232 bytes. Minimal responses and DNS
cookies are disabled. * indicates that the last fragment has <100 bytes of free space.

QTYPE RR Type No. of RRs Falcon-512 Dilithium-2 SPHINCS+

A

A
NS

RRSIG
OPT

2
1
3
1

1* 6 22

DNSKEY

RRSIG
DNSKEY

OPT

2
2
1

2* 6 14

While the values in Table 8 will suffice for majority of real-world DNSSEC
queries, it is to be kept in mind that the total length of a domain name (i.e.,
label bytes and label length bytes) can be up to 255. Considerations also have
to be made for Type AAAA queries since the size of an IPv6 address is 4×
the size of an IPv4 address. Additionally, a joint client-server DNS cookie in
OPT → RDATA can occupy up to 40 bytes of space. Fortunately, the resolver
a priori knows the length of the domain name and the type of query from the
QNAME and QTYPE fields of the DNS query respectively, and the decision to use
DNS cookies also rests with the resolver (i.e., a server inserts its cookie only if
the client has provided its own). Thus, the resolver daemon should account for
longer than average domain names, Type AAAA IPv6 queries and usage of DNS
cookies when determining the number of additional queries. If deemed necessary,
it should increment the numbers marked with * in Table 8 by 1.

Figure 2 gives a schematic view of the QBF daemon operating in Parallel 1-
RTT Mode. Ideally, the resolver daemon should send the additional queries after
a slight delay from the original one so as to give sufficient time to the responder
daemon for preparing the fragment cache. Alternatively, the responder daemon
should forward only the original query to the BIND9 software and prepare the
cache from the resulting response as shown in Fig. 2.

3.2 Backward Compatibility

We now discuss what happens when one of the end points implements QBF while
the other one does not.

– QBF-unaware Requester | QBF-aware Responder: On receiving the first frag-
ment, the requester will detect that the HEADER → TC flag is set. It will then
discard this response and retry over TCP.

Post-quantum DNSSEC over UDP via QNAME-Based Fragmentation 81

Fig. 2. QBF in Parallel 1-RTT mode

– QBF-aware Requester | QBF-unaware Responder: If the requester daemon
sends queries in Parallel 1-RTT mode, it will receive the first response with
TC flag set and the rest of the responses with HEADER → RCODE set to
NXDOMAIN (stands for ‘Non-Existent Domain’). It will then infer that the
responder does not support QBF and repeat the query over TCP. In case
the requester daemon is running in Sequential or Parallel 2-RTT mode, it
will receive the first response with TC flag set. However, responses truncated
by the DNS software only contain the Header section, the Question section
and OPT record in additional section (i.e., the response is identical to the
query but with TC set). On detecting this, the daemon will conclude that the
responder is QBF-unaware and fall back to TCP.

3.3 Security Considerations

DNS Cache Poisoning. Since the QBF daemon forwards only the complete
DNS response to the resolver for DNNSEC validation, DNS cache poisoning is
not a concern assuming a secure algorithm is used for signing.

82 A. S. Rawat and M. P. Jhanwar

UDP Unreliablity. Since QBF messages (requests or responses) ultimately
travel over UDP, it is possible that some messages may fail to reach their des-
tination. The two immediate solutions for this would be: 1) If the resolver does
not get a response from its QBF daemon within 800 ms (the default BIND9
timeout), it sends a fresh query again and the whole process starts over; 2) If
the QBF daemon does not receive a fragment response within a shorter timeout
(say, 100 ms), it re-sends the fragment query.

DNSSEC Downgrade Attacks. Heftrig et al. [7] found that 45% of DNS
resolvers do not perform DNSSEC validation when a new signing algorithm
is used in the DNS responses. Therefore, unless IETF standardizes the correct
behaviour of resolvers in such a scenario, this vulnerability can possibly continue
to affect DNSSEC when post-quantum algorithms are deployed.

Denial of Service (DoS). Off-path attacks: Because each fragment has to be
explicitly requested for, a requester daemon can reject any unexpected fragment
it receives. Thus, with the aid of DNS cookies, off-path attacks are rendered
infeasible. On-path attacks: If an adversary or a malicious middle-box tampers
with the data in the resource records, it’ll eventually cause DNSSEC validation
to fail on the resolver.

Memory Exhaustion Attacks. An on-path adversary cannot cause a QBF
requester daemon to allocate an arbitrarily large amount of memory for frag-
ments. Recall that Fragment 1 is identical to the original DNS response except
that it carries only partial raw signature or public key bytes. If parallel 2-RTT or
sequential mode is being used, the only way an on-path adversary can cause the
requester daemon to over-compute the number of additional fragments is 1) by
changing RDATA → Algorithm or 2) by inserting many resource records contain-
ing fewer raw signature or public key bytes. In the first attack, the adversary is
limited to changing the algorithm to the one with the largest signature or public
key footprint (For example, SPHINCS+ which has 7856 bytes of signature). On
the other hand, the resolver daemon can easily detect the second type of attack
based on the response it is expecting for a particular QTYPE. For example, even in
the worst-case, a Type A/AAAA DNS response cannot have more than 3 RRSIGs
as shown in Table 9. Note that in Parallel 1-RTT, the number of fragments (and
hence, the memory allocated) is fixed as discussed in Sect. 3.1.

4 Evaluation

In this section, we provide implementation details of QBF and compare its
DNS resolution performance with standard DNS with TCP fallback and par-
allel ARRF [6]. The source code of our implementation is available at: https://
github.com/aditya-asr/qbf_src.

https://github.com/aditya-asr/qbf_src
https://github.com/aditya-asr/qbf_src

Post-quantum DNSSEC over UDP via QNAME-Based Fragmentation 83

4.1 Setup

We use the source code of ARRF [6] as base to build QBF. The DNS software is
BIND 9.17.12 which uses OpenSSL 1.1.1 and liboqs 0.7.2 [17] for cryptographic
operations. The daemon is written in C and uses libnetfilter-queue 1.0.5-2 for
intercepting all incoming and outgoing packets. Docker 4.22 is used for con-
structing the network scenario (described below). To simulate network latency
and bandwidth, we use Linux’s tc utility. DNS lookups are performed using dig.
All experiments are run on a Macbook Air M1 with 8 GB of RAM.

We design a DNS network with the following four participants: 1) A client 2)
A resolver 3) A root NS 4) An example ANS. Each participant is running as a pri-
vate Ubuntu 22.04 Docker container having a networking constraint of 50 Mbps
bandwidth and 10 ms latency. The resolver is configured with send-cookie no;
in its named.conf. For simplicity, each zone is signed with a single algorithm
and has one (ZSK, KSK) pair. The zone file of ANS contains 10 A RRs each
with a unique domain name and an associated RRSIG. The ANS is configured
with minimal-responses no; in its named.conf file to simulate the worst-case
scenario. Table 9 illustrates the format of non-minimal DNSSEC responses gen-
erated by the ANS’s BIND9 software.

Table 9. Structure of non-minimal DNS responses to a Type A DNSSEC query (left)
and to a Type DNSKEY DNSSEC query (right)

Header Section
Question Section
Answer Section

TYPE A RR

RRSIG

Authority Section
TYPE NS RR

RRSIG

Additional Section
TYPE A RR

RRSIG

OPT

Header Section
Question Section
Answer Section

DNSKEY

DNSKEY

RRSIG

RRSIG

Authority Section
Additional Section

OPT

4.2 Experiment and Results

In this experiment, we measure the average resolution time of Type A DNSSEC
queries when the resolver already has DNSKEY and NS records of the name-
servers. In such a case, the resolver directly contacts the ANS with Type A
queries. The results of this experiment for the three NIST recommended signa-
ture algorithms1: Falcon-512 at security level 1, Dilithium2 at security level 2,
and SPHINCS+ at security level 1 are tabulated in Table 10 below.
1 Higher security levels are currently not supported by the OQS-BIND9 fork.

84 A. S. Rawat and M. P. Jhanwar

Table 10. Average resolution time (±1 ms) of 10 Type A DNSSEC queries in a 10 ms
latency and 50 Mbps network setting. * indicates a TCP fallback. The parallel variants
of both ARRF and QBF show high scalability under growing signature sizes because
of sending the fragment requests in parallel.

Algorithm Standard DNS Parallel ARRF QBF 2-RTT QBF 1-RTT
ECDSA-P256-SHA256 42 - - -

RSA-2048-SHA256 42 - - -
Falcon-512 83* 63 63 43
Dilithium2 83* 64 64 44

SPHINCS+-SHA256-128S 85* 65 66 46

All parallel variants of QBF yield substantially lower resolution times than
standard DNS for post-quantum DNSSEC queries. More concretely, QBF in 1-
RTT and 2-RTT mode is approximately 50% and 25% faster than standard DNS
respectively. This is because DNS, as standardized, incurs the penalty of 1) the
(initial) wasted trip over UDP and 2) the ensuing 3-way TCP handshake.

On the other hand, QBF in 1-RTT mode shows an improvement of about
30% over parallel ARRF because of requiring only 1 round trip compared to two
of the latter.

5 Conclusion

In this work, we introduced QNAME-Based Fragmentation (QBF): a fully
backward-compatible solution for seamlessly integrating post-quantum cryptog-
raphy into DNSSEC over UDP. QBF achieves its objective using only standard
DNS resource records and requires just a single round trip to reconstruct the
full DNS message. We have developed the QBF daemon, designed to operate
atop existing DNS software of both resolvers and nameservers. This daemon
efficiently manages the fragmentation and reassembly of large DNS messages
without necessitating any modifications to DNS software or zone files. To assess
its performance, we conducted a comprehensive comparison of QBF’s DNS res-
olution capabilities against those of standard DNS employing TCP fallback and
parallel ARRF [6].

References

1. DNS Flag Day 2020. https://www.dnsflagday.net/2020/. Accessed 14 June 2023
2. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,

P.: The SPHINCS+ signature framework. In: CCS, pp. 2129–2146. ACM (2019)
3. Bindel, N., Herath, U., McKague, M., Stebila, D.: Transitioning to a quantum-

resistant public key infrastructure. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017.
LNCS, vol. 10346, pp. 384–405. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59879-6_22

4. Bos, J.: Crystals - Kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE
European Symposium on Security and Privacy (EuroS&P), pp. 353–367 (2018)

https://www.dnsflagday.net/2020/
https://doi.org/10.1007/978-3-319-59879-6_22
https://doi.org/10.1007/978-3-319-59879-6_22

Post-quantum DNSSEC over UDP via QNAME-Based Fragmentation 85

5. da Silva Damas, J., Graff, M., Vixie, P.A.: Extension Mechanisms for DNS
(EDNS(0)). RFC 6891 (2013)

6. Goertzen, J., Stebila, D.: Post-quantum signatures in DNSSEC via request-based
fragmentation. In: Johansson, T., Smith-Tone, D. (eds.) PQCrypto 2023. LNCS,
vol. 14154, pp. 535–564. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-40003-2_20

7. Heftrig, E., Shulman, H., Waidner, M.: Poster: the unintended consequences of
algorithm agility in DNSSEC. In: CCS, pp. 3363–3365. ACM (2022)

8. Kampanakis, P., Lepoint, T.: Vision paper: do we need to change some things? In:
Günther, F., Hesse, J. (eds.) SSR 2023. LNCS, vol. 13895, pp. 78–102. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-30731-7_4

9. Lyubashevsky, V., et al.: Crystals dilithium. Technical report, National Institute of
Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-
cryptography/selected-algorithms-2022

10. Mao, J., Rabinovich, M., Schomp, K.: Assessing support for DNS-over-TCP in the
wild. https://doi.org/10.1007/978-3-030-98785-5_22

11. Müller, M., Jong, J., Heesch, M., Overeinder, B., Rijswijk-Deij, R.: Retrofitting
post-quantum cryptography in internet protocols: a case study of DNSSEC. ACM
SIGCOMM Comput. Commun. Rev. 50, 49–57 (2020)

12. NIST: Status report on the third round of the NIST post-quantum cryptogra-
phy standardization process. https://csrc.nist.gov/News/2022/pqc-candidates-to-
be-standardized-and-round-4. Accessed 19 Aug 2023

13. Prest, T., et al.: Falcon. Technical report, National Institute of Standards and
Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022

14. Rose, S., Larson, M., Massey, D., Austein, R., Arends, R.: DNS Security Introduc-
tion and Requirements. RFC 4033

15. Sivaraman, M., Kerr, S., Song, L.: DNS message fragments. https://datatracker.
ietf.org/doc/draft-muks-dns-message-fragments/00/

16. Song, L., Wang, S.: ATR: additional truncation response for large DNS response.
https://datatracker.ietf.org/doc/draft-song-atr-large-resp/03/

17. Stebila, D., Mosca, M.: Post-quantum key exchange for the internet and the open
quantum safe project. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532,
pp. 14–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_2

18. Van Den Broek, G., Van Rijswijk-Deij, R., Sperotto, A., Pras, A.: DNSSEC meets
real world: dealing with unreachability caused by fragmentation. IEEE Commun.
Mag. 52(4), 154–160 (2014)

19. van Rijswijk-Deij, R., Jonker, M., Sperotto, A., Pras, A.: A high-performance,
scalable infrastructure for large-scale active DNS measurements. IEEE J. Sel. Areas
Commun. 34(6), 1877–1888 (2016)

20. Wouters, P., Sury, O.: Algorithm implementation requirements and usage guid-
ance for DNSSEC. RFC 8624. https://doi.org/10.17487/RFC8624. Accessed 22
Aug 2023

https://doi.org/10.1007/978-3-031-40003-2_20
https://doi.org/10.1007/978-3-031-40003-2_20
https://doi.org/10.1007/978-3-031-30731-7_4
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-030-98785-5_22
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://datatracker.ietf.org/doc/draft-muks-dns-message-fragments/00/
https://datatracker.ietf.org/doc/draft-muks-dns-message-fragments/00/
https://datatracker.ietf.org/doc/draft-song-atr-large-resp/03/
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.17487/RFC8624

Cryptanalysis of Short and Provable
Secure Lattice-Based Signature Scheme

Ramakant Kumar1(B), Sahadeo Padhye1, and Swati Rawal2

1 Department of Mathematics, Motilal Nehru National Institute of Technology
Allahabad, Prayagraj 211004, India

ramakantkumar9758@gmail.com, sahadeo@mnnit.ac.in
2 EY Global, 6 More Londan Place, London SE12AF, UK

Abstract. Fenghe and Zhenhua proposed a short and provable secure
lattice-based signature scheme in the standard model in 2016. Their aim
was to construct a short signature without using any lattice delegation
technique. They claimed that their scheme is strongly unforgeable under
the hardness of the shortest integer solution (SIS) problem. In this arti-
cle, we highlight a flaw in the signature scheme proposed by Fenghe
and Zhenhua. We show that an adversary can generate a valid message-
signature pair by solving a linear system of equations. We also show that
the design of the scheme leaks some information about the secret key.

Keywords: Lattice-Based Cryptography · Cryptanalysis · Short
Signature · Signature Scheme · Standard Model

1 Introduction

Digital Signature (DS) schemes play an important role in secure communica-
tion. Digital signature in a random oracle model (ROM) are more efficient than
schemes in the standard model (SDM), but a random oracle is hard to achieve.
Thus, constructing provably secure DS in the SDM remains an important area of
research. In the literature, some DS schemes are proven secure in SDM. However,
the security of these schemes relies on the hardness of discrete logarithm prob-
lem (DLP) and integer factorization problem (IFP). Due to Shor’s algorithm [1],
these schemes are not secure against a quantum computer. So, there is a need
for such schemes that are secure against both classical and quantum computers.

Lattice-based cryptography is an important post-quantum candidate. In
2008, Gentry et al. [2] constructed the first lattice-based provable secure DS
scheme using a pre-image sampleable function (PSF). This scheme has been
proven secure in ROM. In 2010, Cash et al. [3] designed a DS using the lattice
delegation technique. They proved their scheme secure in SDM. Also, in 2010,
Boyen [4] proposed a lattice-based DS scheme using a novel delegation tool with
a mixing dimension. This scheme is also secure in SDM. However, the sizes of ver-
ification keys and signatures are large in both the schemes [3,4]. In 2014, Ducas

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. Regazzoni et al. (Eds.): SPACE 2023, LNCS 14412, pp. 86–91, 2024.
https://doi.org/10.1007/978-3-031-51583-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51583-5_5&domain=pdf
https://doi.org/10.1007/978-3-031-51583-5_5

Cryptanalysis of Short and Provable Secure Lattice-Based Signature Scheme 87

and Micciancio [5] constructed a lattice-based DS scheme secure under SDM.
But, they proved their security against non-adaptive chosen message attack.

In 2016, Fenghe and Zhenhua [8] developed a signature scheme for the reduc-
tion of verification key size and signature length, and to prove security in the
adaptive chosen message attack. They aim to construct a short signature with-
out using any lattice delegation [7]. They proved that their scheme satisfies
strong unforgeability, and provides a shorter signature and a smaller verification
key. But there are some flaws in the security analysis given by the authors in
the scheme [8]. Moreover, the signature generation allows for a forgery attack,
which we have pointed out here. The design of the scheme does not hide secret
information. We have shown that the scheme’s design reveals some information
about the Secret key. Before proceeding further, brushing up on the following
preliminaries is required.

2 Preliminaries

Definition 1. Lattice. Let B = {b1, . . .bn} be a collection of n linearly inde-
pendent vectors. A lattice L is defined by the set L = {Σn

i=1biαi|αi ∈ Z}. The
set {b1, . . .bn} is called the basis of the lattice L(B).

Definition 2. [6] For some positive integers q, n,m, and a given matrix A ∈
Z

n×m
q , we define the following certain families of lattices

1. L⊥(A) = {z ∈ Z
m|Az = 0 mod q}

2. L⊥
y (A) = {z ∈ Z

m|Az = y mod q}
Definition 3. Gaussian function on R

n with center at c and standard deviation
σ is defined as ρc,σ(z) = exp

(
− ‖z−c‖2

2σ2

)
, z ∈ R

n.

The discrete Gaussian function over any lattice L is defined as

DL,c,σ(z) =
ρc,σ(z)
ρc,σ(L)

,∀z ∈ L.

where ρc,σ(L) = Σz∈Lρc,σ(z).

Definition 4. (Short Integer Solution Problem (SIS)) For a given positive
integer q, a matrix A ∈ Z

n×m
q , and a real β, find a non-zero vector v such that

Av = 0 mod q and ‖v‖ ≤ β.

Fenghe and Zhenhua [8] proposed a short signature scheme using the SIS problem
as below.

88 R. Kumar et al.

3 Fenghe and Zhenhua Signature Scheme

Here, we discuss the lattice-based DS scheme given by Fenghe and Zhenhua [8].
Consider a prime number n. Let (m,n, q) denotes the system parameters defined
as m = 6n log q, q = n3 and the Gaussian parameter s = 6(l + 1)ω(log n), where
l < n denotes the bit length of the message.

– S.KeyGen− Generate the matrix A ∈ Z
n×m
q along with the trapdoor T ∈

Z
m×m
q using TrapSamp [2].

Next, choose c0, . . . , cl in Z
n as random and linearly independent vectors.

Then, return the verification key vk = (A, c0, . . . cl) and the signing key
sk = T.

– S.Sign(vk, sk,msg)− Parse the message msg = (msg[1], . . . msg[l]) ∈ {0, 1}l

and proceed as follows:
(i) Compute u = c0 + Σl

i=1msg[i]ci.
(ii) Generate v using PSF algorithm with Gaussian parameter

s
1 + Σl

i=1msg[i]
l + 1

s.t. Av = u mod q and ‖v‖ ≤ s
1 + Σl

i=1msg[i]
l + 1

√
m.

Then, output the signature v on the message msg
– S.V erify(v, vk,msg)− Accept the signature if and only if Av = u mod q

and ‖v‖ ≤ s
1 + Σl

i=1msg[i]
l + 1

√
m.

The security proof given by Fenghe and Zhenhua, which relies on the hardness
of the SIS problem, is discussed below.

Theorem 1. [8] If ∃ a successful forger A who can break the strong unforge-
ability with probability ε with at most q signing queries, then ∃ an adversary C
who can solve the SIS problem with probability (1 − 2−ω(log n))ε.

Proof. Suppose C runs A to obtain the solution of an SIS instance (A, n,m, q)
as follows:

– Setup: C generates the public verification for A, he chooses ei ∈ Z
m
q satisfying

the distribution Ds/l+1 for i = 0, . . . , l. Then, computes ci = Aei mod q.

He sends (A, ci) to A and stores secrets ei. For signature queries, he main-
tains a local storage L to store the responses.

– SignQuery: For a l bit message msgi = (msgi[1],msgi[2], . . . , msgi[l]), first
C checks the local storage, if it is there then returns the stored answer else
proceeds as follows:

• Computes vi = e0 + Σl
j=1msgi[j]ej as the signature and sends it to A.

Then, A computes u = c0+Σl
j=1msgi[j]cj and verifies whether u = Avi mod q

and ‖vi‖ ≤ s
1+Σl

j=1msgi[j]

l+1

√
m. Because of the choice of e′

is, both the conditions
hold.

At Last, A outputs the forgery (msg�,v�) such that Av� mod q = c0 +

Σl
j=1msg�[j]cj and ‖v�‖ ≤ s

1+Σl
j=1msg�[j]

l+1

√
m.

Cryptanalysis of Short and Provable Secure Lattice-Based Signature Scheme 89

C solves the SIS instance considering the following cases:

Case 1: If msg� = msgi for some i, then looks in the local storage to get vi. If
vi �= v� then

A(vi − v�) = 0 mod q and

‖vi − v�‖ ≤ 2 s
1+Σl

j=1msg�[j]

l+1

√
m ≤ 2 s

√
m.

Thus, obtaining a solution to the SIS problem, by pre-image min-entropy [2],
vi �= v� occurs with a probability 1 − 2−ω(log n).

Case 2: If msg� �= msgi, then C computes v = e0 + Σl
j=1msg�[j]ej , ∴ Av

mod q = c0 + Σl
j=1msg�[j]cj and ‖v‖ ≤ s

1+Σl
j=1msg�[j]

l+1

√
m.

If v �= v�, then similarly, C obtains the solution of the SIS problem. From [2]
the probability of v �= v� is 1 − 2−ω(log n).

Thus, from above, C obtains the solution of the SIS problem with probability
(1 − 2−ω(log n))ε.

In the next section, we discuss a flaw in the above security model and the
design of the scheme. We propose an attack to leak information about the secret
key.

4 Cryptanalysis of Fenghe and Zhenhua Scheme

In the security proof given in Theorem 1, the challenger C chooses l + 1 secret
values ei’s to answer the signing query of adversary A. To forge the signature,
adversary A queries to the challenger C and with the help of these queries, he
will try to get the secret vectors ei; i =0,1,..., l. Now we show how an adversary
can compute these secret vectors ei’s.

Let msg = (msg[1],msg[2], . . . ,msg[l − 1],msg[l]) ∈ {0, 1}l. Adversary
queries on l + 1 messages (0,0, . . .,0,0), (1,0, . . .,0,0), (1,1, . . .,0,0), . . ., (1,1,
. . .,1,0) and (1,1,,1,1) to the challenger C. The challenger C uses sign-
ing oracle and returns the signatures v0 = e0, v1 = e0 + e1, . . ., vl−1 =
e0 +e1 + . . .+el−1, vl = e0 +e1 + . . .+el−1 +el respectively. So the adversary
A has the following system of equations

⎡
⎢⎢⎢⎢⎢⎣

v0

v1

...
vl−1

vl

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0
1 1 . . . 0 0
...

... . . .
...

...
1 1 . . . 1 0
1 1 . . . 1 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

e0
e1
...

el−1

el

⎤
⎥⎥⎥⎥⎥⎦

The adversary A solves this system of equations using forward substitution
and gets
e0 = v0, e1 = v1 − v0, . . . , el−1 = vl−1 − vl−2 and el = vl − vl−1.

90 R. Kumar et al.

In this way, A gets the secret keys and hence can generate the signatures for
the non-queried messages. Hence the Fenghe and Zhenhua scheme is not strongly
unforgeable.

Now, we propose an attack that leaks information about the trapdoor T.
The value u in the signature scheme is a linear combination of l + 1 linearly
independent ci. Thus, we can obtain l + 1 independent ui’s and their signatures
(ui,vi), for i = 1, . . . , (l +1). Taking a linear combination of these ui’s and vi’s,
we can obtain (u′,v′), which will satisfy the verification equations.

Without loss of generality, let the adversary has signatures on l + 1 messages
(0,0, . . .,0,0), (1,0, . . .,0,0), (1,1, . . .,0,0), . . ., (1,1, . . .,1,0) and (1,1, . . .,1,1). So,
A will have -

Av0 = u0 = c0 mod q, Av1 = u1 = c0 + c1 mod q, . . . ,Avl−1 = ul−1 =
c0 + c1 + . . . + cl−1 mod q, and Avl = ul = c0 + c1 + . . . + cl−1 + cl mod q.
Now, suppose the adversary wants to find a signature on the message msg =
(msg[1],msg[2], . . . ,msg[l − 1],msg[l]) ∈ {0, 1}l. So, u = c0 +

∑l
i=1 msg[i]ci.

Now his aim is to compute v such that Av = u mod q and ||v|| ≤ s
√
m.

So, adversary A solves
c0+

∑l
i=1 msg[i]ci = c0+α1(c0+c1)+ . . .+αl−1(c0+c1+ . . .+cl−1)+αl(c0+

c1 + . . . + cl) for αi’s and gets αl = msg[l], αl−1 = msg[l − 1] − msg[l], . . .,
α2 = msg[2] − msg[3], and α1 = msg[1] − msg[2].

Thus, A has
c0 +

∑l
i=1 msg[i]ci = c0 + (msg[1] − msg[2])(c0 + c1) + . . . + (msg[l − 1] −

msg[l])(c0 + c1 + . . . + cl−1) + msg[l](c0 + c1 + . . . + cl) = Av0 + (msg[1] −
msg[2])Av1 + . . . + (msg[l − 1] − msg[l])Avl−1 + msg[l]Avl mod q = A(v0 +
(msg[1] − msg[2])v1 + . . . + (msg[l − 1] − msg[l])vl−1 + msg[l]vl) mod q.

Thus, A has
c0 +

∑l
i=1 msg[i]ci = Av mod q, where v = v0 + (msg[1] − msg[2])v1 + . . . +

(msg[l − 1] − msg[l])vl−1 + msg[l]vl) and ||v|| ≤ (l + 1)s
√

m.
Clearly v satisfies the first condition of signature verification, i.e., Av =

u = c0 +
∑l

i=1 msg[i]ci mod q, and if it also satisfies the second condition
||v|| ≤ s

√
m then v is a valid signature on the message msg. If v does not satisfy

the second condition, then A query on the message msg to the signer. If the
signer outputs v∗ as a signature on the message msg then Av∗ = u mod q and
||v∗|| ≤ s

√
m.

Thus, A has

Av∗ = u mod q, and
Av = u mod q

=⇒ A(v∗ − v) = 0 mod q,
where ||v∗ − v|| ≤ (l + 2)s

√
m.

In this way, the adversary has found a solution of the SIS problem. It means
the design of the scheme leaks information about the secret trapdoor T. In other
words, A obtains a small normed vector in the lattice L⊥(A), forming a part of
the secret trapdoor T.

Cryptanalysis of Short and Provable Secure Lattice-Based Signature Scheme 91

Toy example - Consider for l = 3, we obtain signatures for msg0 = (0, 0, 0),
msg1 = (1, 0, 0), and msg2 = (0, 0, 1), then we have (u0 = c0,v0), (u1 = c0 +
c1,v1), and (u2 = c0 + c3,v2). We can generate a signature for msg′ = (1, 0, 1)
as follows-
Here, we have Av0 = u0 = c0 mod q, Av1 = u1 = c0 + c1 mod q, Av2 =
u2 = c0 + c3 mod q and ||vi|| ≤ s

√
m for i =0,1,2. For msg′ = (1, 0, 1),

u′ = c0 + c1 + c3. So our aim is to find v′ of small norm, such that Av′ = u′ =
c0 + c1 + c3 mod q.

Av′ = c0 +c1 +c3 mod q = −c0 +(c0 +c1)+(c0 +c3) mod q = −Av0 +
Av1 + Av2 mod q = A(−v0 + v1 + v2) mod q.
So, u′ = c0 + c1 + c3 and v′ = −v0 + v1 + v2.

5 Conclusion

Fenghe and Zhenhua [8] tried to construct a provable secure short signature
scheme in the standard model, but their construction and security analysis has
some flaws which lead to the leakage of the secret key. We showed how an
adversary can generate a valid forgery and how he can leak information about
the secret key.

Acknowledgement. This work is supported under CSIR-JRF (File number
09/1032(0022)/2020-EMR-I).

References

1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring.
In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp.
124–134 (1994)

2. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, pp. 197–206 (2008)

3. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25, 601–639 (2012)

4. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13013-7 29

5. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 335–352.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 19

6. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

7. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14623-7 6

8. Fenghe, W., Zhenhua, L.: Short and provable secure lattice-based signature scheme
in the standard model. Secur. Commun. Netw. 9(16), 3627–3632 (2016)

https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-662-44371-2_19
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6

Cryptanalysis with Countermeasure
on the SIS Based Signature Scheme

Komal Pursharthi(B) and Dheerendra Mishra

Maulana Azad National Institute of Technology, Bhopal, India

komalpursharthi.56@gmail.com

Abstract. Digital signatures are widely used in various applications,
including email security, document authentication, and electronic trans-
actions. They play an essential role in ensuring the non-repudiation and
integrity of digital transactions and communication. Motivated by the
progress of developments in quantum computers, researchers are dynam-
ically proposing digital signature schemes that can withstand quantum
attacks. Recently, Soni et al. presented a digital signature protocol that
relies on the difficulty of the shortest integer solution challenge in lat-
tices. This protocol has significantly smaller key and signature sizes than
previously proposed lattice-based protocols. The design is also compact,
simple and elegant. Hence, it is crucial to analyse the security of this pro-
tocol. Thus, we perform cryptanalysis on the Soni et al. scheme, which
indicates that the availability of one valid message-signature pair can
enable an attacker to extract the signer’s secret key. It is a significant
flaw as the singing key is not a one-time key and the one-time use of this
key will lead to its leakage. To overcome this flaw, we suggest a counter-
measure in which the signing key can’t be achieved using any number of
valid message-signature pairs.

Keywords: Lattice based Cryptography · Shortest Integer Solution
Problem · Digital Signature

1 Introduction

Digital signatures are an important topic of evolution and expansion in cyber-
security and cryptography. These signatures are used to verify the authenticity
and integrity of digital documents and messages. Moreover, digital signatures
are a fundamental component of various evolving technologies like blockchain,
cryptocurrencies and many more. Researchers have been working on enhancing
the efficiency and security of digital signatures in these contexts. This includes
optimizing signature verification algorithms for faster transaction processing
and exploring new signature schemes for various applications. Also, experts are
involved in improving the usability of digital signatures and promoting their
adoption, which leads to user-friendly interfaces, mobile device integration, and
legal frameworks.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. Regazzoni et al. (Eds.): SPACE 2023, LNCS 14412, pp. 92–100, 2024.
https://doi.org/10.1007/978-3-031-51583-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51583-5_6&domain=pdf
http://orcid.org/0000-0003-3211-4427
http://orcid.org/0000-0001-8115-6397
https://doi.org/10.1007/978-3-031-51583-5_6

Cryptanalysis with Countermeasure on the SIS Based Signature Scheme 93

Security of the current digital signature schemes relies on the difficulty of
one of the two hard assumptions; integer factorization and discrete logarithm
problem. In 1994, Peter Shor introduced an algorithm [25] to solve these hard
problems. It exploits the principles of quantum mechanics to achieve exponential
speedup in factorization. As a result, all digital signature schemes constructed
on these assumptions would be exhibited as not secure by a highly scalable
quantum computer. Development in quantum computing is slow but unwavering:
the current quantum computers can control about four hundred qubits while
more than several thousand qubits are required to solve the factorization. Some
experts predict that highly scalable quantum computers might become available
within the next decades [3]. In effect, most current-day cryptography will be
broken once high-scale quantum computers become reality.

Motivated by the progress of developments in quantum computers,
researchers are indulging themselves in designing digital signature schemes that
can withstand quantum attacks. These protocols generally come under the ter-
minology “quantum-safe cryptography” or “post-quantum cryptography”. Sev-
eral encouraging pathways like cryptography on lattices, code-based cryptog-
raphy, cryptography on the hardness of multivariate polynomials, isogeny of
elliptic curves and security of hash functions exist towards the construction of
secure asymmetric post-quantum protocols. In particular, the hardness of prob-
lems over lattices seems promising towards the development of quantum secure
schemes. Lattice-based cryptography offers solid theoretical security proofs, var-
ious achievable cryptographic primitives, and an efficiency level that can stand
pre-quantum schemes.

Digital signature schemes constructed over the hardness of Shortest Integer
Solution (SIS) problem [27] in lattices have gained popularity because of their
smaller key sizes, lesser communication rounds and storage requirements and
the feature of easy implementation. Recently, Soni et al. [26] proposed a digital
signature protocol constructed on the challenge of the SIS problem. Their scheme
withstand attacks by a quantum computer and they have proved its security in
a well-established model for quantum adversary. Also, signature size of [26] is
significantly lesser than well proposed lattice based digital signatures [2,8,14,21]
and [28]. As it is an efficient scheme and this field is an evolving field, it is required
to analyse the security of Soni et al. before its adoption.

2 Related Work

Whitfield Diffie and Martin Hellman discuss the first idea of digital signature
protocol based on trapdoor functions, which they presented in 1976 [17]. The
pioneer digital signature algorithm is RSA, proposed in 1978 [23]. RSA is the
most prevalent cryptographic protocol in use today and controls secure data
transactions across open communication channels. Various applications of dig-
ital signature devised after the introduction of RSA [9,22] and [16]. In 1985,
ElGamal proposed a signature scheme based on the hardness of discrete log-
arithm problem [11]. After that, ElGamal was modified from the domain of

94 K. Pursharthi and D. Mishra

natural integers to the domain of Gaussian integers and polynomials over finite
fields to enhance the security [15]. In 1998, Johnson et al. [18] proposed an elliptic
curve digital signature algorithm (ECDSA). It offers higher security with smaller
key sizes. ECDSA was also standardized by NIST in 1999. It is popular in Bit-
coin, SSL/TLS, and smart cards. EdDSA is a recent signature scheme based on
twisted Edwards curves, a particular class of elliptic curves. It was introduced
by Bernstein et al. [6] in 2011. EdDSA has several advantages over ECDSA, such
as faster performance, smaller signatures, and resistance to side-channel attacks.
EdDSA is used in protocols such as Signal, Tor, and SSH. As all these signatures
are either constructed on the factoring hardness (RSA) or the difficulty of the
discrete log challenge (DSA/ECDSA), the security of these signatures might be
seriously weakened in the era of highly scalable quantum computers.

To prevent a collapse of signature protocols, researchers have worked on
building secure digital signatures that do not rely on factorization and discrete
logarithms and that can be expected to be impervious to attacks performed by
quantum computers. In 2009, Chris Peikert introduced Bonsai Trees, which can
be applied to construct an efficient, stateless ‘hash-and-sign’ signature proto-
col in the standard security model [21]. In 2010, Boyen proposed a technique
for adaptive security from hardness on lattices in the standard model [7]. They
obtain fully secure signatures that are easy to implement. In 2012, Lubashevsky
introduced lattice signatures without trapdoors [20]. The size of the key and
signature of this protocol are lesser than in all foregoing schemes of the ‘hash-
and-sign’ signatures. It is also straightforward, needing only a few vector-matrix
multiplications and rejection samplings. Followed by this scheme, Guneysu et
al. [13] presented an implementable digital signature protocol and showed that
this scheme is more optimized than [20] for embedded systems. Moreover, as an
improvement of [20], they lowered the signature size by a factor of two. Addition-
ally, they demonstrated the viability of their scheme by executing an extensible
and cost-effective signing and verification engine. In 2013, Ducas et al. [10] pre-
sented a signature scheme that modifies the rejection sampling algorithm used
in [20]. This new rejection sampling technique takes elements from a bimodal
Gauss distribution, in effect with a new protocol instantiation results in decreas-
ing the deviation of the obtained signatures by a number that is asymptotically
square root in the factor of security. In 2014, Bai and Galbraith [5] introduced
a new compression strategy based on learning with errors. They provided a new
technique to the compression idea of [20]. This proposal is incredibly satisfac-
tory for protocols whose security is based on worst-case standard computational
hard assumptions. Following the scheme [7], Xu et al. [28] demonstrated that
the scheme of Boyen does not satisfy strong unforgeability. In 2015, Alkim et
al. [4] presented a tightly safe signature protocol with good efficiency from stan-
dard lattices. They improved the security of the proposal of [5]. They tightened
the reduction of safety and minimized the primary assumptions of security. In
2016, Akleylek et al. [2] presented the pioneer digital signature protocol with
remarkable efficiency and provably secure exemplified. It can compete with RSA
and ECDSA in performance. In 2018, Gupta and Biswas presented the con-

Cryptanalysis with Countermeasure on the SIS Based Signature Scheme 95

struction of a lattice-based Elgamal signature protocol on the difficulty of SIS
challenge [14]. They showed that their scheme is well protected in the modern
computing environment and achieves strong security characteristics and efficient
execution. Recently, Soni et al. [26] proposed SIS-based signature scheme with
significantly reduced signature and key sizes than [2,21,28] and [14]. The funda-
mental motivation of [26] is to develop encryption and signature schemes based
on lattices with average case hardness that achieves security against existing
attacks and future quantum attacks.

3 Preliminaries

This section discusses the core characteristics and definitions of Shortest Integer
Solution (SIS) along with the various notations employed in this article.

Notations: Z, R denotes the set of integers and real numbers respectively. The
symbols m and n are any integers and q be a large prime number.

Definition 1 (Lattices). Let R
m be the m-dimensional Euclidean space. Let

u1, · · · , un ∈ R
m be a set of linearly independent elements. The lattice L con-

structed by u1, · · · , un is the set of linear combinations of u1, · · · , un with coef-
ficients in integers [12].

L = {b1u1 + b2u2 + · · · + bnun : b1, b2, · · · , bn ∈ Z}.

– A basis for L is any set of independent vectors that constructs L. Any two
such sets have the same cardinality.

– The integer n is known as rank and m is known as dimension of the lattice.

Definition 2 (q-ary Lattice). L is a q-ary lattice if qZn ⊆ L ⊆ Z
n [12].

Definition 3 (Shortest Vector Problem). Given a lattice L(B), find a (non-
zero) vector Bx (with x ∈ Z

n) such that ||Bx|| ≤ λ1, where λ1 = minx,y∈L,x �=y

||x − y|| = minx∈L,x �=0 ||x|| [19].

Definition 4 (Shortest Independent Vectors Problem (SIVP)[1]).
Given a lattice L(B), find n linearly independent lattice vectors Bx1, · · · , Bxn

of length (at most) maxi||Bxi|| ≤ λn, where

λi = min{r : dim span(B(r)
⋂

L) ≥ i} and
B(r) is ball of radius r centered at zero.

Definition 5 (Shortest Integer Solution Problem). Let A ∈ Z
n×m
q , q=

poly(n), m = Ω(n log q), then for given matrix A, finding “short” (low norm)
vector x such that Ax = 0 mod q ∈ Z

n
q is SIS problem [27].

96 K. Pursharthi and D. Mishra

4 Soni et al.’s Signature Scheme

Here, we present Soni et al.’s signature protocol [26]. The following collection
of matrices are considered in their scheme B ⊂ Z

m×n
q , T ⊂ Z

n
q , Pu ⊂ Z

m
q and

P ⊆ Z
n
q . Here, B is the collection of all modular matrices of order m × n, T is

the collection of all n-tuple modular vectors, Pu is the public key space, P is the
message space. This protocol comprises of four phases described below.

– Setup Phase: Choose m,n ∈ Z, q as large prime such that n ≥ m log q, hash
H : Zm

q → Z
m
q and message space is of dimension Z

n
q .

– Key Generation
• Signer chooses random matrix B ∈ B ⊂ Z

m×n
q and a vector t ∈ T ⊆ Z

n
q .

• Computes Pu = tT .BT ∈ Pu ⊆ Z
1×m
q .

• Private Key → t, Public Key → B, Pu.
– Signing a message P∈ Z

n
q

• Selects two random vectors r, s ∈ Z
m
q

• Computes G1 = sT r ∈ Zq and G2 = PT − G1t
T

• Sends (H(P), (G1, G2)) to verifier.
– Verification of (H(P), (G1, G2))

• Verifier computes W = G1.Pu and verify W ∈ Z
1×m
q

• Computes PT
1 BT = (G2B

T + W)mod q
• Verifies H(PT

1 BT) ?= H(PTBT)
• If verified, then signature is valid.

5 Cryptanalysis

We analyse a flaw in Soni et al.’s signature scheme [26]. As message-signature
pairs are always available in the public domain, any adversary can access these
pairs.

Suppose (P,(G1, G2)) is a valid message- signature pair. According to above
scheme, signer calculates G2 = PT − G1t

T . Now, we can see

G2 = PT − G1t
T

=⇒ G2 − PT = −G1t
T

=⇒ −G2 + PT = G1t
T (1)

Since, G1 ∈ Zq. So, with overwhelming probability G−1
1 exist as Zq is a field.

So, from Eq. (1), we can compute the secret value t as tT = G−1
1 (−G2 + PT).

Here, we observe that from any available valid message-signature pair, an
attacker can calculate the signer’s secret key.

This attack can be efficiently performed as it requires only the following
efficient operations:

– One transpose of a vector to calculate PT .
– One addition operation to add two vectors −G2 and PT .

Cryptanalysis with Countermeasure on the SIS Based Signature Scheme 97

– One integer inverse in Zq.
– One multiplication operation between integer modulo q and a vector (−G2 +

PT).

Hence, with just one valid message-signature pair, we can efficiently extract the
signer’s secret key and create a valid sign on any message of our choice.

For instance, we can show retrieving the secret key in the toy example of
digital signature presented in [26].
Public parameters taken in [26] for signature generation are m =2, n=3 and

q=11. Let B =
[

5 6 1
1 0 3

]

and secret key t =

⎡

⎣
4
9
3

⎤

⎦ then the public key is Pu=

tT .BT=[0 2]. The sender signed the message P =

⎡

⎣
8
6
9

⎤

⎦ by using r =
[

2
3

]

and

s =
[

6
8

]

. The signature according to [26] is

(G1, G2) = (sT r, PT − G1t
T) = ([3], [710]).

Now, when adversary gets message-signature pair (P,(G1, G2)), it can extract
secret key t from this pair.
As G2 = PT − G1t

T =⇒ G2 − PT = −G1t
T =⇒ −G2 + PT = G1t

T

=⇒ -[7 1 0] + [8 6 9] = G1t
T =⇒ [1 5 9] = 3tT

=⇒ 3−1[1 5 9] = tT = 4[1 5 9] = [4 20 36]= [4 9 3] =⇒ t =

⎡

⎣
4
9
3

⎤

⎦ .

6 Countermeasure

During our observation, we realised that the attack was occurring due to the
inappropriate selection of parameters in the signing and setup phases. Our coun-
termeasure does not include any change in the key generation phase. We work
on the improvement of the setup, signing and verification phases as follows:

– Setup Phase: Choose m,n ∈ Z, q as large prime such that n ≥ m log q, hash
H : Zn×m

q → Z
m
q and message space is of dimension Z

n×n
q .

– Signing a message P∈ Z
n×n
q

• Selects two random vectors r, s such that r=(0,r1, r2, · · · , rn−1) ∈ Z
n
q as

(r1, r2, · · · , rn−1) ∈ Z
n−1
q and s∈ Zq.

• Computes G1 = srT ∈ Z
1×n
q and G2 = P − GT

1 tT

• Sends (H(P), (G1, G2)) to verifier.
– Verification of (H(P), (G1, G2))

• Verifier computes W = GT
1 .Pu and verify W ∈ Z

n×m
q

• Computes P1B
T = (G2B

T + W)mod q
• Verifies H(P1B

T) ?= H(PBT)
• If verified, then signature is valid.

98 K. Pursharthi and D. Mishra

6.1 Correctness

To show that the signature technique is feasible, it is enough to prove that P1B
T

is congruent to PBT .

P1B
T = G2B

T + W
= (P- GT

1 tT) BT+ GT
1 .Pu

= PBT - GT
1 tTBT + GT

1 .Pu

= PBT - GT
1 .Pu + GT

1 .Pu

= PBT .

7 Discussion

The established security components of [26] adjuncts in our countermeasure
because we have modified only the dimension of message space and hash input.
In effect, we can see that now the dimension of G1 is 1 × n, it is an element
of Z

n
q . So, it belongs to Zq × Zq × · · · × Zq (n times cartesian product) and

it is a zero divisor in this structure as G1 = srT will have first component
equals to zero as per the selection of r in our construction. For zero divisor,
we cannot calculate the multiplicative inverse [24]. Thus, G1 will not possess
a multiplicative inverse in Z

n
q . Hence, adversary will not be able to compute

signer’s secret key. Moreover, as the key generation part of both techniques is
identical, the advantage of smaller key sizes remains, and it resists quantum
attacks because of the SIS challenge on lattices. However, it is required in future
to explore the proof of security and other efficient countermeasures.

The same number of similar matrix operations as in [26] pertains to the
advantage of storage, key sizes and computation overhead in our technique com-
peting with other lattice-based signature schemes. As signature in our counter-
measure is (G1, G2), where G1 ∈ Z

1×n
q and G2 ∈ Z

n×n
q , so signature size is n2+n,

which is slightly greater than signature size of [26], but signing key is secured
now. However, one could explore the possibility of reducing signature size and
improving efficiency without diluting the security. The comparison of key and
signature sizes is provided in Table 1.

Table 1. Comparison of key and signature sizes

Scheme Signing Key Verification Key Signature

[26] n nm + m 1 + n

Countermeasure n nm + m n2 + n

Cryptanalysis with Countermeasure on the SIS Based Signature Scheme 99

8 Conclusion

This article presented a cryptanalysis on a recently proposed lattice-based dig-
ital signature scheme on SIS hardness. The cryptanalysis shows the retrieval
of signer’s key using one valid message-signature pair. Moreover, we have sug-
gested a technique to overcome the described attack without compromising any
established security component of the scheme. As the key generation part of
the proposed countermeasure is identical to that of Soni et al., the advantage of
smaller key sizes is sustained. However, the signature size has slightly increased
in order to secure the signing key. In future, one may reduce the signature size
with adequate security.

References

1. Aggarwal, D., Chung, E.: A note on the concrete hardness of the shortest indepen-
dent vector in lattices. Inf. Process. Lett. 167, 106065 (2021)

2. Akleylek, S., Bindel, N., Buchmann, J., Krämer, J., Marson, G.A.: An efficient
lattice-based signature scheme with provably secure instantiation. In: Pointcheval,
D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 44–60.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31517-1 3

3. Alagic, G., et al.: Status report on the second round of the NIST post-quantum
cryptography standardization process. US Dept. Commer., NIST 2 (2020)

4. Alkim, E., Bindel, N., Buchmann, J., Dagdelen, Ö., Schwabe, P.: TESLA: tightly-
secure efficient signatures from standard lattices. IACR Cryptol. ePrint Arch.
2015, 755 (2015)

5. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

6. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012)

7. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13013-7 29

8. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25, 601–639 (2012)

9. Davies, D.W.: Applying the RSA digital signature to electronic mail. Computer
16(02), 55–62 (1983)

10. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

11. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

12. Goldwasser, S., Micciancio, D.: Complexity of Lattice Problems: A Cryptographic
Perspective, vol. 671. Springer, Cham (2002)

13. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8 31

https://doi.org/10.1007/978-3-319-31517-1_3
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-33027-8_31

100 K. Pursharthi and D. Mishra

14. Gupta, D.S., Biswas, G.: Design of lattice-based ELGamal encryption and signa-
ture schemes using sis problem. Trans. Emerg. Telecommun. Technol. 29(6), e3255
(2018)

15. Haraty, R.A., El-Kassar, A.N., Shebaro, B.M.: A comparative study of ELGamal
based digital signature algorithms. J. Comput. Methods Sci. Eng. 6(s1), S147–S156
(2006)

16. Harn, L.: Batch verifying multiple RSA digital signatures. Electron. Lett. 34(12),
1219–1220 (1998)

17. Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6),
644–654 (1976)

18. Johnson, D.B., Menezes, A.J.: Elliptic curve DSA (ECDSA): an enhanced DSA.
In: Proceedings of the 7th Conference on USENIX Security Symposium, vol. 7, pp.
13–23 (1998)

19. Khot, S.: Hardness of approximating the shortest vector problem in lattices. J.
ACM (JACM) 52(5), 789–808 (2005)

20. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

21. Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography). Cryptol.
ePrint Arch. (2009)

22. Qiao, G., Lam, K.-Y.: RSA signature algorithm for microcontroller implementa-
tion. In: Quisquater, J.-J., Schneier, B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp.
353–356. Springer, Heidelberg (2000). https://doi.org/10.1007/10721064 32

23. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

24. Shepherdson, J.: Inverses and zero divisors in matrix rings. Proc. Lond. Math. Soc.
3(1), 71–85 (1951)

25. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

26. Soni, L., Chandra, H., Gupta, D.S., Keval, R.: Quantum-resistant public-key
encryption and signature schemes with smaller key sizes. Cluster Comput.,1–13
(2022)

27. Wang, S., Zhu, Y., Ma, D., Feng, R.: Lattice-based key exchange on small integer
solution problem. Sci. China Inf. Sci. 57, 1–12 (2014)

28. Xu, Y., Tian, M., Huang, L., Yang, W., Shen, X.: Improvement of a lattice-based
signature scheme. J. Inf. Hiding Multim. Signal Process. 5(1), 41–46 (2014)

https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/10721064_32

Vulnerability of Dynamic Masking in Test
Compression

Yogendra Sao , Debanka Giri , Soham Saha , and Sk Subidh Ali(B)

Indian Institute of Technology Bhilai, Durg 491001, India
{yogendras,debankagiri,sohamsaha,subidh}@iitbhilai.ac.in

Abstract. Scan-based Design for Testability (DfT) ensures the testabil-
ity of chips while providing observability and high fault coverage. In the
case of security-critical applications, an attacker can misuse the scan-
based DfT of a chip as a backdoor and reveal the secret information
embedded inside the chip. Even advanced test infrastructures such as
X-compactor and X-masking are vulnerable to such an attack. In this
work, we perform a detailed security analysis of one of the DfT tech-
niques known as the Embedded Deterministic Test (EDT), which is used
in the test compression tool Tessent TestKompress. EDT uses dynamic
masking along with an XOR-based compactor to achieve test compres-
sion. The existing state-of-the-art attack is shown to be effective against
dynamic masking. However, the attack success rate is highly constrained
by the scan chain configuration, with a 20.53% success rate in the worst-
case scenario. In this paper, we propose an improved attack by leveraging
signature analysis. The advantage of our attack is that it’s a determinis-
tic attack on dynamic masking, which can retrieve the secret key with a
100% success rate. The attack is independent of the internal scan infras-
tructure and can work even in the presence of a compactor.

Keywords: AES · Security · Scan Attack · Design for Testability ·
Scan Chain · Static Masking · Dynamic Masking · Compactor · XOR
Compression

1 Introduction

Scan-based DfT is a popular technology that is associated with the field of circuit
testing, for examining manufacturing-related defects, providing high testability
and high fault coverage. In the test mode, the internal flip-flops of the chip
are converted into fully accessible scan cells and connected to a scan chain. An
attacker can exploit it to get the intermediate response of a cipher to reveal the
secret key of the cipher embedded inside the crypto chip [18]. The attack by
which an attacker bypasses the weakness of these scan infrastructures is known
as a scan attack.

The traditional scan attacks [18,19] rely on mode switching. Therefore, a
mode-reset countermeasure [7] was proposed to prevent scan-based attacks by

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. Regazzoni et al. (Eds.): SPACE 2023, LNCS 14412, pp. 101–116, 2024.
https://doi.org/10.1007/978-3-031-51583-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51583-5_7&domain=pdf
http://orcid.org/0000-0003-1392-319X
http://orcid.org/0009-0000-0250-1499
http://orcid.org/0009-0000-1318-7191
http://orcid.org/0000-0001-5942-4455
https://doi.org/10.1007/978-3-031-51583-5_7

102 Y. Sao et al.

flushing the data in the round register of Chip-Under-Test (CUT) while switch-
ing from normal mode to the test mode. Later on, test-mode-only attack [1] was
proposed, which is performed using only the test mode without mode switching.
Another kind of countermeasure was proposed in [19] by introducing a mirror key
register (MKR), which is used in test mode at the time of testing and contains
a dummy key value. However, it does not support online testing.

VIm-Scan [9] authenticates the testing process using a pattern matching
through the first M consecutive test vectors each of N bits. The security of
VIm-Scan can be increased by increasing the value of M and N at the cost of
area overhead. There are other secure and interesting countermeasures based on
obfuscation of scan data [2,3] and encryption of scan data [17]. While encryption-
based countermeasures are secure, they incur a huge area overhead, whereas the
obfuscation techniques with low area overhead are not proven to be secure.

Most of the testing time is consumed for shifting in and out the scan data,
to speed up the testing, multiple scan chains are introduced. Furthermore, to
reduce the test data, multiple scan chains with decompressor and compactor are
used in advanced DfT infrastructure to achieve time and space compaction for
reducing test time and cost. Moreover, the compaction is often combined with
additional logic, such as X-tolerance, X-masking, etc., to remove the effect of
some unknown states (X-states or don’t care) from the compacted output.

These advanced DfT structures were considered secure against scan-based
attacks [8]. Later on, advanced attacks are shown against these advanced DfT
structures [4–6,13,14,16]. The signature-based attack was proposed in [4,13]
against X-masking. In [5,6], a Hamming weight-based attack is proposed on
different test compression techniques, such as X-tolerance, static masking, and
dynamic masking, used in commercial EDA tools provided by popular EDA
vendors: Synopsys, Cadence, and Siemens. The attacks proposed in [5,6] are
probabilistic, having a lower success rate. Thus, a deterministic attack on static
masking has been proposed recently in [16], which is successful whenever at least
6 bits corresponding to each AES word are observable. However, a deterministic
attack on dynamic masking is still unexplored.

Embedded deterministic test (EDT) [12] is a widely used advanced DfT tech-
nique based on dynamic masking offered by Siemens. An in-depth security anal-
ysis of EDT composed of dynamic masking was done in [5], and they suggested
the designer to have a lower number of active slices to provide security to their
chips. We refine the security analysis of EDT by proposing an improved attack
on dynamic masking, which is successful even when at least one of the scan
chains is unmasked. Our contributions to this paper are:

1. We perform a security analysis of the Embedded Deterministic Test employed
with the dynamic masking.

2. We propose a state-of-the-art attack on dynamic masking with compaction
having a 100% success rate.

3. We perform an analysis of our attack against different levels of masking and
compaction for different scan architectures to validate our results.

Vulnerability of Dynamic Masking in Test Compression 103

2 Background

2.1 AES

Advanced Encryption Standard (AES) is a symmetric key encryption algorithm,
which is available in different key sizes, AES-128, AES-192, and AES-256 having
128, 192, and 256 bit key, respectively. Figure 1 shows the AES operations with
n rounds, where n can be 10, 12, 14. Each round is composed of the following
four operations, except the last round, which does not have the MixColumns
operation:

1. SubBytes: This is the only non-linear substitution procedure where each byte
of the 4 × 4 state matrix is replaced using an 8-bit substitution box.

2. ShiftRows: In this step, each row of the state matrix is shifted to the left where
shift operation involves shifting 0, 1, 2, and 3 number of bytes in respect of 4
rows of the input matrix.

3. MixColumns: This is a mixing operation, where the state matrix is multiplied
with a 4 × 4 constant matrix.

4. AddRoundKey: This is the XOR operation between the state matrix and the
round key.

There is a key whitening phase before the above four operations, where the input
plaintext is XORed with the AES key.

Fig. 1. AES Block Diagram.

104 Y. Sao et al.

2.2 Scan Based DfT

In scan-based DfT, the internal flip-flops of the CUT are converted into fully
accessible scan cells (Scan Flip-flops (SFF s) in Fig. 2) and connected in scan
chains which can be treated as a configurable shift register. The scan chain
infrastructure shown in Fig. 2 has a Test Control (TC) pin connected to a MUX
used to control the mode of CUT. The scan in (SI) and Scan out (SO) pins are
used to shift in test vectors and shift out the captured responses to and from the
scan chain, respectively. As shown in the figure, depending on the test control
input line, the input to a scan cell can either be from the round function (in
normal mode) or from the previous scan cell (test mode). Scan enables greater
access to the chip’s internal logic, leading to high test coverage.

Fig. 2. Scan Architecture.

2.3 Advanced DfT Infrastructure

In the scan chain, there may be some flip-flops holding some unpredictable values,
such as the previous state, unknown values of buses, etc. These unpredictable
values are called X-States or unknown states. There are two methods available
to handle X-states: X-masking and X-tolerance.

X-Masking. In X-masking, a mask is added to the CUT to filter the X-states.
Masked CUT includes a mask decoder and a mask input. The mask is achieved
by adding the desired number of AND gates to the scan chain, and these AND
gates are connected to a mask decoder as shown in Fig. 3. The mask can be
either static or dynamic.

– Static masking: The static masking always generates a fixed mask value for
the entire test with the help of a mask decoder. In order to generate a static
mask for a scan chain, the input vector supplied to the mask decoder remains
static for the entire test.

Vulnerability of Dynamic Masking in Test Compression 105

– Dynamic masking: Dynamic masking always generates different mask values
at each clock cycle throughout the test process with the help of a mask
decoder. In order to generate a dynamic mask for a scan chain, the input
vector supplied to the mask decoder is changed every time for the entire test.

Compaction. Compaction is used to compress the output of the scan chain.
In order to achieve the compaction scheme, the output of multiple scan chains
is XORed with each other to produce a single output.

Fig. 3. X-Masking along with the Compactor: P is input plaintext, R is the round
output, S is the masked round output, E is the compacted test output, KFF s are the
Key Flip Flop containing information related to the target key byte, the number of
active scan chains is 3, and the number of active slices is 3, where active scan chain
and active slice contains at least one KFF .

3 Proposed Attack Principle

A typical X-masking scheme is shown in Fig. 3. There can be multiple scan chains
(scan cells in rows) and multiple slices (scan cells in columns). A flip-flop whose
value depends on the targeted key byte (i.e., flip-flops of the round register
containing differential information) is known as a Key Flip-flop (KFF) [5,6],
and there can be at most 32 KFF s at a time in the scan chain involved in the
differential analysis of AES one-round response for a one-byte input difference.
A scan chain or a slice with at least one KFF is known as an active scan
chain or active slice. There are 3 active scan chains and 3 active slices in Fig. 3.
There can be numerous combinations of active scan chains and active slices. To

106 Y. Sao et al.

explain our attack analysis and for the sake of simplicity, we consider multiple
scan architecture as shown in Table 1 with each of the active slices or active scan
chains completely filled with KFF s. Let us consider one of the scenarios of these
scan architectures, where all 32 significant bits of the round register (an AES
word) are in a single slice with a 32 number of active scan chains. In this case,
32 bits of the round response will be shifted out in just one shift cycle and will
be masked with a 32-bit mask value. The mask value will determine which scan
chain will be blocked and which one will pass. In the case of static masking, if a
scan chain is blocked due to masking, it will remain blocked throughout the test
process as the mask value is static. Whereas in dynamic masking, the value of
the mask depends on the test input and can change dynamically at each clock
cycle (or at regular intervals), blocking different scan chains in each shift cycle.

The test response corresponding to a test input may be distributed over
multiple slices containing don’t care (X-states). Dynamic masking provides a
more sophisticated way of masking by dynamically changing the mask for each
slice to block only don’t care bits. However, the same sequence of mask patterns
will be applied for the same test response if the same test input is applied
again. Therefore, a repetitive application of the same test input vector will fix
the effective mask for a test response, which can be considered a special case
of static masking, where all of the scan cells are placed in a single slice. Now,
by varying the first byte of the plaintext for all possible 256 values, a partial
one-round response can be observed, and a differential attack can be launched
on this partial information as follows:

1. A sequence of plaintext pairs is formed with a varying difference ranging from
0 to 255 in their first byte. Here one plaintext P ′ is kept fixed, such that the
first byte of the plaintext P ′ is set to 0, the other plaintext P is varied by
varying its first byte from 0 to 255 to form a sequence (0, 0), (1, 0), (2, 0)...,
(255, 0), then differences in their outputs are arranged in the same sequence.

2. Any one of the scan cells is identified for which a difference is observed. Note
that there can be only a maximum of 32 such scan cells (bit positions) on
which a difference is observed. In the case of masking with compaction, the
difference can be observed in the compacted output.

3. The sequence of 1-bit differences in the identified bit position in step (2)
can be used as the signature of CUT , which needs to be matched in the
signature table(s) containing 256× 32 signatures which increases up to 256×
255 (generated in Sect. 4) in the presence of compaction, to retrieve the first
byte of the key.

4. Similarly, the input difference is applied in the rest of the 15 bytes of the
plaintext in step (1), and by repeating step (1) to (3), the other 15 bytes of
the key can be retrieved.

4 Attack on Dynamic Masking with Compaction

We consider a CUT with dynamic masking with compaction as shown in Fig. 3 .
The detailed attack procedure based on the attack principle (Sect. 3) is explained

Vulnerability of Dynamic Masking in Test Compression 107

in this section. Before proceeding to the attack part, we consider the following
assumptions similar to [6]:

1. Dynamic masking scheme is applied on an iterative implementation of AES-
128 similar to Fig. 3.

2. The attacker has full control over the SI and TC pin, can load the scan chains
with any test vector through the SI line and can apply any desired plaintext
through the chip’s primary inputs (PI).

3. As the value of the mask depends on the test inputs, the attacker can load the
same test vector multiple times to apparently fix the mask value for multiple
test responses.

4. The scan chain includes the complete 128-bit round register, out of these 128
scan cells, there will be 32 KFF s based on the targeted key byte.

4.1 Basics of Signature-Based Attack

A basic signature attack is a two-phase attack. In the first phase, a signature
table is generated based on some observable output difference. For example, one
can observe only n-bits of the output difference. In the best case, complete output
difference may be observable, which can uniquely identify the key. In the case of
partial information, a single output difference may not be sufficient. Therefore,
we can apply 256 plaintext pairs with a varying difference in their first byte
similar to Sect. 3 and observe 256 partial output differences. These 256 output
differences form a signature. Now, in the signature table generation phase, we’ll
set a key byte value, and apply 256 possible plaintext pairs to observe the output
differences to generate one of the signatures. Similarly, we’ll generate the entire
table for all 256 values of a key byte. In the second phase, we’ll apply the same
set of 256 plaintext pairs to the CUT and observe the output differences as a
signature. Then, we can match this signature in the signature table to get a key
byte. This attack works even in the worst case when only 1 bit of the output
difference is observable. This makes it suitable against partial scan designs, where
the exact bit positions of the round register in the scan cell are unknown.

The proposed attack uses the above signature-based attack, in two phases
(online and offline phase). The online phase is the only phase that requires CUT
to collect test responses corresponding to 256 desired plaintexts applied to the
CUT by varying only one byte of the plaintext. Whereas, offline phase is used
to create a signature from CUT responses and match it in the signature table(s)
for key recovery. In the rest of the paper, we show how to recover the first byte of
the AES key by varying the first byte of plaintexts in the online phase. Similarly,
the other 15 bytes of the key can be recovered by targeting the remaining 15
bytes of the plaintexts in the online phase.

4.2 Online Phase: Collecting CUT Responses

The main challenge in dynamic masking is to identify the unmasked bits from
CUT responses. If the mask values are changed for each of the CUT responses,

108 Y. Sao et al.

it is very difficult to identify the unmasked bits used in the key recovery process.
Therefore, a test vector is kept fixed in CUT to fix the mask value for multiple
CUT responses as discussed in Sect. 3.

Algorithm 1 shows the sequence of steps followed in the online phase. Initially,
256 different plaintexts are created from a random plaintext P by varying only
its first byte for all 256 possible values (Pi = P , where P 0

i = i and 0 ≤ i ≤ 255).
These 256 plaintexts are used as the inputs for the Algorithm 1. Before that, a
test vector is chosen randomly and stored in a variable TV at the start of the
Algorithm 1, and is kept fixed as long as the algorithm runs. In each iteration,
the chip is first switched to the test mode (TC = 1), and the above-chosen
test vector (TV) is shifted into the scan chain (SC) as shown in steps 1 and 1.
Then, the chip is switched to normal mode (TC = 0), and one of the plaintexts
(Pi) is applied through primary input pins PI. The CUT is run for one round
of AES to capture its one round masked and compacted response in the scan
chain (SC) as shown in steps 1 to 1. ENC CUT () in step 1 shows the one-
round encryption operation performed by CUT on a given plaintext, where the
key used for encryption is the embedded key of the CUT . Finally, the chip is
switched to the test mode, and CUT response loaded in the scan chain (SC) is
shifted out and stored in a variable Ei corresponding to a plaintext Pi, which is
shown in steps 1 and 1. The above steps are repeated for 256 plaintexts in the
loop, and at the completion of the loop, 256 CUT responses E0, E1, . . . , E255 for
each of the 256 plaintexts are obtained as the output of the Algorithm 1, which
becomes inputs for the offline analysis. Figure 4 shows how a CUT response is
obtained by applying a plaintext with a fixed test vector when CUT is run for
one round of AES.

Algorithm 1: Online Phase
Input : Pi(0 ≤ i ≤ 255), Pi is the plaintext applied at CUT , where P j

i ← i
and considering the default value of j = 0.

Output: Ei(0 ≤ i ≤ 255), where Ei is the one round response from CUT with
respect to Plaintext Pi(0 ≤ i ≤ 255)

TV ← Random()

for i ← 0 to 255 do
TC ← 1 /*Switching to the test mode*/

SC ← TV /*Consecutive shift cycles to load the test vector*/

TC ← 0 /*Switching to the normal mode*/

PI ← Pi /*Apply plaintext through Primary Input*/

SC ← ENC CUT (PI) /*Capture one round response*/

TC ← 1 /*Switching to the test mode*/

Ei ← SC /*Consecutive shift cycles to Shift out CUT response */

Vulnerability of Dynamic Masking in Test Compression 109

Fig. 4. Online Procedure on CUT

4.3 Offline Phase

The offline phase consists of three steps. In the first step, the required signature
tables are built by simulating the first round of AES with predetermined 256
plaintexts, as mentioned in the online phase. In the second step, the same sets of
plaintext are applied to the CUT , and the corresponding signature is observed.
In the third step, the key byte is recovered by matching the CUT signature with
the signature tables.

Fig. 5. Offline Procedure

Signature Table Generation. The first step in the offline phase is to build
signature tables, where the row of the table will have a unique signature corre-
sponding to each possible key byte value. Let us assume that the signature is
corresponding to only one mask, whose value is m.

If we consider the dynamic masking without compaction, anyone unmasked
bit from CUT response will be sufficient to reveal the key by matching at most
256×32 signatures. However, if the masked response is further compacted using
XOR-tree as shown in Fig. 3, then only the parity of round output will be observ-
able. Thus, the signature obtained using 1-bit parity of CUT responses may not
match in 32 signature tables corresponding to each of the individual bit positions
of an AES word, as the signature created using 1-bit parity is a combination of
32 signatures from 32 different signature tables corresponding to individual bit

110 Y. Sao et al.

positions. Since there can be a maximum of 32 KFF s in the scan chain, which
can be masked with 232 different values of mask. Hypothetically, there can be
232 possible signature tables corresponding to 232 mask values for a fixed value
of the key. However, experimentally, it is found that there are repetitions of sig-
natures for 232 different masks, and only 28 masks applied to the first byte of
round output is sufficient to generate 256 unique signatures, where one of the
signatures is for mask 0, where no output is observed and can not be used to
recover a key. So, using 255 masks (except mask 0), 255 different signature tables
can be generated, each having 256 signatures corresponding to 28 possible values
of the key, with a total of 256 × 255 unique signatures. These signatures can be
matched with the signature created from CUT responses to get the key.

Now, the signature table is generated using Algorithm 2. Initially, all 16 bytes
of the mask M are set to zero. Then, the first loop is run for all 28 possible values
of the first byte K0 of the key K while keeping other bytes of the key constant.
The second loop is for mask M , where the first byte M0 of mask M is varied
from 1 to 255 running the loop 255 times. The third loop is for plaintexts, where
256 different plaintexts are created by varying their first byte P 0

i of plaintext Pi,
while the other 15 bytes of the plaintexts are kept constant. Using this newly
created plaintext along with the key K, AES is run for one round using the
function ENC(), and the one round output is stored in a variable R, while the
second plaintext P ′ from plaintext pair is chosen as P0, effectively selecting R0 as
R′. The mask M is applied on both R and R′ to get S and S′ as masked output,
respectively. S and S′ are further compressed using a function PARITY () to
get their parities, which are stored in E and E′, respectively. By performing an
XOR operation between 1-bit E and E′, one bit of the signature is stored in the
signature corresponding to a key byte and a mask value (in the first byte). On
completion of the innermost loop, one complete signature is generated, which is of
size 256 bits. At the completion of the second loop, 255 signatures corresponding
to a fixed value of key byte will be stored in the 255 different signature tables
for 255 values of mask M . And, finally, at the end of the first loop, 256 × 255
signatures are generated for 255 signature tables, where one of the signatures
represented as SIG TABk,m is the signature for a key byte value k, and a mask
value m in the first byte of mask M keeping other bytes of M as zero.

Signature Generation. The second part of the offline phase is to create a
signature using CUT responses. To generate a signature from CUT responses in
the offline phase, we can directly create a signature using 1-bit CUT responses,
as shown in Algorithm 3. The obtained signature can be stored in the variable
SIG CUT , which is matched in the signature table to reveal the key.

Key Recovery. Now, SIG CUT can be matched with 256 × 255 signatures of
255 signature tables. If a signature SIG TABk,m matches with SIG CUT , then
the first key byte can be recovered as k, as shown in Algorithm 4. Similarly, other
15 bytes of the key can be obtained by targeting other bytes of the plaintext in
the online phase. Note that the signature tables generated by targeting the first

Vulnerability of Dynamic Masking in Test Compression 111

byte of the key and plaintext are sufficient and reusable and can reveal any of
the key bytes using the signature from CUT responses, targeted at any byte of
the plaintext in the online phase. The flowchart for the offline phase is shown in
Fig. 5, where 256× 255 signatures will be generated corresponding to a key byte
and mask value.

A complete picture of the attack with an example is shown in Fig. 6, where
a signature from CUT responses is matched in the signature table, matching it
with one of the signatures corresponding to a key byte k = 255.

Algorithm 2: Signature Table Generation
Output: SIG TAB as a Signature Table of size 256 × 255
Mn ← 0, ∀n ∈]0, 15[/*Mn is the nth byte of M*/

for k ← 0 to 255 do

K0 ← k /*Kj is the jth byte of K*/
for m ← 1 to 255 do

M0 ← m
for i ← 0 to 255 do

P 0
i ← i

Ri ← ENC(K,Pi)
S ← Ri & M

S′ ← R0 & M
E ← PARITY (S)

E′ ← PARITY (S′)

SIG TABi
k,m ← E ⊕ E′

Algorithm 3: Generating Signature from compacted CUT Response
Input : Ei(0 ≤ i ≤ 255), where Ei is the response of CUT with respect to

Plaintext Pi(0 ≤ i ≤ 255);
Output: SIG CUT
for i ← 0 to 255 do

SIG CUT i ← (Ei ⊕ E0)

112 Y. Sao et al.

Algorithm 4: Match Signature of CUT in Signature Table
Input : SIG CUT , SIG TAB
Output: KEY BY TE

for k ← 0 to 255 do
for m ← 1 to 255 do

if (SIG CUT = SIG TABk,m) then
KEY BY TE ← k

Fig. 6. Attack on dynamic masking with compaction: CUT signature is matched in
the signature table, and the recovered key is 255.

5 Security Analysis of Embedded Deterministic Test
(EDT)

Dynamic masking with an XOR-based compaction is used in Embedded Deter-
ministic Test (EDT) [10–12], as shown in Fig. 3. Mentor Graphics test compres-
sion tool Tessent TestKompress uses EDT [5], where XOR-tree is used for space
compaction. The value of the mask depends on the test inputs and can vary
frequently as per the mask clock. In the worst case, it can vary at each shift
cycle, masking differently for each of the slices.

The main reason for the successful attack is the input-dependent mask, which
can be fixed by applying the same test vector multiple times. The proposed
attack can be thwarted if the mask values are generated randomly and cannot be
controlled by the attacker. Thus, the designer should not depend completely on

Vulnerability of Dynamic Masking in Test Compression 113

the EDT logic of dynamic masking and should adopt additional countermeasures
to provide security against scan-based attacks. One simple solution is to block
primary inputs in test mode; in this case, the attacker would not be able to apply
the desired plaintexts through the primary inputs and must apply the plaintexts
through the scan input pin SI as a test vector. For differential analysis, it has to
apply different plaintexts, therefore changing the mask values. In this case, the
proposed attack could be thwarted. To block the primary inputs in test mode,
the 128 primary input lines can be controlled using 128 AND gates, where the
other input of the AND gate is the output of a NOT gate fed by TC (Test
Control) line in 2. In normal mode (TC = 0), the one input of AND gates
will be 1, and the primary input will pass through it and will not affect the
chip’s working in normal mode. In the test mode (TC = 1), one input of AND
gates will be 0, restricting primary inputs in the test mode. It will need only
128 AND gates and one NOT gate, with a total 129 number of additional gates
requirement. The other solution could be to link the test vector and the plaintext
(from primary input) for mask generation. In this case, the input test vector can
be concatenated with the inputs from the primary inputs for mask generation.
For a different plaintext, different masks will be generated, and the proposed
attack can be thwarted. To implement this, no additional gate will be required
for concatenation. However, it may require minor changes in mask generation
logic.

6 Results and Comparison

We simulated our proposed attacks on dynamic masking with compaction with
the help of C programming language on a system having the configuration of
Intel(R) Core(TM) i5-8250U CPU @ 1.60 8 core, 8 GB RAM, loaded with
Ubuntu 20.04.2 LTS operating system. The attack was launched for 6 differ-
ent combinations of active scan chains and active slices as shown in Table 1. We
tried to simulate the CUT for the online phase similar to [5], we implemented one
round of AES in C. The mask pattern for each of the slices was chosen randomly
using the pseudo-random function and is kept fixed assuming a fixed test vector
is applied while applying each of the 256 plaintexts. This mask is applied on AES
one-round output using bitwise AND operation. The masked output is further
compacted with different compression ratios using bitwise XOR operation. For
the sake of simplicity, we consider scan chains consisting of only KFF s. One
round of compacted masked outputs is collected, corresponding to 256 plain-
texts. Then, a signature SIG CUT was created and matched in the signature
table using the methods proposed in Sect. 4, and the first byte of the AES key
was recovered correctly. Other 15 bytes of the key were recovered by targeting
other bytes of the plaintexts in the online phase.

The attack result is shown in Table 1. Although Fig. 3 shows the worst-case
scenario of the compaction, where only parity of the masked output is observ-
able. As the proposed attack requires only a one-bit compacted output of a
partial one-round response, in the case of multiple bits after compaction, any

114 Y. Sao et al.

one of the bits can be targeted to generate a signature from CUT responses.
Different compression ratios can be achieved using multiple slices or by XORing
a group of scan chains. This attack is equally applicable in both of the cases, as
both the cases are equivalent, either mask some of the KFF s before compaction
or ignore compacted outputs from those KFF s. Therefore, the attack results
for different compression ratios for different combinations of active scan chains
and active slices have a 100% success rate, as shown in Table 1. However, the
existing state-of-the-art attack [5,6], where a detailed security analysis of EDT
was also performed, is probabilistic in nature and has a worst-case success rate
of 20.53% for 32 active scan chains and 16 active slices. The reason behind the
low success rate is that the Hamming weight-based attack [5] is not suitable
for a partial scan. Suppose a unique Hamming weight 9 is targeted, and one
of the bits participating in the Hamming weight calculation is masked. Then,
after masking, the resultant Hamming weight will be reduced by one produc-
ing Hamming weight 8 [16]. Therefore, the actual plaintext pairs may shift to
lower Hamming weights. Since the actual plaintext pair for Hamming weight
9 is shifted to 8, an incorrect plaintext pair from some other Hamming weight
may produce Hamming weight 9, and a wrong key will be recovered with an
attack failure. Similarly, the distortion of hamming weight distribution due to
compaction can be seen in [15]. Therefore, a basic scan attack using Hamming
weights on advanced DfT structures [5,6] is probabilistic in nature and has a
low success rate for partial scan. Whereas the proposed attack is signature-
based and outperforms the partial scan. To recover all 16 bytes of the key, our
proposed attack took only 4096 plaintexts and 255 signature tables containing
256 × 255 signatures with space complexity of 256 × 255 × 256 ≈ 224 bits (using
Algorithm 2) to recover all 16 bytes of the key. The time taken for signature
table generation was only 94 s. For mask generation, Algorithm 2 needs around
16 × 256 × 255 × 256 × 7 ≈ 24 × 28 × 28 × 28 × 23 = 231 number of operations.

Table 1. Success for attack on Dynamic Masking with Compaction

Sl. No. #Active Slices #Active Scan Chains Success rate for different compression ratios

1:1 2:1 4:1 8:1 16:1 32:1

1 1 32 100% 100% 100% 100% 100% 100%

2 2 16 100% 100% 100% 100% 100%

3 4 8 100% 100% 100% 100%

4 8 4 100% 100% 100%

5 16 2 100% 100%

6 32 1 100%

7 Conclusion

In this paper, an attack on dynamic masking with compaction is proposed. Hypo-
thetically, it requires 232 signature tables corresponding to 232 different values

Vulnerability of Dynamic Masking in Test Compression 115

of mask. We have experimentally shown that only 28 − 1 masks are sufficient to
generate 255 unique signature tables, with an overall requirement of 256 × 255
signatures. The results show that the attack has a 100% success rate for any
combination of active scan chains and active slices, thus making it independent
of the internal structure of the scan chain. At the same time, the existing state-
of-the-art attack has a 20.53% success rate in its worst case. Based on the attack,
we provided a security analysis of EDT employed with dynamic masking, which
shows the vulnerability of EDT offered by Siemens against scan-based attacks.
The main vulnerability is its input-dependent mask, which can be controlled by
an end user by applying a fixed test vector. To thwart the proposed attack, we
propose to block the primary inputs in the test mode.

References

1. Ali, S.S., Saeed, S.M., Sinanoglu, O., Karri, R.: Novel test-mode-only scan attack
and countermeasure for compression-based scan architectures. IEEE Trans. Com-
put. Aided Des. Integr. Circuits Syst. 34(5), 808–821 (2015)

2. Cui, A., Li, M., Qu, G., Li, H.: A guaranteed secure scan design based on test
data obfuscation by cryptographic hash. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 39, 4524–4536 (2020)

3. Cui, A., Luo, Y., Chang, C.H.: Static and dynamic obfuscations of scan data against
scan-based side-channel attacks. IEEE Trans. Inf. Forensics Secur. 12(2), 363–376
(2017)

4. DaRolt, J., Natale, G.D., Flottes, M.L., Rouzeyre, B.: Are advanced DfT structures
sufficient for preventing scan-attacks? In: VTS, pp. 246–251. IEEE (2012)

5. Das, A., Ege, B., Ghosh, S., Batina, L., Verbauwhede, I.: Security analysis of indus-
trial test compression schemes. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 32(12), 1966–1977 (2013)

6. Ege, B., Das, A., Ghosh, S., Verbauwhede, I.: Differential scan attack on AES with
X-tolerant and X-masked test response compactor. In: DSD, pp. 545–552. IEEE
(2012)

7. Hely, D., Bancel, F., Flottes, M.L., Rouzeyre, B.: Test control for secure scan
designs. In: ETS, pp. 190–195 (2005)

8. Liu, C., Huang, Y.: Effects of embedded decompression and compaction architec-
tures on side-channel attack resistance. In: VTS, pp. 461–468 (2007)

9. Paul, S., Chakraborty, R.S., Bhunia, S.: VIm-Scan: a low overhead scan design
approach for protection of secret key in scan-based secure chips. In: VTS, pp.
455–460. IEEE (2007)

10. Rajski, J., Kassab, M., Mukherjee, N., Tamarapalli, N., Tyszer, J., Qian, J.:
Embedded deterministic test for low-cost manufacturing. IEEE Des. Test Com-
put. 20(5), 58–66 (2003)

11. Rajski, J., Tyszer, J., Kassab, M., Mukherjee, N.: Embedded deterministic test.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(5), 776–792 (2004)

12. Rajski, J., et al.: Embedded deterministic test for low cost manufacturing test. In:
ITC, pp. 301–310. IEEE (2002)

13. Rolt, J.D., Natale, G.D., Flottes, M.L., Rouzeyre, B.: A novel differential scan
attack on advanced DFT structures. ACM Trans. Des. Autom. Electr. Syst.
(TODAES) 18(4), 58 (2013)

116 Y. Sao et al.

14. Sao, Y., Ali, S.S.: Security analysis of scan obfuscation techniques. IEEE Trans.
Inf. Forensics Secur. 18, 2842–2855 (2023). https://doi.org/10.1109/TIFS.2023.
3265815

15. Sao, Y., Ali, S.S., Ray, D., Singh, S., Biswas, S.: Co-relation scan attack analysis
(COSAA) on AES: a comprehensive approach. Microelectron. Reliab. 123, 114216
(2021)

16. Sao, Y., Pandian, K.S., Ali, S.S.: Revisiting the security of static masking and
compaction: discovering new vulnerability and improved scan attack on AES. In:
2020 (AsianHOST), pp. 1–6. IEEE (2020)

17. Vaghani, D., Ahlawat, S., Tudu, J., Fujita, M., Singh, V.: On securing scan design
through test vector encryption. In: ISCAS, pp. 1–5. IEEE (2018)

18. Yang, B., Wu, K., Karri, R.: Scan based side channel attack on dedicated hardware
implementations of data encryption standard. In: ITC, pp. 339–344. IEEE (2004)

19. Yang, B., Wu, K., Karri, R.: Secure scan: a design-for-test architecture for crypto
chips. In: Jr., W.H.J., Martin, G., Kahng, A.B. (eds.) DAC, pp. 135–140. ACM
(2005)

https://doi.org/10.1109/TIFS.2023.3265815
https://doi.org/10.1109/TIFS.2023.3265815

An Efficient Generic Insider Secure
Signcryption with Non-Interactive

Non-Repudiation

Ngarenon Togde and Augustin P. Sarr(B)

Laboratoire ACCA, UFR SAT, Université Gaston Berger, Saint-Louis, Senegal
{ngarenon.togde,augustin-pathe.sarr}@ugb.edu.sn

Abstract. We present a generic construction of an insider secure signcryption
scheme with non-interactive non-repudiation. Our construction uses as building
blocks a signature scheme, a key encapsulation mechanism (KEM), a keyed hash
function, a symmetric encryption scheme, and a pseudo-random function. We
show that our construction is insider secure in the dynamic multi-user model,
without resorting the random oracle or the key registration model. Our generic
scheme provides also non-interactive non-repudiation.

Keywords: generic signcryption · insider security · dynamic multi-user
model · non-interactive non-repudiation

1 Introduction

Signcryption schemes provide both the functionalities of signature and encryption sche-
mes. These schemes were proposed for the first time by Zheng [24]. Since Zheng’s
seminal work, many designs have been proposed, e.g. [2,5,7,8,10,12,18–22]. For the
analysis of signcryption schemes, two important lines of separations in the security
definitions are: two-party versus multi-party models, and outsider versus insider secu-
rity models [1,3,4]. Broadly, in a two-party security model, only one sender and one
receiver are considered. Whereas in a multi-party model, an attacker can use any pub-
lic key of its choice. In an outsider model, it is assumed that an attacker cannot access
a legitimate sender or receiver long-term secret. In an insider model, an attacker has
access to all the secrets except the one “being attacked”; for confidentiality, it is assumed
that the attacker knows the sender’s static private key, and for unforgeability that the
attacker knows the receiver’s static private key. The strongest among these models is
insider security in the (dynamic) multi-user model.

Some “natural” constructions of signcryption schemes are “encrypt and sign (E&S),
“Encrypt then Sign” (EtS) and Sign then Encrypt (StE). Unfortunately, these natu-
ral constructions do not yield secure signcryption schemes in the dynamic multi-user
insider model [1, Sect. 2.3]. For instance, In an E&S construction, the signature may
reveal the encrypted message, confidentiality is not then achieved. In the EtS and StE
constructions the difficulty is to maintain the security of the operation performed first.
For instance in the EtS construction, for confidentiality, an attacker (a probabilistic poly-
nomial time machine) which knows the sender’s static private key can resign and sub-
mit the resigned signcrypted text to a decryption oracle. In the StE construction, for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

F. Regazzoni et al. (Eds.): SPACE 2023, LNCS 14412, pp. 117–138, 2024.
https://doi.org/10.1007/978-3-031-51583-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51583-5_8&domain=pdf
http://orcid.org/0000-0003-2010-6198
http://orcid.org/0000-0002-0691-1644
https://doi.org/10.1007/978-3-031-51583-5_8

118 N. Togde and A. P. Sarr

unforgeability, an adversary which knows the receiver static private key can decrypt the
ciphertext and re-encrypt and submit the resulting signcrypted text as a forgery.

A nice property of signcryption schemes is Non-Interactive Non-Repudiation
(NINR), which allows a third party to settle a non-repudiation dispute without engaging
a costly protocol. NINR is a main advantage of signcryption schemes compared to one
pass key exchange protocols, which often outperform signcryption schemes.

Building high-level secure and efficient cryptographic schemes from low-level
primitives is a main focus in modern cryptography. In the case of signcryption schemes,
insider security appears to be the right security definition [3]. As far as we are aware,
there are only three works, that aim to propose generic insider secure constructions
of signcryption schemes in the dynamic multi-user model, [10,19] and [2]. Unfortu-
nately the designs from [19] and [2] are shown to be secure in the registered key model,
wherein an attacker has to show that it knows the private keys corresponding to the
public keys it uses. This model does not capture some realistic attacks on certificate
authorities, e.g. [11,13]. In [10], Chiba et al. propose two generic StE type construc-
tions that they show to be insider secure in the dynamic multi-user model, without
resorting the random oracle or registered key model. As their constructions are StE,
they inherit NINR from the base signature scheme.

In this work, we build a simple and efficient generic EtS signcryption scheme with
NINR (SCNINR), termed SN (Signcryption with Non-interactive non-repudiation). We
propose a detailed analysis of our construction, in the insider dynamic multi-user model,
without using the random oracle or registered key model.

This paper is organized as follows. In Sect. 2, we present some preliminaries on
signcryption schemes and on the building blocks we use in our design. In Sect. 3, we
propose our generic SCNINR scheme. In Sect. 4, we propose a detailed security analysis
of our construction in the dynamic multi-user model. We compare our design with the
previous proposals in Sect. 5.

2 Preliminaries

If S is a set, a←R S means that a is chosen uniformly at random from S; we write
a, b, c, · · · ←R S as a shorthand for a←R S; b ←R S, etc. We denote by sz(a) the number
of bits required to represent a. If S and S′ are two sets, Func(S, S′) denotes the set of
functions with domain S and range S′.

For a probabilistic algorithm A with parameters u1, · · · , un and output V ∈ V, we
write V ←R A(u1, · · · , un). We denote by {A(u1, · · · , un)} the set {v ∈ V : Pr(V =
v) �= 0}. If x1, x2, · · · , xk are objects belonging to different structures (group, bit-
string, etc.) (x1, x2, · · · , xk) denotes a representation as a bit-string of the tuple such
that each element can be unequivocally parsed. For a list L, Apd(L,X) adds X to L.
For a positive integer n, [n] denotes the set {1, 2, · · · , n}.

A Symmetric Encryption. A symmetric encryption scheme E = (E,D,K(k),M(k),
C(k)) is a pair of efficient algorithms (E,D), an encryption and a decryption algorithm,
together with a triple of sets (K,M,C), which depend on a security parameter k, such
that for all τ ∈ K and all m ∈ M, it holds that E(τ,m) ∈ C and m = D(τ,E(τ,m)).

An Efficient Generic Insider Secure Signcryption with NINR 119

Definition 1. Let A = (A1,A2) be an adversary against E and let

Pr(Oi,i=0,1) = Pr

[
(m0, m1, st)←R A1(k); τ ←R K; c ←R E(τ, mi);

b̂ ←R A2(k, c, st)
: b̂ = 1

]

and AdvssA,E(k) denote the quantity

AdvssA,E(k) = |Pr(O0) − Pr(O1)| ,

where m0,m1 ∈ M are distinct messages of equal length. The scheme E is said to be
(t(k), ε(k))–semantically secure if for all adversaries A running in time t(k), it holds
that AdvssA,E(k) � ε(k).

We will need also the following definition.

Definition 2. Let E = (E,D,K(k),M(k),C(k)) be an encryption scheme. The
scheme E is said to be (t(k), ε(k))–secure against key clustering attacks if for all adver-
saries A running in time � t(k),

Pr [(m, τ, τ ′)←R A(k) : τ �= τ ′ and E(τ,m) = E(τ ′,m)] � ε(k).

Pseudo-Random Function (PRF). A PRF is a deterministic algorithm Prf together with
a triple of sets (K(k),D(k),R(k)) (which depends on the security parameter k) such
that for all τ ∈ K and all m ∈ D, Prf(τ,m) ∈ R. Notice that for all fixed τ ∈ K,
Prf(τ, ·) ∈ Func(D,R).

Definition 3. Let Prf be a pseudo-random function and A be an adversary,

Pr(O0) = Pr
[
τ ←R K; f ← Prf(τ, ·); b̂ ←R AOf (·)(k) : b̂ = 1

]
,

Pr(O1) = Pr
[
f ←R Func(D,R); b̂ ←R AOf (·)(k) : b̂ = 1

]
,

and
AdvA,Prf(k) = |Pr(O0) − Pr(O1)|.

The PRF Prf is said to be (t(k), ε(k))–secure if for all efficient adversaries A running
in time � t, it holds that AdvA,Prf(k) � ε(k).

Collision Resistant Hash Function. Let K(k), M′(k) and T(k) be sets which depend
on a security parameter k and H be a keyed hash function defined over (K,M′,T), i. e.
H takes as inputs τ0 ∈ K and m ∈ M′ and outputs t ∈ T; we write t ← H(τ0,m).

Definition 4. A keyed hash function H : K × M′ → T is said to be (t(k), ε(k))
collision resistant if for all efficient adversaries A running in time � t(k),

Pr [τ0 ←R K; (m0,m1)←R A(k, τ0) : m0 �= m1 ∧ H(τ0,m0) = H(τ0,m1)] � ε(k).

120 N. Togde and A. P. Sarr

Definition 5. Let H : K × M′ → T be a keyed hash function and Pfx be a subset of
{0, 1}∗. H is said to be (t(k), ε(k)) resistant to collisions with identical prefix from Pfx,
if for all efficient adversaries A running in time � t(k),

Pr

⎡
⎣τ0 ←R K; (p,m0,m1)←R A(k, τ0) :

⎧
⎨
⎩

p ∈ Pfx,
m0 �= m1 and
H(τ0, (p,m0)) = H(τ0, (p,m1))

⎤
⎦ � ε(k).

Notice that resistance to collisions with identical prefix may be a weaker assumption
than classical collision resistance. We consider now the following game parameterized
by a pseudo-random function Prf.

Game 1 Pre-image with chosen prefix and suffix

1) The challenger Chall chooses τ0 ←R K and sends τ0 to A.
2) A chooses p0 ∈ Pfx, s0 ∈ Sfx and m0 ∈ M and sends (p0,m0, s0) to Chall.
3) Chall chooses (τ, τ ′)←R K2, computes τ ′′ ← Prf(τ,m0) and m̂0 ←

H(τ0, (p0, τ, τ ′, τ ′′, s0)), and sends m̂0 to A.
4) A outputs (τ∗, τ ′∗) ∈ K2.
5) A succeeds if m̂0 = H(τ0, (p0, τ∗, τ ′∗, τ ′′∗, s0)) wherein τ ′′∗ ← Prf(τ∗,m0).

Definition 6. Let H : K × M′ → T be a keyed hash function and Pfx and Sfx be
respectively some sets of message prefixes and suffixes. For an adversary A playing
Game 1, let SuccA,H(k) denote the event “A wins Game 1”. H is said to be (t(k), ε(k))
secure against pre-image attacks with chosen prefix from Pfx and suffix from Sfx, if for
all efficient adversaries A running in time � t(k), Pr(SuccA,H(k)) � ε(k).

The following lemma shows that the pre-image resistance (from Definition 6) follows
from identical prefix collision resistance. The proof is given in the appendix.

Lemma 1. Let H : K × M′ → T be a keyed hash function. If H is (t(k), ε(k)) secure
against collisions with identical prefix from Pfx, then it is (t(k), ε′(k)) secure in the
sense of Definition 6, where

ε′(k) � |T|/|K|2 + ε(k).

Key Encapsulation Mechanism (KEM). A KEM is a four-tuple of efficient algorithms
K = (SetupK,GenK,Ecp,Dcp) together with a key space K′(k) and encapsulated keys
space C′, such that:

– SetupK is a probabilistic algorithm which takes as input a security parameter k and
outputs a domain parameter dpK;

– GenK is a key pair generator, it takes as input the domain parameter dpK and outputs
a key pair (skK, pkK);

– Ecp is a probabilistic algorithm which takes as input a public key pkK and outputs
a key τ ∈ K′ together with an encapsulated key c ∈ C′, we write (τ, c) ←R Ecp
(pkK);

– Dcp takes as inputs a private key skK together with an encapsulated key c and outputs
τ ∈ K′ or and error symbol ⊥.

An Efficient Generic Insider Secure Signcryption with NINR 121

It is required that for all k ∈ N
∗, all dpK ∈ {SetupK(k)}, all (skK, pkK) ∈ {GenK

(dpK)}, if (τ, c) ∈ {Ecp(pkK)}, Pr [Dcp(skK, c) = τ] = 1.

Definition 7. Let K be a KEM, and A an adversary against K. Let

Pr(Ub,b=0,1) = Pr

⎡
⎣

dpK ←R SetupK(k); (skK, pkK)←R GenK(dpK);
(τ0, c)←R Ecp(pkK); τ1 ←R K′;
b̂ ←R AODcp(skK,·)(k, dpK, pkK, τb, c)

: b̂ = 1

⎤
⎦ (1)

wherein the notation AODcp(skK,·) means that A is given access to a decapsulation ora-
cle ODcp(skK, ·) which, on input c′ �= c, outputs Dcp(skK, c′) (A is not allowed to
issue Dcp(skK, c)). Let AdvccaA,K(k) = |Pr(U0) − Pr(U1)| . K is said to be (t(k), ε(k))
indistinguishable against chosen-ciphertext attacks (IND-CCA), if for all efficient adver-
saries A running in time � t(k), it holds that AdvccaA,K(k) � ε(k).

Remark 1. In a KEM security experiment, we refer to the challenge (τ0, c) and (τ1, c)
defined in (1) by ChallKE0

and ChallKE1
, respectively.

Digital Signature. A digital signature scheme is a four-tuple of efficient algorithms
S = (SetupS,GenS,Sign,Vrfy) together with a message space MS , such that:

– SetupS takes as input a security parameter k and outputs a domain parameter dpS;
– GenS is a probabilistic algorithm which takes as input a domain parameter dpS and

outputs a key pair (skS, pkS);
– Sign takes as inputs a secret key skS and a message m ∈ MS and outputs a signature

σ ∈ Σ;
– Vrfy is deterministic; it takes as inputs a public key pkS, a message m, and a signa-

ture σ and outputs d ∈ {0, 1}; and
– S is such that for all k ∈ N

∗, all dpS ∈ {SetupS(k)}, all (skS, pkS) ∈ {GenS(dpS)},
and all m ∈ MS , Pr [Vrfy(pkS,m,Sign(skS,m)) = 1] = 1.

Game 2 sUF-CMA security game

1) dpS ←R SetupS(k); (skS, pkS)←R GenS(dpS); L ← ().
2) For j = 1, 2, · · · , A submits mj ∈ MS to the challenger which:

a) outputs σj ←R Sign(skS,mj), and
b) appends (mj , σj) to L.

3) A outputs (m,σ) ∈ MS × Σ.
− A succeeds in sUF-CMA if: i) Vrfy(pkS,m, σ) = 1, and ii) (m,σ) /∈ L.

Definition 8. Let S be a signature scheme; S is said to be (t(k), QSign(k), ε(k))
strongly Unforgeable against Chosen Message Attacks if for any adversary A play-
ing Game 2, if A runs in time at most t(k) and issues at most QSign(k) queries to the
signing oracle, then it succeeds in the sUF-CMA game with probability � ε(k).

Notice that when ε(k) does not depend on QSign(k), we say simply that S is
(t(k), ε(k))–secure. We will need also the following notion, which is not captured in
the sUF-CMA security definition, although it seems naturally achieved by many usual

122 N. Togde and A. P. Sarr

signature schemes (which uses a hash function), such as the Full Domain Hash, for
instance.

Definition 9. A signature scheme is said to be (t(k), ε(k)) secure against colliding
signatures if for all efficient adversaries A running in time � t(k),

Pr

⎡
⎣dpS ←R SetupS(k);
(pkS,m1,m2, σ)←R A(dpS)

:

⎧
⎨
⎩

m1 �= m2,
Vrfy(pkS,m1, σ) = 1, and
Vrfy(pkS,m2, σ) = 1

⎤
⎦ � ε(k).

2.1 Insider Security for SCNINR

This subsection deals with the syntax of a SCNINR scheme and the insider security
definitions in the dynamic Multi-User model [2] (also termed the Flexible Signcryption/
Flexible Unsigncryption Oracle (FSO/FUO) model [5]).

Definition 10. A signcryption scheme is a quintuple of algorithms SC = (Setup,
Gensd,Genrcv,Sc,Usc) where:

a) Setup takes a security parameter k as input, and outputs a public domain parame-
ter dp;

b) Gensd takes as input dp and outputs a sender key pair (sksd, pksd), sksd is the sign-
crypting key;

c) Genrcv takes dp as input and outputs a receiver key pair (skrcv, pkrcv);
d) Sc takes as inputs a sender private key sksd, a receiver public key pkrcv, and a

message m, and outputs a signcryptext C; we write C ←R Sc(sksd, pkrcv,m);
e) Usc is a deterministic algorithm. It takes as inputs dp, a receiver secret key skrcv,

a sender public key pksd, and a signcryptext C, and outputs either a valid message
m ∈ M or an error symbol ⊥ �∈ M.

And, for all dp ∈ {Setup(k)}, all m ∈ M, all (sksd, pksd) ∈ {Gensd(dp)}, and all
(skrcv, pkrcv) ∈ {Genrcv(dp)}, m = Usc(skrcv, pksd,Sc(sksd, pkrcv,m)). The scheme is
said to provide NINR if there are two algorithms N and PV, a non-repudiation evidence
generation and a pubic verification algorithms, such that:

– N takes as inputs a receiver secret key skrcv, a sender public key pksd, and a sign-
crypted text C, and outputs a non-repudiation evidence nr or a failure symbol ⊥.

– PV takes as inputs a signcryptext C, a message m, a non-repudiation evidence nr,
a sender public key pksd, and a receiver public key pkrcv, and outputs d ∈ {0, 1}.

– For all dp ∈ {Setup(k)}, all C ∈ {0, 1}∗, all (sksd, pksd) ∈ {Gensd(dp)}, and
all (skrcv, pkrcv) ∈ {Genrcv(dp)}, if ⊥ �= m ← Usc(skrcv, pksd, C) and nr ←
N(skrcv, pksd, C) then 1 = d ← PV(C,m, nr, pksd, pkrcv).

Definition 11 (Confidentiality in the dM−IND−iCCA). A SCNINR SC is said to be
(t(k), qUsc(k), qN(k), ε(k)) dM−IND−iCCA-secure, if for all adversaries A playing
Game 3, running in time � t(k), and issuing at most respectively qUsc(k) and qN(k)
queries to the unsigncryption and non-repudiation evidence generation oracles,
Advcca2A,SC(k) � ε(k).

An Efficient Generic Insider Secure Signcryption with NINR 123

Game 3 Insider Confidentiality in the Dynamic Multi–User model (dM−IND−iCCA)

We consider the experiments E0 and E1, described hereunder, wherein A = (A1, A2) is a two–
stage adversary against a SCNINR scheme.

1) The challenger generates dp ←R Setup(k) and (skrcv, pkrcv)←R Genrcv(dp).
2) A1 is provided with dp and pkrcv, and is given access to:

(a) an unsigncryption oracle OUsc(·, ·), which takes as inputs a sender public key pk and a
signcrypted text C, and outputs m ← Usc(skrcv, pk, C), and

(b) a non–repudiation evidence generation oracle ON(·, ·) which takes as inputs a sender
public key pk and a signcrypted text C and outputs nr ← N(skrcv, pk, C).

3) A1 outputs (m0, m1, sksd, pksd, st)←R AOUsc(·,·),ON(·,·)
1 (dp, pkrcv) where m0, m1 ∈ M,

m0 �= m1 and |m0| = |m1|, st is a state, and (sksd, pksd) ∈ {Gensd(dp)} is the attacked
sender key pair.

4) In the experiment Eb,b=0,1, the challenger computes C∗ ←R Sc(sksd, pkrcv, mb).
5) A2 outputs b′ ←R AOUsc(·,·),ON(·,·)

2 (C∗, st) (OUsc(·, ·) and ON(·, ·) are as in step 2).
6) For Eb,b=0,1, outb denotes the event: (i) A2 never issued OUsc(pksd, C

∗) or ON(pksd, C
∗),

and (ii) b′ = 1.

And, Advcca2A,SC(k) =| Pr(out0) − Pr(out1) | denotes A’s dM−IND−iCCA advantage.

Game 4 Strong Unforgeability in the Dynamic Multi–User model (dM−sUF−iCCA)
A is a forger against SC.

1) The challenger computes dp ←R Setup(k), (sksd, pksd)←R Gensd(dp), L ← ().
2) A runs with inputs (dp, pksd) and is given a flexible signcryption oracle OSc(·, ·), which on

inputs a valid public receiver key pk and a message m:
(i) computes C ←R Sc(sksd, pk, m),

(ii) appends (pk, m, C) to L,
(iii) and outputs C.

3) A outputs ((skrcv, pkrcv), C
∗)←R AOSc(·,·)(dp, pksd). A wins the game if:

(i) ⊥ �= m∗ ← Usc(skrcv, pksd, C
∗), and

(ii) (pkrcv, m
∗, C∗) �∈ L.

We denote by AdvsufA,SC(k) = Pr(SuccsufA) the probability that A wins the game.

Definition 12 (Unforgeability in the dM−sUF−iCCA model). A SCNINR is said to
be (t(k), qSc(k), ε(k)) unforgeable in the dM−sUF−iCCA model if for all attackers
A playing Game 4, running in time � t(k), and issuing at most qSc(k) signcryption
queries, AdvsufA,SC(k) � ε(k).

Game 5 Soundness of non–repudiation

1) The challenger computes dp ←R Setup(k).
2) A runs with input dp and outputs (C∗, pksd, skrcv, pkrcv, m

′, nr∗)←R A(dp).
3) A wins the game if:

(i) ⊥ �= m ← Usc(skrcv, pksd, C
∗), and

(ii) m �= m′ and 1 = d ← PV(C∗, m′, nr∗, pksd, pkrcv).

We denote by AdvsnrA,SC(k) the probability that A wins the game.

124 N. Togde and A. P. Sarr

Definition 13 (Soundness of non-repudiation). A SCNINR is said to achieve
(t(k), ε(k))–computational soundness of non-repudiation if for any adversary A play-
ing Game 5 and running in time � t(k), AdvsnrA,SC(k) � ε(k).

Game 6 Unforgeability of non–repudiation evidence
A is an attacker against SC.

1) The challenger computes dp ←R Setup(k), (sksd, pksd)←R Gensd(dp); and
(skrcv, pkrcv)←R Genrcv(dp).

2) A runs with inputs (dp, pksd, pkrcv) and is given access to a signcryption, an
unsigncryption, and a non–repudiation evidence generation oracles. It outputs
(C∗, m∗, nr∗)←R AOSc(·,·),OUsc(·,·),ON(·,·)(dp, pksd, pkrcv).

3) A wins if:
(i) C∗ was generated through the OSc(·, ·) oracle on inputs (pkrcv, m) for some m,

(ii) 1 = d ← PV(C∗, m∗, nr∗, pksd, pkrcv), and
(iii) ON(pksd, C

∗) was not issued by A.

AdvunrA,SC(k) denotes the probability that A wins the game.

Definition 14 (Unforgeability of non-repudiation evidence). A SCNINR is said to
achieve (t, qSc, qUsc, qN, ε) unforgeability of non-repudiation evidence if for all adver-
saries A playing Game 6, running in time t, and issuing respectively qSc, qUsc, and qN
queries to the signcryption, unsigncryption, and non-repudiation evidence generation
oracles, AdvunrA,SC(k) � ε.

3 An Efficient Generic Insider Secure SCNINR

We present our generic SCNINR design termed SN; it uses as building blocks (i) a KEM
K = (SetupK,GenK,Ecp,Dcp), (ii) a symmetric encryption scheme E = (E,D,K,M,
C), (iii) a PRF Prf defined over (K,D,R = K), (iv) a hash function H defined over
(K,M′,T), and (v) a signature scheme S = (SetupS,GenS,Sign,Vrfy) with message
space MS . We assume that M ⊂ D, Σ ⊂ D, T ⊂ MS , and that for all (τ, τ ′, τ ′′) ∈
K2, all c′ ∈ C′, all c ∈ C, all pksd such that (sksd, pksd) ∈ {GenS(dp2)} for some sksd,
and all pkrcv such that (skrcv, pkrcv) ∈ {GenS(dp1)}, (pksd, τ, τ

′, τ ′′, c, c′, pkrcv) ∈ M′.
We assume that the KEM is such that K′ = K4 (this can be achieved by using, if
needed, an appropriate key derivation function and/or a pseudo-random generator), and
that dpK defines both K′ and C′.

In an encrypt-then-sign design (which aims also at NINR), the signed data cannot
be the plain-text m (or publicly depend on it), as otherwise even outsider confidentiality
cannot be achieved. Moreover, for insider confidentiality (wherein the attacker knows
the sender’s private key) it should not be possible to recover the signed data from the
sender’s private key, as an attacker could resign the data and submit the resulting sign-
crypted cipher-text for decryption, and then succeed in an insider confidentiality game.
To overcome these difficulties, we compute the signed data as a function of the encap-
sulated key and the plain text m such that it cannot be recovered by an attacker which

An Efficient Generic Insider Secure Signcryption with NINR 125

does not know the receiver’s private key. Besides, we append a (PFR based MAC) tag
of the signature, to make a “re-signing attack” not feasible. The design we obtain is
described hereunder.

The Generic SN Signcryption Scheme

10 Setup(k): The algorithm computes dpK ←R SetupK(k); dpS ←R SetupS(k); it defines also

E = (E,D,K = {0, 1}k,M,C), a pseudo–random function Prf over (K,M,K), and a
hash function H over (K,M′,T).

11 τ0 ←R K; dp ← (dpK, dpS, E ,Prf,H, τ0); return dp;

12 Gensd(dp):
13 Parse dp as (dpK, dpS, E ,Prf,H, τ0); (sksd, pksd)←R GenS(dpS); return (sksd, pksd);

14 Genrcv(dp):
15 Parse dp as (dpK, dpS, E ,Prf,H, τ0); (skrcv, pkrcv)←R GenK(dpK); return (skrcv, pkrcv);

16 Sc(sksd, pkrcv, m):
17 ((τ1, τ

′
1, τ2, τ

′
2), c1)←R Ecp(pkrcv); c2 ←R E(τ1, m); τ3 ← Prf(τ2, m);

18 m̂ ← H(τ0, (pksd, τ2, τ
′
2, τ3, c1, c2, pkrcv)); σ ←R Sign(sksd, m̂);

19 t ← Prf(τ ′
1, σ); return (t, σ, c1, c2);

20 Usc(skrcv, pksd, C):
21 Parse C as (t, σ, c1, c2); (τ1, τ ′

1, τ2, τ
′
2,) ← Dcp(skrcv, c1);

22 m ← D(τ1, c2); τ3 ← Prf(τ2, m);
23 m̂ ← H(τ0, (pksd, τ2, τ

′
2, τ3, c1, c2, pkrcv)); d ← Vrfy(pksd, m̂, σ); t′ ← Prf(τ ′

1, σ);
24 if d = 1 and t = t′ then return m; else return ⊥;

25 N(skrcv, pksd, C):
26 Parse C as (t, σ, c1, c2); (τ1, τ ′

1, τ2, τ
′
2) ← Dcp(skrcv, c1);

27 m ← D(τ1, c2); τ3 ← Prf(τ2, m);
28 m̂ ← H(τ0, (pksd, τ2, τ

′
2, τ3, c1, c2, pkrcv)); d ← Vrfy(pksd, m̂, σ); t′ ← Prf(τ ′

1, σ);
29 if d = 1 and t = t′ then return (τ1, τ

′
1, τ2, τ

′
2); else return ⊥;

30 PV(C, m, nr, pksd, pkrcv):
31 Parse C as (t, σ, c1, c2) and nr as (τ1, τ ′

1, τ2, τ
′
2); m′ ← D(τ1, c2);

32 if m′ �= m then return 0;

33 τ3 ← Prf(τ2, m); m̂ ← H(τ0, (pksd, τ2, τ
′
2, τ3, c1, c2, pkrcv));

34 d ← Vrfy(pksd, m̂, σ); t′ ← Prf(τ ′
1, σ);

35 if d = 1 and t = t′ then return 1; else return 0.

For the consistency of the scheme, one can observe that as Dcp(skrcv, c1) yields
(τ1, τ ′

1, τ2, τ
′
2), the receiver can compute τ3 ← Prf(τ2,m) and m̂, and then veri-

fy whether 1 = Vrfy(pksd, m̂, σ) and t = Prf(τ ′
1, σ) to accept or reject m. So,

for all dp ∈ {Setup(k)}, all m ∈ M, all (sksd, pksd) ∈ {Gensd(dp)}, and all
(skrcv, pkrcv) ∈ {Genrcv(dp)}, m = Usc(skrcv, pksd,Sc(sksd, pkrcv,m)). Besides, if
nr ← N(skrcv, pksd,Sc(sksd, pkrcv,m)) then 1 = d ← PV(C,m, nr, pksd, pkrcv). Our
construction is a signcryption scheme with non-interactive non-repudiation.

126 N. Togde and A. P. Sarr

4 Security Analysis of the SN Scheme

We propose in this section a detailed security analysis of our generic construction.

4.1 Insider Confidentiality

Theorem 1. If the encryption scheme E is (t(k), εss(k))–semantically secure, the
pseudo random function Prf is (t(k), εPrf(k))–secure, the key encapsulation mechanism
is (t(k), εK(k))–secure, and the signature scheme is (t(k), εS(k)) resistant against col-
liding signatures, then the SN signcryption scheme is (t(k), ε(k))–dM−IND−iCCA
secure, where

ε(k) � εss(k) + 2 (εK(k) + εS(k) + εH(k) + 2εPrf(k) + (qUsc + qN)/|K|) , (2)

wherein qUsc and qN are upper bounds on the number of unsigncryption and non-
repudiation evidence generation queries the attacker issues.

Proof. We denote the steps (1) and (2), (3) and (4), and (5) and (6) of Game 3 by PRE-
CHALLENGE, CHALLENGE, and POST-CHALLENGE stages respectively. We consider
the following simulator to answer A’s queries. The Initialization procedure is executed
once at the beginning of the game. The Finalization procedure is also executed once,
after A produces its output, at the end of the game. To keep the description simple, we
omit public key validations.

Simulation for the experiments E0 and E
(1)
0 , E

(2)
0 , and E

(3)
0 in the dM−IND−iCCA Game

100 Initialization: dp ← (dpK, dpS, E ,Prf,H, τ0)←R Setup(k);

101 (skrcv, pkrcv)←R Genrcv(dp);
E0

receive pkrcv from the KEM challenger;
E

(1)
0 , E

(2)
0 , E

(3)
0

102 ((τ̄1, τ̄
′
1, τ̄2, τ̄

′
2), c̄1)←R Ecp(pkrcv);

E0

((τ̄1, τ̄
′
1, τ̄2, τ̄

′
2), c̄1)←R ChallKE0

;

E
(1)
0

((τ̄1, τ̄
′
1, τ̄2, τ̄

′
2), c̄1)←R ChallKE1

;

E
(2)
0 , E

(3)
0

PRE–CHALLENGE PHASE A is provided with (dp, pkrcv) and is given access to the follow-
ing oracles.

103 OUsc(pk, C): ON(pk, C) :
104 Parse C as (t, σ, c1, c2); � Return ⊥ if the parsing fails

105 if c1 = c̄1 then return ⊥ ;
E

(1)
0 , E

(2)
0 , E

(3)
0

106 (τ1, τ
′
1, τ2, τ

′
2) ← Dcp(skrcv, c1);

E0

(τ1, τ
′
1, τ2, τ

′
2) ← ODcp(c1);

E
(1)
0 , E

(2)
0 , E

(3)
0

107 m ← D(τ1, c2); τ3 ← Prf(τ2, m); m̂ ← H(τ0, (pk, τ2, τ
′
2, τ3, c1, c2, pkrcv));

108 d ← Vrfy(pk, m̂, σ); t′ ← Prf(τ ′
1, σ);

An Efficient Generic Insider Secure Signcryption with NINR 127

109 if d = 1 and t = t′ then return m;
OUsc

return (τ1, τ
′
1, τ2, τ

′
2);

ON

else return ⊥;

CHALLENGE PHASE

110 (m0, m1, sksd, pksd, st)←R AOUsc,N

1 (dp, pkrcv); � |m0| = |m1|
111 ((τ1, τ

′
1, τ2, τ

′
2), c1) ← ((τ̄1, τ̄

′
1, τ̄2, τ̄

′
2), c̄1);

112 c2 ←R E(τ1, m0);
E0, E

(i)
0 , i = 1, 2, 3

113 τ3 ← Prf(τ2, m0);
E0, E

(1)
0 , E

(2)
0

τ3 ←R K;
E

(3)
0

� τ3 ←R K is equivalent to f ←R Func(M,K); τ3 ← f(m0);

114 m̂ ← H(τ0, (pksd, τ2, τ
′
2, τ3, c1, c2, pkrcv)); σ ← Sign(sksd, m̂); t ← Prf(τ ′

1, σ);
C∗ ←R (t, σ, c1, c2);

POST–CHALLENGE PHASE

A2 runs with inputs (C∗, st). It has access to the oracles OUsc(·, ·), ON(·, ·),
The simulation aborts if A issues OUsc(pksd, C

∗) or ON(pksd, C
∗).

115 b̂ ←R AOUsc(·,·),ON(·,·)
2 (C∗, st);

116 Finalization: return b̂;

At lines 103 to 109 we describe simultaneously the OUsc(·, ·) and ON(·, ·) oracles.
When one of the oracles is queried, at line 109, the boxed instruction with corresponding
header is executed.

Besides the experiment E0 in the dM−IND−iCCA security game, we define three
other experiments E

(1)
0 , E

(2)
0 , and E

(3)
0 . For each experiment, at a line with boxed

codes, only the code with corresponding header is executed. The simulator is efficient
in all the experiments. We give a summary of the changes between the experiments
hereunder.

1) From E0 to E
(1)
0 :

a) in E
(1)
0 , the simulator Sim does not generate (skrcv, pkrcv), instead it receives

pkrcv from a KEM challenger (see at line 101),
b) to compute Dcp(skrcv, c1), the simulator sends c1 to the KEM challenger and

receives (τ1, τ ′
1, τ2, τ

′
2) ← Dcp(skrcv, c1) from the challenger (see at line 106),

c) and in the challenge phase, the value of ((τ1, τ ′
1, τ2, τ

′
2), c)←R Ecp(pkrcv) is

received from the KEM challenger; we note ((τ1, τ ′
1, τ2, τ

′
2), c) ← ChallKE0

.
d) Besides, in the Usc and N oracles, whenever A provides the simulator with a

signcrypted cipher-text C = (t, σ, c1, c2) with c1 = c̄1, the simulator considers
t as an invalid PRF based MAC and returns ⊥ (see at line 105).

2) From E
(1)
0 to E

(2)
0 , the only change is at line 102 of the challenge phase, wherein

the KEM challenger provides S with ChallKE1
instead of ChallKE0

.

3) From E
(2)
0 to E

(3)
0 , the change is in the challenge phase, where τ3 is computed as

τ3 ← Prf(τ2,m0) in E
(2)
0 , and as τ3 ←R K in E

(3)
0 (see at line 113). Notice that

τ3 ←R K is equivalent to f ←R Func(M,K); τ3 ← f(m).

128 N. Togde and A. P. Sarr

Let Pr(out0) and Pr(out(i)0), for i ∈ {1, 2, 3} denote the probability that A outputs 1

in the experiments E0 and E
(i)
0 , respectively. Notice that the FINALIZATION procedure

outputs exactly whatever A returns. Given the difference between E0 and E
(1)
0 , when-

ever A provides the OUsc or ON oracles with a valid C = (t, σ, c1, c2) with c1 = c̄1
then:

a) If this occurs before the challenge phase, t is a no-message (PRF-based) MAC
forgery.

b) If this occurs after the challenge phase (with the restriction C �= C∗), if
(t, σ) �= (t∗, σ∗), then (t∗, σ∗) is MAC forgery. Otherwise, we necessarily have
(pk, c1, c2) �= (pksd, c

∗
1, c

∗
2). And then, if m̂ = m̂∗, we have a H collision, otherwise

we have colliding signatures.

So, using [9, Theorem 6.2, p. 224], it holds that

|Pr(out0) − Pr(out(1)0)| � εPrf(k) + (qUsc + qN)/|K| + εH(k) + εS(k). (3)

The difference between E
(1)
0 and E

(2)
0 is: in E

(1)
0 the simulator receives ChallKE0

from

the KEM challenger, while it receives ChallKE1
in E

(2)
0 . As K is (t(k), εK(k))–secure,

it follows that
|Pr(out(1)0) − Pr(out(2)0)| � εK(k). (4)

Also, given that Prf is (t(k), εPrf(k))–secure, we have

|Pr(out(2)0) − Pr(out(3)0)| � εPrf(k). (5)

Now, we consider the experiments E
(3)
1 , E

(2)
1 , E

(1)
1 and E1 where the only difference

between E1 (resp. E(3)
1 , E

(2)
1 , E

(1)
1) and E0 (resp. E(3)

0 , E
(2)
0 , E

(1)
0) is that the lines 112

and 113 in the challenge phase are modified, to use m1 instead of m0, as hereunder:

112 c2 ←R E(τ1, m1);
E1, E

(i)
1 , i = 1, 2, 3

113 τ3 ← Prf(τ2, m1);
E1, E

(1)
1 , E

(2)
1

τ3 ←R K
2;

E
(3)
1

With similar arguments, applied to the experiments E1 and E
(i)
1 , i = 1, 2, 3, we obtain

|Pr(out1) − Pr(out(1)1)| � εPrf(k) + (qUsc + qN)/|K| + εH(k) + εS(k), (6)

|Pr(out(1)1) − Pr(out(2)1)| � εK(k), (7)

and
|Pr(out(2)1) − Pr(out(3)1)| � εPrf(k). (8)

We consider now, the challenge phases in the experiments E
(3)
b , b = 0, 1, wherein the

secret key τ1 is used only in the encryption c2 ←R E(τ1,mb). Recall that in E
(3)
b,b=0,1,

(τ1, τ ′
1, τ2, τ

′
2) is computed at the KEM challenger as (τ1, τ ′

1, τ2, τ
′
2)←R K3. Now,

An Efficient Generic Insider Secure Signcryption with NINR 129

we consider the experiments E
(3a)
b,b=0,1, such that the difference between E

(3)
b,b=0,1 and

E
(3a)
b,b=0,1 is that in E

(3a)
b,b=0,1 the simulator ignores the value of τ1 generated by the KEM

challenger; it does not compute c2. Instead, it receives c2 from a semantic security chal-
lenger. The challenger computes c2 using the instructions: τ ←R K; c2 ←R E(τ,mb).
Given the change, it holds that

Pr(out(3)b) = Pr(out(3a)
b), for b = 0, 1 (9)

and the difference between E
(3a)
0 and E

(3a)
1 is that in E

(3a)
0 c2 is computed as

c2 ←R E(τ,m0) wherein τ ←R K, while in E
(3a)
0 it is computed as c2 ←R E(τ,m0), it

then follows that

|Pr(out(3)0) − Pr(out(3)1)| = |Pr(out(3a)
0) − Pr(out(3a)

1)| � εss(k). (10)

From the inequalities (3) to (10), we obtain

|Pr(out0)−Pr(out1)| � εss(k)+2 (εK(k) + εS(k) + εH(k) + 2εPrf(k) + (qUsc + qN)/|K|) .

	

4.2 Unforgeability of the SN Scheme

Theorem 2. If the signature scheme is (t(k), εS(k))–sUF-CMA secure and the hash
function H is (t(k), εH(k)) collision resistant, then the SN signcryption scheme is
(t(k), ε(k)) dM−sUF−iCCA–secure, where ε(k) � εH(k) + εS(k).

Proof. We consider the following simulation to answer A’s queries.

Simulation for the dM−sUF−iCCA security game

200 Initialization: dp ← (dpK, dpS, E ,Prf,H, τ0)←R Setup(k); L ← (); L1 ← (); L2 ← ();

201 (sksd, pksd)←R Gensd(dp);
E0

Get pksd from the challenger for signature unforgeability;
E1

202 OSc(pk, m):
203 ((τ1, τ

′
1, τ2, τ

′
2), c1)←R Ecp(pk); c2 ←R E(τ1, m);

204 τ3 ← Prf(τ2, m); m̂ ← H(τ0, (pksd, τ2, τ
′
2, τ3, c1, c2, pk));

205 σ ←R Sign(sksd, m̂);
E0

Send m̂ to the signing oracle and receive σ;
E1

206 t ← Prf(τ ′
1, σ)

207 Apd(L, (pk, m, (t, σ, c1, c2))); Apd(L1, (σ, m̂));
208 Apd(L2, (t, pksd, m, m̂, σ, τ1, τ

′
1, τ2, τ

′
2, τ3, c1, c2, pk));

return (t, σ, c1, c2);

209 Finalization:
210 if A outputs (skrcv, pkrcv, C

∗) such that
(i) ⊥ �= m∗ ← Usc(skrcv, pksd, C

∗) and
(ii) (pkrcv, m

∗, C∗) �∈ L

130 N. Togde and A. P. Sarr

then
211 Parse C∗ as (t∗, σ∗, c∗

1, c
∗
2);

212 (τ∗
1 , τ ′∗

1, τ
∗
2 , τ ′∗

2) ← Dcp(skrcv, c
∗
1); m∗ ← D(τ∗

1 , c∗
2); τ∗

3 ← Prf(τ∗
2 , m∗);

213 m̂∗ ← H(τ∗
0 , (pksd, τ

∗
2 , τ ′∗

2, τ
∗
3 , c∗

1, c
∗
2, pkrcv));

214 if (σ∗, m̂∗) �∈ L1 then
215 return (σ∗, m̂∗); � (σ∗, m̂∗) is a signature forgery;

216 else � (σ∗, m̂∗) ∈ L1

217 Find (t, pksd, m, m̂, σ, τ1, τ
′
1, τ2, τ

′
2, τ3, c1, c2, pk) ∈ L2 such that (σ, m̂) =

(σ∗, m̂∗);
218 x1 ← (pksd, τ

∗
2 , τ ′∗

2, τ
∗
3 , c∗

1, c
∗
2, pkrcv); x2 ← (pksd, τ2, τ

′
2, τ3, c1, c2, pk);

219 if (pk, c1, c2) �= (pkrcv, c
∗
1, c

∗
2) then

220 return (x1, x2); � This yields a collision, x1 �= x2 and H(τ0, x1) = H(τ0, x2).

221 else return ⊥; �
(σ∗, m̂∗) ∈ L1, pk = pkrcv, c1 = c∗

1 , and c2 = c∗
2 , so we have (τ1, τ ′

1, τ2, τ ′
2) = (τ∗

1 , τ ′∗
1 , τ∗

2 , τ ′∗
2), then

m = m∗ = D(τ1, c2), and then (pkrcv, m∗, C∗ = (t, σ∗, c∗
1 , c∗

2)) ∈ L; this cannot occur (see condition (ii) at

line 210).

In experiment E0 the simulator answers A′s queries exactly as in an
dM−sUF−iCCA security game. In E1, we modify the simulator such that it receives
pksd from a signature challenger, and whenever S needs a signature on some m̂, it sends
it to its signature challenger and receives the corresponding signature (see at line 205).
Let Evb,b=0,1 be the event: “the conditions (i) and (ii) in the FINALIZATION procedure
are satisfied in experiment Eb.” It is clear that Pr(Ev0) = Pr(Ev1). Let Coll be the
event simulator outputs (x1, x2) such that H(τ0, x1) = H(τ0, x2).

Pr(Ev1 ∧ Coll) � Pr(Coll) � εH(k).

And, if Ev1 ∧ ¬Coll occurs, the simulator outputs a signature forgery, ı. e.

Pr(Ev1 ∧ ¬Coll) � εS(k).

It follows that ε(k) = Pr(Ev) � εH(k) + εS(k). 	

4.3 Soundness of Non-Repudiation

Theorem 3. If the hash function H is (t(k), εH(k))–collision resistant and the signa-
ture scheme is (t(k), εS(k)) secure against colliding signatures, then the SN scheme
achieves (t(k), ε(k)) soundness of non-repudiation, where ε(k) � εH(k) + εS(k).

Proof. We consider the following simulator.

Simulation for Soundness of non–repudiation

300 Initialization: dp ← (dpK, dpS, E ,Prf,H, τ0)←R Setup(k);

301 The attacker A outputs (C∗, pksd, skrcv, pkrcv, m
′, nr∗)←R A(dp);

302 Finalization:
303 if A outputs (C∗, pksd, skrcv, pkrcv, m

′, nr∗) such that

An Efficient Generic Insider Secure Signcryption with NINR 131

(i) ⊥ �= m ← Usc(skrcv, pksd, C
∗), and

(ii) m �= m′ and 1 = d ← PV(C∗, m′, nr∗, pksd, pkrcv);
then

304 Parse C∗ as (t∗, σ∗, c∗
1, c

∗
2) and nr∗ as (τ∗

1 , τ ′∗
1, τ

∗
2 , τ ′∗

2);
305 nr ← N(skrcv, pksd, C

∗); parse nr as (τ1, τ ′
1, τ2, τ

′
2);

306 τ∗
3 ← Prf(τ∗

2 , m′); τ3 ← Prf(τ2, m);
307 s1 ← (pksd, τ

∗
2 , τ ′∗

2, τ
∗
3 , c1, c2, pkrcv); m̂

∗ ← H(τ0, s1);
308 s2 ← (pksd, τ2, τ

′
2, τ3, c1, c2, pkrcv); m̂ ← H(τ0, s2); � As m �= m′ we necessarily have

τ1 �= τ∗
1 . Also, as m �= m′, τ2 = τ∗

2 implies τ3 �= τ∗
3 , so it holds that (τ2, τ3) �= (τ∗

2 , τ∗
3);

309 if m̂ = m̂∗ then return (s1, s2); � A collision is found for H

310 else return (pksd, m̂, m̂∗, σ∗); � Colliding signatures for m̂ and m̂∗;

311 else return ⊥;

Clearly, our simulator is efficient and if A succeeds in the soundness of non-repudiation
game, its output (C∗, pksd, skrcv, pkrcv, C

∗,m′, nr∗) is such that the conditions (i)
and (ii) at line 303 are satisfied. Then the simulator outputs either (s1, s2) such that
s1 �= s2 and H(τ0, s1) = H(τ0, s2), or (pksd, m̂, m̂∗, σ∗) such that m̂ �= m̂∗ and
1 = Vrfy(pk, m̂, σ∗) = Vrfy(pk, m̂∗, σ∗). Hence, ε(k) � εH(k) + εS(k). 	

4.4 Unforgeability of Non-Repudiation Evidence

Theorem 4. If the encryption scheme is (t(k), εE(k)) resistant to clustering key
attacks, the signature scheme is (t(k), εS(k)) resistant to colliding signatures, the hash
function is (t(k), εH(k)) resistant to collisions with identical prefix, and the KEM is
(t(k), εK(k)) IND-CCA secure, then SN achieves (t(k), ε(k)) unforgeability of non-
repudiation evidence with

ε(k) � qSc(εPrf(k) + (qUsc + qN + 1)/|K| + εS(k) + εK(k) + 2εH(k)) (11)

wherein qSc, qUsc, and qN are upper bounds on the number of times the attacker issues
respectively the signcryption, unsigncryption, and non-repudiation evidence generation
oracles.

Proof. Let Ev be the event: A outputs (C∗,m∗, nr∗) such that the conditions

(i) C∗ ←R OSc(pkrcv,m) was issued by A, for some m ∈ M;
(ii) 1 = d ← PV(C∗,m∗, nr∗, pksd, pkrcv);

(iii) ON(pksd, C
∗) was never issued by A.

We consider the following simulation; when abort is set to true, the simulation aborts.

Simulation for Unforgeability of non–repudiation evidence

400 Initialization: dp ← (dpK, dpS, E ,Prf,H, τ0)←R Setup(k); L ← (); L1 ← ();
401 (skrcv, pkrcv)←R Genrcv(dp); (sksd, pksd)←R Gensd(dp);
402 i0 ←R [qSc]; cnt ← 0; abort ← false;

132 N. Togde and A. P. Sarr

403 ((τ̄1, τ̄
′
1, τ̄2, τ̄

′
2), c̄1)←R Ecp(pkrcv);

E0

((τ̄1, τ̄
′
1, τ̄2, τ̄

′
2), c̄1)←R ChallKE0

;

E1

((τ̄1, τ̄
′
1, τ̄2, τ̄

′
2), c̄1)←R ChallKE1

;

E2, E3

404 m0 ← ⊥; m̂0 ← ⊥; C0 ← ⊥;

405 OSc(pk, m):
406 cnt ← cnt+ 1;
407 if cnt = i0 then
408 if pk �= pkrcv then abort ← true; � The guess is incorrect.

409 ((τ1, τ
′
1, τ2, τ

′
2), c1) ← ((τ̄1, τ̄

′
1, τ̄2, τ̄

′
2), c̄1);

E0, E1, E2

τ1 ← τ̄1; τ ′
1 ← τ̄ ′

1; c1 ← c̄1;
E3

410 c2 ←R E(τ1, m);

411 τ3 ← Prf(τ2, m);
E0, E1, E2

Send (p, m, s) ← (pksd, m, (c1, c2, pkrcv)) to the pre–image challenger;
E3

412 m̂ ← H(τ0, (pksd, τ2, τ
′
2, τ3, c1, c2, pk));

E0, E1, E2

Receive m̂ from the pre–image challenger;
E3

413 m0 ← m; m̂0 ← m̂;
414 else
415 ((τ1, τ

′
1, τ2, τ

′
2), c1)←R Ecp(pk); c2 ←R E(τ1, m);

416 τ3 ← Prf(τ2, m); m̂ ← H(τ0, (pksd, τ2, τ
′
2, τ3, c1, c2, pk));

417 σ ←R Sign(sksd, m̂); t ← Prf(τ ′
1, σ); Apd(L, (pk, m, (t, σ, c1, c2));

418 if cnt = i0 then
419 C0 ← (t, σ, c1, c2);

420 return (t, σ, c1, c2);

421 OUsc(pk, C): ON(pk, C) :
422 if pk = pksd and C = C0 �= ⊥ then

423 return m0;
OUsc

abort ← 1;
ON

424 Parse C as (t, σ, c1, c2);

425 if c1 = c̄1 then return ⊥;
E1, E2, E3

426 (τ1, τ
′
1, τ2, τ

′
2) ← Dcp(skrcv, c1); m ← D(τ1, c2);

427 τ3 ← Prf(τ2, m); m̂ ← H(τ0, (pk, τ2, τ
′
2, τ3, c1, c2, pkrcv));

428 d ← Vrfy(pksd, m̂, σ); t′ ← Prf(τ ′
1, σ);

429 if d = 1 and t = t′ then

430 return m;
OUsc

nr ← (τ1, τ
′
1, τ2, τ

′
2); Apd(L1, (pk, nr, C)); return nr;

ON

431 else return ⊥;

432 Finalization:
433 if A outputs (C∗, m∗, nr∗) such that:

(i) (pkrcv, m, C∗) ∈ L for some m ∈ M, � C∗ was generated by OSc(·, ·) on input (pkrcv, m).

(ii) 1 = d ← PV(C∗, m∗, nr∗, pksd, pkrcv), and

An Efficient Generic Insider Secure Signcryption with NINR 133

(iii) (pksd, nr∗, C∗) �∈ L1, � nr∗ was not generated by ON(·, ·) on a query on (pksd, C∗);

(iv) and C∗ = C0 = (t̄, σ̄, c̄1, c̄2); � the simulator guessed correctly;

then
434 Parse nr∗ as (τ∗

1 , τ ′∗
1, τ

∗
2 , τ ′∗

2); return (τ∗
2 , τ ′∗

2)
435 else return ⊥;

We consider the experiments Ei, for i = 0, 1, 2, 3. In E0 A plays Game 6; the simulator
guesses the execution of the signcryption oracle wherein C∗ will be generated, and
answers A’s queries consistently. Let Ev be the event A succeeds and Guess be the event
the simulator’s guess is correct. If Ev ∧ Guess occurs, the simulator outputs (τ∗

2 , τ ′∗
2)

such that m̂0 ← H(τ0, (pk, τ∗
2 , τ ′∗

2, τ
∗
3 , c1, c2, pkrcv)) wherein τ∗

3 ← Prf(τ∗
2 ,m0). As

the guess’s correctness is independent from A’s success,

Pr(Ev ∧ Guess) = Pr(Ev)/qSc. (12)

Let outi denote the event Ev ∧ Guess in experiment Ei, for i = 0, 1, 2, 3. We now
consider the experiment E1, wherein instead of generating (τ̄1, τ̄ ′

1, τ̄2, τ̄
′
2, c̄1) for the

guessed Sc query (see at lines 403 and 409), the simulator receives (τ̄1, τ̄ ′
1, τ̄2, τ̄

′
2, c̄1)

from a KEM challenger as ChallKE0
. In E1, when A provides the OUsc or ON ora-

cles with a signcrypted cipher text (t, σ, c1, c2) with c1 = c̄1, the simulator returns ⊥.
Indeed, for such a query to succeeds (except C0, which is allowed only for OUsc), it
must hold that t = t′ ← Prf(τ̄ ′

1, σ). As (t, σ, c1, c2) �= (t̄, σ̄, c̄1, c̄2), if (t, σ) �= (t̄, σ̄),
this yields a PRF MAC forgery, otherwise (we must have (c1, c2) �= (c̄1, c̄2)) we obtain
a collision for H or colliding signatures. Hence

|Pr(out0) − Pr(out1)| � εPrf(k) + (qUsc + qN)/|K| + εS(k) + εH(k).

We consider the experiment E2, where the only difference compared to E1 is that
(τ̄1, τ̄ ′

1, τ̄2, τ̄
′
2, c1) is received from a KEM challenger as ChallKE1

instead of ChallKE0
.

It holds that
|Pr(out1) − Pr(out2)| � εK(k).

In experiment E3, the challenger receives (τ̄1, τ̄ ′
1, τ̄2, τ̄

′
2, c1) as ChallKE1

from the KEM
challenger, however it does not use τ̄2 and τ̄ ′

2, instead the values of τ̄2 and τ̄ ′
2 are gener-

ated by a pre-image challenger, as τ̄2 and τ̄ ′
2 are generated following the same distribu-

tion as at the KEM challenger, it follows that

Pr(out2) = Pr(out3).

Now if out3 occurs, the simulator succeeds in its pre-image game. So, from Lemma 1,

Pr(out3) � 1/|K| + εH(k).

And then,

Pr(Ev)/qSc = Pr(out0) � |Pr(out0) − Pr(out1)| + |Pr(out1) − Pr(out3)| + Pr(out3)
� εPrf(k) + (qUsc + qN + 1)/|K| + εS(k) + εK(k) + 2εH(k).

	

134 N. Togde and A. P. Sarr

5 Comparison with Previous Constructions

As far as we are aware, only Chiba et al. [10] propose generic constructions of insider
secure signcryption schemes (in the dynamic multi-user model) in the standard model.
They propose two generic designs, we refer to by CMSM1 [10, Sect. 4.1] and CMSM2
[10, Sect. 4.2]. Both constructions use as building blocks:

– an IND-CCA–secure symmetric encryption scheme (only semantic security is
required for CMSM2), and

– a sUF-CMA–secure signature scheme.

The construction CMSM1 uses also an IND-CCA–secure tag–based–KEM (a KEM
which takes a tag as additional input for encapsulation/decapsulation).
The design CMSM2 uses as additional building blocks:

– an IND-CCA–secure KEM, and
– a one-to-one and sUF–OT secure MAC.

In comparison, in our design, we use as building blocks:

– a semantically secure symmetric encryption scheme,
– a sUF-CMA–secure signature scheme,
– an IND-CCA–secure KEM,
– a collision resistant hash function, and
– a secure pseudo-random function.

Although tag-based-KEMs can be built from any IND-CCA–secure public key encryp-
tion scheme [10], KEMs seem to be more common. For instance, cryptography stan-
dards, such as HPKE [6], use KEMs as building block, not tag-based-KEMs. And, any
tag-based KEM can be transformed into a KEM, by using an empty tag. In this respect,
compared to CMSM1, the SN scheme uses more common low level primitives.

The construction CMSM2 uses very common low level primitives. Unfortunately,
to achieve strong unforgeability, there is a significant restriction on the MAC, which is
required to be one-to-one, i. e. it is required that given a key τ and a message m, there
is one and only one t such that MAC(τ,m) = t. This requirement excludes a large
class of hash based MACs such as HMAC [16], UMAC [17], or KMAC [15]. The same
restriction exists on the encryption scheme; this precludes the use a randomized encryp-
tion scheme, such as a bloc cipher with a mode of operation using a (pseudo-)random
initialization vector, for instance. In comparison, in the SN construction, we require the
signature scheme to be resistant against colliding signatures and the encryption scheme
to be resistant against clustering key attacks. In many signatures, wherein the message
to be signed is hashed first (the Full Domain Hash [14], for instance), colliding sig-
natures yield a digest collision. The requirement is then naturally achieved in usual
signature schemes. And, given the commonly required avalanche effect in substitution
permutation network based encryption schemes (each cipher-text bit is changed with
probability 1/2, when a single bit of the key is modified), one can reasonably expect
common encryption schemes to be resistant against key clustering attacks. To instanti-
ate the PFR, given the public parameter τ0 and a secure block cipher, from the PFR–PRP
switching lemma [9, p. 134], Prf(τ, x) can be computed using the instructions:

An Efficient Generic Insider Secure Signcryption with NINR 135

500 Prf(τ, x):
501 x′ ← H(τ0, x); t ← E(τ, x′); return t;

It appears that, compared to CMSM2, the SN scheme offers a wider range of choices
for an instantiation of the low level primitives. This may be of prime importance in a
constrained environment wherein only a limited number of low level primitives can be
implemented.

Contrary to Tan’s design [23] and the generic constructions from [2] and [19], the
SN scheme does not require the registered key model; it then offers a superior security.
Also, compared to the constructions from [20–22], SN does not use the random oracle
model. Another security advantage of the SN scheme compared to these constructions
is its generic nature; it can be instantiated with adequate present and future (including
quantum-resistant) primitives.

From an efficiency perspective, the computational cost of the CMSM1, CMSM2,
and SN schemes, comes mainly from the asymmetric operations (the cost of the sym-
metric operations is usually neglected): encapsulation and signature for signcryption,
and decapsulation and signature verification, for unsigncryption. Given that any tag-
based-KEM can be transformed (for free) into a KEM, for any instantiation of CMSM1
or CMSM2, there is an instantiation of SN that achieves the same efficiency for the
asymmetric operations, if not better. For a comparison with direct constructions [20–
23], SN can be instantiated with any signature scheme S and symmetric encryption
scheme E , and an appropriate KEM, PRF and hash function, provided S is strongly
unforgeable and S is semantically secure and the KEM is IND-CCA–secure. Given that
hash and PRF evaluations are negligible compared to signature and KEM operations,
SN will yield a comparable efficiency.

The bit length of a CMSM1 signcrypted cipher-text corresponding to a message
m is the bit length of m (assuming that the encryption scheme E is length pre-
serving) added with that of a signature on m and that of a encapsulated key, i.e.
sz(m)+sz(Sign(sksd,m))+sz(Ecp(sksd, pkrcv)), where sksd and pkrcv are respectively
the sender’s private key and the receiver’s public key. The CMSM2 and SN schemes add
to this quantity the size of a MAC (a PRF based MAC in the case of SN). So, the SN and
CMSM2 have the same communication overhead, which is slightly greater than that of
CMSM1.

An interesting feature of the SN scheme, is that all the security reductions are tight,
except for the unforgeability of non-repudiation evidence wherein we use a guessing
strategy. A concrete instance of SN may be re-analyzed for unforgeability of non-
repudiation evidence, if the underlying KEM is build upon a random self-reducible
problem.

A Proof of Lemma 1

Let A be an adversary playing Game 1. We build an adversary B against the collision
(with identical prefix) resistance of H a follows.

1) B receives τ0 ←R K from its challenger and sends τ0 to A.
2) When B receives (p0,m0, s0) from A, it chooses (τ, τ ′)←R K2 and computes τ ′′

0 ←
Prf(τ ′,m0), m̂0 ← H(τ0, (p0, τ, τ ′, τ ′′, s0)) and sends m̂0 to A.

136 N. Togde and A. P. Sarr

3) When A outputs (τ∗, τ ′∗) such that m̂0 = m̂∗
0 ← H(τ0, (p0, τ∗, τ ′∗, τ ′′∗, s0))

wherein τ ′′∗ ← Prf(τ ′∗,m0), if (τ, τ ′) �= (τ∗, τ ′∗) then B outputs (s, s′) wherein
s = (p0, τ, τ ′, τ ′′, s0) and s′ = (p0, τ∗, τ ′∗, τ ′′∗, s0) as messages with identical
prefix p0 and colliding hashes under τ0.

Let bad be the event: the chosen pair (τ, τ ′) is such that for all (τ̄ , τ̄ ′) �= (τ, τ ′),
m̂0 �= H(τ0, (p0, τ̄ , τ̄ ′, τ̄ ′′, s0)), i. e. there is no other pair (τ̄ , τ̄ ′) ∈ K2 such that
H(τ0, (p0, τ̄ , τ̄ ′, τ̄ ′′, s0)) = H(τ0, (p0, τ, τ ′, τ ′′, s0)). It holds that

Pr(bad) � |T|/|K|2.
If SuccA,H denotes the event A succeeds in Game 1,

Pr(SuccA,H) = Pr(SuccA,H ∧ bad) + Pr(SuccA,H ∧ ¬bad)
� Pr(bad) + Pr(SuccA,H ∧ ¬bad).

Now let Eq be the event (τ, τ ′) = (τ∗, τ ′∗).

Pr(SuccA,H ∧ ¬bad) = Pr(SuccA,H ∧ ¬bad ∧ Eq) + Pr(SuccA,H ∧ ¬bad ∧ ¬Eq).
Now, as if SuccA,H ∧ ¬bad occurs, there at least one (τ∗, τ ′∗) �= (τ, τ ′) such that
m̂0 = m̂∗

0 ← H(τ0, (p0, τ∗, τ ′∗, τ ′′∗, s0)), and A has no information about (τ, τ ′)
besides m̂0, it holds that

Pr(SuccA,H ∧ ¬bad ∧ Eq) � Pr(SuccA,H ∧ ¬bad ∧ ¬Eq).
Hence

Pr(SuccA,H) � |T|/|K|2 + 2Pr(SuccA,H ∧ ¬bad ∧ ¬Eq).
And, whenever SuccA,H ∧¬bad∧¬Eq occurs B outputs s, s′ with identical prefix such
that H(τ0, s) = H(τ0, s′). 	

References

1. An, J.H., Rabin, T.: Security for signcryption: the two-user model. In: Dent, A., Zheng,
Y. (eds.) Practical Signcryption, pp. 21–42. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-540-89411-7_2

2. Arriaga, A., Barbosa, M., Farshim, P.: On the joint security of signature and encryption
schemes under randomness reuse: efficiency and security amplification. In: Bao, F., Samarati,
P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 206–223. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31284-7_13

3. Badertscher, C., Banfi, F., Maurer, U.: A constructive perspective on signcryption security.
In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 102–120. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_6

4. Baek, J., Steinfeld, R.: Security for signcryption: the multi-user model. In: Dent, A., Zheng,
Y. (eds.) Practical Signcryption, pp. 43–53. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-540-89411-7_3

5. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. J. Cryptol.
20(2), 203–235 (2007)

https://doi.org/10.1007/978-3-540-89411-7_2
https://doi.org/10.1007/978-3-540-89411-7_2
https://doi.org/10.1007/978-3-642-31284-7_13
https://doi.org/10.1007/978-3-319-98113-0_6
https://doi.org/10.1007/978-3-540-89411-7_3
https://doi.org/10.1007/978-3-540-89411-7_3

An Efficient Generic Insider Secure Signcryption with NINR 137

6. Barnes, R., Bhargavan, K., Lipp, B., Wood, C.: RFC 9180: Hybrid public key encryption
(2022)

7. Bao, F., Deng, R.H.: A signcryption scheme with signature directly verifiable by public key.
In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 55–59. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0054014

8. Bjørstad, T.E., Dent, A.W.: Building better signcryption schemes with tag-KEMs. In: Yung,
M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 491–507.
Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_32

9. Boneh, D., Shoup, V.: A graduate course in applied cryptography. Draft 0.6 (2023). https://
toc.cryptobook.us/

10. Chiba, D., Matsuda, T., Schuldt, J.C.N., Matsuura, K.: Efficient generic constructions of
signcryption with insider security in the multi-user setting. In: Lopez, J., Tsudik, G. (eds.)
ACNS 2011. LNCS, vol. 6715, pp. 220–237. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-21554-4_13

11. Ducklin, P.: Serious security: google finds fake but trusted SSL certificates for its domains,
made in France. Naked Security-Award-Winning Computer Security, News, Opinion, Advice
and Research from SOPHOS, pp. 09–12 (2013)

12. Fan, J., Zheng, Y., Tang, X.: Signcryption with non-interactive non-repudiation without ran-
dom oracles. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Transactions on Compu-
tational Science X. LNCS, vol. 6340, pp. 202–230. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-17499-5_9

13. Fisher, D.: Final Report on DigiNotar Hack Shows Total Compromise of CA Servers. Threat-
post, 10/31/12. https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-
ca-servers-103112/77170/

14. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 537–553.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_32

15. Kelsey, J., Chang, S.J., Perlner, R.: SHA-3 derived functions: cSHAKE, KMAC, TupleHash,
and ParallelHash. NIST Special Publication, vol. 800, p. 185 (2016)

16. Krawczyk, H., Bellare, M., Canetti, R.: RFC2104: HMAC: Keyed-hashing for message
authentication (1997)

17. Krovetz, T. (Ed.): RFC 4418: UMAC: Message Authentication Code using Universal Hash-
ing (2006)

18. Malone-Lee, J.: Signcryption with non-interactive non-repudiation. Des. Codes Cryptogr.
37(1), 81–109 (2005)

19. Matsuda, T., Matsuura, K., Schuldt, J.C.N.: Efficient constructions of signcryption schemes
and signcryption composability. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS,
vol. 5922, pp. 321–342. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
10628-6_22

20. Ngarenon, T., Sarr, A.P.: A Computational Diffie-Hellman based Insider Secure Signcryp-
tion with Non Interactive Non Repudiation (full version) (2022). https://hal.science/hal-
03628351/document

21. Ngarenon, T., Sarr, A.P.: A computational Diffie-Hellman based insider secure signcryption
with non-interactive non-repudiation. In: Rushi Kumar, B., Ponnusamy, S., Giri, D., Thurais-
ingham, B., Clifton, C.W., Carminati, B. (eds.) ICMC 2022. Springer Proceedings in Math-
ematics & Statistics, vol. 415. Springer, Cham (2023). https://doi.org/10.1007/978-981-19-
9307-7_8

22. Sarr, A.P., Seye, P.B., Ngarenon, T.: A practical and insider secure signcryption with non-
interactive non-repudiation. In: Carlet, C., Guilley, S., Nitaj, A., Souidi, E.M. (eds.) C2SI
2019. LNCS, vol. 11445, pp. 409–429. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-16458-4_24

https://doi.org/10.1007/BFb0054014
https://doi.org/10.1007/11745853_32
https://toc.cryptobook.us/
https://toc.cryptobook.us/
https://doi.org/10.1007/978-3-642-21554-4_13
https://doi.org/10.1007/978-3-642-21554-4_13
https://doi.org/10.1007/978-3-642-17499-5_9
https://doi.org/10.1007/978-3-642-17499-5_9
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/978-3-642-10628-6_22
https://doi.org/10.1007/978-3-642-10628-6_22
https://hal.science/hal-03628351/document
https://hal.science/hal-03628351/document
https://doi.org/10.1007/978-981-19-9307-7_8
https://doi.org/10.1007/978-981-19-9307-7_8
https://doi.org/10.1007/978-3-030-16458-4_24
https://doi.org/10.1007/978-3-030-16458-4_24

138 N. Togde and A. P. Sarr

23. Tan, C.H.: Signcryption scheme in multi-user setting without random oracles. In: Matsuura,
K., Fujisaki, E. (eds.) IWSEC 2008. LNCS, vol. 5312, pp. 64–82. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-89598-5_5

24. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) �
cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 165–179. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052234

https://doi.org/10.1007/978-3-540-89598-5_5
https://doi.org/10.1007/BFb0052234

High-Order Collision Attack
Vulnerabilities in Montgomery Ladder

Implementations of RSA

Arnaud Varillon(B) , Laurent Sauvage, and Jean-Luc Danger

LTCI, Telecom Paris, Institut Polytechnique de Paris, 19, place Marguerite Perey,
CS 20031, 91123 Palaiseau Cedex, France

{arnaud.varillon,laurent.sauvage,jean-luc.danger}@telecom-paris.fr

Abstract. This paper describes a straightforward methodology which
allows mounting a specific kind of single-trace attacks called collision
attacks. We first introduce the methodology (which operates at the algo-
rithmic level) and then provide empirical evidence of its soundness by
locating the points of interest involved in all existing collisions and then
attacking an unmasked RSA implementation whose modular exponenti-
ation is based on the Montgomery Ladder. The attacks we performed,
albeit slightly worse than the theoretical prediction, are very encouraging
nonetheless: the whole secret exponent can be retrieved (i.e., a success
rate equal to 100%) using only 10 traces. Lastly, we describe how this
could allow for the introduction of high-order attacks, which are known
to break some protected implementations of symmetric cryptography, in
the context of asymmetric cryptography.

Keywords: Side-Channel · Electromagnetic · Montgomery Ladder ·
RSA · Leakage Assessment · Collision Attack

1 Introduction

The RSA Cryptosystem. RSA [25] is one of the ubiquitous cryptosystems
powering many common operations ranging from banking to authentication in
computer systems. It leverages the factorization problem to encrypt/decrypt a
message m (the input) using, like in any asymmetric cryptosystem, a pair of keys
(the public one (n, e), and the private one, (d, p, q)) in a modular exponentiation.
For instance, for the decryption of a ciphertext g, the formula is:

m = gd mod n

Side-Channel Attacks and RSA. Among the many threats targeting the
cryptographic libraries used for these purposes, side-channel attacks make for

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. Regazzoni et al. (Eds.): SPACE 2023, LNCS 14412, pp. 139–161, 2024.
https://doi.org/10.1007/978-3-031-51583-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51583-5_9&domain=pdf
http://orcid.org/0000-0002-1991-4246
https://doi.org/10.1007/978-3-031-51583-5_9

140 A. Varillon et al.

a lesser-known to the public, yet especially acute concern. This kind of crypt-
analytic attacks exploits oversights in the implementation of a cryptographic
algorithm as well as side effects of the execution of the latter. In techniques
like the one we propose, this is usually done using a divide-and-conquer app-
roach which greatly reduces the number of computations required to recover the
private key.

Asymmetric cryptography is a prime target of these attacks. More specifically,
RSA has been extensively studied in the side-channel context (e.g. [7,23]). Over
the years, two main trends have emerged: (cache-)timing attacks (e.g. [1]) and
horizontal attacks (e.g. [29]). Nonetheless, with the advent of (noise-resistant
and deep) neural networks in the field, profiling (i.e., vertical) attacks are on
the rise (e.g. [7,24]), and are likely to become the most prominent side-channel
threat for asymmetric cryptography.

Related Works. Several algorithms exist which can compute the modular
exponentiation [15,17] in RSA. Among these, the Montgomery Ladder [19] (Algo-
rithm 1) has been brought to the side-channel realm [16] by Joye et al. as a safer
alternative to some of the then well-known techniques such as Square & Multiply
and Square & Multiply Always. In their paper, they emphasize on its regularity
which, they claim, makes it resistant to horizontal attacks (related to Simple
Power Attacks (SPAs)) provided that the uses of its two registers (i.e., variables,
in this context) are indistinguishable from one another.

The most notorious (by number of citations) vulnerability of the Montgomery
Ladder is the unsupervised vertical exploitation of some leakage of the secret
exponent bit being processed in the conditional swapping of operands [13,21,22,
24]. However, since the first side-channel attack on RSA [23], the most popular
countermeasures for this cryptosystem [3,9,10,23] (e.g., blinding) mainly pre-
vent vertical attacks. As a consequence, in recent years, attacks using a single
trace, such as horizontal collision attacks [7,8,14,29,31], have become a major
concern for RSA: now that vertical leakage is much more difficult to reveal and
subsequently exploit, the best attacks against state-of-the-art countermeasures
(and probably those to come as well) are increasingly likely to be horizontal and
to require a single trace. This has shifted the focus of research works to horizon-
tal countermeasures to complement the vertical ones, like blinding, which are
now deemed insufficient: Most papers in the field advocate for their combined
use in secure implementations. The interested reader may skip to Sect. 2 where
we expand on the literature related to one kind of such attacks for the Mont-
gomery Ladder before discussing throughout the rest of the paper the extent to
which high-order variants of the main contribution of this paper could defeat
horizontal countermeasures.

Goal of This Paper. This paper introduces a methodology for the detection
of (high-order) collision attack vulnerabilities in the Montgomery Ladder which,
to the best of our knowledge, is different from the state of the art. It aims to
extend the mix of collision identification (1) and POI selection (2) suggested

High-Order Collision Attack Vulnerabilities 141

by Carbone et al. [7] by introducing a systematic procedure for (1) and making
(2) more general.1 In particular, unlike many attacks from the literature on this
topic, our technique does not require chosen inputs. All this should provide for
a more accurate evaluation, in later papers, of the security of other modular
exponentiation techniques and other cryptosystems (for instance, elliptic curve
cryptography) in the context of recent first-order (e.g. [7,8]) or future high-order
horizontal collision attacks.

This contribution is structured as follows: in Sect. 2, we present these attacks
and show, in Sect. 3, that the Montgomery Ladder is, in theory, vulnerable to
them using our methodology. Then, in Sect. 4, we assess the validity of this
approach in practice on real traces by locating the POIs involved in the existing
collisions and then mounting the corresponding first-order attacks. Lastly, in
Sect. 5, we briefly review the consequences of this work for the security of RSA
in the side channel context and provide a few perspectives for future research
works.

2 Related Works

Introducing Collisions into the Side-Channel Context. Although crypto-
graphic devices constantly leak (possibly sensitive) data through physical means
as they function, the true extent of this leakage at critical timestamps is seldom
(if ever) evaluated accurately because of modeling issues [6]. Existing leakage
models seek to explain the variability observed in the acquired traces (each of
which comprises samples obtained during a single execution of the cryptographic
code) by describing in mathematical terms the behavior of the hardware of the
target with respect to the data being processed. For attacks which are based on
physical properties of this hardware, such as Differential Power Attacks (DPAs)
which rely on the toggling count of registers, this approach appears to be sound.
However, this makes the models device-specific which, in turn, lessens the perfor-
mance of the leakage assessment: in a black-box setting, the hardware of a given
target can be very challenging to analyze, and technological dispersion implies
that a model which has been tuned for a device may not be valid for another
device from the same batch.

Collisions, which are defined at the algorithmic rather than hardware level,
do not suffer from this defect. They correspond to the reuse of intermediate
values during a cryptographic operation in several computations [20]. Whenever
this reuse depends on some (small enough) part of the secret, there is a vulnera-
bility which can lead to a side-channel attack.2 The presence of such a collision

1 Their leakage assessment works for their specific target only.
2 As it turns out, symmetric and asymmetric cryptography behave differently in this

respect. In the symmetric case, the confusion introduced by the likes of S-Boxes
makes collisions probabilistic. In the RSA case, collisions happen with probability
equal to either 0 or 1, meaning that the value of the part of the secret being processed
directly determines whether there is a collision. Theoretically, a single execution of
the modular exponentiation is therefore enough to recover the whole exponent.

142 A. Varillon et al.

is evaluated assuming that the processing of equal values leads to equal leakage.
Each point of interest (POI—i.e., sample statistically related to some sensitive
variable) in the observed leakage is interpreted relatively to another one, rather
than individually like in a DPA for instance. Therefore, detecting collisions does
not require the knowledge of the exact leakage model of the device: it is assumed
to be the same for all samples, so a proxy like a numerical model of the com-
putations is enough. Such an approximation retains all the information which is
relevant for the comparisons. In fact, as we demonstrate, it is not even required
to know the values being handled by the hardware: thanks to the physics of the
latter, it is possible to evaluate whether two values are equal by comparing the
corresponding leakages as measured using the oscilloscope. This does not involve
any kind of estimation of the contents of the hardware registers.

RSA and Side-Channel Collision Attacks. Regarding RSA, when a colli-
sion exists for a given bit value only and not the other, it is possible to
retrieve the latter from the detection of the collision: this is the working
principle of the collision attacks considered in this paper. Because, regarding
RSA, the existence of collisions is linked to the value of the secret exponent only,
such attacks are naturally immune to message and modulus blinding
when it is performed once and for all at the beginning of the computation (as is
usually done) and, for those which require only one trace, to exponent blinding
as well. So far, various such attacks [2,7,8,12,14,29–31] have been suggested in
the literature, yet apart from [2,12,30,31] and from [14] with a few modifications,
these do not apply to the Montgomery Ladder and, apart from [7], appear to
struggle in the presence of noise in the traces.

Indeed, the Big Mac attack from [29] tries to match one of the two operands
of the multiplication in each iteration of the sliding window with one of the
precomputed powers of the message using the Euclidean distance. Since no such
lookup table exists for the Montgomery Ladder, this attack does not apply to
it. The Horizontal Correlation Analysis from [8] aims to determine whether the
conditional multiplication in the Square & Multiply algorithm is performed. To
do so, the authors recommend correlating trace segments corresponding to the
processing of digits of the operands with the Hamming weights of those of the
input message.3 This collision attack is specific to this algorithm and cannot be
extended to the Montgomery Ladder if only because it is regular. Lastly, the
collision attack mounted in [7] works against the Square & Multiply Always
algorithm only. It seeks to find out whether the result of the multiplication has
been discarded by comparing a common input between this operation, which has
been carried out for a given exponent bit, and the squaring associated with the
following one. Since the Montgomery Ladder is truly regular [16] (its does not
use dummy computations) this work does not apply to it as well.

Regarding the attacks which do apply to the Montgomery Ladder, the tech-
nique from [31] requires, as a doubling attack, two traces much like the original
3 Other internal variables have been suggested as well, yet in the end, it all boils down

to finding whether the input message is involved in certain operations.

High-Order Collision Attack Vulnerabilities 143

one [11]. Although the vulnerability they rely on is somewhat similar to one of
those we introduce, it does not allow for a single-trace attack and is, as a con-
sequence, thwarted by blinding. The comparative (power) analysis pioneered by
Homma et al. in [14] uses even more traces since a pair of inputs must be crafted
for every exponent bit which is to be guessed.4 The Online Template Attack
(OTA) from [2], which improves on this constraint by building templates after
acquiring the trace to attack, still suffers from this ‘defect’, although to a lesser
extent.5 The approach proposed in [30], which consists in computing the cor-
relation between sets of aggregates covering complete modular operations (one
aggregate per operation) which are gathered over multiple traces, requires many
traces as well.6 Last, the attack from [12] does not work well in a single trace
on the Montgomery Ladder, especially if one uses the Pearson correlation coeffi-
cient as we do here. It involves computing a mean profile over all the operations
in a given trace which is then subtracted to each of them to reduce the preva-
lence of noise. Then, an elaborate POI selection is performed to allow for the
detection of collision by comparing the extracted sub-traces which are made up
of many samples. Last, the authors added an error correction step to make for
potential mistakes made in the latter. Thus, this could arguably be described as
the most complex collision attack in the literature.7 Yet, the probability to accu-
rately recover the secret is still strictly less than 1 (0.926 in the best case). All
in all, these attacks do not attain the best performance predicted by the theory
which remains stubbornly out of reach to this day. One should also note that the
various distinguishers coming from classical pattern matching which are used in
these papers for the detection of collisions (Euclidean distance, Pearson corre-

4 Although it is not mentioned in the paper, their technique can be extended to the
Montgomery Ladder using their forward estimation method. This amounts to com-
paring, for a pair chosen according to the guideline they provide, the squaring done
in the first iteration which processes the input message (the corresponding bit is
equal to 1) and the one carried out for the bit which is currently unknown. Like in
the paper, the estimation of a given exponent bit requires that all the preceding ones
be known, therefore an error on index j affects all the following indices.

5 However, we acknowledge that, unlike the OTA, our methodology is not portable. In
fact, in collision attacks (to which OTA belongs to some extent) at least, there seems
to exist a balance to find between portability and the cost of profiling. The authors
of [2] appear to have chosen to prioritize portability by making the template building
phase “online”. Therefore, each attack requires a profiling phase. We have decided to
proceed differently. Our attack is not portable, but on the plus side, profiling needs
be done only once. Consequently, the more keys an attacker targets for a given pair
(board, software), the better our methodology gets in respect to OTA which requires
one template per scalar bit every time.

6 The authors report using 5000 traces yet do not provide any success rate.
7 For instance, we claim that our contribution, which comprises only two steps and

does not require any error correction, is somewhat simpler. Moreover, in addition
to the vulnerability mentioned there, we describe another one which happens in the
processing of a single bit.

144 A. Varillon et al.

lation coefficient) are intrinsically sensitive to noise, and thus perform poorly
when applied to patterns spanning complete group operations (e.g.: squaring).8

The selection of points suggested by Carbone et al. in [7] as an input step
to their attack reduces significantly the impact of noise on its success rate since
the samples used by the distinguisher all hold a high enough (thanks to the
tuning performed for the POIs selection criteria) level of information about the
target variable. This preprocessing of the traces, which is very common in other
sub-branches, was non-existent in the realm of collision attacks on asymmet-
ric cryptography which favored other approaches akin to windowing. However,
like in all the other papers we mentioned, Carbone et al. focus on a specific
variable or operation and as a consequence miss other existing collision attack
vulnerabilities which could be used in the same way (in first-order attacks) or in
higher-order settings targeting several variables at the same time as is common-
place for symmetric cryptography.

The Montgomery Ladder. The original algorithm used for the modular expo-
nentiation in RSA is Square & Multiply [17]. Its main flaw is the fact that the
multiplication is performed only when the current bit of d is equal to 1. The
Square & Multiply Always variant [9] attempts to fix this vulnerability by com-
puting the multiplication regardless of the value of the current exponent bit and
throwing the result away when required. This makes the modular exponentiation
regular since the same operations are carried out irrespective of the value of this
bit. However, in both cases, the conditional use of the result from multiplication
makes the modular exponentiation insecure. The main concern is a conditional
collision which happens between the inputs of the multiplication done for the
bit dj of the exponent, and those of the squaring computed for the following one
dj−1.

From a more formal perspective, given d =
∑i=T−1

i=0 di · 2i, the result of the
classical left-to-right modular exponentiation is:

gd = ((. . . (gdT−1)2 · gdT−2 . . .)2 · gd0)

In this equation, one can notice that the squaring is always performed whereas
the multiplication can be omitted when the exponent bit is 0 since g0 = 1.
Let D(j) =

∑T−1
i=j di2i, then9 the value computed at the end of the (T − j)-th

iteration is either g2D
(j+1)

if dj is equal to 0, or g2D
(j+1)+1 = gD

(j+1) · gD
(j+1)+1

if it is equal to 1. The latter computation uses all possible results from dj+1

(without and with a multiplication). It is therefore possible to make the Square
& Multiply algorithm regular without using dummy operations by performing
the multiplication irrespective of dj , and using two variables which hold, in turns,
these two results based on its value. This rewrite of the exponentiation makes

8 This is especially so for the STM32F407 board, which we used for this paper, which
is arguably noisier than other platforms commonly targeted such as ChipWhisperer.

9 This sum is assumed to be equal to zero when it is empty.

High-Order Collision Attack Vulnerabilities 145

every operation contribute towards the result, and could be used as a solution
to the aforementioned shortcoming.

The Montgomery Ladder [16] is built upon this observation.10 In their paper,
Joye et al. proposed an implementation of this trick by means of two variables,
R0 and R1. R0 holds the result of the correct computation given dj , and R1, the
other one.11 Furthermore, they provided the corresponding algorithm for which
we recall the pseudocode (Algorithm 1).

3 Our Collision Attack Vulnerability Analysis
of the Montgomery Ladder

Considering the small survey we propose (Sect. 2), we argue that the existing
literature (symmetric and asymmetric) does not feature any formal definition
for collisions in general, and as far as RSA and this paper are concerned, in high-
order settings. To remedy this, we start with a generic yet familiar definition
(collisions on values) which we gradually tailor to RSA (collisions on variables
involving at least two operations).

Definition 1 (Collisions). Let Γ denote the set of operations which make up
a cryptographic computation. A collision on a value v is defined as the use
(as an operand—read—or the result—write) of v in several operations γ1, . . . γr,
(γ1, . . . , γr) ∈ Γ r.

In RSA, the structure of the modular exponentiation implies that v is linked
to a single variable V . The collisions on values which are exploited in the liter-
ature we reviewed [7,8,14,29,31] can therefore be lifted to the algorithmic level
as follows. From now on, the word ‘collision’ is used as a shorthand for ‘collision
in RSA’.

Definition 2 (Collisions in RSA). Let Γm and Vm respectively denote the
set of operations and the set of variables in the modular exponentiation which
processes the secret exponent d = (dT−1 . . . d0)2 bit by bit. A collision on a
variable V ∈ Vm is defined as the use of V in two distinct operations γs and
γt, (γs, γt) ∈ (Γm)2 coming from the processing of two exponents bits di and dj
(i ≤ j), without being overwritten in the meantime. Furthermore, a collision
becomes an attack vulnerability when the collision exists for one possible value
of dj, but not for the other one ¬dj.

The condition upon which a collision becomes an attack vulnerability comes from
the fact that V is always used in γs, but in γt as well for one of the two possible
values for dj only. As a consequence, detecting the reuse of V in γt allows for the
estimation of dj . For this reason, we suggest calling γs the source of the collision,
and γt, its target. In the rest of this paper, we may, to refer to Definition 2, then

10 Our mathematical derivation is a reformulation of the one available in the original
paper.

11 Therefore, at the beginning of each iteration of the loop, the following is always true:
R1 = g · R0.

146 A. Varillon et al.

synonymously say that the collision happens on V , or between γs and γt. Now,
if more than two operations take part in a collision (as defined in Definition
1), then, according to the state of the art, there are as many vulnerabilities as
conditional reuses of V : each entity involved in a collision comes from a single
operation. This implies that high-order collision attack vulnerabilities, in which
a combination of multiple variables coming from a set of operations
is reused in another set of operations, cannot exist. Thus, we propose the
following extension which is more suitable for such vulnerabilities.

Definition 3 (High-order Collisions in RSA). Let Γm and Vm respectively
denote the set of operations and the set of variables used in the modular expo-
nentiation. A high-order collision on a variable V is a collision in which V can
be described as a linear combination f :

∏l
i=1 Ki → Zn of multiple components

(i.e., other variables) coming from different operations (γ1, . . . γl) ∈ (Γm)l:

V = f(V1, . . . , Vl)

where (V1, . . . , Vl) ∈ (Vm)l, and the (Ki)1≤i≤l are the spaces of the (Vi)1≤i≤l.
Like a collision, it may become an attack vulnerability.

In this definition, unlike in the first-order case, the collision may exist at
the algorithmic level only. Indeed, at this level, in the first-order case, the
operands of each operation each correspond to a single variable (e.g.: g in the
Montgomery Ladder), whereas in the high-order case, these operands may each
be the image of a function f which combines other variables originating from
computations which may not be part of the modular exponentiation (e.g.: r0 · g
in the Montgomery Ladder, where r0 is a random integer, and the multiplication
is performed before the Montgomery Ladder). In fact the (γi)1≤i≤l may include
γs and γt (the original variables are blinded during the modular exponentiation),
be computed as part of each of those two operations (idem), or be unrelated to
them (the original variables are blinded outside the modular exponentiation).
For instance, if a horizontal ‘randomization’ (i.e. blinding-like)12 countermea-
sure such as [10] were to be implemented alongside the Montgomery Ladder, the
values used in γs and γt would not be equal even though Definition 2 applies to
V : its original contents would frequently be randomized. Nevertheless, provided
that the attacker is able to combine leakages owing to the various variables being
input to the function f which gives rise to those values, such collision vulner-
abilities would break this protected implementation. Using this framework, we
may now, in the following theorems, propose a collision analysis for the Mont-
gomery Ladder which is both more thorough than in the previous literature and
exhaustive by considering all variables rather than a single one. To help the
reader better understand the collisions we study, we use a specific nomenclature
(Table 1) every time we refer to them.

12 Countermeasures which shuffle the order of the operations do not remove the first-
order vulnerabilities since the collisions still exist. An attacker who is able to detect γs

and γt irrespective of their position in the trace may proceed as previously described.
As such, these are not taken into consideration here.

High-Order Collision Attack Vulnerabilities 147

Table 1. Taxonomy of collisions (T : bit-length of d).

Bits involved in the collision Name

dj , j ∈ �0, T − 1� dj collisions

dj:j−1, j ∈ �0, T − 1� dj-dj−1 collisions

(di, dk), (i, k) ∈ �0, T − 1�2 di-dk collisions

3.1 dj Collisions

To illustrate the previous definitions using a familiar setting, let us first apply
them to the Montgomery Ladder by considering the values held by the variables,
as is usual in the existing literature, rather than the variables themselves. The
question we will therefore answer in the next few paragraphs is the following:
which values could possibly be involved in a collision during one iteration of the
loop from the Montgomery ladder? We know (Algorithm 1) that the latter uses
two variables: Vm = {R0, R1}. Moreover, the same two operations are performed
(Fig. 1, vertical dashed blue line in the middle), irrespective of the value of the
exponent bit dj being processed: Γm = {Multiply,Square}.

To compute the contents of these variables at any time, it is enough to notice
that, at the beginning of every iteration of the loop (line 2, Algorithm 1), the
following relation is true [16]: R1 = g ·R0. Let gx denote the content of R0 at the
beginning of the iteration associated with an exponent bit dj , j ∈ �0, T −1�, then
R1 holds the value gx+1 (Fig. 1—green part, initial values in 2nd and 3rd lines of
both upper and lower halves). When dj = 0 (upper half), R1 gets the result of the
multiplication and R0, that of the squaring. Hence, the value gx · gx+1 = g2x+1

is assigned to R1 (‘→ R1’, 1st line in the upper part, multiplication), and the
value (gx)2 = g2x, to R0 (‘→ R0’, 1st line in the upper part, squaring).

Now that we have computed the contents of both variables with respect to
dj , how can we spot first, existing collisions, and then, those which are attack
vulnerabilities? The selection criterion to apply to the contents of R0 and R1

is the following (Definition 2): which values are used in the two operations?
Only gx, gx+1 and g2x+1 meet this rule. Yet, among these candidates, which
ones are used in the squaring for one value of dj only? As we show in the
following lines, the answer is: gx and gx+1. Indeed, gx is read as an input to,
first, the multiplication (‘yes’ entry in the 4th line, multiplication) and then,
the squaring (idem, squaring). Since the variable holding that value, R0, is not
used to store the result of the multiplication, it is not overwritten (‘no’ entry
in the 4th line, multiplication) between those two points in the execution. This
matches Definition 2, where V = R0 and (γs, γt) = (Multiply,Square), so this
is a collision (solid burgundy arrow in the upper half). The same logic indicates
that gx+1 takes in part in a collision as well (solid yellow arrow in the lower
half). However, this alone is not a threat: the corresponding vulnerability exists

148 A. Varillon et al.

only if there is no collision on gx for the other possible value for dj (Definition
2). One may then notice that when dj = 1 (lower half), the values g2x+1 and
g2x+2 are assigned to, respectively, R0 and R1.13 Interestingly, this implies that
gx is no longer used as an input to the squaring (dashed burgundy arrow in the
lower half). Therefore, the collision does not exist anymore, and there is, in fact,
a collision attack vulnerability (Definition 2). The same kind of logic applies to
gx+1 which is involved in a collision attack vulnerability as well (dashed yellow
arrow in the upper half). Overall, one can follow two attack paths to estimate the
value of dj . In particular, one could try to combine them to mount a ‘high-order’
attack.

Fig. 1. Evolution and expected activity for the contents of R0 and R1 in the Mont-
gomery Ladder for an exponent bit dj , j ∈ �0, T − 1�. gx is read in both operations
when dj = 0 (‘yes’ entries in the ‘gx r/w?’ line + red arrow in the upper half), but
only in the multiplication when dj = 1 (no collision, idem + dashed red arrow in the
lower half): this is a collision attack vulnerability on R0 between the inputs of both
operations. Lastly, gx is never written. Likewise, the pair (gx+1, R1) follows a similar
pattern: the roles of both halves are swapped, so R1 takes part in a similar collision
attack vulnerability. (Color figure online)

Since, in the matter of RSA, values are bijectively linked to variables (Defini-
tion 2), let us now extend our formal framework to the present matter. As will
become apparent by the end of the present paper, this will allow for the precise
identification of the root cause of all existing collision attack vulnerabilities in
the Montgomery Ladder.14 This will make their description simpler compared
to the preceding considerations. Furthermore, this formalization will enable us

13 Changes between the two possible values for dj have been highlighted in purple.
14 This could, in turn, render the usual ‘randomization’ countermeasures ineffective

against high-order collision attacks. This latter point will be expanded on in a future
paper. For the time being, only exponent blinding can prevent the attacks analyzed
in this paper.

High-Order Collision Attack Vulnerabilities 149

to show that there does not exist other collision attack vulnerabilities in the pro-
cessing of a single exponent bit than the ones which we studied in the previous
paragraphs.

Theorem 1 (dj collisions). In the Montgomery Ladder, within the process-
ing of a single exponent bit, there exists only two collision attack vulnerabilities
which happen between the inputs of the multiplication and those of the following
squaring. Moreover, these vulnerabilities are equivalent: only the interpretation
of the presence of a collision changes.

Proof. To find out which vulnerabilities exist in a single iteration of the loop
from the Montgomery Ladder, let us examine its pseudocode (Algorithm 1). A
comparison of the two branches reveals that the variable used in the squaring
is the one which has not been used to store the result of the multiplication.
More formally, lines 4 and 6 of the listing can be summarized using the following
relation which is parametrized by the exponent bit being processed:

R¬dj
← R0R1;Rdj

← (Rdj
)2 (1)

Since dj can take only two values, 0 and 1, a symmetry exists between the
operands specified for the two branches (Eq. (1)). This fact has three implica-
tions. Firstly, since R¬dj

holds the result of the first operation whereas Rdj
is

used in the second operation, Rdj
is read in both operations but is never over-

written in between which provides grounds for collisions between the input of
the multiplication and that of the squaring (Definition 2). Secondly, the variable
on which the collision happens changes with dj , so there are two possible colli-
sions corresponding to the two values which dj can take. Lastly, another way to
formulate this property is that, for a given variable (e.g., R0), dj conditions the
presence of a collision. As a consequence (Definition 2), these collisions are, in
fact, collision attack vulnerabilities.

Since the source and the target of these vulnerabilities are the same, only the
interpretation of the presence of a collision changes with dj . This entails that the
vulnerabilities are equivalent. In addition, we considered all possible variables in
this proof, so there cannot exist any other collision attack vulnerability in a
single iteration of the loop. ��

All in all, the symmetry between the two branches is the root cause of the
vulnerabilities between the inputs of both operations which we have just
exposed. There is, unfortunately, no easy fix to it since it is part of the working
principle of the Montgomery Ladder (Sect. 2). One may combine both leakages to
improve the performance of the distinguisher when necessary. This would make
for a ‘simulated’ high-order collision attack (Definition 3) whose variable does
not actually exist. Lastly, the value associated with the leakage in the selected
points of interest must be known to allow for the estimation of dj : the presence
of a collision is not linked to the same value of dj for the two numerical models.

150 A. Varillon et al.

3.2 dj -dj−1 Collisions

Now that we have looked for collision attack vulnerabilities regarding a single
exponent bit dj , j ∈ �0, T − 1�, let us look at those happening between two con-
secutive exponent bits dj:j−1, j ∈ �0, T − 1�. Surprisingly, the same symmetry
generates another kind of collision attack vulnerability between two adjacent
exponent bits. Like in dj collisions, Rdj

is not overwritten during the multiplica-
tion (Fig. 2). Consequently, it holds a result coming from the processing of the
previous bit, dj+1. The same logic as in the previous subsection can then be used
to prove the existence of vulnerabilities, as we show in later paragraphs.

Fig. 2. Evolution and expected activity for the contents of R0 and R1 in the Mont-
gomery Ladder for two consecutive exponent bits dj:j−1 = 1 . . . , j ∈ �1, T − 1�. Using
the same technique as in Fig. 1, we highlight a collision attack vulnerability on R0

(‘g2x+1 r/w ?’ lines) between the output of the 1st multiplication and input of the 2nd

squaring. Likewise, R1 takes part in a collision attack vulnerability between the output
of the 1st squaring and the input of the 2nd squaring.

Although the vulnerabilities may seem identical to the one reported in [31],
we emphasize on the fact that they are different for the targeted functions as
well as the part of the latter which is used as a reference when detecting the
presence of a collision (here, the output of the operations) are not the same. In
particular, our work does not call for a comparison between traces acquired from
chosen messages: a single trace from a randomly generated message is, in theory,
enough.

Theorem 2 (dj-dj−1 collisions). In the Montgomery Ladder, within the pro-
cessing of a two adjacent exponent bits, there exist two collision attack vulnera-
bilities whose sources are the outputs of, respectively, the multiplication and the
squaring associated with the first bit. The target of these collisions is the same
in both cases: it is the squaring performed for the second bit.

Proof. Let us come back to the symmetry between the two branches (Algo-
rithm 1). Its mathematical formulation (Eq. (1)) has two consequences. Firstly,

High-Order Collision Attack Vulnerabilities 151

it implies that when dj−1 = ¬dj , the variable which holds the result of the multi-
plication done for dj (R¬dj

) is reused in the squaring computed for dj−1. Indeed,
from the relation between dj and dj−1, the following is true:

R¬dj
= Rdj−1

Secondly, it entails that when dj = dj−1, the variable which stores the output of
the squaring carried out for dj (Rdj

) is reused in the squaring associated with
dj−1. Of course, from the relation between dj and dj−1, the following is true:

Rdj
= Rdj−1

As in Theorem 1, in both cases, the targeted variable is not overwritten
between the two operations under consideration (Eq. (1)), therefore there exist
two collisions between the processings of dj and dj−1 (Definition 2). Furthermore,
the previous paragraph highlights that fact that dj−1 conditions the presence of
the latter so, these are collision attack vulnerabilities (Definition 2). ��

This theorem proves a property which, in hindsight, is rather simple. Like
in the dj case, the target must be an input.15 Since we are now looking for
collisions over two bits, the source must now be a destination.16 The arrows
in Fig. 2 thus correspond to all collisions satisfying these constraints. Contrary
to the first kind of collision attack vulnerability, this one does not directly yield
the value of the (dj)0≤j≤T−1: it merely indicates the type of relation which links
them. In practice, getting their values is only a matter of fixing the first one, dT−1,
deducing a possible value for the rest of the candidate exponent from this piece
of information, and trying the latter out to determine whether this hypothesis is
correct. However, unlike in the dj case, here dj must be known to estimate dj−1:
the values involved in a collision and the interpretation of its presence depend
on it. This makes this attack path especially challenging (Footnote 4). Lastly,
there cannot be any other collision attack vulnerability since after the processing
of two adjacent bits, both R0 and R1 have been overwritten. In particular, bits
which are further apart cannot take part in a collision, and there exists no di-dk
collision in the Montgomery Ladder.

4 Experimental Validation

4.1 Identification of POIs

Experimental Setup. Now that we have applied our methodology to the Mont-
gomery Ladder to find existing collision attack vulnerabilities at the algorith-
mic level, we analyze a few experiments to assess its soundness in practice. For
this purpose, we acquired EM traces by sampling the near field emissions of

15 If it is a destination, then it has just changed. This runs counter to Definition 2.
16 Same justification as before, since both R0 and R1 get overwritten in an iteration of

the loop.

152 A. Varillon et al.

a STM32F407 microcontroller executing the FF WWW skpow function from the
MIRACL library [27]: it implements the Montgomery Ladder and uses it in a
CRT-RSA decryption. The board was running at its maximum speed: 168 MHz.
Furthermore, in these experiments, we used a Langer Near Field RF Passive
probe for ECB Emissions which we placed over a decoupling capacitor on the
power line. We sampled these EM emissions at 5 GSa/s using an Agilent Infiniium
DSO90404A oscilloscope which was connected to a computer over the network
for the transfer of traces. Lastly, we paid attention to the experimental setting
to minimize the amount of jitter in the traces. This allowed us to get perfect
constant-time executions for the loop in the Montgomery Ladder, and therefore,
traces (reasonably well)17 aligned at the acquisition level by placing the corre-
sponding trigger right before this piece of code. In particular, we emphasize on
the fact that these traces have not undergone any kind of preprocessing before
the analyses which we present.

Observing Collisions in Traces. To visualize the collisions we highlighted
in Sect. 2, we used their fundamental assumption which we recall here to under-
line its importance: we assume that the handling of equal values leads to equal
leakages. Observing collisions in practice is, therefore, tantamount to applying a
statistical analysis to the traces to find where their associated values are manip-
ulated by the hardware and to make the corresponding differences in amplitude
visible. To this end, we used NICV [5] which is ideal for the detection of col-
lisions18 since, like collisions, it does not rely on the perfect knowledge of the
hardware leakage model for the target. The formula for this metric is the follow-
ing:

NICV =
Var[E[Y |X]]

Var[Y]
where X is the random variable representing the numerical model and Y , the
one associated with the traces. In accordance with Sect. 2, here X can be any of
the values gz, with z ∈ {x, x + 1, 2x, 2x + 1, 2x + 2}. The number of partitions
required to compute the numerator of this fraction grows exponentially with the
bit-length of X. Thus, in practice, at most only 8 bits (a byte) can be studied
at a time. We performed the analyses on all bytes for each numerical model, but
describe the results for the least significant one only. Lastly, to keep only the
interesting pieces of information during the statistical analyses we are about to
present, for each of these, we generated a fixed set of keys meeting some criteria
related to the numerical model, and let the messages vary freely at random. This
way, NICV is able to average out pretty well the variations which are not covered
by the model.

To keep this discussion short enough for this paper, we show the results
of the practical experiments for dj-dj−1 collisions only. Nevertheless, we stress
17 The span of a given instant in the executions covers about 3 samples which is less

than a CPU cycle.
18 During an attack, since the values for such models are unknown, NICV cannot be

used. It can only be used during the profiling phase, not the exploitation phase.

High-Order Collision Attack Vulnerabilities 153

that the figures, the reasoning involved in the interpretation of the results, and
the conclusions are similar as far as dj collisions are concerned: the phenomena
reported in Sect. 2 can be made visible.

Fig. 3. NICV on g[7 : 0] computed using 49152 traces (top: d = (10 . . .)2, bottom:
d = (11 . . .)2). All activity linked to the collision attack vulnerability on R0 (= g—
Fig. 2, g2x+1 line) is visible (red rectangles): the source is located next to the 10,000
mark in the 1st FF WWW modmul, and the target, around the 50,000 mark in the 2nd

FF WWW modsqr. The difference between the two resulting traces (dj−1 ∈ {0, 1}) exposes
the collision attack vulnerability: the target exists only when dj−1 = 0 (upper graph),
it is not there when dj−1 = 1 (lower graph). (Color figure online)

Results for dj -dj−1 Collisions and Discussion. For each numerical model,
there are four cases to consider (Fig. 2) which are the four values dj:j−1 can take:
00, 01, 10 and 11. Once again, for the same reasons as in the previous paragraph,
we consider the last two only. We focused on the processing of the first two bits
dT−1:T−2 of the secret exponent during the acquisitions of traces, therefore x = 0

154 A. Varillon et al.

and the numerical models of interest are19 g2x+1 = g and g2x+2 = g2. In the
resulting ‘NICV’ traces (Figs. 3 and 6): the x-axis depicts the execution timing, in
cycles, starting from the beginning of the first iteration of the loop (Algorithm 1),
and the y-axis reports the NICV metric for each sample in the (aligned) traces.

All the expected activity (and more) has been captured (Fig. 3, related to g):
the graphs feature peaks with amplitudes well above 0.1 everywhere the timing
diagrams indicate that there should be a statistical dependency (the ‘yes’ entries
in the ‘r/w’ lines for the numerical model g2x+1). In other words, everywhere the
variable (and therefore the value, Definition 2) related to the numerical model
is handled by the hardware, there is a peak in the graphs. In fact, there are
multiple peaks per such event due to the ratio between the size of the hardware
registers and that of the integers handled during the operations: a typical CRT-
RSA operand is 512 bits long whereas a typical hardware register can only hold
32 bits at a time; thus these big integers are processed in chunks. We outlined
these peaks using red rectangles. Surprisingly, there are some peaks in other
locations as well (next to the 0 mark in the 1st FF WWW modmul, and around
the 20,000 mark in the 1st FF WWW modsqr, in both traces). These peaks are a
consequence of the initialization of R0 to 1, and should not be taken into account
for they do not exist in subsequent iterations of the loop. Lastly, the collision
between the inputs of the two operations is there only when dT−2 = 0 which
concurs with the predictions from the timing diagrams.

For the sake of completeness with regard to Fig. 2, we included the results
for g2 as well (Fig. 6, in appendix). The discussion, however, is the same: only
the interpretation of the presence of the collision differs. Indeed, in this case, it
is associated with dT−2 = 1, which can be seen in the NICV trace.

4.2 Exploitation of Identified Vulnerabilities

First-Order Collision Attacks. So far, we have made the collisions stand
out from other samples by looking at a ratio of variances after partitioning the
traces according to a model whose values were known. In real-life conditions, an
attacker would not be able to classify traces like this since the value of the secret
exponent d is to be guessed, not known. Still, the methodology we described
can be used as a profiling step which, since the traces are aligned, gives the
indices of the samples in the traces which should be input to the attack step:
these are the same for all traces. Next, an attacker can use another statistical
tool which, given these samples, can estimate whether they amount to a collision
which, in turn, eventually yields dj (Sect. 2). Since the collisions we highlighted
are amenable to first-order attacks, we do not mount higher-order attacks to
validate this exploitation phase.

In addition to the quick survey of hands-on techniques we did earlier, other
(more theoretical) contributions exist, albeit for symmetric cryptography. In par-
ticular, in [6], the authors formalize and then study the success rates of, among
19 The timing diagrams indicate that g2·0 = 1 should be discussed as well. However,

since it is a constant, it is not possible to analyze the variations for these samples in
the traces. As consequence, we discarded it.

High-Order Collision Attack Vulnerabilities 155

others distinguishers, the ones we mentioned before and which we recall here:
Euclidean distance and correlation. The results of their simulations show that
using the correlation between a few selected samples yields a satisfactory suc-
cess rate within a few traces: their stochastic collision distinguisher is defined
for S-Boxes, and cannot be easily transferred to our problem.

However, we have not been able to extract enough points of interest in each
operation (source and target) in a single trace to perform the attack horizontally:
many of the peaks in the NICV traces (Figs. 3 and 6) are simply too small. They
do not hold enough information about g or g2 to make for a robust estimation of
the real correlation. As a consequence, we mixed this horizontal approach with
ideas from the vertical (timing) correlation-enhanced collision attack described
in [20]. Instead of gathering the points of interest in each of the two operations
in a single trace before computing the correlation between the two resulting sets,
we simply build these sets over N traces (same secret exponent d, yet different
messages (gi)1≤i≤N) by taking, in each trace and for each operation involved in
the collision attack vulnerability being exploited, the sample associated with the
highest peak in the NICV trace. It may look like this technique, which readily
applies to the dj-dj−1 case, might not work in the dj case for the same parts
of the same operations are targeted, possibly leading to the same peaks in the
NICV graphs.20 This is nevertheless incorrect since for both numerical models,
the equality is verified for one value of dj only. It is therefore always possible to
detect the presence of a collision, and from there, to estimate dj . We provide an
overview of the whole process (Fig. 4).

We carried out the corresponding first-order attacks for dj as well as dj-dj−1

collisions: we attempted to retrieve one bit only, and give the evolution of the
corresponding success rates as a function of N (Fig. 5). For dj collisions, this is
also the proportion of bits of d one can hope to recover with this attack since
the exponent bits can be estimated independently of one another. In our case,
an average of 98.5% of all the bits are correctly guessed after 150 traces. The
attack did not get any better by further increasing N . The rest of d may then be
corrected using classical cryptanalytical techniques such as [18] or other means
like [26]. For dj-dj−1 collisions however, the probability of guessing d correctly
is pT where p is the success rate. As hinted in Footnote 4, this implies that
the number of erroneous bits output by this attack cannot be known, thus any
success rate smaller than 100% is not acceptable. Fortunately, this lower bound
is met after 10 traces only (Fig. 5). Even if these figures seem to show that dj-
dj−1 collisions work better than dj collisions, there is no reason for this to be
true. This difference in performance probably stems from the choice of the NICV
peak which was probably less optimal in the dj case than in the other case even
though we did take the biggest ones available in each case.

We stress that, by paying more attention to the experimental setting, one
should be able to get equal leakage levels for all bytes in the colliding values

20 In fact, since the two variables (R0, R1) are treated one at a time by the hardware,
there will be an offset (a few cycles) between the sets of peaks related to both
numerical models. The peaks will always be distinct.

156 A. Varillon et al.

Fig. 4. Working principle of the proposed collision attack methodology. Once the
indices of the POIs involved in collisions in a trace have been identified using NICV for
γs and γt, we pick the one associated with the highest leakage level in each operation
(here, one POI for the multiplication and one POI for the squaring). We then collect
the corresponding pairs of samples every time we use a new trace during the attack.
Lastly, once a fixed threshold has been reached for the number N of processed traces,
we compute the correlation between the two groups of samples to detect the presence
of a collision.

Fig. 5. Evolution of the success rate against the number of traces used in the
correlation-based collision attacks. Best performance: 100% success rate for dj-dj−1

collisions in 10 traces, 98.5% success rate for dj collisions in 150 traces. Note that dj

collisions should perform as good, the selection of points of interest (same technique in
both cases) is most likely the root cause of the difference.

High-Order Collision Attack Vulnerabilities 157

and all critical timestamps, unlike in this paper (Figs. 3 and 6). It would then
definitely be possible to select the samples in a single trace, as described in
Sect. 4.2. In particular, we obtained promising early results by ensuring that
the sampling frequency is a multiple of that of the CPU of the microcontroller,
and reducing the latter so that the clock signal input to the board does not get
shifted at random by pieces of circuitry like prescalers. This helped us further
improve the alignment of the traces which, in turn, caused bigger peaks, thus
enabling us to build the two sets of points of interest in a single trace by selecting
the maximums of a fixed number of the latter rather than over multiple trace
as we did. This would make for the single-trace attack predicted by the theory.
In particular, classical blinding countermeasures, which protect from vertical
attacks only, would then become ineffective. We plan to use and describe this new
experimental setting in later papers once we reliably attain this upper bound.

Towards High-Order Collision Attacks. Since we have been able to find
collisions on several variables (R0 and R1, but this methodology would have
revealed other ones if more variables had been involved) one could use these to
build attacks on multiple variables at the same time. For instance, in blinding-
like horizontal countermeasures on modular exponentiation such as [10], at some
point, the microcontroller processes the random element like any other variable.
Thus, to retrieve values which are now masked during the operation (in our case,
the contents of R0 and R1), one could, using the technique we presented in this
paper, locate leakages owing to those values and to the random element, and
then try to infer from these samples the unmasked values or, even more directly,
the value of dj . Since this paper proposes a complete first-order evaluation of
the Montgomery Ladder, adapting this contribution to high-order evaluations
requires changes in the exploitation phase only: the profiling phase would be the
same. Consequently, we claim that the only remaining obstacle to such attacks is
the fact that, to this day, in the literature, to the best of our knowledge, no paper
has suggested a way to combine the leakages for unmasking like in high-order
attacks targeting symmetric cryptography (e.g. [4,28]).

5 Conclusion

We have introduced a methodology for the detection of collision attack vulner-
abilities in the Montgomery Ladder which comprises two steps: a theoretical
assessment of the possible numerical models for the collisions, and a practical
validation of the usability of the latter. We then provided evidence for the sound-
ness of this approach by mounting matching first-order attacks whose success
rates are already satisfactory (100% success rate in the best case after 10 traces)
without combining the leakages associated with multiple collision attack vulner-
abilities. Last we described how this methodology could be used in high-order
collision attacks and discussed the remaining issue to tackle before doing so. This
work shows that the Montgomery Ladder is not secure in practice and that its
use as a countermeasure is not sufficient anymore: collision attacks like the ones

158 A. Varillon et al.

we presented reveal the secret exponent rather easily. In light of our findings, and
in accordance with the state of the art of the field, it is now mandatory to add
multiple countermeasures to any RSA implementation to meet a security level
which is acceptable in practice: for instance, our best attack can be thwarted by
blinding.

This paper leaves a few avenues for future research regarding our method-
ology and its sensitivity to blinding, such as the possibility of a single-trace
attack (as sketched in Sect. 4.2) on an implementation of RSA whose only coun-
termeasure is the Montgomery Ladder (a straightforward extension of this work)
or on other implementations adding a combination of countermeasures like [10]
or [3]. In addition, to remedy the lesser performance of dj collisions in practice,
one could, following our remark, use (deep) neural networks which may be bet-
ter suited for the selection of points of interest. We plan to tackle these open
questions in later papers.

Acknowledgements. This work has been funded by the French Ministry of Armed
Forces through its Agence de l’Innovation de la Défense.

A The Montgomery Ladder

Algorithm 1: Pseudocode for the Montgomery Ladder (RSA).
Input: g, d = (dT−1, . . . , d0)2
Output: m = gd

1 R0 ← 1; R1 ← g;
2 for j = T − 1 downto 0 do

3 if dj = 0 then

4 R1 ← R0R1; R0 ← (R0)
2;

5 else

6 R0 ← R0R1; R1 ← (R1)
2;

7 end

8 end

9 return R0

High-Order Collision Attack Vulnerabilities 159

B Observing Collisions Involving g2

Fig. 6. NICV on g2[7 : 0] computed using 49152 traces (top: d = (10 . . .)2, bottom:
d = (11 . . .)2). All activity linked to the collision attack vulnerability on R1 (= g2—
Fig. 2, g2x+2 line) is visible (red rectangles). Like in Fig. 3, the difference between the
two resulting traces (dj−1 ∈ {0, 1}) exposes the collision attack vulnerability. (Color
figure online)

References

1. Aldaya, A.C., Garćıa, C.P., Tapia, L.M.A., Brumley, B.B.: Cache-timing attacks on
RSA key generation. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 213–242
(2018). https://doi.org/10.13154/tches.v2019.i4.213-242

2. Batina, L., Chmielewski, L., Papachristodoulou, L., Schwabe, P., Tunstall, M.:
Online template attacks. J. Cryptogr. Eng. 9, 21–36 (2017). https://doi.org/10.
1007/s13389-017-0171-8

3. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-channel
attacks against secure RSA implementations. In: Dawson, E. (ed.) CT-RSA 2013.
LNCS, vol. 7779, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36095-4 1

https://doi.org/10.13154/tches.v2019.i4.213-242
https://doi.org/10.1007/s13389-017-0171-8
https://doi.org/10.1007/s13389-017-0171-8
https://doi.org/10.1007/978-3-642-36095-4_1
https://doi.org/10.1007/978-3-642-36095-4_1

160 A. Varillon et al.

4. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for
sidechannel analysis and introduction to ASCAD database. J. Cryptogr. Eng.
10(2), 163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8

5. Bhasin, S., Danger, J.-L., Guilley, S., Najm, Z.: NICV: normalized inter-class vari-
ance for detection of side-channel leakage. In: EMC, Tokyo, Japan (2014). https://
hal.telecom-paris.fr/hal-02412040

6. Bruneau, N., Carlet, C., Guilley, S., Heuser, A., Prouff, E., Rioul, O.: Stochastic
collision attack. IEEE Trans. Inf. Forensics Secur. 12(9), 2090–2104 (2017). https://
doi.org/10.1109/TIFS.2017.2697401

7. Carbone, M., et al.: Deep learning to evaluate secure RSA implementations. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 132–161 (2019). https://doi.org/
10.13154/tches.v2019.i2.132-161

8. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal corre-
lation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS
2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17650-0 5

9. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 25

10. Dupaquis, V., Venelli, A.: Redundant modular reduction algorithms. In: Prouff, E.
(ed.) CARDIS 2011. LNCS, vol. 7079, pp. 102–114. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-27257-8 7

11. Fouque, P.A., Valette, F.: The doubling attack – why upwards is better than down-
wards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp.
269–280. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45238-
6 22

12. Hanley, N., Kim, H.S., Tunstall, M.: Exploiting collisions in addition chain-based
exponentiation algorithms using a single trace. In: Nyberg, K. (ed.) CT-RSA 2015.
LNCS, vol. 9048, pp. 431–448. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16715-2 23 ISBN: 978-3-319-16715-2

13. Heyszl, J., Ibing, A., Mangard, S., De Santis, F., Sigl, G.: Clustering algorithms
for non-profiled single-execution attacks on exponentiations. In: Francillon, A.,
Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 79–93. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08302-5 6 ISBN: 978-3-319-08302-5

14. Homma, N., Miyamoto, A., Aoki, T., Satoh, A., Shamir, A.: Collision-based power
analysis of modular exponentiation using chosen-message pairs. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 15–29. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85053-3 2 ISBN: 978-3-540-85053-3

15. Jajodia, S., van Tilborg, H.C.: Encyclopedia of Cryptography and Security.
Springer, New York (2011). https://doi.org/10.1007/978-1-4419-5906-5. ISBN:
038723473X

16. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 22

17. Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Addison-Wesley (1981)

18. Micheli, G.D., Heninger, N.: Recovering cryptographic keys from partial informa-
tion, by example. Cryptology ePrint Archive, Paper 2020/1506 (2020). https://
eprint.iacr.org/2020/1506

https://doi.org/10.1007/s13389-019-00220-8
https://hal.telecom-paris.fr/hal-02412040
https://hal.telecom-paris.fr/hal-02412040
https://doi.org/10.1109/TIFS.2017.2697401
https://doi.org/10.1109/TIFS.2017.2697401
https://doi.org/10.13154/tches.v2019.i2.132-161
https://doi.org/10.13154/tches.v2019.i2.132-161
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/978-3-642-27257-8_7
https://doi.org/10.1007/978-3-540-45238-6_22
https://doi.org/10.1007/978-3-540-45238-6_22
https://doi.org/10.1007/978-3-319-16715-2_23
https://doi.org/10.1007/978-3-319-16715-2_23
https://doi.org/10.1007/978-3-319-08302-5_6
https://doi.org/10.1007/978-3-540-85053-3_2
https://doi.org/10.1007/978-1-4419-5906-5
https://doi.org/10.1007/3-540-36400-5_22
https://eprint.iacr.org/2020/1506
https://eprint.iacr.org/2020/1506

High-Order Collision Attack Vulnerabilities 161

19. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factor-
ization. Math. Comput. 48(177), 243–264 (1987). https://doi.org/10.1090/S0025-
5718-1987-0866113-7

20. Moradi, A., Mischke, O., Paar, C., Li, Y., Ohta, K., Sakiyama, K.: On the power
of fault sensitivity analysis and collision side-channel attacks in a combined set-
ting. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 292–311.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 20 ISBN:
978-3-642-23951-9

21. Nascimento, E., Chmielewski, �L: Applying horizontal clustering side-channel
attacks on embedded ECC implementations. In: Eisenbarth, T., Teglia, Y. (eds.)
CARDIS 2017. LNCS, vol. 10728, pp. 213–231. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-75208-2 13

22. Nascimento, E., Chmielewski, �L, Oswald, D., Schwabe, P.: Attacking embedded
ECC implementations through cmov side channels. In: Avanzi, R., Heys, H. (eds.)
SAC 2016. LNCS, vol. 10532, pp. 99–119. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-69453-5 6

23. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–
113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

24. Perin, G., Chmielewski, L., Batina, L., Picek, S.: Keep it unsupervised: horizontal
attacks meet deep learning. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(1),
343–372 (2020). https://doi.org/10.46586/tchesv2021.i1.343-372

25. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). https://doi.
org/10.1145/359340.359342. ISSN: 0001-0782

26. Schindler, W., Wiemers, A.: Power attacks in the presence of exponent blinding. J.
Cryptogr. Eng. 4, 213–236 (2014). https://doi.org/10.1007/s13389-014-0081-y

27. Scott, M.: MIRACL Core Cryptographic Library (2019). https://github.com/
miracl/core

28. Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: Joye, M.,
Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-28632-5 1 ISBN: 978-3-540-28632-
5

29. Walter, C.D.: Sliding windows succumbs to big mac attack. In: Koç, Ç.K., Nac-
cache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 24

30. Witteman, M.F., van Woudenberg, J.G.J., Menarini, F.: Defeating RSA multiply-
always and message blinding countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011.
LNCS, vol. 6558, pp. 77–88. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19074-2 6 ISBN: 978-3-642-19074-2

31. Yen, S.-M., Ko, L.-C., Moon, S.J., Ha, J.C.: Relative doubling attack against mont-
gomery ladder. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp.
117–128. Springer, Heidelberg (2006). https://doi.org/10.1007/11734727 11 ISBN:
978-3-540-33355-5

https://doi.org/10.1090/S0025-5718-1987-0866113-7
https://doi.org/10.1090/S0025-5718-1987-0866113-7
https://doi.org/10.1007/978-3-642-23951-9_20
https://doi.org/10.1007/978-3-319-75208-2_13
https://doi.org/10.1007/978-3-319-75208-2_13
https://doi.org/10.1007/978-3-319-69453-5_6
https://doi.org/10.1007/978-3-319-69453-5_6
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.46586/tchesv2021.i1.343-372
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/s13389-014-0081-y
https://github.com/miracl/core
https://github.com/miracl/core
https://doi.org/10.1007/978-3-540-28632-5_1
https://doi.org/10.1007/3-540-44709-1_24
https://doi.org/10.1007/978-3-642-19074-2_6
https://doi.org/10.1007/978-3-642-19074-2_6
https://doi.org/10.1007/11734727_11

On the Masking-Friendly Designs
for Post-quantum Cryptography

Suparna Kundu1(B) , Angshuman Karmakar1,2 , and Ingrid Verbauwhede1

1 COSIC, KU Leuven, Kasteelpark Arenberg 10, Bus 2452, 3001 Leuven-Heverlee,
Belgium

{suparna.kundu,angshuman.karmakar,ingrid.verbauwhede}@esat.kuleuven.be
2 Indian Institute of Technology Kanpur, Kanpur, India

Abstract. Masking is a well-known and provably secure countermea-
sure against side-channel attacks. However, due to additional redundant
computations, integrating masking schemes is expensive in terms of per-
formance. The performance overhead of integrating masking counter-
measures is heavily influenced by the design choices of a cryptographic
algorithm and is often not considered during the design phase.

In this work, we deliberate on the effect of design choices on inte-
grating masking techniques into lattice-based cryptography. We select
Scabbard, a suite of three lattice-based post-quantum key-encapsulation
mechanisms (KEM), namely Florete, Espada, and Sable. We provide
arbitrary-order masked implementations of all the constituent KEMs
of the Scabbard suite by exploiting their specific design elements. We
show that the masked implementations of Florete, Espada, and Sable
outperform the masked implementations of Kyber in terms of speed for
any order masking. Masked Florete exhibits a 73%, 71%, and 70% per-
formance improvement over masked Kyber corresponding to the first-,
second-, and third-order. Similarly, Espada exhibits 56%, 59%, and 60%
and Sable exhibits 75%, 74%, and 73% enhanced performance for first-,
second-, and third-order masking compared to Kyber respectively. Our
results show that the design decisions have a significant impact on the
efficiency of integrating masking countermeasures into lattice-based cryp-
tography.

Keywords: Post-quantum cryptography · Key-encapsulation
mechanism · Side-channel attacks · Scabbard · Higher-order masking

1 Introduction

Physical attacks such as fault injection and side-channel attacks are potent
threats to any cryptosystem deployed in the public domain. Classical crypto-
graphic schemes such as elliptic-curve cryptography [25] and RSA [27] went
through decades of testing, analysis, and invention of different physical attacks
and their countermeasures to generate enough confidence to be successfully
deployed in the real world. In comparison, post-quantum cryptography (PQC),
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. Regazzoni et al. (Eds.): SPACE 2023, LNCS 14412, pp. 162–184, 2024.
https://doi.org/10.1007/978-3-031-51583-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51583-5_10&domain=pdf
http://orcid.org/0000-0003-4354-852X
http://orcid.org/0000-0003-2594-588X
http://orcid.org/0000-0002-0879-076X
https://doi.org/10.1007/978-3-031-51583-5_10

On the Masking-Friendly Designs for Post-quantum Cryptography 163

or specifically lattice-based cryptography (LBC) has gone through significantly
less amount of investigation in the context of physical attacks. Therefore,
although the United States government’s National Institute of Standards and
Technology (NIST) has recently proposed some standard PQC schemes [1], for
a successful transition to PQC, it is imperative that we concentrate our research
efforts in this direction.

Masking [11] is an interesting countermeasure against passive physical attacks
or side-channel attacks (SCA) such as power analysis, electromagnetic radi-
ation analysis, etc. On a fundamental level, masking works by splitting the
secret into multiple random shares and performing the same computation as
the unmasked version on each share. Thus, the security of masking is based on
the same information-theoretic principles, such as Shamir’s secret sharing [29]
or multi-party computation [30]. Masking can provide provably secure counter-
measures against side-channel attacks. Nevertheless, due to the duplication of
computations, the runtime of a masked implementation theoretically grows sig-
nificantly with the increase in the order of masking. For example, in the case of
Kyber, a post-quantum key-encapsulation mechanism (KEM) scheme that has
been selected as standard in the NIST’s procedure, the runtime of the first, sec-
ond, and third order of masked implementation is 12, 20, and 30 times of the
unmasked implementation on ARM Cortex-M4 platform [10].

Our primary motivation in this work is to assess how the design decisions of
a lattice-based KEM scheme, such as the choice of quotient polynomial, distri-
bution of secrets and errors, underlying hard problems, modulus, etc., influence
their masking performance. We also want to test how close we can get to the
theoretical upper bound of efficiency in masking. For our experiments, we have
chosen the post-quantum KEM suite Scabbard [5] with 3 different lattice-based
schemes. First, a ring-learning with rounding (RLWR) based scheme Florete with
ring size comparable to NewHope [2], second a module-learning with rounding
(MLWR) based scheme Sable with ring size similar to Saber [15] and Kyber [8],
and finally an MLWR-based scheme Espada with unique smaller ring size. The
choice of Scabbard helps us to demonstrate our methods on diverse KEM schemes
with many variations in the design. Scabbard was proposed to improve the NIST
PQC finalist KEM Saber [15]. The designers of Scabbard argued that all the
design decisions of Scabbard had been propelled by the experience gained in the
research and developments in the field of lattice-based cryptography of previous
years. Therefore, it inherits all the advantages of Saber i.e. less randomness due
to rounding, power-of-two modulus for efficient masking, simple algorithms for
efficiency and faster deployment on diverse platforms, etc. Further, the design
of Scabbard improves in areas like suitability for parallel implementation, flexi-
bility, efficiency, and adaptation of faster masking schemes. We will discuss the
schemes of Scabbard in Sect. 2.1. In the original publication [5], the authors have
provided different implementations on hardware and software platforms to prove
their claims on efficiency. It was shown before that the design of Saber is highly
conducive to masking [4]. Due to these reasons, Scabbard is an ideal choice to

164 S. Kundu et al.

demonstrate the interplay between design choices and masking performance in
lattice-based KEMs.

In this work, we propose arbitrary-order masked implementations of all the
KEMs in the suite Scabbard. We implement and benchmark them on an ARM
Cortex-M4 microcontroller platform using the PQM4 [21] library to prove the
masking friendliness of its design. The ring size of the polynomial length matches
the number of message bits, which is 256 for Saber or Kyber as well as Sable.
So, the encoding of message bits to the ciphertext polynomial is trivial in these
cases. However, this is not the case for Florete and Espada, and these schemes
use original msg function for message decoding and arrange msg function
for message encoding. This work introduces a higher-order masked version of
original msg and arrange msg function. These functions can be applied to all
LWR-based KEMs with different ring sizes than 256 and even learning with
errors (LWE) based KEMs with some modifications. The schemes of Scabbard
use different centered binomial distributions compared to Saber or Kyber. For
this purpose, we modified the masked centered binomial distribution (CBD) algo-
rithms proposed by Schneider et al. [28] for each scheme of Scabbard and opti-
mized it for them. Public and re-encrypted ciphertext comparison is an impor-
tant part of the Fujisaki-Okamoto transformation used in LWE-/LWR-based
KEM. It is faster for unmasked or first-order masking but becomes computation-
ally expensive for higher-order maskings. Here, we modified the ciphertext com-
parator of [23] for each scheme of Scabbard to obtain better performance. These
masked components are faster in Scabbard than Kyber, thanks to the choice of
RLWR/MLWR hard problem, power-of-two moduli and slightly reduced param-
eter sets.

As performance results, the overhead factor we obtained for masked Flo-
rete for the first-, second-, and third-order are approximately 2.7×, 5×, and
7.7×, compared to the unmasked implementation. For Espada, the overhead
cost of the first-, second-, and third-order masked versions are roughly 1.8×,
2.8×, and 4× than the unmasked one. The performance cost of masked Sable
for the first-, second-, and third-order are around 2.4×, 4.3×, and 6.3× over the
unmasked version. We compare the masked implementations of Florete, Espada,
and Sable with the state-of-the-art masked implementation of Kyber and Saber.
We show that the masked implementations of all the schemes of Scabbard sur-
pass the masked implementations of Kyber in terms of performance for any
order masking, and masked implementations of Florete and Sable outperform
masked implementations of Saber for arbitrary order. More specifically, masked
Florete performs 73%, 71%, and 70% better than masked Kyber, correspond-
ing to the first-, second-, and third-order. Espada shows 56%, 59%, and 60%
performance improvement for first-, second- and third-order masked implemen-
tations compared to Kyber. Masked Sable exceeds the execution time of masked
Kyber by 75%, 74%, and 73% for the first-, second-, and third-order. Our masked
implementations are available at https://github.com/Suparna-Kundu/Masked
Scabbard.git.

https://github.com/Suparna-Kundu/Masked_Scabbard.git
https://github.com/Suparna-Kundu/Masked_Scabbard.git

On the Masking-Friendly Designs for Post-quantum Cryptography 165

To conclude this section, we want to draw attention to the fact that although
the NIST standardization procedure for PKE/KEM has been finalized with
Kyber, we firmly believe that further investigations and innovations are required
to improve side-channel secure PQC schemes. The NIST procedure opened the
possibility of exploring different possibilities to improve various aspects of PQC
schemes. We have witnessed this throughout the course and even after the NIST
procedure. For example, Mitaka [16] has been proposed, which is a masking-
friendly version of Falcon [17], a NIST standard for digital signatures. Kyber-90s
version of Kyber was proposed to use the advanced encryption standard (AES)
as a pseudo-random number generator instead of the slower Keccak extended
output function. Similarly, Saber-90s and uSaber were proposed as alternate
versions of the NIST PQC standardization finalist scheme Saber to improve effi-
ciency and ease of masking. As discussed earlier, Scabbard [5] was an improve-
ment of Saber. The design of Scabbard has further influenced the design of PQC
KEM Smaug [12], which is a candidate scheme from ongoing Korean PQC stan-
dardization [22]. Therefore, exploring various design choices and their effect on
different aspects of the performance of existing PQC schemes is an interesting
research direction.

2 Preliminaries

For a positive integer q, the set of integers modulo q is denoted by Zq. The
quotient ring Zq[x]/f(x) is denoted by Rn

q , where f(x) is a n degree cyclotomic
polynomial over Zq[x]. We use lowercase letters to denote an element of this ring,
which is a polynomial. We indicate the ring of l length vectors over the ring Rn

q

as (Rn
q)l and use bold lowercase letters to denote an element of this ring which

is a vector of polynomials. The ring of l × l length matrices over the ring Rn
q

as (Rn
q)l×l. The elements of this ring are l × l matrices of polynomials and are

represented by uppercase letters. x ← χ(S) represents that x is sampled from
the set S and follows the distribution χ. When x is generated using a pseudo-
random number generator expanding a seed seedx over the set S, we denote it
as x ← χ(S; seedx). We use U to denote the uniform distribution and the CBD
whose standard deviation

√
μ/2 is presented by βμ. We denote the rounding

operator with �·�, which returns the closest integer and is rounded upwards
during ties. These operations can be extended over the polynomials by applying
them coefficient-wise. The polynomial multiplication between two polynomials of
length n is represented using n×n multiplication. We use {xi}0≤i≤t to represent
the set {x0, x1, . . . , xt} which contains t + 1 elements of the ring R.

2.1 Scabbard: A Post-quantum KEM Suite

Scabbard is a suite of post-quantum KEMs proposed by Mera et al. [5] that
improved state-of-the-art LBC schemes by incorporating different design choices
and newer developments in the field. The security of the schemes in the Scab-
bard depends on some variants of learning with rounding (LWR) problems, more

166 S. Kundu et al.

specifically, module-LWR (MLWR) and ring-LWR (RLWR) problems. Banerjee
et al. [3] introduced the LWR problem and also showed that the LWR problem
is as hard as the LWE problem. If A ← U((Zq)l×l), secret s ← βμ((Zq)l), error
e ← βμe

((Zq)l), and b ← U((Zq)l) then distinguishing between (A, As + e) and
(A, b) is hard and this problem is known as the decision version of LWE problem.
The decision version of the LWR problem states that if A ← U((Zq)l×l), secret
s ← βμ((Zq)l), and for some p < q, b ← U((Zp)l) then distinguishing between
(A, �(q/p)As�) and (A, b) is hard [3]. In the LWR problem, the explicit sam-
pling of error e in the LWE is replaced by the rounding operation. In case of
the MLWR problem, A ← U((Rn

q)l×l), s ← βμ((Rn
q)l), b ← U((Rn

p)l) and the
MLWR problem states that (A, �(q/p)As�) and (A, b) are computationally
indistinguishable [24]. In standard LWR-based and RLWR-based constructions,
the ranks of underlying matrices are respectively l and n, with very high proba-
bility. On the other hand, MLWR-based constructions are proposed as a trade-off
between standard LWR-based and RLWR-based structures. The rank of under-
lying matrices in MLWR-based schemes is l × n. It makes the structures of
MLWR-based constructions more generic, as we can convert the MLWR-based
scheme to a standard LWR-based one by fixing n = 1 and an RLWR-based one
by setting l = 1. Therefore, we use MLWR notations to describe the schemes in
Scabbard below. A KEM needs to be secure against chosen ciphertext attacks
(IND-CCA/IND-CCA2: indistinguishable against a-posteriori chosen-ciphertext
attacks). In LWR-based KEM, it is accomplished by applying Jiang et al.’s ver-
sion [20] of Fujisaki-Okamoto (FO) transformation [18] over the generic LWR-
based public-key encryption (PKE), where the PKE needs to be secure against
chosen plaintext attacks (IND-CPA: indistinguishable against chosen plaintext
attack). We denote generic LWR-based PKE as LWR.PKE and generic LWR-based
KEM as LWR.KEM, which are shown respectively in Fig. 1 and Fig. 2. In LWR.KEM,
H, G, and KDF three hash functions are required as part of FO transformation.
This suite of KEMs consists of three schemes: (i) Florete, (ii) Espada, and (iii)
Sable. We briefly describe these three schemes with their specific features below.

Fig. 1. Generic LWR.PKE [5]

On the Masking-Friendly Designs for Post-quantum Cryptography 167

Fig. 2. Generic LWR.KEM [5]

2.1.1 Florete This scheme is based on the RLWR problem i.e. l = 1 in
Fig. 1 and designed for faster running time. Here, the cyclotomic polynomial
used to construct the quotient rings Rn

q , Rn
p , and Rn

t is (x768 − x384 + 1). In
Florete, one message bit is encoded in three coefficients of the polynomial v in
line 7 of LWR.PKE.Enc algorithm of Fig. 1. So, during the encapsulation process,
as shown in line 2 of LWR.KEM.Encaps algorithm of Fig. 2, a conversion from
256 bits of message to a polynomial of length 768 is performed with the help
of arrange msg function and it is defined as: arrange msg(m′) = m′||m′||m′ .
The inverse of arrange msg function is used in the LWR.KEM.Decaps algo-
rithm named as original msg, and the original msg : Z

768
2 −→ Z

256
2 is

defined as if original msg(m′′) = m′ and b ∈ {0, 1, . . . , 255} then m′[b] ={
0 if m′′[b] + m′′[b + 256] + m′′[b + 512] ≤ 1
1 otherwise

. In Florete, 768×768 polynomial

multiplication is used, and it is performed using the combination of Toom-Cook
3-way, Toom-Cook 4-way, 2 levels of Karatsuba, and 16 × 16 schoolbook multi-
plication.

2.1.2 Espada This scheme is designed to reduce the memory footprint on
software platforms. It is based on the MLWR problem, and the cyclotomic poly-
nomial is used to construct the underlying quotient ring of the lattice problem
Rn

q is (x64 + 1). The polynomial length here is 64, so the dimension of vectors
of polynomial l is taken equal to 12 to maintain security. In Espada, the 256 bit
message is encoded inside the 64 length polynomial v, so four message bits are
encoded in a coefficient of the polynomial v. The arrange msg : Z256

2 −→ Z
64
4 and

168 S. Kundu et al.

the function is defined as: arrange msg(m′) = m′′, where for b ∈ {0, 1, . . . , 63}

m′′[b] = m′[4 ∗ b + 3]||m′[4 ∗ b + 2]||m′[4 ∗ b + 1]||m′[4 ∗ b]. (1)

The original msg : Z
64
4 −→ Z

256
2 function is defined as: original

msg(m′′) = m′ and follows Eq. 1. Lastly, the 64 × 64 polynomial multiplication
is performed using 2 levels of Karatsuba and 16 × 16 schoolbook multiplication.

2.1.3 Sable This scheme can be interpreted as an alternate version of Saber
and is designed to improve performance with less memory footprint. It is also
based on the MLWR problem, and similar to Saber, the cyclotomic polyno-
mial used here in the quotient rings is (x256 + 1). The arrange msg func-
tion and original msg function are described as: arrange msg(m′) = m′ and
original msg(m′′) = m′′ = m′, respectively. The polynomial multiplication
used in Sable is identical to Saber. The 256 × 256 polynomial multiplication is
realized by the combination of Toom-Cook 4-way, 2 levels of Karatsuba, and
16 × 16 schoolbook multiplication.

The concrete security of these schemes depends on the parameter set, which
includes the three power-of-two ring moduli t < p < q, the length of a polynomial
n, the dimension of the vector of polynomial l, the CBD parameter μ, and the
number of message-bit encoded in a coefficient of the polynomial is represented
by B. Table 1 presents the parameter sets for all three schemes that achieve the
NIST security level 3. We humbly refer to the original Scabbard paper [5] for
more insightful details.

Table 1. Parameters of Scabbard suite

Scheme Name
Ring/Module

Parameters

PQ

Security

Failure

probability
Moduli

CBD

(βη)
Encoding

Key sizes for

KEM (Bytes)

n: 768 εq: 10 Public key: 896

Florete 2157 2−131 εp: 9 η = 1 B = 1 Secret key: 1152

l: 1 εt: 3 Ciphertext: 1248

n: 64 εq: 15 Public key: 1280

Espada 2128 2−167 εp: 13 η = 3 B = 4 Secret key: 1728

l: 12 εt: 3 Ciphertext: 1304

n: 256 εq: 11 Public key: 896

Sable 2169 2−143 εp: 9 η = 1 B = 1 Secret key: 1152

l: 3 εt: 4 Ciphertext: 1024

On the Masking-Friendly Designs for Post-quantum Cryptography 169

2.2 Masking

The effectiveness of masking against SCA has been well demonstrated for
symmetric-key block ciphers [13,26] and recently extended for LBC [4,9,23].
In n-th order masking, we split the sensitive data x into (n + 1) shares and
perform all the operations on each share separately. So, an adversary with a
limited number of probes, such as at most n probes, does not receive any advan-
tages compared to another adversary who does not have access to those probes.
The nth order masking technique can prevent up to nth order differential power
attacks. However, the integration of masking techniques in LBC schemes affects
the performance of the algorithm significantly with the increment of the mask-
ing order. The design decision of cryptographic schemes affects the performance
of masked versions of the lattice-based schemes. This is why even though the
unmasked performance of NIST finalist Saber is almost the same as Kyber, the
masked version of Saber is way faster than masked Kyber for any masking order.
Masked version Saber gains this advantage thanks to the choice of LWR problem
and power-of-two moduli. The KEMs in the suite Scabbard also use power-of-
two moduli and further improve the efficiency of the LWR-based schemes. In
this work, we investigate whether the efficiency of Scabbard will translate to the
masked domain.

3 Masking Scabbard

The CCA-secure KEM schemes are used to share secrets among communicating
parties. Here, the secret key is non-ephemeral i.e. the key generation is run
once to generate a long-term secret key that can be used for multiple sessions
and communicating with multiple entities. Therefore, in a KEM scheme, only
the decapsulation is executed multiple times to retrieve the secret data from
multiple entities through multiple sessions. However, this is also advantageous
for an adversary. The adversary can run the decapsulation operation multiple
times to improve the precision of its fault injection or take multiple side-channel
traces to reduce noise in its measurements, thus improving its success probability.
Mounting attacks on other operations, such as key generation and encapsulation,
are relatively harder. Once an adversary compromises the secret key, it can
use it to expose the secret keys of multiple sessions. Therefore, protecting the
decapsulation operation from side-channel attacks is critical for the side-channel
security of a KEM. We display the flow of the decapsulation algorithm of generic
LWR-based KEM in Fig. 3 and denoted vulnerable operations in the color gray.
Here original msg and arrange msg functions are shown by OMsg and AMsg.
In this section, we will describe the masking methods of all the components
susceptible to SCA in the decapsulation operation of the Scabbard schemes.

170 S. Kundu et al.

Fig. 3. Decapsulation of LWR-based KEM. The operations in color gray are involved
with the long-term secret sss and are susceptible to side-channel attacks

Here, we have used two masking techniques: (i) arithmetic masking and (ii)
Boolean masking to mask the Scabbard suite’s schemes because these schemes
consist of some operations that are cheaper to mask using arithmetic masking
and some are easy to mask using Boolean masking. In both the t-order arithmetic
and Boolean masking techniques, first we split the sensitive operand x ∈ Zq =
Z2εq = Z

εq

2 into (t + 1) shares, such as x0, x1, . . . , xt ∈ Zq. However, for
arithmetic masking the relation between x and (t + 1) shares of x is x = (x0 +
x1 + · · ·+xt) mod q, and in Boolean masking the relation between x and (t+1)
shares of x is x = (x0 ⊕ x1 ⊕ · · · ⊕ xt).

3.1 Arithmetic Operations

It can be seen from Fig. 3 that the decapsulation algorithm of each KEM of
the suite Scabbard consists of mostly arithmetic operations, such as polynomial
multiplications, polynomial addition, and polynomial subtractions. These oper-
ations can be masked efficiently utilizing arithmetic masking. Here, we need to
duplicate these operations for each arithmetic share and perform them sepa-
rately. The performance cost of these operations grows linearly with the increase
of arithmetic shares.

Although this part is more or less similar for all the LWE/LWR-based KEMs
(for example, Kyber and Saber), the parameter set impacts the performance of
unmasked and masked versions of these operations. This also helps the schemes
of Scabbard to achieve better performance compared to other LBC-based KEMs
in some scenarios. The performance cost of the masked arithmetic operations
in Sable is less than Saber or Kyber because the total cost of arithmetic opera-
tions of Sable is less than Saber or Kyber in the unmasked domain. It happens
because Sable uses a slightly reduced parameter set than Saber. However, the
performance cost of arithmetic operations in Florete or Espada is more than
Saber or Kyber, as is the case in the unmasked domain.

On the Masking-Friendly Designs for Post-quantum Cryptography 171

3.2 Compression

Compression operation is the final step of the LWR.PKE.Dec algorithm, and in
this step, encoded message bits are retrieved from the polynomial m′′ after per-
forming the reconciliation. For Florete and Sable, only the most significant bit
is extracted, and for Espada, the four most significant bits are extracted from
each coefficient of the polynomial m′′. After that, these message bits are used as
input in SHA3-512 hash function for computing the seed s′ for the re-encryption
procedure. These message bits are also needed to construct the session key.
The extraction of the most significant bits is performed by using a logical shift
operation in LWR-based KEM. This operation is easy to protect with Boolean
masking. However, in the masked setting, the input of the compression operation
is arithmetically masked, as its previous steps consisted of arithmetic operations.
So, in the masked compression operation, first, we apply arithmetic to Boolean
(A2B) conversion, and then we perform coefficient-wise εp − B bit right shift
operation [23].

This compress operation in Sable is very similar to the one used in Saber,
except for the value of εp. The value of the parameter εp is smaller in Sable than
in Saber. So, the performance of A2B conversion is relatively better in Sable
compared to Saber. Hence, the overall performance of the masked compress
operation is better in Sable than in Saber. The compress operation of Florete is
also similar to the compress operation used in Saber. The value of parameters
εp in Florete is the same as Sable and so a little smaller than in Saber. However,
the degree of the message containing part of the ciphertext polynomial is 768 in
Florete, while it is 256 in Saber. So, the number of coefficients in Florete is three
times compared to Saber. The performance cost of A2B conversion and εp − 1
right shift operation in Florete is approximately three times the performance cost
of these operations in Saber. Therefore, the performance of the masked compress
operation in Florete takes approximately three times the cycles compared to the
masked compress operation in Saber. The scheme Espada encodes four message
bits in a single coefficient of ciphertext, and the polynomial size in Espada is
64, which is 1/4th of the polynomial size in Saber. The value of εp in Espada is
slightly bigger than in Saber. However, the A2B conversion component is faster
in Espada than in Saber due to the small polynomial size. Also, for the same
reason, the coefficient-wise εp − 4 bit right shift operation in Espada is faster
than the coefficient-wise εp − 1 bit right shift operation of Saber. Overall, the
performance of the masked compress operation of Espada is roughly four times
faster compared to the masked compress operation in Saber. As Kyber uses
prime moduli, the masked compress operation of Kyber is far more complicated
and has some extra steps. These extra steps includes conversion of arithmetic
shares from Zq to power-of-two modulus Z2kq , where log q < 2kq . These are
computationally quite expensive operations. Due to the power-of-two moduli,
schemes in Scabbard and Saber do not need these additional steps. This results
in more efficient masked compress operation for these schemes.

172 S. Kundu et al.

3.3 Message Decoding and Encoding

For Florete and Espada, the bit length of the message i.e 256 is not equal to
the sizes of the polynomial ring, which are 768 and 64, respectively. Authors
of Scabbard proposed techniques to encode and decode the message into the
polynomial named arrange msg and original msg respectively. The encoding
and decoding operation where the polynomial ring length is the same as the
message length is very straightforward, and we do not need any special masking
gadget for original msg and arrange msg functions. However, we need to use a
special masking component to mask the original msg function when polynomial
length equals r times message bits, where r > 1, e.g., Florete, NewHope [2]. We
use r coefficients to hide one message bit in this case. We also have to use
a special masking gadget to mask the arrange msg function if the number of
message bits equals B times a polynomial length, where B > 1, e.g., Espada.
In these schemes, B message bits are hidden in a coefficient. We discuss these
gadgets below.

MessageDecoding: In Florete, 3 coefficients had been used to hide one message
bit. The original msg : Z768

2 −→ Z
256
2 is defined here as if original msg(m′′) =

m′ and b ∈ {0, 1, . . . , 255} then m′[b] =

⎧
⎪⎨

⎪⎩

0 if m′′[b] + m′′[b + 256] + m′′[b + 512] ≤ 1

1 otherwise
.

First, we perform secure additions (SecAdd) over Boolean shared data to mask
this function, and the possible output must be one of {0, 1, 2, 3}. Notice that
it is always a two-bit number for any bit b. The output of the original msg is
equal to the most significant bit, which is the 2nd bit. So, after performing the
masked addition, we extract the most significant bit of the masked output shares
(2nd bit). At last, we return the most significant bit as output original msg for
each bit b ∈ {0, 1, . . . , 255}. We present this masked function in Algorithm 1.

Algorithm 1: Masked original msg function for Florete

Input : {m′′
i }1≤i≤n where m′′

i ∈ Z
768
2 such that

⊕n
i=1 m′′

i = m′′

Output : {m′
i}1≤i≤n where m′

i ∈ Z
256
2 ,

⊕n
i=1 m′

i = m′ and
original msg(m′′) = m′

1 for j=0 to 255 do
2 {xi[j]}1≤i≤n ← m′′

i [j]; {yi[j]}1≤i≤n ← m′′
i [256 + j];

{zi[j]}1≤i≤n ← m′′
i [512 + j]

3 {wi}1≤i≤n ← SecAdd({xi}1≤i≤n, {yi}1≤i≤n)
4 {w′

i}1≤i≤n ← SecAdd({wi}1≤i≤n, {zi}1≤i≤n)
5 {m′

i}1≤i≤n ← {w′
i}1≤i≤n � 1

6 return {m′
i}1≤i≤n

On the Masking-Friendly Designs for Post-quantum Cryptography 173

Message Encoding: In Florete and Sable, a co-efficient of the message polyno-
mial carries a single message bit. Here, arrange msg is defined by arrange msg :
Z
256
2 −→ Z

768
2 and arrange msg : Z256

2 −→ Z
256
2 for Florete and Sable respec-

tively. The Boolean masked output of this function then takes part in the mod-
ular addition in the next step of the re-encryption stage as the message poly-
nomial. As the shares of each coefficient of the message polynomial are in Z2,
the Boolean shares are equivalent to the arithmetic shares. Hence, we can skip
the Boolean to arithmetic conversion here. However, for Espada, we encode four
message bits in a single co-efficient of the message polynomial, and arrange msg
is defined by arrange msg : Z256

2 −→ Z
64
4 . So, we need to convert Boolean shares

of each coefficient of message polynomial to arithmetic shares using the B2A
algorithm. After that, we perform the modular addition with two arithmetically
masked inputs.

3.4 Hash Functions

Decapsulation algorithm uses one hash functions G (SHA3-512) and one pseudo-
random number generator XOF (SHAKE-128). These functions are different
instances of the sponge function Keccak-f[1600] [6]. It consists of five steps: (i)
θ, (ii) ρ, (iii) π, (iv) χ, and (v) ι. Among the five steps, θ, ρ, and π are linear
diffusion steps and ι is a simple addition. As all these four steps are linear oper-
ations over Boolean shares, in masked settings, we repeat all these operations
on each share separately. Only χ is a degree 2 non-linear mapping and thus
requires extra attention to mask. Overall, Keccak-f[1600] is less expensive to
mask by using Boolean masking. Here, we use the higher-order masked Keccak
proposed by Gross et al. [19]. Due to the compact parameter choices, Scabbard
schemes require fewer pseudo-random numbers than Saber. Eventually, this leads
to fewer invocations of the sponge function Keccak in Florete and Sable than in
Espada. Moreover, the output length of SHAKE-128 is the same for Florete and
Sable, which is even smaller than Espada. To sum up, the performance cost of
the masked XOF SHAKE-128 is lower in Florete, Sable, and Espada compared to
Saber.

3.5 Centered Binomial Sampler

The re-encryption part of the decapsulation algorithm contains a centered bino-
mial sampler for sampling the vector s′. This sampler outputs HW(x) − HW(y),
where x and y are pseudo-random numbers and HW represents hamming weight.
The bit size of pseudo-random numbers x and y depends on the scheme. These
pseudo-random numbers are produced employing SHAKE-128. As mentioned in
the previous section, these function is efficient if we mask with the help of
Boolean masking. Hence, the shares generated from SHAKE-128 are Boolean.
However, upon constructing the s′, we need to perform modular multiplication
with inputs s′ and public-key b. This is efficient if we use arithmetic mask-
ing. Therefore, we need to perform Boolean to arithmetic conversion in the
masked-centered binomial sampler. Schneider et al. [28] proposed two centered

174 S. Kundu et al.

binomial samplers, Sampler1 and Sampler2. Sampler1 first converts Boolean
shares of x and y to arithmetic shares then computes HW(x) − HW(y) by using
arithmetic masking technique. Sampler2 first computes z = HW(x) − HW(y) + k,
where k ≥ μ/2 using Boolean masking. After that, it converts Boolean shares
of z to arithmetic shares and then performs z − k using the arithmetic mask-
ing technique to remain with arithmetic shares of HW(x) − HW(y). Sampler1 uses
a bit-wise masking procedure, while sampler2 uses the bitslicing technique on
some parts of the algorithm for receiving better throughput. We have adopted
these two samplers and optimized them to mask the CBD function of each KEM
of the Scabbard suite. We could not directly use the optimized CBD used in
Saber [23], as that one is optimized for β8, and schemes of Scabbard use smaller
CBD to sample the vector s′. Schemes like Kyber and NewHope [2,28] use prime
modulus. So, a few components there are different, for example, the B2A conver-
sion and extra modular addition. As Scabbard uses power-of-two moduli, these
components can be implemented in a much cheaper way for them. We describe
the optimized masked CBD samplers for these schemes below.

3.5.1 Florete and Sable In these two schemes, we take advantage of the cen-
tered binomial sampler with a small standard deviation, β2. For β2, x and y are
1-bit pseudo-random numbers. We have adopted Sampler1 and Sampler2, with
these specification. As Sampler2 is designed to provide a better performance,
we started with the adaptation of Sampler2 for β2 named MaskCBDSamplerA as
shown in Algorithm 2. In this algorithm, first, we perform SecBitSub on Boolean
shares of x and y to calculate Boolean shares of HW(x) − HW(y). Second, we add
constant 1 with the output shares of SecBitSub to avoid negative numbers.
Third, we convert the output from Boolean shares to arithmetic shares with the
help of the B2A conversion algorithm proposed in [7]. In the last step, we sub-
tract the added constant in step-2, which converts secret shares from {0, 1, 2} to
{−1, 0, 1}.

Algorithm 2: MaskCBDSamplerA ([28], using sampler2)
Input : {xi}0≤i≤n, {yi}0≤i≤n where xi, yi ∈ R2 such that⊕n

i=0 xi = x,
⊕n

i=0 yi = y
Output : {Ai}0≤i≤n where Ai ∈ Rq and

∑n
i=0 Ai = (HW(x) − HW(y)) mod q

1 {zi}0≤i≤n ← SecBitSub({xi}0≤i≤n, {yi}0≤i≤n)
2 z0[0] ← z0[0] ⊕ 1
3 {Ai}0≤i≤n ← B2A({zi}0≤i≤n) [7]
4 A1 ← (A1 − 1) mod q
5 return {Ai}0≤i≤n

On the Masking-Friendly Designs for Post-quantum Cryptography 175

Algorithm 3: MaskCBDSamplerB ([28], using sampler1)
Input : {xi}0≤i≤n, {yi}0≤i≤n where xi, yi ∈ R2 such that⊕n

i=0 xi = x,
⊕n

i=0 yi = y
Output : {Ai}0≤i≤n where Ai ∈ Rq and

∑n
i=0 Ai = (HW(x) − HW(y)) mod q

1 {T1i}0≤i≤n ← B2A({xi}0≤i≤n) [7]; {T2i}0≤i≤n ← B2A({yi}0≤i≤n) [7]
2 for i=0 to n do
3 Ai ← (T1i − T2i)

4 return {Ai}0≤i≤n

Algorithm 4: MaskCBDSamplerC ([28], using sampler2)

Input : {xi}0≤i≤n, {yi}0≤i≤n where xi, yi ∈ R
3
2 such that⊕n

i=0 xi = x,
⊕n

i=0 yi = y
Output : {Ai}0≤i≤n where Ai ∈ Rq and

∑n
i=0 Ai = (HW(x) − HW(y)) mod q

1 {zi}0≤i≤n ← SecBitAdd({xi}0≤i≤n) [4]
2 {zi}0≤i≤n ← SecBitSub({zi}0≤i≤n, {yi}0≤i≤n) [28]
3 for i=0 to n do
4 zi[2] ← (zi[2] ⊕ zi[1])

5 z0[2] ← z0[2] ⊕ 1
6 {Ai}0≤i≤n ← B2A({zi}0≤i≤n) [7]
7 A1 ← (A1 − 4) mod q
8 return {Ai}0≤i≤n

As the bit size of x and y is small for β2, the bitslice technique for addition
and subtraction does not improve the throughput much. So, for comparison
purposes, we have adopted the technique of the sampler1 for β2. We name this
algorithm MaskCBDSamplerA, and present in Algorithm 3. In this algorithm, we
conduct B2A conversions over x and y and then perform share-wise subtraction
between arithmetic shares of x and y.

3.5.2 Espada We use the centered binomial sampler, β6, in this scheme.
For β6, x and y are 3-bit pseudo-random numbers. We have adopted a bit-
sliced implementation of Sampler2 from [28] for β6 to achieve better efficiency
as the standard deviation of the CBD is large. We name this masked sampler as
MaskCBDSamplerC , and it is shown in Algorithm 4. Similar to MaskCBDSamplerB,
MaskCBDSamplerC begins with the SecBitAdd operation, which is performed on
Boolean shares of x and generates Boolean shares of HW(x). Then SecBitSub is
conducted over the Boolean output shares and Boolean shares of y and outputs
Boolean shares of HW(x)−HW(y). After that, the constant 4 is added with the out-
put shares of SecBitSub to avoid negative numbers. In the next step, we convert
the output from Boolean shares to arithmetic shares with the help of B2A conver-
sion algorithm proposed in [7]. Finally, we subtract the added constant in step-7
and transform secret shares from {1, 2, 3, 4, 5, 6, 7} to {−3,−2,−1, 0, 1, 2, 3}.

176 S. Kundu et al.

The masked CBD sampler (β8) used in Saber is faster than the masked
CBD of Kyber because of the power-of-two moduli. MaskCBDSamplerA and
MaskCBDSamplerB are optimized implementation of β2, which has been used in
Florete and Sable. MaskCBDSamplerC is designed for Espada, which is optimized
implementation of β6. For β2 and β6, the B2A conversion is much faster than
β8 thanks to the smaller coefficients size in the input polynomial. Therefore, the
performance cost of the masked CBD is less for all the schemes in Scabbard com-
pared to Saber or Kyber. A more detailed performance cost analysis of masked
CBD implementations for Scabbard is presented in Sect. 4.1.

3.6 Ciphertext Comparison

It is one of the costliest components for masked implementations of lattice-
based KEMs, which is a part of the FO transformation. Previously, many meth-
ods have been proposed to perform this component efficiently [9,14,23]. For
the masked ciphertext comparison part of each KEM of Scabbard, we have
adopted the improved simple masked comparison method used in the higher-
order masked implementation of Saber [23]. To the best of our knowledge, this
is currently the most efficient masked ciphertext comparison implementation
available. Through this process, we compare the arithmetically masked output
of the re-encryption component before the right shift operation (ũ, ṽ) with the
unmasked public ciphertext, (u, v). Additionally, note that u′ = ũ � (εq − εp)
and v′ = ṽ � (εp − εt − B). At first, we perform A2B conversion step over
the arithmetically masked shares of the output and transform these to Boolean
shares, and then we follow the right shift operation. After that, we subtract the
unmasked public ciphertext (u, v) from a share of the Boolean masked output of
the A2B operation with the help of the XOR operation. Finally, we proceed with
checking that all the returned bits of the subtract operation are zero with the
BooleanAllBitsOneTest algorithm. This algorithm returns 1 only if it receives
all the bits encoded in each coefficient of the polynomials is 1; else it returns 0.
All these aforementioned steps are presented in Algorithm 5. For further details,
we refer to the higher-order masked Saber paper [23].

The parameter settings are different for each KEM of the Scabbard suite.
Due to this, byte sizes of the masked inputs of the functions A2B and
BooleanAllBitsOneTest are different for each KEM of the suite, and we
show these numbers in Table 2. For reference, we also provide the byte sizes
of the masked inputs of A2B and BooleanAllBitsOneTest for Saber in this
table. These differences in the input bytes also affect the performances of
corresponding masked implementations. The masked input sizes of both the
functions A2B and BooleanAllBitsOneTest for Sable are less than Saber.
On account of this, the performance cost of masked ciphertext comparison is
cheaper for Sable than Saber. The masked input sizes of both functions A2B and

On the Masking-Friendly Designs for Post-quantum Cryptography 177

Algorithm 5: Simple masked comparison algorithm [23]
Input : Arithmetic masked re-encrypted ciphertext ({ũi}0≤i≤n, {ṽi}0≤i≤n)

and public ciphertext (u and v) where each ũi ∈ R
l
2εq and ṽi ∈ R2εp

and
∑n

i=0 ũi mod q = ũ
∑n

i=0 ṽi mod q = ṽ.
Output : {bit}0≤i≤n, where with each biti ∈ Z2 and

⊕n
i=0 biti = 1 iff

u = u′ � (εq − εp) and v = v′ � (εp − εt − B), otherwise 0.

1 {yi}0≤i≤n ← A2B({ũi}0≤i≤n); {xi}0≤i≤n ← A2B({ṽi}0≤i≤n)
2 {yi}0≤i≤n ← ({yi}0≤i≤n � (εq − εp)); {xi}0≤i≤n ← ({xi}0≤i≤n � (εp − εt − B))
3 y1 ← y1 ⊕ u; x1 ← x1 ⊕ v

/* Boolean circuit to test all bits of (y, x) are 0 */

4 y0 ← ¬y0; x0 ← ¬x0

5 {biti}0≤i≤n ← BooleanAllBitsOneTest ({yi}0≤i≤n, {xi}0≤i≤n, εp, εt)

6 return {biti}0≤i≤n

Table 2. Size of inputs of the A2B and BooleanAllBitsOneTest functions situated in
Algorithm 5 for Scabbard’s schemes and Saber

Function Input Bytes

Florete Sable Espada Saber

A2B 1824 1344 1544 1568

BooleanAllBitsOneTest 1248 1024 1304 1088

BooleanAllBitsOneTest for Florete are greater than Saber. So, the masked
ciphertext comparison component of Florete needs more cycles than Saber. The
masked input size of the function A2B of Espada is less than Saber, but the input
size of BooleanAllBitsOneTest for Espada is bigger than Saber. So, the first-
order masked comparison component is faster for Espada compared to Saber, but
the second and third-order masked comparison component is slower in Espada
than in Saber. However, the performance of each scheme’s masked ciphertext
comparison component in the suite Scabbard is better than Kyber because of
the prepossessing steps needed in Kyber [14].

4 Performance Evaluation

We implemented all our algorithms on a 32-bit ARM Cortex-M4 microcon-
troller, STM32F407-DISCOVERY development board. We used the popular
post-quantum cryptographic library and benchmarking framework PQM4 [21]
for all measurements. The system we used to measure the performance of
the masked implementations includes the compiler arm-none-eabi-gcc version
9.2.1. The PQM4 library uses the system clock to measure the clock cycle, and

178 S. Kundu et al.

the frequency of this clock is 24 MHz. We employ random numbers to ensure
the independence of the shares of the masked variable in masking algorithms.
For this purpose, we use the on-chip TRNG (true random number generator) of
the ARM Cortex-M4 device. This TRNG has a different clock frequency than the
main system clock, which is 48 MHz. It generates a 32-bit random number in 40
clock cycles, equivalent to 20 clock cycles for the main system clock. Our imple-
mentations can be used for any order of masking. In this section, we provide the
performance details of first-, second-, and third-order masking.

Table 3. Performance of MaskCBDSamplerA and MaskCBDSamplerB

Order ×1000 clock cycles

1st 2nd 3rd

MaskCBDSamplerA 178,591 504,101 1,226,224

MaskCBDSamplerB 182,714 499,732 909,452

4.1 Analyzing the Performance of Masked CBD Samplers

As discussed in Sect. 3.5, MaskCBDSamplerA and MaskCBDSamplerB can
be used for both Florete and Sable. Performance comparisons between
MaskCBDSamplerA and MaskCBDSamplerB for different shares are provided in
Table 3. Overall, we observe from the table that MaskCBDSamplerB performs
better than MaskCBDSamplerA for higher-order masking. As a result, we use
MaskCBDSamplerB in the masked implementations of Florete and Sable.

4.2 Performance Measurement of Masked Scabbard Suite

Tables 4, 5, and 6 provide the clock cycles required to execute the masked decap-
sulation algorithm of Florete, Espada, and Sable, respectively. The overhead fac-
tors for the first-, second-, and third-order masked decapsulation operation of
Florete are 2.74×, 5.07×, and 7.75× compared to the unmasked version. For
Espada, the overhead factors for the first-, second-, and third-order decapsula-
tion algorithm compared to the unmasked decapsulation are 1.78×, 2.82×, and
4.07, respectively. Similarly, for Sable, the overhead factors for the first-, second-,
and third-order decapsulation algorithm are 2.38×, 4.26×, and 6.35× than the
unmasked one. As mentioned earlier, the masked algorithm needs fresh random
numbers to maintain security. Generating random numbers is a costly proce-
dure. So, for a better understanding of the improvements, we also present the
requirement of random bytes for Florete, Espada, and Sable in Table 7.

On the Masking-Friendly Designs for Post-quantum Cryptography 179

Table 4. Performance of Florete

×1000 clock cycles

Order Unmask 1st 2nd 3rd

Florete CCA-KEM-Decapsulation 954 2,621 (2.74×) 4,844 (5.07×) 7,395 (7.75×)

CPA-PKE-Decryption 248 615 (2.47×) 1,107 (4.46×) 1,651 (6.65×)

Polynomial arithmetic 241 461 (1.91×) 690 (2.86×) 917 (3.80×)

Compression

original msg
6 153 (25.50×) 416 (69.33×) 734 (122.33×)

Hash G (SHA3-512) 13 123 (9.46×) 242 (18.61×) 379 (29.15×)

CPA-PKE-Encryption 554 1,744 (3.14×) 3,354 (6.05×) 5,225 (9.43×)

Secret generation 29 427 (14.72×) 982 (33.86×) 1,663 (57.34×)

XOF (SHAKE-128) 25 245 (9.80×) 484 (19.36×) 756 (30.24×)

CBD (β2) 4 182 (45.50×) 497 (124.25×) 907 (226.75×)

Polynomial arithmetic

arrange msg
943 1,357 1,783

Polynomial Comparison

524

373

(2.51×)

1,014

(4.52×)

1,778

(6.79×)

Other operations 138 139 (1.00×) 140 (1.01×) 140 (1.01×)

Table 5. Performance of Espada

×1000 clock cycles

Order Unmask 1st 2nd 3rd

Espada CCA-KEM-Decapsulation 2,422 4,335 (1.78×) 6,838 (2.82×) 9,861 (4.07×)

CPA-PKE-Decryption 70 137 (1.95×) 230 (3.28×) 324 (4.62×)

Polynomial arithmetic 69 116 (1.68×) 170 (2.46×) 225 (3.26×)

Compression

original msg
0.4 20 (50.00×) 60 (150.00×) 99 (247.50×)

Hash G (SHA3-512) 13 123 (9.46×) 243 (18.69×) 379 (29.15×)

CPA-PKE-Encryption 2,215 3,950 (1.78×) 6,240 (2.81×) 9,031 (4.07×)

Secret generation 57 748 (13.12×) 1,650 (28.94×) 3,009 (52.78×)

XOF (SHAKE-128) 51 489 (9.58×) 968 (18.98×) 1,510 (29.60×)

CBD (β6) 6 259 (43.16×) 681 (113.50×) 1,498 (249.66×)

Polynomial arithmetic

arrange msg
2,865 3,593 4,354

Polynomial Comparison

2,157

259

(1.44×)

996

(2.12×)

1,667

(2.79×)

Other operations 124 124 (1.00×) 124 (1.00×) 126 (1.01×)

Table 6. Performance of Sable

×1000 clock cycles

Order Unmask 1st 2nd 3rd

Sable CCA-KEM-Decapsulation 1,020 2,431 (2.38×) 4,348 (4.26×) 6,480 (6.35×)

CPA-PKE-Decryption 130 291 (2.23×) 510 (3.92×) 745 (5.73×)

Polynomial arithmetic 128 238 (1.85×) 350 (2.73×) 465 (3.63×)

Compression

original msg
2 52 (26.00×) 160 (80.00×) 280 (140.00×)

Hash G (SHA3-512) 13 123 (9.46×) 242 (18.61×) 379 (29.15×)

CPA-PKE-Encryption 764 1,903 (2.49×) 3,482 (4.55×) 5,241 (6.85×)

Secret generation 29 427 (14.72×) 984 (33.93×) 1,666 (57.44×)

XOF (SHAKE-128) 25 245 (9.80×) 484 (19.36×) 756 (30.24×)

CBD (β2) 4 182 (45.50×) 499 (124.75×) 909 (227.25×)

Polynomial arithmetic

arrange msg
1,187 1,640 2,086

Polynomial Comparison

734

287

(2.00×)

856

(3.40×)

1,488

(4.86×)

Other operations 112 113 (1.00×) 113 (1.00×) 113 (1.00×)

180 S. Kundu et al.

Table 7. Random number requirement for all the masked schemes of Scabbard

Random bytes

Florete Espada Sable

Order 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

CCA-KEM-Decapsulation 15,824 52,176 101,280 11,496 39,320 85,296 12,496 39,152 75,232

CPA-PKE-Decryption 2,560 10,176 20,352 304 1,216 2,432 832 3,328 6,656

Polynomial arithmetic 0 0 0 0 0 0 0 0 0

Compression 2,496 9,984 19,968 304 1,216 2,432 832 3,328 1,152

original msg 64 192 384 0 0 0 0 0 0

Hash G (SHA3-512) 192 576 1,152 192 576 1,152 192 576 67,424

CPA-PKE-Encryption 13,072 41,424 79,776 11,000 37,528 81,712 11,472 35,248 6,656

Secret generation 6,528 16,512 29,952 4,896 14,688 35,520 6,528 16,512 29,952

XOF (SHAKE-128) 384 1,152 2,304 768 2,304 4,608 384 1,152 2,304

CBD (Binomial Sampler) 6,144 15,360 27,648 4,128 12,384 30,912 6,144 15,360 27,648

Polynomial arithmetic 0 0 0 0 0 0 0 0 0

arrange msg 0 0 0 256 768 2,048 0 0 0

Polynomial Comparison 6,544 24,912 49,824 5,848 22,072 44,144 4,944 18,736 37,472

Other operations 0 0 0 0 0 0 0 0 0

4.3 Performance Comparison of Masked Scabbard Suite
with the State-of-the-Art

We analyze the performance and random number requirements for masked
decapsulation algorithms of Scabbard’s schemes in comparison to the state-of-
the-art masked implementations of LBC. We compare our masked Scabbard
implementation with Bronchain et al.’s [10] and Bos et al.’s [9] masked imple-
mentations of Kyber and Kundu et al.’s [23] masked implementations of Saber
in Table 8.

Table 8. Performance comparison of masked Scabbard implementations with the state-
of-the-art

Scheme Performance # Randm numbers

(×1000 clock cycles) (bytes)

1st 2nd 3rd 1st 2nd 3rd

Florete (this work) 2,621 4,844 7,395 15,824 52,176 101,280

Espada (this work) 4,335 6,838 9,861 11,496 39,320 85,296

Sable (this work) 2,431 4,348 6,480 12,496 39,152 75,232

Saber [23] 3,022 5,567 8,649 12,752 43,760 93,664

uSaber [23] 2,473 4,452 6,947 10,544 36,848 79,840

Kyber [10] 10,018 16,747 24,709 – – –

Kyber [9] 3, 116∗ 44,347 115,481 12, 072∗ 902,126 2,434,170

*: optimized specially for the first-order masking

First-, second- and third-order masked decapsulation implementations of Flo-
rete are respectively 73%, 71%, and 70% faster than Bronchain et al.’s [10]
masked implementation of Kyber. Bos et al. optimized their algorithm specifi-
cally for the first-order masking of Kyber. Even though it is 15% slower than the

On the Masking-Friendly Designs for Post-quantum Cryptography 181

first-order masked decapsulation of Florete. Bos et al.’s [9] second- and third-
order masked implementations of Kyber are respectively 89% and 93% slower
than Florete. The random byte requirements in the masked version of Florete
compared to Kyber are 94% less for the second order and 95% less for the third
order. Florete also performs better than Saber. Florete needs 13%, 12%, and
14% fewer clock cycles than Saber for first-, second-, and third-order masking.

Masked decapsulation implementation of Espada performs 56%, 59%, and
60% better than Bronchain et al.’s [10] masked implementation of Kyber for
first-, second-, and third-order, respectively. Second-, and third-order masked
implementations of Espada are faster than Bos et al.’s [9] masked Kyber by 84%
and 91%, respectively. The random bytes requirements in Espada compared to
Kyber are 95% less for the second-order and 96% less for the third-order masking.
Espada also uses fewer random numbers than Saber. Espada requires 9% fewer
random bytes in first-order masking, 10% fewer random bytes in second-order
masking, and 8% fewer random bytes in third-order masking than Saber.

We show that the masked implementation of Sable performs better than
masked Kyber and Saber for first-, second-, and third-order (like Florete). Sable
performs 75%, 74%, and 73% better than Bronchain et al.’s [10] masked imple-
mentation of Kyber and 21%, 90%, and 94% better than Bos et al.’s [9] masked
implementation of Kyber first-, second-, and third-order, respectively. Compared
to Kyber, Sable requires 95% and 96% less random bytes for second- and third-
order masking. The performance of masked Sable is better than masked Saber
by 19% for first-order, 21% for second-order, and 25% for third-order masking.
Masked Sable uses 2%, 10%, and 19% less number of random bytes for first-,
second-, and third-order than masked Saber, respectively. uSaber is a masking-
friendly variant of Saber proposed during the third round of NIST submission.
We notice that masked Sable is also faster than masked uSaber for arbitrary
order. Masked Sable is 1% faster for first-order, 2% for second-order, and 6% for
third-order than masked uSaber. Although first- and second-order masked Sable
needs more random bytes than uSaber, third-order masked Sable requires 5%
less random bytes than uSaber.

Implementations of masked Scabbard schemes achieve better performance
and use fewer random bytes than masked Kyber because the schemes of Scab-
bard use the RLWR/ MLWR problem as an underlying hard problem and Kyber
uses the MLWE problem as the hard problem. The decapsulation operation of
RLWR/ MLWR-based KEM has fewer components compared to the decapsula-
tion operation of RLWE/ MLWE-based KEM due to the requirement of sam-
pling error vectors and polynomials generations in the re-encryption step of
RLWE/ MLWE-based KEMs. RLWR/ MLWR-based KEMs also benefit due to
the use of power-of-two moduli. Computationally expensive components, such
as A2B or B2A conversions, are cheaper when using power-of-two moduli. The
schemes of Scabbard also use slightly smaller parameters than Kyber, which also
contributes to achieving better performance and requirements of fewer random
bytes for masked implementation of Scabbard’s KEMs compared to Kyber.

182 S. Kundu et al.

5 Conclusions

In this work, we presented the impact of different design decisions of LBC on
masking. We analyzed each component where masking is needed and discussed
each design decision’s positive and negative impact on performance. As we men-
tioned at the beginning of the paper, it is possible to improve different practical
aspects, such as masking overheads, by modifying the existing designs of PQC.
This highlights the necessity of further research efforts to improve existing PQC
designs.

Acknowledgements. This work was partially supported by Horizon 2020 ERC
Advanced Grant (101020005 Belfort), CyberSecurity Research Flanders with reference
number VR20192203, BE QCI: Belgian-QCI (3E230370) (see beqci.eu), and Intel Cor-
poration. Angshuman Karmakar is funded by FWO (Research Foundation - Flanders)
as a junior post-doctoral fellow (contract number 203056/1241722N LV).

References

1. Alagic, G., et al.: Status report on the third round of the NIST post-quantum
cryptography standardization process (2022). Accessed 26 June 2023

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Sympo-
sium, USENIX Security 2016, Austin, TX, USA, 10–12 August 2016, pp. 327–343.
USENIX Association (2016)

3. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

4. Beirendonck, M.V., D’Anvers, J.P., Karmakar, A., Balasch, J., Verbauwhede, I.:
A side-channel resistant implementation of SABER. Cryptology ePrint Archive,
Report 2020/733 (2020)

5. Bermudo Mera, J.M., Karmakar, A., Kundu, S., Verbauwhede, I.: Scabbard: a suite
of efficient learning with rounding key-encapsulation mechanisms. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2021(4), 474–509 (2021)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 19

7. Bettale, L., Coron, J., Zeitoun, R.: Improved high-order conversion from Boolean to
arithmetic masking. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(2), 22–45
(2018)

8. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - kyber: a CCA-secure module-
lattice-based KEM. Cryptology ePrint Archive, Report 2017/634 (2017)

9. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
kyber: first- and higher-order implementations. IACR Cryptology ePrint Archive,
p. 483 (2021)

10. Bronchain, O., Cassiers, G.: Bitslicing arithmetic/Boolean masking conversions for
fun and profit with application to lattice-based KEMs. Cryptology ePrint Archive,
Report 2022/158 (2022)

https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-38348-9_19

On the Masking-Friendly Designs for Post-quantum Cryptography 183

11. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

12. Cheon, J.H., Choe, H., Hong, D., Yi, M.: SMAUG: pushing lattice-based key encap-
sulation mechanisms to the limits. Cryptology ePrint Archive, Paper 2023/739
(2023)

13. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 25

14. D’Anvers, J., Beirendonck, M.V., Verbauwhede, I.: Revisiting higher-order masked
comparison for lattice-based cryptography: algorithms and bit-sliced implementa-
tions. IEEE Trans. Comput. 72(2), 321–332 (2023)

15. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

16. Espitau, T., et al.: Mitaka: a simpler, parallelizable, maskable variant of falcon.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277,
pp. 222–253. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2 9

17. Fouque, P.A., et al.: Falcon: Fast-Fourier lattice-based compact signatures over
NTRU (2018). Accessed 28 June 2023

18. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-7 5

19. Gross, H., Schaffenrath, D., Mangard, S.: Higher-order side-channel protected
implementations of KECCAK. Cryptology ePrint Archive, Report 2017/395 (2017)

20. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Post-quantum IND-CCA-secure
KEM without additional hash. IACR Cryptology ePrint Archive 2017/1096 (2017)

21. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: post-quantum
crypto library for the ARM Cortex-M4. https://github.com/mupq/pqm4

22. KpqC: Korean PQC competition (2022). https://www.kpqc.or.kr/competition.
html. Accessed 30 June 2023

23. Kundu, S., D’Anvers, J.P., Van Beirendonck, M., Karmakar, A., Verbauwhede,
I.: Higher-order masked saber. In: Galdi, C., Jarecki, S. (eds.) SCN 2022. LNCS,
vol. 13409, pp. 93–116. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
14791-3 5

24. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75(3), 565–599 (2015). https://doi.org/10.1007/s10623-014-
9938-4

25. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

26. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

27. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-642-55220-5_25
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/3-540-49162-7_5
https://github.com/mupq/pqm4
https://www.kpqc.or.kr/competition.html
https://www.kpqc.or.kr/competition.html
https://doi.org/10.1007/978-3-031-14791-3_5
https://doi.org/10.1007/978-3-031-14791-3_5
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/978-3-642-15031-9_28

184 S. Kundu et al.

28. Schneider, T., Paglialonga, C., Oder, T., Güneysu, T.: Efficiently masking binomial
sampling at arbitrary orders for lattice-based crypto. In: Lin, D., Sako, K. (eds.)
PKC 2019. LNCS, vol. 11443, pp. 534–564. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17259-6 18

29. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
30. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on

Foundations of Computer Science (SFCS 1982), pp. 160–164 (1982)

https://doi.org/10.1007/978-3-030-17259-6_18
https://doi.org/10.1007/978-3-030-17259-6_18

Spliced Region Detection and Localization
in Digital Images Based on CNN Learning
Guided by Color Transitions and Surface

Texture

Debjit Das(B) , Ranit Das(B) , and Ruchira Naskar(B)

Department of Information Technology, Indian Institute of Engineering Science
and Technology, Shibpur, Howrah 711103, West Bengal, India
{debjit.rs2020,ruchira}@it.iiests.ac.in,
2021itm002.ranit@students.iiests.ac.in

Abstract. In this paper, we deal with the problem of localization of image splic-
ing, which has proven to be one of the major types of digital image forgery today,
where an adversary combines regions from multiple source images, to create a
natural-looking composite image. This type of composition, difficult to identify
by the naked eye, many times proves to be beneficial in synthetic image genera-
tion tasks for media, photography and advertisement industries. However, when
performed with mal-intention, it needs to be detected in order to prevent various
social perils ranging from privacy violations and the spread of fake news, to more
serious threats of fake identity generation in terrorist activities and money laun-
dering cases. In this work, we propose a Convolutional Neural Network (CNN)
model that accurately identifies the forged regions in a spliced image. We intro-
duce three pre-processing steps on the forged image to identify the color tran-
sitions between pixels, overall surface texture and zones with the most promi-
nent colors. It generates three new images from the forged image. We merged
them together to make a single image, which is used to train our neural network
model. The proposed method identifies the boundary pixels if they are authen-
tic or forged, and subsequently finds the pattern to detect the boundary of the
forged region. The model has been rigorously evaluated, and the experiment
results obtained are extremely encouraging on the CASIA 2.0 dataset.

Keywords: Color transition · CNN · Digital image forgery · Spliced surface
textures · Splicing localization

1 Introduction

The rapid progress of technology and globalization has revolutionized the field of pho-
tography, granting widespread access to affordable electronic devices and fuelling the
growing popularity of digital cameras. In fact, smartphones today have impressive cam-
era setups that can rival even the most advanced Digital Single-Lens Reflex (DSLR)
cameras. Consequently, photography has become an integral part of the modern digital
world, with nearly everyone capturing and sharing photos effortlessly. As the availabil-
ity of electronic devices and digital cameras increased, so did the tools for modifying
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. Regazzoni et al. (Eds.): SPACE 2023, LNCS 14412, pp. 185–196, 2024.
https://doi.org/10.1007/978-3-031-51583-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51583-5_11&domain=pdf
http://orcid.org/0000-0003-2606-8786
http://orcid.org/0009-0003-7350-3442
http://orcid.org/0000-0001-6826-940X
https://doi.org/10.1007/978-3-031-51583-5_11

186 D. Das et al.

Fig. 1. Image splicing example from CASIA 2.0 dataset. (a), (b) Two authentic images (c) Spliced
image (d) Ground truth of the spliced image

and manipulating photographs. Originally intended to refine and enhance image quality,
these technologies have now become widely accessible and affordable even to layman
users. However, this accessibility has also given rise to a significant concern – the cre-
ation of fake or counterfeit images. The harm inflicted by such counterfeit photos can
be critical, and, in some cases, irreparable.

Image tampering can be approached from two angles: active and passive. Active
approaches involve incorporating digital signatures and watermarks into images to
establish authenticity and ownership. These methods provide a level of protection
against unauthorized usage or manipulation. On the other hand, passive approaches
encompass various techniques, including copying, splicing, image morphing, retouch-
ing, and enhancement. Each technique presents different challenges and can be
employed to deceive viewers by creating misleading or false representations.

This paper deals with a specific form of image forgery, viz. digital image splicing.
We address the problem of identifying and locating spliced portions in a digital image.
In Fig. 1(a) and (b) represent two authentic images, and (c) is the result of a splicing
attack on the two images, where we can see a region from image (a) has been spliced
onto the image (b), and (d) represents the ground truth of the spliced image. This is an
example of image forgery using the splicing technique.

In recent decades, researchers have developed various strategies for identifying the
forgery of digital images [1,13]. However, detecting image splicing forgery poses a
greater challenge than other tamper detection methods. This is primarily due to the
post-processing techniques employed to eliminate visible differences after tampering
in a splicing attack. As illustrated in the example in Fig. 1, it remains difficult for the
human eye to discern the tampered area even with a meticulous inspection.

Traditional image forgery tracking algorithms typically rely on detecting specific
artefacts within a manipulated image to identify instances of forgery [8]. However, in
recent times, Convolutional Neural Networks (CNN) have gained popularity in the field
of computer vision. In this particular problem too, CNNs have achieved remarkable
success. This is due to two key factors. Firstly, CNN exploits the strong correlation
among neighbouring pixels. Rather than establishing direct connections between every
pair of pixels, CNN prioritizes regionally clustered interconnections. This approach
enables CNN to capture spatial relationships within an image effectively. Secondly,

Spliced Region Detection and Localization in Digital Images 187

CNN employs weight sharing via a convolutional process to generate feature maps.
This means that learned characteristics from training images can be applied to iden-
tify subtle and imperceptible forgeries. Leveraging these characteristics, CNN offers
a promising approach for detecting forgeries within images. By constructing a CNN-
based network, we can effectively analyse the various artefacts present in a manipu-
lated image [15,17,21]. Among recent deep learning-based approaches, Liu et al. [9]
proposed PSCC-Net, which analyses images using a two-path technique. In [18] Wu et
al. employed a CNN to extract block-like features from a picture, calculate the similar-
ity between distinct blocks, and discover the matched ones. Another note-worthy deep
neural network developed by Wu et al. in recent times is ManTra-Net [19], which is a
CNN network that can handle an image of any resolution and various types of forgery.

In this paper, we propose a CNN-based model to detect and localize spliced regions
within an image that aims to identify these artefacts, which arise due to discrepancies
between the characteristics of the source image and the forged region.

The rest of the paper is structured as follows. A review of the literature on image
forgery detection approaches is presented in Sect. 2. The proposed methodology for
localizing forged regions in a spliced image is presented in Sect. 3. Our experiments
and results are discussed in Sect. 4. Section 5 presents the conclusion and future scope
for this work.

2 Literature Review

Different methods are available to address image forgery detection and localization,
ranging from conventional techniques to more recent approaches based on deep learn-
ing. While conventional methods primarily focus on detecting specific artefacts left
by forgeries, deep learning-based techniques, which will be discussed below, have
emerged as a relatively new and promising approach. This discussion will begin with
classical methods and progressively explore the advancements in deep learning-based
approaches. The detection of image splicing forgery using traditional methods can be
roughly divided into four types based on the differences in attributes between the tam-
pered region and the authentic region. In [11], the authors propose a method for iden-
tifying forgery based on the varying illumination of different components within an
image. This technique involves comparing the illumination directions of the forged and
authentic parts of the image. Another approach discussed in [10] focuses on error-level
analysis for image forgery detection. This method involves analyzing the error lev-
els in different image regions to identify potential forgeries. Habibi et al. [6] utilize
the contourlet transform to recover edge points to detect image forgery. Examining
the edge points, they aim to identify indications of image manipulation. Furthermore,
the research work in [3] explores conventional image falsification detection methods.
This study examines various techniques commonly used for identifying forged images.
These references provide insights into different approaches used in the field of image
forgery detection, including illumination-based analysis, error level analysis, contourlet
transform, and conventional detection methods.

Among the deep learning-based approaches, Liu et al. [9] proposed PSCC-Net,
which analyses images using a two-path technique. In [18], Wu et al. employed a CNN

188 D. Das et al.

to extract block-like features from a picture, calculate the similarity between distinct
blocks, and discover the matched ones. Wu et al. also developed ManTra-Net, a CNN
network that can handle an image of any resolution and various forging kinds, discussed
in [19]. In [7], Kniaz et al. trained four models at once: GA, GR, DA, and DR, which
evaluate the output of GA and GR. The work in [12] develops a technique for mapping
sets of image areas to a value that indicates whether they include the same or separate
forensic evidence.

3 Proposed Model

Here, we present a CNN-based model to identify and localize image splicing. CNNs
have recently attracted much attention as a viable solution for solving real-world prob-
lems. Filter banks in a CNN are groups of weights that capture graphical features.
They can also be used to study variations in picture properties between tampered and
background regions, as well as to address the drawbacks of current splicing detec-
tion algorithms that focus on particular elements of an image. Furthermore, a CNN
has light-transformation resistance, deformation resistance, and geometric invariance,
which could assure the robust detectability of the proposed approach.

In order to prepare the training data for our model, we gather the following sample
sets: tampered (spliced) images, the corresponding ground truths representing spliced
vs. non-spliced regions in the form of a binary image, and two original images that
were used to create the forged image (as seen in Fig. 1). Only spliced images are taken
as input for the preprocessing steps.

Before applying any convolution operation to the tampered image, we perform some
pre-processing steps to enhance the detection quality and performance. We employ
three subsequent pre-processing methods on a spliced image to enable the working
of our model. These are detailed next.

3.1 Finding Color Transitions

To enhance the detection of color transitions between pixels and gather information
on color transitions between forged and authentic regions, we first convert the image
to YCbCr color space and normalize it. Luminosity (Y), red-difference chrominance
(Cr), and blue-difference chrominance (Cb) channels are then separated. Next, we try
to obtain the color transitions between the forged and authentic regions of the image.
This is obtained using a filtering operation on the input binary image using a specified
kernel size. The input image is convolved with the filter and subsequently normalized by
mapping the minimum and maximum pixel values to the range of 0 to 1. The already
separated Cr and Cb channels are taken as input to this subroutine. Additionally, the
absolute difference image between Cb and Cr channels is also fed as input to this pro-
cedure. This generates a total of three images, which are merged together, resulting in
the final output consisting of color transitions between pixels (refer to Fig. 2).

Spliced Region Detection and Localization in Digital Images 189

Fig. 2. Sample undergoing three stages of pre-processing. (a) Actual spliced sample (b) Resultant
showing color transitions between pixels (c) Overall surface textures (d) Most prominent color
zones.

3.2 Finding the Surface Textures

The next step in pre-processing involves extracting overall surface texture of the image.
To achieve this, first, we divide the image into blocks of specific sizes. For each block, a
sub-image is extracted from the original image based on the current block’s position and
size. Then we apply Discrete Cosine Transform (DCT) on the sub-image. We find the
mean and median of the DCT coefficients of a particular sub-image, and find their prod-
uct. This product is repeated multiple times to generate an equal sized (corresponding)
block in the output image.

To capture the image surface texture We apply this operation on two different chan-
nels: (A) the Cr channel, (B) the product of Cb and Cr. The two resultant images are
then merged alongside the original Y channel, which gives us an image capturing the
overall surface texture of the tampered image, as evident from Fig. 2.

3.3 Finding Prominent Color Zones

The final pre-processing step tries to find the image portions demonstrating the most
visibly distinct or prominent color zones. We transform the input image using singular
value decomposition (SVD) and encoding based on color and difference information to
achieve this.

The following formula gives the SVD of M × N matrix A,

A = UWT (1)

where, U isM ×N matrix of orthogonal eigenvectors of AAT and V T is the transpose
of a N ×N matrix containing the orthogonal eigenvectors of ATA and W is a N ×N
diagonal matrix of the singular values which are the square roots of the eigenvalues of
ATA.

In this pre-processing step, we compute the absolute difference in each channel
between each pixel and its neighbours. The resultant difference arrays are then padded
to match the shape of the original image. Then, we create a new matrix which consists
of six channels, the original normalized values of Y, Cb, and Cr, and the other three
channels are created by taking the absolute difference of each channel for each pixel
and its neighbours. This 3D matrix is then reshaped into a 2D array; the first dimen-
sion is the product of the height and width of the matrix and the second dimension

190 D. Das et al.

Fig. 3. Building blocks of proposed model. (a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4.

is the number of channels, here, six. SVD is then performed on this 2D matrix. The
result consists of singular values (s), left singular vectors (U), and right singular vec-
tors (V). Top three singular vectors and singular values are taken for encoding. The 2D
matrix is then multiplied element-wise (dot product) with the transpose of the newly
obtained matrix of singular vectors. The result which is obtained by this operation is
reshaped back to the original shape (height, width, 3), hence we multiply each channel
of the reshaped image with its corresponding top singular value to enhance the encoded
information. The modified Y, Cb, and Cr channels are merged back together. By this,
we obtain an image which highlights the portions of the tampered image depicting the
most prominent color zones, which is an indicator of probable forged locations. (See
Fig. 2.) The preprocessing steps are not self-sufficient to provide the necessary infor-
mation to our model in order to localize the spliced region, but together they produce
relevant information regarding the region of forgery. Using prominent color zones along
with color transitions helps us to identify the most color-dense areas in the image, and
the transitions of colors of various density between multiple zones. In our dataset, we
have noticed that most of the spliced images, have some sort of color distortion between
spliced and authentic regions. These steps together helps us to find these types of infor-
mation to successfully identify the forged regions.

All three images generated by the three pre-processing stages are merged to create
a single image. Each one of these images has three channels, so our merged image con-
tains nine channels altogether. Every image in our dataset is pre-processed as described
above. Alongside this, we took the ground truth of each spliced image with its edges
marked using a Canny edge detector, used as target labels in our training.

Spliced Region Detection and Localization in Digital Images 191

Fig. 4. Proposed model architecture.

3.4 Proposed Network Model

Now the data is prepared to be fed into the neural network model. The proposed method
predicts whether a pixel belongs to the boundary between the spliced region and the
background image, or not. Our detection is performed at pixel level. The proposed
model aims to generate a mask to highlight the tampered regions in a given spliced
image.

The input shape considered by the proposed model is (256, 256, 9). This indicates
each image is of dimensions 256×256 and consists of nine channels. The proposed neu-
ral network is programmatically divided into some functional blocks, out of which, the
first block consists of multiple convolutional layers followed by a transposed convolu-
tional layer and a max pooling layer. The second block defines operations that involve
transposed convolutions. It takes an input layer and performs a series of transposed
convolutional operations. The third block defines a block of operations that involves
convolutional and transposed convolutional layers, as well as batch normalization and
max pooling. It takes an input layer and performs a series of operations. The fourth
block again introduces a series of convolution operations. These blocks are illustrated
in Fig. 3. Using these blocks, the rest of the network is built.

Subtract and product are two intermediate stages in our model in which we are
doing these two operations on the results gained from previous stages. Reshape (56, 56,
1) is used because of the output from the previous Dense(56× 56) layer. It indicates that
after this reshaping, the image will be of size 56× 56 and has one colour channel. After
applying reshape (256, 256), which is the last layer in our model, the model produces

192 D. Das et al.

Fig. 5. Experiment results. (a)–(h) Spliced test images. (i)–(p) Spliced regions localized output.

Fig. 6. Experiment results. (a)–(c) Authentic test images (d)–(f) Detection performance

the predicted binary image and it is of size 256 × 256, which is also the size of the
original ground truth of the spliced images provided in the dataset.

The proposed neural network is an end-to-end deep learning system, as depicted in
Fig. 4. It features multiple convolution and deconvolution layers, followed by upsam-
pling layers to retain image information. To categorise pixels into the foreground (tam-
pered) and background segments, which is simply a binary classification of pixels, we
must train the framework to identify the tampered and non-tampered regions. We use
Sigmoid activation in the last layer and ReLU activation in the rest. We use binary
cross-entropy loss function to determine the loss in the training phase.

4 Experimental Results

The proposed model is constructed and tested using Keras and TensorFlow frameworks
on NVIDIA RTX 3070 8 GB GPU. We employ the Casia v2.0 dataset in our experi-
ment. It consists of 12,614 images including 5,123 tampered images and 7,491 genuine
images. CASIA 2.0 includes images of interiors, nature, scenery, people, plants, arti-
cles, architecture, textures, and animals. This dataset contains images with resolutions
ranging from 800 × 600 to 384 × 256. We adopted batch size of six and the model is
trained for over 200 epochs. The training and test set split is done in the ratio 90:10.

Spliced Region Detection and Localization in Digital Images 193

Table 1. Batch-wise performance evaluation

Method F-Measure Precision Recall Accuracy (%)

Batch 1 0.8577 0.8649 0.8713 96.21%

Batch 2 0.8402 0.8573 0.8782 96.38%

Batch 3 0.8547 0.8625 0.8795 97.21%

Batch 4 0.8589 0.8613 0.8792 97.57%

Batch 5 0.8610 0.8728 0.8802 97.82%

Batch 6 0.8762 0.8835 0.8986 98.05%

4.1 Performance Evaluation

We compute the model’s performance accuracy primarily based on the percentage of
correctly identified boundary pixels. We reshaped all images to the dimensions of 256×
256 pixels. Tampered images and their corresponding masks are fed as a pair to train
the model. We perform the pre-processing mentioned in Sect. 3 to predict the masks.
Finally, we use the masks to mark the boundaries of the forged regions (using the red
color channel). The model achieves over 98% detection accuracy and a validation loss
of 1.1134 × 10−4. Visual results obtained by the proposed model for eight random
experiments with spliced test images are presented in Fig. 5, and, for authentic test
images detection performance is presented in Fig. 6. The training and test accuracies
and validation loss of the model over the first 200 epochs are presented in Fig. 7. Also,
we present the performance of the proposed model for six subsequent training batches
in Table 1.

4.2 Comparative Analysis

As stated above, the model’s performance is evaluated based on the fraction of cor-
rectly identified boundary pixels. For example, True Positive case represents the frac-
tion of spliced boundary pixels, correctly identified as spliced; whereas False Positive
represents authentic boundary pixels falsely detected to be spliced. In order to make a
quantitative evaluation of the experimental results of this experiment, we select preci-
sion, recall, F-measure, and accuracy as the evaluation index.

Precision =
True Positives (TP)

True Positives (TP)+ False Positives (FP)

Recall =
True Positives (TP)

True Positives (TP)+ False Negatives (FN)

F-Measure =
2× Precision× Recall
Precision+ Recall

Accuracy (%) =
TP+ TN

TP+ TN+ FP+ FN
× 100%

We tested the model on the Casia v2 dataset. Several groups of test result images
are chosen at random from the results of the tests. This study’s detection results are

194 D. Das et al.

Fig. 7.Model performance. (a) Test Accuracy vs. Epoch (b) Validation Loss vs. Epoch.

Table 2. Results of comparative analysis

Method F-Measure Precision Recall Accuracy

CFA (2009) [5] 0.2026 0.1439 0.6973 34.88%

NADQ (2019) [2] 0.2847 0.2777 0.4555 72.74%

FCN (2017) [16] 0.5470 0.6654 0.5308 93.69%

U-Net (2015) [14] 0.5978 0.6869 0.6121 94.62%

C2RNet (2020) [20] 0.6758 0.5810 0.8080 –

RRU-Net (2019) [2] 0.8410 0.8480 0.8340 –

DU-DC-EC (2020) [22] 0.6830 – – 97.82%

DCU-Net (2023) [4] 0.8667 0.8772 0.8893 97.93%

Proposed Model 0.8762 0.8835 0.8986 98.05%

shown above. The detection findings show that the proposed model suggested in this
work achieves good results and can perform accurate pixel-level tamper location. Due
to hardware limitations, we trained our models with batch/chunks of data. Each batch
size is 300. Performance results per batch are given in Table 1.

The proposed model is compared with six recent splicing localization models. The
comparison results are shown in Table 2. Among the selected techniques, NADQ [2]
and CFA [5] are approaches based on feature extraction, FCN [16] and C2RNet [20]
are based on semantic segmentation, and RRU-Net [2], DU-DC-EC-Net [22] and DCU-
Net [4] are models based on U-Net model branching. It is evident from Table 2 that the
proposed model outperforms the state-of-the-art in terms of performance efficiency,
closely followed by DCU-Net and DU-DC-EC-Net architectures.

– NADQ, 2019 [2]: based on the derivation of a unified statistical model that char-
acterizes DCT coefficients when aligned or misaligned double JPEG compression
is applied; the statistical model is used to generate a likelihood map that shows the
probability of each 8× 8 image block being double compressed.

Spliced Region Detection and Localization in Digital Images 195

– CFA [5]: the techniques are based on computing a single feature and a simple
threshold-based classifier. By interpreting the locally nonexistent CFA artefacts as
tampering evidence, the proposed scheme takes the forgery graph of the credible
probability of each small pixel block as the output.

– FCN [16]: this method is used to classify images at the pixel level, thus solving the
problem of image segmentation at the semantic level. FCN is applied for detecting
image splicing, which can automatically learn image tampering features.

– U-Net [14]: as one of the models of full convolution network structure, it can
also be used for pixel-level classification. Compared with FCN, the most important
improvement is to add a skip connection structure to reduce the loss of information.

5 Conclusions and Future Work

In this paper, we propose a CNN model for image splicing detection and localization.
The model performs tampered region localization at the pixel level. To achieve more
precise positioning, we propose three pre-processing stages. In the first stage, we see
the color transitions, the second stage captures the overall surface texture of the image,
and in the third stage, we try to find zones with the most prominent color. For the final
detection and localisation, The three resultants are combined and fed to the proposed
CNN for forgery localization. The proposed method has been tested on the Casia 2.0
dataset and has been compared with other existing methods.

Future research will include the development of generalized forgery localization
schemes encompassing diverse forgery types such as region duplication attacks.

References

1. Asghar, K., Habib, Z., Hussain, M.: Copy-move and splicing image forgery detection and
localization techniques: a review. Aust. J. Forensic Sci. 49(3), 281–307 (2017)

2. Bi, X., Wei, Y., Xiao, B., Li, W.: RRU-Net: the ringed residual U-Net for image splicing
forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (2019)

3. Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular
copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7(6), 1841–1854
(2012)

4. Ding, H., Chen, L., Tao, Q., Fu, Z., Dong, L., Cui, X.: DCU-Net: a dual-channel U-shaped
network for image splicing forgery detection. Neural Comput. Appl. 35(7), 5015–5031
(2023). https://doi.org/10.1007/s00521-021-06329-4

5. Dirik, A.E., Memon, N.: Image tamper detection based on demosaicing artifacts. In: 2009
16th IEEE International Conference on Image Processing (ICIP), pp. 1497–1500. IEEE
(2009)

6. Habibi, M., Hassanpour, H.: Splicing image forgery detection and localization based on color
edge inconsistency using statistical dispersion measures. Int. J. Eng. 34(2), 443–451 (2021)

7. Kniaz, V.V., Knyaz, V., Remondino, F.: The point where reality meets fantasy: mixed adver-
sarial generators for image splice detection. In: Advances in Neural Information Processing
Systems, vol. 32 (2019)

https://doi.org/10.1007/s00521-021-06329-4

196 D. Das et al.

8. Kwon, M.J., Yu, I.J., Nam, S.H., Lee, H.K.: CAT-Net: compression artifact tracing network
for detection and localization of image splicing. In: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 375–384 (2021)

9. Liu, X., Liu, Y., Chen, J., Liu, X.: PSCC-Net: progressive spatio-channel correlation network
for image manipulation detection and localization. IEEE Trans. Circ. Syst. Video Technol.
32(11), 7505–7517 (2022)

10. Luo, W., Huang, J., Qiu, G.: JPEG error analysis and its applications to digital image foren-
sics. IEEE Trans. Inf. Forensics Secur. 5(3), 480–491 (2010)

11. Matern, F., Riess, C., Stamminger, M.: Gradient-based illumination description for image
forgery detection. IEEE Trans. Inf. Forensics Secur. 15, 1303–1317 (2019)

12. Mayer, O., Stamm, M.C.: Forensic similarity for digital images. IEEE Trans. Inf. Forensics
Secur. 15, 1331–1346 (2019)

13. Meena, K.B., Tyagi, V.: Image forgery detection: survey and future directions. In: Shukla,
R.K., Agrawal, J., Sharma, S., Singh Tomer, G. (eds.) Data, Engineering and Applications,
pp. 163–194. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6351-1 14

14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image
segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015.
LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24574-4 28

15. Rony, J., Belharbi, S., Dolz, J., Ayed, I.B., McCaffrey, L., Granger, E.: Deep weakly-
supervised learning methods for classification and localization in histology images: a survey.
arXiv preprint arXiv:1909.03354 (2019)

16. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

17. Verdoliva, L.: Media forensics and deepfakes: an overview. IEEE J. Sel. Top. Sig. Process.
14(5), 910–932 (2020)

18. Wu, Y., Abd-Almageed, W., Natarajan, P.: Image copy-move forgery detection via an end-
to-end deep neural network. In: 2018 IEEEWinter Conference on Applications of Computer
Vision (WACV), pp. 1907–1915. IEEE (2018)

19. Wu, Y., AbdAlmageed, W., Natarajan, P.: ManTra-Net: manipulation tracing network for
detection and localization of image forgeries with anomalous features. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9543–9552
(2019)

20. Xiao, B., Wei, Y., Bi, X., Li, W., Ma, J.: Image splicing forgery detection combining coarse to
refined convolutional neural network and adaptive clustering. Inf. Sci. 511, 172–191 (2020)

21. Zhang, M., Zhou, Y., Zhao, J., Man, Y., Liu, B., Yao, R.: A survey of semi-and weakly super-
vised semantic segmentation of images. Artif. Intell. Rev. 53, 4259–4288 (2020). https://doi.
org/10.1007/s10462-019-09792-7

22. Zhang, R., Ni, J.: A dense U-Net with cross-layer intersection for detection and localiza-
tion of image forgery. In: ICASSP 2020–2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2982–2986. IEEE (2020)

https://doi.org/10.1007/978-981-13-6351-1_14
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1909.03354
https://doi.org/10.1007/s10462-019-09792-7
https://doi.org/10.1007/s10462-019-09792-7

UN-SPLIT: Attacking Split
Manufacturing Using Link Prediction in

Graph Neural Networks

Lilas Alrahis1(B), Likhitha Mankali2, Satwik Patnaik3, Abhrajit Sengupta2,
Johann Knechtel1, and Ozgur Sinanoglu1

1 New York University Abu Dhabi, Abu Dhabi, UAE
{lma387,johann,ozgursin}@nyu.edu

2 New York University, New York, USA
{likhitha.mankali,as9397}@nyu.edu
3 University of Delaware, Newark, USA

satwik@udel.edu

Abstract. We explore a new angle for attacking split manufacturing
aside from relying only on physical design hints. By learning on the
structure, composition, and the front-end-of-line (FEOL) interconnec-
tivity of gates in a given design (or design library/dataset), along with
key hints from physical design, we obtain a model that can predict the
missing back-end-of-line (BEOL) connections. We formulate this as a
link-prediction problem and solve it using a graph neural network (GNN).
Furthermore, we utilize post-processing techniques that analyze the GNN
predictions and apply common domain knowledge to further enhance the
accuracy of our attack methodology.

Keywords: Split manufacturing · Graph neural networks · Link
prediction · Machine learning · Hardware security

1 Introduction

The globalized integrated circuit supply chain enables the industry to meet semi-
conductor demands efficiently. Fabless design companies focus on intellectual
property (IP) development and outsource manufacturing, assembly, packaging,
and testing. While this integration model offers cost savings and faster deploy-
ment, it also introduces security concerns like IP piracy. Researchers have inves-
tigated design-for-trust approaches to restore trust and counter hardware-based
security attacks [17].

Split manufacturing was proposed by the Intelligence Advanced Research
Projects Activity (IARPA) agency to reduce manufacturing costs and, more
importantly, enhance security and IP protection [14]. A high-level illustration
of split manufacturing is depicted in Fig. 1. The process is to literally split the

The work of Satwik Patnaik was done when he was at Texas A&M University, College
Station, USA.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. Regazzoni et al. (Eds.): SPACE 2023, LNCS 14412, pp. 197–213, 2024.
https://doi.org/10.1007/978-3-031-51583-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51583-5_12&domain=pdf
https://doi.org/10.1007/978-3-031-51583-5_12

198 L. Alrahis et al.

Fig. 1. Conceptual illustration of the split manufacturing process.

design into front-end-of-line (FEOL) and back-end-of-line (BEOL) layers and
then have them manufactured at different foundries. The FEOL is fabricated at
an untrusted high-end foundry to access advanced technology nodes, whereas
the BEOL is fabricated later on at a trusted low-end foundry, which integrates
these layers on top of the FEOL. Split manufacturing is promising to mitigate
illegal overproduction, IP piracy, and targeted hardware Trojan insertion, all
conducted by the untrusted FEOL foundry. This is because the FEOL foundry
only has access to a “sea of gates” that is not fully connected; the FEOL foundry
does not have access to the full design.

However, various attacks on split manufacturing have succeeded in exploiting
the deterministic nature of electronic design automation (EDA) tools to decipher
the BEOL connections [12,13,16,18,19]. Because EDA tools optimize for power,
performance, and area (PPA), the solutions found by such tools typically have
some specific and common features. For example, placement engines tend to place
all connected gates close to one another to reduce wirelength. Such a feature is
referred to as the “proximity hint.” By exploiting this and other physical design
hints, adversaries may be able to infer a considerable part of the missing BEOL
connections.

In our work, we explore a new angle for attacking split manufacturing
by utilizing graph representation learning. Through learning on some design
dataset about the composition of gates and their interconnects, i.e., the design’s
structure, along with the functionality of gates, we can infer how gates are likely
to be connected in a target design. Next we discuss the contributions of our
UN-SPLIT platform.

1. Developing a platform that converts circuits into graphs (Sect. 3.2).
The platform incorporates several features that are automatically extracted
from the circuits (layout files), such as the location and type of gates and the
FEOL connectivity between different parts of the circuit.

2. Formulating an attack on split manufacturing as a link prediction
task (Sect. 3.3), where the goal is to predict the presence or absence of edges
between different parts of the circuit that are split between the foundries.

UN-SPLIT: Attacking Split Manufacturing Using Link Prediction in GNNs 199

Fig. 2. High-level idea of our proposed UN-SPLIT platform: inferring missing BEOL
connection by solving a link prediction problem.

An example of this formalism is illustrated in Fig. 2, where the dashed links
represent missing connections, and the solid links indicate readily available
connections in the FEOL. The objective is to estimate the likelihood for
each dashed link, representing possible BEOL connections, and identify the
ones with the highest likelihood to be incorporated the into yet-incomplete
netlist hold by the FEOL-based adversary. We solve the link prediction prob-
lem using a graph neural network (GNN) that captures and understands the
structure and behavior of circuits.

3. Proposing a post-processing stage that rectifies misclassifications
made by the GNN (Sect. 3.4). This stage takes advantage of additional
information about the circuit, such as the feasibility or infeasibility of certain
connections, to improve the overall accuracy.

Key Results. In our extensive experiments on various ITC-99 combinational
benchmarks for split layers M6 and M8, UN-SPLIT achieves a correct connection
rate (CCR) of up to 100%, meaning it correctly recovers the entire netlist.

2 Background and Related Work

2.1 Threat Model

Residing in the offshore FEOL foundry, an adversary can obtain the gate-level
netlist by reverse-engineering the GDSII layout file of a design. However, in the
context of split manufacturing, this netlist is incomplete, as the BEOL layers
are implemented only later on in another, trusted foundry.

Given only the FEOL, the goal of the attacker is to infer the BEOL links to
retrieve the original design. The attacker has no access to an oracle as the chip
is yet to be manufactured.

2.2 Terminology and Metrics

Hamming Distance, HD: In the context of split manufacturing, this well-known
metric measures the bit-level difference for output patterns of the design as
recovered by an attacker versus the original design. A designer aims to enforce

200 L. Alrahis et al.

an HD of 50% (maximum corruption), while an attacker targets an HD of 0%
(correct functionality).

Correct Connection Rate, CCR: This metric states the number of correctly
determined BEOL links divided by the total number of missing BEOL connec-
tions.

Split Layer: The split layer refers to the top metal layer in the FEOL which
is still available to the attacker.

Open Pin: An open pin is a start point in the split layer for a miss-
ing/undisclosed connection up into the BEOL.

Target Pin, Candidate Pins: A target pin is an open pin that is currently
under consideration, by an attacker, for reconnecting to its correct counterpart
among all candidate pins. A candidate pin is a feasible option, meaning that,
e.g., pins that would connect one gate’s output pin to another gate’s output pin
are excluded from candidate pins.

Split Net: A split net is a net that is split across FEOL and BEOL. Split
nets are differentiated by their type: source or sink. A source split net connects,
only within the FEOL, an output pin of one single gate or one primary input
(PI) to zero or more input pin(s) of other gate(s). A sink split net connects, also
only within the FEOL, to some input pin(s) of some gate(s) and/or to primary
output (PO).

2.3 Attacks and Defenses on Split Manufacturing

We provide a brief overview of attacks and defenses related to proximity as back-
ground information. The literature includes other attacks and defenses beyond
the scope of this discussion.

The seminal proximity attack [16] is based on the fact that EDA tools par-
tition cells into modules such that total wire length between the partitions is
minimized. The attack exploits such deterministic implementation, by connect-
ing each target pin to its nearest candidate pin.

The network flow attack (NFA) [18] shares a similar concept with the proxim-
ity attack, as it selects BEOL connections that minimize wire length. However,
unlike the proximity attack, which applies only to hierarchical designs, the NFA
can handle flattened netlists. The NFA constructs a network flow model and
utilizes a minimum-cost flow algorithm to determine the best-cost approach to
connect the pins, with cost being the total BEOL wire length.

Magaña et al. [12,13] propose various proximity measures. Their goal is to
reduce the search space, by defining a close neighborhood and limiting the num-
ber of candidates links to consider for each target pin. Thereafter, an attacker can
leverage other hints to elect one candidate, such as avoidance of combinational
loops. Magaña et al. [12,13] demonstrate that routing-based proximity informa-
tion is more effective than placement-based proximity information. However, the
authors also conclude that proximity alone is not sufficient in narrowing down
the list of candidates.

Magaña et al. [12,13] also propose a defense method: insert routing blockages
at the split layer and below so that more nets have to be routed above the split

UN-SPLIT: Attacking Split Manufacturing Using Link Prediction in GNNs 201

layer, thereby significantly increasing the complexity for proximity attacks. In
our work, we employ a similar defense technique to thoroughly test the strength
of our proposed attack.

Please note that a direct comparison of ours with prior art is not practical.
Since the problem of attacking split manufacturing hinges on intricacies of phys-
ical layouts, such comparison would require the very same layouts as used in
prior art; however, prior art typically did not release layouts.

2.4 Link Prediction

Link prediction algorithms estimate the likelihood of a connection between two
target nodes, taking into account the network structure and node attributes [11].

Consider an undirected graph G = (V,E,X), where V represents the set of
nodes, E denotes the observed edges, and X is the node feature matrix. The adja-
cency matrix A represents the connections in the graph. Let T /∈ E be the set of
missing links. In a link prediction algorithm, scores are assigned to all links in T
based on heuristics, and links with scores above a threshold are predicted to exist.

Traditional link prediction algorithms rely on specific heuristics based on
graph and node properties, such as the number of common neighbors, to calculate
the likelihood of a link existing in a graph. However, these heuristics are some-
times dependent on the type of graph. Instead of fixating on a specific heuristic,
GNNs have been utilized to learn about links in a graph, enabling generalization
to various graph structures and offering a learning-based approach to predict the
likelihood of a link’s existence, as opposed to relying on manual engineering of
these heuristics. In short, GNNs leverage the inherent graph structure and node
features to extract meaningful link features, surpassing the performance of tradi-
tional methods [20].

2.5 Graph Neural Networks

A GNN generates an embedding (i.e., vector representation) for each node in the
graph, arranging similar nodes close together in the embedding space [21].

In general, the embedding of a target node, denoted as v, is updated through
message passing. Thereby, the features of neighboring nodes N (v) are combined
to create an aggregated representation. This aggregated information, along with
the features of the target node, is used to update its embedding.

After L rounds of message passing, each node is aware of its own features,
the features of neighboring nodes, and the graph structure within the L-hop
neighborhood. The message passing phase can be summarized as follows:

a(l)
v = AGG(l)

({
z(l−1)
u : u ∈ N (v)

})
(1)

z(l)
v = COMBINE(l)

(
z(l−1)
v ,a(l)

v

)
(2)

The embedding of node v at the l-th round, represented as z
(l)
v , is obtained

through a two-step process. Firstly, the embeddings of neighboring nodes z(l−1)
u

202 L. Alrahis et al.

are aggregated using the aggregation function AGG(l). Secondly, the previous
embedding z

(l−1)
v of node v and the aggregated information a

(l)
v are combined

using the COMBINE(l) function. Different GNN architectures vary based on the
choices of AGG(·) and COMBINE (·).

2.6 Related Work: GNN-Based Attacks on Logic Locking

In the field of hardware security, GNNs have demonstrated excellent performance
in analyzing circuits due to their natural graph representation [1,2,9]. They have
primarily been used to launch attacks on logic locking [6]. The objective of logic
locking is to protect a design’s IP by introducing new key-controlled elements,
commonly referred to as key-gates, into the design. The design only functions
correctly when the correct key is applied. Attacks on logic locking typically target
either deciphering the locking key or entirely removing the protection logic.

For instance, GNNUnlock [3,5] targets logic locking implementations that
introduce an entire logic block (e.g., a comparator or a Hamming distance
checker) to inject errors into the design when the correct key is not applied.
With the assistance of a GNN, GNNUnlock can classify nodes (gates) in the
gate-level netlist and identify the protection logic, subsequently removing it.
Note that this attack is not applicable to split manufacturing since there is no
additive logic to be removed in that scenario. Another GNN-based attack is
OMLA [8], which focuses on logic locking that inserts XOR/XNOR key-gates
into the design. OMLA can learn the properties of the subcircuits surround-
ing the key-gates and predict the secret key. This attack is also unsuitable for
attacking split manufacturing because split manufacturing cannot be modeled
by XOR/XNOR insertion but rather by MUX-controlled key-gates.

UNTANGLE [4] and MuxLink [7] specifically perform link prediction to
attack MUX-based locking. These attacks transform MUX-based locking into
a link prediction problem and solve it using GNNs.

Although some of these attacks have a similar approach as our work, there are
numerous technical differences. For example, both UNTANGLE and MuxLink
begin with a gate-level netlist or a design in the so-called bench format. In con-
trast, our work starts with the actual design exchange format (DEF) layout file,
converting it into a graph, as we will explain in Sect. 3. We also extract problem-
specific layout information such as pin locations, which were not considered by
these prior attacks. Moreover, the problem we are addressing is considerably
more complex. In the case of logic locking, there were only two link options
per MUX locality, making reliance on GNN predictions sufficient. However, in
our case, we have significantly larger localities, necessitating the proposal of a
post-processing algorithm to aid in design recovery.

3 Proposed UN-SPLIT Attack Platform

The key ideas in terms of GNN processing are to first extract a subgraph around
each target link, which contains information about the surrounding circuitry.

UN-SPLIT: Attacking Split Manufacturing Using Link Prediction in GNNs 203

Second, by performing graph classification, the label of the target link becomes
the label of its corresponding subgraph. In this section, we present the flow of
UN-SPLIT in detail, which is also depicted in Fig. 3.

Fig. 3. Proposed UN-SPLIT overall flow.

3.1 Emulating Split Manufacturing

The DEF layout file and the related standard-cell library exchange format file
(i.e., the technology LEF file) are taken as inputs (Fig. 3 1).

These inputs are processed as follows (Fig. 3 2). First, given a split layer, all
the data describing the BEOL routing above that split layer is ignored, except
when compiling ground truths for training (see further below). Second, all split
nets are listed out, with their type (source or sink; recall Sect. 2.2), their con-
nected cell instance(s), their connected PI(s)/PO(s), if any, and their open pin(s)
including coordinates. Note that the latter are derived from the via locations con-
necting the FEOL to the BEOL. Also note that, only for training and evaluation
purposes, the true BEOL connections are also listed out. The output of this stage
are the annotated FEOL connections (Fig. 3 3).

3.2 Representing FEOL Connections as a Graph

The above obtained information is then used to construct a graph G (Fig. 3 4)
that represents the FEOL of the target circuit as follows.

Node Creation, Basic Features: UN-SPLIT adds nodes to the graph, where
each node represents a cell, a PI, or a PO. Each node is assigned a feature vector,
e.g., including a hot-encoding of the cell’s Boolean functionality. In our work,
the vector’s part describing the latter has a size of 32; this size depends on the
technology library and its gates/Boolean functionalities. The feature vector also
indicates whether it is a PI or PO, e.g., the feature vector associated with node
PI3 in Fig. 3 4 indicates that this node represents a PI. The feature vector will
later be expanded with additional features.

Edge Establishment: Based on the FEOL connectivity (Sect. 3.1), UN-SPLIT
establishes edges between nodes, representing the wires/nets running between
components in the lower metal layers. To enable efficient message passing opera-
tions, edges are added in both directions, creating an undirected graph. However,
we also maintain a directed graph Gd, which is later used for annotation of com-
binational loops.

204 L. Alrahis et al.

Target Links: To determine the links to be considered by the GNN, i.e., all
the possible BEOL connections, UN-SPLIT utilizes the split nets identified by
the parsing stage (Sect. 3.1). UN-SPLIT enumerates all possible connections
from an open pin p1 in a source split net to an open pin p2 in a sink split net.
This list of target links is stored separately from the graph.

In Fig. 3 3 , an example is outlined by a dashed red line. This particular
link shall describe the connection between g5’s output pin B and g3’s input pin
4—this is abstracted into an actual target link that connects g5 to g3. The gate
associated with an open pin pi is referred to as a target gate/node and denoted
as vpi

. g5 and g3 are example target gates/nodes.
Normalized Distances: For each pair of open pins (p1, p2), the Manhattan

Distance is computed as | x1 − x2 | + | y1 − y2 |. Next, the distance values
are normalized with respect to the longest distance observed across all designs
in the dataset. The purpose is to focus on relative distances for pairs of open
pins, as the absolute distances vary significantly across designs. The normalized
distances are then stored along with the corresponding target links, in the list
of links.

3.3 Link Prediction Based on Graph Neural Networks

The graph, list of links, and corresponding normalized distances (Sect. 3.2) are
used for link prediction, with the help of the GNN platform SEAL [20], as follows.

Subgraph Extraction. First, we group target nodes into a set called S. For
instance, if we are interested in predicting the likelihood of a link between nodes
vp1 and vp2 , we initialize S as {(vp1 , vp2)}. Second, given the overall graph G, we
extract an h-hop enclosing subgraph for S, denoted as G(S,h), around that pair
of target nodes. The subgraph G(S,h) is obtained by considering the vertices that
are within a shortest path distance of h from any vertex in S.

In Fig. 3 5 , an example of subgraph extraction with h = 2 is shown. The
target nodes are g5 and g3, respectively, highlighted in red. To construct the
subgraph, all nodes within a 2-hop distance from these two target nodes are
included, while the remaining nodes of G are ignored for this specific target link.
Note that, by considering the pair of target nodes, we are “virtually bridging”
the missing BEOL connection between the underlying source and sink split nets,
albeit only for GNN subgraph processing and to enable link prediction.

Subgraph extraction is performed for each target link under consideration.
As a result, a distinct subgraph is associated with each link, and these subgraphs
are subsequently passed to the GNN (Fig. 3 6) for link prediction.

Node-Level Distance and Other Features. In the extracted subgraph, each
node is assigned a basic feature vector as discussed in Sect. 3.2. Additionally,
node-level distance encoding is performed to emphasize on the structural proper-
ties of the design and to focus on the target link. Our distance encoding technique
involves the following steps:

UN-SPLIT: Attacking Split Manufacturing Using Link Prediction in GNNs 205

Computing Shortest Paths: UN-SPLIT calculates the shortest-path distances
from a) the target node vp1 of the source split net (that node is also called target
output node) to all other nodes in the subgraph and b) from the target node vp2

of the sink split net (that node also called target input node) to all other nodes
in the subgraph. In cases where there is no direct path between a pair of nodes,
i.e., the two nodes are separated through source and sink split nets, respectively,
a distance pseudo-value of zero is assigned.

Distance Encoding: UN-SPLIT assigns a distance vector to each node based
on its shortest distance to the target nodes. All non-zero distances are shifted
by +1 and then limited to a practical maximal value, e.g., 10 in this work. This
shifting is done to obtain unique vectors for the output/input target nodes, i.e.,
(1, 0)/(0, 1), respectively, which allows the GNN to readily distinguish the two
ends of the target link from all other nodes in the subgraph.

An example is given in Fig. 3 5 . The target input node g3 is assigned a
unique vector (0, 1), indicating its distinction from other nodes. Similarly, the
target output node g5 is represented by the vector (1, 0). Furthermore, node g4
is labeled with the vector (0, 2), indicating that it is a) not directly connected
to the target output node g5 and b) located 1-hop away from the target input
node g3, considering the value is shifted by +1.

Finally, the distance vectors are converted into one-hot encoded vectors of size
equal to the maximum distance value plus one (for zero-value pseudo distances),
i.e., 11 in this work.

Feature Vector Extension: All basic feature vectors are extended as follows.
First, they are concatenated with the above one-hot-encoded vectors for node-
level distances within the subgraph. Such augmented feature vector enables the
GNN to better capture the spatial relationship between all subgraph nodes and
the target nodes. Furthermore, another feature is concatenated that indicates
whether adding the target link to the netlist would result in any combinational
loop(s); this is determined using the directed graph version Gd.

Finally, the extracted normalized Manhattan distance from the physical
design for each link (as explained in Sect. 3.2) is concatenated to the feature
vector of the nodes representing that link in the subgraph.

GNN Model and Classification. UN-SPLIT provides flexibility in choosing
the type/model of GNN to use for the task at hand. Without loss of generality,
we utilize the deep graph convolutional neural network (DGCNN) [21], which
has shown superior performance for graph classification tasks.

Note that the graph convolutional layer in DGCNN operates as follows: given
an input embedding Zl ∈ R

n×kl from the (l − 1)-th layer, the layer applies a
linear feature transformation ZlW l, where W l ∈ R

kl×kl+1 is a trainable weight
matrix, to map the kl feature channels to kl+1 channels. This is followed by
aggregation of node information to neighboring vertices, including the node
itself, and normalization using the degree matrix D̃ to ensure consistent fea-
ture scaling. Multiple convolutional layers can be stacked to capture multi-scale
sub-structure features. The outputs from each layer are concatenated to form a

206 L. Alrahis et al.

Table 1. Comparison of average locality sizes for output nodes between proximity
attack and UN-SPLIT for M6 split layer

Benchmark Proximity Attack UN-SPLIT

b14 C 41 18

b15 C 316 38

b20 C 200 20

b21 C 316 38

b22 C 397 10

Average 254 22

single representation Z1:L of the graph. A sorting and pooling layer then sorts
the tensor row-wise, based on the last layer’s output ZL, and reshapes it to
select a fixed number of representative nodes. Finally, the resulting embedding
is passed through 1-D convolutional layers with filter and step size

∑L
l=1 kl for

graph classification.

3.4 Post-processing

The key contribution of UN-SPLIT is its GNN-based approach, which greatly
reduces the number of links to be considered. In the post-processing stage, indi-
vidual output nodes are evaluated, and the best links from the possible con-
nections are selected to determine the final set of connections and recover the
netlist. The selection process takes into account the likelihood scores, obtained
via the GNN link prediction, and normalized distances of all potential links.
Algorithm 1 describes the pseudo-code of the post-processing stage.

By setting a threshold (Lth) for likelihood scores, only links with scores
greater than Lth are considered potential correct connections. This threshold-
based approach enables a substantial decrease in the number of possible links
for each output node, which we refer to as the locality size.

Compared to a proximity-based attack that relies solely on normalized dis-
tances or proximity as hints, the incorporation of GNN predictions leads to a
remarkable reduction in the locality size, approximately 12 times smaller, as
illustrated in Table 1 for M6 split layer. This reduction in locality size is a sig-
nificant advantage, highlighting the effectiveness of GNNs in simplifying the
post-processing stage.

The remaining links are sorted in ascending order based on their distances,
and the link with the least distance is chosen as the correct connection for
each output node. Additionally, the validity of the chosen connections is checked
to ensure that they result in a valid netlist with no combinational loops. If a
combinational loop is found, the links involved in the loop are removed, and
the post-processing is repeated for the corresponding output nodes. Finally, the
gate-level-netlist is recovered by connecting the missing connections (split nets)
as returned by the post-processing stage.

UN-SPLIT: Attacking Split Manufacturing Using Link Prediction in GNNs 207

Algorithm 1: Post-processing algorithm
Input: Likelihood L; Normalized distance D; Likelihood threshold Lth; Possible

links T ; Split Design Ysplit;
Output: Final recovered design Y

1 for i = 1 to len(T) do
2 if L[i] < Lth then
3 T.pop(i)
4 L.pop(i)
5 D.pop(i)

6 Dsort, Tsort ←Sort Ascending(D,T)
7 O ← {}
8 for u ∈ Tsort do
9 node ←Find Output Node(u)

10 O.append(node)

11 O ←set(O)
12 Tpred ← {}
13 for v ∈ O do
14 links ←Get Links(Tsort, v)
15 link pred ← links[0]
16 Tpred.append(link pred)

17 G ←Create Graph(Ysplit)
18 Done ← False
19 while Done == False do
20 for u ∈ Tpred do
21 G.add edge(u)

22 loop ←Find Cycle(G)
23 if len(loop) == 0 then
24 Done ← True

25 else
26 for e ∈ loop do
27 Tpred.remove(e)
28 Tsort.remove(e)
29 node ←Find Output Node(e)
30 links ←Get Links(Tsort, node)
31 link pred ← links[0]
32 Tpred.append(link pred)

33 Y ←Get Recovered Design(Ysplit, Tpred)
34 return Y

3.5 Dataset Generation

To train and evaluate UN-SPLIT, without loss of generality, we use the ITC-99
combinational benchmarks suite. For each benchmark to attack/test, we train
an individual model. For each model, all other benchmarks are used for training

208 L. Alrahis et al.

and validation. More specifically, 10 DEF files are generated per benchmark,
with all 10 generated layouts considered for benchmarks designated for training,
whereas 1 out of the 10 generated layouts is randomly selected for the benchmark
under test (and the remaining 9 layouts for that benchmark are ignored for this
model). Training is configured for the same split layer as used for the attack.

Positive and negative subgraph samples, i.e., correct and incorrect BEOL
connections, are extracted from the above layout dataset to form the actual
training dataset for the GNN. To balance the training dataset, an equal number
of negative samples are selected, randomly, as there are positive samples. For
validation, 10% of the positive and negative links are set aside to assess the
model’s performance on unseen data.

4 Experimental Evaluation

4.1 Setup

We summarize the experimental setup and tool flow for UN-SPLIT in Fig. 4.
Next, more details are provided.

Implementation: The emulation of split manufacturing is implemented in
C++ code and utilizes the Cadence LEF/DEF Open Source Distribution, Prod-
uct Version 5.8 for parsing of DEF and LEF files. The scripts for circuit-to-graph
conversion are implemented in Perl. We utilize the PyTorch implementation
of SEAL/DGCNN [20] for link prediction. Post-processing is implemented in
Python.

Runtime Environment: UN-SPLIT runs on a single machine utilizing 10 cores
(2x Intel(R) Xeon(R) CPU E5-2680 v4@2.4GHz).

IC Design: Gate-level netlists are obtained using the Cadence RTL compiler
and the NanGate Open Cell Library. Then, layout generation is performed using
Cadence Innovus.

Benchmarks and Split Layers: We consider the following combinational ITC-
99 benchmarks: b14 C, b15 C, b20 C, b21 C, b22 C, and b17 C. We consider the
split layers M8 and M6. Also recall the process of dataset generation in Sect. 3.5.

GNN Configuration: We train the DGCNN on the extracted enclosing sub-
graphs for 500 epochs with an initial learning rate of 0.0001 and save the model
with the best performance on the 10% validation set. The GNN consists of 4
graph convolution layers with 32, 32, 32, and 1 output channels, respectively.
For the SortPooling layer of DGCNN, we set k such that 100% of graphs hold
≤ k nodes. We fix k this way so that none of the nodes get dropped from the
final representation of the corresponding subgraphs. Next, we employ two 1-D
convolutional layers with 16 and 32 output channels, respectively, followed by a
single fully-connected layer of 128 neurons. A MaxPooling layer is stacked after
the first 1-D convolutional layer with filter size of 2 and stride of 2; the second
1-D convolutional layer has filter size of 5 a stride of 1. A Dropout layer with
a dropout rate of 0.5 is employed after the fully-connected layer, followed by a
Softmax layer of two output units for classification. Similarly to [21], we use the

UN-SPLIT: Attacking Split Manufacturing Using Link Prediction in GNNs 209

Fig. 4. Experimental setup and tool flow. The UN-SPLIT oval encompasses graph
creation, subgraph extraction, node labeling, and the GNN.

hyperbolic tangent (tanh) activation function in the graph convolution layers
and the rectified linear unit (ReLU) function in the rest of the layers. We use
stochastic gradient descent with the Adam updating rule [10].

Protected Designs: Prior art like [12,13] proposed placement and/or routing
perturbations for defending against split manufacturing attacks. In this work, we
follow similar strategies. More specifically, we employ random insertion of routing
blockages into metal layers below the split layer, such that timings overheads do
not exceed 5% and such that layouts remain free of DRC violations after re-
routing. More details are provided in [15].

4.2 Metrics

We report the number of cut nets P , which represent the total of positive BEOL
connections. We further list the GNN accuracy for correctly predicting positive
BEOL connections (true positive rate, TPR) and negative BEOL connections
(true negative rate, TNR). We additionally report the total accuracy calculated
as follows:

Total Accuracy =
TPR × P + TNR × N

P + N

where N is the number of negative samples. We further report the threshold and
corresponding locality size.

The best-case CCR assesses the presence of correct BEOL connections within
the locality extracted for each target link, following the GNN-based link predic-
tion and likelihood thresholding steps. That is, if the correct connection is within
the extracted locality, the corresponding best-case CCR is 100%; if not, it is 0%.
The final best-case CCR is averaged across all target links. The post-processing
CCR assess the netlist after actual post-processing as described in Sect. 3.4.
Finally, we report the HD for the recovered designs.

4.3 Experimental Results

Regular Designs. Table 2 shows the results for UN-SPLIT on regular designs,
i.e., without any dedicated protection.

210 L. Alrahis et al.

Impact of Split Layer: Going from split layer M8 to M6, as expected, we note
an considerable increase in number of cut nets, indicating a higher complexity
for link prediction. Nevertheless, UN-SPLIT performs well even on split layer
M6. Similarly, the average locality size increases for most benchmarks when
going from M8 to M6 as split layer—this implies that larger sets of possible
connections have to be post-processed for each target link. At the same time,
much more often than not, the best-case CCR increases. This suggests that the
search space is managed effectively.

Impact of Benchmark Size and Structure: For larger benchmarks, naturally,
there is an increase in complexity for link prediction. For example, comparing the
smaller b14 C benchmark (around 3,461 gates) to the larger b20 C benchmark
(around 7,741 gates), the number of cut nets for M8 split layer increases from
13 to 61. Additionally, the average locality size provided by UN-SPLIT increases
from 7 for b14 C to 12 for b20 C, reflecting the larger number of possible connec-
tions to consider for each target link. UN-SPLIT still performs well. For instance,
the best-case CCR for b20 C is 96.72% whereas for b14 C it is 84.62%. However,
there are also outliers, namely for b22 C and b17 C at split layer M6. Whereas
most of the considered benchmarks include repetitive circuitry, b17 C has a dif-
ferent design underlying, where the model may struggle to generalize, given the
dataset is focused on these other, more repetitive structures.

Overall, these observations indicate that UN-SPLIT generally remains effec-
tive when handling larger benchmarks and can well manage the complexity of the
underlying link prediction problem. For further scalability, one might consider
larger and more diverse datasets for training.

Post-processing: UN-SPLIT achieves a final CCR up to 100% by perform-
ing post-processing as shown in Table 2. We observe an average post-processing
CCR of 70.42% and 33.88% for the benchmarks split at the M8 and M6 layers,
respectively. This result showcases that post-processing can almost achieve the
best-case CCR for some benchmarks.

HD Analysis: UN-SPLIT recovers a valid netlist by applying post-processing.
Thus, we can calculate HD for the recovered netlists to quantify the difference in
functionality between the original and recovered designs. UN-SPLIT obtains an
average HD of 1.38% and 6.83% for designs split at M8 and M6 layers, respec-
tively, as shown in Table 2. These results indicate that the functionality of the
recovered design is close to the original for most of the designs. For instance,
for b14 C design split at M8 layer, UN-SPLIT could recover the complete func-
tionality of the design, thus obtaining HD of 0. Furthermore, we observe that
the HD obtained by UN-SPLIT is better than randomly connecting the missing
connections in the split design. For instance, for designs split at the M8 layer, we
observe that the HD obtained by 6.4× lesser than the HD obtained by randomly
connecting the missing connections.

UN-SPLIT: Attacking Split Manufacturing Using Link Prediction in GNNs 211

Table 2. UN-SPLIT results for attacking regular ITC-99 benchmarks split at layers
M6 and M8

Benchmark Split # Cut TPR TNR Total Accuracy Threshold Avg. Locality Best-Case Post-Processing HD

Layer Nets (%) (%) (%) Size CCR (%) CCR (%) (%)

b14 C M8 13 84.62 50.35 53.21 0.50 7 100.00 100.00 0

b15 C 77 100.00 75.35 75.89 0.50 12 100.00 68.83 0.49

b20 C 61 96.72 71.07 71.71 0.50 12 96.72 70.49 0.99

b21 C 56 92.86 69.03 69.68 0.50 12 94.64 92.86 0.01

b22 C 104 82.69 83.99 83.97 0.50 11 82.69 70.19 1.17

b17 C 3,756 29.26 99.38 98.96 0.01 3 41.69 20.10 5.67

b14 C M6 48 100.00 55.80 56.91 0.50 18 100.00 85.42 1.16

b15 C 1,361 90.96 66.72 6.93 0.50 38 91.40 15.79 6.43

b20 C 585 97.78 75.93 76.20 0.50 20 98.12 35.72 6.30

b21 C 850 93.76 70.68 70.87 0.50 38 93.88 33.76 10.28

b22 C 875 30.63 96.59 96.35 0.50 10 31.31 21.83 11.15

b17 C 12,879 44.98 98.25 98.13 0.01 8 44.98 10.76 5.67

Table 3. UN-SPLIT results for attacking protected ITC-99 benchmarks split at layers
M6 and M8

Benchmark Split # Cut TPR TNR Total Accuracy Threshold Avg. Locality Best-Case Post-Processing HD

Layer Nets (%) (%) (%) Size CCR (%) CCR (%) (%)

b14 C M8 1,998 67.01 87.20 86.51 0.10 4 63.51 39.09 5.59

b15 C 3,828 88.91 89.04 89.04 0.10 14 81.77 23.14 10.31

b20 C 3,907 74.37 78.56 78.52 0.10 18 72.33 17.35 14.67

b21 C 3,702 90.73 84.51 84.57 0.10 15 85.98 48.73 1.82

b22 C 4,294 93.73 83.68 83.75 0.10 21 91.66 35.72 0.87

b17 C 5,329 39.55 97.80 97.64 0.10 5 30.70 16.94 12.56

b14 C M6 3,381 64.35 81.21 81.04 0.10 16 55.13 19.67 19.83

b15 C 6,576 81.75 82.82 82.82 0.10 34 78.04 15.36 24.31

b20 C 7,885 82.87 81.35 81.36 0.10 47 79.40 17.98 8.80

b21 C 6,112 89.25 79.67 79.70 0.10 57 85.59 16.67 9.88

b22 C 10,698 37.58 91.11 90.99 0.10 30 29.36 1.86 11.85

b17 C 18,385 47.39 98.04 97.98 0.10 12 38.19 13.61 10.36

Protected Designs. To further evaluate the robustness of UN-SPLIT, we
apply the models trained on regular/unprotected layouts1 to also predict links
in designs protected using random routing obfuscation (Sect. 4.1).

Routing Perturbations: Comparing the results presented in Table 3 to those
for regular designs (Table 2), we observe a degradation in performance, as
expected. However, UN-SPLIT can remain effective even on these protected
designs. For example, for the b15 C benchmark and split layer M8, the number
of cut nets significantly increases from 77 to 3, 828, i.e., around 50 times. Despite
this massively larger search space, the best-case CCR only drops to 81.77%.

Post-Processing: On average, UN-SPLIT can obtain a post-processing CCR
of 30.16% and 14.19% for split layers M8 and M6, respectively. This result indi-
cates that the protected designs still leak some structural hints that can be
exploited by the GNN. However, it is also more challenging for UN-SPLIT to
recover protected designs when compared to regular split designs. As indicated
above, this is mainly because of the considerable increase in cut nets induced by
routing perturbations.

1 UN-SPLIT could also be separately trained on protected designs, potentially further
enhancing its performance. We will consider this for future work.

212 L. Alrahis et al.

HD Analysis: We observe an average HD of 7.64% and 14.17% for the pro-
tected designs split at M8 and M6 layers, as shown in Table 3.

5 Limitations

Attacking split manufacturing is a complex problem, especially when lower metal
layers are considered for splitting. The complexity arises from the larger number
of connections to be considered and the limited information available to the
attacker for inferring these connections. Although our GNN-based approach aims
to reduce this complexity by prioritizing links with high likelihood scores from
the GNN, it still must consider every possible link in order to make predictions.

In terms of computations, the UN-SPLIT approach for subgraph extraction
can be parallelized, allowing us to make predictions on multiple links simulta-
neously. However, besides computational complexity, as the split layer descends
lower, the GNN has access to less information — all links start to appear sim-
ilar, i.e., show similar likelihood scores. It is important to note that, for lower
split layers, layout and placement information can become more dominant over
the functionality hints considered by the GNN model. Since the model needs to
observe some connections and learn about their functionality, UN-SPLIT seems
better suited for higher metal layers.

6 Conclusions

In our UN-SPLIT work, we present the first exploration of using GNNs for
attacking split manufacturing. The motivation behind using a GNN was to
explore and learn a new type of attack hint, specifically gate composition, and
integrate it for the first time in an attack against split manufacturing.

Please note that a direct comparison with prior art is not practical. Since
the problem of attacking split manufacturing hinges on intricacies of physical
layouts, such comparison would require the very same layouts as used in prior
art; however, prior art typically did not release layouts.

References

1. Alrahis, L., Knechtel, J., Klemme, F., Amrouch, H., Sinanoglu, O.: GNN4REL:
graph neural networks for predicting circuit reliability degradation. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 41(11), 3826–3837 (2022). https://doi.
org/10.1109/TCAD.2022.3197521

2. Alrahis, L., Knechtel, J., Sinanoglu, O.: Graph neural networks: a powerful and
versatile tool for advancing design, reliability, and security of ICs. In: Asia and
South Pacific Design Automation Conference (ASP-DAC), pp. 83–90 (2023)

3. Alrahis, L., Patnaik, S., Hanif, M.A., Saleh, H., Shafique, M., Sinanoglu, O.:
GNNUnlock+: a systematic methodology for designing graph neural networks-
based oracle-less unlocking schemes for provably secure logic locking. IEEE Trans.
Emerg. Top. Comput. 10(3), 1575–1592 (2022). https://doi.org/10.1109/TETC.
2021.3108487

https://doi.org/10.1109/TCAD.2022.3197521
https://doi.org/10.1109/TCAD.2022.3197521
https://doi.org/10.1109/TETC.2021.3108487
https://doi.org/10.1109/TETC.2021.3108487

UN-SPLIT: Attacking Split Manufacturing Using Link Prediction in GNNs 213

4. Alrahis, L., Patnaik, S., Hanif, M.A., Shafique, M., Sinanoglu, O.: UNTANGLE:
Unlocking routing and logic obfuscation using graph neural networks-based link
prediction. In: International Conference On Computer Aided Design (ICCAD),
pp. 1–9 (2021). https://doi.org/10.1109/ICCAD51958.2021.9643476

5. Alrahis, L., et al.: GNNUnlock: graph neural networks-based oracle-less unlocking
scheme for provably secure logic locking. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 780–785 (2021)

6. Alrahis, L., Patnaik, S., Shafique, M., Sinanoglu, O.: Embracing graph neural net-
works for hardware security. In: International Conference On Computer Aided
Design (ICCAD), pp. 1–9 (2022)

7. Alrahis, L., Patnaik, S., Shafique, M., Sinanoglu, O.: MuxLink: circumventing
learning-resilient MUX-locking using graph neural network-based link prediction.
In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.
694–699 (2022). https://doi.org/10.23919/DATE54114.2022.9774603

8. Alrahis, L., Patnaik, S., Shafique, M., Sinanoglu, O.: OMLA: an oracle-less machine
learning-based attack on logic locking. IEEE Trans. Circuits Syst. II Express Briefs
69(3), 1602–1606 (2022). https://doi.org/10.1109/TCSII.2021.3113035

9. Alrahis, L., et al.: GNN-RE: graph neural networks for reverse engineering of gate-
level netlists. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(8), 2435–
2448 (2022). https://doi.org/10.1109/TCAD.2021.3110807

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint:
arXiv:1412.6980 (2014)

11. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks.
Am. Soc. Inf. Scie. Tech. 58(7) (2007)

12. Magaña, J., Shi, D., Melchert, J., Davoodi, A.: Are proximity attacks a threat to
the security of split manufacturing of integrated circuits? TVLSI 25(12), 3406–3419
(2017). https://doi.org/10.1109/TVLSI.2017.2748018

13. Magaña, J., et al.: Are proximity attacks a threat to the security of split manufac-
turing of integrated circuits? In: ICCAD (2016). https://doi.org/10.1145/2966986.
2967006

14. McCants, C.: Trusted integrated chips (TIC) program (2016). https://www.ndia.
org/-/media/sites/ndia/meetings-and-events/divisions/systems-engineering/
past-events/trusted-micro/2016-august/mccants-carl.ashx

15. Patnaik, S.: GitHub - DfX-NYUAD/Randomized routing perturbation (2020).
https://github.com/DfX-NYUAD/Randomized routing perturbation. Accessed
30 Oct 2023

16. Rajendran, J., Sinanoglu, O., Karri, R.: Is split manufacturing secure? In: DATE,
pp. 1259–1264 (2013). https://doi.org/10.7873/DATE.2013.261

17. Rostami, M., Koushanfar, F., Karri, R.: A primer on hardware security: models,
methods, and metrics. Proc. IEEE 102, 1283–1295 (2014)

18. Wang, Y., Chen, P., Hu, J., Li, G., Rajendran, J.: The cat and mouse in split man-
ufacturing. TVLSI 26(5), 805–817 (2018). https://doi.org/10.1109/TVLSI.2017.
2787754

19. Zeng, W., Zhang, B., Davoodi, A.: Analysis of security of split manufacturing
using machine learning. TVLSI 27(12), 2767–2780 (2019). https://doi.org/10.
1109/TVLSI.2019.2929710

20. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: NIPS,
pp. 5171–5181 (2018)

21. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification. In: AAAI Conference AI (2018)

https://doi.org/10.1109/ICCAD51958.2021.9643476
https://doi.org/10.23919/DATE54114.2022.9774603
https://doi.org/10.1109/TCSII.2021.3113035
https://doi.org/10.1109/TCAD.2021.3110807
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TVLSI.2017.2748018
https://doi.org/10.1145/2966986.2967006
https://doi.org/10.1145/2966986.2967006
https://www.ndia.org/-/media/sites/ndia/meetings-and-events/divisions/systems-engineering/past-events/trusted-micro/2016-august/mccants-carl.ashx
https://www.ndia.org/-/media/sites/ndia/meetings-and-events/divisions/systems-engineering/past-events/trusted-micro/2016-august/mccants-carl.ashx
https://www.ndia.org/-/media/sites/ndia/meetings-and-events/divisions/systems-engineering/past-events/trusted-micro/2016-august/mccants-carl.ashx
https://github.com/DfX-NYUAD/Randomized_routing_perturbation
https://doi.org/10.7873/DATE.2013.261
https://doi.org/10.1109/TVLSI.2017.2787754
https://doi.org/10.1109/TVLSI.2017.2787754
https://doi.org/10.1109/TVLSI.2019.2929710
https://doi.org/10.1109/TVLSI.2019.2929710

Logarithmic-Size (Linkable) Ring
Signatures from Lattice Isomorphism

Problems

Xuan Thanh Khuc1(B) , Anh The Ta3 , Willy Susilo1 ,
Dung Hoang Duong1 , Fuchun Guo1 , Kazuhide Fukushima2 ,

and Shinsaku Kiyomoto2

1 Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Wollongong, Australia

xtk929@uowmail.edu.au, {wsusilo,hduong,fuchun}@uow.edu.au
2 Information Security Laboratory, KDDI Research, Inc., Fujimino, Japan

{ka-fukushima,kiyomoto}@kddi-research.jp
3 CSIRO’s Data61, Sydney, Australia

theanh.ta@csiro.au

Abstract. The Lattice Isomorphism Problem (LIP) asks whether two
given lattices are isomorphic via an orthogonal linear transformation.
At Eurocrypt 2022, Ducas and van Woerden provide a solid foundation
for LIP as a promising candidate for post-quantum cryptography. They
then propose a digital signature HAWK from LIP in the hash-then-sign
framework, whose module version was recently investigated by Ducas
et al. at Asiacrypt 2022. HAWK is one of the brightest prospects at
round one of the NIST for additional digital signatures. In this paper,
we build the first (linkable) ring signature schemes based on the hardness
of LIP. The proposed signatures have the logarithmic size in the number
of ring users. Our signature size is significantly smaller than several ring
signatures based on other underlying problems when the number of users
in the ring is large.

To this end, we leverage group action properties of LIP and follow
the Merkle tree-based construction of Beullens, Katsumata and Pintore
at Asiacrypt 2020 in the context of isogeny-based cryptography, with
suitable adaptions to lattice isomorphism group actions.

Keywords: ring signatures · linkable ring signatures · lattice
isomorphism problems · group actions

1 Introduction

With the rapid development in building increasingly larger quantum computers
in recent years [26], post-quantum cryptography has become critical for protect-
ing our data from powerful quantum adversaries. The transition to the secure
post-quantum world has been in preparation for a long time [32], and will soon
become standards. A critical turning point is that, after many years of investi-
gation, the National Institute of Standards and Technology (NIST) has chosen
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. Regazzoni et al. (Eds.): SPACE 2023, LNCS 14412, pp. 214–241, 2024.
https://doi.org/10.1007/978-3-031-51583-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51583-5_13&domain=pdf
http://orcid.org/0009-0003-5369-9767
http://orcid.org/0000-0003-2615-7316
http://orcid.org/0000-0002-1562-5105
http://orcid.org/0000-0001-8057-4060
http://orcid.org/0000-0001-6939-7710
http://orcid.org/0000-0003-2571-0116
http://orcid.org/0000-0003-0268-0532
https://doi.org/10.1007/978-3-031-51583-5_13

Logarithmic-Size (Linkable) Ring Signatures from LIPs 215

the key management mechanism CRYSTAL-Kyber [37], signatures CRYSTAL-
Dilithium [30] and FALCON [35]- all lattice-based - and a hash-based signature
SPHINCS+ for post-quantum cryptography standardisation [33]. While lattices
have a dominating position in this area, it is both necessary and essential to
have alternative solutions. Indeed, NIST has just started a new competition for
additional post-quantum digital signature schemes with almost 50 submissions
based on various hardness problems [34]. The quest is then naturally extended
to the whole field of post-quantum cryptography: while many advanced cryp-
tographic functionalities (advanced signatures, proof systems, etc.) have been
realised from lattice assumptions, it is important to have constructions for such
primitives based on alternative post-quantum hardness assumptions. In this
paper, we make contributions in this research direction by giving secure con-
structions for advanced signatures, logarithmic ring signature schemes and their
linkable variants from newly proposed post-quantum hardness assumptions, the
lattice isomorphism problems that underlie the recent NIST additional signature
submission HAWK [25].

Ring signatures (RS), first introduced by Rivest, Shamir and Tauman in
[36], allow any member in a group of users - called the ring - sign messages on
behalf of the whole group and at the same time no one can tell which user is
the real signer. In other words, RS schemes provide the anonymity property for
their users which is important in privacy-preserving applications. In addition, a
signer can dynamically form a ring by simply collecting users’ public keys without
the need for agreement from other members. There has been an active line of
research to design compact ring signatures. As the number N of users increases,
the size of ring signatures often grows linearly in N . However, several works have
reduced the growth of ring signature sizes to log(N) [6,9,18,23,28,39]. Such
logarithmic ring signatures are obtained via the Fiat-Shamir transform from
different constructions of one-out-of-many or zero-knowledge proof of knowledge.
Schemes in [9,23,28] are based on classical number theoretic assumption, while
[6,18,39] use lattice-based or isogeny-based hardness assumptions, hence achieve
post-quantum security. There have been several candidates for post-quantum
cryptography. Among them, lattice-based cryptography seems to take a lot of
attention due to its attractive features such as high asymptotic efficiency and
parallelism, security under worst-case intractability assumptions, e.g., learning
with errors (LWE) problem or short integer solution (SIS) problem, flexibility
in enabling many advanced constructions such as fully homomorphic encryption
[10,14], attribute-based encryption [5,22], multi signatures [2,8], etc.

In this paper, we focus on another lattice assumption, namely the lattice iso-
morphism problem (LIP). While lattice isomorphism problems have been studied
already by Haviv and Regev in [24], Ducas and van Woerden [17] have recently
revitalised the research direction of using lattice isomorphism problems in cryp-
tography [4,15,16]. In [17], Ducas and van Woerden provide a new reformulation
of lattice isomorphisms in terms of quadratic forms. They then introduce two
computational problems: the lattice isomorphism problem in terms of quadratic
forms (sLIPQ) and the distinguishing lattice isomorphism problem (ΔLIPQ0,Q1),

216 X. T. Khuc et al.

in both search and decision versions following the efficient discrete Gaussian
sampling algorithm. In [17], they showed that lattice isomorphism problems
are new and promising candidates for post-quantum cryptographic hardness
assumptions. In particular, they admit worse-case to average-case reductions
[17, Section 3.3] which are essential for building secure cryptographic primitives.
Cryptanalysis works on LIP have also appeared recently [12,15]. There are also
many exciting connections between LIP with coding theory and number theory,
we refer to [4,17] for further details. It raises then a natural question “whether
other primitives can be built based on this new type of hardness assumptions?”.
Up to now, there is only a handful of cryptographic constructions based on
lattice isomorphisms: two zero-knowledge proofs due to Haviv-Regev [24] and
Ducas-van Woerden [17], a key encapsulation mechanism [17], a hash-then-sign
signature scheme and its variant for module lattices [16,17], and an encryption
scheme due to Bennett et al. in [4]. This paper focuses on constructing (linkable)
ring signatures from LIP.

Our Contribution. In this paper, we provide the first construction of loga-
rithmic (linkable) ring signatures from LIP. The core idea is to construct an
OR proof of knowledge from LIP from which a ring signature is obtained via
the Fiat-Shamir transformation. We depart from the approach of Beullens, Kat-
sumata and Pintore in [6] in which they provided a general framework for con-
structing OR proof of knowledge from secure cryptographic group actions. In
addition to concrete constructions of logarithmic ring signatures from CSIDH
and MLWE group actions, they also introduced a series of optimisation methods
to boost the efficiency and security of group actions based OR proof of knowl-
edge. Follow-up works [1] and [13] have adapted the techniques of [6] to build
logarithmic ring signatures from the code-equivalence problem and alternating
trilinear form equivalence, respectively.

The lattice isomorphism problem is a relatively new post-quantum assump-
tion with various distinct features. This makes the task of adapting methods
from previous works a challenging one. Firstly, the group is GL(n,Z) is both non-
commutative and infinite, making it impossible to uniform sample the secrets
as in previous works. In addition, GMW style [21] sigma protocol of Ducas and
van Woerden [17] does not fit into the current framework; we need to suitably
modify it in our Protocol 3.1. Secondly, the distribution of D over a set of group
actions is very specific to the LIP setting. Unlike previous works in which secret
keys can be obtained by simply uniform sampling, the distribution D of pairs of
public and secret keys in the case of LIP is defined as the output distribution of
a polynomial time sampling algorithm. We need additional parameters to run
the sampling algorithm. Moreover, we do not have a method to sample the secret
keys directly. What we can do is to sample a public key from the distribution D,
and at the same time obtain an element uniformly randomly from the finite set
of lattice equivalences. These differences lead to a series of changes we must make
throughout the steps of zero-knowledge proofs to obtain correct constructions;
see the protocols in Sect. 3.

Logarithmic-Size (Linkable) Ring Signatures from LIPs 217

Since our scheme is based on LIP, our scheme avoids using the rejection sam-
pling algorithm, where the signer must rerun the signing algorithm when some
condition is not satisfied as several ring signatures based on lattice problem (MSIS,
MLWE) [6]. Our ring signature schemes’ size only depends on log N , where N
denotes the ring size. For NIST I (128-bit security) in the ring size N = 26, our ring
signature size is 40KB. This size is approximate to Falafl [6]. However, our size is
larger than Calamari [6], LESS [1] and ATFE-GMW-FS [7]. Although RAPTOR
[29], DualRing-LB [38], MRr-DSS [3], and MatRiCT [19] have shorter signature
sizes than ours when the ring size is small, their size significantly increases when
the number of participants rises. For NIST V (256-bit security), our ring signature
size is much smaller than the KKW [27] (Table 1).

Table 1. Comparison of the signature size (KB) between our schemes and others

N Hardness
assumption

Security level
21 23 26 212 221

Calamari [6] 3.5 5.4 8.2 14 23 CSIDH-512 *

RAPTOR [29] 2.5 10 81 5161 / NTRU 100 bits

MatRiCT [19] / 18 19 59 / MSIS, MLWE NIST I

Falafl [6] 29 30 32 35 39 MSIS, MLWE NIST I

DualRing-LB [38] / 4.6 6 106.6 / MSIS, MLWE NIST I

MRr-DSS [3] / 27 36 422 / MinRank NIST I

LESS [1] / 10.8 13.7 19.7 28.6 Code Equiv. NIST I

ATFE-GMW-FS [7] 8.9 10.5 12.9 17.7 24.9 ATFE NIST I

Ours - 128 bits 35 37 40 45 54 LIP NIST I

KKW [27] / / 250 456 / LoWMC NIST V

Ours - 256 bits 162 169 181 203 237 LIP NIST V

Organization. Our paper is organised into five sections. After giving an intro-
duction in Sect. 1, we recall the necessary backgrounds on lattice isomorphism
problems and definitions of relevant cryptographic primitives in Sect. 2. In
Sect. 3, we discuss the differences between LIP and group actions considered
in previous works [1,6,13], and present our constructions of proofs of knowl-
edge and signatures. The parameter selection is also shown in this section. We
conclude our paper in Sect. 4.

2 Preliminaries

2.1 Lattice Isomorphism Problems

This section recalls the basics of lattice isomorphism problems from [17]. An
n-dimensional full rank lattice L ⊂ R

n can be given as the set of integer linear
combinations L = {x1b1 + · · · + xnbn : x1, . . . , xn ∈ Z} of column vectors in a

218 X. T. Khuc et al.

basis B of L: B = [b1, . . . ,bn] ∈ GL(n,R). We also write the lattice L generated
from B as either L(B) or B·Zn, interchangeably. For O ∈ R

n×n, define the lattice
O · L = {Ox : x ∈ L}. By definition, two lattices L1,L2 are isomorphic if there
exists an orthonormal matrix O ∈ O(n,R) such that L2 = O · L1. The lattice
isomorphism problem (LIP) states as follows.

Definition 2.1 (LIP - Lattice version, [17,24]). Given two isomorphic lattices
L1,L2 ⊂ R

n, find an orthonormal matrix O ∈ O(n,R) such that L2 = O · L1.

Two basis matrices B1, B2 generate the same lattice L(B1) = L(B2) iff there
is a unimodular matrix U ∈ GL(n,Z) such that B2 = B1U . Thus, for isomorphic
lattices L1 = L1(B1) and L2 = L2(B2), LIP actually asks to find a pair of
matrices (O,U) ∈ O(n,Z) × GL(n,Z) such that B2 = OB1U .

Since O has real coefficients, it isn’t easy to use the equivalence B2 = OB1U
for algorithmic purposes. To overcome this problem, Ducas and van Woerden [17]
reformulate LIP in terms of quadratic forms as follows. The set Sym+(n,R) of
quadratic forms of dimension n consists of all positive definite symmetric matri-
ces of size n × n. Given a lattice L = L(B), one can associate a quadratic form
Q = γ(B) = BtB to L. In fact, this Gram map γ gives an identification between
quadratic forms Sym+(n,R) and lattice isomorphic classes O(n,R)\GL(n,R) as
γ−1(BtB) = {OB : O ∈ O(n,R)}. A crucial observation is that if all the entries
of B are integers, then so is Q. We then consider only the set Sym+(n,Z) of
integer-valued quadratic forms.

The group of basis equivalences, i.e. unimodular matrices U ∈ GL(n,Z),
acts on Q ∈ Sym+(n,Z) via ρU (Q) = U tQU . Given two bases B2 = OB1U
of the lattice L(B2) = L(B1), their associated quadratic forms Q1 = Bt

1B1

and Q2 = Bt
2B2 satisfies Q2 = Bt

2B2 = U tBt
1O

tOB1U = U tBt
1B1U = U tQ1U

= ρU (Q1).

Definition 2.2 (Quadratic form equivalence, [17]). We have two quadratic
forms Q1, Q2 ∈ Sym+(n,Z) are equivalent, if there exists a unimodular matrix
U ∈ GL(n,Z) such that Q2 = ρU (Q1) = U tQ1U . Denote by [Q] the equivalence
class of Q.

Given quadratic form Q associated with a lattice L, the Cholesky decom-
position Q = Bt

QBQ gives a unique upper-triangular integer-valued matrix BQ,
and BQ is a basis of L. The correspondence between lattice and quadratic form
formulations allows representing lattice vectors Bx ∈ L(B) ⊂ R

n by canonical
vectors x ∈ Z

n. However, the distance induced by quadratic forms differs from
the standard one in Z

n. The inner product with respect to Q is 〈x,y〉Q = xtQy,
and the induced norm is |x|2Q = xtQx, instead of the standard |x|2 = xtx.

Define the i-th minimal distance λi(Q) as the smallest r > 0 such that
{x ∈ Z

n : |x|Q ≤ r} spans a vector space of dimension at least i, for i = 1, . . . , n.

Definition 2.3 (wc-sLIPQ, [17]). Given Q ∈ Sym+(n,Z), the worse case search
lattice isomorphism problem wc-sLIPQ asks for any Q′ ∈ [Q] to find a U ∈
GL(n,Z) such that Q′ = ρU (Q) = U tQU .

Logarithmic-Size (Linkable) Ring Signatures from LIPs 219

Note that wc-sLIPQ is an equivalent formulation of LIP: given a solution U
of wc-sLIPQ, we can extract a solution O for LIP by computing the orthogonal
matrix O = B2(B1U)−1. The automorphism group Aut(Q) = {V ∈ GL(n,Z) :
V tQV = Q} is finite for any fixed Q, and the the set of all equivalences from Q
to Q′ is {V U : V ∈ Aut(Q)} given a solution U of wc-sLIPQ.

Ducas and van Woerden [17] also consider the worse case distinguishing lat-
tice isomorphism problem wc-ΔLIPQ0,Q1 .

Definition 2.4 (wc-ΔLIPQ0,Q1 , [17]). Given Q0, Q1 ∈ Sym+(n,Z), the problem
wc-ΔLIPQ0,Q1 asks for any quadratic form Q′ ∈ [Qb], where b ∈ {0, 1} is a
uniformly random bit, to find the bit b.

A unique feature of quadratic form equivalence is the existence of many arith-
metic and geometric invariants, called genus, which are efficiently computable. To
avoid these distinguishers, we always need to make sure that genuses of Q0, Q1

are the same for wc-ΔLIPQ0,Q1 . See Section 7 of [17] for further details. The
hardness of quadratic form equivalence problems wc-sLIPQ and wc-ΔLIPQ0,Q1 is
always understood with respect to an infinite family of quadratic forms (Qn)n

and ((Q0)n, (Q1)n), n = 1, 2, . . . , respectively.

2.2 Discrete Gaussian Distribution and Sampling Algorithm
for Lattice Isomorphisms

To use the hardness assumptions for cryptographic primitives, one needs to define
average case versions of lattice isomorphism problems. This goal is achieved
in the work of Ducas and van Woerden [17], in which they define probability
distribution and build an efficient sampling algorithm on equivalent classes of
quadratic forms. Their approach is inspired by works on discrete Gaussian sam-
pling and lattice trapdoors in lattice-based cryptography [11,20,31]. We recall
the necessary constructions from [17], especially their polynomial time discrete
Gaussian sampling algorithm.

Discrete Gaussian Distribution with Respect to a Quadratic Form.
Given a quadratic form Q ∈ Sym+(n,Z), the Gaussian function on R

n with
respect to the form Q, parameter s > 0 and center c ∈ R

n is defined as the
function ρQ,s,c : Rn → (0, 1]:

ρQ,s,c(x) = exp(
−π|x − c|2Q

s2
). (2.1)

The discrete Gaussian distribution DQ,s,c for a quadratic form Q, with
parameter s > 0 and center c ∈ R

n is then defined as follows

Pr
X←DQ,s,c

[X = x] =

{
ρQ,s,c(x)

ρQ,s,c(Zn) if x ∈ Z
n,

0 if x /∈ Z
n,

(2.2)

where the total weight is ρQ,s,c(Zn) =
∑

x∈Zn

ρQ,s,c(x). Write DQ,s for DQ,s,c

when c = 0. We refer to the original paper [17] for many important properties
(smoothing parameter, min-entropy, etc.) of the distribution DQ,s,c.

220 X. T. Khuc et al.

Discrete Gaussian Sampling Algorithm. We recall the sampling algorithm
from the Gaussian distribution Ds([Q]) of [17]. First, one needs an efficient
method for sampling lattice points from discrete Gaussian distribution.

Lemma 2.5 ([11]). There is a polynomial time algorithm Sample(Q, s, c)
that on input a quadratic form Q ∈ Sym+(n,Z), parameter s ≥ |B∗

Q| ·√
log(2n + 4))/π and center c ∈ R

n, it returns a sample from the distribution
DQ,s,c.

The second subroutine is a reduction algorithm that, on given a quadratic
form and a set of short vectors of full rank, returns a well-reduced equivalent
quadratic form.

Lemma 2.6 ([31]). There is a polynomial time algorithm Extract : (R,U) ←
Extract(Q,Y) that on input a quadratic form Q and vectors Y = (y1, . . . ,ym) ∈
Z

n×m such that rk(L(Y)) = n, outputs a matrix U ∈ GL(n,Z) and a quadratic
form R = U tQU equivalent to Q such that |B∗

Q| ≤ max
i∈[m]

|yi|Q.

An important observation of [17] is that the output distribution of Extract
is well-defined, that is the extracted form depends only on the geometry of the
input vectors, not on the particular representative of the equivalent class [Q].

Lemma 2.7 ([17]). Let Y = (y1, . . . ,ym) ∈ Z
n×m such that rk(L(Y)) = n.

If (R,U) ← Extract(Q,Y) and (R′, U ′) ← Extract(V tQV, V −1Y) for some
unimodular matrix V ∈ GL(n,Z), then R′ = R and U ′ = V −1U .

Finally, the distribution Ds([Q]) is defined as follows.

Definition 2.8 ([17]). Given a quadratic form Q ∈ Sym+(n,Z), the Gaussian
distribution Ds([Q]) of quadratic forms over the set [Q] of forms equivalent to
Q, with parameter s > 0 is defined as the output distribution of the following
procedure:

1. Let C = 1 − 1
1+e−π , m =
 2n

C �.
Sample m vectors Y = (y1, . . . ,ym) from DQ,s by Sample(Q, s).
Repeat until rk(Y) = n.

2. (R,U) ← Extract(Q,Y).
3. Return R.

To obtain an efficient sampling algorithm from Ds([Q]), one needs a lower
bound on the parameter s based on the reducedness of Q so that Step 1 in
Definition 2.8 terminates quickly. [17] points out that it suffices to take s ≥
λn(Q).

Algorithm 2.9 (Algorithm 1, Lemma 3.4, [17]). For Q ∈ Sym+(n,Zn),
s ≥ max{ λn(Q), |B∗

Q| ·
√

log(2n + 4)/π}, the sampling algorithm from Ds([Q])
of Ducas-van Woerden [17] given Definition 2.8, called QSample(Q, s), runs in
polynomial time.

Logarithmic-Size (Linkable) Ring Signatures from LIPs 221

The output of QSample is (R,U) where R is a sample from Ds([Q]), and
conditioned on R, U is uniformly distributed over the set of isomorphisms from
Q to R. Having defined the distribution Ds([Q]), and the sampling algorithm
QSample(Q, s), we can now state average-case versions of lattice isomorphism
problems.

Definition 2.10 (ac-sLIPQ
s , [17]). Given a quadratic form Q ∈ Sym+(n,Z) and

s > 0, the problem ac-sLIPQ
s asks for a given quadratic form Q′ sampled from

Ds([Q]) to find a unimodular matrix U such that Q′ = U tQU .

Definition 2.11 (ac-ΔLIPQ0,Q1
s , [17]). Given two quadratic forms Q0, Q1 ∈

Sym+(n,Z) and s > 0, the problem ac-ΔLIPQ0,Q1
s asks for a given quadratic

form Q′ sampled from Ds([Qb]), where b ← {0, 1} is a uniform random bit, to
find b.

Similar to lattice problems, LIPs also enjoy the important average-case to
worst-case reductions. Conversely, it was shown in [17] that when s is large
enough, the average-case LIPs become at least as hard as any worst-case instance.

2.3 (Linkable) Ring Signatures

Definition 2.12. A ring signature RS is a tuple of 4 PPT algorithms (RS.Setup,
RS.KeyGen, RS.Sign, RS.Verify):

– RS.Setup(1λ): Given a security level λ as input, it returns public parameters
pp.

– RS.KeyGen(pp): It takes as input the public parameters and outputs a pair
(sk, pk) of the public key pk and secret key sk for each user.

– RS.Sign(R, ski,m): An user with the secret key ski and a ring R =
{pk1, . . . , pkN}, where pki is the public key corresponding to ski, produces
a signature σ on the message m with respect to the ring R.

– RS.Verify(σ,m,R): Given a signature σ, it outputs 1 (accept) if σ is a valid
ring signature with respect to the message m and the ring R, and 0 (reject)
otherwise.

Security of the ring signature scheme is defined with correctness, anonymity
and unforgeability properties (See Appendix A).

Definition 1 (Linkable ring signatures). A linkable ring signature scheme
LRS consists of the 4 PPT algorithms of a Ring signature scheme and one addi-
tional PPT algorithm LRS.Link such that:

– LRS.Link(σ1, σ0): On input two signature σ0 and σ1, it outputs either 1 or 0,
where 1 indicate that the signatures are generated by using the same secret
key.

Along with the correctness property, we require the linkability, linkable
anonymity, and non-frameability properties of a linkable ring signature scheme
(See Appendix B).

222 X. T. Khuc et al.

2.4 Admissible Group Actions

Definition 2.13 ([6]). Let G be an additive group, S1, S2 two symmetric sub-
sets of G, X a finite set, δ ∈ [0, 1]. Let DX be a distribution over a set of group
actions G × X → X . The tuple AdmGA = (G,X , S1, S2,DX) is a δ-admissible
group action with respect to X0 ∈ X if the following holds:

1. There exist efficient algorithms to perform the following tasks: compute g · X
for all g ∈ S1 ∪ S2 and all X ∈ X , sample uniformly from S1, S2 and DX ,
and represent elements of G and X uniquely.

2. The intersection of the sets {S2 · g}g∈S1 is sufficiently large: if we denote
S3 = ∩g∈S1S2 · g, then |S3| = δ|S2|. There is an efficient algorithm to check
if an element g ∈ G belongs to S3.

3. It is difficult to output g ∈ S2 · S3 such that g′ · X0 = X with non-negligible
probability, given X = g · X0 for some g sampled uniformly from S1.

Note that the group actions in [6] are commutative, like class group and
MLWE group actions, while the group action in our case, as well as in the case
of code equivalence in [1], are non-commutative. This difference leads to several
problems in designing signatures based on lattice isomorphisms following the
framework of [6]. We will discuss the specific details in Sect. 3.1.

3 OR Proof of Knowledge and Ring Signature
from Lattice Isomorphisms

In this section, we give details of how to construct OR proofs of knowledge of
quadratic form equivalence.

3.1 Group Action in the Setting of Lattice Isomorphisms

Given a quadratic form Q0 ∈ Sym+(n,Z), the group G = GL(n,Z) acts on
X = [Q0] = {Q ∈ Sym+(n,Z) : Q ∼ Q0} - the set of quadratic forms equivalent
to Q0. A special feature, compared to other cryptographic group actions, is that
in this case both the group and the ambient space are infinite. The action of G
on X is specified by (U,Q) �→ ρU (Q) = U tQU which is transitive. The Group
Action Inverse Problem (GAIP) for (G,X , ρ) can be stated as the ac-sLIPQ0

s

problem thanks to the discrete Gaussian sampling algorithm.
While the original definition of admissible group actions of [6] in Definition

2.13 does not apply directly to our setting here, we can make simple modifications
to it to adapt to the setting of lattice isomorphism. Note that the work of [1]
also makes some similar modifications in order to apply methods from [6] to
code equivalence problems. We list the changes in the following and refer to the
Definition 2.13 for comparison.

1. The group is G = GL(n,Z) which is noncommutative, and both G and X are
infinite sets. The distinguished point X0 ∈ X is X0 = Q0. The two symmetric
subsets S1, S2 are taken to be the entire group G, hence δ = 1.

Logarithmic-Size (Linkable) Ring Signatures from LIPs 223

2. The distribution DX over a set of group action of G on X is very specific to the
lattice isomorphism setting. It is the output distribution of QSample(Q0, s)
which can be identified with

(Q,U) ← Ds([Q0]) × (Uniform(Aut(Q0))|Q).

As such, we always need a public parameter s such that s ≥ max{λn(Q0),
|B∗

Q0
| ·

√
log(2n + 4)/π} to run the sampling algorithm.

3. In addition, we do not have a method to sample uniformly random from the
group G = GL(n,Z). What we can do is to sample a point X ∈ X from the
distribution Ds([Q0]), and at the same time obtain an element g = U ∈ G
uniformly randomly from the finite set of equivalences between X0 and X.

4. Assume the hardness of the ac-sLIPQ0
s problem, it follows that given (Q1, Q0)

where Q1 ← Ds([Q0]) via QSample, it is difficult to find U ′ ∈ G such that
ρU ′(Q0) = U1.

3.2 Proof of Knowledge for Lattice Equivalence

In [17, Section 4.1], Ducas and van Woerden describe a proof of knowledge of
a secret element U ∈ G such that ρU (Q0) = Q1 for public equivalent forms
Q0, Q1 ∈ X , following the classical GMW [21] proof for graph isomorphisms. We
observe that this protocol does not fit into the group action framework of [6].
Thus, for our purpose we need a modified protocol: in the response phase, the
prover sends U1−c

1 V1, instead of U−c
1 V1 as in [17], to the verifier.

Protocol 3.1. Public data: The public parameters are two equivalent forms
(Q0, Q1) and a parameter s such that

s ≥ max{λn(Q0),max{|B∗
Q0

|, |B∗
Q1

|} ·
√

log(2n + 4)/π}. (3.1)

The secret information of which the prover wants to prove his knowledge to the
verifier is an equivalence U1 from Q0 to Q1 : ρU1(Q0) = U t

1Q0U1 = Q1.

– Round 1 - P1(Q0, Q1, s): The prover P1(Q1, s) runs QSample(Q1, s) to
sample Q′ ← Ds([Q1]), together with V1 ∈ G uniformly random from the set
of equivalences from Q1 to Q′, such that Q′ = ρV1(Q1) = V t

1 Q1V1. He sends
the commitment cmt = Q′ to the verifier.

– Round 2 - V1: The verifier V1 sample a random bit challenge c ← {0, 1} and
sends it to the prover.

– Round 3 - P2(U, c): Upon receiving c, the prover P2(U1) proceeds as follows:
- if c = 0, the response is rsp = U1V1;
- if c = 1, then response is rsp = V1.

– Round 4 - V2(Q0, Q1): The verifier V2(Q0, Q1, c) works as follows:
- when c = 0, he checks whether ρrsp(Q0) = cmt, that is (U1V1)tQ0(U1V1) =
V t
1 Q1V1 = Q′;

- when c = 1, the verifier checks whether ρrsp(Q1) = cmt, that is V t
1 Q1V1 = Q′.

Theorem 3.2. Protocol 3.1 satisfies correctness, soundness and zero-knowledge
properties.

224 X. T. Khuc et al.

Proof. See Appendix D.

Furthermore, this sigma protocol is also recoverable, which later allows us
to use challenge instead of commitment and obtain a shorter signature. Next,
we extend the Protocol 3.1 to obtain OR proof of lattice equivalence. In the
beginning, we are given a fixed public quadratic form Q0. For each user i, one
runs QSample on [Q0] to generate a public key pki = Qi and the corresponding
secret key ski = Ui : ρUi

(Q0) = Qi. For running the QSample in polynomial
time, we need an additional public parameter s such that

s ≥ max{λn(Q0),max{|B∗
Q0

|, |B∗
Q1

|, . . . , |B∗
QN

|} ·
√

log(2n + 4)/π}. (3.2)

Suppose the prover in our OR proof is the user I ∈ {1, . . . , N}. He can collect
the public keys Qi’s to form the ring R = {Q1, . . . , QN}. In addition, the prover
knows the secret key skI = UI , but he does not know any other secret key due
to the hardness of the lattice isomorphism problem. One can easily extend the
Protocol 3.1 to obtain an OR proof of knowledge for the prover to prove his
knowledge of the secret key skI = UI such that ρUI

= QI and hide his identity
I in the ring R from the verifier. Note that one needs to use a random shuffle in
the commitment, and for verification, one either checks a set membership or a
set equality.

3.3 OR Sigma Protocols

We give details of how to implement the base OR sigma protocol Πbase for
quadratic form isomorphism with G = GL(n,Z), X0 = Q0, X = [Q0], and
the distribution DX = Output(QSample(Q0, s)). Each user uses the public
parameters Q0, s to run QSample, and at output obtain its key pair (pk =
Q, sk = U) ∈ X × G.

The prover is an user of index I ∈ {1, . . . , N} who can gather public keys
to form a ring R = {pk1 = Q1, . . . , pkN = QN}. The base OR sigma protocol
Πbase = (Pbase = (Pbase

1 ,Pbase
2),Vbase = (Vbase

1 ,Vbase
2)) is a proof of knowledge

for (skI = UI , I) ∈ (G, [N]) such that ρUI
(Q0) = QI .

In the first round, the prover generates a random seed seed from a pseu-
dorandom number generator Expand. He then generates further random strings
{seedi}i∈[N], and uses seedi as a random seed for running QSample for each
user i ∈ [N]. He then runs QSample for each user i using seedi to obtain
Q′

i ← Ds([Qi]), Vi ∈ GL(n,Z) : Q′
i = ρVi

(Qi), and uses Q′
i as a commitment

Ci = Q′
i. He builds a Merkle tree with leaves (C1, . . . , CN) on a root root. The

prover sends root to the verifier.
In the second round, the verifier samples a bit ch ∈ {0, 1} uniformly at

random, and sends it to the prover.
In the third round, the prover considers two cases:

– If ch = 0, then the prover computes z = UIVI . He sends z and the path
path(CI) connecting CI to the root of the Merkle tree to the verifier.

Logarithmic-Size (Linkable) Ring Signatures from LIPs 225

– If ch = 1, then prover responses with z = (V1‖ . . . ‖VN). He actually sends
only rsp = seed to the verifier, who can use it to run the pseudorandom
generator Expand to recover seedi’s, then Vi’s for each i ∈ [N].

In the fourth round, the verifier considers two cases:

– If ch = 0, the verifier computes Q′′ = ρz(Q0), then set the leave C ′′ = Q′′. He
then uses path(CI) to reconstruct the root root′′. Finally, he checks whether
root′′ = root.

– If ch = 1, the verifier uses seed to run the pseudorandom generator to recover
seedi’s, then Vi’s for each i ∈ [N]. He then reconstructs the Merkle tree and
checks whether its root is root.

The full description of the base OR sigma protocol is given in Protocol 3.3.
Note that, we use index-hiding Merkle tree and seed tree techniques to construct
protocol (See Appendix C).

Protocol 3.3 (Base OR sigma protocol)
Πbase = (P = (Pbase

1 ,Pbase
2),V = (Vbase

1 ,Vbase
2)):

– Round 1: Pbase
1 (R, (UI , I);O)

1. seed ← {0, 1}λ

2. (seed1, . . . , seedN) ← Expand(seed), seedi ∈ {0, 1}λ

3. For i = 1, . . . , N :
(Q′

i, Vi) ← QSample(Q0, s‖seedi)
Ci = Q′

i

4. (root, tree) ← MerkleTree(C1, . . . , CN).
5. cmt = root.
6. Send cmt to the verifier.

– Round 2: Vbase
1 responds with a uniformly random bit ch ← {0, 1}.

– Round 3: Pbase
2 ((UI , I), ch)

1. If ch = 0:
z = UIVI

path(CI) ← getMerklePath(tree, I)
rsp = (z, path(CI))

2. If ch = 1:
rsp = seed

3. Send rsp to the prover.
– Round 4: Vbase

2 (cmt, ch, rsp;O)
1. root = cmt, c = ch.
2. If c = 0:

Parse (z, path) ← rsp
Q′′ = ρz(Q0)
C ′′ = Q′′

root′′ ← ReconstructRoot(C ′′, path)
Output 1 if root′′ = root, else output 0.

226 X. T. Khuc et al.

3. If c = 1:
seed = rsp
Run the computations in steps 2–5 of Pbase

1 on seed to obtain root′′

Output 1 if root′′ = root, else output 0.

Theorem 3.4. For the following relations
R =

{(
(Q1, . . . , QN), (UI , I)

)
: Q′

is are quadratic forms and ρUI
(Q0) =

QI

}
,

R̃ =
{(

(Q1, . . . , QN), w
)

: Q′
is are quadratic forms,

and
(
(w = (UI , I) : ρUI

(Q0) = QI)

or (w = (x, x′) : x �= x′,H(x) = H(x′))
}
,

the OR proof of knowledge Πbase is correct, relaxed special sound for the relations
(R, R̃) and honest-verifier zero-knowledge.

Proof. See Appendix E.

3.4 Main OR Sigma Protocol

Since the base OR sigma protocol has only binary challenge space, a naive app-
roach to achieve λ bits of security is to simply run Πbase totally λ times in
parallel. To further improve the efficiency and security of the resulting ring sig-
nature, [6] proposes several optimization techniques to turn Πbase into the main
sigma protocol Πmain with larger challenge space and better efficiency. Below,
we summarize their methods, and then incorporate them into the main OR sigma
protocol.

The first optimization idea of [6] is the use of unbalanced challenge space.
From the observation that response in the case ch = 0 is more costly than when
ch = 1, [6] proposes to choose integers M,K such that

(
M
K

)
> 2λ, then perform

Πbase totally M times, M > λ, of which exactly K times with ch = 0 and
M −K times with ch = 1. The challenge space is now the set CM,K of all strings
in {0, 1}M with exactly K bits equal 0.

The second optimization idea is to use a seed tree for responses when ch = 1
[6]. Among M executions of Πbase in parallel, there are exactly M − K runs
with ch = 1 in those cases, the output is simply the random seed. Instead of
generating independent seeds for each run, one can generate M seeds using the
seed tree. Then the place of M − K seeds, the prover outputs seedsinternal =
ReleaseSeeds(seedroot, c), where c is the challenge sampled from CM,K . Later, to
recover the M − K seeds, one runs RecoverLeaves on seedsinternal and c.

The third optimization idea from [6] is adding salt to provide tighter security
proof for the zero-knowledge property. This technique does not give efficiency
improvement but helps avoid multi-target attacks. In particular, in the first
round of Πbase the prover picks a salt of 2λ bits, then runs the i-th instance of
Πbase with the random oracle Oi(.) = O(salt‖i‖·). The prover also salts the seed
tree construction.

Logarithmic-Size (Linkable) Ring Signatures from LIPs 227

Protocol 3.5 (Main OR sigma protocol)
Πmain = (P = (Pmain

1 ,Pmain
2), V = (Vmain

1 ,Vmain
2)):

– Round 1: Pmain
1 (R, (UI , I);O)

1. seedroot ← {0, 1}λ

2. salt ← {0, 1}2λ, O′ = O(salt‖·)
3. (seed1, . . . , seedM) ← SeedTree(seedroot,M ;O′)
4. For i = 1, . . . , M :

Oi = O(salt‖i‖·)
cmti ← Pbase

1 (R, (UI , I);Oi, seedi)
5. cmt = (salt, cmt1, . . . , cmtM).
6. Send cmt to the verifier.

– Round 2: Vmain
1 responds with a uniformly challenge ch = c ← CM,K .

– Round 3: Pmain
2 ((UI , I), ch;O)

1. Parse c = (c1, . . . , cM) = ch
2. For i ∈ [M] such that ci = 0, rspi ← Pbase

2 ((UI , I), ci;O, seedi)
3. O′ = O(salt‖·)
4. seedsinternal ← ReleaseSeeds(seedroot, salt, c;O′)
5. rsp = (seedsinternal, {rspi}i∈[M]:ci=0)
6. Send rsp to the prover.

– Round 4: Vmain
2 (cmt, ch, rsp;O)

1. Parse
cmt = (salt, cmt1, . . . , cmtM)
ch = c = (c1, . . . , cM)
rsp = (seedsinternal, {rspi}i∈[M]:ci=0)

2. O′ = O(salt‖·)
3. ({rspi}i∈[M]:ci=0) ← RecoverLeaves(seedsinternal, c;O′)
4. For i = 1, . . . , N :

Oi(·) = O(salt‖i‖·)
Output 0 if Vbase

2 (cmti, ci, rspi;Oi) outputs 0, and aborts the protocol.
5. Output 1.

Security Proof of Πmain. Given the security of the base sigma protocol Πbase,
one can derive the security of the main sigma protocol Πmain by using properties
of SeedTree by suitably modifying the analysis in [6, Section 3.5].

Correctness. As the base protocol runs without aborts, the verifier accepts
transcripts of honest executions of Πmain almost surely thanks to the correctness
property of the SeedTree.

Relaxed Special Soundness. Given two accepting transcripts (cmt, c, rsp)
and (cmt, c′, rsp′) with c �= c′, one can find an index j ∈ [M] such that
their j-th bit satisfies cj �= c′

j . Assume that cj = 0, c′
j = 1. Let rsp =

(seedsinternal, {rspi}i∈S , where S = {i : ci = 0}. Then V2(cmtj , 0, rspj) = 1.
Let {seed′

i}i:c′
i=1 = RecoverLeaves(seeds′

internal, c
′). Then, V2(cmtj , 1, seed′

j) = 1.
One applies the extractor of Πbase to (cmtj , 0, rspj) and (smtj , 1, seed′

j) to
extract a witness. If the witness is a collision W = (Q‖bits, Q′‖bits′) for the
oracle Oi in P1, the collision for O is (salt‖i‖Q‖bits, salt‖i‖Q′‖bits′).

228 X. T. Khuc et al.

Special Zero-Knowledge. At this point, the zero-knowledge property of
Πmain follows from the zero-knowledge property of the base sigma protocol
Πbase and properties of SeedTree, and in fact, the proof in [6, Theorem 3.6] does
not use any additional information of concrete group actions compared to the
proof of [6, Theorem 3.3].

In particular, given the special honest-verifier zero-knowledge property of
Πbase and the security of SeedTree, one obtains that Πmain is special zero-
knowledge: there is a simulator Sim such that for any relation (X,W), any chal-
lenge ch, any computationally unbounded adversary A making q queries of the
form salt‖· to the random oracle O, one has

∣∣Pr[A(P(X,W, ch)) = 1] − Pr[A(Sim(X, ch)) = 1]
∣∣ ≤ 3q

2λ
.

3.5 Ring Signature from the Main OR Sigma Protocol

To obtain ring signature from the main OR sigma protocol, we use the general
approach of Fiat-Shamir transform, in which the challenge is modelled as the
output of a hash function HFS with range CM,K . The hash function is treated
as a random oracle and the resulting signature is secure in the random oracle
model.

Algorithm 3.6. We obtain a ring signature from the main OR sigma protocol
Πmain via Fiat-Shamir transform as follows.

– KeyGen(pp):
1. (Q,U) ← QSample(Q0, s)
2. pk = Q, sk = U
3. Return (pk, sk)

– Sign(skI , I,m,R):
1. Parse R = (pk1, . . . , pkN)
2. cmt = (salt, (cmti)i∈[M]) ← Pmain

1 (R, (skI , I);O)
3. ch = HFS(m,R, cmt)
4. rsp = Pmain

2 ((skI , I), ch)
5. Return σ = (cmt, ch, rsp)

– Verify(R,m, σ):
1. Parse R = (pk1, . . . , pkN)
2. Parse σ = (cmt, ch, rsp)
3. If Vmain

2 (cmt, ch, rsp;O) = 1 and ch = HFS(m,R, cmt),
then return 1, else return 0.

It follows from well-known general arguments that correctness, honest verifier
zero-knowledge, special soundness properties of the underlying OR sigma pro-
tocol imply the correctness, anonymity and unforgeability of the ring signature,
see [6,23].

Logarithmic-Size (Linkable) Ring Signatures from LIPs 229

3.6 Logarithmic Linkable Ring Signature

In [6], Beullens, Katsumata and Pintore also give a general receipt for building
logarithmic linkable ring signature from pairs of group action 	 : G × X → X
and • : G × T → T and a function Link : T × T → {0, 1}. The pair of group
actions needs to satisfy the following properties:

– Correctness: for any T ∈ T , Link(T, T) = 1.
– Linkability: it is hard to find secret keys s and s′ such that s′ 	 X0 = s 	 X0

and Link(s • T0, s
′ • T0) = 0.

– Linkable anonymity: for a random secret key s, the distribution (s	X0, s•T0)
and (X,T) ← X × T are indistinguishable.

– Non-frameability: given X = s 	 X0 and T = s • T0, it is hard to find s′ such
that Link(s′ • T0, T) = 1.

It is evident that the required properties - linkability, linkable anonymity and
non-frameability - of linkable ring signature follow from the above properties of
admissible pairs of group actions. Elements of T are used as a tag for checking
the link between signatures.

In [6], the authors provide instantiations of pairs of group actions based
on isogeny and lattice assumptions. For isogeny-based constructions, the group
action • is g •x = g 	(g 	x). An additional hardness assumption, called Squaring
Decisional CSIDH (sdCSIDH), is required for the security of the resulting link-
able signature. For the lattice-based construction from module LWE assumption,
[6] uses a second, independent LWE group action for linkability. In particular, the
group actions take the form (s, e, ẽ)	w = As+e+w and (s, e, ẽ)•w = Bs+ẽ+w
for independent matrices A,B. We refer to [6] for further details on the concrete
constructions.

In [1,13], linkable ring signature from code equivalence problem and alternat-
ing trilinear from equivalence problem are also obtained following the framework
of [6]. It is observed that the ad-hoc approach of square decisional version of code
equivalence problem and alternating trilinear from equivalence leads to problems
with linkability. Instead, the group action • for case of code equivalence problem
in [1] and alternating trilinear from equivalence in [13] is taken to be the inverse
group action, that is instead of using g 	 x = g · x, one uses g • x = g−1 · x.

For the lattice isomorphism problem, we follow the approach of [1] and use the
inverse group action of lattice isomorphism for •. In particular, in the setting
of lattice isomorphisms with g = U and x = Q, we use g 	 x = ρU (Q) and
g • x = ρU−1(Q). Notice that other choices for • in [6], like square action or
generating T0 from Ds([Q0]) by a trusted party and use • = 	, do not work for
lattice isomorphism due to non-commutativity of the group action, which makes
linkability very hard to achieve.

On public data Q0 ∈ Sym+(n,Z) and suitable positive s, run
QSample(Q0, s) to obtain a secret sk = U and a public key pk = Q such
that Q = ρU (Q0). Let T0 = Q0. Then the associated tag is T = ρU2(Q0). The
Link function simply checks if the two tags T, T ′ are the same matrices.

230 X. T. Khuc et al.

The linkability property can be deduced as follows. Suppose for contradiction
that we found s = U, s′ = U ′ such that Q = Q′, which means ρU (Q0) = ρU ′(Q0),
and T �= T ′, which means ρU−1(Q0) �= ρU ′−1(Q0), then we would have Q0 =
ρU−1U ′(Q0) and Q0 �= ρUU ′−1(Q0). Thus, while U−1U ′ is an automorphism of
Q0, UU ′−1 is not, which gives us a contradiction as the set of automorphisms of
Q0 is a finite group with respect to matrix multiplication.

Linkable anonymity follows from the way we generate keys and tag. The
distribution of Q is Ds([Q0]) and U is uniformly random from the set of iso-
morphisms from Q0 to Q, thus the distribution of T is D′

s([Q0]) := {ρU−1(Q0) :
(Q,U) ← Ds([Q0])}. Hence, (Q,T) = (ρU (Q0), ρU−1(Q0)) distributes as the
public distribution Ds([Q0]) × D′

s([Q0]).
Finally, for non-frameability, it is necessary that for given Q = ρU (Q0) and

T = ρU−1(Q0), it is difficult to find a unimodular matrix U ′ such that T =
ρU ′−1(Q0). Given such U ′, we obtain an isomorphism UU ′ of quadratic form
from T to Q which solves the search lattice isomorphism problem.

3.7 Parameter Selection

For parameter choices of lattice isomorphism problems, we follow the specifica-
tion of the digital signature HAWK [25] whose implementation has been publicly
released in the NIST additional digital signature competition [34]. Specifically,
the dimension n is chosen as a power of 2, the initial quadratic form Q0 is the
trivial form on Z

2n - that is Q0 is the 2n × 2n identity matrix, the secret U
is a basis of SL(2,Z[X]/(Xn + 1)) which is generated in the style of FALCON
[35] for efficiency. The detailed KeyGen algorithm is given in Algorithm 1 of
HAWK [25]. The public key is then simply Q1 = U t · U . For the NIST I level of
security, one takes n = 29, while for the NIST V level of security n = 210. Other
parameters for optimal key generation are detailed in Table 2 of HAWK [25].

Our (non-linkable) ring signature is σ = (cmt, ch, rsp). Since our base OR
sigma protocol is commitment recoverable, there is an efficient deterministic
algorithm inputting the statement R, the challenge ch and response rsp that
can recover the unique cmt. Hence, we can use only salt instead of cmt in our
signature. This leads to the following computational cost (in bits):

Our signature size = Salt+Ch+Seedinternal·(M−K)+(z+(hash values) log N)·K.

In order to achieve 128-bit security (NIST I), we choose integers M = 250
and K = 30, where

(
250
30

)
> 2128 with K = 30 challenge ch = 0 and M −K = 220

challenge ch = 1. We use 256-bit salts, hash values and 128-bit seeds. We consider
parameter sets for HAWK-512 [25].

In order to achive 256-bit security (NIST V), we choose integers M = 494
and K = 59, where

(
494
59

)
> 2256 with K = 59 challenge ch = 0 and M −K = 435

challenge ch = 1. We use 512-bit salts, hash values and 256-bit seeds. We consider
parameter sets for HAWK-1024 [25].

Logarithmic-Size (Linkable) Ring Signatures from LIPs 231

4 Conclusion

Lattice isomorphism problem (LIP) has recently gained interest as a promising
foundation for post-quantum cryptography [4,15–17]. While it is desirable to
build cryptographic primitives based on LIP, only a handful of encryption and
signature schemes have been constructed so far. In this paper, we build a loga-
rithmic ring signature and its linkable variant from LIP. Our approach regards
LIP as an instance of group action and follows the general framework of [6]
with suitable modifications for the case of LIP. In future work, we will consider
implementation for our proposed ring signatures.

Acknowledgements. We are grateful to the SPACE 2023 anonymous reviewers for
their helpful comments. This work is partially supported by the Australian Research
Council Linkage Project LP190100984.

A Ring Signatures Properties

We require the following properties of ring signatures.

Correctness: means that a correctly generated ring signature is surely accepted.
Given the security level λ, for every ring size N = poly(λ), and every mes-
sage m, if pp ← RS.Setup(1λ), (ski, pki) ← RS.KeyGen(pp), for i ∈ [N],
R = (pk1, . . . , pkN) and σ ← RS.Sign(R, skj ,m) for some j ∈ [N], then
Pr

[
RS.Verify(σ,m,R) = 1

]
= 1.

Anonymity: requires that it is infeasible to determine the signer even if all users’
secret keys in the ring are revealed. Formally, a ring signature RS is anonymous
against full key exposure if for any N = poly(λ), any PPT adversary A has
negligible advantage against a challenger in the following game:

1. The challenger runs RS.Setup(1λ) to obtain pp, and uses randomness randi

to run RS.KeyGen(pp, randi) to generate key pairs (ski, pki) for each user
i ∈ [N].

2. The challenger samples a random bit b ∈ {0, 1} and keeps it secret.
3. The challenger sends pp and all randi to the adversary.
4. The adversary provides a challenge (m,R, i0, i1) to the challenger, where i0, i1

are indices of two users in the ring R.
5. The challenger uses his secret bit b to sign σ∗ = RS.Sign(R, skib

,m), and
sends the signature σ∗ back to the adversary.

6. The adversary guesses a bit b∗ ∈ {0, 1}.
7. The adversary wins the game if b∗ = b.

The advantage of A in this game is Advanonymity
RS = |Pr[A wins] − 1

2 |.

Unforgeability: means that it is infeasible to forge a valid ring signature with-
out knowing the secret key of some user in the ring. Formally, a ring signature
RS is unforgeable with respect to insider corruption if, for any N = poly(λ), any
PPT adversary A has negligible advantage against a challenger in the following
game:

232 X. T. Khuc et al.

1. The challenger runs RS.Setup(1λ) to obtain pp, and uses randomness randi

to run RS.KeyGen(pp, randi) to generate key pairs (ski, pki) for each user
i ∈ [N].

2. The challenger forms a ring PK = {pki}i∈[N] and initialises two sets SL = ∅,
CL = ∅.

3. The challenger sends pp and PK to the adversary.
4. The adversary can make arbitrary polynomially many signing and corruption

queries as follows:
– Signing query (sign, i,m,R): the challenger checks if i is a user in the ring

R: pki ∈ R. If i is a user, then the challenger signs σ = RS.Sign(R, ski,m).
He sends the signature σ to the adversary and adds (i,m,R) to the signing
set SL = SL ∪ {(i,m,R)}.

– Corruption query (corrupt, i): the challenger sends the randomness randi

of user i to the adversary, and pki to the corruption set CL = CL∪{pki}.
5. The adversary guesses a ring signature (σ∗,m∗, R∗).
6. The adversary wins the game if RS.Verify(σ∗,m∗, R∗) = 1, R∗ ⊂ PK − CL,

and (i,m∗, R∗) /∈ SL.

B Linkable Ring Signatures Properties

We require the following properties of linkable ring signatures.

Correctness: For every security parameter λ ∈ N, N = poly(λ), j ∈ [N],
sets D0,D1 ⊆ [N] such that j ∈ D0 ∩ D1, and every message m0,m1,
if pp ← LRS.Setup (1λ), (pki, ski) ← LRS.KeyGen(pp) for all i ∈ [N],
Rb := {pki}i∈Db

, σb ← LRS.Sign (skj ,mb, Rb) for all b ∈ {0, 1} then
LRS.Verify(Rb,mb, σb) = 1, for all b ∈ {0, 1} and LRS.Link(σ0, σ1) = 1.

Linkability: A linkable ring signature scheme LRS is linkable if, for all λ ∈ N

and N = poly(λ), any PPT adversary A has at most negligible advantage in the
following game:

1. The challenger runs pp ← LRS.Setup(1λ) and provides pp to A.
2. A outputs PK := {pki}i∈[N] and a set of tuples (σi,mi, Ri)i∈[N+1];
3. We say the adversary A wins if the following conditions hold:

• For all i ∈ [N + 1], we have Ri ⊆ PK;
• For all i ∈ [N + 1], we have LRS.Verify(Ri,mi, σi) = 1;
• For all i, j ∈ [N + 1] such that i �= j, we have LRS.Link(σi, σj) = 0.

Linkable Anonymity: A linkable ring signature scheme LRS is linkable anony-
mous if, for all λ ∈ N and N = poly(λ), any PPT adversary A has at most
negligible advantage in the following game:

1. The challenger runs pp ← LRS.Setup(1λ) and generates key pairs (pki, ski) =
LRS.KeyGen(pp, rri) for all i ∈ [N] using random coins rri. It also samples a
random bit b ← {0, 1};

2. The challenger provides pp and PK := {pki}i∈[N] to A;

Logarithmic-Size (Linkable) Ring Signatures from LIPs 233

3. A outputs two challenge verification keys pk∗
0 , pk∗

1 ∈ PK to the challenger.
The secret keys corresponding to pk∗

0 , pk∗
1 are denoted by sk∗

0 , sk
∗
1 , respec-

tively;
4. The challenger provides all random coins rri of the corresponding pki ∈ PK−

{pk∗
0 , pk∗

1};
5. A queries for signatures on input a verification key pk ∈ {pk∗

0 , pk∗
1}, a message

m and a ring R such that {pk∗
0 , pk∗

1} ⊆ R:
• If pk = pk∗

0 , then the challenger returns σ ← LRS.Sign(sk∗
b ,m,R);

• If pk = pk∗
1 , then the challenger returns σ ← LRS.Sign(sk∗

1−b,m,R);
6. A outputs a guess b∗. If b∗ = b, we say the adversary A wins. The advantage

of A in this game is Advanonymity
LRS = |Pr[A wins] − 1

2 |.

Non-frameability: A linkable ring signature scheme LRS is non-frameable if,
for all λ ∈ N and N = poly(λ) any PPT adversary A has at most negligible
advantage in the following game played against a challenger.

1. The challenger runs pp ← LRS.Setup(1λ) and generates key pairs (pki, ski) ←
LRS.KeyGen(pp; rri) for all i ∈ [N] using random coins rri. It sets PK :=
{pki}i∈[N] and initializes two empty set SL and CL.

2. The challenger provides pp and PK to A.

– A can make signing and corruption queries an arbitrary polynomial number
of times:

• (sign, i,m,R) : The challenger checks if pki ∈ R and if so it computes the
signature σ ← LRS.Sign(ski,m,R). The challenger provides σ to A and
adds (i,m,R) to SL;

• (corrupt, i) : The challenger adds pki to CL and returns rri to A.
– A outputs (R∗,m∗, σ∗). We say the adversary A wins if the following condi-

tions are satisfied:
• LRS.Verify(R∗,m∗, σ∗) = 1 and (·,m∗, R∗) /∈ SL;
• LRS.Link(σ∗, σ) = 1 for some σ returned by the challenger on a signing

query (i,m,R) ∈ SL, where pki ∈ PK − CL.

C Proof of Knowledge

A proof of knowledge scheme is a two-party interactive protocol in which a
prover P tries to prove his knowledge about some statement to a verifier V.
The parties take turns one by one to act in the protocol. First, the prover sends
a commitment cmt to the verifier. The verifier generates a challenge ch1 and
returns it to the prover. The prover answers by sending a response rsp1 to the
verifier. The verifier again generates the second challenge ch2 and sends it to
the prover. The prover again answers by sending the second response rsp2 to
the verifier. The parties repeat sending challenges and responses n times. After
receiving the last response rspn, the verifier returns 1 (accept), which means
that he is convinced that the prover possesses the knowledge, or 0 (reject),
which means that he is not. With n pairs of challenges-responses, we call this a
(2n + 1)-round proof of knowledge.

234 X. T. Khuc et al.

Definition C.1. Consider a relation R = {(x,w) : x ∈ L,w ∈ W (x)}, where
L is an NP language, x is a statement in L and W (x) is the set of witnesses
of x. Proof of knowledge for the relation R is a two-party interactive protocol
in which the prover tries to convince the verifier that he knows a witness for
each statement in the given language. We require two properties for proof of
knowledge: correctness and soundness.

Correctness: If (x,w) ∈ R, then a prover who knows the witness w can surely
convince the verifier of this knowledge: Pr[〈P(x,w),V(x)〉 = 1] = 1.

Soundness: Intuitively, soundness means that a prover who does not know the
witness cannot convince the verifier that he knew with nonnegligible probability.
Otherwise, an efficient solver would exist for the hard problem of finding wit-
nesses for statements in R. Formally, a proof of knowledge has soundness error
ε if for any PPT prover P ′ such that ε′ = Pr[〈P ′(x,w),V(x)〉 = 1] > ε, there
exists a PPT algorithm extractor E which outputs a witness w′ for x in time
poly(λ, 1

ε′−ε) with probability at least 1
2 . Here, the extractor E has a rewindable

black-box access to P ′, meaning that E can copy the state of P ′ at any moment
in the protocol, relaunch P ′ from a previously copied state, and query P ′ on
input messages.

Honest-Verifier Zero-Knowledge: A proof of knowledge between P and V
is an honest-verifier zero-knowledge proof if there exists a PPT algorithm sim-
ulator S whose output distribution is indistinguishable from the distribution of
transcripts produced by the interactive protocol between P and V, for an honest
verifier V.

C.1 Index-Hiding Merkle Trees

Given a list of elements A = [a1, . . . , aN], one can use the Merkle tree to hash
A into a single value called the root so that it will be efficient to prove that an
element is in the list A. For OR proofs of knowledge, we need a variant of the
Merkle tree introduced in [6], which has an additional property that also hides
the position of an element in the list when proving that this element is in A.

Definition C.2 ([6]). An index-hiding Merkle tree is given as a tuple of 3
algorithms (genTree, getPath, ReconRoot), together with a public hash function
H : {0, 1}∗ → {0, 1}2λ.

– genTree(A) → (root, tree): takes as input a list of 2k elements A =
(a1, . . . , a2k), it constructs a binary tree of depth k: the leaf nodes are
{�i = H(ai)}i∈[2k], and every inside node h with children nodes hleft and
hright equals the hash digest of a concatenation of hleft and hright. For hid-
ing indices, instead of using the standard concatenation hleft‖hright, we order
the two children nodes with the lexicographical order. This modified concate-
nation is denoted by (hleft, hright)lex. The algorithm outputs the root of the
Merkle tree and a description of the entire tree as (root, tree).

Logarithmic-Size (Linkable) Ring Signatures from LIPs 235

– getPath(tree, I) → path: takes as input the tree description tree and an index
I ∈ [2k], outputs the list path containing the sibling node of �I and the sibling
of all ancestor nodes of �I ordered by decreasing depth.

– ReconRoot(a, path) → root: takes as input an element a in the list A and a
path path = (n1, . . . , nk), outputs a reconstructed root root′ = hk calculated
by putting h0 = H(a) and defining hi = H((hi, ni)lex) for each i ∈ [k].

If H is collision-resistant, then the Merkle tree construction is binding, which
means that for any b /∈ A, it is infeasible to construct a path to prove that b ∈ A.
The use of the lexicographical order to concatenate two children nodes in the
Merkle tree construction implies that the output path of getPath information-
theoretically hides the input index I ∈ [N].

C.2 Seed Tree

In [6], the authors introduce a primitive called seed tree to generate several
pseudorandom values and later disclose an arbitrary subset without revealing
information on the remaining values. A seed tree is a complete binary tree of λ-
bit seed values such that the left/right child node of a seed seedh is the left/right
half of Expand(seed‖h), where Expand is a pseudorandom generator (PRG). The
unique identifier h of the parent seed is appended to separate the input domains
of different calls to the PRG. A sender can efficiently reveal the seed values
associated with a subset of the set of leaves by revealing the appropriate set of
inside seeds in the tree.

Definition C.3 ([6]). Let Expand : {0, 1}λ+�log2(M−1)� → {0, 1}2λ be a PRG for
λ,M ∈ N instantiated by a random oracle O. A seed tree is a tuple of 4 O-oracle
calling algorithms (SeedTree,ReleaseSeeds,RecoverLeaves,SimulateSeeds).

– SeedTree(seedroot,M ;O) → {leafi}i∈[M]: takes as input a root seed seedroot ∈
{0, 1}λ and an integer M , constructs a complete binary tree with M leaves by
recursively expanding each seed to obtain its children seeds. Oracle calls are
of the form O(Expand‖seedh‖h), where h ∈ [M − 1] is a unique identifier for
the position of seed in the binary tree.

– ReleaseSeeds(seedroot, c;O) → seedsinternal: takes as input a root seed seedroot ∈
{0, 1}λ and a challenge c ∈ {0, 1}M , outputs the list of seeds seedsinternal that
covers all the leaves with index i such that ci = 1. A set of nodes D covers a
set of leaves S if the union of the leaves of the subtrees rooted at each node
v ∈ D is exactly the set S.

– RecoverLeaves(seedsinternal, c;O) → {leafi}i:ci=1: takes as input a set
seedsinternal and a challenge c ∈ {0, 1}M , computes and outputs all the leaves
of subtrees rooted at seeds in seedsinternal which is exactly the set {leafi}i:ci=1.

– SimulateSeeds(c;O) → seedsinternal: takes as input a challenge c ∈ {0, 1}M ,
computes the set of nodes covering the leaves with index i such that ci = 1.
Then random samples a seed from {0, 1}λ for each of these nodes and outputs
the set of these seeds as seedsinternal.

236 X. T. Khuc et al.

Such a seed tree is correct and hiding in a sense that:

(i) the leaves {leafi}i:ci=1 output by SeedTree(seedroot,M) are the same as
those output by RecoverLeaves(ReleaseSeeds(seedroot, c), c) for any c ∈
{0, 1}M ;

(ii) SimulateSeeds helps to show that the seeds associated with all the leaves
with index i such that ci = 0 are indistinguishable from uniformly random
values for a recipient that is only given seedsinternal and c.

C.3 Proof of Knowledge for Group Actions

Proof of Group Actions. Consider a group action G × X → X , (g, x) �→ g · x
of a group G on a set X . Fix a public element X0 ∈ X .

For two public elements X0,X ∈ X , we want to prove knowledge of a secret
group element g such that g ·X0 = X. Following the classical proof of knowledge
of graph isomorphism, a proof of group actions is obtained as follows. The prover
commits to cmt = r · X, where r ∈ G is a random group element. The verifier
selects a random bit challenge ch ∈ {0, 1}. If ch = 0, then the prover responds
with rsp = r · g. The verifier subsequently checks whether rsp · X0 = cmt. If
ch = 1, then the prove sets rsp = r. The verifier checks whether rsp · X = cmt.

OR Proof of Group Actions. For public elements X0,X1, . . . , XN of X , the
OR proof of knowledge for group actions aims to prove knowledge of a secret
group element g such that g · X0 = XI for some index I ∈ {1, . . . , N}. One can
easily extend the proof of knowledge above to obtain a secure OR proof of group
actions as follows.

For each index i = 1, . . . , N , the prover samples a random group element
ri ∈ G and commits to cmti = ri · Xi. Then, the verifier chooses a random bit
challenge ch ∈ {0, 1}. If ch = 0, the prover sets his response as rsp = rI · g.
The verifier then checks whether rsp · X0 ∈ {cmt1, . . . , cmtN}. If ch = 1, then
the prover sets rsp = (r1, . . . , rN). The verifier checks whether {r1 · X1, . . . , rN ·
XN} = {cmt1, . . . , cmtN}. Sending the commitments in a random order helps
to hide the index I as the equation rsp · X0 ∈ {cmt1, . . . , cmtN} provides no
information about the index I in rsp = rI · g. If we did not randomly shuffle the
commitments, then from rsp · X0 = cmtI one would see directly that the signer
is I.

Using Merkle Tree to Reduce the Size of the OR Proof to Logarithmic
Size. When ch = 1, the commitment in OR proof consists of N elements of
X , which make the proof size linear in the number of users N . A key idea of
Beullens, Katsumata and Pintore in [6] is to use the Merkle tree to hash the list
of commitments and send only the root as the commitment. Consequently, when
ch = 0, we need to send a path in the Merkle tree for correct verification as part
of the response. This method reduces the OR proof’s size to be logarithmic in
the number of users N .

Given a list of elements A = [a1, . . . , aN], one can use the Merkle tree to hash
A into a single value called the root so that it will be efficient to prove that an

Logarithmic-Size (Linkable) Ring Signatures from LIPs 237

element is in the list A. For OR proofs of knowledge, we need a variant of the
Merkle tree introduced in [6], which has an additional property that also hides
the position of an element in the list when proving that this element is in A.

Another important technique of [6] to reduce proof size is to use unbalanced
challenge spaces. Upon applying Merkle tree hashing, opening to the case ch = 1
is much cheaper than when ch = 0. To achieve λ bits of security, instead of
repeating the OR proof λ times in parallel, one can choose integers M,K such
that

(
M
K

)
≥ 2λ and M > λ,K � λ, then repeat totally M times the execution of

OR proof with exactly K times with challenge ch = 0. Since the more expensive
case of ch = 0 is repeated much less frequently, the proof size is significantly
reduced. Note that among M parallel executions of the binary challenge OR
proofs, M − K times are used for ch = 1 in which, one simply returns the
random seed. The seed tree optimises this step: instead of choosing independent
seeds for different runs, one generates the seeds using the seed tree. Instead of
responding with total M − K seeds, the prover outputs the released seeds from
the root seed and the challenge c.

D Proof of Theorem 3.2

Correctness: If the protocol is executed correctly, the response is rsp = U1−c
1 V1.

The verification equation reads Q′ = ρV1(Q1) = ρU1−c
1 V1

(ρUc−1
1

(Q1)) = ρrsp(Qc),
which is correct.

Soundness: Suppose that on the same commitment Q′, we have two valid tran-
scripts (Q′, 0, rsp0), (Q′, 1, rsp1). One has two verification equations ρrsp0(Q0) =
Q′ and ρrsp1(Q1) = Q′. It follows that ρrsp0(Q0) = ρrsp1(Q1), hence we have
ρ−1

rsp1
(ρrsp0(Q0)) = ρrsp−1

1
(ρrsp0(Q0)) = ρrsp0·rsp−1

1
(Q0) = Q1. In particular,

rsp0 · rsp−1
1 is an isomorphism from Q0 to Q1. We obtain the soundness prop-

erty under the assumption that the worst-case lattice isomorphism problem is
hard.

Zero-Knowledge: We need to simulate the transcript of our protocol on given
public quadratic forms Q0, Q1 without knowing the secret isomorphism U1. Sam-
pling (Q′, V) with QSample(Q0, s) gives Q′ of distribution Ds([Q0]), and V is
a uniformly random isomorphism from Q0 to Q′. Next, we sample a random
bit c. If c = 1, the Protocol 3.1 actually does not use the secret isomorphism
U1, so one can simulate the conversation by proceeding the same way as in
the protocol with c = 1. The transcript is simply (Q′, 1, V). When c = 0, we
run QSample(Q1, s) on Q1 to obtain (Q′′, V ′′) where Q′′ = ρV ′′(Q1). Thus,
(Q′′, 0, V ′′) is a suitable simulated transcript when c = 0, as the distributions of
Q′′, V ′′ are Ds([Q1]) = Ds([Q0]) and uniformly random isomorphism from Q0 to
Q′′, which are the same as in the case c = 0 of the Protocol 3.1.

E Proof of Theorem 3.4

Correctness. If we run Πbase honestly with prover’s input (UI , I) which satisfies
ρUI

(Q0) = QI , then the verifier accepts almost surely. If ch = 0, then z =

238 X. T. Khuc et al.

UIVI , and we have ρz(Q0) = ρUIVI
(Q0) = ρVI

(ρUI
(Q0)) = ρVI

(QI) = Q′
I .

As the prover computes CI = Q′
I in P1, root′′ ← ReconstructRoot(C ′′, path)

reconstructed from the I-th leaf of the Merkle tree in V2 will match the root
root in P1, hence the verifier accepts. If ch = 1, then in V2 the verifier repeats
the calculation in P1 with seed = rsp, and obtains the same root root′′ = root,
hence the verifier accepts.

Relaxed Special Soundness. Given two accepting transcripts (root, 0,
(z, path)) and (root, 1, seed), we can extract a witness as either U ∈ GL(n,Z)
such that ρU (Q0) = QI for some I ∈ [N], or a collision in H, or a collision
for the random oracle O, as follows. One first expands (seed1, . . . , seedN) ←
O(Expand‖seed) to obtain seedi ∈ {0, 1}λ, then computes (root′, tree) ←
MerkleTree(C1, . . . , CN), where Ci = Q′

i is obtained via QSample(Q0, s‖seedi).
From the two valid transcripts, one obtains that root′ = root and
ReconstructRoot(C ′′, path) = root with C ′′ = Q′′ = ρz(Q0). If C ′′ �= Ci for all
i ∈ [N], then one can use the Merkle tree extractor to find a collision of H from
(tree, C ′′, path). If there exists I ∈ [N] such that C ′′ = CI , one checks whether
Q′′ �= ρU (QI), if so, then the pairs Q′′, ρU (QI) is a collision of O. When in
addition Q′′ = ρU (QI), one has ρU−1

I z(Q0) = QI , hence U−1
I z is an isomorphism

between Q0, QI .

Honest-Verifier Zero-Knowledge. One needs to build a simulator Sim such
that for any valid relation (X,W), and any challenge ch, any computationally
unbounded adversary A making q queries to the random oracle O, one has

∣∣Pr[A(P(X,W, ch)) = 1] − Pr[A(Sim(X, ch)) = 1]
∣∣ ≤ 2q

2λ
.

In the framework of [6], the proof of zero-knowledge property in [6, Theorem 3.3]
is an extension of the proof for graph isomorphism protocol and uses the following
ingredients: the problem ac-sLIPQ0

s is hard, seed and bitsi’s have high min-entropy
and information-theoretically hidden from A, and that the distributions of root
and path does not depend on the value of I. For lattice isomorphism sigma
protocol, we refer to [17,24] for proofs of zero-knowledge property in a similar
line. One defines Sim for each case of ch = 1 and ch = 0 separately as follows:

– When ch = 1, the prover does not need a secret key to run the protocol, Sim
just runs the prover on input (X, ch = 1) and uses the same output as the
prover. As the prover does not use the witness in this case, transcripts when
ch = 1 are simulated perfectly.

– When ch = 0, Sim runs (Q′, V) ← Algorithm 2.9(Q0, s), let z = V . It sets
C1 = ρz(Q0), and sets the remaining commitments C2, . . . , CN to be uni-
formly random strings from {0, 1}2λ. It generates a Merkle tree (tree, root) ←
MerkleTree(C1, . . . , CN), then extracts a path path ← getMerklePath(tree, 1).
Finally, Sim sets its output in this case as (root, 0, rsp = (z, path). When
ch = 0, one simulates the transcript by randomising its parts one by one
to obtain a sequence of simulators Simi. Fix an adversary A and a relation
(X,W). Define the event Ei as A(Simi(X, 0)) = 1.

Logarithmic-Size (Linkable) Ring Signatures from LIPs 239

– Sim1: This simulator runs the same procedure as the honest prover P1, but
it uses uniformly random bit strings seedi’s. The adversary only spots the
difference in the transcript if he has made a query exactly on seed, which
happens with the probability less than q

2λ . Thus,
∣∣Pr[A(P(X,W, 0)) = 1] −

Pr[E1]
∣∣ ≤ q

2λ .
– Sim2: This simulator is the same as Sim1 except that it uses uniformly random

bit string for commitments Ci in P1. The adversary only sees the difference
in the transcript if he has queried on a commitment Q′

i. Assume that all the
Qi are distinct. Let qi be the number of queries of the form Q′

i. Then the
probability that A has made queries exactly on input Q′

i is at most qi

2λ . The
probability that A can spot the difference in the transcript by making queries

on some commitment Q′
i is at most

N∑
i=1

qi

2λ ≤ q
2λ , which implies |Pr[E1] −

Pr[E2]| ≤ q
2λ .

– Sim3: This simulator is the same as Sim2 except that Sim2 reruns (Q′
I , VI) ←

QSample(Q0, s) and uses this new Q′
I = ρVI

(Q0) in the step 2 of V2. This
does not change the distribution of output of Sim2, so |Pr[E2] − Pr[E3]| = 0.

– Sim4: The is the final simulator which is different from Sim only by using
I = 1 instead of the value of I in the true witness. Since different values of I
do not affect the distribution of root and path, one has |Pr[E3]−Pr[E4]| = 0.

After randomising all parts of the transcript, the probability that the adver-
sary can spot changes in the distributions is negligible

∣∣Pr[A(P(X,W, 0)) =
1] − Pr[E4]

∣∣ ≤ 2q
2λ .

References

1. Barenghi, A., Biasse, J., Ngo, T., Persichetti, E., Santini, P.: Advanced signature
functionalities from the code equivalence problem. Int. J. Comput. Math. Comput.
Syst. Theory 7(2), 112–128 (2022)

2. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Proceedings of the 13th ACM Conference on Computer and
Communications Security, pp. 390–399 (2006)

3. Bellini, E., Esser, A., Sanna, C., Verbel, J.: MR-DSS - smaller MinRank-based
(ring-)signatures. In: Cheon, J.H., Johansson, T. (eds.) PQCrypto 2022. LNCS,
vol. 13512, pp. 144–169. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-17234-2 8

4. Bennett, H., Ganju, A., Peetathawatchai, P., Stephens-Davidowitz, N.: Just how
hard are rotations of Zn? algorithms and cryptography with the simplest lattice.
Cryptology ePrint Archive, Paper 2021/1548, to appear at EUROCRYPT2023
(2021). https://eprint.iacr.org/2021/1548

5. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334.
IEEE (2007)

6. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 16

https://doi.org/10.1007/978-3-031-17234-2_8
https://doi.org/10.1007/978-3-031-17234-2_8
https://eprint.iacr.org/2021/1548
https://doi.org/10.1007/978-3-030-64834-3_16

240 X. T. Khuc et al.

7. Bläser, M., et al.: On digital signatures based on isomorphism problems: QROM
security, ring signatures, and applications. Cryptology ePrint Archive (2022)

8. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3 15

9. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short account-
able ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24174-6 13

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3),
1–36 (2014)

11. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: STOC 2013. Association for Computing Machinery, New
York (2013)

12. Budroni, A., Chi-Domı́nguez, J.-J., Kulkarni, M.: Lattice isomorphism as a group
action and hard problems on quadratic forms. Cryptology ePrint Archive, Paper
2023/1093 (2023). https://eprint.iacr.org/2023/1093

13. Chen, Z., Duong, D.H., Nguyen, T.N., Qiao, Y., Susilo, W., Tang, G.: On digital
signatures based on isomorphism problems: QROM security and ring signatures.
IACR Cryptology ePrint Archive, p. 1184 (2022)

14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

15. Ducas, L., Gibbons, S.: Hull attacks on the lattice isomorphism problem. Cryptol-
ogy ePrint Archive, Paper 2023/194, to appear at PKC2023 (2023). https://eprint.
iacr.org/2023/194

16. Ducas, L., Postlethwaite, E.W., Pulles, L.N., van Woerden, W.: HAWK: module
LIP makes lattice signatures fast, compact and simple. In: Agrawal, S., Lin, D.
(eds.) ASIACRYPT 2022. LNCS, vol. 13794, pp. 65–94. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-22972-5 3

17. Ducas, L., van Woerden, W.: On the lattice isomorphism problem, quadratic
forms, remarkable lattices, and cryptography. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277, pp. 643–673. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-07082-2 23

18. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-
out-of-many proofs and applications to ring signatures. In: Deng, R.H., Gauthier-
Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 4

19. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: efficient,
scalable and post-quantum blockchain confidential transactions protocol. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pp. 567–584 (2019)

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008. Association for Computing Machin-
ery, New York (2008)

21. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in np have zero-knowledge proof systems. J. ACM 38(3), 690–728
(1991)

https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://eprint.iacr.org/2023/1093
https://doi.org/10.1007/978-3-662-53887-6_1
https://eprint.iacr.org/2023/194
https://eprint.iacr.org/2023/194
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-07082-2_23
https://doi.org/10.1007/978-3-030-21568-2_4

Logarithmic-Size (Linkable) Ring Signatures from LIPs 241

22. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98 (2006)

23. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 9

24. Haviv, I., Regev, O.: On the lattice isomorphism problem. In: Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2014, pp. 391–404. Society for Industrial and Applied Mathematics (2014)

25. Huang, T.P., Postlethwaite, E.W., Prest, T., Pulles, L.N., van Woerden, W.:
https://hawk-sign.info

26. IBM. IBM unveils 400 qubit-plus quantum processor and next-generation IBM
quantum system two (2022)

27. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge
with applications to post-quantum signatures. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pp. 525–537
(2018)

28. Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security
from the DDH assumption. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS
2018. LNCS, vol. 11099, pp. 288–308. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98989-1 15

29. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (linkable) ring sig-
nature. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS
2019. LNCS, vol. 11464, pp. 110–130. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21568-2 6

30. Léo, D., et al.: Crystals: cryptographic suite for algebraic lattices
31. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic

Perspective. SECS, Springer, Heidelberg (2002). https://doi.org/10.1007/978-1-
4615-0897-7

32. NIST. NIST asks public to help future-proof electronic information (2016)
33. NIST. NIST announces first four quantum-resistant cryptographic algorithms

(2022)
34. NIST. Post-quantum cryptography: digital signature schemes. Round 1 additional

signatures (2023)
35. Pierre-Alain, F., et al. Falcon: Fast Fourier lattice-based compact signatures over

NTRU
36. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)

ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

37. Roberto, A., et al.: Crystals: cryptographic suite for algebraic lattices
38. Yuen, T.H., Esgin, M.F., Liu, J.K., Au, M.H., Ding, Z.: DualRing : generic con-

struction of ring signatures with efficient instantiations. In: Malkin, T., Peikert,
C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 251–281. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84242-0 10

39. Yuen, T.H., et al.: RingCT 3.0 for blockchain confidential transaction: shorter size
and stronger security. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 464–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51280-4 25

https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://hawk-sign.info
https://doi.org/10.1007/978-3-319-98989-1_15
https://doi.org/10.1007/978-3-319-98989-1_15
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-1-4615-0897-7
https://doi.org/10.1007/978-1-4615-0897-7
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-030-84242-0_10
https://doi.org/10.1007/978-3-030-51280-4_25
https://doi.org/10.1007/978-3-030-51280-4_25

“We Must Protect the Transformers”:
Understanding Efficacy of Backdoor

Attack Mitigation on Transformer Models

Rohit Raj(B) , Biplab Roy , Abir Das , and Mainack Mondal

Department of Computer Science and Engineering, IIT Kharagpur, Kharagpur, India
rrohit2901@gmail.com, biplabroy@kgpian.iitkgp.ac.in,

{abir,mainack}@cse.iitkgp.ac.in

Abstract. Recently, Neural Network based Deep Learning (DL) back-
door attacks have prompted the development of mitigation mechanisms
for such attacks. Out of them a key mitigation mechanism is Neural
Cleanse, which helps in the identification and mitigation of DL backdoor
attacks. It identifies the presence of backdoors in Neural Networks and
constructs a reverse-engineered trigger, which is later used to mitigate
the backdoor present in the infected model. However, since the pub-
lication of Neural Cleanse, newer DL architectures (e.g., Transformer
models) have emerged and are widely used. Unfortunately, it is not clear
if Neural Cleanse is effective to mitigate backdoor attacks in these newer
models—in fact a negative answer will prompt researchers to rethink
backdoor attack mitigation. To that end, in this work, we take the first
step to explore this question. We considered models ranging from pure
convolution-based models like ResNet-18 to pure Self-Attention based
models like ConVit and understand the efficacy of Neural Cleanse after
launching backdoor attacks on these models. Our experiments uncover a
wide variation in the efficacy of Neural Cleanse. Even if Neural Cleanse
effectively counters backdoor attacks in some models, its performance
falls short when dealing with models incorporating self-attention layers
(i.e., Transformers), especially in accurately identifying target classes and
learning reverse-engineered triggers. Our results further hint that, for
modern models, mitigation of backdoor attacks by constructing reverse
engineering triggers should consider patches (instead of pixels).

Keywords: Backdoor Attack · Neural Cleanse · convolution-based
models · Self-Attention based models

1 Introduction

With the development of the computational capabilities of modern computers,
Artificial Intelligence has acquired a spot as an integral part of our daily lives. In
fact, Deep Neural Networks (DNNs) have become the core of many critical tasks
like facial recognition, guiding self-driving cars and creating voice interfaces for

R. Raj and B. Roy—Both authors contributed equally to the project.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. Regazzoni et al. (Eds.): SPACE 2023, LNCS 14412, pp. 242–260, 2024.
https://doi.org/10.1007/978-3-031-51583-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51583-5_14&domain=pdf
http://orcid.org/0009-0006-0394-0446
http://orcid.org/0009-0008-5334-0056
http://orcid.org/0000-0002-2327-1618
http://orcid.org/0000-0003-4317-0184
https://doi.org/10.1007/978-3-031-51583-5_14

Understanding Efficacy of Backdoor Attack Mitigation 243

home assistants in our day-to-day lives. Deep learning has also been applied
to security space for malware [13] and network intrusion detection [14] tasks.
Further advancements in the field of Deep learning (e.g., designing new archi-
tectures) are continuously improving the performance of different tasks every
day. However, still, Neural networks are considered black-boxes in most con-
text because studying the structure of those models give no insights about the
structure of the function being approximated by that model [15,16].

In spite of this lack of explainability of output, it is impossible to test deep
learning models exhaustively for all possible input values due to the versatility
of the application scenarios (e.g., object recognition). Thus even if some models
work fine on one input then they might work incorrectly on other input. In
fact, the situation might worsen if an attacker can control the inaccuracy of
the model output and misdirect an end user. This poses a great challenge of
how secure these models are for application on critical real work applications.
Thus a large amount of work in the community focused on how deep learning
systems are very vulnerable to attacks [12]—e.g., how adding perturbations to
inputs of AI systems used in self-driving cars can sometimes force them to make
wrong decisions for a particular input. These vulnerabilities enable the possibility
of backdoors or “Trojans” in DNNs [4]. Backdoors are hidden patterns in the
data that have been trained into a DNN model (e.g., by perturbing training
data) that result in unexpected behaviour but are undetectable unless activated
by some “trigger” input. A “trigger” refers to a small, carefully designed and
imperceptible pattern or modification that is added to an input image with the
intention of causing a misclassification or some other unintended behaviour when
the model makes predictions.

Given the severity of the problem of backdoor attacks, many countermea-
sures have been developed to identify and mitigate the presence of backdoors
in DNNs, but in past works, we found that these countermeasures were tested
only on smaller (and simpler) DNN and purely Convolutional Neural Network
(CNN) based models [1]. However, with the introduction of transformers [17],
many computer vision models, now, work with self-attention layers instead of
convolution layers only [18,19]. This created a large gap between models on
which countermeasures against backdoor attacks were being tested and DNNs
that were being actually deployed in real-world scenarios. In this work, we take
a step to bridge this gap.

Specifically, in this work, we consider Neural Cleanse [2] (described in Sect. 3).
Neural Cleanse is a popular and representative backdoor attack mitigation algo-
rithm, aimed towards identifying and mitigating backdoor attacks in DNNs.
Neural cleanse provides a mechanism to detect backdoor attacks and then pro-
vide heuristics (based on unlearning) to update the DNN and undo the effect
of a trigger. In previous work, Neural Cleanse has been tested on CNN models
like VGG-16 and Resnet-101 [1], but there is no work on experimenting with the
robustness of Neural Cleanse on self-attention-based networks or a hybrid of the
two. These newer models are the state of the art models and created revolution
in terms of inference accuracy in practical tasks. Thus, pertaining to the huge

244 R. Raj et al.

popularity of these models, it is necessary to understand if these models can
be protected against backdoor attacks, e.g., via Neural Cleanse—we focus on
DNN models used in computer visions or vision models. To that end, we ask the
following questions in this work in progress:

1. Can backdoor attacks be successfully launched against newer self-attention
based or hybrid architectures?

2. Does mitigation strategy like Neural Cleanse works on self-attention-based
and hybrid vision models? Why or why not?

We address these two questions using extensive experimentation. We re-
implemented Neural Cleanse into pytorch and launched the attacks on a number
of models ranging from pure convolution-based models like ResNet-18 to pure
Self-Attention based models like ConVit, trained on two popular datasets, wiz.
GTSRB (German Traffic Signal Recognition Benchmark) [20] and CIFAR-101.
Our results show that backdoor attacks indeed work on both older CNN models
as well as newer self-attention based or hybrid architectures. However, Neural
Cleanse is significantly less effective on mitigating backdoor attack on newer
models. Our analysis further reveal potential reasons behind this discrepancy
and identify a path forward. Next, we will start with describing related works
for our study.

2 Related Work

Attacks on Deep Learning Models: A large amount of research has been
conducted on different types of attacks on Machine Learning models. These
attacks can be broadly classified into three categories Integrity attacks [21–23,
28,30], Availability attacks [24,25], and Privacy attacks [26]. There are also class
of attacks like model-reuse attacks which exploits the fact that deep learning
models can be reused to perform tasks they were not trained for [6]. Backdoor
attacks are a type of integrity attack in which training data is poisoned with
triggers and changing their label to a particular target class. There is a vast
literature on how backdoor attacks can be conducted on DNNs. Some different
types of backdoor attacks on DNNs are Outsourcing attacks, and Pretrained
attacks [3]. Outsourcing attacks are older forms of backdoor attack, where the
attacker has access to the training of models [5,27]. The model can efficiently
learn the attacker-chosen backdoor sub-task and its main task at the same.
Many variants of outsourcing attacks have been identified by the community in
the past. Other examples of outsourcing attacks include dynamic trigger attacks
and backdoor reinforcement learning attacks [3]. Pretrained attack is usually
mounted via a transfer learning scenario, where the user is limited with few data
or/and computational resources to train an accurate model. Therefore, the user
will use a public or third-party pretrained model to extract general features.
Examples of such backdoors are Trojan attacks and badnets [5,29].

1 https://www.cs.toronto.edu/∼kriz/cifar.html.

https://www.cs.toronto.edu/~kriz/cifar.html

Understanding Efficacy of Backdoor Attack Mitigation 245

Mitigation of Backdoor Attack on Deep Learning Models: Counter-
measures against backdoors can be largely classified into four categories wiz
Blind Backdoor removal, Offline Data Inspection, Offline Model Inspection and
Online Input Inspection. Blind backdoor removal methods can differentiated
from other methods based on fact that it does not differentiate backdoored
model from a clean model, or clean input from input with trigger. Some meth-
ods falling under this class of countermeasures are Fine Pruning [7], Suppression
[9], Februus [8], ConFoc [10] and RAB [11]. These methods prove to be effec-
tive for backdoored models but when applied on clean models, performance of
models tend to decrease. Offline Data Inspection works on strong assumption
that defenders have access to the poisoned data. A few methods falling under
this class include Spectral Signature, Gradient Clustering, Activation Cluster-
ing, Deep k-NN, SCAn and differential privacy [31,32]. These countermeasures
are mostly based on clustering algorithms and fail to work effectively in case of
special scaling-based backdoor attacks. Offline Model inspections tend to avoid
assumptions made by data inspection methods; hence these are more suitable
for countering attacks resulting from various attacking surfaces. Methods falling
under these classes are Trigger Reverse Engineer, NeuronInspect, DeepInspect,
AEGIS, Meta Classifier and Neural Cleanse [2]. These methods generally require
high computational overhead and can’t deal with large triggers, especially those
aiming to reverse engineer the trigger. Online inspection methods can also be
applied to monitor the behaviour of either the model or input during run-time.

Research Gap: We found very less amount of literature on the evaluation
of the robustness of the Neural Cleanse algorithm [2], especially on modern-day
models like ConVit, ViT and DeiT. Work which most closely resembles our work
is [1], in which authors compared the performance of various countermeasures
mainly on convolution-based models like Resnet-18 and VGG19. To the best
of our knowledge, we could not find any work analysing whether self-attention-
based computer vision models can be backdoored. In this work, we tried to
perform backdoor attacks on self-attention-based and hybrid models, followed by
testing the performance of Neural cleanse on such models. Model architectures
considered in our study include Resnet-18, ConVit, ViT, DeiT and compact
transformer. Our exploration identify that Neural Cleanse does not work well
on self-attention based models and hint at a potential reason. For these newer
architectures, a mitigation strategy should consider patches instead of neurons.
Next section describes the methodology of our exploration.

3 Methodology

In this work, we examined the potential of backdoor attack and efficacy of the
defense (Neural Cleanse). To that end, we experimented with a variety of models
on the GTSRB (German Traffic Signal Recognition) and CIFAR-10 datasets.
The models considered in the experimentation phase can be broadly classified
into three categories completely convolution-based visual models, completely
Self-Attention based visual models and hybrid Models. We start first with a

246 R. Raj et al.

description of these models and then provide an overview of Neural Cleanse
along with the attack model, that we followed in this work.

3.1 Computer Vision Models - Preliminaries

Convolution Neural Network: A Convolutional neural network (CNN) is a
neural network that has one or more convolutional layers. In our experiments,
we primarily focused on a 6-layer CNN network and Resnet-18 to carry out our
experiments. ResNet-18 is a convolutional neural network that is 18 layers deep.
Skip connections or shortcuts are used to jump over some layers.

Self-attention Based Models: The increasing popularity of transformers
in NLP has led to the development of visual models based only on the
attention mechanism, completely removing convolution layers. In these Self-
Attention based models at first, input images are divided into nonoverlapping
patches before embedding them into a multidimensional space. In the context
of attention-based models like the Vision Transformer (ViT) [18] and Data-
efficient Image Transformer (DeiT) [19], the image patches are also referred to
as “tokens”. These patches are then treated as individual elements, allowing the
model to process them separately and perform attention mechanisms over them.

ViT stands for Vision Transformer. The standard Transformer receives as
input a 1D sequence of token embeddings. To handle 2D images, image x ∈
RH×W×C is reshaped into a sequence of flattened 2D patches xp ∈ RN×(P 2C),
where (H,W) is the resolution of the original image, C is the number of channels,
(P, P) is the resolution of each image patch, and N = HW/P 2 is the resulting
number of patches, which also serves as the effective input sequence length for the
Transformer. The output of this patch projection is referred to as embeddings.

DeiT stands for Data-efficient Image Transformer. A Data-Efficient Image
Transformer is a type of Vision Transformer for image classification tasks. The
model is trained using a teacher-student strategy specific to transformers. It
relies on a distillation token, ensuring that the student learns from the teacher
through attention. The architecture is similar to that of ViT, but it can be
trained in much less time than compared to ViT.

Hybrid Models: While pure self-attention-based models provide high accu-
racy, their data-hungry nature while training puts a bottleneck to their usability.
To eliminate such constraints, hybrid models are developed, which have convo-
lution and self-attention layers. In past studies, it has been identified that the
first few convolution layers, followed by self-attention layers, enhance the per-
formance of visual models on classification tasks and also reduce the amount of
data required to train the model. One such hybrid model is the Compact trans-
former [34]. Initially, features in the image are identified using convolution layers
which are later processed using a transformer encoder. Another hybrid model
considered in our study is ConVit [35], which stands for Convolution-like Vision
Transformer.

Understanding Efficacy of Backdoor Attack Mitigation 247

3.2 Setting up Neural Cleanse

Attack Model: Attack models considered by the algorithm are BadNets [5]
and Trojan Attack [36]. BadNets is a backdoor attack methodology in which the
adversary has access to the training data, and the same trigger is added to the
input data points irrespective of the input. In contrast, in Trojan attacks, the
trigger is engineered based on the infected model. Both attack models poison
the model during its training phase. Neural cleanse assume that the defender
has access to trained DNNs, a set of clean samples to test the performance of
the model, and access to computational resources to test or modify DNNs.

Backdoor Detection Phase: The fundamental premise of backdoor detection
is that, compared to other uninfected labels, the target label might be incorrectly
classified as an infected model with considerably smaller adjustments. Therefore,
we repeatedly go through all of the model’s labels to see whether any may be
misclassified with a lower amount of alteration. The three stages below make up
our whole method.

– Step 1: For a given label, it treats it as a potential target label of a targeted
backdoor attack. An optimization scheme is designed to find the “minimal”
trigger required to misclassify all samples from other labels into this target
label. In the vision domain, this trigger defines the smallest collection of pixels
and its associated colour intensities to cause misclassification.

– Step 2: Step 1 is repeated for each output label in the model. For a model
with N = |L| labels, this produces N potential “triggers”.

– Step 3: After coming up with N potential triggers, the size of each trigger is
measured by the number of pixels each trigger candidate has, i.e. how many
pixels the trigger is replacing. Finally, it runs an outlier detection algorithm to
detect if any trigger candidate is significantly smaller than other candidates.

Mitigation of Backdoor Attack Phase: After the detection of a backdoor
in the model, multiple approaches are proposed to mitigate the backdoor. The
first approach involves filtering inputs with a trigger by analysing neural acti-
vations. The second approach involves updating DNN via neuron pruning, i.e.
removing those neurons that produce strong activations in the presence of trig-
gers. We primarily focus on a third approach which involves updating DNN via
unlearning.

Updating DNN via unlearning involves retraining the poisoned model with
reversed engineered trigger assisting in unlearning the backdoor present in the
model. The methodology involves adding triggers to randomly picked images but
keeping their labels intact and then training the model on the modified dataset.
For this methodology, two variants are considered, one in which retraining is
done on a dataset prepared with reverse engineered trigger and another one in
which the dataset is prepared with the original trigger.

248 R. Raj et al.

Our Implementation of Neural Cleanse: We used the implementation of
the Neural cleanse provided in the actual paper2 and re-implemented it in the
Pytorch framework. To ease the understandability of the code, we created a mod-
ule for the injection of the model (one illustration of trigger injection is shown
in Fig. 1), which first trains the model on the clean dataset and then performs
pretrained backdoor attack by finetuning the model with poisoned input. This is
followed by the module for the detection of a backdoor in the model, which also
constructs the reverse-engineered trigger.

Fig. 1. Image on left shows the original image from the dataset, the image in the middle
shows the trigger added to the image, and rightmost image shows poisoned input image

After constructing the reverse-engineered trigger, we updated the DNN by
unlearning the model, which uses both the original trigger and reverse-engineered
trigger. Both of the triggers are used in the process because it provides us with
a heuristic to measure the quality of reverse engineered trigger.

4 Efficacy of Backdoor Attack and Attack Mitigation
on Newer Models

We experimented with Neural Cleanse on different types of models. To test the
performance of neural cleanse in the identification of a backdoor in the model, we
logged the results in Table 2 and Table 4. Finally, to check the quality of reverse
engineering, we applied the neural updating method by unlearning introduced
in the paper. The results have been presented in Tables 3 and 5.

4.1 Backdoor Attack Success on Newer Architectures

In our experiments, we found that the backdoor attack injection was successful.
This can be inferred from Table 3 where the drop of accuracy on clean samples
was very low, but the accuracy for inputs with trigger was very high. This trend is
consistent across all models, with slightly low accuracy for compact transformers.

2 https://github.com/bolunwang/backdoor.

https://github.com/bolunwang/backdoor

Understanding Efficacy of Backdoor Attack Mitigation 249

Table 1. AI (Anomaly Index) and norm of mask for target class found in case of
different models

Models GTSRB CIFAR-10

AI TargetNorm AI TargetNorm

6 layer CNN 2.89 0.51 2.17 0.67

Resnet - 18 2.18 0.78 3.09 0.73

DeiT Classified wrong 0.73/0.79 1.31 0.67

ViT Classified wrong 0.81/0.819 1.71 0.85

Convit 2.21 0.68 2.21 0.73

Compact Transformer 2.45 0.76 2.75 0.71

The confidence of Neural Cleanse about the presence of a backdoor in a model
is conveyed by the value of AI (Anomaly Index), which represents the amount
by which minimum mask size varies from the median value. The AI obtained in
experiments has been presented in Table 1. Neural Cleanse detected wrong class
in self attention based models like DeiT and ViT.

4.2 Efficacy of Neural Cleanse for Identifying Backdoors

In our experiments, we found that neural cleanse worked well in the case of pure
convolution-based models like CNN and Resnet-18.

Table 2. Table showing performance of neural cleanse for backdoor identification;
Accuracy of different models on GTSRB dataset, in different scenarios; Accuracy1 -
Accuracy of infected models on clean samples; Accuracy2 - Accuracy of the clean model
on clean samples; Accuracy3 - Accuracy of the infected model on poisoned samples

Models Accuracy 1 Accuracy 2 Accuracy 3

6 layer CNN 0.927 0.964 0.983

Resnet - 18 0.97 0.981 0.991

VIT (Finetuned) 0.973 0.979 0.993

DeiT (Finetuned) 0.977 0.983 0.987

Compact Transformer 0.961 0.981 0.965

Convit (Finetuned) 0.961 0.98 0.991

Table 3. Table showing performance of neural cleanse for backdoor identification;
Accuracy of different models on CIFAR-10 dataset, in different scenarios; Accuracy1 -
Accuracy of infected models on clean samples; Accuracy2 - Accuracy of the clean model
on clean samples; Accuracy3 - Accuracy of the infected model on poisoned samples

Models Accuracy 1 Accuracy 2 Accuracy 3

6 layer CNN 0.934 0.965 0.987

Resnet - 18 0.974 0.984 0.991

VIT 0.973 0.984 0.983

DeiT 0.977 0.987 0.984

Compact Transformer 0.972 0.99 0.975

Convit (Finetuned) 0.961 0.98 0.991

250 R. Raj et al.

Tables 2 and 3 show the quality of backdoor injection in models. We can see
that there is a slight drop in the accuracy of models when tested on clean samples,
but for poisoned samples, a significant proportion of inputs are classified as the
target class. This tends to be in line with results presented in past literature.
The accuracy of the infected model on poisoned inputs is slightly less, showing
the attack’s smaller success in the GTSRB dataset.

One interesting observation in our experiment was that on GTSRB dataset,
neural cleanse failed to identify the correct target class for both self-attention
models. This was due to a minor size difference obtained between the norm of
the mask with the target class and some other classes. Also, in the case of using
CIFAR-10 dataset, these two models have low Anomaly Index (AI).

4.3 Quality of Reverse Engineered Trigger Created by Neural
Cleanse

The reversed engineered trigger has been shown in Fig. 2. The trigger for ResNet-
18 is more visually similar to the original trigger than the trigger for ViT. To test

Table 4. Table showing performance of neural cleanse for backdoor identification;
Accuracy of different models on GTSRB dataset, in different scenarios; Accuracy1 -
Accuracy of model cleaned using reverse engineered trigger; Accuracy2 - Accuracy of
model cleaned using original trigger; Accuracy3 - clean model on clean samples

Models Accuracy 1 Accuracy 2 Accuracy 3

6 layer CNN 0.935 0.89 0.964

Resnet - 18 0.946 0.94 0.981

Deit 0.853 0.94 0.987

ViT 0.871 0.96 0.993

Convit 0.913 0.972 0.991

Compact Transformer 0.74 0.95 0.981

Table 5. Table showing performance of neural cleanse for backdoor identification;
Accuracy of different models on CIFAR-10 dataset, in different scenarios; Accuracy1 -
Accuracy of model cleaned using reverse engineered trigger; Accuracy2 - Accuracy of
model cleaned using original trigger; Accuracy3 - clean model on clean samples

Models Accuracy 1 Accuracy 2 Accuracy 3

6 layer CNN 0.947 0.941 0.965

Resnet - 18 0.951 0.956 0.984

DeiT 0.893 0.961 0.984

ViT 0.875 0.954 0.987

Convit 0.923 0.948 0.990

Compact Transformer 0.871 0.962 0.980

Understanding Efficacy of Backdoor Attack Mitigation 251

Fig. 2. Image on the left shows the original trigger used to infect the model; Image in
centre shows reversed engineer for ResNet-18; Rightmost image shows reversed engi-
neered trigger for ViT

further the quality of reverse-engineered triggers, we used neural updating via
the unlearning method, which mitigates the backdoor in the model by retraining
the poisoned model with reverse-engineered and original triggers.

Table 5 and Table 4 show the accuracy of models after unlearning using
the original trigger and reverse engineered trigger. The accuracy of the clean
model on clean sample is as expected. While performing the neural updating by
unlearning, we observed that accuracy after retraining with reverse engineered
trigger was significantly low compared to retraining with the original trigger
in the case of Pure self attention-based models showing lower quality reverse
engineered trigger. The image generated by Neural Cleanse showed a similar drop
in the case of the compact transformer, but the drop in the case of ConVit was
not that significant. This behaviour was consistent across both datasets, showing
consistency of the pattern observed. From these observations, we hypothesized
that the performance of Neural cleanse declines with an increase in the self-
attention behavior of the model on which it is being employed.

Finally, we investigate the reason behing these observations—why Neural
Cleanse can not devise good quality reverse engineered triggers for pure self-
attention networks.

5 Understanding Quality of Mitigation by Neural Cleanse

We first aim to open the black box—specifically we aim to understand the impact
of the reverse engineered triggers offered by Neural Cleanse for both older CNN
models as well as newer transformer model. We focus on four dimensions—
amount of neurons activated by reverse trigger, type of neurons activated by
reverse trigger, pace of learning across models and impact of trigger on discrete
patches in images (rather than pixels).

5.1 Comparing Fraction of Activated Neurons Across Models

Network Dissection [33] from Bau et al. is a method for quantifying the inter-
pretability of deep visual representations learned by neural networks. This work

252 R. Raj et al.

argued that while neural networks have achieved impressive performance on a
variety of visual recognition tasks, the representations learned by these networks
are often difficult to interpret or understand. This lack of interpretability can
limit the usefulness of neural networks in real-world applications where trans-
parency and explainability are important.

To address this problem, Bau et al. proposed a method to interpret the
visual representations learned by neural networks. The method involves using
semantic segmentation to identify objects in images and then measuring the
activation of individual units in the neural network in response to those objects.
They introduce a new metric called the “dissected unit”, which measures the
activation of a unit in response to a specific object. This metric can be used to
quantify the degree to which a unit in the neural network is interpretable, i.e.
how well it corresponds to a semantically meaningful visual concept.

The paper demonstrates the usefulness of the proposed method by applying
it to several state-of-the-art neural networks trained on object recognition and
scene classification tasks. The authors show that the method can be used to
compare different layers in a network and to identify which layers contain more
interpretable visual features. They also demonstrate that networks with higher
interpretability tend to perform better on recognition tasks.

We built on network dissection to fit our purpose of studying the fraction of
neurons which get activated in presence of a trigger. Since, we are using different
types of models so defining neurons which we consider during this experiment
becomes important for the comparison. Therefore, to maintain consistency in
the comparisons, we considered outputs of all Linear and Conv2D layer neurons.

Steps of the Algorithm: The existing implementations of Network Dissec-
tion [33] are not able to handle self-attention based vision transformers and thus
we step into modifying the algorithm as follows:

1. Attach forward hooks to each neuron of each convolutional layer
and linear layer of the model: This step involves adding a forward hook
to each neuron in every convolutional and linear layer of the neural network
model. A forward hook is a function that is executed every time the output
of a neuron is computed during a forward pass through the network. By
attaching forward hooks to each neuron, we can log the activation of each
neuron during the forward pass.
2. Log activation of all hooked neuron activations in absence of
trigger: After attaching the forward hooks, we log the activation of each
hooked neuron in the absence of any trigger. This means that we simply run
the input data through the network and record the activation of each neuron
as it is computed.
3. Log activation of all hooked neuron activations in presence of
trigger. Next, we log the activation of each hooked neuron in the presence
of a trigger. The trigger selectively activates certain neurons and this step
enables us to observe how they respond to the input contaminated with the
trigger.

Understanding Efficacy of Backdoor Attack Mitigation 253

Table 6. Percentage of neurons activated due to the presence of original and reverse
engineered trigger in the input.

Presence of
poison in
model

Type of
Trigger

6-layer
CNN

Resnet Compact
Transformer

ConVit ViT DeiT

Poisoned
Model

Reverse
Eng

27.56 25.56 23.52 27.45 26.84 24.65

Poisoned
Model

Original 31.25 30.14 27.56 29.56 34.25 30.47

Clean
Model

Reverse
Eng

31.25 30.14 27.56 29.56 34.25 30.47

Clean
Model

Original 34.25 32.62 31.52 30.52 35.62 32.52

4. Final result is percentage of neurons whose activation has
increased more than a threshold: We compare the activation of each
neuron in each model in the absence and presence of the trigger and calcu-
late the percentage of neurons whose activation has increased more than a
certain threshold. This threshold is typically set to a small percentage of the
maximum possible activation value, such as 1% or 5%.

Neurons that meet this criterion are considered to be “triggered” by the trig-
ger pattern. By measuring the percentage of triggered neurons, we can estimate
the susceptibility of the network to adversarial attacks. The percentage of neu-
rons activated in each model have been summarized in Table 6. These results
showed no significant difference in these models.

5.2 Comparing Importance of Activated Neurons Across Models

With no discerning pattern in the above experiment, we went ahead to see if the
same set of neurons as in the previous experiment are getting activated across
the models in the presence of reverse engineered trigger as well.

Neuron Importance: In this case, following Neural Cleanse, we defined neuron
importance. Neuron importance refers to ranking of neurons based on activation
due to presence of a trigger in the input to the poisoned model. The higher the
activation, lower the rank and hence, the neuron has higher importance.

Steps in the Algorithm: The steps involved in the experiment include:

1. Attach forward hooks to each neuron of each layer: Similar to the
previous experiment, this step involves adding a forward hook to each neuron
in every layer of the neural network model.
2. Rank neurons according to activation due to presence of original
trigger: After attaching the forward hooks, we first inject original trigger

254 R. Raj et al.

pattern to the input data and record the activation of each neuron in the
presence of the trigger. We then rank the neurons according to their activation
levels in response to the trigger. Neurons that exhibit high activation levels
in response to the trigger are considered to be important for the network’s
response to the input.
3. Rank neurons according to activation due to presence of reverse
engineered trigger: Next, we inject the reverse engineered trigger pattern
to the input data and record the activation of each neuron in the presence
of the trigger. We then rank the neurons according to their activation levels
in response to the trigger. This step helps us understand how the network
responds to reverse engineered trigger and which neurons are identified by
Neural Cleanse as being poisoned.

Having identified the neurons most activated by original and reverse engi-
neered trigger, we used precision@k metric to compare the two ranked lists.
Precision@k is a commonly used metric for evaluating the performance of rec-
ommendation systems and information retrieval systems. It measures the pro-
portion of relevant items that are included in the top k results recommended
or retrieved by the system. The metric is particularly useful when the num-
ber of recommended or retrieved items is large, as it allows for a finer-grained
evaluation of the system’s performance.

Finally, to have a better understanding of the results, we divided the training
period of Neural Cleanse into three phases. If the model takes 30 epochs to learn
reverse engineered trigger, we define phase-1 as the first 10 epochs by which
one-third of the training is roughly completed. Phase-2 comprises of the period
till two-third of training is complete (20 epochs). Finally, phase-3 lasts till the
training is complete. Also, since the models used differ largely in terms of number
of neurons we chose a range of values of k instead of fixing to a single value of k.

Table 7. Precision@K for the phase-1 of training period.

Model K = 10 K = 100 K= 1000 K = 10,000 K = 50,000 K = 100,000

6-Layer
CNN

0.3 0.54 0.57 0.53 0.61 0.62

Resnet 0.1 0.39 0.42 0.52 0.54 0.51

Compact
Transformer

0.0 0.05 0.13 0.19 0.15 0.15

ConVit 0.0 0.14 0.12 0.21 0.26 0.21

ViT 0.1 0.11 0.17 0.24 0.21 0.27

DeiT 0.0 0.09 0.19 0.15 0.25 0.23

The results of this experiment are shown in Tables 7, 8 and 9. CNN achieved
very high precision for the first phase of training only, and it improved further.

Understanding Efficacy of Backdoor Attack Mitigation 255

Table 8. Precision@K for the phase-2 of training period.

Model K = 10 K = 100 K = 1000 K = 10,000 K = 50,000 K = 100,000

6-Layer
CNN

0.3 0.52 0.51 0.57 0.63 0.59

Resnet 0.1 0.41 0.47 0.51 0.58 0.51

Compact
Transformer

0.1 0.07 0.14 0.17 0.21 0.24

ConVit 0.0 0.19 0.16 0.24 0.27 0.31

ViT 0.0 0.15 0.17 0.14 0.24 0.26

DeiT 0.0 0.12 0.16 0.24 0.31 0.27

Table 9. Precision@K for the phase-3 of training period.

Model K = 10 K = 100 K = 1000 K = 10,000 K = 50,000 K = 100,000

6-Layer
CNN

0.6 0.59 0.61 0.53 0.57 0.59

Resnet 0.2 0.45 0.42 0.41 0.53 0.56

Compact
Transformer

0.0 0.14 0.19 0.24 0.28 0.34

ConVit 0.1 0.17 0.24 0.21 0.27 0.29

ViT 0.0 0.15 0.19 0.21 0.29 0.31

DeiT 0.2 0.24 0.21 0.31 0.27 0.34

Also, the important thing to note is that it has a very high precision value for
smaller values of k, meaning that neural cleanse successfully identifies poisoned
neurons in the case of the CNN model. Resnet model depicted similar nature to
6-layer CNN, but it had slightly lower precision values compared to the CNN
model. Compact transformer and ConVit showed very low precision values in
the first two training phases, and eventually, they covered up in the last phase.
Also, both of these models have very small precision values for small values
of k, and they increase eventually, showing that the Neural cleanse failed to
correctly identify the right neurons, which are affected most by the backdoor
injection. Self-Attention based models show similar nature to the hybrid models,
but they show an interesting trend in that they have lower precision during initial
phases of model training, but they eventually get higher value compared to the
hybrid model. From this, we inferred that learning the most affected neurons in
newer models is a slower process compared to older models. Also, they have low
precision values for smaller values of k, just like hybrid models.

5.3 Comparing Pace of Learning Across Models

Finally, we quantitatively check if self-attention-based models learn the reverse-
engineered trigger. Through this experiment, we wanted to see if all the models
learned the reverse-engineered trigger at the same pace.

256 R. Raj et al.

Fig. 3. Figure on left shows minimum norm(y-axis) vs Class label(x-axis) plot at the
end of first phase of training for 6-layer CNN. Figure on middle shows minimum
norm(y-axis) vs Class label(x-axis) plot at the end of second phase of training for
6-layer CNN. Figure right shows minimum norm(y-axis) vs Class label(x-axis) at the
end of training process for 6-layer CNN.

Fig. 4. Figure on left shows minimum norm(y-axis) vs Class label(x-axis) plot at the
end of first phase of training for ConVit. Figure on middle shows minimum norm(y-
axis) vs Class label(x-axis) plot at the end of second phase of training for ConVit.
Figure right shows minimum norm(y-axis) vs Class label(x-axis) at the end of training
process for ConVit.

Fig. 5. Figure on left shows minimum norm(y-axis) vs Class label(x-axis) plot at the
end of first phase of training for ViT. Figure on middle shows minimum norm(y-axis)
vs Class label(x-axis) plot at the end of second phase of training for ViT. Figure below
shows minimum norm(y-axis) vs Class label(x-axis) at the end of training process for
ViT.

We divided the period of running of Neural Cleanse, i.e., the number of epochs
required by Neural Cleanse to learn the reverse-engineered trigger, into multi-
ple phases. Dividing the running period into multiple phases helps monitor the
optimisation’s progress. We log the minimum norm of activations for each class
at the end of each phase. The norm refers to the magnitude of the weight vector
of the reverse-engineered trigger for each class. The minimum norm represents
the minimum value of the norm achieved during the optimization process for a
particular class. By logging the minimum norm at the end of each phase, we can
track the progress of the optimization and determine whether the algorithm is

Understanding Efficacy of Backdoor Attack Mitigation 257

converging to a good solution. This logging helped us also to quantify the pace
at which the model is learning the reverse-engineered trigger. Also, to study the
pace, we have divided the training phase into 3 phases similar to the previous
experiment.

To understand the generated results visually, we plotted the minimum norm
for each class in all three phases (Figs. 3, 4 and 5). Through this, we concluded
the following points:

– CNNs learn the reverse-engineered trigger very early in the training process,
and the target class trigger has a significantly lower norm than other classes
at all phases of training.

– Hybrid models have a relatively slower learning process than CNNs. For our
set of hyperparameters for ConVit, we also noticed that eventually, another
class which is not visually similar to the target class gains a very small norm
which is still more than the norm of the target class.

– Self-attention-based models have an even slower pace of learning than hybrid
models. In both ViT and DeiT, we also noticed that there are multiple classes
with very low minimum norms, and some even have lower norms than the
target class, leading to misclassification of the target class by Neural Cleanse.

5.4 A Way Forward for Protecting Transformer Models: Focussing
on Patches Instead of Pixels

Since the defenses which were applicable for earlier models is not quite effec-
tive for self-attention based models, we finally, check what is the key difference
between how the self-attention based and old models work. Self-attention based
image models revolutionize the way we process visual data by breaking images
into discrete patches. This approach is notably different from traditional DNNs,
which operate seamlessly on pixel-level data. The implications of this difference
are profound. In traditional DNNs, backdoor triggers are often discernible at
the pixel level, enabling Neural Cleanse to identify and mitigate them effec-
tively. However, in self-attention models, the patching system introduces a layer
of abstraction. This abstraction can effectively camouflage backdoor triggers
within the patches, rendering them far less conspicuous to conventional detec-
tion methods. Moreover, the non-overlapping nature of patches means that a
backdoor trigger can be distributed across multiple patches, making it challeng-
ing for Neural Cleanse to identify coherent patterns that indicate a backdoor’s
presence. This patch-based processing obscures the direct relationship between
trigger and output, further complicating the detection process.

Neural Cleanse heavily relied on the reverse engineering of backdoor triggers
which are identifiable at pixel level. In the context of self-attention-based image
models, this step becomes a formidable challenge due to the unique characteris-
tics of the triggers, Triggers generated in these models tend to be highly nuanced
and subtle, often resembling legitimate features of the data.

A Proof of Concept for Potential Effectiveness of Patch-Centric App-
roach: As a very preliminary test, we compared the Euclidean distances between

258 R. Raj et al.

the original trigger and the CNN-reverse-engineered trigger (0.014) versus the
original trigger and the VIT-reverse-engineered trigger (0.023). the former exhib-
ited a more pronounced resemblance, potentially resulting in better performing
reverse triggers. This observation leads us to hypothesize that triggers may be
generated on a patchwise basis within self-attention based models. Thus, our
results hint that, Neural Cleanse’s reliance on reverse engineering based on iden-
tification of specific, distinguishable trigger patterns resulted in its ineffectiveness
to protect self-attention models. In self-attention models, these patterns become
intricately intertwined with the natural structure of the data, making it arduous
to isolate and categorize them accurately.

6 Concluding Discussion

In this work in progress, we aimed to study the robustness of Neural Cleanse on
different models when they face backdoor attacks. We experimented by attack-
ing CNN, ResNet-18, ConVit, Compact Transformer, ViT and DeiT on GTSRB
and CIFAR-10 dataset. We further used Neural Cleanse to detect and miti-
gate attacks on all cases. Through the set of models, we aimed to cover pure
convolution-based models, pure self-attention-based vision models and hybrid
models. To test the quality of reverse engineered trigger, we used Neural Patch-
ing using unlearning, which involves retraining of model with reverse engineered
trigger and original trigger to mitigate the backdoor present in the model.

Through our experiments, we found that while backdoor attacks could be suc-
cessfully applied on newer self-attention based models, the neural cleanse method
failed to correctly identify the target class in the case of pure self-attention-
based models like ViT and DeiT for the GTSRB dataset. In fact, in the case
of CIFAR-10 dataset, the AI index (which shows the confidence of algorithm
about the presence of backdoor) was very low compared to other models. The
performance drop of the model in the case of retraining with reverse engineered
trigger was found to be significantly higher in the case of ViT, DeiT and compact
transformer.

Finally, we designed experiments to understand the varying efficacy of Neu-
ral Cleanse on observed anomalies. Specifically, we studied neural activation due
to the presence of original and reverse-engineered triggers in different models.
We also studied the pace of learning of reverse-engineered triggers for different
models. Our experiments found that even though there was no significant differ-
ence in overall neural activations in all models by either the original or reverse-
engineered trigger, the reverse-engineered trigger identified the most poisoned
neurons in the case of CNNs but failed drastically for models with self-attention
layers. We also noticed that the presence of a self-attention layer slowed down
the process of learning reverse-engineered triggers. Our results finally hint that
the patching mechanism in the Self-attention model can be the potential reason
for this phenomenon. Our results pave the way to more robust and principled
backdoor attack mitigation for self-attention based newer vision models.

Understanding Efficacy of Backdoor Attack Mitigation 259

References

1. Qiu, H., et al.: Towards a critical evaluation of robustness for deep learning back-
door countermeasures (2022). arXiv:abs/2204.06273

2. Wang, B., et al.: Neural cleanse: identifying and mitigating backdoor attacks in
neural networks. In: 2019 IEEE Symposium on Security and Privacy (SP), pp.
707–723 (2019)

3. Gao, Y., et al.: Backdoor attacks and countermeasures on deep learning: a com-
prehensive review (2020). arXiv:abs/2007.10760

4. Liu, Y., Xie, Y., Srivastava, A.: Neural trojans. In: 2017 IEEE International Con-
ference on Computer Design (ICCD), pp. 45–48 (2017)

5. Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint: arXiv:1708.06733 (2017)

6. Ji, Y., Zhang, X., Ji, S., Luo, X., Wang, T.: Model-reuse attacks on deep learning
systems. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (2018)

7. Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-Pruning: defending against backdooring
attacks on deep neural networks. RAID (2018)

8. Doan, B.G., Abbasnejad, E., Ranasinghe, D.C.: Februus: input purification defense
against trojan attacks on deep neural network systems. In: Annual Computer Secu-
rity Applications Conference (2020)

9. Sarkar, E., Alkindi, Y., Maniatakos, M.: Backdoor suppression in neural networks
using input fuzzing and majority voting. IEEE Des. Test 37, 103–110 (2020)

10. Villarreal-Vasquez, M., Bhargava, B.K.: ConFoc: content-focus protection against
trojan attacks on neural networks (2020). arXiv:abs/2007.00711

11. Weber, M., Xu, X., Karlas, B., Zhang, C., Li, B.: RAB: provable robustness against
backdoor attacks (2020). arXiv:abs/2003.08904

12. Chernikova, A., Oprea, A., Nita-Rotaru, C., Kim, B.: Are self-driving cars secure?
Evasion attacks against deep neural networks for steering angle prediction. In: 2019
IEEE Security and Privacy Workshops (SPW), pp. 132–137 (2019)

13. Wang, Q., et al.: Adversary resistant deep neural networks with an application
to malware detection. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2017)

14. Debar, H., Becker, M., Siboni, D.: A neural network component for an intrusion
detection system. In: Proceedings 1992 IEEE Computer Society Symposium on
Research in Security and Privacy, pp. 240–250 (1992)

15. Wierzynski, C.: The challenges and opportunities of explainable AI (2018). https://
ai.intel.com/the-challenges-and-opportunities-of-explainable-ai

16. FICO’s explainable machine learning challenge (2018). https://community.fico.
com/s/explainable-machine-learning-challenge

17. Vaswani, A., et al.: Attention is all you need (2017). arXiv:abs/1706.03762
18. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image

recognition at scale (2021). arXiv:abs/2010.11929
19. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., J’egou, H.: Training

data-efficient image transformers & distillation through attention. ICML (2021)
20. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German traffic sign recog-

nition benchmark: a multi-class classification competition. In: Proceedings of the
International Joint Conference on Neural Networks, pp. 1453–1460 (2011). https://
doi.org/10.1109/IJCNN.2011.6033395

http://arxiv.org/2204.06273
http://arxiv.org/2007.10760
http://arxiv.org/abs/1708.06733
http://arxiv.org/2007.00711
http://arxiv.org/2003.08904
https://ai.intel.com/the-challenges-and-opportunities-of-explainable-ai
https://ai.intel.com/the-challenges-and-opportunities-of-explainable-ai
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
http://arxiv.org/1706.03762
http://arxiv.org/2010.11929
https://doi.org/10.1109/IJCNN.2011.6033395
https://doi.org/10.1109/IJCNN.2011.6033395

260 R. Raj et al.

21. Saha, A., Subramanya, A., Pirsiavash, H.: Hidden trigger backdoor attacks (2020).
arXiv:abs/1910.00033

22. Ayub, M.A., Johnson, W.A., Talbert, D.A., Siraj, A.: Model evasion attack on
intrusion detection systems using adversarial machine learning. In: 2020 54th
Annual Conference on Information Sciences and Systems (CISS), pp. 1–6 (2020)

23. Jagielski, M., Severi, G., Harger, N.P., Oprea, A.: Subpopulation data poisoning
attacks. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security (2021)

24. Zhou, X., Xu, M., Wu, Y., Zheng, N.: Deep model poisoning attack on federated
learning. Future Internet 13, 73 (2021)

25. Shapira, A., Zolfi, A., Demetrio, L., Biggio, B., Shabtai, A.: Denial-of-service
attack on object detection model using universal adversarial perturbation (2022).
arXiv:abs/2205.13618

26. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: 2017 IEEE Symposium on Security and Pri-
vacy (SP), pp. 3–18 (2017)

27. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint: arXiv:1712.05526 (2017)

28. Li, Y., Li, Y., Wu, B., Li, L., He, R., Lyu, S.: Invisible backdoor attack with sample-
specific triggers. In: 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 16443–16452 (2021)

29. Guo, W., Wang, L., Xu, Y., Xing, X., Du, M., Song, D.: Towards inspecting and
eliminating trojan backdoors in deep neural networks. In: 2020 IEEE International
Conference on Data Mining (ICDM), pp. 162–171. IEEE (2020)

30. Chan, A., Ong, Y.S.: Poison as a cure: detecting & neutralizing variable-sized
backdoor attacks in deep neural networks. arXiv preprint: arXiv:1911.08040 (2019)

31. Xiang, Z., Miller, D.J., Kesidis, G.: A benchmark study of backdoor data poisoning
defenses for deep neural network classifiers and a novel defense. In: 2019 IEEE 29th
International Workshop on Machine Learning for Signal Processing (MLSP). IEEE,
pp. 1–6 (2019)

32. Tran, B., Li, J., Madry, A.: Spectral signatures in backdoor attacks. In: Advances
in Neural Information Processing Systems (NIPS), pp. 8000–8010 (2018). https://
github.com/MadryLab/backdoordatapoisoning

33. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quan-
tifying interpretability of deep visual representations. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 6541–6549 (2017)

34. Hassani, A., Walton, S., Shah, N., Abuduweili, A., Li, J., Shi, H.: Escaping the big
data paradigm with compact transformers. arXiv preprint: arXiv:2104.05704

35. d’Ascoli, S., Touvron, H., Leavitt, M.L., Morcos, A.S., Biroli, G., Sagun, L.: Con-
ViT: improving vision transformers with soft convolutional inductive biases. In:
International Conference on Machine Learning, pp. 2286–2296. PMLR (2021)

36. Tang, R., Du, M., Liu, N., Yang, F., Hu, X.: An embarrassingly simple approach for
trojan attack in deep neural networks. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & data mining, pp. 218–228
(2020)

http://arxiv.org/1910.00033
http://arxiv.org/2205.13618
http://arxiv.org/abs/1712.05526
http://arxiv.org/abs/1911.08040
https://github.com/MadryLab/backdoor data poisoning
https://github.com/MadryLab/backdoor data poisoning
http://arxiv.org/abs/2104.05704

Author Index

A
Ali, Sk Subidh 101
Alrahis, Lilas 197

D
Danger, Jean-Luc 139
Das, Abir 242
Das, Debjit 185
Das, Ranit 185
Duong, Dung Hoang 214

F
Fukushima, Kazuhide 214

G
Gangopadhyay, Aditi Kar 1
Gangopadhyay, Sugata 1
Gao, Haiying 20
Giri, Debanka 101
Guo, Fuchun 214

J
Jao, David 48
Jhanwar, Mahabir Prasad 66

K
Karmakar, Angshuman 162
Khuc, Xuan Thanh 214
Kiyomoto, Shinsaku 214
Knechtel, Johann 197
Kumar, Ramakant 86
Kumar, Vikas 1
Kundu, Suparna 162

M
Ma, Chao 20
Mankali, Likhitha 197

Mishra, Dheerendra 92
Mokrani, Youcef 48
Mondal, Mainack 242

N
Naskar, Ruchira 185

P
Padhye, Sahadeo 86
Patnaik, Satwik 197
Pursharthi, Komal 92

R
Raj, Rohit 242
Rawal, Swati 86
Rawat, Aditya Singh 66
Raya, Ali 1
Roy, Biplab 242

S
Saha, Soham 101
Sao, Yogendra 101
Sarr, Augustin P. 117
Sauvage, Laurent 139
Sengupta, Abhrajit 197
Sinanoglu, Ozgur 197
Song, Yang 20
Sun, Keshuo 20
Susilo, Willy 214

T
Ta, Anh The 214
Togde, Ngarenon 117

V
Varillon, Arnaud 139
Verbauwhede, Ingrid 162

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
F. Regazzoni et al. (Eds.): SPACE 2023, LNCS 14412, p. 261, 2024.
https://doi.org/10.1007/978-3-031-51583-5

https://doi.org/10.1007/978-3-031-51583-5

	 Preface
	 Organization
	 Contents
	Results on the Key Space of Group-Ring NTRU: The Case of the Dihedral Group
	1 Introduction
	2 Motivation
	3 Organization of Our Paper
	4 Notations
	5 Group-Rings
	6 NTRU
	6.1 Parameters Selection
	6.2 Key Generation
	6.3 Encryption
	6.4 Decryption
	6.5 Correctness
	6.6 Prominent NTRU-Based Cryptosystems

	7 Group-Ring NTRU
	7.1 Matrix Representation of Group-Ring Elements
	7.2 The Case of the Dihedral Group

	8 Experimental Results
	8.1 Sampling
	8.2 Parameter Sets
	8.3 Results and Discussion

	9 Conclusions
	References

	Token Open Secure and Post-quantum Updatable Encryption Based on MLWE
	1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Our Contribution
	1.4 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Syntax of UE
	2.3 MLWE Assumption ch2refsps12

	3 TKOpen Security Model
	3.1 xx-TKOpen-atk Experiment
	3.2 Oracles
	3.3 Sets in TKOpen
	3.4 Relationship Between TKOpen and Settings of UE Schemes

	4 Description of Scheme
	4.1 MLWE-PKE
	4.2 MLWEUE

	5 Security Proof
	5.1 MLWEUE is (b-uni, uni)
	5.2 MLWEUE is rand-TKOpen-CPA

	6 Experiment
	References

	Zero-Knowledge Proofs for SIDH Variants with Masked Degree or Torsion
	1 Introduction
	1.1 Related Papers

	2 Background Knowledge and Assumptions
	3 Additional Definitions and Notations
	4 Masking the Degree
	5 Masked Torsion
	6 Double Masked Subgroup
	7 Masked Degree and Double Subgroup
	8 Conclusion
	References

	Post-quantum DNSSEC over UDP via QNAME-Based Fragmentation
	1 Introduction
	2 Preliminaries
	2.1 The Domain Name System
	2.2 The DNS Security Extensions
	2.3 ARRF ch4DBLP:journalsspscorrspsabssps2211sps14196

	3 QBF: QNAME-Based Fragmentation
	3.1 QBF Execution Modes
	3.2 Backward Compatibility
	3.3 Security Considerations

	4 Evaluation
	4.1 Setup
	4.2 Experiment and Results

	5 Conclusion
	References

	Cryptanalysis of Short and Provable Secure Lattice-Based Signature Scheme
	1 Introduction
	2 Preliminaries
	3 Fenghe and Zhenhua Signature Scheme
	4 Cryptanalysis of Fenghe and Zhenhua Scheme
	5 Conclusion
	References

	Cryptanalysis with Countermeasure on the SIS Based Signature Scheme
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Soni et al.'s Signature Scheme
	5 Cryptanalysis
	6 Countermeasure
	6.1 Correctness

	7 Discussion
	8 Conclusion
	References

	Vulnerability of Dynamic Masking in Test Compression
	1 Introduction
	2 Background
	2.1 AES
	2.2 Scan Based DfT
	2.3 Advanced DfT Infrastructure

	3 Proposed Attack Principle
	4 Attack on Dynamic Masking with Compaction
	4.1 Basics of Signature-Based Attack
	4.2 Online Phase: Collecting CUT Responses
	4.3 Offline Phase

	5 Security Analysis of Embedded Deterministic Test (EDT)
	6 Results and Comparison
	7 Conclusion
	References

	An Efficient Generic Insider Secure Signcryption with Non-Interactive Non-Repudiation
	1 Introduction
	2 Preliminaries
	2.1 Insider Security for SCNINR

	3 An Efficient Generic Insider Secure SCNINR
	4 Security Analysis of the SN Scheme
	4.1 Insider Confidentiality
	4.2 Unforgeability of the SN Scheme
	4.3 Soundness of Non-Repudiation
	4.4 Unforgeability of Non-Repudiation Evidence

	5 Comparison with Previous Constructions
	A Proof of Lemma 1
	References

	High-Order Collision Attack Vulnerabilities in Montgomery Ladder Implementations of RSA
	1 Introduction
	2 Related Works
	3 Our Collision Attack Vulnerability Analysis of the Montgomery Ladder
	3.1 dj Collisions
	3.2 dj-dj-1 Collisions

	4 Experimental Validation
	4.1 Identification of POIs
	4.2 Exploitation of Identified Vulnerabilities

	5 Conclusion
	A The Montgomery Ladder
	B Observing Collisions Involving g2
	References

	On the Masking-Friendly Designs for Post-quantum Cryptography
	1 Introduction
	2 Preliminaries
	2.1 Scabbard: A Post-quantum KEM Suite
	2.2 Masking

	3 Masking Scabbard
	3.1 Arithmetic Operations
	3.2 Compression
	3.3 Message Decoding and Encoding
	3.4 Hash Functions
	3.5 Centered Binomial Sampler
	3.6 Ciphertext Comparison

	4 Performance Evaluation
	4.1 Analyzing the Performance of Masked CBD Samplers
	4.2 Performance Measurement of Masked Scabbard Suite
	4.3 Performance Comparison of Masked Scabbard Suite with the State-of-the-Art

	5 Conclusions
	References

	Spliced Region Detection and Localization in Digital Images Based on CNN Learning Guided by Color Transitions and Surface Texture
	1 Introduction
	2 Literature Review
	3 Proposed Model
	3.1 Finding Color Transitions
	3.2 Finding the Surface Textures
	3.3 Finding Prominent Color Zones
	3.4 Proposed Network Model

	4 Experimental Results
	4.1 Performance Evaluation
	4.2 Comparative Analysis

	5 Conclusions and Future Work
	References

	UN-SPLIT: Attacking Split Manufacturing Using Link Prediction in Graph Neural Networks
	1 Introduction
	2 Background and Related Work
	2.1 Threat Model
	2.2 Terminology and Metrics
	2.3 Attacks and Defenses on Split Manufacturing
	2.4 Link Prediction
	2.5 Graph Neural Networks
	2.6 Related Work: GNN-Based Attacks on Logic Locking

	3 Proposed UN-SPLIT Attack Platform
	3.1 Emulating Split Manufacturing
	3.2 Representing FEOL Connections as a Graph
	3.3 Link Prediction Based on Graph Neural Networks
	3.4 Post-processing
	3.5 Dataset Generation

	4 Experimental Evaluation
	4.1 Setup
	4.2 Metrics
	4.3 Experimental Results

	5 Limitations
	6 Conclusions
	References

	Logarithmic-Size (Linkable) Ring Signatures from Lattice Isomorphism Problems
	1 Introduction
	2 Preliminaries
	2.1 Lattice Isomorphism Problems
	2.2 Discrete Gaussian Distribution and Sampling Algorithm for Lattice Isomorphisms
	2.3 (Linkable) Ring Signatures
	2.4 Admissible Group Actions

	3 OR Proof of Knowledge and Ring Signature from Lattice Isomorphisms
	3.1 Group Action in the Setting of Lattice Isomorphisms
	3.2 Proof of Knowledge for Lattice Equivalence
	3.3 OR Sigma Protocols
	3.4 Main OR Sigma Protocol
	3.5 Ring Signature from the Main OR Sigma Protocol
	3.6 Logarithmic Linkable Ring Signature
	3.7 Parameter Selection

	4 Conclusion
	A Ring Signatures Properties
	B Linkable Ring Signatures Properties
	C Proof of Knowledge
	C.1 Index-Hiding Merkle Trees
	C.2 Seed Tree
	C.3 Proof of Knowledge for Group Actions

	D Proof of Theorem 3.2
	E Proof of Theorem 3.4
	References

	``We Must Protect the Transformers'': Understanding Efficacy of Backdoor Attack Mitigation on Transformer Models
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Computer Vision Models - Preliminaries
	3.2 Setting up Neural Cleanse

	4 Efficacy of Backdoor Attack and Attack Mitigation on Newer Models
	4.1 Backdoor Attack Success on Newer Architectures
	4.2 Efficacy of Neural Cleanse for Identifying Backdoors
	4.3 Quality of Reverse Engineered Trigger Created by Neural Cleanse

	5 Understanding Quality of Mitigation by Neural Cleanse
	5.1 Comparing Fraction of Activated Neurons Across Models
	5.2 Comparing Importance of Activated Neurons Across Models
	5.3 Comparing Pace of Learning Across Models
	5.4 A Way Forward for Protecting Transformer Models: Focussing on Patches Instead of Pixels

	6 Concluding Discussion
	References

	Author Index

