
Gene Tsudik
Mauro Conti
Kaitai Liang
Georgios Smaragdakis (Eds.)

LN
CS

 1
43

46

28th European Symposium
on Research in Computer Security
The Hague, The Netherlands, September 25–29, 2023
Proceedings, Part III

Computer Security –
ESORICS 2023

Lecture Notes in Computer Science 14346
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Gene Tsudik · Mauro Conti · Kaitai Liang ·
Georgios Smaragdakis
Editors

Computer Security –
ESORICS 2023
28th European Symposium
on Research in Computer Security
The Hague, The Netherlands, September 25–29, 2023
Proceedings, Part III

Editors
Gene Tsudik
University of California
Irvine, CA, USA

Kaitai Liang
Delft University of Technology
Delft, The Netherlands

Mauro Conti
University of Padua
Padua, Italy

Georgios Smaragdakis
Delft University of Technology
Delft, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-51478-4 ISBN 978-3-031-51479-1 (eBook)
https://doi.org/10.1007/978-3-031-51479-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0003-0262-7678
https://orcid.org/0000-0002-3612-1934
https://doi.org/10.1007/978-3-031-51479-1

Preface

We are honoured and pleased to have served as PC Co-Chairs of ESORICS 2023. As one
of the longest-running reputable conferences focused on security research, ESORICS
2023 attracted numerous high-quality submissions from all over the world, with authors
affiliated with diverse academic, non-profit, governmental, and industrial entities.

After two rounds of submissions, each followed by an extensive reviewing period,
wewound upwith an excellent program, covering a broad range of timely and interesting
topics. A total of 478 submissions were received: 150 in the first round and 328 in the
second. 3–4 reviewers per submission in a single blind review driven by selfless and
dedicated PC members (and external reviewers) who collectively did an amazing job
providing thorough and insightful reviews. Some PC members even “went the extra
mile” by reviewing more than their share. The end-result was 93 accepted submissions:
28 and 65, in the first and second rounds, respectively.

The 18-session ESORICS 2023 technical program included: (1) 93 talks
corresponding to accepted papers, (2) a poster session, and (3) 3 impressive keynote
talks by internationally prominent and active researchers: Virgil Gligor, Carmela
Troncoso, and Mathias Payer. The program testifies to the level of excellence and
stature of ESORICS.

We offer our deepest gratitude to:

• Authors of all submissions, whether accepted or not. We thank them for supporting
ESORICS and for their trust in us and the PC to fairly evaluate their research results.

• General Chairs: Kaitai Liang and Georgios Smaragdakis, who dealt with (and
addressed) numerous logistical and organisational issues. We very much appreciate
it!

• Submission Chairs: Gabriele Costa and Letterio Galletta, for their super-human
efforts and invaluable support during the submission and reviewing processes. We
could not have done it without them!

• Publication Chairs: Florian Hahn and Giovanni Apruzzese, for handling the pro-
ceedings. We are especially grateful to them for handling numerous requests from
the authors.

• WebChair:YuryZhauniarovich for creating andmaintaining the conferencewebsite.
• Poster Chair: Bala Chandrasekaran, for taking care of the poster track.
• All PCmembers and their delegated reviewers, who were the main engine of success

of ESORICS 2023 and whose hard work yielded an excellent program.

– Special thanks to the recipients of the Outstanding Reviewer Award: Ferdinand
Brasser and Brendan Saltaformaggio, for their exceptional reviewing quality.

vi Preface

In closing, though clearly biased, we believe that ESOIRCS 2023 was an overall
success and we hope that all attendees enjoyed the conference.

September 2023 Mauro Conti
Gene Tsudik

Organization

General Chairs

Kaitai Liang Delft University of Technology, The Netherlands
Georgios Smaragdakis Delft University of Technology, The Netherlands

Program Committee Chairs

Mauro Conti University of Padua, Italy & Delft University of
Technology, The Netherlands

Gene Tsudik University of California, Irvine, USA

Submission Chairs

Gabriele Costa IMT School for Advanced Studies Lucca, Italy
Letterio Galletta IMT School for Advanced Studies Lucca, Italy

Workshops Chairs

Jérémie Decouchant Delft University of Technology, The Netherlands
Stjepan Picek Radboud University & Delft University of

Technology, The Netherlands

Posters Chair

Bala Chandrasekaran Vrije Universiteit Amsterdam, The Netherlands

Publication Chairs

Florian Hahn University of Twente, The Netherlands
Giovanni Apruzzese University of Liechtenstein, Liechtenstein

viii Organization

Publicity Chair

Savvas Zannettou Delft University of Technology, The Netherlands

Sponsorship Chair

Giovane Moura SIDN/Delft University of Technology,
The Netherlands

Web Chair

Yury Zhauniarovich Delft University of Technology, The Netherlands

Programme Committee

Gergely Acs Budapest University of Technology and
Economics, Hungary

Massimiliano Albanese George Mason University, USA
Cristina Alcaraz (only Round 2) University of Malaga, Spain
Alejandro Cabrera Aldaya Tampere University of Technology, Finland
Mark Allman International Computer Science Institute, USA
Elli Androulaki IBM Zurich, Switzerland
Giovanni Apruzzese University of Liechtenstein, Liechtenstein
Mikael Asplund Linköping University, Sweden
Ahmad Atamli Nvidia, UK
Vijay Atluri Rutgers University, USA
Kiran Balagani New York Institute of Technology, USA
Giampaolo Bella (only Round 2) University of Catania, Italy
Antonio Bianchi Purdue University, USA
Giuseppe Bianchi Università di Roma Tor Vergata, Italy
Jorge Blasco Royal Holloway, University of London, UK
Ferdinand Brasser SANCTUARY Systems GmbH, Germany
Alessandro Brighente University of Padua, Italy
Ileana Buhan Radboud University, The Netherlands
Alvaro Cardenas University of California Santa Cruz, USA
Xavier Carpent University of Nottingham, UK
Anrin Chakraborti Stony Brook University, USA
Sze Yiu Chau Chinese University of Hong Kong, China
Liqun Chen University of Surrey, UK

Organization ix

Scott Coull Mandiant, USA
Bruno Crispo University of Trento, Italy
Michel Cukier (only Round 1) University of Maryland, USA
Sanchari Das University of Denver, USA
Lucas Davi University of Duisburg-Essen, Germany
Fabio De Gaspari Sapienza University of Rome, Italy
Ivan De Oliveira Nunes Rochester Institute of Technology, USA
Roberto Di Pietro Hamad Bin Khalifa University, Qatar
Xuhua Ding Singapore Management University, Singapore
Shlomi Dolev Ben-Gurion University of the Negev, Israel
Anna Lisa Ferrara University of Molise, Italy
Barbara Fila INSA Rennes, IRISA, France
Simone Fischer-Hübner Karlstad University, Sweden
Olga Gadyatskaya University of Leiden, The Netherlands
Ankit Gangwal International Institute of Information Technology,

Hyderabad, India
Siddharth Garg NYU Tandon, USA
Giorgio Giacinto University of Cagliari, Italy
Alberto Giaretta Örebro University, Sweden
Devashish Gosain KU Leuven, Belgium
Matteo Große-Kampmann

(only Round 2)
Ruhr-Universität Bochum, Germany

Berk Gulmezoglu Iowa State University, USA
Thomas Haines Norwegian University of Science and Technology,

Norway
Hugo Jonker Open University of the Netherlands,

The Netherlands
Sokratis Katsikas Norwegian University of Science and Technology,

Norway
Stefan Katzenbeisser University of Passau, Germany
Jihye Kim Kookmin University, South Korea
Hyoungshick Kim Sungkyunkwan University, South Korea
Hyungsub Kim Purdue University, USA
Marina Krotofil European Commission, Switzerland
Juliane Krämer University of Regensburg, Germany
Alptekin Küpçü Koç University, Turkey
Katsiaryna Labunets

(only Round 2)
Utrecht University, The Netherlands

Peeter Laud Cybernetica AS, Estonia
Adam Lee University of Pittsburgh, USA
Kyu Hyung Lee University of Georgia, USA
Valeria Loscrì Inria, France

x Organization

Eleonora Losiouk University of Padua, Italy
Wenjing Lou Virginia Tech, USA
Aravind Machiry Purdue University, USA
Mark Manulis Bundeswehr University Munich, Germany
Eduard Marin-Fabregas Telefonica Research, Spain
Ivan Martinovic Oxford University, UK
Roberto Metere (only Round 2) University of York, UK
Markus Miettinen TU Darmstadt, Germany
Chris Mitchell Royal Holloway, University of London, UK
Yoshimichi Nakatsuka ETH Zurich, Switzerland
Hai Nguyen (only Round 2) Purdue University, USA
Antonino Nocera (only Round 2) University of Pavia, Italy
Martín Ochoa ETH Zurich, Switzerland
Gabriele Oligeri Hamad Bin Khalifa University, Qatar
Cristina Onete (only Round 2) University of Limoges, France
Panos Papadimitratos KTH, Sweden
Stefano Paraboschi Università di Bergamo, Italy
Federica Pascucci Università degli studi Roma Tre, Italy
Marinella Petrocchi

(only Round 1)
IIT-CNR, Italy

Stjepan Picek Radboud University, The Netherlands
Elizabeth Quaglia (only Round 1) Royal Holloway, University of London, UK
Kasper Rasmussen Oxford University, UK
Laura Ricci University of Pisa, Italy
Rodrigo Roman (only Round 2) University of Malaga, Spain
Sushmita Ruj University of New South Wales, Australia
Peter Y. A. Ryan University of Luxembourg, Luxembourg
Amin Sakzad (only Round 1) Monash University, Australia
Brendan D. Saltaformaggio Georgia Institute of Technology, USA
Dominique Schröder University of Erlangen-Nürnberg, Germany
Michael Schwarz CISPA, Germany
Jörg Schwenk Ruhr-Universität Bochum, Germany
Savio Sciancalepore Eindhoven University of Technology,

The Netherlands
Siamak F. Shahandashti University of York, UK
Michael Sirivianos Cyprus University of Technology, Cyprus
Juraj Somorovsky (only Round 1) Ruhr-Universität Bochum, Germany
Claudio Soriente NEC Laboratories Europe, Germany
Alessandro Sorniotti IBM Zurich, Switzerland
Angelo Spognardi Sapienza Università di Roma, Italy
Riccardo Spolaor Shandong University, China
Thorsten Strufe Karlsruhe Institute of Technology, Germany

Organization xi

Paul Syverson (only Round 1) Naval Research Laboratory, USA
Juan Tapiador Universidad Carlos III de Madrid, Spain
Pietro Tedeschi (only Round 2) Technology Innovation Institute,

United Arab Emirates
Nils Ole Tippenhauer CISPA, Germany
Mahesh Tripunitara University of Waterloo, Canada
Fatih Turkmen (only Round 2) University of Groningen, The Netherlands
Selcuk Uluagac Florida International University, USA
Tobias Urban Institute for Internet Security, Germany
Marloes Venema (only Round 2) University of Wuppertal, Germany
Daniele Venturi Sapienza University of Rome, Italy
Tran Viet Xuan Phuong Old Dominion University, USA
Alexios Voulimeneas KU Leuven, Belgium
Haining Wang Virginia Tech, USA
Edgar Weippl University of Vienna & SBA Research, Austria
Avishai Wool Tel Aviv University, Israel
Stefano Zanero Politecnico di Milano, Italy
Youqian Zhang (only Round 2) Hong Kong Polytechnic University, China
Fengwei Zhang Southern University of Science and Technology,

China
Liang Zhao (only Round 2) Sichuan University, China
Alf Zugenmaier Munich University of Applied Sciences, Germany

Contents – Part III

Attacks

Layered Symbolic Security Analysis in DY� . 3
Karthikeyan Bhargavan, Abhishek Bichhawat, Pedram Hosseyni,
Ralf Küsters, Klaas Pruiksma, Guido Schmitz, Clara Waldmann,
and Tim Würtele

Indirect Meltdown: Building Novel Side-Channel Attacks
from Transient-Execution Attacks . 22

Daniel Weber, Fabian Thomas, Lukas Gerlach, Ruiyi Zhang,
and Michael Schwarz

Accessorize in the Dark: A Security Analysis of Near-Infrared Face
Recognition . 43

Amit Cohen and Mahmood Sharif

A Rowhammer Reproduction Study Using the Blacksmith Fuzzer 62
Lukas Gerlach, Fabian Thomas, Robert Pietsch, and Michael Schwarz

Reviving Meltdown 3a . 80
Daniel Weber, Fabian Thomas, Lukas Gerlach, Ruiyi Zhang,
and Michael Schwarz

Tamarin-Based Analysis of Bluetooth Uncovers Two Practical Pairing
Confusion Attacks . 100

Tristan Claverie, Gildas Avoine, Stéphanie Delaune,
and José Lopes Esteves

MARF: A Memory-Aware CLFLUSH-Based Intra- and Inter-CPU
Side-Channel Attack . 120

Sowoong Kim, Myeonggyun Han, and Woongki Baek

You Reset I Attack! A Master Password Guessing Attack Against Honey
Password Vaults . 141

Tingting Rao, Yixin Su, Peng Xu, Yubo Zheng, Wei Wang, and Hai Jin

Attacking Logo-Based Phishing Website Detectors with Adversarial
Perturbations . 162

Jehyun Lee, Zhe Xin, Melanie Ng Pei See, Kanav Sabharwal,
Giovanni Apruzzese, and Dinil Mon Divakaran

xiv Contents – Part III

Hiding Your Signals: A Security Analysis of PPG-Based Biometric
Authentication . 183

Lin Li, Chao Chen, Lei Pan, Yonghang Tai, Jun Zhang, and Yang Xiang

Exploring Genomic Sequence Alignment for Improving Side-Channel
Analysis . 203

Heitor Uchoa, Vipul Arora, Dennis Vermoen, Marco Ottavi,
and Nikolaos Alachiotis

The Grant Negotiation and Authorization Protocol: Attacking, Fixing,
and Verifying an Emerging Standard . 222

Florian Helmschmidt, Pedram Hosseyni, Ralf Küsters, Klaas Pruiksma,
Clara Waldmann, and Tim Würtele

Everlasting ROBOT: The Marvin Attack . 243
Hubert Kario

JWTKey: Automatic Cryptographic Vulnerability Detection in JWT
Applications . 263

Bowen Xu, Shijie Jia, Jingqiang Lin, Fangyu Zheng, Yuan Ma,
Limin Liu, Xiaozhuo Gu, and Li Song

Blockchain

When is Slower Block Propagation More Profitable for Large Miners? 285
Zhichun Lu and Ren Zhang

Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 306
Shaoyu Li, Shanghao Shi, Yang Xiao, Chaoyu Zhang, Y. Thomas Hou,
and Wenjing Lou

Syntax-Aware Mutation for Testing the Solidity Compiler 327
Charalambos Mitropoulos, Thodoris Sotiropoulos, Sotiris Ioannidis,
and Dimitris Mitropoulos

Efficient Transparent Polynomial Commitments for zk-SNARKs 348
Sungwook Kim, Sungju Kim, Yulim Shin, Sunmi Kim, Jihye Kim,
and Hyunok Oh

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 367
Jianhuan Wang, Jichen Li, Zecheng Li, Xiaotie Deng, and Bin Xiao

Contents – Part III xv

Miscellaneous

stoRNA: Stateless Transparent Proofs of Storage-time . 389
Reyhaneh Rabaninejad, Behzad Abdolmaleki, Giulio Malavolta,
Antonis Michalas, and Amir Nabizadeh

Secure Approximate Nearest Neighbor Search with Locality-Sensitive
Hashing . 411

Shang Song, Lin Liu, Rongmao Chen, Wei Peng, and Yi Wang

ConGISATA: A Framework for Continuous Gamified Information
Security Awareness Training and Assessment . 431

Ofir Cohen, Ron Bitton, Asaf Shabtai, and Rami Puzis

Tactics for Account Access Graphs . 452
Luca Arnaboldi, David Aspinall, Christina Kolb, and Saša Radomirović

Machine-Checked Proofs of Accountability: How to sElect Who is to Blame . . . 471
Constantin Cătălin Drăgan, François Dupressoir, Kristian Gjøsteen,
Thomas Haines, Peter B. Rønne, and Morten Rotvold Solberg

Author Index . 493

Attacks

Layered Symbolic Security Analysis in DY�

Karthikeyan Bhargavan1,2 , Abhishek Bichhawat3 , Pedram Hosseyni4 ,
Ralf Küsters4 , Klaas Pruiksma4(B) , Guido Schmitz5 ,

Clara Waldmann4 , and Tim Würtele4

1 INRIA Paris, Paris, France
karthikeyan.bhargavan@inria.fr

2 Cryspen, Paris, France
3 IIT Gandhinagar, Gandhinagar, India

abhishek.b@iitgn.ac.in
4 University of Stuttgart, Stuttgart, Germany

{pedram.hosseyni,ralf.kuesters,klaas.pruiksma,
clara.waldmann,tim.wuertele}@sec.uni-stuttgart.de

5 Royal Holloway University of London, Egham, UK
guido.schmitz@rhul.ac.uk

Abstract. While cryptographic protocols are often analyzed in isola-
tion, they are typically deployed within a stack of protocols, where each
layer relies on the security guarantees provided by the protocol layer
below it, and in turn provides its own security functionality to the layer
above. Formally analyzing the whole stack in one go is infeasible even
for semi-automated verification tools, and impossible for pen-and-paper
proofs. The DY� protocol verification framework offers a modular and
scalable technique that can reason about large protocols, specified as a
set of F� modules. However, it does not support the compositional veri-
fication of layered protocols since it treats the global security invariants
monolithically. In this paper, we extend DY� with a new methodology
that allows analysts to modularly analyze each layer in a way that com-
pose to provide security for a protocol stack. Importantly, our technique
allows a layer to be replaced by another implementation, without affect-
ing the proofs of other layers. We demonstrate this methodology on two
case studies. We also present a verified library of generic authenticated
and confidential communication patterns that can be used in future pro-
tocol analyses and is of independent interest.

1 Introduction

Modern Web applications combine a variety of cryptographic mechanisms and
protocols to achieve their security goals. For example, to log in to a banking
website or code repository, a user typically first enters a username and password
over HTTPS. The server may then ask for a second-factor authentication via
an independent secure channel with the user’s phone. Only when both authenti-
cation mechanisms succeed is the user allowed to access any sensitive resource.
Each such security mechanism may in turn rely on a whole stack of cryptographic
protocols underneath it, each with its own security assumptions and guarantees.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 3–21, 2024.
https://doi.org/10.1007/978-3-031-51479-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_1&domain=pdf
http://orcid.org/0000-0002-3152-8997
http://orcid.org/0000-0002-3075-2743
http://orcid.org/0000-0001-5618-5663
http://orcid.org/0000-0002-9071-9312
http://orcid.org/0000-0002-6032-087X
http://orcid.org/0000-0002-3776-5475
http://orcid.org/0000-0001-6019-7130
http://orcid.org/0000-0002-4729-0629
https://doi.org/10.1007/978-3-031-51479-1_1

4 K. Bhargavan et al.

Consider the password-based login mechanism, where the user sends a user-
name and secret password to a website over the HTTPS protocol, which imple-
ments a confidential request-response communication pattern between an unau-
thenticated client and authenticated server. The HTTPS exchange is encoded
within the duplex encrypted data streams provided by the Record sub-protocol
of Transport Layer Security (TLS); the keys encrypting these streams are set
up by an authenticated key exchange implemented by the TLS Handshake sub-
protocol. TLS itself relies on the X.509 public key infrastructure (PKI) for server
authentication, a trusted cryptographic library, and an untrusted TCP/IP net-
working stack for communication.

Consequently, the security and functionality of the
password-based login mechanism relies on the correct design
and implementation of the stack of protocols depicted on the
right. Each layer depends on the security guarantees provided
by the layer below and offers new functionality and guaran-
tees to the layer above. The protocol at each layer may well
be secure in isolation, but if it is used incorrectly by the lay-
ers above it, or if there is any secret value or state shared
between two layers, the composite stack may well be insecure.
For example, the Triple Handshake attacks [13] demonstrated
how three different key exchange protocols that are secure on
their own break when composed together. Hence, it is impor-
tant to analyze the stack as a whole, proving security for the
green layers, under precise security assumptions on the crypto,
treating the untrusted network as controlled by the adversary.

One option would be to model all the green layers together
and prove them secure in a single proof, but this effort can
quickly become too large and untenable for pen-and-paper
proofs and even automated protocol verification tools. The
problem is that although many protocol analysis approaches
are effective on small protocols, they are not modular, com-
positional, or scalable enough to analyze large and complex protocol stacks.

We say that a protocol specification methodology is modular when each pro-
tocol can be modeled in its own module(s) with a succinct interface that describes
its assumptions, functionality, and security guarantees. Further, we say that a
protocol analysis framework is compositional if it allows different protocols to
also be verified independently and then composed without needing to redo the
analysis. Finally, we say that a protocol analysis tool is scalable if the verifica-
tion time and effort grows proportionately with the size and complexity of the
protocol. We believe that all three properties are needed to cleanly model and
feasibly analyze stacks of layered real-world protocols.

Automated whole-protocol analysis tools like ProVerif [15] and Tamarin [31]
work well for small-to-medium protocols, but suffer from not having these three
properties. Indeed, it can take hours to analyze a monolithic model of TLS
1.3 using these tools [10,20], without even considering the PKI or the appli-

Layered Symbolic Security Analysis in DY� 5

cation. Recognizing this drawback, a line of work on symbolic protocol com-
position studies conditions under which protocol proofs built with such tools
can be composed (see e.g. [18,27]). Computational cryptographic provers like
EasyCrypt [3], SSProve [1], CryptoVerif [14] model cryptography more precisely
but are less effective than symbolic tools and have only been applied to construc-
tions and small protocols. For these tools, composability is even more important
to enable the analysis of large protocols by breaking them into sub-protocols.

In this work, we adopt the type-based machine-checked protocol analysis
methodology of DY� [5], which natively supports modular specification and
enables proofs that are scalable, since proofs can be type-checked in time linear
in the size of the protocol. We observe, however, that the DY� framework is
not compositional in that it requires the security invariants for all protocols in
a stack to first be specified together, and then each protocol can be indepen-
dently analyzed with respect to these monolithic security predicates. Changing
any protocol layer requires the full stack to be verified again.

Contributions. We design and implement an extension to DY� that enables
compositional protocol verification. We use this extension to develop verified
implementations of several generic layers, including PKI, TLS, and a library of
communication patterns that includes HTTPS-style request-response exchanges,
all of which are designed to be easily reused and built upon in future analyses.
We use these verified libraries to build and analyze protocol stacks for two case
studies.1 We show how each layer can be verified independently and safely com-
posed. We also show how one implementation of a layer can be replaced by
another, without re-verifying all other layers. We believe our extension to DY�

to be the first symbolic protocol verification methodology that applies to exe-
cutable protocols and allows for mechanized analysis in a modular, scalable, and
compositional way, thereby producing machine-checked proofs.

Paper Structure. We first briefly recall the DY� framework. We then, in Sect. 3,
present the two mentioned simple case studies, which we use as running examples
through the paper. We outline our general approach of layered analysis in DY�

in Sect. 4, with instantiations for a generic PKI layer and a communication layer,
built on top of the PKI layer, presented in Sect. 5. The analysis of our case studies
based on the latter two layers is given in Sect. 6. Related work is discussed in
Sect. 7, and Sect. 8 concludes.

2 The DY� Framework

DY� is a framework for symbolic security analysis of protocol code written in
the F� [36] programming language. DY� has been successfully used to verify
a variety of cryptographic protocols, including classic protocols like Needham-
Schroeder-Lowe and ISO [7], ratcheted key exchange protocols like Signal [5],
modern standards like ACME [6], secure channel frameworks like Noise [28],
and group protocols like TreeSync [37]. Proofs in DY� are not fully automated
1 Code for all of these implementations can be found in [8].

6 K. Bhargavan et al.

and require manual annotations, but in return, DY� offers many advantages over
fully automated symbolic analysis frameworks like ProVerif and Tamarin.

First, DY� proofs have access to the full F� proof assistant, and hence can han-
dle arbitrary recursion in protocols using inductive proofs, unlike Tamarin and
ProVerif, which only have limited support for induction. Second, DY� supports
executable protocol specifications that can be tested to simulate full protocol
runs and attacks. Third, DY� uses a type-based proof methodology that scales
linearly in the size of the protocol, since every protocol function is analyzed
independently. While automated tools are more effective and convenient than
DY� for small protocols, they tend to blow up on large protocols like ACME,
Signal, and Noise, which is where DY� starts to shine.

In the following, we briefly describe DY� focusing on the aspects that are
relevant for the rest of the paper. We refer to [5] for details on the design of DY�

and to [7] for a tutorial-style introduction to this framework.

Trace-Based Semantics. DY� explicitly encodes the global run-time seman-
tics of distributed protocol executions in terms of a global trace and the symbolic
security analysis is proved sound with respect to this semantics within the veri-
fication framework itself.

DY� models the global interleaved execution of a set of protocol participants
(or principals) as a trace of observable protocol actions (or entries). As a prin-
cipal executes a role in some run of a protocol, it can send and receive messages,
generate random values, log security events, and store and retrieve its state (con-
sisting of sessions), and each of these operations either reads from or extends
the global trace. The protocol code for each principal cannot directly read from
or write to the trace, but instead must use a typed trace API that enforces an
append-only discipline on the global trace.

Symbolic Cryptographic Library. DY� also provides a library for the manip-
ulation of bytes. The interface of this library treats bytes abstractly and pro-
vides functions for creating constants, concatenating and splitting bytes, and
applying various cryptographic primitives such as public-key encryption and
signatures, symmetric encryption and message authentication codes, hashing,
Diffie-Hellman, and key derivation, which are treated as black-boxes.

The library interface also provides a series of lemmas relating to these func-
tions that effectively form an equational theory, stating, for example, that
decryption is an inverse of encryption, or that splitting concatenated bytes
returns its components, or that signature verification always succeeds on a validly
generated signature. Bytes can only be manipulated by using the functions of
this cryptographic API. This ensures that all byte manipulations adhere to the
equational theory. For example, signing keys cannot be extracted from a signa-
ture and hash functions cannot be inverted, in particular by the attacker.

Dolev-Yao Adversary. The standard attacker model captured by DY� is the
symbolic Dolev-Yao active network attacker [22]. This adversary is modeled as
an (arbitrary) F� program that is given full access to the cryptographic API and
limited access to the global trace API. That is, it can call functions to generate its

Layered Symbolic Security Analysis in DY� 7

own random values, send a message from any principal to any principal, and read
any message from the trace. Notably, it cannot read any random values or logged
security events from the trace, and a priori it cannot read the session states
stored by any principal. However, the attacker is given a special function that
it can call at any time to compromise other principals’ states (fully or partly),
which marks the respective state as compromised in the trace and unlocks access
to its contents. DY� defines a predicate that captures the knowledge that the
adversary can possibly gain at any point in a trace, and we can use this predicate
to reason about fine-grained confidentiality guarantees.

Symbolic Execution and Testing. The code for protocol models in DY� can
be executed symbolically to obtain traces that can be printed and inspected
for debugging. This feature is invaluable to test the model and ensure that it
behaves as expected. For example, we can ensure that there isn’t a bug in the
protocol code that prevents protocol runs from finishing, or we can write example
attacker code and test potential attacks against our protocol.

Authentication and Confidentiality Goals. The security goals of a protocol
are stated as predicates over all reachable global traces. The trace predicate
has full visibility over all entries in the global trace, including sent messages,
logged events, and states stored at any principal. To specify an authentication
goal, we typically state that certain events must be recorded in a certain order
with matching parameters (e.g., when principal B accepts a session with A,
then A needs to have initiated this session). To specify confidentiality, we state
conditions on the attacker’s knowledge at specific points in the trace.

Proof Methodology. The main proof technique in DY� is to establish an invari-
ant over all reachable traces that capture relevant aspects of the modeled pro-
tocol and prove that this invariant implies the desired goals. In particular, we
need to prove that all functions that can modify the trace, either on behalf of
honest protocol code or the attacker, preserve the invariant. To this end, DY�

offers a modular proof methodology, where programmers only need to define and
prove local protocol-specific state invariants and security goals, and the frame-
work completes the proof by filling in generic security invariants that are proved
once-and-for-all for all protocols.

DY� defines a library of labeled APIs that enforce a labeling discipline on the
usage of cryptography to simplify reasoning about secrecy. The labels explicitly
capture the intended set of principals that may know certain bytes, and the
labeled APIs enforce that only this set of principals can access the bytes. This
library defines a computational effect LCrypto that enforces a global trace invari-
ant called valid_trace. The labeled APIs have valid_trace as both pre- and post-
condition for all functions by using the LCrypto effect. The global trace invariant
consists of several components, some generic invariants and some predicates that
have to be defined for each protocol.

Protocol-Specific Predicates. For each protocol, we specify predicates on the
usage of cryptographic functions, pre-conditions for logged events, and invari-
ants on the session states stored by protocol participants. The predicates on

8 K. Bhargavan et al.

the usage of cryptographic functions restrict the application of cryptographic
functions to certain messages and keys. For example, the usage predicate for
public key encryption (can_pke_enc) may state that honest principals encrypt
only messages of a certain form, if certain events have occurred on the global
trace, or nonces have a certain label, which in turn gives other honest principals
decrypting such messages these guarantees. We note that the attacker/dishonest
principals are not restricted in any way.

3 Motivating Examples

In the rest of this paper, we use two high-level security protocols to illustrate our
key concepts and our compositional verification methodology. These case studies
do not themselves use much cryptography, but they rely on lower-layer crypto-
graphic protocols to provide various kinds of secure channels. Consequently, the
analysis of these examples should depend only on the guarantees of the under-
lying channels but not on the details of how these channels are implemented.

Basic Authentication (BA). The first example, depicted below, is a basic
authentication protocol, inspired by the Basic HTTP Authentication scheme [33].

1 Register account : passwordRegister account : password
client-request-account

3 Response : “ok”Response : “ok”
server-account-response

4 Access request : passwordAccess request : password
client-request-secret

5 Response : secretResponse : secret
server-secret-response

Client Server

2 Generate secretGenerate secret
for passwordfor password

server-creates-secret

Client Server

A client can send two different
kinds of requests to a server. First,
a request to register an account at
the server, containing a password
(Step 1). When receiving such a
request, the server generates a long-
term secret (essentially a resource)
and stores the secret along with the
password (Step 2). The client can
send a second type of request (access
request) to retrieve the long-term
secret, which needs to include the
password used for account genera-
tion (Step 4). Upon receiving such
a request, the server checks whether
an account identified by the password
exists and returns the corresponding
long-term secret (Step 5).

The security guarantee we want to show for this example is that if an honest
(i.e. uncorrupted) Client and Server communicate via a server-authenticated
confidential channel (like TLS), then the long-term secret stays confidential.

Source Routing (SR). Our second example is a simple source routing protocol
where a message is to be sent along a pre-specified path of participants.

Layered Symbolic Security Analysis in DY� 9

1 mm
msg2B

[A, B, C][A, B, C]

2 mm
msg2C

[A, B, C][A, B, C]

A B C

A B C

On the right, we show the protocol for
three participants where the message m
should take the path [A,B,C]. (Note that the
protocol itself works for paths of any length.)
A initiates the flow by sending the message
and the planned path to B, the next partici-
pant on the path. B processes the message and
sends it on to the next participant C. Once C
receives the message the protocol ends.

The security guarantees of the source rout-
ing example depend on the types of channels
that are used. For example, if all principals send the messages over authenticated
channels, then we would like to show that the message indeed took the specified
path, as long as none of the participants on the path gets corrupted. Similarly,
we would like to prove confidentiality guarantees for the message if the channels
are also confidential.

4 Layered Symbolic Protocol Analysis

As mentioned in Sect. 2, DY� enables the modular and scalable analysis of pro-
tocols by relying on the expressiveness of F�, like inductive reasoning and type-
based proofs. However, there remain some limitations that make proofs of large
protocols in DY� difficult and fragile. For example, consider the BA example
described above. The security of this protocol relies on a server-authenticated
confidential request-response channel between a client and a server. In practice,
this channel is implemented by HTTPS, which in turn relies on TLS, the X.509
PKI, and a crypto library. To fully verify the security of this protocol, we have to
model all these layers. Doing so in a monolithic proof framework like ProVerif or
Tamarin is infeasible, both due to the effort involved and the verification time.

In DY�, we can rely on the modularity provided by F� to put the modeling
code for each layer into a separate module and verify them separately. How-
ever, even if the code for different layers is independent, the predicates that are
used in the security proof are shared between all layers. Consequently, we have
to globally define the state invariants, event preconditions, the predicates for
cryptographic primitives, such as encryption, signatures, and MACs, all in once
place. If any two layers use the same cryptographic construction, e.g. public
key encryption, we have to instantiate the predicate for public-key encryption,
can_pke_enc (see also Sect. 2), in a way that both layers still typecheck, which
in turn requires a proof that the uses of this predicate in the two layers are dis-
joint, i.e. they do not conflict with each other. These kinds of proofs are not just
unpleasant, but also non-compositional. If we wanted to change (say) the chan-
nel implementation from TLS to some other protocol with the same guarantees,
we would have to change the predicates and reverify the full stack.

In short, DY� offers a scalable proof methodology and a modular specification
technique, but does not support composable proofs for sub-protocols or protocol
layers. Even to prove simple protocols like our case studies, the analyst must

10 K. Bhargavan et al.

read, edit, and verify a set of global predicates that include details of lower-level
protocols and higher-layer applications that they may not be familiar with.

The Layered Predicates Approach. In this paper, we propose a new method-
ology for the layered analysis of protocols modeled in DY�. Our key insight is
to separately model both the code and the predicates of each protocol layer in
its own module, and specify rules on how these predicates are composed. Essen-
tially, each lower layer takes the higher-layer predicates as opaque parameters
and incorporates them in its analysis. Consequently, the security proof of the
lower layer is done only once for all instantiations of the higher-layer predicates.
Unlike in classic DY�, this proof does not need to be redone even if the higher-
layer protocol changes. Conversely, each higher-layer protocol is aware of the
lower-layer it depends upon. If the lower layer changes, the higher layer may
need to be re-verified but we carefully restrict the new proofs to a minimal set
of properties about overlapping cryptographic usage.

We illustrate the general concept using state invariants. In DY�, each princi-
pal stores and maintains local state for every protocol session it participates in.
For example, both participants in a confidential channel protocol usually store
a symmetric key that is used to encrypt messages between them. In addition,
they may store session state, such as passwords, used by higher-layer protocols.
For the security proof, we need to show that this stored data satisfies certain
properties, which are captured by state invariants. For example, the symmetric
key (and the password) must have a secrecy label that ensures that it can only
be read by the principal and its peer. In DY�, these invariants are so far defined
monolithically for all protocol layers in a global state invariant.

In contrast, in our layered approach the state invariant of each layer is defined
independently, only taking higher_layer_preds as parameter, as illustrated below:

let state_invariant higher_layer_preds principal state = match state with
| CommunicationState sym_key responder → (∗Communication layer invariants∗)
| HigherLayerState higher_layer_state → (∗must satisfy higher−layer invariants∗)
higher_layer_preds.state_invariant principal higher_layer_state

| _→ ⊥

Here, the state invariant for the communication layer (of Sect. 5) says that
the stored state is structured in two disjoint parts, one part for itself and one
for all higher layers. Each part enforces its own state invariant. This style allows
us to easily compose multiple layers in a stack. Indeed, the communication layer
invariant itself serves as a higher-layer predicate for the layers below it.

Lifting Cryptographic Functions. If different layers overlap in the crypto-
graphic functions and keys they use, this can, in principle, result in an insecure
composition, even if both layers are secure by themselves. For example, if a secure
channel protocol makes its internal encryption key available also to higher lay-
ers, then it may be possible for the attacker to inject messages encrypted by
the higher layer into the secure channel, undermining the integrity of the chan-
nel. If two layers do not conflict in this way, we say that they satisfy implicit
disjointness, reusing a term from the setting of Universal Composability [29].

Layered Symbolic Security Analysis in DY� 11

To verify a stack of protocols, we therefore need to prove that every pair of
protocols is pairwise disjoint. Using our layered approach, we turn this global
property into a local condition at every layer. Each layer redefines (or lifts) all
the cryptographic functions it uses, defines local predicates specifying its own
usage of these functions, and specifies disjointness conditions for the safe usage
of these functions in higher layers. For any crypto function not used in a layer,
these functions and predicates are simply passed through to the next layer.

As an example of the simplest case, consider a layer that does not use MACs.
The local MAC usage predicate of this layer is equivalent to the higher-layer pred-
icate, without any additional local conditions. Its MAC disjointness condition
for higher layers is the same as the disjointness predicate for its lower layer.

The lifted MAC function provided by this layer has mac_disjoint and the
higher-layer mac_predicate as preconditions, which means that any higher layer
is free to use this MAC function, in accordance with its own local MAC usage
predicate, as long as it ensures disjointness with the layers below.

Suppose a layer does use a cryptographic function, say AEAD encryption,
but defines its own local keys which are not shared with any other layer. This
is the most common (and most advisable) design pattern. In DY�, each key is
associated with a usage string. For example, the communication layer creates
symmetric keys with the usage string CommunicationLayerSymKey, and uses this
key to encrypt requests and responses (see Sect. 5 for details). If this key usage
is not used in any other layer, then the AEAD predicate of this layer can cleanly
distinguish between its own usage and that of higher layers. No additional dis-
jointness condition is needed, only those imposed by lower layers (as in MAC).

Implicit Disjointness in the General Case. The most complicated case is
when the same cryptographic function and key may be used in multiple layers.
This failure of key independence between protocol layers is tricky to handle in
security proofs, but can unfortunately often occur in real-world protocols.

In our approach, we use the disjointness predicate to ensure that if a higher
layer uses a key that is also used by some lower layer, then the messages that it
uses (e.g., encrypts) with this key are disjoint from (e.g., have different formats
than) those used in lower layers. For example, the communication layer’s AEAD
disjointness predicate requires that the higher layer only encrypts messages with
keys or formats that do not conflict with this or lower layers:

let aead_disjoint key_usage key plaintext =
key_usage == "CommunicationLayerSymKey" =⇒
match split plaintext with
| Success ("CommunicationLayerRequest", message) → ⊥
| Success ("CommunicationLayerResponse", message) → ⊥
| _→ Lower_layer.aead_disjoint key_usage key plaintext

As long as the higher layer meets this condition, it can freely use the AEAD
key and enforce its own local AEAD usage predicate.

The communication layer then defines its own local AEAD usage predicate,
encompassing all the ways that AEAD may be used by this or higher layers:

12 K. Bhargavan et al.

let aead_predicate higher_layer_preds key_usage key plaintext =
if key_usage == "CommunicationLayerSymKey" then

(match split plaintext with
| Success ("CommunicationLayerRequest", message) →
communication_layer_request_predicate higher_layer_preds message

| Success ("CommunicationLayerResponse", message) →
communication_layer_response_predicate higher_layer_preds message

| _→ higher_layer_preds.aead_predicate key_usage key plaintext)
else higher_layer_preds.aead_predicate key_usage key plaintext

This predicate states that if the key usage is CommunicationLayerSymKey,
and the plaintext matches the format of the communication layer’s request
or response, then the inner message must satisfy the communication layer’s
request_predicate or response_predicate, which may in turn take into account addi-
tional conditions specified in the higher layer predicates. If the key has a different
usage or the plaintext has a different format, then they must satisfy the higher
layer’s AEAD encryption predicate. Hence, the higher layer may either (1) call
the communication layer to encrypt plaintexts, by obeying its request or response
API, or (2) use independent keys to encrypt its own plaintexts, or (3) use the
same key but with a disjoint message format. In the latter two cases, the key
and message must satisfy the higher-layer usage predicate.

Compositional Verification. Importantly, when verifying the higher layer,
we do not need to understand the possibly complex details of the lower-layer
protocol implementation encoded in its usage predicate; we only need to prove
the lower-layer disjointness predicate and the higher-layer usage predicate. We
also note that these predicate definitions are verified, not trusted. If a protocol
designer incorrectly makes them too strong or too weak, then typechecking will
fail at the lower layer or at the higher layer.

Altogether, our changes extend DY� to a fully compositional layered protocol
verification framework. Each layer only needs to be verified once, and changes
to any layer implementation affect only those higher layers that reuse the same
crypto functions and keys. So far, we have only considered vertical and sequential
compositions of layers into a protocol stack. In future work, we intend to extend
this framework to account for other composition patterns, such as horizontal
compositions. Note that such composite protocols are already verifiable in DY�,
but they can not benefit from the compositional proof technique in this paper.

5 Instantiation: Generic PKI and Communication Layers

We now illustrate how to instantiate the approach presented in the previous
section by two layers, a simple PKI and a communication layer that uses it.
These layers provide a basic library for these common protocol components that
can be reused in future analyses.

Layered Symbolic Security Analysis in DY� 13

5.1 A Layer for Public-Key Infrastructure

The PKI layer models the functionality of a certificate authority, and hence,
the correct distribution of public keys, but, importantly, also the generation
of public/private key-pairs and their management/storage at principals. Keys
can have different types (public-key encryption, Diffie-Hellman key exchange,
signing, MACing, etc.) and usages. The PKI layer exposes APIs to generate
and retrieve keys of the desired type with an intended usage. Using labels, it
additionally guarantees that the private keys of principals indeed belong to (and
are only known by) the respective principals, and that the predicates that hold
true at the higher layer, in particular, regarding the state of principals, also hold
true in the PKI layer, following the principle outlined in Sect. 4.

5.2 A Layer for Confidential and Authenticated Communication

As a second instance of our layering approach, we design a communication layer
providing APIs to exchange messages with different types of security guarantees.
We model sending authenticated and/or confidential (single) messages as well as
request-response pairs. This layer is built on top of the PKI layer.

For all functions in the interface of the communication layer we give imple-
mentations, showing that the pre- and post-conditions can be realized based
on cryptographic primitives. For some functions/channel types, we even have
multiple implementations, including one inspired by TLS 1.3., showing that our
guarantees can be achieved by real-world protocols.

Interface and Guarantees. At a high level, the sender of a message using
the communication layer can convey not just the message itself, but also some
proof information, using new predicates exposed by the layer for applications
to define. The guarantees that the receiver of the message gets depend on the
type of communication (e.g. authenticated). These guarantees may talk about
the contents of the message, but also may convey information about the state
of the sender or about past events in the trace, which greatly facilitates scalable
and composable analysis of protocols.

We now examine specific examples of the guarantees provided by the com-
munication layer, in the context of our source routing protocol from Sect. 3.

Intuitively, the receiver of an authenticated message should be guaranteed
that the sender of the message, if honest, followed the protocol when creating the
message. Since the details of message creation depend on the specific application
being modeled, the application may specify the exact properties that should hold
for an honest sender, by defining the predicate authenticated_send_pred exposed
by the communication layer. In the source routing example, this predicate states
that if all participants on the path are honest, then the previous participant
processed the message.

Similarly, a confidential message should guarantee the receiver that its con-
tents do not leak to the attacker in transit. As in the authenticated case, the
details of what parties should be allowed to know are application-specific, and

14 K. Bhargavan et al.

can be defined in the confidential_send_pred exposed by the communication layer.
We note that while secrecy properties are natural candidates for this predicate,
we can also include more general guarantees, as in the authenticated case. In the
source routing example, the predicate says that the content of the message can
only be known by the participants on the path.

We can also send messages that are both authenticated and confidential,
using the authenticated_confidential_send_pred predicate to specify the guarantees
the application expects, which are a combination of those for authenticated-
only and confidential-only messages. Similarly, we can send request/response
pairs, which resemble a confidential (and optionally authenticated) message,
responded to by an authenticated and confidential message. These pairs use
their own predicates request_pred and response_pred, which are similar to the
other predicates, but have slightly more expressive power, e.g., the response
predicate can refer to both the request and the response.

In addition to the communication functions, the layer also exposes lifted
versions of the cryptographic functions provided by DY�, as described in Sect. 4.
The communication layer uses a symmetric key for securing request/response
pairs (as is common in practice), and exposes this key to the higher layer, which
may freely use this key as long as it does not interfere with the communication
layer, as already discussed in Sect. 4.

Implementation. As a sanity check and to prove that the interface of the
communication layer, and the guarantees that come with it, can be realized, we
provide implementations of the interface for the various channels and prove (in
DY�) that these typecheck against the interface, and hence, provide the desired
guarantees. Our implementations are rather straightforward and are based on
public-key cryptography, which is why they are based on the PKI layer. However,
as mentioned, we also provide a simplified implementation of TLS 1.3 (see below).

The implementation for sending authenticated messages adds a signature
to the original message, while confidential messages simply encrypt the original
message with the public key of the receiver. Messages which are both confidential
and authenticated use an encrypt-then-sign scheme. For request/response pairs,
we use a hybrid encryption scheme where the request contains a fresh symmetric
key, encrypted asymmetrically with the public key of the receiver. We provide
two variants for the encryption of the request body, one using this symmetric
key, and one using the public key of the receiver. In either case, the receiver then
uses the symmetric key from the request to encrypt the response.

The guarantees of the communication layer can then be derived (internally
to the communication layer) from the guarantees of the cryptographic functions
used. In this way, we implement the predicates exposed by the communication
layer (e.g. request_pred) from the lower-level predicates exposed by the PKI layer
to the communication layer.

TLS Implementation. The Transport Layer Security Protocol [34,35] is a
widely used cryptographic protocol ensuring end-to-end security of messages
exchanged by applications running on top of it. Various prior works [10,12,20,21]
have identified flaws and presented proofs and verified implementations of TLS.

Layered Symbolic Security Analysis in DY� 15

We provide a second implementation of the request/response pattern of the
communication layer based on a simplified version of the latest TLS version,
namely TLS 1.3, which illustrates that our communication layer can have multi-
ple, including real-word, implementations. Importantly, as explained in Sect. 4,
typically higher layers, e.g., those using the communication layer, can be ana-
lyzed independently of the specific implementations of lower layers.

Our model of TLS is itself modularized into two layers: one for the handshake
protocol for key-exchange (TLS AKE in Sect. 1), and the other is the record
layer for the transmission of messages (TLS Stream in Sect. 1). The handshake
layer involves the exchange of three messages: (1) the initiator/client generates
a Diffie-Hellman (DH) key pair and sends their public key to the server; (2) the
responder/server generates its own DH keypair and shares the public key with
the client signed with the server’s signature key; (3) the client acknowledges the
receipt of the server’s public key signed with their signature key. At the end
of the protocol, both client and server share a secret alongside authenticating
themselves with each other. The guarantees for the keys used in the three steps
are obtained from the PKI layer on top of which this layer is implemented.

6 Analysis of BA Example

Next, we present our security analysis of the BA example from Sect. 3, showing
how the communication layer greatly facilitates this analysis and makes it inde-
pendent of the concrete implementation of that layer; the analysis of the source
routing example can be found in our technical report [9].

Obviously, we model the BA example on top of the communication layer:
The client has two functions for creating and sending the requests, and two for
receiving the corresponding responses. The client stores the secret it receives
from the server in its state. Further, there is a function for the server to receive
and respond to each request. When it receives an account registration request it
generates a new secret and stores this secret next to the password in its state.

The main property that we want to prove for this example is that the secret
received by the client is only known to the client and server, provided neither is
corrupted. By stating this property from the perspective of the client receiving
the secret, we provide security guarantees to such clients.

The core of the proof of this property is a set of global trace invariants, which
we show are preserved by each protocol participant, and which are strong enough
to imply our security property. Our main invariant is an invariant on the state of
clients, which tells us that if a client stores in its state a secret received through
the BA protocol, along with the server from whom the secret was received, then
either the client or the server is corrupt, or the secret is labelled with exactly
these two parties. The security property follows immediately from this invariant
together with the preconditions of the property, in particular that the client

16 K. Bhargavan et al.

stores the secret in its state, and the soundness of the DY� labeling system,
which guarantees that secrets are only known to the parties in their labels.2

The bulk of the work then lies in proving that the protocol functions preserve
this property, so it is indeed an invariant of valid traces. The secret is only written
into the state of a client in the function where a client receives a response to
an access request. If both parties are honest at that time, the communication
layer guarantees that the predicate response_pred holds. This predicate states
that the label of the received secret is the same as that of the password sent in
the corresponding request.

Note how the communication layer makes it simple to convey information
from one principal to another—in this particular case, the server needs to prove
the response_pred before it can send a response containing a secret, and the client
can then make use of this same predicate upon receiving the message. This means
that the server, who does not know the label of the password, can still convey to
the client that the labels of the secret and the password are the same (trivially
so, since the server generates the secret with this property).

Another part of a client’s state invariant states that the password is labeled
with exactly the client and the server it interacts with. The client, knowing the
label of the password, is then able to determine precisely the label of the secret,
allowing us to establish the state invariant for the client.

Simplicity of Analysis and Independence from Channel Implementa-
tions. This case study highlights several benefits of the layered approach. First,
the higher-level interface of the communication layer makes it quite natural to
model the BA example, just as secure communication libraries simplify protocol
implementation by abstracting away from cryptographic primitives. Moreover,
the security of the BA example can also be proven at a much higher level of
abstraction, using the guarantees provided by the communication layer (and
customizable by higher layers via predicates), again hiding fine details of cryp-
tography. Since the BA example does not directly use any cryptography, implicit
disjointness with the communication layer comes for free, as described in Sect. 4.
In particular, this means that we can switch our implementation of the com-
munication layer (e.g. between our simple and TLS implementations) without
changes to the analysis of the BA example.

Implicit Disjointness. We also implemented and analyzed a variant of the
BA example where the server uses the symmetric key exposed by the commu-
nication layer to encrypt the secret, in addition to the underlying encryption
used by the communication layer. This illustrates the flexibility of our layered
approach. As outlined in Sect. 4, the server must then prove that it satisfies the
implicit disjointness predicate whenever it encrypts messages using the exposed
symmetric key. Since the definition of this predicate depends on the underlying
implementation of the communication channel, the analysis of the BA example
may need to be adjusted when this implementation changes, but only in this

2 The soundness of the labeling system has been mechanically proved once and for all
in DY� itself.

Layered Symbolic Security Analysis in DY� 17

specific aspect. This dependence on the implementation is inherent if the same
key material is used across layers, as implicit disjointness properties need to be
established, and depend on the specific format of messages.

Informal Benchmark. While we do not have an unlayered version of this
example to compare to, we can approximate it by looking at each component
of the BA example’s stack individually. The verification time for an unlayered
version would be at least as long as the sum of the times for the components,
and likely longer, as the predicates involved would be more complex. This lets
us get a rough idea of the time savings of being able to recheck changes to the
example without needing to reverify the full stack. Here, the BA example in
isolation takes only about 19% of the verification time of the full stack of layers
(see Table 1). With more layers or added complexity, we expect that this full-
stack verification time would increase even more relative to the single-component
verification time, further increasing the benefits of the layering approach.

Table 1. Size and verification time of components of the BA example
Size (LoC) Verif. Time (s)

BA example 1216 117
Comm. Layer 2125 142
PKI Layer and Core DY� 4736 358

7 Related Work

This paper presents a symbolic protocol analysis methodology that extends
an existing semi-automated verification framework (DY�), in order to enable
modular, scalable, and compositional protocol proofs. Many prior and concur-
rent works present related results. In this section, we compare our approach
with closely related work on developing machine-checked compositional protocol
proofs. A wider survey of the area may be found in [2].

Symbolic Protocol Analysis. Tools that verify protocols in the symbolic or
Dolev-Yao model [22] rely on a simplified abstraction of cryptography that makes
it easier to automate security proofs and to find logical flaws and attacks on
protocols. In particular, tools like ProVerif [15] and Tamarin [31] have been
successful in performing fully automated proofs of protocols like TLS 1.3 [10,20].
However, these tools do not support modular specifications or compositional
proofs, do not allow inductive proofs, and do not scale well to larger protocols.

Type-based approaches like DY� [5] and its predecessors [4,11] have been used
for the modular proofs of large protocols like ACME [6] and Signal [5]. This
paper represents a substantial extension to DY� that enables layered analysis
by changing the way security predicates are defined and composed. An early

18 K. Bhargavan et al.

idea for an authenticated channel layer appeared in the ACME analysis but
our treatment in this paper extends it with a full set of communication patterns
(confidential channels, request-response exchanges) and implementations of these
patterns by multiple protocols, including TLS.

Symbolic Protocol Composition. Prior works [18,19,25–27,32] have
explored conditions under which symbolic security proofs of two cryptographic
protocols can be safely composed. The composition patterns considered include
parallel composition of unrelated protocols, sequential composition—where one
protocol uses a secret generated by another, and vertical composition of proto-
cols that are layered one above another. In all these works, the key idea is to limit
the interactions between composed protocols or to characterize under what con-
ditions protocols can safely be composed; along with the analysis of individual
protocols, the conditions for their secure composition need to be checked.

Most of these prior works do not support machine-checked proofs. [27] for-
malizes the composition proof in Isabelle but the individual protocol proofs are
usually done using a different tool (PSPSP) and protocols are not expressed in a
full-fledged programming language, rather in a much simpler domain specific lan-
guage. In contrast, in our work, the full development, including soundness proofs,
composition proofs, and individual protocol proofs are all in the same framework
(F�), and by this, come with all the benefits of such a fully-fledged programming
environment (see also Sect. 2). Furthermore, by extending an existing expressive
tool, we automatically support all the cryptographic primitives one can express
in DY�, including Diffie-Hellman, which are essential for protocols like TLS, but
are not modeled in prior works like [27].

Compositional Cryptographic Proofs. Modularity and composability have
long been guiding principles for provable security, perhaps best exemplified by
the line of work on universal composability (UC) [16,30]. More recently, a series
of tools [1,17,23] seek to apply modular design principles to mechanized crypto-
graphic proofs. One of the most recent works is Owl [24], which produces proofs
of protocols using information flow types, and unlike, DY� aims at full automa-
tion for protocols specified in a domain-specific language and restricted to static
corruption, as the framework is based on UC.

In contrast to these works on computational cryptographic proofs, our work
is in the symbolic model, and hence makes less precise assumptions about cryp-
tographic primitives. In return, our framework is capable of analyzing large pro-
tocols with ease, which still remains a challenge for computational tools.

8 Conclusion

In this paper, we presented a layered approach to symbolic protocol analysis, as
an extension to DY�. This approach allows us to compositionally analyze stacks
of layered protocols, looking at each layer individually. While DY� already allows
for modular and scalable analyses, it does not enable compositional proofs. So,
when any layer changed, the entire protocol stack had to be re-proved. In our

Layered Symbolic Security Analysis in DY� 19

approach, lower layer proofs never have to be redone if higher layers are modified.
Furthermore, if a higher layer does not use the same cryptographic primitives or
the same key material as its lower layers, then it does not have to be reproved
if the lower layer implementation changes.

Our approach also accounts for cases where different layers use the same cryp-
tographic functions and key material. By lifting cryptographic functions at each
layer and explicitly expressing sufficient disjointness conditions, dependencies
between layers are kept to a minimal set of predicates. Only these disjointness
conditions need to be re-proved when a lower-layer implementation changes,
while the rest of the proof remains unchanged.

We highlight the utility of this approach by means of two independently
useful layers for security protocols, namely a PKI and a secure communication
layer. The communication layer allows for the analysis of applications based on
abstract secure communication, without the need to consider or verify details
of the underlying cryptographic primitives and communication. We use these
layers to implement two case studies that use various communication patterns.
While it takes around 10min to verify the entire stack of one of our examples,
each example takes only around 2min to verify on its own, illustrating the time
savings of being able to verify layers independently.

As pointed out in Sect. 4, so far, we have only considered vertical and sequen-
tial compositions of layers into a protocol stack. In future work, we intend to
extend this approach to horizontal compositions, where the main challenge lies
in determining how predicates from different protocols at the same layer of the
protocol stack can be safely merged. Furthermore, all our analysis is in the sym-
bolic model. Investigating whether our layered approach can also be applied to
computational verification tools is an interesting topic for future research.

Acknowledgements. We would like to thank the anonymous reviewers for their feed-
back on our paper. This work was supported in part by the DFG through grants KU
1434/10-2 and KU 1434/12-1, and the DST-INSPIRE Faculty grant.

References

1. Abate, C., et al.: SSProve: a foundational framework for modular cryptographic
proofs in Coq. In: 2021 IEEE 34th Computer Security Foundations Symposium
(CSF), pp. 1–15. IEEE Computer Society (2021)

2. Barbosa, M., et al.: SoK: computer-aided cryptography. In: 2021 IEEE Symposium
on Security and Privacy (SP), pp. 777–795 (2021). https://doi.ieeecomputersociety.
org/10.1109/SP40001.2021.00008

3. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9_5

4. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. ACM Trans. Program. Lang. Syst. (TOPLAS)
33(2), 1–45 (2011)

https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00008
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00008
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5

20 K. Bhargavan et al.

5. Bhargavan, K., et al.: DY*: a modular symbolic verification framework for exe-
cutable cryptographic protocol code. In: IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 523–542 (2021)

6. Bhargavan, K., et al.: An in-depth symbolic security analysis of the ACME stan-
dard. In: Kim, Y., Kim, J., Vigna, G., Shi, E. (eds.) CCS 2021: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, Republic
of Korea, 15–19 November 2021, pp. 2601–2617. ACM (2021)

7. Bhargavan, K., et al.: A tutorial-style introduction to DY*. In: Dougherty, D.,
Meseguer, J., Mödersheim, S.A., Rowe, P. (eds.) Protocols, Strands, and Logic.
LNCS, vol. 13066, pp. 77–97. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-91631-2_4

8. Bhargavan, K., et al.: DY* layering source code (2023). https://publ.sec.uni-
stuttgart.de/esorics23-layered-symbolic-security-analysis-in-dystar-code.zip

9. Bhargavan, K., et al.: Layered symbolic security analysis in DY*. Technical report
(2023). https://eprint.iacr.org/2023/1329

10. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference implemen-
tations for the TLS 1.3 standard candidate. In: IEEE S&P, pp. 483–502 (2017)

11. Bhargavan, K., Fournet, C., Gordon, A.D.: Modular verification of security protocol
code by typing. In: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 445–456 (2010)

12. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y., Zanella-
Béguelin, S.: Proving the TLS handshake secure (as it is). In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 235–255. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44381-1_14

13. Bhargavan, K., Lavaud, A.D., Fournet, C., Pironti, A., Strub, P.Y.: Triple hand-
shakes and cookie cutters: breaking and fixing authentication over TLS. In: 2014
IEEE Symposium on Security and Privacy (2014)

14. Blanchet, B.: CryptoVerif: computationally sound mechanized prover for crypto-
graphic protocols. In: Dagstuhl Seminar “Formal Protocol Verification Applied,
vol. 117, p. 156 (2007)

15. Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus
and ProVerif. Found. Trends Priv. Secur. 1, 1–135 (2016)

16. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42nd Annual Symposium on Foundations of Com-
puter Science (FOCS 2001), pp. 136–145. IEEE Computer Society (2001)

17. Canetti, R., Stoughton, A., Varia, M.: EasyUC: using EasyCrypt to mechanize
proofs of universally composable security. In: 2019 IEEE 32th Computer Security
Foundations Symposium (CSF), pp. 167–183. IEEE Computer Society (2019)

18. Cheval, V., Cortier, V., Warinschi, B.: Secure composition of PKIs with public
key protocols. In: 30th IEEE Computer Security Foundations Symposium, CSF
2017, Santa Barbara, CA, USA, 21–25 August 2017, pp. 144–158. IEEE Computer
Society (2017)

19. Ciobâca, S., Cortier, V.: Protocol composition for arbitrary primitives. In: 23rd
IEEE Computer Security Foundations Symposium, pp. 322–336 (2010)

20. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A comprehen-
sive symbolic analysis of TLS 1.3. In: ACM CCS, pp. 1773–1788 (2017)

21. Delignat-Lavaud, A., et al.: Implementing and proving the TLS 1.3 record layer.
In: IEEE S&P, pp. 463–482 (2017)

22. Dolev, D., Yao, A.C.: On the security of public-key protocols. IEEE Trans. Inf.
Theory 29(2), 198–208 (1983)

https://doi.org/10.1007/978-3-030-91631-2_4
https://doi.org/10.1007/978-3-030-91631-2_4
https://publ.sec.uni-stuttgart.de/esorics23-layered-symbolic-security-analysis-in-dystar-code.zip
https://publ.sec.uni-stuttgart.de/esorics23-layered-symbolic-security-analysis-in-dystar-code.zip
https://eprint.iacr.org/2023/1329
https://doi.org/10.1007/978-3-662-44381-1_14

Layered Symbolic Security Analysis in DY� 21

23. Fournet, C., Kohlweiss, M., Strub, P.: Modular code-based cryptographic verifi-
cation. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) Proceedings of the 18th
ACM Conference on Computer and Communications Security, CCS 2011, Chicago,
Illinois, USA, 17–21 October 2011, pp. 341–350. ACM (2011)

24. Gancher, J., Gibson, S., Singh, P., Dharanikota, S., Parno, B.: Owl: composi-
tional verification of security protocols via an information-flow type system. In:
2023 IEEE Symposium on Security and Privacy (SP), pp. 1130–1147. IEEE Com-
puter Society (2023). https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.
10179477

25. Gondron, S., Mödersheim, S.: Vertical composition and sound payload abstraction
for stateful protocols. In: 34th IEEE Computer Security Foundations Symposium,
CSF 2021, Dubrovnik, Croatia, 21–25 June 2021, pp. 1–16. IEEE (2021)

26. Groß, T., Mödersheim, S.: Vertical protocol composition. In: Proceedings of the
24th IEEE Computer Security Foundations Symposium, CSF 2011, Cernay-la-
Ville, France, 27–29 June 2011, pp. 235–250. IEEE Computer Society (2011)

27. Hess, A.V., Mödersheim, S.A., Brucker, A.D.: Stateful protocol composition in
Isabelle/HOL. ACM Trans. Priv. Secur. 26(3), 1–36 (2023)

28. Ho, S., Protzenko, J., Bichhawat, A., Bhargavan, K.: Noise*: a library of verified
high-performance secure channel protocol implementations. In: 43rd IEEE Sym-
posium on Security and Privacy, SP 2022, San Francisco, CA, USA, 22–26 May
2022, pp. 107–124. IEEE (2022)

29. Küsters, R., Tuengerthal, M.: Composition theorems without pre-established ses-
sion identifiers. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) Proceedings of the
18th ACM Conference on Computer and Communications Security (CCS 2011),
pp. 41–50. ACM Press (2011). https://doi.org/10.1145/2046707.2046715

30. Küsters, R., Tuengerthal, M., Rausch, D.: The IITM model: a simple and expressive
model for universal composability. J. Cryptol. 33(4), 1461–1584 (2020). https://
doi.org/10.1007/s00145-020-09352-1

31. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_48

32. Mödersheim, S., Viganò, L.: Sufficient conditions for vertical composition of secu-
rity protocols. In: Moriai, S., Jaeger, T., Sakurai, K. (eds.) 9th ACM Symposium
on Information, Computer and Communications Security, ASIA CCS 2014, Kyoto,
Japan, 03–06 June 2014, pp. 435–446. ACM (2014)

33. Reschke, J.: The ‘basic’ HTTP authentication scheme. RFC 7617 (2015). https://
www.rfc-editor.org/info/rfc7617

34. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446
(2018). https://www.rfc-editor.org/info/rfc8446

35. Rescorla, E., Dierks, T.: The transport layer security (TLS) protocol version 1.2.
RFC 5246 (2008). https://www.rfc-editor.org/info/rfc5246

36. Swamy, N., et al.: Dependent types and multi-monadic effects in F�. In: Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, 20–22 January
2016, pp. 256–270 (2016)

37. Wallez, T., Protzenko, J., Beurdouche, B., Bhargavan, K.: {TreeSync}: authenti-
cated group management for messaging layer security. In: 32nd USENIX Security
Symposium (USENIX Security 23), pp. 1217–1233 (2023)

https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179477
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179477
https://doi.org/10.1145/2046707.2046715
https://doi.org/10.1007/s00145-020-09352-1
https://doi.org/10.1007/s00145-020-09352-1
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://www.rfc-editor.org/info/rfc7617
https://www.rfc-editor.org/info/rfc7617
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc5246

Indirect Meltdown: Building Novel
Side-Channel Attacks

from Transient-Execution Attacks

Daniel Weber(B), Fabian Thomas, Lukas Gerlach, Ruiyi Zhang,
and Michael Schwarz

CISPA Helmholtz Center for Information Security, Saarbrücken, Saarland, Germany
{daniel.weber,fabian.thomas,lukas.gerlach,ruiyi.zhang,

michael.schwarz}@cispa.de

Abstract. The transient-execution attack Meltdown leaks sensitive
information by transiently accessing inaccessible data during out-of-order
execution. Although Meltdown is fixed in hardware for recent CPU gen-
erations, most currently-deployed CPUs have to rely on software miti-
gations, such as KPTI. Still, Meltdown is considered non-exploitable on
current systems.

In this paper, we show that adding another layer of indirection to
Meltdown transforms a transient-execution attack into a side-channel
attack, leaking metadata instead of data. We show that despite soft-
ware mitigations, attackers can still leak metadata from other security
domains by observing the success rate of Meltdown on non-secret data.
With LeakIDT, we present the first cache-line granular monitoring of
kernel addresses. LeakIDT allows an attacker to obtain cycle-accurate
timestamps for attacker-chosen interrupts.

We use our attack to get accurate inter-keystroke timings and finger-
print visited websites. While we propose a low-overhead software miti-
gation to prevent the exploitation of LeakIDT, we emphasize that the
side-channel aspect of transient-execution attacks should not be under-
estimated.

1 Introduction

Microarchitectural side-channel attacks have been known for several years [27].
These attacks exploit the side effects of CPU implementations to infer metadata
about processed data. Well-known examples of microarchitectural side-channel
attacks include cache attacks, e.g., Flush+Reload [64] or Prime+Probe [40],
which have been used to leak cryptographic secrets [2,64] or violate the privacy
of users, e.g., by spying on user input [17,39,48]. The discovery of transient-
execution attacks, such as Meltdown [35] and Spectre [26], was a game changer
for microarchitectural attacks, as these directly leak data instead of metadata.
Hence, even best practices for side-channel-resistant software [11,23] do not pro-
tect secrets anymore. In Meltdown attacks, architecturally inaccessible data is
accessed during out-of-order execution and encoded into a microarchitectural
element, e.g., the cache, protected from the pipeline flush [35,44]. A subsequent
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 22–42, 2024.
https://doi.org/10.1007/978-3-031-51479-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_2

Indirect Meltdown 23

side-channel attack, e.g., Flush+Reload, converts the microarchitectural into an
architectural state, revealing the data.

As only new CPU generations contain hardware fixes for Meltdown-type
attacks, short- and mid-term mitigations rely on software workarounds. These
workarounds ensure that no confidential data is stored in affected buffers when
untrusted code is executed [21,49,57] or that the victim data is not address-
able [14,54]. For Meltdown-US-L1 [35], i.e., the original Meltdown attack, the
OS unmaps the majority of its address space while running in user space, making
sensitive data non-addressable [15]. The remaining mapped pages are not consid-
ered confidential, such that Meltdown-US-L1 is considered not exploitable. On
Linux, this technique is implemented as kernel page-table isolation (KPTI) [12].

In this paper, we show that even with state-of-the-art mitigations, Meltdown
can be transformed from a transient-execution attack into a side-channel attack.
The main idea is based on two properties. First, while KPTI unmaps most
kernel pages, several kernel pages with non-secret content are necessary on x86
CPUs and cannot be unmapped in user space. Second, Meltdown [35] can only
leak data if it is cached in the L1D cache, making it usable as a cache-state
oracle. Combining these two properties leaks the meta information on whether
(non-confidential) kernel data was accessed. Hence, Meltdown can be used as a
high-resolution cache attack with cache-line granularity on the kernel. This side
channel is superior to state-of-the-art cache attacks on the kernel, which only
achieve page [32] or cache-set granularity [48].

We gain an interesting insight from this attack:
While a layer of indirection is necessary for Meltdown to leak data, another

layer of indirection transforms the attack to leak metadata of architecturally inac-
cessible data.

In other words, exploiting a modified version of the Meltdown attack enables
the leakage of metadata that cannot be leaked in this granularity with a tradi-
tional side-channel attack.

Based on this, we present LeakIDT, a side-channel attack able to spy on
interrupts. We exploit that the interrupt descriptor table (IDT) must always
be mapped on x86 [15,19]. Hence, despite software mitigations such as KPTI,
an attacker can use the side channel to monitor interrupt activity. In contrast
to previous works that exploit interrupts as a side channel [33,48,56], LeakIDT
can target specific interrupts, e.g., network or keyboard interrupts, instead of
just observing that any interrupt occurred and works for unprivileged attack-
ers. We identify which website a user visits from the Alexa top 15 and top 100
websites with a precision of 80% and 55%, respectively. Furthermore, we reliably
observe keystroke timings with an average F-score of 0.89. We propose to miti-
gate LeakIDT by marking the IDT uncachable, preventing any entry from being
cached. This mitigation is practical, with an average performance overhead of
less than 0.5% in 5 different benchmarks simulating real-world workloads.

Our attacks show that while mitigating data leakage is essential, the side-
channel aspect of such fixes can be overlooked. We show that adding additional
layers of indirection to existing attacks can change their properties. As a result,

24 D. Weber et al.

we create a new side-channel attack from a CPU vulnerability commonly consid-
ered unexploitable when applying state-of-the-art software mitigations. Hence,
we argue that future software workarounds should consider the side-channel
aspect to prevent such attack vectors. Thus, we encourage researchers to look
at other mitigations for hardware vulnerabilities to determine whether they can
be circumvented to repurpose the underlying vulnerability as a side channel. For
this purpose and to ease reproducibility, we open-source the code of our findings
on GitHub1.

To summarize, we make the following contributions:

1. We show that adding another layer of indirection to Meltdown transforms
Meltdown into a side channel that infers the cache state of non-sensitive kernel
pages with cache line granularity, leaking details about, e.g., interrupts.

2. We use our side channel to detect the visited websites of a user and spy on
their keystroke timings.

3. We present a practical mitigation that stops our attack, while introducing an
average overhead of less than 0.5% for real-world workloads.

Responsible Disclosure. We disclosed our findings to Intel on February 15,
2023 and AMD on February 16, 2023. Despite both vendors acknowledging our
findings, they informed us that they do not plan to roll out further mitigations.

2 Background

In this section, we provide the background for this paper. We introduce side
channels, transient-execution attacks, and the interrupt descriptor table.

2.1 Side Channels

Side channels leak metadata of (secret) information. In a side-channel attack,
an attacker infers secrets from this metadata. For leaking metadata, secret-
dependent observable differences must exist, e.g., response time or power con-
sumption that depends on the bits of a cryptographic key. Previous research
showed that side channels can be practical tools in an attacker’s reper-
toire [27,38], especially for attacking cryptographic implementation [27,38].
In recent years, researchers have shown various side-channel attacks exploit-
ing microarchitectural components [38,39,41,60,61]. These components include
CPU caches [40,64], branch predictors [3,4], execution units [13,61], DRAM com-
ponents [41], and power usage [63]. The fundamental property that enables such
microarchitectural side-channel attacks is that different processes share many
hardware components. Hence, the resource usage of one process affects the pos-
sible resource usage of another process, leaking meta information between the
processes.

1 https://github.com/cispa/indirect-meltdown.

https://github.com/cispa/indirect-meltdown

Indirect Meltdown 25

2.2 Transient-Execution Attacks

Two important performance optimizations in modern CPUs are out-of-order
execution and speculative execution. Out-of-order execution allows the CPU to
reorder or parallelize the execution of instructions in the instruction stream.
Speculative execution predicts the outcome of branch and memory load instruc-
tions, reducing pipeline stalls. Executed instructions that never commit their
state changes to the architecture due to a misspeculation or preceding fault are
called transient instructions [8,24]. Transient-execution attacks [8] exploit tran-
sient instructions to read otherwise inaccessible memory [26,35]. While transient
instructions do not have an architectural effect, they can influence microarchitec-
tural states, such as cache states. These traces can be converted to architectural
states using a microarchitectural side channel, e.g., Flush+Reload. In recent
years, researchers and CPU vendors discovered a variety of transient-execution
attacks [6,8,26,28,35–37,44–46,49,55,57].

One category of transient-execution attacks are Meltdown-type attacks [8].
The first discovered Meltdown-type attack, later referred to as Meltdown-US-
L1 [8], allows unprivileged attackers to leak cached kernel memory. After a fault-
ing load to a kernel address, the value is transiently available and can be encoded
in the microarchitecture, e.g., in the cache. The attacker decodes the encoded
value using a side channel, e.g., using Flush+Reload. Meltdown-type attacks,
and especially Meltdown-US-L1, affect a variety of modern CPUs [22].

2.3 Interrupt Descriptor Table (IDT)

Devices, such as network interface controllers or keyboards, use interrupts to
notify the OS of events, e.g., incoming network packets or key presses. On an
interrupt, the CPU switches to ring 0 and looks up the corresponding interrupt
service routine (ISR) for the specific interrupt in the interrupt descriptor table
(IDT). The CPU interrupts the current execution and jumps to the ISR to
handle the interrupt. After handling the interrupt, the CPU continues executing
the previous instruction stream. We only consider the 64-bit x86 IDT. Each core
can have its own IDT containing 256 interrupt vectors [20, Chapter 6.10 & 6.14].
Each interrupt vector is 16 bytes in size and represents one device [20, Chapter
6.10 & 6.14]. Hence, the IDT has a total size of 4 kB, i.e., one memory page, and is
stored in the main memory. Each of these interrupt vectors essentially consists
of a 64-bit (8-byte) pointer to its ISR in the kernel. The remaining 8 bytes
store additional meta-information about the interrupt, such as the type and the
privilege level of the interrupt [20, Chapter 6.14]. The base pointer to the IDT is
stored in a CPU-internal register, which can be read with the sidt instruction.
On modern Linux systems, the IDT is hard-coded to 0xfffffe0000000000 [31].

3 Meltdown as a Side Channel

In this section, we introduce the concept of transforming the transient-execution
attack Meltdown into a side channel. The main idea is that the success rate of

26 D. Weber et al.

Fig. 1. Meltdown as a side channel. The Meltdown attack only leaks data if the
target address is in the L1D cache. Otherwise, the value 0x00 is leaked.

1 ; rax = kernel address, rcx/rbx= probe page 1/2,
2 cmp [rax], 0x0
3 cmovne rcx, rbx
4 mov rax, [rcx]

Listing 1. Using Meltdown-US-L1 as a side channel. If the target kernel address
is cached, the user address stored in RBX is cached. Otherwise, the user address
stored in RCX is cached.

Meltdown-US-L1 reveals the cache state of the target memory address. We dis-
cuss which kernel memory ranges are still mapped despite the KPTI mitigation
and how Meltdown-US-L1 can be used to leak metadata about these memory
pages. For a list of CPUs affected by Meltdown-US-L1 and thus affected by our
attack, we refer the reader to the Intel’s list of vulnerable CPUs [22].

While Lipp et al. [35] discussed that Meltdown-US-L1 works best if the target
address is stored in the L1D cache, Xiao et al. [62] and Schwarzl et al. [50] show
that Meltdown-US-L1 is limited to the L1D cache. Leakage from other cache
levels is only caused by prefetching the data into the L1 cache, e.g., via specula-
tive execution. We exploit this requirement to use Meltdown as a side channel:
If data is leaked via Meltdown-US-L1, it is in the L1D cache. An illustration of
this concept is given in Fig. 1.

By detecting whether the target memory address can be leaked, we learn
whether it was previously accessed. If the cache-line content can be leaked, the
cache line is cached in the L1D, which is only the case if the cache line was
recently accessed. As this attack can be applied to any mapped memory address,
we can also use it on kernel memory pages that are mapped while in userspace.
This converts Meltdown-US-L1 into an Evict+Reload-style side channel for ker-
nel memory.

Attack Details. Listing 1 shows the implementation of the encoding step when
using Meltdown-US-L1 as a side channel. We compare the content of the kernel
address to zero (Line 2) and, based on the result, select (Line 3) and access (Line
4) one out of two different pages. This works as the access transiently results in a

Indirect Meltdown 27

zero if no value can be leaked by Meltdown-US-L1. Otherwise, the result is non-
zero if the targeted memory address is non-zero. This code sequence is simpler
than the Meltdown-US-L1 code [35] that transiently loads the value at the kernel
address into a register and accesses one out of 256 pages based on the loaded
value, since we only need to consider two cases, i.e., cached and non-cached. This
means that instead of monitoring 256 cache lines, our attack only has to monitor
a single cache line. In line with the Meltdown-US-L1 attack, this code snippet
raises an exception that has to be handled, e.g., with fault handling, TSX, or
fault suppression via speculation [35]. For the decoding, i.e., transferring the
information encoded in the microarchitecture to an architectural state, any side
channel can be used. For simplicity and in line with related work [6,35,49,54,57],
we rely on Flush+Reload to recover the encoded information. In case of a recent
access by the victim, the target address is stored in the L1D cache. Thus, to
monitor further cache accesses, we need to remove the target address from the
L1D cache. As the target memory address cannot be accessed, we need to rely
on eviction. However, as the L1D cache is virtually-indexed, evicting from it
is straightforward and can be achieved by accessing virtual memory addresses
falling into the same cache line as the target address. Note that we only need to
evict the target address when an access occurred, as the Meltdown attack itself
does not cache the target address.

Attack Surface. We investigate the attack surface of using Meltdown-US-L1 as
a side channel by analyzing which kernel pages are mapped in user space when
KPTI is active. As Meltdown-US-L1 cannot be fixed via microcode on affected
hardware, KPTI [14] is used as a software workaround on Meltdown-US-L1-
affected CPUs. KPTI ensures that while an application runs in user space, no
kernel page containing sensitive information is mapped into the address space.
For this, KPTI relies on a second set of page tables [15]. However, while this
works theoretically, x86 always requires some kernel pages to be mapped, even
when running in user space. Luckily, the content of these pages, e.g., the IDT,
can be chosen such that they do not contain secrets.

We investigate which pages are still mapped in userspace by iterating through
the user page tables using the kernel module PTEditor [47]. For the user-page-
table root, we set bit 11 of the physical address stored in the kernel CR3 regis-
ter [15]. We iterate through the mappings in the upper half of the address space
for kernel addresses mapped in user space. We discover between 198 and 394 4 kB
kernel pages mapped in user space, depending on the CPU. However, these pages
can be classified into only 3 distinct ranges. The first range is the kernel entry.
This range has been exploited for microarchitectural KASLR breaks [7,46,61].
The second range is used for descriptor tables, such as the interrupt-descriptor
table or the global-descriptor table. Finally, the third range is within the range
of the direct physical map [31], mapping 4 physical pages. One of these mappings
is to the task state segment, which is also mapped directly. We cannot explain
the reason for these remaining mappings, as the target is already mapped in
user space. Still, this does at least not increase the attack surface. The most
interesting target for using Meltdown-US-L1 as a side channel is the IDT (cf.
Sect. 4).

28 D. Weber et al.

Fig. 2. Using LeakIDT to leak interrupts, such as keystrokes.

4 LeakIDT

In this section, we introduce LeakIDT, a side-channel attack that precisely
detects when an attacker-chosen interrupt occurs. LeakIDT achieves that by
observing the cache state of the IDT entries of the targeted interrupts.

Linux uses one IDT per core that always resides at the same location (cf.
Sect. 2.3). This IDT is mapped in all processes, even with KPTI. Hence, our
attack can target the IDT despite applied software-based Meltdown-US-L1 mit-
igations. Note that a different operating system could randomize the location of
the IDT upon booting and thus harden the system against our attack.

Attack Overview. Figure 2 shows an overview of LeakIDT. We use Meltdown-
US-L1 to read a specific IDT entry corresponding to a targeted interrupt. IDT
entries are accessed—and thus cached in L1D—if the CPU core handles an inter-
rupt. Hence, if the leakage of the entry is successful, we infer that the interrupt
was triggered; otherwise, it was not. Consequently, with LeakIDT we know the
timestamp when the interrupt occurred. Note that due to the CPU’s hardware
prefetchers the actual accuracy of our attack is reduced to blocks of 8 adjacent
IDT entries. Further details on this are discussed later in this section. When
detecting an interrupt, LeakIDT uses eviction to remove the targeted IDT entry
from the L1D cache again. This is crucial for the attack as after every observed
interrupt, the attacker must ensure that the IDT entry is removed from the cache
as quickly as possible. Otherwise, subsequent accesses to that memory address,
i.e., subsequent interrupts of the same type, cannot be detected.

Threat Model. Our attack requires a victim application that leaks information
by having secret or data-dependent interrupts. Such a victim can, e.g., receive
keystrokes [17,33], issue secret-dependant legacy syscalls [65], or communicate
over the network [66]. Besides this, we assume a bug-free software containing no
logical vulnerabilities. We further consider the attacker and victim both execut-
ing unprivileged native code on the same Meltdown-US-L1-affected CPU. The

Indirect Meltdown 29

attack does not assume any disabled mitigations, i.e., it works with state-of-the-
art software-based Meltdown mitigations.

Implementation. For inferring the cache state of the IDT entry, we use the
code from Listing 1. Note that each IDT entry is 16 bytes in size. Thus, there are
4 IDT entries per cache line that are all cached when an interrupt occurs. The
exact offset of the IDT entry we are targeting with LeakIDT is irrelevant, as every
interrupt corresponding to that entry caches the entire cache line. One should
note that the granularity of our attack in a normal environment is restricted to
blocks of 8 IDT entries. The reason is that upon receiving an interrupt, the CPU’s
adjacent cache-line prefetcher puts two adjacent cache lines, i.e., 8 adjacent IDT
entries, into the L1D cache at once.

To detect the correct entry in the IDT, we template the IDT entries. First, we
record the number of interrupts for every IDT entry over a fixed time window,
e.g., 100ms. Second, we repeat this recording step while inducing the interrupt
in parallel. Depending on the type of interrupt, this can be done in soft- or
hardware. Some interrupts can be triggered the same way the victim triggers
the interrupt, e.g., sending a network packet for network interrupts. If this is not
possible, e.g., for keyboard interrupts, an attacker can induce the same interrupt
as a software interrupt, using the int instruction. If the difference in the number
of interrupts correlates with the induced interrupts, the correct IDT entry is iden-
tified. As we do not require fine-grained measurements for this step, we can take
the information exposed by the Linux interface, i.e., the file /proc/interrupts.

As discussed in Sect. 3, to ensure that LeakIDT can detect more than the
first interrupt, the IDT entry has to be evicted again from the L1D cache. The
cache replacement policy on our machines is Tree-PLRU [1], and the cache is
virtually indexed using bits 6 to 11. Thus, we access memory addresses falling
into the same L1D cache set by accessing pages at the same offset as IDT entry
offset, which performs well enough for the attacks.

5 Evaluation

In this section, we evaluate the performance and reliability of LeakIDT. All
experiments are executed on an Intel Core i7-6600U running Ubuntu 20.04 with
Linux kernel 5.4.0. On a general level, LeakIDT allows observing the cache state
of an inaccessible but mapped memory page. More precisely, we can distinguish
between a memory address that is cached in the L1D cache and a memory
address that is not cached in the L1D.

First, we evaluate how precisely we can distinguish between such two memory
addresses. We mount our exploit on two memory addresses, one being cached
in the L1D cache and one not being cached. Note that distinguishing between
an address cached in L1D and not cached at all is enough for an attacker to
mount side-channel attacks. Our tests show that for a memory address cached
in L1D, we have a successful leak in 99.6% of cases and no leakage in 100% of
cases for uncached memory addresses. We observe that for the uncached target
byte, we only see the byte 0x0 encoded in our lookup array. This observation

30 D. Weber et al.

Fig. 3. Delay between interrupts and number of interrupts missed by LeakIDT
(upper line) and Prime+Probe (lower line).

is in line with previous work [35,62]. These results show that an attacker can
reliably infer the cache state of the target kernel memory address by observing
whether the Meltdown-US-L1 leakage exists.

Figure 3 shows how different delays between interrupts interfere with the
observation rate of our attack, i.e., the number of interrupts successfully
detected. More precisely, we trigger 10 000 interrupts with an artificial busy
wait of n cycles between them. This allows us to measure the success rate of our
attack when the victim triggers interrupts at a high frequency. We observe that
if the interrupts are more closely spaced than 25 000 cycles, our detection rate
decreases. We further observe that for interrupts happening at a slower rate,
we have success rates of up to 99.5%. Thus, attackers can exploit LeakIDT to
reliably leak interrupts up until this frequency.

Comparison to Related Kernel Attacks. To the best of our knowledge,
LeakIDT is the first cache-line-granular side-channel attack on the kernel.
LeakIDT does not require read- or writable shared memory, which is typical
for cache attacks [16,34,64], preventing their use on kernel memory. While there
are also cache attacks not requiring shared memory [5,10,40,43], LeakIDT yields
a better granularity as it allows targeting specific cache lines of the kernel. Addi-
tionally, cache attacks without shared memory often require knowledge of phys-
ical addresses to construct reliable and efficient eviction sets [53]. As we do not
assume that knowledge in our threat model, we compare LeakIDT with Prime+
Probe on the L1D, as this attack has the same threat model.

Not only does LeakIDT have a finer granularity, but it also outperforms
Prime+Probe in terms of reliability. Figure 3 shows the number of interrupts
missed by our Prime+Probe implementation. Note that our implementation only
counts an interrupt if two probe steps show higher access timing. While this may
not be optimal, it significantly reduces the number of false positives and shows
the best performance during our evaluation. We suspect that the reason for this
is that the probes execute fast enough to measure the activity on the IDT entry
multiple times during the interrupt handling. To further compare the two side
channels, we compare their performance in a more artifical scenario. We take
100 000 measurements for each attack while the victim accesses the targeted
cache line 50 000 times per attack. Finally, we compare the results of our side-
channel attacks to the ground truth of victim accesses. For LeakIDT, we get a

Indirect Meltdown 31

recall of 0.999 and a precision of 1.0, yielding an F-score of 0.999. For Prime+
Probe on the L1D, we measure a recall of 1.0 and a precision of 0.834, yielding
an F-score of 0.91.

6 Case Studies

In this section, we introduce 2 case studies demonstrating LeakIDT. Leveraging
LeakIDT, we show that an attacker can spy on websites visited by a victim on
the same system (cf. Sect. 6.1). Furthermore, we show that fine-grained timing
measurements of interrupts leak information about the keystrokes entered by a
user (cf. Sect. 6.2).

6.1 Website Fingerprinting

In this section, we use LeakIDT to detect which website a user opens by monitor-
ing network interrupts. For this purpose, we perform the website fingerprinting
attack on an Intel Xeon E3-1505M v5, with Ubuntu 20.04 and Linux kernel 5.4.0.

Threat Model. In line with previous work [18,25,29,52,65], we assume an
unprivileged attacker with native code execution on the victim system. In con-
trast to these works, we do not rely on OS interfaces, as they are nowadays
only available to privileged users. We assume the attacker application runs on
the physical core that handles the network interrupts, which the unprivileged
pthread_setaffinity_np Linux API can achieve.

Attack Overview. We do not assume prior knowledge of the IDT entry that the
attacker needs to probe. Thus, the first step of the attack is to find the specific
IDT entry that handles the network interrupts. To do that, we use LeakIDT
on all IDT entries while introducing additional network traffic. For each entry,
we record the number of accesses during a short fixed period, e.g., 1 s. Next, we
repeat the measurement without generating additional network interrupts. As
the network interrupts bring the specific IDT entries into the cache, entries with
the most significant differences in the number of accesses are likely related to
the network interrupts.

In line with previous work [66], we rely on a coarse-grained timer, e.g.,
clock_gettime or setitimer, to record the number of interrupts per 5ms inter-
val when a user opens a website. We then train a random forest classifier to
fingerprint the opened website.

Results. We collect 100 interrupt traces for each of the Alexa 100 most-visited
websites. Each trace collects the number of interrupts in a 5ms interval 400
times (2 s in total). The dataset is split into a training set of 7000 and a test set
of 3000 examples, and the n_estimators for the random forest classification are
set to the default of 100. For the top 15 websites, we achieve a precision of 80%
and a recall of 81%, as illustrated in the confusion matrix in Fig. 4. For the top
100 websites, we achieve an overall precision of 55% and a recall of 56%. Note

32 D. Weber et al.

Fig. 4. The confusion matrix for the website classification. Given the Alexa top
15 websites, the trace is classified correctly with an overall probability of 80%.

that a more precise timer, i.e., with a better accuracy than 5ms would likely
improve these results.

Comparison to Related Work. While Spreitzer et al. [52] report 89% accu-
racy on 100 sites on Android, the attack requires the unprivileged interface for
sampling data-usage statistics. Zhang et al. [66] report 71% accuracy on 100 sites
on Intel, relying on the new umwait instructions only available on the latest Intel
microarchitectures. The interrupt attack by Lipp et al. [33] correctly classifies a
website in 81.75% of cases inside the browser when only looking at 10 websites.
Lee et al. [29] exploit GPU vulnerabilities and report 69.4% and 60.9% with two
different techniques on 100 sites randomly chosen from Alexa Top 1000.

6.2 Keystroke Timings via LeakIDT

In this section, we show that LeakIDT can be used for keystroke-timing attacks,
as first discussed by Song et al. [51]. We show that LeakIDT reliably recov-
ers keystroke timings on USB keyboards on an Intel Xeon E3-1505M v5, with
Ubuntu 20.04 and Linux kernel 5.4.0.

Threat Model. We assume an unprivileged attacker with native code execu-
tion on a system vulnerable to LeakIDT. We further assume that the attacker
application can be pinned to specific physical cores by unprivileged APIs.

Experiment Setup. In line with the first case study, we do not assume knowl-
edge of the IDT entry. Thus, an attacker trying to locate the core responsible for

Indirect Meltdown 33

Table 1. Results for the inter-keystroke timing attack.

Run Noise Recall Precision F-score Delay (std dev.)

1 no 0.93 0.89 0.91 −323 μs (35.66 μs)
2 no 0.91 0.95 0.93 −334.5 μs (29.71 μs)
3 no 0.90 0.90 0.90 −324 μs (34.11 μs)
1 yes 0.89 0.87 0.88 −573 μs (64.25 μs)
2 yes 0.88 0.88 0.88 −568 μs (49.46 μs)
3 yes 0.86 0.86 0.86 −551 μs (56.28 μs)

handling keyboard interrupts can probe all interrupts on all cores for a short and
fixed time interval. Afterward, when the attacker knows that the victim is likely
pressing keys, e.g., by checking for interactive applications in the list of running
processes, the attacker can probe these interrupts again and check for significant
differences. To optimize the measurements for this case study, the attacker pins
the spy process on the sibling of the previously identified core.

We perform our experiments in two settings. In the first setting, a lab envi-
ronment, the eXtensible Host Controller Interface (xHCI) interrupts are han-
dled by an isolated core. In the second setting, a realistic environment, we boot
the system without any preparations and simulate heavy system load with the
stress utility (stress -m 2 -c 2). The kernel distributes the interrupts over the
available 4 cores. xHCI interrupts share their core only with peripheral network
interrupts in our experiments. These interrupts occur every 2 s.

We spawn two processes. The first one reads characters from stdin and logs
microsecond timestamps of the keystrokes. This process can be spawned on any
core and provides ground-truth data. The second process is pinned to the physi-
cal core handling xHCI interrupts. This process logs microsecond timestamps of
leaked interrupts via LeakIDT.

We perform 3 runs of typing 200 random keys on the keyboard for both
setups. In our case study, all inputs are entered by a single person. We record
the timestamp traces of both processes. We then match every recorded interrupt
timestamp to the nearest ground truth timestamp. Since xHCIs generate two
interrupts for USB keyboards, i.e., key down and key up, we assume two captured
interrupts per actual timestamp. Even though the difference between key down
and key up events can improve the results of keystroke attacks [42], we choose
to ignore their impact in this case study to focus on the concept. Any missing
timestamp from the expected 2 interrupts for each actual timestamp is counted
as a false negative. Any detected interrupt matching with more than one uniquely
identifiable key-up and key-down event is counted as a false positive.

Results. Table 1 shows the results for the 3 runs for both setups. We calculate
recall, precision, and F-score with the data acquired from matching recorded
interrupts to ground truth timestamps. We measure the median and the standard

34 D. Weber et al.

deviation of the delay when we detect the interrupts, showing that we detect
keystroke interrupts around half a microsecond before they can be read from
stdin in the victim application. As expected, LeakIDT performs slightly worse
in the realistic setup compared to the isolated lab setup. In the isolated setup,
we observe an F-score of 0.91, and for the realistic setup an F-score of 0.87.
In comparison, the Android-based keystroke timing attacks from Schwarz et al.
[48] achieve an F-score of 0.94 and 0.81. Similar attacks from Vila et al. [58]
and Wang et al. [59] achieve a recall of 0.98 and 0.57, respectively. Thus, our
results are comparable to previous work. Note that depending on the goal of an
attacker, further steps are required for an end-to-end attack, such as machine-
learning-based password recovery or user classification.

7 Mitigations

In this section, we propose a mitigation against LeakIDT. We evaluate the mit-
igation and show that it only introduces a minimal performance overhead.

Although the root cause of LeakIDT cannot be mitigated in software, we
propose a software mitigation to prevent exploitation. The main idea is to ensure
that the cache state of an IDT entry cannot be inferred by marking the IDT as
uncachable, ensuring that the cache state is always the same.

Implementation. Linux uses a shared IDT across all CPU cores. This single
IDT is allocated once by the OS and keeps its physical location until reboot.
We rely on memory-type range registers (MTRRs) to mark the physical range
of the IDT as uncachable. While the number of MTRRs is limited [20, Chapter
11.11], we only require a single MTRR due to the shared IDT. MTRRs have the
advantage that the memory type defined by them cannot be overwritten.

Alternatively, if no MTRR can be spared, the IDT mapping can be marked
as uncachable via the memory type in the corresponding page-table entry. Care
has to be taken that this is done in every single user-space process, as well as
in the kernel. This requires more changes to the kernel and introduces a startup
overhead for every application. Thus, we opted for the MTRR-based approach,
requiring only a minimal overhead at boot for the configuration and allowing
the implementation as a kernel module.

Evaluation. We evaluate the security and performance of our approach. All
evaluations are run on an Intel Xeon E3-1505M v5, with Ubuntu 20.04.1 and
kernel 5.4.0. For the security evaluation, we mount LeakIDT with our active
mitigation. As expected, we do not see any leakage. With the uncachable IDT,
LeakIDT can never leak an entry of the IDT, preventing LeakIDT.

To evaluate the overhead of our mitigation, we execute benchmarks gen-
erating both high CPU loads and a large number of interrupts. We execute
SPEC CPU 2017, which resembles generic real-world workloads, and addition-
ally, Kraken and JetStream, two JavaScript benchmarks, to see the impact on
web services. For the baseline, we run the benchmarks on the unmodified system.
As marking the IDT as uncachable is implemented as a kernel module, we can

Indirect Meltdown 35

Table 2. Performance of uncachable IDT on the SPEC CPU 2017 benchmark.

Benchmark SPEC Score Overhead
Baseline Uncachable [%]

600.perlbench_s 1.88 1.88 0.00%

602.gcc_s 1.11 1.11 0.00%

605.mcf_s 1.91 1.91 0.00%

620.omnetpp_s 1.50 1.52 +1.33%

623.xalancbmk_s 1.55 1.58 +1.94%

625.x264_s 1.54 1.54 0.00%

631.deepsjeng_s 1.33 1.33 0.00%

641.leela_s 1.20 1.20 0.00%

648.exchange2_s 3.50 3.52 +0.57%

657.xz_s 0.91 0.91 0.00%

Average +0.65%

run the benchmark on precisely the same kernel without even rebooting. Hence,
with this setup, there should not be any other factors influencing the benchmark
results. Table 2 shows the results of the SPEC CPU benchmark. The details of
the JavaScript benchmarks can be found in Appendix A. On average, we only
measure a minimal performance overhead of 0.65% with SPEC CPU 2017, 0.57%
with Kraken (cf. Table 3), and 0.32% with JetStream. We further test the impact
on two interrupt-heavy benchmarks. We execute the YCSB benchmark [9] to
evaluate the overhead for databases. We test against a MongoDB instance and
configure YCSB for 4 500 000 operations. We observe an increase in interrupts
of 2326.29%, i.e., 52 853.62 interrupts (on average over the 8 cores of the sys-
tem), compared to the system idling for the same amount of time, i.e., 2326.29
interrupts. As these benchmarks have a shorter execution time than the previ-
ous ones, we repeat this measurement 10 times on the baseline system and 10
times on the same system with the applied mitigation, thus ensuring a stable
result. We observe a median runtime of 155 155ms with a standard deviation of
243.01 for the baseline system and a median runtime of 155 181.5ms with a stan-
dard deviation of 286.99, i.e., an overhead of 0.02%. To test the performance of a
network-based key-value store, we evaluate the impact on a Memcached instance
using the benchmarking framework mutilate [30]. We configure mutilate to exe-
cute 16 connections spanned over 8 threads. Table 4 shows the results. Hereby,
we observe an increase in interrupts of 2630.30%, i.e., 69 892.38 interrupts (on
average over the 8 cores of the system), compared to the system idling for the
same amount of time, i.e., 2559.88 interrupts. We execute this benchmark 10
times with and without the mitigation applied. We observe a slowdown of the
receive rate, the transmission rate, and the QPS of 0.14% each.

36 D. Weber et al.

Table 3. Kraken benchmark results.

Test Case Baseline Uncacheable IDT Overhead

ai 164.8ms (± 6.0%) 169.6ms (± 6.0%) +2.91%

astar 164.8ms (± 6.0%) 169.6ms (± 6.0%) +2.91%

audio 532.8ms (± 2.6%) 540.8ms (± 2.1%) +1.50%

beat-detection 141.2ms (± 3.6%) 141.7ms (± 3.0%) +0.28%

dft 115.8ms (± 3.7%) 117.9ms (± 5.2%) +1.81%

fft 125.2ms (± 2.9%) 125.8ms (± 3.3%) +0.48%

oscillator 150.6ms (± 6.6%) 155.5ms (± 5.3%) +3.25%

imaging 406.2ms (± 2.1%) 400.3ms (± 2.4%) −1.45%

gaussian-blur 158.3ms (± 4.0%) 154.0ms (± 2.3%) −2.72%

darkroom 80.1ms (± 0.8%) 79.6ms (± 0.9%) −0.62%

desaturate 167.8ms (± 4.4%) 166.7ms (± 5.9%) −0.66%

json 73.9ms (± 7.0%) 76.7ms (± 5.0%) +3.79%

parse-financial 37.0ms (± 13.7%) 37.7ms (± 9.6%) +1.89%

stringify-tinderbox 36.9ms (± 2.7%) 39.0ms (± 4.5%) +5.69%

stanford 288.3ms (± 2.3%) 287.0ms (± 1.6%) −0.45%

crypto-aes 73.9ms (± 3.2%) 74.1ms (± 3.2%) +0.27%

crypto-ccm 65.6ms (± 4.1%) 63.6ms (± 2.4%) −3.05%

crypto-pbkdf2 100.0ms (± 1.9%) 101.1ms (± 1.7%) +1.10%

crypto-sha256-iterative 48.8ms (± 5.6%) 48.2ms (± 3.0%) −1.23%

Total 1466.0ms (± 0.9%) 1474.4ms (± 0.7%) +0.57%

Table 4. Mutilate benchmark results.

Attribute Baseline score UC IDT score Slowdown

QPS 176 238.35 (std: 1376.41) 175 987.5 (std: 1407.86) 0.14%

RX 7 759 664 293B (std: 60 596 022.33) 7 748 550 743.5B (std: 62 033 777.92) 0.14%

TX 1 208 593 212B (std: 9 439 659.48) 1 206 927 213B (std: 9 614 344.61) 0.14%

8 Discussion

In this section, we discuss Meltdown mitigations, their remaining leakage, and
their applicability to other Meltdown variants, OS, and architectures.

Meltdown Mitigations. Gruss et al. [15] showed that unmapping the ker-
nel when possible mitigates several side-channel attacks on it. This has become
the state-of-the-art mitigation against Meltdown-US-L1 [14,35]. However, a lim-
itation of the x86 architecture is that specific kernel structures, such as the
IDT, must always be mapped. While related work used these mappings to break
KASLR [7,46,61], such attacks can be prevented by using a different randomiza-

Indirect Meltdown 37

tion offset for the pages that remain mapped. However, this would not prevent
LeakIDT. The reason is that LeakIDT exploits the metadata of the data stored
on kernel pages and not the content [35] or the location [7,46,61].

We show that uncachable memory eliminates the remaining leakage of KPTI.
Restricting the uncachable memory to the IDT ensures that the performance
impact is minimal. Hence, combining two incomplete mitigations for orthogonal
problems hardens a system against side-channel attacks.

Ideally, vulnerabilities are mitigated in the hardware. Still, despite hardware
fixes, Canella et al. [7] showed that they leak metadata about the mapping of a
virtual address. While the leakage is much more limited than in our attack, it also
shows that side-channel leakage can be overlooked when designing mitigations.

Applicability to other Meltdown-Type Attacks. Our attack is not limited
to attacking the kernel. While we convert Meltdown-US-L1 into a side channel,
the same technique can also be applied to other Meltdown variants. For example,
on CPUs affected by Foreshadow [54], our technique could be used to implement
an Evict+Reload-style attack on Intel SGX enclaves. For this, only the Melt-
down attack has to be replaced with the related Foreshadow attack. However,
in contrast to the Meltdown-US-L1 mitigations in the OS, the Foreshadow mit-
igations for SGX entirely prevent Foreshadow. Hence, an enclave that can be
attacked with Foreshadow as a side channel could also be attacked directly with
Foreshadow. We leave it to future work to investigate whether other Meltdown-
type attacks, such as RIDL [57], ZombieLoad [49], or Fallout [6], could also be
transformed into practical side-channel attacks.

Other OS and Architectures. The underlying effects exploited in this paper
are OS-agnostic. While this paper targets Linux, we do not require any Linux-
specific functionality. For example, while the interrupt numbers differ on Win-
dows, the mechanism is still the same. The IDT is also mapped, as this is required
by the x86 architecture, enabling LeakIDT.

As LeakIDT fundamentally relies on the Meltdown-US-L1 CPU vulnerability,
it does not apply to Meltdown-unaffected CPUs. Hence, AMD and most Arm
CPUs are not affected [35]. While there are Arm CPUs affected by Meltdown-
US-L1 [35], the interrupt handling is different, which would require adapting
LeakIDT to work with the IDT-equivalent, the Interrupt Vector Table (IVT).

9 Conclusion

We showed that Meltdown cannot only act as a transient-execution attack but
can also be exploited as a side-channel attack by adding another layer of indirec-
tion, despite active software mitigations. We presented LeakIDT, a side-channel
attack that allows an attacker to monitor mapped kernel pages with cache-line
granularity, enabling attackers to spy on chosen interrupts. We showed that
attackers can exploit this primitive to spy on websites visited by a user. We ana-
lyzed that this fine-granular information leakage also reveals valuable insights
into the typing behavior of a user by allowing to spy on their keystroke timings.

38 D. Weber et al.

Hence, we conclude that even though Meltdown-US-L1 is considered no longer
exploitable, it still threatens the security of modern systems.

Acknowledgment. We want to thank our anonymous reviewers for their comments
and suggestions. We also want to thank Leon Trampert and Niklas Flentje for provid-
ing their help with running the experiments. This work was partly supported by the
Semiconductor Research Corporation (SRC) Hardware Security Program (HWS).

A JavaScript Benchmark Results

Table 5 shows the impact of our mitigations measured using the JetStream
JavaScript benchmark. The total overhead is 0.23%.

Table 5. JetStream benchmark results.

Test Case Baseline UC IDT Overhead

3d-cube-SP 142.229 142.101 −0.09%

3d-raytrace-SP 120.536 130.642 +8.38%

acorn-wtb 14.267 13.714 −3.88%

ai-astar 335.52 330.153 −1.60%

Air 186.75 195.861 +4.88%

async-fs 73.995 68.635 −7.24%

Babylon 180.118 169.655 −5.81%

babylon-wtb 14.468 16.173 +11.78%

base64-SP 218.656 236.194 +8.02%

Basic 195.428 168.823 −13.61%

bomb-workers 20.826 17.721 −14.91%

Box2D 120.487 144.29 +19.76%

cdjs 32.632 28.819 −11.68%

chai-wtb 42.27 42.068 −0.48%

coffeescript-wtb 21.964 18.937 −13.78%

crypto 279.665 341.319 +22.05%

crypto-aes-SP 179.095 146.226 −18.35%

crypto-md5-SP 113.45 106.569 −6.07%

delta-blue 226.869 176.9 −22.03%

earley-boyer 199.003 201.622 +1.32%

espree-wtb 15.742 14.141 −10.17%

first-inspector-code-load 102.469 99.755 −2.65%

FlightPlanner 176.477 176.196 −0.16%

float-mm.c 7.474 7.497 +0.31%

gaussian-blur 225.208 230.45 +2.33%

gbemu 62.156 57.95 −6.77%

gcc-loops-wasm 21.568 22.449 +4.08%

hash-map 94.658 124.756 +31.80%

HashSet-wasm 27.422 29.125 +6.21%

jshint-wtb 21.484 20.658 −3.84%

json-parse-inspector 111.78 108.445 −2.98%

json-stringify-inspector 122.419 120.712 −1.39%

lebab-wtb 24.557 24.599 +0.17%

mandreel 32.562 32.546 −0.05%

ML 13.853 13.274 −4.18%

multi-inspector-code-load 109.236 92.512 −15.31%

n-body-SP 466.978 459.006 −1.71%

navier-stokes 400.438 409.595 +2.29%

octane-code-load 502.996 460.544 −8.44%

octane-zlib 14.938 15.063 +0.84%

offineAssembler 36.527 33.54 −8.18%

pdfjs 75.934 78.712 +3.66%

prepack-wtb 20.974 20.541 −2.06%

quicksort-wasm 215.166 217.597 +1.13%

raytrace 202.931 222.117 +9.45%

regex-dna-SP 255.332 249.183 −2.41%

regexp 281.028 279.361 −0.59%

richards 196.298 189.976 −3.22%

richards-wasm 37.949 33.478 −11.78%

segmentation 11.835 12.609 +6.54%

splay 88.279 85.402 −3.26%

stanford-crypto-aes 173.872 188.774 +8.57%

stanford-crypto-pbkdf2 213.472 258.864 +21.26%

stanford-crypto-sha256 322.22 317.002 −1.62%

string-unpack-code-SP 168.69 141.399 −16.18%

tagcloud-SP 77.685 99.776 +28.44%

tsf-wasm 42.163 67.481 +60.05%

typescript 6.67 6.598 −1.08%

uglify-js-wtb 12.796 13.636 +6.56%

UniPoker 196.529 195.398 −0.58%

WSL 0.411 0.405 −1.46%

Total 7909.404 7927.544 +0.23%

Indirect Meltdown 39

References

1. Abel, A., Reineke, J.: uops.info: characterizing latency, throughput, and port usage
of instructions on intel microarchitectures. In: ASPLOS (2019)

2. Acıiçmez, O., Schindler, W.: A vulnerability in RSA implementations due to
instruction cache analysis and its demonstration on OpenSSL. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 256–273. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-79263-5_16

3. Acıiçmez, O., Koç, Ç.K., Seifert, J.-P.: Predicting secret keys via branch predic-
tion. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 225–242. Springer,
Heidelberg (2006). https://doi.org/10.1007/11967668_15

4. Bhattacharya, S., Mukhopadhyay, D.: Who watches the watchmen?: utilizing per-
formance monitors for compromising keys of RSA on intel platforms. Cryptology
ePrint Archive, Report 2015/621 (2015)

5. Briongos, S., Malagón, P., Moya, J.M., Eisenbarth, T.: RELOAD+REFRESH:
abusing cache replacement policies to perform stealthy cache attacks. In: USENIX
Security Symposium (2020)

6. Canella, C., et al.: Fallout: leaking data on meltdown-resistant CPUs. In: CCS
(2019)

7. Canella, C., Schwarz, M., Haubenwallner, M., Schwarzl, M., Gruss, D.: KASLR:
break it, fix it, repeat. In: AsiaCCS (2020)

8. Canella, C., et al.: A systematic evaluation of transient execution attacks and
defenses. In: USENIX Security Symposium (2019). Extended classification tree
and PoCs at https://transient.fail/

9. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: ACM Symposium on Cloud Computing
(2010)

10. Disselkoen, C., Kohlbrenner, D., Porter, L., Tullsen, D.: Prime+Abort: a timer-free
high-precision L3 cache attack using Intel TSX. In: USENIX Security Symposium
(2017)

11. Federal Office for Information Security. Minimum requirements of evaluating
side-channel attack resistance of RSA, DSA, and Diffie-Hellman key exchange
implementations (2013). https://www.bsi.bund.de/SharedDocs/Downloads/DE/
BSI/Zertifizierung/Interpretationen/AIS_46_BSI_guidelines_SCA_RSA_V1_
0_e_pdf.pdf

12. Gleixner, T.: x86/KPTI: kernel page table isolation (was KAISER) (2017). https://
lkml.org/lkml/2017/12/4/709

13. Gras, B., Giuffrida, C., Kurth, M., Bos, H., Razavi, K.: ABSynthe: automatic
blackbox side-channel synthesis on commodity microarchitectures. In: NDSS (2020)

14. Gruss, D., Hansen, D., Gregg, B.: Kernel isolation: from an academic idea to an
efficient patch for every computer. In: USENIX (2018)

15. Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., Mangard, S.: KASLR
is dead: long live KASLR. In: Bodden, E., Payer, M., Athanasopoulos, E. (eds.)
ESSoS 2017. LNCS, vol. 10379, pp. 161–176. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-62105-0_11

16. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+flush: a fast and stealthy
cache attack. In: Caballero, J., Zurutuza, U., Rodríguez, R.J. (eds.) DIMVA 2016.
LNCS, vol. 9721, pp. 279–299. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40667-1_14

https://doi.org/10.1007/978-3-540-79263-5_16
https://doi.org/10.1007/978-3-540-79263-5_16
https://doi.org/10.1007/11967668_15
https://transient.fail/
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_BSI_guidelines_SCA_RSA_V1_0_e_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_BSI_guidelines_SCA_RSA_V1_0_e_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_BSI_guidelines_SCA_RSA_V1_0_e_pdf.pdf
https://lkml.org/lkml/2017/12/4/709
https://lkml.org/lkml/2017/12/4/709
https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14

40 D. Weber et al.

17. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: USENIX Security Symposium (2015)

18. Gulmezoglu, B., Zankl, A., Eisenbarth, T., Sunar, B.: PerfWeb: how to violate
web privacy with hardware performance events. In: Foley, S.N., Gollmann, D.,
Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 80–97. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66399-9_5

19. Intel. Intel R©64 and IA-32 Architectures Software Developer’s Manual, Volume 1:
Basic Architecture, vol. 253665 (2016)

20. Intel. Intel R©64 and IA-32 Architectures Software Developer’s Manual, Volume 3
(3A, 3B & 3C): System Programming Guide (2019)

21. Intel. Intel-SA-00233 Microarchitectural Data Sampling Advisory (2019). https://
www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.
html

22. Intel. Affected Processors: Transient Execution Attacks (2023). https://www.
intel.com/content/www/us/en/developer/topic-technology/software-security-
guidance/processors-affected-consolidated-product-cpu-model.html

23. Intel Corporation. Guidelines for Mitigating Timing Side Channels Against
Cryptographic Implementations (2020). https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security-guidance/secure-coding/
mitigate-timing-side-channel-crypto-implementation.html

24. Intel Corporation. Refined Speculative Execution Terminology (2020). https://
software.intel.com/security-software-guidance/insights/refined-speculative-
execution-terminology

25. Jana, S., Shmatikov, V.: Memento: learning secrets from process footprints. In:
S&P 2012 (2012)

26. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: S&P (2019)
27. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

28. Koruyeh, E.M., Khasawneh, K., Song, C., Abu-Ghazaleh, N.: Spectre returns!
Speculation attacks using the return stack buffer. In: WOOT (2018)

29. Lee, S., Kim, Y., Kim, J., Kim, J.: Stealing webpages rendered on your browser
by exploiting GPU vulnerabilities. In: S&P (2014)

30. Leverich, J.: Mutilate: high-performance memcached load generator (2014).
https://github.com/leverich/mutilate

31. Linux. Complete virtual memory map with 4-level page tables (2019). https://
www.kernel.org/doc/Documentation/x86/x86_64/mm.txt

32. Lipp, M., Gruss, D., Schwarz, M.: AMD prefetch attacks through power and time.
In: USENIX Security (2022)

33. Lipp, M., Gruss, D., Schwarz, M., Bidner, D., Maurice, C., Mangard, S.: Practical
keystroke timing attacks in sandboxed JavaScript. In: Foley, S.N., Gollmann, D.,
Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 191–209. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_11

34. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: cache
attacks on mobile devices. In: USENIX Security Symposium (2016)

35. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: USENIX
Security Symposium (2018)

36. Maisuradze, G., Rossow, C.: ret2spec: speculative execution using return stack
buffers. In: CCS (2018)

37. Moghimi, D., Lipp, M., Sunar, B., Schwarz, M.: Medusa: microarchitectural data
leakage via automated attack synthesis. In: USENIX Security Symposium (2020)

https://doi.org/10.1007/978-3-319-66399-9_5
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://doi.org/10.1007/3-540-68697-5_9
https://github.com/leverich/mutilate
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://doi.org/10.1007/978-3-319-66399-9_11

Indirect Meltdown 41

38. Monaco, J.: SoK: keylogging side channels. In: S&P (2018)
39. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The spy in the

sandbox: practical cache attacks in javascript and their implications. In: CCS
(2015)

40. Percival, C.: Cache missing for fun and profit. In: BSDCan (2005)
41. Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: DRAMA: exploiting

DRAM addressing for cross-CPU attacks. In: USENIX Security Symposium (2016)
42. Pinet, S., Ziegler, J.C., Alario, F.-X.: Typing is writing: linguistic properties mod-

ulate typing execution. Psychon. Bull. Rev. 23(6), 1898–1906 (2016)
43. Purnal, A., Turan, F., Verbauwhede, I.: Prime+scope: overcoming the observer

effect for high-precision cache contention attacks. In: CCS (2021)
44. Ragab, H., Barberis, E., Bos, H., Giuffrida, C.: Rage against the machine clear: a

systematic analysis of machine clears and their implications for transient execution
attacks. In: USENIX Security (2021)

45. Ragab, H., Milburn, A., Razavi, K., Bos, H., Giuffrida, C.: CrossTalk: speculative
data leaks across cores are real. In: S&P (2021)

46. Schwarz, M., Canella, C., Giner, L., Gruss, D.: Store-to-leak forwarding: leaking
data on meltdown-resistant CPUs. arXiv:1905.05725 (2019)

47. Schwarz, M., Lipp, M., Canella, C.: misc0110/PTEditor: a small library to modify
all page-table levels of all processes from user space for x86_64 and ARMv8 (2018).
https://github.com/misc0110/PTEditor

48. Schwarz, M., et al.: KeyDrown: eliminating software-based keystroke timing side-
channel attacks. In: NDSS (2018)

49. Schwarz, M., et al.: ZombieLoad: cross-privilege-boundary data sampling. In: CCS
(2019)

50. Schwarzl, M., Schuster, T., Schwarz, M., Gruss, D.: Speculative dereferencing of
registers: reviving foreshadow. In: FC (2021)

51. Song, D.X., Wagner, D., Tian, X.: Timing analysis of keystrokes and timing attacks
on SSH. In: USENIX Security Symposium (2001)

52. Spreitzer, R., Griesmayr, S., Korak, T., Mangard, S.: Exploiting data-usage statis-
tics for website fingerprinting attacks on android. In: WiSec (2016)

53. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptol. 23(1), 37–71 (2010)

54. Van Bulck, J.,et al.: Foreshadow: extracting the keys to the Intel SGX kingdom
with transient out-of-order execution. In: USENIX Security Symposium (2018)

55. Van Bulck, J., et al.: LVI: hijacking transient execution through microarchitectural
load value injection. In: S&P (2020)

56. Van Bulck, J., Piessens, F., Strackx, R.: Nemesis: studying microarchitectural tim-
ing leaks in rudimentary CPU interrupt logic. In: CCS (2018)

57. van Schaik, S., et al.: RIDL: rogue in-flight data load. In: S&P (2019)
58. Vila, P., Köpf, B.: Loophole: timing attacks on shared event loops in chrome. In:

USENIX Security Symposium (2017)
59. Wang, H., Lai, T.T.-T., Roy Choudhury, R.: MoLe: motion leaks through smart-

watch sensors. In: Proceedings of the International Conference on Mobile Comput-
ing and Networking (2015)

60. Wang, Y., Paccagnella, R., He, E., Shacham, H., Fletcher, C.W., Kohlbrenner, D.:
Hertzbleed: turning power side-channel attacks into remote timing attacks on x86.
In: USENIX Security Symposium (2022)

61. Weber, D., Ibrahim, A., Nemati, H., Schwarz, M., Rossow, C.: Osiris: automated
discovery of microarchitectural side channels. In: USENIX Security (2021)

http://arxiv.org/abs/1905.05725
https://github.com/misc0110/PTEditor

42 D. Weber et al.

62. Xiao, Y., Zhang, Y., Teodorescu, R.: SPEECHMINER: a framework for investi-
gating and measuring speculative execution vulnerabilities. In: NDSS (2020)

63. Yan, L., Guo, Y., Chen, X., Mei, H.: A study on power side channels on mobile
devices. In: Symposium on Internetware (2015)

64. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache side-
channel attack. In: USENIX Security Symposium (2014)

65. Zhang, K., Wang, X.: Peeping Tom in the neighborhood: keystroke eavesdropping
on multi-user systems. In: USENIX Security Symposium (2009)

66. Zhang, R., Kim, T., Weber, D., Schwarz, M.: (M)WAIT for it: bridging the gap
between microarchitectural and architectural side channels. In: USENIX Security
(2023)

Accessorize in the Dark: A Security
Analysis of Near-Infrared Face Recognition

Amit Cohen and Mahmood Sharif(B)

Tel Aviv University, Tel Aviv, Israel
mahmoods@tauex.tau.ac.il

Abstract. Prior work showed that face-recognition systems ingesting
RGB images captured via visible-light (VIS) cameras are susceptible
to real-world evasion attacks. Face-recognition systems in near-infrared
(NIR) are widely deployed for critical tasks (e.g., access control), and
are hypothesized to be more secure due to the lower variability and
dimensionality of NIR images compared to VIS ones. However, the actual
robustness of NIR-based face recognition remains unknown. This work
puts the hypothesis to the test by offering attacks well-suited for NIR-
based face recognition and adapting them to facilitate physical realiz-
ability. The outcome of the attack is an adversarial accessory the adver-
sary can wear to mislead NIR-based face-recognition systems. We tested
the attack against six models, both defended and undefended, with var-
ied numbers of subjects in the digital and physical domains. We found
that face recognition in NIR is highly susceptible to real-world attacks.
For example, ≥96.66% of physically realized attack attempts seeking
arbitrary misclassification succeeded, including against defended models.
Overall, our work highlights the need to defend NIR-based face recogni-
tion, especially when deployed in high-stakes domains.

1 Introduction

Face-recognition technology has become increasingly popular in recent years,
with applications ranging from border security [7] and surveillance [41] to access
control [1,2]. Among others, face recognition based on near infrared (NIR) imag-
ing has received wide adoption (e.g., [1,2]) due to its near-invariance to changes
in ambient illumination and its ability to capture facial features in dark envi-
ronments [17]. Because such NIR-based face-recognition systems are deployed to
address security-critical problems, it is crucial to analyze their integrity against
adversaries seeking to mislead them (e.g., to circumvent surveillance or receive
unauthorized access).

Recent work in adversarial machine learning (ML) has demonstrated that
ML models in general, and ones for face-recognition in particular, are vulnera-
ble to evasion attacks at deployment time (e.g., [20,32,33,36,37]). Specifically,
adversaries generating so-called adversarial examples—minimally but strategi-
cally modified variants of benign inputs—can lead ML models to misclassify.
These adversarial examples can also be realized in the problem space to mislead
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 43–61, 2024.
https://doi.org/10.1007/978-3-031-51479-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_3&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_3

44 A. Cohen and M. Sharif

systems [29]. For example, adversaries can physically realize and wear acces-
sories such as eyeglasses to impersonate others against face recognition in visible
light (VIS) [32,33]. Still, prior work demonstrating evasion attacks against image
classification chiefly focused on systems relying on VIS sensors, and the suscepti-
bility of NIR-based face recognition to evasion attacks has yet to be determined.
Indeed, because NIR images vary less under changes in imaging conditions [17]
and have lower dimensionality (shown to be correlated with susceptibility to
attacks [31]) than VIS images, it is plausible that NIR-based face-recognition
systems could be less susceptible to evasion than their VIS counterparts.

Our work fills the gap by developing and evaluating attacks against state-
of-the-art NIR-based face-recognition models, enabling us to determine whether
and to what extent these systems are vulnerable to evasion attacks in the digital
and physical domains. We design attacks that enable adversaries to mislead NIR-
based face recognition according to different attack objectives (namely, dodging
to attain arbitrary misclassifications or impersonation), and further extend them
to facilitate realizing adversarial examples in the physical world. For example,
among others, we ensure attacks are robust to real-world transformations, such
as changes in pose and camera sampling noise. The attacks result in accessories
(namely, eyeglasses) adversaries can wear to mislead face recognition.

We extensively tested attacks against six state-of-the-art NIR-based face-
recognition models in the digital and physical domains. Our experiments involved
varied numbers of subjects, and both undefended and defended [42] models. We
found that the models were highly vulnerable to evasion, with a mean of 98.33%
of dodging attempts and 77.77% of impersonation attempts succeeding in the
physical domain. The defense hindered impersonation attacks to some extent
(36.66% mean attack success rate), but was still vulnerable to dodging (96.66%
mean attack success rate). Overall, our work highlights that NIR-based face
recognition-systems are not inherently more robust than their VIS counterparts,
and that defenses to advance their integrity in adversarial settings are crucial.

The paper is structured as follows. Next, we present necessary background
(Sect. 2) and the threat model (Sect. 3). Then, we introduce our methodology
(Sect. 4), followed by an evaluation of NIR-based face recognition’s robustness
(Sect. 5). Lastly, we close the paper by discussing its limitations (Sect. 6) and
concluding (Sect. 7).

2 Background and Related Work

2.1 Face Recognition in NIR

NIR is a portion of the electromagnetic spectrum falling between visible light
and mid-infrared, with wavelengths ranging between ∼700 and ∼2500 nm. As
NIR light can penetrate certain material, such as clothing and wood, it is partic-
ularly useful for imaging such objects. Consequently, NIR is commonly used in
various applications, ranging from gaze detection in challenging conditions [24]
to the analysis of food and agricultural products [25]. In the biometrics field,

A Security Analysis of Near-Infrared Face Recognition 45

NIR has been used for face recognition, including in widely deployed commer-
cial systems (e.g., [1,2]), due to its ability to capture facial features that may
not be otherwise visible. Notably, NIR cameras can capture images in low-light
conditions, rendering them useful for settings with limited (VIS) illumination,
such as surveillance and biometric authentication in the dark.

Leading NIR-based face-recognition systems rely on deep learning [9,10,
12,14,15,23,43,44,49]. For example, Lezama et al. presented a deep-learning-
based face-recognition system to identify individuals based on their NIR facial
images [18]. They attained high recognition performance by leveraging genera-
tive models mapping NIR to VIS and an off-the-shelf feature-extraction network
as a backbone, and tuning the representations using generated images. Later
on, Wu et al. presented a deep convolutional neural network, named LightCNN,
designed to be light-weight and effective on multiple tasks [43]. Among others,
LightCNN achieves high accuracy on NIR-based face recognition. In a follow-up
work, Fu et al. proposed an LightCNN variant, LightCNN-DVG [12], achieving
the highest face-recognition accuracy in NIR to date. The primary difference
between LightCNN and LightCNN-DVG is that the latter is fine-tuned with
NIR-VIS data. During fine-tuning, LightCNN-DVG was trained to map NIR
and VIS image pairs of the same person (resp., different people) into feature
vectors that are close together (resp., further away) in the feature space. We
evaluate our proposed attack against a representative set of such top performing
models.

2.2 Attacking ML

Attacks against ML models can be categorized based on attacker objectives and
capabilities. Several attack types against ML have been proposed, including,
but not limited to, training-time attacks, where adversaries partially control
the training data or process to harm model performance (e.g., [5,16]); privacy
attacks, where adversaries aims to extract sensitive information about the train-
ing data from access to the model or training process (e.g., [34]); and availability
attacks, where attackers seek to craft inputs that increase prediction or train-
ing latency (e.g., [35]). By contrast, our work studies evasion attacks in which
adversaries have no control over the trained model but can manipulate inputs
at inference time to induce misclassifications (e.g., [20,36]).

Evasion attacks were first popularized by Biggio et al. [4] and Szegedy et
al. [36], who demonstrated the vulnerability of ML models to small perturbations
of their inputs. Since then, evasion attacks have been studied extensively, with
numerous techniques proposed for generating and defending against adversarial
examples (e.g., [6,13,20,27]). Formally, evasion attacks seek to find a solution to
some variation of the following optimization problem:

argmax
δ

L
(
f(x + δ), cx

)

where f is an ML model, x is the input, δ is an adversarial perturbation, cx

is the input’s class (i.e., label), and L is the loss function. Often, the optimiza-
tion is constrained by requiring that δ’s �p-norm is bounded by a constant ε,

46 A. Cohen and M. Sharif

(i.e., ||δ||p =
(∑

i |δi|p
)1/p ≤ ε, commonly for p ∈ {2,∞}). By solving the opti-

mization, attacks aim to find perturbations increasing the loss, leading f to
misclassify. Several first-order (i.e., gradient-based) optimization methods have
been proposed to solve the optimization (e.g., [6,13]), many of which are slight
variants of the popular Projected Gradient Descent (PGD) attack [20]. Given
a model and a sample input, PGD generates adversarial perturbations in an
iterative manner—it calculates the input gradients w.r.t. the loss, and updates
the input in the direction maximizing the model’s error. More formally, PGD
computes the perturbed sample xt+1 at iteration t + 1 by:

xt+1 = ΠS(xt + α sign(∇xtL(f(xt), cx)))

where α is the step size, and ΠS projects samples into a set of allowed perturba-
tions S (e.g., ε-ball around x), and x0 is set to x or randomly initialized within
S. The attack we design (Sect. 4) is a variant of PGD in which δ’s max-norm
is unbounded, but the perturbation can be applied to a specific region in the
image covered by an accessory, as defined by a mask.

Attackers performing evasion can vary in their capabilities. In white-box set-
tings, attackers have full access to the model parameters and architectures, allow-
ing them to design powerful attacks using their knowledge about the model (e.g.
gradients [20]). By contrast, in black-box settings, attackers have no access to the
model internals, and may only query models [27]. Thus, intuitively, black-box
attacks are more challenging than white-box attacks. Attacker goals may also
vary. An attacker may aim to produce any misclassification—i.e., conduct an
untargeted attack—or induce a misclassification to a particular class—i.e., per-
form a targeted attack [28]. Intuitively, targeted attacks impose more constraints
and are hence more challenging.

Early evasion attacks primarily explored adversarial perturbations con-
strained in �p-norms. While in those settings the adversarial sample is close
to the original benign example, �p-norm-bounded attacks are challenging to
realize in the problem space (i.e., as an artifact whose corresponding features
are misclassified by a model) [29]. By contrast, realizable attacks incorporate
domain constraints to produce problem-space artifacts that lead to evasion
(e.g., [3,11,29,30,32].) For example, Sharif et al. showed how to produce eye-
glass frames that adversaries can don to evade VIS-based face recognition [32].
The attack was effective under real-world circumstances, allowing adversaries
to mislead recognition by wearing eyeglass frames with specific color patterns.
Differently than Sharif et al., we develop attacks suited for NIR-based face
recognition.

2.3 Defending ML

Defending models’ integrity against evasion attacks is crucial for ensuring
safe and secure deployment. Adversarial training—the process of augment-
ing the training data with correctly labeled adversarial examples—is one of
the most effective techniques for enhancing model robustness (e.g., [13,20]).

A Security Analysis of Near-Infrared Face Recognition 47

Other defenses offer methods to detect adversarial inputs (e.g., [22]), sani-
tize adversarial perturbations (e.g., [48]), and certify robustness within certain
regions (e.g., [8]). Researchers have also published defenses against patch-based
attacks [45–47], however these are either limited to models with small recep-
tive fields or significantly increase inference time. Wu et al. presented a defense
method called Defense against Occlusion Attacks (DOA) to defend against phys-
ically realizable attacks in the image domain [42]. They suggest adversarially
training models with an abstract adversary perturbing a rectangular patch and
show this enhances robustness against adversaries using eyeglasses to evade face
recognition and ones producing stickers to evade traffic-sign recognition. We
evaluate our attack against a model defended via DOA.

3 Threat Model

In this paper, we primarily study white-box evasion attacks against NIR-based
face-recognition models. Studying white-box attacks is critical, as (1) it can
help us assess systems’ vulnerability when relying on publicly available models
(e.g., [43]) or when proprietary models are stolen [38]; (2) they help assess the
effectiveness of defenses against worst-case adversaries with complete knowledge
of the system, and inform means to enhance them; and (3) these attacks serve
as the basis for black-box attacks using queries to estimate gradients [27] or via
transferability [26]. Indeed, we attempt to transfer attacks created against sur-
rogate models to target models, thus simulating black-box attacks, and find that
evasion attempts often transfer between NIR-based face-recognition models. We
implement both untargeted (dodging) and targeted (impersonation) attacks, and
test them both in digital and physical domains against state-of-the-art models.

To maintain stealth and plausible deniability, we consider attacks using every-
day accessories (mainly eyeglasses, but also face masks and stickers), in line with
prior work [32,37]. By using accessories, the adversary aims to remain incon-
spicuous and avoid raising suspicion by observers. Additionally, we aim for the
attacks to be (physically) realizable, such that adversaries would be able to mis-
lead the system by slightly changing their own appearance, without altering their
surroundings or manipulating the digital representation of their image.

4 Methodology

We now present our attacks against NIR-based face recognition, starting with
how to evade models before describing how to enable physical realizability.

4.1 Evading Recognizers

The face-recognition systems we study classify NIR face images by finding the
most similar VIS image from within an image gallery. The process is enabled
by neural networks that extract feature vectors of both NIR and VIS images.

48 A. Cohen and M. Sharif

For classification, the systems compute the cosine similarity cos(·, ·) between
the NIR features and each of gallery images’ features. Eventually, the gallery
subject with the highest similarity is selected as the classification result. After
exploring numerous directions (see Sect. 5.2), we identified techniques that were
most effective at producing dodging and impersonation attacks.

Dodging. In dodging, the adversary’s goal is to produce an arbitrary misclassi-
fication to any class other than the true class. We find that evading classification
by increasing the similarity w.r.t. the closest incorrect class (in a given attack
iteration) and decreasing it w.r.t. the true class is most effective (Sect. 5.2).
Given an input x pertaining to class (i.e., gallery subject) cx, we denote the fea-
ture array of the gallery images by G ∈ R

k×d, where k is the number of classes,
and d is the dimensionality of the features extracted by the model f , and by
max c �=cx

(
cos(f(x), G[c])

)
the closest class to x which is not cx. To produce a

misclassification, we find a perturbation δ that maximizes the dodging loss:

Ldodge(x, cx) = −αcos
(
f(x + δ), G[cx]

)
+ βmax c �=cx

(
cos(f(x + δ), G[c])

)

where α and β are two non-negative constants, aiming to balance the first objec-
tive (decreasing the distance from cx) and the second objective (increasing sim-
ilarity with the most similar class c �= cx), respectively. After running a grid
search, we found that setting both α and β to one led to the highest success.

Impersonation. In impersonation, the adversary selects a target class (i.e., sub-
ject) ct to impersonate. To achieve this objective, besides increasing similarity
with ct and decreasing similarity with cx, we found that it is crucial to decrease
similarity with all gallery subjects that are more similar to the input than the
target, or are less similar to the input than the target but only slightly so. Said
differently, our attack aims to ensure that the similarity with ct is higher than all
other classes by a significant margin, increasing the confidence that the (adver-
sarial) input pertains to ct. In doing so, we could increase the likelihood that
attacks would succeed when realized, even when similarity with ct is decreased
after realization (e.g., due to imperfect fabrication of the accessory). To this end,
we define the high-margin (hm) loss:

Lhm =
1
k

∑

c

ReLU
(
cos(f(x + δ), G[c]) − cos(f(x + δ), G[ct]) + τ

)

where τ is a small non-negative constant set to ensure that the perturbation
decreases the similarity w.r.t. classes sufficiently similar to x (i.e., with similarity
higher or up to a small margin of ct). We empirically found that τ = 0.2 leads
to successful attacks (see Sect. 5). Accordingly, the impersonation attacks aim
to maximize the impersonation loss, defined by:

Limp(x, cx) = αcos
(
f(x + δ), G[ct]

) − βcos
(
f(x + δ), G[cx]

) − γ ∗ Lhm

where α, β, and γ are non-negative constants to balance between the attack goals,
of increasing similarity with ct, decreasing similarity with cx, and decreasing
Lhm . We set α and β to 6, and γ to 15, as we found these to work best after
performing a grid search.

A Security Analysis of Near-Infrared Face Recognition 49

Fig. 1. Attacks generated with (a) and without (b) minimizing TV.

4.2 Realizing Attacks

To implement attacks in the physical world, measures to aid in fabricating the
adversarial artifacts and improve their robustness to varying imaging conditions
(e.g., scale and pose) are necessary [32]. We address this by adding constraints
to the attack to encourage the creation of objects that resemble their digital
counterpart when printed and photographed with an NIR camera, and are robust
to transformations encountered in the real world, as elaborated below.

Total Variation (TV). When not restricted, the attack may produce sharp,
unnatural transitions between neighboring pixels. Such transitions would be chal-
lenging to realize, as they would require high-resolution printers and cameras to
produce and capture them [21,32]. Thus, to facilitate realizability and promote
inconspicuousness, we use TV as part of the loss, similarly to Sharif et al.’s
work [32]. Given an input x ∈ R

d×d, TV measures the distance between neigh-
boring pixels via the following formula:

TV (x) =
∑

i,j

[(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2]β

where β is a configurable parameter that we set to 1, in line with prior work [32].
Figure 1 shows artifacts produced with and without TV—by minimizing TV,
attacks produce artifacts with smooth textures more amenable for realization.

Printability. To produce adversarial artifacts containing colors that can be
physically realized via printing, we define and use a Non-Printability Score (NPS)
metric tailored for the NIR domain. To define NPS, we first identify the color
ranges our printer can produce and model how they are captured by cameras.
Empirically, this works by printing a grayscale palette covering the entire [0,
255] range and photographing it (see Fig. 2a).1 Doing so showed that the range
of printable colors is a consecutive sub-range [vlb , vub] = [40,180] of the full [0,255]
range (see Fig. 2b). Moreover, we observe a roughly linear relationship between
printed colors an their captured counterparts, enabling us to pre-process the
accessories’ colors prior to printing to preserve similarity between the printed

1 We use grayscale as NIR contains a single channel and we found grayscale covers
the value range more comprehensively than RGB.

50 A. Cohen and M. Sharif

Fig. 2. (a) Digital grey-scale palette (left) compared to a printed and photographed
palette (right). (b) Comparison of digital colors and their realized counterparts (after
being printed and recaptured via an NIR camera). A dotted line is added to emphasize
the roughly linear relationship.

and captured colors (Sect. 5.3). Accordingly, we defined the NPS formula as
follows:

NPS (x) =
∑

i,j

[ReLU(vlb − xi,j) + ReLU(xi,j − vub)].

Intuitively, the NPS accumulates a penalty for each pixel that is lower than the
lower bound or higher than the upper bound color we could realize. Therefore, by
minimizing NPS, our attack pushes colors on the adversarial artifacts to become
printable, thus aiding in realizability.

Expectation Over Transformation (EOT). is a measure aiming to enhance
robustness against changes likely to be encountered in the physical world [3].
For instance, when an attacker wears accessories (e.g., eyeglasses), we cannot
assume they will be located exactly as intended on the face, that the attacker
pose will be completely frontal, or that they will stand at a fixed distance w.r.t.
the camera. To ensure that attacks succeed across input variations, we adapt
EOT to face recognition such that we maximize the expected impersonation
and dodging losses over potential variations. Formally, given an image x and a
perturbation δ, instead of maximizing L{dodge|imp} over x + δ, we maximize it
over t1

(
x+ t2(δ)

)
for t1 ∼ T1 and t2 ∼ T2, where T1 are transformations applied

to the face and accessory combined (e.g., changes in pose or distance), and T2

are transformations applied to accessory alone (e.g., slight translation due to
dislocation and noise due to sampling errors). Specifically, for T2, we use slight
rotations (∈ [−2,2] degrees), scaling (×[0.98,1.02]), and translations along the x-
and y-axes (∈ {−2,. . . ,2}), to account for potential variations that might occur
when attackers wear the accessory. Furthermore, we add small amount of zero-
centered Gaussian noise (σ = 0.04) to δ to account for slight color noise during
sampling. To simulate transformations of the face and accessory (i.e., T1), we
take multiple images per attacker with slight variations in pose, distance, and
lighting and attach the accessories to them via perspective transformation.

A Security Analysis of Near-Infrared Face Recognition 51

Overall Objective. To physically realize attacks we find δ that maximizing

argmax
δ

Et1,t2∼T1,T2

[
L{dodge|imp}

(
f
(
t1

(
x + t2(δ)

))
, c{x|t}

)]
− ω1TV (δ) − ω2NPS(δ).

The optimization process searches for a perturbation δ maximizing Ldodge or
Limp (depending on the attack objective) over expected input transformations,
while minimizing the TV and NPS of δ. ω1 and ω2 are non-negative constants
for balancing the objectives tuned to maximize the success of realized attacks.

Implementation Details. We solve the optimization using PGD, after initial-
izing the accessory colors to a uniform grayscale value of 76/255, allowing the
accessory’s values to range ∈ [0,1] while not perturbing values not covered by
the accessory. We run PGD for 400 iterations and set its step size to 1/255. To
enable a more direct comparison with prior work, we use Sharif et al.’s eyeglasses
covering 8% of the image [32] as the adversarial accessory. We tested other acces-
sories (e.g., face masks and stickers) in the digital domain and found they led to
relatively lower success than eyeglasses (Sect. 6). We implemented attacks using
PyTorch and published our code to aid in reproducibility.2

5 Evaluation

Our experiments examined the vulnerability of several NIR-based face-
recognition systems to dodging and impersonation attacks in the digital and
physical domains. Next, we describe our experimental setup before reporting
the results of attacks in the digital (Sect. 5.2) and physical (Sect. 5.3) domains.

5.1 Experimental Setup

Data. For our evaluation, we relied on the CASIA NIR-VIS 2.0 dataset [19].
This dataset consists of frontal face images of 725 subjects collected using NIR
and VIS sensors. The VIS images were collected in visual light, while NIR images
were collected in complete darkness, using an NIR camera surrounded by 850 nm
NIR light-emitting diodes (LEDs). Figure 3 presents samples from the dataset.
The number of VIS images per subject varies between one and 22 while that
of NIR images varies between five and 50. For testing, the dataset contains a
gallery of 358 VIS images, one per subject, and a probe set consisting of 6,000
NIR images for the same 358 subjects. The objective is to map the NIR images
from the probe set to the correct identity from the gallery. The dimensionality of
the images is 480×640, and we aligned them to a fixed pose and cropped them
to 224×224 centered around the face, per standard practice [32].

To conduct experiments in the physical domains, we further augmented the
dataset by enrolling three additional subjects—two males and a female 28–
31 years of age. We refer to them by S1–S3. For each subject enrolled, we captured

2 Code available at https://github.com/AmitCohen3/Accessorize-in-the-dark.

https://github.com/AmitCohen3/Accessorize-in-the-dark

52 A. Cohen and M. Sharif

Fig. 3. NIR (top) and VIS (bottom) images of three subjects (columns) from the
CASIA NIR-VIS 2.0 dataset.

a VIS image and 20 NIR images, all using an Intel RealSense D415 camera. Sim-
ilarly to CASIA NIR-VIS 2.0 dataset [19], both VIS and NIR images were taken
with the subject’s face positioned in the middle of the frame with a frontal pose.
When capturing images in NIR, the subjects were wearing eyeglasses frames
and were asked to slightly move their faces in a circular motion. All images
were taken in a dark room, with closed window blinds to prevent external light,
while turning on NIR LEDs positioned around the camera to faithfully simulate
CASIA NIR-VIS 2.0’s conditions. For printing, we used a Xerox B230 printer.

Models. We evaluated attacks against state-of-the-art architectures for NIR-VIS
face-recognition: LightCNN, LightCNN-DVG, LightCNN-Rob, and ResNeSt.
Wu et al. proposed LightCNN and trained it using multiple VIS datasets after
converting inputs to one-dimensional (i.e., grayscale) images [43]. They showed
that, by training model on noisy labels, LightCNN can attain high performance
on the NIR-VIS face-recognition task. We acquired the LightCNN weights pub-
lished by the authors. LightCNN-DVG was proposed in a follow-up work by
the same group, in which they fine-tuned LightCNN using generated pairs of
NIR-VIS face images to further improve the model’s accuracy [12]. We trained
a LightCNN-DVG model on our dataset using the official code. To enhance
model robustness against attacks, we also followed Wu et al.’s protocol to adver-
sarially train a model [42]. In particular, we fine-tuned LightCNN-DVG using
the DOA method, running 10 epochs of adversarial training.3 Finally, because
some NIR-based face recognition systems leverage typical VIS models receiving
three channels as input (e.g., [18]), we complemented the LightCNN variants
with a Residual Neural Network with Split Attention (ResNeSt) model [50].
We acquired pre-trained ResNeSt weights through Wang et al.’s project [39],
and found it was markedly more accurate than other 11 models ingesting three
channels Wang et al. offer (including ResNet and VGG models). Lastly, to assess
how the number of subjects affects attack success, we evaluated variants of
LightCNN-DVG, LightCNN-DVG-10 and LightCNN-DVG-100, on a subset of

3 We used the Adam optimizer with a 1e-5 learning rate for best performance.

A Security Analysis of Near-Infrared Face Recognition 53

Table 1. The models’ benign accuracy with the enrolled subjects included. The stan-
dard deviation is negligible (<1e–4), thus excluded.

Model Benign accuracy

LightCNN 98.27%
LightCNN-DVG 99.80%
LightCNN-DVG-100 99.84%
LightCNN-DVG-10 99.85%
LightCNN-Rob 99.56%
ResNeSt 91.10%

ten and 100 subjects, respectively, both of which include the three subjects we
enrolled.

To measure benign accuracy, we followed CASIA’s protocol [19]: we divided
the data into ten folds while adding the enrolled subjects to each of the folds and
measured the mean accuracy over the folds. For models with ten or 100 subjects,
we randomly chose the subjects from the dataset to compute benign accuracy,
and calculated the mean over ten repetitions. Table 1 reports the benign accu-
racy of all models. All models were highly accurate, and, as expected, the most
advanced model, LightCNN-DVG, was most accurate, with an increasing accu-
racy as the number of subjects decreased.

Metrics. We measured attack performance by their success rate (SR) and mar-
gin. SR estimates how often the attack achieves its objective—i.e., the percentage
of time the attacker is misclassified as someone else (resp. target class) in dodging
(resp. impersonation) attacks. The margin is a proxy for the confidence in the
(mis)classification result. We measured it by the difference between similarity
with the top prediction (resp. target class) and the true class in dodging (resp.
impersonation) attacks.

5.2 Digital Attacks

We tested attacks in the digital domain to find loss functions that maximize
attack success and assess the security of NIR-based face recognition in ideal
settings, where adversaries can precisely produce adversarial accessories. In these
attacks we ignored the TV, printability, and EOT objectives, and mainly focused
on misclassifications using a single adversary image. We evaluated both dodging
and impersonation attacks, selecting the impersonation targets at random. We
ran each attack type ten times, each time with different 1,024 NIR images (or all
images available for the subjects, if less than 1,024), and measured the average
and standard deviation (std) of the SR and margin over these repetitions. Lastly,
we tested the transferability of attacks—i.e., how often attacks created against
one model succeed against other models—to simulate black-box attacks.

54 A. Cohen and M. Sharif

Table 2. Comparison between dodging losses against LightCNN-DVG.

Loss SR Margin (std)

L1
dodge = −αcos

(
f(x + δ), G[cx]

)
100.00% 0.38 (0.13)

L2
dodge = −αcos

(
f(x + δ), G[cx]

)
+ β maxc�=cx

(
cos(f(x), G[c])

)
100.00% 0.30 (0.11)

L3
dodge = −αcos

(
f(x + δ), G[cx]

)
+ β maxc�=cx

(
cos(f(x + δ), G[c])

)
100.00% 0.50 (0.13)

Table 3. Comparison between impersonation losses against LightCNN-DVG.

Loss SR Margin (std)

L1
imp = cos

(
f(x + δ), G[ct]

)
84.37% 0.20 (0.15)

L2
imp = αcos

(
f(x + δ), G[ct]

) − βcos
(
f(x + δ), G[cx]

)
72.07% 0.40 (0.16)

L3
imp = αcos

(
f(x + δ), G[ct]

) − β maxc(cos(f(x + δ), G[c])) 87.07% 0.02 (0.02)
L4

imp = αcos
(
f(x + δ), G[ct]

) − βcos
(
f(x + δ), G[cx]

) − γ maxc(cos(f(x + δ), G[c])) 80.23% 0.40 (0.16)
L5

imp = αcos
(
f(x + δ), G[ct]

) − βcos
(
f(x + δ), G[cx]

) − γ maxc�=cx(cos(f(x + δ), G[c])) 85.89% 0.34 (0.15)
L6

imp = αcos
(
f(x + δ), G[ct]

) − βcos
(
f(x + δ), G[cx]

) − γ ∗ Lhm 91.01% 0.34 (0.17)

Table 4. SRs and margins for digital-domain dodging and impersonation attacks.

Model Dodging Impersonation
SR Margin (std) SR Margin (std)

LightCNN 100.00% 0.48 (0.15) 90.92% 0.30 (0.17)
LightCNN-DVG 100.00% 0.50 (0.13) 91.01% 0.34 (0.17)
LightCNN-DVG-100 100.00% 0.50 (0.12) 94.95% 0.39 (0.17)
LightCNN-DVG-10 100.00% 0.47 (0.12) 98.78% 0.35 (0.17)
LightCNN-Rob 100.00% 0.36 (0.13) 52.66% 0.09 (0.19)
ResNeSt 100.00% 0.35 (0.10) 89.05% 0.20 (0.11)

Loss-Function Selection. We evaluated various loss function for dodging and
impersonation to identify the ones maximizing attack success. In these exper-
iments, we ran attacks against LightCNN-DVG, as it was the most robust
amongst the undefended models. Table 2 presents the three dodging losses con-
sidered and their corresponding SRs and margins. L1

dodge aims to decrease the
similarity with the true class; L2

dodge extends L1
dodge by increasing similarity with

the closest subject (excluding cx) prior to running the attack; and L3
dodge (Ldodge

in Sect. 4.1) extends L1
dodge by increasing similarity with the closest subject to

x + δ in the current iteration. L3
dodge led to markedly higher margins, hence we

used it in subsequent attacks. Table 3 lists the six impersonation losses we tested
and their respective SRs and margins. L1

imp seeks to increase similarity with ct;
L2
imp also aims to decrease similarity with cx; L3

imp extends L1
imp by decreasing

similarity with the current top prediction; L4
imp combines L2

imp and L3
imp ; L5

imp

refines L4
imp by excluding cx when decreasing similarity with the top prediction;

and L6
imp is equivalent to Limp described in Sect. 4.1. It can be immediately seen

A Security Analysis of Near-Infrared Face Recognition 55

Table 5. Transferability of digital dodging (left) and impersonations (right).

���������Surrogate
Target LightCNN-DVG LightCNN LightCNN-Rob ResNeSt

LightCNN-DVG 100.00% 98.82% 76.95% 38.67%
LightCNN 100.00% 100.00% 68.93% 41.28%
LightCNN-Rob 96.24% 89.52% 100.00% 40.31%
ResNeSt 1.32% 11.45% 20.04% 100.00%

���������Surrogate
Target LightCNN-DVG LightCNN LightCNN-Rob ResNeSt

LightCNN-DVG 91.02% 66.99% 25.00% 0.00%
LightCNN 65.42% 90.9% 37.10% 0.00%
LightCNN-Rob 41.30% 26.48% 52.56% 0.39%
ResNeSt 0.16% 0.17% 0.22% 89.04%

that L6
imp reached remarkably higher SR than other losses. Thus, we used L6

imp

to perform impersonations in the following experiments.

Attack Evaluation. Table 4 reports the performance of digital-domain dodg-
ing and impersonation attacks against all models, using Ldodge and Limp , respec-
tively. It can be observed that all dodging attempts against all models succeeded.
Impersonation attacks’ SRs, on the other hand, ranged between 52.66% and
98.78%. The defended model, LightCNN-Rob, was the most challenging to mis-
lead, with 52.66% impersonation SR and a 0.09 margin, compared to ≥89.05%
and ≥0.20 margins for the undefended models. Moreover, perhaps intuitively,
impersonation attacks against models with fewer subjects (i.e., LightCNN-DVG-
10 and LightCNN-DVG-100) were relatively more successful than the model with
all subjects (i.e., LightCNN-DVG).

Although attacks were not optimized for transferability, we found that they
often transfer successfully, especially between the LightCNN variants (Table 5).
Between different LightCNN models, the mean SR of transferred attacks ranged
between 68.93%–100.00% for dodging and 25.00%–65.42% for impersonation.
Impersonation attacks transferred from and to ResNeSt had low SRs (≤0.39%),
but dodging attacks against LightCNN variants often misled ResNeSt (38.67%–
41.28% mean SR). We expect higher SRs would be achievable by integrating
techniques to promote transferability (e.g., [40]).

5.3 Physical Attacks

We tested physical-domain attacks against all models. In these experiments, the
three subjects introduced to the dataset simulated attackers. For each subject,
we ran dodging and impersonation attacks against each model, for a total of 3
× 2 × 6 = 36 attack attempts. As in the digital-domain, we randomly chose the
target in each impersonation attack. For each attack, we solved the correspond-
ing optimization with all objectives (Sect. 4.2) to generate eyeglass textures,
which we then printed, cut, and affixed to 3D frames. To this end, we used
all NIR images available for the subject to estimate the EOT of the loss and
solve the optimization. Prior to printing, we increased the accessory’s pixels’
brightness by 40/255 to ensure the printed value of each pixel corresponds to its
digital counterpart (per Fig. 2b). We then collected ten images of the person sim-
ulating the attacker while wearing the adversarial eyeglasses to measure attack
SR. Besides white-box attacks, we again evaluated the transferability of attacks
between models to simulate black-box settings. Next, we report how we weighted
each term in the overall attack objective, followed by the attack performance.

56 A. Cohen and M. Sharif

Table 6. Digital-domain impersonation SR against LightCNN-DVG for varied TV and
NPS weights.

TV w. NPS w.
0 1e–4 1e–3 1e–2

0 92.18% 91.60% 91.01% 85.54%
2e–4 91.99% 91.99% 91.99% 90.82%
2e–3 85.15% 90.62% 90.62% 90.42%
2e–2 85.74% 87.69% 87.5% 87.69%

Table 7. Mean NPS (left) and TV (right) values for varied TV and NPS weights.

���������TV w.
NPS w. 0 1e–4 1e–3 1e–2

0 319.24 273.99 165.10 32.4481
2e–4 263.72 263.72 244.79 157.34
2e–3 32.24 182.62 175.07 128.75
2e–2 30.03 116.12 112.13 90.14

���������TV w.
NPS w. 0 1e–4 1e–3 1e–2

0 347.33 295.46 201.50 112.38
2e–4 229.74 229.74 217.67 167.73
2e–3 100.15 95.20 93.62 83.04
2e–2 61.34 23.04 22.96 22.27

Fig. 4. S1 physically dodging (left) and impersonating (middle) target ID 00041 (right)
against LightCNN-DVG.

Setting TV’s and NPS’ Weights. In our preliminary experiments, we found
that adversarial eyeglasses with a TV value of ∼200 and an NPS value of ∼250
preserve the digital-domain SR best when realized. To this end, to appropriately
tune the TV and NPS weights and attain values in the desirable range while
maximizing attack SRs, we performed a grid search, evaluating attack SRs in
the digital domain with different weights assigned to the TV and NPS objec-
tives. Specifically, we conducted digital-domain impersonation attacks against
LightCNN-DVG, using a single adversary image at a time. We repeated the
experiment 512 times, each time with different attacker image and a target
selected at random. Tables 6–7 report the mean attack SRs, and the mean TV
and NPS scores. Per these results, we set the TV and NPS weights to 2e-4 and
1e-3, respectively, as they resulted in the highest attack SRs while attaining TV
and NPS conducive for faithful realization.

A Security Analysis of Near-Infrared Face Recognition 57

Table 8. SRs of physical attacks. For each model, we report the dodging and imper-
sonation attack SRs per subject simulating the attacker out of ten attempts, as well
as the mean SR across attackers. In the interest of reproducibility, we also report the
randomly selected impersonation targets.

Model Attacker Dodging Impersonation
SR Mean(SR) Target SR Mean(SR)

LightCNN S1 10/10 93.33% 10047 10/10 100.00%
S2 9/10 20476 10/10
S3 9/10 20361 10/10

LightCNN-DVG S1 10/10 100.00% 20370 9/10 96.66%
S2 10/10 20389 10/10
S3 10/10 00050 10/10

LightCNN-DVG-100 S1 10/10 100.00% 10123 0/10 66.66%
S2 10/10 20472 10/10
S3 10/10 00140 10/10

LightCNN-DVG-10 S1 10/10 100.00% 20387 10/10 76.66%
S2 10/10 20364 10/10
S3 10/10 30565 3/10

LightCNN-Rob S1 9/10 96.66% 00041 10/10 36.66%
S2 10/10 30778 0/10
S3 10/10 10210 1/10

ResNeSt S1 10/10 100.00% 20349 10/10 90.00%
S2 10/10 00202 7/10
S3 10/10 00122 10/10

Table 9. Transferability of physical dodging (left) and impersonations (right).

���������Surrogate
Target LightCNN-DVG LightCNN LightCNN-Rob ResNeSt

LightCNN-DVG 100.00% 63.33% 63.33% 0.00%
LightCNN 43.33% 100.00% 40.00% 13.33%
LightCNN-Rob 30.00% 23.33% 96.66% 0.00%
ResNeSt 0.00% 3.33% 33.33% 100.00%

���������Surrogate
Target LightCNN-DVG LightCNN LightCNN-Rob ResNeSt

LightCNN-DVG 100.00% 36.66% 30.00% 0.00%
LightCNN 33.33% 96.66% 26.66% 0.00%
LightCNN-Rob 23.33% 0.00% 36.66% 0.00%
ResNeSt 0.00% 0.00% 0.00% 90.00%

Attack Evaluation. Table 8 reports the attack SRs against all models. Dodging
attacks were highly successful, with ≥9/10 attempts leading to misclassification
in all cases, and all attempts being misclassified for most subject and model
pairs. The models were also relatively susceptible to impersonation attacks,
with ≥1/10 attempts succeeding in 16 of the 18 impersonation attacks, and
36.66%–100.00% mean SR across the six models. Naturally, the adversarially
trained model, LightCNN-Rob, was the most challenging to mislead, however,
even against it, two of the three impersonation attacks succeeded in at least 1/10
attempts, with one attack succeeding in all attempts. An example of a physical
attack is depicted in Fig. 4.

Similarly to the digital domain, attacks exhibited strong transferability
between LightCNN variants (Table 9)—mean SRs ranged between 30.00%–

58 A. Cohen and M. Sharif

63.33% for transferred physical-world dodging attempts and reached up to
36.66% for impersonation. However, despite 33.33% mean SR for dodging
attempts transferred from ResNeSt to LightCNN-Rob, physical-world attacks
transferred between ResNeSt and other models had limited SRs (0.00%–13.33%
in all other cases). Overall, the SRs of transferred attacks were non-negligible,
but we expect they could be further improved via techniques geared to enhance
transferability.

6 Limitations

Our findings should be interpreted in light of certain limitations. We evaluated
physical attacks in relatively controlled settings, in a single room, with three
subjects acting as adversaries. Hence, the generalizability of the results to more
settings with other attackers remains to be determined. Still, we expect our
results to inform us about the susceptibility of NIR-based face recognition sys-
tems in real-world deployments, where imaging variations may resemble those
in our experiments (e.g., internal deployment in airports). We also primarily
studied evasion attacks using eyeglasses. However, when testing other acces-
sories, such as face masks and stickers [37], we found that attack SRs in the
digital environment were significantly lower than with eyeglasses (e.g., 58.43%
impersonation SR with stickers against LightCNN-DVG) or that attacks were
conspicuous (e.g., attacks with face masks added odd facial features to masks).

7 Conclusion

Prior work has shown VIS-based face-recognition systems to be vulnerable to
evasion attacks (e.g., [32,33,37]). To the best of our knowledge, we are the first
to demonstrate realizable evasion attacks against NIR-based face recognition. As
those systems are widely employed in security-critical settings (e.g., [1,2]), our
work highlights the need for enhancing their robustness, especially as existing
defenses [42] remain vulnerable to attacks (Sect. 5). Relatively expensive defense
techniques, such as human supervision to ascertain the absence of facial acces-
sories, can be implemented immediately. However, further research is needed to
establish technical means to enhance NIR-based face recognition’s adversarial
robustness. We hope that the attacks presented in this work can help inform the
design of such defenses and aid in evaluating them.

Acknowledgments. We thank Amir Barda and Amit Bermano for their help printing
the 3D frames, and the PLUS research group’s members for helpful feedback. This work
was supported in part by Len Blavatnik and the Blavatnik Family foundation; by a Maof
prize for outstanding young scientists; by a scholarship from the the Shlomo Shmeltzer
Institute for Smart Transportation at Tel-Aviv University; and by the Neubauer Family
foundation.

A Security Analysis of Near-Infrared Face Recognition 59

References

1. Face ID security. https://help.apple.com/pdf/security/en_US/apple-platform-
security-guide.pdf

2. Windows Hello. https://docs.microsoft.com/en-us/windows/security/identity-
protection/hello-for-business/hello-overview

3. Athalye, A., Engstrom, L., Ilyas, A., Kwok, K.: Synthesizing robust adversarial
examples. In: Proceedings ICML (2018)

4. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Pro-
ceedings ECML PKDD (2013)

5. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine
learning. Pattern Recogn. 84, 317–331 (2018)

6. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
Proceedings IEEE S&P (2017)

7. Carlos-Roca, L.R., Torres, I.H., Tena, C.F.: Facial recognition application for bor-
der control. In: Proceedings IJCNN (2018)

8. Cohen, J., Rosenfeld, E., Kolter, Z.: Certified adversarial robustness via random-
ized smoothing. In: Proceedings ICML (2019)

9. Deng, Z., Peng, X., Li, Z., Qiao, Y.: Mutual component convolutional neural net-
works for heterogeneous face recognition. IEEE Trans. Image Process. 28(6), 3102–
3114 (2019)

10. Duan, B., Fu, C., Li, Y., Song, X., He, R.: Cross-spectral face hallucination via
disentangling independent factors. In: Proceedings CVPR (2020)

11. Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classifi-
cation. In: Proceedings CVPR (2018)

12. Fu, C., Wu, X., Hu, Y., Huang, H., He, R.: DVG-face: dual variational genera-
tion for heterogeneous face recognition. IEEE Trans. Pattern Anal. Mach. Intell.
(PAMI) 44, 2938–2952 (2021)

13. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: Proceedings ICLR (2015)

14. Hu, W., Hu, H.: Orthogonal modality disentanglement and representation align-
ment network for NIR-VIS face recognition. IEEE Trans. Circuits Syst. Video
Technol. 32(6), 3630–3643 (2021)

15. Hu, W., Yan, W., Hu, H.: Dual face alignment learning network for NIR-VIS face
recognition. IEEE Trans. Circuits Syst. Video Technol. 32(4), 2411–2424 (2021)

16. Huang, H., Mu, J., Gong, N.Z., Li, Q., Liu, B., Xu, M.: Data poisoning attacks to
deep learning based recommender systems. In: Proceedings NDSS (2021)

17. Kong, S.G., Heo, J., Abidi, B.R., Paik, J., Abidi, M.A.: Recent advances in visual
and infrared face recognition-a review. Comput. Vis. Image Underst. 97(1), 103–
135 (2005)

18. Lezama, J., Qiu, Q., Sapiro, G.: Not afraid of the dark: NIR-VIS face recognition
via cross-spectral hallucination and low-rank embedding. In: Proceedings CVPR
(2017)

19. Li, S., Yi, D., Lei, Z., Liao, S.: The CASIA NIR-VIS 2.0 face database. In: Pro-
ceedings CVPRW (2013)

20. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: Proceedings ICLR (2018)

21. Mahendran, A., Vedaldi, A.: Understanding deep image representations by invert-
ing them. In: Proceedings CVPR (2015)

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://docs.microsoft.com/en-us/windows/security/identity-protection/hello-for-business/hello-overview
https://docs.microsoft.com/en-us/windows/security/identity-protection/hello-for-business/hello-overview

60 A. Cohen and M. Sharif

22. Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial
perturbations. In: Proceedings ICLR (2017)

23. Miao, Y., Lattas, A., Deng, J., Han, J., Zafeiriou, S.: Physically-based face render-
ing for NIR-VIS face recognition. In: Proceedings NeurIPS (2022)

24. Naqvi, R.A., Arsalan, M., Batchuluun, G., Yoon, H.S., Park, K.R.: Deep learning-
based gaze detection system for automobile drivers using a NIR camera sensor.
Sensors 18(2), 456 (2018)

25. Osborne, B.G.: Near-infrared spectroscopy in food analysis. Encyclopedia of ana-
lytical chemistry: Applications, theory and instrumentation (2006)

26. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. arXiv preprint
(2016)

27. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Prac-
tical black-box attacks against machine learning. In: Proceedings AsiaCCS (2017)

28. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: Proceedings IEEE EuroS&P
(2016)

29. Pierazzi, F., Pendlebury, F., Cortellazzi, J., Cavallaro, L.: Intriguing properties of
adversarial ml attacks in the problem space. In: Proceedings S&P (2020)

30. Schönherr, L., Kohls, K., Zeiler, S., Holz, T., Kolossa, D.: Adversarial attacks
against automatic speech recognition systems via psychoacoustic hiding (2019)

31. Shamir, A., Safran, I., Ronen, E., Dunkelman, O.: A simple explanation for the
existence of adversarial examples with small hamming distance. arXiv preprint
(2019)

32. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime: real
and stealthy attacks on state-of-the-art face recognition. In: Proceedings CCS
(2016)

33. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: A general framework for
adversarial examples with objectives. ACM Trans. Priv. Secur. (TOPS) 22(3),
16:1–16:30 (2019)

34. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: Proceedings IEEE S&P (2017)

35. Shumailov, I., Zhao, Y., Bates, D., Papernot, N., Mullins, R., Anderson, R.:
Sponge examples: energy-latency attacks on neural networks. In: Proceedings IEEE
EuroS&P (2021)

36. Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings ICLR
(2014)

37. Tong, L., et al.: FaceSec: A fine-grained robustness evaluation framework for face
recognition systems. In: Proceedings CVPR (2021)

38. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction APIs. In: Proceedings USENIX Security (2016)

39. Wang, J., Liu, Y., Hu, Y., Shi, H., Mei, T.: FaceX-Zoo: a PyTorch toolbox for face
recognition. In: Proceedings MM (2021)

40. Wang, X., He, X., Wang, J., He, K.: Admix: enhancing the transferability of adver-
sarial attacks. In: Proceedings ICCV (2021)

41. Wang, Y., Bao, T., Ding, C., Zhu, M.: Face recognition in real-world surveillance
videos with deep learning method. In: Proceedings ICIVC (2017)

42. Wu, T., Tong, L., Vorobeychik, Y.: Defending against physically realizable attacks
on image classification. In: Proceedings ICLR (2020)

43. Wu, X., He, R., Sun, Z., Tan, T.: A light CNN for deep face representation with
noisy labels. IEEE Trans. Inf. Forensics Secur. 13(11), 2884–2896 (2018)

A Security Analysis of Near-Infrared Face Recognition 61

44. Wu, X., Huang, H., Patel, V.M., He, R., Sun, Z.: Disentangled variational repre-
sentation for heterogeneous face recognition. In: Proceedings AAAI (2019)

45. Xiang, C., Bhagoji, A.N., Sehwag, V., Mittal, P.: PatchGuard: a provably robust
defense against adversarial patches via small receptive fields and masking. In: Pro-
ceedings USENIX Security (2021)

46. Xiang, C., Mahloujifar, S., Mittal, P.: PatchCleanser: certifiably robust defense
against adversarial patches for any image classifier. In: Proceedings USENIX Secu-
rity (2022)

47. Xiang, C., Mittal, P.: PatchGuard++: efficient provable attack detection against
adversarial patches. In: Proceedings ICLRW (2021)

48. Xu, W., Evans, D., Qi, Y.: Feature squeezing: detecting adversarial examples in
deep neural networks. In: Proceedings NDSS (2018)

49. Yu, A., Wu, H., Huang, H., Lei, Z., He, R.: LAMP-HQ: a large-scale multi-pose
high-quality database and benchmark for NIR-VIS face recognition. Int. J. Comp.
Vision (IJCV) 129(5), 1467–1483 (2021)

50. Zhang, H., et al.: ResNeSt: split-attention networks. In: Proceedings CVPR (2022)

A Rowhammer Reproduction Study Using
the Blacksmith Fuzzer

Lukas Gerlach(B), Fabian Thomas, Robert Pietsch, and Michael Schwarz

CISPA Helmholtz Center for Information Security, Saarbrücken, Saarland, Germany
{lukas.gerlach,fabian.thomas,robert.pietsch,michael.schwarz}@cispa.de

Abstract. Rowhammer is a hardware vulnerability that can be
exploited to induce bit flips in dynamic random access memory (DRAM),
compromising the security of a computer system. Multiple ways of
exploiting Rowhammer have been shown and even in the presence of
mitigations such as target row refresh (TRR), DRAM modules remain
partially vulnerable. In this paper, we present a large-scale reproduction
study on the Rowhammer vulnerability using the Blacksmith Rowham-
mer fuzzer. The main focus of our study is the impact of the fuzzing
environment. Our study uses a diverse set of 10 DRAM chips from vari-
ous manufacturers, with different capacities and memory frequencies. We
show that the runtime, used seeds, and DRAM coverage of the fuzzer
have been underestimated in previous work. Additionally, we study the
entire hardware setup’s impact on the transferability of Rowhammer by
fuzzing the same DRAM on 4 identical machines. The transferability
study heavily relates to Rowhammer-based physically unclonable func-
tions (PUFs) which rely on the stability of Rowhammer-induced bit flips.
Our results confirm the findings of the Blacksmith fuzzer, showing that
even modern DRAM chips are vulnerable to Rowhammer. In addition,
we show that PUFs are challenging to achieve on commodity systems
due to the high variability of Rowhammer bit flips.

1 Introduction

The Rowhammer effect was first documented in 2014 [15]. With this effect, bit
flips can be induced in the DRAM by rapidly accessing adjacent memory cells
in the DRAM. While first deemed unexploitable, multiple exploitation tech-
niques [2,8,22,23,27–29] have been presented, making Rowhammer a threat to
the security of systems. Consequently, in addition to multiple academic mitiga-
tions [12,15,18,20,25,26,30,31], industry also tried to prevent the exploitation
of this effect [13]. However, some implemented mitigations have been bypassed
using new hammering techniques [6,9,11,17]. Mounting Rowhammer with coun-
termeasures such as target row refresh (TRR) or error correction code (ECC)
memory in place requires sophisticated techniques often discovered using spe-
cialized fuzzers to search for hammering patterns automatically [3,6,11].

These fuzzers were evaluated on a large set of different DRAM modules (up
to 42 DIMMS) where they report impressive results [6]. However, in contrast to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 62–79, 2024.
https://doi.org/10.1007/978-3-031-51479-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_4

A Rowhammer Reproduction Study Using the Blacksmith Fuzzer 63

fuzzing papers on software [16], these results are often not reproduced. One rea-
son is that microarchitectural attacks, particularly Rowhammer, require specific
expertise [5]. There is a non-trivial configuration phase of the system. In the case
of Rowhammer, it is necessary to reverse engineer the DRAM memory address-
ing function before an attack can be mounted [7,10,21]. As this function depends
on the CPU’s memory controller, this step adds additional complexity to a row-
hammer attack. In addition, attack parameters that work for the specific DRAM
module under test must be found. Moreover, multiple DIMMs are required for
statistically significant results, making these experiments more expensive than
fuzzing software. Hence, even given open-source Rowhammer fuzzers [6,11], it is
not trivial to reproduce the results.

In this paper, we evaluate the reproducibility of Rowhammer fuzzing runs,
showing that the current metric of flips in 12 h is not ideal for comparing fuzzers.
For the results, we focus on the transferability of Rowhammer patterns across
identical machines and identical DIMMs. More precisely, our analysis focuses on
the following research question: Does the same DIMM show different bit flips on
different but identical machines?

For our setup, we rely on the state-of-the-art open-source Rowhammer fuzzer
Blacksmith [11]. Our analysis with 10 DIMMs on 4 identical machines shows that
the reported results are reproducible on a wide range of commonly-available
DIMMs and desktop computers without requiring any special hardware setup
or software configuration. Surprisingly, our non-optimized setup discovers 5397
bit flips on average, which aligns with the original paper [11]. However, as the
default configuration of the fuzzer only uses 1GB of randomly mapped memory,
the number of discovered flips in 12 h varies significantly, from 0 to 18 142 on
the same DIMM. Hence, this shows that the number of bit flips in such a short
time frame and over such a comparatively small memory region is not the ideal
metric to compare the performance of fuzzers.

To further analyze the transferability of the discovered bit flips, we rely on 3
identical DIMMs and 4 identical desktop setups. We analyze both the difference
in bit flip between the identical DIMMs on the same machine, and the same
DIMM on identical machines. To enable such an analysis, we modify Blacksmith
to deterministically map and sweep hammering patterns over a defined memory
area. In line with previous work, we show that bit flips are unique to DIMMs,
even if they are of the same model. However, we show that the used machine
also has a significant impact. When we used a fixed 256MB memory region and
hammering pattern, in the most extreme case, we achieve on average 13 282 bit
flips on 3 machines, but no bit flip on the 4th machine. This insight that even
identical setups significantly impact bit flips directly affects proposals that rely
on Rowhammer as a physical-unclonable function [1,24].

Contributions. The contributions of this paper are:

1. Reproducing the results of Jattke et al. [11] on 4 identical machines and 10
DIMMs, showing that current metrics for comparing Rowhammer fuzzers are
not ideal.

64 L. Gerlach et al.

2. Study of the transferability of bit flips between identical machines, showing
that the impact of the used hardware was underestimated in previous work.

3. Evaluation of DRAM as a physically unclonable function, showing that such
constructions suffer from practical issues.

Outline. Sect. 2 provides the necessary background. Section 3 introduces our
evaluation methodology. Section 4 presents our results. Section 5 evaluates the
usability of Rowhammer as a PUF. Section 6 discusses the implications of our
study and potential future work. Section 7 concludes.

2 Background

In the following, we introduce the necessary background to understand the
remainder of this paper.

2.1 Rowhammer

Rowhammer is a vulnerability that affects modern DRAM modules, allowing
attackers to induce bit flips. Modern DRAM modules are physically organized
into rows containing memory cells. Each memory cell can hold a single bit,
represented by a capacitor’s charge level. Because the capacitor constantly dis-
charges, it must be regularly refreshed to prevent data loss. By design of the
DRAM module, data can only be accessed in rows, discharging all capacitors
in the addressed row. Therefore, after both read and write accesses, the entire
row must be refilled with both the changed and unchanged data. Rowhammer
attacks abuse this effect by repeatedly rapidly accessing one or more DRAM
rows (“aggressor” rows) to influence neighboring DRAM rows (“victim” rows).
Capacitors in neighboring rows then lose their charge more quickly, up to a point
where the charge decreases below a threshold necessary to reliable detect the bit’s
value. This behavior allows an attacker to corrupt memory, thereby creating a
potential security threat. As demonstrated by previous research [15,22,23], Row-
hammer attacks can reliably flip bits at attacker-chosen addresses by accessing
DRAM rows in fixed patterns. Such targeted bit flips can be used for sandbox
escapes and privilege-escalation attacks on various systems, including desktop
computers [8,15], mobile devices [28], and cloud servers [29], even by a remote
attacker [19,27]. In an attempt to prevent Rowhammer attacks, a class of hard-
ware mitigations called Target Row Refresh (TRR) [6] was proposed. These
mitigations detect frequently-accessed rows and refresh them and other rows in
proximity. While TRR prevents Rowhammer attacks relying on simple hammer-
ing patterns, it has been shown that the majority of TRR implementations is
still vulnerable to more sophisticated Rowhammer attacks [6,11,17].

2.2 Blacksmith Rowhammer Fuzzer

Blacksmith [11] is a state-of-the-art Rowhammer fuzzer aiming to find mem-
ory access patterns that yield particularly high rates of Rowhammer-induced

A Rowhammer Reproduction Study Using the Blacksmith Fuzzer 65

bit flips. It improves on previous Rowhammer attacks by not only consider-
ing patterns with a uniform distribution of accesses onto the aggressor rows, but
also allowing non-uniform patterns. Moreover, the fuzzer considers patterns that
span over multiple refresh intervals, as these significantly improve the number
of induced bit flips. Because the search space for non-uniform fuzzing patterns
of varying lengths is large, Blacksmith uses a heuristic (called fuzzing in the
frequency domain by the authors) to efficiently explore promising hammering
patterns. This method has been shown to be highly effective in finding patterns
with a high rate of Rowhammer-induced bit flips. In addition, the generated
patterns have been shown to be able to bypass mitigations like TRR. TRR is
bypassed by particular hammering patterns that are outside the detection scope
of current hardware countermeasures [6,11,17].

2.3 Rowhammer as Physically-Unclonable Function (PUF)

Rowhammer can be leveraged as a Physically-unclonable Function (PUF) [1,24],
a security primitive that uses the physical variations specific to individual hard-
ware components to generate unique and unpredictable cryptographic keys. For
Rowhammer, the physical variation in DRAM cells can be used to generate a
unique bit flip sequence that can be used as a basis for further cryptographic
operations. As the variations in susceptibility to bit flips vary between DRAM
modules, even ones from an identical manufacturing run, the bit flips of each
module are unique. However, the reliability of this approach is still an active area
of research, as the stability and predictability of the bit sequence can be affected
by various factors, such as temperature and voltage fluctuations and the qual-
ity of the DRAM module itself. Therefore, PUFs based on Rowhammer require
a fuzzy extractor construction [4] to deal with the underlying unstableness of
Rowhammer bit flips. In addition, attacks against Rowhammer-based PUF con-
structions have been proposed [32]. It was shown that given enough observations
of a PUF scheme using Rowhammer, an attacker can predict the subsequent PUF
response, allowing an attacker to imitate the PUF generated, therefore breaking
its security guarantees. In addition, a denial of service attack was shown. While
not directly undermining the security guarantees of Rowhammer-based PUFs,
this attack renders a PUF based on Rowhammer unusable.

3 Evaluation Methodology

In this section, we describe our methodology for reproducing the Blacksmith
Rowhammer fuzzer as well as the impact of the remaining computing system on
the presence and frequency of Rowhammer bit flips. By reproducing the results
found with the Blacksmith fuzzer, we gain valuable insight into the intricacies in
the evaluation of Rowhammer fuzzers. In addition, we further characterize the
distribution of Rowhammer bit flips in the tested DRAM modules. To combine
both our evaluation goals, we use the Blacksmith fuzzer to find flips on 10 differ-
ent DDR4 modules and repeat the process on 4 identical machines (Sect. 3.2). As

66 L. Gerlach et al.

the Blacksmith fuzzer heavily relies on randomization, it depends heavily on the
desired property one wants to validate or falsify whether the data it produces
is useful. We modify Blacksmith to be deterministic for reproducible runs by
employing a fixed seed and ensuring that the same physical memory is mapped
between runs. Based on the performed fuzzing runs, we create a data set that
we also use for our analysis in Sect. 4.

3.1 Testing Setup

This section describes our testing setup regarding both hardware and method-
ology. We provide details about the machines and DRAM modules used during
our evaluation and introduce the testing setup for the Blacksmith fuzzer.

Tested Machines. We conduct our tests using 4 identical machines, each with an
Intel Core i7 9700K CPU, HP 8591 mainboard, and HP HQ-TRE 71025 power
supply. All machines run a freshly-installed stock Ubuntu 22.04 using the 5.19.0
Linux kernel. We verify that each machine uses microcode version 0xf0 from May
10, 2022, which is the default microcode with the installed Linux distribution.
We reset the BIOS settings to eliminate the influence of BIOS settings on the
fuzzing runs to factory default settings. In addition, all machines are placed in
one room to minimize the impact of different temperature environments. In the
remainder of the paper, we refer to these machines as machine A to machine D.

Tested DRAM Modules We use 10 different DDR4 DRAM modules of varying
memory sizes from 3 different manufacturers. The tested modules range in mem-
ory sizes from 8GB to 32GB. In addition, they cover a wide range of memory
speeds from 2133MHz up to 3200MHz. The manufacturing date of the DRAM
modules ranges from 2016 to 2022. Further information on the tested DRAM
modules is provided in Table 1.

3.2 Fuzzing and Memory Sweep

We set up Blacksmith to run for 12 h, consistent with the evaluation by Jat-
tke et al. [11]. For each module, we perform one run on machines A to D. We
label each run with a combination of DRAM module and machine, e.g., A1 for
machine A and DRAM module 1. During each fuzzing run, Blacksmith searches
for patterns that produce bit flips. We label a fuzzing run successful if it pro-
duces at least one bit flip. When a successful fuzzing run is found, it is followed
by a memory sweep, where a randomly-mapped 256MB memory range is tested
again using the pattern that produced the most bit flips in the initial run. This
configuration is consistent with the Blacksmith paper and allows for a more
thorough inspection of bit flips in a smaller chunk of memory.

To study the transferability of the bit flips between the different machines,
we rely on the best fuzzing patterns, i.e., the ones producing the most bit flips
in our initial runs. To ensure that we always test the same physical memory cells
on the DRAM module, we modify Blacksmith to always map the same memory

A Rowhammer Reproduction Study Using the Blacksmith Fuzzer 67

Table 1. Module information of our tested DIMMs.

Manufacturer Module Id Manufactured Size Ranks Frequency Flips Observed

A Module 1 2018 Q2 32GB 2 2666MHz ✓

Module 2 2018 Q2 32GB 2 2666MHz ✓

Module 3 2018 Q2 32GB 2 2666MHz ✓

Module 4 2018 Q2 32GB 2 2666MHz ✓

Module 5 2021 8GB 1 3200MHz ✓

Module 6 2021 8GB 1 3200MHz ✓

B Module 7 2017 8GB 2 3200MHz ✓

Module 8 2022 16GB 2 3200MHz ✓

C Module 9 2016 8GB 2 2133MHz ✗

Module 10 2016 8GB 2 2133MHz ✗

region when sweeping a fuzzing pattern. We test the best fuzzing patterns found
on the identical modules 1, 2 and 41 on each of the 4 identical machines, allowing
us to study the transferability of bit flips under an identical setup.

4 Results

We present the results of the fuzzing evaluation with regard to the individual runs
performed with the unmodified Blacksmith fuzzer. By analyzing the distribution
of the found bit flips, we gain additional insights into the bit-flip characteristic of
the analyzed DRAM modules. We make several interesting observations. First,
8 out of the 10 tested modules are affected by Rowhammer bit flips on at least
one of the test machines, confirming claims from prior work that most modules
are affected. Second, Sect. 4.1 shows potential areas for improvement when using
simple evaluation criteria such as the number of bit flips or bit flips over time.
Third, Sect. 4.2 shows that the bit flips are not uniformly distributed across rows
but instead localized within a smaller subset of the rows, and that bit flips with
lower hamming weight are more likely, i.e., bit flips where only a few memory
cells change their value. Finally, a factor that was previously not analyzed and
has considerable influence is the machine used during Rowhammer testing, as
we show in Sect. 4.3. As a result, we gain valuable insights into the specifics of
Rowhammer fuzzer evaluation that show that current evaluations are not ideal
for comparing fuzzers. Building on the result that Rowhammer depends on the
entire underlying system, we perform a case study in Sect. 5 showing that its
use as a PUF, as proposed by previous work [1,24], is very challenging on a
commodity system.

1 DRAM module 3 broke during testing and is therefore excluded in the transferability
study.

68 L. Gerlach et al.

4.1 Temporal Distribution of Bit Flips

Two standard time-based metrics when evaluating software fuzzers are crashes
and coverage over time [16]. While these metrics originate from software fuzzing,
they can also find application in evaluating more specialized fuzzers such as
Blacksmith. However, as Blacksmith does not produce crashes, we use the num-
ber of bit flips over time reported during each fuzzing run.

A common methodology in software fuzzing is dedicating crashes to isolate
a unique trigger for each crash [16]. Deduplication, when used in the practical
context of vulnerability discovery, simplifies the analysis of crash root causes.
Further, deduplication eases the evaluation of a software fuzzer as one crash
may have many different root causes, which, when not deduplicated, can also
complicate the comparison between different fuzzers. Similarly to the deduplica-
tion of crashes in software fuzzing, we also deduplicate the bit flips and count the
number of unique bit flips over time. While multiple deduplication granularities
are possible as the DRAM is hierarchically organized, we decided to duplicate on
a per-row basis. We experimentally evaluated multiple deduplication strategies
and found that a per-row deduplication is an effective middle ground allowing
for interesting observations. This means that we only count the new rows where
a bit flip occurs not the position inside a row. As observed in Sect. 4.2, up to
75% of all memory cells are vulnerable when hammering long enough.

As seen in Fig. 1, Blacksmith finds bit flips quickly. On average, the time to
the first bit flip is 47.78min, excluding runs that do not produce flips. The higher
time to first bit flip is easily explained by two outlier samples where the time to
the first bit flip takes multiple hours. This also reflects in the much lower median
time to the first bit flip of 3.78min. Similar differences between the time to first
bit flip have been observed by Jattke et al. [11]. In addition, once the first bit flip
occurred, further bit flips are consistently found. These observations highlight
that Blacksmith’s fuzzing strategy can consistently produce patterns that induce
bit flips. Overall, a linear relationship exists between time and the number of bit
flips, both when considering unique and non-unique bit flips, as seen in Fig. 1.
We also calculate the factor with which unique bit flips occur less than general
bit flips. We observe that unique bit flips occur around 3 orders of magnitude less
often than just any observed bit flip (to be more precise, general bit flips occur
1694 times more often than unique ones). While this factor is comparatively
high, the high number of overall bit flips also implies a high number of unique
bit flips. Even more interesting, the factor with which unique vs. non-unique bit
flips occur, stabilizes quickly after starting a fuzzing run. It also remains stable
during the 12 h duration of the run. The fact that this factor stays constant over
the time of the fuzzing run indicates that there are still new bit flips found at
the end of the run. Therefore, the 12 h duration for each fuzzing run is likely
too short to exhaust all unique bit flips in the 1GB memory area under test
by fuzzing. Future work could evaluate similar fuzzers based on the time until
no unique flips are found. This strategy can lead to two potentially interesting
metrics.

A Rowhammer Reproduction Study Using the Blacksmith Fuzzer 69

Fig. 1. Flips over time observed by the fuzzing runs. Both duplicated and non-
deduplicated bit flips are plotted with the minimum and maximum flips at the current
time point as well as the average.

First, the time until no more unique bit flips are found indicates how long a
fuzzer needs to reach its optimal coverage, after which point fuzzing for longer
produces diminishing returns. The number of unique bit flips yields insight into
the maximum reachable performance of the fuzzer. Combining these metrics
by dividing the total number of unique bit flips by the time needed to reach
a point where little to no new bit flips are found gives a combined metric for
the fuzzing performance. Intuitively, one wants many unique bit flips as fast
as possible, favoring fuzzers that efficiently explore the DRAM to produce new
ones. In addition, this metric enables comparing long-running fuzzers that try
to scan the memory thoroughly for a maximum amount of bit flips with ones
that are optimized to produce bit flips as quickly as possible.

Takeaway Simply evaluating Rowhammer fuzzers by the number of bit flips
they produce in a fixed time interval oversimplifies the comparison.

Second, the coverage, again similar to classic software fuzzers, is another
interesting metric. In contrast to coverage metrics from software testing, a much
simpler coverage metric suffices for Rowhammer. We monitor how many of the
total DRAM rows in the 1GB memory interval are accessed by Blacksmith
during its 12 h fuzzing campaign. As illustrated in Fig. 2, during each of the
12 h fuzzing runs, a coverage of over 90.5% is reached. Due to the randomized
fuzzing strategy that Blacksmith employs, the coverage differs between fuzzing
runs, with different runs producing different minimal and maximal coverage. We
also see that the increase in global coverage slows down over time as Blacksmith
randomly picks addresses in the DRAM. This leads to a situation where the
more prolonged the fuzzing is, the more the DRAM has been covered, and the
less likely it is to uncover new DRAM locations randomly. This observation
can be valuable if a fuzzer should reach maximal global coverage quickly, in
which case the design employed by Blacksmith is not ideal. Instead, already

70 L. Gerlach et al.

Fig. 2. Coverage of the 1 GB memory region over the time of the 12 h fuzzing run.
The margins show the minimum and maximum coverage achieved over all runs at each
point in time.

tested DRAM locations could be blocklisted in favor of new untested locations,
therefore enabling rapid exploration of the provided memory.

Takeaway Coverage of current Rowhammer fuzzers can be improved by
avoiding already fuzzed DRAM cells.

4.2 Spatial Distribution of Bit Flips

In addition to the temporal resolution, i.e., how long it takes to find bit flips,
the spatial distribution of the bit flips is a relevant metric. An important start-
ing point is the distribution of Rowhammer-susceptible DRAM rows over the
analyzed DRAM module.

We compute the distribution of bit flips among the tested DRAM rows. In
the interest of keeping the results readable, we compute a histogram over the
rows where we group 256 rows into one bucket. The results of this evaluation
are shown in Fig. 3, where it can be observed that the bit flips are not uniformly
distributed across the DRAM rows but are concentrated in a small subset of rows.
In addition, we observe that this effect is consistent over multiple machines and
DRAM modules as well as over the random memory ranges picked by Blacksmith
for each fuzzing run. As we observe this effect on independent fuzzing runs, we
hypothesize it is more a property of the DRAM itself and not one of the fuzzing
patterns generated by Blacksmith. In addition, we observe the same effect even if
the memory ranges used for fuzzing reside at a fixed physical address, implying
that this effect is not due to the specifics of address allocation from the OS.
Our current hypothesis is that the physical memory layout of the DRAM chip is
reflected in the observed bit flips. As the physical layout does not need to match
the physical addresses, we assume that a more vulnerable DRAM integrated
circuit on the DRAM module is indexed at regular intervals yielding the observed
patterns. While this effect has to be better understood to determine its root

A Rowhammer Reproduction Study Using the Blacksmith Fuzzer 71

Fig. 3. Accumulated bit flips per row range on A1 to D4 averaged over all banks. It
can be seen that flips are not evenly distributed across rows.

cause, we can see potential consequences. A fuzzer searching for Rowhammer
bit flips could employ a search strategy favoring memory regions where bit flips
already occurred to target the localized bit flips. In addition, an attacker can
employ a similar strategy to scan the memory for the required bit flip patterns.

Takeaway Bit flips are not uniformly distributed across DRAM rows. Instead,
they are local, mostly occurring in a smaller subset of the rows.

In addition to analyzing the distribution of bit flips across different DRAM
rows, we analyze the Hamming weight of bit-flip patterns induced during each
fuzzing run. A pattern is a 64-bit bitmask representing the difference between
the original and flipped data, i.e., the location of bit flips. Figure 4 shows the
results of summing up the occurrences of Hamming weights per machine-DRAM
pair. Note that we accumulate the data of all patterns by summing the Hamming
weights of the patterns. While most patterns have a Hamming weight of 1, we
find up to 5 bit flips per quadword, i.e., a Hamming weight of 5, on C1and C4. This
is in line with work by Kim et al. [14,15]. They report up to 4 bit flips. Further,
we analyze the maximum flip rate per row. We find up to 364 bit flips per row
(8KiB = 65536 bits) on C4 with pattern A, giving a maximum flip rate of 0.56%.
This is again in line with Kim et al. [14] who report a maximum flip rate between
0.1% and 1% for new DDR4 chips. When analyzing the distribution of bits in
the bit-flip patterns, we find that the flipped bits are uniformly distributed in a

72 L. Gerlach et al.

Fig. 4. Distribution of Hamming weights per quadword on machine-DRAM combina-
tions accumulated over all patterns that produce bit flips. The distribution is close to
a normal distribution with a mean at around 32.

quadword. This aligns with results by Gruss et al. [8], who report that bit-flip
locations are uniformly distributed when averaging over multiple pages.

Takeaway In rare cases, Blacksmith finds patterns that induce up to 5 bit
flips per quadword. Further, Blacksmith reaches a maximum flip rate of 0.56%
per hammering run. As reported by related work, the bit-flip locations are
uniformly distributed in a quadword.

4.3 Transferability

A key goal of our study is to analyze the transferability of Rowhammer bit flips
on the same DRAM module but on different, identical machines. For this, we
analyze the observed bit flips induced by a hammering pattern between different
machines. The vital difference to the transferability study of Jattke et al. [11]
is that we examine the transferability of hammering patterns between machines
and not DRAM modules.

We perform the memory sweep on all machines with the best pattern found
for the DRAM module on one machine. Each pattern is replayed over the exact
same physical memory range in the exact same order. We take the above steps
to eliminate side effects caused by the choice of memory region. As seen in Fig. 3,
bit flips are not uniformly distributed across rows. Therefore, picking a different
memory and row range could bias the results.

A Rowhammer Reproduction Study Using the Blacksmith Fuzzer 73

Fig. 5. Transferability of patterns between different machines. Each heatmap illustrates
fuzzing runs on one machine over the 3 tested DIMMs with patterns found on all other
machines. Darker colors indicate more observed bit flips.

Figure 5 illustrates our results. We observe that the occurrence and count
of bit flips depend on the machine. In the most extreme cases, this can lead to
cases where we do observe bit flips on one machine but not the other using the
same hammering pattern and DRAM module. We suspect that manufacturing
differences in non-DRAM parts of the system could induce these differences.
One example could be the different frequency scaling behavior of CPUs depend-
ing on minor manufacturing differences. Similar differences could also influence
the mainboard components and power supply, leading to a different number of
observed bit flips.

Takeaway The combination of the machine, hammering pattern and DRAM
module impacts the presence and count of bit flips.

5 Case Study: Rowhammer as Physically Unclonable
Function

In this section, we further quantify the extent to which the machine in that a
DRAM module is installed influences the observed bit flips. This effect directly
impacts not only the evaluation of Rowhammer fuzzers but also the use of DRAM
as a physically-unclonable function (PUF) [1,24]. Assuming that the bit flips
are randomly distributed and dependent on manufacturing differences unique to
each DRAM module, a random and unique bit stream can be obtained. This
bit stream can then be used as an entropy source for further operations, such
as serving as a seed in cryptographic operations. We experimentally quantify
the additional error induced by manufacturing differences in the same model of
different CPUs.

Schaller et al. [24] conclude that an error rate of 5% achieved in their exper-
iments is acceptable when using a fuzzy extractor construction [4]. To stay com-
parable to the work of Schaller et al. [24], we also use the Jaccard index as a mea-
surement of error. The Jaccard index J can be computed between two sets of mea-
surements H1 and H2, obtained during two hammering runs, using the formula
J = |H1∩H1|

|H1∪H2| . We store the rows index of the rows that produced bit flips in these

74 L. Gerlach et al.

Fig. 6. Comparison of three deterministic runs (same machine, same DRAM, same
pattern) on machines A-D. The jackard index dj shows how consistent the runs are,
with dj = 0 we observe the same bitflips between two different runs.

setsH1 andH2.We focus on the error rate between differentmachine-DRAMpairs,
which is the Jaccard distance computed as dJ = 1−J , where J is the Jaccard index
between two fuzzing runs using the same pattern and memory range.

5.1 Reliability

To ensure that machine-DRAM pairs can be used as PUF, we analyze 3 repeated
fuzzing runs on the same machine-DRAM pair. Figure 6 illustrates the results.
For A, both DRAM modules 1 and 4 give low error rates between the 3 runs,
while DRAM 2 has a high error rate. Consequently, modules 1 and 4 could be
used as PUF with A, while module 2 cannot be used. On B to D, we see contrary
results. While DRAM module 2 performs best, both modules 1 and 4 cannot be
used on any of the 3 machines. On D we even see that no module works reliably,
with error rates above 50%.

We conclude that DRAM modules may work perfectly with one machine
while inducing high error rates on another machine. Further, we conclude that
some machines induce bit flips less reliably than others and, therefore, are not
suitable for usage as PUFs. Additionally, we conclude that multiple hammering
runs are needed for reliable results as can be seen with the runs on C1, where
two runs compared well, while the others had no common flipped rows. Multiple
reasons can potentially explain the high error rates on some machines:

– More diverse hardware: Our experiments are performed on DRAM mod-
ules from multiple vendors. In addition, additional variations could be intro-
duced as we use commodity computers instead of a specialized testing setup.

A Rowhammer Reproduction Study Using the Blacksmith Fuzzer 75

– System noise: We perform our experiments under a normal Linux setup
introducing additional unrelated noise on the DRAM modules.

– Hammering patterns: We use complex hammering patterns generated by
Blacksmith, which could introduce additional noise.

Quantifying if and to which extent the above points change the occurrence of
bit flips requires further studies. Especially the relationship between the com-
plexity of a hammering pattern and the determinism of the induced bit flips is
important for both the usage of Rowhammer as a PUF and also the reliability
of Rowhammer exploits.

Takeaway System noise, hardware differences, and different hammering pat-
terns make it unlikely to trigger identical bit flips reliably on the same DIMM.

5.2 Uniqueness

In this section, we investigate on which parameters the uniqueness of Rowham-
mer as PUF depends. For that, we evaluate both pairs of the same machine and
differing DRAM and differing machine and the same DRAM.

Table 2 gives an overview of the best (lowest error rate) 15 pairs of combi-
nations of machine, DRAM, and pattern. While most pairs result in error rates
above 40%, we find 3 cases with lower error rates. In all of these cases, both
memory sweeps that are compared are performed with the same DRAM module,
only the machine changes. Further, we see no cases of low error rates when using
a different machine as well as a different DRAM module from our test pool.
From these observations, we draw the following conclusions:

1. DRAM has more impact on the error rate than the machine: The
pairs with the lowest error rate all have in common that they share the same
DRAM module. Thus, we conclude that DRAM has a higher impact on a low
error rate than the machine. This further leads us to the next conclusion.

2. Uniqueness is guaranteed when DRAM is secret, i.e., not shared:
We see no pair of machine-DRAM combinations with error rates below 50%,
where only the machine matches. Thus, we argue that a secret DRAM module,
i.e., a non-shared one, already fulfills the uniqueness guarantees of a PUF.
Section 5.1 in contrast shows that the machine has a high impact on the
reliability and applicability of Rowhammer as PUF.

Takeaway PUFs with Rowhammer are difficult to achieve on commodity
systems. While there are no false positives (no combination of DRAM and
machines is the same), the false positive rate is high as it heavily depends
on the machine (minor change in the environment leads to non-reproducible
output of the PUF).

76 L. Gerlach et al.

Table 2. The 15 combinations of machine, DRAM, and pattern, whith the lowest error
rate. At least one of the three parameters is different in between the runs. We compute
the jackard distance dj for each of the tested combinations.

dJ Combination A Combination B Same machine Same DRAM Pattern

0.21 B1 C1 ✗ ✓ B
0.29 A1 B1 ✗ ✓ A
0.35 A2 B2 ✗ ✓ B
0.40 B2 C2 ✗ ✓ C
0.42 A2 C2 ✗ ✓ A
0.43 A4 C4 ✗ ✓ A
0.52 A2 C2 ✗ ✓ C
0.55 A2 C1 ✗ ✗ C
0.59 B2 C1 ✗ ✗ C
0.60 B4 C4 ✗ ✓ C
0.62 C1 C2 ✓ ✗ C
0.62 C1 C2 ✓ ✗ C
0.62 C2 C1 ✓ ✗ C
0.62 C2 C1 ✓ ✗ C
0.67 C4 D4 ✗ ✓ D

6 Discussion

In this section we discuss the implications of our work and the potential for
future work building on our research.

6.1 Implications

In this paper we reproduced the results presented in the Blacksmith paper and
quantified the impact of hardware other than the DRAM module on the presence
of Rowhammer bit flips. Our results show that Blacksmith effectively finds bit
flips in 8 of the 10 tested DRAM modules. However, our results also show that
the hardware, beyond the DRAM module, significantly impacts the occurrence
and distribution of bit flips. These results do not only have implications on the
evaluation of Rowhammer fuzzers but also on the usage of DRAM as a PUF.
We show that depending on the machine, even if they have identical hardware,
the change in bit flips and therefore the error rate of a Rowhammer-based PUF
can reach over 80%.

Our results confirm the ongoing threat of Rowhammer as an attack vector.
The fact that Blacksmith can find bit flips in 8 of the 10 tested DRAM modules
again underlines the need for effective Rowhammer countermeasures. Our results
also show that the spatial distribution of bit flips is an important metric to
consider when evaluating a Rowhammer attack’s effectiveness.

A Rowhammer Reproduction Study Using the Blacksmith Fuzzer 77

6.2 Future Work

Future work could include evaluating the performance of Blacksmith against
other Rowhammer fuzzers. Our study shows that Blacksmith is effective in find-
ing bit flips in various DRAM modules, but it is unclear how it compares to
other search strategies employed in other fuzzers. Our analysis also shows that
a simple metric such as bit flips in a 12% run can be misleading when com-
paring Rowhammer fuzzers. Therefore, future work should explore methods to
fairly and reliably compare fuzzers, which is challenging given that the amount
of Rowhammer bit flips strongly depends on the tested DRAM module.

Another avenue for future research is to analyze the impact of further factors,
such as specific CPU and mainboard features, on the occurrence and distribution
of bit flips. In addition, a study with more diverse hardware and uniform DRAM
modules could be performed, further quantifying the impact of hardware other
than the DRAM module on Rowhammer. This information could aid the design
of better Rowhammer countermeasures and more effective Rowhammer attacks.

Lastly, fundamental observations regarding the Rowhammer effect could be
further quantified. We observed that the bit flips found by Blacksmith were not
uniformly distributed across DRAM. In addition, further characterizing the bit
flip patterns found by Blacksmith beyond the hamming weight of the bit flips
could reveal insights about the distribution of bit flips inside a single row.

7 Conclusion

In this paper, we presented a reproduction study on the Rowhammer security
vulnerability using the Blacksmith Rowhammer fuzzer. We also investigated the
impact of the entire hardware setup on the transferability of Rowhammer flips
across different but identical machines. With 8 out of 10 DDR4 DIMMs showing
bit flips, the findings revealed that the Rowhammer vulnerability is still prevalent
in modern DRAM chips and could be easily reproduced using the correct tools.
Additionally, identical machines were utilized to determine the transferability
and variability of the Rowhammer effect between different system setups. This
transferability study was closely related to Rowhammer-based physically unclon-
able functions (PUF), which depend on the stability of Rowhammer-induced bit
flips. In conclusion, the results confirmed the findings of the Blacksmith fuzzer,
demonstrating that even modern DRAM chips were vulnerable to Rowhammer.
However, we also showed that the fair comparison of Rowhammer fuzzers is dif-
ficult due to the hardware-dependent fuzzing environment. Finally, our results
indicate that achieving PUF on commodity systems is challenging due to the
high variability of Rowhammer bit flips.

Acknowledgment. We thank our anonymous reviewers for their valuable feedback.
We thank Michele Marazzi for fruitful discussions.

78 L. Gerlach et al.

References

1. Anagnostopoulos, N.A., et al.: Intrinsic run-time row hammer PUFs: leveraging
the row hammer effect for run-time cryptography and improved security. In: Cryp-
tography (2018)

2. Bosman, E., Razavi, K., Bos, H., Giuffrida, C.: Dedup est machina: memory dedu-
plication as an advanced exploitation vector. In: S&P (2016)

3. Cojocar, L., Razavi, K., Giuffrida, C., Bos, H.: Exploiting correcting codes: on the
effectiveness of ECC memory against rowhammer attacks. In: S&P (2019)

4. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3_31

5. Easdon, C., Schwarz, M., Schwarzl, M., Gruss, D.: Rapid prototyping for microar-
chitectural attacks. In: USENIX Security (2022)

6. Frigo, P., et al.: TRRespass: exploiting the many sides of target row refresh. In:
S&P (2020)

7. Gerlach, L., Schwarz, S., Faroß, N., Schwarz, M.: Efficient and generic microarchi-
tectural hash-function recovery. In: S&P (2024)

8. Gruss, D., et al.: Another flip in the wall of Rowhammer defenses. In: S&P (2018)
9. Hassan, H., Can Tuǧrul, Y., Kim, J.S., Van der Veen, V., Razavi, K., Mutlu, O.:

Uncovering In-DRAM RowHammer protection mechanisms: a new methodology,
custom RowHammer patterns, and implications. In: IEE MICRO, 2021, extended
classification tree and PoCs at https://transient.fail/

10. Helm, C., Akiyama, S., Taura, K.: Reliable reverse engineering of intel dram
addressing using performance counters. In: International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MAS-
COTS) (2020)

11. Jattke, P., van der Veen, V., Frigo, P., Gunter, S., Razavi, K.: Blacksmith: scalable
rowhammering in the frequency domain. In: S&P (2022)

12. Juffinger, J., Lamster, L., Kogler, A., Eichlseder, M., Lipp, M., Gruss, D.: CSI:
Rowhammer-cryptographic security and integrity against rowhammer. In: IEEE
S&P (2022)

13. Kaczmarski, M.: Thoughts on Intel R© Xeon R© E5-2600 v2 product family per-
formance optimisation – component selection guidelines, August 2014. http://
infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf

14. Kim, J.S., et al.: Revisiting RowHammer: an experimental analysis of modern
DRAM devices and mitigation techniques. In: ISCA (2020)

15. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of DRAM disturbance errors. In: ISCA (2014)

16. Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz testing. In:
SIGSAC (2018)

17. Kogler, A., et al.: Half-double: hammering from the next row over. In: USENIX
Security Symposium (2022)

18. Lee, E., Kang, I., Lee, S., Suh, G.E., Ahn, J.H.: Twice: preventing row-hammering
by exploiting time window counters. In: ISACA (2019)

19. Lipp, M.et al.: Nethammer: inducing Rowhammer faults through network requests.
In: SILM Workshop (2020)

20. Park, Y., Kwon, W., Lee, E., Ham, T.J., Ahn, J.H., Lee, J.W.: Graphene: strong
yet lightweight row hammer protection. In; MICRO (2020)

https://doi.org/10.1007/978-3-540-24676-3_31
https://transient.fail/
http://infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf
http://infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf

A Rowhammer Reproduction Study Using the Blacksmith Fuzzer 79

21. Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: DRAMA: exploiting
DRAM addressing for cross-CPU attacks. In: USENIX Security Symposium (2016)

22. Qiao, R., Seaborn, M.: A new approach for Rowhammer attacks. In: International
Symposium on Hardware Oriented Security and Trust (2016)

23. Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., Bos, H.: Flip feng
shui: hammering a needle in the software stack. In: USENIX Security Symposium
(2016)

24. Schaller, A., et al.: Intrinsic Rowhammer PUFs: leveraging the Rowhammer effect
for improved security. In: Hardware Oriented Security and Trust (HOST) (2017)

25. Seyedzadeh, S.M., Jones, A.K., Melhem, R.: Mitigating wordline crosstalk using
adaptive trees of counters. In: ISCA. IEEE (2018)

26. Son, M., Park, H., Ahn, J., Yoo, S.: Making dram stronger against row hammering.
In: DAC (2017)

27. Tatar, A., Krishnan, R., Athanasopoulos, E., Giuffrida, C., Bos, H., Razavi, K.:
Throwhammer: Rowhammer attacks over the network and defenses. In: USENIX
ATC (2018)

28. van der Veen, V., et al.: Drammer: deterministic Rowhammer attacks on mobile
platforms. In: CCS (2016)

29. Xiao, Y., Zhang, X., Zhang, Y., Teodorescu, R.: One bit flips, one cloud flops: cross-
VM row hammer attacks and privilege escalation. In: USENIX Security Symposium
(2016)

30. Yağlıkçı, A.G., et al.: BlockHammer: preventing RowHammer at low cost by black-
listing rapidly-accessed DRAM rows. In: HPCA (2021)

31. You, J.M., Yang, J.-S.: MRLoc: mitigating row-hammering based on memory local-
ity. In: DAC (2019)

32. Zeitouni, S., Gens, D., Sadeghi, A.-R.: It’s hammer time: how to attack
(rowhammer-based) dram-PUFs. In: DAC (2018)

Reviving Meltdown 3a

Daniel Weber(B), Fabian Thomas, Lukas Gerlach, Ruiyi Zhang,
and Michael Schwarz

CISPA Helmholtz Center for Information Security, Saarbrücken, Saarland, Germany
{daniel.weber,fabian.thomas,lukas.gerlach,ruiyi.zhang,

michael.schwarz}@cispa.de

Abstract. Since the initial discovery of Meltdown and Spectre in 2017,
different variants of these attacks have been discovered. One often over-
looked variant is Meltdown 3a, also known as Meltdown-CPL-REG. Even
though Meltdown-CPL-REG was initially discovered in 2018, the avail-
able information regarding the vulnerability is still sparse.

In this paper, we analyze Meltdown-CPL-REG on 19 different CPUs
from different vendors using an automated tool. We observe that the
impact is more diverse than documented and differs from CPU to
CPU. Surprisingly, while the newest Intel CPUs do not seem affected
by Meltdown-CPL-REG, the newest available AMD CPUs (Zen3+) are
still affected by the vulnerability. Furthermore, given our attack primi-
tive CounterLeak, we show that besides up-to-date patches, Meltdown-
CPL-REG can still be exploited as we reenable performance-counter-
based attacks on cryptographic algorithms, break KASLR, and mount
Spectre attacks. Although Meltdown-CPL-REG is not as powerful as
other transient-execution attacks, its attack surface should not be
underestimated.

1 Introduction

Microarchitectural side-channel attacks have been known for several decades [31].
These attacks exploit the side effects of CPU implementations to infer metadata
about actual data being processed by the CPU. Well-known examples of microar-
chitectural side-channel attacks include cache attacks, e.g., Flush+Reload [67] or
Prime+Probe [47], which have been used to leak cryptographic secrets [4,37,67]
or violate the privacy of users, e.g., by spying on user input [19,34,44,55].
Another example of side-channel attacks are attacks based on the CPUs per-
formance counters [8,12,58]. However, these attacks are considered mitigated as
access to performance counters is restricted on modern CPUs [12].

In 2017, transient execution attacks were first discovered in the form of Melt-
down [36] and Spectre [30]. Shortly afterward, a variety of transient execution
attacks were discovered [10,32,40,50,51,56,61,65]. One attack that is often con-
sidered less powerful than other variations, and thus easily overshadowed by
the discovery of other variants, is Meltdown 3a [6,10], later on, referred to as
Meltdown-CPL-REG in the extended transient-execution attack classification by
Canella et al. [10]. Meltdown-CPL-REG allows an unprivileged attacker to leak
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 80–99, 2024.
https://doi.org/10.1007/978-3-031-51479-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_5

Reviving Meltdown 3a 81

the content of system registers restricted to privileged access. After the discovery
of the attack, CPU vendors reacted with microcode updates to fix the vulner-
abilities [6,25]. More precisely, CPU vendors fixed the vulnerability for system
registers containing confidential information, such as model-specific registers.

In this paper, we show that Meltdown-CPL-REG exposes a more complex
attack surface than originally thought, which allows an attacker to exploit it,
even 5 years after the initial discovery of the attack. Although the Meltdown
variant itself is known, there is no systematic analysis yet. Thus, we introduce
RegCheck, an automated tool to test x86 CPUs for various Meltdown-CPL-REG
variants. Our analysis using RegCheck reveals two main insights. First, CPUs
that are vulnerable to Meltdown-CPL-REG do not show the same leakage for all
system registers. Instead, the analysis shows that different CPUs expose leakage
of different system registers. Hence, the category Meltdown-CPL-REG is too
coarse-grained to determine if a CPU is affected. The official tables published by
Intel [25] comment only on the leakage of the rdmsr instruction. Nevertheless,
RegCheck shows that for some of these CPUs, there is at least one system register
that can be leaked. Second, the fact that a CPU is unaffected by the original
Meltdown attack, i.e., Meltdown-US-L1 [10,36], does not imply that the CPU is
also unaffected by Meltdown-CPL-REG as we observe leakage until the newest
tested AMD CPUs. Our analysis shows that while Meltdown-CPL-REG was
mitigated using microcode updates for system registers containing confidential
data, Meltdown-CPL-REG is still possible on modern CPUs for those privileged
registers that are not considered confidential, including registers containing only
metadata about a program, such as performance counters.

Based on these observations, we introduce the attack primitive Counter-
Leak. CounterLeak allows unprivileged attackers to read performance counters,
thereby leaking performance monitoring metadata about applications running
on a system. This shows that the state-of-the-art Meltdown-CPL-REG mitiga-
tions are insufficient for protecting against side-channel leakage. In our proof-
of-concept attack, we read the performance counters to leak meta information
about applications. We encode transiently-read data in the form of a Spectre
attack with 66.7bit/s, but with a generic encoding gadget. We also break the
security mitigation Kernel Address Space Layout Randomization (KASLR) by
leaking meta information of the page-table walker when accessing potential ker-
nel pages. Furthermore, CounterLeak re-enables attacks that rely on performance
counters [3,7]. These attacks are considered mitigated because the required per-
formance interface was made privileged. Our attack extracts an RSA key from a
square-and-multiply implementation based on MbedTLS. We demonstrate a full
key recovery of a 2048-bit key within 15min. We also show that CounterLeak
can be used to break the Zigzagger branch-shadowing mitigation [33]. While
all these attacks require that the underlying system has performance counters
enabled, this is the case for various performance-counter-based defenses that were
proposed [11,29,42,43,46,63,64,69,71,72]. Thus, we stress that when designing
defense tools, it is crucial to evaluate the additional attack surface introduced
by these tools.

82 D. Weber et al.

To summarize, we make the following contributions:

1. We analyze 19 CPUs of different vendors using an automated tool, showing
that Meltdown-CPL-REG was never fully mitigated and can still be exploited.
The analysis tool is open-source and can be found on GitHub1.

2. We use our side channel for a novel Spectre attack using performance counters
and to bypass KASLR based on the performance characteristics of the page-
table walker.

3. We re-enable attacks on cryptographic libraries.

Outline. Section 2 provides background. Section 3 discusses our analysis of
Meltdown-CPL-REG across different Intel and AMD CPUs. Section 4 presents
the CounterLeak primitive, and Sect. 5 evaluates the primitive. Section 6 shows
4 case studies based on the attack primitive. Section 7 discusses mitigations to
prevent the exploitation of Meltdown-CPL-REG and CounterLeak. Section 8 dis-
cusses related work and the generalization of our insights. Section 9 concludes.

Responsible Disclosure. We disclosed our findings to Intel on February 15,
2023 and AMD on February 16, 2023. While both vendors got back to us, neither
plan to roll out mitigations for the new findings.

2 Background

In this section, we provide the background for this paper. We introduce perfor-
mance counters as we attack this interface in the remainder of the paper. We
introduce side channels and transient-execution attacks, as these concepts are
crucial for the understanding of our attack implementation.

2.1 Performance Counters

Modern CPUs expose performance counters to help developers analyze and
benchmark their programs. Performance counters keep track of different microar-
chitectural events, such as the number of issued micro-operations or the number
of evicted cache lines from the L1D cache. Performance counters are programmed
to record a specific event. The current count of the event can be read using
the x86 instruction rdpmc. The privilege level needed to execute rdpmc can be
configured by the operating system. For example, Linux exposes this configu-
ration via the file /sys/devices/cpu/rdpmc. In the past, unprivileged access
to performance counters was exploited to mount side-channel attacks and break
KASLR [12,58]. Thus, modern operating systems, such as Debian 11, Ubuntu
20.04, or Fedora 35, disallow the access to the performance monitoring interface.

1 https://github.com/cispa/regcheck.

https://github.com/cispa/regcheck

Reviving Meltdown 3a 83

2.2 Side Channels

The term side channel refers to a meta information leaking from a system
that can be used to reason about the actual inaccessible data being processed
by the system. In CPU microarchitectures, this meta information occurs in
various forms, including power usage [35], access timings [18,47], and con-
tention [5,16,45]. An attack exploiting observable meta information is referred to
as a side-channel attack. Microarchitectural software-based side-channel attacks
(in the remainder of this paper just referred to as “side-channel attacks”) have
been demonstrated against cryptographic algorithms and libraries [8,38,47,67],
to spy on users [55], and to break security boundaries [12,13,17]. Over the last
few decades, researchers have demonstrated side-channel attacks based on sev-
eral microarchitectural components, such as the CPU caches [18,47,48,67], the
execution units [5,52], or the component’s power consumption [35].

2.3 Transient-Execution Attacks

Transient-execution attacks exploit performance optimizations of the microar-
chitecture. They are split into two major categories, namely Meltdown-type
and Spectre-type attacks, based on the type of performance optimization they
exploit [10,27]. While Spectre-type attacks exploit branch predictors, Meltdown-
type attacks exploit faulting instructions for which the processor continues to
execute depending instructions. These instructions can compute with the val-
ues of the faulting instructions until the fault is recognized by the CPU and
the instruction stream is rolled back to before the faulting instruction. These
instructions that were executed but never architecturally visible because of the
roll-back, are called transient instructions [10,27]. One Meltdown-type attack
that is typically considered less critical, is Meltdown-CPL-REG (initially called
Meltdown 3a) [6,10,23]. Meltdown-CPL-REG allows an unprivileged attacker to
leak the content of privileged system registers. Hereby, the attacker reads the
system registers via a designated instruction such as rdmsr and encodes the con-
tent into a microarchitectural element before the roll-back occurs. Afterward, the
attacker can decode this information using a side-channel attack, thus leaking
the system register’s content. To mitigate the impact of Meltdown-CPL-REG,
CPU vendors provide microcode updates for affected systems [6,25].

3 Analysis of Meltdown-CPL-REG

For Meltdown-CPL-REG, microcode prevents the leakage of system registers
containing sensitive values. However, other registers containing meta-data about
applications can still be leaked, enabling another source of side-channel leakage.
We present the first systematic analysis of Meltdown-CPL-REG [6,10,23] to
analyze the remaining attack surface after applying state-of-the-art microcode
patches. To systematically analyze CPUs, we design RegCheck to test a CPU for
different Meltdown-CPL-REG variants automatically. Our analysis of 19 systems

84 D. Weber et al.

leads to two main insights. First, if a system is vulnerable to Meltdown-CPL-
REG, this does not mean that all system registers are affected. Second, even fully
patched recent CPUs unaffected by the original Meltdown attack (Meltdown-US-
L1) [36] can be vulnerable to Meltdown-CPL-REG.

Design and Implementation. Our prototype of RegCheck is developed for
Intel and AMD CPUs running Linux. Note that the same approach can be
ported to other architectures, e.g., to support Arm CPUs, as this is purely an
engineering task. RegCheck tests a list of different system registers that are either
only accessible for privileged users or can be configured to only allow privileged
access. The list is based on Intel’s list of affected registers [23]. We provide
a complete list of analyzed system registers in Table 1. The inner workings of
RegCheck can be broken down into two steps:

First, RegCheck changes the kernel parameters to a consistent state for the
measurements. More precisely, one CPU core is isolated using the isolcpus ker-
nel parameter, and unprivileged access to rdfsbase and rdgsbase is disabled
using the nofsgsbase kernel parameter. Similarly, the access to further system
registers which are not permanently restricted to privileged access, e.g., perfor-
mance counters (cf. Sect. 2.1), is configured to prevent unprivileged access to
these registers before testing. After applying these settings, RegCheck executes
on the isolated CPU core to reduce the system noise for its measurements. Next,
for each system register, RegCheck tries to reason about its exploitability. To
do so, RegCheck tries to exploit Meltdown-CPL-REG and encode 8 bits of the
system register into a lookup array. The encoding is done by transiently access-
ing the corresponding index of the array, e.g., if the leaked bits form the value
7, then an access to array[7 * N] is performed. The resulting fault can either
be suppressed or handled. For RegCheck we choose to handle the fault using
a signal handler as this approach is portable to all modern CPUs. Our imple-
mentation varies N from 1024 to 4096 bytes to find a good tradeoff between the
size of memory pages needed to encode the values while still preventing different
accessing from either directly going into the same cache line or prefetching other
array entries. Note that we choose to encode 8 bits instead of only 1 bit to distin-
guish actual leakage from system noise better. After encoding these bits, the tool
checks whether a transient access to any index has taken place by iterating over
the array and performing Flush+Reload, i.e., timing the memory access to each
array index. If RegCheck succeeds at leaking the target system register multiple
times, it flags it as vulnerable. We test our tool on Intel and AMD CPUs from
different generations. All tests use the latest microcode available in the Ubuntu
repositories. For further details on the specific microcode version used we refer
the reader to Table 2.

Affected Registers. The main insight from our analysis is that not all priv-
ileged registers are affected in the same way by Meltdown-CPL-REG. This is
especially interesting because Intel’s list of CPUs affected by certain vulnerabil-
ities [25] (accessed May 2023) only lists CPUs where the rdmsr instruction can
be exploited by Meltdown-CPL-REG. However, our results in Table 2 show that
some CPUs that Intel flags as unaffected by the Meltdown-CPL-REG rdmsr

Reviving Meltdown 3a 85

Table 1. System registers and their access instructions tested by RegCheck.

Access Instruction Details

rdpmc Reads the specified Performance counter

rdtsc Reads the CPU timestamp counter

rdtscp Reads the CPU timestamp counter

mov CRx Loads the Control registers 0–8

mov DRx Loads the Debug registers 0–7

rdfsbase Retrieves segment selector of the FS segment base register

rdgsbase Retrieves segment selector of the GS segment base register

rdmsr Model Specific Registers

str Loads the segment selector of the Task register

sldt Loads the segment selector from the Local Descriptor Table register

sidt Loads the segment selector from the Interrupt Descriptor Table register

sgdt Loads the segment selector from the Global Descriptor Table register

smsw Loads the Machine status word

leakage can still be exploited to leak the contents of other system registers, such
as the performance counters using rdpmc. This, for example, is the case for the
Intel Celeron J4005 and the Intel Celeron N3350. The results in Table 2 show
that the instruction rdfsbase leaks on 8 out of 14 CPUs affected by Meltdown-
CPL-REG. The CPU timestamp counter accessed via rdtsc or rdtscp leaks
on 2 out of 14 affected CPUs. Performance counter leak on 3 of the affected
CPUs via rdpmc. A possible explanation for these different leakage rates could
be that for executing rdpmc, the CPU has to decode an argument of the instruc-
tion, i.e., the index of the access performance counter stored in RCX, while for
rdtsc, rdtscp, and rdfsbase all required information to fetch the requested
data is available, leading to a potentially simpler execution path. Nevertheless,
the CPUs where rdpmc is vulnerable do not show a superset of the vulnerable
instructions compared to the other systems. Even though these systems show
vulnerable rdpmc implementations, we could not verify further leakage.

Affected CPUs. Our second insight is that the fact that CPUs are vulnerable to
Meltdown-US-L1 is not related to whether a CPU is also vulnerable to Meltdown-
CPL-REG, as shown in Table 2. In other words, we can leak from system registers
of CPUs that are affected by Meltdown-US-L1 and of CPUs not affected by
Meltdown-US-L1. This is especially surprising for recently released CPUs, such
as the Ryzen 9 6900HX. We observe that the tested Intel CPUs from Alder Lake
onward do not show leakage, while newer AMD CPUs do.

RegCheck Limitations. The current proof-of-concept implementation of our
tool RegCheck comes with different limitations. We do not check for the leakage
of swapgs as previous work has already analyzed this instruction and its leakage
potential [39]. We neither check the xgetbv instruction. The reason for the latter
is that to prevent unprivileged access to xgetbv, RegCheck needs to set the
OSXSAVE bit of CR4, which crashes the tested OS. A detailed list of the analyzed
system registers is shown in Table 1.

86 D. Weber et al.

Table 2. CPUs tested by RegCheck for Meltdown-CPL-REG. “U” means we could not
verify if an actual timestamp is leaked. “ZF” means that only the value 0 is returned
transiently. Additionally, we annotate machines that are vulnerable to the original
Meltdown attack.

CPU µcode µarch Release MD-US Leaking Instructions

Intel Core i5-2520M 0x2f Sandy Bridge 2011 Yes rdtsc, rdtscp
Intel Core i5-3230M 0x21 Ivy Bridge 2013 Yes rdtsc, rdtscp, sldt
Intel Core i3-4160T 0x28 Haswell 2014 Yes rdfsbase, rdgsbase
Intel Core i3-5010U 0x2f Broadwell 2015 Yes rdfsbase, rdgsbase, rdtsc (U), rdtscp (U)
Intel Atom x5-Z8350 0x411 Cherry Trail 2016 Yes rdpmc

Intel Celeron N3550 0x28 Apollo Lake 2016 No rdpmc

Intel Celeron J4005 0x3c Gemini Lake 2017 Yes rdpmc

Intel Core i3-7100T 0xf0 Kaby Lake 2017 Yes rdfsbase, rdgsbase
Intel Core i3-1005G1 0xb2 Ice Lake 2019 No –
Intel Core i7-10510U 0xf0 Comet Lake 2019 No rdfsbase, rdgsbase
Intel Core i7-1185G7 0xa4 Tiger Lake 2020 No –
Intel Celeron N4500 0x240000023 Jasper Lake 2021 No rdfsbase (ZF), rdgsbase (ZF), sldt (ZF)
Intel Core i9-12900K 0x22 Alder Lake 2021 No –
Intel Atom x6425E 0x17 Elkhart Lake 2021 No –
AMD GX-415GA 0x700010f Jaguar 2013 No –
AMD Ryzen 5 2500U 0x810100b Zen 2017 No rdfsbase, rdgsbase
AMD Ryzen 5 3550H 0x8108102 Zen+ 2019 No rdfsbase, rdgsbase
AMD Epyc 7252 0x8301055 Rome 2019 No rdfsbase, rdgsbase, str (ZF)
AMD Ryzen 9 6900HX 0xa404102 Zen 3+ 2022 No rdfsbase, rdgsbase

Table 2 flags rdtsc and rdtscp for certain instances with an “U” (short for
“unverified”). On these systems, we observed leakage from the system registers,
but could not verify that the leakage stems from the CPU timestamp counter.
The reason for this is that RegCheck uses a counting thread as a timer for ana-
lyzing the instructions rdtsc and rdtscp. However, this timer does not work
reliably on CPUs not supporting hyperthreading, as the counting and attacker
thread yield a more accurate timer when both threads execute on co-located
hyperthreads. Table 2 also has system registers flagged with “ZF” (short for “zero
forwarding”). For these registers, an access always returns the value 0 instead of
the actual value. While such behavior intuitively sounds invulnerable, instruc-
tions forwarding zero values already led to microarchitectural attacks [9,60].

4 Attack Primitive

In this section, we introduce our attack primitive CounterLeak. CounterLeak
exploits Meltdown-CPL-REG to leak performance-counter values using rdpmc
to infer side-channel information about program executions.

Reviving Meltdown 3a 87

Fig. 1. Meltdown-CPL-REG leaking system registers, such as performance counters.

4.1 Threat Model

We assume an unprivileged attacker with native code execution. We further
assume bug-free victim software, e.g., the absence of memory corruption or log-
ical vulnerabilities. However, our attacker model relies on side-channel vulner-
abilities, i.e., we assume secret-dependent control or data flow in the victim
application. Even though our attacks are, in theory, mountable from inside vir-
tual machines, we did not explicitly test this, and attackers could only target
victims inside their own virtual machine and not the hypervisor or other vir-
tual machines. While this weakens the attack surface, intra-VM attacks are still
a realistic scenario, e.g., in container-based environments. We target only Intel
and AMD CPUs in this work. Note that Meltdown-CPL-REG is also exploitable
on Arm [6] but we consider further architectures out of scope for the experiments
conducted in this paper and only discuss them in Sect. 8.

4.2 CounterLeak

The CounterLeak attack primitive relies on Meltdown-CPL-REG. We use
Meltdown-CPL-REG to infer side-channel information about a victim program.
Based on our systematic analysis using RegCheck, and the publicly-available
information regarding Meltdown-CPL-REG by Intel [23], we build our attack
primitive on top of rdpmc. rdpmc provides a generic but privileged interface
to performance counters. Access to these performance counters leaks infor-
mation about the program execution that can be exploited for side-channel
attacks [8,12,58].

Attack Overview. CounterLeak relies on Meltdown-CPL-REG to leak the con-
tent of a performance counter. We assume that the system already has a per-
formance counter programmed. This is the case if the system uses performance
counters for attack detection, as suggested by previous work [20,28,46,69]. For
example, Cloudflare relies on performance counters to detect Spectre attacks [62].
An attacker leaks the performance-counter values by encoding the transiently-
read return value of the rdpmc instruction into the microarchitecture and recovers
it using a side channel.

Implementation. In line with previous Meltdown-type attacks [10,30,36,41,
56,59,61], we use the CPU cache to encode the transiently-leaked values and

88 D. Weber et al.

Fig. 2. CounterLeak: CPU cycles needed to leak, i.e., access, encode, and decode, n
bytes of a performance counter by attacking rdpmc. The y-axis shows the CPU cycles
required for each repetition of the experiment (x-axis).

Fig. 3. CounterLeak: CPU cycles needed to transiently encode 4 bytes of the CPU
timestamp counter. The y-axis shows the CPU cycles required for each repetition of
the experiment (x-axis).

Flush+Reload as the covert channel to make the values architecturally visible.
We support leakage of 1 to 4 bytes per rdpmc invocation by encoding each
byte into the cache state of an array consisting of 256 pages. The more data is
encoded into the microarchitecture, the better the resolution of the underlying
performance counter value. However, this also leads to a slower decoding phase,
as more Flush+Reload attacks are required. For leaking a single byte, at most
256 Flush+Reload attacks are necessary, while for leaking 4 bytes, at most 1024
Flush+Reload attacks are necessary. We evaluate this trade-off in Sect. 5.

5 Evaluation

In this section, we evaluate the attack primitive CounterLeak which is based on
Meltdown-CPL-REG. All evaluations use our proof-of-concept implementation
on an Intel Celeron J4005 running Ubuntu 20.04 with Linux kernel 5.4.0.

The most important property in our evaluation is the temporal resolution of
CounterLeak, i.e., the time between two measurements. This property reflects
how fine-grained the information can be leaked by the exploit. We evaluate the
time it takes to leak n bytes of a system register. This measurement directly gives
us the temporal resolution of the attack. We observe that the implementation
leaks 1 byte of a system register in, on average, 348 257 cycles (n = 100). Figure 2
summarizes the time an attacker needs to leak the content of a performance
counter when leaking n bytes within one transient window. We emphasize that
this is a good indication of the theoretical performance of this attack, as an
attacker can likely mount exploits by only leaking parts of the system register.

Reviving Meltdown 3a 89

We also require only partial leakage for our attacks discussed in Sect. 6. Note that
the temporal resolution mostly affects the execution time of an attack but does
not prevent an attack. An attacker can often compensate for a lower temporal
resolution by averaging over repeated measurements [35].

Still, whereas our complete attack primitive takes millions of CPU cycles
for one iteration (cf. Fig. 2), the actual time spent encoding multiple bytes of a
system register is significantly shorter. While the time needed to leak n bytes
of a performance counter, i.e., the attack’s temporal resolution, is important
for repeated measurements, another critical metric is the time that an attacker
needs to encode a value in the CPU cache. This metric is especially important
for event-driven attack scenario, i.e., whenever the attacker wants to take a
measurement after a certain event has happened. To evaluate the time it takes to
encode a value, we record the time needed to encode the value of the timestamp
register over 100 runs. Figure 3 shows the results. We observe that the average
time between the faulting access and the first subsequent attacker-controlled
instruction when encoding 4 bytes simultaneously is 6655 cycles. Whereas the
effective blindspot of our attack is higher, this time yields the offset between an
event triggering a measurement in the attacker code and the measurement itself.

6 Case Studies

In this section, we introduce 4 case studies demonstrating CounterLeak. We
demonstrate a Spectre proof-of-concept (PoC) (Sect. 6.1) and break KASLR by
monitoring the behavior of page walks (Sect. 6.2). To demonstrate that our side
channels re-enable mitigated attacks, we leak a 2048-bit RSA private key from
a square-and-multiply implementation found in MbedTLS using CounterLeak
(Sect. 6.3). Lastly, we show that we can break the branch-shadowing mitigation
proposed by Lee et al. [33] using CounterLeak (Sect. 6.4).

6.1 Spectre with CounterLeak

In this case study, we demonstrate a Spectre-type attack [10,30] with our
CounterLeak primitive to leak otherwise inaccessible data. We build a Spectre-
PHT [10,30] PoC with a performance counter as covert channel.

Target Performance Counter. We target a performance counter that tracks
speculative events [49], such as CYCLES_DIV_BUSY.ALL and assume that it is
either activated or can be enabled by the attacker. Note that depending on
the victim’s code, the discussed attack can also be mounted with a different
performance counter. The only requirement is that the accessed secret can be
encoded in branches that can be distinguished based on any performance counter.

Attack Overview. We attack a Spectre gadget of the form

1 if (i >= 0 && i < array_size) {
2 int tmp = (array[i] >> offset);
3 if ((tmp & 1)) x / y;
4 }

90 D. Weber et al.

Fig. 4. The leaked values of DTLB_LOAD_MISSES.WALK_COMPLETED_2M_4M when iterating
over the potential locations where the Linux kernel could be mapped. The page-table
walk needs longer when the address is the actual start of the kernel, i.e., the position
of the kernel symbol __start_rodata.

The attacker controls the variables i and offset. Note that even though the
inner if branch is only doing an operation that should not result in any state
change, it still affects related performance counters and hence suffices to enable
our attack. The attacker starts by mistraining the outer if branch such that its
subsequent execution is misspeculated to be taken. The simplest way to achieve
this is by in-place mistraining [10], i.e., executing the branch multiple times with
i being a valid offset for the array. As a baseline, the attacker leaks the value of
the performance counter CYCLES_DIV_BUSY.ALL using CounterLeak. This per-
formance counter keeps track of the number of cycles the CPU’s divider units are
used. The attacker executes the victim function with an index i that is outside
the bounds of the array and corresponds to the targeted memory address. After-
ward, the attacker again leaks the performance counter of CYCLES_DIV_BUSY.ALL
using CounterLeak and subtracts the previously leaked value. As the divider is
only used when the inner if branch is (speculatively) taken, the delta is slightly
higher if the transiently-accessed bit is ‘1’.

Results. We measure each bit 50 times and set a threshold on the median
to distinguish between ‘1’ and ‘0’ bits based on the value of the performance
counter. Our PoC achieves a leakage rate of 66.7 bit/s with an accuracy of
99.6%. While not the fastest covert channel, we argue that it is still fast enough
to pose a threat when such an attack is mounted.

Comparison to Similar Attacks. Our attack only relies on a control flow that
is distinguishable by observing performance counters. Common covert channels
used in Spectre-type attacks require cache accesses to encode data from tran-
sient execution [21,30,32,40]. Finding such code paths that can be exploited by
Spectre-type attacks, also referred to as Spectre gadgets, is a challenging task.
While our attack is limited to a CPU vulnerable to CounterLeak and providing
a usable performance counter, it can use both traditional Spectre gadgets and
novel types of gadgets. Hence, with the combination of Spectre and CounterLeak,
the number of potential gadgets increases.

Reviving Meltdown 3a 91

6.2 Breaking KASLR with CounterLeak

We demonstrate that unprivileged access to performance counters breaks Kernel
Space Address Layout Randomization (KASLR). KASLR randomizes the base
address of the operating system kernel upon booting. As precise knowledge of the
memory layout is a requirement for many attacks, KASLR adds an additional
barrier that attackers have to overcome for a successful kernel exploit. We show
that we can derandomize the location of the Linux kernel on an Intel Celeron
N3350 running Ubuntu 22.04 with Linux kernel 5.15.0 and thus bypass KASLR.

Target Performance Counter. We target a performance counter influenced
by page-table walks, such as DTLB_LOAD_MISSES.WALK_COMPLETED_2M_4M and
assume that is already programmed or can be programmed by the attacker. A
scenario in which this is the case is if the system is protected using the approach
of Wang et al. [63].

Attack Overview. For derandomizing the kernel location, we rely on the prop-
erty that non-present pages are not stored in the TLB [9]. Thus, a memory
load request to a non-present page always leads to a page-table walk, whereas
a memory load request to a present page leads to a TLB hit, resulting in no
page-table walk if the page was recently accessed. The attack iterates over each
potential location of the kernel and accesses it. The resulting fault caused by
the access is suppressed using speculative execution, TSX transactions, or fault
handling. For each memory access, the attacker leaks the performance counter
DTLB_LOAD_MISSES.WALK_COMPLETED_2M_4M, or an alternative one correlating
to the number of or the cycles spent for page-table walks, using CounterLeak.
Based on the leaked value, the attacker can observe whether a memory page is
present and was recently accessed. The first page of the kernel’s .rodata section
is frequently accessed. Thus, the first address showing an abnormal timing dif-
ference is the location of the kernel symbol __start_rodata. Note that a more
advanced version of this attack can also be used to actively monitor the access
to kernel memory pages, similar to the work of Schwarz et al. [53].

Results. Figure 4 shows the cycle difference iterating over the kernel address
space. The kernel location is easily distinguishable from non-present pages due
to the change in cycles spent for page table walks. We tested our KASLR break on
an Intel Celeron J4005 running Ubuntu 20.04 with Linux kernel 5.4.0 observing
a success rate of 98% (n = 100) and a median execution time of 4.7 s.

6.3 Attacking RSA with CounterLeak

In this case study, we attack the RSA implementation based on the MbedTLS
version 1.3.10 running on an Intel Celeron J4005 with Ubuntu 20.04 and Linux
kernel 5.4.0. This MbedTLS version implements RSA by using a window-based
square-and-multiply algorithm. We configure the window size to 1. Previous
work [37] showed that all window sizes are vulnerable if window size 1 is vul-
nerable. While such square-and-multiply implementations are known to be vul-
nerable to side-channel attacks, we choose this target as it is a common target

92 D. Weber et al.

Fig. 5. The leaked value of the performance counter BR_INST_RETIRED.NEAR_TAKEN
and its correlation to the secret bits of the exponent.

for related attacks [14,22,33,54,66]. Hence, we ease comparison with other side-
channel attacks.

Target Performance Counter. We target the performance counter
BR_INST_RETIRED.NEAR_TAKEN and assume that it is either already programmed
or can be programmed by the attacker. This performance counter keeps track of
the number of taken near-branch instructions. An example for a realistic scenario
in which this performance counter would be programmed is a system protected
by the rootkit detection of Singh et al. [57].

Attack Overview. The victim application consists of a branch only taken when
the currently-processed secret bit is ‘1’. Thus, the secret bit correlates with the
number of branches taken. The attacker gains oracle access to the signing routine
of the application to sign arbitrary messages. We assume that the attacker and
victim are synchronized, i.e., the attacker either knows when the victim processes
each iteration of the exponentiation loop, or the attacker can influence this by,
e.g., interrupting the victim. During the execution of the victim, the attacker
repeatedly leaks the value of the performance counter and, thereby, the number
of branches taken. The attacker leaks the performance counter once per key
bit. Afterward, the attacker stores the delta of two consecutive performance
counter leaks, i.e., the approximation of the victim’s taken branches for the
processing of a specific secret bit. The attacker repeats this procedure for the
decryption of 10000 different messages, averaging out the noise of branches taken
by CounterLeak itself and the unrelated branches of the victim application.

Results. By averaging over 10 000 traces, we extract a clear indication of the
secret bits. Figure 5 visualizes the correlation between the number of branches
taken and the secret bits. Using a simple threshold, we recover 99.9% of the 2048-
bit RSA keys (n = 10) in around 15 min. Compared to previous work, there are
both faster attacks requiring fewer encryptions [2,37] and attacks requiring a
similar number of decryptions or more time to execute [68,70]. We conclude
that CounterLeak yields a strong primitive for leaking secrets from, for example,
cryptographic implementations.

6.4 Breaking Zigzagger with CounterLeak

In this case study, we explore how CounterLeak breaks the Zigzagger branch-
shadowing mitigation. Branch-shadowing attacks exploit the shared branch his-
tory between processes, allowing attackers to reason about the direction of a

Reviving Meltdown 3a 93

branch. For example, Lee et al. [33] demonstrate that a branch-shadowing attack
can leak confidential data from Intel SGX enclaves. To prevent branch-shadowing
attacks, Lee et al. [33] proposed a software mitigation called Zigzagger. Zigzagger
replaces a set of branches with a single indirect branch. Thus, the attacker can
only infer whether the branch was executed but cannot infer the branch direction
anymore. To compute the address of the indirect jump, additional conditional-
move instructions are used. In line with Gerlach et al. [15], we exploit the number
of retired instructions to break the Zigzagger mitigation. While Gerlach et al.
used an architectural interface to this information, we show that we can recover
the same information using CounterLeak. This information allows an attacker
again to distinguish the branches taken by the victim.

Target Performance Counter. We target the INSTR_RETIRED performance
counter that is either already programmed or can be programmed by the
attacker. A realistic scenario for this would be if the defense approach of
Wang et al. [63] is in use on the system.

Attack Overview. The victim process contains secret-dependent branches and
is hardened against branch-shadowing attacks using Zigzagger [33]. The attacker
leaks the INSTR_RETIRED performance counter before and after the Zigzagger-
hardened victim executes. The delta between these measurements yields the
number of retired instructions. The attacker correlates this number with a base-
line measurement for all branches.

Results. For the case study, we use an Intel Celeron J4005 running Ubuntu
20.04 with Linux kernel 5.4.0. For each of the 3 different possible arguments of
the sample function, there is a unique number of retired instructions after the
Zigzagger modification was applied. Hence, by observing the number of retired
instructions, an attacker can directly infer the arguments. We observe a success
rate of 100% using 10 000 recorded measurements.

7 Countermeasures

In this section, we discuss countermeasures against CounterLeak and Meltdown-
CPL-REG. The fundamental problem is that an unprivileged attacker can tran-
siently access the metadata of an application in the form of performance coun-
ters. The exploited vulnerability is rooted deep inside the CPU. As the informa-
tion stem from a CPU register, no software is involved. Nevertheless, operating
systems can still defend against the impact of the attack whereas the victim
application itself can be hardened against the attack.

Firmware. Several CPUs received microcode updates to prevent the leakage
of system registers [1]. While CPU vendors do not disclose internals of these
updates, it is likely that a similar patch can also mitigate the remaining leakage.
Thus, the most efficient and effective mitigation is likely via microcode updates.

Kernel. CounterLeak fundamentally relies on performance counters that are
either already programmed or that can be programmed by an attacker-accessible

94 D. Weber et al.

API. A common scenario for this are performance-counter-based detection
approaches [11,29,42,43,46,63,64,69,71,72]. As the absence of programmed or
programmable performance counter prevents CounterLeak, a carefully designed
system that does not use performance counters at all or only in the absense of
untrusted parties and code can also prevent the exploitation of CounterLeak.
As performance counters and their programming requires kernel privileges, the
kernel could, in theory, completely prevent the programming of performance
counters. However, this decision comes with the drawback that it would break
existing software like the performance-counter-based detection approaches or
monitoring utilities such as perf. In contrast, an operating system can prevent
attacks on KASLR without breaking existing software. Canella et al. [9] pro-
posed mapping dummy pages in the kernel such that all kernel addresses are
mapped. Consequently, an attacker cannot infer the real location of the kernel.

Userspace Software. As CounterLeak is a side-channel attack, it is fundamen-
tally limited to leaking data from an application with secret-dependent branches
or data-flow edges. However, an application can generally be implemented with-
out any secret-dependent accesses [26]. Applications implemented in such a way
are not susceptible to CounterLeak. Especially for cryptographic algorithms,
such implementations are state-of-the-art.

8 Discussion

In this section, we discuss related work. Furthermore, we show how the presented
attack primitive behaves on different operating systems and architectures. As
the building blocks of CounterLeak are OS-agnostic and also exist on other
architectures, we assume that similar attacks are also possible there.

8.1 Related Work

In 2018, Intel and Arm disclosed the vulnerability and assigned it CVE-2018-
3640 [6,24]. While Intel released a security advisory and added a new category to
their list of CPUs affected by vulnerabilities [24,25], Arm added a section about
the vulnerability in their Cache-Speculation Side-Channel whitepaper [6]. Our
work builds on this initial disclosure by analyzing the leakage of different system
registers on 19 CPUs with applied vendor mitigations. We further demonstrate
that it is still possible to exploit Meltdown-CPL-REG in different scenarios.

While we focus our work on Meltdown-CPL-REG, Canella et al. [10] analyzed
the landscape of transient-execution attacks with a broader focus. Furthermore,
they first introduced the split into Meltdown- and Spectre-type attacks. In con-
trast, our work focuses on the specific variant Meltdown-CPL-REG and analyzes
further details about it, including how widespread the issue itself is.

Attacks exploiting performance counters have been shown when the interface
was accessible to unprivileged users. In 2008, Uhsadel et al. [58] first exploited
performance counters to leak information about the CPU caches. With informa-
tion similar to a cache attack, they showed that the information can be exploited

Reviving Meltdown 3a 95

to recover confidential values from a victim program. They also demonstrated
their attack on an OpenSSL AES implementation. Bhattacharya et al. [8] further
demonstrated that performance counters expose even more information than just
the cache state and thus allow reasoning about the branch-predictor state. Their
work discusses an exploit on a square-and-multiply implementation of RSA using
the Montgomery-ladder algorithm. Since then, the access to performance coun-
ters is privileged by default, preventing these attacks on modern systems [12].
Dixon et al. [12] further stresses the importance of disabling unprivileged access
to performance counters by showing that it allows derandomizing the kernel loca-
tion. Gerlach et al. [15] exploit the unprivileged access to performance counters
on RISC-V CPUs to break KASLR, leak the presence of inaccessible files, and
detect interrupts. Our work mainly differs from these previous ones by demon-
strating these and similar attacks on modern systems where performance-counter
access is restricted to privileged users.

8.2 Other OS and Architectures

The underlying effects exploited in this paper are OS-agnostic. While this paper
targets Linux, we do not require any Linux-specific functionality. CounterLeak
interacts with the hardware directly without requiring any OS support. If any
application legitimately enables performance counters, they can be leaked.

CounterLeak requires systems that are vulnerable to Meltdown-CPL-REG.
While Meltdown-CPL-REG was also shown on Arm CPUs [6], we leave it for
future work to systematically analyze Arm CPUs for their Meltdown-CPL-REG
attack surface. Nevertheless, as all strict requirements for CounterLeak are also
given on Arm CPUs, we suspect that the issue also affects these systems.

9 Conclusion

In this paper, we analyzed the attack surface of Meltdown-CPL-REG. For this,
we developed an automated approach using RegCheck (open-sourced on GitHub)
to analyze 19 Intel and AMD CPUs based on different microarchitectures. In our
analysis, we observe that the privileged system registers that can be leaked by
Meltdown-CPL-REG differ from CPU to CPU. Furthermore, we observe that
the FS and GS segment base registers can be leaked even on recent AMD CPUs
(Zen 3+). We further show that our attack primitive CounterLeak can exploit
side-channel information by leaking the values of performance counters using
Meltdown-CPL-REG. We demonstrated CounterLeak in 4 different case stud-
ies. We showed that the primitive allows us to break KASLR by monitoring
the page-table walker and can break the Zigzagger branch-shadowing mitiga-
tion [33]. Additionally, we demonstrated the applicability of CounterLeak as a
flexible covert channel for Spectre attacks and leaked a 2048 bit RSA key from
a square-and-multiply implementation in MbedTLS, verifying that our primi-
tive reenables previously mitigated attacks. In conclusion, our work shows that
Meltdown-CPL-REG should not be underestimated and still poses a threat to
modern and fully patched systems.

96 D. Weber et al.

Acknowledgment. We want to thank our anonymous reviewers for their comments
and suggestions. We also want to thank Leon Trampert and Niklas Flentje for provid-
ing their help with running the experiments. This work was partly supported by the
Semiconductor Research Corporation (SRC) Hardware Security Program (HWS).

References

1. Rogue system register read (2018). https://www.intel.com/content/www/us/
en/developer/articles/technical/software-security-guidance/advisory-guidance/
rogue-system-register-read.html

2. Acıiçmez, O.: Yet another microarchitecutral attack: exploiting I-cache. In: ASP-
LOS (2007)

3. Acıiçmez, O., Koç, Ç.K., Seifert, J.-P.: Predicting secret keys via branch predic-
tion. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 225–242. Springer,
Heidelberg (2006). https://doi.org/10.1007/11967668_15

4. Acıiçmez, O., Schindler, W.: A vulnerability in RSA implementations due to
instruction cache analysis and its demonstration on OpenSSL. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 256–273. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-79263-5_16

5. Aldaya, A.C., Brumley, B.B., ul Hassan, S., García, C.P., Tuveri, N.: Port con-
tention for fun and profit. In: S&P (2018)

6. ARM: Cache Speculation Side-channels, version 2.5 (2020)
7. Bhattacharya, S., Maurice, C., Bhasin, S., Mukhopadhyay, D.: Template attack on

blinded scalar multiplication with asynchronous perf-ioctl calls. Cryptology ePrint
Archive, Report 2017/968 (2017)

8. Bhattacharya, S., Mukhopadhyay, D.: Who watches the watchmen?: Utilizing per-
formance monitors for compromising keys of RSA on Intel platforms. Cryptology
ePrint Archive, Report 2015/621 (2015)

9. Canella, C., Schwarz, M., Haubenwallner, M., Schwarzl, M., Gruss, D.: KASLR:
break it, fix it, repeat. In: Asia CCS (2020)

10. Canella, C., et al.: A systematic evaluation of transient execution attacks and
defenses. In: USENIX Security Symposium (2019). Extended classification tree
and PoCs at https://transient.fail/

11. Chiappetta, M., Savas, E., Yilmaz, C.: Real time detection of cache-based side-
channel attacks using hardware performance counters. ePrint 2015/1034 (2015)

12. Dixon, L.: Breaking KASLR with perf (2017). https://blog.lizzie.io/kaslr-and-perf.
html

13. Frisk, U.: Windows 10 KASLR Recovery with TSX (2016). https://blog.frizk.net/
2016/11/windows-10-kaslr-recovery-with-tsx.html

14. García, C.P., Ul Hassan, S., Tuveri, N., Gridin, I., Aldaya, A.C., Brumley, B.B.:
Certified side channels. In: USENIX Security Symposium (2020)

15. Gerlach, L., Weber, D., Zhang, R., Schwarz, M.: A security RISC: microarchitec-
tural attacks on hardware RISC-V CPUs. In: S&P (2023)

16. Gras, B., Giuffrida, C., Kurth, M., Bos, H., Razavi, K.: ABSynthe: automatic
blackbox side-channel synthesis on commodity microarchitectures. In: NDSS (2020)

17. Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., Mangard, S.: KASLR
is dead: long live KASLR. In: Bodden, E., Payer, M., Athanasopoulos, E. (eds.)
ESSoS 2017. LNCS, vol. 10379, pp. 161–176. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-62105-0_11

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/rogue-system-register-read.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/rogue-system-register-read.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/rogue-system-register-read.html
https://doi.org/10.1007/11967668_15
https://doi.org/10.1007/978-3-540-79263-5_16
https://doi.org/10.1007/978-3-540-79263-5_16
https://transient.fail/
https://blog.lizzie.io/kaslr-and-perf.html
https://blog.lizzie.io/kaslr-and-perf.html
https://blog.frizk.net/2016/11/windows-10-kaslr-recovery-with-tsx.html
https://blog.frizk.net/2016/11/windows-10-kaslr-recovery-with-tsx.html
https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1007/978-3-319-62105-0_11

Reviving Meltdown 3a 97

18. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+Flush: a fast and stealthy
cache attack. In: Caballero, J., Zurutuza, U., Rodríguez, R.J. (eds.) DIMVA 2016.
LNCS, vol. 9721, pp. 279–299. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40667-1_14

19. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: USENIX Security Symposium (2015)

20. Herath, N., Fogh, A.: These are not your grand Daddys CPU performance counters
- CPU hardware performance counters for security. In: Black Hat Briefings (2015)

21. Hetterich, L., Schwarz, M.: Branch different - spectre attacks on apple silicon. In:
Cavallaro, L., Gruss, D., Pellegrino, G., Giacinto, G. (eds.) DIMVA 2022. LNCS,
vol. 13358, pp. 116–135. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-09484-2_7

22. Huo, T., et al.: Bluethunder: a 2-level directional predictor based side-channel
attack against SGX. In: CHES (2020)

23. Intel: Instructions affected by rogue system register read (2018). https://www.
intel.com/content/www/us/en/developer/articles/technical/software-security-
guidance/resources/instructions-affected-rogue-system-register-read.html

24. Intel: Intel-SA-00115 Q2 2018 Speculative Execution Side Channel Update (2019).
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-
00115.html

25. Intel: Affected Processors: Transient Execution Attacks (2023). https://www.
intel.com/content/www/us/en/developer/topic-technology/software-security-
guidance/processors-affected-consolidated-product-cpu-model.html

26. Intel Corporation: Guidelines for Mitigating Timing Side Channels Against
Cryptographic Implementations (2020). https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security-guidance/secure-coding/
mitigate-timing-side-channel-crypto-implementation.html

27. Intel Corporation: Refined Speculative Execution Terminology (2020). https://
software.intel.com/security-software-guidance/insights/refined-speculative-
execution-terminology

28. Irazoqui, G., Eisenbarth, T., Sunar, B.: MASCAT: stopping microarchitectural
attacks before execution. ePrint 2016/1196 (2017)

29. Irazoqui, G., Eisenbarth, T., Sunar, B.: MASCAT: preventing microarchitectural
attacks before distribution. In: CODASPY (2018)

30. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: S&P (2019)
31. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

32. Koruyeh, E.M., Khasawneh, K., Song, C., Abu-Ghazaleh, N.: Spectre returns!
Speculation attacks using the return stack buffer. In: WOOT (2018)

33. Lee, S., Shih, M., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-grained
control flow inside SGX enclaves with branch shadowing. In: USENIX Security
Symposium (2017)

34. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: cache
attacks on mobile devices. In: USENIX Security Symposium (2016)

35. Lipp, M., et al.: PLATYPUS: software-based power side-channel attacks on x86.
In: S&P (2020)

36. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: USENIX
Security Symposium (2018)

37. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: S&P (2015)

https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-031-09484-2_7
https://doi.org/10.1007/978-3-031-09484-2_7
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/instructions-affected-rogue-system-register-read.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/instructions-affected-rogue-system-register-read.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/instructions-affected-rogue-system-register-read.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://doi.org/10.1007/3-540-68697-5_9

98 D. Weber et al.

38. Lou, X., Zhang, T., Jiang, J., Zhang, Y.: A survey of microarchitectural side-
channel vulnerabilities, attacks, and defenses in cryptography. In: ACM CSUR
(2021)

39. Lutas, A., Lutas, D.: Bypassing KPTI using the speculative behavior of the
SWAPGS instruction. In: BlackHat Europe (2019)

40. Maisuradze, G., Rossow, C.: ret2spec: speculative execution using return stack
buffers. In: CCS (2018)

41. Moghimi, D., Lipp, M., Sunar, B., Schwarz, M.: Medusa: microarchitectural data
leakage via automated attack synthesis. In: USENIX Security Symposium (2020)

42. Mushtaq, M., Akram, A., Bhatti, M.K., Chaudhry, M., Lapotre, V., Gogniat, G.:
Nights-watch: a cache-based side-channel intrusion detector using hardware per-
formance counters. In: HASP (2018)

43. Mushtaq, M., et al.: WHISPER: a tool for run-time detection of side-channel
attacks. IEEE Access 8, 83871–83900 (2020)

44. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The spy in the
sandbox: practical cache attacks in JavaScript and their implications. In: CCS
(2015)

45. Paccagnella, R., Luo, L., Fletcher, C.W.: Lord of the ring (s): side channel attacks
on the CPU on-chip ring interconnect are practical. In: USENIX Security Sympo-
sium (2021)

46. Payer, M.: HexPADS: a platform to detect “stealth” attacks. In: Caballero, J.,
Bodden, E., Athanasopoulos, E. (eds.) ESSoS 2016. LNCS, vol. 9639, pp. 138–154.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30806-7_9

47. Percival, C.: Cache missing for fun and profit. In: BSDCan (2005)
48. Purnal, A., Turan, F., Verbauwhede, I.: Prime+Scope: overcoming the observer

effect for high-precision cache contention attacks. In: CCS (2021)
49. Qiu, P., et al.: PMUSpill: the counters in performance monitor unit that leak

SGX-protected secrets. arXiv:2207.11689 (2022)
50. Ragab, H., Barberis, E., Bos, H., Giuffrida, C.: Rage against the machine clear: a

systematic analysis of machine clears and their implications for transient execution
attacks. In: USENIX Security (2021)

51. Ragab, H., Milburn, A., Razavi, K., Bos, H., Giuffrida, C.: CrossTalk: speculative
data leaks across cores are real. In: S&P (2021)

52. Rokicki, T., Maurice, C., Schwarz, M.: CPU port contention without SMT. In:
Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) ESORICS 2022. LNCS,
vol. 13556, pp. 209–228. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-17143-7_11

53. Schwarz, M., Canella, C., Giner, L., Gruss, D.: Store-to-leak forwarding: leaking
data on meltdown-resistant CPUs. arXiv:1905.05725 (2019)

54. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard
extension: using SGX to conceal cache attacks. In: Polychronakis, M., Meier, M.
(eds.) DIMVA 2017. LNCS, vol. 10327, pp. 3–24. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-60876-1_1

55. Schwarz, M., et al.: KeyDrown: eliminating software-based keystroke timing side-
channel attacks. In: NDSS (2018)

56. Schwarz, M., et al.: ZombieLoad: cross-privilege-boundary data sampling. In: CCS
(2019)

57. Singh, B., Evtyushkin, D., Elwell, J., Riley, R., Cervesato, I.: On the detection of
kernel-level rootkits using hardware performance counters. In: Asia CCS (2017)

https://doi.org/10.1007/978-3-319-30806-7_9
http://arxiv.org/abs/2207.11689
https://doi.org/10.1007/978-3-031-17143-7_11
https://doi.org/10.1007/978-3-031-17143-7_11
http://arxiv.org/abs/1905.05725
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1

Reviving Meltdown 3a 99

58. Uhsadel, L., Georges, A., Verbauwhede, I.: Exploiting hardware performance coun-
ters. In: 5th Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC
2008) (2008)

59. Van Bulck, J., et al.: Foreshadow: extracting the keys to the Intel SGX kingdom
with transient out-of-order execution. In: USENIX Security Symposium (2018)

60. Van Bulck, J., et al.: LVI: Hijacking transient execution through microarchitectural
load value injection. In: S&P (2020)

61. van Schaik, S., et al.: RIDL: rogue in-flight data load. In: S&P (2019)
62. Varda, K.: Dynamic process isolation: research by cloudflare and TU Graz (2021).

https://blog.cloudflare.com/spectre-research-with-tu-graz/
63. Wang, H., Sayadi, H., Sasan, A., Rafatirad, S., Homayoun, H.: Hybrid-shield: accu-

rate and efficient cross-layer countermeasure for run-time detection and mitigation
of cache-based side-channel attacks. In: ICCAD (2020)

64. Wang, H., Sayadi, H., Sasan, A., Rafatirad, S., Mohsenin, T., Homayoun, H.: Com-
prehensive evaluation of machine learning countermeasures for detecting microar-
chitectural side-channel attacks. In: GLSVLSI (2020)

65. Weisse, O., et al.: Foreshadow-NG: Breaking the Virtual Memory Abstrac-
tion with Transient Out-of-Order Execution (2018). https://foreshadowattack.eu/
foreshadow-NG.pdf

66. Xiao, Y., Li, M., Chen, S., Zhang, Y.: STACCO: differentially analyzing side-
channel traces for detecting SSL/TLS vulnerabilities in secure enclaves. In: CCS
(2017)

67. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache side-
channel attack. In: USENIX Security Symposium (2014)

68. Yarom, Y., Genkin, D., Heninger, N.: CacheBleed: a timing attack on OpenSSL
constant-time RSA. JCEN 7, 99–112 (2017). https://doi.org/10.1007/s13389-017-
0152-y

69. Zhang, T., Zhang, Y., Lee, R.B.: CloudRadar: a real-time side-channel attack detec-
tion system in clouds. In: Monrose, F., Dacier, M., Blanc, G., Garcia-Alfaro, J.
(eds.) RAID 2016. LNCS, vol. 9854, pp. 118–140. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45719-2_6

70. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: CCS (2012)

71. Zhang, Y., Reiter, M.: Düppel: retrofitting commodity operating systems to miti-
gate cache side channels in the cloud. In: CCS (2013)

72. Zhang, Z., et al.: See through walls: detecting malware in SGX enclaves with SGX-
bouncer. In: Asia CCS (2021)

https://blog.cloudflare.com/spectre-research-with-tu-graz/
https://foreshadowattack.eu/foreshadow-NG.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf
https://doi.org/10.1007/s13389-017-0152-y
https://doi.org/10.1007/s13389-017-0152-y
https://doi.org/10.1007/978-3-319-45719-2_6
https://doi.org/10.1007/978-3-319-45719-2_6

Tamarin-Based Analysis of Bluetooth
Uncovers Two Practical Pairing

Confusion Attacks

Tristan Claverie1,2,3(B), Gildas Avoine2,3, Stéphanie Delaune3,
and José Lopes Esteves1

1 Agence Nationale de la Sécurité des Systèmes d’Information (ANSSI), Paris, France
2 INSA de Rennes, Rennes, France

3 Univ Rennes, CNRS, IRISA, Rennes, France
tristan.claverie@irisa.fr

Abstract. This paper provides a Tamarin-based formal analysis of all
key-agreement protocols available in Bluetooth technologies, i.e., Blue-
tooth BR/EDR, Bluetooth Low Energy, and Bluetooth Mesh. The auto-
mated analysis found several unreported attacks, including two attacks
that exploit the confusion of Pairing modes, which occurs when a com-
municating party uses the Secure Pairing mode while the other one uses
the Legacy Pairing mode. They have been validated in practice using off-
the-shelf implementations for the genuine communicating parties, and a
custom BR/EDR machine-in-the-middle framework for the attacker. Our
attacks have been reported by Bluetooth SIG as CVEs.

1 Introduction

Bluetooth technologies are increasingly used worldwide as ways to transmit data
over-the-air. In 2021, 4.7 billion Bluetooth devices were shipped according to the
Bluetooth Special Interest Group (SIG) [24]. There are actually three distinct
Bluetooth technologies: Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR),
Bluetooth Low Energy (BLE), and Bluetooth Mesh (BM). While the details
differ, all of them aim at providing confidentiality, integrity, and authentication.

Many flaws have been discovered over the years in Bluetooth standards.
Some of them are related to the use of improper cryptographic primitives [30–
32], others are purely protocol-level flaws [1,2,15,37,40], and a few ones rely on
incorrect implementations of cryptographic primitives [7,18,35]. The behaviour
of Bluetooth stacks was also studied, especially on mobile platforms [3,41,42],
revealing some vulnerabilities in implementations.

Bluetooth communication security mostly relies on the key agreement step,
which can be performed using many different protocols and sub-protocols. This
makes the security analysis highly complex. The pairing confusion introduced
in [37] is an attack that exploits the interaction of two key-agreement protocols
in Bluetooth. It consists in a scenario where an entity uses Protocol A while

This work received funding from the France 2030 program managed by the French
National Research Agency under grant agreement No. ANR-22-PECY-0006.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 100–119, 2024.
https://doi.org/10.1007/978-3-031-51479-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_6

Tamarin-Based Analysis 101

the other entity uses Protocol B, such that they are not aware of this protocol
mismatch. Usually, such a mismatched interaction ends with a failure. However,
for some protocol pairs, the attacker can exploit messages sent in Protocol A to
break the security properties of Protocol B, and conversely.

Formal protocol verification is the process of abstracting a protocol to prove
that the considered security properties hold. Tamarin [28] and ProVerif [8] are
state-of-the-art tools that automatically perform this formal protocol verifica-
tion. They have been used for verifying complex protocols such as TLS 1.3 [6,17]
and 5G-AKA [16]. When their analyses complete, they grant either a formal
proof that the considered security property hold, or an attack.

Several studies of protocol confusion have been performed for Bluetooth key
agreements [23,33,40] using automated formal tools, but not in a systematic
way. Although [23] and [33] consider some form of imperfect primitives, those
representations are not accurate with regards to the current knowledge about
Bluetooth protocols. As a result, most known attacks are not identified by those
analyses.

Contributions. In this paper, comprehensive Tamarin models of all Bluetooth
key-agreement protocols defined in BR/EDR, BLE, and BM are detailed. Those
models are enhanced with representations of cryptographic imperfections that
affect Bluetooth. In particular, they are used to systematically analyse pairing
confusions in Bluetooth key agreements. Tamarin automatically identifies previ-
ously published attacks and identifies five new attacks, including four novel cases
of protocol confusion. We highlight that the Bluetooth SIG assigned two CVEs
for two of those attacks that defeat currently known mitigations against pairing
confusions. To explore the practicality of these attacks, a BLE and a BR/EDR
Machine-in-the-Middle (MitM) are implemented on the respective pairing meth-
ods of those technologies. To the best of our knowledge, this is the first practical
MitM implementation on the BR/EDR pairing. Two additional attacks defeat
proposed patches of BM Provisioning from the literature. A detailed research
report of the presented work, including our Tamarin models, can be found in [14].

Outline. Section 2 provides an introduction to Bluetooth key-agreement proto-
cols and their known flaws. Section 3 details the Tamarin formal models devel-
oped for this study. The results, including new attacks and their implementations
are described in Sect. 4 before being compared to the literature.

2 Background

In this section, we introduce two distinct Bluetooth technologies: Bluetooth
Basic Rate/Enhanced Data Rate (BR/EDR) and Bluetooth Low Energy (BLE),
respectively standardised in 1999 and 2010 [9]. Bluetooth Mesh (BM) is not
described in this section, but a description can be found in [14]. BR/EDR is
routinely used in audio devices (e.g., earbuds, speakers) while BLE is commonly
used in other smart devices (e.g., watches). They have a similar security archi-
tecture. Both technologies try to grant confidentiality, integrity and authenticity

102 T. Claverie et al.

of communications. Those properties rely on symmetric keys that are exchanged
during a key agreement.

2.1 Key Agreement

In BR/EDR and BLE, the key agreement step is called Pairing and is performed
between devices respectively called Initiator and Responder. To uniquely identify
each protocol, two concepts are introduced. The term Pairing mode refers to the
type of Pairing, it can be Legacy or Secure. The term Pairing method refers to
the protocol name as standardized in the specification. The differences between
the methods lie in the messages required to complete them and input/output
capabilities of devices. Table 1 lists the Pairing protocols standardised. In this
paper, a protocol is identified by a mode and a method, e.g., Legacy JustWorks,
Secure Out-of-Band (OOB), etc.

Table 1. BR/EDR and BLE Pairing protocols

Pairing
Mode

BR/EDR BLE

Legacy Secure Legacy Secure

Pairing
Method

PIN Pairing JustWorks
Passkey Entry
Numeric Compari-
son
Out-of-Band

JustWorks
Passkey Entry
Out of Band

JustWorks
Passkey Entry
Numeric Compari-
son
Out-of-Band

For illustration purposes, we detailed below two protocols, the Legacy PIN
Pairing protocol in BR/EDR, and the Legacy Passkey Entry protocol in BLE.

Legacy PIN Pairing for BR/EDR (Fig. 1). Functions E1, E21, and E22 are
defined in the specification [9] (Vol 2, Part H, §6). The key agreement starts
when the Initiator sends a nonce in rand to the Responder 1 . The user has
to exchange a numeric code between devices, called the PIN 2 . This PIN is
used alongside in rand and the Initiator address to derive Kinit. Kinit is used
to mask two nonces comb keyi and comb keyr 3 which are used to derive the
Link Key (LK) 4 . According to the specification, the Pairing process is over
once LK is created, but a mutual authentication procedure has to follow 5 .

Legacy Passkey Entry for BLE (Fig. 2). Functions c1 and s1 are defined in
the specification [9] (Vol 3, Part H, §2.2). The protocol starts with a Feature
Exchange step 1 , that is used to provide information about input-output capa-
bilities, key size to use, etc. Then, the user has to exchange a numeric code
between the devices 2 . Typically, one device displays a code that the user
enters in the other one. This code is used as a symmetric key in a commitment
scheme 3 . This step is used to authenticate the capabilities and respective
addresses of the devices. Finally, nonces exchanged in step 3 are used to derive
a Short-Term Key (STK) that is then used to encrypt the communication.

Tamarin-Based Analysis 103

Fig. 1. BR/EDR Legacy PIN Pairing and Mutual Legacy Authentication

2.2 Tamarin Prover

The Tamarin prover [28] is a security protocol verification tool that supports
both falsification and verification in the symbolic model. As usual in symbolic
models, Tamarin represents the messages exchanged and computations as alge-
braic terms. Tamarin has already been successfully used to analyse many pro-
tocols, e.g., TLS [17], WPA2 [19], and EMV [5]. Compared to similar tools like
ProVerif [8] or AVISPA [38], Tamarin comes with a better user interface and
more refined models for some primitives like Diffie-Hellman and XOR.

Modelling Protocols. At its core, Tamarin is based on multiset rewriting. This
means a protocol is represented using a series of multiset rewriting rules. A rule
essentially dictates the labelled transition from one set of facts to another.

rule Resp: Resp1(idA), In(x) Label(idA,x) Resp2(idA, x), Out(h(x))

Example 1. Tamarin rewriting rule

A Tamarin rule is composed of four elements, namely its name, the set of
facts that are input to the rule, the set of labels that are produced by the rule,
and the set of facts that are output by the rule. In Example 1, if there exists a
fact Resp1(idA) and there is an input message x in Tamarin’s state, applying this
rule will consume the fact Resp1, and produce the fact Resp2. The label Label is
generated by the application of this rule. Out(...) is a special fact that represents
the emission of a message over a public channel. In(...) is also a special fact that

104 T. Claverie et al.

Fig. 2. BLE Legacy Passkey Entry

denotes the reception of a message. In this rule, idA and x are variables that can
a priori be terms of any form or type.

Modelling Attacker. Tamarin analyses protocols in the Dolev-Yao model [20]
where the attacker has full control over the communication channel: it is able to
receive, intercept, modify, and forge messages. Tamarin automatically generates
rules for the attacker, which enables it to perform common operations, like split-
ting and concatenating messages, etc. The attacker’s knowledge is updated with
each message sent on the public channel, hence with each Out(...) produced. Sim-
ilarly, each message known to the attacker can be sent over the public channel,
hence received in any In(...) fact.

In order to represent cryptographic operations, Tamarin enables to define
function symbols and their relations through equations. It comes with existing
symbols such as XOR, symmetric encryption, Diffie-Hellman, etc. The set of
equations that relate functions together is called an equational theory.

Modelling Properties. To gain insight and knowledge about protocols, Tamarin
allows encoding mathematical properties, called lemmas. They are expressed
using labels that are produced by rewriting rules.

lemma InitKeySecrecy:
”∀ id, stk #i. InitEndPairing(id, stk) @#i =⇒ � #j . K(stk) @#j”

Example 2. Tamarin lemma

Example 2 expresses a simple weak secrecy claim: if an Initiator ends the
protocol with a certain key stk at time #i, the attacker is unable to retrieve
it at any point in time. The lemmas are expressed as logical formulas, using
quantifiers and negations, and the attacker knowledge is represented with fact K.

Tamarin-Based Analysis 105

When provided with a lemma, Tamarin tries to prove it is true in all cases
or provide an execution trace. This execution trace illustrates the different rules
that are applied and the actions the attacker took to contradict the lemma.
From this trace, it is possible to manually identify the messages and computa-
tions an attacker does to invalidate the property studied. An other possibility
is that Tamarin may not finish the proof within the allocated resources (time,
memory). When Tamarin does not finish, it is possible to use an interactive
mode and to prove the property manually by guiding Tamarin about the states
to explore. Because Tamarin is, at its core, a prover, it does not yield all coun-
terexamples of a lemma for a model. This means that when knowingly studying
a flawed protocol, Tamarin is not able to enumerate all the attacks on this pro-
tocol. Furthermore, by default Tamarin considers cryptographic primitives to be
perfect. However, some primitives have known weaknesses and some protocols
use primitives in an incorrect way. Representing cryptographic imperfections
requires an extra modelling step so Tamarin can include them in the model.

2.3 Related Work

Bluetooth technologies have been subject to many attacks over the years. A
survey of those affecting BLE can be found in [10]. Some studies have focused
on the security of the reconnection step: BIAS [1] considers the authentication
protocol during reconnection in BR/EDR, KNOB [4] the key size reduction in
BR/EDR, and BLESA [39] the reconnection in BLE.

There are also passive attacks on Bluetooth technologies. In BR/EDR,
Legacy Pairing is vulnerable to offline key recovery from a capture of exchanged
messages [32]. Legacy Pairing in BLE has the same flaw although the details dif-
fer [31]. In a Secure Pairing protocol, Lindell showed the possibility to retrieve
passively an authentication secret [25], which applies to BLE and BR/EDR.

Rosa [30] proposed an active attack on Legacy Pairing in BLE that relies on
a flawed cryptographic primitive. Researchers studied the use of ECDH in the
Pairing protocols [7,18], found flaws in the authentication of public keys and
discussed possible attacks. Key size reduction is also studied in BLE [2], which
proved to be vulnerable to some extent.

BlueMirror [15] proposed an extensive study of reflection attacks in Bluetooth
technologies and showed their applicability to all of them. In [37], the authors
define the concept of pairing confusion, where the attacker forces two devices to
use two different Pairing protocols. In their attack, an attacker forces device A
to complete Secure Passkey Entry while device B completes Secure Numeric
Comparison. They show that in this setup, implementations do not allow the
user to distinguish between both protocols. As a result, the attacker can complete
them and retrieve the encryption key derived by each device.

Bluetooth was also studied from a formal perspective. Some studies per-
formed manual proofs of some parts of Bluetooth. In [26], a proof of Secure
Numeric Comparison is done. A formal analysis of Secure Passkey Entry is
proposed in [36]. The security of the reconnection step in BR/EDR and BLE

106 T. Claverie et al.

is studied in [21]. Formal studies using automated tools are also detailed
in [12,13,18,23,29,40] and [33]. They are discussed in depth in Sect. 4.3.

3 Formal Models

This section details the choices made to model Bluetooth key agreements. We
list in Sect. 3.2 all the cryptographic weaknesses that the attacker can exploit
and explain how they are modelled in Tamarin. Then, the approach taken for
modelling Bluetooth key agreements is presented.

3.1 Security Model

Security Properties. We study three kinds of security goals that are defined
in the specification: confidentiality, authentication, and MitM protection.

Confidentiality and authentication are defined in this paper similarly to what
is done in other Bluetooth formal analyses [33,40]. For each Bluetooth technol-
ogy, confidentiality comes from the secrecy of the keys derived at the end of the
key agreement. Secrecy is modelled per participant, that is the secrecy of the
keys derived by each participant is verified. To model authentication, we use
the definition of non-injective agreement from Lowe’s [27] taxonomy. Again, this
property is modelled per participant, to ensure that no device has unknowingly
completed a key agreement with an attacker.

Finally, the MitM protection [9] (Vol 1, Part A, §5.2.3) is formalized. It rep-
resents the fact that an attacker should not be able to complete a key agreement
with both participants at the same time and yet know the keys derived by each
side. This property is also studied in [33] for BLE Secure Pairing.

Attacker Model. There are three kinds of communication channels that are
used in Bluetooth specifications. The first channel is the Bluetooth channel,
which carries Bluetooth messages over the radio between devices. It is considered
that the attacker has Dolev-Yao capabilities over the channel. The attacker is
able to forge, modify, block, and relay messages over the radio.

The second kind of channel is the one used to model user interactions, because
the user needs to perform some actions to complete most key agreements. In this
model, the user is considered honest and performs actions as required by the
specification. The attacker is supposed to have no access to the output/input
of legitimate devices. When two devices output an information, the user verifies
they match and confirms to continue the key agreement. When two devices
expect an input, the user chooses a random number and fills it on both devices.
When one device outputs an information and the other expects an input, the
user enters the output information on the other device.

The third kind of channel is the OOB channel, that is used to transport
information between two devices. This OOB channel is unspecified, but it is
assumed that the attacker has no access to this channel given that this would
break the security of the OOB protocols.

Tamarin-Based Analysis 107

3.2 Representing Cryptographic Imperfections

By default, Tamarin assumes that cryptography is perfect, but primitives used
in Bluetooth are known to have some weaknesses. This paragraph details how
these imperfections are modelled in Tamarin.

Brute-Force of Low-Entropy Secrets. Some protocols rely on low-entropy
secrets, which can be brute-forced by an attacker. Tis kind of vulnerability has
various shapes depending on the technology and key agreement [2,15,25,31,32].

In Tamarin, the names used to represent nonces/passwords are unguessable
by default: if there is a generated value secret and the attacker has access to
h (secret), without further rule the attacker is unable to retrieve the value of
secret. While this assumption is correct for some protocols (e.g., if the secret
value is 128-bit long), Bluetooth uses several low-entropy secrets that can be
brute-forced in a practical time. To model this capability, special rules are created
to output the targeted secret when the attacker has provided enough information.

rule Oracle f4:
LowEntropyf4(pk1, pk2, n, s), In(pk1), In(pk2), In(n), In(f4(pk1, pk2, n, s))
AttackerRecoveredPasskey(s) Out(s)

Example 3. Oracle rule in Tamarin

The implementation of the passkey recovery [25] from BLE Secure Passkey
Entry protocol is done with the rule depicted in Example 1. The function f4 is
defined in the specification and is common to several Pairing methods. The meth-
ods that use a low-entropy secret generate the fact LowEntropyf4 (pk1, pk2, n, s)
that allows to enter this rule. The attacker also needs to prove knowledge of all
the elements by sending them on the public channel. When used, this rule out-
puts the secret. The use of an explicit “oracle” rule makes it appear in Tamarin’s
execution traces, therefore one may follow easily whether such a rule occurs in
a Tamarin attack trace. The ability of the attacker to brute-force downgraded
keys, discussed in [2,33] is also modelled using such an oracle.

Malleable Commitment. This issue is present in BLE Legacy Pairing [30]
and in BM Provisioning [15]. While both instances of commitment functions
in Bluetooth have different cryptographic details, they are conceptually very
similar. In BLE, the commitment protocol is displayed in step 3 of Fig. 2:
both devices exchange a commitment value computed from a key, a nonce, an
authentication secret, and additional data. Device A sends the first commitment,
followed by B. Then both devices exchange their nonces.

The vulnerabilities rely on the attacker posing as device B. Upon reception
of A’s commitment, the attacker replies to A with an arbitrary value. Then,
A sends its nonce. From A’s nonce and commitment, the attacker is able to
recover an authentication secret. The attacker then crafts a nonce from the sent
commitment and recovered authentication secret.

108 T. Claverie et al.

functions:
aes cmac/2, // Representation of cmac
get b1/3, // Used to retrieve first block

equations:
get b1(aes cmac(k, <b1, b2>), k, b2) = b1,
aes cmac(k, <get b1(c, k, b2), b2>) = c.

Example 4. Representing malleability in Tamarin

To implement the malleable commitment weakness, a specific equational the-
ory is used. In Example 2, one can see the implementation for BM. In particu-
lar, it is necessary to define an equation to craft a nonce, represented here with
get b1. Then, one has to explicitly state that a confirmation that is used in this
way is equal to a proper aes cmac term. With this representation, Tamarin is
able to find this class of attacks on the studied protocols.

This type of cryptographic problem strongly depends on the underlying cryp-
tographic specification, and those equations are not suitable for all protocols. In
Tamarin, it is impossible to state that this equation holds only if b1 and b2 have
a specific size. As a result, those equations give the attacker more power than it
has in practice and are not a generic representation of this kind of problem.

Small Subgroup Attack on ECDH Implementation. In Bluetooth, incor-
rect ECDH implementations have led to some attacks on implementations [7,18].
This attack is a type of small subgroup attack that affects BR/EDR and BLE
when the validity of received public keys is not verified. The representation of this
type of attacks and more generally of incorrect implementations of the Diffie-
Hellman protocol with Tamarin is extensively discussed in [18]. The authors
provide a model of Secure Numeric Comparison with their representation.

In all Bluetooth technologies, the elliptic curves used are P-192 or/and P-
256, which are defined over a field of prime order. Therefore, we adapted the
representation of ECDH provided in their model to all Bluetooth technologies.
Basically, each public key is represented as a group identifier, the neutral element
of the group and the group element. When deriving a Diffie-Hellman key, if the
attacker has managed to modify the group of an element, the key is considered
leaked to the attacker. This is representative of elliptic curve cryptography on
the groups used in Bluetooth, because an appropriate modification of a public
key yields a Diffie-Hellman secret that is on a group of low order (as low as 2).
In that case, the secret becomes easily retrievable using brute-force.

3.3 Modelling Bluetooth Key Agreement Protocols

When modelling key agreements in Bluetooth, one needs to tackle the diversity of
protocols. In order to model them accurately, one needs to model the user interac-
tion required to complete each of them. In the specification, a single protocol may
have several user interaction variations, depending on the input/output capa-
bilities of both devices. For example, in BLE Legacy Passkey Entry, a device

Tamarin-Based Analysis 109

may have an input, an output or both. Whether the device outputs or waits
for a numeric code depends on the other device’s input-output capabilities. To
address this variation, Legacy Passkey Entry is modelled as three sub-protocols
to represent the different user interactions required. This also applies to other
Pairing protocols, and increases the number of protocols that are represented. In
total, there are 13 BLE protocols, 11 BR/EDR protocols, and 8 BM protocols
to consider all the identified variations.

In practice, the choice of the protocol to use between two legitimate devices is
done in the very first step, which is the Feature Exchange. An active attacker has
the ability to modify the features sent by each device, and therefore the ability
to force the protocol used on each side of the connection. Therefore, studying
each pair of protocols makes sense from a Bluetooth’s point of view. Studying the
interaction of all possible pairs of protocols for each technology requires studying
354 (132 + 112 + 82) distinct cases, each case containing several properties to
analyse. This forms the baseline of the models presented in this paper.

In total, there is one model per technology, containing all sub-protocols iden-
tified for this technology. Their respective size is detailed in Table 2. Although
the models are large, the analysis of all lemmas of all protocols is efficient. The
analysed configurations completed in less than 77 h of CPU time.

Table 2. Sizes of the Tamarin models

Model # rules # restrictions # macros # lemmas # lines

BR/EDR 117 13 165 605 ∼11000

BLE 123 12 220 845 ∼14400

BM 57 8 100 640 ∼6600

Using the Models. The Tamarin preprocessor is used to prevent Tamarin from
processing parts of the models that are irrelevant for an interaction. For this
study, the use of macros yielded a speedup of two to three orders of magnitude
for Tamarin. As a result all interactions can be studied in practical time.

Moreover, to gain more insight into the strengths and weaknesses of each
protocol, one may want to study the effects of specific imperfections. Similarly,
to study the effects of a patch, one may want to study the impact if only one of
the two devices is patched. For example, in [18] the authors analyse the outcome
of having one device with a patched ECDH implementation and another with a
flawed one. The proposed models support this type of configuration. For example,
it is possible to study all the mentioned protocols while preventing the attacker
to brute-force low-entropy secrets using a simple command-line flag. Likewise,
it is possible to study all the relevant protocols where one device has a patched
version of ECDH using another flag. Overall, there are different flag combinations
that allow to study different configurations of a model, from the same source file.

4 Security Analysis

The results of our study are presented in this section, and then compared with
existing results from the literature.

110 T. Claverie et al.

4.1 Analysis of the Results

Various configurations of imperfections and patches are analysed. Each study
requires to run Tamarin on the models to try to prove all lemmas, yielding a
proof or an attack trace for each lemma. For example, when ECDH problems are
patched and devices are not vulnerable to keysize reduction, Tamarin identifies
659 attack traces. Each attack trace is manually analysed to identify to which
result it is linked to. Complete annotated result tables are released along with
the models, this section only displays a synthesis of the results.

Table 3. Attacks identified by presented formal models on Bluetooth key agreements

Label Attack
Technology

T
h
is

p
a
p
er

W
u

et
a
l.

[4
0
]

C
re

m
er

s
et

a
l.

[1
8
]

J
a
n
g
id

et
a
l.

[2
3
]

S
h
i
et

a
l.

[3
3
]

BR/EDR BLE BM

A1 Reflection attack on Legacy PIN Pairing

A2 Brute-force PIN from protocol

A3 JustWorks is not authenticated

A4 Pairing Method confusion

A5 Reflection attack in Secure Passkey Entry

A6 (new) Extension to Pairing Method confusion

A7 (new) Pairing Mode confusion

A8 Invalid Curve attack

A9 Reflection attack in Legacy Pairing

A10 Brute-force passkey from protocol

A11 Malleable commitment in Legacy Passkey Entry

A12 (new) Extension to Pairing Method confusion

A13 (new) Pairing Mode confusion

A14 Keysize downgrade in BLE-SC

A15 OOBno is not authenticated

A16 Reflection attack in Provisioning

A17 Brute-force AuthData from protocol

A18 (new) Lack of key confirmation in Provisioning

A19 (combination) Reflection and AuthData brute-force

A20 (combination) Reflection and AuthData retrieval

A21 (combination) AuthData retrieval and malleable commitment

Table 3 summarizes the attacks identified by the presented models. Moreover,
attacks relying on different core assumptions, like semi-compromised devices, are
not displayed. Most attacks were discovered across the years through manual
analysis, and are accurately picked up by our Tamarin models. We only detail
below the new attacks obtained.

In BM, we identify a lack of key confirmation at the end of the protocol
(A18): an attacker can prevent a new device from joining the network, while
making the network believe that the device has successfully joined. This leads
to a Denial of Service (DoS), which exact effects are implementation-dependent.

Several protocol confusions attacks are picked up. The original attack [37]
(A4), describes a confusion between Secure Passkey Entry and Secure Numeric

Tamarin-Based Analysis 111

Comparison that affects BR/EDR and BLE. Tamarin identifies four novel con-
fusion attacks for other pairs of protocols, that break all studied security prop-
erties.

– A6: Legacy PIN Pairing/Secure Numeric Comparison (BR/EDR)
– A7: Legacy PIN Pairing/Secure Passkey Entry (BR/EDR)
– A12: Legacy Passkey Entry/Secure Numeric Comparison (BLE)
– A13: Legacy Passkey Entry/Secure Passkey Entry (BLE)

The original attack is a Pairing confusion regarding the method, whereas
the new ones are Pairing confusions regarding the mode. More importantly, the
original attack, as well as attacks A6 and A12 can be mitigated by improving the
display of expected user actions. In Numeric Comparison, the expected action
is for the user to confirm that two numeric codes are equal, while for Passkey
Entry the expected action is that the user inputs a numeric code displayed by
one device on the other. Some implementations do not have a correct display
of expected user actions, which leads to the possible confusion: users input the
confirmation code into another device [37].

By contrast, attacks A7 and A13 bypass this mitigation because all involved
protocols have identical user actions. They have been attributed CVE identifiers
by the Bluetooth SIG and are described in more details below. Both attacks share
a similar setup, but rely on different cryptographic weaknesses. The attacker
forces one device to use a Legacy protocol which has the same user interaction
as Secure Passkey Entry. The attacker uses a cryptographic issue to complete
the Legacy protocol, retrieving the encryption key and the passkey/PIN used.
Then, the attacker uses the gained knowledge of the passkey to complete the
Secure Passkey Entry protocol.

Attack A7: Pairing Mode Confusion in BR/EDR - CVE-2022-25837.
The attack is depicted in Fig. 3. The attacker forces the Initiator to use the
Secure Passkey Entry protocol and the Responder to use the PIN Pairing pro-
tocol. To do so, the attacker sends the first message of the PIN Pairing protocol
to the Responder which forces it to use this protocol. Then, upon connection of
the Initiator, the attacker announces support for Secure Pairing in its features.
By modifying its input-output capabilities, the attacker forces a valid user inter-
action between PIN Pairing and Secure Passkey Entry, for example the Initiator
may display a numeric code (the passkey) and the Responder asks the user to
input a numeric code (the PIN). The PIN can be recovered from the values
exchanged in the PIN Pairing protocol and the authentication protocol which
serves as key confirmation [32]. Because the PIN is the passkey in the Secure
Passkey Entry protocol, the attacker completes the key agreement with the Ini-
tiator. In the end, the attacker has successfully completed Pairing with both
devices and shares a different encryption key with each of them.

Attack A13: Pairing Mode Confusion in BLE - CVE-2022-25836. The
attack is depicted in Fig. 4. Function c1 is defined in the specification, function
get n computes a correct nonce given a confirmation value. This results in the

112 T. Claverie et al.

Fig. 3. Pairing Mode Confusion in BR/EDR A7

malleability of the commitment function in Legacy Passkey Entry protocol, as
found by Rosa [30]. The attacker can force the Initiator to use the Legacy Passkey
Entry protocol and the Responder to use the Secure Passkey Entry protocol
by modifying the input-output capabilities and the Secure flag during Feature
Exchange. The attacker then completes the protocol on the Legacy side, which
makes use of the ability to brute-force the passkey and of the malleability of the
commitment in Legacy Pairing. This enables the attacker to recover the passkey,
thus to have a legitimate Secure Passkey Entry interaction with the Responder.
In the end, the attacker has completed Pairing with both devices while sharing
a different encryption key with each of them.

4.2 Practical Implementation

To assess their applicability, Pairing Mode confusion attacks have been tested on
off-the-shelf devices. In BR/EDR and BLE, the specification defines a complete

Tamarin-Based Analysis 113

Fig. 4. Pairing Mode Confusion in BLE A13

protocol stack, from the physical layer to the application layer. Pairing happens
in the intermediate layers of the protocol stack. Both Pairing Mode confusions
require the attacker to implement a custom Pairing procedure. Hence, to perform
the attack one needs the ability to receive and craft Pairing messages.

To implement the attack in BR/EDR, the research-oriented firmware Brak-
Tooth [22] is used. It is to be noted that the core feature necessary to implement
this attack, namely message injection in the layer handling Pairing messages
in BR/EDR, is an undocumented component of the firmware. Thus, a custom
driver is developed to create a MitM framework out of two dongles flashed with
this firmware. Then, the handling of Pairing messages is reimplemented to imple-
ment both sides of the attacks. To the best of the authors knowledge, this is the
first practical implementation of BR/EDR MitM on a Pairing protocol.

To implement the attack in BLE, the framework Mirage [11] that has built-
in support of BLE MitM is used. As with BR/EDR, the handling of Pairing
messages is reimplemented to implement both sides of the attacks.

For each technology, two Android phones are used as targets. The attack is
successful in both cases, meaning that the attacker is able to retrieve the encryp-
tion key with both devices. It is important to raise that the user interaction is
the same for both the Legacy and the Secure modes. Finally, it is noted that the
user interaction on Android is identical between BR/EDR and BLE. Though it
was not tested, it could be used to create Pairing Technology confusion attacks,
by using a different technology with each target.

114 T. Claverie et al.

4.3 Related Work

There are few published formal symbolic analyses of the Bluetooth protocols
involving automated tools. For completeness, it is noted that [13] performed a
ProVerif [8] analysis of Numeric Comparison but did not identify any weakness.
In [12] the authors demonstrated that injective key agreement does not hold in
Numeric Comparison. A study of misbinding attacks is performed in [29] using
ProVerif. All those studies focus on various definitions of authentication for one
or two Pairing protocols, while the present paper considers all Bluetooth key
agreements. The relevance of our model and results are discussed with respect
to more accurate models of Bluetooth key agreements: [18,23,40] and [33].

In [18], the authors use Tamarin to study the security of the Secure Numeric
Comparison protocol with regards to small subgroup attacks on the Diffie-
Hellman key exchange, extending results from [7]. In the present study, the
analysis of BR/EDR and BLE is also done considering two, one or none of the
devices patched. This allows identifying more possible attack scenarios where
some attacks are combined. The results for those configurations are not reported
in this paper due to size constraints, but the models are available for further
study.

In [40], the authors also study the Pairing protocols in BR/EDR and BLE.
However, they do not take into account Legacy protocols, and do not perform a
systematic study of possible confusion attacks. Also, their model of Secure pro-
tocols considers perfect cryptographic primitives, this makes them miss attacks
on ECDH and the reflection attack on Secure Passkey Entry, which are cor-
rectly identified by our models. In Bluetooth Mesh, the authors propose a patch
for the reflection attack identified (A15). However, those patches were analysed
with our models and proven insecure, as they still allow an attacker to compro-
mise communications. The attacks on the patches rely on a known weakness of
Bluetooth Mesh in the use of a malleable commitment function based on AES-
CMAC. As a result, the attacks on the patches are similar to the attacks on the
original Provisioning protocol described in [15].

In [23], the authors analyse Secure Passkey Entry in Tamarin. Among the
attacks they identified, there are Pairing Confusion [37] and the reflection
attack [15]. These attacks were known before and also retrieved by our anal-
ysis. The other attacks they identified rely on the hypothesis that the attacker
gains the passkey in other ways, due to implementation problems (e.g., bad ran-
domness). In our model we decided not to make any implementation-related
assumptions, meaning that we do not catch these attacks. Furthermore, their
study tackles only one Pairing protocol, while ours encompasses all Bluetooth
key agreements and considers more cryptographic imperfections.

The authors of [33] study protocol confusion, but only for BLE Secure Pair-
ing. They did neither model BR/EDR Secure Pairing nor Legacy protocols. They
also study the possibility of keysize downgrade in BLE Secure Pairing, but do not
model any other cryptographic weakness. They identify another type of attack
that may lead to a DoS called keysize confusion attack. The keysize downgrade
is accurately picked up by our analysis, but the keysize confusion is not caught

Tamarin-Based Analysis 115

because DoS attacks are out of scope of this paper. It is worth noting that our
work confirms that the keysize downgrade attack is valid in BLE Secure Pairing,
but it shows that it does not affect BLE Legacy Pairing. Upon verification, the
reason is that the bytes containing the key size are part of the authentication
protocol in all Legacy Pairing protocols, but are not in any Secure Pairing pro-
tocol. As a result, an attacker can modify the keysize bytes without affecting the
protocol in BLE Secure Pairing, but cannot do so in BLE Legacy Pairing.

5 Conclusion

Bluetooth has a security mode in BLE and BR/EDR that forces connections to
use Secure Pairing modes only and 128-bit keys. For example, this mode can be
used for critical applications. Whether it is implemented and enforced remains
an implementation and configuration matter.

The attacks presented in this paper demonstrate that the knowledge of the
configuration of one of the two devices is not enough to have complete security
guarantees. If one device is configured to use only Secure Pairing but the peer
device still allows Legacy Pairing, then the communication between them is not
immune to attacks. Moreover, the user is not able to detect the attack because
the mode confusion keeps an identical user interaction as a legitimate exchange.

In its statement about the original Pairing Method confusion from [37], the
Bluetooth SIG [34] recommends device manufacturers to make it more obvious
which interaction is expected from users, to avoid confusions. They did not
modify the underlying protocols, hence no patch is enforced for this problem.
The confusions presented in this paper bypass this mitigation because the user
interaction is not only similar but identical for both protocols.

For the Pairing Mode confusion, weaknesses in Legacy modes are used to
break a Secure mode. Because Legacy Pairing protocols are structurally broken,
they cannot be patched while remaining compatible with older devices. Security-
wise, the only definitive technical solution consists in removing Legacy Pairing
from implementations and specifications to make devices compliant with Legacy
Pairing gradually disappearing. However, removing Legacy Pairing would pre-
vent communication with devices that do not support Secure Pairing.

In its statements about those vulnerabilities, the Bluetooth SIG recommends
to disable Legacy Pairing and to implement better user interaction to indicate
if Legacy mode is being used. However, this is not always possible, as not all
devices possess a screen to accurately inform the user. Overall, for an informed
user, the best way to remain protected from such attacks is to verify that both
communicating devices are up to date and have disabled Legacy Pairing.

Acknowledgements. We kindly thank the authors of [40] for their insightful remarks
about Bluetooth formal modelling and Bluetooth Mesh Provisioning.

116 T. Claverie et al.

References

1. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.: BIAS: Bluetooth Impersonation
AttackS. In: 41st IEEE Symposium on Security and Privacy, SP 2020, San Fran-
cisco, CA, USA, 18–21 May 2020, pp. 549–562. IEEE Computer Society (2020).
https://doi.org/10.1109/SP40000.2020.00093

2. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.: Key negotiation downgrade
attacks on Bluetooth and Bluetooth low energy. ACM Trans. Priv. Secur. 23(3),
1–28 (2020). https://doi.org/10.1145/3394497

3. Antonioli, D., Tippenhauer, N.O., Rasmussen, K., Payer, M.: BLURtooth: exploit-
ing cross-transport key derivation in Bluetooth classic and Bluetooth low energy.
In: ASIA CCS 2022: ACM Asia Conference on Computer and Communications
Security, Nagasaki, Japan, 30 May 2022–3 June 2022, pp. 196–207. ACM (2022).
https://doi.org/10.1145/3488932.3523258

4. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.B.: The KNOB is broken: exploit-
ing low entropy in the encryption key negotiation of Bluetooth BR/EDR. In: 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA,
14–16 August 2019, pp. 1047–1061. USENIX Association (2019)

5. Basin, D.A., Sasse, R., Toro-Pozo, J.: The EMV standard: break, fix, verify. In:
2021 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, US,
23–27 May 2021, pp. 1766–1781. IEEE (2021). https://doi.org/10.1109/SP40001.
2021.00037

6. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: 38th IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, 22–26 May 2017, pp. 483–502.
IEEE Computer Society (2017). https://doi.org/10.1109/SP.2017.26

7. Biham, E., Neumann, L.: Breaking the Bluetooth pairing – the fixed coordinate
invalid curve attack. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol.
11959, pp. 250–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
38471-5 11

8. Blanchet, B.: Automatic verification of security protocols in the symbolic model:
the verifier ProVerif. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 54–87. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10082-1 3

9. Bluetooth SIG: Bluetooth Core Specification, v5.4 (2023)
10. Cäsar, M., Pawelke, T., Steffan, J., Terhorst, G.: A survey on Bluetooth low energy

security and privacy. Comput. Netw. 205, 108712 (2022). https://doi.org/10.1016/
j.comnet.2021.108712

11. Cayre, R., Nicomette, V., Auriol, G., Alata, E., Kaâniche, M., Marconato, G.V.:
Mirage: towards a metasploit-like framework for IoT. In: 30th IEEE International
Symposium on Software Reliability Engineering, ISSRE 2019, Berlin, Germany,
28–31 October 2019, pp. 261–270. IEEE Computer Society (2019). https://doi.
org/10.1109/ISSRE.2019.00034

12. Chang, R., Shmatikov, V.: Formal analysis of authentication in Bluetooth device
pairing. In: Proceedings of the Joint Workshop on Foundations of Computer Secu-
rity and Automated Reasoning for Security Protocol Analysis, FCS-ARSPA 2007,
pp. 45–62 (2007)

13. Chothia, T., Smyth, B., Staite, C.: Automatically checking commitment protocols
in ProVerif without false attacks. In: Focardi, R., Myers, A. (eds.) POST 2015.
LNCS, vol. 9036, pp. 137–155. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46666-7 8

https://doi.org/10.1109/SP40000.2020.00093
https://doi.org/10.1145/3394497
https://doi.org/10.1145/3488932.3523258
https://doi.org/10.1109/SP40001.2021.00037
https://doi.org/10.1109/SP40001.2021.00037
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1007/978-3-030-38471-5_11
https://doi.org/10.1007/978-3-030-38471-5_11
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1016/j.comnet.2021.108712
https://doi.org/10.1016/j.comnet.2021.108712
https://doi.org/10.1109/ISSRE.2019.00034
https://doi.org/10.1109/ISSRE.2019.00034
https://doi.org/10.1007/978-3-662-46666-7_8
https://doi.org/10.1007/978-3-662-46666-7_8

Tamarin-Based Analysis 117

14. Claverie, T., Avoine, G., Delaune, S., Lopes Esteves, J.: Extended version: tamarin-
based analysis of Bluetooth uncovers two practical pairing confusion attacks.
https://hal.science/hal-04079883

15. Claverie, T., Lopes Esteves, J.: BlueMirror: reflections on Bluetooth pairing and
provisioning protocols. In: 15th IEEE Workshop on Offensive Technologies, WOOT
2021, San Francisco, CA, USA, 27 May 2021, pp. 339–351. IEEE Computer Society
(2021). https://doi.org/10.1109/SPW53761.2021.00054

16. Cremers, C., Dehnel-Wild, M.: Component-based formal analysis of 5G-AKA:
channel assumptions and session confusion. In: 26th Annual Network and Dis-
tributed System Security Symposium, NDSS 2019, San Diego, California, USA,
24–27 February 2019. The Internet Society (2019)

17. Cremers, C., Horvat, M., Scott, S., van der Merwe, T.: Automated analysis and
verification of TLS 1.3: 0-RTT, resumption and delayed authentication. In: 37th
IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, 22–26
May 2016, pp. 470–485. IEEE Computer Society (2016). https://doi.org/10.1109/
SP.2016.35

18. Cremers, C., Jackson, D.: Prime, order please! Revisiting small subgroup and
invalid curve attacks on protocols using Diffie-Hellman. In: 32nd IEEE Computer
Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA, 25–28 June
2019, pp. 78–93. IEEE Computer Society (2019). https://doi.org/10.1109/CSF.
2019.00013

19. Cremers, C., Kiesl, B., Medinger, N.: A formal analysis of IEEE 802.11’s WPA2:
countering the kracks caused by cracking the counters. In: 29th USENIX Secu-
rity Symposium, USENIX Security 2020, 12–14 August 2020, pp. 1–17. USENIX
Association (2020)

20. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–207 (1983). https://doi.org/10.1109/TIT.1983.1056650

21. Fischlin, M., Sanina, O.: Cryptographic analysis of the Bluetooth secure connection
protocol suite. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol.
13091, pp. 696–725. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92075-3 24

22. Garbelini, M.E., Bedi, V., Chattopadhyay, S., Sun, S., Kurniawan, E.: BrakTooth:
causing havoc on Bluetooth link manager via directed fuzzing. In: 31st USENIX
Security Symposium, USENIX Security 2022, Boston, MA, USA, 10–12 August
2022, pp. 1025–1042. USENIX Association (2022)

23. Jangid, M.K., Zhang, Y., Lin, Z.: Extrapolating formal analysis to uncover attacks
in Bluetooth passkey entry pairing. In: 30th Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2023, San Diego, California, USA, 27 February–3
March 2023. The Internet Society (2023)

24. Jason, M.: New wireless trends and forecasts for the next 5 years. https://www.
bluetooth.com/blog/new-trends-and-forecasts-for-the-next-5-years/

25. Lindell, A.Y.: Attacks on the pairing protocol of Bluetooth v2.1. Black-
Hat, USA (2008). https://www.blackhat.com/presentations/bh-usa-08/Lindell/
BH US 08 Lindell Bluetooth 2.1 New Vulnerabilities.pdf

26. Lindell, A.Y.: Comparison-based key exchange and the security of the numeric
comparison mode in Bluetooth v2.1. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS,
vol. 5473, pp. 66–83. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00862-7 5

https://hal.science/hal-04079883
https://doi.org/10.1109/SPW53761.2021.00054
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1109/CSF.2019.00013
https://doi.org/10.1109/CSF.2019.00013
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1007/978-3-030-92075-3_24
https://doi.org/10.1007/978-3-030-92075-3_24
https://www.bluetooth.com/blog/new-trends-and-forecasts-for-the-next-5-years/
https://www.bluetooth.com/blog/new-trends-and-forecasts-for-the-next-5-years/
https://www.blackhat.com/presentations/bh-usa-08/Lindell/BH_US_08_Lindell_Bluetooth_2.1_New_Vulnerabilities.pdf
https://www.blackhat.com/presentations/bh-usa-08/Lindell/BH_US_08_Lindell_Bluetooth_2.1_New_Vulnerabilities.pdf
https://doi.org/10.1007/978-3-642-00862-7_5
https://doi.org/10.1007/978-3-642-00862-7_5

118 T. Claverie et al.

27. Lowe, G.: A hierarchy of authentication specification. In: Computer Security Foun-
dations Workshop 1997. IEEE Computer Society (1997). https://doi.org/10.1109/
CSFW.1997.596782

28. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

29. Peltonen, A., Sethi, M., Aura, T.: Formal verification of misbinding attacks on
secure device pairing and bootstrapping. J. Inf. Secur. Appl. 51, 102461 (2020).
https://doi.org/10.1016/j.jisa.2020.102461

30. Rosa, T.: Bypassing passkey authentication in Bluetooth low energy. IACR Cryp-
tology ePrint Archive, p. 309 (2013). http://eprint.iacr.org/2013/309

31. Ryan, M.: Bluetooth: with low energy comes low security. In: 7th USENIX Work-
shop on Offensive Technologies, WOOT 2013, Washington, D.C., USA, 13 August
2013. USENIX Association (2013)

32. Shaked, Y., Wool, A.: Cracking the Bluetooth PIN. In: Proceedings of the 3rd
International Conference on Mobile Systems, Applications, and Services, MobiSys
2005, Seattle, Washington, USA, 6–8 June 2005, pp. 39–50. ACM (2005). https://
doi.org/10.1145/1067170.1067176

33. Shi, M., Chen, J., He, K., Zhao, H., Jia, M., Du, R.: Formal analysis and patching of
BLE-SC pairing. In: 32nd USENIX Security Symposium, USENIX Security 2023,
Anaheim, CA, USA, 9–11 August 2023. USENIX Association (2023)

34. Bluetooth SIG: Bluetooth SIG Statement Regarding the Method-Confusion
Pairing Vulnerability. https://www.bluetooth.com/learn-about-bluetooth/key-
attributes/bluetooth-security/method-vulnerability/

35. Tillmanns, J., Classen, J., Rohrbach, F., Hollick, M.: Firmware insider: Bluetooth
randomness is mostly random. In: 14th USENIX Workshop on Offensive Technolo-
gies, WOOT 2020, 11 August 2020. USENIX Association (2020). https://www.
usenix.org/conference/woot20/presentation/tillmanns

36. Troncoso, M., Hale, B.: The Bluetooth CYBORG: analysis of the full human-
machine passkey entry AKE protocol. In: 28th Annual Network and Distributed
System Security Symposium, NDSS 2021, 21–25 February 2021. The Internet Soci-
ety (2021)

37. von Tschirschnitz, M., Peuckert, L., Franzen, F., Grossklags, J.: Method confusion
attack on Bluetooth pairing. In: 42nd IEEE Symposium on Security and Privacy,
SP 2021, San Francisco, CA, USA, 24–27 May 2021, pp. 1332–1347. IEEE Com-
puter Society (2021). https://doi.org/10.1109/SP40001.2021.00013

38. Viganò, L.: Automated security protocol analysis with the AVISPA tool. In: Annual
Conference on Mathematical Foundations of Programming Semantics 2005. Else-
vier (2005). https://doi.org/10.1016/j.entcs.2005.11.052

39. Wu, J., et al.: BLESA: spoofing attacks against reconnections in Bluetooth low
energy. In: 14th USENIX Workshop on Offensive Technologies, WOOT 2020, 11
August 2020. USENIX Association (2020). https://www.usenix.org/conference/
woot20/presentation/wu

40. Wu, J., Wu, R., Xu, D., Tian, D.J., Bianchi, A.: Formal model-driven discovery of
Bluetooth protocol design vulnerabilities. In: 43rd IEEE Symposium on Security
and Privacy, SP 2022, San Francisco, CA, USA, 22–26 May 2022, pp. 2285–2303.
IEEE Computer Society (2022). https://doi.org/10.1109/SP46214.2022.9833777

https://doi.org/10.1109/CSFW.1997.596782
https://doi.org/10.1109/CSFW.1997.596782
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1016/j.jisa.2020.102461
http://eprint.iacr.org/2013/309
https://doi.org/10.1145/1067170.1067176
https://doi.org/10.1145/1067170.1067176
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/method-vulnerability/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/method-vulnerability/
https://www.usenix.org/conference/woot20/presentation/tillmanns
https://www.usenix.org/conference/woot20/presentation/tillmanns
https://doi.org/10.1109/SP40001.2021.00013
https://doi.org/10.1016/j.entcs.2005.11.052
https://www.usenix.org/conference/woot20/presentation/wu
https://www.usenix.org/conference/woot20/presentation/wu
https://doi.org/10.1109/SP46214.2022.9833777

Tamarin-Based Analysis 119

41. Xu, F., Diao, W., Li, Z., Chen, J., Zhang, K.: BadBluetooth: breaking Android
security mechanisms via malicious Bluetooth peripherals. In: 26th Annual Network
and Distributed System Security Symposium, NDSS 2019, San Diego, California,
USA, 24–27 February 2019. The Internet Society (2019)

42. Zhang, Y., Weng, J., Dey, R., Jin, Y., Lin, Z., Fu, X.: Breaking secure pairing of
Bluetooth low energy using downgrade attacks. In: 29th USENIX Security Sym-
posium, USENIX Security 2020, pp. 37–54. USENIX Association (2020). https://
www.usenix.org/conference/usenixsecurity20/presentation/zhang-yue

https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-yue
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-yue

MARF: A Memory-Aware
CLFLUSH-Based Intra- and Inter-CPU

Side-Channel Attack

Sowoong Kim, Myeonggyun Han, and Woongki Baek(B)

UNIST, Ulsan, Republic of Korea
{bioloid,hmg0228,wbaek}@unist.ac.kr

Abstract. In this work, we conduct in-depth characterization to quan-
tify the impact of DRAM refresh, the location of the target memory
object within a non-uniform memory access (NUMA) node, and task
and page placement across NUMA nodes and identify a set of the pat-
terns in the clflush latency data. Based on characterization results, we
propose MARF, a novel memory-aware clflush-based intra- and inter-
CPU side-channel attack on NUMA systems. Our case studies on three
real NUMA systems demonstrate that MARF can robustly be used to
attack applications that use widely-used cryptographic and user-interface
libraries. We also present potential countermeasures against MARF.

1 Introduction

The wide adoption of NUMA systems and workload consolidation [3,24] has
both positive and negative aspects in terms of security. With workload con-
solidation, malicious users can deploy attacks that exploit the side channels
available through various hardware components such as caches [7,8,13,15–
17,20,23,29,34], translation look-aside buffers (TLBs) [8,12,19], branch tar-
get buffers (BTBs) [8,9,16,17], and directories [21,33] against other applica-
tions consolidated on the same physical servers. The attacker can monitor the
states of security-critical hardware components, infer the activities (e.g., mem-
ory accesses) of the victim based on the changes in the hardware states, and
discover security-sensitive information (e.g., the private key of a cryptographic
service) based on the inferred activities of the victim.

Most of the prior works on micro-architectural side-channel attacks assume
single CPU scenarios in which consolidated workloads are placed on the same
multi-core CPU [7–9,12,13,15–17,19,21,23,29,33,34]. With the widespread use
of NUMA systems, security-sensitive applications can be isolated on the dedi-
cated CPU among the multiple CPUs in order to defeat single CPU-based micro-
architectural side-channel attacks.

Irazoqui et al. propose a clflush-based side-channel attack for multi-CPU
scenarios [20]. However, the attack proposed in [20] has two major limitations
– (1) unawareness of DRAM refresh and (2) use of the load instruction. The
attack proposed in [20] is oblivious of DRAM refresh. Therefore, it suffers from
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 120–140, 2024.
https://doi.org/10.1007/978-3-031-51479-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_7

MARF 121

low accuracy because a considerable portion of the latency data samples collected
by the attacker are significantly affected by DRAM refresh. In addition, since
the attack proposed in [20] frequently executes the load instruction to probe the
activities of the victim, it can be mitigated or defeated by the existing defense
techniques that identify suspicious applications that incur high cache miss rates
through hardware performance counters [2,5]. To bridge this gap, this paper
makes the following contributions:

– We quantify the impact of DRAM refresh, the location of the target memory
object in a NUMA node, and task and page placement on the clflush latency
on three real NUMA systems and identify a set of the clflush latency data
patterns with respect to the aforementioned factors.

– Guided by the characterization results, we propose MARF, a memory-aware
clflush-based intra- and inter-CPU side-channel attack.

– We present case studies where MARF is used to attack applications that
use widely-used cryptographic and user-interface libraries (i.e., GnuPG [31],
OpenSSL’s T-table implementation of Advanced Encryption Standard [28],
and GIMP Drawing Kit (Appendix B) [10]) on NUMA systems. We also
demonstrate that the DRAM refresh interval detection and avoidance algo-
rithms of MARF significantly improve the attack accuracy (Appendix C).

– We present potential countermeasures against MARF and discuss their advan-
tages and disadvantages (Appendix D).

2 Background

2.1 NUMA, Cache Coherence, and CLFLUSH

A memory node is defined as a group of dual in-line memory modules (DIMMs)
locally attached to a CPU. A NUMA system is a system with two or more mem-
ory nodes. The local memory node of a CPU is directly connected to the CPU.
In contrast, remote memory nodes of a CPU are directly connected to the other
CPUs and the CPU accesses the remote memory nodes via the interconnection
network (ICN) that connects the CPUs. Because of the extra delay incurred in
the ICN, remote memory accesses incur longer latency than local accesses.

Modern NUMA systems provide cache coherence, which is an architectural
mechanism that ensures that cores that share a memory object observe the same
value when the shared memory object is dynamically cached and modified. Cache
coherence is usually provided at the cache line granularity.

With the directory-based cache coherence protocol, the coherence informa-
tion is stored in hardware components called directories [18]. Each directory
dynamically tracks the coherence information on its associated cache lines. When
a core is about to execute an instruction that changes the coherence state of a
cache line, it first queries the corresponding directory and identifies the caches
currently holding the cache line. A coherence message is then generated and
selectively sent to the associated caches to maintain cache coherence. Because
of its high scalability, it is widely used in NUMA systems [20,26].

122 S. Kim et al.

Recent Intel CPUs employ hierarchical directory structures that consist of
two types of directories – in-cache and in-memory directories [25,33]. The in-
cache directory is located in the last-level cache and stores the coherence infor-
mation on the cache lines in the private and shared caches in the corresponding
CPU. Since the coherence information on the cache lines stored in a CPU can
directly be obtained from the in-cache directory, the performance of NUMA sys-
tems can significantly be improved by reducing the inter-CPU coherence traffic.

Recent Intel CPUs use the MOESI protocol to maintain the cache coherence
states within a NUMA node [25]. With the MOESI protocol, a cache line can be
in one of the five states (i.e., modified, owned, exclusive, shared, and invalid).

In contrast, recent Intel CPUs employ a simpler protocol which consists of
three states (i.e., A, S, and I) for inter-CPU cache coherence [25]. In-memory
directories store the inter-CPU cache coherence information. If a memory object
is in the A state, it indicates that the memory object may currently be cached
in a remote CPU and the corresponding cache line is dirty. If a memory object
is in the S state, it indicates that the memory object may currently be cached
in one or more remote CPUs and the corresponding cache lines are clean. If a
memory object is in the I state, it indicates that no remote CPU is currently
caching the memory object.

Modern CPUs provide the clflush instruction. clflush writes back the
content of the cache line holding the target memory object if it is dirty and
invalidates all the cache lines holding the object. It is used for programming
models such as memory mapped I/O and persistent memory programming [22]
that require that the main memory to hold the up-to-date data for correctness.

2.2 DRAM Refresh

A DIMM consists of a group of DRAM chips mounted on a printed circuit board
(PCB) [18]. A DRAM rank in a DIMM is defined as a group of DRAM chips
that are connected to the same chip select pins and simultaneously accessible.
For example, the DIMMs evaluated in this work comprise two ranks, each of
which is equipped with 9 1GB DRAM chips, and provide the error correction
code (ECC) functionality.

DRAM cells may gradually lose its stored data because of the leakage cur-
rent [4]. Memory cells are periodically refreshed to prevent data loss. The JEDEC
Solid State Technology Association formally specifies the details of DRAM
refresh. Specifically, the DRAM refresh period is 7.8ms and the time spent for
each DRAM refresh (i.e., the DRAM refresh duration) for 1GB DRAM chips
is 350 ns [4]. Each DRAM rank independently performs DRAM refresh without
coordinating with others.

We define the DRAM refresh interval as the time interval between the begin-
ning and end of DRAM refresh. While a DRAM rank is being refreshed, all the
incoming memory requests to the rank are queued and remain unprocessed until
the on-going DRAM refresh finishes. DRAM refresh poses critical challenges to
timing-based side-channel attacks against the memory hierarchy including the
clflush-based attacks as follows. First, a considerable portion of the latency

MARF 123

data samples collected by the attacker is affected by DRAM refresh. Specifically,
since the DRAM refresh duration is 350 ns and it occurs in every 7.8ms, 4.5%
(i.e., 0.35

7.8 × 100 = 4.5%) of the latency data samples collected by the attacker
are affected by DRAM refresh.

Second, it is challenging for the attacker to precisely determine whether a
latency data sample has been affected by DRAM refresh or not. This is mainly
because the extra latency incurred by DRAM refresh can significantly vary
(from 0 to 350 ns with a uniform distribution) depending on when the mem-
ory request generated by the attacker arrives at the target DRAM rank that is
being refreshed. For instance, if the memory request arrives at the rank when
the progress of DRAM refresh is 0% and 50%, the extra latency incurred by
DRAM refresh is 350 and 175 ns. These noises make the attacker hard to infer
whether the latency differences have been caused by the activities of the victim
or DRAM refresh.

3 Methodology

We use three NUMA systems equipped with recent Intel CPUs. We refer the
NUMA systems installed with Intel Xeon Gold 6242 (16 cores per CPU), 5318H
(18 cores per CPU), and 6338 (32 cores per CPU) CPUs that implement the
Cascade Lake, Cooper Lake, and Ice Lake architectures to the CCL, CPL, and
ICL systems. The evaluated NUMA systems are equipped with four 16GB DDR4
memory DIMMs per NUMA node. Each DIMM is connected to a separate mem-
ory channel. While, for conciseness, we report the experimental results that are
collected on the ICL system, similar data trends are observed on the CCL and
CPL systems.

Ubuntu 20.04 and the Linux kernel 5.4.0 are installed on the evaluated NUMA
systems. For all the experiments, the CPUfreq governor is set to the performance
governor. The rdtsc instruction is used to measure the time.

4 Characterization

In this section, we quantify the impact of DRAM refresh, the location of the
target memory object within a NUMA node, and the task and page placement
on NUMA systems on the clflush latency. For our characterization studies, we
use a simple microbenchmark that consists of two processes – the attacker and
the victim. The two processes share a read-only 64-byte memory object, which
we refer to the target memory object. The attacker executes clflush against the
memory object. The victim accesses (i.e., reads or executes) the memory object
or performs no operation depending on the configuration of each experiment.

In each experiment, the two processes periodically repeat the following steps
in a synchronized manner. First, the victim accesses the target memory object
or performs no operation depending on the configuration for the experiment.
Second, the attacker executes clflush against the memory object and measures
the clflush latency.

124 S. Kim et al.

Fig. 1. clflush latency measured
when the attacker periodically executes
clflush with no delay

Fig. 2. clflush latency measured
when the attacker executes clflush
with a period of 7.8 ms

The microbenchmark has the key configuration parameters (i.e., the NUMA
nodes where the attacker and the victim are placed, the address and the NUMA
node where the target memory object is located). These configuration parameters
are used to create various scenarios in terms of the location of the memory object
in a NUMA node and task and page placement on NUMA systems.

For brevity, we refer the NUMA nodes where the attacker, the victim, and
the target memory object to NA, NV, and NO, respectively. We indicate whether
the victim has accessed the target memory object (and the memory object is in
the hardware caches on NV) as a boolean variable AV.

4.1 DRAM Refresh

We quantify the impact of DRAM refresh on the clflush latency. To this end, we
use the following configuration for the microbenchmark – NO = NA and AV =
False. In this configuration, every execution of clflush triggers a query to the
corresponding in-memory directory in NO to retrieve the coherence information
on the target memory object. If the query request arrives at the rank where
DRAM refresh is being performed, the clflush latency will be increased because
of the delay in processing the query request.

Figure 1 shows the clflush latency measured when the target memory object
is placed at different locations within the same NUMA node and the attacker
periodically executes clflush against the memory object with no delay. First, a
significant portion (i.e., 95.2%) of the data samples are clustered at 250 cycles.
These data samples are collected when the DRAM rank where the memory
object is placed is not in the DRAM refresh mode.

Second, a non-negligible portion (i.e., 4.8%) of the data samples are dis-
tributed from 285 to 1054 cycles. These data samples are collected when the tar-
get DRAM rank is performing DRAM refresh. Since the DRAM refresh period
and duration are 7.8ms (or 15,600 CPU cycles on the ICL system) and 350 ns
(or 700 CPU cycles) [4], the theoretically estimated portion of the data sam-
ples that would be affected by DRAM refresh is 4.5%, which is in line with the
experimentally measured portion (i.e., 4.8%).

MARF 125

In addition, since the clflush request may arrive at the target DRAM rank
at any time within the DRAM refresh interval, the extra latency caused by
DRAM refresh widely varies (i.e., from 0 to 700 cycles). Our experimental results
show that the attacker must be capable of reliably detecting and avoiding the
DRAM refresh interval because DRAM refresh affects a considerable portion of
the clflush latency data samples and adds unpredictable widely-varying noises.

Figure 2 shows the clflush latency measured when the attacker executes
clflush with a period of 7.8ms. First, the clflush latency varies over the
time, which indicates that the DRAM refresh period is not precisely 7.8ms. If
the DRAM refresh period was exactly 7.8ms, the measured clflush latency
would be always same. Second, the clflush latency drifting rate is low and
predictable (i.e., 5 cycles every 31.2ms). This indicates that DRAM refresh is
periodically performed at a period slightly longer than 7.8ms. Our experimental
results indicate that the attacker must consider the drifting issue when predicting
the DRAM refresh interval.

4.2 Location of the Target Memory Object

Fig. 3. clflush latency measured when the
target memory object is placed at various
locations in a NUMA node

We quantify the impact of the loca-
tion of the target memory object
within a NUMA node on the clflush
latency. To this end, we conduct two
sets of experiments based on the
microbenchmark. In the first set of
experiments, we use the following con-
figuration for the microbenchmark –
NA �= NV, NO = NV, and AV =
False. In each experiment, we vary the
location of the memory object in the
corresponding NUMA node and mea-
sure the clflush latency. Figure 3 shows the clflush latency when the memory
object is placed at different locations within the same NUMA node.

First, the clflush latency widely varies with different locations of the target
memory object. We conjecture that the large variance of the clflush latency
is caused by various factors such as the location of the memory controller and
DIMM associated with the memory object. Since the attacker has no control over
the location of the memory object, the large variance of the clflush latency
poses a critical challenge. Second, there is no clear data pattern between the
location of the memory object and the clflush latency. We conjecture that this
complicated data trend is mainly due to the sophisticated undisclosed hardware
functions that map an address to a memory controller and a DIMM [30,32,35].

In the second set of experiments, we use the following configuration –
NA �= NV, NO = NV and AV = True (i.e., same as the first set of experiments
except that the victim accesses the target memory object). We also configure
the microbenchmark to place the memory object at the same set of locations
as the first set of experiments. Figure 3 shows the clflush latency differences

126 S. Kim et al.

Table 1. Possible scenarios with respect to task and page placement and the memory
access of the victim and the actions performed with clflush

NA = NVNA = NVNA = NV NO = NANO = NANO = NA AVAVAV Actions performed

True True True If the victim reads the target memory object, (1)
invalidate the cache line in NA. If the victim
executes the memory object, (1) invalidate the
cache line in NA and (2) query the in-memory
directory in NA.

True True False (1) Query the in-memory directory in NA.
True False True If the victim reads the target memory object, (1)

invalidate the cache line in NA. If the victim
executes the memory object, (1) invalidate the
cache line in NA and (2) query the in-memory
directory in NO.

True False False (1) Querythe in-memory directory in NO.
False True True (1) Query the in-memory directory in NA, (2) send

an invalidation request to NV, and (3) invalidate
the target cache lines in the local caches in NV.

False True False (1) Query the in-memory directory in NA.
False False True (1) Query the in-memory directory in NV, (2) send

an invalidation request to the local caches in NV,
and (3) invalidate thetarget cache lines in the local
caches in NV.

False False False (1) Query the in-memory directory in NV

measured when the memory object is accessed by the victim and the memory
object is not accessed by the victim.

We observe that the variance of the clflush latency difference is small when
the target memory object is placed at different locations. Since a portion of the
clflush latency for a given location of the memory object is affected by the same
factors (e.g., memory controller and DIMM locations) regardless of whether the
victim has accessed the memory object or not, the portion of the clflush latency
caused by the location of the memory object is cancelled in the clflush latency
difference. This data trend indicates that the attacker can robustly infer the
activities of the victim regardless of the location of the memory object within
a NUMA node by computing the clflush latency difference measured when
AV = True and AV = False.

4.3 Task and Page Placement

We quantify the impact of task and page placement on NUMA systems on the
clflush latency. Table 1 summarizes all the possible scenarios with respect to
NA, NV, NO, and AV and the actions performed in each scenario during the exe-

MARF 127

cution of clflush. The clflush latency in each scenario is primarily determined
by the set of actions performed during the execution of clflush.

For example, when NA = NV and AV = True and the access performed
by the victim is “read”, clflush only incurs the invalidation of the cache line
holding the target memory object because the cache line is in the exclusive (E)
state [6]. In this scenario, the clflush latency is expected to be relatively short
in comparison with other scenarios.

Interestingly, when NA = NV and AV = True and the access performed by
the victim is “execute”, our experimental results indicate that clflush causes
a query to the in-memory directory in the DIMM where the target memory
object is stored. We are unaware of its exact cause and conjecture that in-cache
directories do not need to track the coherence information on cache lines that
contain instructions, which are write-protected.

For another example, when NA �= NV, NO = NA, and AV = True, clflush
triggers the following actions – (1) querying the in-memory directory in NA
because the target memory object is not cached in the local caches of NA, (2)
sending an invalidation request to NV, (3) invalidating the cache lines in the local
caches in NV. In this scenario, the clflush latency is expected to be longer than
other scenarios.

Fig. 4. Impact of task and page placement

We quantify the impact of task and page placement on the clflush latency
by configuring the microbenchmark to generate all the aforementioned eight
scenarios. We measure the clflush latency without varying its location within
the NUMA node in each scenario because the similar data trends are observed

128 S. Kim et al.

across various locations as discussed in Sect. 4.2. Figure 4 shows the experimental
results with the following data trends.

First, most of the distributions of the clflush latency data collected across
the scenarios are distinct. This is because clflush generates a unique set of
actions in each of the most scenarios. This data trend indicates that the attacker
can infer the placement of the victim and the target memory object and whether
the victim has accessed the memory object by measuring the clflush latency.

Figures 4a and 4b show that the clflush latency is same regardless of the
placement of the target memory object when NA = NV, AV = True, and the
access performed by the victim is “read”. Since clflush only triggers an action
that invalidates the cache line in NA without querying the in-memory directory in
these scenarios, the same clflush latency is observed regardless of the placement
of the memory object. However, it is acceptable because the attacker can still
infer that the victim has accessed the memory object in both scenarios.

While omitted for brevity, when NA = NV, AV = True, and the access
performed by the victim is “execute”, the clflush latency differs depending on
whether NO = NA (i.e., 308 cycles) or NO �= NA (i.e., 516 cycles). When the
victim executes the target memory object, clflush executed by the attacker
triggers a query to the in-memory directory in the local or remote NUMA node,
resulting in the difference in the clflush latency.

Second, when the victim has not accessed the target memory object, the
clflush latency is significantly longer when NO �= NA than NO = NA. This is
due to the difference between the latency for accessing the remote in-memory
directory (i.e., NO �= NA) and the latency for accessing the local in-memory
directory (i.e., NO = NA). This data trend indicates that the attacker can deter-
mine whether the memory object is located in NA or not by measuring the
clflush latency when the victim has not accessed the memory object. We refer
the clflush latency measure when NO = NA and AV = False to LAV=F,s (i.e.,
258 cycles) and the clflush latency measure when NO �= NA and AV = False
to LAV=F,l (i.e., 428 cycles), respectively.

Third, as shown in Figs. 4a and 4c, when NO = NA, AV = True, and the
access performed by the victim is “read”, the clflush latency measured with
NA = NV is shorter than LAV=F,s by 65 cycles (i.e., δNA=NV,NO=NA) and the
clflush latency measured with NA �= NV is longer than LAV=F,s by 268 cycles
(i.e., δNA �=NV,NO=NA), respectively. Similarly, as shown in Figs. 4b and 4d, when
NO = NV, AV = True, and the access performed by the victim is “read”, the
clflush latency measured with NA = NV is shorter than LAV=F,l by 249 cycles
(i.e., δNA=NV,NO �=NA) and the clflush latency measured with NA �= NV is
longer than LAV=F,l by 70 cycles (i.e., δNA �=NV,NO �=NA), which is in line with
the data trend reported in [6]. While omitted for conciseness, when the access
performed by the victim is “execute”, we can find LAV=F,s or LAV=F,l in a simi-
lar manner. This data trend suggests that the attacker can precisely determine
whether the victim has accessed the target memory object when the measured
clflush latency differs from LAV=F,s or LAV=F,l.

MARF 129

5 The MARF Attack

MARF is a clflush-based intra- and inter-CPU side-channel attack on NUMA
systems.1 It exploits the difference in the clflush latency depending on whether
the victim has accessed the target memory object or not. It works even with
varying clflush latency because of DRAM refresh, the location of the target
memory object within a NUMA node, and task and page placement. It consists of
four phases – (1) DRAM refresh interval detection, (2) threshold determination,
(3) refresh-aware flush and inference, and (4) recalibration phases.

DRAM Refresh Interval Detection: The first phase of MARF is the DRAM
refresh interval detection phase, which aims to empirically find the beginning and
end time of DRAM refresh in each DRAM refresh period for the DRAM rank
where the target memory object is placed. Since there is no direct way to retrieve
the information on the DRAM refresh interval of the target DRAM rank, the
attacker detects the DRAM refresh interval based on the clflush latency data.

The attacker begins the DRAM refresh interval detection process by sampling
the baseline time defined as the time at which the attacker starts detecting the
DRAM refresh interval. We define the offset as an amount of time added to the
baseline time. The attacker periodically executes clflush at the time computed
using Eq. 1, where tbase, n, prefresh, and o denote the baseline time, a non-negative
integer, the DRAM refresh period, and the offset, respectively. The attacker then
measures the clflush latency to determine whether the target DRAM rank was
performing DRAM refresh during the execution of clflush.

trefresh = tbase + n × prefresh + o (1)

The goal of the DRAM refresh interval detection algorithm is to find the offset
value with which the attacker observes DRAM refresh if it executes clflush
at the time computed using Eq. 1. Algorithm 1 shows the pseudocode for the
detectRefInterval function, which implements the proposed algorithm.

detectRefInterval takes three parameters – addr, τmin, and τmax. addr is
the address of the target memory object. τmin and τmax denote the minimum
and maximum values used to construct a time window. The values of τmin and
τmax are empirically determined in a way that if the measured clflush latency
is within the time window (i.e., [τmin, τmax]), the corresponding execution of
clflush has been performed while the target DRAM rank was being refreshed.
In this work, τmin and τmax are set to 700 and 1300 cycles.

detectRefInterval iteratively finds the offset value with which the attacker
would encounter DRAM refresh at the target DRAM rank if it executed clflush
at the time computed based on Eq. 1 (Lines 4–27). Specifically, for a given offset
value, detectRefInterval executes clflush Nsampling times (Lines 11–21) and
considers that the offset value is aligned with the DRAM refresh interval if there
are at least Nthreshold data samples that show that the measured clflush latency
is within the time window (Lines 22–25).

1 The threat model of MARF is described in Appendix A.

130 S. Kim et al.

Algorithm 1. The detectRefInterval function
1: procedure detectRefInterval(addr, τmin, τmax)
2: stride ← (τmax − τmin) × 0.5
3: tbase ← rdtsc()
4: while true do
5: offset ← 0
6: while offset < refPeriod do
7: Nrefresh ← 0
8: tnow ← rdtsc()
9: δoffset ← offset − ((tnow − tbase) % refPeriod)

10: tnext ← tnow + (δoffset % refPeriod) + refPeriod
11: for i ← 1 to Nsampling do
12: tcurr ← rdtsc()
13: while tcurr < tnext do
14: tcurr ← rdtsc()
15: tbegin ← rdtsc()
16: clflush(addr)
17: tend ← rdtsc()
18: δflush ← tend − tbegin

19: if δflush ∈ [τmin, τmax] then
20: Nrefresh ← Nrefresh + 1
21: tnext ← tnext + refPeriod
22: if Nrefresh ≥ Nthreshold then
23: trefresh ← tbase + offset
24: trefresh ← trefresh + δflush − (τmax + τmin) × 0.5
25: return trefresh
26: offset ← offset + stride
27: tbase ← tbase + (τmax − τmin) × 0.1

If the current offset value is not aligned with the DRAM refresh period,
detectRefInterval increments the offset with a stride of τmax−τmin

2 and repeats
the aforementioned process (Line 26). We use this stride value to execute
detectRefInterval at least once during the time window.

Finally, if the offset value that is aligned with the DRAM refresh inter-
val still remains undiscovered after checking all the possible offset values,
detectRefInterval slightly increments the baseline time and repeats the afore-
mentioned process (Line 27). While we add this code segment to handle rare
cases in which the DRAM refresh interval remains undiscovered even after iter-
ating all the possible offset values for a given baseline time, our experimental
results show that detectRefInterval robustly detects the DRAM refresh inter-
val without the need for executing it.

Threshold Determination: The second phase of MARF is the threshold deter-
mination phase, which aims to determine thresholds that are used to classify
whether the victim has accessed the target memory object or not. The thresh-
old determination algorithm collects the clflush latency data and determines

MARF 131

Algorithm 2. The determineThresholds function
1: procedure determineThresholds(addr, tnxtRef)
2: data ← sampleFlushLat(addr, tnxtRef)
3: L ← min(data); LmaxSample ← L; NmaxSample ← 0
4: while L + τwindow ≤ max(data) do
5: Nsample ← partialSum(data, L, L + τwindow)
6: if Nsample > NmaxSample then
7: LmaxSample ← L; NmaxSample ← Nsample

8: L ← L + 1
9: LAV=F ← avg(data, LmaxSample, LmaxSample + τwindow)

10: if isAttackerHomeNode(LAV=F) then
11: LNA=NV,AV=T ← LAV=F − δNA=NV,NO=NA

12: LNA �=NV,AV=T ← LAV=F + δNA �=NV,NO=NA

13: else
14: LNA=NV,AV=T ← LAV=F − δNA=NV,NO �=NA

15: LNA �=NV,AV=T ← LAV=F + δNA �=NV,NO �=NA

16: θlow ← (LAV=F + LNA=NV,AV=T) × 0.5
17: θhigh ← (LAV=F + LNA �=NV,AV=T) × 0.5
18: return θlow, θhigh

the average clflush latency (i.e., LAV=F) measured when the victim has not
accessed the target memory object.

Based on the empirical evidence discussed in Sect. 4.3, for given LAV=F, the
attacker can determine whether the target memory object is located at the
same NUMA node or not. The attacker can then determine LNA=NV,AV=T and
LNA �=NV,AV=T, which denote the clflush latency measured when (1) NA = NV
and AV = True and (2) NA �= NV and AV = True, respectively. The attacker
then determines the thresholds using Eqs. 2 and 3.

θlow = (LAV=F + LNA=NV,AV=T) × 0.5 (2)

θhigh = (LAV=F + LNA �=NV,AV=T) × 0.5 (3)

If the target memory object is part of data and the measured clflush latency
is within (θlow, θhigh), the attacker infers that the victim has not accessed (i.e.,
read) the target memory object. Otherwise, the attacker determines that the
victim has accessed (i.e., read) the target memory object.

In contrast, if the target memory object is part of code and the measured
clflush latency is shorter than θlow, the attacker infers that the victim has not
accessed (i.e., executed) the target memory object. Otherwise, the attacker deter-
mines that the victim has accessed (i.e., executed) the target memory object.

Algorithm 2 shows the pseudocode for the determineThresholds function,
which implements the proposed threshold determination algorithm. It collects
the clflush latency data by repeatedly executing clflush (Line 2). It uses a
time window whose width is set to a sufficiently large value to capture most of
the clflush latency data samples measured when the victim has not accessed

132 S. Kim et al.

Algorithm 3. The flushAndInfer function
1: procedure flushAndInfer(addr, trefresh, τmin, τmax)
2: tnxtRef ← trefresh + refPeriod; Nrefresh ← 0
3: while rdtsc() > tnxtRef do
4: tnxtRef ← tnxtRef + refPeriod; Nrefresh ← Nrefresh + 1
5: if Nrefresh = η then
6: tnxtRef ← tnxtRef + τdelay × η; Nrefresh ← 0
7: while true do
8: tcurr ← rdtsc()
9: if tcurr ∈ [tnxtRef−refDuration, tnxtRef+refDuration] then

10: while tcurr ≤ tnxtRef + refDuration do
11: tcurr ← rdtsc()
12: tbegin ← rdtsc()
13: clflush(addr)
14: tend ← rdtsc()
15: δflush ← tend − tbegin

16: if δflush /∈ [τmin, τmax] then
17: infer(δflush)
18: if tbegin ≥ tnxtRef + refDuration then
19: tnxtRef ← tnxtRef + refPeriod; Nrefresh ← Nrefresh + 1
20: if Nrefresh = η then
21: tnxtRef ← tnxtRef + τdelay × η; Nrefresh ← 0
22: else
23: tnewRef ← tbegin + (δflush − (τmax + τmin) × 0.5)
24: tnxtRef ← tnewRef + refPeriod; Nrefresh ← 0

the target memory object. It iteratively moves the time window to find the
location of the time window at which the largest number of the data samples are
captured (Lines 4–8). It then computes the average clflush latency based on
the data samples within the time window with the largest number of the data
samples and sets LAV=F to the computed average clflush latency (Line 9).

It determines whether the target memory object is located in the NUMA
node of the attacker based on the value of LAV=F (Line 10). It then computes
the two threshold values (i.e., θlow, θhigh) using Eqs. 2 and 3 (Lines 10–17).

Refresh-Aware Flush and Inference: The third phase of MARF is the
refresh-aware flush and inference phase. To understand the need for detecting
and avoiding the DRAM refresh interval, let us consider a case in which the
victim accesses the target memory object during the DRAM refresh interval. If
the attacker immediately executes clflush without waiting during the DRAM
refresh interval, the corresponding clflush latency data sample would be inac-
curate because it is likely to have been affected by DRAM refresh. Further,
the side effect (i.e., the cache line holding the target memory object) made by
the victim would completely be lost by clflush. In contrast, if the attacker
waits until the on-going DRAM refresh finishes, it prevents collecting inaccurate
clflush latency data and preserves the side effect made by the victim.

MARF 133

Algorithm 3 shows the flushAndInfer function, which implements the
refresh-aware flush and inference phase. flushAndInfer determines when to exe-
cute clflush. To this end, it predicts whether the target DRAM rank is currently
performing DRAM refresh based on the current time and the offset. If the target
DRAM rank is expected to be in the DRAM refresh interval, flushAndInfer
waits until the on-going DRAM refresh finishes (Lines 9–11).

The target DRAM rank is expected not to be currently in the DRAM refresh
interval, flushAndInfer executes clflush and measures the clflush latency
(Lines 12–15). It then determines whether the victim has accessed the target
memory object by invoking the infer function, which compares the measured
clflush latency with the thresholds derived in the threshold determination
phase and infers the victim’s memory access pattern (Line 17).

In addition, flushAndInfer periodically adjusts the offset value used to esti-
mate the DRAM refresh interval (Lines 20–21) by 5 cycles every 31.2ms (i.e.,
η × 7.8ms, where η is 4). This is to address the DRAM refresh interval drifting
issue caused by the fact that the DRAM refresh period is not exactly 7.8ms. It
then repeats the aforementioned process.

Recalibration: MARF transitions to the recalibration phase if the measured
clflush latency is within time window (i.e., [τmin, τmax]) used for DRAM refresh
interval detection, which indicates that the offset value used to predict the
DRAM refresh interval might have become out of phase (Lines 22–24 in Algo-
rithm 3). In this case, it restarts from the DRAM refresh interval detection phase
for recalibration.

Fig. 5. MARF against GnuPG Fig. 6. MARF against O-AES

6 Evaluation

We evaluate the effectiveness of MARF by presenting case studies where it is
deployed to attack applications that use widely-used cryptographic and user-
interface (Appendix B) libraries [10,28,31] and quantifying the effectiveness of
its DRAM refresh detection and avoidance algorithms (Appendix C).

We report experimental results collected using the configuration in which
the attacker and the victim are placed on different NUMA nodes and the target
memory object is located on the same node as the victim (i.e., NA �= NV and

134 S. Kim et al.

NO = NV), which closely represents common scenarios in cluster, cloud, and
datacenter computing and defeats all the side-channel attacks that are designed
only for single-CPU scenarios.

6.1 Attack Against GnuPG

We present a case study where MARF is deployed to infer the private key of
the victim that executes an application based on GnuPG, a widely-used crypto-
graphic library [31]. The GnuPG version 1.4.13 used in this work is vulnerable
to timing-based side-channel attacks [16,21,23,33,34].

GnuPG uses the square-and-multiply exponentiation algorithm [11]. It iter-
ates every exponent bit in the private key and performs a different set of compu-
tations based on the exponent bit value. Specifically, if the value of the currently-
iterated exponent bit is zero, it calls the square function. Otherwise, it calls the
square and multiply functions. If the attacker can precisely infer the victim’s
call sequence to square and multiply through a side channel, it can reconstruct
the private key.

We deploy MARF against GnuPG as follows. The attacker selects an instruc-
tion within square and an instruction within multiply as the target memory
objects. The attacker periodically executes clflush against the target memory
objects and measures the clflush latency without requiring any synchroniza-
tion with the victim, infers the victim’s call sequence to the two functions based
on the measured clflush latency, and reconstructs the private key.

Figure 5 shows the first 16 bits (i.e., “1000011010111000”) of the private key
and the call sequence to square and multiply identified by MARF. Our exper-
imental results show that MARF precisely and robustly reconstructs the first 16
bits of the private key through the side channel.

6.2 Attack Against AES

We present a case study where MARF is deployed to attack an application
based on OpenSSL’s T-table implementation of Advanced Encryption Standard
(O-AES), a widely-used cryptographic library [28]. The O-AES version 0.9.8 used
in this work is vulnerable to timing-based side-channel attacks [7,13,21].

O-AES employs T-tables for encrypting and decrypting data. The index of the
entry of the first T-table, which is accessed by O-AES, is computed by XORing
the first byte of the plaintext and the first byte of the secret key. If the four-bit
prefix (i.e., the first four bits) of the plaintext and the four-bit prefix of the secret
key are identical, it accesses the cache line (i.e., CL1,1) that holds the first 64
bytes of the first T-table.

We deploy MARF against O-AES as follows. The attacker keeps sending
encryption requests to the victim that executes an application based on O-AES.
For each request, the attacker sets the four-bit plaintext prefix to one of the 16
possible values and the remaining bits to a random value and checks whether
the victim has accessed CL1,1 by executing clflush against CL1,1 and measuring

MARF 135

the clflush latency. If the attacker discovers that the victim has accessed CL1,1

with the corresponding plaintext, the attacker can identify the four-bit prefix of
the victim’s secret key.

We use a secret key whose four-bit prefix is “1010” for experiments. Figure 6
shows the number of accesses of the victim to CL1,1, which is inferred by the
attacker when the attacker deploys MARF with each of the 16 possible four-bit
plaintext prefixes. The attacker can robustly identify the four-bit prefix of the
secret key by inferring that the victim has accessed CL1,1 for all the encryp-
tion requests when the four-bit plaintext prefix is set to 1010. Note that the
percentage of encryption requests that access CL1,1 is non-zero even when the
four-bit plaintext prefix is set to a value other than 1010 because CL1,1 can still
be accessed during the encryption of the rest of the plaintext depending on what
value is randomly assigned to the rest of the plaintext.

7 Related Work

Prior works have extensively proposed micro-architectural side-channel attacks
and defenses [7–9,12,13,15–17,19,21,23,29,33,34]. The micro-architectural side-
channel attacks and defenses proposed in the prior works focus on various hard-
ware components such as caches [7,8,13,15–17,23,29,34], translation look-aside
buffers (TLBs) [8,12,19], branch target buffers (BTBs) [8,9,16,17], and direc-
tories [21,33]. However, since these attacks assume a single-CPU scenario, they
cannot be applied in multi-CPU scenarios in which the attacker and the victim
are placed on different CPUs. Our work significantly differs in that we propose a
micro-architectural side-channel attack that robustly works in both single- and
multi-CPU scenarios and quantify the impact of task and page placement on the
clflush latency on NUMA systems.

Prior works have investigated clflush-based side-channel attacks [13,20,34].
While the attacks proposed in the prior works have a similarity to MARF in that
they exploit clflush, they, except for the one proposed in [20], focus on a single-
CPU scenario.

Irazoqui et al. propose a clflush-based inter-CPU side-channel attack [20].
The prior work observes that the load latency against the target memory object
is different depending on whether the victim has accessed it or not [20]. The
attack proposed in [20] repeatedly executes the clflush and load instructions
and measures the load latency to infer the activities of the victim.

However, the attack proposed in [20] has the following limitations. First, it
suffers from low accuracy because it is oblivious of DRAM refresh, which affects
a non-negligible portion of the latency data samples with significant noises on
NUMA systems. Second, it uses the load instruction, which incurs a high cache
miss rate. Defense techniques have been proposed to detect load-based attacks
by identifying processes that incur high cache miss rates based on hardware
performance counters [2,5].

Our work is significantly different in that it investigates the impact of DRAM
refresh on the clflush latency and proposes the novel DRAM refresh interval

136 S. Kim et al.

detection and avoidance algorithms to considerably improve the accuracy of
MARF. Further, MARF effectively nullifies the existing defense techniques based
on cache miss-related hardware performance counters by eliminating the use of
the load instruction that makes the attacker generate frequent cache misses.

8 Conclusions

In this work, we present in-depth characterization to quantify the impact of
DRAM refresh, the location of the target memory object within a NUMA node,
and task and page placement on the clflush latency on NUMA systems and
identify a set of the patterns in the clflush latency data. Based on the char-
acterization results, we propose MARF, a novel memory-aware clflush-based
intra- and inter-CPU side-channel attack. We design and implement MARF in a
way that it robustly and accurately infers the activities of the victim even with
the noise caused by DRAM refresh in all the possible scenarios with respect to
task and page placement on NUMA systems. Our experimental results collected
on three real NUMA systems demonstrate that MARF can robustly be used
to attack applications that employ widely-used cryptographic and user-interface
libraries. In addition, we discuss potential countermeasures against MARF.

Acknowledgements. This research was partly supported by NRF (NRF-
2021R1A2C1011482) and IITP (No. 2020-0-01336, No. 2021-0-01817). Woongki Baek
is the corresponding author.

Appendix A Threat Model

The threat model of MARF is as follows. First, the attacker and the victim
are located on the same physical server. Since maximizing resource utilization is
highly crucial in cluster, cloud, and datacenter computing, multiple workloads
are often consolidated on the same physical server [3,24].

Second, the attacker has permission to execute clflush in line with other
side-channel attacks (e.g., the Flush+Reload attack [34]) based on clflush.
In particular, clflush is a non-privileged instruction on the x86-64 architecture,
which user-level processes can directly execute.

Third, the attacker has access to a timer to measure the time difference
between two events of interest in line with other timing-based attacks such
as Prime+Probe [23,29]. For example, the x86-64 architecture supports the
rdtsc instruction that can be used to measure time differences at the granularity
of CPU cycles as a non-privileged instruction.

Fourth, the attacker and the victim share one or more read-only data mem-
ory object(s) and/or executable code memory object(s) and the victim’s access
pattern to the shared memory object(s) may reveal security-sensitive informa-
tion, which is a widely-used assumption in a large body of prior works on attacks
(including clflush-based attacks) and defenses [1,8,13,15,20,27,34]. For exam-
ple, the attacker and the victim may execute the same code implemented in a
shared library.

MARF 137

Appendix B Attack against GDK

The GIMP Drawing Kit (GDK) library is a wrapper around the windowing
and graphics systems on various Linux distributions [10]. The latest old stable
version (i.e., 3.24.34) of the GDK library has a vulnerability to timing-based
side-channel attacks [13,14]. Specifically, key presses on a group of keys (e.g.,
the keys 0–8 on the keypad) generate accesses to their corresponding 64-byte
memory object. Therefore, if the attacker can accurately observe the victim’s
memory access pattern through a side channel, the attacker can infer whether
such keys have been pressed by the victim. We deploy MARF against GDK to
detect key presses on the keypad. While omitted for brevity, our experimental
results demonstrate that the attacker can robustly detect key presses on the
keypad through MARF.

Appendix C Refresh Interval Detection and Avoidance

Fig. 7. Effectiveness of the DRAM refresh
interval detection and avoidance algorithms

We evaluate the effectiveness of
the DRAM refresh interval detec-
tion and avoidance algorithms of
MARF. To this end, we create
two synthetic versions – refresh-
oblivious and non-adjusting versions.
The refresh-oblivious version is obliv-
ious of DRAM refresh and exe-
cutes clflush without considering
the DRAM refresh interval. The non-
adjusting version initially detects the
DRAM refresh interval and estimates
the upcoming DRAM refresh inter-
val based on Eq. 1 and the initially
detected offset value. However, it is
oblivious of the DRAM refresh interval drifting issue.

We configure the two versions and the full version of MARF to repeat-
edly execute clflush and measure the number of the consecutive executions
of clflush without encountering DRAM refresh. Figure 7 shows that each of
the proposed techniques for DRAM refresh interval detection and avoidance
constructively compose, allowing MARF to keep executing clflush without
encountering DRAM refresh.

Further, we deploy the refresh-oblivious version against GnuPG with the
same private key evaluated in Sect. 6.1. The refresh-oblivious version fails to cor-
rectly identify the first 16 bits (i.e., incorrectly identified as “1000001010010011”
instead of “1000011010111000”) of the private key because of the noises caused
by DRAM refresh, demonstrating the effectiveness of the proposed techniques.

138 S. Kim et al.

Appendix D Countermeasures

D.1 Memory Duplication

One of the fundamental assumptions for MARF is that the attacker and the
victim have a shared memory object based on memory deduplication techniques
such as shared libraries [1,27]. One of the simplest countermeasures against
MARF is to disallow the sharing of memory objects among processes. The major
advantage of this approach is that it is applicable to a wide range of existing
systems and applications because it requires no special hardware functionalities
or code changes. However, this approach has disadvantages such as the increase
in memory footprints and the less effective use of hardware caches and TLBs.

D.2 Hardware Transactional Memory

Hardware transactional memory (HTM) guarantees that when any code block
marked as a transaction is successfully executed, no cache line has been evicted
during its execution. Prior work employs this property to construct a counter-
measure against cache-based side-channel attacks [14].

Specifically, the HTM-based countermeasure works as follows. The program-
mer first marks security-sensitive code blocks as transactions. In the prologue
of each transaction, the programmer or the compiler adds the code that pre-
loads security-sensitive code and/or data to transactionally access them. If the
attacker attempts to perform MARF against the application annotated with
transactions and triggers a cache miss during the execution of a security-sensitive
code block of the application, it will abort the corresponding transaction. Even
if the attacker has a way to know whether the transaction has been aborted, it
reveals no secret information because the attacker cannot distinguish whether
the victim has accessed the target memory object in the pre-loading code or the
rest of the code of the transaction.

However, in this case, MARF essentially becomes the denial-of-service (DoS)
attack. This is because the attacker can prevent the victim from making any
forward progress by repeatedly aborting the transactions of the victim through
the execution of clflush [21].

References

1. Bosman, E., et al.: Dedup Est machina: memory deduplication as an advanced
exploitation vector. In: IEEE Symposium on Security and Privacy (SP) (2016)

2. Briongos, S., et al.: CacheShield: Detecting cache attacks through self-observation.
In: Proceedings of the Eighth ACM Conference on Data and Application Security
and Privacy (2018)

3. Chen, S., Delimitrou, C., Martínez, J.F.: PARTIES: QoS- aware resource parti-
tioning for multiple interactive services. In: Proceedings of the Twenty- Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems (2019)

MARF 139

4. DDR4 SDRAM STANDARD
5. Demme, J., et al.: On the feasibility of online malware detection with performance

counters. In: Proceedings of the 40th Annual International Symposium on Com-
puter Architecture (2013)

6. Didier, G., Maurice, C.: Calibration done right: noiseless flush+flush attacks. In:
Detection of Intrusions and Malware, and Vulnerability Assessment: 18th Interna-
tional Conference, DIMVA 2021, Proceedings (2021)

7. Disselkoen, C., et al.: Prime+abort: a timer-free high-precision L3 cache attack
using Intel TSX. In: 26th USENIX Security Symposium (2017)

8. Easdon, C., et al.: Rapid prototyping for microarchitectural attacks. In: 31st
USENIX Security Symposium (2022)

9. Evtyushkin, D., Ponomarev, D., Abu-Ghazaleh, N.: Jump over ASLR: attacking
branch predictors to bypass ASLR. In: International Symposium on Microarchi-
tecture (MICRO) (2016)

10. GDK-3.0. https://docs.gtk.org/gdk3/
11. Gordon, D.M.: A survey of fast exponentiation methods. J. Algorithms (1998)
12. Gras, B., et al.: Translation leak-aside buffer: defeating cache side-channel protec-

tions with TLB attacks. In: 27th USENIX Security Symposium (2018)
13. Gruss, D., et al.: Flush+Flush: a fast and stealthy cache attack. In: Proceedings

of the 13th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment - Volume 9721 (2016)

14. Gruss, D., et al.: Strong and efficient cache side-channel protection using hardware
transactional memory. In: 26th USENIX Security Symposium (2017)

15. Guo, Y., et al.: Adversarial prefetch: new cross-core cache side channel attacks. In:
43rd IEEE Symposium on Security and Privacy (SP) (2022)

16. Han, M., Baek, W.: SDRP: safe, efficient, and SLO-aware workload consolidation
through secure and dynamic resource partitioning. In: IEEE Transactions on Ser-
vices Computing (2022)

17. Han, M., Yu, S., Baek, W.: Secure and dynamic core and cache partitioning for
safe and efficient server consolidation. In: 2018 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID) (2018)

18. Hennessy, J.L., Patterson, D.A.: Computer Architecture, 6th edn.: A Quantitative
Approach (2017)

19. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against ker-
nel space ASLR. In: Proceedings of the IEEE Symposium on Security and Privacy
(2013)

20. Irazoqui, G., Eisenbarth, T., Sunar, B.: Cross processor cache attacks. In: Pro-
ceedings of the 11th ACM on Asia Conference on Computer and Communications
Security (2016)

21. Kim, S., Han, M., Baek, W.: DPrime+DAbort: a high-precision and timer- free
directory-based side-channel attack in non-inclusive cache hierarchies using Intel
TSX. In: 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA) (2022)

22. Kim, W.-H., et al.: PACTree: a high performance persistent range index using PAC
guidelines. In: 28th Symposium on Operating Systems Principles (2021)

23. Liu, F., et al.: Last-level cache side-channel attacks are practical. In: 2015 IEEE
Symposium on Security and Privacy (2015)

24. Lo, D., et al.: Heracles: improving resource efficiency at scale. In: Proceedings of
the 42Nd Annual International Symposium on Computer Architecture (2015)

https://docs.gtk.org/gdk3/

140 S. Kim et al.

25. Loughlin, K., et al.: MOESI-prime: preventing coherence-induced hammering in
commodity workloads. In: 49th International Symposium on Computer Architec-
ture (2022)

26. Molka, D., et al.: Cache coherence protocol and memory performance of the intel
Haswell-EP architecture. In: 2015 44th International Conference on Parallel Pro-
cessing (2015)

27. Oliverio, M., et al.: Secure page fusion with VUsion. In: Proceedings of the 26th
Symposium on Operating Systems Principles (2017)

28. OpenSSL. https://www.openssl.org/
29. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case

of AES. In: Proceedings of the RSA Conference on Topics in Cryptology (2006)
30. Pessl, P., et al.: DRAMA: exploiting dram addressing for cross-CPU attacks. In:

25th USENIX Security Symposium (2016)
31. The GNU Privacy Guard. https://gnupg.org/
32. Wang, M., et al.: DRAMDig: a knowledge-assisted tool to uncover DRAM address

mapping. In: Proceedings of the Design Automation Conference (2020)
33. Yan, M., et al.: Attack directories, not caches: side channel attacks in a non-

InclusiveWorld. In: 2019 IEEE Symposium on Security and Privacy (SP) (2019)
34. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache

side-channel attack. In: 23rd USENIX Security Symposium (2014)
35. Zhang, Z., et al.: SoftTRR: protect page tables against Rowhammer attacks using

software-only target row refresh. In: USENIX Annual Technical Conference (2022)

https://www.openssl.org/
https://gnupg.org/

You Reset I Attack! A Master Password
Guessing Attack Against Honey Password

Vaults

Tingting Rao1,2, Yixin Su1,2, Peng Xu1,2(B), Yubo Zheng1,2, Wei Wang3(B),
and Hai Jin1,4

1 National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Huazhong University of Science

and Technology, Wuhan 430074, China
{raott,yxsu,xupeng,zhengyubo,hjin}@mail.hust.edu.cn

2 Hubei Key Laboratory of Distributed System Security, Hubei Engineering Research
Center on Big Data Security, School of Cyber Science and Engineering, Huazhong

University of Science and Technology, Wuhan 430074, China
3 Cyber-Physical-Social Systems Lab, School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan 430074, China
viviawangwei@mail.hust.edu.cn

4 Cluster and Grid Computing Lab, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China

Abstract. It is natural for Internet users to use a password vault to
encrypt and manage numerous passwords with a master password. Using
one to rule all that is handy but attackers can focus on breaking the vault
by brute-force attacking the master password. The honey password vault
is proposed to handle the above security concern. It traps the attacker
by generating a plausible decoy vault when decrypting the password
vault with a “guessing” master password, such that it is hard for the
attacker to obtain the real vault. Following the seminal work (S&P’15),
many schemes have been proposed to counter advanced attacks, e.g., the
Kullback-Leibler divergence attack (CCS’16), encoding attack (USENIX
Security’19), and intersection attack (USENIX Security’21). But we find
that they barely capture the security after the master password is reset.
Once the reset is completed, the attacker can identify the decoy vault
by decrypting and comparing the old and new versions of a password
vault. To prove this, we propose a new master password guessing attack
(MPGA) to break all the existing honey password vault schemes. Exper-
imental results show that MPGA can easily distinguish real and decoy
vaults with 99.12%–100.00% accuracy. We further design a secure master-
password-updatable honey password vault scheme, named SMART, to
resist MPGA. SMART guarantees that the MPGA attacker decrypts out
similar decoy vaults from the old and new versions of a password vault.
We demonstrate that SMART restricts the attack performance of the
MPGA to 49.88% (close to the ideal value 50.00%).

Keywords: Honey password vault · Master password guessing attack ·
Master password reset

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 141–161, 2024.
https://doi.org/10.1007/978-3-031-51479-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_8&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_8

142 T. Rao et al.

1 Introduction

Password-based authentication is one of the most widely-used online services for
Internet users [2,11,22]. However, it is hard for users to memorize a large number
of passwords for various online services. To alleviate this issue, password vault,
a convenient tool, is proposed to manage users’ passwords [8,19,21]. It enables
a user to encrypt passwords by password-based encryption (PBE) with a single
master password and manage passwords in the setting of ciphertext. The user
just needs to memorize the master password instead of all passwords. However,
the user is prone to choose the weak master password, which makes an attacker
easy to guess by a brute-force way [15,25]. The attacker can repeat decrypting the
password vault of the user with all candidate master passwords until obtaining
reasonable (not random) passwords, as shown in Fig. 1(a). In practice, real-world
incidents have demonstrated this security risk. For example, the traditional PBE-
based password vaults (e.g., Lastpass [17], Enpass [7], 1password [1]) leak master
passwords because a significant number of users tend to choose weak master
passwords.

Honey password vault is a promising technique to mitigate the above issue [3].
The core component of honey password vaults is the distribution transforming
encoder (DTE), as shown in Fig. 1(b). Such an encoder converts the plaintext
password vault to a seed, then PBE encrypts the seed to ciphertext. Under the
above brute-force guessing attack, the attacker always decrypts out a plausible
decoy vault even with any candidate master password. This feature makes the
attacker hard to identify if a candidate master password is a real one. One may
note that the attacker can verify the validity of a candidate master password
by logging in an online service with the decrypted decoy vault. This method is
impractical as some existing techniques, like restricting malicious login attempts,
have been widely adopted as an effective countermeasure [9,23,24]. For example,
when the Google website detects suspicious login attempts, it will notify users
and block their accounts [12].

Despite the promising feature of the honey vault, prior schemes are vulner-
able to various practical attacks due to the weaknesses of DTEs [4,6,10] and
the update of the vault [5], as shown in Fig. 1(c). Chatterjee et al. designed the
first DTE-based honey password vault scheme (denote as Chatterjee-PCFG) [4].
They utilized a PCFG model to construct DTE. Later, Golla et al. [10] discov-
ered the distribution differences between the decoy and real vaults in Chatterjee-
PCFG and designed the Kullback-Leibler (KL) divergence attack. Meanwhile,
they proposed an adaptive encoder scheme (denote as Golla-Markov) to resist
the attack. Cheng et al. [6] found that previous DTEs [4,10] generate differ-
ent encoding paths for the decoy and real vaults. From that, they proposed the
encoding attack. As a countermeasure, they exploited the generative probability
model to construct a new type of DTE. On the other hand, due to Chatterjee-
PCFG and Golla-Markov did not consider the update of password vaults, Cheng
et al. [5] also launched the intersection attack by overlapping password vaults
before and after updating. Furthermore, they proposed an incrementally updat-
able honey password vault (denote as Cheng-IUV) to resist both the encoding

You Reset I Attack! A MPGA Against Honey Password Vaults 143

Fig. 1. Overview: The differences between the traditional PBE-based vault and the
honey password vault. Moreover, we show the prior threats and our MPGA on honey
password vaults. Note the password vault, real and decoy vaults mentioned in this
paper are in plaintext.

and the intersection attacks. Thus, Cheng-IUV does enhance the security of the
honey password vault.

The aforementioned works [4–6,10] do not consider the security for master
password reset1. It is inevitable that a user has to reset the long-term-used
master password periodically, which could be required by the vault applications
(especially after the disclosure of leaked passwords). After the master password
is reset, the honey password vault scheme fully re-encrypts the vault. In detail,
the scheme must first decrypt the ciphertext vault to the seed with the old
master password and decode the seed to plaintext password vault. Then, it re-
encodes plaintext password vault to a new seed and re-encrypts the seed with
a new master password. We find out that various encryption versions2 of a
vault can cause a severe threat of leaking the new master password. This paper
aims to answer: “Given different encryption versions, could attackers break honey
password vault via some well-designed strategies? ” and if so, “Are there any
practical-but-not-trivial countermeasures for the attack? ”

Our Contributions. To answer the first question, we propose a Master Pass-
word Guessing Attack (MPGA) against existing honey password vault schemes.
Given two encryption versions of the honey password vault, the attacker can
distinguish the real vault from decoy ones. For example, if the attacker guesses
correct master passwords to decrypt two encryption versions of a vault, he can
obtain two fully same real vaults; otherwise, he obtains two totally different decoy
vaults with a significant probability. We state that MPGA works effectively in
all existing honey password vault schemes.

1 To avoid ambiguity, hereafter, “reset” a master password, we mean a user updates
or modifies the master password and we also note that this action could be fully or
partially on the password based on the user’s habits.

2 In this work, we only focus on the reset of master password, in which the plaintext
password vault remains unchanged. Note we will also discuss the case where users
modify proportions of the password vault in Appendix B.1.

144 T. Rao et al.

To resist MPGA, we design a generative model for the master password. The
model converts the master password to a cognate password and then encrypts
plaintext password vaults with the cognate password. In this case, decrypting the
honey password vault with different candidate master passwords yields similar
decoy vaults, so to resist MPGA. Our solution is a generic construction that is
pluggable to existing honey password vault schemes. We integrate the generative
model with the most recent Cheng-IUV to produce a new and secure master-
password-updatable honey password vault (SMART). We state that the gener-
ative model is also compatible with other honey password vault schemes, e.g.,
Chatterjee-PCFG and Golla-Markov, enabling their schemes to resist MPGA.

We conduct empirical experiments to evaluate the effectiveness of the pro-
posed MPGA and SMART. The results show that MPGA can achieve remark-
able attack accuracy 99.12%–100.00%. It yields the best attack performance
against honey password vault schemes compared to previous attacks (i.e., KL
divergence attack [10], encoding attack [6], and intersection attack [5]). As a
countermeasure, SMART substantially restrains the performance of MPGA to
49.88% (where the ideal is 50.00%). We further evaluate SMART against prior
attacks [5,6,10]. The experimental results illustrate that the attack accuracy is
restricted to 56.41% (close to the best-reported result 53.22%). This confirms
that our design achieves a significant improvement in security.

2 Master Password Guessing Attack

A secure honey password vault scheme must ensure security after the master
password is reset. Any scheme without considering the above security is vulner-
able to our proposed attack MPGA, in which the attacker can obtain significant
advantages from different encryption versions of the password vault so as to
guess the corresponding master passwords.

2.1 Attack Model

The MPGA attacker is allowed to access the old and new encryption versions of
a vault after the master password is reset and aims to recover the new master
password. Without loss of generality, suppose that the algorithm of honey pass-
word vault schemes, including DTE and PBE, is public. The MPGA attacker
can guess the new master password with high accuracy even without knowing
any additional information, such as the distribution or encoding paths of the
passwords.

Let pM and pV be two priority functions. Both functions will be used to rank
the candidate master passwords according to the different rules. More details
about those two functions will be given in Sect. 2.2. The attack process of MPGA
(see Algorithm 1) consists of the following main parts: 1) Generate candidate
master password lists Mo

ca and Mn
ca for the (stolen) old and new ciphertext

vaults respectively, order the candidate master passwords in Mo
ca and Mn

ca
according to the priority function pM , and let the ordered lists be Mo

ord and

You Reset I Attack! A MPGA Against Honey Password Vaults 145

Algorithm 1. The Attack Process of MPGA
MPGA(Co, Cn)
1: Generate candidate master password lists Mo

ca and Mn
ca (both of size N) for the (stolen) old

and new ciphertext vaults Co and Cn, respectively
2: Sort the lists Mo

ca and Mn
ca in ascending order of pM (Mo

ca, Mn
ca) respectively and let Mo

ord
and Mn

ord be the two corresponding sorted lists
3: for i = 1 to N do
4: Decrypt Co and Cn with the i-th candidate master passwords mpwo

i ∈ Mo
ord and mpwn

i ∈
Mn

ord, respectively
5: Add the decrypted password vaults vo and vn into Vo

ca and Vn
ca, respectively

6: end for
7: Sort the list Mn

ord in ascending order of pV (Vo
ca, Vn

ca) and let Mn
res be the sorted list

8: return Mn
res

pM (Mo
ca, Mn

ca)

1: for i = 1 to N do
2: Calculate the Levenshtein Distance di between mpwo

i ∈ Mo
ca and mpwn

i ∈ Mn
ca /* More

details about Levenshtein Distance will be given in Section 2.2 */
3: end for
4: return {di|i ∈ [1, N]}

pV (Vo
ca, Vn

ca)

1: Given a plaintext password vault v and a seed s, let Pr(s|v) be the probability of encoding v to
s using DTE

2: Let so and sn be two seeds decrypted from Co and Cn, respectively
3: for i = 1 to N do
4: for j = 1 to N do

5: kj =
∣
∣
∣
∣
1 − Pr(soj |vo

j)

Pr(sn
i

|vn
i
)

∣
∣
∣
∣
, where so

j and sn
i are the corresponding seeds of vo

j and vn
i during

decryption, respectively, vo
j ∈ Vo

ca, and vn
i ∈ Vn

ca
6: end for
7: Find the minimum value ri = min{kj |j ∈ [1, N]}
8: end for
9: return {ri|i ∈ [1, N]}

Mn
ord; 2) Decrypt the (stolen) old and new ciphertext vaults with the candidate

master passwords in Mo
ord and Mn

ord respectively and let the decrypted pass-
word vaults be Vo

ca and Vn
ca; 3) Rank the candidate master passwords in Mn

ord
according to the priority function pV and let Mn

res be the resulted list. Finally,
the master password with a lower index in Mn

res has a higher possibility of being
correct.

The effectiveness of MPGA depends on those two priority functions. We
design the priority function pM according to the fact that a pair of the old and
new candidate master passwords is more likely to be real if they have a stronger
correlation. The priority function pV implies the fact that a pair of the old and
new candidate master passwords is more likely to be real if the decrypted vaults
from Co and Cn have more similarity.

2.2 Priority Functions pM and pV

We propose two priority functions pM and pV , as the core strategies for the
MPGA attacker, to choose the most-probable-real master password from candi-
date master passwords. The attacker can construct priority functions using all
available information to obtain optimal ranked lists of candidate master pass-
words and candidate vaults.

146 T. Rao et al.

The Priority Function pM . This function is based on the similarity between
the old and new master passwords, as shown in Algorithm 1. It allows the
attacker to focus on the promising master passwords and reduce the time and
resources required to decrypt the ciphertext vault. Thus, the priority function
pM plays a crucial role in MPGA. In Algorithm 1 (pM), each master password
in Mn

ca is compared to Mo
ca and assigned a ranking value by Levenshtein Dis-

tance [26]. As a commonly used method to calculate the similarity between two
passwords, the Levenshtein Distance measures the minimum number of edit oper-
ations required to transform an old master password into a new one. Most users
prefer to obtain the new master password by directly modifying some characters
in the old master password for convenience. Therefore, there is a high probability
that the two passwords are similar. The lower the ranking value, the more likely
the candidate master password is real. Hence, the priority function pM is defined
as

pM (Mo
ca,Mn

ca) =
{

di

∣∣∣∣ di is the Levenshtein Distance between
mpwo

i ∈ Mo
ca and mpwn

i ∈ Mn
ca, i ∈ [1, N]

}
.

The Priority Function pV . This function is used to rank the master passwords
by decrypted candidate vaults. To facilitate description, we let mpwi ∈ M,
vi ∈ V, si ∈ S and ci ∈ C denote a master password, a plaintext vault, a
seed, and a ciphertext vault, respectively, where the si is decrypted from ci with
mpwi, and vi is decoded from si. We define the random variable mpwi = MPW
as the event that the master password is correct. Meanwhile, the real password
vault, real seed and the ciphertext vault denote as V, S, and C, respectively. In
order to get the correct password vault, the optimal strategy is to rank vi in the
descending order of Pr (mpwi = MPW | ci = C).

Recall that a vault scheme may leak the old and new ciphertexts of the
same vault vi after resetting the master password. Let the vo

i and vn
i denote the

decrypted old and new password vaults with candidate master passwords. Like
Cheng-IUV’s encoder, we extend the probability Pr(mpwi = MPW |ci = C) =
ε ·Pr(si|vi), where ε = Pr(mpwi = MPW) ·Pr(vi = V) is a constant independent
of i, and Pr(si|vi) is the probability of encoding vi to si. We further capture
the ratio of Pr(soi |vo

i) and Pr(sni |vn
i) for the old and new versions. Given the

two encryption versions of a vault, we distinguish real and decoy based on the
similarity of them. The priority function pV is defined as

pV (Vo
ca,Vn

ca) =

{
ri

∣∣∣∣∣ri = min

{
kj

∣∣∣∣∣
kj =

∣∣∣1 − Pr(so
j |vo

j)

Pr(sn
i |vn

i)

∣∣∣ ,

vo
j ∈ Vo

ca, v
n
i ∈ Vn

ca, j ∈ [1, N]

}
, i ∈ [1, N]

}
,

where soj and sni are the corresponding seeds of vo
j and vn

i during decryption,
respectively. If vo

j and vn
i are real vaults, the probability Pr(soj |vo

j) will be iden-
tical with Pr(sni |vn

i), namely the corresponding value kj is the minimum one.
Hence, the priority function pV aims to find the most similar vault vo

j ∈ Vo
ca for

each vn
i ∈ Vn

ca and guides MPGA to distinguish the real vault from decoy vaults.

You Reset I Attack! A MPGA Against Honey Password Vaults 147

2.3 MPGA on the Existing Honey Password Vaults

In practice, the honey password vault could leak multiple encryption versions
after the user resets the master password. Hence, all existing honey password
vault schemes suffer from MPGA. We will conduct further empirical experiments
to show MPGA against Chatterjee-PCFG, Golla-Markov, and Cheng-IUV in
Sect. 4. The experiment results show that MPGA achieves 100% attack accuracy.
Here, we explain why MPGA is effective for the different schemes as follows.

MPGA on Chatterjee-PCFG. MPGA can distinguish the real password
vault from the decoy ones according to their differences in sub-grammar. After
resetting the master password, Chatterjee-PCFG re-encodes the vault. The new
encoding result (i.e., sub-grammar) still remains the same. When the attacker
decrypts different versions of the vault with incorrect master passwords, he will
produce distinct sub-grammars and decode to distinct decoy vaults. The correct
master passwords will result in identical sub-grammar and identical password
vaults. Hence, the attacker can rank those “identical” password vaults at the top
of the candidate vault list, according to the priority function pV .

MPGA on Golla-Markov. MPGA digs out the differences between the real
vault and decoy vault generated from the reuse approach. The reuse approach of
Golla-Markov encodes the vault by selecting a base password and using the base
to encode each password. For example, in order to encode a vault v = (abcdef,
abcdef, abcdef@), the reuse approach chooses “abcdef” as the base of the vault.
Then, the Markov model encodes passwords in the vault using the base as a
part of the passwords. However, the decoder randomly selects the base password
upon decrypting the old and new versions of the vault. Hence, the new password
vault differs from the old one under the incorrect master password decryption.

MPGA on Cheng-IUV. MPGA provides insight into the vulnerability in
the incrementally updatable honey password vault after the master password is
reset. When adding, deleting, and modifying a password in the password vault,
the scheme keeps old passwords unchanged and incrementally pads the new
password pwi+1 to the end of the vault v. Accordingly, the Cheng-IUV encodes
the new password to sub-seed si+1 and concatenates the si+1 to the end of s.
After resetting the master password, the scheme re-encodes the whole vault by
the conditional probability model to obtain the new seed s′. However, when
decrypting the old and new vault versions using incorrect master passwords,
the model generates completely different conditional probabilities of the whole
passwords in the vault. Therefore, the old and new decoy password vaults are
not exactly identical after decrypting with incorrect master passwords.

3 Secure Master-Password-Updatable Honey Password
Vault

We design a generic countermeasure against the MPGA and further develop
a secure master-password-updatable honey password vault named SMART. In

148 T. Rao et al.

our scheme, we construct the generative model to produce a cognate password
for encrypting the password vault, as shown in Fig. 2. By implementing this
construction, SMART effectively produces a more extensive list of identical decoy
vaults during the decryption process. Thus, our countermeasure increases the
difficulty for potential attackers to distinguish the real vault from the decoy ones,
thereby enhancing the overall security of the honey password vault scheme.

Fig. 2. The simplified architecture of our secure master-password-updatable honey
password vault (SMART). At the encoding stage, the DTE encodes the vault v to
a seed s. Then, in the encrypting process, the seed s is encrypted with the cognate
password generated by the generative model. Note that everytime the master password
mpw is reset, SMART will choose a new salt sa. Thus, the old master password could
not decrypt the new ciphertext vault.

3.1 A Generic Solution Against MPGA

Recall that the attacker’s primary challenge is to generate a ranked list of master
passwords after obtaining the old/new encryption versions of a vault. The correct
master password is more likely to be ranked higher on this list. Existing schemes
barely generate identical decoy password vaults when decrypting the old and
new versions with incorrect master passwords. On the contrary, when decrypting
both versions with the correct master password, the same password vaults are
obtained. Thus, the attacker can easily distinguish the real master password.
Based on this fact, we construct the generative model for the master password
that can generate a cognate password to encrypt the vault. By utilizing the
model, the honey password vault scheme can resist MPGA.

The generative model aims to convert the master password to a cognate
password by the conditional probability of a master password. In the follow-
ing, we will describe how to construct the generative model that estimates the
conditional probability Pr(m|m̃) for a cognate password m under the master
password m̃. Since a password is composed of a sequence of characters, we
let m̃ = c̃1, . . . , c̃l′ and m = c1, . . . , cl. For a pair of passwords (m̃,m), we
define all possible transformation paths from m̃ to m as Tm̃→m; each path
Tm̃→m ∈ Tm̃→m consists of several regular edit operations (insert, replace, and

You Reset I Attack! A MPGA Against Honey Password Vaults 149

delete); and the size of Tm̃→m is defined as the corresponding edit distance.
In order to obtain the shortest edit distance, we prioritize the delete opera-
tion. The conditional probability of the transformations for the pair (m̃,m) is

defined as Pr (Tm̃→m | m̃) =
t∏

i=1

Pr (τi | m̃, τ1, . . . , τi−1), where t is the edit dis-

tance between m and m̃, and the transformation path is Tm̃→m = τ1, . . . , τt.
We design the encoder and decoder functions using recurrent neural networks

to instantiate the generative model. The encoder function maps the input char-
acter sequence of a master password onto a real value vector w ∈ R

d for hyper-
parameter dimension d. Then, the decoder function takes the vector w as the
input, and outputs a cognate password. The cognate password has the maximum
conditional probability in the transformation. Accordingly, we further extend

above conditional probability as Pr (Tm̃→m | m̃) =
t∏

i=1

Pr (τi | w0, τ1, . . . , τi−1) =

t∏
i=1

Pr (τi | wi−1, τi−1) , where w0 is the output weight of the encoder function

with input m̃, and wi+1 is the output weight of the decoder function with inputs
wi and τi. We set up the learning process of the generative model as a super-
vised learning task. The training objective is to find the parameter θ that max-
imizes the log probability of the proper edit path between the password pairs.
Denote D as the password pairs set. The generative model training objective as
argmax

θ

1
|D|

∑
(m̃,m)∈D

log Pr (Tm̃→m | m̃; θ) .

The generative model converts similar passwords generated by a user into
the same cognate password with high probability. Moreover, the cognate pass-
word yields the same seed decrypted from different master passwords, and then
obtains the same decoy password vaults. Through the generative model, convert-
ing the master password to the cognate password is concise. Firstly, the encoder
transforms the master password m̃ into a d-dimension vector wm̃ ∈ R

d, and
feeds it to the decoder. Then, the decoder receives the hyperparameters from
the encoder and calculates the probability distribution over the transform set.
The model chooses the most probable output wi in each iteration and utilizes
them in the following invocation until reaching the end symbol of the sequence.
At last, it combines the sequence with the master password m̃ to output a cog-
nate password.

3.2 Training the Generative Model

Training Dataset. The leaked passwords we use for the training were pub-
lished on the Internet between 2009 and 2017. They contain 14,000 million
email-password pairs with 11,000 million unique emails and 463 million unique
passwords from Twitter, Facebook, Myspace, Yahoo, and other websites. For
simplicity, we only focus on the characteristics of the password without consid-
ering the different website password policies (e.g. [18]). Hence, we only select the
password pairs in which the passwords contain ≥ 4 but ≤ 20 characters. We also
delete the non-printable characters and reduce valid passwords to 460,400,000.

150 T. Rao et al.

The datasets are not harmful to current users, and the experiment’s results con-
tribute to devising a more secure honey password vault scheme.

Training Process. We construct the generative model with the encoder-
decoder neural network. Firstly, we initialize the model network using the
method introduced in [20]. The embedding layers are initialized with uniform
random values in [−

√
3,

√
3] and the rest layers of the neural network with the

values in [−
√
6/(di + di+1),

√
6/(di + di+1)], where the di is the dimension of

the i-th layer. After that, we train the model by reducing the cross-entropy loss
between the predicted outputs of the network and the expected outputs. This
training process utilizes the stochastic gradient descent method and the Adam
optimizer [16] to learn the conditional probability of the output given hyper-
parameters. For the training dataset, we randomly select 80.00% of the above
dataset (as the training set) to train the generative model and the rest as the
test set. As for the training setup, we set the layer as 3-hidden layers with 128
hidden units in each layer. The learning rate is set as 0.001, which provides high
conversion accuracy. The above neural network settings are consistent with [20].
The experimental environment of the training is given in Sect. 4.1.

3.3 Instantiation with Incrementally Updatable Scheme

To instantiate SMART, we integrate the generative model with Cheng-IUV.
Like general honey vault schemes (see Appendix A), SMART comprises two
parts: DTE and PBE. For the DTE construction, we use a conditional proba-
bility model transforming encoder from Cheng-IUV to generate the seed. The
conditional probability model transforming encoder chooses one path from the
existing generating paths. Meanwhile, the conditional encoder is seed-uniform,
and the encoding path is unfixed. Our DTE is able to adjust the decoy vault
distribution by assigning a higher probability to the existing passwords in the
vault and then normalizing the decoy distribution. Based on the above facts,
SMART resists the encoding and KL divergence attacks.

For the part of PBE, the generative model converts the master password to a
cognate password. PBE utilizes the key derivation function (PBKDF) to generate
the encryption key with the cognate password. Then, it encrypts the seed s by
AES in CTR-mode with the encryption key. Our SMART naturally brings the
incrementally updatable mechanism. The core consideration on updating the
vault is to completely maintain the old password vault and increment the new
password to the end of the vault. Whilst updating the vault, SMART decrypts
the vault to the seed first. Then, it adds the new sub-seed to the end of the seed
if users add or modify passwords. If users request to delete some passwords, it
records these passwords’ positions as none in plaintext. With the incrementally
updatable mechanism, SMART ensures security after password vault updates.

You Reset I Attack! A MPGA Against Honey Password Vaults 151

Compatibility with Other Schemes. We state that our generative model
can also be effectively and efficiently applied to other existing honey pass-
word vault schemes, such as Chatterjee-PCFG and Golla-Markov. In Chatterjee-
PCFG scheme, our generative model is compatible with the encryption process.
The generative model generates the same cognate passwords for enough amount
of incorrect candidate master passwords. When decrypting the old and new ver-
sions of vaults with cognate passwords, Chatterjee-PCFG obtains the completely
identical sub-grammar. With the same sub-grammar, the decoder outputs identi-
cal password vaults. Furthermore, our generative model is also compatible with
Golla-Markov. Similarly, when decrypting with the same cognate passwords,
Golla-Markov obtains the identical base password and then decodes to the same
decoy vaults.

4 Evaluation

We implement our proposed attack, MPGA, against prior schemes Chatterjee-
PCFG, Golla-Markov, and Cheng-IUV. The results demonstrate that MPGA
achieved exceptional attack accuracy. Furthermore, we evaluate and compare
SMART with prior schemes under the well-studied attacks and MPGA via real-
world datasets. Our solution is practical and effective with a remarkable improve-
ment in security.

4.1 Experimental Environment

We implement the honey password vaults [4,5,10] and the instantiated SMART
in the same experimental environment of python-3.6.6 with Cryptography-37.02.
For the encryption process, we use AES within CTR-mode encryption and SHA-
256 within PBKDF for the key derivation function by following the setting
defined in previous works. The generative model training and the DTE train-
ing are performed on an Nvidia Tesla V100. All implementation and evaluation
experiments are on an Intel Core-i7 with 16 GB of Linux RAM.

4.2 Dataset

We consider the most-widely used datasets to yield a fair comparison with previ-
ous works [4,5,10]. To evaluate MPGA, we conduct tests on the real-world pass-
word vault dataset Pastebin and leaked password datasets RockYou, Yahoo,
Gmail, and Myspace. We state that Pastebin is currently the only real-world
leaked plaintext password vault dataset comprising 276 password vaults (where
each vault is with the size of 2–50). On the other hand, RockYou is one of
the most extensive leaked plaintext password datasets. It provides 32 million
password samples with around 14 million unique passwords. The Yahoo dataset
leaked in the server vulnerability incident includes approximately 442,800 pass-
word samples. The Gmail dataset contains 5 million passwords. The Myspace
dataset contains 41,500 passwords. It is worth noting that previous research

152 T. Rao et al.

works [4,5,10] also leverage the above datasets to demonstrate the potential
risks of existing schemes and the effectiveness of countermeasures. The datasets
used in our experiments do not imperil the privacy and security of current pass-
word users. We randomly split the password datasets (RockYou, Yahoo, Gmail,
and Myspace) into two sets: training (90.00%) and testing (10.00%). As for the
Pastebin dataset, we randomly divide it into five parts, with one portion serving
as the test set and the union of the rest as the training set.

4.3 Security Metrics

We define two crucial security metrics, the real vault average rank r̄ and
the attack accuracy α. To provide a fair comparison, we use Cheng et al.’s
method [5] to estimate the real vault’s rank cumulative distribution function
(RCDF) F (x) = Pr(r̄ ≤ x). The function F (x) is a comprehensive presentation
of the attack results. If the scheme is entirely secure, the ranks are uniformly
distributed. Specifically, we define the rank r̄ as the ratio of the real vault to
the number of decoy vaults, and r̄ ∈ [0, 1]. This rank serves as a quantitative
measure that indicates the relative position of the real vault in the online ver-
ification order. When the r̄ is lower, the real vault is more likely to be ranked
at the top of the verification order. On the other hand, a higher r̄ implies that
the real vault is positioned further down the verification order. For example,
when r̄ = 0.10, the attacker could confirm the real password vault after verify-
ing 10.00% of the decoy password vaults. We further set the accuracy α as the
metric to distinguish the real vault from decoy vaults, and α ∈ [0, 1]. We state
that r̄ and α can be calculated from F (x) as r̄ = 1−

∫ 1

0
F (x)dx, and α = 1− r̄.

We set the uniform distribution U as the baseline, and the r̄ = α = 0.5. We also
use F (0), F (1/4), F (1/2), and F (3/4) as the rank proportion of real vaults rank
of 0, 1/4, 1/2, and 3/4. Since the cumulative distribution function of U is linear,
the ideal values of F (0), F (1/4), F (1/2), and F (3/4) are 0, 0.25, 0.5, and 0.75,
respectively.

4.4 Implementation and Evaluation on MPGA

Implementation of MPGA. The attack implementation follows the process
given in Sect. 2.1. Here are the details:

1. Generate and rank the candidate master passwords. Firstly the attacker gen-
erates candidate master passwords to form Mo and Mn. And the two real
master passwords are in Mo and Mn, respectively. Instead of blind guess-
ing, the attacker combines users’ additional behavior information and possible
reuse habits to derive a list of candidate master passwords. Then, the attacker
ranks the guessed master passwords by the similarity of old and new master
passwords calculated with the Levenshtein Distance.

2. Obtain ciphertext vaults after resetting the master password. Denote the old
ciphertext vault as Co. The attacker obtains the new ciphertext vault Cn

after the master password is reset. The plaintext passwords in the vault are

You Reset I Attack! A MPGA Against Honey Password Vaults 153

Fig. 3. The rank results of MPGA: The real vault is a sample from Pastebin, and the
decoy vaults are generated from Chatterjee-PCFG, Golla-Markov, and Cheng-IUV.
MPGA ranks password vaults in descending order of the similarity rate R. The real
password vault with a 100% similarity rate are always ranked 1st. The candidate list
size N ∈ {10, 100, 1000, 10000}.

unchanged. Namely, the old password vault vo is exactly the same as the new
vn. In practice, there exists a scenario where users may prefer to update both
the master password and passwords stored in the vault. We will discuss this
case and show the experimental results in Appendix B.1.

3. Decrypt the ciphertext vaults to generate candidate vaults. The attacker
obtains N candidate vaults by repeatedly decrypting ciphertext vaults Co

and Cn using the ranked master passwords Mo and Mn, respectively. Note
that the decoy vaults’ size is identical to real vaults. Finally, the attacker
obtains N candidate vaults consisting of a real vault vo

real and N − 1 decoy
vaults vo

decoy. In the same way, the attacker obtains a vn
real and N − 1 vn

decoy.
4. Rank the candidate vaults and get the ranked candidate master passwords

according to ranked candidate vaults. The attacker can rank the candidate
vaults in the descending order of the R, where R is the proportion of the
same passwords in the two versions of password vaults. Note we set N ∈
{10, 100, 1000, 10000}.

154 T. Rao et al.

Table 1. Performance of MPGA against existing honey password vaults. The real vault
is sampled from Pastebin, Rockyou and Myspace. The vault size M ∈ [2, 50], and the
candidate size N = 1, 000.

Vault Size Chatterjee-PCFG Golla-Markov Cheng-IUV
M r̄ α r̄ α r̄ α

Pastebin 2–3 0.30% 99.70% 0.86% 99.14% 0.88% 99.12%
4–8 0.00% 100.00% 0.00% 100.00% 0.00% 100.00%
9–50 0.00% 100.00% 0.00% 100.00% 0.00% 100.00%
All (2–50) 0.10% 99.90% 0.28% 99.72% 0.29% 99.71%

Rockyou 2–3 0.10% 99.90% 0.22% 99.78% 0.16% 99.84%
4–8 0.00% 100.00% 0.00% 100.00% 0.00% 100.00%
9–50 0.00% 100.00% 0.00% 100.00% 0.00% 100.00%
All (2–50) 0.03% 99.97% 0.07% 99.93% 0.05% 99.95%

Myspace 2–3 0.18% 99.82% 0.17% 99.83% 0.11% 99.89%
4–8 0.00% 100.00% 0.00% 100.00% 0.00% 100.00%
9–50 0.00% 100.00% 0.00% 100.00% 0.00% 100.00%
All (2–50) 0.10% 99.90% 0.05% 99.95% 0.03% 99.97%

MPGA’s Performance with Pastebin. We compare the performance of
MPGA on Chatterjee-PCFG, Golla-Markov, and Cheng-IUV schemes. The
experimental results are summarized in Table 1 and Fig. 3. As shown in Table 1,
we evaluate previous works using various sizes M of the real-world vaults
in Pastebin. The average rank r̄ is between 0.00%–0.88%, achieving 99.12%–
100.00% accuracy, which reduces approx. 85.33%–100.00% of online guessing as
compared to the best-reported attack in Cheng-IUV. When the M is set to 2–3,
there are about 0.30%–0.88% of the old and new versions of vaults that are iden-
tical. Moreover, this experiment shows that only the real password vaults can be
identical, when M > 3, shown in Table 1. Recall that we denote the proportion
of identical passwords in the two password vaults as R. The larger the vault
size we have, the smaller the R we obtain. This indicates that there are more
different passwords between the old and new vaults. Therefore, increasing the
number of passwords in the password vault will hardly increase the similarity
rate R.

In Fig. 3, we conduct the experiments for the candidate size N ∈
{10, 100, 1000, 10000} to evaluate the influence of candidate set size on the rank-
ing. The results prove that MPGA can effectively rank the real vault on the top
with 100.00% accuracy under previous honey password vault schemes. When the
N ∈ {10, 100}, the R of the real vault is still 100.00%, but that of the decoy
vaults drops to 10.00%. When the candidate size climbs to 1,000 and 10,000, the
R of most decoy vaults increases to 20.00%. And a few pairs of password vault R
is 30.00%. The number of identical passwords can be scaled up with the increase
in the number of decoy password vaults. But experiment results show that their
schemes still do not produce the entirely same decoy password vaults.

You Reset I Attack! A MPGA Against Honey Password Vaults 155

Table 2. Evaluation: our SMART and existing schemes against MPGA and previ-
ous attacks. The security metrics r̄, α, F (0), F (1/4), F (1/2), and F (3/4) are defined in
Sect. 4.3. The real vaults are chosen from Pastebin, where the vault size M ∈ [2, 50],
and the candidate list size N = 1,000.

Scheme Attack r̄ α F (0) F (1/4) F (1/2) F (3/4)

Chatterjee-PCFG [4] KL divergence attack 11.91% 88.09% 61.22% 82.82% 88.61% 93.71%

Encoding attack 12.18% 87.82% 47.96% 82.48% 90.10% 95.75%

Intersection attack 0.00% 100.00% 100.00% 100.00% 100.00% 100.00%

MPGA 0.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Golla-Markov [10] KL divergence attack 51.19% 48.81% 0.00% 22.45% 50.34% 75.34%

Encoding attack 15.10% 84.90% 5.44% 75.34% 95.58% 100.00%

Intersection attack 0.00% 100.00% 100.00% 100.00% 100.00% 100.00%

MPGA 0.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Cheng-IUV [5] KL divergence attack 44.59% 55.41% 0.85% 31.29% 56.80% 78.91%

Encoding attack 39.82% 60.18% 0.63% 38.78% 62.24% 81.97%

Intersection attack 46.78% 53.22% 0.88% 27.89% 54.08% 77.38%

MPGA 0.00% 100.00% 100.00% 100.00% 100.00% 100.00%

SMART [Sect. 3] KL divergence attack 44.39% 55.61% 0.76% 28.57% 54.76% 82.82%

Encoding attack 46.32% 53.68% 0.34% 33.33% 63.10% 89.80%

Intersection attack 43.59% 56.41% 0.17% 30.10% 58.84% 83.16%

MPGA 50.12% 49.88% 0.00% 22.45% 50.34% 75.34%

Fig. 4. Comparison: honey password vault schemes under previous attacks and MPGA.
We use the vaults with sizes M ∈ [2, 50] in Pastebin, and the candidate size N = 1, 000.

MPGA’s Performance with Other Datasets. Previous works [4,5,10] per-
formed practical simulations in Pastebin. However, the scale of Pastebin is rela-
tively small. To test MPGA on large-scale datasets, we construct password vaults
with passwords from Rockyou and Myspace. We set the vault size as M and ran-
domly chose M passwords from Rockyou and Myspace to form the real vaults,
respectively. The rest of the attack setup and settings are the same as the above
evaluation with Pastebin. In Table 1, we show the performance of Chatterjee-
PCFG, Golla-Markov, and Cheng-IUV honey password schemes in Rockyou and
Myspace. The average rank r̄ is 0.00%–0.22%, and accuracy is 99.78%–100.00%
under MPGA. When M is 2–3, MPGA can achieve 99.78%–99.90% accuracy,
which is very close to the experimental result using Pastebin.

4.5 Evaluation on SMART and Prior Schemes

Our SMART achieves stronger security than prior schemes. In the multi-leakage
case, we significantly improve the resistance to MPGA. As shown in Fig. 4(d)

156 T. Rao et al.

Table 3. The time cost of handling a vault.

Vault size 2 20 200 2,000

Encrypt 2.96 ms 37.06 ms 1,296.62 ms 94,665.23 ms
Decrypt 1.56 ms 4.88 ms 26.24 ms 736.96 ms
Encode 1.38 ms 15.60 ms 636.88 ms 48,553.66 ms
Decode 0.69 ms 1.70 ms 10.34 ms 255.69 ms
Vault storage file 0.55 KB 5.50 KB 55.00 KB 550.00 KB

and Table 2, SMART can mitigate MPGA since r̄ and α are only 49.88% and
50.12%, respectively. SMART also maintains security in the case where only a
single version of the password vault is exposed to attackers. The results show
that attackers must verify at least 44.39%, 46.32%, and 43.59% of decoy vaults
online under the KL divergence, encoding, and intersection attacks, respectively.
We have shown that SMART resists MPGA and previous attacks effectively. In
the following, we compare the performance of SMART to previous works. The
results show that Chatterjee-PCFG cannot resist KL divergence attack, encoding
attack, intersection attack, and MPGA. As shown in Fig. 4(a) and Table 2, the
average rank r̄ of real vaults under MPGA and the intersection attack are 0.00%,
when the accuracy is 100.00%; and F(0) is 100.00%, which means that MPGA
always ranks the real vault to the top. We also see that the MPGA is 12.00%
more accuracy than the 88.09% of KL divergence attack and 87.82% of encoding
attack. Golla-Markov can only resist the KL divergence attack, in which the
result is close to the baseline. Under the KL divergence attack, Golla-Markov
captures 51.19% average rank and 48.81% attack accuracy. Compared to the
KL divergence attack, MPGA has a significant improvement, where the average
rank r̄ is 0.00%. Both the encoding attack and the intersection attack exclude
all decoy vaults with 100.00% attack accuracy. Cheng-IUV also cannot resist
MPGA. In Fig. 4(c) and Table 2, the r̄ of real vaults under MPGA is 0.00%, and
the accuracy is 100.00%. Our evaluations confirm that Cheng-IUV indeed resists
KL divergence, encoding, and intersection attacks, decreasing the accuracy α
to 55.41%, 60.18%, and 53.22%, respectively. We also evaluate the impact of
different vault sizes and password datasets in Appendix B.2.

Implementation and Efficiency. We conduct the performance on “encrypt”,
“decrypt”, “encode”, and “decode” processes. Following previous works [4,5],
we set the vault size M ∈ {2, 20, 200, 2000}, and the vault storage file f ∈
{0.55KB, 5.50KB, 55.00KB, 550.00KB}. In practice, a password vault usually
stores at least two passwords. Therefore, we choose two passwords as the small-
est unit for our experiments. As shown in Table 3, encrypting a vault of size 200
increases the time cost by approximately 10.00% compared to Cheng-IUV [5].
Because SMART involves the conversion of the master password into the cognate
password, which contributes to the slightly increased computational overhead.

You Reset I Attack! A MPGA Against Honey Password Vaults 157

5 Conclusion

To the best of our knowledge, this work is the first to study the security of
honey vault schemes after the master password is reset. We propose MPGA
against existing honey password vault schemes. Our experiments with MPGA
provide excellent attack performance in scenarios where multiple versions of the
honey password vault are leaked. We design a secure master-password-updatable
honey password vault called SMART. The evaluations on the real-world datasets
show that SMART significantly improves security against previous attacks and
MPGA.

Acknowledgements. We would like to thank the anonymous reviewers for their
insightful comments and valuable suggestions. This work was supported in part by
the National Key Research and Development Program of China under Grant No.
2021YFB3101304, in part by the National Natural Science Foundation of China under
Grant No. 62272186 and No. 62372201.

A Honey Password Vaults

The concept of decoy vaults comes from Bojinov et al.’s password vault Kamou-
flage [3]. However, their scheme is based on a static amount (e.g., 1,000) of decoy
vaults pre-generated and is incompatible with the honey encryption (HE) [13,14]
scheme. In this work, we deal with HE-based schemes, e.g., [4–6,10]. HE encodes
the vault to the bit string called seed through DTE and then encrypts the seed
to ciphertext using PBE. DTE consists of an encoder and a decoder. At the
encoding stage, encode passwords in a vault to obtain the bit string s called
the seed. Then, the string s is encrypted with the master password in the PBE
scheme. In the encrypting process, HE derives a key K = KDF (mpw, sa), where
sa is the generated uniform salt, and mpw is the master password. Here, KDF is
a password-based key derivation function with SHA-256. Then, encrypt s using
AES in CTR-mode with key K and generate the ciphertext C. The decryption
works reversely as compared to the above process. Take the master password as
input from the user, then derive K as the decryption key. Then, decrypt the C
with the K and decode the decrypted s to the plaintext password vault. Existing
honey password vault schemes store passwords in the form of ciphertext through
the HE scheme. The metadata (i.e., Domain, Username, Computer-generated,
Password position) in the password vault is stored in plaintext. The computer-
generated passwords are encoded into uniformly distributed seed. In contrast,
the user-generated passwords are encoded by the DTE. In this work, we only
focus on user-generated passwords. The existing popular password vault systems
can remind users to reset the passwords that may have been leaked. To update
the vault, incrementally add the updated password to the end of the vault and
modify the password position. If the master password is reset, the old vault will
be “re-encrypted” accordingly.

158 T. Rao et al.

B Extended Evaluations

B.1 MPGA’s Performance on Updated Vault

We test the security of honey password vault schemes against a hybrid attack
where the master password and the vault (i.e., the passwords stored in the vault)
are updated simultaneously. The process of resetting the master password is
relatively straightforward from the user’s perspective. The user only needs to
authenticate once to do so. However, updating the passwords in the vault is
complicated, as each password corresponds to a different website policy, and
the user has to execute various authentication steps. In addition, since the user
probably cannot update the entire password vault (i.e., all the passwords) at the
same time, the vault service provider may back up multiple historical versions
of the vault. Hence, the attacker could obtain multi-leakage versions.

Fig. 5. Performance: hybrid attack on honey password vault schemes under the update
rate ur ∈ {20.00%, 40.00%, 60.00%, 80.00%, 100.00%}. The candidate list size N ∈
{10, 100, 1000, 10000}.

We choose the vaults with size M ≥ 10 from Pastebin. Then, we
randomly shuffle the passwords in each vault and denote the last ur ∈
{20.00%, 40.00%, 60.00%, 80.00%, 100.00%} password as the newly added pass-
words. In the old version of a vault, we remove the last ur of passwords. We use
this simplified approach to simulate the old and new versions of a vault after the
user updates both the master password and the vault (i.e., all the passwords).
The candidate list size N ∈ {10, 100, 1000, 10000}. Given the old/new plaintext
password vaults vo, vn, the priority function pHA(vo, vn) of the hybrid attack is
equal to 1 if vo is the same as vn except for the update passwords; otherwise,
the pHA(vo, vn) is equal to 0. We have

pHA(vo, vn) =
{
1, vo is the front part of vn,
0, otherwise.

As shown in Fig. 5, the accuracy of the hybrid attack can reach 100.00%,
when the update rate is < 80.00%. If the rate is > 80.00%, the accuracy reduces
accordingly, and the attack fails when there is a 100.00% update. Note that the
user cannot update the entire password vault at the same time. Moreover, every

You Reset I Attack! A MPGA Against Honey Password Vaults 159

Table 4. Performance: hybrid attack on our scheme under the update rate ur ∈
{20.00%, 40.00%, 60.00%, 80.00%, 100.00%}. We set the candidate list size N = 1, 000.

Vault update rate 20.00% 40.00% 60.00% 80.00% 100.00%

r 50.00% 50.00% 50.00% 50.00% 50.00%
α 50.00% 50.00% 50.00% 50.00% 50.00%

Fig. 6. Evaluation: attacking different vault sizes M ∈ {10, 100, 1000, 10000} of honey
password vaults, and the candidate size N = 1, 000. We used the leaked password
datasets Yahoo (subfig. a–d) and Gmail (subfig. e–h) to train DTEs.

modification cannot update too many passwords. The hybrid attack is effective
if the difference rate between the old and new versions is less than 80%. We
state that our SMART is resistant to the hybrid attack, and the accuracy rate
remains at 50.00% after various vault updates, see Table 4.

B.2 Experimental Parameters Evaluation

In this evaluation, we randomly select 90.00% of passwords from the Yahoo
dataset as the training set to train the DTE and the other 10.00% as the
real password vault. In the real password vault, we set up the same size
M ∈ {10, 100, 1000, 10000}. The experiments on Gmail follow the same settings.
In Fig. 6, we show the accuracy of the four attacks (i.e., KL divergence attack,
encoding attack, intersection attack, and MPGA) by increasing the number of
passwords in the vault. MPGA maintains 100.00% accuracy against previous
schemes (i.e., Chatterjee-PCFG, Golla-Markov, and Cheng-IUV). SMART still
has great resistance to above attacks. We also see that different password datasets
produce similar results, and the vault size has a minor effect on the results.

160 T. Rao et al.

References

1. 1password: 1password security design. https://1passwordstatic.com/files/security/
1password-white-paper.pdf

2. Bohuk, M.S., Islam, M., Ahmad, S., Swift, M., Ristenpart, T., Chatterjee, R.:
Gossamer: securely measuring password-based logins. In: USENIX Security 2022,
pp. 1867–1884 (2022)

3. Bojinov, H., Bursztein, E., Boyen, X., Boneh, D.: Kamouflage: loss-resistant pass-
word management. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 286–302. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15497-3_18

4. Chatterjee, R., Bonneau, J., Juels, A., Ristenpart, T.: Cracking-resistant password
vaults using natural language encoders. In: IEEE S&P 2015, pp. 481–498 (2015)

5. Cheng, H., Li, W., Wang, P., Chu, C.H., Liang, K.: Incrementally updateable honey
password vaults. In: USENIX Security 2021, pp. 857–874 (2021)

6. Cheng, H., Zheng, Z., Li, W., Wang, P., Chu, C.H.: Probability model transform-
ing encoders against encoding attacks. In: USENIX Security 2019, pp. 1573–1590
(2019)

7. Enpass: Enpass security whitepaper. https://support.enpass.io/docs/security-
whitepaper-enpass/index.html

8. Gasti, P., Rasmussen, K.B.: On the security of password manager database formats.
In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp.
770–787. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33167-
1_44

9. Gelernter, N., Kalma, S., Magnezi, B., Porcilan, H.: The password reset MitM
attack. In: IEEE S&P 2017, pp. 251–267 (2017)

10. Golla, M., Beuscher, B., Dürmuth, M.: On the security of cracking-resistant pass-
word vaults. In: ACM CCS 2016, pp. 1230–1241 (2016)

11. Golla, M., Dürmuth, M.: On the accuracy of password strength meters. In: ACM
CCS 2018, pp. 1567–1582 (2018)

12. Google: Google chrome privacy whitepaper. https://www.google.com/chrome/
privacy/whitepaper.html

13. Jaeger, J., Ristenpart, T., Tang, Q.: Honey encryption beyond message recov-
ery security. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9665, pp. 758–788. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3_29

14. Juels, A., Ristenpart, T.: Honey encryption: security beyond the Brute-Force
bound. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 293–310. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5_17

15. Juels, A., Rivest, R.L.: Honeywords: making password-cracking detectable. In:
ACM CCS 2013, pp. 145–160 (2013)

16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Lastpass: Lastpass technical whitepaper. https://support.lastpass.com/help/
lastpass-technical-whitepaper

18. Lastpass: Master password policy. https://support.lastpass.com/help/what-is-the-
lastpass-master-password-lp070014

19. Mayer, P., Munyendo, C.W., Mazurek, M.L., Aviv, A.J.: Why users (don’t) use
password managers at a large educational institution. In: USENIX Security 2022,
pp. 1849–1866 (2022)

https://1passwordstatic.com/files/security/1password-white-paper.pdf
https://1passwordstatic.com/files/security/1password-white-paper.pdf
https://doi.org/10.1007/978-3-642-15497-3_18
https://doi.org/10.1007/978-3-642-15497-3_18
https://support.enpass.io/docs/security-whitepaper-enpass/index.html
https://support.enpass.io/docs/security-whitepaper-enpass/index.html
https://doi.org/10.1007/978-3-642-33167-1_44
https://doi.org/10.1007/978-3-642-33167-1_44
https://www.google.com/chrome/privacy/whitepaper.html
https://www.google.com/chrome/privacy/whitepaper.html
https://doi.org/10.1007/978-3-662-49890-3_29
https://doi.org/10.1007/978-3-662-49890-3_29
https://doi.org/10.1007/978-3-642-55220-5_17
https://doi.org/10.1007/978-3-642-55220-5_17
http://arxiv.org/abs/1412.6980
https://support.lastpass.com/help/lastpass-technical-whitepaper
https://support.lastpass.com/help/lastpass-technical-whitepaper
https://support.lastpass.com/help/what-is-the-lastpass-master-password-lp070014
https://support.lastpass.com/help/what-is-the-lastpass-master-password-lp070014

You Reset I Attack! A MPGA Against Honey Password Vaults 161

20. Pal, B., Daniel, T., Chatterjee, R., Ristenpart, T.: Beyond credential stuffing:
Password similarity models using neural networks. In: IEEE S&P 2019, pp. 417–434
(2019)

21. Ray, H., Wolf, F., Kuber, R., Aviv, A.J.: Why older adults (don’t) use password
managers. In: USENIX Security 2021, pp. 73–90 (2021)

22. Ur, B., et al.: How does your password measure up? The effect of strength meters
on password creation. In: USENIX Security 2012, pp. 65–80 (2012)

23. Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password
guessing: an underestimated threat. In: ACM CCS 2016, pp. 1242–1254 (2016)

24. Wang, D., Zou, Y., Dong, Q., Song, Y., Huang, X.: How to attack and generate
honeywords. In: IEEE S&P 2022, pp. 489–506 (2022)

25. Weir, M., Aggarwal, S., De Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: IEEE S&P 2009, pp. 391–405 (2009)

26. Yujian, L., Bo, L.: A normalized Levenshtein distance metric. IEEE Trans. Pattern
Anal. Mach. Intell. 29(6), 1091–1095 (2007)

Attacking Logo-Based Phishing Website
Detectors with Adversarial Perturbations

Jehyun Lee1(B), Zhe Xin2, Melanie Ng Pei See2, Kanav Sabharwal2,
Giovanni Apruzzese3, and Dinil Mon Divakaran2,4

1 Trustwave, Singapore, Singapore
jehyun.lee@trustwave.com

2 National University of Singapore, Singapore, Singapore
3 Liechtenstein Business School, University of Liechtenstein, Vaduz, Liechtenstein

4 Acronis Research, Singapore, Singapore

Abstract. Recent times have witnessed the rise of anti-phishing
schemes powered by deep learning (DL). In particular, logo-based phish-
ing detectors rely on DL models from Computer Vision to identify logos
of well-known brands on webpages, to detect malicious webpages that
imitate a given brand. For instance, Siamese networks have demonstrated
notable performance for these tasks, enabling the corresponding anti-
phishing solutions to detect even “zero-day” phishing webpages. In this
work, we take the next step of studying the robustness of logo-based
phishing detectors against adversarial ML attacks. We propose a novel
attack leveraging generative adversarial perturbations to craft “adversar-
ial logos” that, with no knowledge of phishing detection models, can suc-
cessfully evade the detectors. We evaluate our attacks through: (i) exper-
iments on datasets containing real logos, to evaluate the robustness of
state-of-the-art phishing detectors; and (ii) user studies to gauge whether
our adversarial logos can deceive human eyes. The results show that our
proposed attack is capable of crafting perturbed logos subtle enough to
evade various DL models—achieving an evasion rate of up to 95%. More-
over, users are not able to spot significant differences between generated
adversarial logos and original ones.

Keywords: Phishing · Adversarial Machine Learning · Deep Learning

1 Introduction

Phishing attacks are on the rise [2], and they represent a serious threat to both
organizations and individuals alike. While there have been numerous research
efforts to counter this long-running security problem [25,30,31,56], a universal
solution against phishing has yet to be found, as new ways to lure unaware vic-
tims keep emerging [3]. We focus on the problem of detecting phishing websites,
which has witnessed 61% increase in 2022 [6].

The first line of defense against phishing websites is represented by blocklists,
which are nowadays leveraged at scale [29]. Unfortunately, such rule-based coun-
termeasures only work against the phishing entries in the blocklist, and attackers
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 162–182, 2024.
https://doi.org/10.1007/978-3-031-51479-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_9

Attacking Logo-Based Phishing Detectors with Adversarial Perturbations 163

are well-aware of this (for a recent report, see [4]). To protect users against
evolving phishing websites, current anti-phishing schemes are now equipped with
data-driven methods that detect malicious webpages by leveraging some heuris-
tics [5]. In particular, the constant progress and successes of machine learning
(ML) algorithms in research [51,57] led to the integration of ML-based phishing
detectors also in popular browsers [33].

There are various ways in which ML is used to identify phishing websites,
depending on the input analyzed by the ML model [22]: URL (e.g., [30,53]),
HTML contents (e.g., [32,56,57]), or visual representations (e.g., [7,20]) of a
webpage. Detection methods based on visual analytics are now receiving much
attention (e.g., [7,19,20,28,34,35]), likely due to the tremendous advancements
in deep learning (DL). In this work, we delve into the application of DL for logo-
based phishing website detection—a state-of-the-art approach1 that is (i) consid-
ered in recent researches (e.g., [19,28,34,35]), and (ii) deployed in practice [11].

In logo-based detection, the first task is to extract the logo(s) from a webpage
(typically from its screenshot); the subsequent task is to identify the brand of
the logo. The latter task can be accomplished by means of DL today, as demon-
strated by recent works, e.g., by employing Siamese neural networks [34,35].
Given the relevance of these solutions in anti-phishing schemes, we scrutinize
the robustness of DL models for logo identification against subtle adversarial
perturbations. Even though many efforts in the DL community reveal the vul-
nerability of image classification models to adversarial examples [26,38,43,50],
to the best of our knowledge, there exists no work that studies the vulnerability
of logo-based phishing detectors against such sophisticated attacks. Therefore,
besides the Siamese models proposed by prior work, we also develop two new
logo-identification solutions based on state-of-the-art transformer models from
Computer Vision—namely, Vision Transformer ViT [23] and Swin [36].

Subsequently, we propose a novel attack using generative adversarial per-
turbations (GAP) [43], to craft adversarial logos that simultaneously deceive
(i) DL models for logo identification, and (ii) human users, i.e., potential vic-
tims. Through a comprehensive experimental study based on datasets of real
logos, we demonstrate the quality of our proposed DL models for logo identifi-
cation and the efficacy of the adversarial logos generated by our GAP attack to
evade all three powerful models for logo identification (Siamese, ViT and Swin).

Finally, we carry out two user studies to assess the impact of our attack on
real humans. We summarise our three major contributions:

1. We propose a novel attack, based on generative adversarial perturbations
(GAP), against logo-based anti-phishing schemes (Sect. 4). Our proposed

1 Background: in simple terms, logo-based phishing detection seeks to identify those
(malicious) webpages that attempt to imitate a well-known brand. Intuitively, if a
given webpage has the logo of a well-known brand (e.g., PayPal), but the domain
does not correspond to the same brand (e.g., www.p4y-p4l.com), the webpage is
classified as phishing. Though these approaches require maintenance of a database
of logos for brands, such a task is not impractical given that the number of brands
targeted by attackers is typically small (≈ 200) [7,18,34].

www.p4y-p4l.com

164 J. Lee et al.

attack treats a phishing detection (specifically, logo-identification) model as
a black-box and does not require any model-specific information.

2. We propose two new logo-identification solutions leveraging transformer-
based DL models: ViT and Swin (Sect. 3). We empirically demonstrate that
both ViT and Swin achieve performance comparable to the state-of-the-art
solutions relying on Siamese models [34,35] (Sect. 5.3).

3. Through a reproducible evaluation on real data, we evaluate the robustness
of three DL models for logo-identification (ViT, Swin, Siamese) against our
GAP-based attack (Sect. 5.4). We further validate the impact of our attack
on real humans through a user study entailing ∼250 people (Sect. 6).

We suggest potential countermeasures against our attack, and also discuss ways
that attackers can use to circumvent such countermeasures (Sect. 7). Finally, we
publicly release our resources to the scientific community [1].

2 Threat Model

We describe the threat model by first summarizing the functionality of the target
system, and then presenting the characteristic of our envisioned attacker.

2.1 Target System: Logo-Based Phishing Website Detectors

Fig. 1 presents the general workflow of logo-based phishing detection systems.
From a given webpage, the detection system first extracts the logo as an image;
then, it identifies the brand the logo belongs to by using a discriminator. Such a
discriminator can be implemented in various ways, e.g., earlier works employed
methods based on SIFT (scale-invariant feature transformation) [9,54]; however,
current state-of-the-art methods use DL models [16,34,35], and we focus on
these. Upon identifying the brand of a logo, the system determines if the webpage
is legitimate or not by comparing the webpage’s domain with the domain of the
brand associated with the logo.

Fig. 1. Detection process of logo-based phishing detection systems

Since logo-identification is a multi-class classification problem, the DL model
is trained on a static set of classes, i.e., the brands of the logos. Such a set of
protected brands determines the size of the prediction classes; one brand may
have multiple logos. Previous research has shown that 99% of the attacks target
less than 200 brands [7,34,35].

Attacking Logo-Based Phishing Detectors with Adversarial Perturbations 165

In practice, phishing detectors must exhibit low false-positive rates (FPR),
typically below 10−3 [31,44]. To successfully detect phishing webpages while
maintaining low FPR, logo-based detectors follow two principles [34]: (a) the
highest predicted class is decided as the target brand if and only if the predic-
tion probability is greater than a predefined decision threshold (say, θ); (b) if the
identified logo does not belong to any brand in the protected set, the webpage is
considered benign to avoid triggering false positives (see Fig. 1). Unfortunately,
these principles can be maliciously exploited: by lowering the prediction proba-
bility, it is possible to evade logo-based phishing detectors.

2.2 Attack: Adversarial Logos

The basic intuition behind our attack is to create an adversarial logo that is
(i) minimally altered w.r.t. its original variant (to deceive the human eye); and
that (ii) misleads the phishing detector. Let us describe our attacker by using
the well-known notion of adversarial ML attacks [11,17].

– Goal: The attacker wants to craft an adversarial logo related to brand b which
evades the phishing detector (at inference) while deceiving human eyes.

– Knowledge and Capabilities: To train a model for evasion, an attacker can
collect authentic logos of any brand (e.g., of PayPal), via crawling or from
public datasets (e.g., Logo2K+ [55]). The attacker knows that their victims
are protected by a logo-based phishing detector powered by ML. The attacker
has a way to infer the decision result of the phishing detector (this is doable
even if the detector is “invisible” [11], e.g., by inspecting visits to the hosted
phishing webpage). The attacker does not i) require knowledge of the logo-
identification model employed by the phishing detector, ii) manipulate the
data used to train the ML model. In other words, it’s neither a white-box
attack nor performs data poisoning.
Note, the attacker targets a set of brands for phishing; if the targeted brand is
not within the protected set, then that is already favorable for an attacker—
there is no perturbation required! Finally, the attacker naturally has control
on their phishing webpages.

– Strategy: The attacker manipulates the logo(s) of brand b in their phishing
webpages by introducing perturbations so that the logo-identification model
predicts with lower confidence, i.e., the probability of the logo being of any
brand is lower than the decision threshold (θ). This way, the phishing detector
decides the logo not to be one of the protected brands, which makes way for
successful evasion.

Scope of Attack. In our threat model, the attacker exploits the vulnerabil-
ity of logo-identification methods integrated into phishing detectors. We focus
on logo-identification DL models because they are i) state-of-the-art research
with phishing detecting capability in the wild (‘zero-day’ phishing) [34,35], and
ii) used in commercial phishing detectors [11]. Threats against logo extraction
from a webpage, however interesting, are not within the scope of our current
work. Lastly, we do not consider attacks to make an unknown logo be identified
as one of the protected logos, as that is not beneficial for the attacker.

166 J. Lee et al.

3 Deep Learning for Logo-Based Phishing Detection

Development of the transformer architecture [52] paved the way for various state-
of-the-art language models, such as BERT, ChatGPT, and PaLM. Dosovitskiy
et al. [23] applied transformer to Computer Vision tasks with the introduc-
tion of Vision Transformer (ViT), demonstrating state-of-the-art performance
on benchmark datasets [23]. The attention mechanism in transformers allows
them to capture local and global contextual information effectively, resulting in
superior performance on large-scale image classification tasks. This capability is
also beneficial for logo identification, since logos of the same brand, while being
visually distinct, share the same inherent design structure. Therefore, in this
work, we propose, develop and evaluate two transformer-based models, ViT and
Swin, for logo identification. To the best of our knowledge, we are the first to
leverage transformers for logo-based phishing detection.

We now describe our proposed ViT (Sect. 3.1) and Swin (Sect. 3.2), for which
we provide an overview in Figs 2 and 3. Then, we present our own implementation
of Siamese (Sect. 3.3) neural networks. Altogether, these three DL models will
represent the target of our attacks (Sect. 5).

Fig. 2. ViT-based Model Architecture Fig. 3. Swin-based Model Architecture

3.1 ViT for Logo Identification

As illustrated in Fig. 2, we develop a logo-identification model by fine-tuning a
pre-trained ViT-base model [23] on our dataset (which we discuss in Sect. 5.1).
The model takes as input an image of size 3 × 224 × 224. The image is then
split into patches, each of size 16 × 16, for further processing. Each patch is
then linearly embedded into a vector of size 1× 768. An additional classification
token is then added to the linear embedding to form an embedded vector of size
197 × 768. The embeddings are positionally encoded before being fed into the
transformer encoder. Finally, a fully connected layer takes the output from the
encoder and maps it to a 2-dimensional space. The resulting logits are passed
through a softmax layer to produce the final prediction probabilities for each
class (logo). We denote this new logo-identification model as DViT.

Attacking Logo-Based Phishing Detectors with Adversarial Perturbations 167

3.2 Swin for Logo Identification

Next, we propose Swin-based logo-identification model that utilizes the Swin
transformer, a hierarchical transformer architecture introduced by Liu et al. [36].
Unlike ViT, Swin uses shifted windows to efficiently compute local self-attentions
and build hierarchical feature maps through patch merging techniques. As illus-
trated in Fig. 3, each window contains multiple non-overlapping patches, and
each transformer block in the Swin architecture contains two attention layers:
a window-based multi-head self-attention (W-MSA) layer that calculates local
attention within a specific window, and a shifted window-based multi-head self-
attention (SW-MSA) layer that introduces cross-window connections. This app-
roach allows for more efficient computation while still extracting both local and
global contextual information.

In our implementation, we use the Swin-Transformer-Small architecture
proposed by Liu et al. [36]. The model takes an input image of size 3×224×224,
which is split into patches of size 4 × 4. As depicted in Fig. 3, the patches are
fed sequentially into four encoding stages consisting of 2, 2, 18, and 2 encoder
blocks. Each encoding stage merges and downsamples the size of the feature
maps by a factor of two, while doubling the number of channels.

The final feature map of size is 7× 7 is transformed by a fully connected and
softmax layer to obtain the output logits. We denote this model as DSwin.

3.3 Siamese and Siamese++ for Logo Identification

The Siamese neural network is a state-of-the-art for image-based phishing detec-
tion, both for comparing screenshots [7] and logos [16,34,35]. In logo-based
phishing detectors, Siamese models measure the similarity of a given logo to
those in the protected set. We train a Siamese model as proposed in Phishpe-
dia [34] and PhishIntention [35], utilizing a transfer learning approach. Specif-
ically, we train a logo classification model with the ResNetV2 network as the
backbone, which effectively extracts different features from various logo vari-
ants. We then connect the trained ResNetV2 network to a Global Average Pool-
ing layer to output a vector for any given logo. The learned vector representation
is compared to those of the logos of protected brands using cosine similarity; the
target with the highest similarity is identified as the brand the logo is trying to
imitate.

We refer to our implementation of the Siamese model as DSiamese. Addi-
tionally, Phishpedia [34] proposed an adversary-aware detector by replacing the
ReLU activation function with a variant called step-ReLU (Appendix A). We
also consider this robust version of Siamese, which we refer to as DSiamese++ .

4 Our Attack: Adversarial Logos

While recent logo-based phishing detection systems [34,35] have demonstrated
robustness against generic gradient-based attacks such as FGSM [26] and Deep-

168 J. Lee et al.

Fig. 4. Generative adversarial perturbation workflow

Fool [39],2 their resilience against more sophisticated adversarial attacks pro-
posed in the literature [38,43] remains unexplored. To this end, we propose a
DL-based generative framework inspired by Generative Adversarial Perturba-
tions (GAP) [43], that specifically trains against logo identification models. This
framework generates perturbation vectors that can be added to a target logo
image, allowing the perturbed logo to evade phishing detection while remaining
imperceptible to the human eye. We now describe our framework at a high-level
(Sect. 4.1), for which we provide an overview in Fig. 4; and then provide low-level
details on how to practically implement our attacks (Sect. 4.2).

4.1 Framework: Generative Adversarial Perturbations for Logos

As illustrated in Fig. 4, our framework involves training a Generator that learns
to generate perturbations. When added to a logo image, these perturbations can
mislead a logo-identification model, which acts as the Discriminator, into low-
ering its prediction probability below the decision threshold. During the training
process, the weights of the Discriminator are frozen, treating it as a black box
to guide the training of the Generator.

Generator. We employ a Deep Residual Network with six residual blocks
(ResNet-6) [27] as the core architecture of our Generator. Given a legitimate
logo image as input, the Generator is trained to generate a perturbation vector.
The generated perturbations undergo a Scaling and Clipping stage. In this stage,
the perturbation vector is first scaled and normalized based on the L∞ norm to
control the magnitude of the perturbations, so that they remain imperceptible to
human viewers. Subsequently, the normalized perturbations are added pixel-wise
to the legitimate logo image, resulting in the adversarial logo.

Discriminator. The Discriminator is a pre-trained multi-class classifier
designed to process a logo image and estimate the probability that the image

2 FGSM and DeepFool assume an adversary with complete knowledge of the target
classifier, which is much stronger (and less realistic [11]) than the attacker envisioned
in our threat model.

Attacking Logo-Based Phishing Detectors with Adversarial Perturbations 169

belongs to a target brand in the protected set. In our framework, we select one of
the logo-identification models described in Sect. 3 to serve as the Discriminator.

4.2 Implementation

We utilize the pre-trained Discriminator as a black box to assess the effective-
ness of the Generator in crafting adversarial logo images. The Discriminator
predicts the probability of a given logo belonging to each of the k protected
brands; Vtrue : [p1, p2, p3....pk], where

∑k
i=1 pi = 1. As mentioned in Sect. 2.1,

for a webpage to be classified as phishing, the logo-identification model must
confidently identify the logo as one of the target brands i from the protected set,
with a probability pi greater than the phishing detector’s decision threshold θ.

Hence, to devise our Generator, we introduce a target probability padversarial,
such that padversarial < θ. The Generator is trained to craft adversarial logos that
are classified with probabilities lower than padversarial for all of the protected
brands, so as to evade phishing detection. Empirically, we observe that θ is very
high (above 0.8) for all discriminators, and for our attacks, padversarial can be
much lower (in our experiments, it is 0.5; see Table 3 in Appendix B).

To guide the training process, the Generator is trained with a target proba-
bility vector Vtarget : [p′

1, p
′
2, p

′
3....p

′
k], where each element p′

i is defined such that
p′
i = min(pi, padversarial). This ensures that the generated adversarial logos are

classified with probabilities below the θ for all protected brands.
The loss function is defined as a decreasing function of the cross entropy

H(Vtrue, Vtarget) between the target probability vector Vtarget and Vtrue. The
specific form of the loss function can be expressed as follows:

loss = log (H (Vtrue,Vtarget)) (1)

Minimizing this loss, the Generator learns to craft adversarial logos that
evade phishing detection3; furthermore, perturbations preserve the visual simi-
larity with the original logo, thereby facilitating deception to the human eye.

5 Experimental Evaluations

We now empirically assess the quality of our contributions. We begin by describ-
ing the datasets used for our experiments (Sect. 5.1), and introduce the met-
rics used for our performance assessment (Sect. 5.2). Then, we first show that
our two DL models for logo-identification achieve state-of-the-art performance
(Sect. 5.3), and then demonstrate that our attacks can evade all our considered
logo-identification models (Sect. 5.4). Our code, dataset used, as well as gener-
ated perturbed logos are available at [1].
3 Remark: Our attack relies on the logos generated by the Generator, which in turn

depend on a Discriminator, i.e., a DL model for identifying logos. However, the
Discriminator does not necessarily have to be the identical one used in the targeted
phishing detection system: as our experiments show, our adversarial logos evade even
DL models that have not been used to develop the Generator (by leveraging the
well-known transferability property of adversarial examples [21]).

170 J. Lee et al.

5.1 Dataset

To evaluate the performance of logo-based phishing detectors and their robust-
ness against generative adversarial perturbations, we use two sets of logo images:

– L, Protected brands: The logo image set of protected brands, L, consists of
images of 181 brands which are identical to the brands used in Phishpedia [34].
According to the empirical observation in [34], 99% of phishing pages target
one of these 181 brands. For these protected brands, we collected 28 263 public
logo images from search engines and Pawar’s logo image dataset [42]. Each
brand’s logo has 100–200 variants.

– L̄, Unprotected brands: Logo image set L̄ is the set of 2 045 images from
2 000 brands that do not belong to the brands in L. The image samples are
from the Logo2K+ dataset, which is publicly available [55].

The data was collected in the second half of January 2023.

5.2 Performance Metrics

In what follows, we denote the logo-identification models as discriminators;
the attack generators also use the discriminators in their training phase.

Logo Identification Performance: We provide the definitions of metrics for logo-
based phishing webpage detection. Note that, for a discriminator used for phish-
ing detection, the positives are the logos in L, the protected brand list, that need
to be identified. If the highest prediction probability of a logo is below a certain
decision threshold, it is classified as an unknown brand.

– True positive (TP): A TP in our evaluation denotes the case of correct brand
identification of the given logo (of a protected brand) by the discriminator.

– False positive (FP): An FP denotes the case when the given logo image is
wrongly identified as one of the protected brands when in reality, the given
logo image does not belong to the protected brand set.

– True negative (TN): A TN occurs when the brand of the given logo is not in
the protected brand set and gets correctly classified as an unknown brand.

– False negative (FN): An FN denotes when the brand of the given logo belong-
ing to the protected brand set is classified as any other brand.

Denoting the actual brand of a given logo l as lb, and the predicted brand by the
discriminator as lp, we define the True Positive Rate (TPR) and False Positive
Rate (FPR):

TPR =
|(lb = lp) ∧ (lp ∈ L)|

|lb ∈ L| ; FPR =
|(lp ∈ L) ∧ (lb ∈ L̄)|

|lb ∈ L̄| (2)

Impact of the Attacks: Recall that our attacker aims to fool the discriminator
into classifying a protected brand logo as an unknown brand. Hence, we introduce

Attacking Logo-Based Phishing Detectors with Adversarial Perturbations 171

the Fooling ratio, which is the rate of adversarial logos classified as being of an
unknown brand (out of all the phishing logos). Formally:

Fooling ratio =
|lp /∈ L ∧ lb ∈ L|

|lb ∈ L| (3)

Intuitively, a higher fooling ratio denotes an attack with a higher impact.

5.3 Baseline: Analysis of Logo-Identification Models

We assess the performance of the four DL models for logo-identification presented
in Sect. 3. Specifically, we first measure the TPR and FPR of the state-of-the-
art discriminators (i.e., Siamese and its robust version Siamese++ [34]), and
compare them with the transformer-based discriminators that we proposed in
this work (i.e., ViT and Swin).

Setup. We use the datasets L and L̄ (see Sect. 5.1), with a train:test split of
85:15. For ViT and Swin, we apply the common model head fine-tuning for 50
epochs and then transfer training on the entire networks for the next 150 epochs,
reducing computational time while improving performance. We provide hyper-
parameters configurations of our discriminators in Table 2 (in the appendix).

Results. Figure 5a shows the ROC curves of the four discriminators (the x-axis
denoting FPR is in log-scale for visibility). Overall, Siamese and Siamese++

show the best performance in terms of logo identification. All four models show
comparable TPRs at FPR above 10−2. For practical purposes, however, we have
to evaluate the detection capability at low FPRs [22,44]. Observe that, the TPR
values of the discriminators ViT and Swin at FPR below 10−2 are worse than the
Siamese models. Figure 5b shows the gap in TPR between the discriminators at
the more practical FPR value of 10−3; Siamese and Siamese++ show around
six and twelve percent-point higher TPR than the ViT and Swin, respectively.

Fig. 5. Comparing discriminators for logo identification

Although Swin and ViT are not better than Siamese, they still achieve an
appreciable degree of performance, and hence are used to evaluate our attacks.

172 J. Lee et al.

5.4 Attack: Evasiveness of Adversarial Logos, and Computational
Cost

We quantitatively analyze the effects of adversarial logos generated by our attack
against DL models for logo identification. We do this through a cross-evaluation
that captures both ‘white-box’ and ‘black-box’ adversarial settings. At the end
of this section, we also discuss the computational cost of our attacks.

Setup. Recall that our attack (Sect. 4) entails training a generator by using a
given discriminator (i.e., DL models for identifying logos). For our experiments,
we consider three discriminators: ViT, Swin and Siamese, thereby yielding three
corresponding generators: GViT, GSwin and GSiamese. After training each gener-
ator, we assess the adversarial logos against all our discriminators. Such an
evaluation protocol allows one to analyze the effects of our attacks when the
adversary does not know the DL model used for the defense.

For evaluations, we train our generators on the dataset L; we provide the
hyperparameters of our generators in Table 3 (Appendix B). Subsequently, we
test the discriminators with the adversarial logos crafted by each generator.

Results. The results are plotted in Fig. 6, where we compare the fooling ratio
of discriminators against the different attacker models for varying FPRs (in
log-scale). It stands out that each discriminator is much weaker against the
adversarial logos created by the ‘matching’ generator compared to those created
by generators trained on different discriminators. For instance, from Fig. 6a, we
observe that the adversarial logos generated by GViT are more effective against
ViT (blue line) than against Swin (green line). We observe from Fig. 6b and
Fig. 6c that, if the attacker’s generator model is not trained with ViT, the fooling
ratio drops significantly for the defender with the ViT discriminator.

Fig. 6. Comparison of different generators against different discriminators

From the adversary’s perspective, ViT is the most effective generator against
all discriminators. Figure 6d compares the fooling ratios of the four discrimi-
nators at a fixed FPR of 10−3; note, fooling ratios against GViT are high,
ranging from 42% to 95%. In other words, with GViT, at least 42% of attacker
generated logos can evade phishing detectors, independent of the discriminator

Attacking Logo-Based Phishing Detectors with Adversarial Perturbations 173

deployed. Against such an attacker, the defender might prefer to use Siamese
(or Siamese++) as it achieves the lowest fooling ratio (of around 42% at 10−3

FPR). Interestingly, the most robust model for the defender against an arbitrary
generator model would be ViT, since, on average, ViT achieves a lower fooling
ratio against all generator models.

Computational Cost. Two factors contribute to the computation time to realize
our adversarial logos: i) generator training and ii) perturbed logo generation. We
measure the generator training time with the three models, i.e., ViT, Swin, and
Siamese, for each training epoch and the required epochs till reaching a com-
pelling performance, i.e., 0.9 of fooling ratio against the discriminator with the
corresponding model. The experiments are performed on a system with NVIDIA
RTX3090 GPU, 2.8 GHz 32-core AMD CPU, 80GB RAM with Python 3.8.10,
and PyTorch 1.2.0 on Ubuntu 20.04 OS. We report the results in Table 1.

Table 1. Training time for the perturbation generators

GViT GSwin GSiamese

Avg. training time per epoch (min.) 12 23 8

No. of epochs for 0.9 fooling ratio 62 12 1

Training time for 0.9 fooling ratio (min.) 744 277 8

From this table, we observe an apparent gap between the models in their
training time. While the ViT-based generator, GViT, takes only half the training
time per epoch in comparison to GSwin, it requires five times more training
epochs to reach the same level of performance, (i.e., 0.9 fooling ratio). GSiamese

shows significantly less overhead than the other two, in both, training time per
epoch and the required epoch. GSiamese accomplishes a fooling ratio of 0.9 against
DSiamese after just one epoch of training which takes only eight minutes. Overall,
training GViT takes 744 min to have 0.9 fooling ratio, which is around 2.8 and
93 times longer training time than GSwin and GSiamese, respectively. Although
there are significant differences in training times, when it comes to generating
perturbed logos, all three generators take only around 0.7 s per image on average;
this negligible cost allows an attacker to generate a large number of samples to
test against a deployed phishing detector.

Takeaways. i) An attacker with knowledge of the discriminator used for
defense achieves more than 95% fooling ratio with our adversarial generator.
ii) In the absence of knowledge of the discriminator (i.e., independent of the
discriminator), an attacker choosing GViT as the generator achieves a fooling
ratio of at least 42% against the defender (see Fig. 6d).

174 J. Lee et al.

6 User Study: Do Adversarial Logos Trick Humans?

We now provide a complementary evaluation of our proposed attack. Specifically,
we seek to investigate if our adversarial logos can be spotted by humans. Indeed,
even if a phishing detector can be evaded, this would be useless if the human, the
actual target of the phishing attack, can clearly see that something is “phishy”.
Hence, we carry out two user-studies, which we describe (Sect. 6.1) and discuss
(Sect. 6.2) in the remainder of this section.

6.1 Methodology

Our goal is to assess if the perturbations entailed in an adversarial logo can
be recognized by humans. There are many ways to perform such an assessment
through a user-study, each with its own pros and cons4.

We build our user-studies around a central research question (RQ): given a
pair of logos (i.e., an ‘original’ one, and an ‘adversarial’ one), can the human
spot any difference? Our idea is to design a questionnaire containing multiple
pairs of logos, and ask the participants to rate (through a 1–5 Linkert scale) the
similarity of the logos in each pair. Intuitively, if the results reveal that users
perceive the logos to be “different”, then it would mean that our adversarial
logos are not effective against humans.

To account for the fact that the responses we would receive are entirely
subjective, we carry out (in April 2023) two quantitative user studies:

1. Vertical Study (VS), which entails a small population (N = 30) of similar users
(students of a large university, aged 20–30). The questionnaire has ten ques-
tions (each being a pair of logos to rate), wherein each participant is shown
a different set of questions. The purpose of VS is to capture the responses of
a specific group of humans across a large set of adversarial logos.

2. Horizontal Study (HS), which entails a large population (N = 287) of users
with diverse backgrounds (Amazon Turk Workers with 95+% hit-rate, aged
18–70). The questionnaire includes 21 questions, which are always the same
for each participant. The purpose of HS is to capture the response of various
humans to a small set of adversarial logos.

For both VS and HS, participants were asked to provide a response within 5 s
of seeing the pair of logos (because, realistically, users do not spend much time
looking at the logo on a website). We also included control questions (e.g., pairs
of identical logos, and pairs of clearly different logos) as a form of attention
mechanism5. Finally, we shuffled the questions to further reduce bias. For trans-
parency, we provide our questionnaire at [1].

For VS (resp. HS), we included 2 (resp. 3) “identical” pairs as baseline; and 5
(resp. 12) “original-adversarial” pairs to answer our RQ.

4 Designing bias-free user-studies in the phishing context is an open problem [10,48].
5 For HS, we received 322 responses, but we removed 35 because some users took too

little time to answer the entire questionnaire, or did not pass our attention checks.

Attacking Logo-Based Phishing Detectors with Adversarial Perturbations 175

6.2 Results

We present the results of both of our user studies in Fig. 7. Specifically, Fig. 7a
shows the cumulative distribution of the scores for the three ‘identical’ pairs, and
the five ‘original-adversarial’ pairs in VS. Whereas the boxplots in Fig. 7b show
how the participants of HS rated the 12 “original-adversarial” pairs; the right-
most boxplot aggregates all results. In our rating definition, 5 means ‘similar’,
and 1 means ‘different’.

Fig. 7. Results of our two user-studies: vertical study and horizontal study

From Fig. 7a, we observe that 95% of all responses (30 users × 10 questions)
rated all ‘identical’ pairs (left bin) between 4 and 5 (only 5% answered with a 3).
That is to say; they correctly guessed that all identical pairs were indeed very
similar, thereby also confirming that this population was very reliable. For this
reason, we find it noteworthy that our adversarial logos are able to deceive
them: in the right bin, 66% rated the ‘original-adversarial’ pairs with either 4
or 5, and only 10% rated them with a 1 or 2.

Figure 7b shows the results for the ‘adversarial-original’ pairs (we already
removed some clearly noisy answers, as stated in Sect. 6.1). We observe that the
wide majority of HS population rated the pairs as similar (the average is always
below the middle point, 3). Hence, we can conclude: HS also reveals that our
adversarial logos are barely detected by humans as perturbed.

7 Countermeasures (and Counter-Countermeasures)

Given that our adversarial logos can simultaneously fool state-of-the-art DL
models for logo-identification and human eyes, we ask ourselves: how can adver-
sarial logos be countered? One potential mitigation is to leverage adversarial
learning by injecting evasive logos in the training set [12], thereby realizing an
adversarially robust discriminator. However, an expert attacker may anticipate
this and can hence attempt to circumvent such a robust discriminator by devel-
oping a new generator, thereby crafting more evasive adversarial logos (e.g., as

176 J. Lee et al.

demonstrated in other domains [45,49]). We now investigate both of these scenar-
ios through additional proof-of-concept experiments, which involve the strongest
discriminator of our evaluation: ViT.

Countermeasure: Building Robust Discriminator. Adversarial training is one of
the most well-known techniques to defend against adversarial examples [12,46].
The idea is to update a given ML model by training it on adversarial exam-
ples that can mislead its predictions. We build our robust discriminators, D′0.3

ViT,
D′0.5

ViT, and D′0.7
ViT, by replacing 30%, 50%, and 70% of the logos in the training

dataset L with their adversarial variants, respectively. In particular, we use the
adversarial logos generated with GViT, i.e., trained with the vanilla ViT discrim-
inator. Then, we compare these three robust discriminators with the vanilla ViT
discriminator DViT, against the same attack presented in Sect. 5.4. The results
are shown in Fig. 8a. We observe that the robust discriminators exhibit much
lower fooling ratios: while the vanilla ViT has a fooling ratio above 0.8, the robust
discriminators have fooling ratios below 0.2 even at a low FPR of 10−3.

Counter-Countermeasure: Evading Robust Discriminators. An attacker is also
capable of taking a sophisticated strategy to counter a robust logo-identification
discriminator built via adversarial training. To do this, the attacker must obtain
such a robust discriminator—this can be done through well-known black-box
strategies [15,41], or the attacker could even build one on their own. The attacker
must then use the robust discriminator to train an ‘adaptive’ generator that
can yield more evasive perturbations. For this experiment, we consider the case
wherein the attacker trains the adaptive generator by using D′0.3

ViT, D′0.5
ViT, and

D′0.7
ViT, thereby realizing G′0.3

ViT, G′0.5
ViT, and G′0.7

ViT, respectively. The results are
shown in Fig. 8b, which plots the fooling ratio of the adaptive generator against
the corresponding robust discriminator.

Compared to the attacks from the ‘vanilla’ generator GV iT in Fig. 8a (which
achieves below 20% of fooling ratio at 10−3 FPR), the adaptive generators in
Fig. 8b are much more effective. Yet, we observe that discriminators trained with
more adversarial logos tend to be more robust: at 10−3 FPR, D′0.3

ViT has a fooling
ratio of 0.9, whereas D′0.5

ViT and D′0.7
ViT have 0.8 and 0.6, respectively.

Fig. 8. Performance of discriminator and generator due to adversarial training

Attacking Logo-Based Phishing Detectors with Adversarial Perturbations 177

We find it enticing that this continuous game between attacker and defender,
reflected in the generator (attacker) and discriminator (defender), eventually
forms the concept of the Generative Adversarial Network (GAN). Indeed, a
question rises: “what happens if this process is repeated many times?” We plan
to address this intriguing research question in our future work.

8 Related Works

Phishing Website Detection via ML. Many works leveraged statistical models,
including ML, for phishing website detection (e.g., [8,37,51,56,57]). Typically,
these models are trained on labeled datasets to learn to discriminate between
phishing and benign webpages. There also exists an orthogonal family of counter-
measures, referred to as reference-based phishing detectors, that identify visually
similar webpages. This is based on the notion that phishing webpages are more
successful when they imitate a legitimate website. This characteristic has been
extensively scrutinized by prior literature [7,9,19,24,28,34,35,54]. For example,
VisualPhishNet trains a Siamese model to detect visually similar screenshots
between a given webpage and those in a set of well-known brands [7]. Other
works (e.g., [9,19,34,35,54]) focus on identifying visually invariant logos.

Attacks Against ML-Based Phishing Website Detectors. Expert attackers are
aware of the development of anti-phishing solutions and constantly refine their
techniques to avoid being taken down. For instance, phishers can use cloaking
to evade automated crawlers often used by security vendors [59]; alternatively,
they can exploit ‘squatting’ to evade detectors analyzing the URL [51]. It is
also easy to change the HTML contents to evade HTML-based phishing detec-
tors [13,32]. Researchers have also examined the impact of adversarial pertur-
bations on image-based phishing detectors [7,20,34,35]. However, these attacks
assume that the attacker possesses complete knowledge of the deployed model
and can access the model gradients, enabling manipulations in the feature-space
(for further details, refer to [13]). We demonstrate a successful attack conducted
by an attacker lacking both knowledge of and access to the deployed model.
Furthermore, none of the prior works have conducted user studies to validate
the practicality of their attacks.

Adversarial Perturbations. Moving away from gradient-based perturbations,
Moosavi et al. introduced Universal Adversarial Perturbations [38], a framework
for learning perturbations that are image-agnostic and generalized across vari-
ous image classification models. This work sparked further proposals [40,47,58]
aiming to enhance universal perturbations. Subsequently, Poursaeed et al. pro-
posed Generative Adversarial Perturbations [43]. The generative model achieved
state-of-the-art performance, unifying the framework for image-agnostic and
image-dependent perturbations and considering both targeted and non-targeted
attacks. We draw inspiration from their framework to develop a generative net-
work specifically for crafting adversarial logos.

178 J. Lee et al.

Summary. While prior works have investigated gradient-based attacks [34,35]

against image classifiers, to the best of our knowledge, we are the first to show the fea-

sibility of attacks using a generative neural network model trained to craft adversarial

logos, and comprehensively evaluate the impact of such attacks on state-of-the-art

methods for logo-identification.

9 Conclusions

Logo-based phishing detectors have shown significant capabilities with the
employment of DL models. In this work, we developed and presented a novel
attack against logo-based phishing detection systems. Our experiments demon-
strate the capability of an attacker equipped with a generative adversarial model
in defeating the detection systems as well as human users. We hope this will
trigger further research and development of phishing detection solutions that
are robust to adversarial ML attacks.

Acknowledgment. We thank the Hilti Corporation, Trustwave, NUS (National Uni-
versity of Singapore) and Acronis, for supporting this research.

Ethical Statement. Our institutions do not require any formal IRB approval to carry

out the research discussed herein. We always followed the guidelines of the Menlo

report [14]. For our user-studies, we never asked for sensitive data or PII. Finally,

although we publicly release our code for the sake of science, as mentioned on the

GitHub page [1], such code should not be used for any unethical or illegal purposes.

Appendix

A Step-ReLu activation Function

The step-ReLU function utilised in training the robust Siamese model
DSiamese++ (Sect. 3.3) is expressed as:

f(x) = max(0, α · �x

α
�) (4)

Attacking Logo-Based Phishing Detectors with Adversarial Perturbations 179

B Discriminator and generator configurations

Table 2. Hyperparameter configurations for discriminators

Parameters DViT DSwin DSiamese

Backbone ViT Swin ResNetV2

Pre-trained Model ViT-b/16 Swin-S BiT-M-R50x1

No. of params 85.9M 49.0M 23.9M

Batch size 32 32 32

Optimizer SGD SGD SGD

Momentum 0.9 0.9 0.9

Weight decay 0.0005 0.0005 –

Epochs (Steps) 200 200 10000 (Steps)

Learning rate 0.01 0.01 0.003 (Staircase decay)

λ (value clipping) 2.5 2.5 –

Table 3. Hyperparameter configurations for generators

Parameters GViT GSwin GSiamese

Batch size 32 16 32

Optimizer Adam Adam Adam

β1 & β2 for Adam 0.5 & 0.999 0.5 & 0.999 0.5 & 0.999

Magnitude of perturbations 10 10 10

Epochs 200 200 100

Learning rate 0.0002 0.0002 0.0002

Target probability, padversarial 0.5 0.5 0.5

References

1. Adversarial logos against phishing detection systems: Code repository. https://
github.com/JehLeeKR/Adversarial-phishing-logos

2. APWG: Phishing activity trends report, 4th quarter 2022. https://docs.apwg.org//
reports/apwg trends report q4 2022.pdf

3. Browser In The Browser (BITB) Attack. https://mrd0x.com/browser-in-the-
browser-phishing-attack/ (2022)

4. COFENSE: Phishing URLs 4x more likely than attachments to reach
users. https://cofense.com/blog/urls-4x-more-likely-than-phishing-attachments-
to-reach-users/ (2023)

5. Google Safe Browsing. https://developers.google.com/safe-browsing/ (2023)

https://github.com/JehLeeKR/Adversarial-phishing-logos
https://github.com/JehLeeKR/Adversarial-phishing-logos
https://docs.apwg.org//reports/apwg_trends_report_q4_2022.pdf
https://docs.apwg.org//reports/apwg_trends_report_q4_2022.pdf
https://mrd0x.com/browser-in-the-browser-phishing-attack/
https://mrd0x.com/browser-in-the-browser-phishing-attack/
https://cofense.com/blog/urls-4x-more-likely-than-phishing-attachments-to-reach-users/
https://cofense.com/blog/urls-4x-more-likely-than-phishing-attachments-to-reach-users/
https://developers.google.com/safe-browsing/

180 J. Lee et al.

6. Phishing attacks jump 61% in 2022. https://venturebeat.com/security/report-
phishing-attacks-jump-61-in-2022-with-255m-attacks-detected/ (2023)

7. Abdelnabi, S., Krombholz, K., Fritz, M.: VisualphishNet: zero-day phishing website
detection by visual similarity. In: Proceedings ACM CCS, pp. 1681–1698 (2020)

8. Abu-Nimeh, S., Nappa, D., Wang, X., Nair, S.: A comparison of machine learning
techniques for phishing detection. In: Proceedings of the Anti-Phishing Working
Groups, 2nd Annual eCrime Researchers Summit. eCrime ’07 (2007)

9. Afroz, S., Greenstadt, R.: Phishzoo: detecting phishing websites by looking at
them. In: IEEE International Conference on Semantic Computing (2011)

10. Alsharnouby, M., Alaca, F., Chiasson, S.: Why phishing still works: user strategies
for combating phishing attacks. Int. J. Hum Comput Stud. 82, 69–82 (2015)

11. Apruzzese, G., Anderson, H., Dambra, S., Freeman, D., Pierazzi, F., Roundy, K.:
Position:“Real Attackers Don’t Compute Gradients”: Bridging the Gap Between
Adversarial ML Research and Practice. In: IEEE Conference on Secure and Trust-
worthy Machine Learning (2023)

12. Apruzzese, G., Andreolini, M., Marchetti, M., Venturi, A., Colajanni, M.: Deep
reinforcement adversarial learning against botnet evasion attacks. IEEE Trans.
Netw. Serv. Manage. 17, 1975–1987 (2020)

13. Apruzzese, G., Conti, M., Yuan, Y.: SpacePhish: the evasion-space of adversarial
attacks against phishing website detectors using machine learning. In: Proceedings
ACSAC (2022)

14. Bailey, M., Dittrich, D., Kenneally, E., Maughan, D.: The Menlo Report. IEEE
S&P (2012)

15. Bhagoji, A.N., He, W., Li, B., Song, D.: Practical black-box attacks on deep neural
networks using efficient query mechanisms. In: Ferrari, V., Hebert, M., Sminchis-
escu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 158–174. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01258-8 10

16. Bhurtel, M., Siwakoti, Y.R., Rawat, D.B.: Phishing attack detection with ML-
based siamese empowered ORB logo recognition and IP mapper. In: Proceed-
ings IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS) (2022)

17. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine
learning. Pattern Recogn. 84, 317–331 (2018)

18. Bitaab, M., et al.: Scam pandemic: how attackers exploit public fear through phish-
ing. In: Proceedings APWG Symposium on Electronic Crime Research (eCrime),
pp. 1–10. IEEE (2020)

19. Bozkir, A.S., Aydos, M.: LogoSENSE: a companion HOG based logo detection
scheme for phishing web page and e-mail brand recognition. Comput. Secur. 95,
101855 (2020)

20. Corona, I., et al.: DeltaPhish: detecting phishing webpages in compromised web-
sites. In: Proceedings ESORICS (2017)

21. Demontis, A., et al.: Why do adversarial attacks transfer? Explaining transferabil-
ity of evasion and poisoning attacks. In: USENIX Security Symposium (2019)

22. Divakaran, D.M., Oest, A.: Phishing detection leveraging machine learning and
deep learning: a review. IEEE Secur. Priv. 20(5), 86–95 (2022)

23. Dosovitskiy, A., et al.: An image is worth 16 × 16 words: transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

24. Fu, A.Y., Wenyin, L., Deng, X.: Detecting phishing web pages with visual similar-
ity assessment based on earth mover’s distance (EMD). IEEE Trans. Dependable
Secure Comput. 3(4), 301–311 (2006)

https://venturebeat.com/security/report-phishing-attacks-jump-61-in-2022-with-255m-attacks-detected/
https://venturebeat.com/security/report-phishing-attacks-jump-61-in-2022-with-255m-attacks-detected/
https://doi.org/10.1007/978-3-030-01258-8_10
http://arxiv.org/abs/2010.11929

Attacking Logo-Based Phishing Detectors with Adversarial Perturbations 181

25. Garera, S., Provos, N., Chew, M., Rubin, A.D.: A framework for detection and
measurement of phishing attacks. In: Proceedings ACM Workshop on Recurring
Malcode (2007)

26. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversar-
ial examples. In: International Conference on Learning Representations (Poster)
(2015)

27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings IEEE CVPR, pp. 770–778 (2016)

28. Hout, T.v.d., Wabeke, T., Moura, G.C.M., Hesselman, C.: LogoMotive: detecting
logos on websites to identify online scams - a TLD case study. In: Proceedings of
PAM (2022)

29. Kondracki, B., Azad, B.A., Starov, O., Nikiforakis, N.: Catching transparent phish:
analyzing and detecting MITM phishing toolkits. In: Proceedings of ACM CCS
(2021)

30. Le, H., Pham, Q., Sahoo, D., Hoi, S.C.: URLNet: learning a URL representation
with deep learning for malicious URL detection. arXiv preprint arXiv:1802.03162
(2018)

31. Lee, J., Tang, F., Ye, P., Abbasi, F., Hay, P., Divakaran, D.M.: D-Fence: a flexible,
efficient, and comprehensive phishing email detection system. In: Proceedings IEEE
EuroS&P (2021)

32. Lee, J., Ye, P., Liu, R., Divakaran, D.M., Choon, C.M.: Building robust phishing
detection system: an empirical analysis. In: Proceedings NDSS MADWeb (2020)

33. Liang, B., Su, M., You, W., Shi, W., Yang, G.: Cracking classifiers for evasion: a
case study on the Google’s phishing pages filter. In: Proceedings WWW (2016)

34. Lin, Y., et al.: Phishpedia: a hybrid deep learning based approach to visually
identify phishing webpages. In: Proceedings USENIX Security Symposium (2021)

35. Liu, R., Lin, Y., Yang, X., Ng, S.H., Divakaran, D.M., Dong, J.S.: Inferring phishing
intention via webpage appearance and dynamics: a deep vision based approach. In:
Proceedings USENIX Security Symposium (2022)

36. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted
windows. In: Proceedings the IEEE/CVF International Conference on Computer
Vision, pp. 10012–10022 (2021)

37. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Identifying suspicious URLs: an
application of large-scale online learning. In: Proceedings ICML (2009)

38. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial
perturbations. In: Proceedings IEEE CVPR, pp. 1765–1773 (2017)

39. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate
method to fool deep neural networks. In: Proceedings IEEE CVPR, pp. 2574–2582
(2016)

40. Mopuri, K.R., Ganeshan, A., Babu, R.V.: Generalizable data-free objective for
crafting universal adversarial perturbations. IEEE Trans. Pattern Anal. Mach.
Intell. 41(10), 2452–2465 (2018)

41. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Prac-
tical black-box attacks against machine learning. In: Proceedings ACM ASIACCS
(2017)

42. Pawar, R.: Logo images dataset. https://github.com/revanks/logo-images-dataset
(2021), gitHub repository

43. Poursaeed, O., Katsman, I., Gao, B., Belongie, S.: Generative adversarial pertur-
bations. In: Proceedings IEEE CVPR, pp. 4422–4431 (2018)

44. Quiring, E., et al.: Do’s and don’ts of machine learning in computer security. In:
Proceedings USENIX Security Symposium (2022)

http://arxiv.org/abs/1802.03162
https://github.com/revanks/logo-images-dataset

182 J. Lee et al.

45. Rahman, M.S., Imani, M., Mathews, N., Wright, M.: Mockingbird: defending
against deep-learning-based website fingerprinting attacks with adversarial traces.
IEEE Trans. Inf. Forensics Secur. 16, 1594–1609 (2020)

46. Shafahi, A., et al.: Adversarial training for free! In: Advances in Neural Information
Processing Systems (2019)

47. Shafahi, A., Najibi, M., Xu, Z., Dickerson, J., Davis, L.S., Goldstein, T.: Uni-
versal adversarial training. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, pp. 5636–5643 (2020)

48. Sharma, K., Zhan, X., Nah, F.F.H., Siau, K., Cheng, M.X.: Impact of digital
nudging on information security behavior: an experimental study on framing and
priming in cybersecurity. Organ. Cybersecur. J. Pract. Process People 1(1), 69–91
(2021)

49. Shenoi, A., Vairam, P.K., Sabharwal, K., Li, J., Divakaran, D.M.: iPET: privacy
enhancing traffic perturbations for secure IoT communications. Proce. Priv. Enhan.
Technol. 2, 206–220 (2023)

50. Szegedy, C., et al.: Intriguing Properties of Neural Networks. CoRR (2014)
51. Tian, K., Jan, S.T., Hu, H., Yao, D., Wang, G.: Needle in a haystack: tracking

down elite phishing domains in the wild. In: Internet Measurement Conference
(2018)

52. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems 30 (2017)

53. Verma, R., Dyer, K.: On the character of phishing URLs: accurate and robust
statistical learning classifiers. In: Proceedings ACM Conference Data Application
Security Privacy (2015)

54. Wang, G., et al.: Verilogo: Proactive phishing detection via logo recognition,
Department of Computer Science and Engineering. University of California, San
Diego (2011)

55. Wang, J., et al.: Logo-2K+: a large-scale logo dataset for scalable logo classification.
In: Proceedings AAAI, pp. 6194–6201 (2020)

56. Whittaker, C., Ryner, B., Nazif, M.: Large-scale automatic classification of phish-
ing pages. In: Proceedings NDSS (2010)

57. Xiang, G., Hong, J., Rose, C.P., Cranor, L.: CANTINA+: a feature-rich machine
learning framework for detecting phishing web sites. ACM Trans. Inform. Syst.
Secur. 14(2), 1–28 (2011)

58. Zhang, C., Benz, P., Imtiaz, T., Kweon, I.S.: CD-UAP: class discriminative uni-
versal adversarial perturbation. In: Proceedings AAAI Conference on Artificial
Intelligence, vol. 34, pp. 6754–6761 (2020)

59. Zhang, P., et al.: CrawlPhish: large-scale analysis of client-side cloaking techniques
in phishing. In: Proceedings IEEE S&P (2021)

Hiding Your Signals: A Security Analysis
of PPG-Based Biometric Authentication

Lin Li1(B), Chao Chen2, Lei Pan3, Yonghang Tai4, Jun Zhang1,
and Yang Xiang1

1 Swinburne University of Technology, Melbourne, Australia
linli@swin.edu.au

2 RMIT University, Melbourne, Australia
3 Deakin University, Melbourne, Australia

4 Yunnan Normal University, Kunming, China

Abstract. Recently, physiological signal-based biometric systems have
received wide attention. Photoplethysmogram (PPG) signal is easy to
measure, making it more attractive than many other physiological signals
for biometric authentication. However, with the advent of remote PPG,
unobservability has been challenged when the attacker can remotely
steal the PPG signals by monitoring the victim’s face, subsequently pos-
ing a threat to PPG-based biometrics. In this paper, we firstly analyze
the security of PPG-based biometrics, including user authentication and
communication protocols. We evaluate the signal waveforms and inter-
pulse-interval information extracted by five rPPG methods. Our empir-
ical studies on five datasets show that rPPG poses a serious threat to
the authentication system. The success rate of the rPPG signal spoofing
attack in the user authentication system reached 35%. The bit hit rate is
60% in inter-pulse-interval-based security protocols. Further, we propose
an active defence strategy to hide the physiological signals of the face to
resist the attack. It reduces the success rate of rPPG spoofing attacks in
user authentication to 5%. The bit hit rate was reduced to 50%, which
is at the level of a random guess. Our strategy effectively prevents the
exposure of PPG signals to protect users’ sensitive physiological data.

Keywords: Biometrics · Spoofing Attack · Signal Hiding · PPG ·
User Authentication · Key Exchange Protocol

1 Introduction

Over the past decade, biometric systems have provided high authentication
accuracy and user convenience, driving widespread deployment. However, with
the popularity of biometrics, researchers have found that traditional biometric
authentication is vulnerable to spoofing attacks. Traditional biometric features
like face and fingerprint recognition can be directly observed with the human
eye, and an attacker can compromise the authentication system without strong
technical knowledge. Researchers are turning to a potentially reliable and unob-
servable biological feature, the physiological signal.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 183–202, 2024.
https://doi.org/10.1007/978-3-031-51479-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_10&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_10

184 L. Li et al.

Common physiological signals, including Electrocardiogram, Electroen-
cephalogram, and Photoplethysmogram (PPG) are widely used as biometric
features [18,20,36,42]. A light source and a light sensor is sufficient to obtain
PPG signals without other complicated devices required by other physiological
signals, making them more widely used in life. For example, popular wearable
devices use PPG sensors for health monitoring—Apple and Samsung. There-
fore, PPG signals are considered to be more practical and attractive than other
physiological signals in real-world applications [20].

Currently, known threats against PPG-based biometric authentication
require the collection of the victim’s PPG signal. This attack requires close con-
tact with the victim, which significantly limits the possibility of an attack. Some
attacks targeting specific protocol vulnerabilities typically cannot be directly
applied to other protocols without modification [30]. However, the emergence
of remote PPG (rPPG) signals has challenged the unobservable property of
PPG signals, which means that PPG-based biometric authentication will lose
the advantage of unobservability. rPPG attempts to capture PPG-like signals
by monitoring subtle changes in the color of a person’s facial skin in the video.
The rPPG signal has been successfully applied to infer biometric signals, such
as monitoring heart rate [10,17] and predicting blood pressure.

Although some studies explore using rPPG signals to attack inter-pulse inter-
val (IPI)-based security protocols [6,21,37], they do not discuss viable defence
strategies. In addition, there is still a research gap between rPPG signals and
PPG-based biometric authentication. In an existing rPPG method, its validity is
assessed mainly by heart rate, but signal morphological characteristics are often
neglected. In PPG-based biometric authentication, the morphological character-
istics of the signal are the main contributors to the uniqueness of the user. In
addition, the rPPG signal is extracted from the human face, and the PPG sig-
nal is from the fingertips or wrist. Different skin tissues and distances from the
heart can lead to differences in shape and phase between PPG signals. Thus, it
is crucial to explore the potential of rPPG-based attacks to evaluate the security
of PPG-based biometrics, which is one of the aims of this work.

In this paper, we analyze the security of PPG-based biometric authentica-
tion, particularly in user authentication and communication protocols. Current
methods only require access to video clips of the victim’s face to achieve a remote
attack, increasing the likelihood of the attack in reality. We first analyze rPPG-
based spoofing attacks and some common defence strategies to reduce the threat.
We further propose an effective defence strategy and evaluate the defence per-
formance. The main contributions of this paper are as follows:

1. We analyze the potential threats of rPPG to PPG-based biometrics using
five methods (CHROM [11], POS [43], LGI [34], PCA [26], CL rPPG [13]) on
five datasets (PURE [38], UBFC rPPG [4], UBFC Phys [32], LGI PPGI [34],
COHFACE [15]). The success rate of the spoofing attack on user authentica-
tion reached 35%. The bit hit rate in the IPI-based security protocols reached
60%.

Hiding Your Signals 185

2. We analyze a series of defence strategies to mitigate the threat of rPPG-based
spoofing attacks on biometrics. Existing passive defence strategies of spoofing
attacks can significantly degrade the performance of the user authentication
model.

3. We propose a signal hiding method (SigHid) by injecting an arbitrary wave-
form into the face of the video. Our active defence strategy reduces the success
rate of spoofing attacks on user authentication to 5%. And it will not affect
the performance of the authentication model. The bit hit rate in the IPI-based
security protocols was reduced to 50%.

The rest of the paper is organized as follows: Sect. 2 reviews related work,
including PPG-based biometric authentication methods, existing attacks, and
rPPG methods. Section 3 and 5 describe the attack and defence strategies we
used. In Sect. 4 and 6, experimental results are provided along with a discussion
on the performance of the attack and defence strategy, respectively. Finally,
Sect. 7 concludes this work.

2 Related Work

2.1 PPG-Based Biometrics

In the context of biometrics, PPG signals are mainly used in user authentication
and communication protocols.

User Authentication: The PPG signal contains a wealth of personal car-
diac data. The earliest studies used clinical features commonly existed in PPG
signals as biometric features [14,23]. For example, as shown in Fig. 1, the ratio of
b to a is related to arterial stiffness [39]. A1 and A2 areas are related to systemic
vascular resistance [1]. However, some characteristics of these features are sen-
sitive to changes over time. For example, ΔT changes with an individual’s age
[33]. Thus, researchers have applied a few techniques to get stable features, such
as transforming robust features by leveraging wavelet transform [45], short-time
Fourier transform [12], and GAN [19].

After constituting an individual template using the extracted signal features,
identifying the individual template is similar to other biometric authentication
systems. The early generations of authentication systems match individuals by
calculating the distance between features and templates [14]. Gradually, machine
learning models replace simple distance calculations to improve template match-
ing performance. However, many machine learning models require manual fea-
ture extraction so that the system designer and engineers may introduce bias.
Recently, deep learning methods have provided an end-to-end authentication
strategy, for example, CNN and LSTM are used to learn features from raw data
automatically in the context of user recognition [3,20].

Communication Protocols: In body area sensor networks (BASN) with
strict computational resource constraints, traditional encryption schemes for
information transmission are difficult to apply because PPG signals can get
similar measurements in different body parts. When used as an entity identifier

186 L. Li et al.

Fig. 1. Features of the PPG signal (including the original waveform, the first-/second-
order derivatives of the waveform) that are related to heart health.

in a BASN symmetric encryption scheme, the distribution of pre key-agreement
could be avoided [47]. IPI information extracted from the PPG signal is the
most prevalent entity identifier. IPI indicates the time difference between two
consecutive heartbeats, while PPG signal is usually regarded as the time differ-
ence between two pulse peaks. The timing of systolic peaks in the PPG signal
is sympathetically related and influenced by various physiological factors. This
characteristic allows the researcher to extract entity identifiers from the IPI
information [9].

After obtaining the IPI, the randomness of the entity identifier needs to
be extracted by quantization algorithms. A quantization algorithm encodes the
signal into a binary representation. Two quantization methods exist. The first
method was proposed in [29] to extract a random value from the intermediate
bits of IPI. However, this method suffers from inbalanced randomness, that is,
the high bits of IPI are not random enough, while the low bits have too much
noise. The second method was proposed in [9] to use the trend of the IPI sequence
as a random source of information. The second method improves the randomness
attribute at the cost of excessive processing time.

2.2 Remote Photoplethysmogram (rPPG)

Most rPPG signals are obtained by analyzing subtle differences in the facial
color channels from a video clip. The green channel is more readily absorbed by
hemoglobin than the red and blue channels. In most circumstances, the green
channel contains the strongest PPG signal, providing a high signal-to-noise ratio
solution for signal acquisition [41]. Two blind source separation methods, Inde-
pendent Component Analysis and Principal Component Analysis were proposed
in [26,35] to isolate the approximately clean signals from the RGB channels.

Hiding Your Signals 187

Unlike contact PPG measurements, the signal reflected by the skin in rPPG
measurements includes the specular reflection of natural light, leading to unpre-
dictable normalization errors. CHROM [11] introduces chromatic aberration to
eliminate specular reflection effects, assuming that the facial region’s pixels con-
tribute equally to the rPPG signal. Nevertheless, different noise levels may affect
pixels collected from the face region.

A recent research trend is to apply deep learning in rPPG acquisition for
an end-to-end solution framework. DeepPhys [7] uses an attention network with
CNN to capture the differences in the spatial and temporal distribution of sig-
nals between video frames. PhysNet [46] uses a spatio-temporal convolutional
network to restore the rPPG signal from the video clip. Meta-rPPG [25] presents
a transduction meta-learner that allows the deep learning model to adapt the
data distribution during deployment. A fully self-supervised training method was
introduced in [13] to acquire the rPPG signals. In addition to existing progress,
deep learning-based methods have good research potential for rPPG signal acqui-
sition. In summary, the research trend for rPPG signal acquisition is toward
automated end-to-end solutions with high accuracy and resilience to noise.

2.3 Existing Attacks

The first attack against IPI-based authentication using rPPG was proposed by
Calleja et al. [6] in 2015. IPI signals help derive secure random sequences in the
key distribution component of IPI-based authentication systems whose security
conditions rely on the assumption that IPI can be measured by contact devices
only. In fact, most of the IPI information acquired by PPG signals could also be
obtained by non-contact techniques (rPPG). By analyzing the face’s color change
information in the video clip, the rPPG signal can be extracted like PPG. The
extracted rPPG signal can be used to generate IPI, violating the assumptions
in IPI-based authentication protocols [37]. Although rPPG does not accurately
describe IPI generated from ECG signals, it has similar accuracy to contact
PPG. Currently, PPG-based biometric authentication is mainly based on the
morphological characteristics of the PPG signal rather than the IPI information.

In previous attacks on PPG-based biometric authentication, researchers
almost always assume that the victim’s PPG signal has been compromised.
Karimian et al. [21] utilized a non-linear dynamic model [31] to extract model
parameters from the victim’s PPG signal before transforming the model param-
eters using two Gaussian functions as mapping functions. Thereafter, a spoof-
ing attack was launched using the forged victim’s PPG signal. Another study
involved stealing a victim’s PPG signal stealthily by installing a malicious PPG
sensor on a device that the victim would touch [16]. Based on the recorded sig-
nals, the attacker can use a waveform generator to simulate the victim’s PPG
signal and compromise the authentication. However, contact-based PPG signals
are challenging to obtain without the victim’s awareness, significantly limiting
these attacks’ application scenarios. Our previous work successfully attacked
PPG-based PPG signals via facial recovery [28].

188 L. Li et al.

Fig. 2. Our proposed spoofing attack flow. We identify the ROI region from the target
video frame before extracting the rPPG signal from the ROI. The rPPG signal is used
to launch a spoofing attack on the authentication system.

3 Spoofing Attacks

In this work, we aim to conduct a comprehensive security analysis of PPG-
based biometrics. First, Fig. 2 depicts our scheme that performs spoofing attacks
on biometrics. We extracted the rPPG signal from the face video clip, then
extracted the IPI and reconstructed the PPG signal from the rPPG signal. We
consider various rPPG methods (CHROM, POS, LGI, PCA, CL rPPG) to spoof
biometric authentication and extract IPI information from the rPPG signal to
spoof IPI-based security protocols.

3.1 Threat Model

PPG-based biometrics, including user authentication [49] and IPI-based security
protocols [47], are vulnerable to spoofing attacks. This paper assumes that the
attacker could obtain a video clip with the victim’s face. In this age of social
networking, it is easy to retrieve many videos with human faces on social media
sites. For instance, YouTube and Facebook (Meta) host numerous HD video clips
that are downloadable to the attacker. In contrast to the previous attack assump-
tions, our method requires no leaked PPG signals. In addition, we assume that
the attacker knows the inputs to the user authentication model. For instance, a
PPG signal with one heartbeat cycle is taken as input. The length of the signal
is resampled to 60. The amplitude of the signal is normalized to 0–1.

3.2 rPPG Acquisition

Before acquiring the rPPG signal, we use MTCNN [48] to detect the face region
in each video frame before isolation. Then the non-skin part of the face region is
filtered by the skin detection algorithm proposed in [24]. For example, clothes,
hair, and other parts that do not provide PPG signal information will be filtered.
Each frame F (n) is stored as a matrix of w ×h×3, where w and h represent the
frame’s width and height, and 3 is the number of color channels. The average
value of RGB of the whole skin area is used as the R, G, B values of the current
frame. A bandpass filter is applied to obtain the portion of the frame sequence
with signal frequencies between 0.65 Hz and 4.0 Hz (i.e., between 39 and 240
bpm). The method in [40] was used to remove the breadth component of the

Hiding Your Signals 189

signal. This preprocessing removes the signal’s noise and breathing components
(signal trend).

Upon removing noises, we extract the rPPG signal from the consecutive skin
frames. As listed in Sect. 2.2, there are multiple methods for obtaining rPPG sig-
nals, including CHROM, POS, LGI, PCA, CL rPPG. CHROM is based on the
skin optical reflection model. The model assumes that the light reflected by the
skin consists of diffuse and specular reflections, and the PPG signal is hidden in
the diffuse reflection. CHROM eliminates the specular reflection component by
using chrominance. CHROM uses simple mathematical operations to obtain the
PPG signal quickly. Moreover, CHROM is resilient to motion artifacts. POS is
similar to CHROM, which is also based on the skin reflection model assumption
to obtain low signal-to-noise ratio PPG signals by removing specular reflec-
tions [43]. LGI introduces the Local Group Invariance features for estimating
heart rate from face videos in complex environments. PCA(Principal component
analysis) reduces features’ dimensionality. PCA uses an orthogonal transforma-
tion to project the observed values of potentially correlated variables into a set
of linearly uncorrelated variables. It separates the periodic pulse signals from
the noisy signals. CL rPPG is a deep learning-based rPPG signal extraction
method. Traditional methods may lose vital information related to the heartbeat
through manually designed features. The deep learning-based approach recov-
ers the rPPG signal directly from the original face video. CL rPPG has two
versions: supervised learning (CL P) and self-supervised learning (CL F). For
the supervised learning mode, the CL P model is trained using the maximum
cross-correlation between the ground truth PPG signal and the estimated PPG
signal as the loss function. In the self-supervised learning model CL F, negative
samples with high heart rates are artificially generated by a frequency resampler
for contrast training. The power spectral density means the squared error is used
to measure the difference between two signals.

3.3 IPI Recovery and Quantification

To spoof IPI-based security protocols, we need to recover the IPI information
from the signal. We mark the peak locations of the original signal before calcu-
lating the time difference between the peaks as IPI. As the standard heart rate
in adults is 50–120 beats per minute [19], there are at most two heartbeats per
second. To minimize sample loss, we exclude data where the distance between
heartbeats is less than FPS/2.

For IPI sequences to be used in key exchange protocols, we need to quantize
the IPI sequences. There are two mainstream quantification methods, trend-
based and quantile function-based [47]. We use the Gray code as the quantization
function for the quantile-based function. Firstly, we normalize the IPI time series
to 0–1. Then, we multiply it by 256 and convert the result to an 8-bit Gray code.

For trend-based quantification, we divide each IPI value into 16 parts of an
equal length following a normal distribution. Our setting is identical to IMD-
Guard [44]. Subsequently, we encode the IPI sequence according to the trend of
IPI values.

190 L. Li et al.

4 Attack Evaluation

In this section, we evaluate the effectiveness of spoofing attacks using rPPG
signals. We select five common public datasets for our experiments. Experi-
ments on spoofing user authentication were performed in UBFC-PHYS. We
trained a state-of-the-art model as our user authentication target model (see
Sect. 4.2). The threat of rPPG signals to IPI-based security protocols is explored
on four datasets—PURE, UBFC rPPG, LGI PPGI, and COHFACE. We use
trend-based and quantile function-based as our target model (see Sect. 3.3) for
IPI-based security protocols. Then we use the rPPG signal (see Sect. 3.2) to
perform a spoofing attack.

4.1 Datasets

UBFC-PHYS captures facial videos (1024 × 1024 resolution, 35 FPS, 227,474
Kbps) of 56 participants. Each participant recorded a one-minute video of the
three states (‘resting’, ‘talking’, or ‘calculating’). Meanwhile, the Empatica E4
wristband was used to collect the PPG signal from the wrist synchronously with
the sampling rate of 65 Hz. We perform repeated independent experiments for
each user. Other users are treated as non-victims.
PURE captures 10 participants’ facial videos. Each participant’s videos were
recorded in six states (Steady, Talking, Small/Medium Rotation, and Slow/Fast
Translation). Each video clip is one-minute long with a resolution of 640 × 480
and a frame rate of 30 FPS. Meanwhile, the finger clip pulse oximeter acquired
the PPG signal at a 65 Hz sampling rate.
UBFC rPPG uses a webcam to record video (640 × 480 resolution, 30 FPS).
Transmissive pulse oximetry (62 Hz) to obtain the PPG signal. It consists of
two sub-datasets. In UBFC 1, participants were asked to remain stationary; in
UBFC 2, participants played a mathematical game in front of a green screen.
LGI PPGI records facial videos in four scenes (resting, head movement, fitness,
and conversation in an urban background). The video clips were captured by a
webcam (640 × 480 resolution, 25 FPS). The sampling rate of the pulse oximeter
is 60 Hz.
COHFACE contains facial video clips (640 × 480 resolution, 20 FPS) of 40 sub-
jects, including the simultaneous acquisition of PPG signals (256 Hz). Subjects
were asked to sit still in front of the camera. The video was heavily compressed.

4.2 Experimental Implementation

We use Keras1 to implement the most advanced PPG-based user authentication
model [20]. We use the virtual heart rate pyVHR [5] to implement the different
traditional rPPG methods (CHROM, POS, LGI, PCA). We choose to adopt the
deep learning method in [13] for CL rPPG.

1 https://www.tensorflow.org/.

https://www.tensorflow.org/

Hiding Your Signals 191

For the user authentication model, we mark the signals of the victims as
class 1 and other users as 0. We aim to compare the threat of rPPG signals
with other users’ PPG signals for the user authentication system. We repeated
the experiment separately with each user as a victim, and randomly select one-
tenth of other users are used to train the user authentication model, which
is realistic for authentication systems. It is possible to collect a large amount
of data about the target user, but only a small amount of data from other
users. The remaining data from other users were used as a random attack to
evaluate the spoofing attack by rPPG signals. To explore the impact of signals
collected in different states on spoofing attacks, we exclude the PPG signals
in the ‘talking’ and ‘calculating’ states while training the user authentication
model. The performance of the user authentication model is determined by the
Equal Error Rate (EER). We regard the model for the false acceptance rate
(FAR) of the rPPG signal as the success rate of spoofing. A higher success rate
indicates that the authentication system is more vulnerable to spoofing attacks.
Finally, we use the average results of all users.

For IPI-based security protocols, we evaluate them by using IPI. The pri-
mary metrics are mean absolute error (MAE) and root-mean-square devia-
tion (RMSE). We also use Pearson’s coefficient (PC) to compare the similarity
between the PPG signal and the rPPG signal. Since IPI-based security protocols
require multi-bit encoding from IPI, we use the bit hit rate (BHR) to show how
many codes can be recovered by the rPPG signal. BHR is the percentage of
recovered codes for all codes.

4.3 Attack in User Authentication

Among the different rPPG methods, we found that the signal waveform obtained
by CHROM was the most similar to the contact PPG signal. Therefore in the
user authentication we only show the results for CHROM. Table 1 shows the
results of a random attack versus an attack using the victim’s rPPG signal.
The success rate of using the victim’s rPPG signal is almost doubled compared
to random attacks. The success rate of the Mean-treated signal is even higher,
which is 34%. Although the success rate of rPPG signal is reduced in the Talking
and Calculating states, the mean treatment can help mitigate this effect. It is
a threat to the authentication model, since real-world authentication systems
often allow users to make multiple attempts. By analyzing the results, we also
found that individual differences were also evident in addition to the quality
of the video, which significantly affected the attack’s success rate. The highest
success rate of rPPG signal can reach 98% for users. In contrast, some users’
rPPGs cannot be used for spoofing attacks. We found a significant difference in
the morphology of some users’ rPPG and PPG signals, potentially caused by a
variation in the user’s facial expression.

192 L. Li et al.

Table 1. The success rate of spoofing attacks in UBFC-Phys. Mean indicates the
average of the PPG signals over multiple cardiac cycles.

Status Resting Talking Calculating

Random Attack 0.14 0.15 0.15

Victim rPPG Signal Attack 0.25 0.19 0.21

Mean rPPG Signal Attack 0.34 0.35 0.35

Table 2. Comparison of the video extracted IPIs with the PPG signal extracted IPIs
in different datasets. PC: Pearson correlation coefficient. P: PURE. L: LGI PPGI. U1:
UBFC 1. U2: UBFC 2. C: COHFACE.

CHROM POS LGI PCA CL P CL F

MAE (P) 0.1153 0.0762 0.0721 0.0729 0.0322 0.0592

RMSE (P) 0.1564 0.1114 0.1045 0.1051 0.0517 0.0796

PC (P) 0.7764 0.7985 0.8275 0.8296 0.9926 0.9925

MAE (L) 0.1572 0.1019 0.1001 0.1162 – –

RMSE (L) 0.2008 0.1452 0.1419 0.1598 – –

PC (L) 0.3597 0.3132 0.3230 0.3212 – –

MAE (U1) 0.0771 0.0385 0.0481 0.0816 – –

RMSE (U1) 0.1207 0.0694 0.0906 0.1319 – –

PC (U1) 0.6451 0.7380 0.6829 0.6099 – –

MAE (U2) 0.1319 0.0776 0.0867 0.1131 0.0457 0.0753

RMSE (U2) 0.1849 0.1332 0.1508 0.1804 0.1064 0.1484

PC (U2) 0.7554 0.8474 0.6730 0.6018 0.9248 0.8787

MAE (C) 0.1319 0.2271 0.2166 0.2265 0.2167 0.2282

RMSE (C) 0.1849 0.2954 0.2836 0.2957 0.4252 0.3980

PC (C) 0.0110 0.0600 0.0340 0.0060 0.9850 0.9880

4.4 Attack in IPI-Based Security Protocols

We report MAE and RMSE for the video extracted IPIs with the PPG signal
extracted IPI in Table 2. Since the data sets UBFC 1 and LGI PPGI were not
evaluated in the source code of CL rPPG, we omit the results for these two
datasets in the table. The MAE of the recovered IPI in the high-quality original
video is below 0.1. CL P reaches a minimum MAE of 0.03. It recovered an IPI
that the Pearson correlation coefficient (PC) is as high as 0.99 with the IPI of
PPG. Hence, the IPIs extracted by CL P and PPG signals are very similar.

For quantile-based IPI coding, the randomness of the bit usually increases
as the location of bits decreases. Because the performance of the original video
extraction from COHFACE was poor in the previous experiments, we chose not
to conduct the experiments on COHFACE. As shown in Fig. 3, the BHR of the

Hiding Your Signals 193

encoding extracted from the original video varies with the position of bits. As the
bit position decreases, so does BHR. In the LGI PPGI and UBFC 1 datasets,
BHR shows a decreasing trend from 70% to 50% with the decrease of bits. In
UBFC 2, the CL F high BHR reached above 80%, especially the overall BHR of
CL P is higher than 65%.

We observed that with the improvement of rPPG extraction methods, state-
of-the-art methods have been able to recover the IPI from rPPG signals accu-
rately. Both rPPG and PPG signals reflect individual cardiac information, mak-
ing them contain a great deal of similar information. While this has facilitated
the development of telemedicine, rPPG poses an actual threat to PPG-based
biometrics.

Fig. 3. The raw video quantile-based IPI coding bit hit rate in different datasets. Each
figure shows the results of the different rPPG methods. The horizontal coordinate
indicates the bit hit rate.

5 Defensive Strategies

In this section, we investigate passive and active defence strategies against the
threats discussed in the previous section. Passive defence detects between regular
and malicious access after an attacker has launched an attack. Active defence
is a strategy taken before an attacker launches an attack. We hide the rPPG
signal from the face of the video clip, making it difficult for the attacker to use
the video to recover the PPG signal.

194 L. Li et al.

5.1 Passive Defence

Passive defence is primarily used for the scenario of user authentication. The
input for user authentication is usually the fingertip or wrist PPG signal wave-
form. rPPG signals are collected from the human face, where there are phase
differences and morphological differences between rPPG and PPG signals. The
phase and morphological differences are measured to identify spoofing attacks.

Incremental Updating: When we have an attack sample, we can react to the
attack instantly by incrementally updating the model. In practice, the attack
sample can be obtained by pre-capturing the rPPG signal from the user’s
face. However, we may not be able to simulate the attack sample in this way
accurately.

Fig. 4. Our proposed workflow for active defence strategy. First, we detect the face area
from the original video. Then use the face mesh to remove non-skin regions, such as the
eyes and mouth. Next, we use the generated arbitrary signal with the extracted ROI to
create a template for injecting the video. To make the injected edges imperceptible, we
blurred the template. Finally, the template sequence is superimposed on the original
video to complete the signal hiding.

Anomaly Detection: It is also known as outlier analysis. It only needs to learn
the user’s samples before detecting malicious samples by excluding outliers. This
paper uses Isolation Forest and One-Class SVM as anomaly detectors.

Passive defence usually follows the successful attack. Both incremental
updates and anomaly detection can potentially affect the performance of the
original user authentication model.

5.2 Active Defence

To solve the limitation of passive defence, we propose an active defence strategy,
namely SigHid. As shown in Fig. 4, we hide the exposed rPPG signal by injecting
the noise signal into the original video. It allows us to start our defence before
being attacked, minimizing the impact on the original model. In contrast to [8],

Hiding Your Signals 195

we hide the original signal by injecting a specific signal instead of eliminating it.
Our active defence strategy consists of the following components:

Extraction of ROI Area: First we use BlazeFace [2] to detect the face area.
It can detect faces quickly (200 to 1000 FPS) on a mobile GPU. Then, we apply
the method in [22] to get the face landmarks. After that, we will get 468 3D face
landmarks. These landmarks mark the locations of feature points in the face,
such as the tip of the nose and the top of the left/right cheekbones.

Create Injection Template: For each frame C(t) in the video, we use the
facial region as the ROI and exclude the eye and mouth regions. As shown in
the formula below, in the template, the RGB value of the ROI area is set to 1
and the rest of the area is set to 0.

Fig. 5. An active defence example. The RGB sequence value extracted directly from
the original video is in the upper left corner. The upper right corner is the injected
signal. Below is the RGB sequence value extracted from the processed video.

Ctemp(t) =
{

CROI(t) = 1
CO(t) = 0 (1)

The sine signal is superimposed on the template.

Kernel =
1
30

⎡
⎣ 1 . . . 1

.
1 . . . 1

⎤
⎦
30×30

(2)

The template is fuzzed with a convolution kernel.

Cfinal temp(t) = Ctemp(t) × Sine(t) ∗ Kernel (3)

Finally, we superimpose the template sequence on the original video frames to
complete the signal hiding. Framef (t) represents the t-th frame of the processed
video. Frameo(t) indicates the t-th frame of the original video clip.

Framef (t) = Frameo(t) + Cfinal temp(t) (4)

Figure 5 shows the results of our signal injection in the video. We observe
that the injected signal is completely different from the original signal.

196 L. Li et al.

6 Defence Evaluation

We evaluate the performance of our defensive strategies (see Sect. 5) in this
section. The same datasets as in the previous section are used in this section.
We use MediaPipe2 to obtain the face mesh for each video frame. Then the ROI
template is extracted from the face mesh using OpenCV3 before we perform
signal injection to the templates.

Table 3. Performance of three passive defence strategies (Incremental Updating, One-
Class SVM, and Isolation Forest). The left half shows the impact on the performance of
the original model. The right half is the success rate of the victim rPPG signal attack
authentication model.

Model Performance Spoofing attack

F1-Score Precision Recall rPPG Mean-rPPG

Original Model 0.8735 0.9127 0.8548 0.2517 0.3427

Incremental Updating 0.8269 0.8166 0.8645 0.0067 0.0275

One-Class SVM 0.7369 0.8141 0.7138 0.0420 0.0572

IsolationForest 0.7364 0.8265 0.7079 0.0430 0.0586

Table 4. Performance of active defence strategy in user authentication. SigHid: Our
proposed signal hiding method.

Video Type CHROM-rPPG Mean-rPPG

Original Video 0.7005 1.0000

SigHid Video 0.0291 0.0577

6.1 Defence in User Authentication

Table 3 shows the performance of the passive defence strategy. These results show
that all passive defence strategies significantly reduce the attack’s success rate.
The success rate of rPPG attacks has been reduced from 25% to at least 4%.
Mean-treated rPPG was reduced to 5%. However, we observe that the passive
defence strategy seriously affects the performance of the authentication model
system. The incremental updating method has the least impact on the authenti-
cation system. The F1-Score of the model dropped from 87% to 82%. It reduces
the success rate of rPPG attacks and makes the model less generalized. Isolation-
Forest and One-Class SVM have a significant impact. The F1-Score of the model
is around 73%. Unfortunately, it propagates the error rate to the authentication
model while blocking the attack.
2 https://google.github.io/mediapipe/.
3 https://opencv.org/.

https://google.github.io/mediapipe/
https://opencv.org/

Hiding Your Signals 197

We propose an active defence strategy to solve the problems in passive
defence. To maximize the active defence strategy’s performance, we selected 13
video clips from the original videos with a success rate of being attacked greater
than 50%. As shown in Table 4, the attack’s success rate using the rPPG sig-
nal extracted from the original video reaches 70%, and the mean-treated rPPG
signal even reaches 100%. The success rate of video rPPG attacks processed by
the active defence strategy is reduced to 2%, and the mean-treated rPPG is
decreased to 5%, almost achieving the same performance as the passive defence.
Moreover, the active defence strategy does not affect the original model’s per-
formance.

6.2 Defence in IPI-Based Security Protocols

Compared to the best results (CL P, PURE) of the original video extracted
IPI, in our processed video, MAE increased to 0.2, PC was reduced to 0.28. In
the other datasets, MSE increased to some extent. However, we found that the
variation was minimal in COHFACE because the video clips in COHFACE are
compressed. The MAE of the IPI recovered from COHFACE has reached 0.2 s.
Their PC is around 0.05 for all methods except CL P and CL F. It indicates
that the IPI recovered by other methods has a low correlation with the IPI of

Table 5. Comparison of the video extracted IPIs with the PPG signal extracted IPIs
in different datasets. PC: Pearson correlation coefficient. P: PURE. L: LGI PPGI. U1:
UBFC 1. U2: UBFC 2. C: COHFACE. -S: Signal acquired from video processed using
SigHid.

CHROM POS LGI PCA CL P CL F

MAE-S (P) 0.1729 0.2087 0.1661 0.1780 0.2039 0.1691

RMSE-S (P) 0.2222 0.2536 0.2153 0.2279 0.2422 0.2086

PC-S (P) −0.046 −0.037 −0.057 −0.055 0.2897 0.3917

MAE-S (L) 0.2782 0.2676 0.2872 0.2899 – –

RMSE-S (L) 0.3419 0.3274 0.3466 0.3509 – –

PC-S (L) 0.0317 0.0112 −0.009 −0.005 – –

MAE-S (U1) 0.3141 0.2481 0.2472 0.3417 – –

RMSE-S (U1) 0.3687 0.3061 0.3051 0.3893 – –

PC-S (U1) 0.0003 0.0115 0.0098 −0.050 – –

MAE-S (U2) 0.3597 0.3063 0.3170 0.4012 0.3610 0.2728

RMSE-S (U2) 0.4077 0.3574 0.3689 0.4403 0.4045 0.3200

PC-S (U2) 0.0397 0.0058 0.0163 0.0447 0.4759 0.7647

MAE-S (C) 0.2884 0.2948 0.2943 0.2942 0.4112 0.4629

RMSE-S (C) 0.3209 0.3242 0.3237 0.3234 0.4873 0.5359

PC-S (C) −0.007 −0.033 −0.025 −0.023 0.3360 0.2036

198 L. Li et al.

Fig. 6. The processed video quantile-based IPI coding bit hit rate in different datasets.
The horizontal coordinate indicates the bit hit rate. -S: Signal acquired from video
processed using SigHid.

PPG. After processing the video, even the state-of-the-art method PC is reduced
to approximately 0.3.

Contrary to the result in Sect. 4.4, In Fig. 6, in the processed video, BHR
remains steady at approximately 0.5 with the bit position. For example, as shown
in Fig. 3a, the LGI and POS methods gradually decrease in BHR from 0.7 to
0.5 as the bits go down. In contrast, as shown in Fig. 6a, BHR does not change
with the bits. Hence, our proposed active defence method completely hides the
PPG signal of the user in the video (Table 5).

6.3 Discussion

A common strategy to combat spoofing attacks is by introducing detection com-
ponents. Nevertheless, the detection component is usually located in front of
the recognition pipeline, and its errors will be propagated to the recognition
model, affecting the overall model recognition performance. In particular, when
the spoofed signal is similar to a real signal, the model’s false-negative rate
increases significantly. We observed that low-quality videos lower the success
of spoofing attacks. For example, in the COHFACE dataset, the quality of the
obtained rPPG signals is relatively poor, and the success rate of the attack is
lower than in other datasets. Compared to other datasets, the video clips in
COHFACE have a frame rate of 20 FPS, 640× 480 resolution, and 255 Kbps bit
rate. However, preventing attacks by sacrificing video quality is not always prac-

Hiding Your Signals 199

tical. Thus, we propose an active defence to prevent leaking the target’s PPG
signals by modifying the RGB pixel values of the facial skin in the video frame.
Video hosting platforms like YouTube and TikTok can successfully prevent sig-
nal leakage by batch processing users’ videos. Though an attacker may attempt
to capture video of the victim using their own device from a distance, it is worth
noting that in practical scenarios, the camera is typically situated in close prox-
imity to the victim. It poses a significant challenge for the attacker to acquire
the target signals without raising suspicion. Furthermore, future advancements
could involve Challenge-Response authentication [27], for example, modifying
the light source to augment the recognition process.

7 Conclusion

Recently, emerging biometric solutions using physiological signals have gained
widespread attention. In particular, the PPG signal is easy to collect and unob-
servable to remote attackers. However, the rPPG signal breaks this unobservabil-
ity. To comprehensively analyze the impact of the rPPG signal, we conducted
experiments on five datasets (PURE, UBFC rPPG, UBFC Phys, LGI PPGI,
and COHFACE). We found that user authentication and IPI-based security pro-
tocols are vulnerable to rPPG signal spoofing attacks. To mitigate this spoofing
attack, we propose an active defence scheme. It has the most negligible impact
on the performance of the original model compared to the passive defence. Before
releasing HD video, we recommend video platforms using active defence strate-
gies in bulk to mitigate rPPG signal leakage.

References

1. Awad, A.A., et al.: The relationship between the photoplethysmographic waveform
and systemic vascular resistance. J. Clin. Monit. Comput. 21(6), 365–372 (2007)

2. Bazarevsky, V., Kartynnik, Y., Vakunov, A., Raveendran, K., Grundmann, M.:
Blazeface: sub-millisecond neural face detection on mobile gpus. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW) (2019)

3. Biswas, D., et al.: CorNET: deep learning framework for PPG-based heart rate
estimation and biometric identification in ambulant environment. IEEE Trans.
Biomed. Circuits Syst. 13(2), 282–291 (2019)

4. Bobbia, S., Macwan, R., Benezeth, Y., Mansouri, A., Dubois, J.: Unsupervised
skin tissue segmentation for remote photoplethysmography. Pattern Recogn. Lett.
124, 82–90 (2019)

5. Boccignone, G., Conte, D., Cuculo, V., D’Amelio, A., Grossi, G., Lanzarotti, R.:
An open framework for remote-PPG methods and their assessment. IEEE Access
8, 216083–216103 (2020)

6. Calleja, A., Peris-Lopez, P., Tapiador, J.E.: Electrical heart signals can be mon-
itored from the moon: security implications for IPI-based protocols. In: Akram,
R.N., Jajodia, S. (eds.) WISTP 2015. LNCS, vol. 9311, pp. 36–51. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24018-3 3

https://doi.org/10.1007/978-3-319-24018-3_3

200 L. Li et al.

7. Chen, W., McDuff, D.: DeepPhys: video-based physiological measurement using
convolutional attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 356–373. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01216-8 22

8. Chen, W., Picard, R.W.: Eliminating physiological information from facial videos.
In: Proceedings of the IEEE International Conference on Automatic Face & Ges-
ture Recognition, pp. 48–55 (2017)

9. Chizari, H., Lupu, E.: Extracting randomness from the trend of IPI for crypto-
graphic operations in implantable medical devices. IEEE Trans. Dependable Secure
Comput. 18(2), 875–888 (2019)

10. Dasari, A., Prakash, S.K.A., Jeni, L.A., Tucker, C.S.: Evaluation of biases in remote
photoplethysmography methods. NPJ Dig. Med. 4(1), 1–13 (2021)

11. De Haan, G., Jeanne, V.: Robust pulse rate from chrominance-based rPPG. IEEE
Trans. Biomed. Eng. 60(10), 2878–2886 (2013)

12. Donida Labati, R., Piuri, V., Rundo, F., Scotti, F., Spampinato, C.: Biometric
recognition of PPG cardiac signals using transformed spectrogram images. In:
Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M.,
Escalante, H.J., Vezzani, R. (eds.) ICPR 2021. LNCS, vol. 12668, pp. 244–257.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68793-9 17

13. Gideon, J., Stent, S.: The way to my heart is through contrastive learning: Remote
photoplethysmography from unlabelled video. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 3995–4004 (2021)

14. Gu, Y., Zhang, Y., Zhang, Y.: A novel biometric approach in human verification by
photoplethysmographic signals. In: Proceedings of the International IEEE EMBS
Special Topic Conference on Information Technology Applications in Biomedicine,
pp. 13–14 (2003)

15. Heusch, G., Anjos, A., Marcel, S.: A reproducible study on remote heart rate
measurement. arXiv preprint arXiv:1709.00962 (2017)

16. Hinatsu, S., Suzuki, D., Ishizuka, H., Ikeda, S., Oshiro, O.: Basic study on presen-
tation attacks against biometric authentication using photoplethysmogram. Adv.
Biomed. Eng. 10, 101–112 (2021)

17. Hu, M., Qian, F., Guo, D., Wang, X., He, L., Ren, F.: ETA-rPPGNet: effective
time-domain attention network for remote heart rate measurement. IEEE Trans.
Instrum. Meas. 70, 1–12 (2021)

18. Huang, Y., Yang, G., Wang, K., Liu, H., Yin, Y.: Learning joint and specific pat-
terns: a unified sparse representation for off-the-person ECG biometric recognition.
IEEE Trans. Inf. Forensics Secur. 16, 147–160 (2021)

19. Hwang, D.Y., Taha, B., Hatzinakos, D.: PBGAN: learning PPG representations
from GAN for time-stable and unique verification system. IEEE Trans. Inf. Foren-
sics Secur. 16, 5124–5137 (2021)

20. Hwang, D.Y., Taha, B., Lee, D.S., Hatzinakos, D.: Evaluation of the time stability
and uniqueness in PPG-based biometric system. IEEE Trans. Inf. Forensics Secur.
16, 116–130 (2021)

21. Karimian, N.: How to attack PPG biometric using adversarial machine learning.
In: Proceedings of the Autonomous Systems: Sensors, Processing, and Security for
Vehicles and Infrastructure. International Society for Optics and Photonics (2019)

22. Kartynnik, Y., Ablavatski, A., Grishchenko, I., Grundmann, M.: Real-time facial
surface geometry from monocular video on mobile GPUs. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW) (2019)

https://doi.org/10.1007/978-3-030-01216-8_22
https://doi.org/10.1007/978-3-030-68793-9_17
http://arxiv.org/abs/1709.00962

Hiding Your Signals 201

23. Kavsaoğlu, A.R., Polat, K., Bozkurt, M.R.: A novel feature ranking algorithm for
biometric recognition with PPG signals. Comput. Biol. Med. 49, 1–14 (2014)

24. Kolkur, S., Kalbande, D., Shimpi, P., Bapat, C., Jatakia, J.: Human skin detection
using RGB, HSV and YCbCr color models. In: Proceedings of the International
Conference on Communication and Signal Processing, pp. 324–332. Atlantis Press
(2016)

25. Lee, E., Chen, E., Lee, C.-Y.: Meta-rPPG: remote heart rate estimation using
a transductive meta-learner. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M.
(eds.) ECCV 2020. LNCS, vol. 12372, pp. 392–409. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58583-9 24

26. Lewandowska, M., Rumiński, J., Kocejko, T., Nowak, J.: Measuring pulse rate with
a webcam – a non-contact method for evaluating cardiac activity. In: Proceedings
of the Federated Conference on Computer Science and Information Systems, pp.
405–410. IEEE (2011)

27. Li, J., Fawaz, K., Kim, Y.: Velody: nonlinear vibration challenge-response for
resilient user authentication. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1201–1213 (2019)

28. Li, L., Chen, C., Pan, L., Zhang, J., Xiang, Y.: Video is all you need: Attacking
PPG-based biometric authentication. In: Proceedings of the 15th ACM Workshop
on Artificial Intelligence and Security. AISec 2022, pp. 57–66, New York, NY, USA.
Association for Computing Machinery(2022)

29. Lin, Q., et al.: H2B: heartbeat-based secret key generation using piezo vibration
sensors. In: Proceedings of the International Conference on Information Processing
in Sensor Networks, pp. 265–276 (2019)

30. Marin, E., Argones Rúa, E., Singelée, D., Preneel, B.: On the difficulty of using
patient’s physiological signals in cryptographic protocols. In: Proceedings of the
24th ACM Symposium on Access Control Models and Technologies, pp. 113–122
(2019)

31. McSharry, P.E., Clifford, G.D., Tarassenko, L., Smith, L.A.: A dynamical model for
generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 50(3),
289–294 (2003)

32. Meziatisabour, R., Benezeth, Y., De Oliveira, P., Chappe, J., Yang, F.: UBFC-
Phys: a multimodal database for psychophysiological studies of social stress. IEEE
Trans. Affect. Comput. 14, 622–636 (2021)

33. Millasseau, S.C., Kelly, R., Ritter, J., Chowienczyk, P.: Determination of age-
related increases in large artery stiffness by digital pulse contour analysis. Clin.
Sci. 103(4), 371–377 (2002)

34. Pilz, C.S., Zaunseder, S., Krajewski, J., Blazek, V.: Local group invariance for heart
rate estimation from face videos in the wild. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pp. 1254–1262 (2018)

35. Poh, M.Z., McDuff, D.J., Picard, R.W.: Non-contact, automated cardiac pulse mea-
surements using video imaging and blind source separation. Opt. Express 18(10),
10762–10774 (2010)

36. Rostami, M., Juels, A., Koushanfar, F.: Heart-to-heart (H2H) authentication for
implanted medical devices. In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, pp. 1099–1112 (2013)

37. Seepers, R.M., Wang, W., de Haan, G., Sourdis, I., Strydis, C.: Attacks on
heartbeat-based security using remote photoplethysmography. IEEE J. Biomed.
Health Inform. 22(3), 714–721 (2018)

https://doi.org/10.1007/978-3-030-58583-9_24
https://doi.org/10.1007/978-3-030-58583-9_24

202 L. Li et al.

38. Stricker, R., Müller, S., Gross, H.M.: Non-contact video-based pulse rate measure-
ment on a mobile service robot. In: Proceedings of the IEEE International Sym-
posium on Robot and Human Interactive Communication, pp. 1056–1062. IEEE
(2014)

39. Takazawa, K., et al.: Assessment of vasoactive agents and vascular aging by the
second derivative of photoplethysmogram waveform. Hypertension 32(2), 365–370
(1998)

40. Tarvainen, M.P., Ranta-Aho, P.O., Karjalainen, P.A.: An advanced detrending
method with application to HRV analysis. IEEE Trans. Biomed. Eng. 49(2), 172–
175 (2002)

41. Verkruysse, W., Svaasand, L.O., Nelson, J.S.: Remote plethysmographic imaging
using ambient light. Opt. Express 16(26), 21434–21445 (2008)

42. Wang, M., Hu, J., Abbass, H.A.: BrainPrint: EEG biometric identification based
on analyzing brain connectivity graphs. Pattern Recogn. 105, 107381 (2020)

43. Wang, W., Den Brinker, A.C., Stuijk, S., De Haan, G.: Algorithmic principles of
remote PPG. IEEE Trans. Biomed. Eng. 64(7), 1479–1491 (2016)

44. Xu, F., Qin, Z., Tan, C.C., Wang, B., Li, Q.: Imdguard: Securing implantable
medical devices with the external wearable guardian. In: Proceedings of the Annual
IEEE International Conference on Computer Communications (INFOCOM), pp.
1862–1870. IEEE (2011)

45. Yadav, U., Abbas, S.N., Hatzinakos, D.: Evaluation of PPG biometrics for authen-
tication in different states. In: Proceedings of the International Conference on
Biometric, pp. 277–282 (2018)

46. Yu, Z., Peng, W., Li, X., Hong, X., Zhao, G.: Remote heart rate measurement
from highly compressed facial videos: an end-to-end deep learning solution with
video enhancement. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 151–160 (2019)

47. Zhang, J., Zheng, Y., Xu, W., Chen, Y.: H2K: a heartbeat-based key generation
framework for ECG and PPG signals. IEEE Trans. Mob. Comput. (2021)

48. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using
multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10),
1499–1503 (2016)

49. Zhao, T., Wang, Y., Liu, J., Chen, Y., Cheng, J., Yu, J.: Trueheart: continuous
authentication on wrist-worn wearables using PPG-based biometrics. In: Proceed-
ings of the Annual IEEE International Conference on Computer Communications
(INFOCOM), pp. 30–39. IEEE (2020)

Exploring Genomic Sequence Alignment
for Improving Side-Channel Analysis

Heitor Uchoa1,2, Vipul Arora2, Dennis Vermoen2, Marco Ottavi1,
and Nikolaos Alachiotis1(B)

1 University of Twente, Enschede, The Netherlands
n.alachiotis@utwente.nl

2 Riscure B.V., Delft, The Netherlands

Abstract. Side-channel analysis (SCA) extracts sensitive information
from a device by analyzing information that is leaked through side chan-
nels. These measurements are correlated with specific operations exe-
cuted on the device, e.g., encryption or decryption, allowing to extract
useful information from the data. Countermeasures, however, disrupt the
synchronization between the device’s operations and the corresponding
side-channel data, yielding their alignment a prerequisite for successful
SCA. In this work, we describe parallels between side-channel analy-
sis and molecular biology, and propose a novel approach to align side-
channel traces using genomic sequence alignment methods. We find that
Multiple Sequence Alignment techniques can align power traces with
higher quality than elastic alignment (based on Dynamic Time Warp-
ing), thereby enabling downstream SCA methods, e.g., Correlation Power
Analysis, to extract cryptography keys with up to 44% less traces.

Keywords: Side Channel Analysis · Multiple Sequence Alignment

1 Introduction

Embedded devices collect, process, and exchange critical information on a daily
basis. This information must be hidden from third parties to prevent being
exploited by adversaries. To maintain secrecy, cryptography methods encrypt
a plain text to a ciphertext using an encryption key. The ciphertext is transmit-
ted to another device, which decrypts it using a decryption key. Cryptographic
system vulnerabilities can be exploited using analytical attacks and side chan-
nels [1–3]. These channels can be power consumption, electromagnetic emissions,
sound, temperature signatures, and timing information [4–6].

Side Channel Analysis (SCA) refers to the process of analyzing side chan-
nel leakage to extract useful information from a system. SCA exploits the fact
that the physical behavior of electronic devices can reveal information about
its internal state, such as information about secret keys used in cryptographic
operations. Power variations, for instance, are exploited by techniques such as
Differential Power Analysis (DPA [5]) and Correlation Power Analysis (CPA [7])
to extract the device’s cryptography keys. Therefore, SCA approaches are widely
employed to detect system vulnerabilities.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 203–221, 2024.
https://doi.org/10.1007/978-3-031-51479-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_11&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_11

204 H. Uchoa et al.

SCA requires the acquisition of many traces from the same device while the
device performs the same operation with different input. Various factors affect
the trace acquisition process, such as triggering variations during traces collec-
tion or countermeasures that intentionally alter the measurements [8], resulting
in the collected traces being misaligned in time. Countermeasures typically aim
to make it more difficult for attackers to extract useful information, for example
by introducing randomness (e.g., noise and random delays) to the traces [9].
Because time misalignments across traces reduce information leakage, it is of
utmost importance to align side-channel traces to maximize data leakage.

This work describes analogies between biology and side channel analysis. We
consider the device as a species and each trace as the genome of an individual
within that species’ population. We view countermeasures as the evolutionary
forces that facilitate the adaptation of the species to a particular environment,
e.g., natural selection. Additionally, we compare the impact of countermeasures
on side-channel traces to the various alleles present at the same locus of different
DNA sequences/genomes due to mutations accumulated over generations.

Motivated by the aforementioned parallels, we explore sequence alignment
methods that have been traditionally used to align genomic sequences on side
channel traces. Time variations across traces due to inaccurate triggering can be
addressed using static alignment [4], which aligns traces by selecting a point
in each trace that corresponds to the same operation and aligns all traces
to that point. More profound alterations throughout the trace length require
more complex methods such as Sliding-Window-DPA (SW-DPA) [8] or elastic
alignment [10]; elastic alignment applies a warping function to the traces that
stretches or compresses them in time to align all corresponding operations across
the trace length. These methods typically use one of the traces as the reference,
and iteratively align all other traces in the trace set with the reference trace on
one-to-one basis with the goal to exploit the aligned regions across all traces for
information leakage. Interestingly, genomic sequence alignment methods that
align three or more sequences (Multiple Sequence Alignment, MSA [11]) are
able to perform all-to-all alignments leveraging information from all sequences
to align all sequences without the need for an arbitrary reference sequence.

We present a proof-of-concept framework for SCA that translates traces to
DNA/protein sequences, employs MSA tools to produce an alignment, converts
the genomic sequences back to traces, and performs the downstream SCA anal-
ysis to expose the secret key of the target device. We find that MSA-based
trace alignment can successfully align traces that have been altered by counter-
measures, leading to better alignments than both static and elastic alignment
methods. Using a known-key analysis performed by a commercially available
SCA tool [12], we observed that the higher quality trace alignment obtained
using Bioinformatics alignment tools enables the successful application of CPA
to expose the secret key with nearly half the number of traces that would oth-
erwise be required for the same analysis if elastic alignment was used. To the
best of the authors’ knowledge, this is the first work that explores Bioinformatics
methods for multiple sequence alignment to align side-channel traces.

Exploring Genomic Sequence Alignment for Improving SCA 205

2 Background

2.1 Side Channel Analysis (SCA)

Side channels are channels through which a device or application may uninten-
tionally leak information (e.g., temperature, sound, power consumption, electro-
magnetic radiation, and time). Analyzing these leakages can potentially lead to
the compromise of cryptography keys. The main goal of Side Channel Analysis
(SCA) is to extract valuable information from these unintentional leakages.

In order to capture a trace from a device when a cryptography operation is
performed, e.g., AES [13], a trigger signal is generated so that an oscilloscope
can start collecting samples precisely at the beginning of the target operation.
The computer that collects the traces provides input data to the device and
receives the encrypted output data, which are associated with the power trace
captured for this particular input-output pair.

Data leakage is possible when a data-dependent operation is captured within
several traces. These traces typically need to be correctly aligned to facilitate
SCA. A sufficiently good trace alignment maximizes the chances of successful
attacks like DPA [5] or CPA [7]. Figure 1 shows a trace set without countermea-
sures (A) and its alignment using a static alignment approach (B).

Fig. 1. A collection of power traces (A) and their static alignment (B). There were
no countermeasures in place, so the collected traces were only shifted in time. Hence,
static alignment, which aligns a single point across all traces, can be used.

2.2 Countermeasures

One of the main goals for employing countermeasures is to introduce distur-
bances [14] to the side channel so that the collected power traces are misaligned
with respect to other power traces for the same operation, thereby presenting a
challenge to the attacker to exploit data leakages; trace misalignment decreases
the efficiency of an attack. While trace alignment, which is the focus of this
work, improves the chances of a successful attack, several other preprocessing
methods have been proposed for cases where trace alignment is not feasible, e.g.,
integration, convolution, and Fast Fourier Transform [4]. Figure 2A shows a trace
set containing 10 traces with a countermeasure that creates process desynchro-
nizations by injecting random delays [8]. This trace set requires elastic alignment

206 H. Uchoa et al.

Fig. 2. A set of 10 power traces affected by a countermeasure that introduces random
delays (A) and their static alignment (B). The static alignment aligns one region across
all traces (samples 650–663) but the rest of the trace-set length remains unaligned.

methods because a static alignment approach will only align a single point across
all traces, leaving the majority of the trace length unaligned, as shown in Fig. 2B.
Examples of dynamically aligned traces using our proposed approach (discussed
in Sect. 4) are shown in Fig. 8B.

2.3 Correlation Power Analysis and Known-Key Analysis

We employ two methods to use the aligned traces to extract the subkeys of
a cryptographic operation in order to evaluate the alignment quality: Correla-
tion Power Analysis (CPA) and known-key analysis. CPA [7] relies on the fact
that power consumption depends on the amount of set bits during an opera-
tion [15]. Power consumption typically remains consistent during the same oper-
ation, while variations occur in data-dependent operations. This characteristic
enables a successful Correlation Power Analysis (CPA) to be carried out.

To perform a Correlation Power Analysis (CPA) attack, random inputs are
supplied to a cryptography device, and the corresponding outputs are captured
while monitoring the power consumption. Keys are used to generate sub-keys,
which are smaller and thus easier to attack. These sub-keys are then guessed to
initiate an attack on the cryptography operation, such as AES, and the expected
output is calculated. The resulting information provides a guessed output whose
Hamming weight can be compared with the recorded power traces for correlation.
The Pearson correlation between the guessed output Hamming weights and the
power traces determines the key, with the key with the higher correlation being
the correct one. Figure 3 shows an indicative physical setup for CPA.

Known-key analysis [12] was also used as an evaluation method for the quality
of the sequence-based alignments. When the alignment is calculated, a first-
order analysis employs statistical analysis methods to retrieve the key [16]. If it
succeeds, the known-key analysis is used to obtain insights into the results. It
shows the leakage strength related to every byte of the key at each data point
of the input trace. Figure 4 provides an example of the outcome of a known-key
analysis from a commercially available SCA tool [12]. The plot shows the rank
evolution per sub key.

Exploring Genomic Sequence Alignment for Improving SCA 207

Fig. 3. A CPA (Correlation Power Analysis) to a specific cryptography operation based
on guessing the keys.

Fig. 4. The results of a known-key analysis using power traces.

2.4 Genomic Sequence Alignment

Sequence alignment methods identify similar regions between two or more bio-
logical sequences, such as DNA, RNA, or proteins. The goal is to understand
the evolutionary relationships between different sequences and identify func-
tional/structural motifs that are conserved (or not) across different species. DNA

208 H. Uchoa et al.

sequencing technologies have revolutionized molecular biology by allowing sci-
entists to quickly and accurately determine the nucleotide sequence of a given
genetic sample. One of the challenges, however, is that the raw genomic sequences
produced by DNA sequencers (“reads” in Bioinformatics terminology) can con-
siderably vary in length and contain sequencing errors [17]. Furthermore, DNA
insertions and deletions (changes in the DNA sequence that result in the addition
or loss of one or more nucleotides) can cause a misalignment of sequences, mak-
ing it difficult to identify similarities and variations. This further highlights the
need for sequence alignment, which is done through algorithms that are designed
to introduce gaps in the sequences to accurately align them.

A genomic sequence is represented as a string of DNA characters: A (ade-
nine), C (cytosine), G (guanine), and T (thymine). Ambiguous characters1 are
used to represent positions in DNA sequences where the nucleotide base cannot
be determined with certainty, e.g., M to represent A or C, and S to represent C
or G. Including the ambiguous characters, the DNA alphabet length is 15 (see
full list below). Protein sequences contain up to 20 characters.

Character Meaning
A A
C C
G G

T/U T

Character Meaning
M A or C
R A or G
W A or T
S C or G

Character Meaning
Y C or T
K G or T
V A or C or G
H A or C or T

Character Meaning
D A or G or T
B C or G or T
N A or C or G or T

The basic component in sequence alignment algorithms is the pair-
wise sequence alignment. Widely known pairwise alignment algorithms are
Needleman-Wunsch [18] and Smith-Waterman [19]. Both use dynamic program-
ming and consist of three steps: initialization, scoring matrix update, and trace
back to generate the alignment based on the scoring matrix. Figure 5 provides
an example of pairwise sequence alignment. First, a scoring matrix C(N+1)(M+1),
where N and M are the lengths of the sequences to be aligned, is initialized. This
matrix is filled starting from the top left position C00 using a scoring function.
When every cell is computed, a trace back step is applied, starting from the

cell with the highest score and proceeding to the max neighboring value every
time. Diagonal movements correspond to a match/mismatch between characters
in the two sequences whereas vertical/horizontal steps indicate the insertion of
a gap (‘-’) in one of the sequences. Three situations can occur:

– Gap: A ‘-’ is inserted to indicate a mismatch.
– Match: The characters at that position in both sequences are the same.
– Mismatch: The characters at that position in both sequences differ.

The resulting alignment depends on the algorithm used and the scoring function.
Key aspects of the scoring function are:

– Gap opening penalty: It lowers the frequency of opening gaps.
– Gap extension penalty: It lowers the chances of extending open gaps.

1 https://genomevolution.org/wiki/index.php/Ambiguous nucleotide.

https://genomevolution.org/wiki/index.php/Ambiguous_nucleotide

Exploring Genomic Sequence Alignment for Improving SCA 209

Fig. 5. Example of the three steps of pairwise sequence alignment: initialization (1),
scoring matrix calculation (2), and trace back (3).

– Scoring matrix: It contains probabilistic relationships for all possible
nucleotide substitutions derived from observations in nature (e.g., Blo-
sum62 [20]).

A general description of a scoring function that can be used to fill the scoring
matrix is given in Eq. 1 below,

C(i, j) = max

⎧
⎪⎨

⎪⎩

C(i− 1, j − 1) + f(ai, bj),
maxk>0{C(i− k, j) − Go − (k − 1)Ge},
maxk>0{C(i, j − k) − Go − (k − 1)Ge},

(1)

where ai and bj are the ith and jth characters in sequences a and b, respectively,
f(a, b) returns a similarity score for the two characters, and Go and Ge represent
the gap opening and gap extension penalties, respectively. The notation maxk>0

represents the maximum over all values of k greater than zero.
Multiple Sequence Alignment (MSA) is the alignment of three or more

sequences. An example of an MSA of four sequences is illustrated in Fig. 6.
Widely used methods that can align thousands of sequences are MAFFT [21]
and CLUSTALW [22]. These methods align sequences by building tree structures
that capture similarities through pairwise alignments. The process starts from
the most similar pair and gradually includes more distant sequences. Sequences
that have already been aligned can be realigned multiple times, each time includ-
ing a larger sequence set to improve the quality of the alignment. The time com-

Fig. 6. An example of a multiple sequence alignment of four DNA sequences.

210 H. Uchoa et al.

plexity of the MAFFT algorithm is O(N2L)+O(NL2), where L is the sequence
length and N is the number of sequences [21].

3 Related Work
Raw side-channel measurements are typically misaligned due to the environment
setup or countermeasures [23,24]. This section reviews trace alignment methods.

Mangard [4] introduced the static alignment approach for aligning power
traces. It is suitable for the alignment of traces or their sub-regions that have
not been affected by countermeasures. Alignment relies on pattern matching and
consists of two steps: a) the definition of a pattern in the first trace, and b) the
detection of the same pattern in all subsequent traces. Features of interest are the
uniqueness of the pattern in the trace or trace set, the extent of data dependency
of the corresponding operation, the length of the pattern, and the time distance
to the point of interest (attack target). The author explains that length does not
mean that the longest pattern is the best, and it requires a proper investigation
to choose a pattern. Furthermore, if the time distance between the alignment
point of the chosen pattern and the attacker’s target is very large, it is highly
likely that the region of interest will not be aligned as countermeasures might
have acted and altered the traces. This work also discusses pattern matching
techniques based on least squares and correlation.

van Woudenberg et al. [10] proposed a method called elastic alignment that
relies on methods initially developed for speech recognition based on Dynamic
Time Warping (DTW [25]). The authors explain that identifying speech is not
a trivial task since the same spoken word can vary in timing every time it is
repeated. Spoken words can not simply be compared to pre-recorded samples
in a sample-to-sample approach. DTW is based on dynamic programming and
it measures the distance between two utterances by elastically warping them
in time. Due to the computational complexity of DTW, the authors use fast-
DTW [26], an algorithmic optimization of DTW that reduces execution time by
restricting the warp path. Elastic alignment is suitable for power trace alignment
in the presence of countermeasures and it can also handle unstable clock cycles
as it remains relatively unaffected by them.

Clavier et al. [8] propose a solution called SW-DPA to find the keys of cryp-
tography operations when random process interrupts (RPIs) are used as counter-
measures. The authors approach the problem under the assumptions that clock
cycles have a fixed length and that RPIs occur with constant probability. Based
on these two assumptions, SW-DPA integrates the leakage that is distributed
over a number of clock cycles to facilitate DPA [5]. In comparison with static
and elastic approaches, under the assumption of a fixed-length clock cycle, SW-
DPA achieves a success rate close to 100% with only 160 traces, whereas static
and elastic alignments achieve success rates of nearly 50% with 1,400 traces and
nearly 100% with 270 traces, respectively.

Muijrers et al. [27] present an alignment method called RAM (Rapid Align-
ment Method) that is inspired by image processing algorithms, such as U-
SURF [28], and is designed to perform continuous alignment faster than elastic

Exploring Genomic Sequence Alignment for Improving SCA 211

alignment. U-SURF takes into account angle and light variations to recognize
images that are similar (same scene/object) to a reference image. RAM is 20%
faster than the previously discussed elastic alignment method [10] due to the use
of block wavelets.

4 Methodology

An overview of our approach is depicted in Fig. 7. We first define the region of
interest in the trace set (step 1) and then convert every trace to a genomic
sequence (step 2). Thereafter, we define the MSA scoring scheme and con-
struct the MSA (step 3). Finally, the aligned genomic sequences are converted
to (aligned) traces (step 4) for downstream analysis.

Fig. 7. Overview of the proposed side-channel trace alignment approach that relies on
multiple sequence alignment.

Traces are converted to genomic sequences by dividing the total Y-axis range
into subranges, the number of which being equal to the length of the alphabet
(DNA or protein). For DNA, we use a 7-character alphabet that contains the four
nucleotide bases A, C, G, T, and the three ambiguous characters M, S, and K to
represent range values in-between A and C, C and G, and G and T, respectively.
We implemented a conversion scheme that associates each nucleotide character
to the corresponding sample value in order to reconstruct the exact same trace
after alignment. The same DNA character, for instance, at different sequence
positions corresponds to different sample values. When the alphabet is of a rea-
sonable length, determined empirically to be at least four characters, the loss
of information in the genomic-sequence representation of each trace is negligi-
ble. This is because the relative positions of neighboring characters across all
sequences compensate for the loss of information. However, there is a need for
an in-depth analysis to determine how many DNA/protein characters should be
used for an SCA based on the minimum/maximum values in the traces.

An inherent feature of MSA methods is that they employ gap opening and
extension penalties and scoring matrices, e.g., PAM40 [29] and Blosum62 [20].
A scoring matrix accounts for the fact that different amino acids can have sim-
ilar phenotypic traits and thus need to be aligned differently than other amino
acid combinations with unrelated functions. We exploit this observation by using

212 H. Uchoa et al.

the entire alphabet length for protein sequences and setting the probabilities in
the scoring matrix in a way that they correspond to the proximity between the
value ranges of the side-channel trace set that we associate with every char-
acter. We explored other trace-to-sequence conversion options as well, such as
a custom adaptation of symbolic aggregate approximation [30], a widely used
algorithm for data mining on time series data, as well as an assignment of
variable-size trace segments to characters. However, we did not observe con-
siderable advantages over the aforementioned Y-axis division approach. We also
explored various MSA tools for performing the multiple sequence alignment,
such as ClustalW [22], MAFFT [21], TCoffee [31], and MUSCLE [32]. We use
MAFFT due to its capacity to handle a larger number of sequences and the ease
of customizing the scoring scheme. To convert the resulting sequence alignment
to traces, we represent every gap as a sample with value 0.0.

We devised a locus-based summary statistic to examine the result of MSA
along the resulting trace-set length. By counting the number of gaps per align-
ment column, we obtain what we call an alignment profile. Figure 8 shows the
alignment profile of an MSA aligned trace set with 15 traces (A) and four aligned
traces from the same trace set (B).

Fig. 8. A: An alignment profile based on a locus-based summary statistic that counts
the number of gaps per alignment site. High-statistic values are indicative of aligned
regions (through mostly matches and mismatches and considerably less gaps), while
low-statistic values indicate the insertion of gaps in most of the sequences/traces. B:
Four aligned traces from the same alignment. Notice the low value region 58–78 in the
alignment profile with respect to the corresponding aligned regions in the traces.

Aligned trace regions for which our locus-based summary statistic assumes
low values, such as region 58–78 in the figure, are likely to contain the result of
countermeasures, since only one or a few traces contain samples in this region,
and samples resulting from countermeasures can not be aligned with other traces.

Exploring Genomic Sequence Alignment for Improving SCA 213

Fig. 9. MSA-based static alignment. The highlighted (green rectangular) well-aligned
region has a high locus-based summary statistic value and the number of preceding
gaps per trace is used to determine the amount of time shift required for each trace.
(Color figure online)

Using this same summary statistic and focusing on aligned trace regions with
high values allows us to perform MSA-based static alignment, which we hence-
forth refer to as MSA-based static-like alignment, by using a time shift amount
per trace that is proportional to the number of gaps preceding the high-statistic-
value trace-set region. Practically, an MSA-based static-like alignment aligns one
single point across all traces (thus static) using the result of the MSA alignment.
Figure 9 demonstrates the way MSA-based alignment can produce a static align-
ment. The trace set has been aligned using MAFFT and sequences have been
converted to aligned traces by setting gaps equal to 0.0. The traces are over-
lapped in the figure and the longest high-statistic-value region across all traces
is highlighted (green rectangular). By counting the number of gaps that have
been inserted in each trace before the beginning of the highlighted well-aligned
region, we can determine the time shift required for each trace in order to stati-
cally align the complete trace set. Notice that this method relies on the fact that
at least one region of interest is identified (see green rectangular in the figure).
This will be the case as long as countermeasures do not alter entire traces and
traces are collected from the same devices under the same operation. Thus, at
least one alignment point will exist across all traces given the considered counter-
measures in this study. The length of this region, however, will change depending
on the effect of these countermeasures.

5 Implementation

Our MSA-based trace alignment framework is developed in Python and is avail-
able for download at: https://github.com/pephco/MSA-based-trace-alignment.
It converts side-channel traces (TRS format [33]) to genomic sequences (FASTA
format [34]), invokes MAFFT [21] to construct the alignment, and converts
the resulting alignment file (FASTA format) back to traces (TRS format) for
downstream SCA analysis. We used a commercially available SCA tool, Riscure
Inspector [12], for trace visualization and post-alignment SCA analysis, such as
CPA, first-order analysis, and known-key analysis. We used the TRS library [33]
provided by Riscure for storing and parsing side-channel traces to ensure com-
patibility with Inspector. We collected power traces using the pinãta board from

https://github.com/pephco/MSA-based-trace-alignment

214 H. Uchoa et al.

Riscure, running DES and AES. Additional information about the board and
the source code for the encryption methods and the countermeasures is avail-
able online [35]. The board has an ARM Cortex-M4F processor that operates
at 168 MHz. We created trace sets comprising up to 1,000 traces with trace
lengths between 500,000 and 980,000 1-byte samples, with and without counter-
measures, using a sampling rate of 1 GHz. While we only used one board in this
proof-of-concept study, a variety of boards should be considered to assess the
effectiveness of the proposed MSA-based trace alignment method.

6 Evaluation

6.1 Experimental Setup

We evaluated our proposed approach using two metrics: a) the highest correla-
tion values obtained from CPA per output byte and b) the success-to-number-of-
traces-ratio that was previously used by other studies as well [27]. For the latter,
we report the number of traces required for revealing the key (based on known-
key analysis). First, we empirically determined the intrinsic parameters of our
method, such as the gap opening/extension penalties. To determine the alpha-
bet length, we evaluated alignments obtained with all possible alphabet lengths
(results not shown), from 2 characters (morphological data) to 20 characters
(proteins). We observed that alphabet lengths of 5 characters or more achieved
similar performance with respect to the ability of downstream SCA methods to
extract the secret key. We opted to use the DNA alphabet with a length of 7
characters, using the four DNA characters and the three ambiguous characters
that represent all possible pairwise combinations thereof to capture measurement
uncertainty across measurement ranges. Thereafter, we compared the proposed
MSA-based trace alignment method with the static alignment [4] and the elastic
alignment [10] implementations of Inspector using trace sets without and with
countermeasures, respectively.

6.2 Gap Opening Penalty

To examine the relationship between the amount of gaps inserted in an alignment
and finding the cryptography key, we varied the gap opening penalty, from 0 to
26, and compared the resulting trace alignments with respect to the (aligned)
trace-set length and the number of subkeys found by Inspector through CPA.
Figure 10 shows the results of this comparison. All alignments were performed on
the same trace set, which comprised 150 traces of length 6,000 samples. As can
be observed in the figure, all alignments resulted in considerably longer traces
due to the insertion of gaps, and, expectedly, lower gap penalties led to longer
aligned traces than higher gap penalties. Increasing the gap penalty, however,
did not benefit CPA as the number of found keys was reduced; a high gap penalty
restricts the MSA tool’s freedom to correctly align all possible positions along the
sequences as it is being forced to accept more mismatches instead of introducing
gaps for higher alignment quality.

Exploring Genomic Sequence Alignment for Improving SCA 215

Fig. 10. The effect of different gap opening penalties on the resulting trace-set length
and the respective number of subkeys found by Inspector through CPA. The initial
trace length (before alignment) was 6,000 samples.

6.3 Comparison with Static Alignment

To compare the MSA-based alignment with static alignment, we used a trace
set comprising misaligned traces due to imprecise triggering start times, i.e., the
acquired traces are only shifted in time with respect to each other. The trace set
contains 1,000 traces with 400,000 samples each. The aim is to examine whether
the proposed method can provide an alignment that can be used for CPA to
detect data leakage. Figure 11 illustrates the results of CPA for 8 bytes of the
key using static alignment (A), MSA-based static-like alignment (B), and MSA-
based alignment (C). Recall that the difference between MSA-based alignment
and MSA-based static-like alignment is that the former represents every gap as
a sample with 0.0 value, while the latter uses the locus-based summary statistic
described in Sect. 4 to calculate the shift amount per trace. As a result, the
MSA-based static-like alignment aligns traces to a single point in each trace,
which is related to the location of the well-aligned region with high locus-based
summary statistic values (static alignment aligns traces by selecting a point in
each trace that corresponds to the same operation and aligns all traces to that
point).

Fig. 11. CPA results obtained using different alignment methods: static alignment (A),
MSA-based static-like alignment (B), and MSA-based alignment (C). The correlation
lines for the 8 output bytes are overlapped in the plots.

216 H. Uchoa et al.

Figure 12 summarizes the results of this comparison based on the maximum
correlation value obtained for each byte with each alignment method. The plot
additionally includes per-byte max correlation scores from CPA performed using
the raw (unaligned) traces. As can be observed, MSA-based alignment can be
used to align time-shifted traces in the absence of countermeasures as it produces
comparable results with static alignment in this case.

Fig. 12. Comparison of the highest CPA coefficients obtained by the alignment meth-
ods under comparison per byte.

Fig. 13. Number of subkeys found as the number of traces increases using power traces
containing random delays for SCA.

6.4 Comparison with Elastic Alignment

To compare MSA-based alignment with elastic alignment, we used power traces
containing random delays as a countermeasure. We collected 500 traces with

Exploring Genomic Sequence Alignment for Improving SCA 217

400,000 samples each. For this comparison, we focused on the last round of
encryption, and the resulting trace set contained 6,400 samples per trace. The
same trace set was aligned with static, elastic, and MSA-based alignment. CPA
was performed and the results were analyzed using known-key analysis. Figure 13
summarizes the results of this comparison. It shows the number of subkeys found
by each of the alignment methods with an increasing number of traces. The
individual known-key analysis results per method are shown in Fig. 14. The
analysis was performed in fragments (parts of the trace) and the aligned trace
sets were divided into the same number of fragments. It can be observed that our
proposed method converges to rank 1 faster, allowing to find all subkeys with
140 traces. Using elastic alignment leads to finding only half of the subkeys with
the same number of traces and requires 250 traces to find all subkeys. Thus,
when MSA-based alignment is used instead of elastic alignment, up to 44% less
traces are needed.

6.5 Time Complexity

Due to the need to compute pairwise alignments, the time complexity of MSA in
practice is O(N2L2), where N is the number of sequences and L is the average
length of the sequences. Note that the actual computational time required for
MSA can vary depending on the complexity of the sequences. MAFFT exper-
iments with several trace sets containing 100 to 250 traces with 6,000–10,000
samples took between 2,000 and 6,500 s. The table below reproduces a time
comparison of previous alignment methods by Muijrers et al. [27]. These results
are not directly comparable with the execution time of MAFFT, as they are
based on different experimental setups. However, they highlight the need for
further research to accelerate the alignment of side-channel traces, as, at this
juncture, with post-quantum cryptography expected to replace public-key cryp-
tography in the future, the increased key sizes and more complex mathematical
principles of post-quantum cryptography will raise the data and computational
complexity to analyze an implementation and evaluate side-channel leakage.

Method Static Alignment SW-DPA RAM Elastic Alignment

Run time (minutes) 12 18 76 3,115

Time per trace (ms) 1.44 2.16 9.1 373.8

218 H. Uchoa et al.

Fig. 14. The results of known-key analysis performed by Inspector: Static alignment
(A), Elastic alignment (B), and MSA-based alignment (C). A faster convergence of all
rank-evolution lines to rank 1 indicates higher performance, i.e., exposing the subkeys
using less traces.

Exploring Genomic Sequence Alignment for Improving SCA 219

7 Conclusion

We presented a novel approach to align side-channel traces for improving SCA,
drawing inspiration from the field of Bioinformatics, and more specifically the
domain of multiple sequence alignment. We developed a proof-of-concept imple-
mentation and used a commercially available SCA tool for the evaluation of the
resulting trace alignments. We obtained higher quality alignments than elas-
tic alignment methods and we were able to almost halve the number of traces
required by CPA to expose the secret key. While time performance was not the
goal of this work, preliminary results showed that MSA-based alignment is slower
than elastic alignment, thereby suggesting a trade-off between trace availability
and alignment time. We are going to improve execution time performance of our
approach as part of our future work. Furthermore, since recent research findings
have shown that the use of MSA in conjunction with deep learning methods for
genomics data results in enhanced classification accuracy, as a next step, we aim
to investigate whether similar benefits can be observed for deep-learning-based
SCA by incorporating MSA-based trace alignment.

References

1. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

2. Jithendra, T., Shahana, K.B.: Enhancing the uncertainty of hardware efficient sub-
stitution box based on differential cryptanalysis. In: Proceedings of the 6th Inter-
national Conference on Advances in Computing, Control, and Telecommunication
Technologies (ACT 2015), Trivandrum, India, vol. 45-B, pp. 318–329, October
(2015)

3. Courtois, N.T.: Feistel schemes and bi-linear cryptanalysis. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 23–40. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 2

4. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks: revealing the secrets
of smart cards. Springer Science & Business Media, 2008, vol. 31 (2008)

5. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

6. Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw.
48(5), 701–716 (2005)

7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) Cryptographic Hardware and Embedded Sys-
tems - CHES 2004: 6th International Workshop Cambridge, MA, USA, August
11-13, 2004. Proceedings, pp. 16–29. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

8. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence of
hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware
and Embedded Systems — CHES 2000, pp. 252–263. Springer Berlin Heidelberg,
Berlin, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 20

https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-540-28628-8_2
https://doi.org/10.1007/978-3-540-28628-8_2
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-44499-8_20

220 H. Uchoa et al.

9. Coron, J.-S., Kizhvatov, I.: Analysis and improvement of the random delay coun-
termeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15031-9 7

10. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential power
analysis by elastic alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol.
6558, pp. 104–119. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19074-2 8

11. Chatzou, M., Magis, C., Chang, J.-M., Kemena, C., Bussotti, G., Erb, I.,
Notredame, C.: Multiple sequence alignment modeling: methods and applications.
Brief. Bioinform. 17(6), 1009–1023 (2016)

12. ”Riscure inspector.” https://www.riscure.com/security-tools/inspector-sca/
13. Nechvatal, J., et al.: Report on the development of the advanced encryption stan-

dard (aes). J. Res. Nat. Inst. Stand. Technol. 106(3), 511 (2001)
14. Shamir, A.: Protecting smart cards from passive power analysis with detached

power supplies. In: Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embed-
ded Systems — CHES 2000, pp. 71–77. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2000). https://doi.org/10.1007/3-540-44499-8 5

15. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of power analysis
attacks on smartcards. Smartcard 99, 151–161 (1999)

16. Whitnall, C., Oswald, E.: A fair evaluation framework for comparing side-channel
distinguishers. J. Cryptogr. Eng. 1(2), 145–160 (2011)

17. Alachiotis, N., Vogiatzi, E., Pavlidis, P., Stamatakis, A.: Chromatogate: a tool
for detecting base mis-calls in multiple sequence alignments by semi-automatic
chromatogram inspection. Comput. Struct. Biotechnol. J. 6(7), e201303001 (2013)

18. Needleman, C.D., Saul, B., Wunsch: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Molecular Biol. 48 (3),
443–453 (1970)

19. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147(1), 195–197 (1981)

20. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks.
Proc. National Acad. Sci. 89(22), 10 915–10 919 (1992)

21. Katoh, K., Toh, H.: Recent developments in the MAFFT multiple sequence align-
ment program. Brief. Bioinform. 9(4), 286–298, (2008). https://doi.org/10.1093/
bib/bbn013

22. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sen-
sitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22),
4673–4680 (1994)

23. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures: profiling attacks without pre-
processing. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware and
Embedded Systems – CHES 2017: 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, pp. 45–68. Springer International Publishing,
Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 3

24. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: Sok: deep learning-based phys-
ical side-channel analysis. ACM Comput. Surv. 55(11), 1–35 (2023)

25. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

https://doi.org/10.1007/978-3-642-15031-9_7
https://doi.org/10.1007/978-3-642-15031-9_7
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/978-3-642-19074-2_8
https://www.riscure.com/security-tools/inspector-sca/
https://doi.org/10.1007/3-540-44499-8_5
https://doi.org/10.1093/bib/bbn013
https://doi.org/10.1093/bib/bbn013
https://doi.org/10.1007/978-3-319-66787-4_3

Exploring Genomic Sequence Alignment for Improving SCA 221

26. Salvador, S., Chan, P.: Fastdtw: Toward accurate dynamic time warping in linear
time and space. In: KDD Workshop on Mining Temporal and Sequential Data.
Citeseer (2004)

27. Muijrers, R.A., van Woudenberg, J.G.J., Batina, L.: RAM: rapid alignment
method. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 266–282. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-27257-8 17

28. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf).
Comp. Vision Image Understand. 110(3), 346–359 (2008)

29. Dayhoff, M., Schwartz, R., Orcutt, B.: 22 a model of evolutionary change in pro-
teins. Atlas Protein Seq. Struct. 5, 345–352 (1978)

30. Yu, Y., Zhu, Y., Wan, D., Liu, H., Zhao, Q.: A novel symbolic aggregate approx-
imation for time series. In: Lee, S., Ismail, R., Choo, H. (eds.) Proceedings of the
13th International Conference on Ubiquitous Information Management and Com-
munication (IMCOM) 2019, pp. 805–822. Springer International Publishing, Cham
(2019). https://doi.org/10.1007/978-3-030-19063-7 65

31. Notredame, C., Higgins, D.G., Heringa, J.: T-coffee: a novel method for fast and
accurate multiple sequence alignment. J. Mol. Biol. 302(1), 205–217 (2000)

32. Edgar, R.C.: Muscle: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Res. 32(5), 1792–1797 (2004)

33. “Riscure trs library.” https://trsfile.readthedocs.io/en/latest/
34. Lipman, D.J., Pearson, W.R.: Rapid and sensitive protein similarity searches. Sci-

ence 227(4693), 1435–1441 (1985)
35. “Piñata board: Manuals, software, hardware and source-codes.” https://support.

riscure.com/en/support/solutions/articles/15000022083-pinata-release-v2-3

https://doi.org/10.1007/978-3-642-27257-8_17
https://doi.org/10.1007/978-3-030-19063-7_65
https://trsfile.readthedocs.io/en/latest/
https://support.riscure.com/en/support/solutions/articles/15000022083-pinata-release-v2-3
https://support.riscure.com/en/support/solutions/articles/15000022083-pinata-release-v2-3

The Grant Negotiation and Authorization
Protocol: Attacking, Fixing, and Verifying

an Emerging Standard

Florian Helmschmidt, Pedram Hosseyni , Ralf Küsters , Klaas Pruiksma ,
Clara Waldmann(B) , and Tim Würtele

University of Stuttgart, Stuttgart, Germany
flori@nhelmschmidt.de,

{pedram.hosseyni,ralf.kuesters,klaas.pruiksma,clara.waldmann,
tim.wuertele}@sec.uni-stuttgart.de

Abstract. The Grant Negotiation and Authorization Protocol (GNAP)
is an emerging authorization and authentication protocol which aims to
consolidate and unify several use-cases of OAuth 2.0 and many of its com-
mon extensions while providing a higher degree of security. OAuth 2.0 is
an essential cornerstone of the security of authorization and authentica-
tion for the Web, IoT, and beyond, and is used, among others, by many
global players, like Google, Facebook, and Microsoft. Historical limita-
tions of OAuth 2.0 and its extensions have led prominent members of the
OAuth community to create GNAP, a newly designed protocol for autho-
rization and authentication. Given GNAP’s advantages over OAuth 2.0
and its support within the OAuth community, GNAP is expected to
become at least as important as OAuth 2.0.

In this work, we present the first formal security analysis of GNAP.
We build a detailed formal model of GNAP, based on the Web Infra-
structure Model (WIM) of Fett, Küsters, and Schmitz, and provide for-
mal statements of the key security properties of GNAP, namely autho-
rization, authentication, and session integrity. We discovered several
attacks on GNAP in the process of trying to prove these properties.
We present these attacks, as well as changes to the protocol that prevent
them. These modifications have been incorporated into the GNAP speci-
fication after discussion with the GNAP working group. We give the first
formal security guarantees for GNAP, by proving that GNAP, with our
modifications applied, satisfies the mentioned security properties.

GNAP was still an early draft when we began our analysis, but is now
on track to be adopted as an IETF standard. Hence, our analysis is just
in time to help ensure the security of this important emerging standard.

1 Introduction

Delegated authorization is a common problem on the Web and beyond. With
some service providers holding a large amount of data from their users, there
are many cases where a user wants to allow some other service to use some (but
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 222–242, 2024.
https://doi.org/10.1007/978-3-031-51479-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_12&domain=pdf
http://orcid.org/0000-0001-5618-5663
http://orcid.org/0000-0002-9071-9312
http://orcid.org/0000-0002-6032-087X
http://orcid.org/0000-0001-6019-7130
http://orcid.org/0000-0002-4729-0629
https://doi.org/10.1007/978-3-031-51479-1_12

The Grant Negotiation and Authorization Protocol 223

not all) of this data. For example, a printing service may allow a user to directly
print photos from the user’s Google account. Authorization protocols provide a
way for a user to grant access to data, via an API provided by the host of the
data, without the user having to reveal credentials to the service. In the example,
the printing service, called client, might send a request to Google (authorization
server (AS)) asking to access the user’s data (resources), and Google would then
forward this request to the user (resource owner (RO)) for authorization.

The OAuth 2.0 framework [24],1 developed by the IETF OAuth Working
Group (OAuth WG), is an omnipresent standard for delegated authorization:
in 2016, about 80% of the Alexa Top 500 websites for the US and China used
OAuth [56]. For example, it is used by Google [23], Dropbox [12], Facebook [38],
Github [21], by some financial institutions to provide third-party services access
to initiate transactions [32], as well as for authorizing IoT devices [10,22].

Closely related is authentication: a user wants to use a single account for
multiple services (single sign-on), e.g., on the many sites with “login with” but-
tons. While OAuth is primarily for authorization, the OpenID Connect (OIDC)
[52] extension by the OpenID Foundation adds support for authentication.

A variety of other extensions of OAuth have been developed to improve its
functionality in other ways. Some of these extensions improve the security of
certain aspects of the protocol, e.g., by adding protection if specific tokens used
in the protocol leak [8,53] or moving certain messages to direct server-to-server
communication [34] instead of communication via the user’s browser. Others,
e.g. [48], add support for additional features like management of clients at ASs
or new flows allowing input-constrained devices to be authorized [10].

Motivated by many limitations and shortcomings of OAuth and its exten-
sions [42], both in terms of functionality and security, in 2019, members of the
OAuth WG – several of them having worked on OAuth and its extensions for
many years – started to create a new and completely redesigned protocol, the
Grant Negotiation and Authorization Protocol (GNAP) [43].

Unlike OAuth, GNAP includes several ways that an RO can interact with
an AS to authorize resource access. It also includes the ability for a client to
renegotiate an ongoing request, and the ability for a client to participate in the
protocol without being registered. In addition to the authorization use case,
GNAP aims to also provide authentication.

Many details necessary for a typical use case are underspecified in OAuth,
so extensions are needed to create a usable ecosystem. The high number of (his-
torically grown) extensions of OAuth is a problem by itself. There are currently
27 standards and nine active drafts by the OAuth WG,2 16 standards and more
than 20 drafts from the OpenID Foundation,3 and even more standards related
to OAuth, like User-Managed Access Grant (UMA) [35], which originate outside
these two main standardization bodies. This makes it difficult for developers
to choose the right set of extensions for their use case, especially if the use

1 We will often refer to OAuth 2.0 as just OAuth.
2 see https://datatracker.ietf.org/wg/oauth/documents/.
3 see https://openid.net/developers/specs/.

https://datatracker.ietf.org/wg/oauth/documents/
https://openid.net/developers/specs/

224 F. Helmschmidt et al.

case needs more security than provided by OAuth. For example, OAuth does
not define the necessary details of security tokens (these are instead defined in
extensions such as [6,47]) or how third-party services can register at a service
provider (e.g., [49]). Also, some of the OAuth extensions overlap in functional-
ity, addressing similar problems in different ways. For example, cross-site request
forgery (CSRF) protection can be achieved in multiple ways: using the OAuth
state parameter, using the OIDC nonce value, or using the PKCE extension [53],
to name just a few (see also [33, Sect. 2.1]). Using multiple extensions in the same
deployment leads to increasing complexity, and unintended interactions between
the extensions can lead to bugs, including security vulnerabilities. Diametrical to
having too many options, some of the original OAuth flows are not recommended
anymore: the OAuth Security Best Current Practice document [33] discourages
the use of the implicit flow and the resource owner password credentials flow,
two of the four original OAuth flows.

The GNAP project attempts to learn from OAuth and its extensions by cre-
ating a monolithic protocol that incorporates concepts of several existing OAuth
extensions. Furthermore, GNAP aims to provide more flexibility and a higher
degree of security than OAuth and allows for a uniform base for extensions.
While GNAP is not designed to be backwards compatible with OAuth, and will
not immediately replace it, its additional expressive power makes it likely to
coexist with and gradually take over from OAuth.

In the past, several attacks on OAuth and its extensions, e.g., OIDC, FAPI
1.0 [50,51], and PKCE [53], have been found [5,14,18,19,36,39]. While GNAP
is certainly inspired by OAuth and tries to cover features of various OAuth
extensions, e.g., the Device Authorization Grant [10] and Pushed Authoriza-
tion Requests [34], it is a freshly designed protocol, so the results of previ-
ous analyses of OAuth and its extensions do not carry over to GNAP. For
example, GNAP allows for flexible flows by combining different methods for
the interaction between parties, whereas OAuth defines a fixed set of grant
flows. GNAP also mandates back-channel communication for sensitive infor-
mation instead of sending it through users’ browsers (which is required in most
OAuth flows). Another major difference is that GNAP allows for an unlimited
number of (re-)negotiations of details for a flow, i.e., the client can change the
requested authorization and authentication details. Furthermore, GNAP con-
siders use cases like input-constrained client devices, which in OAuth require
extensions (e.g., the Device Grant [10]) that may have their own new security
vulnerabilities [31].

OurContributions. In this work, we present the first formal security analysis of
GNAP.Our analysis has led to the discovery of several attacks.Wepropose changes
to the specification to fix these issues and formally prove that these changes are suf-
ficient to get strong security guarantees for GNAP. We have reported these issues
and fixes to the GNAP working group, which resulted in several changes to the
specifications, following our recommendations. Our work has greatly improved the
security of this emerging protocol, which has the potential to become as widely

The Grant Negotiation and Authorization Protocol 225

used as OAuth and its extensions. More specifically, our contributions can be sum-
marized as follows:

Formal Model of GNAP. We develop a formal model of GNAP, closely following
its specification. Our GNAP model is built on top of the Web Infrastructure
Model (WIM) [15], probably the most comprehensive model of web infrastruc-
ture to date. As a result, our GNAP model covers many details of real-world
implementations of GNAP. We also extended the WIM with the ability to use
codes for the authorization process and with HTTP Message Signatures [3],
which is also useful for future analysis efforts and of independent interest.

Formal Security Properties. Based on our formal model, we precisely define
what the aforementioned properties authorization and authentication mean in
the context of GNAP. We also formalize two other common security properties
for such protocols: session integrity for both authorization and authentication,
which requires that the attacker cannot force the user to unintentionally access
the attacker’s resources or be logged in as the attacker.

Attacks and Fixes. While trying to prove that GNAP satisfies these security
properties, we found several attacks that break these properties. We proposed
to the working group specification changes that prevent these attacks, which have
been adopted and included in the current version of the GNAP specification [43].

Proof of Security of GNAP. Finally, we prove that GNAP with the proposed
fixes is secure w.r.t. the mentioned security properties. This is the first formal
proof for GNAP, covering a wide range of attacks.

In this paper, we discuss the attacks and fixes and give a high-level explana-
tion of our formal analysis. Full details, including the full formal GNAP model,
formalizations of all security properties, full security proofs, as well as more
details on and variants of the attacks, can be found in our technical report [27].

2 Grant Negotiation and Authorization Protocol

The Grant Negotiation and Authorization Protocol (GNAP) [43,44] specifies
how an owner of some resources can give a piece of software access to their
resources and how subject information about that owner can be conveyed to
the software without the need for the owner to reveal login credentials to that
software. Additionally, if the software lacks the rights to access the resources
it initially requests, GNAP provides means for this request to be adjusted, via
negotiations between the owner of the information and the receiving software.
In what follows, we describe GNAP in more detail.

The GNAP specification consists of two documents: the core specification
and the resource server specification. When we started our analysis, the most
recent version of the core specification was version 8 [45] and version 2 for the
resource server specification [46]. At the time of writing this paper, the current

226 F. Helmschmidt et al.

versions of these documents are 15 [43] and 3 [44], respectively, and the core
specification is submitted to IESG for publication [55], indicating that it is in
its final stages. Some of the (security-relevant) changes to the core specifica-
tion introduced since version 8 result from suggestions we have proposed to the
working group based on our analysis. We point those out in Sect. 3. In the fol-
lowing, we describe the originally analyzed version 8 of the core and version 2 of
the resource server specifications. Note however that our final formal model (for
which we proved security as explained below) incorporates the security-relevant
changes introduced in versions 9-15 of the core specification.

Roles. In GNAP, there are five roles that participants can take. Firstly, there
is the resource owner (RO) that authorizes access to their protected resources.
Together with an end user (EU), who wants to access some protected resource,
they describe the two roles of non-software participants (for example natural
persons). GNAP also defines two server roles. An authorization server (AS)
delegates authorization of the resource owner by issuing access tokens. Protected
resources are handled by a resource server (RS) that provides operations on these
resources when presented with a valid access token. Finally, a client instance (CI)
is the central piece of software that communicates with ASs to obtain access
tokens and with RSs to obtain access to resources. In some settings, an end-user
is present, interacting with the client instance (end-user case), but the client
may also act on its own (software-only case).

Detailed Flow. We examine now a sample GNAP flow, shown in Fig. 1, stress-
ing that this is only one example, and that GNAP allows for various other flows,
for instance with different means of interaction between CI and AS. The details
of communication with the EU and RO, who may represent natural persons, are
out of scope for GNAP (see also “Interaction Methods”). The remainder of the
flow, between the software participants CI, AS, and RS, can be grouped into
four types of request-response pairs. For simplicity, we do not show here details
of the messages, which contain assorted cryptographic information (e.g. nonces,
hashes, signatures) to protect against attacks such as CSRF.

A grant request from a CI to an AS starts each GNAP flow (Step 2). In this
initial request, the CI may request one or more access tokens and/or subject
information about the RO, specifying information such as the type and access
rights of the desired tokens, or the type of subject information. The CI addition-
ally specifies what interaction start and interaction finish methods it supports
for facilitating interaction between RO and AS (see “Interaction Methods”).
Furthermore, the CI must identify itself to the AS so that the AS can relate
future requests in this flow to the correct CI (see “Securing Client Requests”).

The AS answers a grant request with a grant response (Step 3), which may
contain the requested access tokens or subject information, and may also include
a continuation URI and continuation access token, with which the CI can send
continuation requests. If the request cannot immediately be granted (or denied),

The Grant Negotiation and Authorization Protocol 227

the AS must interact with the RO to determine whether to grant the request
(Steps 4 , 5 , and 6); see “Interaction Methods”.

The CI may send a continuation request at any point after receiving the
grant response (Step 3). These requests serve several purposes, allowing the
client to negotiate details of the grant with the AS, as well as to request an
access token once interaction is complete (Step 7). In response, the AS sends a
message with the same form as a grant response, including potentially providing
a new continuation access token to allow further continuations. Negotiation of a
grant may take arbitrarily many steps of communication at this stage before an
access token is finally provided by the AS.

Once the CI receives an access token (Step 8), it can send a resource request
to an RS (Step 9), including the token and proof that it is allowed to use the
token (see “Presentation of Access Tokens”). When receiving an access token,
the RS checks that it is valid and sufficient for the requested resource, and that
the CI is entitled to use the token. The RS may be able to validate a token on
its own (if the RS and AS agree on a structured token format, e.g., [6]), or may
need to perform token introspection at the issuing AS. In the latter case, the RS
sends an introspection request with the token to the AS (Step 10). The AS can

Fig. 1. Overview of a GNAP flow

228 F. Helmschmidt et al.

then validate the token and send an introspection response to the RS (Step 11)
containing the necessary information for the RS to finish its checks. If all checks
succeed, the RS returns the resource to the CI in a resource response (Step 12).

Interaction Methods. A central part of many GNAP flows is getting autho-
rization from the RO (Step 5). To facilitate interaction between AS and RO
and to inform the CI of completed interaction, GNAP defines several interaction
start and finish methods, marked by blue boxes in Fig. 1.

The AS may contact the RO directly, as shown in Fig. 1, but GNAP does
not specify details of this direct communication. If the RO and EU are the same
entity (which is often true in practice), the CI can assist the AS in contacting
the RO. GNAP defines four interaction start methods for this case. (1) With
the redirect method, the grant response contains an URI to which the CI then
redirects the RO, e.g., by displaying a QR code, or with an HTTP redirect. (2) In
the user code URI method, the grant response includes a short URI and user code.
The CI then communicates this URI and user code to the RO, who visits the
URI with a browser and enters the user code. (3) A simpler variant of (2) is the
user code method, which is similar, but uses a static URI which is assumed to be
known to the EU, e.g., by being printed onto a device implementing a CI. The
user code methods are intended for CIs with a limited user interface, e.g., IoT
devices. (4) If the CI is able to launch applications for the EU, the application
URI method can be used. For this method, the grant response contains an app
URI, which CI uses to launch the associated application.

GNAP also specifies two interaction finish methods to notify the CI when
RO-AS interaction is complete. With the push finish method (Step 6), the CI
includes a URI in its grant request, and the AS sends a request to that URI once
interaction is complete. In the redirect finish method, the CI again includes such
a URI, but the AS redirects the RO to this URI instead of sending a request.
With no finish method, the CI can poll the AS for the current status of a grant.

Securing Client Requests. To guarantee that the AS talks to the same CI
throughout a flow, the CI must include a key proof in all requests. For the initial
request, the CI selects a client instance key and proof method.4 The same key
and method must then be used for all future requests to the AS in this flow.

Presentation of Access Tokens. When issuing an access token (AT), the
AS has three options for AT sender-constraining: (1) AT can be bound to the
client instance key of the CI which started the grant. (2) AT can be bound to
a different key. In this case, the grant response includes information telling the
CI which key to use with this AT. (3) AT can also be a bearer token, i.e., not be
bound to any key. With options (1) and (2), the token can only be used at an
RS if accompanied by a key proof for the key to which the token is bound.

4 GNAP supports HTTP Message Signatures [3], Mutual TLS certificates [41], and
JSON Web Signatures [30] as proof methods, where both symmetric and asymmetric
keys are allowed.

The Grant Negotiation and Authorization Protocol 229

3 Attacks and Fixes

In this section, we first briefly and informally describe the security properties
GNAP is expected to fulfill, including a short overview of our attacker model.
We then present the attacks we found during our formal security analysis of
GNAP and the fixes we propose to make GNAP satisfy the security properties.

3.1 Informal Security Properties

As noted before, GNAP is supposed to satisfy the following security properties:

Security W.r.t. Authorization. An attacker should not be able to access
resources of an honest RO. This is a key property for any authorization protocol.

Session Integrity for Authorization. An honest end user should not unwill-
ingly access resources of the attacker. More precisely, if the responsible AS is
honest, end users should be able to access only the resources that they explicitly
request.

Security W.r.t. Authentication. An attacker should not be able to log in at
an honest CI under the identity (governed by an honest AS) of an honest user.

Session Integrity for Authentication. An honest user should only be logged
in with an identity managed by an honest AS if they explicitly attempt to log
in with this identity.

Attacker Model. These security properties should hold in the presence of a
network attacker, which can also use Web features. For example, the browser of
an honest user may also open websites of the attacker. Such an attacker website
can deliver malicious scripts, use postMessage communication within the honest
user’s browser, or even include websites of honest parties in iframes, and try to
exploit these and other Web features to launch attacks; similarly, honest websites
may also include malicious websites. Additionally, we assume that the attacker
can intercept sender-constrained access tokens. This is an implicit assumption
when using token binding mechanisms, as otherwise, there is no need to use
token binding. Such a leak of access tokens may happen for a number of reasons,
e.g., due to a compromised RS (the token may be valid for multiple RSs), or
through unsecured TLS intercepting proxy logs (considered, e.g., in [13]).

We refer to Sect. 4.4 for more details on the formalized security properties,
and to Sect. 4.1 for more details on the attacker model.

230 F. Helmschmidt et al.

3.2 Client Instance Mix-Up Attack

The client instance mix-up attack enables an attacker to access resources of an
honest user, thus breaking the authorization property. We present three variants
of this attack with different interaction start and finish methods using Fig. 2,
but we also found variants with the user code start and push finish interaction,
and with no interaction finish method used. Additionally, with the user code
start methods, a variant of the attack based on social engineering rather than
a man-in-the-middle is possible. Details on these versions of the attack can be
found in our technical report [27].

Redirect/Redirect Interaction. In the first phase of the flow (up until Step 7

in Fig. 2), the attacker acts as a man-in-the-middle between an honest EU euh

and an honest CI cih: euh starts a flow at the attacker’s CI cia and wants to
authorize cia to access a resource r managed by an honest AS ash (Step 1).
Instead of starting a grant with ash, the attacker poses as an EU, starting a
flow with ash at cih to grant cih access to r (Step 2). Hence, cih sends a grant
request to ash (Step 3). Since the redirect interaction finish method is used, this
grant request includes a URI redirectUriCI to which the EU will be redirected
by ash once interaction between ash and EU is completed. The grant response
of ash contains a URI redirectUriAS which is associated with the ongoing grant
(Step 4). This second URI is part of the redirect interaction start method. I.e.,
cih then instructs its end user (the attacker), to visit redirectUriAS (Step 5).

The attacker, now again posing as cia to euh, does not visit redirectUriAS , but
instead instructs euh to do so (Step 6). Hence, euh authenticates and authorizes

Fig. 2. Client Instance Mix-Up Attack (Redirect/Redirect interaction)

The Grant Negotiation and Authorization Protocol 231

the request (Step 7), as euh expected to be asked to authenticate and authorize
access to r at that exact AS. However, from ash’s point of view, redirectUriAS is
associated with the grant request sent by cih in Step 3 . Therefore, ash now
invokes the redirect interaction finish method and instructs euh to visit cih
at redirectUriCI , adding an interaction reference and interaction hash as URI
parameters (Step 8). Once again, euh complies, thus providing cih with inter-
action reference and interaction hash (Step 9). Hence, cih can now request an
access token (Step 10). After receiving the access token in Step 11 , cih can access
resource r of euh (Step 12). However, from the point of view of cih, the access
token, and thus r, are associated with the session between cih and the attacker
posing as EU, hence giving the attacker access to r.

Redirect/Push Interaction. Similar problematic flows can occur with other
interaction methods as well: If the redirect interaction start method is used with
the push interaction finish method, the attack flow is identical to the one in
Fig. 2 up to Step 7 —except for the grant request, which does not contain a
redirect URI. Further, instead of redirecting the EU to cih (Steps 8 and 9), ash
sends a push notification with the interaction reference and hash directly to cih.
Having received this push notification, cih sends a continuation request and the
flow finishes as described above.

User Code/Redirect Interaction. When using the user code interaction
start method with the redirect interaction finish method, the attack starts as
before, but instead of including a redirection URI in its grant response (Step 4),
ash includes a user code URI and a user code. Similar to the redirection URI
shown in Fig. 2, these values are passed on to the attacker and from there to
euh, who then visits the user code URI, enters the user code, authenticates, and
authorizes the grant (similar to Step 7). From there, the attack flow continues
as depicted in Fig. 2: euh is redirected to cih, which sends a continuation request,
receives an access token, and ultimately gives the attacker access to r.

Mitigations. There are conditions under which these attacks can be prevented:
when using the redirect start and finish interaction methods with EUs which use
a single browser for the whole interaction, the CI can establish a session with
the EU’s browser, e.g., by setting a session cookie, and verify that the browser
initiating the flow is the same browser which is redirected to the CI by the AS.
By implementing this fix for flows with browser-EUs using the redirect start and
finish methods in our model, we were able to prove effectiveness of this fix.

In all other cases, the only reliable way to prevent this class of attacks is
for the EU to only authorize CIs which the EU actually wants to authorize (see
Step 7 in Fig. 2), which requires the AS to provide enough (reliable) information
about the CI, and the EU has to carefully inspect this information. We take this
into account in our formal model, verifying that it is a sufficient check to prevent
the attack.

232 F. Helmschmidt et al.

We reported our findings, including the fix for the redirect/redirect case, to
the GNAP WG [25], and helped to develop corresponding security guidance [26],
which is now part of the GNAP specification [43, Sects. 13.22 & 13.23].

3.3 Further Attacks

During our formal analysis, we found further (classes of) attacks on GNAP, for
which similar attack patterns are known from related protocols. We only mention
these attacks here, but refer to our technical report [27] for full details.

We found one failure of authentication, where following a strict interpretation
of the specification, the CI may not have enough information to uniquely identify
user accounts. We also found a token replay attack, similar to the Cuckoo’s
Token Attack on the OpenID Financial-grade API [14], which can be mitigated
by requiring clients to use different keys for each AS. A variant of the 307 redirect
attack originally presented for OAuth [18] also applies to GNAP, which highlights
the relevance of web-specific details to our analysis. It can be fixed by using
the 303 redirect code in the redirect finish mode. All attacks and fixes were
discussed with the GNAP WG and have been adopted as part of the GNAP
specification [43, Sects. 3.4, 13.30, 13.16].

4 Formal Analysis

In this section, we present a high-level description of our formal security analysis
of GNAP. Full details are provided in our technical report [27]. We first provide
a brief overview of the WIM, which serves as a basis for our model of GNAP. We
then describe our GNAP model in Sect. 4.2, which follows the latest version of
the in-progress GNAP specifications for both the core protocol [43] and resource
server behavior [44]. Our model includes the fixes presented in Sect. 3, which are
now also part of the core GNAP specification. We then present formal defini-
tions of the security properties sketched before (Sect. 4.4), followed by our main
theorem, stating that GNAP is secure with respect to these properties.

4.1 Web Infrastructure Model (WIM)

Our model builds on the WIM of Fett, Küsters, and Schmitz, which was intro-
duced in [15], and has since been extended and improved in later work (e.g.
[11,14,16–19]). Our analysis is based on a consolidated version of the WIM [20].
We here only give a brief description of the WIM, sufficient to follow the paper,
but all details can be found in [20]. We also note that in order to model GNAP,
we have extended the WIM slightly to model the user-code interaction modes of
GNAP, and by adding HTTP Message Signatures [3], including the Signature-
Input and Signature HTTP headers. These extensions to the WIM are of inde-
pendent interest, as they can be used for the analysis of other protocols.

The WIM is a formal model of the web infrastructure, designed to be general-
purpose and allow for modelling various (web-based) applications. It closely fol-
lows published standards and specifications for the web, such as the HTTP/1.1

The Grant Negotiation and Authorization Protocol 233

standard, for example. It provides a general communication model, which mod-
els, among other things, HTTP(S) requests and responses, including a variety
of headers, such as Origin, Referer, Location, STS, Authorization, and Cookie
headers. On top of this communication model, the WIM defines models for sev-
eral types of processes, including web browsers, web servers, and DNS servers,
as well as several forms of attacker processes. For example, the browser model
covers the concepts of windows, documents, and iframes. It also has an abstract
model of executable JavaScript, which can be sent between processes and exe-
cuted by browsers, with access to a browser API, e.g., for postMessages, session
and local storage, setting and reading headers, XMLHttpRequests, navigating
and creating windows/iframes. Users interacting with a browser, e.g., clicking on
a link or entering URLs, are modeled as non-deterministic actions of the browser
that can be triggered by the attacker. In particular, this means that within our
model, the GNAP end-user is subsumed by the browser.

4.2 Modeling GNAP

Since the WIM already formalizes the web infrastructure, to model applications
we only need to specify application-specific processes, including scripts they use.
Such application models are called web systems in the WIM.

Our model of GNAP therefore provides definitions of processes representing
ASs, RSs, and CIs. Browsers are already specified in the core WIM – we only need
to make some small modifications in order to model the user code interaction
mode of GNAP and HTTP Message Signature. End-users are modelled by non-
deterministic behaviour of browsers.

We call a web system a GNAP web system, denoted by GWS , if it contains
some arbitrary (but finite) number of instances of AS, RS, CI, and browser pro-
cesses along with a network attacker process. Other than the attacker, all process
instances are initially honest, i.e., they follow their given (GNAP) algorithms to
take steps, but can become corrupted by the attacker at any time.

CIs and ASs are modeled in a straightforward way according to the spec-
ification of GNAP [43]. Our model includes a client script that initiates the
protocol, and an AS script for authenticating the resource owner. For RSs we
follow GNAP’s resource server specification [44] for the pieces that are specified,
and attempt to make minimal assumptions about RS behaviour otherwise in
order to cover a wide variety of use cases.

As mentioned, the formal model presented in this section reflects the security
considerations presented in the GNAP specification to avoid known attacks,
particularly the fixes described in Sect. 3, which are necessary for our security
properties to be provable.

In a real-world GNAP environment, participants may have diverse setups. For
example, each CI has its own set of supported interaction methods. To account
for all possible combinations of setups, we include them in two ways. Some parts
are specified in the initial configuration of each process, e.g., private keys. Others
are modeled by non-deterministic choices during the execution of processes. For
example, for each new grant request, a CI chooses non-deterministically which

234 F. Helmschmidt et al.

interaction start and finish method to offer to the AS from the set of all available
methods. We refer to our technical report [27] for our full formal model.

4.3 Modeling Considerations

While our model very closely follows the full GNAP specification, there are
several places where we deviate from the GNAP specification. In some places we
simplify and consider only a safe over-approximation. In others, we omit some
pieces of the specification that are not security-relevant or are under-specified.
Additionally, our model covers relevant security considerations recommended in
the specification and all of our fixes to the attacks as described in Sect. 3. We
will briefly discuss the key constraints and choices for our model (a full list can
be found in our technical report [27, Appendix A.3]).

Simplifications. GNAP does not specify any particular resource access model,
and so we use a simple model in which an access token issued for a given RO
grants access to all of that owner’s resources. This allows our model to avoid
details of token management such as requests for multiple tokens, or requests
to extend the rights of a token, while still being a safe over-approximation of
real behavior. Since we use this simple resource access model, the RO does not
need to be informed during interaction with the AS what access permissions it is
being asked to authorize, and so our model does not need to include an explicit
authorization step. As another safe over-approximation, we do not model token
expiry or revocation — once a token is issued, it is valid forever.

Omissions Due to Under-Specification. While GNAP allows for both struc-
tured access tokens or opaque access tokens used in combination with token intro-
spection, there is no specification for the format of structured access tokens, and
so we have only modeled the case of opaque tokens together with token intro-
spection.

Further, we only consider the case where the EU attempting to access a
resource is the same as (or at least in direct out-of-band contact with) the RO.
Otherwise, we have to model the case where an AS must get authorization from
some third-party RO in order to complete a grant request. However, the details
of such an interaction are out of scope of GNAP.

Security Considerations. We restrict the possible flows in our model by
requiring the use of an interaction finish method. Allowing polling by the client
instance can lead to AS mix-up attacks. To avoid this, we follow the recommen-
dation of the corresponding security consideration [43, Sect. 13.22] and do not
include polling in our model.

The Grant Negotiation and Authorization Protocol 235

4.4 Definitions and Security Properties

This background is now sufficient to begin formalizing the security properties
GNAP is supposed to satisfy. We focus here on the case of authorization, giving
only a brief overview of authentication. We also, for simplicity of presentation,
elide some of the technical details here. Full details can be found in our technical
report [27].

Security with Respect to Authorization. As mentioned before, this prop-
erty states that an attacker should not be able to access the resources of an honest
resource owner. There are several immediate problems with this intuition.

Most obviously, if the RO stores its resources on an RS that is corrupted by
the attacker, there is no hope of security, as the RS can simply give the attacker
access to any resources it stores. Likewise, the RO and the AS responsible for
the resource need to be honest. A few other simple problems can lead to security
failures as well. If an RO authorizes a corrupt CI to access its resources, then the
attacker naturally can learn those resources. Likewise, if the AS validly issues a
bearer token (see Sect. 2) to a CI, and that CI then attempts to use the token at
a corrupt RS, any security associated with that token is lost. Finally, and more
subtly, if a CI shares a symmetric key with an honest AS and a corrupted RS,
that RS can take over a session between the CI and AS, by impersonating the
CI to the AS, and can thereby gain access to resources without permission.

A few definitions allowing us to relate ROs and ASs and to refer to the
situation where a browser attempts to authorize a grant request at an AS (Step 5

of Fig. 1) will be useful in stating our security properties:

Definition 1. We identify resource owners by identities. An identity u consists
of a name and a domain for some process. We think of this domain as indi-
cating what AS manages an account, and the name as some identifier of that
account at the manager. Given an identity u, we define governor(u) to be the AS
responsible for that identity (and its resources). We also define ownerOfID(u) to
be the browser controlling the identity u (i.e., the browser used by the end user
to whom the identity corresponds). This can be formalized by requiring that each
identity u has an associated secret credential, which is initially known only to
the governor of u and some browser. That browser is then ownerOfID(u).

Definition 2. If, during step i of a run ρ (a sequence of configurations consist-
ing of process states, waiting messages, and a pool of fresh nonces, see [20]), a
browser b attempts to authenticate, i.e., log-in, using identity u at a process as,
in order to authorize a client ci, we write tryLogini

ρ(b, ci, u, as).

We can now define the authorization property for GNAP.

Definition 3 (Security w.r.t Authorization). Let GWS be a GNAP web sys-
tem. We say that GWS is secure w.r.t. authorization iff the following implication
holds, where ρ denotes a run of GWS , j is a timestamp within ρ, u is an identity
(of some RO), and RS rs stores a resource ru on behalf of u: Given conditions

236 F. Helmschmidt et al.

(1)–(5), the attacker cannot derive ru from its knowledge at time j, where condi-
tions (1)–(5) are defined as follows: (1) rs is honest at j; (2) governor(u) is hon-
est at j; (3) ownerOfID(u) is honest at j; (4) for every CI ci which is honest at j,
a symmetric key shared between ci and governor(u) is not also shared with a cor-
rupted RS rs ′; (5) if for some i ≤ j, tryLogini

ρ(ownerOfID(u), ci, u, governor(u)),
then ci is honest at j and, if this login succeeds and grants ci a bearer token, then
ci does not send this token to a corrupted RS rs ′.

Each of the five premises in the implication above corresponds to one of the
situations described before where security would necessarily fail. This property
then states that other than the simple, relatively apparent failures of security
when some parties in the protocol are dishonest, there is no way for an attacker
to derive a resource belonging to an honest user.

Security w.r.t. Authentication. This property is similar in many respects
to security with respect to authorization. Informally, we want to ensure that
an attacker is not able to log in to an honest client as an honest user. As with
authorization, if certain parties are corrupt, this property immediately fails: A
corrupt client can allow the attacker to log in as any user, a corrupt end user
can log in on behalf of the attacker, and a corrupt AS can authenticate logins
for any account it manages. Since these kinds of failures are unavoidable for any
protocol, our formal security property needs to rule them out, only ensuring that
an attacker is not logged in as an honest user at an honest client when the AS
responsible for the account is also honest.

Session Integrity. In addition to these properties capturing that the attacker
should not be able to access honest user’s resources or accounts, session integrity
(for both authorization and authentication) captures the intuitive idea that an
honest user should not be forced to access the attacker’s resources or accounts.
Informally, if an honest user accesses a resource or is logged in with some account,
then the user authorized that resource access or authenticated for that login. We
formalize session integrity for authorization with the definition below, leaving the
case of authentication to our technical report [27].

Definition 4. Let GWS be a GNAP web system. We say that GWS has session
integrity for authorization iff the following implication holds, where ρ is a run of
GWS , j is a timestamp in ρ, u is an identity (of some RO), and where we assume
that an RS rs stores a resource ru on behalf of u, and a client c sends ru to a
browser b: If c, rs, governor(u), and ownerOfID(u) are honest at j, then at some
prior point, c began a GNAP flow at some as on behalf of b. Moreover, if as is
honest, then there is some i < j such that tryLogini

ρ(b, c, u, governor(u)).

In this definition, we mention two potentially different authorization servers
(as and governor(u)). This is because, in principle, nothing prevents a GNAP
client from being directed from one AS to another over the course of a GNAP
flow. Without this constraint that the initial AS in the flow is honest, some

The Grant Negotiation and Authorization Protocol 237

strange flows are possible, in which, for instance, an attacker may be able to force
the end user to access resources which the attacker owns, but which are controlled
by an honest AS. We discussed this problematic flow with the GNAP editors [9].
In their opinion, considering only cases where the initial AS is honest, is not a
restriction. However, they will add a security consideration to the resource server
specification explaining the problematic flow.

4.5 Results

Our key result is that the current GNAP specification including all our fixes
satisfies the security properties set out in Sect. 4.4. We state the result in the
following theorem, but as the proof is extensive (consisting of just under 30
separate lemmas), and obviously depends on details of the model, we leave it to
our technical report [27].

Theorem 1. Every GNAP web system GWS is secure with respect to authoriza-
tion and authentication, and also has session integrity with respect to authoriza-
tion and authentication.

This means that even in the presence of a strong attacker which controls the
network, observing all messages and determining when and to whom they are
delivered, and which can corrupt other parties on the network, GNAP ensures
that users are protected from a wide variety of attacks. In particular, attackers
cannot access a user’s resources or account unless some failure which is outside
the scope of the protocol occurs (e.g. the user willingly gives their credentials to
the attacker, or the attacker takes over a server on which the user’s resources or
account data is stored). Similarly, a user cannot be forced to access an attacker’s
resources or account through the GNAP protocol.

We highlight that our analysis accounts for many Web features that might
possibly cause attacks, e.g., cookie management, in-browser communication
using postMessages, HTTP redirect behavior, various headers, or the window
and document structure of browsers, including iframes. The 307 redirect attack
is an example where seemingly irrelevant details matter. Furthermore, the web
system that our analysis considers can have an arbitrary number of CIs, ASs,
and RSs, and parallel flows between them. Moreover, parties can be corrupted
by the attacker at any time, and honest participants may communicate with
corrupted ones, as the properties hold even if, for instance, an honest CI uses
some corrupted ASs.

5 Related Work

To the best of our knowledge, our work is the first formal security analysis
of GNAP. Axeland and Oueidat [2], informally analyze GNAP by testing the
protocol against five attack classes known for OAuth 2.0 and conclude that
most of those do not apply to GNAP, except for an AS mix-up attack [18]. They
also only consider the redirect interaction modes.

238 F. Helmschmidt et al.

To date, the WIM is the most detailed and expressive model of Web infra-
structure, and as already mentioned, has successfully been used to analyze a
variety of protocols, including several in the OAuth family [14,18,19], as well
as Mozilla Browser ID [15,16] and the W3C Web Payment APIs [11]. All of
the analyses using the WIM, including ours, rely on manual proofs. To the best
of our knowledge, there is no mechanized model of the Web with a level of
detail comparable to the WIM yet. Building such a model is a challenging future
task. Existing tool-based analysis is based on far more limited models, mostly
without taking web features into account or in an only very limited way: [4]
use ProVerif [7] to analyze OAuth 2.0, considering some features of the Web
infrastructure like cookies and origins. However, they focus on finding attacks
and do not aim to provide security guarantees. In [40] the Alloy Analyzer [29] is
used to analyze OAuth 2.0, [1] use Tamarin [37] to analyze an abstract model of
ACE-OAuth [54] (a flow specifically designed for IoT devices), and Hofmeier [28]
models OpenID Connect in Tamarin. The models created for these analyses, as
well as the models of the underlying web infrastructure, are very limited.

6 Conclusion

We performed the first formal security analysis of GNAP. To this end, we built
a detailed formal model of GNAP based on the WIM, which includes several
start and finish interaction methods, both the software-only and end-user cases,
arbitrary numbers of continuation requests, grant negotiation between CI and
AS, token introspection, key-bound and bearer access tokens, subject informa-
tion grants, different key proof methods, all while accounting for details of the
Web infrastructure like different HTTP redirection codes, JavaScript running in
browsers, important HTTP headers, and so on.

We formalized central security properties and tried to prove them, but dis-
covered attacks that break them. These attacks were reported to the IETF’s
GNAP Working Group along with proposed fixes, which are now part of the
specifications and which we incorporated into our formal model and proved that
the fixed model fulfills the security properties. As our model accounts for many
Web features, our security proof excludes large classes of attacks, even in the
presence of a network attacker that can use all web features, e.g., provide mali-
cious scripts, manipulate headers, etc., and can get hold of (sender-constrained)
access tokens, and even if an unlimited number of users, CIs, ASs, and RSs,
all of which the adversary can corrupt at any point, operate with an unlimited
number of parallel sessions.

Considering GNAP’s progress towards an IETF standard with the core spec-
ification being in the Working Group Last Call at the time of this writing, our
analysis is just in time to support the standardization of an important protocol
in terms of its security. Our work also shows that formal analysis in a mean-
ingful and rich model is necessary for complex protocols, like GNAP, as even
very experienced protocol designers easily overlook not only new attacks but
also attacks previously found on related protocols.

The Grant Negotiation and Authorization Protocol 239

Acknowledgements. This research was supported by the DFG through grant KU
1434/12-1.

References

1. Arnaboldi, L., Tschofenig, H.: A formal model for delegated authorization of
IoT devices using ace-oauth. In: 4th OAuth Security Workshop (2019). https://
homepages.inf.ed.ac.uk/larnibol/img/publications/Paper-03.pdf

2. Axeland, A., Oueidat, O.: Security analysis of attack surfaces on the grant negoti-
ation and authorization protocol, Master’s thesis, Chalmers University of Technol-
ogy, University of Gothenburg (2021). https://odr.chalmers.se/items/7d36a5d4-
c295-4270-886b-d5ed1154a8e8

3. Backman, A., Richer, J., Sporny, M.: HTTP message signatures. Internet-Draft
draft-ietf-httpbis-message-signatures-15, Internet Engineering Task Force (2022).
https://datatracker.ietf.org/doc/draft-ietf-httpbis-message-signatures/15/, work
in Progress

4. Bansal, C., Bhargavan, K., Delignat-Lavaud, A., Maffeis, S.: Discovering concrete
attacks on website authorization by formal analysis. J. Comput. Secur. 22(4), 601–
657 (2014)

5. Bansal, C., Bhargavan, K., Maffeis, S.: Discovering concrete attacks on website
authorization by formal analysis. In: Chong, S. (ed.) 25th IEEE Computer Security
Foundations Symposium, CSF 2012, pp. 247–262. IEEE Computer Society (2012)

6. Bertocci, V.: JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens.
RFC 9068 (2021). https://doi.org/10.17487/RFC9068, https://www.rfc-editor.
org/info/rfc9068

7. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
Proceedings of the 14th IEEE Computer Security Foundations Workshop (CSFW-
14), pp. 82–96. IEEE Computer Society (2001)

8. Campbell, B., Bradley, J., Sakimura, N., Lodderstedt, T.: OAuth 2.0 mutual-
TLS client authentication and certificate-bound access tokens. RFC 8705 (2020).
https://doi.org/10.17487/RFC8705, https://www.rfc-editor.org/info/rfc8705

9. cwaldm: Issue 56 - RS validation of access token. GitHub Issue (2022). https://
github.com/ietf-wg-gnap/gnap-resource-servers/issues/56

10. Denniss, W., Bradley, J., Jones, M., Tschofenig, H.: OAuth 2.0 device authorization
grant. RFC 8628 (2019). https://doi.org/10.17487/RFC8628, https://rfc-editor.
org/rfc/rfc8628.txt

11. Do, Q.H., Hosseyni, P., Küsters, R., Schmitz, G., Wenzler, N., Würtele, T.: A
formal security analysis of the W3C web payment APIs: attacks and verification.
In: 43rd IEEE Symposium on Security and Privacy (S&P 2022), vol. 1, pp. 134–153.
IEEE Computer Society (2022). https://doi.org/10.1109/SP46214.2022.9833681

12. Dropbox Platform Team: Oauth guide. https://developers.dropbox.com/oauth-
guide (2020)

13. Fett, D.: FAPI 2.0 attacker model, draft 02. OpenID Foundation (2022). https://
openid.net/specs/fapi-2 0-attacker-model-02.html

14. Fett, D., Hosseyni, P., Küsters, R.: An extensive formal security analysis of the
OpenID financial-grade API. In: 40th IEEE Symposium on Security and Privacy
(S&P 2019), pp. 1054–1072. IEEE Computer Society, Los Alamitos, CA, USA
(2019). https://doi.org/10.1109/SP.2019.00067, https://doi.ieeecomputersociety.
org/10.1109/SP.2019.00067

https://homepages.inf.ed.ac.uk/larnibol/img/publications/Paper-03.pdf
https://homepages.inf.ed.ac.uk/larnibol/img/publications/Paper-03.pdf
https://odr.chalmers.se/items/7d36a5d4-c295-4270-886b-d5ed1154a8e8
https://odr.chalmers.se/items/7d36a5d4-c295-4270-886b-d5ed1154a8e8
https://datatracker.ietf.org/doc/draft-ietf-httpbis-message-signatures/15/
https://doi.org/10.17487/RFC9068
https://www.rfc-editor.org/info/rfc9068
https://www.rfc-editor.org/info/rfc9068
https://doi.org/10.17487/RFC8705
https://www.rfc-editor.org/info/rfc8705
https://github.com/ietf-wg-gnap/gnap-resource-servers/issues/56
https://github.com/ietf-wg-gnap/gnap-resource-servers/issues/56
https://doi.org/10.17487/RFC8628
https://rfc-editor.org/rfc/rfc8628.txt
https://rfc-editor.org/rfc/rfc8628.txt
https://doi.org/10.1109/SP46214.2022.9833681
https://developers.dropbox.com/oauth-guide
https://developers.dropbox.com/oauth-guide
https://openid.net/specs/fapi-2_0-attacker-model-02.html
https://openid.net/specs/fapi-2_0-attacker-model-02.html
https://doi.org/10.1109/SP.2019.00067
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00067
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00067

240 F. Helmschmidt et al.

15. Fett, D., Küsters, R., Schmitz, G.: An expressive model for the web infrastructure:
definition and application to the BrowserID SSO system. In: 35th IEEE Symposium
on Security and Privacy (S&P 2014), pp. 673–688. IEEE Computer Society (2014)

16. Fett, D., Küsters, R., Schmitz, G.: Analyzing the BrowserID SSO system with pri-
mary identity providers using an expressive model of the web. In: Pernul, G., Ryan,
P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 43–65. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 3

17. Fett, D., Küsters, R., Schmitz, G.: SPRESSO: a secure, privacy-respecting single
sign-on system for the web. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, Denver, CO, USA, October 12–6,
2015, pp. 1358–1369. ACM (2015)

18. Fett, D., Küsters, R., Schmitz, G.: A comprehensive formal security analysis of
OAuth 2.0. In: Proceedings of the 23nd ACM SIGSAC Conference on Computer
and Communications Security (CCS 2016), pp. 1204–1215. ACM (2016)

19. Fett, D., Küsters, R., Schmitz, G.: The web SSO standard OpenID connect: in-
depth formal security analysis and security guidelines. In: IEEE 30th Computer
Security Foundations Symposium (CSF 2017). IEEE Computer Society (2017)

20. Fett, D., Küsters, R., Schmitz, G.: The web infrastructure model (WIM) (2022).
https://www.sec.uni-stuttgart.de/research/wim/WIM V1.0.pdf

21. GitHub docs: authorizing oauth apps (2023). https://docs.github.com/en/
developers/apps/building-oauth-apps/authorizing-oauth-apps

22. Google: Oauth 2.0 for tv and limited-input device applications (2022). https://
developers.google.com/identity/protocols/oauth2/limited-input-device

23. Google: using oauth 2.0 to access google APIs (2022). https://developers.google.
com/identity/protocols/oauth2

24. Hardt (ed.), D.: The OAuth 2.0 authorization framework. RFC 6749 (2012).
https://doi.org/10.17487/RFC6749, https://rfc-editor.org/rfc/rfc6749.txt

25. Helmschmidt, F.: Issue 364 - End user/client instance mix-up attack. GitHub Issue
(2021). https://github.com/ietf-wg-gnap/gnap-core-protocol/issues/364

26. Helmschmidt, F.: Issue 390 - Clarified user presence on interaction finish methods.
GitHub Commit (2022). https://github.com/ietf-wg-gnap/gnap-core-protocol/
pull/390/commits/b028a1e363e90ad1c2711bd8244ea76e3957f935

27. Helmschmidt, F., Hosseyni, P., Kuesters, R., Pruiksma, K., Waldmann, C.,
Würtele, T.: The grant negotiation and authorization protocol: attacking, fixing,
and verifying an emerging standard. Cryptology ePrint Archive, Paper 2023/1325
(2023). https://eprint.iacr.org/2023/1325

28. Hofmeier, X.: Formal analysis of web single-sign on protocols using TAMARIN.
Bachelor’s thesis, Swiss Federal Institute of Technology in Zurich, Switzerland
(2019)

29. Jackson, D., Schechter, I., Shlyakhter, I.: Alcoa: the alloy constraint analyzer. In:
Ghezzi, C., Jazayeri, M., Wolf, A.L. (eds.) Proceedings of the 22nd International
Conference on on Software Engineering, ICSE 2000, Limerick Ireland, June 4–11,
2000, pp. 730–733. ACM (2000). https://doi.org/10.1145/337180.337616

30. Jones, M.B., Bradley, J., Sakimura, N.: JSON Web Signature (JWS). RFC
7515 (2015). https://doi.org/10.17487/RFC7515, https://www.rfc-editor.org/
info/rfc7515

31. Kasselman, P., Fett, D., Skokan, F.: Cross-device flows: security best current prac-
tice. Internet-Draft draft-ietf-oauth-cross-device-security-00, Internet Engineering
Task Force (2022). https://datatracker.ietf.org/doc/draft-ietf-oauth-cross-device-
security/00/, work in Progress

https://doi.org/10.1007/978-3-319-24174-6_3
https://www.sec.uni-stuttgart.de/research/wim/WIM_V1.0.pdf
https://docs.github.com/en/developers/apps/building-oauth-apps/authorizing-oauth-apps
https://docs.github.com/en/developers/apps/building-oauth-apps/authorizing-oauth-apps
https://developers.google.com/identity/protocols/oauth2/limited-input-device
https://developers.google.com/identity/protocols/oauth2/limited-input-device
https://developers.google.com/identity/protocols/oauth2
https://developers.google.com/identity/protocols/oauth2
https://doi.org/10.17487/RFC6749
https://rfc-editor.org/rfc/rfc6749.txt
https://github.com/ietf-wg-gnap/gnap-core-protocol/issues/364
https://github.com/ietf-wg-gnap/gnap-core-protocol/pull/390/commits/b028a1e363e90ad1c2711bd8244ea76e3957f935
https://github.com/ietf-wg-gnap/gnap-core-protocol/pull/390/commits/b028a1e363e90ad1c2711bd8244ea76e3957f935
https://eprint.iacr.org/2023/1325
https://doi.org/10.1145/337180.337616
https://doi.org/10.17487/RFC7515
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/draft-ietf-oauth-cross-device-security/00/
https://datatracker.ietf.org/doc/draft-ietf-oauth-cross-device-security/00/

The Grant Negotiation and Authorization Protocol 241

32. Limited, O.B.: Open Banking UK (2022). https://www.openbanking.org.uk/
33. Lodderstedt, T., Bradley, J., Labunets, A., Fett, D.: OAuth 2.0 security best

current practice. Internet-Draft draft-ietf-oauth-security-topics-21, Internet Engi-
neering Task Force (2022). https://datatracker.ietf.org/doc/html/draft-ietf-oauth-
security-topics-21, work in Progress

34. Lodderstedt, T., Campbell, B., Sakimura, N., Tonge, D., Skokan, F.: OAuth
2.0 pushed authorization requests. RFC 9126 (2021). https://doi.org/10.17487/
RFC9126, https://www.rfc-editor.org/info/rfc9126

35. Machulak, M., Richer, J.: User-managed access (UMA) 2.0 grant for OAuth 2.0
authorization (2018). https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-
grant-2.0.html

36. Mainka, C., Mladenov, V., Schwenk, J., Wich, T.: SoK: single sign-on security —
an evaluation of OpenID connect. In: IEEE European Symposium on Security and
Privacy, EuroS&P 2017, Paris, France, April 26–28, 2017 (2017)

37. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

38. Meta for developers documents: facebook login for the web with the JavaScript
SDK (2023). https://developers.facebook.com/docs/facebook-login/web/

39. Mladenov, V., Mainka, C., Krautwald, J., Feldmann, F., Schwenk, J.: On the secu-
rity of modern single sign-on protocols: second-order vulnerabilities in OpenID
connect. CoRR abs/1508.04324v2, http://arxiv.org/abs/1508.04324v2 (2016)

40. Pai, S., Sharma, Y., Kumar, S., Pai, R.M., Singh, S.: Formal verification of OAuth
2.0 using alloy framework. In: CSNT 2011 Proceedings of the 2011 International
Conference on Communication Systems and Network Technologies, pp. 655–659.
Proceedings of the International Conference on Communication Systems and Net-
work Technologies (2011)

41. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC
8446 (2018). https://doi.org/10.17487/RFC8446, https://www.rfc-editor.org/
info/rfc8446

42. Richer, J.: Moving on from OAuth 2: a proposal (2018). https://justinsecurity.
medium.com/moving-on-from-oauth-2-629a00133ade

43. Richer, J., Imbault, F.: Grant negotiation and authorization protocol.
Internet-Draft draft-ietf-gnap-core-protocol-15, Internet Engineering Task Force
(2023). https://datatracker.ietf.org/doc/draft-ietf-gnap-core-protocol/15/, work
in Progress

44. Richer, J., Imbault, F.: Grant negotiation and authorization protocol resource
server connections. Internet-Draft draft-ietf-gnap-resource-servers-03, Internet
Engineering Task Force (2023). https://datatracker.ietf.org/doc/draft-ietf-gnap-
resource-servers/03/, work in Progress

45. Richer, J., Parecki, A., Imbault, F.: Grant negotiation and authorization pro-
tocol. Internet-Draft draft-ietf-gnap-core-protocol-08, Internet Engineering Task
Force (2021). https://datatracker.ietf.org/doc/draft-ietf-gnap-core-protocol/08/,
work in Progress

46. Richer, J., Parecki, A., Imbault, F.: Grant negotiation and authorization proto-
col resource server connections. Internet-Draft draft-ietf-gnap-resource-servers-02,
Internet Engineering Task Force (2022). https://datatracker.ietf.org/doc/draft-
ietf-gnap-resource-servers/02/, work in Progress

47. Richer (ed.), J.: OAuth 2.0 token introspection. RFC 7662 (2015). https://doi.org/
10.17487/RFC7662, https://rfc-editor.org/rfc/rfc7662.txt

https://www.openbanking.org.uk/
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-21
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-21
https://doi.org/10.17487/RFC9126
https://doi.org/10.17487/RFC9126
https://www.rfc-editor.org/info/rfc9126
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://developers.facebook.com/docs/facebook-login/web/
http://arxiv.org/abs/1508.04324v2
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://justinsecurity.medium.com/moving-on-from-oauth-2-629a00133ade
https://justinsecurity.medium.com/moving-on-from-oauth-2-629a00133ade
https://datatracker.ietf.org/doc/draft-ietf-gnap-core-protocol/15/
https://datatracker.ietf.org/doc/draft-ietf-gnap-resource-servers/03/
https://datatracker.ietf.org/doc/draft-ietf-gnap-resource-servers/03/
https://datatracker.ietf.org/doc/draft-ietf-gnap-core-protocol/08/
https://datatracker.ietf.org/doc/draft-ietf-gnap-resource-servers/02/
https://datatracker.ietf.org/doc/draft-ietf-gnap-resource-servers/02/
https://doi.org/10.17487/RFC7662
https://doi.org/10.17487/RFC7662
https://rfc-editor.org/rfc/rfc7662.txt

242 F. Helmschmidt et al.

48. Richer (ed.), J., Jones, M., Bradley, J., Machulak, M.: OAuth 2.0 dynamic client
registration management protocol. RFC 7592 (2015). https://doi.org/10.17487/
RFC7592, https://rfc-editor.org/rfc/rfc7592.txt

49. Richer, J., Jones, M., Bradley, J., Machulak, M., Hunt, P.: OAuth 2.0 dynamic
client registration protocol. RFC 7591 (2015). https://doi.org/10.17487/RFC7591,
https://rfc-editor.org/rfc/rfc7591.txt

50. Sakimura, N., Bradley, J., Jay, E.: Financial-grade API security profile 1.0 - part
1: baseline (2021). https://openid.net/specs/openid-financial-api-part-1-1 0.html,
openID Foundation

51. Sakimura, N., Bradley, J., Jay, E.: Financial-grade API security profile 1.0 -
part 2: advanced (2021). https://openid.net/specs/openid-financial-api-part-2-1
0.html, openID Foundation

52. Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., Mortimore, C.: OpenID con-
nect core 1.0 incorporating errata set 1 (2014). http://openid.net/specs/openid-
connect-core-1 0.html, openID Foundation

53. Sakimura (ed.), N., Bradley, J., Agarwal, N.: Proof key for code exchange by OAuth
public clients. RFC 7636 (2015). https://doi.org/10.17487/RFC7636, https://rfc-
editor.org/rfc/rfc7636.txt

54. Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., Tschofenig, H.: Authen-
tication and authorization for constrained environments using the OAuth 2.0
framework (ACE-OAuth). RFC 9200 (2022). https://doi.org/10.17487/RFC9200,
https://www.rfc-editor.org/info/rfc9200

55. Sheffer, Y.: GNAP core protocol - publication has been requested.
GNAP Mailing List (2023). https://mailarchive.ietf.org/arch/msg/txauth/
4q2W9cTho2chk4IunHKXztcorO0/

56. Yang, R., Li, G., Lau, W.C., Zhang, K., Hu, P.: Model-based security testing: an
empirical study on OAuth 2.0 implementations. In: Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security. ACM (2016).
https://doi.org/10.1145/2897845.2897874

https://doi.org/10.17487/RFC7592
https://doi.org/10.17487/RFC7592
https://rfc-editor.org/rfc/rfc7592.txt
https://doi.org/10.17487/RFC7591
https://rfc-editor.org/rfc/rfc7591.txt
https://openid.net/specs/openid-financial-api-part-1-1_0.html
https://openid.net/specs/openid-financial-api-part-2-1_0.html
https://openid.net/specs/openid-financial-api-part-2-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.17487/RFC7636
https://rfc-editor.org/rfc/rfc7636.txt
https://rfc-editor.org/rfc/rfc7636.txt
https://doi.org/10.17487/RFC9200
https://www.rfc-editor.org/info/rfc9200
https://mailarchive.ietf.org/arch/msg/txauth/4q2W9cTho2chk4IunHKXztcorO0/
https://mailarchive.ietf.org/arch/msg/txauth/4q2W9cTho2chk4IunHKXztcorO0/
https://doi.org/10.1145/2897845.2897874

Everlasting ROBOT: The Marvin Attack

Hubert Kario(B)

Red Hat Czech S.r.o, Purkyňova 115, 61200 Brno, Czech Republic
hkario@redhat.com

Abstract. In this paper we show that Bleichenbacher-style attacks on
RSA decryption are not only still possible, but also that vulnerable
implementations are common. We have successfully attacked multiple
implementations using only timing of decryption operation and shown
that many others are vulnerable. To perform the attack we used more
statistically rigorous techniques like the sign test, Wilcoxon signed-rank
test, and bootstrapping of median of pairwise differences. We publish
a set of tools for testing libraries that perform RSA decryption against
timing side-channel attacks, including one that can test arbitrary TLS
servers with no need to write a test harnesses. Finally, we propose a set
of workarounds that implementations can employ if they can’t avoid the
use of RSA.

Keywords: Side-channel attacks · timing attacks · Bleichenbacher
attack · RSA

1 Introduction

While the web traffic increasingly depends on the new ECDSA cryptosystem,
majority of server certificates still use the RSA cryptosystem that was originally
published in 1977. RSA saw first big use with the deployment of the Netscape
Navigator 1.0 browser in 1994, as part of the SSL 2.0 protocol. Soon after that,
in 1998, Daniel Bleichenbacher published a practical attack [2] on an SSL server
due to both the faulty PKCS#1 v1.5 padding scheme and faults in the SSL
protocol.

This was only the first of many attacks that followed. Large contributions to
attacking RSA made by Manger [7] in 2001, Klíma, Pokorný, et al. [6] in 2003,
Bardou et al. [1] in 2012, Meyer, Somorovsky, et al. [9] in 2014.

Despite those and other attacks being published, and an updated (also in
1998) version of the PKCS# 1 including the OAEP padding scheme, which is
much more resistant against the attack published by Bleichenbacher, the vulner-
able PKCS#1 v1.5 padding still remains in widespread use.

The SSL and TLS protocols never received an update to use the OAEP
padding scheme for the RSA key exchange. It was only version 1.3 of the protocol,
published in 2018, that completely removed support for this key exchange [15].

Many other widely used cryptographic protocols, like S/MIME or JSON Web
Tokens (JWT) [13], still allow use of PKCS#1 v1.5 padding for encryption.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 243–262, 2024.
https://doi.org/10.1007/978-3-031-51479-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_13&domain=pdf
http://orcid.org/0009-0007-8694-4270
https://doi.org/10.1007/978-3-031-51479-1_13

244 H. Kario

Despite the original attack being nearly quarter of a century old, and the
tested implementations (OpenSSL, NSS, GnuTLS) having been tested and
included additional fixes in 2019 thanks to the work of Ronen et al. [16], we
found them, and others, to be still vulnerable.

As it’s a continuation of the ROBOT vulnerability [3], which we don’t expect
to get rid of any time soon, we’ve decided to name it after one everlasting
“Paranoid Android”.

1.1 Contributions

Our work makes the following contributions:

– We show that by using correct statistical methods and proper test setup,
detection of side channels in RSA implementations is robust

– We show that multiple popular implementations, including ones previously
tested, are still vulnerable to attacks utilising timing based oracles, both over
loopback and over regular Ethernet networks.

– We publish a set of tools for testers of cryptographic libraries for checking
the timing of APIs providing RSA decryption with minimal dependencies.

– For implementations which can’t remove support for PKCS#1 v1.5 encryp-
tion, we propose an alternative decryption algorithm, which does not require
side-channel free code on the application side.

2 Adaptive Chosen Ciphertext Attacks

The Bleichenbacher attack allows decrypting arbitrary RSA ciphertexts or forg-
ing signatures when the attacker can learn some information about specially
crafted ciphertexts, related to the ciphertext they want to decrypt [2].

The attack works thanks to few properties of the RSA cryptosystem:

– the RSA encryption is homomorphic with regards to multiplication,
– the PKCS#1 v1.5 padding requires specific values of the two most significant

bytes: 0 and 2, but not for the whole padding,
– learning about PKCS#1 v1.5 conformance of a related ciphertext provides

specific bounds on the value of the plaintext we want to decrypt.

Homomorphism in RSA Cryptosystem. Let e and n be the RSA public
key (with e representing the public exponent and n representing the modulus),
and let d be the corresponding secret key (the private exponent).

The RSA encryption operation of a message m is equal to me mod n, giving
ciphertext c. The RSA decryption operation of the ciphertext c is equal to cd

mod n.
See the PKCS#1 [14] specification for information on how n, d, and e are

related to each-other, but it’s not necessary to understand the attack.
Now, when we introduce some number s, then by calculating c′ = sec mod n

we effectively multiply the plaintext m by s, as c′ = seme = (sm)e mod n. We

Everlasting ROBOT: The Marvin Attack 245

can do that even when we don’t know the value of m, just the value of it after
encryption: c. Thus, we can multiply an arbitrary encrypted value by a value we
know, just by having access to the public key.

PKCS#1 Padding. In the original attack [2], the attacker learns only whether
or not a ciphertext decrypts to a correctly padded PKCS#1 v1.5 plaintext.

A plaintext is correctly padded when the number m converted to a big-endian
representation of same size as the modulus n consists of 8-bit bytes as follows:
0x00, 0x02, PS, 0x00, P. Additionally the string PS consists of at least 8 bytes,
none with value 0. The string P can include bytes of value 0 and can also be
empty.

That means, that if a ciphertext is PKCS#1 conforming, we know that it
decrypts to a value 2B ≤ ms mod n < 3B, where B = 28(k−2) and k is the
number of bytes necessary to represent n as as a big-endian integer (i.e. it’s
larger or equal to 0x000200...00, but smaller than 0x000300..00).

Bleichenbacher Attack. Note that if we know that c · se mod n is PKCS #1
conforming, it means that m · s mod n ∈ [2B, 3B). That implies that there is
an integer r such that 2B ≤ m · s − r · n < 3B. Equivalently:

2B + rn

s
≤ m <

3B + rn

s
(1)

By finding multiple s numbers, we find multiple r values, which provide more
and more restrictive ranges of m.

See the original analysis [2] for some optimisations on how to find values of
s that are more likely to create PKCS conforming ciphertexts.

While the original paper required about one million calls to the oracle (checks
if a message is PKCS#1 conforming or not), more recent analysis performed by
Bardou et al. [1] shows that as few as 3800 oracle queries may be enough to
decrypt a 1024 bit message.

RSA OAEP Encryption. PKCS#1 version 2.0 [10] specified a different
padding format for RSA encryption intended to defeat attacks like the one pro-
posed by Bleichenbacher.

While the standard specifies that the decryption needs to ignore the value
of the most significant byte of plaintext, some implementations do not do that.
This causes them to be vulnerable to a similar attack as the one with PKCS#1
v1.5 padding, as shown by Manger [7]. That attack requires as little as log2 n
oracle calls, where n is the RSA modulus, to perform a ciphertext decryption.

More General Plaintext Oracle. Meyer et al. [9] extended the attack algo-
rithm to knowledge about arbitrary bytes of the message. In their example the
oracle responds positively for any PKCS#1 plaintext that starts with arbitrary
byte, not just 0x00, but still requires the second byte to be equal 0x02.

246 H. Kario

Attack Summary. The different attacks on RSA ciphertexts show that leak-
ing any kind of information about the plaintext allows the attacker to decrypt
ciphertexts or sign messages without access to the private key.

In particular, while alternative padding methods, like OAEP, help, they’re
not a panacea. Processing of any plaintext values, or variables directly related
to the plaintext values, still must be performed in a way that does not leak
information about the secret values.

3 Performed Attacks

As an attacker, we can easily create RSA ciphertexts that decrypt to specific
plaintext: by simply encrypting the value we want the deblinding and depadding
code to see. By sending such crafted ciphertexts to an implementation under test
and measuring the times it takes to process them, we can tell if certain classes
of plaintexts don’t reveal different code paths taken.

By performing the measurements in double-blind fashion (making sure that
the test runner is constant-time), where neither the test harness not the tested
server can guess the PKCS#1 conformance of the decrypted plaintext, and by
using paired difference tests (sign test or Wilcoxon signed rank test), which can
be used with non-independent measurements, we can detect even very small
differences in processing time compared to the observed noise and absolute mea-
surement values.

3.1 M2Crypto

The M2Crypto library is a thin wrapper around the OpenSSL library. It allows
easy access to some of the interfaces of the OpenSSL library from python appli-
cations.

One of the APIs supported is the rsa_private_decrypt, providing decryp-
tion of PKCS#1 v1.5 formatted ciphertexts. Unfortunately, when the underlying
OpenSSL API returns an error, M2Crypto translates it to a Python excep-
tion (M2Crypto.RSA.RSAError). That means that PKCS#1 conforming and
PKCS#1 non-conforming ciphertexts will have significantly different code paths
executed.

In practical attack, with 1024 bit RSA keys, performed on a regular laptop
computer (Lenovo T480s, Intel i7-8650U), with no special configuration and
with regular desktop environment running, we were able to differentiate with
extremely high confidence (sign test p-values smaller than 10−60) conforming
and non-conforming ciphertexts by measuring as little as 1000 decryptions of
each. This is caused by fairly large median difference between conforming and
non-conforming plaintexts, measuring around 0.6µs, when the whole API call
takes around 155µs.

With this leak we were able to decrypt a ciphertext using an unoptimised
algorithm (i.e. the original one published by Bleichenbacher) in 163 thousand
oracle calls, or in about 9 h of real time on a regular machine.

Everlasting ROBOT: The Marvin Attack 247

The issue was reported to the M2Crypto maintainers in October of 2020
and was assigned the CVE-2020-25657. A partial fix to it was implemented1

but it does not make the code paths of conforming and non-conforming cipher-
texts identical. While we haven’t tested this new code, we believe it to still be
vulnerable.

3.2 pyca/cryptography

The pyca/cryptography is a newer wrapper library providing access to
OpenSSL from Python. Similarly to M2Crypto, it too supports the RSA decryp-
tion with PKCS#1 v1.5 padding. For that we’ve used the decrypt() method of
the RSAPrivateKey object.

Just like M2Crypto, pyca/cryptography raises an exception in case of mal-
formed PKCS#1 plaintext. That means it is also vulnerable to timing attacks.

We’ve measured the difference between conforming and non-conforming
ciphertexts of around 7.5 µs on an Intel 4790K @ 4.4 GHz when using 1024
bit RSA keys (with a processing time of about 105 µs). With such a huge differ-
ence, only 100 measurements were necessary to discern conforming ciphertexts
from and non-conforming ones. In practice, on an unoptimised desktop system,
with the original Bleichenbacher algorithm (median of 163 thousand oracle calls)
the whole decryption took a bit under 4 h.

The issue was reported to the pyca/cryptography maintainers on 17th of
October 2020 as being present in version 3.1.1 of the library. It was assigned the
CVE-2020-25659. A partial workaround was developed2 and shipped as part of
version 3.2.

Given that the API throws an exception when OpenSSL returns an error,
it’s likely still vulnerable; it is now documented though as insecure3.

3.3 Other High-Level Language Libraries

While we haven’t tested other cryptographic library wrappers, we think that
any libraries that return errors in fundamentally different way than a successful
return from a call will provide a timing oracle for Bleichenbacher like attacks.

Similarly, CVE-2020-25659 and CVE-2020-25657 show that safe use of the
RSA PKCS#1 v1.5 API is complex and error-prone.

3.4 NSS

Mozilla NSS is the cryptographic library used by the Firefox browser. As a
general-purpose library, it provides support for both TLS ciphersuites that use
1 https://gitlab.com/m2crypto/m2crypto/-/commit/84c53958def0f510e92119fca1

4d74f94215827a.
2 https://github.com/pyca/cryptography/commit/58494b41d6ecb0f56b7c5f05d5f5e

3ca0320d494.
3 https://cryptography.io/en/latest/limitations/#rsa-pkcs1-v1-5-constant-time-

decryption.

https://gitlab.com/m2crypto/m2crypto/-/commit/84c53958def0f510e92119fca14d74f94215827a
https://gitlab.com/m2crypto/m2crypto/-/commit/84c53958def0f510e92119fca14d74f94215827a
https://github.com/pyca/cryptography/commit/58494b41d6ecb0f56b7c5f05d5f5e3ca0320d494
https://github.com/pyca/cryptography/commit/58494b41d6ecb0f56b7c5f05d5f5e3ca0320d494
https://cryptography.io/en/latest/limitations/#rsa-pkcs1-v1-5-constant-time-decryption
https://cryptography.io/en/latest/limitations/#rsa-pkcs1-v1-5-constant-time-decryption

248 H. Kario

RSA key exchange and a general purpose API for performing PKCS#1 v1.5
decryption.

One interesting aspect of this library is that it uses a PKCS#11 interface
between the implementations of the cryptographic algorithms and rest of the
library, like the TLS implementation. PKCS#11 is more commonly used as the
API to communicate with cryptographic tokens (like smart cards and hardware
security modules).

We’ve tested NSS on the TLS level, as that did not require creation of any
test harness, effectively performing a black-box test. Additionally, that allowed
us to perform an end-to-end test of the whole processing of the secret data:
from reading the ciphertext, through decryption, depadding, derivation of the
symmetric encryption keys to sending the TLS Alert message.

We’ve executed the test on a highly optimised machine, setup of which is
described in appendix A, with an Intel i9-12900KS.

By running the test on such a system with a 2048 bit RSA key we found
(see Fig. 2) that the NSS library has very significant leakage, providing 3 easily
distinguishable classes of ciphertexts: ones that decrypt to PKCS#1 conforming
plaintext with the message being correct size for TLS pre-master secret (48
bytes), ones that decrypt to PKCS#1 conforming plaintext but with incorrect
message size (either shorter or longer than 48 bytes), and ones that decrypt to
non-conforming plaintexts.

The statistical tests are providing statistically significant results (p-value for
sign test smaller than 10−4) for samples that have just 100 observations per class,
with Friedman test p-values for the whole test with 31 classes being regularly
smaller than 10−9 for the same data set.

Based on similar results against version 3.53 of NSS we’ve informed Mozilla
on 16th of June 2020 that the bug #5774984 is exploitable.

After discussing the possible causes, we’ve identified the PKCS#11 interface
as the culprit. The fact of copying data vs returning an error was causing the
significant differences in timing.

We’ve proposed implementation of an implicit rejection mechanism in the
PKCS#11 token, so that it would return a pseudo-randomly generated message
based on the received ciphertext and the used private key (the algorithm is
described in detail in Sect. 4.2) instead of an error in case of PKCS#1 non-
conforming plaintext. That algorithm was implemented in NSS5 and shipped as
part of version 3.61. That issue was later assigned CVE-2023-4421.

While this significantly reduced the observable side-channel (from around
5µs to 60 ns), it didn’t eliminate it. We’ve informed NSS developers of this fact
on 19th of January 2021.

After some discussions with upstream, we’ve come to conclusion that the
remaining leak is most likely caused the numerical library performing “normaliza-
tion”: making sure that the most significant words of the internal multi-precision

4 https://bugzilla.mozilla.org/show_bug.cgi?id=577498.
5 https://phabricator.services.mozilla.com/rNSSfc05574c739947d615ab0b2b2b564f0

1c922eccd.

https://bugzilla.mozilla.org/show_bug.cgi?id=577498
https://phabricator.services.mozilla.com/rNSSfc05574c739947d615ab0b2b2b564f01c922eccd
https://phabricator.services.mozilla.com/rNSSfc05574c739947d615ab0b2b2b564f01c922eccd

Everlasting ROBOT: The Marvin Attack 249

integer representation are non-zero after every fundamental operation (like addi-
tion or multiplication).

Note that with the Marvin workaround implemented, the testing script needs
to have access to the private key to generate ciphertexts that can expose side-
channels in the workaround or in the numerical library used for decryption. We
describe the Marvin workaround in detail in Sect. 4.2. This is only a verifica-
tion optimisation, as the test script is reusing the same RSA ciphertexts over
and over, similar attack can be performed by randomising the ciphertexts while
keeping specific property of plaintext (like zero most significant bytes) constant.
That would require generating unique (or semi-unique) ciphertexts for every
connection, which would be slow from the Python test runner we use.

We’ve executed the test against version 3.80 of the library and identified
that plaintexts that have 8 or more zero bytes at the most significant positions
have statistically significantly different behaviour (see Fig. 3). That confirmed
the previous hypothesis about the leak coming from the numerical library. We’ve
informed Mozilla of this on 20th of July 2022. We’ve also provided to Mozilla
on 5th of October 2022 a simple pure C implementation of constant time multi-
plication and modulo operations (tested on x86_64, ppc64le, aarch64 and s390x
architectures) to use for the deblinding operation. That being said, with this
smaller side-channel, collecting even 400 thousand observations per class over 22
classes wasn’t enough to consistently get statistically significant p-values (smaller
than 10−5) from the Freidman test.

As of the time of writing of this article, we’re not aware of this, or any other
code aiming at performing de-blinding in constant time, being added to NSS.

3.5 OpenSSL

For testing OpenSSL we’ve been using the same environment as for testing NSS.
Very quickly we’ve noticed that as few as 10 thousand observations per probe

type are enough to have a statistically significant difference (p-values smaller
than 10−5) between a probe with many zero values at the most significant bytes
and one with PKCS#1 conforming plaintext.

Issue in how BIGNUM is implemented was identified as the primary cause
of the vulnerability. Which means that both OpenSSL and NSS suffer from fun-
damentally the same issue: using a general purpose numerical library to operate
on cryptographically sensitive numbers.

Despite the numerical library in OpenSSL having smaller side channel than
the one in NSS: OpenSSL is just under 30 ns while NSS is about 60 ns on the same
i9-12900KS CPU; because the OpenSSL responses are quicker (median response
of 381 µs vs 862 µs) and more consistent (MAD of inter-sample differences of
0.357 µs vs 13.7 µs), the side-channel leakage is easier to detect.

The fix for it (the history of which is described in appendix B) was merged
and released as part of version 3.0.8 and 1.1.1t of the library on 7th of February
2023. It was assigned the ID of CVE-2022-4304. We’ve also verified that the
merged patches don’t show a side-channel leakage bigger than 10 ns when tested
on x86_64, ppc64le, s390x and aarch64 architectures.

250 H. Kario

To fix CVE 2020-25659 in pyca/cryptography and CVE 2020-25657 in
M2Crypto, we’ve also proposed to OpenSSL the implementation of the same
Marvin workaround as the one implemented in NSS on 8th of January 20216.
That code was merged to the master branch (intended to become a future 3.2.0
release) on 12th of December 20227.

3.6 GnuTLS

While we’ve also suspected GnuTLS as vulnerable to timing side channels, and
informed GnuTLS maintainers about it on 14th of July 2020, this happened
before we had a side-channel free test harness, so identifying a cause from noisy
results was difficult.

On 29th of July 2022 Alexander Sosedkin identified a logging function call8
as likely responsible. We’ve tested a version of GnuTLS with those lines removed
(they’re useful only as a debugging aid) and found no side-channel after collecting
timings for 34 million connections for each of the 31 types of probes on the
highly optimised system with i9-12900KS. Calculated 95% confidence interval
for median of differences was ±2 ns (so about 10.5 CPU cycles). We’ve informed
GnuTLS developers about this result on 11th of November 2022.

This fix was merged to GnuTLS master9 and shipped as part of the 3.8.0
release on 10th of February 2023. The issue was assigned a CVE-2023-0361
identifier.

4 Proposed Countermeasures

Side-Channel Signals. The implementations of cryptographic algorithms need
to both process and generate values in ways that do not leak information about
the processed data. There are many different kinds of side-channels: timing,
power, sound, light, etc. Generally, when we consider timing attacks, we mean
the measurement of the time the whole operation took: how long it took to
generate a shared secret, how long a signature operation took, and so on. This
kind of side-channels provide only rough information about the processed data
or used keys.

For example, a leaky implementation of modular exponentiation in RSA,
when used together with ciphertext blinding will likely provide information about
the Hamming weight of the private exponent or CRT exponents. But Hamming
weight alone is insufficient for recovering the private key: Coppersmith method
and derived algorithms require knowledge about consecutive bits of at least one
private exponent.
6 https://github.com/openssl/openssl/pull/13817.
7 https://github.com/openssl/openssl/commit/7fc67e0a33102aa47bbaa56533eeecb98c

0450f7 and following patches.
8 https://gitlab.com/gnutls/gnutls/-/blob/1f0183092125ac3c7449b8ee175f9c303cbab

384/lib/auth/rsa.c#L238-245.
9 https://gitlab.com/gnutls/gnutls/-/merge_requests/1698.

https://github.com/openssl/openssl/pull/13817
https://github.com/openssl/openssl/commit/7fc67e0a33102aa47bbaa56533eeecb98c0450f7
https://github.com/openssl/openssl/commit/7fc67e0a33102aa47bbaa56533eeecb98c0450f7
https://gitlab.com/gnutls/gnutls/-/blob/1f0183092125ac3c7449b8ee175f9c303cbab384/lib/auth/rsa.c$#$L238-245
https://gitlab.com/gnutls/gnutls/-/blob/1f0183092125ac3c7449b8ee175f9c303cbab384/lib/auth/rsa.c$#$L238-245
https://gitlab.com/gnutls/gnutls/-/merge_requests/1698

Everlasting ROBOT: The Marvin Attack 251

Implementations of RSA should thus employ at least ciphertext blinding
before performing private key operations. Though, this will only help against
the simple timing attack with chosen ciphertexts. For protection against other
kinds of side-channels, we recommended additionally use of exponent blinding.

RSA Implementation Decomposition. When implementing a generic RSA
decryption algorithm, used for either RSA key exchange in TLS or called directly
by other applications or libraries, multiple things need to happen before the data
is securely processed.

1. Modular exponentiation using arbitrary precision integer arithmetic
2. Padding checks and secret extraction (PKCS#1 v1.5 or OAEP)
3. Secret value use and error handling

For RSA specifically, a popular workaround against leaks in the arbitrary
precision arithmetic is the use of blinding. With blinding, the ciphertext is mul-
tiplied by a random value, the blinding factor. Then such blinded value undergoes
modular exponentiation using a regular algorithm. Since the exact value expo-
nentiated is unknown to the attacker, and different for every operation, even
with the same ciphertext, they can’t infer anything about actual value of it from
the timing information alone. But to get access to the actual result of the opera-
tion (the encrypted message), the library needs to multiply the result of modular
exponentiation by a multiplicative inverse of the blinding factor: the unblinding
factor. While the inputs to the unblinding operation are uncorrelated with both
the ciphertext and plaintext, and secret to the attacker, the output isn’t.

Since CPUs commonly provide instructions to help in multiplication or addi-
tion, even if the result doesn’t fit into a single register (like 64 bit multiply
returning 128 bit result on 64bit CPUs), arbitrary precision implementations
commonly store large integers as a list of word-sized integers (where word is
the size of biggest general purpose register: 32 bit for 32 bit CPUs, 64 bit for
64 bit CPUs). For a generic purpose numerical library, storing additional words
that specify zeros above the most significant digit is useless: it requires more
memory and makes computation slower. So generic purpose libraries “clamp” or
“normalize” the stored numbers: store only the significant non-zero words.

If that stored number is the result of RSA decryption operation, then differ-
ence in number of words used to store it will cause differences in time to convert
it into a byte string (which is necessary to test padding, be it PKCS#1 v1.5 or
RSA-OEAP, or to feed it into a KDF, like in case of RSASVE). So, by learning
that the operation produced a smaller integer, the attacker knows that the high
bits were all zero: exactly the information necessary to perform Bleichenbacher
or Manger attacks.

4.1 Making Deblinding Constant-Time

Since the leak happens in the very last modular multiplication, the solution
for implementations that employ blinding is to implement just that very last
operation using constant time code.

252 H. Kario

While the inputs to that last multiplication come from a general purpose arbi-
trary precision arithmetic library and thus are clamped; since they are blinded,
random, and secret, the conversion of them into constant size representations
doesn’t have to be side-channel free. Without knowledge of the used blinding
factor, knowledge that a particular modular exponentiation provided a small
output doesn’t provide any information to the attacker.

Once the constant time modular multiplication result is calculated, it needs to
be returned as a constant-sized (for a given modulus) list of integers. Converting
that list into a byte string of constant size in side-channel free manner is simple.

We were able to implement both the arbitrary precision multiplication and
Montgomery reduction algorithms for 64 bit CPUs in just 200 lines of portable
C code. We’ve inspected the generated assembly by both LLVM and GCC com-
pilers and didn’t find any data-dependant instructions across code generate by
multiple versions of the compilers. We’ve also tested it when compiled with
GCC 11.3.1-2.1.el9, with -O3 optimisation level, on x86_64, aarch64, ppc64le,
and s390x architectures and confirmed it to be side-channel free to the precision
of TSC, cntvct_el0, mftb, and STCK time sources respectively.

As such, we believe that implementing side-channel free arbitrary precision
integer arithmetic in pure C is possible. Given the speed of the algorithms used
for typical cryptographic inputs, we also think that a simple regression test case,
to protect against possible compiler optimisations introducing side-channels, exe-
cutable in a CI environment, is also possible (the tests require less than half an
hour of data collection to provide resolution down to single-digit CPU cycles).

4.2 Safe PKCS#1 V1.5 Decryption API

Application interfaces that implement the PKCS#1 v1.5 padding check are par-
ticularly vulnerable. This is caused by three things: the side-channel free check
of the padding being complex, extraction and returning of the secret value in
side-channel free way to the application being complex, and that handling of the
returned error codes and secret value in the application needs to be performed
in side-channel free manner.

Protocols like TLS work around this problem by performing implicit rejec-
tion: when the padding check fails, the size of the extracted secret is wrong, or
the protocol version number in the extracted secret is wrong, instead of using
extracted value as the secret, they need to use the previously generated ran-
dom value as the input to the master secret generator function. Since the master
secret is calculated from both the extracted pre-master secret and server-selected
(outside the attacker’s control) random value from the ServerHello message, the
attacker is unable to differentiate the decryption failure caused by badly guessed,
but actually extracted from PKCS#1 v1.5 ciphertext value, and a previously
generated random value [11].

This kind of workaround doesn’t work for a generic API, as a randomly
generated value will cause a different behaviour of the calling application than
a constant value, even if unknown to the attacker. But, since by definition the
attacker doesn’t know if the decrypted value has a PKCS#1 v1.5 conforming

Everlasting ROBOT: The Marvin Attack 253

padding or not, we can make this signal useless as a Bleichenbacher oracle by
making all ciphertexts decrypt to a value, as long as the same ciphertext will
decrypt to the same plaintext every time.

One of the features of the PKCS#1 v1.5 padding is that it includes at least 8
bytes of random data as padding. That means that there are almost 264 cipher-
texts10 that decode to one and same message, significantly more if the returned
message is smaller. Thus an attacker that has access to the literal result of the
decryption would need to encrypt this many ciphertexts to know if the decrypted
value could be represented as the given ciphertext, and thus know if the real,
padded plaintext starts with a zero byte.

This approach is particularly useful for implementations that expose only
PKCS#11 interface, like smart-cards or hardware security modules, as those
need to copy different amount of data to the calling application depending on
whether the padding check was successful or not.

To calculate an unpredictable, but deterministic, message, we can use the
private exponent and the literal ciphertext as the inputs to a key derivation
function (similar to the deterministic nonce generation for (EC)DSA signatures
[12]).

Note that, as two different implementations of this general idea that use the
same key can be used to cross-check if the decrypted value is the result of valid or
invalid padding, we strongly recommend to implement the following algorithm
precisely as stated. If not done as such, attacks may still be possible against
heterogeneous environments.

As such, we propose this alternative algorithm for PKCS#1 v1.5 depadding
(the Marvin attack workaround, or implicit rejection for RSA decryption):

1. Check the length of input message according to step one of RFC 8017
Sect. 7.2.2 (since all inputs are public, this check doesn’t have to be performed
in side-channel free way and the processing can stop here).

2. Derive the Key Derivation Key (KDK) from the private exponent and public
ciphertext
(a) Convert the private exponent (d) to a big-endian integer, left-padded with

zeros so that it has the same size the public modulus
(b) Hash it using SHA-256, store that value (since it’s constant you can reuse

it, but it needs to be kept secret, just like the private exponent)
(c) Use the hash of the exponent as an SHA-256 HMAC key and the provided

ciphertext as a message to the HMAC. The output of the HMAC is the
KDK.

3. Create a list of candidate lengths and a random message
(a) Define a Pseudo Random Function that takes as input a key, label, and

number of bytes to output. This function needs to generate sequential
blocks of random data by calling SHA-256 HMAC with the provided key
as the key, and message set to concatenation of an iterator (initialised to
0, increased by 1 for every HMAC call, encoded as a two-byte big-endian

10 exactly it is equal to (28 −1)8 ≈ 263.95, as every individual byte of the padding must
not be equal 0 and there are 8 of them.

254 H. Kario

integer), the label (as-is, without C-like null byte termination) and the
number of bits to output (i.e. 8 times the number of output bytes; encoded
as two-byte big-endian integer). If output size is not a multiple of SHA-
256 HMAC size, the output should be right-truncated to fit (i.e. only the
most significant bytes of last HMAC output should be returned).

(b) Using the PRF with KDK and “length” as six byte label encoded with
UTF-8 generate 256 byte output. Interpret it as 128 two byte big-endian
numbers.

(c) Using the PRF with KDK and “message” as seven byte label encoded with
UTF-8 generate as many bytes as are necessary to represent the modulus
(k). This is the alternative decryption to use in case the padding check
fails.

4. Select a length of the returned message in case the padding check fails (Note:
this step needs to be performed in side-channel free way)
(a) For each of the 128 possible lengths zero-out the high-order bits so that

they have the same bit length as the length of the maximum acceptable
message size (k − 11).

(b) Select the last length that’s not larger than k − 11, use 0 if none are.
5. Perform standard RSA decryption as described in step 2 of RFC 8017

Sect. 7.2.2. (Note: this step needs to use side-channel free code)
6. Verify the EM padding as described in step 3 of RFC 8017 Sect. 7.2.2, but

instead of outputting “decryption error”, return the last l bytes of the “mes-
sage” PRF, where l is the selected length from step 4.. (Note: both selection
of use of the generated message as well as the copy of it needs to be performed
with side-channel free code).

Practical implementations as well as test vectors of this algorithm can be
found in tlslite-ng (pure Python), Mozilla NSS, and OpenSSL PR #13817.

While this algorithm changes the semantics of error handling, so code that
depends on “decryption error” to mean that the key used to decrypt the cipher-
text was incorrect may misbehave, it should be noted that a plaintext returned
by decrypting a ciphertext under a different key-pair that was used to encrypt
it will be effectively random. Random plaintexts have a non irrelevant chance
of being PKCS#1 v1.5 conforming. Thus the use of this alternative algorithm
changes the likelihood of getting a message decryption by using a wrong key, it
doesn’t change the possibility of it. So any protocol that tries decryption of RSA
ciphertexts with different keys needs to employ a different way to detect if the
ciphertext matches the key than the absence of errors in RSA PKCS#1 v1.5
decryption.

4.3 Countermeasures Summary

While we provide an algorithm for more secure PKCS#1 v1.5 depadding, given
the complexity of implementing and testing this algorithm, we strongly recom-
mend for libraries to instead remove support for encryption using PKCS#1 v1.5
padding completely. The far simpler workaround described for TLS (Sect. 7.4.7.1

Everlasting ROBOT: The Marvin Attack 255

of RFC 5246 [11]) was previously found to be implemented incorrectly by over 20
different implementations [3]. That’s on top of the fact that testing for correct-
ness of the TLS-specific workaround is much easier than testing for correctness
of the Marvin workaround. Thus, we would consider any use of generic PKCS#1
v1.5 API that doesn’t use the Marvin workaround internally to be a case of
CWE-24211 (“Use of Inherently Dangerous Function”) and, without a verified
side-channel free code on the calling side, an automatic vulnerability for the
calling code.

While we haven’t tested any actual hardware PKCS#11 modules, based on
results from NSS, we’re afraid that most, if not all uses of PKCS#11 tokens and
modules for PKCS#1 v1.5 decryption will be vulnerable to the Bleichenbacher
oracle in practice. Simply transferring a different amount of data flowing between
application and module in case of an error and a message that decrypts to very
few or very many bytes would already provide enough of a side-channel to make
it vulnerable.

We also recommend against the use of OAEP and RSASVE with libraries
that don’t have verified side-channel free arbitrary precision integer arithmetic
library. Any library that uses general purpose integer arithmetic implementations
should be considered suspect.

5 Test Framework

To conduct those tests we’ve used the tlsfuzzer test suite12. It’s a TLS protocol
conformity test suite able to generate different kind of arbitrary messages to send
to the server and then to verify that the reply matches some expectations.

We’ve used it to send the pregenerated RSA ciphertexts to the TLS server
in the TLS ClientKeyExchange messages.

For conducting the timing tests, the scripts first generate the test payloads
in random order, write them to disk, together with information which payload
corresponds to which probe. Such generated payloads are then read sequentially,
send one by one to the server, and server response times are captured by the
tcpdump running in the background.

This ensures that the payload generation, its name, placement in memory,
or anything similar, doesn’t influence the timing of probe sending, making the
test harness effectively constant time. By using packet capture to collect tim-
ing data, we both provide larger separation between measuring server response
times and ensure that the payloads sent by the test harness don’t influence the
measurement.

Only when the individual time measurements are interpreted according to the
order in which they were originally generated do the patterns in server responses
emerge.

11 https://cwe.mitre.org/data/definitions/242.html.
12 https://github.com/tlsfuzzer/tlsfuzzer.

https://cwe.mitre.org/data/definitions/242.html
https://github.com/tlsfuzzer/tlsfuzzer

256 H. Kario

The script we generally used to perform those tests is the test-
bleichenbacher-timing-pregenerate.py in the scripts directory of the tls-
fuzzer repo.

For servers that implement the Marvin workaround on the API level, we
have prepared a script that generates ciphertexts decrypting to the same length
of plaintext both for valid and invalid padding case: the test-bleichenbacher-
timing-marvin.py.

See their --help messages and the documentation13 on more tips on their
execution.

Based on tlsfuzzer code we’ve also created a set of scripts for preparing test
cases for testing generic RSA encryption functions as the marvin-toolkit14. It
should be noted that it does not create random, single use ciphertexts, like the
TLS script, so trying to measure decryption of the same ciphertexts over and
over may report false positives if the numerical library is not fully constant time
(as then the leak based on ciphertext may end up being detected, which is not
security relevant).

6 Future Work

In this work, we have focused only on the simplest side-channel attack: a low
granularity timing side channel. Higher granularity side-channels, like ones from
microarchitectural sources, together with more robust statistical methods, are
likely to show that fewer observations are necessary for statistically significant
results. More advanced side-channel attacks, like ones that use power analysis,
electromagnetic emissions, or sound are still likely possible.

We have tested just a handful of the popular cryptographic libraries. Larger
scale testing of software and hardware implementing RSA encryption (of any
kind) will likely reveal many more vulnerable implementations.

Only the Bleichenbacher attack against RSA decryption was tested. Perform-
ing similar tests against constant-timeness with regards to used private keys
should also be possible with similar approach and a proper test harness.

Extending the presented approach should also be possible for testing other
timing attacks in TLS, like the Lucky13 attack.

7 Summary and Recommendations

We’ve shown that by using correct statistical methods we can detect much
smaller timing side-channels than previously expected to be possible.

With this new approach we’ve analysed multiple cryptographic libraries,
both ones implementing the algorithms directly (OpenSSL, NSS, and GnuTLS),
as well as higher-level language bindings (M2crypto, and pyca/cryptography).

13 https://tlsfuzzer.readthedocs.io/en/latest/timing-analysis.html.
14 https://github.com/tomato42/marvin-toolkit.

https://tlsfuzzer.readthedocs.io/en/latest/timing-analysis.html
https://github.com/tomato42/marvin-toolkit

Everlasting ROBOT: The Marvin Attack 257

Every single one of them turned out to be vulnerable or exploitable to the Ble-
ichenbacher attack against RSA encryption. Our recommendation is thus that
RSA encryption shouldn’t be used, as implementing it correctly is very hard, if
not impossible. We especially recommend that the PKCS#1 v1.5 padding for
RSA encryption should not be used, and any protocols that allow its use should
deprecate, forbid its use completely.

For implementations that cannot deprecate and remove support for PKCS#1
v1.5 decryption we’ve proposed an algorithm to implement implicit rejection of
ciphertexts that fail the padding check. We recommend its use in all general APIs
that cannot remove support for PKCS#1 v1.5 decryption, including PKCS#11.
We must stress though, that implementing it correctly and verifying correctness
of that implementation is hard, so it should be employed as a last-ditch solution,
when all other options to remove need for PKCS#1 v1.5 encryption have been
exhausted.

We recommend that static code analysis scanners should mark any uses of
PKCS#1 v1.5 decryption APIs as inherently unsafe.

We’ve also shown that while the use of mitigations such as (base) blind-
ing for RSA decryption helps, it cannot be implemented blindly and steps that
have access to real plaintext values, like the unblinding step and conversion
from multi-precision integer to a byte string, must be implemented with spe-
cial care and with verified side-channel free code. Because of the root cause
of the vulnerabilities presented here in OpenSSL, NSS and a similar issue in
GnuTLS (CVE-2018-16868), was the use of general-purpose numerical methods
to implement cryptographic operations, and because other cryptographic primi-
tives are similarly vulnerable to leaks related to high order bits, like the Minerva
attack against ECDSA [5], the Raccoon attack against DHE [8] (and that the
same hidden number problem applies to ECDHE [4]), we recommend to con-
sider any implementation of cryptographic arithmetic that uses general-purpose
multi-precision numerical methods to be vulnerable to side-channel attacks. In
particular, any code that uses variable size internal representation of integers is,
most likely, vulnerable to side-channel attacks.

Acknowledgments. I’d like to thank Jan Koscielniak for the initial test implemen-
tation and test results that were the inspiration for this research. Stefan Berger for
discussions that led to the workaround on API level. Daniel J. Bernstein and Juraj
Somorovsky for research pointers and sanity check of the workaround idea. Greg Sut-
cliffe for discussions about statistical methods for analysing the timing data.

A System Tuning

To minimise amount and magnitude of the noise in measurements we found some
changes to system configuration to be very effective.

The BIOS was configured to override the processor base power to the same
level as the maximum turbo power (241W), so as to remove the time limits on
how long will the CPU run with turbo boost (run at elevated frequency). The
BIOS was also configured to allow high frequency (high multiplier) operation

258 H. Kario

even when multiple cores are active (we’ve noticed that this is important as the
BIOS/CPU consider the core to be “active” when it’s in the C2 power state or
higher).

Hyper-Threading was disabled. The Linux kernel was configured using the
tuned cpu-isolation profile with 4 of the 8 P-cores isolated. Tuned cpu-isolation
profile sets the idle driver to keep all the CPU cores (not just the isolated ones)
at the C1 power state. This is important because the test harness (tlsfuzzer)
and the system under test (like NSS selfserv or openssl s_server) execute
on separate cores and use a network protocol to communicate, so there are idle
periods when they wait for a reply from the other side of the connection. During
those idle periods, the CPU normally goes into a deeper idle state (lower power
state): C2, C3, or higher. The problem is that going out of those idle states
back to the state where the CPU can execute instructions (C0) takes different
amounts of time, generally the deeper the C-state, the longer the transition
to C0 state. C1 state is a bit special in that it’s reported by the hardware as
requiring just a single CPU cycle to transition to C0. In quick testing we haven’t
noticed qualitatively better results by disabling C-states completely and using
just the Linux polling idle driver compared to the approach taken by tuned. At
the same time, allowing the CPU to switch to C3 states did cause the results
to be significantly worse, increasing the bootstrapped 95% confidence interval
of the median of differences from 0.223 µs to 3.23 µs and the median absolute
deviation15 of inter-sample differences from 7 µs to 1.2 ms.

The machine also has configured aggressive fan curves and a large CPU
heatsink installed, causing the CPU to stay under 50◦C when running the tests,
often around 40◦C, making sure that the CPU does not employ thermal throt-
tling.

The CPU was running at a stable 5.225 GHz when measuring the server
response times. We also tested a configuration in which the two cores used for
measurement were running at the maximum supported frequency of 5.5 GHz,
but found it to provide lower quality results, not offset by the quicker execution.

Please note that while this configuration provides higher quality results, it’s
not necessary for the correct operation of the statistical tests.

B OpenSSL Fix History

The development and integrations of the patches to the OpenSSL took a very
long time.

We’ve originally informed the OpenSSL project that their implementation of
RSA decryption in version 1.1.1c is vulnerable on 14th of July 2020.

Over the next few weeks (on 6th of August) we’ve identified the previously
reported issue #664016 (in the way that BIGNUM code is implemented) as the
primary cause of the timing side channel.
15 Median absolute deviation (MAD) is a robust measure of the variability of the data,

similar to standard deviation measure, but resilient against outliers.
16 https://github.com/openssl/openssl/issues/6640.

https://github.com/openssl/openssl/issues/6640

Everlasting ROBOT: The Marvin Attack 259

On 15th of July 2022 we’ve informed OpenSSL that the implementation is
most likely exploitable against a network attacker when non standard key sizes
(2049 bit or 2056 bit) or 32 bit compiles are used. In that message we’ve also
suggested workarounding the leakage in BIGNUM implementation by performing
the deblinding step using a portable C implementation of multiplication and
modulo operations. See Sect. 4.1 for details.

The code to perform that, including one that uses Montgomery reduction to
calculate the mod was provided to OpenSSL in October 2022.

C Graphs of Test Results

Fig. 1. Bootstrapped confidence intervals of median of differences of different PKCS#1
conforming (probes 1, 2, and 3) and non-conforming plaintexts (4 and larger) compared
to a PKCS#1 conforming plaintext. M2Crypto 0.35.2, Intel i7-8650U, 1000 observations
per class. 2048 bit RSA.

260 H. Kario

Fig. 2. Bootstrapped confidence intervals of median of differences of different PKCS#1
conforming (probes 1 and 2), conforming but with wrong TLS version (probes 26 and
27), conforming but with wrong encrypted message length for the TLS pre-master
secret (probes 7, 8, 12, 14, 18, 21, 22, 24, and 29) and non-conforming plaintexts
(remaining) compared to a PKCS#1 conforming plaintext. NSS 3.60, Intel i9-12900KS,
10000 observations per class. 2048 bit RSA

Fig. 3. Bootstrapped confidence intervals of median of differences of different PKCS#1
non-conforming probes compared to a PKCS#1 non-conforming plaintext. The probe
2 has all bytes non zero, probe 1 has one most significant byte set to zero, probe 3 has
two, 4 has four, probe 5 has 8 zero bytes, probe 6 has 16, and 7 has 40 most significant
bytes set to zero. NSS 3.80, Intel i9-12900KS, 33.5 million observations per class. 2048
bit RSA

Everlasting ROBOT: The Marvin Attack 261

Fig. 4. Bootstrapped confidence intervals of median of differences of different probes
compared to a PKCS#1 conforming plaintext. The probe 25 has forty of the most sig-
nificant bytes set to zero. OpenSSL 1.1.1p, Intel i9-12900KS, 10 thousand observations
per class. 2048 bit RSA

References

1. Bardou, R., Focardi, R., Kawamoto, Y., Simionato, L., Steel, G., Tsay, J.-K.:
Efficient padding oracle attacks on cryptographic hardware. In: Safavi-Naini, R.,
Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012, pp. 608–625. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32009-5_36

2. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716

3. Böck, H., Somorovsky, J., Young, C.: Return of Bleichenbacher’s oracle threat
(ROBOT). In 27th USENIX Security Symposium (USENIX Security 18), pp. 817–
849, Baltimore, MD, August 2018. USENIX Association. ISBN 978-1-939133-04-5.
https://www.usenix.org/conference/usenixsecurity18/presentation/bock

4. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden num-
ber problem. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 36–51.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_3

5. Jancar, J., Sedlacek, V., Svenda, P., Sys, M.: Minerva: The curse of ECDSA nonces:
systematic analysis of lattice attacks on noisy leakage of bit-length of ECDSA
nonces. IACR Trans. Cryptograph. Hardw. Embedded Syst. 26, 281–308 (2020).
https://doi.org/10.46586/tches.v2020.i4.281-308

6. Klíma, V., Pokorný, O., Rosa, T.: Attacking RSA-based sessions in SSL/TLS. In:
Walter, C.D., Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2003, pp. 426–440. Springer Berlin Heidelberg, Berlin, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45238-6_33

https://doi.org/10.1007/978-3-642-32009-5_36
https://doi.org/10.1007/978-3-642-32009-5_36
https://doi.org/10.1007/BFb0055716
https://www.usenix.org/conference/usenixsecurity18/presentation/bock
https://doi.org/10.1007/3-540-45682-1_3
https://doi.org/10.46586/tches.v2020.i4.281-308
https://doi.org/10.1007/978-3-540-45238-6_33

262 H. Kario

7. Manger, J.: A chosen ciphertext attack on rsa optimal asymmetric encryption
padding (OAEP) as standardized in PKCS #1 v2.0. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 230–238. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44647-8_14

8. Merget, R., Brinkmann, M., Aviram, N., Somorovsky, J., Mittmann, J., Schwenk,
J.: Raccoon attack: Finding and exploiting Most-Significant-Bit-Oracles in TLS-
DH(E). In 30th USENIX Security Symposium (USENIX Security 21), pp. 213–230.
USENIX Association, August 2021. ISBN 978-1-939133-24-3. https://www.usenix.
org/conference/usenixsecurity21/presentation/merget

9. Meyer, C., Somorovsky, J., Weiss, E., Schwenk, J., Schinzel, S., Tews, E.: Revisiting
SSL/TLS implementations: New Bleichenbacher side channels and attacks. In 23rd
USENIX Security Symposium (USENIX Security 14), pp. 733–748, San Diego, CA,
August 2014. USENIX Association. ISBN 978-1-931971-15-7. https://www.usenix.
org/conference/usenixsecurity14/technical-sessions/presentation/meyer

10. Kaliski, B. and Staddon, J.: PKCS #1: RSA Cryptography Specifications Version
2.0. RFC 2437 (Informational), October 1998. ISSN 2070–1721. https://www.rfc-
editor.org/rfc/rfc2437.txt. Obsoleted by RFC 3447

11. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard), August 2008. ISSN 2070–1721. https://www.rfc-
editor.org/rfc/rfc5246.txt. Obsoleted by RFC 8446, updated by RFCs 5746, 5878,
6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919, 8447, 9155

12. Pornin, T.: Deterministic Usage of the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA). RFC 6979 (Informational),
August 2013. ISSN 2070–1721. https://www.rfc-editor.org/rfc/rfc6979.txt

13. Jones, M., Hildebrand, J.: JSON Web Encryption (JWE). RFC 7516 (Proposed
Standard), May 2015. ISSN 2070–1721. https://www.rfc-editor.org/rfc/rfc7516.txt

14. Moriarty, K., (Ed.), Kaliski, B., Jonsson, J., Rusch, A.: PKCS #1: RSA Cryptog-
raphy Specifications Version 2.2. RFC 8017 (Informational), November 2016. ISSN
2070–1721. https://www.rfc-editor.org/rfc/rfc8017.txt

15. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446 (Proposed Standard). RFC. Fremont, CA, USA: RFC Editor, Aug. 2018. url:
https://www.rfc-editor.org/rfc/rfc8446.txt. https://doi.org/10.17487/RFC8446

16. Ronen, E., Gillham, R., Genkin, D., Shamir, A., Wong, D., Yarom, Y.: The 9 lives
of bleichenbacher’s cat: New cache attacks on tls implementations. In: 2019 IEEE
Symposium on Security and Privacy (SP), pp. 435–452, 2019. https://doi.org/10.
1109/SP.2019.00062

https://doi.org/10.1007/3-540-44647-8_14
https://doi.org/10.1007/3-540-44647-8_14
https://www.usenix.org/conference/usenixsecurity21/presentation/merget
https://www.usenix.org/conference/usenixsecurity21/presentation/merget
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.rfc-editor.org/rfc/rfc2437.txt
https://www.rfc-editor.org/rfc/rfc2437.txt
https://www.rfc-editor.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc6979.txt
https://www.rfc-editor.org/rfc/rfc7516.txt
https://www.rfc-editor.org/rfc/rfc8017.txt
https://www.rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.17487/RFC8446
https://doi.org/10.1109/SP.2019.00062
https://doi.org/10.1109/SP.2019.00062

JWTKey: Automatic Cryptographic
Vulnerability Detection in JWT

Applications

Bowen Xu1,2, Shijie Jia1,2(B), Jingqiang Lin3, Fangyu Zheng1,2, Yuan Ma1,2,
Limin Liu1,2, Xiaozhuo Gu1,2, and Li Song1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

jiashijie@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
3 School of Cyber Security, University of Science and Technology of China,

Hefei, China

Abstract. JSON Web Token (JWT) has been widely adopted to
increase the security of authentication and authorization scenarios. How-
ever, how to manage the JWT key during its lifecycle is rarely mentioned
in the standards of JWT, which opens the door for developers with
inadequate cryptography experience to implement cryptography incor-
rectly. Moreover, no effort has been devoted to checking the security of
cryptographic usage in JWT applications. In this paper, we design and
implement JWTKey, a static analysis detector leveraging program slic-
ing technique to automatically identify cryptographic vulnerabilities in
JWT applications. We derive 15 well-targeted cryptographic rules cou-
pled with potential JWT key threats for the first time, and customized
analysis entries and slicing criteria are identified accurately based on the
observation of diversified JWT implementations, thus achieving balance
between precise detection and overhead. Running on 358 open source
JWT applications from GitHub, JWTKey discovered that 65.92% of
the JWT applications have at least one cryptographic vulnerability. The
comparative experiments with CryptoGuard demonstrate the effective-
ness of our design. We disclose the findings to the developers and collect
their feedback. Our findings highlight the poor cryptographic implemen-
tation in the current JWT applications.

Keywords: JWT · Key management · Cryptographic vulnerability

1 Introduction

JSON Web Token (JWT) is a compact claims representation format to be trans-
ferred between two parties [23]. As the advantages of being less verbose, more com-
pact, smaller size, and easy to be parsed, JWT has been deeply coupled with vari-
ous standard and non-standard access delegation and single sign-on (SSO) appli-
cations. Multiple indispensable parameters of standard protocols (e.g., OAuth [21,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 263–282, 2024.
https://doi.org/10.1007/978-3-031-51479-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_14&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_14

264 B. Xu et al.

22] and OpenID Connect (OIDC) [43]) are either supported (e.g., authorization
grant, client credentials, and access token) or explicitly mandatory required (e.g.,
ID token) to be transmitted in the format of JWT. Moreover, various JWT-based
self-defined authentication/authorization schemes have been proposed in multi-
farious scenarios, such as web services [20], cloud SaaS applications [13], multi-
agent systems [42] and software-defined networking [50].

The key insights of JWT are as follows: the claims need to be digitally
signed or integrity protected with a Message Authentication Code (MAC)
and/or encrypted in the format of JSON Web Signature (JWS) or JSON
Web Encryption (JWE) [23]. This ensures the integrity and authenticity of the
claims. According to Kerckhoff’s principle [34], a cryptographic system should
be designed to be secure, even if all its details, except for the key, are pub-
licly known. Therefore, the security of JWT applications is based on the proper
management of cryptographic keys throughout their lifecycle (e.g., generation,
storage, transmission, and use). Otherwise, severe consequences could be pro-
voked. For example, a vulnerability was disclosed in the “View As” feature of
Facebook, making attackers could obtain the access tokens of the users [19]. This
exposes the fact that there are many risks of token leaks and attacks in various
application scenarios. Moreover, some vulnerabilities (e.g., CVE-2022-35540 [8]
and CVE-2022-36672 [9]) have been disclosed in popular projects (e.g., Novel-
Plus and AgileConfig) due to hard-coded keys in their JWT usage, allowing
attackers create a custom user session or gain administrator access.

Many efforts on the security of cryptographic applications have been pro-
posed, while they are all limited in detecting cryptographic vulnerabilities of
JWT applications. Firstly, previous JWT related studies either devote to extend-
ing the range of JWT applications [18,33,46] or try to check anti-protocol flaws
at the protocol level (e.g., OAuth [2,14,41,53] and OIDC [15,18]), which only
consider the correctness of the JWT-based parameters (e.g., access token and
ID token), and do not consider the vulnerabilities from the aspect of JWT cryp-
tographic usage. Secondly, the existing cryptographic misuse detectors com-
monly focus on the application security of APIs in underlying cryptographic
libraries (e.g., JCA and OpenSSL) by using a program analysis method to
check if an application respects the predefined cryptographic rules [31]. How-
ever, JWT applications typically do not invoke cryptographic libraries directly,
but indirectly invoke them by third-party JWT libraries (e.g., java-jwt [4] and
jose.4.j [6]), which encapsulate JWT cryptographic implementations by provid-
ing JWT generation and verification related APIs. Previous detectors treat JWT
libraries as their “applications”, whose diversified implementation details make
the true upper applications (i.e., JWT applications) need to pass key-related
parameters through multiple methods, classes, field variables, or conditional
statements of the APIs in JWT libraries. The above complicated orthogonal invo-
cations cannot be handled by the existing detectors as the refinements of clipping
orthogonal explorations [40], thus resulting in prevalent false negatives [1].

In this paper, we tackle the above limitations and introduce JWTKey, a static
analysis detector, which leverages static program slicing technique, achieving
automated analysis of cryptographic vulnerabilities in JWT applications. Our

JWTKey 265

design relies on several key insights: 1) To provide precise cryptographic vulner-
ability detection in JWT applications, we derive 15 well-targeted rules by taking
an in-depth analysis of the potential security threats throughout a JWT key
lifecycle; 2) To obtain precise detection outcomes with acceptable overhead, we
determine analysis entries and slicing criteria based on the observation of diver-
sified implementations of JWT applications and JWT libraries; 3) Based on the
specific stated cryptographic rules, both backward/forward program slicing and
properties file feature analysis are performed to track the APIs and arguments
in the intermediate representation of the detected applications.

To demonstrate the effectiveness of JWTKey, we carry out a large-scale evalu-
ation based on 358 popular Java-based JWT applications crawled from GitHub.
JWTKey report 417 alerts for the 358 applications, and our manual analysis
confirms 410 alerts, achieving an accuracy of 98.32%. We identify that 65.92%
of the JWT applications have at least one cryptographic vulnerability. The large
number of alerts indicates a widespread misunderstanding of how to properly
manage keys in JWT applications. We also utilize CryptoGuard [40] (the detec-
tor with the highest precision [1]) for comparative experiments, while it only
report 49 cases of JWT cryptographic vulnerabilities, leaving 361 cases undis-
covered. We report our security findings to the corresponding developers of JWT
applications and JWT libraries, some of which have been indeed patched (see
Sect. 7). In summary, we make the following contributions:

– We study the security of JWT applications from a brand-new perspective (i.e.,
cryptographic vulnerabilities). We conduct an in-depth study on the potential
security threats throughout a JWT key lifecycle and derive 15 cryptographic
rules coupled with JWT implementation cryptographic APIs. The purpose of
this research is to cover as many vulnerabilities as possible to guide developers
to use cryptography securely on large JWT applications.

– We design and implement a static analysis detector, JWTKey1. With accurate
identification of analysis entries and slicing criteria based on the observation of
diversified implementations of JWT applications and JWT libraries, JWTKey
achieves balance between precise detection and overhead.

– Our evaluation on 358 JWT applications and the comparative experiments
with CryptoGuard demonstrate the effectiveness of our design in discovering
cryptographic vulnerabilities of JWT applications.

2 Background

2.1 JWT Structure

JWTs encode claims to be transmitted as a JSON object that is used as the
payload of a JSON Web Signature (JWS) [25] or as the plaintext of a JSON Web
Encryption (JWE) [26], enabling the claims to be digitally signed or integrity
protected with a Message Authentication Code (MAC) and/or encrypted. A

1 Available at https://github.com/JWTKeyIIE/JWTKey.

https://github.com/JWTKeyIIE/JWTKey

266 B. Xu et al.

JWT is represented as a sequence of URL-safe parts separated by period (‘.’)
characters. Each part contains a base64url-encoded value. Specifically, a JWS
consists of three parts (i.e., JSON object signing and encryption (JOSE) header,
payload and signature) and a JWE consists of five parts (i.e., JOSE header,
encrypted key, initialization vector, ciphertext and authentication tag).

Fig. 1. A simple JWT instance with JWS structure.

Figure 1 presents a simple JWT instance with JWS structure. The first part
is a JOSE header, whose contents describe the cryptographic operations applied
to the corresponding JWT claims set. The “alg” (algorithm) parameter, which
is required in the JOSE header, identifies the cryptographic algorithm (e.g.,
HMAC, ECDSA, AES-128) used to secure the JWT. Several optional parameters
are also provided in the JOSE header, such as “jwk” (JSON web key), which is
the public key that corresponds to the key used to sign the JWS or encrypt the
JWE; “jku” (JWK set URL), which is a URI that refers to a resource for a set of
JWK public keys; “kid” (key ID), which is a hint indicating which key was used
to secure the JWS/JWE; “x5c” (X.509 certificate chain), which is the X.509
public key certificate or certificate chain corresponding to the key used to sign
the JWS or encrypt the JWE; “x5u” (X.509 URL), which is a URI that refers to
a resource for the public key certificate or certificate chain; “p2s” (PBES2 salt
input), which is a salt value used for password-based encryption (PBE); “p2c”
(PBES2 count), which is an iteration count used for PBE.

2.2 Static Program Slicing

Static program slicing is a decomposition technique that extracts program parts
from program statements relevant to a particular computation [56]. As a static
method, static program slicing does not require the execution of programs (e.g.,
JWT applications). They scale up to a large number of programs, cover a wide
range of security rules, and are unlikely to have false negatives [40]. A program
slice is the result of slicing which consists of a subset statements of a program
that potentially affect or be affected by the slicing criterion. A slicing criterion
consists of a pair 〈p, V 〉. Specifically, p is a program point and V is a subset of
program variables. Commonly speaking, there are two main types of static pro-
gram slicing methods: backward slicing and forward slicing. Backward slicing is
used to compute the set of instructions that affect the variables in V at program

JWTKey 267

point p, and forward slicing is used to compute the set of instructions affected
by the variables in V at program point p. It is worth to mention that a system
dependence graph (i.e., SDG) is commonly built to identify the minimal set of
program statements and variables which are necessary to produce a particular
output. In particular, a SDG is a directed graph that represents the program
statements as nodes and represents the dependencies between them as edges.
Control dependence edges represent the flow of control in the program, while
data dependence edges represent the flow of data between different statements.

3 Related Work

In recent years, researchers have shown significant interest in the problem of
vulnerability detection on various kinds of applications. However, how to detect
cryptographic vulnerabilities in JWT applications is still an open question.

JWT-Related Studies. Since JWT is deeply coupled with authentication and
authorization protocols, many works related to protocol security have been pro-
posed (e.g., OAuth [2,14,41,53] and OIDC [15,18]). In the case of OAuth, Wang
et al. [53] proposed a tool that combines static analysis and network analysis
to identify OAuth bugs on Android platform. Fett et al. [14] carried out a for-
mal analysis of the OAuth 2.0 standard in an expressive web model. Rahat et
al. [2] developed OAUTHLINT, which incorporates a query-driven static analy-
sis to check anti-protocol programs of OAuth client-side. More recently, Rahat
et al. [41] proposed Cerberus, which aims to find logical flaws and identify vul-
nerabilities in the implementation of OAuth service provider libraries. In the
case of OIDC, Fett et al. [15] developed a formal model of OIDC based on the
Dolev-Yao style model of the web infrastructure (FKS model). Ghasemisharif
et al. [18] investigated the security implications of SSO, offered an analysis of
account hijacking on the modern Web and proposed an extension to OIDC based
on JWT revocation token. However, all the above previous researches mainly
focus on checking anti-protocol flaws at the protocol level, and do not consider
the diversified cryptographic implementation details of JWT applications. Dif-
ferently, in this work, we aim to provide deeper insights into how to securely
implement JWT from a foremost cryptographic security perspective.

Cryptographic Misuse Detectors. Recently, many cryptographic misuse
detectors have been proposed. Their key insights are using static methods (e.g.,
program slicing and taint analysis) or dynamic methods (e.g., fuzzing and log-
ging) to check if an application respects the predefined cryptographic rules [31].
For example, in Java, Egele et al. [12] proposed CryptoLint, which performed a
study to measure cryptographic misuse in Android applications with only 6 rules.
Krüger et al. [30] developed CrySL, which provided higher precision than Cryp-
toLint [30] by designing a set of cryptographic rules for the JCA library. Wen et
al. [54] proposed MUTAPI to discover API misuse patterns via mutation anal-
ysis. However, it cannot discover misuse patterns which require specific values

268 B. Xu et al.

(e.g., javax.crypto.Cipher(“DES”)). More recently, CryptoGuard [40] performed
data-flow analysis based on forward/backward slicing methods for Java Projects.
Piccolboni et al. [38] implemented CryLogger to detect cryptographic misuses
dynamically. Ami et al. [3] presented the MASC framework, which enables a sys-
tematic and data-driven evaluation of cryptographic detectors using mutation
testing. In C/C++, Rahaman et al. [39] proposed TaintCrypt, which adopted
taint analysis to check projects issues using C/C++ cryptographic libraries (e.g.,
OpenSSL). Zhang et al. [57] implement CryptoRex to identify cryptographic mis-
use of firmware in IoT devices. In Python, Wickert et al. [55] designed LICMA,
which adopted hybrid static analysis to discover cryptographic misuses in appli-
cations written in Python and C. Frantz et al. [16] proposed Cryptolation, which
is a static analysis tool to discover Python cryptographic misuses.

The above detectors commonly focus on the library-level cryptographic
implementation issues in cryptographic libraries (e.g., JCA, JCE and JSSE in
Java, OpenSSL in C/C++, M2Crypto and PyCrypto in Python). Differently,
in this work, we aim to fill the gap of inaccurate identification of cryptographic
misuses at JWT applications by proposing JWT-oriented cryptographic rules
and detection methods.

4 Threat Model and Cryptographic Rules

4.1 Threat Model

In this paper, we focus on the cryptographic vulnerabilities of JWT application
during the lifecycle of key management. We assume that even developers with
rich cryptography experience may bring insecure behaviors when handling JWT
related keys. Adversaries aim to obtain resources or privileges of JWT applica-
tions by constructing forged JWTs with obtained key information. We consider
two types of adversaries in this work. First, for the system adversaries who have
physical or remote access to the physical devices (e.g., client or server devices),
they could obtain or infer the symmetric key or private key of JWT applications
during key generation, storage or use stages by reverse engineering [37] or privi-
lege escalation [49]. Second, for the network adversaries, they can intercept and
modify network traffics between JWT issuers and verifiers. They can also launch
common TLS attacks (e.g., TLS stripping, rogue TLS certificate) to decrypt the
HTTPS traffic [52] where the JWT application implements TLS problematically.
Therefore, the network adversaries could exploit the insecure behaviors during
key transmission or key use stages to infer the JWT key, or mislead the JWT
verifiers to accept a forged JWT with a replaced key [11].

4.2 Cryptographic Rules

Based on our threat model, we take an in-depth analysis on the arguments of
APIs in the JWT libraries, and summarize all the potential threats of a key
throughout its lifecycle discussed by JWT specifications [24–26] and current
security best practices [3,44], thus concluding the cryptographic rules in Table 1.

JWTKey 269

Table 1. JWT-oriented cryptographic rules derived form the APIs of JWT libraries
and applications throughout a key lifecycle. (⇐: backward slicing; ⇒: forward slicing;�: feature analysis in properties files)

ID Cryptographic Rules Key Lifecycle Method Reference

R-01 Do not use insecure PRNG or predictable PRNG seeds Generation ⇐,⇒ [29,39]

R-02 Do not use keys with insufficient length ⇐,⇒ [5,24]

R-03 Do not use hard-coded symmetric/private key Storage ⇐ [5,40]

R-04 Do not use predictable/constant passwords for PBE ⇐ [5,24]

R-05 Do not use predictable/constant passwords for KeyStore ⇐,⇒ [5,40]

R-06 Do not store symmetric/private key in properties files ⇐,� [5,10]

R-07 Do not store private key in plaintext files ⇐,� [5,10]

R-08 Do not use HTTP URL connections for key transmission Transmission ⇐,� [25,26]

R-09 Do not verify certificates or host names in SSL/TLS in trivial ways during
key transmission

⇐,⇒ [31,40]

R-10 Do not use “jwk” and “jku” for key transmission ⇐ [43,45]

R-11 Do not use JWT public key before validating the certificate or certificate
chain

Use ⇐,⇒ [25,26]

R-12 Do not use static IVs in cipher operation modes (e.g., CBC and GCM) ⇐ [7,40]

R-13 Do not use PBE with fewer than 1,000 iterations ⇐ [24,40]

R-14 Do not use static salts for PBE ⇐ [24,40]

R-15 Do not use deprecated insecure APIs ⇒ [11,24]

Vulnerabilities in Key Generation. HMAC, digital signature algorithms
and symmetric/asymmetric encryption algorithms may be used in JWS or JWE
(Sect. 2.1). R-01 requires that the keys used in the cryptographic algorithms
should be derived from a cryptographically secure random number generator.
Insecure pseudo-random number generator (PRNG) should not be used (e.g.,
java.util.Random), meanwhile, predictable seeds should not be provided to the
PRNG for key generation [39]. Otherwise, the generated key may be easily
reversed by an attacker [29]. R-02 emphasizes the security of information pro-
tected by cryptography directly depends on the strength of the keys [5]. However,
keys with insufficient length are allowed to be supplied to the cryptographic algo-
rithm APIs of JWT libraries, which may result in inputting keys with insufficient
length for developers and thus are vulnerable to brute force attacks [28,40]. For
example, RSA-1024 (with less than 112 bits security strength) should not be
used to generate a JWT [24], and the key length of HS256 (i.e., HMAC using
SHA-256) should be equal or over 256 bits.

Vulnerabilities in Key Storage. Confidentiality shall be provided for all
secret key information [5], otherwise, the adversary may easily obtain or infer
the key of JWT. However, there are various insecure key storage methods in
JWT applications. R-03 prohibits using hard-coded keys in the program codes.
R-04 and R-05 forbid using predictable/constant passwords for password-based
encryption (PBE) [24] and KeyStore, respectively. For example, though an appli-
cation can only access its own KeyStore in Android, privilege escalation attacks
can bypass this restriction if an insecure password is utilized [40,49]. The follow-
ing two rules focus on the insecure ways of storing the key information at rest,
i.e., in properties files (R-06) and plaintext files (R-07) [10].

270 B. Xu et al.

Vulnerabilities in Key Transmission. There are many cases of key trans-
mission in JWT applications, for example, the symmetric HMAC key and the
public key in the case of JWS, the key encryption key (KEK) and the public key
in the case of JWE. The protocol used to transmit the key must provide security
protection, and thus secure TLS must be used for key transmission [25,26]. Cor-
respondingly, R-08 forbids using HTTP URL connections for key transmission.
R-09 requires JWT applications to properly verify certificates and host names
in SSL/TLS during key transmission to avoid man-in-the-middle attacks [31,40].
R-10 forbids using “jwk” and “jku” for key transmission, and additional verifi-
cation is required (e.g., by matching the URL to a whitelist of allowed locations
and ensuring no cookies are sent in the GET request) [43]. This is because JWT
provides “jwk” and “jku” header parameters to refer to a resource for a set of
public keys, however, blindly trusting the header parameters, which may contain
an arbitrary URL, could result in server-side request forgery (SSRF) attacks [45].

Vulnerabilities in Key Use. Before using the public key to which the JWE
is encrypted (or the key used to verify the JWS), the recipient must validate the
corresponding certificate or certificate chain [25,26]. R-11 focuses on the validity
of the obtained certificates (e.g., in the “x5c” or “x5u”) in JWT, and the public
key should be considered as invalid if any validation failure occurs, otherwise,
SSRF attacks may occur [45]. As inappropriate settings of other parameters (e.g.,
IV, salts) may also pose a threat to JWT applications, we involve the following
rules in JWTKey. Specifically, as JWT supports AES CBC mode and GCM
mode to encrypt JWT content, R-12 emphasizes that static IVs should not be
used in CBC mode (to avoid chosen-plaintext attacks [40]) and GCM mode (to
avoid forbidden attacks [7]). R-13 focuses on that at least 1,000 iterations are
required for PBE and R-14 forbids using static salts for PBE, which may result
in dictionary attacks [24,40]. At last, R-15 prohibits the use of deprecated inse-
cure APIs of JWT libraries. For example, in java-jwt library, both private and
public keys are allowed to simultaneously transmit to the require API in Verifica-
tion class to verify tokens. Moreover, as RSAES-PKCS1-v1 5 algorithm may be
vulnerable to certain attacks (e.g., Bleichenbacher million message attack [11]),
thus it is not recommended for new applications [24].

5 Design

5.1 Overview

Figure 2 shows an overview of JWTKey, which leverages static program slic-
ing [56] to detect cryptographic vulnerabilities of JWT applications. JWTKey
takes Java source files (maven or gradle project), .class files, .jar files, .war files
or .apk files as input, and outputs reports with the identified vulnerabilities.

5.2 Construct System Dependence Graph

Given a JWT application program, JWTKey first converts Java source code
or byte-code into an intermediate representation (IR) format (i.e., Jimple) by

JWTKey 271

Fig. 2. Overview of JWTKey.

taking advantage of Soot [47] framework. Moreover, we use Soot to con-
struct intra-procedural data-dependencies, which can be used to build system
dependence graphs (SDGs). For inter-procedural analysis, JWTKey uses class-
hierarchy analysis to determine the calling relationship between all the methods,
thus building a caller-callee relationship of all the methods of the application.
The calling relationship can be used to build control dependency edges in the
SDG. Moreover, by processing the AssignStmt statements defined in Jimple,
JWTKey adds field influence as a control dependency to the SDG for inter-
procedural analysis.

As the original SDG is obtained by stitching all control flow graphs from
the program methods, to improve the efficiency and accuracy, JWTKey con-
fines the analysis by keeping track of the methods relevant to JWT implemen-
tations. Namely, we track the cryptographic related information to pinpoint a
sub-callgraph during the whole key lifecycle. Since the sub-callgraph is typically
small, its corresponding SDG will also be small.

5.3 Analysis Entries and Slicing Criteria

JWTKey adopts static program slicing to identify cryptographic vulnerabilities
in JWT applications. In particular, we take the APIs, which are provided by the
JWT libraries to generate or verify JWT, as analysis entries.

Analysis Entries. JWTKey locates the starting point of key related operations
in JWT libraries and divides the analysis-entry-APIs from JWT libraries into the
following two categories. First, the key specification APIs for JWT generation.
JWT libraries provide APIs to set key related parameters for JWT generation
and support developers to specify the algorithm and the corresponding key for
signing or encrypting. JWTKey uses this kind of APIs as analysis entries to
detect rules related to key generation (R-01 and R-02), key storage (R-03 to
R-07), and key use (R-12 to R-15). For example, JWTKey utilizes the sign-
With (Key key, SignatureAlgorithm alg) method in JWTBuilder provided by
jjwt library [27] as analysis entry and takes the key as the parameter of interest
to perform slice analysis for different rules detection. Second, another category
of analysis entries comprises the key specification APIs for JWT verification. For
example, the setVerificationKey(Key key) method in the JwtConsumerBuilder
class of Jose4j library [6]. JWTKey takes the key as the parameter of interest
to perform analysis of key storage (R-03 and R-06), key transmission (R-08 to

272 B. Xu et al.

R-10) and key use (R-11) related detection rules. As the number of detected
analysis entries of JWTKey is quite large, for convenience, we show two repre-
sentative analysis entries of each popular Java JWT library in Table 2.

Table 2. The representative analysis entries APIs of the top 7 most popular Java
JWT libraries (i.e., java-jwt, jjwt, jose.4.j, Nimbus-JOSE-JWT, Spring Security OAuth,
FusionAuth JWT and Vert.x Auth JWT).

No. Analysis Entry

1.1 com.auth0.jwt.algorithms.Algorithm HMAC256(java.lang.String)

1.2 com.auth0.jwt.algorithms.Algorithm RSA256(java.lang.String)

2.1 io.jsonwebtoken.JwtBuilder signWith(io.jsonwebtoken.SignatureAlgorithm,byte[])

2.2 io.jsonwebtoken.JwtParser setSigningKey(java.lang.String)

3.1 org.jose4j.keys.HmacKey void < init>(byte[])

3.2 org.jose4j.keys.AesKey void <init>(byte[])

4.1 com.nimbusds.jose.crypto.MACSigner void <init>(byte[])

4.2 com.nimbusds.jose.crypto.DirectEncrypter void <init>(javax.crypto.SecretKey)

5.1 org.springframework.security.jwt.crypto.sign.RsaSigner: void <init>(java.lang.String)

5.2 org.springframework.security.jwt.crypto.sign.EllipticCurveVerifier: void <init>
(java.security.interfaces.ECPublicKey, java.lang.String)

6.1 io.fusionauth.jwt.hmac.HMACSigner: void
<init>(io.fusionauth.jwt.domain.Algorithm,byte[],java.lang.String, io.fusionauth.security.CryptoProvider)

6.2 io.fusionauth.jwt.rsa.RSASigner: void
<init>(io.fusionauth.jwt.domain.Algorithm,java.security.PrivateKey, java.lang.String,
io.fusionauth.security.CryptoProvider)

7.1 io.vertx.ext.auth.PubSecKeyOptions setPublicKey(java.lang.String)

7.2 io.vertx.ext.auth.PubSecKeyOptions setSecretKey(java.lang.String)

Slicing Criteria. Note that insecure key storage behaviours (i.e., R-03, R-06
and R-07) can be detected by the corresponding analysis entries, while the oth-
ers need more rounds of program slicing. For the other rules, starting from the
analysis entries, the propagation paths of the parameter of interest tracks with
the slicing criterion APIs. Similarly, as the number of slicing criterion APIs is
quite large, we show partial representative APIs in Table 5 (in the Appendix).
The slicing criterion APIs can be divided into two groups: APIs in JWT libraries
and APIs in Java cryptographic libraries. First, the APIs in JWT libraries are
used to detect the rules related to JWT-specific properties. For example, in R-
08, JWTKey determines the APIs used to retrieve keys from URI provided by
JWT libraries (e.g., the retrieveKeysFromJWKS method provided by Fusion-
Auth JWT [17]). Then JWTKey uses these APIs as slicing criteria to perform a
new round of backward slicing to determine whether there is an insecure HTTP
connection. For R-10, R-13, R-14, JWTKey detects the header parameter set-
ting and getting methods provided by JWT libraries, and performs backward
slicing on the parameters of these related methods to analyze the insecure use
of “jwk”, “jku”, “p2c”, “p2s” header parameters. JWTKey detects IV setting
methods in JWT libraries for R-12. Second, as only a few of JWT libraries pro-
vide APIs to generate random values (e.g., key, random number, salt value), thus

JWTKey 273

a large part of JWT application developers still tend to use the APIs of cryp-
tographic libraries to generate random values. Therefore, JWTKey also detects
the misuse of the underlying Java cryptographic libraries APIs for different algo-
rithms based on the slicing result of the analysis entries. For example, to detect
R-02, JWTKey identifies the use of the initialize method in KeyPairGenerator
class and the init method in SecretKeySpec class to check the key size.

5.4 Execute Specific Slicing for Different Rules

We break down the detection of rules into one or more steps and perform back-
ward and/or forward slicing for each step (the fourth column of Table 1).

Backward Slicing. Backward slicing in JWTKey consists of intra-procedural
and inter-procedural analysis. JWTKey leverages the Soot framework to per-
form def-use analysis to compute slices for intra-procedural backward slicing.
For inter-procedural backward analysis, JWTKey analyzes the upward inter-
propagation of the slicing criterion such as method invocation and indirect field
access realized by orthogonal methods based on the intra-procedural backward
slicing. For example, in R-03, JWTKey executes a single round of backward slic-
ing based on key parameters from the analysis entries and locates hard-coded
keys by analyzing the assignment statement and Constant object (defined by
Soot) included in invocation statements of slices. JWTKey also checks the length
of the hard-coded key for R-02. For the rules related to the misuse of APIs in
cryptographic libraries (e.g., R-01, R-05), JWTKey performs one or more rounds
of backward slicing. JWTKey first locates the detected APIs, and then deter-
mines the relationship between the APIs and the key lifecycle by analyzing the
SDG and the slicing results of the analysis entry. For R-01, we detect PRNGs
that contain a hard-coded seed value. When JWTKey analyzes the call of an
insecure API (e.g., init(byte[]) method in SecureRandom class) and determines
that the API is related to JWT key generation, it will use the API as a slicing
criterion, and execute backward slicing with the byte[] parameter. For R-05, we
detect predictable KeyStore password by performing backward slicing with the
parameters of load, store, getKey methods in java.security.KeyStore class and
getKeyPair method in KeyStoreKeyFactory class provided by Spring Security
OAuth [48] as the slicing criteria.

Forward Slicing. For example, we detect getPublicKey method in X509Cert-
ificate class. As shown in Listing 5.1, r12 is an object of Certificate class,
where its fields are accessed indirectly with the orthogonal method (i.e., get-
PublicKey), and r13 is an object of PublicKey class. We design a forward slic-
ing for R-11 to detect the object of PublicKey class, which is used to verify
a JWT. In addition, we perform inter-procedural forward analysis on meth-
ods invoking r12 object, and analyze whether these methods include certifi-
cate validity verification methods (e.g., verify method and checkValidity method

274 B. Xu et al.

in java.security.cert.X509Certificate) and certificate chain verification methods
(e.g., validate method in java.security.cert.CertPathValidatorResult class).

1 r12 = (java.security.cert.X509Certificate) $r11;
2
3 r13 = virtualinvoke r12.<java.security.cert.X509Certificate: java.security.PublicKey

getPublicKey()>();

Listing 5.1. A converted IR of getting the public key from certificate in R-11.

Properties File Analysis. A myriad of JWT applications are based on Spring
framework [48], which simplifies authentication and authorization implementa-
tions [32]. We observe that such applications commonly use properties file to
externalize user configuration (e.g., key, password and URI). As static analysis
methods commonly cannot capture the full semantics of features (e.g., the injec-
tion from properties file) [41], therefore, we conduct a special analysis on the
processing of properties files in Spring framework. To detect the symmetric/pri-
vate key, private key path and insecure HTTP URL in properties file (e.g., R-06,
R-07 and R-08), JWTKey analyzes the annotation of the assignment state-
ment for specifying value, path, or URL of key used to process JWT, searches
the @Value annotation and parses the corresponding property name, and then
retrieves the properties files to obtain the corresponding property value. We ana-
lyze the property value injection methods provided by the Spring framework, and
add corresponding analysis of @Configuration, @EnableAuthorizationServer, and
@Autowired annotations, which are used to configure JWT related values from
properties file.

6 Implementation and Evaluation

6.1 Implementation

We implemented JWTKey with around 12,403 lines of Java code. JWTKey is
realized based on the Soot framework [47], which provides compilation and anal-
ysis for Java applications. We use the intra-procedural data-flow and def/use
analysis provided by Soot to construct SDGs and utilize the worklist algo-
rithm of Soot to process the orthogonal method during slicing. In JWTKey,
we select and support the top seven most popular JWT libraries (i.e., java-
jwt [4], jjwt [27], Nimbus-JOSE-JWT [35], jose.4.j [6], FusionAuth JWT [17],
Vert.x Auth JWT [51] and Spring Security OAuth [48]). Note that 99% Java-
based JWT applications that we crawled from GitHub are developed based on
the above selected libraries.

6.2 Experimental Setup

We select our data-set from GitHub as follows: 1) we determined several key-
words (e.g., authorization, authentication, OAuth, OIDC, microservice and

JWTKey 275

mobile application) as the topics where JWT is most widely used to obtain
popular open-source applications with JWT usage; 2) in each topic, we filtered
by language Java and sorted by the number of stars that are more than 50 stars.
Finally, we crawled 358 open source Java-based JWT applications in total. We
deployed JWTKey on a PC with Intel Core i7-4500U (1.80GHZ CPU and 12GB
RAM). The average runtime was 1.34 s per thousand LoC (Line of Code).

6.3 Security Findings in JWT Applications

The detailed evaluation results are shown in Table 3. JWTKey reported a total
of 417 alerts for the 358 detected JWT applications. Out of the 358 applications,
236 applications (65.92%) have at least one JWT cryptographic vulnerability and
116 applications (32.40%) have at least two related vulnerabilities. Our careful
manual source-code analysis (conducted by two Ph.D. students under the guid-
ance of a professor from the area of applied cryptography) confirmed that 410
alerts are true positives, resulting in the accuracy as 98.32%. The 7 false posi-
tives are due to the path insensitivity and clipping detection depth when dealing
with some complex semantic cases (See Sect. 7). Note that in terms of precision,
CryptoGuard outperforms CrySL [1], and CrySL outperforms CryptoLint [30],
therefore, we prove the effectiveness of JWTKey by making comparative exper-
iments with CryptoGuard [40]. Note that JWTKey adopts JWT-oriented cryp-
tographic rules, while some of the rules (e.g., R-06, R-07, R-10, R-11 and R-15)
are not supported by CryptoGuard, thus resulting in its direct false negatives.

Table 3. Accuracy comparison between JWTKey and CryptoGuard of 358 JWT appli-
cations. (TP: True Positives; FN: False Negatives; “-”: Not supported. Note that the
TP and FN of CryptoGuard are counted with the cryptographic rules of JWTKey.)

ID JWTKey CryptoGuard [40]

Applications # Alerts # TP Accuracy # TP # FN

R-01 1(0.28%) 1(0.24%) 1 100.00% 1 0

R-02 118(32.96%) 125(29.98%) 120 96.00% 4 116

R-03 105(29.33%) 109(26.14%) 109 100.00% 28 81

R-04 1(0.28%) 1(0.24%) 1 100.00% 1 0

R-05 17(4.75%) 17(4.08%) 17 100.00% 13 4

R-06 98(27.37%) 126(30.22%) 126 100.00% - 126

R-07 3(0.84%) 3(0.72%) 3 100.00% - 3

R-08 14(3.91%) 17(4.08%) 17 100.00% 1 16

R-09 0(0.00%) 0(0.00%) 0 0.00% 0 0

R-10 1(0.28%) 1(0.24%) 1 100.00% - 1

R-11 11(3.07%) 11(2.64%) 9 81.82% - 9

R-12 0(0.00%) 0(0.00%) 0 0.00% 0 0

R-13 1(0.28%) 1(0.24%) 1 100.00% 1 0

R-14 1(0.28%) 1(0.24%) 1 100.00% 1 0

R-15 4(1.12%) 4(0.96%) 4 100.00% - 4

Total N/A 417 410 98.32% 50 360

276 B. Xu et al.

Vulnerabilities in Key Generation. For R-01, both JWTKey and Crypto-
Guard identified 1 case (in GCAuth) using insecure PRNG (i.e., random method
in java.lang.Math class) to generate a JWT key. For R-02, JWTKey reported 125
alerts, and we confirmed 120 of them. The false positives mainly come from path
insensitivity. For example, in wetech-admin, the generated short HMAC key will
be combined with other parameters (e.g., user ID) as the final HMAC key. As
CryptoGuard detected insecure asymmetric ciphers (e.g., RSA and ECC), thus
it can identify the 4 cases of insecure RSA short key pairs (e.g., spring-boot-api-
seedling), while it cannot identify the rest 116 cases of short HMAC key (e.g.,
in restheart and micronaut-microservice).

Vulnerabilities in Key Storage. For R-03, JWTKey identified 109 cases, 2 of
them are hard-coded AES symmetric keys and the rest 107 cases are hard-coded
HMAC keys. For example, both litemall (6.7k forks, 17.3k stars) and lamp-
cloud (1.2k forks, 4.4k stars) utilize a hard-coded HMAC key to sign and verify
JWTs. We also detected that a hard-coded HMAC key is used in Novel-Plus,
which has been defined as CVE-2022-36672 [9]. For R-04, both JWTKey and
CryptoGuard reported 1 case of using hard-coded PBE password (i.e., azure-
activedirectory). For R-05, JWTKey identified 17 cases of hard-coded KeyStore
password. As CryptoGuard adopts refinements after clipping orthogonal explo-
rations, it missed 81 cases and 4 cases in R-03 and R-05, respectively. The
accurate identification of analysis entries and slicing criteria of JWTKey short-
ens the analysis paths and avoids the false negatives of CryptoGuard. Moreover,
JWTKey reported 126 alerts (e.g., eladmin and Sa-Token) and 3 alerts (e.g.,
stormpath-sdk-java) for R-06 and R-07, respectively, however, CryptoGuard
missed the above two cases due to lacking of feature analysis in properties files.

Vulnerabilities in Key Transmission. For R-08, JWTKey identified 17 cases
of insecure HTTP URL for key transmission (e.g., happyride). However, Cryp-
toGuard missed 16 cases due to a lack of feature analysis in properties files.
For R-09, note that a JSSE provider (i.e., SunJSSE) is preinstalled and prereg-
istered with JCA, which provides an implementation of secure SSL/TLS pro-
tocols [36] for key transmission without the need of self-configuration, thus no
alert is reported by JWTKey and CryptoGuard. For R-10, JWTKey identified
1 case of using “jwk” parameter for key transmission in devdojo-microservices.

Vulnerabilities in Key Use. For R-11, JWTKey identified 11 cases of inse-
cure certificate/chain validation, while we confirmed 9 of them. The 2 false posi-
tives come from path insensitivity or clipping detection depth when dealing with
self-implemented certificate verification methods with inter-procedural forward
analysis. For example, as shown in Listing 6.1, JWTKey raised an alert for R-11
because the application obtains a public key from “x5c” parameter without cer-
tificate validity verification. However, this is a false positive due to the setX5C
is set as false, making the path from line 4 to line 6 unreachable. As a path-

JWTKey 277

insensitive static detector, JWTKey cannot handle such conditional execution
paths.

1 boolean sendX5C;
2//Setting sendX5C as false
3 if(setX5C){
4 List<cert> certs = new ArrayList<>();
5 for (String cert : credential.getEncodedPublicKeyCertificateChain()){
6 certs.add(new Base64(cert));}}
7//cert get from KeyStore

Listing 6.1. A false positive example due to path insensitivity for R-11.

For R-12, no alert is reported by JWTKey and CryptoGuard due to the fact
that rare applications are based on JWE in the wild. For R-13 and R-14, both
JWTKey and CryptoGuard reported 1 alert of fewer than 1,000 iterations and
static salts for PBE (i.e., azure-activedirectory), respectively. For R-15, JWTKey
identified 4 alerts of using deprecated insecure APIs (e.g., Dashboard uses require
API to transmit both private and public keys to verify tokens). JWTKey iden-
tified no use case of RSAES-PKCS1-v1 5 algorithm in our data-set. Note that if
a JWT application uses RSAES-PKCS1-v1 5 algorithm, it may not be directly
vulnerable to an attack (e.g., Bleichenbacher attack [11]), thus more manual
detection efforts should be taken to verify whether it is a vulnerability.

Table 4. Insecure functions provided in JWT libraries. (Lib 1–7 corresponds to java-
jwt, jose.4.j, Nimbus-JOSE-JWT, jjwt, FusionAuth JWT, Vert.x Auth JWT and
Spring Security OAuth, respectively.

√
: secure; ✕: insecure;

√–: provide insecure func-
tions in previous versions; \: not supported.)

Functions Lib-1 Lib-2 Lib-3 Lib-4 Lib-5 Lib-6 Lib-7

HMAC key length restriction ✕
√ √ √– ✕ ✕

√–
RSA key length restriction ✕

√ √ √ √
✕

√

PBE parameters restriction \ ✕
√ \ \ \ \

Restrict HTTP for key transmission ✕ ✕ ✕ \ ✕ \ \
Certificate verification before obtaining JWT public key \ ✕ ✕ \ ✕ \ ✕

6.4 Security Findings in JWT Libraries

As Table 4 shows, JWTKey also discovered several vulnerabilities which are due
to the insecure functions provided in the JWT libraries. Specifically, some JWT
libraries adopt loose policy of key length restriction. For example, java-jwt, Fusio-
nAuth JWT, Vert.x Auth JWT, jjwt (before v0.10.0) and Spring Security OAuth
(before v2.5.1) allow the use of HMAC keys with insufficient length. Java-jwt
and Vert.x Auth JWT allow the use of RSA key pairs with less than 2048 bits.
In the case of PBE, certain JWT libraries do not provide PBE functions (e.g.,
java-jwt and jjwt), while jose.4.j allows users to use less than 1,000 iterations
and provides an interface to specify static salts during JWT generation. In the
case of key transmission, java-jwt, jose.4.j, Nimbus-JOSE-JWT and FusionAuth
JWT provide APIs to obtain keys used to verify signatures from an insecure

278 B. Xu et al.

HTTP URL. At last, jose.4.j, Nimbus-JOSE-JWT, FusionAuth JWT and Spring
Security OAuth provide APIs to obtain the public key from a certificate. How-
ever, none of the JWT libraries provide certificate validity verification functions
before obtaining JWT public key, leaving this burden to the developers of JWT
applications.

7 Limitations and Discussion

As a static analysis detector, same with previous methods [31,40], there still
exist some avenues for future improvements for JWTKey.

Accuracy. As a static analysis detector, JWTKey has several inherent limi-
tations. Firstly, JWTKey currently focuses on the APIs provided by the top 7
most popular Java-based JWT libraries, which may incur false negatives in the
case of invocation of API from other JWT libraries. Secondly, since the detec-
tion is based on data- and control-flow, the limited depth of clipping detection
makes it unable to handle certain complex semantics (e.g., determining the final
HMAC key length, certificate verification). Thirdly, JWTKey can only cover the
data stored in program files and properties files. However, if a vulnerable crypto-
graphic argument (e.g., key, and IV) is generated dynamically (e.g., by manual
inputting), JWTKey cannot detect such cases.

Responsible Disclosure. We contacted 236 developers of JWT applications
with cryptographic vulnerabilities to disclose all the confirmed alerts reported
in Table 3. We respected the disclosure policies of the companies we con-
tacted. Unfortunately, only 42 developers provided useful feedback on our find-
ings. Specifically, 32 developers acknowledged and fixed the JWT key security
management vulnerabilities (e.g., R-02, R-03 and R-06) in their applications
(e.g., Solon, Admin3, JWT, and Sureness). Some developers (e.g., practical-
microservices-architectural-patterns) explained that they support the insecure
certificate verification option (R-11) by the reason for simplifying implemen-
tations. 3 vulnerabilities (e.g., hard-coded key) from 3 JWT applications (i.e.,
Lilishop, Saas IHRM, and CWA Warn) have been declared as non-issue, declar-
ing that the current implementation will not cause specific attacks on their entire
systems. We also contacted the developers of JWT libraries to disclose the secu-
rity findings reported in Table 4, three of them provided feedback on key length
and PBE parameter restriction. Firstly, the developer of java-jwt declared that
the insufficient key length in HMAC and RSA will not have a specific effect
on the users. Secondly, the developer of jose.4.j approved our disclosure, and
promised to add a check of iteration count. Thirdly, the developer of Fusion-
Auth JWT explained that the responsibility to ensure secure implementations
belongs to the users rather than the library, and the restrictions on key length
may limit the applicability of the JWT library. We have submitted a series of
CVE ID requests to disclose the acknowledged and fixed vulnerabilities (e.g.,
R-03, R-06, R-11 and R-13) in popular JWT applications. More details of the
responsible disclosure will be provided on the homepage of JWTKey.

JWTKey 279

8 Conclusion

We propose JWTKey to detect cryptographic vulnerabilities of JWT applica-
tions. JWTKey leverages static program slicing technique, along with 15 crypto-
graphic rules strongly coupled with JWT key potential security threats. The eval-
uation results on 358 JWT applications and the comparative experiments with
CryptoGuard demonstrate the effectiveness of our design. Our work highlights
a lack of appreciation for the principle of key management in real-world crypto-
graphic deployments, which brings to the surface weaknesses not only in JWT
applications, but also in other cryptographic implementations. With respect
to the future work, the cryptographic vulnerability detection efforts would be
expanded to other typical cryptographic application areas (e.g., blockchain, PKI
system, and industrial control system).

Acknowledgements. We would like to thank the anonymous reviewers for their care-
ful reading of our manuscript and their many insightful comments and suggestions. We
are grateful to Prof. Juraj Somorovsky for helping us to improve our paper. This work
is supported in part by National Natural Science Foundation of China No.62272457,
National Key R&D Plan of China under Grant No.2020YFB1005800.

Appendix

Table 5. Partial representative slicing criterion APIs of JWT libraries and Java cryp-
tographic libraries. (⇐: backward slicing; ⇒: inter-procedural forward slicing; ⇒∗:
intra-procedural forward slicing)

No. API Method

1.1 java.util.Random: int nextInt(int) ⇒
1.2 java.util.Random: double nextDouble() ⇒
1.3 java.security.SecureRandom: void <init>(byte[]) ⇐
1.4 java.security.SecureRandom: void setSeed(byte[]) ⇐
2.1 java.security.KeyPairGenerator: KeyPairGenerator getInstance(java.lang.String) ⇒∗
2.2 java.security.KeyPairGenerator: KeyPairGenerator getInstance(String,String) ⇒∗
2.3 java.security.KeyPairGenerator: void initialize(int) ⇐
2.4 javax.crypto.spec.SecretKeySpec: void <init>(byte[],String) ⇐
4.1 org.jose4j.jwe.kdf.PasswordBasedKeyDerivationFunction2: byte[] derive(byte[],byte[],int,int) ⇐
4.2 com.nimbusds.jose.crypto.PasswordBasedEncrypter: void <init>(java.lang.String,int,int) ⇐
5.1 org.springframework.security.oauth2.provider.token.store.KeyStoreKeyFactory: void

<init>(org.springframework.core.io.Resource,char[])
⇐

5.2 java.security.KeyStore: void load(InputStream,char[]) ⇐
8.1 com.auth0.jwk.UrlJwkProvider: void <init>(java.lang.String) ⇐
8.2 org.jose4j.jwk.HttpsJwks: void <init>(java.lang.String) ⇐
8.3 com.nimbusds.jose.jwk.source.RemoteJWKSet: void <init>(java.net.URL) ⇐
8.4 io.fusionauth.jwks.JSONWebKeySetHelper: java.util.List retrieveKeysFromJWKs(java.lang.String) ⇐
9.1 javax.net.ssl.HostnameVerifier: boolean verify(String,SSLSession) ⇒
9.2 javax.net.ssl.SSLSocketFactory: SocketFactory getDefault() ⇒∗
10.1 com.nimbusds.jose.JWSHeader: com.nimbusds.jose.jwk.JWK getJWK() ⇐
10.2 com.nimbusds.jose.JWEHeader: java.net.URI getJWKURL() ⇐
11.1 java.security.cert.X509Certificate: void verify ⇒∗
11.2 java.security.cert.X509Certificate: void checkValidity ⇒∗
12.1 javax.crypto.spec.IvParameterSpec: void <init>(byte[]) ⇐
12.2 javax.crypto.spec.IvParameterSpec: void <init>(byte[],int,int) ⇐
13.1 org.jose4j.jwe.kdf.PasswordBasedKeyDerivationFunction2: byte[] derive(byte[],byte[],int,int,java.lang.String) ⇐
13.2 com.nimbusds.jose.crypto.PasswordBasedEncrypter: void <init>(java.lang.String,int,int) ⇐
14.1 org.jose4j.jwe.kdf.PasswordBasedKeyDerivationFunction2: byte[] derive(byte[],byte[],int,int) ⇐
14.2 org.jose4j.jwe.kdf.PasswordBasedKeyDerivationFunction2: byte[] derive(byte[],byte[],int,int,java.lang.String) ⇐
15.1 com.auth0.jwt.interfaces.Verification require(com.auth0.jwt.algorithms.Algorithm) ⇒
15.2 com.nimbusds.jose.crypto.impl.RSA1 5: void <init>() ⇒

280 B. Xu et al.

References

1. Afrose, S., Xiao, Y., Rahaman, S., Miller, B., Yao, D.D.: Evaluation of static vul-
nerability detection tools with java cryptographic API benchmarks. IEEE Trans.
Softw. Eng. 49, 485–497 (2022)

2. Al Rahat, T., Feng, Y., Tian, Y.: OAUTHLINT: an empirical study on OAuth
bugs in android applications. In: 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 293–304. IEEE (2019)

3. Ami, A.S., Cooper, N., Kafle, K., Moran, K., Poshyvanyk, D., Nadkarni, A.: Why
crypto-detectors fail: a systematic evaluation of cryptographic misuse detection
techniques. In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 614–631.
IEEE (2022)

4. Auth0: Java jwt. A Java implementation of JSON Web Token (JWT) - RFC 7519
(2017). https://github.com/auth0/java-jwt

5. Barker, E.: Nist special publication 800–57 part 1 revision 5, recommendation for
key management, part 1-general. NIST Spec. Publ. 800–57, 1–171 (2020)

6. Bitbucket: Welcome to jose4j (2015). https://bitbucket.org/b c/jose4j/wiki/Home
7. Böck, H., Zauner, A., Devlin, S., Somorovsky, J., Jovanovic, P.: {Nonce-

Disrespecting} adversaries: practical forgery attacks on {GCM} in {TLS}. In: 10th
USENIX Workshop on Offensive Technologies (WOOT 16) (2016)

8. Cve-2022-35540 (2022). https://nvd.nist.gov/vuln/detail/CVE-2022-35540
9. Cve-2022-36672 (2022). https://nvd.nist.gov/vuln/detail/CVE-2022-36672

10. CWE-260: Password in configuration file (2022). https://cwe.mitre.org/data/
definitions/260.html

11. Detering, D., Somorovsky, J., Mainka, C., Mladenov, V., Schwenk, J.: On the (in-
) security of javascript object signing and encryption. In: Proceedings of the 1st
Reversing and Offensive-oriented Trends Symposium, pp. 1–11 (2017)

12. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of crypto-
graphic misuse in android applications. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security, pp. 73–84 (2013)

13. Ethelbert, O., Moghaddam, F.F., Wieder, P., Yahyapour, R.: A JSON token-based
authentication and access management schema for cloud SaaS applications. In:
2017 IEEE 5th International Conference on Future Internet of Things and Cloud
(FiCloud), pp. 47–53. IEEE (2017)

14. Fett, D., Küsters, R., Schmitz, G.: A comprehensive formal security analysis of
OAuth 2.0. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1204–1215 (2016)

15. Fett, D., Küsters, R., Schmitz, G.: The web SSO standard openID connect: In-
depth formal security analysis and security guidelines. In: 2017 IEEE 30th Com-
puter Security Foundations Symposium (CSF), pp. 189–202. IEEE (2017)

16. Frantz, M., Xiao, Y., Pias, T.S., Yao, D.D.: Poster: Precise detection of unprece-
dented python cryptographic misuses using on-demand analysis. The Network and
Distributed System Security (NDSS) Symposium (2022)

17. FusionAuth: Fusionauth jwt (2016). https://github.com/fusionauth/fusionauth-
jwt

18. Ghasemisharif, M., Ramesh, A., Checkoway, S., Kanich, C., Polakis, J.: O single
sign-off, where art thou? an empirical analysis of single sign-on account hijack-
ing and session management on the web. In: 27th USENIX Security Symposium
(USENIX Security 18), pp. 1475–1492 (2018)

https://github.com/auth0/java-jwt
https://bitbucket.org/b_c/jose4j/wiki/Home
https://nvd.nist.gov/vuln/detail/CVE-2022-35540
https://nvd.nist.gov/vuln/detail/CVE-2022-36672
https://cwe.mitre.org/data/definitions/260.html
https://cwe.mitre.org/data/definitions/260.html
https://github.com/fusionauth/fusionauth-jwt
https://github.com/fusionauth/fusionauth-jwt

JWTKey 281

19. Guy Rosen: Facebook security update (2018). https://about.fb.com/news/2018/
09/security-update/

20. Haekal, M., et al.: Token-based authentication using JSON web token on SIKASIR
restful web service. In: 2016 International Conference on Informatics and Comput-
ing (ICIC), pp. 175–179. IEEE (2016)

21. Hammer-Lahav, E.: RFC 5849: The OAuth 1.0 protocol. Tech. rep., Internet Engi-
neering Task Force (2010)

22. Hardt, D.: RFC 6749: The OAuth 2.0 authorization framework. Tech. rep., Internet
Engineering Task Force (2012)

23. Jones, M., Bradley, J., Sakimura, N.: RFC 7519: JSON web token (JWT). Tech.
rep, Internet Engineering Task Force (2015)

24. Jones, M.: RFC 7518: JSON web algorithms (JWA). Tech. rep, Internet Engineer-
ing Task Force (2015)

25. Jones, M., Bradley, J., Sakimura, N.: RFC 7515: JSON web signature (JWS). Tech.
rep, Internet Engineering Task Force (2015)

26. Jones, M., Hildebrand, J.: RFC 7516: JSON web encryption (JWE). Tech. rep,
Internet Engineering Task Force (2015)

27. Jwtk: Jjwt. Java JWT: JSON Web Token for Java and Android (2016). https://
github.com/jwtk/jjwt

28. Kleinjung, T., et al.: Factorization of a 768-bit RSA modulus. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 18

29. Krawczyk, H.: How to predict congruential generators. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 138–153. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 14

30. Krüger, S., Späth, J., Ali, K., Bodden, E., Mezini, M.: CrySL: an extensible app-
roach to validating the correct usage of cryptographic APIs. IEEE Trans. Software
Eng. 47(11), 2382–2400 (2019)

31. Li, W., Jia, S., Liu, L., Zheng, F., Ma, Y., Lin, J.: CryptoGO: automatic detec-
tion of go cryptographic API misuses. In: Annual Computer Security Applications
Conference, pp. 318–331 (2022)

32. Meng, N., Nagy, S., Yao, D., Zhuang, W., Argoty, G.A.: Secure coding practices
in java: challenges and vulnerabilities. In: Proceedings of the 40th International
Conference on Software Engineering, pp. 372–383 (2018)

33. Michaelides, M., Sengul, C., Patras, P.: An experimental evaluation of MQTT
authentication and authorization in IoT. In: WiNTECH’21: Proceedings of the 15th
ACM Workshop on Wireless Network Testbeds, Experimental evaluation & CHar-
acterization, New Orleans, LA, USA, 4 February 2022, pp. 69–76. ACM (2021)

34. Mousa, A., Hamad, A.: Evaluation of the rc4 algorithm for data encryption. Int.
J. Comput. Sci. Appl. 3(2), 44–56 (2006)

35. Nimbusds: Nimbus-jose-jwt (2016). https://bitbucket.org/connect2id/nimbus-
jose-jwt/src/master/

36. Oracle: Java secure socket extension (jsse) reference guide (2018). https://docs.
oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#
StandardAPI

37. OWASP: reverse engineering (2023). https://owasp.org/www-project-mobile-top-
10/2016-risks/m9-reverse-engineering

38. Piccolboni, L., Di Guglielmo, G., Carloni, L.P., Sethumadhavan, S.: CRYLOG-
GER: detecting crypto misuses dynamically. In: 2021 IEEE Symposium on Security
and Privacy (SP), pp. 1972–1989. IEEE (2021)

https://about.fb.com/news/2018/09/security-update/
https://about.fb.com/news/2018/09/security-update/
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://doi.org/10.1007/978-3-642-14623-7_18
https://doi.org/10.1007/0-387-34805-0_14
https://doi.org/10.1007/0-387-34805-0_14
https://bitbucket.org/connect2id/nimbus-jose-jwt/src/master/
https://bitbucket.org/connect2id/nimbus-jose-jwt/src/master/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#StandardAPI
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#StandardAPI
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#StandardAPI
https://owasp.org/www-project-mobile-top-10/2016-risks/m9-reverse-engineering
https://owasp.org/www-project-mobile-top-10/2016-risks/m9-reverse-engineering

282 B. Xu et al.

39. Rahaman, S., Cai, H., Chowdhury, O.H., Yao, D.D.: From theory to code: iden-
tifying logical flaws in cryptographic implementations in C/C++. IEEE Trans.
Dependable Secure Comput. 19, 3790–3803 (2021)

40. Rahaman, S., et al.: CryptoGuard: high precision detection of cryptographic
vulnerabilities in massive-sized java projects. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pp. 2455–2472
(2019)

41. Rahat, T.A., Feng, Y., Tian, Y.: Cerberus: query-driven scalable vulnerability
detection in oauth service provider implementations. In: Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, pp. 2459–
2473 (2022)

42. Sabir, B.E., Youssfi, M., Bouattane, O., Allali, H.: Authentication and load bal-
ancing scheme based on JSON token for multi-agent systems. Proced. Comput.
Sci. 148, 562–570 (2019)

43. Sakimura, N., Bradley, J., Jones, M., De Medeiros, B., Mortimore, C.: OpenID
connect core 1.0. The OpenID Foundation, p. S3 (2014)

44. Sharif, A., Carbone, R., Sciarretta, G., Ranise, S.: Best current practices for OAu-
th/OIDC native apps: a study of their adoption in popular providers and top-
ranked android clients. J. Inf. Secur. Appl. 65, 103097 (2022)

45. Sheffer, Y., Hardt, D., Jones, M.: RFC 8725: JSON web token best current prac-
tices. Tech. rep, Internet Engineering Task Force (2020)

46. Singh, J., Chaudhary, N.K.: OAuth 2.0 : architectural design augmentation for mit-
igation of common security vulnerabilities. J. Inf. Secur. Appl. 65, 103091 (2022)

47. Soot-oss: Soot - a framework for analyzing and transforming java and android
applications (2022). https://soot-oss.github.io/soot/

48. Spring: Spring security OAuth (2016). https://github.com/spring-attic/spring-
security-oauth

49. van der Veen, V., et al.: Drammer: deterministic Rowhammer attacks on mobile
platforms. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1675–1689 (2016)

50. Varalakshmi, P., Guhan, B., Dhanush, T., Saktheeswaran, K., et al.: Improvis-
ing JSON web token authentication in SDN. In: 2022 International Conference
on Communication, Computing and Internet of Things (IC3IoT), pp. 1–8. IEEE
(2022)

51. Vertx: Vert.x jwt auth (2019). https://vertx.io/docs/vertx-auth-jwt/java/
52. Wang, H., Zhang, Y., Li, J., Gu, D.: The achilles heel of OAuth: a multi-platform

study of OAuth-based authentication. In: Proceedings of the 32nd Annual Confer-
ence on Computer Security Applications, pp. 167–176 (2016)

53. Wang, H., et al.: Vulnerability assessment of OAuth implementations in android
applications. In: Proceedings of the 31st Annual Computer Security Applications
Conference, pp. 61–70 (2015)

54. Wen, M., Liu, Y., Wu, R., Xie, X., Cheung, S.C., Su, Z.: Exposing library API
misuses via mutation analysis. In: 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pp. 866–877. IEEE (2019)

55. Wickert, A.K., Baumgärtner, L., Breitfelder, F., Mezini, M.: Python crypto mis-
uses in the wild. In: the 15th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), pp. 1–6 (2021)

56. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.
ACM SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)

57. Zhang, L., Chen, J., Diao, W., Guo, S., Weng, J., Zhang, K.: CryptoREX: large-
scale analysis of cryptographic misuse in IoT devices. In: RAID, pp. 151–164 (2019)

https://soot-oss.github.io/soot/
https://github.com/spring-attic/spring-security-oauth
https://github.com/spring-attic/spring-security-oauth
https://vertx.io/docs/vertx-auth-jwt/java/

Blockchain

When is Slower Block Propagation More
Profitable for Large Miners?

Zhichun Lu1 and Ren Zhang1,2(B)

1 Cryptape Co. Ltd., Hangzhou, China
zhichunlu@cryptape.com

2 Nervos, Hangzhou, China
ren@nervos.org

Abstract. For years, Bitcoin miners put little effort into adopting
several widely-acclaimed block acceleration techniques, which, as some
argued, would secure their revenues. Their indifference inspires a the-
ory that slower block propagation is beneficial for some miners. In this
study, we analyze and confirm this counterintuitive theory. Specifically,
by modeling inadvertent slower blocks, we show that a mining coali-
tion that controls more than a third of the total mining power can earn
unfair revenue by propagating blocks slower to outsiders. Afterward, we
explore the strategies of an attacker that consciously exploits this phe-
nomenon. The results indicate that an attacker with 45% of the total
mining power can earn 58% of the total revenue. This attack is alarming
as it is equally fundamental but more stealthy than the well-known selfish
mining attack. At last, we discuss its detection and defense mechanisms.

Keywords: blockchain · slow block attack · selfish mining

1 Introduction

Nakamoto consensus (NC), implemented in Bitcoin [22] and hundreds of subse-
quent digital currencies [19], is the first and most influential protocol to maintain
an inalterable ledger without relying on any prior knowledge of the participants’
identities. The ledger, called the blockchain, is organized as a chain of blocks; each
block contains a set of transactions. NC’s participants, called miners, compete for
the right to extend the ledger by solving a cryptographic puzzle, generated from
the blockchain’s latest block and a group of new transactions. The puzzle-solving
process is called mining. A successful miner broadcasts the puzzle solution and
the transactions as a new block, hoping that other miners would accept the block
in their blockchains, so that the miner is entitled to a fixed block reward. When
a block is mined during another one’s propagation, these blocks may extend the
same “latest block” and the blockchain thus forks into multiple chains. During
a fork, NC prescribes miners to work on the main chain, which is the most com-
putationally challenging one to produce—usually the longest one. When several
chains are of equal “length”, miners should work on the first-received one. We
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 285–305, 2024.
https://doi.org/10.1007/978-3-031-51479-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_15&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_15

286 Z. Lu and R. Zhang

call this situation a tie. Eventually, all miners would adopt the same longest
chain, and blocks outside the chain are called orphaned and receive no reward.

Intuitively, the first-received policy incentivizes all miners to accelerate the
propagation of their own blocks, because an accelerated block (1) is less likely
to encounter a tie, and thus is less likely to be orphaned, and (2) could reach
more miners before a slower competitor, and thus is more likely to win a tie. This
intuition is stated or implicitly acknowledged in several early [1,2] and recent [18,
27] studies. Bitcoin developers also released Fast Internet Bitcoin Relay Engine
(FIBRE) [10] in 2016 to help the miners distribute blocks as fast as possible
among each other.

However, contrary to the common expectation, a significant proportion of
Bitcoin’s mining power did not embrace FIBRE to avoid ties. This can be
seen from the stable 0.2% orphan rate, i.e., the percentage of orphaned blocks,
between 2015 and mid-2017 [4,24]. The orphan rate dropped rapidly afterward
thanks to the efforts of the network participants, i.e., nodes, rather than the
miners. Specifically, in July 2017, the majority of nodes upgraded their clients
to advocate their unwillingness for Bitcoin to split into multiple cryptocur-
rencies [16]. Such a massive-scale upgrade coincidentally deployed Compact
Blocks [9], a network-level block propagation acceleration technique, which low-
ers the 3-second average latency for a new block to propagate to 50% of nodes
to 500 ms [11]. As a result, orphaned blocks were reduced from one every three
to four days to several per year [4].

Maxwell [20] and several other researchers [7,24] proposed a theory to explain
the inconsistency between the miners’ presumed rationale to accelerate their
blocks’ propagation and their indifference in reality. In this theory, slower block
propagation might benefit larger miners, as they enjoy a headstart in finding
the next block. This theory is not only counterintuitive—miners who accelerate
their blocks may find themselves in a more disadvantageous situation—but also
subversive to our understanding of NC’s security—a system may be experiencing
systemic unfairness even without any observable attacks. However, without a
quantitative analysis of this phenomenon, whether or when can these seemingly
inadvertent slow blocks profit their miners remains inconclusive.

In this paper, we address this situation by formally modeling the propaga-
tion of these slow blocks. We start by confirming this possibly inadvertent but
systemic unfairness and computing its boundary conditions with a Markov pro-
cess (MP), and then integrate Bitcoin’s network parameters into the MP and
evaluate against the boundary conditions. Further, we model a strategic adver-
sary who consciously exploits this phenomenon for profit with a Markov decision
process (MDP), which reveals more intricacies of NC’s security.1 In particular,
our contributions include:

Confirming the Systemic Unfairness Caused by Slow Blocks. To confirm
Maxwell’s theory, we model the mining and block propagation process with some
blocks slower than others with an MP. The MP is simple: the slow blocks’ miner,
1 Code available at https://github.com/Mitsuhamizu/delayed-miner-reward.

https://github.com/Mitsuhamizu/delayed-miner-reward

When is Slower Block Propagation More Profitable for Large Miners? 287

termed D-miner for “delay”, does not employ any strategic behavior based on
the status of the blockchain. Such a simple MP allows us to test the possibility
of systemic unfairness even when all miners are benign.

The results show that slow blocks do raise D-miner’s revenue share within a
certain range of parameters. Specifically, a D-miner with a mining power share
ρ can gain an unfair profit when ρ > (1 − γ)/(2 − γ), where γ is the proportion
of other mining power that works on the slow block during a tie. The profitable
threshold (1 − γ)/(2 − γ) is less than 0.5 as long as γ > 0, contradicting the
intuition that all miners should accelerate their blocks. Moreover, in line with
the selfish mining attack [15], the D-miner’s unfair profit grows superlinearly with
ρ, which incentivizes rational miners to join their forces and form a coalition,
damaging the network’s decentralized structure, just like Maxwell predicted [20].

Evaluating the Boundary Conditions with Bitcoin’s Network Param-
eters. As the key parameter γ in our MP is not directly measurable, our MP
cannot be plugged right into reality and answer questions regarding the inad-
vertent D-miner with a given ρ, including (1) whether it should produce slow
blocks (or propagate its blocks slower), and (2) what is the optimal delay. We
thus extend our model so that γ can be “dissected” and computed from measur-
able data. This extension allows us to incorporate the measurement results from
the Bitcoin network [17,24], and thus answer the aforementioned questions.

The extended model indicates that in the pre-Compact-Block Bitcoin, a D-
miner profits more by delaying its blocks with ρ > 0.33. The optimal additional
delay grows roughly linearly from 0 when ρ = 0.33 to 6.8 s when ρ = 0.49.

Quantifying the Damage of Deliberate Attacks. Given that an inadver-
tent D-miner can make an unfair profit, likely, a strategic D-miner can further
raise the profit by acting upon the blockchain’s status. Rather than waiting for
the slow blocks to propagate naturally like an inadvertent D-miner, here the
adversary may push the blocks to the receivers when convenient. A fundamental
difference between this slow block attack and selfish mining, where the adversary
delays broadcasting the blocks as long as necessary to invalidate as many other
miners’ blocks as possible, is that our adversary never “delays” a block longer
than a fixed maximum duration. In other words, the natural block propagation
delay caps the delay time of all adversary blocks. Although such a constraint
lowers the adversary’s revenue, it also renders the attack undetectable via the
traditional indicators of selfish mining [14], and thus does not risk causing a drop
in the cryptocurrency’s price. Therefore, we can regard the slow block attack as
a stealthier, hence “safer” alternative to selfish mining.

We model the slow block attack with an MDP, where the adversary can
choose what to do when one or more blocks are mined before a slow block
finishes propagation. When ρ < 0.42, the optimal strategies output by our MDP
are either honest or naive, i.e., to publish enough blocks to cause a tie with the
honest public chain whenever possible. For ρ ≥ 0.42, the strategy becomes more
aggressive: the adversary may keep mining on its chain even when it is several

288 Z. Lu and R. Zhang

blocks shorter than the honest chain. We also observe a rapid increase in the
unfair profit in this region. When ρ = 0.45, the adversary gains revenue 2% to
26% higher than mining honestly, depending on the maximum delay.

Discussing Countermeasures. At last, we discuss how to detect and/or pre-
vent the slow block attack. All the technical solutions require the collective effort
of the nodes and the miners. Therefore the core issue at hand is to raise aware-
ness of the stealthiness and fundamentality of the attack. Consequently, we call
for the community to rethink the implicit assumption that an NC system, or any
other system, is fair and safe when there is no observable attack, and to replace
the widely-believed “universal” 50% security threshold with a value matching
the system’s actual network condition.

2 Block Propagation: The Faster, the Better?

2.1 Nakamoto Consensus

NC is among the most influential and actively studied consensus protocols since
the inception of Bitcoin. It is implemented in hundreds of subsequent cyptocur-
rencies [19], including Ethereum, the cryptocurrency with the second largest
market capitalization, before it switches to another protocol in September 2022.
Henceforth we use Ethereum to denote the cryptocurrency before the switch.

Each block in NC contains (1) its height—distance from the hard-coded
genesis block, (2) the hash value of the parent block, (3) a set of transactions, (4)
a timestamp when the block is mined, and (5) a nonce. Embedding the parent
hash ensures that a miner chooses which chain to mine on before starting to
mine. To construct a valid block, miners work on finding the right nonce so
that the block hash is smaller than the difficulty target. In Bitcoin, this target is
adjusted every 2016 blockchain blocks so that on average one block is appended
to the blockchain in ten minutes. In Ethereum, the target is slightly adjusted
per block, leading to an average block interval of 13 s [13].

NC prescribes miners to publish blocks the moment they are found. Blocks
of the same height are competing blocks. Eventually, all but one of the competing
blocks are orphaned, i.e., discarded by all miners, and receive no reward.

2.2 Selfish Mining

The most influential attack against NC is selfish mining, first analyzed by Eyal
and Sirer [15] and later generalized to a family of strategies [23,25,28]. In these
attacks, a selfish miner keeps discovered blocks secret and mines on top of them,
hoping to gain a larger lead on the public chain of honest blocks mined by other
miners. The selfish miner publishes the secret chain when the public chain catches
up, or right before that, to invalidate as many honest blocks as possible.

Selfish mining is one of the most fundamental attacks against NC as it allows
the attacker to gain a higher percentage of block rewards than its mining power

When is Slower Block Propagation More Profitable for Large Miners? 289

share. As the attacker’s revenue rises superlinearly with the mining power, ratio-
nal miners are incentivized to attack collectively for higher profits. This situation
not only damages the system’s decentralized structure but also raises the success
rates of various other attacks.

Luckily, the community generally believes that selfish mining has never hap-
pened in Bitcoin as it is easily detectable [14]. Essentially, as the attacker cannot
predict when the next honest block will be mined—hence when the secret block
should be released, a secret block’s timestamp is usually inconsistent with its
releasing time, which would expose the attacker. As we shall see, the slow block
attack undermines NC’s security in the same way but is more difficult to detect.

2.3 Two Conflicting Opinions

The absence of selfish mining is often attributed to its detectability, as visible
attacks on a cryptocurrency often cause sharp declines in its price, resulting in a
financial loss larger than the attacker’s gain. This argument is termed exchange
rate rationality by Bonneau et al. [5]. Given that rational miners would not risk
being detected to mine selfishly, whether due to exchange rate rationality or
some other reasons, people disagree on whether all miners are incentivized to
accelerate the propagation of their own blocks.

On the one hand, it is a general belief that although it might be irrational
to propagate other miners’ blocks, all miners would accelerate their own blocks’
propagation, to avoid ties or to raise the probability of winning potential ties
by being the first-received ones. This argument is first proposed by Babaioff as
early as 2012 [1] and has echoed for a decade [2,18,27].

On the other hand, observing the slow adoption of FIBRE, Maxwell men-
tioned in a talk in 2017 that slower block propagation might benefit larger min-
ers [20]. He further suspected that this phenomenon, as in selfish mining, would
drive miners to form a coalition that propagates blocks immediately to insiders
but slower to outsiders. Likewise, Neudecker and Hartenstein [24] speculated
that “the block propagation delay gives the miner of the last block an advantage
in finding the subsequent block, until other miners have received the block.” Cao
et al. also mentioned in [7] that a slower block may cause some miners to “waste
hashing power on an already solved cryptographic puzzle”.

The conflict between these two opinions has profound implications for NC’s
security. If the former is true, as long as no mining coalition controls more than
half of the mining power, NC systems are seemingly incentive compatible in
the absence of detectable selfish mining. Otherwise, we need to reevaluate the
commonly-believed 50% security threshold and the effectiveness of exchange rate
rationality in securing the network. We aim to resolve these conflicting views by
quantitatively analyzing the slower block propagation behavior.

3 Modeling the Inadvertent D-Miner

Our analysis starts with the simplest case, where the slow blocks’ miner, despite
the (possibly inadvertent) delay, strictly follows NC. First, we discuss the poten-

290 Z. Lu and R. Zhang

tial causes of such a delay. We then introduce our threat model and how we model
such a D-miner with an MP, whose results confirm the systemic unfairness.

3.1 The Potential Causes of the Longer Block Propagation Delay

The delay may reside in multiple phases in a block’s lifecycle.

Pre-propagation. Before broadcasting a block, the miner processes it inter-
nally. Such processing includes (1) combining the puzzle solution with the trans-
actions and (2) sending the block to the “guard nodes” [21], who are in charge of
the broadcast. Both steps may be time-consuming when the guard nodes crash
or when the mining pool communication software does not behave as expected.

In-propagation. Two reasons may lead to in-propagation delay. First, the
miner may broadcast from some poorly-connected nodes, with few connections
and low bandwidth. Second, the block itself may take longer to synchronize, per-
haps because it is larger than the other blocks. Note that Compact Blocks (CBs),
which hope to reduce the propagation latency by optimistically not transferring
the transactions by default, do not eliminate the second case. This is because
CBs accelerate a block’s propagation only when all its transactions are already
synchronized when the block is mined. If some transactions are new, or only
known to the block miner, for each hop of the block’s propagation, an extra
round trip is required to query these transactions [9].

Post-propagation. After receiving a new block, miners should verify the valid-
ity of its transactions before starting to work on it, to avoid wasting time on
an invalid block. This can be time-consuming when some transactions refer to
a large number of previous transactions stored physically distantly from each
other on the hard disk [6].

An inadvertent delay may happen at any phase. However, for a malicious D-
miner, pre-propagation is the most convenient phase, because it does not require
a large or slow-to-verify block, allowing the attacker to, when convenient, stop
the delay and push the block to the receivers before the competing blocks.

3.2 The Threat Model for Our MP

We choose a weak yet realistic threat model to showcase that systemic unfairness
exists even without any sophisticated attacks. Time is continuous and mining is
modeled as a Poisson process with an average block interval T . Accordingly, the
probability that all miners find exactly n blocks in t seconds is (t/T)n/n! ·e−t/T .
There is only one D-miner with mining power share ρ < 1, whose blocks are
delayed up to D seconds. We do not prescribe ρ < 0.5 to cover the case that
several large mining pools propagate blocks quickly among each other but slowly
to the outside world. All other miners, who control mining power share μ (where

When is Slower Block Propagation More Profitable for Large Miners? 291

Fig. 1. Markov model with an inadvertent D-miner. The double-circled nodes denote
the blockchain’s states. The directed edges denote the transitions, whose probabilities
are written on the right.

μ + ρ = 1) broadcast their blocks immediately, which cannot be delayed by
the D-miner. Since there is no need to distinguish these other miners, we use
the singular form “the undelayed miner” for simplicity. Both ρ and μ remain
unchanged throughout the process. All miners follow the longest chain rule, and
each fork lasts at most one block. This assumption is reasonable because all
Bitcoin forks measured by Neudecker and Hartenstein [24] are one-block long.
We neglect transaction fees and only consider block reward in this paper, as the
former only makes up 1% of the miners’ rewards in Bitcoin [3].

3.3 Our Markov Process

MP is commonly used to model the mining process without any strategic behav-
iors. In line with previous work [15], the blockchain’s statuses are encoded as
states, i.e., the double-circled nodes in Fig. 1, whose transitions are triggered by
two kinds of events: (1) a new block is mined, or (2) D seconds has passed.

There are three states, named after the D-miner’s lead to the undelayed
miner. In state 0, both miners work on the same block. In state 1, the D-miner has
just found a block and is delaying it. Here the D-miner is the only one working on
this latest block. In state 0’, the blockchain is forked, and the undelayed mining
power may be split: some, with a proportion γ, works on the D-miner’s block,
while the other 1 − γ works on the latest block mined by the undelayed miner.

We now describe the transitions, starting from state 0. If the undelayed miner
finds a block (with probability μ, hereafter referred to as “w.p.”), the system
stays at state 0, and the undelayed miner gets a block reward (1). Otherwise,
the next block is mined by the D-miner (w.p. ρ), who starts the delay and the
system enters state 1 (2).

Three transitions may happen at state 1. If no block is mined in D seconds,
the D-miner releases the block, gets a block reward, and then the state returns to
0 (3). As mining is modeled as a Poisson process, 3 happens with probability
e−λ, where λ = D/T is the expected number of blocks mined in these D seconds.

292 Z. Lu and R. Zhang

If there are new blocks and the first one is mined by the D-miner (w.p. ρ(1−e−λ)),
the previous slow block is broadcast immediately, issuing one reward to the D-
miner, which starts delaying the new block, transiting the state to 1 again (4).
If there are new blocks and the first one is mined by the undelayed miner (w.p.
μ(1 − e−λ)), the blockchain is forked and the state transits to 0’ (5).

Three transitions may happen at state 0’; all end with state 0. If the D-miner
finds the next block (w.p. ρ), it wins the tie, claiming two rewards (6). If the
undelayed miner finds a block on the D-miner’s block (w.p. μγ), each miner
gets one reward (7). Otherwise, if the undelayed miner finds a block on the
undelayed block (w.p. μ(1 − γ)), the undelayed miner gets two rewards (8).

3.4 State Probabilities and Relative Revenues

Stationary Distribution. We derive the following equations from Fig. 1, where
p0, p1, and p0′ are the stationary probability of states 0, 1, and 0’, respectively:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p0 = p0μ + p1e
−λ + p0′

p1 = p0ρ + p1(1 − e−λρ)
p0′ = p1(1 − e−λ)μ
1 = p0 + p0′ + p1

. (1)

Solving Eq. (1) gives us these probabilities:

p0 = (μ + ρe−λ)/(1 + μρ + ρ2e−λ) ,

p0′ = ρμ(1 − e−λ)/(1 + μρ + ρ2e−λ) ,

p1 = ρ/(1 + μρ + ρ2e−λ) .

(2)

Relative Revenue. The revenues for the D-miner and the undelayed miner,
denoted rd and ru, can be computed from the transition probabilities among the
states and their corresponding rewards:

rd = 2p0′ρ + p0′μγ + p1(1 − e−λ)ρ + p1e
−λ ,

ru = p0μ + 2p0′μ(1 − γ) + p0′μγ .
(3)

Combining Eq. (2) and (3) allows us to compute the relative revenue, i.e.,
the proportion of the D-miner’s revenue among all the rewards:

Rd =
rd

rd + ru
= ρ(e−λ + (1 − e−λ)(ρ2γ − 2ρ2 − 2ργ + 3ρ + γ)) . (4)

Equation (4) shows that Rd is a function of three inputs ρ, γ, and λ. We define
the unfair revenue as Rd − ρ, i.e., the difference between Rd and the D-miner’s
fair reward share, and plot how it varies with these inputs in Fig. 2.

When is Slower Block Propagation More Profitable for Large Miners? 293

Fig. 2. Overview of unfair revenue for the D-miner

Analysis. Here are three patterns from Fig. 2 and their underlying reasons.

Observation 1. The D-miner earns unfair revenue with a large enough ρ.

This confirms the systemic unfairness, that propagating blocks slower can be
more profitable than mining honestly, despite that the forks are no more than
one block long. Even when γ = 0, i.e., no undelayed mining power works on the
D-miner’s block in a tie, the D-miner can still earn an unfair profit with ρ > 0.5.

Essentially, the unfair revenue comes from orphaning the undelayed miner’s
blocks in ties. The D-miner earns a profit if more than μ percentage of orphaned
blocks are mined by the undelayed miner, but suffers a loss otherwise.

Observation 2. Whether the D-miner earns unfair revenue depends only on ρ
and γ, not on λ.

To quantify when the D-miner earns an unfair profit, we solve the inequality
Rd > ρ, leading to the condition ρ > (1−γ)/(2−γ). Interestingly, this condition
does not involve the delay duration λ, because here the D-miner’s profitability
depends only on the probability of winning ties, which further relies on ρ and γ,
but not on the frequency of ties, which relies on ρ and λ.

The multifunctionality of ρ also explains why when γ and λ are fixed, the
D-miner’s unfair revenue first decreases, and then increases with a growing ρ.
Specifically, when ρ is small, the D-miner loses almost all ties, thus increasing
ρ results in a higher loss as it raises the frequency of ties; when ρ grows larger,
the D-miner wins more ties, thus profiting more from the ties.

Observation 3. When γ and ρ are fixed, the D-miner’s profit/loss amplifies
with a larger λ.

A larger λ means a higher frequency of ties, amplifying the D-miner’s
profit/loss.

294 Z. Lu and R. Zhang

4 Are Inadvertent Slow Blocks Profitable in Reality?

Results from the previous section cannot be applied to reality yet, as, unlike ρ
and λ, which are either known or controllable/measurable, the key parameter γ
is not only unknown but also not directly measurable. Therefore, in this section,
we extend our model by dissecting γ with real-world data, which enables us to
quantify the profitability of an inadvertent D-miner in the Bitcoin network.

4.1 Extracting the D-γ Relationship in the Bitcoin Network

Intuitively, when both competing blocks propagate naturally, the distribution of
mining power working on each block—other than their own miners—is mainly
decided by the interval between their announcements. This intuition guides us
to express γ as a function of D, which consists of two tasks: (1) express γ as a
function of the headstart, i.e., the (equivalent) announcement interval, (2) express
the headstart as a function of D.

Headstart to γ. We can only learn the relation between the headstart ths
and γ from a series of (ths, γ) data points, where ths measures how long the
block is announced before its competitor, in seconds. We fetch the ths values
directly from Neudecker and Hartenstein’s measurement study [24], which covers
all Bitcoin forks between 2015 and 2017. Although γ is not directly measurable,
we can estimate it by extending our model. According to [24], a miner wins a
tie with probability Pwin = 3.07 × 10−5ths + 0.63. On the other hand, P′

win =
ρ + γ(1 − ρ) in our model, which is the combination of transitions 6 and
7 in Fig. 1. Assuming P′

win = Pwin, we have γ = (3.07 × 10−5ths + 0.63 −
ρ)/(1 − ρ). By inputting the miners’ then-mining-power share—fetched from
IntoTheBlock [17]—as ρ into this equation, we now have the estimated γ for
each data point.

To fit these (ths, γ) data into a curve, we introduce an additional heuristic
that γ = 0.5 when ths = 0. This is reasonable as two simultaneously-announced
competing blocks should have an equal chance to be selected by a third party. Not
surprisingly, a linear equation γ(ths) = 6.37 × 10−2ths + 0.5 for ths ∈ [−7.8, 7.8],
learned via the least squares method, already gives us a good estimation: the
root-mean-square deviation (RMSD) is as low as 0.12.

This (ths, γ) relation implies that γ = 1 when ths = 7.8, meaning that it
takes 7.8 s for a block to be propagated to all the miners. This result justifies the
reasonableness of our model as it is consistent with the measured data: blocks
propagated to 90% of nodes in 5 to 20 s [24].

We further verify this relation with Ethereum’s data. Specifically, we fetch
236 553 fork instances, group those with similar ρ and ths, and compare each
(ρ, ths) group’s estimated P′

win = ρ + γ(ths) · (1 − ρ) and the actual Pwin. The
results confirm the accuracy of our model, whose details are in Appendix A.

D to Headstart. A stable delay D does not imply a stable ths, as the competing
block may be announced anytime during D. If the undelayed competing block

When is Slower Block Propagation More Profitable for Large Miners? 295

Fig. 3. Extra revenue varies with d and
ρ.

Fig. 4. The optimal delay d

is mined in the first d = D − 7.8 s, the undelayed block may enjoy a headstart,
i.e., ths ≤ 0. Otherwise, the slow block enjoys a headstart and ths > 0.

We now solve how d, i.e., the slow block’s delay in addition to the natural
propagation latency, affects the probability distribution of ths. As mining is a
Poisson process, the interval between the slow block’s and the undelayed block’s
mining, denoted tin, follows an exponential distribution, whose density function
is f(tin) = μ/600 × e−(μ/600)tin for tin ∈ (0,∞), where μ/600 is the expected
number of undelayed blocks mined in a second. We compute the probability
density function of ths from f(tin) via two post-processing steps. First, ths = tin−
d as the slow block’s announcement is delayed for d seconds. Second, the density
function is normalized by dividing 1 − e−(μ/600)(d+7.8) to exclude the situation
that no undelayed blocks are mined during the slow block’s propagation.

Finally, by linking these two relations, we can estimate γ with a given d:
γ = 0.748 − 0.0318d when d � 600. We omit the detailed process as it is
relatively straightforward compared to the previous two steps.

4.2 Applying the Extended Model to the Bitcoin Network

We instantiate our MP in Sect. 3.3 with λ = D/T = (d + 7.8)/600 and γ =
0.748 − 0.0318d. We plot how d and ρ affect the unfair revenue Rd − ρ in Fig. 3
and the most profitable additional delay d in Fig. 4.

Two thresholds—0.21 and 0.33—are identifiable from Fig. 3. Miners with
ρ > 0.21 gain unfair revenue with no additional delay beyond the universal 7.8 s.
Miners with ρ > 0.33 can increase their earnings by intentionally delaying block
propagation. The optimal—most profitable—additional delay grows roughly lin-
early, from 0 when ρ = 0.33 to 6.8 s when ρ = 0.49.

5 Modeling the Strategic D-Miner

We now analyze how and how much a strategic D-miner can profit from the
systemic unfairness by modeling its decisions with an MDP. We name the output
strategy the slow block attack.

296 Z. Lu and R. Zhang

5.1 The Threat Model for Our MDP

We highlight some key settings here; other settings are identical to that of our
MP in Sect. 3.2. We limit ρ < 0.5 to avoid pathological actions. In line with
previous MDP-based analyses [25,28], the strategic D-miner can (1) choose which
block to mine on, (2) withhold multiple blocks, and (3) decide when and how
many blocks to publish. Such freedom does not render the problem unsolvable,
because, in the longest chain rule, a rational for-profit attacker maintains at most
one secret chain and only mines on the tips of chains, as proved by Sapirshtein
et al. [25]. Their proof applies to our model. Henceforth we use undelayed blocks
to denote “blocks mined by the undelayed miner” for brevity. Our model differs
from previous analyses in that the D-miner must broadcast a secret block within
every D seconds. This constraint adds a type of transition “delay” to our MDP,
which models the passage of time and thus complicates the modeling due to the
continuity of time. Consequently, we limit the attacker’s actions when accurate
modeling is infeasible, so that our MDP outputs achievable strategies and lower
bounds on the D-miner’s profitability, demonstrating the severity of the attack.

5.2 Our Markov Decision Process

Modeling Mining Processes as MDPs. An MDP models decision-making
in situations where outcomes are partly random and partly under the control of
a strategic player. Formally, an MDP is a four-element tuple (S,A, P,R). S is the
state space, encoding all status and history information that might influence the
player’s decision. A is the action space, which includes all possible rational choices
in an arbitrary state. P is the transition matrix, which encodes all possible
outcome states for each (state, action) pair and their probability distribution. R
is the reward matrix, which records a reward for every (state, action,new state)
transition; the reward is used to compute the final utility.

MDP is commonly employed in modeling mining processes [25,28]. We sum-
marize Sapirshtein [25]’s selfish mining MDP here as the baseline of our design.
In their MDP, a state transition is triggered by a mining event, and the attacker
makes decisions at the beginning of a state. Blocks accepted or abandoned by
both miners are settled, whose corresponding rewards are allocated to the min-
ers. Settled blocks are removed from the state encoding, as they do not affect the
attacker’s decisions. Specifically, a state is a 3-tuple (ld, lu, fork) where ld and lu
represent the lengths of the unsettled attacker chain and the public chain, respec-
tively, and fork indicates the latest block’s miner and whether the attacker has
the option to Match, which is defined next. There are at most four available
actions at any moment: Adopt to throw away the attacker chain and mine on
the public chain, Override to publish until the (lu +1)-th attacker block to inval-
idate the public chain, Match to publish until the lu-th attacker block to cause a
tie, which is available only when the honest miner has just mined a block and the
attacker has a competing secret block, and Wait to keep mining on the attacker
chain. We omit the reward distribution and the state transition matrices here.

When is Slower Block Propagation More Profitable for Large Miners? 297

Overview. Our MDP differs from previous works as we introduce a new type
of transition called delay : the passage of D seconds. When the D-miner chooses
not to publish all withheld blocks, the next transition must be a delay.

Formalizing these transitions is highly nontrivial as both the D-miner and
the undelayed miner may mine blocks during the delay, and it is infeasible to
encode all information that might influence the D-miner’s decision. For example,
the D-miner may make decisions based on the time of the first undelayed block:
to Override if the block is mined at the beginning of D, and to Match if it is
mined at the end. However, we cannot encode time into the state, as time is
continuous, and the number of states must be finite. Dividing D into several
slots and recording the mining sequence in each slot is also impractical, as in
that case, the number of states is too large to be solvable.

To address this challenge, we prescribe the D-miner’s strategy during the
delay so that the system’s state after the delay only depends on the pre-delay
state and the number of blocks mined by each miner during the delay. Through
careful engineering of the state space S and the action space A, the number
of states becomes solvable after this simplification, yet our MDP still reveals a
series of insights into the slow block attack. Next, we describe our MDP design.

State Space. A state is a four-element tuple (ld, lw, lu, fork). The lengths of
the D-miner’s and the undelayed miner’s chains are encoded as ld and lu, respec-
tively. Note that the common ancestors are not counted in ld or lu as they are
settled. The variable lw is the number of withheld blocks, which satisfies lw ≤ ld
as these blocks are a suffix of the D-miner’s chain. The variable fork indicates
whether some undelayed mining power is working on the D-miner’s chain, which
is meaningful only in a tie, i.e., ld − lw = lu. It has two possible values:

– Active. The lu-th D-miner’s block is published along with the last undelayed
block, so some undelayed mining power may work on the D-miner’s chain.

– Inactive. The lu-th D-miner’s block is published after the last undelayed block,
so all undelayed mining power works on the undelayed chain.

There are two differences between our state space and that of [25]. First,
we encode lw explicitly so that the D-miner can learn/decide whether the next
transition is a delay, and how many such delays to look forward to. Second, our
fork has only two options, because the D-miner never needs to explicitly choose
the Match action, whose reason is explained next.

Action Space. There are only three actions Adopt, Override, and Wait in our
MDP. The definitions of Adopt and Override are identical to their counterparts
in [25]. The Wait and Match actions in [25] are merged into our Wait action:

– Wait. If there are no withheld blocks, the D-miner keeps mining on its chain
until the next block generation event. Otherwise, i.e., during a delay, the D-
miner mines on its chain until the delay ends, and publishes enough blocks to
cause a tie, i.e., “Match”, when the undelayed chain “catches up from behind”
and reaches the D-miner’s pre-delay chain length ld.

298 Z. Lu and R. Zhang

Fig. 5. The ε-optimal unfair revenue

To understand this change, we first introduce how we prescribe the D-miner’s
strategy during the delay. Given that a fixed strategy is necessary to avoid an
overwhelming number of states, we want a strategy that is simple enough to be
computationally feasible, yet still reasonable for the D-miner. A naive strategy
is to force the D-miner to keep mining on its chain without publishing anything
throughout the delay. This strategy causes a significant loss when the undelayed
chain overtakes—catches up from behind and surpasses—the D-miner’s chain
during the delay, as the D-miner loses its entire chain with a high probability.
A better strategy is to prescribe the D-miner to publish the entire chain at the
exact moment when the undelayed chain catches up. However, as both miners
may find blocks during the delay, it is difficult to predict when the catch-up
happens unless we encode the full sequence of mining events during the delay
into the MDP, which is computationally infeasible. Therefore, we choose a middle
ground between these two strategies and prescribe the D-miner to cause a tie
when the undelayed chain catches up to the D-miner’s pre-delay chain length,
which is reasonable as it lowers the attacker’s risk of losing the whole chain, yet
still manageable as there is no need to enumerate all possible mining sequences.

As an unexpected benefit of this “middle-ground” strategy, the D-miner never
needs to explicitly choose Match. If the last undelayed block is mined during a
delay, Match is automatic; otherwise, i.e., outside delays, the D-miner has no
secret block by our threat model, thus cannot choose Match.

Transition and Reward Matrices. We leave the full matrices to Appendix B
and provide a detailed description in the online extended version2, while here,
we briefly overview how we compute the post-delay transitions. We denote the
number of blocks mined by the D-miner and undelayed miners during the delay as
nd and nu. They are independent and follow the Poisson distribution, their joint
probability distribution of the resulting states (ld +nd, lw +nd, lu +nu, inactive).

2 https://ia.cr/2023/891.

https://ia.cr/2023/891

When is Slower Block Propagation More Profitable for Large Miners? 299

Solving the MDP. We define the utility as the D-miner’s relative revenue and
solve the MDP with the RelativeValueIteration method of pymdptoolbox [8].
The stopping criterion is set to ε < 10−4. The upper bound for ld and lu is
set to 60. We solve the MDP for all combinations of ρ = {0, 0.05, · · · , 0.45},
γ = {0, 0.5, 1}, and λ = {1/30, 1, 5}.

5.3 Unfair Revenues and Profitable Thresholds

Relative Revenues. We visualize the D-miner’s unfair revenue under various
λ, γ, and ρ in Fig. 5, and notice two patterns:

Observation 4. The strategic D-miner’s unfair revenue increases with λ.

This is consistent with our intuition: a longer delay upper bound gives the D-
miner larger room for malicious manipulation, thus increasing the unfair revenue.
Also, the unfair revenue never goes below zero, as the D-miner has the honest
strategy as a safe choice.

Observation 5. The unfair revenue rockets when ρ ≥ 0.42 for all γ and λ.

We locate the reason by examining the optimal strategies. For ρ < 0.42, the
unfair revenue mainly comes from winning ties; the D-miner chooses Abandon if
its chain is shorter than the undelayed chain. For ρ ≥ 0.42, the optimal strategy
becomes more aggressive: it keeps mining on its own chain even when it is two to
four blocks behind. Admittedly, this also makes the attack detectable. We list the
full strategy when ρ = 0.45, γ = 1 in Table 1. This strategy is counterintuitive
given that ρ < μ. We attribute this to the D-miner’s higher risk tolerance than
the undelayed miner: the D-miner gives up its chain at its chosen time, but
the undelayed miner gives up as soon as it is one block behind. Indeed in the
gambler’s ruin problem, if one gambler has two to four coins and a 45% one-time
winning rate, and the other one has only one coin but a 55% one-time winning
rate, the latter is 1.48 to 2.47 times more likely to bankrupt than the former.

Fig. 6. Comparison of thresholds Fig. 7. The time difference

300 Z. Lu and R. Zhang

Profitable Thresholds. We compare the profitable thresholds of our MP ((1−
γ)/(2 − γ)), MDP, and selfish mining ((1− γ)/(3 − 2γ), from [15]) in Fig. 6. The
results show that the threshold of the strategic D-miner resides between that of
the inadvertent D-miner and the selfish miner.

6 Detection and Defense

Detecting via the Timestamp-Announcement Difference. As mentioned
in Sect. 2.2, it is long known that selfish mining can be detected by measuring
the difference between the blocks’ timestamp and their announcement time.
Unfortunately, it is difficult to apply the same trick to detect the slow block
attack, at least in Bitcoin, due to the miners’ long timestamp updating cycle.
We plot Bitcoin’s timestamp-announcement difference distribution in Fig. 7 (blue
bars), whose data are provided by Grundmann, the maintainer of a Bitcoin
monitoring site [11]. There are 33 453 blocks from January 1 to August 20, 2020,
and 93% of their differences are within [−10, 50] s. The distribution is far from
ideal, where all data concentrate at 0. Instead, it is close to the exponential
distribution with an expectation of 30 s (orange bars). We speculate that this
is because mining pools use specialized software, e.g., P2Pool [26], to assign
tasks and collect shares among individual miners, which updates the timestamp
roughly every 30 s. Consequently, as long as the D-miner keeps the delay within
30 s, e.g., λ < 1/20, it is difficult, if not impossible, to detect the slow block
attack from the timestamp-announcement difference.

Detecting via the Orphan Rate. Most mining pools nowadays publish the
blocks they mined for transparency, enabling us to compute a pool’s percentage
of blocks that have competing blocks. A mining pool encountering block races
more often than the others is a strong indicator of systemic unfairness. Also, a
rise in the overall orphan rate may indicate network issues or malicious behaviors.

Eliminating the Inadvertent Delays from the Protocol Level. Our anal-
ysis shows that we cannot expect the miners, especially large ones, to accelerate
their blocks’ propagation, as their incentive is not aligned. Yet we can prevent
these inadvertent delays from happening via protocol-level efforts, which do not
need the miners’ individual consent or proactive operations. For example, to
avoid in-propagation delay due to transaction synchronization, NC-Max [29]
prescribes that transactions must be synchronized before their confirmation, so
that blocks are always propagated at the maximum possible speed. NC-Max
thus reduces the latency to just 18.7% of that in NC, given a context of 40-
second average block interval and 100 transactions per second workload. This
also reduces the unfair revenue of miners with ρ = 0.4 to 19.2% of that in NC.

Modifying the Tie-Breaking Mechanism. When a delayed block is forced
to be broadcast due to the announcement of a competing block, its times-
tamp is usually inconsistent with its announcement time. This is because the

When is Slower Block Propagation More Profitable for Large Miners? 301

D-miner cannot predict when the competing block will be mined. This phe-
nomenon inspires us to propose a new tie-breaking mechanism, which favors
the block with a more accurate timestamp. This new mechanism only works
if all undelayed miners synchronize their clocks and keep updating their blocks’
timestamps. We leave the detailed threshold and rule of this mechanism to future
work.

7 Conclusion

Despite numerous efforts from the Bitcoin community, many miners refused to
accelerate their blocks’ propagation, as revealed by the slow adoption of FIBRE
and Compact Blocks. In this paper, we confirmed Maxwell’s theory that slower
propagation could be more profitable. These seemingly-benign slow blocks lead
to systemic unfairness, which could be deliberately exploited for higher revenue.
The slow block attack fundamentally undermines NC’s security just like the
selfish mining attack, yet is more difficult to detect. To mitigate this unfairness
and deter such inadvertent or malicious behaviors, we call on the community to
(1) keep accelerating block propagation on the protocol and the network layer,
(2) synchronize the clocks and update the block timestamp more frequently, and
(3) modify the protocol to defend against this attack. Most importantly, we must
explicitly address it via proactive actions, rather than hoping that the miners’
incentive will be spontaneously aligned.

This attack is another example that our attack detection metrics are lim-
ited by existing security analyses—most formal analyses of NC assume a fixed
block propagation latency. Therefore, we—researchers—should keep looking for
attacks folded into the assumptions of these analyses.

A Verifying the headstart-γ Relation in Ethereum

We apply the (ρ, ths) relation we learned in Sect. 4.1 to Ethereum network’s data
to test its accuracy. We obtain 236 553 fork instances from Etherscan [12], rang-
ing from 2015 to 2022, which includes the then mining power of the competing
blocks’ miners. Since ths is not available, we approximate it as the difference
between the competing blocks’ timestamps. We then group these fork instances
by ρ in steps of 0.05, and ths in steps of one second. We exclude groups with less
than 1000 instances to reduce stochastic errors. At last, we plot each group’s
estimated win rate P′

win = ρ + γ(ths) · (1 − ρ) and the actual Pwin, which is the
number of winning cases divided by the total number of cases, in Fig. 8.

The results show that P′
win and Pwin not only follow the same pattern but

are also numerically close, confirming the (ρ, ths) relation we learned, except
for two differences. First, Pwin escalates faster with an increasing ths. We think
this is because the network condition is improved in Ethereum’s data, measured
until 2022, compared with Bitcoin’s pre-compact-block data [24]. When blocks
propagate faster, the same positive ths yields a stronger advantage than before.

302 Z. Lu and R. Zhang

Fig. 8. The win rate about forks in
Ethereum

Table 1. The optimal actions

lu

ld 0 1 2 3 4 5 6 7 8

0 A W A A A A A A A

1 W W W W A A A A A

2 W O W W W W A A A

3 W W O W W W W A A

4 W W W O W W W W W

5 W W W W O W W W W

6 W W W W W O W W W

7 W W W W W W O W W

8 W W W W W W W O W

Second, for groups with ths = 0, P′
win overestimates Pwin by roughly 9%.

We provide two possible explanations here. First, the P′
win formula overestimate

the win rate as it ignores the producer of the competing block. In reality, the
competing block’s producer always works on its own block, rather than with γ
probability. Secondly, 5.3% of ties in Ethereum involve three or more blocks,
causing Pwin to be lower than P′

win as the latter only covers the two-block case.
These phenomena are not significant when ths > 0 as their effects are mitigated
by the advantage of the early announcement.

B The State Transition and Reward Matrices of MDP

The transition and reward matrices are defined in Table 2. The transition matrix
describes the candidate states and corresponding probabilities for a given state×
action combination, and the reward is a two-element tuple (ru, rd). Beside, we
list an optimal strategy in Table 1, where ρ = 0.45, γ = 0, ld, lu ≤ 8, fork =
inactive and lw = ld. A, W, and O stand for Adopt, Wait, Override respectively.

B.1 Pruning Our MDP

Our model differs from selfish mining MDP [25] in that it introduces a new type
of transition called “delay”. The “delay” transition depends on the number of
blocks mined by both parties. Given the number of mined blocks can be infinite,
the MDP’s transitions and states become unlimited, making it unsolvable. To
overcome this while ensuring accuracy, we prune low-probability transitions.

Based on the probability calculation given in Sect. 3.2, we use ρn to denote
the probability of a miner with mining power ρ to mine n blocks during the
delay. Then, we set a cutoff n∗ and approximate mining n blocks as n∗ when
n > n∗, with n∗ being the maximum n where ρn ≥ ×10−9. We will reset n∗ to
60 − n if the fork length limitation is reached first. Besides, we use n+

d , n+
u to

denote positive nd, nu to identify cases where a party has mined blocks.

When is Slower Block Propagation More Profitable for Large Miners? 303

T
a
b
le

2
.

S
ta

te
tr

a
n
si

ti
o
n

a
n
d

re
w

a
rd

m
a
tr

ic
es

o
f
M

D
P

S
ta

te
×

A
c
ti
o
n

C
o
n
d
it
io
n

S
ta

te
P
ro

b
a
b
il
it
y

R
e
w
a
rd

(l
d

,
l w

,
l u

,
·),

a
d
o
p
t

·
(1

,
1
,
0
,
i)

ρ
(0

,
l u

)

(0
,
0
,
1
,
i)

μ

(l
d

,
l w

,
l u

,
·),

o
ve
rr
id
ea

l d
=

l u
+

1
(1

,
1
,
0
,
i)

ρ
(l

u
+

1
,
0
)

(0
,
0
,
1
,
i)

μ

l d
>

l u
+

1
(l

d
−

l u
−

2
+

n
d

,
l d

−
l u

−
2
+

n
d

,
0
,
i)

ρ
n
d

μ
0

(l
u

+
2
,
0
)

(l
d

−
l u

−
1
+

n
d

,
l d

−
l u

−
2
+

n
d

,
n
+ u

,
i)

ρ
n
d

μ
n
+ u

(l
u

+
1
,
0
)

(l
d

,
l w

,
l u

,
i)

,
w
a
it

l w
=

0
(l

d
+

1
,
l w

+
1
,
l u

,
i)

ρ
(0

,
0
)

(l
d

,
l w

,
l u

+
1
,
i)

μ

l w
>

0
&
&

(l
d

≤
l u

||
l d

>
l u

+
n
+ u
)
&
&

l u
=

l d
−

l w
(l

w
−

1
+

n
d

,
l w

−
1
+

n
d

,
0
,
i)

ρ
n
d

μ
0

(l
u

+
1
,
0
)

(l
d
+

n
d

,
l w

+
n
d

−
1
,
l u

+
n
+ u

,
i)

ρ
n
d

μ
n
+ u

(0
,
0
)

l w
>

0
&
&

(l
d

≤
l u

||
l d

>
l u

+
n
+ u
)
&
&

l u
>

l d
−

l w
(l

d
+

n
d

,
l w

+
n
d

−
1
,
l u

+
n
u

,
i)

ρ
n
d

μ
n
u

(0
,
0
)

l w
>

0
&
&

l u
<

l d
≤

l u
+

n
+ u

&
&

l d
=

l u
+

n
+ u

(l
d
+

n
d

,
n
d

,
l u

+
n
+ u

,
a
)

ρ
n
d

μ
n
+ u

(0
,
0
)

l w
>

0
&
&

l u
<

l d
≤

l u
+

n
+ u

&
&

l d
<

l u
+

n
+ u

(n
d

,
n
d

,
l u

+
n
+ u

−
l d

,
i)

ρ
n
d

μ
n
+ u

γ
(l

d
,
0
)

(l
d
+

n
d

,
n
d

,
l u

+
n
+ u

,
i)

ρ
n
d

μ
n
+ u

(1
−

γ
)

(0
,
0
)

(l
d

,
l w

,
l u

,
a
),

w
a
it

b
l w

=
0

(l
d
+

1
,
1
,
l u

,
a
)

ρ
(0

,
0
)

(0
,
0
,
1
,
i)

μ
γ

(l
u

,
0
)

(l
d

,
0
,
l u

+
1
,
i)

μ
(1

−
γ
)

(0
,
0
)

l w
>

0
&
&

(l
d

≤
l u

||
l d

>
l u

+
n
+ u
)

(l
w

−
1
+

n
d

,
l w

−
1
+

n
d

,
0
,
i)

ρ
n
d

μ
0

(l
u

+
1
,
0
)

(l
w

+
n
d

,
l w

−
1
+

n
d

,
n
+ u

,
i)

ρ
n
d

μ
n
+ u

γ
(l

u
,
0
)

(l
d
+

n
d

,
l w

−
1
+

n
d

,
l u

+
n
+ u

,
i)

ρ
n
d

μ
n
+ u

(1
−

γ
)

(0
,
0
)

l w
>

0
&
&

l u
<

l d
≤

l u
+

n
+ u

&
&

l d
=

l u
+

n
+ u

(l
w

+
n
d

,
n
d

,
l w

,
a
)

ρ
n
d

μ
n
+ u

γ
(l

u
,
0
)

(l
d
+

n
d

,
n
d

,
l u

+
n
+ u

,
a
)

ρ
n
d

μ
n
+ u

(1
−

γ
)

(0
,
0
)

l w
>

0
&
&

l u
<

l d
≤

l u
+

n
+ u

&
&

l d
<

l u
+

n
+ u

(n
d

,
n
d

,
n
+ u

−
l w

,
i)

ρ
n
d

μ
n
+ u

γ
2

(l
d

,
0
)

(l
w

+
n
d

,
n
d

,
n
+ u

,
i)

ρ
n
d

μ
n
+ u

(γ
−

γ
2
)

(l
u

,
0
)

(n
d

,
n
d

,
n
+ u

−
l w

,
i)

ρ
n
d

μ
n
+ u

(γ
−

γ
2
)

(l
d

,
0
)

(l
d
+

n
d

,
n
d

,
l u

+
n
+ u

,
i)

ρ
n
d

μ
n
+ u

(1
−

γ
)2

(0
,
0
)

a
fe

a
si

b
le

o
n
ly

w
h
en

l d
>

l u
b

fe
a
si

b
le

o
n
ly

w
h
en

l d
≥

l u

304 Z. Lu and R. Zhang

References

1. Babaioff, M., Dobzinski, S., Oren, S., Zohar, A.: On bitcoin and red balloons. In:
13th ACM Conference on Electronic Commerce, pp. 56–73. ACM (2012)

2. Bahack, L.: Theoretical Bitcoin attacks with less than half of the computational
power (draft). arXiv preprint arXiv:1312.7013 (2013).http://arxiv.org/pdf/1312.
7013.pdf

3. Blockchain: Bitcoin block explorer (2017). http://blockchain.info/
4. Blockchain Luxembourg S.A.: Orphaned blocks - blockchain.info (2019). http://

www.blockchain.com/btc/orphaned-blocks
5. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:

research perspectives and challenges for Bitcoin and cryptocurrencies. In: IEEE
Symposium on Security and Privacy (S&P), pp. 104–121. IEEE (2015)

6. Buterin, V.: The limits to blockchain scalability (2021). http://vitalik.ca/general/
2021/05/23/scaling.html

7. Cao, T., Decouchant, J., Yu, J., Esteves-Verissimo, P.: Characterizing the impact
of network delay on bitcoin mining. In: 2021 40th International Symposium on
Reliable Distributed Systems (SRDS), pp. 109–119. IEEE (2021)

8. Chadès, I., Chapron, G., Cros, M.J., Garcia, F., Sabbadin, R.: Mdptoolbox: a
multi-platform toolbox to solve stochastic dynamic programming problems. Ecog-
raphy 37(9), 916–920 (2014)

9. Corallo, M.: Compact block relay (2016). http://github.com/bitcoin/bips/blob/
master/bip-0152.mediawiki

10. Corallo, M.: Public highly optimized fibre network (2019). http://bitcoinfibre.org/
public-network.html

11. DNS Research Group, KASTEL @ KIT: Bitcoin network monitor (2019). http://
dsn.tm.kit.edu/bitcoin/

12. Etherscan: Ethereum ETH blockchain explorer (2019). http://etherscan.io/
13. Ethstats: Ethereum network status (2020). http://ethstats.net/
14. Eyal, I., Sirer, E.G.: How to detect selfish miners (2014). http://hackingdistributed.

com/2014/01/15/detecting-selfish-mining/
15. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In: Finan-

cial Cryptography and Data Security, pp. 436–454. Springer, Heidelberg (2014)
16. Fry, S.: Mandatory activation of segwit deployment. http://github.com/bitcoin/

bips/blob/master/bip-0148.mediawiki. Accessed 01 Sept 2022
17. IntoTheBlock: intotheblock. http://www.intotheblock.com. Accessed 01 Sept 2022
18. Mao, Y., Venkatakrishnan, S.B.: Less is more: fairness in wide-area proof-of-work

blockchain networks (2022). https://doi.org/10.48550/ARXIV.2204.02461. http://
arxiv.org/abs/2204.02461

19. mapofcoins: Map of coins: BTC map (2018). http://mapofcoins.com/bitcoin
20. Maxwell, G.: Advances in block propagation (2017). http://www.youtube.com/

watch?v=EHIuuKCm53o
21. Miller, A., et al.: Discovering bitcoin’s public topology and influential nodes (2015).

http://www.cs.umd.edu/projects/coinscope/coinscope.pdf
22. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://www.

bitcoin.org/bitcoin.pdf
23. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish

mining and combining with an eclipse attack. In: IEEE European Symposium on
Security and Privacy (EuroS&P), pp. 305–320. IEEE (2016)

http://arxiv.org/abs/1312.7013
http://arxiv.org/pdf/1312.7013.pdf
http://arxiv.org/pdf/1312.7013.pdf
http://blockchain.info/
http://www.blockchain.com/btc/orphaned-blocks
http://www.blockchain.com/btc/orphaned-blocks
http://vitalik.ca/general/2021/05/23/scaling.html
http://vitalik.ca/general/2021/05/23/scaling.html
http://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
http://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
http://bitcoinfibre.org/public-network.html
http://bitcoinfibre.org/public-network.html
http://dsn.tm.kit.edu/bitcoin/
http://dsn.tm.kit.edu/bitcoin/
http://etherscan.io/
http://ethstats.net/
http://hackingdistributed.com/2014/01/15/detecting-selfish-mining/
http://hackingdistributed.com/2014/01/15/detecting-selfish-mining/
http://github.com/bitcoin/bips/blob/master/bip-0148.mediawiki
http://github.com/bitcoin/bips/blob/master/bip-0148.mediawiki
http://www.intotheblock.com
https://doi.org/10.48550/ARXIV.2204.02461
http://arxiv.org/abs/2204.02461
http://arxiv.org/abs/2204.02461
http://mapofcoins.com/bitcoin
http://www.youtube.com/watch?v=EHIuuKCm53o
http://www.youtube.com/watch?v=EHIuuKCm53o
http://www.cs.umd.edu/projects/coinscope/coinscope.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf

When is Slower Block Propagation More Profitable for Large Miners? 305

24. Neudecker, T., Hartenstein, H.: Short paper: an empirical analysis of blockchain
forks in bitcoin. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp.
84–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7 6

25. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

26. Voight, F.: P2Pool. http://p2pool.in. Accessed 09 Sept 2022
27. Xiao, Y., Zhang, N., Lou, W., Hou, Y.T.: Modeling the impact of network con-

nectivity on consensus security of proof-of-work blockchain. In: IEEE INFOCOM
2020-IEEE Conference on Computer Communications, pp. 1648–1657. IEEE (2020)

28. Zhang, R., Preneel, B.: Lay down the common metrics: evaluating proof-of-work
consensus protocols’ security. In: 40th IEEE Symposium on Security and Privacy
(S&P), pp. 1190–1207. IEEE (2019)

29. Zhang, R., Zhang, D., Wang, Q., Wu, S., Xie, J., Preneel, B.: NC-Max: breaking
the security-performance tradeoff in Nakamoto consensus. In: The Network and
Distributed System Security (NDSS) Symposium (2022)

https://doi.org/10.1007/978-3-030-32101-7_6
https://doi.org/10.1007/978-3-662-54970-4_30
http://p2pool.in

Bijack: Breaking Bitcoin Network
with TCP Vulnerabilities

Shaoyu Li1(B), Shanghao Shi1, Yang Xiao2, Chaoyu Zhang1, Y. Thomas Hou1,
and Wenjing Lou1

1 Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
{shaoyuli,shanghaos,chaoyu,thou,wjlou}@vt.edu

2 University of Kentucky, Lexington, KY, USA
xiaoy@uky.edu

Abstract. Recent studies have shown that compromising Bitcoin’s peer-
to-peer network is an effective way to disrupt the Bitcoin service. While
many attack vectors have been uncovered such as BGP hijacking in the
network layer and eclipse attack in the application layer, one significant
attack vector that resides in the transport layer is largely overlooked. In
this paper, we investigate the TCP vulnerabilities of the Bitcoin system
and their consequences. We present Bijack, an off-path TCP hijacking
attack on the Bitcoin network that is able to terminate Bitcoin connec-
tions or inject malicious data into the connections with only a few prior
requirements and a limited amount of knowledge. This results in the Bit-
coin network topology leakage, and the Bitcoin nodes isolation.

We measured the real Bitcoin network and discovered that more than
1700 (27%) of the reachable Bitcoin nodes are vulnerable to our attack
whose physical locations are spread across the world. We evaluated the
efficiency and impacts of the Bijack attack in real-world settings, and the
results show that Bijack successfully realizes several fatal Bitcoin attacks
without too much effort.

Keywords: Bitcoin · TCP · Network security

1 Introduction

With a market capitalization of more than 534 billion US dollars (May 9th,
2023), Bitcoin is among the most successful cryptocurrencies. The fundamental
appeal of Bitcoin stems from its underlying design, the blockchain system, which
is characterized as a fully decentralized architecture [33] that relies on a unique
consensus protocol to ensure its security and immutability. Within this large and
decentralized system, tens of thousands of Bitcoin nodes have formed a global
peer-to-peer network overlaying upon the Internet. This peer-to-peer network,
commonly referred to as the Bitcoin network, enables Bitcoin nodes to transmit
transactions and blocks to each other and is critical to the fundamental consensus
security of Bitcoin [46].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 306–326, 2024.
https://doi.org/10.1007/978-3-031-51479-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_16&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_16

Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 307

As a global and public infrastructure, the Bitcoin network has attracted var-
ious attacks from different perspectives that aim to disrupt the security and
performance of the Bitcoin system. For example, the eclipse attack aims to dom-
inate a victim node’s communication with the main network in order to isolate
it from the consensus [29,43]. The topology inference attack seeks to extract
the connection profiles of targeted nodes to manipulate their consensus status
[5,32,36]. Other network-based Bitcoin attacks include delay attacks [7,22] and
deanonymization attacks [2,5], for which Sect. 8 provides a detailed discussion.
In order to realize these network-based attacks, the attacker needs to manip-
ulate the P2P connections of the victim, which ultimately requires tampering
with the Internet functions that underpin the P2P network. To this regard, the
BGP hijacking attack [3] and its stealthier variant [43] exploit the vulnerabil-
ities of the BGP protocol to allow an autonomous system (AS)-level attacker
to redirect all traffic from/to a victim toward its malicious routers. More recent
connection manipulation attacks [15,16] leverage the positional advantage of the
routing-level attackers to eavesdrop, monitor, and tamper with specific Bitcoin
traffic.

Limitation of On-Path Attacks. The aforementioned connection manipula-
tion attacks are predominantly performed by an on-path attacker. This assump-
tion is impractical and often does not yield an attack reward comparable to
the potential cost. On-path attackers, who can intercept, monitor, and modify
network traffic trespassing them, are classified into two categories: routing-level
attackers, such as switches or routers, and AS-level attackers. However, in the
case of specific connection attacks, routing-level attackers are unlikely to cause
a significant impact on the overall network because they can only disrupt the
traffic passing through them, which affects only a small fraction of Bitcoin nodes.
As for AS-level attackers, although they have the ability to monitor and tamper
with a large volume of network traffic, they often refrain from doing so due to the
need to carefully weigh the costs and potential reputation impact of their mali-
cious actions against the potential gains of the attack. These large actors may
face serious commercial and regulatory consequences when they are detected.
Moreover, the open and dynamic nature of the Bitcoin network, whose topology
is subject to constant change, imposes an additional cost for the on-path attacker
to adapt and re-launch the attack.

Another commonality among existing network-based attacks is the overlook
of Transport Layer vulnerabilities of the Bitcoin network. Like most connection-
oriented network applications, Bitcoin relies on the TCP protocol for end-to-end
data transmission between nodes, utilizing TCP connections established through
the TCP three-way handshake. However, TCP itself has no authentication mech-
anism to build up secure channels between Bitcoin nodes and cannot verify the
integrity of transmitted Bitcoin data. This creates an opportunity for attackers
to manipulate Bitcoin connections by compromising the TCP connections and
substituting legitimate data with malicious data. Worse yet, the Bitcoin protocol
stack naturally transmits all traffic in plaintext, and Bitcoin does not employ
TLS (Transport Layer Security, [13]) to guarantee the security of the TCP con-

308 S. Li et al.

nections as in normal web apps like email and VoIP (Voice over Internet Protocol,
[27]). Therefore, anybody in the network is able to eavesdrop, capture, and ana-
lyze the TCP traffic of the victim nodes, opening up opportunities for off-path
attackers to conduct TCP-based manipulation attacks on the Bitcoin network.

Our Work. In this paper, we propose Bijack, a new off-path Bitcoin TCP
hijacking attack against the Bitcoin network. As an off-path attack, Bijack does
not require the attacker to have knowledge of on-path communication traffic
between Bitcoin peers, nor need any information about the internal operating
information of Bitcoin nodes. We exploit a TCP protocol vulnerability of the
Linux system [17,18,37] to devise our attack, which is based on a security flaw
of the mixed IPID assignment method in some versions of the Linux kernel. Our
attack can be conducted in three phases. First, the attacker discovers the victim
node by a flaw detection mechanism to identify whether the node is subject to
the TCP vulnerability we have mentioned. Second, the attacker identifies the
Bitcoin connections between the victim node and its peers. The Bitcoin connec-
tions will be tricked into downgrading the IPID assignment method from the
per-packet-based method to the globally 2048 hash-based method and a side
channel method based on the globally hash-based IPID assignments is utilized
to infer the three-tuple [victim node’s port number, peer’s IP address,
peer’s port number]. The attacker completely hijacks the connections by infer-
ring the sequence and acknowledgment numbers of the victim connections. After
a successful hijack, the attacker can terminate the TCP connections by sending
a forged TCP RST segment or injecting malicious Bitcoin data into the con-
nections to disrupt the Bitcoin system. As a result, the attacker can take over
the Bitcoin connections and send malicious transactions or blocks to the victim
nodes to break the Bitcoin consensus.

To show the potential impact of Bijack, we demonstrate two Bitcoin network
attacks mentioned earlier—the topology inference attack and the eclipse attack—
for which an off-path attacker can perform based on Bijack. For the topology
inference attack, the attack goal is to know the Bitcoin network topology around
the victim nodes. The victim nodes are tricked by the attacker to send the known
addresses to the attacker, helping it to detect the potential connections. Bijack
allows the off-path attacker to build connections with the victim nodes and send
forged network packets, and then infer the other connections of victim nodes. For
the eclipse attack, the attacker aims to isolate the victim node from the rest of the
Bitcoin network by surrounding it with malicious nodes, effectively controlling
all incoming and outgoing connections of the victim. With Bijack, the off-path
attacker who controls a swarm of malicious nodes (similar to the Sybil attack)
can continuously disrupt the benign connections established by the victim until
all of the victim’s connections are established with the malicious nodes.

Evaluation. We provided global network-wide measurement and surprisingly
found out that more than 27% of the total Bitcoin nodes are vulnerable to our
attack as of May 2023. We also implemented the Bijack attack in the real world
and evaluated the efficiency and impacts of the Bijack attack. For the topol-
ogy inference attack, when given the address list of 46262 potential peers, the

Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 309

attacker was able to infer all connected peers of the victim node in 25.68 h. When
performing the eclipse attack, the attacker discovered all initial ten outbound
connections of the victim node in 168 min and successfully isolated the victim
node in 11.6 h. Finally, we propose practical countermeasures (Sect. 7.2) from
the perspective of the network and Bitcoin system to detect and defend against
the Bijack attack.

In summary, we make the following contributions:

• To the best of our knowledge, this is the first work that focuses on the TCP
vulnerabilities of the Bitcoin network. We identify this unique attack vector
and its security impacts imposed on the Bitcoin network.

• We propose Bijack, an off-path Bitcoin TCP attack that only requires very
little prior knowledge of the victim nodes. The attack can be launched by any
malicious party within the Bitcoin network, resulting in a complete hijacking
of the communication session between victim nodes. Bijack can lead to fur-
ther catastrophes results including topology leakage, eclipse, and even double-
spending.

• We measured all the reachable nodes from the Bitcoin network and found that
more than 27% of them are vulnerable to our attack, calling for an urgent
need to fix this vulnerability. We implemented Bijack attack in real Bitcoin
networks by performing the topology inference and eclipse attack, and the
experiment results confirm the efficiency and effectiveness of our attack.

2 Background

2.1 Bitcoin Network Formation

As a peer-to-peer network, Bitcoin requires each node to maintain a list of IP
addresses of potential peers. This list stored in the local addresses database
is initially acquired from a public DNS server, and additional addresses are
exchanged among connected peers. Each Bitcoin node pseudo-randomly selects
peers from the list to build unencrypted TCP connections with them. By default,
each Bitcoin node establishes 10 outbound connections (including 2 block-relay
connections) and accepts up to 117 inbound connections on TCP port 8333.

Nodes request connected peers’ known addresses by sending GETADDR
messages and the peer responds with ADDR messages containing up to (but
necessarily) 1000 known node addresses. In addition, most nodes will unsolicit-
edly propagate their own addresses in ADDR messages to their peers when
building new connections. Currently, in order to avoid topology leakage, each
node can only propagate at most 1000 addresses per day [34].

2.2 TCP Vulnerability

The TCP vulnerability revealed in 2020 [37] enables an off-path attacker to moni-
tor TCP connections of the victim hosts when they run the Linux kernels prior to
version 5.17 [17,18]. In this attack, the attacker first pretends to be a router and

310 S. Li et al.

sends a forged ICMP “Fragmentation Needed” error message [38] to the victim
node in order to trigger it to downgrade the IPID assignment of the victim con-
nection from the per-socket-based method to the insecure hash-based method.
For the hash-based method, the node uses a total of 2048 (11 bits) IPID counters
determined by IPIDcounter = HASH(sourceIP, destIP, protocol, Boot key) to
assign IPIDs for its IP packets. However, this method has been shown to be inse-
cure [17] as the hash collision space is too small and an attacker is able to use
many IP addresses and its desired protocol to trigger a hash collision. For exam-
ple, the attacker can achieve this by using ICMP protocol and trying different
destination IP addresses, as shown in Eq. (1):

hash(victim node IP, peer IP, TCP,Boot key)
= hash(victim node IP, attacker IP, ICMP,Boot key)

(1)

In practice, the attacker can send ICMP echo request messages with its IP
addresses and observe the IPID of the returned ICMP echo reply messages. If one
IP address collides with the targeted TCP connection, the attacker can observe
a non-linear IPID increment in its received ICMP messages because the victim
connection and the attacker’s ICMP connection are using the same IPID counter.
As a result of this hash collision, the attacker is able to monitor the IPID changes
in the victim’s TCP connection by monitoring its own ICMP connection. More
details about IPID can be found in AppendixA.1.

3 Bijack: Hijacking Bitcoin TCP Connections

3.1 Attack Model

The goal of our Bijack attack is to hijack the Bitcoin connections of the victim
node. Figure 1 shows the attack model of Bijack, in which three types of nodes
are involved, including the victim node V , the list of peers connected to the
victim P = {p1, p2, · · · , pn}, and an off-path attacker A.

Fig. 1. The off-path attack model

Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 311

We assume the off-path attacker is unable and does not necessarily need
to monitor any inbound or outbound network traffic of the victim node. The
attacker also has no information about any internal operating parameters and
configurations of the victim node except the victim node’s IP address, which is
used as the public identifier of the victim node. We assume the attacker is able
to craft and send malicious IP packets to the network, as well as possessing many
IP addresses, following the convention of the existing Bitcoin network attacks
[19]. We assume attacker A has the ability to send forged TCP segments, ICMP
messages, and Bitcoin messages to victim V, without needing to manipulate the
ASes (Autonomous Systems) to relay the forged packets, as over a quarter of
ASes do not discard packets with spoofed source addresses in their networks [31].
In practice, any node in the Bitcoin network, such as a Bitcoin mining node or
a light node, can become an attacker.

3.2 Detailed Procedures of Bijack

Phase-1: Victim Detection. Discovering vulnerable Bitcoin nodes that deploy
a vulnerable Linux kernel is necessary for an off-path attacker to perform both
node-level and network-level attacks because the attacker aims to detect the
Bitcoin connections of the vulnerable nodes. Figure 2 illustrates the workflow of
detecting the vulnerable nodes from the Bitcoin network.

Fig. 2. Discovering a victim node

The attacker first establishes a Bitcoin connection with the target node to
test if it is vulnerable. The attacker attempts to downgrade the IPID assignment
method of the Bitcoin connection by sending an ICMP “Fragmentation Needed”
message to the tested node. Only the vulnerable Bitcoin node will reply to the
attacker with Bitcoin messages whose DF field changed from one to zero. After
monitoring this, the attacker conducts the hash-collision as we have described
in Sect. 2.2, and if it succeeds, it confirms that the current node is a vulnerable
one.

312 S. Li et al.

Fig. 3. Finding the victim’s peer IP address

Phase-2: Connection Detection. For each victim node, the attacker attempts
to reveal the details of the victim’s existing Bitcoin connections established with
peers. Each Bitcoin connection can be treated as a four-tuple vector, i.e., [vic-
tim node’s IP address, victim node’s port number, peer’s IP address,
peer’s port number]. The attacker only knows the victim node’s IP and it
will infer the other three components.

Step 1: Finding Victim’s Peer IP Addresses. The workflow of this IP detec-
tion process is shown in Fig. 3. To begin with, the attacker sends GETADDR
messages to the victim node and collects the addresses in the replied ADDR
messages, which may contain the connected peers as described in Sect. 2.1. Then
each IP address in the ADDR messages will be tested to see if it connects to the
victim nodes. The attacker sends a forged ICMP “Fragmentation Needed” mes-
sage with the tested IP address to the victim node. If the victim node does have
a connection with the tested IP, the connection will be triggered to downgrade
the IPID assignment to the hash-based method, which will be detected by the
attacker through hash-collision mentioned in Sect. 2.2.

Step 2: Inferring Port Numbers of the Victim and Peers. In this step, the
attacker infers the port numbers between the victim and its peers. The attacker
will first assume one node uses the destination port (typically 8333, while it
can be detected by network scanning) and infer the other one’s port number. If
unsuccessful, swap the assumption. As a bonus, after the port inferring process,
the attacker obtains knowledge about whether the current Bitcoin connection is
inbound or outbound.

The workflow of port inference is illustrated in Fig. 4. For each of the identi-
fied peers, the attacker starts with continuous monitoring of the IPID increment
between the victim node and the peer. The attacker can do so by continuously
sending hash-collided ICMP messages (already succeed in the previous phase) to

Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 313

Fig. 4. Inferring the port numbers between the victim and its peer

the victim and observing the returned messages. To infer the port number, the
attacker sends forged TCP SYN/ACK segments to victim nodes with different
port numbers across the range (from 1024 to 65535). When the port number is
correct, the victim will send a TCP Challenge ACK segment [41] to the peer,
and if not, the victim responds with a TCP RST segment to the peer with a 0
value of the IPID [1,30]. Because this TCP Challenge ACK segment uses one or
more additional IPIDs shared between the victim and attack connections, the
attacker can observe a non-linear IPID increment, which is the indicator of the
success of our inferring process. Note that this inferring process can be finished
in a short time, we do assume there is no other TCP connection between the
victim and its peer.

Fig. 5. Inferring acceptable sequence and ACK numbers

Step 3: Inferring Sequence Number and Acknowledgment Number.
The attacker infers the exact sequence number and acceptable acknowledgment
number in order to gain full knowledge of the victim’s connection. The attacker
achieves this in serial steps including first inferring an acceptable sequence

314 S. Li et al.

number, then an acknowledgment number located in the Challenge
ACK window, and finally the exact sequence number as well as the accept-
able ACK number.

The workflow and related terms of inferring an acceptable sequence number
and an ACK number located in the Challenge ACK window are illustrated in
Fig. 5. To infer an acceptable sequence number, the attacker sends the forged
TCP RST segments with their guessed sequence numbers to the victim node,
which will respond with a Challenge ACK segment to its peer if and only if
the guessed sequence numbers fall in an acceptable window. Similar to the pre-
vious step, this Challenge ACK segment triggers a non-linear increment on the
shared IPID counter between the attacker and the victim node, detectable by the
attacker as the signal of finding an acceptable sequence number. Then with this
acceptable sequence number, the attacker can infer an ACK number located in
the Challenge ACK window (ranging from 1G to 2G [6,9,10]) by sending forged
ACK segments and monitoring the IPID increment in the same fashion [41]. After
that, the attacker infers the exact sequence number with a well-known method
[17] as to sending forged ACK segments to the victim with decreasing sequence
numbers from the acceptable sequence number and monitoring the reply rate of
the TCP segments (or the IPID non-linear incremental rate). In the beginning,
there is a burst of challenge ACK segments sent by the victim at the limited
speed of 500 ms per segment by the protocol design of TCP. Once the sequence
number reaches the lower bound, the sequence number is the exact one and the
victim nodes will send ACK segments to its peer without any speed limitation.
When inferring the acceptable ACK number, the lower bound of the challenge
ACK window can be inferred in the same way and then the attacker uses it
to calculate the sequence number of the first unacknowledged octet (the lower
bound value adding 2G), which can be used with the known typical size of the
send window to finally calculate the acceptable ACK number.

Phase-3: Hijack and Manipulation. With the correct inference of the under-
lying TCP layer information of the victim’s Bitcoin connections, the off-path
attacker is able to send spoofed traffic to the victim nodes to influence the vic-
tim’s normal Bitcoin activities. The connections could be forcefully terminated
by the attacker, using the knowledge of either the TCP or Bitcoin protocol.
Moreover, the attacker can inject malicious Bitcoin data including fake transac-
tions and blocks into the connections, which will disrupt the victim node from
understanding the blockchain ledger, further influencing the integrity and sta-
bility of the Bitcoin consensus. We will explore these vulnerabilities in the next
two sections.

4 Compromising Bitcoin Network Nodes

Hijacking Bitcoin connections can pose significant security risks to both Bitcoin
nodes and the Bitcoin network. In this section, we have demonstrated two Bit-
coin node manipulation attacks based on Bijack: (i) Bitcoin topology inference

Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 315

and (ii) eclipse attack. We will demonstrate how they are launched and their
consequences on the Bitcoin network.

4.1 Bitcoin Topology Inference

Compared to the previous Bitcoin topology inference attack [5,12,28,32,36],
Bijack can directly infer the inbound and outbound connections of the victim
node through message feedback directly obtained from the network traffic with-
out the requirement of collecting and analyzing detailed Bitcoin transactions or
blocks. The attacker can detect all or at least most of the inbound and outbound
connections of a targeted node.

In practice, to infer more connections, the attacker can repeatedly request
ADDR messages as long as it does not exceed the limitation set by the Bitcoin
system to gain as many potential peer IP addresses as possible. This allows the
attacker to build up a superset of all the IP addresses it receives, up to 1,000
addresses per day. According to Bitcoin’s design rules, the victim will randomly
select peers to establish connections from their known IP addresses, which are
highly likely to be within the IP superset, provided that the superset is large
enough.

The attacker acquires the topology information of the victim nodes by launch-
ing this attack, which can be further exploited to conduct more severe Bitcoin
attacks. For example, the attacker can identify the most connective nodes as the
key or super nodes, and place corrupted nodes in these key locations or attack
the super nodes to disrupt data transmission in the network. The attacker may
even infer the complete topology of a local (e.g. in a certain network domain)
or global Bitcoin network through mathematical modeling and analyzing the
inbound and outbound relationships of the nodes [32], leaving space for the
attacker to conduct the eclipse attack that isolates the victims. Moreover, the
attacker is able to perform the 0-confirming double-spending attacks on the vic-
tim. After inferring the connections of the victim merchant, the attacker sends
the double-spend transaction only to the victim’s peers and sends others the
legal transaction. The merchant will confirm the double-spending transaction
after receiving it from most of its peers, while the legal transaction will be
selected in the blockchain.

4.2 Eclipse Attack

The eclipse attack is a severe Bitcoin attack that aims to isolate the victim
nodes from the rest of the network. It can render the victim nodes vulnerable to
a double spending attack because the attacker controls the propagation of trans-
actions to the victim nodes. It can also waste the mining power by manipulating
the victim’s view of the blockchain. Moreover, if the attacker is able to isolate
a large number of Bitcoin nodes, the whole Bitcoin network may be partitioned.
Unfortunately, Bijack can help the attacker to accomplish this in the following
way.

316 S. Li et al.

The attacker first continuously sends Bitcoin ADDR messages to the victim
node with multiple malicious IP addresses controlled by it. Because the current
Bitcoin protocol lets the node accept all the received IP addresses without any
verification, the attacker can gradually pollute the local IP database of the vic-
tims by increasing the portion of malicious IP addresses, from where the victim
nodes establish outbound connections. In practice, to increase the number of
nodes stored in the victim’s database, the attacker can inject IP addresses with
different prefixes to circumvent the built-in address discarding mechanism in the
database—the database allocates a limited quota for IP addresses with the same
prefix, and any exceeding ones will be discarded [29,43].

After this, the attacker attempts to manipulate all the victim node’s con-
nections through the Bijack. Once the attacker finds that the victim node is
shut down and restarted, it immediately occupies all the inbound connections
with its controlled IP addresses. This is achievable because the Bitcoin system
does not specify its nodes to verify or authenticate the inbound connection
requests. Moreover, existing work has shown that the Bitcoin nodes may restart
for several reasons such as software updating, power failure, and DDoS attacks
[11,40,42,44]. For the outbound connections, even if the attacker has polluted
the local addresses database of the victim node, the benign IP addresses still
constitute a large fraction and the victim may still establish connections with
them. To terminate these benign connections and allow the attacker to fully con-
trol the victim’s connections, the attacker needs to first detect and hijack all the
benign connections with Bijack. The attacker then impersonates the correspond-
ing peers of these connections to disrupt them by either sending forged TCP
RST segments to trigger connection termination or sending malicious Bitcoin
messages to the victim nodes, which causes ban scores of the benign peers to
increase until they reach 100, resulting in a one-day blacklisting [15,16].

As a result, the attacker disconnects all the benign nodes from the victims
and fully controls all their inbound and outbound connections, accomplishing
the eclipse attack.

5 How Vulnerable Is Bitcoin to Bijack?

Evaluating the impact of our Bijack attack requires a good knowledge of the
vulnerable nodes in the Bitcoin network. In this section, we conduct a measure-
ment of the Bitcoin network to explore the number of vulnerable nodes as well
as their mining power in the network and analyze Bijack potential impact.

5.1 Measurement on Real Bitcoin Network

We utilized one scanner Bitcoin node running Bitcoin Core version v24.99.0, with
the IP address of 38.68.237.175. Our scanner node was installed with Ubuntu
18.04 (Linux kernel version 4.15) and was capable of sending ICMP messages to
other nodes using spoofed IP addresses with the Python Scapy package.

Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 317

The victim detection phase (following Sect. 3.1) was carried out on the entire
Bitcoin network for 10 days, from April 27th, 2023, to May 7th, 2023 (the detailed
procedure is shown in AppendixA.2). During this time period, we discovered
and successfully established Bitcoin connections with 6405 Bitcoin nodes and
we found that 27.14% of connected nodes (1738 nodes) are vulnerable to the
Bijack. We show our experiment results in Table 1, in which we present the geo-
location, the number of vulnerable and reachable nodes, as well as the total
scanning time.

Table 1. The top ten countries with the highest number of vulnerable nodes

Location Victim Clients Total Clients Scan Time (min)

USA 332 1200 711.5

Germany 300 726 396.9

Netherlands 119 264 142.3

France 102 266 148.4

Finland 95 210 113.1

Canada 65 195 111.6

Singapore 53 114 61.0

United Kingdom 46 137 80.6

Japan 43 83 43.8

Switzerland 43 135 78.5

We measured the vulnerable mining nodes from the Bitcoin network during
the same time period. We collected all the nodes that first relay new blocks,
considering them as gateways of mining pools. We also collected the IP addresses
of the mining devices by scanning the IPv4 network. We found that over 90% of
the vulnerable nodes are associated with mining activities, with approximately
40% being mining nodes and the remaining portion belonging to mining pool
gateways.

5.2 Bitcoin Impact Analysis

Our measurement found more than 27% Bitcoin nodes are vulnerable to our
attack, spreading across different geographical locations. Therefore, these nodes
are directly exposed to the threats we have mentioned in the previous section
such as topology leakage, eclipse, and even double-spending. From the network’s
perspective, the attacker can cause more severe consequences as it can partition
the whole Bitcoin network considering that 27% is a considerably large fraction
and over 90% of the detected victim nodes belong to the mining nodes or mining
pool nodes. These nodes possess a significant amount of computational power
within the Bitcoin system. After partitioning the network, the attacker gains

318 S. Li et al.

control over these nodes, and its computation power increases significantly, giving
him a huge advantage to perform the selfish-mining attacks [14,21,35], in which
the attacker may strategically conceal and release newly mined blocks to realize
unfair mining gain when the attacked-controlled mining power exceeds a certain
threshold β. Assuming the attacker’s released block wins the fork competition
of 50% chance, the threshold β becomes 25%. There is a non-negligible chance
that the mining power of the 27% victim population may well exceed 25% of the
total.

6 Experiment and Evaluation

We conducted the topology inference attack and eclipse attack on the real
Bitcoin network to evaluate the effectiveness of Bijack. By launching the topology
inference attack, we can infer all of the connected peers of the victim nodes (from
the list of 46262 potential peers) in 25.68 h. By launching the eclipse attack, we
isolate the victim node in 11.6 h.

Ethical Considerations. In order to prevent any potential harm or negative
repercussions on the Bitcoin network and market, we only conduct the vulnerable
detection phase of our attack without the following steps, which will jeopardize
the operation of Bitcoin. For these steps that may cause actual harmful conse-
quences, we implemented them only on our own machines. Our experimental
activities do not pose any threat to other Bitcoin nodes. We did not send a large
number of IP packets in the public Bitcoin network in order to not increase the
burden on the network, and we maintain confidentiality regarding the list of
nodes that are susceptible to the vulnerability.

6.1 Experiment Setup

We deployed one victim node with Bitcoin Core version v24.99.0 on the Amazon
cloud by using an AWS EC2 virtual machine with Ubuntu 20.04 (Linux kernel
version 5.5) located in the US East. Before our experiment, we ran the victim
Bitcoin client on the node for 65 days to get it to fit into the environment of the
Bitcoin system. We deployed twenty attacker nodes with Bitcoin Core version
v24.99.0 equipped with Ubuntu 20.04 (kernel version 5.5). The prefix of the
IP addresses for these nodes is 38.68.237.0/24. We own over 5000 addresses
with the prefix of 71.178.0.0/16, 96.231.0.0/16, and 38.68.160.0/20 for hash
collision and eclipse attack.

6.2 Experimental Results

Bitcoin Topology Inference Attack. We first conducted a 110-day experi-
ment to evaluate the effectiveness of our peer detection process, i.e., the number
of victim’s connections that can be inferred from the address list collected from
the ADDR messages. In our experiment, we continuously sent GETADDR

Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 319

messages to the victim node each day and collected the addresses returned by
the victim nodes. The experimental results are shown in Fig. 6. Our experiment
shows that after collecting addresses for a continuous period of 110 days, the
attacker obtains the list that contains over 70% of the victim’s outbound con-
nected peers and over 50% of inbound connected peers. In total, the list contains
46242 addresses and 57 of them are connected peers. Subsequently, we executed
our attack based on the list collected before and assessed the efficiency of the
Bijack-based topology inference attack. The experimental results are shown in
Fig. 6(b). In total, it took us 25.68 h to find all 57 connections from the 46242
addresses. More specifically, the average time cost to examine one address in the
list was 39.98 s and the average time cost to discover one connected peer was
23.94 s.

Fig. 6. Topology Inference Attack Results

Fig. 7. Eclipse Attack Results

320 S. Li et al.

Eclipse Attack. We first scanned the whole Bitcoin network and found 5222
active nodes on May 10th, 2023. Then we checked each node to detect if the
victim node built a connection with it. We used 5000 addresses (controlled by
us) to conduct the hash-collision with each node and if we fail, we consider that
node does not have a connection with the victim node. The average time cost
of checking an unconnected node is 39.98 s by attempting all the 5000 addresses.
For connected nodes, we utilized an average of 3461 addresses to discover their
connection with a time cost of 27.40 s. In total, we spent 168 min finding all ten
outbound connections of the victim, and Fig. 7 illustrates the results of discov-
ering all outbound connections.

Afterward, we kept sending ADDR messages to the victim nodes to inject
the malicious IP addresses into the victim’s database. Each time we sent 1000 IP
addresses to the victim node in 6 TCP segments with a total payload of 17495
bytes. Finally, we sent TCP RST segments or fake Bitcoin blocks (ban-score-
based method) to reset the Bitcoin connections. We disrupted each outbound
connection until all of the connections were established to our attacker nodes.
Figure 7(b) illustrates the relationship between the number of injected malicious
IP addresses and the number of required hijacked connections to complete the
attack. We found that the number of required hijacked connections decreases
when the number of polluted IP addresses increases and in general the ban-score-
based method requires fewer hijacked connections than the TCP RST-based
method. In our experiment, the average timing overhead for resetting a Bitcoin
connection was 163 s for the TCP RST-based method and 247 s for the Bitcoin
ban-score-based method. Specifically, when 200 IP addresses were injected into
the database, we used 11.6 h to break the required 248 connections to accomplish
our attack by sending TCP RST segments.

7 Discussion and Countermeasures

7.1 Discussion

The Bitcoin system transmits transactions and blocks in plaintext with the
underlying TCP protocol and does not offer any encryption and authentication
mechanism in order to reduce the payload of the network. Many other blockchain
networks have similar properties including Litecoin [39], and Ripple [4]. Unfor-
tunately, this makes them vulnerable to Bijack as the prerequisite requirement
for successfully launching our attack is that the network traffic is not encrypted.
For the blockchain networks that offer authenticated and encrypted traffic such
as Ethereum [8], our attack fails to break their systems.

7.2 Countermeasures

The Bitcoin system may use the following feasible countermeasures to defend
itself against Bijack.

Deploy a Customized Designed Intrusion Detection System. Bijack
introduces some extra abnormal traffic to the system that can be detected by an

Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 321

intrusion detection system (IDS). For example, the IDS can monitor the IPID
increment of the Bitcoin connections, or carefully check the ICMP “Fragmenta-
tion Needed” messages.

Refuse Unsolicited ADDR Messages. The node could choose to refuse the
unsolicited ADDR messages with a large number of IP addresses, especially from
incoming peers. This will prevent attackers from polluting the victim’s address
database, making it difficult to carry out an Bijack-based eclipse attack.

Encrypt the Traffic. If Bitcoin traffic is transmitted using encryption, our
attack’s impact will be significantly reduced. It would be challenging for attackers
to send spoofed messages. Considering the impact of encryption on network
performance, we can allow nodes to choose whether to encrypt based on their
own circumstances.

Using Tor Network. Our attack cannot target the Tor network because our
attack is based on the IPv4 network and we first need to identify the victim’s IP
address. Tor is anonymous by design and most existing Bitcoin attacks are not
effective against the Tor network. Therefore, using the Tor network can mitigate
network attacks.

8 Related Work

Bitcoin Network Attacks. The security of the Bitcoin network has gained a
lot of attention from the academic community. The well-known eclipse attack [20,
29] exploits the vulnerabilities of Bitcoin’s built-in peer-selecting procedure by
injecting the address database of victims with the attacker-controlled to isolate
the victim Bitcoin nodes from the major Bitcoin network. BGP hijacking attack
[3] and EREBUS attack [43] exploits the advantage of an AS-level attacker to
delay messages received by nodes or partition nodes. The Topology Inference
attacks [5,12,28,32,36] infer connections by analyzing the transmitted Bitcoin
data or timestamps. On-path Bitcoin network attacks [15,16] hijack the Bitcoin
connections to disrupt the operation of the system. The delay attack [7,22,45]
exploits network timing as the attack vector and impedes the reception time of
certain Bitcoin messages of the victim nodes. The data received and stored by
the victim node differs from that of the remaining nodes in the network within
a certain period, resulting in wasted computing power and defaming the victim
node to be susceptible to double-spending attackers. Lastly, the deanonymization
attack [2,5] reveals the real IP addresses of the victim nodes by analyzing the
Bitcoin traffic, making every transaction associated with the victim’s IP address
public.

Off-Path TCP Vulnerabilities. Side-channel attack in the challenge ACK
mechanism [9,10] can infer the TCP utilization for one specific connection and
then hijack it by inferring its sequence numbers and ACK numbers. Global IPID
counter vulnerability is exploited to infer TCP connections and help attackers
inject malicious data into the TCP connections to poison the HTTP and Tor

322 S. Li et al.

traffic [23–26]. Mixed IPID assignment off-path attack [17,18] leverages a new
side channel vulnerability to downgrade the TCP connections of IPID assign-
ment to the 2048-hash-based method, which helps the attacker infer the source
port number and the destination port number of the connection, inferring the
sequence numbers and the acknowledge numbers to hijack the TCP connection.

9 Conclusion

In this paper, we propose Bijack, a new off-path Bitcoin TCP hijacking attack
against the Bitcoin network by exploiting a TCP protocol vulnerability of the
Linux system. We also demonstrate two Bitcoin network attacks—the topology
inference attack and the eclipse attack—to show the impact of our attack on the
Bitcoin network. We measure the number of vulnerable nodes in the real Bitcoin
network and analyze the influence of our attack. We evaluate the efficiency of
our attacks. Our experiments show that the off-path attackers can successfully
carry out the topology inferring attack and eclipse attack effectively.

Acknowledgement. This work was supported in part by the US National Science
Foundation under grants 2247560, 2154929, 1916902, and 2247561.

A Appendix

A.1 IPID Assignment

IPID Assignment. The identification field (IPID) in the Internet Protocol (IP)
serves as a unique identifier for each IP packet and it occupies 16 bits in the IP
packet. The IPID is assigned by the sender to aid in assembling the fragments of
a datagram because IP datagrams may be fragmented into multiple fragments for
transmission over the network during the transmission process. The generation
of the IPID can employ different algorithms or strategies, but it must be unique
within the sender’s context. In certain versions, Linux employs a mixed IPID
assignment method for packets [1]. There are two fundamental IPID assignment
policies: the per-socket-based IPID assignment method and the 2048-globally-
hash-based IPID assignment method, the former being specific to socket-based
protocols such as TCP and UDP.

Per-Socket-Based IPID Assignment. This policy is specifically used for
socket-based protocols such as TCP and UDP. A unique random value is ini-
tialized for each connection, and the counter is incremented by 1 each time it
is used for transmitting a packet. This random counter makes it difficult for
off-path attackers to infer the IPID value.

Hash-Based IPID Assignment. It involves assigning the IPID based on a
hash counter. Linux has a total of 2048 hash counters, and the IPID is selected
from one of these counters based on the hash value of four variables: the source
IP address, destination IP address, the protocol number of the packet, and a

Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 323

random value generated by the Linux system. After the IPID value is copied
from the selected counter, the counter is incremented by a uniform distribution
value between 1 and the number of system ticks that have elapsed since the last
packet transmission using the same counter.

Linux uses the Don’t Fragment (DF) flag in the IP protocol to differentiate
between the two methods. Normally the TCP and UDP use per-socket-based
IPID assignment and the DF’s value is one. For other network protocols (like
ICMP), the DF is set as 0. For TCP, DF is set as 1 for TCP non-RST segments,
enabling the MTU discovery (PMTUD) mechanism and signaling the use of the
per-socket-based IPID assignment method, which is considered more secure. The
IP examines the DF flag value set by the TCP protocol. If DF is 0, the hash-
based IPID assignment method is used. If DF is 1 and the packet is not for a
TCP SYN/ACK segment with both SYN and ACK flags set to 1 (assigned IPID
of 0), the IP assigns the IPID using the per-socket-based method.

A.2 Bitcoin Network Measurement Procedure

We first scan all connectable nodes in the network based on the method in [47].
Then, we establish Bitcoin connections with these nodes for further testing. To
reduce the bandwidth load on our node, we test only one Bitcoin node at a
time and establish a connection with only that one Bitcoin node. Initially, we
send malicious ICMP “Fragmentation Needed” messages to attempt to clear
the DF flag. As for hash collision, we first observe the average rate m at which
the tested node sends Bitcoin information to our node and the average IPID
increment k between each message. Then, our scanner node sends forged ICMP
messages with different source IP addresses to the tested node. For each source
IP address, we will send the forged packets at a rate of n∗m for the time period
of 1/m. If we found that the IPID of a received Bitcoin message increased by
n ∗ m + k compared to the most recent previous one, we considered the tested
node collided. To minimize errors caused by network latency or the randomness
of the IPID increment, when we observe the IPID increment value in the range
of n ∗ m + k, we repeat the test with the source IP address used for the collision
to verify whether the collision really occurred.

References

1. Alexander, G., Espinoza, A.M., Crandall, J.R.: Detecting TCP/IP connections via
IPID hash collisions. Proc. Priv. Enhancing Technol. 2019, 4 (2019)

2. Apostolaki, M., Maire, C., Vanbever, L.: Perimeter: a network-layer attack on
the anonymity of cryptocurrencies. In: Borisov, N., Diaz, C. (eds.) FC 2021, Part
I 25. LNCS, vol. 12674, pp. 147–166. Springer, Heidelberg (2021). https://doi.org/
10.1007/978-3-662-64322-8 7

3. Apostolaki, M., Zohar, A., Vanbever, L. Hijacking bitcoin: routing attacks on cryp-
tocurrencies. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 375–392.
IEEE (2017)

https://doi.org/10.1007/978-3-662-64322-8_7
https://doi.org/10.1007/978-3-662-64322-8_7

324 S. Li et al.

4. Armknecht, F., Karame, G.O., Mandal, A., Youssef, F., Zenner, E.: Ripple:
overview and outlook. In: Conti, M., Schunter, M., Askoxylakis, I. (eds.) Trust
2015. LNCS, vol. 9229, pp. 163–180. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22846-4 10

5. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bit-
coin P2P network. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 15–29 (2014)

6. Borman, D., Braden, B., Jacobson, V.: RFC 7323: TCP extensions for high perfor-
mance (2014)

7. Boverman, A.: Timejacking & Bitcoin. Culubas Blog (2011)
8. Buterin, V., et al.: A next-generation smart contract and decentralized application

platform. White Paper 3, 37, 2–1 (2014)
9. Cao, Y., Qian, Z., Wang, Z., Dao, T., Krishnamurthy, S.V., Marvel, L.M.: Off-

path TCP exploits: global rate limit considered dangerous. In: USENIX Security
Symposium, pp. 209–225 (2016)

10. Cao, Y., Qian, Z., Wang, Z., Dao, T., Krishnamurthy, S.V., Marvel, L.M.: Off-
path TCP exploits of the challenge ack global rate limit. IEEE/ACM Trans. Netw.
26(2), 765–778 (2018)

11. BitcoinCore: CVE-2018-17144. https://bitcoincore.org/en/2018/09/20/notice/.
Accessed May 2023

12. Delgado-Segura, S., Bakshi, S., Pérez-Solà, C., Litton, J., Pachulski, A., Miller, A.,
Bhattacharjee, B.: TxProbe: discovering bitcoin’s network topology using orphan
transactions. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp.
550–566. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7 32

13. Dierks, T., Allen, C.: RFC 2246: the TLS protocol version 1.0 (1999)
14. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. Commun.

ACM 61(7), 95–102 (2018)
15. Fan, W., Chang, S.-Y., Zhou, X., Xu, S.: ConMan: a connection manipulation-

based attack against bitcoin networking. In: 2021 IEEE Conference on Communi-
cations and Network Security (CNS), pp. 101–109. IEEE (2021)

16. Fan, W., Wuthier, S., Hong, H.-J., Zhou, X., Bai, Y., Chang, S.-Y.: The security
investigation of ban score and misbehavior tracking in bitcoin network. In: 2022
IEEE 42nd International Conference on Distributed Computing Systems (ICDCS),
pp. 191–201. IEEE (2022)

17. Feng, X., Fu, C., Li, Q., Sun, K., Xu, K.: Off-path TCP exploits of the mixed IPID
assignment. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1323–1335 (2020)

18. Feng, X., Li, Q., Sun, K., Fu, C., Xu, K.: Off-path TCP hijacking attacks via the
side channel of downgraded IPID. IEEE/ACM Trans. Netw. 30(1), 409–422 (2021)

19. Franzoni, F., Daza, V.: SoK: network-level attacks on the bitcoin P2P network.
IEEE Access 10, 94924–94962 (2022)

20. Gervais, A., Karame, G.O., Capkun, V., Capkun, S.: Is bitcoin a decentralized
currency? IEEE Secur. Priv. 12(3), 54–60 (2014)

21. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On
the security and performance of proof of work blockchains. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
3–16 (2016)

22. Gervais, A., Ritzdorf, H., Karame, G.O., Capkun, S.: Tampering with the delivery
of blocks and transactions in bitcoin. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp. 692–705 (2015)

https://doi.org/10.1007/978-3-319-22846-4_10
https://doi.org/10.1007/978-3-319-22846-4_10
https://bitcoincore.org/en/2018/09/20/notice/
https://doi.org/10.1007/978-3-030-32101-7_32

Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 325

23. Gilad, Y., Herzberg, A.: Off-path attacking the web. In: WOOT, pp. 41–52 (2012)
24. Gilad, Y., Herzberg, A.: Spying in the dark: TCP and Tor traffic analysis. In:

Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 100–119.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31680-7 6

25. Gilad, Y., Herzberg, A.: Off-path TCP injection attacks. ACM Trans. Inf. Syst.
Secur. (TISSEC) 16(4), 1–32 (2014)

26. Gilad, Y., Herzberg, A., Shulman, H.: Off-path hacking: the illusion of challenge-
response authentication. IEEE Secur. Priv. 12(5), 68–77 (2013)

27. Goode, B.: Voice over internet protocol (VoIP). Proc. IEEE 90(9), 1495–1517
(2002)

28. Grundmann, M., Neudecker, T., Hartenstein, H.: Exploiting transaction accumula-
tion and double spends for topology inference in bitcoin. In: Zohar, A., et al. (eds.)
FC 2018. LNCS, vol. 10958, pp. 113–126. Springer, Heidelberg (2019). https://doi.
org/10.1007/978-3-662-58820-8 9

29. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-
to-peer network. In: 24th {USENIX} Security Symposium, {USENIX} Security
2015, pp. 129–144 (2015)

30. John, P.: Transmission control protocol. RFC 793 (1981)
31. Luckie, M., Beverly, R., Koga, R., Keys, K., Kroll, J.A., Claffy, K.: Network hygiene,

incentives, and regulation: deployment of source address validation in the internet.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 465–480 (2019)

32. Miller, A., et al.: Discovering bitcoin’s public topology and influential nodes (2015)
33. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus.

Rev., 21260 (2008)
34. Naumenko, G.: Pr 18991: cache responses to Getaddr 3420 to prevent topology

leaks. https://github.com/bitcoin/bitcoin/pull/18991. Accessed May 2020
35. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish

mining and combining with an eclipse attack. In: 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 305–320. IEEE (2016)

36. Neudecker, T., Andelfinger, P., Hartenstein, H.: Timing analysis for inferring the
topology of the bitcoin peer-to-peer network. In: 2016 International IEEE Confer-
ences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing,
Scalable Computing and Communications, Cloud and Big Data Computing, Inter-
net of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/S-
martWorld), pp. 358–367. IEEE (2016)

37. National Institute of Standards and Technology: CVE-2020-36516. https://nvd.
nist.gov/vuln/detail/CVE-2020-36516. Accessed May 2023

38. Postel, J.: Internet control protocol. RFC 792 (1981)
39. Litecoin Project: Litecoin. https://litecoin.org. Accessed May 2023
40. Raikwar, M., Gligoroski, D.: DoS attacks on blockchain ecosystem. In: Chaves, R.,

et al. (eds.) Euro-Par 2021: Parallel Processing Workshops, Euro-Par 2021. LNCS,
vol. 13098, pp. 230–242. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-06156-1 19

41. Ramaiah, A., Stewart, R., Dalal, M.: RFC 5961: improving TCP’s robustness to
blind in-window attacks (2010)

42. Schuba, C.L., Krsul, I.V., Kuhn, M.G., Spafford, E.H., Sundaram, A., Zamboni,
D.: Analysis of a denial of service attack on TCP. In: Proceedings of the 1997 IEEE
Symposium on Security and Privacy (Cat. No. 97CB36097), pp. 208–223. IEEE
(1997)

https://doi.org/10.1007/978-3-642-31680-7_6
https://doi.org/10.1007/978-3-662-58820-8_9
https://doi.org/10.1007/978-3-662-58820-8_9
https://github.com/bitcoin/bitcoin/pull/18991
https://nvd.nist.gov/vuln/detail/CVE-2020-36516
https://nvd.nist.gov/vuln/detail/CVE-2020-36516
https://litecoin.org
https://doi.org/10.1007/978-3-031-06156-1_19
https://doi.org/10.1007/978-3-031-06156-1_19

326 S. Li et al.

43. Tran, M., Choi, I., Moon, G.J., Vu, A.V., Kang, M.S.: A stealthier partitioning
attack against bitcoin peer-to-peer network. In: 2020 IEEE Symposium on Security
and Privacy (SP), pp. 894–909. IEEE (2020)

44. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks
in the bitcoin ecosystem. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.)
FC 2014. LNCS, vol. 8438, pp. 57–71. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44774-1 5

45. Walck, M., Wang, K., Kim, H.S.: TendrilStaller: block delay attack in bitcoin. In:
2019 IEEE International Conference on Blockchain (Blockchain), pp. 1–9. IEEE
(2019)

46. Xiao, Y., Zhang, N., Lou, W., Hou, Y.T.: A survey of distributed consensus proto-
cols for blockchain networks. IEEE Commun. Surv. Tut. 22(2), 1432–1465 (2020)

47. Yeow, A. Bitnodes. https://bitnodes.io/nodes/#network-snapshot. Accessed April
2023

https://doi.org/10.1007/978-3-662-44774-1_5
https://doi.org/10.1007/978-3-662-44774-1_5
https://bitnodes.io/nodes/#network-snapshot

Syntax-Aware Mutation for Testing
the Solidity Compiler

Charalambos Mitropoulos1, Thodoris Sotiropoulos2, Sotiris Ioannidis1,
and Dimitris Mitropoulos3(B)

1 Technical University of Crete, Chania, Greece
cmitropoulos@isc.tuc.gr, sotiris@ece.tuc.gr

2 ETH Zurich, Zürich, Switzerland
theodoros.sotiropoulos@inf.ethz.ch
3 University of Athens, Athens, Greece

dimitro@uoa.gr

Abstract. We introduce fuzzol, the first syntax-aware mutation fuzzer
for systematically testing the security and reliability of solc, the stan-
dard Solidity compiler. fuzzol addresses a challenge of existing fuzzers
when dealing with structured inputs: the generation of inputs that get
past the parser checks of the system under test. To do so, fuzzol intro-
duces a novel syntax-aware mutation that breaks into three strategies,
each of them making different kind of changes in the inputs. Contrary
to existing mutations, our mutation is able to change constructs, state-
ments, and entire pieces of code, in a fine-grained manner that conforms
to the syntactic rules of the Solidity grammar. Moreover, to explore new
paths in the compiler’s codebase faster, we introduce a mutation strat-
egy prioritization algorithm that allows fuzzol to identify and apply only
those mutation strategies that are most effective in exercising new inter-
esting paths. To evaluate fuzzol, we test 33 of the latest solc stable
releases, and compare fuzzol with (1) Superion, a grammar-aware fuzzer,
(2) AFL-compiler-fuzzer, a text-mutation fuzzer and (3) two grammar-
blind fuzzers with advanced test input generation schedules: AFLFast and
MOpt-AFL. fuzzol identified 19 bugs in total (7 of which were previously
unknown to Solidity developers), while the other fuzzers missed half of
these bugs. Also, fuzzol outperforms all fuzzers in terms of line, func-
tion, and branch coverage (from 3.75% to 408.8% improvement), while it
is the most effective one when it comes to test input generation. Finally,
our experiments indicate that our prioritization algorithm makes fuz-
zol explore new paths roughly one day (∼24 h) faster.

Keywords: Fuzzing · compilers · smart contracts · Solidity

1 Introduction

Smart contracts are programs that are stored on a distributed ledger (i.e.,
blockchain), and are used for automating the execution of agreements and trans-
actions between crypto-currency parties. Solidity [5] is an object-oriented pro-
gramming language designed for developing smart contracts that run on several
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 327–347, 2024.
https://doi.org/10.1007/978-3-031-51479-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_17&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_17

328 C. Mitropoulos et al.

blockchain platforms [1,2], including the Ethereum’s EVM (Ethereum Virtual
Machine) [50]. Ethereum is an open-source blockchain with Ether being its native
crypto-currency, which is the second-largest by market capitalization [16].

Although there are several research endeavors to identify bugs in smart con-
tracts written in Solidity [15,24,27,30,46], there are no thorough studies focusing
on solc, the standard Solidity compiler. solc is a relatively new compiler that
counts ∼100 releases since 2015 [5]. Given the intricate nature of Solidity, solc
offers various special constructs related to smart contract functionalities includ-
ing formal software verification and inline assembly. Due to this complexity, solc
has exhibited a variety of bugs related to data structure mishandling, inadequate
sanity checks, and unsound optimizations [6].

For the last two decades, fuzzing has become a standard technique for assess-
ing software reliability and security [14,25,26]. Fuzzing has been used to identify
bugs in miscellaneous entities such as system libraries [35], web and cloud appli-
cations [10], data-oriented systems [39,40], and compilers [19,34,48].

When it comes to programs whose inputs follow specific grammars (e.g. com-
pilers), grammar-blind fuzzers (such as AFL [37]) struggle to get past syntax
checks and explore deeper code. To this end, researchers have introduced a num-
ber of grammar-based fuzzing strategies [9,43,44], and have applied them to
various domains, from PHP and Lua interpreters to JavaScript engines.

However, current grammar-based fuzzers have a number of disadvantages.
For instance, Superion [44], performs some mutations that fail to preserve a
correct syntax for the test cases it generates. In addition, many of these fuzzers
produce test inputs completely from scratch without considering any promising
and interesting language features.

Syntax-Aware Mutation. We introduce syntax-aware mutation for fuzzing
the Solidity compiler. Unlike other grammar-based techniques, our mutation pro-
cesses test inputs (seeds) without breaking the syntax rules. Our mutation comes
with three different strategies operating on the Abstract Syntax Tree (AST) of
a smart contract written in Solidity. We apply our strategies to the programs
found in the compilers’ test suite. Such programs are interesting and complex, as
they exercise different language features and functionalities. Our mutations then
result in valid programs by making small changes to the existing, complex seeds.
This helps exercise new behaviors in the compiler while preserving much of the
structure and characteristics of the given seed programs. The first strategy aims
to change the control-flow of the input program by mutating statements, oper-
ators and data types. To combine diverse characteristics coming from different
test inputs, our second strategy selects two contracts and performs permuta-
tions on their AST leafs. Finally, our third strategy detects parts written in
inline assembly and changes them in a way that stresses solc’s inline optimizer.

Mutation Strategy Prioritization. Based on syntax-aware mutation, we have
realized fuzzol, a practical AFL-based fuzzer. Notably, fuzzol also incorpo-
rates existing grammar-blind and grammar-aware strategies. We further boost
the effectiveness of fuzzol by leveraging the insight that only a small number
of mutation strategies is effective in exploring new paths [31]. To this end, fuz-
zol comes with a novel mutation strategy prioritization algorithm that identifies

Syntax-Aware Mutation for Testing the Solidity Compiler 329

and applies only those strategies that are effective for a particular seed. Given
a seed smart contract c, our algorithm associates every strategy with an effec-
tiveness score. The next time when fuzzol processes c, our algorithm picks and
executes only those strategies whose effectiveness score is greater than a specific
threshold value, which is updated and computed dynamically.

Testing Campaign. We evaluate fuzzol by testing 33 of the latest solc
releases (>5,5M LoC). Further, we compare fuzzol against Superion [44], a
grammar-based fuzzer, AFL-compiler-fuzzer [28], a text-mutation fuzzer that has
been used to test solc among other compilers, and two grammar-blind fuzzers
with advanced seed-generation schedules: AFLFast [13] and MOpt-AFL [35].
Our results indicate that our approach is effective in finding bugs in solc. Specif-
ically, our method led to the identification of 19 unique bugs, in total, 7 of which
were related to previously unknown issues to the Solidity developers. Also, our
campaign helped the developers to identify two performance issues [3,4]. Notably,
the other three fuzzers failed to identify half of the bugs (10/19) found by fuz-
zol. Our findings also show that fuzzol outperforms the other four fuzzers both
in terms of bug-revealing capability, code coverage, and test input generation.
Moreover, fuzzol achieves higher levels of coverage on average: fuzzol was able
to cover ×1.05 more LoC than Superion, ×1.08 more LoC than AFL-compiler-
fuzzer, ×4.49 more LoC than AFLFast, and ×5.80 more LoC than MOpt-AFL.
Finally, our prioritization algorithm makes fuzzol exercise new compiler code-
base, significantly faster (∼24 h) compared to the-state-of-the-art.

Contributions. We make the following contributions.

– We introduce a novel syntax-aware mutation with three distinct strategies
that performs fine-grained changes within an input program by taking into
account the nature and rules of a corresponding grammar.

– We design a prioritization algorithm that is able to distinguish the most
effective strategies for each seed, and speed up the fuzzing process.

– We implement our approach in an AFL-based greybox fuzzer, which we
call fuzzol. We provide in-depth evaluations for understanding the effective-
ness of fuzzol (and its key components) when compared to four state-of-the-
art fuzzers in the context of a large-scale study including 33 releases of solc.

2 Background

We provide a brief overview of the Solidity compiler and present a number of illus-
trative examples of solc bugs that our approach can help reveal. Furthermore, we
discuss the limitations of previous approaches in the context of compiler testing.

2.1 The Solidity Compiler

solc [7] is the standard Solidity smart contract compiler. To handle variables
and function arguments, Solidity employs particular mechanisms such as storage
(a persistent memory that every Ethereum account incorporates), and memory
(a byte-array that holds the data until the execution of the function terminates).

330 C. Mitropoulos et al.

Important components of solc include an Application Binary Interface
(ABI), the built-in formal verification module, and an inline assembler. ABI
is a standard way to interact with contracts in the Ethereum ecosystem. Inter-
actions can be both external (i.e., from outside of the blockchain) and contract-
to-contract. Note that data is always encoded according to its type, as described
in the specification of ABI. Further, the encoding is not self-describing and as a
result, it requires a schema to decode. The verification module of solc utilizes
Microsoft’s Z3 theorem prover [8,23]. Specifically, solc translates a contract into
an SMT (Satisfiability Modulo Theory) formula, and then it attempts to prove
the correctness of the contract and warn users about potential arithmetic over-
flows, unreachable code and more. Finally, through the inline assembler, Solidity
provides a way for contracts to interact with EVM at a low level.

2.2 Bugs in the Solidity Compiler

To motivate the design of our fuzzing approach, we discuss two indicative bugs.

Bug in SMTChecker. To enable formal verification within solc, developers
must include the SMTChecker via the pragma keyword at the beginning of their
contract (in general, the pragma keyword can be used to employ diverse compiler
features or checks). To verify a given contract and detect property violations,
solc applies Bounded Model Checking (BMC) [22] to all contract functions,
including free functions. Free functions are defined at a file-level and are not
part of a contract. As a result, they cannot directly access state variables and
internal functions of contracts. Nevertheless, they can call other contracts, emit
events and send Ether. When BMC (through the SMTChecker module, line 1)
examines the following simple, free function, solc produces an internal compiler
(version 0.7.3) error:

1 pragma experimental SMTChecker;

2 function f() { }

This happens because the SMTChecker implementation does not reason about
free functions–f in our case (a known issue among several 0.7.x versions).

Bug in Array Handling. The Solidity compiler may also contain bugs related
to the way it handles its various structures such as arrays. Consider the code
fragment below:

1 contract C {

2 uint [7**90][500] ids;

3 }

Contract C defines an array of integers named ids. Note that the size of arrays
in Solidity have an upper bound. When solc (v0.6.0) compiles this contract an
internal error occurs. This is because the compiler fails to catch that the size
of ids is beyond the maximum size and produce a corresponding error message
to the developer. As a result, the compiler crashes notably at a later stage (i.e.,
code generation) when trying to statically allocate memory for ids.

Syntax-Aware Mutation for Testing the Solidity Compiler 331

2.3 Limitations of State-of-the-Art Fuzzers

A grammar-aware fuzzer, could affect both the parsing phase and the seman-
tic analysis process of the compiler. For this reason, grammar-aware mutation
strategies have been utilized to test scripting languages [9,44]. However, previous
grammar-aware strategies fail to form well-structured inputs efficiently.

Consider two recent mutations: the enhanced dictionary-based mutation,
employed by Superion [44], and the tree-based mutation, used by both Supe-
rion and the grammar-aware fuzzer NAUTILUS [9]. The basic concept behind
the enhanced dictionary-based mutation strategy is a dictionary containing a list
of tokens, e.g., reserved identifiers, coming from a specified grammar. Initially,
the fuzzer will tokenize the test input. After locating the token boundaries, the
mutation either places a new token from the dictionary in between two others,
or overwrites an existing one with another also coming from the dictionary. This
procedure takes place for each token in the dictionary. Unfortunately, the result-
ing test cases do not always conform to the syntax of the grammar. We provide
an illustrative example later on, in Sect. 3.

The tree-based mutation strategy selects two test inputs and attempts to
parse them and generate the corresponding ASTs based on the target grammar.
Note that in case of a parsing error the strategy stops. The strategy collects all
sub-trees coming from both inputs and stores them in a set (S). Given the AST
of the first test case, the strategy replaces every sub-tree with a random sub-tree
taken from S. Each replacement leads to a new test case. By design, the tree-
based mutation strategy respects the grammar of the language, as it is based on
actions that process AST sub-trees. However, as we noted above, there are many
cases where parsing will fail. This is going to happen if other mutations have
already changed the test input that the tree-based strategy currently handles in
a way that it does not conform to the grammar rules.

The AFL-compiler-fuzzer [28] offers a text-mutation strategy that detects
specific string instances in a test case and replaces it with new text taken from
an existing set. Also, it can add specific code fragments inside a program in an
arbitrary manner (e.g. include a generic if statement such as if(0==1)). Such
changes can be made in test cases written in different programming languages
and explore compilers in a unified manner. Nevertheless, they will not be able
to take into account the specifics of the language and exercise the different
components of a compiler such as Solidity.

3 Fuzzing Approach

We introduce a syntax-aware mutation that aims to reveal complex bugs in solc.
Our mutation consists of three strategies operating on the AST of a smart con-
tract written in Solidity (Sect. 3.1). To further boost the effectiveness of fuzz test-
ing, we present a prioritization algorithm that identifies and applies the strategies
that are most effective in exploring new interesting paths for a specific seed pro-
gram (Sect. 3.2). Finally, we explain some technical details behind fuzzol, the
implementation of the proposed approach (Sect. 3.3).

332 C. Mitropoulos et al.

Fig. 1. Overview of our fuzzing approach for testing the Solidity compiler.

Figure 1 presents the overview of our approach. The input of our approach
is a set of test programs written in Solidity. Our initial corpus consists of small
test cases coming from the test suites of various Solidity releases. Notably, these
test cases are designed to exercise all the different compiler features. First, we
select a test input (seed) from the fuzzing queue. Then, our approach applies
both grammar-blind strategies (such as bit/byte flips [37]) and our syntax-aware
mutation to the selected seed. This syntax-aware mutation comes with three
different mutation strategies. Each strategy has a different role in exercising
Solidity’s codebase. In particular, the first strategy performs changes to the
control-flow of the input program by updating statements, operators and data
types found in each smart contract. Our second strategy selects a random leaf
from a contract’s AST and place it in another contract. In this manner, we
combine different characteristics (e.g. variable names) stemming from multiple
contracts to create seeds that are more likely to trigger bugs. The third strategy
detects the parts of a given AST written in inline assembly and replaces assembly
code opcode arguments with other opcodes. The main goal of this strategy is to
yield programs that contain more complicated inline assembly operations, and
consequently involve more opportunities for solc’s inline optimizer.

To make our approach faster and explore deeper code, when a seed is selected
from the queue, we employ a mutation strategy prioritization algorithm. As a
result, we are able to identify, select, and apply the strategies that are most
effective in exploring new paths for that specific seed. Our algorithm relies on
an effectiveness function that leverages details from previous iterations of the
fuzzing process (Sect. 3.2).

3.1 Syntax-Aware Mutation

Our syntax-aware mutation consists of different strategies. In the following, we
analyze the proposed strategies. Given a smart contract c, each strategy performs
a different change in c’s AST altering the contract’s behavior accordingly.

3.1.1 Operator, Statement and Data Type Change Strategy Our first
strategy applies changes in either an operator, a statement, or a data type of a
given contract’s AST. To do so, it replaces the selected item with another node
of the same type (e.g., an operator is substituted by another operator). Thus, the
strategy does not violate the syntax of the contract even though its behaviour
and control flow can be significantly changed.

Syntax-Aware Mutation for Testing the Solidity Compiler 333

Fig. 2. Example of substitutions applied to operators, statements and data types.

Fig. 3. The overwrite substitution of the enhanced dictionary-based strategy can poten-
tially break the syntax rules. This is not the case in our operator, statement, and data
type change strategy.

Definition 1 (Operator, Statement and Data Type change). Let c be a
smart contract and let a ∈ {ops, stm, datatype} be a node in c’s AST that is either
an operator, a statement or a data type. Given a node a′ ∈ {ops, stm, datatype},
we say that mut(c) = c[mut(a)] = c[a′/a] is an operator, statement and data
type change of the contract c that substitutes either an operator, a statement or
a datatype node with another similar node, preserving the syntax of the language.

Specifically, a substitution c[a′/a] may involve (1) the replacement of a token
(operator, datatype) or a statement a with another token/statement a′ found in
the AST, or (2) the generation or deletion (i.e., represented by an empty node ε)
of valid tokens and program statements. Specifically, our strategy employs four
distinct types of substitutions namely: generate, swap, delete, and duplicate. By
performing such substitutions on Solidity tokens is of particular importance.
This is because Solidity has a number of special tokens related to smart contract
functionalities such as Ether units (e.g., finney, wei and szabo) and payment
addresses (e.g., address) that can change the course of compilation. For each
substitution we make sure that we maintain a correct grammar syntax. Note
that if a substitution violates the syntax we abort it.

334 C. Mitropoulos et al.

Figure 2 demonstrates how each substitution works using two code fragments
as target examples. The fragments are depicted at the center of Figs. 2a and 2b
respectively. In Fig. 2a, we include a view function (foo) (note that a view
function can read but cannot write to the variables that process the persistent
memory), while Fig. 2b illustrates a simple if statement inside a for loop.

Note that the generate substitution works in a way similar to the overwrite
method of the enhanced dictionary-based strategy implemented in Superion [44].
However, the existing overwrite strategy may violate the syntax rules of the
grammar, as it chooses a random token of the program and overwrites it with a
randomly-generated token of the language without checking whether this replace-
ment breaks the syntax of the program (see also Sect. 2.3). This will not happen
with our generate method because the strategy will enforce a correct syntax.
Figure 3, highlights The distinct difference between overwrite and generate.

Fig. 4. AST leaf node change.

3.1.2 AST Leaf Node Change Strat-
egy Our AST leaf node change strategy
takes the contract c1 that is currently
first on the queue, and another randomly-
selected contract c2 from the queue. Then,
it parses the contracts and generates the
corresponding ASTs. Given an AST leaf
node of the first contract, the strategy
replaces it with a random leaf node that
stems from the second contract. Such a
replacement leads to a new test case that
involves unexpected characteristics (e.g.,
variable names), which in turn examine
new compiler behaviours. Notably, the
strategy considers changes only in the tree leafs and not in the sub-trees, mak-
ing our strategy efficient and fast. This is because moving sub-trees across ASTs
leads to large test cases that slow down the process.

Definition 2 (AST Leaf Node Change). Let c1 and c2 be two contracts
and let l1 be a leaf node of c1, and l2 be a leaf node of c2. Then the we say that
mut(c1) = c1[l2/l1] is an AST leaf node change of the contract c1 that replaces
a leaf l1 with another leaf l2 from another AST c2, preserving language syntax.

This strategy again results in well-formed programs because l2 of c2 will
replace l1 of c1, only if this change respects the grammar rules of the language.
An example is depicted in Fig. 4. Contract A, contains the following expression:
x = a + (100000000 / b) while contract B includes: y = c * 0. Our strategy
takes the leaf node 0 from contract A and replaces it with the leaf node b from
contract B. Such a change can produce unexpected behaviours, e.g., triggering
the compiler check that verifies whether the program is free from divisions by
zero. Note that the strategy is designed to preserve the syntax, contrary to the
tree-based strategy discussed in Sect. 2.3.

Syntax-Aware Mutation for Testing the Solidity Compiler 335

Algorithm 1: Mutation Strategy Prioritization
1 Function Prioritization(t, strategies, scores, k, bound):
2 if scores = nil then // first time we process t
3 for s ∈ strategies do
4 apply strategy s
5 scoress ← eff(s, t)

6 bound ← GetKthScore(scores, k)

7 else
8 for s ∈ strategies do
9 if scoress ≥ bound then

10 apply strategy s
11 scoress ← eff(s, t)
12 if scoress ≤ bound then
13 bound ← scoress
14 bound ← GetKthScore(scores, k)

15 return bound

16 End Function

3.1.3 Inline Assembly Node Change Strategy In the context of Solid-
ity, developers are able to employ blockchain-specific opcodes only available
through inline assembly. However, malformed inline assembly code can affect
the optimizations that can be applied to programs by the compiler, leading to
crashes [18]. Our inline assembly node change strategy identifies inline assembly
nodes, and makes changes in the corresponding assembly’s opcodes depth.

Definition 3 (Inline Assembly Node Change). Let c be a smart contract,
o1 ∈ opcodes be an opcode node of c, and n be a child node of o1. Given another
opcode o2 ∈ opcodes, we say that mut(c) = c[o1[o2/n]/o1] is an inline assembly
node change of the contract c that replaces an argument of an opcode with another
opcode according to the grammar rules of the language. This change increases
the depth of the opcodes in the AST.

Consider the following example. In a smart contract A that involves the
opcode o = add(x, y), the strategy operates as follows: First, it selects a ran-
dom opcode o′ (e.g.., mul) from the set of available opcodes supported by the
Solidity’s inline assembly language. Then, it chooses a random child node of the
initial opcode o (i.e., either x or y) and replaces it with the new opcode o′ with
the same arguments as o’s (e.g. add(mul(x, y), y)).

Overall, the inline assembly node change strategy produces complicated code
and makes it hard for the compiler to solve some formulas used for verifying
program correctness. Further, changing the inline assembly code can lead to
discrepancies among the optimized code and the regular one. The reason behind
this is that a program that manifests more complex opcodes in inline assembly
triggers more paths in the solc’s inline assembly optimizer, as the code now
involves more optimization opportunities.

336 C. Mitropoulos et al.

3.2 Mutation Strategy Prioritization

The key idea of our algorithm is that for every seed, instead of applying all
strategies in a deterministic manner (as all AFL-based fuzzers do), we choose to
perform only the top-k strategies that are most effective in producing test cases
that explore new paths. In this way, testing does not waste time and resources
in applying strategies that are deemed to be ineffective for a particular seed.

To achieve this, we introduce a function that evaluates the effectiveness
of a strategy s on a test case t based on the fraction of the number of new
explored paths (#newpaths) and the number of times the strategy s is applied
to t (#executions).

eff(s, t) =
#newpaths
#executions

Intuitively, the greater the eff(s, t) is, the more effective the mutation strategy
s is on this test case.

Algorithm 1 summarizes the details of the concept. The inputs of the algo-
rithm are: (1) one seed program (t), (2) the set of mutation strategies that can
be potentially applied to t, (3) an integer constant k indicating the number of
top strategies exploring new paths, (4) the effectiveness scores of the strategies
from the last time the t was processed, and (5) a bound value. Based on these
inputs, our algorithm operates as follows. If it is the first time we process the
given test case (which indicates that we do not have the effectiveness scores
from previous runs, i.e., scores = nil, line 1), the algorithm applies all available
strategies and computes their scores (lines 2–4). Then, the algorithm computes
the bound value, which is used as an indicator of whether a strategy should be
selected or not the next time we will process the seed. This bound value is the
result of the GetKthScore function, which sorts the list of effectiveness scores in
a descending order and then returns the score of the kth strategy.

If the given test case has been previously processed, the algorithm iterates all
mutation strategies and applies only those whose effectiveness score is greater or
equal to the bound (line 8). Practically, this means that the algorithm performs
the top-k mutation strategies with the greatest effectiveness scores as computed
in the previous run of the given seed. To prevent our algorithm from applying the
same top-k strategies all the time, when the current effectiveness score eff(s, t)
of an executed mutation strategy is lower than the value of bound, the algorithm
updates bound as eff(s, t) (lines 12–13). Conceptually, updating and lowering
bound gives the opportunity to other strategies to take the place of a strategy
currently included the top-k list (assuming the condition at line 9 holds).

3.3 Fuzzol

We have implemented fuzzol, an AFL-based fuzzer to test the Solidity com-
piler. Our fuzzer is available as open-source software at https://github.com/
chamitro/Fuzzol. We have developed our novel syntax-aware mutation together

https://github.com/chamitro/Fuzzol
https://github.com/chamitro/Fuzzol

Syntax-Aware Mutation for Testing the Solidity Compiler 337

with its three distinct strategies in C/C++. Furthermore, we have adapted Supe-
rion’s [44] tree-based and enhanced dictionary-based mutation strategies (also
written in C/C++) to handle smart contracts and included them in our imple-
mentation. Beyond that, fuzzol also employs other common grammar-blind
strategies [37] such as bit/byte flips and interesting values. Finally, fuzzol fol-
lows our prioritization algorithm to identify and apply strategies that are effec-
tive for a particular seed in the way we discussed in the previous section.

We built the Solidity grammar using ANTLR 4. Even though an ANTLR
grammar for Solidity exists, it is incomplete and does not support the latest
versions of the Solidity compiler. Thus, we have enriched the grammar adding
more than 200 lines of code containing new grammar rules.

4 Evaluation

We evaluate fuzzol by examining multiple releases of the Solidity compiler,
seeking answers to the following research questions:

RQ1 Is fuzzol effective in finding bugs in the Soldity compiler?
RQ2 How effective is our syntax-aware mutation when compared to grammar-

blind strategies?
RQ3 How effective is fuzzol when compared to the state-of-the-art fuzzers?
RQ4 Does our prioritization algorithm speed up the fuzzing process?

4.1 Evaluation Setup

We focused on the last 33 Solidity versions, i.e., from solc-v0.5.11 to
solc-v0.8.17. We excluded solc-v0.8.1, solc-v0.8.2, and solc-v0.8.14
because we were not able to properly set them up due to configuration prob-
lems. Each compiler version contains 230k LoC on average.

Our initial corpus of seeds was populated by the test cases coming from the
aforementioned versions. We extracted small test cases (less than 1 kB – recall
that using small and targeted seeds is preferred in compiler testing [42]) that
explore all the different functionalities from every version we tested. We gathered
1.5k test cases in total, each containing 10 LoC on average.

4.2 RQ1: Discovering Bugs

fuzzol triggered several crashes. We examined the crashes to identify their
source and find potential bugs in the Solidity compiler. Table 1 summarizes our
results. fuzzol identified 19 bugs in total, which we reported to the development
team of Solidity. The team was already aware of some bugs. For the unknown
bugs (enlisted in Appendix A), there were prompt fixes (∼6 h after our report).
Note also, that our testing campaign helped identify two performance issues [3,
4]. We further classified the discovered bugs based on their root cause. In the
following, we describe the categories that we have identified.

338 C. Mitropoulos et al.

Table 1. Total bugs discovered in all solc versions by fuzzol. Bugs are grouped in
categories based on their root cause.

Category Total Fixed Confirmed (Unfixed)

Verification 5 5 0

ABI encoding 2 2 0

Inline assembly 3 3 0

Data structures & functions 8 7 1

Optimization 1 0 1

Total 19 17 2

Verification-Related Bugs. As we discussed in Sect. 2.1, solc enables formal
verification through the SMTChecker module. We have found that several con-
tracts that invoke this module can lead to compiler crashes. By examining these
cases we have identified five distinct bugs. As an example of this bug category,
consider again the first issue discussed in Sect. 2.2.

ABI Encoding Bugs. Using the ABIEncoder module, solc encodes and
decodes various elements of a contract (e.g., structs) into other formats such
as JSON. fuzzol was able to identify two bug instances related to ABI encod-
ing. As an example, consider the following test case:

1 function f() public {

2 mapping(uint=>uint)public memory x;

3 }

This test case calls the mapping function, which can be used to store data in
the form of key-value pairs (both uint in our case). Our AST leaf node change
strategy replaced the second leaf of uint with a new leaf uint[1000000], which
comes from another contract. The corresponding mutant triggered a “map-
ping used outside of storage” error in solc. This happens because when the
ABIEncoder attempts to encode the elements of the contract, it does not pre-
vent the processing of an out-of-bounds array.

The bug above highlights that combining individual characteristics of two
contracts (i.e., through the AST leaf node change strategy) can result in test
cases with unique features that are more likely to trigger bugs. For example, it
is highly unlikely for a generator to produce the construct uint[1000000].

Inline Assembly-Related Errors. As discussed in Sect. 2.1, contracts can
have direct access to the EVM through solc’s inline assembler. In Solidity,
inline assembly is marked by the assembly { ... } statement. Inside the curly
braces, developers can utilize variable declarations, literals, opcodes and more.
We observed that in three occasions the compiler did not handle such features
in a correct manner. As an example, consider a contract that assigns one integer
variable to another in inline assembly:

Syntax-Aware Mutation for Testing the Solidity Compiler 339

1 assembly {

2 uint x; uint y;

3 x := y

4 }

Our operator, statement and data type change strategy, changed the type of x
from uinit into a calldata type. When solc versions 0.6.4 and 0.6.8 attempted
to compile the code above they both crashed. This is because there was a bug
in the assignment implementation of the calldata types.

Bugs in Data Structures and Functions. We have discovered eight bugs in
the implementations of various Solidity data structures and modules.

We have already discussed one of theses issues in Sect. 2.2. (bug in array
handling). Our AST leaf node change strategy helped reveal this bug in the
following manner. It collected a large integer number from a leaf of another
contract and substituted the boundary of the array with this number. When
processing the corresponding test case during the code generation stage, the
compiler crashed because there were no checks regarding array limits.

Optimization Bugs. We identified one bug related to compiler optimizations.
The code that led to the identification of the issue contained a hex value, that
was replaced with another, large, hex value, i.e., hex"344383800E6110.... In
this case, our AST Leaf Node Change strategy replaced the leaf node of the hex
value, and replaced it with another hex value node, existed in another contract.

4.3 RQ2: Comparing Syntax-Aware and Grammar-Blind Strategies

We compare our strategies (described in Sect. 3.1) with standard grammar-blind
strategies. We focus on the state-of-the-art strategies offered by AFL, namely:
bit/byte flips, arithmetics and interesting values. To do so, we compare the num-
ber of unique test cases each strategy generates, i.e., the test cases that trigger
new paths, over a 48 h window. Note that comparing test cases is a standard
way to evaluate strategies [31,36,47]. Also, collecting seeds for 48 h is consistent
with previous work where the time window for the experiments was roughly
24 h [13,35]. Furthermore, we compare the strategies in terms of effectiveness.
We define the effectiveness of a mutation strategy as the ratio of unique test
cases to the total number of test cases it generates [9,31,32].

Figure 5 presents the evolution of the generated test cases by each strategy
for solc v0.8.16. We observed very similar trends in other compiler versions and
omit the corresponding results for brevity. Our results indicate that all mutation
strategies show a linear growth with different coefficients. Our operator, state-
ment and data type change strategy turns out as the most productive one at
all times. Notably, after 48 ours it has generated 250 test cases more than the
bit/byte flips strategy (the second most productive), and 1000 more than the
arithmetics strategy (the least productive). Our two other syntax-aware strate-
gies come in the third and fourth place respectively.

Our results indicate that our strategies offer an increasing rate of producing
interesting test cases. Another observation is that grammar-blind strategies can

340 C. Mitropoulos et al.

Fig. 5. Test cases produced for solc

0.8.13 by each strategy.
Fig. 6. The ratio of interesting test cases
per fuzzer to the total number of gener-
ated test cases.

be productive when fuzzing a compiler, an observation made also by the authors
of Superion [44], who examined different interpreters.

Focusing on effectiveness we observed that our operator, statement and data
type change strategy is the most effective one. Figure 6 shows box-plots that
present the effectiveness of each strategy for all 32 solc versions. The green line
inside every box plot indicates the corresponding median value. The operator,
statement and data type change strategy has the highest ratio overall (30–40%).
Then, bit/byte flipping is the second best strategy with an overall ratio of 28–
32%. Our AST leaf node change strategy has a (23–28%) ratio, and the inline
assembly node change strategy comes next with a 15–20% ratio. Finally, the
arithmetic strategy ratio is the lowest (10–15%).

4.4 RQ3: Comparison with State-of-the-Art Fuzzers

We compare fuzzol with four AFL-based fuzzers, namely: Superion [44], the
AFL-compiler-fuzzer [28], AFLFast [13] and MOpt-AFL [35]. Appendix B
presents the design differences between fuzzol and the fuzzers above. Unfor-
tunately, given the time restrictions, we were not able to compare fuzzol with
other grammar-aware fuzzers, such as NAUTILUS [9], IFuzzer [43], GRI-
MOIRE [11]. This is because these fuzzers are not AFL-based, thus it requires
much engineering effort and sufficient time to make them run for Solidity.

To perform our comparison we focus on two dimensions: (1) the bug finding
capabilities of each tool and (2) code coverage. To gather our results, we run all
fuzzers for 48 h. All experiments were run on a machine with an Intel Xeon CPU
E5-2650v3 2.30GHz processor with 6 logical cores and 64 GB of RAM.

Figure 7 presents the bugs discovered by each tool for the last 12 solc ver-
sions. From versions 0.8.0 to 0.8.7, all tools reported crashes related to existing
bugs. In all cases, fuzzol found more bugs than any other fuzzer. From ver-
sions 0.8.8 to 0.8.13 there are no bugs found by the fuzzers. While in versions
v0.8.15 and v0.8.16 fuzzol identified one optimization issue, while the other
four fuzzers were not able to detect any bugs.

We measured how much code is exercised by each tool by examining three
solc versions. To do so, we used afl-cov [38]. Table 2 presents the line, function,

Syntax-Aware Mutation for Testing the Solidity Compiler 341

Fig. 7. Bugs across 14 of the last solc
versions.

Fig. 8. The ratio of interesting test cases
per strategy to the total number of gen-
erated test cases.

and branch coverage per fuzzer – version. Overall, we found that on average, fuz-
zol was able to cover ×1.05 (i.e., 5.4% code coverage improvement) more lines
than Superion, ×1.08 (i.e., 8.5% code coverage improvement) more lines than
AFL-compiler-fuzzer, ×4.40 more lines than AFLFast (i.e., 230.6% code cover-
age improvement) and ×5.80 more lines than MOpt (i.e., 408.8% code coverage
improvement). Notably, given the compiler’s large codebase, an 1% code cover-
age improvement translates to covering 2,220 more lines of code. The situation
is similar in the case of functions and branches where fuzzol outperformed all
fuzzers. In particular, our results show that on average, fuzzol invoked ×1.04
more functions than Superion, ×1.08 more functions than AFL-compiler-fuzzer,
×2.4 more than AFLFast and MOpt. Finally, in terms of branch coverage, fuz-
zol was ×1.03 better than Superion, ×1.07 better than AFL-compiler-fuzzer,
×2.56 better than AFLFast and ×3.2 better than MOpt.

All the above clearly indicate that the techniques implemented in fuz-
zol lead to better results compared to the-state-of-the-art, in terms of both
bug-finding capabilities and code coverage improvement.

4.5 RQ4: Mutation Strategy Prioritization Algorithm

To evaluate our mutation strategy prioritization algorithm (Sect. 3.2), we run
different fuzzol instances with different settings, i.e., we tried out different
values of k, which is an input of our algorithm. Recall that k indicates the number
of top strategies exploring new paths (see Sect. 3.2). Focusing on performance,
we examined the number of unique test cases generated over time. Further, we
compared fuzzol’s performance against the corresponding ratios of the other
four tools mentioned earlier.

Apart from the three strategies discussed in Sect. 3, fuzzol also incorpo-
rates all grammar-blind strategies of AFL and the grammar-based strategies
implemented in Superion [44], namely, enhanced dictionary-based mutation and
tree-based mutation, counting 20 strategies in total. Therefore, running our algo-
rithm with k = 20 is equivalent to running fuzzol with the default, AFL-based
prioritization algorithm, i.e., running all the strategies in the same order.

342 C. Mitropoulos et al.

We run all fuzzers on solc version 0.8.16 for 48 h. In the case of fuzzol we
used 6 instances with different k’s. Figure 8 illustrate our results. For the first four
hours, all fuzzers add interesting test cases in the queue. From that point and on,
all fuzzol ’s instances, except for fuzzol ’s instance with k = 3, generate more
interesting test cases than all the other fuzzers. After 24 h, five fuzzol instances
take the lead as they generate 1,100 test cases than Superion, 1,500 test cases
than AFL-compiler-fuzzer, and 2,000 test cases than both AFLFast and MOpt-
AFL. Observe that k = 5 and k = 8 instances are the most effective ones as they
yield 1,100 more test cases than the baseline, i.e., k = 20. We observed similar
trends in all the remaining compiler versions.

Table 2. Line, function and branch coverage for three of the latest solc versions.

Tool Line Coverage (%) Function Coverage (%) Branch Coverage (%)

v0.8.16 v0.8.15 v0.8.13 v0.8.16 v0.8.15 v0.8.13 v0.8.16 v0.8.15 v0.8.13

fuzzol 48.1 48.3 48.0 21.6 21.8 21.1 28.5 28.5 28.3

Superion [44] 46.3 45.0 46.1 20.6 20.5 20.6 28.1 28.0 27.5

AFL-compiler-fuzzer [28] 45.2 44.3 45.6 19.6 20.5 20.1 25.7 26.1 26.5

AFLFast [13] 15.2 15.0 15.4 <10 <10 <10 11.2 <10 11.3

MOpt [35] <10 <10 <10 <10 <10 <10 <10 <10 <10

Our results indicate that our prioritization algorithm further boosts the
fuzzing process. First, as we observe in Fig. 8 the baseline fuzzol instance (the
black thick line) is faster than all the other fuzzers, something that is consistent
with our RQ3 findings (Sect. 4.4). However, it is slower than the instances that
employ the algorithm (except the one with k = 3). This indicates that when our
algorithm is used with values of k that are neither too high nor too low (e.g.,
k = 5, k = 8), there is a significant benefit in the performance of the fuzzing
process, because fuzzol produces unique test cases much faster.

5 Related Work

Grammar-Aware Mutation and Generation. We have already discussed
the basic limitations of the strategies employed by Superion [44] in Sect. 2.3.
IFuzzer [43] is a grammar-aware fuzzer that uses genetic programming [45] to
compose new seeds for the JavaScript interpreter. Holler et al. [29] have proposed
a similar approach. Specifically, they extract code fragments form sample code
and use them to mutate test cases. On the grammar-aware generation front,
NAUTILUS [9] can generate seeds containing valid code and then perform tree-
based mutations on them (see also Sect. 2.3). Then, the corresponding mutants
can be used to test languages such as PHP and JavaScript. Notably, NAUTILUS
works without an initial set of test cases and generates inputs from scratch with-
out taking into account different language characteristics. Recall that utilizing

Syntax-Aware Mutation for Testing the Solidity Compiler 343

the existing test cases of a compiler helps exercising interesting compiler fea-
tures (see Sect. 3). GRIMOIRE [11] extends NAUTILUS adding more mutations
including string replacements, recursive replacements, and more.

Compared to this body of work, fuzzol is the first fuzzer for the Solidity lan-
guage, which implements novel syntax-aware strategies that takes into account
Solidity’s grammar and syntax rules.

Testing Compilers. Compiler testing approaches have been extensively sur-
veyed [21]. We enumerate a number of methods related to our work. Csmith [49]
automatically generates C programs that are free from undefined behavior. Ran-
domized differential testing has also been used to examine production compilers
such as GCC and Clang [34,41]. The AFL-compiler-fuzzer [28] uses a text-based
mutation to test different compilers, including solc (as we discussed in Sect. 2.3).
Our evaluation indicated that our approach is more effective and achieves better
results in terms of both bug-finding capabilities and code coverage improvement
than the AFL-compiler-fuzzer.

Advanced Scheduling. There are several approaches that provide more
dynamic and effective power schedules for seeds prioritization. MOpt [35]
employs a modified particle swarm optimization algorithm to make an effec-
tive use of the mutation scheduler. To further improve scheduling, Cerebro [33]
takes into account elements such as coverage, and execution time. Furthermore,
Cha et al. [17] employ symbolic analysis on execution traces to maximize effec-
tiveness. AFLGo [12] and Hawkeye [20] introduce power schedules able to direct
the fuzzing process towards specific locations of a programs (directed fuzzing),
based on distance metrics. AFLFast [13] and fair-fuzz [32], include a scheduling
algorithm that prioritizes rarely-exercised branches to achieve higher coverage.

fuzzol implements a novel prioritization algorithm that is able to identify
mutations that can achieve better results in terms of exploring new paths. Con-
ceptually, our algorithm instead of prioritizing seeds, it prioritizes mutations.

6 Conclusion

We have presented fuzzol, a greybox fuzzer for the Solidity compiler. fuz-
zol comes with two key components for boosting the effectiveness of Solidity
compiler fuzzing: (1) a syntax-aware mutation for producing syntactically-valid
mutants that get past the syntactic checks of the compiler (and thus exploring
deeper code), and (2) a mutation strategy prioritization algorithm that treats
each seed differently, according to the mutations that are most suitable for that
specific seed. Our in-depth evaluation on 33 compiler releases indicates that fuz-
zol is superior to four state-of-the-art fuzzers in terms of bug-finding capability,
improved code coverage, and test input generation. Finally, our prioritization
algorithm makes fuzzol generate unique test inputs almost one day faster.

Acknowledgments. We thank the anonymous reviewers and the shepherd for their
constructive feedback. This work was supported by the European Union programme
under grant agreements No. 82735 (Cybersecpro) and No. 82886 (Sentinel).

344 C. Mitropoulos et al.

A Bugs Previously Unknown to Solidity Developers

In the table below, we enumerate all bugs that (1) fuzzol identified and (2)
were unknown to Solidity developers.

Table 3. Category and references of the bugs that were unknown to Solidity developers.

Category URL

Data structures & functions github.com/ethereum/solidity/issues/11677

Data structures & functions github.com/ethereum/solidity/issues/10502

Data structures & functions github.com/ethereum/solidity/issues/7550

Inline assembly github.com/ethereum/solidity/issues/9936

Inline assembly github.com/ethereum/solidity/issues/11680

Verification github.com/ethereum/solidity/issues/10798

Verification github.com/ethereum/solidity/issues/7546

B Differences Between FUZZOL and Fuzzers Included
in Our Evaluation

In the following table, we present the main design differences between fuz-
zol and the related fuzzers included in our evaluation. Note that all fuzzers are
AFL-based.

Table 4. Point-to-point comparison between fuzzol and the fuzzers included in our
evaluation. GB: grammar-blind, GA: grammar-aware, TM: text-mutation

Fuzzer Mutation Advanced Schedule Target Program

Superion [44] GA, GB ✗ JavaScript interpreter

AFL-compiler-fuzzer [28] TM ✗ Solidity, Move, Fe, Zig

AFLFast [13] GB ✓ Binaries

MOpt [35] GB ✓ Binaries

fuzzol GA, GB ✓ Solidity

References

1. The Counterparty financial platform. https://counterparty.io/. Accessed 15 Jan
2023

https://github.com/ethereum/solidity/issues/11677
https://github.com/ethereum/solidity/issues/10502
https://github.com/ethereum/solidity/issues/7550
https://github.com/ethereum/solidity/issues/9936
https://github.com/ethereum/solidity/issues/11680
https://github.com/ethereum/solidity/issues/10798
https://github.com/ethereum/solidity/issues/7546
https://counterparty.io/

Syntax-Aware Mutation for Testing the Solidity Compiler 345

2. Hedera hashgraph. Accessed 15 Jan 2023
3. Optimized contract crash. https://github.com/ethereum/solidity/issues/12840.

Accessed 05 Jan 2023
4. Optimized contract freeze. https://github.com/ethereum/solidity/issues/12848.

Accessed 03 Jan 2023
5. Solidity. https://docs.soliditylang.org/en/v0.8.0/. Accessed 03 Jan 2023
6. Solidity compiler - issues catalog. https://github.com/ethereum/solidity/issues.

Accessed 15 Jan 2023
7. The Solidity contract-oriented programming language Github repository. https://

github.com/ethereum/solidity. Accessed 05 Jan 2023
8. Z3 GitHub repository (2021). https://github.com/Z3Prover/z3. Accessed 20 Jan

2023
9. Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi, A., Teuchert, D.:

NAUTILUS: fishing for deep bugs with grammars. In: Proceedings of the 26th
Annual Network and Distributed System Security Symposium (NDSS) (2019)

10. Atlidakis, V., Godefroid, P., Polishchuk, M.: Restler: stateful rest API fuzzing. In:
Proceedings of the 41st International Conference on Software Engineering, ICSE
2019, pp. 748–758. IEEE Press (2019)

11. Blazytko, T., et al.: Grimoire: synthesizing structure while fuzzing. In: Proceedings
of the 28th USENIX Conference on Security Symposium, pp. 1985–2002. USENIX
Association, USA (2019)

12. Böhme, M., Pham, V.T., Nguyen, M.D., Roychoudhury, A.: Directed greybox
fuzzing. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, pp. 2329–2344. Association for Computing
Machinery, New York (2017)

13. Böhme, M., Pham, V.T., Roychoudhury, A.: Coverage-based greybox fuzzing as
Markov chain, CCS 2016, pp. 1032–1043. Association for Computing Machinery,
New York (2016)

14. Bounimova, E., Godefroid, P., Molnar, D.: Billions and billions of constraints:
whitebox fuzz testing in production. In: Proceedings of the 2013 International
Conference on Software Engineering, ICSE 2013, pp. 122–131. IEEE Press (2013)

15. Brent, L., Grech, N., Lagouvardos, S., Scholz, B., Smaragdakis, Y.: Ethainter:
a smart contract security analyzer for composite vulnerabilities. In: Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2020, pp. 454–469. Association for Computing Machinery,
New York (2020)

16. Browne, R.: Ether, the world’s second-biggest cryptocurrency, is closing in on an
all-time high (2021). https://www.cnbc.com/2021/01/19/bitcoin-ethereum-eth-
cryptocurrency-nears-all-time-high.html. Accessed 20 Jan 2023

17. Cha, S.K., Woo, M., Brumley, D.: Program-adaptive mutational fuzzing. In: Pro-
ceedings of the 2015 IEEE Symposium on Security and Privacy, SP 2015, pp.
725–741. IEEE Computer Society, USA (2015)

18. Chaliasos, S., Gervais, A., Livshits, B.: A study of inline assembly in solidity smart
contracts. Proc. ACM Program. Lang. 6(OOPSLA2) (2022)

19. Chaliasos, S., Sotiropoulos, T., Spinellis, D., Gervais, A., Livshits, B., Mitropoulos,
D.: Finding typing compiler bugs. In: Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
PLDI 2022, pp. 183–198. ACM, New York (2022)

20. Chen, H., et al.: Hawkeye: towards a desired directed grey-box fuzzer. In: Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications

https://github.com/ethereum/solidity/issues/12840
https://github.com/ethereum/solidity/issues/12848
https://docs.soliditylang.org/en/v0.8.0/
https://github.com/ethereum/solidity/issues
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://github.com/Z3Prover/z3
https://www.cnbc.com/2021/01/19/bitcoin-ethereum-eth-cryptocurrency-nears-all-time-high.html
https://www.cnbc.com/2021/01/19/bitcoin-ethereum-eth-cryptocurrency-nears-all-time-high.html

346 C. Mitropoulos et al.

Security, CCS 2018, pp. 2095–2108. Association for Computing Machinery, New
York (2018)

21. Chen, J., et al.: A survey of compiler testing. ACM Comput. Surv. 53(1), 1–36
(2020)

22. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. In: Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2009, pp. 137–148.
IEEE Computer Society, USA (2009)

23. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

24. Ghaleb, A., Pattabiraman, K.: How effective are smart contract analysis tools?
Evaluating smart contract static analysis tools using bug injection. In: Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2020, pp. 415–427. ACM, New York (2020)

25. Godefroid, P.: Fuzzing: hack, art, and science. Commun. ACM 63(2), 70–76 (2020)
26. Godefroid, P., Levin, M.Y., Molnar, D.: Sage: whitebox fuzzing for security testing:

Sage has had a remarkable impact at Microsoft. Queue 10(1), 20–27 (2012)
27. Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y.: Mad-

max: analyzing the out-of-gas world of smart contracts. Commun. ACM 63(10),
87–95 (2020)

28. Groce, A., van Tonder, R., Kalburgi, G.T., Le Goues, C.: Making no-fuss compiler
fuzzing effective. In: Proceedings of the 31st ACM SIGPLAN International Confer-
ence on Compiler Construction, CC 2022, pp. 194–204. Association for Computing
Machinery, New York (2022)

29. Holler, C., Herzig, K., Zeller, A.: Fuzzing with code fragments. In: Proceedings
of the 21st USENIX Conference on Security Symposium, Security 2012, p. 38.
USENIX Association, USA (2012)

30. Jiang, B., Liu, Y., Chan, W.K.: Contractfuzzer: fuzzing smart contracts for vulner-
ability detection. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, pp. 259–269. Association for Com-
puting Machinery, New York (2018)

31. Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz testing. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2018, pp. 2123–2138. Association for Computing Machinery,
New York (2018)

32. Lemieux, C., Sen, K.: Fairfuzz: a targeted mutation strategy for increasing greybox
fuzz testing coverage. In: Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering, ASE 2018, pp. 475–485. Association
for Computing Machinery, New York (2018)

33. Li, Y., et al.: Cerebro: context-aware adaptive fuzzing for effective vulnerability
detection. In: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, pp. 533–544. ACM, New York (2019)

34. Livinskii, V., Babokin, D., Regehr, J.: Random testing for C and C++ compilers
with YARPGen. Proc. ACM Program. Lang. 4(OOPSLA) (2020)

35. Lyu, C., et al.: MOPT: optimized mutation scheduling for fuzzers. In: Proceedings
of the 28th USENIX Conference on Security Symposium, pp. 1949–1966. USENIX
Association, USA (2019)

36. Lyu, C., et al.: EMS: history-driven mutation for coverage-based fuzzing. In: 29th
Annual Network and Distributed System Security Symposium (2022)

https://doi.org/10.1007/978-3-540-78800-3_24

Syntax-Aware Mutation for Testing the Solidity Compiler 347

37. Zalewski, M.: American fuzzy lop (2013). https://lcamtuf.coredump.cx/afl/.
Accessed 13 Jan 2023

38. Rash, M.: AFL-COV - AFL fuzzing code coverage (2021). https://github.com/
mrash/afl-cov. Accessed 06 Jan 2023

39. Rigger, M., Su, Z.: Testing database engines via pivoted query synthesis. In: 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2020), pp. 667–682. USENIX Association (2020)

40. Sotiropoulos, T., Chaliasos, S., Atlidakis, V., Mitropoulos, D., Spinellis, D.:
Data-oriented differential testing of object-relational mapping systems. In: 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp.
1535–1547 (2021)

41. Sun, C., Le, V., Su, Z.: Finding and analyzing compiler warning defects. In: Pro-
ceedings of the 38th International Conference on Software Engineering, ICSE 2016,
pp. 203–213. Association for Computing Machinery, New York (2016)

42. Sun, C., Le, V., Zhang, Q., Su, Z.: Toward understanding compiler bugs in GCC
and LLVM. In: Proceedings of the 25th International Symposium on Software Test-
ing and Analysis, ISSTA 2016, pp. 294–305. Association for Computing Machinery,
New York (2016)

43. Veggalam, S., Rawat, S., Haller, I., Bos, H.: IFuzzer: an evolutionary interpreter
fuzzer using genetic programming. In: Askoxylakis, I., Ioannidis, S., Katsikas, S.,
Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 581–601. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45744-4 29

44. Wang, J., Chen, B., Wei, L., Liu, Y.: Superion: Grammar-aware greybox fuzzing.
In: Proceedings of the 41st International Conference on Software Engineering, ICSE
2019, pp. 724–735. IEEE Press (2019)

45. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: Proceedings of the 31st International Conference
on Software Engineering, ICSE 2009, pp. 364–374. IEEE, USA (2009)

46. Wüstholz, V., Christakis, M.: Harvey: a greybox fuzzer for smart contracts. In: Pro-
ceedings of the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2020, pp. 1398–1409. Association for Computing Machinery, New York (2020)

47. Yan, S., Wu, C., Li, H., Shao, W., Jia, C.: Pathafl: path-coverage assisted fuzzing.
In: Proceedings of the 15th ACM Asia Conference on Computer and Communica-
tions Security, ASIA CCS 2020, pp. 598–609. Association for Computing Machin-
ery, New York (2020)

48. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. SIGPLAN Not. 46(6), 283–294 (2011)

49. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in c
compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2011, pp. 283–294. Association
for Computing Machinery, New York (2011)

50. Zubairy, R.: Create a blockchain app for loyalty points with Hyperledger Fabric
Ethereum Virtual Machine (2018). Accessed 06 Jan 2023

https://lcamtuf.coredump.cx/afl/
https://github.com/mrash/afl-cov
https://github.com/mrash/afl-cov
https://doi.org/10.1007/978-3-319-45744-4_29

Efficient Transparent Polynomial
Commitments for zk-SNARKs

Sungwook Kim1 , Sungju Kim2 , Yulim Shin3 , Sunmi Kim3 ,
Jihye Kim4(B) , and Hyunok Oh3(B)

1 Seoul Women’s University, Seoul, Republic of Korea
kim.sungwook@swu.ac.kr

2 Zkrypto Inc., Seoul, Republic of Korea
sungjukim@zkrypto.com

3 Hanyang University, Seoul, Republic of Korea
{smkim2164,hoh}@hanyang.ac.kr

4 Kookmin University, Seoul, Republic of Korea
jihyek@kookmin.ac.kr

Abstract. This paper proposes a new efficient transparent polynomial
commitment scheme. In a polynomial commitment scheme, a prover com-
mits a polynomial and a verifier sends a random point to the prover. The
prover then evaluates the polynomial on the given point with generat-
ing a proof that the evaluated value is correctly computed according to
the committed function. Our construction is based on the polynomial
commitment scheme (the DARK compiler) proposed by Bünz, Fisch,
and Szepieniec in EUROCRYPT 2020. The approach of DARK is that
a prover recursively generates 2 group elements as the proof for a poly-
nomial with a halved degree and a verifier indirectly verifies them at
each recursion. In our construction, a prover commits all the reduced
polynomials across recursions at once, and then generates a single aggre-
gated proof for them. By aggregating commitments from recursive steps
in DARK, the proposed scheme reduces the proof size by half, and pro-
vides better performance in the proof generation and the proof verifi-
cation compared to DARK. By adopting the proposed scheme, the effi-
ciency of transparent SNARKs from polynomial IOPs can be significantly
improved.

Keywords: Polynomial commitment scheme · Transparent ·
zk-SNARKs · Groups of unknown order

1 Introduction

Zero-Knowledge Succinct Non-interactive Arguments of Knowledge (zk-
SNARKs) are non-interactive proof systems that validate NP statements with
a short and efficiently verifiable proof without revealing any information other
than the correctness of the statements. Due to their strong privacy guarantee
and efficient verification of (possibly delegated) computations, zk-SNARKs have
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 348–366, 2024.
https://doi.org/10.1007/978-3-031-51479-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_18&domain=pdf
http://orcid.org/0000-0003-4789-3347
http://orcid.org/0009-0002-8282-8436
http://orcid.org/0000-0002-5374-9213
http://orcid.org/0000-0002-2518-7903
http://orcid.org/0000-0003-2953-7883
http://orcid.org/0000-0002-9044-7441
https://doi.org/10.1007/978-3-031-51479-1_18

Efficient Transparent Polynomial Commitments for zk-SANRKs 349

received much attention as a cutting edge solution for real-world applications, in
particular, blockchain systems for privacy and scalability; Zerocash [3] showed
how to effectively apply zk-SNARKs to a distributed ledger payment system to
enhance privacy; off-chain systems [20,21] that utilize zk-SNARKs for verifiable
computation improve blockchain scalability by enabling a significant amount of
computation of on-chain nodes to be replaced by verification of the correctness
of execution. In line with their rapid and extensive adoption, there have been
a variety of proposals of zk-SNARKs: Aurora [4], Hyrax [35], Ligero [1], Mar-
lin [17], Plonk [23], and Sonic [31], to name a few.

Recent constructions of zk-SNARKs [17,23,31] show that polynomial inter-
active oracle proof (IOP) is a powerful tool to transform a constraint system for
a statement (circuit) to zk-SNARKs. The main ingredient for zk-SNARKs from
polynomial IOPs is a polynomial commitment scheme. A polynomial commit-
ment scheme enables for a prover to commit a low-degree polynomial f(X) and
later convinces a verifier that f(X) is correctly evaluated at X = z chosen ran-
domly by a verifier. In real-world applications, a desirable class of zk-SNARKs is
those that do not require a trusted-setup (i.e. transparent zk-SNARKs). Trans-
parency of zk-SNARKs from polynomial IOP exactly depends on that of the
underlying polynomial commitment scheme.

We are interested in efficient transparent polynomial commitment schemes.
By “efficient”, we mean that the proof size and verification cost are logarithmic
in the degree of a given polynomial. In this line of research, notable prior works
include the DARK compiler (DARK) [13,16]1 and Dory [29]. DARK has been
constructed over groups of unknown order. It obtains a logarithmic proof size
by recursively arguing the correctness of evaluation of an input polynomial that
is randomly updated by a verifier with halved degree at each iteration. Dory
has been proposed as a generalized inner-product argument system. It bases on
a pairing group and obtains an efficient transparent polynomial commitment
scheme via ideas in [14,35].

1.1 Contributions

In this paper, we propose an efficient transparent polynomial commitment
scheme based on groups of unknown order. Our construction, motivated by
DARK, significantly reduces its proof size. While its asymptotic complexities
are the same as DARK, it actually performs better on the computations of the
prover and the verifier respectively. We summarize our contributions as follows:
New Construction. We develop a new polynomial commitment scheme moti-
vated by DARK. The heart of DARK is to perform recursive arguments, where
the degree of a polynomial becomes half at each recursive call. At each iteration,
a DARK prover generates 3 commitments, i.e., two to the left- and right-hand
sub-polynomials and one to proof of correct exponentiation (PoE) [36]. In the
view of argument of knowledge, DARK guarantees that a prover should know
the committed polynomial at the first place and all reduced polynomials obtained
1 The original DARK [13] has security flaw, which is addressed in [16].

350 S. Kim et al.

Table 1. Efficiency comparison with existing transparent polynomial commitment
schemes with logarithmic proof size and verification cost
GU : a group of unknown order; (G1,G2,GT): a pairing group with a bilinear map
P : G1 × G2 → GT ; F: a prime field Zp; d: the maximum degree of polynomials
defined in the schemes; μ := �log2 (d + 1)�; Z(b): an integer between −b and b, where
log2 b ≈ μλ for a security parameter λ.
Elements of sets in the second (|π|), fifth (|pp|), and sixth (|pp| pre-comp.) columns
denote their sizes. In the column |pp|, we ignore a group description (e.g., RSA mod-
ulus). Elements of sets and P in the third (the prover P) and forth (the verifier V)
columns denote the corresponding cost of operations, where the superscript exp denotes
a group exponentiation. DARK (opt.) refers to its optimized version.

|π| P V |pp| |pp| pre-comp.

This work (μ + 1) GU + 2μ F + Z(b) O(d) G
exp
U O(μ) G

exp
U (μ + 1) GU d(μ/2 + 1) GU

DARK [13,16] 3μ GU + 2μ F + Z(b) GU d GU

DARK (opt.) 2μ GU + μ F + Z(b)

Dory [29] (3μ + 7) GT + O(d) (Gexp
1 + P) O(μ) G

exp
T (

√
d + 2) (G1 + G2)+

(1.5μ + 3) (G1 + G2) + 8 F (1.5μ + 4) GT

Table 2. Comparison of proof size with 128-bit security [bytes]
An RSA-3072 group is taken for ours and DARK. For DORY, the curve BLS12-381 [10]
is used as in their paper. For all cases we set F := Zp for a 128-bit prime p.

Degree 210 211 212 213 214 215 216

This work 4,576 4,992 5,408 5,824 6,240 6,656 7,072

DARK (opt.) 8,016 8,816 9,616 10,416 11,216 12,016 12,816

Dory 9,824 10,616 11,408 12,200 12,992 13,784 14,576

during recursion steps. Roughly speaking, the approach of DARK is to indepen-
dently (and indirectly) check the prover’s knowledge of a polynomial at every
step, where PoE is used for the efficient verification of the proof. While our con-
struction is similar with DARK in a way that it recursively reduces a polynomial
to a constant, it takes a different approach to provide knowledge soundness. We
observe that knowledge of polynomials can be checked in an aggregated way
by adopting proof of knowledge of representation (PoKRep) [7]. More precisely,
instead of checking the knowledge at every step, the prover in our construction
first commits to all the polynomials generated during recursion, and later pro-
vides a single proof that the prover knows them. We show that our polynomial
commitment scheme has knowledge-soundness (witness-extended emulation) as
an argument of knowledge under the strong RSA assumption.
Communication-Efficient Polynomial Commitment. Our polynomial
commitment scheme reduces the size of proof by one third and a half com-
pared to those of DARK and its optimized version, respectively. This advantage
directly comes from the adoption of PoKRep for knowledge of polynomials. As
described previously, a proof of each iteration consists of 3 group elements in

Efficient Transparent Polynomial Commitments for zk-SANRKs 351

DARK. PoKRep in our construction provides a way to aggregate the part of
PoE commitments in DARK. Our construction, thus, only requires a single com-
mitment at each recursion and another single commitment for PoKRep after
the polynomial reduction part ends. Consequently, our polynomial commitment
scheme reduces the proof size from 2 log2 deg f(X) or 3 log2 deg f(X) in [13,16] to
log2 deg f(X). We compare the efficiency of the proposed commitment scheme to
prior transparent polynomial commitment schemes in Table 1. Table 2 concretely
compares the proof sizes of the proposed polynomial scheme with Dory [29] and
DARK over 128-bit security. Table 2 shows that the proof size of our construction
is half as small as the existing schemes.
Implementation. We evaluate the performance of the proposed scheme in an
RSA-2048 group. The estimation shows that the ratio of the proof size in our
construction to DARK is about 0.4 almost independently of the degree of a
polynomial. For the optimized DARK, the ratio is about 0.6. We implement
our polynomial commitment scheme and DARK over an RSA-2048 group. We
perform experiments to measure the proof generation and verification time by
varying the degree of a polynomial (210–216). Experimental results show that the
proof generation in our construction is about 3 times faster than DARK. The
verification performance gain becomes significant as the degree of a polynomial
increases.

1.2 Organization

The remainder of this paper is organized as follows. In Sect. 2, we provide the
background groups of unknown order, arguments of knowledge, and the syntax
of a polynomial commitment scheme. In Sect. 3, we present our construction of
a polynomial commitment scheme. In Sect. 4, we evaluate the proposed scheme
over an RSA-2048 group in comparison with DARK. We review related works
in Sect. 5.

2 Preliminaries

Notations. Throughout the paper, λ denotes the security parameter written
in unary. negl(λ) is a negligible function of the security parameter λ. We write

log2 as log. For a set S, we use e
$← S to denote that an element e is sampled

uniformly at random from S. For a probabilistic algorithm A, we write y ←
A(x) to denote that y is returned as the result of A on input x together with
a randomness picked internally. Primes(λ) is the set of primes less than 2λ.
GGen(λ) is a randomized algorithm that generates a group of unknown order.
For integers a and b, [a, b] = {i ∈ Z : a ≤ i ≤ b}. For a set S and μ ∈ N, S[μ]
denotes the set of μ-variate multilinear polynomials with coefficients from S. By
convention, S = S[0]. For a μ-variate multilinear polynomial f over Z, ‖f‖∞
denotes the maximum over the absolute values of all coefficients of f . a mod n
denotes the remainder when we divide a by n. a = b (mod n) means a and b are
congruent to modulo n.

352 S. Kim et al.

2.1 Groups of Unknown Order

A variety of cryptographic primitives are constructed over groups of unknown
order such as delay functions [36], accumulators [7], and polynomial commitment
schemes [13]. Our construction is inspired by the polynomial commitment scheme
(the DARK compiler), which is built over groups of unknown order in [13,16].
The use of groups of unknown order requires two cryptographic assumptions for
security, i.e., the r-Strong RSA Assumption [2] and the Adaptive Root Assump-
tion [36]. In the r-Strong RSA Assumption, the adversary is hard to compute
an arbitrary root (except the power of r) of a random group element. In the
Adaptive Root Assumption, the adversary is infeasible to compute a random
root of an arbitrary group element. We note that the above two assumptions
hold in the generic group model for groups of unknown order [7,18].

Definition 1 (r-Strong RSA Assumption). The r-Strong RSA Assumption
states that an efficient adversary cannot compute l-th roots for a given random
group element, if l is not a power of r. Specifically, it holds for GGen if for any
probabilistic polynomial time (poly-time) adversary A :

Pr

[
ul = g ∧ l �= rk, k ∈ N : G

$← GGen(λ), g
$← G,

(u, l) ∈ G × N ← A(G, g)

]
≤ negl(λ).

When r = 1, the r-strong RSA assumption is exactly the standard strong RSA
assumption.

2.2 Arguments of Knowledge

Let R ⊂ X × W be a poly-time decidable binary relation. x ∈ X and w ∈ W
are called a statement and a witness, respectively. The language of R (LR)
is defines as the set {x ∈ {0, 1}∗ : ∃w ∈ {0, 1}∗ such that (x,w) ∈ R}. An
argument system for an NP relation R in the common random string model
consists of three probabilistic poly-time algorithms (Setup,P,V), where we call
algorithms P and V a prover and a verifier, respectively. Setup takes the secu-
rity parameter λ, a some set of parameters param depending on the relation
R, and returns public parameters pp. For a triple (pp, x ∈ X , w ∈ W), inter-
active algorithms P(pp, x, w) and V(pp, x) are called a prover and a verifier,
respectively. We denote the transcript produced by P and V when interacting
by tr ← 〈P(pp, x, w),V(pp, x)〉 After interaction with P, V accepts or rejects tr.
We denote the final decision returned by V by 〈P(pp, x, w),V(pp, x)〉 = b, where
b = 1 if V accepts and b = 0 if V rejects. One can transform public coin interac-
tive argument systems to non-interactive systems by applying the Fiat–Shamir
heuristic [22].

Definition 2 (Argument of Knowledge). We call the triple (Setup,P,V) an
argument of knowledge for a relation R if it satisfies:

Efficient Transparent Polynomial Commitments for zk-SANRKs 353

– (Completeness) For all (x,w) ∈ R

Pr
[〈P(pp, x, w),V(pp, x)〉 = 1 : pp ← Setup(1λ, param)

]
= 1.

– (Knowledge Soundness) For all poly-time adversaries A1 there exists a poly-
time extractor E such that for all poly-time adversaries A0

Pr

⎡
⎣ 〈A1(pp, x, state),V(pp, x)〉 = 1

∧ (x,w) �∈ R :
pp ← Setup(1λ, param),

(x, state) ← A0(pp),
w ← E(pp, x, state)

⎤
⎦ = negl(λ).

DARK [13,16] and SPARTAN [34] extend a polynomial commitment scheme
to an argument of knowledge. Those constructions strengthened the knowledge
soundness by adopting the property witness-extended emulation [30]. We note
that Lindell also proved that any every knowledge sound protocol also satisfies
witness-extended-emulation [30].

Definition 3 (Witness-extended Emulation [24,30]). A public coin argu-
ment (Setup,P,V) has witness-extended emulation if for every deterministic
polynomial-time prover P∗ there exists an expected polynomial-time emulator
E such that for all non-uniform polynomial-time adversaries A, the difference
between the following two probabilities is at most negl(λ):

Pr

⎡
⎣A(tr) = 1 :

pp ← Setup(1λ, param),
(x, state) ∈ A(pp),

tr ← 〈P∗(pp, x, state),V(pp, x)〉

⎤
⎦ and

Pr

⎡
⎣ A(tr) = 1 ∧

if tr is accepting, then (x,w) ∈ R :
pp ← Setup(1λ, param),

(x, state) ∈ A(pp),
(tr, w) ← E〈P∗(pp,x,state),V(pp,x)〉(pp, x)

⎤
⎦ ,

where E has access to a transcript oracle 〈P∗(pp, x, state),V(pp, x)〉 that can be
rewound to a particular round and run again with V using fresh randomness.

2.3 Polynomial Commitment Scheme

We adopt the syntax of a polynomial commitment scheme which allows interac-
tive evaluation proofs, following DARK [13,16] and SPARTAN [34]. A polyno-
mial commitment scheme is a tuple of protocols PC = (Setup,Commit,Open,Ver)
for μ-variate multilinear polynomials f(X1, . . . , Xμ) over a field F:

– pp ← PC.Setup(1λ, μ,F) generates a public parameter pp with taking a secu-
rity parameter λ, the maximum number of variables, and the field F.

– C ← PC.Commit(pp, f ; τ) takes as input pp, f(X1, . . . , Xμ) ∈ F[μ], and the
randomness τ used in the computation. It returns a commitment C. If τ is
not used, we write PC.Commit(pp, f). We call (f, τ) the opening of C.

354 S. Kim et al.

– (y, π) ← PC.Open(pp, C, �z, f ; τ) is a public coin interactive protocol between
a probabilistic poly-time prover P and a verifier V. P takes as input C, a
point �z = (z1, . . . , zμ) ∈ F

μ, and τ used in PC.Commit. After interaction with
V, P returns an evaluation y = f(�z) ∈ F and a proof of its correctness π,
i.e., y = f(�z) for a witness polynomial f of C. If τ is not used, we write
PC.Open(pp, C, �z, f).

– b ∈ {0, 1} ← PC.Ver(pp, C, �z, y, π) takes as input pp, C, �z, y, and π. It returns
1 if it accepts the proof and 0 otherwise.

Recent SNARKs from polynomial IOPs require that a polynomial commit-
ment scheme is extractable, i.e., interactive evaluation proofs is an argument of
knowledge for the relation

RPC = {((C, �z, y), f) : f ∈ F[μ] ∧ y = f(�z) ∧ PC.Ver(pp, C, �z, y, π) = 1} .

Definition 4. A polynomial commitment scheme PC = (Setup,Commit,Open,
Ver) for μ-variate multilinear polynomials over a field F is extractable if the
following properties holds:

– (Binding) For all probabilistic poly-time adversaries A

Pr

⎡
⎣ f0 �= f1 ∧

PC.Commit(pp, f0; τ0)
= PC.Commit(pp, f1; τ1)

: pp ← PC.Setup(1λ, μ),
(f0, f1, τ0, τ1) ← A(pp)

⎤
⎦ ≤ negl(λ).

– (Completeness) For all μ-variate multilinear polynomials f ∈ F[μ] and all
points �z ∈ F

μ

Pr
[
b = 1 : pp ← PC.Setup(1λ, μ), C ← PC.Commit(pp, f ; τ),

(y, π) ← PC.Open(pp, C, �z, f ; τ), b ← PC.Ver(pp, C, �z, y, π)

]
= 1.

– (Witness-extended emulation) PC has witness-extended emulation as a public
coin argument of knowledge for the relation RPC.

3 Our Construction

3.1 Integer Encoding of µ-Variate Multilinear Polynomials

We employ an encoding method in DARK [16] that presents a polynomial as an
integer. For a non-negative real number b, let Z(b) := {x ∈ Z : |x| ≤ b}. Given
a polynomial f(X) ∈ Z(b)[X] an encoding function ρq is defined as ρq(f(X)) →
f(q) ∈ Z where q is parameterized in b and deg f(X). To encode polynomial
f(X) ∈ Zp, we take a representative of f(X) ∈ Zp as an integer polynomial with
coefficients from [0, p − 1], thus, f(X) ∈ Z(p − 1)[X]. The decoding map ρ−1

q is
also given in DARK for integers in certain range.

Lemma 1 ([16, Fact 1]). Let q be an odd integer. For any − qd+1

2 < z < qd+1

2 ,
there is a unique degree d integer polynomial f(X) ∈ Z(q

2)[X] such that f(q) = z.

Efficient Transparent Polynomial Commitments for zk-SANRKs 355

Algorithm 1. Protocol PoKRep (Proof of knowledge of representation)

Public Parameter pp := (G, �G) ← PoKRep.Setup(1λ, t)
Inputs: G ∈ G; Witness: (x1, ..., xt) ∈ Z

t; Claim: G =
∏t

i=1 Gxi
i

1. V samples �
$← Primes(λ) and sends � to P.

2. P computes π := (�r ∈ Z
t, Q ∈ G) ← PoKRep.Open(pp, �, (x1, ..., xt)) and

sends π to V.
3. V returns b ← PoKRep.Ver(pp, �, G, π).

PoKRep.Setup(1λ, t):

1: G
$← GGen(λ)

2: �G := (G1, . . . , Gt)
$← G

t

3: return (G, �G)

PoKRep.Open(pp, �, (x1, . . . , xt)):

1: for i = 1 do t
2: compute ri ← xi mod �
3: end for
4: �r := (r1, . . . , rt)

5: compute Q ← ∏t
i=1 G

	 xi
�

i

6: return π := (�r, Q)

PoKRep.Ver(pp, �, G, π):

1: parse π as (�r, Q)
2: compute G′ ← Q� · ∏t

i=1 Gri
i

3: if G = G′ then
4: b ← 1
5: else
6: b ← 0
7: end if
8: return b

There exists a 1-1 correspondence between the set of univariate polyno-
mials of degree d and the set of μ-variate multilinear polynomials, where
μ := log (d + 1)�. More precisely, let Xi := X2i−1

for i = 1, ..., μ. For 0 ≤ j ≤ d,
we consider its binary representation j =

∑μ−1
i=0 bi2i, where bi ∈ {0, 1}. We

then have Xj = X
∑μ−1

i=0 bi2
i

=
∏μ

i=1 Xbi
i . Under this correspondence ρ encodes

a μ-variate multilinear polynomial f(X1, ...,Xμ) ∈ Z(q
2)[μ] as an integer by

ρq(f) = f(q, ..., q2
μ−1

). Lemma 1 holds analogously for f ∈ Z(q
2)[μ] such that

f(q, q2, . . . , q2
μ−1

) = z for − q2μ−1

2 < z < q2μ−1

2 .

3.2 Proof of Knowledge of Representation

Let G be a group of unknown order. For public parameters G and G1, . . . Gt ∈ G,
Boneh, Bünz, and Fisch [7] introduced an argument of knowledge for the relation

RRep =

{(
G ∈ G, (x1, . . . , xt) ∈ Z

t
)

: G =
t∏

i=1

Gxi
i

}

called “Proof of knowledge of representation (PoKRep)”. The protocol has knowl-
edge soundness under the strong RSA assumption. We present the protocol
PoKRep in Algorithm 1. The protocol PoKRep plays an important role in our
construction of a polynomial commitment scheme.

3.3 The Proposed Polynomial Commitment Scheme

356 S. Kim et al.

Algorithm 2. Polynomial Commitment Scheme

PC.Setup(1λ, μ, p):

1: (G, (G, �R)) ← PoKRep.Setup(1λ, 1 + μ), where �R := (R1, . . . , Rμ)
2: b ← (p − 1)pμ; q ← 2 · p2μ+1;
3: return pp := (1λ,G, (G, �R), b, q)

PC.Commit(pp; f(X1, . . . , Xμ) ∈ Z(p − 1)[X1, . . . , Xμ]):

1: C ← Gf̂ where f̂ := f(q, q2, . . . , q2
μ−1

) ∈ Z

2: return C

PC.Open(pp, C ∈ G, �z ∈ Z
μ
p , f(X1, . . . , Xμ) ∈ Z(p − 1)[X1, . . . , Xμ])):

1: P sends C to V
2: P initializes g1(X1, . . . , Xμ) ← f(X1, . . . , Xμ) // g1 = f1

3: for i = 1 do μ
4: P computes gi,L(X1, . . . , Xμ−i) and gi,R(X1, . . . , Xμ−i) such that

gi(X1, . . . , Xμ−i+1) = gi,L(X1, . . . , Xμ−i) + Xμ−i+1 · gi,R(X1, . . . , Xμ−i)
// Operations on polynomials are performed over Z[μ − i + 1]

5: P computes Di ← R
ĝi,R

i where ĝi,R = gi,R(q, . . . , q2
μ−i

) ∈ Z and sends Di to V
6: P computes yi,R ← gi,R(z1, . . . , zμ−i) mod p and sends yi,R to V
7: V samples αi

$← [0, p − 1] and sends αi to P
8: P computes gi+1(X1, . . . , Xμ−i) ← gi,L(X1, . . . , Xμ−i)+αi ·gi,R(X1, . . . , Xμ−i)

// Operations on polynomials are performed over Z[μ − i]

9: end for
10: P sends gμ+1 ∈ Z to V
11: �g ← (ĝ1,R, . . . , ĝμ,R) ∈ Z

μ, �D ← (D1, . . . , Dμ) ∈ G
μ, and �y ← (y1,R, . . . , yμ,R) ∈ Z

μ
p

12: V samples �
$← Primes(λ) and sends � to P

13: P computes ((r,�s), Q) ← PoKRep.Open((G, (G, �R)), �, (f̂ , �g))

14: π ← (gμ+1, �D, �y, r, �s, Q) // r = f̂ = ĝ1 mod �, si = ĝi,R mod �, Q = G�f̂/�� · ∏μ
i=1 R

⌊
ĝi,R/�

⌋

i

15: P returns (y := f(�z), π)

PC.Ver(pp, C ∈ G, �z ∈ Z
μ
p , y ∈ Zp, π):

1: parse π = (gμ+1, �D, �y = (y1,R, . . . , yμ,R), r, �s = (s1,R, . . . , sμ,R), Q)
2: assert that |gμ+1| ≤ b
3: assert that PoKRep.Ver((G, (G, �R)), �, C · ∏μ

i=1 Di, ((r,�s), Q)) = 1
4: s1 ← r mod �
5: y1 ← y mod p
6: for i = 1 do μ

7: si,L ← si − q2
μ−i · si,R mod �

8: si+1 ← si,L + αi · si,R mod �
9: yi,L ← yi − zμ−i+1 · yi,R mod p

10: yi+1 ← yi,L + αi · yi,R mod p
11: end for
12: assert that gμ+1 = sμ+1 (mod �)
13: assert that gμ+1 = yμ+1 (mod p)
14: return 1 if all checks pass, otherwise 0

Efficient Transparent Polynomial Commitments for zk-SANRKs 357

We describe the proposed polynomial commitment scheme to μ-variate mul-
tilinear polynomial over Zp with a λ-bit prime p. In PC.Commit, P first commits
the starting μ-variate multilinear polynomial g1(X1, . . . , Xμ]) using the same
basic DARK commitment scheme by C := Gĝ1 , where ĝ1 := g1(q, q2, . . . , q2

μ−1
).

The complete description is given in Algorithm 2. Similarly to DARK, our
polynomial commitment scheme executes arguments of knowledge on the poly-
nomial g1(X1, . . . , Xμ) ∈ Z[μ] recursively (Line 3–9 in PC.Open). Note that
(μ − i + 1)-variate multilinear polynomial gi ∈ Z[μ − i + 1] splits to two parts,
one for terms without the variable Xμ−i as a factor and the other with it, hence,
one can writes gi = gi,L(X1, . . . , Xμ−i) + Xμ−i+1 · gi,R(X1, . . . , Xμ−i) (Line 4
in PC.Open). At ith iteration for i = 1, . . . , μ, a (μ − i + 1)-variate multilinear
polynomial gi is reduced to (μ− i)-variate multilinear polynomial gi+1 ∈ Z[μ− i]
(Line 8 in PC.Open), hence, μ recursive calls are required.

What crucially differentiates our scheme from DARK is that the proof of our
polynomial commitment scheme at each iteration includes a single group element
Di in PC.Open, whereas DARK requires additional group element(s). This bene-
fit comes from the employment of PoKRep (Algorithm 1) on the integer encoding
of a vector of multilinear polynomials (g1, g1,R, g2,R, . . . , gμ,R) as follows: 1) P
is asked to send entire commitments �D to updated polynomials gi,R’s across
iterations with respect to distinct commitment keys �R (Line 5 in PC.Open), 2)
V next sends a random prime � (Line 12 in PC.Open), and 3) P then generates
a single proof using PoKRep.Open in the product form C · ∏μ

i=1 Di with the
corresponding commitment keys (G, �R) (Line 13 in PC.Open). The evaluation
y = g(z1, . . . , zμ) is analogously transformed and yi,R’s are computed by P and
sent to V as a part of evaluation proof.

The verification of the proof also works in a different way with DARK.
‖gi+1‖∞ grows by a factor of p over ‖gi‖∞ since gi+1 = gi,L + αigi,R for
αi ∈ [0, p−1]. Thus, the last polynomial gμ+1 should lie in the range [0, (p−1)pμ],
which is verified first (Line 2 in PC.Ver). V checks the knowledge of polynomi-
als (g1, g1,R, g2,R, . . . , gμ,R) from PoKRep.Ver (Line 3 in PC.Ver). V proceeds to
reconstruct (ĝ1, ĝ2, ĝ3, . . . , ĝμ, gμ+1) modulo � (Line 4–11 in PC.Ver) and checks if
the reconstructed gμ+1) equals to the received gμ+1 modulo � (Line 12 in PC.Ver).
The evaluation is analogously reconstructed and checked modulo p (Line 13 in
PC.Ver).

3.4 Security Analysis

We show the security of our polynomial commitment scheme according to Defi-
nition 4. Since our PC.Commit in Algorithm 2 is identical to that of DARK [13],
the binding property immediately holds, thus, we omit the proof of Theorem 1.

Theorem 1 (Binding [13, Lemma 3]). PC.Commit in Algorithm 2 is binding
for μ-variate multilinear polynomials in Z(b)[μ] for b < q

2 if the strong RSA
assumption holds.

358 S. Kim et al.

Theorem 2 (Completeness). The proposed polynomial commitment scheme
of Algorithm 2 is complete for μ-variate multilinear polynomials in Z(p − 1)[μ]
if q > 2b.

The proof of Theorem 2 is relegated to Appendix. The encoding parameter
q can be chosen large enough so that q > 2b for the completeness. Witness-
extended emulation, however, requires q to be much larger than 2b due to a
knowledge extractor algorithm. In the case of DARK, an extracting process
should handle rational polynomials with bounded numerators and denomina-
tors. The issue involves Multilinear Composite Schwartz-Zippel Lemma [15]. This
leads to increasing the size of q by approximately λ log μ bits for DARK. Our
polynomial commitment scheme, however, avoids the issue of handling ratio-
nal polynomials since ours directly exploits a knowledge extractor of PoKRep.
Thus, the size of q is significantly smaller than that of DARK, which decreases
the computation overhead of P. The Theorem 3 states that Algorithm 2 has
witness-extended emulation. The proof is relegated to Appendix.

Theorem 3 (Witness-extended emulation). The proposed polynomial
commitment scheme of Algorithm 2 for μ-variate polynomials in Z(b)[μ] with
λ-bit challenge and log q ≥ (2μ + 1)λ + 1 has witness extended emulation if the
strong RSA assumption holds.

4 Performance Evaluation

We evaluate our polynomial commitment scheme. For convenience, we implement
our polynomial commitment scheme and DARK over univariate polynomials of
degree d for performance analysis. By the 1-1 correspondence in Sect. 3.1, a
μ-variate multilinear polynomial f(X1, . . . , Xμ) are identified as a univariate
polynomial f(X) of degree d = 2μ − 1 and ρq(f) = f(q).

4.1 Optimization

Encoding Parameter q. Since q is large, computing ρq = f(q) is somewhat
burdensome. q is a parameterized value in the maximum degree of polynomials
d and the field size p of λ bits. q is chosen so that Z(p − 1)[X] and the range(
− qd+1

2 , qd+1

2

)
is bijective under the map ρq(f(X)) = f(q). In fact, we can

choose a lager value for q since we only require an injective ρq. Thus, if we
choose q as a power of 2 as long as ρ is injective, we can replace a part of
necessary multiplications for computing f(q) with bit-shift operations, which
saves computation cost. Thus we set log q := 2μ(λ + 1) + 1 in ours. In the case
of DARK, log q := λ(2μ + log μ + 6) + 32μ2 + 5.
Pre-computation. In the proposed polynomial commitment scheme, the com-
putation bottleneck for a prover is to compute Gf(q) for a group element G ∈ G

and a polynomial f(X). As in DARK, a group exponentiation by f(q) can be effi-
ciently performed using pre-computation. Let d := deg f and μ := log (d + 1)�.

Efficient Transparent Polynomial Commitments for zk-SANRKs 359

Table 3. Size of public parameter, commitment, and proof for RSA-2048 [bytes]

While DARK requires a single group element for the commitment key, our poly-
nomial commitment scheme has μ + 1 group elements as the commitment key.
More precisely, for the commitment key G and �R = {R1, . . . , Rμ}, one pre-

computes {Gq, . . . , Gqd} and {Rq
i , . . . , R

q�(d+1)/2�−1

i } for i = 1, . . . , μ. Note that
for the case of Ri’s, we compute powers up to d+1

2 � − 1 because the highest
degree of reduced polynomials has the half degree of an input polynomial.

4.2 Proof Size

We evaluate and compare the proof sizes of ours and DARK. For the concrete
evaluation, we estimate the sizes of public parameters pp, commitment C, and
proof π for an RSA-2048 group that offers 112-bit security. We take a 128-bit
prime p for F = Zp. For pp, we only include an RSA modulus N , common
reference strings (CRS), and p for F. Note that one can just store the size of q
instead of q as discussed previously.

We present the sizes of pp, C, and π across various degrees (210 ≤ d + 1 ≤
216) of a polynomial in Table 3. As shown in the table, the size of pp in our
construction is about 2+log deg f(X)

2 = μ+2
2 times lager than that of DARK, which

360 S. Kim et al.

Table 4. Execution time of ours for RSA-2048 with pre-computation [ms]

Degree (d + 1) 210 211 212 213 214 215 216

Pre-Compute 12,050 28,335 66,297 153,243 350,046 794,512 1,789,869

Commit 36 70 140 278 555 1,110 2,222

Prove 4,454 9,803 21,689 48,261 109,778 261,981 684,516

Verify 5.08 5.11 5.62 5.66 5.99 6.15 6.56

Table 5. Execution time of DARK for RSA-2048 with pre-computation [ms]

Degree (d + 1) 210 211 212 213 214 215 216

Pre-Compute 5,246 11,801 26,590 59,328 130,738 292,260 644,854

Commit 35 69 138 277 555 1,108 2,224

Prove 12,793 28,749 64,623 145,965 325,481 774,651 1,784,460

Verify 15 19 23 34 55 101 209

Table 6. Size of encoding parameter (log q) [bits]

Degree (d + 1) 210 211 212 213 214 215 216

This work 2,689 2,945 3,201 3,457 3,713 3,969 4,225

DARK 7,045 7,973 8,965 10,021 11,141 12,325 13,573

is approximate ratio between the sizes of pp of two schemes. When ignoring the
description of the underlying group, the ratio becomes approximately μ (see
Table 1). For the size of the commitment, two schemes have exactly the same
size, which is only a single group element.

For the proof size, our construction shows promising results. The main factor
is the required number of group elements, where μ, 2μ, and 3μ for our construc-
tion, DARK, and its communication-efficient version, respectively. Table 3 shows
that the proof size of ours is quite compact, that is, it is only about one-third and
one-half of those of DARK and its optimized version, respectively. The figure
above Table 3 plots the proof size of each scheme in the table. In the figure, the
slope of each line corresponds to the required number of group elements in the
proof over log-scale of degrees.

4.3 Experiment Results

We implemented the proposed polynomial commitment scheme and DARK to
assess and compare the proof generation and verification time. All experiments
are performed on Apple M1 Pro CPU with 32 GB RAM and single-thread. The
program language is C using the Flint2 library [26].

Efficient Transparent Polynomial Commitments for zk-SANRKs 361

We use an RSA-2048 group as a base group and set F := Zp for a 128-bit
prime p. We take log q as 2μ(λ+1)+1 for ours and λ(2μ+log μ+6)+32μ2+5 for
DARK. For convenience, we choose the prover’s input polynomial whose coef-
ficients are 32-bit integers. We measure the execution time of pre-computation,
proof generation with pre-computation, proof verification over degrees 210–216

in this setting.
Table 4 and Table 5 present execution time of our construction and DARK,

respectively. Recall that our construction has the commitment key G and �R =

{R1, . . . , Rμ}. Our scheme pre-computes {Gq, . . . , Gqd} and {Rq
i , . . . , R

q� d+1
2 �−1

i }
for i = 1, . . . , μ. In DARK, pre-computation consists of only {Gq, . . . , Gqd}.
Thus, the storage overhead for pre-computation in our case is about μ/2
larger than that in DARK (Table 1). The computation cost for pre-computation
depends on not only the number of commitment keys but also the size of q. As
presented in Table 6, the size of q is about 3 times smaller than that of DARK
when 210 ≤ d + 1 ≤ 216. Thus, the total computation cost for pre-computation
in ours is about μ/6 times larger than that in DARK. However, we note that the
extended commitment key from pre-computation is universal CRS and requires
only one-time generation at off line.

For proof generation with pre-computation, the execution time of ours is
about 3 times smaller than that of DARK. This result comes from the ratio
between q sizes in two schemes. Namely, proof generations for PoKRep and PoE
are time-consuming parts (over 90%) in ours and DARK, respectively. Their
time complexities depends on the size of input exponents, which grows in d log q.

In the case of verification, the required number of group exponentiations of
ours is about one third of that of DARK (μ+2 and 3μ, respectively). The verifier
of PoE, however, needs to compute the reminder r of an input integer qd divided
by a prime � where d is the degree of a polynomial and � is previously chosen by
the verifier. Thus, the time to compute r exponentially grows in d and becomes
time-consuming part for the DARK verification. We empirically observe this
from Table 4 and Table 5, where the verification time of DARK exponentially
increases over d > 213.

5 Related Work

Kate et al. first constructed an efficient and succinct polynomial commitment
scheme (KZG) for univariate polynomials [27]. It employees bilinear pairings
and requires a trusted setup. The KZG has been extended to the multivariate
version in [32,38] with a trusted setup. There are also numerous works to pro-
pose transparent polynomial commitment schemes. Bootle et al. [8] constructed
a transparent polynomial commitment scheme in the discrete log setting with
O(

√
d) proof size where d is a degree of a polynomial. Wahby et al. proposed

a transparent polynomial commitment scheme [35] for multilinear polynomials
under the discrete log assumption with O(

√
d) proof size. Ben-Sasson et al. [5]

introduced the Fast Reed Solomon IOP of Proximity (FRI) which implicitly
yields a transparent polynomial commitment scheme. A method for obtaining

362 S. Kim et al.

polynomial commitment schemes from FRI was presented in [28,37] whose proof
size is O(log2 d). DARK [13] and Dory [29] archived O(log d) proof size with lin-
ear proof generation cost and logarithmic verification cost. Block et al. [6] found
the security flaw in the originally proposed DARK and proposed a modification of
DARK using the theory of integer lattices. Recently, Bünz et al. [16] also address
the security flaw by extending integer polynomials to rational polynomials in the
knowledge extraction together with the notion of almost-special-soundness.

Recent SNARKs such as Marlin [17], Plonk [23], and Sonic [31] take a frame-
work to convert an NP-hard problem of satisfiability of an arithmetic circuit
into evaluations of low-degree polynomials by employing polynomial commit-
ment schemes. This framework, called polynomial IOPs, is formalized by Chiesa
et al. [17] and Bünz et al. [13]. Bünz et al. also have obtained Supersonic by
employing their polynomial commitment scheme (DARK) to Sonic.

Groups of unknown order are used for the construction of valuable crypto-
graphic primitives such as delay functions [36], accumulators [7], and polynomial
commitment schemes [13]. There are two candidates of groups of unknown order
for most cryptographic constructions: RSA groups [33] and ideal class groups of
imaginary quadratic fields (class groups) [12]. An RSA group is a multiplicative
group Z

∗
N , where N is a product of two large primes. Since computing |Z∗

N | is as
hard as factoring N , the use of an RSA group requires one-time trusted setup
for the generation of an RSA modulus N . In RSA groups, the Adaptive Root
Assumption does not hold because the order of −1 is trivially 2. Thus, we instead
work on the set of quadratic residues QRN . A class group Cl(Δ) is determined by
the discriminant Δ, where Δ = 1 (mod 4) and −Δ is prime. [11,25] suggested a
class group with 1665-bit negative fundamental discriminant for 128-bit security.
[19] reported that a 1665-bit discriminant only provides 55-bit security, hence,
a 6656-bit discriminant is desirable. In class groups, one can efficiently compute
square roots of any given group elements [9]. This forces us to use the 2-Strong
RSA Assumption for class groups.

6 Conclusion

This paper introduces a new efficient transparent polynomial commitment
scheme over groups of unknown order. For a μ-variate multilinear polynomial (or
a univariate polynomial of degree 2μ − 1 equivalently), the proposed polynomial
commitment scheme meets logarithmic verification cost and requires only μ + 1
group elements in the proof. This is the smallest proof size when compared to
existing transparent polynomial commitment schemes with logarithmic verifier,
such as DORY (3μ) and DARK (2μ). We have implemented the proposed scheme
and rigorously estimated the proof size over an RSA-2048 group, demonstrat-
ing its efficiency. The extension to batch processing for multiple polynomials or
points is left as future work.

Acknowledgement. This work was supported by Institute of Information & commu-
nications Technology Planning & Evaluation (IITP) grant funded by the Korea gov-
ernment (MSIT) (No. 2021-0-00727, A study on cryptographic primitives for SNARK,

Efficient Transparent Polynomial Commitments for zk-SANRKs 363

50%; No. 2021-0-00518, Blockchain Privacy preserving techniques based on data
encryption, 50%). J. Kim and H. Oh are co-corresponding authors.

Appendix

Proof of Theorem 2

Proof. We show that an honest commiter passes all check in PC.Ver of Algo-
rithm 2. We first show that gμ+1 = sμ+1 (mod �). By construction, s1 =
r = ĝ1 (mod �) and si,R = ĝi,R (mod �) for i = 1, ..., μ. We then have that
si,L = si − q2

μ−i

si,R (mod �) = ĝi − q2
μ−i

ĝi,R (mod �) = ĝi,L (mod �) and
si+1 = si,L + αisi,R (mod �) = ĝi,L + αiĝi,R (mod �) = ĝi+1 (mod �) for
i = 1, . . . , μ. This proves gμ+1 = sμ+1 (mod �). With similar argument, it holds
that gμ+1 = yμ+1 (mod p).

Next we show that |gμ+1| ≤ b = (p − 1)pμ. Note that f ∈ Z(p − 1)[μ]. Let
b1 = p − 1. Suppose, for each i, there exists a bound bi such that ‖gi‖∞ ≤ bi.
Since αi ∈ [0, p − 1], we have ‖gi+1‖∞ = ‖gi,L + αigi,R‖∞ ≤ bip = (p − 1)pi for
i = 1, . . . , μ. Finally, PoKRep.Ver returns 1 because

C ·
μ∏

i=1

Di = Gf̂ ·
μ∏

i=1

R
ĝi,R

i = G

⌊
f̂
�

⌋

�+f̂ mod � ·
μ∏

i=1

R

⌊
ĝi,R

�

⌋

�+ĝi,R mod �

i = Q� ·Gr ·
μ∏

i=1

R
si,R

i .

Sketch of Proof for Theorem 3

Lemma 2 ([16, Lemma 6]). For any μ-variate multilinear polynomial f over
Z and p ≥ 2, Pr

�α
$← [0,p−1]μ

[|f(�α)| ≤ 1
pμ · ‖f‖∞] ≤ 3μ

p .

Proof Sketch. We prove that the proposed polynomial commitment scheme is
knowledge sound, thus, has witness-extended emulation [30]. We first define the
series of bounds Bμ+1 ≤ · · · ≤ B1 by Bi := (p − 1)p2μ−i+1 for i = μ + 1, . . . , 1.
Note that Bμ+1 is equal to the bound parameter b in the proposed polynomial
commitment scheme. We describe the extractor EPC. The extractor EPC employs
a poly-time knowledge extractor EPoKRep of the protocol PoKRep. The description
of EPoKRep is given in [7, proof of Theorem 7]. EPoKRep receives a polynomial in
λ (denoted as poly(λ)) number of accepting PoKRep–transcripts and extracts
an input integer vector. Let trPC = {C, (Di, yi,R, αi)i=1,...,μ, gμ+1 , Q, (�, (r,�s))}
be an accepting transcript that P and V generate by executing PC.Commit,
PC.Open, and PC.Ver. Algorithm EPC works as follows:

1. on input U := C
∏μ

i=1 Di, call PoKRep poly(λ) times, sampling fresh ran-
domness � for V, and obtain poly(λ) number of accepting transcripts T :=
{(�i, Qi, (ri, �si))}i=1,...,poly(λ) of PoKRep.

2. run EPoKRep on input T and obtain a witness integer vector (ĝ′′
1 , ĝ′

i,R, . . . , ĝ′
μ,R)

such that U = Gĝ′
1
∏μ

i=1 R
ĝ′

i,R

i .

364 S. Kim et al.

3. set ĝ′
μ+1 ← gμ+1 and compute ĝ′

i ← (ĝ′
i+1 − αi · ĝ′

i,R) + q2
μ−i

ĝ′
i,R from i = μ

to 1. If ‖g′′
1 (X1, . . . , Xμ) := ρ−1

q (ĝ′′
1)‖∞ > B1 or ‖g′

i(X1, . . . , Xμ−i+1)‖∞ > Bi

for some i ∈ [1, μ], then return to Step 1.
4. if ĝ′

1 = ĝ′′
1 and g′

1(�z) = y (mod p), output g′
1 and stop.

5. return to Step 1.

We argue that EPC succeeds with overwhelming probability in a poly(λ)
number of rounds. We first claim that Step 3 of EPC successfully out-
puts integers ĝ′′

1 and ĝ′
i’s for i = 1, . . . , μ such that ‖ρ−1

q (ĝ′′
1)‖∞ ≤ B1

and ‖ρ−1
q (ĝ′

i)‖∞ ≤ Bi with overwhelming probability. Suppose we have
ĝ′

i such that ‖ρ−1
q (ĝ′

i)‖∞ > Bi from an accepting transcript. Then, by
Lemma 2, we have Pr[|g′

i(αμ, . . . , αi)| ≤ Bμ+1] = Pr[|g′
i(αμ, . . . , αi)| ≤

Bi/pμ−i+1] ≤ Pr[|g′
i(αμ, . . . , αi)| ≤ ‖g′

i‖∞/pμ−i+1] ≤ 3(μ−i+1)
p ≤ 3μ

p , where

(αμ, . . . , αi)
$← [0, p − 1]μ−i+1. Thus, the probability that Step 3 fails to output

integers is less than or equal to 3μ2

p ≈ 3μ2

2λ , which is negligible.
We now claim that Step 4 of EPC successfully outputs a witness poly-

nomial. We argue that ĝ′
1 = ĝ′′

1 holds with overwhelming probability. From
Step 3, we have ĝ′

1 = ĝ′
μ+1 +

∑μ
i=1(q

2μ−i − αi)ĝ′
i,R. Then, by the PC.Ver, it

holds that ĝ′
1 = sμ+1 +

∑μ
i=1(q

2μ−i − αi)ŝi,R = r = ĝ′′
1 (mod �). Because

the verifier sends a randomly selected λ-bit prime � to the prover after the
verifier receives all commitments made by the prover, the probability that
ĝ′
1 �= ĝ′′

1 is negligible. Finally, we show that g′
1(�z) = y. Note that gμ+1 =

y +
∑μ

i=1(αi − zμ+1−i)yi,R (mod p) from PC.Ver. We also have that gμ+1 =
g′
1(z1, . . . , zμ) +

∑μ
i=1(αi − zμ+1−i)g′

i,R(z1, . . . , zμ−i) (mod p) from EPC. Thus,
y+

∑μ
i=1(αi−zμ+1−i)yi,R = g′

1(z1, . . . , zμ)+
∑μ

i=1(αi−zμ+1−i)g′
i,R(z1, . . . , zμ−i)

(mod p) for �z = (z1, . . . , zμ−i) and randomly selected (α1, . . . , αμ) in PC.Open.
This means that g′

1(�z) = y (mod p), g′
i,R = yi,r (mod p) for i = 1, . . . , μ with

overwhelming probability.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: ACM CCS 2017, pp. 2087–2104.
ACM (2017)

2. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0 33

3. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: IEEE Symposium on Security and Privacy 2014, pp. 459–474. IEEE (2014)

4. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/978-3-030-17653-2_4

Efficient Transparent Polynomial Commitments for zk-SANRKs 365

5. Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside
the box improves soundness. In: ITCS 2020, LIPIcs, pp. 5:1–5:32. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020)

6. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time- and space-
efficient arguments from groups of unknown order. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12828, pp. 123–152. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84259-8 5

7. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 20

8. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

9. Bosma, W., Stevenhagen, P.: On the computation of quadratic 2-class groups. J.
de Théorie des Nombres de Bordeaux 8(2), 283–313 (1996)

10. Bowe, S.: BLS12-381: new zk-SNARK elliptic curve construction. https://
electriccoin.co/blog/new-snark-curve/

11. Buchmann, J., Hamdy, S.: A survey on IQ cryptography. In: Public Key Cryptog-
raphy and Computational Number Theory, pp. 1–15 (2001)

12. Buchmann, J., Williams, H.C.: A key-exchange system based on imaginary
quadratic fields. J. Cryptol. 1(2), 107–118 (1988)

13. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–
706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 24

14. Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pairing
products and applications. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021.
LNCS, vol. 13092, pp. 65–97. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-92078-4 3

15. Bünz, B., Fisch, B.: Schwartz-Zippel for multilinear polynomials mod N. Cryptol-
ogy ePrint Archive, Paper 2022/458 (2022). https://eprint.iacr.org/2022/458

16. Bünz, B., Fisch, B., Szepieniec, A.: Transparent snarks from dark compilers. Cryp-
tology ePrint Archive, Paper 2019/1229 (2019). https://eprint.iacr.org/2019/1229

17. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 26

18. Damg̊ard, I., Koprowski, M.: Generic lower bounds for root extraction and sig-
nature schemes in general groups. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 256–271. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 17

19. Dobson, S., Galbraith, S.D.: Trustless groups of unknown order with hyperelliptic
curves. IACR Cryptology ePrint Archive (2020)

20. Eberhardt, J., Tai, S.: ZoKrates - scalable privacy-preserving off-chain computa-
tions. In: 2018 IEEE International Conference on Blockchain, pp. 1084–1091. IEEE
(2018)

21. ethereum.org. Zero-knowledge rollups. https://ethereum.org/en/developers/docs/
scaling/zk-rollups/

https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-662-49896-5_12
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-92078-4_3
https://doi.org/10.1007/978-3-030-92078-4_3
https://eprint.iacr.org/2022/458
https://eprint.iacr.org/2019/1229
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/3-540-46035-7_17
https://doi.org/10.1007/3-540-46035-7_17
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/

366 S. Kim et al.

22. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

23. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Technical
report, Cryptology ePrint Archive, Report 2019/953 (2019)

24. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 22

25. Hamdy, S., Möller, B.: Security of cryptosystems based on class groups of imaginary
quadratic orders. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
234–247. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 18

26. Hart, W., Johansson, F., Pancratz, S.: FLINT: fast library for number theory
(2013)

27. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

28. Kattis, A., Panarin, K., Vlasov, A.: RedShift: transparent snarks from list polyno-
mial commitment IOPs. IACR Cryptology ePrint Archive (2019)

29. Lee, J.: Dory: efficient, transparent arguments for generalised inner products and
polynomial commitments. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS,
vol. 13043, pp. 1–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
90453-1 1

30. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
J. Cryptol. 16(3), 143–184 (2003)

31. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge snarks
from linear-size universal and updatable structured reference strings. In: ACM CCS
2019, pp. 2111–2128. ACM (2019)

32. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36594-2 13

33. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Technical report, Massachusetts Institute of Technology (1996)

34. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp.
704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 25

35. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
ZKSNARKs without trusted setup. In: IEEE Symposium on Security and Privacy
2018, pp. 926–943. IEEE (2018)

36. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 13

37. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and
its applications to zero knowledge proof. In: IEEE Symposium on Security and
Privacy 2020, pp. 859–876. IEEE (2020)

38. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: ver-
ifying arbitrary SQL queries over dynamic outsourced databases. In: IEEE Sym-
posium on Security and Privacy 2017, pp. 863–880. IEEE (2017)

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/3-540-44448-3_18
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-17659-4_13

n-MVTL Attack: Optimal Transaction
Reordering Attack on DeFi

Jianhuan Wang1(B), Jichen Li1,2, Zecheng Li1, Xiaotie Deng2, and Bin Xiao1

1 Department of Computing, The Hong Kong Polytechnic University,
Hong Kong, Hong Kong

{21122251r,jichen.li,zecheng.li,csbxiao}@connect.polyu.hk
2 School of Computer Science, Peking University, Beijing, China

xiaotie@pku.edu.cn

Abstract. Decentralized finance (DeFi) is a global and open financial
system built on the blockchain technology, typically using Ethereum
smart contracts. Decentralized exchanges (DEXs) are very important sec-
tors in the DeFi ecosystem, with billions of USD trading volume daily.
Unfortunately, the transparency of pending pools can be exploited by
attackers and DEXs are vulnerable to transaction reordering attacks,
allowing attackers to gain miner extracted value (MEV). Previous trans-
action reordering attacks aim at exploiting the vulnerability of a single vic-
tim transaction, such as sandwich attack and dagwood sandwich attack.

In this paper, we propose a novel transaction reordering attack named
n-multiple-victim-transaction-layer (n-MVTL) attack to exploit the over-
all vulnerability among multiple victim transactions. Such advanced
design can significantly expand the victim transaction search space and
bring more profits to attackers. Given a set of ordered victim transactions,
we propose an optimal algorithm to identify the optimal solution for n-
MVTL attacks, which aims to maximize the profit of the attack strategy.
This algorithm supports a trade-off between time efficiency and attack
profit, making the attack algorithm more practical. Our simulations show
that the n-MVTL attack can yield an average extra daily profit of 940 USD
from the top 2 most popular liquidity pools in Uniswap V2 from Mar. 2021
to Apr. 2023, compared with the sandwich attack.

Keywords: Decentralized Finance (DeFi) · Miner Extractable Value
(MEV) · Decentralized Exchange (DEX) · DeFi Attack · Blockchain

1 Introduction

In recent years, DeFi as a supplement to traditional finance has become an
enormous ecosystem with a total locked value of 47 billion USD in May 2023 [5].
Within the DeFi ecosystem, Automated Market Makers (AMMs) play a crucial
role by providing real-time asset pricing for user transactions in DeFi. AMMs-
based exchange platforms (e.g., Uniswap [11] and Pancakeswap [8]) handle swap
transactions with a total volume of several billions of USD per day [4].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 367–386, 2024.
https://doi.org/10.1007/978-3-031-51479-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_19&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_19

368 J. Wang et al.

However, the feature of Ethereum prioritizing transaction ordering based
on gas fees rather than time sequence makes AMMs susceptible to transaction
reordering attacks. These attacks are defined as the manipulation of transac-
tion order within blocks by miners, with the aim of extracting miner/maximum
extracted value (MEV) [3]. One of the most common transaction reordering
attacks is sandwich attack, which was formalized and quantitatively analyzed for
attack profitability by Zhou et al. [15]. As shown in Fig. 1(a), the sandwich attack
strategy involves the execution of a malicious front-running transaction and a
malicious back-running transaction aimed at a victim transaction. Then, the
attacker profits from the discrepancy between the execution prices of the front
and back-running transactions. One extension work of the sandwich attacks is the
dagwood sandwich attack [1] which targets multiple victim transactions simulta-
neously by utilizing front-running attacks on each victim transaction separately
as shown in Fig. 1(b). The sandwich attack has a single-victim-transaction layer
and the dagwood sandwich attack has several single-victim-transaction layers.
We refer to these attacks as n-single-victim-transaction-layer (n-SVTL) attacks.

Fig. 1. Visualization of n-SVTL attacks and n-MVTL attack.

Previous studies in the field of defense mechanisms of transaction reordering
attacks focus on limiting transaction parameters [7,14–16]. Due to the simple
structure of n-SVTL attack, the attack profit gain from each layer is strongly
influenced by the trading amount and tolerable price slippage of the victim trans-
action. DeFi users can prevent n-SVTL efficiently by two defenses (i.e., limited
trading volume [14–16] and limited slippage [7,15]). We refer to transactions
that utilize these two defenses as un-sandwichable transactions. In light of the
aforementioned advancements in defense mechanisms against n-SVTL attacks,
an important question arises: Do the existing defenses offer adequate security
for transactions of DeFi users? Are there other kinds of transaction reordering
attacks that can bypass these defenses?

To address this question, we propose the utilization of a more flexible struc-
ture termed n-MVTL (details provided in Sect. 4). Unlike the approach of
employing n front-running transactions to attack n victim transactions in n-
SVTL attack, we split the n victim transactions into m (m ≤ n) different layers,
with only one front-running transaction used to attack the victim transactions in
each layer, as illustrated in Fig. 1(c). Note that the n-SVTL structure is a typical
sub-class of the n-MVTL structure. By adopting the n-MVTL structure instead
of the n-SVTL structure, we can explore additional potential attack strategies.

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 369

Furthermore, we observe that the transaction reordering attack employing the
n-MVTL structure, hereafter referred to as n-MVTL attack, can detect the over-
all vulnerability among multiple un-sandwichable transactions, enabling attacks
on un-sandwichable transactions. To comprehensively evaluate the severity of
the n-MVTL attack, we provide a formalized description of this novel attack
and quantify its associated risks. To the best of our knowledge, we are the first
to explore the feasibility and profitability of transaction reordering attack that
exploit the overall risk of multiple transactions. The contributions of our research
can be summarized as follows:

– Novel Transaction Reordering Attack. We propose the n-MVTL attack,
a novel transaction reordering attack in Sect. 4, which can compromise the tra-
ditional defense mechanisms in DeFi. This attack consists of two components:
a transaction selecting algorithm, which aims to identify the largest subset
of transactions that can be targeted, and an optimal algorithm to find the
best strategy to attack them and maximize the attacker’s profit. Compared
to the dagwood sandwich attack, the n-MVTL attack can exploit multiple
swap transactions simultaneously in a general market environment with no
assumption about the real price of tokens. Our algorithm also considers an
important cost factor, AMM swap fees, which is not included in most existing
attacks.

– Optimal Analysis of Attack. We present an algorithmic analysis of our
optimal algorithm, showcasing its ability to find an approximate optimal
attack strategy when provided with a set of vulnerable transactions. We also
evaluated the profit ratio of our algorithm compared to the maximum profit
achievable for attackers and conducted an analysis of the algorithm’s time
complexity. Details as discussed in Sect. 5.

– Implementation. We implement a prototype of our proposed n-MVTL
attack to discover the time efficiency of our attack algorithms. Experimen-
tal results show that our algorithms are efficient and practical for generating
attack strategies against constant product market markers (CPMMs) even
with a personal computer (e.g., Macbook Pro).

– Validation of Attacks on Historical Transactions. In Sect. 6, we validate
the n-MVTL attack strategies on a simulation system that implements the
swap formula of Uniswap V2. We find that n-MVTL attack yields an extra
profit of 656,972 USD compared to the sandwich attack from block height
12,000,000 to 17,000,000 in Ethereum. We demonstrate that n-MVTL attack
can spot more attack opportunities than sandwich attacks.

1.1 Paper Organization

The remainder of this paper is organized as: Sect. 2 reviews related literature. We
describe how to encode AMM protocols into state transition models in Sect. 3.
We propose n-MVTL attack in Sect. 4. We conduct a comprehensive analysis of
the optimal attack algorithm in Sect. 5. We evaluate our algorithms and validate
our attack strategies in Sect. 6. Section 7 concludes our paper.

370 J. Wang et al.

2 Background and Related Work

2.1 Reordering Transactions

There are three types of reordering transactions that are used to emit transaction
reordering attacks: (I) Front-running transaction (FT): If a transaction runs
before a victim transaction and its parameters are carefully set by an attacker
to prevent the victim transaction from failing to swap the tokens, we classify
this transaction as an FT. (II) Fatal front-running transaction (FFT): If a
transaction runs before a victim transaction and its parameters are maliciously
set by the attacker to cause the failure of the victim transaction’s execution, we
classify this transaction as an FFT. This type of malicious transaction results in
more losses for DeFi users as they must pay gas fees even if their transactions fail
to swap the tokens; (III) Back-running transaction (BT): If a transaction
runs after a victim transaction, we classify this transaction as a BT.

2.2 Sandwich Attack

The most common transaction reordering attack is the sandwich attack, formal-
ized by Zhou et al. [15]. Due to the transparency of DeFi, transaction information
in the pending pool can be obtained by attackers. We consider a victim trans-
action TX1, whose information is observed by an attacker. Then, the attacker
emits a front-running transaction FT1 and a back-running transaction BT1 to
launch a sandwich attack as shown in Fig. 1(a). These malicious transactions aim
to trigger the largest price slippage of TX1. The gas prices of malicious transac-
tions are carefully set to ensure that the execution order will be: FT1, TX1, BT1.
Then, the attacker gains attack profit from the difference of execution prices of
FT1 and BT1. Zhou et al. demonstrated that the sandwich attack yields a total
profit of 174.34M USD from block 6,803,256 to 12,965,000 in Ethereum.

To further strengthen the attack capability, Bartoletti et al. [1] proposed a
multi-layer dagwood sandwich attack which can attack several victim transac-
tions simultaneously. The idea of this attack is to repetitively launch a front-
running attack on each transaction, targeting every transaction individually.
This approach, however, disregards the overall vulnerability among victim trans-
actions, making it susceptible to resistance from conventional defense mecha-
nisms [7,13,16]. Furthermore, the dagwood sandwich attack relies on two unre-
alistic assumptions: (I) Stable price assumption. The author employs the stable
price assumption for facilitating the calculation of attack profit. However, this
assumption is hard to guarantee in the real market, attackers may incur losses
due to fluctuations in real prices of tokens. (II) No AMM swap fees. The authors
introduce the assumption that no AMM swap fees are charged by the liquidity
pool. This assumption enables the use of a remarkably convenient property (i.e.,
the liquidity of the liquidity pool is always constant) to determine the maximum
loss state for each victim transaction. However, almost all of the DEXs (e.g.,
Uniswap [11] and Pancakeswap [8]) charge AMM swap fees. In summary, the
two assumptions of the dagwood sandwich attack make it difficult to apply it to
the real DeFi market.

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 371

2.3 Defense Strategies

Many researchers have focused on defense strategies against sandwich attack
[7,13,16]. Zhou et al. [15] proposed two primary protection possibilities that
could be adopted for DeFi users to prevent sandwich attacks: Limit Slippage
and Limit Trading Volume.

– Limit Slippage. A DeFi user can set her transaction slippage as small as possi-
ble to reduce the attack profit from a sandwich attack. To extend this defense
method, Heimbach et al. [7] introduced the sandwich game to analyze sand-
wich attacks analytically and provided traders with a simple and extremely
effective algorithm for setting the valid slippage tolerance.

– Limit Trading Volume. A DeFi user can set her transaction’s trading amount
below a minimum profitable victim input to resist sandwich attacks. To
extend this defense, Züst [16] proposed a strategy that splits a sandwichable
transaction into several transactions with limited trading amounts.

3 Model

In this section, we formally describe a state transition model for AMM protocols.
Then we describe the profit and strategy space of our n-MVTL attack.

3.1 AMM Model

AMM are fundamental protocols that enable the automated trading of tokens
for DeFi. Given a pair of tokens, an AMM will create a liquidity pool (LP),
which state changes upon the execution of transactions, and it can set prices
automatically based on a specific rule. In this paper, we focus on the CPMM
[12], wherein the product of tokens in a pair remains constant before and after a
transaction is conducted, and it represents a widely adopted subclass of AMMs.

– Liquidity Pool State. Given a liquidity pool LP with two types of tokens,
τx and τy, the state S = (X ∈ N

+, Y ∈ N
+) denotes the state of the LP,

where X and Y denote the amount of τx and τy in this LP, respectively. The
total liquidity of the LP can be derived as K = X · Y .

– Transactions. In this paper, we only focus on swap transactions. We use
TXd : swap(ax ∈ N

+
0 , ay ∈ N

+
0) to denote the collection of swap transactions,

where d ∈ {x −→ y, y −→ x} is the swap direction. For example, when d = x −→
y, then this transaction means that the user wants to swap ax of τx for at
least ay of τy, and vice versa.

– Constant Product Pricing Rule. Given a transaction TXx−→y:swap
(ax,ay) and the state (X0, Y0) of an Pool LP, the execution price p of this
transaction can be calculated by Formula 1, where f indicates the AMM swap
fee rate set by LP (e.g., 0.3% in Uniswap [11]). The end (post-execution) state
of LP after executing TXx−→y can be derived as (X0 +Δx, Y0 −Δy). When
this transaction is successfully executed, the user should pay Δx · f of τx as
a transaction swap fee to LP, which will add some liquidity to LP.

372 J. Wang et al.

Δx = ax, Δy = �Y0 − K0/(X0 + (1 − f) · Δx)�, p = Δx/Δy (1)

In the following attack modeling, we assume that all victim transactions’
swap directions are x −→ y. To simplify notation, we write TX(ax, ay) for
Txx−→y(ax, ay). We use FT⊂ TXx−→y and BT⊂ TXy−→x to denote the
collections of FTs and BTs, respectively. Since we assume the attackers have
the power to manipulate the order of transactions, they need not care about
the tolerable slippage of FT and BT . To simplify notation, we write FT (ax)
and BT (ay) for FT x−→y(ax, 0) and BT y−→x(0, ay), respectively.

– AMM Transition Functions. We define a swap transition function as
F((Xi, Yi), TXi+1, f) → Si+1, which outputs the next state Si+1 after exe-
cuting TXi+1 on the state Si, where f is the transaction fee rate set by the
LP LP. We also define a swap amount calculating function based on Formula
1 as FA((Xi, Yi), TXi+1, f)→ yi+1, which outputs the amount of swapped
τy after executing transaction TXi+1. We represent the state change of LP
upon the execution of TXi+1 as (Xi, Yi)

TXi+1−−−−→ (Xi+1, Yi+1).
– Slope Point. We introduce a crucial auxiliary concept, called the slope point,

which plays a significant role in the transaction reordering attacks. Given a
state of a liquidity pool (X0, Y0) and a transaction TXi(axi, ayi), we aim
to identify a transition (Xi−1, Yi−1)

TXi−−−→ (Xi, Yi) (where Xi · Yi = X0 · Y0)
that maximizes the execution price of the transaction (i.e., TXi.p), up to its
maximum tolerable price (i.e., axi/ayi). We can calculate (Xi, Yi) by Formula
2. We define spi = Xi as the slope point of TXi.

spi = Xi = (axi + 2
√

ax2
i + 4 · X0 · Y0 · axi/ayi · (1 − f))/2, Yi = X0 · Y0/Xi (2)

3.2 Attack Model

Attack Structure. Given an LP (τx/τy) and multiple victim transactions
{TXi}N

i=1, the attacker can devise an attack strategy consisting of a series of
malicious and victim transactions. We assume that the attacker has the author-
ity to alter the execution order of the victim transactions in order to maximize
the attack profit. In addition, as shown in Fig. 1(c), the attacker inserts m FTs,
denoted as {FTi}m

i=1, into these victim transactions, where m ≤ n. These FTs
ensure that the victim transactions are executed in the state envisioned by the
attacker. By employing these FTs, the attacker can swap τx for τy at relatively
lower prices. Towards the end of the attack, the attacker emits a back-running
transaction BT1 to swap all swapped τy back to τx. Note that the execution
price of this BT is relatively higher, allowing the attacker to gain profits.

Transaction Selection. We prioritize the selection of transactions for attack
based on their slope points. Transactions exhibiting higher slope points are given
higher precedence for n-MVTL attack. This preference is rooted in the obser-
vation that transactions with larger slope points inherently show greater vul-
nerability, as they allow BT emitted by the attacker to swap back τx at higher

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 373

prices. Moreover, preserving transactions with larger slope points allows for more
flexibility in subsequent optimization algorithms, providing additional room for
adjustments of attack strategies.

Attack Profit. According to the structure of n-MVTL attack strategy, we
define the attack profit by R = FA(Sn, BT, f) − Σm

i=1 FTi.ax, where Sn is the
post-execution state of LP after executing the last victim transaction; BT and
{FTi}m

i=1 are the malicious transactions emitted by the attacker. Attackers can
use this formula to precompute the potential profit from the attack strategy.

4 n-MVTL Attack

Given an initial state (X0, Y0) of an LP and a list of victim transactions {TXi}N
i=1

with the same swap direction x −→ y in the pending pool, we find the optimal
attack strategy using two algorithms: Transaction Selecting algorithm and
Optimal Attack algorithm. We first provide a transaction selecting algorithm
to identify the largest subset of vulnerable transactions {TXi}n

i=1. Then, we
provide an optimal attack algorithm to calculate an approximate optimal attack
strategy, thereby yielding maximum attack revenue. Our attack process can be
represented as follows:

{Txi}n
i=1 ←− TransactionSelecting((X0, Y0), {TXi}N

i=1), (3)
ST ←− OptimalAttack((X0, Y0), {Txi}n

i=1). (4)

4.1 Transaction Selecting

We present an iterative approximation algorithm designed for selecting victim
transactions. To maximize the space for inserting transactions within the strat-
egy, we strive to place transactions as close as possible to the price that triggers
their maximum tolerable price. In our algorithm, as the number of iterations
increases, the execution price of victim transactions becomes increasingly closer
to their maximum tolerable price. The algorithm considers AMM swap fees,
which are not considered in most existing attack designs. In practice, an LP
charges AMM swap fees from DeFi users for conducting their swap transactions.
Therefore, the liquidity of the LP will increase after each transition. We use
EKi ∈ N

+ to represent the estimated liquidity of the LP after executing TXi.
As illustrated in Fig. 2, Transaction Selecting involves three phases: (1) Initial
Phase; (2) Iteration Phase; and (3) Final Phase.

Initial Phase. We initialize the parameter required for the iterative algorithm.
We assign K0 for all EKi, i ∈ [N].

374 J. Wang et al.

Fig. 2. Overview of Algorithm Transaction Selecting.

Iteration Phase. We execute two processes for each iteration in the itera-
tion phase: transaction generating and transaction executing. We first use the
transaction generating function to generate the attack transactions FT s between
victim transactions {TXi}N

i=1 in the LP (in Step 1–3). Then, by transaction exe-
cuting, we can calculate the post-execution states {(Xi, Yi)}N

i=1 for {TXi}N
i=1 (in

Step 4), and then use {(Xi, Yi)}N
i=1 to update {EKi}N

i=1 (in Step 5).

– Step 1: Transaction Group Generation. A transaction group G is defined
as a sequential of victim transactions that can be successfully executed con-
secutively, where the last victim transaction meets its slope point. To facilitate
the description of the following steps, we define SSj and ESj as the expected
start and end states of transaction group Gj , respectively. We represent the

state change of the LP upon the execution of Gj as SSj
Gj−−→ ESj .

We split the victim transactions {TXi}N
i=1 into several transaction groups by

Group Generating Algorithm. In each group, the end state of the last
victim transaction triggers at its slope point corresponding to its maximum
tolerable prices, while the end state of each other victim transaction is the
start state of its next victim transaction.
Building Block: Group Generating Algorithm. Given an input
{(X0, Y0), {TXi}N

i=1}, the algorithm output a list of {Gj}m
j=1. In this algo-

rithm, for each TXi, we first use its estimated attribute EKi instead of X0 ·Y0

and the transaction swap fee rate f to calculate its estimated slope point by
Formula 2. Then, we traverse all victim transactions by their estimated slope
point in reverse order and place transactions into groups as follows:

1 For the first transaction TXN that has the largest slope point, we create
the first group G1 and place TXN into it. We set SS.X = spN − axN ,
and ES.X = spN , respectively (where SS.X and ES.X are the values of
τx in the start and end states of the current group, respectively).

2 For other TXi ∈ {TXi}N−1
i=1 , if SS.X ≤ spi, we insert TXi to the front of

the current Gj , since it can be executed successfully with the subsequent
victim transactions (i.e., will not exceed its slope point) in this group.
Then we update SS.X = SS.X − axi. Otherwise, if SS.X > spi, we
finish the transaction group Gj and create a new Gj+1 (Gj+1 becomes
the current group). Then we place TXi into this group and reset SS.X
and ES.X to spi − axi and spi, respectively.

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 375

Note that when attempting to place TXi into an Gj , if SS.X − axi ≤ X0,
the operation of adding TXi to Gj will be aborted, and the next iteration
will proceed. Ultimately, only a subset of the victim transactions may be
placed into groups. We reverse the index the transaction group as {Gi}m

i=1,
and denote the selected transaction subset as {TXi}n

i=1.
– Step 2: Multiple-Victim-Transactions Layers (MVTLs) Generation.

An MVTL MV TLj is defined as a combination of a front-running transaction
FTj and a transaction group Gj (cf. Figure 1(c)). FTj is used to let the last
victim transaction in Gj trigger at its slope point, thereby maximizing the
victims’ loss.
After we split the victim transactions into {Gj}m

j=1, there are some state
change gaps among them. For each Gj , we generate FTj to fill the state change
gap before Gj by Formula 5 and then combine it with Gj into MV TLj . The
process of creating FTj is:

FTj =

{
FT (SSj .X − X0), j = 1
FT (SSj .X − ESj−1.X), 1 < j ≤ m

(5)

– Step 3: Strategy Executing. We input a strategy ST (i.e., {MV TLj}k
j=1)

and (X0, Y0) to the function TransactionExecuting to calculate the states
{(Xi, Yi)}n

i=1 after executing {TXi}n
i=1, respectively.

– Step 4: Parameters Updating. Based on the calculated states
{(Xi, Yi)}n

i=1 from Step 3, we update the estimated liquidity ESi for each
transaction TXi ∈ {TXi}n

i=1 by the formula: EKi = Xi · Yi and go to the
next iteration.

Final Phase. After several iterations in the iteration phase, the algorithm
outputs the set of victim transactions {TXi}n

i=1 extracted from the MVTLs of
the last iteration.

4.2 Optimal Attack Algorithm

Our optimal attack algorithm hinges upon a fundamental observation: as trans-
actions are executed, the price of token pair τx/τy continuously decreases. Conse-
quently, strategically inserting the front-running transaction as early as possible
can maximize the attacker’s revenue. This observation forms the basis of our
optimal attack algorithm, which utilizes two critical building blocks: the Front-
running algorithm and the Backward algorithm.

Building Block: Front-Running Algorithm. Given the current state of
the LP and the set of victim transactions, this algorithm calculates an optimal
front-running attack, assuming that victim transactions don’t have slope points.

– Input: The algorithm gets {(X,Y), {TXi}n
i=1, sy} as inputs, where (X,Y) is

the current state of the LP, {TXi}n
i=1 is the set of victim transactions, and

sy is the amount of τy hold by the attacker.
– Output: The algorithm outputs an optimal front-running attack FT (Δx).

376 J. Wang et al.

Although directly calculating Δx is difficult, we can obtain the range of
Δx based on Theorem 1. After inserting an attack transaction FT (Δx), the
attacker’s will have s′

y = sy + (Y − X·Y
X+(1−f)Δx) of τy, and the current state

(X1, Y1) of the LP becomes X1 = X + Δx, Y1 = X·Y
X+(1−f)Δx .

To simplify the notation, let’s denote the trading amounts in {TXi}n
i=1 by

{xi}n
i=1, Vx =

∑n
i=1 xi and t = 1 − f . Then the new state (X2, Y2) of the LP

after executing all victim transactions satisfied:

X2 = X + Δx + Vx, Y min
2 ≤ Y2 ≤ Y max

2 .

Y min
2 =

X1 · Y1

X1 + tVx
=

(X + Δx)(X · Y)

(X + tΔx)(X + Δx + tVx)
,

Y max
2 =

(X + Δx)(X · Y)

tn−1(X + tΔx)(X + Δx + Vx)
,

where Y min
2 and Y max

2 come from Theorem 1. The attack profit after BT is:

Px = X2 − X2 · Y2/(Y2 + (1 − f)s′
y) − Δx. (6)

According to Eq. 6, we find that Px and dPx

dΔx are strictly decreasing when Y2

is increasing. Therefore, we can obtain the Δx range by taking the derivative
dPx

dΔx = 0. The result of Δx ∈ [Δxmin,Δxmax] is:

Δxmax =
X(sy(t − 1)tX − XY + t2(Vx + X)Y) +

√
Bmax

(t − 1) (syt(tVx − X) + (t2Vx − X − tX)Y)

Bmax = t2V 2
x X(sy(t − 1) + tY

×
(
sy(t − 1)t(t(Vx + X) − X) + (X − t2(Vx + X) + t3(Vx + X))Y

)

Δxmin =
X(sy(t − 1)tnX − XY + t1+n(Vx + X)Y) +

√
Bmin

(t − 1)sytn(tVx − X) + (t2+nVx + X − t1+n(Vx + X))Y

Bmin = t1+nV 2
x X(sy(t − 1) + tY)

×
(
sy(t − 1)tn(−X + t(Vx + X)) + (X − t1+n(Vx + X) + t2+n(Vx + X))Y

)

Building Block: Backward Algorithm. Given the current state of the LP
and the set of victim transactions, this algorithm calculates a maximized FT
attack while ensuring the last victim transaction can be successfully executed.
We consider the maximum tolerable prices in this algorithm.

– Input: The algorithm gets {(X,Y), {TXi}k
i=1} as input, where (X,Y) is the

current state of the LP, {TXi}k
i=1 is the set of victim transactions.

– Output: The algorithm output a maximized front-running attack FT (Δx).

We also calculate the range of Δx based on Theorem 1. To simplify the
notation, we denote the number of tokens in {TXi}k

i=1 by {xi}k
i=1, Vx =

∑k−1
i=1 xi

and t = 1 − f . Then the post-executing state of FT is X0 = X + Δx, Y0 =
XY

X+(1−f)Δx . The state {Xk−1, Yk−1}after executing {TXi}k−1
i=1 is:

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 377

Xk−1 = X0 + Δx + Vx, Y min
k−1 ≤ Yk−1 ≤ Y max

k−1 ,

Y min
k−1 = (X0 · Y0)/(X0 + tVx) = (X + Δx)(X · Y)/(X + tΔx)/(X + Δx + tVx),

Y max
k−1 = (X + Δx)(X · Y)/(tn−1(X + tΔx)(X + Δx + Vx)).

Then TXk can get yk of τy:

yk = Yk−1 − Xk−1 · Yk−1/(Xk−1 + txk) = t · Yk−1xk/(Xk−1 + txk). (7)

According to Eq. 7, we know that yk is strictly decreasing when Yk−1 is increas-
ing. Therefore we can obtain the range of Δx ∈ [Δxmin,Δxmax] by solve Eq. 7:

Δxmin = (−1 + t

2
)Vx − X − txk

2
+

√
tXxkY

yk
+

((1 − t)(Vx − xk) + xk)2

4
,

Δxmax = t1−kΔxmin.

Attack Algorithm. Given a start state (X0, Y0) of the LP and a sequence
of sorted victim transactions {TXi}n

i=1, the attack algorithm outputs an attack
strategy ST , which maximizes the attacker’s revenue.

The algorithm runs in n rounds. In each round k ∈ [n], the algorithm attack
transactions {TXi}n

i=k. At the beginning of each round, the algorithm initializes
parameters sy = 0, X = X0, Y = Y0, and l = k, where sy is the amount of τy

the attacker have got, and l is the index of victim transaction. In each round,
the algorithm runs in two steps:

1 The algorithm runs Front-running Algorithm(X,Y, {TXi}n
i , sy = 0),

receives an interval {Δxmin,Δxmax} containing the optimal trading amount
of the front-running attack. Then the algorithm runs Binary Search d times
to search an FT approximated with the optimal attack transaction.

2 The algorithm executes FT from state (X,Y), then try to execute victim
transactions {TXi}n

i=l.
• All transactions are executed successfully: The algorithm should record

the attack strategy and move to the next round.
• When executing transactions, a transaction TXj exceeds its slope point:

Now for all k ∈ [j, n], the algorithm should run Backward Algorithm
((X,Y), {TXi}k

i=l), and receive intervals {Δxmin
k ,Δxmax

k }n
k=j . By calcu-

lating Δxmin = mink∈[j,n] Δxmin
k and Δxmax = maxk∈[j,n] Δxmax

k , the
algorithm gets the interval which containing optimal FT attack. Then
employing Binary Search d times, the algorithm can find an approxi-
mate maximum FT attack x which swaps for y of τy. Assume the trans-
action Txj′ reaches its slope point in the attack x, the resulting state
after executing transactions FT and {TXi}j′

i=l) is denoted as (Xj′ , Yj′).
Subsequently, the algorithm updates sy = sy + y, X = Xj′ , Y = Yj′ ,
l = j′ + 1 and proceeds to run step 1.

378 J. Wang et al.

Finally, the algorithm compares all the revenues in n rounds and chooses the
attack strategy ST with the largest revenue.

Each step of the algorithm runs binary search at most d times in which
the algorithm should execute at most n transactions. Meanwhile, the algorithm
should calculate the interval at most n times. Hence the algorithm runs at most
O(nd + n) time in each step. As the algorithm runs each step at most n times
in each round, and there are n total rounds, the time complexity of the optimal
attack algorithm is O(n3(d + 1)).

4.3 Implementing Attacks on Blockchain

We consider an Ethereum-like blockchain where many DeFi users initiate their
transactions on the pending pool. We consider a rational attacker A who observes
the pending pool’s transactions in real-time. When A detects one or more victim
transactions that interact with the same LP and have the same swap direction,
A can use n-MVTL attack algorithms to find an optimal attack strategy ST to
attack these victim transactions. After that, if A is a miner (or builder in ETH
2.0), he can include ST in a new block and broadcast it to Ethereum on his own
if A is a miner. Otherwise, A can send ST as a bundle with an auction fee to an
honest miner (or builder) via an MEV relay (e.g., flashbots [3], Eden Network
[6]). If A wins the auction, the honest miner (or builder) will then include ST
in a new block and broadcast it to Ethereum.

The n-MVTL attack surpasses prior works by overcoming three limitations:
(I) No stable price assumption. The attack profit obtained by the n-MVTL attack
are positive amount of τx, hence ensuring positive gains without the stable price
assumption. (II) Consider AMM swap fees. The liquidity of an LP is not con-
stant when considering AMM swap fees. In our algorithm, we take this factor
into account to generate attack strategies. This increases the computational com-
plexity, but it makes our generated attack strategies more practical. (III) Hard
to defend. We employ a structure n-MVTL to exploit the vulnerability among
multiple victim transactions, making it difficult for DeFi users to resist n-MVTL
attacks using conventional methods. We show how the novel structure works in
Appendix B.

5 Analysis

In this section, we first proved the upper and lower bounds of the LP’s state after
executing re-ordered transactions. Then, we provide a comprehensive analysis of
the revenue of the optimal attack algorithm.

5.1 Post-execution State Analysis

The greatest difficulty when analyzing the revenue of the algorithm is determin-
ing the post-execution reserve of τy in the LP because it is according to the
transaction order. To estimate the reserve of τy in the LP after n transactions,
we prove the following theorem:

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 379

Theorem 1. Given a start state (X0, Y0) of the LP and a set of transactions
{TXi}n

i=1 in which the trading amounts are {xi}n
i=1. Then post-executing state

(Xn, Yn) satisfied:

Xn = X0 + Vx,
X0Y0

X0 + (1 − f)Vx
< Yn <

X0Y0

X0 + (1 − f)Vx
∗ (1 − f)1−n,

where f is the rate of transaction swap fee, and Vx =
∑n

i=1 xi.

The proof is in Appendix A. With Theorem 1, we can estimate the output
in Front-running Algorithm and Backward Algorithm.

Corollary 1. In Front-running algorithm (or Backward algorithm) with d times
of Binary search, the trading amount Δx in the output attack transaction and
the trading amount Δxopt for the optimal attack transaction are satisfied:

Δxopt − Δx

Δxopt
≤ (1 − f)1−n − 1

2d
, (8)

where n is the number of input victim transactions in the algorithm.

Proof. Because Δxmax ≤ (1 − f)1−nΔxmin, we have:

(Δxopt − Δx)/Δxopt ≤ (Δxmax − Δxmin)/2dΔxmin = ((1 − f)1−n − 1)/2d. (9)

5.2 Revenue Analysis

Meanwhile, we notice that when the total number of τx in the FTs is fixed, the
attacker can get more revenue by inserting as many front-running transactions
as possible in the front. This statement can be written into the following lemma.

Lemma 1. Given a starting state (X0, Y0), a victim transactions TX1 and two
attacking transaction FT1 = FT (Δx1) and FT2 = FT (Δx2), the attack sequence
{FT (Δx1 + Δx2), TX1} can earn more τy than sequence {FT1, TX1, FT2}, if
TX1 do not exceed its slope point.

The proof is straightforward as the price of τy is a monotone increase while
executing transactions. Then according to Corollary 1 and Lemma 1, we have
the following theorem:

Theorem 2. Given a set of ordered victim transactions {TXi}n
i=1, assume the

revenue of our attack is Pn−MV TL, the maximum revenue by any attack strategy
is Pmax, we have the following lower-bound:

Pn−MV TL > (1 − ((1 − f)1−n − 1)/2d)2Pmax. (10)

The proof is in Appendix A. This theorem shows that for any ε, the algorithm
with parameter d > log2

(1−f)1−n−1
ε can receive at least (1 − ε) of the maximum

revenue. Therefore, the attack strategy of the algorithm is an approximate opti-
mal attack strategy.

380 J. Wang et al.

6 Evaluation

We first implement a prototype of an attack system in Python 3.8.0. We test
the implementation of the critical method F in our attack system to ensure it
aligns with the real smart contract, minimizing discrepancies caused by different
rounding method implementations. We use real-world data to test the accuracy
of our calculations, where test data is extracted from Sync event1 initiated by
the Uniswap V2 smart contract to obtain the state of the liquidity pool before
and after each transaction, and Swap event2 initiated by the Uniswap V2 smart
contract to obtain the amount of τx spent by the user in the transaction and the
amount of τy obtained. We test 10,000 historical transactions by executing them
based on their pre-execution states, and the post-execution states calculated by
our attack system are consistent with the post-execution states in history.

Then, we conduct a series of experiments on a machine with Quad-Core Intel
Core i5 (1.4 GHz) and 16 GB memory, including: (a) evaluating the time effi-
ciency of attack algorithms, (b) validating the profitability of attack strategies,
and (c) conducting the trade-off analysis for Optimal Attack.

6.1 Time Complexity

To evaluate the time efficiency of our algorithms, we record the time taken to
perform each step in our algorithms. We set the state at (1027, 1024) in the exper-
iments since it exceeds the current size of any liquidity pool. Victim transactions
were randomly generated in the experiments as the veracity of the transactions
will not influence the time efficiency of our algorithms. We set the number of
iterations utilized in Transaction Selecting to 10. We do not limit the number
of iterations of BSA utilized in Optimal Attack. As we can see from Table 1,
the time cost of Transaction Selecting rises nearly linearly in all cases as
the number of random transactions increases, while the time cost of Optimal
Attack has cubic growth. In total, it takes around 4 s to build an optimal attack
strategy when the number of random transactions is 100. Note that the average
number of executed transactions per block is 154.8, and the average block gen-
eration time is 12.2 s on April 20, 2023, in Ethereum [2]. The results show that
our algorithms are feasible in the current Ethereum.

6.2 Attack Strategy Validation

We evaluate the profitability of n-MVTL attack on historical blockchain data
from block 12,000,000 to block 17,000,000 over a total of 699 days. We locally
deploy the Uniswap V2 Router02 smart contract3 using Foundry4, a popular
1 Topic0 of Sync events: 0x1c411e9a96e071241c2f21f7726b17ae89e3cab4c78be50e062b03

a9fffbbad1.
2 Topic0 of Swap events: 0xd78ad95fa46c994b6551d0da85fc275fe613ce37657fb8d5e3d13

0840159d822.
3 https://github.com/Uniswap/v2-periphery/blob/master/contracts.
4 https://github.com/foundry-rs/foundry.

https://github.com/Uniswap/v2-periphery/blob/master/contracts
https://github.com/foundry-rs/foundry

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 381

Table 1. Time Cost of Attack Algorithms.

Algorithms # of TXs

10 20 50 100

Transaction Selecting 0.014 s 0.024 s 0.051 s 0.120 s

Optimal Attack 0.042 s 0.171 s 0.888 s 4.018 s

All 0.056 s 0.195 s 0.939 s 4.138 s

Fig. 3. Average time cost and
attack profit of attacks.

EVM development platform, and interact with the deployed smart contracts to
execute all malicious and victim transactions. We compute the actual profits
based on the transaction execution results in Foundry. We focus on the transac-
tions of the top 2 most popular liquidity pools in Uniswap v2 (i.e., ETH/USDC
and ETH/USDT). Our attack solely targeted successfully executed transactions
recorded on the blockchain. Each attack is specifically directed towards transac-
tions with the same swap direction that are present within a single block. We set
the number of iterations utilized in Transaction Selecting to 10. We do not
limit the number of iterations of BSA utilized in Optimal Attack. To mea-
sure the performance of n-MVTL attack on extracting extra profits compared
to sandwich attacks, we establish a comparison group as a baseline by launching
sandwich attacks on victim transactions. As shown in Table 2, n-MVTL attack
can extract extra profits in all cases compared to the baseline. In total, n-MVTL
attack can yield 656,976 (i.e., 295,608 + 361,368) USD of extra attack profit from
5,006 (i.e., 2,498 + 2,508) profitable victim transactions since n-MVTL attack
can only attack victim transactions in one swap direction at the same time. The
overall profits from the n-MVTL attack increased by 13.7% compared to the
sandwich attack, rising from 4,786,556 USD (i.e., 3,555,817 USDC + 1,230,739
USDT) to 5,443,532 USD (i.e., 3,851,425 USDC + 1,592,107 USDT).

To eliminate the influence of private pending pools on n-MVTL attacks, we
did not attack against failed and pending transactions. Our attacks are restricted
to transactions that were successfully executed within the same block in the
historical blockchain. These transactions were inevitably witnessed by one miner,
regardless of whether these transactions originated from private pools. Thus, if
the miner possesses malicious intent, he can launch an n-MVTL attack against
these transactions. As the number of transactions attacked in this validation is
less than the number of real attackable transactions in history. Therefore, the
profit statics only represent lower bounds on the severity of n-MVTL attack.

6.3 Trade-Off Analysis of Time Cost and Profit

We employ historical transactions of the LP (ETH/USDT) for trade-off anal-
ysis. We re-run the attack on transactions in the USDT-¿ETH swap direction
by varying the limits on the number of iterations of BSA utilized in Optimal

382 J. Wang et al.

Table 2. Estimated attack profit of SVTL attack and MVTL attack.
LP and swap direction Profitable TXs /

total TXs
Attack profit of
1-SVTL attack

Attack profit of
n-MVTL attack

of n-MVTL
attacks

Extra profit
(token)

Extra profit
(USD)

ETH/USDC (Uniswap V2) ETH -> USDC 1,965/1,481,222 562.24 ETH 616.40 ETH 592 54.16 ETH 103,066 USD

USDC -> ETH 2,498/1,373,080 3,555,817 USDC 3,851,425 USDC 790 295,608 USDC 295,608 USD

ETH/USDT (Uniswap V2) ETH -> USDT 2,564/1,387,482 677.27 ETH 718.76 ETH 782 41.49 ETH 78,955 USD

USDT -> ETH 2,508/1,472,498 1,230,739 USDT 1,592,107 USDT 798 361,368 USDT 361,368 USD

Attack. Figure 3 illustrates the interplay between time cost, attack profit, and
the corresponding iteration limits in BSA. As the iteration limits increase, the
time cost exhibits a linear growth, while the attack profit demonstrates expo-
nential growth when the number of iterations is below 15. Remarkably, the profit
nearly converges to that of attacks with no limit when the number of iterations
reaches 15. In a real-world setting, the attackers can adjust the iteration limits
within BSA to strike a trade-off between time cost and profitability.

7 Conclusion

In this paper, we propose a novel transaction reordering attack, n-MVTL attack,
to attack against multiple transactions in DeFi. Unlike traditional transaction
reordering attacks, n-MVTL attacks enable attacks on un-sandwichable trans-
actions and consider AMM swap fees. In addition, we provide an optimal algo-
rithm to generate an optimal n-MVTL attack strategy with maximum attack
profit. This algorithm strikes a balance between time efficiency and attack profit,
enhancing the practicality of the attack algorithm. We also validate the attack
strategies on historical blockchain data. The result shows that the n-MVTL
attack can generate an average daily more profit of 940 USD compared to the
sandwich attack. Our new attack can offer attackers more profit and thus cause
more loss to normal users in DeFi. Compared with the sandwich attack, n-MVTL
attack is more difficult to defend against and harmful to DeFi users. We hope
our research raises awareness of this unresolved MEV risk and engenders future
work on defense mechanisms against MEV.

Acknowledgments. This work was supported in part by HK RGC GRF under Grant
PolyU 15209822 and NSFC/RGC Joint Research Scheme (2022/23), N PolyU529/22.
We would like to thank our anonymous reviewers for their insightful feedback.

A Proof

Proof for State Analysis. The proof of the lower bound and upper bound
for Yn comes from the following claims.

Claim. Given two transactions TX1(x1), TX2(x2) and a transaction TX(x1+x2)
, the reserve of τy in the LP after running transaction TX is lesser than running
transactions TX1 and TX2.

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 383

Proof. Assume the state of the LP is (X0, Y0). Let (X0, Y0)
TX−−→ (X1, Y1), and

(X0, Y0)
TX1,TX2−−−−−−→ (X2, Y2). Then, we have: Y1

Y2
= (X0+(1−f)x1)(X0+x1+(1−f)x2)

(X0+x1)(X0+(1−f)(x1+x2))
.

Notice that (X0 + x1) + (X0 + (1 − f)(x1 + x2)) = (X0 + (1 − f)x1) + (X0 +
x1 + (1 − f)x2) and (X0 + (1 − f)x1) < (X0 + x1), (X0 + (1 − f)(x1 + x2)) <
(X0 + x1 + (1 − f)x2). With average inequality, we have Y1

Y2
< 1, thus Y1 < Y2.

With this claim, we can get the lower bound by merging all the victim
transactions into one transaction TX, in which Vx =

∑n
i=1 xi. Thus we have:

Yn > X0Y0/(X0 + (1 − f)Vx).

Claim. Given the start state (X0, Y0), two transactions TX1 and TX2 such that
the trading amount satisfied x1 +x2 = T . Then when x1 =

√
X0T −X0, the LP

has a maximum reserve of τy after executing two transactions.

Proof. Assume the number of τy after executing is Y , we have:

Y =
(X0 + x1)(X0 + T)X0Y0

(X0 + (1 − f)x1)(X0 + x1 + (1 − f)(T − x1))
,

dY

dx1
=

f(1 − f)X0Y0(X0 + T)(X0T − 2X0x1 − x2
1)

(X0 + (1 − f)x1)2(X0 + x1 + (1 − f)(T − x))2
.

Notice that dY
dx1

> 0 when x1 <
√

X0T−X0, and dY
dx1

< 0 when x1 >
√

X0T−X0.
Thus Y is maximum when x1 =

√
X0T − X0.

With this claim, we know that the maximum Yn when Vn is given is when
X2

i = Xi−1 · Xi+1 for each i ∈ [n − 1]. Thus the maximum Yn is:

Yn ≤ X0Y0

Xn

n∏

i=1

Xi

fXi−1 + (1 − f)Xi

=
X0Y0

Xn

n∏

i=1

(X0 + Vx)
1
n

(
fX

1
n
0 + (1 − f)(X0 + Vx)

1
n

)

=
X0Y0

Xn

(1 − f)−n

(1 +
fX

1/n
0

(1−f)(X0+Vx)1/n
)n

≤ X0Y0

(1 − f)n−1(fX0 + (1 − f)(X0 + Vx))
,

=
X0Y0

X0 + (1 − f)Vx

· (1 − f)
1−n

.

Proof for Profit. Due to the page limit, we only give a proof of sketch. Firstly,
if the output of the Front-running and Backward algorithms is the optimal solu-
tion, we prove that our algorithm can get the maximum attack profit.

Proof. Assuming there is an optimal strategy consisting of {FTi,Gi}k
i=1. Accord-

ing to Lemma 1, the last transaction of Gi, 1 ≤ i ≤ k − 1 must reach its slope
point (Otherwise, removing a part of FT in the front can get more revenue).
This is exactly what our Backward algorithm is working for. Also, for the last FT
FTk, it should consider BT to maximize its profit, which is exactly the result of
our Front-running algorithm. Thus, our algorithm can get the maximum profit.

384 J. Wang et al.

However, our Front-running and Backward algorithms have a little loss in the
output, which can be bounded according to Corollary 1. We now calculate the
total loss in the attack. Assume there are k front-running transactions {FTi}k

i=1

in our attack. By Sect. 3, we know that the first k − 1 FT is calculated by
Backward algorithm. Assume the trading amount of the transaction FTi is Δxi,
and VFT =

∑k−1
i=1 Δxi, by Corollary 1 we have the inequality 11. As the price of

τy is monotone increasing, the profit of Backward algorithm PBW satisfied the
inequality 12.

(V opt
FT − VFT)/V opt

FT ≤ ((1 − f)1−n − 1)/2d. (11)

PBW ≥ (1 − ((1 − f)1−n − 1)/2d)P opt
BW . (12)

Then, we calculate the loss of FTk. Because of backward algorithm loss, the
input state Yn is bigger than the exactly Y max

n and satisfied the inequality 13.
And according to Corollary 1, the gap between the output Δx of the algorithm
and the optimal output Δxmax in FTk also satisfied the inequality 14. So the
profit of Front-running algorithm PFR satisfied the inequality 15. As there are
only two types of loss in the algorithm, we finish the proof of Theorem 2.

Yn/Y opt
n ≤ V opt

FT /VFT ≤ 1/(1 − ((1 − f)1−n − 1)/2d) (13)

(Δxopt − Δx)/Δxopt ≤ ((1 − f)1−n − 1)/2d (14)

PFR ≥ (1 − ((1 − f)1−n − 1)/2d)2P opt
FR. (15)

B Examples

Example 1 (A Typical 1-MVTL Attack). As shown in Fig. 4, we assume that
a user U wants to swap 120,000 of τx for at least 800 of τy. If U initiates a
transaction with 120,000 token X, this transaction is prone to sandwich attack
(cf. (1) of Fig. 4). Suppose U uses the limiting volume defense strategy [16] that
splits her transaction into four small transactions to defend against sandwich
attack (cf. (2a) of Fig. 4). Then, each small transaction only has a small trading
volume (30,000 of τx) so that none of the split transactions can be attacked by
the sandwich attack (cf. (2b) of Fig. 4). In contrast, the n-MVTL attack can
identify the overall vulnerability among the victim transactions. In this case,
the large state change provided by these split transactions is one form of overall
vulnerability, which is prone to n-MVTL attack. As shown in (3) of Fig. 4, the
attack profit of the n-MVTL attack is 27,621 of τx.

Example 2 (An n-MVTL Attack with Optimization). When the real price of a
cryptocurrency increases or decreases dramatically, there might be a large num-
ber of arbitrage transactions in the pending pool with the same swap direction.
We assume that the current state of an LP is (10,000,000, 1,000,000), and the real
price of this token pair is 11.0. The pending pool has 11 arbitrage transactions,
as illustrated in Fig. 5. To attack these victim transactions, we use Transac-
tion Selecting (cf. Section 4.1) to find the largest set of victim transactions

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 385

Fig. 4. Example 1. A 1-MVTL attack strategy.

{TXi}11i=2 that can be attacked together, and these transactions can be grouped
into five MVTLs. In each MVTL, there exists one FT and one or more victim
transactions. Then, we optimize the attack strategy by Optimal Attack. The
algorithm’s results indicate that we can maximize the attack profit when we only
attack against {TXi}11i=5. The strategy optimization increases the attack profit
from 4,621 of τx to 7,042 of τx.

We observe that TX1 and TX2 have the ability to defend against sandwich
attacks since they are set with small slippages (only 1%). However, they still
face the risk of n-MVTL attack. In the optimal n-MVTL attack strategy, TX1

and TX2 are not executed intentionally by A. We can regard that TX1 and TX2

suffer a fatal front-running attack that makes the users fail to swap their tokens.

Fig. 5. Example 2. An optimal n-MVTL attack strategy.

C Potential Defense

The premise for launching transaction reordering attacks is that attackers can
analyze transaction parameters (e.g., trading amounts) based on the input data
of transactions. One potential defense mechanism involves strengthening the pro-
tection of transaction information through cryptographic protocols. Currently,

386 J. Wang et al.

in other areas of DeFi, there have been efforts to enhance privacy-preserving
using zero-knowledge technology (i.e., mixers [10] and data exchanges [9]).

References

1. Bartoletti, M., Chiang, J.H.y., Lluch-Lafuente, A.: Maximizing extractable value
from automated market makers. In: 2022 International Conference on Finan-
cial Cryptography and Data Security (2022). https://doi.org/10.1007/978-3-031-
18283-9 1

2. Bitinfocharts. https://bitinfocharts.com/
3. Daian, P., et al.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner

extractable value, and consensus instability. In: 2020 IEEE Symposium on Security
and Privacy (SP), pp. 910–927. IEEE (2020). https://doi.org/10.1109/SP40000.
2020.00040

4. DeFi Tracker. https://defiprime.com/dex-volume
5. DeFi Llama. https://defillama.com/
6. Eden Network. https://www.edennetwork.io/
7. Heimbach, L., Wattenhofer, R.: Eliminating sandwich attacks with the help of

game theory. In: Proceedings of the 2022 ACM on Asia Conference on Computer
and Communications Security (ACM ASIACCS), pp. 153–167 (2022). https://doi.
org/10.1145/3488932.3517390

8. Pancakeswap. https://pancakeswap.finance/
9. Song, R., Gao, S., Song, Y., Xiao, B.: ZKDET: a traceable and privacy-preserving

data exchange scheme based on non-fungible token and zero-knowledge. In: 2022
IEEE 42nd International Conference on Distributed Computing Systems (ICDCS),
pp. 224–234. IEEE (2022). https://doi.org/10.1109/ICDCS54860.2022.00030

10. Tornado. http://tornado.cash/
11. Uniswap. https://www.uniswap.org
12. Uniswap v1. https://docs.uniswap.org/protocol/V1/introduction
13. Wang, Y., Zuest, P., Yao, Y., Lu, Z., Wattenhofer, R.: Impact and user perception

of sandwich attacks in the DeFi ecosystem. In: CHI Conference on Human Factors
in Computing Systems, pp. 1–15 (2022). https://doi.org/10.1145/3491102.3517585

14. Zhou, L., Qin, K., Gervais, A.: A2mm: mitigating frontrunning, transaction
reordering and consensus instability in decentralized exchanges. arXiv preprint
arXiv:2106.07371 (2021). https://doi.org/10.48550/arXiv.2106.07371

15. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading
on decentralized on-chain exchanges. In: 2021 IEEE Symposium on Security and
Privacy (SP), pp. 428–445. IEEE (2021). https://doi.org/10.1109/SP40001.2021.
00027

16. Züst, P.: Analyzing and Preventing Sandwich Attacks in Ethereum (2021). https://
pub.tik.ee.ethz.ch/students/2021-FS/BA-2021-07.pdf

https://doi.org/10.1007/978-3-031-18283-9_1
https://doi.org/10.1007/978-3-031-18283-9_1
https://bitinfocharts.com/
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1109/SP40000.2020.00040
https://defiprime.com/dex-volume
https://defillama.com/
https://www.edennetwork.io/
https://doi.org/10.1145/3488932.3517390
https://doi.org/10.1145/3488932.3517390
https://pancakeswap.finance/
https://doi.org/10.1109/ICDCS54860.2022.00030
http://tornado.cash/
https://www.uniswap.org
https://docs.uniswap.org/protocol/V1/introduction
https://doi.org/10.1145/3491102.3517585
http://arxiv.org/abs/2106.07371
https://doi.org/10.48550/arXiv.2106.07371
https://doi.org/10.1109/SP40001.2021.00027
https://doi.org/10.1109/SP40001.2021.00027
https://pub.tik.ee.ethz.ch/students/2021-FS/BA-2021-07.pdf
https://pub.tik.ee.ethz.ch/students/2021-FS/BA-2021-07.pdf

Miscellaneous

stoRNA: Stateless Transparent Proofs
of Storage-time

Reyhaneh Rabaninejad1(B), Behzad Abdolmaleki2, Giulio Malavolta3,
Antonis Michalas1,4, and Amir Nabizadeh1,2,3,4

1 Tampere University, Tampere, Finland
{reyhaneh.rabbaninejad,antonios.michalas}@tuni.fi

2 University of Sheffield, Sheffield, UK
behzad.abdolmaleki@sheffield.ac.uk

3 Max Planck Institute for Security and Privacy, Bochum, Germany
giulio.malavolta@mpi-sp.org

4 RISE Research Institutes of Sweden, Gothenburg, Sweden

Abstract. Proof of Storage-time (PoSt) is a cryptographic primitive
that enables a server to demonstrate non-interactive continuous avail-
ability of outsourced data in a publicly verifiable way. This notion was
first introduced by Filecoin to secure their Blockchain-based decentral-
ized storage marketplace, using expensive SNARKs to compact proofs.
Recent work [2] employs the notion of trapdoor delay function to address
the problem of compact PoSt without SNARKs. This approach however
entails statefulness and non-transparency, while it requires an expensive
pre-processing phase by the client. All of the above renders their solution
impractical for decentralized storage marketplaces, leaving the stateless
trapdoor-free PoSt with reduced setup costs as an open problem. In
this work, we present stateless and transparent PoSt constructions using
probabilistic sampling and a new Merkle variant commitment. In the
process of enabling adjustable prover difficulty, we then propose a multi-
prover construction to diminish the CPU work each prover is required to
do. Both schemes feature a fast setup phase and logarithmic verification
time and bandwidth with the end-to-end setup, prove, and verification
costs lower than the existing solutions.

1 Introduction

Storage-as-a-Service, including cloud storage services and, more recently, Decen-
tralized Storage Networks (DSNs) [15,22], has attracted extensive interest and
caused big data migration from local storage systems to storage servers, as it
offers efficient and scalable services at a lower cost. However, after outsourcing,
the data owner has no physical control over the data. Hence, continuous data
availability is an important trait that highly-reliable service providers [5] should
guarantee to protect users against downtime, whatever its cause, and ensure that
data owners can retrieve their data files at any time. Continuous data availability
is becoming increasingly critical as it provides global ceaseless access to online
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 389–410, 2024.
https://doi.org/10.1007/978-3-031-51479-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_20&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_20

390 R. Rabaninejad et al.

business data and business-to-business applications. The existing notion of Proof
of Storage (PoS) [1,10] ensures data integrity and availability at a specific time
point (i.e., the time the challenge is issued). A naive approach to certify con-
tinuous data availability consists of using PoS and performing frequent checks
over time. However, this requires that clients be online when sending sequential
challenges to the storage server. Moreover, in DSNs such as Filecoin [15], where
proofs are verified by the blockchain network, this method causes communication
complexities and, eventually, leads to network bottlenecks.

1.1 Proof of Storage-time

Ateniese et al. [2] formalized the notion of Proof of Storage-time (PoSt) to
address the issue of continuous availability guarantees for outsourced data, and
proposed two constructions in the random oracle model. Informally, a PoSt pro-
tocol enables storage servers to efficiently convince a verifier that data is con-
tinuously available and retrievable via generating chained sequential challenge-
responses over a specified time interval. Consider D as the time period during
which a specific data file is deposited in the server. D is divided into time slots
of length T , where T is the audit frequency parameter – the prover is chal-
lenged once in every time slot T , while the verifier is not required to remain
online. This helps approximating continuous data availability throughout a D
time range with discretized frequent auditing, where a smaller T provides a supe-
rior availability guarantee. The measure of time here is the number of unit steps
of the Turing machine. Let timer be a global (verification) timer initiated by
the data owner, but public (with the timer the verification algorithm can check
whether the final proof is received on time). A PoSt consists of a tuple of four
algorithms PoSt = (Setup,Store,Prove,Verify), as defined below.

– Setup(1λ, T,D) → (par, sk): Inputs security parameter λ, audit frequency
parameter T , D and outputs the public parameters par and secret key sk.

– Store(F ∗, sk, par, T,D) → (F, tg): Takes as input an original data file F ∗, a
secret key sk, an audit frequency parameter T , and a deposit time D and
generates an encoded file F . It also outputs tag tg as necessary information
to run PoSt.Prove and PoSt.Verify algorithms.

– Prove(par, chal, tg, F) → π: Inputs encoded file F , tag tg, public parameters
par, and challenge seed chal issued by a verifier at the outset of the deposit
period, and outputs proof π promptly after the deposit period ends.

– Verify(par, sk, tg, chal, π, timer) → {accept, reject}: Inputs par, secret key sk,
tag tg, challenge chal, proof π, and timer to check timely reception of the
final proof . It outputs a bit b to designate accept or reject.

PoSt schemes may present the following core features:

Public Verifiability. A smart contract or any third party (not just the clients)
are able to audit continuous data availability by verifying the output from
PoSt.Prove algorithm. To this end, the verification algorithm PoSt.Verify should
not take any secret sk as input.

stoRNA: Stateless Transparent Proofs of Storage-time 391

Statelessness. An unbounded (polynomial) number of verifications are sup-
ported without requiring the verifier to maintain the protocol state. If a PoSt
protocol is stateful, when the number of verifications reaches a pre-determined
fixed bound, the protocol stops and no further audits are possible, unless the
data owner retrieves outsourced files and relaunches the PoSt.Store algorithm.

Dynamic. Efficient updates on outsourced data are enabled at any time without
the need for an expensive setup.

Transparency. A PoSt scheme may import a one-time trusted setup run by
an honest client with a publicly published setup output to all entities. However,
a PoSt scheme is transparent if its setup does not involve any secret sk.This
property is necessary in DSNs where provers may also be clients and prevents
generation attack– that is, a malicious client-prover output a valid proof at
the time a challenge is issued by generating data on-the-fly to collect network
rewards, without really reserving storage.

Compactness. Low verification cost is enabled independent of the file size and
deposit length.

Additionally, a PoSt scheme must present the following security properties:

Completeness. For all files F ∗ ∈ {0, 1}∗, all (par, sk) values output by
Setup(1λ, T,D), and all (F, tg) output by Store(F ∗, sk, T,D), a proof π gener-
ated by honest prover in Prove(par, chal, tg, F) on the challenge chal will cause
Verify(par, sk, tg, chal, π, timer) to always output accept.

Soundness. This property guarantees that if a prover is able to convince an
honest verifier that it has stored a file throughout the specified deposit time
then there is an extractor Ext,that given a subset of prover configurations and
the code of the transition function (i.e the random-coin r of the prover) can
extract data via interacting with the prover1. Formally, a PoSt scheme is sound,
if for any PPT adversary A for a file F , there is an extractor ExtA s.t for all λ
and all files F ∗ ∈ {0, 1}∗,

Pr

⎡
⎢⎢⎣

(par, sk) ← Setup(1λ, T,D); (F, tg) ← Store(F ∗, sk, T,D);

(π||F̂) ← (A||ExtA)(par, chal, tg, F ; r) :

Verify(par, sk, tg, chal, π, timer) ∧ F̂ �= F

⎤
⎥⎥⎦ ≈λ 0

Here, chal is the verifier challenge and tg is a tag corresponding to file F .

Ateniese’s et al. Construction in a Nutshell: The work in [2] presents
two different constructions of PoSt. The first warm-up protocol is based on the
intuition proposed in the Filecoin whitepaper [15]: the prover generates sequen-
tial Proofs of Retrievability (PoRs), where each PoR proof is computed based on
1 The data should be extracted from the configuration corresponding to any specific

time and the transition function.

392 R. Rabaninejad et al.

a challenge derived from the PoR proof in a previous iteration. As a result, the
verifier merely provides the first challenge and can then go offline. The scheme
leverages the notion of Verifiable Delay Function (VDF) [6] to guarantee a spe-
cific amount of delay between two successive PoR proofs, even if the prover uses
parallel processors. In every time slice, the prover evaluates VDF by feeding a
priori PoR proof as its input and generates a challenge by hashing the VDF
output. The prover returns all sequential challenge-proof pairs along with the
respective VDF proofs, to be inspected all at once by the verifier. The verifica-
tion procedure of this warm-up construction however is very expensive since the
verifier must audit all proofs one-by-one, and the communication cost is high.

The second protocol follows a different approach based on the Trapdoor
Delay Function (TDF). The client executes a pre-processing phase to generate
a tag, producing the same sequence of challenge-proof pairs as the prover, but
with faster TDF evaluations due to the trapdoor. Nevertheless, in this compact
scheme the client relies on a trapdoor to run the setup phase and generate
challenges, thus it does not provide public verifiability. Moreover, this protocol
is stateful and static. Besides, the soundness of the compact scheme assumes the
holder of the trapdoor is honest. This signifies that contrary to what is stated by
the authors, the construction cannot be directly used in the DSNs as is the case
with Filecoin. Authors have pointed several aspects that remain unresolved such
as: (i) support for dynamic data updates, (ii) stateless and transparent PoSt
constructions (without trapdoors), and (iii) setup cost reduction.

In light of these issues we ask the following question: Can we have a Proof of
Storage-time for continuous availability monitoring of dynamic data at storage
providers in a transparent, stateless, yet efficient manner?

1.2 Our Contributions

This work makes significant progress in answering the above question. We pro-
pose stoRNA, a new stateless PoSt protocol with a fast setup for light clients,
aiming to outsource their data to a storage network for a deposit period. A public
verifier can verify continuous data availability with computation and communica-
tion overheads logarithmic in the length of the deposit period. The construction
can be instantiated from any stateless publicly verifiable PoR and invokes Proof
of Elapsed-time (PoEt) proposed in [7] as a trust-less proxy for time.

Commitment and Random Sampling. We present a new commitment graph
inspired by the Directed Acyclic Graph (DAG) introduced in [7], where every sin-
gle graph node is efficiently updated in sequential time slots, based on the notion
of the Merkle Mountain Range, and takes external inputs from the proofs gener-
ated at said time slot. The constant-size root of this graph plays as a commitment
over the whole PoSt sequence generated by the prover. This commitment mech-
anism enables the verifier to randomly sample and verify only a logarithmic
number of proofs from the PoSt sequence. Inclusion proofs of the commitment
graph aid the verifier to check if the proofs returned by the prover are bound to
challenged positions of the PoSt sequence.

stoRNA: Stateless Transparent Proofs of Storage-time 393

Stateless-Transparent-Dynamic Construction. Since the client does not
rely on any trapdoor, stoRNA is transparent and copes with malicious clients.
Moreover, it provides unbounded use: when number of verifications reaches an a
priori bound (deposit period ends), the client can extend it with no computation
(deposit-extendability). This is possible due to the incremental nature of the proof
chain: the prover can keep up the chain from the last state to append further
PoRs at agreed frequency. stoRNA also enables dynamic updates on outsourced
files at marginal costs (file-extendability).

Multi-prover Setting. stoRNA is in single-prover setting: the prover hosting
the data and providing storage proofs also proves the passage of time between
successive storage proofs. We next extend stoRNA to a multi-prover PoSt con-
struction, mstoRNA, which differs as regards prover resources. Any arbitrary
number of provers can join the decentralized market by providing their pre-
ferred resources: (i) Time Nodes, who mainly spend CPU work by continuously
running PoEt and periodically publishing the publicly verifiable state, and (ii)
Storage Nodes who provide storage-time by renting out disk-space over time to
the clients. A PoSt sequence generated by a prover in this construction is like
a public storage-ledger that any one in public can verify, while it can migrate
to any other prover, who may continue the ledger where previous prover left
off. This aspect is particularly important when considering the rapid-changing
distributed nature of DSNs with real nodes susceptible to failure.

1.3 Technical Overview

Consider a data owner wishing to outsource its data to the storage provider(s)
and verify continuous data availability without remaining online. Additionally, at
a later time, the data owner may extend the deposit time or update its outsourced
files without relaunching the entire setup or adding much cost to the verification
algorithm. stoRNA enables any light client to do so: the client only requires to
perform an efficient Store algorithm to generate necessary information for the
prover and public verifier. Each storage provider, participating in the stoRNA
protocol, stores the data file for a specific deposit period. To prove “storage-time”
i.e., continuous availability of the specified storage over the specified deposit
time, the storage provider sequentially generates PoRs during the entire storage
period. To compel a specific amount of delay between successive PoRs generated
by the prover, the protocol leverages the concept of publicly verifiable PoEt.

In order to enable efficient verification procedure with low communication,
the verifier randomly samples and verifies a logarithmic number of proofs from
the chain. However, with this probabilistic sampling approach, a dishonest prover
can fool the verifier by sending correctly-generated proofs from arbitrary time
slots in response to the verifier’s challenge. Hence, sampling fails to catch con-
tinuous data availability with high probability.

One way to enforce the prover to send storage proofs at the precise challenged
time slots on the chain, is to have him commit to the entire chain before random
slots are sampled. As a result, the verifier can use the commitment to check

394 R. Rabaninejad et al.

Fig. 1. Structure of stoRNA.

whether the returned responses belong to the challenged slots. To commit to
the whole chain of sequential proofs, the prover updates a graph GCom

n based
on a variation of the Merkle commitment with some extra edges as illustrated
in Fig. 2, across all PoRs generated up to the current time. This commitment
graph GCom

n is inspired by the elegant DAG proposed in [7], but with subtle
modifications to be discussed in Sect. 4. At each time slot i, the prover efficiently
updates the GCom

n by appending the hash of the most recent PoR and PoEt
proofs to the labels of the parents of node i and uses the new tree root as a
statement to run the next PoEt (Fig. 1). Consequently, the tree root at each
time slot i, plays as a commitment over the whole chain up to that slot.

At the end of deposit period, the prover returns the root label of latest
GCom

n as a commitment to the entire series of proofs generated within the whole
period. Upon receiving the commitment, the verifier challenges a randomly sam-
pled subset of time slots (this can be made non-interactive using the Fiat-Shamir
heuristic [9] – i.e., the prover can generate challenge slots himself by hashing the
commitment). For every sampled time slot, the prover provides the correspond-
ing PoR, PoEt proofs together with the logarithmic size Merkle opening. The
verifier, first checks whether returned proofs are located at the challenged posi-
tions of the chain previously committed by , which is made possible via the
position-binding guarantee in the Merkle proofs. Next, it checks the correctness
of the PoR, PoEt proofs. If the PoR, PoEt proofs or the Merkle opening of
any sampled slot is invalid, the verifier will reject. Else, the verifier is convinced
that the commitment is computed mostly correct. Figure 1 depicts a schematic
overview of our construction, named stoRNA since the single strand built by
the prover can be viewed as a storage RNA2 that carries information about
client data: the extractor algorithm of the underlying PoR scheme can use PoRs
appended over time to the chain, to extract the client file with high probability.

Multi-prover PoSt Construction. The above construction, seems to provide
all desirable features at once:
2 RNA is a single strand biological molecule essential in coding, decoding, and expres-

sion of genes.

stoRNA: Stateless Transparent Proofs of Storage-time 395

– Fast setup and transparency. The client only requires to perform the Store
algorithm of the underlying PoR scheme on the data files before outsourcing
without relying on any trapdoors. Hence, the scheme is transparent.

– Logarithmic verification time and bandwidth. The verifier algorithm can audit
continuous data availability with high probability in time and communication
logarithmic in the length of the deposit period.

– Statelessness and unbounded use. When the number of verifications reaches
the a priori bound (deposit period ends), the client can easily extend the
deposit period without relaunching the Store algorithm. The prover can keep
up the PoSt sequence from the last state to append further PoRs at the agreed
frequency.

– Dynamic. Assuming the underlying PoR scheme supports dynamic databases,
the client can update its outsourced files at any time without a re-computation
of the entire initialization algorithm. The client only requires to perform fast
setup on the modified data blocks and outsources them to be updated at the
storage server. The verifier needs to use the new PoR tags for auditing the
chain from the point update takes place.

However, there is still a challenge to be addressed: Even the honest prover algo-
rithm requires heavy inherently sequential CPU computations. More precisely,
the prover participating in the network, needs to spend two distinct resources:
(i) storage-time (storage resources over time) and (ii) CPU work (CPU power
over time). The first one is natural in PoSt mechanisms as the prover has to
dedicate a specified amount of disk-space over time. But the CPU work is due to
the use of PoEt in the protocol to guarantee a delay between storage proofs and
prevent the prover from generating all required proofs at once and discarding
the data. This CPU work is a major deterrent to renting out storage by storage
providers or leads to increased storage fees in decentralized storage markets.

Our second construction, mstoRNA (shown in appendix B for space con-
straint), is based on division of CPU work and storage-time resources between
“Time Nodes”and “Storage Nodes”. Time Nodes participate in the decentralized
market by continuously running PoEt algorithm. At each time slot, the Time Node
advertises the PoEt state and waits for Storage Nodes to submit PoR proofs gener-
ated based on the challenge derived from the freshly advertised PoEt state and the
signature of each individual Storage Node. The wait time is specified based on the
network roundtrip time (RTT). Next, the Time Node (i) creates a Merkle tree with
the PoRs collected from Storage Nodes, (ii) inputs the Merkle root together with
PoEt proof to update GCom

n , and (iii) timestamps the updated commitment into
the PoEt sequence by appending the most recent GCom

n root into the shared PoEt
state. At the end of the deposit period, the Time Node, acting as the main prover
interacting with the verifier in this network, returns the root-label of the latest
commitment graph as a commitment to all proofs from all Storage Nodes sequen-
tially generated during the deposit period. Upon receiving the commitment, the
verifier simply opens some of the committed labels to verify both storage and time
proofs included in those labels. In Table 1, we give a high-level comparison of our
constructions over compact PoSt [2].

396 R. Rabaninejad et al.

Table 1. Comparison of our constructions over compact PoSt [2]. N = D
T

denotes
number of iterations during the deposit period D, t = log T

2
, n = log N

2
, and m denotes

the number of Storage Nodes connected to a Time Node in mstoRNA construction.

Features Overhead
stateless transparent dynamic setup verification proof size

cPoSt [2] ✗ ✗ ✗ O(N) O(1) O(1)
stoRNA ✓ ✓ ✓ O(1) O(tn) O(tn)
mstoRNA ✓ ✓ ✓ O(1) O(tn)

m
‡ O(tn)

m
‡

‡ These are with respect to a single Storage Node.

1.4 Application Domain

Here, we exemplify applications our stoRNA construction could be beneficial to.
Blockchain History Expiry. Hard disk storage is one of the biggest bottlenecks in
L1 blockchain scalability. For example, the Ethereum chain will become gigantic
in the coming years, making storage infeasible for individuals. The idea of History
expiry is to obviate the need for all, full nodes to download the entire chain from
genesis. Instead, only the most recent historical blocks would be held and served
by the core blockchain protocol. Older blocks would be stored by external storage
providers, which can minimize requirements for node hard drive space, paving
the way for further decentralization. Many Decentralized Applications (DApps)
are already removing data from blockchains for efficiency. However, since being
an immutable trustless record is one of the principal features of blockchain, long
term availability of older blocks should be guaranteed. Using our method one
can publicly verify long term continuous availability of large historical blocks.
Decentralized Storage Networks. DSN is a decentralized algorithmic market based
on blockchain made up of various nodes rewarded for storing and maintaining
data availability. The network controls the accessible disk space, disperses client
data across nodes, audits the integrity and retrievability of data, restores possi-
ble failures and rewards honest nodes. The stateless and transparent nature of
stoRNA makes it suitable for audit purposes in DSNs.

2 Related Work

Proofs of Storage (PoS) schemes enable clients to outsource files to a server,
and later in an interactive audit phase, verify the integrity of the stored data.
A verifier, repeatedly challenges the server and checks the returned proof that
the server is still storing the client’s file intact. The term verifier refers to the
client, who originally outsourced the file (privately verifiable PoS), or any third
party (publicly verifiable PoS).These protocols are also known as Provable Data
Possession (PDP) [3]. Proofs of Retrievability (PoR) schemes [10] are similar to
PDP, but they additionally guarantee data retrievability, achieved by an extrac-
tor that reconstructs the client file from the proofs returned by the prover.

stoRNA: Stateless Transparent Proofs of Storage-time 397

The extensive research on PDP/PoR schemes covers various advanced features
including dynamic data updates [16], shared data files [17], and proof of repli-
cated storage [18].
Proofs of Space (PoSpace) schemes enable a prover to convince a verifier
certain disk space is dedicated. PoSpace schemes can be used as an alternative
to the blockchain Proof of Work (PoW) consensus mechanism, where instead of
the CPU computation, disk-space is expended [8]. PoSpace can also be viewed
as a PoS scheme, where the prover shows that it is storing incompressible data
demonstrating the allocation of a lower-bound amount of resources.
Proofs of Space-time (PoSt) proposed by Moran and Orlov [14], is in a
sense PoSpace over time. However, [14] only guarantees the dedication of space
resources, not the stored data retrievability. In other words, the server only stores
a randomly-generated string with no external utility to guarantee space dedi-
cation. The Filecoin project [15] introduced a PoSt scheme, where the server
stores real data that can be used outside the protocol. Due to this important
shift resource-wasting PoW schemes were replaced by a useful storage service.
In [15], the prover executes sequential auditings, where each challenge is deter-
ministically derived from the proof at a previous iteration and an input from
a trusted randomness beacon. The prover chains the sequential challenges and
proofs and compresses this chain using zk-SNARK , to be publicly inspected by
the verifier. However, zk-SNARK is a heavy cryptographic machinery [4] entail-
ing expensive computational/memory costs on the prover side, thus detering
storage providers from renting storage to clients. Ateniese et al. [2] constructed
a compact PoSt scheme based on TDF to obviate the need for zk-SNARKs.

3 Preliminaries

3.1 Merkle Tree and Merkle Mountain Range

A Merkle tree MT is a balanced binary tree with n = 2i leaves, such that every
leaf holds the hash of a data block and every inner node is labelled with a hash
of its children [13]. The inclusion of any data block in the tree can be proved
only with a number of logarithmic hashes in the number of leaf nodes. A Merkle
Mountain Range MMR [20], is a variant of Merkle tree that can be seen either
as a list of perfectly balanced binary trees or a single binary tree truncated from
the top right. Specifically, a MMR with root r is defined as a tree with n = 2i+j
leaves, such that i = �log2(n − 1)	. The left sub-tree r.left can be seen as a MT
with 2i leaves, and the right sub-tree r.right as a MMR with j leaves.

3.2 Proofs of Sequential Work

Proofs of Sequential Work (PoSW) first introduced by Mahmoody et al. [12] is
a protocol between a prover P and a verifier V , where P can generate a proof
convincing V that some computation took place for N time steps, since some
statement χ was received. The protocol is defined by algorithms PoSW, Open,

398 R. Rabaninejad et al.

and Verify as described below. P and V commonly input security parameters
w, c ∈ N and a time parameter N ∈ N. All parties have access to a random
oracle H : {0, 1}∗ → {0, 1}w.

– PoSW: V samples a random statement χ ← {0, 1}w and sends it to P .
P makes N sequential queries to H and computes a proof (φ, φP) :=
PoSWH(χ,N), where φ is sent to V and φP is stored locally.

– Open: P computes τ := OpenH(χ,N, φP , γ) in response to random challenge
γ ← {0, 1}c·w sampled by V . τ is then forwarded to V . The challenge can be
generated non-interactively by the prover using the Fiat-Shamir [9].

– Verify: V outputs VerifyH(N,φ, γ, τ) ∈ {accept, reject}.

For a prover P and a verifier V honestly following the protocol’s specifications,
a complete PoSW protocol will output accept with probability 1. Soundness
requires that even in the case of resourceful adversaries with parallel processing
ability, a malicious prover cannot output a valid proof in time less than N . Cohen
and Pietrzak [7] propose a simple PoSW construction based on a Merkle tree
variant with added edges that connect the left siblings of a leaf’s path to the
root with the leaf itself in order to compute a leaf label. This graph is used for
both sequential work enforcement and commitment purposes. In this paper, we
use the terms PoET and PoSW interchangeably, since a PoSW protocol proves
that N time has elapsed after χ was received.

3.3 Proof of Retrievability

Proof of Retrievability (PoR) schemes [10,19] are a Proof of Storage cat-
egory of protocols where a prover simultaneously ensures both possession
and retrievability of a data file. PoR schemes consist of four algorithms
(KeyGen,Store,Prove,Verify):

– KeyGen(1λ) → (sk, pk): Inputs λ and outputs secret/public key pair (sk, pk).
– Store(F ∗, sk) → (F, tg): Takes original data file F ∗, secret key sk, and gen-

erates encoded file F . It also outputs tag tg as necessary information to run
PoR.Prove and PoR.Verify algorithms.

– Prove(pk, chal, tg, F) → π: Inputs file F , tag tg, public key pk, and challenge
chal issued by a verifier, and outputs proof π corresponding to the chal.

– Verify(sk, pk, tg, chal, π) → {accept, reject}: Inputs secret/public key pair
(sk, pk), tag tg, chal, proof π. Outputs a bit b to designate accept or reject.

The completeness property of a PoR scheme ensures that the protocol outputs
accept with a probability of 1 for a prover and verifier honestly following the
protocol’s specifications. Loosely speaking, soundness requires an extractor algo-
rithm that will recover the data through interaction with any prover that can
pass the verification with overwhelming probability [19]. In other words, for any
adversary A generating a valid proof π in the PoR protocol, there is an extrac-
tor algorithm PoR.ExtA(pk, sk, tg; r) having as input pk, sk, the file tag tg, and
the description r of A (the random coin of A), outputs the file F . PoR schemes
also satisfy the unpredictability property ensuring that the prover cannot guess
a valid response before it sees the corresponding challenge.

stoRNA: Stateless Transparent Proofs of Storage-time 399

4 stoRNA Design

Now, we present our stoRNA, a stateless transparent PoSt protocol.

Ingredients and Notation. stoRNA uses the following primitives:

– Collision-resistant hash function H with the output range of size w.
– Publicly verifiable PoEt = (Prove,Verify) in [7] as a proxy for time (non-

interactive version).
– Publicly verifiable stateless PoR = (KeyGen,Store,Prove,Verify) scheme.

We denote concatenation of bit-strings by ‖. For x ∈ {0, 1}∗, x[i . . . j] and |x|
denote concatenation of all bits from ith bit to jth, and bit-length of x, respec-
tively.

Given PoR.Store algorithm outputs (processed file F and tag tg), a random
seed rs, deposit time D, and audit frequency parameter T , stoRNA output is
proof π that ensures a public verifier: (i) F is continuously available over time
D, (ii) the prover did not learn the stoRNA output until D time after receiving
F . The measure of time here is the number of sequential CPU hash invocations.
We prove the following theorem.

Theorem 1. Let PoR be a stateless PoR scheme with ε-soundness and unpre-
dictability. Let PoEt be a PoEt scheme with δ-evaluation time. The time cost of
PoR and hash function evaluation are negligible w.r.t. T . The time cost of s0
sequential steps on the server processor is T ′. If T ′ + 2δD < T , the proposed
PoSt scheme (Algorithm 1) is stateless, complete, and ε-sound.

4.1 Construction

The stoRNA scheme described in Algorithm 1 formally consists of three algo-
rithms: stoRNA.Store, stoRNA.Prove, and stoRNA.Verify. In stoRNA.Store algo-
rithm, the client only performs PoR.Store on an erasure encoded file F ∗ and
outputs processed file F and tag tg to a prover. In the stoRNA.Prove algorithm,
for every T time unit, the PoEt.Prove state will serve as the PoR challenge to
generate a fresh PoR in PoR.Prove. Next, in order to commit to the whole chain
of sequential (PoEt,PoR) proofs, the prover efficiently updates a graph as illus-
trated in Fig. 2 and Algorithm 2.

This graph is based on the special DAG introduced in [7] with a number of
modifications. Let GCom

n = (V,E) be the commitment DAG, where each node
in V is indexed by a bit string with a length at most n, while the root node is
indexed by the empty string ε. Also, let E = E′ ∪E′′, where sub-graph (V,E′) is
a complete Merkle tree of depth n, with edges directed from the leaves coming
up to the root. Index of each node in depth i < n of the tree is made up of
the common bits of its parents. E.g., two parents indexed by u = v ‖ 0 and
u = v ‖1 form a child indexed by v (Algorithm 2, line 5). Moreover, for all leaves
v ∈ {0, 1}n, E′′ consists of an edge (u, v) for any u that is a left node sibling on
the path from v to the root ε (Algorithm 2, line 6).

400 R. Rabaninejad et al.

Algorithm 1. stoRNA Construction
1: stoRNA.Store
2: input data file F ∗ and (PoR.sk,PoR.pk)
3: (F, tg) ← PoR.Store(PoR.sk,PoR.pk, F ∗)
4: sample random seed rs ←$ {0, 1}w

5: output (rs, F, tg)
6: stoRNA.Prove
7: input processed file F , tag tg, random seed rs, deposit time D, and audit frequency

T
8: set i ← 0 and et ← 0 � i:number of audit iterations, et: elapsed time
9: set st ← rs

10: while et ≤ D do
11: st ← PoEt.Prove(T, st)
12: i ← i + 1
13: hi ← st
14: ci ← H(hi)
15: πi ← PoR.Prove(PoR.pk, F, tg, ci)
16: lε ← GCom

n .Update(v = i, V = hi ‖ πi) � Algorithm 2

17: st ← H(st ‖ lε) � update the state by appending the new GCom
n root

18: et ← et + T
19: N ← i
20: HFNL ← st
21: output Com = (HFNL, lε)
22: stoRNA.Verify
23: input commitment Com, tag tg, seed rs, public key PoR.pk
24: generate random c−element subset I∗ ⊂ [1, N] and send it to the prover.
25: wait to receive π = {hi, πi, {lk}k∈Δi}i∈I∗ , where Δi = {i[1, j − 1] ‖ 1 − i[j]}j∈[1,n]

� Δi contains the index of all siblings of the nodes on the path from
leaf i to the root as in Merkle tree commitment opening

26: for all i ∈ I∗ do
27: ci ← H(hi)
28: if PoR.Verify(PoR.pk, tg, πi, ci) = false then return false
29: if PoEt.Verify(T, hi) = false then return false
30: if li �= H(i, πi, lp1 , . . . , lpd), where (p1, . . . , pd) = Parents(i) then return false
31: if ∃j ∈ Δi : lj �= H(j, lj‖0, lj‖1) then return false � verify GCom

n opening

32: return true

At iteration i, the prover updates the graph GCom
n similarly to a Merkle mountain

range described in Subsect. 3.1, also including additional E′′ edges as described
above. Besides, the label of node i is updated by appending the hash of the most
recent (PoEt,PoR) proofs to the labels of parents of node i. After an update
to the commitment graph, the new root label lε is mixed into the state for the
next PoEt execution. At the end of the deposit period, stoRNA.Prove algorithm
outputs the latest root label lε together with the final PoEt state as a commitment
to the chain of proofs sequentially generated during the entire period.

stoRNA: Stateless Transparent Proofs of Storage-time 401

Algorithm 2. GCom
n .Update

1: input index v ∈ {0, 1}n and value V, and DAG GCom
n = (V, E), where E = E′ ∪E′′,

sub-graph (V, E′) is a Merkle tree, and E′′ contains, for all leaves v ∈ {0, 1}n an
edge (u, v) for any u that is a left sibling of node on the path from v to the root ε.

2: nodecount ← GCom
n .GetNodeCount � get total number of graph nodes

3: if v > nodecount then
4: V ← V ∪ v � add leaf v to the tree
5: E′ ← E′ ∪ {(x ‖ b, x) : b ∈ 0, 1, |x| < n} � update Merkle tree edges

starting from new leaf v = x ‖ b to the root
6: E′′ ← E′′ ∪ {(i, v) : v = a ‖ 1 ‖ a′, i = a ‖ 0}
7: lv = H(V) ‖ H(v, lp1 , . . . , lpd), where (p1, . . . , pd) = Parents(v)
8: ∀i ∈ V, |i| < n : li = H(i, lp1 , lp2), where (p1, p2) = Parents(i) � recursively

update all labels up to root
9: else

10: go to lines 7-8 to update labels
11: output lε

Upon receiving the commitment, in stoRNA.Verify algorithm, (i) the veri-
fier challenges a randomly sampled subset of time slots, (ii) for every challenged
time slot, the prover provides a Merkle opening together with all the (PoEt,PoR)
proofs on the path from this challenged node to the root, (iii) the verifier, uses
the commitment to check whether the returned proofs are located at the cor-
rect positions of the chain, and (iv) runs PoEt.Verify,PoR.Verify algorithms to
respectively verify the returned PoEt,PoR proofs.

High Level of Security Proof. For the soundness property, we need to prove
that the largest time between two PoRs is less than T . Thus, for an honest prover
P , any successive configurations of any time slot with a T length must contain at
least a PoR proof. Then, following the soundness definition of PoR in 3.3, one can
use the PoR extractor to recover the data from the partial configurations and the
transition function. To recover the sequence of each computation epoch and feed
it to an extractor, we use programability of random oracle. To this aim, we force
PoSt provers inevitably query the random oracle, the challenge (except the first
one) and response (except the last one) for each PoR via querying the random
oracle H. Thus, the extractor can invoke a PoR extractor to extract the data by
controlling H. We note that, our soundness proof exploits unpredictability of the
random oracle3. Finally, we argue about the sequenciality of the scheme that
follows the proof of sequentiality of Cohen and Pietrzak [7]. A malicious prover
PoSt.P′, making the verifier accept (in relation to GCom

n in Algorithm 2) with
high probability must have queried H “almost” N times sequentially. We use the
outputs of PoR.Prove as the input nodes of the specified tree construction of [7].
We defer the proof of Theorem 1 to appendix A.

3 The unpredictability of the random oracle is important in the malicious prover case,
as it is hard to let the extractor access each PoR’s challenge and response.

402 R. Rabaninejad et al.

Fig. 2. A complete GCom
3 achieved after N = 15 iterations. Red lines show the traversing

order of the tree with node numbers from 1 to N = 2n+1 − 1 for a tree of depth n and
node i updated at iteration i. Also, Vi = (PoEt,PoR) (Algorithm 1, line 16) shown in
blue is input to GCom

n .Update algorithm at iteration i. (Color figure online)

5 Efficiency Analysis and Experimental Results

Implementation and Experimental Setup. We implement a prototype of
the prover and the verifier in Golang4. Our testbed consisted of a MacBook Pro
with 16 GB 3.22 GHz memory and a 2.06 GHz Intel Core i10 CPU with M1
(ARM based) chipset and Mac OS monterey as operating system. We imple-
mented the scheme of [19] as our underlying stateless publicly verifiable PoR for
randomly generated files of different sizes and relied on SHA-256 for all hash
implementations. Following what presented in [7], here T and D are measured
as the amount of sequential CPU steps. We refer to [21] for discussions on how
it translates to real-world time. The results were averaged over 10 runs.

Setup Cost. stoRNA computation for the client solely includes running the
PoR.Store algorithm once, no matter how long the deposit length D is. This cost
is ignorable as compared with the setup cost of [2] which equals 1·PoR.Store+N ·
(TDF.TrapEval + PoR.Prove), and N = D

T denotes number of iterations during
the deposit period D. As an example, the setup algorithm of [2] for a file of
size 256 MB, stored for 5 months and checked on a 1-hour basis, takes about
200 min on a client machine. This time is prolonged for larger files or longer
deposit lengths. Our stoRNA.Store algorithm can be accomplished in a constant
time 1 · PoR.Store, independent of the deposit length.

Prover Cost. stoRNA.Prove algorithm makes a total of N sequential queries to
PoEt, which is an intrinsically sequential process with overall steps proportional
to the deposit length D. In mstoRNA.Prove, the average computational complex-
ity per prover algorithm regarding PoEt computations is divided by m, assuming

4 Code will be open-sourced soon and is available upon request.

stoRNA: Stateless Transparent Proofs of Storage-time 403

Table 2. Proof sizes at various t = log T
2

and n = log N
2

, with N = D
T

. We assume
w = 256 bits and c = 150, which guarantees 2−50 security.

D t, n Proof Size (MB)

29, 19 2.7930
250 34, 14 2.3940

39, 9 1.7550

29, 29 4.2630
34, 24 4.1040

260 39, 19 3.7050
44, 14 3.0660
49, 9 2.1870

29, 39 5.7330
34, 34 5.8140

270 39, 29 5.6550
44, 24 5.2560
49, 19 4.6170

m as the number of Storage Nodes connected to a Time Node. Therefore, as m
increases, the overall computational complexity of prover algorithm diminishes.

Verifier Cost. We now evaluate how our scheme verification time changes as
the deposit period D grows. We fix the audit frequency parameter T to 240 and
vary the deposit period from 250 to 270 CPU steps. Since the results on various
file sizes was roughly the same, we report the mean over all data files of sizes
64 MB, 128 MB, and 256 MB, with 10 experiments each. Figure 3a shows the
results. As deposit length increases by 220 ×, the verification time grows from
1.64 min to 5.29 minutes, an increase of only 3 ×. This is because the number of
nodes in each of c openings that the verifier algorithm checks their consistency is
equal to the depth of the commitment graph, which grows logarithmically with
the deposit length. We also explore how the change in audit frequency parameter
T affects the verification time. For this experiment, we fix the deposit period D
to 260 vary T from 230 to 250 CPU steps. For each configuration, we run 10 tour-
naments and measure the average of the verification time. Figure 3b shows the
results. When T = 250, the verification time reaches the lowest, at 2.07 minutes.
We also note that the verification algorithm is parallelizable, where nodes can be
checked concurrently using verifier CUDA cores. In this prototype we have not
implemented such parallelism and the results reflect the whole verification time
without parallelism. mstoRNA construction shown in appendix B further opti-
mizes the overall verification cost in the sense that PoEt sequence is inspected
once for all m Storage Nodes connected to a Time Node.

404 R. Rabaninejad et al.

Fig. 3. stoRNA.Verify algorithm time cost for c = 150. Solid lines show the trend. (a)
Verification time when varying the deposit period D and audit frequency parameter
T = 240. The overall verification cost is the same for all file sizes and logarithmic in
the deposit length. (b) Verification time when varying audit frequency parameter T
and deposit period D = 260.

Proof Size. The proof consists of the Com = (HFNL, lε) and c openings, each
including n tuples of the form {hk,PoEtk, πk, lk}k∈Δi

, where Δi = {i[1, j − 1] ‖
1 − i[j]}j∈[1,n]. Table 2 report the results on proof sizes when varying deposit
period D and audit frequency parameter T . With w = 256 bits, c = 150, which
guarantees 2−50 security, t = 39 (i.e., over 1012 steps), and n = 9 (1024 total
iterations), the proof size is approximately 1.7 MB.

Discussion. Our construction is slower to verify and has larger proofs than
the compact solution in [2]. This is the cost we pay for stateless and trans-
parent features. Nonetheless, our end-to-end setup, proof, and verification costs
are smaller than [2]. In Table 1, we give a high-level comparison with compact
PoSt [2]. On top of potential parallelism possible in the verification mentioned
earlier, there are potential ways of further optimizing performance: In addition
to full-node verifiers inspecting the entire PoSt sequence, light client verification
approaches like [11] are possible in stoRNA. Concretely, by adding intermediate
“checkpoints” during the PoSt sequence computation, where each checkpoint
includes the hash of the previous, a light client can verify directly through con-
secutive checkpoints and skip the validation of every time slot in PoSt sequence.
Therefore, it is possible to audit data availability only for a specific time and
not for the whole chain (point verification).

Acknowledgments. This work was funded by the HARPOCRATES EU research
project (No. 101069535) and the Technology Innovation Institute (TII), UAE, for the
project ARROWSMITH. Giulio Malavolta was partially funded by the German Federal
Ministry of Education and Research (BMBF) in the course of the 6GEM research
hub under grant number 16KISK038 and by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC
2092 CASA - 390781972.

stoRNA: Stateless Transparent Proofs of Storage-time 405

A Theorem 1 Proof

(i: Completeness): Directly follows from the completeness of the PoR and PoEt
schemes.
(ii: Soundness): Let an adversary A be against the soundness of the stoRNA
scheme. Let the extractor PoSt.Ext = (ExtPoSt,1,ExtPoSt,2) recover the data F
from the prover. Where ExtPoSt,1 on input the description of the prover, outputs
the configurations, the epoch (a randomly chosen time slot) and the transition
function, and ExtPoSt,2 is a PoR extractor that recovers the data from the con-
figurations, the epoch and the transition function. Intuitively, we first show that
the prover executes “one PoR” in a randomly chosen epoch and then by invoking
the PoR extractor, we recover the data from the configurations the epoch and
the transition function (extraction phase).

We first argue about the sequenciality in Algorithm 1. A potentially malicious
prover PoSt.P′, making the verifier accept (in relation to GCom

n in Algorithm 2)
with high probability must have queried H “almost” N times sequentially. The
proof of sequentiality follows Cohen and Pietrzak [7]. We use the outputs of
PoR.Prove as the input nodes of the specified tree construction of [7]. Thus, the
sequentiality proof of Algorithm 1 follows the sequentiality proof of [7]. Formally
we have that,

Lemma 1. [Theorem 1 of [7]]. Consider the scheme in Algorithm 1, with param-
eters c, w, N and a “soundness gap” α > 0. If PoSt.P′ makes at most (1 − α)N
sequential queries to H, and at most q queries in total, then PoSt.V will output
reject with probability 1 − (1 − α)c − (2 · n · w · q2)/2w.

Where N is assumed to be number of sequential steps of the form N = 2n+1 − 1
for an integer n ∈ N, and c is a statistical security parameter (the size of the
subset I∗ in which the larger the c the better the soundness), and w is the output
range of H, which we need to be collision-resistant and sequential. w = 256 is a
typical value. The proof follows the proof of Theorem 1 in [7].

In general, the verification algorithm of the stoRNA requires the prover to
compute all PoR challenges and responses and evaluate the PoEts. Thus the
PoR responses are valid and the PoEt are evaluated as expected with probability
(1−α)c − (2 ·n ·w ·q2)/2w based on Lemma 1. Because of the unpredictability of
PoR and the sequentiality of PoEt, the PoR proofs must be generated sequentially.

Let D0 and Dk be the start and end time points for running A. For i from
1 to k − 1, we set each time point Di+1 to be the first time when A queries the
random oracle H on (st‖ lε) (Alg.1 step 17). Similarly, we set each time point D̂i

as the start when A queries the H on st (Alg.1 step 13). Then we prove that the
random time epoch with length T > T ′ + 2δD chosen by ExtPoSt,1 must contain
at least one interval [Di, D̂i) for some i. To this aim, we prove the following
lemmas 2, 3, 4, and 5:

Lemma 2. The time point Di must precede Di+1.

406 R. Rabaninejad et al.

Proof. we show that each PoEt’s output sti−1 must be firstly queried to the
random oracle H before sti. To prove it we use the contradiction in a way that,
if not, then A must be able to either generate the PoEt output sti before sti−1,
which violates the sequentiality of PoEt; or generate the PoEt input sti−1 before
the output of H (step 17, Algorithm 1), which violates the unpredictability of the
random oracle H; or generate the PoR challenge ci before sti−1, which violates
the unpredictability of the random oracle H (step 13, Algorithm 1); or generate
the PoR response πi before ci, which violates the unpredictability of PoR;

Lemma 3. T ′ is shorter than the length of each time slot [Di,Di+1).

Proof. By the unpredictability of the random oracle, the output of the PoEt,
sti must be generated before the time point Di+1. On the other hand, the
PoR response πi must be generated via the PoR on the challenge sti after the
time point Di. Thus, a PoEt function must be evaluated within the time slot
[Di,Di+1). By the sequentiality of PoEt, the length of [Di,Di+1) must be longer
than T ′.

Lemma 4. T ′ + δD is bigger than the length of each time slot [Di,Di+1).

Proof. Let D′ be the execution time of PoSt.P′. By the correctness of the ver-
ification algorithm, D′ < (1 + δ)D. Based on the result of Lemma 3 , we have
that the length of each time slot [Di,Di+1) is longer than T ′, thus, the longest
slot should be shorter than (1 + δ)D − (k − 1)T ′ = δD + T ′.

Lemma 5. Each D̂i ∈ [Di,Di+1) and the time slot [Di, D̂i) is shorter than δD.

Proof. Finally, we show the PoEt response sti must be queried to the random
oracle H (Algorithm1 step 13) within this time slot [Di,Di+1) and that the time
slot [Di, D̂i) is shorter than δT . The output of the PoR πi is queried at the time
point Di+1, hence the input of the PoR, ci must be generated by PoSt.P′ before
the time Di+1 according to the sequentiality of PoR. Due to the unpredictability
of the random oracle, H must be queried on input sti before the time Di+1.
On the other hand, according to the unpredictability of PoEt, PoSt.P′ can not
figure out the PoEt proof sti before the time point Di, when the PoEt input
is generated. Given this, sti must be queried to the random oracle H in time
slot [Di,Di+1). Furthermore, since the maximum length of [Di,Di+1) and the
evaluation time of PoEt is longer than T ′, the slot [Di, D̂i) < δD.

Extraction Phase. In this phase, we show that given the bunch of configurations
for PoSt.P′ for time slot [Di, D̂i) (or [Di−1, D̂i−1)) and the code of the transition
function, ci and sti can be accessed by the PoSt.Ext. Indeed, since both random
oracles H are maintained by the extractor, a cheating prover of PoR.P′ can be
constructed by manipulating the output of the random oracle H (step 13, Algo-
rithm 1) as the PoR challenge, rewinding the part of the PoSt.P′ corresponding

stoRNA: Stateless Transparent Proofs of Storage-time 407

to time segment [Di, D̂i) and collecting the queries of the random oracle H (step
17, Algorithm 1) as the PoR response. Since there is a PoR extractor to recover
the storage data from PoR.P′, the soundness proof of PoSt is complete.

B Stateless Multi-prover PoSt Construction

In this section we show improvement options to the concrete efficiency of
prover algorithm by proposing an extended multi-prover PoSt construction
mstoRNA = (Store,Prove,Verify) (see Algorithm 3 for details). More precisely,
we assume any arbitrary number of “Time Nodes” and “Storage Nodes” can
freely join the DSN by respectively providing “CPU work” and “storage-time”
resources to the network. mstoRNA.Store algorithm is executed to output file
Fj and tag tgj which are outsourced to Storage Node j. In stoRNA.Prove algo-
rithm, (i) Time Node, every T time units, shares the PoEt state and waits for
a time gap determined by network latency. (ii) Storage Node j hosting file Fj ,
generates a challenge based on the freshly advertised PoEt state, serving as
the PoR challenge, and submits πij ← PoR.Prove. (iii) Time Node collects all
PoR proofs from all Storage Nodes and creates a Merkle tree MTi with root ri.
(iv) Time Node inputs ri together with PoEt proof to update the commitment
graph GCom

n , and (v) Time Node timestamps the updated GCom
n root, lε, into

the shared PoEt state for the next PoEt execution. At the end of the deposit
period D, the Time Node returns lε together with the final PoEt state as a
commitment to all proofs sequentially generated during D. Upon receiving the
commitment, in mstoRNA.Verify algorithm, (i) the verifier challenges a randomly
sampled subset of time slots (ii) for every challenged time slot, the Time Node
provides openings for both GCom

n and Merkle tree MTi together with all the
(PoEt,PoR) proofs on the path from this challenged node to the root, (iii) the
verifier, verifies commitment openings of both MTi and GCom

n , and (iv) runs
PoEt.Verify,PoR.Verify algorithms to respectively verify the returned PoEt,PoR
proofs. As the number of Storage Nodes connected to a Time Node increases,
the overall computational complexity of the prover algorithm diminishes. This
enables even personal resource-constrained devices to partake in DSNs by ded-
icating some amount of disk-space, resulting in more decentralization. Besides,
a PoSt sequence in mstoRNA can migrate to any other Time Node, who can
continue where the previous prover left off. This is particularly important con-
sidering real nodes susceptible to Failure.

408 R. Rabaninejad et al.

Algorithm 3. mstoRNA Construction
mstoRNA.Store
input data file F ∗ and (PoR.sk,PoR.pk)
(F, tg) ← PoR.Store(PoR.sk,PoR.pk, F ∗) � repeat this for different files outsourced to m
storage nodes
sample random seed rs ←$ {0, 1}w

output (rs, F, tg)
mstoRNA.Prove
Time Node
input random seed rs, deposit time D, and audit frequency T
set i ← 0 and et ← 0
set st ← rs
while et ≤ D do

st ← PoEt.Prove(T, st)
advertise st
i ← i + 1
hi ← st
wait to receive PoR proofs from storage nodes � wait time is determined based on average

network roundtrip time (RTT)
for all j ∈ [1, m] do

ri ← MT.AppendLeaf(πij) � create a Merkle tree with PoRs received from Storage Nodes

lε ← GCom
n .Update(v = i, V = hi ‖ ri) � Algorithm 2

st ← H(st ‖ lε)
et ← et + T

N ← i
HF NL ← st
output Com = (HF NL, lε)

Storage Node
node j input processed file Fj , tag tgj , deposit time D, and audit frequency T
periodically input advertised state st
ci ← H(st)
πij ← PoR.Prove(PoR.pk, Fj , tgj , ci)
output πij

mstoRNA.Verify

input commitment Com, tag {tgj}j∈[1,m], seed rs, public key PoR.pk

generate random c−element subset I∗ ⊂ [1, N] and send it to all provers.
wait to receive {hi, ri, πij , {lk}k∈Δi

}i∈I∗ , where Δi = {i[1, j − 1] ‖ 1 − i[j]}j∈[1,n]

� Δi contains commitment openings for both GCom
n and MTi

for all i ∈ I∗ do
ci ← H(hi)
for all j ∈ [1, m] do

if MT.Verify(ri, πij) = false then return false � verify MTi opening

if PoR.Verify(PoR.pk, tgj , πij , ci) = false then return false

if li
= H(i, ri, lp1 , . . . , lpd
), where (p1, . . . , pd) = Parents(i) then return false

if ∃j ∈ Δi : lj
= H(j, lj‖0, lj‖1) then return false � verify GCom
n opening

if PoEt.Verify(T, hi) = false then return false
return true

Theorem 2. Let PoR be a stateless PoR scheme with ε-soundness and unpre-
dictability. Let PoEt be a PoEt scheme with δ-evaluation time. The time cost of
PoR and hash function evaluation are negligible w.r.t. T . The time cost of s0
sequential steps on the server processor is T ′. If T ′ + 2δD < T , the proposed
mstoRNA scheme in Algorithm 3 is stateless, complete, and ε-sound.

References

1. Ateniese, G., et al.: Provable data possession at untrusted stores. In: Proceedings
of the 14th ACM Conference on Computer and Communications Security, pp.
598–609. ACM (2007)

2. Ateniese, G., Chen, L., Etemad, M., Tang, Q.: Proof of storage-time: Efficiently
checking continuous data availability. In: NDSS (2020)

stoRNA: Stateless Transparent Proofs of Storage-time 409

3. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: Proceedings of the 4th International Conference on Secu-
rity and Privacy in Communication Netowrks. ACM (2008)

4. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: 23rd USENIX Security (2014)

5. Bertrand Portier: Always on: Business considerations for continuous availability.
http://www.redbooks.ibm.com/redpapers/pdfs/redp5090.pdf, 2014

6. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable Delay Functions. In:
Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018: 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19–23, 2018, Proceedings, Part I, pp. 757–788. Springer International Publishing,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

7. Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B., Rij-
men, V. (eds.) Advances in Cryptology – EUROCRYPT 2018: 37th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, pp. 451–467. Springer
International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-78375-
8 15

8. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of Space. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 29

9. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

10. Juels, A., Kaliski Jr, B.S.: Pors: proofs of retrievability for large files. In: Proceed-
ings of the 14th ACM Conference on Computer and Communications Security, pp.
584–597. ACM (2007)

11. Light Clients and Proof of Stake: https://blog.ethereum.org/2015/01/10/light-
clients-proof-stake/

12. Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequential
work. In: Proceedings of the 4th conference on Innovations in Theoretical Computer
Science, pp. 373–388 (2013)

13. Merkle, R.C.: Protocols for public key cryptosystems. In: IEEE Symposium on
Security and Privacy 1980, pp. 122–122. IEEE (1980)

14. Moran, T., Orlov, I.: Simple proofs of space-time and rational proofs of storage. In:
Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology – CRYPTO 2019: 39th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
18–22, 2019, Proceedings, Part I, pp. 381–409. Springer International Publishing,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 14

15. Protocol Labs: Filecoin: A decentralized storage network (2018)
16. Rabaninejad, R., Attari, M.A., Asaar, M.R., Aref, M.R.: Comments on a

lightweight cloud auditing scheme: Security analysis and improvement. J. Netw.
Comput. Appl. 139, 49–56 (2019)

17. Rabaninejad, R., Attari, M.A., Asaar, M.R., Aref, M.R.: A lightweight auditing
service for shared data with secure user revocation in cloud storage. IEEE Trans.
Serv. Comput. 15(1), 1–15 (2019)

18. Rabaninejad, R., Liu, B., Michalas, A.: Port: non-interactive continuous availability
proof of replicated storage. In: Proceedings of the 38th ACM/SIGAPP Symposium
on Applied Computing, pp. 270–279 (2023)

http://www.redbooks.ibm.com/redpapers/pdfs/redp5090.pdf
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-78375-8_15
https://doi.org/10.1007/978-3-319-78375-8_15
https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1007/3-540-47721-7_12
https://blog.ethereum.org/2015/01/10/light-clients-proof-stake/
https://blog.ethereum.org/2015/01/10/light-clients-proof-stake/
https://doi.org/10.1007/978-3-030-26948-7_14

410 R. Rabaninejad et al.

19. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 7

20. Todd, P.: Merkle mountain range. https://github.com/opentimestamps/
opentimestamps-server/blob/master/doc/merkle-mountain-range.md

21. Wesolowski, B.: Efficient verifiable delay functions. In: Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques (2019)

22. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151, 1–32 (2014)

https://doi.org/10.1007/978-3-540-89255-7_7
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md

Secure Approximate Nearest Neighbor
Search with Locality-Sensitive Hashing

Shang Song, Lin Liu(B), Rongmao Chen(B), Wei Peng(B), and Yi Wang

College of Computer Science and Technology, National University of Defense
Technology, Changsha, China

{songshang19,liulin16,chromao,wpeng,wangyi14}@nudt.edu.cn

Abstract. Ensuring both security and efficiency in Nearest Neighbor
Search (NNS) on large datasets remains a formidable challenge, as it
often leads to substantial computation and communication costs due to
the resource-intensive nature of ciphertext computations. To date, there
have been some solutions that are capable of handling privacy-preserving
NNS queries on big datasets. However, these approaches either impose
significant communication and computational burdens or compromise
security. In this paper, we introduce a novel framework, namely Secure-
ANNS, for secure approximate nearest neighbor search in the semi-honest
setting. Our approach begins by enhancing the building blocks of secure
NNS, specifically the multiplexer and comparison operations, through
oblivious transfer. We then adapt the plaintext Locality-Sensitive Hash-
ing algorithm to select a smaller subset, reducing the need for exten-
sive two-party computation. Finally, we introduce a new bucket retrieval
algorithm for efficient subset retrieval. Experimental results on various
datasets demonstrate that our SecureANNS achieves a speedup of 4×
and 14× compared to two state-of-the-art methods respectively.

Keywords: Nearest neighbor search · Privacy protection ·
Locality-sensitive hashing

1 Introduction

Nearest Neighbor Search (NNS) is a fundamental algorithmic problem widely
applied in fields such as recommendation systems [11], intrusion detection [30],
and network traffic analysis [51]. It involves finding the closest data point to
a query point under specific distance metrics (e.g., Euclidean or Hamming dis-
tance). However, in privacy-preserving scenarios, this seemingly simple query
becomes complex. Firstly, ensuring the privacy of the service provider’s dataset
is paramount, as it is a valuable asset to the provider. Moreover, users’ queries
and query results may also contain sensitive information, necessitating robust
data protection measures to gain user trust. Additionally, data leakage may result
in legal violations, such as the General Data Protection Regulation (GDPR) [52]
and the Health Insurance Portability and Accountability Act (HIPAA) [26].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 411–430, 2024.
https://doi.org/10.1007/978-3-031-51479-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_21&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_21

412 S. Song et al.

Ideally, both dataset owners and query users might seek to enjoy high-quality
service without revealing any information about their data to each other. Early
attempts at achieving this goal were based on linear scanning which turns out
to be impractical for large datasets containing millions or billions of data points
[40,45]. As a result, there has been a surge of research on Approximate Nearest
Neighbor Search (ANNS) algorithms that prioritize efficiency over exact accu-
racy [14,49,50,58]. In ANNS, query results consist of neighbors close enough to
the query point without the need to examine all data points exhaustively. How-
ever, while efforts have been made to secure ANNS in large datasets [14,49],
several performance and security challenges remain to be addressed:

– Performance limitations in current secure two-party computation (2PC) func-
tions, such as secure comparison.

– Low efficiency in existing subset retrieval algorithms, especially when dealing
with large-sized subsets.

– Concerns about concrete efficiency in traditional Oblivious RAM (ORAM)
protocols, despite favorable asymptotic complexity.

– Potential extraction of distance information from query results by users.

1.1 Our Contributions

To tackle the challenges mentioned above, in this paper, we present SecureANNS,
a novel protocol for securely performing approximate nearest neighbor searches
in the semi-honest adversary setting. Our main contributions are as follows:

New Multiplexer and Comparison Algorithms. We introduce a novel
batching technique for correlated oblivious transfer (COT), enabling partici-
pants to batch COTs with different choice bits based on correlation. As depicted
in Table 1, this advancement leads to the development of a secure multiplexer
algorithm with optimal communication complexity compared to previous works
[37,43,47,48]. Additionally, we improve secure comparison protocols by design-
ing optimized methods for correlated bit triple generation, achieving optimal
communication and computation costs (see Table 2 for a detailed comparison).

Modified LSH-Based NNS Algorithm. We modify the standard Locality-
sensitive hashing (LSH)-based plaintext ANNS algorithm [34] to meet the secu-
rity and performance requirements in the privacy-preserving scenario. Our modi-
fied LSH algorithm includes a new retrieval algorithm that reduces the number of
calls of the most time-consuming ciphertext computations and results in smaller
subset datasets, consequently enhancing SecureANNS’s performance.

Private Bucket Retrieval. We optimize the implementation of private bucket
retrieval adopted by [49] in several ways, including reducing the distributed point
function (DPF) domain, introducing early termination optimization via Boolean
sharing and Boolean-to-Arithmetic conversion, and leveraging the AVX2 instruc-
tion set for faster computation. These optimizations significantly reduce the cost
of the private bucket retrieval module, improving overall system efficiency.

SecureANNS 413

In summary, our SecureANNS presents advancements in multiplexer and
comparison algorithms, a modified LSH-based NNS algorithm, and an opti-
mized private bucket retrieval module. Our theoretical analyses and experimental
results demonstrate that SecureANNS achieves substantial speed improvements
over state-of-the-art methods while preserving privacy.

Related Works. Prior privacy-preserving nearest neighbor search schemes have
typically struggled with small-scale datasets due to performance limitations.
Some designs, such as those utilizing homomorphic encryption [50,58], have
achieved favorable communication rounds but suffer from significant computa-
tional overhead. Even with parallelization across multiple cores, processing only
a few thousand feature vectors can take hours. Secure multi-party computation-
based designs offer reduced computational requirements, but the use of oblivious
transfer and garbled circuits introduces substantial communication overhead,
limiting scalability. Notably, there are two schemes capable of handling million-
level datasets. One approach [14] employs clustering for dataset preprocessing
and combines various techniques for subset extraction and computation. Another
recent work [49] offers malicious security using locality-sensitive hashing (LSH),
but its comparison-free technique results in a certain level of information leakage.
Further details of both protocols can be found in Sect. 4.

1.2 System Model and Thread Model

Fig. 1. System Model

System Model. As illustrated
in Fig. 1, this work assumes the
two non-colluding server set-
ting just like [49]. Two servers
each obtain a copy of the
dataset from the data provider
in the setup phase. After receiv-
ing query shares from clients,
these servers cooperate with
each other to do secure two-
party computation and return
shares of NNS results to the
clients. We remark that such a distributed trust model is acceptable not only in
the research community [1,7,18] but also in practice [22].

Threat Model. We assume all parties in our design are semi-honest (a.k.a.
honest-but-curious), which means they strictly follow the protocol but may
attempt to infer additional information from others. Specifically, our security
guarantees can be summarized as follows:

– Data Privacy. Ensuring that the dataset details are not disclosed to clients.
– Query Privacy. Preventing cloud servers from revealing the client’s query.
– Result privacy. Restricting access to query results to only the legitimate user.
– Access Pattern Privacy. Ensuring that cloud servers cannot infer relevant

information about queries from memory access patterns.

414 S. Song et al.

2 Preliminaries

2.1 Arithmetic Secret Sharing

For the 2-out-of-2 arithmetic secret sharing [6] used in this work, a value x is
split into random shares 〈x〉t

0 and 〈x〉t
1 in the ring Zt with the only constrain

that 〈x〉t
0 + 〈x〉t

1 ≡ x mod t. For simplicity, we omit the superscript if t is clear
from the context.

2.2 Oblivious Transfer

Our protocol relies heavily on oblivious transfer (OT) for 2-party computation
on the candidate set, especially 1-out-of-2 correlated OT and 1-out-of-k OT. In
1-out-of-k OT functionality [10], denoted by

(
k
1

)
-OTl, a sender inputs k l-bit

strings m0, ..., mk−1 ∈ (0, 1)l and the receiver inputs an index j ∈ [k]. Then
the receiver obtains mj and the sender gets no output. In addition, general 1-
out-of-2 OT [27,46] is a special case of k = 2. 1-out-of-2 correlated OT (COT)
[3], denoted by

(
2
1

)
-COTl, is frequently used in our batching scenarios.

(
2
1

)
-COTl

generates correlated outputs for 2 parties, a sender inputs a value Δ and receiver
inputs a choice bit c, at the end the function outputs a random value r ∈ Z2l to
the sender and −r + cΔ to the receiver.

Ishai et al. proposed OT extension [35] (hereafter, we will refer to this OT
extension technique as IKNP-style OT extension) to reduce the heavy compu-
tation of public key cryptography by extending a few base OT instances with
symmetric cryptographic operations. Communication required for

(
2
1

)
-COTl and(

k
1

)
-OTl are λ + l [3] and 2λ + kl [36], excluding setup cost for base OT phase.

As l is usually small, we focus on reducing the number of OT instances by using
different batching skills [44,47] to amortize communication.

Recent advances in silent-OT extension [20,54] show us a new direction for
designing MPC protocols. Although such a pre-processing model is not our focus
in the paper, we believe that our optimizations utilized in IKNP-style OT exten-
sion can also be combined with this new technique.

2.3 Distributed Point Function

Previous work such as SANNS [14] uses Floram [25] to retrieve subsets of data
points securely. Despite the use of symmetric cipher with less number of AND
gates to reduce communication, the bandwidth of this part is still a big burden.
In this paper, we utilize the distributed point function to hide access patterns
when retrieving buckets. DPF is also called the function secret sharing scheme
for point functions. We briefly introduce the scheme with several definitions.

Definition 1 (Function Secret Sharing, FSS). Unlike previous secret sharing
schemes for individual elements, function secret sharing [8,9] split function f
into separate keys. Each party evaluates its own key with input x and generates
a secret share of f(x). Note that parties can not infer any information about
function f only from their own keys.

SecureANNS 415

Definition 2 (Point Function). A point function fα,β : {0, 1}n → {0, 1}m is
defined as follows:

fα,β(x) =
{

β, if x = α
0, otherwise

Here we only discuss the special case of β = 1.

Definition 3 (Distributed Point Function, DPF). A two-party distributed point
function [8,32] is a function secret sharing scheme for such point function class
and consists of two Probabilistic Polynomial Time (PPT) algorithms:

1. Key generation algorithm Gen(1λ, (α, 1)) inputs security parameter λ and
point function fα,1, then outputs a pair of DPF keys 〈key〉0 and 〈key〉1.

2. Evaluation algorithm Eval(〈key〉b, x) inputs Pb’s DPF key 〈key〉b, b ∈ {0, 1},
and evaluation on point x ∈ {0, 1}n, then outputs a value yx

b which satisfies
fα,β(x) = yx

0 + yx
1 .

The security of DPF depends on two properties, correctness and privacy. We
recommend [8,9,32]for more details.

2.4 Locality-Sensitive Hashing

Locality-sensitive hashing (LSH) is an efficient method for approximate nearest
neighbor search. The key idea of LSH is to hash data points close to each other
into the same buckets with high probability. For a dataset P ⊂ R

d and output
space X, we formally describe LSH as:

Definition 4 (Locality-Sensitive Hashing). A hash family H =
{
h : Rd → X

}

is called (R, cR, p1, p2)-sensitive if for any two points v, q ∈ R
d

• if q ∈ B(v,R) then PrH[h(q) = h(v)] ≥ p1,
• if q /∈ B(v, cR) then PrH[h(q) = h(v)] ≤ p2.

where c > 1, p1 > p2 and B(v,R) denotes the ball of radius R centered at v.
An LSH family is often combined with a universal hash function Hu =

{h : X → U} to fix the output range to U [21] (Z2n for example). However,
such Hu may introduce fake collisions if n is too small, that is, data points
with different LSH collide because of the random collision caused by universal
hashing. We emphasize in advance that the discussion on the choice of n is an
important part of this paper to achieve performance improvement.

Definition 5 ((c, r)-Approximate Near Neighbor Search Problem). Given a dis-
tance scale r > 0 and an approximation factor c > 1, build a data structure
that if B(q, r) ∩ P �= ∅ holds for a query q, return a point p′ ∈ P such that
p′ ∈ B(q, cr).

LSH can be used to solve the (c, r)-NN problem: Choose a family of
(r, cr, p1, p2)-sensitive hash functions and store each point v ∈ P in the bucket

416 S. Song et al.

h(v) in the preprocessing phase, then compare the query with points in bucket
h(q) to return a point within distance cr. The data structure can be further
used to solve the nearest neighbor problem by brute-force comparison with all
the points in bucket h(q) and returning the closest one.

Certain optimizations can be made to get better searching efficiency, includ-
ing multiple hash tables, multi-probing [42], and amplification [2].

3 Building Blocks for Exact NNS with Oblivious Transfer

Secure exact NNS problem has been widely studied in the research community
[15,40,53,57]. It requires the query to scan all points in the database and obtain
the nearest neighbor without approximation. We point out that such an exact
search algorithm is an important part of our sublinear protocol as we still need
to do a linear scan on the final candidate dataset. The exact NNS algorithm
consists of distance computation and Top 1 selection (calculate the ID of the
closest point), the latter can be further divided into comparison and multiplexer.

We optimize the Top 1 selection using oblivious transfer only. Throughout
our optimizations, we make extensive use of batching techniques of COT to
narrow bandwidth. So we first introduce a batching method used in previous
works in Sect. 3.1. Then we illustrate our batching idea in the context of multi-
plexer in Sect. 3.2. We propose our improved comparison algorithm in Sect. 3.3.
In addition, our sub-protocols can be combined with a newly popular silent OT
extension in the pre-processing model.

Table 1. Communication for
Πl

MUX

Protocol Imple. Func. Comm.

GC [37] [38] [56] Full 2λl

OT [48] 2 × GOTl y = 0 2λ + 4l

OT [47] 2 × COTl y = 0 2λ + 2l

OT [43] 4 × COTl Full 4λ + 4l

This work 2 × COT2l Full 2λ + 4l

Table 2. Communication for Πl
CMP

Protocol Comm. Rounds

GC [38,56] 2λl 2

GMW [29] ≈6λl log l + 3

OT [19](SC3) > 3λl ≈ log∗ l

OT [48](m = 4)< (λl + 14l)log l

This work(SC1)< (λl + 6l) log l

This work(SC2)< (λl + 4l) log l

3.1 Revisiting COT Batching in Previous Works

Considering the problem of multiplying two integers s and t in the ring Zl, we
parse s as s[l]||...||s[1]. As Gilboa et al. [31] first observed COT can be used to
compute the product of two values. In a high level, two parties invoke l instances
of COTl where f (xi) = xi + t · 2i-1 mod 2l is the sender’s correlation function
and s[i] is the receiver’s choice bit in the ith COTl. To further improve efficiency,
authors of [23] find that the last i bits will be cut off in the ith COTl. Therefore,
the length of ith COT can be reduced to l − i.

SecureANNS 417

Later in [44], multiplication of a |B|×d matrix A and a d-dimensional vector
B is discussed. They leverage the matrix structure as follows. Since each element
bj in B is multiplied by a column of elements, the same choice bit bj [i] will be used
in |B| COTs. However, they pack those |B| instances of COTl−i into (l−i)·|B|

128 �
instances of COT128. Recent work [47] further batches them into a single COT
of length |B| · (l − i), in which the mask of this COT can be extended using a
PRG. We call this method the same choice bit COT batching (scbCB).

3.2 Batched Multiplexer

Secure multiplexer is a widely used nonlinear tool in MPC [37,40,43], as sum-
marized in Table 1. It takes choice bit c and two l-bit values x and y as inputs,
all in secret shared form, and returns y if c = 0 or x otherwise. We represent the
functionality as z = c · x + c̄ · y.

Observation. Due to the following correlation c ⊕ c̄ = (〈c〉0 ⊕ 〈c̄〉0) ⊕ (〈c〉1 ⊕
〈c̄〉1) = 1, each party could deduce the XOR of two bits hold by the other from
the XOR of two bits hold by itself. For example, P0 can get correlation of 〈c〉1
and 〈c̄〉1 from 〈c〉1 ⊕ 〈c̄〉1 = 1 ⊕ (〈c〉0 ⊕ 〈c̄〉0). Utilizing this property, each party
could batch 2 instances of COTl into 1 instance of COT2l as the OT sender to
reduce the number of OT instances. We further explain our design in detail.

[47] rewrites c ·x = (〈c〉0 + 〈c〉1 −2〈c〉0 · 〈c〉1) · (〈x〉0 + 〈x〉1) = 〈c〉0 · 〈x〉0 + 〈c〉1 ·
(〈x〉0 − 2〈c〉0 · 〈x〉0) + 〈c〉1 · 〈x〉1 + 〈c〉0 · (〈x〉1 − 2〈c〉1 · 〈x〉1) mod 2l. Parties can
compute the two terms 〈c〉0 ·〈x〉0 and 〈c〉1 ·〈x〉1 locally and other two cross terms
with 2 instances of COTl. In particular, to calculate 〈c〉0 · (〈x〉1 − 2〈c〉1 · 〈x〉1),
COT sender P1 inputs correlation function f(v) = v + 〈x〉1 − 2〈c〉1 · 〈x〉1 mod 2l

and receiver P0 inputs choice bit 〈c〉0. Similarly, other two COTl instances are
needed when calculating 〈c̄〉0 · (〈y〉1 − 2〈c̄〉1 · 〈y〉1) and 〈c̄〉1 · (〈y〉0 − 2〈c̄〉0 · 〈c〉0)
of c̄ · y.

We take a close look at those two COTl instances in which P0 plays the role
of OT sender, namely 〈c〉1 · (〈x〉0 −2〈c〉0 · 〈x〉0) and 〈c̄〉1 · (〈x〉0 −2〈c̄〉0 · 〈x〉0). We
denote 〈x〉j − 2〈c̄〉j · 〈x〉j as Δj for simplicity. Since P0 could deduce 〈c〉1 ⊕ 〈c̄〉1
from its 〈c〉0 and 〈c̄〉0, we discuss the following two situations. If 〈c〉0 ⊕ 〈c̄〉0 = 1,
which means 〈c〉1 = 〈c̄〉1, then P0 can batch its two inputs into one instance of
COT2l with the scbCB method described in Sect. 3.1. Otherwise 〈c〉1 = 〈c̄〉1 ⊕1,
we illustrate how to construct such batched COT next and call our method
different choice bit COT batching (dcbCB).

Suppose we already have an OT2l instance, generated from random OT
extension and derandomization for example, where P0 is the sender with inputs
(r0, r1) and P1 is the receiver with choice bit 〈c〉1 as input and r〈c〉1 as out-
put. P0 parses its inputs as r0 = r0[l]||r0[r] and r1 = r1[l]||r1[r], P1 parses
its input as r〈c〉1 = r〈c〉1 [l]||r〈c〉1 [r]. Recall that the bandwidth saving of COT
comes from setting the first message to be sent as 0. So if 〈c〉1 = 0, we set
the random value of our batched COT2l equal to r0. At this time, two parties
should obtain secret-shared 0 and Δ1 from the batched COT, so we set P0’s

418 S. Song et al.

Algorithm 1. Multiplexer, Π l
MUX

Input: For b ∈ {0, 1}, Pb holds cb, c̄b, xb and yb.
Output: For b ∈ {0, 1}, Pb learns zb s.t. z = x if c = 1, else z = y.
1: P0 sets c′ = 1 − (c0 ⊕ c̄0), Δ0 = (x0 − 2c0 ∗l x0), Δ1 = (x0 − 2c̄0 ∗l x0).
2: If c′ = 0, P0 and P1 invoke an instance of COT2l using scbCB.
3: Else, P0 and P1 invoke an instance of COT2l using dcbCB, where P0 is the

sender with correlation function f(x1||x2) = ((x1 + Δ0)||(x2 − Δ1)) and P1

is the receiver with input c1 and output tmp1. P0 gets tmp0 from function
f(x1||x2) = ((−x1)||(Δ1 − x2)).

output as −r0[l]||(Δ1 − r0[r]). Else 〈c〉1 = 1, two parties should obtain secret-
shared Δ0 and 0, which means the only message P0 receive from the COT is
((r0[l] + Δ0)||(r0[r] − Δ1)) ⊕ r1. Our batched multiplexer algorithm is provided
in Algorithm 1.

3.3 Correlated Bit Triples for Comparison

Secure comparison ΠCMP, also known as millionaires’ problem [55], is another
fundamental building block of many algorithms. Naive comparison protocols
take two l-bit values x and y as inputs and output 1 {x < y} in secret shared
form. In this section, we propose two different methods for generating correlated
bit triples, which can be applied later in achieving a more efficient comparison
protocol than state-of-the-art [48]. Considering that inputs in our scenario are
also secretly shared, we use a reduction lemma from [19] to non-interactively
reduce our problem into the naive one.

We give a brief introduction to comparison protocol in [48]:

1) Two parties split their inputs into m-bit blocks xi and yi. Then they compute
equality and comparison on those blocks, denoted eqi = 1 {xi = yi} and lti =
1 {xi < yi} separately, using l/m� instances of

(
2m

1

)
-OT2.

2) Comparison of longer strings can be achieved according to the following prop-
erty first noticed in [29]: lt = lt1⊕(eq1∧ lt0), where x = x1||x0 and y = y1||y0.
In addition, two parties also need to compute eq1 ∧ eq0 to get eq on inter-
mediate nodes of the evaluation tree. [48] observes that eq1 are used twice
in bit multiplication and uses one instance of

(
8
1

)
-OT2 to generate correlated

bit triples.

Correlated bit triples are two-bit triples [4] of the form ab = c and ad = e.
We use two different kinds of OTs to optimize those triple generations for saving
bandwidth.

First, we further extend the
(
N
1

)
-OT method. [48] utilizes this correlation

to reduce one instance of
(
16
1

)
-OT2 [24] to one

(
8
1

)
-OT2 and gets an amortized

communication of λ+8 bits per triple. However, if we batch four-bit triples into
two correlated bit triples, which can be instantiated with an instance of

(
64
1

)
-OT4,

then our communication cost is 2λ + 64 · 4 bits. As a result, our amortized

SecureANNS 419

communication can be reduced to λ per triple. Although this approach obtains
optimal communication cost, the use of

(
64
1

)
-OT4 also introduces a large number

of correlation robust function calls (instantiated with re-keyed AES [23,24] for
example, more clock cycles required than fixed-key AES [5,33]), leading to a
significant increase in computation overhead [14].

Second, we expand the formulas into a0b0 + a1b1 + a0b1 + a1b0 and a0d0 +
a1d1+a0d1+a1d0. After computing local terms, the remaining cross-terms could
be divided into two groups (a0b1, a0d1) and (a1b0, a1d0). The scbCB method can
be adopted here again with 2 instances of COT2 and gives us an amortized cost
of λ + 2 bits per triple. Although the extra 2 bits are needed, this approach
replaces those re-keyed AES with only 3 calls to fixed-key AES.

Besides, our goal is to calculate eq1∧lt0 and eq1∧eq0, we find that the 2 COT
approach above can be used to do the computation directly without the help of
those bit triples. As a result, the 6 additional bits are not needed any more and
we achieve a new secure comparison algorithm SC2 with optimal computation
and communication, Table 2 shows comparison with different designs.

3.4 Distance Computation

As described in Sect. 3.1, we follow the idea of [23] and combine it with batch
COT to implement our distance computation ΠDIS. It should be noted that
[47] also proposes a method to perform matrix multiplication with non-uniform
bitwidths, which further reduces the communication overhead. However, in order
to achieve such communication optimization, it extensively utilizes ΠCMP from
[48] to implement the wrap function for overflow, introducing additional com-
putational cost and communication rounds, thus significantly increasing end-to-
end latency. Nevertheless, if parallelization can be utilized in specific scenarios
to reduce amortized latency, we consider [47] as an alternative.

4 Sublinear Approximate NNS Protocol with LSH

As two state-of-the-art privacy-preserving approximate NNS schemes that scale
to million-level size, [14] and [49] design their systems with different ideas.

The underlying plaintext ANNS algorithm of [14] is clustering, the server first
preprocesses the dataset using the k-means algorithm [41] to construct balanced
clusters. Later in the query phase, a client obliviously retrieves points from
closest clusters to form a candidate set and then performs a brute force search
in this smaller set by using two-party computation. Even if the massive overhead
of preprocessing is not considered, a single query generates more than 1GB of
communication and takes several seconds to process in a fast network for datasets
with 1 million elements. We believe that the cost of their scheme is huge due to
three main reasons. 1) Large candidate set. 120K points are chosen from dataset
SIFT (1M points), which is not satisfying. 2) Expensive retrieval method. Floram
consumes half of the bandwidth and processing time. 3) Costly 2PC overhead.

420 S. Song et al.

BFV [28] based distance computing and garbled circuit-based Top-k selection
generate a big amount of computation and communication separately.

[49] adopts a creative design to avoid oblivious comparison using LSH. They
generate the LSH data structure on a series of increasing neighbor radii Ri and
bound the probability of false positive very low, which means if two points are
hashed into the same bucket at radius Ri, then they have a high probability of
being cRi near neighbors. Therefore, they can select a point randomly from the
first non-empty candidate set to meet the requirements, instead of brute-force
comparison like trivial LSH approaches. Although this method achieves better
performance than [14] in parallel, it is still possible to improve in the following
aspects. 1) Extra leakage. Their design leaks more information than baseline
leakage which only reveals the ANN to the client. 2) Large universal hash
range. In order to reduce the accuracy loss caused by a random collision in
the universal hashing phase, the universal hash range is set quite large, leading
to the result that total processing time is dominated by private point retrieval
using DPF.

4.1 Modified Plaintext Algorithm with LSH

Our plaintext ANNS idea is inspired by [49], we modify their method to adapt
to our idea of brute-force comparison within subset and fix their leakage issue.

In order to eliminate costly oblivious comparison, [49] uses amplification to
bound the probability of false-positive in the candidate set very low, namely
(r, cr, p1, p2)-sensitive hash family H with a small p2. As a result, points hashed
into the same bucket are most likely within distance cr. Another problem is how
to set the distance scale r without knowing the exact closest distance between
the query and points in the database before utilizing the idea above. They use
a series of increasing neighbor radii in a range, obtained from the distribution
of closest distance on real datasets, to construct their data structure and choose
randomly from the first non-empty candidate set.

We design our data structure in a similar way, but add some changes accord-
ing to the following observation: in order to make the distance between every
point selected randomly from the first non-empty candidate set and the query
within cr with high probability (95% for example), [49] sets universal hashing
range Z2n very large to bound the probability of fake collisions introduced by
universal hashing, which is the main reason of false-positive. But in our design,
a smaller n will not affect the number of true positives and the newly introduced
fake collisions only increase the size of our candidate set. Therefore, we can care-
fully tune the LSH parameters to achieve a balance between less private bucket
retrieval cost determined by DPF range Z2n and more oblivious comparison
overhead caused by a larger candidate set size. Details are as follow.

Setting New Universal Hashing Range. To protect client privacy, Private
Information Retrieval (PIR) [16] is used to obtain buckets from hash tables. In
this paper, the universal hash range Z2n , also as DPF domain, has a great impact
on the performance of DPF-based two-server PIR and our plaintext LSH scheme

SecureANNS 421

allows a smaller n. On this basis, we further optimize the implementation of DPF
to reduce the number of PRGs required. We discuss this problem in Sect. 4.2 and
provide specific values with experimental results.

Bounding Capped Size for Hash Buckets. More collisions may occur with
the narrowing of the universal hashing range, resulting in different bucket sizes.
It’s a regular method to fix the bucket size to prevent leakage caused by size
information. In addition, DPF-based PIR also requires the same size for each
data block. We choose different parameters and test their performances.

Tuning Number of Tables and Probes. In practice, multiple hash tables and
probes are used in constructing the LSH data structure for better accuracy and
query time. Although amplification expands the gap between p1 and p2, it also
increases the number of tables required. We test the number of tables and probes
needed to achieve specific accuracy on different datasets through experiments.

We present our plaintext ANNS data structure and query method in Algo-
rithm2 and Algorithm 3.

Algorithm 2. Construct LSH Data Structure
Input: Database DB with N points, L LSH families Hi corresponding to radius ri,

capped size cp.
Output: L hash functions hi and hash tables Ti, query q.
1: for i ← 1 to L do
2: Sample hi from Hi randomly.
3: for j ← 1 to N do
4: Hash point vj into bucket Bhi(vj).
5: end for
6: Construct hash table Ti by capping all non-empty buckets: if bucket size |B| < cp,

add cp − |B| dummy points to the bucket; if |B| > cp, sample |B| points randomly
from the bucket.

7: Output LSH hash function hi and hash table Ti.
8: end for

Algorithm 3. Query NN from LSH Hash Tables
Input: L hash functions hi and corresponding hash tables Ti.
Output: IDs of the nearest neighbor.
1: for i ← 1 to L do
2: Compute l bucket numbers via multi-probing: (α1, ..., αl) ← multiprobe(hi, q).
3: for j ← 1 to l do
4: Retrieve bucket Bαj from Ti.
5: end for
6: Set sub candidate set CL := Bα1 ∪ ... ∪ Bαl .
7: end for
8: Set final candidate set C := C1 ∪ ... ∪ CL.
9: Output the ID of the closest point after computing the distance between q and all

points in the final candidate set.

422 S. Song et al.

4.2 Private Bucket Retrieval with DPF

The goal of our private retrieval algorithm is to extract data blocks used for
subsequent exact NNS. We have described DPF in Sect. 2, which has been used
to construct two-server private information retrieval (PIR) [16,17] in [8,9]. Now
we use it as a tool to design our private bucket retrieval (PBR) algorithm.

Fig. 2. Private NNS Protocol with LSH

In DPF-based two-server PIR, each server has an identical copy of the dataset
divided into m buckets B of equal length. Suppose a client wants to retrieve the
data bucket with index i, he generates DPF keys 〈key〉0 and 〈key〉1 for point
function fi,1 and send them to two servers. Then the servers evaluate all indexes

SecureANNS 423

Fig. 3. Visualization of our algorithm

on their own key 〈key〉b and multiply each of them with the corresponding value.
The sum of all those results is a secret share of Bi. We call the above approach
PIR with full domain DPF and illustrate it with the formula 1.

m∑

j=1

(Eval(〈key〉b, j) · Bj) =
m∑

j=1,j �=i

(〈0〉b · Bj) + 〈1〉b · Bi = 〈Bi〉b. (1)

Recent advances in function secret sharing [8,9] further reduce the commu-
nication cost of DPF to √m�(λ + 2) bits, which greatly saves bandwidth when
DPF domain is large. In addition, keyword-based DPF only calculates a part of
the indexes within the DPF domain, which has much less computation cost than
full domain DPF because the number of keywords is usually much smaller.

Compared with communication, the computation cost becomes the perfor-
mance bottleneck of DPF-based PIR. We divide it into two parts: generation of
bit array and sum of buckets. Because the retrieval algorithm aims to obtain data
points in arithmetic sharing for two-party computation later, some designs use
DPF in arithmetic sharing. In those works, they first generate arithmetic shared
bit arrays and operate addition and multiplication over some integer ring. How-
ever, take [49] as an example, DPF cost for generating the bit array takes more
than 1 s and becomes the main bottleneck. Obviously, such an efficiency imbal-
ance has greatly affected the overall performance. To tackle this problem, we
use the original XOR-based DPF to generate the bit array in Boolean shared
first, which provides the possibility of reducing computation by amortizing the
cost. The advantage of such a design is that it can greatly reduce the number
of length-doubling PRGs required for DPF evaluation by utilizing early termi-
nation [9] as an optimization, thus greatly reducing computation. Then, we can
use Boolean to Arithmetic conversion (B2A) [48] to convert the PIR output into
arithmetic shares. This part together with computation in the candidate set are
the extra costs of our amortized design.

4.3 Putting It All Together

With all those building blocks described before, we now give a high-level sum-
mary of our secure sublinear NNS protocol. Figure 3 provides a visual illustration.

First, the service provider sets the number of tables and probes correspond-
ing to certain accuracy requirements and preprocesses the dataset with Locality-

424 S. Song et al.

Sensitive Hashing based on the distribution of nearest distances. The hash func-
tions are then sent to users. Users use these hash functions to calculate corre-
sponding buckets for the query and generate DPF keys. Users return the DPF
keys, along with the secret shared query, to the cloud servers. The servers retrieve
Boolean shares of the subset with those DPF keys and perform 2PC with each
other using OT to determine the ID of the nearest data point. Finally, users
reconstruct query results after receiving shares from cloud servers, completing
the query process. We provide a description of the query procedure in Fig. 2.

4.4 Security Proofs

Theorem 1. The SecureANNS protocol is secure against semi-honest adver-
saries.

First we define the leakage collection L(P,q) = (dim, siz), where dim and siz
are formally defined as follows:

• Dimension of a point (dim). dim = |pi|, where pi ∈ P and |x| is denoted as
the length of x.

• Size of a dataset (siz). siz = |P | denotes the number of points in dataset P .

Then, we prove the security of our SecureANNS in the framework of the
simulation paradigm [12,39]. For the ease of explanation, we prove the secure
comparison protocol ΠCMP for illustration.

Theorem 2. The ΠCMP protocol is L-secure if both
(
M
1

)
-OT1 and COT2 are

semantically secure.

Proof. Let S be a simulator and A be any probability polynomial time (PPT)
adversary, we want to proof that the outputs of two games RealA(λ) and
IdeaA,S(λ) are computationally indistinguishable.

In the game RealA(λ), given inputs x and y, Server B receives n/m bits
〈Πm

CMP〉B
1 via n/m

(
M
1

)
-OT1. Then Server A and Server B gets their share of

〈Πn
CMP〉B

1 by several calls to COT2. In the game IdeaA,S(λ), S simulates inputs
as (r1, r2), runs protocol Πn

CMP and gets the result 〈s′〉. Based on the simulator
S, no probability polynomial-time (PPT) adversary can distinguish the outputs
of RealA and IdeaA,S because of the security guarantee of

(
M
1

)
-OT1 and COT2.

In addition, since inputs of Server A to n/m
(
M
1

)
-OT1 are masked by random

values, intermediate results in Πn
CMP are obscured and indistinguishable to A.

To sum up, A cannot distinguish views in RealA(λ) and IdeaA,S(λ). Namely,

|Pr[RealA(λ) = 1] − Pr[IdeaA,S(λ) = 1]| ≤ negl(λ) (2)

Similarly, ΠMUX, ΠDIS, ΠPBR can be proved secure under semi-honest (non-
colluding) adversaries.

Composition Theorem [12]. Given a protocol Π consists of some sub-
protocols, if all the sub-protocols are secure and all the intermediate results
are random or pseudorandom, then protocol Π is secure.

SecureANNS 425

Finally, we give the proof of Theorem1 as follow: based on Theorem 2, we
get the conclusion that each sub-protocol in the SecureANNS protocol is secure.
Simultaneously, the security of our SecureANNS protocol follows directly accord-
ing to the Composition Theorem.

5 Evaluations

5.1 Experiment Setup

We implement SecureANNS and perform experiments on several datasets. Accu-
racy tests of plaintext NNS algorithm is written in GO and secure computation
algorithms are written in C and C++ based on open-source libraries [13,22]. We
deploy cloud servers with two Openbayes instances (2.2 GHz, 30 cores, and 50
GB of RAM each) and simulate the client with a laptop device (2.6 GHz, 6 cores
and 32 GB of RAM). Network latency between cloud servers is 0.05 ms.

Fig. 4. Accuracy

Fig. 5. Latency

426 S. Song et al.

Three NNS datasets are selected for our evaluation. SIFT is an image descrip-
tor dataset (n = 1000000, d = 128). GIST is a dataset of features representing
the global spatial information of images (n = 1000000, d = 960). GloVe is a
dataset of vector representation for words (n = 1183514, d = 100). We reduce
the dimensionality of dataset Gist to 128 and quantize each element of the three
datasets to an 8-bit unsigned integer representation.

5.2 Performance Results

Accuracy. Accuracy is defined as what fraction of ANNs found are within c-
times to the true closest distance. First, we perform tests with different capped
sizes, and Fig. 4 shows the results on SIFT. It can be observed that different
capped sizes only lead to minor differences in accuracy. Therefore, when aiming
for a 95% accuracy, increasing this value only provides a limited improvement,
but leads to larger data buckets, which further increases the performance bot-
tleneck, namely retrieval overhead. Hence, we set the capped size to 1. On this
basis, Fig. 4 shows that for all three datasets, 95% accuracy can be achieved with
less than 10 tables and 7 probes.

Table 3. Comparison with SOTAs

Preprocessing OT Phase Distance Top1 Retrieval Query Time Multi Cores Dataset Leakage

[14] 12.6 s 484MB 0.35 s 156 MB 2.21 s 56.7 MB 1.96 s 645 MB 3.85 s 1.06GB 8.06 s 1.77GB 1.55 s (5.2 ↑) No

[49] Almost None None None None 28.2 s 1.5 MB 28.2 s 1.5 MB 1.1 s (25.6 ↑) Yes

This work Almost None None 0.02 s 3.4 MB 0.05 s 2.7KB 1.95 s 1.16 MB 2.02 s 4.56 MB 0.71 s (2.85 ↑) No

Performance. We show the latency of SecureANNS in Fig. 5. It can be observed
that the time cost in 1 thread is linearly related to the number of tables and
probes. The main reason is that, although the computational efficiency of PBR
has been improved greatly, the performance bottleneck still lies in DPF and
XOR operations, while the time cost of the OT phase is minimal. This aligns
with our expectation of reducing PBR time by introducing secure computation.
The time cost is similar for SIFT and GIST (about 2 s for 95% accuracy with n
= 25, 10 tables, and 7 probes), while GloVe exhibits slightly larger latency due
to a larger dataset size.
Multi-thread. Our parallel optimization primarily aims to reduce the time cost
of PBR, while the OT phase is still computed using a single thread. Only limited
improvement (2.85 times) has been achieved due to the large amount of XOR
calculation in our multi-thread setting. We believe that resource contention, such
as I/O, is one of the reasons why further improvement is not achievable.

5.3 Comparison with SOTA

We report the results of our comparison with two state-of-the-art in Table 3.

SecureANNS 427

Comparison with [14]. SecureANNS is 4 and 2.18 times faster in single-thread
and multi-thread respectively, even without considering preprocessing and OT
precomputation. Our modified LSH algorithm is more efficient compared to the
clustering method, and the subset size for 2PC computation is much smaller. As
a result, the communication cost between computation servers is significantly
lower than [14]. Therefore, in application scenarios where slow networks need to
be considered, the impact on [14] will be much greater than ours.

Comparison with [49]. SecureANNS greatly reduces the number of AES in
DPF, resulting in 14 times faster in a single-threaded environment. Specifically,
[49] sets n = 35 which consumes nearly 225 AES for each table. On the other
hand, by combining early termination with n = 25, we only need to compute 218

AES. Additionally, our protocol avoids the leakage issue that occurred in [49].

Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China (Grant No. 62122092, No. 62032005).

References

1. Addanki, S., Garbe, K., Jaffe, E., Ostrovsky, R., Polychroniadou, A.: Prio+: pri-
vacy preserving aggregate statistics via Boolean shares. In: Galdi, C., Jarecki, S.
(eds.) SCN 2022. LNCS, vol. 13409, pp. 516–539. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-14791-3 23

2. Andoni, A., Indyk, P., Razenshteyn, I.: Approximate nearest neighbor search in
high dimensions. In: Proceedings of the International Congress of Mathematicians:
Rio de Janeiro 2018, pp. 3287–3318. World Scientific (2018)

3. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, pp. 535–548 (2013)

4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

5. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy, pp.
478–492. IEEE (2013)

6. Blakley, G.R.: Safeguarding cryptographic keys. In: International Workshop on
Managing Requirements Knowledge, p. 313. IEEE Computer Society (1979)

7. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Lightweight tech-
niques for private heavy hitters. In: 2021 IEEE Symposium on Security and Privacy
(SP), pp. 762–776. IEEE (2021)

8. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 12

9. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1292–1303 (2016)

10. Brassard, G., Crepeau, C., Robert, J.-M.: All-or-nothing disclosure of secrets. In:
Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Hei-
delberg (1987). https://doi.org/10.1007/3-540-47721-7 17

https://doi.org/10.1007/978-3-031-14791-3_23
https://doi.org/10.1007/978-3-031-14791-3_23
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/3-540-47721-7_17

428 S. Song et al.

11. Cai, R., Zhang, C., Zhang, L., Ma, W.Y.: Scalable music recommendation by
search. In: Proceedings of the 15th ACM International Conference on Multime-
dia, pp. 1065–1074 (2007)

12. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13, 143–202 (2000)

13. Chandran, N., Gupta, D., Rastogi, A., Sharma, R., Tripathi, S.: EZPC: pro-
grammable and efficient secure two-party computation for machine learning. In:
2019 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 496–
511. IEEE (2019)

14. Chen, H., Chillotti, I., Dong, Y., Poburinnaya, O., Razenshteyn, I., Riazi, M.S.:
{SANNS}: scaling up secure approximate {k-Nearest} neighbors search. In: 29th
USENIX Security Symposium (USENIX Security 2020), pp. 2111–2128 (2020)

15. Chen, K., Liu, L.: Privacy preserving data classification with rotation perturbation.
In: Fifth IEEE International Conference on Data Mining (ICDM 2005), pp. 4-pp.
IEEE (2005)

16. Chor, B., Gilboa, N., Naor, M.: Private Information Retrieval by Keywords. Cite-
seer (1997)

17. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM (JACM) 45(6), 965–981 (1998)

18. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous messaging
system handling millions of users. In: 2015 IEEE Symposium on Security and
Privacy, pp. 321–338. IEEE (2015)

19. Couteau, G.: New protocols for secure equality test and comparison. In: Preneel,
B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 303–320. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 16

20. Couteau, G., Rindal, P., Raghuraman, S.: Silver: silent VOLE and oblivious trans-
fer from hardness of decoding structured LDPC codes. In: Malkin, T., Peikert,
C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 502–534. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84252-9 17

21. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, pp. 253–262 (2004)

22. Dauterman, E., Feng, E., Luo, E., Popa, R.A., Stoica, I.: Dory: an encrypted search
system with distributed trust. In: Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation, pp. 1101–1119 (2020)

23. Demmler, D., Schneider, T., Zohner, M.: ABY-a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

24. Dessouky, G., Koushanfar, F., Sadeghi, A.R., Schneider, T., Zeitouni, S., Zohner,
M.: Pushing the communication barrier in secure computation using lookup tables.
Cryptology ePrint Archive (2018)

25. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 523–535 (2017)

26. Edemekong, P.F., Annamaraju, P., Haydel, M.J.: Health insurance portability and
accountability act (2018)

27. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

28. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive (2012)

https://doi.org/10.1007/978-3-319-93387-0_16
https://doi.org/10.1007/978-3-030-84252-9_17

SecureANNS 429

29. Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer
comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
330–342. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-
8 22

30. Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-
based network intrusion detection: techniques, systems and challenges. Comput.
Secur. 28(1–2), 18–28 (2009)

31. Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48405-1 8

32. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 35

33. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation
from fixed-key block ciphers. In: 2020 IEEE Symposium on Security and Privacy
(SP), pp. 825–841. IEEE (2020)

34. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, pp. 604–613 (1998)

35. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

36. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short
secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 4

37. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10433-6 1

38. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

39. Lindell, Y.: How to simulate it – a tutorial on the simulation proof technique. In:
Lindell, Y. (ed.) Tutorials on the Foundations of Cryptography. ISC, pp. 277–346.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57048-8 6

40. Liu, L., et al.: Toward highly secure yet efficient KNN classification scheme on
outsourced cloud data. IEEE Internet Things J. 6(6), 9841–9852 (2019)

41. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

42. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: effi-
cient indexing for high-dimensional similarity search. In: Proceedings of the 33rd
International Conference on Very Large Data Bases, pp. 950–961 (2007)

43. Mohassel, P., Rosulek, M., Trieu, N.: Practical privacy-preserving k-means clus-
tering. Cryptology ePrint Archive (2019)

44. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19–38. IEEE (2017)

45. Qi, Y., Atallah, M.J.: Efficient privacy-preserving k-nearest neighbor search. In:
2008 The 28th International Conference on Distributed Computing Systems, pp.
311–319. IEEE (2008)

https://doi.org/10.1007/978-3-540-71677-8_22
https://doi.org/10.1007/978-3-540-71677-8_22
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-642-10433-6_1
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-319-57048-8_6

430 S. Song et al.

46. Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive (2005)

47. Rathee, D., et al.: SIRNN: a math library for secure RNN inference. In: 2021 IEEE
Symposium on Security and Privacy (SP), pp. 1003–1020. IEEE (2021)

48. Rathee, D., et al.: CrypTFlow2: practical 2-party secure inference. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security,
pp. 325–342 (2020)

49. Servan-Schreiber, S., Langowski, S., Devadas, S.: Private approximate nearest
neighbor search with sublinear communication. In: 2022 IEEE Symposium on Secu-
rity and Privacy (SP), pp. 911–929. IEEE (2022)

50. Shaul, H., Feldman, D., Rus, D.: Secure k-ish nearest neighbors classifier. arXiv
preprint arXiv:1801.07301 (2018)

51. Su, M.Y.: Using clustering to improve the KNN-based classifiers for online anomaly
network traffic identification. J. Netw. Comput. Appl. 34(2), 722–730 (2011)

52. Voigt, P., Von dem Bussche, A.: The EU General Data Protection Regulation
(GDPR). A Practical Guide, 1st edn., vol. 10, no. 3152676, p. 10–5555 Springer,
Cham (2017)

53. Wong, W.K., Cheung, D.W., Kao, B., Mamoulis, N.: Secure KNN computation
on encrypted databases. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, pp. 139–152 (2009)

54. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for cor-
related OT with small communication. In: Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1607–1626 (2020)

55. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science (SFCS 1986), pp. 162–167. IEEE (1986)

56. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

57. Zhu, Y., Xu, R., Takagi, T.: Secure k-NN computation on encrypted cloud data
without sharing key with query users. In: Proceedings of the 2013 International
Workshop on Security in Cloud Computing, pp. 55–60 (2013)

58. Zuber, M., Sirdey, R.: Efficient homomorphic evaluation of k-NN classifiers. Proc.
Priv. Enhancing Technol. 2021(2), 111–129 (2021)

http://arxiv.org/abs/1801.07301
https://doi.org/10.1007/978-3-662-46803-6_8

ConGISATA: A Framework
for Continuous Gamified Information

Security Awareness Training
and Assessment

Ofir Cohen(B) , Ron Bitton , Asaf Shabtai , and Rami Puzis

Software and Information Systems Engineering and Cyber@BGU,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

{cofir,ronbit}@post.bgu.ac.il, {shabtaia,puzis}@bgu.ac.il

Abstract. The incidence of cybersecurity attacks utilizing social engi-
neering techniques has increased. Such attacks exploit the fact that in
every secure system, there is at least one individual with the means to
access sensitive information. Since it is easier to deceive a person than
it is to bypass the defense mechanisms in place, these types of attacks
have gained popularity. This situation is exacerbated by the fact that
people are more likely to take risks in their passive form, i.e., risks that
arise due to the failure to perform an action. Passive risk has been iden-
tified as a significant threat to cybersecurity. To address these threats,
there is a need to strengthen individuals’ information security awareness
(ISA). Therefore, we developed ConGISATA - a continuous gamified ISA
training and assessment framework based on embedded mobile sensors;
a taxonomy for evaluating mobile users’ security awareness served as
the basis for the sensors’ design. ConGISATA’s continuous and gradual
training process enables users to learn from their real-life mistakes and
adapt their behavior accordingly. ConGISATA aims to transform passive
risk situations (as perceived by an individual) into active risk situations,
as people tend to underestimate the potential impact of passive risks.
Our evaluation of the proposed framework demonstrates its ability to
improve individuals’ ISA, as assessed by the sensors and in simulations
of common attack vectors.

Keywords: Information Security Awareness · Social Engineering ·
Human Factors · Gamification · Cybersecurity Training · Mobile
Devices

1 Introduction

Defense mechanisms are deployed to prevent attackers from performing malicious
activities such as hacking into networks, accessing sensitive information, and
compromising computerized systems. Social engineering (SE) refers to techniques

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 431–451, 2024.
https://doi.org/10.1007/978-3-031-51479-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_22&domain=pdf
http://orcid.org/0009-0009-2493-6827
http://orcid.org/0000-0001-8942-9783
http://orcid.org/0000-0003-0630-4059
http://orcid.org/0000-0002-7229-3899
https://doi.org/10.1007/978-3-031-51479-1_22

432 O. Cohen et al.

aimed at manipulating people into performing actions that help an attacker
bypass state-of-the-art defense mechanisms [1]. The ease with which the human
factor can be exploited has resulted in numerous cyberattacks caused by human
error [2,20]. For mobile users, SE is one of the main attack vectors [24], and given
the prevalence of smartphones today, SE poses a significant threat to society.

Approaches for mitigating the risk posed by cybersecurity attacks utilizing
SE techniques consist of two essential components: assessing information security
awareness (ISA) and improving it.

Various methods can be used to assess ISA, the most common being ques-
tionnaires [13,14,23]. However, questionnaires require users’ active involvement
and collaboration; moreover, they are subjective and prone to bias, as they rely
on self-reported behavior [25]. Despite their widespread use, questionnaires have
been shown to be an unreliable measurement tool for ISA [11].

Challenges involving simulations of common attacks are also used to measure
ISA. The primary advantage of this type of assessment is that it measures users’
ability to handle real-life attack scenarios. However, challenges also have a major
limitation: they do not consider users’ context (e.g., opening an email from home
versus opening an email at work). Since human behavior often depends on the
context, these methods are inherently less accurate [26].

To address the limitations of existing ISA assessment methods, Bitton et
al. [8,11] proposed a taxonomy for mobile users’ security awareness that defines
a set of measurable criteria organized by technological focus areas. These cri-
teria are measured by a mobile agent that collects data from sensors on the
users’ devices. The sensors are mapped to the taxonomy’s criteria, and a final
passive ISA score is produced by aggregating their outputs. This ISA score can
be changed dynamically based on continuous sensor readings. In this research,
we use this sensor-based approach, along with challenges associated with three
common attack vectors, to assess ISA.

Typically, ISA is improved by participating in security awareness programs
(workshops) or performing challenges with feedback. However, the previously
mentioned limitation also applies when challenges are used to improve ISA. In
many cases, efforts aimed at improving ISA evoke fear, which has been shown
to be counterproductive at times; such efforts also result in ‘security fatigue,’ in
which people tire of being presented with security procedures and processes [3].

Gamification is a technique often used to overcome the limitations described
above. Deterding et al. [4] defined gamification as “the use of game design ele-
ments in non-game contexts”, and Hamari et al. [5] reviewed many gamification
studies and concluded that this method works well in various fields, particularly
for improving learning and training sessions. As a result, the use of gamifica-
tion to increase ISA has grown, leading to the development of various gamified
solutions for this purpose [16–18].

Nevertheless, standard gamification alone is insufficient. A literature review
performed by Böckle et al. [27] highlighted the problem of the “one size fits
all” approach, which may result in declining engagement and loss of interest in
overly simple challenges. To overcome this, the authors suggested using adaptive

ConGISATA: A Framework for Continuous Gamified ISA 433

gamification that dynamically re-engages users. Our approach for improving ISA
utilizes adaptive gamification through a personalized feedback loop tailored to
the outputs of the sensors.

A behavioral aspect that was not considered in previously proposed gami-
fied solutions is passive/active risk-taking. Studies have classified risks as either
active or passive risks [9,10]. Active risk describes actions people take that put
them at risk, while passive risk is “risk brought on or magnified by inaction
or avoidance”. One example from the cybersecurity domain is the risk of hav-
ing malware on your mobile device. In its active form, this risk derives from
the possibility of unknowingly downloading a malicious file, whereas in its pas-
sive form, it stems from failing to install anti-malware software on the device in
advance. These studies showed that passive risks are perceived as being less risky
than equivalent active risks. Therefore, our framework aims to reduce passive
risk-taking (PRT), by transforming passive risks into active risks. By deducting
game points from users who fail in a passive-risk-related scenario, we impose
an immediate punishment on passive behaviors. By doing so, we can help users
gradually overcome the human tendency to overlook passive risks.

In this research, we propose ConGISATA, a continuous gamified ISA
training and assessment framework, which addresses the problems of existing
gamification-based methods described above. Our approach is implemented by
a mobile agent (an app) that collects data from the set of sensors used in the
taxonomy and assessment method of Bitton et al. [8,11]. The app has a graphical
user interface with the key components of a gamified system: a detailed home
screen, a leaderboard, and a learning screen. The learning screen is composed
of sections, one for each criterion in the taxonomy. For each criterion, there is a
score and a link to an article or blog post that should help users improve their
behavior with regard to the criterion. The scores on this screen are updated
daily according to the sensors’ readings and highlight the areas in which the
user needs to improve. Challenges are also presented throughout the learning
process to help assess users’ ISA as they progress.

To evaluate the proposed framework, we performed an extensive experiment
involving 70 subjects, each of whom installed our mobile app on their smart-
phone and used ConGISATA for a period of five weeks. We compared our method
with a baseline method inspired by methods commonly used in academia and
industry today. In the baseline method, users were provided personalized arti-
cles/blog posts based on their performance in the challenges, without taking the
sensor data into account. Our results show that users who were trained using
the ConGISATA framework had greater improvement than those trained using
the baseline method for almost all criteria of the ISA taxonomy. In addition, a
significant correlation between the use of our app and users’ ISA improvement
was observed. Importantly, by using simulations of three common attack vectors,
we found that ConGISATA helps users deal with real-life SE scenarios.

Our contributions can be summarized as follows: (1) We propose a novel
framework for improving and assessing mobile users’ ISA. (2) To the best of our
knowledge, we are the first to take continuous sensor readings and show their

434 O. Cohen et al.

impact on improving ISA in an adaptive gamification setting. (3) We empirically
demonstrate the importance of considering passive risk-taking in the ISA training
domain.

2 Background

Active Versus Passive Risk-Taking: Keinan et al. [9] established passive risk as
a unique and separate construct. The authors provide the following explana-
tion:“People are often held less responsible for their omissions than for their
commissions. This lack of perceived responsibility may lower the motivation to
act. People are usually less likely to do something if they believe they will not
be held accountable for failing to do it. However, risk aversion often increases
with personal accountability, since accountability stimulates self-critical forms
of thought and increases awareness of one’s own judgment processes. It seems
plausible that once people feel accountable they process information better, realize
that they are in a risky situation, and be motivated to act to avoid risk.”

A follow-up paper [10] showed that a passive risk is judged as less risky
than a completely equivalent active risk. For example, the following scenario
was presented in both active and passive forms: actively parking your car in a
restricted zone or not moving your car once you realize it is parked in a restricted
zone. When asked to rate scenarios by risk level, in its active form this scenario
was rated as riskier than in its passive form.

The authors suggest that “this inferior ability to devote attention to the
absence of events leads to passive risks being less available to our conscious-
ness, to be underestimated, and thus to be perceived as less risky. We need to be
motivated to devote attention to passive risks.” The authors add the following
recommendation: “The findings of the current research suggest stressing people’s
personal responsibility for complying with recommended preventive measures may
raise risk perception and increase preventive action.”

Finally, Arend et al. [19] examined how self-reported passive risk behavior
predicts cybersecurity behavioral intentions and their relation to actual cyber-
security behavior. This series of three studies showed that passive risk had a
notable impact on cybersecurity intentions, meaning that high passive risk scores
were associated with low adherence to safe cybersecurity behavior. It was also
shown that behavioral choices related to cybersecurity are highly correlated with
a tendency to take passive risks. Overall, these studies established that passive
risk tendencies are an important factor in the context of cyber behavior.

3 Related Work

Every gamified approach for mitigating the risk posed by SE attacks consists of
two essential components: measuring ISA and improving it.

Questionnaires are the most common means of measuring ISA, with the
vast majority of prior studies on this topic relying on them [6,12,15,29–32].
Despite their widespread use, they tend to be an unreliable measurement tool

ConGISATA: A Framework for Continuous Gamified ISA 435

for behavior because of their subjective nature. Additionally, they are prone to
bias, as they rely solely on self-reported behavior [25].

A more advanced method of evaluating ISA is to use attack simulations
(also referred to as challenges). Despite their inability to consider users’ context,
the employment of challenges to assess ISA during security awareness train-
ing is extremely valuable, as it provides important insights into authentic user
behavior. Their application in the literature, however, has been limited [22].
Our framework utilizes three different types of challenges: phishing, permission
attacks, and impersonation. When using our framework, users do not know when
or how they are presented with these challenges; this ensures that the challenges
are as natural and objective as possible. Additionally, the framework collects
data from sensors in users’ everyday environments to examine aspects of their
ISA in real-life settings, outside of controlled laboratory conditions.

When it comes to improving ISA using gamification, two core elements dis-
tinguish current gamified solutions: training duration and personalization of the
content. Most of the gamified training mentioned in the literature was performed
for a single brief session and utilized a physical board/card game, which is a dif-
ficult requirement for long-term training (over a period of weeks) [12,15]. We
only identified one paper with a longer training process – that of Alahmari et
al., where the training took place for two weeks [28]. Our framework is designed
to achieve long-term behavioral change through continuous learning over several
weeks or months, without requiring physical attendance at training sessions.

Böckle et al. [27] highlighted the problem of the “one size fits all” approach
in gamified solutions for improving ISA and suggested the use of personalization.
Heid et al. [33] created a gamified prototype that poses questions related to secu-
rity and privacy issues associated with apps installed on the user’s smartphone.
A quiz engine providing multiple choice questions regarding known vulnerabil-
ities and app properties was implemented using Appicaptor, a mobile applica-
tion analysis platform that performs static and dynamic app tests. The question
engine automatically generates questions from Appicaptor’s database content,
which are personalized for the users based on the apps installed on their smart-
phones. However, this work is limited, because only one sensor served as a source
of information, the proposed method was only tested within the research group,
and it relies on an external data source that is not publicly available, preventing
its reproducibility.

Our literature review failed to identify any other papers utilizing personal-
ization besides the work of Heid et al. mentioned above. Our framework gener-
ates scores for each user based on their weaknesses, as measured using multiple
sensors. We evaluated the framework’s impact in a comprehensive experiment
spanning several weeks. All the materials used are publicly available and pre-
sented in the appendix. Furthermore, our gamified solution is the only method
that demonstrates how passive risks can be transformed into active ones, which
is a key contribution of our research.

A summary of the related work is provided in Table 1.

436 O. Cohen et al.

Table 1. Summary of related work

Paper Platform

P
e
rs
o
n
a
li
z
a
ti
o
n

C
o
n
si
d
e
rs

P
R
T

C
o
n
ti
n
u
o
u
s

L
e
a
rn

in
g

Q
u
e
st
io
n
n
a
ir
e
s

A
tt
a
ck

S
im

u
la
ti
o
n
s

S
e
n
so

rs

Newbould et al. [12], 2009 Board game ✗ ✗ ✗ � ✗ ✗
Denning et al. [15], 2013 Tabletop card game ✗ ✗ ✗ � ✗ ✗
Gjertsen et al. [6], 2017 Exercises ✗ ✗ ✗ � ✗ ✗
Scholefield et al. [30], 2019 Mobile (Android) game ✗ ✗ ✗ � ✗ ✗
Dincelli et al. [29], 2020 Interactive storytelling ✗ ✗ ✗ � ✗ ✗
Heid et al. [33], 2020 Multiple choice quizzes � ✗ � ✗ ✗ �
Omar et al. [31], 2021 Educational quizzes ✗ ✗ ✗ � ✗ ✗
Wu et al. [32], 2021 Multiple choice quizzes ✗ ✗ ✗ � ✗ ✗
Alahmari et al. [28], 2022 Mobile app ✗ ✗ � � ✗ ✗
Canham et al. [22], 2022 Phishing simulations ✗ ✗ ✗ � � ✗
Our method, 2023 Mobile (Android) game � � � ✗ � �

4 Proposed Method

In this section, we present ConGISATA. First we provide a high-level descrip-
tion of the framework (illustrated in Fig. 1a), and then we elaborate on each
component.

Fig. 1. The ConGISATA security awareness training and assessment framework

In the framework, the following steps are performed in a process aimed at
raising ISA:

Calibration Period: For each user, the game starts with a calibration period in
which the user’s initial security awareness score is assessed for each criterion in
the taxonomy. This assessment does not require the user to interact with the
game, as it is performed using the mobile sensors and challenges described in
Sect. 4.1. Following this evaluation, the initial overall ISA score is presented to
the user on the game’s home screen, and a score for each criterion is presented
on the learning screen.

ConGISATA: A Framework for Continuous Gamified ISA 437

Training : In this step, the user starts to interact with the framework in an
attempt to gradually improve their behavior and raise their ISA scores. Sensor
measurement and challenges still occur in the background, resulting in daily
changes to the user’s ISA scores, which are presented to them. Training is per-
formed cyclically, through a daily feedback loop, as follows:

Sensing - Each day, the different aspects of the users’ behavior are measured by
obtaining the sensor values.

Updating Scores - The application’s learning screen is always accessible and
displays the users’ scores for each criterion in the ISA taxonomy, along with
their overall ISA score. At midnight, these scores are updated to reflect the
previous day’s performance. The learning screen also presents the score delta
for each criterion, which is the change in the score between two consecutive
days. The score deltas enable the user to identify specific behavioral weaknesses
(criteria with a negative score delta) and take corrective action.

Articles and Blog Posts - When the user is faced with a low score or a negative
score delta for a criterion, they can obtain additional information about that
specific focus area via the learning screen, which provides a link to an external,
predetermined, and comprehensive article or blog post (for convenience, we refer
to them as articles in the rest of the paper) on that subject.

Behavior Change - Upon reading the articles, the user will modify their behavior
accordingly, improving their score over time, and climb the leaderboard.

Figure 1b illustrates the daily feedback loop of passive ISA.

4.1 Assessing Mobile Users’ ISA

To generate an overall ISA score for each user, we measure two aspects of their
behavior: active and passive. The active side refers to the user’s ability to handle
situations in which immediate action is required, as when facing an attack. Our
framework measures this aspect using SE challenges. The passive side refers
to ongoing elements of the user’s behavior that do not result in an immediate
punishment if not performed, such as using a lock screen or deleting unused apps
to avoid malware. In our framework, we adapt the method proposed by Bitton et
al. [8,11] to generate a passive ISA score. Instead, we generate an overall ISA
score, which reflects both aspects, active and passive, as follows:

Assessing ISA Using Attack Simulations (Challenges): Each user is regularly
presented with challenges derived from three attack vectors. These challenges
assess the user’s ability to handle real-life attack scenarios and ensure that this
capability is also reflected in their overall ISA score. The challenges are presented
in a randomized manner (in terms of both time and order) throughout the train-
ing process, to prevent detectable patterns. The active score denotes the user’s
performance on SE challenges and is based on a scale of zero to 100. The score is
derived from a moving window of the last X challenges, where X is determined
based on the training duration. Each challenge is individually scored between

438 O. Cohen et al.

zero, assigned for a failure to make the correct decision, and 100/X, assigned
for successful decision making. For example, for X = 5, each challenge can con-
tribute at most 100/5 = 20 points to the overall active score. Some challenges
may involve two decision points, in which case the score assigned is (100/X)/2 if
the user makes the correct decision at just one of the decision points. For exam-
ple, a phishing challenge may include two decision points; the first is clicking
on the unknown link to enter the phishing website, and the second is providing
sensitive details such as login credentials. In such a case, if a user only clicks on
the unknown link but does not provide any details, (100/5)/2 = 10 points will
be added to the overall active score.

Assessing ISA Using Sensor Measurements: Bitton et al. [8] developed a taxon-
omy to measure mobile users’ ISA that classifies criteria by technological focus
areas and psychological dimensions. Each focus area is further divided into sub-
focus areas, and each of these sub-focus areas encompasses several security topics.
For instance, the “Applications” focus area is bifurcated into “Application Instal-
lation” and “Application Handling” sub-focus areas, with “Untrusted Sources”
as a security topic under “Application Installation”. The intersection of this
security topic with the “Confronting Behavior” psychological dimension leads to
a specific criterion: “Installs applications solely from trusted sources”.

Bitton et al. [11] also proposed a framework for evaluating ISA, which
employs a mobile agent with embedded sensors, a network traffic monitor, and
cybersecurity challenges. Their framework, which is based on the ISA taxon-
omy, enables the computation of ISA scores at any given point. The study
found that there was a difference between users’ self-reported behavior and their
actual behavior, highlighting the significance of monitoring real-life user behavior
instead of relying solely on questionnaires.

In order to gain a deeper understanding of users’ behavior in real-life scenar-
ios, we included sensors based on the ISA taxonomy in our mobile application.
These sensors periodically perform a thorough scan of users’ devices and actions.
By analyzing the resulting data, we can compute a user’s passive ISA score and
an individual score for each criterion, and identify their potential weaknesses.
This knowledge allows us to provide the user with personalized feedback about
their ISA scores and offer guidance on how to improve their security practices.

In the paper, we describe ConGISATA’s use in training a group of users,
which we believe is the more common scenario. The framework can be easily
adapted to train individuals, however we do not discuss that in the paper. The
process of computing the passive score begins with a calibration period, during
which each user’s initial passive ISA score is obtained, without any prior training.
After this period, the mean and standard deviation of the entire user group are
calculated for each criterion in the taxonomy. During training, a new z-score
(standard score) is computed daily for each user for each criterion, using the
mean and standard deviation derived in the calibration period. The new z-scores
are then averaged for each of the taxonomy’s focus areas and are subsequently
averaged again to obtain a final passive score for each user. Since the z-score
is not meaningful to users, the cumulative probability function of the normal
distribution is used to transform the z-score to a 0–100 scale.

ConGISATA: A Framework for Continuous Gamified ISA 439

Computing the Overall Score: The overall ISA score is the average of the active
and passive scores.

4.2 Gamification

To increase user engagement and optimize the effectiveness of training, we have
incorporated essential gamification elements into our framework. Table 2 lists
some of these key elements, along with their rationale, and explains how they
have been implemented in ConGISATA.

Table 2. ConGISATA’s gamification elements

Element Explanation

Continuous

Learning

Dunlosky et al. [21] provided a comprehensive review of study techniques and

assessed their effectiveness. One of the techniques covered is continuous learning,

which was termed distributed practice and defined as “implementing a schedule of

practice that spreads out study activities over time”. Based on prior research,

distributed practice was one of just two techniques to be rated by the authors as

having high utility. It was assessed that distributed practice “works across students of

different ages, with a wide variety of materials, on the majority of standard laboratory

measures, and over long delays”. Focusing on the cybersecurity domain, the findings

of Kumaraguru et al. [7] align with those of Dunlosky et al., demonstrating the

benefits of extended security training over condensed single sessions. Based on these

findings, we designed our game as a continuous learning process, unlike the common

approach found in the literature of a single-session game

Considers PRT Following the research presented in Sect. 2, we implemented a penalty mechanism to

discourage PRT, whereby users that fail to take preventive measures will face

penalties, resulting in point deductions. This approach transforms PRT into active

risk-taking, where users are held accountable for their inaction shortly after it occurs,

regardless of whether or not any damage was incurred. For instance, if our sensors

detect that certain users have not installed anti-malware software, they will have

points deducted, even if no malware has exploited this vulnerability on their devices.

Furthermore, users will continue to face daily penalties until they address and fix the

issue by installing anti-malware software, further discouraging avoidance behavior

Levels/Progression It is crucial to provide players with a clear indication that they are acquiring

knowledge and advancing through the training process. We achieve this through a

ranking system comprised of two elements: points and levels. Players earn points

(reflected in their ISA score) by exhibiting good security practices, and as they

accumulate more points, they move up to higher levels. Our framework assigns users

to one of three levels based on their ISA score: “beginner”, “intermediate”, and

“pro”. These levels do not change the difficulty of training and are only used to give

the users the feeling that they are advancing

Competition Competition is a fundamental aspect of nearly every game, in contexts including

security. Healthy competition can significantly enhance engagement and enjoyment

among players and encourage individuals to surpass their previous performance. Our

game incorporates competition through (1) a leaderboard that ranks players by

points, providing insight into their standing relative to others; and (2) the points and

levels mentioned above, promoting competition among players

Adaptive

Gamification

Through

Personalized Feed-

back/Guidance

Immediate personalized feedback is important to prevent player confusion and

maintain their engagement in the game. Further guidance helps players progress and

improve as the game continues. Immediate feedback in our game is in the form of the

learning screen. Each event that causes points to be earned or deducted, such as a

sensor discovering poor application handling behavior, is presented on the learning

screen on the day on which the event occurred. Additional guidance is possible

through a dedicated article on the event’s topic. In addition, each user’s scores

appear on their learning screen, highlighting the areas requiring improvement

Conciseness The game’s exercises should be brief and not take much of the players’ time. In our

game, the feedback is succinct and highlights the topics pertinent to each player.

This approach reduces the time commitment for players and avoids redundant review

of familiar material

440 O. Cohen et al.

5 Evaluation

To evaluate the proposed framework, we performed a long-term experiment
involving 70 undergraduate and graduate students who use their smartphones
regularly. The subjects’ ages ranged from 21 to 31, with a mean age of 25 and
a median age of 26. The experiment involved the collection of sensitive personal
information from subjects for a long period of time, including their browsing
patterns. We took measures to preserve the subjects’ privacy and reduce any
privacy risks associated with participating in the experiment. The experiment
was approved by the Institutional Review Board (IRB), provided that: (1) The
subjects participated in the experiment, freely, at their own will. The subjects
received course credit in exchange for their participation. The subjects were fully
aware of the type of data that would be collected and were allowed to withdraw
from the study at any time. (2) The data was encrypted before being transmitted
between the server and the mobile app. (3) The server was within the university
domain, with restricted access and organizational defenses. (4) When possible,
the sensitive data itself was not transmitted to the server (such as SMS con-
tents), only the meta-data was (such as the number of SMS messages containing
URLs). During the experiment, we measured the subjects’ behavior while oper-
ating their smartphones and exposed them to three types of SE attacks in 15
attack simulations. We then compared each subject’s initial and final ISA scores,
measuring the improvement achieved. We also examined how the participants’
performance in responding to the challenges evolved during the training process.
This section provides a detailed description of the evaluation process and results.

5.1 Mobile Sensors

To evaluate the passive aspects of subjects’ behavior, we implemented multiple
sensors using Android APIs and used them to assess various criteria from the
taxonomy of Bitton et al. We did not assess all of the criteria for reasons of
simplicity and privacy. The criteria and the way they were assessed are presented
in Table 3. In some cases, we found that the corresponding sensor did not work
well for a large number of subjects or the sensor had no influence on the score;
for example, for criterion OS2, we found that all of our subjects did not root
their device before or during the experiment. In such cases, we omitted these
sensors and the criteria that correspond to them, and they are not included in our
analysis of the results. In addition, 10 out of the 70 subjects either had a technical
problem with their smartphone which prevented them from participating, did
not use the app, or decided to withdraw from the study. These subjects were
omitted from the results analysis as well. Finally, while a higher z-score usually
indicates better performance, some of the criteria represent bad behaviors (such
as criterion AI1). In such cases, indicated in Table 3 by having “(lower is better)”
in their means of assessment, we multiplied their z-score by −1, changing positive
numbers into negative progression indicators.

ConGISATA: A Framework for Continuous Gamified ISA 441

Table 3. List of criteria assessed for the experiment

Criterion Means of assessment

AI1: Downloads

apps from trusted

sources

An app was considered trusted if it was downloaded from an official app store (such

as Google Play). The score for this criterion is the number of untrusted apps found

on the subject’s device (lower is better)

AI2: Does not

install apps that

require dangerous

permissions

The score for this criterion is the number of apps on the subject’s device which

require dangerous permissions, as classified by Android (lower is better)

AI3: Does not

install apps with a

low rating

We considered a low rating to be less than three and a half stars (out of five) in the

Google Play store. The score for this criterion is the number of apps with a low

rating found on the subject’s device (lower is better)

AH1: Regularly

updates apps

Google Play features the last date on which an app was updated. The score for this

criterion is the number of apps that are not up-to-date found on the subject’s

device (lower is better)

AH3: Properly

manages

running/installed

apps

An app is considered unused if the subject did not use the app for more than two

weeks. The score for this criterion is the number of unused apps found on the

subject’s device (lower is better)

B1: Does not enter

malicious domains

A domain is considered malicious if Google’s safebrowsing API has classified it as

such. The score for this criterion is the number of malicious domains the subject

has entered in the last seven days (lower is better)

VC1: Does not

open messages

received from

unknown senders

We monitored two message inboxes for each subject - SMS and Gmail’s spam

inbox. An SMS is considered to be from an unknown sender if the sender of the

SMS is not in the subject’s contact list. The SMS score is the percentage of how

many unknown SMSs the subject has opened in the last seven days. Likewise, the

Gmail score is the percentage of emails classified as spam by Gmail that were

opened in the last 30 days. The final score for this criterion is the average of the

SMS and Gmail scores (lower is better)

VC2: Does not

click on links

received from

unknown senders

We considered an event to be of the ’clicking on links received from unknown

senders’ type if the following three conditions were met: (1) the subject opened a

message from an unknown sender, as defined in VC1, (2) the message that was

opened contained a URL, and (3) we also identified a transition between the

SMS/Gmail apps and the browser app (Google Chrome), suggesting the subject has

clicked on that URL. The score for this criterion is the number of times a subject

has clicked on URLs from unknown senders in the last seven days (lower is better)

A2: Uses

two-factor

authentication

mechanisms

A subject was considered to be using two-factor mechanisms if either a two-factor

authentication app or an SMS (from the last seven days) indicating two-factor use

was found on their device. The score for this criterion is one if the subject uses

two-factor mechanisms and otherwise zero (higher is better)

A3: Uses password

management

services

The subject was considered to be using password management services if a

password-managing app was found on their device. The score for this criterion is

one if the subject uses password management services and otherwise zero (higher is

better)

OS2: Does not

root or jailbreak

the device

We used a dedicated Android package (rootBeer) that implements various heuristics

to determine whether or not a device is rooted. The score for this criterion is one if

the subject has not rooted the device and otherwise zero (higher is better)

SS2: Uses

anti-virus

application

regularly to scan

the device

The score for this criterion is one if the subject has an anti-virus app installed on

the device and otherwise zero (higher is better)

SS5: Uses PIN

code, pattern, or

fingerprint

A device was considered secured if a lock-screen was enabled. The score for this

criterion is one if the subject’s device is secured and otherwise zero (higher is

better)

N1: Does not

connect to

unencrypted

networks

A network was considered encrypted if a security protocol was enabled (such as

WPS, WPA2). The score for this criterion is the number of unencrypted networks

the subject has connected to in the last seven days (lower is better)

N3: Uses VPN

services on public

networks

The subject was considered to be using VPN services if a VPN app was found on

their device. The score for this criterion is one if the subject uses VPN services and

otherwise zero (higher is better)

PC1: Disables

connectivity when

not in use

The score for this criterion is the number of times in the last seven days that a

connectivity channel (i.e., Bluetooth, Wi-Fi, NFC) was enabled for more than five

minutes, without being connected (lower is better)

442 O. Cohen et al.

5.2 Social Engineering Challenges

To evaluate ConGISATA’s influence on behavior in active risk situations, we
implemented three types of challenges: phishing, impersonation, and permission
attacks. The challenges were presented weekly, with one challenge of each type
per week, resulting in three challenges every week and a total of 15 challenges.
The order of the challenges presented during the week, as well as the day and
hour in which they were presented, was randomized. Examples of the challenges
are provided in Fig. 2. The challenges were designed as follows.

Phishing: Phishing is the most prevalent SE attack vector. In our experiment,
this attack involved creating a web page that emulates a login page from a pre-
designed template, typically for student services. The attack was initiated by
emailing the subjects and enticing them to click on an attached link to authenti-
cate themselves for a supposed university-related event. The link directed them
to one of three domains that we purchased for the experiment, which resem-
ble the actual university domain. The email was sent by a familiar sender, like
‘student administration,’ who is known to the subjects as a legitimate email
source for university administration. The email was sent during the academic
semester when administrative emails from the university are expected. Although
the phishing email appears genuine, there are several indications that it was a
phishing attack. First, it was not sent from the university’s mail system; second,
the link provided was not associated with the university’s domain: and third,
the phishing web page did not employ the HTTPS protocol. To safeguard the
subjects’ privacy, authentication information was not transmitted to the server.
In this challenge, we evaluated the subject twice. First, we determined whether
they clicked on the link and accessed the website. If they did, we then determined
if they entered login details. The following phishing templates were used:

(1) Facebook security : An email was sent, informing subjects that they violated
Facebook’s code of conduct and their profile was at risk of deletion. Subjects
were urged to log in to their account and appeal, via a link provided in the
email.

(2) Moodle - new grade: Moodle is a learning platform that the university uses
to upload course materials and students use to submit assignments. An email
was sent to subjects telling them a grade was assigned to them on the Moodle
platform, providing a link to log in and view it.

(3) Organizational password change: Students are required to change their orga-
nizational password periodically. An email was sent to students asking them to
change their password via the link provided or their account would be locked.

(4) New appeal response: In the subjects’ university, students can make an appeal
about the way in which their test was reviewed and graded. During the exam
period, an email was sent to subjects informing them of a response to an appeal
they made regarding a specific exam, followed by a link to the appeal system.

ConGISATA: A Framework for Continuous Gamified ISA 443

(5) New exam scan: In the exam period, an email was sent to subjects telling
them that an exam they took had been graded and the results were published.
A link to the exam website was provided, enabling the subject to see the grade.

Permission Attack: Malicious applications can trick unaware subjects into grant-
ing dangerous permissions during runtime. In each variant of this challenge, the
device requested the granting of a dangerous permission to an app that does not
need that permission. The mobile agent triggered the attack scenario when the
subject used the phone and appeared on the screen using the Android permis-
sion requests’ UI. The subject could reject or approve the request; a subject who
granted privileges to the app was considered vulnerable to the attack.

The experiment included the following permission request templates: The
Calculator requests camera permissions, WhatsApp requests calender permis-
sions, Camera requests SMS permissions, and Gmail requests SMS permissions.

Impersonation: Fraudulent apps can deceive people in order to gain possession
of their credentials. In this challenge, we simulated a malicious application that
sends a push notification while impersonating a legitimate service. The user inter-
face of the notification exhibited a characteristic indicative of a phishing attack,
which is the appearance of our mobile agent’s name, along with the impersonated
app name. Upon clicking the notification, our application launched, presenting
a replica of the login screen of a well-known and trusted app. To assess the
subjects’ performance in this attack, we classified them into two categories: half-
vulnerable if they clicked the notification but did not complete the login process,
and fully vulnerable if they both clicked the notification and completed the login
process. To ensure the privacy of the subjects, the authentication information
was not transmitted to the server. The experiment included an app impersonat-
ing Facebook, Instagram, and the university’s official app.

Fig. 2. Illustration of the different challenges

444 O. Cohen et al.

5.3 Articles and Blog Posts

Prior to the experiment, we searched the web for publicly available relevant
educational articles and blog posts. We looked for two types of items: items about
each focus area in the ISA taxonomy (meaning only about passive aspects) for
the ConGISATA group and items about each of the three types of SE challenges
(meaning only about active aspects) for the baseline group. After a thorough
review, we found 32 items (16 per group) and labeled them by topic. Additionally,
for the baseline group, each item was manually assigned a comprehensiveness
grade, reflecting its depth and complexity on a scale from one (denoting basic
and intuitive content) to five (indicating comprehensive and technical material).
This grade determined the order in which the items were provided to subjects in
the baseline group, as described in Sect. 5.4. In the ConGISATA group, the order
of the items was predetermined and fixed for the entire training process. There
was one item about each focus area in the ISA taxonomy. The list of articles
and blog posts is presented in Table 5 in the appendix.

5.4 Experiment Setup

Each subject was assigned randomly to one of two groups, ConGISATA and
baseline, each of which initially had 35 subjects. All subjects were asked to
install our mobile app on their smartphones and keep it for the next five weeks.
As mentioned in Sect. 4, we first needed to calculate an initial score for each
subject in a calibration period. All subsequent scores in the training process were
relative to this initial score and used for personalization and later analysis. For
both groups, the calibration period consisted of the first week of the experiment.
During this period, the mobile sensors monitored the subjects’ behavior, and
they were presented with three challenges (one of each type). Afterward, the
sensor monitoring and three weekly challenges continued until the end of the
experiment. In addition, as mentioned in Sect. 4.1, to compute the active score,
we used a moving window of the last X challenges. We set X to be five for
both groups. The training process began at the end of the calibration period
and continued for four weeks. Each group was trained using one of two different
methods; a comparison of the groups’ training processes is provided in Table 4.

ConGISATA: A Framework for Continuous Gamified ISA 445

5.5 Results

Fig. 3. Average passive score deltas per
group over time

In this study we address the following
three research questions:

RQ1: Can our framework improve
users’ passive ISA score, as mea-
sured by the mobile ISA taxonomy? If
so, how does it compare to the base-
line method? First, we analyzed the
passive score deltas and examined
each criterion individually. Figure 6
(in the appendix) shows the delta in
the score for each of the criteria as a
function of the number of days since
the experiment started. An increase
in the score was observed for all but one criterion. Furthermore, our framework
resulted in a more notable improvement in the group’s performance relative to
that of the baseline group. We also examined the total passive ISA score for each
group, calculated as the average across the focus areas of the various criteria. As
seen in Fig. 3, the use of our framework improved the passive ISA score, whereas
no improvement was observed for the baseline group.

Table 4. Comparison of the groups’ training processes

Group Subject
of

Articles

#
Articles

Gamification Personalization Timing

C
o
n
G
IS

A
T
A Passive

risk
related

16 � The collection of articles
is fixed. Low scores or
negative score deltas
direct subjects to articles
related to focus areas
that need improvement.

All articles were available
from the second week.

B
a
se
li
n
e

Active
risk

related

8 are
chosen
person-
ally,

from a
pool of

16

� Articles are selected
based on the subject’s
performance in
challenges. Their
comprehensiveness
increases with repeated
failures in the same
attack vector.

Starting from the second
week, articles were
incrementally provided
twice a week and remained
accessible until the
experiment’s conclusion,
with notifications sent to
subjects’ devices.

446 O. Cohen et al.

Fig. 4. Active score over time

RQ2: Does ConGISATA help users
improve their active ISA score, as
measured using the challenges? If so,
how does it compare to the base-
line method? We analyzed the active
score over time. Similar to other ISA
training methods, the baseline method
uses articles related to active risk
situations thereby emphasizing active
aspects. Thus, we anticipate that the
active score of the baseline group will
improve over time. Figure 4 shows the
change in score throughout the exper-
iment. Initially, both groups experienced a decrease in their scores for two rea-
sons: Firstly, during the first week (to the left of the red dotted line), the groups
received no training. Secondly, the initial active score was calculated after day 13
(indicated by the green dotted line), after a sufficient number of challenges were
presented – a minimum of five challenges with at least one challenge from each
one of the three attack vectors (see Sect. 5.4). After day 13 both groups demon-
strated notable improvement, with the ConGISATA group exhibiting slightly
better performance. This result emphasizes that the training for secure passive
behavior received by the ConGISATA group also reinforces active behavior.

Fig. 5. Correlation between the number of
views of the learning screen and passive
score delta

RQ3: Does increased use of our frame-
work correlate with greater improve-
ment in passive behavior?

We logged every view of each of
the app’s screens and looked for a cor-
relation between views and behavioral
change. As expected, the most signif-
icant Pearson correlation was found
between the number of views of the
learning screen and the total delta
in the passive score (r = 0.72, p =
3.41e−5), as seen in Fig. 5. A similar
result was obtained when checking for
a correlation between the number of
days in which a subject viewed the
learning screen and the passive score
delta. However, one of our learning screen’s main advantages is its continuous
nature, allowing users to see up-to-date details on each focus area with respect to
their passive behavior. Going through the entire screen thoroughly may require
more than one view per day so we chose to report the number of views and
not the number of days, to differentiate subjects who viewed the learning screen
multiple times a day from those who did not.

ConGISATA: A Framework for Continuous Gamified ISA 447

6 Conclusion

This study introduces ConGISATA - a continuous gamified ISA training and
assessment framework that collects data from various sensors in users’ everyday
environments to examine aspects of ISA in real-life settings. The sensor readings
are integrated into the framework, which generates a feedback loop. This contin-
uous feedback mechanism helps users learn from their mistakes and improve their
resilience against prevalent security risks. The use of sensors and challenges also
provides a more reliable ISA assessment than the commonly used self-reported
questionnaires. Our results confirm that ConGISATA improves passive behavior,
while the baseline method does not. Moreover, although ConGISATA only pro-
vides articles on passive behavior, it helps users improve their ability to handle
active attack scenarios. ConGISATA can be used in a corporate environment, in
new employee training or as a regularly performed periodic procedure. Adapt-
ing the framework to new threats should be relatively easy, and may include
these steps: (1) adding a new type of challenge simulating the new threat; (2)
implementing additional sensors to measure related real-life behaviors; and (3)
collecting (or creating) educational articles about the new threat. The number
of subjects in this study does not allow meaningful analysis of the contribution
of timing and personalization to ConGISATA’s ability to improve ISA. This lim-
itation can be addressed in more extensive experiments, including an ablation
study performed with a large group of users, which we plan for future work.

Appendix

List of Articles and Blog Posts

As described in Sect. 5.3, we collected 32 publicly available relevant educational
articles and blog posts to use in the experiment (the blog posts and articles are
listed in Table 5). The items for the ConGISATA group are listed first, with their
corresponding ISA taxonomy criterion ID, and do not include a comprehensive-
ness grade. The items for the baseline group, which include a comprehensiveness
grade, are listed after the bold horizontal line.

448 O. Cohen et al.

Table 5. The articles and blog posts used in the experiment

Topic Links Comprehensiveness

Grade

ConGISATA Account (A2) link –

Account (A3) link –

Browser (B1) link –

Virtual Communication (VC1) link –

Virtual Communication (VC2) link –

Network (N1) link –

Network (N3) link –

Application Installation (AI1) link –

Application Installation (AI2) link –

Application Installation (AI3) link –

Application Handling (AH1) link –

Application Handling (AH3) link –

Security Systems (SS2) link –

Security Systems (SS5) link –

Physical Connectivity (PC1) link –

Operating System (OS2) link –

Baseline Impersonation Attacks link 2

Impersonation Attacks link, link, link, link 3

Impersonation Attacks link 5

Permission Attacks link, link 2

Permission Attacks link, link 3

Permission Attacks link 5

Phishing Attacks link, link, link, link, link 1

Passive Score Delta by Criterion

Figure 6 shows the average score deltas for the groups per criterion, as a function
of the number of days since the experiment started.

https://www.bu.edu/tech/support/information-security/why-use-2fa/
https://cybernews.com/best-password-managers/how-do-password-managers-work/
https://www.mimecast.com/blog/what-are-malicious-websites/
https://www.givaudan.com/specials/infosec/tip-05
https://www.phishing.org/what-is-phishing
https://www.givaudan.com/specials/infosec/tip-02
https://www.kaspersky.com/resource-center/threats/why-use-vpn-on-smartphone
https://www.makeuseof.com/tag/safe-install-android-apps-unknown-sources/
https://www.avg.com/en/signal/guide-to-android-app-permissions-how-to-use-them-smartly
https://tapadoo.com/mobile-app-ratings-reviews/
https://www.getcybersafe.gc.ca/en/blogs/software-updates-why-they-matter-cyber-security
https://www.howtogeek.com/778951/why-you-should-get-rid-of-unused-android-apps/
https://www.ncsc.gov.uk/guidance/what-is-an-antivirus-product
https://www.totaldefense.com/security-blog/the-importance-of-having-a-lock-screen-on-your-device/
https://www.wired.com/story/turn-off-bluetooth-security/
https://www.bullguard.com/bullguard-security-center/mobile-security/mobile-threats/android-rooting-risks.aspx
https://www.givaudan.com/specials/infosec/tip-03
https://www.reshiftmedia.com/avoid-phishing-scammers-impersonating-facebook/
https://www.mcafee.com/blogs/privacy-identity-protection/how-to-spot-fake-login-pages/
https://mnlb.bank/steer-clear-of-fake-login-pages/
https://blog.icorps.com/grayware-app-safety-draft
https://heimdalsecurity.com/blog/malicious-app-definition/
https://www.avg.com/en/signal/guide-to-android-app-permissions-how-to-use-them-smartly
https://www.comparitech.com/blog/vpn-privacy/secure-android-app-permissions/
https://www.trendmicro.com/vinfo/pl/security/news/mobile-safety/12-Most-Abused-Android-App-Permissions
https://blog.f-secure.com/3-sketchy-app-permissions-and-how-to-stop-them-from-ruining-your-day/
https://blog.nviso.eu/2021/09/01/how-malicious-applications-abuse-android-permissions/
https://social-sciences.tau.ac.il/PAYPAL
https://social-sciences.tau.ac.il/Vishing
https://social-sciences.tau.ac.il/fishing
https://social-sciences.tau.ac.il/phishing
https://social-sciences.tau.ac.il/SMISHING

ConGISATA: A Framework for Continuous Gamified ISA 449

Fig. 6. Average score deltas for the groups per criterion, as a function of the number
of days since the experiment started.

References

1. Kumar, A., Chaudhary, M., Kumar, N.: Social engineering threats and awareness:
a survey. Eur. J. Adv. Eng. Technol. 2, 15–19 (2015)

450 O. Cohen et al.

2. Kelly, R.: Almost 90% of cyber attacks are caused by human error or behavior.
ChiefExecutive. Net (2017)

3. Bada, M., Sasse, A., Nurse, J.: Cyber security awareness campaigns: why do they
fail to change behaviour? arXiv Preprint arXiv:1901.02672 (2019)

4. Deterding, S., Dixon, D., Khaled, R., Nacke, L.: From game design elements to
gamefulness: defining “gamification”. In: Proceedings of the 15th International
Academic MindTrek Conference: Envisioning Future Media Environments, pp. 9–
15 (2011)

5. Hamari, J., Koivisto, J., Sarsa, H.: Does gamification work?–a literature review of
empirical studies on gamification. In: 2014 47th Hawaii International Conference
on System Sciences, pp. 3025–3034 (2014)

6. Gjertsen, E., Gjære, E., Bartnes, M., Flores, W.: Gamification of information secu-
rity awareness and training. In: ICISSP, pp. 59–70 (2017)

7. Kumaraguru, P., et al.: School of phish: a real-world evaluation of anti-phishing
training. In: Proceedings of the 5th Symposium on Usable Privacy and Security,
pp. 1–12 (2009)

8. Bitton, R., Finkelshtein, A., Sidi, L., Puzis, R., Rokach, L., Shabtai, A.: Taxonomy
of mobile users’ security awareness. Comput. Secur. 73, 266–293 (2018)

9. Keinan, R., Bereby-Meyer, Y.: “Leaving it to chance”–passive risk taking in every-
day life. Judgment Decis. Making 7 (2012)

10. Keinan, R., Bereby-Meyer, Y.: Perceptions of active versus passive risks, and the
effect of personal responsibility. Pers. Soc. Psychol. Bull. 43, 999–1007 (2017)

11. Bitton, R., Boymgold, K., Puzis, R., Shabtai, A.: Evaluating the information secu-
rity awareness of smartphone users. In: Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems, pp. 1–13 (2020)

12. Newbould, M., Furnell, S.: Playing safe: a prototype game for raising awareness of
social engineering. In: Australian Information Security Management Conference,
p. 4 (2009)

13. Hart, S., Margheri, A., Paci, F., Sassone, V.: Riskio: a serious game for cyber
security awareness and education. Comput. Secur. 101827 (2020)

14. Chapman, P., Burket, J., Brumley, D.: PicoCTF: a game-based computer secu-
rity competition for high school students. In: 2014 USENIX Summit on Gaming,
Games, and Gamification in Security Education (3GSE 2014) (2014)

15. Denning, T., Lerner, A., Shostack, A., Kohno, T.: Control-Alt-Hack: the design
and evaluation of a card game for computer security awareness and education. In:
Proceedings of the 2013 ACM SIGSAC Conference On Computer & Communica-
tions Security, pp. 915–928 (2013)

16. Alqahtani, H., Kavakli-Thorne, M.: Design and evaluation of an augmented reality
game for cybersecurity awareness (CybAR). Information 11, 121 (2020)

17. Luh, R., Temper, M., Tjoa, S., Schrittwieser, S., Janicke, H.: PenQuest: a gami-
fied attacker/defender meta model for cyber security assessment and education. J.
Comput. Virol. Hacking Tech. 16, 19–61 (2020)

18. Yasin, A., Liu, L., Li, T., Fatima, R., Jianmin, W.: Improving software security
awareness using a serious game. IET Softw. 13, 159–169 (2018)

19. Arend, I., Shabtai, A., Idan, T., Keinan, R., Bereby-Meyer, Y.: Passive-and not
active-risk tendencies predict cyber security behavior. Comput. Secur. 101929
(2020)

20. Selvam, V.: Human error in IT security. arXiv Preprint arXiv:2005.04163 (2020)
21. Dunlosky, J., Rawson, K., Marsh, E., Nathan, M., Willingham, D.: Improving

students’ learning with effective learning techniques: promising directions from
cognitive and educational psychology. Psychol. Sci. Public Interest 14, 4–58 (2013)

http://arxiv.org/abs/1901.02672
http://arxiv.org/abs/2005.04163

ConGISATA: A Framework for Continuous Gamified ISA 451

22. Canham, M., Posey, C., Constantino, M.: Phish derby: shoring the human shield
through gamified phishing attacks. Front. Educ. 6, 536 (2022)

23. Jaffray, A., Finn, C., Nurse, J.: SherLOCKED: a detective-themed serious game
for cyber security education. In: International Symposium on Human Aspects of
Information Security and Assurance, pp. 35–45 (2021)

24. Sophos Sophos 2023 Threat Report (2022). https://assets.sophos.com/
X24WTUEQ/at/b5n9ntjqmbkb8fg5rn25g4fc/sophos-2023-threat-report.pdf

25. Redmiles, E., Zhu, Z., Kross, S., Kuchhal, D., Dumitras, T., Mazurek, M.: Asking
for a friend: evaluating response biases in security user studies. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1238–1255 (2018)

26. Solomon, A., et al.: Contextual security awareness: a context-based approach for
assessing the security awareness of users. Knowl.-Based Syst. 246, 108709 (2022)

27. Böckle, M., Novak, J., Bick, M.: Towards adaptive gamification: a synthesis of
current developments (2017)

28. Alahmari, S., Renaud, K., Omoronyia, I.: Moving beyond cyber security awareness
and training to engendering security knowledge sharing. Inf. Syst. E-Bus. Manag.
1–36 (2022)

29. Dincelli, E., Chengalur-Smith, I.: Choose your own training adventure: designing
a gamified SETA artefact for improving information security and privacy through
interactive storytelling. Eur. J. Inf. Syst. 29, 669–687 (2020)

30. Scholefield, S., Shepherd, L.A.: Gamification techniques for raising cyber secu-
rity awareness. In: Moallem, A. (ed.) HCII 2019. LNCS, vol. 11594, pp. 191–203.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22351-9 13

31. Omar, N., Foozy, C., Hamid, I., Hafit, H., Arbain, A., Shamala, P.: Malware aware-
ness tool for internet safety using gamification techniques. In: Journal of Physics:
Conference Series, vol. 1874, p. 012023 (2021)

32. Wu, T., Tien, K., Hsu, W., Wen, F.: Assessing the effects of gamification on enhanc-
ing information security awareness knowledge. Appl. Sci. 11, 9266 (2021)

33. Heid, K., Heider, J., Qasempour, K.: Raising security awareness on mobile systems
through gamification. In: Proceedings of the European Interdisciplinary Cyberse-
curity Conference, pp. 1–6 (2020)

https://assets.sophos.com/X24WTUEQ/at/b5n9ntjqmbkb8fg5rn25g4fc/sophos-2023-threat-report.pdf
https://assets.sophos.com/X24WTUEQ/at/b5n9ntjqmbkb8fg5rn25g4fc/sophos-2023-threat-report.pdf
https://doi.org/10.1007/978-3-030-22351-9_13

Tactics for Account Access Graphs

Luca Arnaboldi1(B), David Aspinall2, Christina Kolb2, and Saša Radomirović3

1 University of Birmingham, Birmingham, UK
l.arnaboldi@bham.ac.uk

2 University of Edinburgh, Edinburgh, UK
david.aspinall@ed.ac.uk, c.kolb@utwente.nl

3 University of Surrey, Guildford, UK
s.radomirovic@surrey.ac.uk

Abstract. Account access graphs have been proposed as a way to model
relationships between user credentials, accounts, and methods of access;
they capture both multiple simultaneous access routes (e.g., for multi-
factor authentication) as well as multiple alternative access routes (e.g.,
for account recovery). In this paper we extend the formalism with state
transitions and tactics. State transitions capture how access may change
over time as users or adversaries use access routes and add or remove cre-
dentials and accounts. Tactics allow us to model and document attacker
techniques or resilience strategies, by writing small programs. We illus-
trate these ideas using some attacks against mobile authentication and
banking applications which have been publicised in 2023.

Keywords: account access graphs · tactics · security · Android · iOS

1 Introduction

As the connections between online services we use in our daily lives increase, so
do the possibilities for an attacker to exploit them. By chaining a series of access
escalations, often using recovery or fallback methods, an attacker can take over
more and more of a user’s accounts. A prominent example of such an account
takeover attack was in 2012 when the Wired journalist Mat Honan’s Twitter
account was compromised in a sequence of steps in which an attacker took con-
trol of his Amazon account, Apple account, Google account and eventually the
coveted Twitter account [10]. Several analogous attacks have arisen over the
years following similar procedural steps [6,13,15]. Attacks that abuse a particu-
lar constellation of user accounts are difficult to eliminate because different users
have different and continuously changing account ecosystems.

Attackers use multiple strategies and build complex attacks by combining
smaller steps. To understand and prevent attacks it helps to catalogue vulner-
abilities and reduce complex attacks to their constituent building blocks. This
approach is seen elsewhere. For software vulnerabilities, for example, the Metas-
ploit Framework [11] provides a scripting language so penetration testers can
combine known exploits with scanning tools.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 452–470, 2024.
https://doi.org/10.1007/978-3-031-51479-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_23&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_23

Tactics for Account Access Graphs 453

In this paper we provide ways to model and catalogue account takeover
attacks and their defences. To do this we propose a generic language of attack
and defence actions based on tactics, which are small programs in a domain
specific language. The actions act on Account Access Graphs [9] which capture
connections between users’ devices, credentials and accounts. They were devel-
oped to help assess security of a user’s account ecosystem. While the original
account access graphs have been successful in visualising account ecosystems
and analysing static security properties, they are insufficient to model account
takeover attacks in which an attacker disconnects a device or account from the
user’s account ecosystem, thus modifying the user’s account access graph in the
process. We overcome this limitation here by considering account access graphs
as states in a state transition system. We then introduce tactics to transition
from one account access graph to another.

To demonstrate our approach, we consider two notable case studies where
the attacker’s goal is to gain access to and lock out the user from an account of
central importance to many users: the Apple ID account for iPhone users and
the Google account for Android device users. We compare the attacks in the two
cases and we discuss countermeasures for each of them.

Contributions. We provide the following key contributions: (1) The extension of
account access graphs to include state and a transition system; (2) the introduc-
tion of tactics for the development and exploration of state based account access
graphs; and (3) the demonstration of this new formalism across two case studies
showcasing their efficacy and flexibility.

Structure. The paper is structured as follows. Section 2 introduces the original
account access graphs and the new extension with state. Section 3 introduces
the properties of account access graphs with state, the changes to account access
graphs, the tactics, and account access graph requirements. In Sect. 4 we present
our case studies to showcase the effectiveness of tactics to explore attacks. In
Sect. 5 we discuss related work in the area and in Sect. 6 we conclude this work
and present ideas for future work.

2 Account Access Graphs with State

The initial underlying structure of account access graphs was first defined in [9]
to formally model a user’s account ecosystem.

Definition 1 (Account Access Graph [9]). An account access graph is a
directed graph G = (VG, EG, CG), where VG are vertices, CG are colours and
EG ⊆ VG × VG × CG are directed coloured edges.

An example of an account access graph that represents a standard way to
unlock a modern mobile phone is shown in Fig. 1(a). The graph consists of four
vertices, namely a Phone, a PIN, a Face, and a Locked Phone vertex. The graph
shows two alternative ways to access the Phone vertex. One way is to have access
to both, the Locked Phone and the PIN and the other way is to have access to
the Locked Phone and the Face vertex.

454 L. Arnaboldi et al.

Fig. 1. Illustration of Definitions 1 and 2

Two natural threats to a user’s account are account compromise and loss of
access. In order to capture the evolution of users’ account access graphs which
includes, for example, the addition of new accounts, changed credentials, loss of
access, and compromise, we start by extending the definition of account access
graphs to include information on which accounts and credentials are (presently)
accessed by which parties. We add state to the account access graph by including
a map which assigns a, possibly empty, set of parties to each vertex.

Our account access graph with state has an underlying account access graph
equivalent to Definition 1. However, in our definition we replace an account
access graph’s multiple, coloured edges from one vertex to another by a single
edge to which we assign a set of labels. The cardinality of the assigned set in
our definition is equal to the number of edges between the same vertices in the
original definition of the graph. Figure 1(b) shows an account access graph with
state whose underlying account access graph is equivalent to the graph shown
in Fig. 1(a). In addition, the graph in Fig. 1(b) shows that the user presently
has access to the LockedPhone, the PIN, and the Face, but not to the Phone.
That is, the user’s phone is currently not in the unlocked state. The adversary

has presently only access to the PIN. In this state, the user would be able to
unlock the phone, while the adversary would not. Formally, let V be a countably
infinite set of vertices (representing, e.g., accounts, devices, credentials), ranged
over by (possibly indexed) variables u and v. Let L be a countably infinite set
of labels (for access methods) ranged over by l and A be a set of participants,
typically a user and an attacker, ranged over by a. In this paper, A will contain
the user and the attacker .

Definition 2 (Account Access Graphs with State). An account access
graph with state is a triple G = (V,E,A) where V ⊂ V is a finite set of vertices,
E : (V × V) → 2L is a map labelling pairs of vertices with finite sets of access
methods, pairs of vertices labelled with a non-empty set of access methods are
edges, and A : V → 2A is a map labelling vertices with a finite set of participants.

The vertices of account access graphs with state represent accounts, pass-
words, access tokens, etc. For every pair of vertices, the edge function E(u, v)
gives a set of labels. If the set is non-empty, the pair (u, v) is an edge of the graph.

Tactics for Account Access Graphs 455

A label shared between n edges (u1, v), . . . , (un, v) models an n-ary multi-factor
route for access to the target vertex v. Alternative routes for access have different
labels. Identity of labels only matters locally, i.e., for edges with identical target
vertex. The map A labels vertices with sets of participants who have current
access to the vertices and represents the state of the account access graph.

3 A Transition System

We now build a transition system for account access graphs with state to capture
the changes that can occur in an account access graph as a consequence of a
participant’s (i.e., a user’s or adversary’s) actions. First we introduce properties
which describe the shape of the graph; these can be used to build up precise
statements of requirements or outcomes.

3.1 Properties of Account Access Graphs with State

A property on an account access graph G is a predicate over (V,E,A). Such
a property takes into account the structure of the graph as well as the user’s
and adversary’s current access to vertices in the graph. To define a simple logic
of properties, we use basic assertions on the account access graph, and allow
propositional combinations. Expressions in the logic are given by the grammar:

φ ::=
is account(v) account v exists in graph

| has accessa(v) user a is accessing account v
| could accessa(v) user a has a way to access v
| uses methodl(u, v) v is accessible from u using label l
| φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | true

Definition 3 (Validity). The validity of assertions is defined inductively,
starting from atomic propositions:

– 〈V,E,A〉 |= is account(v) if v ∈ V .
– 〈V,E,A〉 |= has accessa(v) if v ∈ V and a ∈ A(v).
– 〈V,E,A〉 |= could accessa(v) if v ∈ V and ∃l, u. l ∈ E(u, v) ∧ ∀x ∈ V . l ∈

E(x, v) =⇒ a ∈ A(x).
– 〈V,E,A〉 |= uses methodl(u, v) if u, v ∈ V and l ∈ E(u, v).
– 〈V,E,A〉 |= φ1 ∧ φ2 if 〈V,E,A〉 |= φ1 and 〈V,E,A〉 |= φ2.
– 〈V,E,A〉 |= φ1 ∨ φ2 if 〈V,E,A〉 |= φ1 or 〈V,E,A〉 |= φ2.
– 〈V,E,A〉 |= ¬φ if it does not hold that 〈V,E,A〉 |= φ.
– 〈V,E,A〉 |= true always.

It would be natural to extend the assertion language to include forms of quan-
tification over vertices, labels and participants, such as existential or universal
choice (selection). For simplicity we restrict to propositional forms here; for par-
ticular fixed settings talking about known sets of users, accounts and access

456 L. Arnaboldi et al.

methods, we can use finitary expansions. For example, if V = {pwd, phone},
then ∃v, a. could accessa(v) stands for the expansion

To be clear, when we use quantification below it is in the metalogic.

3.2 Changes to Account Access Graphs

Next we give a transition relation which allows users or attackers to change their
current access to vertices in the graph or the graph itself. To this end, we give
seven operations in Definition 4 below.

The first three operations (gain, disc, lose) modify the state of the account
access graph, i.e., the access map, without changing the graph structure. These
model users accessing accounts via access links already in the graph, attackers
discovering access “out of thin air” and users or attackers losing or dropping
access. The next four operations, create, delete, add and the two remove
variants (remove1, remove2), change the graph structure by adding or remov-
ing vertices and edges in ways that might be possible by a user or attacker.

Definition 4 (Account Access Graph Operations). An account access
graph with state can be modified with the following seven operations. We use
α to range over these operations.

〈V,E,A〉 |= could accessa(u)

〈V,E,A〉 gain accessa,v� 〈V,E,A[v → a]〉
(gain)

〈V,E,A〉 disc accessa,v� 〈V,E,A[v → a]〉 (disc)

〈V,E,A〉 lose accessa,v� 〈V,E,A[v \ a]〉 (lose)

The notation A[v → a] means A updated to add a into the access set of v, i.e.
the updated map A′ given by

A′(x) =

{
A(v) ∪ {a} when x = v

A(x) otherwise.

Similarly, A[v \ a] means A updated to remove a from the set of accesses A(v).

〈V,E,A〉 create accounta,v� 〈V � {v}, E,A[v → a]〉 (create)

〈V,E,A〉 |= has accessa(v)

〈V,E,A〉 del accounta,v� 〈V \ {v}, E \ v,A|V \{v}〉
(delete)

Tactics for Account Access Graphs 457

〈V,E,A〉 |= has accessa(v) E′(x, y) =

{
{l} if x ∈ {u1, . . . , un} and y = v

{} otherwise.

〈V,E,A〉 add accessa,{u1,...,un},v,l� 〈V,E � E′, A〉
(add)

〈V,E,A〉 |= has accessa(v)

〈V,E,A〉 rem accessa,v,l� 〈V,E[(, v) \ {l}], A〉
(remove1)

〈V,E,A〉 |= has accessa(v) 〈V,E,A〉 |= uses methodl(v, u)

〈V,E,A〉 rem accessa,u,l� 〈V,E[(, u) \ {l}], A〉
(remove2)

Here the notation E \v denotes the edge function E updated to remove any edges
that have v as source or target, i.e., E′ such that:

E′(u1, u2) =

{
{} if u1 = v or u2 = v

E(u1, u2) otherwise.

Similarly, the notation E[(, v)\{l}] means the update of E to remove the access
method l to vertex v from E.

We give an example to illustrate these operations which demonstrates how
the extension increases the expressivity of the formalism.

Example 1. Access to SMS previews on a locked phone was previously identified
as a vulnerability because the phone’s theft could allow an attacker to escalate
their access to online accounts that use SMS as a recovery method. The security
advice reported, e.g., in [8], was to disable the display of messages on the lock
screen. However, this may not be sufficient. Figure 2(a) shows a state where an
attacker has stolen a phone, but does not know the phone’s PIN. In this graph
the adversary cannot gain access to the SMS vertex.

By having physical access to the phone, the attacker can physically access
the victim’s SIM card to be inserted into a phone controlled by the attacker. For-
mally, a transition followed by a
transition. The resulting state is shown in Fig. 2(b).

Next, the attacker removes the SIM card from the victim’s phone which
leads to the phone’s loss of ability to receive SMS. The attacker inserts the SIM
card into their own phone to gain access to SMS messages delivered to that
SIM card on the second phone. The result is shown in Fig. 2(c). This is possi-
ble since, as modelled in this graph, the SIM card is not protected by its own
PIN. This is particularly likely to be the case in countries where SIM cards
are sold without a preset, unique PIN. The state transitions to reach the last
state from the graph in Fig. 2(b) are: (by remove1),

(byremove2), ,
, , and for

S = {2nd Phone, SIM card, SIM key}, D = 2nd Phone SMS and l = SMSapp.

458 L. Arnaboldi et al.

The countermeasure to this attack is to lock the SIM card with a PIN code
as shown in Fig. 2(d). This prevents the adversary’s access to the SIM key and
thus access to SMS messages.

The discovery and explanation of this attack require reasoning about the
adversary’s actions to carry out the attack, notably, stealing the phone, removing
the SIM card and inserting it into a second phone controlled by the adversary.
As shown in Fig. 2(c), these actions not only change the access map A, but also
the underlying account access graph (V,E).

Fig. 2. Three states in the evolution of an attack (a)–(c) and a mitigating measure
against the attack (d).

Tactics for Account Access Graphs 459

3.3 Tactics

A tactic is a short, abstract program with a well-defined semantics which applies
the operations α in Definition 4 to achieve a given goal. The idea is borrowed
from interactive theorem proving where tactics are used to generate proofs in a
logic. Here, tactics capture the way attacks or defensive techniques (or system
operations) execute.

To define tactics we start with syntactic expressions for composing operations
α in certain orders, with testing to check properties and alternation to try alter-
natives. For simplicity we give the language a deterministic semantics, treating
both sequencing (;) and alternation (||) sequentially, although generalisation to
parallel forms would be possible. The language includes � which is the tactic
for successful termination and ⊥ which is the failure tactic. We use b to range
over the constants �,⊥.

t ::= α | b | t ; t | t || t |CHECK(φ)

Next we give a semantics as evaluation rules for tactics. The tactic semantics
defines a tactic as a function on states σ, although its definition does not depend
on the form of the state; changes on the state are made only by the primitive
graph operations. The states σ are our account access graphs with state (V,E,A).

We define the big-step semantics for the tactic operations by extending the
transition relation given earlier, to give a relation 〈σ〉 t ⇓ b 〈σ′〉, where b ∈
{�,⊥}. Executing a tactic either succeeds or fails, giving a possibly updated
state.

Definition 5 (Tactics for Account Access Graph Operations). The fol-
lowing list of rules inductively defines tactic evaluation for account access graphs.

〈σ〉 α� 〈σ′〉
〈σ〉 α ⇓ � 〈σ′〉 (AX-t)

〈σ〉 b ⇓ b 〈σ′〉 (const)

〈σ〉 t1 ⇓ ⊥ 〈σ′〉
〈σ〉 t1 ; t2 ⇓ ⊥ 〈σ′〉 (SEQ-b)

〈σ〉 t1 ⇓ � 〈σ′〉 〈σ′〉 t2 ⇓ b 〈σ′′〉
〈σ〉 t1 ; t2 ⇓ b 〈σ′′〉 (SEQ-t)

〈σ〉 t1 ⇓ ⊥ 〈σ′〉 〈σ〉 t2 ⇓ b 〈σ′′〉
〈σ〉 t1 || t2 ⇓ b 〈σ′′〉 (OR-b)

〈σ〉 t1 ⇓ � 〈σ′〉
〈σ〉 t1 || t2 ⇓ � 〈σ′〉 (OR-t)

460 L. Arnaboldi et al.

〈σ〉 |= φ

〈σ〉 CHECKφ ⇓ � 〈σ〉 (CHECK-t)

¬〈σ〉 |= φ

〈σ〉 CHECKφ ⇓ ⊥ 〈σ〉 (CHECK-f)

Note that tactic evaluation can get stuck and not terminate in ⊥ or �.
Specifically, the rule AX-t can fail if one of the account access graph operations
rules given in Definition 4 cannot be applied. However, where tactic evaluation
terminates, it is deterministic.

Proposition 1 (Tactic Determinism). If 〈σ〉 t ⇓ b 〈σ′〉 then b and σ′ are
the unique such b and σ′.

Proof. We can use induction on the structure of t, noting that the evaluation
rules are mutually exclusive. In the case of operations α, we notice from Defini-
tion 4 that the new state σ′ is uniquely determined by α.

The next example shows tactic evaluation and introduces an account access
graph that we will also discuss, from an attacker perspective, in the case study.

Example 2. Consider a state σ where a user has an iPhone with an associated
Apple ID, but (for simplicity) no biometric authentication method registered on
the phone. Figure 3(a) shows the corresponding account access graph.

If the user applies the tactic

to first add iCloud to their Apple ID and then Apple Pay to their Phone, then
the original account access graph would change to the graph shown in Fig. 3(b).
The tactic evaluation would proceed as follows. Rule (AX-t) is applied to create
the iCloud account. This leads to a state transition where a new vertex named
iCloud is generated and assigned to . Since this transition was successful, the
(SEQ-t) rule (as opposed to the (SEQ-b) rule) is applied for the sequential
operator;. Next the (AX-t) rule is applied to add the iCloud vertex to ver-
tex AppleID, followed by the (SEQ-b) rule. The four rule applications are then
repeated for the addition of ApplePay to the user’s account ecosystem.

Observe that CHECKφ turns a property into a tactic. We can use this to define
a condition by guarding both branches. Indeed, it is handy to use some short-
hand notation for conditional branching by letting IFφTHEN t1 ELSE t2 stand
for (CHECKφ ; t1) || (CHECK¬φ ; t2). Note that in case t1 fails in the THEN
branch, the guard ¬φ makes sure the ELSE branch t2 is not taken.

Relatedly, we can define a shorthand notation for repeating tactics over
several vertices. We may write FORALLx IN [v1, . . . , vn]DO t where t uses a
metavariable x as a vertex name. Then

Tactics for Account Access Graphs 461

Fig. 3. Initial account access graph (left) and resulting account access graph after
addition of iCloud and ApplePay.

stands for the sequence of two checks. To iterate the alternation operation
instead, we write FORONEx IN [v1, . . . , vn]TRY t which expands to t[x → v1] ||
· · · || t[x → vn]. These can be combined with the corresponding expansion of
properties.

3.4 Account Access Graph Requirements

The purpose of tactics is to reach some goal. To evaluate whether a user’s or
adversary’s tactics are successful, we define requirements on our account access
graphs with state. The user’s goal is usually to satisfy a security requirement
while the adversary’s goal is to break a security requirement.

Formally, an account access graph requirement r is a set of states σ =
〈V,E,A〉. We say that a state σ satisfies a requirement r if σ ∈ r. We give
several examples of security requirements.

Example 3 (Multifactor Authentication). A multifactor authentication require-
ment for an account v is given by the set of states 〈V,E,A〉 in which there are
distinct vertices u and u′ and an access method l such that

〈V,E,A〉 |= uses methodl(u, v) ∧ uses methodl(u′, v) ∨ ¬is account(v).

The Multifactor Authentication requirement is a structural requirement on
the account access graph that has been used to discuss the overall security of
users’ account access graphs [1,8]. The following examples show standard secu-
rity requirements that depend on the state map and thus necessitate account
access graphs with state.

462 L. Arnaboldi et al.

Example 4 (Account Security). The requirement that an account v’s security is
not compromised is given by the set of states 〈V,E,A〉 that satisfy the property

This says that as long as v is an account, the adversary does not have access to
it.

A trivial way for the user to achieve account security is to delete an account.
This is typically not a viable option. The following example shows a more realistic
security requirement for a user’s account.

Example 5 (Account Integrity). The requirement that an account v’s integrity is
not compromised is given by the set of states 〈V,E,A〉 that satisfy the property

This requires that the account exists and that the adversary does not have access
to it.

The account integrity property concerns unauthorised access and modifica-
tion (deletion) of an account, but it does not consider whether the user has
access to the account. The following example considers accessibility.

Example 6 (Account Access). The requirement that the user has access to
account v is given by the set of states 〈V,E,A〉 that satisfy the property

The preceding examples are typical security goals for users. A standard goal
for the adversary is account compromise, i.e., the negation of account security.

Example 7 (Account Compromise). The requirement that an account v is com-
promised is given by the set of states 〈V,E,A〉 that satisfy the property

We will use requirements (1) and (2) in our case study in the next section.

4 Case Study

We demonstrate the use of tactics to explore the ways an attacker can compro-
mise a user’s account ecosystem on the following scenario that is based on a
recently published article in The Wall Street Journal [15]: Thieves target iPhone
users and observe them until they learn a victim’s iPhone PIN. They then steal
the iPhone and within minutes gain access to sensitive data and bank accounts.
The thieves remove the victim’s access from all their Apple devices to their data
and steal money from their bank accounts.

Tactics for Account Access Graphs 463

We use the basic template of phone and PIN to propagate the attack across
accounts. We then analyse the same scenario on Android to assess the feasibility
of success in this setting. We start by defining the relevant security requirements,
the user and adversary capabilities.

4.1 Security Requirements, User Capabilities and Adversary Model

Based on the described scenario, we define concrete security requirements for
an iPhone user with an account access graph as shown in Fig. 3(b). The two
core properties we wish to enforce are Account Integrity and Account Access
as defined in (1) and (2) in Examples 5 and 6, respectively, for the accounts
AppleID, iCloud and ApplePay. Thus we have a total of six security requirements,
two for each of the three accounts.

The defined security requirements would be meaningless if we allow the user
and the adversary to make arbitrary use of the disc access tactic. The user could
magically regain access to accounts that they have been locked out of and the
adversary could compromise any account and device at will. In the case study
scenario, the user does not have magic abilities and the adversary is assumed to
only have the ability to eavesdrop on the PIN and steal the phone. Therefore, we
will analyse the security requirements under the assumption that no disc access
transitions occur, except for .

4.2 Case Study 1: iPhone Tactics to Systematically Access Accounts

We formalise the attack tactics of a potential adversary and show how the
attacker can systematically infringe on all the security properties the user wished
to have for their protection.

1. We start with an account access graph for a user with device Phone that
contains the graph shown in Fig. 3(b), and potentially includes further devices
with a similar access relation to the AppleID and iCloud accounts, but no access
to ApplePay.

2. The attacker’s initial tactic is to discover the PIN of the user’s iPhone while
he observes the user entering the PIN into the iPhone. At a suitable moment,
the attacker steals the iPhone and, together with the PIN, gains access to
Phone and ApplePay. The user loses access to the phone and ApplePay. This
violates the account integrity and account access requirements for ApplePay.

3. The attacker has access to the unlocked phone. Thus he gains access to the
stored IDtoken on the phone. Together with the phone and the ID token, the
attacker gains access to the AppleID account.

464 L. Arnaboldi et al.

At this point the integrity requirement for AppleID and iCloud is violated,
but the access requirement could still be satisfied through the user’s access
to other devices in their account access graph.

4. In the final step, the attacker removes the user’s ability to access their
AppleID and iCloud accounts by changing the AppleIDpassword and remov-
ing any devices from the Apple ID. The latter is achieved by invalidating
the ID token stored on the device, i.e., deleting the corresponding vertex in
the graph. We formulate a tactic where the attacker does not need to know
the user’s account access graphs in advance. Let n be the finite number of
devices other than the phone the user could own and suppose ID tokens for
these devices are IDtoken 1, . . . , IDtoken n and their AppleID password access
methods are labelled apwd 1, . . . , apwd n. Then the attacker will employ the
following tactic to remove all possible devices the user could have associated
with their Apple ID:

The tactic is to create a new password AdvPassword, remove the previous access
method with the old password (from the phone) and add the new password with
the same label apwd that was used for the old password. Then any password-
based access method is removed by trying out all possible access labels. Next all
possible devices are removed by trying to delete each possible ID token. Finally
the user’s access is removed from the iCloud and the AppleID account, if possible.

From here on, the user does not know the correct AppleIDpassword and does
not have a device that has a trusted id stored for the Apple ID. Therefore the
remaining two account access requirements are not satisfied thus fully breaking
all the security requirements of the iPhone user. Since the user cannot discover
access to their AppleID, there is no tactic for the user to regain access from this
state.

In terms of countermeasures, although the Wall Street article suggests
Apple’s screen time feature as a potential defence measure, we find that through
a simple sequence of steps, the attacker can bypass the screen time block (start-
ing with “forgotten screen time password”). This is once again achievable by
simply having access to the Phone and PIN. In a real-world attack this slows the
attacker down a little.

The users’ lack of viable options to protect their Apple ID against this type
of attack is a well-known flaw [16].

4.3 Case Study 2: Android Security and Expansion with Tactics

The original Wall Street Journal Article speculated that the same attack was
possible on Android (although no such crimes were reported). For reference this

Tactics for Account Access Graphs 465

would mean we could take the same tactic that worked on the iPhone and apply it
to Android. So we formulate the same set of properties for the Android device as
we do for the iPhone, namely, that given the attacker has access to the phone and
PIN he still cannot 1) cannot access the Google account, 2) cannot compromise
the users access to the Google account, and 3) even if he has access to the Google
account the user will retain access to his Google Cloud and AndroidPay. The
same evolution of the account access graph for Android is displayed in Fig. 4.

Fig. 4. Apple attack on Android (fails)

We can see that the same initial tactics steps from the iPhone apply to the
Android device if we represent the Android phone in the same way with account
access graph G0 = (V0, E0, A0), as before. The initial tactic follows the same
steps:

However this is the step where it changes as if we attempt to use tactics to
test the feasibility of the next step using

we obtain ⊥ (false), for both checks, and according to the axioms of the lan-
guage the tactic now terminates. The checks do not pass because the PIN is
not enough to change the google account password. This is further empirically
evaluated across Android, versions, and phone models. This Analysis was con-
ducted from secondary evidence as well as across, 5 different devices 1) Motorola

466 L. Arnaboldi et al.

G10 Android 11, 2) Lenovo YT-X705F Android 10, 3) Xiaomi Redmi Note
Pro 10 Android 11, and 4) Samsung Galaxy Tab S6 Lite Android 13. Some
of these devices had their own manufacturer accounts, namely Samsung and
Xiaomi. They both suffered from the same limitation of Apple for those bespoke
accounts. Although the Google account remains safe the bespoke accounts are
compromised. This is depicted for the Samsung device in Fig. 5 (Xiaomi is the
same).

Fig. 5. Attack on bespoke manufacturer account on Android

Note that across all analysed devices they have the ability to individually
lock apps behind further protection (Appendix A), making the success of this
attack even less likely. Unlike Apple, Google always required a Google password
to make any changes, so it is impossible (across all Android devices) to change
the Google password in the way the Apple password can be changed.

These results show the efficacy of the formalism to explore attacks on access
graphs and provide useful insights to a defender to improve security.

5 Related Work

Account access graphs were introduced in [9]. They were employed in user stud-
ies [1,8] to explore users’ understanding of account security and the strategies
users apply to keep themselves secure and used to enhance a password manager
with a user-friendly dashboard for account dependency analysis [14]. In these
works account access graphs are static objects used as a tool to visualise and
analyse the security of a snapshot of a user’s accounts. Account access graphs
with state and transitions extend these works and allow for a security analysis
with models of attacks, defences and mitigating measures.

In [17] new attacks on PIN protected SIM and eSIM cards are presented in
scenarios where a known, preset PIN is used and scenarios where the attacker

Tactics for Account Access Graphs 467

has access to the victim’s phone to install malicious hardware or software. A
variant of (static) account access graphs is then used to design and analyse the
proposed improvements to the security of SIM and eSIM authentication and
access control.

Tactics were introduced in interactive theorem proving, embodying a classical
AI technique for goal-directed search [4,7]. Tactics can decompose subgoals, and
act in sequence, alternation, or parallel steps. They also allow repetition and
exceptional failure to capture trying one thing, and then trying another if that
fails (similarly to logic programming). Here we have used a simplified tactic
language as a domain-specific language for modelling finitary account access
graph construction and modifications, leaving more complex attack and defence
examples to future work. As far as we are aware, this is a novel idea, although it
is related to the use of dedicated formal languages to express security protocols
(ProVerif [3], Tamarin [12] and many others) or scripting programming languages
to combine software exploits. (e.g., Metasploit [11]).

6 Conclusions and Future Work

This work expanded on account access graphs by introducing state, transi-
tions and tactics; these enable precise modelling and exploration of attacker
behaviours. We demonstrated these on recently publicised attacks on iPhone
users, allowing both the analysis of attacker strategies whilst simultaneously
showing how to defend against it. Attempting similar attacks on Android showed
an effective defence; we show conclusively that the attack on iPhones is not suc-
cessful on Android thus disproving a supposition of the WSJ article.

This paper is a first foray in the possible applications of account access graphs
with state; adding a tactic language enables several exciting new possibilities.
One possibility is to explore trade-offs between security and safety and resilience
in account access graphs. For example, providing recovery access to accounts
(such as Apple designed for AppleID) enhances safety (account access) for the
user but can ease the job of an attacker, potentially reducing security. Modelling
and measuring this could help us to understand safety and security interac-
tions within threat modelling [2,5]. Another topic to investigate is the use of
more sophisticated tactics which can loop, to capture attacks such as repeatedly
searching for vulnerable accounts or credentials. These could be accompanied by
stronger logical properties expressing (non)-reachability requirements as goals
and using first class variables rather than finitary expansions. Ultimately we can
consider tactics used both by attackers and by defenders. To add verification of
security to the setup then, we can introduce a program logic to prove properties
of tactics. So we could state that applying a certain tactic always ensures some
security (or safety) property of resulting access graphs.

Of course, to build up a useful, testable catalogue of attacks and defences
(and perhaps even connect to real access systems), we also want to have an
implementation. This seems desirable given the ongoing account takeover attacks
and significant rise in fraud cases being publicised [6,13,15].

468 L. Arnaboldi et al.

Acknowledgements. This work was partially funded by the UK EPSRC under grant
number EP/T027037/1. We’re grateful to Blair Walker and Sándor Bartha for discus-
sions.

A Application Security on Android

As discussed in the paper, the main point of weakness for the iPhone example
is that the PIN allows access to several further accounts on the phone. Whilst
iPhones have no way of further protection against this [16], Android allows
locking of the applications so that even if the PIN is compromised, the attacker
cannot access individual apps. This is available in one way or another across
manufacturers.

A.1 Xiaomi/POCO/MI

These brands of phones provide the ability to lock individual apps by default.
They allow choosing a custom PIN, however, with the limitation that one has
to use the same pin for all the locked apps.

A.2 ONE Plus

ONE Plus phones give the ability to lock individual apps, each with a custom
PIN, Password, or pattern.

A.3 Samsung

Samsung provides a “Secure Folder” feature, a folder locked by custom PIN,
Password or pattern, where you can move all your private apps (Similar to
Xiaomi/POCO/MI in terms of protection). We also note that this brand provides
nice guidance on relative security of the three options.

A.4 Huawei/Honor/ASUS

These three brands allow for locking individual apps, each with custom PIN,
Password, or pattern (as previous). This is done with an App called AppLock,
which comes preinstalled on these devices.

A.5 ALL

Just like for Huawei, Honor and ASUS, we note that AppLock can be installed
from the Google store, so any android device can achieve the same level of
security. We note that the homonymous app on iPhones seems to have reduced
functionality, i.e. only allows locking of photos and files. This is largely due to
the sandboxing present on iOS devices.

Tactics for Account Access Graphs 469

References

1. Abraham, M., Crabb, M., Radomirović, S.: “I’m doing the best I can” - understand-
ing technology literate older adults’ account management strategies. In: Parkin,
S.E., Viganò, L. (eds.) Socio-Technical Aspects in Security - 11th International
Workshop, STAST 2021, Virtual Event, 8 October 2021, Revised Selected Papers.
LNCS, vol. 13176, pp. 86–107. Springer, Cham (2021). https://doi.org/10.1007/
978-3-031-10183-0 5

2. Arnaboldi, L., Aspinall, D.: Towards interdependent safety security assessments
using bowties. In: Trapp, M., Schoitsch, E., Guiochet, J., Bitsch, F. (eds.) Com-
puter Safety, Reliability, and Security. SAFECOMP 2022 Workshops: DECSoS,
DepDevOps, SASSUR, SENSEI, USDAI, and WAISE Munich, Germany, 6–9
September 2022, Proceedings, pp. 211–229. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-14862-0 16

3. Blanchet, B., Smyth, B., Cheval, V., Sylvestre, M.: ProVerif 2.00: automatic crypto-
graphic protocol verifier, user manual and tutorial. Version from, pp. 05–16 (2018)

4. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook: Formerly Notes
and Reports in Computer Science and Applied Mathematics. Elsevier, New York
(2014). https://doi.org/10.1016/C2013-0-10412-6

5. Budde, C.E., Kolb, C., Stoelinga, M.: Attack trees vs. fault trees: two sides of
the same coin from different currencies. In: Quantitative Evaluation of Systems:
18th International Conference, QEST 2021, Paris, France, 23–27 August 2021,
Proceedings, pp. 457–467. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-85172-9 24

6. Cavaglieri, C.: Weak banking security is leaving customers vulnerable to fraud on
stolen phones, Which? warns, May 2023

7. Gordon, M., Milner, R., Morris, L., Newey, M., Wadsworth, C.: A metalanguage
for interactive proof in LCF. In: Proceedings of the 5th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pp. 119–130 (1978). https://
doi.org/10.1145/512760.512773

8. Hammann, S., Crabb, M., Radomirović, S., Sasse, R., Basin, D.A.: “I’m surprised
so much is connected”. In: Barbosa, S.D.J., et al. (eds.) CHI 2022: CHI Con-
ference on Human Factors in Computing Systems, New Orleans, LA, USA, 29
April 2022–5 May 2022, pp. 620:1–620:13. ACM (2022). https://doi.org/10.1145/
3491102.3502125

9. Hammann, S., Radomirović, S., Sasse, R., Basin, D.: User account access graphs.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2019, pp. 1405–1422, New York, NY, USA. ACM (2019).
https://doi.org/10.1145/3319535.3354193

10. Honan, M.: How Apple and Amazon Security Flaws Led to My Epic Hacking.
Wired, August 2012

11. Rapid7 LLC. Metasploit framework. https://github.com/rapid7/metasploit-
framework. Accessed 27 May 2023

12. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

13. Palmer, A.: Here’s how the recent Twitter attacks probably happened and why
they’re becoming more common, September 2019

https://doi.org/10.1007/978-3-031-10183-0_5
https://doi.org/10.1007/978-3-031-10183-0_5
https://doi.org/10.1007/978-3-031-14862-0_16
https://doi.org/10.1007/978-3-031-14862-0_16
https://doi.org/10.1016/C2013-0-10412-6
https://doi.org/10.1007/978-3-030-85172-9_24
https://doi.org/10.1007/978-3-030-85172-9_24
https://doi.org/10.1145/512760.512773
https://doi.org/10.1145/512760.512773
https://doi.org/10.1145/3491102.3502125
https://doi.org/10.1145/3491102.3502125
https://doi.org/10.1145/3319535.3354193
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

470 L. Arnaboldi et al.

14. Pöhn, D., Gruschka, N., Ziegler, L.: Multi-account dashboard for authentication
dependency analysis. In: ARES 2022: The 17th International Conference on Avail-
ability, Reliability and Security, Vienna, Austria, 23–26 August 2022, pp. 39:1–
39:13. ACM (2022). https://doi.org/10.1145/3538969.3538987

15. Stern, J., Nguyen, N.: A basic iPhone feature helps criminals steal your digital life.
Wall Street J. (2023). https://www.wsj.com/articles/apple-iphone-security-theft-
passcode-data-privacya-basic-iphone-feature-helps-criminals-steal-your-digital-
life-cbf14b1a. Accessed 27 May 2023

16. u/AncientBlueberry42. Reddit thread (and comments) - WSJ: a basic iPhone fea-
ture helps criminals steal your entire digital life, February 2023. https://www.
reddit.com/r/apple/comments/11awqv5/comment/j9uo56h/. Accessed 4 June
2023

17. Zhao, J., Ding, B., Guo, Y., Tan, Z., Lu, S.: SecureSIM: rethinking authentication
and access control for SIM/eSIM. In: ACM MobiCom 2021: The 27th Annual
International Conference on Mobile Computing and Networking, New Orleans,
Louisiana, USA, 25–29 October 2021, pp. 451–464. ACM (2021). https://doi.org/
10.1145/3447993.3483254

https://doi.org/10.1145/3538969.3538987
https://www.wsj.com/articles/apple-iphone-security-theft-passcode-data-privacya-basic-iphone-feature-helps-criminals-steal-your-digital-life-cbf14b1a
https://www.wsj.com/articles/apple-iphone-security-theft-passcode-data-privacya-basic-iphone-feature-helps-criminals-steal-your-digital-life-cbf14b1a
https://www.wsj.com/articles/apple-iphone-security-theft-passcode-data-privacya-basic-iphone-feature-helps-criminals-steal-your-digital-life-cbf14b1a
https://www.reddit.com/r/apple/comments/11awqv5/comment/j9uo56h/
https://www.reddit.com/r/apple/comments/11awqv5/comment/j9uo56h/
https://doi.org/10.1145/3447993.3483254
https://doi.org/10.1145/3447993.3483254

Machine-Checked Proofs
of Accountability: How to sElect Who is

to Blame

Constantin Cătălin Drăgan1, François Dupressoir2, Kristian Gjøsteen3,
Thomas Haines4, Peter B. Rønne5, and Morten Rotvold Solberg3(B)

1 University of Surrey, Guildford, UK
c.dragan@surrey.ac.uk

2 University of Bristol, Bristol, UK
f.dupressoir@bristol.ac.uk

3 Norwegian University of Science and Technology, Trondheim, Norway
{kristian.gjosteen,mosolb}@ntnu.no

4 Australian National University, Canberra, Australia
thomas.haines@anu.edu.au

5 CNRS, LORIA, Université de Lorraine, Nancy, France
peter.roenne@loria.fr

Abstract. Accountability is a critical requirement of any deployed vot-
ing system as it allows unequivocal identification of misbehaving parties,
including authorities. In this paper, we propose the first game-based def-
inition of accountability and demonstrate its usefulness by applying it to
the sElect voting system (Küsters et al., 2016) – a voting system that
relies on no other cryptographic primitives than digital signatures and
public key encryption.

We strengthen our contribution by proving accountability for sElect
in the EasyCrypt proof assistant. As part of this, we identify a few errors
in the proof for sElect as presented by Küsters et al. (2016) for their def-
inition of accountability.

Finally, we reinforce the known relation between accountability and
verifiability, and show that it is still maintained by our new game-based
definition of accountability.

1 Introduction

A system is accountable if, when something goes wrong, it is possible to judge
who is responsible based on evidence provided by the system participants. For
a voting system, this means that if we do not accept the outcome of an election,
the honest parties should be able to produce evidence that pinpoints who is to
blame, in the sense that they have not followed the protocol. This is in principle
trivial for some voting systems, such as the Helios voting system where each party
proves their correct behaviour using zero knowledge arguments. This is, however,
not trivial for every reasonable voting system, in particular voting systems with
complex ballot submission procedures, such as the Swiss Post voting system [21];
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 471–491, 2024.
https://doi.org/10.1007/978-3-031-51479-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_24&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_24

472 C. C. Drăgan et al.

in the Swiss Post case the system involves a complicated protocol between half a
dozen participants to decide if a ballot was cast by a valid voter and well-formed
and hence should be counted.

The sElect voting system [17] is an interesting case for accountability. Unlike
Helios, the system does not use any advanced cryptography, relying entirely on
secure public key encryption. The system uses nested public key encryption to
allow a very simple mixnet decryption. The voter creates a nested encryption of
their ballot and a random check value, each layer encrypted with a mix server
public key. Each mix server decrypts one layer of encryption, sorting the result
lexicographically to effect mixing. The last mix server simply outputs decrypted
ballots, together with the voter-specific check value. Voters verify that their
ballot is included in the count by checking that the ballot appears together with
the voter’s check value.

Informally, the sElect system is accountable because voters can reveal the ran-
domness used in the nested encryption, thereby enabling tracing of the encrypted
ballot through the mixnet, which will pinpoint which mix server did not correctly
decrypt.

Accountability might seem to be a fairly simple notion, but it is technically
difficult to find a definition that both captures accountability and is easy to
work with. This can be seen from the fact that no definition of accountability
seems to have been broadly accepted in the community. Also, when Küsters et
al. [17] apply the definition from [18] to sElect, there are a number of errors in
the result they claim; we will discuss these in greater length in Sec. 1.2. These
errors suggest that the existing accountability definitions are hard to work with.
In other words, there is a need for a workable general definition of accountability.

The simplicity of sElect comes at a cost, which is that the system is only
private for voters that accept the election outcome. This problem can be mit-
igated using the final cryptosystem trick from [12]; with this trick, “a sender
first encrypts her message under the “final” public key and uses this encrypted
message as an input to the protocol as described so far. This innermost encryp-
tion layer is jointly decrypted only if the protocol does not abort. If the protocol
does abort, only the encrypted values are revealed and privacy is protected by
the final layer of encryption.” However, using this mitigation in sElect would
require the voters’ devices to check the mix before the result is decrypted which
substantially complicates the protocol and delays the tally result, which would
be unacceptable in most cases.

Privacy is of course essential for voting systems, but we note that we are not
studying privacy in this paper, only accountability, since the privacy of sElect is
well-understood.

1.1 Our Contribution

This paper contains two main contributions: The first game-based definition of
accountability, and a proof of accountability for the sElect [17] voting system.
A variant of the latter proof has been formalised in the EasyCrypt [3] proof
assistant.

Machine-Checked Proofs of Accountability: How to sElect Who is to Blame 473

This game-based definition is significant because this style of definitions are
often easier to understand and work with. For security proofs, ease of under-
standing and use is a significant factor in getting things right and later verifying
that things are indeed correct. Further, it allows us to use existing tools for
game-based proofs, specifically EasyCrypt, to formally verify security.

The accountability proof for sElect is significant, first because it demonstrates
that our new definition of accountability works. Second, the sElect voting system
is interesting because it is so simple, requiring no other primitives than digital
signatures and public key encryption. Proving security properties for interesting
voting systems is intrinsically interesting.

As we have seen, informal arguments sometimes contain errors. A proof for-
malised in EasyCrypt is significant, in that it ensures that we have no errors in
arguments, making the overall security proof easier to verify.

In addition to the main contribution, we also make the relation between
verifiability and accountability precise, in the sense that accountability implies
verifiability (when suitably defined). This is a significant result, suggesting that
future system designers should focus on achieving accountability.

1.2 Related Work

To the best of our knowledge, no game-based definition of accountability has
been proposed earlier. However, several definitions of accountability (for general
security protocols, not only electronic voting protocols) have been proposed in
the symbolic model. Bruni et al. [5] propose a general definition amenable to
automated verification. Künnemann et al. [16] give a definition of accountabil-
ity in the decentralised-adversary setting, in which single protocol parties can
choose to deviate from the protocol, while Künnemann et al. [15] give a defini-
tion in the single-adversary setting, where all deviating parties are controlled by
a single, centralised adversary. Morio & Künnemann [19] combine the definition
from [15] with the notion of case tests to extend the definition’s applicability to
protocols with an unbounded number of participants. Furthermore Küsters et
al. [18] put forward quantitative measures of accountability both in the symbolic
and computational model. Similar for all these definitions is that they clearly
distinguish between dishonest parties and misbehaving parties. Even though a
party is dishonest (controlled by an adversary), it does not necessarily deviate
from the protocol and cause a violation of the security goal. In such cases, the
party is not misbehaving and should not be held accountable for anything.

While no game-based definition of accountability has been proposed, game-
based definitions for other voting-related security properties do exist in the lit-
erature. Some of these definitions have also been formalised in the proof assis-
tant EasyCrypt [3], with related machine-checked proofs for a variety of voting
protocols. Cortier et al. [6] formalise a game-based definition of ballot-privacy
called BPRIV [4] in EasyCrypt and give a machine-checked proof that Labelled-
MiniVoting [6] and several hundred variants of Helios [2] satisfy this notion
of ballot privacy. Cortier et al. [7] build on work from [6] and also formalise
a game-based definition of verifiability in EasyCrypt, in addition to giving a

474 C. C. Drăgan et al.

machine-checked proof that Belenios [9] is ballot-private and verifiable. Drăgan
et al. [10] formalise the mb-BPRIV ballot privacy definition [8] in EasyCrypt and
give a machine-checked proof that Labelled-MiniVoting and Belenios satisfy this
definition. They also propose a new game-based ballot privacy definition called
du-mb-BPRIV, which is applicable to schemes where voter verification can or
must happen after the election result has been computed, and give a machine-
checked proof that Labelled-MiniVoting, Belenios and Selene [20] all satisfy this
definition.
Problems in the Küsters et al. [17] Accountability Proof. In carefully analysing
sElect we became aware of two errors in the Accountability theorem which we
detail below; to our knowledge these errors have not previously been documented
in the literature. There is a significant complexity in the parameters used in
Theorem 3 (Accountability) in the full version of sElect [17], but fortunately
this is largely orthogonal to the points we need to discuss.

Ballot Stuffing The goal for which accountability is proven (see Definition 1
in [17]) somewhat implicitly requires that the multiset containing the election
result contains at most n elements, where n is the number of voters. However,
no argument is made in the proof that the judge will hold anyone accountable
if there are more than n ballots. Both the pen-and-paper description and the
implementation of sElect omit any checks which would catch the addition of
ballots by the mix servers, and it seems that the authentication server could
also stuff ballots though this would be more involved. As significant as this
vulnerability is, it is easy to fix and we have done so in the version of sElect
we prove accountability for.

Honest Nonce Collision A described above, the goal the theorem aims for
uses multisets and hence if multiple honest voters vote for the same choice
we expect to see at least that many copies of the choice in the output; this
is somewhat complicated in sElect by the augmentation of voter choices with
nonces. The mechanism which sElect uses to detect ballots being removed
relies on the plaintext encrypted by the honest voters being unique; however,
this does not happen when the nonces and choices of the honest voters collide.
The chance of such collision should appear in the security bound of account-
ability for sElect unless it is explicitly negligible in the security parameter.
Strangely, sElect will drop these votes even with no adversarial involvement
since the protocol specifies that the final mix server (like all others) should
filter its output for duplicates. We note that the probability of collisions does
appear in the verifiability theorem and proof.

2 Game Based Accountability

In this section we present our game based definition of accountability for elec-
tronic voting protocols, and we start by presenting the parties and their roles.

Machine-Checked Proofs of Accountability: How to sElect Who is to Blame 475

2.1 Parties

We consider the following parties and their role in the election process.

Voting Authority VA that sets up the election process, generates public param-
eters, defines voter eligibility, etc. The election secret keys are managed by
separate parties, called decryption and mixnet authorities.

Decryption and Mixnet Authorities MSi(mski,mpki) that manage together
the decryption process, and each party has been allocated a part of the
decryption key/election secret key. This is typically done by decryption or re-
encryption together with shuffling of ballots/votes to break the link between
recorded ballots and the votes.

Authentication Server AS(ask, apk) issues confirmation tokens that ballots
were recorded as cast, typically under the form of signatures.

Judge J assigns blame to misbehaving parties based on publicly available data
and voter reported evidence. We model this by having an algorithm Judge.

Voters idi that cast their vote vi. The voting process is facilitated by a voting
supporting device VSD that builds ballots for the user and then casts them.

Bulletin board BB stores publicly verifiable information relevant to an election,
e.g. ballots, mixnet outcomes, and election outcome. The bulletin board may
be divided into subcomponents such as a list of submitted ballots or the
election outcome.

2.2 Voting System

The election process is defined by the following tuple of algorithms.

Setup(): This algorithm produces the public election data pd and the secret elec-
tion data sd. This is done by interaction between VA, MS0, . . . ,MSk, and
potentially AS.

Vote(pd, v): This algorithm builds the ballot b based on the vote v and public
data pd. Additionally, it produces the internal state of the voter, state, to
facilitate the verification process later.

ASCreate(ask, b): This algorithm produces a token σ that the ballot b has been
received and accepted by the authentication server AS(ask, apk).

ASVerify(pd, b, σ): This algorithm verifies if the token σ is valid for the ballot b
and public data pd.

Tally(sd,BB): This algorithm models the sequence of calls to the mixnet and
decryption authorities to produce the election outcome.

VSDVerify((state, b, σ), pd,BB): Checks if the system has followed the required
processes for this user’s vote and ballot, and it outputs ⊥ if no misbehaving
party has been identified. Otherwise, it returns the misbehaving party and
the corresponding evidence.

Judge(pd,BB,E): It checks that the publicly available data is valid with respect
to some predefined metrics and against the list of evidence E. It returns the
error symbol ⊥ if no misbehaving party has been identified; otherwise, it
outputs the misbehaving party B. As all checks can be replicated publicly, it
does not need to return evidence.

476 C. C. Drăgan et al.

Fig. 1. The new game-based security notion for accountability. BBvote and BBdec

denote different subcomponents of the bulletin board, respectively ballots submitted
through Ovote and information produced by tallying.

The following algorithm is unbounded, but is only part of the security exper-
iment and will not be run during an election.

Bad(pd,BB,E,V): This unbounded algorithm serves to provide a ground truth
of which parties misbehaved. By the requirements of our definition, it always
blames a party when the election result does not reflect the votes of voters -
given the public data pd, the bulletin board BB, the list of evidence E, and the
internal state of honest voters V. Optionally, it may detect whether a party
has deviated from the protocol in a way which does not change the election
result. It should never blame an honest party.

2.3 Accountability

We consider that the adversary has full control over all parties introduced in
Sect. 2.1, except the Judge. The adversary can also incorporate their own evi-
dence to Judge. If a party deviates from the protocol steps, then that party
becomes misbehaving and could be identified and blamed by either Judge or Bad.
However, if the party follows exactly the protocol steps we call that party behav-
ing, independent of them being honest or dishonest (corrupted by the adversary).

The formal accountability definition is found in Fig. 1. The first step for the
adversary is to start the election process and provide the public data pd. Then,
the adversary runs the voting and tally phase and commits to the current state
of the bulletin board BB, together with a list of all authentication tokens tL.
During the voting phase, the adversary can make use of the oracle Ovote to
replicate the behavior of behaving voters and build their ballot b and internal
state state.

To capture the natural behavior of behaving and honest voters that would
check their tokens and complain before the tally is provided, we incorporate an

Machine-Checked Proofs of Accountability: How to sElect Who is to Blame 477

automatic lose condition for the adversary if any of the provided tokens for those
voters cannot be verified by ASVerify; this approach is similar to that taken by
Küsters et al. [17] in their (non-game based) accountability proof of sElect.

Verification is done as a two-stage process, first by collecting evidence E from
all honest voters (those that used Ovote and whose internal states are stored in
V) and from the adversary A(E); and secondary by calling Judge to check the
public data together with that evidence. The Judge is responsible for providing
either a misbehaving party B if there is enough evidence to do so, or ⊥ if nothing
could be detected. The adversary wins if one of the following happens:

Fairness: Judge wrongly blames a party B when it did not misbehave. This is
checked by running the Bad algorithm to identify all misbehaving parties in
the system and check whether B has been included, or

Completeness: the result is not consistent with the honest votes but no one
is blamed. This is done by Judge producing ⊥ when an honest voter’s ballot
was dropped, or there are more submitted ballots than there are voters, or
more ballots in the election outcome than the number of ballots that were
cast in the first place.

Definition 1 (Game-Based Accountability). Let V be a voting system as
defined in this section. We say that V satisfies GBA if for any efficient adversary
A their advantage is negligible in λ:

AdvgbaA,V(λ) = Pr
[
ExpGBAA,V (λ) = 1

]
.

Our adversary winning conditions aligns our definition with the one from
Küsters et al. [17], such that any voting system that satisfies our accountability
definition will also satisfy the one by Küsters et al. [17] (with the goal used for
sElect), with some possible caveats about the casting of schemes between the
two definitions. We expand on this in Sect. 3.3.

3 sElect

In this section we introduce sElect [17] using the format of Sect. 2; we focus on
the elements with are important for accountability and omit some orthogonal
details. The formal description is in Fig. 2. We denote by BBvote,BBmix and
BBdec the different subcomponents of BB: respectively the submitted ballots,
data produced by the mixnet and the election outcome, which is a list of plaintext
votes.

3.1 Cryptographic Primitives

The voting system sElect relies on two basic cryptographic primitives: an IND-
CCA2 encryption scheme E = (KeyGen,Enc,Dec) and an EU-CMA signature
scheme S = (KeyGen,Sign,SigVerif). To make the encryption scheme compatible
with decryption mixnets it needs to allow nested encryptions. Typically, this is

478 C. C. Drăgan et al.

Fig. 2. Algorithms defining the sElect voting scheme with an IND-CCA2 secure pub-
lic key encryption system E = (KeyGen,Enc,Dec) and an EU-CMA secure signature
scheme S = (KeyGen, Sign, SigVerif).

done through a hybrid cryptosystem [1], by combining hybrid ElGamal and AES
in a suitable mode such that each encryption contains an AES encryption of the
message under a random AES key and an ElGamal encryption of the AES key.

As part of the formalisation for the shuffling done by the mixnet servers
MS0, . . . ,MSk, we consider the operators lex for sorting a list in lexicographic
order, and undup for removing duplicates. We additionally have that the authen-
tication authority AS runs S.

3.2 sElect Algorithms

Setup(): The authentication server key pair (apk, ask) is generated by S.KeyGen,
and the mixnet servers key pairs (mpki,mski) are computed by E.KeyGen.
The algorithm returns the public data pd = (apk,mpk0, . . . ,mpkk) and secret
data sd = (ask,msk0, . . . ,mskk).

Vote(pd, v): The algorithm samples a supporting device verification code n
such that it can be used later by the voter to ensure their vote was
counted. sElect also considers a short voter verification code nvoter that
has no security assumptions (for accountability); we have included that
code together with the voter’s candidate choices c as part of the vote
v = (nvoter, c). The algorithm sets αk+1 = (n, v) and uses a series of encryp-
tions αi ← Enc(mpki, αi+1, ri) to build the ballot α0 and internal state
state = (αk+1, αk, rk, . . . , α0, r0), given some random coins r0, . . . , rk ∈ Zp.

ASCreate(asd, α0): It returns a signature σ by calling S.Sign over the ballot α0.

Machine-Checked Proofs of Accountability: How to sElect Who is to Blame 479

ASVerify(pd, α0, σ): This algorithm calls S.SigVerif to check if the signature σ is
valid for the ballot α0.

Tally(sd,BB): Given the ballot box �−1 = BBvote, this algorithm runs each mixnet
MSi over �i−1 to produce �i, for i ∈ {0, . . . , k}. Each mixnet MSi, ensures first
that the inputs are in lexicographic order and contain no duplicates, before
decrypting all ciphertexts received as inputs, and finally outputting them in
lexicographic order and without duplicates. The last mixnet server produces
the election outcome BBdec = �k. The algorithm returns the mixing info
BBmix = (�0, . . . , �k−1) and election outcome BBdec.

VSDVerify((state, α0, σ), pd,BB): Voters check the output of each mixnet server
by using their internal state (αk+1, αk, rk, . . . , α0, r0). The voter blames a
mixnet server MSi if they see that their ciphertext αi+1 is in the input list of
that server, but the ciphertext αi is not in the output list. Recall that αi has
been created by encrypting αi+1 under that server’s public key mpki: αi ←
Enc(mpki, αi+1, ri); thus, (αi+1, ri) can be used as evidence of misbehaviour
of MSi. The voter also checks that their ballot α0 has been included in the
ballot box BBvote, and blames the authentication server AS if that has not
happened, using the signature σ the user received during voting as evidence.
This step can be done at any point in the election if one considers an ideal
bulletin board, or at the end of an election under weaker trust assumptions
over the bulletin board [11].

Judge(pd,BB,E): This algorithm does an initial round of checks over the public
data before evaluating the collected evidence E. The verification of public
data consists of

– Ensuring that the public data is valid - that is, the public keys are group
elements. If this is not true, then the voting authority VA is blamed as it
allowed the election to run.

– Checking that the size of the ballot box does not exceed the number of
voters and that the ballot box has been ordered lexicographically and
duplicates have been removed. Otherwise, the authentication server AS is
blamed.

– Checking that each mixnet server output is in lexicographic order and
has no duplicates, and that the size of the output list does not exceed
the size of the input list. If these properties do not hold for mixnet server
MSi then the algorithm blames this mixnet server.

Once all the public data has been verified, the algorithm looks at the evidence
collected by voters from their VSDVerify algorithm:

– Evidence (α0, σ) against AS. If the evidence contains a valid signature σ
for a ballot α0 not in the ballot box, then the authentication server AS is
blamed.

– Evidence (αi+1, ri) against MSi. If the evidence shows that αi ←
Enc(mpki, αi+1, ri) is in the input list of this server, but αi+1 is not in
the output, then this mixnet server is blamed.

Bad(pd,BB,E,V): This algorithm uses a computationally unbounded algorithm
sd ← Extract(pd) to obtain the secret keys of all authorities sd from their
public data pd; similar to the vote extraction algorithm from [13,14]. Extract

480 C. C. Drăgan et al.

will never fail to return something as it will see any bitstring in the public
data as a group element. However, it may not produce meaningful data or
the real secret keys if these do not exist.
Bad uses the secret data from Extract to re-run the election tally and perform
all verification steps to identify misbehaving parties. It looks at the validity of
the public data pd and ballot box BBvote using the same methods employed
by Judge. Then, it re-creates for each mixnet server MSi its estimated output
�′
i and blames that party if their estimated output �′

i is different from the
declared output �i. This type of check already includes the checks on the
evidence submitted by voters against mixnet servers. Finally, it performs the
checks on the evidence against the authentication server AS.

3.3 EasyCrypt Proof

Informally, we prove that the probability that the adversary is able to pro-
duce valid public data, a valid bulletin board and valid signatures, while at the
same time violating either fairness or completeness, is negligible. We assume
throughout the proof that the public key encryption scheme used to encrypt
and decrypt ballots is perfectly correct, i.e. if we let E = (KeyGen,Enc,Dec) be
the (IND-CCA2 secure) PKE used in sElect, then we assume that for all key
pairs (pk, sk) output by KeyGen and for all plaintexts m in the message space,
we have Dec(sk,Enc(pk,m)) = m. As we assume that sElect is implemented with
hybrid encryption of ElGamal and AES (cf. Section 3.1), this assumption holds.
Under this assumption, the probability that the adversary violates the fairness
aspect of accountability is in fact 0. The probability that the adversary violates
the completeness aspect of accountability, is related to whether or not nonce
collisions occur, i.e. whether or not the devices of two or more honest voters
sample the same nonce.

Theorem 1. Let sElect(E,S) be defined as in Fig. 2 for an IND-CCA2 encryp-
tion scheme E and an EU-CMA signature scheme S. Then, for all PPT adver-
saries A against GBA, we have

AdvgbaA,sElect(λ) ≤ Pr[Col] ,

where Col is the event that a collision occurs in the nonces chosen by the voters’
devices.

The proof sketch can be found in App. A.

Differences between our paper proof and EasyCrypt proof. The main difference
in the above proof and the proof formalised in EasyCrypt1 is that in EasyCrypt
we let the adversary choose both the plaintext vote and the verification nonce
and compress this into a single plaintext. Under the assumption that the choices
made by the adversary are unique, this allows us to use sets rather than multisets

1 The EasyCrypt code can be accessed from https://github.com/mortensol/acc-select.

https://github.com/mortensol/acc-select

Machine-Checked Proofs of Accountability: How to sElect Who is to Blame 481

in EasyCrypt which is technically easier. In some sense this is however also a
stronger result than above since it proves accountability even in the case where
the nonces are adversarially chosen, but still unique. What is not proven in Easy-
Crypt is the probability of a collision happening, but for uniform distributions of
nonces this is the well-known birthday paradox which is not interesting for the
present paper to verify in EasyCrypt. Finally, keeping a general collision prob-
ability for the full plaintext consisting of device-generated nonce, voter-chosen
nonce and plaintext vote is more general, and cannot be assumed to be uni-
formly random in practice, but can be bounded by the birthday probability on
the device-generated nonces.

4 Relation to the Küsters et al. Definition

In this section we relate the above presented definition of accountability, GBA,
to the one by Küsters et al. [18], which we denote AccKTV . More precisely, we
sketch a proof that for the class of voting schemes expressible in our definition,
if they satisfy GBA for a certain definition of Bad then they must be accountable
under AccKTV with a standard goal.

Consider a voting scheme as defined in Sect. 2, consisting of a voting authority
VA, decryption authorities DA, mixnet authorities MS, authentication server AS,
voters idi with voter supporting devices VSDi, and bulletin board BB. We
assume there are authenticated channels from the VSDs to the AS. We assume
that each VSD has one authenticated and one anonymous channel to the BB.
We assume that all communication is authenticated with signatures with the
exception of the anonymous channel and for simplicity omit the description of
this occurring from the exposition below.

4.1 Modeling

A voting scheme of this kind can be modeled in the framework of [18] in a
straightforward way as a protocol P(n,m, q, μ, pverifvoter , p

verif
abst). We refer to [18]

for the notation used. We denote by n the number of voters and supporting
devices, by m the number of mix servers, by q the number of decryption servers.
By μ we denote the probability distribution on the set of candidates/choices,
including abstention. We denote by pverifvoter and pverifabst the probability that the
voting voter will verify and an absenting voter will verify respectively.2

We define Φk as the accountability property consisting of the constraints:

χi → dis(idi) ∨ dis(AS), χ′
i → dis(idi) ∨ dis(AS)

¬γk ∧ ¬χ → dis(VA)|dis(AS)|dis(DAi)
q
i=1|dis(MSj)mj=1

where

2 Absenting voters verify that their identifier is not included on the list published by
the AS.

482 C. C. Drăgan et al.

γk contains all runs of the protocol where at most n votes are in the result and
where at most k of the honest votes are not included in the result. See [17]
for a formal definition and discussion of this goal.

χi contains all the runs of P where the voter i complains they did not get a
receipt.

χ′
i contains all the runs of P where the voter i complains they did not vote but

a vote was cast on their behalf.
χ contains the union of all runs in χi and χ′

i for all i ∈ [1, ..., n]

4.2 Result

Let Bad be defined as follows: Bad returns all parties whose output is not in
the co-domain of the honest algorithms. When parties are called multiple times
on different algorithms and pass states, we take the co-domain over all possible
states consistent with their early public output.

Let the JudgeKTV algorithm for AccKTV in [18] be constructed as follows:

(J1) first it runs Judge (from our definition) and if this outputs blame, then
JudgeKTV blames the party returned by Judge.

(J2) If no valid complaints were made by the voters causing blame, the judge
checks the complaints posted by the voters. If there is any such complaint
then JudgeKTV blames (disjunctively) both the party accused and the voter
accusing.

Definition 2 (Voter Verification Correct). For a scheme π we say that it
is voter verification correct if for all runs of the protocol the party blamed by
VSDVerify is in the set output by Bad or it blames the AS after receiving an
invalid confirmation.

Theorem 2 (GBA implies AccKTV). Let the judge JudgeKTV and algorithm
Bad be defined as above. Then for any scheme which has GBA and voter verifi-
cation correctness, JudgeKTV ensures

(
Φk, δ

k(pverifvoter , p
verif
abst)

)
-accountability for

P(n,m, q, μ, pverifvoter , p
verif
abst) where

δk(pverifvoter , p
verif
abst) = (1 − min(pverifvoter , p

verif
abst))k+1.

Due to space constraints, we detail this in App. A. The proof relies on
analysing fairness and completeness for the two definitions.

Machine-Checked Proofs of Accountability: How to sElect Who is to Blame 483

5 Verifiability

In this section we show that our definition of accountability implies verifiability;
a relation already shown in the framework of Küsters et al. [18]. To prove this
implication here, we introduce a new game-based definition of verifiability, that
we formalize via the experiment ExpVer

A (λ) in Fig. 3.3 Our definition of verifia-
bility ensures individual verifiability and no ballot stuffing during tally, and is
appropriate for lightweight voting systems like sElect. Our definition is modular,
and can be enhanced to model stronger notions of verifiability (e.g., universal ver-
ifiability or no ballot stuffing at submission time); however, to achieve them vot-
ing systems will require heavier cryptographic primitives, likes zero-knowledge
proofs for correct tallying or shuffling.

We consider I the set of eligible voter IDs, and we introduce algorithm
VoterVerif that enables voters to verify their vote. We keep track of voters that
successfully verified using the set Checked and we raise the flag Complain when
verification fails. The adversary can choose which voters verify via the oracle
OVerify(id). Additionally, the adversary uses the vote oracle OVote to model
honest voters (re-)casting their votes; we focus on the last vote counts policy,
but this can easily be generalized for any policies.

The adversary also controls the bulletin board BB, however anyone can per-
form UniversalVerification(pd,BB) to universally verify this state. We further use
ResultConsistency(BB,Checked, . . .) to model the consistency relations on the bul-
letin board, and can depend on the different subcomponents of BB: list of sub-
mitted ballots BB|submit, the election result BB|res and extra info BB|extra.

Consider the election result function ρ : Cand∗ 	→ Res as a symmetric function
from the set of plaintext votes, chosen from the space of candidates Cand, to a
given result set Res. Using V[S] the corresponding list of plaintext votes from
the vote oracle, we model

– Individual Verifiability: Intuitively this should ensure that the verified votes
are all included in the tally. Using the verification oracles OVerifyi, i =
1, . . . , k we denote the successful verifiers Checked. The constraint from
ResultConsistency is ∃v1, . . . , vi ∈ Cand, i + |Checked| ≤ |I|:

ρ(v1, . . . , vi,V[Checked]) = BB|res
where we have slightly abused notation for readability. We have included a
constraint on the number of malicious votes since if the result function allows
cancelling votes the inclusion of the honest votes would make little sense if
the adversary can add malicious votes arbitrarily.

– No Ballot Stuffing at Tally Time: |I| ≥ |BB|submit| and ∃i ≤ |BB|submit|
∃v1, . . . , vi ∈ Cand : ρ(v1, . . . , vi) = BB|res, i.e. there is at most as many
submitted ballots as eligible voters and the result is consistent with a number
of votes that is less than or equal to the submitted ballots.

3 In the game, we use the notation “Require” for if · · · else return ⊥.

484 C. C. Drăgan et al.

Fig. 3. Verifiability assuming uncorrupted vote-casting.

In the case of schemes where all the decrypted votes are displayed individually
in BB|res, especially this holds for the mixnet-tally schemes, the slightly stronger
statement can be made that

|I| ≥ |BB|submit| ≥ |BB|res| ∧ V[Checked] ⊆ms BB|res , (1)

where we use V[Checked] and BB|res as multisets.
We define verifiability given a chosen ResultConsistency if any efficient adver-

sary has negligible advantage in ExpVer
A (λ). In particular, we define verifiability

for voting systems with the result being the plaintext votes as:

Definition 3. We say that a voting system V, with result function being the set
of votes, satisfies individual verifiability and no ballot stuffing at tally time if for
any efficient adversary A their advantage AdvverA,V(λ) = ExpVer

A,V(λ) is negligible
in λ, where ResultConsistency checks Eq. 1.

We note that there are some verifiability properties that sElect does not fulfill
but could be easily captured by the ResultConsistency or separate games, namely

– Tally Uniqueness: The adversary cannot produce two boards both satisfying
UniversalVerification and individual verifications but with different tally results
and having the same submitted ballots BB|submit.

– Universal Verifiability: Here ResultConsistency requires that the result is the
same as the result from votes extracted from the valid ballots in BB|submit

given only that the board satisfies UniversalVerification(pd,BB).

5.1 Accountability Implies Verifiability

We will now prove that the GBA accountability definition implies verifiability
for individual verifiability and no ballot stuffing as defined in Def. 3. However,
in order to do so, we need to relate the Judge and the VSDVerify algorithms used

Machine-Checked Proofs of Accountability: How to sElect Who is to Blame 485

in ExpGBAA,V (λ) with the algorithms UniversalVerification and VoterVerif used in
ExpVer

A,V(λ). Especially, the verifiability definition does not consider the authen-
tication server AS and its signatures, since it is not relevant for defining verifia-
bility. To this end we make the following definition for a voting system V fitting
both the accountability and the verifiability framework:

Definition 4. We call a voting system V accountability-verifiability-correct if
the signature part for AS is an independent part that can be removed to give
a reduced system valid for the verifiability framework, or correspondingly added.
Further, the Judge will never output blame if all verification checks by the verify-
ing voters using VSDVerify does not output blame and UniversalVerification = .
Further, VSDVerify((state, b, σ), pd,BBvote,BBmix,BBdec) will not output blame
if ASVerify(pd, b, σ) = and VoterVerif((state, b), pd,BB) = .

Theorem 3. Given an accountability-verifiability-correct voting system, then
accountability as defined in Definition 1 implies individual verifiability and no
ballot stuffing at tally time as defined in Definition 3 assuming the AS sig-
nature scheme is perfectly correct and we have a constant number of voters.
More precisely for any efficient adversary A against ExpVer

A,Vr
(λ) with advantage

AdvverA,Vr
(λ) in the reduced system Vr without signatures, we can construct an

adversary B against ExpGBAA,V (λ) with advantage at least 1
2|I|Adv

ver
A,Vr

(λ).

Due to space constraints the full proof is in Appendix A.
It follows from Theorem 1 and Theorem 3 that sElect fulfills individual ver-

ifiability and no ballot stuffing at tally time as defined in Definition 3.

6 Concluding Remarks

We study notions of accountability for electronic voting, and produce the first
game-based notion of accountability for mix-based electronic voting schemes.
We relate our notion to Küsters et al’s quantitative notion, arguing that they
coincide at the extremes of the parameter range.

We demonstrate the value of such a game-based notion by formalising it in
EasyCrypt, and produce a machine-checked proof of accountability-as we define
it-for Küsters et al.’s sElect protocol, discussing issues with previous account-
ability results for sElect as we go. Finally, we use our new game-based definition
of accountability to study the relationship between accountability, verifiability,
demonstrating in particular that accountability implies verifiability.

Generalisation Beyond sElect. We framed our discussions, and our definitions,
with sElect. However, our definitions would also somewhat trivially apply to
other voting schemes. In particular, as mentioned in the introduction, any scheme

486 C. C. Drăgan et al.

making judicious use of sound zero-knowledge proofs for verifiability can be triv-
ially argued to be accountable: an adversary who is able to break accountabil-
ity with sound zero-knowledge proofs does so either by breaking soundness of
the zero-knowledge proof systems, or by breaking accountability of a scheme in
which verification for the zero-knowledge proofs is idealised to reject any proof
that was not produced as is by the prover-relying then only on the correctness
of the encryption scheme as in our sElect proof. Although this argument is easy
to make on paper, formalising it in EasyCrypt on existing formal definitions for
Helios (for example) would involve effort incommensurate to its scientific value
as part of this specific paper.

Beyond Accountability. Capturing accountability as a game-based notion is not
just useful to allow a more precise analysis of accountability. By doing so, we
hope to open the way to the study of privacy and security properties of voting
schemes with dispute resolution. Formally taking into account dispute resolution
requires a precise understanding of the individual and overall guarantees offered
by verifiability in terms of the accuracy of the election result.

Acknowledgment. T. Haines is the recipient of an Australian Research Council
Australian Discovery Early Career Award (project number DE220100595). C. C.
Drăgan is supported by EPSRC grant EP/W032473/1 (AP4L), EU Horizon grants
101069688(CONNECT) and 101070627 (REWIRE). P. Rønne received funding from
the France 2030 program managed by the French National Research Agency under
grant agreement No. ANR-22-PECY-0006.

Appendix A Sketch of Proof of Theorem 1

We now sketch the proof of Theorem 1. We begin by defining two new games:
a fairness game Gf and a completeness game Gc. These games are almost
identical to the original security game, with the exception that in Gf , we
remove the variable ec from the experiment and only consider the fairness
aspect of accountability, while in Gc, we remove the variable ef and only
consider the completeness aspect of accountability. Let Ef resp. Ec be the
event that the game Gf resp. Gc returns 1. It is straightforward to see that

Pr
[
ExpGBAA,sElect(λ) = 1

]
≤ Pr[Ef] + Pr[Ec]. Thus, the adversary has two possi-

bilities to win. Either Judge has blamed an innocent party, or it has blamed no
one, but the result is inconsistent with the honest votes. We analyze the fair-
ness and completeness aspects separately, and argue that the adversary has zero
probability of winning the fairness game and negligible probability of winning
the completeness game.

We begin with fairness. We will consider each way in which the judge may
blame a party and show that it will never blame a party that did not misbehave.

Machine-Checked Proofs of Accountability: How to sElect Who is to Blame 487

Recall the various checks performed by the judge: The judge first checks that
the public keys used by the authentication server and the mix servers are valid.
If not, it will blame the voting authority as it allowed the election to run with
invalid keys. Note that Bad will also blame the voting authority if the keys
are invalid (but not otherwise), meaning that the voting authority will only be
blamed by the judge if it indeed misbehaved. As invalid keys will result in the
voting authority being blamed by both the judge and by Bad, we assume for the
remainder of the proof that all the public keys are valid.

The judge then checks that the bulletin board BBvote is valid, i.e. that it
contains at most Nv elements and that its contents are in lexicographic order
and duplicate-free. If this check fails, the judge blames the authentication server.
If this is the case, the authentication server will also be blamed by Bad, ensuring
that if AS is blamed for producing an invalid board, it must indeed have mis-
behaved. Next, the judge checks that the output of each mix server contains at
most as many elements as in its received input and that the output of each mix
server is duplicate free and in lexicographic order. Since an honest mixer filters
out duplicates and sorts the output list, it will always pass this check.

The judge then checks, for all ciphertext and signature pairs in the evidence
list whether or not there is a ballot with a valid signature that is not present on
BBvote. Since an honest authentication server only authenticates the first ballot
from each voter, and posts all these on the bulletin board, it will always pass
this check. Note that if a dishonest voter blames the authentication server with
valid evidence, the Bad algorithm will also blame the authentication server, and
thus the judge will not blame the authentication server unless it is also blamed
by Bad. Finally, Judge checks, for any triple (mpki, αi+1, ri), whether or not
Enc(mpki, αi+1; ri) is in the input to the ith mix server, but αi+1 is not in its
output. Since the encryption system is correct, Enc(mpki, αi+1; ri) will decrypt
to αi+1 and since an honest mix server does not remove any ciphertexts other
than duplicates, it will always pass this check. In summary, Judge will never
blame an honestly behaving party, and thus, the adversary has zero probability
of winning the fairness game.

We now move on to completeness and bound the adversarial advantage in
the completeness game, i.e. that if extra ballots are added or honest voters’
ballots are dropped, the judge will, with overwhelming probability, hold someone
accountable. Fairness ensures that the blamed party actually misbehaved.

We begin with the first criterion for completeness, i.e. that the number of
ballots on BBvote is not greater than the number of eligible voters. This follows
from the second check of the Judge algorithm, where it checks if the bulletin
board is valid. The second criterion (that the number of votes on BBdec is not
greater than the number of cast ballots) follows from the judge checking that
the output of each mix server contains at most as many elements as its input.

Now consider the criterion that says that all honest votes are in the multiset
of votes output by the last mix server (i.e. BBdec). Every honest voter checks,
using VSDVerify, that their ballot appears in BBvote. If not there, they output
the token σ given to them by the authentication server. This, in turn, causes the

488 C. C. Drăgan et al.

authentication server to be blamed by the judge. If AS was not blamed, we know
that all honest ballots were present in BBvote. If any honest ballot is dropped
by one of the mix servers, this will be detected by VSDVerify, which will output
some evidence that this mix server misbehaved, which in turn causes this mix
server to be blamed by the judge.

Now, the adversary has one possibility of winning the completeness game,
namely if two (or more) voters have cast the same vote, and their sampled nonces
happen to be equal. In this case, the adversary may drop all but one of these
ballots without it being detected. To analyze this situation, we slightly modify
the completeness game. We call the new game G′

c and let E′
c be the probability

that G′
c returns 1. The difference from Gc to G′

c is that in G′
c, we keep track

of the nonces that are sampled when the adversary calls the vote oracle, and
only sample new nonces from the set of nonces that have not been used earlier.
The two games are equivalent unless there is a collision in the first game, hence
|Pr[Ec] − Pr[E′

c] | ≤ Pr[Col] .
In G′

c, as there are no collisions in the nonces, any ballot that is dropped by
the adversary will be detected by VSDVerify, which in turns causes the judge to
blame the misbehaving party. In other words, in G′

c, the adversary will have zero
probability of winning, so Pr[E′

c] = 0. Thus, the probability that the adversary
wins the completeness game is bounded by Pr[Col]. As the adversary has zero
probability of winning the fairness game, and the probability of winning the
accountability game is bounded by the sum of winning the fairness game and the
completeness game, we arrive at the conclusion of Theorem 1 that the advantage
is bounded by the collision probability. By the birthday paradox the collission
probability is bounded by qv(qv−1)

2·|N| , where qv is the number of queries vote oracle
queries and N is the nonce space.

Appendix B Proof for Theorem 2

The proof of the theorem follows from analyzing Fairness and Completeness.

Lemma 1 (Fairness). The judge J is computationally fair in P(n,m,

μ, pverifvoter , p
verif
abst).

Proof. The proof is essentially the same as for sElect in [17] for the voting phase
but relies on GBA in the mixing and decryption phases.

Consider what happens if the voter makes a complaint and the judge blames
both the party accused and the voter (J2). Since the bulletin board is honest
and the channel is authenticated the voter must really have made the complaint.
There are two cases. If the voter is dishonest the verdict is clearly true. If the
voter is honest, the correctness of the verdict follows from the voter verification
correctness of the protocol either because the person it blamed has misbehaved

Machine-Checked Proofs of Accountability: How to sElect Who is to Blame 489

or because the authentication server did not send a valid confirmation. (J2)
covers both the case where the voter’s ballot is dropped and when it is added.

Case (J1) is covered by GBA. Since the scheme has GBA it follows that the
adversary cannot make either of these conditions trigger when the party ran its
honest program, otherwise GBA would not hold.

Lemma 2 (Completeness). For every instance π of P(n,m, μ, pverifvoter , p
verif
abst),

we have

Pr
[
π(1l) → ¬(J : Φk)

] ≤ δk(pverifvoter , p
verif
abst) =

(
1 − min

(
pverifvoter , p

verif
abst

))k+1

with overwhelming probability as a function of l.

Again, the proof is essentially the same as for sElect in the voting phase but
relies on GBA in the mixing and decryption phases. We need to show that the
following probabilities are bounded for every i: a) Pr

[
π(1l) → (χi ∧ ¬dis(vi) ∧

¬dis(AS))
]
, b) Pr

[
π(1l) → (χ′

i ∧ ¬dis(vi) ∧ ¬dis(AS))
]
, c) Pr

[
π(1l) → (¬γk ∧

¬χ → dis(VA)|dis(AS)|dis(DAi)
q
i=1|dis(MSj)mj=1)

]
. The first two probabilities

are equal to zero as noted in the sElect proof [17]. The last probability is δk

bounded by the completeness component of GBA. This is immediate when pverifvoter

is equal to one since our definition assumes all honest voters vote and verify;
when pverifvoter is lower this is more complicated and requires guessing ahead of
time which voters will verify. This can be achieved using standard techniques
from complexity leveraging.

Appendix C Proof for Theorem 3

Proof. Consider an adversary A against ExpVer
A,Vr

(λ). We start by running A
getting the output pd which we use for B in addition to an honestly generated
signing keypair for AS. We then make a random guess about which voters A is
going to ask to verify. The probability of guessing correctly is at least 1/2|I|.
Now, we keep running A to choose honestly cast votes and creating the bulletin
board BB. Every time the vote oracle is called and we guessed the voter is going
to verify, we let B query the same and forward the output to A. If we guessed
that the voter is not going to verify, we simply honestly generate the ballot and
send it to A without B querying the vote oracle. We use the board BB output
by A in addition to honestly generated signatures for AS. Since the signature
scheme is perfectly correct, the signatures will verify in lines 4–7 of ExpGBAA,V (λ).

We now run OVerify for B which will call verification for all voters used in
the oracle calls in ExpGBAA,V (λ). We can use the outputs to A’s calls to the verifica-
tion oracle. Here we assume that we guessed the verifiers correctly and, further,

490 C. C. Drăgan et al.

in this case the two sets of verifying voters will be the same in the two exper-
iments. For the sake of the proof, we will abort if they do not match, hence
the degradation factor in the advantage. Now with probability 1

2|I|Adv
ver
A,Vr

(λ)
in ExpVer

A,Vr
(λ) we will have no complaints from the individual verification, the

universal verification will be successful and we have ¬(|I| ≥ |BB|submit| ≥
|BB|res| ∧ V[Checked] ⊆ms BB|res). Using that the scheme is accountability-
verifiability-correct in ExpGBAA,V (λ) all individual verification will also produce no
blame since the signatures will verify by perfect correctness, and, finally, again
by accountability-verifiability-correctness and successful universal verification,
no blame will be output by Judge, i.e. |B| = 0. Since the votes from the verifying
voters, V[Checked], in ExpGBAA,V (λ) exactly corresponds to the votes from the oracle
vote calls in ExpGBAA,V (λ) and |BB|submit| = |BBvote| and BB|res = BBdec we exactly
get the winning condition (¬(n ≥ |BBvote| ≥ |BBdec| ∧ V ⊆ BBdec) ∧ B = ⊥) in
ExpGBAA,V (λ).

References

1. Abdalla, M., Bellare, M., Rogaway, P.: DHIES: an encryption scheme based on the
Diffie-Hellman problem. Contributions to IEEE P1363a (Sep 1998)

2. Adida, B.: Helios: web-based open-audit voting. In: van Oorschot, P.C. (ed.)
USENIX Security 2008, pp. 335–348. USENIX Association (Jul / Aug 2008)

3. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.:
EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10082-1 6

4. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: A comprehen-
sive analysis of game-based ballot privacy definitions. Cryptology ePrint Archive,
Report 2015/255 (2015). https://eprint.iacr.org/2015/255

5. Bruni, A., Giustolisi, R., Schürmann, C.: Automated analysis of accountability. In:
Nguyen, P.Q., Zhou, J. (eds.) ISC 2017. LNCS, vol. 10599, pp. 417–434. Springer,
Heidelberg (Nov (2017)

6. Cortier, V., Dragan, C.C., Dupressoir, F., Schmidt, B., Strub, P.Y., Warinschi, B.:
Machine-checked proofs of privacy for electronic voting protocols. In: 2017 IEEE
Symposium on Security and Privacy, pp. 993–1008. IEEE Computer Society Press
(May 2017). https://doi.org/10.1109/SP.2017.28

7. Cortier, V., Dragan, C.C., Dupressoir, F., Warinschi, B.: Machine-checked proofs
for electronic voting: Privacy and verifiability for belenios. In: Chong, S., Delaune,
S. (eds.) CSF 2018 Computer Security Foundations Symposium, pp. 298–312. IEEE
Computer Society Press (2018). https://doi.org/10.1109/CSF.2018.00029

8. Cortier, V., Lallemand, J., Warinschi, B.: Fifty shades of ballot privacy: privacy
against a malicious board. In: Jia, L., Küsters, R. (eds.) CSF 2020 Computer Secu-
rity Foundations Symposium, pp. 17–32. IEEE Computer Society Press (2020).
https://doi.org/10.1109/CSF49147.2020.00010

9. Cortier, V., Gaudry, P., Glondu, S.: Belenios: a simple private and verifiable elec-
tronic voting System, pp. 214–238 (04 2019). https://doi.org/10.1007/978-3-030-
19052-1 14

https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://eprint.iacr.org/2015/255
https://doi.org/10.1109/SP.2017.28
https://doi.org/10.1109/CSF.2018.00029
https://doi.org/10.1109/CSF49147.2020.00010
https://doi.org/10.1007/978-3-030-19052-1_14
https://doi.org/10.1007/978-3-030-19052-1_14

Machine-Checked Proofs of Accountability: How to sElect Who is to Blame 491

10. Drăgan, et al.: Machine-checked proofs of privacy against malicious boards for
selene & co. In: 2022 IEEE 35th Computer Security Foundations Symposium
(CSF), pp. 335–347 (2022). https://doi.org/10.1109/CSF54842.2022.9919663

11. Hirschi, L., Schmid, L., Basin, D.A.: Fixing the achilles heel of E-voting: The
bulletin board. In: Küsters, R., Naumann, D. (eds.) CSF 2021 Computer Security
Foundations Symposium, pp. 1–17. IEEE Computer Society Press (2021). https://
doi.org/10.1109/CSF51468.2021.00016

12. Khazaei, S., Moran, T., Wikström, D.: A mix-net from any CCA2 secure cryp-
tosystem. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
607–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 37

13. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the stan-
dard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 468–498. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 16

14. Kiayias, A., Zacharias, T., Zhang, B.: Ceremonies for end-to-end verifiable elec-
tions. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 305–334. Springer, Hei-
delberg (2017). https://doi.org/10.1007/978-3-662-54388-7 11

15. Künnemann, R., Esiyok, I., Backes, M.: Automated verification of accountability
in security protocols. In: Delaune, S., Jia, L. (eds.) CSF 2019 Computer Secu-
rity Foundations Symposium, pp. 397–413. IEEE Computer Society Press (2019).
https://doi.org/10.1109/CSF.2019.00034

16. Künnemann, R., Garg, D., Backes, M.: Accountability in the decentralised-
adversary setting. In: Küsters, R., Naumann, D. (eds.) CSF 2021 Computer Secu-
rity Foundations Symposium, pp. 1–16. IEEE Computer Society Press (2021).
https://doi.org/10.1109/CSF51468.2021.00007

17. Küsters, R., Müller, J., Scapin, E., Truderung, T.: sElect: a lightweight verifiable
remote voting system. In: Hicks, M., Köpf, B. (eds.) CSF 2016 Computer Secu-
rity Foundations Symposium, pp. 341–354. IEEE Computer Society Press (2016).
https://doi.org/10.1109/CSF.2016.31

18. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM
CCS 2010, pp. 526–535. ACM Press (Oct 2010). https://doi.org/10.1145/1866307.
1866366

19. Morio, K., Künnemann, R.: Verifying accountability for unbounded sets of partic-
ipants. In: Küsters, R., Naumann, D. (eds.) CSF 2021 Computer Security Foun-
dations Symposium, pp. 1–16. IEEE Computer Society Press (2021). https://doi.
org/10.1109/CSF51468.2021.00032

20. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent verifiability
and coercion-mitigation. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.,
Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 176–192. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 12

21. SwissPost: Swiss post voting system. https://gitlab.com/swisspost-evoting (2022)

https://doi.org/10.1109/CSF54842.2022.9919663
https://doi.org/10.1109/CSF51468.2021.00016
https://doi.org/10.1109/CSF51468.2021.00016
https://doi.org/10.1007/978-3-642-34961-4_37
https://doi.org/10.1007/978-3-642-34961-4_37
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-54388-7_11
https://doi.org/10.1109/CSF.2019.00034
https://doi.org/10.1109/CSF51468.2021.00007
https://doi.org/10.1109/CSF.2016.31
https://doi.org/10.1145/1866307.1866366
https://doi.org/10.1145/1866307.1866366
https://doi.org/10.1109/CSF51468.2021.00032
https://doi.org/10.1109/CSF51468.2021.00032
https://doi.org/10.1007/978-3-662-53357-4_12
https://gitlab.com/swisspost-evoting

Author Index

A
Abdolmaleki, Behzad 389
Alachiotis, Nikolaos 203
Apruzzese, Giovanni 162
Arnaboldi, Luca 452
Arora, Vipul 203
Aspinall, David 452
Avoine, Gildas 100

B
Baek, Woongki 120
Bhargavan, Karthikeyan 3
Bichhawat, Abhishek 3
Bitton, Ron 431

C
Chen, Chao 183
Chen, Rongmao 411
Claverie, Tristan 100
Cohen, Amit 43
Cohen, Ofir 431

D
Delaune, Stéphanie 100
Deng, Xiaotie 367
Divakaran, Dinil Mon 162
Drăgan, Constantin Cătălin 471
Dupressoir, François 471

E
Esteves, José Lopes 100

G
Gerlach, Lukas 22, 62, 80
Gjøsteen, Kristian 471
Gu, Xiaozhuo 263

H
Haines, Thomas 471
Han, Myeonggyun 120

Helmschmidt, Florian 222
Hosseyni, Pedram 3, 222
Hou, Y. Thomas 306

I
Ioannidis, Sotiris 327

J
Jia, Shijie 263
Jin, Hai 141

K
Kario, Hubert 243
Kim, Jihye 348
Kim, Sowoong 120
Kim, Sungju 348
Kim, Sungwook 348
Kim, Sunmi 348
Kolb, Christina 452
Küsters, Ralf 3, 222

L
Lee, Jehyun 162
Li, Jichen 367
Li, Lin 183
Li, Shaoyu 306
Li, Zecheng 367
Lin, Jingqiang 263
Liu, Limin 263
Liu, Lin 411
Lou, Wenjing 306
Lu, Zhichun 285

M
Ma, Yuan 263
Malavolta, Giulio 389
Michalas, Antonis 389
Mitropoulos, Charalambos 327
Mitropoulos, Dimitris 327

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 493–494, 2024.
https://doi.org/10.1007/978-3-031-51479-1

https://doi.org/10.1007/978-3-031-51479-1

494 Author Index

N
Nabizadeh, Amir 389

O
Oh, Hyunok 348
Ottavi, Marco 203

P
Pan, Lei 183
Peng, Wei 411
Pietsch, Robert 62
Pruiksma, Klaas 3, 222
Puzis, Rami 431

R
Rabaninejad, Reyhaneh 389
Radomirović, Saša 452
Rao, Tingting 141
Rønne, Peter B. 471

S
Sabharwal, Kanav 162
Schmitz, Guido 3
Schwarz, Michael 22, 62, 80
See, Melanie Ng Pei 162
Shabtai, Asaf 431
Sharif, Mahmood 43
Shi, Shanghao 306
Shin, Yulim 348
Solberg, Morten Rotvold 471
Song, Li 263
Song, Shang 411
Sotiropoulos, Thodoris 327
Su, Yixin 141

T
Tai, Yonghang 183
Thomas, Fabian 22, 62, 80

U
Uchoa, Heitor 203

V
Vermoen, Dennis 203

W
Waldmann, Clara 3, 222
Wang, Jianhuan 367
Wang, Wei 141
Wang, Yi 411
Weber, Daniel 22, 80
Würtele, Tim 3, 222

X
Xiang, Yang 183
Xiao, Bin 367
Xiao, Yang 306
Xin, Zhe 162
Xu, Bowen 263
Xu, Peng 141

Z
Zhang, Chaoyu 306
Zhang, Jun 183
Zhang, Ren 285
Zhang, Ruiyi 22, 80
Zheng, Fangyu 263
Zheng, Yubo 141

	 Preface
	 Organization
	 Contents – Part III
	Attacks
	Layered Symbolic Security Analysis in DY
	1 Introduction
	2 The DY Framework
	3 Motivating Examples
	4 Layered Symbolic Protocol Analysis
	5 Instantiation: Generic PKI and Communication Layers
	5.1 A Layer for Public-Key Infrastructure
	5.2 A Layer for Confidential and Authenticated Communication

	6 Analysis of BA Example
	7 Related Work
	8 Conclusion
	References

	Indirect Meltdown: Building Novel Side-Channel Attacks from Transient-Execution Attacks
	1 Introduction
	2 Background
	2.1 Side Channels
	2.2 Transient-Execution Attacks
	2.3 Interrupt Descriptor Table (IDT)

	3 Meltdown as a Side Channel
	4 LeakIDT
	5 Evaluation
	6 Case Studies
	6.1 Website Fingerprinting
	6.2 Keystroke Timings via LeakIDT

	7 Mitigations
	8 Discussion
	9 Conclusion
	A JavaScript Benchmark Results
	References

	Accessorize in the Dark: A Security Analysis of Near-Infrared Face Recognition
	1 Introduction
	2 Background and Related Work
	2.1 Face Recognition in NIR
	2.2 Attacking ML
	2.3 Defending ML

	3 Threat Model
	4 Methodology
	4.1 Evading Recognizers
	4.2 Realizing Attacks

	5 Evaluation
	5.1 Experimental Setup
	5.2 Digital Attacks
	5.3 Physical Attacks

	6 Limitations
	7 Conclusion
	References

	A Rowhammer Reproduction Study Using the Blacksmith Fuzzer
	1 Introduction
	2 Background
	2.1 Rowhammer
	2.2 Blacksmith Rowhammer Fuzzer
	2.3 Rowhammer as Physically-Unclonable Function (PUF)

	3 Evaluation Methodology
	3.1 Testing Setup
	3.2 Fuzzing and Memory Sweep

	4 Results
	4.1 Temporal Distribution of Bit Flips
	4.2 Spatial Distribution of Bit Flips
	4.3 Transferability

	5 Case Study: Rowhammer as Physically Unclonable Function
	5.1 Reliability
	5.2 Uniqueness

	6 Discussion
	6.1 Implications
	6.2 Future Work

	7 Conclusion
	References

	Reviving Meltdown 3a
	1 Introduction
	2 Background
	2.1 Performance Counters
	2.2 Side Channels
	2.3 Transient-Execution Attacks

	3 Analysis of Meltdown-CPL-REG
	4 Attack Primitive
	4.1 Threat Model
	4.2 CounterLeak

	5 Evaluation
	6 Case Studies
	6.1 Spectre with CounterLeak
	6.2 Breaking KASLR with CounterLeak
	6.3 Attacking RSA with CounterLeak
	6.4 Breaking Zigzagger with CounterLeak

	7 Countermeasures
	8 Discussion
	8.1 Related Work
	8.2 Other OS and Architectures

	9 Conclusion
	References

	Tamarin-Based Analysis of Bluetooth Uncovers Two Practical Pairing Confusion Attacks
	1 Introduction
	2 Background
	2.1 Key Agreement
	2.2 Tamarin Prover
	2.3 Related Work

	3 Formal Models
	3.1 Security Model
	3.2 Representing Cryptographic Imperfections
	3.3 Modelling Bluetooth Key Agreement Protocols

	4 Security Analysis
	4.1 Analysis of the Results
	4.2 Practical Implementation
	4.3 Related Work

	5 Conclusion
	References

	MARF: A Memory-Aware CLFLUSH-Based Intra- and Inter-CPU Side-Channel Attack
	1 Introduction
	2 Background
	2.1 NUMA, Cache Coherence, and CLFLUSH
	2.2 DRAM Refresh

	3 Methodology
	4 Characterization
	4.1 DRAM Refresh
	4.2 Location of the Target Memory Object
	4.3 Task and Page Placement

	5 The MARF Attack
	6 Evaluation
	6.1 Attack Against GnuPG
	6.2 Attack Against AES

	7 Related Work
	8 Conclusions
	A Threat Model
	B Attack against GDK
	C Refresh Interval Detection and Avoidance
	D Countermeasures
	D.1 Memory Duplication
	D.2 Hardware Transactional Memory

	References

	You Reset I Attack! A Master Password Guessing Attack Against Honey Password Vaults
	1 Introduction
	2 Master Password Guessing Attack
	2.1 Attack Model
	2.2 Priority Functions pM and pV
	2.3 MPGA on the Existing Honey Password Vaults

	3 Secure Master-Password-Updatable Honey Password Vault
	3.1 A Generic Solution Against MPGA
	3.2 Training the Generative Model
	3.3 Instantiation with Incrementally Updatable Scheme

	4 Evaluation
	4.1 Experimental Environment
	4.2 Dataset
	4.3 Security Metrics
	4.4 Implementation and Evaluation on MPGA
	4.5 Evaluation on SMART and Prior Schemes

	5 Conclusion
	A Honey Password Vaults
	B Extended Evaluations
	B.1 MPGA's Performance on Updated Vault
	B.2 Experimental Parameters Evaluation

	References

	Attacking Logo-Based Phishing Website Detectors with Adversarial Perturbations
	1 Introduction
	2 Threat Model
	2.1 Target System: Logo-Based Phishing Website Detectors
	2.2 Attack: Adversarial Logos

	3 Deep Learning for Logo-Based Phishing Detection
	3.1 ViT for Logo Identification
	3.2 Swin for Logo Identification
	3.3 Siamese and Siamese++ for Logo Identification

	4 Our Attack: Adversarial Logos
	4.1 Framework: Generative Adversarial Perturbations for Logos
	4.2 Implementation

	5 Experimental Evaluations
	5.1 Dataset
	5.2 Performance Metrics
	5.3 Baseline: Analysis of Logo-Identification Models
	5.4 Attack: Evasiveness of Adversarial Logos, and Computational Cost

	6 User Study: Do Adversarial Logos Trick Humans?
	6.1 Methodology
	6.2 Results

	7 Countermeasures (and Counter-Countermeasures)
	8 Related Works
	9 Conclusions
	Appendices
	A Step-ReLu activation Function
	B Discriminator and generator configurations

	References

	Hiding Your Signals: A Security Analysis of PPG-Based Biometric Authentication
	1 Introduction
	2 Related Work
	2.1 PPG-Based Biometrics
	2.2 Remote Photoplethysmogram (rPPG)
	2.3 Existing Attacks

	3 Spoofing Attacks
	3.1 Threat Model
	3.2 rPPG Acquisition
	3.3 IPI Recovery and Quantification

	4 Attack Evaluation
	4.1 Datasets
	4.2 Experimental Implementation
	4.3 Attack in User Authentication
	4.4 Attack in IPI-Based Security Protocols

	5 Defensive Strategies
	5.1 Passive Defence
	5.2 Active Defence

	6 Defence Evaluation
	6.1 Defence in User Authentication
	6.2 Defence in IPI-Based Security Protocols
	6.3 Discussion

	7 Conclusion
	References

	Exploring Genomic Sequence Alignment for Improving Side-Channel Analysis
	1 Introduction
	2 Background
	2.1 Side Channel Analysis (SCA)
	2.2 Countermeasures
	2.3 Correlation Power Analysis and Known-Key Analysis
	2.4 Genomic Sequence Alignment

	3 Related Work
	4 Methodology
	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Gap Opening Penalty
	6.3 Comparison with Static Alignment
	6.4 Comparison with Elastic Alignment
	6.5 Time Complexity

	7 Conclusion
	References

	The Grant Negotiation and Authorization Protocol: Attacking, Fixing, and Verifying an Emerging Standard
	1 Introduction
	2 Grant Negotiation and Authorization Protocol
	3 Attacks and Fixes
	3.1 Informal Security Properties
	3.2 Client Instance Mix-Up Attack
	3.3 Further Attacks

	4 Formal Analysis
	4.1 Web Infrastructure Model (WIM)
	4.2 Modeling GNAP
	4.3 Modeling Considerations
	4.4 Definitions and Security Properties
	4.5 Results

	5 Related Work
	6 Conclusion
	References

	Everlasting ROBOT: The Marvin Attack
	1 Introduction
	1.1 Contributions

	2 Adaptive Chosen Ciphertext Attacks
	3 Performed Attacks
	3.1 M2Crypto
	3.2 pyca/cryptography
	3.3 Other High-Level Language Libraries
	3.4 NSS
	3.5 OpenSSL
	3.6 GnuTLS

	4 Proposed Countermeasures
	4.1 Making Deblinding Constant-Time
	4.2 Safe PKCS#1 V1.5 Decryption API
	4.3 Countermeasures Summary

	5 Test Framework
	6 Future Work
	7 Summary and Recommendations
	A System Tuning
	B OpenSSL Fix History
	C Graphs of Test Results
	References

	JWTKey: Automatic Cryptographic Vulnerability Detection in JWT Applications
	1 Introduction
	2 Background
	2.1 JWT Structure
	2.2 Static Program Slicing

	3 Related Work
	4 Threat Model and Cryptographic Rules
	4.1 Threat Model
	4.2 Cryptographic Rules

	5 Design
	5.1 Overview
	5.2 Construct System Dependence Graph
	5.3 Analysis Entries and Slicing Criteria
	5.4 Execute Specific Slicing for Different Rules

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Experimental Setup
	6.3 Security Findings in JWT Applications
	6.4 Security Findings in JWT Libraries

	7 Limitations and Discussion
	8 Conclusion
	References

	Blockchain
	When is Slower Block Propagation More Profitable for Large Miners?
	1 Introduction
	2 Block Propagation: The Faster, the Better?
	2.1 Nakamoto Consensus
	2.2 Selfish Mining
	2.3 Two Conflicting Opinions

	3 Modeling the Inadvertent D-Miner
	3.1 The Potential Causes of the Longer Block Propagation Delay
	3.2 The Threat Model for Our MP
	3.3 Our Markov Process
	3.4 State Probabilities and Relative Revenues

	4 Are Inadvertent Slow Blocks Profitable in Reality?
	4.1 Extracting the D- Relationship in the Bitcoin Network
	4.2 Applying the Extended Model to the Bitcoin Network

	5 Modeling the Strategic D-Miner
	5.1 The Threat Model for Our MDP
	5.2 Our Markov Decision Process
	5.3 Unfair Revenues and Profitable Thresholds

	6 Detection and Defense
	7 Conclusion
	A Verifying the headstart- Relation in Ethereum
	B The State Transition and Reward Matrices of MDP
	B.1 Pruning Our MDP

	References

	Bijack: Breaking Bitcoin Network with TCP Vulnerabilities
	1 Introduction
	2 Background
	2.1 Bitcoin Network Formation
	2.2 TCP Vulnerability

	3 Bijack: Hijacking Bitcoin TCP Connections
	3.1 Attack Model
	3.2 Detailed Procedures of Bijack

	4 Compromising Bitcoin Network Nodes
	4.1 Bitcoin Topology Inference
	4.2 Eclipse Attack

	5 How Vulnerable Is Bitcoin to Bijack?
	5.1 Measurement on Real Bitcoin Network
	5.2 Bitcoin Impact Analysis

	6 Experiment and Evaluation
	6.1 Experiment Setup
	6.2 Experimental Results

	7 Discussion and Countermeasures
	7.1 Discussion
	7.2 Countermeasures

	8 Related Work
	9 Conclusion
	A Appendix
	A.1 IPID Assignment
	A.2 Bitcoin Network Measurement Procedure

	References

	Syntax-Aware Mutation for Testing the Solidity Compiler
	1 Introduction
	2 Background
	2.1 The Solidity Compiler
	2.2 Bugs in the Solidity Compiler
	2.3 Limitations of State-of-the-Art Fuzzers

	3 Fuzzing Approach
	3.1 Syntax-Aware Mutation
	3.2 Mutation Strategy Prioritization
	3.3 Fuzzol

	4 Evaluation
	4.1 Evaluation Setup
	4.2 RQ1: Discovering Bugs
	4.3 RQ2: Comparing Syntax-Aware and Grammar-Blind Strategies
	4.4 RQ3: Comparison with State-of-the-Art Fuzzers
	4.5 RQ4: Mutation Strategy Prioritization Algorithm

	5 Related Work
	6 Conclusion
	A Bugs Previously Unknown to Solidity Developers
	B Differences Between FUZZOL and Fuzzers Included in Our Evaluation
	References

	Efficient Transparent Polynomial Commitments for zk-SNARKs
	1 Introduction
	1.1 Contributions
	1.2 Organization

	2 Preliminaries
	2.1 Groups of Unknown Order
	2.2 Arguments of Knowledge
	2.3 Polynomial Commitment Scheme

	3 Our Construction
	3.1 Integer Encoding of -Variate Multilinear Polynomials
	3.2 Proof of Knowledge of Representation
	3.3 The Proposed Polynomial Commitment Scheme
	3.4 Security Analysis

	4 Performance Evaluation
	4.1 Optimization
	4.2 Proof Size
	4.3 Experiment Results

	5 Related Work
	6 Conclusion
	References

	n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi
	1 Introduction
	1.1 Paper Organization

	2 Background and Related Work
	2.1 Reordering Transactions
	2.2 Sandwich Attack
	2.3 Defense Strategies

	3 Model
	3.1 AMM Model
	3.2 Attack Model

	4 n-MVTL Attack
	4.1 Transaction Selecting
	4.2 Optimal Attack Algorithm
	4.3 Implementing Attacks on Blockchain

	5 Analysis
	5.1 Post-execution State Analysis
	5.2 Revenue Analysis

	6 Evaluation
	6.1 Time Complexity
	6.2 Attack Strategy Validation
	6.3 Trade-Off Analysis of Time Cost and Profit

	7 Conclusion
	A Proof
	B Examples
	C Potential Defense
	References

	Miscellaneous
	stoRNA: Stateless Transparent Proofs of Storage-time
	1 Introduction
	1.1 Proof of Storage-time
	1.2 Our Contributions
	1.3 Technical Overview
	1.4 Application Domain

	2 Related Work
	3 Preliminaries
	3.1 Merkle Tree and Merkle Mountain Range
	3.2 Proofs of Sequential Work
	3.3 Proof of Retrievability

	4 stoRNA Design
	4.1 Construction

	5 Efficiency Analysis and Experimental Results
	A Theorem 1 Proof
	B Stateless Multi-prover PoSt Construction
	References

	ConGISATA: A Framework for Continuous Gamified Information Security Awareness Training and Assessment
	Secure Approximate Nearest Neighbor Search with Locality-Sensitive Hashing
	1 Introduction
	1.1 Our Contributions
	1.2 System Model and Thread Model

	2 Preliminaries
	2.1 Arithmetic Secret Sharing
	2.2 Oblivious Transfer
	2.3 Distributed Point Function
	2.4 Locality-Sensitive Hashing

	3 Building Blocks for Exact NNS with Oblivious Transfer
	3.1 Revisiting COT Batching in Previous Works
	3.2 Batched Multiplexer
	3.3 Correlated Bit Triples for Comparison
	3.4 Distance Computation

	4 Sublinear Approximate NNS Protocol with LSH
	4.1 Modified Plaintext Algorithm with LSH
	4.2 Private Bucket Retrieval with DPF
	4.3 Putting It All Together
	4.4 Security Proofs

	5 Evaluations
	5.1 Experiment Setup
	5.2 Performance Results
	5.3 Comparison with SOTA

	References

	1 Introduction
	2 Background
	3 Related Work
	4 Proposed Method
	4.1 Assessing Mobile Users' ISA
	4.2 Gamification

	5 Evaluation
	5.1 Mobile Sensors
	5.2 Social Engineering Challenges
	5.3 Articles and Blog Posts
	5.4 Experiment Setup
	5.5 Results

	6 Conclusion
	References

	Tactics for Account Access Graphs
	1 Introduction
	2 Account Access Graphs with State
	3 A Transition System
	3.1 Properties of Account Access Graphs with State
	3.2 Changes to Account Access Graphs
	3.3 Tactics
	3.4 Account Access Graph Requirements

	4 Case Study
	4.1 Security Requirements, User Capabilities and Adversary Model
	4.2 Case Study 1: iPhone Tactics to Systematically Access Accounts
	4.3 Case Study 2: Android Security and Expansion with Tactics

	5 Related Work
	6 Conclusions and Future Work
	A Application Security on Android
	A.1 Xiaomi/POCO/MI
	A.2 ONE Plus
	A.3 Samsung
	A.4 Huawei/Honor/ASUS
	A.5 ALL

	References

	Machine-Checked Proofs of Accountability: How to sElect Who is to Blame
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Game Based Accountability
	2.1 Parties
	2.2 Voting System
	2.3 Accountability

	3 sElect
	3.1 Cryptographic Primitives
	3.2 sElect Algorithms
	3.3 EasyCrypt Proof

	4 Relation to the Küsters et al. Definition
	4.1 Modeling
	4.2 Result

	5 Verifiability
	5.1 Accountability Implies Verifiability

	6 Concluding Remarks
	References

	Author Index

