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Abstract. Multi-phase contrast-enhanced CT images can provide abundant and
complementary tumor information, and thus radiologists often use multi-phase
images to assist in segmenting and diagnosing liver tumors. However, the current
multi-stage liver tumor segmentation methods are based on convolutional neural
networks (CNNs), which make them ineffective in extracting global information
during the multi-phase information fusion process. In this study, we propose a
novel multi-phase liver tumor segmentation approach using delayed phase images
to aid in portal vein phase tumor segmentation. The proposed method employs
a Transformer structure to extract both global information and local information
of tumors, which contributes to the precise segmentation of tumor boundaries.
More importantly, we design a cross-phase aggregator (CFA), which facilitates
the bidirectional interaction of cross-phase features to take full advantage of the
complementary information from multi-phase images. A dataset of 164 multi-
phase abdominal CT scanswas collectedwith Institutional ReviewBoard approval
to evaluate the performance of the proposed approach. The experimental results
showed that the proposed approach can better utilize multi-phase information
and is superior to several state-of-the-art methods. Ablation study is performed
to further validate the effectiveness of each module in the proposed model. The
proposed method has the potential to assist radiologists to locate more accurate
liver tumors and improve their diagnosis efficiency.
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1 Introduction

Liver cancer is a severe and fatal form of cancer that affects millions of individuals across
the globe [1]. As per the World Cancer Research Fund International’s data from 2020,
liver cancer ranks as the sixth most common cancer and third leading cause of cancer-
related deaths globally [2]. Early detection of liver lesions is very crucial for effective
liver cancer treatment. Traditionally, radiologists have detected and diagnosed tumors
by manually segmenting liver tumors, which is time-consuming, difficult to produce,
and susceptible to subjective personal experience. Therefore, it is essential to develop
an automatic and accurate method for liver tumor segmentation.

Single-phase computed tomography (CT) images have been used to segment liver
tumors in most existing liver tumor segmentation (LiTS) methods [3–8]. However, these
methods often fail to achieve satisfactory results due to inherent problems such as low
contrast of medical images and blurred tumor boundaries. Therefore, some multi-phase-
based segmentation methods for liver tumors have been proposed [9–11]. Compared
to single images, multi-phase images can provide rich and complementary informa-
tion of tumors, in which tumor areas are different from other tissues in morphology or
grayscale. The multi-phase contrast-enhanced CT images are acquired in four phases:
the noncontract-enhanced (NC) phase, arterial (ART) phase, portal vein (PV) phase and
delay (DL) phase. Among the four phases, the PV phase is the preferred stage for liver
tumor segmentation because themaximum contrast between the tumor and the surround-
ing liver tissue occurs in the PV phase. However, not all types of tumors are evident in
the PV stage, hence we also need to employ other phases to assist in the segmentation
of liver tumors [10].

The current multi-phase liver tumor segmentation methods can be categorized in
accordance with multi-phase fusion strategies: input-level fusion (ILF) methods [12],
decision-level fusion (DLF)methods [12–14] and feature-level fusion (FLF)methods [8,
10, 11]. Under these three fusion strategies, the FLFmethods can achieve the best perfor-
mance because they exploited the features from multiple phases. Wu et al. [9] proposed
an MW-UNet, which integrated different phases by weighting their features from hid-
den layers of U-Net [6]. Xu et al. [10] developed a PA-ResSeg model based on residual
networks [15] that re-weights features from different phases using the channel-attention
mechanism. Zhang et al. [11] modified the PA-ResSeg with a spatial aggregationmodule
(SAM) and a uncertain region inpainting module (URIM) to further improve the perfor-
mance of liver tumor segmentation. Although known FLF methods focus on inter-phase
relationships, it is still difficult to fully utilize the key global cues between different
phases due to the inherent limitations of CNNs in extracting features in local sliding
windows.

In recent years, Transformer has shown excellent performance not only in natural lan-
guage processing (NLP) tasks [16], but also in semantic segmentation [17–19]. Because
the Transformer basedmethods are better at leveraging global information andmodeling
long-term dependencies than the CNN approach, some studies have begun to apply the
Transformer approach to medical image analyzing tasks [18, 20]. These methods utilize
the self-attentionmechanism of transformers to selectively focus on important regions of
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the image, allowing for better global feature extraction and improved segmentation per-
formance. Therefore, Transformer based architecture has the potential to better utilizes
information from different phases.

In this study, we propose a framework for accurate liver tumors segmentation from
multiphase contrast-enhanced CT images. Specifically, our method takes advantage of
the complementary information from delayed phase (DL) images to assist in segmenting
liver tumors in portal venous (PV) phase images. We introduce the Transformer archi-
tecture into the traditional encoder-decoder structure to facilitate the model to fully learn
the explicit global information. More importantly, we design a cross-phase aggregator to
better exploit the features fromPVandDLphases for comprehensivelymulti-phase infor-
mation fusion. Specifically, our contributions can be summarized as follows: (1) Based
on the tokens-to-tokens vision Transformer (T2T-ViT) architecture, we build a symmet-
ric Transformer Encoder-Decoder architecture with skip-connection. In the encoder, the
local and global information is extracted by self-attention, and in the decoder, the local
and global features are up-sampled to the input resolution for corresponding pixel-level
liver tumor prediction. (2)The designed cross-phase aggregator that can efficiently utilize
the complementary information from DL phase images to help the tumor segmentation
in PV phase images.

Fig. 1. Illustration of our proposed multi-phase liver tumor segmentation framework.

2 Method

In this paper, we propose a multi-phase liver tumor segmentation framework consisting
of the encoder, cross-phase feature aggregator (CFA), decoder, and skip connection as
Fig. 1. Tokens-to-tokens (T2T) strategy is used in the framework. Given input multi-
phase (PV and DL phases) images and their multi-phase features are extracted utilizing
the encoder. The multi-phase feature tokens generated in the encoder are interacted in
the cross-phase feature aggregator, which also outputs feature tokens for the decoder. In
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the decoder, the Reverse T2T process gradually recovers the resolution of the features.
In order to improve the capacity of global cue utilization and reduce tumor boundary
ambiguity, we apply self-attention [16] in both the encoder and decoder. Furthermore,
a task-related token and a skip connection mechanism assist in the recovery of finer
segmentation results.

2.1 Encoder

Comparing thewide-applying convolution encodermodule,we adopt theT2T-ViTmodel
[17–19] as the backbone, and convolutional windowing similar to that in CNN is used
to locally aggregate adjacent tokens, which helps model local features.

Giving the inputs of the PV phase and DL phase image, the encoder first unfolds
these images into tokens by setting k = 7, s = 3 and p = 3. Then, we perform the T2T
Transformer and T2T Process twice to obtain the two phases’ feature tokens separately.
The dimensions of the feature token in the three stages of the encoder can be expressed
as TPV

i ∈ R
li×c and TDL

i ∈ R
li×c, where PV and DL denote PV phase and DL phase,

separately, i = 1, 2, 3, and c = 64.

T2T Transformer. For a particular input token from the preceding step, a linear pro-
jection is used to project the embedding dimension from c = 64 to d = 384. Then, it is
processed by the self-attention block, as formulated:

T = MLP
(
MSA

(
T

′))
(1)

where MSA represents the multi-head-attention mechanism with layer normalization
and MLP denotes multi-layer perceptron with layer normalization in the standard
transformer.

T2T Process. As shown in Fig. 1, after obtaining the feature tokens from the T2T
Transformer, we reshaped the feature tokens as an image I in the spatial dimension.
Then, I is split into a k × k patch that uses the overlapping of s and the zero padding of
p to fill the image boundary. finally, the patch is unfolded into tokens sequence and the
length of the output token is defined as the below formula:

l0 =
[
h + 2p − k

k − s
+ 1

]
×

[
w + 2P − k

k − s
+ 1

]
(2)

During the two times of the T2T Process, the patch size is set as k = [3, 3], the
overlapping is set as s = [1, 1] and the padding size is set as P = [1, 1].

2.2 Cross-Phase Feature Aggregator

The Cross-phase feature aggregator (CFA) is introduced to better fuse the feature tokens
which are output by the encoder session from PV and DL. The CFA module contains
three parts, first is the linear projection, the second is the cross-phase attention, and the
third part is the concatenation of the cross-phase features. The encoder output initially
passes via linear projection to project the dimension to d= 384. A modified cross-phase
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self-attention is used to help multi-phase feature interactions and the features obtained
after the interactions are aggregated, formulated as:

FPV = Attention
(
QPV ,KDL,VDL

) = softmax

(
QPVKT

DL√
d

)
V
DL

(3)

FDL = Attention
(
QDL,KPV ,VPV

) = softmax

(
QDLKT

PV√
d

)
V
PV

(4)

TM = MLP(Concat(FPV ,FDL)) (5)

where Concat represents concatenation (superimposed on channel dimension) and
MLP is the multi-layer Perceptron that is used to recover the dimensional size of the
superimposed C-channel.

2.3 Decoder

The decoder in the proposed framework is designed to decode the patch token into
a significant graph. Considering that directly adopting the low-resolution feature to
perform segmentation prediction cannot achieve a satisfactory result, we introduce the
decoder that consists of three main components, the first is RT2T Process that gradually
up-sampled the main feature tokens, and the second is Task-related TransformerModule
which is aimed to perform patch-task-attention between patch token and task-related
token for better improve the segmentation performance. The last one is the Prediction
that utilizes the high-resolution main feature tokens to perform liver tumor prediction.

RT2T Process. Given the input tokens, we adopt a linear projection to extend the
embedding dimension from c to ck2. Then, each token is treated as a k × k image patch
with s overlapping and the tokens are folded as an image with P zero-padding. finally,
the generated image is reshaped back to the unsampled tokens.

Task-Related Transformer Module. Inspired by T2T-ViT [17–19], which intro-
duces a class token to improve the classification accuracy, we also introduce a task-
related token in our proposed model to help us improve the accuracy of liver tumor
segmentation.

We first concatenate a low-level PV feature from the encoder with the multi-phase
feature token from the cross-phase feature aggregator to generate themain feature tokens.
Then, we introduce a task-related token Tts, and concatenate it with the main feature
tokens TM

i . The concatenated tokens will be processed by Transformer module. The
processed tokens are divided into task-related tokens and main-phase features.

For the overall processes of the decoder, we adopt the RT2T Process and Task-related
Transformer Module twice to obtain the main feature tokens at the 1

4 scale, and set k =
[1, 1], s = [1, 1], and p = [1, 1] in the two RT2T Processes. To recover the major feature
tokens to full resolution, we project the embedding dimension of main feature tokens
from c to ck2 (k = 7). Then we fold the tokens into an image, setting k = 7, s = 3, and
p = 3. Finally, we use a linear projection to predict the final segmentation result.
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3 Experiment and Discussion

3.1 Dataset

With Institutional Review Board approval (IRB) approval, a clinical multi-phase
contrast-enhancedCT liver tumor datasetwas collected in this study. The dataset includes
164multi-phase abdominal CT scans. For the source hospital of the dataset, Sun Yat-Sen
University’s Third Affiliated Hospital contributes to 108 cases of multiphase abdominal
CT scans, and Sun Yat-Sen University’s Fifth Affiliated Hospital contributes to 56 cases
of multiphase abdominal CT scans.

The typology of CT images we captured included the non-contrast phase, arterial
phase, portal venous phase, and delay phase. Below Table 1 shows the details of the
characteristic of CT scans.

Table 1. Characteristic of CT scans.

Item Data

Format DICOM

Volume range 34 ~ 679

Dimension 512 × 512 pixels

Voxel spatial resolution in thickness 2.0 ~ 5.0 mm3

Pixel spacing range 0.87 mm

3.2 Preprocessing

The dataset is separated into 80 and 20% for training and evaluation.
For data pre-processing, first, all the input images are set as 224 × 224. Second,

we set the limit of the intensity value between −80 and 220 HU. Third, normalization
is performed on these scans to eliminate interference and solve abnormal data scale
distribution.

3.3 Experiment Configuration

For the hyperparameters and training strategies for learning, the setting of the initial
learning rate is 0.0001, using the Adam gradient descent with momentum for the opti-
mizer in the model and the binary cross entropy loss is used. For the strategy in the
learning rate, occurring a reduction in the learning rate up to 10 times when the loss of
training stops falling and continues for 10 times.
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Fig. 2. Visual comparison between the state-of-the-art liver tumor segmentation methods and our
proposed method.

3.4 Evaluation Metrics

We introduce three metrics for evaluation, which are Dice similarity coefficient (DSC),
absolute relative volume difference (ARVD), and average symmetric surface distance
(ASSD). First, the accuracy of segmentation is evaluated by theDSCandARVD.Second,
ASSD is capable to evaluate the segmentation distance error.

A great performance method is proven by high values of DCS and sensitivity with
low values of ARVD and ASSD.

3.5 Comparison Study

Weprovide qualitative comparison results on the dataset, as shown in Fig. 2.We compare
the ground truthwith segmentation results of threemethods—The original U-Net applies
the PV phase images as input; PA-ResSeg which fuses the DL and PV phases as input;
and our proposed method which fuses the DL and PV phases as input. In this example,
our network achieves the best performance compared with the multi-phase segmentation
method and the single-phase segmentation method, which demonstrates the validity of
utilizing delay and portal vein images for segmentation.

U-Net and PA-ResSeg are both based on the traditional CNN architecture. The per-
formance of PA-ResSeg is great but still exists some puzzle. The loss of high-frequency
information in Up and Down-sampling operations, and low contrast between the tumor
and surroundings result in blurred boundaries. In the proposed method, the structure
of the Transformer has a wider perceptual area than the convolutional neural network,
allowing for a more complete segmentation of the entire tumor region.
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Table 2. Performance (MeanValue ± StandardDeviation) comparison of different methods on
the multiphase contrast-enhanced liver tumor CT dataset.

Methods DSC (%) ARVD (%) ASSD (mm)

U-Net [6] 86.63 ±1.64 7.41 ± 1.55 5.06 ± 1.90

PA-ResSeg [11] 89.78 ± 1.67 6.85 ± 1.54 4.05 ± 1.60

Ours 90.17 ± 1.77 6.71 ± 1.59 3.55 ±1.42

Table 2 shows the results of three evaluation metrics for different methods. Our pro-
posed method achieved the best performance under the three metrics compared to the
state-of-the-art CNN-based models, hence demonstrating the great effectiveness of our
network. Both the U-Net and the PA-ResSeg prediction exist some blurred boundary
issues. Instead, as the transformer has strong global properties and modal fusion capa-
bilities, it allows the proposed method to better understand the information about the
tumor, leading to the demonstration of better predictive capabilities.

3.6 Ablation Study

In the baseline testing phase, there occur two issues that should be improved. First,
the baseline divides the image into multiple tokens and then uses multiple transformers
to model the global picture, but this loses localization, and in fact, local information
such as edges, lines, and textures are essential for the network to comprehend the visual
information. Second, the attention backbone of the baseline contains redundancy and
limited feature richness. Based on this, the RT2Tmodule was added to iteratively reduce
the length of Tokens, adding locality to simulate the local structural information of
surrounding Tokens. CFA is added to help multi-phase feature interactions and multi-
level token fusion is added to support low-level fine-grained information.

Table 3. Ablation study of proposed methods on the multi-phase contrast-enhanced liver tumor
CT dataset. The baseline is the T2T-ViT model. “CFA” denotes the cross-phase feature aggre-
gator. “RT2T” denotes the reverse token-to-token process. “F” denotes multi-level token fusion.
(MeanValue ± StandardDeviation).

Methods DSC (%) ARVD (%) ASSD (mm)

Baseline 82.13 ± 2.26 9.14 ± 1.91 8.85 ± 2.40

+CFA 83.01 ±1.98 7.21 ± 1.55 9.11 ± 2.37

+CFA+RT2T 87.55 ± 2.04 7.03 ± 1.64 5.05 ± 1.86

+CFA+RT2T+F 90.17 ± 1.77 6.71 ± 1.59 3.55 ±1.42

We conduct ablation studies to verify all our proposed model components. The
experimental results of all the validation and results are shown in Table 3. The advantage
of our method is shown in both DSC, ARVD, and ASSD. The step-by-step addition
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module shows that using boundary detection brings further performance gain in the
perception of global information and edge characteristics.

3.7 Discussion

The results from the comparison study and ablation study demonstrate the proposed
method achieved the best performance on all three-evaluation metrics for segmenting
tumors of different sizes. The results indicate that our new method has good stability
and thus possesses the ability for clinical application.

There are several reasons why our method outperformed other approaches. First, our
backbone of T2T-ViT enables the network to extract local tumor details, which facilitates
accurate segmentation of small regions. Second, our token module addresses the issue
in ViT [21] that modeling local regions loses the line as well as edge information of the
image and uses the CFA module to fuse multimodal tumor features and leads to more
precise segmented tumor boundaries, particularly for small tumors.

Despite these strengths, our method still has some drawbacks. For instance, in the
multiphase fusion stage, our multiphase data need to be strictly aligned, but the tumor
location of different phases in the same locationmay be shifted due to the possible move-
ment of the patient during the shooting. Future work will focus on finding algorithms
that can achieve liver position alignment to obtain a finer tumor profile.

4 Conclusions

The transformer architecture is well-known for its robust self-attention mechanisms and
has beenwidely adopted in various fields of deep learning in recent years. In our study,we
design a symmetric Transformer Encoder-Decoder architecture with skip-connection to
extract the multi-phase features and predict the liver tumor. More importantly, we intro-
duce a cross-phase aggregator, which can assist the interaction of the PV phase feature
and the DL phase feature. Extensive experiments on a clinical multi-phase contrast-
enhanced CT liver tumor dataset have demonstrated that the proposed method outper-
forms state-of-the-art methods and highlights the promising potential of Transformers
for liver tumor segmentation tasks.

Acknowledgment. This work is supported by Shantou University (STU Scientific Research
Foundation for Talents: NTF21004) and Zhuhai Basic and Applied Basic Research Project
Foundation, under Grant ZH22017003200001PWC.

References

1. McGlynn, K.A., Petrick, J.L., El-Serag, H.B.: Epidemiology of hepatocellular carcinoma.
Hepatology 73, 4–13 (2021)

2. Sung, H., Ferlay, J., Siegel, R.L., et al.: Global cancer statistics 2020: GLOBOCAN estimates
of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer J. Clin.
71, 209–249 (2021)



130 W. Zhang et al.

3. Han, X.: Automatic liver lesion segmentation using a deep convolutional neural network
method (2017). arXiv:170407239

4. Bi, L., Kim, J., Kumar, A., et al.: Automatic liver lesion detection using cascaded deep residual
networks (2017). arXiv:170402703

5. Bellver, M., Maninis, K.-K., Pont-Tuset, J., et al.: Detection-aided liver lesion segmentation
using deep learning (2017). arXiv:171111069

6. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image
segmentation. Springer; pp 234–24 (2015)

7. Seo, H., Huang, C., Bassenne, M., et al.: Modified U-Net (mU-Net) with incorporation of
object-dependent high level features for improved liver and liver-tumor segmentation in CT
images. IEEE Trans. Med. Imaging 39, 1316–1325 (2019)

8. Huang H, Lin L, Tong R et al (2020) Unet 3+: A full-scale connected unet for medical image
segmentation, pp. 1055–1059. IEEE

9. Wu Y, Zhou Q, Hu H et al (2019) Hepatic lesion segmentation by combining plain and
contrast-enhanced CT images with modality weighted U-Net, pp. 255–259. IEEE

10. Xu, Y., Cai, M., Lin, L., et al.: PA-ResSeg: a phase attention residual network for liver tumor
segmentation frommultiphase CT images. Med. Phys. 48, 3752–3766 (2021). https://doi.org/
10.1002/mp.14922

11. Zhang, Y., Peng, C., Peng, L., et al.: Multi-phase liver tumor segmentation with spatial
aggregation and uncertain region inpainting, pp 68–77. Springer (2021)

12. Ouhmich, F., Agnus, V., Noblet, V., et al.: Liver tissue segmentation in multiphase CT scans
using cascaded convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 14, 1275–
1284 (2019)

13. Sun, C., Guo, S., Zhang, H., et al.: Automatic segmentation of liver tumors from multiphase
contrast-enhanced CT images based on FCNs. Artif. Intell. Med. 83, 58–66 (2017)

14. Raju, A., Cheng, C.-T., Huo, Y., et al.: Co-heterogeneous and adaptive segmentation from
multi-source and multi-phase CT imaging data: a study on pathological liver and lesion
segmentation, pp. 448–465. Springer (2020)

15. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition, pp. 770–778
(2016)

16. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural
Information Processing Systems, vol. 30 (2017)

17. Yuan, L., Chen, Y., Wang, T., et al.: Tokens-to-token vit: training vision transformers from
scratch on imagenet, pp. 558–567 (2021)

18. Cao, H., Wang, Y., Chen, J., et al.: Swin-unet: unet-like pure transformer for medical image
segmentation (2021). arXiv:210505537

19. Zheng, S., Lu, J., Zhao, H., et al.: Rethinking semantic segmentation from a sequence-to-
sequence perspective with transformers, pp. 6881–6890 (2021)

20. Chen, J., Lu, Y., Yu, Q., et al.: Transunet: transformers make strong encoders for medical
image segmentation (2021). arXiv:210204306

21. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16 × 16 words:
transformers for image recognition at scale (2020). arXiv:201011929

https://doi.org/10.1002/mp.14922

	Automatic Segmentation of Liver Tumor from Multi-phase Contrast-Enhanced CT Images Using Cross-Phase Fusion Transformer
	1 Introduction
	2 Method
	2.1 Encoder
	2.2 Cross-Phase Feature Aggregator
	2.3 Decoder

	3 Experiment and Discussion
	3.1 Dataset
	3.2 Preprocessing
	3.3 Experiment Configuration
	3.4 Evaluation Metrics
	3.5 Comparison Study
	3.6 Ablation Study
	3.7 Discussion

	4 Conclusions
	References


