
Active Objects Based on Algebraic Effects

Martin Andrieux1 , Ludovic Henrio2(B) , and Gabriel Radanne2

1 ENS Rennes, Rennes, France
martin.andrieux@ens-rennes.fr

2 Université Lyon, EnsL, UCBL, CNRS, Inria, LIP, Lyon, France
{ludovic.henrio,gabriel.radanne}@ens-lyon.fr

Abstract. Algebraic effects are a long-studied programming language
construct allowing the implementation of complex control flow in a struc-
tured way. With OCaml 5, such features are finally available in a main-
stream programming language, giving us a great opportunity to experi-
ment with varied concurrency constructs implemented as simple libraries.
In this article, we explore how to implement concurrency features such
as futures and active objects using algebraic effects, both in theory and
in practice. On the practical side, we present a library of active objects
implemented in OCaml, with futures, cooperative scheduling of active
objects, and thread-level parallelism. On the theoretical side, we for-
malise the compilation of a future calculus that models our library into
an effect calculus similar to the primitives available in OCaml; we then
prove the correctness of the compilation scheme.

1 Introduction

A future [1,9] is a standard synchronisation artefact used in programming lan-
guages with concurrency. It provides a data-flow oriented synchronisation at a
higher level of abstraction than locks or monitors. A future is a promise of a
result from a spawned task: it is a cell, initially empty, and filled with a value
when the task finishes. Accessing this value synchronises the accessor with the
end of the task. Promises [17] is a notion similar to futures except that a promise
must be filled explicitly by the programmer. Promises are more flexible but also
more difficult to use because one could try to fill a promise several times and
this raises many issues.

Future pay a crucial role in the implementation of asynchronous computa-
tions, particularly in object-oriented languages. ABCL/f [23] proposed the first
occurrence of typed futures as a mean for asynchronous method invocation, where
a spawned task fills the future later. Then Creol [13] and ProActive [4] intro-
duced active objects [3]; which are both an object (in the sense of object oriented
programming) and an actor. As a consequence, an active object has its own log-
ical thread and communications between active objects is done by asynchronous
method invocations, using futures to represent the result of asynchronous calls.

Futures, promises, and concurrency primitives in general, have been imple-
mented using a wide variety of techniques, often via dedicated runtime support.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, pp. 3–36, 2024.
https://doi.org/10.1007/978-3-031-51060-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51060-1_1&domain=pdf
http://orcid.org/0009-0002-9582-4231
http://orcid.org/0000-0001-7137-3523
http://orcid.org/0000-0002-2107-7678
https://doi.org/10.1007/978-3-031-51060-1_1

4 M. Andrieux et al.

Many concurrency primitives require suspending, manipulating and resuming
arbitrary computations. This need for non-local control flow appears as soon
as task scheduling is not trivial. It turns out that effect handlers [2] precisely
enable users to define new control-flow operators. This was quickly identified as a
potential technique to implement concurrency primitives while developing Mul-
ticore OCaml. Multicore OCaml [21,22] is an ensemble of new features, including
effect handlers, which enable parallel and concurrent programming in OCaml.
Crucially, since effects are user-defined, they allow implementing concurrency
operators such as futures as libraries. This remark is not a contribution of this
article, and seems to be well known folklore among algebraic effects practitioners.
It is also how eio [15], the new concurrency library for OCaml, is implemented.

This article expands beyond this folklore in two direction: First, we showcase
how to use effects to implement other concurrency primitives, active objects,
that were not previously explored. Second, we formalise the translation between
futures and algebraic effects, and prove it correct.

Contribution 1: An Actor Library Based on Algebraic Effects. On the practical
side, we present a new implementation of active objects based on algebraic effects.
It takes the form of an OCaml library that features all the characteristics of active
objects, adapted to the OCaml ecosystem. The implementation heavily relies on
effect handlers. The library is presented in Sect. 3.

Our implementation only requires effect handlers and objects. To our knowl-
edge and at the time of writing, both are only conjointly present in OCaml.
However, as effect handlers are gaining interest and are developed in differ-
ent contexts, we believe our methodology is applicable to develop active object
libraries in any language that support both features.

Contribution 2: A Formalised Translation from Actors into Effect Handlers and
Its Proof of Correctness. On the theoretical side, we present the formal argu-
ments showing that our implementation of active objects by effect handlers fully
follows the paradigms of active object languages, more precisely:

– In Sect. 4 we describe our calculi: first, an imperative λ-calculus similar to
what can be found in the literature; second, Fut, which expands this λ-
calculus with operations on futures: parallelism, tasks, futures, cooperative
scheduling inside a thread ; finally, Eff which expands the λ-calculus with
effects and effect handlers in a parallel setting.

– Section 5 defines a compilation scheme from Fut to Eff that expresses
the principles of the implementation of our active object library based on
effects. We formally prove the correctness of our translation and show that
the behaviours of the effect compilation of futures mimics exactly the future
semantics. Our main theorem states that the compiled program faithfully
behaves like the original one.

Active Objects Based on Algebraic Effects 5

2 Context and Positioning: Futures, Promises, Effects

We start by revisiting, in a streamlined fashion, the context of our works. We
first present the formal models that exist to define semantics of futures and
effects, explaining why we need a new semantics to formalise our work. Then we
present the programming patterns we rely on: an API for promises as it would
appear in OCaml, and how to implement such API using algebraic effects.

2.1 Formal Model for Futures and Effects

In order to formalise our translation, we need a calculus modeling the core of
active objects. Compared to existing active object languages, we base our work
on a simple λ-calculus enhanced with imperative operations and futures featuring
cooperative scheduling. This calculus does not reflect the object-oriented nature
of active object languages. Indeed, while the object layer provides an effective
programming abstraction and strong static guarantees, we are mostly interested
in operational aspects where objects play little role. Conversely, we consider that
cooperative scheduling is essential, as it precisely captures the dynamic behavior
we want to reproduce after translation to algebraic effects.

Among previously existing calculi, we position ourselves compared to the fol-
lowing ones. On one hand, several previous calculi [6,7] rely on a pure λ-calculus,
lacking any imperative features. We consider modeling imperative code essential,
as it allows us to encode the stateful nature of active objects. In particular pure
calculi are not able to represent cycles of futures [10]. On the other hand, a con-
current λ-calculus with futures [18] and the DeF calculus [5] feature imperative
aspects but no cooperative scheduling, which is crucial to many active objects
languages. Additionally, DeF separates cleanly global state and local variables
and uses a notion of functions closer to object methods instead of λ-calculus. We
do not believe these features are needed in our context. Finally, some formali-
sation efforts such as ABS [14] cover much more ground, including a full-blown
object system and “concurrent object groups” to model the concurrent seman-
tics. We believe such semantics can also be modeled by simpler mechanisms,
such as threads and remote execution of pieces of code.

In the remaining of this work, we use a minimal λ-calculus that includes the
following features, that are, from our point of view, the core runtime character-
istics of actors and active object languages with futures:

– Impure λ-calculus with a store and memory locations,
– Cooperative scheduling among tasks on the same parallelisation entity.
– Request-reply interaction mechanism based on asynchronous calls targeting

a given thread, and replies by mean of futures. Without loss of generality,
asynchronous calls are simply performed by remote execution of a given λ-
calculus expression.

One crucial aspect of actors and active objects that we omit in this work is the
separation of the memory into separate entities manipulated by a single thread
(like e.g. ABS “concurrent object groups”). While this feature is crucial and allows

6 M. Andrieux et al.

reasoning about the deterministic nature of some active object languages [11] we
would not use it in our developments. We also believe this crucial separation could
be added by separating the memory in our configurations into a single memory per
thread, either syntactically or using some kind of separation logic.

On the algebraic effect side, we use an imperative λ-calculus with shal-
low effect handlers, similar to Hillerström and Lindley [12]. This fits well with
OCaml, which supports both imperative and functional features. Note that both
deep and shallow handlers are available in OCaml.

2.2 Promises in OCaml

Promises are not a new addition to OCaml. Historically, the libraries Lwt [24] and
Async implemented monadic promise-based cooperative multitasking in OCaml.
Due to OCaml’s limitation at the time, neither library implemented parallelism.
Multicore OCaml introduced parallelism (with a new garbage collector and sup-
porting libraries for thread parallelism) [21] along with algebraic effects [22],
with the objective for users to implement their own concurrency primitives. In
recent time, several libraries implement their own flair of futures and promises,
this time using a direct-style instead of the previous monadic one. Most of them,
including the most developed library eio [15], and our own implementation, use
a core API summarised in Fig. 1.

Fig. 1. A simple API for promises

The different elements of the API are commented in the figure. The type
Promise.t is parameterised by its content (denoted by the type variable 'a).

Active Objects Based on Algebraic Effects 7

There are two ways to create a promise: Promise.create creates a promise and
also returns the resolution function, while Promise.async associates a computa-
tion to the promise, actually creating a future. This library can be used in any
setting, we thus differentiate between non-blocking operations such as await,
which yield to another task, and blocking operations such as get, whose evalu-
ation is stuck and blocks the current logical thread. It is then up to the invoker
of this function and the scheduler to deal with this blocked state conveniently.

2.3 Promising Effects

Following [20], we now summarise a simplistic implementation of the get prim-
itive for promises or futures using effects, as a way to introduce effects in the
context of concurrency. As noted before, A promise, denoted here by the promise
type is an atomic mutable box containing a status. The status is either Resolved,
containing a value of type ’a, or Empty waiting for a value.

1 type 'a status = Resolved of 'a | Empty

2 type 'a promise = 'a status Atomic.t

Using effects, Fig. 2 showcases the implementation of blocking reads (get
primitive) as explained below. On Line 1, we declare a new effect, called Get. From
the usage perspective, an effect is a parameterised operation whose semantics
is not specified, but whose typing is fixed: here, performing the Get effect takes
as parameter a promise and returns the content. The get function, on Line 4,
directly returns the value if the promise is fulfilled, or performs the Get effect
otherwise. We still need to define what performing Get actually does. This is
done via an effect handler, one Line 9. From the definition perspective, effects
behave similarly to exceptions, except they allow resumption. The exec function
executes a task in the context of a handler. When an effect is performed, it

Fig. 2. Function Promise.get and its effect handler

8 M. Andrieux et al.

triggers the evaluation of the appropriate branch in the handler (here, Line 11)
and binds the value contained in the effect (here, variable p is the promise to
get). The handler also gives access to the continuation k at the point where the
effect was performed. To implement get, we repeatedly poll the content of the
promise until a value is obtained, and resume the continuation k with the value,
thus resuming the execution of the task.

The continuation k, which is applied directly here, is in fact a first class
value and can be passed around and stored. This allows implementing other
operations on promises and other concurrency primitives, by defining a scheduler
that manipulates continuations directly in user-land.

As indicated before, this implementation exactly mirrors (albeit with some
simplifications) the ones in the current OCaml ecosystem. We now move on to
a novel usage of algebraic effects by combining them with objects to implement
active objects in OCaml.

3 An OCaml Library for Active Objects

Our first contribution is an OCaml library, actors-ocaml available at https://
github.com/Marsupilami1/actors-ocaml, which implements promises and active
objects on top of OCaml’s new features: effect handlers, to handle concurrency;
and “domains”, threads accompanied by their memory-managed heap, which
acts as OCaml’s parallelism units. We start by a showing our overlay for active
objects before presenting its translation to effects.

3.1 Active Objects

We showcase a first example of active object in OCaml in Fig. 3. To create a new
active object, we introduce a new dedicated syntax1 object%actor2. It functions
similarly to an OCaml object, with private fields, introduced by val and public
methods. Here, we create an active object with one local field x initialised to 0,
and three methods to set the local field, get it, and multiply it by a provided
integer. Accessing private fields is transparent inside the active object, as if it
was a normal variable, but forbidden outside the active object. We will see below
that we use OCaml domains to implement such a local memory.

In OCaml, objects are typed structurally, with a type that reflects all their
methods. Our active objects follow a similar trend: the object type is delimited
by < ... > and contains a list of all methods. For instance, get : int (Line
3), indicates that the method get takes no argument and returns an integer.
set : int -> unit marks a method taking an integer and returning nothing.
Note that the field is not shown in the type, since it represents internal state.
1 In our implementation we choose to adopt the Actor terminology instead of active

objects because we believe actors are better known in the functional programming
community.

2 For this purpose, we use PPX, a specific hook that allow to extend OCaml with new
lightweight syntax extensions.

https://github.com/Marsupilami1/actors-ocaml
https://github.com/Marsupilami1/actors-ocaml

Active Objects Based on Algebraic Effects 9

Fig. 3. A simple example using active object

This is crucial for active objects, as local fields are stored locally and shouldn’t
be accessed by other active objects. To distinguish active objects from normal
objects, the structural type that consists of the methods is wrapped, giving the
type < .. > Actor.t.

Actual usage of active objects is where we depart from traditional OCaml
objects. Indeed, active objects support two types of method calls: a#.get, in Line
1, is synchronous. Such calls are either blocking if made externally, similarly to
Promise.get, or direct if made internally by the actor itself. a#!get in Line 2 is
asynchronous, which wraps the result in a Promise. Promise.create is called to
create the promise and associates a dedicated resolver with the triggered call.
The promise is returned to the invoker that can then perform Promise.get and
Promise.await on it. The programmer cannot explicitly resolve the promise and
can only access its value: promises returned by active objects are in fact futures,
similarly to other active object languages.

3.2 Encapsulation and Data-Race Freedom

Our library takes advantage of the OCaml type system to provide safe encap-
sulation of state and safe abstraction. Indeed, local variables, such as the state

field in Fig. 3, are hidden. Access can thus only be made inside methods. This
ensures proper abstraction since only fields that are exposed through getters and
setters can be accessed. It also ensures the absence of data-races, since meth-
ods are not executed concurrently (unless programmer explicitly use lower-level
constructs, such as shared memory). Naturally, this is only true if two crucial
properties are ensured: mutable access cannot be captured, and it is impossible
to return mutable values shared with the internal state.

10 M. Andrieux et al.

Capture. Methods calls in OCaml are currified by default. For instance a#!

multiply returns a closure of type int -> (int Promise.t) encapsulating mes-
sage sending to a and retrieval of a result from a. Furthermore, functions are first
class, and can be returned by methods. While this provides great integration into
the rest of the language, this means that we need to be particularly careful with
captures in methods. We illustrate this in Fig. 4, with an incorrect implementa-
tion of the multiply method. Here, we return a closure capturing an access to
the internal field state. Such closure should never be executed in the context
of another active object. We detect such ill-conceived code and return the error
shown below, instructing the user to first access the state before capturing the
value.

In theory, this is a simple matter of name resolution. In practice, name res-
olution in OCaml is complex, and relies on typing information which can’t be
accessed by syntax extensions such as the one we develop. We implement a
conservative approximation.

Fig. 4. An example of illegal capture and its error message

Mutability and Sharing. Code that respects the criterion mentioned above can
still exhibit data-races, for instance by returning the content of a field which
manifest internal mutability, such as arrays. Preventing such mistakes is a bit
more delicate: with the strong abstraction of OCaml, the implementation of a
data-structure can be completely hidden, and hence its potential mutability. A
static type analysis is therefore insufficient. A dynamic analysis of the value is
similarly insufficient (mutable and immutable records are represented similarly

Active Objects Based on Algebraic Effects 11

in OCaml). The last common solution to this problem, to make a deep copy of
returned values, is costly both in terms of time and loss of sharing.

So far, we opted to only support immutable values in fields, and do not
provide any guarantees when mutable values are used. Thankfully, immutable
values are the default in OCaml and are largely promoted for most use-cases. In
the future, we plan to combine static and dynamic analysis to inform where to
insert deep copies.

3.3 Active Object Desugaring

We now have all the ingredients to explain how the OCaml code for the active
object is generated from the programmer’s input. An example of such translation
is given in Fig. 5. The first important notion is to use memory local to the domain
to store the internal fields. Using domains, this is done via the DLS (for Domain
Local Storage, analogous to thread local storage), see for instance line 2 of the
translated code. All reads and writes are then replaced by DLS functions. The
second transformation aims to separate method calls (i.e., message sent), and
execution, and can be observed on line 3 and 4: Each method is split in two.
The first hidden method, shown on line 3, contains the computational content.
The second is the actual entry point: it proceeds by creating a promise; launch a

Fig. 5. Simple active object code (top) and its translation (bottom)

12 M. Andrieux et al.

Fig. 6. Simple use of delegation

new task; and return the promise. The goal of the task is to queue a message in
the actor’s mailbox, via Actor.send, and then launch a process which eventually
resolves the promise; this is done by Scheduler.process.

3.4 Forward

While handling a method, one might want to delegate the computation to
another active object or method. With traditional asynchronous calls such as #!

or await, this would involve unwrapping and rewrapping the promises. Dealing
efficiently with delegation in asynchronous invocations is a well-studied prob-
lem [5–7]. In [6], one construct called forward was suggested for such delega-
tions; it was then shown that directly forwarding an asynchronous invocation
(return(async(e))) could be efficiently and safely implemented using promises.

We can easily adapt this approach to our actors. We also implement del-
egation calls by syntactically identifying such optimisable situation with the
primitive: actor#!!m. Figure 6 illustrates a simple program using such method
delegation; the statement self#!!syracuse next delegates the current invoca-
tion to another one. These calls act as return in many languages, and ignore
any computations that would come after in the method. From the functional
programming point of view, this is analogous to tail-calls. Tail-calls exploit syn-
chronous calls in return positions to eschew using additional stack space. Forward
statement exploits asynchronous calls in return position to eschew indirection of
promises.

In a more general case, we can simply forward3 a promise as the future
resolution of the current promise. A statement similar to the one of Encore,
Actors.forward p performs such a shortcut where p is a ’a Promise.t.

We implement the two forwarding constructs presented above as effects in the
library. Similarly to capturing issues highlighted in previous sections, delegation
calls should not be captured in a closure: indeed, it wouldn’t be clear which
indirection to avoid4. We forbid such situations (dynamically, via a runtime
test).

3 In the future, we hope to turn asynchronous calls in a forward into delegation
automatically.

4 Already in [6], the authors prevented forward from appearing inside a closure.

Active Objects Based on Algebraic Effects 13

3.5 Runtime Support

From a parallelism point of view, we rely on domains, which are threads equipped
with a private heap and a garbage collector. There is also a global, shared heap.
In practice, we spawn a pool of domains at the start of the execution. This pool
of domains is fixed for the whole execution. Similarly to many other implemen-
tations, multiple actors may share a domain, and will use cooperative scheduling
together.

Cooperative scheduling is implemented using effects and continuations, sim-
ilarly to the one implemented in the introduction. To make this scheduler more
realistic and fair, we implement the following optimisations:

– Each domain contains a first round-robin scheduler in charge of scheduling
between active objects hosted on the same domain. Spawning of new actors is
implemented at this layer, enabling the choice of an arbitrary domain to spawn
it. Synchronous method calls in the same domain are transparently turned
into direct calls (instead of asynchronous calls followed by a synchronisation
when the domain is different).

– Each active object contains an OCaml object with the methods of the object,
as described above, and a second round-robin scheduler which schedules the
promises currently executed by this actor. Instead of a traditional mailbox of
messages, active objects contain a queue of thunks to be executed. In the case
of method calls, each thunk contains a call to the underlying OCaml object
as a closure. Forwards and delegation calls are implemented at this second
layer, which is aware of all the details pertaining to the actor.

– Unresolved promises contain a list of callbacks, i.e., other promises that are
currently waiting on it. This allows the implementation of passive waits for
unresolved promise reads.

Note that this implies we have two effects handlers, both providing slightly
differing implementation of the base effects related to promises (Async, Get,
Await). Indeed, promises can appear outside of actors, but should be handled
locally if they appear inside one.

4 Future and Effect λ-Calculi

The rest of this article is dedicated to the formal description of the compilation
of Futures to Effects. For this purpose, we first introduce our protagonists: A
common imperative base (Sect. 4.1), the source future calculus (Sect. 4.2) often
characterised in green, and the target effect calculus (Sect. 4.3) often charac-
terised in blue. For all these calculi, we define small-step operational semantics
in the sequential and parallel cases.

14 M. Andrieux et al.

4.1 A Functional-Imperative Base

We define a standard λ-calculus with imperative operations that will be the base
language for our other definitions and semantics. The syntax is given in Fig. 7.
As meta-syntactic notations, we use overbar for lists (e a list of expressions) and
brackets for association maps (

[
� �→ e

]
). Dom(M) is the domain of M and ∅ is

the empty map. M [v �→ v′] is a copy of M where v is associated to v′, M \ v is
a copy of M where v is not mapped to anything (v �∈ Dom(M \ v)).

Most expression and values are classical. The substitution of x by e′ in e is
denoted e [x ← e′]. Stores are maps indexed by location references, denoted �.
Id denotes unique identifiers that can be crafted during execution, which will
be useful in our two main calculi. Location references and identifiers should not
occur in the source programs and only appear during evaluation. We also define
evaluation contexts C that are expressions with a single hole �. Evaluation con-
texts are used in the semantics to specify the point of evaluation in every term,
ensuring a left-to-right call-by-value evaluation. We classically rely on evaluation
contexts, C[e] is the expression made of the context C where the hole is filled
with expression e. Figure 8 defines a semantics for this base calculus; it is similar
to what can be found in the literature. It expresses a reduction relation, denoted
−−→, of pairs store×expression.

Important Note. The rules of Fig. 8 act on the syntax of imperative λ-calculus.
However, in the next section we will re-use −−→ on terms of bigger languages,
with the natural embedding that −−→ rules only are able to handle the λ-calculus
primitives but will manipulate terms and reduction contexts of the other lan-
guages. The alternative would be to define from the beginning the syntax and
reduction contexts of our language as the largest syntax including all the three

Fig. 7. Syntax for the base impure λ-calculus

Fig. 8. Semantics for the base impure λ-calculus

Active Objects Based on Algebraic Effects 15

considered languages (λ-calculus, Fut, and Eff). We chose here to adopt a more
progressive presentation despite the slight abuse of notation this involves on the
formal side.

In the rest of this article, we also assume additional constructs which can be
classically encoded in the impure λ-calculus:

– Let-declaration: let x = ... in ...
– Sequence: e; e’
– Mutually recursive declarations: let rec ... and ...
– Mutable maps indexed by values: empty map {}, reads M [e], writes M [e] ←

e′, and deletions del M [e]
– Pattern matching on simple values: match ... with ...

4.2 Futures and Cooperative Scheduling

Our λ-calculus with futures shares some similarities with the concurrent λ-
calculus with futures [18], but without future handlers or explicit future name
creation and scoping, resulting in a simpler calculus. Our calculus can also be
compared to the one of Fernandez-Reyes et al. [6] but with cooperative schedul-
ing with multiple threads, and imperative aspects.

The λ-calculus of previous section is extended as shown in Fig. 9. Four new
constructs are added to the syntax: spawn() spawns a new processing unit;
asyncAt(e, e′) starts a new task e in the processing unit e′ and creates a future
identifier f , when the task finishes, this resolves the future f ; get(e), provided
e is a future identifier, blocks the current processing unit until the future in e
is resolved; await(e) is similar but releases the current processing unit until the
future is resolved. Evaluation contexts are trivially extended.

As shown in Fig. 9, we suppose that future identifiers have a specific shape
of the form fut = (tid, lf) where tid is a thread identifier and lf is a local future
identifier. Tasks map expressions to future identifiers, when the expression is
fully evaluated (to a value) the future is resolved.

The dynamic syntax is expressed in two additional layers: above the λ-
calculus layer of Fig. 8, Fig. 10 expresses the reduction relation in a given pro-
cessing unit, and Fig. 11 extends this local semantics to a parallel semantics with
several processing units.

The local semantics in Fig. 10 is based on configurations of the form σ, F, s
where σ is a shared mutable store, F is the map of futures, and s is a state.
If the expression in the current task is fully evaluated to a value, the task is
finished, the future is resolved and put back into the task list, the state of the
processing unit is Idle (rule return). Rule step performs a λ-calculus step (see
Fig. 8). get(f) can only progress if the future f has been resolved, in which case
the value associated with the future is fetched (rule get). There are two rules

16 M. Andrieux et al.

Fig. 9. Syntax for the Fut language

Fig. 10. Semantics for Fut—σ, F, s −−→ σ, F, s

for await(f): if the future is resolved await(f) behaves like get(f); if it is not
resolved the task is interrupted (it returns to the task pool), the processing unit
becomes Idle. Finally, rule Async starts a new task: the effect of asyncAt(e, tid)
is first to forge a future identifier containing the thread identifier tid and another
identifier lf so that the pair (tid, lf) is fresh, a task is created, associating e to
the new future.

The management of processing units and thread identifiers is the purpose of
the parallel semantics in Fig. 11. It expresses the evaluation of configurations of
the form σ, F, P where P is a parallel composition of processing units. P ‖ si is
used both to extract the execution state of thread i form the parallel composition
P and to add it back. Rule one-step simply triggers a rule of the local semantics
in Fig. 11. Rule spawn spawns a new thread, creating a fresh thread identifier
that will be used in an AsyncAt statement to initiate work on this thread (the
new thread is initially Idle). Finally, if si is Idle, no task is currently running
and a new task can be started on the processing unit i by the rule schedule.

Active Objects Based on Algebraic Effects 17

Fig. 11. Parallel semantics for Fut—σ, F, ‖i∈I si −−→|| σ, F, ‖i∈I si

An initial configuration for an Fut program ep consists of the program asso-
ciated with a fresh task identifier i and a fresh future identifier f , with an empty
store and future map: ∅, ∅, (f → ep)i.

4.3 Effects

We now extend the base calculus of Sect. 4.1 with effects. For the moment this
extension is independent of the previous one, they are used separately in this
article even though composing the two extensions would be perfectly possible.
Indeed, we transform programs with only futures into programs with only effects
but having a language with at the same time futures and effects would also make
sense.

Figure 12 shows the syntax of the parallel and imperative λ-calculus with
effects. Parallelism is obtained by the keyword spawn(e) that creates a new
thread in the same spirit as in the previous section. handle(e){h} runs the
expression e under the handler h, if an effect is thrown by throw(E(C)) inside e,
and if h can handle this effect, the handler is triggered. Rule handle-effect in
Fig. 13 specifies the semantics of effect handling. Suppose an effect E is thrown,
the first encompassing handler that can handle this effect is triggered: if a
rule (E(x), k �→ e) is in the handler, then the handler e is triggered with x
assigned to the effect value v and k assigned to the continuation of the expres-
sion that triggered the effect. The interplay between evaluation contexts and the
captured effects() function captures the closest matching effect. Rule handle-
step handles the case where the term e performs a reduction not related to effect
handling. If e finally returns a value, Finally, rule handle-return deals with
the case where the handled expression can be fully evaluated without throwing
an effect; it triggers the expression corresponding to the success case x �→ e in
the handler definition. Note that we don’t reinstall the handler after triggering
the rule, corresponding to the shallow interpretation of effect handlers [12].

Figure 14 shows the parallel semantics of effects. The only specific rule is
spawn, which spawns a new thread with a fresh identifier. Note that in Eff, the
parameter of spawn is the expression to be evaluated in the new thread, with its
own thread identifier as argument.

18 M. Andrieux et al.

Fig. 12. Eff Syntax

Fig. 13. Semantics for Eff—σ, e −−→ σ, e

Fig. 14. Parallel semantics for Eff—σ, ‖i∈I ei −−→ σ, ‖i∈I ei

An initial configuration for an Eff program ep simply consists of the program
associated with a fresh task identifier i and with an empty store: ∅, ei

p.

5 Compilation of Futures into Effects

In this section we define a transformation from Fut to Eff that translates from
our concurrent λ-calculus with futures into the calculus with effect handlers. We
then prove its correctness.

5.1 Translating FUT into EFF

Figure 15 shows the translation �e�p that transforms a Fut program e into an
Eff program with the same semantics. The color highlighting in the definition
can be ignored at first. It will be used in the proof in the next section. �e�p is
the top level program transformation while �e�e is used to compile expression;
this transformation simply replaces Fut specific expressions into expressions

Active Objects Based on Algebraic Effects 19

Fig. 15. Translation from Fut to Eff

throwing an effect with adequate name and parameters. The handling of effects
is defined at the top level, i.e. when translating the source program.

�e�p creates a program that uses a pool of tasks called tasks and three
functions that manipulate it. tasks is implemented by a mutable map from future
identifiers to tasks, which can be of two kinds: continuations of the form C(k)
or values of the form V(v).

The main function is continue, it sets up a handler dealing with all the
effects of Fut. It first evaluates the thunk continuation parameter k. Then it
reacts to the different possible effects as follows. The first branch describes the
behavior when k() throws no effect and simply returns a value. In this case, the

20 M. Andrieux et al.

task is saved as a value V(v) (the future is resolved). The Async effect adds a
new task to the task pool and continues the execution of the current task with
the continuation k′ and the newly created future fut′. The Await effects checks
whether the future futa in the task pool has been resolved or not; if it is resolved
the task continues with the future value, otherwise the task is put back in the
pool of tasks (keeping the Await effect at the head of the continuation). The
Get effect is similar to the resolved case of Await but does not allow the task
to be returned to the pool of tasks. Instead, if the future is not resolved the
thread actively polls the matching task until the future is finally resolved using
the auxiliary poll function. The Spawn effect case spawns a new thread that runs
the run function. In each case where the task does not continue, the body of the
function run is triggered.

The function run(t) uses the external function pop(tasks, t) to fetch a new
unresolved task that should run on thread t, the task is thus of the form C(k)
and the thread continues by evaluating the thunk continuation k.

5.2 Correctness of the Compilation of Actors into Effects

We define in this section a hiding semantics and will prove strong bisimula-
tion between the source program and the hiding semantics of the transformed
program.

5.2.1 Hiding Semantics In translation such as the one defined here, the
compiled program must often take several more “administrative” steps than the
source program. This makes proof by bisimulation more complex, and requires
using weak bisimulation that ignores some steps marked as internal.

In this article we take a stronger approach and prove strong bisimilarity on a
derived transition relation. The principle is that internal steps of the transformed
program are called silent, and they are by nature deterministic and terminating.
We can thus consider that we “normalise” the runtime configuration of the trans-
formed program by systematically applying as many internal steps as possible
until a stable state is reached. We discuss this idea further in Sect. 6.

We first state that hidden(e) is true if the top level node in the syntax of
e is colored ; where colored means the term is surrounded by a colored box: e .
There should be no ambiguity on the node of the syntax that is colored (at least
in our translation).

Definition 1 (Hiding semantics). We define a hiding operation to hide parts
of the reduction. It works as follows. We can define a h-reduction −−→h that puts
a τ label on the transitions that target a node of the syntax that is hidden:

σ, e−−→|| σ′, e′ hidden(e)

σ, e
τ−→h σ′, e′

σ, e−−→|| σ′, e′ ¬hidden(e)
σ, e−−→h σ′, e′

Active Objects Based on Algebraic Effects 21

We finally define the hiding semantics as one non-hidden step followed by
any number of hidden step, until no further hidden step can be performed5:

σ, e=⇒|| σ, e ⇐⇒ σ, e−−→h
τ−→h

∗
σ′, e′ �τ−→h

Note that, considering the nodes colored in our translation, the transitions
marked as τ should only have a local and deterministic effect on the program
state. In practice there are some hidden statements that spawn a thread or
launches task for example, but they are immediately and deterministically pre-
ceded by a decision point that is visible, here the reaction to an effect. The
interleaving of the tau transition have no visible effect on the global state, only
the state along the visible transitions is important. This property will be made
explicit in our proof of correctness. As a consequence, because the hidden step
commutes with all the other steps, each execution of a Fut program compiled
into Eff can be seen as a succession of =⇒||. Additionally, except when polling
futures the transitive closure of hidden steps terminate. We have the following
property, relating our middle-step and small-step semantics.

Theorem 1 (Middle-step semantics). Consider e1 = �ef �p. Any Eff
reduction of e1 can be seen as a hiding semantics reduction, modulo a few hidden
steps, and a few get operations on unresolved futures:

σ1, e1 −−→||∗ σ2, e2 =⇒ ∃σ3, e3, σ4, e4.
∧

σ1, e1 =⇒||∗ σ3, e3

σ2, e2
τ−→h

∗
σ4, e4

σ3, e3
handle-get−−−−−−−→||

∗
σ4, e4

Where σ3, e3
handle-get−−−−−−−→||

∗
σ4, e4 is application (inside an appropriate context) of

a handle-effect rule with a Get effect on an unresolved future. In particular,
if all futures are resolved, σ3, e3 = σ4, e4.

This theorem is true because the hidden semantic steps commute, only a
special case is needed for handling the polling of unresolved futures.

5.2.2 Bisimulation Definition To help with our bisimulation definition, we
now define a few execution contexts that appear commonly in the proof. Crec

is the context that corresponds to the recursive knot introduced by let rec.
Indeed, since let rec expresses recursion as an encoding into λ-calculus, the
encoding will appear again in each task and can be sugared/de-sugared at will.
In addition, Cc and Cr are the contexts in the translated program where continue
and run are respectively executed, parameterised by all their free variables. In
the following we thus start each task by Crec, Cc or Cr. More precisely:

5 −−→∗ denotes the reflexive transitive closure of the relation −−→.

22 M. Andrieux et al.

Crec[�threads] �

⎛

⎜
⎜
⎜
⎜
⎝

let rec poll(fut) = Poll in

let rec continue(fut, k, t)=Continue

and run(t) = Run in

�

⎞

⎟
⎟
⎟
⎟
⎠

[tasks ← �threads]

Cc[�threads, fut,K ′, t] � Crec[�threads][continue(fut, k, t) [k() ← K ′]]

Cr[�threads, t] � Crec[�threads][run(t)]

Definition 2 (Relation over configurations). Let R be a relation over pairs
of a Fut configuration CFut and a Eff configuration CEff. We also note Re a
relation over pairs of configuration states in Fut (i.e., (σ, �threads)) and in Eff
(i.e., (σ, F)).

Figure 16 defines both relations. The purpose of the relation is to prove the
correctness of our compilation scheme. We will prove that R is a strong bisim-
ulation. R is indexed either by ‖ for parallel configurations, and by a given t to
reason about single-threaded configurations of thread t. For single-threaded con-
figurations, the computation can either be in the continue case, or the run
case. The most complex relation is on the environments, which details the con-
tent of the �threads values.

The translation ��e can straightforwardly be extended to contexts (where
���e = �). Consequently, we have the following property:

Lemma 1 (Context compilation). �C[e]�e ≡ �C�e [�e�e]

Proof. By case analysis on the translation rules (and on contexts). �

Fig. 16. Relation between Fut terms and their compiled version

Active Objects Based on Algebraic Effects 23

5.2.3 Correctness of the Compilation Scheme We now establish the
correctness of our translation by proving that the relation we exhibited in the
previous section is a bisimulation.

Theorem 2 (Correctness of the compilation scheme). The relation R ‖
is a strong bisimulation where the transition on the Eff side is the hiding tran-
sition relation, and the transition on the Fut side is −−→||. Formally, for all
configurations the following holds:

σ1, P1 R ‖ σ′
1, F1, P

′
1 ∧ σ1, P1 =⇒|| σ2, P2

=⇒ ∃σ′
2, F2, P

′
2. σ′

1, F1, P
′
1 −−→|| σ′

2, F2, P
′
2 ∧ σ2, P2 R ‖ σ′

2, F2, P
′
2

and

σ1, P1 R ‖ σ′
1, F1, P

′
1 ∧ σ′

1, F1, P
′
1 −−→|| σ′

2, F2, P
′
2

=⇒ ∃σ2, P2. σ1, P1 =⇒|| σ2, P2 ∧ σ2, P2 R ‖ σ′
2, F2, P

′
2

so that for any Fut program p the initial configuration of the program and of its
effect translation are bisimilar (with t0 fresh, and f0 is the fresh future identifier
that has been chosen when triggering the first continue function.).

∅, (�ep�p [fresh() ← f0])t0 R ‖ ∅, ∅, (f0 �→ ep)t0

Proof (sketch). The proof of bisimulation follows a standard structure. For each
pair of related configurations we show that the possible reductions made by
one configuration can be simulated by the equivalent configuration (in the other
calculus). Then a case analysis is performed depending on the rule applied. The
set of rules is different between Fut and Eff calculi but on the Eff side, we
need to distinguish cases based on the name of the triggered effect, leading to
a proof structure similar to the different rules of Fut. Appendix A details the
proof that the compiled program simulates the original one. By case analysis on
the rule that makes the relation true and the involved reduction. This leads to
seven different main cases; we prove simulation in each case. �
Finally, Theorems 1 and 2 allow us to conclude regarding the correctness of our
compilation scheme. Indeed, each execution of a compiled program is equivalent
to a middle-step reduction that itself simulates one of the possible executions of
our Fut program. Conversely, any execution of our Fut program corresponds
(modulo polling of unresolved futures) to a middle-step execution of its compi-
lation, which is in fact one of the Eff executions of the compiled program.

6 Conclusion and Discussion

We have presented an active object library based on effect handlers and proved
the correctness of its implementation principles. To prove this correctness, we

24 M. Andrieux et al.

expressed the implementation as a translation from a future calculus to an effect
calculus and proved a bisimulation relation between the source and the trans-
formed program. This illustrates that effects are a very general and versatile con-
struct which can be leveraged to implement concurrency constructs as libraries,
including futures. We discuss below a few alternatives that we considered and,
more generally, extensions of this work we envision.

Deep and Shallow Handlers. As highlighted at multiple points, we use shal-
low effect handlers, both in our implementation and in our formal development.
Shallow effect handlers are not automatically reinstalled upon resuming a con-
tinuation, while deep handlers are automatically reinstalled.

In theory, Hillerström and Lindley [12] show that both deep and shallow han-
dlers are equivalent, and showcase code transformation from one to the other. In
addition, OCaml provides both versions. In practice, however, for the purpose
of implementing a scheduler, shallow handlers offer numerous advantages. First,
they make recursion in the continue function uniform over all tasks, be they con-
tinuations or new tasks. Furthermore, since they allow precise control over when
handlers are installed, we can ensure that we never install nested handlers. In
our implementation, this was essential to make continue and run tail-recursive.

Unfortunately, shallow handlers are a bit more delicate to implement for
language designers. Furthermore, deep handlers admit a more precise small-step
semantics [19]. It remains to be seen if the deep version of our scheduler can be
expressed as elegantly as the one showcased in our formalisation.

Relation to Existing Promise-as-Effect Libraries. To develop our active object
library, we made our own implementation of promises. This was convenient, as
full-control allowed us to tie both together, which was essential for implementing
forward, notably.

However, implementing an industrial-strength promise library with efficient
scheduling, parallelism, and system integration is a significant task. Making sev-
eral such libraries work together is delicate. In practice, eio [15] is trending
towards being the standard promise library in OCaml.

Now that we formalised our semantics independently, one of the next steps
is to adapt our developments to rely on an existing scheduling library. There are
two difficulties here:

– Adapting to different underlying primitives (eio uses “suspend”, similar to a
form of yielding, and “fork” to create new promises).

– Finding a way to extend the scheduler implemented by an existing library,
accessing its internal state, without completely breaking its invariants, nor
breaking abstraction.

Optimisation on Forward. As we mentioned in Sect. 3, forward is a construct
that allows efficient delegation of asynchronous method invocations by mak-
ing shortcuts when a future is resolved with another one [6]. For simplicity, we
decided not to specify forward in our formal development. Its specification and

Active Objects Based on Algebraic Effects 25

proof is rather straightforward, by introducing an additional effect. In the future,
in addition to this formal aspect, we would like to experiment with introduc-
ing delegated method calls automatically, following the analogy with tail-call
optimisations.

Hiding Semantics and Middle-Step Reductions. Proof of correctness of transla-
tions between languages and calculi often reduce to simulation or bisimulation
proofs [5,6,16] between a source program and a transformed program. Often,
it is however necessary for the transformed program to do more steps than the
original one. These additional internal steps are necessary to maintain internal
information on the program state. Sometimes, even the source program must also
do some internal steps. The usual tool to prove the equivalence in this case is to
use a weak bisimulation that “ignores” some steps marked as internal. However,
weak bisimulations do not guarantee the preservation of all program properties,
in particular liveness properties [8]. In such situations, some previous work prove
branching bisimilarity which is stronger but not always sufficient.

In this article, we developed a new “hiding” semantics and a middle-step
reduction which executes one non-hidden step, followed by as many hidden steps
as possible. This allows us to decide exactly in the specification of the translation
which code is “administrative” and which code must really be synchronised.
Naturally, in our context, such code is deterministic.

While we developed this in an ad-hoc manner here, we believe this approach
can be adapted to many other program translations, simplifying simplifying the
proof of correctness for compilers, and program transformations in general.

A Proof of the Bisimulation Theorem (Theorem 2)

A proof of bisimulation involves two simulation proofs for the same relation. We
detail the proof for the first direction: the behaviour of the compiled program is
one of the behaviours of the original one. This direction is more complex because
of the middle-step semantics and is also more important as it states that the
behaviour of the compiled program is a valid one. The other direction is done
very similarly with the same arguments as the ones used in the first direction. It
however has a different structure as the SOS semantics provides more different
cases (but the proof below often needs to distinguish cases according to the
current state of the configuration, leading to a similar set of cases overall). We
omit the other direction.

Consider σ1, P1 R ‖ σ′
1, F1, P

′
1, and σ1, P1 =⇒|| σ2, P2. Let i be the thread

identifier of the thread involved in the reduction =⇒|| (in case of spawn i is the
thread that performs the spawn).

We have P1 = Q1 ‖ ei and P ′
1 = Q′

1 ‖ si for some Q1 and Q′
1. Additionally,

σ1, Q1 R ‖ σ′
1, F1, Q

′
1 and σ1, e R i σ′

1, F1, s.
We do a case analysis on the rule used to prove the Ri relation; two cases

are possible:

26 M. Andrieux et al.

Continue:
Continue

σ1, �threads R e σ′
1, F1

σ1, Cc[�threads, f, �e′�e , i] R i σ′
1, F1, (f �→ e′)

In this case, the top level of continue is a handle thanks to the context Cc.
σ1, P1 =⇒|| σ2, P2 can result from three possible rules (modulo a seq rule at
the configuration level and a λ-calculus context rule to reach the reducible
statement):
HANDLE-RETURN �e′�e must be of the form v (and is inside a handle

because of Cc).
We have σ1, P1 =⇒|| σ2, P2. Its first visible reduction rule must be:

(x �→ e2) ∈ h

σ1, handle(v){h}−−→σ1, e2 [x ← v]
handle-return

σ1, Crec [handle(v){h}] −−→σ1, Crec [e2 [x ← v]]
context

σ1, Q1 ‖ ei −−→|| σ1, Q1 ‖ Crec [e3]
i

seq

Where:

Crec the “let ... rec” context

h the effect handlers defined in Continue

e = Cc[�threads, f, �e′�e , i]
= Crec[handle(v){h}]

e3 = �threads[f] ← V(v);

run(i)

The hidden rules then update the appropriate task in the store and start
the run function. Overall, we obtain:

σ1, Q1 ‖ Cc[�threads, f, �e′�e , i] =⇒|| σ2, Q1 ‖ Cr[�threads, i]i

Where

σ2 = σ1

[
�threads �→ σ1(�threads)

[
f �→ V(v)

)]]

Since e = Crec[handle(v){h}], by case analysis on the compilation rules,
we must have the source expression e′ = v′ be a Fut value with v = �v′�e.
Then we have:

σ′
1, F1, (f �→ v′)i −−→σ′

1, F1[f �→ v′] , Idlei
return

σ′
1, F1, Q

′
1 ‖(f �→ v′)i −−→|| σ′

1, F1[f �→ v′] , Q′
1 ‖ Idlei

one-step

Active Objects Based on Algebraic Effects 27

We then need to establish that the new future map and stores are in
relation, i.e., σ2, �threadsReσ

′
1, F1[f �→ v′].

We recall the env rule below:

env
Fe = Fe,1 � Fe,2

∀f ∈ Dom(Fv). Fv(f) is a value
∀f ∈ Dom(Fe). Fe(f) is not a value

Te,1 = [f ′ �→ C(λ(). �e�e) | Fe,1(f ′) = e]

Te,2 =
[
f ′ �→ C (λ().((λx.C[x]) e)) | �Fe,2(f ′)�e = C[e]

]

Tv = [f ′ �→ V(�v�e) | Fv(f ′) = v]
σbase ∪ {�threads �→ Te,1 � Te,2 � Tv}, �threads R e σbase, Fe � Fv

By inversion on σ1, �threads Re σ′
1, F1, we obtain three maps Te,1�Te,2�Tv

that ensure the relation. We extend Tv so that Tv[f] �→ V(v) to obtain
the relation.
Recall that v = �v′�e; this is sufficient to conclude that

σ2, Q1 ‖ Cr[�threads, i]i R ‖ σ′
1, F1[f �→ v′] , Q′

1 ‖ Idlei

HANDLE-STEP �e′�e must be of the form e1 where e1 can only be reduced
by a λ-calculus reduction.
We have σ1, P1 =⇒|| σ2, P2. Its first visible reduction rule must be:

σ1, e1 −−→ σ2, e2

σ1, e1 −−→ σ2, e2
handle-step

σ1, Crec [handle(e1){h}] −−→ σ2, Crec [handle(e2){h}]
context

σ1, Q1 ‖ ei −−→|| σ2, Q1 ‖ Crec [e3]
i

seq

Where:

Crec the “let ... rec” context

h the effect handlers defined in Continue

e = Cc[�threads, f, �e′�e , i] = Crec[handle(e1){h}]

e3 = handle(e2){h}

The translation leave λ-calculus terms unchanged, without any hiding,
thus there are no follow up hidden rules.
Overall, we obtain:

σ1, �e
′�e −−→σ2, e2

σ1, Q1 ‖ Cc[�threads, f, �e′�e , i] =⇒|| σ2, Q1 ‖ Cc[�threads, f, e2, i]

28 M. Andrieux et al.

We know that σ1, �threads Re σ′
1, F1. By definition, this means that σ1 =

σ′
1 ∪ {�threads �→ T} for some map T . By definition of the translation,

�threads is not accessible by user code, and thus left unchanged by the
reduction on �e′�e. As such, we have:

σ2 = σ′
2 ∪ {�threads �→ T} σ′

1, �e
′�e −−→ σ′

2, e2

By case analysis on the translation and the λ-calculus reduction rules, e′

must be reduced by the same λ-calculus reduction rule than �e′�e. Thus:

σ′
1, e

′ −−→ σ′
2, e

′
2

σ′
1, F1, (f �→ e′)i −−→ σ′

2, F1, (f �→ e′
2)

i
step

σ′
1, F1, Q

′
1 ‖(f �→ e′)i −−→|| σ′

2, F1, Q
′
1 ‖(f �→ e′

2)
i
one-step

This case analysis and by determinism of our λ-calculus, we have �e′
2�e =

e2. We also have σ2, �threadsReσ
′
2, F1.

This is sufficient to conclude that

σ2, Q1 ‖ Cc[�threads, f, �e′�e , i]i R ‖ σ′
2, F1, Q

′
1 ‖ Cc[�threads, f, �e′

2�e , i]

HANDLE-EFFECT �e′�e must be of the form C[throw(E(x)) (and is
inside a handle because of Cc). We distinguish by the effect captured:
Async(job, t′). We have σ1, P1 =⇒|| σ2, P2. Its first visible reduction rule

must be:
seq+handle-effect+context

(Async(job, t′), k′ �→ e2) ∈ h Async /∈ captured effects(C)

σ1, Crec

[
handle(C[throw(Async(λ(). e′′, t))]){h}

]

−−→σ1, Crec

[
e2 [t′ ← t]

[
job ← λ(). e′′

]
[k′ ← λy.C[y]]

]

σ1, Q1 ‖ ei −−→|| σ1, Q1 ‖ Crec [e3]
i

Where:

Crec the “let ... rec” context

h the effect handlers defined in Continue

e = Cc[�threads, f, �e′�e , i]
= Crec[handle(C[throw(Async(λ(). e′′, t))]){h}]

e3 = let fut′ = (t, fresh()) in

�threads[fut′] ← C(λ(). e′′);

continue(f, λ().(λy.C[y])(fut′), i)

Active Objects Based on Algebraic Effects 29

By definition of the translation, and because the reduction is possible,
the arguments of the Async effect must be a thunk task, and its second
argument must be a thread identifier (it can be an expression but this
one is entirely evaluated before triggering the effect). This as some
consequences on the considered Fut configuration, e.g. e′ is of the
form AsyncAt(e0, t). Additionally, t is the same on both side as thread
identifiers are preserved by the translation (this can be proven by case
analysis on the definition of Ri).
The hidden rules apply then update the suspended tasks in the store
and start the continue function. The last hidden reduction rule is
the beta-reduction that de-thunks the continuation λ().(λy.C[y])(fut′)
inside the handler of continue and puts fut′ back into the invocation
context.
Overall, we obtain:

σ1, Q1 ‖ Cc[�threads, f, �e′�e , i] =⇒|| σ2, Q1 ‖ Cc[�threads, f, C[fut′], i]i

Where

σ2 = σ1

[
�threads �→ σ1(�threads)

[
fut′ �→ C

(
λ(). e′′)

)]]

Since e = Crec[handle(C[throw(Async(λ(). e′′, t))]){h}], by case
analysis on the compilation rules, we must have the source expres-
sion e′ = C1[asyncAt(e′

1, t)] where C = �C1�e and e′′ = �e′
1�e by

Lemma 1. Note also that the set of future identifiers are the same in
the Fut program and in its translation, and thus fut′ = (t, fresh()) is
a fresh future in the Fut configuration. Then we have:

async+one-step

fut′ = (t, lf) fut′ �∈ Dom(F1)
σ′
1, F1, Q

′
1 ‖(f �→ C1[asyncAt(e′

1, t)])
i −−→||

σ′
1, F1

[
fut′ �→ e′

1

]
, Q′

1 ‖(f �→ C1[fut′])i

We then need to establish that the new future map and stores are in
relation, i.e., σ2, �threadsReσ

′
1, F1

[
fut′ �→ e′

1

]
.

We recall the env rule below:
env

Fe = Fe,1 � Fe,2

∀f ∈ Dom(Fv). Fv(f) is a value
∀f ∈ Dom(Fe). Fe(f) is not a value

Te,1 = [f ′ �→ C(λ(). �e�e) | Fe,1(f ′) = e]
Te,2 =

[
f ′ �→ C (λ().((λx.C[x]) e)) | �Fe,2(f ′)�e = C[e]

]

Tv = [f ′ �→ V(�v�e) | Fv(f ′) = v]
σbase ∪ {�threads �→ Te,1 � Te,2 � Tv}, �threads R e σbase, Fe � Fv

30 M. Andrieux et al.

By inversion on σ1, �threads Re σ′
1, F1, we obtain tree maps Te,1 �

Te,2 � Tv that ensure the relation. We then extend Te,1 so that
�threads[fut′] �→ C(λ(). �e′

1�e) to obtain the relation.
This is sufficient to conclude that

σ2, Q1 ‖ Cc[�threads, f, C[fut′], i]i R ‖
σ′
1, F1

[
fut′ �→ e′

1

]
, Q′

1 ‖(f �→ C1[fut′])i

Get(f ′). We have σ1, P1 =⇒|| σ2, P2. Its first visible reduction rule must
be:

seq+handle-effect+context

(Get(futg), k
′ �→ e2) ∈ h Get /∈ captured effects(C)

σ1, Crec [handle(C[throw(Get(f ′))]){h}]
−−→σ1, Crec

[
e2

[
futg ← f ′] [k′ ← λy.C[y]]

]

σ1, Q1 ‖ ei −−→|| σ1, Q1 ‖ Crec [e3]
i

Where6:

Crec the “let ... rec” context

h the effect handlers defined in Continue

e = Cc[�threads, f, �e′�e , i]
= Crec[handle(C[throw(Get(f ′))]){h}]

e3 = let v = poll(f ′) in

continue(f, λ().((λy.C[y]) v), i)

The argument of the Get effect must be a future reference that is
totally evaluated for the rule to succeed. If it is not a future the
evaluation of poll fails. If it is not fully evaluated, the reduction should
first occur inside the argument of the Get effect.

Details on Poll Reductions. At this point, we look at hidden reduc-
tions, which must start in the body of poll. If the future is unresolved,
poll loops forever and the medium step reduction diverges. This means
either that the future never resolves, and this divergence in Eff sim-
ulates a deadlock in Fut; or that we could make reductions in other
threads to resolve the deadlock. In the second case, the semantics for
Eff would interleave loops in poll and reduction in other threads.

6 A few substitutions have occurred inside poll by definition of Cc. We omit them here
not to clutter the proof.

Active Objects Based on Algebraic Effects 31

Such interleaving is equivalent to triggering the Get event at the end,
with a single loop in poll. The current theorem only consider this last
interleaving. Overall, if there is a medium step reduction it means
that the future is resolved.
In this case, the future has been resolved, and, by bisimilarity on the
stores (Re) we have F1(f ′) = v and σ1(�threads)[f ′] = v for some v.
We obtain after a couple of steps of beta-reduction:

σ1, Q1 ‖ Cc[�threads, f, �e′�e , i] =⇒|| σ1, Q1 ‖ Cc[�threads, f, C[v], i]i

Since e = Crec[handle(C[throw(Get(f ′))])h], by case analysis on the
compilation rules, we have e′ = C1[get(f ′)] where C = �C1�e by
Lemma 1. Then we have:

get+one-step

(f ′ �→ v) ∈ F1

σ′
1, F1, Q

′
1 ‖(f �→ C1[get(f ′)])i −−→|| σ′

1, F1, Q
′
1 ‖(f �→ C1[v])i

This is sufficient to conclude that

σ1, Q1 ‖ Cc[�threads, f, C[v], i]i R ‖ σ′
1, F1, Q

′
1 ‖(f �→ C1[v])i

Await(f ′). The case when the awaited future is resolved is similar to
the case of the Get effect just above. We only detail the proof in case
the future is still unresolved.
We have σ1, P1 =⇒|| σ2, P2. Its first visible reduction rule must be:

seq+handle-effect+context

(Await(futa), k′ �→ e2) ∈ h Await /∈ captured effects(C)
σ1, Crec [handle(C[throw(Await(f ′))]){h}]
−−→σ1, Crec [e2 [futa ← f ′] [k′ ← λy.C[y]]]

σ1, Q1 ‖ ei −−→|| σ1, Q1 ‖ Crec [e3]
i

32 M. Andrieux et al.

Where:

Crec the “let ... rec” context

h the effect handlers defined in Continue

e = Cc[�threads, f, �e′�e , i]
= Crec[handle(C[throw(Await(f ′))]){h}]

e3 = match �threads[f ′]{
| V(v) �→ continue(f, λ().((λy.C[y]) v))

| �→ let k′′() = (λy.C[y]) (throw(Await(f ′))) in

�threads[f] ← C(k′′); run(i)

}

Like in the Get case, the argument of the Await effect must be a
future reference that is totally evaluated for the rule to succeed.
When the future is unresolved, �threads[f ′] is not a value (it is not
mapped or mapped to a C). By definition of Re we necessarily have:
�v. (f ′ �→ v) ∈ F1. Then a few hidden beta reduction steps lead to
the following configuration:

σ1, Q1 ‖ Cc[�threads, f, �e′�e , t] =⇒|| σ2, Q1 ‖ Cr[�threads, i]i

Where

σ2 = σ1

[
�threads �→ σ1(�threads)

[
f �→ C

(
λ().((λy.C[y]) (throw(Await(f ′))))

)]]

Since e = Crec[handle(C[throw(Await(f ′))])h], by case analysis on
the compilation rules, we have e′ = C1[await(f ′)] where C = �C1�e

by Lemma 1. Thus on the Fut side, we have:

await-yield+one-step

�v. (f ′ �→ v) ∈ F1

σ′
1, F1, Q

′
1 ‖(f �→ C1[await(f ′)])i

−−→|| σ′
1, F1 [f �→ C1[await(f ′)]] , Q′

1 ‖ Idlei

We easily obtain that σ2, �threads R e σ′
1, F1 [f �→ C1[await(f ′)]] by

expanding the environment Te,2 in the env rule.
With the arguments above and the case run of R ‖ we conclude:

σ2, Q1 ‖ Cr[�threads, i]i R ‖ σ′
1, F1 [f �→ C1[await(f ′)]] , Q′

1 ‖ Idlei

Active Objects Based on Algebraic Effects 33

Spawn(). We have σ1, P1 =⇒|| σ2, P2. Its first visible reduction rule must
be:

seq+handle-effect+context

(Spawn(), k′ �→ e2) ∈ h Spawn /∈ captured effects(C)
σ1, Crec[handle(C[throw(Spawn())]){h}]−−→ σ1, e2 [k′ ← λy.C[y]]

σ1, Q1 ‖ ei −−→|| σ1, Q1 ‖ ei
2

With: Crec the “let ... rec” context of the continue handler inside Cc,
h the effect handlers defined in Continue, additionally:

e = Crec[handle(C[throw(Spawn())]){h}]
= Cc[�threads, f, �e′�e , t]

e2 = let t′ = spawn(run) in continue(fut, λ().k′(t′), t)

The first hidden rule applied is

spawn (hidden)

tid �∈ tids(P) ∪ {i}
σ1, Q1 ‖ C2[spawn(run)]i −−→|| σ1, Q1 ‖ C2[tid]i ‖ Cc[(run tid)]tid

Where e2 = C2[spawn(run)]. This is followed by steps of beta reduc-
tion to reduce the let t′ = . . . construct, trigger continue, pass the
associated tid and de-thunk the λ().λy.C[y](tid) inside continue. We
obtain the following configuration

σ1, Q1 ‖ Cc[�threads, f, C[tid], t]i ‖ Cc[(run tid)]tid

Finally, by a step of beta reduction in the thread tid we obtain the
right evaluation context Cr

σ1, Q1 ‖ Cc[�threads, f, C[tid], t]i ‖ Cr[�threads, tid]tid

This configuration is not reducible by a hidden transition. Thus

σ1, Crec[handle(C[throw(Spawn())]){h}]

=⇒|| σ1, Q1 ‖ Cc[�threads, f, C[tid], t]i ‖ Cr[�threads, tid]tid

By case analysis on the terms involved in σ1, P1 R ‖ σ′
1, F1, P

′
1 we

have e′ = C1[spawn()] where C = �C1�e by Lemma 1. We then have:

spawn
tid �∈ tids(Q′

1) ∪ {i}
σ′
1, F1, Q

′
1 ‖(f �→ C1[spawn()])i −−→||

σ′
1, F1, Q

′
1 ‖(f �→ C1[tid])i ‖ Idletid

34 M. Andrieux et al.

Note that by definition of R‖ the set of used thread identifiers is the
same in both configurations, wo we can take the same fresh tid. Note
also that the store and the future map are unchanged. Comparing
thread by thread, we can directly apply rule run and rule cont for
the two processes tid and i, which leads to the conclusion:

σ1, Q1 ‖ Cc[�threads, f, C[tid], t]i ‖ Cr[�threads, tid]tid

R ‖ σ′
1, F1, Q

′
1 ‖(f �→ C1[tid])i ‖ Idletid

Run:
run

σ1, �threads R e σ′
1, F1

σ1, Cr[�threads, i] R i σ′
1, F1, Idle

The only first applicable rule is the pop operation reduction that picks a new
available thread:

σ,Cr[�threads, i]
pop−−→h Run [t ← i]
τ−→h

∗
σ2, Cc[�threads, f2, e2, i]

Note that pop ensures that f2 is of the form f2 = (i, lf). Using only reductions
in the thread i and such that: σ1(�threads)[f2] = C(λ(). �F1(f2)�e)

7 by defini-
tion of Ri and e2 = �F1(f2)�e

8 by definition of pop. Note that the last step of
reduction is inside continue and de-thunks the new task ((λ().e2())−−→ e2)9.
We additionally have:

σ2 = σ1[�threads �→ σ1(�threads) \ f2]

From the points above, we obtain (with f2 = (i, lf)):

schedule
(f2 �→ F1(f2)) ∈ F1 F1(f2) is not a value

σ′
1, F1, Q

′
1 ‖ Idlei −−→|| σ′

1, F1 \ f2, Q
′
1 ‖(f2 �→ F1(f2))i

Note that F1(f2) is not a value by construction of the equivalence on stores
(Fig. 16). Finally (the equivalence on the store can be trivially checked):

Continue
σ2, �threads R e σ′

1, F1 \ f2

σ2, Cc[�threads, f2, �F1(f2)�e , i] R i σ′
2, F1 \ f2, (f2 �→ F1(f2))

This immediately concludes by adding the other threads (in Q1 and Q′
1) and

obtaining the R ‖ relation on the obtained configurations. �
7 Resp. σ1(�threads)[f2] = C (λ().((λx.C[x]) e)).
8 Resp. �F1(f2)�e = C[e] and e2 = C (λ().((λx.C[x]) e)).
9 Resp. with two steps of beta-reductions.

Active Objects Based on Algebraic Effects 35

References

1. Baker Jr., H.G., Hewitt, C.: The incremental garbage collection of processes. In:
Proceedings Symposium on Artificial Intelligence and Programming Languages,
New York, NY, USA, pp. 55–59 (1977)

2. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. J. Log.
Algebraic Methods Program. 84(1), 108–123 (2015). https://doi.org/10.1016/j.
jlamp.2014.02.001

3. de Boer, F., et al.: A survey of active object languages. ACM Comput. Surv. 50(5),
76:1–76:39 (2017). Article 76

4. Caromel, D., Henrio, L., Serpette, B.: Asynchronous and deterministic objects.
In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 123–134. ACM Press (2004)

5. Chappe, N., Henrio, L., Maillé, A., Moy, M., Renaud, H.: An optimised flow for
futures: from theory to practice. CoRR abs/2107.07298 (2021). https://arxiv.org/
abs/2107.07298

6. Fernandez-Reyes, K., Clarke, D., Castegren, E., Vo, H.P.: Forward to a promising
future. In: Di Marzo Serugendo, G., Loreti, M. (eds.) COORDINATION 2018.
LNCS, vol. 10852, pp. 162–180. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-92408-3 7

7. Fernandez-Reyes, K., Clarke, D., Henrio, L., Johnsen, E.B., Wrigstad, T.: Godot:
all the benefits of implicit and explicit futures. In: Donaldson, A.F. (ed.) 33rd
European Conference on Object-Oriented Programming (ECOOP 2019). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 134, pp. 2:1–2:28.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2019). https://
drops.dagstuhl.de/opus/volltexte/2019/10794. Distinguished artefact

8. Graf, S., Sifakis, J.: Readiness semantics for regular processes with silent actions.
In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 115–125. Springer, Hei-
delberg (1987). https://doi.org/10.1007/3-540-18088-5 10

9. Halstead, R.H., Jr.: MULTILISP: a language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst. (TOPLAS) 7(4), 501–538 (1985)

10. Henrio, L.: Data-flow explicit futures. Research report, I3S, Université Côte d’Azur
(2018). https://hal.archives-ouvertes.fr/hal-01758734

11. Henrio, L., Johnsen, E.B., Pun, V.K.I.: Active objects with deterministic
behaviour. In: Dongol, B., Troubitsyna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp.
181–198. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63461-2 10

12. Hillerström, D., Lindley, S.: Shallow effect handlers. In: Ryu, S. (ed.) APLAS 2018.
LNCS, vol. 11275, pp. 415–435. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-02768-1 22

13. Johnsen, E.B., Blanchette, J.C., Kyas, M., Owe, O.: Intra-object versus inter-
object: concurrency and reasoning in Creol. In: Proceedings of the 2nd Interna-
tional Workshop on Harnessing Theories for Tool Support in Software (TTSS
2008). Electronic Notes in Theoretical Computer Science, vol. 243, pp. 89–103.
Elsevier (2009)

14. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

15. Leonard, T., et al.: Eio 1.0 - effects-based IO for OCaml 5. OCaml Workshop (2023)

https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://arxiv.org/abs/2107.07298
https://arxiv.org/abs/2107.07298
https://doi.org/10.1007/978-3-319-92408-3_7
https://doi.org/10.1007/978-3-319-92408-3_7
https://drops.dagstuhl.de/opus/volltexte/2019/10794
https://drops.dagstuhl.de/opus/volltexte/2019/10794
https://doi.org/10.1007/3-540-18088-5_10
https://hal.archives-ouvertes.fr/hal-01758734
https://doi.org/10.1007/978-3-030-63461-2_10
https://doi.org/10.1007/978-3-030-02768-1_22
https://doi.org/10.1007/978-3-030-02768-1_22
https://doi.org/10.1007/978-3-642-25271-6_8

36 M. Andrieux et al.

16. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: 33rd ACM Symposium on Principles of Programming
Languages, pp. 42–54. ACM Press (2006). https://xavierleroy.org/publi/compiler-
certif.pdf

17. Liskov, B., Shrira, L.: Promises: linguistic support for efficient asynchronous pro-
cedure calls in distributed systems. In: PLDI 1988, pp. 260–267. Association for
Computing Machinery, New York (1988). https://doi.org/10.1145/53990.54016

18. Niehren, J., Schwinghammer, J., Smolka, G.: A concurrent lambda calculus with
futures. Theor. Comput. Sci. 364(3), 338–356 (2006)

19. Sieczkowski, F., Pyzik, M., Biernacki, D.: A general fine-grained reduction theory
for effect handlers. Proc. ACM Program. Lang. 7(ICFP) (2023). https://doi.org/
10.1145/3607848

20. Sivaramakrishnan, K.C.: https://github.com/kayceesrk/ocaml5-tutorial. Accessed
30 May 2023

21. Sivaramakrishnan, K.C., et al.: Retrofitting parallelism onto OCaml. Proc. ACM
Program. Lang. 4(ICFP), 113:1–113:30 (2020). https://doi.org/10.1145/3408995

22. Sivaramakrishnan, K.C., Dolan, S., White, L., Kelly, T., Jaffer, S., Madhavapeddy,
A.: Retrofitting effect handlers onto OCaml. In: Freund, S.N., Yahav, E. (eds.)
PLDI 2021: 42nd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation, Virtual Event, Canada, 20–25 June 2021, pp.
206–221. ACM (2021). https://doi.org/10.1145/3453483.3454039

23. Taura, K., Matsuoka, S., Yonezawa, A.: ABCL/f: a future-based polymorphic typed
concurrent object-oriented language - its design and implementation. In: Proceed-
ings of the DIMACS Workshop on Specification of Parallel Algorithms, pp. 275–
292. American Mathematical Society (1994)

24. Vouillon, J.: LWT: a cooperative thread library. In: Sumii, E. (ed.) Proceedings of
the ACM Workshop on ML, 2008, Victoria, BC, Canada, 21 September 2008, pp.
3–12. ACM (2008). https://doi.org/10.1145/1411304.1411307

https://xavierleroy.org/publi/compiler-certif.pdf
https://xavierleroy.org/publi/compiler-certif.pdf
https://doi.org/10.1145/53990.54016
https://doi.org/10.1145/3607848
https://doi.org/10.1145/3607848
https://github.com/kayceesrk/ocaml5-tutorial
https://doi.org/10.1145/3408995
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/1411304.1411307

	Active Objects Based on Algebraic Effects
	1 Introduction
	2 Context and Positioning: Futures, Promises, Effects
	2.1 Formal Model for Futures and Effects
	2.2 Promises in OCaml
	2.3 Promising Effects

	3 An OCaml Library for Active Objects
	3.1 Active Objects
	3.2 Encapsulation and Data-Race Freedom
	3.3 Active Object Desugaring
	3.4 Forward
	3.5 Runtime Support

	4 Future and Effect -Calculi
	4.1 A Functional-Imperative Base
	4.2 Futures and Cooperative Scheduling
	4.3 Effects

	5 Compilation of Futures into Effects
	5.1 Translating Fut into Eff
	5.2 Correctness of the Compilation of Actors into Effects

	6 Conclusion and Discussion
	A Proof of the Bisimulation Theorem (Theorem 2)
	References

