
Frank de Boer · Ferruccio Damiani ·
Reiner Hähnle · Einar Broch Johnsen ·
Eduard Kamburjan (Eds.)

Active Object Languages:
Current Research Trends

St
at

e-
of

-th
e-

Ar
t

Su
rv

ey
LN

CS
 1

43
60

Lecture Notes in Computer Science 14360
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Frank de Boer · Ferruccio Damiani ·
Reiner Hähnle · Einar Broch Johnsen ·
Eduard Kamburjan
Editors

Active Object Languages:
Current Research Trends

Editors
Frank de Boer
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Reiner Hähnle
Darmstadt University of Technology
Darmstadt, Hessen, Germany

Eduard Kamburjan
University of Oslo
Oslo, Norway

Ferruccio Damiani
University of Turin
Turin, Italy

Einar Broch Johnsen
University of Oslo
Oslo, Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-51059-5 ISBN 978-3-031-51060-1 (eBook)
https://doi.org/10.1007/978-3-031-51060-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024, corrected publication 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-51060-1

Preface

Our interest in active object languages started almost twenty years ago and contin-
ued through a series of European research projects: CREDO (FP6, during 2006–2009),
HATS (FP7, during 2010–2013), ENVISAGE (FP7, during 2013–2016), UpScale (FP7,
during 2014–2017), and HyVar (H2020, during 2015–2018). At the time, we were
attracted to the concurrency model of Actors and the code structuring mechanisms of
Object-Oriented Programming. These projects developed the active object paradigm in
the context of service-oriented distributed systems, software variability, cloud comput-
ing, multicore computing and IoT-driven dynamic software reconfiguration. Many of
the problems that were explored in this work remain relevant in research today, e.g.,
asynchronous method calls and futures, asynchronous distributed workflows, parallel
programs with explicit units of composition and deployment, resource-sensitive sys-
tems, software modularity and variability, programming and reasoning techniques for
asynchronous systems.

Active objects is a programming paradigm that supports a non-competitive, data-
driven concurrency model, a generalization of the popular actor paradigm. Active object
languages study how actor-like concurrency can be combinedwith object-oriented struc-
turing concepts. This makes active object languages well-suited for simulation, data
race-free programming, and formal verification. For a comprehensive discussion of dif-
ferent active object languages and their design choices, we refer to the state-of-the-art
survey1. Concepts from active objects made their way into languages such as Rust, ABS,
Akka, JavaScript, and Go.

Today, we can say that we were intrigued by the compositionality mechanisms at
play in active object languages, and their application in language semantics and formal
reasoning techniques as well as in the executable modelling and analysis of complex,
distributed systems. This volume collects a series of articles on recent trends on the
topic of programming and reasoning about asynchronous and distributed systems, with
active objects at its core but also touching on related techniques. For this volume, we
took the opportunity to invite researchers, inside and outside of the projects, to reflect
on some state-of-the-art developments in the field. We feel very lucky that so many of
our peers responded. The result is a book whose chapters identify and address some of
the latest challenges in active objects and asynchronous distributed systems. It captures
aspects of novel programming techniques, modelling solutions and reasoning challenges
for modern actor and active object languages, and the related field of asynchronous,
distributed and decentralised systems.

We thank all authors for accepting our invitation and putting a lot of effort into
producing the high-quality content we are proud to present here. With this book, we

1 Frank S. de Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas, Crystal
ChangDin, Einar Broch Johnsen,Marjan Sirjani, EhsanKhamespanah, Kiko Fernandez-Reyes,
Albert Mingkun Yang: A Survey of Active Object Languages. ACM Comput. Surv. 50(5):
76:1–76:39 (2017).

vi Preface

hope to provide the community with insights into recent and latest developments in
important subareas of active object languages and related research.

October 2023 Frank de Boer
Ferruccio Damiani

Reiner Hähnle
Einar Broch Johnsen

Organization

Editors

Frank de Boer CWI, Amsterdam
Ferruccio Damiani University of Turin, Italy
Reiner Hähnle Technical University of Darmstadt, Germany
Einar Broch Johnsen University of Oslo, Norway
Eduard Kamburjan University of Oslo, Norway

Reviewers

Wolfgang Ahrendt Chalmers University, Sweden
Lorenzo Bacchiani University of Bologna, Italy
Richard Bubel Technical University of Darmstadt, Germany
Sara Capecchi University of Turin, Italy
Elias Castegren Uppsala University, Sweden
Samir Genaim Universidad Complutense de Madrid, Spain
Saverio Giallorenzo University of Bologna, Italy
Stijn de Gouw Open Universiteit, The Netherlands
Ludovic Henrio Inria, France
Asmae Heydari Tabar Technical University of Darmstadt, Germany
Hans-Dieter Hiep CWI, Amsterdam
Ramtin Khosravi University of Tehran, Iran
Paul Kobialka University of Oslo, Norway
Olaf Owe University of Oslo, Norway
Danilo Pianini University of Bologna, Italy
Gabriel Radanne Inria, France
Marco Scaletta Technical University of Darmstadt, Germany
Rudolf Schlatte University of Oslo, Norway
Christophe Scholliers Ghent University, Belgium
Marjan Sirjani Mälardalen University, Sweden
Jeremy Sproston University of Turin, Italy
Martin Steffen University of Oslo, Norway

viii Organization

Volker Stolz Western Norway University of Applied Sciences,
Norway

S. Lizeth Tapia Tarifa University of Oslo, Norway
Martin Vassor University of Oxford, UK
Gianluigi Zavattaro University of Bologna, Italy

Contents

Programming

Active Objects Based on Algebraic Effects . 3
Martin Andrieux, Ludovic Henrio, and Gabriel Radanne

Actor-Based Designs for Distributed Self-organisation Programming 37
Roberto Casadei, Ferruccio Damiani, Gianluca Torta, and Mirko Viroli

Encore: Coda . 59
Elias Castegren and Tobias Wrigstad

Bridging Between Active Objects: Multitier Programming for Distributed,
Concurrent Systems . 92

Guido Salvaneschi and Pascal Weisenburger

A Survey of Actor-Like Programming Models for Serverless Computing 123
Jonas Spenger, Paris Carbone, and Philipp Haller

Programming Language Implementations with Multiparty Session Types 147
Nobuko Yoshida

Modelling

Integrated Timed Architectural Modeling/Execution Language 169
Lorenzo Bacchiani, Mario Bravetti, Saverio Giallorenzo,
Jacopo Mauro, and Gianluigi Zavattaro

Simulating User Journeys with Active Objects . 199
Paul Kobialka, Rudolf Schlatte, Gunnar Rye Bergersen,
Einar Broch Johnsen, and Silvia Lizeth Tapia Tarifa

Actors Upgraded for Variability, Adaptability, and Determinism 226
Ramtin Khosravi, Ehsan Khamespanah, Fatemeh Ghassemi,
and Marjan Sirjani

x Contents

Analysis

Integrating Data Privacy Compliance in Active Object Languages 263
Chinmayi Prabhu Baramashetru, Silvia Lizeth Tapia Tarifa,
and Olaf Owe

Context-Aware Trace Contracts . 289
Reiner Hähnle, Eduard Kamburjan, and Marco Scaletta

Type-Based Verification of Delegated Control in Hybrid Systems 323
Eduard Kamburjan and Michael Lienhardt

Enforced Dependencies for Active Objects . 359
Violet Ka I Pun and Volker Stolz

Correction to: Actors Upgraded for Variability, Adaptability,
and Determinism . C1

Ramtin Khosravi, Ehsan Khamespanah, Fatemeh Ghassemi,
and Marjan Sirjani

Author Index . 375

Programming

Active Objects Based on Algebraic Effects

Martin Andrieux1 , Ludovic Henrio2(B) , and Gabriel Radanne2

1 ENS Rennes, Rennes, France
martin.andrieux@ens-rennes.fr

2 Université Lyon, EnsL, UCBL, CNRS, Inria, LIP, Lyon, France
{ludovic.henrio,gabriel.radanne}@ens-lyon.fr

Abstract. Algebraic effects are a long-studied programming language
construct allowing the implementation of complex control flow in a struc-
tured way. With OCaml 5, such features are finally available in a main-
stream programming language, giving us a great opportunity to experi-
ment with varied concurrency constructs implemented as simple libraries.
In this article, we explore how to implement concurrency features such
as futures and active objects using algebraic effects, both in theory and
in practice. On the practical side, we present a library of active objects
implemented in OCaml, with futures, cooperative scheduling of active
objects, and thread-level parallelism. On the theoretical side, we for-
malise the compilation of a future calculus that models our library into
an effect calculus similar to the primitives available in OCaml; we then
prove the correctness of the compilation scheme.

1 Introduction

A future [1,9] is a standard synchronisation artefact used in programming lan-
guages with concurrency. It provides a data-flow oriented synchronisation at a
higher level of abstraction than locks or monitors. A future is a promise of a
result from a spawned task: it is a cell, initially empty, and filled with a value
when the task finishes. Accessing this value synchronises the accessor with the
end of the task. Promises [17] is a notion similar to futures except that a promise
must be filled explicitly by the programmer. Promises are more flexible but also
more difficult to use because one could try to fill a promise several times and
this raises many issues.

Future pay a crucial role in the implementation of asynchronous computa-
tions, particularly in object-oriented languages. ABCL/f [23] proposed the first
occurrence of typed futures as a mean for asynchronous method invocation, where
a spawned task fills the future later. Then Creol [13] and ProActive [4] intro-
duced active objects [3]; which are both an object (in the sense of object oriented
programming) and an actor. As a consequence, an active object has its own log-
ical thread and communications between active objects is done by asynchronous
method invocations, using futures to represent the result of asynchronous calls.

Futures, promises, and concurrency primitives in general, have been imple-
mented using a wide variety of techniques, often via dedicated runtime support.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, pp. 3–36, 2024.
https://doi.org/10.1007/978-3-031-51060-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51060-1_1&domain=pdf
http://orcid.org/0009-0002-9582-4231
http://orcid.org/0000-0001-7137-3523
http://orcid.org/0000-0002-2107-7678
https://doi.org/10.1007/978-3-031-51060-1_1

4 M. Andrieux et al.

Many concurrency primitives require suspending, manipulating and resuming
arbitrary computations. This need for non-local control flow appears as soon
as task scheduling is not trivial. It turns out that effect handlers [2] precisely
enable users to define new control-flow operators. This was quickly identified as a
potential technique to implement concurrency primitives while developing Mul-
ticore OCaml. Multicore OCaml [21,22] is an ensemble of new features, including
effect handlers, which enable parallel and concurrent programming in OCaml.
Crucially, since effects are user-defined, they allow implementing concurrency
operators such as futures as libraries. This remark is not a contribution of this
article, and seems to be well known folklore among algebraic effects practitioners.
It is also how eio [15], the new concurrency library for OCaml, is implemented.

This article expands beyond this folklore in two direction: First, we showcase
how to use effects to implement other concurrency primitives, active objects,
that were not previously explored. Second, we formalise the translation between
futures and algebraic effects, and prove it correct.

Contribution 1: An Actor Library Based on Algebraic Effects. On the practical
side, we present a new implementation of active objects based on algebraic effects.
It takes the form of an OCaml library that features all the characteristics of active
objects, adapted to the OCaml ecosystem. The implementation heavily relies on
effect handlers. The library is presented in Sect. 3.

Our implementation only requires effect handlers and objects. To our knowl-
edge and at the time of writing, both are only conjointly present in OCaml.
However, as effect handlers are gaining interest and are developed in differ-
ent contexts, we believe our methodology is applicable to develop active object
libraries in any language that support both features.

Contribution 2: A Formalised Translation from Actors into Effect Handlers and
Its Proof of Correctness. On the theoretical side, we present the formal argu-
ments showing that our implementation of active objects by effect handlers fully
follows the paradigms of active object languages, more precisely:

– In Sect. 4 we describe our calculi: first, an imperative λ-calculus similar to
what can be found in the literature; second, Fut, which expands this λ-
calculus with operations on futures: parallelism, tasks, futures, cooperative
scheduling inside a thread ; finally, Eff which expands the λ-calculus with
effects and effect handlers in a parallel setting.

– Section 5 defines a compilation scheme from Fut to Eff that expresses
the principles of the implementation of our active object library based on
effects. We formally prove the correctness of our translation and show that
the behaviours of the effect compilation of futures mimics exactly the future
semantics. Our main theorem states that the compiled program faithfully
behaves like the original one.

Active Objects Based on Algebraic Effects 5

2 Context and Positioning: Futures, Promises, Effects

We start by revisiting, in a streamlined fashion, the context of our works. We
first present the formal models that exist to define semantics of futures and
effects, explaining why we need a new semantics to formalise our work. Then we
present the programming patterns we rely on: an API for promises as it would
appear in OCaml, and how to implement such API using algebraic effects.

2.1 Formal Model for Futures and Effects

In order to formalise our translation, we need a calculus modeling the core of
active objects. Compared to existing active object languages, we base our work
on a simple λ-calculus enhanced with imperative operations and futures featuring
cooperative scheduling. This calculus does not reflect the object-oriented nature
of active object languages. Indeed, while the object layer provides an effective
programming abstraction and strong static guarantees, we are mostly interested
in operational aspects where objects play little role. Conversely, we consider that
cooperative scheduling is essential, as it precisely captures the dynamic behavior
we want to reproduce after translation to algebraic effects.

Among previously existing calculi, we position ourselves compared to the fol-
lowing ones. On one hand, several previous calculi [6,7] rely on a pure λ-calculus,
lacking any imperative features. We consider modeling imperative code essential,
as it allows us to encode the stateful nature of active objects. In particular pure
calculi are not able to represent cycles of futures [10]. On the other hand, a con-
current λ-calculus with futures [18] and the DeF calculus [5] feature imperative
aspects but no cooperative scheduling, which is crucial to many active objects
languages. Additionally, DeF separates cleanly global state and local variables
and uses a notion of functions closer to object methods instead of λ-calculus. We
do not believe these features are needed in our context. Finally, some formali-
sation efforts such as ABS [14] cover much more ground, including a full-blown
object system and “concurrent object groups” to model the concurrent seman-
tics. We believe such semantics can also be modeled by simpler mechanisms,
such as threads and remote execution of pieces of code.

In the remaining of this work, we use a minimal λ-calculus that includes the
following features, that are, from our point of view, the core runtime character-
istics of actors and active object languages with futures:

– Impure λ-calculus with a store and memory locations,
– Cooperative scheduling among tasks on the same parallelisation entity.
– Request-reply interaction mechanism based on asynchronous calls targeting

a given thread, and replies by mean of futures. Without loss of generality,
asynchronous calls are simply performed by remote execution of a given λ-
calculus expression.

One crucial aspect of actors and active objects that we omit in this work is the
separation of the memory into separate entities manipulated by a single thread
(like e.g. ABS “concurrent object groups”). While this feature is crucial and allows

6 M. Andrieux et al.

reasoning about the deterministic nature of some active object languages [11] we
would not use it in our developments. We also believe this crucial separation could
be added by separating the memory in our configurations into a single memory per
thread, either syntactically or using some kind of separation logic.

On the algebraic effect side, we use an imperative λ-calculus with shal-
low effect handlers, similar to Hillerström and Lindley [12]. This fits well with
OCaml, which supports both imperative and functional features. Note that both
deep and shallow handlers are available in OCaml.

2.2 Promises in OCaml

Promises are not a new addition to OCaml. Historically, the libraries Lwt [24] and
Async implemented monadic promise-based cooperative multitasking in OCaml.
Due to OCaml’s limitation at the time, neither library implemented parallelism.
Multicore OCaml introduced parallelism (with a new garbage collector and sup-
porting libraries for thread parallelism) [21] along with algebraic effects [22],
with the objective for users to implement their own concurrency primitives. In
recent time, several libraries implement their own flair of futures and promises,
this time using a direct-style instead of the previous monadic one. Most of them,
including the most developed library eio [15], and our own implementation, use
a core API summarised in Fig. 1.

Fig. 1. A simple API for promises

The different elements of the API are commented in the figure. The type
Promise.t is parameterised by its content (denoted by the type variable 'a).

Active Objects Based on Algebraic Effects 7

There are two ways to create a promise: Promise.create creates a promise and
also returns the resolution function, while Promise.async associates a computa-
tion to the promise, actually creating a future. This library can be used in any
setting, we thus differentiate between non-blocking operations such as await,
which yield to another task, and blocking operations such as get, whose evalu-
ation is stuck and blocks the current logical thread. It is then up to the invoker
of this function and the scheduler to deal with this blocked state conveniently.

2.3 Promising Effects

Following [20], we now summarise a simplistic implementation of the get prim-
itive for promises or futures using effects, as a way to introduce effects in the
context of concurrency. As noted before, A promise, denoted here by the promise
type is an atomic mutable box containing a status. The status is either Resolved,
containing a value of type ’a, or Empty waiting for a value.

1 type 'a status = Resolved of 'a | Empty

2 type 'a promise = 'a status Atomic.t

Using effects, Fig. 2 showcases the implementation of blocking reads (get
primitive) as explained below. On Line 1, we declare a new effect, called Get. From
the usage perspective, an effect is a parameterised operation whose semantics
is not specified, but whose typing is fixed: here, performing the Get effect takes
as parameter a promise and returns the content. The get function, on Line 4,
directly returns the value if the promise is fulfilled, or performs the Get effect
otherwise. We still need to define what performing Get actually does. This is
done via an effect handler, one Line 9. From the definition perspective, effects
behave similarly to exceptions, except they allow resumption. The exec function
executes a task in the context of a handler. When an effect is performed, it

Fig. 2. Function Promise.get and its effect handler

8 M. Andrieux et al.

triggers the evaluation of the appropriate branch in the handler (here, Line 11)
and binds the value contained in the effect (here, variable p is the promise to
get). The handler also gives access to the continuation k at the point where the
effect was performed. To implement get, we repeatedly poll the content of the
promise until a value is obtained, and resume the continuation k with the value,
thus resuming the execution of the task.

The continuation k, which is applied directly here, is in fact a first class
value and can be passed around and stored. This allows implementing other
operations on promises and other concurrency primitives, by defining a scheduler
that manipulates continuations directly in user-land.

As indicated before, this implementation exactly mirrors (albeit with some
simplifications) the ones in the current OCaml ecosystem. We now move on to
a novel usage of algebraic effects by combining them with objects to implement
active objects in OCaml.

3 An OCaml Library for Active Objects

Our first contribution is an OCaml library, actors-ocaml available at https://
github.com/Marsupilami1/actors-ocaml, which implements promises and active
objects on top of OCaml’s new features: effect handlers, to handle concurrency;
and “domains”, threads accompanied by their memory-managed heap, which
acts as OCaml’s parallelism units. We start by a showing our overlay for active
objects before presenting its translation to effects.

3.1 Active Objects

We showcase a first example of active object in OCaml in Fig. 3. To create a new
active object, we introduce a new dedicated syntax1 object%actor2. It functions
similarly to an OCaml object, with private fields, introduced by val and public
methods. Here, we create an active object with one local field x initialised to 0,
and three methods to set the local field, get it, and multiply it by a provided
integer. Accessing private fields is transparent inside the active object, as if it
was a normal variable, but forbidden outside the active object. We will see below
that we use OCaml domains to implement such a local memory.

In OCaml, objects are typed structurally, with a type that reflects all their
methods. Our active objects follow a similar trend: the object type is delimited
by < ... > and contains a list of all methods. For instance, get : int (Line
3), indicates that the method get takes no argument and returns an integer.
set : int -> unit marks a method taking an integer and returning nothing.
Note that the field is not shown in the type, since it represents internal state.
1 In our implementation we choose to adopt the Actor terminology instead of active

objects because we believe actors are better known in the functional programming
community.

2 For this purpose, we use PPX, a specific hook that allow to extend OCaml with new
lightweight syntax extensions.

https://github.com/Marsupilami1/actors-ocaml
https://github.com/Marsupilami1/actors-ocaml

Active Objects Based on Algebraic Effects 9

Fig. 3. A simple example using active object

This is crucial for active objects, as local fields are stored locally and shouldn’t
be accessed by other active objects. To distinguish active objects from normal
objects, the structural type that consists of the methods is wrapped, giving the
type < .. > Actor.t.

Actual usage of active objects is where we depart from traditional OCaml
objects. Indeed, active objects support two types of method calls: a#.get, in Line
1, is synchronous. Such calls are either blocking if made externally, similarly to
Promise.get, or direct if made internally by the actor itself. a#!get in Line 2 is
asynchronous, which wraps the result in a Promise. Promise.create is called to
create the promise and associates a dedicated resolver with the triggered call.
The promise is returned to the invoker that can then perform Promise.get and
Promise.await on it. The programmer cannot explicitly resolve the promise and
can only access its value: promises returned by active objects are in fact futures,
similarly to other active object languages.

3.2 Encapsulation and Data-Race Freedom

Our library takes advantage of the OCaml type system to provide safe encap-
sulation of state and safe abstraction. Indeed, local variables, such as the state

field in Fig. 3, are hidden. Access can thus only be made inside methods. This
ensures proper abstraction since only fields that are exposed through getters and
setters can be accessed. It also ensures the absence of data-races, since meth-
ods are not executed concurrently (unless programmer explicitly use lower-level
constructs, such as shared memory). Naturally, this is only true if two crucial
properties are ensured: mutable access cannot be captured, and it is impossible
to return mutable values shared with the internal state.

10 M. Andrieux et al.

Capture. Methods calls in OCaml are currified by default. For instance a#!

multiply returns a closure of type int -> (int Promise.t) encapsulating mes-
sage sending to a and retrieval of a result from a. Furthermore, functions are first
class, and can be returned by methods. While this provides great integration into
the rest of the language, this means that we need to be particularly careful with
captures in methods. We illustrate this in Fig. 4, with an incorrect implementa-
tion of the multiply method. Here, we return a closure capturing an access to
the internal field state. Such closure should never be executed in the context
of another active object. We detect such ill-conceived code and return the error
shown below, instructing the user to first access the state before capturing the
value.

In theory, this is a simple matter of name resolution. In practice, name res-
olution in OCaml is complex, and relies on typing information which can’t be
accessed by syntax extensions such as the one we develop. We implement a
conservative approximation.

Fig. 4. An example of illegal capture and its error message

Mutability and Sharing. Code that respects the criterion mentioned above can
still exhibit data-races, for instance by returning the content of a field which
manifest internal mutability, such as arrays. Preventing such mistakes is a bit
more delicate: with the strong abstraction of OCaml, the implementation of a
data-structure can be completely hidden, and hence its potential mutability. A
static type analysis is therefore insufficient. A dynamic analysis of the value is
similarly insufficient (mutable and immutable records are represented similarly

Active Objects Based on Algebraic Effects 11

in OCaml). The last common solution to this problem, to make a deep copy of
returned values, is costly both in terms of time and loss of sharing.

So far, we opted to only support immutable values in fields, and do not
provide any guarantees when mutable values are used. Thankfully, immutable
values are the default in OCaml and are largely promoted for most use-cases. In
the future, we plan to combine static and dynamic analysis to inform where to
insert deep copies.

3.3 Active Object Desugaring

We now have all the ingredients to explain how the OCaml code for the active
object is generated from the programmer’s input. An example of such translation
is given in Fig. 5. The first important notion is to use memory local to the domain
to store the internal fields. Using domains, this is done via the DLS (for Domain
Local Storage, analogous to thread local storage), see for instance line 2 of the
translated code. All reads and writes are then replaced by DLS functions. The
second transformation aims to separate method calls (i.e., message sent), and
execution, and can be observed on line 3 and 4: Each method is split in two.
The first hidden method, shown on line 3, contains the computational content.
The second is the actual entry point: it proceeds by creating a promise; launch a

Fig. 5. Simple active object code (top) and its translation (bottom)

12 M. Andrieux et al.

Fig. 6. Simple use of delegation

new task; and return the promise. The goal of the task is to queue a message in
the actor’s mailbox, via Actor.send, and then launch a process which eventually
resolves the promise; this is done by Scheduler.process.

3.4 Forward

While handling a method, one might want to delegate the computation to
another active object or method. With traditional asynchronous calls such as #!

or await, this would involve unwrapping and rewrapping the promises. Dealing
efficiently with delegation in asynchronous invocations is a well-studied prob-
lem [5–7]. In [6], one construct called forward was suggested for such delega-
tions; it was then shown that directly forwarding an asynchronous invocation
(return(async(e))) could be efficiently and safely implemented using promises.

We can easily adapt this approach to our actors. We also implement del-
egation calls by syntactically identifying such optimisable situation with the
primitive: actor#!!m. Figure 6 illustrates a simple program using such method
delegation; the statement self#!!syracuse next delegates the current invoca-
tion to another one. These calls act as return in many languages, and ignore
any computations that would come after in the method. From the functional
programming point of view, this is analogous to tail-calls. Tail-calls exploit syn-
chronous calls in return positions to eschew using additional stack space. Forward
statement exploits asynchronous calls in return position to eschew indirection of
promises.

In a more general case, we can simply forward3 a promise as the future
resolution of the current promise. A statement similar to the one of Encore,
Actors.forward p performs such a shortcut where p is a ’a Promise.t.

We implement the two forwarding constructs presented above as effects in the
library. Similarly to capturing issues highlighted in previous sections, delegation
calls should not be captured in a closure: indeed, it wouldn’t be clear which
indirection to avoid4. We forbid such situations (dynamically, via a runtime
test).

3 In the future, we hope to turn asynchronous calls in a forward into delegation
automatically.

4 Already in [6], the authors prevented forward from appearing inside a closure.

Active Objects Based on Algebraic Effects 13

3.5 Runtime Support

From a parallelism point of view, we rely on domains, which are threads equipped
with a private heap and a garbage collector. There is also a global, shared heap.
In practice, we spawn a pool of domains at the start of the execution. This pool
of domains is fixed for the whole execution. Similarly to many other implemen-
tations, multiple actors may share a domain, and will use cooperative scheduling
together.

Cooperative scheduling is implemented using effects and continuations, sim-
ilarly to the one implemented in the introduction. To make this scheduler more
realistic and fair, we implement the following optimisations:

– Each domain contains a first round-robin scheduler in charge of scheduling
between active objects hosted on the same domain. Spawning of new actors is
implemented at this layer, enabling the choice of an arbitrary domain to spawn
it. Synchronous method calls in the same domain are transparently turned
into direct calls (instead of asynchronous calls followed by a synchronisation
when the domain is different).

– Each active object contains an OCaml object with the methods of the object,
as described above, and a second round-robin scheduler which schedules the
promises currently executed by this actor. Instead of a traditional mailbox of
messages, active objects contain a queue of thunks to be executed. In the case
of method calls, each thunk contains a call to the underlying OCaml object
as a closure. Forwards and delegation calls are implemented at this second
layer, which is aware of all the details pertaining to the actor.

– Unresolved promises contain a list of callbacks, i.e., other promises that are
currently waiting on it. This allows the implementation of passive waits for
unresolved promise reads.

Note that this implies we have two effects handlers, both providing slightly
differing implementation of the base effects related to promises (Async, Get,
Await). Indeed, promises can appear outside of actors, but should be handled
locally if they appear inside one.

4 Future and Effect λ-Calculi

The rest of this article is dedicated to the formal description of the compilation
of Futures to Effects. For this purpose, we first introduce our protagonists: A
common imperative base (Sect. 4.1), the source future calculus (Sect. 4.2) often
characterised in green, and the target effect calculus (Sect. 4.3) often charac-
terised in blue. For all these calculi, we define small-step operational semantics
in the sequential and parallel cases.

14 M. Andrieux et al.

4.1 A Functional-Imperative Base

We define a standard λ-calculus with imperative operations that will be the base
language for our other definitions and semantics. The syntax is given in Fig. 7.
As meta-syntactic notations, we use overbar for lists (e a list of expressions) and
brackets for association maps (

[
� �→ e

]
). Dom(M) is the domain of M and ∅ is

the empty map. M [v �→ v′] is a copy of M where v is associated to v′, M \ v is
a copy of M where v is not mapped to anything (v �∈ Dom(M \ v)).

Most expression and values are classical. The substitution of x by e′ in e is
denoted e [x ← e′]. Stores are maps indexed by location references, denoted �.
Id denotes unique identifiers that can be crafted during execution, which will
be useful in our two main calculi. Location references and identifiers should not
occur in the source programs and only appear during evaluation. We also define
evaluation contexts C that are expressions with a single hole �. Evaluation con-
texts are used in the semantics to specify the point of evaluation in every term,
ensuring a left-to-right call-by-value evaluation. We classically rely on evaluation
contexts, C[e] is the expression made of the context C where the hole is filled
with expression e. Figure 8 defines a semantics for this base calculus; it is similar
to what can be found in the literature. It expresses a reduction relation, denoted
−−→, of pairs store×expression.

Important Note. The rules of Fig. 8 act on the syntax of imperative λ-calculus.
However, in the next section we will re-use −−→ on terms of bigger languages,
with the natural embedding that −−→ rules only are able to handle the λ-calculus
primitives but will manipulate terms and reduction contexts of the other lan-
guages. The alternative would be to define from the beginning the syntax and
reduction contexts of our language as the largest syntax including all the three

Fig. 7. Syntax for the base impure λ-calculus

Fig. 8. Semantics for the base impure λ-calculus

Active Objects Based on Algebraic Effects 15

considered languages (λ-calculus, Fut, and Eff). We chose here to adopt a more
progressive presentation despite the slight abuse of notation this involves on the
formal side.

In the rest of this article, we also assume additional constructs which can be
classically encoded in the impure λ-calculus:

– Let-declaration: let x = ... in ...
– Sequence: e; e’
– Mutually recursive declarations: let rec ... and ...
– Mutable maps indexed by values: empty map {}, reads M [e], writes M [e] ←

e′, and deletions del M [e]
– Pattern matching on simple values: match ... with ...

4.2 Futures and Cooperative Scheduling

Our λ-calculus with futures shares some similarities with the concurrent λ-
calculus with futures [18], but without future handlers or explicit future name
creation and scoping, resulting in a simpler calculus. Our calculus can also be
compared to the one of Fernandez-Reyes et al. [6] but with cooperative schedul-
ing with multiple threads, and imperative aspects.

The λ-calculus of previous section is extended as shown in Fig. 9. Four new
constructs are added to the syntax: spawn() spawns a new processing unit;
asyncAt(e, e′) starts a new task e in the processing unit e′ and creates a future
identifier f , when the task finishes, this resolves the future f ; get(e), provided
e is a future identifier, blocks the current processing unit until the future in e
is resolved; await(e) is similar but releases the current processing unit until the
future is resolved. Evaluation contexts are trivially extended.

As shown in Fig. 9, we suppose that future identifiers have a specific shape
of the form fut = (tid, lf) where tid is a thread identifier and lf is a local future
identifier. Tasks map expressions to future identifiers, when the expression is
fully evaluated (to a value) the future is resolved.

The dynamic syntax is expressed in two additional layers: above the λ-
calculus layer of Fig. 8, Fig. 10 expresses the reduction relation in a given pro-
cessing unit, and Fig. 11 extends this local semantics to a parallel semantics with
several processing units.

The local semantics in Fig. 10 is based on configurations of the form σ, F, s
where σ is a shared mutable store, F is the map of futures, and s is a state.
If the expression in the current task is fully evaluated to a value, the task is
finished, the future is resolved and put back into the task list, the state of the
processing unit is Idle (rule return). Rule step performs a λ-calculus step (see
Fig. 8). get(f) can only progress if the future f has been resolved, in which case
the value associated with the future is fetched (rule get). There are two rules

16 M. Andrieux et al.

Fig. 9. Syntax for the Fut language

Fig. 10. Semantics for Fut—σ, F, s −−→ σ, F, s

for await(f): if the future is resolved await(f) behaves like get(f); if it is not
resolved the task is interrupted (it returns to the task pool), the processing unit
becomes Idle. Finally, rule Async starts a new task: the effect of asyncAt(e, tid)
is first to forge a future identifier containing the thread identifier tid and another
identifier lf so that the pair (tid, lf) is fresh, a task is created, associating e to
the new future.

The management of processing units and thread identifiers is the purpose of
the parallel semantics in Fig. 11. It expresses the evaluation of configurations of
the form σ, F, P where P is a parallel composition of processing units. P ‖ si is
used both to extract the execution state of thread i form the parallel composition
P and to add it back. Rule one-step simply triggers a rule of the local semantics
in Fig. 11. Rule spawn spawns a new thread, creating a fresh thread identifier
that will be used in an AsyncAt statement to initiate work on this thread (the
new thread is initially Idle). Finally, if si is Idle, no task is currently running
and a new task can be started on the processing unit i by the rule schedule.

Active Objects Based on Algebraic Effects 17

Fig. 11. Parallel semantics for Fut—σ, F, ‖i∈I si −−→|| σ, F, ‖i∈I si

An initial configuration for an Fut program ep consists of the program asso-
ciated with a fresh task identifier i and a fresh future identifier f , with an empty
store and future map: ∅, ∅, (f → ep)i.

4.3 Effects

We now extend the base calculus of Sect. 4.1 with effects. For the moment this
extension is independent of the previous one, they are used separately in this
article even though composing the two extensions would be perfectly possible.
Indeed, we transform programs with only futures into programs with only effects
but having a language with at the same time futures and effects would also make
sense.

Figure 12 shows the syntax of the parallel and imperative λ-calculus with
effects. Parallelism is obtained by the keyword spawn(e) that creates a new
thread in the same spirit as in the previous section. handle(e){h} runs the
expression e under the handler h, if an effect is thrown by throw(E(C)) inside e,
and if h can handle this effect, the handler is triggered. Rule handle-effect in
Fig. 13 specifies the semantics of effect handling. Suppose an effect E is thrown,
the first encompassing handler that can handle this effect is triggered: if a
rule (E(x), k �→ e) is in the handler, then the handler e is triggered with x
assigned to the effect value v and k assigned to the continuation of the expres-
sion that triggered the effect. The interplay between evaluation contexts and the
captured effects() function captures the closest matching effect. Rule handle-
step handles the case where the term e performs a reduction not related to effect
handling. If e finally returns a value, Finally, rule handle-return deals with
the case where the handled expression can be fully evaluated without throwing
an effect; it triggers the expression corresponding to the success case x �→ e in
the handler definition. Note that we don’t reinstall the handler after triggering
the rule, corresponding to the shallow interpretation of effect handlers [12].

Figure 14 shows the parallel semantics of effects. The only specific rule is
spawn, which spawns a new thread with a fresh identifier. Note that in Eff, the
parameter of spawn is the expression to be evaluated in the new thread, with its
own thread identifier as argument.

18 M. Andrieux et al.

Fig. 12. Eff Syntax

Fig. 13. Semantics for Eff—σ, e −−→ σ, e

Fig. 14. Parallel semantics for Eff—σ, ‖i∈I ei −−→ σ, ‖i∈I ei

An initial configuration for an Eff program ep simply consists of the program
associated with a fresh task identifier i and with an empty store: ∅, ei

p.

5 Compilation of Futures into Effects

In this section we define a transformation from Fut to Eff that translates from
our concurrent λ-calculus with futures into the calculus with effect handlers. We
then prove its correctness.

5.1 Translating FUT into EFF

Figure 15 shows the translation �e�p that transforms a Fut program e into an
Eff program with the same semantics. The color highlighting in the definition
can be ignored at first. It will be used in the proof in the next section. �e�p is
the top level program transformation while �e�e is used to compile expression;
this transformation simply replaces Fut specific expressions into expressions

Active Objects Based on Algebraic Effects 19

Fig. 15. Translation from Fut to Eff

throwing an effect with adequate name and parameters. The handling of effects
is defined at the top level, i.e. when translating the source program.

�e�p creates a program that uses a pool of tasks called tasks and three
functions that manipulate it. tasks is implemented by a mutable map from future
identifiers to tasks, which can be of two kinds: continuations of the form C(k)
or values of the form V(v).

The main function is continue, it sets up a handler dealing with all the
effects of Fut. It first evaluates the thunk continuation parameter k. Then it
reacts to the different possible effects as follows. The first branch describes the
behavior when k() throws no effect and simply returns a value. In this case, the

20 M. Andrieux et al.

task is saved as a value V(v) (the future is resolved). The Async effect adds a
new task to the task pool and continues the execution of the current task with
the continuation k′ and the newly created future fut′. The Await effects checks
whether the future futa in the task pool has been resolved or not; if it is resolved
the task continues with the future value, otherwise the task is put back in the
pool of tasks (keeping the Await effect at the head of the continuation). The
Get effect is similar to the resolved case of Await but does not allow the task
to be returned to the pool of tasks. Instead, if the future is not resolved the
thread actively polls the matching task until the future is finally resolved using
the auxiliary poll function. The Spawn effect case spawns a new thread that runs
the run function. In each case where the task does not continue, the body of the
function run is triggered.

The function run(t) uses the external function pop(tasks, t) to fetch a new
unresolved task that should run on thread t, the task is thus of the form C(k)
and the thread continues by evaluating the thunk continuation k.

5.2 Correctness of the Compilation of Actors into Effects

We define in this section a hiding semantics and will prove strong bisimula-
tion between the source program and the hiding semantics of the transformed
program.

5.2.1 Hiding Semantics In translation such as the one defined here, the
compiled program must often take several more “administrative” steps than the
source program. This makes proof by bisimulation more complex, and requires
using weak bisimulation that ignores some steps marked as internal.

In this article we take a stronger approach and prove strong bisimilarity on a
derived transition relation. The principle is that internal steps of the transformed
program are called silent, and they are by nature deterministic and terminating.
We can thus consider that we “normalise” the runtime configuration of the trans-
formed program by systematically applying as many internal steps as possible
until a stable state is reached. We discuss this idea further in Sect. 6.

We first state that hidden(e) is true if the top level node in the syntax of
e is colored ; where colored means the term is surrounded by a colored box: e .
There should be no ambiguity on the node of the syntax that is colored (at least
in our translation).

Definition 1 (Hiding semantics). We define a hiding operation to hide parts
of the reduction. It works as follows. We can define a h-reduction −−→h that puts
a τ label on the transitions that target a node of the syntax that is hidden:

σ, e−−→|| σ′, e′ hidden(e)

σ, e
τ−→h σ′, e′

σ, e−−→|| σ′, e′ ¬hidden(e)
σ, e−−→h σ′, e′

Active Objects Based on Algebraic Effects 21

We finally define the hiding semantics as one non-hidden step followed by
any number of hidden step, until no further hidden step can be performed5:

σ, e=⇒|| σ, e ⇐⇒ σ, e−−→h
τ−→h

∗
σ′, e′ �τ−→h

Note that, considering the nodes colored in our translation, the transitions
marked as τ should only have a local and deterministic effect on the program
state. In practice there are some hidden statements that spawn a thread or
launches task for example, but they are immediately and deterministically pre-
ceded by a decision point that is visible, here the reaction to an effect. The
interleaving of the tau transition have no visible effect on the global state, only
the state along the visible transitions is important. This property will be made
explicit in our proof of correctness. As a consequence, because the hidden step
commutes with all the other steps, each execution of a Fut program compiled
into Eff can be seen as a succession of =⇒||. Additionally, except when polling
futures the transitive closure of hidden steps terminate. We have the following
property, relating our middle-step and small-step semantics.

Theorem 1 (Middle-step semantics). Consider e1 = �ef �p. Any Eff
reduction of e1 can be seen as a hiding semantics reduction, modulo a few hidden
steps, and a few get operations on unresolved futures:

σ1, e1 −−→||∗ σ2, e2 =⇒ ∃σ3, e3, σ4, e4.
∧

σ1, e1 =⇒||∗ σ3, e3

σ2, e2
τ−→h

∗
σ4, e4

σ3, e3
handle-get−−−−−−−→||

∗
σ4, e4

Where σ3, e3
handle-get−−−−−−−→||

∗
σ4, e4 is application (inside an appropriate context) of

a handle-effect rule with a Get effect on an unresolved future. In particular,
if all futures are resolved, σ3, e3 = σ4, e4.

This theorem is true because the hidden semantic steps commute, only a
special case is needed for handling the polling of unresolved futures.

5.2.2 Bisimulation Definition To help with our bisimulation definition, we
now define a few execution contexts that appear commonly in the proof. Crec

is the context that corresponds to the recursive knot introduced by let rec.
Indeed, since let rec expresses recursion as an encoding into λ-calculus, the
encoding will appear again in each task and can be sugared/de-sugared at will.
In addition, Cc and Cr are the contexts in the translated program where continue
and run are respectively executed, parameterised by all their free variables. In
the following we thus start each task by Crec, Cc or Cr. More precisely:

5 −−→∗ denotes the reflexive transitive closure of the relation −−→.

22 M. Andrieux et al.

Crec[�threads] �

⎛

⎜
⎜
⎜
⎜
⎝

let rec poll(fut) = Poll in

let rec continue(fut, k, t)=Continue

and run(t) = Run in

�

⎞

⎟
⎟
⎟
⎟
⎠

[tasks ← �threads]

Cc[�threads, fut,K ′, t] � Crec[�threads][continue(fut, k, t) [k() ← K ′]]

Cr[�threads, t] � Crec[�threads][run(t)]

Definition 2 (Relation over configurations). Let R be a relation over pairs
of a Fut configuration CFut and a Eff configuration CEff. We also note Re a
relation over pairs of configuration states in Fut (i.e., (σ, �threads)) and in Eff
(i.e., (σ, F)).

Figure 16 defines both relations. The purpose of the relation is to prove the
correctness of our compilation scheme. We will prove that R is a strong bisim-
ulation. R is indexed either by ‖ for parallel configurations, and by a given t to
reason about single-threaded configurations of thread t. For single-threaded con-
figurations, the computation can either be in the continue case, or the run
case. The most complex relation is on the environments, which details the con-
tent of the �threads values.

The translation ��e can straightforwardly be extended to contexts (where
���e = �). Consequently, we have the following property:

Lemma 1 (Context compilation). �C[e]�e ≡ �C�e [�e�e]

Proof. By case analysis on the translation rules (and on contexts). �

Fig. 16. Relation between Fut terms and their compiled version

Active Objects Based on Algebraic Effects 23

5.2.3 Correctness of the Compilation Scheme We now establish the
correctness of our translation by proving that the relation we exhibited in the
previous section is a bisimulation.

Theorem 2 (Correctness of the compilation scheme). The relation R ‖
is a strong bisimulation where the transition on the Eff side is the hiding tran-
sition relation, and the transition on the Fut side is −−→||. Formally, for all
configurations the following holds:

σ1, P1 R ‖ σ′
1, F1, P

′
1 ∧ σ1, P1 =⇒|| σ2, P2

=⇒ ∃σ′
2, F2, P

′
2. σ′

1, F1, P
′
1 −−→|| σ′

2, F2, P
′
2 ∧ σ2, P2 R ‖ σ′

2, F2, P
′
2

and

σ1, P1 R ‖ σ′
1, F1, P

′
1 ∧ σ′

1, F1, P
′
1 −−→|| σ′

2, F2, P
′
2

=⇒ ∃σ2, P2. σ1, P1 =⇒|| σ2, P2 ∧ σ2, P2 R ‖ σ′
2, F2, P

′
2

so that for any Fut program p the initial configuration of the program and of its
effect translation are bisimilar (with t0 fresh, and f0 is the fresh future identifier
that has been chosen when triggering the first continue function.).

∅, (�ep�p [fresh() ← f0])t0 R ‖ ∅, ∅, (f0 �→ ep)t0

Proof (sketch). The proof of bisimulation follows a standard structure. For each
pair of related configurations we show that the possible reductions made by
one configuration can be simulated by the equivalent configuration (in the other
calculus). Then a case analysis is performed depending on the rule applied. The
set of rules is different between Fut and Eff calculi but on the Eff side, we
need to distinguish cases based on the name of the triggered effect, leading to
a proof structure similar to the different rules of Fut. Appendix A details the
proof that the compiled program simulates the original one. By case analysis on
the rule that makes the relation true and the involved reduction. This leads to
seven different main cases; we prove simulation in each case. �
Finally, Theorems 1 and 2 allow us to conclude regarding the correctness of our
compilation scheme. Indeed, each execution of a compiled program is equivalent
to a middle-step reduction that itself simulates one of the possible executions of
our Fut program. Conversely, any execution of our Fut program corresponds
(modulo polling of unresolved futures) to a middle-step execution of its compi-
lation, which is in fact one of the Eff executions of the compiled program.

6 Conclusion and Discussion

We have presented an active object library based on effect handlers and proved
the correctness of its implementation principles. To prove this correctness, we

24 M. Andrieux et al.

expressed the implementation as a translation from a future calculus to an effect
calculus and proved a bisimulation relation between the source and the trans-
formed program. This illustrates that effects are a very general and versatile con-
struct which can be leveraged to implement concurrency constructs as libraries,
including futures. We discuss below a few alternatives that we considered and,
more generally, extensions of this work we envision.

Deep and Shallow Handlers. As highlighted at multiple points, we use shal-
low effect handlers, both in our implementation and in our formal development.
Shallow effect handlers are not automatically reinstalled upon resuming a con-
tinuation, while deep handlers are automatically reinstalled.

In theory, Hillerström and Lindley [12] show that both deep and shallow han-
dlers are equivalent, and showcase code transformation from one to the other. In
addition, OCaml provides both versions. In practice, however, for the purpose
of implementing a scheduler, shallow handlers offer numerous advantages. First,
they make recursion in the continue function uniform over all tasks, be they con-
tinuations or new tasks. Furthermore, since they allow precise control over when
handlers are installed, we can ensure that we never install nested handlers. In
our implementation, this was essential to make continue and run tail-recursive.

Unfortunately, shallow handlers are a bit more delicate to implement for
language designers. Furthermore, deep handlers admit a more precise small-step
semantics [19]. It remains to be seen if the deep version of our scheduler can be
expressed as elegantly as the one showcased in our formalisation.

Relation to Existing Promise-as-Effect Libraries. To develop our active object
library, we made our own implementation of promises. This was convenient, as
full-control allowed us to tie both together, which was essential for implementing
forward, notably.

However, implementing an industrial-strength promise library with efficient
scheduling, parallelism, and system integration is a significant task. Making sev-
eral such libraries work together is delicate. In practice, eio [15] is trending
towards being the standard promise library in OCaml.

Now that we formalised our semantics independently, one of the next steps
is to adapt our developments to rely on an existing scheduling library. There are
two difficulties here:

– Adapting to different underlying primitives (eio uses “suspend”, similar to a
form of yielding, and “fork” to create new promises).

– Finding a way to extend the scheduler implemented by an existing library,
accessing its internal state, without completely breaking its invariants, nor
breaking abstraction.

Optimisation on Forward. As we mentioned in Sect. 3, forward is a construct
that allows efficient delegation of asynchronous method invocations by mak-
ing shortcuts when a future is resolved with another one [6]. For simplicity, we
decided not to specify forward in our formal development. Its specification and

Active Objects Based on Algebraic Effects 25

proof is rather straightforward, by introducing an additional effect. In the future,
in addition to this formal aspect, we would like to experiment with introduc-
ing delegated method calls automatically, following the analogy with tail-call
optimisations.

Hiding Semantics and Middle-Step Reductions. Proof of correctness of transla-
tions between languages and calculi often reduce to simulation or bisimulation
proofs [5,6,16] between a source program and a transformed program. Often,
it is however necessary for the transformed program to do more steps than the
original one. These additional internal steps are necessary to maintain internal
information on the program state. Sometimes, even the source program must also
do some internal steps. The usual tool to prove the equivalence in this case is to
use a weak bisimulation that “ignores” some steps marked as internal. However,
weak bisimulations do not guarantee the preservation of all program properties,
in particular liveness properties [8]. In such situations, some previous work prove
branching bisimilarity which is stronger but not always sufficient.

In this article, we developed a new “hiding” semantics and a middle-step
reduction which executes one non-hidden step, followed by as many hidden steps
as possible. This allows us to decide exactly in the specification of the translation
which code is “administrative” and which code must really be synchronised.
Naturally, in our context, such code is deterministic.

While we developed this in an ad-hoc manner here, we believe this approach
can be adapted to many other program translations, simplifying simplifying the
proof of correctness for compilers, and program transformations in general.

A Proof of the Bisimulation Theorem (Theorem 2)

A proof of bisimulation involves two simulation proofs for the same relation. We
detail the proof for the first direction: the behaviour of the compiled program is
one of the behaviours of the original one. This direction is more complex because
of the middle-step semantics and is also more important as it states that the
behaviour of the compiled program is a valid one. The other direction is done
very similarly with the same arguments as the ones used in the first direction. It
however has a different structure as the SOS semantics provides more different
cases (but the proof below often needs to distinguish cases according to the
current state of the configuration, leading to a similar set of cases overall). We
omit the other direction.

Consider σ1, P1 R ‖ σ′
1, F1, P

′
1, and σ1, P1 =⇒|| σ2, P2. Let i be the thread

identifier of the thread involved in the reduction =⇒|| (in case of spawn i is the
thread that performs the spawn).

We have P1 = Q1 ‖ ei and P ′
1 = Q′

1 ‖ si for some Q1 and Q′
1. Additionally,

σ1, Q1 R ‖ σ′
1, F1, Q

′
1 and σ1, e R i σ′

1, F1, s.
We do a case analysis on the rule used to prove the Ri relation; two cases

are possible:

26 M. Andrieux et al.

Continue:
Continue

σ1, �threads R e σ′
1, F1

σ1, Cc[�threads, f, �e′�e , i] R i σ′
1, F1, (f �→ e′)

In this case, the top level of continue is a handle thanks to the context Cc.
σ1, P1 =⇒|| σ2, P2 can result from three possible rules (modulo a seq rule at
the configuration level and a λ-calculus context rule to reach the reducible
statement):
HANDLE-RETURN �e′�e must be of the form v (and is inside a handle

because of Cc).
We have σ1, P1 =⇒|| σ2, P2. Its first visible reduction rule must be:

(x �→ e2) ∈ h

σ1, handle(v){h}−−→σ1, e2 [x ← v]
handle-return

σ1, Crec [handle(v){h}] −−→σ1, Crec [e2 [x ← v]]
context

σ1, Q1 ‖ ei −−→|| σ1, Q1 ‖ Crec [e3]
i

seq

Where:

Crec the “let ... rec” context

h the effect handlers defined in Continue

e = Cc[�threads, f, �e′�e , i]
= Crec[handle(v){h}]

e3 = �threads[f] ← V(v);

run(i)

The hidden rules then update the appropriate task in the store and start
the run function. Overall, we obtain:

σ1, Q1 ‖ Cc[�threads, f, �e′�e , i] =⇒|| σ2, Q1 ‖ Cr[�threads, i]i

Where

σ2 = σ1

[
�threads �→ σ1(�threads)

[
f �→ V(v)

)]]

Since e = Crec[handle(v){h}], by case analysis on the compilation rules,
we must have the source expression e′ = v′ be a Fut value with v = �v′�e.
Then we have:

σ′
1, F1, (f �→ v′)i −−→σ′

1, F1[f �→ v′] , Idlei
return

σ′
1, F1, Q

′
1 ‖(f �→ v′)i −−→|| σ′

1, F1[f �→ v′] , Q′
1 ‖ Idlei

one-step

Active Objects Based on Algebraic Effects 27

We then need to establish that the new future map and stores are in
relation, i.e., σ2, �threadsReσ

′
1, F1[f �→ v′].

We recall the env rule below:

env
Fe = Fe,1 � Fe,2

∀f ∈ Dom(Fv). Fv(f) is a value
∀f ∈ Dom(Fe). Fe(f) is not a value

Te,1 = [f ′ �→ C(λ(). �e�e) | Fe,1(f ′) = e]

Te,2 =
[
f ′ �→ C (λ().((λx.C[x]) e)) | �Fe,2(f ′)�e = C[e]

]

Tv = [f ′ �→ V(�v�e) | Fv(f ′) = v]
σbase ∪ {�threads �→ Te,1 � Te,2 � Tv}, �threads R e σbase, Fe � Fv

By inversion on σ1, �threads Re σ′
1, F1, we obtain three maps Te,1�Te,2�Tv

that ensure the relation. We extend Tv so that Tv[f] �→ V(v) to obtain
the relation.
Recall that v = �v′�e; this is sufficient to conclude that

σ2, Q1 ‖ Cr[�threads, i]i R ‖ σ′
1, F1[f �→ v′] , Q′

1 ‖ Idlei

HANDLE-STEP �e′�e must be of the form e1 where e1 can only be reduced
by a λ-calculus reduction.
We have σ1, P1 =⇒|| σ2, P2. Its first visible reduction rule must be:

σ1, e1 −−→ σ2, e2

σ1, e1 −−→ σ2, e2
handle-step

σ1, Crec [handle(e1){h}] −−→ σ2, Crec [handle(e2){h}]
context

σ1, Q1 ‖ ei −−→|| σ2, Q1 ‖ Crec [e3]
i

seq

Where:

Crec the “let ... rec” context

h the effect handlers defined in Continue

e = Cc[�threads, f, �e′�e , i] = Crec[handle(e1){h}]

e3 = handle(e2){h}

The translation leave λ-calculus terms unchanged, without any hiding,
thus there are no follow up hidden rules.
Overall, we obtain:

σ1, �e
′�e −−→σ2, e2

σ1, Q1 ‖ Cc[�threads, f, �e′�e , i] =⇒|| σ2, Q1 ‖ Cc[�threads, f, e2, i]

28 M. Andrieux et al.

We know that σ1, �threads Re σ′
1, F1. By definition, this means that σ1 =

σ′
1 ∪ {�threads �→ T} for some map T . By definition of the translation,

�threads is not accessible by user code, and thus left unchanged by the
reduction on �e′�e. As such, we have:

σ2 = σ′
2 ∪ {�threads �→ T} σ′

1, �e
′�e −−→ σ′

2, e2

By case analysis on the translation and the λ-calculus reduction rules, e′

must be reduced by the same λ-calculus reduction rule than �e′�e. Thus:

σ′
1, e

′ −−→ σ′
2, e

′
2

σ′
1, F1, (f �→ e′)i −−→ σ′

2, F1, (f �→ e′
2)

i
step

σ′
1, F1, Q

′
1 ‖(f �→ e′)i −−→|| σ′

2, F1, Q
′
1 ‖(f �→ e′

2)
i
one-step

This case analysis and by determinism of our λ-calculus, we have �e′
2�e =

e2. We also have σ2, �threadsReσ
′
2, F1.

This is sufficient to conclude that

σ2, Q1 ‖ Cc[�threads, f, �e′�e , i]i R ‖ σ′
2, F1, Q

′
1 ‖ Cc[�threads, f, �e′

2�e , i]

HANDLE-EFFECT �e′�e must be of the form C[throw(E(x)) (and is
inside a handle because of Cc). We distinguish by the effect captured:
Async(job, t′). We have σ1, P1 =⇒|| σ2, P2. Its first visible reduction rule

must be:
seq+handle-effect+context

(Async(job, t′), k′ �→ e2) ∈ h Async /∈ captured effects(C)

σ1, Crec

[
handle(C[throw(Async(λ(). e′′, t))]){h}

]

−−→σ1, Crec

[
e2 [t′ ← t]

[
job ← λ(). e′′

]
[k′ ← λy.C[y]]

]

σ1, Q1 ‖ ei −−→|| σ1, Q1 ‖ Crec [e3]
i

Where:

Crec the “let ... rec” context

h the effect handlers defined in Continue

e = Cc[�threads, f, �e′�e , i]
= Crec[handle(C[throw(Async(λ(). e′′, t))]){h}]

e3 = let fut′ = (t, fresh()) in

�threads[fut′] ← C(λ(). e′′);

continue(f, λ().(λy.C[y])(fut′), i)

Active Objects Based on Algebraic Effects 29

By definition of the translation, and because the reduction is possible,
the arguments of the Async effect must be a thunk task, and its second
argument must be a thread identifier (it can be an expression but this
one is entirely evaluated before triggering the effect). This as some
consequences on the considered Fut configuration, e.g. e′ is of the
form AsyncAt(e0, t). Additionally, t is the same on both side as thread
identifiers are preserved by the translation (this can be proven by case
analysis on the definition of Ri).
The hidden rules apply then update the suspended tasks in the store
and start the continue function. The last hidden reduction rule is
the beta-reduction that de-thunks the continuation λ().(λy.C[y])(fut′)
inside the handler of continue and puts fut′ back into the invocation
context.
Overall, we obtain:

σ1, Q1 ‖ Cc[�threads, f, �e′�e , i] =⇒|| σ2, Q1 ‖ Cc[�threads, f, C[fut′], i]i

Where

σ2 = σ1

[
�threads �→ σ1(�threads)

[
fut′ �→ C

(
λ(). e′′)

)]]

Since e = Crec[handle(C[throw(Async(λ(). e′′, t))]){h}], by case
analysis on the compilation rules, we must have the source expres-
sion e′ = C1[asyncAt(e′

1, t)] where C = �C1�e and e′′ = �e′
1�e by

Lemma 1. Note also that the set of future identifiers are the same in
the Fut program and in its translation, and thus fut′ = (t, fresh()) is
a fresh future in the Fut configuration. Then we have:

async+one-step

fut′ = (t, lf) fut′ �∈ Dom(F1)
σ′
1, F1, Q

′
1 ‖(f �→ C1[asyncAt(e′

1, t)])
i −−→||

σ′
1, F1

[
fut′ �→ e′

1

]
, Q′

1 ‖(f �→ C1[fut′])i

We then need to establish that the new future map and stores are in
relation, i.e., σ2, �threadsReσ

′
1, F1

[
fut′ �→ e′

1

]
.

We recall the env rule below:
env

Fe = Fe,1 � Fe,2

∀f ∈ Dom(Fv). Fv(f) is a value
∀f ∈ Dom(Fe). Fe(f) is not a value

Te,1 = [f ′ �→ C(λ(). �e�e) | Fe,1(f ′) = e]
Te,2 =

[
f ′ �→ C (λ().((λx.C[x]) e)) | �Fe,2(f ′)�e = C[e]

]

Tv = [f ′ �→ V(�v�e) | Fv(f ′) = v]
σbase ∪ {�threads �→ Te,1 � Te,2 � Tv}, �threads R e σbase, Fe � Fv

30 M. Andrieux et al.

By inversion on σ1, �threads Re σ′
1, F1, we obtain tree maps Te,1 �

Te,2 � Tv that ensure the relation. We then extend Te,1 so that
�threads[fut′] �→ C(λ(). �e′

1�e) to obtain the relation.
This is sufficient to conclude that

σ2, Q1 ‖ Cc[�threads, f, C[fut′], i]i R ‖
σ′
1, F1

[
fut′ �→ e′

1

]
, Q′

1 ‖(f �→ C1[fut′])i

Get(f ′). We have σ1, P1 =⇒|| σ2, P2. Its first visible reduction rule must
be:

seq+handle-effect+context

(Get(futg), k
′ �→ e2) ∈ h Get /∈ captured effects(C)

σ1, Crec [handle(C[throw(Get(f ′))]){h}]
−−→σ1, Crec

[
e2

[
futg ← f ′] [k′ ← λy.C[y]]

]

σ1, Q1 ‖ ei −−→|| σ1, Q1 ‖ Crec [e3]
i

Where6:

Crec the “let ... rec” context

h the effect handlers defined in Continue

e = Cc[�threads, f, �e′�e , i]
= Crec[handle(C[throw(Get(f ′))]){h}]

e3 = let v = poll(f ′) in

continue(f, λ().((λy.C[y]) v), i)

The argument of the Get effect must be a future reference that is
totally evaluated for the rule to succeed. If it is not a future the
evaluation of poll fails. If it is not fully evaluated, the reduction should
first occur inside the argument of the Get effect.

Details on Poll Reductions. At this point, we look at hidden reduc-
tions, which must start in the body of poll. If the future is unresolved,
poll loops forever and the medium step reduction diverges. This means
either that the future never resolves, and this divergence in Eff sim-
ulates a deadlock in Fut; or that we could make reductions in other
threads to resolve the deadlock. In the second case, the semantics for
Eff would interleave loops in poll and reduction in other threads.

6 A few substitutions have occurred inside poll by definition of Cc. We omit them here
not to clutter the proof.

Active Objects Based on Algebraic Effects 31

Such interleaving is equivalent to triggering the Get event at the end,
with a single loop in poll. The current theorem only consider this last
interleaving. Overall, if there is a medium step reduction it means
that the future is resolved.
In this case, the future has been resolved, and, by bisimilarity on the
stores (Re) we have F1(f ′) = v and σ1(�threads)[f ′] = v for some v.
We obtain after a couple of steps of beta-reduction:

σ1, Q1 ‖ Cc[�threads, f, �e′�e , i] =⇒|| σ1, Q1 ‖ Cc[�threads, f, C[v], i]i

Since e = Crec[handle(C[throw(Get(f ′))])h], by case analysis on the
compilation rules, we have e′ = C1[get(f ′)] where C = �C1�e by
Lemma 1. Then we have:

get+one-step

(f ′ �→ v) ∈ F1

σ′
1, F1, Q

′
1 ‖(f �→ C1[get(f ′)])i −−→|| σ′

1, F1, Q
′
1 ‖(f �→ C1[v])i

This is sufficient to conclude that

σ1, Q1 ‖ Cc[�threads, f, C[v], i]i R ‖ σ′
1, F1, Q

′
1 ‖(f �→ C1[v])i

Await(f ′). The case when the awaited future is resolved is similar to
the case of the Get effect just above. We only detail the proof in case
the future is still unresolved.
We have σ1, P1 =⇒|| σ2, P2. Its first visible reduction rule must be:

seq+handle-effect+context

(Await(futa), k′ �→ e2) ∈ h Await /∈ captured effects(C)
σ1, Crec [handle(C[throw(Await(f ′))]){h}]
−−→σ1, Crec [e2 [futa ← f ′] [k′ ← λy.C[y]]]

σ1, Q1 ‖ ei −−→|| σ1, Q1 ‖ Crec [e3]
i

32 M. Andrieux et al.

Where:

Crec the “let ... rec” context

h the effect handlers defined in Continue

e = Cc[�threads, f, �e′�e , i]
= Crec[handle(C[throw(Await(f ′))]){h}]

e3 = match �threads[f ′]{
| V(v) �→ continue(f, λ().((λy.C[y]) v))

| �→ let k′′() = (λy.C[y]) (throw(Await(f ′))) in

�threads[f] ← C(k′′); run(i)

}

Like in the Get case, the argument of the Await effect must be a
future reference that is totally evaluated for the rule to succeed.
When the future is unresolved, �threads[f ′] is not a value (it is not
mapped or mapped to a C). By definition of Re we necessarily have:
�v. (f ′ �→ v) ∈ F1. Then a few hidden beta reduction steps lead to
the following configuration:

σ1, Q1 ‖ Cc[�threads, f, �e′�e , t] =⇒|| σ2, Q1 ‖ Cr[�threads, i]i

Where

σ2 = σ1

[
�threads �→ σ1(�threads)

[
f �→ C

(
λ().((λy.C[y]) (throw(Await(f ′))))

)]]

Since e = Crec[handle(C[throw(Await(f ′))])h], by case analysis on
the compilation rules, we have e′ = C1[await(f ′)] where C = �C1�e

by Lemma 1. Thus on the Fut side, we have:

await-yield+one-step

�v. (f ′ �→ v) ∈ F1

σ′
1, F1, Q

′
1 ‖(f �→ C1[await(f ′)])i

−−→|| σ′
1, F1 [f �→ C1[await(f ′)]] , Q′

1 ‖ Idlei

We easily obtain that σ2, �threads R e σ′
1, F1 [f �→ C1[await(f ′)]] by

expanding the environment Te,2 in the env rule.
With the arguments above and the case run of R ‖ we conclude:

σ2, Q1 ‖ Cr[�threads, i]i R ‖ σ′
1, F1 [f �→ C1[await(f ′)]] , Q′

1 ‖ Idlei

Active Objects Based on Algebraic Effects 33

Spawn(). We have σ1, P1 =⇒|| σ2, P2. Its first visible reduction rule must
be:

seq+handle-effect+context

(Spawn(), k′ �→ e2) ∈ h Spawn /∈ captured effects(C)
σ1, Crec[handle(C[throw(Spawn())]){h}]−−→ σ1, e2 [k′ ← λy.C[y]]

σ1, Q1 ‖ ei −−→|| σ1, Q1 ‖ ei
2

With: Crec the “let ... rec” context of the continue handler inside Cc,
h the effect handlers defined in Continue, additionally:

e = Crec[handle(C[throw(Spawn())]){h}]
= Cc[�threads, f, �e′�e , t]

e2 = let t′ = spawn(run) in continue(fut, λ().k′(t′), t)

The first hidden rule applied is

spawn (hidden)

tid �∈ tids(P) ∪ {i}
σ1, Q1 ‖ C2[spawn(run)]i −−→|| σ1, Q1 ‖ C2[tid]i ‖ Cc[(run tid)]tid

Where e2 = C2[spawn(run)]. This is followed by steps of beta reduc-
tion to reduce the let t′ = . . . construct, trigger continue, pass the
associated tid and de-thunk the λ().λy.C[y](tid) inside continue. We
obtain the following configuration

σ1, Q1 ‖ Cc[�threads, f, C[tid], t]i ‖ Cc[(run tid)]tid

Finally, by a step of beta reduction in the thread tid we obtain the
right evaluation context Cr

σ1, Q1 ‖ Cc[�threads, f, C[tid], t]i ‖ Cr[�threads, tid]tid

This configuration is not reducible by a hidden transition. Thus

σ1, Crec[handle(C[throw(Spawn())]){h}]

=⇒|| σ1, Q1 ‖ Cc[�threads, f, C[tid], t]i ‖ Cr[�threads, tid]tid

By case analysis on the terms involved in σ1, P1 R ‖ σ′
1, F1, P

′
1 we

have e′ = C1[spawn()] where C = �C1�e by Lemma 1. We then have:

spawn
tid �∈ tids(Q′

1) ∪ {i}
σ′
1, F1, Q

′
1 ‖(f �→ C1[spawn()])i −−→||

σ′
1, F1, Q

′
1 ‖(f �→ C1[tid])i ‖ Idletid

34 M. Andrieux et al.

Note that by definition of R‖ the set of used thread identifiers is the
same in both configurations, wo we can take the same fresh tid. Note
also that the store and the future map are unchanged. Comparing
thread by thread, we can directly apply rule run and rule cont for
the two processes tid and i, which leads to the conclusion:

σ1, Q1 ‖ Cc[�threads, f, C[tid], t]i ‖ Cr[�threads, tid]tid

R ‖ σ′
1, F1, Q

′
1 ‖(f �→ C1[tid])i ‖ Idletid

Run:
run

σ1, �threads R e σ′
1, F1

σ1, Cr[�threads, i] R i σ′
1, F1, Idle

The only first applicable rule is the pop operation reduction that picks a new
available thread:

σ,Cr[�threads, i]
pop−−→h Run [t ← i]
τ−→h

∗
σ2, Cc[�threads, f2, e2, i]

Note that pop ensures that f2 is of the form f2 = (i, lf). Using only reductions
in the thread i and such that: σ1(�threads)[f2] = C(λ(). �F1(f2)�e)

7 by defini-
tion of Ri and e2 = �F1(f2)�e

8 by definition of pop. Note that the last step of
reduction is inside continue and de-thunks the new task ((λ().e2())−−→ e2)9.
We additionally have:

σ2 = σ1[�threads �→ σ1(�threads) \ f2]

From the points above, we obtain (with f2 = (i, lf)):

schedule
(f2 �→ F1(f2)) ∈ F1 F1(f2) is not a value

σ′
1, F1, Q

′
1 ‖ Idlei −−→|| σ′

1, F1 \ f2, Q
′
1 ‖(f2 �→ F1(f2))i

Note that F1(f2) is not a value by construction of the equivalence on stores
(Fig. 16). Finally (the equivalence on the store can be trivially checked):

Continue
σ2, �threads R e σ′

1, F1 \ f2

σ2, Cc[�threads, f2, �F1(f2)�e , i] R i σ′
2, F1 \ f2, (f2 �→ F1(f2))

This immediately concludes by adding the other threads (in Q1 and Q′
1) and

obtaining the R ‖ relation on the obtained configurations. �
7 Resp. σ1(�threads)[f2] = C (λ().((λx.C[x]) e)).
8 Resp. �F1(f2)�e = C[e] and e2 = C (λ().((λx.C[x]) e)).
9 Resp. with two steps of beta-reductions.

Active Objects Based on Algebraic Effects 35

References

1. Baker Jr., H.G., Hewitt, C.: The incremental garbage collection of processes. In:
Proceedings Symposium on Artificial Intelligence and Programming Languages,
New York, NY, USA, pp. 55–59 (1977)

2. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. J. Log.
Algebraic Methods Program. 84(1), 108–123 (2015). https://doi.org/10.1016/j.
jlamp.2014.02.001

3. de Boer, F., et al.: A survey of active object languages. ACM Comput. Surv. 50(5),
76:1–76:39 (2017). Article 76

4. Caromel, D., Henrio, L., Serpette, B.: Asynchronous and deterministic objects.
In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 123–134. ACM Press (2004)

5. Chappe, N., Henrio, L., Maillé, A., Moy, M., Renaud, H.: An optimised flow for
futures: from theory to practice. CoRR abs/2107.07298 (2021). https://arxiv.org/
abs/2107.07298

6. Fernandez-Reyes, K., Clarke, D., Castegren, E., Vo, H.P.: Forward to a promising
future. In: Di Marzo Serugendo, G., Loreti, M. (eds.) COORDINATION 2018.
LNCS, vol. 10852, pp. 162–180. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-92408-3 7

7. Fernandez-Reyes, K., Clarke, D., Henrio, L., Johnsen, E.B., Wrigstad, T.: Godot:
all the benefits of implicit and explicit futures. In: Donaldson, A.F. (ed.) 33rd
European Conference on Object-Oriented Programming (ECOOP 2019). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 134, pp. 2:1–2:28.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2019). https://
drops.dagstuhl.de/opus/volltexte/2019/10794. Distinguished artefact

8. Graf, S., Sifakis, J.: Readiness semantics for regular processes with silent actions.
In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 115–125. Springer, Hei-
delberg (1987). https://doi.org/10.1007/3-540-18088-5 10

9. Halstead, R.H., Jr.: MULTILISP: a language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst. (TOPLAS) 7(4), 501–538 (1985)

10. Henrio, L.: Data-flow explicit futures. Research report, I3S, Université Côte d’Azur
(2018). https://hal.archives-ouvertes.fr/hal-01758734

11. Henrio, L., Johnsen, E.B., Pun, V.K.I.: Active objects with deterministic
behaviour. In: Dongol, B., Troubitsyna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp.
181–198. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63461-2 10

12. Hillerström, D., Lindley, S.: Shallow effect handlers. In: Ryu, S. (ed.) APLAS 2018.
LNCS, vol. 11275, pp. 415–435. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-02768-1 22

13. Johnsen, E.B., Blanchette, J.C., Kyas, M., Owe, O.: Intra-object versus inter-
object: concurrency and reasoning in Creol. In: Proceedings of the 2nd Interna-
tional Workshop on Harnessing Theories for Tool Support in Software (TTSS
2008). Electronic Notes in Theoretical Computer Science, vol. 243, pp. 89–103.
Elsevier (2009)

14. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

15. Leonard, T., et al.: Eio 1.0 - effects-based IO for OCaml 5. OCaml Workshop (2023)

https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://arxiv.org/abs/2107.07298
https://arxiv.org/abs/2107.07298
https://doi.org/10.1007/978-3-319-92408-3_7
https://doi.org/10.1007/978-3-319-92408-3_7
https://drops.dagstuhl.de/opus/volltexte/2019/10794
https://drops.dagstuhl.de/opus/volltexte/2019/10794
https://doi.org/10.1007/3-540-18088-5_10
https://hal.archives-ouvertes.fr/hal-01758734
https://doi.org/10.1007/978-3-030-63461-2_10
https://doi.org/10.1007/978-3-030-02768-1_22
https://doi.org/10.1007/978-3-030-02768-1_22
https://doi.org/10.1007/978-3-642-25271-6_8

36 M. Andrieux et al.

16. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: 33rd ACM Symposium on Principles of Programming
Languages, pp. 42–54. ACM Press (2006). https://xavierleroy.org/publi/compiler-
certif.pdf

17. Liskov, B., Shrira, L.: Promises: linguistic support for efficient asynchronous pro-
cedure calls in distributed systems. In: PLDI 1988, pp. 260–267. Association for
Computing Machinery, New York (1988). https://doi.org/10.1145/53990.54016

18. Niehren, J., Schwinghammer, J., Smolka, G.: A concurrent lambda calculus with
futures. Theor. Comput. Sci. 364(3), 338–356 (2006)

19. Sieczkowski, F., Pyzik, M., Biernacki, D.: A general fine-grained reduction theory
for effect handlers. Proc. ACM Program. Lang. 7(ICFP) (2023). https://doi.org/
10.1145/3607848

20. Sivaramakrishnan, K.C.: https://github.com/kayceesrk/ocaml5-tutorial. Accessed
30 May 2023

21. Sivaramakrishnan, K.C., et al.: Retrofitting parallelism onto OCaml. Proc. ACM
Program. Lang. 4(ICFP), 113:1–113:30 (2020). https://doi.org/10.1145/3408995

22. Sivaramakrishnan, K.C., Dolan, S., White, L., Kelly, T., Jaffer, S., Madhavapeddy,
A.: Retrofitting effect handlers onto OCaml. In: Freund, S.N., Yahav, E. (eds.)
PLDI 2021: 42nd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation, Virtual Event, Canada, 20–25 June 2021, pp.
206–221. ACM (2021). https://doi.org/10.1145/3453483.3454039

23. Taura, K., Matsuoka, S., Yonezawa, A.: ABCL/f: a future-based polymorphic typed
concurrent object-oriented language - its design and implementation. In: Proceed-
ings of the DIMACS Workshop on Specification of Parallel Algorithms, pp. 275–
292. American Mathematical Society (1994)

24. Vouillon, J.: LWT: a cooperative thread library. In: Sumii, E. (ed.) Proceedings of
the ACM Workshop on ML, 2008, Victoria, BC, Canada, 21 September 2008, pp.
3–12. ACM (2008). https://doi.org/10.1145/1411304.1411307

https://xavierleroy.org/publi/compiler-certif.pdf
https://xavierleroy.org/publi/compiler-certif.pdf
https://doi.org/10.1145/53990.54016
https://doi.org/10.1145/3607848
https://doi.org/10.1145/3607848
https://github.com/kayceesrk/ocaml5-tutorial
https://doi.org/10.1145/3408995
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/1411304.1411307

Actor-Based Designs for Distributed
Self-organisation Programming

Roberto Casadei1 , Ferruccio Damiani2(B) , Gianluca Torta2 ,
and Mirko Viroli1

1 Alma Mater Studiorum–Università di Bologna, Cesena, Italy
{roby.casadei,mirko.viroli}@unibo.it

2 Università degli Studi di Torino, Turin, Italy
{ferruccio.damiani,gianluca.torta}@unito.it

Abstract. Self-organisation and collective adaptation are highly desired
features for several kinds of large-scale distributed systems includ-
ing robotic swarms, computational ecosystems, wearable collectives,
and Internet-of-Things systems. These kinds of distributed processes,
addressing functional and non-functional aspects of complex socio-
technical systems, can emerge in an engineered/controlled way from
(re)active decentralised activity and interaction across all physical and
logical system devices. In this work, we study how the Actors pro-
gramming model can be adopted to support collective self-organising
behaviours. Specifically, we analyse the features of the Actors model,
such as reactivity, asynchrony, and locality, that are instrumental for
implementing the adaptive coordination of large-scale systems, and dis-
cuss potential actor-based designs, from simple ad-hoc implementation
of algorithms to a full-fledged general toolkit. In particular, the app-
roach is incarnated in the aggregate computing paradigm, which stands
as a comprehensive engineering approach for self-organisation. This is
based on Akka, and can be fully programmed in the Scala programming
language thanks to the ScaFi aggregate computing toolkit.

Keywords: Actors · Collective intelligence · Collective adaptive
systems · Self-organisation · Programming models · Aggregate
computing

1 Introduction

In the last decades, two key trends have been taking place in computer sci-
ence and technology. First, more and more heterogeneous computing-enabled
devices are being deployed into our environments, with larger scales and densi-
ties expected in the future, eventually creating enormous socio-technical ensem-
bles. Secondly, there is an increasing need towards automation, demanding soft-
ware systems to be more autonomous [30] (or autonomic [36]), and to exhibit
so-called self-* properties [47] (e.g., self-managing, self-adaptive, self-repairing,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, pp. 37–58, 2024.
https://doi.org/10.1007/978-3-031-51060-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51060-1_2&domain=pdf
http://orcid.org/0000-0001-9149-949X
http://orcid.org/0000-0001-8109-1706
http://orcid.org/0000-0002-4276-7213
http://orcid.org/0000-0003-2702-5702
https://doi.org/10.1007/978-3-031-51060-1_2

38 R. Casadei et al.

etc.). These two trends together give rise to new potential applications and cor-
responding challenges, addressed through various approaches. In particular, a
prominent nature-inspired [16] technique for the decentralised self-management
of large ensembles of computing devices is self-organisation, the process whereby
a system autonomously (i.e., without external control) seeks and sustains its
order or structures [29], which is studied and implemented across different sub-
fields of computer science [28,32,44,49]. Self-organisation can be an important
component (or outcome) of collective intelligence [21]. A main classification of
self-organisation engineering [17] is based on the distinction between automatic
(i.e., based on learning and evolution) and manual approaches (where program-
mers use languages to express self-organisation programs—cf. macroprogram-
ming [22]).

In this chapter, we focus on the latter approach and, in particular, we are
interested in how programming abstractions and paradigms may support self-
organisation programming. Specifically, we investigate how the Actor model can
contribute to address the emergence of collective and self-organising behaviour.
Indeed, self-organisation is generally related to particular aspects of actor sys-
tems, including reactivity, asynchrony, and locality. To do so, we develop actor-
based solutions of well-known self-organising behaviours (gradients [7,41] and
derived ones), and relate them with corresponding programs expressed in the
aggregate computing paradigm [54] which is, currently and to the best of our
knowledge, the most powerful and researched approach to self-organisation pro-
gramming. What we find is that the plain Actor model has a relevant abstraction
gap (distance between the problem and the solution), making it more suitable
as a paradigm for the development of a middleware of a more high-level and
declarative approach like aggregate computing, than as a solution for end-to-
end design of self-organising behaviour. Still, research should be carried out to
investigate what kinds of Actor extensions may help in the design and imple-
mentation of self-organisation, or what features of actors may improve aspects
of aggregate computations (e.g., fine-grained scheduling of sub-computations).

The presentation is organised as follows. Section 2 provides background on
self-organisation programming, reference examples of self-organising behaviour,
and the Actor model (also through the Akka implementation [46]). Section 3
discusses actor-based designs of the self-healing gradient. Section 4 presents the
actor-based design of the ScaFi aggregate computing middleware [26]. Finally,
Sect. 5 provides a discussion and delineates directions for further research.

2 Background

In this section, we recall background information about self-organisation engi-
neering and describe in detail two example self-adaptive algorithms (Sect. 2.1);
then, we briefly recall the Actors model and its Akka implementation (Sect. 2.2).
While other actor languages, such as Erlang [5], could have worked as well as
Akka, we consider Akka since it is based on Scala, which is also the host language
of the ScaFi aggregate programming domain-specific language (DSL) considered
in this work (cf. Sect. 2.1) .

Actor-Based Designs for Distributed Self-organisation Programming 39

2.1 Self-organisation and Collective Adaptive Systems

Self organization is often meant as a bottom-up decentralised process where
macro-level structures and behaviours emerge from micro-level activities and
interactions.

In modern cyber-physical systems such as the Internet of Things [6] and
swarm robotics [17], self-organisation directly concerns the collective behaviour
of large sets of computing and interacting devices. Engineering such systems
is therefore a challenge of great practical importance, that can be addressed
drawing from research areas such as collective adaptive systems [28], macropro-
gramming [22], multi-agent systems [57], and aggregate computing [54].

A main distinction in self-organisation engineering can be made between
automatic approaches, whereby self-organising behaviour is learned (cf. multi-
agent reinforcement learning [19,58]), evolved (cf. evolutionary robotics [51]),
or synthesised [48]; and manual approaches [39], which are based on the def-
inition of programs by programmers, e.g., in terms of control rules or designs
involving patterns of information flow [56]. The manual approaches tend to dif-
fer based on the levels of heterogeneity and scale: small-scale heterogeneous
systems can be programmed using multi-agent programming [15] or choreo-
graphic [40] approaches, whereas large-scale homogeneous systems are gener-
ally programmed using macroprogramming [22] approaches, such as ensemble
computing [42], or aggregate computing [54] approaches. Note that hybrid auto-
matic/manual approaches also exist—cf. approaches where program sketches are
filled with automatically generated/searched behaviours [2].

In this chapter, we focus on manual approaches for programming large
homogeneous systems. In particular, this activity can be supported by suit-
able programming abstractions supporting declarative specifications of collec-
tive behaviours. Examples of abstractions include first-class ensembles [42] or
collective data structures like computational fields [38,54], In the following, we
will focus on the computational field abstraction, offered by Aggregate Comput-
ing (AC).

Aggregate Computing (AC). AC systems consist of a (possibly large) num-
ber of computational devices, connected in a network, and all operating at asyn-
chronous rounds of execution, each round consisting of sense–compute–act steps,
where the compute step involves the evaluation of an aggregate program against
the currently sensed contextual information. An output or state of a whole or
part of a distributed system can then be represented as a field of values com-
puted by all the device constituting its domain. For instance, the movement
of a swarm may be described by a field of velocity vectors; or, the tempera-
ture in a room may be denoted by the field of temperature readings of all the
sensors there. The computational field is the fundamental abstraction for AC,
and programming AC systems roughly means describing how such fields are
manipulated in space-time. The essence of the programming model is captured
by a minimal core language called the field calculus (FC) [8], which provides
a set of functional constructs for handling the stateful evolution of fields and

40 R. Casadei et al.

neighbour-based communications. A device can only directly communicate (in
broadcast) with its neighbours, as defined by an application-specific logical or
physical (ad-hoc) proximity relation. In each device, a round of computations
consists mainly of three steps: (i) creation/update of the execution context, con-
sisting of previous device state, the most recent messages received from neigh-
bours, and values sampled from local sensors; (ii) local execution of the aggregate
program, which produces a logically single result (output); (iii) broadcast of part
of the output to all the neighbours (this part is called the export), and possible
activation of the actuators on the basis of the provided output.

Reference Example #1: Self-healing Gradient. As a first, simple example
of a self-organising computation, we consider the gradient [7,41], namely the
self-healing field of minimum path distances from any node to a source node. A
simple implementation is based on the distributed Bellman-Ford algorithm, to
be executed by all the devices repeatedly in rounds (where the rounds serve to
integrate and propagate up-to-date information):

g(δ, src) :=

{
0 if src(δ)
min{g(δ′, src) + d(δ, δ′) : δ′ ∈ N (δ)} otherwise.

(1)

The algorithm estimates the minimum distance of a device from a source
device (i.e., a device where predicate src() is true). We assume that function
d() returns the current distance between two devices, and N () returns the set of
current neighbours of a device. At each round, a device δ which is not a source,
estimates g() by considering the set of distances g(δ′, src)+d(δ, δ′) that separate
it from the source through each one of its neighbours δ′, and taking the minimum
of those.

Two observations are in order: first of all, it is easy to see that, if the network is
stable (i.e., devices do not crash, do not move, and do not join/leave the network),
the algorithm actually converges to the correct value in each device δ. Secondly,
after any of the above changes happen, if the network stabilises again for enough
time, the values in each device δ are updated with the new correct values. In other
words, the algorithm is self-stabilising [53]. Even if simple, the algorithm is both
collective, i.e., fully distributed among the participating devices, and adaptive,
i.e., resilient to the relevant changes in the system and the environment.

The following code is the implementation of the algorithm in the ScaFi lan-
guage [26], a Scala-based implementation of Field Calculus.

1 def gradient(source: Boolean): Double =
2 rep(Double.PositiveInfinity) { dist =>
3 mux(source){ 0.0 } { minHood(nbr{dist} + nbrRange()) }
4 }

The rep construct propagates the computed gradient value between rounds
(in this case, the value computed by mux1). The nbr construct, returns the neigh-
1 The mux(c){t}{e} ScaFi built-in operator evaluates all the arguments and returns

the value of t if c is true or the value of e otherwise.

Actor-Based Designs for Distributed Self-organisation Programming 41

bouring field with the last values of dist received from the neighbours (whose
set, implicitly managed by the execution platform, corresponds to the N opera-
tor in Eq. (1)). Finally, nbrRange() returns a neighbouring field with the distance
estimates to the neighbours, and minHood() returns the minimum value of a field.
Also, note that the gradient function directly takes a Boolean value indicating
whether the current device δ is a source, and that the δ parameter is not passed
explicitly to gradient (since the program is evaluated locally to each device,
there is always an implicit current device).

Reference Example #2: Self-healing Channel. A more complex example of
self-organising computation is the self-healing channel, namely the construction
of a path of devices across the network connecting a source device to a destination
device, where the fact of belonging or not to the channel can be denoted by a
local Boolean output (i.e., the channel consists of all the devices of the network
the output true). Since this can be implemented on top of (a generalisation
of) gradients, it is instrumental to convey the idea of compositionality of self-
organising behaviours.

Taking inspiration from [53], let us generalize the D function to a higher-order
operator G as follows:

G(δ, src, ini, acc,met)

where src is the source of the field to be constructed, ini is the input value
of the field to be considered, acc is the function expressing how to accumulate
values starting from the source outwards (i.e., how to integrate local values ini
to the accumulated value taken from the neighbour minimising the gradient in
the neighbourhood), and met the metric of the distance between two devices.
The G operator returns a pair (x, y), where x is the distance of δ from the source,
estimated with met, and y is the value accumulated with acc along the gradient.

The self-healing gradient above can then be expressed as:

D(δ, src) := 2nd(G(δ, src, 0, λx.(x + d), d))

where we have used the lambda calculus notation for defining the acc function,
and 2nd returns the second element of a pair. We exploit the G operator to
define another function, broadcast (B):

B(δ, src, val) := 2nd(G(δ, src, val, λx.x, d))

Assuming a single source device δSRC for which src(δSRC) is true, this function
broadcasts a value val defined in δSRC unaltered (thanks to using the identity
function for acc) to all the other nodes, at increasing distances.

Let us consider the problem of establishing a robust communication channel
between a source device δSRC and a destination/target device δTRG in a net-
work with proximity-based communication. Starting from the B and D functions
defined above, we can first of all define a function which broadcasts everywhere
the distance between a source and a target, where src and trg are predicates that
are true, respectively in the source and target of the communication channel:

42 R. Casadei et al.

BTW (δ, src, trg) := B(δ, src,D(δ, trg))

Then, we can define a function that, for every device δ, is true iff δ belongs to
the communication channel between the source and target devices:

CH(δ, src, trg, w) := D(δ, src) + D(δ, trg) ≤ BTW (δ, src, trg) + w

Note that a device belongs to the channel iff it falls within an ellipse whose foci
are the source and target devices. The w parameter determines the “stretch”
of the ellipse, which reduces to a linear path in case w = 0. In particular, to
determine which devices are part of the channel between δSRC and δTRG, we
execute in every node:

CH(δ, λx.(x == δSRC), λx.(x == δDST), w)

The following code is the implementation of the algorithm in the ScaFi lan-
guage.

1 def broadcast[V:OB](source: Boolean, init: V): V =
2 G[V](source, init, x=>x, nbrRange())
3
4 def distanceTo(source: Boolean): Double =
5 G[Double](source, 0, _ + nbrRange(), nbrRange())
6
7 def distBetween(source: Boolean, target: Boolean): Double =
8 broadcast(source, distanceTo(target))
9

10 def isSource = sense[Boolean]("source")
11 def isTarget = sense[Boolean]("target")
12
13 def channel(src: Boolean, dest: Boolean, width: Double) =
14 distanceTo(src) + distanceTo(dest) <=
15 distBetween(src, dest) + width
16
17 channel(isSource, isTarget)

2.2 The Actors Programming Model

The Actor model [1,33,37] puts actors at the core of the design and implemen-
tation of distributed systems. Actors are reactive agents that communicate with
each other through asynchronous message passing (i.e., no shared memory is
allowed).

It is worth noting that each message is directed to a specific actor through
a target address, and that a mailbox system buffers messages until they are
processed by their target actors. The actors in the distributed system execute in
parallel. In particular, each actor iteratively and asynchronously processes the
messages in its mailbox received from the other actors.

The fundamental part of the behaviour of an actor is specified in terms of
how it handles incoming messages. In response to a message, an actor can:

Actor-Based Designs for Distributed Self-organisation Programming 43

– perform local computations;
– send messages to other actors;
– create new actors;
– choose the behaviour for handling the next message.

Handling of multiple messages is not interleaved or, analogously, handling of a
single message is atomic.

Then, the Actor model can be formalised and implemented in different ways,
possibly bringing in particular extensions. An example of implementation is pro-
vided by the Akka toolkit [46], whose user interface is briefly described in the
following.

2.3 The Akka Toolkit: A Short Primer

We briefly illustrate the user Application Program Interface (API) of Akka [46],
focussing on the Akka Typed version, which will be useful to understand the code
provided in Sect. 3.

Actor Behaviour. Actor behaviour is dynamically represented through values
of type Behavior[M], which encapsulate the logic for handling messages of type
M. So, an actor behaviour can be defined by extending AbstractBehavior[M] and
overriding method onMessage (OOP-style), or by functions yielding a Behavior[M]
(functional style). The Akka API provides a factory object Behaviors for spec-
ifying behaviours as functions mapping messages to the next behaviour, e.g.,
using pattern matching. Actors can be addressed through a reference of type
ActorRef[T]: e.g., given a reference r, instruction r ! m denotes the sending of a
message m of type T to the actor denoted by reference r.

Actor Systems. An actor system is created by instantiating an
ActorSystem[T] with the Behavior[T] of the top-level actor; such a top-
level actor would be responsible for spawning new actors by calling
ActorContext[T].spawn(behavior). Indeed, actor systems consist of a hierarchy
of actors (enabling supervision), where each actor has a position in this hierarchy
that can be denoted by a path of actor names, starting from the top-level actor
/user (for user – i.e., non-system-level – actors): e.g., /user/a/b is the path of
actor b which is a child of a (which is in turn a child of the top-level actor).

3 Actor-Based Designs for Aggregate Computations

In this section, we discuss possible actor-based designs for building the paradig-
matic self-organising behaviours covered in Sect. 2.1. The produced source code
has been made available at a permanent public repository [23]2 with a permissive
licence, equipped with the build infrastructure for simple execution.
2 https://github.com/metaphori/experiment-actor-design-selforg.

https://github.com/metaphori/experiment-actor-design-selforg

44 R. Casadei et al.

Fig. 1. A naive Akka implementation where a single actor encapsulates all the concerns.

3.1 A Naive Actor-Based Implementation of the Self-healing
Gradient Example

Figure 1 shows a possible implementation of the self-healing gradient within the
Akka framework. This version is deliberately naive, and serves mainly as a base-
line that will be refined in the next sections.

Actor-Based Designs for Distributed Self-organisation Programming 45

The application contains a single type of actor named Device. The actor
defines a behaviour that matches several types of messages (note the use
of Behaviors.withTimers, needed to schedule self messages that simulate the
scheduling of computation rounds). The code executed to handle a Round serves
as the initiation of a round of computation (cf. the aggregate computing execu-
tion model—see Sect. 2.1). More specifically:

– for each neighbour nbr, it requests the current value of the position
(GetPosition) and of the gradient (QueryGradient)

– a timer is set to expire in one second and send a ComputeGradient message to
the actor itself.

The neighbour actors would reply to the GetPosition and QueryGradient
requests, and the current actor stores the retrieved information in its state
(specifically, in the distances and nbrGs maps). When the QueryGradient is
received, further operations are performed to complete the round of compu-
tation:

– neighbours whose latest messages are expired (i.e., older than the constant
RETENTION_TIME) are discarded (e.g., in order to become aware of device failing
or quitting the system);

– a timer is set to expire in one second and send a Round message to the actor
itself (i.e., to initiate the next round and possibly detect new information
from the environment);

– if the actor is a src of the gradient computation, it just propagates its
behaviour with the gradient set to constant g = 0;

– otherwise, the gradient is updated to the new value updatedG computed from
the information retrieved from the neighbours, according to the logic of the
gradient implementation illustrated in Sect. 2.1.

3.2 An Improved Design

The naive design of the previous section has several issues. The main issue is
that the Device actor is not reusable but rather specific to the computation at
hand: this is witnessed by application-specific messages (e.g., ComputeGradient
and SetNeighbourGradient). Another issue is that the Device encapsulates all the
concerns, including e.g. the scheduling concern (cf. the use of timers to schedule
rounds and computations).

In Fig. 2, an improved design is presented. It is also coded with a different
style: the OOP style, instead of the functional style as in Fig. 1, which is mainly
a matter of taste, and in this case is more suitable to avoid encoding state into
a large parameter list. In particular, the DeviceActor is an abstract class: to be
implemented, the abstract compute method has to be defined (cf. the Template
Method design pattern [31]). Additionally, the responsibility of scheduling has
been moved outside of the actor: it will compute reactively upon reception of a
Compute message; it is straightforward to define a scheduler actor that keeps the

46 R. Casadei et al.

Fig. 2. An improved Akka implementation of a reusable device.

references of the device(s) to be scheduled, and implements a basic scheduling
logic (e.g., to let each schedulable compute once per second). Another element
of generality is given by keeping all contextual data into a single data structure
sensors, where the basic idea is that any access to context is mediated by a
sensor.

More in detail, the behaviour of DeviceActor is defined in terms of reactions
to a few message types. The acquisition of contextual information is handled
through a push-style interface based on two main incoming messages: SetSensor
for local sensors (e.g., position sensors or temperature sensors), and SetNbrSensor

Actor-Based Designs for Distributed Self-organisation Programming 47

for neighbouring sensors (i.e., those associating data to neighbours). Neighbour-
ing sensors are used to access the current set of neighbours, information rel-
ative to neighbours (e.g., the distance to neighbours), and information shared
by neighbours (e.g., their gradient value). Upon these, behaviours associated to
specific control messages like AddNeighbour and RemoveNeighbour can be easily
implemented. Then, the Compute(what) message, carrying an indication of what
has to be computed (to enable multiple computations), is handled by calling the
compute abstract method, and then communicating the corresponding result to
the neighbours by sending a SetNbrSensor message. Finally, at the bottom of
Fig. 2 it is shown how the gradient computation can be specified, and how an
actor computing the gradient can be configured.

4 The ScaFi Akka-Based Distributed Middleware

In this section, we present an implementation of a general self-organisation pro-
gramming system, based on the aggregate computing paradigm [54] and inte-
grated into the ScaFi toolkit [26], whose runtime (also called a middleware) is
based on actors, along the lines of the improved design presented in Sect. 3.2.
The ScaFi toolkit can be exploited to simulate and build self-organizing systems
distributed on heterogenous computational resources. Interestingly, the design
is organised in order to support distributed execution of aggregate systems, also
according to multiple architectural styles (cf. [24,25])—which is important to
fully exploit modern infrastructures like the heterogeneous multi-scale comput-
ing continua of which the edge-cloud continuum is a prominent example [13].

4.1 System Design

A simplified view of the elements participating in an actor-based aggregate com-
puting application is provided by Fig. 3.

Essentially, the key types of elements are:

– AggregateApplication – It represents, in any subsystem, a particular aggre-
gate application, as specified by some Settings. Also, it works as a supervisor
for all the other application-specific actors. This notion is required to prop-
erly handle the management of multiple aggregate computations on the same
infrastructure.

– Scheduler – Optionally, a scheduler may be used to centralise system execu-
tion at a system- or subsystem-level.

– ComputationDevice – It is a device which is able to carry out some local
computation. It communicates with other devices and interacts with Sensors
and Actuators (which may be actors as well or not).

Also, note how all these entities are specific to a particular platform incar-
nation, i.e., a concrete set of implementations for the defined types (see also the
notion of “incarnation” as an instantiated “family of types” in ScaFi [26]).

48 R. Casadei et al.

Fig. 3. Structure diagram of the main entities of an aggregate computing system.

Devices. Figure 4 shows how devices are modelled. A first key distinction is
between actors and actor behaviours. In fact, one design goal is to split a big,
articulated behaviour into many small, reusable, composable behaviours. The
convention in the diagram is to express message-based interfaces by means of
incoming and outcoming messages which are represented as arrows with a filled
arrowhead.

By a conceptual point of view, a device must, at minimum, manage its sensors
and actuators. Then, in the context of aggregate computing, a device must also
interact with its neighbours (BaseNbrManagementBehavior); such interaction
has not been detailed yet, as it may be somehow different in the peer-to-peer
and server-based cases. Also, a computation device executes some program with
a certain frequency (here represented by a tick message called GoOn, externally
or self-sent).

4.2 Server-Based Actor Platform

The server-based platform, following the client/server architectural style, is
depicted in Fig. 5. The devices are clients of a central server that owns the
information about the topology of the aggregate system and is responsible for
the propagation of the exports of the devices.

Figure 5 statically describes the message interfaces of device and server:

– Each device registers itself with the server at startup (Registration).

Actor-Based Designs for Distributed Self-organisation Programming 49

Fig. 4. Structure and interface of device actors.

– After a computation, a device communicates its newly computed state to the
server (Export).

– Each device asks the server (GetNeighbourhoodExports) for the most recent
states of its neighbours (NeighbourhoodExports), with some frequency.

4.3 Peer-to-Peer Actor Platform

The peer-to-peer platform, following an ad-hoc architectural style, is shown in
Fig. 6. Each device, at the end of each computation, propagates its newly com-
puted state (MsgExport) directly to all its neighbour actors. Here, the critical
point concerns how a device gets acquainted with its neighbours, i.e., by receiving
information about a neighbour (NbrInfo).

The choice of the particular architectural style (peer-to-peer vs. server-based
vs. hybrid deployments) essentially depends on the infrastructure and require-
ments for the specific application at hand. Generally speaking, different architec-
tures may involve different patterns of information exchange and system man-
agement that may affect the costs and efficiency of running applications. For
instance, the server-based solution may simplify the enaction of neighbouring
policies. Recent work has been carried out to estimate (e.g., via simulation) and
compare different deployments for the same aggregate computing system [24,25].

50 R. Casadei et al.

Fig. 5. Key elements and relationships in a server-based actor platform.

Fig. 6. Key elements and relationships in a peer-to-peer actor platform.

4.4 Actors and Reactive Behaviour

The ScaFi actor platform was implemented using Akka Classic frame-
work [46]. In Akka Classic, actors are defined by extending the
akka.actor.Actor trait and implementing the receive method, of type
Receive=PartialFunction[Any,Unit], that associates reactions to incoming
messages.

Actor-Based Designs for Distributed Self-organisation Programming 51

An interesting implication of having (reactive) behaviours expressed by
PartialFunctions is that they compose. This composability feature has been
extensively used to promote separation of concerns. For example, the device
behaviour related to the management of sensors can be kept separated from the
behaviour aimed at handling actuators:

1 def SensorManagementBehavior: Receive = {
2 case MsgAddPushSensor(ref) => { ref ! MsgAddObserver(self); ref ! GoOn }
3 case MsgAddSensor(name, provider) => setLocalSensor(name, provider)
4 }
5
6 def ActuatorManagementBehavior: Receive = {
7 case MsgAddActuator(name, consumer) => setActuator(name, consumer)
8 }
9

10 def CompositeBehavior: Receive =
11 SensorManagementBehavior
12 .orElse(ActuatorManagementBehavior)

Moreover, it is also possible to leverage on trait stacking to automatically
extend some behaviour by mixing in behaviour traits. In the following example,
the behavior of DeviceActor is obtained by mixing-in SensorManagementBehavior
and ActuatorManagementBehavior:

1 trait BasicActorBehavior { selfActor: Actor =>
2
3 def receive: Receive =
4 workingBehavior
5 .orElse(inputManagementBehavior)
6 .orElse(queryManagementBehavior)
7 .orElse(commandManagementBehavior)
8
9 def inputManagementBehavior: Receive = Map.empty

10 def queryManagementBehavior: Receive = Map.empty
11 def commandManagementBehavior: Receive = Map.empty
12 def workingBehavior: Receive = Map.empty
13 }
14
15 trait SensorManagementBehavior extends BasicActorBehavior { selfActor: Actor =>
16 def SensorManagementBehavior: Receive = { ... }
17
18 override def inputManagementBehavior: Receive =
19 super.inputManagementBehavior.orElse(SensorManagementBehavior)
20
21 // ...
22 }
23
24 trait ActuatorManagementBehavior extends BasicActorBehavior { selfActor: Actor =>
25 def ActuatorManagementBehavior: Receive = { ... }
26
27 override def inputManagementBehavior: Receive =
28 super.inputManagementBehavior.orElse(ActuatorManagementBehavior)
29
30 // ...
31 }
32
33 class DeviceActor extends Actor
34 with SensorManagementBehavior
35 with ActuatorManagementBehavior { ... }

52 R. Casadei et al.

Finally, ScaFi provides an object-oriented façade API for setting up, launch-
ing, and managing a running system upon the described actor-based middleware.
Please refer to the ScaFi repository3 and website4 for further details.

5 Discussion and Future Work

The development of actor-based designs and implementations of self-organising
behaviours like the gradient, as well as the experience in research and devel-
opment of aggregate computing systems, provided some general insights about
self-organisation programming. These suggest some general principles (as also
indicated by modern software engineering practice) or desiderata for implemen-
tations. In particular, we emphasise the following.

Declarativity. The program logic expressing how self-organisation is carried
out should be as declarative as possible. This means that the program should
abstract from a number of details, e.g. including the following: (i) scheduling of
context retrieval and update, (ii) scheduling of computation, (iii) neighbourhood
management, (iv) details of message passing (cf. the naive actor design vs. the
improved design vs. the ScaFi program), and (iv) application partitioning and
deployment (cf. [25]). Aggregate programming in general and ScaFi in particular
do support a programming model where such details are abstracted away: this
provides great operational flexibility [24].

Composability of Behaviour. Another benefit of aggregate programming is com-
positionality, namely the ability of connecting basic self-organising behaviours
(e.g., gradients—cf. Sect. 2.1) in order to build more complex self-organising
behaviours (e.g., channels—cf. Sect. 2.1). The problem with the actor-based
design proposed in Sect. 3 is that explicitly managing the relationships between
computations in terms of message-passing is cumbersome and error-prone5.

Separation of Concerns. Separating different concerns is a well-known design
principle in software engineering, fostering modular design. It is also related to
the Single Responsibility Principle (SRP), which suggests that a module (e.g.,
a class or an actor) should handle a single piece of functionality. As we have
seen, it is good to separate certain concerns: e.g., the scheduling concern may
be encapsulated into a scheduler (actor)—cf. Sect. 3.2. However, there is the risk
of too much separation, possibly leading to over-complication and inefficiency.
In the provided repository, for instance, a “fully destructured” device actor is
provided, encapsulating the different concerns (sensor management, neighbour-
hood management, scheduling management, context management, communica-
tion management, and computation) into separate child actors; however, this
design turns out to be very complex, due to the need of properly managing the
interaction among those inter-related sub-actors.
3 https://github.com/scafi/scafi.
4 https://scafi.github.io/.
5 A sketch of an actor-based implementation of the channel is given in the provided

repository.

https://github.com/scafi/scafi
https://scafi.github.io/

Actor-Based Designs for Distributed Self-organisation Programming 53

Propensity to Openness and Reconfiguration. The kinds of systems we are con-
sidering in this chapter, i.e., large homogeneous systems (e.g., swarms, IoT sys-
tems, etc.), are generally open systems, where devices may easily enter or exit
the system (also due to failure, user decisions, and environmental dynamics).
Additionally, the execution of such systems may need to be reconfigured [27]
into different architectural styles (cf. Sect. 4) in order to optimise for or oppor-
tunistically exploit available infrastructure by re-deployment [4,24]. Reconfigu-
ration is typically based on component models [12,25,43], but also actors have
shown their suitability for dynamically reconfigurable open systems [52]. In [55],
the prelude of the pulverisation model of aggregate computing systems [25], it
was proposed to split the behaviour of a device into sub-actors (handling sen-
sors, actuators, communication, and computation), to be potentially deployable
(and relocatable) across different architectures. Different approaches may lever-
age other kinds of components, e.g., based on microservices or containers [27],
hence possibly leveraging actors at the level of their implementation.

Fine-Grained Execution Model. Aggregate computing systems typically work in
a round-based fashion, where devices repeatedly execute asynchronous rounds
atomically performing sense–compute–act steps. Actors, instead, promote the
construction of asynchronous reactive dataflow graphs, that may in principle
support a finer-grained definition of the execution model where, e.g., the only
computations that are re-evaluated are those whose inputs have changed. A first
reactive extension to aggregate computing, based on reactive policies and explicit
program graphs, has been proposed in [45]. A different approach may exploit the
functional reactive programming paradigm [11]. A comparison between these
approaches and potential actor-based design may be an interesting future work,
to determine more efficient and finely controllable execution strategies, and
to possibly also provide general insights about the relationship between self-
organisation and reactivity.

Abstraction Gap. Even though the Actors model and technologies like the Akka
actor-based toolkit provide some support for the implementation of a middleware
for aggregate systems, it is important to consider if and how more advanced
Actors and Active Objects models [14], could further reduce the abstraction gap
for such systems. Some well-known Active Objects Languages (AOLs) include
Rebeca [50], ABS [34], ASP [20], and Encore [18].

For instance, [14] considers the offered degree of synchronisation and cor-
responding synchronisation mechanisms as one of the dimensions along which
to compare AOLs. These mechanism may be useful for structuring control flow
and the collaboration among middleware components, possibly in a more fine-
grained and verifiable way. Indeed, AOLs like Rebeca and ABS are designed
for verifiability, and can support the analysis of the correctness of a middle-
ware implementation—e.g., to ensure that the middleware enacts the desired
execution model for the system. The support in ABS for time, resource, and
deployment modelling can also be instrumental for assessing the cost of an aggre-
gate computing system deployment. Indeed, there exist works [3,35] that have

54 R. Casadei et al.

exploited the ABS language to study the performance of a given system for differ-
ent deployment architectures; the same approach could be applied to aggregate
computing deployments (cf. pulverisation [24,25]).

Future Work. In the present paper, we have considered actor-based solutions
for the design and implementation of self-organising behaviours. Some interest-
ing work has been conducted about implementing self-organising systems with
actor languages through coordinated actor models [9,10], which would be worth
comparing to our approach in future work.

As previously mentioned, one interesting future work also amounts to inves-
tigating whether specialised Actors and Active Objects models/language can
better support the development of component or layers within an aggregate
computing system.

Acknowledgements. This work has been partially supported by the MUR PRIN
2020 Project “COMMON-WEARS” (2020HCWWLP) and the EU/MUR FSE REACT-
EU PON R&I 2014–2020. This study was carried out within the Agritech National
Research Center and received funding from the European Union Next-GenerationEU
(PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) - MISSIONE 4 COM-
PONENTE 2, INVESTIMENTO 1.4 - D.D. 1032 17/06/2022, CN00000022). This pub-
lication is also part of the project NODES which has received funding from the MUR -
M4C2 1.5 of PNRR with grant agreement no. ECS00000036. This manuscript reflects
only the authors’ views and opinions, neither the European Union nor the European
Commission can be considered responsible for them.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Aguzzi, G., Casadei, R., Viroli, M.: Towards reinforcement learning-based aggre-
gate computing. In: ter Beek, M.H., Sirjani, M. (eds.) COORDINATION 2022.
IFIP Advances in Information and Communication Technology, vol. 13271, pp.
72–91. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08143-9_5

3. Albert, E., et al.: Formal modeling and analysis of resource management for cloud
architectures: an industrial case study using real-time ABS. Serv. Orient. Comput.
Appl. 8, 323–339 (2014)

4. Arcangeli, J., Boujbel, R., Leriche, S.: Automatic deployment of distributed soft-
ware systems: definitions and state of the art. J. Syst. Softw. 103, 198–218 (2015).
https://doi.org/10.1016/j.jss.2015.01.040

5. Armstrong, J.: Programming erlang: software for a concurrent world. Program.
Erlang 1–548 (2013)

6. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010). https://doi.org/10.1016/j.comnet.2010.05.010

7. Audrito, G., Casadei, R., Damiani, F., Viroli, M.: Compositional blocks for opti-
mal self-healing gradients. In: SASO, pp. 91–100. IEEE (2017). https://doi.org/
10.1109/SASO.2017.18

8. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus
of computational fields. ACM Trans. Comput. Log. 20(1), 5:1–5:55 (2019). https://
doi.org/10.1145/3285956

https://doi.org/10.1007/978-3-031-08143-9_5
https://doi.org/10.1016/j.jss.2015.01.040
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956

Actor-Based Designs for Distributed Self-organisation Programming 55

9. Bagheri, M., Akkaya, I., Khamespanah, E., Khakpour, N., Sirjani, M., Movaghar,
A., Lee, E.A.: Coordinated actors for reliable self-adaptive systems. In:
Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 241–
259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57666-4_15

10. Bagheri, M., et al.: Coordinated actor model of self-adaptive track-based traffic
control systems. J. Syst. Softw. 143, 116–139 (2018). https://doi.org/10.1016/j.
jss.2018.05.034

11. Bainomugisha, E., Carreton, A.L., Cutsem, T.V., Mostinckx, S., Meuter, W.D.: A
survey on reactive programming. ACM Comput. Surv. 45(4), 52:1–52:34 (2013).
https://doi.org/10.1145/2501654.2501666

12. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Four exercises in programming
dynamic reconfigurable systems: methodology and solution in DR-BIP. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2018, Part III. LNCS, vol. 11246, pp. 304–320.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5_20

13. Bittencourt, L.F., et al.: The internet of things, fog and cloud continuum: inte-
gration and challenges. Internet Things 3–4, 134–155 (2018). https://doi.org/10.
1016/j.iot.2018.09.005

14. de Boer, F.S., et al.: A survey of active object languages. ACM Comput. Surv.
50(5), 76:1–76:39 (2017). https://doi.org/10.1145/3122848

15. Boissier, O., Bordini, R.H., Hubner, J., Ricci, A.: Multi-agent Oriented Program-
ming: Programming Multi-agent Systems Using JaCaMo. MIT Press, Cambridge
(2020)

16. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford
University Press, Inc., Oxford (1999)

17. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). https://
doi.org/10.1007/s11721-012-0075-2

18. Brandauer, S., et al.: Parallel objects for multicores: a glimpse at the parallel
language Encore. In: Bernardo, M., Johnsen, E.B. (eds.) SFM 2015. LNCS, vol.
9104, pp. 1–56. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18941-
3_1

19. Busoniu, L., Babuska, R., Schutter, B.D.: A comprehensive survey of multiagent
reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C 38(2), 156–172
(2008). https://doi.org/10.1109/TSMCC.2007.913919

20. Caromel, D., Henrio, L.: A Theory of Distributed Objects: Asynchrony-
Mobility-Groups-Components. Springer, Heidelberg (2005). https://doi.org/10.
1007/b138812

21. Casadei, R.: Artificial collective intelligence engineering: a survey of concepts and
perspectives. Artif. Life 1–35 (2023). https://doi.org/10.1162/artl_0408

22. Casadei, R.: Macroprogramming: concepts, state of the art, and opportunities of
macroscopic behaviour modelling. ACM Comput. Surv. (2023). https://doi.org/
10.1145/3579353

23. Casadei, R.: Metaphori/experiment-actor-design-selforg: actor- based Designs for
self-organising systems (2023). https://doi.org/10.5281/zenodo.8377727

24. Casadei, R., Fortino, G., Pianini, D., Placuzzi, A., Savaglio, C., Viroli, M.: A
methodology and simulation-based toolchain for estimating deployment perfor-
mance of smart collective services at the edge. IEEE Internet Things J. 9(20),
20136–20148 (2022). https://doi.org/10.1109/JIOT.2022.3172470

https://doi.org/10.1007/978-3-319-57666-4_15
https://doi.org/10.1016/j.jss.2018.05.034
https://doi.org/10.1016/j.jss.2018.05.034
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1007/978-3-030-03424-5_20
https://doi.org/10.1016/j.iot.2018.09.005
https://doi.org/10.1016/j.iot.2018.09.005
https://doi.org/10.1145/3122848
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1007/b138812
https://doi.org/10.1007/b138812
https://doi.org/10.1162/artl_0408
https://doi.org/10.1145/3579353
https://doi.org/10.1145/3579353
https://doi.org/10.5281/zenodo.8377727
https://doi.org/10.1109/JIOT.2022.3172470

56 R. Casadei et al.

25. Casadei, R., Pianini, D., Placuzzi, A., Viroli, M., Weyns, D.: Pulverization in cyber-
physical systems: engineering the self-organizing logic separated from deployment.
Future Internet 12(11), 203 (2020). https://doi.org/10.3390/fi12110203

26. Casadei, R., Viroli, M., Aguzzi, G., Pianini, D.: ScaFi: a scala DSL and toolkit for
aggregate programming. SoftwareX 20, 101248 (2022). https://doi.org/10.1016/j.
softx.2022.101248

27. Coullon, H., Henrio, L., Loulergue, F., Robillard, S.: Component-based dis-
tributed software reconfiguration: a verification-oriented survey. ACM Comput.
Surv. (2023). https://doi.org/10.1145/3595376

28. De Nicola, R., Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adap-
tive systems: special section. Int. J. Softw. Tools Technol. Transf. 22(4), 389–397
(2020). https://doi.org/10.1007/s10009-020-00565-0

29. De Wolf, T., Holvoet, T.: Emergence versus self-organisation: different concepts but
promising when combined. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageor-
gos, A., Nagpal, R. (eds.) ESOA 2004. LNCS (LNAI), vol. 3464, pp. 1–15. Springer,
Heidelberg (2005). https://doi.org/10.1007/11494676_1

30. Franklin, S., Graesser, A.: Is it an agent, or just a program?: A taxonomy for
autonomous agents. In: Müller, J.P., Wooldridge, M.J., Jennings, N.R. (eds.) ATAL
1996. LNCS, vol. 1193, pp. 21–35. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0013570

31. Gamma, E., Helm, R., Johnson, R., Johnson, R.E., Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software. Pearson Deutschland GmbH
(1995)

32. Gershenson, C.: Design and Control of Self-organizing Systems. CopIt Arxives
(2007)

33. Hewitt, C.: A universal modular actor formalism for artificial intelligence. In: Pro-
ceedings of IJCAI (1973)

34. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_8

35. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architec-
tures and resource consumption in timed object-oriented models. J. Log. Algebraic
Methods Program. 84(1), 67–91 (2015). https://doi.org/10.1016/j.jlamp.2014.07.
001

36. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003). https://doi.org/10.1109/MC.2003.1160055

37. Koster, J.D., Cutsem, T.V., Meuter, W.D.: 43 years of actors: a taxonomy of
actor models and their key properties. In: Clebsch, S., Desell, T., Haller, P., Ricci,
A. (eds.) Proceedings of the 6th International Workshop on Programming Based
on Actors, Agents, and Decentralized Control, AGERE 2016, Amsterdam, The
Netherlands, 30 October 2016, pp. 31–40. ACM (2016). https://doi.org/10.1145/
3001886.3001890

38. Mamei, M., Zambonelli, F., Leonardi, L.: Co-fields: a physically inspired approach
to motion coordination. IEEE Pervasive Comput. 3(2), 52–61 (2004). https://doi.
org/10.1109/MPRV.2004.1316820

39. Martius, G., Herrmann, J.M.: Variants of guided self-organization for robot control.
Theory Biosci. 131(3), 129–137 (2012). https://doi.org/10.1007/s12064-011-0141-
0

40. Montesi, F.: Choreographic programming. Ph.D. thesis (2014). https://pure.itu.
dk/ws/files/78733848/m13_phd.pdf

https://doi.org/10.3390/fi12110203
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1145/3595376
https://doi.org/10.1007/s10009-020-00565-0
https://doi.org/10.1007/11494676_1
https://doi.org/10.1007/BFb0013570
https://doi.org/10.1007/BFb0013570
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1145/3001886.3001890
https://doi.org/10.1145/3001886.3001890
https://doi.org/10.1109/MPRV.2004.1316820
https://doi.org/10.1109/MPRV.2004.1316820
https://doi.org/10.1007/s12064-011-0141-0
https://doi.org/10.1007/s12064-011-0141-0
https://pure.itu.dk/ws/files/78733848/m13_phd.pdf
https://pure.itu.dk/ws/files/78733848/m13_phd.pdf

Actor-Based Designs for Distributed Self-organisation Programming 57

41. Nagpal, R., Shrobe, H., Bachrach, J.: Organizing a global coordinate system from
local information on an ad hoc sensor network. In: Zhao, F., Guibas, L. (eds.) IPSN
2003. LNCS, vol. 2634, pp. 333–348. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36978-3_22

42. Nicola, R.D., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. ACM Trans. Auton. Adapt. Syst. 9(2),
7:1–7:29 (2014). https://doi.org/10.1145/2619998

43. Nicola, R.D., Maggi, A., Sifakis, J.: The DReAM framework for dynamic reconfig-
urable architecture modelling: theory and applications. Int. J. Softw. Tools Technol.
Transf. 22(4), 437–455 (2020). https://doi.org/10.1007/s10009-020-00555-2

44. Parunak, H.V.D., Brueckner, S.A.: Software engineering for self-organizing
systems. Knowl. Eng. Rev. 30(4), 419–434 (2015). https://doi.org/10.1017/
S0269888915000089

45. Pianini, D., Casadei, R., Viroli, M., Mariani, S., Zambonelli, F.: Time-fluid field-
based coordination through programmable distributed schedulers. Log. Methods
Comput. Sci. 17(4) (2021). https://doi.org/10.46298/lmcs-17(4:13)2021

46. Roestenburg, R., Williams, R., Bakker, R.: Akka in Action. Simon and Schuster
(2016)

47. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14:1–14:42 (2009). https://doi.org/
10.1145/1516533.1516538

48. Samarasinghe, D., Lakshika, E., Barlow, M., Kasmarik, K.: Automatic synthe-
sis of swarm behavioural rules from their atomic components. In: Aguirre, H.E.,
Takadama, K. (eds.) Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2018, Kyoto, Japan, 15–19 July 2018, pp. 133–140. ACM
(2018). https://doi.org/10.1145/3205455.3205546

49. Singh, V.K., Singh, G., Pande, S.: Emergence, self-organization and collective intel-
ligence - modeling the dynamics of complex collectives in social and organizational
settings. In: UKSim, pp. 182–189. IEEE (2013). https://doi.org/10.1109/UKSim.
2013.77

50. Sirjani, M., Movaghar, A., Shali, A., De Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fund. Inform. 63(4), 385–410 (2004)

51. Trianni, V.: Evolutionary Swarm Robotics - Evolving Self-organising Behaviours
in Groups of Autonomous Robots. Studies in Computational Intelligence, vol. 108.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77612-3

52. Varela, C.A., Agha, G.: Programming dynamically reconfigurable open systems
with SALSA. ACM SIGPLAN Not. 36(12), 20–34 (2001). https://doi.org/10.1145/
583960.583964

53. Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient col-
lective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul.
28(2) (2018). https://doi.org/10.1145/3177774

54. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From dis-
tributed coordination to field calculus and aggregate computing. J. Log. Algebraic
Methods Program. 109 (2019). https://doi.org/10.1016/j.jlamp.2019.100486

55. Viroli, M., Casadei, R., Pianini, D.: On execution platforms for large-scale aggre-
gate computing. In: Lukowicz, P., Krüger, A., Bulling, A., Lim, Y., Patel, S.N.
(eds.) Proceedings of the 2016 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, UbiComp Adjunct 2016, Heidelberg, Germany, 12–16
September 2016, pp. 1321–1326. ACM (2016). https://doi.org/10.1145/2968219.
2979129

https://doi.org/10.1007/3-540-36978-3_22
https://doi.org/10.1007/3-540-36978-3_22
https://doi.org/10.1145/2619998
https://doi.org/10.1007/s10009-020-00555-2
https://doi.org/10.1017/S0269888915000089
https://doi.org/10.1017/S0269888915000089
https://doi.org/10.46298/lmcs-17(4:13)2021
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/3205455.3205546
https://doi.org/10.1109/UKSim.2013.77
https://doi.org/10.1109/UKSim.2013.77
https://doi.org/10.1007/978-3-540-77612-3
https://doi.org/10.1145/583960.583964
https://doi.org/10.1145/583960.583964
https://doi.org/10.1145/3177774
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1145/2968219.2979129
https://doi.org/10.1145/2968219.2979129

58 R. Casadei et al.

56. Wolf, T.D., Holvoet, T.: Designing self-organising emergent systems based on infor-
mation flows and feedback-loops. In: SASO, pp. 295–298. IEEE Computer Society
(2007). https://doi.org/10.1109/SASO.2007.16

57. Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Hobo-
ken (2009)

58. Zhang, K., Yang, Z., Basar, T.: Multi-agent reinforcement learning: a selective
overview of theories and algorithms. CoRR abs/1911.10635 (2019). http://arxiv.
org/abs/1911.10635

https://doi.org/10.1109/SASO.2007.16
http://arxiv.org/abs/1911.10635
http://arxiv.org/abs/1911.10635

Encore: Coda

Elias Castegren and Tobias Wrigstad(B)

Department of Information Technology, Uppsala University, Uppsala, Sweden
{elias.castegren,tobias.wrigstad}@it.uu.se

Abstract. Encore is a programming language that was developed
between 2014 and 2019. Encore was designed following the principle of
inversion of defaults: computations are concurrent (rather than sequen-
tial) by default; data is isolated (rather than freely sharable) by default.
The language worked as a seedbed for a large number of research ideas
aimed at making programming with active objects safe, expressive and
efficient.

Encore allows active objects to share data but statically ensures
the absence of data races and allows fully concurrent garbage collec-
tion. Active objects can synchronize using first-class futures, which are
also used to delegate and coalesce computations across active objects.
The type system also supports orchestration of intra-object parallelism,
expressed using composable units of computation. Active objects which
see a lot of traffic can turn themselves into passive objects protected by
lock-free synchronization mechanisms to avoid performance bottle-necks,
while still facilitating safe sharing and concurrent garbage collection.

This paper gives an overview of these features of Encore, reflecting on
lessons learned from trying to fit all of these research ideas into a single
language.

1 Introduction

The Encore programming language was developed in the context of the
UPSCALE project from 2014 to 2019. The UPSCALE project was funded by
the EU Future and Emerging Technologies X-Track and focused on delivering
object-oriented programming on multicore architectures.

This paper serves as an introduction to the Encore language and sets out
to survey the many ideas that make up the Encore programming language. We
delimit ourselves to work that has been integrated with the Encore language
in one form or other, or direct descendents of such work that has yet to be
integrated.

In terms of research output, the project was a success with more than 40
papers published on various aspects of the language (many of which are cited
here), 15 undergraduate theses [35,37,48,49,52,57,58,61,63,64,66,70,71,76,77],
as well as the production of several successful PhD candidates (which will be
described on the next page). The PhD student who worked extensively on effi-
cient array-like data layout now works at DeepMind on machine learning, where

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, pp. 59–91, 2024.
https://doi.org/10.1007/978-3-031-51060-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51060-1_3&domain=pdf
http://orcid.org/0000-0003-4918-6582
http://orcid.org/0000-0002-4269-5408
https://doi.org/10.1007/978-3-031-51060-1_3

60 E. Castegren and T. Wrigstad

such aspects are key for performance; the PhD student working on mining exist-
ing software for insights now works in the code query team at GitHub; the PhD
student working on the low-level details of the language runtime and garbage
collection now works in the Java GC team at Oracle; the PhD student working
on parallel combinators now works in the Erlang team at Ericsson; finally the
PhD student leading the development work on the compiler secured a postdoc-
toral position at KTH working on the compiler for the Miking [14] language,
and now works as assistant professor at Uppsala University, and is an author of
this paper.

Yet, in terms of producing a long-term research artefact, the project was a
failure: Encore simply grew too fast, and with too little control.

In retrospect, the Encore language development was very chaotic and lacked
a clear steward, let alone a rigid development process, or complete formal seman-
tics.1 This made it very difficult for all the consortium members to contribute.
Furthermore, the availability of additional, well-aligned funding to one member
in particular—Uppsala University—contributed to Uppsala’s unintentional, de-
facto domination of the development of the language (it was difficult to keep
up). Uppsala’s choice of implementation languages (Haskell and C) further con-
tributed to difficulties for students from other members to contribute. Thus, few
contributions from other members made it into the Encore language.

Encore: Cast. From the Uppsala side, the Encore programming language was
developed by Dave Clarke and Tobias Wrigstad as senior co-principal investiga-
tors. The project enjoyed effective co-funding from the Swedish Research Council
through its Linnæus Excellence Centre UPMARC (Uppsala Programming for
Multicore Architectures Research Centre) as well as a project grant SCADA:
Scalable Data for Pervasive Parallelism held by Dave Clarke, and Structured
Aliasing held by Wrigstad, plus a mobility grant from the the Swedish Foun-
dation for Strategic Research through which Wrigstad spent part of his time
embedded at Spotify. Together, these grants funded the following PhD students:
Elias Castegren [15], Stephan Brandauer [10], Albert Mingkun Yang, Fran-
cisco Fernandez-Reyez [67], and Huu Phuc Vo, in the order they were added
to the project. From the Imperial side, the principal investigator was Sophia
Drossopoulou. Sophia employed Juliana Franco [44] as a PhD student. At the
time, she also had Sylvan Clebsch [29]—the creator of the Pony programming
language—working as a PhD student, which is how Encore came to share lots
of its underlying runtime with Pony (a language with which Encore had consid-
erable mind-share).

The main concepts of the Encore programming language were quite clear
early in the project and were published [11] in conjunction with a 2015 project
workshop held in Bertinoro. Many of these ideas were influenced by insights
from earlier work on the programming languages Joelle [26,62], ABS [54] and
Thorn [8,79]. Two main strands of directions were already clear: the use of
1 The title of this paper hides a pun within a pun: koda in Swedish is the colloquial

for hacking, in its MIT 1960’s code-cutting sense.

Encore: Coda 61

ownership types to enforce encapsulation and guarantee data-race freedom [26]
and the use of futures to get from actors to active objects where message sends
were made to resemble method calls by returning first-class futures [32].

Outline. In the following sections, we will start by giving an overview of Encore
and the motivations and intentions behind its design (Sect. 2). We then move on
to describe the type system of Encore and how it prevents data-races (Sect. 3),
followed by a description of how Encore uses futures for synchronisation and
delegation (Sect. 4). We then discuss other ways to express concurrency and
parallelism in Encore (Sect. 5), how Encore was evaluated (Sect. 6) and how the
information provided by the type system can be used to achieve efficient data-
layout (Sect. 7). We reflect on the surprisingly large role that garbage collection
had on the development of Encore (Sect. 8), give an overview of the implemen-
tation work of the Encore compiler and runtime (Sect. 9) and finally conclude
with some of the lessons we learned from the Encore project (Sect. 10).

2 Encore and the “Principle of Inversion”

At an early stage, the Encore language was guided by the so-called “principle
of inversion”, which can be described loosely as an intention of breaking with
tradition. In the Encore project, the “ideal” was to not carry any past design
decisions forward without a strong reason for doing so.

Looking at imperative, object-oriented programming languages, we found
that they were predominantly sequential with parallelism or concurrency added
as an afterthought; to make matters worse (at least if one’s goal is safe paral-
lelism), data was by default mutable, aliasable, fields nullable, etc. In a break
with this design, Encore was supposed to be parallel or concurrent by default,
use immutable data by default, mutable data non-aliasable, and variables and
fields non-nullable. These ideas were roughly summarised in a paper, Inversion
in Programming Language Design: The Encore Way [27], presented at NOOL—
New Object-Oriented Languages, in conjunction with OOPSLA 2015.

In many ways, these ideas reflected many ideals from purely functional pro-
gramming languages, but retaining an imperative mindset. The importance of
the latter was a key selling point in the Encore project proposal: could we avoid
paying the cost of rewriting two decades of object-oriented software in functional
programming languages?

While the principle of inversion served its purpose well as a license to think
fresh, it failed to materialise as an organised design principle for the Encore lan-
guage. The main reason for this is not easy to pin-point, but likely, the strongest
reason was that the team in Uppsala was so eager to get started, that it did not
pause to work out a grand design for the language we were so eager to build. In
other words, the team solved the problem of getting started at the expense of
not having an even remotely clear roadmap for the language. Thus, the entire
Encore project never reached a state of convergence. This was well-known even
during the project as exemplified by the subtitle of Wrigstad’s 2018 AGERE
keynote “Encore: Let 1024 Flowers Bloom”.

62 E. Castegren and T. Wrigstad

2.1 Concurrency and Parallelism

Encore implements the active object model as its concurrency model. Due to
their mind-share, active objects and actors are often confused, so let us begin
by quickly discussing both models.

The Actor Model is a theoretical framework for concurrent computation,
proposed by Hewitt et al. in 1973 [51]. The actor model views computation as
a collection of autonomous actors that communicate with each other by sending
messages. An actor is a computational entity that encapsulates its own state
and behavior and can execute its tasks sequentially but concurrently with other
actors in the system. Actors can create new actors, send messages to other
actors, and change their internal state upon receiving messages. Importantly,
actors are independent and do not share mutable data, ensuring a high degree
of concurrency and minimizing the need for explicit synchronization. A survey
of actor-based languages can be found in [56].

The Active Object Model, also known as the Active Method or Active Object
Design Pattern, is a design pattern for concurrent and asynchronous program-
ming proposed by Schmidt and Stal in the mid-1990s [69]. In the active object
model, objects encapsulate their own state and behavior, but their methods are
executed asynchronously in separate threads or processes. Akin to actors, active
objects maintain a message queue (aka mailbox), which contains requests for
method invocations. These requests are processed sequentially by the object,
ensuring that the object’s state is updated consistently. Some active object lan-
guages (including Encore) support for suspending processing of a request to be
resumed later. This is powerful, but forces programmers to reason about the pos-
sible changes to the state of the active object between suspending and resuming.

A survey of active object-based languages, including several members of the
UPSCALE project, can be found in [33]. This survey was a initial activity in the
UPSCALE project and should probably have fed into Encore more than it did.

In summary, both models provide abstractions for concurrent and distributed
computation. The actor model focuses on autonomous actors communicating via
message passing, while the active object model emphasizes encapsulation and
asynchronous method invocations. A key difference, discussed further in Sect. 4,
is how the result of a method call is propagated back to its caller.

Thus, the key source of concurrency in Encore stemmed from asynchronous
method calls between active objects. An alternative source of concurrency came
later in the form of bestowed references (cf. Sect. 5.1) which are similar to the far
references in e.g., AmbientTalk [34] and E [60]. Initially, parallelism in Encore
stemmed from architecting your programs so that there were enough active
objects scheduled in the system at all times to (ideally) saturate the machine.
Thus, like task-based systems and unlike threads, parallelism was not mandatory
and thus composable. To further unlock parallelism, Encore added a sublanguage
of parallel combinators (cf. Sect. 5.2) as well as a notion of active objects which
supported internal parallelism (cf. Sect. 5.3).

Encore: Coda 63

2.2 A Brief Introduction to Encore

Encore is an imperative, class-based, object-oriented programming language
built on active objects [69], which is a specialisation of the actor model [1].
A class can be marked as active, meaning any instance of it will logically have
its own thread of control and can only be communicated with asynchronously
via message passing. The type system (cf. Sect. 3.1) ensures that any data shared
between two active objects is safe from data-races: only active and immutable
objects can be shared between active objects.

Figure 1 shows a slightly elaborated version of “Hello, World!”. Execution
starts in the main method of the Main class, where an active PrintServer object
is created and passed an immutable Document object (its class is marked as
read). The expression ps ! print(d) denotes passing the message print with
the argument d to ps. Message sends are asynchronous and immediately returns
a future, which acts as a placeholder for the result of the computation. The get()
operation blocks until the future is fulfilled by the callee. Futures are expanded
on in Sect. 4.

In the PrintServer class, the print method receives a Document, formats the
carried string (note that synchronous method calls are written with a period
rather than a bang) and prints the string. Since the Main thread is waiting for
the print message to finish, the program will always print “Hello, World!” before
“Success”.

Subtyping and code reuse in Encore is achieved via traits [68]—there is no
class inheritance. A trait is similar to a Java 8-style interface with default meth-
ods, with the addition that it can also require the presence of fields in the
including class. A class must provide all the required fields and methods of its
included traits, either by declaring them or by including them from other traits.

Figure 2 shows the PrintServer class from Fig. 1, but with the printing func-
tionality extracted to a trait Printer. The Printer trait requires the presence
of a field p of type Printer and a method print taking a String and returning
a String. When included in a class that provides these members, as in the class
PrintServer, the trait provides the method print.

The semantics is the same as if we had copy-pasted the print method from
the trait to the class2. Importantly, we are now able to reuse the Printer func-
tionality in a different class, for example one that provides another format
method. Additionally, it may be used for classes have not been marked as active
(meaning the interaction is synchronous).

In Sect. 3.1, we go into details on how Encore facilitates code reuse across
different sharing and concurrency scenarios.

3 Types for Safe Concurrency and Parallelism

Encore’s type system statically prevents data races. This means that whenever
two active objects have access to the same passive object, neither of them can

2 This is known as the flattening property [68].

64 E. Castegren and T. Wrigstad

1 active class Main
2 def main() : unit
3 val ps = new PrintServer
4 val d = new Document("Hello, World!")
5 val fut = ps ! print(d)
6 get(fut)
7 println("Success")
8 end
9 end

10

11 active class PrintServer
12 val p : Printer
13 // The 'init' method is the constructor

14 def init(p : Printer) : unit
15 this.p = p
16 end
17 def format(s : String) : String
18 ...
19 end
20 def print(doc : Document) : unit
21 val s = this.format(doc.str)
22 this.p.print(s)
23 end
24 end
25

26 read class Document
27 val str : String
28 def init(str : String) : unit
29 this.str = str
30 end
31 end

Fig. 1. A slightly elaborated Hello World example in Encore.

mutate that object. One of the design goals of Encore was to achieve this without
giving up on staple features of object-oriented languages, such as subtyping and
code reuse. We based Encore’s type system on the Kappa type system [15,19,20].

3.1 Subtyping and Code Reuse Across Concurrency Scenarios

In Encore, each class or trait type has a capability3 which denotes what makes
an object of that type safe to access. The following capabilities are available for
use:

– local: the object is local to the current active object and can never be shared
– read: the object will not be mutated, and so can be freely shared

3 The origin Kappa work referred these properties “mode”, but “capability” is more
in line with recent terminology.

Encore: Coda 65

1 trait Printer
2 require val p : Printer
3 require def format(s : String) : String
4 def print(s : String) : String
5 val s = this.format(doc.str)
6 this.p.print(s)
7 end
8 end
9

10 active class PrintServer : Printer
11 val p : Printer
12 def init(p : Printer) : unit
13 this.p = p
14 end
15 def format(s : String) : String
16 ...
17 end
18 end

Fig. 2. The example from Figure 1 with the printer functionality broken out as a trait.

– linear4: the object has at most one reference to it, so it is never shared
– subord: the object is strongly encapsulated inside the current class
– active: the object is an active object and can only be passed messages

Note that while read and active objects are the only ones that can be shared,
linear objects can be passed between active objects and retain their mutability.
This is because the active object sending a linear object necessarily gives up
its only reference to that object in doing so. Using the subord capability it is
possible for a linear object to encapsulate other objects [25], making it possible
to send entire object aggregates as long as the entry point is linear. local
objects are the closest thing to “regular” objects, with the only restriction that
they cannot be passed between active objects.

In Fig. 1 the capabilities are given where classes are declared. This means
that the type of this is known, allowing for example a Document object to pass
itself to an active object. Classes can include any number of traits and must give
each trait a capability. Classes with a declared capability implicitly give that
capability to all its included traits (as is the case with the active PrintServer
class in Fig. 2). Classes without a declared capability can only define a construc-
tor method and otherwise has to rely on methods from included traits (which
necessarily have been given capabilities explaining why their provided methods
are safe to use).

When a capability is not given to a trait, as is the case with the Printer trait
in Fig. 2, the body of the trait is type checked as if the capability was subord.
This prevents this from escaping, either via an external method call or message
send, by returning it in a method, or by capturing it in an object or closure

4 A better name would be unique, as a linear capability does not imply that a refer-
ence is used exactly once, as with linear types.

66 E. Castegren and T. Wrigstad

1 subord class PrivateList : ...
2 ...
3 end
4

5 trait Loggable
6 require val backend : PrivateList
7 def append(entry : String)
8 this.backend.append(entry)
9 end

10 end
11

12 subord class PrivateLog : Loggable
13 val backend : PrivateList
14 def init() : unit
15 this.backend = new PrivateList
16 end
17 end
18

19 trait HasLog
20 require val log : PrivateLog
21 def log(entry : String) : unit
22 this.log.append(entry)
23 end
24 end

25 linear class Token : HasLog
26 val log : PrivateLog
27 val id : String
28 def init(id : String) : unit
29 this.log = new PrivateLog
30 this.id = id
31 end
32 end
33

34 local class Ledger : HasLog
35 val log : PrivateLog
36 def init() : unit
37 this.log = new PrivateLog
38 end
39 end
40

41 active class Worker
42 val id : String
43 val ledger : Ledger
44 val next : Worker
45 def handleToken(token : Token) : unit
46 token.log(this.id)
47 this.ledger.log(token.id)
48 this.next ! handleToken(consume token)
49 end
50 end

Fig. 3. The HasLog trait is re-used for both the linear Token class and the
local Ledger class.

which later escapes. Importantly, this enables us to give any capability to the
trait when it is used, allowing traits to be reused for both active objects (e.g.,
the active PrintServer class in Fig. 2) and passive objects. The exception to
this rule is the read capability, which requires all fields to be immutable (val
rather than var) and have types which do not allow direct mutation (read or
active). Because of this, the read capability can only be given at trait (or class)
declaration site5.

Figure 3 shows a scenario where a trait HasLog, which provides a log method
is reused both for a linear Token class and for a local Ledger class. On Line 45
an active Worker object receives a Token in a message. It logs its own ID in the
log of the Token, and then logs the ID of the token in its Ledger, before passing
the Token on to another Worker (the consume keyword tells the type checker
that we will not use the token variable again). Note how the class PrivateLog
is marked as subord, meaning it cannot escape the scope in which it is used.
This makes it safe to pass the Token class around, even though it has access
to mutable state in the list backend of the PrivateLog class—the only way to
access the internal state is by going via the Token itself.

5 It is possible to check this also at use site, but it makes type checking less modular.

Encore: Coda 67

It would be possible to also type check classes without capabilities as if they
were subordinate, as for traits. However, making classes without capabilities rely
entirely on their traits enables the pattern shown in Fig. 4. Here a Cell class is
built from a read trait for reading a value and a linear trait for setting the
value. The + on line 15 is used for including multiple traits, and the since one
of the included traits is linear the whole class is treated as linear. As long as
the Cell is linear, it can be mutated and even passed around between active
objects. On Line 29 the linear part is forgotten via an upcast, and with it the
ability to mutate the object. The remaining value can be shared safely since it
now only allows reading, and we just forgot the only way to cause mutation
to the object. The original Kappa paper shows how to recover mutability after
turning a reference read-only [20], while in Encore, forgetting a linear trait is
permanent.

1 read trait Gettable
2 require val value : int
3 def getValue() : int
4 return this.value
5 end
6 end
7

8 linear trait Settable
9 require var value : int

10 def setValue(value : int) : unit
11 this.value = value
12 end
13 end
14

15 class Cell : Gettable + Settable
16 var value : int
17 def init(value : int) : unit
18 this.value = value
19 end
20 end

21 class Main
22 def main() : unit
23 val cell = new Cell(0)
24 // Mutate the cell while it is linear
25 cell.setValue(42)
26 ...
27

28 // Forget mutability and linearity...

29 val g : Gettable = cell
30 // ...allowing the cell to be shared

31 val w1 = new Worker
32 val w2 = new Worker
33 w1 ! doWork(g)
34 w2 ! doWork(g)
35 end
36 end

Fig. 4. A Cell object built from a read part and a (mutable) linear part can be
initialised and changed until the linear part is forgotten, after which it can be freely
shared.

Encore’s type system also supports method overriding and parametric poly-
morphism, neither of which are trivial when capabilities are involved. For exam-
ple, an overridden method of a read trait must not be allowed to cause mutation,
and a polymorphic method that sends its argument to an active object must not
be called with a local reference. See Castegren’s PhD thesis (Chap. 6) for a
treatise on these two topics [15].

68 E. Castegren and T. Wrigstad

3.2 Attached and Detached Closures

Since Encore supports higher-order functions in the form of closures, an impor-
tant question is how to handle transfer of closures which capture references to
local state. Intuitively, a closure that is created by some active object A and
which closes over A’s local state can not be safely sent to another active object
B, as running the closure would mean that B gets access the local state of A,
causing potential data-races. We say that a closure that can only (safely) be run
by some active object attached to that object. In contrast, a detached closure is
one that can (in principle) be run by any active object.

Because the type system already tracks which objects can be safely shared
and not, Encore similarly tracks which closures are attached (and therefore can-
not be shared) and which closures are detached. Rather than just a single capa-
bility, the type of a closure has several capabilities denoting what kind of ref-
erences have been captured. A closure that captures a local reference is local
(and cannot be shared), a closure that captures a linear reference is linear
(and can only be called once) and a closure that captures both a local and a
linear reference is both local and linear.

The concept of attached and detached closures in the context of Encore
was further explored in a paper which also discusses the possibility of running
attached closures asynchronously by delegating back to the active object that
created it [16].

The bestowed references discussed in Sect. 5.1 relax the type system and uses
attached closures to ensure that operations on an active object’s representation
is always performed by the active object’s thread of control by lifting operations
into closures attached to the owning active object.

3.3 Capabilities for Safe Array Programming

The Kappa type system was later extended to support programming with
arrays [2,3]. In addition to treating arrays as objects and applying the same
capabilities as listed in Sect. 3.1 (with a read array meaning an array that can
not be assigned to), it is also possible to make use of the regular structure of
arrays to split one array reference into several non-overlapping views (or slices)
of the same array. Each view appears as a zero-indexed array, but during runtime
indices are translated to access the corresponding part the original array. These
disjoint views can then be operated on concurrently without data-races. Let c
be the array [A, B, C, D, E] and apply a split operation splitting at the 3rd
element:

a, b = split(c, 2, strided=false) −− a = [A, B, C], b = [D, E]

As long as elements in a and b cannot alias (a crude but simple typed-driven
check due to capabilities), a and b can be operated on safely in parallel.

The most important operations for manipulating array views—split and
merge—are surprisingly expressive. For example, the following line of code per-
forms matrix rotation (more examples in [3]):

Encore: Coda 69

−− a is a 2d matrix of type T[rows][cols]
merge(split(a, cols, strided=true), concatenate=true)

The inner split operation splits a into individual columns, which are then log-
ically concatenated using the merge operation. A third operation align (not
shown) was introduced to reorganise an array’s physical layout to conform with
the logical layout stemming from split and merge operations. This removes trans-
lations that are otherwise needed for individual element access, and can be key
to unlocking improved cache utilisation.

Both actors and active objects are typically associated by a single thread
of control operating inside each actor or active object. In such a model, being
able to turn an array into a set of disjoint views does not immediately solve the
problem of how to express a parallel operation on them. The simplest solution
in Encore is to capture the views in separate detached closures. This however
creates two new problems. First, the ownership of the views move from the
actor to the closures and must be explicitly moved back again. Second, how to
balance scheduling of tasks for parallelism vs. tasks for concurrency is unclear. In
an effort to address both these problems, parallel abstractions were introduced
in Encore (cf. Sect. 5.2).

An implementation of splittable array capabilities was prototyped, but never
implemented for Encore, partly because the underlying concurrent garbage col-
lector (cf. Sect. 8) did not easily support partial tracing of objects, e.g., when
disjoint parts of a single array are held by different active objects.

3.4 Letting Go of Static Types

The data-race safety offered by type systems such as Encore’s comes with the
overhead of having to annotate your program with capabilities. As with any
static type system, there will always be safe programs that are rejected by the
capability system due to lack of precision or flexibility in the available annota-
tions. An attempt at addressing this problem comes in the shape of Dala [43],
a language which sprung out of the work on Encore and James Noble’s work on
the teaching language Grace [5]. In Dala, capability annotations are optional,
but an object which is created with a capability remembers it for the rest of its
lifetime. This allows writing code without capability annotations which inter-
acts with annotated code. Whenever an annotated part of a program expects
an object with unknown origins to have a certain capability it can be checked
dynamically—similar to how static and dynamic code interacts in gradually
typed languages.

As an explicit goal, the Dala capability system is simpler than Encore’s,
supporting only three capabilities: local, imm(utable), similar to Encore’s read,
and iso(lated), similar to Encore’s linear. Immutable objects can only refer to
immutable objects; isolated objects to isolated and immutable objects; and local
objects to all of the above. References that violate these constraints give rise to
run-time exceptions.

Objects without capabilities are considered unsafe, and unsafe objects can
refer to any object. The main safety property provided by Dala is that data-races

70 E. Castegren and T. Wrigstad

can only happen through operations on unsafe objects. A gradual type system
allows a programmer to annotate parts of a Dala programs with type annotations
that can guarantee that well-typed programs do not violate the aforementioned
reference constraints. This is in contrast to Encore, where the whole program
needs to be annotated with capabilities in order to get any safety guarantees.
Dala was implemented as an extension to the gradually typed language Grace [5]
by Michael Homer.

4 The Futures of Encore

The Encore design ideal was an object-oriented look and feel. Thus, a message
send is a bidirectional operation: the caller passes a message and a payload to the
callee, and the callee eventually returns a result back to the caller. Contrast this
with the actor model where a message is from the caller to the callee; returns are
handled by message passing in the opposite direction. This is considerably more
difficult to understand and maintain, i.e., programmers having to manually sort
out what incoming message is a response to what outgoing message (if any).
Some languages (e.g., Erlang) simplify this by a selective receive operation that
only permits some messages to be received at a particular program point, but
processing messages out-of-order is also challenging and loses causality.

In Fig. 1 a future is created as an effect of the message send at Line 5.
Unlike synchronous method calls, control immediately returns to the call site and
the active object that sent the message can continue working. In this example
however, already at Line 6 the active Main object blocks until the value of the
future is available using the get operation. Here, the contents of the future is
an uninteresting unit value (i.e., the future is only used for synchronization of
active objects), but in general calling get on a future of type Future[t] results
in a value of type t.

4.1 Forward Delegation

Encore forced explicit manipulation of future values. A method which ended
in return 42 would have return type int when called synchronously and
Future[int] when called asynchronously. Making futures explicit was a design
choice motivated by a desire to reason about performance. In languages like
E [60], AmbientTalk [34] and Newspeak [9], it is not generally possible to see
if an operation is performed synchronously or asynchronously, which can have
detrimental effects on a system, i.e., because asynchronous indirections can have
a several orders of magnitude slowdown.

As more and more Encore code was being written, a pattern emerged with
a considerable code smell: actors which were orchestrating computations found
themselves on the critical path on computation simply because future values
needed unpacking to satisfy return types. Figure 5 illustrates this. Because the
return type on Line 1 is int, d must also have type int on Line 4, which neces-
sitates Line 3’s forced wait for the future value to materialise.

There are several problems with this pattern, all related to performance:

Encore: Coda 71

1 def example(a: int, b: int, x: Calc) : int
2 var c = x ! add(a, b)
3 var d = get(c) // unwrap future value
4 return d // return value

5 end

Fig. 5. Delegation example

1. It adds unnecessary work and garbage to the system: more futures must be
created and destroyed;

2. It adds latency on method returns: when Calc is finished adding a and b, the
result does not directly flow to its final destination—instead it must wait for
all intermediate steps to become scheduled to unwrap and then re-wrap the
result in and out of futures; and

3. It blocks actors from doing useful work: a call to example will block the caller
on Line 3 until Calc is scheduled and able to perform the addition. During
this time, the caller is unable to respond to any other messages for fear of
interference with its ongoing operations in example.

To mitigate this problem, Encore introduces a concept called forwarding [39].
Forwarding allows the entire body of example in Fig. 5 to be written like so:
forward x ! add(a, b). The forward keyword behaves like a return, i.e., it
aborts the current method and returns a result. Thus, it preserved the existing
Encore guarantee that a future would be fulfilled exactly once.

In the Encore implementation, a future is created by the caller to be fulfilled
by the callee. A call wrapped in a forward would reuse the existing future ensur-
ing that a long pipeline of actors delegating work would only create one future,
at the start of the message pipeline.

4.2 Futures: Explicit or Implicit, and Control Flow or Data Flow?

The work on forward delegation continued with a joint effort with Ludovic Henrio
(who had been exploring similar ideas [50]) and Einar Broch Johnsen, leading to
a publication at ECOOP [40] and an accompanying artefact [41]. In this work,
we defined two dimensions of futures: control-flow vs. data-flow futures, how
each of them can be used to encode the other, and explicit vs. implicit futures.
Futures in Joelle and ABS were explicit: visible to the programmer and unpacked
with a get() operation. Futures in e.g., AmbientTalk are implicit: a future value
(e.g., a to-be-computed integer) is indistinguishable from its materialised value
(e.g., 42). Accessing a data-flow future will block until a non-future value has
materialised, regardless of any nesting of futures. Control-flow futures allow the
incremental unravelling of future indirections, meaning nested futures must be
multiply unpacked, which enables writing code that explicitly wants to handle
future values, e.g., scheduling code, multiplexers and load-balancers. Through
the forward mechanism, control-flow futures can be used to encode data-flow

72 E. Castegren and T. Wrigstad

futures in most cases. This is why, in the end, Encore settled for explicit control-
flow futures using forward to avoid nested futures where those were not needed.
Chappe et al. later extended Encore with data-flow futures [23], implementing
control-flow futures as a library and thus realising the second encoding first
presented in [40].

4.3 Future Chaining

To build computational pipelines, Encore supported the concept of future chain-
ing, i.e., adding a callback to a future to be executed upon its fulfilment. Figure 6
illustrates this: instead of forcing the future result from the calculation server
to be fulfilled before printing the result, we chain a continuation on the future
result in the form of a closure. The result of the entire expression in Fig. 6 is a
future unit (Future[Unit]). Thus, we could chain another continuation on the
future to report that the printing was completed, etc.

calcServer ! add(a, b) -> fun v => print("{a}+{b}={v}")

Fig. 6. Future chaining. The printing closure will be executed when the future result
from the calculation server is fulfilled.

Future chaining is strongly connected to the concept of attached and detached
closures discussed in Sect. 3.2. In Fig. 6, the closure that is chained on the future
result from the calculation server captures a and b; thus the closure must be
attached if at least one of a and b is a mutable value.

There were many discussions about the semantics of future chaining, espe-
cially who performs the chained closure? Chaining something on an already ful-
filled closure naturally could be executed immediately at the call-site (the active
object producing the future value may no longer exist), but what happens to
a closure chained on an unfulfilled future? One possibility is to have the active
object that fulfils the future execute the closure. This would shorten the latency
between fulfilling the future and executing the continuation, but also allows any-
one to inject code into any active object. An example that illustrates the point is
shown in Fig. 7, where the continuation, a never ending loop, will cause the cal-
culation service to never finish processing the add() message, effectively causing
a form of denial-of-service attack.

calcServer ! add(a, b) -> fun _
while true
end

end

Fig. 7. Denial of service attack using a detached closure.

Encore: Coda 73

Furthermore, if the calculation server was able to fulfil the future before the
chaining operation was executed, the caller would loop forever. While this code
is clearly contrived, it is easy to conceive of isomorphic accidents in real code,
looping forever or slowing a critical active object down.

In the end, Encore adopted the following semantics for future chaining: chain-
ing a closure on a future always leads to an asynchronous operation, regardless
of whether the future is fulfilled at the time of chaining. The closure is sent to an
active object in the system together with the value of the fulfilled future to be
executed. The Encore compiler infers whether a closure is attached or detached
at compile-time. If it is attached, the active object it will be sent to for execution
is its creator. If it is detached, it will be sent to a system service that processes
detached closures. In the case of Fig. 6, the closure is detached (because a and b
are integers which can be captured safely). Thus, the current actor will be able
to define a continuation of the add() operation in terms of printing the result,
take itself out of the control-flow path to this printing, and not be scheduled
again while still having the value printed.

5 More Concurrency and Parallelism

Encore’s concurrency abstractions are to a large extent about enabling a pro-
gram structure that permits responding to events or requests whose distribu-
tion is not known ahead-of-time. Encore’s parallel abstractions instead deal with
problem decomposition and orchestration of multiple (typically identical) oper-
ations operating on different data, or how to support contention on data crucial
to multiple operations.

5.1 New Concurrency Abstractions: Bestowed References

Active objects in Encore present an interface of available messages. When pro-
cessing a message, an active object operates on its own local state (consisting
of passive objects). This local state must be encapsulated to avoid data-races.
Thus, the only means by which to interact with state of another active object
is through the interface of that active object. This is akin to how strong encap-
sulation in e.g., ownership types [28] prevent useful patterns such as iterators
of linked lists: there is no way for an external entity to even learn of the exis-
tence of the internal objects (links) of the list. This impacts the structure of
programs, and favours e.g., transfer of code via closures instead of direct knowl-
edge of objects inside another active object enclosure. Staying with our iterator
analogy, there is no straightforward way to store the state of the iterator, unless
the iterator itself is encapsulated inside the list, and therefore not accessible
externally.

To simplify programs where external access to objects residing in another
active object leads to simpler design with less indirect manipulation, Encore
supports a principled relaxation of encapsulation of local objects by bestowing

74 E. Castegren and T. Wrigstad

them with activity and having them appear as active objects [18,21]6. If x is
a reference of type local T, the operation bestow x returns a reference of type
bestowed T. This reference has the same interface as T, but can only be interacted
with via message sends. These messages are delegated to the actor that bestowed
the object with activity, and which can safely operate on the object. This is
similar to far references in AmbientTalk [34] and E [60], but with delegation
being visible in the type of the reference rather than being implicit.

As an example of bestowed references, consider the code in Fig. 8 where
Server objects store local Database objects. Through the shareDatabase
method, a Client can ask for asynchronous access to a Database—the local
Database object is bestowed on Line 9. Note how the owner of the Database
accesses it synchronously (Line 8) while a Client can only send it messages
(Line 19). These messages will be delegated to be processed by the Server that
shared the Database.

1 local class Database
2 ...
3 end
4

5 active class Server
6 var db : local Database
7 def shareDatabase(client : Client) : bestowed Database
8 this.db.addClient(client)
9 return bestow this.db

10 end
11 end
12

13 active class Client
14 var server : Server
15 def run(socket : Socket) : unit
16 val db = this.server.shareDatabase(this)
17 while (socket.hasMore()) do
18 val entry = socket.getEntry()
19 db!addEntry(entry)
20 end
21 end
22 end

Fig. 8. The Server class bestows its local Database object with activity. Messages sent
to the Database will be delegated to the Server object that owns it.

The motivation behind bestowed references is to allow relaxing the strong
encapsulation required by the active object model. From a software engineering
standpoint, this is useful to avoid duplicating the interface of a passive class
when an asynchronous interface is required. For example, in Fig. 8 the Server
class does not need to repeat the (possibly very large) interface of its internal
Database object.
6 This feature was implemented, but was never merged into mainline Encore.

Encore: Coda 75

5.2 New Parallel Abstractions: Building Parallel Pipelines with Par[T]-Types

The programming model described so far has focused on concurrent programs,
where a message being processed by an active object serves as the unit of compu-
tation, where active objects run independently from each other, and one active
object can be involved in multiple “computations”. Sometimes however, it is
desirable to express parallel computations, where a single result is calculated
by several units of computation for performance reasons. While it is possible to
express parallel computations with the active object model, because the active
object model is fundamentally unstructured, inability to express dependencies
between “tasks” makes it difficult to efficiently partition work and joining the
results of multiple computations without introducing artificial latency due to
suboptimal scheduling.

For example, recursive problem decomposition in a fork-join model natu-
rally constructs a dependency tree of computations towards a common goal,
where work-stealing higher up in the tree is able to efficiently move considerable
amounts of work across cores. This is in contrast to the scheduling of active
objects, where a message from one active object to another typically pulls the
second onto the same core as the first for efficient communication and cache utili-
sation (unless the second was already scheduled elsewhere). Put differently: when
using a single abstraction, it becomes difficult for a language runtime to distin-
guish between a “normal call chain”, where computation is essentially sequential
but may be interleaved with other computations at points that arise naturally
due to asynchronous indirections brought on by decomposition of state, and “a
fork-join call chain”, where (some of) the asynchronous indirections morally give
rise to new “sub-computations” that should be distributed across multiple cores
for efficient processing.

To express situations like the latter, Encore supports building pipelines of
parallel computations using a domain-specific expression language [38,42]. A
parallel computation of type Par[T] (pronounced “party”, with an Australian
accent) results in zero or more values of type T. Parallel computations are
expressed using the following basic combinators (other derived combinators are
also available):

– liftv : T → Par[T] – lift a value to a (trivial) parallel computation
– || : Par[T] → Par[T] → Par[T] – merge two parallel computations into one
– >> : Par[T] → (T → T') → Par[T'] – apply a function (in parallel) to each

value of a parallel computation
– join : Par[Par[T]] → Par[T] – “flatten” a nested parallel computation
– extract : Par[T] → [T] – gather all values of a parallel computation into

an array (this blocks the active object until the computation is complete)

Spawning a new parallel computation is different from an asynchronous message
send, in that it expresses an operation that is intended to be parallelised, modulo
resource availability.

Figure 9 shows a simple example of a parallel pipeline calculating the square
of each prime smaller than 100. The helper function liftUpTo builds a Par[int]

76 E. Castegren and T. Wrigstad

holding the first n values (note the function empty on line 2 which returns an
empty parallel computation). On line 10 we spawn a parallel computation start-
ing with the numbers 0–100. On line 12, we pass each of these numbers (in
parallel) to a function that only keeps the numbers which are prime. We then
pass the remaining values to a function that squares them. While this parallel
computation is running, the active object is free to do other work, including
passing messages to other active objects (we could even store the parallel com-
putation in a field and get back to it in another method). Finally, on line 20 we
block until the result is available in the array result. Note that the order of the
elements in the array will be determined by the order in which the computations
finished.

1 fun liftUpTo(n : int) : Par[int]
2 var p = empty[int]() // An empty computation of zero values

3 for i <- [1..n] do
4 p = p || liftv(i)
5 end
6 end
7

8 active class Main
9 def main() : unit

10 val par =
11 // Get the first 100 integers
12 liftUpTo(100) >>
13 // Keep only primes

14 (fun v => if isPrime(v) then v else empty[int]()) >>
15 // Square the numbers

16 (fun p => p * p)
17 // Do some independent work (potentially) in parallel with the above
18 ... // don't access the result in par

19 // (Potentially) Block on the availability of the result in par

20 val result = extract(par)
21 end
22 end

Fig. 9. A parallel pipeline calculating the square of primes with Par[T] types

The parallel combinators are based on the orchestration language Orc [55].
The main difference between the implementations in Encore and Orc is that
parallel computations in Encore are statically typed (Orc is dynamically typed,
with an optional static type checker) and run asynchronously with the rest of the
program, allowing e.g., spawning a parallel computation and performing some
other work before waiting for the result. Encores parallel computations are also
integrated with futures; any future can be lifted into a parallel computation using
the function liftf : Future[T] → Par[T]. This allows involving other active
objects in a parallel computation but with the same type system restrictions
that ensure the absence of data-races.

Encore: Coda 77

Using Encore’s type system it is possible to identify immutable (read)
objects, which means that it is simple to build functional pipelines that do
not modify shared state. However, there is no support for temporarily turning
mutable objects immutable, meaning that it is not possible to create parallel
pipelines that operate on mutable (e.g., local) objects, even if they would be
functional (and therefore free from data-races). This is further complicated by
the fact that an active object can perform operations concurrently with a parallel
computation. While solutions for turning linear objects temporarily immutable
exist (cf. the discussion around Fig. 4), they were never implemented in Encore,
and so the implementation of Par[T] types were somewhat stymied.

5.3 Dealing with Hot Objects

Programs whose concurrency is built on threads and locks eventually must decide
on lock granularity. Too fine-grained locks can hurt performance due to excessive
locking and unlocking, and may make it harder to establish the necessary atom-
icity guarantees. Too coarse-grained locking instead hurts parallel performance
by forcing unnecessary waiting, and may lead to deadlocks.

The enforced isolation of active objects in Encore gives a natural lock granu-
larity: a single active object. This is a good choice if the messages in the system
are sufficiently uniformly distributed, and require roughly the same processing
time. Otherwise, objects that are critical to many operations become bottlenecks
that may serialise computation.

For example, if the server active object in Fig. 8 ends up getting dispropor-
tionally many messages in a system, it will affect the parallelism of the system
negatively, and may cause the server’s mailbox to grow unboundedly.

Broadly speaking, there are two solutions for dealing with such “hot” objects.
The first solution is to distribute different parts of the database over multiple
different active objects, and use e.g., some hashing strategy to send messages
directly to the right database shard. This works well, but complicates database
queries that require access to multiple active objects. This might force bespoke
implementations of two-phase commits or other synchronisation protocols on-top
of the active objects.

The second solution is to permit simultaneous accesses to the contended
data without compromising safety: for example using a multiple readers–single
writer lock to permit simultaneous read access, or transactions to optimistically
synchronise concurrent writes to (hopefully) different parts of the database.

The Kappa type system included a hot capability which provided an asyn-
chronous interface like a regular active object, but could be implemented using
a synchronous access model in the backend [78]. The only implementation of hot
objects used Kappa’s type system for lock-free algorithms [22] and was supported
by a special garbage collector that could handle the simultaneous access by mul-
tiple threads of control [82]. By permitting the run-time to turn accesses to hot
objects into synchronous accesses, the hot objects would scale with their con-
tention. There were plans to support hot objects using transactional memory in
addition to lock-free algorithms, but this was never implemented. Asynchronous

78 E. Castegren and T. Wrigstad

message sends from inside transactions require special treatment. An interesting
paper combining actors and transactions can be found in the works of Swalens
et al. [72].

6 Benchmarking and Evaluation

To understand Encore’s performance, we relied on the de-facto standard bench-
mark suite for actor languages: Savina [53]. We implemented all the Savina
benchmarks including e.g., ThreadRing, Fib, Chameneos, Big, concdict, Dining-
Philosophers, NQueens, and ParallelQuickSort. In this work, Uppsala had the
help of several other consortium members, most notably Einar Broch Johnsen,
Sophia Drossopoulou and Juliana Franco. In addition to the Savina bench-
marks, we also implemented a SAT solver, a Support Vector Machine, a CRDT
framework, several prime sieves, preferential attachment, and ported ProRail, an
agent-based control system for train scheduling, which had been used for evalua-
tion in a prior project. The latter was not able to stress the system meaningfully,
but provided insights about the “programming experience” of Encore.

The ThreadRing benchmark led to an interesting discovery in the Pony run-
time: the benchmark turned out to be a pathological case for the cycle detec-
tor which is instrumental in automatically collecting actors in Pony and active
objects in Encore. Analysing several of the benchmarks made clear shortcomings
of the Savina suite, as many supposedly actor programs directly accessed other
actors’ state using atomic operations. This made an apples-to-apples comparison
with existing Savina benchmarks difficult. This work continued in a collaboration
with Sebastian Blessing [7], and subsequently with Sebastian Blessing, Stefan
Marr, Rudolf Schlatte, and the implementers of CAF on a new malleable bench-
mark called “ChatApp” with implementations in ABS, CAF, Erlang, Newspeak
and Pony.7

Our overall conclusion from benchmarking was that Encore performed on-
par with Akka; slightly better on a saturated machine, and slightly worse on
an undersaturated machine. When the final benchmarking was performed, the
Akka baseline was run using the G1 garbage collector which is mostly concurrent.
Today, it would make more sense to use the new ZGC garbage collector where GC
work is never on the critical path of performance (assuming sensible deployment).

As one goal of Encore was to provide a path of migration for existing object-
oriented software, we undertook a substantial mining effort using trace-based
analysis in a tool named Spencer, constructed for this purpose by Stephan
Brandauer from Uppsala University [13]. We analysed the entire DaCapo bench-
mark suite [6] in Spencer, to see the extent to which programmers were writing
programs which were compatible with the constraints enforced by the Encore
compiler, even though the Java language would not be able to leverage this at
compile-time or run-time.

The results of this undertaking are summarised in [12] as well as in Bran-
dauer’s PhD thesis [10]. We found that while Java allows aliasing and mutation
7 Available at https://github.com/sblessing/chat-app.

https://github.com/sblessing/chat-app

Encore: Coda 79

by default, objects are often unique, unique modulo references from the stack,
immutable, or stack-bound (i.e., not pointed to from fields in the heap): 97.7%
of objects enjoy at least one of these properties. Furthermore, uniqueness and
immutability, or their absence, are per-class properties, not per-object properties,
meaning that it is very rare for classes to produce both immutable and mutable
instances. This latter result confirmed the design of Kappa, which argued the
simplicity of class-level annotations (i.e., at declaration-site) over object-level
annotations (i.e., at use-site), although both kinds were supported.

7 Type-Driven Optimisations for Data Layout

Efficient data utilisation plays a crucial role in optimising program performance
in modern computer systems. One significant factor that greatly impacts perfor-
mance is how data is organised in memory. Understanding and carefully design-
ing the data layout can have a substantial influence on cache performance, which
directly affects the speed of data access and processing due to the performance
gap between memory systems and processors.

Managed programming languages, which abstract away the low-level details
of memory management, pose challenges when it comes to optimising data lay-
out. Such languages (exemplified by e.g., C#, Java, and Python) provide memory
management features like garbage collection which relieve developers from man-
ual memory allocation and deallocation tasks. This avoids whole classes of bugs,
and simplifies the management of object ownership from the perspective of who
is responsible for deallocating a datum. This is especially crucial in concurrent
programming. (For more on garbage collection Encore cf. Sect. 8.)

A downside of such abstractions is that programmers have limited control
over how data is laid out in memory. In particular, the aforementioned optimi-
sation of data layout becomes difficult when runtime system manages memory
allocation and placement. Ultimately, this leads to an inability to fully exploit
cache performance and optimise memory access patterns.

A classic example in this context is the choice between using an array of
structures (AoS) or a structure of arrays (SoA), a decision which can have a
profound impact on cache utilisation. In an AoS layout, each element of the
array contains a complete structure, while in an SoA layout, the components of
the structure are stored in separate arrays. Going from the former to the latter
in e.g., Java means “exploding” an object and scattering its data across multiple
places in memory. This creates new opportunities for errors as programmers may
mistakenly combine data belonging to different objects giving rise to spurious
values in the system. Furthermore, distributing data across multiple locations
can greatly complicate synchronisation in a concurrent program.

Several members of the Encore team had worked previously on ownership
types [28]. Ownership types places objects in ownership contexts, which pre-
viously had not been reified. By reifying the ownership contexts (now called
“pools”), the contexts could be associated with layout information that could
be used to control placement of objects as well as object layout. Consider the
following type of a stack object in pool a with T -typed elements in pool b:

80 E. Castegren and T. Wrigstad

s : Stack[a, T[b]]

The stack object s lives itself in pool a and thus the object layout and placement
is controlled by a. The elements in the stack live in the pool b which may impose
different layout. For example, we might decide that objects in b are allocated
using a bump allocator to get locality of consecutive pushes, or if T is a pair of
fst and snd, we might allocate all pairs so that all fst’s are consecutive and snd’s
separately consequtive, or both in combination. Our prototype implementation
implemented pools using a 4 Gb alignment so that each pool had room to grow.
(This also permitted intra-pool references to be stored as 32-bit addresses, fitting
more discrete objects into cache.)

The example above shows how one can decouple the layout of a class from
its definition – the properties of a and b are determined by where in the code
the stack type is declared, not where the stack is defined. Thus, it is possible to
instantiate multiple versions of the stack class in different places of the code, laid
out according to the needs for those particular use cases. Our starting point was
the memory of individual active objects, which would simplify the problem by
restricting access to one single thread. The SHAPES programming model [46,47]
document these efforts further. It aims to present a programmer with a familiar
pointer-based abstraction but control how data was distributed by placement
of objects in pools. These ideas were later continued by Alexandros Tasos who
explored fusing these ideas with vectorisation [73–75].

An runtime extension was constructed as part of a master thesis project [48],
but sadly this runtime was never properly integrated with the rest of Encore.

8 Garbage Collection

A substantial effort of the Encore project was devoted to garbage collection,
despite the early consortium agreement to not do so. This can be chalked up to
not fully understanding the impact of concurrent garbage collection for perfor-
mance and the consortium’s lack of understanding of how little actor isolation
had been explored in the mainstream for performance gains in garbage collec-
tion. The choice of Pony as a runtime for Encore was made to piggyback on
its memory management [30,31], but the growing collaboration with the Pony
team pushed efforts in the direction of proving the correctness of its collector for
passive objects [45] to the point of this becoming the subject of Juliana Franco’s
dissertation [44].

Pony’s collector for passive objects relied on a combination of tracing and
reference counting. Inside the heap of an actor (or active object), liveness was
determined by tracing. Upon sending a message, the sending actor would trace
through the payload of the message and record all the references. For each ref-
erence shared with the world, the actor would increment a reference count to
keep track of “external stake” in the object. When a reference to an object in
another actor was dropped, it would eventually be discovered and communi-
cated in terms of a decrement message to the owning actor. In this way, actors
could further share a reference to another actor’s innards, and the system would

Encore: Coda 81

keep in sync through passing increment and decrement messages on the same
channels used for normal message sends. Thus, each actor had a conservative
approximation of external stake in its objects, that it could use together with
trace-based liveness information to maintain its heap. Importantly, this design
allows an actor to do garbage collection whenever it chooses, without the need
to synchronise with any other agent in the system.

The Pony philosophy was to keep actors’ individual heaps down so that
tracing an actor’s heap did not cause unreasonable delays for its messages. The
lack of large standard benchmarks in Pony made these results very difficult to
publish, given the maturity of mainstream GC research, which typically takes
place in the context of well-established languages with commercial applications
available for evaluation.

In a system with large number of actors, Pony’s GC design has excellent
tail-latency properties as demonstrated by Fig. 10, which shows a comparison
between Pony, Erlang and Java (using C4 a fully-concurrent collector, and G1
which is mostly concurrent) (taken from [31] which discusses this experiment
further). The decreasing GC concurrency of Erlang, C4 and G1 clearly materi-
alises as worse outliers. Given its mostly-concurrent nature, G1 is surprisingly
good in comparison with Erlang and C4.

Fig. 10. Comparing jitter/latency variance in a synthetic benchmark across Pony,
Erlang and Java (C4 and G1).

In a system with few larger actors, the inability to GC in an actor while
the actor is running will change the above figure considerably, highlighting the
bad fit of a collector designed for highly concurrent actor-based programs and
applications with very limited concurrency.

Pony’s GC was minimalistic and served Pony’s needs perfectly. It would
only allow an actor to perform GC between processing messages to save itself
the trouble of scanning the stack. This pragmatic choice was motivated by its
implementation as a C library and a desire to have exact information about
references on the stack. In theory, this caused problems for Encore programs
due to its extended synchronisation mechanisms: an active object blocking on
a future could not perform GC as it had an attached stack; the same was true
for an active object which has cooperatively suspended itself to perform another
message.

82 E. Castegren and T. Wrigstad

Finally, Pony’s GC was designed for a sequential actor model where only a
single thread of control manipulates an actor’s innards. The hot object parallel
abstraction provided by Encore broke away from this design. Since sending a
message to a hot object was guaranteed to not block, garbage collection in hot
objects was forced to be fully concurrent at a lower granularity than Pony’s GC.
This materialised itself as an entirely new collector, Isolde [82], that was used
internally inside hot objects. Its implementor, Albert Mingkun Yang, continued
in fully concurrent memory management [80,81,83] in the context of the ZGC
garbage collector, and today works in the GC team at Oracle.

Experiences with Pony’s garbage collector in production have been incorpo-
rated in the Verona programming language by decoupling management of object
lifetimes from particular “threads”, and also managed immutable objects differ-
ently from mutable objects [4].

9 Implementation

In this section we give an overview of the implementation work, focusing in turn
on the Encore compiler, and the Encore runtime.

9.1 Compiler

The Encore compiler [36] was written in Haskell (∼14,000 lines), using the
megaparsec [59] library for parsing. The design of the type checker of Encore
is described in an experience paper [17].

The Encore compiler compiles Encore to C, which can then be compiled
with a C compiler of choice and linked with the Pony runtime [65], which han-
dles creation and destruction of actors, message sends, scheduling, and memory
management of passive objects. In addition to the Pony runtime, the Encore run-
time consists of ∼3600 lines of C code for primitive constructs, such as arrays,
closures, algebraic data types, futures, etc.

Because the compilation target is C, a lot of early prototyping in Encore
could be done by using embed blocks with literal C code. Embedded C code can
in turn embed Encore code, for example in order to refer to variables in the
Encore program:
1 def print(s : string): void
2 embed unit
3 puts(#{s}); // #{s} Refers to the Encore variable s
4 end
5 end

For similar reasons, debugging the compiler was as simple as inspecting the
outputted C code. We made an effort to generate readable C which saved copious
amounts of time.

The entire repository with compiler and runtime extension was hosted on
GitHub [36] and saw 1923 commits from a total of 18 contributors. The top
three contributors were all PhD students in the project. These PhD students

Encore: Coda 83

(among others) were also heavily involved in reviewing pull requests from other
members of the project, and the >20 undergraduate students that worked on
various aspects of the language at different times. The pull request reviewing
model was great for keeping a >1 “bus factor”, and for ensuring code consistency.
However, contributors at times attempted to “brute force” their commits into
the compiler, or submitted patches of very low quality. This led to frustration
among the top-committer PhD students who saw too much of their time spent on
software engineering as opposed to research. This also at times caused friction in
the team, especially among PhD students, when pull requests were not merged.
In hindsight, the senior researchers could have done a better job of protecting
these students by inserting themselves in the process or creating a more formal
process for the reviewing PhD students to point to. Guidelines for contributing
should also have been posted sooner including encouragement to engage with
the developers before e.g., issuing a patch removing trailing whitespace across
the entire project.

9.2 Runtime

By building on the Pony runtime, Encore got a runtime that came with built-in
support for many of the things the language enforced statically through its type
system and design: garbage collection took advantage of actor isolation, message
passing took advantage of uniqueness information, etc. However, the tight fit of
Pony’s runtime to a language that was not Encore ended up complicating essen-
tially every Encore feature. In hindsight, it would have been considerably better
to compile Encore to say the JVM—at least initially—and ignore performance
until the key design elements were firmly in place (read: not while the project
lasted).

For example, Pony’s runtime did not have futures, only promises, and fur-
thermore, its promises were implemented as actors under the hood, meaning that
it added additional latency when returning a value. This design was probably
right for Pony, which relied on unidirectional message sends as its main model of
communication. As a result, a scheduler thread in Pony was never blocking, and
the scheduler defaulted to using exactly as many threads as there were cores on
the machine. This was an oversight that was not clearly understood at the time
when the decision was made to use the Pony runtime as a basis for Encore.

This forced the first extention of the Pony runtime in the Encore compiler,
which continued to be problematic whenever we sought to pull recent updates
from Pony into the main Encore repository. Conceptually the change is simple:
perform a userland context switch when blocking on a future and maintain a pool
of suspended actors that can be scheduled once the futures they are blocking
on are fulfilled. However, there were a number of technical challenges related
to futures, as well as cooperative scheduling primitives in Encore that had no
Pony equivalent. One example was an invariant on Pony’s multi-producer single-
consumer queue that implemented the actor mailbox, which meant that pushing
a message directly at the front of an actor’s message queue—to get it to resume
a suspended operation—was not directly supported.

84 E. Castegren and T. Wrigstad

One PhD student spent a significant amount of time maintaining the Encore
version of the Pony runtime and interacting with the Pony developers. From a
research career perspective, this time could have been more well spent.

10 Lessons Learned

In this section, we discuss important lessons learned from the Encore project
regarding how to run (and not run) a programming language project.

First, the open sourcing of Encore happened much too late. There is essen-
tially no reason to not develop projects like Encore in the open, and it would
possibly have connected the project wider, for example to curious students, and
hobbyists. The literature on software engineering teaches us that writing code
to be read by external people improves code quality, even if it might have slowed
down the language development a little. A key to building a long-term research
artefact is to not try to cut as much code as possible in as short a time as
possible. By devoting effort to a more stable core language, we could have con-
tinued to support just as many offshoots as we did, but without compromising
the integrity of the core language. Over time, battle-tested offshoots could be
integrated in the core language, and enjoy a better understanding of their impact
on the total complexity budget, in relation to the importance of their delivered
features. For Encore, the desire to have as many features as possible make it
into the mainline caused growth pains which eventually killed progress on the
language. (On the other hand, one should not under-estimate the motivation
that comes from desire to have a patch merged into the mainline.)

On a similar note, assigning a language steward would have been very help-
ful. Ideally, this person would have been located outside of Uppsala, thereby
forcing communication in the project and more committment from non-Uppsala
members. The stewardship might even be a rotating function, injecting some
democracy into the process, and incentives to “play fair” at all times. That said,
it seems plausible that not all decisions about a research language can be driven
by democratic processes, at least not in a time-limited project. For example,
there may be compelling technical reasons for choosing, say Haskell or C, as
technologies to build on, e.g., because of availability of key libraries. Having an
external steward and a process for extending the code language would naturally
have created incentives for better documentation of both code and language fea-
tures. To this day, the Encore documentation is distributed over a large number
of papers, and more often than one would like, the implementation has come
to diverge to some extent with what is the described in the paper. A language
project will do well by spending substantial effort early on laying down some
ground rules for documentation as well as setting up infrastructure for gathering
and curating documentation. Preferably a tool that allows the documentation
to be stored in the same repository as the language to facilitate linking different
versions of the documentation to different versions (or branches) of the language.

The choice of implementation language was in many ways poor. We cer-
tainly do not wish to throw any shade on Haskell, but it has a steep learning

Encore: Coda 85

curve, especially for those who are new to purely functional programming or lazy
evaluation. The choice to go with Haskell seems to have denied senior project
members—i.e., those with fewer available cycles—entry into the programming,
which is not a great strategy for a project that is intended to survive the gradua-
tion of the current batch of PhD students. Also, consortium-wide decisions really
should not be made at the whim of individual consortium members, regardless
whether the decision is right or wrong.

The UPLANG group at the department of information technology at Upp-
sala university thrived during the Encore years, and the weekly meeting revolving
around Encore created a feeling of the group coming together. It set a gold stan-
dard that we have since strived to re-create. PhD students with widely different
projects collaborated on each others’ patches, either directly by contributing
logic, or indirectly through code reviews. A handful of undergraduate students
were actively involved at any moment in time giving the PhD students hands-on
experience with supervision, and in total 15 undergraduate theses were pub-
lished that worked directly on the language implementation or provided input
for design decisions [35,37,48,49,52,57,58,61,63,64,66,70,71,76,77]. Given that
the length of a Swedish PhD is four years of research interleaved with one year
of teaching over a five year period, it was typically not difficult for the PhD
students to balance research time vs. student supervision time. The PhD stu-
dents also got hands-on experience with maintaining a “large” body of code,
and first-hand experience with the joys of unchecked technical debt. The main
negative time sink for PhD students was time spent reviewing a small number
of pull requests time and time again. This happened when the issuer of the pull
request seemed unwilling (or unable) to respond to criticism. The main problem
here was that the custodian of quality was (also, typically) a PhD student who
did not want to block the progress of a peer. Thus, instead of simply refusing
to re-review code which had not morally changed, they worked hard on giving
more feedback to the student on the other side. On a few occasions, this led to
friction between PhD students, and senior people had to step in to make sure
that conflicts did not escalate. Introducing tools like Slack that offered a fast
backchannel for these kinds of discussions was great, and also ensured that the
distance between all team members was equal. This helped distributing sensitive
or complicated questions unsuitable for email more uniformly across the team.

In hindsight, picking the Pony runtime as the language backend was a stupid
move due to its high level of complexity stemming from optimisation. This made
changes that broke with the Pony design unnecessarily hard and made us spend
time on irrelevant details. A better idea would have been to target a less opin-
ionated backend, or at least compile to a less heavily optimised backend that
was easier to change. While compiling to a higher-level language would com-
plicate optimisation, it would facilitate experimentation. Having two backends
for compiling both to a high-level language and a low-level language would be
ideal, although adding more complexity and increasing the maintenance costs.
“Transpiling” and linking with an externally developed runtime worked really
well for prototyping implementations, where we would often write Encore code

86 E. Castegren and T. Wrigstad

to generate code that could then manually be edited and experimented with to
create a goal for the compiler extensions.

In the end, there are many things that we would do again given the oppor-
tunity, but also many things that we would try to do differently. Clearly some
things were done right, as is apparent from the research output of the project,
but we also think that if we had done things differently, Encore would not be
effectively dead as a language today.

11 Concluding Remarks, or Encore: Fine

The Encore project failed to deliver a long-term research artefact, but succeeded
in producing a wide range of research outputs in a multitude of directions.
Insights into the weaknesses of the actor and active object models, and the chal-
lenges of combining parallelism and concurrency in a single language are care-
fully curated by the authors of this paper and are informing the development
of the Verona language, whose concurrency abstractions [24] and type-driven
isolation [4] mechanisms draw heavily on experiences with Encore.

References

1. Agha, G.A.: ACTORS - A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press Series in Artificial Intelligence, MIT Press (1990)

2. Åkerblom, B., Castegren, E., Wrigstad, T.: Parallel programming with arrays in
kappa. In: Scholz, S.-B., Shivers, O. (eds.) Proceedings of the 5th ACM SIGPLAN
International Workshop on Libraries, Languages, and Compilers for Array Pro-
gramming, ARRAY@PLDI 2018, Philadelphia, PA, USA, 19 June 2018, pp. 24–33.
ACM (2018)

3. Åkerblom, B., Castegren, E., Wrigstad, T.: Reference capabilities for safe parallel
array programming. Art Sci. Eng. Program. 4(1), 1 (2019)

4. Arvidsson, E., et al.: Reference capabilities for flexible memory management. In:
Proceedings of the ACM on Programming Languages, vol. 7 (OOPSLA2) (2023)

5. Black, A.P., Bruce, K.B., Homer, M., Noble, J.: Grace: the absence of (inessential)
difficulty. In: ACM Symposium on New Ideas in Programming and Reflections on
Software, Onward!, Part of SPLASH 2012, Tucson, AZ, USA, 21–26 October 2012,
pp. 85–98 (2012)

6. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development
and analysis. In: Proceedings of the 21st Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications, OOPSLA
2006, New York, NY, USA, pp. 169–190. Association for Computing Machinery
(2006)

7. Blessing, S., Fernandez-Reyes, K., Yang, A.M., Drossopoulou, S., Wrigstad, T.:
Run, actor, run: towards cross-actor language benchmarking. In: Bergenti, F.,
Castegren, E., De Koster, J., Franco, J. (eds.) Proceedings of the 9th ACM SIG-
PLAN International Workshop on Programming Based on Actors, Agents, and
Decentralized Control, AGERE!@SPLASH 2019, Athens, Greece, 22 October 2019,
pp. 41–50. ACM (2019)

Encore: Coda 87

8. Bloom, B., et al.: Thorn: robust, concurrent, extensible scripting on the JVM. In:
Arora, S., Leavens, G.T. (eds.) Proceedings of the 24th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2009, Orlando, Florida, USA, 25–29 October 2009, pp. 117–136.
ACM (2009)

9. Bracha, G., von der Ahé, P., Bykov, V., Kashai, Y., Maddox, W., Miranda, E.:
Modules as objects in newspeak. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol.
6183, pp. 405–428. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14107-2 20

10. Brandauer, S.: Structured Data. Ph.D. thesis, Uppsala University, Sweden (2018)
11. Brandauer, S., et al.: Parallel objects for multicores: a glimpse at the parallel

language Encore. In: Bernardo, M., Johnsen, E.B. (eds.) SFM 2015. LNCS, vol.
9104, pp. 1–56. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18941-
3 1

12. Brandauer, S., Wrigstad, T.: Mining for safety using interactive trace analysis. In:
Pre-proceedings - Fifteenth International Workshop on Quantitative Aspects of
Programming Languages and Systems, no. 15 (2017)

13. Brandauer, S., Wrigstad, T.: Spencer: interactive heap analysis for the masses. In:
González-Barahona, J.M., Hindle, A., Tan, L. (eds.) Proceedings of the 14th Inter-
national Conference on Mining Software Repositories, MSR 2017, Buenos Aires,
Argentina, 20–28 May 2017, pp. 113–123. IEEE Computer Society (2017)

14. Broman, D.: A vision of miking: interactive programmatic modeling, sound lan-
guage composition, and self-learning compilation. In: Proceedings of the 12th ACM
SIGPLAN International Conference on Software Language Engineering, pp. 55–60
(2019)

15. Castegren, E.: Capability-Based Type Systems for Concurrency Control. Ph.D.
thesis, Uppsala University, Sweden (2018)

16. Castegren, E., Clarke, D., Fernandez-Reyes, K., Wrigstad, T., Yang, A.M.:
Attached and detached closures in actors. In: De Koster, J., Bergenti, F., Franco, J.
(eds.) Proceedings of the 8th ACM SIGPLAN International Workshop on Program-
ming Based on Actors, Agents, and Decentralized Control, AGERE!@SPLASH
2018, Boston, MA, USA, 5 November 2018, pp. 54–61. ACM (2018)

17. Castegren, E., Fernandez-Reyes, K.: Developing a monadic type checker for
an object-oriented language: an experience report. In: Nierstrasz, O., Gray, J.,
Oliveira, B.C.S. (eds.) Proceedings of the 12th ACM SIGPLAN International Con-
ference on Software Language Engineering, SLE 2019, Athens, Greece, 20–22 Octo-
ber 2019, pp. 184–196. ACM (2019)

18. Castegren, E., Wallin, J., Wrigstad, T.: Bestow and atomic: concurrent program-
ming using isolation, delegation and grouping. J. Log. Algebraic Methods Program.
100, 130–151 (2018)

19. Castegren, E., Wrigstad, T.: Kappa: insights, current status and future work. In:
7th International Workshop on Aliasing, Capabilities and Ownership (IWACO)
(2016)

20. Castegren, E., Wrigstad, T.: Reference capabilities for concurrency control. In:
Krishnamurthi, S., Lerner, B.S. (eds.) 30th European Conference on Object-
Oriented Programming, ECOOP 2016, Rome, Italy, 18–22 July 2016. LIPIcs, vol.
56, pp. 5:1–5:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

21. Castegren, E., Wrigstad, T.: Actors without borders: amnesty for imprisoned state.
In: Vasconcelos, V.T., Haller, P. (eds.) Proceedings Tenth Workshop on Program-
ming Language Approaches to Concurrency- and Communication-cEntric Soft-

https://doi.org/10.1007/978-3-642-14107-2_20
https://doi.org/10.1007/978-3-642-14107-2_20
https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1007/978-3-319-18941-3_1

88 E. Castegren and T. Wrigstad

ware, PLACES@ETAPS 2017, Uppsala, Sweden, 29 April 2017. EPTCS, vol. 246,
pp. 10–20 (2017)

22. Castegren, E., Wrigstad, T.: Relaxed linear references for lock-free data structures.
In: Müller, P. (ed.) 31st European Conference on Object-Oriented Programming,
ECOOP 2017, Barcelona, Spain, 19–23 June 2017. LIPIcs, vol. 74, pp. 6:1–6:32.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

23. Chappe, N., Henrio, L., Maillé, A., Moy, M., Renaud, H.: An optimised flow for
futures: from theory to practice. Art Sci. Eng. Program. 6(1) (2022)

24. Cheeseman, L., et al.: When concurrency strikes. Under submission (2023)
25. Clarke, D., Wrigstad, T.: External uniqueness is unique enough. In: Cardelli, L.

(ed.) ECOOP 2003. LNCS, vol. 2743, pp. 176–200. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45070-2 9

26. Clarke, D., Wrigstad, T., Östlund, J., Johnsen, E.B.: Minimal ownership for active
objects. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 139–154.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89330-1 11

27. Clarke, D., Wrigstad, T., Yoshida, N., de Boer, F.S., Johnsen, E.B.: Inversion in
programming language design: the Encore way. In: NOOL 2015, October 2015

28. Clarke, D.G., Potter, J., Noble, J.: Ownership types for flexible alias protection. In:
Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages & Applications (OOPSLA 1998), Vancouver, British
Columbia, Canada, 18–22 October 1998, pp. 48–64 (1998)

29. Clebsch, S.: ‘Pony’: co-designing a type system and a runtime. Ph.D. thesis, Impe-
rial College London, UK (2017)

30. Clebsch, S., Drossopoulou, S.: Fully concurrent garbage collection of actors on
many-core machines. In: Hosking, A.L., Eugster, P.Th., Lopes, C.V. (eds.) Pro-
ceedings of the 2013 ACM SIGPLAN International Conference on Object Ori-
ented Programming Systems Languages & Applications, OOPSLA 2013, Part of
SPLASH 2013, Indianapolis, IN, USA, 26–31 October 2013, pp. 553–570. ACM
(2013)

31. Clebsch, S., Franco, J., Drossopoulou, S., Yang, A.M., Wrigstad, T., Vitek, J.:
Orca: GC and type system co-design for actor languages. Proc. ACM Program.
Lang. 1(OOPSLA), 72:1–72:28 (2017)

32. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71316-6 22

33. de Boer, F.S., et al.: A survey of active object languages. ACM Comput. Surv.
50(5), 76:1–76:39 (2017)

34. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.:
Ambient-oriented programming in AmbientTalk. In: Thomas, D. (ed.) ECOOP
2006. LNCS, vol. 4067, pp. 230–254. Springer, Heidelberg (2006). https://doi.org/
10.1007/11785477 16

35. Eklund, L., Nikamo, K., Strömberg, C.: Improving the developer experience by
implementing syntax in the Encore language. Bachelor’s thesis, Uppsala University,
Department of Information Technology (2017)

36. GitHub repository for Encore. https://github.com/parapluu/encore, May 2023
37. Escher, D.: Parallel performance comparison between Encore and OpenMP using

pedestrian simulation. Bachelor’s thesis, Uppsala University, Department of Infor-
mation Technology (2017)

38. Fernandez-Reyes, K., Clarke, D.: Affine killing: semantics for stopping the ParT. In:
Proceedings of 2nd International Workshop on Type-Driven Development (2017)

https://doi.org/10.1007/978-3-540-45070-2_9
https://doi.org/10.1007/978-3-540-89330-1_11
https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1007/11785477_16
https://doi.org/10.1007/11785477_16
https://github.com/parapluu/encore

Encore: Coda 89

39. Fernandez-Reyes, K., Clarke, D., Castegren, E., Vo, H.P.: Forward to a Promising
Future. In: Di Marzo Serugendo, G., Loreti, M. (eds.) COORDINATION 2018.
LNPSE, vol. 10852, pp. 162–180. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-92408-3 7

40. Fernandez-Reyes, K., Clarke, D., Henrio, L., Johnsen, E.B., Wrigstad, T.: Godot:
all the benefits of implicit and explicit futures. In: Donaldson, A.F. (ed.) 33rd
European Conference on Object-Oriented Programming, ECOOP 2019, London,
United Kingdom, 15–19 July 2019. LIPIcs, vol. 134, pp. 2:1–2:28. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2019)

41. Fernandez-Reyes, K., Clarke, D., Henrio, L., Johnsen, E.B., Wrigstad, T.: Godot:
all the benefits of implicit and explicit futures (artifact). Dagstuhl Artifacts Ser.
5(2), 01:1–01:2 (2019)

42. Fernandez-Reyes, K., Clarke, D., McCain, D.S.: ParT: an asynchronous parallel
abstraction for speculative pipeline computations. In: Lluch Lafuente, A., Proenca,
J. (eds.) COORDINATION 2016. LNCS, vol. 9686, pp. 101–120. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-39519-7 7

43. Fernandez-Reyes, K., Gariano, I.O., Noble, J., Greenwood-Thessman, E., Homer,
M., Wrigstad, T.: Dala: a simple capability-based dynamic language design for data
race-freedom. In: Proceedings of the 2021 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming and Software
(ONWARD!), pp. 1–17 (2021)

44. Franco, J.: Orca: Ownership and Reference Count Collection for Actors. Ph.D.
thesis, Imperial College London, UK (2018)

45. Franco, J., Clebsch, S., Drossopoulou, S., Vitek, J., Wrigstad, T.: Correctness of a
concurrent object collector for actor languages. In: Ahmed, A. (ed.) ESOP 2018.
LNCS, vol. 10801, pp. 885–911. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89884-1 31

46. Franco, J., Hagelin, M., Wrigstad, T., Drossopoulou, S., Eisenbach, S.: You can
have it all: abstraction and good cache performance. In: Torlak, E., van der Storm,
T., Biddle, R. (eds.) Proceedings of the 2017 ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming and Soft-
ware, Onward!, Vancouver, BC, Canada, 23–27 October 2017, pp. 148–167. ACM
(2017)

47. Franco, J., Tasos, A., Drossopoulou, S., Wrigstad, T., Eisenbach, S.: Safely
abstracting memory layouts. CoRR, abs/1901.08006 (2019)

48. Hagelin, M.: Optimizing memory management with object-local heaps. Master’s
thesis, Uppsala University, Department of Information Technology (2015)

49. Karakoca, J.H.: Big data types: internally parallel in an actor language. Bachelor’s
thesis, Uppsala University, Department of Information Technology (2018)

50. Henrio, L.: Data-flow Explicit Futures. Research report, I3S, Université Côte
d’Azur, April 2018

51. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for arti-
ficial intelligence. In: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence, IJCAI 1973, San Francisco, CA, USA, pp. 235–245. Morgan
Kaufmann Publishers Inc. (1973)

52. Hillert, J.: A comparison of the capability systems of Encore, Pony and Rust. Bach-
elor’s thesis, Uppsala University, Department of Information Technology (2019)

53. Imam, S.M., Sarkar, V.: Savina - an actor benchmark suite: enabling empirical
evaluation of actor libraries. In: Proceedings of the 4th International Workshop on
Programming Based on Actors Agents & Decentralized Control, AGERE! 2014,
New York, NY, USA, pp. 67–80. Association for Computing Machinery (2014)

https://doi.org/10.1007/978-3-319-92408-3_7
https://doi.org/10.1007/978-3-319-92408-3_7
https://doi.org/10.1007/978-3-319-39519-7_7
https://doi.org/10.1007/978-3-319-89884-1_31
https://doi.org/10.1007/978-3-319-89884-1_31

90 E. Castegren and T. Wrigstad

54. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

55. Kitchin, D., Quark, A., Cook, W., Misra, J.: The Orc programming language. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE -2009. LNCS,
vol. 5522, pp. 1–25. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02138-1 1

56. De Koster, J., Van Cutsem, T., De Meuter, W.: 43 years of actors: a taxonomy
of actor models and their key properties. In: Clebsch, S., Desell, T., Haller, P.,
Ricci, A. (eds.) Proceedings of the 6th International Workshop on Programming
Based on Actors, Agents, and Decentralized Control, AGERE 2016, Amsterdam,
The Netherlands, 30 October 2016, pp. 31–40. ACM (2016)

57. Lundin, G.: Pattern matching in Encore. Bachelor’s thesis, Uppsala University,
Department of Information Technology (2016)

58. Manning, J.E.: For-comprehension: an Encore compiler story. Bachelor’s thesis,
Uppsala University, Department of Information Technology (2019)

59. Martini, P., Leijen, D., Megaparsec Contributors: Megaparsec: monadic parser
combinators. https://hackage.haskell.org/package/megaparsec, May 2023

60. Miller, M.S.: Robust Composition: Towards a Unified Approach to Access Con-
trol and Concurrency Control. Ph.D. thesis, Johns Hopkins University, Baltimore,
Maryland, USA, May 2006

61. Olander, J.: Design & implementation of separate compilation for Encore. Bache-
lor’s thesis, Uppsala University, Department of Information Technology (2017)

62. Östlund, J.: Language Constructs for Safe Parallel Programming on Multi-Cores.
Ph.D. thesis, Uppsala University, Sweden (2016)

63. Östlund, M.: Benchmarking parallelism and concurrency in the Encore program-
ming language. Bachelor’s thesis, Uppsala University, Department of Information
Technology (2016)

64. Pedersen, O.: Implementing and evaluating the performance of CRDTs in Encore.
Bachelor’s thesis, Uppsala University, Department of Information Technology
(2018)

65. The pony programming language. https://www.ponylang.org. Accessed May 2023
66. Remmers, A.: Enhancing functionality with assistive error visualisations in Encore.

Bachelor’s thesis, Uppsala University, Department of Information Technology
(2019)

67. Reyes, F.R.F.: Abstractions to Control the Future. Ph.D. thesis, Uppsala Univer-
sity, Sweden (2021)

68. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: composable units of
behaviour. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 248–274.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45070-2 12

69. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture. Patterns for Concurrent and Networked Objects, vol. 2. Wiley, New
York (2000)

70. Taher, S.S.: Exceptional actors implementing exception handling for Encore. Bach-
elor’s thesis, Uppsala University, Department of Information Technology (2017)

71. Sommerland, H.: An implementation of the vat programming abstraction. Bache-
lor’s thesis, Uppsala University, Department of Information Technology (2016)

72. Swalens, J., De Koster, J., De Meuter, W.: Transactional actors: communication in
transactions. In: Proceedings of the 4th ACM SIGPLAN International Workshop

https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-02138-1_1
https://doi.org/10.1007/978-3-642-02138-1_1
https://hackage.haskell.org/package/megaparsec
https://www.ponylang.org
https://doi.org/10.1007/978-3-540-45070-2_12

Encore: Coda 91

on Software Engineering for Parallel Systems, SEPS 2017, New York, NY, USA,
pp. 31–41. Association for Computing Machinery (2017)

73. Tasos, A., Franco, J., Drossopoulou, S., Wrigstad, T., Eisenbach, S.: Reshape your
layouts, not your programs: a safe language extension for better cache locality. Sci.
Comput. Program. 197, 102481 (2020)

74. Tasos, A., Franco, J., Drossopoulou, S., Wrigstad, T., Eisenbach, S.: Reshape your
layouts, not your programs: a safe language extension for better cache locality
(SCICO journal-first). In: Hirschfeld, R., Pape, T. (eds.) 34th European Conference
on Object-Oriented Programming, ECOOP 2020, Berlin, Germany (Virtual Con-
ference), 15–17 November 2020. LIPIcs, vol. 166, pp. 31:1–31:3. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020)

75. Tasos, A., Franco, J., Wrigstad, T., Drossopoulou, S., Eisenbach, S.: Extending
SHAPES for SIMD architectures: an approach to native support for struct of
arrays in languages. In: Felgentreff, T., Zendra, O. (eds.) Proceedings of the 13th
Workshop on Implementation, Compilation, Optimization of Object-Oriented Lan-
guages, Programs and Systems, ICOOOLPS@ECOOP 2018, Amsterdam, Nether-
lands, 16–21 July 2018, pp. 23–29. ACM (2018)

76. Tönqvist, C.: Finding patterns in lock-free algorithms. Bachelor’s thesis, Uppsala
University, Department of Information Technology (2017)

77. Wallin, J.: Implementing safe sharing features for Encore. Bachelor’s thesis, Upp-
sala University, Department of Information Technology (2017)

78. Wrigstad, T., Fritzon, T.: Actors and hot objects. In: NOOL (2016)
79. Wrigstad, T., Nardelli, F.Z., Lebresne, S., Östlund, J., Vitek, J.: Integrating typed

and untyped code in a scripting language. In: Hermenegildo, M.V., Palsberg, J.
(eds.) Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2010, Madrid, Spain, 17–23 January 2010, pp.
377–388. ACM (2010)

80. Yang, A.M., Österlund, E., Wilhelmsson, J., Nyblom, H., Wrigstad, T.: ThinGC:
complete isolation with marginal overhead. In: Ding, C., Maas, M. (eds.) 2020
ACM SIGPLAN International Symposium on Memory Management, ISMM 2020,
Virtual, London, UK, 16 June 2020, pp. 74–86. ACM (2020)

81. Yang, A.M., Österlund, E., Wrigstad, T.: Improving program locality in the GC
using hotness. In: Donaldson, A.F., Torlak, E. (eds.) Proceedings of the 41st ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation, PLDI 2020, London, UK, 15–20 June 2020, pp. 301–313. ACM (2020)

82. Yang, A.M., Wrigstad, T.: Type-assisted automatic garbage collection for lock-
free data structures. In: Kirsch, C.M., Titzer, B.L. (eds.) Proceedings of the 2017
ACM SIGPLAN International Symposium on Memory Management, ISMM 2017,
Barcelona, Spain, 18 June 2017, pp. 14–24. ACM (2017)

83. Yang, A.M., Wrigstad, T.: Deep dive into ZGC: a modern garbage collector in
OpenJDK. ACM Trans. Program. Lang. Syst. 44(4), 22:1–22:34 (2022)

Bridging Between Active Objects:
Multitier Programming for Distributed,

Concurrent Systems

Guido Salvaneschi(B) and Pascal Weisenburger

University of St. Gallen, St. Gallen, Switzerland
{pascal.weisenburger,guido.salvaneschi}@unisg.ch

https://programming-group.com/

Abstract. Programming distributed and concurrent systems is notori-
ously hard. Active objects, which encapsulate operations, state and con-
trol flow, have been investigated by researchers to alleviate this issue. In
a distributed system, message exchange among active objects or actors
often coincides with network boundaries, and determines a major mod-
ularization direction for the application. Yet, certain application func-
tionalities naturally crosscut such modularization direction. For those,
structuring the application architecture around network boundaries is
purely accidental and does not help reasoning about programs.

Recently, multitier programming has been proposed as a programming
paradigm that enables code that belongs to different peers to be devel-
oped together, in the same compilation unit. The compiler then splits
the code and generates the required deployment components.

In this work we explore the relation between multitier programming
and active objects. Multitier programming can be considered a program-
ming paradigm based on active objects with a focus on application
domains where functionalities span multiple active objects, and allows
such functionalities to be encapsulated into a single object. The multi-
tier approach keeps the asynchronous model of active objects and actors
but provides a holistic view of distributed components and their inter-
actions. Multitier programming addresses the use cases where separat-
ing components into different active objects or actors hinders encapsula-
tion and modularization across functional boundaries. In such use cases,
multitier programming can increase the level of abstraction, improve
software design, simplify code maintenance, aid program comprehension
and enable formal reasoning. A number of features of active objects are
directly visible to programmers also in the multitier programming, result-
ing in an interesting combination of language abstractions available to
developers.

1 Introduction

Modern-day ubiquitous services – including search engines, online social net-
works and streaming platforms – run on a network of interconnected comput-
ers. Typically, the components of such distributed systems are developed as
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, pp. 92–122, 2024.
https://doi.org/10.1007/978-3-031-51060-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51060-1_4&domain=pdf
http://orcid.org/0000-0002-9324-8894
http://orcid.org/0000-0003-1288-1485
https://doi.org/10.1007/978-3-031-51060-1_4

Multitier Programming for Distributed, Concurrent Systems 93

separate modules. This separation, however, comes with a number of difficul-
ties [23]. Composing the modules correctly into a complete distributed system is
a highly difficult challenge that requires intensive integration work and the man-
ual implementation of communication protocols. Thus, programmers are faced
with the complex task of implementing complicated communication schemes
between hosts, which frequently involves low-level operations prone to errors.
As a result, the distributed data flows that arise from the approach are in many
cases convoluted and scattered among several modules, making it difficult to fully
comprehend the behavior of the system as a whole. Despite the prevalence of
distributed software, the design and development of distributed systems remains
an extremely challenging task.

Multitier programming [95] presents a promising approach for taming the
complexities of developing distributed systems through language abstractions
focusing on interacting distributed components, i.e., interacting active objects
where distributed objects are bound to different threads of control and commu-
nicate asynchronously with other objects.

Active Objects. Active objects [16] build on top of object-oriented abstractions
which encapsulate operations and state, and, in addition, encapsulate execu-
tion flow. Active objects have been successfully adopted to program distributed
systems, which are concurrent by nature. This programming abstraction defines
clear boundaries among concurrency units, making them coincide with those nat-
urally defined by the object structure. Also, because of asynchronous message
passing, active objects simplify developing concurrent systems where different
parts are decoupled and progress independently. Yet, in the case of distributed
systems, active objects and their derivatives (e.g., actors) encourage program-
mers to develop software that is modularized according to network boundaries
– where the remote communication occurs. While this has been necessary for
technical reasons, software functionalities can logically span over several system
components and such separation may be not ideal [37,72,84].

Multitier Programming. In multitier programming, distributed functionalities
that cross different components are developed in a single compilation unit [95].
As a result, programmers do not need to arrange the implementation along
network boundaries but along logical functions. Since the distributed parts of
such a function naturally run concurrently in a distributed system, multitier pro-
gramming languages typically further abstract over active objects and rely on
active objects for an efficient implementation. Yet, multitier languages provide
features to deal with concurrent execution – either by exposing standard con-
currency abstractions such as futures or by abstracting concurrency away from
the developer through a compilation scheme that ensures that code that appears
sequentially in the multitier program is also executed in sequence.

Using a single (distributed) program relieves the developer from having to
break down a functionality into the parts that should be executed on different
machines. Instead of reasoning in terms of distributed components (that may mix
different functions together), developers can reason in terms of different modules

94 G. Salvaneschi and P. Weisenburger

that functionally belong together (even though they are distributed themselves)
– leaving the splitting into the components to be distributed to different machines
to the compiler [93].

Active Objects and Multitier Programming. While multitier programming pro-
vides linguistic abstractions to reason about distribution at the language level
and lets the compiler handle the actual partitioning of code and the insertion of
remote calls and handlers, the underlying execution model is fundamentally dis-
tributed active objects that asynchronously invoke methods on remote objects.
Multitier programming, however, goes beyond active objects – and actor systems
in particular – and solves some of the issues that often arise in actor-based imple-
mentations of distributed systems. In particular, control flow between actors can
get quite involved and hard to follow for developers due to the fact that actors
are highly decoupled and behavior of actors that interact to provide a logically
combined function is modeled through complex message-passing schemes. Such
functions can be expressed more directly using multitier programming. Hence,
multitier programming can be seen as both an evolution and a combination of
active objects for distributed systems.

In this work, we explore the connection between active objects and multitier
programming. We show that multitier programming addresses some of the design
issues that emerge with active objects, and we show that active objects comple-
ment multitier programming when reasoning about concurrency in a distributed
system.

2 Background

This sections provides a short overview about (1) active objects and actors as
a state-of-the-art programming model for concurrent and distributed systems
and (2) multitier programming, a programming paradigm designed to ease the
development of distributed applications where functionality spans across multi-
ple components.

2.1 Active Objects and Actors

The actor model [47] is based on independent computational entities – so-called
actors – that encapsulate both behavior and state and communicate with each
other by sending and receiving messages. An actor’s internal state can only be
modified by processing incoming messages. When an actor receives a message, it
can perform computations, modify its state, create new actors or send messages
to other actors [44]. Actors process one message at a time – messages are pro-
cessed sequentially – and do not share their state or memory, which eliminates
many of the pitfalls of traditional multithreaded programming.

Active objects extend the actor paradigm with structured communication:
Instead of message-passing, they use method calls and futures. Futures repre-
sent asynchronous return values that will be available at some point in the

Multitier Programming for Distributed, Concurrent Systems 95

Listing 1. Akka Typed actor summing up a list of numbers.

1 object SumActor {
2 sealed trait Request
3 case class Shutdown() extends Request
4 case class Calculate(
5 numbers: List[Int], replyTo: ActorRef[Result]) extends Request
6

7 case class Result(result: Int)
8

9 def apply(): Behavior[Request] =
10 Behaviors.receive { (context, message) =>
11 message match {
12 case Calculate(numbers, replyTo) =>
13 replyTo ! Result(numbers.sum)
14 Behaviors.same
15 case Shutdown() =>
16 Behaviors.stopped
17 }
18 }
19 }

future. Usually, method calls on active objects look like “normal” method calls
on (non-active) objects. They thus remove the fraction in actor systems of frag-
menting programs into (1) sending messages to emulate method invocations and
(2) sending other messages to emulate their return values. Hence, active object
became popular as an improved way to structure concurrent code.

Yet, not being able to easily distinguish synchronous and asynchronous
method invocations can also be a disadvantage. Especially in – not only con-
current, but also – distributed systems, remote methods often should not only
be executed asynchronously but they also have more fundamentally different
invocation semantics. In particular, a remote method may even never return in
case of partial failures (i.e., the remote system crashes) or network partitions
(i.e., the remote system is not reachable over the network anymore). Due to
these differences between local and remote methods, actors – that distinguish
between local method calls and remote message-passing – remain widely used
for distributed systems.

Listing 1 shows an actor implemented in Akka Typed [59]. Lines 2 to 7
define the messages that the actor can send and receive. Line 10 defines the
actor’s message handler that has to pattern-match on every type message the
actor could receive (Lines 11 to 17). In case the actor receives a Calculate

message with a list of numbers (Line 12), it calculates the sum of the numbers
and sends out the result using the ! send operator (Line 13). In the example,
the Calculate message includes an actor reference replyTo to which to send
the result – a common pattern to model returning values in actor systems.

96 G. Salvaneschi and P. Weisenburger

Another reason for using actors for implementing distributed systems is their
support for fault tolerance using supervision hierarchies. Supervision hierarchies
organize actors into a tree, where an actor acts as a supervisor for its children
and monitors their behavior [24]. Supervisors can then take appropriate actions
to handle errors in supervised actors, such as restarting a failed actor, stopping
it or propagating the error up the hierarchy.

Whereas actors proved effective to implement fault-tolerant distributed sys-
tems and actor systems are widely deployed, such systems may fall short of
achieving encapsulation of distributed functionalities because the scope of a
component in a distributed system is tied to an object or actor, i.e., to call
a method asynchronously, it has to be part of the public interface of an object.
Remote calls across objects or messages sent across actors often lead to code
with obscured data and control flow that is hard to read and follow.

2.2 Multitier Programming

Multitier programming is an approach for developing distributed systems, which
provides language abstractions to reason about different tiers of a distributed sys-
tem – for example, a client, server and a database tier – in the same compilation
unit. The code for the different tiers is either generated at run time or created
by the compiler. Code annotations, static analysis, types, or a combination of
these approaches are used to separate the code into components that correspond
to the various tiers.

A distributed application is composed of several tiers that can run on various
computers connected through a network. A typical three-tier architecture, for
example, consists of the presentation, application logic, and data management
tiers, each of which runs at a different network location. The benefit of this
approach is that each tier’s functionality can be updated independently.

However, because of this architectural choice, a functionality that cuts across
multiple tiers is now scattered across numerous compilation units. For instance,
functionality on the Web is frequently spread across the client and the server.
The tiers of a Web application are further typically implemented using different
programming languages, such as JavaScript for the browser interface, Java for
the server-side application logic and SQL for the database. Multitier languages
aim to reduce the separation between client and server by compiling client-side
code to JavaScript or by running JavaScript on the server.

In a multitier programming language, the different tiers can be programmed
in a single language. Depending on the target tier, different compilation back-
ends (such as Java for the server and JavaScript for the browser) are used.
Consequently, functionality that spans multiple tiers can be developed within
a single compilation unit. The compiler automatically adds the communication
code necessary for components to interact while the program is being executed,
generating numerous deployable units from a single multitier program (Fig. 1).

The multitier approach’s ultimate goal is to improve program comprehen-
sion, make maintenance easier and enable formal reasoning about the entire
distributed application. A number of research languages that adopt multitier

Multitier Programming for Distributed, Concurrent Systems 97

Fig. 1. Multitier programming [adopted from [95]].

concepts have been proposed and show the advantages of the approach, such
as improving software comprehension, design, reasoning and maintenance. As
a result, ideas from multitier programming have been included into a number
of industrial solutions, demonstrating the potential of this approach, such as
Ocsigen [12], Opa [83], WebSharper [14], Meteor [89] or GWT [52]. Different
multitier languages cover different areas of the design space, integrating various
techniques (such as compile time vs. run time splitting) and design choices (such
as the placement of compilation units vs. individual functions), which frequently
depend on the application domain and the software stack.

3 Modular Structuring of Asynchronous Communication

This section illustrates how developers structure asynchronous communication
in distributed systems, comparing actor systems and multitier programming. For
both approaches, we first describe them conceptually and then we demonstrate
how these concepts are applied in a real-world stream processing system.

Active objects and actors proved to be an effective abstraction for develop-
ers to organize concurrent code [2]. They allow developers to reason in terms of
a sequential execution environment within an active object or actor and com-
municating with others through asynchronous method calls or message-passing.
Although actor framework implementations can reuse threads across actors, pro-
cessing messages sequentially in every actors hides a potentially multithreaded
execution environment.

The downside of this approach is that concurrency boundaries are closely
tied to objects boundaries. This means that the concurrent parts of a system
need to be separated into different objects. In some cases, splitting concurrent
parts into separate objects aligns naturally with the problem domain and allows
for independent reasoning about the concurrency aspects. In other application
scenarios, however, this separation may increase the complexity of the implemen-
tation. Dependencies and interactions between concurrent objects can become
intricate, making it harder to comprehend and maintain the system.

98 G. Salvaneschi and P. Weisenburger

A Peak at Distribution and Concurrency in Apache Flink. To sup-
port the discussion about the design enabled by actor systems, we introduce a
concrete application which makes extensive use of actors. Apache Flink [4] is a
widely-used stream processing system. It features a distributed data-flow engine
implemented in Scala and Java, which can pipeline and execute data-parallel
programs. To increase performance, Flink is able to run different components on
different machines in a computer cluster to distribute the load for processing a
data stream across computers.

We look specifically into the task distribution system of Apache Flink, which
provides Flink’s core task scheduling and deployment logic. The task distribu-
tion system is based on Akka actors [58] and consists of 23 remote procedures
in six gateways – an API that encapsulates sending actor messages into asyn-
chronous RPCs – amounting to ∼ 500 source lines of Scala code with complex
interaction patterns. In the Flink task distribution system, a JobManager actor
is responsible for assigning data processing tasks to TaskManager actors.

3.1 The Actor Approach

Actor languages provide dedicated features to represent different concurrently
executing components of a distributed system – so-called actors. Actors nat-
urally capture the concurrent nature of distributed systems and significantly
simplify the development of such systems in several ways, making them suitable
for building distributed and highly available systems.

Concurrency Abstraction. The primary feature of the actor model – both for
distributed and for local concurrent systems – is that it offers a structured way
to manage concurrency without worrying about low-level synchronization prim-
itives [1]. Further, the model ensures that actors operate in isolation and their
internal state is not directly accessible by other actors. This isolation simpli-
fies concurrent programming as actors do not need to be aware of each other’s
internal state or execution details.

Fault Tolerance and Scalability. A notable benefit of the actor model, in partic-
ular in a distributed setting, is its fault tolerance [64]. Since actors are isolated
from each other, failures in one actor do not directly impact others. If an actor
crashes or becomes unresponsive, it can be restarted or replaced without affecting
the overall system. For the same reason, the actor model also promotes scala-
bility. New actors can be added or removed dynamically without affecting the
overall system, enabling flexible scaling of the application to changing demands
or requirements.

Modularity. The actor model also fosters modularity since actors are independent
entities, which both encapsulate their private state and can be tested individually.
However, an important aspect of the behavior of the entire distributed system
stems from the communication and interaction between the actors, which can
become quite complex, especially in systems with a large number of actors and

Multitier Programming for Distributed, Concurrent Systems 99

Listing 2. Communicating Flink actors [adopted from 93].

(a) Message definition.

1 package flink.runtime
2

3 case class SubmitTask(td: TaskDeployment)

(b) Calling side.

1 package flink.runtime.job
2

3 case class SubmitTask(td: TaskDeployment)
4

5 class TaskManagerGateway {
6 def submitTask(td: TaskDeployment, mgr: ActorRef) =
7 (mgr ? SubmitTask(td)).mapTo[Acknowledge]
8 }

(c) Responding side.

1 package flink.runtime.task
2

3 class TaskManager extends Actor {
4 def receive = {
5 case SubmitTask(td) =>
6 val task = new Task(td)
7 task.start()
8 sender ! Acknowledge()
9 }

10 }

intricate dependencies. Understanding the behavior of individual actors in a
complex system can be challenging [94]. As actors operate independently and
asynchronously, tracing the flow of messages and identifying the root cause of
issues can be more difficult compared to more traditional programming models.

The Actor Version of Apache Flink. As it is commonly done in actor-based
distributed systems today, the different distributed components of Apache Flink
are implemented as different actors. As usual, communication between Flink
actors is based on message-passing. Besides Flink, a number of other open-source
projects (e.g., the Play Framework for web applications [57] or the Gatling load-
and performance-testing framework [40]) and companies (e.g., PayPal [60] or
Capital One [61]) use Akka actors.

100 G. Salvaneschi and P. Weisenburger

Concurrency Abstraction. Listing 2 shows an excerpt of the – extensively sim-
plified – interaction of the TaskManagerGateway with the TaskManager, taken
from Apache Flink’s task distribution system. The snippets show an example
of sending and receiving of only a single message. The TaskManagerGateway

is used by the JobManager actor to communicate with the TaskManager actor
to submit data processing tasks to the TaskManager. Note that, in contrast to
Listing 1, Flink uses the untyped version of Akka with a slightly different syntax.
Listing 2a defines the SubmitTask message that is exchanged between the actors
and which contains the meta data for the task to be executed by the TaskMan-
ager. Listing 2b shows the sending of the message (Line 7) from the JobManager
using the ? send operator. As opposed to the fire-and-forget style of the ! send
operator (shown in Listing 1), the ? operator implements a request-response pat-
tern. With this operator, the next message from the addressed actor is treated
as a response, which is then made available as result of ? in the form of a future
containing the response message. Listing 2c shows the receiving of the message
on the TaskManager. The TaskManager defines the actor message loop as its
receive method (Line 4) that pattern-matching on the received messages (Line
5) and carries out a computation that depends on he received message (Lines 6
to 8), e.g., starting the task that was assigned by the JobManager.

The full receive methods of course contains a multitude of cases for the
different messages which the actor can handle. While messages can be sent to
an actor concurrently, programmers can safely assume that only one message is
processed in the message loop at a time, relieving them from the complexities of
handling intricate concurrency problems such as race conditions when accessing
the actor’s internal state from inside the message loop.

Fault Tolerance and Scalability. The actor-based design allows Flink to easily
scale up to a large number of nodes to keep up with an increasing incoming
stream of data to be processed. To achieve this, Flink can spawn actors on
additional computer node to handle processing parts of the stream. For example,
if the system requires additional computing power to process increased amounts
of data, the JobManager can submit processing task to additional TaskManagers
to carry out the processing work. Further, thanks to the actor model, if nodes
fail or become unresponsive, Flink can re-spawn the respective actor (potentially
on another node), making the system highly tolerant to faults.

Modularity. A potential issue of the actor model’s message-passing scheme –
where messages sent in some part of the code are processed by a completely
separated part – in terms of code comprehension and maintenance is that it is
not straightforward to map call sites modeled by sending messages to the sites
where the messages are handled, which convolutes the control flow between the
different actors, making it hard for developers to keep track.

The small code excerpt (Listing 2), illustrates how the task submission func-
tionality is scattered over different modules, making it difficult to correlate sent
messages (Listing 2b, Line 7) with the remote computations they initiate by
pattern-matching on the received message (Listing 2c, Lines 6 to 8). Further, it

Multitier Programming for Distributed, Concurrent Systems 101

Fig. 2. Communication of two actors in Apache Flink [adopted from [94]].

is worth noting that the message loop of the TaskManager does not only handle
a single type of message sent via the TaskManagerGateway. Due to the modular-
ization enforced by the actor’s remote communication boundaries, the message
loop also needs to handle messages belonging to unrelated functions that should
be executed on the TaskManager.

To provide a broader overview of the scattered control flow in Apache Flink,
Fig. 2 depicts a larger portion of the communication between the two actors. The
figure shows a part of the JobManager implementation (dark gray boxes, left),
the TaskManager implementation (light gray boxes, right) and their communi-
cation (arrows). Every box is an actor which is confined by network boundaries.
Thus, cross-host data flow belonging to the same (distributed) functionality is
scattered over multiple objects.

Notably, Flink implements its own abstraction over message-passing that
encapsulates the sending of messages into asynchronous remote procedure calls.
As such, Flink is essentially using active objects, built on top of actors. Most of
these calls are processed in a different compilation unit within another package,
making it difficult to correlate the messages sent with the remote computations
they trigger.

102 G. Salvaneschi and P. Weisenburger

A closer look at the code reveals that the reason these remote procedures are
implemented as public object methods is not because they represent a reusable
function – in fact they often only have a single call site. Instead, the reason
is that this structure to organize distribution is imposed by the actor model,
which tempts to combine unrelated functionalities into a single actor because
they incidentally run on the same component rather than properly separating
them.

3.2 The Multitier Approach

Multitier programming follows the active objects or actor systems approach of
providing developers with language abstractions for explicitly defining concur-
rent entities and the code they execute. The focus of multitier programming
is to provide and enhance the language features for handling the communica-
tion between these entities [85]. Such entities, like active object or actors, are
represented by different tiers in multitier programming [30]. Tiers decouple the
concurrency (and distribution) abstractions from the objects/actors. Hence, the
concurrency boundaries do not need to be at the level of objects. Different meth-
ods of the same object can run concurrently at different locations.

Multitier programming thus addresses the modularization issues of active
objects and actors [93] that especially arise in application scenarios where remote
functions are not loosely coupled but work closely together to achieve a common
goal and provide a joint functionality.

Basic Multitier Language Features. Multitier languages typically give the devel-
oper full control over where values are placed and computations are executed
using a variety of different techniques such as annotations, types or multi-
stage programming. For illustration, we will use a language where placement
is expressed in the types. For example, a value of type Int on Server represents
an integer value that lives on the server, and a method of type String on Client
represents a method that will execute on the client and return a string. A main
method, which runs on the client when it starts, has the signature main(): Unit
on Client – i.e., the method receives no arguments, has a void return value (i.e.,
it returns the singleton unit value) and lives on the client. Calling methods that
live on other tiers looks similar to traditional (local) method calls. In particular,
remote calls are fully type-checked across distributed components and remote
methods are looked up according to the usual scoping rules (e.g., defined in
the same lexical scope, imported, inherited, etc.). In the following presentation,
remote calls are explicit through the remote call marker. Note that there also
exist multitier languages in which remote calls are transparent.

Listing 3 places the main method on the client (Line 1), where it keeps reading
line-by-line from standard input (Line 2). For every line, it calls the fire method
on the server remotely (Line 3), which in turn calls the show method on the client
remotely (Line 6) to print the line to standard output (Line 9). The remote call
to fire (Line 3) requires the remote call marker since the fire method is
placed on the server (Line 5) but is invoked within the main method placed on

Multitier Programming for Distributed, Concurrent Systems 103

Listing 3. Method with specified placement.

1 def main(): Unit on Client =
2 for (line <- io.Source.stdin.getLines)
3 remote call fire(line)
4

5 def fire(message: String): Unit on Server =
6 remote call show(line)
7

8 def show(message: String): Unit on Client =
9 println(line)

Listing 4. Nested code blocks with specified placement.

1 def main(): Unit on Client =
2 for (line <- io.Source.stdin.getLines)
3 on[Server].run.capture(line) {
4 on[Client].run.capture(line) {
5 println(line)
6 }
7 }

the client (Line 1). Hence, it is statically known where remote calls appear and
which method is invoked to handle them.

As the example illustrates, multitier programming brings programming dis-
tributed applications closer to the development of “traditional” non-distributed
applications. Both method definitions and calls look similar to the usual way of
defining and calling methods – with the only new language features being the
ones required for distribution, namely the specification of the placement and
marking remote accesses.

Multitier languages typically take the possibility to compose code on different
tiers one step further and do not only allow methods to be placed on tiers but
also expressions inside methods. For example, Listing 4 implements the same
logic as the snippet above but nests the expressions to be run on the client
(Lines 1 and 4) and on the server (Line 3) inside each other.

In our example language, an expression of the form on[T].run is used to
divert the control flow to another tier. In this language design, we also require
developers to explicitly list the values that should be transferred to another
tier using the capture clause. This design choice aims to avoid accidental cap-
tures which are distinctively more costly in a distributed setting – compared to
captures in local closures, for example – as they require additional data to be
transmitted over the network. The compiler issues an error if variables are used
in a nested placed block without being explicitly captured, as this situation may
indicate a potentially expensive programming mistake.

104 G. Salvaneschi and P. Weisenburger

Listing 5. Distributed architecture specification.

1 @multitier object Chat {
2 @peer type Server <: { type Tie <: Multiple[Client] }
3 @peer type Client <: { type Tie <: Single[Server] }
4

5 def main(): Unit on Client = /∗ ... ∗/
6 def fire(message: String): Unit on Server = /∗ ... ∗/
7 def show(message: String): Unit on Client = /∗ ... ∗/
8 }

Distributed Architectures. Multitier languages use different underlying sys-
tem architectures or application topologies. Historically, multitier programming
focused on client–server Web applications. Hence, most approaches have a server
and a client – and sometimes a database – as the only supported tiers baked
into the language model. They differ in whether they treat the server side as the
single instance of the server code that serves a connected client or as one server
instance serving all connected clients. The former case leads to a one-to-one con-
nection between server and client sides. In such case, the example presented in
Listing 3 will lead to the server echoing the message from the client back to the
same client that sent the message. The latter case leads to a one-to-many con-
nection between server and clients. In the example (Listing 3), the server would
then forward the message from one client to all connected clients, essentially
implementing a simple command line chat.

While the underling topology may be implicit and built into the language, we
will use a multitier language that makes the involved peers and their architectural
connection explicit – extending the scope beyond the Web and the client–server
model. In Listing 5, we assume that the main, fire and show methods are
implemented as before (Listing 3) and part of the Chat object. Lines 2 and 3
define the peers and their relation: A server that can handle multiple clients and
a client that is connected to a single server.

Modularization, Encapsulation, Composition. Separating the distribution aspect
from the object structure in multitier programming allows developers to return
to using OOP abstractions for structuring, modularizing and composing their
code based on distinguishing functionalities rather than locations. A single mod-
ule – e.g., an object, class, trait, mixin, depending on the abstractions offered
by the language – can contain functionalities that are themselves distributed.
Hence, a module can abstract also over distributed functionalities: Distribution
will not leak if it should not be exposed as part of the public interface. To inte-
grate functionality defined in different modules, developers can use the usual
techniques such as inheritance, delegation, composition or mixins.

For example, we can define different variants for the chat examples, e.g., one
using a command line interface (like before, Listings 3 and 5) and another one
using a graphical user interface. First, as shown in Listing 6, we can factor out

Multitier Programming for Distributed, Concurrent Systems 105

Listing 6. Abstract multitier module.

1 @multitier trait Chat {
2 @peer type Server <: { type Tie <: Multiple[Client] }
3 @peer type Client <: { type Tie <: Single[Server] }
4

5 def main(): Unit on Client
6

7 protected def fire(message: String): Unit on Server =
8 remote call show(line)
9

10 protected def show(message: String): Unit on Client
11 }

Listing 7. Concrete implementation of abstract multitier module.

1 @multitier object CommandLineChat extends Chat {
2 def main(): Unit on Client =
3 for (line <- io.Source.stdin.getLines)
4 remote call fire(line)
5

6 protected def show(message: String): Unit on Client =
7 println(line)
8 }

the architecture (Lines 2 and 3) and the common methods (Lines 5, 7 and 10),
leaving the implementation of the methods abstract (Lines 5 and 10) that are
to be implemented by a specific variant.

The command line chat variant (Listing 7) then only needs to implement the
abstract methods (Lines 2 and 6), inheriting the architecture and the distributed
functionalities form the Chat trait defined in Listing 6. In the example, the
methods that are only relevant to the module or its sub-modules are access-
protected using the usual protected visibility modifier.

Multitier programming goes beyond active objects and the actor model by
enabling the separation of distribution concerns and OOP mechanisms used for
modularization and composition. The ability to declare placement as an orthog-
onal dimension in the language relieves the developer from having to manually
model placement and being forced to align the structure of the program with
the boundaries of active objects or actors. Multitier objects can be composed
like standard objects but different parts of their code can be run across different
distributed components.

A Multitier Version of Apache Flink. In the case of Apache Flink, many
remote procedures could be expressed more directly using nested remote expres-
sions. Listing 8 shows a multitier variant of the interaction between JobMan-

106 G. Salvaneschi and P. Weisenburger

Listing 8. Communicating Flink peers [adopted from 93].

1 @multitier object TaskManagerGateway {
2 @peer type JobManager <: { type Tie <: Multiple[TaskManager] }
3 @peer type TaskManager <: { type Tie <: Single[JobManager] }
4

5 def submitTask(td: TaskDeployment, tm: Remote[TaskManager]) =
6 on[JobManager] {
7 on(tm).run.capture(td) {
8 val task = new Task(td)
9 task.start()

10 Acknowledge()
11 }
12 }
13 }

ager and the TaskManager of Listing 2. The multitier version uses an intra-
module cross-peer remote call (Line 7) to execute the data processing task on
the TaskManager (Lines 8 to 10). Thus, related functionalities are kept inside
the same TaskManagerGateway module and the multitier module contains the
functionality that is executed on both the JobManager and the TaskManager

peer.
Figure 3 shows a reimplementation of Fig. 2 using the multitier approach.

The cross-peer data flow in the system is much more regular – thanks to the
reorganization of the same code in a single unit – and thus much easier to track.

In the Flink example, the different distributed sub-functionalities of the task
distribution system can be encapsulated into their own module. Besides the
module already shown in Figs. 2 and 3, the task distribution system consists of
five further individual functionalities. Figure 4 shows the task distribution system
module (background), composed by mixing together the modules for the different
sub-functionalities (foreground). Cross-peer data flow (arrows) is encapsulated
within modules and is not split over different modules. As before, the data flow in
each module spans across the JobManager (dark gray) and TaskManager (light
gray) peers.

4 Discussion

This section discusses the similarities and differences among active objects, actors
and multitier programming. Finally, we highlight the areas where multitier pro-
gramming strives for improvement compared to alternative approaches.

4.1 Active Objects vs. Actors vs. Tiers

Multitier programming adopts the same approach of actors and active objects
to decouple method invocation and method execution. Invoking a method on
an active object – or sending a message to an actor – returns immediately. The

Multitier Programming for Distributed, Concurrent Systems 107

Fig. 3. Flink: Multitier
approach [from [94]].

method itself is executed – or the message is
dispatched – asynchronously. Hence, the multitier
approach retains the basic asynchronous execution
model of active objects and actors. In fact, every
tier can be thought of as an active object on which
the methods that are placed on the tier can be exe-
cuted. The execution of a remote method is neces-
sarily asynchronous since the threads of execution
of the different tiers are – even physically – sepa-
rated. Some languages hide the asynchronicity from
the developer by compiling the multitier code to
continuation-passing style and invoking the contin-
uation only when the remote result becomes locally
available [30]. Other languages make the asyn-
chronicity of the result explicit by having remote
methods return futures [94] – similar to how asyn-
chronicity is often handled in active objects – or by
employing coroutine-based approaches for coopera-
tive multitasking [29].

Multitier languages, however, provide a holistic
view on the distributed components and their inter-
action. They tackle situations where the interaction
between active objects or actors hinders encapsu-
lation and proper modularization along meaning-
ful functional boundaries, when different places are
treated as different objects or actors. To achieve
this goal, the multitier paradigm is characterized by
linguistic features for expressing different tiers and
their interaction. Therefore, multitier programming
especially focuses on application scenarios where
systems that are designed “as a whole” and a holis-
tic view simplifies the reasoning about the system
for the developer. In these scenarios, multitier pro-
gramming can serve to bridge the communication
across distributed active entities.

4.2 Development Benefits

In summary, the development benefits of the multi-
tier programming paradigm revolve mainly around
the following aspects.

Higher Abstraction Level. Multitier programming simplifies software develop-
ment for distributed systems by abstracting away low-level details such as net-
work communication, serialization, and data format conversions [82], allowing

108 G. Salvaneschi and P. Weisenburger

Fig. 4. Communication of two actors in Apache Flink: Multitier modularization
[adopted from [93]].

developers to work at a higher level of abstraction [94]. With multitier program-
ming, there is no need for manual design of inter-tier APIs, as the underlying tech-
nologies used for inter-tier communication are transparent to the developer [85].

Improved Software Design. In distributed applications, the boundaries between
hosts and functionalities may not always align, with functionalities spanning
multiple locations and a single location hosting multiple functionalities. Pro-
gramming each location separately introduces two issues: compromised mod-
ularity and code repetition. Multitier programming addresses these problems
by enabling the development of a functionality once and placing it where
needed [36].

Formal Reasoning. Multitier design improves formal reasoning by explicitly mod-
eling distributed applications and capturing important aspects such as place-
ment, system components, and tier boundaries. This approach enables thorough
analysis of software properties across the entire system, instead of treating com-
ponents in isolation. It supports reasoning about concurrency [76], security [13],
performance optimization [26], as well as domain-specific properties like reacha-
bility in software-defined networks [75].

Code Maintenance. Multitier programming simplifies the process of modifying
software systems in two notable ways. First, it allows for migrating functionality
between different tiers without the need for a rewrite in a different language [43]
(i.e., validating user input on both the client and server sides without code dupli-
cation). Second, it provides easier migration of applications across different plat-

Multitier Programming for Distributed, Concurrent Systems 109

forms [46] (e.g., simply changing the compilation target to JavaScript for a Web
client).

Program Comprehension. Multitier programming simplifies program comprehen-
sion – i.e., the complexity that programmers face to develop a correct mental
model of a program [88] – by enabling seamless data flow across multiple hosts,
eliminating communication code details and interruptions from forcing modular-
ization along peer boundaries. Thereby, multitier programming simplifies devel-
opment and debugging [66]. Yet, so far, we lack empirical studies or controlled
experiments measuring the specific advantage of multitier programming in terms
of program comprehension.

5 A Research Roadmap

This section outlines open challenges and opportunities for future research on
multitier programming.

Dynamic Placement. Existing multitier languages assign the application func-
tionalities to the nodes in the system based on various mechanisms, such as
user annotations, types, and static analysis. Serrano et al. [85] and Cooper et
al. [30] introduced multitier languages that incorporate two places as annota-
tions on functions: client and server. Murphy et al. [74] developed a type system
based on modal logic to represent different places as possible worlds. Type-based
approaches have also been used to describe the interaction of places. Notably,
multiparty session types [49] provide static specifications for communication pro-
tocols. Choreographic programming [41] ensures safe communication protocols
across different locations encoded by different type parameters. Information flow
type systems have been employed to define the placement of data and computa-
tion, preventing the leakage of private data to untrusted parties [99].

All these mechanisms are based on compile time assignment of functionalities
to nodes. Yet, in distributed systems, often, functionalities need to be assigned
to nodes during the program execution, usually to improve performance.

Dynamic placement decisions play a crucial role in various computing
domains. First, both computation and the resulting data placement can be
dynamically decided. For instance, in a master–worker system, the master lever-
ages information about the execution environment and the job’s parameters to
determine the most suitable worker [97]. In this scenario, the computed result
is dynamically placed at the location where it was generated. Second, computa-
tion can depend on data that is being transferred between different places. For
instance, data that is frequently accessed in a remote database is often stored in
a cache for access speed [7,101]. An application that operates on data should be
able to handle both the database-stored data and the data residing in the cache.
Conversely, data that does not exist in either the database or the cache may
require distinct handling, e.g., when dealing with data received from a client, it
is necessary to sanitize the data prior to storage.

110 G. Salvaneschi and P. Weisenburger

Developers need to tackle the lack of programming abstractions for dynamic
placement themselves by manually encoding placement information into the pro-
gram. The first option is to extract a common interface, treating the system
as homogeneous, consisting of a single type of place. This approach, however,
leads to a loss of precision necessary to distinguish between various types of
places. Consequently, this approach can potentially cause run time errors as the
distinctions among nodes are abstracted away. The second option involves not
explicitly extracting any interface but relying solely on the programmer’s aware-
ness of equivalent functionalities across different places. This approach, however,
does not support dynamic placement efficiently as the same functionality needs
to be implemented multiple times for the different places, resulting in code rep-
etitions.

Active objects provide a high degree of flexibility to decide their placement
dynamically. Actor systems in particular typically provide location transparency,
i.e., they abstract away the actors’ placement. However, these models lack the
static reasoning about placement and the automatic compiler checks found in
multitier languages. So far, we lack programming models that combine the
strength of both approaches. Finding a practical language abstractions to trade-
off static safety guarantees and the ability to decide placement dynamically is
still an open problem.

Error Handling. In software execution, error occurs in various circumstances,
for example when dealing with the external environment (e.g., I/O). Another
class of errors occurs in the case of software bugs (e.g., in the case of null val-
ues). In distributed systems, software applications are executed on several nodes.
Hence the overall probability that (at least) one of the nodes fails increases with
the number of nodes. In addition, network connections can also fail, leading to
packet loss and system partitioning. These potential errors need to be modeled
in the application to give developers the opportunity to execute a reaction. This
mechanism can be implemented in various ways. Actor systems provide supervi-
sion hierarchies where certain actors that “supervise”, i.e., monitor, other actors
– the supervisor can react to failing supervised actors. Different actor systems
can offer different means to setup supervisors.

In Akka, supervision trees are defined by configuring parent actors with super-
visor strategies, which dictate the parent’s response to child failures. Akka pro-
vides several built-in strategies, such as the OneForOneStrategy, which restarts
only the failing child, or the AllForOneStrategy, which restarts all children
upon a single child’s failure. Erlang OTP [8] utilizes a similar approach with
its supervisor behavior, where a supervisor process is responsible for starting,
stopping, and monitoring its child processes. In this case, supervision trees are
built by composing supervisors and worker processes, with supervisors specify-
ing restart strategies and intensity, allowing for fine-grained control over failure
handling.

Supervision trees offer several advantages for fault-tolerant systems. First, the
hierarchical organization of actors provides a clear structure for error handling,
with each level of the tree responsible for a specific subset of actors. Second, the

Multitier Programming for Distributed, Concurrent Systems 111

isolation between actors prevents errors from cascading uncontrollably through
the system. Also, supervision trees enable self-healing capabilities in a system
by restarting failed actors, often allowing the system to recover from failures
without manual intervention. This promotes system resilience, as the impact of
isolated errors can be minimized and the system can continue functioning despite
component failures.

As most multitier languages make the underlying actors visible, e.g., as types
or annotations, it is conceivable that a multitier language can provide similar
features to define supervision relations. So far, however, multitier languages have
not developed such specific fault tolerance mechanisms yet. This is partly due to
their origins as languages for web development, where neither the server has the
ability to stop or restart clients nor the other way around. Yet, with multitier
languages expanding their scope beyond web applications, dedicated features for
fault tolerance will become more important. For example, a multitier program-
ming framework could allow developers to specify whether only the failed or all
supervised peers should be automatically restarted in case of failures, while also
deciding whether to wipe or retain their state – akin to supervision strategies in
actor systems.

Consistency. Message ordering guarantees vary in different actor systems. One
basic requirement is that messages sent by the same source actor are processed in
the same receiving actor in the exact order they were sent. This ordering property
transitively holds true even when messages are relayed through multiple actors.
For example, if actor A sends messages to actor B, and B forwards them to actor
C, actor C receives the messages in the same order they were generated by actor
A. However, actor systems like Erlang, do not provide ordering guarantees when
actor A sends two messages to actors B and C, and both B and C forward these
messages to the same actor D. In such cases, there is no guarantee on the order
in which messages are received by D.

Generally, this kind of non-deterministic message ordering can introduce
inconsistencies if the processing order of messages affects the outcome. Yet, in
distributed systems based on message-passing, guaranteeing a specific sequence
of messages may incur overhead, both in terms of maintenance complexities for
the developers and in terms of potential run time performance implications.

Further, in distributed actor systems, issues like network problems or node
failures can cause delays in message transmission or even result in message loss.
If a particular actor relies on a specific message to carry out its operations,
the loss of that message can introduce inconsistencies and disrupt the desired
behavior. Actor systems are typically stateful with each actor maintaining its
own private state. An actor’s state can only be modified by the actor itself,
usually in response to received messages. Hence, when different actors receive
messages in a different order or miss certain messages, their internal states can
diverge. These data inconsistencies across actors can lead to unexpected behavior
and undesired outcomes. Thus, handling message loss is crucial to maintaining
consistency.

112 G. Salvaneschi and P. Weisenburger

Traditionally, synchronization techniques such as locks are used to prevent
such inconsistencies. To ensure that state changes are carried out consistently
across multiple operations, operations are grouped into transactions, which are
executed atomically, guaranteeing that either all operations take effect or none
of them do. Such concurrency control mechanisms, however, are challenging in
distributed actor systems. The distributed nature of actor systems, where actors
work independently and communicate through message passing, adds complexity
to the coordination process. Coordinating multiple actors to achieve consistent
outcomes throughout the system requires careful design and synchronization.

These issues often render strong consistency impractical in distributed sys-
tems. Instead, these systems often resort to a weaker consistency model, such as
eventual consistency. In an eventual consistency model, a certain level of consis-
tency is guaranteed over time but is not enforced immediately.

Reasoning about consistency in distributed system is still an active area of
research. To aid developers in understanding the behavior and the consistency of
distributed systems, multitier programming offers a valuable approach by provid-
ing a holistic view of the system and the interactions among the different actors,
multitier programming facilitates reasoning about consistency in distributed sys-
tems. One promising direction yet to be explored is the automatic generation
of consistency schemes based on a hypothetical sequential execution of multitier
code. This approach could offer insights into effectively achieving consistency in
distributed systems by automatically deriving suitable consistency mechanisms
from the code structure. Additionally, consistency types [48,53] are a promis-
ing technique for statically reasoning about consistency properties. They allow
developers to analyze and reason about the expected consistency of distributed
systems at compile-time, catching potential inconsistencies early on.

6 Related Work

Programming Languages and Calculi for Distributed Systems. Multitier program-
ming emerged from a rich lineage of programming language design for distributed
systems, influenced by notable distributed languages such as Argus [62], Emer-
ald [15], Distributed Oz [45,90], Dist-Orc [5] and Jolie [73]. Additionally, vari-
ous frameworks for big data processing have emerged in recent years, including
Flink [20], Spark [98], Dryad [51], PigLatin [77] and FlumeJava [25]. These frame-
works refine and generalize the original MapReduce [35] model, transparently
handling fault tolerance, replication, and task distribution. Further, significant
contributions have been made towards designing programming languages that
cater to specific aspects of distributed systems. For example, conflict-free repli-
cated data types (CRDT) [86,87] or cloud types [18] ensure eventual consistency,
Ericsson’s Calvin [79] provides a programming frameworks for mixed IoT/Cloud
development and Spores [68] provide language support for distribution of com-
putations and fault tolerance [69].

Formal calculi have been developed to model distributed systems. They pro-
vide varying levels of abstraction for placement and communication across peers.

Multitier Programming for Distributed, Concurrent Systems 113

Process calculi such as the π-calculus [70,71] are especially common to model
the behavior of distributed systems. In the π-calculus and its variants, different
processes represent the execution threads of the different peers. In particular,
the join-calculus [38] defines processes communicating through asynchronous
message-passing over channels. The Ambient calculus [21] describes concurrent
systems involving mobile devices and computation. It allows the definition of
named places where computations take place, with the ability to move ambi-
ents between nested places, representing administrative domains and access con-
trol. The Cloud Programming Language (CPL) [17] serves as a core calculus for
composing services in cloud computing environments. CPL employs an event-
based approach and provides combinators that enable secure composition of
cloud applications.

Choreographies. Choreographic programming defines a concurrent system as a
unified compilation unit, which provides a global description of the interactions
and computations among connected components within a distributed system,
known as a choreography [56,73,92]. Similar to multitier programming, the com-
piler automatically generates implementations for each component [19]. However,
choreographic programming differs in that it makes the communication protocol
between peers explicit. The compiler ensures that the generated code strictly
adheres to this defined flow. The foundations of choreographic programming lie
in process calculi [11], which has been used to explore novel techniques in infor-
mation flow control [63], deadlock-free distributed algorithms [32], and protocols
for dynamic run time code updates for components [81]. Giallorenzo et al. [42]
make a first attempt to systematically compare choreographic programming and
multitier programming.

Aggregate Programming. The concept behind aggregate programming is to allow
the specification of global behaviors for distributed systems by defining local com-
putations. The Field calculus [9] is designed to specify and execute distributed
computations over devices embedded in a spatial environment. This environ-
ment might include diverse entities like sensor networks, mobile robots, or other
distributed systems where there is a notion of spatial distribution. In Field cal-
culus, computations are expressed in terms of fields, which are functions from
space-time to data values. Devices can read and modify the local values of these
fields and use the information from neighboring devices to compute new field
values. The paradigm promotes the idea that by providing the right local inter-
actions and computations, more complex global behaviors can emerge without
the need for central coordination. Field-based computing [54,65,91] is a pro-
gramming model where the overall distributed system behavior is understood
as producing a computational field, i.e., a map from network nodes to values.
Among the most important advantages, by abstracting over the role of individ-
ual devices, it is possible to define a programming paradigm where concurrency,
asynchronicity, network communication, message loss and failures do not need
to be handled explicitly [10]. Both aggregate and multitier programming aim to
improve the development of complex distributed systems. In multitier program-

114 G. Salvaneschi and P. Weisenburger

ming, the system architecture is explicitly defined, composed of heterogeneous
tiers, each representing a specific function or component. Aggregate computing,
on the other hand, builds on a network of homogeneous devices that execute
localized computations, which collectively contribute to the overall behavior of
the system.

PGAS Languages. Partitioned global address space languages (PGAS) [34] offer
a programming model designed for high-performance parallel execution. The
X10 language [27], for example, parallelizes task execution using a work-stealing
scheduler, enabling developers to write highly scalable code. The X10 program-
ming model features explicit fork/join operations to make the communication
cost visible. The language’s advanced dependent type system [26] captures the
specific place to which a reference points. While both PGAS and multitier lan-
guages aim to reduce host boundaries between places for simplified develop-
ment, their scopes differ significantly. PGAS languages primarily target high-
performance computing in dedicated clusters, whereas multitier programming
focuses on networked distributed systems on the Internet. Hence, places in mul-
titier programming represent the different peers of a distributed system, whereas
places in PGAS refer to partitions in a shared global heap address space.

Software Architectures. Software architectures [39,78] organize software systems
into components with defined connections and interaction constraints. Architec-
ture description languages (ADLs) [67] specify components, connectors, architec-
tural invariants, and a mapping of architectural models to implementation infras-
tructure. ArchJava [3] aims to combine architecture specification in the style of
ADLs with the actual system implementation in a single language. Hilda [96] is
a language at the intersection of multitier and modeling languages and enables
automatic partitioning of data-driven multitier software using a declarative lan-
guage similar to UML. Component models [31], influenced by ADLs and object-
oriented design, separate concerns in the entire software system, defining com-
ponent interfaces and composition mechanisms, and enforcing strong interfaces
with other modules. In the distributed setting, component-based development
typically models the distributed system components as separate units, forcing
developers to modularize along network boundaries.

Big Data Processing Systems. A significant factor contributing to the success of
modern big data systems is the availability of a programming interface that –
similar to multitier programming – enables developers to program components
running on different hosts within the same compilation unit, with the big data
processing framework handling communication and scheduling. This kind of sys-
tems includes batch processing frameworks like Hadoop [35] and Spark [98] and
stream processing systems such as Flink [4] and Storm [6]. Yet, the domain of
big data processing systems is limited enough that they can completely abstract
distribution concerns away. Further, the language semantics of these systems
visibly differs, e.g., mutable shared variables are transformed into non-shared
separated copies.

Multitier Programming for Distributed, Concurrent Systems 115

Operator Placement. In contrast to explicit placement methods – such as using
annotations as typically found in multitier programming – the operator place-
ment problem focuses on determining the best host for deploying each operator
in a distributed system. In this domain, the best placement is the one that max-
imizes a specific metric like throughput [33,55] or load [28]. Various approaches
have been proposed to address the operator placement problem, including the
use of overlay networks where operators are assigned to hosts through random
selection [50], network modeling [80] and linear optimization techniques for find-
ing the optimal solution to a constraint problem [22]. While these systems typ-
ically consider operators as the deployment unit, Zhou et al. [100] suggest a
coarser granularity approach where query fragments, i.e., groups of operators,
are deployed to reduce the load on the placement algorithm.

7 Conclusion

Active objects have been studied for long as a language abstraction that encap-
sulates not only state and operations, like objects, but also a process. This
work delved into the multitier programming language paradigm, which is rooted
in active objects and improves on some aspects of active objects when a dis-
tributed system is conceived as a cohesive unit. In multitier programming, code
that belongs to different peers within a distributed system can coexist within
the same compilation unit. It is the responsibility of the compiler to split the
code into deployment components and add the necessary networking code. We
showed that multitier programming achieves positive results in modularizing dis-
tributed and concurrent applications, abstracting over network communication
and host boundaries, and outlined areas that present open challenges. As active
objects are the ideal compilation target for multitier languages and their exe-
cution model of such languages is based on interacting active entities, active
objects remain visible for developers when they implement data exchange across
peers using multitier programming.

Acknowledgements. This work has been supported by the Swiss National Science
Foundation (SNSF), grant 200429.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, USA (1986). ISBN 0-262-01092-5

2. Agha, G., Hewitt, C.: Concurrent programming using actors: exploiting large-scale
parallelism. In: Maheshwari, S.N. (ed.) FSTTCS 1985. LNCS, vol. 206, pp. 19–
41. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-16042-6_2. ISBN
978-3-540-39722-9

3. Aldrich, J., Chambers, C., Notkin, D.: Archjava: connecting software architec-
ture to implementation. In: Proceedings of the 24th International Conference on
Software Engineering, ICSE ’02, pp. 187–197, New York, NY, USA. ACM (2002).
ISBN 1-58113-472-X, https://doi.org/10.1145/581339.581365

4. Alexandrov, A., et al.: The stratosphere platform for big data analytics. VLDB
J. 23(6), 939–964 (2014). ISSN 1066–8888, https://doi.org/10.1007/s00778-014-
0357-y

https://doi.org/10.1007/3-540-16042-6_2
https://doi.org/10.1145/581339.581365
https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.1007/s00778-014-0357-y

116 G. Salvaneschi and P. Weisenburger

5. AlTurki, M., Meseguer, J.: DIST-ORC: a rewriting-based distributed implemen-
tation of Orc with formal analysis. In: Proceedings First International Workshop
on Rewriting Techniques for Real-Time Systems, RTRTS ’10, pp. 26–45 (2010).
https://doi.org/10.4204/EPTCS.36.2

6. Apache Software Foundation. Storm (2011). http://storm.apache.org/
7. Arani, Z., Chapman, D., Wang, C., Gruenwald, L., d’Orazio, L., Basiuk, T.:

A scored semantic cache replacement strategy for mobile cloud database sys-
tems. In: Bellatreche, L., et al. (eds.) TPDL/ADBIS -2020. CCIS, vol. 1260, pp.
237–248. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55814-7_20,
ISBN 978-3-030-55814-7

8. Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010). ISSN 0001–0782.
https://doi.org/10.1145/1810891.1810910

9. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus
of computational fields. ACM Trans. Comput. Log. 20(1) (2019). ISSN 1529–3785.
https://doi.org/10.1145/3285956

10. Audrito, G., Roberto, C., Damiani, F., Guido, S., Mirko, V.: Functional program-
ming for distributed systems with XC. In: Ali, K., Vitek, J. (eds.), Proceedings
of the 36th European Conference on Object-Oriented Programming (ECOOP
’22), volume 222 of Leibniz International Proceedings in Informatics (LIPIcs), pp.
20:1–20:28, Dagstuhl, Germany, June 2022. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik. ISBN 978-3-95977-225-9. https://doi.org/10.4230/LIPIcs.ECOOP.
2022.20

11. Baeten, J.C.M.: A brief history of process algebra. Theor. Comput. Sci. 335(2–
113), 131–146 (2005). ISSN 0304–3975. https://doi.org/10.1016/j.tcs.2004.07.036

12. Balat, V.: Ocsigen: typing web interaction with objective CAML. In: Proceedings
of the 2006 Workshop on ML, ML ’06, pp. 84–94, New York, NY, USA, ACM
(2006). ISBN 1-59593-483-9. https://doi.org/10.1145/1159876.1159889

13. Baltopoulos, I.G., Gordon, A.D.: Secure compilation of a multi-tier web language.
In: Proceedings of the 4th International Workshop on Types in Language Design
and Implementation, TLDI ’09, pp. 27–38, New York, NY, USA, 2009. ACM
(2009). ISBN 978-1-60558-420-1. https://doi.org/10.1145/1481861.1481866

14. Bjornson, J., Tayanovskyy, A., Granicz, A.: Composing reactive GUIs in F# using
websharper. In: Hage, J., Morazán, M.T. (eds.) IFL 2010. LNCS, vol. 6647, pp.
203–216. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24276-
2_13, ISBN 978-3-642-24275-5

15. Black, A.P., Hutchinson, N.C., Jul, E., Levy, H.M.: The development of the emer-
ald programming language. In: Proceedings of the Third ACM SIGPLAN Con-
ference on History of Programming Languages, HOPL III, pp. 11:1–11:51, New
York, NY, USA, 2007. ACM (2007). ISBN 978-1-59593-766-7. https://doi.org/10.
1145/1238844.1238855

16. Boer, F.D., et al.: A survey of active object languages. ACM Comput. Surv. 50(5)
(2017). ISSN 0360–0300. https://doi.org/10.1145/3122848

17. Bračevac, O., Erdweg, S., Salvaneschi, G., Mezini, M.: CPL: a core language for
cloud computing. In: Proceedings of the 15th International Conference on Modu-
larity, MODULARITY ’16, pp. 94–105 (2016). https://doi.org/10.1145/2889443.
2889452

18. Burckhardt, S., Fähndrich, M., Leijen, D., Wood, B.P.: Cloud types for even-
tual consistency. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 283–
307. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31057-7_14,
ISBN 978-3-642-31056-0

https://doi.org/10.4204/EPTCS.36.2
http://storm.apache.org/
https://doi.org/10.1007/978-3-030-55814-7_20
https://doi.org/10.1145/1810891.1810910
https://doi.org/10.1145/3285956
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.1016/j.tcs.2004.07.036
https://doi.org/10.1145/1159876.1159889
https://doi.org/10.1145/1481861.1481866
https://doi.org/10.1007/978-3-642-24276-2_13
https://doi.org/10.1007/978-3-642-24276-2_13
https://doi.org/10.1145/1238844.1238855
https://doi.org/10.1145/1238844.1238855
https://doi.org/10.1145/3122848
https://doi.org/10.1145/2889443.2889452
https://doi.org/10.1145/2889443.2889452
https://doi.org/10.1007/978-3-642-31057-7_14

Multitier Programming for Distributed, Concurrent Systems 117

19. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’13, pp.
263–274, New York, NY, USA, 2013. ACM (2013). ISBN 978-1-4503-1832-7.
https://doi.org/10.1145/2429069.2429101

20. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache FlinkTM: stream and batch processing in a single engine. IEEE Data Eng.
Bull. 38(4), 28–38 (2015). http://sites.computer.org/debull/A15dec/p28.pdf

21. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FoSSaCS 1998.
LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998). ISBN 978-3-540-64300-
5, https://doi.org/10.1007/BFb0053547

22. Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Optimal operator placement
for distributed stream processing applications. In: Proceedings of the 10th ACM
International Conference on Distributed and Event-Based Systems, DEBS ’16, pp.
69–80, New York, NY, USA, 2016. ACM (2016). ISBN 978-1-4503-4021-2. https://
doi.org/10.1145/2933267.2933312

23. Cavage, M.: There’s just no getting around it: you’re building a distributed system:
building a distributed system requires a methodical approach to requirements.
Queue 11(4), 30–41 (2013). ISSN 1542–7730. https://doi.org/10.1145/2466486.
2482856

24. Cesarini, F., Thompson, S.: Erlang Programming – A Concurrent Approach to
Software Development. O’Reilly, Sebastopol, CA, USA (2009). ISBN 978-0-596-
51818-9

25. Chambers, C., et al.: Flumejava: easy, efficient data-parallel pipelines. In: Proceed-
ings of the 31st ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’10, pp. 363–375, New York, NY, USA, 2010. ACM
(2010). ISBN 978-1-4503-0019-3. https://doi.org/10.1145/1806596.1806638

26. Chandra, S., Saraswat, V., Sarkar, V., Bodik, R.: Type inference for locality anal-
ysis of distributed data structures. In: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’08, pp.
11–22, New York, NY, USA, 2008. ACM (2008). ISBN 978-1-59593-795-7. https://
doi.org/10.1145/1345206.1345211

27. Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster com-
puting. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, pp.
519–538, New York, NY, USA, 2005. ACM (2005). ISBN 1-59593-031-0. https://
doi.org/10.1145/1094811.1094852

28. Cherniack, M., et al.: Scalable distributed stream processing. In: Proceedings of
the First Biennial Conference on Innovative Data Systems Research, CIDR ’03,
January 2003. http://nms.csail.mit.edu/papers/CIDR_CRC.pdf

29. Choi, K., Chang, B.-M.: A theory of RPC calculi for client-server model. J. Funct.
Program. 29 (2019). https://doi.org/10.1017/S0956796819000029

30. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: web programming without
tiers. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO
2006. LNCS, vol. 4709, pp. 266–296. Springer, Heidelberg (2007). ISBN 978-3-540-
74791-8, https://doi.org/10.1007/978-3-540-74792-5_12

31. Crnkovic, I., Sentilles, S., Vulgarakis, A., Chaudron, M.R.: A classification frame-
work for software component models. IEEE Trans. Softw. Eng. 37(5), 593–615
(2011). ISSN 0098–5589. https://doi.org/10.1109/TSE.2010.83

https://doi.org/10.1145/2429069.2429101
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.1007/BFb0053547
https://doi.org/10.1145/2933267.2933312
https://doi.org/10.1145/2933267.2933312
https://doi.org/10.1145/2466486.2482856
https://doi.org/10.1145/2466486.2482856
https://doi.org/10.1145/1806596.1806638
https://doi.org/10.1145/1345206.1345211
https://doi.org/10.1145/1345206.1345211
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
http://nms.csail.mit.edu/papers/CIDR_CRC.pdf
https://doi.org/10.1017/S0956796819000029
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1109/TSE.2010.83

118 G. Salvaneschi and P. Weisenburger

32. Cruz-Filipe, L., Montesi, F.: Choreographies in practice. In: Albert, E., Lanese, I.
(eds.) FORTE 2016. LNCS, vol. 9688, pp. 114–123. Springer, Cham (2016). ISBN
978-3-319-39569-2. https://doi.org/10.1007/978-3-319-39570-8_8

33. Cugola, G., Margara, A.: Deployment strategies for distributed complex event
processing. Computing 95(2), 129–156 (2013). ISSN 0010–485X. https://doi.org/
10.1007/s00607-012-0217-9

34. De Wael, M., Marr, S., De Fraine, B., Van Cutsem, T., De Meuter, W.: Partitioned
global address space languages. ACM Comput. Surv. 47(4), 62:1–62:27 (2015).
ISSN 0360–0300. https://doi.org/10.1145/2716320

35. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008). ISSN 0001–0782. https://doi.org/10.1145/
1327452.1327492

36. Delaval, G., Girault, A., Pouzet, M.: A type system for the automatic distribution
of higher-order synchronous dataflow programs. In: Proceedings of the 2008 ACM
SIGPLAN-SIGBED Conference on Languages, Compilers, and Tools for Embed-
ded Systems, LCTES ’08, pp. 101–110, New York, NY, USA, 2008. ACM (2008).
ISBN 978-1-60558-104-0. https://doi.org/10.1145/1375657.1375672

37. Drechsler, J., Mogk, R., Salvaneschi, G., Mezini, M.: Thread-safe reactive pro-
gramming. Proc. ACM Program. Lang. 2(OOPSLA) (2018). https://doi.org/10.
1145/3276477

38. Fournet, C., Gonthier, G.: The reflexive CHAM and the join-calculus. In: Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’96, pp. 372–385, New York, NY, USA, 1996. ACM
(1996). ISBN 0-89791-769-3. https://doi.org/10.1145/237721.237805

39. Garlan, D., Shaw, M.: An introduction to software architecture. Technical
report, Pittsburgh, PA, USA (1994). http://www.cs.cmu.edu/afs/cs/project/vit/
ftp/pdf/intro_softarch.pdf

40. Gatling Corp. Gatling (2011). https://gatling.io/
41. Giallorenzo, S., Montesi, F., Peressotti, M.: Choreographies as objects, 2020
42. Giallorenzo, S., Montesi, F., Peressotti, M., Richter, D., Salvaneschi, G., Weisen-

burger, P.: Multiparty languages: the choreographic and multitier cases. In:
Møller, A., Sridharan, M. (eds.), Proceedings of the 35th European Conference
on Object-Oriented Programming (ECOOP ’21), volume 194 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pp. 22:1–22:27, Dagstuhl, Germany,
July 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. ISBN 978-3-95977-
190-0. https://doi.org/10.4230/LIPIcs.ECOOP.2021.22

43. Groenewegen, D.M., Hemel, Z., Kats, L.C., Visser, E.: WebDSL: a domain-specific
language for dynamic web applications. In: Companion to the 23rd ACM SIG-
PLAN Conference on Object-Oriented Programming Systems Languages and
Applications, OOPSLA Companion ’08, pp. 779–780, New York, NY, USA, 2008.
ACM (2008). ISBN 978-1-60558-220-7. https://doi.org/10.1145/1449814.1449858

44. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based
programming. Theor. Comput. Sci. 410(2–3), 202–220 (2009). ISSN 0304–3975.
https://doi.org/10.1016/j.tcs.2008.09.019

45. Haridi, S., Van Roy, P., Smolka, G.: An overview of the design of distributed
Oz. In: Proceedings of the Second International Symposium on Parallel Symbolic
Computation, PASCO ’97, pp. 176–187, New York, NY, USA, 1997. ACM (1997).
ISBN 0-89791-951-3. https://doi.org/10.1145/266670.266726

46. Haxe Foundation. Haxe cross-platform toolkit, 2005. http://haxe.org

https://doi.org/10.1007/978-3-319-39570-8_8
https://doi.org/10.1007/s00607-012-0217-9
https://doi.org/10.1007/s00607-012-0217-9
https://doi.org/10.1145/2716320
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1375657.1375672
https://doi.org/10.1145/3276477
https://doi.org/10.1145/3276477
https://doi.org/10.1145/237721.237805
http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf
http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf
https://gatling.io/
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.1145/1449814.1449858
https://doi.org/10.1016/j.tcs.2008.09.019
https://doi.org/10.1145/266670.266726
http://haxe.org

Multitier Programming for Distributed, Concurrent Systems 119

47. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for arti-
ficial intelligence. In: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence, IJCAI ’73, pp. 235–245, San Francisco, CA, USA (1973).
Morgan Kaufmann Publishers Inc. http://ijcai.org/Proceedings/73/Papers/027B.
pdf

48. Holt, B., Bornholt, J., Zhang, I., Ports, D., Oskin, M., Ceze, L.: Disciplined incon-
sistency with consistency types. In: Proceedings of the Seventh ACM Symposium
on Cloud Computing, SoCC ’16, pp. 279–293, New York, NY, USA, 2016. ACM
(2016). ISBN 978-1-4503-4525-5. https://doi.org/10.1145/2987550.2987559

49. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’08, pp. 273–284, New York, NY, USA,
2008. ACM (2008). ISBN 978-1-59593-689-9. https://doi.org/10.1145/1328438.
1328472

50. Huebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T., Shenker, S., Stoica, I.:
Querying the internet with PIER. In: Proceedings of the 29th International Con-
ference on Very Large Data Bases, VLDB ’03, pp. 321–332. VLDB Endowment
(2003). ISBN 0-12-722442-4. https://doi.org/10.1016/B978-012722442-8/50036-7

51. Isard, M., Yu, Y.: Distributed data-parallel computing using a high-level pro-
gramming language. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’09, pp. 987–994, New York,
NY, USA, 2009. ACM (2009). ISBN 978-1-60558-551-2. https://doi.org/10.1145/
1559845.1559962

52. Kereki, F.: Essential GWT: Building for the Web with Google Web Toolkit 2, 1st
edn. Addison-Wesley Professional, Boston (2010). ISBN 978-0-321-70514-3

53. Köhler, M., Eskandani, N., Weisenburger, P., Margara, A., Salvaneschi, G.:
Rethinking safe consistency in distributed object-oriented programming. Proc.
ACM Program. Lang. 4(OOPSLA), 1–30 (2020) https://doi.org/10.1145/3428256

54. Lafuente, A.L., Loreti, M., Montanari, U.: Asynchronous distributed execution
of fixpoint-based computational fields. Log. Methods Comput. Sci. 13 (2017).
https://doi.org/10.23638/LMCS-13(1:13)2017

55. Lakshmanan, G.T., Li, Y., Strom, R.: Placement strategies for internet-scale data
stream systems. IEEE Internet Comput. 12(6), 50–60 (2008). ISSN 1089–7801.
https://doi.org/10.1109/MIC.2008.129

56. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction- and process-oriented choreographies. In: Proceedings of the 6th IEEE
International Conference on Software Engineering and Formal Methods, SEFM
’08, pp. 323–332, Washington, DC, USA. IEEE Computer Society (2008). ISBN
978-0-7695-3437-4. https://doi.org/10.1109/SEFM.2008.11

57. Lightbend. Play Framework, 2007. http://playframework.com/
58. Lightbend. Akka Classic Actors, 2009. https://doc.akka.io/docs/akka/current/

actors.html
59. Lightbend. Akka Typed Actors, 2015. https://doc.akka.io/docs/akka/current/

typed.html
60. Lightbend. Case study: Capital one scales real-time auto loan decisioning

with lightbend’s akka platform, 2017. https://www.lightbend.com/case-studies/
paypal-blows-past-1-billion-transactions-per-day-using-just-8-vms-and-akka-
scala-kafka-and-akka-streams

61. Lightbend. Case study: Capital one scales real-time auto loan decisioning with
lightbend’s akka platform, 2020. https://www.lightbend.com/case-studies/real-
time-decision-making-for-auto-loans

http://ijcai.org/Proceedings/73/Papers/027B.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.1145/2987550.2987559
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1016/B978-012722442-8/50036-7
https://doi.org/10.1145/1559845.1559962
https://doi.org/10.1145/1559845.1559962
https://doi.org/10.1145/3428256
https://doi.org/10.23638/LMCS-13(1:13)2017
https://doi.org/10.1109/MIC.2008.129
https://doi.org/10.1109/SEFM.2008.11
http://playframework.com/
https://doc.akka.io/docs/akka/current/actors.html
https://doc.akka.io/docs/akka/current/actors.html
https://doc.akka.io/docs/akka/current/typed.html
https://doc.akka.io/docs/akka/current/typed.html
https://www.lightbend.com/case-studies/paypal-blows-past-1-billion-transactions-per-day-using-just-8-vms-and-akka-scala-kafka-and-akka-streams
https://www.lightbend.com/case-studies/paypal-blows-past-1-billion-transactions-per-day-using-just-8-vms-and-akka-scala-kafka-and-akka-streams
https://www.lightbend.com/case-studies/paypal-blows-past-1-billion-transactions-per-day-using-just-8-vms-and-akka-scala-kafka-and-akka-streams
https://www.lightbend.com/case-studies/real-time-decision-making-for-auto-loans
https://www.lightbend.com/case-studies/real-time-decision-making-for-auto-loans

120 G. Salvaneschi and P. Weisenburger

62. Liskov, B.: Distributed programming in Argus. Commun. ACM 31(3), 300–312
(1988). ISSN 0001–0782. https://doi.org/10.1145/42392.42399

63. Lluch Lafuente, A., Nielson, F., Nielson, H.R.: Discretionary information flow
control for interaction-oriented specifications. In: Martí-Oliet, N., Ölveczky, P.C.,
Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 427–
450. Springer, Cham (2015). ISBN 978-3-319-23164-8. https://doi.org/10.1007/
978-3-319-23165-5_20

64. Logan, M., Merritt, E., Carlsson, R.: Erlang and OTP in Action. Manning Pub-
lications, Shelter Island, NY, USA (2010). ISBN 1-933988-78-9

65. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations with the TOTA middleware. In: Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communications, pp. 263–273, Piscat-
away, NJ, USA, 2004. IEEE Press (2004). ISBN 0-7695-2090-1. https://doi.org/
10.1109/PERCOM.2004.1276864

66. Manolescu, D., Beckman, B., Livshits, B.: Volta: developing distributed applica-
tions by recompiling. IEEE Softw. 25(5), 53–59 (2008). ISSN 0740–7459. https://
doi.org/10.1109/MS.2008.131

67. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26(1), 70–93
(2000). ISSN 0098–5589. https://doi.org/10.1109/32.825767

68. Miller, H., Haller, P., Odersky, M.: Spores: a type-based foundation for closures
in the age of concurrency and distribution. In: Jones, R. (ed.) ECOOP 2014.
LNCS, vol. 8586, pp. 308–333. Springer, Heidelberg (2014). ISBN 978-3-662-44201-
2. https://doi.org/10.1007/978-3-662-44202-9_13

69. Miller, H., Haller, P., Muller, N., Boullier, J.: Function passing: a model for typed,
distributed functional programming. In: Proceedings of the 2016 ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software, Onward! 2016, pp. 82–97, New York, NY, USA, 2016. ACM
(2016). ISBN 978-1-4503-4076-2. https://doi.org/10.1145/2986012.2986014

70. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i. Inf.
Comput. 100(1), 1–40 (1992). ISSN 0890–5401. https://doi.org/10.1016/0890-
5401(92)90008-4

71. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, ii. Inf.
Comput. 100(1), 41–77 (1992). ISSN 0890–5401. https://doi.org/10.1016/0890-
5401(92)90009-5

72. Mogk, R., Drechsler, J., Salvaneschi, G., Mezini, M.: A fault-tolerant program-
ming model for distributed interactive applications. Proc. ACM Program. Lang.
3(OOPSLA) (2019). https://doi.org/10.1145/3360570

73. Montesi, F.: Kickstarting choreographic programming. In: Hildebrandt, T.,
Ravara, A., van der Werf, J.M., Weidlich, M. (eds.) WS-FM 2014-2015. LNCS,
vol. 9421, pp. 3–10. Springer, Cham (2016). ISBN 978-3-319-33611-4. https://doi.
org/10.1007/978-3-319-33612-1_1

74. Murphy VII, T., Crary, K., Harper, R.: Type-safe distributed programming with
ML5. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 108–123.
Springer, Heidelberg (2008). ISBN 978-3-540-78662-7. https://doi.org/10.1007/
978-3-540-78663-4_9

75. Nelson, T., Ferguson, A.D., Scheer, M.J., Krishnamurthi, S.: Tierless pro-
gramming and reasoning for software-defined networks. In: Proceedings of
the 11th USENIX Conference on Networked Systems Design and Implemen-
tation, NSDI ’14, pp. 519–531, Berkeley, CA, USA, 2014. USENIX Associa-

https://doi.org/10.1145/42392.42399
https://doi.org/10.1007/978-3-319-23165-5_20
https://doi.org/10.1007/978-3-319-23165-5_20
https://doi.org/10.1109/PERCOM.2004.1276864
https://doi.org/10.1109/PERCOM.2004.1276864
https://doi.org/10.1109/MS.2008.131
https://doi.org/10.1109/MS.2008.131
https://doi.org/10.1109/32.825767
https://doi.org/10.1007/978-3-662-44202-9_13
https://doi.org/10.1145/2986012.2986014
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1145/3360570
https://doi.org/10.1007/978-3-319-33612-1_1
https://doi.org/10.1007/978-3-319-33612-1_1
https://doi.org/10.1007/978-3-540-78663-4_9
https://doi.org/10.1007/978-3-540-78663-4_9

Multitier Programming for Distributed, Concurrent Systems 121

tion (2014). ISBN 978-1-931971-09-6. http://usenix.org/system/files/conference/
nsdi14/nsdi14-paper-nelson.pdf

76. Neubauer, M., Thiemann, P.: From sequential programs to multi-tier applica-
tions by program transformation. In: Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’05, pp.
221–232, New York, NY, USA, 2005. ACM (2005). ISBN 978-1-58113-830-6.
https://doi.org/10.1145/1040305.1040324

77. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: a not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’08, pp. 1099–1110,
New York, NY, USA, 2008. ACM (2008). ISBN 978-1-60558-102-6. https://doi.
org/10.1145/1376616.1376726

78. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Softw. Eng. Notes 17(4), 40–52 (1992). ISSN 0163–5948. https://doi.
org/10.1145/141874.141884

79. Persson, P., Angelsmark, O.: Calvin - merging Cloud and IoT. Procedia Comput.
Sci. 52(The 6th International Conference on Ambient Systems, Networks and
Technologies, the 5th International Conference on Sustainable Energy Information
Technology), 210–217 (2015). ISSN 1877–0509. https://doi.org/10.1016/j.procs.
2015.05.059

80. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: Proceedings
of the 22nd International Conference on Data Engineering, ICDE ’06, pp. 49–
60, Washington, DC, USA. IEEE Computer Society (2006). ISBN 0-7695-2570-9.
https://doi.org/10.1109/ICDE.2006.105

81. Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Dynamic
choreographies: theory and implementation. Log. Methods Comput. Sci. 13(2)
(2017). https://doi.org/10.23638/LMCS-13(2:1)2017

82. Radanne, G., Vouillon, J., Balat, V.: Eliom: a core ML language for tierless web
programming. In: Igarashi, A. (ed.) APLAS 2016. LNCS, vol. 10017, pp. 377–397.
Springer, Cham (2016). ISBN 978-3-319-47957-6. https://doi.org/10.1007/978-3-
319-47958-3_20

83. Rajchenbach-Teller, D., Sinot, F.R.: OPA: language support for a sane,
safe and secure web. In: Proceedings of the OWASP AppSec Research
(2010). http://owasp.org/www-pdf-archive/OWASP_AppSec_Research_2010_
OP_by_Rajchenbach-Teller.pdf

84. Salvaneschi, G., Drechsler, J., Mezini, M.: Towards distributed reactive program-
ming. In: De Nicola, R., Julien, C. (eds.) COORDINATION 2013. LNCS, vol.
7890, pp. 226–235. Springer, Heidelberg (2013). ISBN 978-3-642-38493-6. https://
doi.org/10.1007/978-3-642-38493-6_16

85. Serrano, M., Gallesio, E., Loitsch, F.: Hop, a language for programming the web
2.0. In: Companion to the 21th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA Companion ’06,
New York, NY, USA, 2006. ACM (2006). https://www.lri.fr/~conchon/TER/
2012/3/dls06.pdf

86. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
convergent and commutative replicated data types, p. 47, January 2011. http://
hal.inria.fr/inria-00555588

87. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.

http://usenix.org/system/files/conference/nsdi14/nsdi14-paper-nelson.pdf
http://usenix.org/system/files/conference/nsdi14/nsdi14-paper-nelson.pdf
https://doi.org/10.1145/1040305.1040324
https://doi.org/10.1145/1376616.1376726
https://doi.org/10.1145/1376616.1376726
https://doi.org/10.1145/141874.141884
https://doi.org/10.1145/141874.141884
https://doi.org/10.1016/j.procs.2015.05.059
https://doi.org/10.1016/j.procs.2015.05.059
https://doi.org/10.1109/ICDE.2006.105
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.1007/978-3-319-47958-3_20
https://doi.org/10.1007/978-3-319-47958-3_20
http://owasp.org/www-pdf-archive/OWASP_AppSec_Research_2010_OP_by_Rajchenbach-Teller.pdf
http://owasp.org/www-pdf-archive/OWASP_AppSec_Research_2010_OP_by_Rajchenbach-Teller.pdf
https://doi.org/10.1007/978-3-642-38493-6_16
https://doi.org/10.1007/978-3-642-38493-6_16
https://www.lri.fr/~conchon/TER/2012/3/dls06.pdf
https://www.lri.fr/~conchon/TER/2012/3/dls06.pdf
http://hal.inria.fr/inria-00555588
http://hal.inria.fr/inria-00555588

122 G. Salvaneschi and P. Weisenburger

386–400. Springer, Heidelberg (2011). ISBN 978-3-642-24549-7. https://doi.org/
10.1007/978-3-642-24550-3_29

88. Soloway, E., Ehrlich, K.: Empirical studies of programming knowledge. IEEE
Trans. Softw. Eng. 10(5), 595–609 (1984). ISSN 0098–5589. https://doi.org/10.
1109/TSE.1984.5010283

89. Strack, I.: Getting Started with Meteor.js JavaScript Framework, 1st edn. Packt
Publishing, Birmingham (2012). ISBN 978-0-321-70514-3

90. Van Roy, P., Haridi, S., Brand, P., Smolka, G., Mehl, M., Scheidhauer, R.: Mobile
objects in distributed Oz. ACM Trans. Program. Lang. Syst. 19(5), 804–851
(1997). ISSN 0164–0925. https://doi.org/10.1145/265943.265972

91. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From
distributed coordination to field calculus and aggregate computing. J. Log. Algebr.
Methods Program. 109 (2019). ISSN 2352–2208. https://doi.org/10.1016/j.jlamp.
2019.100486

92. W3C WS-CDL Working Group. Web services choreography description language
version 1.0, 2005. http://www.w3.org/TR/ws-cdl-10/

93. Weisenburger, P., Salvaneschi, G.: Multitier modules. In: Donaldson, A.F. (ed.),
Proceedings of the 33rd European Conference on Object-Oriented Program-
ming (ECOOP ’19), volume 134 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pp. 3:1–3:29, Dagstuhl, Germany (2019). Schloss Dagstuhl
- Leibniz-Zentrum für Informatik. ISBN 978-3-95977-111-5. https://doi.org/10.
4230/LIPIcs.ECOOP.2019.3

94. Weisenburger, P., Köhler, M., Salvaneschi, G.: Distributed system development
with ScalaLoci. Proc. ACM Program. Lang. 2(OOPSLA), 129:1–129:30 (2018).
ISSN 2475–1421. https://doi.org/10.1145/3276499

95. Weisenburger, P., Wirth, J., Salvaneschi, G.: A survey of multitier programming.
ACM Comput. Surv. 53(4) (2020). ISSN 0360–0300. https://doi.org/10.1145/
3397495

96. Yang, F., et al.: A unified platform for data driven web applications with auto-
matic client-server partitioning. In: Proceedings of the 16th International Confer-
ence on World Wide Web, WWW ’07, pp. 341–350, New York, NY, USA, 2007.
ACM (2007). ISBN 978-1-59593-654-7. https://doi.org/10.1145/1242572.1242619

97. Yang, F., Li, J., Cheng, J.: Husky: towards a more efficient and expressive dis-
tributed computing framework. Proc. VLDB Endow. 9(5), 420–431 (2016). ISSN
2150–8097. https://doi.org/10.14778/2876473.2876477

98. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction
for in-memory cluster computing. In: Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation, NSDI ’12, Berkeley,
CA, USA, 2012. USENIX Association (2012). http://www.usenix.org/system/
files/conference/nsdi12/nsdi12-final138.pdf

99. Zdancewic, S., Zheng, L., Nystrom, N., Myers, A.C.: Secure program partitioning.
ACM Trans. Comput. Syst. 20(3), 283–328 (2002). ISSN 0734–2071. https://doi.
org/10.1145/566340.566343

100. Zhou, Y., Ooi, B.C., Tan, K.-L., Wu, J.: Efficient dynamic operator placement in
a locally distributed continuous query system. In: Meersman, R., Tari, Z. (eds.)
OTM 2006. LNCS, vol. 4275, pp. 54–71. Springer, Heidelberg (2006). ISBN 978-
3-540-48287-1. https://doi.org/10.1007/11914853_5

101. Zulfa, M.I., Hartanto, R., Permanasari, A.E.: Caching strategy for web application
– a systematic literature review. Int. J. Web Inf. Syst. (2020). https://doi.org/10.
1108/IJWIS-06-2020-0032

https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1109/TSE.1984.5010283
https://doi.org/10.1109/TSE.1984.5010283
https://doi.org/10.1145/265943.265972
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
http://www.w3.org/TR/ws-cdl-10/
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3397495
https://doi.org/10.1145/3397495
https://doi.org/10.1145/1242572.1242619
https://doi.org/10.14778/2876473.2876477
http://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
http://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://doi.org/10.1145/566340.566343
https://doi.org/10.1145/566340.566343
https://doi.org/10.1007/11914853_5
https://doi.org/10.1108/IJWIS-06-2020-0032
https://doi.org/10.1108/IJWIS-06-2020-0032

A Survey of Actor-Like Programming
Models for Serverless Computing

Jonas Spenger1,2 , Paris Carbone1,2 , and Philipp Haller1(B)

1 Digital Futures and EECS, KTH Royal Institute of Technology, Stockholm, Sweden
{jspenger,parisc,phaller}@kth.se

2 Computer Systems, RISE Research Institutes of Sweden, Stockholm, Sweden
{jonas.spenger,paris.carbone}@ri.se

Abstract. Serverless computing promises to significantly simplify cloud
computing by providing Functions-as-a-Service where invocations of
functions, triggered by events, are automatically scheduled for execu-
tion on compute nodes. Notably, the serverless computing model does
not require the manual provisioning of virtual machines; instead, FaaS
enables load-based billing and auto-scaling according to the workload,
reducing costs and making scheduling more efficient. While early server-
less programming models only supported stateless functions and severely
restricted program composition, recently proposed systems offer greater
flexibility by adopting ideas from actor and dataflow programming. This
paper presents a survey of actor-like programming abstractions for state-
ful serverless computing, and provides a characterization of their prop-
erties and highlights their origin.

Keywords: Actor Model · Active Objects · Serverless Computing ·
Dataflow · Stateful Serverless · Distributed Programming · Cloud
Computing

1 Introduction

Serverless computing has greatly simplified building cloud applications by pro-
viding Functions-as-a-Service (FaaS), a programming model consisting of func-
tions and event triggers. These functions are automatically scheduled for exe-
cution on compute nodes, elastically scaling with the load [22]. In effect, the
serverless model fully abstracts away the underlying computing infrastructure,
billing and running user code on-demand. As a consequence, serverless comput-
ing can reduce costs and make scheduling more efficient.

While early serverless models were restricted, recent developments have intro-
duced more flexible abstractions. The first major serverless frameworks, such as
AWS Lambda [6] and similar [31,40,51], were restricted to: 1) stateless func-
tions; and 2) limited compositional primitives such as no direct function-to-
function messaging, often-cited challenges with serverless computing [12,36,42].
Recent developments, however, have seen programming models supporting state-
ful serverless that overcome these challenges through abstractions closely related
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, pp. 123–146, 2024.
https://doi.org/10.1007/978-3-031-51060-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51060-1_5&domain=pdf
http://orcid.org/0000-0002-7119-5234
http://orcid.org/0000-0002-9351-8508
http://orcid.org/0000-0002-2659-5271
https://doi.org/10.1007/978-3-031-51060-1_5

124 J. Spenger et al.

Cloud

Serverless

Stateful
Serverless

- State
- Failures

- Concurrency
- Non-determinism

- Servers
- Execution

- Resource
management

VMs
Containers

Deployment

FaaS

Abstraction-
level

Developer
experience-

level

+

- +

-

Libraries

Fig. 1. Levels of abstraction for distributed programming.

to dataflow programming and the actor model [17,18,29,47,53,61–63]. We refer
to these as actor-like programming models for serverless computing, this can also
be referred to as stateful serverless.

These stateful serverless programming models are an abstraction of the
underlying computing infrastructure. Conceptually, we can represent the
abstraction levels of utility computing for distributed applications as a step-
ladder, as shown in Fig. 1, ranging from low-level cloud resources to abstract,
virtualized applications.

In this representation, stateful serverless is on the third layer, aiming to
abstract away application state and masking failures, providing abstractions
for deploying failure-free stateful functions with powerful compositional prim-
itives. The stateful serverless layer provides powerful abstractions for building
distributed applications and is used increasingly to build libraries or compose
stronger abstraction levels (e.g., level 4, abstracting from concurrency and non-
determinism). In contrast to lower layers, it abstracts away failure and state
management, which are difficult to get right.

This paper surveys actor-like programming models for serverless comput-
ing. The purpose is to provide a background on the development of these mod-
els; provide a characterization thereof; describe their challenges with respect
to a serverless execution (state management and fault tolerance); highlight the
similarities and differences of popular implementations; and provide an outlook
on research directions. For this purpose, we survey eight implementations in
detail [17,18,29,47,53,61–63], and include other relevant works in the whole
analysis. In particular, we find three key enabling principles for their serverless
execution to be of importance: they are virtualized, decoupled; they are data-
parallel; they are slightly less dynamic than traditional actors.

Recent surveys have studied serverless computing [12,22,26,36,42,49], the
actor model [43], the active objects model [14], and other related fields [11,50].
In contrast to surveys on serverless computing [12,22,26,36,42,49], the presented
analysis puts more focus on the programming model and its properties. Actor
systems have been studied extensively [43], whereas this survey sheds more light
on properties at the intersection of actors and serverless such as per-key execution
semantics, fault tolerance, and execution guarantees. Similarly, this applies also

A Survey of Actor-Like Programming Models for Serverless Computing 125

FaaS

Actors

Dataflow

AWS
Lambda

Azure Functions
IBM Cloud Functions

Google Cloud
Functions

Actors Actors Erlang
Scala
Actors Akka Orleans

Map
Reduce

Apache
Spark

Apache Flink
Google Dataflow

Ray Cloudburst

Stateful
Functions

Durable
Functions Portals

IBM
KAR

Stateflow

[2014-2017]

[2018-2020]

[1986-2015]

[2000-2016]
[2017-2020]

[2021-2023]

Kalix

ABCL/1 ASP Rebeca ABS
JCoBox

Encore
Active Objects

[1973-2011]

Fig. 2. An overview over related programming models and systems with effective peri-
ods.

to active object languages [14]. Reactive programming [11], and vertex-centric
programming [50], also share some similarities with the discussed topics here,
yet they lack some of the dynamic messaging properties of actors.

The rest of this paper is structured as follows. In Sect. 2, we provide a back-
ground on the development of the actor model, active object model, dataflow pro-
cessing, serverless, and actor-like serverless models. Section 3 discusses the main
challenges of programming systems for stateful serverless computing. Next, in
Sect. 4, we analyse the distinctive characteristics of these systems, and compare
their properties with respect to programming model (Subsect. 4.1) and server-
less execution (Subsect. 4.2). Finally, we outline promising research directions
(Sect. 5), and provide a conclusion (Sect. 6).

2 Background

This section provides a background on the development of actor-like program-
ming models in the context of serverless computing, traced back to Actor and
Active Object systems, Dataflow platforms, and Functions-as-a-Service (FaaS).
To that end, Fig. 2 presents a timeline of related systems in their respective
areas. We discuss the main directions in more detail with the aim to identify
distinct characterizations and their development.

2.1 Actors

The Actor Model is a programming model for distributed, concurrent program-
ming. It was invented in 1973 by Carl Hewitt [39], originally as a formalism
for reasoning agents (in the context of artificial intelligence) and distributed
parallel computations [38]. Additional significant work on the Actor Model was
performed by Gul Agha, who provided a semantic formalization [3], and pro-
posed the model as a “framework for concurrent systems” [1]. Since then it has
seen a myriad of implementations with heavy industry adoption [43]. Notable
actor implementations include Erlang [9], Scala Actors [33,34], Akka [46], and
Pony [24].

126 J. Spenger et al.

Fig. 3. Regular and virtual actor types.

In essence, an actor is a concurrent object that can perform three different
actions [2]: 1) create other actors; 2) message other actors; and 3) modify its state
(or behavior) for the next received message. This style of actor corresponds to the
non-virtual actor in Fig. 3a: an actor consists of an executing thread, mailbox,
state and behavior.

A key principle of actor execution is the “isolated turn principle” [43], that
is, the processing of a message by an actor (i.e., a turn) can be viewed as a single
isolated step. This is because actors do not share state, and actors process one
message at a time. As a result, reasoning about concurrent actor programs is
simplified. Another key property of actor systems is their hierarchical supervision
for failure-management, which greatly influenced the design of fault-tolerant
systems [8].

The actor model was later, in 2011, adapted for cloud programming in pio-
neering work on the Virtual Actor model (Fig. 3b) in Microsoft’s Orleans frame-
work [13,18] (created at Microsoft Research). This influential work proposed
three core distinctions: 1) actors are virtual, i.e., they always exist, they are
not created; 2) the framework manages the actor life-cycle, i.e., actors are acti-
vated on-demand (and passivated when there is no demand), and transparently
recover from failures; and 3) actor references are virtual (logical), i.e., they can
be created and serialized, and are always valid. Importantly, a virtual actor’s
virtual identity consists of a type/class tag and a key: identity = type + key.
With this new identity, multiple actor instances (one for each key) can exist for
the same type of actor, enabling a form of data parallelism. As a result, virtual
actors are suitable for the cloud setting, and have consequently been adopted
and further extended in the cloud and serverless realm [17,29,46,47,56,61,63].

A Survey of Actor-Like Programming Models for Serverless Computing 127

Actor Model characterization:

– Actor-to-actor communication
– Stateful computation
– Dynamic topology: actors can create new actors; actors can create

new connections

The Actor and Virtual Actor models share similarities with other models. The
Active Object model [65] is closely related to the Actor Model, and is discussed
in the next section. The Virtual Actor model bears much similarity with the
Entity model developed by Pat Helland in 2007 [35]. In fact, many incarnations
of the virtual actor model bear the name entity [17,46,56].

2.2 Active Objects

The Active Object model is an object-oriented concurrent programming model
which evolved from the actor model and was developed in 1986 for the program-
ming language ABCL/1 [65]. The model consists of active objects with a single
thread of control and local state, which interact through asynchronous method
calls [14]. These method calls usually return a future of the return value (implic-
itly or explicitly). Within the method, the active objects can suspend and wait
(await) for a guard (i.e., a conjunction of futures or boolean expressions) to be
satisfied [32]. Important systems in this space include the ABCL/1 language [65],
the ABS language [32,41], ASP/ProActive [10,21], Rebeca [60], JCoBox [59], and
Encore [15], providing a spectrum of implementations and flavours.

The active object model can be understood as an integration of object ori-
ented concepts with the actor model [14]. This allows for compositional object-
oriented program constructions through the supported interface abstractions.
Still, there are notable differences. Method calls to active objects are statically
guaranteed to be executed. Whereas in the actor model, the actor’s behav-
ior and its implicit interface may change dynamically such that a message is
ignored. Method calls in the active object model, moreover, are tightly inte-
grated with futures [65], whereas futures are optional features in actor systems.
One such example is future forwarding (avoiding creating nested futures), and
future sharing [14]. Another example are nested blocking receives, as seen in
some actor models [34]. In contrast, active objects process further method calls
even when the called method was suspended. Overall, active objects have sophis-
ticated mechanisms for process suspension and process scheduling beyond the
run-to-completion model of actors.

We can understand the term actor-like, for the purpose of this survey, to
encompass programming models that resemble the actor model and active object
model. In fact, Orleans [13,18], Durable Functions’ Entities [17], IBM KAR [63],
Ray [53], Cloudburst [62], and Kalix [47], resemble the object oriented style in
the active object model.

128 J. Spenger et al.

2.3 Dataflow Processing

Dataflow Processing has become the de-facto standard for processing large amou-
nts of data. It defines computations as static, acyclic computational graphs. One
of the most influential early systems was MapReduce [25], developed in part as a
reaction to the complexity of managing computations over large data, dispersed
across thousands of machines. The MapReduce framework enabled computa-
tions to be programmed as sequences of Map/Reduce steps, introducing two
key innovations. Firstly, the framework fully managed fault tolerance. If any
machine failed, it would recover and redo any lost computations. As a result
of this, the system guaranteed exactly-once processing: meaning, that every-
thing was processed and delivered exactly once, or, in other words, the system
behaved observably equivalent to a failure-free execution [17,61]. Failures, in
effect, became completely transparent to the user; a hallmark of dataflow pro-
cessing systems. Providing exactly-once processing out-of-the-box was a great
relief for the programmer because of how notoriously difficult it is to implement
manually. Secondly, the computations were performed over data sharded by their
keys. This enabled data-parallelism by distributing the computation such that
data/events for the same keys were processed by the same computing nodes
using local state.

Subsequent dataflow processing models have inherited much from MapRe-
duce, such as the vertex centric model [50], Apache Spark [66], Apache Kafka [45],
Apache Flink [20], Google Dataflow [5], and Naiad [54]. While these frameworks
have improved in terms of performance as well as expressiveness, they still adhere
to the same characteristics as MapReduce did: they provide transparent fault-
tolerance (typically, a distributed two-phase commit); and computations occur
over a per-key context.

Dataflow Processing characterization:

– Transparent fault-tolerance, exactly-once processing guarantees
– Scalability, data-parallelism, computations over a per-key context
– Static, directed acyclic computational graphs (DAGs)

2.4 Functions-as-a-Service (FaaS)

Serverless computing would come to offer even more convenience for develop-
ing scalable and distributed services: a fully-managed runtime that would exe-
cute Functions-as-a-Service (FaaS). These services are specified by two compo-
nents [22]: 1) the functions which are to be executed; and 2) the types of events
that trigger the functions. These functions are executed on a serverless platform:
the code is run on-demand, the billing is only per-use, abstracting away any of
the servers and infrastructure from the user [22]. The computing model no longer
requires manual provisioning of virtual machines or servers (hence, “serverless”),
instead, the serverless platform fully manages the execution.

A Survey of Actor-Like Programming Models for Serverless Computing 129

The major cloud vendors started adopting this new trend [12], with AWS
Lambda [6] introduced in 2014, and other similar services right after [49] (Azure
Functions [51], IBM Cloud Functions [40], Google Cloud Functions [31]).

Functions-as-a-Service are typically restricted to stateless functions with lim-
ited composition beyond step-like workflows, which are commonly cited chal-
lenges with serverless computing [12,36,42]. In reaction to this, recent pro-
gramming models have started to support stateful serverless applications with
more flexible communication and composition primitives [4,17,29,47,53,56,61–
63]. These models utilize abstractions closely resembling actors, active objects,
entities, and virtual actors.

Functions-as-a-Service (Serverless) characterization:

– Stateless functions triggered by events
– Elastic scalability, code is run on-demand, billing is per-use
– Fully-managed runtime/platform

2.5 Actor-Like Serverless Computing

Actor-like programming models for serverless computing, sometimes also referred
to as stateful serverless, are a combination of actor, dataflow, and serverless prin-
ciples; they provide the flexibility of stateful computations with actor-to-actor
communication; together with the fault-tolerance and data-parallel scalability of
dataflow processing; with the serverless, fully-managed execution platform, run
on-demand.

These combinations require the virtualization (decoupling) of the follow-
ing components: function, compute, state, and event queue (mailbox) (see
Fig. 3b). Similarly to FaaS, the functions can be considered stateless: the func-
tion signature has both a stateful context and an event as parameters: F:
Ctx => Event => Unit. The provided context Ctx gives the function access
to state (Ctx.state) as well as the capabilities to interact with its environment
(e.g., Ctx.send). This decoupling, in turn, enables the on-demand scalability
through replicating the functions and migrating state, and the transparent fault-
tolerance through capturing any side-effects in terms of state and events from
the context.

Systems in this space have adopted some of these new principles. The Virtual
Actor model in Orleans [13,18], created at Microsoft Research, provided many of
these features but lacked strong fault-tolerance guarantees such as exactly-once
processing, or a fully-managed platform. Ray [53] and Cloudburst [62], incor-
porated actor principles with serverless (FaaS), forming decoupled (non-virtual)
actors with automatic failure recovery providing at-least-once (and, tunable,
at-most-once) guarantees. Another direction towards stateful functions, as seen
on Flink [4,29], merged principles from dataflow processing with actors: scal-
able, data-parallel, stateful functions with function-to-function messaging and
exactly-once processing guarantees.

130 J. Spenger et al.

Listing 1. A bank account entity that can get, deposit, withdraw, and transfer.

1 class Account(ctx: Context):
2 val balance = PersistentState[Int](ctx).withDefault(0)
3

4 def get(): Int =
5 balance.get()
6

7 def deposit(amount: Int): Unit =
8 balance.set(balance.get() + amount)
9

10 def withdraw(amount: Int): Unit =
11 balance.set(balance.get() − amount)
12

13 def transfer(amount: Int, to: String): Unit =
14 val otherAccount = EntityRef[Account](ctx).withKey(to)
15 if balance.get() > amount then
16 balance.set(balance.get() − amount)
17 otherAccount.deposit(amount)

More recently, proposals for stateful serverless programming models have
emerged, merging actors, dataflow processing, and serverless, enabling the writ-
ing of stateful services with powerful compositional abstractions, while providing
exactly-once processing guarantees. Notable systems include Microsoft’s Durable
Functions [17], IBM KAR [63], Portals [61], Stateful Entities [56], and Kalix [47].

An example entity representing a bank account is shown in Listing 1 in a style
inspired by various systems [4,17,18,29,47,56,61,63]. It shows a bank account
class that takes the runtime context as a parameter in its constructor (line 1).
The runtime context is used to provide access to the side-effects of the entity:
the state and the outgoing messages. The persisted state of the entity is explic-
itly declared on line 2, representing the account’s balance with initial value 0.
The entity defines methods, for getting, depositing to, and withdrawing from the
account. It also defines a method for transferring an amount from the account to
another account. Creating a reference to the other account (receiving the trans-
fer), is achieved through the EntityRef factory, which takes the runtime context as
well as a parameter for the other accounts key (line 14). This way a reference can
be created, and later used for depositing the transferred amount (line 17). This
example highlights some of the features of entities: the persistent explicit state,
and the per-key identity. Note that the balance is not shared between different
keys, rather, every key has its own balance value. The example also highlights
potential issues due to the asynchronous nature of the method invocations on
these actors: concurrently issued withdraw invocations may cause an overdraft
on the account. In order to overcome this, some transactional mechanisms or
similar would be needed.

A Survey of Actor-Like Programming Models for Serverless Computing 131

Characterization. In general, we would characterize these actor-like serverless
systems through five characteristics.

Actor-like serverless computing characterization:

1. Actor-like (Virtual Actors, Entities)
2. Data-parallel, keyed, scalable
3. Transparent fault-tolerance, exactly-once processing
4. Decoupled / externalized state, virtualization
5. Serverless execution, managed runtime

The execution model of serverless actor-like systems resemble the isolated
turn principle [43] from actors with an additional per-key execution context: the
execution of actors can be thought of an execution over isolated turns, in which
a turn consists of an actor instance, identified by its type and key, consuming
a message from its mailbox (mailboxes are disjoint over keys), executing the
statements in the behavior, and possibly producing output messages and/or a
state/behavior change. These turns are executed serially for a key, so that no
two events are processed at the same time for a given actor type and key.

3 Challenges of Serverless Actors and Active Objects

Stateful serverless programming aims to provide several desirable properties
which, in combination, are challenging without sacrificing the fault tolerance,
flexibility, or performance. In particular, the following properties are essential:
(a) serverless state management, enabling the provisioning of compute resources
on demand; (b) fault tolerance with corresponding execution guarantees, provid-
ing the illusion of a failure-free execution in the presence of faulty computers and
networks. In the following, we discuss the challenges of providing these properties
in the context of actor and active object languages.

3.1 Serverless State Management

Serverless computing abstracts from the underlying computing infrastructure,
providing load-based scaling of computing resources on demand. The automatic
provisioning of compute resources affects the state management of the program-
ming system. To illustrate some resulting challenges, consider the example shown
in Listing 1. Suppose the deposit method of an Account is called by a different
entity. When the deposit method is invoked on an entity reference, the cor-
responding entity instance must be activated on a suitable compute resource
(e.g., a virtual machine running in a data center). Note that we cannot assume
that the entity instance is already loaded into the memory of a specific vir-
tual machine. Instead, load-based scaling requires dynamically loading/activate
a varying number of entity instances into a varying number of compute nodes.
Likewise, in case demand for requests to certain entities drop, it must be possi-
ble to passivate entity instances by persisting their state to stable storage and

132 J. Spenger et al.

Listing 2. An account entity with a guard on its withdraw method (replacing the
withdraw method for the account entity from Listing 1).

1 class Account(ctx: Context):
2 ... // (see Listing 1)
3 val balance = PersistentState[Int](ctx).withDefault(0)
4 def withdraw(amount: Int): Unit =
5 await balance.get() >= amount
6 balance.set(balance.get() − amount)

deallocating their memory. This means that all state of an entity must sup-
port serialization and the runtime system must be able to manage this state to
support automatic passivation and activation.

Passivating the state of an entity is challenging in cases the program-
ming model supports guards (e.g., ABS [41]), or blocking receive statements
(e.g., Erlang [9]). To illustrate this, consider the withdraw method in Listing 2.
On line 5, an ABS-style guard, await balance.get() >= amount, ensures that
any call is suspended until the guard evaluates to true, ensuring a non-negative
balance. This means that passivated entities might contain suspended calls. For
this reason, the suspended calls and their execution state must be passivated as
well, so that they subsequently can fully restore the suspended calls and be acti-
vated. Depending on the concrete programming model, execution states of sus-
pended calls might consist of coroutines (e.g., ABS [41], JCoBox [59]) or stackful
continuations which are challenging to serialize (e.g., due to embedded, non-
portable memory addresses). In case the execution state of a suspended call or
a suspended receive statement consists of just a continuation closure (e.g., Scala
Actors [34]), it is possible to support safe serialization using Spores [52] or other
constructs that ensure the serializability of a closure’s environment. For the rea-
sons mentioned above, it is challenging to support the passivation and activation
of actors and active objects in the context of serverless.

3.2 Fault Tolerance

Building distributed systems, i.e., applications executing across multiple inter-
connected computers, requires handling faults such as machine crashes and unre-
liable or disconnected network connections. Consequently, distributed program-
ming systems have long supported this through abstractions and constructs for
fault handling. For example, Erlang’s constructs for actor monitoring and super-
vision have been used successfully for building highly available distributed sys-
tems in the telecom industry [7]. Despite this, building distributed systems that
completely mask failures has remained challenging, except for restricted compu-
tation patterns and system architectures (e.g., Dataflow Processing).

A Survey of Actor-Like Programming Models for Serverless Computing 133

The challenges of providing transparent fault tolerance in the context of
actors and active objects are due to the combination and interplay of the follow-
ing dimensions.

Stateful Computation. To enable recovering from faults, mutable state must
be distributed across multiple replicas running on different computers. These
replicas must be synchronized whenever the state is updated. Furthermore, state
updates must be transactional: recovering from faults must not inadvertently
repeat a state update that was already applied.

Non-deterministic Behavior. General concurrent programming models, such as
active objects and actors, support writing non-deterministic programs. For exam-
ple, when two concurrent active objects each call a method on a third active
object, the two method calls are concurrent and thus their execution order is
non-deterministic. In general, the behavior may also include non-deterministic
computations, such as random number generation or the use of local time/-
clocks. Supporting non-determinsitic behavior in fault-tolerant systems is chal-
lenging, since computations might have to be re-executed when recovering from
faults. However, re-executing non-deterministic code can change the outcome of
computations, thereby failing to provide the illusion of a failure-free execution.
Supporting non-deterministic behavior thus requires the use of implementation
techniques that do not make use of re-execution (such as rollback-recovery [28]),
or logging all sources of non-determinism [30], making state management more
complex and potentially increasing runtime overhead. This is further compli-
cated by the dynamic topology of actor systems.

Interaction with External Systems. In practice, distributed systems typically
interact with various external systems, such as database management systems,
distributed file systems, message queues. Requests submitted to external sys-
tems must not be tentative (and subject to potential rollback recovery); since
such requests, in general, cannot be undone, they can only be submitted if the
present system ensures that they are never going to be repeated, even during
fault recovery.

Due to the above challenges, some stateful serverless programming systems
trade flexibility for fault-tolerance guarantees. For example, instead of providing
Exactly-Once Processing, some systems only provide At-Most-Once or At-Least-
Once fault-tolerance guarantees. The latter significantly increases the complexity
of the programming model, since events need to be either idempotent or dedupli-
cated manually. On the other hand, At-Most-Once requires dealing with dropped
events without support from the programming system. Although there are no
fundamental limitations to execute the classic actor and active object model
serverlessly, doing so comes at a tradeoff between the expressiveness, guaran-
tees, performance, and cost of the model. The next section will explore various
systems to highlight their variations among these dimensions.

134 J. Spenger et al.

4 Analysis of Actor-Like Serverless Systems

In this section we analyze the properties of a selection of systems at the inter-
section of actors, dataflow processing, and serverless. The analysis is structured
around two questions. First, we analyze their specific properties with respect
to the programming model. Second, we analyze their properties with respect to
serverless execution. The purpose is to give an overview of similarities and dis-
similarities between the programming models and implementations. The systems
under survey are the following.

– The Orleans system [13,18], pioneering the virtual actor model.
– Durable Functions’ Entities [16,17], virtual actors that can be used together

with other abstractions such as Orchestrations and Activities within
Microsoft’s Durable Functions framework.

– Apache Flink Stateful Functions [4,29], an abstraction of virtual actor-like
stateful functions running on Apache Flink, independently developed by dif-
ferent groups [4,29].

– IBM KAR [63], a polyglot scalable and fault-tolerant virtual actor system.
– Kalix [47], a serverless platform for deploying microservices consisting of enti-

ties, actions, and views.
– Portals and Portals’ Actors [61], a research project and programming model

which unifies the actor model with the dataflow processing model.
– Ray [53], a framework for scaling actor-like computational tasks, focused on

reinforcement learning.
– Cloudburst [62], a stateful functions research project which leverages CRDT

state for its execution.

Although not all systems fit the characterization from Sect. 2.5, e.g., through a
lack of a fully-managed platform with per-use billing, they are included in this
survey as they are closely related and provide valuable insights.

4.1 Programming Model

We analyze the programming models of the systems across three categories: actor
style; communication; and state and computation. The analysis is reflected in
Table 1.

Actor Style. The actor-like systems can be divided into two groups based on
their style: virtual; and non-virtual (see Table 1). These two groups differ quite
uniformly over the properties in our analysis.

Life-Cycle. Virtual actors have a virtual life-cycle, they exist by definition rather
than through creation. Non-virtual actors, in contrast, exist through creation.

Identity and References. Identifying a virtual actor is achieved through a virtual
identity. Virtual actor references are constructed from identities using factories.

A Survey of Actor-Like Programming Models for Serverless Computing 135

Table 1. Programming model properties.

Dyn. Topology (Int/Ext)

Actor Style Application Comm Ext. State Fault-Transp

Orleans virtual ✗ / ✓ ✓ / ✓ ✓ ✓–

Durable Functions virtual ✗ / ✓ ✓ / ✓ ✓ ✓

Flink StateFun virtual ✗ / ✓ ✓ / ✓ ✓ ✓

IBM KAR virtual ✗ / ✓ ✓ / ✓ ✓ ✓–

Kalix virtual ✗ / ✓ ✓ / ✓ ✓ ✓–

Portals virtual ✗ / ✓ ✗ / ✓ ✓ ✓

Ray non-virtual ✓ / ✓ ✓ / ✓ ✓ ✓–

Cloudburst non-virtual ✓ / ✓ ✓ / ✓ ✓ ✓–

The virtual actor references are not strictly always valid when references can be
forged from nonsensical user-provided strings [17,29,47,63]: if there is no corre-
sponding actor definition for the provided string then this may cause a runtime
error. Other systems ensure that references are valid either through compila-
tion checks [61] or through reference factories constructed from existing actor
types [18]. Non-virtual actors, in contrast, have references bound to lifetimes,
which become invalidated if the referenced actor ceases to exist [53,62].

Actor Topology. The topology consists of the actors and how they are con-
nected. We distinguish between Application and Communication topologies. The
application topology consists of the actors, i.e., if actors can be created and
destroyed. The communication topology is the set of connections between actors,
i.e., if new connections can be formed, through exchanges of actor references. On
another dimension, we also distinguish between Internal and External changes.
Internal changes are triggered by the actors themselves, e.g., an actor creat-
ing another actor; External changes are triggered by an outside force, e.g., the
driving application creating new actors or creating new connections (dynamic
reconfiguration). The non-virtual actor systems are dynamic in all four cases
(Table 1) [53,62]. The virtual actor systems, in contrast, have dynamic commu-
nication topologies, and partially dynamic application topologies (actors cannot
create new actors, but the external force can do so) [17,18,29,47,61,63]. All of
the systems have first-class references. The Portals system is an exception, it
restricts actors from creating new connections dynamically through exchanging
references; actor references are only usable by actors with the right capabilities,
these capabilities are assigned statically through the actor definitions [61].

Communication. Actors communicate by exchanging messages either in the
form of message sends or method calls (cf., actors/active objects [43]) (see
Table 2). Out of the selected systems, five had method-based communication,
and three had message-based communication. The difference between the two
is mostly syntactical, and some systems even provide both styles of interfaces

136 J. Spenger et al.

Table 2. Communication properties.

Msg Ops Msg Futures Futures Retrieve Ops

Orleans Send, Call, Reply ✓ Tunable

Durable Functions Send, Reply- ✗ –

Flink StateFun Send, Reply ✗ –

IBM KAR Send, Call, TailCall, Reply ✓ Blocking

Kalix Send, Call, Reply, Forward – –

Portals Send, Call, Reply ✓ Non-blocking

Ray Call, Reply ✓ Blocking

Cloudburst Call, Reply ✓ Blocking

for the actor communication [17]. For this reason we will not further distinguish
between these interfaces; we will consider a Method Invocation to correspond
to a Send operation if it does not return a value, and to a Call operation if it
returns a future of the return value. Similarly, we consider Return to correspond
to the Reply operation.

Message Operations. All systems support the Send and Reply communication
primitives. The exception, here, is Durable Functions [17], which can only reply
to calls from Orchestrations. The TailCall primitive supported by IBM KAR,
is for orchestrating guarantees across a chain of invocations: the previous call
has to have finished/committed before the subsequent calls in the tail call are
executed [63]. This can be used for higher fault-tolerance guarantees beyond
what is provided. The Forward call in Kalix is a special operation which can
forward a replyable message to another service [47].

State and Computation. The serverless computing paradigm is built on the
decoupling of execution from side-effects and state. The programming models all
provide explicit external state abstractions for this (Table 1), accessible through
either a KV store-like interface [62,63], an object-store [53], or typed coarse-
grained [18,47] or fine-grained [17,29,61] factories/annotations. Local variables,
in contrast, do not survive a crash or migration, and are re-initialized upon
activation of the actor.

Shared Memory. Although uncommon in actor-like abstractions, we found some
instances of shared memory. Ray [53] has shared memory in the form of an exter-
nal immutable first-writer-wins object store with distributed futures. Cloud-
burst [62] functions, on the other hand, share access to an eventually consistent
key-value store, with additional mechanisms to enforce causal session consis-
tency. Kalix [47] has replicated entity types backed by CRDTs which can be
used as a form of highly available replicated shared state.

Concurrent Processing and Futures. Most systems provide futures for messag-
ing and awaiting the completion of futures as a concurrency abstraction (see

A Survey of Actor-Like Programming Models for Serverless Computing 137

Table 2). An exception is Durable Functions [17] which does not provide futures
for their Entities but for the Orchestrations. Similarly, Kalix supports futures
(async effects) on Actions with operations reminiscent of chaining futures [47],
it was unclear if this also applies to Entities, for this reason the entry was left
blank. Flink Stateful Functions [29] provides futures for asynchronous opera-
tions, but not for asynchronous message calls expecting a reply. In the table, we
only consider futures that are created from inter-actor messages/method invo-
cations.

While the actor model is traditionally continuous and non-blocking (re-
entrant) to ensure liveness [43], processing an await command on a future forces
the system to choose between blocking or re-entrant execution. The Block-
ing mode blocks the execution of further events of the same key until the
await command completes [53,62,63]. Whereas the Re-entrant mode interleaves
the processing of subsequent events before the await command has completed,
enabling increased concurrency and avoiding potential issues associated with
blocking [29,61]. This choice is also a tunable setting in some systems [18]. Fur-
ther, IBM KAR provide a mode for re-entrant execution for method calls on
itself with the same session-id [63].

Failure Transparency. Failure transparency enables the developer to write
applications without having to reason about certain failures (Table 1). The
system is completely failure transparent if it provides exactly-once processing
(marked as ExO in Table 3): the application does not have to manage anything
related to failures [17,29,61]. If the system is partially failure transparent, that
is, it provides at-most-once/at-least-once guarantees and some failure support
(marked as AMO/ALO), then the application must manually perform certain
actions for failure tolerance. For example, Orleans [18] and Ray [53] provide
methods for asynchronously persisting and reading state, and it is up to the
developer to implement it for the required guarantees. Whereas IBM KAR [63],
Kalix [47], and Cloudburst [62] automatically retry function invocations (at-
least-once), and the developer must ensure that the function is idempotent. For
these reasons, exactly-once processing make programs significantly easier to write
and reason about.

4.2 Serverless Execution

In this section we analyze properties related to the serverless execution and
runtime. The analysis is structured around four categories: fault-tolerance; state
management; scalability; and platform management (Table 3).

Fault Tolerance and Guarantees. Fault-tolerance guarantees are crucial
for distributed systems, commonly expressed as one of the following: Exactly-
Once (ExO), At-Most-Once (AMO), and At-Least-Once (ALO) (Table 3). Out
of these, Exactly-Once is the strongest guarantee, guaranteeing that every event
is delivered and processed exactly-once, implemented by three of the studied

138 J. Spenger et al.

Table 3. Serverless execution properties.

Proc. Guarantees State Parallelism Plaftform Mgmt

Orleans AMO/ALO Ext Data ✗

Durable Functions ExO Embedded Data ✓

Flink StateFun ExO Ext Data ✓

IBM KAR ALO Ext Data ✗

Kalix ALO Ext Data ✓

Portals ExO Embedded Data ✗

Ray AMO/ALO Ext Task ✓

Cloudburst ALO Ext Task ✗

systems [17,29,61]. Exactly-once can also be regarded as observably failure-free,
that is, the execution, and what is observed by the user, behaves as though it is
failure-free. This greatly simplifies reasoning about distributed programs, elimi-
nating the need for manual deduplication and the need to ensure that functions
are idempotent. At-Most-Once, in contrast, guarantees that every event is deliv-
ered and processed at most once (failed invocations are not retried); whereas,
At-Least-Once, guarantees that every event is delivered and processed at least
once (failed invocations are continually retried until success). The choice between
the latter two may be tunable in some cases [18,53], whereas others only provide
At-Least-Once semantics [47,62,63].

Failure-Recovery. Failure-recovery enables the system to effectively mask fail-
ures such as crashes or message loss from the observed execution. The exactly-
once processing systems [16,17,19,29,61] use a checkpointing and recovery strat-
egy [28]. This approach involves the system periodically creating checkpoints
that comprise: 1) the actor state; and 2) the event queues. In the event of a
failure, recovery proceeds by restarting the actors from the most recent check-
pointed state and replaying events from the last checkpointed event queues. The
challenge of establishing consistent checkpoints lies in taking causally-consistent
snapshots of the system. This is done in Flink [19] and Portals [61] with a snap-
shotting protocol similar to the one presented by Chandy and Lamport [23]. In
the Netherite runtime for Durable Functions, in contrast, a distributed snap-
shot is avoided by isolating the processing nodes and blocking events from being
observed until they have been committed [16]. Other implementations that do
not provide exactly-once processing guarantees restart from the latest check-
pointed state, but may potentially replay events more than once (at-least-once),
or drop events (at-most-once) [13,18,47,53,62,63].

State Management. The runtime necessarily manages the state in order to
ensure strong fault-tolerance guarantees. This state is either external, i.e., pri-
marily on some external storage, cached locally for quicker access [18,47,53,62,

A Survey of Actor-Like Programming Models for Serverless Computing 139

63]; or embedded, i.e., hosted in-full locally on the computing nodes, and per-
sisted externally for durability (Table 3). There is a trade-off between the two.
External state offers a higher decoupling, making it easier to scale up and down,
as external state does not need to be migrated during reconfiguration. Embedded
state, on the contrary, yields higher processing throughput and lower latency for
stateful computations [16,17,61].

Scalability and Parallelism. All systems under discussion offer elastic scala-
bility, enabling the runtime to flexibly scale up or down in response to demand. In
this context, two forms of parallelism emerge (Table 3). The Non-Virtual Actors
frameworks facilitate task-level parallelism. This is achieved by spawning new
actors assigned to perform specific tasks and subsequently terminating them
upon task completion. The Virtual Actors frameworks, on the other hand, sup-
port data-level parallelism, as a single actor definition is applied to many events
but over different keys.

Platform Management. Platform management entails managing all aspects
related to the runtime and the servers. That is, the user should only need to
supply the stateful functions definitions and event triggers, and the platform
should manage everything else, billing per-use. Of the selected systems, only
Durable Functions [17] and Kalix [47] are purposefully built for that (Table 3).
Concerning the other systems, both Flink (the Ververica Platform) and Ray (the
Anyscale Platform) have hosted platforms available.

4.3 Related Work

This section concludes the analysis through summarizing other systems that
were not included in the main analysis. Data-Parallel Actors [44] is a research
project for writing data-parallel query systems, it is used to distribute otherwise
non-distributed systems, such as databases and analytics systems. It does so
by using an actor-like abstraction, which manages a partition of the wrapped
system, for which the data-parallel actor must serve user-defined composable
queries over the partitioned data, such as Map, FlatMap, Scatter, Gather ; these
queries apply to all partitions. Crucial [55] is a stateful serverless system for pro-
gramming parallel applications. It executes on top of existing FaaS platforms,
and provides a shared memory abstraction for fine-grained synchronization prim-
itives and sharing larger state which can be used by the deployed functions. It
executes on existing FaaS infrastructure with at-least-once guarantees. Beldi [67]
enables writing fault-tolerant stateful serverless functions. It does so by pro-
viding primitives for consistently reading and writing from a shared memory,
for transactional workloads with locking and transactions, and invoking other
functions from within the function. It provides exactly-once processing guaran-
tees using existing FaaS frameworks together with a strongly consistent storage
provider. A.M.B.R.O.S.I.A. [30] is a system for transparent fault-tolerant non-
deterministic applications. Ambrosia services are executed by actor-like abstrac-

140 J. Spenger et al.

tions called “immortals” using event sourcing and replay recovery for exactly-
once guarantees, for which non-determinism are captured through impulses. For
a replay to recover to a consistent state, it is important that the application
adheres to a “weak language binding contract”: from some state, any execution
of inputs must result in an equivalent final state, outgoing events must be for the
same destinations and in the same order, but may differ in content. AEON [57]
is a scalable and elastic actor framework which guarantees strict serializability
for events across actors using an ownership hierarchy. In follow-up work [58], the
runtime is extended with programmable elasticity policies. The ABS model [41]
has been used in the context of modelling distributed computing models, for
example Spark Streaming [48], and Kubernetes deployments [64], making use of
suspending guards for expressing the logic.

5 Research Directions

In this section we highlight some research directions with actor-like models for
serverless computing.

Static Guarantees, Formal Proofs. There are two main challenges with deploy-
ing serverless actor-like models: 1) ensuring that the user application is statically
sound, and 2) ensuring that the runtime is fault-tolerant. For the first, a common
error in user code is due to user-defined functions capturing non-serializable state
from the environment [52]. This may cause errors which are hard to debug due
to the distributed execution, and consequently crash. This and similar issues,
such as well-typed channels, existing dependencies, may be caught statically at
compile-time, and thus prevent the user from deploying the application. For the
second challenge, it is important to provide formal proofs for the fault-tolerance
guarantees. There has been some work in this area proving the failure-guarantees
[17,63]; future research efforts should focus on formally proving more imple-
mentations, and providing new proof-techniques and frameworks. Beside formal
proofs, it is also an important research direction to continue the exploration of
fault-tolerance mechanisms used in this context.

End-to-End Exactly-Once Processing with External Systems. Distributed sys-
tems are rarely used in isolation. Especially the types of systems presented in
this survey are likely to be used together with other services. For this reason
it is important to ensure that certain guarantees, such as exactly-once pro-
cessing, are provided end-to-end, across the external systems. The problem,
however, is that the side-effects to external systems are typically not tracked
by the system itself. In the context of dataflow processing, end-to-end guar-
antees are achieved through using transactional sinks, for example, connecting
Flink [20] and Kafka [45]. Similarly, Portals suggests connecting external sys-
tems via atomic streams (transactional streams) for preserving the end-to-end
guarantees [61]. More research in this area is warranted, both formal proofs
and abstractions, as well as implementations and primitives for interacting with
external systems.

A Survey of Actor-Like Programming Models for Serverless Computing 141

New Abstractions and Primitives. First, the presented actor-like abstractions
may not be suitable for all types of applications. This is especially problem-
atic as the serverless paradigm restricts the application developer from imple-
menting their own core abstractions. Examples include the Orchestrations in
Durable Functions used for orchestrating workflows with the capability to per-
form blocking calls to and transactions across entities [17]. Another abstraction
is a stateless function or actor as a way to distributed work in a task-parallel fash-
ion [17,18,47]. Second, new communication and compositional primitives can be
explored. One example here, are data-parallel operations over actors [44], which
allow applying Map, FlatMap, Scatter, and Gather operations over all instances
of a data-parallel actor. Third, libraries present an interesting opportunity to
leverage the implementations and provide higher-level abstractions (e.g., level
four in Fig. 1). Examples of this include numerous machine learning libraries on
top of Ray [53], transactional libraries for Orleans [27] and Flink Stateful Func-
tions [37], and streaming libraries [13]. Lastly, with the advancement of machine
learning models, the importance of incorporating robust model serving capa-
bilities within serverless frameworks has grown. Exploring this avenue presents
interesting research opportunities.

6 Conclusion

This study has explored actor-like programming models within the context of
serverless computing by providing a background, extracting distinctive features,
outlining challenges, analyzing popular implementations within the field, con-
cluding with suggestions for research directions.

In this paper, the development of actor-like models for serverless comput-
ing is traced back to the roots of Actors, Active Objects, Dataflow Process-
ing, and Functions-as-a-Service, and presents a case for how merging principles
of these three fields are expressed in the actor-like stateful serverless program-
ming models as seen today: actor-like, virtual, data-parallel with decoupled state
and transparent fault-tolerance in a serverless execution model. The core chal-
lenges of implementing serverless actors are the serverless state management
and the fault tolerant execution. This includes managing the execution state of
suspended objects, and providing fault-tolerance of non-deterministic functions
in a dynamic environment. The analysis highlights similarities and differences
between the implementations. One important difference is the choice between
different fault-tolerance levels provided by the systems: at-least-once; at-most-
once; exactly-once, as it affects many aspects surrounding the programming
model and the implementation thereof. As future research directions, we sug-
gest further exploring methods for static guarantees, end-to-end fault-tolerance,
and new programming abstractions.

In summary, this survey of actor-like models in serverless computing has
revealed a diverse and evolving field. Further work in this field can make future
serverless systems more expressive and robust, resulting in more reliable and
efficient software.

142 J. Spenger et al.

Acknowledgements. This work was partially funded by Digital Futures, the Swedish
Foundation for Strategic Research (under Grant No.: BD15-0006), Horizon Europe
(SovereignEdge.Cognit under Grant No.: 101092711), as well as RISE AI.

References

1. Agha, G.: Concurrent object-oriented programming. Commun. ACM 33(9), 125–
141 (1990). https://doi.org/10.1145/83880.84528

2. Agha, G.A.: Actors: a model of concurrent computation in distributed systems
(parallel processing, semantics, open, programming languages, artificial intelli-
gence). Ph.D. thesis, University of Michigan, USA (1985). http://hdl.handle.net/
2027.42/160629

3. Agha, G.A.: ACTORS: A Model of Concurrent Computation in Distributed Sys-
tems. Series in Artificial Intelligence, The MIT Press, Cambridge (1986)

4. Akhter, A., Fragkoulis, M., Katsifodimos, A.: Stateful functions as a service in
action. Proc. VLDB Endow. 12(12), 1890–1893 (2019). https://doi.org/10.14778/
3352063.3352092. http://www.vldb.org/pvldb/vol12/p1890-akhter.pdf

5. Akidau, T., et al.: The dataflow model: a practical approach to balancing correct-
ness, latency, and cost in massive-scale, unbounded, out-of-order data processing.
Proc. VLDB Endow. 8(12), 1792–1803 (2015). https://doi.org/10.14778/2824032.
2824076. http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf

6. Amazon Web Services: AWS Lambda (2023). https://aws.amazon.com/lambda/.
Accessed 20 Mar 2023

7. Armstrong, J.: Erlang-a survey of the language and its industrial applications. In:
Proceedings of the INAP, vol. 96, pp. 16–18 (1996)

8. Armstrong, J.: Making reliable distributed systems in the presence of software
errors. Ph.D. thesis, KTH Royal Institute of Technology, Stockholm, Sweden
(2003). https://nbn-resolving.org/urn:nbn:se:kth:diva-3658

9. Armstrong, J., Virding, R., Williams, M.: Concurrent Programming in ERLANG.
Prentice Hall, Hoboken (1993)

10. Baduel, L., et al.: Programming, composing, deploying for the grid. In: Cunha,
J.C., Rana, O.F. (eds.) Grid Computing: Software Environments and Tools, pp.
205–229. Springer, London (2006). https://doi.org/10.1007/1-84628-339-6 9

11. Bainomugisha, E., Carreton, A.L., Cutsem, T.V., Mostinckx, S., Meuter, W.D.: A
survey on reactive programming. ACM Comput. Surv. 45(4), 52:1–52:34 (2013).
https://doi.org/10.1145/2501654.2501666

12. Baldini, I., et al.: Serverless computing: current trends and open problems. In:
Chaudhary, S., Somani, G., Buyya, R. (eds.) Research Advances in Cloud Com-
puting, pp. 1–20. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-
5026-8 1

13. Bernstein, P., Bykov, S., Geller, A., Kliot, G., Thelin, J.: Orleans: distributed
virtual actors for programmability and scalability. Technical report MSR-TR-
2014-41 (2014). https://www.microsoft.com/en-us/research/publication/orleans-
distributed-virtual-actors-for-programmability-and-scalability/

14. de Boer, F.S., et al.: A survey of active object languages. ACM Comput. Surv.
50(5), 76:1–76:39 (2017). https://doi.org/10.1145/3122848

15. Brandauer, S., et al.: Parallel objects for multicores: a glimpse at the parallel
language Encore. In: Bernardo, M., Johnsen, E.B. (eds.) SFM 2015. LNCS, vol.
9104, pp. 1–56. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18941-
3 1

https://doi.org/10.1145/83880.84528
http://hdl.handle.net/2027.42/160629
http://hdl.handle.net/2027.42/160629
https://doi.org/10.14778/3352063.3352092
https://doi.org/10.14778/3352063.3352092
http://www.vldb.org/pvldb/vol12/p1890-akhter.pdf
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.14778/2824032.2824076
http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf
https://aws.amazon.com/lambda/
https://nbn-resolving.org/urn:nbn:se:kth:diva-3658
https://doi.org/10.1007/1-84628-339-6_9
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://doi.org/10.1145/3122848
https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1007/978-3-319-18941-3_1

A Survey of Actor-Like Programming Models for Serverless Computing 143

16. Burckhardt, S., et al.: Netherite: efficient execution of serverless workflows.
Proc. VLDB Endow. 15(8), 1591–1604 (2022). https://www.vldb.org/pvldb/
vol15/p1591-burckhardt.pdf

17. Burckhardt, S., Gillum, C., Justo, D., Kallas, K., McMahon, C., Meiklejohn, C.S.:
Durable functions: semantics for stateful serverless. Proc. ACM Program. Lang.
5(OOPSLA), 1–27 (2021). https://doi.org/10.1145/3485510

18. Bykov, S., Geller, A., Kliot, G., Larus, J.R., Pandya, R., Thelin, J.: Orleans: cloud
computing for everyone. In: Chase, J.S., Abbadi, A.E. (eds.) ACM Symposium on
Cloud Computing in Conjunction with SOSP 2011, SOCC ’11, Cascais, Portugal,
26–28 October 2011, p. 16. ACM (2011). https://doi.org/10.1145/2038916.2038932

19. Carbone, P., Ewen, S., Fóra, G., Haridi, S., Richter, S., Tzoumas, K.: State man-
agement in Apache Flink R©: consistent stateful distributed stream processing.
Proc. VLDB Endow. 10(12), 1718–1729 (2017). https://doi.org/10.14778/3137765.
3137777. http://www.vldb.org/pvldb/vol10/p1718-carbone.pdf

20. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache FlinkTM: stream and batch processing in a single engine. IEEE Data Eng.
Bull. 38(4), 28–38 (2015). http://sites.computer.org/debull/A15dec/p28.pdf

21. Caromel, D., Henrio, L., Serpette, B.P.: Asynchronous and deterministic objects.
In: Jones, N.D., Leroy, X. (eds.) Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy,
14–16 January 2004, pp. 123–134. ACM (2004). https://doi.org/10.1145/964001.
964012

22. Castro, P.C., Ishakian, V., Muthusamy, V., Slominski, A.: The rise of server-
less computing. Commun. ACM 62(12), 44–54 (2019). https://doi.org/10.1145/
3368454

23. Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985). https://doi.
org/10.1145/214451.214456

24. Clebsch, S., Drossopoulou, S., Blessing, S., McNeil, A.: Deny capabilities for safe,
fast actors. In: Boix, E.G., Haller, P., Ricci, A., Varela, C.A. (eds.) Proceedings
of the 5th International Workshop on Programming Based on Actors, Agents, and
Decentralized Control, AGERE! 2015, Pittsburgh, PA, USA, 26 October 2015, pp.
1–12. ACM (2015). https://doi.org/10.1145/2824815.2824816

25. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008). https://doi.org/10.1145/1327452.1327492

26. Dragoni, N.: Microservices: yesterday, today, and tomorrow. In: Present and Ulte-
rior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-67425-4 12

27. Eldeeb, T., Bernstein, P.: Transactions for distributed actors in the cloud. Technical
report MSR-TR-2016-1001 (2016). https://www.microsoft.com/en-us/research/
publication/transactions-distributed-actors-cloud-2/

28. Elnozahy, E.N., Alvisi, L., Wang, Y., Johnson, D.B.: A survey of rollback-recovery
protocols in message-passing systems. ACM Comput. Surv. 34(3), 375–408 (2002).
https://doi.org/10.1145/568522.568525

29. The Apache Software Foundation: Apache Flink stateful functions (2023). https://
nightlies.apache.org/flink/flink-statefun-docs-stable/. Accessed 18 May 2023

30. Goldstein, J., et al.: A.M.B.R.O.S.I.A: providing performant virtual resiliency for
distributed applications. Proc. VLDB Endow. 13(5), 588–601 (2020). https://
doi.org/10.14778/3377369.3377370. http://www.vldb.org/pvldb/vol13/p588-
goldstein.pdf

https://www.vldb.org/pvldb/vol15/p1591-burckhardt.pdf
https://www.vldb.org/pvldb/vol15/p1591-burckhardt.pdf
https://doi.org/10.1145/3485510
https://doi.org/10.1145/2038916.2038932
https://doi.org/10.14778/3137765.3137777
https://doi.org/10.14778/3137765.3137777
http://www.vldb.org/pvldb/vol10/p1718-carbone.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.1145/964001.964012
https://doi.org/10.1145/964001.964012
https://doi.org/10.1145/3368454
https://doi.org/10.1145/3368454
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://www.microsoft.com/en-us/research/publication/transactions-distributed-actors-cloud-2/
https://www.microsoft.com/en-us/research/publication/transactions-distributed-actors-cloud-2/
https://doi.org/10.1145/568522.568525
https://nightlies.apache.org/flink/flink-statefun-docs-stable/
https://nightlies.apache.org/flink/flink-statefun-docs-stable/
https://doi.org/10.14778/3377369.3377370
https://doi.org/10.14778/3377369.3377370
http://www.vldb.org/pvldb/vol13/p588-goldstein.pdf
http://www.vldb.org/pvldb/vol13/p588-goldstein.pdf

144 J. Spenger et al.

31. Google Cloud: Google Cloud Functions (2023). https://cloud.google.com/
functions. Accessed 28 May 2023

32. Hähnle, R.: The abstract behavioral specification language: a tutorial introduction.
In: Giachino, E., Hähnle, R., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2012.
LNCS, vol. 7866, pp. 1–37. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40615-7 1

33. Haller, P.: On the integration of the actor model in mainstream technologies: the
Scala perspective. In: Agha, G.A., Bordini, R.H., Marron, A., Ricci, A. (eds.) Pro-
ceedings of the 2nd Edition on Programming Systems, Languages and Applications
Based on Actors, Agents, and Decentralized Control Abstractions, AGERE! 2012,
21–22 October 2012, Tucson, Arizona, USA, pp. 1–6. ACM (2012). https://doi.
org/10.1145/2414639.2414641

34. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based pro-
gramming. Theor. Comput. Sci. 410(2–3), 202–220 (2009). https://doi.org/10.
1016/j.tcs.2008.09.019

35. Helland, P.: Life beyond distributed transactions: an apostate’s opinion. In: Third
Biennial Conference on Innovative Data Systems Research, CIDR 2007, Asilomar,
CA, USA, 7–10 January 2007, Online Proceedings, pp. 132–141 (2007). http://
www.cidrdb.org/, http://cidrdb.org/cidr2007/papers/cidr07p15.pdf

36. Hellerstein, J.M., et al.: Serverless computing: one step forward, two steps back.
In: 9th Biennial Conference on Innovative Data Systems Research, CIDR 2019,
Asilomar, CA, USA, 13–16, January 2019, Online Proceedings (2019). http://www.
cidrdb.org/, http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf

37. de Heus, M., Psarakis, K., Fragkoulis, M., Katsifodimos, A.: Transactions across
serverless functions leveraging stateful dataflows. Inf. Syst. 108, 102015 (2022).
https://doi.org/10.1016/j.is.2022.102015

38. Hewitt, C., Baker, H.G.: Laws for communicating parallel processes. In: Gilchrist,
B. (ed.) Information Processing, Proceedings of the 7th IFIP Congress 1977,
Toronto, Canada, 8–12 August 1977, pp. 987–992. North-Holland (1977)

39. Hewitt, C., Bishop, P.B., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Nilsson, N.J. (ed.) Proceedings of the 3rd International
Joint Conference on Artificial Intelligence. Stanford, CA, USA, 20–23 August 1973,
pp. 235–245. William Kaufmann (1973). http://ijcai.org/Proceedings/73/Papers/
027B.pdf

40. IBM Corp.: IBM Cloud Functions (2020). https://cloud.ibm.com/functions/.
Accessed 28 May 2023

41. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

42. Jonas, E., et al.: Cloud programming simplified: A Berkeley view on serverless
computing. CoRR abs/1902.03383 (2019). http://arxiv.org/abs/1902.03383

43. Koster, J.D., Cutsem, T.V., Meuter, W.D.: 43 years of actors: a taxonomy of
actor models and their key properties. In: Clebsch, S., Desell, T., Haller, P., Ricci,
A. (eds.) Proceedings of the 6th International Workshop on Programming Based
on Actors, Agents, and Decentralized Control, AGERE 2016, Amsterdam, The
Netherlands, 30 October 2016, pp. 31–40. ACM (2016). https://doi.org/10.1145/
3001886.3001890

44. Kraft, P., Kazhamiaka, F., Bailis, P., Zaharia, M.: Data-parallel actors: a pro-
gramming model for scalable query serving systems. In: Phanishayee, A., Sekar, V.

https://cloud.google.com/functions
https://cloud.google.com/functions
https://doi.org/10.1007/978-3-642-40615-7_1
https://doi.org/10.1007/978-3-642-40615-7_1
https://doi.org/10.1145/2414639.2414641
https://doi.org/10.1145/2414639.2414641
https://doi.org/10.1016/j.tcs.2008.09.019
https://doi.org/10.1016/j.tcs.2008.09.019
http://www.cidrdb.org/
http://www.cidrdb.org/
http://cidrdb.org/cidr2007/papers/cidr07p15.pdf
http://www.cidrdb.org/
http://www.cidrdb.org/
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
https://doi.org/10.1016/j.is.2022.102015
http://ijcai.org/Proceedings/73/Papers/027B.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://cloud.ibm.com/functions/
https://doi.org/10.1007/978-3-642-25271-6_8
http://arxiv.org/abs/1902.03383
https://doi.org/10.1145/3001886.3001890
https://doi.org/10.1145/3001886.3001890

A Survey of Actor-Like Programming Models for Serverless Computing 145

(eds.) 19th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 2022, Renton, WA, USA, 4–6 April 2022, pp. 1059–1074. USENIX Asso-
ciation (2022). https://www.usenix.org/conference/nsdi22/presentation/kraft

45. Kreps, J., Narkhede, N., Rao, J.: Kafka: a distributed messaging system for log
processing. In: Proceedings of the NetDB, vol. 11, pp. 1–7. Athens, Greece (2011)

46. Lightbend Inc: Akka (2022). https://akka.io/. Accessed 07 July 2022
47. Lightbend Inc: Kalix (2023). https://www.kalix.io/. Accessed 18 May 2023
48. Lin, J., Lee, M., Yu, I.C., Johnsen, E.B.: Modeling and simulation of Spark Stream-

ing. In: Barolli, L., Takizawa, M., Enokido, T., Ogiela, M.R., Ogiela, L., Javaid,
N. (eds.) 32nd IEEE International Conference on Advanced Information Network-
ing and Applications, AINA 2018, Krakow, Poland, 16–18 May 2018, pp. 407–413.
IEEE Computer Society (2018). https://doi.org/10.1109/AINA.2018.00068

49. Mampage, A., Karunasekera, S., Buyya, R.: A holistic view on resource manage-
ment in serverless computing environments: taxonomy and future directions. ACM
Comput. Surv. 54(11s), 222:1–222:36 (2022). https://doi.org/10.1145/3510412

50. McCune, R.R., Weninger, T., Madey, G.: Thinking like a vertex: a survey of vertex-
centric frameworks for large-scale distributed graph processing. ACM Comput.
Surv. 48(2), 25:1–25:39 (2015). https://doi.org/10.1145/2818185

51. Microsoft: Azure Functions (2023). https://azure.microsoft.com/en-us/products/
functions. Accessed 28 May 2023

52. Miller, H., Haller, P., Odersky, M.: Spores: a type-based foundation for closures in
the age of concurrency and distribution. In: Jones, R. (ed.) ECOOP 2014. LNCS,
vol. 8586, pp. 308–333. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44202-9 13

53. Moritz, P., et al.: Ray: a distributed framework for emerging AI applications. In:
Arpaci-Dusseau, A.C., Voelker, G. (eds.) 13th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, 8–10
October 2018, pp. 561–577. USENIX Association (2018). https://www.usenix.org/
conference/osdi18/presentation/nishihara

54. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad:
a timely dataflow system. In: Kaminsky, M., Dahlin, M. (eds.) ACM SIGOPS 24th
Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA,
3–6 November 2013, pp. 439–455. ACM (2013). https://doi.org/10.1145/2517349.
2522738

55. Pons, D.B., Sutra, P., Artigas, M.S., Paŕıs, G., López, P.G.: Stateful serverless
computing with Crucial. ACM Trans. Softw. Eng. Methodol. 31(3), 39:1–39:38
(2022). https://doi.org/10.1145/3490386

56. Psarakis, K., Zorgdrager, W., Fragkoulis, M., Salvaneschi, G., Katsifodimos, A.:
Stateful entities: object-oriented cloud applications as distributed dataflows. In:
Tanca, L., Luo, Q., Polese, G., Caruccio, L., Oriol, X., Firmani, D. (eds.) Pro-
ceedings 27th International Conference on Extending Database Technology, EDBT
2024, Paestum, Italy, March 25–March 28, pp. 15–21. OpenProceedings.org (2024).
https://doi.org/10.48786/edbt.2024.02

57. Sang, B., Petri, G., Ardekani, M.S., Ravi, S., Eugster, P.: Programming scalable
cloud services with AEON. In: Proceedings of the 17th International Middleware
Conference, Trento, Italy, 12–16 December 2016, p. 16. ACM (2016). https://doi.
org/10.1145/2988336.2988352

58. Sang, B., Roman, P., Eugster, P., Lu, H., Ravi, S., Petri, G.: PLASMA: pro-
grammable elasticity for stateful cloud computing applications. In: Bilas, A.,

https://www.usenix.org/conference/nsdi22/presentation/kraft
https://akka.io/
https://www.kalix.io/
https://doi.org/10.1109/AINA.2018.00068
https://doi.org/10.1145/3510412
https://doi.org/10.1145/2818185
https://azure.microsoft.com/en-us/products/functions
https://azure.microsoft.com/en-us/products/functions
https://doi.org/10.1007/978-3-662-44202-9_13
https://doi.org/10.1007/978-3-662-44202-9_13
https://www.usenix.org/conference/osdi18/presentation/nishihara
https://www.usenix.org/conference/osdi18/presentation/nishihara
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/3490386
https://doi.org/10.48786/edbt.2024.02
https://doi.org/10.1145/2988336.2988352
https://doi.org/10.1145/2988336.2988352

146 J. Spenger et al.

Magoutis, K., Markatos, E.P., Kostic, D., Seltzer, M.I. (eds.) EuroSys ’20: Fif-
teenth EuroSys Conference 2020, Heraklion, Greece, 27–30 April 2020, pp. 42:1–
42:15. ACM (2020). https://doi.org/10.1145/3342195.3387553

59. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14107-2 13

60. Sirjani, M., de Boer, F.S., Movaghar-Rahimabadi, A.: Modular verification of
a component-based actor language. J. Univers. Comput. Sci. 11(10), 1695–1717
(2005). https://doi.org/10.3217/jucs-011-10-1695

61. Spenger, J., Carbone, P., Haller, P.: Portals: an extension of dataflow streaming
for stateful serverless. In: Scholliers, C., Singer, J. (eds.) Proceedings of the 2022
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2022, Auckland, New Zealand,
8–10 December 2022, pp. 153–171. ACM (2022). https://doi.org/10.1145/3563835.
3567664

62. Sreekanti, V., et al.: Cloudburst: stateful functions-as-a-service. Proc. VLDB
Endow. 13(11), 2438–2452 (2020). http://www.vldb.org/pvldb/vol13/p2438-
sreekanti.pdf

63. Tardieu, O., Grove, D., Bercea, G., Castro, P., Cwiklik, J., Epstein, E.A.: Reliable
actors with retry orchestration. Proc. ACM Program. Lang. 7(PLDI), 1293–1316
(2023). https://doi.org/10.1145/3591273

64. Turin, G., Borgarelli, A., Donetti, S., Damiani, F., Johnsen, E.B., Tarifa, S.L.T.:
Predicting resource consumption of Kubernetes container systems using resource
models. J. Syst. Softw. 203, 111750 (2023). https://doi.org/10.1016/j.jss.2023.
111750

65. Yonezawa, A., Briot, J., Shibayama, E.: Object-oriented concurrent program-
ming in ABCL/1. In: Meyrowitz, N.K. (ed.) Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, OOPSLA 1986, Portland, Ore-
gon, USA, Proceedings, pp. 258–268. ACM (1986). https://doi.org/10.1145/28697.
28722

66. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Gribble, S.D., Katabi, D. (eds.)
Proceedings of the 9th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2012, San Jose, CA, USA, 25–27 April 2012, pp.
15–28. USENIX Association (2012). https://www.usenix.org/conference/nsdi12/
technical-sessions/presentation/zaharia

67. Zhang, H., Cardoza, A., Chen, P.B., Angel, S., Liu, V.: Fault-tolerant and trans-
actional stateful serverless workflows. In: 14th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI 2020, Virtual Event, 4–6 Novem-
ber 2020, pp. 1187–1204. USENIX Association (2020). https://www.usenix.org/
conference/osdi20/presentation/zhang-haoran

https://doi.org/10.1145/3342195.3387553
https://doi.org/10.1007/978-3-642-14107-2_13
https://doi.org/10.3217/jucs-011-10-1695
https://doi.org/10.1145/3563835.3567664
https://doi.org/10.1145/3563835.3567664
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf
https://doi.org/10.1145/3591273
https://doi.org/10.1016/j.jss.2023.111750
https://doi.org/10.1016/j.jss.2023.111750
https://doi.org/10.1145/28697.28722
https://doi.org/10.1145/28697.28722
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran

Programming Language Implementations
with Multiparty Session Types

Nobuko Yoshida(B)

University of Oxford, Oxford, UK

nobuko.yoshida@cs.ox.ac.uk

Abstract. Session types provide a typing discipline for communication
systems, and a number of programming languages are integrated with
session types. This paper provides a survey of programming language
implementations which use the structuring mechanism from multiparty
session types (MPST). The theory of MPST guarantees that processes
following a predefined communication protocol (a multiparty session) are
free from communication errors and deadlocks. We discuss the top-down,
bottom-up and hybrid MPST frameworks, and compare their positive
and negative aspects, through a Rust MPST implementation framework,
Rumpsteak. We also survey MPST implementations with dynamic (run-
time) verification which target active object programming languages.

1 Introduction

Since the first implementation work which integrates session types [27,68] into
the mainstream programming language, Java [32], the session types community
has been actively engaged with implementations or integration of session types
into various programming languages and tools. This survey focuses on the pro-
gramming language implementations and tools based on multiparty session types
(MPST) [28,29].

Initially, session types had a main open problem, repeatedly posed by indus-
try partners and researchers: whether the original binary session types [27,68]
can be extended to multiparty (i.e. more than two parties). This is a natural
question since most of business and distributed protocols and parallel computa-
tions are written in multiparty communications. The hint to discover a multi-
party session type theory had come from an abstract version of “choreography”
developed in W3C Web Service Choreography Description Language (WS-CDL)
group [10]. Since the idea was first published in [28], it has been studied and used
from many different theoretical and practical aspects in the research community,
such as the automata theory, model checking, runtime verification, linear logic,
workflows, contracts and mechanisation. With RedHat, multiparty session types

This research was funded in whole, or in part, by EPSRC EP/T006544/2, EP/
K011715/1, EP/K034413/1, EP/L00058X/1, EP/N027833/2, EP/N028201/1, EP/
T014709/2, EP/V000462/1, EP/X015955/1, NCSS/EPSRC VeTSS and Horizon EU
TaRDIS 101093006.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, pp. 147–165, 2024.
https://doi.org/10.1007/978-3-031-51060-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51060-1_6&domain=pdf
http://orcid.org/0000-0002-3925-8557
https://doi.org/10.1007/978-3-031-51060-1_6

148 N. Yoshida

have opened their way to industry with the new JBoss Scribble Project (a lan-
guage to describe multiparty session types). In the U.S., Ocean Observatories
Initiative (OOI) [64] deployed dynamic runtime checking using Scribble for his-
torically large cyberinfrastructures. A new industry-led application domain of
MPST is microservices– Estafet commercialised a tool which generates Go code
for microservices from Scribble [17].

After nearly 15 years from the birth of MPST, as far as we have known,
MPST is integrated over 16 different programming languages. Moreover, for
some languages, several MPST tools exist: for example, research came up with
various MPST tools integrated in Java, and that has led to different MPST-
flavoured Java versions or related technologies such as Scribble.

Among the wide range of formal methods for verifying communicating sys-
tems, the MPST framework offers a direct link to programming primitives that
digest the structures and dynamics of multiple communicating components.
Specifically:

1. Multiparty session types offer clean abstractions of communicating behaviour
as a protocol, defining a fundamental Application Programming Interface
(API) of components, aiding modular development and well-structured engi-
neering;

2. Multiparty session types give a scalable automatic verification method with-
out state-space explosion problems, extensible to check more advanced/general
properties, applying model-checking tools; and

3. Multiparty session types offer a foundation for more refined verification meth-
ods, such as the elaboration of components’ type signature with assertions
and monitoring and tracing behaviours of the systems.

The key element of MPST is a global type, which globally (i.e. in a bird’s eye
view) describes how message exchanges in a conversation (or session) proceed
among its participants (end-points). To obtain the local protocol which an end-
point should obey from a global protocol, we project the local portion of a global
protocol onto each end-point, giving the end-point’s interface with respect to that
protocol. This local interface generalises the familiar notion of API, which can
be regarded as the server-side projection of a two-party call-return protocol. One
can then use, at each end-point, these projected local protocols to concurrently
build and test an end-point system conforming to the local protocols so that the
original global protocols are obeyed in the interactions among these systems.

The first part of this paper outlines three different MPST frameworks using
a MPST Rust toolchain, Rumpsteak, as an example. The second part gives
a summary of all MPST programming language implementations since 2008
and compares them through several criteria. The first part of this paper is an
extended version of a short paper which appeared in [12]. A part of a survey
of the top-down framework explained in § 3.1 is an expansion from [41, § 6.2],
including the recent MPST implementations published after [41].

Programming Language Implementations with Multiparty Session Types 149

Fig. 1. Top-down MPST methodology: Highlight is supplied/done by user.

2 Multiparty Session Type Frameworks

This section explains the three frameworks of the multiparty session types
(MPST), which combine the asynchronous message optimisation. We use the
Rust framework, Rumpsteak [13], for the illustration as the toolchain imple-
ments the three frameworks. We start from the most standard and commonly
used top-down framework, which can ensure correctness by construction.

2.1 Top-Down Multiparty Session Type Framework

Workflow. Figure 1 presents the top-down MPST methodology. As the first
step, we write a global type G to describe the interactions between all roles, and
project it onto each role to obtain an endpoint local type Li; then we apply asyn-
chronous subtyping [21] to optimise each Li to obtain L′

i (denoted by L′
i�Li);

and finally, we type-check each process Pi by L′
i. Hence the group of processes

P1...Pn created in this way are free from communication errors such as deadlocks.
In the Rumpsteak tool-chain (its stages correspond to the right-hand side

in Fig. 1), a global type is written as a protocol, each local type is represented
as a communicating finite state machine (CFSM) [5] (we denote a CFSM by
M). The highlight denotes the part supplied by the user. More specifically, the
implementation is conducted by the following steps: in

Step 1 we write a protocol to describe the interactions, and project it onto each
role to obtain an endpoint communicating finite state machine (CFSM) Mi;

Step 2 we optimise each Mi to obtain M ′
i ;

Step 3 we generate an API Ai from each M ′
i ; and

Step 4 we use each Ai to create an asynchronous Rust process Pi.

150 N. Yoshida

Fig. 2. Global type (top) and the original LB and optimised L′
B local types (bottom)

for the ring-choice protocol

Fig. 3. Ring protocol: (Left) Projected and optimised interactions; (Right) Projected
and optimised session CFSMs.

End-Point Projection. For illustration, we use a ring protocol extended with
choice (ring-choice) whose global type G is given in Fig. 2 (top). Role B chooses
between sending an add or a sub message to role C, which must in turn send the
same label to role A. We then project G into each role to obtain a set of local
types. Figure 2 (bottom) gives a local type of role B (denoted by LB) where !
and ? denote send and receive respectively, and ‘ denotes the output (internal)
choice.

In the implementation, for [Step 1], Rumpsteak uses νScr [63,75], which
is a new lightweight and extensible Scribble toolchain implemented in OCaml.
The Scribble language [26,73] is widely used to describe multiparty protocols,
agnostic to target languages. Then the tool generates a CFSM for each role. The
generated CFSM for role B (denoted by MB) is given in Fig. 3 (right).

Asynchronous Message-Reordering Optimisation. A protocol G is syn-
chronous—i.e., näıvely projecting it onto B produces an overly synchronised
local type LB. If A is slow to send its value to B then the entire interaction is
blocked (as shown in I in Fig. 3). Instead, assuming each process begins with
its own initial value, B could send its value to C in the meantime, allowing C to
begin its next iteration (as shown in I ′ in Fig. 3).

Therefore, in [Step 2], we transform LB into the optimal L′
B in Fig. 2. Impor-

tantly, we ensure that (1) no data dependencies exist between interactions,
allowing their order to be changed; and (2) L′

B is an asynchronous subtype [21]
of LB (L′

B�LB), allowing it to safely be used as a substitution while preserv-
ing deadlock-freedom. The CFSM representations of LB and L′

B are given in
MB and M ′

B in Fig. 3, respectively. While the asynchronous subtyping is proven

Programming Language Implementations with Multiparty Session Types 151

undecidable [45], Rumpsteak implements the sound decidable algorithm which
calculates approximately whether M ′

B is a subtype of MB [13].

Code Generation. While in the theory, we do not have this step, Rumpsteak

includes a code generator to produce an API in [Step 3]. Listing 1 shows the
API AB corresponding to the CFSM M ′

B, from which we have elided other partic-
ipants. To ensure that our API remains readable by developers and to eliminate
extensive boilerplate code, we make use of Rust procedural macros [69]. By dec-
orating types with #[...], these macros perform additional compile-time code
generation. For each role, we generate a struct storing its communication chan-
nels with other roles. For example, B (line 3) contains unidirectional channels
from A and to C as per the protocol. We use #[derive(Role)] to retrieve channels
from the struct.

We build a set of generic primitives to construct a simple API—reducing the
amount of generated code and avoiding arbitrarily named types. For instance,
the Receive primitive (line 22) takes a role, label and continuation as generic
parameters. For readability, we elide two additional parameters used to store
channels at runtime with #[session].

Each choice generates an enum, as seen in RingBChoice (line 21), allowing pro-
cesses to pattern match when branching to determine which label was received.
Methods allowing the enum to be used with Branch or Select primitives are also
generated with #[session]. An enum is required since Rust’s lack of variadic
generics means choice cannot be easily implemented as a primitive. We show
how the RingBChoice type can be used with selection in the Ring type (line 18).

Our API requires only one session type for each role, internally sending a
Label enum (line 9) over reusable channels. We create a type for each label (lines
14 and 15) and use #[derive(Message)] to generate methods for converting to
and from the Label enum.

Process Implementation. In theory, this final step has been done by imple-
menting an end-point process Pi and type-checking it against a local type Li.
In Rumpsteak, we use the API to implement a Rust process. Using the API
AB, we give a possible implementation of the process PB, shown in Listing 2, for
[Step 4]. Linear usage of channels is checked by Rust’s affine type system to
prevent channels from being used multiple times. When a primitive is executed,
it consumes itself, preventing reuse, and returns its continuation.

To warn the programmer when a session is discarded without use, we ensure
this statically by harnessing the type checker. Developers are prevented from
constructing primitives directly using visibility modifiers and must instead use
try session (line 5). Its closure argument accepts the input session type and
returns the terminal type End. If a session is discarded, breaking linearity, then
the developer will have no End to return and the type checker will complain.
Even so, we can implement processes with infinitely recursive types (containing
no End) such as RingB.

152 N. Yoshida

1 #[derive(Role)]
2 #[message(Label)]
3 struct B {
4 #[route(A)] a: Receiver,
5 #[route(C)] c: Sender,
6 }
7

8 #[derive(Message)]
9 enum Label {

10 Add(Add),
11 Sub(Sub),
12 }
13

14 struct Add(i32);
15 struct Sub(i32);
16

17 #[session]
18 type RingB = Select<C, RingBChoice>;
19

20 #[session]
21 enum RingBChoice {
22 Add(Add, Receive<A, Add, RingB>),
23 Sub(Sub, Receive<A, Add, RingB>),
24 }

Listing 1. Rust session type API for
M ′

B (AB)

1 async fn ring_b(
2 role: &mut B,
3 mut input: i32,
4) -> Result<Infallible> {
5 try_session(
6 role,
7 |mut s: RingB<'_, _>| async {
8 loop {
9 let x = input * 2;

10 s = if x > 0 {
11 let s = s.select(Add(x)).await?;
12 let (Add(y), s) = s.receive().await?;
13 input = y + x;
14 s
15 } else {
16 let s = s.select(Sub(x)).await?;
17 let (Add(y), s) = s.receive().await?;
18 input = y - x;
19 s
20 };
21 }
22 },
23).await
24 }

Listing 2. Possible Rust implementation for
process B (PB) using AB

We use an infinite loop (line 8) which is assigned Infallible: Rust’s never
(or bottom) type. Infallible can be implicitly cast to any other type, including
End, allowing the closure to pass the type checker as before.

We allow roles to be reused across sessions since the channels they contain
can be expensive to create. Crucially, to prevent communication mismatches
between different sessions, try session takes a mutable reference to the role.
The same role, therefore, cannot be used multiple times at once because Rust’s
borrow checker enforces this requirement for mutable references.

2.2 Bottom-Up Multiparty Session Type Framework

A bottom-up framework applies the global analysis to check a set of local types
or CFSMs satisfy a certain safety property such as communication safety or
deadlock-freedom. For this, we require to use an additional general-purpose
verification tool such as the k-multiparty compatibility tool (KMC) [46] or the
mCRL2 [50].

Figure 4 depicts the two ways to perform the bottom-up strategies. In the
left hand side, the user writes local types or CFSMs and generates APIs; and in
the right hand side, each CFSM is generated from the API. In this approach,
the user does not start from a global protocol, but starts from a set of local
types/CFSMs or APIs.

The theory which corresponds to the bottom-up approach is given in [66].
This theory develops both synchronous and asynchronous semantics, but the
model checking tool (mCRL2) is only usable for the synchronous version. This is

Programming Language Implementations with Multiparty Session Types 153

Fig. 4. Bottom-up MPST methodology: The tool globally analyses whether the set
{Li}iPI satisfies a property. (Left) The user writes CFSMs and the tool generates APIs;
(Right) the CFMSs are inferred from user-written APIs. Highlight is supplied/done by
the user.

because checking a safety property in asynchronous CFSMs with infinite FIFO
queues is undecidable.

To realise the bottom-up approach (right) in the Rumpsteak implementation,
we first serialise each API Ai to obtain a CFSM M ′

i . Next, we use KMC on the set
of CFSMs M ′

1...n. If they are indeed compatible, then the processes P1...n, which
implement their respective APIs, are free from communication-mistmatch and
deadlocks. KMC takes a set of CFSMs for all participants and verifies deadlock
freedom. To perform the serialisation of an API to a CFSM, we provide a Rust
function serialize<S>() -> Fsm (this is a simplified version). It takes a session
type API as a generic type parameter S and returns its corresponding CFSM.
This CFSM can be printed in a variety of formats and passed into the KMC tool
for verification.

Top-Down Vs Bottom-Up Frameworks. The benefit of the bottom up
approach is that the user does not have to write down a global type. On the
other hand, the bottom-up approach has a number of disadvantages:

Complexity KMC and mCRL2 conduct a global analysis of a set of CFSMs.
The complexity of global verification is high–in general, the complexity of a
safety property checking by mCRL2 is exponential w.r.t. the size of CFSMs.
Checking k-multiparty compatibility is PPRIME [46]. From the implementa-
tion side, analysing the endpoint CFSMs for all participants in the protocol
at once is challenging to do scalablely. The asynchronous subtyping checks
the optimisation of a single participant’s CFSM in isolation, performing a
local analysis of a single participant. Hence the top-down framework has
much less complexity. See [13, Theorem 9] for detailed complexity analysis;

Expressiveness while KMC allows a bounded verification for asynchronous
CFSMs, mCRL2 is not applicable to asynchronous CFSMs.

Implementations it is often very tedious to implement a tool which can infer
CFSMs or local types from a user-written real-world program [59]. In Rump-

steak, the inference is doable from a specialised API which takes a similar
form to a CFSM; and

154 N. Yoshida

Fig. 5. Hybrid MPST methodology: Highlight is supplied/done by user.

Debugging when a KMC or mCRL2 analysis fails, it is difficult to determine
how a programmer should update a complex protocol to make it free from
deadlocks. Safety by construction, as used in the top-down approach, is easier
to work with since verification is done locally on each participant.

2.3 Hybrid Multiparty Session Type Framework

The third framework, hybrid, approach (Fig. 5) is a combination of these two
approaches. In this workflow, a global type G is provided by the developer and
projected to obtain the CFSMs M1...n as before. Rather than the developers
proposing the optimised CFSMs M ′

1...n directly, they simply write the APIs A1...n

(as in the bottom-up approach). These are serialised to M ′
1...n which can (as in

the top-down approach) be checked for safety against M1...n using asynchronous
subtyping. In essence, the hybrid approach uses the same theory as the top-
down approach, but presents a more programmer-friendly interface that uses
serialisation rather than code generation.

The paper [13] gives more detailed complexity analysis and benchmark results
which compare the local optimisation (in the top-down and hybrid frameworks)
and the global analysis (in the bottom-up approach).

3 Multiparty Session Type Language Implementations

This section gives a survey of the programming language implementations based
on multiparty session types (MPST). The previous section has discussed the
static top-down, bottom-up and and hybrid approaches. The term “static” means
that we verify safety of a program at the compile time. There is another approach,
called dynamic where a program conformance against a specification (session

Programming Language Implementations with Multiparty Session Types 155

type) is checked at runtime. The dynamic approach is often called runtime ver-
ification, and this framework also fits well for active object and actor languages.
We discuss (1) the static top-down approach (Sect. 3.1); (2) the dynamic top-
down approach (Sect. 3.2); and (3) the static bottom-up approach (Sect. 3.3). In
(3), we also include the bottom-up tools which use behavioural types.

3.1 Static Top-Down Multiparty Session Type Framework

Table 1 gives a summary of the programming language implementations based
on MPST, ordered by date of publication, focusing on statically typed languages.

The table is composed as follows, row by row:

Languages lists the programming languages introduced or used.
Mainstream language states if the language is broadly used among developers

or not.
Linearity checking describes whether the linear usage of channels is not

checked, checked at compile-time (static) or checked at runtime (dynamic).
Exhaustive choices check indicates whether the implementation can statically

enforce the correct handling of potential input types. ✗ denotes implementa-
tions that do not support pattern-matching to carry out choices (branching)
which are encoded into switch statements on enum types.

Formalism defines the theoretical foundations of the implementations, such
as (1) the end point calculus (the π-calculus (noted as π-cal.), FJ [33]) or
Mini-MPI; (2) the (global) types formalism without any endpoint calculi (no
typing system is given, and no subject reduction theorem is proved); (3)
the formalism based on CFSMs or (4) no formalism is given (no theory is
developed).

Communication safety outlines the presence or the absence of session type-
soundness demonstration. The languages, marked as �, provide the type
safety only at type or CFSM level. ✗• means that the theoretical formalism
does not provide linear types, therefore only type safety of base values is
proved.

Deadlock-freedom is a property guaranteeing that all components are pro-
gressing or ultimately terminate (which correspond to deadlock-freedom in
MPST). The languages marked by � proved deadlock-freedom only at the
type level. ✓• implies the absence of a formal link with the local configura-
tions reduced from the projection of a global type. [24] did not prove that any
typing context reduced from a projection of a well-formed global type satis-
fies a safety property. Hence, deadlock-freedom is not provided for processes
initially typed by a given global type.

Liveness is a property which ensure that all actions are eventually communi-
cated with other parties (unless killed by an exception in those which treat
failures [3,41]).

Notice that the termination property is a subset of safety but not deadlock-
freedom. For example, the ring protocol given in the previous section does not
terminate but deadlock-free and live. See [66].

156 N. Yoshida

Most of the MPST implementations [3,4,6,9,13,20,31,39,41,51,55,65,71,76]
follow the API generation methodology from Scribble introduced by [30], which
was explained in Sect. 2.1. One of the main benefits of this methodology [30] is
that it empowers IDEs to provide auto-completion for developers. See [51, Fig. 6]
for an example.

Notice that the implementations denoted by “dynamic” in the row of “linear-
ity check” are not completely static: they dynamically check linearity of channels
at runtime.

The tool [58] automatically generates paralleled endpoint MPI-C programs,
using the aspect oriented tool which takes a sequential kernel and a MPST
protocol as the input. Another MPI-C implementation [47] uses a global type
extended with the indexed dependent types to statically type check the MPI
code without the end-point projection (hence two cells are marked as N/A).

The earlier tool [40] implements static type-checking of communication pro-
tocols by linking Java classes and their respective typestate definitions generated
from Scribble. Objects declaring a typestate should be used linearly, but a lin-
ear usage of channels is not statically enforced. Rust implementations in [13,41]
can check linearity using the built-in affinity type checking from Rust.

The functional language implementation [35] uses type-level embedding of
multiparty channels in OCaml. Their library relies on OCaml-specific parametric
polymorphism for variant types to ensure type-safety and the implementation
uses a non-trivial, comprehensive encoding of polymorphic variant types and
lenses. The survey [39] gives the detailed explanations about the advantages of
functional languages to handle linearity of session channels.

Recent works [3,9,24,51,71,76] use the call-back style API generations to
statically guarantee channel linearity. The recent Scala tool [11] guarantees chan-
nel linearity by a new API generation based on the pomsets theory (instead of the
FSM-based generation [30] explained in Sect. 2.1), exploring a facility provided
by the matched types in Scala 3.

Built on the actor language framework Ensemble, the work [24] builds Ensem-
bleS which generates a skeleton code based on the StMungo tool [40]. Static ses-
sion typechecking is supported by modifying the original Ensemble typechecker
to ensure that each communication action is permitted by the actor’s declared
session type. Notice that other actor programming languages based on MPST
use dynamic verification, and they are discussed in Sect. 3.2.

Other Implementations Based on Top-Down Multiparty Session
Types. There are several implementations which use the top-down MPST
framework, targeting domain-specific applications. The early works in [16,61]
implement prototypes of the MPST π-calculus with symmetric sums and
dynamic roles in C and Standard ML, respectively.

Apart from the MPI-C implementations [47,58] mentioned above, the MPST
is not only effective to provide the specifications of concurrent and distributed
message passing programming languages, but also it is useful to provide the
guidance to parallelise processes onto the HPC architectures. The earliest work

Programming Language Implementations with Multiparty Session Types 157

Table 1. MPST top-down implementations

[60] [58] [47] [30,31] [40] [65] [55] [6] [39] [35]

Language C MPI-C MPI-C Java Java Scala F# Go PureScript OCaml

Mainstream
language

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Linearity
check

✗ ✗ N/A dynamic ✗ dynamic dynamic dynamic static static

Exhaustive
choices check

✓ ✗ N/A ✗ ✗ ✓ ✗ ✗ ✓ ✓

Formalism ✗ ✗ mini-MPI types FJ π-cal. ✗ types ✗ π-cal.

Comm.
safety

✗ ✗ ✓ � ✓ ✓ ✗ � ✗ ✗•

Deadlock
freedom

✗ ✗ ✗ � ✗ ✓ ✗ � ✗ ✗

Liveness ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[51] [76] [24] [71] [13] [41] [11] [20] [9] [3] [4]

Language TypeScript F* EnsembleS Scala Rust Rust Scala TypeScript Go Scala Java

Mainstream
language

✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Linearity
check

static static dynamic static static static dynamic static static static static

Exhaustive
choices check

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Formalism types types π-cal. π-cal. types π-cal. ✗ CFSMs types π-cal. ✗

Comm.
safety

� � ✓ ✓ � ✓ ✗ � � ✓ ✗

Deadlock
freedom

� � ✓• ✓ � ✓ ✗ � � ✓ ✗

Liveness ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ � ✓ ✗

is [74] which maps the double-buffering algorithm specified as a MPST protocol
to a multicore architecture. The tool [62] uses Scribble protocols to generate the
deadlock-free MPI code to run on the specialised FPGA EURECA architecture.
The work [53] designs a typing system inspired by global types for specifying the
communication protocols among modern Systems-on-a-Chip (SoC). The alge-
braic protocol programming of MPST in Haskell is used for compiling sequential
functional code into the low-level parallel C code in [8]. The work [7] proposes
a cost theory which can predict the cost of message passing by analysing the
MPST protocols annotated by the size of data and distance, and compared the
difference between the predicted cost and the real execution of the benchmarks
in the literature.

The work [25] uses the multiparty session types to implement workflows for
healthcare protocols. Recent works in [48,49] develop the concurrent robotics
framework where specifications extended from the multiparty session types are
compiled into the robotics framework, PGCD [1], which can coordinate physical
robots moving around in 3D space. The tool ensures not only deadlock-freedom
but also collision-freedom of the concurrent robotics systems.

Another emergent topic of MPST is a mechanisation: the Zooid is a domain-
specific language for certified asynchronous multiparty session types, embedded
in Coq, with fully mechanised metatheory for global and local types. MPGV [36]
is a strictly more expressive extension of GV (Wadler’s ‘Good Variation’) [72] to

158 N. Yoshida

multiparty session types. All results such as type safety and global progress in [36]
are mechanised in Coq. A recent work in [70] implements a mechanised proof
to proposes the sound and complete inductive endpoint projection algorithm
against co-inductive endpoint projection, and proves its correctness by Coq.

3.2 Dynamic Top-Down Multiparty Session Type Framework

The static top-down approaches are suitable for the programming languages with
the static type checking. The first application of MPST to the real-world systems
was the runtime monitor of the cyberinfrustracture of the Ocean Observatories
Initiative [64]. Since their architecture is built on Python, we have developed
several dynamic checking systems based on MPST for Python. In essence, the
tool monitors sending and receiving messages written in the specialised session
APIs (called conversation APIs) against the CFSMs to check the local confor-
mance. Along this line, the first work was a development of a monitoring tool in
Python with the extensions to interrupts [15].

This Python framework was extended to the multiparty session-actor frame-
work in [57]. In the previous work for runtime monitoring discussed above, each
end-point process is monitored by a single monitor, which checks messages to
conform to its local type. In the actor model, processes (actors) are event-driven:
upon processing a message from a mailbox, an actor can send messages and
spawn a set of new actors; and change its behaviour upon receiving the next mes-
sage. The key point of the framework in [57] that actors are independent entities
that can take part in multiple interleaved sessions. This enables (1) actors can
be involved in multiple sessions (conversations) simultaneously; (2) actors can
play multiple roles (one role per each multiparty session); and (3) actors can
influence another session by receiving a message from a different session. This
Python framework is later extended to the timed MPST in [54].

Later the MPST actor-based framework is applied to Erlang by Folwer [18].
His toolkit handles an extended version of Scribble with subsessions [14], which
enables to invite new participants midway of the running session. The work
[56] develops the sound recovery of supervision trees in Erlang using the causal
analysis of the MPST protocols, and builds runtime monitoring.

Another important thread of work in the context of active objects is an
application of MPST to the actor domain specific language, ABS [37]. The work
[22] implements a framework in ABS where local atomic segments are verified
statically, but global interactions among local objects are monitored dynami-
cally against a global type. The work investigates various performance overhead
related to object communications, synchronisation between peers, and schedul-
ing. The implementation faithfully follows a theoretical work [38] which designs
the MPST theory targeting a core ABS with futures.1

Recent work in [23] proposes the runtime monitoring framework called Dis-
courje (as an extension of Courje) for monitoring more advanced MPST proto-
cols.
1 The work in [22] is categorised as “dynamic verification” as its workflow is close to

the approaches by Erlang and Python discussed in this subsection.

Programming Language Implementations with Multiparty Session Types 159

3.3 Bottom-Up Behavioural Type Framework

The bottom-up approach uses a general-purpose model checking tool for verify-
ing the properties directly against a set of CFSMs or local types. The first work
which uses the bottom-up approach is [59]. This work infers the CFSMs directly
from Go source code, and builds a global type so that the constructed global
protocol gives the guidance for amending the unsafe code. It uses the GMC
Syn tool [44] for synthesising a generalised global type from multiparty compat-
ible CFSMs. However, the tool handles a very limited subset of Go program.
The work in [42,43] uses a more general-purpose model-checking tool, mCRL2
[50], to verify properties of Go code such as safety, deadlock-freedom, liveness
and termination, inferring behavioural types from Go source code. This tool was
extended to verify shared memory concurrency in Go in [19]. In general, inferring
behavioural types from source code requires non-trivial engineering efforts, and
is not straightforward. The work [67] uses mCLR2 to directly verify message-
passing behavioural types of a Scala-based DSL to check safety properties. This
toolchain corresponds to the l.h.s. in Fig. 4.

The work in [66] extends the MPST theory to adapt the bottom-up approach
and develops the verification tool for the MPST π-calculus based on mCRL2.
Since this approach does not have to start from the global type, it can type more
processes than the top-down approach in [29], but has several disadvantages, see
§ 2.2. The tool in [66] was extended to verify crash-failure semantics of the MPST
π-calculus in [2].

Similarly to Rumpsteak, the Rust toolchain in [41] also includes the bottom-
up approach based on the KMC-checker. The OCaml tool in [34] infers local
types directly from OCaml source code using the OCaml built-in type inference
system, and takes the bottom-up approach applying the KMC-checker to verify
safety properties. The tools which use the KMC-checker and Rumpsteak which
uses the asynchronous subtyping algorithm are only static behavioural typed
programming language tools which can verify asynchronous optimised message-
passing programs.

4 Conclusion

This paper gives a short survey of the programming language implementations
based on multiparty session types (MPST). There are important related imple-
mentations which are not included in this paper—for examples, many works
using model checking tools of session types, and choreography programming
languages [52]. The author wishes to be informed if there is any omission in this
survey.

From the author’s viewpoint, the most practical innovative idea is the API
generation from local CFSMs introduced by [30], which has been adapted to
many different mainstream languages. This method is not only engineering use-
ful (for example, integrating with IDEs for the auto-completion), but also the-
oretically important to motivate the researchers to seek the links between the
MPST theory and the CFSM theory [75].

160 N. Yoshida

One of the most important future work is a deep adaptation of MPST to
active object framework. An effective integration of futures and await primitives
into MPST needs to be investigated. The challenge is to examine a trade-off
between low-level preemptive concurrency and fully distributed actors, using
the guidance from the MPST specification.

The practical development of MPST is still an infant, and its commercialisa-
tion is far beyond the state-of-the-art. We hope that more unforeseen, inventive
ideas for “session types in practice” will be emerged from researchers and devel-
opers of parallel computing, concurrent and distributed systems.

Acknowledgements. We deeply thank the AOL reviewers for helpful and detailed
comments, pointing out several missing literature.

References

1. Banusic, G.B., Majumdar, R., Pirron, M., Schmuck, A., Zufferey, D.: PGCD: robot
programming and verification with geometry, concurrency, and dynamics. In: Liu,
X., Tabuada, P., Pajic, M., Bushnell, L. (eds.) Proceedings of the 10th ACM/IEEE
International Conference on Cyber-Physical Systems, ICCPS 2019, Montreal, QC,
Canada, 16–18 April 2019, pp. 57–66. ACM (2019)

2. Barwell, A., Scalas, A., Yoshida, N., Zhou, F.: Generalised multiparty session types
with crash-stop failures. In: 33rd International Conference on Concurrency Theory.
LIPIcs, vol. 243, pp. 35:1–35:25. Dagstuhl (2022)

3. Barwell, A.D., Hou, P., Yoshida, N., Zhou, F.: Designing asynchronous multi-
party protocols with crash-stop failures. In: 37th European Conference on Object-
Oriented Programming. LIPIcs, Schloss Dagstuhl-Leibniz-Zentrum f”ur Informatik
(2023)

4. Bouma, J., de Gouw, S., Jongmans, S.S.: Multiparty session typing in Java, deduc-
tively. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023. LNCS, vol.
13994, pp. 19–27. Springer, Cham (2023)

5. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983). https://doi.org/10.1145/322374.322380

6. Castro-Perez, D., Hu, R., Jongmans, S.S., Ng, N., Yoshida, N.: Distributed pro-
gramming using role-parametric session types in Go: statically-typed endpoint
apis for dynamically-instantiated communication structures. Proc. ACM Program.
Lang. 3(POPL), 29:1–29:30 (2019). https://doi.org/10.1145/3290342

7. Castro-Perez, D., Yoshida, N.: CAMP: cost-aware multiparty session protocol. In:
OOPSLA 2020: Conference on Object-Oriented Programming Systems, Languages
and Applications. PACMPL, vol. 4, pp. 155:1–155:30. ACM (2020)

8. Castro-Perez, D., Yoshida, N.: Compiling first-order functions to session-typed
parallel code. In: 29th International Conference on Compiler Construction, CC
2020, pp. 143–154. ACM (2020)

9. Castro-Perez, D., Yoshida, N.: Dynamically updatable multiparty session proto-
cols. In: 37th European Conference on Object-Oriented Programming (ECOOP
2023). Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2023)

10. W3C Web Services Choreography. http://www.w3.org/2002/ws/chor/

https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/3290342
http://www.w3.org/2002/ws/chor/

Programming Language Implementations with Multiparty Session Types 161

11. Cledou, G., Edixhoven, L., Jongmans, S.S., Proença, J.: API generation for mul-
tiparty session types, revisited and revised using scala 3. In: Ali, K., Vitek,
J. (eds.) 36th European Conference on Object-Oriented Programming (ECOOP
2022). Leibniz International Proceedings in Informatics (LIPIcs), vol. 222, pp.
27:1–27:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2022). https://doi.org/10.4230/LIPIcs.ECOOP.2022.27. https://drops.dagstuhl.
de/opus/volltexte/2022/16255

12. Cutner, Z., Yoshida, N.: Safe session-based asynchronous coordination in rust. In:
Damiani, F., Dardha, O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp.
80–89. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78142-2 5

13. Cutner, Z., Yoshida, N., Vassor, M.: Deadlock-free asynchronous message reorder-
ing in rust with multiparty session types. In: 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. ACM (2022). arxiv:2112.12693

14. Demangeon, R., Honda, K.: Nested protocols in session types. In: Koutny, M.,
Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 272–286. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32940-1 20

15. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and python. Formal Methods Syst. Des. 46(3), 197–225 (2015). https://doi.org/
10.1007/s10703-014-0218-8

16. Deniélou, P., Yoshida, N.: Dynamic multirole session types. In: Ball, T., Sagiv, M.
(eds.) Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2011, Austin, TX, USA, 26–28 January 2011,
pp. 435–446. ACM (2011). https://doi.org/10.1145/1926385.1926435

17. Estafet: Managing distributed systems using Scribble (2017). https://www.
youtube.com/watch?v= qB2jV5SKwA

18. Fowler, S.: An erlang implementation of multiparty session actors. Electron. Proc.
Theor. Comput. Sci. 223, 36–50 (2016). https://doi.org/10.4204/eptcs.223.3

19. Gabet, J., Yoshida, N.: Static race detection and mutex safety and liveness for
go programs. In: 34th European Conference on Object-Oriented Programming.
LIPIcs, vol. 166, pp. 4:1–4:30. Schloss Dagstuhl-Leibniz-Zentrum f”ur Informatik
(2020)

20. Gheri, L., Lanese, I., Sayers, N., Tuosto, E., Yoshida, N.: Design-by-contract for
flexible multiparty session protocols. In: 36th European Conference on Object-
Oriented Programming. LIPIcs, vol. 222, pp. 8:1–8:28. Schloss Dagstuhl-Leibniz-
Zentrum fur Informatik (2022)

21. Ghilezan, S., Pantović, J., Prokić, I., Scalas, A., Yoshida, N.: Precise subtyping for
asynchronous multiparty sessions. ACM Trans. Comput. Log. (2023). https://doi.
org/10.1145/3568422

22. Hähnle, R., Haubner, A.W., Kamburjan, E.: Locally static, globally dynamic ses-
sion types for active objects. In: de Boer, F.S., Mauro, J. (eds.) Recent Devel-
opments in the Design and Implementation of Programming Languages. Ope-
nAccess Series in Informatics (OASIcs), vol. 86, pp. 1:1–1:24. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.
4230/OASIcs.Gabbrielli.1. https://drops.dagstuhl.de/opus/volltexte/2020/13223

23. Hamers, R., Jongmans, S.-S.: Discourje: runtime verification of communication
protocols in clojure. In: TACAS 2020. LNCS, vol. 12078, pp. 266–284. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45190-5 15

24. Harvey, P., Fowler, S., Dardha, O., J. Gay, S.: Multiparty session types for safe
runtime adaptation in an actor language. In: Møller, A., Sridharan, M. (eds.)

https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://drops.dagstuhl.de/opus/volltexte/2022/16255
https://drops.dagstuhl.de/opus/volltexte/2022/16255
https://doi.org/10.1007/978-3-030-78142-2_5
http://arxiv.org/abs/2112.12693
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1145/1926385.1926435
https://www.youtube.com/watch?v=_qB2jV5SKwA
https://www.youtube.com/watch?v=_qB2jV5SKwA
https://doi.org/10.4204/eptcs.223.3
https://doi.org/10.1145/3568422
https://doi.org/10.1145/3568422
https://doi.org/10.4230/OASIcs.Gabbrielli.1
https://doi.org/10.4230/OASIcs.Gabbrielli.1
https://drops.dagstuhl.de/opus/volltexte/2020/13223
https://doi.org/10.1007/978-3-030-45190-5_15

162 N. Yoshida

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 194, p. 30. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl (2021). https://doi.org/10.
4230/LIPIcs.ECOOP.2021.12. https://2021.ecoop.org/details/ecoop-2021-ecoop-
research-papers/12/Multiparty-Session-Types-for-Safe-Runtime-Adaptation-in-
an-Actor-Language

25. Henriksen, A.S., Nielsen, L., Hildebrandt, T.T., Yoshida, N., Henglein, F.: Trust-
worthy pervasive healthcare services via multiparty session types. In: Weber, J.,
Perseil, I. (eds.) FHIES 2012. LNCS, vol. 7789, pp. 124–141. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39088-3 8

26. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19056-8 4

27. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

28. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM Press (2008). https://doi.org/10.1145/1328438.1328472

29. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types.
JACM 63, 1–67 (2016)

30. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., Wasowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 24

31. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 116–133. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 7

32. Hu, R., Yoshida, N., Honda, K.: Session-based distributed programming in java. In:
Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70592-5 22

33. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight java: a minimal core calculus
for java and GJ. ACM TOPLAS 23(3), 396–450 (2001). https://doi.org/10.1145/
503502.503505

34. Imai, K., Lange, J., Neykova, R.: Kmclib: automated inference and verification
of session types from OCaml programs. In: TACAS 2022. LNCS, vol. 13243, pp.
379–386. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9 20

35. Imai, K., Neykova, R., Yoshida, N., Yuen, S.: Multiparty session programming with
global protocol combinators. In: Hirschfeld, R., Pape, T. (eds.) 34th European
Conference on Object-Oriented Programming (ECOOP 2020). Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 166, pp. 9:1–9:30. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.
ECOOP.2020.9. https://drops.dagstuhl.de/opus/volltexte/2020/13166

36. Jacobs, J., Balzer, S., Krebbers, R.: Multiparty GV: functional multiparty session
types with certified deadlock freedom. Proc. ACM Program. Lang. 6(ICFP) (2022).
https://doi.org/10.1145/3547638

37. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

https://doi.org/10.4230/LIPIcs.ECOOP.2021.12
https://doi.org/10.4230/LIPIcs.ECOOP.2021.12
https://2021.ecoop.org/details/ecoop-2021-ecoop-research-papers/12/Multiparty-Session-Types-for-Safe-Runtime-Adaptation-in-an-Actor-Language
https://2021.ecoop.org/details/ecoop-2021-ecoop-research-papers/12/Multiparty-Session-Types-for-Safe-Runtime-Adaptation-in-an-Actor-Language
https://2021.ecoop.org/details/ecoop-2021-ecoop-research-papers/12/Multiparty-Session-Types-for-Safe-Runtime-Adaptation-in-an-Actor-Language
https://doi.org/10.1007/978-3-642-39088-3_8
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://doi.org/10.1007/978-3-030-99524-9_20
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://drops.dagstuhl.de/opus/volltexte/2020/13166
https://doi.org/10.1145/3547638
https://doi.org/10.1007/978-3-642-25271-6_8

Programming Language Implementations with Multiparty Session Types 163

38. Kamburjan, E., Din, C.C., Chen, T.-C.: Session-based compositional analysis for
actor-based languages using futures. In: Ogata, K., Lawford, M., Liu, S. (eds.)
ICFEM 2016. LNCS, vol. 10009, pp. 296–312. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47846-3 19

39. King, J., Ng, N., Yoshida, N.: Multiparty session type-safe web development
with static linearity. In: Programming Language Approaches to Concurrency and
Communication-cEntric Software, vol. 291, pp. 35–46. Open Publishing Associa-
tion (2019)

40. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
mungo and StMungo. In: Proceedings of the 18th International Symposium on
Principles and Practice of Declarative Programming, PPDP 2016, pp. 146–159.
Association for Computing Machinery, New York (2016). https://doi.org/10.1145/
2967973.2968595

41. Lagaillardie, N., Neykova, R., Yoshida, N.: Stay safe under panic: affine rust pro-
gramming with multiparty session types. In: 36th European Conference on Object-
Oriented Programming. LIPIcs, vol. 222, pp. 4:1–4:29. Schloss Dagstuhl-Leibniz-
Zentrum f”ur Informatik (2022)

42. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off go: liveness and safety for
channel-based programming. In: 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, pp. 748–761. ACM (2017)

43. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in go using behavioural types. In: 40th International Conference
on Software Engineering, pp. 1137–1148. ACM (2018)

44. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL, pp. 221–232 (2015). https://doi.org/10.1145/2676726.
2676964

45. Lange, J., Yoshida, N.: On the undecidability of asynchronous session subtyping.
In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 441–
457. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 26

46. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating
session automata. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
97–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 6

47. López, H.A., et al.: Protocol-based verification of message-passing parallel pro-
grams. In: 2015 ACM International Conference on Object Oriented Programming
Systems Languages and Applications/SPLASH 2015, pp. 280–298. ACM (2015)

48. Majumdar, R., Pirron, M., Yoshida, N., Zufferey, D.: Motion session types
for robotic interactions. In: Proceedings of the 33rd European Conference on
Object-Oriented Programming (ECOOP 2019). LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2019)

49. Majumdar, R., Yoshida, N., Zufferey, D.: Multiparty motion coordination: from
choreographies to robotics programs. In: OOPSLA 2020: Conference on Object-
Oriented Programming Systems, Languages and Applications. PACMPL, vol. 4,
pp. 134:1–134:30. ACM (2020)

50. MCRL2 home page. https://www.mcrl2.org/web/user manual/index.html
51. Miu, A., Ferreira, F., Yoshida, N., Zhou, F.: Communication-safe web programming

in typescript with routed multiparty session types. In: International Conference on
Compiler Construction, pp. 94–106. CC (2021)

52. Montesi, F.: Introduction to Choreographies. CUP (2023)
53. de Muijnck-Hughes, J., Vanderbauwhede, W.: A typing discipline for hardware

interfaces. In: Donaldson, A.F. (ed.) 33rd European Conference on Object-Oriented

https://doi.org/10.1007/978-3-319-47846-3_19
https://doi.org/10.1007/978-3-319-47846-3_19
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-030-25540-4_6
https://www.mcrl2.org/web/user_manual/index.html

164 N. Yoshida

Programming (ECOOP 2019). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 134, pp. 6:1–6:27. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl (2019). https://doi.org/10.4230/LIPIcs.ECOOP.2019.6. http://
drops.dagstuhl.de/opus/volltexte/2019/10798

54. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. Formal Asp. Comput. 29(5), 877–910 (2017)

55. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation for distributed protocols with interaction refinements in F#.
In: 27th International Conference on Compiler Construction, pp. 128–138. ACM
(2018)

56. Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery. In:
Compiler Construction, pp. 98–108. ACM (2017)

57. Neykova, R., Yoshida, N.: Multiparty session actors. Logical Methods Comput. Sci.
13(1) (2017). https://doi.org/10.23638/LMCS-13(1:17)2017

58. Ng, N., de Figueiredo Coutinho, J.G., Yoshida, N.: Protocols by default. In: Franke,
B. (ed.) CC 2015. LNCS, vol. 9031, pp. 212–232. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46663-6 11

59. Ng, N., Yoshida, N.: Static deadlock detection for concurrent go by global session
graph synthesis. In: 25th International Conference on Compiler Construction, pp.
174–184. ACM (2016)

60. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel programming
with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS,
vol. 7304, pp. 202–218. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30561-0 15

61. Nielsen, L., Yoshida, N., Honda, K.: Multiparty symmetric sum types. In: Fröschle,
S.B., Valencia, F.D. (eds.) Proceedings 17th International Workshop on Expres-
siveness in Concurrency, EXPRESS 2010, Paris, France, 30 August 2010. EPTCS,
vol. 41, pp. 121–135 (2010). https://doi.org/10.4204/EPTCS.41.9

62. Niu, X., Ng, N., Yuki, T., Wang, S., Yoshida, N., Luk, W.: EURECA compilation:
automatic optimisation of cycle-reconfigurable circuits. In: 26th International Con-
ference on Field Programmable Logic and Applications, pp. 1–4. IEEE (2016)

63. nuScr home page. http://nuscr.dev/nuscr/
64. Ocean Observatories Initiative home page. https://oceanobservatories.org/
65. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty

sessions for safe distributed programming. In: ECOOP. LIPIcs, vol. 74, pp. 24:1–
24:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). https://doi.org/
10.4230/LIPIcs.ECOOP.2017.24

66. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. Proc. ACM
Program. Lang. 3(POPL), 30:1–30:29 (2019). https://doi.org/10.1145/3290343

67. Scalas, A., Yoshida, N., Benussi, E.: Verifying message-passing programs with
dependent behavioural types. In: Programming Language Design and Implemen-
tation, pp. 502–516. ACM (2019)

68. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing
system. In: PARLE 1994, LNCS, vol. 817, pp. 398–413 (1994). https://doi.org/10.
1007/3540581847118

69. The Rust Project Developers: Procedural Macros. https://doc.rust-lang.org/
reference/procedural-macros.html

70. Tirore, D., Bengtson, J., Carbone, M.: A sound and complete projection for global
types. In: ITP 2023. LIPIcs, Schloss Dagstuhl (2023)

https://doi.org/10.4230/LIPIcs.ECOOP.2019.6
http://drops.dagstuhl.de/opus/volltexte/2019/10798
http://drops.dagstuhl.de/opus/volltexte/2019/10798
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.4204/EPTCS.41.9
http://nuscr.dev/nuscr/
https://oceanobservatories.org/
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.1145/3290343
https://doi.org/10.1007/3540581847118
https://doi.org/10.1007/3540581847118
https://doc.rust-lang.org/reference/procedural-macros.html
https://doc.rust-lang.org/reference/procedural-macros.html

Programming Language Implementations with Multiparty Session Types 165

71. Viering, M., Hu, R., Eugster, P., Ziarek, L.: A multiparty session typing discipline
for fault-tolerant event-driven distributed programming. Proceedings of the ACM
on Programming Languages 5(OOPSLA), 1–30 (2021). https://doi.org/10.1145/
3485501

72. Wadler, P.: Propositions as sessions. JFP 24(2–3), 384–418 (2014). https://doi.
org/10.1017/S095679681400001X

73. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05119-2 3

74. Yoshida, N., Vasconcelos, V., Paulino, H., Honda, K.: Session-based compilation
framework for multicore programming. In: de Boer, F.S., Bonsangue, M.M., Made-
laine, E. (eds.) FMCO 2008. LNCS, vol. 5751, pp. 226–246. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04167-9 12

75. Yoshida, N., Zhou, F., Ferreira, F.: Communicating finite state machines and an
extensible toolchain for multiparty session types. In: Bampis, E., Pagourtzis, A.
(eds.) FCT 2021. LNCS, vol. 12867, pp. 18–35. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-86593-1 2

76. Zhou, F., Ferreira, F., Hu, R., Neykova, R., Yoshida, N.: Statically verified refine-
ments for multiparty protocols. Proc. ACM Program. Lang. 4(OOPSLA) (2020).
https://doi.org/10.1145/3428216

https://doi.org/10.1145/3485501
https://doi.org/10.1145/3485501
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1007/978-3-642-04167-9_12
https://doi.org/10.1007/978-3-030-86593-1_2
https://doi.org/10.1007/978-3-030-86593-1_2
https://doi.org/10.1145/3428216

Modelling

Integrated Timed Architectural
Modeling/Execution Language

Lorenzo Bacchiani1(B), Mario Bravetti1, Saverio Giallorenzo1,2,
Jacopo Mauro3, and Gianluigi Zavattaro1,2

1 Università di Bologna, Bologna, Italy
lorenzo.bacchiani2@unibo.it

2 Focus Team, INRIA, Sophia Antipolis, France
3 University of Southern Denmark, Odense, Denmark

Abstract. We discuss an integrated approach for the design, spec-
ification, automatic deployment and simulation of microservice-based
applications based on the ABS language. In particular, the integration
of architectural modeling inspired by TOSCA (component types/port
dependencies/architectural invariants) into the ABS language (static and
dynamic aspects of ABS, including component properties, e.g., speed,
and their use in timed/probabilistic simulations) via dedicated annota-
tions. This is realized by the integration of the ABS toolchain with a
dedicated tool, called Timed SmartDepl. Such a tool, at ABS code com-
pile time, solves (starting from the provided architectural specification)
the optimal deployment problem and produces ABS deployment orches-
trations to be used in the context of timed simulations. Moreover, the
potentialities and the expressive power of this approach are confirmed
by further integration with external tools, e.g.: the Zephyrus tool, used
by Timed SmartDepl to solve the optimal deployment problem via con-
straint solving, and a machine learning-based predictive module, that
generates in advance data to be used in a timed ABS simulation exploit-
ing such predicted data (e.g., simulating the usage, during the day, of
predicted data generated during the preceding night).

1 Introduction

Inspired by service-oriented computing, microservices structure software system
as highly modular and scalable compositions of fine-grained and loosely-coupled
services [23]. These features support modern software engineering practices, like
continuous delivery/deployment [27] and autoscaling [8]. A significant problem
in these practices is the automation of the deployment process of non-trivial
microservice systems: cost-optimal distribution of components over the available
Virtual Machines (VMs) and dynamic reconfiguration. Indeed, the ability to
modify the system architecture during execution is a fundamental property to
cope with adaptation needs, e.g., fluctuating peaks of user requests.

Although these practices are already beneficial, they can be further improved
by exploiting the interdependencies within an architecture (interface functional
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, pp. 169–198, 2024.
https://doi.org/10.1007/978-3-031-51060-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51060-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-51060-1_7

170 L. Bacchiani et al.

Fig. 1. Integrated timed architectural modeling/execution language toolchain.

dependences), instead of focusing on the single microservice. For instance, in
the case of time-varying workload peaks w.r.t. traditional local scaling tech-
niques [26], architecture-level dynamic deployment orchestration can avoid
“domino” effects of unstructured scaling, i.e., single services scaling one after
the other (cascading slowdowns) due to local workload monitoring.

In this paper, we thoroughly present the integrated timed architectural mod-
eling/execution language introduced in [10]. The combination of modeling and
execution capabilities makes it possible, in the context of a single language, to
both (i) declaratively describe the architecture, its invariants, and the allowed
reconfigurations and (ii) simulate system execution. Such an integrated language
relies on an extension of the actor-based timed object-oriented Abstract Behav-
ioral Specification (ABS) language [3]. In particular, it crucially exploits the
twofold nature of ABS, which is both a process algebra (with probabilistic/-
timed formal semantics) and a programming language (compiled and executed,
e.g., with the Erlang backend), allowing for timed simulations. As can be seen
in Fig. 1, we extend the ABS language with Timed SmartDeployer tool [10] anno-
tations, which make it possible to express: architectural properties of the modeled
distributed system (global architectural invariants and allowed reconfigurations),
of its VMs (their characteristics and the resource they provide) and of its software
components/services (their resource/functional requirements). Timed SmartDe-
ployer, at compile-time, checks the satisfiability of such annotations accounting
for the desired target configuration requirements, modeled using the Declara-
tive Requirement Language (DRL) [20], and architectural invariants. Once the
annotations have been validated, it synthesizes the deployment orchestrations
that build the system architecture and each of its specified reconfigurations (via

Integrated Timed Architectural Modeling/Execution Language 171

DRL). Simmetrically, it also generates the undeployment orchestrations to undo
such reconfigurations. More precisely, Timed SmartDeployer uses ABS itself as
an orchestration language and makes (un)deployment ABS code available via
methods with conventional names. In this way, such methods can be invoked
by the ABS code of services, thus simulating run-time adaptation. Technically,
such (un)deployment orchestrations are timed (un)deployment orchestrations,
which also manage time aspects of the simulation, e.g., dynamically adjusting
VM speeds, based on actually used cpu cores, and setting VM startup times.
Therefore, Timed SmartDeployer integrates architectural annotations and timed
ABS, used as an execution language.

The fact that, besides combining them in a single language, we also inte-
grate (via orchestration generation) modeling and execution capabilities, makes
it possible to anticipate at design level performance-related issues. This fosters
an approach where the analysis of the consequences of deployment decisions are
available early on. Timed SmartDeployer checks (at compile-time) the synthe-
sizability of deployment orchestrations that, at run-time, will ensure the system
to be always capable of reaching the desired reconfiguration (specified via DRL).
For example, in the case of time-varying workload such desired reconfigurations
would aim at globally incrementing the computational power via service replica-
tion. In this way, we would have the guarantee that the system is always capable
of adapting to positive/negative peaks of user requests, respecting the imposed
Quality of Service. On the contrary, run-time deployment decisions, if left to
loosely-coupled reactive scaling policies, could lead to a chaotic behavior.

Timed SmartDeployer has to solve the problem of synthesizing timed deploy-
ment orchestrations starting from a declarative description of desired recon-
figuration requirements. Such a problem, called optimal deployment problem,
has been proved to be algorithmically treatable for microservices only [16,17].
Timed SmartDeployer provides an interface with ABS, reading ABS annota-
tions with DRL declarations and injecting code of synthesized (un)deployment
orchestrations into the initial annotated ABS program. To do this, it relies on
a pluggable external solver which outputs the synthesized architectural configu-
ration (cost-optimal distribution of components over the available VMs), which
is, then, translated by Timed SmartDeployer into (un)deployment orchestrations
expressed as timed ABS code. Notice that, being the solver pluggable, Zephyrus2
can be replaced with any other (not necessarily constraint-based) solver, which
takes as input a DRL declaration and produces an architectural configuration.

Concerning the simulation of a modeled microservice system, executable ABS
code is based on a set of hard-coded data (ABS array), which is divided into
two parts: the actual and predicted workload for the simulated time period.
Concerning the predicted workload, such data is generated at compile-time using
a pluggable predictive module. Specifically, we make use of a machine learning
predictive-based module implementing a neural network, which generates the
workload data performing inference on a previously trained network. The idea
is that the simulation represents system execution during the daytime and the
neural network is trained during the preceding night. Notice that, being the

172 L. Bacchiani et al.

predictive module pluggable, such a machine learning-based one can be replaced
with any other module which produces predicted workload data.

Finally, we show our modeling execution language to be capable of express-
ing architecture-level adaptable systems. In particular, we consider, as a running
example, a realistic microservice application, i.e., the Email Message Analysis
Pipeline taken from Iron.io [24]. In such an application scenario, we use, as
a reconfiguration requirement, some given increment or decrement of the sys-
tem Maximum Computational Load (MCL), i.e., the maximum supported fre-
quency for inbound requests (workload). Such global reconfigurations are used,
in the context of an algorithm for architecture-level run-time adaptation [10]
(also referred to as global scaling algorithm) to reach any target MCL (target
workload), which overcomes the shortcomings of the traditional local scaling
approach [26].

As we show in [10], the idea is that by monitoring at run-time the inbound
workload, our algorithm causes the system to be always in the reachable con-
figuration that better fits such workload (and that has the minimum number of
deployed microservice instances). As a matter of fact, it is advantageous (see [9])
to consider as a target workload for the algorithm not merely the monitored one,
but also the predicted workload (generated by the predictive module). Thus, we
devised a run-time technique, based on past observed differences (where the
most recent ones are given the highest weight) between monitored and predicted
workload, to combine them into a single target workload.

Concerning the Email Message Analysis Pipeline itself, its model is built
by considering static aspects of the architecture (annotations) and ABS code
modeling the behavior of services. We simulate system execution using inbound
traffic inspired to the real Enron dataset in [28], representing the frequency of
emails entering the system. In order to show the effectiveness of our global scaling
algorithm and show the advantages of using a predictive module and a technique
to mix forecasted data with monitored ones, we run comparison experiments to
show its advantages w.r.t. other approaches. The obtained code fully exploits the
expressive power of ABS, e.g., using both its timed and probabilistic features. 1

The paper is structured as follows. In Sect. 2, we briefly introduce our
approach to the automatated deployment of microservice applications and we
present the Email Pipeline Processing system that we use as a running example.
In Sect. 3, we describe the Architectural Modeling/Execution Language, includ-
ing Timed SmartDeployer and how we model service MCL. In Sect. 4, we present
how external tools, i.e., Zephyrus2 and our machine learning based predictive
module, can be integrated with this language. In Sect. 5, we test the expressive
power of the Architectural Modeling/Execution Language, showing the imple-
mentation of the global scaling. Finally, in Sect. 6, we conclude the paper and
discuss related work.

1 Complexity of our ABS process algebraic models is also witnessed by the fact that
they led us to discover an error in the Erlang backend: it caused interferences in
time evolution between unrelated VMs (it was solved thanks to our code).

Integrated Timed Architectural Modeling/Execution Language 173

2 Microservices Deployment and Running Example

We now introduce our approach to the automatated deployment of microser-
vice applications and illustrate it with our running example, the Email Message
Analysis Pipeline.

2.1 Automated Deployment of Microservices

In [16,17], Bravetti et al. formalize component-based software systems and the
problem of their automated deployment as the synthesis of deployment orches-
trations (which allocate instances of software components on VMs) to reach a
given target system configuration. In particular, the deployment life-cycle of each
component type is formalized as a finite-state automaton, whose states denote a
deployment stage. Each state corresponds to a set of provided ports (operations
exposed by a component that other components can use) and a set of required
ports (operations of other components needed by a component to work at that
deployment stage). More specifically, Bravetti et al. [16,17] consider the case of
microservices, components whose deployment life cycle consists of two phases:
(i) creation, which entails the mandatory establishment of initial connections,
via so-called strongly required ports, with other available microservices, and (ii)
binding/unbinding, which corresponds to the establishment of optional connec-
tions, specified as so-called weakly required ports, to other available microser-
vices. The two phases make it possible to manage circular dependencies among
microservices.

The notions of strongly and weakly required ports are present also in state-
of-the-art deployment technologies like Docker Compose [22], which is a lan-
guage for the definition of multi-container deployments. In Docker Compose
users specify different relationships among containers using, e.g., the depends on
(resp. external links) relations. Then, these relations impose (resp. do not impose)
a specific startup order among the containers, similar to how the combination
of strong (resp. weak) dependencies induce an ordering in the orchestration of
microservices deployment.

In addition, Bravetti et al. [16,17] consider resource/cost-aware deployments
by modeling also memory and computational resources—i.e., the number of vir-
tual CPU cores (vCores in Azure), sometimes simply called virtual CPUs as
in Amazon EC2 and Kubernetes [26]. In particular, the authors enrich both
microservice specifications and VM descriptions with the number of resources
they, respectively, need and supply.

A microservice deployment orchestration is a program in an orchestration
language that includes primitives for (i) creating/removing a certain microser-
vice together with its strongly required bindings and (ii) adding/removing weak-
required bindings between some created microservices. Given an initial microser-
vice system, a set of available VMs, and a new target system configuration (cor-
responding to the set of microservices to be deployed), the optimal deployment
problem is the problem of finding the deployment orchestration that (a) satisfies
core and memory requirements, (b) leads to a new system configuration where

174 L. Bacchiani et al.

Fig. 2. Microservice Architecture of the Email Message Analysis Pipeline.

the target microservices are deployed, and (c) chooses the solution that optimizes
resource usage, if more than one is available. As a typical example of an objec-
tive function to optimize, the reader can consider cost minimization, i.e., select
among all possible deployment orchestrations the one which minimizes the sum
of the cost-per-hour of the virtual machines used for microservice deployment.

While Di Cosmo et al. [18] proved that allowing components to have arbi-
trary deployment life-cycles makes the optimal deployment problem undecidable,
Bravetti et al. showed that the latter becomes decidable when considering the
simplified life-cycle of microservices described above, consisting of the two cre-
ation and binding/unbinding phases [16,17]. In particular, the authors presented
a constraint-solving algorithm whose result is the new system configuration, i.e.,
the microservices to be deployed, their distribution over the VMs, and the bind-
ings to be established among their strong/weak required and provided ports.

2.2 The Email Message Analysis Pipeline

In Fig. 2 (similar to that in [16,17]) we show a representation of the Email Mes-
sage Analysis Pipeline [24]. The architecture includes 12 types of microservices,
each equipped with its dedicated load balancer. Each load balancer distributes
inbound requests among the set of microservice instances, whose number can
change at runtime. We can logically partition our exemplary microservice appli-
cation into four pipelines, each dedicated to the analysis or different parts of an
email, namely its headers, links, text, and attachments (we detail each pipeline
in Sect. 2.3). Messages enter the system through the MessageReceiver, which for-
wards them to the MessageParser. This microservice, in turn, extracts data from
the email and routes them to the proper pipeline. Once each email component
has been processed asynchronously (each taking its specific processing time), the
MessageAnalyzer aggregates the outputs of each pipeline corresponding to the
same email, and it produces a single analysis report for that email.

Before illustrating, in the next section, how one can apply to this example our
approach for the automated deployment and scaling of microservice applications
(cf. Sect. 2.1), we briefly present our representation of cloud resources.

Integrated Timed Architectural Modeling/Execution Language 175

We consider virtual CPU cores both for machines (providing them) and for
microservices (requiring them). In particular, here, we assume microservices to
be deployed on Amazon EC2 VMs of type large, xlarge, 2xlarge, and 4xlarge,
each respectively providing 2, 4, 8, and 16 virtual CPU cores (following the
Azure vCore terminology), simply called vCPUs in Amazon EC2. Notice that we
model computational resources supplied by VMs (and required by microservices)
using virtual cores with some speed fixed by the Cloud provider. Providers com-
monly use this kind of abstraction to uncouple the underlying hardware from the
specifics exposed to users. Moreover, this level of indirection lets providers max-
imise the use of physical processors by delegating to the runtime (the VM/OS)
the mapping of virtual cores and the scheduling of instructions. Each microser-
vice type has a number of required virtual cores. Assigning the required virtual
cores to a given microservice so that it achieves some expected performance (e.g.,
an estimated throughput) is a problem orthogonal to the one we investigate in
this paper. While in practice programmers/operators perform this assignment as
guesswork informed by their experience (as we do in this example), techniques
like instruction counting [13] and profiling [14] can help in providing principled
estimations.

2.3 Scaling Microservices

One of the pre-requisites to configure the deployment of microservice architec-
ture is that each microservice should be defined by having a strongly required
port towards the microservices which follow it in the pipeline. For instance, the
MessageParser strongly requires connections with the HeaderAnalyzer, LinkAn-
alyzer, TextAnalyzer, and VirusScanner microservices since these services follow
it in the pipeline (cf. Fig. 2).

More precisely, the ports should not be directly connected to instances of
such microservices, but to their corresponding load balancers. In turn, each load
balancer has a weakly required port that must be connected to all the available
instances of the corresponding microservice, so that the load balancer can for-
ward requests among them. The reasons behind this choice is that by establish-
ing strongly requires connections to a microservice proxy it is possible to deploy
first for example the load balancer of the HeaderAnalyzer and then deploy the
instances of MessageParser, which are installable since they can be immediately
connected to the load balancer they strongly require. Finally, it is possible to
establish the connection of the load balancers to their instances through the
weakly required port.

An advantage of using strongly and weakly required ports is that it is pos-
sible to easily capture dynamic adaptation of the pipeline deployment. A new
microservice instance can be easily added to react to an increase workload by
creating it and immediately connecting it to the (strongly required) load bal-
ancer of the microservice following in the pipeline. Then, the load balancer of
the instance added binds to the new instance via the weakly required port. The
removal of microservice instances instead follows the opposite order. First, we

176 L. Bacchiani et al.

remove the binding between the load balancer of the microservice instances that
we want to remove and, second, we safely de-allocate the interested instances.

Another advantage following from the knowledge of the microservice depen-
dencies is that we can automatically adapt the whole architecture to provide the
needed resources. Imagine for example the scenario in which an increase work-
load will require three new instances of MessageParser and two new instances of
HeaderAnalyzer to proper handle all the traffic. If autoscaling [8] is used, scaling
out and in decisions are taken locally by every service. As a consequence, the two
services will be scaled out in sequence: first the MessageParser that comes first
in the pipeline (and therefore witness for first the effects of the increase of the
traffic) and then the HeaderAnalyzer that will start to be invoked more often by
the MessageParser. Luckily, as shown in Sect. 5, having a global knowledge of
the microservice dependencies allows to exploit the information that more than
one service can be scale out at once and therefore perform a global adaptation. In
our scenario, both the MessageParser and the HeaderAnalyzer would be scaled
out at the same time, thus allowing the avoidance of the domino effects typical
of autoscaling strategies.

2.4 Microservice Maximum Computational Load

We now introduce an important property of microservices, which characterizes
their throughput: Maximum Computational Load (MCL), i.e., the maximum
number of requests that a microservice instance of that type can handle within
a second. As we will see, it is important to consider such a property to assess
the correctness w.r.t. time behaviour of our integrated timed architectural mod-
eling/execution language.

More precisely, the MCL of a microservice is computed as follows:
MCL = 1/(sizerequest

data rate + pf)
where sizerequest is the average request size of the microservice in MB. Moreover,
data rate is the microservice rate in MB/sec for managing request data. We
determine such a value, based on the number of microservice requested cores,
from Nginx server data in [31] (considering Nginx servers with that number of
vCPUs). Finally, pf is a penalty factor that expresses an additional amount of
time that a microservice needs to manage its requests, e.g., the ImageRecognizer,
which needs Machine Learning techniques to fulfill its tasks.

3 Architectural Modeling/Execution Language

3.1 Abstract Behavioral Specification Language

Abstract Behavioral Specification (ABS) [3] is an actor-based object-oriented
specification language (a process algebra) offering algebraic user-defined data
types, side effect-free functions and immutable data. Since ABS is not directly
executable, its toolchain [4] contains several backends that compile algebraic
models into an executable programming language, e.g., Erlang in the case of

Integrated Timed Architectural Modeling/Execution Language 177

the Erlang backend, and execute it. ABS objects are organized into Concurrent
Object Groups (COGs) representing software components or services. Objects
belonging to different COGs communicate with each other using asynchronous
method calls [15], expressed as object!method(. . .) instructions. Asynchronicity
is realized by means of the future mechanism: asynchronous method calls return
a future that can be used to wait for the result using the await statement [5].
Timed ABS [7] is an extension to the ABS core language that introduces a notion
of abstract time. In particular, evolution of time in ABS is modeled by means of
discrete time: during execution system time is expressed as the number of time
units that have passed since system start. The modeler decides what a time unit
represents for a specific application. Such a feature makes it possible to perform
simulations analysing the time-related behavior of systems. Timed ABS has also
probabilistic features that allow modelers to create uniform distributions, e.g.,
the average number of attachments per email in our case study.

To represent VMs (and simulate them, e.g., inside the Erlang backend) ABS
introduces the notion of Deployment Component (DC) [6] as a location where a
COG can be deployed. As VMs, ABS DCs are associated with several kinds of
resources, expressed via a dedicated annotations. In particular virtual cpu speed
is represented in ABS by the DC speed : it models the amount of computational
resource per time unit a DC can supply to the hosted COGs. This resource is
consumed by ABS instructions that are marked with the Cost tag, e.g., [Cost:
30] instruction. COG instructions tagged with a cost consume the hosting DC
computational resource still available for the current time unit (the instruction
above consumes 30 from the DC speed resource): if not enough computational
resource is left in the current time unit, then the instruction terminates its
execution in the next one.

Concerning our approach to automated microservice deployment, based on
strong and weak dependencies, in ABS we represent microservice types as classes
and microservice instances as objects, each executed in an independent COG.
Moreover, we represent strong dependencies as mandatory parameters required
by class constructors: such parameters contain the references to the objects cor-
responding to the microservices providing the strongly required ports. Weak
required ports are expressed by means of specific methods that allow an existing
object to receive the references to the objects providing them.

3.2 Timed SmartDeployer

Timed SmartDeployer is executed at ABS compile time: it statically solves the
optimal deployment problem described at the end of Sect. 2.1, i.e., synthesis
of deployment orchestrations that reach a given target system configuration.
Timed SmartDeployer takes its input from dedicated ABS annotations, which
are present in the compiled ABS program, and produces its output as ABS
code—synthesized timed (un)deployment orchestration—which is added to the
initial annotated ABS program.

178 L. Bacchiani et al.

Timed SmartDeployer ABS Annotations. The JSON based ABS annota-
tions from which Timed SmartDeployer extracts its input are:

– [SmartDeployCost : JSONstring] class annotation. This annotation is bound
to an ABS class representing a given microservice type. It describes the
functional dependencies (provided and weak/strong required ports) and the
resources (e.g., number of cores and amount of memory) a microservice needs.

– [SmartDeployCloudProvider : JSONstring] global annotation. It defines the
properties (e.g., Cores, Bandwidth, Memory, Speed, StartupTime) and cost-
per-hour of the DCs created in the synthesized orchestration execution.

– [SmartDeploy : JSONstring] global annotation. It describes the desired
properties and constraints of the deployment orchestration, e.g.:

• The id property, which sets the name for the class that is going to include
the ABS code of the synthesized orchestration.

• The cloud provider DC availability property, which fixes the maxi-
mum number of VMs the orchestration can allocate.

Some of these properties can have, as JSON value, a string whose content
is a declarative specification (a formula of a logic language that is based on
first-order logic), e.g.:

• The specification property, which contains the declarative specification
of the desired configuration in DRL. A value for this property, taken from
our running example (orchestration with id Scale2 in [1], see Sect. 5 for
its description), can be:

SentimentAnalyser = 3 and VirusScanner = 2 and
AttachmentsManager = 1 and ImageAnalyser = 1 and

NSFWDetector = 2 and ImageRecognizer = 2 and
MessageAnalyser = 2

meaning that 3 instances of the SentimentAnalyser must be (additionally)
deployed, etc.

• The bind preferences property, which is used to specify preferences
about weak bindings among service instances (using the declarative lan-
guage of [20]). A value for this property, taken from our running example
(orchestration with id BaseScale in [1], see “B” configuration in Sect. 5),
can be:

forall ?x of type MessageReceiver in ’.*’ :
forall ?y of type MessageReceiver_LoadBalancer in ’.*’

: ?x used by ?y

meaning that each instance (variable ?x) of the Message Receiver ser-
vice has to be bound to each MessageReceiver LoadBalancer service
instance (variable ?y). Given that there exists only 1 instance of the
MessageReceiver LoadBalancer service in the system, this just means that
each instance of the MessageReceiver service has to be bound to its load
balancer. More precisely, the in keyword is used to set the scope for the
indicated service: services considerd are only those located inside the DCs
whose names are declared after in. Such a declaration can be made with
a regular expression like ′.∗′ (meaning any string), i.e., the service can be
located in any running DC.

Integrated Timed Architectural Modeling/Execution Language 179

Synthesized Timed (Un)deployment Orchestration. Timed SmartDe-
ployer produces as output the desired timed (un)deployment orchestration: a
timed ABS program, injected in the initial annotated one, containing the set of
orchestration language instructions (expressed as timed ABS code). The execu-
tion of the newly synthesized orchestration causes the system to reach a deploy-
ment configuration with the desired properties.

Internal Details. As detailed above, Timed SmartDeployer provides an inter-
face with ABS, reading ABS annotations with DRL declarations and injecting
the synthesized (un)deployment orchestrations code into the initial annotated
program. To do this, it relies on a pluggable external solver, e.g., the Zephyrus2
constraint solver [2].

The external solver outputs the synthesized architectural configuration
(cost-optimal distribution of components over the available VMs), which is,
then, translated by Timed SmartDeployer into (un)deployment orchestrations
expressed as timed ABS code. Such timed deployment orchestrations additionally
encompass (w.r.t. untimed ones, see Sect. 2.1) dynamic management of overall
DC startup time and speed (computational resources per time unit, see Sect. 3.1),
based on the number of DC virtual cores that are actually used by some microser-
vice after enacting the synthesized deployment sequence. As we will show, this
allows us to correctly model time (microservice MCL). Timed SmartDeployer
dynamically assigns a speed and a startup time to each DC that is created during
a deployment orchestration. Such timed properties of created DCs are evaluated,
starting from the speed and startup time annotations (see Sect. 3.2) in the origi-
nal ABS code, as follows. The speed property is dynamically evaluated, during
orchestration execution, taking into account the number of DC cores that are
actually used: speed - speed per core · unused cores. Concerning startup time, we
dynamically set an overall startup time such that it is the maximum among those
of the DCs created during a deployment orchestration. The above is realized by
automatically synthesizing timed orchestrations, whose language additionally
includes (w.r.t. untimed ones) two primitives explicitly managing time aspects

– One to decrement the speed of a DC: decrementResources(. . .) in ABS.
– One to set overall the startup time of created DCs: duration(. . .) in ABS.

3.3 Modeling Service MCL

We now show how Time SmartDeployer allows us to correctly simulate the ser-
vice MCL we want to model (see Sect. 2.4), independently of the VM (DC) in
which it is deployed. An example is considering, as we do in our case study,
the ABS time unit to be 1/30 sec and setting VMs to supply 5 speed per core.
According to the calculation we presented in Sect. 2.4, it turns out that the
MCL of an actual implementation of the ImageRecognizer service is 91 requests
per second. In the ABS code, to model service MCL, we make use of the Cost
instruction tag (see Sect. 3.1). E.g., in the case of the ImageRecognizer, which
requires 6 cores to be deployed, we obtain the MCL of 91 req/s as follows:

180 L. Bacchiani et al.

1 class ImageRecognizer () implements ImageRecognizerInterface {
2 Int mcl = 91;
3 String recognizeImage(ImageRecognizer_LoadBalancerInterface

balancer){
4 [Cost: 5 * 6 * 30 / mcl] balancer!removeMessage ();
5 Int category = random (9);
6 return "Category Recognized: " + toString(category);
7 }
8 }

where the method recognizeImage(...) is executed at each request.
Due to our SmartDeployer timed extension, the amount of VM speed used by

ImageRecognizer is always 5 · 6 (speed per core · cores required), independently of
the VM in which it is deployed, i.e., ImageRecognizer can use up to 5 · 6 compu-
tational resources per time unit. The Cost tag above causes each request to con-
sume speed per core · cores required · 30/MCL computational resources. There-
fore, since MCL/30 is the ImageRecognizer MCL expressed in requests per time
unit, this realizes the desired (deployment independent) service MCL.

4 Integration with External Tools

In this section, we discuss external tools (w.r.t. ABS) that we have used in our
work. First, we need a tool to solve the problem of synthesizing timed deploy-
ment orchestrations, starting from the deployment information contained in the
ABS annotations. Second, given that we plan to use the executable semantics
of ABS to simulate deployment and scaling policies for microservice systems
that include also predictions of the incoming workload fluctuations, we also
need a tool for workload prediction. Concerning the first tool, we have used
the Zephyrus2 [2] solver based on constraint-solving technology, while for the
latter we have adopted a well-established Machine Learning (ML) techniques. It
is interesting to observe that, being such tools pluggable, Zephyrus2 and the ML
predictive module could be replaced with any other (not necessarily constraint-
or ML-based) tools.

4.1 The Zephyrus Deployment Engine

As described in Sect. 3.2, Timed SmartDeployer extracts, from ABS code, deploy-
ment information of different kinds: (i) class annotations that describe the
requirements of objects which represent the resources and dependencies of the
microservice instances modeled by such objects and (ii) global annotations that
describes the available computing resources and the desired properties that the
deployment should satisfy. Such annotations are processed by the deployment
engine that automatically synthesizes a microservice architecture allocating the
various microservices on available computing resources. This is done taking into
account both local (e.g., single microservice dependencies) and the global (e.g.,
minimize the total number of allocated resources) constraints.

Integrated Timed Architectural Modeling/Execution Language 181

The deployment engine which is currently used in our Timed SmartDeployer
prototype is Zephyrus2 [2]. Zephyrus2 is a tool for optimal deployment of soft-
ware components over virtual machines that exploits SMT (Satisfiability Mod-
ulo Theories) and CP (Constraint Programming) technologies. More precisely,
Zephyrus2 expects in input three different kinds of deployment information:

– a description of the components that can be deployed (which includes
the consumed computing/memory resources as well as the functionalities
required/provided from/to other components),

– a description of the virtual machines where the components can run (which
includes the resources offered by the virtual machines as well as other infor-
mation, like their cost), and

– the specific requirements on the component-based software architecture to be
computed and deployed over the available virtual machines.

Notably, the last item could include also objective functions to be optimized, e.g.,
the request to minimize the total cost of the used virtual machines. Zephyrus2
then produces as output a description of the components to deploy, the allocation
of such components over the available virtual machine, and the bindings among
the components that reciprocally require/offer functionalities. The computed
deployment satisfies the constraints and requirements specified in input.

Zephyrus2 computes its output as a solution to an optimization problem
encoded in MiniZinc [29], a solver independent language for modeling constraint
satisfaction and optimization problems. The interested reader can find in [2]
details about how Zephyrus2 produces the MiniZinc specification of the deploy-
ment problem and how it exploits state-of-the-art tools to solve such problem.
Here, we simply give an idea of how to translate deployment requirements into
constraints on a couple of simple examples.

As a first example, we consider the allocation of memory to the components.
Consider the constraint

∧

v∈V M

∑

C∈CompTypes

inst(C, v) · C.mem ≤ v.mem

where V M denotes the set of all the available virtual machines, CompTypes the
possibile component types, inst(C, v) the number of instances of components
of type C allocated on the virtual machine v, C.mem the memory consumed
by a component of type C, and v.mem the memory available on the virtual
machine v. This constraint enforces the requirement that it is not possible, on
every virtual machine, to allocate to components strictly more than the available
memory.

As an additional example, we consider how it is possible to require the
deployment which minimizes the total cost. For all the virtual machines v, a
new boolean variable used(v) is introduced and bound to be true if at least a
component is deployed on the v by the following constraints:

∧

v∈V M

(∑

C∈CompTypes

inst(C, v) > 0
) ⇔ used(v)

182 L. Bacchiani et al.

Then to minimize the total cost is is possible to minimize the following objective
function:

min
∑

v∈V M, used(v)

v.cost

where v.cost is the cost of the virtual machine v.

4.2 ML-Based Predictive Module

When simulating a modeled microservice system using executable ABS code,
we use a set of hard-coded data points in the form of an ABS array. While the
most straightforward option is to run the simulation on actual traffic workload,
our modular approach allows us to also integrate other components, such as
predictive modules, which forecast traffic fluctuations, and actuation modules,
which regulate how the logic for the architectural adaptation weights the different
sources of information (e.g., the simulated traffic and its prediction).

Focusing on the role of prediction modules, we can distinguish between two
types of information: the actual workload and the predicted workload. The lat-
ter is generated at compile-time using some pluggable predictive modules. For
instance, one can implement the predictive module through neural networks,
where the predictive module generates workload data by performing inference
on the previously trained network. While this approach is apt for a simulation
environment, it does not depart sensibly from real-world applications, e.g., where
one can collect daytime information on the traffic and feed it to the neural model
and obtain the forecast for the next day during the night.

Predicting the Traffic of the Email Message Analysis Pipeline. As an
example, we describe how one can use data analytics to predict traffic fluctua-
tions in our running example (cf. Sect. 2.2).

Dataset. The prediction module requires a datasat for training. Since the execu-
tion context of the Email Pipeline architecture is that of email correspondence,
we draw our data from Enron corpus dataset [28]. This dataset has been made
public by the Federal Energy Regulatory Commission during investigations con-
cerning the Enron corporation (version of May 7th, 2015). The dataset contains
517,431 emails from 151 users, without attachments, distributed over a time
window of about 10 years (1995–2005).

We processed the dataset to extract the attributes for predicting the number
of incoming emails for a given time. We assume that time is discretized in one-
hour intervals. For every email we extracted the datetime attribute, and then
we summed the number of emails in the desired monitored time. Every email
was associated with five new attributes: month, day, weekday, hour, and counter
giving us a representation of the email flow in the system at a given hour.

Integrated Timed Architectural Modeling/Execution Language 183

Predictions. There are many techniques that one can apply to predict the traffic
load. For our use case, as detailed in [9], the off-the-shelf Multi-Layer Perceptron
is used. For the training, the dataset has been partitioned into a training set,
a validation set, and a testing set—the latter, to estimate the error rate of the
model. Specifically, a neural network with three fully-connected layers have been
used, applying the Rectified Linear Unit (ReLU) nonlinear activation function
to the output of each layer. Each level of the neural network compressed the
input into a smaller representation. The first level reduced the input from 70 to
64 attributes, while the second level reduced it from 64 to 32 attributes. Finally,
they linearly projected the 32 attributes into a single value that corresponds to
the regression target. To compute the error rate, the Mean Squared Error (MSE)
loss function is used while to optimize the network parameters the Adaptive
Moment Estimation (Adam) has been used. The training process had a learning
rate of 0.1 and an exponential decay scheduler with γ = 0.9.

5 Simulation of Architecture-Level Adaptable Systems

G
M

M M

M

Adaptation
Algorithm

Requests / Responses

Actuation
Module

Deployment
Orchestration

Engine

M M: 2x

M : 1CPU, 1M

Resources

2x

1x

Deployment
Constraints

M

M
Dependencies

...

...

...

DevOps

Predicted
Workload Monitor

Fig. 3. Simulating proactive-reactive architecture-level system adaptation.

To test the expressive power of our modeling execution language, we simulate
the platform depicted in Fig. 3. Such platform is made of two kinds of elements:
the microservice system to be adapted (labelled G, M1,M2, M3) and the ele-
ment of the platform itself (depicted with orange boxes). Since the platform sees
microservices as instance parameters, we abstract from their actual behaviour.
We now describe each element of the platform. Before doing so, we highlight the
three kinds of flows in Fig. 3: → showing the inbound workload reaching the
microservice architecture; dashed-line arrows ��� regarding the runtime execu-
tion of an architecture-level adaptation process; the thick arrow ⇐ indicating
the compilation time of deployment orchestrations.

184 L. Bacchiani et al.

Deployment Orchestration Engine. This component receives a deployment
orchestration and enacts all the operations it contains, e.g., (de)allocating VMs,
microservice replications. It is a loosely-coupled component of the platform,
taken from existing solutions (the only requirement is that it provides a program-
ming interface for the application of deployment plans), such as Kubernetes. In
our simulated environment, the deployment orchestration engine is represented
by the Erlang backend, which is in charge of executing the whole simulation.

Adaptation Algorithm The Adaptation Algorithm implements an architecture-
level adaptation algorithm that computes the deployment orchestrations to be
applied in order to cope with inbound workload peaks. To do that, such module
takes into account two inputs. The first one, represented by ⇐, regards the
deployment orchestrations statically computed by Timed SmartDeployer (see
Sect. 3.2) by means of a constraint solver, e.g., Zephyrus2. These orchestrations
are computed such that they satisfy the specifications given by the user (DevOps
in Fig. 3), i.e., Resources, Dependencies and Deployment Constraints in Fig. 3,
respectively included in the SmartDeployCloudProvider, SmartDeployCost and
SmartDeploy annotations, see Sect. 3.2. The second input, represented by ��� ,
regards the workload the system has to support, after the adaptation process.
In this case, the Adaptation Algorithm acts as a service that other components
call. Upon activation, the Adaptation Algorithm interacts with the Deployment
Orchestration Engine to perform the scaling.

Monitor. The monitor tracks the traffic flowing on the architecture within a
prefixed time window and checks the possible occurrence of a workload deviation,
e.g., the difference between the monitored workload and the globally supported
one, as we will see in the following sections. When such a condition occurs, the
Monitor sends to the Actuation Module the amount of measured workload.

Predicted Workload. The Predicted Workload is computed by means of a pre-
dictive module external to the simulation. In our case, we perform predictions
using the ML-based predictive module described in Sect. 4.2. Such workload is
statically injected in the simulation exploiting a standard ABS data structure,
i.e., arrays, and it is forwarded to the Actuation Module.

Actuation Module. The Actuation Module computes the amount of workload
given as input, i.e., the target workload, to the Adaptation Algorithm. Depend-
ing on how such workload is computed, we distinguish 3 modalities: (i) reactive
mode, if the target workload is the one measured by the monitor (this modal-
ity has no predicted workload); (ii) proactive mode, if the target workload is
represented by the predictions in the Predicted Workload (this modality has no
monitor); and (iii) proactive-reactive mode, if the target workload is computed
as a combination of the signals coming from the Monitor and Predicted Workload,
according to the mixing technique implemented in this module.

Concretely, we model the architecture platform and the scaling approaches
via ABS, compiling it into a system of Erlang programs that run the simu-
lation. Then, the simulation receives three kinds of inputs, which are statically

Integrated Timed Architectural Modeling/Execution Language 185

defined within a simulation run: deployment orchestrations (generated by Timed
SmartDeployer at compile-time, see Sect. 3.2), an actual and a predicted work-
load (generated by the Predictive Module, see Sect. 4.2) both hard-coded in the
simulation in the form of arrays. We model a real-world request flow sent to the
simulated microservice architecture via an ad-hoc generating service, which dis-
tributes requests as specified in the actual workload array. The simulation uses
these inputs to evaluate the performance of a target microservices architecture.

5.1 Application to Global Scaling

In the following sections, we use the above presented architecture (see Fig. 3)
to simulate the algorithm for global run-time adaptation that we introduced
in [10]. Such an algorithm, which we could conceive and simulate thanks to our
integrated timed architectural modeling/execution language, finds application in
the context of cloud-computing platforms endowed with orchestration engines.
The algorithm reaches, by performing global reconfigurations, a target system
Maximum Computational Load (MCL), i.e., the maximum supported frequency
for inbound requests. The idea is that, by monitoring at run-time the inbound
workload, our algorithm causes the system to be always in the reachable config-
uration that better fits such a workload (and that has the minimum number of
deployed microservice instances). This is achieved by enacting global reconfigu-
rations, which are targeted at guaranteeing a given increment/decrement of the
system MCL.

In particular, in the next section, we introduce the concept of microser-
vice Multiplicative Factor (MF), which is needed by the algorithm. We already
observed that each microservice type is characterized by a MCL (see Sect. 2.4),
i.e., the maximum number of requests that a microservice instance of that type
can handle in a second. We additionally observe that each microservice type
is also characterized by a MF, i.e., the mean number of requests that a single
request (i.e., an email) entering the system generates for that microservice type.

In the remaining sections, we introduce all the building blocks needed to real-
ize our global scaling approach. We start from the mathematical calculation of
the global scaling reconfigurations incrementing/decrementing the system MCL.
This is done by showing how system MCL can be computed by the MCL of sin-
gle service instances, which, in turn, are mathematically calculated based on
the microservice data rate (we use, e.g., real data in [31] for Nginx servers)
and the role it plays in the application architecture (which determines its MF
and the size of its requests for each incoming message). Such global reconfigura-
tions are synthesized into deployment orchestrations by Timed SmartDeployer.
We then show a technique to combine the monitored and predicted workload
into a unique target workload, used in our proactive-reactive global scaling app-
roach. We finally introduce the scaling algorithm showing its implementation via
ABS code excerpts. We then simulate the introduced global scaling approach by
applying it to our example (cf. Sect. 2.2) and present simulation results: a set
of comparisons that, not only shows that our global scaling approach overcomes
the limitations of the traditional local one, but also the extent of improvements

186 L. Bacchiani et al.

brought by our predictive module (see in Sect. 4.2) and our technique for com-
puting the target workload to a purely reactive global scaling approach.

5.2 Microservice Multiplicative Factor

The Multiplicative Factor (MF) of a microservice type is determined from the
role it plays in the whole architecture, e.g., in the running example, by the email
part it receives. As a consequence it is strictly related to the (average) struc-
ture of emails entering the system. In particular, we estimate an email to have:
(i) a single header; (ii) a set of links (treated collectively as a single informa-
tion, received by the LinkAnalyser); (iii) a single text body (received by the
TextAnalyser), which is split, on average, into Nblocks = 2.5 text blocks (indi-
vidually analysed by SentimentAnalyser); and (iv) on average Nattachments = 2
attachments (individually sent to the attachment sub-pipeline starting with the
VirusScanner), each having average size of sizeattachment = 7MB and containing a
virus with probability PV = 0.25 (which determines whether a virus scan report
is sent to the MessageAnalyser or, in case of no virus, the attachment is for-
warded to the AttachmentManager).

The average numbers above are estimated ones: the MF of microservices can
be easily recomputed in case different numbers are considered. In particular, MFs
are calculated as follows. Since emails have a single header, a set of links that
are sent together and a single text body, the microservices that analyze these
elements, i.e., HeaderAnalyser, LinkAnalyser and TextAnalyser, have MF = 1.
As text blocks and attachments are individually sent, each of them generates
a request to the SentimentAnalyser and the VirusScanner, therefore they have
MF = Nblocks and MF = Nattachments respectively. The microservices that follow
the VirusScanner in the architecture, i.e., AttachmentManager, ImageAnalyzer,
ImageRecognizer and NSFWDetector have a MF equal to the number of virus-
free attachments, which can be computed as MF = Nattachments · (1 − PV). Finally,
the MF of the MessageAnalyser is the sum of the email parts (1 header, 1 set of
links, 1 text body and Nattachments attachments).

From a timing viewpoint, considering microservice type Maximum Compu-
tational Load (MCL) and MF is important because it allows us to calculate the
minimum number of instances of that type needed to guarantee a given overall
system MCL sys MCL, i.e.2

Ninstances =
⌈
sys MCL·MF

MCL

⌉

Notice that, a microservice MF is also important in order to determine its
request size sizerequest, which, in turn, as we showed in Sect. 2.4, is needed to
calculate its MCL. More precisely, we compute microservice sizerequest as follows.
In our running example, for all microservices receiving attachments but the
MessageAnalyser we have:

sizerequest = Nattach per req · sizeattachment

2 �x� is the ceil function that takes as input a real number and gives as output the
least integer greater than or equal to x.

Integrated Timed Architectural Modeling/Execution Language 187

where Nattach per req = Nattachments for microservices receiving entire emails and
Nattach per req = 1 for the others. For HeaderAnalyser, LinkAnalyser and Text-
Analyser we consider sizerequest to be neglectable, thus (since their pf is also 0)
their MCL is infinite. Concerning MessageAnalyser request size, we need instead
to also consider its MF. In particular, we compute the average size of the MF
requests that en email entering the system generates (since we consider only
attachments to have a non-negligible size), i.e.

sizerequest MA = Nattachments·(1−PV)·sizeattachment

MF .

5.3 Calculation of Scaling Configurations

We consider a base B system configuration, see Table 1, which guarantees a sys-
tem MCL of 60 emails/sec. In the corresponding column of Table 1 we present
the number of instances for each microservice type, calculated according to the
formula in Sect. 2.4. Moreover, we consider four incremental configurations Δ1,
Δ2, Δ3 and Δ4, synthesized via Timed SmartDeployer, each adding a number
of instances to each microservice type, see Table 1. Those incremental configura-
tions are used as target configurations for deployment/undeployment orchestra-
tion synthesis in order to perform run-time architecture-level reconfiguration. As
shown in Table 2, Δ1, Δ2, Δ3 and Δ4 are used, in turn, to build (summing them
up element-wise as arrays) the incremental configurations Scale1,Scale2,Scale3
and Scale4 that guarantee an additional system MCL of +60, +150, +240 and
+330 emails/sec, respectively.

The reason for not considering our Scales as monolithic blocks and defining
them as combinations of the Δ incremental configurations is the following. Let us
suppose the system to be, e.g., in a B+Scale1 configuration and the increase in
incoming workload to require the deployment of Scale2 and the undeployment of
Scale1. If we had not introduced Δ configurations and we had synthesized orches-
trations directly for Scale configurations, we would have needed to perform an
undeployment of Scale1 followed by a deployment of Scale2. With Δ configu-
rations, instead, we can simply additionally deploy Δ2. Moreover, notice that
dealing with such an incoming workload increase by naively deploying another
Scale1 additional configuration, besides the already deployed one, would not
lead the system MCL to be increased of another +60 emails/sec. This is because
the maximum number of email per seconds that can be handled by individ-
ual microservices composing the obtained B+2·Scale1 configuration would be
unbalanced. Such an effect worsens if the system incoming workload keeps slowly
increasing and further additional Scale1 configurations are deployed. Since Scale1
for some microservices (AttachmentManager, ImageAnalyser) does not provide
additional instances, such microservices would eventually become the bottleneck
of the system and the system MCL would no longer increase. Moreover, Δ con-
figurations yield, w.r.t. monolithic Scale ones, a finer granularity that makes
Timed SmartDeployer orchestration synthesis faster.

For each microservice type, the number of additional instances considered
in Tables 1 and 2 for the Scale configurations has been calculated as follows.

188 L. Bacchiani et al.

Table 1. Base B (60 emails
sec

) and incremental Δ configurations.

Microservice B Δ1 Δ2 Δ3 Δ4 Microservice B Δ1 Δ2 Δ3 Δ4

Message Receiver 1 +1 +0 +1 +1 Virus Scanner 1 +1 +2 +1 +2

Message Parser 1 +1 +0 +1 +1 Attachment Manager 1 +0 +1 +0 +1

Header Analyser 1 +0 +0 +0 +0 Image Analyser 1 +0 +1 +0 +1

Link Analyser 1 +0 +0 +0 +0 NSFW Detector 1 +1 +2 +1 +2

Text Analyser 1 +0 +0 +0 +0 Image Recognizer 1 +1 +2 +1 +2

Sentiment Analyser 2 +1 +3 +2 +2 Message Analyser 1 +1 +2 +1 +2

Table 2. Incremental Scale configurations.

Scale 1 (+60 emails
sec

) Scale 2 (+150 emails
sec

) Scale 3 (+240 emails
sec

) Scale 4 (+330 emails
sec

)

Δ1 Δ1 + Δ2 Δ1 + Δ2 + Δ3 Δ1 + Δ2 + Δ3 + Δ4

Given the additional system MCL to be guaranteed, the number Ndeployed of
instances of that microservice already deployed and its MF and MCL, we have:

Ninstances =
⌈ (base sys MCL+additional sys MCL)·MF

MCL − Ndeployed

⌉

In the following section we will present the algorithm for global adapta-
tion. The algorithm is based on the principles described here, i.e., it has the
following invariant property: if N Scale configurations are considered (N = 4
in our case study) and are indexed in increasing order of additional system
MCL they guarantee, the system configuration reached after adapting to the
monitored inbound workload is either B or B + (n · ScaleN) + scale, or some
scale ∈ {Scale1,Scale2, . . . ,ScaleN} and n ≥ 0. The invariant property indeed
shows, as we explained above, that the deployment of sequences of the same Scale
configuration is not allowed, except for sequences of ScaleN. This is because, the
biggest configuration ScaleN should be devised, for the system being monitored,
in such a way that the inbound workload rarely yields to additional scaling needs.
Moreover, even if a sequence of ScaleN occurs, the system would be sufficiently
balanced. This is because, differently from smaller Scale configurations, ScaleN
is assumed to add, at least, an instance for each microservice having non-infinite
MCL (as for Scale4 in our case study).

5.4 Calculation of the Mixed Monitored and Predicted Workload

The fact that predictors are weak against exceptional events is well-known and
affects approaches that just rely on predictions: in the case of global scaling, it
would result in the execution of inappropriate deployment orchestrations (either
wasting resources or degrading the QoS). In this section, we propose a solution
mixing proactive and reactive global scaling (reactive and proactive mode of the
Actuation Module, see above): we program the Actuation Module to calculate a
target workload by combining the monitored and predicted ones.

Integrated Timed Architectural Modeling/Execution Language 189

Our algorithm does not rely on comparing the estimated and actual number
of inbound requests in a given time window. The reason is that the dynamic
interaction between message queues and scaling times makes it difficult to reli-
ably estimate the accuracy of the predicted scaling configuration w.r.t. traffic
fluctuations. Thus, we introduce a new, stable estimation, rooted in the workload
measure defined below.

Our idea is to use the system MCL of the current configuration (reached
by applying some incremental Δ configurations to the base B one) and to con-
sider the difference (in terms of number of incremental Δ configurations added)
between the system MCL induced by the monitored and predicted traffic. In this
way, we can estimate both over- and under-scaling of proactive global scaling.

More precisely, our estimation considers a statically-defined score s for each
type Δ configuration, based on the amount of system MCL increment it provides.
Following Sect. 5.3, we have i ∈ [1, 4] different Δi applied sequentially (in the
exceptional case Δ4 is not enough, we restart from Δ1). For each Δi we have a
differential system MCL increment of: ΔMCL1 = 60 for Δ1 and ΔMCLi = 90
for Δi with 2 ≤ i ≤ 4. Given ΔMCLi, we compute si = ΔMCLi∑4

j=1 ΔMCLj
. Notice

that this yields
∑4

i=1 si = 1.
Then, for each time window tw, we compute our estimation following these

3 steps. In step 1, we calculate, for each index i, the absolute value |diff i|
of the difference between the applications number of Δi induced by the pre-
dicted and monitored workload at time window tw. Then, we compute a weight
w ∈ [0, 1] that we later use to combine both workloads. Since |diff i| > 1
only happens in exceptional cases (when Δ4 is not enough), we compute
w = min

(∑4
i=1 si · |diff i|, 1

)
.

We keep track of the values w computed in the last 3 time windows using
function h = {(1, wtw−2), (2, wtw−1), (3, wtw)}, where wtw is the weight com-
puted for the current time window and wtw−2, wtw−1 are the preceding ones.
The pairs (1, wtw−2), (2, wtw−1) are included in h only if the system was already
running at those times.

In step 2, we compute the overall weight wov =
∑

(i,w)∈h w·i
∑

(i,)∈h i of tw. In particu-
lar, w ·i means that the most recent w is the most influential one in the sum. The
overall weight indicates the distance between the monitored and predicted one.
Specifically, the closer the overall weight is to 1 the more distant the prediction
is from the monitored workload.

In step 3, we use wov to linearly combine the predicted and monitored work-
load to estimate the target workload passed as input to the Adaptation Algorithm
target workload = (wov ·monitored workload)+((1−wov)·predicted workload).

5.5 Scaling Algorithm

We now present the algorithm for global adaptation. As a matter of fact, for
comparison purposes, we also realized an algorithm for local adaptation simu-
lating the mainstream approach, e.g., Kubernetes [26]. In both of them we use a

190 L. Bacchiani et al.

scaling condition on monitored inbound workload involving two constants called
K and k. K is used to leave a margin under the guaranteed MCL, so to make
sure that the system can handle the inbound workload. k is used to prevent
fluctuations, i.e., sequences of scale up and down.

The condition for scaling up is (target workload + K) − total MCL > k and
the one for scaling down is total MCL − (target workload + K) > k. The interpre-
tation of such conditions changes, depending on whether they are used for the
local or global adaptation algorithm. In the case of local adaptation the condi-
tions would be applied by monitoring a single microservice type: target workload
would be the number of requests per second received by the microservice load
balancer and total MCL would be the MCL of a microservice instance of that
type (calculated as explained in Sect. 2.4) multiplied by the number of deployed
instances. In the global adaptation case that we detail in the following, the con-
ditions are, instead, applied by monitoring the whole system: target workload is
the number of requests (emails in our case study) per second entering the system
and total MCL is the system MCL. Notice that the target workload is computed
according to the mode in which the system is used, i.e., reactive (the monitored
workload is the target one), proactive (the predicted workload is the target one)
and proactive-reactive (mixing the monitored and predicted workload according
to the technique presented in Sect. 5.4).

Concerning global adaptation, we have a single monitor that periodically exe-
cutes the global scaling algorithm presented in code excerpt below. Notice that
kbig() and k() are respectively the K and k constants described above, imple-
mented as constant functions mimicking global variables in the code; scaler is a
previously instantianted object that implements the methods computeConfigu-
ration and scale, presented afterwards.
1 if(target_workload - (mcl - kbig()) > k() || (mcl - kbig()) -

target_workload > k()) {
2 List <Int > target_config = scaler.computeConfiguration(

target_workload);
3 scaler.scale(target_config);
4 }

The computeConfiguration method, whose code is presented below, aims at
computing the system configuration needed to cope with the target workload
passed as input. Such configuration is expressed in the form of a List where index
i represents Δi and the i-th element is the number of Δi applications.
1 List <Int > computeConfiguration(Rat target_workload) {

2 List <Int > configDeltas = this.createEmpty(numScales);

3 printableconfig = configDeltas;

4 List <Int > config = baseConfig;

5 mcl = this.mcl(config);

6 Bool configFound = (mcl - kbig()) - target_workload >= 0;

7 while(! configFound) {

8 List <Int > candidateConfig = baseConfig;

9 Int i = -1;

10 while(i < numScales - 1 && !configFound) {

11 i = i + 1;

12 candidateConfig = this.vSum(config , nth(scaleComponents ,i));

13 mcl = this.mcl(candidateConfig);

14 configFound = (mcl - kbig()) - target_workload >= 0;

Integrated Timed Architectural Modeling/Execution Language 191

15 }

16 config = candidateConfig;

17 printableconfig = this.incrementValue(i,printableconfig);

18 configDeltas = this.addDeltas(i,configDeltas);

19 }

20 return configDeltas;

21 }

The code above uses constants numScales, representing the number of Scale
configurations (4 in our case study), and scaleComponents: an array3 of numScales
elements (corresponding to Table 2) that stores in each position an array rep-
resenting a Scale configuration (i.e., specifying, for each microservice, the num-
ber of additional instances to be deployed). Moreover, the code uses the vari-
able mcl, containing the current system MCL (assumed to be initially set to
the B configuration MCL, see Table 1). At first, the code applies the above
described scale up/down conditions. Then it loops, starting from the B configu-
ration in variable config (an array that stores, for each microservice, the number
of instances we currently consider), and selecting Scale configurations to add
to config, until a configuration c is found such that its system MCL satisfies
mcl − K − target workload ≥ 0. The system MCL of a configuration c is calcu-
lated with method mcl, which yields

min1≤i≤length(config) nth(config, i−1) · MCLi/MFi

with MCLi/MFi denoting the MCL/MF of the i-th microservice. More precisely
the algorithm uses an external loop updating variables config and configDeltas
according to the incremental Scale selected by the internal loop: configDeltas
is an array of numScales elements that keeps track of the number of currently
deployed Δ incremental configurations (assumed to be initially empty, i.e., with
all 0 values). Every time a Scale configuration is selected, configDeltas is updated
by incrementing the amount of the corresponding Δ configurations (as described
in Table 2). The internal loop selects a Scale configuration by looking for the first
one that, added to config, yields a candidate configuration whose system MCL
satisfies the condition above. If such Scale configuration is not found then it just
selects the last (the biggest) Scale configuration (Scale4 in our case study), thus
implementing the invariant presented in Sect. 5.3.

The scale method presented below enacts the scaling operations required to
reach the system configuration passed as input.
1 Unit scale(List <Int > configDeltas) {

2 Int i = 0;

3 while(i < numScales) {

4 Int diff = nth(configDeltas ,i) - nth(deployedDeltas ,i);

5 Rat num = abs(diff);

6 while(num > 0) {

7 if (diff > 0) {nth(orchestrationDeltas ,i)!deploy();}

8 else {nth(orchestrationDeltas ,i)!undeploy ();}

9 num = num - 1;

10 }

3 The ABS instructions nth(a, i) and length(a) retrieve the i-th element and the length
of the a array, respectively.

192 L. Bacchiani et al.

11 i = i + 1;

12 }

13 deployedDeltas = configDeltas;

14 scalingAct = this.recordAction(scalingTrace , printableconfig);

15 scalingTrace = printableconfig;

16 }

Given the target Δ configurations configDeltas to be reached and the current
deployedDeltas (an array with the same structure of configDeltas) ones, the scale
method performs the difference between them so to find the Δ orchestrations
that have to be (un)deployed. We use methods deploy/undeploy of the object in
the position i−1 of the array orchestrationDeltas to execute the orchestration of
the i-th Δ configuration. In our model such an orchestration is the ABS code gen-
erated by Timed SmartDeployer at compile-time: it makes use of ABS primitives
duration(. . .) and decrementResources(. . .) to dynamically set, respectively, the
overall startup time to the maximum of those of deployed DCs and the speed
of such DCs accounting for the virtual cores actually being used (by decrement-
ing the DC static speed, see Sect. 3.2). In this way we are guaranteed that each
microservice always preserves the desired fixed MCL we want to model (see
Sect. 2.4). Moreover, we remind that, besides speed, also constraints related to
other resources (memory) are considered in the Timed SmartDeployer synthesis
process. Notice that the variables scalingAct, scalingTrace as well as the recor-
dAction method are only used for debug purpose.

5.6 Benchmarking the Performance of Global Scaling Approaches

In this section we present simulation results obtained with our ABS programs [1]
modeling reactive local scaling and the three variants of the global one, i.e., reac-
tive, proactive and proactive-reactive. In particular, at first, we show the impact
of reactive global scaling on system performance w.r.t. the reactive local one; then
we show how the reactive global scaling can be further improved endowing it with
proactive capabailities, e.g., making use of a workload predictor. Finally, we show
the risks of just relying on workload predictions to enact scaling actions and the
need of mixing reactiveness and proactiveness. We make use of (part of) the Enron
dataset [28] as the inbound workload inputed to the simulations, to test the perfor-
mance of reactive and proactive global scaling and the local one. All benchmark
tests shown in this section are performed on email traffic on a weekday in May
2001. To prove the effectivenss of our proactive-reactive global scaling, we selec-
tively picked outliers from the Enron dataset to produce a traffic flow that our
predictor would struggle to forecast, thus the workload inputed to this simulation
differs from the one inputed to the others. In our simulations we consider the fol-
lowing metrics: (i) latency (considered as the average time for completely process-
ing an email that enters the system), (ii) message loss, (iii) number of deployed
microervices and (iv) monetary costs. Notice that in the comparison between reac-
tive local scaling and the reactive global one, we do not consider monetary costs,
since Timed SmartDeployer orchestrations are such that costs are minimized.

Integrated Timed Architectural Modeling/Execution Language 193

Fig. 4. Comparison between reactive local scaling and the reactive global one.

Reactive Local vs Reactive Global Scaling. Considering the flow of incoming emails
in the workload inputed to the simulation, it is clear the extent of the improve-
ment introduced by our approach: our global adaptation [10] makes the system
adapting much faster than the local approach. This is caused by the ability of the
global adaptation strategy of detecting in advance the scaling needs of all system
microservices. This is shown in Figs. 4a and 4b, where our reactive global scaling
approach outperforms the local one: latency and message loss are restored in much
shorter time w.r.t. the reactive local scaling.

Comparing the number of deployed microservices helps to have a deeper
understanding of the reasons why the global adaptation performs better. As
shown in Fig. 4c, our approach reaches the target configuation, needed to handle
the monitored workload, faster than the local scaling approach. As expected,
this makes the adaptation process slower and worsens the performance. The
local adaptation slowness in reaching such a target configuration is caused by a
scaling chain effect: local monitors periodically check the workload, thus single
services scale one after the other. Hence, w.r.t. global adaptation, where the
architecture is replicated as a single block, the number of instances grows slower.
For example, considering the attachment pipeline in Fig. 2, the first microservice
to become a bottleneck is the Virus Scanner: it starts losing requests, which will
never arrive to the Attachment Manager. Therefore, this component will not

194 L. Bacchiani et al.

Fig. 5. Comparison between reactive and proactive global scaling approaches.

perceive the increment in the inbound requests until the Virus Scanner will be
replicated, thus causing a scaling chain effect that delays adaptation. This is the
main cause for the large deterioration in performances observed.

Proactive vs Reactive Global Scaling. To give an intuition of the effectiveness of
our proactive global scaling approach [9], we test its performance against reactive
global scaling [10]. This comparison mainly aims at showing the improvement
brought in the global scaling technique thanks to the use of a workload predictor,
i.e., endowing it with proactive capabilities.

Considering latency, as shown in Figs. 5a and 5b, the proactive scaling is
barely visible given that it performs in advance the scaling operations needed
to manage workload peaks, with negligible latency. The small visible spikes are
imputable to inaccuracies in the workload predictions. On the other hand, the
reactive approach suffers the most at sudden peaks of workload because of
the time needed to complete the adaptation process, e.g., VMs startup time.
As seen in Figs. 5c and 5d, despite the signifante difference in performance,
the costs/number of deployed instances are the same, although shifted by a
time-unit backwards. The reason is that, since the traffic is the same, resource
(de)allocations are the same across all the approaches, although these happen
one time-unit in advance in the proactive case.

Integrated Timed Architectural Modeling/Execution Language 195

Fig. 6. Comparison between proactive-reactive and proactive global scaling, on the
outliers test set.

Proactive-Reactive vs Proactive Global Scaling. The presented proactive approach
proved to be quite effective. However, predictors are not infallible: if the traffic
greatly deviates from the historical data, due to some unprecedented occurrence,
the predictor can fail to provide an accurate estimation of the traffic. This fact,
considered in the context of proactive global scaling (like the one implemented
above) where scaling decisions neglect actual traffic fluctuations, can result in
over- (wasted resources) or under-scaling (latency, request loss) of the system.
To illustrate how much this phenomenon can affect performance, we selectively
picked outliers from the test set described in Sect. 4.2 and used these to produce
a traffic flow that our predictor struggles to forecast. From Figs. 6a and 6b, the
proactive-reactive global scaling rapidly recovers from wrong predictions, while
the proactive one neglects unexpected traffic fluctuations. This is visible, e.g.,
in the interval 11–13, where the proactive approach expects fewer requests and
endures high latency. Also the proactive-reactive global scaling initially undergoes
high latency, but, detecting the diverge with the predictions, it assumes a reactive
stance and quickly adapts. Note that the latency of the proactive-reactive app-
roach in the timespan 18–19 is “good”. Indeed, while the workload drops between
15–17, the proactive approach allocates a high number of microservices (cf. Fig-
ures 6c and 6d), wasting resources. Contrarily, the other one (reacting to unfore-
seen changes) trades some minor latency off resource savings.

196 L. Bacchiani et al.

6 Related Work and Conclusion

We have presented an integrated approach for the design, specification, auto-
matic deployment, and simulation of microservice architectures, based on the
ABS language. The basic ingredients of this approach are:

– the ABS language, used to specify the behaviour of microservices;
– deployment annotations added to the ABS code, carrying information like

the available computing resources and their costs, the resources consumed by
each microservice instance, and constraints about the minimum number of
instances for each microservice;

– the use of a compile-time deployment engine able to synthesize optimal
deployments starting from deployment annotations extracted from ABS code;

– compilation of timed ABS code into executable Erlang program, to simulate
the specified system.

To the best of our knowledge, our approach is the only one mixing a) formal
specification of microservice behaviour, b) the usage of a language equipped with
executable semantics for simulation and performance analysis, and c) the mod-
eling and automatic synthesis of deployment orchestrations. Specifically, related
work addressed the above aspects separately. Concerning executable semantics
for simulation, [12] instead of compiling ABS into Erlang, makes use of a real-
time Haskell backend: this makes it possible for the simulation to communicate
with real services, thus mixing external execution and simulation at run-time.
In our case, the communication between the simulated system and external sys-
tems (during simulation) is not needed, thus we avoid the complexities of the
approach in [12] related to synchronizing real and simulated time. Another line
of work encompasses the usage of timed/stochastic process algebras by inte-
grating them in the software development process, with the aim of analysing
the performances of the modeled system (see, e.g., the surveys [11,25]). Finally,
other proposals adopt specific models for cloud deployment specification, e.g.,
TOSCA (Topology and Orchestration Specification for Cloud Applications) [30]
or AEOLUS [21], to describe the components of a cloud service system and their
deployment/orchestration process. The interested reader can find a recent survey
of the model-based methodologies used to ensure the correctness of reconfigura-
tions in component-based systems at [19].

In this presentation, we applied our integrated approach to the analysis of
different techniques to deal with the problem of dynamic scaling of microservices
applications. In particular, we have considered a rather sophisticated technique
based on a mixture of predicted and monitored inbound workload, with sub-
sequent global adaptations of the entire system (i.e., all the microservices that
will be influenced by the modified workload will coordinate their scaling). A
similar technique has been already investigated by Urgaonkar et al. [32]. Differ-
ently from our approach, [32] only focuses on adjusting under-estimations of the
actual workload, to guarantee a given QoS. In the case of over-estimation, their
approach simply considers the predicted workload as the target one, ending up
wasting resources (and money), see [9] for a detailed comparison.

Integrated Timed Architectural Modeling/Execution Language 197

References

1. Code repository for the email processing examples. https://github.com/
LBacchiani/ABS-Simulations-Comparison

2. Ábrahám, E., Corzilius, F., Johnsen, E.B., Kremer, G., Mauro, J.: Zephyrus2: on
the fly deployment optimization using SMT and CP technologies. In: Fränzle, M.,
Kapur, D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 229–245. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47677-3 15

3. ABS. ABS documentation. http://docs.abs-models.org/
4. ABS. ABS toolchain. https://www.sciencedirect.com/science/article/pii/S016764

2322000946
5. ABS. Core ABS. https://www.sciencedirect.com/science/article/pii/S2352220814

000479
6. ABS. Deployment component in ABS. https://link.springer.com/chapter/10.1007/

978-3-642-25271-6 8
7. ABS. Real time ABS. https://link.springer.com/article/10.1007/s11334-012-

0184-5
8. Amazon, AWS auto scaling. https://aws.amazon.com/autoscaling/
9. Bacchiani, L., Bravetti, M., Gabbrielli, M., Giallorenzo, S., Zavattaro, G., Zingaro,

S.P.: Proactive-reactive global scaling, with analytics. In: Troya, J., Medjahed, B.,
Piattini, M., Yao, L., Fernández, P., Ruiz-Cortés, A. (eds.) Service-Oriented Com-
puting - 20th International Conference, ICSOC 2022, Seville, Spain, 29 November–2
December 2022, Proceedings, vol. 13740 of Lecture Notes in Computer Science, pp.
237–254. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-20984-
0 16

10. Bacchiani, L., Bravetti, M., Giallorenzo, S., Mauro, J., Talevi, I., Zavattaro, G.:
Microservice dynamic architecture-level deployment orchestration. In: Damiani,
F., Dardha, O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 257–275.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78142-2 16

11. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295–
310 (2004)

12. Bezirgiannis, N., de Boer, F., de Gouw, S.: Human-in-the-loop simulation of cloud
services. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 143–158. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-67262-5 11

13. Binder, W., Hulaas, J., Camesi, A.: Continuous bytecode instruction counting for
cpu consumption estimation. In: Third International Conference on the Quantita-
tive Evaluation of Systems-(QEST 2006), pp. 19–30. IEEE (2006)

14. Binder, W., Hulaas, J., Moret, P., Villazón, A.: Platform-independent profiling in
a virtual execution environment. Softw. Pract. Exp. 39(1), 47–79 (2009)

15. Bravetti, M., Carbone, M., Zavattaro, G.: Undecidability of asynchronous session
subtyping. Inf. Comput. 256, 300–320 (2017)

16. Bravetti, M., Giallorenzo, S., Mauro, J., Talevi, I., Zavattaro, G.: Optimal and
automated deployment for microservices. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 351–368. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-16722-6 21

17. Bravetti, M., Giallorenzo, S., Mauro, J., Talevi, I., Zavattaro, G.: A formal app-
roach to microservice architecture deployment. In: Microservices, pp. 183–208.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31646-4 8

https://github.com/LBacchiani/ABS-Simulations-Comparison
https://github.com/LBacchiani/ABS-Simulations-Comparison
https://doi.org/10.1007/978-3-319-47677-3_15
http://docs.abs-models.org/
https://www.sciencedirect.com/science/article/pii/S0167642322000946
https://www.sciencedirect.com/science/article/pii/S0167642322000946
https://www.sciencedirect.com/science/article/pii/S2352220814000479
https://www.sciencedirect.com/science/article/pii/S2352220814000479
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-642-25271-6_8
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-642-25271-6_8
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s11334-012-0184-5
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s11334-012-0184-5
https://aws.amazon.com/autoscaling/
https://doi.org/10.1007/978-3-031-20984-0_16
https://doi.org/10.1007/978-3-031-20984-0_16
https://doi.org/10.1007/978-3-030-78142-2_16
https://doi.org/10.1007/978-3-319-67262-5_11
https://doi.org/10.1007/978-3-319-67262-5_11
https://doi.org/10.1007/978-3-030-16722-6_21
https://doi.org/10.1007/978-3-030-16722-6_21
https://doi.org/10.1007/978-3-030-31646-4_8

198 L. Bacchiani et al.

18. Di Cosmo, R., Zacchiroli, S., Zavattaro, G.: Towards a formal component model
for the cloud. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 156–171. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 11

19. Coullon, H., Henrio, L., Loulergue, F., Robillard, S.: Component-based distributed
software reconfiguration: a verification-oriented survey. ACM Comput. Surv. 56(1),
1–37 (2023)

20. de Gouw, S., Mauro, J., Zavattaro, G.: On the modeling of optimal and automatized
cloud application deployment. J. Logical Algebr. Methods Program. 107, 108–135
(2019)

21. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: a component model
for the cloud. Inf. Comput. 239, 100–121 (2014)

22. Docker. Docker compose documentation. https://docs.docker.com/compose/
23. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Present and

Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

24. Fromm, K.: Thinking Serverless! How New Approaches Address Modern Data Pro-
cessing Needs. https://medium.com/a-cloud-guru/thinking-serverless-how-new-
approaches-address-modern-data-processing-needs-part-1-af6a158a3af1

25. Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evalua-
tion. Theor. Comput. Sci. 274(1–2), 43–87 (2002)

26. Hightower, K., Burns, B., Beda, J.: Kubernetes: Up and Running Dive into the
Future of Infrastructure, 1st edn. O’Reilly Media Inc., Sebastopol (2017)

27. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. Addison-Wesley Professional, Boston
(2010)

28. Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification
research. In: Machine Learning: ECML 2004, Berlin, pp. 217–226 (2004)

29. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

30. OASIS. Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/
TOSCA-v1.0-cs01.html. Accessed May 2020

31. Rawdat, A.: Testing the performance of nginx and nginx plus web servers.
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-
web-servers/

32. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T.: Agile dynamic pro-
visioning of multi-tier internet applications. ACM Trans. Auton. Adapt. Syst.
(TAAS) 3(1), 1–39 (2008)

https://doi.org/10.1007/978-3-642-33826-7_11
https://doi.org/10.1007/978-3-642-33826-7_11
https://docs.docker.com/compose/
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://medium.com/a-cloud-guru/thinking-serverless-how-new-approaches-address-modern-data-processing-needs-part-1-af6a158a3af1
https://medium.com/a-cloud-guru/thinking-serverless-how-new-approaches-address-modern-data-processing-needs-part-1-af6a158a3af1
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/

Simulating User Journeys with Active
Objects

Paul Kobialka1 , Rudolf Schlatte1 , Gunnar Rye Bergersen1,2 ,
Einar Broch Johnsen1(B) , and Silvia Lizeth Tapia Tarifa1

1 Department of Informatics, University of Oslo, Oslo, Norway
{paulkob,rudi,gunnab,einarj,sltarifa}@ifi.uio.no

2 GrepS B.V., Utrecht, The Netherlands

Abstract. The servitization of business makes companies increasingly
dependent on providing carefully designed user experiences for their ser-
vice offerings. User journeys model services from the user’s perspective,
but user journeys are today mainly constructed and analyzed manually.
Recent work analyzing user journeys as games enable optimal service-
provider strategies to be automatically derived, assuming a restricted
user behavior. Complementing this work, we here develop an actor-based
modeling framework for user journeys that is parametric in user behav-
ior and service-provider strategies, using the active-object modeling lan-
guage ABS. Strategies for the service provider, such as those derived for
user journey games, can be automatically imported into the framework.
Our work enables prescriptive simulation-based analyses, as strategies
can be evaluated and compared in scenarios with rich user behavior.

1 Introduction

Companies increasingly offer services to enhance their product range, a devel-
opment termed the servitization of business [48]. The success of these services
is highly dependent on user satisfaction: If the users are satisfied with how they
experience the offered service, the companies are rewarded financially without
increasing their risk [23]. Therefore, to provide successful services, companies
need to adjust and improve their services from the users’ perspective. However,
services are usually analyzed from the managerial perspective, centered on the
company and not on the users.

User journeys allow services to be analyzed from the user perspective, with
the aim of understanding and hopefully improving the user’s experience of a
service. User journeys model a user’s actual path through a service by capturing
so-called touchpoints; these reflect communication between the user and the ser-
vice provider, or actions performed by the user. Due to lacking formalization and

This work is part of the Smart Journey Mining project (Research Council of Norway,
grant no. 312198) and the SIRIUS Centre for Scalable Data Access (Research Council
of Norway, grant no. 237889).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, pp. 199–225, 2024.
https://doi.org/10.1007/978-3-031-51060-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51060-1_8&domain=pdf
http://orcid.org/0000-0002-0635-1915
http://orcid.org/0000-0001-5601-5517
http://orcid.org/0000-0002-8135-9052
http://orcid.org/0000-0001-5382-3949
http://orcid.org/0000-0001-9948-2748
https://doi.org/10.1007/978-3-031-51060-1_8

200 P. Kobialka et al.

tool support, the analysis of user journeys is today mainly a manual process [25]:
analysts collect feedback on a service from a representative group of users (e.g.,
by means of questionnaires) to manually construct a user journey map, look
for typical pain points, and possibly suggest improvements to the user journey.
Because the user journey analysis is manual, the process is not easily applied to
complex services or analyzed with respect to many users.

The interaction between a service provider and a user can be formalized as
a game [31,32]. Users interact with the service provider to achieve a specific
goal and the service provider may adopt different strategies to handle the users.
Strategies for these games can be automatically analyzed using model checking
tools such as UPPAAL [21] and PRISM [16] to reveal insights about the user
journey. The analysis of user journey games can identify pain points in the
user journeys (e.g., states where users abandon their journey), where the user
journey could be improved. User journey games assume that all users are equally
antagonistic, i.e., users always choose the worst possible action. However, in a
real scenario users are not always uniformly antagonistic to the service provider,
which makes it interesting to consider approaches that can relax this assumption.

In this paper, we propose to model user journeys by means of actors, to
explore more diverse user behavior, complementing previous work on user jour-
ney games. We model a service provider and concurrent users as independent
actors. The resulting actor model allows us to capture richer interaction scenar-
ios between users and a service provider, and facilitates more realistic models
than with user journey games, e.g., to explore several different service-provider
strategies. Further, we consider parameterized and randomized user models to
differentiate user behavior and explore the effect of service-provider strategies
under different assumptions about such user behavior. Specifically, we investi-
gate a user compliance parameter expressing the probability of a user waiting
for the service provider’s guidance instead of just taking a random action (e.g.,
the willingness or capability of users to follow instructions). Our model supports
prescriptive analysis of user journeys by varying service-provider strategies and
comparing the consequences of strategic decisions in the user journey.

We implement the user journey model as an actor-based simulation frame-
work, using the active objects of ABS [27,29]. ABS is a timed actor-based mod-
eling language, which supports cooperative scheduling and the specification of
timing- and resource-aware behavior. Cooperative scheduling allows a process,
executing in an actor, to be suspended while waiting for an event to occur, such
that another process that is able to make progress can execute. Timed semantics
allow the specification of the temporal behavior in the model. Resource-aware
behavior takes a supply-and-demand perspective of execution, relating locations
that provide resources to actors that require them for executing their active
processes and modeling part of a system that has limited resources.

In this paper, we focus on the development of the core framework using
ABS constructs without time and resources. We envision exploiting the time and
resource aspects of ABS to reveal the bottlenecks of the service due to the waiting
times of users and limited resources in the service (e.g., waiting for telephone calls

Simulating User Journeys with Active Objects 201

or manual checks in the service). Towards this aim, we now focus on capturing
the functional aspects of our proposed actor framework, which is parametric
in both user behavior and the service provider’s strategy. For example, service
provider strategies derived using the above-mentioned model checking techniques
can be automatically imported into our simulation framework.

Recent extensions to the ABS simulation tool [42], implemented in Erlang [3],
allow the parameters of the framework to be instantiated in a data-driven way by
means of SQL queries to instantiate user behavior and service-provider strategies
into user-defined datatypes in ABS, that later can be used to drive the execution
of the model. We then use simulations to conduct experiments on the resulting
user journey model for different user parameters, i.e. we investigate user journeys
for varying probabilities of user compliance on randomized users. We evaluate
our actor model of user journeys on an industrial case study; the results are
reviewed by a long-term employee of the cooperating company, who is also the
third author of this paper.

In short, the contributions of this paper are:

1. an active-object model for user journeys that is parametric in user behavior
and in service-provider strategies,

2. a data-driven simulation framework to evaluate and compare different strate-
gies for the service-provider, and

3. an application of the simulation framework to an industrial case study.

2 Motivating Scenario

Consider an imaginary company TestMe ltd. that offers evaluations of pro-
gramming skills. Companies searching for new developers commission TestMe
to conduct tests of their applicants to determine their level of programming
skills. TestMe is paid per user (i.e., a user is here an applicant to the commis-
sioning company) that completes the evaluation and does not withdraw in the
middle of the evaluation process. Therefore, TestMe wants to investigate the
user experience when users engage in the tests of the evaluation process and hires
a team of analysts to analyze the user journey. The analysts start by conducting
questionnaires with selected users and manually generate, based on the answers,
a so-called user journey map outlining the experiences and feedback from the
questionnaires. The user journey map may reveal pain points in the user journey,
i.e., interactions hindering a successful completion of the skill evaluation.

To improve the user journey and engage the user more actively, TestMe
may consider different changes in the evaluation process based on the informa-
tion gained from the user journey analysis. Further, the company would like to
differentiate the user journey analysis depending on the users’ skill level, assum-
ing that users at different skill levels behave differently during the evaluation
process. To facilitate a continuous evaluation of user journeys, the analysts need
an automated process of user journey analysis that does not depend on the
manual processing of questionnaires. To address this bottleneck, previous work

202 P. Kobialka et al.

by the authors proposes the use of recorded logs from the system to automat-
ically generate a model of the user journey, called a user journey game [32].
This approach drastically reduces the time until realistic models are available.
User journey games and strategies that ensure (or increase the chances for) a
successful outcome of these games are introduced in Sect. 4.1.

The user journey games can be used by the team of analysts at TestMe to
derive (winning) strategies suitable for the service provider, i.e., strategies that
guide users toward completing the evaluation. However, the analysts struggle
with the strict assumptions in user journey games, needed for successful analysis.
User journey games do not distinguish users with, e.g., different skill levels,
preventing the desired prescriptive analysis based on different users. To overcome
these limitations, we here propose to model user journeys using active objects in
the Abstract Behavioural Specification (ABS) language [27] (ABS is summarized
in Sect. 4.2), and integrate the strategies derived from user journey games in an
active object setting. The resulting workflow is outlined in Fig. 2.

Sections 5.1 and 5.2 discuss how to model user journeys as active objects
(Step 1 in Fig. 2), where we describe the transfer from Uppaal [34] mod-
els to ABS and the intermediate steps needed to encode generated strategies.
Section 5.3 introduces parameterized user behavior to differentiate users and
expands on the model generation. The model is further specified with additional
user parameters so that assumptions needed for games are removed (Step 2).
Further, we simulate different kinds of users to evaluate possible changes to the
service provider’s behavior (Step 3). Our simulation model is parameterized in
the user behavior and allows adaptations to reflect different user behavior, cor-
responding to the different kinds of users encountered by the company. Section 6
describes the conducted simulations and evaluates our approach on a real case
study. We summarize our work in Sect. 7 and outline future work.

3 Related Work

We discuss related work with respect to the data-driven analysis of user journeys
and the modeling capabilities provided by the active object language ABS. To
the best of our knowledge, this is the first work on modeling user journeys in an
actor or active object language, giving all actors an operative role.

User journeys express the interactions between a service provider and its
users from the users’ perspective [22,46]. Various modeling notations have been
proposed to support the blueprinting process [13], establishing a model of
the planned interactions between the user and service provider for a service.
Approaches to create user journey diagrams include [5,18,26,33,39,40]; in most
of these approaches, diagrams are created by hand after conducting surveys and
questionnaires. Digital support exists in e.g. [33] to visualize static information
of the interactions such as the time spent from the user’s perspective, the expe-
rience per interaction, etc.

The Customer Journey Modeling Language (CJML) [24,26] offers two dia-
gram types to highlight different aspects of the users’ perspective: customer

Simulating User Journeys with Active Objects 203

journey network diagrams display the interaction between the user and all sub-
contractors, customer journey diagrams display the impressions from the users’
point of view. CJML highlights deviations in the actual journey, the actual
impressions a user has in the service, from the planned journey, the planned
impressions. The Smart Journey Mining project aims to build data-driven tool
support for user journeys [25]. Therefore, CJML was actively extended for digital
support; CJML v2.0 provides an XML format for the in- and export of actual
and planned user journeys [26].

Data-driven methods from process mining [1] for process discovery have been
successfully applied to discover user journeys from recorded logs. Bernard et al.
[8,10] investigate the possibility of using process mining for user journeys, they
use hierarchical clustering and user-defined goals to abstract from a large number
of journeys [7], and propose a method to discover user journeys from logs at vary-
ing levels of granularity [9]. Terragni and Hassani [44] investigate user journeys in
the form of web logs and their optimization by building recommender systems
proposing user-specific actions optimizing key performance indicators [45]. In
contrast, our work focuses on the modeling aspect of user journeys with active
objects and simulations to gain prescriptive insights into the service provider
behavior and user journeys.

Formal methods allow the verification and analysis of discovered models for
desired properties. David et al. present TAPAAL [19], a model checker for timed-
arc Petri nets, which has been used by Bertolini et al. [11] to verify requirements
in the healthcare domain. Kobialka et al. [31,32] proposed user journey games
as a formal model for user journeys, where the user and service provider are
independent actors competing for a successful user journey. In [31] the approach
is applied to a large process mining benchmark log and a state reduction method
on event level is proposed.

Challenges for leveraging formal, compositional language semantics to indus-
trially applicable tools, including how to input/output real-world data, have been
discussed in the context of ABS in [43]. The simulation tool of ABS has previ-
ously been used to model and analyze large use cases (e.g., [2,12,30,36,37,42]);
in particular, Turin et al. [47] use ABS to build and analyze a formal model for
cloud deployment in Kubernetes, illustrating the impact of large loads of users.

4 Preliminaries

4.1 User Journeys as Weighted Games

A game [4,15,16,21] consists of players that alternate in deciding on the action
to take as the game transitions from one state to the next. Players may have
strategies to try to force a specific outcome of the game; e.g., a player may try
to reach a desired outcome of the game or to ensure that certain states are never
reached. Actions in a game can have weights, e.g., to express rewards or penalties
when taking an action, transforming the game into a weighted game.

A weighted game [15] is a tuple (Γ,Ac, Au, E, s0, T, w) with a set Γ of states,
sets Ac, Au of controllable and uncontrollable actions (or labels) with Ac∩Au = ∅,

204 P. Kobialka et al.

a transition relation E ⊆ Γ × Ac ∪ Au × Γ , an initial state s0 ∈ Γ , a set T ⊆ Γ
of final states, and a weight function w : E → R that assigns weights to tran-
sitions. When analyzing a two-player game in which one player (the controller)
takes controllable actions and the other player takes uncontrollable actions, it is
assumed that only the controllable actions in Ac can be selected by the analyzer
— the actions in Au are nondeterministically decided by an adversarial environ-
ment, playing against the controller. If both players have actions available, the
uncontrollable actions have precedence over the controllable actions.

In user journey games [32], the service provider and user are modeled as play-
ers in a two-player game, each with their own set of actions. Formally, a user
journey game is a weighted game (Γ,Ac, Au, E, s0, T, Ts, w), where Ts ⊆ T are
the successful final states. By using games as the user journey model, we inher-
ently assume that (1) no player performs more than one activity concurrently,
and that (2) user journeys are goal-driven processes where the user and service
provider have the incentive to achieve the journey’s goal, i.e., to reach a success-
ful final state. For a user-centric analysis, the user is modeled as the adversarial
environment that takes uncontrollable actions and the service provider as the
controller that takes controllable actions. We require that the service provider
has suitable responses for all user interactions and does not constrain the user.

The weights in user journey games reflect the users’ experience as reflected
in the system logs in the following way: interactions that only occur in successful
journeys receive a positive weight, interactions that only occur in unsuccessful
journeys receive a negative weight, and interactions that occur in both successful
and unsuccessful journeys receive a neutral weight. The sum of weights along
a (partial) user journey is called gas, and reflects the aggregated experiences of
the respective users. In the games, a unique start state is introduced to ensure
that all users start from the same state, and positive and negative final states
are introduced to differentiate successful from unsuccessful journeys.

User journey games are generated from logs by (1) mining a transition system
from the traces in the log, (2) transforming the transition system into a game by
defining controllable and uncontrollable actions, and (3) adding user feedback by
computing weights on the transitions. An entropy-based function assigns high
positive weights to actions that primarily occur in successful journeys, high nega-
tive weights to actions that primarily occur in unsuccessful journeys and neutral
weights to actions in successful and unsuccessful journeys. The generation of
user journey games from event logs is detailed in [32].

A strategy [20] assigns a set of possible actions to every state in a game.
Formally, given a game G = (Γ,Ac, Au, E, s0, T, w), a strategy for G is a partial
function σ : Γ → 2Ac∪{λ}/{∅} from states in Γ to the power-set of controllable
actions Ac; here, λ denotes the “wait” action (i.e., no controllable action is taken
and the controller gives the next move to the environment) and the possibility
of “no action” (expressed by {∅}) is removed. We say that a player follows a
strategy σ if, in every state s ∈ Γ , the player only selects actions in σ(s). If
there is a strategy that guarantees a desired property, the controller can enforce

Simulating User Journeys with Active Objects 205

the desired outcome by following this strategy, preventing the adversary from
making a choice that violates the property.

We here consider memoryless strategies, i.e., strategies where the choice of
the next action only depends on the last state. Maler et al. [38] have shown that
memoryless strategies suffice for reachability properties. Note that strategies can
be nondeterministic; i.e., there might be more than one possible action available
to enforce the desired outcome. We call a strategy deterministic if only one
possible action can be selected in any state (i.e., |σ(s)| = 1 for all s ∈ Γ).

Uppaal Stratego [21] is a model checker for games in the Uppaal tool
suite [34], which combines Uppaal Tiga [4] with the stochastic model checker
Uppaal SMC to stochastically model check games; i.e., it verifies properties in a
game setting through random simulations and hypothesis testing until sufficient
statistical evidence is reached. Uppaal Stratego allows refining a strategy
towards an expected goal, e.g., to find the shortest path to a successful final
state [20]. Uppaal Stratego constructs strategies for adversarial users. When
refining or evaluating strategies with respect to numerical criteria, e.g. estimat-
ing the expected number of steps in a user journey under a certain strategy,
Uppaal Stratego uses stochastic simulations.

4.2 The ABS Modeling Language

The Abstract Behaviour Specification [27] language (ABS) is a language for
behavioral modeling of distributed systems. ABS is an active object language
[14], combining executable actor-based semantics with asynchronous method
calls and first-class futures. Data is modeled via a functional, side-effect-free
layer of algebraic data types and parametric functions. The actor behavior is
expressed in a sequential, imperative way, with explicit suspension points for
cooperative scheduling in each actor. ABS has a Java-like syntax and is sup-
ported by a range of analysis tools (see, e.g., [41,49]). The internal state of each
actor can be modeled in detail or completely abstracted, depending on the pur-
pose of the model. The following features of ABS are useful in creating behavioral
models:

Asynchronous method calls and first-class futures: The essential feature
of a distributed system is that communication (sending a method call) and
execution (scheduling an incoming call) are decoupled. The caller can continue
execution until the result of a call is needed, and the callee can schedule calls
from multiple callers as needed.

Process suspension and boolean guards: Inside an ABS actor, many pro-
cesses can execute in a cooperative manner, with only one process running
at any given time. Processes suspend themselves when waiting for a method
call result or waiting for a boolean condition over the actor state.

Data Structures and Functions: Algebraic datatypes are used to model actor
state and data that is passed between actors via method calls. Functions that
are calculated over such datatypes are side effect-free.

206 P. Kobialka et al.

data StrategyEntry =
StrategyEntry(String strategy_state, String strategy_action);

def List<StrategyEntry> strategy(String strategy_name)
= builtin(sqlite3, "../data/journeys.sqlite",

"SELECT state, action FROM strategies WHERE strategy_name = ?",
strategy_name);

Fig. 1. Querying the “journeys.sqlite” database from within ABS, passing in an ABS
value as query parameter.

Database Access. For the work presented in this paper, we use the recently added
capabilities of ABS to import structured data stored in a SQLite database file
into a running ABS model.

Table 1. ABS to SQL datatype mapping: the first and second columns show the
SQL result to ABS datatype conversion; the second and third columns show how ABS
datatypes are converted into query parameter values.

SQLite return value ABS SQLite query
parameter

INTEGER Int INTEGER
INTEGER or REAL Float REAL
INTEGER or REAL Rat REAL
INTEGER (0 = False,
otherwise True)

Bool 0 or 1

TEXT String TEXT
Row of the above User-defined datatype n/a

Structured data stored in an SQLite database can be directly read into
ABS by converting query results into ABS datatypes. Executing a query inside
ABS produces a list of ABS data, which can be used like any other list after
the query has finished. If the query only returns rows of one value each, e.g.
String, the type of the query result inside ABS will be List<String>. If, on
the other hand, the query returns tuples containing more than one value, the
query will name the ABS datatype that holds each resulting row. The constructor
of this ABS datatype has to accept parameters of the same number and type as
returned by the query. For example, the result from a query like SELECT name,
age FROM persons, which returns (string, integer) tuples can be stored in
an ABS datatype defined like data Person = Person(String, Int). Table 1
shows how SQL results are mapped to ABS values, and how ABS query param-
eters are mapped to SQL values.

Figure 1 illustrates how to import data into ABS from an SQLite file. For
this example, let us assume that various strategies for a user journey game
have been stored in the file journeys.sqlite containing entries that relate
strategy_name, state, and action (See Sect. 4.1). It is possible to query such a

Simulating User Journeys with Active Objects 207

Fig. 2. Workflow pipeline.

file such that the records are stored in a list of strategy entries. In this example we
define in ABS a datatype StrategyEntry that holds one entry from one strategy,
and the function strategy that reads one full strategy from the SQLite table
and stores it into a list List<StrategyEntry>.

Queries into the SQLite database can be parameterized in the standard way:
parameters inside the query string are denoted by a question mark (?); val-
ues for these parameters are supplied as additional arguments to the query.
Only basic datatypes (string, integer, float) can be supplied as parameters. The
strategy_name parameter to the strategy function in Fig. 1 is used as such
a query parameter; its value ends up in the corresponding WHERE clause in the
SQL query sent to the database engine.

5 Workflow Pipeline

We now consider a pipeline for analyzing user journeys by means of simulations
of an active object model of user journeys. The pipeline is depicted in Fig. 2 and
consists of the following steps:

– Step 1: An ABS modeling framework imports user journey games and strate-
gies from a database;

– Step 2: The model is adjusted by instantiating parameterized user behavior
and modifying transitions to finNeg to be uncontrollable; and

– Step 3: Simulations are used to explore aspects of the user journey for given
strategies of the service provider.

We develop an ABS model that implements users and service providers as
active objects that communicate and run in parallel with each other. Addition-
ally, a WorkflowProvider class that wraps all knowledge about strategies and
available controllable and uncontrollable actions, serves as common knowledge
base for both users and service providers. The model is parameterizable wrt.
strategy, user behavior, and number of users. The output of a model run is the
number and type of users in each final state, together with the average journey
length and accumulated gas.

Generated games and strategies (see Sect. 4.1) are aggregated in an SQLite
database that can be read from within ABS (see Sect. 4.2). In particular, strate-
gies for user journey games can be generated from user journey games using
Uppaal Stratego and integrated in the ABS model to guide users in simula-
tions. Since the generated strategies are memoryless, they can thus be exported

208 P. Kobialka et al.

as a mapping from states to actions. Refining a strategy corresponds to refining
the mapping to be deterministic, i.e. there is at most one suggested action per
state.

We now explain how to prepare data that can be imported into the ABS
model in Sect. 5.1, then how the ABS model is constructed in Sect. 5.2.

5.1 Data Preparation for the Workflow Pipeline

In Step 1 of the workflow, we import user journey games and strategies into
ABS. The workflow produces a single database file that contains all necessary
information to simulate different scenarios.

The user journey game is transformed into a CSV format, that enumerates
states and available actions in each state, as a series of entries (source state,
action, target state, controllable or uncontrollable, cost) that are imported into
a database, see Fig. 3. We export strategies from Uppaal Stratego 10 by using
export queries:

saveStrategy("strategy.xml", strategy).

Strategies are then also transformed into tabular CSV format, mapping states
to actions, see Fig. 4, and we import the tables into the same SQLite database.
Both imports cover Step 1 in Fig. 2. In the start state, the company assigns a
virtual instance to the user, AssignInstance. When it is Started, the company
has to wait for the user to work on the TaskEvent, expressed as a Wait action
in the strategy and an uncontrollable action in the process model.

Source State Action Target State Controllable Cost

start Registered Registered False -1.9
start AssignInstance AssignInstance True -22
Started TaskEvent TaskEvent - 0 False -2
ResultApproval ResultsAccepted ResultsAccepted False 18

Fig. 3. Tables imported into the ABS model: The transition system as a list.

Source State Action
start AssignInstance
Started Wait
ResultApproval Wait

Fig. 4. Tables imported into the ABS
model: The strategy as a state to action
mapping.

We adapt the user journey game to
run simulations where users can give up
in the middle of their journey (and hence,
reach the unsuccessful final state). In
the imported user journey game, actions
leading to the unsuccessful final state
were defined as controllable; otherwise,
model checking could never guarantee
to reach the successful final state (cf.
Sect. 1). This restriction is not needed for simulation; in the adapted version,
actions leading to the unsuccessful final state are modeled as uncontrollable
actions. These adaptations cover Step 2.

Simulating User Journeys with Active Objects 209

Step 3 uses simulations to explore the model and possible service provider
strategies. We simulate scenarios that combine the parameterized model with
different users. In the ABS modeling framework, the model of the service provider
and the user models are kept separate for easier construction and utilization.

Fig. 5. Sequence diagram of one interaction in the simulation.

5.2 Modeling the User and the Service Provider

In the ABS model, the structure of the underlying user journey game is imple-
mented via a component called WorkflowProvider, which is consulted by the
user and the service provider objects. The ABS model contains one interface
for users, one for service providers, and one for the workflow provider. Figure 5
shows the exchange of messages between the actors in the simulation.

Figure 6 shows the interfaces and data types of the simulation. As shown in
the interaction diagram, the user is the “active” participant that initiates each
round of choosing between actions. Consequently, the User interface offers no
methods to be called from outside.

Since both the user and service provider need knowledge about the user
journey game, the model encapsulates this knowledge in a common interface
WorkflowProvider. Its method available_tasks returns all available control-
lable and uncontrollable actions, given a user identifier and the user’s state. (The
user identifier may be used to implement per-user strategies.)

The user chooses whether to perform a controllable or uncontrollable
action and informs the service provider about its decision (see Fig. 5). The

210 P. Kobialka et al.

interface User { }

interface ServiceProvider {
Unit notifyUncontrolledAction(
Int user_id, String uncontrolled_action, String new_state);

Maybe<WorkflowTask> performControlledAction(
Int user_id, String current_state);

}

interface WorkflowProvider {
WorkflowTasks available_tasks(Int user_id, String state);

}

data WorkflowTasks = WorkflowTasks(
List<WorkflowTask> controllable_tasks,
List<WorkflowTask> uncontrollable_tasks);

data WorkflowTask = WorkflowTask(
String origin_state, String target_state,
String action, String controllable, Float cost);

Fig. 6. The internal structure of the workflow simulation model.

notifyUncontrolledAction method notifies the service provider about the cho-
sen action and new state of the user. In contrast, the performControlledAction
method leaves the decision of the action to be taken to the service provider, which
in turn consults the workflow provider about its options. The chosen action is
returned to the user, who updates its state accordingly.

The classes implementing these interfaces can be seen in the online repos-
itory,1 which features the implementation of the workflow pipeline. The main
variability is located in the implementations of the WorkflowProvider interface,
where the modeler can set up workflow descriptions with varying strategies, or
no strategy at all. The user class is parameterized with the likelihood of perform-
ing an uncontrollable action if applicable. The service provider class relies on the
workflow provider for most of its behavior, but can be extended to implement
resource-sensitive behavior (see the discussion of future work in Sect. 7).

5.3 Parameterized User Behaviour

User journey games aggregate the behavior of several users into one model,
thereby assuming that all users are equally antagonistic; i.e., all users in the
same state have the same available actions, and, when the service provider and
the user both have available actions, all users have higher precedence than the
service provider. These assumptions are captured in the strategies generated by
Uppaal Stratego: antagonistic users exploit their precedence over the service

1 https://github.com/smartjourneymining/abs_journeys_aol-23/releases/tag/
AOL23.

https://github.com/smartjourneymining/abs_journeys_aol-23/releases/tag/AOL23
https://github.com/smartjourneymining/abs_journeys_aol-23/releases/tag/AOL23

Simulating User Journeys with Active Objects 211

provider when selecting the next action, and two different users in the same state
can not be differentiated.

In reality, users differ based on individual properties which are abstracted
away in user journey games. In our simulation framework, we would like the
user model to capture structural differences between users that are not expressed
through choices in the user journey game but are determined already at the
beginning of the game.

For this purpose, we let the user model have parameterized user behavior
by introducing a parameter to the user model that is unknown to the service
provider but fixed at run-time, i.e. for every instantiated user. This user param-
eter p ranges from [0, 1] and models the probability that the user waits for the
service provider’s guidance; with probability 1−p the user takes an uncontrollable
action. This way, the parameter models the “compliance” of the user, changing
the probability to wait for the service provider’s actions or taking an arbitrary,
uncontrollable transition. A non-compliant user, always taking uncontrollable
actions, can be expressed with p = 0. A compliant user can be expressed with
p = 1, waiting for the service provider’s actions until its activity is required.
All values between 0 and 1 express different levels of “compliance”; users that
have a certain probability to wait for the service provider’s action or to take
an uncontrollable action. Additionally, to allow for a wider range of possible
user behaviour, besides antagonistic users, we model users that decide their
actions randomly. Figure 7 outlines the implementation of the parameterized
user class. We discretized compliance probability p with integers ranging from
0 to 100. In the main block of our simulation, shown in Fig. 8, we generate a
workflow object, WorklfowProvider provider, a company object for that work-
flow, Company company and several parameterized users, List<User> users.
The user objects, which contain a run() method, start the simulation; their
results are gathered in a map storing for each end state a triple over the total
number of users in that state, the average number of steps and the average gas;
further information about individual users is gathered in the background.

In our model, we differentiate users solely based on their compliance param-
eters. Remark that service providers may need to invest significant effort in
determining their users’ parameters to adjust their offers and fine-tune services.
Discovering crucial user parameters is not trivial and requires extensive testing.
Therefore, we investigate in the case study presented in Sect. 6 whether user
compliance is a suitable way to capture realistic user behavior. Adjusting the
compliance allows us to investigate different game settings without having to
collect additional new data.

6 Case Study

6.1 Context

GrepS2 is a company offering programming skill evaluations for Java program-
mers. GrepS is commissioned by external companies for recruiting, training, and
2 See the webpage of GrepS for further details: https://www.greps.com/.

https://www.greps.com/

212 P. Kobialka et al.

class ParametricUser(
WorkflowProvider provider, Company company, Int compliance)

implements User
{

Bool finished = False;
String current_state = "start";

Unit run() {
while (!finished) {

WorkflowTasks possible_tasks =
await provider!available_tasks(current_state);

WorkflowTasks u_tasks = uncontrollable_tasks(possible_tasks);
WorkflowTasks c_tasks = controllable_tasks(possible_tasks);
if (u_tasks != Nil && c_tasks != Nil)
{

// Choose with the given probability whether to perform
// an uncontrollable or controllable action.
if (random(100) < compliance) {

this.offerControllableAction();
} else {

this.uncontrollableAction(u_tasks);
}

} else if (u_tasks != Nil) {
// Only uncontrollable actions available
this.uncontrollableAction(u_tasks);

} else if (c_tasks != Nil) {
// Only controllable actions available
this.offerControllableAction();

} else {
// No action available: User reached an end state
finished = True;

}
}

}

Unit offerControllableAction() {
Maybe<WorkflowTask> action =

await company!controlledAction(current_state);
switch (action) {

Just(the_task) => {
current_state = target_state(the_task);

}
Nothing => finished = True;

}
}

}

Fig. 7. Implementation of the parameterized user class.

Simulating User Journeys with Active Objects 213

// Main block.
{

// Parameters to set for the chosen experiment
Int n_users = ...
Int obedience = ...

// Instantiate the underlying workflow model
WorkflowProvider provider = new WorkflowProvider("non_det");
// Create company object
Company company = new Company(provider);

// Create parameterized user objects
List<User> users =

await util!create_users(n_users, provider, company, obedience);

// Aggregate results (end state => (count, avg. steps, avg. gas))
Map<String, Triple<Int, Int, Float>> end_states =

await util!collectUsersInMap(users, file);
}

Fig. 8. Creation of actors.

certification. The service that GrepS provides is based on prior research [6]. Cus-
tomers of GrepS are typically companies that hire or train developers, which are
the users of the service. Users are normally given one to two weeks to complete
their programming skill evaluation.

A typical programming skill evaluation requires the user to complete three
phases using GrepS: (1) sign-up, (2) solve a set of authentic programming tasks,
and (3) approve to share the results (via a skill report) with the customer, i.e.
the commissioning company. In a successful user journey, all three phases are
completed in order and the customer receives the report. In an unsuccessful
journey, the user permanently stops using the service at any phase, or does not
approve the sharing of the results with the customer.

The data we analyze are system logs with recorded events from the interac-
tions between users and the GrepS system. These system logs are an extended
version of the logs published as part of the work of Kobialka et al. in [32], as the
logs we use also contain the programming skill evaluations that are calculated by
the GrepS system. An extract of the extended data is shown in Fig. 10. In this
previous work, we report on the systematic generation and analysis of the GrepS
user journey game. Figure 9 displays a simplified illustration of the task-solving
and approval phase, leaving out the previously analyzed sign-up phase (states
T0–T7). Controllable transitions are depicted as solid lines, uncontrollable tran-
sitions as dashed lines; transitions with positive weight are colored green, and
those with negative weight are red. Each task during phase 2 consists of a pair of
states: the first state is the solving of a task and the second is user feedback on
the task. State T8 is a set-up task that is not used to evaluate skill, and T9 its
corresponding user feedback. States T10–T17 are alternating tasks and feedback
with T10 being the first practice task, T12 the second task, T14 the third task,

214 P. Kobialka et al.

and T16 the fourth task; the respective feedback is submitted after each single
task. After each task has been submitted by the user, the system attempts to
score the solution to the task and update the user’s skill evaluation based on all
solutions that have been scored so far. If the scoring process is successful, the
log is updated (“Overall scores updated”). The increasing weights on edges along
T8–T18 result from more users completing their tasks, i.e. users struggle with
the first three tasks but from the third task on are all subsequent tasks com-
pleted [32]. In state T18, the user is informed that all tasks have been completed
and explains the next steps that are to be completed within a specific number
of workdays (as agreed with each GrepS customer in a service level agreement,
SLA). States T21–T25 form the review phase, and T25 is the user approval for
sharing the required report.

6.2 Evaluations of Users’ Programming Skills by the GrepS System

Fig. 9. GrepS user journey game
(excerpt): task solving and approval
phases.

The extended system logs capture many
events with evaluated programming skills
per user. We consider the last evaluation
event as the final evaluated score (it cap-
tures the overall score of a user), and refer
to the previous evaluation events as ten-
tative scores. For each task solved by the
user, the system evaluates the tentative
skill level based on all available informa-
tion (i.e., the current and any previous
tasks that can be scored automatically).
Note that the final score may involve par-
tially human-graded tasks on dimensions
such as readability, proper use of variable
names, or other aspects that cannot be
evaluated automatically. Thus, a user may
have only one final skill score but can have
many tentative skill scores during phase 2.

The unit of measurement used for the
skill score is logits (i.e., the logarithm of
the odds), which is frequently used within
education or psychology to represent differ-
ences in skills and abilities on an interval
scale using the Polytomous Rasch Model.
A 5 on the scale used by GrepS is defined
as the averagely skilled professional Java
developer reported by Bergersen et al. [6],
who also reported a standard deviation of
skill scores of 1.3 logits. Note that this type
of scale does not allow for ratio compar-
isons of skills (e.g., “someone is twice as

Simulating User Journeys with Active Objects 215

skilled”) because the number zero skill is not defined. However, the magnitude of
differences is nevertheless constant across the range of the scale so that the mag-
nitude of differences can be represented using a standardized effect size [17]. For
example, a difference of 1.5 logits (i.e., a difference between 5.0 and 6.5, or 4.0
and 5.5) in skill would be considered a “large” effect by conventional standards
(i.e., Cohen’s d = 0.8).

Timestamp · · · Metadata
5245944 · · · Registered
5780525 · · · Registered
6104714 · · · Activated
6104714 · · · Logged in: Web page
6106191 · · · Overall scores updated: [rasch.skill: 2.59 . . .

Fig. 10. Extract of GrepS’ system logs.

Fig. 11. Skill level comparison for suc-
cessful and unsuccessful journeys from
GrepS’ system logs.

Skill evaluations in the provided system
logs reveal an association between success-
ful and unsuccessful journeys. Figure 11
compares the box-plots of skill scores for
successful journeys, in orange, and unsuc-
cessful journeys, in blue. We ignore all
journeys without a skill evaluation3 and
only use the final evaluated score per user.
The current comparison contains a sur-
vival bias since we ignore the skill levels of
all users that did not receive any skill eval-
uation. For the 11 unsuccessful journeys,
the median skill level is 4.2, thus about
0.6 standard deviation for the less-than-average developer. For the 20 success-
ful journeys, the median recorded skill level was about the same as an average
developer (5.1). Both box-plots in Fig. 11 range from 2 to 7. Observe that the
data distribution of unsuccessful journeys has more variance: its lower quartile
reaches significantly lower than the lower quartile of the successful journeys. The
upper quartile of the successful journeys reaches higher and is denser than the
one of unsuccessful journeys.

Both box-plots indicate that the GrepS service is currently better suited for
at-least average proficient developers. Developers below average, with a score of
less than 3.5, have a clear disadvantage. The log also demonstrates that above-
average developers fail and below-average developers succeed. The outcome of
the journey is not determined by the skill level but also by other factors.
3 We observed that system logs contain a large amount of very short unsuccessful jour-

neys with no events containing scores. Including all these journeys would negatively
bias the comparison and therefore we remove them from the comparison.

216 P. Kobialka et al.

6.3 Simulation Analysis

We conduct several simulated scenarios in which we instantiate the parameter-
ized user journey game, evaluate different service provider strategies, and test
varying levels of user compliance, as a parametric behavior for users. We investi-
gate the impact of different game strategies and the implications for the service
provider to use the refined strategy to have a successful journey outcome and
improve the user experience.

Building the Baseline of the Model. The initial model is constructed by mod-
eling the GrepS user journey game and importing it into ABS, along with its
corresponding Uppaal game strategies for the service provider. We implement
three strategies that the service provider can use: (1) a random one for a ran-
dom selection between all available actions to the next transition in the game (no
strategy), (2) a nondeterministic strategy, and (3) a refined strategy, minimizing
the number of steps to reach a positive outcome, concretely, to reach the state
finPos, see Fig. 9. Strategies (2) and (3) are exported from Uppaal Stratego
into ABS, as described in Sect. 5.1. The users are randomized; i.e., they take a
random, uncontrollable actions.

We first check that our ABS model reproduces the results generated in
Uppaal. The user is parameterized in its compliance, instantiated with a fixed
probability at run-time, see Sect. 5.3. We calibrate our ABS model with suitable
user compliance settings and sufficient many simulated users, such that simula-
tion results are aligned with the results from Uppaal Stratego. By doing so,
our model reproduces the average amount of gas when reaching a final state and
the average number of steps for the nondeterministic and refined strategy each.

Exploring Alternative Scenarios. We experimented with a less restrictive model
by adapting the underlying game, where we removed some of the assumptions
that were needed for the game analysis in Uppaal Stratego. In particular, in
Uppaal Stratego the analysis requires a guaranteeing strategy for the service
provider, thus, users are not allowed to give up in the middle of their journeys
and those actions (solid lines, representing transitions in the game to the final
negative state finNeg, see Fig. 9) are controlled by the service provider. We adapt
the model by making these interactions uncontrollable (therefore, controlled by
users). Further, the Uppaal Stratego game assumes that users always have
precedence over the service provider. We additionally adapt our simulated users
with a compliance parameter p, with probability 1 − p for each user to select
a random, uncontrollable action, thereby lifting the assumption of adversary
users. In the active object model, the generated strategies no longer guarantee
a successful user journey outcome. However, the simulations still allow us to
explore the GrepS user journey game, using one of the strategies. We observed
that in the parameterized active object model with uncontrollable transitions
to finNeg, the random strategy aligns with the nondeterministic strategy since
there are no activities that the service provider is not allowed to select. Therefore,
we only compare the random strategy with the refined strategy.

Simulating User Journeys with Active Objects 217

Figure 12 compares different aspects of the parameterized active object model
with the two strategies, where all transitions leading to unsuccessful journey out-
comes are user-controlled. The chance of taking such transitions (and therefore
determining the outcome of the journey) is given by the compliance probabili-
ties. Figure 12a displays the number of successful journeys for given compliance
probabilities (the parameter p), we run simulations with a total of 1000 users,
and with different probabilities for noncompliance or giving up (1 − p), ranging
from 0% to 100% and increasing p with 20% in each simulation. When com-
paring the mean user journey length, the refined strategy improves the random
strategy drastically since user journeys are significantly shorter in the refined
strategy, see Fig. 12b. Figure 12c compares the accumulated gas, revealing that
the refined strategy reduces the accumulated gas for compliant users slightly.
For noncompliant users with a short journey, the refined strategy improves the
average accumulated gas from an average below −80 to −40.

Moreover, we investigate the different states where users give up their journey
in the adapted ABS model, according to different compliance levels. Figure 13
shows the simulation results. With decreasing compliance levels, more users leave
the journey, due to several states that allow users to give up, the number of
users reaching the positive outcome shrinks rapidly, see Figs. 13a and 13b. For
compliant users, see Fig. 13c, the service provider has good chances to guide the
user to a successful outcome.

Fig. 12. Comparison of different compliance probabilities and strategies.

Skill Level and Compliance. Observations from the system logs show that the
average GrepS user is closely comparable with the simulations that consider 80%
compliance, see Fig. 13c, and that 2

3 of the users are successful. Concretely, in
the provided log 18% of users gave up after the first task event, which aligns with
the 20% decrease of users in the simulations, but only 9% gave up at the second
and third tasks, which does not entirely align with the 16% and 12% decrease
of users that is shown in the simulations, as well as 12% decrease of users at the
reporting phase in the logs, with 6% decrease in the simulations.

We also investigate the relationship between the final skill score of users,
detailed in Sect. 6.2, and the compliance parameter. Figure 14 shows the cor-
respondence between the length of user journeys and the final skill level per

218 P. Kobialka et al.

Fig. 13. Comparison of states where users stop in the simulated user journeys with
different compliance probabilities; the company’s goal is to maximize the reachability
of finPos.

Fig. 14. Box-plots over user journey
lengths per skill level in the system logs.

user. Results are grouped by skill level,
where below or equal to 5 are sorted
into the group of developers that are
“below average”, otherwise they are
sorted into the group “above average”.
In comparison, Fig. 15 displays the
simulated box-plots over user journey
lengths for different compliance levels
for the random strategy (Fig. 15a), and
the refined strategy (Fig. 15b). While
the length of user journeys vary from
the user journey lengths observed in
the logs when using the random strat-
egy in the simulations, the refined
strategy produces user journeys with comparable lengths to those observed in
the system logs. We further investigated the ratio of successful and unsuccessful
journeys in the two skill groups. When ignoring users without a skill evaluation,
56% of unsuccessful user journeys belong to users that are scored “below aver-
age”, and 73% of successful user journeys belong to users that are scored “above
average”. These values correspond to a compliance probability of about 85% for
“below average” users and of more than 90% for “above average” users.

While not all aspects of the user-specific behavior could be replicated, our
model is capable of differentiating different user groups as observed in the real-
world system logs. By introducing one parameter for user compliance, we deter-
mine whether a user acts before the service provider and chooses an uncontrol-
lable action. Whereas compliance appears to be a suitable notion to capture
observed user behavior, users are in reality influenced by a wide range of param-
eters that are not independently recorded. We parameterized the modeling of
user-specific behaviors and gained detailed insights into different kinds of users.
The model adequately captured not only user journey lengths but also the dis-
tribution of final states and the number of successful journeys.

Simulating User Journeys with Active Objects 219

Fig. 15. Box-plots over varying compliance levels and strategies in simulations.

6.4 Prescriptions

By using the simulation tool of the ABS active object language, we are able to
adjust model details to conform to what is contained in the user logs. Previous
game analysis required us to assume that users do not leave the journey, oth-
erwise, no guaranteeing strategy could have been established. The active object
model was adjusted to consider user parameters in the simulations, capturing
various kinds of users. These adaptations allow service providers to evaluate the
impact of possible changes on their services before implementing them. Several
possible changes in either the strategy, the model, or both can be evaluated and
the most promising ones can be implemented. Further, including user parame-
ters in the model, allow us to adjust the simulation results towards the targeted
users. In our case study, we compared different strategies and confirmed the
suggestions from the model checker that the refined strategy is superior to the
nondeterministic or random strategy. The strategies were generated in overap-
proximated games and tested in a more realistic setting. We could elaborate
on differences between user groups and model them with proxy parameters,
extracted from the system logs.

6.5 Evaluation

Our conclusions from the simulation analysis (Sect. 6.3) and new opportunities
from exploring alternative scenarios (Sect. 6.4) can be summarised as follows:

1. more positive outcomes are related to “above average” skilled users,
2. compliance is a relevant proxy for user behavior (although with a still unre-

solved relation to programming skill), and
3. “what-if” scenarios may be used to simulate changes to the existing system

for evaluating alternative directions for technical development in the future.

These insights have been further discussed with a long-term employee of the
company, and third author of this paper, for their review. We summarize the
feedback below.

220 P. Kobialka et al.

Regarding point 1, more positive outcomes, GrepS is a user-focused service
and is aware that different groups of users behave differently in their system.
Depending on what a skill evaluation is used for, there are also situations where
it is most sensible for a user to discontinue using the service. For example, if the
first couple of programming tasks appear too difficult in a recruitment setting,
a developer may opt out of the process and look for a different job. It is also
known that less skilled developers are more resource-demanding in terms of
needed support during the process, probably as a partial function of how well
the user reads and understands the process and its requirements. At the same
time, for a user-focused service, it is important to know which user groups are
the key users, for which most of the resources should be used to keep satisfied
with the service. Internally, the company is aware that less skilled users are less
likely to complete all the programming tasks in Phase 2, or share an unsatisfying
result during Phase 3.

Regarding point 2, compliance as a proxy of user behavior, companies need
to challenge and further refine their own understandings of their key user groups.
User parameters such as compliance—the willingness or capability to follow
instructions—provide a more nuanced view than merely using programming skill
evaluation to explain why some user journeys are unsuccessful. Compliant users
tend to be more successful in their journey and have fewer problems solving
the presented tasks, but it is at present unclear what the conceptual overlap is
between “compliance” and factors such as technical skill or motivation.

Regarding point 3, the prescriptive analysis used to investigate “what-if”
scenarios and to challenge assumptions that do not hold, GrepS is positive to
evaluate such functionality more closely. For example, if a user in the present
setup of the system stops solving a task, e.g. in states T10, T12, or T14, this user
is unsuccessful. The simulation model could then attempt to answer the hypo-
thetical question of what would happen if GrepS introduces a “user recovery”
state where the sole goal is to bring the user back to the system, for example,
by asking for feedback (is the user satisfied?), reminding the user (has the user
forgot to continue?) or providing other kinds of targeted information (do the user
know that valuable feedback is possible even though the report is not shared with
GrepS’ customer?). By estimating both expected costs (development time) and
expected success (probabilities that users continue), such a simulation may yield
better predictions of how many additional users would complete the analysis. If
the simulation reveals that the additional users in the positive final state from
a hypothetical intervention exceeds the cost of implementing it, such an inter-
vention might be prioritized. Simulations of large and complex systems where
relevant factors are parameterized, seem preferable to heavily relying on heuris-
tics of what works (and doesn’t) that require extensive experience to validate.

7 Conclusion and Future Work

This paper presents an active object simulation framework for user journeys. The
framework can be combined with strategy analysis for service providers, based

Simulating User Journeys with Active Objects 221

on model checking user journey games. We considered strategies generated in the
model checker Uppaal Stratego and showed that the results of model check-
ing can be reproduced in our framework. Then, we extended the framework to
parameterize the users’ compliance with the intended user journey, and estimated
how resilient different service provider strategies are to non-cooperating users.
The active object framework allows prescriptive analysis, where the impact of
changes can be evaluated before implementing them in the real system.

Previous analysis based on user journey games, using Uppaal Stratego,
over-approximates the service provider behavior, to establish strategies that
guarantee a successful outcome. The active object simulation framework alle-
viates these assumptions, making the user journey model more realistic. The
simulation framework uses two measures for the modeled user journeys: the
total number of actions taken in the journey and the accumulated cost. When
adapting the user journey game to the simulation framework, one has to evalu-
ate if the strategy generated from the user journey game is compatible with the
active object model. Otherwise, a random strategy might outperform a refined
strategy. Therefore, it is important to compare refined strategies to a valid base-
line, i.e. a random or nondeterministic strategy, and, if necessary, update the
refined strategy to the new assumptions.

We present an industrial case study from GrepS, a small company offering
programming skill evaluations to other companies. We investigated users with
“below average” and “above average” proficiency. Our simulations reproduced
findings from the Greps log, suggesting that GrepS is configured for “above
average” proficient users. These users have a higher chance for a successful user
journey with shorter user journeys than “below average” proficient users. In the
case study, the active object model harmonized well with the refined strategy,
user journey lengths were reduced and the final gas was kept at comparable
levels in the system logs and simulations.

The presented active object simulation framework opens many interesting
possibilities for future work. One obvious extension is to make the active object
framework resource-sensitive, exploiting the resource-model of ABS [29]. The
current model only considers gas as a resource, but every interaction between
service provider and user has a duration and also requires physical resources,
e.g. interactions with a GrepS employee. A time- and resource-sensitive model
allows scenarios to be explored that show response times under various loads and
“what-if” scenarios; e.g., whether adding personnel to answer user messages in a
certain state of the user journey would increase overall completion rates. Such
extension could consider load balancers that distribute or delegate activities in
the service to workers with limited resources, mimicking resource management
in cloud-based distributed systems, as previously modeled and analyzed using
ABS with time and resources [28,35,37,47].

The current model is Markovian, as the next decision only depends on the
current state. However, the model does provide access to the accumulated gas
of users (i.e., the sum of the weights from previous interactions with the service
provider). This allows richer models of decision-making to be investigated, where
the current decision not only depends on the users’ compliance parameter but

222 P. Kobialka et al.

also on past experiences by taking into account the accumulated gas, capturing
how much “steam” the user has left to continue the journey. Accordingly, it would
also be interesting to investigate further model parameters and their influence
on successful user journeys (e.g., to fine-tune compliance or to capture other user
behavior characteristics).
Conflict of Interest. The third author has financial interests in the company (GrepS)
that owns the skill testing tool evaluated in the case study in this work.

References

1. van der Aalst, W.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

2. Albert, E., et al.: Formal modeling and analysis of resource management for cloud
architectures: an industrial case study using Real-Time ABS. Serv. Oriented Com-
put. Appl. 8(4), 323–339 (2014). https://doi.org/10.1007/s11761-013-0148-0

3. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, Raleigh (2007)

4. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73368-3_14

5. Berendes, C.I., Bartelheimer, C., Betzing, J.H., Beverungen, D.: Data-driven cus-
tomer journey mapping in local high streets: A domain-specific modeling language.
In: Pries-Heje, J., Ram, S., Rosemann, M. (eds.) Proceedings of International Con-
ference on Information Systems - Bridging the Internet of People, Data, and Things
(ICIS 2018). Association for Information Systems (2018). https://aisel.aisnet.org/
icis2018/modeling/Presentations/4

6. Bergersen, G.R., Sjøberg, D.I.K., Dybå, T.: Construction and validation of an
instrument for measuring programming skill. IEEE Trans. Software Eng. 40(12),
1163–1184 (2014). https://doi.org/10.1109/TSE.2014.2348997

7. Bernard, G., Andritsos, P.: CJM-ex: goal-oriented exploration of customer journey
maps using event logs and data analytics. In: Clarisó, R., et al. (eds.) Proceedings of
BPM Demo Track and BPM Dissertation Award co-located with 15th International
Conference on Business Process Modeling (BPM 2017). CEUR Workshop Proceed-
ings, vol. 1920. CEUR-WS.org (2017). http://ceur-ws.org/Vol-1920/BPM_2017_
paper_172.pdf

8. Bernard, G., Andritsos, P.: A process mining based model for customer journey
mapping. In: Franch, X., Ralyté, J., Matulevicius, R., Salinesi, C., Wieringa, R.J.
(eds.) Proceedings of Forum and Doctoral Consortium Papers at the 29th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE 2017).
CEUR Workshop Proceedings, vol. 1848, pp. 49–56. CEUR-WS.org (2017). http://
ceur-ws.org/Vol-1848/CAiSE2017_Forum_Paper7.pdf

9. Bernard, G., Andritsos, P.: CJM-ab: abstracting customer journey maps using
process mining. In: Mendling, J., Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol.
317, pp. 49–56. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92901-
9_5

10. Bernard, G., Andritsos, P.: Contextual and behavioral customer journey discovery
using a genetic approach. In: Welzer, T., Eder, J., Podgorelec, V., Kamišalić Latifić,
A. (eds.) ADBIS 2019. LNCS, vol. 11695, pp. 251–266. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-28730-6_16

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/s11761-013-0148-0
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://aisel.aisnet.org/icis2018/modeling/Presentations/4
https://aisel.aisnet.org/icis2018/modeling/Presentations/4
https://doi.org/10.1109/TSE.2014.2348997
http://ceur-ws.org/Vol-1920/BPM_2017_paper_172.pdf
http://ceur-ws.org/Vol-1920/BPM_2017_paper_172.pdf
http://ceur-ws.org/Vol-1848/CAiSE2017_Forum_Paper7.pdf
http://ceur-ws.org/Vol-1848/CAiSE2017_Forum_Paper7.pdf
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-030-28730-6_16

Simulating User Journeys with Active Objects 223

11. Bertolini, C., Liu, Z., Srba, J.: Verification of timed healthcare workflows using
component timed-arc petri nets. In: Weber, J., Perseil, I. (eds.) FHIES 2012. LNCS,
vol. 7789, pp. 19–36. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39088-3_2

12. Bezirgiannis, N., de Boer, F., Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: Imple-
menting SOS with active objects: a case study of a multicore memory system. In:
Hähnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS, vol. 11424, pp. 332–350.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16722-6_20

13. Bitner, M.J., Ostrom, A.L., Morgan, F.N.: Service blueprinting: a practical tech-
nique for service innovation. Calif. Manag. Rev. 50(3), 66–94 (2008). https://doi.
org/10.2307/41166446

14. de Boer, F., et al.: A survey of active object languages. ACM Comput. Surv. 50(5),
76:1–76:39 (2017). https://doi.org/10.1145/3122848

15. Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced timed
game automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol.
3328, pp. 148–160. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30538-5_13

16. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36742-7_13

17. Chinn, S.: A simple method for converting an odds ratio to effect size for use in
meta-analysis. Stat. Med. 19(22), 3127–3131 (2000)

18. Crosier, A., Handford, A.: Customer journey mapping as an advocacy tool for
disabled people: a case study. Soc. Mark. Q. 18(1), 67–76 (2012). https://doi.org/
10.1177/1524500411435483

19. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: integrated development environment for timed-arc petri nets. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_36

20. Daivd, A., et al.: On time with minimal expected cost! In: Cassez, F., Raskin, J.-F.
(eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11936-6_10

21. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: uppaal
stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0_16

22. Følstad, A., Kvale, K.: Customer journeys: a systematic literature review. J. Serv.
Theory Pract. 28(2), 196–227 (2018). https://doi.org/10.1108/JSTP-11-2014-0261

23. Fornell, C., Mithas, S., Morgeson, F.V., Krishnan, M.: Customer satisfaction and
stock prices: high returns, low risk. J. Mark. 70(1), 3–14 (2006). https://doi.org/
10.1509/jmkg.70.1.003.qxd

24. Halvorsrud, R., Kvale, K., Følstad, A.: Improving service quality through customer
journey analysis. J. Serv. Theory Pract. 26(6), 840–867 (2016). https://doi.org/
10.1108/JSTP-05-2015-0111

25. Halvorsrud, R., Mannhardt, F., Johnsen, E.B., Tapia Tarifa, S.L.: Smart journey
mining for improved service quality. In: Carminati, B., et al (eds.) Proceedings
IEEE International Conference on Services Computing (SCC 2021), pp. 367–369.
IEEE (2021). https://doi.org/10.1109/SCC53864.2021.00051

https://doi.org/10.1007/978-3-642-39088-3_2
https://doi.org/10.1007/978-3-642-39088-3_2
https://doi.org/10.1007/978-3-030-16722-6_20
https://doi.org/10.2307/41166446
https://doi.org/10.2307/41166446
https://doi.org/10.1145/3122848
https://doi.org/10.1007/978-3-540-30538-5_13
https://doi.org/10.1007/978-3-540-30538-5_13
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1177/1524500411435483
https://doi.org/10.1177/1524500411435483
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-319-11936-6_10
https://doi.org/10.1007/978-3-319-11936-6_10
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1108/JSTP-11-2014-0261
https://doi.org/10.1509/jmkg.70.1.003.qxd
https://doi.org/10.1509/jmkg.70.1.003.qxd
https://doi.org/10.1108/JSTP-05-2015-0111
https://doi.org/10.1108/JSTP-05-2015-0111
https://doi.org/10.1109/SCC53864.2021.00051

224 P. Kobialka et al.

26. Halvorsrud, R., Sanchez, O.R., Boletsis, C., Skjuve, M.: Involving users in the
development of a modeling language for customer journeys. Softw. Syst. Model.
22, 1–30 (2023). https://doi.org/10.1007/s10270-023-01081-w

27. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_8

28. Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: A formal model of cloud-deployed
software and its application to workflow processing. In: 2017 25th International
Conference on Software, Telecommunications and Computer Networks (SoftCOM),
pp. 1–6 (2017). https://doi.org/10.23919/SOFTCOM.2017.8115501

29. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architec-
tures and resource consumption in timed object-oriented models. J. Logical Alge-
braic Methods Program. 84(1), 67–91 (2015). https://doi.org/10.1016/j.jlamp.
2014.07.001

30. Kamburjan, E., Hähnle, R., Schön, S.: Formal modeling and analysis of rail-
way operations with active objects. Sci. Comput. Program. 166, 167–193 (2018).
https://doi.org/10.1016/j.scico.2018.07.001

31. Kobialka, P., Mannhardt, F., Tapia Tarifa, S.L., Johnsen, E.B.: Building user jour-
ney games from multi-party event logs. In: Montali, M., Senderovich, A., Weidlich,
M. (eds.) ICPM 2022. LNCS, vol. 468, pp. 71–83. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-27815-0_6

32. Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: Weighted games
for user journeys. In: Schlingloff, B.H., Chai, M. (eds.) SEFM 2022. LNCS, vol.
13550, pp. 253–270. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
17108-6_16

33. Lammel, B., Korkut, S., Hinkelmann, K.: Customer experience modelling and anal-
ysis framework a semantic lifting approach for analyzing customer experience. In:
Proceedings of 6th Internetional Conferenc on Innovation and Entrepreneurship
(IE 2016). GSTF (2016). https://doi.org/10.5176/2251-2039_IE16.10

34. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2), 134–152 (1997). https://doi.org/10.1007/s100090050010

35. Lin, J., Lee, M., Yu, I.C., Johnsen, E.B.: Modeling and simulation of spark stream-
ing. In: Barolli, L., Takizawa, M., Enokido, T., Ogiela, M.R., Ogiela, L., Javaid,
N. (eds.) Proc. 32nd IEEE International Conference on Advanced Information
Networking and Applications (AINA 2018), pp. 407–413. IEEE Computer Society
(2018)

36. Lin, J., Mauro, J., Røst, T.B., Yu, I.C.: A model-based scalability optimization
methodology for cloud applications. In: Proceedings of 7th International Sympo-
sium on Cloud and Service Computing (SC2 2017), pp. 163–170. IEEE Computer
Society (2017). https://doi.org/10.1109/SC2.2017.32

37. Lin, J.-C., Yu, I.C., Johnsen, E.B., Lee, M.-C.: ABS-YARN: a formal framework
for modeling Hadoop YARN clusters. In: Stevens, P., Wąsowski, A. (eds.) FASE
2016. LNCS, vol. 9633, pp. 49–65. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49665-7_4

38. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–
242. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59042-0_76

39. Razo-Zapata, I.S., Chew, E.K., Proper, E.: VIVA: a visual language to design
value co-creation. In: Proceedings of 20th Conference on Business Informatics (CBI
2018), vol. 01, pp. 20–29. IEEE (2018). https://doi.org/10.1109/CBI.2018.00012

https://doi.org/10.1007/s10270-023-01081-w
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.23919/SOFTCOM.2017.8115501
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1016/j.scico.2018.07.001
https://doi.org/10.1007/978-3-031-27815-0_6
https://doi.org/10.1007/978-3-031-27815-0_6
https://doi.org/10.1007/978-3-031-17108-6_16
https://doi.org/10.1007/978-3-031-17108-6_16
https://doi.org/10.5176/2251-2039_IE16.10
https://doi.org/10.1007/s100090050010
https://doi.org/10.1109/SC2.2017.32
https://doi.org/10.1007/978-3-662-49665-7_4
https://doi.org/10.1007/978-3-662-49665-7_4
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1109/CBI.2018.00012

Simulating User Journeys with Active Objects 225

40. Rosenbaum, M.S., Otalora, M.L., Ramírez, G.C.: How to create a realistic customer
journey map. Bus. Horiz. 60(1), 143–150 (2017). https://doi.org/10.1016/j.bushor.
2016.09.010

41. Schlatte, R., Johnsen, E.B., Kamburjan, E., Tapia Tarifa, S.L.: Modeling and ana-
lyzing resource-sensitive actors: a tutorial introduction. In: Damiani, F., Dardha,
O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 3–19. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-78142-2_1

42. Schlatte, R., Johnsen, E.B., Kamburjan, E., Tapia Tarifa, S.L.: The ABS simulator
toolchain. Sci. Comput. Program. 223, 102861 (2022). https://doi.org/10.1016/j.
scico.2022.102861

43. Schlatte, R., Johnsen, E.B., Mauro, J., Tapia Tarifa, S.L., Yu, I.C.: Release the
beasts: when formal methods meet real world data. In: de Boer, F., Bonsangue,
M., Rutten, J. (eds.) It’s All About Coordination. LNCS, vol. 10865, pp. 107–121.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90089-6_8

44. Terragni, A., Hassani, M.: Analyzing customer journey with process mining: from
discovery to recommendations. In: Proceedings of 6th International Conference on
Future Internet of Things and Cloud (FiCloud 2018), pp. 224–229. IEEE (2018).
https://doi.org/10.1109/FiCloud.2018.00040

45. Terragni, A., Hassani, M.: Optimizing customer journey using process mining and
sequence-aware recommendation. In: Proceedings of 34th Symposium on Applied
Computing (SAC 2019), pp. 57–65. ACM Press (2019). https://doi.org/10.1145/
3297280.3297288

46. Tueanrat, Y., Papagiannidis, S., Alamanos, E.: Going on a journey: a review of the
customer journey literature. J. Bus. Res. 125, 336–353 (2021). https://doi.org/10.
1016/j.jbusres.2020.12.028

47. Turin, G., Borgarelli, A., Donetti, S., Damiani, F., Johnsen, E.B., Tapia Tar-
ifa, S.L.: Predicting resource consumption of kubernetes container systems using
resource models. J. Syst. Softw. 203, 111750 (2023). https://doi.org/10.1016/j.jss.
2023.111750

48. Vandermerwe, S., Rada, J.: Servitization of business: adding value by adding
services. Eur. Manag. J. 6(4), 314–324 (1988). https://doi.org/10.1016/0263-
2373(88)90033-3

49. Wong, P.Y.H., Albert, E., Muschevici, R., Proença, J., Schäfer, J., Schlatte, R.: The
ABS tool suite: modelling, executing and analysing distributed adaptable object-
oriented systems. Int. J. Softw. Tools Technol. Transf. 14(5), 567–588 (2012).
https://doi.org/10.1007/s10009-012-0250-1

https://doi.org/10.1016/j.bushor.2016.09.010
https://doi.org/10.1016/j.bushor.2016.09.010
https://doi.org/10.1007/978-3-030-78142-2_1
https://doi.org/10.1016/j.scico.2022.102861
https://doi.org/10.1016/j.scico.2022.102861
https://doi.org/10.1007/978-3-319-90089-6_8
https://doi.org/10.1109/FiCloud.2018.00040
https://doi.org/10.1145/3297280.3297288
https://doi.org/10.1145/3297280.3297288
https://doi.org/10.1016/j.jbusres.2020.12.028
https://doi.org/10.1016/j.jbusres.2020.12.028
https://doi.org/10.1016/j.jss.2023.111750
https://doi.org/10.1016/j.jss.2023.111750
https://doi.org/10.1016/0263-2373(88)90033-3
https://doi.org/10.1016/0263-2373(88)90033-3
https://doi.org/10.1007/s10009-012-0250-1

Actors Upgraded for Variability,
Adaptability, and Determinism

Ramtin Khosravi1(B), Ehsan Khamespanah1, Fatemeh Ghassemi1,
and Marjan Sirjani2

1 School of ECE, University of Tehran, Tehran, Iran
{r.khosravi,e.khamespanah,fghassemi}@ut.ac.ir

2 School of IDT, Mälardalen University, Väster̊as, Sweden
marjan.sirjani@mdu.se

Abstract. The Rebeca modeling language is designed as an imperative
actor-based language with the goal of providing an easy-to-use language
for modeling concurrent and distributed systems, with formal verification
support. Rebeca has been extended to support time and probability. We
extend Rebeca further with inheritance, polymorphism, interface decla-
ration, and annotation mechanisms. These features allow us to handle
variability within the model, support non-disruptive model evolution,
and define method priorities. This enables Rebeca to be used more effec-
tively in different domains, like in Software Product Lines, and holis-
tic analysis of Cyber-Physical Systems. We develop specialized analysis
techniques to support these extensions, partly integrated into Afra, the
model checking tool of Rebeca.

Keywords: Actor Languages · Variability Modeling · Cyber-Physical
Systems · Model Checking

1 Introduction

The Actor model of computation was first proposed by Carl Hewitt in the 1970s
[29], and further developed by Gul Agha [3], as a mathematical framework for
concurrent and distributed computing systems. The model describes computa-
tion as a collection of autonomous entities called actors that encapsulate their
states and communicate with each other by sending messages [30]. Actors have
been used as a framework for theoretical understanding of concurrent and dis-
tributed computation, as the basis for designing many modeling and program-
ming languages, and as a model for many practical implementations of concur-
rent systems [12,26].

Rebeca (standing for Reactive Objects Language) is an actor-based modeling
language with model checking support designed in 1999–2001 [65,66]. One of the
main design decisions in creating Rebeca is to keep the core language as simple as
possible. One can still use core Rebeca for modeling using a small set of features

The original version of the chapter has been revised. Reference [7] and the first name
of the author in reference [8] has been corrected. A correction to this chapter can be
found at https://doi.org/10.1007/978-3-031-51060-1 14

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024, corrected publication 2024

F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,

LNCS 14360, pp. 226–260, 2024.

https://doi.org/10.1007/978-3-031-51060-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51060-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-51060-1_14
https://doi.org/10.1007/978-3-031-51060-1_9

Actors Upgraded for Variability, Adaptability, and Determinism 227

for coding. However, Rebeca is extended to work for timed systems [40] and
address probability [32]. Timed Rebeca is used for the modeling and analysis
of several applications [42,60,61,71]. In order to model complex systems the
language is evolved in different directions [12]. A brief overview of Timed Rebeca
language features is presented in Sect. 2. Rebeca is equipped with an integrated
modeling and analysis tool, Afra, which provides LTL model checking for Rebeca
as well as schedulability and deadlock-freedom analysis, and assertion check for
Timed Rebeca [41].

In the new era of digitalization, smart factories, and systems of cyber-physical
systems we are dealing with heterogeneous and dynamic systems. This introduces
different types of variability in behavior, including those arising from different
contexts in which the model is used (which is common in software product
lines [51]), the need to dynamically adapt to the changes in the environment
and in the system itself at runtime (like in self-adaptive and reconfigurable sys-
tems [70]), and the combination of these two types of variability (as in dynamic
software product lines [4,31]). Hence, for a modeling language to address these
requirements, it needs proper linguistic constructs to capture the variability in
the behavior in a structured way. Current trends in the research community of
software-intensive cyber-physical systems also confirm this [22,43,52].

When coping with systems of cyber-physical systems, we have to consider
aspects of embedded and real-time systems together with complexities in con-
current and distributed systems1. In distributed and concurrent systems we are
faced with uncertainties mainly caused by the network. The mainstream app-
roach in the concurrency theory community uses nondeterminism to model con-
currency. While the uncertainties in the environment may remain, we can aim
for a deterministic design for the behavior of the system itself which is crucial for
embedded and real-time systems communities. The recent work of Edward Lee
and his group on the coordination language, Lingua Franca, shows one direction
focusing on determinism [46,47] and PLC-like semantics [59].

Since its introduction, Rebeca has been used to model adaptive behavior
in various domains, such as self-adaptive systems [38,39] and flow management
systems [24]. Also, it has been used in [56] to model and analyze dynamic software
product lines. However, until recently, Rebeca has not been equipped with special
language features to support variable and adaptive behavior in a structured way.

The purpose of this paper is to demonstrate how the recent extensions of
Timed Rebeca can be used by a wider community to model and analyze real-
world applications, with a focus on how and where the language features can be
used. The language extensions presented in this paper are summarized below.

Feature annotations as an explicit variability handling mechanism which are
used to bind parts of the model to specific products in a software product
line. This language extension is presented in this paper for the first time.

1 Cyber-physical systems are also hybrid systems, bringing together cyber and physical
components which are generally modeled differently. The interface between the cyber
and the physical parts is also a source of complexity and an important research area
that is not a topic of interest in this paper. This matter is addressed in Hybrid
Rebeca introduced in [34].

228 R. Khosravi et al.

Inheritance, Interfaces, and Polymorphism as language features that can
be used to support variability in model in a structured way. These features
have been added to Timed Rebeca in [71] and are used to support alternative
communication schemes among actors. In this paper, we present them as a
variability handling mechanism.

Priorities for actors and for message handlers to make the behavior of the
system more deterministic. This feature enables better modeling and verifi-
cation of different types of cyber-physical systems. Priority in Timed Rebeca
has been introduced in [64] which illustrates through a few examples how Lin-
gua Franca code can be naturally mapped to Timed Rebeca extended with
priorities.

We also provide three case studies to demonstrate the applicability of the above-
mentioned language extensions in modeling real-world systems in practice. We
have also verified the models for schedulability and deadlock-freedom and demon-
strated how the Afra toolset is capable of analyzing systems for relatively large
state spaces (with more than 37 million states) on a personal computer in a
reasonable time (Sect. 3.6).

After a brief overview of Timed Rebeca we review the upgrades to the lan-
guage (and the analysis tool) to support systematic variability management
(Sect. 3) and illustrates their applicability in a case study (Sect. 3.6). We explain
how Rebeca is extended to include priorities for actors and for message handlers
to address the need for determinism in the model (Sect. 4) and demonstrate its
applicability using a case study (Sect. 4.3). Afra provides complete support for
this feature in the modeling and analysis of Timed Rebeca models. In the last
section (Sect. 5), we explain how we can put together both features supporting
variability and priority and hence support the possibility of a holistic analysis for
modern cyber-physical systems. We may then formally verify the model to check
safety properties as well as schedulability and end-to-end timing properties.

2 Rebeca Overview

Rebeca [62,67] is a class-based, imperative interpretation of the well-known actor
model of computation [3]. It describes the behavior of a system as a collection
of active objects with isolated states, communicating via asynchronous message
passing. Rebeca is a strongly typed modeling language with a Java-like syn-
tax to make it easy to learn and use by practitioners. It is equipped with an
LTL model checker integrated into Afra [2], an Eclipse-based development envi-
ronment. The core Rebeca modeling language is intentionally kept simple, but
for various purposes, several extensions have been proposed, including Timed
Rebeca [63] for the domain of real-time systems, Hybrid Rebeca [34] for the
domain of cyber-physical systems, pRebeca [69] for modeling and analysis of
probabilistic systems, and PTRebeca [32] for probabilistic timed systems.

Actors Upgraded for Variability, Adaptability, and Determinism 229

2.1 Running Example

To make our explanation of Rebeca and Timed Rebeca easier to follow, we
explain the language features over a simple running example. The example is
a highly simplified version of a Wireless Sensor LAN (WSLAN) system [42], in
which a sensor periodically gathers and sends data to a computation unit. The
computation unit buffers the received data and hands in a packet of data to a
network whenever the buffer is full. The network transmits the data according
to the TDMA network protocol [14].

2.2 Core Rebeca

A Rebeca model mainly consists of a number of reactive class definitions, which
define the behavior of the classes of the actors in the model, as well as a main
block that defines the instances of the actor classes. In the Rebeca model of the
running example listed in Fig. 1, there are three classes of actors: Sensor (lines
1–16), CompUnit (lines 18–30), and Network (lines 32–37). The main block in
lines 39–43 defines one instance of each class and specifies the arguments passed
to their constructors. An instance of a reactive class is an actor in the system
(which is also called a rebec).

The declaration of a reactive class starts with the keyword reactiveclass,
followed by the reactive class name. The size of the queue is specified in the
parentheses right after the reactive class name (e.g., line 1). A reactive class
has a number of state variables, representing the local state of the actors. They

Fig. 1. The Rebeca model of the running example (a simple sensor network)

230 R. Khosravi et al.

may contain variables of basic data types, including booleans, integers, arrays,
or references to other actors. The classes in the running example only contain
state variables of the reference types. For example, every instance of Sensor has
a reference to an instance of CompUnit (line 3). Each class can have a number
of constructors, which are used to initialize instances of the class by initializing
the state variables and possibly sending messages to other actors or themselves.
For example, the constructor of Sensor (lines 6–9) initializes a sensor by set-
ting its reference to CompUnit as well as sending itself a gatherData message.
Each reactive class accepts a number of message types which are handled using
message servers2. The message server gatherData of Sensor (lines 11–16) first
chooses a data value in the range 1 to 3 nondeterministically (line 12) and sends
a receiveData message to the associated CompUnit (denoted by the reference
variable cu), passing the value of data as the argument (line 13)3. The effect of
sending a message is appending the message to the message queue of the receiv-
ing actor (sometimes called its mailbox). Sending a gatherData to itself (line
14), the sensor exhibits a periodic behavior. In the definition of the message
servers, well-known program control structures can be used, including if-else
conditional statements, for and while loops, the definition of local variables,
and assigning expressions built using usual arithmetic, logic, and comparative
operators to local and state variables.

The general behavior of each actor is an infinite loop of taking a message from
the mailbox and executing the corresponding message server. The actor waits if
there is no message in the mailbox. The mailbox is a bounded FIFO queue. The
queue size is bounded to prevent infinite state spaces during model checking. If a
message is sent to an actor with a full mailbox, a queue overflow error happens
and the state space generation is terminated. As we will see shortly in more
detail, the model in Fig. 1 suffers from this problem when the sensor repeatedly
sends itself gatherData messages. To remedy this, the sensor can send the next
gatherData only after receiving some kind of acknowledgement message from
the computation unit. Another solution is to use timing constraints introduced
in Timed Rebeca.

It is important to note that in Rebeca there is no intra-actor concurrency,
meaning that the execution of a message server must complete before the exe-
cuting actor takes the next message from its mailbox. To make the behavior
of the models more deterministic, we assume that two messages sent from one
actor to another are delivered to the receiver’s mailbox in order. The order of
execution of enabled actors are arbitrary. An actor is enabled if it is not busy
handling a message and its message queue is not empty. This arbitrary ordering
of actors is a source of nondeterminism in the behavior of the model, requiring
the model checker to inspect all possible interleavings of the message processing
by different actors.

2 In this paper we use the words message server and method interchangeably.
3 Note that this data value has no effect on the behavior of the actors in this spe-

cific model and is only generated to demonstrate the use of nondeterministic choice
expression.

Actors Upgraded for Variability, Adaptability, and Determinism 231

2.3 Timed Rebeca

The models in core Rebeca are time abstract in the sense that the passage of time
is not modeled explicitly. The nondeterminism in the processing of messages by
different actors implicitly models the temporal ordering of events. For example,
upon execution of gatherData, the sensor sends two messages: a receiveData
to cu and another gatherData to itself. Now if the next message processed is
receiveData, this indicates that the sensor gathers data in a time period rela-
tively larger than the time needed by the computation unit to process the data
(including the time needed to receive the message from the sensor). Conversely, if
gatherData is processed first, it indicates that the sensor gathers data relatively
faster. If this case happens routinely, both the sensor’s and the computation
unit’s mailboxes quickly overflow.

To put constraints on the timings of delivering and processing of the mes-
sages, we can use an extension of Rebeca, named Timed Rebeca, which provides
features for this purpose. Rewriting the two mentioned message servers as below
fixes the queue overflow problem.

msgsrv gatherData() {

byte data = ?(1,3);

cu.receiveData(data);

self.gatherData() after(2);

}

msgsrv receiveData(byte data) {

delay(1);

network.send(data);

}

The clause after(2) after sending gatherData specifies the message needs
two units of time to be delivered to the mailbox of the sensor, hence specifying the
time period of two for gathering data. On the other hand, delay(1) statement
in receiveData indicates that the computation unit needs one unit of time to
process the message and send the data over the network. Timed Rebeca offers
the following features to model the timed behavior of actors.

delay is a statement used to model computation times. Timed Rebeca assumes
all statements other than delays are executed instantaneously. So, the com-
putation time must be specified by the modeler using the delay statement. A
statement delay(t) indicates the actor does not perform any action within
the next t units of time.

after is a time tag attached to a message and defines the earliest time the
message can be served, relative to the time when the message was sent. A
clause after(t) may be added to a message send statement, indicating that
the receiver can take the message from its mailbox only after t units of time.

deadline is a time tag attached to a message which determines the expiration
time of the messages, relative to the time when the message was sent. A clause
deadline(t) may be added to a message send statement, indicating that the
message remains only t units of time in the receiver’s mailbox, and purged
afterward if its processing has not already started.

The same as Core Rebeca, the order of execution of enabled actors in Timed
Rebeca are arbitrary. In Timed Rebeca, an actor is enabled if it is not busy

232 R. Khosravi et al.

handling a message and its message bag has a message whose time tag is less
than the time tag of all the messages of other actors. This message is also called
an enabled message. Timed Rebeca is also supported by Afra toolset for schedu-
lability and deadlock freedom analysis. It makes use of special properties of the
Timed Rebeca semantics (isolated actor states and serial execution within a
single actor) to generate a data structure called floating time transition system
which enables a coarse grain discretization of the state space [40].

2.4 Inheritance and Polymorphism

Like most other object-oriented programming and modeling languages, Rebeca
provides mechanisms for reusing code through subclassing. A modeler is able to
define a new reactive class as a subclass of an existing reactive class, using an
inheritance mechanism. This is stated using the extends keyword followed by the
name of the base reactive class, prior to the queue size declaration. This way, the
new reactive class inherits all the state variables and message servers of the base
reactive class. Rebeca also supports polymorphism through dynamic binding of
the message servers. Since a subclass cannot remove any message server inherited
from its superclass, its type is compatible with that of the superclass. Hence, it
is possible to assign an instance of a subclass to a reference of the superclass.
The actual message server invoked when processing a message is determined by
the class of the receiving actor (not the type of the reference). This allows for
improving code organization and readability as well as the creation of extensible
programs [21]. An example of the usage of inheritance and dynamic binding in
Rebeca is demonstrated in the Elevator case study (Sect. 3.6, Fig. 7).

An abstract reactive class is defined when a modeler wants to manipulate a
set of classes through their common interface. Rebeca provides this by enabling
abstract message server definition. An abstract message server has only a dec-
laration and no implementation. A reactive class containing abstract message
servers is called an abstract reactive class. Inheriting from an abstract reactive
class requires providing definitions for all the abstract message servers in the
base reactive class. Otherwise, the derived reactive class is also abstract, and
the compiler forces the modeler to qualify that reactive class with the abstract
keyword.

In some cases, there is a need for defining a completely abstract reactive
class, i.e., a reactive class that provides no implementation at all. This is done
by defining interface instead of reactive classes. It allows the modeler to deter-
mine message server names and their argument lists, but no bodies and no state
variables. So, it provides only a type, not any implementation. In Rebeca, defin-
ing multiple interface implementation is allowed, which can be assumed as a
kind of multiple inheritances. More details about the inheritance mechanism and
polymorphism in Rebeca are presented in [71]. An example of using interfaces
in Rebeca is illustrated in Fig. 3, lines 62–78.

Actors Upgraded for Variability, Adaptability, and Determinism 233

3 Modeling Variability in Rebeca

In this section, we review the language features that can be used to capture
variability in Rebeca models. At the finer level of granularity, we have feature
annotations that can bind state variables, methods, and statements to feature
expressions. On the other hand, polymorphism allows reactive classes to act
as different implementations of abstract interfaces, hence providing a coarse-
grained variability handling mechanism at the component level. Before going
into the details of each language feature, we extend the running example with a
few variable features.

3.1 Running Example with Variability

To demonstrate how variability is handled in Rebeca, we extend the running
example with a few variable features. The feature diagram of the extended exam-
ple is illustrated in Fig. 2. The whole system (represented by WSAN) has three
sub-features Sensor, Computation Unit, and Network. The filled circle at the
top of these features indicates that they are mandatory sub-features of WSAN,
meaning that they must be included in every product configuration. There are
three variation points in this example. The sensor can gather data with a fixed
period, or sporadically. The arc between the edges to Periodic and Sporadic indi-
cates that these sub-features are mutually exclusive. The computation unit can
either immediately send the data received from the sensor, or decouple receiving
and sending data. In the latter case, it buffers the received data and periodically
sends a packet from the buffer (if available). Finally, the system can support
the network protocols TDMA, MACB, or both (as indicated by the filled arc
between the edges to the sub-features). The Timed Rebeca model of the extended
running example is listed in Fig. 3. We will explain the details of the variability
handling mechanisms in the following.

WSAN

Sensor Computation
Unit Network

Periodic Sporadic Periodic
Push

Immediate
Push MACBTDMA

Fig. 2. The feature diagram of the running example of a simple sensor network with
three variation points, periodic or sporadic for the sensor, immediate or periodic push
for the computation unit, and two different protocols, TDMA and MACB, for the
network

234 R. Khosravi et al.

Fig. 3. The Timed Rebeca model of the running example extended by variability (the
sensor network example extended with the variation points of Fig. 2)

Actors Upgraded for Variability, Adaptability, and Determinism 235

3.2 Feature Annotations

In the context of software product line engineering, it is common to capture the
variabilities in a separate variability model. Some well-known models for this
purpose include the widely-used Feature Models [37], UML-based variability
models [9], and Common Variability Language (CVL) [28]. We assume that
the variability is captured in a feature model. The features are represented by
global boolean feature variables. A True (resp. False) value for a feature variable
indicates that the corresponding feature is included in (resp. excluded from) the
product under analysis. In the running example (Fig. 3), the variables defined
in lines 1 to 6 represent the ‘leaf’ features in the feature model of Fig. 2. Note
that it is not necessary to define variables for the mandatory features included
in every configuration.

We assume that the values for all feature variables are defined as parameters
of the analysis process. Hence, Afra is currently capable of analyzing one product
at a time. As we will see later, this limitation can be relaxed based on the
existing theories for model checking several products at a time. We also assume
that the values assigned to the feature variables are checked externally to satisfy
the validity of the feature model (e.g., not including two alternatives in the
configuration).

The feature variables can be used to define feature-specific behavior in two
ways. The first is to use a feature variable as an ordinary global variable. Line
20 of Fig. 3 is an example of this type. It is possible to mix feature variables with
state (or local) variables. The second way is to use feature annotations. The syn-
tax @feature(feature expr) may come before various language constructs which
causes that construct to be included in the model only if feature expr evaluates
to True. As an example, the state variable buffer is included in the reactive
class CompUnit only if the feature Periodic Push is present in the configuration
(represented by the feature expression FT PERIODIC PUSH in the feature annota-
tion of line 32). Note that the annotation only affects its immediately following
declaration. Hence, the variable cnt in line 35 must be annotated separately (line
34). Other model elements can be annotated as well, e.g., statements (line 41),
message servers (lines 44, 49, and 54), and actor instantiations (lines 83 and 85).
As the Timed Rebeca syntax allows grouping of statements into blocks, which
itself is a statement, one can annotate a group of statements within a message
server:

...

@feature(SOME_FEATURE_EXPR) {

statement 1;

statement 2;

...

statement n;

}

...

As illustrated by the feature annotations in lines 44 and 49, two alternative
implementations of the same message server may be provided. However, in case

236 R. Khosravi et al.

the feature expressions of the annotations are not mutually exclusive, a duplicate
definition error may be raised when compiling an individual product model which
includes more than one definition for the same message server. In the case of
verifying the whole product line without projecting the model onto an individual
product configuration (Sect. 3.5), this check is more involved. Assuming that
there are two definitions for the same message server, one annotated with the
feature expression e1 and another with e2, an error must be raised if e1 ∧ e2 is
satisfiable4, which can be checked using a SAT solver.

3.3 Reactive Class Polymorphism

As stated in Sect. 2.4, the statically typed, class-based nature of Timed Rebeca
allows polymorphic modeling with respect to the interfaces of the reactive classes.
As an example, the Network interface defined in lines 62 to 64 of Fig. 3 speci-
fies a single message server send(byte) without defining its behavior. Any class
implementing Network must implement the message server, as illustrated by the
classes MACBNetwork and TDMANetwork. To keep the running example as small as
possible, the interface is defined in its simplest form and the implementations are
omitted. However, the modeler can take advantage of more involved features of
interfaces, e.g., by making classes implement multiple interfaces, defining inher-
itance hierarchies among interfaces, etc.

An interface can be used as the type of state variables (line 31) or parameters
(line 38). An instance of any reactive class implementing that interface may be
assigned to such a state variable or parameter (line 82). This use of polymor-
phic modeling provides a coarser-grained variability implementation mechanism
(compared to feature annotations), where the variability is resolved by choosing
among several components implementing the same interface.

3.4 Handling Reconfiguration

If we allow feature variables to change during execution, it is possible to change
the configuration at runtime which allows the modeling of reconfigurable sys-
tems. The reconfiguration can take place using both variability mechanisms,
feature annotation, and polymorphism. As an example, executing the following
code will change the behavior of all sensors from periodic to sporadic5.

if (someCondition) {

FT_PERIODIC_SENSOR = false;

FT_SPORADIC_SENSOR = true;

}

4 More precisely, the satisfiability check must incorporate the constraints imposed by
the feature model too. To this end, a feature expression F must be derived from
the feature model (as explained in [5]), and the satisfiability of e1 ∧ e2 ∧ F must be
checked.

5 Of course, since the two features are mutually exclusive, this could have been done
using only one feature variable.

Actors Upgraded for Variability, Adaptability, and Determinism 237

Note that this code can be placed at any reactive class, possibly other than
Sensor. This allows the separation of reconfiguration logic from the actors’
behavior. There is a limitation in using this type of reconfiguration where the
feature variable is used to annotate some state variables or an entire reactive
class (as opposed to a message server or a part of it). Since this changes the
structure of the states of the system, it complicates the generation and analy-
sis of the state space and thus is forbidden. If a reconfiguration of this type is
required it is recommended to use polymorphism to handle the variability (as
illustrated shortly in an example).

Moreover, a number of semantic issues arise when using annotative reconfigu-
ration which are studied in [56]. The most important happens when a reconfigu-
ration eliminates a message server, while there are messages of that type in some
actor’s mailbox. The solution proposed is to make the receiver actor perform a
configuration check whenever it takes a message from its mailbox for execution
and drop the message in case it is excluded from the model with respect to
the configuration at the time of taking the message. In [56], a variability-aware
semantics has been proposed for Rebeca supporting reconfiguration.

When using reactive class polymorphism, the reconfiguration can happen
without the need to change the Rebeca semantics. As an example, the following
method can be used to change the network protocol at runtime.

// in CompUnit:

statevars {

Network defaultNet;

Network alternativeNet;

Network network;

}

CompUnit(Network def, Network alt) {

defaultNet = def;

alternativeNet = alt;

network = def;

}

msgsrv switchNetwork() {

network = alt;

}

// in reconfiguration logic (anywhere in the model):

if (someCondition) {

cu.switchNetwork;

}

// in the main block:

MACBNetwork macb():();

TDMANetwork tdma():();

CompUnit cu():(macb, tdma);

Note that both network classes must be instantiated in the main block, as
Rebeca does not support the dynamic creation of actors. It is possible that in

238 R. Khosravi et al.

the implementation of the system the actors are instantiated just upon reconfig-
uration. In this case, special care must be taken during the implementation to
keep the verification results valid.

We also emphasize that the change of the network protocol happens whenever
the switchNetwork message is handled. So, the computation unit may work with
the default network for a while after the reconfiguration happens. If this makes
a problem, in Timed Rebeca, the reconfiguration logic should be given priority
over normal behavior using the technique explained in Sect. 4.

3.5 Model Checking in the Presence of Variability

When it comes to verification, one can derive the Rebeca model for each valid
configuration, and model check each model separately. However, this way we
cannot benefit from the commonalities among the behavior of the products. The
problem of model checking the whole product line at once has been the subject
of various studies, like [18]. In the context of Rebeca, [56] has addressed model
checking reconfigurable families of actor systems, based on a feature-annotated
state space generated for the whole product line.

One can statically analyze the product line model to detect the features whose
presence does not affect the satisfaction of a given property. For such features,
it suffices to verify the products that exclude those features. A similar technique
can be used regarding the alternative features (according to the feature model).
These improvements (as well as some others regarding evolving product lines)
have been studied in [57], using a variability-aware data and control dependency
graph generated from the model. The experimental results indicate a significant
reduction in the verification cost of the whole product line. Note that the model
checking of the whole product line at once has not been yet integrated into Afra
and is planned for future releases.

3.6 Case Study: Elevator Scheduling with Variability

To demonstrate how variability handling mechanisms can be used in practice to
enable an analysis of a real-time software product line, we studied an elevator
scheduling system which is originally defined in [55] and analyzed for schedu-
lability using a Timed Automata Family. The feature model of the case study
is depicted in Fig. 4. The elevator system consists of three to five floors, as
indicated by the numeric feature Floors. A central controller is responsible for
scheduling the movement of the elevator. The time between two consecutive
requests on the same floor is assumed to be within a certain discrete range of
[LOW ,HIGH]. The scheduling algorithm must guarantee a maximum waiting
time for each request (TIMEOUT). The system may support VIP floors (indi-
cated by the optional feature VIP Floor), where the maximum waiting time is
less than normal floors (TIMEOUT VIP). On the other hand, the time between
two consecutive requests on a VIP floor may be different from non-VIP floors and
is assumed to be within the discrete range of [VLOW ,VHIGH]. The elevator
system may be equipped with a weight sensor (indicated by the optional feature

Actors Upgraded for Variability, Adaptability, and Determinism 239

Weight Sensor) which prevents the elevator from moving if the total weight in
the cabin exceeds a limit. This increases the time the elevator waits at a floor
in the worst case by LVL DELAY.

Elevator

Weight
Sensor VIP Floor Floors: [3,5]

Fig. 4. The elevator case study feature model [55]

The Timed Rebeca model for the case study with four floors is listed in the
Figs. 5, 6 and 7. To save space, we have omitted a few less important parts.
The current implementation of Afra does not support the dynamic creation of
actors, so the variability in the number of floors must be handled manually, by
instantiating the desired number of actors in the main block (as in Fig. 7). The
other two features are modeled by FT VIP and FT WEIGHT SENSOR.

Fig. 5. The elevator scheduling case study - Timed Rebeca model of the floors

Each floor actor, an instance of Floor reactive class (Fig. 5), knows its level,
whether it is waiting for its request to be served, and if it is a VIP floor (only
if VIP feature is on), modeled by the corresponding state variables (lines 9–12).
Upon construction, a floor makes a request for the elevator. The body of the
constructors are omitted to save space. When receiving a makeReq message (lines

240 R. Khosravi et al.

15–23), the floor sends the controller a requestFor message along with its level
number and sets itself in the waiting mode. To check the schedulability of the
model, the floor schedules a timeOut message for either TIMEOUT or TIMEOUT VIP
to be sent to itself. Upon the timeout (lines 24–26), an assertion fails if the floor
is still waiting. If the elevator arrives on a waiting floor (lines 27–35), the floor
exits the waiting state and schedules the subsequent request for some time in
the range [LOW, HIGH] (or [VLOW, VHIGH] for a VIP floor). To avoid the complexity
of handling recurrent requests at a floor (i.e., a second request is made before
the first one is served), we assume that TIMEOUT is reasonably smaller than
LOW.

Fig. 6. The elevator scheduling case study - the model of the controller in a non-VIP
setting.

Actors Upgraded for Variability, Adaptability, and Determinism 241

As its state variables, the (non-VIP) Controller (Fig. 6) knows the floors,
whether there is a request for each floor, its direction (NOT MOVING, UP, or DOWN),
the level at which it just arrived, and whether it has stopped at that level (or just
passed by). Upon receiving a request for a destination level (lines 10–19), the
controller marks the floor as requested and starts to move the elevator toward the
destination if it is not moving already. When the elevator arrives at a level (either
as a destination or just passing by), it notifies the controller via arrive message
(lines 20–23). The controller first handles the arrival, and then reschedules the
elevator’s movement if necessary. The movement (for one level) is handled in
move method, whose function is to schedule an arrive message at the next
visited floor (determined according to the current level and the direction). The
time the elevator arrives on the next floor is TIME FOR ONE LEVEL, plus the extra
time needed to wait a the level if the weight sensor feature is included. This
extra time is needed only if the elevator has been stopped to serve a request
(hence the conditional statement in line 64). The functions of handleArrival
and server are straightforward. After arrival, a rescheduling must happen if
necessary (lines 52–69). If the elevator has been going up, and there are requests
for upper levels, it continues in that direction. Otherwise, if there are requests
for the lower directions, it changes direction downwards. If there are no other
requests, it stops. A similar logic is followed if the elevator has been going down.
The bodies of the two boolean methods higherLevelsRq and lowerLevelsRq
are omitted to save space.

The weight sensor variability can be resolved in just a few annotations. To
support VIP floors, special care must be taken when rescheduling to be able to
meet the shorter waiting deadline of such floors. Hence, the basic controller is
extended by VIPController to support VIP scheduling (Fig. 7). It inherits all
members of the basic Controller and additionally knows which floors are of
VIP type (line 4). The message server arrive is overridden in the way that it
first determines its next direction considering only the requests for VIP floors. If
no such request exists, the ordinary rescheduling algorithm is used by calling the
(inherited) reschedule method. Again, the bodies of the two boolean methods
higherVIPLvlRq and lowerVIPLvlRq are omitted to save space.

Each configuration of the model can be analyzed for schedulability using
Afra. The results of the verification of a few products is reported in Table 1.
To keep the size of the table small, we have only reported the configurations
with four floors, and two configuration with five floors. For the configurations
including VIP floors, only the topmost floor is considered as VIP.

The complexity of the analysis is greatly affected by the size of the intervals
specifying the minimum and maximum amount of times between two consecutive
requests for each floor (shown in the Rq.Int. column), as Afra checks for each
value within the interval systematically. For the first four configurations, we set
this parameter to three (LOW = 20, HIGH = 22, VLOW = 22, VHIGH =
24). The last two configurations have five floors, one with an interval of size two
and the other with size three. The models are analyzed for schedulability and
deadlock-freedom on a single core from a 3.6 GHz Core-i7 machine with 16 GB
of RAM.

242 R. Khosravi et al.

Fig. 7. The elevator scheduling case study - the model of the VIP controller and the
instantiation of the actors.

Table 1. The number of states and transitions, and the time required to model check
a few configurations of the elevator product line. Each row specifies a configuration
by assigning values to the features Weight Sensor (WS), VIP Floor (VIP), and the
number of floors (Floors). The parameter Rq.Int. specifies the size of the time interval
between two consecutive requests ([LOW ,HIGH]).

Config. WS VIP Floors Rq.Int States Transitions Time (sec.)

1 � 4 3 106,234 165,326 1

2 � � 4 3 185,145 196,939 2

3 4 3 380,794 491,662 3

4 � 4 3 1,221,333 1,543,755 10

5 � 5 2 1,435,246 1,818,949 14

6 � 5 3 37,178,658 48,576,931 384

Assuming the elevator waits for one time unit at each floor, and adds another
time unit if it has a weight sensor, having the mentioned intervals between two
consecutive requests yields in the smallest values for time outs as shown in
Table 2. In case the time out values are infeasible to satisfy, Afra reports a
schedulability violation and provides a counterexample trace as illustrated in
Fig. 8.

Actors Upgraded for Variability, Adaptability, and Determinism 243

Table 2. The smallest possible time out values for different configurations

Config. WS VIP Floors Rq.Int TIMEOUT TIMEOUT VIP

1 � 4 3 16 N/A

2 � � 4 3 16 10

3 4 3 11 N/A

4 � 4 3 11 8

5 � 5 2 13 10

6 � 5 3 13 10

Fig. 8. The counterexample provided by Afra when a time out happens

4 More Deterministic Models Using Priorities

In concurrency theory, nondeterminism is used to model concurrency. Hewitt
actors are designed for building distributed and network systems. There is a trend
to add more determinism to the language models inspired from synchronous
languages. Edward Lee and his team are proposing deterministic concurrency
in [49]. Apart from that, in many applications, there is a predefined priority
used for ordering the tasks in hand. Here we explain how priorities are added as
annotations to Timed Rebeca to better support such applications.

244 R. Khosravi et al.

In Rebeca, the semantics of the language is defined to order the execution of
enabled actors nondeterministically. An actor is enabled if the actor is not busy
handling a message and its message queue is not empty. Each actor has a message
queue and the messages sent to an actor from another actor are put in the
receiver’s message queue with the same order that the messages are sent. So, in
Rebeca, we have a point-to-point in-order message delivery, but we cannot have
any assumptions about messages sent by different actors. For Timed Rebeca, the
order of handling messages of an actor depends on the time tags of the messages.
If there is more than one message with the same time tag then these messages
are handled in a nondeterministic order (see [53] for a formal definition of the
semantics). To make the behavior of actors in Rebeca models more deterministic,
which is required for real-time and embedded systems, Rebeca allows associating
priority to message servers and actors. The messages with the same time tag are
handled in the order which is defined by the priorities of their corresponding
message servers. Priorities for the actors are defined in the main part of the code
where we instantiate actors from the reactive classes. This way, the execution of
enabled actors takes place considering the associated priorities.

4.1 Incorporating Priorities into the Running Example

In the extended version of the running example in Fig. 10, we want to make sure
that in each round of execution, all of the gathered data by Sensor is processed
by CompUnit. So, there is a need for Sensor to have a higher priority in the
execution in comparison with CompUnit. Figure 9 shows a diagram representing
the program model of the running example, inspired from Lingua Franca [27].
The program is assembled from three actors, Sensor, CompUnit, and Network,
shown as light gray boxes. The numbers in the top-left side of the boxes show
the priorities of actors. Black triangles in the diagram show communication
ports. In this model, both Sensor and CompUnit have output ports that are
connected to corresponding input ports. In the diagram, methods are represented
by dark gray chevrons. The order of defining methods in the figure shows the
execution priority of methods, e.g., receiveData has a higher execution priority
compared to process in the CompUnit actor. In Fig. 9, Sensor and CompUnit
define methods that are triggered periodically.

As depicted in lines 50 to 55, of Fig. 10, three different priority levels are
associated with instances of reactive classes using priority annotations. Having

Fig. 9. A diagrammatic representation of the program model of the running example
of sensor network with priorities, inspired with the Lingua Franca diagram notation

Actors Upgraded for Variability, Adaptability, and Determinism 245

a smaller value for priority annotations means that the actor has a higher exe-
cution priority. Note that associating the same priority level with actors results
in the nondeterministic choice among the actors when more than one of them
are enabled.

In addition to the cases mentioned above, each reactive class is allowed to
prioritize the execution of its message servers. It means that in the case of
receiving two messages with the same time tag, the message server which is
annotated with a higher priority will be executed first. In Fig. 10, we make sure
that the method for receiving data from Sensor has a higher priority than the
method for processing data in CompUnit. This decision is because CompUnit has
to receive the data prior to processing it. This way, the priority among reactions
1 and 2 in Fig. 9 is addressed.

Fig. 10. The Timed Rebeca model of the running example with priorities (the sensor
network example with priorities for the actors and for the message servers)

In some cases, associating priorities to actors and methods within classes does
not give us the order of execution of methods we are looking for. Hence, we also
added another feature to Timed Rebeca, by which we can associate priorities
with each method. This is a flat type of priority throughout the whole model

246 R. Khosravi et al.

which we call Global Priority (and is not shown in the examples). Note that
using both GlobalPriority and Priority in one model is not allowed.

4.2 Analysis of Rebeca Models with Priorities

The model checking engine of Afra assumes that in the given model all of the
actors and methods have priorities, if there is no priority associated to an actor
or a method, then Afra assumes the lowest priority for it. At each step of the
state space generation, Afra selects the highest priority enabled message from the
enabled actor with the highest priority. In the case of having methods or actors
with the same priority level, one of them is selected nondeterministically. During
model checking, Afra generates the state space for all possible combinations.

Figure 11 compares the transition systems of the model of Fig. 10. As men-
tioned before, including priorities eliminates some nondeterministic choices
which results in smaller transition systems. Two outgoing transitions of S1 0
of Fig. 11(a) illustrates nondeterministic choice between executing the messages
of sensor and cu. This nondeterminism is resolved by associating priorities to
actor instances in S1 0 of Fig. 11(b). Another kind of nondeterminism is depicted
in S2 0 for executing receiveData or process of the actor cu. In its corre-
sponding state in Fig. 11(b), receiveData has a higher priority and there is no
nondeterministic choice.

4.3 Case Study: Anti-lock Braking System, with Priority

We demonstrate the applicability of the priority feature of Rebeca on a simplified
Brake-by-Wire (BBW) system with Anti-lock Braking System (ABS) [23,36,48].
To prevent uncontrolled skidding, ABS releases the brakes based on the slip rate,
computed in terms of the torque and speed of wheels read by the wheel sensors.
We previously specified and analyzed this case study within Hybrid Rebeca
[33], an extension of Rebeca with continuous real variables that change over
time, specified by ordinary differential equations (ODEs). Due to the absence
of the priority feature, we handled the required priorities among the actors in
the semantic model (this priority was hard-coded in the semantics). We revisit
this example by replacing ODEs with simple expressions updating real-valued
variables at discrete time intervals.

In this system, there is a wheel controller (WheelCtrl) for each wheel and a
global brake controller (BrakeCtrl). Each wheel and the brake pedal are equipped
with a sensor. The brake pedal sensor calculates the brake percentage based on
the brake pedal’s position and sends this value to BrakeCtrl. Each wheel sensor
sends the speed of its wheel to its corresponding WheelCtrl which sends this
value to BrakeCtrl. Then, BrakeCtrl computes the desired brake torque and the
speed of all wheels and sends these values to each WheelCtrl to apply them.
Depending on the slip rate, computed based on the current and desired speed,
WheelCtrl releases the brake if the slip rate is greater than a specified value to
prevent skidding.

Actors Upgraded for Variability, Adaptability, and Determinism 247

Fig. 11. Comparing transition systems of the model of Fig. 10 without priorities (a)
and with priorities (b).

248 R. Khosravi et al.

Each pair of a sensor and its corresponding controller are connected directly
by a pair-to-pair link. All other communications are managed through a shared
Controller Area Network (CAN) [50] which is a dominant networking protocol
in the automotive industry. CAN is a serial bus network where nodes can send
messages anytime. Upon multiple simultaneous send requests, only the message
with the highest priority is accepted and sent through the network. After a mes-
sage is sent, the network chooses another message from the requested messages.
A CAN bus can be conceived as a single global priority-based queue [20] that
deterministically dispatches messages based on their arrival times and for those
messages arrived at the same time based on their priorities. Thus, we model the
CAN network as a Rebeca class, called CANBusNetwork, with a message server
for each message priority. We define an abstract class called Ent as the supertype
for connected entities, e.g., ECUs in this example, over the CAN bus. Connected
entities send their messages to CANBusNetwork by calling the appropriate mes-
sage server corresponding to the message priority. Then, CANBusNetwork will
transfer the message to the target entity by sending a rcv message. We assume
that entities communicate by sending a pair of type and value, modeled as the
parameters of rcv messages. We have considered three message priorities by
defining three message servers sndH, sndM, and sndL as given in Fig. 12. For
simplicity, we have considered two wheels in the model. The model consists of
four other classes shown in Fig. 12: WheelSensor, WheelCtrl, BrakeSensor, and
BrakeCtrl.

The WheelSensor class models the sensors and actuators of the wheel. The
class has one known rebec of WheelCtrl. This class periodically updates the
speed of the wheel and then sends the new value to the wheel controller (lines 33–
35), specified by the message server sndSpeed. As each wheel sensor is connected
via a pair-to-pair link to its wheel controller, we model this communication by
directly sending a message setWspd to the wheel controller. Upon handling a
message setTrq, it applies the effect of braking on the wheel speed (line 31).

The WheelCtrl class defines the behavior of the wheel controller which com-
municates via CAN bus by the global brake controller and via pair-to-pair link
with its wheel sensors. So, this class has three known rebecs of WheelSensor,
BrakeCtrl, and CANBusNetwork. Upon receiving the speed of the wheel through
setWspd messages from the wheel sensor, it will send the speed to the brake con-
troller via the CAN network (line 56). It receives the desired speed and torque
from the brake controller via CAN bus through rcv messages (lines 46–52).
We assume that the brake controller first sends the desired speed and then the
torque. After receiving the torque, it computes the slip rate of the wheel and
then decides to apply the brake by sending the appropriate torque to the wheel
(lines 49–51).

The BrakeSensor class defines the behavior of the brake pedal sensor. The
class has one known rebec BrakeCtrl which is the global brake controller. It
has the state variable bpcnt which is the brake percentage and increased up
to the value defined by the state variable max. This class sends the value of
bpcnt periodically to BrakeCtrl via sndBrake message (lines 65–67). In the

Actors Upgraded for Variability, Adaptability, and Determinism 249

Fig. 12. The specification of Brake-by-Wire system with Anti-lock Braking System

250 R. Khosravi et al.

constructor, the actor sends a sndBrake message to itself to start the periodic
communication.

The BrakeCtrl class is responsible for delegating the brake torque to wheel
controllers. It defines three known rebecs, two for each wheel controller named
wCtrlL, wCtrlR, and one for the network called CAN. This class has three state
variables for the right and left wheels’ speed and the brake pedal’s brake percent-
age (bpcnt). It also has two auxiliary state variables for computing the desired
speed and torque. The message server control is executed periodically to cal-
culate the desired brake torque, calculated based on the brake percentage (lines
89–96). It also estimates the speed based on the speed of the wheels. Then, the
estimated speed and global torque are sent to each wheel controller via the CAN
network. The message server setBpcnt updates bpcnt based on the received
value. The constructor sends a control message to itself to start the periodic
execution.

The main block of the model is listed in Fig. 13. Figure 14 shows the LF’s
diagrammatic representation of the program model of the Brake-by-Wire sys-
tem. As we considered two wheels in the system, the program is assembled from
two instances of WheelSensor and WheelCtrl, one instance of BrakeSensor,
BrakeCtrl, and CANBusNetwork. As depicted in Fig. 14, the values are received
from WheelCtrl and BrakeSensor by BrakeCtrl to compute the desired brake
torque and speed. WheelCtrl also receives its value from WheelSensor. To
correctly compute the desired values in each period, we must guarantee that
BrakeCtrl has received the most recent sensed values from the sensors. So, we
assign the highest priority to the instances of BrakeSensor and WheelSensors.
We assign the next priorities to the components over the path from WheelSensor
to BrakeCtrl, i.e., instances of WheelCtrls and then CANBusNetwork. We also
assign a lower priority to the message server control than rcv to be sure that it
updates the values sensed for this period before its computation. If none of the
priorities are considered, WheelCtrl may make the computation using stale val-
ues. This is in line with the policy of the order of execution of components “from
upstream to downstream” in the design of CPS and used in Lingua Franca. We
will explain this through a scenario in the following.

Consider the property that states “whenever the slip rate of a wheel exceeds
0.2, the brake actuator of that wheel must be immediately released”. We
imply from this property that at the end of each period if (rspd − WSL.spd ×
0.75)/rspd > 0.2 then WSL.trq must immediately become 0, where rspd =
(WSL.spd + WSR.spd)/2. Suppose that initially, the speed of the left and right
wheels are 15 and 13, respectively and the initial brake percentage is 60. As only
WSL, WSR, and brake sensor BS have messages in their queue, they first send the
speed of wheels (i.e., 15 and 13) and brake percentage (i.e., 60) to their corre-
sponding controllers upon handling their messages. Then, the wheel controllers
and the brake controller handle setWspd and setBpcnt messages, respectively,
to update their values. The wheel controllers send their speed values to the brake
controller via CAN by sending a sndM message. Then, CAN handles its two sndM
messages from the wheel controllers by sending rcv messages to the brake con-

Actors Upgraded for Variability, Adaptability, and Determinism 251

Fig. 13. Actor instantiations for the Brake-by-Wire system with Anti-lock Braking
System

Fig. 14. A diagrammatic representation of the program model of the Brake-by-Wire
system presented in Fig. 12, inspired from the Lingua Franca diagram notation

troller BC. Please note that CAN has a higher priority than the brake controller, so
the brake controller BC first gets two rcv messages before handing its messages.
BC has the next priority to be executed. It has three messages in its queue: two
rcv messages and one control message. As the priority for handling rcv mes-
sages is higher than the control message, it first handles the rcv messages and
updates the value speed of wheels, and then by handling the control message
computes the desired torque and speed as 60 and 14 and sends them via two
sequential rcv messages through CAN to each wheel controllers. The wheel con-
trollers handle their rcv messages and compute the slip rate as 0.207 and 0.312
for the left and right wheels which indicates that the brake should be released

252 R. Khosravi et al.

by sending setTrq(0) to the wheels. This scenario satisfies the given property.
Assume that no priority is defined for the message servers of the brake controller
or the priority of the brake controller is not less than the others. So, the brake
controller may handle control first while it has not received any values for the
speeds (which are initially 0). Thus, the given property is wrongly violated.

The size of the state space generated by Afra has 10, 088 states and 12, 732
transitions. If we remove the priorities defined for the instances of actors, the
resulting size is increased to 1, 659, 463 states and 6, 326, 764 transitions. If we
also remove the priorities for the message servers within the BrackCtrl and
CANBusNetwork classes, the resulting state space will have 2, 523, 309 states
and 10, 313, 561 transitions. The priorities among the actors implicitly model
a scheduling policy for executing actors to resolve nondeterminism due to their
concurrent execution while the priorities among the message servers model a
scheduling policy to resolve the nondeterminism caused by messages arriving at
the same time.

5 Holistic Analysis of Cyber-Physical Systems

The two orthogonal features of variability handling mechanisms and priority
can be used together. This combination of usage makes it possible to specify
variability in the domain of embedded and cyber-physical systems. Using the
features of upgraded Timed Rebeca, we may define different communication
mechanisms, like broadcast or specific protocols like in a CAN bus in a more
structured way and hence more usable and understandable for the engineers. We
can model periodic and sporadic events and order their handling where necessary.
This allows us to model different configurations for cyber-physical systems and
perform a holistic analysis of safety and timing features. We revise our running
example in Fig. 3 to extend its domain application, inspired from [11] in the
automotive domain.

The extension to the Timed Rebeca model in Fig. 3 is brought by three
modifications: 1) replacing the feature annotation by polymorphism and mak-
ing Sensor and ComptUnit abstract classes, 2) adding another network type
CANBusNetwork, similar to our case study in Sect. 4.3, and 3) adding variability
to the abstract class CompUnit to communicate with entities over a CAN bus.
As we need all the instances of CompUnit variations to either communicate over
CAN or not, we add this variability by using a feature annotation (instead of
defining two subclasses for each variant). The resulting model is shown in Fig. 15,
with its main block listed in Fig. 16. We explain each modification in detail.

We remove the variables FT PERIODIC SENSOR and FT SPORADIC SENSOR and
instead define PeriodicSensor and SporadicSensor as the subclasses of the
abstract class Sensor. By making the superclass Sensor an abstract class,
we can specify the common behavior between the two variant subclasses in
the superclass as much as possible like the constructor. Substituting polymor-
phism for feature annotation allows having two variants of Sensor class within
a model simultaneously. With the same discussion, we also remove the vari-
ables FT PERIODIC PUSH and FT IMMEDIATE PUSH and define CompUnitPeriodic

Actors Upgraded for Variability, Adaptability, and Determinism 253

Fig. 15. Extending the domain application of the sensor network running example
shown in Fig. 3 by adding a CAN Bus and using the features of upgraded Timed
Rebeca

254 R. Khosravi et al.

Fig. 16. Actor instantiations for the upgraded sensor network running example shown
in Fig. 15

and CompUnitImmediate as the subclasses of the abstract class CompUnit. The
superclass CompUnit has one abstract function init which is called in the con-
structor. This abstract method contains the specific initialization needed for
each variant subclass. In CompUnitPeriodic, this method must send a mes-
sage to itself to start periodic execution while no initialization is required in
CompUnitImmediate.

Thanks to the priority feature, we add another network type CANBusNetwork,
suitable for modeling the network in the automotive domain. By using the fea-
ture expression @feature(FT CAN NETWORK), we add variability to the abstract
class CompUnit. This feature adds a priority state variable to the class. As
messages are transmitted over a CAN bus based on their priorities, we define
a message server for each message priority in CANBusNetwork and assign a pri-
ority to each message server using the priority feature. The priority variable
of CompUnit indicates the priority of messages (received from the sensors). The
method transfer of CompUnit sends messages to the network. If the network
is a CAN bus, when the variable FT CAN NETWORK is set, then it calls the corre-
sponding message server of CANBusNetwork based on the value of priority.

A configuration of the model where only the feature FT CAN NETWORK is
present gives the model of two connected ECUs communicating over a CAN
bus in a car. The first sensor instance sr1 models the wheel sensor which peri-
odically sends the speed of the wheel to its wheel controller, represented by cu1.
The second sensor instance sr2 is the gear sensor which sends the level of gear
upon any change to its controller, represented by cu2.

Actors Upgraded for Variability, Adaptability, and Determinism 255

6 Related Work

Apart from variability-aware extensions of modeling notations based on tran-
sition systems and process algebras (comprehensively surveyed in [10]), several
formal modeling languages have been extended to support variability, including
fPromela [16], fSMV [17], and an extension of Event-B [68]. Having our focus
on formal modeling of asynchronously communicating distributed systems, the
most notable language is Abstract Behavioral Specification (ABS) [1,35], which
follows the concurrent object-oriented style of the actor model, and enables vari-
ability modeling using a delta-oriented approach [15,19,58]. Unlike ABS, our
way to handle variability in Rebeca family of languages is through feature anno-
tation and polymorphism which models the entire family behavior in one place.
Verification of software product lines has a relatively long history. This includes
the works based on modal I/O automata [45], PL-CCS [25], and early results
based on Featured Transition Systems [18]. More recent advances on the verifi-
cation of SPLs include a wide range of techniques such as static analysis [6,8],
parity games [7], proof plans [44], and correct-by-construction approach [13].

Lee et.al. proposed Lingua Franca as a language for developing deterministic
actors [46]. Lingua Franca resolve nondeterminisitc execution among actors using
predefined order of executions for actors. The idea of associating priority to
actors in Rebeca to make the model more deterministic is inspired from Lingua
Franca. In comparison with [46], although actors can be deterministic in Rebeca,
they are allowed to have nondeterministic behavior. This means that modelers
are allowed to express the required level of nondeterminism in models.

7 Conclusion

In this paper, we presented an overview of the language features of Timed Rebeca
to support variability management and modeling determinism. The approach to
variability management is feature-oriented and is done using feature variables.
By annotating parts of the model source code with feature expressions, we can
bind model parts to a number of product configurations. Moreover, class poly-
morphism can be used to manage variability by providing alternative implemen-
tations of model components. This way, the whole product line can be modeled
in a single artifact which explicitly models the variability in structure and behav-
ior of the model. This enables the opportunity to analyze the whole product line
model at once as opposed to analyzing every product individually. The theory
behind verification of the whole product line has been developed and partially
implemented and is a future step in the development of Afra, the Timed Rebeca
model checker. Currently, Afra supports feature variables and verification of the
individual products specified through a valuation of the feature variables. As
a future work, we plan to study the feasibility of applying variability encod-
ing [54] to defer the variability resolution time from compile-time to state-space
generation time, which may increase the efficiency of whole-family verification.

We also showed how Timed Rebeca models can be made more deterministic
by assigning priorities to message servers and actors. This enables the modelers

256 R. Khosravi et al.

to bring in assumptions about the execution environment or outside entities. In
addition to making the model closer to a set of real world applications, this may
result in (possibly significant) reduction in the size of the state space and make it
more practical to analyze more complex systems. Both of these aspects enhance
the practicality of the Timed Rebeca toolset to be used in industrial settings.

References

1. The ABS language. https://abs-models.org/
2. Afra toolset homepage. https://rebeca-lang.org/alltools/Afra
3. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge (1986)
4. Ayala, I., Papadopoulos, A.V., Amor, M., Fuentes, L.: ProDSPL: proactive self-

adaptation based on dynamic software product lines. J. Syst. Softw. 175, 110909
(2021)

5. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005). https://doi.org/10.1007/11554844 3

6. ter Beek, M.H., Damiani, F., Lienhardt, M., Mazzanti, F., Paolini, L.: Efficient
static analysis and verification of featured transition systems. Empir. Softw. Eng.
27(1), 10 (2022)

7. ter Beek, M.H., van Loo, S., de Vink, E.P., Willemse, T.A.: Family-based SPL
model checking using parity games with variability. In: Wehrheim, H., Cabot,
J. (eds.) FASE 2020. LNCS, vol. 12076, pp. 245–265. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45234-6 12

8. ter Beek, M.H., Damiani, F., Lienhardt, M., Mazzanti, F., Paolini, L.: Static analy-
sis of featured transition systems. In: Proceedings of the 23rd International Systems
and Software Product Line Conference-Volume A, pp. 39–51 (2019)

9. Behjati, R., Yue, T., Briand, L., Selic, B.: SimPL: a product-line modeling method-
ology for families of integrated control systems. Inf. Softw. Technol. 55(3), 607–629
(2013)

10. Benduhn, F., Thüm, T., Lochau, M., Leich, T., Saake, G.: A survey on modeling
techniques for formal behavioral verification of software product lines. In: Proceed-
ings of the Ninth International Workshop on Variability Modelling of Software-
Intensive Systems, pp. 80–87 (2015)

11. Bengtsson, H.H., Hiller, M., Mattsson, F., Bengtsson, J.: Holistic analysis of task
scheduling and message scheduling in automotive centralised E/E architecture. In:
IEEE/SA Ethernet/IP@Automotive Techonology Day (2020)

12. Boer, F.D., et al.: A survey of active object languages. ACM Comput. Surv.
(CSUR) 50(5), 1–39 (2017)

13. Bordis, T., Runge, T., Schaefer, I.: Correctness-by-construction for feature-oriented
software product lines. In: Proceedings of the 19th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences, pp. 22–34
(2020)

14. Cionca, V., Newe, T., Dadârlat, V.: TDMA protocol requirements for wireless
sensor networks. In: 2008 Second International Conference on Sensor Technologies
and Applications (sensorcomm 2008), pp. 30–35. IEEE (2008)

15. Clarke, D., Muschevici, R., Proença, J., Schaefer, I., Schlatte, R.: Variability mod-
elling in the ABS language. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 204–224. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25271-6 11

https://abs-models.org/
https://rebeca-lang.org/alltools/Afra
https://doi.org/10.1007/11554844_3
https://doi.org/10.1007/978-3-030-45234-6_12
https://doi.org/10.1007/978-3-642-25271-6_11

Actors Upgraded for Variability, Adaptability, and Determinism 257

16. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Model checking
software product lines with SNIP. Int. J. Softw. Tools Technol. Transf. 14, 589–612
(2012)

17. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Formal seman-
tics, modular specification, and symbolic verification of product-line behaviour.
Sci. Comput. Program. 80, 416–439 (2014)

18. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model check-
ing lots of systems: efficient verification of temporal properties in software product
lines. In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering, vol. 1, pp. 335–344 (2010)

19. Damiani, F., Hähnle, R., Kamburjan, E., Lienhardt, M., Paolini, L.: Variability
modules. J. Syst. Softw. 195, 111510 (2023)

20. Davis, R.I., Burns, A., Bril, R.J., Lukkien, J.J.: Controller area network (CAN)
schedulability analysis: refuted, revisited and revised. Real-Time Syst. 35(3), 239–
272 (2007)

21. Eckel, B.: Thinking in Java, 4th edn. Prentice Hall (2006)
22. Fadhlillah, H.S., Feichtinger, K., Meixner, K., Sonnleithner, L., Rabiser, R., Zoitl,

A.: Towards multidisciplinary delta-oriented variability management in cyber-
physical production systems. In: Proceedings of the 16th International Working
Conference on Variability Modelling of Software-Intensive Systems, pp. 1–10 (2022)

23. Filipovikj, P., Mahmud, N., Marinescu, R., Seceleanu, C., Ljungkrantz, O., Lönn,
H.: Simulink to UPPAAL statistical model checker: analyzing automotive industrial
systems. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016.
LNCS, vol. 9995, pp. 748–756. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48989-6 46

24. Forcina, G., et al.: Safe design of flow management systems using Rebeca. J. Inf.
Process. 28, 588–598 (2020)

25. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol.
5051, pp. 113–131. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-68863-1 8

26. Haller, P.: On the integration of the actor model in mainstream technologies: the
scala perspective. In: Proceedings of the 2nd Edition on Programming Systems,
Languages and Applications Based on Actors, Agents, and Decentralized Control
Abstractions, pp. 1–6 (2012)

27. von Hanxleden, R., et al.: Pragmatics twelve years later: a report on lingua franca.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2022, Part II. LNCS, vol. 13702, pp.
60–89. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19756-7 5

28. Haugen, Ø., Wasowski, A., Czarnecki, K.: CVL: common variability language. In:
Kishi, T., Jarzabek, S., Gnesi, S. (eds.) 17th International Software Product Line
Conference, SPLC 2013, Tokyo, Japan, 26–30 August 2013, p. 277. ACM (2013)

29. Hewitt, C.: Viewing control structures as patterns of passing messages. Artif. Intell.
8(3), 323–364 (1977)

30. Hewitt, C.: Actor model of computation: scalable robust information systems.
arXiv preprint arXiv:1008.1459 (2010)

31. Hinchey, M., Park, S., Schmid, K.: Building dynamic software product lines. Com-
puter 45(10), 22–26 (2012)

32. Jafari, A., Khamespanah, E., Sirjani, M., Hermanns, H., Cimini, M.: PTRebeca:
modeling and analysis of distributed and asynchronous systems. Sci. Comput. Pro-
gram. 128, 22–50 (2016)

https://doi.org/10.1007/978-3-319-48989-6_46
https://doi.org/10.1007/978-3-319-48989-6_46
https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1007/978-3-031-19756-7_5
http://arxiv.org/abs/1008.1459

258 R. Khosravi et al.

33. Jahandideh, I., Ghassemi, F., Sirjani, M.: An actor-based framework for asyn-
chronous event-based cyber-physical systems. Softw. Syst. Model. 20(3), 641–665
(2021)

34. Jahandideh, I., Ghassemi, F., Sirjani, M.: Hybrid Rebeca: modeling and analyzing
of cyber-physical systems. In: Chamberlain, R., Taha, W., Törngren, M. (eds.)
CyPhy/WESE -2018. LNCS, vol. 11615, pp. 3–27. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-23703-5 1

35. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

36. Kang, E., Enoiu, E.P., Marinescu, R., Seceleanu, C.C., Schobbens, P., Petters-
son, P.: A methodology for formal analysis and verification of EAST-ADL models.
Reliab. Eng. Syst. Saf. 120, 127–138 (2013)

37. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, Carnegie-Mellon Uni-
versity, Pittsburgh, PA, Software Engineering Institute (1990)

38. Khakpour, N., Jalili, S., Talcott, C., Sirjani, M., Mousavi, M.: Formal modeling of
evolving self-adaptive systems. Sci. Comput. Program. 78(1), 3–26 (2012)

39. Khakpour, N., Khosravi, R., Sirjani, M., Jalili, S.: Formal analysis of policy-based
self-adaptive systems. In: Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 2536–2543 (2010)

40. Khamespanah, E., Sirjani, M., Kaviani, Z.S., Khosravi, R., Izadi, M.J.: Timed
Rebeca schedulability and deadlock freedom analysis using bounded floating time
transition system. Sci. Comput. Program. 98, 184–204 (2015)

41. Khamespanah, E., Sirjani, M., Khosravi, R.: Afra: an eclipse-based tool with exten-
sible architecture for modeling and model checking of Rebeca family models. In:
Hojjat, H., Ábrahám, E. (eds.) FSEN 2023. LNCS, vol. 14155, pp. 72–87. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-42441-0 6

42. Khamespanah, E., Sirjani, M., Mechitov, K., Agha, G.: Modeling and analyzing
real-time wireless sensor and actuator networks using actors and model checking.
Int. J. Softw. Tools Technol. Transf. 20, 547–561 (2018)

43. Krüger, J., et al.: Beyond software product lines: variability modeling in cyber-
physical systems. In: Proceedings of the 21st International Systems and Software
Product Line Conference, vol. A, pp. 237–241 (2017)

44. Kuiter, E., Knüppel, A., Bordis, T., Runge, T., Schaefer, I.: Verification strategies
for feature-oriented software product lines. In: Proceedings of the 16th Interna-
tional Working Conference on Variability Modelling of Software-Intensive Systems,
pp. 1–9 (2022)

45. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 6

46. Lohstroh, M., Menard, C., Bateni, S., Lee, E.A.: Toward a lingua franca for deter-
ministic concurrent systems. ACM Trans. Embed. Comput. Syst. 20(4), 36:1–36:27
(2021). https://doi.org/10.1145/3448128

47. Lohstroh, M., et al.: Actors revisited for time-critical systems. In: Proceedings of
the 56th Annual Design Automation Conference 2019, DAC 2019, Las Vegas, NV,
USA, 02–06 June 2019, p. 152. ACM (2019)

48. Marinescu, R., Mubeen, S., Seceleanu, C.: Pruning architectural models of automo-
tive embedded systems via dependency analysis. In: 42th Euromicro Conference on

https://doi.org/10.1007/978-3-030-23703-5_1
https://doi.org/10.1007/978-3-030-23703-5_1
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-031-42441-0_6
https://doi.org/10.1007/978-3-540-71316-6_6
https://doi.org/10.1145/3448128

Actors Upgraded for Variability, Adaptability, and Determinism 259

Software Engineering and Advanced Applications, pp. 293–302. IEEE Computer
Society (2016)

49. Menard, C., et al.: High-performance deterministic concurrency using lingua
franca. CoRR abs/2301.02444 (2023)

50. Pfeiffer, O., Ayre, A., Keydel, C.: Embedded Networking with CAN and CANopen,
1st edn. Copperhill Media Corporation (2008)

51. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering, vol.
10. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-28901-1

52. Rabiser, R., Zoitl, A.: Towards mastering variability in software-intensive cyber-
physical production systems. Procedia Comput. Sci. 180, 50–59 (2021)

53. Reynisson, A.H., et al.: Modelling and simulation of asynchronous real-time sys-
tems using timed Rebeca. Sci. Comput. Program. 89, 41–68 (2014)

54. von Rhein, A., Thüm, T., Schaefer, I., Liebig, J., Apel, S.: Variability encoding:
From compile-time to load-time variability. J. Log. Algebraic Methods Program.
85(1), 125–145 (2016)

55. Sabouri, H., Jaghoori, M.M., de Boer, F., Khosravi, R.: Scheduling and analysis
of real-time software families. In: 2012 IEEE 36th Annual Computer Software and
Applications Conference, pp. 680–689. IEEE (2012)

56. Sabouri, H., Khosravi, R.: Modeling and verification of reconfigurable actor fami-
lies. J. Univers. Comput. Sci. 19(2), 207–232 (2013)

57. Sabouri, H., Khosravi, R.: Reducing the verification cost of evolving product fam-
ilies using static analysis techniques. Sci. Comput. Program. 83, 35–55 (2014)

58. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15579-6 6

59. Sehr, M.A., et al.: Programmable logic controllers in the context of industry 4.0.
IEEE Trans. Industr. Inform. 17(5), 3523–3533 (2021)

60. Sharifi, Z., Khosravi, R., Sirjani, M., Khamespanah, E.: Towards formal analysis of
vehicle platoons using actor model. In: 2020 25th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), vol. 1, pp. 1820–1827.
IEEE (2020)

61. Sharifi, Z., Mosaffa, M., Mohammadi, S., Sirjani, M.: Functional and performance
analysis of network-on-chips using actor-based modeling and formal verification.
Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 66, 1–16 (2013)

62. Sirjani, M., Jaghoori, M.M.: Ten years of analyzing actors: Rebeca experience.
In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Sys-
tems, Biological Systems. LNCS, vol. 7000, pp. 20–56. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24933-4 3

63. Sirjani, M., Khamespanah, E.: On time actors. In: Ábrahám, E., Bonsangue, M.,
Johnsen, E.B. (eds.) Theory and Practice of Formal Methods. LNCS, vol. 9660, pp.
373–392. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30734-3 25

64. Sirjani, M., Lee, E.A., Khamespanah, E.: Verification of cyberphysical systems.
Mathematics 8(7), 1068 (2020)

65. Sirjani, M., Movaghar, A.: An actor-based model for formal modelling of reactive
systems: Rebeca. Technical report CS-TR-80-01, Tehran, Iran (2001)

66. Sirjani, M., Movaghar, A., Mousavi, M.: Compositional verification of an object-
based reactive system. In: Workshop on Automated Verification of Critical Systems
(AVoCS 2001) (2001)

67. Sirjani, M., Movaghar, A., Shali, A., De Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fund. Inform. 63(4), 385–410 (2004)

https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-642-24933-4_3
https://doi.org/10.1007/978-3-319-30734-3_25

260 R. Khosravi et al.

68. Sorge, J., Poppleton, M., Butler, M.: A basis for feature-oriented modelling in
event-B. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.)
ABZ 2010. LNCS, vol. 5977, p. 409. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-11811-1 42

69. Varshosaz, M., Khosravi, R.: Modeling and verification of probabilistic actor sys-
tems using pRebeca. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol.
7635, pp. 135–150. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34281-3 12

70. Weyns, D.: Software engineering of self-adaptive systems. In: Handbook of Software
Engineering, pp. 399–443. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-00262-6 11

71. Yousefi, F., Khamespanah, E., Gharib, M., Sirjani, M., Movaghar, A.: VeriVANca
framework: verification of VANETs by property-based message passing of actors
in Rebeca with inheritance. Int. J. Softw. Tools Technol. Transf. 22(5), 617–633
(2020)

https://doi.org/10.1007/978-3-642-11811-1_42
https://doi.org/10.1007/978-3-642-11811-1_42
https://doi.org/10.1007/978-3-642-34281-3_12
https://doi.org/10.1007/978-3-642-34281-3_12
https://doi.org/10.1007/978-3-030-00262-6_11
https://doi.org/10.1007/978-3-030-00262-6_11

Analysis

Integrating Data Privacy Compliance
in Active Object Languages

Chinmayi Prabhu Baramashetru(B) , Silvia Lizeth Tapia Tarifa(B) ,
and Olaf Owe(B)

Department of Informatics, University of Oslo, Oslo, Norway
{cpbarama,sltarifa,olaf}@ifi.uio.no

Abstract. As users of digitalized services are more and more required
to share their personal data, it becomes increasingly important for appli-
cations to comply with users’ consent for the handling of their personal
data. Ensuring compliance with such consent requires reasoning glob-
ally about both the flow of information and the interaction of different
parties handling personal data. In this direction, privacy by design prin-
ciples cultivate a philosophy that endorses the development of systems
with built-in abilities to demonstrate compliance with data privacy to
guarantee the protection of personal data. However, there is an appar-
ent mismatch in adopting such imprecise principles into explicit design
methods that support systematic solutions that integrates data privacy
in system design. In this paper, we propose an integration of privacy
concepts into a core active object language, to explore how the chosen
privacy-aware language semantics can ensure handling of personal data
according to users’ privacy consent.

1 Introduction

Due to the rigorous modeling of the digital economy, companies nowadays are
tempted to treat users’ personal data as enterprise-wide assets to gain insights
that benefit their businesses. The exchange of data through several online and
offline data sources and the proliferation of unlawful processing has resulted
in the enaction of personal data regulations to protect users against unlawful
business practices and retain their privacy rights. The General Data Protection
Regulations (GDPR) [7] is one such prime example that mandates transparent
data processing and enforces users’ rights for their personal data to be han-
dled according to their consent. The GDPR is an extensive text document, not
written by software designers or information engineers but by lawyers and policy-
makers. As a written text, the GDPR contains unclear terminology that can be
interpreted in different ways, contributing to the existing gap in what can be
enforced in practice for data privacy against what it required to be enforced by
the law. This problem is widely discussed and recognized by academia and indus-
try researchers. However, well-understood concepts, models, and tools to support
GDPR enforcement are still controversial [20,22]. The GDPR hints towards pri-
vacy by design and default under Article 25, which envisions the support for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, pp. 263–288, 2024.
https://doi.org/10.1007/978-3-031-51060-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51060-1_10&domain=pdf
http://orcid.org/0000-0001-5344-0032
http://orcid.org/0000-0001-9948-2748
http://orcid.org/0000-0003-0976-5678
https://doi.org/10.1007/978-3-031-51060-1_10

264 C. P. Baramashetru et al.

software development with built-in abilities to comply with data protection reg-
ulations [5,30].

Integrating privacy principles into the software development process is not a
new challenge [8,25]. In particular, there have been several attempts to develop
privacy by construction approaches [22]. However, many aspects of data pri-
vacy remain unexplored [13,29]. Since conventional languages do not have well-
established support for privacy-specific properties, there is a need for new pro-
gramming language primitives, preferably with methodology for proof of cor-
rectness to synthesize the program with privacy constructs.

In this paper, we discuss aspects of data privacy that have been little explored
and have the potential to be addressed via language design principles [14], such as
simplicity, expressiveness, transparency, and consistency. Using language design
principles will help us enhance a core language for distributed systems with data
privacy principles so that data privacy compliance can be easily expressed and
checked. We consider a core active object language as our target, which provides
a powerful mechanism to model distributed systems [6]. Active object languages
combine the basic Actor model [1] with object-oriented concepts. Communi-
cation between active objects is realized asynchronously, allowing interleaved
execution inside each object with its own processing thread. We first discuss
the main abstractions that need to be considered in a language to address pri-
vacy awareness and later explore how language semantics can be used to enforce
compliance for users’ privacy consent. Concretely, we integrate privacy principles
into a core active object language where 1) users can add or withdraw consent
using special language constructs, 2) objects capture instances of entities, which
are user-approved, and 3) the language semantics ensures that personal data is
handled in accordance with the given users’ privacy consent.

Paper Outline. We first identify the relevant GDPR requirements and technical
challenges in Sects. 2 and 3. Then we focus on the language syntax in Sect. 4,
motivating examples in Sect. 5 and semantics in Sect. 6. Reflections on the
language are given in Sect. 7 and the correctness of the language is shown in
Sect. 8, related work and discussion in Sect. 9 and conclusion and future work
in Sect. 10.

2 The GDPR Requirements

The GDPR establishes a unified framework for data protection across the Euro-
pean Union. The GDPR is currently stretched over 11 chapters and consists of
99 articles. Across the chapters, it mentions several restrictions for personal data
handling. In this section, we detail a few core principles of the GDPR that have
the potential to be addressed via language design principles.

Purpose Limitation: Art. 5 Sect. 1(b) of the GDPR states purpose limitation
as “Personal data shall be collected for specified, explicit and legitimate purposes
and not further processed in a manner that is incompatible with those purposes;

Integrating Data Privacy Compliance in Active Object Languages 265

. . . not be considered to be incompatible with the initial purposes”. This require-
ment mainly imposes restrictions on systems for collecting a vast amount of
data for ambiguous and broadly classified purposes. According to purpose lim-
itation, data controllers are compelled to use personal data only for specific,
well-defined purposes and cannot process further for alternative purposes. Addi-
tionally, Sect. 1(e) of Art. 5 mentions that personal data shall only be stored if
necessary and imposes storage limitations based on purposes.

Conditions for Consent: Art. 6.1 (a) specifies that data subject’s consent
for handling their personal data for one or more purposes is essential for lawful
processing. Under Art. 7 [7], the GDPR specifies various conditions for consent
from data subjects. Consent needs to be informed and freely obtained before
processing personal data. The terms and conditions presented to receive consent
from data subjects should be clear, intelligible, and understandable. The GDPR
also formulates that data subjects should be able to modify their consent at
any time, and data controllers should facilitate this choice. If we rephrase this
into a technical solution, any processing or collection of personal data should be
attached to the individual consent from the users. Upon withdrawal, the personal
data should no longer be used for any processing.

Data Subject Rights: Art. 12–21, specifies a set of rights that service providers
must facilitate for data subjects while handling their personal data. Art. 15
remarks that a “data subject shall have the right to access the purpose of process-
ing categories of personal data, the recipients to whom personal data is disclosed
or transferred, and the period for which the data will be stored.”. This is to say
that users are an operative part of personal data processing. Exercising data
subjects’ rights allows users to access their personal data and have full decision
rights on how it is handled.

3 The GDPR Technical Challenges

In this section, we discuss the main challenges related to GDPR requirements
discussed in Sect. 2. In particular, we focus on the challenges with the potential
to be addressed via language design principles. In contrast to well-explored prob-
lems for incorporating GDPR rules within a distributed system, the challenges
discussed in this section are less explored by the research community [13].

Challenge 1: Contextual Awareness of Personal Data. The GDPR states
that “personal data” is any information that is related to an identifiable person
(data subject). In a technical context, this can be understood as data containing
explicit identifiers such as name, identification number, physical identifier, online
identifier, etc. In Sect. 2, we noticed that purpose plays a vital role in handling
personal data. However, relating data handlers (entities) and purposes to iden-
tifiable personal data yields new challenges for information systems since data
handling suddenly becomes highly contextual. For example, consider personal
data D identified by entities E1 and E2. However, both entities can only handle
D differently since they have access to D for different purposes.

266 C. P. Baramashetru et al.

Challenge 2: Data Processed as Personal Data. This can happen when
non-personal data can be associated with an identifier or when such data is
combined with other pieces of data to be associated with an individual. For
example, entity E1 can handle non-personal data D, which in the process of
data handling is transformed into identifiable personal data D′. However, E1

does not have authorization from the data owner to process such personal data
(data leak), creating a violation of the users’ consent preference.

Challenge 3: Personal Data with Multiple Owners. Although the GDPR
never explicitly mentions how to process data owned by multiple data subjects,
it is crucial to consider data handling when data concerns more than one data
subject. As an example, let us consider a loan application that considers com-
bined personal data D of two data subjects, Alice and Bob. If Alice allows the
handling of her personal data for a set of purposes P1 and Bob allows the han-
dling of his personal data for a set of purposes P2, it is unclear how to proceed
with the handling of D.

Challenge 4: Unclear Terminology for Personal Data Handing. As
shown in Sect. 2, the GDPR uses terminology that can have multiple interpre-
tations, particularly for data handling. Vocabulary, such as collect, store, use,
delete and transfer, is unspecified, and it is unclear how requirements directly
related to such terminology should be enforced by services.

4 A Privacy-Aware Active Object Language

Active object languages [6] are considered suitable for distributed and service-
oriented systems. We consider a core privacy-aware active object language (that
we call P-AOL), that is extended with support for GDPR concepts, privacy
policies, and notion of consent.

4.1 Privacy-Aware Aspects of P-AOL

In this section, we motivate the main privacy-related aspects that we will incor-
porate in P-AOL.

Data controllers (DC) and data processors (DP) can be understood as enti-
ties, which are identifiable organizations, organizational units, or roles in an
organization that has or can handle data. P-AOL will include the declaration
of a set of entities. In particular, an object can be associated with one declared
entity to reflect the entity it represents (if any). An object associated with an
entity may act as a DC or DP, and we formalize the transfer of rights from DC
to DP. With this information, it is possible to enforce that only objects acting as
authorized entities can access personal data. After that, we can check the access
against the consent settings provided by the users.

Data subjects (DS) can be understood as users whose personal data is being
handled by entities. As noted in Sect. 2, users should be able to express consent

Integrating Data Privacy Compliance in Active Object Languages 267

on their personal data handling. P-AOL will include unique objects that rep-
resent users so that we can check how a service behaves when interacting with
the users’ consent. In P-AOL, personal data will be associated with specific ids,
transforming them into private values. P-AOL will be designed so that the lan-
guage can handle non-private values freely and restrict the handling of private
values. In particular, the language will handle private values with more than one
owner (where each owner has different set-ups for their consent), e.g., personal
data associated with bank loans for various legally accountable users.

Purposes can be understood as the reasons why personal data is being han-
dled. P-AOL will include the declaration of a set of purposes. In particular,
personal data will be associated with specific purposes. With this information,
it is possible to enforce purpose-based processing. After that, we can check that
personal data is handled according to the purposes stated in the users’ consent.

Consent can be understood as an informed agreement that users give to
allow the handling of their personal data. P-AOL will include the addition and
removal of consent via privacy policies explicitly stating which entities can handle
personal data, for what purposes, and what actions they can perform. Actions
will be stated using the vocabulary in the GDPR (e.g., collect, transfer, use,
store, etc.). The language used to capture consent is a simplified version of the
language presented in [2].1 Since consent is a runtime element, it cannot be
assumed to be given all the time since users may modify it during the lifetime of
a service. To capture such flexibility, P-AOL will include operations that users
can perform to add and remove consent at any time, mimicking the enforcement
of Article [7] in the GDPR. See Sect. 2.

Lawfulness of processing of personal data is a fundamental principle of the
GDPR, as noted in Sect. 2. All the elements described above will help P-AOL
to capture how personal data should be handled according to the consent given
by users. As motivated in the introduction section, there exists a gap between
ambiguous laws and concrete technical solutions. In particular, the GDPR uses
the vocabulary of processing of personal data that includes, e.g., collect, transfer,
use, store, etc., that can have different interpretations. In P-AOL we concretize
an interpretation of such actions and explore how language semantics can enforce
them. In this paper, we limit ourselves to only exploring the interpretation of use,
collect, transfer, and store, which will be captured by the operational semantics
of the language in Sect. 6. Concretely, we interpret: (1) collection of personal
data as the action of creating new private values and possibly storing them in
short-lived variables (e.g., local variables), (2) transfer of personal data as the
action of sending private values to other entities, (3) use of personal data as
the action of accessing private values without modifying them and (4) storing of
personal data as the action of saving private values in long-lived variables (e.g.,
fields of objects). Similarly, other actions included in the GDPR, e.g., personal
data deletion can be given an interpretation.

1 The full policy language includes additional GDPR aspects such as location and
retention time. For simplicity, we here only consider entities, purposes, and actions.

268 C. P. Baramashetru et al.

Fig. 1. Syntax of P-AOL. Constructs highlighted with grey background deal with pri-
vacy aspects. Terms like e denote (possibly empty) lists over the corresponding syn-
tactic categories, terms like û denote (possibly empty) sets over the corresponding
syntactic categories. Square brackets [] denote optional elements.

4.2 Formal Syntax of P-AOL

The formal syntax of the language is given in Fig. 1. A type A is either a data
type B, an interface I, or type U for users. Type B consists of basic types T ,
such as Bool, Int, product types (records), etc., as well as private types T
that extend the basic types with privacy-aware information (explained below).
A program PR includes entities E, purposes P , a set of functions ̂F , interfaces
̂IF , classes ̂CL, and a main block sc. Function declarations F have a return type
B, a function name fn, a list of variable declarations x of types B, and a function
body given by an expression e. The type system allows functions to be defined
over types B. Observe that functions can handle private values, however, freshly
tagged values α are syntactically restricted. An interface IF has a name I and a
set of method signatures ̂Sg. A class CL has a name C, formal parameters and
state variables (fields) x of types A and methods M .

Observe that the fields of the class are defined as both its parameters and
state variables. A method definition M consists of a signature Sg and a main
block sc. A method signature Sg has a name m, and zero or more parameters

Integrating Data Privacy Compliance in Active Object Languages 269

A x and a return type A. The main block consists of variable declarations A x
and a method body with statements s.

The language includes standard statements s for sequential composition
s1; s2, assignment, if statements, skip statement, return statement and a num-
ber of privacy specific statements. The statement await g enables co-operative
scheduling; it conditionally suspends execution; the guard g controls processor
release and consists of Boolean tests e? (explained below). Just like expressions e,
the evaluation of guards g is side-effect-free. However, if g evaluates to false, the
processor is released and the process is suspended. When the execution thread
is idle, an enabled process may be selected from the pool of suspended processes
by means of a default scheduling policy.

Right-hand-side expressions rhs include (possibly tagged) expressions α, a
statement new to create an object, asynchronous method calls, future derefer-
encing get (explained below) and a statement to create new users. The expres-
sions e of the language include variables x, values v, function expression fn(e),
and operations op on e (e.g., arithmetic and logical operations). The language
includes non-assignable reserved variables, concretely and the self-reference this.
Omitted from Fig. 1 are standard values of the basic types such as Bool and Int.
The type Unit has one value, unit. Communication in P-AOL is based on asyn-
chronous method calls, denoted by assignments f = e!m(α) to future variables
f . Here, o is an object expression, m a method name, and α are (possibly tagged)
expressions providing actual parameter values for the method invocation. (Local
calls are written this!m(α)). After calling f = e!m(α), the future variable f refers
to the return value of the call, and the caller may proceed with its execution
without blocking. Two operations on future variables control synchronization in
P-AOL. First, the guard await f? suspends the active process unless a return
to the call associated with f has arrived, allowing other processes in the object
to execute. Second, the return value is retrieved by the expression f.get, which
blocks all execution in the object until the return value is available.

Privacy Policies. The language includes the declaration of entities η̂ and pur-
poses p̂. Privacy policies ρ are defined as the tuple (η̂ ′, â ′, p̂ ′), where entities η̂ ′

are a subset of the declared entities η̂ in the system, purposes p̂ ′ are a subset of
the declared purposes p̂ and actions â ′ are a subset of the actions defined in the
syntax of the language: use, collect, store, and transfer.

Users and Instances of Entities. New objects are created via the statement new.
Each object is an instance of a class C with parameters α, and might be associ-
ated with an entity η. Such an association will allow us to guarantee that only
authorized objects will be able to handle personal data. The language includes a
statement new user to create special objects that represent users. Objects that
are users can perform special operations in the language; such operations include
add/remove consent via privacy policies and add/remove concrete instances of
entities that can handle their own personal data. Consent can be added and
removed with the statements x.addCon(ρ), respectively x.remCon(ρ). Here the
consent is captured in the policy ρ and x evaluates to a user u that gives the

270 C. P. Baramashetru et al.

consent. Instances can be added and removed with the statements x.addInst(o),
respectively x.remInst(o). Here o evaluates to an object id that is authorized to
handle the personal data of the user u (where x evaluates to u).

Personal Data and Purpose-Based Processing. We introduce tagged expres-
sions α, with a constructor e tag t to associate personal data with identifiers and
purposes. Here tags t of the form 〈x̂, p̂〉 (where x̂ evaluates to û) are attached
to expressions e, so that they become private. Note that the tag 〈x̂, {p, q}〉
on some data entails that the data can be used for purpose p or q. The tag
〈x̂, ∅〉 entails that the data cannot be used for any purpose. We syntactically
abuse this tag construct so that it can be applied on sets, lists and tuples, e.g.,
(“John Smith”, 25, “Oslo”) tag 〈{john}, {Registration}〉. This explicit tagging
could be replaced by automatic and implicit tagging, given a strategy, e.g., for
detecting users and purposes. However, such an extension is beyond the scope
of this paper.

5 Motivating Examples

In this section, we consider two examples, a hospital information system and a
bank loan system, to showcase the main data privacy-related aspects of P-AOL.

A Hospital Information System. Let us consider a hospital information
system (HIS), drafted in P-AOL, and shown in Fig. 2. Doctors register new
patients in the HIS. The HIS will communicate with a database DB, which
stores the patients’ personal data. Observe that in the code of the example, we
have highlighted in blue how personal data flows along the system.

When a doctor registers a new patient via the method registerPatient, the
doctor asks for the patient’s data and connects it to an id and purposes via the
tag construct, and from there on, non-personal data becomes personal data in
the system. Then, the asynchronous call is assigned to future variable f1 and
await f1? suspends the current task until the given guard becomes active or the
future is resolved. To continue with the registration, the method registerPatient
is further called in HIS and assigned to future f1 and awaits until f1 is resolved,
which will further call the method setPersonalData in DB. When a doctor wants
to access data from a patient, he calls the method requestPatientInfo, which
in turn will call the method requestPatientInfo in HIS, which will further call
the method requestPersonalData in DB. Once the future f2 is resolved and the
personal data is available in the future, it is then retrieved via the get statement.

Let us assume the scenario described in the main block of our example, where
we deploy an HIS called his, connected to the database db. We create a general
practitioner (GP) gp, an emergency doctor (ED) ed, and two patients alice and
bob. Observe that both patients alice and bob needed to consent to handle their
personal data. In particular, alice has set up that the system and her GP can only
handle her personal data. At the same time, bob has also given consent for his
personal data to be handled in case of emergency. The semantics of P-AOL will
internally check that private data handling is according to the declared consent

Integrating Data Privacy Compliance in Active Object Languages 271

Fig. 2. A hospital information system (HIS) example, drafted in P-AOL. Here non-

private data (of type PD) becomes private (of type D) when associated with a par-
ticular user (patient), using an explicit tag construct.

of each user. We can, in principle, continue developing the scenario where both
alice and bob change their consent, and doctors try to access their personal data,
gaining a better understanding of how personal data is used in the HIS example.
Such a modeling exercise can help understand and reason about what consent
is needed from users, e.g., the information system might require the consent of
all patients to handle their personal data in case of emergency.

B Bank Loan System. Let us consider a banking system with some procedures
to apply for a bank loan. In particular, we look closer to a scenario where a
couple applies together for a loan. Figure 3 shows the drafted version of the
example in P-AOL, where the main block describes the scenario. We deploy
a bank and its database, and we create a worker w and two users alice and
bob. After registration in the system, alice and bob apply for a loan. As part of

272 C. P. Baramashetru et al.

Fig. 3. A bank loan system example, drafted in P-AOL. Here Δ abstracts away the type
of records with personal data for the inputs and output of the function loanCapacity.
Additionally, δa and δb abstract away the personal record values for alice and bob,
respectively.

this procedure, the system must calculate their combined loan capacity via the
function loanCapacity. Observe in the example that the function returns a value
d (e.g., the maximum amount of money both alice and bob can request to the
bank, given their current financial situation). This newly created value d belongs
to both alice and bob and only for the purpose of Loan (to guarantee that this
value can not be used for Investment since bob has not allowed his data to be
used for such purpose). With this example, we want to showcase insights into
how we envision tags for personal data should be combined to avoid data leaks.
We will further detail how P-AOL deals with such cases in Sect. 6.

Integrating Data Privacy Compliance in Active Object Languages 273

Fig. 4. Runtime syntax of P-AOL. Note that the empty tag values ∅v are equivalent
to values v i.,e ∅v ∼= v and syntax of expressions e, values v, and entities η extends the
ones in Fig. 1 as indicated by “. . .”.

6 An Operational Semantics for P-AOL

In this section, we detail the operational semantics of P-AOL. We first detail the
runtime syntax, and then we focus on the evaluation of expressions and auxiliary
functions to later focus on the SOS style rules. We will also discuss alternatives
for error handling, which will be triggered when objects try to handle personal
data without the right consent.

Runtime Syntax. Figure 4 shows the runtime syntax of P-AOL. A global con-
figuration CN is a bracketed multiset of runtime elements: objects, invocation
messages, futures, and user-specific consent. The associative and commutative
multiset union operator on configurations is denoted by white space and the
empty configuration by ε. For simplicity, classes are not represented explicitly
in the semantics, but may be seen as static look-up tables of object layout and
method definitions. An object obj is a term o(σ, γ, q, η), where o is the object’s
identifier, σ is the state of the object and consists of the binding of the object’s
fields, γ is the process currently being executed, q a pool of processes waiting to
be scheduled for execution, and η is the entity associated with the object. Note
that entities η are extended with a special literal ⊥, representing that no entity
is associated to that object. An invocation message is a term m(o, o′, tv, f, η),
consisting method name m, o the object callee, o′ the object caller, tv the call’s
actual parameter values, f the future to which the call’s result is returned and
η the entity associated with the object that called the method. A future fut has
an identifier f and a reply value v. Consent Σ consists of u �→ 〈χ, ô〉, where u is
a user, χ is a policy map represented as a set of bindings a �→ ̂〈η, p〉 that records
for every action a, a set of pairs of entity and purpose, meaning that the entity is
allowed to perform action a for the user u for purpose p. Here, empty policy map
∅ states that no entities or purposes are allowed for any action. The set ô are the
instances that can handle the personal data of u, the semantics will check that
only instances matching the declared consent will be able to handle the personal
data of u (further details will be explained shortly). Here ◦ is the concatenation
operator for states σ, process pools q, policy map χ and consent Σ .

274 C. P. Baramashetru et al.

Fig. 5. The evaluation of functional expressions. Here, op refers to the semantic oper-
ation corresponding to the syntax op.

A process {σ|s}η consists of a local state σ of local variable bindings, a list s
of statements, and the entity η that made the call, or it is idle. (We identify any
process with an empty statement list with the idle process). We let the fields of
an object include this, denoting the identifier of the object.

The values from our program syntax are extended with runtime tags. In
particular, tv represents (possibly empty) tagged values, where the tag t can
be either ∅ or 〈û, p̂〉. If û is empty, the value is not considered private i.e.,
〈∅,p̂〉v = ∅v and ∅v = v; while values with non-empty tags are private. We also
allow a runtime ⊕ operation on tags, letting the combination of an empty and
a non-empty tag be the non-empty tag, and letting two non-empty tags be
combined by unifying the users and intersecting the purposes to avoid tagging
newly created values with purposes more than intended:

t1 ⊕ t2 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

〈û, p̂〉, if t1 = ∅ ∧ t2 = 〈û, p̂〉
〈û, p̂〉, if t1 = 〈û, p̂〉 ∧ t2 = ∅
〈û ∪ û ′, p̂ ∩ p̂′〉, if t1 = 〈û, p̂〉 ∧ t2 = 〈û ′, p̂′〉
∅ otherwise

The initial configuration of a program reflects its main block {A x; s}, which
at runtime has the form main(a, {l|s}⊥, ε,⊥), where main is an object. In the
main object, let a be the substitution ε[this �→ main] and l be the substitution
ε[x �→ default(T)]. where default(T) denotes the default value of type T . (We
assume that for a well-typed program, the main block does not refer to the
expression this).

Evaluation of Expressions. Let σ be a state which binds variables to values.
The evaluation function for possible tagged expressions α for a given state σ is
defined inductively over the syntax of the expressions in the language (see Fig. 5)
and is mostly standard, i.e., [[α]]σ represents a confluent and terminating system,
which reduces possible tagged expressions α to data values. The reduction of an
expression always happens in the context of a given process, object state, and
configuration. The program syntax provides an explicit tag construct to create

Integrating Data Privacy Compliance in Active Object Languages 275

private values when an argument e is tagged with t. The tag of the resulting
value is formed by the ⊕ operation on the tag of the evaluated e combined
with t. For binary operations op, we let op capture the actual arithmetic and logic
operators that can directly be applied over values. If the operands are values,
then we apply op and return the result; otherwise we syntactically distribute op
until we reach values. The tags of the resulting value are combined in accordance
to our tags combining operator ⊕, which is further showcased in the banking
example in Sect. 5. For a (user-defined) function definition def B fn(B x) =
efn , the evaluation of a function call [[fn(e)]]σ reduces to the evaluation of the
corresponding expression [[efn]][x�→tv] when the arguments e have been reduced
to ground terms tv. Note that the above evaluation is untyped: We assume that
programs are well-typed such that evaluation produces type-correct values.

Evaluation of Guards. Given a substitution σ and a configuration cn, we can lift
the evaluation of expressions to guards [[g]]cn

σ . Here we need the configuration cn
to access future variables. Let [[x?]]cn

σ = true if [[x]]cn
σ = f and f(v) ∈ cn for some

value v (e.g., f is already resolved), otherwise if f ∈ cn then [[x?]]cn
σ = false.

Auxiliary Functions. The function scheduler(q) schedules an enabled process (if
possible) from the process queue q of an object o(σ, idle, q, η) in a configuration
cn. The function atts(C, tv, o) returns the initial state σ for the fields of a new
instance o of class C, in which the formal parameters are bound to tv and the
field this is bound to the object identity o. The function init(C) returns an
activation (process) of the init method of C, if defined. Otherwise, it returns the
idle process. The function bind(m, o, o′, tv, f, η) returns a process resulting from
the activation of the method m on object o with actual parameters tv and caller
o′, letting the caller o′ be bound to a local system variable caller and the future
reference f be bound to a local system variable destiny . If the binding succeeds,
the method’s formal parameters are bound to tv. The predicate fresh(n) asserts
that a name n is globally unique (where n may be an identifier for an object or a
user). The definition of these functions is straightforward but requires that the
class table is explicit in the semantics, which we have omitted for simplicity.

We now detail the functions that are used on the handling of data privacy.
Following GDPR regulations, we allow the transfer of processing rights from DC
to DP, provided that such transfer is not violating the user’s privacy policies. We
define a function E to select the entity and object responsible for the processing
in each transition step that handles data, where ⊥ indicates that the caller object
does not represent a legal entity

E(〈ocaller, ηcaller〉, 〈ocur, ηcur〉) =

{

〈ocaller, ηcaller〉, if ηcaller �= ⊥
〈ocur, ηcur〉, otherwise

Function Tσ(α) extracts the (possibly empty) tags t from the expression α.

Tσ(tv) = t Tσ(e tag 〈x̂, p̂〉) = Tσ(e) ⊕ 〈 ̂σ(x), p̂〉
Tσ(x) = Tσ(σ(x)) Tσ(e1 op e2) = Tσ(e1) ⊕ Tσ(e2)

Tσ(fn(e)) = ⊕Tσ(e) Tσ(e) = ∅ otherwise

276 C. P. Baramashetru et al.

Functions U(t) and P(t) extract the users and purposes from tag t.

U(t) = {u | t = 〈û, p̂〉 ∧ u ∈ û ∧ û �= ∅ } P(t) = {p | t = 〈û, p̂〉 ∧ p ∈ p̂ ∧ p̂ �= ∅ ∧ û �= ∅}

Let function Inst(û,Σ) extract the common instances that can handle the data
of the users û. Function I checks if the object is an authorized instance or not
based on the user’s consent. If the users û are empty, meaning that the data in
question is non-private, then the instance function will return true.

I(û,Σ , o) =

⎧

⎪

⎨

⎪

⎩

true, if û �= ∅ ∧ Inst(û,Σ) = ô ∧ o ∈ ô

true, if û = ∅
false, otherwise

Let function Act(Σ , η, u, p̂) return a set of allowed actions according to the con-
sent Σ and entity η, particular user identifier u and purposes p̂.

Act(Σ , η, u, p̂) = {a | Σ (u) = 〈χ, ô〉 ∧ ∃p ∈ p̂ (η, p) ∈ χ(a)}

We define function A(Σ , η, t) that for any given tags and entity extracts the
allowed actions granted by the users in the consent Σ . If the tags t are empty
implies that the data in question is non-private and all actions i.e., use, collect,
transfer, store, are granted.

A(Σ , η, t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n
⋂

i=1
(Σ , η, ui, p̂), if t = 〈û, p̂〉 ∧ û = u1 . . . un ∧ p̂ �= ∅

{use, collect, transfer, store}, if t = ∅
∅, otherwise

Monotonicity of Privacy Tags. We show that for non-empty tags t and t′:
t t′ ⇒ A(Σ , η, t) ⊆ A(Σ , η, t′)

where t t′ expresses that t is more restrictive than t′, defined by U(t′) ⊆ U(t)∧
P(t) ⊆ P(t′). Monotonicity implies that the more restrictive the tags are, the
less actions are allowed, which in turn means that the privacy conditions of
the operational semantics are violated more often (for given consent Σ). This
supports the intuition that each user appearing in a tag comes with requirements
to be fulfilled, so the less users the less requirements, and secondly the purposes
provides processing rights, implying that the more purposes, the better (making
more processing possible).

Monotonicity of Consent. A similar result holds for consent:

Σ Σ′ ⇒ A(Σ , η, t) ⊆ A(Σ ′, η, t)

where Σ Σ′ expresses that Σ is more restrictive than Σ′, in the sense that for
each user u such that Σ(u) = 〈χ, ô〉 then Σ′(u) is defined and for Σ′(u) = 〈χ′, ô′〉
we have ô ⊆ ô′ and (η, p) ∈ χ ⇒ (η, p) ∈ χ′. The proof of these monotonicity
results follows from our definitions in a straightforward manner.

Integrating Data Privacy Compliance in Active Object Languages 277

Fig. 6. Execution rules for standard statements in P-AOL.

Transition System. Let → capture transitions between configurations. A run is
a possibly terminating sequence of configurations cn0, cn1, . . . such that cni →
cni+1. When auxiliary functions are used in the semantics, these are evaluated
in between the application of transition rules in a run. Rules apply to subsets
of configurations (the standard context rules are not listed). For simplicity, we
assume that configurations can be reordered to match the left-hand side of the
rules, i.e., matching is modulo associativity and commutativity as in rewriting
logic [16]. Transition rules transform configurations into new configurations and
are given in Figs. 6, 7 and 8. We first present the transition rules for standard
statement execution (Figs. 6 and 7) and later the rules for user interactions
(Fig. 8).

For statement execution, we focus on the handling of personal data, follow-
ing the current users’ consent, where allowed actions are within the language
constructs {use, collect, store, transfer} and the statement is executed under
the right credentials. In particular, the semantics uses the function E to decide
between checking the credentials of the caller object (and its entity) in the active
process (emulating data handling delegation), or the credentials of the actual
object (and its entity) processing the statement, in the sequel the chosen object

278 C. P. Baramashetru et al.

Fig. 7. Execution rules for standard statements in P-AOL.

will be called the accountable object. In the standard execution rules, all checks
related to data privacy are highlighted in grey. Observe that such checks for non-
private values will return true since the tags associated with the values would
be empty. If any of the premises in the rules do not hold, the execution in the
object will be blocked. We conventionally write a to denote the object state,
which maps fields to values in an object and l to denote local state, which maps
local variables to values in a process. In the sequel, the variable s will match any
(possibly empty) statement list.

Rule Skip consumes a skip in the active process. Rule Activate schedules
a process from the waiting process queue, when there is no current process
executing. Rule Assign1 assigns (private) values to local variables; it validates
the accountable object by checking against user-allowed instances. Since the
statement is using the values in expression α and creating a new private value tv

Integrating Data Privacy Compliance in Active Object Languages 279

that is temporarily collected in a local variable, the rule checks the allowance for
actions use and collect for α by its valid tags. Rule Assign2 assigns the (private)
value of expression α to a field in an object o, it validates the accountable object
by checking against user allowed instances, and the allowance for action use for
α since the statement is using the values in expression α. Then it validates for
the current object o the allowance for actions {store, collect} for collecting and
long-term storing the newly created private value tv in the field of object o.

Rules Cond1 and Cond2 cover the two cases of conditional statements,
validating the accountable object by checking against user-allowed instances and
the allowance for action use for e. Rule Await1 consumes the await g statement
if g evaluates to true in the current state of the object. Rule Await2 suspends
the active process into the process pool, leaving the active process idle if the
guard g evaluates to false. Note that no privacy checks are done in these rules
since guards are associated with futures. Rule New-Object creates a new object
with a unique identifier o′ and entity η′′. The object’s fields a′ are given default
values and are extended with the actual values [[α]]a◦l for the class parameters
(evaluated in the context of the creating process), and o′ for this. The process
init(C) will be active (this function returns idle if the init method is unspecified
in the class C, and it asynchronously calls run if the latter is specified). The rule
validates the accountable object by checking against user-allowed instances and
the allowance for actions {use, transfer} for α since the statement is using and
transferring the (private) values in expression α, to the newly created object.
Similarly, it checks the credentials for the newly created object and the allowance
for actions {collect, store} for α since these new (private) values are collected
and stored long-term in the fields of the created object.

Rule Async-Call sends an invocation message with the method name m
and the actual parameters tv, to [[e]]a◦l, which return value is associated to a
freshly created future f . It validates the accountable object by checking against
user-allowed instances and the allowance for actions {use, transfer} for α since
the statement is using the values in expression α, and transferring the values
tv to [[e]]a◦l. In Rule Bind-Mtd, the invocation message is consumed, and the
function bind(m, o, o′, tv, f, η′) binds a method call in the class of the callee o.
This results in a new process {l | s}′

η which is placed in the queue of o, where
the formal parameters of m are bound in l to tv, the reserved variable caller is
bound to o′, and a reserved variable destiny is bound to f . The rule validates the
caller object by checking against user allowed instances and allowance of action
{use, transfer} to check if the respective consent exists for the caller object in
the configuration since the call. It then validates the accountable object and the
allowance for action collect for tv since the statement is temporarily collecting
them in the local variables of the new process.

Rule Return places the return value into the associated future of the process
that was stored in the reserved variable destiny. It validates the accountable
object and the allowance for actions {use, transfer} for e since the statement is
using and transferring e to the associated future. Rule Read-Fut deferences a
future on the form f(v). Note that if the future lacks a value, it is of the form

280 C. P. Baramashetru et al.

Fig. 8. User interactions semantics for AOL.

f and the reduction in this object is blocked. Note that no privacy checks are
done in this rule, since they will be done by the corresponding assignment rule.

In Fig. 8, rule New-User creates a new user with a unique identifier u and
assigns it to variable x. The user u is then added to the global consent Σ . Rule
Add-Consent allows user u to add policy ρ = (η̂, â, p̂) to his/her consent, here
the function InsrtPol(χ, ρ) adds to the binding χ the new elements in ρ. Let cp
be the Cartesian product of the sets η̂ and p̂, this creates a set of pairs ̂〈η, p〉 ∈ cp.
Each action in â is then mapped to cp, creating a binding χ′′, which updates
χ, such that InsrtPol(χ, ρ) returns an updated binding χ′. Rule Withdraw-
Consent allows user u to respectively remove the element in the policy ρ in
the binding χ, by using the function RmvPol(χ, ρ), updating the global consent
Σ . Similarly, rules Add-Instance and Remove-Instance allow user u to add,
respectively remove, instance o′ to the consent in Σ .

7 Reflection on P-AOL Semantics

We now reflect on the formal syntax and semantics of P-AOL and frame the
discussion toward the challenges presented in Sect. 3. Challenge 1 is related to
contextual awareness for handling personal data. To meet this challenge, we
introduce new program constructs, i.e., entities, and purposes. We use data tags
to associate data with user identities and purposes (to capture purpose-based
processing). Challenge 2 is related to data becoming personal data. Our language
captures such scenarios by a special tag construct that associates expressions to
user ids and purposes. During the evaluation of such expression, the system
reduces the expression to a private value, such that the privacy-related checks in
the standard execution rules will apply. Challenge 3 is related to personal data
with multiple owners. This scenario is clearly explained by the bank loan system

Integrating Data Privacy Compliance in Active Object Languages 281

example in Sect. 5, which is further discussed in the evaluation of expressions (see
Fig. 5): When private values are associated with two or more users, we consider
the union of users and intersection of purposes, such association is further used
to check consent in the standard execution rules to guarantee that the handling
of private values associated with multiple users considers the consent of each of
them. Challenge 4 is related to unclear terminology for personal data handling
in the GDPR. Our formal language considers a concrete interpretation of the
terminology and enforces them in the transition rules for standard execution so
that corresponding checks are done according to the consent of each user, as
shown in the scenarios of the motivating examples in Sect. 5.

7.1 Thoughts on Error Handling in P-AOL When Lacking Consent

The semantics of P-AOL does not include runtime error handling. If a runtime
error occurs in one of the objects, the execution in the active process will stop
and the object will be blocked, yet the object stays alive. One particular case
in which errors might occur in P-AOL is caused by the lack of consent for
handling personal data. One alternative to overcome such errors is the use of a
dynamic consent interaction dialogue with the user, where a dialogue mechanism
is introduced asking for the required consent from the user. Regarding GDPR,
this could be reflected by opt-in/opt-out requests, allowing users to opt in or opt
out dynamically at runtime. We can further refine the options to:

Allow-once: for temporary consent, with a new dialogue next time needed,
Allow-always: for changing the consent so that it is kept for further processing.

However, this requires users to be available whenever the data is processed,
which is not always reasonable. Hence, there is a need for other complementary
mechanisms such as:

– Suspension points, allowing the current process to be suspended until a
Boolean condition is satisfied or a return value is available. (e.g., extend
guards in the await statement to handle Boolean expressions). Then if the
condition or return value are not available at that point (e.g., the user has not
yet given the required consent), we can introduce a release point and suspend
execution in the active process until the needed results are available, mean-
while, letting other (enabled) processes from the waiting queue be scheduled,
unblocking the execution in the object.

– Exception handling, where exceptions are raised at the process level and han-
dled for e.g. using try and catch block locally in the process.

– Process finalizers, which will terminate the process gracefully, possibly undo-
ing some actions and sending messages to the involved parties. This is similar
to roll-backs and fall-back functions in Solidity [24] and finalizers in other
language settings [3].

282 C. P. Baramashetru et al.

8 Correctness

P-AOL’s operational semantics results in a possible non-terminating state tran-
sition system. We prove that any execution of a program in our language will
satisfy compliance at every step. Compliance in our setting expresses that any
personal data handling should follow the user’s privacy consent. Intuitively, han-
dling personal data is allowed via actions use, collect, store, and transfer. Hence,
we formalize actions to check if valid consent exists for every action and user
in any state and then check against program premises required to execute any
statement. We use first-order logic to reason about the correctness of our pro-
gram since we need predicates, function symbols, and quantifiers. Our formulas
are typically defined for each state of an object o in a given configuration cn.

Below, we define action formulas where we check if the appropriate action
exists in the consent Σ for the data in question.

Definition 1 (Use). Given a state cn, consent Σ, private tags t, object ids o,
o0 and entity η0, we define the following formula (use), expressing consented
usage of private data:

use(cn, o, t,Σ , o0, η0) = ∃σ, l, η, η′, q, s, s′ . o(σ, {l | s; s′}η′ , q, η) ∈ cn ∧
∀u ∈ U(t) ∃ô, χ . u �→ 〈χ, ô〉 ∈ Σ ∧ ∃p ∈ P(t) . 〈η0, p〉 ∈ χ(use) ∧ o0 ∈ ô

Definition 2 (Collect). Given a state cn, consent Σ, private tags t, object ids
o, o0 and entity η0, we define the following formula (col), expressing consented
collection of private data:

col(cn, o, t,Σ , η0, o0) = ∃σ, l, η, η′, q, s, s′ . o(σ, {l | s; s′}η′ , q, η) ∈ cn ∧
∀u ∈ U(t) ∃ô, χ . u �→ 〈χ, ô〉 ∈ Σ ∧ ∃p ∈ P(t) . 〈η0, p〉 ∈ χ(collect) ∧ o0 ∈ ô

Definition 3 (Store). Given a state cn, consent Σ, private tags t, object ids
o, o0 and entity η0, we define the following formula (store), expressing consented
storing of private data:

store(cn, o, t,Σ , o0, η0) = ∃σ, l, η, η′, q, s, s′ . o(σ, {l | s; s′}η′ , q, η) ∈ cn ∧
∀u ∈ U(t) ∃ô, χ . u �→ 〈χ, ô〉 ∈ Σ ∧ ∃p ∈ P(t) . 〈η0, p〉 ∈ χ(store) ∧ o0 ∈ ô

Definition 4 (Transfer). Given a state cn, consent Σ, private tags t, object ids
o, o0 and entity η0, we define the following formula (trans), expressing consented
transfer of private data:

trans(cn, o, t,Σ , o0, η0) = ∃, σ, l, η, η′, q, s, s′ . o(σ, {l | s; s′}η′ , q, η) ∈ cn ∧
∀u ∈ U(t) ∃ô, χ . u �→ 〈χ, ô〉 ∈ Σ ∧ ∃p ∈ P(t) . 〈η0, p〉 ∈ χ(transfer) ∧ o0 ∈ ô

In all the above formulas, P(t) extracts the purposes and U(t) extracts the users
from tags t. We check the compliance against rules that can access private data
at any state. This is to say that, in our operational semantics, the rules accessing

Integrating Data Privacy Compliance in Active Object Languages 283

personal data through actions are New-object, Assign1, Assign2, Cond1, Cond2,
Async-Call, Bind-Mtd, and Return. Other rules from the semantics do not con-
stitute any compliance check and are therefore omitted in the proof. We check
if the program permission to execute any statements is in accordance with the
appropriate consent by the user in that state.

Definition 5 (Compliance). To check compliance with respect to user consent
for executing any program statement, we define the following formula, comp:

comp(cn, o,Σ) = ∃σ, x, e, α, α, l,m, q, η, η′, s, s′, o0, η0 .
o(σ, {l | s ; s′}η′ , q, η) ∈ cn ∧ 〈o0, η0〉 = E(〈l(caller), η′〉, 〈o, η〉)
∧ (s = (x := α) ∧ x ∈ dom(l) ⇒

use(cn, o, Ta◦l(α),Σ , o0, η0) ∧ col(cn, o, Ta◦l(α),Σ , η0, o0))
∧ (s = (x := α) ∧ x �∈ dom(l) ⇒

use(cn, o, Ta◦l(α),Σ , o0, η0) ∧ col(cn, o, Ta◦l(α),Σ , o0, η0) ∧
store(cn, o, Ta◦l(α),Σ , o0, η))

∧ (s = (x := new C(α) of η′′) ⇒
use(cn, o, Ta◦l(α),Σ , o0, η0) ∧ col(cn, o, Ta◦l(α),Σ , η′′, o0) ∧
store(cn, o, Ta◦l(α),Σ , o0, η

′′) ∧ trans(cn, o, Ta◦l(α),Σ , o0, η0))
∧ (s = (x := if e {s1}) ⇒ use(cn, o, Ta◦l(e),Σ , o0, η0))
∧ (s = (x := e!m(α)) ⇒

use(cn, o, Ta◦l(α),Σ , o0, η0) ∧ trans(cn, o, Ta◦l(α),Σ , o0, η0)) ∧
(bind(m, o, o′, tv, η′) ∈ q ⇒ col(cn, o, Ta◦l(α),Σ , o0, η

′′))
∧ (s = (x := return(e)) ⇒ use(cn, o, Ta◦l(e),Σ , o0, η0))∧

trans(cn, o, Ta◦l(e),Σ , o0, η0))

Definition 6 (Compliance property). We define an execution as a sequence
of execution steps, possibly non-terminating, where each step is made according
to the operational semantics. An execution is said to be privacy compliant if
each step in the execution satisfies comp(cn, o,Σ) where cn is the configuration
at the start of the step, o is the object performing the step, and Σ ∈ cn is the
consent.

Theorem 1 (Compliance). All executions following our operational seman-
tics are privacy compliant.

Proof. We prove the compliance property by case analysis on the rules. We prove
that each execution step, between the configurations cni �→ cni+1, satisfies the
compliance property, which again implies that all executions in our transition
system satisfies compliance.

To prove this, let’s assume that the current state is cn in our execution.

– Case Assign1. We may assume that the current program statement is x := α and
x ∈ dom(l) in object o(σ, {l | x := α; s′}η′ , q, η). Rule Assign1 is used, and we have
〈o0, η0〉 = E(〈l(caller), η′〉, 〈o, η〉). The premises imply use(cn, o, Ta◦l(α),Σ , o0, η0),
col(cn, o, Ta◦l(α),Σ , η0, o0)).
Hence the compliance formula comp(cn, o,Σ) holds for the current execution step.

284 C. P. Baramashetru et al.

– Case New-object. We may assume that the current program statement is x : =
new C(α) of η′′ in object o(σ, {l | x = new C(α) of η′′; s}η′ , q, η)}.
The rule used is New-object, and we have 〈o0, η0〉 = E(〈l(caller), η′〉, 〈o, η〉). The
premises together imply col(cn, o, Ta◦l(α),Σ , o0, η

′′), store(cn, o, Ta◦l(α),Σ , o0, η
′′),

use(cn, o, Ta◦l(α),Σ , o0, η0), and trans(cn, o, Ta◦l(α),Σ , o0, η0).
Hence the compliance formula comp(cn, o,Σ) holds for the current execution step.

– Case Async-call. We may assume the current program statement is x = e!m(α)
in object o(σ, {l | x:=e!m(α) ; s′}η′ , q, η). The rule used is Async-call, and we have

〈o0, η0〉 = E(〈l(caller), η′〉, 〈o, η〉). The premises imply use(cn, o, Ta◦l(α),Σ , o0, η0)
and trans(cn, o, Ta◦l(α),Σ , o0, η0)).
Hence the compliance formula comp(cn, o,Σ) holds for the current execution step.

Analogous proofs can be done for all the other statements. However, the require-
ment of comp(cn, o,Σ) concerning method binding is stronger than the last two
premises of rule bind-mtd, since there could be changes to the consent while
methods are in the process queue. If we assume that the consent is not strength-
ened for a user u while there are pending invocations with private data about u,
we can also conclude that method binding is compliant. This is a reasonable
assumption, assuming such updates on Σ may be temporarily delayed. Thus in
all execution steps, we conclude that the compliance property holds, thereby
proving that all executions in our transition system are privacy compliant.

9 Related Work and Discussion

Notions such as privacy by design (PbD) [5], data protection by design and
default [18], and legal compliance appear quite often in the literature; despite
much ongoing work in this direction, the research community agrees about the
need of practical guidance on such notions [13,29]. Schneider indicates that pri-
vacy principles, such as PbD, go through various levels of abstraction from their
conceptual models during design time until software implementation and do not
entirely guarantee privacy [22]. Hence, there is a need of privacy-aware languages
that help capture software design models with data privacy constructs that facil-
itate the check of privacy principles. Purpose is vital to privacy, and role-based
access control (RBAC) models enriched with purpose-awareness [4,15,32] for
enterprise data handling have been previously well-explored; these authorization
models fail to capture the current regulatory requirements and consider only
organizational interests and not user preferences. Researchers have previously
explored information flow analysis to comply programs against privacy policies,
many of these approaches use static techniques [17,23,27]. It is essential to high-
light that in all of these prior works, static analysis alone will not be enough
to fully automate GDPR compliance since elements, such as consent, change at
runtime. Complementary to our line of work, Hjerppe et al. [10] presents a static
source code analysis to detect personal data; their focus is on the developers
perspective rather than on the users’ perspective. Hayati and Abadi [9] describe
an approach to model and verify aspects of privacy policies with a focus on enti-
ties and purpose, ignoring other aspects of GDPR. Closer to our work, Tokas

Integrating Data Privacy Compliance in Active Object Languages 285

et al. [26] and Karami et al. [12] explore language-based GDPR compliance.
The former [26] considers a core active object language with runtime updates of
user consent, presents an operational semantics, and shows that the semantics
guarantees compliance. User policies consider entity, purpose, and access rights;
however, different from our approach, access rights are less GDPR-oriented and
understood in terms of read, append, and write accesses. The latter [12] consid-
ers a sequential Java-like language and uses opt-in/opt-out requests to relevant
users. Consent management operations are built into the language. In contrast
to our work, we capture data privacy consents, in particular, a predefined user
interface for the adjustment of the consent settings.

In the direction of a general study of GDPR and legal compliance, Ranise and
Siswantoro [21] propose an approach for privacy-aware automated legal compli-
ance checking by using tools for policy analysis on efficient SMT solvers. Unfor-
tunately, this was proposed before GDPR and did not consider crucial elements
like consent, actions, entities, and other GDPR requirements. Piras et al. [19]
propose the design of an architecture abiding by GDPR requirements. How-
ever, this approach lacks implementation details on compliance and does not
address data interoperability at lower system operations, unlike our approach,
where enforcement of data subjects’ preferences and monitoring inconsistency
with consent is handled on a data level, guaranteeing a concrete notion of com-
pliance. Further away from the techniques shown in this paper, there is a line
of research that explores compliance checking through blockchain technology;
Vargas [31] proposes a blockchain-based automated tool for compliance that
considers consent operations and the purpose of processing. Similarly, Truong et
al. [28] propose a Blockchain-based personal data management compliance with
the GDPR platform, guaranteeing GDPR requirements like transparency and
accountability. However, blockchain’s immutability, i.e., ledgers can never be
erased, clashes with GDPR’s “right to be forgotten”, and even if personal data
is stored off-chain, any record on the chain will result in violation of GDPR in
the platform.

10 Conclusions and Future Work

This paper proposes integrating privacy concepts into a core active object lan-
guage to explore how language syntax and semantics can be used to ensure
personal data handling by design and default. We first motivate the privacy
constructs that must be included in the language to address privacy awareness
and enforcement of compliance with personal data handling according to users’
consent. Then, we propose a semantics that integrates such abstractions. Finally,
we prove the correctness of the semantics with respect to users’ consent.

Our current proposed semantics is fixed to a concrete interpretation of GDPR
terminology. It would be interesting to explore how to parametrize the transition
rules with respect to desired personal data handling checks according to different
data privacy legislations and domain expertise. The proposed data privacy checks
introduce heavy runtime overheads for every transition rule that is handling data.

286 C. P. Baramashetru et al.

An interesting next step will be to look into how to reduce the checkpoints so
that we still guarantee compliance by using, e.g., behavioural types [11] that
can statically approximate the required checks so that they occur less often. We
have addressed some fine-grained personal data handling concepts for GDPR in
the proposed transition rules. However, we omitted concepts like data deletion
(for the right to be forgotten) and data retention time (for storage limitation),
which have a temporal flavor in the analysis. It would be interesting to further
extend the semantics to include such concepts in the compliance checks.

We formalized the transfer of rights between data controllers (DC) and data
processors (DP) by the notion of accountable entity. We want to extend the
compliance checks such that DCs also restrict the processing rights for processors
and sub-processors. GDPR mentions contractual agreements between DC and
DP and the processor’s liability towards the DC. Hence, we may need to add
privacy rules for DCs to restrict the information exchange between controllers
and (sub)processors, e.g., by keeping track of the approved processors for each
controller. Finally, we want to build a proof of concept tool to make the semantics
of P-AOL executable and evaluate it via case studies and use cases.

Acknowledgment. We would like to thank Nils Gruschka for his feedback related to
data privacy, the GDPR requirements and its challenges, and Paola Giannini for her
feedback related to the language semantics.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. The MIT Press, Cambridge (1986)

2. Baramashetru, C.P., Tapia Tarifa, S.L., Owe, O., Gruschka, N.: A policy language
to capture compliance of data protection requirements. In: ter Beek, M.H., Mona-
han, R. (eds.) IFM 2022. LNCS, vol. 13274, pp. 289–309. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-07727-2 16

3. Boehm, H.: Destructors, finalizers, and synchronization. In: Conference Record of
POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, New Orleans, Louisisana, USA, 15–17 January 2003, pp. 262–272.
ACM (2003)

4. Byun, J.-W., Bertino, E., Li, N.: Purpose based access control of complex data
for privacy protection. In: Proceedings of the tenth ACM Symposium on Access
Control Models and Technologies, Stockholm, Sweden, pp. 102–110. ACM (2005)

5. Cavoukian, A., Chibba, M.: Advancing privacy and security in computing, net-
working and systems innovations through privacy by design. In: Proceedings of the
2009 Conference of the Centre for Advanced Studies on Collaborative Research,
pp. 358–360. ACM (2009)

6. de Boer, F.S., et al.: A survey of active object languages. ACM Comput. Surv.
50(5), 76:1–76:39 (2017)

7. European Parliament and Council. Regulation (EU) 2016/679 of the European
parliament and of the council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such
data, and repealing directive 95/46/EC (general data protection regulation) (text
with EEA relevance) (2016). http://data.europa.eu/eli/reg/2016/679/oj/eng

https://doi.org/10.1007/978-3-031-07727-2_16
http://data.europa.eu/eli/reg/2016/679/oj/eng

Integrating Data Privacy Compliance in Active Object Languages 287

8. Gürses, S., Troncoso, C., Diaz, C.: Engineering privacy by design. Comput. Priv.
Data Protect. 14(3), 25 (2011)

9. Hayati, K., Abadi, M.: Language-based enforcement of privacy policies. In: Mar-
tin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 302–313. Springer,
Heidelberg (2005). https://doi.org/10.1007/11423409 19

10. Hjerppe, K., Ruohonen, J., Leppänen, V.: Annotation-based static analysis for
personal data protection. In: Friedewald, M., Önen, M., Lievens, E., Krenn, S.,
Fricker, S. (eds.) Privacy and Identity 2019. IAICT, vol. 576, pp. 343–358. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-42504-3 22

11. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 1–36 (2016)

12. Karami, F., Basin, D.A., Johnsen, E.B.: DPL: A language for GDPR enforce-
ment. In: 35th IEEE Computer Security Foundations Symposium, CSF 2022, Haifa,
Israel, 7–10 August 2022, pp. 112–129. IEEE (2022)

13. Kuty�lowski, M., Lauks-Dutka, A., Yung, M.: GDPR – challenges for reconciling
legal rules with technical reality. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.)
ESORICS 2020. LNCS, vol. 12308, pp. 736–755. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58951-6 36

14. MacLennan, B.J.: Principles of Programming Languages: Design, Evaluation, and
Implementation, 2nd edn. Holt, Rinehart & Winston, USA (1986)

15. Masoumzadeh, A., Joshi, J.B.D.: PuRBAC: purpose-aware role-based access con-
trol. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp. 1104–1121.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88873-4 12

16. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oret. Comput. Sci. 96, 73–155 (1992)

17. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Trans. Softw. Eng. Methodol. 9(4), 410–442 (2000)

18. Network, E., Agency, I.S.: Privacy and data protection by design: from policy to
engineering. Publications Office (2014)

19. Piras, L., et al.: DEFeND architecture: a privacy by design platform for GDPR
compliance. In: Gritzalis, S., Weippl, E.R., Katsikas, S.K., Anderst-Kotsis, G.,
Tjoa, A.M., Khalil, I. (eds.) TrustBus 2019. LNCS, vol. 11711, pp. 78–93. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-27813-7 6

20. Politou, E., Alepis, E., Patsakis, C.: Forgetting personal data and revoking consent
under the GDPR: challenges and proposed solutions. J. Cybersecur. 4(1), tyy001
(2018)

21. Ranise, S., Siswantoro, H.: Automated legal compliance checking by security policy
analysis. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS,
vol. 10489, pp. 361–372. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66284-8 30

22. Schneider, G.: Is privacy by construction possible? In: Margaria, T., Steffen, B.
(eds.) ISoLA 2018. LNCS, vol. 11244, pp. 471–485. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03418-4 28

23. Sen, S., Guha, S., Datta, A., Rajamani, S.K., Tsai, J., Wing, J.M.: Bootstrapping
privacy compliance in big data systems. In: 2014 IEEE Symposium on Security
and Privacy, San Jose, CA, pp. 327–342. IEEE (2014)

24. soliditylang.org. Solidity documentation (2023). https://docs.soliditylang.org/ /
downloads/en/latest/pdf/

25. Spiekermann, S.: The challenges of privacy by design. Commun. ACM 55(7), 38–40
(2012)

https://doi.org/10.1007/11423409_19
https://doi.org/10.1007/978-3-030-42504-3_22
https://doi.org/10.1007/978-3-030-58951-6_36
https://doi.org/10.1007/978-3-030-58951-6_36
https://doi.org/10.1007/978-3-540-88873-4_12
https://doi.org/10.1007/978-3-030-27813-7_6
https://doi.org/10.1007/978-3-319-66284-8_30
https://doi.org/10.1007/978-3-319-66284-8_30
https://doi.org/10.1007/978-3-030-03418-4_28
https://doi.org/10.1007/978-3-030-03418-4_28
https://docs.soliditylang.org/_/downloads/en/latest/pdf/
https://docs.soliditylang.org/_/downloads/en/latest/pdf/

288 C. P. Baramashetru et al.

26. Tokas, S., Owe, O.: A formal framework for consent management. In: Gotsman,
A., Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 169–186. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-50086-3 10

27. Tokas, S., Owe, O., Ramezanifarkhani, T.: Static checking of GDPR-related pri-
vacy compliance for object-oriented distributed systems. J. Log. Algebraic Methods
Program. 125, 100733 (2022)

28. Truong, N.B., Sun, K., Lee, G.M., Guo, Y.: GDPR-compliant personal data man-
agement: a blockchain-based solution. IEEE Trans. Inf. Forensics Secur. 15, 1746–
1761 (2020)

29. Utz, C., Degeling, M., Fahl, S., Schaub, F., Holz, T.: (Un) informed consent: study-
ing GDPR consent notices in the field. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pp. 973–990 (2019)

30. van Lieshout, M., Kool, L., van Schoonhoven, B., de Jonge, M.: Privacy by design:
an alternative to existing practice in safeguarding privacy. Info 13(6), 55–68 (2011)

31. Vargas, J.C.: Blockchain-based consent manager for GDPR compliance. Open Iden-
tity Summit 2019 (2019)

32. Yang, N., Barringer, H., Zhang, N.: A purpose-based access control model. In:
Third International Symposium on Information Assurance and Security, pp. 143–
148 (2007)

https://doi.org/10.1007/978-3-030-50086-3_10

Context-Aware Trace Contracts

Reiner Hähnle1(B), Eduard Kamburjan2, and Marco Scaletta1

1 Technical University of Darmstadt, Darmstadt, Germany
{reiner.hahnle,marco.scaletta}@tu-darmstadt.de

2 University of Oslo, Oslo, Norway
eduard@ifi.uio.no

Abstract. The behavior of concurrent, asynchronous procedures
depends in general on the call context, because of the global protocol
that governs scheduling. This context cannot be specified with the state-
based Hoare-style contracts common in deductive verification. Recent
work generalized state-based to trace contracts, which permit to specify
the internal behavior of a procedure, such as calls or state changes, but
not its call context. In this article we propose a program logic of context-
aware trace contracts for specifying global behavior of asynchronous pro-
grams. We also provide a sound proof system that addresses two chal-
lenges: To observe the program state not merely at the end points of
a procedure, we introduce the novel concept of an observation quanti-
fier. And to combat combinatorial explosion of possible call sequences of
procedures, we transfer Liskov’s principle of behavioral subtyping to the
analysis of asynchronous procedures.

1 Introduction

Contracts [16,35] are a cornerstone of the rely-guarantee paradigm for verifica-
tion [25], as it enables the decomposition of a program along naturally defined
boundaries. A well-established example are procedure contracts which encap-
sulate the behavior of the execution of a single procedure in terms of pre- and
post-condition.1 Traditionally, a pre-condition describes the state at the moment
a procedure is called, and the post-condition describes the state at the moment
the procedure terminates. The contract-based approach to deductive verifica-
tion permits to verify a program in a procedure-modular manner and so makes
it possible to conduct correctness proofs of sequential programs of considerable
complexity and size in real programming languages [10,17].

A concurrent setting poses a completely different challenge, because concur-
rently executing procedures may interfere on the state, causing a myriad of pos-
sibly different behaviors, even for small programs. Contracts in the presence of
fine-grained concurrency tend to be highly complex, because they have to encode
substantial parts of the invariants of the whole system under verification [4]. It
was rightly argued since long that a suitable granularity of interference is key to
arrive at manageable specifications of concurrent programs [26].
1 Additional specification elements, such as frames or exceptional behavior, can be

considered as syntactic sugar to achieve concise post-conditions.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, pp. 289–322, 2024.
https://doi.org/10.1007/978-3-031-51060-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51060-1_11&domain=pdf
https://doi.org/10.1007/978-3-031-51060-1_11

290 R. Hähnle et al.

Main Contribution. The present paper constitutes an effort to generalize the
contract-based approach to the verification for concurrent programs. General-
ization involves two aspects: First, it is necessary to specify sets of traces of a
verified program, not merely sets of pre-/post states, to be able to refer to the
context of a program and to internal events, such as other procedure calls. Trace-
based logics, such as temporal logic, are standard to specify concurrent programs.
Here, we use a recent trace logic [7] that is exogenous [40] (i.e., allows judgments
involving explicit programs) and can characterize procedure calls. Second, and
this is our central contribution, not merely the procedure under verification is
specified by traces, but pre-/postconditions are generalized to traces. This per-
mits to specify the context in which a contract is supposed to be applied without
ghost variables or other auxiliary constructs. As we are going to show, this app-
roach admits a procedure-modular deductive verification system for concurrent
programs, where the correctness of each procedure contract implies the correct-
ness of the conjunction of all contracts, i.e. of the whole program.

Setting. There is an important limitation: our current approach does not work for
preemptive concurrency, but is targeted at the active object paradigm [9]. With
asynchronous procedures and syntactically explicit suspension points, active
objects are a good trade-off between usability and verifiability, and they fea-
ture appropriate granularity to render contract-based specification useful.

Earlier research [12,15] showed that active objects are amenable to deduc-
tive verification, however, that work suffered from limitations: Asynchronous
procedure calls, even with explicit suspension points, cannot be encapsulated in
a big-step abstraction using pre-/post-conditions to describe state. Instead, a
specification must at least partially describe the possible traces resulting from
procedure execution, including (procedure-)internal events, such as synchroniza-
tion, to reason about concurrency. Because of this, the state-based approach
of [12,15] turned out to be problematic in two aspects: First, it necessitates the
use of ghost variables, in this case for recording event histories during symbolic
execution. This, in turn, requires to reason about histories as a data structure,
hindering proof search automation. Second, specification of a procedure’s con-
text is done in terms of state. This makes it impossible to specify the history
and future wherein a procedure is expected to operate correctly. For example, a
procedure relying on a given resource may require that certain operations to pre-
pare that resource were completed once it starts. Dually, it might expect that its
caller cleans up afterwards. In particular, properties that stipulate the existence
of global traces, such as liveness, cannot be expressed with state-based contracts.
The context-aware trace contracts we define below do not require ghost variables
and they let one specify the history and future of a called procedure.

Approach. The sketched limitations of state-based approaches to specification of
concurrent programs suggest to explore trace-based specification contracts. We
present context-aware trace contracts (CATs). Syntactically, these are formulas
of a logic for symbolic traces [7], generalizing first-order pre- and post-conditions.
One immediate consequence is that trace elements, such as events, become first-

Context-Aware Trace Contracts 291

class citizens and need not be modeled with ghost variables. The possible traces
of a given procedure m are specified with a CAT Cm in the form of a judgment
m : Cm, meaning that all possible traces of m, including their context, are
described by Cm.

Our main contribution is to fashion these contracts as context-aware. This
means that a CAT for a procedure m consists of three parts: A generalized
pre-condition describing the assumed trace up to the moment when m starts;
the possible traces produced by executing m; and a post-condition that again
is a trace describing the assumed operations taking place after termination of
m. The generalization of pre-/post-conditions to traces requires careful exam-
ination of allocation of guarantees: A procedure guarantees only its post-state
but it assumes the system continues in a certain fashion—this is, however, not
guaranteed by the procedure, but by the caller.

Let us illustrate CATs with an example. Consider a procedure work that
operates on a file. Its pre-condition is that the file was opened. Its internal
specification is that the file may be read or written to, but nothing else. Its
post-condition is that (A) in the final state of work, a flag indicating that it has
finished is set, and that (B) after work terminated, the file will be closed. While
the procedure assumes that the file has been opened upon start, itself it can only
guarantee (A), while it is the caller’s obligation to ensure (B).

Summary of Contributions and Structure. Our main contribution is the gener-
alization of state-based procedure contracts to the context-aware, trace-based
CAT model that permits not merely to specify the behavior of a procedure, but
also its context. We apply the CAT theory to a simplified active object concur-
rency model, where trace specification involves communication events, and the
proof calculus must keep track of when a procedure may start execution and
when its pre-condition must hold.

To render specification and verification practical, we add two further ingredi-
ents: the novel concept of an observation quantifier lets one record the (symbolic)
value of a program variable at a given point in a CAT. This can be seen as a
generalization of old references in state-based contract languages [33] and lets
one compare the symbolic values of program variables at different points within
a CAT. Second, to reduce the specification and verification effort, we generalize
Liskov’s behavioral subtyping principle [34] to CATs.

We first discuss the state of the art in Sect. 2, before we introduce our pro-
gramming model in Sect. 3. The CAT concept is based on a trace logic, described
in Sect. 4, and CATs themselves are described in Sect. 5. The proof calculus is
given in Sect. 6, before we give an example in Sect. 7, describe the Liskov prin-
ciple in Sect. 8 and conclude in Sect. 9.

Formal proofs of our results are given in our technical report [18].

2 State of the Art

Traces and Contracts. Specifying traces in logic has a long tradition, for example,
using Linear Temporal Logic (LTL) [42] for events. We focus here on trace logics

292 R. Hähnle et al.

used for deductive verification. Our use of traces for internal specification is
based on work by Bubel et al. [7], which is following a line of research going
back to Dynamic Logic with Co-Inductive traces [6] that focused on a sequential
while language and is not connected to contracts.

Dynamic Trace Logic (DTL) [5] is an extension of dynamic logic that uses
LTL formulas as post-conditions. DTL was investigated for a fragment of Java
without concurrency and implemented as a prototype in th KeY system. It only
specifies changes of the state and no events, and is targeting internal behavior
of methods.

ABSDL [12,15] uses first-order logic and a ghost variable to keep track of
events. As discussed in the introduction, the use of a ghost variable to encode
trace properties in state predicates leads to complex specification patterns.
ABSDL was implemented in KeY-ABS [12] for the Active Object language
ABS [24]. As specification, however, it only supports object invariants, procedure
contracts must be encoded. This specification principle does not scale to com-
plex systems and protocols and, as it keeps track of events, but not of states, it
cannot handle specifications for internal state change. The specifications are also
procedure-local: one cannot express global system properties or even liveness.

Behavioral Program Logic (BPL) [27] is a parametric logic with trace-based
semantics, that has been instantiated for a calculus that supports behavioral pro-
cedure contracts [30]. A behavioral procedure contract supports limited speci-
fication of context, by specifying which procedures are allowed to run before
execution starts, but it does so in a dedicated specification pattern called con-
text set, which is not uniform for trace logic. The approach is implemented in
the Crowbar tool [31] for ABS and based on Locally Abstract, Globally Con-
crete (LAGC) semantics [13,14], a bilayered trace semantics that differentiates
between local traces of statements and global traces of programs. Local traces
are parameterized with a concurrent context and combined into a concrete global
trace once that context becomes known due to scheduling decisions. In the end,
a set of concrete traces is produced for a given program.

Context and Contracts. With context we mean the execution trace before and
after a procedure is executed, as specified from the perspective of the proce-
dure. In the following, we discuss approaches that view traces from a similar
perspective. Behavioral contracts for Active Objects are discussed above.

Session types are a typing paradigm for specification and verification of event
traces in concurrent systems [22], which was adapted to active objects [29].
Session types have a projection mechanism that generates a local specification
from a global one. Projection is re-interpreted as generation of proof obligations
within BPL, where global soundness relies on the implicit context of the global
specification [27,28].

Typestate [3,11] is an approach, where a trace of procedure calls is spec-
ified at the object level. In terms of the file example in the introduction, the
order of opening, writing/reading, and closing a file would be part of the spec-
ification of the file class. Typestate has recently been integrated in deductive
verification [36], but is complementary to contracts: it specifies traces from the

Context-Aware Trace Contracts 293

Fig. 1. Syntax of Async

point of view of the entities that are the target of events, while contracts specify
traces from the point of view of the origin of events. In particular, it presup-
poses object-like structures. As we can see later, this is unnecessary for contracts,
which merely require procedures.

In this article, we focus on specifying the temporal context of a procedure
call, i.e., the preceding and subsequent events. Orthogonal to this, and not our
concern here, is the spatial context, where one specifies the relation between
different parts of the heap memory, such as in Separation Logic [39,41], Dynamic
Frames [32], Permission Logic [37], etc. These are state-based formalisms. To
combine them with CATs is future work.

3 Program Semantics

3.1 The Async Language

Syntax. We define the Async language, a small, imperative language that fea-
tures asynchronous as well as synchronous procedure calls, and a tree-like con-
currency model. It slightly simplifies typical Active Object languages [9], but
it is close enough to expose the challenges of trace-based semantics and con-
tracts for languages with cooperative scheduling. We permit recursion only for
synchronous calls, which is sufficient in practice. For the sake of being able to
present relevant examples, we add a small domain-specific language extension
with file operations (second line of statement rule in Fig. 1).

Definition 1 (Syntax). The syntax of programs P and their elements is given
by the grammar in Fig. 1. A program P consists of a set of procedures given
by procedures(P) and an init block that declares the global variables and the
initial statement to start execution. The global lookup table G is defined by G =
〈m() {s; return}〉m∈procedures(P). Let PVar be the set of program variables with
typical value x. Let m range over procedure names and f over file descriptors.

There are no type annotations and no local variables in Async. A procedure
M has a name m, and a procedure body for execution. Each procedure ends
with a return statement, serving merely as a syntactic marker to simplify the
semantics of process termination: There are neither return values, nor proce-
dure parameters, all of which can be encoded as global variables. A statement

294 R. Hähnle et al.

s is either a standard imperative construct, like assignment or sequential com-
position, a synchronous call m(), an asynchronous call !m() or a file operation
for opening, closing, reading and writing a file2. We underspecify the set of
expressions, but require that file identifiers are literals. We assume expression
evaluation to be total.

To guide the presentation and motivate our approach we use the following
running example.

Example 1. The following program writes to two files using the do procedure.
This procedure opens the file stored in the global variable file, asynchronously
issues its closing, and then calls operate.

do() { open(file); !closeF(); operate(); return; }
operate() { write(file); return; }
closeF() { close(file); return; }
{file; file = "file1.txt"; do(); file = "file2.txt"; do(); }

Concurrency Model. Before we formalize the semantics of Async, we point
out its cooperative tree-like scheduling for concurrency. By cooperative, we mean
that a process is preemption-free: Once a procedure starts, it runs until the
end of its code before another procedure can be scheduled. This is standard
in both Actor and Active Object languages [9]. By tree-like, we mean that all
asynchronously called procedures by a process p, are guaranteed to run directly
after p terminates. This ensures that from the point of view of the caller of p,
these processes are hidden and do not interleave with other caller processes.

Example 2. Consider a program where procedure m asynchronously calls m1 and
m2, while m1 asynchronously calls m3 and m4.

m() { !m1(); !m2(); return }
m1() { !m3(); !m4(); return }
{ m() }

The tree-like semantics ensures the following scheduling constraints:

– The processes for m1 and m2 run directly after the one for m terminates, and
before any other process is scheduled (of a potential caller of m).

– The processes for m3 and m4 run directly after the one for m1 terminates, and
before any other process is scheduled.

– Assume that m1 is scheduled before m2, then the processes for m3 and m4 run
before the one for m2.

Synchronous calls are handled via inlining and are a special case of this
model.

2 We do not add the value to be written as a parameter, again for simplicity. This can
be easily modelled with a global variable, if desired.

Context-Aware Trace Contracts 295

Example 3. Consider the following program:

m1() { !m3(); return }
m2() {...}
m3() {...}
{ m1(); m2() }

Since the body of m1 is inlined before the one of m2, under the tree-like semantics
all the procedures called in m1 (synchronous or not) run before m2. Therefore, is
ensured that m3 runs before m2.

Example 4. The tree-like concurrency model guarantees that in Example 1, pro-
cedure operate is executed before closeF, because the two calls occur in the same
scope, and the first one is synchronous while the second is asynchronous.

3.2 States and Traces

We define the program semantics formally, following mostly [7], except for file
operations, some aspects of call identifier management, and tree-like concurrency.
First, we require some technical definitions.

Definition 2 (State, State Update). A state σ ∈ Σ is a partial mapping
σ : PVar ⇀ Val from variables to values. The notation σ[x �→ v] expresses the
update of state σ at x with value v and is defined as σ[x �→ v](y) = v if x = y
and σ[x �→ v](y) = σ(y) otherwise.

There is a standard evaluation function valσ for expressions, for example, in
a state σ = [x �→ 0, y �→ 1] we have valσ(x+ y) = valσ(x) + valσ(y) = 0 + 1 = 1.

Call scopes inside events keep track of active and called processes for pro-
cedures. This simplifies the semantics as one does not need an explicit process
pool or stack frames.

Definition 3 (Scope). A (call) scope is a pair scp = (m, id), where m is a
procedure name and id is a call identifier.

Events keep track of side effects, in particular they keep track of asynchronous
calls, process scheduling and termination, and file interactions.

Definition 4 (Event Marker). Let m be a procedure name, id a call identifier,
and scp a scope. Event markers ev are defined by the grammar:

ev::= call(m, id) | invoc(m, id) | ret(id) | push(scp) | pop(scp) |
open(f) | close(f) | read(f) | write(f)

We denote with ev(e) a generic event marker over expressions e. Event mark-
ers call(m, id), invoc(m, id), and ret(id) are associated with a synchronous call, an
asynchronous call, and a return statement, respectively. Event markers push(scp)
and pop(scp) are associated with the start (process activation after a call) and
end of a computation in a procedure (termination of a process after the return

296 R. Hähnle et al.

statement has been executed) in scope scp, respectively. These events are sim-
ilar to, but simpler than the ones in [14,15] due to the absence of futures, call
parameters, and return values. In addition, in [14,15] invocation reaction events
are used only for asynchronous calls, while we use push for synchronous calls as
well to achieve greater uniformity.

We define dedicated event markers open(f), close(f), read(f), and write(f)
associated with operations on a file f . These are a domain-specific extension of
the framework, added for the benefit of having examples.

Definition 5 (Trace). A trace τ is defined by the following rules (where ε
denotes the empty trace):

τ ::= ε | τ � t t ::= σ | ev(e)

We define a singleton trace as 〈σ〉 = ε � σ. When an event ev(e) is generated
we need to uniquely associate it with the state σ in which it was generated. To
do so we define the corresponding event trace evσ(e) = 〈σ〉 � ev(valσ(e)) � σ.

Traces are finite sequences over events and states, where every event is encap-
sulated in an event trace triple. Events do not change a state. States and events
do not need to be constantly alternating, there can be arbitrarily many state
updates between the occurrence of two events.

Sequential composition “r;s” of statements is semantically modeled as trace
composition, where the trace from executing r ends in a state from which the
execution trace of s proceeds. Thus the trace of r ends in the same state as where
the trace of s begins. This motivates the semantic chop “∗∗” on traces [20,21,38]
that we often use, instead of the standard concatenation operator “ ·”.
Definition 6 (Semantic Chop on Traces). Let τ1, τ2 be non-empty and finite
traces. The semantic chop τ1∗∗τ2 is defined as τ1∗∗τ2 = τ ·τ2, where τ1 = τ � σ,
τ2 = 〈σ′〉 · τ ′, and σ = σ′. When σ �= σ′ the result is undefined.

Example 5. Let τ1 = 〈σ〉 � σ[x �→ 1] and τ2 = 〈σ[x �→ 1]〉 � σ[x �→ 1, y �→ 2],
then τ1∗∗τ2 = 〈σ〉 � σ[x �→ 1] � σ[x �→ 1, y �→ 2].

Our trace semantics evaluates an individual statement “locally”. Obviously, it
is not possible to fully evaluate composite statements in this manner. Therefore,
local semantic rules perform one evaluation step at a time and defer evaluation of
the remaining statements, which are put into a continuation, to subsequent rule
applications. Syntactically, continuations are simply statements s wrapped in
the symbol K. To achieve uniform definitions we permit the case that no further
evaluation is required (it has been completed) and use the “empty bottle” symbol
for this case.

Definition 7 (Continuation Marker). Let s be a program statement, then
K(s) is a continuation marker. The empty continuation is denoted with K()
and expresses that nothing remains to be evaluated.

Context-Aware Trace Contracts 297

3.3 Semantics of Async

The semantics of Async is two-layered: a local semantics for small-step evaluation
of a single process, and a global semantics for the evaluation of the whole state,
in particular scheduling and other concurrency operations.

As our language is locally deterministic3, we define local small-step evaluation
valσ(s) of a statement s in state σ to return a single trace: The result of valσ(s)
is of the form τ · K(s′), where τ is an initial (small-step) trace of s and K(s′)
contains the remaining, possibly empty, statement s′ yet to be evaluated.

To distinguish different calls of the same procedure, we generate fresh call
identifiers. This cannot be done locally, so the most recently used call identifier
is passed as a “counter” id to the local evaluation rules. Yet another context
parameter of the local evaluation rules is the identifier of the currently executing
scope cId . It is passed down from a global rule. Both parameters appear as
superscripts in valid,cId

σ (s).

Definition 8 (Small-Step Local Evaluation). The local evaluation rules
defining valid,cId

σ (s) are given in Fig. 2.

Fig. 2. Local Program Semantics.

The rules for asynchronous calls, synchronous calls, and return emit suitable
event traces. The difference between call and invoc is that the former directly
triggers execution of a procedure in the trace composition rules below. In both
cases a new call identifier is generated based on id, therefore any two calls, no
matter whether synchronous or not, always have different call identifiers.

The rule for sequential composition assumes empty leading continuations
are discarded, the remaining rules are straightforward. Local evaluation of a
statement s yields a small step τ of s plus a continuation K(s′). Therefore,
3 Evaluation of a single process, in a known context.

298 R. Hähnle et al.

traces can be extended by evaluating the continuation and stitching the result
to τ . This is performed by trace composition rules that operate on configurations
of the form τ, K(s). To formulate the composition rules we need to introduce
auxiliary structures to keep track of scopes and the call tree.

We define schematic traces that allow us to characterize succinctly sets of
traces (not) containing certain events via matching. The notation ev· · · represents
the set of all non-empty, finite traces without events of type ev ∈ ev. Symbol · · ·
is shorthand for ∅· · ·. With τ1

ev· · · τ2 we denote the set of all well-defined traces
τ1∗∗τ∗∗τ2 such that τ ∈ ev· · ·.

Maintaining the stack of call scopes is handled by the composition rules with
the help of events push(scp) and pop(scp) that are added to the generated trace
τ . To find the current call scope in τ , one simply searches for the most recent
pushed scope that was not yet popped:

Definition 9 (Current Call Scope, Most Recent Call Identifier). Let τ
be a non-empty trace. The current call scope is defined as

currScp(τ) =

{
scp τ ∈ · · · pushσ(scp)

push,pop· · ·
currScp(τ ′) τ ∈ τ ′∗∗ pushσ(scp) · · · popσ′(scp)

push,pop· · ·
The most recent call identifier of a trace is retrieved with

id(τ) = max{i | τ ∈ · · ·invoc(_, i) · · · or τ ∈ · · ·call(_, i)· · ·} .

If τ is not empty then we define the function last(τ) = last(τ ′
� σ) = σ, for

some state σ and possibly empty trace τ ′.

To retrieve the most recent call identifier it suffices to consider events that
introduce fresh call identifiers, i.e. call and invoc.

To define the processes in a given trace that are eligible for scheduling, we
define the call tree of a trace that records the dependencies of the call scopes.
Each node in the call tree is a scope in the given trace, where an edge (v1, v2)
denotes that v1 called or invoked v2.

Definition 10 (Call Tree). A call tree for a trace τ is an ordered tree

(V (τ), E(τ), <)

with vertices V (τ) = {(m, i) | τ ∈ · · ·invoc(m, i) · · · or τ ∈ · · ·call(m, i)· · ·},
edges

E(τ) ={(currScp(τ ′), (m, i)) | (τ ∈ τ ′∗∗callσ(m, i)· · ·)
∨ (τ ∈ τ ′∗∗invocσ(m, i)· · ·)}

and order (m1, i1) < (m2, i2) ⇐⇒ i1 < i2 . We define the set of idle nodes
Vidle(τ) ⊆ V (τ) as those asynchronous calls having not yet started to execute:

Vidle(τ) = {(m, i) | τ ∈ · · ·invoc(m, i)
push(m,i)· · · }

Context-Aware Trace Contracts 299

We also define a function to retrieve all children of a given call scope:

children(scp, τ) = {child | (scp, child) ∈ E(τ)}
Observe that Vidle can never coincide with V , since the main scope is never

idle, i.e. (init, 0) /∈ Vidle .
To define the tree-like semantics mentioned in Sect. 3.1, we introduce implicit

barriers for the execution of asynchronously called procedures: a procedure that
was invoked in scope scp must be scheduled before the scope scp is exited. We do
not allow pending procedure invocations in a closed call scope. This is formalized
in the following definition.

Definition 11 (Schedule Function). Given a trace τ we define

schedule(τ) = children(currScp(τ), τ) ∩ Vidle(τ)

The above scheduling function realizes tree-like concurrency, but can be
easily adapted to other concurrency models. For example, schedule(τ) =
{min(Vidle(τ))} defines a deterministic scheduler (as does any instantiation that
returns a singleton or empty set), while schedule(τ) = Vidle(τ) is the usual fully
non-deterministic scheduler.

Fig. 3. Trace and call tree for an incomplete execution of program from Example 2.

Example 6. Consider an incomplete execution of the program in Example 2,
with m1 scheduled before m2 and ending with the return statement of m1. We
show in Fig. 3 on the left the trace τ generated by the composition rules that we
introduce later in Definition 12, as well as its call tree on the right. As described
in Example 2, m3 and m4 are executed before m2(). At this point, m3 and m4 can
be scheduled according to the tree semantics, but not m2.

Definition 12 (Trace Composition Rules). One global evaluation step of a
configuration τ, K(s) is given by the trace composition rules in Fig. 4.

300 R. Hähnle et al.

Rule Progress. This rule uses the local small-step semantics valid(τ),iσ (s) to
evaluate s in the continuation in the currently active process i. The local
evaluation function is passed the most recent call id id(τ) and the id i of the
current call scope. It is triggered whenever the current trace does not end in
a call event (which would require starting the execution of a synchronously
called procedure) and no return event for the current scope has been yet gen-
erated (which would require scheduling of asynchronously called procedures).
The first two premises exclude these options, respectively.

Rule Call. This rule schedules the execution of a synchronously called proce-
dure: If the trace ends in a call event, then the body s′ of the procedure m
that has just been called is prepended to the current continuation s.

Rule Run. This rule schedules the execution of an asynchronously called pro-
cedure: If the current scope id finished execution of its return statement
(presence of return event with id in τ), but was not de-scheduled (no pop
event emitted yet), and at least one of its remaining asynchronous calls (to
m) is not scheduled, then the body s′ of m is prepended to the body of the
continuation s and the new scope is pushed on the current trace.

Rule Return. This rule de-schedules a process, which is the case if it has
terminated, and has no asynchronous calls left to execute.

Fig. 4. Global Small-Step Semantics of Async.

We say that a rule is applied with a call identifier i, if it is applied in a state
τ,K(s) with currScp(τ) = (_, i).

Finally, we define the traces of a program, as well as the big-step denotational
semantics of statements and programs.

Definition 13 (Program Trace). Given a statement s (with implicit lookup
table) and a state σ, the traces of s are all the possible maximal sequences

Context-Aware Trace Contracts 301

obtained by repeated application of composition rules starting from 〈σ〉,K(s).
If finite, a maximal sequence has the form

also written .
Let τ be a trace and (_, i) = currScp(τ). A maximal sequence without using

the rule Run with i is denoted

The traces defined by ×→ are those, where the asynchronously called proce-
dures of the outermost statement s are not resolved, but those of synchronously
called methods within s are.

We define two program semantics, the global one represents the execution
of a program taking into account the execution of asynchronous calls. The local
one represents the execution of a program without doing so.

Definition 14 (Program Semantics). The global semantics of a statement s
is only defined for terminating statements as

The local semantics of a statement s is defined, again for terminating state-
ments, as

The semantics of a program P with initial block {d; s} is defined as follows,
assuming no procedure is called “init”. State σd initializes all variables in d to
default values.

The local and global semantics are connected4 as follows. Recall that we
permit only synchronous recursive calls and only terminating programs have a
semantic value.

Proposition 1. Let s be a statement without synchronous method calls, s′ any
procedure body and τ a trace, then:

[[s; s′]]Gτ =
⋃

τ ′∈[[s]]Lτ

[[s]]Lτ ∗∗[[s′]]Gτ∗∗τ ′ .

A special case is
4 The split between local and global is inspired by the LAGC semantics for Active

Objects [14]. There are some technical differences between our semantics and LAGC,
most prominently that both our local and global semantics are only defined on
concrete traces: We do not evaluate symbolically.

302 R. Hähnle et al.

Our trace contracts are used to specify functional properties, but are also
able to express generic properties. To keep formalities manageable, we do not
introduce exceptions and verify exception-freedom, but merely specify what it
means that the sequence of file operations is correct.

Definition 15 (File Correctness). A trace τ is file correct, if for every file
descriptor f occurring in τ and any position i in τ with an event writeσ(f),
readσ(f) or closeσ(f) for some σ, there is a position j with in τ with the event
openσ′(f) for some σ′ and for no k with j < k < i, there is a closeσ′′(f) event
at position k for some σ′′.

4 A Logic for Trace-Based Specification

The trace logic is based on [7], however, instead of modeling program variables
as non-rigid symbols in trace formulas, we define a quantifier to bind values of
program variables to logical variables at a specific position in the trace.

4.1 Syntax

Formulas are constructed over a set LVar of first-order observation variables and
a set RecVar of recursion variables.

Definition 16. Let P range over first-order predicates, X over recursion vari-
ables RecVar, x over program variables PVar, and y over logical variables LVar.
The syntax of the logic is defined by the following grammar:

Φ ::= �P � | X | Ev | Φ ∧ Φ | Φ ∨ Φ

| Φ · Φ | Φ ∗∗Φ | (μX.Φ) | � x as y.Φ

We forbid any occurrence of recursion variables X in the scope of �.

Events Ev related to the beginning, return, and end of a procedure m in
scope (m, i) have the form start(m, i), ret(i), pop(m, i), respectively. Events Ev
related to manipulation of a file f have the form open(f), close(f), read(f), or
write(f). It is not necessary that events in the trace logic exactly follow the
events in the trace semantics. In fact, a certain degree of abstraction is usually
desirable. The event structure Ev of our logic is parameterizable. The semantics
of events in the logic relative to events in traces is defined in Sect. 4.2.

The novel aspect of our logic is the observation quantifier �. It addresses the
problem that, unlike in state-based Hoare-style contracts, in the asynchronous
setting it is necessary to observe the value of program variables at arbitrary
points inside a trace specification. This could be achieved with non-rigid vari-
ables, but to control their visibility is technically complex already in the sequen-
tial case [1]. An intuitive version of scoping is provided by quantifiers of the form
� x as y.Φ, where a logical variable y observes the value of a program variable x
at the position in the trace, where the quantifier occurs. This observed snapshot
is available within the scope Φ of the quantifier, but not outside.

Context-Aware Trace Contracts 303

Example 7 (Notation for generic finite traces). The expressive power of fixed
points can be used to define transitive closure. Let the predicate NoEv(ev) be
true in any state that is not one of the events occurring in a set of events ev.
We define the trace formula

ev·· = μX. (NoEv(ev) ∨ NoEv(ev) · X)

that characterizes all non-empty, finite traces that do not contain an event occur-
ring in ev. If ev = ∅, we simply write “··”.

Finally, we take the convention to omit writing the ∗∗ operator between
ev··

and any adjacent trace formula. For example, the expression “�P � ··” denotes all
finite traces that begin with a state, where P is true. Another useful pattern is
Φ

ev·· Ψ , which expresses that any finite trace not involving an event in ev may
occur between the traces specified by Φ and Ψ .

The ·· notation is the syntactic equivalent of · · · defined in Sect. 3.3 and
extremely useful to write concise specifications. Thanks to the expressive power
of fixed points, it is definable in our logic.

4.2 Semantics

We use a fixed5 first-order interpretation I for predicate and function symbols,
an environment o : LVar → PVar×Σ for observation quantifiers, and a recursion
variable assignment ρ : RecVar → 2Traces that maps each recursion variable to a
set of traces. The (finite-trace) semantics [[Φ]]ρ,o of formulas as a set of traces is
inductively defined in Fig. 5.

The observation environment o records for a logic variable y introduced by
an observation quantifier the program variable x and program state σ it keeps
track of. Hence, for a given y one can construct a first-order variable assignment
β : LVar → Val via the following definition:

β(o)(y) = σ(x) with o(y) = (x, σ)

Our language does not include equality over logical observation variables.

Definition 17. The semantics of our logic is given in Fig. 5, where � and �
denote point-wise set inclusion and intersection, respectively, and I, β |= P is
first-order satisfiability under interpretation I and variable assignment β.

By a trace formula we mean a formula of our logic that is closed with respect
to both first-order and recursion variables. Since the semantics of a trace formula
does not depend on variable assignments, we sometimes use [[Φ]] to denote [[Φ]]ρ,o

for arbitrary ρ and o.

Example 8. The following formula describes all traces, where the value of pro-
gram variable x decreases after a call to decr with call identifier 1:

·· � x as y1. (start(decr, 1) ·· ret(1) ∗∗ � x as y2.�y1 > y2�) ··
5 This can be generalized as usual, if needed.

304 R. Hähnle et al.

Fig. 5. Semantics of Trace Formulas.

5 Contracts

5.1 The Concept of Trace-Aware Contracts

Our goal is to generalize contracts, where the pre- and post-conditions are state
formulas, to contracts, where initial and trailing traces may occur.

For example, consider a procedure operate that works on a file. First it
prepares the file in some way, then it computes something with the data in it,
finally it tidies the file up. In addition, operate assumes the file was opened
before it starts and that someone takes care to close it after it finishes.

The internal actions of operate are specified as a trace over suitable events.
However, its pre- and post-conditions are also traces, as they do not specify the
moment when the procedure is called and when it terminates, but operations
performed sometime before and after. The global trace has the following shape:

assume ∗∗
operate︷ ︸︸ ︷
work ∗∗ continue (5)

In the following we abbreviate the trace formulas with their first letter, that
is a for assume, etc. State pre- and post-conditions are the states where the
assume and work traces (work and continue) overlap, so we can refine (5) into:

assume ∗∗�Pre� ∗∗work ∗∗�Post� ∗∗continue (6)

Formula �Pre� describes the states a caller must be in when operate is called,
which are the states that operate can assume to be started in. Dually, �Post�
describes the states operate ensures upon finishing, which are the states the
caller expects to be in, after the call to operate. We say that the trace formulas
assume and continue are the context described by the above trace specifica-
tion. Contexts pose a challenge to modularity: For a Hoare-style contract, the
caller is responsible for the pre-condition, while the callee is responsible for the
post-condition. The temporal dimension of the procedure (first call, then ter-
mination) and the temporal dimension of the contract (first pre-condition, then

Context-Aware Trace Contracts 305

post-condition) coincide. This is not the case for the trace contexts: The trace
continue occurs after the call, but must be established by the caller. Moreover,
the context is not local to the call site of the procedure, it describes arbitrary
actions before and after the call.

Consider Fig. 6, with procedure morig, containing a synchronous call to m,
which in turn contains another synchronous call to ma. From the perspective of
ma the post-condition (θcma , using the notation we introduce in Definition 18)
describes the actions of the caller (procedure m) and the complete call stack, i.e.,
the caller’s callers such as morig, which are unaware of the call to ma.

Fig. 6. Scope of the post-condition.

Before we turn our attention to the solution of these difficulties in verification,
let us formalize the syntax and semantics of a trace contract.

5.2 Formal Trace Contracts

Definition 18 (Trace Contract, Pre-/Post-Trace). Let �x,y denote a pos-
sibly empty list of observational quantifiers over program variables x and logic
variables y. A trace contract Cm for a procedure m has the form

Cm =<<θ′
am

· �x1,y1 .�qam
� | �qam

� · θ′
sm

· �x2,y2 .�qcm
� | �qcm

� · θ′
cm

>> ,

where �qam
�, �qcm

� are first-order predicates6 and θ′
am

, θ′
sm

, θ′
cm

are trace formu-
las. We call θam

= θ′
am

·�x1,y1 .�qam
� the pre-trace, θsm

= �qam
�· θ′

sm
·�x2,y2 .�qcm

�
the internal behavior, and θcm

= �qcm
� · θ′

cm
the post-trace of the contract.

We impose the following restrictions that express that all observation vari-
ables in the pre-trace are bound, all free logical variables in the internal behavior
are bound by the observation variables of the pre-trace, and all free logic vari-
ables in the post-trace are bound by the observation variables of the pre-trace or
internal behavior:

6 �qam� and �qcm� correspond to �Pre� and �Post� above. Of course, it is redundant
that these formulas occur twice in Cm, but we want each part of a trace contract to
be readable on its own.

306 R. Hähnle et al.

– fv(θam
) = ∅

– fv(θsm
) ⊆ y1

– fv(θcm
) ⊆ y1 ∪ y2

A possible contract of procedure operate in Example 1 is as follows. It
expects the file was opened, has not been closed or opened again, and has not
been written to yet. Then operate ensures not to open or close it, abstracting
away from the actual work. Finally, the contract stipulates that the file will be
closed by one of the callers, while not having been opened, closed, or written to.

<<·· � file as f. op(f)
op(f),cl(f),w(f)·· | op(f),cl(f)·· | op(f),cl(f),w(f)·· cl(f) ··>>

We classify trace contracts according to the trace formulas they contain. A
contract is context-aware if it has a non-trivial pre- or post-trace:

Definition 19 (Context-Aware Contract). Let Cm be a trace contract as in
Definition 18:

Cm =<<θ′
am

· �x1,y1 .�qam
� | �qam

� · θ′
sm

· �x2,y2 .�qcm
� | �qcm

� · θ′
cm

,>>

Contract Cm is context-aware if at least one of θ′
am

�≡ ·· or θ′
cm

�≡ ·· holds. Con-
tract Cm is a state contract if θ′

sm
≡ ··. Otherwise, it is a proper trace contract.

Thus, a Hoare-style contract is a non context-aware state contract, while the
contracts in [7] are non context-aware proper trace contracts. The previously
introduced cooperative contracts [30] are context-aware state contracts, however,
with a non-uniform treatment of the context.

As a final note, before we turn to the technical machinery behind trace con-
tracts, we stress that they naturally extend to asynchronous communication.
Consider Fig. 7, with procedure morig, containing a synchronous call to m, which
now contains two asynchronous calls to ma and mb. Analogous to Fig. 6, the post-
trace of ma (θcma) describes the actions of the caller (m) and the complete call
stack, including the asynchronous callers, and subsequently running methods
such as mb.

Fig. 7. Scope of the post-trace with asynchronous calls.

The same setup from m’s point if view is shown in Fig. 8: Its inner specification
contains the traces of the methods it asynchronously calls.

Context-Aware Trace Contracts 307

Fig. 8. Scope of the inner trace with asynchronous calls.

5.3 Events Versus Predicates

The style of specification in Example 1 relies on op(f) and cl(f) being events—
if they were predicates, then op(f) would be evaluated as “it is true that f is
open”. The following contract cannot be fulfilled, because isOpen(f) cannot be
true and false at the same time (f is a logical, rigid variable):

<<·· � file as f. �isOpen(f)� | �isOpen(f)� ·· �!isOpen(f)� | �!isOpen(f)� ··>>
If we want to express without events that f was open before and is closed

later, then we need to introduce a second observation.

<< ·· � file as f. �isOpen(f)�
| �isOpen(f)� ·· � file as f ′. �!isOpen(f ′)�
| �!isOpen(f ′)� ··>>

This contract still lacks the information that f and f ′ refer to the same file.
This can be addressed with a function id that retrieves the id of a file descriptor.

<<·· � file as f.�isOpen(f)� | ·· | � file as f ′.�id(f) .
= id(f ′)∧ !isOpen(f ′)� ··>>

5.4 Semantics of Trace Contracts

We formalize what it means for a contract to hold for a given procedure m.
Intuitively, a contract for m holds in a global trace τ , if it the trace can be
chopped along the events related to m, such that each part of the contract
holds. We formalize this intuition as trace adherence.

Definition 20 (Trace Adherence). Let Cm be a contract for procedure m with

Cm =<<θ′
am

· �x1,y1 .�qam
� | �qam

� · θ′
sm

· �x2,y2 .�qcm
� | �qcm

� · θ′
cm

>> .

We say that trace τ adheres to Cm for call identifier i of m if

τ ∈ [[θ′
am

· �x1,y1 .
(�qam

� · start(m, i) · �qam
� · θ′

sm
·

�x2,y2 .
(�qcm

� · pop(i) · �qcm
� · θ′

cm

))
]]∅,∅

We write this as τ, i |= Cm

308 R. Hähnle et al.

Definition 21 (Procedure Adherence, Program Correctness). Let P =
m {d s} be a program containing a procedure m ∈ m with contract Cm. Given
a trace τ , let idOf(m, τ) be the set of all call identifiers in τ occurring in a call
scope with m. We say that m adheres to Cm in s, written m |= Cm, if

∀τ ∈ [[P]]Gd . ∀i ∈ idOf(m, τ). τ, i |= Cm .

Consider the init block of program P as an implicitly declared procedure and part
of m, so it is uniformly handled in m. Then P is correct, written |= P , if

∀m ∈ m. m |= Cm .

Definitions 20, 21 are based on the pop event, not ret, meaning that the call
scope is completed. In consequence, they specify the final state of a procedure
and all of its asynchronously called procedures.

Context-aware contracts preserve a decisive degree of modularity for verifi-
cation, because a contract can still replace inlining the procedure body during
verification—and this is crucial for inter-procedural verification to scale. How-
ever, as shown in the next section, one needs additional machinery to keep track
of the post-trace. To make this precise, we need a weaker form of adherence:
A procedure weakly adheres to its contract, if it adheres to its pre-trace and
the specification of its inner behavior. Later we show that weak adherence of
all procedures, together with the design of the proof system, ensures (strong)
adherence.

Definition 22 (Weak Adherence). Let Cm be the contract of a procedure m

as in Definition 18. Let Ĉm be the contract that is like Cm, except θ′
cm

= ··. We
say that m weakly adheres to Cm, if it adheres to Ĉm.

6 Proof Calculus

The proof calculus for context-aware contracts is based on symbolic program
execution, while tracking the symbolic trace with the help of updates [1]. In
contrast to previous work [7], here we perform eager symbolic execution, but lazy
weakest precondition computation: The rules for symbolic execution connect an
update prefix, the executed program, and a trace specification, and manipulate
all three of them. This simplifies rules for trace logics that specify behavioral
properties (cf. [27]).

6.1 Trace Updates

During symbolic execution we eagerly generate trace updates consisting of state
updates and event updates, to keep track of the trace in terms of changes of
the program state and of the generated events. One can think of a trace update
as a sequence of symbolic state changes and symbolic events that resulted from
symbolic execution of the program under verification until the current state.

Context-Aware Trace Contracts 309

Definition 23 (Trace Update). The syntax of trace updates is defined by the
following grammar, where ε is the empty sequence of updates

u::= {v:=e} | {Ev(e)}
U ::= ε | uU

Fig. 9. Local evaluation of statements with update prefixes.

The local evaluation rules for statements s prefixed with updates U are given
in Fig. 9. In contrast to the local semantics, here the returned configuration
consists of a set of traces and a continuation marker. The reason is that in the
calculus we abstract away from the execution of procedure calls by means of
procedure contracts. Therefore, the body of a called procedure is never actually
inlined, so its evaluation cannot be local, but it must be global, resulting in a set
of traces representing every possible execution of the procedure body which may
contain asynchronous calls. Here we overload the ∗∗ operator to work on sets of
traces. The non-obvious rules are those for run(m, i, sy) and run(m, i, as), where
sy and as are literals that mark the call mode. Run events represent the set of all
possible executions of a procedure in the context (m, i) after synchronous (sy)
and asynchronous (as) scheduling, respectively. In contrast to the semantics of
run(m, i, as), the one of invoc(m, i) is simply a trace event that keeps track of
the asynchronous invocation of m.

With these rules we integrate the semantics of updates directly into the local
semantics, extending Definition 13, via

where, the Progress rule is generalized such that, given valid,cId
σ (Us) = T ·

K(s′), any of the traces τ ′ ∈ T is considered for extending the current trace.

310 R. Hähnle et al.

6.2 Judgments

We define a sequent calculus based on four different forms of judgment that
express the connection between updates, statements and trace formulas. A
sequent has the form Γ � γ, where γ is one of the judgements defined below,
and Γ a set of such judgements. Γ � γ means: It holds for all states σ that if σ
is a model for all formulas in Γ , then it is also a model for γ.

The first judgment form expresses that a procedure weakly adheres to its
contract. When it occurs as a premise, it can be used to assume the contract
during symbolic execution. When it occurs in a conclusion, it is the proof obli-
gation that must be established by verification. This judgment is independent
of a given state.

Definition 24 (Contract Judgment). The judgment m : Cm expresses that
a procedure m weakly adheres to its contract Cm:

|= m : Cm ⇐⇒ m |= Ĉm

We cannot use (strong) adherence here, because a procedure cannot control,
whether its caller guarantees the post-trace. Strong adherence will emerge later
as a global property of the calculus.

The second judgment form expresses that an update U describes traces that
are models for some trace formula Φ. It is relative to a state σ.

Definition 25 (Local Update Judgment). The judgment U : Φ holds in a
state σ if all traces of U , prefixed with σ are specified by Φ:

σ |= U : Φ ⇐⇒ [[U]]〈σ〉 ⊆ [[Φ]]

The next two judgments forms are similar to the previous ones, but have a
global nature in the sense that they do not only consider the traces described
by the local semantics of a statement or update, but also include the traces gen-
erated by calls in the updates and statements. This means that any unresolved
invoc event leads to execution of the associated procedure.

Definition 26 (Update and Statement Global Judgments). The global
judgments Us :G Φ and U :G Φ hold in a state σ if all traces described by U and
s, respectively, and starting in σ are specified by Φ:

A subtle point is that still generates the traces of the non-resolved pro-
cedures in τ ′, even though it executes the empty context.

Please observe that the global judgements are global with relative to their
scope, not the whole program. Regarding the difference between local and global

Context-Aware Trace Contracts 311

update judgments, consider update U = {invoc(m, i)}{ret(i′)} and trace specifi-
cation Φ = ·· invoc(m, i)·ret(i′)·start(m, i) ··. Locally, Φ is not a valid specification
for U , because for any σ:

σ |= {invoc(m, i)}{ret(i′)} : ·· invoc(m, i) · ret(i′) · start(m, i) ··
⇐⇒ [[{invoc(m, i)}{ret(i′)}]]〈σ〉 ⊆ [[·· invoc(m, i) · ret(i′) · start(m, i) ··]]σ
⇐⇒ {invocσ(m, i)∗∗ retσ(i′)} ⊆ [[·· invoc(m, i) · ret(i′) · start(m, i) ··]]σ

This is obviously not the case. However, it is true as a global judgment,
because in this case the invocation event starts procedure m, which adds the
required event:

σ |= {invoc(m, i)}{ret(i′)} :G ·· invoc(m, i) · ret(i′) · start(m, i) ··
We override the schedule function of Definition 11 to accept also trace

updates.

Definition 27 (Schedule Function over Trace Updates).

schedule(U) = {(m, i) | U = U1{invoc(m, i)}U2 {ret(oId)}U3

where U3 does not contain run(m, i, as)}
Lemma 1 (Soundness of Scheduling).

schedule(U) =
⋃

τ∈[[U]]

schedule(τ)

The proof is in the technical report [18]. The tree-like concurrency model
is crucial: The traces in the semantics of U contain more call scopes, but the
tree-like concurrency model ensures that they are all closed, and hence cannot
be scheduled.

6.3 Proof Rules

We have four classes of proof rules: (1) for procedure contract judgments, (2)
for symbolic execution of the sequential part of the language, i.e., straight-line
programs and synchronous calls under the global judgment, (3) for asynchronous
calls under the global judgment, and (4) to reduce updates in a global judgment
to a local judgment. We do not consider the rules for updates in local judgments.
These are an open research question orthogonal to context-aware contracts. All
given rules for procedure calls use contracts, we refrain from providing rules that
resolve calls by inlining.

Procedure Contracts. The rule for procedure contracts requires to prove the
global judgment that the body of a procedure, starting when the pre-trace holds,
generates a trace where the pre-trace, the internal behavior and the state post-
condition hold. Being global, this trace includes all asynchronously called pro-
cedures. To model the trace at the moment when the procedure starts, a fresh,

312 R. Hähnle et al.

uninterpreted update symbol V is used as the update prefix to describe locally
the pre-trace.

The observation variables y are skolemized into constant symbols cy. This
substitution is denoted [y\cy]. Notation inline(m) retrieves the body of procedure
m. Judgments C must all be contract judgments. For simplicity, and without
loss of generality, we set the identifier of the current scope to a fixed constant
oId .

Contract

V, cy
1, c

y
2, oId fresh θpre =

(
θ′

am
· �qam

�) [
y1 \ cy

1

]
θpost =

(
θ′

am
· �qam

� · θ′
sm

· �qcm
�) [

y1 \ cy
1

] [
y2 \ cy

2

]
C,V{start(m, oId)} : θpre � V{start(m, oId)} inline(m) :G θpost

C � m :<<θ′
am

· �x1,y1 .�qam
� | �qam

� · θ′
sm

· �x2,y2 .�qcm
� | �qcm

� · _>>

It is worth pointing out that the post-trace θ′
cm

in the contract (see Defi-
nition 18) is not used here. Indeed it is out of the scope of the procedure and
occurs as an additional obligation to the caller in the rules below. It is essential
that �qcm

� does not describe the state after the final statement of m, rather it
describes the final state after the last asynchronously called procedure termi-
nates.

Symbolic Execution of Straight-Line Programs. The schematic rules of the sym-
bolic execution calculus for straight-line programs are in Fig. 10, with the core
language on the left and the domain-specific extension on the right. The Assign
rule generates a state update for the assigned variable. Rule Cond branches
a proof according to guard e and rule Return generates the eponymous event
update. The rules for operations on a file f generate the associated events. The
rules Close, Read, and Write require that the file was opened and not closed
intermittently.

Fig. 10. Sequent rules for straight-line programs.

Context-Aware Trace Contracts 313

Synchronous Procedure Calls. The pattern in the conclusion of the Call rule
below matches the antecedent (to retrieve the contract for the called procedure
m), the executed statement (to ensure the next statement to be executed is a
synchronous call) and the trace specification. The latter splits into three parts:
Φ is the specification of the trace until the call to m, θ is the specification for the
part of the trace that is generated by m, and Ψ specifies the remaining trace.7

The rule has three premises. The first corresponds to establishing the condi-
tion for the contract to apply: both, the pre-trace θam

of the procedure contract
and the prefix Φ of the specification of the currently executed code must be
valid for the current trace update U . The second premise checks that the inter-
nal behavior θsm

specified in the contract is contained in the given specification
θ, i.e. the contract is suitable to achieve the claimed specification. In the last
premise update U is extended with a run event to mark that the contract was
used, and the specification is strengthened by the contract, obtained from the
proof of the first two premises. Symbolic execution continues on s in the succe-
dent, where not only Ψ needs to be established, but also θcm

, because as the
caller of m we are also responsible to ensure the post-trace of the contract.

Call

Γ � U : (Φ ∧ θam
) [[θsm

]] ⊆ [[θ]] i fresh
Γ, U{run(m, i, sy)} : (Φ ∧ θam

) ∗∗ θsm
�

U{run(m, i, sy)} s :G (Φ ∧ θam
) ∗∗ θsm

∗∗ (Ψ ∧ θcm
)

Γ,m :<<θam
| θsm

| θcm
>>� U m(); s :G Φ ∗∗ θ ∗∗Ψ

The remaining call rules follow the pattern established above with variations
due to scheduling.

Deterministic Asynchronous Procedure Calls. The rule for deterministic schedul-
ing applies when exactly one asynchronously called procedure, here m, can be
scheduled, according to the first premise. The lookup of the contract for m in Γ
now becomes the second premise. The remaining premises are analogues to the
Call rule, with the difference that the call identifier i is not fresh, but it matches
the identifier of the asynchronous invocation to be scheduled.

ScheduleD

schedule(U) = {(m, i)} Γ � m :<<θam
| θsm

| θcm
>>

Γ � U : (Φ ∧ θam
) [[θsm

]] ⊆ [[θ]]
Γ, U{run(m, i, as)} : (Φ ∧ θam

) ∗∗θsm
�

U{run(m, i, as)} :G (Φ ∧ θam
) ∗∗ θsm

∗∗ (Ψ ∧ θcm
)

Γ � U :G Φ ∗∗ θ ∗∗Ψ

Non-deterministic Asynchronous Procedure Calls. The rule generalizes the deter-
ministic version, by adding the last four premises not just once, but for each
possible scheduling decision. This ensures that symbolic execution considers all
possible traces. We suffer from a blow-up in the size of the proof tree here, but

7 In practice, this split shape must be obtained by suitable weakening rules on trace
formulas. The details are future work.

314 R. Hähnle et al.

the use of contracts provides at least a suitable mechanism to abstract over the
scheduling decisions of the called procedures.

ScheduleN

(m, i) ∈ schedule(U)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Γ � m :<<θam | θsm | θcm >>

Γ � U : (Φ ∧ θam) [[θsm]] ⊆ [[θ]]

Γ, U{run(m, i, as)} : (Φ ∧ θam) ∗∗θsm �
U{run(m, i, as)} :G (Φ ∧ θam) ∗∗ θsm ∗∗ (Ψ ∧ θcm)

Γ � U :G Φ ∗∗ θ ∗∗ Ψ

We can observe a substantial degree of uniformity among the different call
rules. This is possible, because the use of events allows us to separate scheduling
from contract application.

Other Rules. The following inconspicuous rule reduces global to local reason-
ing: When no invocation event is left to be resolved, then the local and global
judgments are equivalent and the final pop event is added. We assume that the
identifier and name of the procedure we are considering are globally known as
m, oId .

Finish
Γ � U{pop((m, oId))} : Φ schedule(U) = ∅

Γ � U :G Φ

6.4 Properties of the Proof Rules

Our rules are sound in the usual sense of sequent calculi. As for the composi-
tionality, we get that all procedures behave as specified and that files are treated
correctly.

Proposition 2. [[UU ′]]τ =
⋃

τ ′∈[[U]]τ
[[U]]τ ∗∗ [[U ′]]τ∗∗τ ′ .

Theorem 1 (Soundness). Rules ScheduleD, ScheduleN, Call, Contract, Finish,
and the rules in Fig. 10 are sound.

The following theorem states a sufficient condition for a program without
asynchronous self-calls to be correct.

Theorem 2 (Global Adherence). Let P be an always terminating program
with procedures m. Let Cm = {m : Cm} denote the set of all contract judgments
and Cm

m′ = Cm \ {m′ : Cm′} the set of contract judgments for all procedures but
m′. If for all m ∈ m the following sequent is valid

Cm
m � m : Cm

then (1) All traces of P are file-correct (Definition 15), and (2) |= P (Defini-
tion 21).

The proofs can be found in the technical report [18]. The only detail we
point out here is that to show program correctness, we need strong procedure
adherence. which we obtain from the proof of θcm

demanded by the succedent
of the final premise of the call rules.

Context-Aware Trace Contracts 315

7 Case Study

We verify the procedures described in Example 1 to illustrate the working of the
calculus. First we specify a set of contracts for Example 1, in slightly prettified
syntax. The init block is, as discussed above, regarded as a procedure (with a
trivial contract). Obviously, this contract cannot have a non-trivial context:

Cmain =<<�true� | ·· | �true�>>

Regarding procedure do, we specify that it assumes that the file stored in f
was not opened so far, and it closes it internally.

Cdo =<<·· � file as f.
open(f)·· �true� | ·· close(f) ·· | �true� ··>>

Procedure closeF specifies that it closes the file and does not reopen it. To
prove this modularly, we must specify that the file was opened before.

CcloseF = <<·· � file as f. open(f)
close(f)·· �true� |

�true� · close(f) open(f)·· | �true� ··>>

Finally, we specify that operate just writes to the file, but doesn’t close it,
which is expected to be done by the caller.

Coperate = <<·· � file as f. open(f)
close(f)·· �true� |

�true� · write(f) close(f)·· | �true� ·· close(f) ··>>

Proving closeF. Let M be the set of all procedures. We use, for readability, the
following abbreviations:

U = V{start(closeF, oId)}
φ1 = U : open(f)

close(f)·· �true�

We apply the Contract rule and skolemize away all observation quantifiers.
In the antecedent we have the assumption that the pre-trace holds, and must
show that the trace specification is globally fulfilled. Next, we apply the Close
rule and show that the file is not closed yet. For simplicity, we map the variable
f directly to the Skolem constant from the observation quantifier. To show the
left premise, we observe that φ1 occurs on both sides of the sequent if we use
the simple observation [[··]] ⇔ [[·· �true�]].

Cm
closeF, φ1 � U :·· open(f) close(f)·· ... (1)

Close
Cm

closeF, φ1 � Uclose(f); return; :G open(f)
close(f)·· �true� · close(f) open(f)··

Contract
Cm

closeF � closeF :G CcloseF

316 R. Hähnle et al.

We symbolically execute return, adding the corresponding event to the
update, and apply the Finish rule, because we obviously cannot schedule any
other procedure. Clearly, this relies on proof obligation generation and the con-
currency model: No event this process can schedule is pending.

schedule(U{close(f)}{ret(oId)}) = ∅ ... (2)
Finish

Cm
closeF, φ1 � U{close(f)}{ret(oId)} :G open(f)

close(f)·· �true� · close(f) open(f)··
Return

Cm
closeF, φ1 � U{close(f)}return; :G open(f)

close(f)·· �true� · close(f) open(f)··
... (1)

The remaining sequent is straightforward to show: The antecedent is U :

open(f)
close(f)·· �true�, so we need to show {close(f)}{ret{oId}} : close(f)

open(f)·· .

This reduces to {ret{oId}} :
open(f)·· , which is clearly the case.

U : open(f)
close(f)·· �true� � U{close(f)}{ret(oId)} : open(f)

close(f)·· �true� · close(f) open(f)··
... (2)

Proving do. Proving the contract of do, which we show in full detail in the tech-
nical report [18], requires to prove an asynchronous call. At the end of symbolic
execution, the schedule function returns a singleton set (the call to closeF),
which must be taken care of. It is the contract of this very rule that adds the
information about a close(f) event that is used to prove the final post-trace.

Proving operate. Proving the correctness of operate is completely analogous to
proving correctness of closeF, except that a write event instead of a close event
is added.

Proving the Init Block. The init block is trivial to prove: It does not restrict
its own behavior, thus the only failure could stem from file operations or not
fulfilling the contract of called procedures. There are no file operations and the
only called procedure has trivial pre- and post-traces.

8 Liskov Principle

Having introduced context-aware contracts and a calculus to verify them, we
turn our attention towards a different approach to handle contracts: behavioral
subtyping in the form of a Liskov principle [34]. In its original formulation, it
states that if some property is provable for elements of a class C, then it must
be provable for all elements of any class D that is a subclass of C.

It can, however, also be understood on a contract-level [23] by focusing on
the property to be proven, not the classes. This means that instead of focusing
on (well-behaving of) subclasses, we focus on (well-behaving of) their contracts:
For state contracts the Liskov principle states that if a procedure m in class C

Context-Aware Trace Contracts 317

has a contract Contrm, and a procedure n overrides m in some subclass D of
C, then n must also satisfy Contrm. Moreover, we can weaken this condition
to allow for a stronger specification of n: the contract Contrn of n must be a
subcontract of Contrm. We detail the notion of a subcontract

Thus, the Liskov principle can be expressed as an order on contracts over
procedures of the same signature, it does not require a language involving classes,
objects or even subtyping.8 We only need to formalize the notion of a sub-
contract: For state contracts Contr1 = (pre1, post1), Contr2 = (pre2, post2) this
is obvious: Contr2 is a sub-contract of Contr1 if these two conditions hold:

1. Pre-Condition pre2 is weaker than pre1: pre1 → pre2.
2. Post-Condition post2 is stronger than post1: post2 → post1.

Equivalently, we say Contr1 is more general than Contr2 and write Contr1 �
Contr2. The sub-contract may define additional pre-conditions and a stronger,
more specific post-condition.

We reformulate the above definition for trace contracts. A sub-contract may
weaken the pre-condition, which is the responsibility of the caller. It may give
the caller more possibilities, but restricts its own post-condition, which it can
control. The principle is that sub-contracts weaken the part of the contract they
cannot control, and strengthen the part of the contract they can control.

For trace contracts, the central issue are the formulas of the traces qa and
qc that are at the border between the assume/continue context and the internal
behavior (see Definition 18). The subtyping principle for context-aware contracts
considers qa as part of the pre-trace because it describes a state the procedure
cannot control. In contrast, qc is considered part of the post-trace, because the
specified procedure can control it.

For simplicity, we formulate context-aware behavioral subtyping for contracts
without observation variables, whose addition is straightforward, but technically
distracting.

Definition 28 (Behavioral Subtyping for Context-Aware Contracts).
We define the more general than relation � between two context-aware contracts
distinguished by superscripts 1, 2:

<<θ′
a1 ·�qa1�∣∣�qa1�· θ′

s1 ·�qc1�
∣∣�qc1�·θ′

c1 >>

� <<θ′
a2 ·�qa2�∣∣�qa2�· θ′

s2 ·�qc2�
∣∣�qc2�·θ′

c2 >>

⇐⇒
[[θ′

a1 · �qa1�]] ⊆ [[θ′
a2 · �qa2�]] (L1)

∧ [[θ′
s1 · �qc1�]] ⊇ [[θ′

s2 · �qc2�]] (L2)
∧ [[θ′

c1]] ⊆ [[θ′
c2]] (L3)

8 This insight was used already in [19] to formulate a Liskov principle for feature-
oriented programming.

318 R. Hähnle et al.

When all traces θ′
a, θ′

c, and θ′
s are empty, this definition boils down to the

Liskov principle for state contracts stated above. The first condition (L1, for pre-
trace and -condition) and the last condition (L3, for the post-trace) are concerned
with the context of a procedure, which it cannot control. Hence, we permit
weakening here. The second condition (L2, for the internal behavior and post-
condition of the procedure) is under its control. Thus, we permit strengthening.

In our setting without inheritance, we can use the Liskov principle to specify
a procedure with a set of contracts, and use the above subtyping principle to
order them. First, we introduce the idea of a maximal contract.

Definition 29 (Maximal Procedure Contract). Given a finite set N of pro-
cedure contracts for a procedure ordered by �, let Max(N) be the set of maximal
elements in N .

We permit a procedure to be specified with multiple contracts, for differ-
ent situations according to different usages. Using maximal procedure contracts,
we need only a subset of them to be proven. The following rule is straightfor-
ward: Given an invocation event on m, it computes all maximal (most general)
contracts and applies all of them.

actOrder

schedule(U) = P

(m, i) ∈ Max(P)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Γ � m :<<θam
| θsm

| θcm
>>

Γ � U : (Φ ∧ θam
) [[θsm

]] ⊆ [[θ]]
Γ, U{run(m, i, as)} : (Φ ∧ θam

) ∗∗θsm
�

U{run(m, i, as)} :G (Φ ∧ θam
) ∗∗ θsm

∗∗ (Ψ ∧ θcm
)

Γ � U :G Φ ∗∗ θ ∗∗Ψ

Remark 1. We proposed behavioral subtyping as a technique to reduce the num-
ber of different call sequences of asynchronous procedures that need to be con-
sidered during verification. Techniques to combat combinatorial explosion of
instruction sequences are standard in model checking [8], but they are at the
level of code not at the level of specifications (i.e., contracts). This holds even
for a partial-order reduction technique that was adapted to asynchronous pro-
cedures [2].

9 Conclusion

We extended state contracts and trace contracts to context-aware trace contracts
(CATs). This permits to specify the behavioral context in which a procedure is
executed, i.e., not merely the static pre-condition, but the actions and states
reached before its execution begins and also those after it ends. Such a specifica-
tion of the call context as part of a procedure contract is essential to specify the
global behavior of concurrent programs is a succinct manner. We instantiated

Context-Aware Trace Contracts 319

the CAT methodology to a language with asynchronous calls, where the context
is of uttermost importance, and gave a proof-of-concept using a file handling
scenario.

To combat combinatorial explosion in verification proofs, we stated a Liskov
principle for CATs that has the potential to reduce the effort dramatically.

We hope our work will enable new specification patterns to overcome the long-
standing specification challenge in deductive verification for trace properties and
concurrent programs.

Future Work. In future work, we plan to investigate richer concurrency models,
in particular full Active Objects with suspension, futures and multiple objects [9].
One question that we did not investigate here, is the relation of CATs to object
and system invariants.

Our observation quantifiers permit to connect programs and traces in a rea-
sonably abstract, yet fine-grained and flexible manner. However, their proof
theory is an open question: In rule Contract in Sect. 6.3 we approximated the
semantics of observation quantifiers in a fairly crude manner by Skolemization.
This makes it difficult to relate different observations to each other and draw
conclusions from them. The axiomatization of observation quantifiers and their
comparison to existing logics with observation constructs should be studied in
its own right.

Obviously, the CAT framework must be implemented so that larger case
studies can be performed. This involves to complete the existing rule set with
rules for update simplification in local judgments.

Acknowledgements. This work was partially supported by the Research Council of
Norway via the SIRIUS Centre (237898) and the PeTWIN project (294600), as well as
the Hessian LOEWE initiative within the Software-Factory 4.0 project.

We profited enormously from the detailed and constructive remarks of the review-
ers.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS,
vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Albert, E., de la Banda, M.G., Gómez-Zamalloa, M., Isabel, M., Stuckey, P.J.: Opti-
mal context-sensitive dynamic partial order reduction with observers. In: Zhang,
D., Møller, A. (eds.) Proceedings 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA, pp. 352–362. ACM (2019)

3. Aldrich, J., Sunshine, J., Saini, D., Sparks, Z.: Typestate-oriented programming.
In: OOPSLA Companion, pp. 1015–1022. ACM (2009)

4. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Lessons learned from micro-
kernel verification - specification is the new bottleneck. In: Cassez, F., Huuck,
R., Klein, G., Schlich, B. (eds.) Proceedings 7th Conference on Systems Software
Verification. EPTCS, vol. 102, pp. 18–32 (2012)

https://doi.org/10.1007/978-3-319-49812-6

320 R. Hähnle et al.

5. Beckert, B., Bruns, D.: Dynamic logic with trace semantics. In: Bonacina, M.P.
(ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 315–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38574-2_22

6. Bubel, R., Din, C.C., Hähnle, R., Nakata, K.: A dynamic logic with traces and coin-
duction. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp.
307–322. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2_21

7. Bubel, R., Gurov, D., Hähnle, R., Scaletta, M.: Trace-based deductive verification.
In: Piskac, R., Voronkov, A. (eds.) Proceedings of 20th International Conference on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR), Manizales
Colombia. EPiC Series in Computing. EasyChair (2023)

8. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.A.: State space reduction using
partial order techniques. Int. J. Softw. Tools Technol. Transf. 2(3), 279–287 (1999)

9. de Boer, F., et al.: A survey of active object languages. ACM Comput. Surv. 50(5),
76:1–76:39 (2017)

10. De Gouw, S., De Boer, F.S., Bubel, R., Hähnle, R., Rot, J., Steinhöfel, D.: Verifying
OpenJDK’s sort method for generic collections. J. Autom. Reason. 62(1), 93–126
(2019)

11. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24851-4_21

12. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the
concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6_35

13. Din, C.C., Hähnle, R., Henrio, L., Johnsen, E.B., Pun, V.K.I., Tarifa, S.L.T.: LAGC
semantics of concurrent programming languages. CoRR, abs/2202.12195 (2022)

14. Din, C.C., Hähnle, R., Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: Locally
abstract, globally concrete semantics of concurrent programming languages. In:
Schmidt, R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp.
22–43. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1_2

15. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Formal Aspects Comput. 27(3), 551–572 (2015)

16. Guttag, J.V., Horning, J.J., Garland, S.J., Jones, K.D., Modet, A., Wing, J.M.:
Larch: Languages and Tools for Formal Specification. Springer, New York (1993).
https://doi.org/10.1007/978-1-4612-2704-5

17. Hähnle, R., Huisman, M.: Deductive software verification: from pen-and-paper
proofs to industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 345–373. Springer, Cham (2019). https://
doi.org/10.1007/978-3-319-91908-9_18

18. Hähnle, R., Kamburjan, E., Scaletta, M.: Context-aware trace contracts. CoRR,
abs/2310.04384 (2023)

19. Hähnle, R., Schaefer, I.: A liskov principle for delta-oriented programming. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 32–46. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_4

20. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM
38(4), 935–962 (1991)

21. Harel, D., Kozen, D., Parikh, R.: Process logic: expressiveness, decidability, com-
pleteness. In: 21st Annual Symposium on Foundations of Computer Science, Syra-
cuse, New York, USA, 13–15 October 1980, pp. 129–142. IEEE Computer Society
(1980)

https://doi.org/10.1007/978-3-642-38574-2_22
https://doi.org/10.1007/978-3-319-24312-2_21
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-66902-1_2
https://doi.org/10.1007/978-1-4612-2704-5
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-642-34026-0_4

Context-Aware Trace Contracts 321

22. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, pp. 273–284 (2008)

23. Huisman, M., Ahrendt, W., Grahl, D., Hentschel, M.: Formal specification with
the java modeling language. In: Deductive Software Verification – The KeY Book.
LNCS, vol. 10001, pp. 193–241. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49812-6_7

24. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_8

25. Jones, C.B.: Developing methods for computer programs including a notion of
interference. Ph.D. thesis, University of Oxford, UK (1981)

26. Jones, C.B.: Granularity and the development of concurrent programs. In: Brookes,
S.D., Main, M.G., Melton, A., Mislove, M.W. (eds.) 11th Annual Conference on
Mathematical Foundations of Programming Semantics, MFPS, New Orleans, LA,
USA. ENTCS, vol. 1, pp. 302–306. Elsevier (1995)

27. Kamburjan, E.: Behavioral program logic. In: Cerrito, S., Popescu, A. (eds.)
TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 391–408. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29026-9_22

28. Kamburjan, E., Chen, T.-C.: Stateful behavioral types for active objects. In: Furia,
C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 214–235. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98938-9_13

29. Kamburjan, E., Din, C.C., Chen, T.-C.: Session-based compositional analysis for
actor-based languages using futures. In: Ogata, K., Lawford, M., Liu, S. (eds.)
ICFEM 2016. LNCS, vol. 10009, pp. 296–312. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47846-3_19

30. Kamburjan, E., Din, C.C., Hähnle, R., Johnsen, E.B.: Behavioral contracts for
cooperative scheduling. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R.,
Ulbrich, M. (eds.) Deductive Software Verification: Future Perspectives. LNCS,
vol. 12345, pp. 85–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64354-6_4

31. Kamburjan, E., Scaletta, M., Rollshausen, N.: Deductive verification of active
objects with crowbar. Sci. Comput. Program. 226, 102928 (2023)

32. Kassios, I.T.: The dynamic frames theory. Form. Asp. Comput. 23(3), 267–288
(2011)

33. Leavens, G.T., et al.: JML Reference Manual (2013). Draft revision 2344
34. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.

Lang. Syst. 16(6), 1811–1841 (1994)
35. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992)
36. Mota, J., Giunti, M., Ravara, A.: On using verifast, vercors, plural, and key to

check object usage. CoRR, abs/2209.05136 (2022)
37. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for

permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5_2

38. Nakata, K., Uustalu, T.: A Hoare logic for the coinductive trace-based big-step
semantics of While. Log. Methods Comput. Sci. 11(1), 1–32 (2015)

39. O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 49–67. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8_4

https://doi.org/10.1007/978-3-319-49812-6_7
https://doi.org/10.1007/978-3-319-49812-6_7
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-030-29026-9_22
https://doi.org/10.1007/978-3-319-98938-9_13
https://doi.org/10.1007/978-3-319-47846-3_19
https://doi.org/10.1007/978-3-319-47846-3_19
https://doi.org/10.1007/978-3-030-64354-6_4
https://doi.org/10.1007/978-3-030-64354-6_4
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-540-28644-8_4

322 R. Hähnle et al.

40. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, pp. 46–57. IEEE
Computer Society (1977)

41. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society (2002)

42. Wolper, P.: Temporal logic can be more expressive. Inf. Control 56, 72–99 (1983)

Type-Based Verification of Delegated
Control in Hybrid Systems

Eduard Kamburjan1(B) and Michael Lienhardt2

1 University of Oslo, Oslo, Norway
eduard@ifi.uio.no

2 ONERA, Palaiseau, France

michael.lienhardt@onera.fr

Abstract. We present a post-region-based verification system for dis-
tributed hybrid systems modeled with Hybrid Active Objects. The post-
region of a class method is the region of the state space where a phys-
ical process must be proven safe to ensure some object invariant. Prior
systems computed the post-region locally to a single object and could
only verify systems where each object ensures its own safety, or relied
on specific, non-modular communication patterns. The system presented
here uses a type-and-effect system to structure the interactions between
objects and computes post-regions globally, but verifies them locally.
Furthermore, we are able to handle systems with delegated control: the
object and method that shape the post-region change over time. We
exemplify our approach with a model of a cloud-based hybrid system.

1 Introduction

Cyber-physical systems are notoriously difficult to design, maintain and analyze,
and major innovation drivers such as the Internet-of-Things or Digital Twins
pose additional challenges for formal modeling and verification. For one, such
systems are inherently distributed. For another, the controlling software may,
contrary to classical control, use delegation for the controlled process: parts of
the controlling software may run on a cloud infrastructure which may restart
the controlling processes, as well as reallocate to a different instance. Thus, the
obligation for part of the control can be delegated to another instance. Formal
guarantees are of critical importance, yet distributed hybrid models and delega-
tion remain an open theoretical challenge.

In this work, we present a system for modular deductive verification of dis-
tributed hybrid systems, which is able to handle delegated control. Our app-
roach is based on hybrid programs: programs that contain constructs to express
continuous evolution of their state. Programming languages-based approaches
for modeling of hybrid systems have recently gained increased research atten-
tion [24,27,30] and aim to provide a theory for hybrid systems that combines
simulation, verification and usability. One of their advantages over low-level for-
malisms, such as hybrid automata [6] or process algebras [16], is the rich theory of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, pp. 323–358, 2024.
https://doi.org/10.1007/978-3-031-51060-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51060-1_12&domain=pdf
http://orcid.org/0000-0002-0996-2543
http://orcid.org/0009-0009-9635-5757
https://doi.org/10.1007/978-3-031-51060-1_12

324 E. Kamburjan and M. Lienhardt

modularity and structure available for programming languages that allows one to
capture and analyze the adaptive structure of modern distributed cyber-physical
systems. We show that hybrid programs can indeed provide the necessary struc-
ture to handle loose coupling and delegation, by integrating verification with
a type-and-effect system [51], a lightweight analysis technique for programs to
keep track of side-effects in computational units.

Hybrid Active Objects. We use the Hybrid Active Object (HAO) concurrency
model, which is one hybrid programming paradigm for distributed systems and
extends Active Objects [17] and is implemented in the Hybrid Abstract Behav-
ioral Specification (HABS) language [34].

A Hybrid Active Object o is an Active Object that additionally encapsulates
a physical process. Only the discrete processes of o may interact with the physical
process of o. A discrete process reacts on changes in the physical process using its
suspension guards. While the discrete process is active, the fields of the physical
process can be accessed as normal fields, but when time advances such fields
change their value according to the physical dynamics.

Previous work [30,34] introduced two verification systems for Hybrid Active
Objects that verify object invariants: Kamburjan [30] gives a generalization of
post-condition reasoning for object-oriented languages [1] to hybrid systems.
However, the system has one major drawback: it computes post-regions based
on single classes – it cannot handle interactions between multiple objects beyond
checking conditions on the passed parameters. Thus, it is not able to use global
information about the overall system to aid verification. On the other hand, an
alternative system [34] can handle more complex interactions, but suffers from a
lack of modularity: To make use of global structure, it only uses a small, rigidly
defined syntactic subset of HABS. In particular, the structure of the overall system
may not change and delegation is not possible.

Type-Based Deductive Verification. In this work we present a novel verification
system for HABS that goes beyond previous systems for object invariants: we
use a type-and-effect system to enable post-regions to be computed based on
interactions between multiple objects. By using the structure provided by the
type system, we are able to integrate deductive verification systems with the
modeling and analysis of cloud systems.

Given an object invariant I, we verify for each method m that when it sus-
pends, I holds until the next process runs. The post-region pr of a method is the
part of the state space where the dynamics must satisfy I for this property to
hold. For example, if another method mctrl executes every n time units, then
the post-region of m can be restricted to the next n time units. It must, however,
be ensured that mctrl is indeed called as specified. We say that mctrl is con-
trolled if the global structure indeed ensures that it is called every n time units.
The caller of a controlled method is a controlling method.

Our system can verify delegated control, where the controlling method
changes during the lifetime of a controlled object. Consider again the method
mctrl from above. It can be called every n time units by another object and the

Type-Based Verification of Delegated Control in Hybrid Systems 325

object calling mctrl may change over time. To use the post-region of m, we must
ensure that there is always some controller for mctrl. To do so, for each object
and each method that is specified as being externally controlled, we keep track
of the current controller using a type-and-effect system.

A type-and-effect system is a generalization of data type systems, which are
defined for some specific side-effect. It checks the correctness of evaluation for a
certain set of objects with respect to this side-effect. In our case, the side-effect
of interest is time advance. By keeping track of how much time each statement
takes, we can verify whether mctrl is called frequently enough. Additionally, we
keep track of ownership [15] to ensure that every method that requires to be
frequently called is indeed always owned by somebody who does. A main feature
of our behavioral type system is its parametricity: while we do keep track of
effects and ownership, we do not compute how long a certain communication
pattern takes. Systems for that kind of property are available [23,37] or are
straightforward to extend; we integrate them through oracles that encapsulate
their analysis. That drastically simplifies our system and allows us to focus on
the presentation of the novel features of the type-and-effect system.

Contributions. Our main contribution is a modular deductive verification system
for Hybrid Active Objects with delegated control that uses a type-and-effect sys-
tem to govern interactions (1) between multiple Hybrid Active Objects and (2)
between Hybrid Active Objects and cloud-models using Timed Active Objects.

Proofs for our theorems are given available in the technical report [33].

2 Hybrid Active Objects and Post-regions

In this section we present the preliminiaries for the rest of the article. First,
we present the HABS language that implements Hybrid Active Objects. It is
introduced, and fully described, by Kamburjan et al. [34]. Here, we only present
the language parts that are relevant for post-region based verification and omit,
e.g., inheritance, method visibility and variability.

A Hybrid Active Object (HAO) is a strongly encapsulated object, i.e., no
other object, not even from the same class, may access the fields of an instance.
Communication between HAOs is only possible through asynchronous method
calls and synchronization: each method call generates a container called future
for the caller that uniquely identifies the (to be) started process at callee side.
The future may be passed around and permits to synchronize (i.e., wait until the
called process terminates) with it and read the return value of the associated pro-
cess. HAOs implement cooperative scheduling : Inside an object, only one process
is active at a time. This process cannot be preempted by the scheduler—it must
explicitly release control by either terminating or suspending (via await). These
two properties make (Hybrid) Active Objects easy to analyze: Approaches for
sequential program analyses can be applied between two await statements (and
method start and end).

Hybrid Active Objects differ from standard Active Objects by a physical

block and physical fields. A physical field is a field that has some dynamics, while

326 E. Kamburjan and M. Lienhardt

Fig. 1. A water tank in HABS with event-based control.

the physical block describes the very dynamics of all physical fields as ODEs.
These dynamics are used to update the state whenever time advances. Inside a
method, an imperative language is used, which has special statements to advance
time or to wait until some condition on the state holds. These conditions define
an urgent transition: The method is reactivated as soon as possible once the
condition holds (and no other process is active).

Example 1. Consider the water tank model in Fig. 1. The tank keeps a water
level between 3 liters and 10 liters. The pictured class, Tank has two discrete
fields (log and drain) and a physical field level. A physical field is described by
its initial value and an ODE in the physical block, which models that the water
level is linear with respect to the drain. Line 5 gives the constructor in form of an
initialization block where the two methods up and down are called. Each method
starts with a statement that has as its guard the condition when the process will
be scheduled (for up, at the moment the level reaches 10 while water rises). This
is logged by calling the external object log on method triggered. This method
call is asynchronous, i.e., the execution of the up (or down) continues without
waiting for it to finish. No future is used in this example. Then, the drain is
adjusted and the method calls itself recursively to react the next time.

Example 1 illustrates event-based control, as the guard of the await diff state-
ment define an event boundary. Alternatively, one may use time-based control,
as the following example illustrates.

Example 2. The controller in Fig. 2 checks the water level of a tank once every
time unit by using the await duration statement to suspend the ctrl process for
the required amount of time. We use JML style [39] comments for specification.

Type-Based Verification of Delegated Control in Hybrid Systems 327

Fig. 2. A specified water tank in HABS with time-based control.

2.1 Syntax

The syntax of HABS is given by the grammar in Fig. 3. Standard expressions e are
defined over fields f, variables v and operators !, |, &, >=, <=, +, -, *, /. Ordinary
differential expressions (ODE) are equalities over expressions extended with a
derivation operator e’. Types T are all class names, type-generic futures Fut<T>,
Real, Unit and Bool.

Fig. 3. HABS grammar. Notation [·] denotes optional elements and · lists.

A program consists of a set of classes and a main block. Each class may have
a list of discrete fields that are passed as parameters on object creation and a list
of internally declared fields with. An internally declared field1 may be declared as
physical. In this case it must be of Real type and must be initialized. Furthermore,
a class has a physical block, which defines the dynamics of physical fields and
1 All fields, independent of where they are declared, are accessible only from their

object.

328 E. Kamburjan and M. Lienhardt

must be present if at least one field is physical. An optional initialization block
is executed directly after object creation and serves as the constructor. Lastly,
a class has a set of methods.

Methods, initializing and main blocks consist of statements. Besides the asyn-
chronous method calls (e!m()) described above, only the following constructs are
non-standard:

– The duration(e) statement advances time by e time units. No other process
may execute in that object during this time lapse.

– The e.get right-hand side expression reads from a future. A future is a con-
tainer that is generated by an asynchronous call. Afterwards a future may be
passed around. With the get statement one can read the return values once
the called process terminates. Until then, the reading process blocks and no
other process can run on the object (that is attempting to read).

– The awaitp g statement suspends the process until the guard g holds. A guard
is either (1) a future poll e? that waits until the process for the future in e
has finished its computation, (2) a duration guard that advances time, or (3)
a differential guard diff e that holds once expression e evaluates to true. Each
such statement has a (program-wide unique) suspension point identifier p,
which we use to identify the most recent suspension in a trace.

We assume that all methods are suspension-leading, i.e., each method starts
with an await statement. This is easily achieved by adding await diff true if a
method is not suspension-leading without significant changes to the behavior2.
Concerning the physical block, we only admit blocks describing trivial behavior
for all non-physical fields. Finally, we only consider well-typed (w.r.t. data types)
programs, where differential guards contain only Real-typed variables.

2.2 Semantics

The runtime semantics is a transition system of the form tcn1 → tcn2, where the
configurations tcn have the form clock(t) cn for some t > 0 and a configuration
cn, which consists of objects and processes. For readability’s sake, we give the
full formal definition in the technical report [33], as the exact formalization of
state adds no further insights here, and only define runtime objects formally.

Definition 1 (Runtime Objects). A runtime object has the form

(o, ρ,ODE, f , prc, q)

An Object has an identifier o, an object store ρ that maps the object fields to
their values, the current dynamic f , an active process prc and a set of inactive
processes q as its parameters. The physical behavior description ODE is taken
from the class declaration.

2 The difference is that the process is scheduled and descheduled immediately at its
start.

Type-Based Verification of Delegated Control in Hybrid Systems 329

Runs. The semantics of a programs is expressed as a set of runs. A run generated
by the operational semantics. For each run, we also generate a set of traces, one
per object.

A trace θ is a mapping from R
+ to states, meaning that at time t the state

of the program is θ(t). A trace is extracted from a run by interpolating between
two configurations resulting from discrete steps using the last solution. We say
that clock(ti) cni is the final configuration at ti in a run, if any other timed
configuration clock(ti) cn ′

i is before it.

Definition 2 (Traces). The initial configuration of a program Prgm is denoted
cn0 [11]. A run of Prgm is a (possibly infinite) reduction sequence

clock(0) cn0 → clock(t1) cn1 → · · ·
A run is time-convergent if it is infinite and limi�→∞ ti < ∞. A run is locally
terminated if every process occurring within the run terminates normally.

For each object o occurring in the run, its trace is defined as θo:

θo(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

undefined if o is not yet created
ρ if clock(x) cn is the final configuration at x

and ρ is the store of o in cn.
advheap(ρ, f, x − y) if there is no configuration at clock(x)

and the last configuration was at clock(y)
with state ρ and dynamic f

with the following auxiliary function to advance the store ρ by t time units
according to dynamics f .

advheap(ρ, f, t)(f) =
{

ρ(f) if f is not physical
f(t)(f) otherwise

The full definition is given in the technical report [33] and illustrated there. We
normalize all traces and let them start with 0 by shifting all states by the time
the object is created.

Example 3. Consider Example 1 and an object where the initial value is 5, i.e.,
inVal = 5. It evaluation has the first discrete steps at time 0, 1. The state after
the transition is as follows:

t = 0 {level = 5, drain = −1}
t = 1 {level = 4, drain = 1}
t = 8 {level = 10, drain = −1}

The trace θ thus has the following properties at these times (as per the second
case in the above definition:

θ(0) = {level = 5, drain = −1}
θ(1) = {level = 4, drain = 1}
θ(8) = {level = 10, drain = −1}

330 E. Kamburjan and M. Lienhardt

The general solution of the dynamics is

level(t) = level(t0) + drain(t0) ∗ t

drain(t) = drain(t0)

This is used to define the value of θ in between. For example for 0 < x < 1 we
have level(t0) = level(0) = 5 and, thus

θ(x)(level) = level(x − 0) = 5 + θ(x − 0)(drain) ∗ x = 5 − 1 ∗ x

As we will see later, we must be able to soundly overapproximate the states
after a suspension and before the next process is scheduled. To make this precise,
we use the notion of suspension-subtraces.

Definition 3 (Suspension-Subtraces). Let C.m be a method in some program
Prgm. Let θo be a trace, stemming from some run of Prgm for some object o of
class C. Let i be the index in θo where some process of m suspends and terminates.
We say that θi

o is the suspension-subtrace of θo, if it starts at i and ends at
(including) the time where the next non-trivial3 process is scheduled. If there is no
such time, then θi

o is infinite. Additionally, θi
o has a variable t with θi

o(0)(t) = 0
and t′ = 1. I.e., a clock that keeps track of the length of θi.

The set of all suspension-subtraces of m in Prgm is denoted Θ(m, Prgm).

Suspension subtraces are exactly the traces between two discrete steps with
length > 0. They contain the states where time advances and no process is active
(for a given object). In the above example, θ has one suspension-subtraces. It
defined by the restriction of the domain to 0 ≤ t ≤ 1. For θ(1).

2.3 Differential Dynamic Logic

To verify HABS, we generate proof obligations that encode that a certain state-
ment or physical process has a certain post-condition. Our logic of choice is dif-
ferential dynamic logic (dL) [45,47], a first-order dynamic logic embeds hybrid
algebraic programs into its modalities. Hybrid algebraic programs are defined by
a simple imperative language, extended with a statement for ordinary differen-
tial equations. Such a statement evolves the state according to some dynamics
for a non-deterministically chosen amount of time.

Definition 4 (Syntax of dL). Let p range over predicate symbols (such as
.=,≥), f over function symbols (such as +) and x over variables. Hybrid algebraic
programs α, formulas ϕ and terms t are defined by the following grammar.

ϕ ::= p(t) | ¬ϕ | ϕ ∧ ϕ | ∃x. ϕ | [α]ϕ t ::= f(t) | x dt := f(dt) | t | (t)′

α ::= x := t | x := * | α ∪ α | α∗ | ?ϕ | α;α | {α} | x = dt&ϕ

3 I.e., a process that performs any action instead of descheduling immediately.

Type-Based Verification of Delegated Control in Hybrid Systems 331

In the following, we use the usual derived connectives (→,∨,∀) for brevity.
Modalities [·] contain hybrid algebraic programs and may be nested using the
? operator. All ODEs are autonomous. The semantics of hybrid programs is as
follows: Program x := t assigns the value of t to x. Program x := * assigns a non-
deterministically chosen value to x. Program α1∪α2 is a non-deterministic choice.
Program α∗ is the Kleene star. Program ?ϕ is a test or filter. It either discards
a run (if ϕ does not hold) or performs no action (if ϕ does hold). Program
α1;α2 is sequence and {α} is a block for structuring. Finally, the statement
x = dt&ϕ evolves the state according to the given ODE in the evolution domain
ϕ for some amount of time. The evolution domain describes where a solution
is allowed to evolve, not the solution itself. The semantics of the first-order
fragment is completely standard. The semantics of [α]ϕ is that ϕ has to hold in
every post-state of α if α terminates. We stress that if α is an ODE, then this
means that ϕ holds throughout the whole solution.

Example 4. The following formula expresses that the position of a bouncing ball
with initial position x below 10 m and initial null velocity v is below 10 before
reaching the ground (given that the gravity is 9.81 m/s).

0 ≤ x ≤ 10 ∧ v
.= 0 → [x′ = v, v′ = −9.81&x ≥ 0]x ≤ 10

Events can be expressed as usual by an event boundary created between a test
and an evolution domain. The following program models that the ball repeatedly
bounces back exactly on the ground.

({x′ = v, v′ = −9.81&x ≥ 0}; ?x ≤ 0; v:= − v ∗ 0.9
)∗

We identify HABS variables and fields with dL variables and denote with trans(e)
the straightforward translation of HABS expressions into dL terms. Standard
control flow constructs (while, if) are encoded using the operators above [46].

Weak negation ¬̃ is needed to define event boundaries. It is defined analo-
gously to normal negation, except for weak inequalities:

¬̃(t1 ≥ t2) ≡ t1 ≤ t2

2.4 Post-region Invariants

To verify an object invariant, one generates a proof obligation in dynamic logic
for each method, and one for the constructor. If all proof obligations can be
closed, i.e., the dynamic logic formulas are all valid, then the object invariant
holds at every point a process starts, ends, suspends or regains control. This
approach is modular, as changes is one method do not require to reprove other
methods.

There are such systems for numerous discrete object-oriented languages, e.g.,
Java (in the KeY-system using Java Dynamic Logic [1]) and ABS (in KeY-
ABS [18] using ABS Dynamic Logic [19] and in Crowbar [35] using Behavioral

332 E. Kamburjan and M. Lienhardt

Program Logic [29]). In the most basic case the proof obligations for an invariant
I take the following form for discrete languages:

I → [s]I

where s is the method body of the method in question; and for the constructor

true → [s]I.

The main idea is that the constructor always establishes the object invariant and
each method preserves it. Each method may assume the invariant, because the
last process established it and in discrete system, state does not change when
no process is active. This is not the case for hybrid systems, the above proof
obligation scheme is not sound.

To accommodate hybrid systems the proof obligation scheme must incorpo-
rate the dynamics in the post-condition, as a so called post-region invariant [30].
The case for methods is the following:

I → [
s
](

I ∧ [dyn&ϕ]I
)

where dyn are the dynamics and ϕ is the post-region. The post-region is the region
where the dynamics must be safe. We say that I is the post-region invariant for
ϕ and stress that it is necessary to establish I as a pure post-condition as well –
it may be the case that ϕ ≡ false, i.e., that the next process starts without time
advance4. To ensure that this next process can also assume I, it is necessary to
add I without dynamics to the post-condition.

If e basic post-region is just true, i.e., the dynamics must stay safe forever.
In general, basic post-regions are not sufficient – consider the two models in
Example 2 and Example 1: these systems are not safe for an unlimited time,
instead there are internal control loops that define when a discrete computation
will start. I.e., it suffices to restrict ϕ to the region where it is not guaranteed
that another method will take over. One can easily extend the precondition, if
the method starts with a guard, by adding the guard to the left-hand side of the
implication.

Two further possible ways to soundly compute more precise internal post-
regions were proposed: structural control and (method-)local control [30]. They
have in common that they are local – the post-region is computed based on
information derived from a single class. They cannot, however, verify the above
examples.

Next, we define the formalization of general soundness for post-regions [31],
which parameterizes the proof obligation scheme with post-region generators.
In the following, we denote the specified invariant for a class C with IC. For
initialization, a constraint on the initial values of the externally initialized fields
may be specified. This creation condition is denoted preC and used a precondition
for the constructor.

4 The post-region is a part of the state space of the object, with time as a dimension.

Type-Based Verification of Delegated Control in Hybrid Systems 333

2.5 General Proof Obligation Scheme

A proof obligation scheme defines a set of dL-formulas, such that validity of
all these formulas implies safety of the program. The scheme we give here is
parametric in the notion of post-region, as well as in the specification. Method
contracts, in the sense of pre-/postcondition pairs, are not of interest here, we
only use a precondition preC.m, which is a first-order formula over the method
parameters, and a postcondition postC.m, which is a first-order formula over the
fields of the class. Similarly, initC is the precondition of the initial block/con-
structor and IC is the class invariant.

Before we define the proof obligation scheme, we must establish some auxil-
iary structures.

– We assume two variables t and cll. Variable t keeps track of time and variable
cll keeps track of contract violations. This is necessary, because the post-
condition is evaluated at the end of the methods and intermediate failures
must be remembered until then.

– The fail statement sets cll to 1, i.e., records a contract violation.

fail = cll := 1

– The havoc statement sets all fields, including all physical fields, but not
local variables to new values. This is used to approximate suspension, where
another process can run, but only change fields.

havoc = f1:= *; . . . fn:= *; for all fields fi

– The havocph statement sets all physical fields to new values.

havocph = f1:= *; . . . fn:= *; for all physical fields fi

– The post-region formula pr(ϕ, I, ode) expresses that a certain invariant I holds
for dynamics ode under post-region ϕ:

pr(ϕ, I, ode) = I ∧ [
t:=0; {ode, t′ = 1&ϕ}]

I

Whenever I and ode are understood, we just write pr(ϕ). Next, we define the
proof obligation scheme itself.

Definition 5 (Proof Obligation Scheme). Let Prgm be a program. For each
class C in the program, let odeC be its dynamics and sC.init the code of the con-
structor. For every method C.m let sC.m be the method body. Let ψ be a family of
post-regions, i.e., formulas over the physical fields of a class and t, indexed with
(1) method names including the constructor, and (2) suspension point identi-
fiers. Let smain be the statement of the main block. The proof obligation scheme
ιψ for family ψ is a function from methods and initial block to formulas, defined
as follows. We use the subscript notation for ι. For every class C, there is one
formula

ιψC.init ≡ initC ∧ cll
.= 0 → [

trans(sinit)
](
cll

.= 0 ∧ pr(ψC.init, IC, odeC)
)

334 E. Kamburjan and M. Lienhardt

for each method m in C one formula

ιψ

C.m ≡ IC ∧ preC.m ∧ cll
.
= 0 → [

trans(sC.m)
](
cll

.
= 0 ∧ postC.m ∧ pr(ψC.m, IC, odeC)

)

and for the main block the formula

ιψmain ≡ cll
.= 0 → [

trans(smain)
]
cll

.= 0.

The translation trans of HABS statements into dL statements is given in Fig. 4.

Fig. 4. Translation of HABS-statements into dL programs.

If ψC.m is the same for all methods and the class is understood, then we
drop the index. We first examine the proof obligation for normal methods. The
precondition IC ∧ preC.m ∧ cll

.= 0 expresses that the object invariant and the
method precondition hold. The last term initializes the special variable cll. The
first term of the post-condition (of the modality) expresses that no intermediate
check failed the proof and cll is still 0. The second term checks the method
post-condition and the last term ensures safety in the post-region. As previously
discussed, it takes the form IC ∧ [t:=0; {ode, t′ = 1&ϕ}] IC. It expresses that the
invariant holds when the method terminated and that it is an invariant for the
dynamics in a defined post-region.

Type-Based Verification of Delegated Control in Hybrid Systems 335

The proof obligation for constructors is analogous but (1) does not assume
the invariant, as it has not been established yet, and (2) assumes the creation
condition as its precondition. A constructor has no post-condition. The proof
obligation for the main block is only checking that all calls and object creations
adhere to the respective precondition, as it runs outside of any object and, thus,
has no additional specification.

The translation of statements into dL-programs works as follows. We consider
all fields as variables for the translation. The translation of sequence, branching,
loops and assignment of side-effect free expressions to location is straightforward.
We can ignore the expression of return statements as invariants cannot specify
return values. The other statements are translated as follows:

– Synchronization with get first checks pr(true), if the formula does not hold,
then verification fails. This models that during synchronization, time may
pass and the invariant must, thus, hold. It is not sound to assume the post-
region ψ here: synchronization blocks, so no other process can run. Further-
more, it may stay blocked for an unbound amount of time, so the invariant
must hold for an unbound amount of time as well. Afterwards, v is set to a
new, unknown value, as the return value in a future is not specified. Addi-
tionally, havocph is used to model that the physical fields may have changed
during the synchronization. In case the check succeeds, the invariant is known
to hold for the new values of the fields.

– Suspension with await is similar, but uses both the post-region ψ and the
guard. We use havoc?;trans(g) to set all fields (but not variables) to new
values – contrary to the case of get, the non-physical fields may have been
changed by another process. For the new values only the guard is known to
hold. The invariant is also known to hold, but only if the check succeeds. We
stress again that time advancement is modeled in the contained modality.

– Method calls check the precondition of the called method. Again, v is set to
a new, unknown value to model a fresh future.

– Object creation is analogous to method calls.
– Finally, blocking time advance is similar to synchronization using get, with

two differences: First, while it is still not sound to use ψ, we may limit the
time spent executing this statement. Second, instead of causing havoc, we
can precisely simulate the state change by advancing the dynamics for the
amount of time given in the duration statement.

A scheme generates one formula per entity. Its ultimate aim, however is to
establish a safety property for the overall system. Indeed, if we use the post-
region false for all methods, we may be able to show validity of all formulas
– yet it does mean that the system is safe. We, thus, need a formalization of
the conditions when the validity of all proof obligations generated by a scheme
imply safety.

336 E. Kamburjan and M. Lienhardt

Formally, a scheme is sound if validity of all generated formulas is sufficient to
prove safety of all class with respect to their invariants, and safety of all methods
with respect to their contracts. We consider partial correctness [26], i.e., we do
not consider deadlock and non-terminating programs.

Definition 6 (Sound Proof Obligation Scheme). If the validity of all proof
obligations from ιψ implies that for all locally terminating, time-divergent runs,
invC holds in every state of every trace of every object o realizing any class C,
whenever (1) o is inactive or (2) time advances, and that the pre-condition of
a method holds in every prestate and the post-condition in every poststate, then
we say that ιψ is sound.

Condition (2) expresses that the object stays safe whenever time advances, even
if a method is already active. This is critical, as otherwise an object would be
in an unsafe state, but would still be considered safe if it, for example, performs
a non-suspending duration.

We can break down soundness of the scheme into two parts: it must describe
the discrete transitions correctly, and it must describe the suspension-subtraces
correctly. For the former, we observe that this property can be shown by rea-
soning about the translation function trans – we, thus, only need a formalization
for the later.

We remind that suspension-subtraces contain the states where time advances
and no process is active, and that (non-trivial) post-regions are not used when
time advances and a process is active, for example during the execution of an
get statement.

Definition 7 (Sound Post-Regions). Let Prgm be a set of programs, all
containing a class C with a method m. Let ψ be a first-order formula over the
fields of C and the variables of m. We say that ψ is Prgm-sound for C.m, if every
state of every suspension-subtrace of every program in Prgm is a model for ψ:

∀Prgm ∈ Prgm. ∀θ ∈ Θ(m, Prgm). ∀i ≤ |θ|. θ[i] |= ψ

This is indeed sufficient – to show soundness of the proof obligation scheme,
it suffices that the used post-region generator is sound: The following theo-
rem [31] states that soundness of post-regions implies soundness of proof obliga-
tion schemes.

Theorem 1 ([31]). If ψC.m is Prgm-sound for all C.m, then the proof obligation
scheme of Definition 5 is sound for Prgm in the sense of Definition 6.

Basic post-regions are obviously sound. A slightly more complex notion is
the one of locally controlled post-regions [30]. For a simple example, consider
a method m without branching or suspension that calls another method called.
Method called has the leading guard x >= 0. Then the post-region for m is x

<= 0 – it describes all suspension-subtraces until another process runs, namely
the one it called itself. Thus, a post-region generator that assigns x <= 0 to m is
sound.

Type-Based Verification of Delegated Control in Hybrid Systems 337

Concrete examples of post-regions that are able to verify Example 1 are
described in prior work [30]. In the next section, we introduce a similar system
that is not verifiable with those post-regions.

3 Externally Controlled Timed Post-regions

In the following we consider timed control, where the controlling discrete process
is outside the object of the controlled physical process where the post-region is
to be used. To retain modularity of the proof system, we aim to keep the proof
obligations the same as before, but instead of deriving that a method implements
a timed controller, we require the user to specify it. The overall system then has
to ensure that this method is indeed globally called with the required frequency.
This property in turn, is handled by a type system – it is a structural property
of the whole program, and as such inherently non-local. By using a lightweight
type analysis, we keep the required user interactions during the analysis low.

As we target a more volatile situation of IoT systems, which often come
with cloud components, we allow the controlling discrete process to change. For
example, we allow one controller to shut down and another to take over. We
also allow multiple controlling discrete processes to control different aspects of a
physical controller, e.g. an internal controller for event-based properties and an
external controller for timed-based ones.

Before we come to the formal details, we illustrate the targeted kind of system
with a smaller example. We use again JML style comments for specification.

Example 5. Consider the upper code in Fig. 5, a variation of the timed water tank
of Example 2. The /∗@ requires ... @∗/ clause specifies the creation condition and
/∗@ invariant ... @∗/ specifies the safety invariant. The Tank class has the same
physical behavior as before, but the ctrl method is replaced by localCtr which
does not repeatedly perform the check on its own. Instead, it is specified with
/∗@ timed requires 1 @∗/ that the method must be called at least once per time
unit.

In this example, there is only one object of class Tank, line 25, and the respon-
sibility of calling localCtrl on this object is then shared between the methods
Mobile.run and Controller.timer. Since the method Mobile.run creates the tank,
it become by default the initial controller to all its controlled methods. On the
other hand, the Controller.timer method is annotated with the /∗@ time control

: t.localCtrl = [1, 0] @∗/ clause, which means that this method takes control of
the method localCtrl of its parameter t, waits for 1 unit of time (with the await

duration(1) statement line 16), calls localCtrl line 18, recursively calls itself
line 19 and stops, leaving 0 unit of time until the next call to t.localCtrl.

Hence, upon calling Mobile.run, the Tank object t is created, a Controller

object c is created, and the control of t.localCtrl is directly transferred to c.

timer. After 40 time units, the Mobile instance synchronizes with c.timer and a
new Controller takes over the control of t.localCtrl forever.

There is subtle, timing related bug in this code. At t = 40, the final call
to timer does not result in a call to localCtrl, but the await statement is still

338 E. Kamburjan and M. Lienhardt

executed making time advancing to t = 41 before the method’s termination. As
the newly created controller also waits for one second at the beginning of its
execution, localCtrl next call is a t = 42: the required call at t = 41 is skipped.
The lower code in Fig. 5 gives a solution: by only advancing time when a call is
made afterwards, the gap at t = 41 can be avoided.

Note that this bug can be identified in the specification of the faulty version
of timer method. Indeed this specification states that the method: i) waits 1
unit of time at the beginning of its execution before calling t.localCtrl; and ii)
concludes its execution with t.localCtrl having to be called right away. Hence
it is unsound to delegate the control of the tank to sequences of calls to timer.
The fixed version of the timer method concludes it execution with t.localCtrl

having to be called after 1 time unit, and so sequences calls to timer do correctly
control the tank.

Such subtle bugs illustrate both the need for tool support in the analysis of
distributed hybrid and timed systems, as well as the value of specification.

Let us call ceid a pair of a location (a variable or a field) and a method,
such as t.localCtrl or c.timer in our example. There are several structural
requirements that need to be checked to ensure that a control pattern such as
the one presented in our example works: (1) for each controlled ceid, there
is always a controlling ceid; (2) the controlling ceid is indeed observing the
specified time behavior and (3) if the controlling ceid changes, there are no
gaps in control. If all these properties can be ensured, then the specification of
the marked timed controller method can be used in the post-region.

The proof obligations do not change: the post-region for the methods in
Tank are defined by the frequency of the timed controller. The proof obligations
needed for the specification of Controller are not hybrid (as the class contains
no physical block) and can be handled by discrete approaches to Active Object
verification.

Example 6. For Tank, the formulas in Fig. 6 are generated. Let I be the invari-
ant specified in Fig. 5, ψ the mapping from each method to t ≤ 1 and
dyn ≡ level’ = drain.

3.1 Type System

As discussed previously, this type system has one unique goal: check that meth-
ods are called correctly with respect to their timed requires annotation. It is thus
entirely independent from the physical aspects of HABS and focuses only on the
time aspect of a HABS program. In particular, this type system must, to reach
its goal, perform a time analysis of the input program, i.e., compute how much
time each statement can take (in particular the await and duration statements).
Then it must use the information provided by this time analysis to keep track
of the ceid control relationship and ensure that all ceid are correctly called.

Type-Based Verification of Delegated Control in Hybrid Systems 339

Fig. 5. An externally controlled tank with mobile control. The upper version of
Controller.timer contains a subtle bug regarding timing, which is fixed in the lower
version.

340 E. Kamburjan and M. Lienhardt

Fig. 6. Proof obligations for Tank in Example 6.

Time Analysis. Designing a time analysis is a difficult task, since such an anal-
ysis is undecidable in general (it includes the halting problem), yet the concrete
design choices are not central to this work. Many such design choices must be
made to decide which behaviors of a program is abstracted away by the anal-
ysis, and possibly many complex structures and algorithms must be defined to
precisely analyze the rest of the program. Interestingly, resource analysis, and
time analysis in particular, have already been defined for ABS [2,4,37] and it is
reasonable to imagine that other time analysis, with different capabilities, will
be defined in the future. In order to take advantage of the existing (and possibly
future) time analysis, we design our type system to be able to use any of them:
our type system is thus parametric, and given any correct time analysis, ensures
that methods are called correctly. The following definition informally describes
the different features of a time analysis that are needed by our type system:

Definition 8. A Time Analysis for a given program Prgm is a triplet (CF, TC, TA)
where:

– CF are expressions used to describe how time passes. Since explicit time
advance is expressed with rationals in HABS, CF must include Q, and since
some computation can take infinite time, expressions in CF must be compara-
ble to ∞.

– TC is a function that gives information about the execution context of methods
and statements. Indeed, since the behavior of a method can change depending
on its parameters and the state of the callee, it might be relevant for the time
analysis to be sensitive to such execution context and give how much time
lapses in a statement depending on an execution context.

– Finally, TA is the function giving how much time a method or a statement
takes depending on the current execution context.

The coreid Control Relationship. Within a method, a ceid can be controlled
in two ways:

1. either a ceid is locally controlled (i.e., the current method is the one respon-
sible to call the ceid), in which case we store how much time is left until a
call to the ceid is required;

2. either the control of a ceid has been delegated (i.e., the current method
passed the control of ceid to a different process and might get the control
back later), in which case we keep track of which future controls the ceid,
and when that future terminates.

Type-Based Verification of Delegated Control in Hybrid Systems 341

Consequently, a typing statement for HABS statements has the form Γl, Γd �c s :
Γ ′

l , Γ
′
d where: Γl registers the ceid locally controlled; Γd registers the ceid whose

control has been delegated; c is the execution context given by and forwarded
to the time analysis (with the TC and TA functions); s is the typed statement;
and Γ ′

l (resp. Γ ′
d) is the locally controlled ceid (resp. delegated ceid) obtained

after executing s. The context Γl maps ceids to the maximum amount of time
that can lapse before the method must be called. The context Γd maps ceids
to tuples (fid , tmin, tmax, t) where: fid is the future to which the ceid has been
delegated; tmin (resp. tmax) is the minimum (resp. maximum) amount of time
before the future is resolved; and t is the maximum amount of time between fid
is resolved and the next time ceid must be called.

Remark 1. To keep the presentation of our type system simple, we suppose two
restrictions on the syntax of the input program Prgm:

– Prgm does not contain any loop, and
– every assignment in Prgm declares a new variable.

These restrictions do not limit the expressivity of HABS, since loops can be trans-
lated into recursive method calls, and variables can always be renamed in fresh
variables, following a Static Single Assignment pattern.

Example 7. To get a first impression of how this control relationship works, let
us look at the method Mobile.run in Fig. 5, and look at how its execution using
the faulty version of the Controller.timer method shape the Γl and Γd contexts.
Since the Mobile class does not have any field and Mobile.run does not have any
parameter, we can consider that this method does not control anything when
it starts: Γl and Γd are both empty. Then, after the creation of the tank t,
which contains a method annotated with time requires, that method must be
locally controlled: Γl now maps the ceid t.localCtrl to 1 (i.e., the content of
the time requires annotation), and Γd is still empty. After the creation of the
controller c, does not not contain any method annotated with time requires, Γl

and Γd are left unchanged. The call to c.timer(t,40) does change the contexts
however: the timer method states in its annotation that it takes over the control
of t. Here, our type system must first check that the control transfer is sound
(i.e., that the timer method will not call ceid too late), and then registers the
transfer in the contexts: Γl becomes empty and Γd now states that the future
f controls ceid. We use the time analysis to check that f controls ceid for 40
units of time, and so the various await statements are correct w.r.t. the control
of ceid. After the await f statement, the control of ceid is once again local: Γl

now maps ceid to 0 (i.e., the content of the time control annotation of the timer

method), and Γd is now empty. Finally, the creation of a new controller c and
the call c.timer(t,-1) is different from before: here the check that the control
transfer is sound fails since Γl states that ceid must be called right away and
the annotation on c.timer states that ceid will not be called sooner than after
1 unit of time.

342 E. Kamburjan and M. Lienhardt

The rest of this Section first introduces the definition giving what we consider
to be a well-typed program, and presents the different rules defining our type
system.

Definition 9. A program Prgm is well-typed iff all its methods and its main can
be validated with the rules presented in the following paragraphs.

Typing Rules. The first rule we present is to check method declaration:

tctrl(C.m) = [xi.mj �→ [tj , t′j]]i∈I,j∈Ji
∀i ∈ I,∀j ∈ Ji, treq(Ti.mj) ≥ tj

∀c ∈ TC(C.m),
(

[xi.mj �→ tj]i∈I,j∈Ji
, ∅ �c s : [xi.mj �→ t′′j]i∈I′,j∈J ′

i
, ∅

I ′ ⊆ I ∀i ∈ I ′, J ′
i ⊆ Ji ∧ ∀j ∈ Ji, t′j ≤ t′′j

)

C � T m(T1 y1,. . ., Tn yn) {s;return e;}

The concluding statement of the rule means that we check the definition of
method m in class C. In the premise, we first check the annotation of the method.
We use two functions to access a method’s annotation: tctrl returns the informa-
tion related to the time control annotation, i.e., a mapping from controlled ceids
to their pair [t, t′] in the annotation; and treq returns the information related to
the timed requires annotation, i.e., how often the method must be called. Using
these two functions, the premise controls that for each controlled ceid xi.mj , the
time tj that will lapse between the beginning of the method and the first call to
the ceid is correct, i.e., it is less than the maximum time between two calls of
ceid.

The second part of the premise checks the validity of the method’s body. It
collects (with TC(C.m)) all the execution contexts c registered by the time analysis
for that method, and analyses the validity of the method’s body for each of these
context individually, as stated in the validation predicate � indexed with c. To
do that, it first constructs the initial contexts Γl and Γd where Γl corresponds
to the method’s annotation (i.e., for each ceid xi.mj , the time left before the
next call is at most tj) and Γd is empty; then it analyses the method’s body,
which returns new contexts Γ ′

l and Γ ′
d; and check the validity of these resulting

contexts, i.e., the ceids in Γ ′
l are correct w.r.t. the annotation (for each ceid

xi.mj , the time left before the next call is at least t′j at the end of the method)
and Γ ′

d is empty, meaning that no delegated ceid need to be controlled anymore.

Example 8. Consider for instance the method timer of the Controller class in
the upper part of Fig. 5. In the first part of the rule’s premise, the tctrl(C.m) call
gets the method’s time control annotation which states that the method: takes
control of the ceid t.localCtrl; calls ceid after 1 unit of time; and finishes its
execution with ceid that must be called with no delay. Then the premise of the
rule checks that this annotation is correct w.r.t. the annotation of the method
Tank.localCtrl: since ceid will not be called after 1 unit of time, Tank.localCtrl
must not require to be called more often that this. As Tank.localCtrl requires
to be called every 1 unit of time, this check is validated.

The second part of the premise checks that the method’s body holds w.r.t. the
method’s annotation for every execution context identified by the time analysis:

Type-Based Verification of Delegated Control in Hybrid Systems 343

we can safely consider in this example that there is only one execution context.
Here, we initialize the Γl context to the mapping [ceid �→ 1] and the Γd context
to the empty mapping. We will see in detail with the next rules how these
contexts are used and updated while type-checking statements. But informally,
we can follow the reasoning presented in Example 7, to see that after executing
the timer method’s body, the resulting context Γ ′

l is [ceid �→ 0], and the resulting
context Γ ′

d is empty (as expected by the rule). Moreover, since Γ ′
l is not empty,

the last line of the premise is triggered: the only key in the mapping Γ ′
l is ceid,

which is declared in the method’s annotation, and its image is 0 (i.e., the time
left before the next required call to ceid), which is consistent to the method’s
annotation.

Typing Statements. We next present the rules to handle statements within meth-
ods, based on the following judgment, which is introduced above.

Γl, Γd �c s : Γ ′
l , Γ

′
d

The first such rule deals with infinite computation. Indeed, it is possible to
delegate the control of a ceid to a method that will never finish. In that case,
there is no need to take back the control of ceid: we know it will be safely
handled forever and we can thus simply forget about it.

Γl, Γd �c s : Γ ′
l , Γ

′
d � [ceid �→ (fid , tmin, tmax, t)] tmin = ∞

Γl, Γd �c s : Γ ′
l , Γ

′
d

This is what is written in this rule: if while typing a statement, we end up with
a ceid that have been delegated to a method call fid that will run forever (i.e.,
the minimum computation time tmin of fid is infinite), then we can remove ceid
from the delegated context.

Example 9. This rule is suited to type-check methods similar to run of the Mobile

class in Fig. 5. Indeed, as stated in Example 7, that method creates a new
controller in line 28 and forever delegates the control of t.localCtrl to that
controller. Hence there is no need to keep information about that ceid anymore:
it can safely be removed from Γ ′

d, which in turn makes the typing rule for method
declaration hold as it requires for Γ ′

d to be empty.

The following rule deals with conditional statements:

Γl, Γd �c s1 : Γl,1, Γ
′
d Γl, Γd �c s2 : Γl,2, Γ

′
d

dom(Γl,1) = dom(Γl,2)
Γ ′

l = [ceid �→ min(Γl,1(ceid), Γl,2(ceid))]ceid∈dom(Γl,1)

Γl, Γd �c if(e) { s1} else { s2 } : Γ ′
l , Γ

′
d

In this rule, we type-check the two branches of the if statement individually and
require that: the two resulting delegated contexts are the same (i.e., they are
both equal to Γ ′

d); and that the two resulting local contexts Γl,1 and Γl,2 declare
the same ceids. Finally, to ensure the validity of the if statement, we state that

344 E. Kamburjan and M. Lienhardt

its resulting local context maps every ceid to its minimum value in Γl,1 and
Γl,2, and leave unchanged Γ ′

d.
The following rule checks sequential composition:

Γl, Γd �c s1 : Γ ′
l , Γ

′
d Γ ′

l , Γ
′
d �c s2 : Γ ′′

l , Γ ′′
d

Γl, Γd �c s1; s2 : Γ ′′
l , Γ ′′

d

That rules simply checks first the first statement, which gives some resulting
contexts Γ ′

l and Γ ′
d, and then the second using Γ ′

l and Γ ′
d as initial contexts. The

result of checking the sequential composition is then the result of checking the
second statement.

The await statement is a single instruction whose only effect (of interest to
our type system) is to make time pass. This is what is written in the following
rule: we use a specific rule, identified with the typing predicate �t

c, to manage
time passing, and typing the await statement is identical to only managing the
time consumed by that statement.

Γl, Γd �t
c await g : Γ ′

l , Γ
′
d

Γl, Γd �c await g : Γ ′
l , Γ

′
d

We will describe the rule for time passing using the �t
c judgment later.

The following rule checks the assignment statement.

Γl, Γd �c rhs : [mi �→ ti]i∈I , Γ
′
l , Γ

′
d

Γ ′′
l = Γ ′

l � [x.mi �→ ti]i∈I Γ ′′
l , Γ ′

d �t
c T x = rhs : Γ ′′′

l , Γ ′′
d

Γl, Γd �c T x = rhs : Γ ′′′
l , Γ ′′

d

This rule first checks the right hand side of the assignment. Since a right hand
side can create an anonymous object with methods that must be controlled, the
result of typing a rhs includes, in addition to the contexts Γ ′

l and Γ ′
d, a mapping

[mi �→ ti]i∈I corresponding to the newly created anonymous ceids. Then the rule
names these ceids and includes them into the local context Γ ′′

l by simply adding
their name x. Finally, the rule manages the possibility of time passing, resulting
in the two final contexts Γ ′′′

l and Γ ′′
d .

Example 10. In the method run of the Mobile class in Fig. 5, line 25 creates a
new tank t that has the method localCtrl that needs to be controlled. To apply
the assignment statement rule to that line, let first recall that the initial Γl and
Γd contexts of that method is empty. We will see later that the right hand side
new Tank(4) is typed

∅, ∅ �c new Tank(4) : [localCtrl �→ 1], ∅, ∅

Hence, Γ ′′
l in the rule is equal to [t.localCtrl �→ 1]. Finally, since object creation

is instantaneous, we have that Γ ′′′
l = Γ ′′

l and Γ ′′
d = Γd: the rule thus correctly

registers t.localCtrl �→ 1 to Γl and keeps Γd empty.

Type-Based Verification of Delegated Control in Hybrid Systems 345

The following rule, for typing the duration statement, is identical to the one
used to type the await statement. Indeed, the only effect of these two statements
is only to make time pass, the only difference is that the duration statement also
blocks other processes, which is managed by the time analysis.

Γl, Γd �t
c duration(e) : Γ ′

l , Γ
′
d

Γl, Γd �c duration(e) : Γ ′
l , Γ

′
d

The following rule deals with time passing.

TA(c, s) = [tmin, tmax]
Γl,1 = [ceid �→ Γl(ceid) − tmax]ceid∈dom(Γl)

C = {i | i ∈ I ∧ ti,max ≤ tmin}
Γl,2 = [ceidi �→ ti + (tmax − ti,min)]i∈C

Γ ′
d = [ceidi �→ (fid i, ti,min − tmax, ti,max − tmin, ti)]i∈I\C

Γ ′
l = Γl,1 � Γl,2 ∀ceid ∈ dom(Γ ′

l), Γ ′
l (ceid) ≥ 0

Γl, [ceidi �→ (fid i, ti,min, ti,max, ti)]i∈I �t
c s : Γ ′

l , Γ
′
d

With the function call TA(c, s), this rule first queries the time analysis to know,
given the current execution context c, what is the minimum time tmin and max-
imum time tmax that the current statement s can take. Then the rule updates
the two contexts Γl and Γd to include this passing of time. Updating the local
context Γl is quite simple, we just state that now the remaining time before
each ceid must be called has been decreased by tmax. Updating the delegated
context Γd is more subtle, since during this passing of time some method calls
might have finished and we must retake local control of the related delegated
ceids. The set C corresponds to all the delegated ceids whose control is given
back to the local computation, since the corresponding method call is known to
have finished. We collect all these ceids in a new local context Γl,2, and for all
of them, since the maximum time that lapsed between the end of the method
and now is tmax − ti,min, we say that the maximum amount of time that can
pass until their next call is ti +(tmax − ti,min). For the ceids whose control stays
delegated, we simply store them in Γ ′

d and update the execution time of the
related method call.

Finally, the rule checks that the locally controlled ceids are safe by ensuring
that the time left until their next call is positive, i.e., no specified frequency is
violated so far.

Example 11. Consider for instance the method timer of the Controller class in
the upper part of Fig. 5. We already saw in Example 8 that the initial Γl context
of this method is [ceid �→ 1] with ceid = t.localCtrl, while Γd is empty. The
first statement of that method is await duration(1) which clearly takes 1 unit of
time: we can thus suppose that the time analysis states that

TA(c, await duration(1)) = [1, 1]

Hence, Γl,1 in the rule is [ceid �→ 0]: ceid must be called without delay. Then,
since Γd is empty, so are Γl,2 and Γ ′

d in the rule. We can then conclude the

346 E. Kamburjan and M. Lienhardt

application of the rule: Γ ′
l is thus equal to [ceid �→ 0], that validates the last

constraint of the rule’s premise.

Example 12. Another interesting application of the time passing rule is the
await duration(40) statement line 27 in the upper part of Fig. 5. At that point
of the method’s execution, the future f is running and controlling the ceid t.

localCtrl. We can suppose that the time analysis correctly identified f’s infor-
mation, and so before line 27 Γl is empty, and Γd is [ceid �→ (f, 41, 41, 0)],
stating that ceid is controlled by f, that f will take exactly 41 units of time to
complete, and that once this future completed, ceid must be called right away.
Similarly to the previous example, we suppose that the time analysis for the
await statement is precise:

TA(c, await duration(40)) = [40, 40]

Hence, the set C is empty. Following the definition of the different contexts in
the rule, we have that Γl,1 and Γl,2 are empty, and Γ ′

d is [ceid �→ (f, 1, 1, 0)]. We
can then conclude the application of the rule: Γ ′

l is thus the empty set, and so
the last constraint of the rule’s premise is validated.

Example 13. A last interesting application of the time passing rule is the await f

statement line 27 in Fig. 5. As we saw in the previous example, here Γl is empty,
and Γd is [ceid �→ (f, 1, 1, 0)], stating that ceid is controlled by f, that f will
take exactly 1 units of time to complete, and that once this future completed,
ceid must be called right away. Similarly to the previous example, we suppose
that the time analysis for the await statement is precise:

TA(c, await f?) = [1, 1]

Hence, the set C is the rule is {ceid}. Following the definition of the different
contexts in the rule, we have that Γl,1 is empty, Γl,2 is [ceid �→ 0] (the Mobile

object takes back control of ceid and must call it right away), and Γ ′
d is empty.

We can then conclude the application of the rule: Γ ′
l is thus equal to [ceid �→ 0],

that validates the last constraint of the rule’s premise.

Typing Right Hand Sides and Expressions. The following (axiomatic) rule deals
with side effect-free expression which do not have any effect by construction.
The resulting contexts are identical to the initial ones.

Γl, Γd �c e : ∅, Γl, Γd

Similarly, the following rule deals with the get right hand side, whose only
effect is to pass time. Since time passing is handled in our type system with a
rule on statements (as previously described), no other effect is registered in this
rule and the resulting contexts are identical to the initial ones.

Γl, Γd �c e.get : ∅, Γl, Γd

The following rule checks object creation:

Type-Based Verification of Delegated Control in Hybrid Systems 347

M = {m | C.m ∈ dom(treq)} S = [m �→ treq(C.m)]m∈M

Γl, Γd �c new C(e1,. . .,en) : S, Γl, Γd

This expression does not have any effect on the contexts Γl and Γd, but might
add new ceids corresponding to the newly created object. These unnamed ceids
are stored and returned in the mapping S.

The last rule of our type system deals with method call. This rule is respon-
sible of two main features in our type system: if the method call corresponds
to a ceid, we must reset the time counter in the local context Γl; and we must
transfer the ceids delegated to this method call from Γl to Γd.

∀1 ≤ i ≤ n, type(ei) = Ti tctrl(T1.m) = [xi.mj �→ [tj , t
′
j]]i∈I,j∈Ji

∀i ∈ I, ∀j ∈ Ji, Γl[ei.mj] ≥ tj

Γ ′
l = Γl \ {ei.mj | i ∈ I, j ∈ Ji} Γ ′′

l =

{
Γ ′

l [e1.m �→ treq(T1.m)] if e1.m ∈ dom(Γl)
Γ ′

l else
TC(c, e1!m(e2,. . .,en)) = c′ TA(c′, T1.m) = [tmin, tmax] fid fresh

Γl, Γd �c e1!m(e2,. . .,en) : ∅, Γ ′′
l , Γd[ei.mj �→ (fid , tmin, tmax, t

′
j)]i∈I,j∈Ji

This rule works as follows. First, it gets the type of every expression involved in
the method call, and gets the information related to the time control annotation
of the callee. Then it checks that the method call is correct w.r.t. the control
annotation, i.e., the times given in Γl for all the delegated ceid are valid w.r.t.
the specification of the method. Then, it extract from Γl the ceids that are still
local in Γ ′

l and updates Γ ′
l into Γ ′′

l if the callee is a locally controlled ceid. And
finally, it computes using the function TC the execution context of this method
call to obtain its minimum and maximum execution time to generate all the
relevant information in Γd for the newly delegated ceids.

Example 14. Consider for instance the call to t.localCtrl line 18 in the method
timer of the Controller class in the upper part of Fig. 5. Let define ceid =
t.localCtrl: we previously discussed that before the call, Γl is [ceid �→ 0]
and Γd is empty. Then, following the first line of the premise of the rule, we
have that n = 1, T1 = Tank and I = ∅ (since the method Tank.localCtrl does
not control anything). The second line of the premise only checks the valid-
ity of the control delegation, which is empty in our case. Then, following the
third line of the premise, we have that Γ ′

l = Γl and Γ ′′
l = [ceid �→ 1] since

ceid is the method being called. And finally, we can consider that the time
analysis correctly identifies that ceid does not take any time to execute (i.e.,
TA(c′, Tank.localCtrl) = [0, 0]); but since ceid does not control anything, the
context for delegated control stays empty after the method call.

Example 15. Another interesting application of the method call rule is the c

.timer(t, 40) call line 26 in the upper part of Fig. 5. Let define ceid =
t.localCtrl: we previously discussed that before the call, Γl is [ceid �→ 1] and
Γd is empty. Then, following the first line of the premise of the rule, we have
that n = 1, T1 = Controller and I = {2}: Controller.timer takes control of
ceid. The second line of the premise checks the validity of the control dele-
gation, i.e., that Γl[ceid] (the maximum time allowed before calling ceid) is

348 E. Kamburjan and M. Lienhardt

longer than or equal to the time Controller.timer takes to call it: since both
numbers are 1, the check passes. Then, following the third line of the premise,
we have that Γ ′

l = ∅ since ceid is delegated, and so Γ ′′
l = ∅. And finally, we

can consider like in Example 12 that the time analysis correctly identifies that
this call to Controller.timer takes exactly 41 units of time to execute (i.e.,
TA(c′, Controller.timer) = [41, 41]), which means that context for delegated
control after the method call has the form [ceid �→ (f, 41, 41, 0)].

Example 16. An last interesting application of the method call rule is the c.timer

(t, -1) call line 28 in the upper part of Fig. 5. Let define ceid = t.localCtrl:
we previously discussed that before the call, Γl is [ceid �→ 0] and Γd is empty.
Then, following the first line of the premise of the rule, we have that n = 1,
T1 = Controller and I = {2}: Controller.timer takes control of ceid. The
second line of the premise checks the validity of the control delegation, i.e., that
Γl[ceid] (the maximum time allowed before calling ceid) is longer than or equal
to the time Controller.timer takes to call it: this check fails since Γl[ceid] is 0.
Hence, this rule correctly identifies the subtle timing error in Fig. 5.

If instead we use the fixed version of the timer method, before the call Γl

becomes [ceid �→ 1] (and Γd stays empty). Here, like in Example 15, the checks
in the second line of the premise would be validated: our analysis would correctly
validate our proposed fix.

Then, following the third line of the premise, we would have that Γ ′
l = ∅

since ceid is delegated, and so Γ ′′
l = ∅. And finally, we can consider that the

time analysis correctly identifies that this call to Controller.timer will never
finish (i.e., TA(c′, Controller.timer) = [∞,∞]), which means that context for
delegated control after the method call has the form [ceid �→ (f,∞,∞, 0)].

3.2 Proof System

For the proof system itself, we can now safely assume the specification as a
post-region for the class, as long as the program is well-typed.

Theorem 2 (Soundness of Timed External Control). Let C be a class
with a an externally timed m with frequency l. The externally controlled timed
post-region of cm is defined as follows:

ψet
C.cm ≡ t ≤ l

Let Prgm� be the set of well-typed programs according to Definition 9. The
post-region ψet

C.cm is Prgm�-sound for all methods m in C.

There can be multiple externally timed methods and it is sound to combine their
corresponding post-region generators [31]. Using the theorem, we can see that
Tank in Fig. 5 is safe, if the formulas in Example 6 are valid and the type checker
succeeds. The proof obligations are the same as the ones in Example 2; they can
be automatically closed by KeYmaera X [21] and are available [30].

Type-Based Verification of Delegated Control in Hybrid Systems 349

4 Modeling Cloud-Aware Hybrid Systems

Equipped with the type-and-effect system, we now investigate a bigger example
to show how Hybrid Active Objects can be used to model cyber-physical systems
using a cloud infrastructure.

Scenario. We model the cloud infrastructure that is shown in Fig. 7. A, possi-
bly growing, set of nodes, must be controlled by a central instance. To do so,
the control instance can create new controller tasks and assign them to virtual
machines (VM). Each controller task controls one node for a certain amount
of time. Once it finishes controlling, a new task must be started, possibly on
another VM. When a new task is created, one must pick a VM with enough free
resources and, if no such VM exists, create a new one. As a VM may also run
other tasks, e.g., accessing some other mechanism of the nodes, the set of VMs
may grow and shrink, depending on the resource consumption.

Fig. 7. Cloud infrastructure to control nodes.

Resource-Modeling. Modeling cloud infrastructure requires the use of resource-
sensitive actors and deployment components [28] to model the cloud infrastruc-
ture. We do not allow Hybrid Active Objects to run on deployment compo-
nents, so the resource model is not relevant for our verification system. However,
we consider resource-aware HAOs, i.e., HAOs that communicate with (and are
controlled by) resource-using Timed Active Objects, which are allowed to con-
sume resources. Communication is handled via method calls and Cooperative
Contracts [32]. A detailed introduction to resource-aware modeling with Active
Objects is given by Schlatte et al. [50], we give a short introduction into the core
concepts next.

A deployment component (DC) is an abstraction over some location that
posses some resources, that are refilled once per time unit. Any object may run
on at most one DC and each statement may consume some resource. If the DC

350 E. Kamburjan and M. Lienhardt

has not enough resources to perform a resource-consuming statement, than the
clock must be advanced by one time unit until the resource is refilled and can
be consumed again. The process blocks the object for that time. The following
code creates a DC with 3 units of the speed resource (line 4) and creates an
object on it (line 5) using the [DC: dc] annotation. It then calls the m method
which consumes 10 resources (modeled by the [Cost: 10] annotation. Thus, the
method takes (at least) 4 time units to complete. Annotations are specific to
resource modeling in ABS. They can be ignored for our verification, if it can be
shown that the resource model does not influence the time behavior.

1 class C() { Unit m(){ [Cost: 10] skip; } }

2 class D() {

3 Unit setup() {

4 DC dc = new DeploymentComponent(map[Pair(Speed, 3)]);

5 [DC : dc] C c = new C();

6 Fut<Unit> f = c!m();

7 f.get;
8 }

9 }

Model. We now discuss our model5. It consists of three classes. The nodes are
modeled by the Tank class in Fig. 5, that we already discussed. The tasks are
modeled by a CtrlTask (non-hybrid) class in Fig. 8. The sole method of this class
takes a node n and a time until for which it controls the node. For controlling, it
calls the ctrl method of the node once per time unit. This action consumed one
resource (through the [Cost: 1] annotation) – it must, thus, be ensured that
there are always enough resources to perform this action without delay.

Fig. 8. A resource-aware model of a controlling task.

5 Available at https://formbar.raillab.de/wp-content/uploads/2021/10/nodecloud.
zip.

https://formbar.raillab.de/wp-content/uploads/2021/10/nodecloud.zip
https://formbar.raillab.de/wp-content/uploads/2021/10/nodecloud.zip

Type-Based Verification of Delegated Control in Hybrid Systems 351

Finally, the managing instance is modeled as a Manager (non-hybrid) class,
shown in Fig. 9 and 10. The manager keeps a list of its DCs, corresponding to
VMs, and maps each of its DCs to the number of tasks assigned to it. Periodically,
here, every 10 time units, it removes all DCs which have no tasks assigned
(cleanup). It may create a new DC with the capacity for 3 tasks (createNewDc)
and it is able to return a DC with below 2 tasks if a new task arrives (getFreeDc).
This is done in the manage method: it takes a uncontrolled node and a time d > 0.
It selects a fitting DC and creates a task on it. It then increases the number of
tasks assigned to this DC and waits until the control task is finished. Once the
task is finished, the number of tasks assigned to the chosen DC is reduced and
after 1 time unit the procedure is repeated.

Fig. 9. A resource-aware model of a cloud infrastructure.

Fig. 10. A resource-aware model of a cloud infrastructure.

Finally, we need a scenario to set up a number of nodes and connect them to
the infrastructure. The following code sets up 10 nodes that start over 10 time
units and uses each controlling task for 3 time units:

352 E. Kamburjan and M. Lienhardt

35 { Manager manager = new Manager();

36 for(i in 1..10){

37 Node n = new Node(i); manager!manage(n, 3, i);

38 await duration(1);
39 }}

Analysis. To verify the described model, we need to perform two steps: first, we
need to close all generated proof obligations, second, we need to ensure that it
is typable. The proof obligations are already given in the previous section, so we
must merely describe the typing and why the time and alias analysis succeeds.

To check that the model is typable, we first need to identify a time analysis
for it. For simplicity, we informally describe such a TA. First, it is easy to see
that the resource are correctly used in the model and do not cause time passing.
Indeed, three units of speed are declared in a deployment component, and each
of them host the computation of at most 3 CtrlTask.ctrl processes, each of them
costing 1 unit of speed each unit of time. Then it is easy to see that only the
methods CtrlTask.ctrl, Manager.run, Manager.manage and the main block take
time. Since CtrlTask.ctrl is only called with its parameter until equal to 3,
this method always takes 3 units of time to complete (each iteration of its while

loop taking 1 unit of time). The method Manager.run runs for 10 units of time
and then stops. Since Manager.manage synchronizes with its recursive call, it runs
forever. Finally, the main block takes 10 units of time and then concludes.

Interestingly, since every methods always has the same behavior w.r.t. time,
we do not need to consider execution context for this time analysis.

We can now apply the type system to the model, and check if a valid type
statement can be derived from the rules given in Sect. 3.1. Since we considered
in Sect. 3.1 that all loops have been translated away, we will consider here that
the three loops in the models implicitly correspond to anonymous methods.

First, the class Node contains only one method, ctrl with tctrl(Tank.ctrl) =
∅. Hence the initial local and delegated context for typing this method are both
empty. Moreover, the two if statements in the method do not create any con-
trolled object, so the method is clearly well typed, with the type derivation of
its body being:

∅, ∅ � if(level <= 4) drain = 1; if(level >= 9) drain = -1; : ∅, ∅

The three other methods Manager.run, Manager.createNewDc and Manager.

getFreeDc have the same feature of Tank.ctrl (their controlling annotation is
empty, and they do not create any controlled object), and so they are trivially
well-typed, with a type derivation similar to the one of Tank.ctrl.

Let now consider the method CtrlTask.CtrlTask as shown in Fig. 8. Corre-
spondingly to its annotation, the local environment used to type this method’s
body is Γl = [n.ctrl �→ 0]. The statement of line 4 in Fig. 8 does not take any
time and does not have any effect on the domain of Γl, so after that statement
(correspondingly to the typing rule for assignment and time passing), the local

Type-Based Verification of Delegated Control in Hybrid Systems 353

context is still equal to Γl. Since the parameter until is always equal to 3, we can
consider for simplicity that the while loop Line 5 in Fig. 8 have been flattened
into three copies of its body6. Each copy starts with Γl = [n.ctrl �→ 0] and
Γd = ∅; calls n.ctrl right away, resulting in Γl = [n.ctrl �→ 1] and Γd = ∅; and
executes duration(1,1);, resulting in Γl = [n.ctrl �→ 0] and Γd = ∅; So, since
0 ≤ 0 (the end time of n.ctrl in the annotation is smaller or equal to the one in
Γl), the concluding premises of the method declaration typing rule are validated,
and so the method is well-typed.

Let now consider the method Manager.manage. Correspondingly to its annota-
tion, the local environment used to type this method’s body is Γl = [n.ctrl �→ 0].
The statements in Lines 27–29 in Fig. 10 does not take any time and does not
have any effect on the domain of Γl, so after that statement (correspondingly
to the typing rule for assignment and time passing), the local context is still
equal to Γl. Line 29 in Fig. 10 delegates the control of n.ctrl to the method
call, which takes exactly 3 units of time, as stated in our discussion of TA.
Hence, after Line 29, the local context Γl is empty, and the delegated context
is Γd = [n.ctrl �→ (fid , 3, 3, 0)] for some future name fid . Line 30 in Fig. 10
contains two statement. The first one is a simple increment, and has no effect
on time or on control: after it the local and delegated contexts are unchanged.
The second statement synchronizes with fid : three units of time pass, and fid
finishes, giving the control of n.ctrl back to the local context. Hence, since no
time passed between the end of fid and the end of the await statement, that
statement is well typed and results in Γl being back equal to [n.ctrl �→ 0] and
Γd being empty. Line 31 has not effect on time or control, so Γl and Γd are kept
unchanged after it. Finally, Line 32 contains two statements. The first state-
ment delegates the control of n.ctrl to another instance of the Manager.manage

method. After this statement, we thus obtain that the local context Γl is empty,
and the delegated context is Γd = [n.ctrl �→ (fid ,∞,∞,∞)] (recall that TA
states that the computation time of Manager.manage is infinite). We can thus
apply the infinite computation typing rule, to state that n.ctrl is forever well
manage and remove it from Γd. Hence, before the await in Line 32, we get that
both the local and delegated contexts are empty. We can thus type check the
await statement, that waits for an infinite amount of time without causing any
control issue, and conclude the typing of the method.

The last instruction set we need to type check is the main block. Similarly to
the CtrlTask.CtrlTask method, since the loop body is executed exactly 10 times,
we suppose for simplicity that the loop has been flattened away, its body being
copied 10 times in the main. Typing the main starts with the local and delegated
contexts, Γl and Γd, being empty. Then Line 35 has not effect on time or control,

6 As stated in Sect. 3.1, our type system can manage arbitrary loop statements by
implicitly and automatically replacing them with dedicated method calls and syn-
chronization. We don’t use this approach in our informal explanation of the type
system because even though this automatic approach always works (i.e., it is correct
and complete), it adds new methods, calls and synchronization that obfuscate our
explanations. Note that we do not require the recursion to be bounded.

354 E. Kamburjan and M. Lienhardt

so Γl and Γd are kept unchanged after it. Line 37 first creates a new Node which
has the controlled method ctrl. That control is given to the main, and so after
this statement, Γl = [n.ctrl �→ 1] (Γd is still empty). The second statement in
Line 37 calls the method Manager.manage, and thus delegates the control of n.

ctrl to it. This method call is well typed, since the annotation of Manager.manage
stipulates that n.ctrl will be called right away. After this method call, we thus
obtain that Γl is empty, and Γd is [n.ctrl �→ (fid ,∞,∞,∞)] for some future
name fid . Like during the typing of method Manager.manage, we can apply the
infinite computation typing rule to state that n.ctrl is forever well manage and
remove it from Γd. Hence, after Line 37, we get back an empty local context and
and empty delegated context. Line 38 makes 1 unit of time pass, which has no
effect on the main, since it has no registered controlled element.

This concludes the typing of this model: every methods in it are well-typed,
as well as the main, and so, following Theorem 2, we can soundly use the specified
post-region (t ≤ l) in the proof obligation.

Note the modularity enforced by our system: a change in the HAO does not
require us to rerun the type system, a change in the cloud system does not
requires us to reprove the HAO.

5 Related Work

Deductive Verification of Hybrid Programming Languages. We already discussed
dL, which is a simple algebraic programming language. For distributed systems,
dL has been extended to QdL [44,45], which is implemented in the KeYmaeraD
tool [48]. QdL introduces concurrency by extending the dL-program variables
to indexed variables, which are manipulated using array-style statement. The
concurrency model is essentially shared memory and it does not add structuring
elements or special constructs to deal with concurrency.

Hybrid Rebeca [27] is a language that has both constructs for discrete systems
and hybrid automata, i.e., it separates these two concepts. Its semantics is not
based on classical program semantics, but on a translation into a single hybrid
automaton. For verification, only model checking has been investigated. Thus,
the system is neither modular nor is it able to handle unbounded systems.

Process algebras are minimalistic programming languages that have spawned
several formalisms for distributed hybrid systems. None of them has been con-
sidered for type systems. The CCPS system [38] is an extension of timed process
algebra TPL [25] and CCS [42] uses an inbuilt notion of sensor and actuators.
The ϕ-calculus [49] is an extension of the π-calculus. It has no physical processes
but considers them as a part of the environment. The work of Khadim [36] gives
a detailed comparison on the process algebras HyPA [16], Hybrid χ [14], both
extending ACP [9], the ϕ-calculus and another extension of ACP [10]. The HYPE
calculus [22] is an approach that focuses on the composition of continuous behav-
ior, less so on the interaction through discrete actions.

Compositional Deductive Verification of Hybrid Systems. For deductive verifica-
tion of hybrid models, besides dL, only Hybrid CSP, another process algebra, has

Type-Based Verification of Delegated Control in Hybrid Systems 355

been considered [40]. In its basic formulation, neither dL nor Hybrid CSP have
structuring mechanisms for composition or modularity, and additional systems
to provide a proof structure on to have been proposed. All these systems have in
common that they structure the proof of a hybrid model and do not use structur-
ing mechanisms on the language layer. Mitsch et al. [43] give a methodology for
composition based specific patterns used to encode components into dL. Bohrer
and Platzer [13] give a proof language for Constructive Differential Game Logic,
a variant of dL. The HHL prover [52] for Hybrid CSP embeds Hoare triples into
Isabelle/HOL and can use its structuring mechanisms, such as lemmata. Baar
and Staroletov [8] give a system to decompose dL proofs by transforming hybrid
programs into control-flow graphs and annotating contracts to the edges.

Behavioral Type Systems. Bocchi et al. [12] describe timed session types for
a minimalistic timed process calculus with channels, based on the π-calculus.
Their work checks protocol adherence and uses clock variables for time. These
clocks are specified and kept track of by using linear predicates.

Majumdar et al. [41] use session types to coordinate robotic programs. Robotic
programs do not isolate the dynamics as hybrid objects, instead all physical
processes share the same geometric space. A focus of their work is the correct
partition of the geometric space and the correctness of protocols between parties
in disjoint subspaces.

Avanzini and Dal Lago [7] present a type system for complexity classes of
functional programs, which is at its core a time analysis. In a similar direction,
there is a long line of work of cost analysis, which intersects with time analysis.
For Active Objects, cost analysis has been considered by Flores-Montoya [20]
and Albert et al. [3]. Albert et al. [5] also discuss computing tmin. Time analysis
has been used directly for deadline analysis by Laneve et al. [37].

6 Conclusion

We presented a verification system for distributed hybrid systems that combines
deductive verification to verify object invariants with a type-and-effect system to
use the global structure of the overall system. Our system is highly modular and
more expressive than prior approaches: only one proof obligation is generated
per method and local changes do not require to reprove the whole system. Global
analysis is performed using a lightweight type system. We can express and ver-
ify patterns with delegated control, a pattern crucial for modeling cloud-aware
hybrid systems.

This work as a further indication that hybrid programming languages are a
useful modeling technique in the volatile environment of modern cyber-physical
systems, and that it is possible carry over analyses techniques, such as type-and-
effect systems or method-based rely-guarantee reasoning, to a hybrid setting.

Concerning the language model, we observe that an object must stay safe
forever and cannot be shut down explicitly. It would be convenient, and make
hybrid active objects more suitable for digital twin applications, to have some
life cycle management with explicit life phases for starting, running, maintaining
and shutting down a HAO.

356 E. Kamburjan and M. Lienhardt

Acknowledgments. This work was partially supported by the Research Council of
Norway via the SIRIUS center (Grant Nr. 237898) and the PeTWIN project (Grant
Nr. 294600). We thank Reiner Hähnle and Richard Bubel for extensive and constructive
feedback on early drafts of this paper.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS,
vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: COSTABS:
a cost and termination analyzer for ABS. In: Kiselyov, O., Thompson, S.J. (eds.)
PEPM. ACM (2012)

3. Albert, E., Correas, J., Johnsen, E.B., Pun, V.K.I., Román-Dı́ez, G.: Parallel cost
analysis. ACM Trans. Comput. Log. 19(4) (2018)

4. Albert, E., et al.: Formal modeling and analysis of resource management for cloud
architectures: an industrial case study using real-time ABS. Serv. Oriented Com-
put. Appl. 8(4) (2014)

5. Albert, E., Genaim, S., Martin-Martin, E., Merayo, A., Rubio, A.: Lower-bound
synthesis using loop specialization and Max-SMT. In: Silva, A., Leino, K.R.M.
(eds.) CAV 2021. LNCS, vol. 12760, pp. 863–886. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81688-9 40

6. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57318-6 30

7. Avanzini, M., Lago, U.D.: Automating sized-type inference for complexity analysis.
Proc. ACM Program. Lang. 1(ICFP) (2017)

8. Baar, T., Staroletov, S.: A control flow graph based approach to make the verifi-
cation of cyber-physical systems using KeYmaera easier. Model. Anal. Inf. Syst.
25(5) (2019)

9. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction.
Theor. Comput. Sci. 37 (1985)

10. Bergstra, J.A., Middelburg, C.A.: Process algebra for hybrid systems. Theor. Com-
put. Sci. 335(2–3) (2005)

11. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-
defined schedulers for real-time concurrent objects. Innov. Syst. Softw. Eng. 9(1)
(2013)

12. Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: Baldan, P.,
Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 419–434. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-44584-6 29

13. Bohrer, B., Platzer, A.: Structured proofs for adversarial cyber-physical systems.
CoRR, abs/2107.08852 (2021)

14. Bos, V., Kleijn, J.J.T.: Redesign of a systems engineering language: formalisation
of X. Formal Aspects Comput. 15(4) (2003)

15. Clarke, D., Wrigstad, T., Östlund, J., Johnsen, E.B.: Minimal ownership for active
objects. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 139–154.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89330-1 11

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-030-81688-9_40
https://doi.org/10.1007/978-3-030-81688-9_40
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/978-3-662-44584-6_29
https://doi.org/10.1007/978-3-540-89330-1_11

Type-Based Verification of Delegated Control in Hybrid Systems 357

16. Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. J. Log. Algebraic Methods
Program. 62(2) (2005)

17. de Boer, F.S., et al.: A survey of active object languages. ACM Comput. Surv.
50(5) (2017)

18. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the
concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 35

19. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Formal Asp. Comput. 27(3) (2015)

20. Flores-Montoya, A.: Upper and lower amortized cost bounds of programs expressed
as cost relations. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 254–273. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 16

21. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

22. Galpin, V., Bortolussi, L., Hillston, J.: HYPE: hybrid modelling by composition of
flows. Formal Aspects Comput. 25(4) (2013)

23. Giachino, E., Johnsen, E.B., Laneve, C., Pun, K.I.: Time complexity of concurrent
programs. In: Braga, C., Ölveczky, P.C. (eds.) FACS 2015. LNCS, vol. 9539, pp.
199–216. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28934-2 11

24. Goncharov, S., Neves, R., Proença, J.: Implementing hybrid semantics: from func-
tional to imperative. In: Pun, V.K.I., Stolz, V., Simao, A. (eds.) ICTAC 2020.
LNCS, vol. 12545, pp. 262–282. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64276-1 14

25. Hennessy, M., Regan, T.: A process algebra for timed systems. Inf. Comput. 117(2)
(1995)

26. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10) (1969)

27. Jahandideh, I., Ghassemi, F., Sirjani, M.: An actor-based framework for asyn-
chronous event-based cyber-physical systems. Softw. Syst. Model. 20(3) (2021)

28. Johnsen, E.B., Schlatte, R., Tarifa, S.L.T.: Integrating deployment architectures
and resource consumption in timed object-oriented models. J. Log. Algebraic Meth-
ods Program. 84(1) (2015)

29. Kamburjan, E.: Behavioral program logic. In: Cerrito, S., Popescu, A. (eds.)
TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 391–408. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29026-9 22

30. Kamburjan, E.: From post-conditions to post-region invariants: deductive verifica-
tion of hybrid objects. In: HSCC. ACM (2021)

31. Kamburjan, E.: Modular analysis of distributed hybrid systems using post-regions
(full version). CoRR, abs/2309.10470 (2023)

32. Kamburjan, E., Din, C.C., Hähnle, R., Johnsen, E.B.: Behavioral contracts for
cooperative scheduling. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R.,
Ulbrich, M. (eds.) Deductive Software Verification: Future Perspectives. LNCS,
vol. 12345, pp. 85–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64354-6 4

33. Kamburjan, E., Lienhardt, M.: Type-based verification of delegated control in
hybrid systems (full version). CoRR, abs/2309.01370 (2023)

https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-28934-2_11
https://doi.org/10.1007/978-3-030-64276-1_14
https://doi.org/10.1007/978-3-030-64276-1_14
https://doi.org/10.1007/978-3-030-29026-9_22
https://doi.org/10.1007/978-3-030-64354-6_4
https://doi.org/10.1007/978-3-030-64354-6_4

358 E. Kamburjan and M. Lienhardt

34. Kamburjan, E., Mitsch, S., Hähnle, R.: A hybrid programming language for formal
modeling and verification of hybrid systems. Leibniz Trans. Embed. Syst. 8(2),
04:1–04:34 (2022)

35. Kamburjan, E., Scaletta, M., Rollshausen, N.: Deductive verification of active
objects with crowbar. Sci. Comput. Program. 226 (2023)

36. Khadim, U.: A comparative study of process algebras for hybrid systems. Computer
science reports. Technische Universiteit Eindhoven (2006)

37. Laneve, C., Lienhardt, M., Pun, K.I., Román-Dı́ez, G.: Time analysis of actor
programs. J. Log. Algebraic Methods Program. 105 (2019)

38. Lanotte, R., Merro, M.: A calculus of cyber-physical systems. In: Drewes, F.,
Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 115–127.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53733-7 8

39. Leavens, G.T., et al.: JML Reference Manual (2013). Draft revision 2344
40. Liu, J., et al.: A calculus for hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS,

vol. 6461, pp. 1–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17164-2 1

41. Majumdar, R., Yoshida, N., Zufferey, D.: Multiparty motion coordination: from
choreographies to robotics programs. Proc. ACM Program. Lang. 4(OOPSLA)
(2020)

42. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Cham
(1980). https://doi.org/10.1007/3-540-10235-3

43. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: Tactical
contract composition for hybrid system component verification. STTT 20(6) (2018)

44. Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems.
In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15205-4 36

45. Platzer, A.: A complete axiomatization of quantified differential dynamic logic for
distributed hybrid systems. LMCS 8(4) (2012)

46. Platzer, A.: The complete proof theory of hybrid systems. In: LICS. IEEE (2012)
47. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham

(2018). https://doi.org/10.1007/978-3-319-63588-0
48. Renshaw, D.W., Loos, S.M., Platzer, A.: Distributed theorem proving for dis-

tributed hybrid systems. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol.
6991, pp. 356–371. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24559-6 25

49. Rounds, W.C., Song, H.: The Ö-calculus: a language for distributed control of
reconfigurable embedded systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003.
LNCS, vol. 2623, pp. 435–449. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36580-X 32

50. Schlatte, R., Johnsen, E.B., Kamburjan, E., Tapia Tarifa, S.L.: Modeling and ana-
lyzing resource-sensitive actors: a tutorial introduction. In: Damiani, F., Dardha,
O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 3–19. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-78142-2 1

51. Talpin, J.-P., Jouvelot, P.: The type and effect discipline. In: LICS. IEEE (1992)
52. Wang, S., Zhan, N., Zou, L.: An improved HHL prover: an interactive theorem

prover for hybrid systems. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 382–399. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 25

https://doi.org/10.1007/978-3-319-53733-7_8
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-642-15205-4_36
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-642-24559-6_25
https://doi.org/10.1007/978-3-642-24559-6_25
https://doi.org/10.1007/3-540-36580-X_32
https://doi.org/10.1007/3-540-36580-X_32
https://doi.org/10.1007/978-3-030-78142-2_1
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1007/978-3-319-25423-4_25

Enforced Dependencies for Active Objects

Violet Ka I Pun(B) and Volker Stolz

Western Norway University of Applied Sciences, Bergen, Norway
{Violet.Ka.I.Pun,Volker.Stolz}@hvl.no

Abstract. We present an active object-based language that records
required and provided method completions ahead of method invocations.
With this language, a programmer can use method declarations to spec-
ify the dependencies between different types of tasks. The type system
makes sure that the programmer declares how to fulfil the prerequisites.
An operational semantics defines non-deterministic program execution
with the necessary synchronisations.

We present the grammar, dynamic semantics in the form of oper-
ational semantics rules, and a rule-based type system that checks the
dependencies. The absence of cyclic task dependency can be checked at
the level of method declaration.

1 Introduction

In the recent decades, business process workflows have been significantly
digitalised and automated using various process aware information systems
(PAIS) [8], e.g., workflow management systems (WMS), which is regarded as
among the most effective systems for facilitating cooperative business opera-
tions [7]. Planning workflows requires domain specific knowledge which gives an
overview of how different tasks interact with each other with respect to not only
the resources shared among them, but also to the their task dependency. This
is particularly challenging for planning workflows that are across organisations,
where one or more tasks in a workflow local in an organisation are depending
on tasks in the concurrent workflows running in different organisations. Existing
tools often lack such domain specific knowledge and also suffer from inflexible
support for cross-organisational workflows [14], which make workflow planning
still largely a manual process relying on human experts.

One way to facilitate workflow planning would be to automate the coor-
dination of tasks based on the dependency of their execution order provided
by domain experts. Ali et al. have developed the workflow modelling language
Rpl [2] which supports the notion of the dependency of task execution order as
well as resources shared among tasks. In this language, task dependency is mod-
elled at the level of method invocations, but not specified at the level of method
definition. This mismatch means that no validation between required and pro-
vided task dependencies can be made, leading to imprecise, or sometimes even
incorrect, models and no means of validation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, pp. 359–374, 2024.
https://doi.org/10.1007/978-3-031-51060-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51060-1_13&domain=pdf
http://orcid.org/0000-0002-8763-5548
http://orcid.org/0000-0002-1031-6936
https://doi.org/10.1007/978-3-031-51060-1_13

360 V. K. I Pun and V. Stolz

In this paper, we explore a variation of the language proposed in [2] with the
support of specifying task dependencies in the form of contracts at the level of
method declarations. In our proposed workflow model, there are two options for
synchronisation, instead of the only one in the original: after an asynchronous
call, as before, we can either await/get the result of the call through its asso-
ciated future before proceeding, or we defer synchronisation until some later
method call with the new after-construct. This construct provides more flexi-
bility than await (though conceptually also await could be adapted to the more
flexible dependencies), and the explicit recording of how obligations are fulfilled
eliminates the need for an expensive static analysis of whether requirements are
met.

Apart from the dynamic effect of synchronisation, await alone does not allow
us to capture dependencies in the business-domain: a future of a particular type
may be provided through one of many different method calls (all returning values
of the same type), whereas we would like to specify that a future must have been
obtained in a particular way (through a specific method call).

To this end, we augment method declarations with dependencies (DPs): anno-
tations that specify how exactly (through which method call) a future must have
been obtained. Then, we define a simple type system, which performs an addi-
tional static check, to for each method invocation with an after-clause that
the futures have been acquired in the prescribed way. The dynamic semantics
presented in [2] remains unaffected: a program with dependency annotations
behaves exactly as the program with the annotations removed from method
declarations. The augmentation and construct in method declarations and invo-
cations proposed in this language are intended to be the stepping stone of cap-
turing richer dependencies and more complex control-flow patterns, e.g., [15],
that are common in the domain of business process modelling in the future.

In the following, we first present the syntax and semantics, as well as a
summary of the behaviour of our workflow modelling language in Sect. 2. We
then augment the type system with conformance checking for the correct use
of dependencies in Sect. 3. We show common properties of type systems such as
subject reduction, and discuss some observations in Sect. 4, for example, whether
it is possible to statically check for circular dependencies. We explore the related
work in Sect. 5, and in Sect. 6, we conclude the paper with a summary and
identify potential future work.

2 Core Language

In this section, we propose a core language for modelling workflows featuring task
dependency. Both the syntax and semantics are based on a typical active object
language [3]. The language adopts a Java-like syntax inspired by the abstract
behavioural specification language ABS [11] and is similar to our earlier work
on workflow modelling language [2].

Enforced Dependencies for Active Objects 361

Fig. 1. Abstract Syntax.

2.1 Syntax

Figure 1 presents the abstract syntax of our language. A program P consists of
a main method and a set of class declarations CD , each of which has a set of
fields and a set of methods. A method M has a signature Sg and a method
body with a set of local variables and a statement. A signature Sg indicates the
return type T , a set of formal parameters x as well as the task dependency DP
of a method with the name m. Types are standard, where the type constructor
for a future, denoted as Fut〈B〉, is like any explicit future construct. The task
dependency DP specified in the signature of a method m is a (possibly empty)
set of conjunctions of methods whose completion m is depending on. For methods
that do not depend on any other method, that is, do not have any constraint on
the task dependency, we use T m(T x) as the method signature. With empty
dependencies, as we will see later in the semantics, method calls behave exactly
as before in Rpl. Each depending method is denoted as C .m, where C refers
to the class of the method. Example 1 shows how a task dependency can be
specified in the signature of method declarations.

Example 1. Let DP = {DP1,DP2}, DP1 = C1 .m1 and DP2 = C2 .m2 ∧C ′
2 .m ′

2 .
The signature T m(T x) DP states that method m has the task dependency DP
specifying that m depends on the completion of either method m1 of class C1

or method m2 of class C2 and method m ′
2 of class C ′

2 .

Statements are standard, where the cooperative scheduling is enabled using
await f?, which suspends a process until the condition f? is validated, i.e., the
method associated to the future f returns. Note that we could easily extend the
condition to regular boolean expressions. The right hand side of an assignment
can be an expression e, creating a new object of class C, retrieving the value
stored in a future f , as well as synchronously or asynchronously invoking a
method m.

Methods can only be invoked after a (possibly empty) set of methods has
returned, which is specified with an after clause in the method invocation state-
ment. The clause after fs is used to indicate the completion of depending method
calls in the form of a set of conjunctions of return tests fs. If the set fs is empty,
it is evaluated to true, which means that the method can be invoked without
any restriction; otherwise, at least one of the conjunctions must be evaluated to

362 V. K. I Pun and V. Stolz

Fig. 2. Illustrative example.

true in order to invoke the method. Example 2 illustrates the idea of the after
clause as follows:

Example 2. Let fs = {fs1, fs2}, fs1 = f1? and fs2 = f21?∧f22?. The method call
x!m(e) after {} does not have any restriction on the invocation, while the call
x!m(e) after fs is depending on the completion of the method call associated
with f1 or on completion of the two invocations associated with f21? ∧ f22?.

By observing Examples 1 and 2, a task dependency stated in the method signa-
ture can be seen as a contract of method invocations. Thus, ideally, the depending
methods specified in the form of return tests in the after clause should conform
with the task dependency specified in the signature. We perform such a confor-
mance check with a simple type system introduced in Sect. 3.

Next, we briefly explain the syntax with a simple example shown in Fig. 2.
Note that we write fs1 ∨ fs2 instead of {fs1, fs2} and C1 .m1 ∨C2 .m2 instead of
{C1 .m1 ,C2 .m2} for the clarity of the code. Lines 1–10 define the class Hospital,
while Line 12 and 14 define the classes Expert and Surgeon, respectively. Lines 16–
22 specify the main method of the workflow model, which first creates the objects
of class Expert, Surgeon and Hospital, where the Hospital is staffed with Expert
and Surgeon, and continuously receives patients on Line 21. Note that receiving
patients does not have any task dependency. This is also reflected in the signature
of the method receivePatient declared on Line 2 where no task dependency is
specified.

To receive a patient, the Hospital first needs to do the registration without
any constraint (Line 8). Only after the patient is registered, an expert (Line 4)
and a surgeon (Line 5) will be called, corresponding to the method declarations
on Line 12 and on Line 14, respectively. Either the expert or the surgeon has to

Enforced Dependencies for Active Objects 363

Fig. 3. Different formulations of explicit dependencies.

Fig. 4. Runtime syntax of the core language.

return the call before the patient can be examined (Line 6), as it is specified in
the signature of the method on Line 9.

Observation. Note that the explicit dependencies in method calls come in addi-
tion to the general sequential composition: in the case of the first pair of actions
(Lines 4 and 5) in the Hospital example in Fig. 2, which both synchronise on
the completion of the initial call to registerPatient(), they are virtually started
in parallel as soon as f1 becomes available. In the case that the second call
would have synchronised on a different future, the statement order matters and
subsequent after constraints essentially become conjunctions. We capture this
behaviour through the three equivalent fragments in Fig. 3. Note that variant (c)
is only type-correct if the declaration corresponding to p!n() indeed declares both
requirements.

2.2 Semantics

In this section, we describe the operational semantics of the language that han-
dles method invocations with task dependency. The rest of the semantics are
classical for an active object language [5,11] and can be found in Appendix A.1.

The runtime syntax of the core language is defined in Fig. 4. A configuration
is an unordered set of objects, invocation messages, and futures, respectively
written as obj , invoc and F . Each object is denoted as o(a, p, q) where o refers
to the object identifier, a stores the value of object fields, p is the currently run-
ning process and q is a (possibly empty) pool of suspended processes. The cur-
rently running process p can either be idle or consist of a set of local variables l

364 V. K. I Pun and V. Stolz

Fig. 5. Semantics related to method invocations.

and a statement s, denoted as {l | s}. Each invocation message invoc(o, f ,m, v)
comprises the identifier of the callee object o, the name m and the actual param-
eters v of the called method, as well as the identifier of the future f associated
to the invocation. A future fut(f , val) in a configuration consisting of a future
identifier f and a value val which is v if the future is resolved or ⊥ otherwise.
Statements extend the static syntax with cont(f) for returning control to the
caller process and suspend to put a running process into the pool of pending
processes. The right hand side of assignments is the same as the static syntax
with the extension of method invocations without the after clause.

To invoke a method that has constraints regarding task dependency, the
semantics needs to check whether the methods this invocation is depending on
have completed, that is, the futures associated to these methods are resolved.
This check is handled by rules Sync-Call-After and Async-Call-After.
The rules rewrite a method invocation to a conditional statement which checks
the value of the set of conjunctions of future tests fs. If the value is true, it

Enforced Dependencies for Active Objects 365

Fig. 6. Evaluating conjunctions of futures.

means that either fs is empty or at least one conjunction in fs is evaluated to
true, implying that all the futures in at least one conjunction are all resolved. The
method invocation will then be transformed into a call without any dependency;
otherwise, a suspend statement will be prepended to the method invocation such
that the process will be moved to the pool of pending processes. The evaluation
of the set of conjunctions of futures fs is defined in Fig. 6, where the function
returns a boolean value, and the evaluation is based on the set of futures F in
the runtime configuration.

The treatment of method calls without task dependency and their returns
are standard, and are handled by rules Self-Sync-Call, Sync-Call, Self-
Sync-Return and Return. The auxiliary function bind(o, f,m, v, C) activates
method m of class C with actual parameters v, callee o and associated future f ,
and returns a process as the method activation. This process contains a local
variable destiny bound to future f and has the formal parameters bound to v.
For the case of synchronous self-calls, the statement cont(f) is appended to the
statement list of the new process in rule Self-Sync-Call, which is later used
in rule Self-Sync-Return to return the control to the caller process. Whereas
for the case of asynchronous calls, an invocation message is generated, which
is later consumed in rule Invoc by placing the process associated to method
invocation in the callee’s process pool. Note that synchronous calls are treated
as asynchronous calls followed by a blocking get statement.

3 Type System

In this section, we present a type system for our language. While it is mostly
standard for a language with active objects and futures, this simple type sys-
tem allows us to statically check whether or not method invocations are made
according to the contract, i.e., the task dependencies specified in the method
signature.

Figure 7 shows a subset of rules for static type checking, with the focus on typ-
ing method invocations and method and class declaration, as well as programs.
The rest of the typing rules are typical and we refer the readers to Fig. 11 in
Appendix A.2. We use Γ as the typing environment. The typing rules have the

366 V. K. I Pun and V. Stolz

Fig. 7. Type system.

form of Γ � s for statements, Γ � e for expressions, Γ � M for methods, Γ � CD
for class declarations and Γ � P for programs.

Each program is typed by the initial typing environment Γ , which associates
each class name to a mapping from method names to method signatures. Con-
sider a method m of class C that is defined as T ′′ m(T x) DP {T ′ x′; s}, to
derive the signature of the method, we use

Γ (C)(m) = T → T ′′ :: DP .

Annotating Futures. To facilitate type checking task dependency, we annotate
each future with the class and method to which the future is associated as follows:
Given a program P , for each f = e!m(e) in P , if method m is of class C, we
rewrite all occurrences of f to fC

m. Such annotation requires statically identifying
the method invocation which a future is associated to, we therefore use the type
system to restrict futures from being passed as parameters (see rule T-Method).
Note that the intermediate future for synchronous calls (see rules Self-Sync-
Call and Sync-Call in Fig. 5) will not be used in the after clause, thus, does
not need to be annotated.

Type Checking Task Dependency. For static type checking, the only complex
cases are method calls where methods can only be invoked after the completion
of some specific methods, as identified in the signature of the methods. In the
case of synchronous method calls, rule T-Sync-Call ensures that the variables
in the return tests fs in the after constraints are futures, and these futures
are associated to the methods stated in the task dependency of the method
signature. The auxiliary function conform that the rule uses to perform such a
conformance check is defined as follows:

Enforced Dependencies for Active Objects 367

Fig. 8. Type system for runtime configurations.

conform(fs,DP)

=

⎧
⎨

⎩

conform(fs\fs,DP\DP) if ∃fs ∈ fs, ∃DP ∈ DP . confm(fs,DP)

True if fs = DP = ∅
False otherwise.

confm(fs,DP)

=

⎧
⎨

⎩

confm(fs ′,DP ′) if fs = fC
m ∧ fs ′ and DP = C.m ∧ DP ′

True if fs = fC
m and DP = C .m

False otherwise.

Observe that the task dependency specified in DP in the signature of a method
needs to be equivalent to the return tests of the depending methods stated in the
after clause of the corresponding method invocations. In other words, in order to
fulfil the conformance check, the dependency used in a method invocation cannot
be weaker or stronger than the contract, that is, the task dependency specified in
the method signature. Type checking the rest of the synchronous call is standard.
The case of asynchronous method calls is straightforward: rule T-Async-Call
reduces the call to a synchronous call for further type checking.

To ensure the correct identification of the origin of a future f , on which the
conformance check relies, futures cannot be passed as parameters. It is restricted
by rule T-Method, which type checks a method by adding a fresh name destiny
to typing context binding to the type of the future associated to the method.
The typing rules for class declarations and programs in Fig. 7 are also standard.

Typing Runtime Configurations. The type system is extended for typing runtime
configurations Δ �R cn, which is shown in Fig. 8. A typing environment gives the
type of each active object, future and invocation message. Each component of
the configuration is checked individually in a standard manner. Rule T-Object

368 V. K. I Pun and V. Stolz

checks each element of an object, rule T-Fut checks futures and rule T-Invoc
type checks invocation messages where the auxiliary function match(m, T →
T :: , Δ(o)) ensures that, for a method m that has return type T with its actual
parameters of type T , whether or not the signature T → T :: matches the
signature for method m of the callee o.

Properties of the Type System. Our type system has the property of sub-
ject reduction.

Theorem 1 (Subject Reduction). If Δ �R cn and cn → cn ′, then there
exists a typing context Δ′ such that Δ ⊆ Δ′ and Δ′ �R cn ′.

Proof (Sketch). The proof is by straightforward induction over the application
of transition rules. The proof is standard and thus omitted from the paper. In
particular, the task dependency annotation does not affect the subject reduction.

�

4 Observation and Discussion

Fig. 9. Circular dependency.

Next, we make a useful observation about our
dependency analysis. Cyclic, and hence unsat-
isfiable, dependencies can be declared for sets
of methods, e.g. as shown in Fig. 9. As meth-
ods are type-checked individually, the type sys-
tem does not directly report cycles. However, a
type-correct program cannot call either of these
methods, and we can easily report a cycle or
dead code in general through a simple addi-
tional analysis.

Proposition 1. A cycle in the transitive closure of the dependency graph of a
well-typed program implies that no method call to any member of a cycle (within
the strongly connected component, SCC) can be made in this program.

Given a method declaration/signature Sg , let Σ : Sg → 2C.m denote the set
of all used dependencies, i.e.,

Σ(T m(..) DP) := {C.m | C.m ∈ DP}.

This gives rise to the relation of all direct dependencies (C.m,D.n) in a pro-
gram P (“calls to method C.m must complete method D.n first”):

RP := {{(m,n) | n ∈ Σ(m)} | m ∈ P},

of which we can compute the transitive closure R+
P in the usual way.

Every method in the SCC of the transitive closure must effectively be dead
code, unreachable from anywhere—especially the main entry point to the pro-
gram: Given a well-typed program P such that ∅ � P . Let us assume that a

Enforced Dependencies for Active Objects 369

first (and possibly only) call to some member C.m of the SCC exists in some
method D.n in P . Since the program is well-typed, D.n must be well-typed and
every call in D.n must fulfil its requirements, hence also the call to C.m must be
preceded by the necessary calls to obtain the required futures. Any member in
the SCC (also C.m), has at least one of its requirements also from the SCC, and
hence one of these calls in D.n preceding the call to C.m must have eventually
a call to C.m as a dependency. Correspondingly, the call that we started our
consideration from cannot have been the first call to C.m.

Comparing await and after

As we can see there is some overlap between the functionalities of await state-
ments and after clauses – both of them either suspend the currently running
process if the return test of some given futures is evaluated to false or allow the
process to continue its execution if it is evaluated to true.

Compared to await statements, after clauses allow more complex dependency
structure, namely a set of conjunctions of return tests fs, where the relation
among the set elements is interpreted as a disjunction. The valuation of return
tests in the disjunction is purely used to control method invocations. In contrast,
after an await statement, it is clear that any involved futures can be used without
incurring another suspension (on another await) or even blocking (on a get).
Although await statements can be easily extended to support a conjunction of
return tests fs, it is unclear if it is reasonable to extend the await statement to
express disjunctive relation among return tests.

Multiple Dependencies of Same Type

Our system already allows the specification of multiple dependencies stemming
from identical calls, e.g., as in T Class.method() after C.m∧C.m. Currently, there
is no mechanism to enforce that these two obligations must be fulfilled via two
different futures. A model can hence fulfil both obligations with a single future.
It is not yet clear to us if a repeat occurrence of a requirement should imply
that both occurrences in a conjunct must be distinct, or if we may need the
expressivity of either variant. This could be achieved through an annotation
mechanism expressing which pairs or sets of requirements need to be disjoint.

Such a mechanism would enable us to request a constant number of calls,
e.g., to allocate resources. A similar approach for an actor-model with explicit
resource allocation (and deallocation) has been discussed by Ali et al. [2]. Their
dependencies are expressed in an orthogonal dimension as integer values, unre-
lated to the object-based workflow models. We plan to investigate a streamlined
solution that integrates both approaches, giving the modeler better granularity
in declaring dependencies and obligations on how they must be fulfilled.

Alternative Semantics for after-Construct

As observed in Sect. 2.1, care must be taken to select the right means of synchro-
nisation. Whereas synchronisation through await can always be introduced on

370 V. K. I Pun and V. Stolz

existing futures, after-clauses must match exactly their declarations and cannot
contain additional futures. Any additional synchronisation before a call must be
done via an await.

A potential change in the runtime semantics for Async-Call-After could
easily make the statement non-suspending by defering the implicit await from
the calling task to the called task. In a sequence such as fo = o!m() after f?; s,
the evaluation of statement s would then directly continue as the suggested form
of sequential composition would no longer await f? in the caller. We see here
some potential for our new language as otherwise a similar effect could only
be achieved by moving the pair of prerequisite future and subsequent call into
a new method without any dependency, and then invoking this new method
asynchronously. This workaround comes at the cost of, in our opinion, decreased
readability of the program. The proposed way would be similarly (syntactically)
light-weight as e.g., the Go language’s go { ... } construct for concurrency, albeit
on the level of individual statements.

5 Related Work

Numerous workflow modelling languages and approaches have been proposed
to facilitate workflow planning, including UML-AD [9], BPMN [6], BPEL [13],
CPN [10] and YAWL [1].

While UML-AD compares well to existing WMS, the language does not fully
capture advanced synchronisation patterns, e.g., N-out-of-M joins [4]. In addi-
tion, it does not allow communication among workflows, thus cannot capture
the dependency between them.

BPEL and BPMN provide ample expressivity to model the control flows
and synchronisation patterns in business workflows. While BPEL does not allow
inter-workflow communication, different workflows can communicate through
messages in BPMN. Nonetheless, the dependencies of the global control flow
cannot be specified by means of semantics [4] in the language.

The expressivity of high-level Petri nets, including CPN and YAWL, is in
general comparable with the many workflow modelling languages; however, con-
trol flow modelling for, e.g., multiple instances or advanced synchronisation pat-
terns, is not entirely satisfactory [1]. Inter-workflow communication is illustrated
to some extent with the help of hierarchical models in CPN based modelling lan-
guages.

In contrast to these works, our language is expressive enough to model the
organisation of control flows, complex decisions, exclusive event-based decisions
and parallel event-based decisions in business process workflows. In addition, it
allows formally specifying and modelling task dependencies in workflow models,
and supports inter-workflow communication by joining different workflow models
using explicit notions task dependencies.

Kamburjan et al. [12] introduce the concept of a resolvedBy annotation for
get requests that they use in a contract-based proof-system that can reason
about the guarantees the value of a future can give. The annotation declares

Enforced Dependencies for Active Objects 371

the potential origins of a future. Their concern is orthogonal to ours, as they are
concerned with return values for proofs, whereas we are concerned with statically
checked dependencies that need to be dynamically resolved for a method call. It
should be possible to encode our dependencies e.g., through additional boolean
variables communicated through futures (indicating which asynchronous calls
have been resolved), and hence a static dependency check through the proof
system, although allowances would have to be made to make the checks on
await, not necessarily get.

6 Conclusion

We have presented a workflow modelling language that features explicit declara-
tion of dependencies for method calls: in addition to the formal parameters, the
modeller provides an optional after clause to specify which methods in which
classes have to be called (and returned) before the call can proceed. The caller
of such a method has to provide evidence of their requisite calls by passing their
corresponding futures in addition to any actual parameters. The type system
ensures that a correct program fulfils all dependencies, and that the program
cannot encounter circular dependencies.

We believe that our language fills a gap in workflow modelling, where design-
ers would like to encode more domain-knowledge, and have a means of automat-
ically using that knowledge, here through verification via a type system.

Our language is based on the workflow modelling language with resources
Rpl [2] which has the after clause implemented. We plan to consolidate our
work into a single version with both resources and dependencies, and extend the
implementation of the Rpl with annotation of dependencies. We also plan to
evaluate our approach on the workflows at our project partner (the Pathology
department at the Haukeland University Hospital).

Another natural extension is to enhance the expressiveness of the augmen-
tation and construct in method declarations and invocations in the language to
capture richer dependencies and more complex control-flow patterns for workflow
modelling.

Further future investigations include studying the effect of relaxing the pro-
vided dependencies on the caller side by permitting to just provide a set of return
tests that will satisfy one of the disjuncts instead of all of them, as well as mov-
ing the suspension of after clauses from the caller into the callee’s context. We
also want to investigate in how far an annotation of futures in parameters, e.g.,
derived from their use in after clauses in the body, can preserve soundness while
still remaining useful.

Acknowledgements. This work is part of the CroFlow project: Enabling Highly
Automated Cross-Organisational Workflow Planning, funded by the Research Council
of Norway (grant no. 326249).

372 V. K. I Pun and V. Stolz

A Appendix

In this appendix, we present the remaining of the semantics in Fig. 10 in
Appendix A.1 and the additional typing rules for static type system in Fig. 11
in Appendix A.2 of the core language.

A.1 Semantics

Fig. 10. Semantics in addition to the rules in Fig. 5 (assignments for fields and local
variables are omitted). The auxiliary function atts(C, o′) returns the default values of
the fields of class C and o′ is the value for this; the function select selects a process
from the process pool for execution if it is ready to execute.

Enforced Dependencies for Active Objects 373

A.2 Type System

Fig. 11. Typing rules in addition to the type system presented in Fig. 7.

References

1. van der Aalst, W.M., ter Hofstede, A.H.: YAWL: yet another workflow language.
Inf. Syst. 30(4), 245–275 (2005)

2. Ali, M.R., Lamo, Y., Pun, V.K.I: Cost analysis for a resource sensitive workflow
modelling language. Sci. Comput. Program. 225, 102896 (2023). https://doi.org/
10.1016/j.scico.2022.102896

3. de Boer, F., et al.: A survey of active object languages. ACM Comput. Surv. 50(5),
76:1–76:39 (2017). https://doi.org/10.1145/3122848

4. Bouchbout, K., Alimazighi, Z.: Inter-organizational business processes modelling
framework. In: Proceedings of II 15th East-European Conference on Advances in
Databases and Information Systems, ADBIS 2011, vol. 789, pp. 45–54. CEUR-
WS.org (2011)

5. Caromel, D., Henrio, L.: A Theory of Distributed Objects. Springer, Heidelberg
(2005). https://doi.org/10.1007/b138812

6. Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput.
Stand. Interfaces 34, 124–134 (2012)

7. Dourish, P.: Process descriptions as organisational accounting devices: the dual
use of workflow technologies. In: Proceedings of the 2001 International ACM SIG-
GROUP Conference on Supporting Group Work, pp. 52–60. ACM (2001)

https://doi.org/10.1016/j.scico.2022.102896
https://doi.org/10.1016/j.scico.2022.102896
https://doi.org/10.1145/3122848
https://doi.org/10.1007/b138812

374 V. K. I Pun and V. Stolz

8. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M. (eds.): Process-Aware
Information Systems: Bridging People and Software Through Process Technology.
Wiley, Hoboken (2005)

9. Dumas, M., ter Hofstede, A.H.M.: UML activity diagrams as a workflow specifi-
cation language. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185,
pp. 76–90. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45441-1 7

10. Jensen, K.: A brief introduction to coloured petri nets. In: Brinksma, E. (ed.)
TACAS 1997. LNCS, vol. 1217, pp. 203–208. Springer, Heidelberg (1997). https://
doi.org/10.1007/BFb0035389

11. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

12. Kamburjan, E., Din, C.C., Hähnle, R., Johnsen, E.B.: Behavioral contracts for
cooperative scheduling. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R.,
Ulbrich, M. (eds.) Deductive Software Verification: Future Perspectives. LNCS,
vol. 12345, pp. 85–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64354-6 4

13. Ouyang, C., Dumas, M., ter Hofstede, A.H., van der Aalst, W.M.: From BPMN
process models to BPEL web services. In: Proceedings of 2006 IEEE International
Conference on Web Services, ICWS 2006, pp. 285–292. IEEE (2006)

14. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods. Technologies. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30409-5

15. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Workflow Patterns: The
Definitive Guide. MIT Press, Cambridge (2016)

https://doi.org/10.1007/3-540-45441-1_7
https://doi.org/10.1007/BFb0035389
https://doi.org/10.1007/BFb0035389
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-030-64354-6_4
https://doi.org/10.1007/978-3-030-64354-6_4
https://doi.org/10.1007/978-3-642-30409-5
https://doi.org/10.1007/978-3-642-30409-5

Correction to: Actors Upgraded for Variability,
Adaptability, and Determinism

Ramtin Khosravi, Ehsan Khamespanah, Fatemeh Ghassemi, and Marjan Sirjani

Correction to:
Chapter 9 in: F. de Boer et al. (Eds.): Active Object Languages:
Current Research Trends, LNCS 14360,
https://doi.org/10.1007/978-3-031-51060-1_9

The original version of the book was inadvertently published with an incor-
rect/incomplete form of reference [7] in Chapter 9. This has been corrected.

The original version of the bookwas inadvertently publishedwith an incorrect author
name in reference [8] in Chapter 9. This has been corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-031-51060-1_9

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, p. C1, 2024.
https://doi.org/10.1007/978-3-031-51060-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51060-1_14&domain=pdf
https://doi.org/10.1007/978-3-031-51060-1_9
https://doi.org/10.1007/978-3-031-51060-1_9
https://doi.org/10.1007/978-3-031-51060-1_14

Author Index

A
Andrieux, Martin 3

B
Bacchiani, Lorenzo 169
Baramashetru, Chinmayi Prabhu 263
Bergersen, Gunnar Rye 199
Bravetti, Mario 169

C
Carbone, Paris 123
Casadei, Roberto 37
Castegren, Elias 59

D
Damiani, Ferruccio 37

G
Ghassemi, Fatemeh 226
Giallorenzo, Saverio 169

H
Hähnle, Reiner 289
Haller, Philipp 123
Henrio, Ludovic 3

J
Johnsen, Einar Broch 199

K
Kamburjan, Eduard 289, 323
Khamespanah, Ehsan 226
Khosravi, Ramtin 226
Kobialka, Paul 199

L
Lienhardt, Michael 323

M
Mauro, Jacopo 169

O
Owe, Olaf 263

P
Pun, Violet Ka I 359

R
Radanne, Gabriel 3

S
Salvaneschi, Guido 92
Scaletta, Marco 289
Schlatte, Rudolf 199
Sirjani, Marjan 226
Spenger, Jonas 123
Stolz, Volker 359

T
Tapia Tarifa, Silvia Lizeth 199, 263
Torta, Gianluca 37

V
Viroli, Mirko 37

W
Weisenburger, Pascal 92
Wrigstad, Tobias 59

Y
Yoshida, Nobuko 147

Z
Zavattaro, Gianluigi 169

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
F. de Boer et al. (Eds.): Active Object Languages: Current Research Trends,
LNCS 14360, p. 375, 2024.
https://doi.org/10.1007/978-3-031-51060-1

https://doi.org/10.1007/978-3-031-51060-1

	 Preface
	 Organization
	 Contents
	Programming
	Active Objects Based on Algebraic Effects
	1 Introduction
	2 Context and Positioning: Futures, Promises, Effects
	2.1 Formal Model for Futures and Effects
	2.2 Promises in OCaml
	2.3 Promising Effects

	3 An OCaml Library for Active Objects
	3.1 Active Objects
	3.2 Encapsulation and Data-Race Freedom
	3.3 Active Object Desugaring
	3.4 Forward
	3.5 Runtime Support

	4 Future and Effect -Calculi
	4.1 A Functional-Imperative Base
	4.2 Futures and Cooperative Scheduling
	4.3 Effects

	5 Compilation of Futures into Effects
	5.1 Translating Fut into Eff
	5.2 Correctness of the Compilation of Actors into Effects

	6 Conclusion and Discussion
	A Proof of the Bisimulation Theorem (Theorem 2)
	References

	Actor-Based Designs for Distributed Self-organisation Programming
	1 Introduction
	2 Background
	2.1 Self-organisation and Collective Adaptive Systems
	2.2 The Actors Programming Model
	2.3 The Akka Toolkit: A Short Primer

	3 Actor-Based Designs for Aggregate Computations
	3.1 A Naive Actor-Based Implementation of the Self-healing Gradient Example
	3.2 An Improved Design

	4 The ScaFi Akka-Based Distributed Middleware
	4.1 System Design
	4.2 Server-Based Actor Platform
	4.3 Peer-to-Peer Actor Platform
	4.4 Actors and Reactive Behaviour

	5 Discussion and Future Work
	References

	Encore: Coda
	1 Introduction
	2 Encore and the ``Principle of Inversion''
	2.1 Concurrency and Parallelism
	2.2 A Brief Introduction to Encore

	3 Types for Safe Concurrency and Parallelism
	3.1 Subtyping and Code Reuse Across Concurrency Scenarios
	3.2 Attached and Detached Closures
	3.3 Capabilities for Safe Array Programming
	3.4 Letting Go of Static Types

	4 The Futures of Encore
	4.1 Forward Delegation
	4.2 Futures: Explicit or Implicit, and Control Flow or Data Flow?
	4.3 Future Chaining

	5 More Concurrency and Parallelism
	5.1 New Concurrency Abstractions: Bestowed References
	5.2 New Parallel Abstractions: Building Parallel Pipelines with Par[T]-Types
	5.3 Dealing with Hot Objects

	6 Benchmarking and Evaluation
	7 Type-Driven Optimisations for Data Layout
	8 Garbage Collection
	9 Implementation
	9.1 Compiler
	9.2 Runtime

	10 Lessons Learned
	11 Concluding Remarks, or Encore: Fine
	References

	Bridging Between Active Objects: Multitier Programming for Distributed, Concurrent Systems
	1 Introduction
	2 Background
	2.1 Active Objects and Actors
	2.2 Multitier Programming

	3 Modular Structuring of Asynchronous Communication
	3.1 The Actor Approach
	3.2 The Multitier Approach

	4 Discussion
	4.1 Active Objects vs. Actors vs. Tiers
	4.2 Development Benefits

	5 A Research Roadmap
	6 Related Work
	7 Conclusion
	References

	A Survey of Actor-Like Programming Models for Serverless Computing
	1 Introduction
	2 Background
	2.1 Actors
	2.2 Active Objects
	2.3 Dataflow Processing
	2.4 Functions-as-a-Service (FaaS)
	2.5 Actor-Like Serverless Computing

	3 Challenges of Serverless Actors and Active Objects
	3.1 Serverless State Management
	3.2 Fault Tolerance

	4 Analysis of Actor-Like Serverless Systems
	4.1 Programming Model
	4.2 Serverless Execution
	4.3 Related Work

	5 Research Directions
	6 Conclusion
	References

	Programming Language Implementations with Multiparty Session Types
	1 Introduction
	2 Multiparty Session Type Frameworks
	2.1 Top-Down Multiparty Session Type Framework
	2.2 Bottom-Up Multiparty Session Type Framework
	2.3 Hybrid Multiparty Session Type Framework

	3 Multiparty Session Type Language Implementations
	3.1 Static Top-Down Multiparty Session Type Framework
	3.2 Dynamic Top-Down Multiparty Session Type Framework
	3.3 Bottom-Up Behavioural Type Framework

	4 Conclusion
	References

	Modelling
	Integrated Timed Architectural Modeling/Execution Language
	1 Introduction
	2 Microservices Deployment and Running Example
	2.1 Automated Deployment of Microservices
	2.2 The Email Message Analysis Pipeline
	2.3 Scaling Microservices
	2.4 Microservice Maximum Computational Load

	3 Architectural Modeling/Execution Language
	3.1 Abstract Behavioral Specification Language
	3.2 Timed SmartDeployer
	3.3 Modeling Service MCL

	4 Integration with External Tools
	4.1 The Zephyrus Deployment Engine
	4.2 ML-Based Predictive Module

	5 Simulation of Architecture-Level Adaptable Systems
	5.1 Application to Global Scaling
	5.2 Microservice Multiplicative Factor
	5.3 Calculation of Scaling Configurations
	5.4 Calculation of the Mixed Monitored and Predicted Workload
	5.5 Scaling Algorithm
	5.6 Benchmarking the Performance of Global Scaling Approaches

	6 Related Work and Conclusion
	References

	Simulating User Journeys with Active Objects
	1 Introduction
	2 Motivating Scenario
	3 Related Work
	4 Preliminaries
	4.1 User Journeys as Weighted Games
	4.2 The ABS Modeling Language

	5 Workflow Pipeline
	5.1 Data Preparation for the Workflow Pipeline
	5.2 Modeling the User and the Service Provider
	5.3 Parameterized User Behaviour

	6 Case Study
	6.1 Context
	6.2 Evaluations of Users' Programming Skills by the GrepS System
	6.3 Simulation Analysis
	6.4 Prescriptions
	6.5 Evaluation

	7 Conclusion and Future Work
	References

	Actors Upgraded for Variability, Adaptability, and Determinism
	1 Introduction
	2 Rebeca Overview
	2.1 Running Example
	2.2 Core Rebeca
	2.3 Timed Rebeca
	2.4 Inheritance and Polymorphism

	3 Modeling Variability in Rebeca
	3.1 Running Example with Variability
	3.2 Feature Annotations
	3.3 Reactive Class Polymorphism
	3.4 Handling Reconfiguration
	3.5 Model Checking in the Presence of Variability
	3.6 Case Study: Elevator Scheduling with Variability

	4 More Deterministic Models Using Priorities
	4.1 Incorporating Priorities into the Running Example
	4.2 Analysis of Rebeca Models with Priorities
	4.3 Case Study: Anti-lock Braking System, with Priority

	5 Holistic Analysis of Cyber-Physical Systems
	6 Related Work
	7 Conclusion
	References

	Analysis
	Integrating Data Privacy Compliance in Active Object Languages
	1 Introduction
	2 The GDPR Requirements
	3 The GDPR Technical Challenges
	4 A Privacy-Aware Active Object Language
	4.1 Privacy-Aware Aspects of P-AOL
	4.2 Formal Syntax of P-AOL

	5 Motivating Examples
	6 An Operational Semantics for P-AOL
	7 Reflection on P-AOL Semantics
	7.1 Thoughts on Error Handling in P-AOL When Lacking Consent

	8 Correctness
	9 Related Work and Discussion
	10 Conclusions and Future Work
	References

	Context-Aware Trace Contracts
	1 Introduction
	2 State of the Art
	3 Program Semantics
	3.1 The Async Language
	3.2 States and Traces
	3.3 Semantics of Async

	4 A Logic for Trace-Based Specification
	4.1 Syntax
	4.2 Semantics

	5 Contracts
	5.1 The Concept of Trace-Aware Contracts
	5.2 Formal Trace Contracts
	5.3 Events Versus Predicates
	5.4 Semantics of Trace Contracts

	6 Proof Calculus
	6.1 Trace Updates
	6.2 Judgments
	6.3 Proof Rules
	6.4 Properties of the Proof Rules

	7 Case Study
	8 Liskov Principle
	9 Conclusion
	References

	Type-Based Verification of Delegated Control in Hybrid Systems
	1 Introduction
	2 Hybrid Active Objects and Post-regions
	2.1 Syntax
	2.2 Semantics
	2.3 Differential Dynamic Logic
	2.4 Post-region Invariants
	2.5 General Proof Obligation Scheme

	3 Externally Controlled Timed Post-regions
	3.1 Type System
	3.2 Proof System

	4 Modeling Cloud-Aware Hybrid Systems
	5 Related Work
	6 Conclusion
	References

	Enforced Dependencies for Active Objects
	1 Introduction
	2 Core Language
	2.1 Syntax
	2.2 Semantics

	3 Type System
	4 Observation and Discussion
	5 Related Work
	6 Conclusion
	A Appendix
	A.1 Semantics
	A.2 Type System

	References

	Correction to: Actors Upgraded for Variability, Adaptability, and Determinism
	Author Index

