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Abstract. Numerical simulation of physical processes in such complex forma-
tions as permafrost is impossible without modern multiscale methods. For exam-
ple, the heterogeneous multiscale finite element method (FE-HMM) can be used
to simulate elastic deformation of solids. However, it is necessary to have some
control tools of computational errors as well as a priori information on limitations
of the method in solving practical problems. In this article, we investigate the
influence of different mesh hierarchy levels on the accuracy and speed of solv-
ing the elastic deformation problem using FE-HMM with polyhedral supports
at the macrolevel and with tetrahedral supports at the microlevel. The obtained
estimates allow us to adjust the planning strategies of computational experiments,
which are largely related to the construction of a set of meshes with different accu-
racy.We apply the h-refinement technology at the edges of macro-polyhedra in the
microlevelmesh. Increasing in accuracy of computational solution up to twoorders
of magnitude with maintaining the total size of discretizations is obtained. Also,
the applicability of the method for numerical simulation of physical processes
in media with elongated inhomogeneities intersecting several macroelements is
shown.

Keywords: Elastic Deformation · Heterogeneous Multiscale Finite Element
Method · Polyhedral Supports · Natural Parallelism

1 Introduction

Structural complexity of rocks imposes certain limitations on the computational schemes
used. For example, direct methods (such as the Galerkin method [1]) lead to discretiza-
tions with a large number of parameters. It is critical situation even using modern com-
puting machines. Therefore, methods based on decomposition of the initial domain into
some subdomains are applied to simulate physical processes in heterogeneousmultiscale
media. However, in this case it is necessary to construct special boundary operators to
ensure the continuity of the solution at interfaces. The most general and easy-to-use
mathematical tools for constructing such operators are offered by multiscale finite ele-
ment methods. For example, in the heterogeneous multiscale finite element method
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(FE-HMM) [2–4], the solution space has a hierarchical structure and contains two or
more levels. Each of levels corresponds to one physical or geometric scale of the problem
under consideration. At each level of the hierarchy, special subproblems are formulated
to construct local subspaces. The procedures for matching the hierarchy levels are cho-
sen according to the specifics of the processes being simulated. This strategy ensures
sufficient flexibility and adaptability of the method.

In this paper, we recall the upper mesh level as a macrolevel taking into account the
effective properties of the medium. We recall the lower mesh level as a microlevel. The
microlevel allows to take into account all inhomogeneities of the medium. To simulate
the elastic deformation of a heterogeneous solid using the two-level FE-HMM, let us
formulate the main stages:

1. Construction of the mesh hierarchy: partitioning of the entire modelling domain into
subdomains (macroelements) without overlapping and without strictly considering
the internal geometric structure. Then each of the macroelements is independently
partitioned into microelements, taking into account the internal structure.

2. Construction of a functional hierarchy. To construct the macroscale shape functions
and to ensure smoothness of the solution, we consider series of subproblems on each
macroelements using microelement meshes.

Despite the sufficient representation of FE-HMM in the literature, including for
modelling elastic deformation [5], some mathematical and corresponding technological
aspects of this method should be developed for each specific physical problem. In addi-
tion, at the upper level of the hierarchy (hereinafter referred to as the macrolevel) finite
element of a simple shapewith an equal number of faces (tetrahedrons or parallelepipeds)
are traditionally used to simplify the construction of functional subspaces of the solution.
However, to simulate the elastic deformation of heterogeneous solids, it is more efficient
to use polyhedral macroelements with a non-fixed number of faces. We have proposed
and implemented technologies for automating construction of mesh discretizations at
the macrolevel, and approaches to construct the macroscale shape functions ensuring
the required accuracy of the numerical solution.

2 Problem Statement and Solution Method

Let � = [0, 1] × [0, 1] × [0, 1] be a homogeneous modelling domain. We consider a
sandstone with Young’s modulus 5 GPa and Poisson’s ratio 0.27 GPa.

The lower base of the area is rigidly fixed.We assume that the upper base is displaced
upward along theZ axis by 0.1m.The side surface is free. The force of gravity is not taken
into account in this case. Thus, the boundary elastic deformation problem is presented
as:

−∇ · (D : ∇sU(x)) = 0, (1)

U|lower_base = (0, 0, 0)T , (2)

U|upper_base = (0, 0, 0.1)T , (3)



94 A. Yu. Kutishcheva et al.

n · σ|side_surface = (0, 0, 0)T . (4)

If the domain is inhomogeneous, the above formulation is valid, but the correspond-
ing ideal contact conditions at the interfaces are added.

2.1 Discretization of Computational Domain

This work does not deal with the construction of adaptive tetrahedral meshes in complex
three-dimensional domains. For this purpose, the open integrated numerical modelling
platform SALOME is used. It provides a wide range of tools for working with geometric
objects and with mesh structures.

Polyhedral meshes are constructed as duals to the primary tetrahedral mesh. The
nodes of the polyhedral mesh are the barycenters of geometric elements of the primary
mesh. This approach is based on the Voronoi diagram [6], which is dual to the Delaunay
triangulation [7]. There are different realizations of this approach in the two-dimensional
and three-dimensional domains [8–12]. The approach is usually related with the choice
of theway of constructing boundary elements, since in the basic formulation, theVoronoi
diagram is constructed in the infinite domain.

Let T(�) = {
T3D,T2D,T1D,T0D

}
be some primary tetrahedral mesh constructed

in a single-connected domain � with the non-smooth external boundary ∂�.

The T(�) consists of a subset of tetrahedra T3D = {
t3Di , i = 1, nT3D

}
, faces

T2D = {
t2Di , i = 1, nT2D

}
, edges T1D = {

t1Di , i = 1, nT1D
}
, and nodes T0D ={

t0Di , i = 1, nT0D
}
. We recall �(�) = {

�3D,�2D,�1D,�0D
}
as a polyhedral mesh.

We have implemented the most general approach, which consists of the sequential
processing of the following basic mappings:

V0D :
(
T0D

)
�→ �3D, (5)

F1D :
(
T1D

)
�→ �2D, (6)

E2D :
(
T2D

)
�→ �1D, (7)

N3D : T3D �→ �0D, (8)

where V0D is mapping, which corresponds to a node of the primary mesh to a polyhe-
dron; F1D is mapping, which corresponds the edge of the primary mesh element to the
polyhedral mesh edge (Fig. 1a); E3D is mapping, which corresponds to the inner edge
of the primary mesh element to the polyhedral mesh edge (Fig. 1b); N3D is mapping,
matching the barycenters of the primary mesh elements to the polyhedral mesh nodes.

In addition, external boundaries ∂� give rise to additional special cases. For example,
we need have a mapping that maps a primary mesh node lying on an external boundary
∂� to a polyhedral mesh edge (Fig. 2):

F0D :
{
t0D|t0D ∈ T0D ∃t2D ∈ T2D

ext : t2D ∩ t0D = t0D
}

�→ �2D
0D, (9)
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Fig. 1. Action of mapping operators from an edge of the primary mesh to a polyhedral mesh edge
(a) and mapping from a primary mesh edge to a polyhedral mesh edge (b)

Fig. 2. Action of the mapping operator from a primary mesh node lying on the external boundary
∂� to a polyhedral mesh edge

The considered approach of polyhedral mesh construction has some disadvantages,
such as the possibility of non-planar faces and non-convex polyhedra. However, for the
computational schemes based on multiscale methods proposed in this paper, this is not
a critical situation.

2.2 Heterogeneous Multiscale Finite Element Method

We consider a polyhedral consistent irregular mesh �H (�) =
{
Kp̃
i , i = 1,N

}
of the

entire computational domain. Where Kp̃
i is a nonoverlapping polyhedron (Fig. 3a), and

the p̃ is the number of the polyhedron vertices.
Let us introduce a finite-dimensional subspace on the set �H (�):

[
L2(�)

]3 ⊃ VH =
{
u|u ∈

[
L2(�)

]3 : u ∈
[
	H

(
�H (�)

)]3}
, (10)

where 	H
(
�H (�)

) = {
�p, p = 1,P

}
is the space of non-polynomial finite shape func-

tions associated with mesh nodes p = 1,P. Since the functions �p are finite and satisfy
the “unit partitioning”-condition by the FE-HMM requirements [13], we construct con-

sistent irregular tetrahedral meshes Th
(
Kp̃
i

)
= {

τj, j = 1, ni
}
, ∀i = 1,N (see Fig. 3b)
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Fig. 3. Structure of the computational domain and examples of meshes: a – the macromesh

�H (�) consists of 1290 polyhedra; b – the micromesh Th
(
Kp̃
i

)
in the polyhedron

on each of the polyhedral macroelementKp̃
i independently. To construct them, we define

the next subspaces on corresponding finite element:

[
L2(�)

]3 ⊃ Vh =
{
�|� ∈

[
L2(�)

]3 : � ∈
[
ϒh(τj

)]3∀τj ∈ Th(�)

}
, (11)

whereϒh
(
τj

)
is a space of first-degree polynomials (in the general case polynomials have

the degree m). Then let us formulate discrete variational formulations at the microlevel

for Kp̃
i , ∀p = 1, p̃, ∀i = 1,N :

⎧
⎨

⎩

find �h
p ∈ Vh + �̃p

(
∂Kp̃

i

)
such that

∫

�

∇�h
p : D : ∇vhd� = 0, ∀vh(x) ∈ Vh,

(12)

where �̃p

(
∂Kp̃

i

)
is the value of the function �h

p on the external boundary of the polyhe-

dron. The function can be found from the solution of a similar problem with the lower
dimensionality. Thus, we need to solve the quasi-dimensional problem on the boundary
(Fig. 4b). Also, the values of the desired function along the edges are required (Fig. 4c).
They can be obtained by using the simple interpolation from (0, 0, 0)T to (1, 1, 1)T . If the
edge is not crossed by an inclusion, in this case we construct one-dimensional subprob-
lems along the edges with the boundary conditions (0, 0, 0)T or (1, 1, 1)T depending on
the function index. Thus, the weight of the resulting function�h

p and degree-of-freedom

corresponding to the vertex with the index p equals to the value (1, 1, 1)T . All other
weights associated with the macroelement vertices are equal to (0, 0, 0)T .

Also, by definition FE-HMM the shape functions must fulfill the property (Fig. 5):

p̃∑

p=1

�h
p(x) = (1, 1, 1)T , ∀x ∈ Kp̃

i . (13)
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Fig. 4. The hierarchical system ofmeshes in amacroelement for a series of nested subproblems to
construct the nonpolynomial shape functions: a – the tetrahedral mesh in the whole macroelement;
b – the triangular mesh on the face (extracted from the tetrahedral mesh); c – the one-dimensional
mesh on the edge (extracted from triangular meshes)

)b)a

Fig. 5. Example of the x-component of the shape function on a polyhedron (a) and one of the
sections (b)

The discrete variational formulation at the macrolevel has the form:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

find UH ∈ VH
(
�H (�)

) + UD(�D) such as∫

�

∇UH : DH : ∇vHd� =
∫

�N

GNgvH (x)d(∂�) +
∫

�

FvHd�,

∀vH (x) ∈ VH
(
�H (�)

)
,

(14)

where DH is a homogenized material coefficient.
Thus, the solution of the problem (1)–(4) is represented at each point of the domain

� as a decomposition over the corresponding shape functions:

UH (x) =
∑

Kp̃
i ∈�h(�)

p̃∑

p=1

qHp �h
p (x) =

∑

Kp̃
i ∈�h(�)

p̃∑

p=1

qHp
∑

r

qp,hr ξhr (x), (15)

where qHp and qp,hr are the weights of degrees of freedom obtained from the solution

of (12) and (14), respectively, ξhr (x) ∈ Vh
(
Kp̃
i

)
are the basis functions from the space

defined in (11).
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3 Numerical Estimation of FE-HMM Accuracy

3.1 Homogeneous Computational Domain

Let the solution UFEM of the problem (1)–(4) be obtained by the classical finite element
method using a detailed mesh (more than 10 million tetrahedra). We consider UFEM as
an exact solution for all variants. To calculate the relative error of the z-component of
the solution obtained by using the heterogeneous multiscale finite element method, we
apply the L2-norm as:

err =
∥∥UFEM

z − UFE−HMM
z

∥∥
L2∥∥UFEM

z

∥∥
L2

=

⎛

⎜⎜
⎝

∫

�

(
UFEM
z − UFE−HMM

z

)2
d�

∫

�

(
UFEM
z

)2
d�

⎞

⎟⎟
⎠

1/2

. (16)

Fig. 6. Micromeshes of a macroelement with equal initial criteria for fineness of partitions: a –
without adaptation, b – with additional sub-partitioning.

Table 1 shows a comparison of two approaches to the construction of meshes at
the microlevel: without adaptation and with adaptation. In the variant with adaptation,
additional subdivision of the tetrahedral mesh was performed on those edges of the
polyhedron, where at the standard step of construction there were less than 5 nodes of
the tetrahedral mesh (see Fig. 6).

As can be seen from the analysis of the results in the Table 1, the convergence of FE-
HMM is hierarchical. The relative error of the solution decreases both by increasing the
number of polyhedra at themacrolevel, and by splitting themesh at themicrolevel. How-
ever, in the variant with the micromesh without adaptation, there is a limit of the fineness
at the macrolevel. Namely, on the mesh with 1290 polyhedra, the relative error is higher
than on the meshes with fewer polyhedra for comparable fineness of the micromeshes.
This is due to the fact that at a given criterion of micromeshes the necessary accuracy is
not achieved when constructing the macrolevel shape functions even in a homogeneous
medium. The introduction of an additional criterion of mesh adaptation along the edges
allows to control this accuracy. This strategy significantly increases the total number of
the degrees of freedom at the microlevel.
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Table 1. Numerical characterization of computational meshes for a homogeneous sample and

comparison of the two approaches to constructingmeshes at themicrolevel (Nh is the total number
of tetrahedra at the microlevel)

Number of
poly-hedrons

Micro-partitioning
fineness criterion

Without adaptation With adaptation

Nh Relative error
for Uz

Nh Relative error
for Uz

26 0.03 136 235 1.44E−02 135 650 1.48E−02

0.02 490 329 1.42E−02 534 517 1.40E−02

0.015 957 375 1.40E−02 1 131
719

1.40E−02

0.01 4 106
514

1.40E−02 4 517
391

1.41E−02

76 0.03 142 146 5.74E−02 242 252 8.70E−03

0.02 454 084 7.65E−03 549 335 7.88E−03

0.015 1 194
948

7.38E−03 1 300
279

7.54E−03

0.01 4 017
742

7.35E−03 4 237
923

7.63E−03

135 0.03 143 046 3.45E−01 431 854 6.82E−03

0.02 522 917 4.37E−02 628 431 6.68E−03

0.015 1 225
841

5.69E−03 1 275
817

5.94E−03

0.01 4 551
570

5.46E−03 4 527
933

5.75E−03

217 0.03 155 259 4.81E−01 686 404 6.73E−03

0.02 493 548 1.78E−01 746 568 6.27E−03

0.015 1 271
845

5.61E−03 1 398
700

5.65E−03

0.01 4 279
962

5.35E−03 4 336
714

5.11E−03

575 0.03 375 650 8.00E−01 2 282
913

5.76E−03

0.02 534 636 4.93E−01 1 831
935

4.16E−03

0.015 1 122
026

3.13E−01 2 517
785

3.98E−03

(continued)
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Table 1. (continued)

Number of
poly-hedrons

Micro-partitioning
fineness criterion

Without adaptation With adaptation

Nh Relative error
for Uz

Nh Relative error
for Uz

0.01 4 290
063

3.68E−03 4 290
063

3.68E−03

1290 0.03 756 602 8.44E−01 5 156
084

1.33E−02

0.02 769 786 8.33E−01 3 618
022

3.79E−03

0.015 1 159
803

5.53E−01 4 396
185

4.00E−03

0.01 3 884
906

3.16E−01 5 883
967

3.69E−03

3.2 Computational Domain with Inclusions

One of the basic problems of multiscale methods is to realize a technology that allows to
work with unstructured media. In these media, it is impossible to construct a macromesh
that its internal boundaries do not cross medium interfaces, and inclusions lie in some
macroelement strictly inside. Polyhedral media allow us to reduce such intersections,
since the shape of the macroelements can be varied over a wide range. However, it is
not always realizable. For example, it is impossible for media with lenticular inclusions
(Fig. 7a).

Fig. 7. Idealized macrostructure of permafrost rock.

To investigate the accuracy of the solution obtained in inhomogeneous objects, let
us consider a two-component medium in the form of a cube with the edges of 1 m.
The object consists of a matrix and inclusions of different configurations (Fig. 7). The
matrix is sandstone (Young’s modulus is 5 GPa, Poisson’s ratio is 0.27) similar to the
homogeneous sample from the point above. The inclusions are icewithYoung’smodulus
9.8 GPa and the Poisson’s ratio 0.34. We assume the inclusions can be represented by
the lenticular formations (two axises have fixed length 0.4 m, the third axis length varies
randomly from 0.05 to 0.1 m) and the classical porous (diameter of spheres is 0.12 m).
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For physically correct accounting of such peculiarities and preserving the continuity
of the solution at the intersection boundaries, additional reduced subproblems (12) are
solved to construct the macrolevel shape functions. The Table 2 shows the relative errors
for the samples with lenticular inclusions (Fig. 7a) and spheres inclusions (Fig. 7b),
for which the intersection of macroelements boundaries was also not controlled. The
micromeshes were constructed with a conditional fineness criterion of “0.01” and with
adaptation, since the most reliable results on a homogeneous sample were obtained at
such parameters.

As in the case of the homogeneous sample (Table 1), the convergence with poly-
hedral mesh refinement is observed with a comparable number of tetrahedrons at the
microlevel. However, 1290 polyhedra do not give a significant increase in accuracy, even
when the number of microelements increases. The errors of the solutions for the sam-
ple with relatively large inclusions-lenses are comparable to the results for the samples
with inclusions-spheres. Thus, our modification allows us to fully apply FE-HMM for
media with inhomogeneities whose characteristic size exceeds the characteristic size of
macroelements.

Table 2. Numerical characterization of the computational meshes and the relative errors of the

solution for the sample with inclusions-lenses and inclusions-spheres (Nh is the total number of
tetrahedrons at the microlevel)

Number of
poly-hedrons

Sample with inclusions-lenses Sample with spherical inclusions

Nh Relative error for Uz Nh Relative error for Uz

26 4 502 546 2.01E−02 4 706 431 1.84E−02

76 4 353 217 1.48E−02 4 271 016 1.40E−02

135 4 511 366 1.12E−02 4 557 437 9.69E−03

217 4 385 528 1.09E−02 4 391 696 7.64E−03

575 4 519 899 9.63E−03 4 404 501 6.12E−03

1290 6 323 232 9.72E−03 6 138 601 5.38E−03

4 Parallelization of Computing Schemes

In this this paper, we will exclude the procedures for constructing hierarchical finite
element meshes, as it is difficult to evaluate them in terms of the required resources,
since a third-party software package SALOME is involved. For each macroelement the
micromesh is also constructed independently.

In terms of implementation, the algorithm of the heterogeneous multiscale finite
element method consists of the following steps:

1. A polyhedral macromesh is read and processed (e.g., a neighborhood relation is
formed).
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2. For each macroelements non-polynomial shape functions are independently con-
structed:
a. the tetrahedral mesh of the macroelement is read and processed (including

submeshes on each face and on each edge);
b. the edges are analyzed and the traces of the shape function are formedalong theone-

dimensional boundary: if there are no homogeneities on the edge, the analytical
relation is substituted, if there are homogeneities on the edge, the subproblems are
solved;

c. form traces of shape functions on quasi two-dimensional faces (in the general case
the faces may not be planar) through the solution of a series of subproblems;

d. systems of linear algebraic equations (SLAE) are formed and solved for each of the
shape functions taking into account the corresponding traces on the boundaries.

3. Assembling the SLAU taking into account global boundary conditions and solving.
4. Analysis and output of results.

As it is not difficult to see, both algorithmic and software optimization are possible
at each of the stages. However, in any case, the second stage generates a large number
of additional subproblems since in a polyhedral medium, the number of shape functions
coincides with the number of vertices which can be more than 30. Nevertheless, the
processing on each of the macroelements in FE-HMM can be performed completely
independently of the neighboring elements. Within the framework of this work a parallel
version of the algorithmbased on theOpenMP technologywas realized. The Fig. 8 shows
measurements of the solution time of the problem (1)–(4) for the homogeneous sample
in the different variants of the meshes containing 26, 76, and 135 polyhedrons and
preserving the fineness of micro-partitioning (about 1 million tetrahedrons).

The computational experiments were performed by using a computer with AMD
Ryzen Threadripper PRO 3975WX 32-Cores (3.50 GHz) processor.

Fig. 8. Dependence of the problem solution time on the number of processors used.
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5 Conclusions

A parallel modification of the heterogeneous multiscale finite element method using
polyhedral supports is proposed for solving the problem of elastic deformation of a
heterogeneous solid.

The developed algorithms and computational schemes are analyzed in terms of
numerical convergence and requirements to computational resources. The “two-level”
convergence specific to hierarchical finite element methods has been shown experi-
mentally. The solution accuracy can be controlled by varying the discretization at the
macrolevel as well as at the microlevel. In this case, to achieve the best accuracy of the
solution, it is necessary tomaintain a balance inmesh refinement both in the construction
of nonpolynomial shape functions at the micro- and macrolevels. The proposed auto-
matic adaptation of the mesh at the microlevel near the edges of the polyhedron allows
to obtain a more accurate solution (up to two orders of magnitude) at comparable sizes
of discretizations. The approach in parallel realization of computational schemes used
within the framework of this stage allowed to reduce the solution time up to 10 times on
32 threads. Also, in the future, it is planned to modify the technology of load distribution
over processor threads to increase efficiency.
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No. 22-71-10037).
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