
Comparative Study of Practical Implementation
of Time Delay Estimation Methods on Single

Board Computer

Vladimir Faerman(B) , Kirill Voevodin , and Valeriy Avramchuk

Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Avenue, 634050
Tomsk, Russia

fva@fb.tusur.ru

Abstract. The article discusses the practical implementation of various meth-
ods for time delay estimation (TDE) on a Raspberry Pi single-board computer.
The relevance of the research is due to the importance of the implementation of
TDE methods in the tasks of object positioning and localization. The demand for
real-time operation, as well as the requirement to use single-board computers as
sensor nodes, imposes high demands on the efficiency of computing. The paper
compares various time-domain and frequency-domain TDE methods, including
those that utilize a limited set of spectral bins, applicable to problems of local-
ization of acoustic signal sources. The paper considers various methods, their
advantages, disadvantages, and computational features. In addition, we have car-
ried out their comparative analysis as well as conducted experimental validation
of theoretical estimates of the demands on computing resources. During a series of
computational experiments carried out through specially developed software, the
computing time and the memory usage are estimated. Based on empirical research
on a single-board computer, the Raspberry Pi 4B, we reasonably advise certain
methods to be employed in particular scenarios for localization of an acoustic
source in space using the Raspberry Pi single boards.

Keywords: Time Delay Estimation · Raspberry Pi 4 · Fast Fourier Transform ·
Goertzel Algorithm · Computational Grids · Sliding Discrete Fourier Transform

1 Introduction

The significance of effective methods for time delay estimation (TDE) lies primarily
in their wide practical application in local positioning systems [1, 2]. Schematically,
the problem of local positioning is presented in Fig. 1 [1]. Depending on the specific
circumstances within the scenario, positioning tasks can be considered as passive or
active. In passive tasks, the position of the object that is the direct emitter of the signal is
determined. In active tasks, themobile object being positioned reflects a dedicated signal
emitted by the locator [3]. It is also possible to reverse the composition of the system
shown in Fig. 1, where themobile object will be considered as the signal receiver. In turn,
stationary nodes will become transmitters [4]. It should be noted that the reverse passive

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
V. Jordan et al. (Eds.): HPCST 2023, CCIS 1986, pp. 53–71, 2024.
https://doi.org/10.1007/978-3-031-51057-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51057-1_5&domain=pdf
http://orcid.org/0000-0002-9643-0245
http://orcid.org/0000-0001-8781-9315
http://orcid.org/0000-0002-5012-1826
https://doi.org/10.1007/978-3-031-51057-1_5

54 V. Faerman et al.

scenario is not significantly different from the regular passive one when considering
solely the TDE problem. Time delay estimation methods are normally applyed to all
those scenarios [1].

Fig. 1. Generalized TDE scheme (passive non-reverse scenario): S – mobile object (active emit-
ter); A, B, C, …, Z – array of stationary sensors; s0(t) – signal emitted by the source S;
LA, LB, LC , …, LZ – exact positions of the corresponding sensors; sA(t), sB(t), sC(t), …, sZ (t) –
signals received by corresponding sensors; L0 – position of the source S.

The high demand for object positioning systems, in turn, is associated with the
development of wireless technologies and advances in industrial automation. Recent
development of the Internet of Things [5, 6] and the spread of smart devices [7, 8] have
opened a great new field of application of positioning systems. The gradual introduction
of such devices and systems into the consumer goods market makes it relevant to further
reduce their cost. The principal factor of cheapening in this case is the reduction in the
cost of hardware for smart devices or sensor nodes [6]. Systems on a chip (SoC) and
SoC based single board computers are often considered as core computing units for
positioning systems. The advantage of the latter is the developed peripherals and wide
availability of hardware expansion modules, sufficient to solve most user tasks [9].

The main reason for choosing single-board computers is their high portability and
self-sufficiency, as well as low power consumption and reduced cost compared to per-
sonal computers. However, you have to trade this for worse performance characteristics
and lower volume of available RAM. This has to considered when implementing digital
signal processing algorithms for practical applications.

In particular, a specific feature that must be taken into account when implementing
local positioning techniques is the limited performance of the hardware platform, espe-
cially when operating in real time. This makes it relevant to study the practical methods
of TDE and variants of their practical implementation in relation to various scenarios
of application. The expected result is the reasonable choice of the TDE methods and
their variants applicable to such scenarios as real time positioning of a mobile object,
positioning of a signal source with a priory known spectral composition, and some
others.

This article presents a theoretical and empirical comparison of different implementa-
tions of time-domain and frequency-domain methods of TDE in terms of computational

Comparative Study of Practical Implementation of Time Delay Estimation 55

performance and the amount of memory involved. In the experimental part of the work,
a Raspberry Pi 4B single board computer was used as a hardware for tests.

2 Overview of TDE Methods

Time delay estimation is the most common technique applied to the local positioning
problem. The essence of TDE is to measure a time lag between signals received by an
array of spatially distributed sensors. In the basic passive scenario, the source of those
signal is a positioning object.

For the sake of certainty, let us assume that only two sensors are used. In this case,
the signals received by the sensors are described by the following expression [10]

sa(t) = Ka · s0(t − τa) + na(t),

sb(t) = Kb · s0(t − τb) + nb(t),
(1)

where s0 is the signal emitted by the object; Ka, Kb are the attenuation coefficients of
signals along the propagation path; τa, τb are the delays between the received and the
emitted signals; na, nb are additive noises, sa, sb are received signals. So the required
lag time is expressed as

τab = (t − τa) − (t − τb) = τb − τa. (2)

The value τab is often referred to as the time difference of arrival (TDOA). Wide
class of positioning methods is based on the analysis of set of TDOA estimations [1].
Depending on the practical setting, they can be used to determine the coordinates of an
object by themethodofmultilateration in linear coordinates [11–13], in plane coordinates
[14, 15], or in three-dimensions [5, 8, 16]. Such problems are quite typical for such
fields of science and technology as local positioning and indoor navigation, wide area
positioning of mobile subscribers in communication networks [5, 8], locating of pipeline
leaks with leak noise correlators [11–13].

The applied methods to the aforementioned problem can be divided into two groups:
time and frequency [17]. This segregation of methods is based on differences in the form
of representation of signals directly in their analysis.

2.1 Time-Domain Methods

Time-domain TDE methods usually assume analyzing the correlogram [3]. The lag
time can be obtained as an argument of the correlation function at which it reaches its
maximum value:

τab = argmax
(
Rab(τ)

)
, (3)

where arg max is the operator for obtaining the argument value at which function is
maximized; Rab (τ) is the correlation function of sa and sb.

The conventional way of calculating the correlation function of sampled signals
sa (ti) and sb (ti) applies the convolution theorem [11].

Rab
(
τj

) = F−1(F∗(sa(ti)) × F(sb(ti))
)
, (4)

56 V. Faerman et al.

where F is operator of discrete Fourier transform (DFT) operator; F–1 is operator of
inverse DFT (IDFT); * denotes unary operation of element-wise complex conjugation;
× denotes binary operation of element-wise product.

Despite the prevalence of the approach based on (3) and (4), the practical implemen-
tation of time-domain methods may vary in a sensible way. The variants differ mainly
by the algorithm that is used to perform DFT and IDFT operations.

2.2 Frequency-Domain Methods

Frequency-domain methods extract the lag time directly from the cross-spectrum of the
analyzed signals. The discrete spectra Sa (f k) and Sb (f k) of the sampled signals sa (ti)
and sb (ti) are complex valued, therefore we can consider them as following [18]

Sa,b(fk) = F
(
sa,b(ti)

)
, Sa,b(fk) = Xa,b(fk) × �a,b(fk), (5)

where Xa (f k), Xb (f k) are amplitude spectra; Fa (f k), Fb (f k) are phase spectra.
The amplitude spectrum carries information about the energy properties of the signal.
The phase spectrum carries information about the temporal features of the signal, in
particular, the time shift is reflected in it.

The cross-spectrum, respectively, has the form

Sab(fk) = Sa
∗(fk) × Sb(fk),

Sab(fk) = Xab(fk) × �ab(fk),

Xab(fk) = Xa(fk) × Xb(fk),�ab(fk) = �b(fk) − �a(fk). (6)

The phase component of the cross-spectrumFab (f k) is used to extract information
about TDOA. The following formula can be used directly to estimate the lag [18]

τab =
∑

k

�ab(fk) · fk
/

2π
∑

k

f 2k , (7)

where �ab (f k) = U[Fab (f k)] is the result of applying the unwrapping operator U to
Fab (f k). [18]

Expression (7) is established based on the full spectral representation of the signals.
Taking into account the equivalence of the information contained in the time and fre-
quency representations of the signal, it is correct to consider (7) as an analogue of (3). The
mathematical identity of these methods in terms of the potentially achievable accuracy
is shown in [19]. However, it should be noted that in practical cases, they give different
results. This is due to both the difference between real signals and model signals, and
the inevitable differences in their computational simulation [20].

In [20], an alternative variant (7) is proposed, which allows one to use an arbitrary set
of samples of the phase cross-spectrum. This makes it possible to apply the frequency
method in situations where noise prevails at low frequencies. The use of an alternative
formula also makes it possible to determine the time lag without computing the entire
spectrum. This feature is discussed in detail in the following section.

Comparative Study of Practical Implementation of Time Delay Estimation 57

2.3 Signal Processing in Practical TDE

In practical cases, the basic methods of TDE have low accuracy due to contamination
of the source signal by additive noise on the side of the receiving sensors. Reduction
in the negative impact of noise can be achieved by averaging estimates of the spectral
characteristics of signals. Each spectral estimate is obtained by the short-time Fourier
transform method [10]. In general, the time windows at the input of the transformation
can overlap and have a shared subset of signal samples. The expressions for computing
the correlation function for (3) and the phase cross-spectrum for (7) will respectively
take the following form:

Rab
(
τj

) = F−1

⎛

⎝ 1

Q
·
∑

q

[
F∗(s(q)a

(
ti
)) × F

(
s(q)b

(
ti
))]

⎞

⎠, (8)

�ab(fk) = U

⎡

⎣ 1

Q

∑

q

[
�

(
s(q)b

(
ti
)) − �

(
s(q)a

(
ti
))]

⎤

⎦,

�ab(fk) = U

⎡

⎣arg

⎛

⎝ 1

Q

∑

q

[
F∗(s(q)a

(
ti
)) × F

(
s(q)b

(
ti
))]

⎞

⎠

⎤

⎦, (9)

where Q is the total number of time windows at the input of DFT; arg is the operator
that returns argument of a complex number; sa(q), sb(q) are subsets of signal samples
belonging to the time window with index q.

In addition to averaging spectral estimates, frequency-weight functions of the form
�ab (f k) are used to further reduce the influence of noise [21]. The values of the samples
of the frequency-weight functions are positive and do not exceed unity. Values �ab (f k)
close to unity indicate that at this frequency bin f k , the signal overall prevails over noise
throughout the entire observation period. Frequency-weight functions can be used with
both time-domain [11, 21, 22] and frequency-domain methods [12, 23] of TDE. Despite
the variety of such functions, averaged spectral estimates are always used to get them.
From a computational standpoint, obtaining additional spectral estimates does not differ
from the cross-spectrum estimate used in (8). For this reason, weighing in the frequency
domain is not considered in the course of the further experimental study.

2.4 Variants of Fourier Transform Implementation

As shown above, both time and frequency methods of TDE require spectral transforma-
tions. In the practice of digital signal processing, DFT algorithms are used for this. Some
of the most effective solutions are classified as fast Fourier transforms (FFT). Among
the latter, the Coolie-Tukey algorithm is the most well-known and widespread [24].

Despite the significant computational advantages of FFT over the straight compu-
tation of the DFT, its use has a number of inconvenient features. Firstly, most FFT
algorithms impose restrictions on the number of samples at the input of the transform.
Secondly, those algorithms allow only the computation of the entire spectrum. This is

58 V. Faerman et al.

redundant in cases where the informative signal is localized in several a priori known
frequency bins. Thirdly, the obtaining of new data (a forward shift of the time window
by several samples) requires a full-fledged application of the FFT to obtain a new spec-
tral estimate. This complicates the use of FFT when operating in real time. The use of
small windows is not always acceptable, since the size of the time window is associated
with frequency resolution and noise tolerance. In contrast, the use of large windows, in
combination with calling the transformation every time new data arrives, creates a large
computational load.

SpecialDFT implementationswere proposed for all the cases described above,where
the FFT is limited in application. In particular, the chirp Z-transform (CZT) makes it
possible to obtain an arbitrary numberM of spectral bins using time windows composed
of an arbitrary number N of ticks [25]. It should be noted that this limitation of the FFT
is not essential for applying to TDE problem so we do not consider CZT in further study.

The Goertzel algorithm was initially proposed to compute individual frequency bins
within the signal spectrum [26]. The use of this algorithm in conjunction with the
frequency-domain methods of TDE allows one to obtain a time lag without comput-
ing the entire spectrum. This feature gives a computational advantage in some TDE
scenarios, and therefore we will investigate it further.

A recursive slidingDFTalgorithmcanbeused to obtain spectral estimates in real time
[27]. The advantage of this algorithm is the ability to reevaluate the already available
spectral characteristics based on newly received data. We will further investigate the
performance of SDFT and the corresponding amount of used memory to determine its
possibility of application to TDE problem.

It should be noted that by the moment numerous different recursive DFT algorithms
have been developed and described [28, 29], which remained beyond the framework of
this study. However, the potential of applying a few of them to TDE problem is discussed
in conclusion.

3 Computational Study

To determine the operational capabilities of a sensor node based on a single-board
computer, a series of computational experimentswas carriedout.During the experiments,
an array of dummy data was processed with time-domain and frequency-domain TDE
methods described in the previous section.

Further in this section we present estimates of the computational performance and
memory usage benchmarks related to the most critical stages of the implementation of
the considered methods. The discussion section showcases a comparison between the
empirical outcomes derived from empirical investigations and theoretical estimations.
Operation limits for the TDE device that are implied from the study are also could be
found within the discussion.

3.1 Raspberry Pi 4B Hardware

Computational experiments feature a Raspberry Pi 4B single-board computer [30] with
a HiFiBerry DAC + ADC Pro expansion board [31] shown in Fig. 2. The Broadcom

Comparative Study of Practical Implementation of Time Delay Estimation 59

BCM 2711 SoC is the core processing unit of the computer. This SoC incorporates
a quad-core general-purpose processor with the Cortex-A72 microarchitecture and a
VC6 graphics core, along with some peripheral components. The HiFiBerry sound card
was used exclusively in some segregated tests to verify the operability in real time for
specific input data rates and particular preset of computational parameters. Therefore,
its characteristics are not significant in the context of this study.

Fig. 2. Raspberry Pi 4B with HiFiBerry DAC + ADC Pro sound card attached on top.

3.2 Testing Software

For the purpose of this study, we have developed software for automated experimentation
and statistical preprocessing of acquired data. We elected C++ as the main programming
language, which was used to unify the program interfaces and implement wrap distinct
computational functions.

Performance critical software components were implemented in low level in C. Our
algorithmic implementation of the TDE methods largely corresponds to the descrip-
tion given in Sect. 2. To implement the FFT, we have used the current version of the
FFTW library, that is in fact commonly considered as the branch standard. We imple-
mented software components for SDF and Goertzel transform in a low level based on
the algorithms described in [26] and [27] respectively.

We implemented a special class dedicated to acquisition of statistical data on com-
putation time. Raw time benchmarks were gathered on calls of execution method of
wrapper class. Each benchmark was reiterated 150 times. Then, the raw data underwent
statistical processing. For each benchmark, we recorded the minimum and maximum
execution times, the average time, as well as the standard deviation of time. Sample code
for gathering and processing benchmarks is shown in Fig. 3.

Only dynamic allocation was taken into account when evaluating memory usage.
This is due to the fact that a fair share of memory usage is associated with storing in
buffers time series, complex spectra and precomputed constants for transforms. Due to

60 V. Faerman et al.

Fig. 3. Visual Studio screenshot that shows implementation of time measurements.

their size, these data arrays have to be stored in dynamic memory. Such an approach to
the evaluation of memory usage is tolerant to distortion by memory, that is used on the
stack and not directly related to the algorithms under study. The influence of the latter
could not be excluded if the entire memory associated with the process was used as an
estimate.

The Valgrind software was used to collect data on the allocated memory [32]. This
tool is a specialized memory management service, debug utility system and profiler
for software developers. Its functions include but not limited to the search for memory
leaks, register attempts to accesses beyond the boundaries of allocated areas or use of
uninitialized memory, and the investigation of other memory-related bugs.

3.3 Estimation of Computation Time

Thevariant ofDFT implementationheavily influences theperformanceof aTDEmethod.
This follows from (3) and (8), as well as (7) and (9), which is coherent with acquired
experimental data. Any of these TDE methods requires at least 2 ·Q DFTs. This compu-
tational operation significantly prevails in (9). Other operations are mostly computation-
ally simple: element-wise products of complex values, a unitary element-wise taking
argument of complex numbers and element-wise multiplication by a scalar value. On
the other hand, (8), in addition to similar element-wise operations, requires a single
execution of the IDFT, which is computationally equivalent to an additional forward
DFT.

For this reason, we further provide runtime estimates related only to the implementa-
tion variants of DFT. The execution time of the rest of the operations is not of comparable
interest, because it has an auxiliary effect on the performance of the TDE methods, and
also usually depends on the size of the time window N linearly.

Comparative Study of Practical Implementation of Time Delay Estimation 61

The estimations of FFT execution time for various sizes N of the time window are
presented in Table 1. Here and further, the following designations are used: Tmin – mini-
mum computation time; Tmax – maximum computation time; Tave – mean computation
time; �T – standard deviation (half width) of computation time. Since many random
factors can negatively affect the calculation time, we chose the minimum time as the
most reliable estimate for the purpose of performance comparison. Key benchmarks for
FFT are shown in Fig. 4.

When estimating the execution time of the Goertzel transform, we have varied both
the number of samples in time windows and the number of calculated frequency bins.
Since a theoretically predicted linear dependence of the execution time on the number of
frequency bins presented in all experiments, in Table 2 we showed the computation time
for a single frequency bin. Key benchmarks for Goertzel algorithm of DFT are shown
in Fig. 5.

Similarly, when estimating the execution time of the SDFT, we varied the number of
samples in time windows as well as the overlap rate between adjacent windows. Since
we predictably found a linear dependence of the computation time on the number of
newly introduced time samples in the previous time window, we elected to present the
computation time for a single sample in Table 3. Key benchmarks for SDFT are shown
in Fig. 6.

3.4 Estimation of Memory Usage

Estimates for the memory usage are given only for DFT variants, for similar reasons.
However, the memory requirements depend on a TDE method to a greater extent than
the performance. For instance, the use of frequency weighting functions requires storing
in memory several additional spectral estimates (usually power spectra) as well as a set
of frequency coefficients. So time-domain methods require the storage of whole spectra
and the full set of frequency coefficients, while frequency-domain methods can rely on
a limited set of frequency samples that require less memory to store.

Empirical estimates of the memory usage are presented in Fig. 7. The results of the
study indicate the slight superiority of the Goertzel transform in this aspect. The actual
advantage of the latter may be higher, given that the volume of required memory is
dependent on the number of computed frequency bins (see Fig. 8). However, if we elect
not to preserve inputs with FFTwe can evenmakememory its usage lesser than Goertzel
for full spectrum case.

Figure 8 clearly shows that the memory required for Goertzel transform is linearly
dependent on the number of bins that have to be calculated. The constant term in the
linear equation tends to become less significant with the size of the time window.

62 V. Faerman et al.

Table 1. Time to compute full spectrum with FFT.

N, samples Tmin, mcsec Tmax , mcsec Tave, mcsec ΔT, mcsec

256 3 13 3.080 0.823

512 6 14 6.053 0.651

1024 13 19 13.040 0.488

2048 29 48 29.147 1.551

4096 76 129 77.853 6.912

8192 197 299 204.227 17.033

16384 428 639 444.313 39.560

32768 1006 1522 1046.770 82.995

65536 2902 3500 2969.608 76.057

131072 8715 11136 9101.190 426.446

0

2000

4000

6000

8000

10000

0 16384 32768 49152 65536 81920 98304 114688 131072

T
ra

n
sf

o
rm

 c
o
m

p
u
ta

ti
o
n
 t

im
e,

m
cs

ec

Number of samples within time window (N)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

256 512 1024 2048 4096 8192 16384 32768 65536 131072

T
ra

n
sf

o
rm

 c
o
m

p
u
ta

ti
o
n
 t

im
e

d
iv

id
ed

 b
y

 w
in

d
o

w
 s

iz
e,

m
cs

ec

Number of samples within time window (N)

Fig. 4. Computation time vs number of samples within time window for FFT: for a full input
window of N samples (on top); for a single input sample (on bottom).

Comparative Study of Practical Implementation of Time Delay Estimation 63

Table 2. Time to compute one frequency bin with Goertzel transform.

N, samples Tmin, mcsec Tmax , mcsec Tave, mcsec ΔT, mcsec

256 2 3 2.188 0.035

512 2 5 3.089 0.495

1024 5 6 5.753 0.032

2048 11 12 11.478 0.014

4096 22 24 22.756 0.110

8192 46 47 46.482 0.067

16384 93 95 93.306 0.111

32768 186 188 186.589 0.112

65536 373 374 373.163 0.030

131072 747 749 747.767 0.210

0E+00

1E+07

2E+07

3E+07

4E+07

5E+07

6E+07

1 16385 32769 49153 65537 81921 98305 114689

T
ra

n
sf

o
rm

 c
o
m

p
u
ta

ti
o
n
 t

im
e,

m
cs

ec

Number of samples within time window (N)

10% 20% 30% 40% 50%

0

50

100

150

200

250

300

350

400

0 16384 32768 49152 65536 81920 98304 114688 131072

T
ra

n
sf

o
rm

 c
o
m

p
u
ta

ti
o
n
 t

im
e

d
iv

id
ed

 b
y

 w
in

d
o

w
 s

iz
e,

 m
cs

ec

Number of samples within time window (N)

10% 20% 30% 40% 50%

Fig. 5. Computation time vs number of samples within time window for Goertzel transform
(various rates of computed frequency bins are indicated by the color of a curve): for a full input
window of N samples (on top); for a single input sample (on bottom).

64 V. Faerman et al.

Table 3. Time to compute SDFT with almost overlapping time windows and precomputed
spectrum for previous window (all samples but one are in both time windows).

N, samples Tmin, mcsec Tmax , mcsec Tave, mcsec ΔT, mcsec

256 1 6 3.498 0.914

512 3 6 3.69 0.204

1024 7 9 7.277 0.11

2048 14 20 14.687 0.452

4096 29 30 29.551 0.039

8192 57 59 58.11 0.087

16384 115 117 115.945 0.117

32768 231 233 231.93 0.126

65536 487 491 488.799 0.692

131072 1085 1093 1088.615 1.269

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

0 16384 32768 49152 65536 81920 98304 114688 131072

T
ra

n
sf

o
rm

 c
o
m

p
u
ta

ti
o
n
 t

im
e,

m
cs

ec

Number of samples within time window (N)

95% 90% 70% 50%

0

100

200

300

400

500

600

0 16384 32768 49152 65536 81920 98304 114688 131072

T
ra

n
sf

o
rm

 c
o
m

p
u
ta

ti
o
n
 t

im
e

d
iv

id
ed

 b
y

 w
in

d
o

w
 s

iz
e,

 m
cs

ec

Number of samples within time window (N)

50% 70% 90% 95%

Fig. 6. Computation time vs number of samples within time window for SDFT (various rates of
overlapping samples are indicated by the color of a curve): for a full input window of N samples
(on top); for a single input sample (on bottom).

Comparative Study of Practical Implementation of Time Delay Estimation 65

0

1000

2000

3000

4000

5000

6000

0 16384 32768 49152 65536 81920 98304 114688 131072

M
em

o
ry

 u
sa

g
e,

 k
B

Number of samples within time window (N)

FFT SDFT Goertzel

Fig. 7. Memory usage vs number of samples within timewindow for all considered DFT variants.

0

20

40

60

80

100

1 10 20 30 40 50 60 70 80 90 100

M
em

o
ry

 u
sa

g
e

ra
te

(r
el

at
iv

e
to

 i
n
d
ic

at
ed

 m
ax

im
u
m

),

%

Portion of computed frequency bins, %

256 512 1024 2048

4096 8192 16384 32768

Fig. 8. Memory usage rate (compared to maximum value used for computation of full spectrum)
vs rate of computed frequency bins for Goertzel transform (various windows size are indicated by
the color of a lines).

4 Discussion

Our empirical results correspond well to theoretical estimations of complexity in regard
to memory usage and computational operations required. Calculating the DFT for a
real input time series using the FFT requires (N /2)·log2(N) complex multiplications and
N ·log2(N) complex additions. Each complex multiplication is composed of 4 real mul-
tiplications and 2 real additions. A complex addition is composed of 2 real additions.
Thus, computing a spectrum via applying FFT to a time window of N samples requires
2N ·log2(N) real multiplications and 3N ·log2(N) real additions. The asymptotic com-
putational complexity of the transform is O(N) = N ·log2(N) and it is consistent with
Fig. 4.

Each recursive FFT call requires splitting and reordering the interim results obtained
at the current step of recursion. In the proposed implementation, a separate buffer was

66 V. Faerman et al.

allocated for spectral data. However, it is possible to save about one third of memory
by overwriting the initial sequence during computations. However, it is necessary to
store the pre-calculated rotation multipliers prior to the transform, or performance will
be compromised. Asymptotically, the memory usage of the FFT is O(N) = N, which is
consisted with Fig. 7.

The Goertzel algorithm for calculatingK frequency bins for an input time series ofN
samples requiresK ·4N realmultiplications andK ·5N real additions. Thus, its asymptotic
computational complexity is O(K,N) = K ·N. Full scale real-valued DFT by Goertzel
algorithm (K = N /2+ 1) is inefficient and requires 2(N2 + 2N) real multiplications and
5(N2/2 + N) real additions. These estimates correspond well to those curves presented
in Fig. 5. The implementation of the Goertzel algorithm requires storing K precomputed
complex rotation multipliers. At the same time, it is also necessary to store the input
series ofN real samples as well asK computed output spectral estimates. The asymptotic
memory requirement of the Goertzel algorithm is O(N,K) = N + K, which is consistent
with Fig. 8.

The recursive SDFT algorithm relies on the already available spectral estimateswhen
recomputing spectrumwith the arrival of new input data. Processing each new time sam-
ple requires N + 2 real multiplications and N + 2 real additions. The asymptotic com-
plexity of the transformation isO(M,N)=M·N, whereM is the number of newly arrived
non-processed time samples. Processing a full time window ofN samples requiresN2 +
2Nadditions andN2 + 2Nmultiplications. These estimates are consistent with the curves
shown inFig. 6. Like other variants, the sliding transformutilizes an array of rotationmul-
tipliers as well as buffers to store input and output sequences. The difference of SDFT is
that the input series may not comprise a complete time window of allN samples in a first
place.However, an additional internal buffer is required to store theN time sampleswhich
were used to obtain current spectral estimates. Even though SDFT can be called with any
number of samples as input, it must be at least N samples in total before the first spectral
estimate is produced. The requirement for an additional buffer leads to the fact that SDFT
slightly underperforms in the aspect of memory requirements. That can be seen in Fig. 8.
The asymptotic memory requirement of SDFT isO(M,N)=M + N.

Comparison ofDFT implementation variants has shown that FFT is suitable in awide
range of scenarios, with few rare exceptions. Figure 9 shows the range of parameters
of a computational problem in which Goertzel algorithms outperforms FFT. As far as a
frequency-domainTDEmethod requires at least three frequencybins to drawa regression
line, computational advantages can be achieved only by large time window sizes. This
results in high frequency resolution. So to be practical in conjunction with a frequency-
domain TDE method, SDFT requires an accurate a priori knowledge of the frequency
localization of the signal as well as the absence of scattering during its propagation.

Figure 10 shows the range of parameters of a computational problem when SDFT
has an advantage over FFT in execution time. One can infer from the figure that the use
of the recursive algorithm is advisable only if an exceptionally high rate of spectrum
recalculation is required. The sampling frequency is usually 44100 Hz if we assume
a problem of positioning a mobile object via an acoustic channel. So in this case, the
use of SDF will be practical only when the position of the object (along with spectral
estimates) need to be updated at a rate exceeding 5000 Hz. Such a scenario seems not
to be very realistic.

Comparative Study of Practical Implementation of Time Delay Estimation 67

0

1

2

3

4

5

256 512 1024 2048 4096 8192 16384 32768 65536 131072

N
u
m

b
er

 o
f

co
m

p
u
te

d

fr
eq

u
en

cy
 b

in
s

(K
)

Number of samples within time window (N)

Fig. 9. Area in the domain of computational parameters when Goertzel outperforms FFT.

0

1

2

3

4

5

6

7

256 512 1024 2048 4096 8192 16384 32768 65536 131072

N
u
m

b
er

 o
f

p
ro

ce
ss

ed

ti
m

e
ti

ck
s

(M
)

Number of samples within time window (N)

Fig. 10. Area in the domain of computational parameters when SDFT outperforms FFT.

A comparison ofDFT implementation variants in the aspect ofmemory requirements
showed that the Goertzel algorithm has a slight advantage. However, the amount of
memory used is generally comparable for all variants, and this advantage appears to be
of not high practical importance. If a critical limitation on memory is a case, then it is
possible to save about one third of memory used by FFT just by giving up preserving
input.

In the course of further discourse, we will assume that the functions of the sensor
node are reduced to receiving continuously incoming signals, buffering them, processing
them and output the results of their processing. Let us also assume that the intensity of
data rate remains unaltered through all operating session, and the processing of the
obtained results and their output are carried out asynchronously. The similar situation is
described and modeled in [33].

Hence, real-time operating can be attributed to two parallel processes:

– processing of incoming data and refinement of spectral estimates (usually by coherent
averaging of instantaneous spectra);

– and utilizing those spectra to measure time lags with TDE methods, use time lags to
estimate object position solving multilateration problem.

The second process is not hardly synced with the first one and can be performed on
demand or on a residual basis. On the contrary, acquiring and processing of incoming
data should be done as soon as it arrives in order to avoid buffer overflow and data loss.

68 V. Faerman et al.

Let us denote the intensity of the incoming data flow as B and define as

B = fd · n,
where f d – sampling rate; n – number of channels. So, the total number of time windows
Q of size N that need to be processed during time period T0 can be defined as

Q = T0 · B
N

= T0 · fd · n
N · (1 − s)

,

where s – overlap rate between adjacent time windows (0 ≤ s < 1). By supposing that
the processing time of a window is predominantly determined by the DFT computation
time, we estimate the total time TQ takes to process all Q windows:

TQ = Q · T (N)

k(N)
· B
N

= T0 · fd · n · T (N)

N · (1 − s) · k(N)
,

where T (N) – average computation time of DFT; k – the share of DFT in the total
computational load. The ratio TQ to T0 is the fraction ρ of time that the machine spends
on processing the input data stream:

ρ = TQ
T0

= fd · n · T (N)

N · (1 − s) · k(N)
.

Let take that about two-thirds of computing resources need to be reserved in order
to ensure timely and regular calculation and display of the object’s position. Therefore,
the number of channels that a computing device can serve can be roughly estimated as

n ≤ N · (1 − s) · k(N)

3 · fd · T (N)
.

It is safe to assume that k(N)≥ 0.66 for anyN ≥ 256.We have previously determined
the empirical values of T (N) for the FFT and presented them in Table 1. A rough estimate
using the formula above shows that the Raspberry Pi 4B is capable of acquiring and
processing sound data from at least 16 channels at a frequency of 44100 Hz or from 4
channels at a frequency of 192000 Hz with an overlap rate of 75% in both cases. This
potentially makes it possible to reevaluate the position of an object dozens of times per
second, even using reasonably large size windows (for example, N = 16384). These
qualitative estimates are confirmed empirically during test runs of Raspberry Pi 4 with a
HiFiBerry module. More detailed and accurate benchmarks are planned for the future.

5 Conclusion

In this work, a comparative study of various implementations of TDEmethods wasmade
in respect of applicability on a single-board computer Raspberry Pi 4B. In the course
of theoretical study of the issue and empirical research, it was established that DFT is
the most computationally demanding operation, and it in a large extend determines the
performance of the methods.

Comparative Study of Practical Implementation of Time Delay Estimation 69

A comparison of various widely known DFT algorithms, in particular FFT, the
Goertzel algorithm and the recursive SDFT algorithm showed significant advantages
of FFT in performance and their equivalence in memory usage. Despite the fact that
some areas of computational parameters in which the Goertzel algorithm and SDFT
outperform the FFT, it is of little practical value.

TheRaspberry Pi 4B single-board computer has sufficient computational capabilities
to be used for positioning objects via an acoustic channel. The computer is able to process
data streamed via 4 (or more) acoustical channels and to compute spectral estimates in
a soft real time at a rate of at least 10 times per second. This way, FFT algorithms can
be effectively utilized with time-domain and frequency-domain TDE methods.

In the future, other special DFT algorithms should be checked as well. In particular,
the sliding Goertzel algorithm [34–36], which combines the features of both SDFT and
the classical Goertzel algorithm, can probably make a competition to FFT in the scenario
of tracking a mobile object in real-time.

References

1. So,H.C.: Source localization: algorithms and analysis. In: PositionLocation:Theory, Practice,
and Advances, pp. 25–66 (2011). https://doi.org/10.1002/9781118104750.ch2

2. Gustafsson, F., Gunnarsson, F.: Positioning using time-difference of arrival measurements.
In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing –
Proceedings, pp. 553–556. IEEE (2003). https://doi.org/10.1109/icassp.2003.1201741

3. Chen, T.: Highlights of statistical signal and array processing. IEEE Signal Process. Mag. 15,
21–64 (1998). https://doi.org/10.1109/79.708539

4. Hua, C., et al.: Multipath map method for TDOA based indoor reverse positioning system
with improved Chan-Taylor algorithm. Sensors. 20, 1–14 (2020). https://doi.org/10.3390/s20
113223

5. Zhang, Y., Gao, K., Zhu, J.: A TDOA-based three-dimensional positioning method for IoT.
Adv. Eng. Res. 149, 775–779 (2018). https://doi.org/10.2991/mecae-18.2018.136

6. Tay, S.I., Lee, T.C., Hamid, N.Z.A., Ahmad, A.N.A.: An overview of industry 4.0: definition,
components, and government initiatives. J. Adv. Res. Dyn. Control Syst. 10, 1379–1387
(2018)

7. Hong, J.M., Kim, S.H., Kim, K.J., Kim, C.G.: Multi-cell based UWB indoor positioning
system. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS
(LNAI), vol. 11432, pp. 543–554. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
14802-7_47

8. Lee, K., Hwang, W., Ryu, H., Choi, H.J.: New TDOA-based three-dimensional positioning
method for 3GPP LTE system. ETRI J. 39, 264–274 (2017). https://doi.org/10.4218/etrij.17.
0116.0554

9. Kurkovsky, S., Williams, C.: Raspberry Pi as a platform for the internet of things projects:
Experiences and lessons. In: Annual Conference on Innovation and Technology in Computer
Science Education, ITiCSE, pp. 64–69 (2017). https://doi.org/10.1145/3059009.3059028

10. Carter, G.C.: Coherence and time delay estimation. Proc. IEEE 75, 236–255 (1987). https://
doi.org/10.1109/PROC.1987.13723

11. Gao, Y., Brennan, M.J., Joseph, P.F.: A comparison of time delay estimators for the detection
of leak noise signals in plastic water distribution pipes. J. Sound Vib. 292, 552–570 (2006).
https://doi.org/10.1016/j.jsv.2005.08.014

https://doi.org/10.1002/9781118104750.ch2
https://doi.org/10.1109/icassp.2003.1201741
https://doi.org/10.1109/79.708539
https://doi.org/10.3390/s20113223
https://doi.org/10.2991/mecae-18.2018.136
https://doi.org/10.1007/978-3-030-14802-7_47
https://doi.org/10.4218/etrij.17.0116.0554
https://doi.org/10.1145/3059009.3059028
https://doi.org/10.1109/PROC.1987.13723
https://doi.org/10.1016/j.jsv.2005.08.014

70 V. Faerman et al.

12. Faerman, V., Voevodin, K., Avramchuk, V.: Frequency-domain generalized phase transform
method in pipeline leaks locating. In: Communications in Computer and Information Science,
pp. 22–38. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-23744-7_3

13. Glentis, G.O., Angelopoulos, K.: Leakage detection using leak noise correlation techniques
- Overview and implementation aspects. In: PCI ’19: 23rd Pan-Hellenic Conference on
Informatics, pp. 50–57. ACM, New York (2019)

14. Spencer, S.J.: The two-dimensional source location problem for time differences of arrival at
minimal element monitoring arrays. J. Acoust. Soc. Am. 121, 3579–3594 (2007). https://doi.
org/10.1121/1.2734404

15. Dalskov,D., Olesen, S.K.: Locating acoustic sourceswithmultilateration applied to stationary
and moving sources (2014). http://www.es.aau.dk/sections/acoustics. Accessed 10 Oct 2023

16. Qu, J., Shi, H., Qiao, N., Wu, C., Su, C., Razi, A.: New three-dimensional positioning algo-
rithm through integrating TDOA and Newton’s method. EURASIP J. Wirel. Commun. Netw.
2020, 77 (2020). https://doi.org/10.1186/s13638-020-01684-7

17. Björklund, S.: A Survey and Comparison of Time-Delay Estimation Methods in Linear
Systems. Linköpings universitet, Linköping (2003)

18. Brennan, M.J., Gao, Y., Joseph, P.F.: On the relationship between time and frequency domain
methods in time delay estimation for leak detection in water distribution pipes. J. Sound Vib.
304, 213–223 (2007). https://doi.org/10.1016/j.jsv.2007.02.023

19. Zhao, Z., Zi-Qiang, H.: The generalized phase spectrummethod for time delay estimation. In:
ICASSP ’84. IEEE International Conference on Acoustics, Speech, and Signal Processing,
pp. 46.2.1–46.2.4 (1984)

20. Faerman, V., Avramchuk, V., Voevodin, K., Sidorov, I., Kostyuchenko, E.: Study of gener-
alized phase spectrum time delay estimation method for source positioning in small room
acoustic environment. Sensors. 22, 965 (2022). https://doi.org/10.3390/s22030965

21. Knapp, C.H., Carter, G.C.: The generalized correlation method for estimation of time delay.
IEEE Trans Acoust. ASSP 24, 320–327 (1976)

22. Fuchs,H.V.,Riehle,R.: Tenyears of experiencewith leakdetection by acoustic signal analysis.
Appl. Acoust. 33, 1–19 (1991). https://doi.org/10.1016/0003-682X(91)90062-J

23. Ma, Y., Gao, Y., Cui, X., Brennan, M.J., Almeida, F.C.L., Yang, J.: Adaptive phase transform
method for pipeline leakage detection. Sensors (Switzerland) 19, 310 (2019). https://doi.org/
10.3390/s19020310

24. Frigo, M., Johnson, S.G.: FFTW: An adaptive software architecture for the FFT. In: Proceed-
ings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP 1998, pp. 1381–1384 (1998). https://doi.org/10.1109/ICASSP.1998.681704

25. Rabiner, L.R., Schafer, R.W., Rader, C.M.: The Chirp z-transform algorithm. IEEE Trans.
Audio Electroacoust. AU 17, 86–92 (1969). https://doi.org/10.7551/mitpress/5222.003.0015

26. Goertzel, G.: An algorithm for the evaluation of finite trigonometric series. Am. Math. Mon.
65, 34–35 (1958)

27. Grado, L.L., Johnson, M.D., Netoff, T.I.: The sliding windowed infinite fourier transform:
tips & tricks. IEEE Signal Process. Mag. 34, 183–188 (2017). https://doi.org/10.1109/MSP.
2017.2718039

28. Chicharo, J.F., Kilani,M.T.: A slidingGoertzel algorithm. Signal Process. 52, 283–297 (1996)
29. Chauhan, A., Singh, K.M.: Recursive sliding DFT algorithms: a review. Digit Signal Process.

127, 103560 (2022). https://doi.org/10.1016/j.dsp.2022.103560
30. Raspberry Foundation: Raspberry Pi 4 Model B (2021). https://datasheets.raspberrypi.com/

rpi4/raspberry-pi-4-product-brief.pdf. Accessed 20 June 2023
31. Modul 9: Datasheet for HifiBerry DAC+ADC Pro (2020). https://www.hifiberry.com/docs/

data-sheets/datasheet-dac-adc-pro/. Accessed 20 June 2023
32. Valgrind: Debugger and profiler valgrind-3.21.0. (2023). https://valgrind.org/downloads/.

Accessed 10 Oct 2023

https://doi.org/10.1007/978-3-031-23744-7_3
https://doi.org/10.1121/1.2734404
http://www.es.aau.dk/sections/acoustics
https://doi.org/10.1186/s13638-020-01684-7
https://doi.org/10.1016/j.jsv.2007.02.023
https://doi.org/10.3390/s22030965
https://doi.org/10.1016/0003-682X(91)90062-J
https://doi.org/10.3390/s19020310
https://doi.org/10.1109/ICASSP.1998.681704
https://doi.org/10.7551/mitpress/5222.003.0015
https://doi.org/10.1109/MSP.2017.2718039
https://doi.org/10.1016/j.dsp.2022.103560
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf
https://www.hifiberry.com/docs/data-sheets/datasheet-dac-adc-pro/
https://valgrind.org/downloads/

Comparative Study of Practical Implementation of Time Delay Estimation 71

33. Faerman, V., Voevodin, K., Avramchuk, V.: Case of discrete-event simulation of the simple
sensor node with CPN tools. In: International Siberian Conference on Control and Com-
munications (SIBCON), pp. 1–9 (2022). https://doi.org/10.1109/SIBCON56144.2022.100
02956

34. Jacobsen, E., Lyons, R., Communications, H., Associates, B., Lyons, R.G.: Sliding spec-
trum analysis. In: Streamlining Digital Signal Processing: A Tricks of the Trade Guidebook,
pp. 175–188. Willey-IEEE Press (2012). https://doi.org/10.1002/9781118316948.ch18

35. Sysel, P., Rajmic, P.: Goertzel algorithm generalized to non-integer multiples of fundamental
frequency. EURASIP JAdvSignal Process.2012(1), 56 (2012). https://doi.org/10.1186/1687-
6180-2012-56

36. Sridharan, K., Babu, B.C., Kannan, P.M., Krithika, V.: Modelling of sliding goertzel DFT
(SGDFT) based phase detection system for grid synchronization under distorted grid
conditions. Procedia Technol. 21, 430–437 (2015). https://doi.org/10.1016/j.protcy.2015.
10.065

https://doi.org/10.1109/SIBCON56144.2022.10002956
https://doi.org/10.1002/9781118316948.ch18
https://doi.org/10.1186/1687-6180-2012-56
https://doi.org/10.1016/j.protcy.2015.10.065

	Comparative Study of Practical Implementation of Time Delay Estimation Methods on Single Board Computer
	1 Introduction
	2 Overview of TDE Methods
	2.1 Time-Domain Methods
	2.2 Frequency-Domain Methods
	2.3 Signal Processing in Practical TDE
	2.4 Variants of Fourier Transform Implementation

	3 Computational Study
	3.1 Raspberry Pi 4B Hardware
	3.2 Testing Software
	3.3 Estimation of Computation Time
	3.4 Estimation of Memory Usage

	4 Discussion
	5 Conclusion
	References

