q

Check for
updates

Designing a Graphics Accelerator
with Heterogeneous Architecture

Tlya Tarasov®™ @, Dmitry Mirzoyan, and Peter Sovietov

MIREA - Russian Technological University, Vernadsky Avenue 78, 119454 Moscow, Russia
tarasov_i@mirea.ru

Abstract. The article discusses the architecture of a graphics accelerator, based
on a combination of general-purpose processor cores and pipeline accelerators
for performing operations with matrices and transcendental operations. The arti-
cle proposes a general architecture for GPUs of this type and suggests the main
options for computing nodes designed to implement target group algorithms. In
order to reduce technical and organizational risks, it is planned to simplify the
hardware component of Very Large Scale Integrated Circuits (VLSI) and transfer
the functions of managing calculations to embedded software, for which control
processor cores have been introduced into VLSI. The VLSI project involves the
development of a GPGPU-class computing accelerator, in which the ability to
work with three-dimensional graphics is an additional feature. This allows you to
take advantage of an architecture based on a large number of simple computational
cores, using such VLSI in conjunction with a general-purpose processor.

Keywords: VLSI - Heterogeneous Architecture - Graphical Accelerator - GPU

1 Introduction

Currently, the relevance of creating an element base for high-performance computing
is increasing. It is known that specialized computing devices are more efficient than
general-purpose computers, but Very Large Scale Integrated Circuits (VLSI) with a lim-
ited scope of application have a smaller market and therefore turn out to be prohibitively
expensive for small production runs. It is also important that, along with the development
of technological standards of 3 nm and less technology node, the production of 28-7 nm
standard VLSI and in some cases even larger standards (90—45), for applications with
low performance requirements, but sensitive to development costs.

A widely known approach is based on the use of the GPU as a hardware accelerator
working in combination with the CPU. Technologies such as Nvidia CUDA and OpenCL
provide a layer of hardware abstraction which allows the use of a high-level C-like
programming language. This expands the scope of use of CPU+GPU class computing
systems. At the same time, GPUs can be considered as a type of architecture based on the
use of a large number of simple computing cores grouped into clusters. This architecture
can use combined connections at different levels of the hierarchy: tree, fat tree, ring,
grid/mesh, etc.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
V. Jordan et al. (Eds.): HPCST 2023, CCIS 1986, pp. 2940, 2024.
https://doi.org/10.1007/978-3-031-51057-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51057-1_3&domain=pdf
http://orcid.org/0000-0001-6456-4794
http://orcid.org/0000-0002-1039-2429
https://doi.org/10.1007/978-3-031-51057-1_3

30 1. Tarasov et al.

Based on the significant complexity of designing VLSI, comparable in characteris-
tics to solutions of the world’s leading manufacturers (such as Nvidia and AMD), we can
consider an alternative approach based primarily on the implementation of a computation
accelerator, which additional function would be to work as a graphics coprocessor. It is
worth noting that a number of GPU families are also focused on use as part of worksta-
tions with high performance in general-purpose tasks. Changing priorities will allow us
to distance ourselves from performance assessments based on 3D graphics algorithms,
since this is not the main purpose of such VLSI. At the same time, it becomes possi-
ble to implement architectural and circuit solutions that further enhance the capabilities
of VLSI in target subclasses of tasks, where existing GPGPU VLSI are forced to also
support data processing algorithms for 3D graphics. Studying the specifics of individual
subclasses of algorithms and clarifying the current list of tasks that require hardware
support is planned as part of the research work within the framework of VLSI design.

The following areas of application of specialized VLSI are considered:

— digital signal processing accelerators;
— software-defined radio;

— measuring instruments;

— medical equipment;

— accelerators for image processing;

— CCTV;

— industrial robots;

— machine learning;

— VR/AR.

2 Architecture of a Specialized Graphics Accelerator

According to Hennessey and Patterson [1], the dominant trend in performance improve-
ment is Domain-Specific Architectures, DSA. At the same time, the need to place control
components, and especially program memory, within the processor node increases the
relative hardware costs for implementing one operation. Therefore, along with pro-
grammable computing nodes, non-programmable computing nodes designed to imple-
ment frequently used transformations can also be used as part of a specialized com-
puting system. Non-programmable pipeline structures can be modified to be able to
switch between separate operations at each stage, or to combine data movement along
the pipeline with cyclic repetition of calculations at the same stage.

The combination of hardware and software methods for implementing calculations
within the GPU was used both in Intel Larrabee projects [2] and in research projects
based on the RISC-V core to implement general-purpose computing [3] or directly 3D
graphics [4]. This gives reason to consider a similar approach using newly developed
processor cores specialized for certain types of calculations as part of VLSI.

To design components that perform calculations as part of specialized VLSI chips,
the following system-level implementation options can be considered:

1. Making changes to the data processing path of a specialized VLSI with a wide
command word in order to provide support for operations typical for crypto
conversions.

Designing a Graphics Accelerator with Heterogeneous Architecture 31

2. Connecting a pipelined data processing path to the processor core with a wide
command word as an auxiliary arithmetic-logical device.

3. Connecting a pipelined data processing path to the processor core or system bus with
a wide command word as a stand-alone configurable device.

The listed options can be considered as candidate architectures with clarification of
their characteristics at the system level.
At the computing device architecture level, the following options can be considered:

1. Programmable computing node (processor).
2. Non-programmable (configurable) pipeline path for processing streaming data.
3. Combination of conveyor paths and programmable nodes.

The considered architectures of computing nodes are shown in Fig. 1.

1.CPU 2. Configurable pipeline
Reg Reg
Reg
Program

Fig. 1. Architectures of VLSI graphics accelerator computing nodes.

The architectures shown above correspond to mutually complementary approaches
to organizing computing — CPU-based, i.e. distributed in execution time, and pipeline-
based, distributed in the space of the VLSI chip. The current trend of using synchronous
pipelined computers makes them preferable, but the functionality of a pipeline is deter-
mined by the order in which its stages are connected, while for a processor the order of
calculations is determined by the program code and can be changed at runtime. At the
same time, the hardware redundancy of the processor is determined by the need to add
program memory in such a size that would ensure the execution of all algorithms of the
target group.

In Fig. 2 the layout of a VLSI cluster that combines the functions of a graphics
controller and a general-purpose computing accelerator is shown.

The architecture of the processor that implements the computing node is the subject of
research. Compared to a general-purpose core (such as RISC-V), it is possible to further
specialize the instruction set architecture while maintaining a simple microarchitecture.
Reducing the redundancy of a single core will have a positive impact on the performance
of VLSI chips that contain many such cores.

32 1. Tarasov et al.

Cluster controller Cache controller |+ »
cPU cPU — Cache memory

>

<
A\ A\ Pipelined

CpU1 accelerator 1

Pipelined
accelerator 2

CPU2

Pipelined
accelerator 3

CPUN
Pipelined

accelerator M

N N

Fig. 2. Architecture of a graphics accelerator cluster aimed at general-purpose computing.

3 Architectural Solutions for Graphics Accelerator

The following architectural solutions are being considered for a promising graphics
accelerator.

3.1 Programmable Task Distribution

GPU-specific computing tasks combine simple RISC-like operations and pipelined com-
puting, as discussed in the previous section. A reduction in the complexity of the hard-
ware component of the GPU control system can be achieved by transferring the task
distribution functions entirely to the software component of the system. To perform this,
a specialized task management processor is added to the VLSI cluster, which has access
to the system bus and is controlled by both system drivers of the central processor and
embedded software. The control processor runs cluster-local pipeline accelerators, if
possible, or implements operations in software. To do this, it is necessary to provide
access to the program memory of auxiliary processors based on dual-port memory.

3.2 Software Memory Management

The combination of on-chip static memory and external dynamic memory requires the
implementation of a controller that, among other things, performs caching using certain
algorithms. Depending on the scenarios for working with data, different caching algo-
rithms may be optimal, which significantly complicates the design of the controller in
the absence of a database of experimental data collected on implemented GPUs. There-
fore, for a VLSI prototype project, software memory management is assumed with the
allocation of address spaces and copying of data between memory of different types
under the control of a dedicated processor.

Designing a Graphics Accelerator with Heterogeneous Architecture 33

3.3 Distribution of Tasks Depending on Data

If there are heterogeneous computational blocks, it becomes possible to assign a block
not only in accordance with the type of task, but also, in some cases, depending on the
specific values of the data being processed. For example, in a rotation matrix for angles
that are multiples of 90 degrees, all coefficients are equal to 0, 1, or —1, which greatly
simplifies multiplication by such matrices. Support for such operations is possible by
introducing special flags that provide quick return of the result if one of the operands is
0,1o0r—1.

3.4 Redistribution of Resources within the Computing Cluster

Differences in resource requirements imposed by various algorithms of the target group
under consideration necessitate the addition of memory and functional nodes, which
will be redundant for a certain subclass of computing. Therefore, an approach based on
placing a switched matrix of functional nodes, such as processor devices, memory and
configurable pipelines, within one cluster is being considered. The ability to dynamically
switch connections at medium and large levels of the hierarchy will allow memory to
be redistributed between computing nodes, adapting VLSI to the requirements of the
corresponding memory-intensive algorithms.

—

RAM1 — CPU1
L—
_p\

RAM?2 ™ CPU2
_>\

RAMS3 — CPU3
_p\

RAMA4 — CPU4

Fig. 3. An example of programmable distribution of memory blocks between processor cores.

In Fig. 3, N memory blocks are connected to M processor cores using full switches.
In the mentioned scheme, it is possible both to distribute blocks in pairs across the
corresponding processor cores, and to transfer all memory to one or more processor
cores. This mode may be required to implement algorithms that require a large amount
of memory. In this case, the overall performance of a group of processors will be reduced,
since some of the cores are idle due to a lack of free memory blocks, but the ability to
execute the algorithm remains.

34 1. Tarasov et al.

In some cases, generalizing memory to form a larger block will not cause processors
to turn off if the algorithm being executed is SIMD (Single Instruction, Multiple Data)
class compliant.

3.5 Thread Management According to the SIMD Approach

Reducing the amount of required memory is possible by using the SIMD approach, in
which the same program is used to control multiple compute nodes. This solution is suit-
able for a number of problems in three-dimensional graphics, digital signal processing
(for example, multi-channel filtering) and mathematical modeling of processes using the
finite element method.

3.6 Combining Raster and Cache Memory for General-Purpose Computing

For high resolution images (FullHD and 4K2K), storing pixels in a format that complies
with the TrueColor standard requires a minimum of 24 bits per pixel, i.e. 48 Mbit for
FullHD resolution and 192 Mbit for 4K2K. Additionally, we can use an alpha channel,
as well as a hardware depth buffer with a resolution of at least 16 bits per pixel. This
increases the total image buffer size to 96 or 256 Mbits of memory. If we consider the
use of static memory, which with such a volume will occupy a large area, we should
consider using this memory not only in the form of a screen buffer, but also as a general
cache memory of the computation accelerator.

To represent general-purpose programs, one can use the SPIR-V language [5], which
is used for intermediate representation of OpenCL programs. Since the language is
designed as an intermediate language, its implementations are considered both for
general-purpose processors [6] and for hardware accelerators designed on the basis
of FPGAs. For example, [7] addresses accelerator integration, and other works explore
the use of OpenCL for specialized areas. For example, digital filters [8], convolutional
neural networks [9], and image motion prediction systems [10] use limited subsets of
OpenCL, so they can be implemented more efficiently by taking this factor into account.

However, GPUs with OpenCL capability require an implementation of the full SPIR-
V specification. This task is complicated by the heterogeneous nature of the opera-
tions supported in the language specification. For example, simple bitwise logical and
arithmetic operations on integer arguments are easily implemented both as part of the
arithmetic-logical unit of the processor core and as part of a pipeline, although pipelin-
ing such simple operations is inappropriate in most cases. Integer and floating point
multiplication operations require pipelining, but can be implemented as hardware exten-
sions to the processor core. Finally, transcendental functions (primarily trigonometric)
implemented using the CORDIC algorithm require pipelined or cyclic implementation.
Taking into account the features of subsets of SPIR-V commands, we can assume the
joint use of the described approaches with the corresponding distribution of operations
by type of implementing device, as shown in Fig. 4.

The integration of heterogeneous components within the processor subsystem was
considered in [11]. The design route involves conducting pre-RTL modeling of the
system to clarify its characteristics, followed by the implementation of parameterized

Designing a Graphics Accelerator with Heterogeneous Architecture

SPIR-V

Integer simple
arithmetic

Floating-point
simple arithmetic

Trigonometric
operations

CPU commands

Hardware
extensions

Serial/pipelined
accelerators

35

Fig. 4. Distributing SPIR-V intermediate language operations between cluster components.

components to perform individual operations. It appears promising to implement a con-
figurable pipeline to perform operations based on the CORDIC algorithm, which form
a large subset of SPIR-V instructions.

The general format of the command can be represented as follows:

<Dest> = <Operand 1> op <Operand2>

where Dest is the destination device (register) for storing the result of the operation;
Operandl — first operand; Op — type of operation; Operand2 — is the second operand.

For a command system, the concept of addressing is used, which reflects the number
of registers described in the command code. Increasing addressability generally increases
the capabilities of the tool software, but also increases the bit width of the command
word, and therefore the amount of memory required to store the program. In this case, the
absence of an indication of a particular type of resource means that it implicitly follows
from the type of operation being performed or coincides with the specified resources.
For example, in the instruction set of x86 processors, the destination register is the same
as the first operand, in accumulator architectures the destination register and the first
operand is always the accumulator, and in a stack architecture, the operands are always
located on top of the data stack, and the result is also placed there.

In [12], a unified description of a computing node by four parameters (I, O, D, S) is
considered, where I — number of instructions executed per clock cycle; O — number of
operations determined by the instruction; D — number of operands (pairs of operands)
related to operations; S — degree of conveyorization.

Based on this unified description, an ALU with a set of operations and combinations
of operands is selected for the processor node, which:

1. Sufficient for implementing target group algorithms.
2. Optimal according to the selected criteria.

Optimality criteria include the number of clock cycles for executing algorithms, the
area of VLSI (or the number of FPGA cells), the amount of program and data memory,
and power consumption. The design route established for this project does not include
early determination of the optimality criterion, since this limits the design space.

36 1. Tarasov et al.

For a processor node, the register file model is not specified in SPIR-V and can be
selected during the design process. This makes the number of registers and read/write
ports parameters of the optimization process.

In Fig. 5 the transition to partial generalization of the resources of the pipeline stages
is shown. If the pipeline generalizes only a register group, but the functional devices at
individual stages have a similar structure and use the same subblocks, it may be possible
to partially generalize such subblocks and implement multiplexers not between data
paths, but between subblocks that are not identical in different versions of the data path.

(D

@
(&l

glolole

Fig. 5. Transformation of individual stages of a pipeline computer for the purpose of partial
generalization of resources.

The implementation option of a conveyor with partial generalization of the resources
of individual stages provides better component density, but at the same time complicates
heat removal when using technological standards susceptible to the “dark silicon” effect.
Therefore, the possibility of parameterized synthesis of pipeline stages should be main-
tained throughout the early stages of the project, right up to clarifying the characteristics
of the topology library.

As part of preliminary research, the characteristics of a conveyor at stage 32, com-
bining the performance of two types of operations, were assessed. The original RTL
description of the module uses only one LUT layer using switching based on additional
resources of logical cells - FTMUX, FSMUX. The pipeline is synthesized using 2247
LUTs and 2821 FFs based on the Xilinx Kria module. The trace results for a single
pipeline are shown in Fig. 6.

An analysis of the placement of a pipeline with a set clock period of 1.5 ns shows that
even in the absence of area constraints for the Xilinx Kria FPGA, the specified frequency
is achieved due to the dense layout of the pipeline stages. An additional positive effect is
the ability to shift the phase of the clock signal for individual registers (time borrow) for

Designing a Graphics Accelerator with Heterogeneous Architecture 37

‘a =" e, m

A Name Slack A7 Levels High Fanout Total Delay ~Logic Delay Net Delay ~ Requiremen t Source Clock Destination Clock Exception Clock Uncer

Path 5 0083 i
Path 6 0092

Path 7 0093

4
2
3
3 ges(11u/qa regl27)/D
29 generate_stagesi4]u/ab.reglS)/C generate.stoges(S)u/qo.regl30L/D 1298 0818 0480 15 dki dkt

gesid}u/ab regl8l/D 1301 0510 0691 15 dkt dkt
1301 o822 047 15 dkt dkt
1362 os61 0701 15 ki ik
1359 o656 0703 15 dki dia

u/gb.reglS)/C
. stages[10Lu/ab_reg(16/C ger

Path 0095

stages{10Lu/qb_regl16/C gen

Path 9 0095

3
s
5
5
s
Path10| 0098 5

4 generate stages{10].u/qa_reg[13)/C generate_stages{11].u/ab._reg[28)/D 1317 o777 0540 15 ki cki o

Fig. 6. Results of tracing a switched pipeline project without using area constraints

FPGAs made using 16 nm FinFET technology. This provides balancing of delays within
the pipeline, implemented by CAD without direct involvement of the developer. Thus,
pipeline structures are of interest as specialized devices for accelerating calculations,
while providing compact placement of nodes and low latency due to local connections
between individual stages of the pipeline.

4 Automation of Design of Specialized Nodes

Since the designed processor elements and pipeline computers are not standard, their
development process is the subject to two opposing trends. On one hand, the improvement
in functionality is determined by the complication of the ALU, an increase in the amount
of processor resources and the complication of functions at individual stages of the
pipeline. On the other hand, these actions lead to increased signal delays, die area,
and power consumption. In the early stages of design, it is too difficult to create an
accurate model of the target tasks, so priority should be given to the development of
a VLSI system model that would allow the performance to be assessed for a certain
combination of specified component parameters.

High performance of a hardware accelerator can be achieved by specializing its
structure for those narrow classes of tasks where computational operations predominate
over control operations and access to general data. At the same time, various forms of
static parallelism are implemented in hardware form:

— task parallelism;
— data parallelism;
— pipelining.

38 1. Tarasov et al.

High energy efficiency of specialized accelerators is achieved, in many cases, due to
the irregularity of their structure, reflecting the specifics of a narrow class of problems,
as well as through the use of local, direct connections between computing elements [13].

In this regard, first of all, specialization of the accelerator data path is of interest. It
can be implemented using code analysis of target algorithms at various levels [14, 15]:

— an expression consisting of a small number of operations;
linear section;

— cycle nest;

hammock or function;

call graph.

In many cases, a dedicated accelerator is used in conjunction with a control processor
in one of the following configurations:

— part of the general data path as part of the control processor;
— a separate hardware unit connected to the control processor via some external
interface.

In the case of using a common data path, the specialization no higher than the
linear section level is the most preferable, since in this scheme a specialized accelerator
competes with the control processor for shared resources, such as command fields,
register file, memory.

Achieving the highest performance should be expected with hardware acceleration
of calculations of complex software structures that include loop nests. Moreover, if the
accelerator is implemented as a separate hardware unit, then the control processor is free
to perform other tasks in parallel with specialized calculations.

To automate individual design tasks, a specialized CAD system is being developed,
intended for the subclass of systems described in this article. The system uses descriptions
of target algorithms in a high-level language [16] to analyze their features and distribute
tasks between processor devices and pipelines. In addition to analyzing text representa-
tions, graphs are also currently used for this purpose [17], however, this method seems
more labor-intensive if the volume of analyzed algorithms increases. Text analyzers are
also used for this purpose [18-20].

The main tasks of CAD are:

— formation of a structural description of the upper level of VLSI;
— setting the parameters of VLSI components and formally checking their admissibility;
— integration with the compiler.

The technical specifications for CAD development are clarified as information is
received about VLSI architectures, component parameters, assembly scenarios at the
top level of description and other elements of the project, and design work that makes
up the development process.

For the development of CAD, in accordance with the identified trends, a modular
architecture is assumed in combination with a common project database. CAD elements
can include both software applications developed in high-level languages and scripting
languages, CAD scripts in these languages, as well as software interfaces of third-party
tools such as compilers and applications for modeling domain processes.

5

Designing a Graphics Accelerator with Heterogeneous Architecture 39

Conclusions

The materials presented in the article represent the results of preliminary studies of
the GPU architecture, intended to work as a computation accelerator as part of high-
performance computing systems.

Acknowledgement. This work is supported by the Ministry of Science and Education of RF
(Project No. FSFZ-2022-0004).

References

10.

11.

12.

13.

. Hennessy, J.L., Patterson, D.A.: Computer Architecture. 6th edn. A Quantitative Approach

(The Morgan Kaufmann Series in Computer Architecture and Design) (2017)

. Seiler, L., et al.: Larrabee: a many-core x86 architecture for visual computing. IEEE Micro

29(1), 10-21 (2009)

. Elsabbagh, E, et al.: Vortex: OpenCL Compatible RISC-V GPGPU (2020). https://doi.org/

10.48550/arXiv.2002.12151. Accessed 27 Feb 2020

. Tine, B., Elsabbagh, F., Yalamarthy, K., Kim, H.: Vortex: extending the RISC-V ISA for

GPGPU and 3D-graphicsresearch. In: Proceedings of MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, October 2021, pp. 754-766 (2021). https://
doi.org/10.1145/3466752.3480128

. Khronos Group: Khronos SPIR-V Registry (2021). https://registry.khronos.org/SPIR-V/.

Accessed 10 Oct 2023

. He, W, etal.: Streamline ahead-of-time SYCL CPU device implementation through bypassing

SPIR-V. In: Proceedings of the 2023 International Workshop on OpenCL, April 2023, Article
no. 28 (2023). https://doi.org/10.1145/3585341.3585381

. Leppénen, T., Lotvonen, A., Mousouliotis, P., Multanen, J., Keramidas, G., Jddskeldinen,

P.: Efficient OpenCL system integration of non-blocking FPGA accelerators. Microprocess.
Microsyst. 97, 104772 (2023). https://doi.org/10.1016/j.micpro.2023.104772

. Firmansyabh, 1., Yamaguchi, Y.: Real-time FPGA implementation of FIR filter using OpenCL

design. J. Signal Process. Syst. 94, 1-13 (2022). https://doi.org/10.1007/s11265-021-01723-6

. Wu, Y, Zhu, H., Zhang, L., Hou, B., Jiao, L.: Accelerating deep convolutional neural network

inference based on OpenCL. In: Shi, Z., Jin, Y., Zhang, X. (eds.) ICIS 2022. IFIPAICT, vol.
659, pp. 98-108. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14903-0_11

de Castro, M., Osorio, R., Vilarifio, D., Gonzalez-Escribano, A., Llanos, D.: Implementation
of a motion estimation algorithm for Intel FPGAs using OpenCL. J. Supercomput. 79(5),
1-23 (2023). https://doi.org/10.1007/s11227-023-05051-3

Tarasov, LE., Potekhin, D.S., Platonova, O.V.: Prospects for the use of soft processors in
systems on a chip based on programmable logic integrated circuits. Russ. Technol. J. 10(3),
24-33 (2022). https://doi.org/10.32362/2500-316X-2022-10-3-24-33

Sima, D., Fountain, T., Kacsuk, P.: Advanced Computer Architectures: A Design Space
Approach. Addison-Wesley (1997)

Trilla, D., Wellman, J.-D., Buyuktosunoglu, A., Bose, P.: Novia: a framework for discovering
non-conventional inline accelerators. In: Proceedings of 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, October 2021, pp. 507-521 (2021). https://doi.org/
10.1145/3466752.3480094

https://doi.org/10.48550/arXiv.2002.12151
https://doi.org/10.1145/3466752.3480128
https://registry.khronos.org/SPIR-V/
https://doi.org/10.1145/3585341.3585381
https://doi.org/10.1016/j.micpro.2023.104772
https://doi.org/10.1007/s11265-021-01723-6
https://doi.org/10.1007/978-3-031-14903-0_11
https://doi.org/10.1007/s11227-023-05051-3
https://doi.org/10.32362/2500-316X-2022-10-3-24-33
https://doi.org/10.1145/3466752.3480094

40

14.

15.

16.

17.

18.

19.

20.

1. Tarasov et al.

Zacharopoulos, G., Ferretti, L., Ansaloni, G., Di Guglielmo, G., Carloni, L., Pozzi, L.:
Compiler-assisted selection of hardware acceleration candidates from application source code.
In: Proceedings of 2019 IEEE 37th International Conference on Computer Design (ICCD),
pp- 129-137. IEEE (2019)

Brumar, 1., Zacharopoulos, G., Yao, Y., Rama, S., Wei, G.-Y., Brooks, D.: Early DSE and
automatic generation of coarse-grained merged accelerators. ACM Trans. Embed. Comput.
Syst. 22(2), 32 (2021). https://doi.org/10.1145/3546070

Dave, S., Shrivastava, A.: Design space description language for automated and compre-
hensive exploration of next-gen hardware accelerators. In: Proceedings of Workshop on
Languages, Tools, and Techniques for Accelerator Design (LATTE 2022) (2022)

Ferretti, L., Cini, A., Zacharopoulos, G., Alippi, C., Pozzi, L.: Graph neural networks for high-
level synthesis design space exploration. ACM Trans. Des. Autom. Electron. Syst. 28(2), 25
(2022). https://doi.org/10.1145/3570925

Agostini, N.B., et al.: An MLIR-based compiler flow for system-level design and hardware
acceleration. In: Proceedings of the 41st IEEE/ACM International Conference on Computer-
Aided Design, pp. 1-9 (2022). https://doi.org/10.1145/3508352.3549424

Venkataramani, G., Budiu, M., Chelcea, T., Goldstein, S.C.: C to asynchronous dataflow
circuits: an end-to-end toolflow. Carnegie Mellon University, J. Contrib. (2018). https://doi.
org/10.1184/R1/6603986.v1

Jordan, H., Scholz, B., Subotié, P.: Soufflé: on synthesis of program analyzers. In: Chaudhuri,
S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 422—430. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6_23

https://doi.org/10.1145/3546070
https://doi.org/10.1145/3570925
https://doi.org/10.1145/3508352.3549424
https://doi.org/10.1184/R1/6603986.v1
https://doi.org/10.1007/978-3-319-41540-6_23

	Designing a Graphics Accelerator with Heterogeneous Architecture
	1 Introduction
	2 Architecture of a Specialized Graphics Accelerator
	3 Architectural Solutions for Graphics Accelerator
	3.1 Programmable Task Distribution
	3.2 Software Memory Management
	3.3 Distribution of Tasks Depending on Data
	3.4 Redistribution of Resources within the Computing Cluster
	3.5 Thread Management According to the SIMD Approach
	3.6 Combining Raster and Cache Memory for General-Purpose Computing

	4 Automation of Design of Specialized Nodes
	5 Conclusions
	References

