
Self-adaptation Method for Evolutionary
Algorithms Based on the Selection Operator

Pavel Sherstnev(B)

Artificial Intelligence Laboratory, Siberian Federal University, Krasnoyarsk, Russia
sherstpasha99@gmail.com

Abstract. Genetic algorithms are a class of effective and popular black box opti-
mizationmethods that are inspired by evolutionary processes in the nature.Genetic
algorithms are useful in cases where nothing is known about the optimization
object except the inputs and outputs. Such an algorithm iteratively searches for a
solution in the solution space based on a predefined fitness function that allows
comparing different solutions. If a researcher desires to use genetic algorithms, it
becomes necessary to choose genetic operators and numerical parameters of the
algorithm, the choice ofwhichmay be a difficult task. Self-adaptationmethods that
alter the behavior of the algorithm while it is running help to deal with the task of
choosing the optimal settings of the algorithm. Such methods are called methods
of self-adaptation of evolutionary algorithms and are usually divided into self-
tuning, which performs the tuning of numerical parameters, and self-configuring,
which makes the choice of genetic operators. In recent decades, various strate-
gies for self-adaptation of evolutionary algorithms have been actively developed,
including metaheuristic algorithms, as a result of which a researcher can obtain a
specialized evolutionary algorithm that solves problems from a certain class better
than conventional algorithms. However, even when using the metaheuristic app-
roach, there is a need to choose genetic operators and numerical parameters of the
algorithm. Therefore, the subject of the development of self-adaptive algorithms is
one of themost relevant fields in the study of evolutionary algorithms. In this paper,
a new approach to the adaptation of evolutionary algorithms based on the selection
of genetic operators is proposed.Themethod is applied to the genetic algorithmand
compared with the most popular SelfCGA self-configuring approach and shows
an improvement in efficiency on both real and binary optimization problems.

Keywords: Self-adaptation · Evolutionary algorithms · Optimization · Genetic
algorithm · Selection

1 Introduction

Many practical problems do not have a well-developed analytical solution either because
of the frequent appearance of new problems, or because of the absence of a mathemat-
ical representation. An example can be any problems from the reinforcement learning
class in which there is only a reward function, but there is no mathematically described
object that is required by gradient optimization methods. The way out for the researcher

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
V. Jordan et al. (Eds.): HPCST 2023, CCIS 1986, pp. 158–169, 2024.
https://doi.org/10.1007/978-3-031-51057-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51057-1_12&domain=pdf
http://orcid.org/0000-0003-2816-9433
https://doi.org/10.1007/978-3-031-51057-1_12


Self-adaptation Method for Evolutionary Algorithms 159

in such a situation can be evolutionary algorithms, since for their work it is enough to
define the function of mapping the genotype into a phenotype and a function of eval-
uating the solution (a fitness function). However, in practice, if a researcher wants to
use evolutionary algorithms, he also needs some experience working with them, since
for any evolutionary algorithm there are many different genetic operators on which the
result of optimization depends. The researcher can try all the operators in order to find
the best operator for a given problem, but when a new problem appears, this choice may
not be optimal, and again it will be necessary to search for a good combination of oper-
ators. Therefore, various strategies for self-adaptation of evolutionary algorithms have
been developed for a long time [1–3], and sometimes even automatically creating new
genetic operators that would provide solutions to problems from a certain class better
than conventional ones [4, 5].

However, despite the success of usingmetaheuristic approaches, the subject of devel-
oping methods of self-adaptation of evolutionary algorithms is important, since even in
the metaheuristic approach there is a problem of choosing the optimal operators of the
evolutionary algorithm,which stands at the top level. Self-adaptationmethods are usually
divided into two categories: self-configuringmethods, which includemethods that select
the types of operators in the process of the algorithm; self-tuning methods, which are
understood as methods for adjusting the real parameters of the algorithm, for example,
the probability of mutation. As a rule, each type of evolutionary algorithm has its own
set of self-adaptation methods. For example, adaptation algorithms based on the history
of successful applications have been developed for the differential evolution method [6–
8]. For the genetic algorithm and the genetic programming algorithm, self-configuring
methods have been developed that adapt the probabilities of using genetic operators in
the process of the algorithm [1] and self-tuning methods that set the behavior of the
probability of mutation [2]. The method of self-configuring of evolutionary algorithms
described in [1] is the most effective and utilized self-configuring method that can be
used to select operators of any evolutionary algorithm. However, this method implies
only the choice of operators, but not the numerical parameters of the algorithm.

In this paper, we propose a simplemethod of self-adaptation of both genetic operators
and numerical parameters of an evolutionary algorithm, based on existing selection
methods. Themethod is compared with SelfCGA using the genetic algorithm for solving
binary and real-valued optimization problems.

2 Methods of Self-adaptation for Genetic Algorithm

2.1 Genetic Algorithm

Genetic algorithms (GA) are a family of evolutionary optimization algorithms that search
for a solution in a hypercube defined by a binary string in which an individual is encoded.
The goal of GA is to determine which point of a given hypercube delivers the extremum
of the target function. Each of the individuals in the population is one of the points in
the whole space of valid solutions. The GA cycle will be described step by step below
[9].



160 P. Sherstnev

The first population is initialized randomly uniformly throughout the search space.
Then, using selection, crossover, and mutation operators, the individuals evolve. At
different points in the search space, the fitness value of an individual varies.

The selection process, based on the fitness value, selects the individuals that, using
crossover operators,will create the offspring for the next generation. It is usually accepted
to distinguish the following variants of the selection operator: proportional selection -
probability of choosing an individual is proportional to its value of the fitness function;
ranked selection - probability of choosing an individual is proportional to the rank of its
value of the fitness function; tournament selection - the individual with the best value of
the fitness function from a randomly formed subgroup is chosen.

The individuals selected at the previous stage participate in the crossover operation.
The purpose of crossover is to provide useful information to the offspring. There are
three types of crossover: one-point crossover - parents’ chromosomes are randomly
divided into two segments, and parents exchange them; two-point crossover - parents’
chromosomes are randomly divided into three segments, and parents exchange them;
uniform crossover - each bit in the offspring chromosome is inherited randomly from
one of the parents.

The final step is mutation. The mutation operator usually makes small random
changes in the genotype, thus maintaining diversity in the population. There is only
one mutation operator in GA. Only the probabilities with which this mutation is car-
ried out differ. When the mutation operator is over, the GA cycle is repeated again, and
selection operators are again applied to the offspring.

If you use GA to work with real or integer variables, each variable must be encoded
in a binary form. The easiest way is to divide the number into intervals and make a
relation between each interval and the binary combination. In [10] it was found that the
most efficient method of encoding real variables into binary ones is Gray code, although
in a study [11] it was shown when using a genetic algorithm with varying string length
the most efficient way of encoding may be Rice code.

2.2 Fitness-Based Adaptation

A simple method for tuning mutation and crossover probabilities was proposed in [2].
The method is designed to both protect good solutions from destruction and explore the
search space by mutating inefficient solutions. Crossover and mutation probabilities are
determined for each individual separately and are calculated based on the fitness of those
individuals. So, if the fitness of an individual is high, then the probability of crossover
and mutation is low (for an individual with the highest fitness these probabilities are 0),
but if the fitness of an individual is low, then the probability of crossover and mutation
is high. This method has shown to improve the performance on a number of problems
of different classes, including the traveling salesman problem and the optimization of
neural network weight coefficients. In [12] this method was modified, which improved
the performance of the genetic algorithmon the traveling salesmanproblem. In difference
from the original method, for individuals with the highest fitness the probabilities of
crossover and mutation are not zero, but are performed with some minimal probability.
This increases the speed of convergence to the optimal solution.



Self-adaptation Method for Evolutionary Algorithms 161

2.3 Population-Level Dynamic Probabilities

This method is taken from [3] and is used to tune the probabilities of applying genetic
operators (self- configuring). At the start of the algorithm start each genetic operator is
assigned minimum probabilities of its application pall = 0.2/n, where n is the number of
operators of a certain type. Then for each operator the values are entered (formula 1):

ri = success2i
usedi

, (1)

where usedi is the number of uses of the given operator, successi is the number of
successful uses of the operator when the fitness of the offspring exceeded the fitness of
the parent. For each operator the probability of its use pi is calculated by the formula 2:

pi = pall +
[
ri
1.0− npall

scale

]
, scale =

∑n

j=1
rj. (2)

The successi values are squared because of very low success rate of genetic operators.
The scale values allow to normalize the probability values so that their sum is always
equal to one. Among the shortcomings of the PDP method it is should be noted that the
procedure for evaluating the success of an operator has some disadvantages, in particular,
when comparing the succession fitness with that of the parents it is not obvious with
which of the parents to compare.

2.4 Self-configuring Genetic Algorithm

The SelfCEA method is based on increasing the probability of choosing the operator
that provided the highest average fitness on a given generation. Let zp be the number of
different operators of type k. The initial selection probability of each operator is defined
as pi = 1/z. The probability of an operator providing the maximum mean value of the
fitness function is increased by the formula 3 [1]:

pi = pi + (z − 1)K

zN
, i = 1, 2, ..., z, (3)

where N is the number of generations of algorithm, K is constant controlling rate of
change of probability. Probabilities of other operators are recalculated so that the total
sum equals 1. The method has two parameters: K, which determines the rate of change
in the probability; a threshold which is the minimum probability of using the operators.
The method has shown good results in solving the problem of selecting efficient options
for the spacecraft control system [13], and has also been modified with new crossover
operators in [14] and [15]. In this paper, this method is applied to a genetic algorithm
and denoted as SelfCGA.

2.5 SHAGA

This algorithm is a successful attempt to apply a strategy for real parameter adaptation of
the differential evolution algorithm, called success history based parameter adaptation



162 P. Sherstnev

(SHA) [7], to the genetic algorithm. To be able to apply this adaptation strategy, the
genetic algorithm itself had to undergo several modifications that made the cycle of the
genetic algorithm closer to the cycle of differential evolution. Tournament selection with
size of twowas used as the selection operator. Only one parent was selected for crossover
and the second parent was always the current individual in the population. Crossover was
performed uniformly, where the crossover probability was tuned similarly to the SHADE
algorithm. The method was tested on binary and real-valued optimization problems and
achieved better performance than SelfCGA [16].

3 Proposed Approach

The self-configuring approaches discussed above, such as SelfCGA and PDP, perform a
selection of genetic operators based on their efficiency during the execution of the algo-
rithm. The operators are first generated with equal probability, and then the probabilities
are recalculated in favour of the more efficient ones, depending on the fitness achieved
by executing these operators. Ultimately, these self-configuring methods perform the
same function: they select genetic operators based on probabilities that depend on the
values of the fitness functions.

SelfCGA and PDP algorithms have disadvantages when used to tune a genetic algo-
rithm. SelfCGA has two parameters: the rate of change in probability and a threshold
probability that can be assigned to an operator. For different problems and numbers of
operators, these parameters must be different. In addition to this, the method is a self-
configuring method, which by definition and in practice does not allow for the setting of
numerical parameters such as the mutation probability. With SelfCGA, mutation proba-
bility has three values (weak, average and strong mutation), which allows you to adjust
these parameters, but only to a pre-defined value.

The PDP method, on the other hand, adjusts the probabilities of applying operators
not directly on the fitness basis but by creating a progeny with a higher fitness than the
parent. This peculiarity creates complications because it is not clear with which parent
the offspring should be compared. The method also allows only the genetic operators to
be set, but not the numerical values of the algorithm parameters.

Researchers usually develop complex procedures for calculating probabilities based
on fitness values, but in evolutionary algorithms there are already functions that assign
a selection probability to each fitness function value from the population. These are
selection operators.

If individuals were generated using different genetic operators in the previous pop-
ulation, a fitness value can be calculated for each individual, and the information about
the type of operator that was used can be used. By having sets of fitness function values
and different types of genetic operators that generated individuals with the correspond-
ing fitness values, each time the next generation of individuals is created, the selection
operator can be used to select the operator that will produce the offspring.

Let operator_set be the set of all genetic operator types of a particular type. N is
population size. On the first generation, when the i-th offspring is created, the genetic
operator is chosen randomly from this set (formula 4):

Operatori = RandomChoice(operator_set), (4)



Self-adaptation Method for Evolutionary Algorithms 163

whereRandomChoice is a function for selecting a random item froma set. Theprobability
of each element being selected is equal. Operatori is used to create an offspring and
Fitnessi fitness of the offspring is associated with this operator. Once the new generation
is fully formed, there is a set of values (formula 5):

OperList =
⎡
⎢⎣

Operator1 Fitness1
...

OperatorN

...

FitnessN

⎤
⎥⎦. (5)

Now, when creating the i-th offspring, the operator is selected as follows (formulas
6 and 7):

If rand < pt :Operatori = RandomChoice(operator_set) (6)

Else:Operatori = Selection(OperList) (7)

where rand is a random value generated by a uniform distribution in the range 0 to 1, pt
is the probability with which an operator is randomly selected from the set of possible
operator_set variants, Selection is a genetic selection operator that selects an individual
(in this case another genetic operator from OperList based on the values of the fitness
function.

The condition in formula 3 ensures the robustness of the adaptation process by
ensuring that different operators are present inOperList, creating permanent competition.

Now consider the procedure for adapting a numerical parameter. Let Left be the
minimum value of the parameter and Right be the maximum value of the parameter. N -
population size. In the first generation, when the i-th offspring is created, the parameter
is generated by a uniform distribution (formula 8):

Parametri = Uniform(Left, Right) (8)

where Uniform is the function that generates a random value in the Left and Right
boundaries.

Parametri is used to create a descendant and fitness Fitnessi per offspring is associ-
ated with this operator. Once the new generation is fully formed, there is a set of values
(formula 9):

ParamList =
⎡
⎢⎣

Parametr1 Fitness1
...

ParametrN

...

FitnessN

⎤
⎥⎦ (9)

Now, when creating the i-th offspring, the operator is selected as follows (formulas
10 and 11):

If rand < pt :Parametri = Uniform(Left, Right) (10)

Else:Parametri = Selection(ParamList) (11)



164 P. Sherstnev

Thus, the proposed method allows to tune both the numerical parameters of the
algorithm and the genetic operators, which makes it a self-adaptive method. In future
work, this method will be referred to as SelfAGA. It is easy to see that there can be as
many variations of this method as there are selection functions and considering that a
selection function can be generated using metaheuristics, this method can be used for
automated generation of self-adaptive evolutionary algorithms.

In the next section, we compare the proposed method with SelfCEA self-configuring
method for solving binary and real-valued optimization problems by genetic algorithm.

4 Experimental Setup and Results

4.1 Parameters of the Genetic Algorithm

A genetic algorithm was implemented in the python programming language and then
modified to match each method. The SelfCGA and SelfAGA algorithms use the same
implementations of genetic operators and the other genetic algorithm process is pro-
grammed in the same way, except for the self-adaptation method. Thus the difference in
algorithm performance can only be due to different adaptation methods. Table 1 below
shows the algorithm parameters and operators involved in adaptation.

Table 1. Parameters of the genetic algorithm and self-adaptation methods

Name of the parameter Value

type of crossover one-point, two-point, uniform

type of selection proportional, rank, tournament (5)

type of mutation (SelfCGA) weak, average, strong

K (SelfCGA) 0.5

threshold (SelfCGA) 0.05

Pt (SelfAGA) 0.1

Selection (SelfAGA) proportional, rank, tournament (3 and 5)

The average mutation performs a bit flip with a probability that is calculated as
follows (formula 12):

p = 1

StringLen
(12)

where StringLen is the length of the binary string. Weak and strong mutations are three
times less and three times more likely, respectively.

Since in the SelfAGA method the probability is adjusted as a real parameter, the
minimum value is the probability determined in the weak SelfCGA mutation, and the
maximum value is the probability determined in the strongmutation. The remaining part
of the paper is a comparison of SelfCGA with SelfAGA, with SelfAGA presented in
four versions, distinguished by the selection function used for self-adapted parameters
(proportional, rank and tournament with size of 3 and 5).



Self-adaptation Method for Evolutionary Algorithms 165

4.2 Results of Solving Binary Optimization Problems

A total of two binary problems are used: the problem “onemax”, which contains one
global optimum and consists in obtaining the maximum number of 1 in the binary string.
The optimum in this problem is reached when all elements of the binary string are 1.

Another problem is called “01”. The goal is to find the binary string with the max-
imum number of pairs 0 and 1. Unlike “onemax”, this problem has one global and one
local optimum. For both problems “onemax” and “01” there are different variations,
varying in the dimensionality of the problem, as well as the number of generations and
population size. Table 2 below shows the parameters of the problems.

Table 2. Parameters of binary optimization problems

Problem Number of iterations Population size

Onemax 1000 bits 100 100

Onemax 3000 bits 100 100

Onemax 10000 bits 1000 100

«01» 1000 bits 100 100

«01» 3000 bits 100 100

Table 3 below shows the best solutions achieved by each of the self-adaptation
methods, averaged over 1000 independent runs.

Table 3. Results of solving binary optimization problems.

Heading
level

SelfCGA SelfAGA
(proportional)

SelfAGA
(rank)

SelfAGA
(tournament 3)

SelfAGA
(tournament 5)

Onemax
1000 bits

891.075 899.699 900.404 905.372 914.516

Onemax
3000 bits

2204.902 2211.933 2207.496 2227.298 2264.675

Onemax
10000 bits

8444.079 8601.686 8562.07 8583.36 8662.617

«01» 1000
bits

402.348 405.309 405.238 404.676 404.942

«01» 3000
bits

1035.684 1035.135 1034.647 1035.198 1038.67

For statistical verification, the Mann-Whitney test is used with a significance level
of 0.01. In the case of Null hypothesis there are no differences between observations.
Table 3 shows the values in bold for the methods whose difference between the results
was statistically significant compared to the SelfCGA results.



166 P. Sherstnev

4.3 Results of Solving Real-Valued Optimization Problems

The second part of the experiments consists of solving real optimization problems,
namely 10 functions from [17]. The number of iterations and the size of the iteration
were chosen for each problem individually. Table 4 below shows the functions from [17]
as well as the parameters under which the functions have been optimized. Only a part
of the original set of functions is used due to the fact that the genetic algorithm could
not find an optimal solution for a limited number of iterations (the test calculations were
performed up to a number of iterations of 1000 and a generation size of 1000).

Table 4. Parameters of real-valued optimization problems.

Problem Number of iterations Population size

F1 30 30

F2 45 45

F4 45 45

F5 100 50

F6 1000 500

F9 100 50

F10 300 200

F12 70 50

F15 100 50

F16 1000 500

The reliability criterion for the genetic algorithm is the ratio of optimal solutions
found out of all runs of the algorithm (reliability). For genotype-phenotype mapping a
string of bits to real values Gray code and 16 bits per variable were used. Table 5 below
shows the average reliability of algorithms averaged over 1000 runs.

The highest values achieved on a given problem are shown in bold. It can be noticed
that the average reliability for all the problems solved by the new self-adaptation method
surpassed the reliability achieved by the SelfCGA method. The maximum average reli-
ability was achieved using rank selection, while using proportional selection did not
significantly improve the reliability of the genetic algorithm on the given tasks. Con-
sider as an example the process of adaptation of the genetic algorithm parameters on the
F5 problem. The results are averaged over 1000 runs. Figure 1 below shows the number
of various crossover operators (upper plot), selection (middle plot) and the average value
of mutation probability (lower plot).

The graph shows how these values adapt over the running of the algorithm.



Self-adaptation Method for Evolutionary Algorithms 167

Table 5. Results of solving real-valued optimization problems.

Problem SelfCGA SelfAGA
(proportional)

SelfAGA (rank) SelfAGA
(tournament 3)

SelfAGA
(tournament 5)

F1 0.740 0.658 0.913 0.927 0.939

F2 0.757 0.801 0.878 0.883 0.864

F4 0.763 0.762 0.834 0.829 0.805

F5 0.621 0.468 0.637 0.601 0.568

F6 0.744 0.988 0.799 0.791 0.759

F9 0.740 0.751 0.697 0.681 0.666

F10 0.690 0.694 0.785 0.769 0.787

F12 0.630 0.548 0.747 0.732 0.724

F15 0.726 0.735 0.701 0.680 0.679

F16 0.554 0.610 0.834 0.878 0.914

mean 0.6965 0.7015 0.7825 0.7771 0.7705

100

100

100

80

80

80

0

0

0

20

20

20

40

40

40

60

60

60
Generation number

Generation number

Generation number

0.03

0.04

0.05

10

20

30

16

18

N
u
m

b
er

 o
r 

o
p
er

at
o
rs

N
u
m

b
er

 o
r 

o
p
er

at
o
rs

N
u
m

b
er

 o
r 

o
p
er

at
o
rs

rate

Mutation rate

Selection

Crossover

one point

two point

uniform

proportional

rank

tournament

Fig. 1. The process of adaptation of the parameters of the genetic algorithm



168 P. Sherstnev

5 Conclusion

In this paper, a method for self-adaptation of evolutionary algorithms is proposed and
tested that differs from the known methods of parameter selection and the possibility of
tuning both genetic operators and numerical parameters of the algorithm. The proposed
algorithm can be presented in different variants depending on the selection function that
performs algorithm parameter adaptation in the process. The method is compared with
the popular SelfCGA approach and shows better performance on both binary and real-
valued optimization problems. Further work will be done to study the effect of pt on the
efficiency of the method and investigate the performance of the algorithm as compared
to other self-adaptation methods on a wider set of problems.

Acknowledgments. This work was supported by the Ministry of Science and Higher Education
of the Russian Federation (Grant № 075-15-2022-1121).

References

1. Semenkina,M.: Self-adaptive evolutionary algorithms for designing information technologies
for data mining. Artif. Intell. Decis.-Making 1, 12–24 (2012)

2. Patnaik, L.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE
Trans. Syst. Man Cybern. 24, 656–667 (1994)

3. Niehaus, J., Banzhaf, W.: Adaption of operator probabilities in genetic programming. In:
Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds.)
EuroGP 2001. LNCS, vol. 2038, pp. 325–336. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45355-5_26

4. Richter, S.: The automated design of probabilistic selection methods for evolutionary algo-
rithms. In: Proceedings of the 2018 Genetic and Evolutionary Computation Conference
Companion, pp. 1545–1552 (2018)

5. Hong,L.,Woodward, J.,Özcan,E., Liu, F.:Hyper-heuristic approach: automatically designing
adaptive mutation operators for evolutionary programming. Complex Intell. Syst. 7, 3135–
3163 (2021). https://doi.org/10.1007/s40747-021-00507-6

6. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external
archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

7. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evo-
lution. In: Proceedings of 2013 IEEE Congress on Evolutionary Computation, pp. 71–78
(2013). https://doi.org/10.1109/CEC.2013.6557555

8. Tanabe, R., Fukunaga, A.: Improving the search performance of SHADE using linear popula-
tion size reduction. In: Proceedings of the 2014 IEEECongress on Evolutionary Computation,
pp. 1658–1665 (2014)

9. Holland, J.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1975)
10. Whitley, L.D.: Free lunch proof for gray versus binary encoding. In: Genetic and Evolutionary

Computation Conference (1999)
11. Panfilov, I.: Study of the performance of a genetic optimization algorithm with alternative

solution representation. Siberian Aerosp. J. 4(50), 68–71 (2013)
12. Han, S., Xiao, L.: An improved adaptive genetic algorithm. In: SHS Web of Conferences,

vol. 140, pp. 5–6 (2022)

https://doi.org/10.1007/3-540-45355-5_26
https://doi.org/10.1007/s40747-021-00507-6
https://doi.org/10.1109/CEC.2013.6557555


Self-adaptation Method for Evolutionary Algorithms 169

13. Semenkin, E., Semenkina,M.: Spacecrafts’ control systems effective variants choicewith self-
configuring genetic algorithm. In: Proceedings of 9th International Conference on Informatics
in Control, Automation and Robotics, pp. 84–93 (2012)

14. Semenkin, E., Semenkina, M.: Self-configuring genetic programming algorithm with modi-
fied uniformcrossover. In: Proceedings of 2012 IEEECongress onEvolutionaryComputation,
CEC 2012 (2012)

15. Semenkin, E., Semenkina, M.: Self-configuring genetic algorithm with modified uniform
crossover operator. In: Tan, Y., Shi, Y., Ji, Z. (eds.) ICSI 2012. LNCS, vol. 7331, pp. 414–421.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30976-2_50

16. Stanovov, V., Akhmedova, S., Semenkin, E.: Genetic algorithm with success history based
parameter adaptation. In: Proceedings of 11th International Conference on Evolutionary
Computation Theory and Applications, pp. 180–187 (2019)

17. Suganthan, P.N., et al.: Problem definitions and evaluation criteria. In: Proceedings of CEC
2005 Special Session on Real-Parameter Optimization (2005)

https://doi.org/10.1007/978-3-642-30976-2_50

	Self-adaptation Method for Evolutionary Algorithms Based on the Selection Operator
	1 Introduction
	2 Methods of Self-adaptation for Genetic Algorithm
	2.1 Genetic Algorithm
	2.2 Fitness-Based Adaptation
	2.3 Population-Level Dynamic Probabilities
	2.4 Self-configuring Genetic Algorithm
	2.5 SHAGA

	3 Proposed Approach
	4 Experimental Setup and Results
	4.1 Parameters of the Genetic Algorithm
	4.2 Results of Solving Binary Optimization Problems
	4.3 Results of Solving Real-Valued Optimization Problems

	5 Conclusion
	References


