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Abstract. The article is devoted to studying the effectiveness of ensemble meth-
ods of neural network solvers for solving a regression problem. The problem of
ensuring the efficiency of using a prediction model based on a set of artificial
neural networks, which should provide increased efficiency compared to a single
regressor, is considered.One of the requirements to ensure an increase in efficiency
is that the solvers in the ensemble must be sufficiently different to ensure that the
ensemble model exits the region of the local minimum error of a single solver. For
the considered case of constructing neural network ensembles, it is proposed to
provide distinction based on the generation of different structures of neural net-
work regressors. To do this, a modification is introduced into the structure of the
previously developed probabilistic method for designing neural networks. This
modification is based on the use of special coefficients that determine the adap-
tation of the probability of using various activation functions depending on the
presence of those in already formed neural networks in the ensemble. The pro-
posed approach was implemented in a software system and tested using generated
datasets and real industrial data sets, described in the article. The results obtained
indicate the relatively high efficiency of constructing collective regressors when
forming neural networks using the proposed approach while maintaining diversity
in conditions of noisy samples.

Keywords: Modeling · Simulation · Artificial Neural Networks · Ensembles ·
Regression · Structure Shaping · Probabilistic Approach

1 Introduction

Today, the use of artificial neural networksmakes it possible to effectively solve problems
of data mining, such as modeling, classification, and clustering. In the course of the
ongoing research, regression modeling problems were considered, involving the use of
artificial neural networks to describe the dependencies between input and output data.
There are quite a few applications of artificial neural networks in this focus, including
in metallurgy, mechanical engineering and medicine [1–3].
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However, we can observe a constant increase in the complexity of data analysis
problems. The technological processes themselves and the models that describe them
are becomingmore complex. This is due to the fact that there is an increase in the number
of controlled process parameters and, accordingly, an expansion of the factor space for
searching for effective models. There is also an increase in the amount of data processed
tobuild regressionmodels, and thedemandson the accuracyof suchmodels are becoming
more and more demanding. All this leads to the fact that the process of searching for
methods that would allow the formation of more efficient regression models, including
criteria for computational efficiency and accuracy of describing dependencies in data,
is constantly ongoing. This is true for both regression neural network models and other
types of models.

Among several directions for improving approaches to building regression models
(and, in general, classifiers), one can single out ensembling. This approach involves the
construction and integration of models and classifiers into groups that process data sets
more efficiently than with an individual regressor or classifier [4–6]. A limitation of
the approach is the fundamental complexity of the ensemble compared to an individual
solver. In this regard, the developed schemes for constructing ensembles should be
effective in terms of the use of individual solvers. Some of them, in particular, implement
the requirements of maintaining diversity in such an ensemble of solvers.

One of the fundamental works in the field of artificial neural ensembles is [7]. The
authors have shown an increase in the efficiency of the recognition system when using
several neural network classifiers instead of a single artificial neural network. This app-
roach and its variants were refined and implemented to solve practice-oriented problems,
including in the field of recognition, medical and technical diagnostics, processing of
seismic monitoring signals and many others [8–11].

Despite the demonstrated possibility of using ensembles for certain practical prob-
lems, this approach is associated with an increase in the complexity of the model design
stage. This is due to the need to build not one, but several at once, sometimes a signif-
icant number of neural network solvers, which are required to be effective jointly, and
not separately.

There are two steps required to build the ensemble solver. At the first step, it is
necessary to create individual solvers that are sufficiently effective and differ from each
other (artificial neural networks are considered within the framework of this study).
At the second step, it is necessary to assemble an ensemble scheme for obtaining a
general solution from individual solvers, namely, their individual solutions. It appears
that increasing the efficiency of solving a problem depends on each of the two steps
indicated. Thus, the effectiveness of the ensemble approach is determined by the quality
of the solvers in the pool formed at the first step, and the effectiveness of the method
for calculating the ensemble solution from individual solutions. [6, 12–14]. Different
approaches for performing the above steps can be identified in real-world applications.
A complete classification is not the purpose of this review, but to determine the location
of the presented study, the followingmust be indicated. Individual classifiers can be built
over the entire dataset, or they can be defined on individual subsets of the original dataset.
In this study, we considered the concept of the entire dataset for all individual solvers.
The construction of a general solution can be based on simple rules such as weighted
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summation or median, or it can be produced in the form of a more flexible, potentially
nonlinear relationship. As part of this study, we integrated into the proposed approach a
scheme for generating a general solution based on genetic symbolic programming.

Further, in Sect. 2, a description is given of the proposed methods for the forma-
tion of artificial neural networks for their inclusion in the ensemble and, additionally,
the method of forming the general solution of the ensemble based on the predictions
of individual neural networks. The proposed methods are based on a generalized prin-
ciple underlying evolutionary heuristic algorithms. Section 3 presents the results of a
numerical experimental study of the proposed approaches and a comparative analysis
with several alternative ensemble approaches and individual models. Section 4 contains
a general conclusion on the article.

2 Materials and Methods

2.1 Designing the Structure of Neural Networks Using the Probabilistic
Approach

In the case of using an ensemble approach, special attention should be paid to the stage
of generating individual solvers. Such solvers should not be completely untrained, but
should have some basic performance that demonstrates their adaptation using the dataset.
On the other hand, they should not be overtrained, since there is a possibility of bringing
them to some general local optimum in terms of performance criterion for a specific
problem. In this sense, they must be different, covering different points in the solver
space. A pool of such preliminary predictions may be intended to be used in whole or
in part with subset selection. The scheme for the selection of ensemble members will be
considered in the next section. In this section, we will consider the proposed approach
to the formation of structures of artificial neural networks for subsequent training.

Since the ensemble approach assumes the need to build a sufficiently large pool of
individual solvers with a high degree of confidence, the conditions of real application
require automation of this process. This is due to the fact that building even one solver is
quite a serious task for practical application on datasets of significantly different types.
And here this problem of optimal design of an efficient solver must be solved many
times with some restrictions on the complexity and variety of individual solvers. This
fully applies to the use of artificial neural networks as individual solvers, which are the
focus of this study. The issue of adapting neural network solvers can be most effectively
resolved in the case of optimal selection of the structure and further effective training of
the corresponding network. It is almost impossible to rationally determine in advance
the non-redundant efficient structure of a neural network designed for a huge number
of real-life datasets. The requirement of non-redundancy is essential for the ensemble
approach, since the use of many redundant individual solvers can lead to a significant
increase in the need for computing resources compared to the increase in the quality of
the resulting solution. Limits on available computing resources may also be exceeded,
which is still typical for a large number of real-world systems.

In order to further describe the method for maintaining the diversity of neural net-
work solvers, we provide a brief description of the previously developed probabilistic
method for designing the structures of artificial neural networks. This approach is for
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automatically designing the structure of neural networks is based on the calculation and
use of probability estimates (Formula 1).

pki,j, i = 1,Nl, j = 1,Nneuron, k = 0,NF , (1)

where i is the number of the hidden layer of the neural network; j is the number of the
neuron on the hidden layer of the network; Nl is the maximum number of hidden layers;
Nneuron is the maximum number of neurons on the hidden layer; k is an identifier whose
value is interpreted as follows:

1. If k = 0, then p0i,j is an estimate of the probability that the j-th neuron is absent on the
i-th layer of the network;

2. If k ∈ [1,NF ], then pki,j is an estimate of the probability that the j-th neuron exists on
the i-th layer of the network and its activation function is the activation function with
number k from the set of activation functions available to the algorithm. NF is the
power of the set of activation functions that can be used when designing the neural
network structure.

The formula for calculating the total probability of the presence or absence of a
neuron at a place in the neural network, determined by the number of the layer and the
number of the conditional position of the neuron on the layer is as follows:

p0i,j +
∑NF

k=1
pki,j = 1. (2)

For details see [15].

2.2 Providing Diversity for Individual Neural Network Solvers

One of the priorities for building effective ensemble models is to ensure the diversity
of individual solvers, ensuring the possibility of their synergistic interaction and not
being biased towards the local and insufficient maximum efficiency of a single model.
Maintaining diversity can be achieved in a variety of ways. This can be building or
training models on different subsets of the original dataset, as is implemented in boost-
ing schemes. Another option is to build models with initially different structures. For
artificial neural networks, the focus of this research, this means designing and further
training neural network solvers with different activation functions and hidden layer
configurations.

Within the framework of this study, just such an approach was considered with a
focus on the formation of an ensemble based on artificial neural networks. The modifi-
cation of the method of probabilistic design of neural network structures is as follows.
An additional coefficient is introduced that is used to correct the probability of forming
the structure of a neural network with each type of activation function used. Obviously,
maintaining diversity among neural networks is also ensured by their structural differ-
ences. Correcting the probabilities of the procedure producing neural networks should
reduce the likelihood of the appearance of neural networks with a structure similar to
those that have already been formed and placed in the pool of solvers. It is proposed to
use modified probability values calculated according to Formula 3:

p̃ki,j = dk
i · pki,j, (3)
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where pki,j i and iterators are defined by Formula (1) The value of the coefficient is
calculated by Formula 4:

dk
i,j = 1 − nki,j

Ensemble Size
, (4)

where n is the number of neural networks, with a neuron of the k-th type on the i-th
layer in the j-th position, already placed in the ensemble. The coefficient of change in
the probability of occurrence of an activation function of a certain type dk

i is calculated
individually for all neurons of the hidden layers of the designed neural network. Possible
values of such coefficients are in the range (0; 1]. If there is no neural network with the
corresponding activation function of the neuron in the position of the hidden layer in
the generated set of individual solvers, the coefficient is equal to 1. When such neural
networks of networks appear, the coefficient decreases and, accordingly, the probability
of generating a network with the same neuron in the neuron position in the hidden layers
corresponding to the coefficient decreases. This is aimed at reducing the repeatability
of the structure of neural networks, which is a factor in maintaining the diversity of
individual neural network solvers for the ensemble model. The starting values of the
coefficients for constructing the initial neural network are to equate all coefficients to 1.

The approach under consideration in a general formulation was proposed and partly
studied, and the results of such a study are given in [16]. However, in the first version
of the proposed approach, two important steps were not implemented, which were used
and already tested on the new test function number 5, introduced in Sect. 3.

In order to increase the stability of the approach, we introduced and implemented the
following modifications, compared to [16]. The formula for calculating the coefficient
used to take into account diversity has been changed, which allows us to take into account
the number of neurons of a certain type in already formed neural networks Nk

i,j, , and not
in relation to the entire ensemble size (Formula (5)). This is due to the following factor.
In the proposed evolutionary and some alternative ensemble approaches the choice of
neural regressors directly used in the formation of the ensemble and its general solution
occurs at the next step. Therefore, it is not possible to determine the size of the ensemble
in advance. The approach used previously involved dividing by the ensemble size (for
approaches with a fixed number of solvers in the ensemble) or dividing by the number of
networks in the preliminary pool. This gave rise to ambiguity and dependence of the first
step of ensemble formation on the second step. The proposed modification eliminates
such ambiguity andmakes the approach invariant from the choice of approach to forming
a general ensemble solution.

dk
i,j = 1 − nki,j

N k
i,j

. (5)

In the modified version of the approach proposed here, an unconditional minimum
probability was introduced, less than which the probability cannot be decremented using
Formula (3). This is due to a motivated relaxation of the calculation rule using decre-
mentation coefficients according to Formula (5) so that it is possible to obtain neural
network structures of any configuration at each iteration of designing the preliminary
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pool or the ensemble. In this study, we used an unconditional minimum value of 0.05
for cases where recalculation of the probability according to Formula (3) leads to a p̃ki,j
value less than the established value of 0.05.

Taking into account the basic statistical conditions, in the newversion of the approach
to maintaining diversity in ensembles, to ensure the stability of the approach after recal-
culating the probabilities using Formula (3), a normalization stage has been introduced,
bringing the sum of probabilities to a value equal to 1:

p̃ki,j = p̃ki,j
∑Nf

k=0p̃
k
i,j

. (6)

This step was not introduced and used for the initial version of this approach and had
the potential to fail to ensure the completeness of the sum of probabilities, potentially
reducing the effectiveness of the approach. Together with minor corrections in iterators,
the introduced changes allow us to claim a significant refinement and improvement of
the original approach, requiring confirmation using a new test dataset. The improved
new approach was also tested using a new, more complex test function with varying
levels of imposed noise.

2.3 Ensemble Design Using Modified Genetic Programming

The formation of an ensemble can be carried out in the following options. The first
option is that the ensemble consists of all individual solvers. In this case, individual
solvers are formed depending on the qualities of previous members of the ensemble
or the explicitly or implicitly defined areas of influence of each solver. In particular,
this can be attributed to various boosting schemes, which also cover the design stage of
individual solvers [10, 17]. An alternative option is to compile an ensemble of solvers
selected from a preliminary pool - either a small subset or all of the pool can be selected.
An alternative option is to compile an ensemble of solvers selected from a preliminary
pool - either a small subset or all of the pool can be selected. Such selection can be carried
out in an explicit combinatorial form, which, however, is a computationally intensive
process given the large number of combinations with a fairly large size of the designed
ensemble. Such selection can also be carried out implicitly, for example, by resetting
the weighting coefficients of individual solvers to zero in the formula for calculating
the general solution, or even during the construction of the very principle of calculating
the general solution, which may not take into account the predictions of all individual
solvers. [18–21]. This leads to the fact that one of the problems of effective application
of ensemble methods is the choice of a method for forming a general solution. In the
basic case, there are two possible approaches. The first one assumes, for the regression
problem, the use of some formula that is static. Such methods may include methods for
calculating the average value based on the solutions of individual solvers. In addition
to simple averaging, a similar scheme with the introduction of weighting coefficients
can be used. Such weighting factors may be proportionally related, for example, to
an estimate of the error of the corresponding individual solver. However, the issue of
choosing coefficients remains, since an individually efficient solver may have too much
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weight to bias the ensemble solution relative to it, thereby reducing the ensemble effect.
An alternative option is to use adaptive schemes for integrating and post-processing the
opinions of individual classifiers. In the limit, this can be another level of solvers that
accept as input the outputs of individual solvers of the first level. Keeping in mind the
possibility of such an approach, the study attempted not to permanently seal the black
box of an ensemble of neural networks in this form.

Therefore, we have proposed and tested a method that allows us to adaptively form a
single second-level solver in the form of a formula that explicitly symbolically connects
the outputs of individual solvers and the general ensemble solution. The scheme for
using ensembles of neural networks suggests that the calculation of the general ensem-
ble solution is based on the solutions obtained by individual neural networks, that is,
the general ensemble solution is a certain function that depends on the predictions of
individual neural networks (5):

o = f (o1, o2, . . . , on), (3)

where o is the general solution, oi is the individual solution of the i-th network, n is the
number of networks in the ensemble. To solve this method of computing an ensemble
solution, we propose to use an approach based on genetic programming [22]. To solve
this method of computing an ensemble solution, we propose to use an approach based on
evolutionary heuristics called genetic programming. It is successfully used to construct
optimal approximations, and the explicit formulaic form of the solution will allow one to
analyze the composition and evaluate the influence of individual solverswhen calculating
the overall solution.

The standard genetic programming method is used to design symbolic formulas
involving independent variables and constants. Since in the considered ensemble scheme
the input values of the generated rule for calculating the general ensemble solution are
the output of individual neural network models, a modification of the standard approach
is required. For this purpose, a modification of the genetic programming method with a
modified terminal set T = {o1, o2, . . . , on,C} is used. Here oi is an individual solution
of the i-th solver, n is the number of networks in the ensemble, C is a set of constants
(numerical coefficients). A hybridized version of the genetic programming method was
used in our study to fine-tune the efficiency-critical second stage of ensemble design.
Such hybridization consists in the use of algorithms for adjusting the coefficients of
a formula that describes a combination of solutions of individual solvers to determine
the overall ensemble solution. An important positive aspect of using such evolutionary
heuristics as amethod of genetic programming is the possibility of flexible formation of a
quality function for the process of evolutionary improvement of solutions. So, in the form
of a convolution or multi-criteria formulation, such an ensemble efficiency criterion can
include not only the values of the model or classifier deviation estimates, but estimates
of the number of individual solvers used or their total complexity of neural structures
or other types of solvers. This can be critical in cases of limited computing resources
and the desire to maintain the speed of inference of the ensemble model compared to
individual solvers.
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3 Numerical Experiments

To evaluate the effectiveness of the proposed approach, numerical studies were per-
formed on the generated sets of test problems and data sets of real problems hosted in
the Machine Learning Repository [23]. The description of the generated and test sets is
given below. As a unique objective of this study, a set of data obtained from the metal-
lurgical production at the stage of obtaining end products in plums was used to evaluate
the quality of regression modeling. The name of the company that provided the data and
the characteristics of the dataset are not disclosed in order to ensure non-disclosure of
commercial information.

3.1 Simulated Datasets

For the initial evaluation of the work of the considered methods, the generated data sets
were used. The formation of datasets was carried out by randomly generating inputs
and calculating the values of functions in the domain of definition and according to the
formulas presented in Table 1. In previous studies, the use of such data sets made it
possible to assess the adequacy of their use for assessing the effectiveness of regressors
with basic indicators of the effectiveness of methods for constructing regression solvers
on a number of real data sets. It seems reasonable to us to use such synthetic modeling
problems for the purpose of controlled imposition of noise ondata to assess the robustness
of modeling methods.

3.2 Test Problems

To test the methods considered and proposed in the study for solving regression public
datasets hosted in theMachineLearningRepositorywere alsoused.Weused theConcrete
Slump Data Set because it is a widely used publicly available data set that will allow
external verification of the results obtained in this study. This data set consists of patterns
describing the tensile strength tested for special samples. Such samples are made using
concretes with controlled levels of inclusions of various ingredients. The total number
of examples in the dataset is 103 observations. A dataset option with an expanded set of
observations up to 1030 is also available. In this study, a basic 103 instance dataset was
used, directly obtained from field samples.

Adata setwas also used that describes the implementationof the ore-thermal smelting
process with various input parameters characterizing this metallurgical process. The
regression modeling problem statement is as follows. Based on observations of a real
object, data samples were generated that characterize the efficiency of an ore-thermal
smelting furnace. Electrical parameters and the loading of other components are used
as control parameters (input influences), since it is these input parameters that influence
the processes within the processes, in addition, they provide the ability to continuously
obtain and reliable information about them.

As input parameters of the process occurring in the furnace, the following process
indicators were recorded: the amount of agglomerate loaded into the furnace; the amount
of silica loaded into the furnace; the amount of coke loaded into the furnace; the amount
of converter slag loaded into the furnace; electricity input; deepening of electrodes;
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Table 1. Functions for generating test data.

Test problem Simulated Function Range Sample size

1 3-d Mexican-Hat: y = sin
√
x21+x22√

x21+x22

xi ∈ [−2π, 2π ] 1000

2 Friedman 1:
y = 10sin(πx1x2)+20(x3−0.5)2+10x4+5x5

xi ∈ [0, 1] 1000

3 Friedman 2: y =
√
x21 + (x2x3 − 1

x2x4
)2 x1 ∈ [0, 100]

x2 ∈ [40π, 560π ]
x3 ∈ [0, 1]
x4 ∈ [1, 11]

1000

4 Gabor:

y = π
2 exp

[
−2

(
x21 + x22

)]
cos[2π(x1 + x2)]

xi ∈ [0, 1] 1000

5 Multi:
y = 0.79 + 1.27x1x2 + 1.56x1x3 +
3.42x2x5 + 2.06x3x4x5

xi ∈ [0, 1] 1000

voltage; current strength; specific energy consumption. These parameters at the upper
level make it possible to evaluate the energy and technological characteristics of the
operating process of such installations and, in general, to judge the efficiency of the
furnaces. In order to build a regression model, the nickel content in the waste slag in
percent was selected as an output parameter.

3.3 Pool of Methods

The proposed approach was evaluated in terms of the efficiency of building a regression
model by comparison with a number of alternative methods. Such alternative methods
were implemented in software and used to build models in the considered test problems.
The followingmethods for constructing individual regressorswere investigated: artificial
neural networks, regression support vector machine, multidimensional adaptive spline
method [24, 25].

GASEN method based on the use of a genetic algorithm to select networks from a
pool, and a boosting gradient method were considered as alternative ensemble methods
[26–28]. Verification of the correctness of the implementation and pre-setting of param-
eters for the approaches under consideration were performed using this software system
during a preliminary study on a basic set of test problems (Table 1).

3.4 Raw Results Processing

To form a statistically stable estimate of the results, a 5-fold cross-validation scheme
with 5-fold resampling of the sample (the so-called 5-by-5 scheme) was used. For each
method, sets of 25 regression model accuracy estimates were obtained. The obtained



152 V. Bukhtoyarov et al.

R2 values were averaged over all runs. We also considered the spread in the quality of
the solutions obtained using a statistical estimate of the dispersion of the obtained R2

values.
The inclusion of various methods for constructing regressors in the study led to the

need for top-level equalization of the resources allocated to the method for processing
the initial dataset in order to build a regression model. For this purpose, during the
preliminary study, measurements of processor timewere used, which is necessary for the
average computational cycle of setting up the model. The parameters of the approaches
used were selected to equalize this indicator. At the same time, the available parameters
of the methods were adjusted on each of the tasks to ensure their optimal (taking into
account processor time limitations) efficiency on each of the tasks.

3.5 Results and Discussion

ANOVA methods were used to assess the statistical significance of the results. We
used the R2 indicator as a basic indicator for evaluating methods and comparing the
effectiveness of the described regression tasks. The research results are presented in
Tables 2–4. Analysis of the results obtained leads us to the conclusion that non-ensemble
methods are quite effective on relatively simple test problems without noise, since their
approximation ability is sufficient. According to our observations, the problems onwhich
such results were obtained include problems numbered 2, 3 and problemConcrete Slump
problem. On them, the results obtained by individual solvers and ensemble solvers using
several neural networkmodels turned out to be statistically indistinguishable. The results
of individual and ensemble solvers on problem 3 are somewhat different, but such a
difference is very small and is not a reason for complicating the model in the form of a
ensemble.

Among the considered set of test problems, the most complex are the problems
of ore-thermal smelting and problems numbered 1 and 4. On such problems, the best
results were obtained when using approaches based on ensembles of neural network
solvers. Among these ensemble approaches, statistically significantly higher effective-
ness corresponds to those that used an ensemble diversity approach. Our assumption is
that methods based on single solvers may have reached their efficiency limit in the used
configuration. It is the ensemble approach, built even on simpler individual solvers, that
makes it possible to overcome this limit when constructing regressors in this case.

Assessing the robustness of the approaches was the subject of further experiments
using noisy samples. The maximum noise level was the level indicated below from the
value of the test functions used at each point of the definition domain. Table 3 presents
the results of the study with a noise level of 10%. As follows from the results, the drop
in the quality of approximation for non-ensemble solvers in some cases turned out to be
even greater than the level of sample noise. The results of the ensemble solvers turned
out to be more suitable for samples with noise simulating those in the measurement
channels.

The use of ensemble methods made it possible to achieve more stable results,
although a decrease in the calculated indicator is observed. A statistically significant
difference was assessed between the method using ensemble diversity maintenance and
standard methods for designing neural networks based on evolutionary algorithms.
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Table 2. The results of applying methods with no noise.

Approach Test
Problem
1

Test
Problem
2

Test
Problem
3

Test
Problem
4

Test
Problem
5

Concrete
Slump
Data

Ore-thermal
Melting
Data

Stochastic
Gradient
Boosting

0.815 0.976 0.934 0.898 0.862 0.984 0.785

MARSplines 0.785 0.981 0.931 0.826 0.773 0.985 0.813

Single Neural
Network

0,928 0.968 0.965 0.947 0.851 0.987 0.806

GASEN 0.987 0.996 0.995 0.983 0.902 0.997 0.934

GA-based 0.981 0.997 0.995 0.981 0.901 0.992 0.941

Proposed
approach
without
diversity
maintaining

0.983 0.997 0.996 0.983 0.931 0.994 0.961

Proposed
approach
with diversity
maintaining

0.986 0.996 0.996 0.984 0.951 0.995 0.985

Table 3. The results of applying methods with sample noise of 10%.

Approach Test
Problem 1

Test
Problem 2

Test
Problem 3

Test
Problem 4

Test
Problem 5

Stochastic Gradient
Boosting

0.701 0.911 0.867 0.746 0.776

MARSplines 0.678 0.924 0.854 0.682 0.680

Single Neural Network 0.764 0.917 0.883 0.785 0.757

GASEN 0.931 0.969 0.935 0.923 0.812

GA-based 0.930 0.958 0.942 0.937 0.784

Proposed approach without
diversity maintaining

0.939 0.962 0.947 0.937 0.829

Proposed approach with
diversity maintaining

0.952 0.987 0.965 0.946 0.880

The complication of the problem associated with the imposition of 20% noise led to
an even greater discrepancy in the effectiveness of individual solvers and solvers built on
the basis of groups of neural networkmodels. A statistically significant result allows us to
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Table 4. The results of applying methods with sample noise of 20%.

Approach Test
Problem 1

Test
Problem 2

Test
Problem 3

Test
Problem 4

Test
Problem 5

Stochastic Gradient
Boosting

0.637 0.860 0.821 0.639 0.721

MARSplines 0.628 0.851 0.752 0.641 0.626

Single Neural Network 0.681 0.845 0.819 0.695 0.689

GASEN 0.865 0.889 0.891 0.882 0.739

GA-based 0.850 0.905 0.885 0.920 0.721

Proposed approach without
diversity maintaining

0.878 0.904 0.912 0.918 0.795

Proposed approach with
diversity maintaining

0.927 0.917 0.933 0.936 0.839

provide exactly the proposed approach, with a modification that ensures the diversity of
individual regressors in the ensemble. Given that the available computational resources
were equalized across different types of regressors, a statistically significant difference
in the results of individual and ensemble solvers seems useful in real-world applications.
Since the series of experiments used cross-validation schemes trusted for such studies,
this allows us to emphasize the ability of the ensemble approach while maintaining
diversity to increase the efficiency of solving complex regression problems, the datasets
of which are potentially noisy due to objective circumstances. For the problem under
consideration with real ore-thermal smelting data, it was also possible to improve the
accuracy of the model. An increase in the accuracy of the model for the problem under
consideration with real ore-thermal smelting data was also achieved.

4 Conclusion

The study, the results of which are presented in this article, is aimed at creating and
evaluating the effectiveness of new methods for constructing ensemble models based on
artificial neural networks. Taking into account the high complexity of constructing the
structures of artificial neural networks, the study is focused on automating the process
of forming an ensemble. A method for forming the structure of neural networks based
on a probabilistic evolutionary procedure is considered and described, which makes it
possible to automatically generate the structures of neural networkmodels. This author’s
approach is complemented by new operations aimed at maintaining diversity in the
formed ensemble, which is an important factor in ensuring efficiency in the ensemble
approach. Despite the fact that direct estimates of the diversity of the models were
not carried out (and this is the subject of a detailed statistical study in the future), the
conducted numerical studywithout the use of appropriate operations shows a statistically
significant advantage of the diversity maintenance approach. The relative error reduction
is 5–7% depending on the problem.
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Comparative studies have shown the advantage or equality of the proposed approach
in efficiency over alternative evolutionary methods for forming ensembles of neural net-
work regressors.Moreover, this approach requires tuning a smaller number of parameters
compared to the standard evolutionary theory used to design neural network structures.
This change does not reduce the ability of the approach to adapt to specific problems, as
shown during computational experimentation. For a number of problems, the proposed
methodmade it possible to achieve a relative decrease in the error by about 20%.Another
advantage of the approach, leading to a reduction in routine computational operations, is
the absence of the requirement for encoding and decoding neural network structures into
a binary string, which is typical for standard evolutionary heuristics. We carefully used
the ANOVAmethod to check the correctness of the results obtained, which allowed us to
establish cases of truly different results in terms of the efficiency of constructing regres-
sion solvers. The implementation of the considered approaches in a software system
allows us to continue research in the future and implement applications in solving real
data analysis problems. In further studies, it is planned to test and adapt the method for
efficient use on larger data sets, the processing of which seems to be a resource-intensive
problem for ensemble methods.
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