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Abstract. Prospect theory-based three-way decision has been success-
fully applied in various fuzzy information systems owing to its excellent
performance in expressing the risk attitude of decision makers. However,
the current prospect theory-based three-way decisions have two following
limitations. On the one hand, they are constrained in processing uncer-
tain continuous data or neglecting the distribution of uncertain fuzzy
numbers. On the other hand, the risk attitudes of decision-makers are not
considered when calculating the conditional probability. To address the
two issues, we propose a normal fuzzy prospect theory-based three-way
decision model and a normal fuzzy ideal solution method. First, since nor-
mal fuzzy numbers can describe the continuous uncertain data subjected
to the normal distribution, we use it to represent the uncertain decision
information, i.e., normal fuzzy outcome matrix, normal fuzzy reference
points. Then, by integrating prospect theory and TOPSIS, we propose
a normal fuzzy ideal solution method to calculate conditional probabil-
ity, which considers the risk attitudes of decision-makers. Finally, the
comparative experiments demonstrate the effectiveness and superiority
of our proposal.

Keywords: Three-way decision · Prospect theory · Normal fuzzy
number

1 Introduction

Three-way decision (3WD) [17,18] mainly deals with uncertain and incomplete
information. 3WD gives the noncommitment decision when the information is
inadequate [14,21,23]. In traditional 3WD model [17], the corresponding losses
for taking different actions are calculated by Bayesian minimum loss, but the
decision-makers’ psychological risk attitudes are ignored. Prospect theory points
out the “bounded rational” behavior of decision makers, which expresses that
people will be risk-averse toward gains and risk chase toward losses [9]. In recent
years, prospect theory has been introduced into 3WD to represent the psycho-
logical risk attitudes, the achievements include 3WD based on various prospect
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theories [11,12,22] and prospect theory-based 3WD in diverse fuzzy environ-
ment [15,20].

Gu et al. [3] presented a prospect theory-based decision framework under
intuitionistic fuzzy environment, Liang et al. [6] studied 3WD in Pythagorean
fuzzy environment, they all focused on dealing with discrete uncertain informa-
tion rather than continuous uncertain information. In practice, there is more
continuous uncertain data in real life and the discretization of it will lead to the
loss of information. Then, Wang et al. [12] presented the 3WD based on third-
generation prospect theory, which transformed Z-numbers into triangular fuzzy
numbers to describe decision information. Triangular fuzzy number can describe
continuous uncertain data but it neglect the distribution of uncertainty, which
results in an insufficiently detailed depiction of uncertainty.

To against the above issues, we observed that normal fuzzy numbers can
describe the uncertain continuous information subjected to normal distribution.
There are many things that obey normal distribution in human activities and
natural environment [16]. For instance, the score of students and the service
life of products both obey normal distribution. Therefore, we proposed nor-
mal fuzzy prospect theory-based three-way decision (NFP3WD) by describing
decision information with normal fuzzy numbers. In addition, previous TOPSIS
methods of calculating conditional probability neglected the risk attitudes of
decision-makers. To this end, we propose a normal fuzzy ideal solution method
to compute conditional probability under normal fuzzy environment without
class label. The contributions of this work are expressed as follows:

• We proposed normal fuzzy prospect theory-based three-way decision method
(NFP3WD) to handle continuous uncertain information with normal distri-
bution.

• A normal fuzzy ideal solution based on TOPSIS and prospect theory is pro-
posed to compute conditional probability, which includes the risk attitudes
of decision-makers.

The rest of this paper is set out as follows. In Sect. 2, we review some funda-
mental concepts and notations of normal fuzzy numbers, 3WD, and prospect the-
ory. Section 3 proposes a normal fuzzy prospect theory-based three-way decision
method. In Sect. 4, we propose a normal fuzzy ideal solution based on TOPSIS
and prospect theory. In Sect. 5, we give an illustrative example, then some com-
parative analyzes are carried out, which verify the effectiveness and superiority
of our proposed method. Section 6 summarizes our study.

2 Preliminaries

2.1 Normal Fuzzy Numbers

Definition 1. [7,13] Suppose Ã is a fuzzy number, if Ã has the following mem-
bership function:

Ã(x) = exp

{
− (x − a)2

σ2

}
, x, a ∈ R, σ > 0, (1)
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then, Ã is a normal fuzzy number, represented as Ã = (a, σ2), and R is a set of
real numbers, a is the mean of Ã and σ2 denotes variance of Ã. Obviously, when
σ = 0, the normal fuzzy number Ã = (a, σ2) degenerates to real number a.

Definition 2. [5,8] E(Ã) is the expectation of normal fuzzy number Ã, which
is defined as:

E(Ã) =

∫ +∞
−∞ xÃ(x)dx∫ +∞
−∞ Ã(x)dx

. (2)

when Ã = (a, σ2), E(Ã) = a.

Definition 3. [5,8] Suppose normal fuzzy numbers Ã = (a, σ2
a), B̃ = (b, σ2

b ), we
can derive:

(1) if a > b, then Ã > B̃;
(2) if a = b, then, when σa = σb, Ã = B̃; when σa < σb, Ã > B̃;
(3) if a < b, then Ã < B̃.

Definition 4. [2] Suppose normal fuzzy numbers Ã = (a, σ2
a), B̃ = (b, σ2

b ), the
distance between Ã and B̃ is defined as:

d(Ã, B̃) =

√
(a − b)2 +

1
2
(σ2

a − σ2
b )2. (3)

2.2 Three-Way Decision

3WD theory divides a universe into three parts reasonably and takes effective
strategies to deal with each part [19]. The two states Ω = {C,¬C} in 3WD
indicate that an object x is in a decision class C or not, respectively. There
are three actions A = {aP , aB , aN} in 3WD. Taking action aP denotes that we
accept x belongs to C and classify x to positive region POS(C); taking action
aB denotes that we classify x into boundary region BND(C); and taking action
aN denotes that we reject x belongs to C and classify x into negative region
NEG(C).

Table 1. Loss function matrix.

C ¬C

aP λPP λPN

aB λBP λBN

aN λNP λNN

Table 1 shows the different loss functions. When an object x ∈ C, the losses
for taking actions ai (i = P,B,N) are λiP , respectively. When x /∈ C, the losses
for taking actions ai are λiN , respectively. Assume that Pr(C|x) and Pr(¬C|x)
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represent conditional probability of x ∈ C and x /∈ C, respectively. Then, based
on Bayesian process, the expected losses for taking three different actions can
be calculated [17], and the decision rules are based on the minimum loss. The
decision rules are simplified as comparing decision thresholds and conditional
probability as follows:

If Pr(C|x) ≥ α, then x ∈ POS(C);
If β < Pr(C|x) < α, then x ∈ BND(C);
If Pr(C|x) ≤ β, then x ∈ NEG(C).

(4)

2.3 Prospect Theory

Prospect theory, proposed by Kahneman and Tversky [4], describes decision mak-
ers’ behaviors under uncertainty and risk. Prospect theory integrates decision
makers’ value perception factor into the decision process, and the risk attitudes
of decision makers are evaluated by value function and weight function.

The value function describes decision makers’ risk attitudes toward gains
and losses, which is an asymmetric S-shaped function. Different decision-makers
may have different reference points, and that may lead to different judgments
of gains and losses. Decision makers show risk aversion toward gains and risk-
chasing toward losses. The value function is shown as follows [10]:

v(Δzk) =

{
(Δzk)μ, Δzk ≥ 0
−θ(−Δzk)υ, Δzk < 0

, (5)

where Δzk = zk − zr, Δzk measures the k-th difference between reference point
zr and the k-th outcome zk. When Δzk ≥ 0, the observed outcome is considered
as a gain relative to the reference point. Conversely, if Δzk < 0, it is perceived
as a loss.

Prospect theory holds that decision-makers always over-weight small proba-
bilities and under-weight large probabilities [10]. Weight function wk is a non-
linear transformation of the probability, the weight function given by Tversky
and Kahneman [10] is shown as follows:

wk =

{
w+(p(Δzk)) =

p(Δzk)
σ

(p(Δzk)σ+(1−p(Δzk))σ)1/σ

w−(p(Δzk)) =
p(Δzk)

δ

(p(Δzk)δ+(1−p(Δzk))δ)1/δ

, (6)

where wk represents the decision weight, and p(Δzk) denotes the actual proba-
bility of Δzk. The influence degree of overweighting and underweighting to gains
and losses are represented through parameters σ and δ, respectively, and they
satisfy 0 < σ, δ < 1.

Prospect theory holds that people prefer the maximum prospect value [11].
Suppose n denotes the number of outcomes, then, the prospect value function is
shown as follows:

V =
n∑

k=1

wkv(Δzk). (7)
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3 A Normal Fuzzy Prospect Theory-Based Three-Way
Decision Method (NFP3WD)

In this section, we represent the decision information with normal fuzzy numbers
and propose the NFP3WD method.

Since prospect theory seeks the maximum prospect value instead of the min-
imum loss, the losses in 3WD are replaced by outcomes in NFP3WD. The out-
come denotes the final state of wealth for taking different actions in different
states. In NFP3WD, the outcome matrix is described by normal fuzzy numbers,
as shown in Table 2, where Z̃ij = (aij , σ

2
ij) (i = P,B,N ; j = P,N) indicates the

normal fuzzy outcomes incurred for taking action i in state j.

Table 2. Normal fuzzy outcome matrix.

C ¬C

aP Z̃PP = (aPP , σ2
PP ) Z̃PN = (aPN , σ2

PN )

aB Z̃BP = (aBP , σ2
BP ) Z̃BN = (aBN , σ2

BN )

aN Z̃NP = (aNP , σ2
NP ) Z̃NN = (aNN , σ2

NN )

Suppose Z̃r = (ar, σ
2
r) represents the normal fuzzy reference point of the r-th

decision maker, if Z̃ij ≥ Z̃r, the outcome Z̃ij is perceived as a gain. Conversely,
if Z̃ij < Z̃r, it is perceived as a loss. According to Definition 4, the distance
between Z̃ij and Z̃r is represented by dij (i = P,B,N ; j = P,N), which can be
computed as follows:

dij = d(Z̃ij , Z̃r) =

√
(aij − ar)2 +

1
2
(σ2

ij − σ2
r)2, (i = P,B,N ; j = P,N). (8)

Based on prospect theory, individuals tend to risk aversion to gains and risk
chasing toward losses, they tend to be more sensitive to losses compared to
gains, which are described by the value function. With the distance dij between
normal fuzzy outcome and reference point obtained as well as the gains and
losses judged, the value functions ṽij (i = P,B,N ; j = P,N) for taking different
actions in different states are computed based on Eq. (5), shown as follows:

ṽij =

{
(dij)μ, Z̃ij ≥ Z̃r

−θ(dij)υ, Z̃ij < Z̃r

, (9)

where μ, υ and θ are suggested to set μ = υ = 0.88, θ = 2.25 after many
psychological experiments [4]. The value function matrix is shown in Table 3.

In this table, the values ṽPP , ṽBP , and ṽNP represent the value function
associated with actions aP , aB , and aN respectively, when x ∈ C. Similarly, the
values ṽPN , ṽBN , and ṽNN represent the value function associated with actions
aP , aB , and aN respectively, when x /∈ C.
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Table 3. Value function matrix.

C ¬C

aP ṽPP ṽPN

aB ṽBP ṽBN

aN ṽNP ṽNN

Next, in the 3WD theory, the conditional probability Pr(C|x) denotes the
probability of x ∈ C. Pr(C|x) + Pr(¬C|x) = 1. Prospect theory suggests that
the probability should be extended to weight functions for gains and losses. The
two different weight functions: wi(Pr(C|x)) (i = P,B,N) corresponding to gains
and wi(Pr(¬C|x)) (i = P,B,N) corresponding to losses are presented as follows:

wi(Pr(C|x)) =
{

w+
i (Pr(C|x)), Z̃iP ≥ Z̃r

w−
i (Pr(C|x)), Z̃iP < Z̃r

,

wi(Pr(¬C|x)) =
{

w+
i (1 − Pr(C|x)), Z̃iN ≥ Z̃r

w−
i (1 − Pr(C|x)), Z̃iN < Z̃r

.

(10)

In fact, the weight functions are nonlinear transformations of conditional
probabilities. Based on Eq. (6), the detailed calculation of weight function
wi(Pr(C|x)) for Pr(C|x) and wi(Pr(¬C|x)) for Pr(¬C|x) are presented as fol-
lows:

wi(Pr(C|x))=
{

Pr(C|x)σ

((Pr(C|x))σ+(1−Pr(C|x))σ)1/σ , Z̃iP ≥ Z̃r

Pr(C|x)δ

((Pr(C|x))δ+(1−Pr(C|x))δ)1/δ , Z̃iP < Z̃r

, i = P,B,N,

wi(Pr(¬C|x)) =
{

(1−Pr(C|x))σ

((1−Pr(C|x))σ+(Pr(C|x))σ)1/σ , Z̃iN ≥ Z̃r

(1−Pr(C|x))δ

((1−Pr(C|x))δ+(Pr(C|x))δ)1/δ , Z̃iN < Z̃r

, i = P,B,N,

(11)

where the parameters are suggested to set σ = 0.61 and δ = 0.69 by Tversky and
Kahneman [4] and the settings are extensively used in the studies corresponding
to prospect theory.

Subsequently, with value functions and weight functions obtained, based on
Eq. (7), the prospect value Ṽ (ai|x) (i = P,B,N) of taking actions aP , aB , and
aN are calculated as follows:

Ṽ (aP |x) = ṽPP wP (Pr(C|x)) + ṽPNwP (Pr(¬C|x));
Ṽ (aB |x) = ṽBP wB(Pr(C|x)) + ṽBNwB(Pr(¬C|x));
Ṽ (aN |x) = ṽNP wN (Pr(C|x)) + ṽNNwN (Pr(¬C|x)).

(12)
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Then, the decision rules based on the maximum prospect value are shown as
follows:

If Ṽ (aP |x) ≥ Ṽ (aB |x) & Ṽ (aP |x) ≥ Ṽ (aN |x), then x ∈ POS(C);

If Ṽ (aB |x) ≥ Ṽ (aP |x) & Ṽ (aB |x) ≥ Ṽ (aN |x), then x ∈ BND(C);

If Ṽ (aN |x) ≥ Ṽ (aP |x) & Ṽ (aN |x) ≥ Ṽ (aB |x), then x ∈ NEG(C).

(13)

In general, the decision rule of three-way decision is simplified to the compar-
ison of decision thresholds and conditional probability Pr(C|x). Wang et al. [11]
have proved that the decision thresholds α, β and γ exist and are unique in
prospect theory-based three-way decisions. Similarly, the decision thresholds α,
β and γ also exist and are unique in our NFP3WD.

Suppose α, β and γ are the intersections between Ṽ (aP |x) and Ṽ (aB |x),
Ṽ (aB |x) and Ṽ (aN |x), Ṽ (aP |x) and Ṽ (aN |x), respectively. Let Ṽ1 = Ṽ (aP |x)−
Ṽ (aB |x), Ṽ2 = Ṽ (aB |x) − Ṽ (aN |x) and Ṽ3 = Ṽ (aP |x) − Ṽ (aN |x). Then, α, β
and γ are the zero points of Ṽ1, Ṽ2 and Ṽ3, respectively. If α > β, the decision
rules are:

If Pr(C|x) ≥ α, then x ∈ POS(C);
If β < Pr(C|x) < α , then x ∈ BND(C);
If Pr(C|x) ≤ β, then x ∈ NEG(C).

(14)

Otherwise, the decision rules are:

If Pr(C|x) ≥ γ, then x ∈ POS(C);
If Pr(C|x) < γ, then x ∈ NEG(C).

(15)

4 The Normal Fuzzy Ideal Solutions for NFP3WD

For the information system without class label, the TOPSIS method can calcu-
late the conditional probability [6]. However, traditional TOPSIS method does
not consider the psychological risk attitudes. Therefore, we integrated prospect
theory with TOPSIS to design a method to compute conditional probability of
normal fuzzy system without class label.

Suppose IS = (U,AT, V, f) is a normal fuzzy information system without
class label, where U = {o1, o2, · · · , om} represents the universe with m objects,
AT = {g1, g2, · · · , gn} denotes the attribute set of normal fuzzy information
system. Then, the weights of attributes are expressed as ω = {ω1, ω2, · · · , ωn}T ,
where ωq (q = 1, · · · , n) represents the weight of attribute gq and satisfies 0 ≤
ωq ≤ 1,

∑n
q=1 ωq = 1. In our normal fuzzy information system, let Ãpq =

(apq, σ
2
pq) (p = 1, · · · ,m; q = 1, · · · , n.) represents the value of the q-th attribute

of the p-th object. The detailed normal fuzzy information system is shown in
Table 4.

In Table 4, assume that all the attributes in normal fuzzy information system
are positive attributes. To eliminate the dimensional effect of attributes, we
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Table 4. Normal fuzzy information system.

g1 g2 . . . gn

o1 Ã11 = (a11, σ
2
11) Ã12 = (a12, σ

2
12) · · · Ã1n = (a1n, σ2

1n)

o2 Ã21 = (a21, σ
2
21) Ã22 = (a22, σ

2
22) · · · Ã2n = (a2n, σ2

2n)

· · · · · · · · · · · · · · ·
om Ãm1 = (am1, σ

2
m1) Ãm2 = (am2, σ

2
m2) · · · Ãmn = (amn, σ2

mn)

perform the following transformation to standardize the values of the attributes:

ãpq =
apq

max1≤p≤m {apq} , σ̃2
pq =

σ2
pq

max1≤p≤m

{
σ2

pq

} · σ2
pq

apq
. (16)

The standardized attribute value is expressed as B̃pq = (ãpq, σ̃
2
pq). In general,

TOPSIS chooses the maximum attribute value as the positive ideal solution
and the minimum attribute value as the negative ideal solution. In NFP3WD,
we determine the two ideal solutions of each attribute by the mean and vari-
ance of the normal fuzzy number. More specifically, the maximum mean and
the minimum variance of each attribute are selected to constitute the positive
ideal solution B̃+

q . And the minimum mean and the maximum variance of each
attribute are selected to construct the negative ideal solution B̃−

q . Then, the pos-

itive ideal solution is expressed as o+ =
{

B̃+
1 , B̃+

2 , · · · , B̃+
n

}
and the negative

ideal solution is expressed as o− =
{

B̃−
1 , B̃−

2 , · · · , B̃−
n

}
, where

B̃+
q = (ã+

q , σ̃2+
q ), ã+

q = max1≤p≤mãpq, σ̃2+
q = min1≤p≤mσ̃2

pq,

B̃−
q = (ã−

q , σ̃2−
q ), ã−

q = min1≤p≤mãpq, σ̃2−
q = max1≤p≤mσ̃2

pq.
(17)

In the TOPSIS method, with the ideal solutions obtained, the distance
between object op and o+ as well as the distance between op and o− can be
computed. Then, the conditional probability of the object op belonging to C can
be calculated based on the above distances.

Based on Eq. (3), the distance d+pq = d(B̃pq, B̃
+
q ) between B̃pq and B̃+

q , and
the distance d−

pq = d(B̃pq, B̃
−
q ) between B̃pq and B̃−

q are calculated as follows:

d+pq = d(B̃pq, B̃
+
q ) =

√
(ãpq − ã+

q )2 +
1
2
(σ̃2

pq − σ̃2+
q )2,

d−
pq = d(B̃pq, B̃

−
q ) =

√
(ãpq − ã−

q )2 +
1
2
(σ̃2

pq − σ̃2−
q )2.

(18)

However, the distances calculated in TOPSIS do not include the risk atti-
tudes. In prospect theory, value functions are utilized to represent the risk atti-
tudes toward gains and losses. Thus, we utilize the value functions of the original
distances as the new distances between objects and ideal solutions.
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Algorithm 1: Decision process of NFP3WD with normal fuzzy ideal solu-
tion.
Require:

Normal fuzzy outcome matrix in Table 2; The normal fuzzy reference points
Z̃r = (ar, σ2

r) of decision makers;
Parameters value in prospect theory: μ = υ = 0.88, θ = 2.25, σ = 0.61 and δ = 0.69;
Normal fuzzy information system U = (U, AT, V, f) in Table 4;

Ensure:
Decision thresholds α, β and γ of each decision-makers;
Conditional probability Pr(C|op) of each object op being in the state C;
Decision results on each object of every decision maker.

1: Calculate the distance dij between Z̃ij and Z̃r by Eq. (8);
2: Calculate the value functions ṽij (i = P, B, N ; j = P, N) for taking different actions in

different states by Eq. (9);
3: Calculate the weight functions wi(Pr(C|x)) and wi(Pr(¬C|x)) by Eq. (11);
4: Calculate the prospect value Ṽ (ai|x) (i = P, B, N) of taking actions aP , aB and aN by

Eq. (12);
5: Calculate α, β and γ by the zero points of Ṽ1, Ṽ2 and Ṽ3.
6: Standardize the normal fuzzy values Ãpq = (apq , σ2

pq) in Table 4 as B̃pq = (ãpq, σ̃2
pq) by

Eq. (16);
7: Determine the two ideal solutions o+, o− and see them as positive reference points and

negative reference points, respectively.
8: Calculate the distance d+pq = d(B̃pq , B̃+

q ) between B̃pq and B̃+
q , and the distance

d−pq = d(B̃pq , B̃−
q ) between B̃pq and B̃−

q by Eq. (18);
9: Calculate the value functions of d+pq and d−pq by Eq. (19);
10: Calculate the new distance between object op and o+, and the new distance between

object op and o− by Eq. (20);
11: Obtain the conditional probability of objects in normal fuzzy information system

according to the relative closeness by Eq. (21);
12: Obtain the decision results based on by Eq. (14) and Eq. (15).

According to prospect theory, let o+ =
{

B̃+
1 , B̃+

2 , · · · , B̃+
n

}
be the positive

reference point of decision maker and o− =
{

B̃−
1 , B̃−

2 , · · · , B̃−
n

}
be the negative

reference point of decision maker. For attribute gq, let B̃+
q and B̃−

q be the positive
reference point and negative reference point, respectively. Compared to B̃+

q , gq

represents a loss, and people will show risk chasing toward it conversely, gq

represents a gain in contrast to B̃−
q , and people will show risk averse toward it.

Then, the value functions of original distance d+pq and d−
pq are calculated to

represent the new distances that take into account decision-maker’s risk atti-
tude. Because all attributes in our normal fuzzy information system are positive
attributes, we know that all B̃pq ≤ B̃+

q and all B̃pq ≥ B̃−
q . Thus, the value

functions are computed as follows:

ṽ+
pq = −θ(d+pq)

υ, ṽ−
pq = (d−

pq)
μ, (19)

where ṽ+
pq denotes the value function of d+pq, and ṽ+

pq ≤ 0; ṽ−
pq denotes the value

function of d−
pq, and ṽ−

pq ≥ 0.
Since each attribute in our information system has different weights, the new

distance between object op and o+, as well as the new distance between object
op and o− are calculated as follows:
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ṽ+
p =

n∑
q=1

ωq ṽ
+
pq, ṽ−

p =
n∑

q=1

ωq ṽ
−
pq, (20)

where ṽ+
p denotes the new distance between object op and the positive ideal

solution o+; ṽ−
p denotes the new distance between op and the negative ideal

solution o−.
Since the relative closeness of op to o+ is a good reflection of the conditional

probability [1,6]. Thus, we compute the conditional probability by relative close-
ness as follows:

Pr(C|op) = RC(op) =
ṽ−

p∣∣ṽ+
p

∣∣ + ṽ−
p

. (21)

The whole decision process of NFP3WD with normal fuzzy ideal solution is
shown in Fig. 1. Algorithm 1 describes the pseudocode of our proposed methods.
In Algorithm 1, the decision thresholds are calculated through steps 1 to 5,
conditional probability is calculated through steps 6 to 11, and step 12 obtains
the decision results.

Fig. 1. Decision procedure of NFP3WD with normal fuzzy ideal solution.
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5 Illustrative Example

In this section, we apply our proposed methods to make decisions about invest-
ment projects.

5.1 Background Description

There are six investment projects represented as U = {o1, o2, o3, o4, o5, o6}.
These investment projects have four attributes represented as AT = {g1, g2, g3,
g4}, denote the “Safety”, “Efficiency” , “Marketing environment” and “Team capa-
bility” of investment projects. All four attributes are positive and their weights
are ω = {0.1, 0.4, 0.2, 0.3 }T . The attribute values are described by normal fuzzy
numbers, the normal fuzzy information system of the six investment projects is
shown in Table 5.

Table 5. Normal fuzzy information system.

Safety Efficiency Marketing environment Team capability

o1 (15, 9) (17, 13) (36, 30) (45, 31)

o2 (16, 7) (22, 11) (43, 24) (52, 31)

o3 (16, 8) (23, 12) (46, 25) (54, 30)

o4 (14, 9) (26, 12) (38, 24) (45, 30)

o5 (13, 8) (22, 11) (38, 22) (44, 35)

o6 (10, 17) (18, 22) (27, 30) (32, 31)

The normal fuzzy outcome matrix of investment projects is shown in Table 6.
There are 10 investors denoted as E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}. Each
investor has different expectations for the outcome of an investment project,
which can be denoted by reference points. The normal fuzzy reference points for
10 investors are shown in Table 7.

Table 6. Normal fuzzy outcome matrix.

C ¬C

aP Z̃PP = (12, 7) Z̃PN = (5, 12)

aB Z̃BP = (9, 8) Z̃BN = (8, 9)

aN Z̃NP = (6, 10) Z̃NN = (11, 6)

Table 7. Normal fuzzy reference points.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

Z̃r (4, 13) (4, 12) (6, 11) (6, 10) (8, 9) (8, 8) (10, 7) (10, 6) (12, 5) (12, 4)
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In this example, we need to give the actions that each investor should take
for each project. Investors are usually bounded-rational when making decisions.
Therefore, the above decision-making problem can be solved using our NFP3WD
method and normal fuzzy ideal solution method.

5.2 Decision Processes and Decision Results

Based on steps 1 to 5 in Algorithm 1, the decision thresholds are obtained as
shown in Table 8.

Table 8. Decision thresholds of NFP3WD.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

α 0.6370 0.6154 0.7929 0.8153 0.8479 0.8156 0.6206 0.5360 0.6296 0.6746
β 0.5354 0.5204 0.5512 0.4776 0.2769 0.3861 0.5153 0.5740 0.5662 0.5628
γ 0.5865 0.5674 0.7029 0.6948 0.5984 0.5945 0.5651 0.5557 0.5953 0.6136

Fig. 2. Decision thresholds of NFP3WD

The figure depicted in Fig. 2 illustrates the changes in decision thresholds as
the reference points undergo variation, the reference point of investor increase
from e1 to e10. By Fig. 2, it can be observed that variations in reference points
significantly affect α and β, but have little impact on γ. As the reference point
increases, α initially increases and then decreases, while β initially decreases and
then increases. On the other hand, γ remains relatively stable throughout the
variations in reference points.

Then, conditional probabilities of six investment projects are calculated
according to steps 6 to 11 in Algorithm 1, as shown in Table 9.

The decision results by step 12 of Algorithm 1 are presented in Table 10.
Through Table 10, the decision results will change with the variation of normal
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Table 9. Conditional probabilities of projects.

o1 o2 o3 o4 o5 o6

Pr(C|op) 0.4008 0.7192 0.8082 0.6785 0.5186 0.0139

fuzzy reference point Z̃r = (ar, σ
2
r). In addition, with the increase of normal

fuzzy reference points, BND(C) becomes larger first and then gets smaller,
while POS(C) and NEG(C) are on the contrary. This variation trend is the
same as in the P3WD method [11].

Table 10. Decision results of investment projects.

POS(C) BND(C) NEG(C)

e1 (4, 13) {o2, o3, o4} ∅ {o1, o5, o6}
e2 (4, 12) {o2, o3, o4} ∅ {o1, o5, o6}
e3 (6, 11) {o3} {o2, o4} {o1, o5, o6}
e4 (6, 10) ∅ {o2, o3, o4, o5} {o1, o6}
e5 (8, 9) ∅ {o1, o2, o3, o4, o5} {o6}
e6 (8, 8) ∅ {o1, o2, o3, o4, o5} {o6}
e7 (10, 7) {o2, o3, o4} {o5} {o1, o6}
e8 (10, 6) {o2, o3, o4} ∅ {o1, o5, o6}
e9 (12, 5) {o2, o3, o4} ∅ {o1, o5, o6}
e10 (12, 4) {o2, o3, o4} ∅ {o1, o5, o6}

5.3 Comparative Analysis

We compare our NFP3WD method with traditional 3WD model [17] and P3WD
model [11] by calculating the decision thresholds of investment projects in Sect. 5
using these three methods. The traditional 3WD model [17] makes decisions
based on minimum loss, and the loss matrix is represented by crisp numbers.
P3WD model [11] incorporates decision-makers risk attitudes using prospect
theory, but its outcome matrix is still represented by crisp numbers rather than
fuzzy numbers. The calculated decision thresholds of the three methods are
shown in Fig. 3.

From Fig. 3, we find that the decision threshold does not change within the
ten investors in traditional 3WD model. In the P3WD model, when decision-
makers have the same expectation ar in reference points, the corresponding
values of decision thresholds do not change with the change of σ2

r in the reference
points. While in our NFP3WD method, the decision threshold changes with
both the variations of ar and σ2

r in normal fuzzy reference points. These results
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Fig. 3. Decision thresholds of three models.

indicate that our NFP3WD method performs better on considering decision-
makers’ uncertain preferences.

In addition, our NFP3WD method can handle the continuous uncertain deci-
sion information with normal distribution. More, our normal fuzzy ideal solu-
tion method combined TOPSIS and prospect theory, which takes into account
decision-makers’ risk attitudes. The comparison of our proposed method with
other methods is shown in Table 11.

Table 11. The comparative analysis with other methods.

P3WD [11] Method in [12] Method in [3] Ours

Maximum-prospect value � � � �
Continuous uncertain data � �
Distribution of uncertainty �
Ideal solution � �
Risk attitudes in Pr(X|[x]) �

6 Conclusion

In this paper, we present a normal fuzzy prospect theory-based three-way deci-
sion method, in which we utilize normal fuzzy numbers subjected to normal dis-
tribution to represent the continuous uncertain decision information. The other
is that we design a normal fuzzy ideal solution method to estimate conditional
probability in normal fuzzy information system without class label, which con-
siders the risk attitudes of decision-makers. In the end, an illustrative example
and comparative analysis verify the effectiveness and superiority of our proposed
methods.



Normal Fuzzy Three-Way Decision Based on Prospect Theory 477

Acknowledgements. This work was supported by the Natural Science Foundation of
Sichuan Province (No. 2022NSFSC0528), the Sichuan Science and Technology Program
(No. 2022ZYD0113), Jiaozi Institute of Fintech Innovation, Southwestern University
of Finance and Economics (Nos. kjcgzh20230103, kjcgzh20230201), the Fundamental
Research Funds for the Central Universities (No. JBK2307055).

References

1. Gao, Y., Li, D.S., Zhong, H.: A novel target threat assessment method based
on three-way decisions under intuitionistic fuzzy multi-attribute decision making
environment. Eng. Appl. Artif. Intell. 87, 103276 (2020)

2. Gu, C.-L., Wang, W., Wei, H.-Y.: Regression analysis model based on normal fuzzy
numbers. In: Fan, T.-H., Chen, S.-L., Wang, S.-M., Li, Y.-M. (eds.) Quantitative
Logic and Soft Computing 2016. AISC, vol. 510, pp. 487–504. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-46206-6_46

3. Gu, J., Wang, Z., Xu, Z., Chen, X.: A decision-making framework based on the
prospect theory under an intuitionistic fuzzy environment. Technol. Econ. Dev.
Econ. 24(6), 2374–2396 (2018)

4. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk.
Econometrica 47(2), 363–391 (1979)

5. Li, A.G., Zhang, Z.H., Meng, Y.: Fuzzy Mathematics and Its Application. Metal-
lurgical Industry Press, Dongcheng (2005)

6. Liang, D.C., Xu, Z.S., Liu, D., Wu, Y.: Method for three-way decisions using ideal
TOPSIS solutions at Pythagorean fuzzy information. Inf. Sci. 435, 282–295 (2018)

7. Peng, Z.Z., Sun, Y.Y.: The Fuzzy Mathematics and Its Application. Wuhan Uni-
versity Press, Wuhan (2007)

8. Sang, G., Wu, T.: Normal fuzzy number multi-attribute decision making model
and its application. J. Shanxi Univ. (Nat. Sci. Ed.) 36(1), 34–39 (2013)

9. Tian, X.L., Xu, Z.S., Gu, J., Herrera-Viedma, E.: How to select a promising enter-
prise for venture capitalists with prospect theory under intuitionistic fuzzy circum-
stance? Appl. Soft Comput. 67, 756–763 (2018)

10. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representa-
tion of uncertainty. J. Risk Uncertain. 5(4), 297–323 (1992)

11. Wang, T.X., Li, H.X., Zhou, X.Z., Huang, B., Zhu, H.B.: A prospect theory-based
three-way decision model. Knowl.-Based Syst. 203, 106129 (2020)

12. Wang, T.X., Li, H.X., Zhou, X.Z., Liu, D., Huang, B.: Three-way decision based
on third-generation prospect theory with z-numbers. Inf. Sci. 569, 13–38 (2021)

13. Yang, M.S., Ko, C.H.: On a class of fuzzy c-numbers clustering procedures for fuzzy
data. Fuzzy Sets Syst. 84(1), 49–60 (1996)

14. Yang, X.P., Yao, J.T.: Modelling multi-agent three-way decisions with decision-
theoretic rough sets. Fund. Inform. 115(2–3), 157–171 (2012)

15. Yang, X., Li, Y.H., Li, T.R.: A review of sequential three-way decision and multi-
granularity learning. Int. J. Approx. Reason. 152, 414–433 (2022)

16. Yang, Z.L., Chang, J.P.: Interval-valued Pythagorean normal fuzzy information
aggregation operators for multi-attribute decision making. IEEE Access 8, 51295–
51314 (2020)

17. Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Inf. Sci. 180(3), 341–
353 (2010)

18. Yao, Y.Y.: The superiority of three-way decisions in probabilistic rough set models.
Inf. Sci. 181(6), 1080–1096 (2011)

https://doi.org/10.1007/978-3-319-46206-6_46


478 Y. Li et al.

19. Yao, Y.Y.: Interval sets and three-way concept analysis in incomplete contexts.
Int. J. Mach. Learn. Cybernet. 8(1), 3–20 (2017)

20. Zhan, J.M., Wang, J.J., Ding, W.P., Yao, Y.Y.: Three-way behavioral deci-
sion making with hesitant fuzzy information systems: survey and challenges.
IEEE/CAA J. Automatica Sinica (2022)

21. Zhang, S.C.: Cost-sensitive classification with respect to waiting cost. Knowl.-
Based Syst. 23(5), 369–378 (2010)

22. Zhong, Y., Li, Y., Yang, Y., Li, T., Jia, Y.: An improved three-way decision model
based on prospect theory. Int. J. Approx. Reason. 142, 109–129 (2022)

23. Zhou, B., Yao, Y., Luo, J.: A three-way decision approach to email spam filtering.
In: Farzindar, A., Kešelj, V. (eds.) AI 2010. LNCS (LNAI), vol. 6085, pp. 28–39.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13059-5_6

https://doi.org/10.1007/978-3-642-13059-5_6

	Normal Fuzzy Three-Way Decision Based on Prospect Theory
	1 Introduction
	2 Preliminaries
	2.1 Normal Fuzzy Numbers
	2.2 Three-Way Decision
	2.3 Prospect Theory

	3 A Normal Fuzzy Prospect Theory-Based Three-Way Decision Method (NFP3WD)
	4 The Normal Fuzzy Ideal Solutions for NFP3WD
	5 Illustrative Example
	5.1 Background Description
	5.2 Decision Processes and Decision Results
	5.3 Comparative Analysis

	6 Conclusion
	References


