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Preface

This volume contains the papers selected for presentation at IJCRS 2023, the 2023
International Joint Conference on Rough Sets, held at AGH University of Kraków on
October 5–8, 2023, in Kraków, Poland. Conferences in the IJCRS series, resulting from
the merger of four separate conferences tying rough sets to various paradigms (RSCTC,
data analysis; RSFDGrC, granular computing; RSKT, knowledge technology; and
RSEISP, intelligent systems), are held annually: the first Joint Rough Set Symposium
was held in Toronto, Canada, in 2007; followed by Symposiums in Chengdu, China in
2012; Halifax, Canada, 2013; Granada and Madrid, Spain, 2014; Tianjin, China, 2015,
where the acronym IJCRS was proposed; continuing with the IJCRS 2016 conference
in Santiago, Chile, IJCRS 2017 in Olsztyn, Poland, IJCRS 2018 in Quy Nhon, Viet-
nam, IJCRS 2019 in Debrecen, Hungary, IJCRS 2020 in La Habana, Cuba (held
online), IJCRS 2021 in Bratislava, Slovakia (hybrid), and IJCRS 2022 in Suzhou,
China (hybrid).

Following the success of the previous conferences, IJCRS 2023 continued the tra-
dition of a very rigorous reviewing process. The 43 papers included in these pro-
ceedings were selected from 83 submissions. Every submission was reviewed by at
least two Program Committee Members and domain experts. Additional expert reviews
were sought when necessary. On average, each submission received three reviews. As a
result, only top-quality papers were chosen for presentation at the conference. Final
camera-ready submissions were further reviewed by Program Comittee Chairs and
Conference Chairs. Some authors were requested to make additional revisions. We
would like to thank all the authors for contributing their papers. Without their con-
tribution, this conference would not have been possible.

The IJCRS 2023 program was further enriched by eight Keynote Speeches, among
them the one presented by Tsau Young Lin, the Founding President of the International
Rough Set Society (IRSS), and the Anniversary Talk by Andrzej Skowron, IRSS
Fellow and former President, who celebrated his 80th birthday during the conference.
We are grateful to our Keynote Speakers, Weronika Adrian, Joel Holland, Andrzej
Janusz, Tianrui Li, Tsau Young Lin, Pradipta Maji, Sheela Ramanna, and Andrzej
Skowron. The IJCRS 2023 program also hosted Special Sessions on “Innovative
Foundational Models for Rough Sets, Approximate Reasoning, and Granular Com-
puting” and “Data Analytics in Cybersecurity and IoT Applications”, as well as a Panel
on “Intelligent Informatics”. We are grateful to the Special Session Organizers Stefania
Boffa, A. Mani, Marcin Michalak, and Piotr Synak, to the Panelists Jimmy Huang,
Duoqian Miao, and Hung Son Nguyen, as well as to the Panel Moderator Pawan
Lingras.

We are also grateful to Springer for sponsoring the Best Student Paper Award: the
IJCRS 2023 Program Committee Chairs and Conference Chairs assigned the Award to
the article titled “Multi-granularity Feature Fusion for Transformer-Based Single
Object Tracking”, authored by Ziye Wang and Duoqian Miao. The Award was



assigned based on a competitive process, taking into account both scientific excellence
and clarity of presentation, and was awarded during the Open Meeting of the Inter-
national Rough Set Society.

IJCRS 2023 would not have been successful without the support of many people
and organizations. We are indebted to the Program Committee Members and external
reviewers for their effort and engagement in providing a rich and rigorous scientific
program. We greatly appreciate the co-operation, support, and sponsorship of various
institutions, companies, and organizations, including the AGH University of Kraków,
the Strategic Partners QED Software and DeepSeas, Honorary Patronage of the Polish
Ministry of Science and Higher Education and of the Mayor of Kraków, as well as the
International Rough Set Society. We acknowledge the use of the Springer EquinOCS
conference system for paper submission and review. We are also grateful to Springer
for publishing the proceedings as a volume of LNCS/LNAI.

Last but not least, we would like to thank Anna Smyk, Tomasz Hachaj, and the
whole technical organization team at the AGH University of Kraków, for their great
support and endless hours spent on the conference preparations.

November 2023 Andrea Campagner
Oliver Urs Lenz

Shuyin Xia
Dominik Ślęzak
Jarosław Wąs
JingTao Yao
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Rough Sets in Interactive Granular
Computing: Toward Foundations

for Intelligent Systems Interacting with Human
Experts and Complex Phenomena

Andrzej Skowron1,2 and Dominik Ślęzak2,3,4

1 Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6,
01-447, Warsaw, Poland

skowron@mimuw.edu.pl
2 QED Software Sp. z o.o., ul. Miedziana 3A m. 18, 00-814, Warsaw, Poland

3 Institute of Informatics, University of Warsaw, ul. Banacha 2, 02-097,
Warsaw, Poland

4 DeepSeas Inc., 12121 Scripps Summit Drive Suite #320, San Diego, CA,
92131, USA

Abstract. We present the current research on the Interactive Granular Com-
puting (IGrC) model and its relationships with the human-computer interaction
processes. The existing rough set approaches to approximation of concepts
grounded on (partial) containment of sets are extended, for the purposes of
Intelligent Systems (IS’s) interacting with human experts and complex phe-
nomena, to approximations based on compound reasoning aiming to generate
the right decisions about perceived situations in the real world. This paper is a
step toward developing the foundations of such IS’s. The decisions of IS’s are
constructed along the reasoning performed by complex granules (c-granules)
which are responsible for creating interfaces between informational layers and
physical layers of IS’s, often synchronized or learnt from the reasoning per-
formed by humans. Depending on applications, the decisions may take different
forms, e.g.: compound decisions represented by the collections of decisions
made in a given period of time, specifications of compound structural physical
objects satisfying the wanted properties, (parameterized) learning algorithms
generating high quality classifiers from samples of objects, pipelines of com-
putations preserving some given constraints, etc. Both the construction of
compound decisions and reasoning are performed over information perceived by
means of c-granules used by IS’s as interfaces for interactions with the physical
world. Such interactions of c-granules are realized by the control layer (control,
in short) of these granules. The discussed approximation of complex concepts in
the context of IGrC is of fundamental importance for developing foundations of
IS’s aiming to solve complex problems.

Keywords. Interactions � (Interactive) Granular computing � Perception �
Reasoning (Judgment) � Complex granule � Informational layer � Physical layer �

Research co-funded by Polish National Centre for Research and Development (NCBiR) grant no.
POIR.01.01.01-1070/21-00.
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Informational granule � Network of c-granules � Control of c-granule � Rule
module � Implementational module � (Inference) Reasoning module � Decom-
position module � Rough sets in IGrC

1 Introduction

The IGrC model originated as an attempt in searching for the relevant computing model
for different domains such as Cyber Physical Systems, Internet of Things, Wisdom
Web, Society 5.0, Modeling of Complex Adaptive Systems, Natural Computing,
Multiscale Modeling or Self-Organization. In this paper, we present some new results
on the research reported in [42] and related to IGrC (see also [9, 10, 18, 41, 43], the
papers on IGrC1, as well as keynote and plenary talks at: IPMU 2022 (title: Perceptual
Rough Set Approach in Interactive Granular Computing), FedCSIS 2022 (title: Rough
Sets Turn 40: From Information Systems to Intelligent Systems), IEEE IS 2022 (title:
Rough sets turn 40: What next?), and OLAB 2022 (title: Decision Support in Problem
Solving by Intelligent Systems Based on Interactive Granular Computing)).

One of fundamental aspects of IGrC is the structure of the control layer (control, in
short) of complex granules (c-granules). We will discuss its components such as the
implementational module and the (inference) reasoning module. We will also discuss
the role of reasoning performed by the control over computations composed out of
networks of c-granules and generation of compound decisions along the reasoning
pipelines. Finally, we will outline the rough set approach within IGrC and emphasize
the role of reasoning while constructing approximations of concepts by c-granules.

One more motivation for introducing the IGrC model was to establish a new
computing framework for Intelligent Systems (IS’s) that deal with complex phenomena
in many different areas such as multi-agent systems, robotics, cognitive science,
machine learning, computational intelligence, swarm intelligence, and complex
(adaptive) systems [3, 12, 13, 15, 16, 23, 24, 38, 39, 49]. Accordingly, we present some
ideas for developing the IGrC model as the basis for IS’s that would be able to interact
with complex phenomena and human experts. In our discussions, we refer to some
relevant opinions of the Turing Award winners – Frederick Brooks [5] and Leslie
Valiant2:

A fundamental question for artificial intelligence is to characterize the computational building
blocks [complex granules] that are necessary for cognition.

One should also note the current discussion about necessity of modifying the Turing
test to put in sync the issues of language and reasoning, as well as perception and action
[28, 46]. Accordingly, the computing model we are searching for cannot be based on
abstract granules only as it is done in Granular Computing (GrC) (see, e.g., [21, 36,
37]) because dealing with perception requires interactions with physical objects too.
Hence, in IGrC, so-called informational granules (ic-granules) are used to link abstract

1 see, e.g., https://dblp.org/pid/s/AndrzejSkowron.html.
2 http://people.seas.harvard.edu/*valiant/researchinterests.htm.
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and physical objects. We discuss how networks of such ic-granules are generated and
changed by the control of c-granules during perceiving real world situations.

Moreover, the drawbacks of classical mathematical modeling in the case of com-
plex phenomena (pointed out e.g., by Brooks) impose the requirements on the control
to be in continuous interaction with the physical world to be ready for perceiving the
important changes in this world and adapt the behavior of c-granule to the observed
changes (see Fig. 1). The physical world includes also human users of IS’s and human
experts who attempt to help IS’s, often being a kind of “interface” between the system
and the complex physical phenomena. One of the aspects of such cooperation between
humans and IS’s is in the area of data governance and data quality, e.g., following the
ideas of interactive data labeling and active learning [19].

The meta-equation presented in Eq. 1 characterizes the IGrC model. Let us
emphasize that this model is not closed within the abstract space, contrary to the
Granular Computing (GrC) model.

IGrC ¼ GrC þ INTERACTION OF PHYSICAL OBJECTS

þ PERCEPTION

þ REASONING (JUDGMENT)

ð1Þ

For the IGrC model networks of ic-granules [42] are of special importance. They are
used by the control of c-granules for perceiving the properties of physical objects and
their interactions. For a given moment of local time of c-granule, the network of
ic-granules represents, in its informational layer, information about the currently
perceived situation. The information is distributed between different currently used by
c-granule specifications of spatio-temporal windows (addresses). Using these specifi-
cations, the control of c-granule is creating links (physical pointers) to the physical
objects (parts of the physical space) corresponding to these specifications in the
physical space. Any such specification w of spatio-temporal window describes a region

ENV

Fig. 1. Hierarchical construction of complex granules (c-granules) in continuous interaction with the
physical world/environment.
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kwk in <3 of the physical space where is included the object ow pointed out by
w. Changes of networks of ic-granules are defined by rules of the control. If the
currently perceived situation is matching the left hand side of a given rule then it is
pointed out the decision from the right hand side of the rule that has a form of
specification of transformation of the current network. It should be noted that reasoning
making it possible to resolve conflicts [29, 48] between different rules matching a given
situation should be used.

We distinguish two main kinds of transformations of networks of ic-granules:

(i) transformations aiming at enriching understanding of the currently perceived situ-
ation in the physical world with the use of transformations which in this case can be
treated as a kind of measurement of properties of physical objects or inference rules
as well as aggregation of already perceived information through some other win-
dows and

(ii) transformations generating new decisions on the basis of the perceived history of
networks, e.g., by aggregating already made decisions (e.g., being constructions of
objects) into more compound ones toward receiving the trajectory of granular
computation over networks (of ic-granules) satisfying the given requirements.

In this way, along the reasoning process, there is realized the construction process
of compound decisions. They may be simple lists of decisions already performed in a
given period of time (plans [39]) or they can be in the form of compound structural
objects such as learning algorithms or specifications of compound physical objects such
as a new medicine, compound sensors or actuators. One may assume that the control
has at its disposal knowledge data bases for storing reasoning tools and tools for
generation of new decisions. It is worth mentioning that usually the control is making
decisions concerning selection of the right transformations of networks on the basis of
compressed information representing the relevant information in the current networks
rather than on the basis of the whole information represented in the network. This is
due to the high computational complexity of reasoning based on the whole networks.

An important problem refers to structural modeling of networks of ic-granules.
These networks may have hierarchical and nested structures and are compound
dynamical objects. In particular, the scope of such networks (understood as a speci-
fication of an area in the physical space on the basis of which their behavior is modeled
or discovered) should be robust (up to satisfactory degree) to often unexpected inter-
actions with the environment and the control should be aware when unexpected
changes are becoming much higher than the expected ones (see Fig. 2).

Finally, we outline the rough set approach [31, 33, 34] grounded in the IGrC model.
In particular, approximations of concepts based on reasoning over networks of ic-
granules are far more general than the traditionally used approximations based on set
containment only [30, 31, 33, 34]. From the point of view of rough sets, the novelty
of the proposed approach is in application of the IGrC model as the basis for the design
of interfaces between the abstract informational world and the physical perceived
world. This is realized in IGrC by c-granules. These c-granules are making it possible
to continuously update information about the currently perceived situation in the
physical world what leads to better understanding the perceived situation in the
physical world. The new perceived information is granulated and aggregated with the
information stored so far in informational layers leading to discovery of the relevant

xviii A. Skowron and D. Ślęzak



ic-granules and their networks which can be treated as computational building blocks
for cognition; in the case of the rough set approach these blocks are interpreted as the
relevant patterns for approximation of (complex and vague) concepts. An immediate
consequence from the above considerations is that rough sets should turn into adaptive
rough sets and should be supported by methods of reasoning related to data governance
supporting answering queries concerningWhen, How, What, Where new data should be
perceived. In the paper we also demonstrate that new reasoning methods controlling
computations over networks of ic-granules are crucial in searching for approximations
of complex vague concepts related to complex phenomena in the physical world.

The rest of the paper is organized as follows. In Sect. 2 some motivations for
developing new computing model are discussed. Issues related to structures of net-
works of ic-granules are discussed in Sect. 3. Different issues of reasoning over net-
works of ic-granules and generation along the reasoning processes of decisions are
included in Sect. 4. The outline of the rough set based approach to approximation of
concepts in the framework of IGrC is discussed in Sect. 5. Finally, we present con-
clusions and some remarks about the future research road map.

2 Motivations – Some Comments

In the cited before references about IGrC there are widely discussed issues related to
motivation for developing the IGrC model. Here, we would like to recall some of them
especially important for our considerations. These are mentioned in Sect. 1 opinions
which we now present in more detail.

The first one is the opinion of Frederick Brooks [5], the Turing award winner who
on the basis of his experience with large projects in software engineering has written:

Mathematics and the physical sciences made great strides for three centuries by constructing
simplified models of complex phenomena, deriving, properties from the models, and verifying
those properties experimentally. This worked because the complexities ignored in the models
were not the essential properties of the phenomena. It does not work when the complexities are
the essence.

This opinion is very important for IS’s interacting with complex phenomena. It
suggests that we do not have modeling tools for modeling IS’s systems based on
classical mathematical modeling only. Models developed on the current information
about the perceived situations cannot be closed in the abstract space only. IS’s inter-
acting with complex phenomena should be in continuous interaction with the real
world to be ready for adaptation of the currently used models. This is illustrated in
Fig. 1 where hierarchical learning is illustrated with interactions of each hierarchical
level with the physical environment. On each level, the discovery process of compu-
tation building blocks for cognition (granules) is running concerning the relevant
relational structures as well as the relevant language of features as well as the satisfi-
ability relation (contrary to mathematical logic where these entities are assumed to be
given!).
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The next opinion important for our consideration concerns the current discussion
on Turing test [28]:

The Turing test, as originally conceived, focused on language and reasoning; problems of
perception and action were conspicuously absent. The proposed tests will provide an oppor-
tunity to bring four important areas of AI research (language, reasoning, perception, and
action) back into sync after each has regrettably diverged into a fairly independent area of
research.

From this opinion it follows that the right computing model for IS’s cannot be
closed in the abstract (mathematical) space only because for dealing with perception it
is not possible to avoid issues related to dealing with physical objects, in particular
interaction with these physical objects. Hence, ic-granules in IGrC were introduced
linking abstract and physical objects. One should also note that the issues related to
understanding the concept of interaction is central for IS’s dealing with complex
phenomena [27]:

[. . .] interaction is a critical issue in the understanding of complex systems of any sorts: as
such, it has emerged in several well-established scientific areas other than computer science,
like biology, physics, social and organizational sciences.

3 Networks of Ic-Granules

Let us start from the basic postulates for IGrC. We assume:

– Physical objects exist in the physical space and are embedded into its parts. This is
related to [14].

– Physical objects are interacting in the physical space, and thus some collections of
physical objects may create dynamical systems in the physical space.

– Some properties of physical objects or their configurations as well as their inter-
actions can be perceived by c-granules.

There are several issues related to these postulates. These issues are related to such
queries as (see Fig. 2):

– How to perceive properties of these objects and their interactions ? (Where, how,
when to do this).

– How to generate the relevant configurations of physical objects and modify inter-
actions between them?

– How to ensure that the perceived properties should be robust (to a high degree) with
respect to unpredictable interactions from the environment? (see [16])

We also use some postulates related to c-granules and ic-granules such as:

– the control of c-granule can
• access some physical objects directly (these objects are directly accessible);
• encode some information into some directly accessible physical objects;
• decode some properties of directly accessible physical objects into its infor-

mational layer inf layerðgÞ;
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– any ic-granule g has its informational layer inf layerðgÞ and physical layer
ph layerðgÞ:
• informational layer inf layerðgÞ consists of specifications of spatio-temporal

windows w labeled by specifications tr of transformations assigned to them by
the control, as well as already perceived information inf related to realization
of these transformations;

• physical layer ph layerðgÞ of ic-granule g consists of physical objects pointed
out by specifications of spatio-temporal windows from informational layer;

– any ic-granule in the current network of ic-granules has a distinguished scope being
a specific spatio-temporal window; the scope of c-granule (at a given moment of
time) is a union of scopes of all ic-granules of the network (at this moment of time);

– all physical objects pointed out by specifications of transformations labeling spatio-
temporal windows included in the scope of a given ic-granule create three collec-
tions of physical objects: soft suit consist of objects which are directly accessible
by the control, hard suit consists of target objects for the considered ic-granule and
link suit with objects responsible for transmission of interactions between soft suit
and hard suit;

– the scopes of ic-granules in the current network of c-granule are defined by the
control in such a way that the behavior of network is robust to interactions with the
environment (up to satisfactory degree), i.e., behavioral invariants of the network
required by the control are preserved under changes caused by these interactions, if
only they are below a given threshold;

– the control of c-granule can use its domain knowledge, physical laws (represented
by some information granules) and already perceived information represented in
informational layer to infer some properties of physical objects from the scope of

How to generate the 
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physical objects and
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physical 
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Fig. 2. Queries about a network of physical objects.
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this c-granule; hence, computations realized by c-granules are dependent on
physical laws and domain knowledge as it is currently required for unconventional
computing models (see, e.g., [7]).

Below we include some additional comments which can help the reader to
understand the role of the control of c-granule and networks of ic-granules.

The control of c-granule is able to control construction of the relevant configura-
tions of physical objects and perceive some properties of these configurations creating
dynamical systems.

The control of a given c-granule defines a specification of a spatio-temporal win-
dow, called the scope of transformation, describing a part of the physical space where
the transformation should be implemented. Any such specification concerns changes
which should be performed in the current network of ic-granules. In particular, this
specification of transformation is expressing that some ic-granules should be elimi-
nated, some of them should be suspended, some new ic-granules should be created, and
the remaining are continuing gathering information perceiving by interaction with the
physical world. As a part of the transformation specification is provided a specification
of expected results of its implementation in the physical world such as the range of the
expected results or a period in which it is expected that the results will be generated.

The specifications are sent by the control to its implementational module (IM) (see
Fig. 3). If it is possible for IM to directly implement the specification in the physical
world then ML is realizing this, otherwise ML requires from the control to decompose
the specification up to the level when it will be possible to realize the specification
directly in the physical space. In this way, ML is responsible for realization of so called
physical semantics. In Fig. 3 the result of decomposition is illustrated as a linear plan.
However, in general it can have a much more compound structure, e.g., by taking into
account issues of aggregation of partial results during decomposition. The reader can
find more details on decomposition in [42].

IMspecification of 
transformation

results of 
implementation

requirement of 
decomposition

...

...
1ac kac:plan

…    

...
1ac kac

Fig. 3. Implementational module (IM).

xxii A. Skowron and D. Ślęzak



Decomposition is producing a family of specifications of spatio-temporal windows
and specifications of transformations required in parts of the physical space corre-
sponding to these specifications. One should note that information labeling a window
may be obtained by aggregation of information labeling other windows included in this
window. Information labeling windows in a given network is updated by interaction
with the physical space or as a result of reasoning with the use of domain knowledge
bases or physical laws being at the disposal by the control.

The control may fix some initial conditions for interactions of perceived physical
objects by encoding the relevant information into directly accessible physical objects.

Information perceived or inferred by the control related to a given spatio-temporal
window is labeling this window. As it was mentioned, together with specifications are
also given expected results of their realization. The expected results are compared by
the control with the real ones obtained during implementation in the relevant periods of
time. The results of such comparisons are used by reasoning module of the control of c-
granule in the process of selection of the right transformation for realization by the
control preceded by adaptation of the current set of rules, if necessary.

The control of c-granule transforms the current network of ic-granules into the new
one by selecting the relevant rules from a given set of rules stored in the module of
inference. Any rule is of the form a ¼) tr : b where a is a condition defined over
information encoded in the informational layer of the network, tr is a specification of
network transformation, and b describes expected results after realization of tr in the
physical world. If a is satisfied by information from the current network then tr is a
candidate for realization by IM. The module IM is resolving conflicts between such
candidates to select the network transformation to be realized in the current situation.

It should be noted that in general ic-granules in the networks may have their own
control. For simplicity of reasoning, in this paper we consider networks in which ic-
granules (generated by the control of a given c-granule) have an empty control. The
basic concepts related to c-granules and ic-granules are summarized in Table 1 and
Table 2, and illustrated in Fig. 4 and Fig. 5. In general, the structure of the control may
be much compound and contain many other modules (see Fig. 7).

Network of ic-granules (or ic-granule) contains a family of physical objects in parts
of the physical space to which pointers are described by specifications of spatio-
temporal windows (addresses) represented in informational layer of the network (of ic-
granule). During activity of ic-granule, its specifications of spatio-temporal windows
are also labeled by information perceived on physical objects corresponding to these
windows or inferred from already perceived information.

Networks of ic-granules are changing with time. Hence, they are dynamical objects
with states represented by networks of ic-granules. One should note that the networks
of ic-granules are not purely mathematical (abstract) objects because they contain
physical objects too. This allow us to deal in the IGrC model with issues of perception
and action consistent with the opinion presented in the book [26]:

[. . .] The main idea of this book is that perceiving is a way of acting. It is something we do.
Think of a blind person tap-tapping his or her way around a cluttered space, perceiving that
space by touch, not all at once, but through time, by skillful probing and movement. This is or
ought to be, our paradigm of what perceiving is.
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It should be noted that networks of ic-granules and c-granules can be treated as a
higher order ic-granules. One can also consider societies of c-granules as higher order
ic-granules. The details of higher order granules will be discussed in our next paper.

4 Reasoning over Computations on Networks of Ic-Granules
and Generation of Compound Decisions Along the Reasoning
Paths

The control of c-granule should be equipped with advanced reasoning tools aiming to
discover the right specifications of transformations at each step of computation, for
recognizing the necessity of deeper understanding the perceived situation or for
aggregation the results of previously realized transformations. In reasoning different
logics or ensembles of logics can be involved aiming to extend the current information
about the perceived situation. Below we present an exemplary list of tasks for
reasoning:

– construction from vague specification of compound objects (e.g., classifiers,
learning algorithms, new medicines, compound molecules) of the high quality;

– estimation of risk in realization of the selected decisions;

C-GRANULE: INTUITION

Control organizes (and initiates)  
communications (transmissions, 

interactions) between the informational 
layer and physical layer using network 
(configuration) of relevant ic-granules 

(generated by its 
implementational module (IM)).

The considered network collects in the 
informational layers the properties of 
perceived physical objects and their 

interactions.

CONTROL
of

c-granule

informational layer

physical layer

tr

NETWORK OF INFORMATIONAL 
GRANULES (IC-GRANULES)  

DEALING WITH ABSTRACT AND 
PHYSICAL OBJECTS

Fig. 4. A c-granule and a network of informational granules (ic-granules).
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– selection/sampling form large data sets representative and informative objects and
representative and informative samples of data objects which are satisfactory for
inducing classifiers with as high as possible quality of classification;

– labeling processes of the selected objects in interaction with experts or teams of
experts [19];

– modification of interactions in perception of the currently perceived situation; data
governance (see, e.g. [6]); searching for new sources of data; changing of behavior,
e.g., by adaptation of rules of transformation of configurations;

– implementation of configuration specifications and their changes in the physical
space, estimation of expected results and perceiving real results of implementation;
measuring of differences between expected and real results of implementation;

– adaptation of rules of transformation of configurations of objects and learning rules
of transformation of configurations of objects;

– the control of interactions (e.g., initiation, termination, suspension, creating new);
– interaction with humans (e.g., evaluation of expert’s competence, reliability,

approximation of expertise domain of experts, negotiations and resolving conflicts
between experts, planning interactions by taking into account costs of dialogue with
experts or sensor measurements, checking availability of experts);

– communication/dialogue with domain experts in the case of compound labeling
functions (e.g., explanation of compound structures of objects and/or labels).

IC-GRANULE: 
INTUITION
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Fig. 5. Details of one of ic-granules that compose the network of ic-granules illustrated in Fig. 4.
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These reasoning tools are supporting construction of compound objects satisfying a
given specification (often expressed using complex vague concepts) like classifiers,
clusters, compound sensors or robots, compound molecules or new medicine or sup-
porting discovery of strategies for keeping the required constraints.

These tasks create new challenges for rough sets too. Examples of them are dis-
cussed in the next section.

5 Rough Sets Based on Reasoning over Networks of Ic-Granules
in Foundations of IS’s

In this section, we suggest that for IS’s dealing with complex phenomena it is necessary
to consider an extension of the rough set approach based on a new computing model
making it possible to deal with perception of real situations in the physical world. Our
proposal is to base such an approach on IGrC.

Table 1. Notation used in this article

Name Interpretation

gc complex granule (c-granule) is a dynamic object characterized
(at a given moment of local time of gc) by
the control and a network of informational granules (ic-granules);
the control is aiming to achieve the goals of gc transforming
the current network N of ic granules into a new one by selecting
the specification of network transformation tr (relevant to the current network)

N network of ic-granules composed out of a finite number of ic-granules
tr specification of network transformation realized

in the physical space by the implementational module (IM) of the control
(possibly preceded by decomposition of specification
to the form directly realizable by IM in the physical space)

control contains several modules such as
reasoning module, inference module or implementational module and
transition relation rel, goals and specification of family of networks Fam net

rel if N rel N 0 then N 0 is the real result of realization
(in the physical world) of the selected transformation by the control at N (see
Fig. 6)

comp (finite) computation over Fam net: N1 rel N2. . . rel Nk;
where Ni 2 Fam net for i ¼ 1; . . .; k

trace (comp) information trace of comp: inf lðN1Þ; . . .; inf lðNkÞ;
where inf lðNiÞ is the information layer of Ni for i ¼ 1; . . .; k

goal goal of gc interpreted by the control as a quality (utility) function
over computations with values in [0, 1]

w specification of a spatio-temporal window (in a given language)
kwk subset of <3; where < is the set of reals, defined by w
ow physical object, i.e., part of the physical space corresponding to kwk
g informational granule (ic-granule) composed

out of informational layer inf layerðgÞ and physical layer ph layerðgÞ
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From our discussion in the previous sections it follows that c-granule generates
computations over networks of ic-granules which are labeled by specifications of
transformations selected by the control for realization in the physical world. Hence,
they can be treated as time series (not closed in the abstract space only!).

Table 2. Notation used in this article (cd.)

Name Interpretation

inf layerðgÞ informational layer of g consists of
family of tuples (w, tr, inf), where inf is the current information
updated by information perceived on ow by g
during realization by IM of the transformation specification tr

scope(g) a distinguished w from inf layerðgÞ where kwk
is the largest among all kw0k from inf layerðgÞ

a ¼) tr : b rule, where a is a condition triggering rule defined
over (relevant part of) inf layerðgÞ;
tr is a specification of network transformation
and b in the expected property of
the resulting network after tr implementation

Rule set set of rules (complex game) referring to the physical world
ph layerðgÞ physical layer of g consists of parts:

soft suit; link suit; hard suit
creating a dynamical physical system perceived by ic-granule g;
perceived information is recorded in inf layerðgÞ

soft suit consists of ow, where w is from inf layerðgÞ
and ow is directly accessible for measurement by g
e.g., IM can directly realize in the physical space the specifications
enc(inf, w), dec(w) of encoding inf in ow and decoding information
from the object after realization of enc(inf, w)
such that the realization of enc and next dec (i.e., dec(enc(inf, w))) by IM
results in inf and after that encðdecðowÞ;wÞ results in ow
provided that the environment is not disturbing these implementation
processes

hard suit consists the target objects ow not necessarily directly accessible;
information about such objects recorded in information layer is
obtained by the control on the basis of reasoning about objects in scope
using the current information in this layer including
domain knowledge or physical laws

link suit consists objects used for transmission of interactions between
soft suit and hard suit;
information about such objects recorded in information layer
in case they are not directly accessible is
obtained by the control on the basis of reasoning about objects from scope
using the
current information from informational layer
including domain knowledge or physical laws
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Let us denote by N the current network of ic-granules. The control of c-granule g is
deciding on changes of N. A new network N 0 is obtained after performing imple-
mentation of the selected by the control at N specification of transformation tr and
interaction of the new network with the environment for the required period of time
(see Fig. 6). According to the selected transformation tr it may be continued perception
of the situation in the physical world without changing the structure of N or perceiving
will be continued after making some changes specified in tr in the structure of N.

One should note that the c-granule may have a representation of knowledge about
other c-granules in the environment and cooperate or compete with them to achieve its
goals. Here, one can see analogy to multiagent systems (see, e.g., [39].

From generated time series of networks the control of c-granule may construct
different (hierarchical) information systems (decision systems) [32, 44], e.g., with
objects being single networks or windows of networks. They can be represented as new
ic-granules (or information granules in GrC). Such systems can be used for inducing
different kinds of classifiers using hierarchical learning methods. However, it is nec-
essary to provide for this learning the right data. Hence, one should take into con-
siderations issues related to data governance [11] and the need of developing the
relevant reasoning methods making it possible to support solving problems related to
data governance.

Among the tasks to be solved by the control of c-granule the most important is the
task related to the control problem. The aim of the control problem is to discover a
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specification of transformation tr
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Fig. 6. Transition relation rel.
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complex game (see Fig. 8) consisting of (often complex and vague) concepts labeled by
specifications of transformations (of networks of ic-granules) in computations which
can be treated as triggers for activating these transformations. Any such complex game
consists a set of rules Rule set of the form a ¼) tr : b with predecessors a describing
conditions under which the rules can be initiated and successors being a specifications
of transformation of netoworks tr of ic-granules with the expected results described by
b: These complex games are aiming to generate finite computations with the quality
higher than a given threshold (relative to the given quality or utility measure). In this
problem we assume that specifications of transformations as well as complex vague
concepts are selected from some given sets. Another important problem concerns
discovery of such sets on the basis of which the relevant complex games may be
constructed. One should note that the discovery of complex games depends on the
target tasks to be realized by c-granule. In medical applications such tasks are
expressed by complex vague concepts to be satisfied or preserved by the generated
computation over networks of ic-granules from the given initial one. For example, this
computation should belong to the lower approximation of concept safe therapy leading
to improving the health condition of the patient to the highest possible degree. The
control is aiming to achieve this goal by discovery of complex game and use it in the
computation for producing the relevant plan on the basis of the discovered game (see
Fig. 9). Certainly, one can relate this problem to reinforcement learning [47]. However,
developing reinforcement learning methods for real world problems still is the great
challenge. It seems that dialogues with experts and relevant interactions with domain
knowledge bases should be involved in this process too [25, 40].
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Fig. 7. The control of c-granule.
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In this way we generalise the current approaches based on rough sets to the case of
learning strategies for controlling computations over networks of ic-granules aiming to
satisfy a given specification expressing properties of these computations.

From the above discussion it follows that the control should be equipped with
advanced reasoning tools allowing among other to

– select the relevant specifications of transformations from a given set of them;
– label the selected specifications of transformations by the relevant vague concepts;
– construct approximations of these vague concepts;
– adapt the current complex games according to perceived changes.

An interesting class of challenges for the rough set based on reasoning can be
expressed as follows. From a given (vague) specification construct compound objects
(such as learning algorithm, cluster, classifier, compound sensor or robot, molecules,
networks of servers and another hardware equipment, trajectory of computation)
belonging to the lower (upper) approximation of concept objects of high quality. Such
constructions are created along the relevant reasoning schemes using different
advanced reasoning tools based on domain knowledge, dialogues with experts and/or
relevant interactions with the physical objects.

An example of such a challenge, very important for IS’s in supporting solution of
problems, is related to approximation of functions transforming a given (often vague
specification) of a problem from a given class of problems to the (semi-)optimal
solution of the problem. In reality such functions can be vaguely and partially specified
only. Advanced reasoning tools are necessary for making it possible to construct, along
generated by these tools reasoning schemes, the approximate solution. For example,
such reasoning tools can refer to decomposition of vague, specifications with the use of

. . .

complex vague concepts 
triggering transformations

specifications of transformations
with description of expected 

results of implementation

Fig. 8. Complex game.
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human skills related to divide-and-conquer strategies for vague concepts (such as e.g.,
very compound vague concept of trustworthiness3 [1, 2, 17, 20, 22] currently inves-
tigated by many researchers) possessed by humans but not yet ’comprehended’ by IS’s.
One may refer here to the paradigm Computing with Words due to Lotfi Zadeh [50,
51].

Developing reasoning strategies supporting designing of architectures of AI trust-
worthy systems is another challenge. For example, in Fig. 10 (on its right side) there is
illustrated a structure relevant for AI systems preserving trustworthiness. Here, human
experts in dialogue with the system are responsible for accepting tasks which are ready
to be given “into hands” of such systems. The task of designing trustworthy archi-
tectures of AI systems can be understood as the task of constructing complex objects
(satisfying some initial properties) from the lower approximation of the vague concept
“to be trustworthy” in the vaguely specified space of architectures.

Another example is related to inducing learning algorithms generating classifiers
from training samples. Here, the intuitive reasoning expressed in natural language
concerning construction of learning algorithms should be embedded into the mathe-
matical machinery [35].

Certainly, our discussion also refers to the long lasting problem of transferring
intuition about proofs into the formal proofs.

From the above discussion follow several new research directions for rough sets.
Among them are the following ones:
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– Rough sets should be based on a much wider context than the context restricted to
information (decision) systems only [31, 33, 34]. IS’s dealing with complex phe-
nomena should have tools for perceiving the situations in the physical world that is
realized by interaction with the physical world in which classified situations are
embedded. One should note that in the case of IS’s dealing with complex phe-
nomena it is not possible to base, e.g., inducing classifiers on one set of attributes
characterizing the perceived situation (see e.g., the cited in this paper opinion by
Brooks). Such models may be treated as temporary only. The system should be
aware that always only a partial information about the currently perceived situation
is known and it should be equipped with reasoning tools supporting searching for
new relevant data and attributes (features). IS’s are perceiving the current situation
in the real world not at once but over a period of time during which they use
different tools to perceive situation to a degree allowing the system to select and
realize the right decisions. In this period of time ic-granules of networks generated
by the control of c-granules of IS’s are measuring some features and performing
actions. Through this the generated computations over networks of ic-granules are
’shaped’ to make them acceptable from the point of view of target goals, i.e.,
information traces of computations are satisfying the required specifications at least
up to satisfactory degrees (what in the rough set approach means that they are
belonging to lower approximations of target concepts). Considering only abstract
information granules, as is happens in GrC, is not satisfactory for IS’s dealing with
complex phenomena in the physical world. IGrC provides the relevant tools to build
foundations for the rough set approach supporting IS’s dealing with complex
phenomena.

– Information (decision) system isolated from the real physical world are not satis-
factory as generic granules for considerations of complex situations in the physical
world. The new approach based on IGrC is providing networks of ic-granules and
computations over such networks (which can be treated as a generalisation of time
series because they contain both abstract and physical objects!) labeled by realized

IS IS … physical 
world

HUMAN 
USER/EXPERT

STRUCTURE MORE 
RELEVANT WITH 

RESPECT TO 
TRUSTWORTHINESS

Fig. 10. Basic scheme for Human-Centered AI.
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(by the control of c-granule) transformations of networks of informational granules.
Over these generalised time series information (decision) systems of different
complexity (e.g., hierarchical) are constructed in searching for the relevant com-
putational building blocks for cognition (see Fig. 11).

– The approximation process of concepts is based on advanced reasoning tools (also
in cooperation with human experts) carried out along computations over networks
of ic-granules rather than on (partial) containment of sets only. For new applications
of IS’s dealing with complex phenomena, advanced reasoning tools (e.g., based on
dialogues with experts) should be developed which can support the existing ones,
e.g., in Machine Learning.

– The outlined approach to approximation of concepts seems to be important for
building foundations of IS’s dealing with approximations of complex vague con-
cepts over compound objects of different kinds (such as learning algorithms,
compound sensors or robots, new materials or medicines, schemes of reasoning
supporting searching for solutions of problems, complex games to name a few). The
discussed in the paper control problems related to construction of computations
belonging to the specified regions (such as e.g., lower approximations) of complex
vague concepts, under assumption that there is given an initial information (such as
symptoms of patient in the case of medical applications [8]) encoded in the initial
networks of computations, are becoming important in building the mentioned
foundations based on the rough set approach grounded in IGrC.
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Continuous interactions with the physical world during perceiving of the current situation 
aiming to understand this situation to a degree satisfactory for making the right decisions

abstract
(mathematical) space

physical
world

gc

Fig. 11. Rough sets in IGrC: perceptual approach.
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– The current rough set approach should be substituted by the adaptive rough set
approach making it possible to adapt control strategies of c-granules used for
approximation of concepts drifting in the physical world.

Conclusions

In this paper we have outlined a new approach to rough set based approximation based
on reasoning over networks of ic-granules. This approach generalises the existing
approaches mainly based on (partial) set containment. The discussed approach can be
treated as a step toward developing foundations for IS’s interacting with complex
phenomena toward building IS’s satisfying dreams expressed in [4]:

Tomorrow, I believe, we will use INTELLIGENT SYSTEMS to support our decisions in defining
our research strategy and specific aims, in managing our experiments, in collecting our results,
interpreting our data, in incorporating the findings of others, in disseminating our observa-
tions, in extending (generalizing) our experimental observations through exploratory discovery
and modeling - in directions completely unanticipated.

Such systems are like modern laboratories continuously linked to the physical
space.

In our further research we plan to elaborate in more detail the issues outlined in this
paper and to use the discussed approach in real world projects (see, e.g., [45]).
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Rough-Calculus and Numerical
Analysis – A Mathematical Foundation

Tsau Young (T. Y.) Lin

Data Science Institute, Granular Computing Society,
San Jose (The Capital of Silicon Valley), CA 95120, USA

prof.tylin@gmail.com

Rough set theory and college calculus are two disjoint pieces of mathematics on
discrete and continuous worlds. Somehow Pawlak observed their commonality and
create a subject called Rough Calculus. Numerical analysis and scientific modeling are
another such a pair, in fact, a better pair: A real line can be visualized as a generalized
meterstick. Markings for centimeters are labelled by integers, markings for millimeters
are labelled by one decimal place . . . . . . are labelled by n decimal places. Such
sequence of labellings supports the granulation topology G (recall the concepts of
granular computing and mathematics) that contains the old friend, the usual topology
U, as a subtopology. Such observations allow us to build a mathematical model for
Approximate Arithmetic, which has been missing for centuries. An extended abstract,
that needs some updating, has been announced in the Encyclopedia of Complexity and
System Science in March, 2023.



Can AI and Big Data Methods Really Help
in Cyber Security?

Joel Holland

DeepSeas, USA

The terminology of “Big Data” has been used in many areas. The Cyber Security
problem is a great example of a Big Data problem. The amount of data that is necessary
to find malicious actors within mixed corporate environments continues to expand.
Finding the “dumb” or “lazy” attackers that use known attack vectors is fairly straight
forward. But how do you find the more advanced technically savvy bad guys? AI is
starting to play a bigger role in detection methods within cyber solutions. But how do
you mix the two? It is exceeding hard to accomplish AI over truly large ever changing
data sets. Training AI to find something it is seen before is a more traditional approach.
However, in the cyber problem you are looking for an attacker using a new approach
you don’t have in your data to get around controls. In this talk we will discuss the
Cyber Security detection problem and the issues around speed and size of the data
combined with the ever changing attack vectors.



Applications of Tolerance-based Granular
Methods (Extended Abstract)

Sheela Ramanna

Applied Computer Science, University of Winnipeg, Canada
s.ramanna@uwinnipeg.ca

The proliferation of large-scale web corpora and social media data as well as advances
in machine learning and deep learning have led to important applications in diverse
Natural Language Processing (NLP) areas such as information extraction, named entity
recognition (NER), text summarization and sentiment analysis to name a few. NER
seeks to discover and categorize specific linguistic entities in unstructured text and
relies heavily on semi-supervised learning methods due to the fact that the number of
training examples are very limited. Tolerance relations provide the most general tool
for studying similarity and are ideal for NLP applications.

In this talk, we investigate machine learning methods based on a tolerance form of
rough [6, 10], near [7] as well fuzzy rough sets [2, 3] in two NLP areas: NER and
Sentiment Analysis. We present novel semi-supervised learning algorithms (TPL and
FRL) [1, 4, 8, 9] based on tolerance rough and fuzzy rough sets for NER tasks.
Specifically, we address two problems: i) the challenge of labelling relational facts
from large web corpora, and ii) concept drift. The performance of the presented
algorithms is discussed in terms of bench-marked datasets and algorithms.

Another natural appearance of the tolerance relation occurs in near sets and
descriptive proximity space theory. We present our recent work on tolerance near sets-
based supervised learning algorithm (TSC) [5] to perform coarse-grained sentiment
categorization from text by leveraging high-dimensional embedding vectors from pre-
trained transformer-based models. We discuss the impact of using different embeddings
on the performance of TSC on well-researched text classification datasets. We make the
case that approximation structures viewed through the prism of tolerance display flu-
idity and integrate conceptual structures at different levels of granularity that are
appropriate for NLP.
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Role of Color in Histological Image Analysis:
Rough-Fuzzy Computing to Deep Learning

Pradipta Maji

Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
pmaji@isical.ac.in

In histology, microscopic images of tissue sections are examined to study the mani-
festation of diseases under consideration. The most important property of histological
images is the enormous density of data, more cellular details, compared to other
imaging modalities, which makes computer-aided diagnosis more accurate than other
modalities. To facilitate pathologists’ examination, tissue samples are stained with
multiple contrasting histochemical reagents, which in turn highlight different tissue
structures and cellular features. Hence, color in pathology plays a pivotal role as a good
indicator of histological components.

One of the most common and primary problems of histological tissue analysis is the
inadmissible inter and intra-specimen variation in stained tissue color. Consequently,
numerical features extracted from histological images may lead to difficulty in image
interpretation by automated systems, trained on a specific stain color appearance.
Hence, the foremost and challenging task in stained histological image analysis is to
reduce color variation present among images.

In this talk, two recently introduced approaches for stain color normalization will be
discussed. While the first approach is based on rough-fuzzy computing [2], the second
one is developed around generative adversarial network [1]. The rough-fuzzy circular
clustering algorithm [2] is developed based on rough-fuzzy computing for stain color
normalization. It judiciously integrates the merits of both fuzzy and rough sets. While
the theory of rough sets deals with uncertainty, vagueness, and incompleteness in stain
class definition, fuzzy set handles the overlapping nature of histochemical stains. The
proposed circular clustering algorithm works on a weighted hue histogram, which
considers both saturation and local neighborhood information of the given image. A
new dissimilarity measure is introduced to deal with the circular nature of hue values.

On the other hand, the TredMil [1], which is based on generative adversarial
network, assumes that the latent color appearance information, extracted through a
color appearance encoder, and stain bound information, extracted via stain density
encoder, are independent of each other. A generative module and a reconstructive
module are designed accordingly to capture disentangled color appearance and stain
density information. To deal with the overlapping nature of histochemical reagents, the
model assumes that the latent color appearance code, extracted through the color
appearance encoder, is sampled from a mixture of truncated normal distributions.

The performance of these two models, along with a comparison with state-of-the-
art approaches, has been demonstrated on several data sets containing H&E stained

https://orcid.org/0000-0002-8288-8917


histological images. The merits and demerits of these two approaches will also be
covered in the talk.
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Big Data Intelligence: Challenges and Our
Solutions

Tianrui Li

School of Computing and Artificial Intelligence, Southwest Jiaotong University,
Chengdu 611756, China

Abstract. Big Data Intelligence is driving revolutionary changes in various
industries, from business, medical treatment to government. It has also become a
hot research topic in the area of artificial intelligence. This paper aims to outline
some main challenges on Big Data Intelligence, e.g., data with few labels, user
privacy, high dimensionality, open-world dynamics, multi-source heterogeneity.
Then our solutions for Big Data Intelligence are provided, which cover the
following aspects: 1) A micro-supervised disturbance learning paradigm is
developed by introducing the small-perturbation ideology based on the repre-
sentation probability distribution, which enables to reduce the reliance of deep
representation on labels [1]; 2) A federated deep reinforcement learning
framework is presented to address the problem of daily schedule recommen-
dation, which can guarantee and protect big data privacy [2]; 3) A distributed
operating-based feature selection algorithm is devised with a rough hypercuboid
approach, which deals with high-dimensional big data [3]; 4) A three-way
decision-based incremental learning method considering temporal-spatial multi-
granularity structure is proposed, which allows to represent and learn uncertain
knowledge in fuzzy open-world big data [4]; 5) Several deep learning-based
models are illustrated to fuse multi-source heterogeneous big data as well as
their applications in smart cities (e.g., ambulance deployment, metro operation,
and air quality prediction) [5–10].
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Abstract)
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The emerging field of food computing tackles, among others, problems of knowledge
acquisition, engineering, and processing in the domain of food. Food is a common
human experience, yet working with recipes requires some knowledge about the
process, combinations of ingredients, properties of the single constituents, and the
resulting dish. This knowledge is often implicit, contextual, or culture-dependent.
Making at least parts of it explicit, with some sort of formalization, opens up possi-
bilities to develop intelligent knowledge-based solutions to assist humans in preparing
and optimizing food.

One of the interesting and relevant problems is searching for substitutions in food
recipes. This task may be motivated by different constraints and objectives of a person,
including allergies, diets, etc. What ingredient to substitute with what and how will it
influence the resulting dish are just some of the questions that require the knowledge of
a dietician, or a food technologist (and sometimes: both). While machine learning-
based solutions may produce proposals of ingredients that should be replaced with
others based on their occurrence in similar contexts, it is not always understandable,
why certain ingredients are appropriate or not, and what features of the proposed
substitutes satisfy the person’s goals. Thus, structured and logic-based solutions may be
developed to provide transparent and explainable answers to the questions outlined
above.

In this presentation, we will discuss recent research threads in the field of knowl-
edge engineering in food computing, including methods of knowledge acquisition,
modeling, and reasoning over the integrated knowledge. The talk will cover topics such
as modeling food-related knowledge in the form of ontologies, ongoing efforts and
international initiatives in the area, an ontology design pattern for substitution, building
a knowledge graph for substitution, and logic-based solutions for selecting target
ingredients to substitute and pruning “wrong” substitutes recommendations.
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In my talk, I will discuss the problem of model-agnostic explainability and analytics of
predictions obtained using black-box machine learning models [1]. As an example of
an application, I will use a data science competition platform where researchers from
around the world compete to solve real-life problems [2, 3]. Firstly, I will recall a few
successful competitions and explain their scope, as well as their most notable outcomes
[4, 5]. Then, I will briefly talk about our approach to the explainability of prediction
errors, and its usefulness to end-users [6]. My aim will be to demonstrate how notions
known from the theory of rough sets, such as the decision reducts, can be used to
efficiently construct an approximation of an arbitrary set of predictions, such as a
typical solution to a data science competition. I will also explain how such an
approximation can be used to extract useful insights about the ML model used to
generate the predictions, and about the corresponding data set. Finally, I will explain
how it is all related to the problem of post-competition analytics and diagnostics of
solutions submitted by the most successful teams in data science competitions [7]. I
will also give examples of other types of analysis that we perform to gain a better
understanding of data science problems considered in the competition.
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Abstract. The paper presents a comparison of selected methods of con-
flict analysis inspired by the Pawlak model. It examines a real-world case
study, the 2020 presidential election in Poland. The study explores five
distinct approaches to conflict analysis, drawing insights from this exam-
ple. It highlights crucial distinctions among the models considered and
provides recommendations within practical application contexts.

Keywords: Pawlak conflict model · Coalitions · Negotiations stage ·
Consensus

1 Introduction

Conflict is a ubiquitous aspect of everyday life. Initially, conflicts were predomi-
nantly explored in human interactions, leading to extensive research conducted
primarily within the social sciences [11]. However, the game theory broadened the
scope of conflict analysis and negotiation, extending its influence into domains
beyond the social sciences [12,33]. The first works on conflicts from the perspec-
tive of Artificial Intelligence (AI) concerns the area of decision support systems
that support people to better understand conflicts – finding the most conflicting
issues or possible coalitions. Some tools for analyzing available information and
suggesting the possible solutions were also proposed [7]. In recent times, con-
flict scenarios frequently involve intricate multi-agent systems, where we have
the large number of interacting parties. Managing the numerous dependencies
required to extract potential solutions manually is both impractical and non-
scalable. Consequently, AI-powered conflict analysis and automated negotiation
systems have become indispensable for large-scale systems. Despite the fact that
these topics have been studied for more than a decade, there is still a wide range
of problems that have not been proposed or discussed in the literature.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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As a starting point of conflict analysis, the Pawlak conflict model presented
in the papers [18,22] is considered. The simple model based on rough set theory
[19,23] also gives great insight and understanding of any conflict. Anyway, the
conclusions can be provided on the outermost level. In this paper, we describe
the possible enhancements of the Pawlak model using a real political conviction
conflict. The proposed enhancements allows to analyze possible coalitions and
looks for consensus in negotiation process. The main goal of this paper is to
review and compare selected methods of conflict analysis that are an extension
of the Pawlak model and were inspired by this model. The areas of application of
the discussed approaches and the key differences between the approaches are also
identified. The paper is organized as follows. In the second section, an overview
of the literature is presented. The third section introduces a real-world conflict
scenario, along with the theoretical foundations of the analysis models and their
application to the example. The fourth section compares results, discusses find-
ings, and offers guidance on applying the analysis models. Finally, a summary
is presented in the conclusion section.

2 Literature Review

The Pawlak conflict analysis model has inspired numerous researchers, leading
to various extensions and approaches. For instance, Andrzej Skowron and Soma
Dutta have focused on extensions designed for multi-agent systems [4,5]. Another
significant approach inspired by the Pawlak model is the three-way decisions
theory [16,31]. Because of restricting (in the Pawlak model) the agents values
set to three (against, neutrality and favorable), the natural divisions of agents
or issues into three parts can be introduced. This fits into the three-way decision
theory proposed by Yao [32]. Following this approach, many researchers have
studied conflict via trisecting agents, issues, and pairs of agents [6,13,14,17] using
different evaluation functions [6]. As an instance, in [14] the authors proposed
the use of a pair of thresholds to define the relation of coalition, neutrality and
conflict. The other way of agents and issues three-section has been proposed by
Sun et al. in [30] – they explored the rough set upper and lower approximation
concept for this purpose. This approach has been developed in [29] by proposing
a conflict analysis decision model based on rough set theory over two universes.

Furthermore, interesting applications that consider hierarchies and con-
straints applicable to conflict situations were demonstrated by Jaros�law Stepa-
niuk and Andrzej Skowron [28]. Additionally, there exist approaches grounded in
rough set theory for multiple criteria decision analysis [2,9]. Given the inherent
high uncertainty and incomplete information associated with conflicts, rough set
theory proves to be an excellent approach for such cases [10,27]. Finally, these
models have found practical implementations in real-world conflict analysis sce-
narios, including applications in the Chinese Wall Security Policy context [15]
and water resources allocation decisions [8].
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3 Conflict Analysis Models – Case Study

Professor Zdzis�law Pawlak proposed the conflict analysis model in the eighties
of the twentieth century [18,20,21]. The main idea of the model is to express
the views of the agents involved in a conflict on certain conflicting issues using
only three values, and to store this information using an information system.
Information system is a pair S = (U,A), where U is the universe – the set of
agents, A is a set of issues, and the set of values of a ∈ A is equal V a = {−1, 0, 1}.
Opinion of agent x ∈ U about issue a ∈ A is the value a(x). The meaning of
this value is as follows: a(x) = 1 means the agent x is in favor of the issue a;
a(x) = 0 means the agent x is neutral to the issue a; a(x) = −1 means the
agent x is against to the issue a. In order to calculate the intensity of conflict
between agents, two functions were proposed [18]. A function of distance between
agents ρ∗

B : U × U → [0, 1] for the set of issues B ⊆ A is defined as follows:
ρ∗

B(x1, x2) =
∑

a∈B φ∗
a(x1,x2)

card{B} , where

φ∗
a(x1, x2) =

⎧
⎨

⎩

0 if a(x1)a(x2) = 1 or x1 = x2,
0.5 if a(x1)a(x2) = 0 and x1 �= x2,
1 if a(x1)a(x2) = −1.

(1)

A conflict function ρB : U × U → [0, 1] for the set of issues B ⊆ A is defined as
follows:

ρB(x1, x2) =
card{δB(x1, x2)}

card{B} , (2)

where δB(x1, x2) = {a ∈ B : a(x1) �= a(x2)}. When the attribute set for calculat-
ing either of the two functions matches the full attribute set (B = A), we abbre-
viate it as ρ∗ or ρ. These functions differ in how they handle agent neutrality.
The distance function is more precise; if one agent in a pair is neutral, the differ-
ence between the agents equals 0.5. In contrast, the conflict function, regardless
of neutrality, increments the counter to 1 for any differences in assigned values
on a conflict issue between a pair of agents.

In the Pawlak model, a pair of agents x1, x2 ∈ U is said to be allied
R+(x1, x2), if ρ∗(x1, x2) < 0.5 (or ρ(x1, x2) < 0.5), in conflict R−(x1, x2), if
ρ∗(x1, x2) > 0.5 (or ρ(x1, x2) > 0.5), neutral R0(x1, x2), if ρ∗(x1, x2) = 0.5 (or
ρ(x1, x2) = 0.5). Set X ⊆ U is a coalition if for every x1, x2 ∈ X, R+(x1, x2). The
resulting coalitions are not necessarily disjoint sets, reflecting the possibility for
an agent to participate in multiple coalitions due to moderate views compatible
with multiple fractions.

Conflicts and decision-making are ubiquitous in nearly every aspect of our
lives. This paper explores a conflict scenario within the realm of politics, specif-
ically drawing on a real-life case from the 2020 presidential election in Poland.
Consider the following example, named the “political conviction conflict”. This
example is derived from the Voting Lighthouse application, a product of the
Center for Civic Education developed under Project No. POWR.03.01.00-00-
T065/18, titled “Social and Civic Activation of Young People in the Develop-
ment of Key Competencies” [1]. In this example, we have nine agents represented
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as U = {x1, . . . , x9} – these agents are the candidates in the presidential elec-
tion: x1 – Krzysztof Bosak; x2 – Marek Jakubiak; x3 – Miros�law Piotrowski;
x4 – Pawe�l Tanajno; x5 – Robert Biedroń; x6 – Stanis�law Żó�ltek; x7 – Szymon
Ho�lownia; x8 – Waldemar Witkowski; x9 – W�ladys�law Kosiniak-Kamysz; (two
candidates in this election are missing, as in the Voting Lighthouse application
there are no opinions for them) and twenty five issues A = {a1, . . . , a25}: a1

– Declare an emergency state in coronavirus-like situations; a2 – Grant educa-
tional institutions more curriculum autonomy; a3 – Prioritize elevating national
identity in cultural policies; a4 – Fund public media from the state budget; a5

– Broaden abortion legality; a6 – Reserve marriage for heterosexual couples;
a7 – Reduce church hierarchy influence in public affairs; a8 – Consider easier
firearm access; a9 – Transition from coal by 2035; a10 – Pursue a nuclear plant
in Poland; a11 – Allow raising animals for fur; a12 – Tax digital giants targeting
Polish users; a13 – Raise taxes for high-income earners; a14 – Enable Swiss franc
loan conversion at original cost; a15 – Expand President’s defense policy author-
ity; a16 – Strengthen judiciary independence; a17 – Broaden local government
jurisdiction; a18 – Fund public housing instead of private rental subsidies; a19

– Establish early retirement for experienced workers; a20 – Significantly raise
the minimum wage; a21 – Allow higher standard medical services payments; a22

– Reduce EU influence on Polish domestic policies; a23 – Prioritize the United
States as Poland’s foreign partner; a24 – Increase defense spending; a25 – Accept
more labor migrants from other nations.

The views of each agent to a specific issue is presented in Table 1, where,
according to the Pawlak model of conflict analysis, 1 means agree, 0 have no
opinion, −1 disagree.

Table 1. Information system for the political conviction conflict.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25

x1 1 1 1 0 −1 1 −1 1 −1 1 1 0 −1 1 −1 1 1 0 1 −1 1 1 1 1 −1

x2 1 −1 1 1 −1 1 1 1 −1 1 1 −1 −1 1 1 −1 −1 −1 1 −1 1 1 1 −1 −1

x3 1 1 1 1 −1 1 −1 −1 −1 0 1 0 −1 1 1 1 1 1 1 −1 −1 1 0 1 −1

x4 −1 1 0 −1 0 0 1 1 −1 1 0 1 −1 1 1 1 1 −1 −1 −1 1 1 1 −1 1

x5 1 1 −1 1 1 −1 1 −1 1 0 −1 1 0 1 −1 1 1 1 1 1 −1 −1 1 −1 1

x6 1 1 1 −1 −1 1 −1 1 −1 1 1 −1 −1 −1 1 1 1 −1 1 −1 1 1 1 1 1

x7 1 1 −1 1 −1 1 1 −1 1 0 −1 1 1 −1 −1 1 1 −1 1 −1 −1 −1 1 1 1

x8 1 1 −1 0 1 1 1 −1 −1 1 −1 1 1 −1 1 1 1 0 0 1 0 −1 1 −1 1

x9 1 1 1 −1 −1 1 1 −1 −1 1 0 1 −1 1 1 1 1 1 1 1 1 1 1 −1 0

3.1 Conflict Analysis Using the Pawlak Model and the Distance
Function

In the initial approach, we apply the Pawlak model with a distance function for
conflict analysis, as discussed in [22]. We compute the distance function between
agent pairs, resulting in a symmetrical matrix presented in Table 2, with zeros
on the diagonal.
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Table 2. Values of the distance function between agents for the political conviction
conflict, ρ∗.

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1

x2 0.3

x3 0.2 0.38

x4 0.38 0.4 0.5

x5 0.58 0.68 0.5 0.52

x6 0.18 0.32 0.3 0.32 0.68

x7 0.48 0.62 0.44 0.54 0.26 0.46

x8 0.54 0.6 0.54 0.4 0.28 0.48 0.3

x9 0.3 0.36 0.3 0.28 0.4 0.32 0.5 0.32

Figure 1 shows a graphical representation of the conflict situation. Agents
are represented by circles in the figure. When agents are allied (ρ∗(x, y) < 0.5),
the circles representing the agents are linked. In order to find coalitions, all
cliques should be identified in the graph. So the subset of vertices such that
every two vertices are linked is determined. There are seven coalitions in the
example {x1, x2, x3, x6, x9}, {x1, x2, x4, x6, x9}, {x1, x3, x6, x7}, {x4, x6, x8, x9},
{x6, x7, x8}, {x5, x7, x8} and {x5, x8, x9}. As can be seen, coalitions are non-
disjoint sets. Some agents show alliance with almost all other agents. As can
be seen candidates W�ladys�law Kosiniak-Kamysz and Stanis�law Żó�ltek are in an
alliance relation with virtually all other candidates for president.

As was mentioned earlier, the conflict function assigns smaller values for a
pair of agents if one of the agents is neutral. In some real cases, this generates
too many coalitions – based on this, no clear division can be defined.

x1 x2

x3

x4

x5x6

x7

x8

x9

Fig. 1. A graphical representation of the political conviction conflict, the Pawlak con-
flict analysis model and the distance function

3.2 Conflict Analysis Using the Pawlak Model and the Conflict
Function

Another way to analyze conflicts using the Pawlak approach is to use the conflict
function which is described in paper [18] and defined by Formula 2. The value
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of the conflict function between agents is calculated for each pair of agents and
are given in Table 3.

Table 3. Values of the conflict function between agents for the political conviction
conflict, ρ.

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1

x2 0.36

x3 0.28 0.44

x4 0.52 0.48 0.64

x5 0.68 0.72 0.56 0.64

x6 0.24 0.32 0.36 0.4 0.72

x7 0.56 0.64 0.48 0.64 0.28 0.48

x8 0.6 0.68 0.68 0.56 0.4 0.56 0.4

x9 0.4 0.4 0.4 0.36 0.48 0.36 0.56 0.44

Figure 2 shows a graphical representation of the conflict situation. The way of
preparing the graph and determining the coalition is the same as before. There
are five coalitions in the example {x1, x2, x3, x6, x9}, {x2, x4, x6, x9}, {x3, x6, x7},
{x5, x7, x8}, {x5, x8, x9}. As before, coalitions are non-disjoint sets, but here,
there are fewer of them. The conflict function treats neutrality as equivalent
to differing opinions among agents. Compared to the previous analysis, some
agents now belong to a smaller number of coalitions. This results from a more
restrictive treatment of their neutrality, potentially seen as a penalty, as it is
considered as different opinion from both proponents and opponents of an issue.

x1 x2

x3

x4

x5x6

x7

x8

x9

Fig. 2. A graphical representation of the political conviction conflict, the Pawlak con-
flict analysis model and the conflict function

3.3 Conflict Analysis Using Hierarchical Clustering for Determining
Disjoint Clusters

Another approach was presented in paper [25] and consists in combination of
the Pawlak approach with an agglomerative hierarchical clustering algorithm.
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The major difference now is that coalitions are disjoint sets, and the method to
generate coalitions relies on iteratively combining the agents with the smallest
distance into groups. The agglomerative hierarchical algorithm is implemented
based of the conflict function value matrix. Initially, each agent is treated as a
separate cluster. Coalitions are generated iteratively as follows:

1. One pair of different clusters is selected for which the conflict function reaches
a minimum value. If the selected value is less than 0.5, then agents from the
selected pair of clusters are combined into one new cluster. Otherwise, the
clustering process is terminated.

2. After defining a new cluster, the value of the distance between the clusters is
recalculated. The following method for recalculating the value of the distance
is used. Let ρ̂ : 2U × 2U → [0, 1], where ρ̂({x1}, {x2}) = ρ(x1, x2) for each
x1, x2 ∈ U and let Ci be a cluster formed from the merger of two clusters
Ci = Ci,1 ∪ Ci,2 and let it be given a cluster Cj then

ρ̂(Ci, Cj) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ̂(Ci,1,Cj)+ρ̂(Ci,2,Cj)
2 if ρ̂(Ci,1, Cj) < 0.5

and ρ̂(Ci,2, Cj) < 0.5

max{ρ̂(Ci,1, Cj), ρ̂(Ci,2, Cj)} if ρ̂(Ci,1, Cj) ≥ 0.5
or ρ̂(Ci,2, Cj) ≥ 0.5

(3)

In Formula 3, the second equation ensures that agents in conflict relations are
excluded from a single coalition. Relying solely on the first equation might lead
to a scenario where for two values – one exceeding 0.5 and the other falling
below 0.5 – the average could be less than 0.5. Subsequently, this could result
that agents in conflict relations being included in one coalition in subsequent
steps.

Table 3 shows the values of the conflict function between agents in the
considered political conviction conflict. In the first step, we select a pair of
agents for which the conflict function takes the smallest value. This will be
ρ(x6, x1) = 0.24. Then we combine these agents into a cluster and recalculate
the distances between a new cluster and other agents according to Formula 3.
Distance function values recalculated according to the proposed method are
proposed in Table 4. For example, the value of the conflict function for the pair
{x1, x6} and {x2} was calculated as follows
ρ̂({x1, x6}, {x2}) = ρ̂({x1},{x2})+ρ̂({x6},{x2})

2 = 0.36+0.32
2 = 0.34

We use this formula because both values of the conflict function ρ̂({x1}, {x2})
and ρ̂({x6}, {x2}) are less than 0.5.

The remaining steps of the agglomerative hierarchical clustering follow a
similar approach. The realization of the whole process is presented as a den-
drogram in Fig. 3. We end the clustering process when all ρ̂ function values are
greater or equal to 0.5. This results in three distinct coalitions: {x1, x2, x3, x6},
{x5, x7, x8}, {x4, x9}. Consequently, each presidential candidate now belongs to
a single coalition, eliminating one-element isolated points among the candidates.
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Table 4. Values of conflict function, stage 1 of agglomerative hierarchical clustering
algorithm.

{x1, x6} {x2} {x3} {x4} {x5} {x7} {x8} {x9}
{x1, x6}
{x2} 0.34

{x3} 0.32 0.44

{x4} 0.52 0.48 0.64

{x5} 0.72 0.72 0.56 0.64

{x7} 0.56 0.64 0.48 0.64 0.28

{x8} 0.6 0.68 0.68 0.56 0.4 0.4

{x9} 0.38 0.4 0.4 0.36 0.48 0.56 0.44

Fig. 3. Dendrogram – the implementation of agglomerative hierarchical clustering algo-
rithm

3.4 Conflict Analysis Using Negotiations Stage

The approach discussed in this section was proposed in paper [24]. It consists of
two stages, defining initial coalitions and considering neutral agents. The first
stage is very similar to the Pawlak model, only the way of defining the relations
between the agents changes. Let p be a real number that belongs to the interval
(0, 0.5). We say that agents x1, x2 ∈ U are allied R+(x1, x2), if and only if
ρ(x1, x2) < 0.5 − p. Agents x1, x2 ∈ U are in a conflict R−(x1, x2), if and only
if ρ(x1, x2) > 0.5 + p. Agents x1, x2 ∈ U are neutral R0(x1, x2), if and only if
0.5 − p ≤ ρ(x1, x2) ≤ 0.5 + p.

In the second stage of this approach, in addition to agents’ opinions on the
conflict issues, it is vital to identify their top-priority conflict issues. Let us
assume that the most important issues for the agents are as follows: a5, a7, a9

for agent x1; a3, a5, a9 for x2; a5, a7, a8 for x3; a1, a4, a9 for x4; a3, a6, a8 for
x5; a4, a5, a7 for x6; a3, a5, a8 for x7; a3, a8, a9 for x8; a4, a5, a8 for x9. This
data is not available in the Voting Lighthouse application [1], it was assigned
by the authors of the article. Let us also set p at 0.1. Consequently, any pair of
agents with conflict function values belongs to the [0.4, 0.6] range is considered
neutral. Therefore, only agent pairs with conflict function values below 0.4 form
alliances. Figure 4, generated using the data in Table 3, illustrates these alliances
with connecting lines.
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Fig. 4. A graphical representation of the political conviction conflict, conflict analysis
with negotiations stage

The initial coalitions are all complete subgraphs depicted in Fig. 4: {x1, x3,
x6}, {x2, x6}, {x4, x9}, {x6, x9}, {x5, x7}. In the next step of the algorithm, only
agents that have not been included in any initial coalition and those that are not
in conflict are considered (not in conflict means ρ(xi, xj) ≤ 0.6 for xi, xj ∈ U).
For these agents, we determine the values of a generalized distance function φG.
It is a function φG : U × U → [0,∞) where

φG(xi, xj) =
∑

a∈Signi,j
|a(xi)−a(xj)|

card{Signi,j}
where xi, xj ∈ U and Signi,j ⊆ A is the set of significant conflicting issues for
the pair of agents xi, xj . In the set Signi,j there are issues, which are the most
significant for agents xi or xj . Thus, for the pair of agents the average module of
difference of opinion on issues that are significant for these agents is calculated.
These values are shown in Table 5. In the considered example, only agent x8 does
not belong to any initial coalition. If a conflict occurs between the two agents,
then the corresponding cell in Table 5 contains the sign X.

Table 5. Values of the generalized distance function between agents, φG.

x1 x2 x3 x4 x5 x6 x7 x9

x8 1.60 X X 1.20 1.00 1.50 1.00 1.00

During the second stage of the cluster creating process, the negotiation pro-
cess and the intensity of the conflict between the two groups of agents is deter-
mined by using the generalized distance. We define the generalized distance
between agents ρG : 2U × 2U → [0,∞)

ρG(X,Y ) =

⎧
⎪⎨

⎪⎩

0 if card{X ∪ Y } ≤ 1

∑
xi,xj∈X∪Y φG(xi,xj)

card{X∪Y }·(card{X∪Y }−1) else
(4)

where X,Y ⊆ U . The value of the generalized conflict function between the
initial clusters and agent x8 are calculated as follows
ρx

G({x4, x9}, {x8}) = φx
G(x4,x8)+φx

G(x9,x8)+φx
G(x4,x9)

3 = 1.0(6)
ρx

G({x6, x9}, {x8}) = φx
G(x6,x8)+φx

G(x9,x8)+φx
G(x6,x9)

3 = 1.1(6)
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ρx
G({x5, x7}, {x8}) = φx

G(x5,x8)+φx
G(x7,x8)+φx

G(x5,x7)
3 = 1

We combine agents whose generalized distance doesn’t exceed a user-defined
threshold, typically set at 2 as in [24]. Agent x8 is combined with all previously
mentioned initial coalitions, resulting in these final sets: {x1, x3, x6}, {x2, x6},
{x4, x8, x9}, {x6, x8, x9} and {x5, x7, x8}. This approach yields larger coalitions
compared to agglomerative hierarchical clustering but smaller than the classic
Pawlak model. To implement this method, we require additional information:
each agent’s critical issues.

3.5 Consensus Model

The final goal of analysis of any conflict is to propose the solution i.e. the consen-
sus. Consensus is the situation which is acceptable by all the agents taking part
in the conflict. Analyzing the Table 2 it can be easily noticed that such situa-
tion in the discussed political conviction conflict does not exist for an acceptable
value of the distance function (here the threshold is set to 0.5).

On the other hand, there are many real examples where the consensus is
found, usually within the negotiation process. In the papers [3,26] the enhance-
ments of the Pawlak model have been proposed to embrace the background
knowledge of the conflict and allows to search for solution (acceptable situation)
not visible in information table describing the conflict.

Local States. We assume [3,26] that each agent has its information table with
local states defining its current view as well as preferences i.e. Ix = (Ux, Ax),
where a : Ux → Va for any a ∈ Ax and Va is the value set of attribute a, Ax is the
set of attributes and Ux is the set of local states of the agent x. Any local state
s ∈ Ux is fully described by the information vector InfAx

(s) = (a, a(s)) : s ∈ Ux.
We assume that sets {Ax} are pairwise disjoint, i.e. {Ax ∩ Ay = ∅} where x and
y denotes different agents. The user preferences are expressed by assigning the
subjective evaluation to each state. Let ex : Ux → R[0, 1] is the target function,
then the states with greater value of ex are assumed to be more preferred.

In discussed political conviction conflict the information about agents pref-
erences is missing. However, it is quite common that after elections parties are
creating coalitions and agreeing their views (there are issues they care about
more than others). For illustrative purposes, we generated the local states for
each agent by changing the view for two attributes randomly. To each of the
local states, we assign the value of subjective evaluation. The exemplar local
state decision table for agent x1 is present in Table 6.

The best way to approximate the agent preferences is to infer the rules from
the local state decision table. We are generating the minimal rules in the number
of attributes from the left side. The set of rules forms the formula describing
acceptable states of the given agent fsx

.
The exemplar rules for agent x1 preferred states are as follow: (a4 = 0∧a3 =

1). The threshold for the target function is set to ex = 1
3 .
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Table 6. Local states with evaluation for agent x1 in the political conviction conflict.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 ex1

1 1 1 0 −1 1 −1 1 −1 1 1 0 −1 1 −1 1 1 0 1 −1 1 1 1 1 −1 2
3

1 −1 1 1 −1 1 1 1 −1 1 1 −1 −1 1 1 −1 −1 −1 1 −1 1 1 1 −1 −1 0

1 1 1 1 −1 1 −1 −1 −1 0 1 0 −1 1 1 1 1 1 1 −1 −1 1 0 1 −1 0

−1 1 0 −1 0 0 1 1 −1 1 0 1 −1 1 1 1 1 −1 −1 −1 1 1 1 −1 1 0

1 1 −1 1 1 −1 1 −1 1 0 −1 1 0 1 −1 1 1 1 1 1 −1 −1 1 −1 1 0

1 1 1 −1 −1 1 −1 1 −1 1 1 −1 −1 −1 1 1 1 −1 1 −1 1 1 1 1 1 0

1 1 −1 1 −1 1 1 −1 1 0 −1 1 1 −1 −1 1 1 −1 1 −1 −1 −1 1 1 1 0

1 1 −1 0 1 1 1 −1 −1 1 −1 1 1 −1 1 1 1 0 0 1 0 −1 1 −1 1 0

1 1 1 −1 −1 1 1 −1 −1 1 0 1 −1 1 1 1 1 1 1 1 1 1 1 −1 0 0

1 1 1 0 −1 1 −1 1 −1 1 1 0 −1 1 −1 1 0 0 1 −1 1 1 1 1 −1 2
3

1 1 1 0 −1 1 −1 1 −1 1 1 0 −1 1 −1 1 1 −1 1 −1 1 1 1 1 −1 2
3

1 1 1 0 −1 1 −1 1 −1 1 1 0 −1 1 −1 1 0 −1 1 −1 1 1 1 1 −1 1
3

Constraints. Additionally, to understand the root cause of the conflict and to
find a consensus easier, some constraints can be specified. Constraints describe
the dependencies among the local states of agents. They can come from the
resources limitation or just specify something crucial from the agent’s perspec-
tive. We assume that finally the constrains are delivered in the form of proposi-
tional formula here denoted by fC . The example for agent x5 could be as follow:
(a9 = 1∧a10 = 1), which is interpreted that for x5 it is vital to build the nuclear
plant to move away from coal.

Situations. The situation [3,26] in the conflict is any element of the carte-
sian product S(U) =

∏n
i=1 INF (xi), where n = card(U), is the number of

agents taking part in the conflict and INF (x) is the set of all possible infor-
mation vectors of agent x. The situation corresponding to the global state
s̄ = (s1, ..., sn) ∈ Ux1 × ... × Uxn

is defined by (Infx1(s1), ..., Infxn
(sn)).

Similar to local states, we assume the situation can be evaluated too. The
main idea lies in belief that the stable solution is obtained when the common
good is considered. The situation evaluation q(S) can be given by the expert
like the negotiator or independent organization. Based on the given threshold
q(S) ≥ qt we define the set of situations by prepositional formula fS obtained by
inferring the rules from the decision table corresponding to the information table
of situations S(U). Another way to evaluate the situations is by applying the
agents local state evaluation in the calculation, i.e. the global state evaluation
can be defined by p(s̄) = F (ex1 , ..., exn

), where F is a suitable function e.g.
F (r1, ..., rm) =

∑m
i=1 ri.

Consensus. The described model above with user preferences, situations eval-
uation and constraints forms the basis to efficiently search for consensus. Con-
sensus is the set of situations that satisfies the boolean formula f =

∧
x∈U fsx

∧
fC ∧ fS .

The information gathered in political conviction conflict is not enough to
fully present the concepts within the presented model. We augment the infor-
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mation with local states and their evaluation as described in Subsect. 3.5. Also,
the assumption that agents are locally using different set of attributes seems to
be difficult to achieve. In reality the conflicting parties are often using different
wording even when the overall meaning is similar. To match our model and avail-
able information in political conviction conflict we add the following constraints:
∀x,y∈U∀ax∈Ax,ay∈Ay

ax = ay. That means the set of agents attributes is the same.
When assuming the situation is evaluated based on agents local states evalua-
tion, we can simplify our consensus problem, for political conviction example, to
the formula f =

∧
x∈U fsx

. Also we are not taking into account any constraints.
Continuing the experiment with political conviction conflict, we obtained the

descriptions of preferable states for exemplar as presented in Table 7.

Table 7. Agents preferable states description

agent fsx

x1 a3 = 1 ∧ a4 = 0

x2 a2 = −1

x3 a23 = 0

x4 a1 = −1

x5 a6 = −1

x6 a12 = −1 ∧ a2 = 1

x7 a6 = 1 ∧ a9 = 1

x8 a19 = 0

x9 a1 = 1 ∧ a11 = 0

Computing the formula f , it can be noticed that acceptable situation cannot
be found. However, we can propose such situations for limited number of agents.
For example when excluding agents x6, x7, and x9 the acceptable situations are
described by the formula: (a1 = −1)∧ (a2 = −1)∧ (a3 = 1)∧ (a6 = −1)∧ (a19 =
0) ∧ (a23 = 0). Note that the solution (consensus) can be found among the
situations not considered in the conflict description.

4 Comparison and Application Areas

We compare the discussed approaches and highlight their application domains.
Notably, the outcomes from these models differ. The target of the approaches
from Sects. 3.1, 3.2, 3.3 and 3.4 is assessing agents’ alignment and forming con-
sistent coalitions, while the model described in Sect. 3.5 seeks consensus within
set constraints and preferences. Table 8 summarizes key model characteristics,
necessary input data, suggested application domains and evidence for these con-
clusions.
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Table 8. The comparison of conflict models

Model Characteristics Require-ments Application areas Evidence

Pawlak model
with distance
function

The same set of issues
for agents. Neutrality is
treated more softly.
The largest number of
coalitions with a
greater number of
agents are generated.
Coalitions are
non-disjoint

Agents’ views
on conflict
situations

Any area where our goal is
to determine large groups
of agents/units that can
cooperate with each other
because they have
compatible views/goals.
Designation on a global
scale sets of companies
that can cooperate with
each other

According to Formula 1,
an agent who holds a
neutral stance on an issue
will receive a distance
value of 0.5, regardless of
the opinions of other
agents. This ensures a
lower value for the
distance function and
increases the likelihood of
forming alliance relations
between agents

Pawlak model
and conflict
function

The same set of issues
for agents. Neutrality is
treated the same as all
other views. Smaller
coalitions than in the
previous approach are
generated. Coalitions
are non-disjoint

Agents’ views
on conflict
situations

Situations where rather
agents are not neutral to
the conflicting issues. For
example collaborative
agents, where each one
has two states: action,
non-action toward the
issue. We want to
designate areas of
collaboration for these
agents

According to Formula 2,
when an agent adopts a
neutral stance on an issue,
it is considered distinct
from agents taking a
position either in favor of
or against the issue

Model with
agglomerative
hierarchical
clustering

The same set of issues
for agents. Coalitions
are disjoint. Neutrality
is treated the same as
all other views. The
smallest number and
separated coalitions are
generated

Agents’ views
on conflict
situations

Applications in situations
where we want to generate
antagonistic groups:
conflicts that exclude
cooperation in many
groups at the same time

According to Formula 3
and the stop condition
outlined in Sect. 3.3, it is
evident that the clusters
are pairwise disjoint

Model with
negotiations
stage

The same set of issues
for agents. Two stages
of coalitions generation.
Ability to tune the
parameter that controls
agents’ alignment.
Ability to focus on
relevant issues for
agents. Identification of
neutral agents who can
be seen as peacemakers
between coalitions

Agents’ views
on conflict
situations.
The most
significant
issues for
agents

Situations in which we are
interested in recognizing
smaller groups and
identifying agents that are
a bridge between strongly
compatible groups (this
strength can be controlled
by a parameter)

The neutrality condition
has been expanded to a
broader range,
significantly increasing the
likelihood of an agent
being in neutral relation.
Conversely, the alliance
threshold has been
elevated to (0.5 − p where
p > 0). As a result, fewer
agents maintain in alliance
relation compared to the
previous approaches

Consensus
model

Different set of
attributes used by each
agent to describe the
local states. The
situation is composed
from local states.
Looking for consensus
is the main goal of the
model (the coalitions
are not investigated)

Back-ground
knowledge
including local
states
evaluation,
situation
evaluation and
constraints

Any conflict can be
analysed, however the
background knowledge
should be available. Ready
to use in negotiations,
where is allowed to find
the solution not only
within the situations
considered by agents

We can individually
characterize each agent’s
views and evaluation of
reality using a set of local
states Ux and a target
function ex. Furthermore,
constraints are introduced
in the system, which can
reflect limited resources
and is a significant
extension compared to
previous proposals
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5 Conclusions

The paper presented an overview of selected conflict analysis methods based on
the Pawlak model. A real-life example concerning the presidential election in
2020 in Poland was discussed. Coalitions of presidential candidates using differ-
ent approaches were generated. The study conducted a comparative evaluation
of the conflict analysis models in terms of their features and prerequisites. The
paper illuminates noteworthy distinctions among the discussed conflict analysis
methods and highlights their respective areas of application.
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Abstract. The main objectives of data mining tasks involve extract-
ing knowledge from data, which can be presented in the form of dis-
tributed local sources or centralized one. Inducing decision rules from
one local data source is relatively straightforward. Nevertheless, obtain-
ing a global model of rules based on different rule-based models is a
more complicated task. In the paper, a new method for inducing deci-
sion rules from different sets of rules considered as data sources that
are spread out is proposed. Each data source is characterized by a set of
rules that are derived from the decision table using three different heuris-
tics. To achieve a comprehensive model that represents the knowledge
found within these different models, methods for global optimization rel-
ative to length and support are proposed. Experiments were performed
on datasets from UCI Machine Learning Repository taking into account
the characteristics of induced rule sets, i.e., their number, length and sup-
port, and classification accuracy. Constructed global rule-based models,
taking into account average values, are comparable to the best results
related to local rule-based models.

Keywords: Decision rules · Heuristics · Length · Support

1 Introduction

Rule-based expert systems play an important role in the development of artificial
intelligence domain. An important element of these systems is decision rules.
They are taking the form of IF . . . THEN sentences and allow the intuitive
presentation of expert knowledge, which they are used for modelling human
reasoning processes and solving problems in different domains. Decision rules
are considered as one of the most popular forms of knowledge representation
used in various fields of data mining and machine learning.

There exist a variety of approaches and algorithms for the induction of deci-
sion rules. Most of the approaches, with the exception of brute-force, Apriori
algorithm [1], extensions of dynamic programming [3], and Boolean reason-
ing [14] cannot guarantee the construction of optimal rules (i.e., rules with min-
imum length or maximum support). Therefore, algorithms based on sequential
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covering procedure [19], greedy algorithms [23], and different biologically inspired
methods such as genetic algorithms [22], and many others [6,21], are used for
rule induction. In addition, approaches for constructing rules directly from data
or by using other objects such as decision trees or reducts should be mentioned.

It is known that constructing rules with minimum length or maximum sup-
port is an NP-hard problem [4,10,13]. In the paper [2], heuristics RM , Poly, and
Log, for decision rule induction, were proposed and it was shown experimentally
that they allow constructing short rules with relatively high support. Moreover,
such heuristics were also applied in the feature selection area [20].

Measures such as length and support are important factors in determining
the quality of decision rules, especially from the point of view of knowledge
representation. Short rules are easy to understand and interpret. The choice of
this measure also coincides with the Minimum Description Length principle [17]
“the best hypothesis for a given set of data is the one that leads to the largest
compression of data”. Support plays an important role from the point of view of
knowledge discovery, as it allows to map important patterns present in the data.
In the case of classification, shorter rules can decrease the likelihood of model
overfitting and enhance the model’s ability to generalize.

Technological progress necessitates the handling of ever-expanding volumes
of data, sourced from diverse data origins. This implies that this data can differ in
terms of where it comes from and how it’s structured. Sets of rules induced by dif-
ferent approaches and algorithms can be considered as distributed data sources.
The field of distributed data analysis has been steadily growing in recent years [5]
with a variety of assumptions. In the framework of decision rules induction, a
parallel computation approach for learning a single model from a set of disjoint
data sets which are distributed across a set of computers was proposed in [7].
Paper [11] describes an approach for data analysis using decision trees, rules,
reducts and association rules, which can be useful in the case of distributed data
mining tasks. In [12], authors presented an algorithm and heuristic for learning
decision rules from a set of decision trees where trees are considered as local,
distributed data sources.

In this paper, a new approach to the induction of decision rules is proposed.
Data sources are represented by sets of rules induced from the decision table
by three different heuristics RM , Poly, and Log. In order to obtain a global
model representing knowledge occurring in these different rule sets, methods for
optimization of rules with respect to support and length were proposed.

The presented methods of global optimization have many practical appli-
cations, especially nowadays when there is a need to process large amounts of
scattered data also related to the same field. As an example, a medical case can
be referenced, when, on the basis of data related to the same specialization, e.g.
paediatric, located in different places in the country, there is a need to extract
knowledge mapping general patterns in these data, or deviations that are also
important in such application. The construction of a global model allows obtain-
ing patterns that reflect the knowledge that is true for most of the distributed
sources and for the paediatric as a domain.
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In the framework of performed experiments, the global model of rules was
compared with rule-based models induced by the considered heuristics applied
to the decision table, and with decision rules induced from the decision tree
constructed by ID3 algorithm [16]. The motivation for choosing the latter app-
roach was that decision trees are considered as good predictors and their form
of knowledge representation is compatible with decision rules. The experiments
were conducted on datasets from the UCI Machine Learning Repository [8] and
involved a comparison from the point of view of (i) knowledge representation,
i.e. the characteristics of rule sets, their number, length and support, and (ii)
classification by applying the 10-fold cross-validation method. Obtained results
show that global optimization relative to support produces rules with greater
support on average compared to each of the three heuristics. Global optimiza-
tion of length allows us to obtain short rules, on average, with values smaller
than in the case of Poly and Log heuristics and comparable with RM heuristic.
Taking into account classification accuracy proposed methods allow to construc-
tion global model of rules with performance comparable to distributed, local
rule-based classifiers and greater than the rule-based model obtained by the
ID3 algorithm.

The structure of the paper is organised as follows. Section 2 consists of infor-
mation about decision rules and the main approaches for their induction, includ-
ing applied selected heuristics RM , Poly, and Log. Section 3 describes the pro-
posed methods for the global optimization of rules relative to length and support.
Experimental results are presented in Sect. 4. Section 5 contains conclusions and
future research plans.

2 Decision Rules

In this section, two main approaches for the induction of decision rules are
described: one that is applied directly to the data table and the second which
allows induction of decision rules based on a decision tree.

2.1 Heuristics for Induction of Decision Rules

First, we will provide the main notions, followed by the representation of knowl-
edge from local data sources using rule-based models induced by the selected
heuristics described below.

Main Notions. The main structure for tabular data representation is the
decision table T = (U,C ∪ {d}) [15], where U is a nonempty finite set of
objects, C = {f1, . . . , fn} is a nonempty finite set of condition attributes, i.e.,
fi : U → Vf , where Vf is the set of values of attribute fi, and d, d /∈ C, is a distin-
guished attribute called a decision or class label, with values Vd = {d1, . . . , d|Vd|}.

The expression

(fi1 = a1) ∧ . . . ∧ (fim = am) → d = a (1)
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is called a decision rule over T if fi1 , . . . , fim ∈ {f1, . . . , fn}, a1, . . . , am are
values of corresponding attributes, and a is a class label.

Let T be a decision table, N(T ) denotes the number of rows in the table T .
By N(T, a) the number of rows r from T with a value of a decision attribute
equal a is denoted, and M(T, a) = N(T ) − N(T, a). The most common decision
for T , is denoted by mcd(T ), it is a decision a, such that N(T, a) has a maximum
value and a has a minimum index. E(T ) denotes the set of not constant condition
attributes from T .

Removing some rows from the decision table T allows the creation of a sub-
table of T . It is denoted as T (fi1 , a1), . . . , (fim , am) and it consists of rows, which
at the intersection with columns fi1 , . . . , fim have values a1, . . . , am. A decision
rule over T (1) corresponds to the subtable T ′ = T (fi1 , a1), . . . , (fim , am) of T .

The rule (1) is called realizable for a row r if a row r belongs to T ′. The
rule (1) is called true for T if each row of T ′, for which the rule (1) is realizable,
has the decision a attached to it. If the considered rule is true for T and realizable
for r, then it is a rule for T and r.

The length of the rule (1) is the number of descriptors from the left-hand
side of the rule and is denoted as m. The support of the rule (1) is the number
of rows in T ′, which are labelled with the decision a. If a rule is true for T , then
its support equals N(T ′).

Description of Selected Heuristics. In the paper [2], heuristics RM , Poly,
and Log for decision rule induction were proposed. They were selected in this
paper because they allow the construction of short rules with relatively good
support.

Algorithm 1 presents the pseudo-code of the work of heuristic H which is as
one of the heuristics RM , Poly, Log, where the following notation is used:

T (j+1) = T (j)(fi, bi), where j denotes an index of the subsequently obtained
subtable during the work of heuristic H,

RM(fi, r, a) = (N(T (j+1)) − N(T (j+1), a))/N(T (j+1)),
α(fi, r, a)=N(T (j), a) − N(T (j+1), a),
β(fi, r, a)=M(T (j), a) − M(T (j+1), a), and
M(fi, r, a) = M(T (j+1), a) = N(T (j+1)) − N(T (j+1), a).
The heuristic H constructs a decision rule for the table T and a row r with

assigned decision a. It starts with a decision rule in which the left-hand side
is empty, → d = a. During the work of the algorithm, in each iteration an
attribute fi ∈ {f1, . . . , fn} is selected, such it fulfils heuristic H and has the
minimum index. In particular,

– for RM it is a minimization of the value of RM(fi, r, a),
– for Poly it is a maximization of the value of β(fi,r,a)

α(fi,r,a)+1 ,

– for Log it is a maximization of the value of β(fi,r,a)
log2(α(fi,r,a)+2) .

The heuristic H is applied sequentially, for each row r of T , so at the end of the
work, the number of induced rules equals |U |.

The following Example 1 demonstrates calculations executed by all heuristics.
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Algorithm 1. Greedy heuristic H for construction of a decision rule for T and r,
H is one of the heuristics RM , Poly, Log.
Require: Decision tableT with condition attributes f1,. . .,fn, row r=(b1,. . .,bn)
Ensure: Decision rule for T and r

begin
Q ← ∅;
j ← 0;
T (j) ← T ;
while all rows in T (j) are not assigned the same decision a do

select fi ∈ {f1, . . . , fn} with the minimum index fulfilling the heuristic H:

– RM : minimization of the value of RM(fi, r, a),

– Poly: maximization of the value of β(fi,r,a)
α(fi,r,a)+1

,

– Log: maximization of the value of β(fi,r,a)
log2(α(fi,r,a)+2)

.

T (j+1) ← T (j)(fi, bi);
Q ← Q ∪ {fi};
j = j + 1;

end while∧
fi∈Q(fi = bi) → d = a, where a is a decision value.

end

Example 1. It will present how heuristic H constructs a decision rule for the
decision table T0, row r1 with the assigned decision A. The decision table T0

has three condition attributes, so there are considered three subtables: T
(1)
1 =

T
(0)
0 (f1, 0), T (1)

2 = T
(0)
0 (f2, 0) and T

(1)
3 = T

(0)
0 (f3, 1).

Heuristic Poly: β(f1,r1,A)
α(f1,r1,A)+1 = 2

2 , β(f2,r1,A)
α(f2,r1,A)+1 = 2

1 , β(f3,r1,A)
α(f3,r1,A)+1 = 1

1 , so the
rule f2 = 0 → d = A is obtained.

Heuristic Log: β(f1,r1,A)
log2(α(f1,r1,A)+2) = 2

log2 3 , β(f2,r1,A)
log2(α(f2,r1,A)+2) = 2

log2 2 ,
β(f3,r1,A)

log2(α(f3,r1,A)+2) = 1
log2 2 , so the rule f2 = 0 → d = A is obtained.

Heuristic RM : RM(f1, r1, A) = 0, RM(f2, r1, A) = 0, RM(f3, r1, A) = 1
3 , so

the rule f1 = 0 → d = A is obtained.

An example of global optimization relative to length of induced decision rules
is included in Sect. 3.
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2.2 Decision Rules Derived from Decision Trees

A decision tree is a popular machine learning algorithm used for both classifica-
tion and regression tasks [9]. It models decisions and their possible consequences
in a tree-like structure. Each internal node represents a decision based on a fea-
ture, each branch represents an outcome of that decision, and each leaf node
represents a predicted class (for classification) or a predicted value (for regres-
sion). The induction of rules based on decision trees involves translating the
hierarchical structure of a decision tree into a set of human-readable rules that
outline the conditions for making predictions. To create these rules, we traverse
the decision tree from the root to each leaf/terminal node, noting the attribute
conditions encountered along the way. At each internal node, the condition asso-
ciated with the chosen branch is added to the rule. This process continues until
a leaf node is reached, at which point the predicted class (for classification) or
the predicted value (for regression) is assigned to the rule.

There are various decision tree algorithms for various use cases [9], however,
in this paper, the Iterative Dichotomiser 3 (ID3) by Ross Quinlan [16] was used.
The ID3 algorithm initializes with the original set of objects as the root node. In
each iteration, it assesses unused attributes in the current set, computing their
entropy (2). The attribute with the lowest entropy or highest information gain is
chosen. The set is then divided by this attribute, creating subsets. The process
recurs on each subset, only considering unselected attributes. Recursion stops if:

1. All subset elements have the same class or decision value.
2. No attributes remain, but subset elements differ in class. The leaf node is

assigned the most common class.
3. No examples exist in the subset due to unmatched attribute values. A leaf

node is made, labeled with the parent node’s most common class.

The algorithm constructs a decision tree, where internal nodes signify attributes
for data division, and leaf nodes denote the final subset’s class label.

Entropy, denoted as H(S), quantifies the level of uncertainty present within
a given S.

H(S) =
∑

x∈X

−p(x) log2 p(x) (2)

where,
S - the current dataset with only unselected attributes,
X - the set of values of decision attribute in S
p(x) - the ratio of the count of elements in class x to the count of elements in
set S.

3 Global Optimization

The aim of the global optimization of decision rules is the construction of a rule-
based model which can be considered as general knowledge of different sets of
rules induced from the decision table. In the paper, global optimization relative
to length and global optimization relative to support are proposed.
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It is assumed that decision rules induced by different heuristics are assigned
to rows of considered decision table T . By ruleH,r is denoted a decision rule
induced by the given heuristic H for a row r of T . Such a rule is indicated by
two measures: length ruleH,r

len and support ruleH,r
supp.

Global Optimization Relative to Length. By Rullen(T, r) is denoted a set
of rules assigned to a given row after global optimization relative to length.
During this process among rules induced by different heuristics and assigned to
a given row r, only those are selected which have a minimum value of length
Optlen(T, r).

Optlen(T, r) = min{ruleH,r
len : H = RM,Poly, Log},

and among all rules corresponding to a given row and heuristics RM , Poly, and
Log respectively, only these are selected where

ruleH,r
len = Optlen(T, r).

As a result of the global optimization relative to the length, each row r of T has
assigned set of decision rules Rullen(T, r).

Example 2. For decision table T0 and row r1 presented at Example 1, each
heuristic induced rule with length equal to 1, so as a result of global optimiza-
tion relative to length the set of decision rules Rullen(T0, r1) = {f2 = 0 → d =
A, f1 = 0 → d = A} assigned to row r1 is obtained.

Global Optimization Relative to Support. By Rulsupp(T, r) is denoted a
set of rules assigned to a given row after global optimization relative to support.
During this process among rules induced by different heuristics and assigned to
a given row r, only those rules are selected which have a maximum value of
support Optsupp(T, r).

Optsupp(T, r) = max{ruleH,r
supp : H = RM,Poly, Log},

and among all rules corresponding to a given row and heuristics RM , Poly, and
Log respectively, only these are selected where

ruleH,r
supp = Optsupp(T, r).

As a result of the global optimization relative to the support, each row r of T
has assigned set of decision rules Rulsupp(T, r).

4 Experimental Results

Experiments were performed on ten datasets from UCI ML Repository [8]. For
those which contains missing values, each such value was replaced with the most
common value of the corresponding attribute.
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The aim of the experiments was to analyze experimentally and compare
the proposed methods of global optimization relative to length and support,
from the point of view of knowledge representation and classification. Obtained
global models of rules were compared with local rule-based models induced by
the heuristics RM , Poly, and Log. Additionally, they were compared with the
model of decision rules derived from decision tree induced by ID3 algorithm.
Such an algorithm was selected as it allows work with categorical data, besides
it is known that decision trees are good predictors and their form of knowledge
representation is compatible with decision rules.

The experiments were performed using the Python language and ChefBoost
framework [18].

Table 1 presents a number of unique rules obtained for global optimization
relative to length, support and for each heuristic RM , Poly and Log. For the
comparisons results obtained by the ID3 algorithm are also included. Based on
the presented results, it is possible to see that method based on global opti-
mization relative to support produces a smaller number of rules compared to
global optimization relative to length. In the case of rules induced by individual
heuristics, the number of rules is smaller than in the case of global optimization
with respect to length as well as support. This situation is due to the fact that
in the case of global optimization several decision rules can be assigned to one
row of the decision table. The smallest number of unique rules occurs in the case
of the ID3 algorithm.

Table 2 presents the minimum, average (relative to the number of unique
rules) and maximum length of decision rules obtained for each heuristic RM ,
Poly and Log respectively. It is shown that heuristics induce short decision
rules. Obtained values can be compared relative to the number of attributes. In
this case, for heuristic Log and dataset chess-kr-vs-kp with 36 attributes, the
maximum length of rules is 11. On average, heuristic RM induces the shortest
decision rules.

Table 3 presents the minimum, average (relative to the number of unique
rules) and maximum support of decision rules obtained for each heuristic RM ,
Poly and Log respectively. Taking into account the maximum support of decision
rules, for three datasets cars, chess-kr-vs-kp, and nursery and each heuristic RM ,
Poly and Log, the values are relatively big compared to the number of rows in
the dataset. On average, the biggest values were obtained by heuristic Poly.

Table 4 presents minimum, average (relative to the number of unique rules)
and maximum length and support obtained after global optimization respectively
relative to length and support. Results related to the ID3 algorithm are also
included. It is possible to see that the global optimization relative to length
induces short decision rules. On average, the values are comparable to results
obtained by heuristic RM (Table 2). In the case of global optimization relative
to support, on average, the results increase the values obtained by each of the
heuristic RM , Poly and Log presented in Table 3. It is also apparent that the
proposed global optimization methods produce better results than rules induced
from the decision tree and the ID3 algorithm.
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Table 1. Number of unique decision rules obtained by global optimization relative to
length, support, heuristics RM , Poly and Log, and ID3 algorithm.

Dataset Attr Rows Global optimization RM Poly Log ID3

length support

balance-scale 4 625 303 303 303 303 303 401

breast-cancer 9 266 250 222 175 169 143 141

cars 6 1728 465 465 291 301 292 296

chess-kr-vs-kp 36 3196 271 150 220 358 177 49

flags 26 194 143 112 123 98 87 88

house-votes 16 279 71 49 55 50 41 27

lymphography 18 148 79 77 66 55 53 54

nursery 8 12960 1596 1576 855 973 872 839

soybean-large 35 292 158 153 141 81 82 109

tic-tac-toe 9 958 355 251 268 204 356 218

Average 369.1 335.8 249.7 259.2 240.6 222.2

Table 2. Minimum, average and maximum length of decision rules induced by heuris-
tics RM , Poly and Log.

Dataset Attr RM Poly Log

Min Avg Max Min Avg Max Min Avg Max

balance-scale 4 3 3.41 4 3 3.41 4 3 3.41 4

breast-cancer 9 1 3.52 8 3 5.05 8 1 3.29 6

cars 6 1 5.44 6 1 5.44 6 1 5.45 6

chess-kr-vs-kp 36 1 4.68 23 3 13.66 22 1 5.33 11

flags 26 1 2.23 9 3 6.88 13 1 3.26 6

house-votes 16 2 3.29 5 2 4.38 7 2 3.56 7

lymphography 18 1 2.56 5 1 4.85 8 1 2.85 5

nursery 8 1 5.87 8 1 5.93 8 1 5.79 8

soybean-large 35 1 3.27 35 1 6.79 13 1 4.59 8

tic-tac-toe 9 3 4.32 7 3 4.70 7 3 4.20 6

Average 3.86 6.11 4.17

Table 5 presents the accuracy of classification and standard deviation, for
global optimization relative to length, global optimization relative to support
and heuristics RM , Poly and Log, and ID3 algorithm. The classifiers were con-
structed using 10 fold cross-validation method and standard voting. Accuracy
of classification is the number of correctly recognized instances relative to the
number of rows from test table. Obtained results show that on average, classifi-
cation accuracies for global optimization relative to length and support are very
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Table 3. Minimum, average and maximum support of decision rules induced by heuris-
tics RM , Poly and Log.

Dataset Rows RM Poly Log

Min Avg Max Min Avg Max Min Avg Max

balance-scale 625 1 3.38 5 1 3.38 5 1 3.38 5

breast-cancer 266 1 3.25 24 1 4.43 23 1 4.10 25

cars 1728 1 8.14 576 1 7.97 576 1 8.11 576

chess-kr-vs-kp 3196 1 76.40 743 1 119.16 743 1 75.11 743

flags 194 1 2.59 18 2 7.09 22 1 5.68 22

house-votes 279 1 32.22 95 2 43.02 95 2 40.02 95

lymphography 148 1 7.70 32 2 13.15 27 1 10.83 32

nursery 12960 1 31.06 4320 1 29.11 4320 1 30.50 4320

soybean-large 292 1 3.59 23 1 5.63 38 1 5.96 38

tic-tac-toe 958 1 13.21 90 1 15.04 90 2 13.04 90

Average 18.15 24.80 19.67

Table 4. Minimum, average and maximum length and support of decision rules
obtained by global optimization relative to length and support and ID3 algorithm.

Dataset Global - length Global - support ID3 - length ID3 - support

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

balance-scale 3 3.41 4 1 3.38 5 3 3.86 4 1 1.56 5

breast-cancer 1 3.22 6 1 4.64 25 2 3.82 7 1 1.89 12

cars 1 5.49 6 1 6.11 576 1 5.52 6 1 5.84 576

chess-kr-vs-kp 1 4.51 11 1 181.17 743 1 9.24 16 1 65.22 743

flags 1 2.22 4 2 7.38 22 1 3.30 7 1 2.20 10

house-votes 2 3.28 5 2 41.00 95 2 5.63 8 1 10.33 95

lymphography 1 2.61 4 2 14.12 32 2 3.39 6 1 2.74 25

nursery 1 5.74 8 1 28.72 4320 1 6.66 8 1 15.45 4320

soybean-large 1 3.20 7 1 4.81 38 2 4.50 8 1 2.68 24

tic-tac-toe 3 4.14 6 2 18.00 90 3 5.78 7 1 4.39 90

Average 3.78 30.93 5.17 11.23

close. The results are also comparable taking into account classification accura-
cies obtained by each heuristic RM , Poly and Log separately. Both the proposed
optimization methods and each of the heuristics provide slightly higher classifi-
cation accuracy than the ID3 algorithm. It should be also noted that on average,
standard deviation values are almost the same for all rule-based classifiers.
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Table 5. Accuracy and standard deviation of rule-based classifiers.

Dataset Global-length Global-support RM Poly Log ID3

Acc Std Acc Std Acc Std Acc Std Acc Std Acc Std

balance-scale 0.786 0.04 0.773 0.04 0.774 0.05 0.773 0.05 0.766 0.05 0.622 0.07

breast-cancer 0.692 0.07 0.673 0.07 0.665 0.10 0.737 0.04 0.699 0.08 0.646 0.11

cars 0.905 0.03 0.887 0.03 0.918 0.04 0.931 0.04 0.925 0.02 0.922 0.03

chess-kr-vs-kp 0.994 0.00 0.993 0.01 0.991 0.01 0.986 0.01 0.992 0.01 0.997 0.00

flags 0.656 0.16 0.701 0.10 0.646 0.15 0.666 0.12 0.669 0.11 0.634 0.13

house-votes 0.943 0.04 0.943 0.03 0.953 0.04 0.932 0.05 0.943 0.04 0.935 0.05

lymphography 0.837 0.08 0.810 0.09 0.810 0.09 0.783 0.13 0.845 0.08 0.758 0.11

nursery 0.989 0.01 0.988 0.00 0.986 0.01 0.980 0.01 0.987 0.00 0.985 0.00

soybean-large 0.787 0.09 0.804 0.07 0.774 0.08 0.811 0.06 0.798 0.09 0.712 0.06

tic-tac-toe 0.927 0.03 0.938 0.02 0.947 0.02 0.938 0.02 0.939 0.02 0.843 0.05

Average 0.852 0.05 0.851 0.05 0.846 0.06 0.854 0.05 0.856 0.05 0.805 0.06

5 Conclusions

In the paper, methods for obtaining a single global model based on rule sets
induced by different heuristics which can be considered as distributed data
sources, were proposed. Quality of induced rules was assessed by their length
and support. These factors are important from the point of view of knowledge
representation because short rules are easier for human beings to understand,
and support allows us to discover major patterns in the data. The proposed
methods of global model induction are based on the selection of decision rules
characterized by small length - in the case of global optimization relative to
length, and high support - in the case of global optimization relative to support.

Creating a global rule model on the basis of different sets of rules is impor-
tant from the point of view of practical applications, e.g. when a company has
many branches scattered in different locations and there is a need to obtain
knowledge about the patterns that are true for most branches, or even for the
whole company.

Obtained results show that the proposed methods for constructing global
models include short rules with relatively good support. On average, in the case
of length, the values are comparable with the results of the RM heuristic, and in
the case of support, the values are not far from the results of the Poly heuristic.
Taking into account classification accuracy both global optimization relative to
length and support yield results comparable to those obtained by the local data
models induced by heuristic RM , Poly and Log. In addition, the results are
better than in the case of the ID3 algorithm.

In future works, other approaches for induction of rule sets will be considered
and other approaches for constructing a global model, including decision trees,
will be studied.
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Abstract. Decision-theoretic rough sets (DTRS) are a probabilistic
generalization of rough sets based on Bayesian decision theory. Existing
studies on DTRS mainly focus on algebraic approaches. They investigate
the formal properties of cost functions of three actions (i.e., assigning an
object to the positive, boundary, or negative regions) and the procedure
for determining a pair of thresholds by minimizing the overall cost of a
rough-set based three-way classification. The objective of this paper is to
propose a new direction of research towards the visualization of DTRS.
As a complement and an alternative to algebraic approaches, we examine
geometric interpretations of DTRS. The geometric approaches are intu-
itively appealing, easy-to-grasp, and easy-to-use. By looking at visual
representations of the various costs, the thresholds, and the geometric
relationships between the costs and thresholds, we gain new insights into,
and a deeper understanding of, DTRS. Geometric approaches can help
practitioners use and apply quickly and effectively DTRS. Combining
algebraic approaches and geometric approaches is instrumental in pur-
suing future research on DTRS.

Keywords: Decision-theoretic rough set (DTRS) · Two-way
Decision · Three-way decision · Geometric interpretation

1 Introduction

A fundamental idea of Pawlak rough sets [12,13] is three-way classification under
incomplete information or knowledge. For a given subset of objects representing
the set of instances of a concept, rough sets use three pairwise disjoint positive,
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negative, and boundary regions to approximate the concept. There are many
extensions of rough sets [2,3,7,17]. Decision-theoretic rough sets (DTRS) are
a probabilistic generalization of Pawlak rough sets based on Bayesian decision
theory [22,23,28]. Since its introduction, DTRS model has received attentions
from many researchers and has been widely applied into various fields [1,8,9,14,
20,31,32].

Existing studies on rough sets and DTRS mainly focus on algebraic formu-
lations, which has produced fundamental theoretical results and practical appli-
cations. Recently, Xu et al. [18] gave some geometric interpretations of DTRS.
Their preliminary results motivate this paper on a combination of algebraic and
geometric approaches to study decision-theoretic rough sets. Our main objective
is to complement the algebraic methods by geometric visual methods and tools.

Visual decision-making utilizes an interactive visual interface to implement
physical interpretations and facilitate decision-making [10,11,15]. It combines
data representation, model analysis, human-machine interaction, and visualiza-
tion technology. It is widely applied in big data analytics, knowledge graphs,
healthcare, biomedicine, industrial mining, and other fields [5,6,16]. Visual deci-
sion technology not only enables an intuitive display of huge volume of data and
a visual interpretation of an abstract theory, but also facilitates effective com-
munication among stakeholders and users. It is expected that, when used wisely
and appropriately, visual decision making technology may play an important
role in future studies on rough sets.

As a matter of fact, several studies have already touched upon, either
explicitly or implicitly, geometric approaches to rough sets and three-way deci-
sion [2,19,26,27]. However, a systematic study still does not exist. As a first
step towards visual approaches to rough sets, this paper presents both algebraic
and geometric analysis and interpretation of DTRS. The results suggest a new
research direction called visual three-way decision, which goes beyond three-way
decision with DTRS.

2 Algebraic Formulations

In this section, we review the Bayesian decision procedure [4] for algebraic for-
mulation of models of probabilistic two-way and three-way classifications with
respect to a Pawlak approximation space. The latter is commonly known as
decision-theoretic rough sets (DTRS) model [28,29].

2.1 Bayesian Decision Procedure

In concept learning, formation, and classification, one typically represents a con-
cept by a pair of a set of attributes, called the intension of the concept, and a
set of objects to which the concept applies, called the extension of the concept.
Pawlak [12,13] theory of rough sets concerns concept approximations under sit-
uations where a finite number of attributes are used to describe objects. Due to
the expressive power of a limited set of attributes, some objects have the same



Algebraic Formulations and Geometric Interpretations 33

description and, therefore, cannot be differentiated. The indistinguishability of
objects is formally described by an equivalence relation on a universe of objects,
which induces a partition of the universe of objects. Equivalence classes are the
basic building blocks for formulating two-way and three-way classifications.

Definition 1. Suppose that U is a finite universe of objects and E is an equiv-
alence relation on U , that is, E is reflexive, symmetric, and transitive. The
equivalence class containing an object x ∈ U is given by:

[x]E = [x] = {y ∈ U | xEy}. (1)

The family of all equivalence classes defines a partition, or quotient space, of U :

U/E = {[x] | x ∈ U}. (2)

By following the notional system of Yang and Yao [20,30], we call the pair apr =
(U,U/E) an approximation space. Moreover, [x] ∈ U/E is called a granular
object in the quotient space U/E.

Definition 2. For a subset of objects C ⊆ U representing the extension of a
concept or a class, its complement is given by C = U − C. The conditional
probability that an object y ∈ U is an instance of C given that y ∈ [x] is defined
by:

Pr(C|[x]) =
|C ∩ [x]|

|[x]| , (3)

where | · | denotes the cardinality of a set. By the law of probability, we have
Pr(C|[x]) = 1 − Pr(C|[x]).

A Bayesian decision procedure for classification within an approximation
space is briefly described as follows. For a concept with a subset of objects
C ⊆ U as its extension, we can formulate a set of two states W = {P : C,N :
C}, where P and N denote that an object is in C and not in C, respectively.
For building an n-way classification scheme, we have a finite set of n possible
actions A = {a1, · · · , an}. Let Pr(C|[x]) and Pr(C|[x]) denote, respectively, the
conditional probabilities of an object in C and C given that the object is in
[x]. Suppose that λ(a|C) and λ(a|C) are, respectively, the loss, cost, or risk for
taking action a ∈ A for an object, if the object is in C and in C. If an action
a ∈ A is taken for all objects in [x], the expected loss for the equivalence class
[x] can be calculated as follows:

R(a|[x]) = λ(a|C) Pr(C|[x]) + λ(a|C) Pr(C|[x]). (4)

Let τ : U/E −→ A denote a decision function for equivalence classes in U/E,
where τ([x]) denotes the action taken for all objects in the equivalence class [x].
The overall risk of τ is the following summation:

R(τ) =
∑

[x]∈U/E

R(τ([x])|[x]). (5)
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The minimum risk Bayesian decision procedure suggests that one should choose
a decision function τ that minimizes the overall risk in Eq. (5).

By the fact that the expected losses of different equivalence classes are inde-
pendent of each other, we can in fact minimize Eq. (5) by choosing an action
that minimizes the expected loss of each equivalence class. More specifically, for
an equivalence class [x] ∈ U/E, we have the following optimization problem:

arga∈A R(a|[x]) = arga∈A(λ(a|C) Pr(C|[x]) + λ(a|C) Pr(C|[x])), (6)

where arg denotes the choice of an argument that minimizing a function. With
this general formulation, we can examine in particular two-way and three-way
classification models.

2.2 Two-Way Classification

In a two-way classification model, with respect to a given concept C ⊆ U , we
divide U into two regions, namely, a positive region POS(C) and a negative
region NEG(C). Accordingly, the set of actions A = {aP , aN} consists of two
actions:

aP : accept x ∈ C, i.e., decide x ∈ POS(C),
aN : reject x ∈ C, i.e., decide x ∈ NEG(C).

That is, for a two-way classification, we either accept or reject an object to be an
instance of the concept. Assume that the loss function is given by the following
2 × 2 matrix,

Action State

P : C N : C

aP : accept λPP = λ(aP |C) λPN = λ(aP |C)

aN : reject λNP = λ(aN |C) λNN = λ(aN |C)

The expected costs of the two actions are given by:

R(aP |[x]) = λPP Pr(C|[x]) + λPN Pr(C|[x]),
R(aN |[x]) = λNP Pr(C|[x]) + λNN Pr(C|[x]). (7)

By the Bayesian decision procedure, we can easily have the following rules for
defining an optimal decision function: for [x] ∈ U/E,

If R(aP |[x]) ≤ R(aN |[x]), take action aP , i.e., decide x ∈ POS(C);
If R(aN |[x]) < R(aP |[x]), take action aN , i.e., decide x ∈ NEG(C).

When the two actions have the same cost, a tie-breaking criterion may be used
by selecting any action. In specifying the two rules, we take the action aP when
aP and aN has the same cost.
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To simply the two rules, we make the following assumption on the loss func-
tion:

(c1) λPP < λNP , λNN < λPN .

Assumption (c1) states that the cost of a correction decision is less than the
cost of an incorrect decision, which seems to be very reasonable. Under the
Assumption (c1), by using the equality Pr(C|[x]) = 1 − Pr(C|[x]), we can easily
obtain the following simpler form of the two rules:

If Pr(C|[x]) ≥ γ, take action aP , i.e., decide x ∈ POS(C);
If Pr(C|[x]) < γ, take action aN , i.e., decide x ∈ NEG(C),

where

γ =
λPN − λNN

(λPN − λNN ) + (λNP − λPP )
=

(
1 +

λNP − λPP

λPN − λNN

)−1

, (8)

and 0 < γ < 1. That is, the value of γ is in fact determined by the ratio
(λNP − λPP )/(λPN − λNN ). Different loss functions may therefore produce the
same threshold as long as the ratio remains to the same. Based on the analysis,
we obtain a two-way classification model.

Definition 3. In an approximation space apr = (U,U/E), given a threshold
0 ≤ γ ≤ 1 and a target concept C ⊆ U , we can make a two-way classification to
approximate C as follows:

POSγ(C) = {x ∈ U | Pr(C|[x]) ≥ γ},

NEGγ(C) = {x ∈ U | Pr(C|[x]) < γ}. (9)

Moreover, an optimal threshold γ can be determined by a loss function.

In formulating a two-way classification, we may view the conditional proba-
bility Pr(C|[x]) as a measure of confidence in accepting or rejecting an object to
be an instance of C given that the object is in [x]. We accept an object to be an
instance of the concept, if the confidence is above a certain level; otherwise, we
reject the object. The Bayesian decision procedure establishs a solid foundation
for us to determine the required level of confidence with the associated cost.

2.3 Three-Way Classification

In a three-way classification model, namely, the DTRS model [23,28,29], with
respect to a given concept C ⊆ U , we divide U into three regions, namely,
a positive region POS(C), a negative region NEG(C), and a boundary region
BND(C). Accordingly, the set of actions A = {aP , aN , aB} consists of three
actions:

aP : accept x ∈ C, i.e., decide x ∈ POS(C),
aN : reject x ∈ C, i.e., decide x ∈ NEG(C),
aB : neither accept nor reject x ∈ C, i.e., decide x ∈ BND(C).
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That is, for a three-way classification, we either accept, reject, or non-
commitment an object to be an instance of the concept. Assume that the loss
function is given by the following 3 × 2 matrix,

Action State

P : C N : C

aP : accept λPP = λ(aP |C) λPN = λ(aP |C)

aN : reject λNP = λ(aN |C) λNN = λ(aN |C)

aB : neither accept nor reject λBP = λ(aB |C) λBN = λ(aB |C)

The expected costs of the three actions are given by:

R(aP |[x]) = λPP Pr(C|[x]) + λPN Pr(C|[x]),
R(aN |[x]) = λNP Pr(C|[x]) + λNN Pr(C|[x]),
R(aB|[x]) = λBP Pr(C|[x]) + λBN Pr(C|[x]). (10)

By the Bayesian decision procedure, we can easily have the following rules for
defining an optimal decision function: for [x] ∈ U/E,

If R(aP |[x]) < R(aN |[x]) and R(aP |[x]) ≤ R(aB |[x]),
take action aP , i.e., decide x ∈ POS(C);

If R(aN |[x]) < R(aP |[x]) and R(aN |[x]) ≤ R(aB|[x]),
take action aN , i.e., decide x ∈ NEG(C);

If R(aB |[x]) < R(aP |[x]) and R(aB |[x]) < R(aN |[x]),
take action aB , i.e., decide x ∈ BND(C).

In the three rules, when two or three actions have the same cost, we break ties
according to the ordering of three actions aP , aN , aB .

To simply the three rules, we make the following assumptions on the loss
function:

(C1) λPP ≤ λBP < λNP , λNN ≤ λBN < λPN .

Assumption (C1) is an extended version of assumption (c1). It states that the
cost of a correction decision is less than the cost of an incorrect decision, and the
cost of aB lies between a correct and an incorrect decision and may be the same
as a correct decision. Since a non-commitment decision aB in fact falls between
aP and aN , Assumption (C1) seems to be reasonable.

Under the Assumption (C1), by using the equality Pr(C|[x]) = 1−Pr(C|[x]),
we can easily obtain the following simpler form of the three rules:

If Pr(C|[x]) ≥ α and Pr(C|[x]) > γ, take action aP , i.e., decide x ∈ POS(C);

If Pr(C|[x]) ≤ β and Pr(C|[x]) < γ, take action aN , i.e., decide x ∈ NEG(C);

If Pr(C|[x]) > β and Pr(C|[x]) < α, take action aB , i.e., decide x ∈ BND(C),
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where

α =
λPN − λBN

(λPN − λBN ) + (λBP − λPP )
=

(
1 +

λBP − λPP

λPN − λBN

)−1

,

β =
λBN − λNN

(λBN − λNN ) + (λNP − λBP )
=

(
1 +

λNP − λBP

λBN − λNN

)−1

,

γ =
λPN − λNN

(λPN − λNN ) + (λNP − λPP )
=

(
1 +

λNP − λPP

λPN − λNN

)−1

, (11)

and 0 < α ≤ 1, 0 ≤ β < 1, and 0 < γ < 1. The three regions give a three-way
approximation of C, which is called a probabilistic rough set induced by C.

The threshold α is obtained by comparing the costs of actions aP and aB , the
threshold β by comparing the costs of actions aN and aB , and γ by comparing
the costs of actions aP and aN . Under Assumption (C1), the first form of β is
well-defined. However, the second form of β is well-defined only if λBN < λNN .
When λBN = λPN , we use the first form that gives β = 0.

To further simply the three rules, we make another assumption:

(C2)
λBP − λPP

λPN − λBN
<

λNP − λBP

λBN − λNN
.

The Assumptions (C1) and (C2) imply that 0 ≤ β < γ < α ≤ 1. It follows
that only a pair of thresholds (α, β) is needed and the three rules can be further
simplified:

If Pr(C|[x]) ≥ α, take action aP , i.e., decide x ∈ POS(C);
If Pr(C|[x]) ≤ β, take action aN , i.e., decide x ∈ NEG(C);
If β < Pr(C|[x]) < α, take action aB , i.e., decide x ∈ BND(C).

Based on the analysis, we obtain a three-way classification model.

Definition 4. In an approximation space apr = (U,U/E), given a pair thresh-
olds 0 ≤ β < α ≤ 1 and a target concept C ⊆ U , we can make a three-way
classification to approximate C as follows:

POS(α,β)(C) = {x ∈ U | Pr(C|[x]) ≥ α},

NEG(α,β)(C) = {x ∈ U | Pr(C|[x]) ≤ β},

BND(α,β)(C) = {x ∈ U | β < Pr(C|[x]) < α}. (12)

Moreover, a pair of optimal thresholds α and β can be determined by a loss
function.

Compared with a two-way decision model, we only accept or reject an object
if our confidence levels are sufficiently high, namely, at or above α for accep-
tance, and at or below β for rejection. Otherwise, we neither accept nor reject
the object. A decision of non-commitment in fact has a lower cost than either
acceptance or rejection. This is a main advantage of three-way classification
model.
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3 Geometric Interpretations

We now examine geometric interpretations of two-way and three-way classifica-
tions derived from the algebraic formulations.

3.1 Geometric Interpretation of the Bayesian Classification

By the law of probability Pr(C|[x]) = 1 − Pr(C|[x]), the cost of action a ∈ A
defined by Eq. (4) in the Bayesian decision procedure can be expressed as a
linear function of Pr(C|[x]) as follows:

R(a|[x]) = λ(a|C) Pr(C|[x]) + λ(a|C) Pr(C|[x])
= (λ(a|C) − λ(a|C)) Pr(C|[x]) + λ(a|C). (13)

We can draw a line in a two-dimensional space to represent the relation between
the cost of an action and the conditional probability. Suppose that the horizontal-
axis represents the value of conditional probability p = Pr(C|[x]) and the
vertical-axis represents the value cost r = R(a|[x]). The relationship between
p and r, i.e., r = (λ(a|C) − λ(a|C))p + λ(a|C), can be described by a line Ra

in the probability-risk, or p-r space, as shown in Fig. 1. The value of R(a|[x]) is
λ(a|C) when Pr(C|[x]) = 0 and is λ(a|C) when Pr(C|[x]) = 1. The slope of the
line is given by λ(a|C) − λ(a|C). When λ(a|C) > λ(a|C), R(a|[x]) is monoton-
ically increasing with respect to Pr(C|[x]); when λ(a|C) < λ(a|C), R(a|[x]) is
monotonically decreasing with respect to Pr(C|[x]).

p

r

0 1

λ(a|C)

λ(a|C)

Ra

Fig. 1. Cost of an action a ∈ A versus probability

For a set of n actions A = {a1, . . . , an}, we can draw n lines in the p-r space.
For a given conditional probability p0, the n lines have n possibly different
intersections with the line p = p0, we can simply choose an action that has the
lowest r value from the n intersections.
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3.2 Geometric Interpretation of Two-Way Classification

In two-way classification, for Pr(C|[x]) + Pr(C|[x]) = 1, Eq. (7) of the cost of
actions aP and aN in the p-r space can be expressed as two linear functions of
Pr(C|[x]) as follows:

R(aP |[x]) = λPP Pr(C|[x]) + λPN Pr(C|[x])
= (λPP − λPN ) Pr(C|[x]) + λPN ,

R(aN |[x]) = λNP Pr(C|[x]) + λNN Pr(C|[x])
= (λNP − λNN ) Pr(C|[x]) + λNN . (14)

In the probability-risk space, the two lines RP and RN in Fig. 2 denote, respec-
tively, the relationships between the expected costs and probability of the two
actions aP and aN . The value of R(aP |[x]) is λPN when Pr(C|[x]) = 0 and is
λPP when Pr(C|[x]) = 1. The slope of line RP is given by λPP − λPN . When
λPP > λPN , RP is monotonically increasing with respect to Pr(C|[x]); when
λPP < λPN , RP is monotonically decreasing with respect to Pr(C|[x]). Sim-
ilarly, the value of R(aN |[x]) is λNN when Pr(C|[x]) = 0 and is λNP when
Pr(C|[x]) = 1. The slope of line RN is given by λNP − λNN . When λNP > λNN ,
RP is monotonically increasing with respect to Pr(C|[x]); when λNP < λNN , RP

is monotonically decreasing with respect to Pr(C|[x]).

p

r

0 1

λNP

λNN λPP

λPN

γ

RN RP

Rejection Acceptance

Fig. 2. Two-way classification

Assumption (c1), i.e., λNP > λPP and λPN > λNN , is represented by putting
λNP above λPP on line p = 1, and putting λPN above λNN on line p = 0. It
follows that the two lines RP and RN must have an intersection at p = γ, where
γ is between 0 and 1 and given by:

γ =
(

1 +
λNP − λPP

λPN − λNN

)−1

. (15)
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From Fig. 2, we can see that

if Pr(C|[x]) = γ,R(aP |[x]) = R(aN |[x]);
if Pr(C|[x]) > γ,R(aP |[x]) < R(aN |[x]);
if Pr(C|[x]) < γ,R(aP |[x]) > R(aN |[x]).

That is, we make an acceptance decision when the probability falls within the
interval [γ, 1] and a rejection decision when the probability falls within the inter-
val [0, γ).

According to Eq. (15), the ratio (λNP − λPP )/(λPN − λNN ) determines the
value of γ. Different loss functions may produce the same γ. For example, if
we increase the cost λNP and, at the same time, decrease the cost of λNN , we
would have the same γ value, as long as we keep the ratio unchanged. This
is equivalent to rotate line RN in Fig. 2 counter-clockwise by fixing the point
(γ, (λPP − λPN )γ + λPN ). Likewise, we may also rotate line RP clockwise and
rotate line RN either clockwise or counter-clockwise. Figure 3 shows the result of
rotating both RP and RN clockwise, resulting lines R′

P and R′
N , respectively. It

follows that (λNP − λPP )/(λPN − λNN ) = (λ′
NP − λ′

PP )/(λ′
PN − λ′

NN ) and γ =
γ′.

p

r

0 1

λNP

λNP

λNN

λNN

λPP

λPP

λPN

λPN

γ = γ

RN

RN

RP

RP

Fig. 3. Two-way classification: Different loss functions

For a given loss function, λPP , λPN , λNP , and λNN , we may produce a stan-
dardized loss function by setting:

λs
PP = λPP − λPP = 0,

λs
PN = λPN − λNN ,

λs
NP = λNP − λPP ,

λs
NN = λNN − λNN = 0. (16)

As shown by Fig. 4, the standardized loss function is obtained from the original
loss function by reducing the corresponding costs of actions aP and aN by λPP
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p

r

0 1

λNP

λNN

λs
NN

λPP

λs
NP

λPN

λs
PN

λs
PPγ = γs

RN

RP

Rs
N Rs

P

Fig. 4. Two-way classification: a loss function and its standardized loss function

and λNN for objects in C and in C, respectively. Based on the analysis, we have
(λNP − λPP )/(λPN − λNN ) = (λs

NP − 0)/(λs
PN − 0) = λs

NP /λs
PN and γ = γs.

Like the ratio form, we only need to consider the costs of incorrect decisions in
a standardized loss function.

3.3 Geometric Interpretation of Three-Way Classification

In three-way classification, for Pr(C|[x]) + Pr(C|[x]) = 1, Eq. (10) of the cost
of actions aP , aN , and aB in the p-r space can be expressed as three linear
functions of Pr(C|[x]) as follows:

R(aP |[x]) = λPP Pr(C|[x]) + λPN Pr(C|[x])
= (λPP − λPN ) Pr(C|[x]) + λPN ,

R(aN |[x]) = λNP Pr(C|[x]) + λNN Pr(C|[x])
= (λNP − λNN ) Pr(C|[x]) + λNN ,

R(aB |[x]) = λBP Pr(C|[x]) + λBN Pr(C|[x])
= (λBP − λBN ) Pr(C|[x]) + λBN . (17)

They are represented by three lines RP , RN , and RB in the probability-risk
space, as shown in Fig. 5. The two lines RP and RN are the same as the case of
the two-way classification. For the third line RB, the value of R(aB |[x]) is λBN

when Pr(C|[x]) = 0 and is λBP when Pr(C|[x]) = 1. The slope of line RB is
given by λBP − λBN . When λBP > λBN , RB is monotonically increasing with
respect to Pr(C|[x]); when λBP < λBN , RB is monotonically decreasing with
respect to Pr(C|[x]).

For Assumption (C1), i.e., λPP ≤ λBP < λNP and λNN ≤ λBN < λPN , similar
to the case of two-way classification, we put λNP above λPP on line p = 1 and
λPN above λNN on line p = 0. At the same time, we put λBP somewhere in the
middle of λNP and λPP on line p = 1 and put λBN somewhere in the middle of
λNN and λPN on line p = 1. The two lines RP and RB must have an intersection
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p

r

0 1

λNP

λNN λPP

λPN

λBP

λBN

RN

RP

RB

αβ γ

a

b

c

d
w

u

v

Fig. 5. Three-way classification

at p = α between 0 and 1; the two lines RN and RB must have an intersection
at p = β between 0 and 1; the two lines RP and RN must have an intersection
at p = γ between 0 and 1. The values of α, β, and γ are given by:

α =
(

1 +
λBP − λPP

λPN − λBN

)−1

,

β =
(

1 +
λNP − λBP

λBN − λNN

)−1

,

γ =
(

1 +
λNP − λPP

λPN − λNN

)−1

, (18)

where γ is the threshold of a two-way classification defined by Eq. (15).
Let

a = λPN − λBN , b = λBN − λNN ;
c = λNP − λBP , d = λBP − λPP . (19)

From Fig. 5, we can see that the three thresholds α, β, and γ can be expressed
as:

α =
(

1 +
d

a

)−1

,

β =
(
1 +

c

b

)−1

,

γ =
(

1 +
d + c

a + b

)−1

. (20)

Assumption (C2) can be expressed as follows:

λBP − λPP

λPN − λBN
<

λNP − λBP

λBN − λNN
⇐⇒ d

a
<

c

b
, (21)
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which implies that β < α. It can be verified that

d

a
<

c

b
=⇒ d

a
<

d + c

a + b
<

c

b
. (22)

Therefore, we have β < γ < α.
The geometric interpretation of Assumption (C2) and the relationship

between three thresholds can be explained as follows. In Fig. 5, the intersec-
tions of RN and RB , RN and RP , and RB and RP are denoted by u, v, and
w, respectively. Triangles (λPN , w, λBN ) and (w, λBP , λPP ) are similar triangles.
Their heights are α and 1−α, respectively. Similarly, Triangles (λBN , u, λNN ) and
(u, λNP , λBP ) are similar triangles. Their heights are β and 1 − β, respectively.
Therefore, by the properties of similar triangles, we can re-express Assump-
tion (C2) as:

1 − α

α
=

d

a
<

c

b
=

1 − β

β
, (23)

which immediately leads to β < α. By using a similar argument and Eq. (22),
we can also show that β < γ and γ < α.

As seem from Fig. 5, under the condition β < γ < α, aP has the minimum
value when probability falls within the interval [α, 1], we make an acceptance
decision; aN has the minimum value when probability falls within the interval
[0, β], we make a rejection decision; aB has the minimum value when probability
falls within the interval (β, α), we neither accept nor reject and make a non-
commitment decision.

4 Conclusions

In this paper, we have examined both algebraic formulations and geometric
interpretations of two-way and three-way classifications. While the algebraic
formulation are slightly different formulations of the decision-theoretic rough
sets model [22,23,28,29], the geometric interpretations are new and extend the
preliminary results of Xu et al. [18]. The geometric studies provide intuitive
and visual understanding of the decision-theoretic rough sets models. In par-
ticular, geometric interpretations help us understand better the loss functions,
the relationship between cost and probability, and the meaning of thresholds.
They are useful in guiding us to derive and interpret different loss functions and
their consequences for classification. A combination of algebraic and geometric
approaches provides a fuller and richer figure of DTRS. This new direction of
research deserves a more thorough study.

Three-way classification with DTRS represents a narrow sense of three-
way decision [21–23,25]. A wide sense of three-way decision concerns thinking,
problem-solving, and computing in threes [24,26,27]. One may expect that the
similar geometric approaches can be used to study three-way decision in general.
In other words, the investigation of this paper points at a new research avenue for
three-way decision, which may be called visual three-way decision. Visual three-
way decision is thinking, problem solving, and computing visually in threes. The
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main ideas are to use visual methods and tools to facilitate three-way decision in
practical applications. Considering the importance of visual thinking in human
cognition and problem solving, visual three-way decision is a worthy research
topic.
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Abstract. The paper compares the concepts of reduction of binary
attributes in rough set theory (RST) and the reduction of unary
attributes or dychotomic attributes in formal concept analysis (FCA).
We present some basics of both theories together with a brief presen-
tation of elements of the theory of set spaces used in the paper as a
platform for mentioned comparison. Then we deliver some results on
binary attribute reduction in RST and attribute reduction in FCA. We
characterize independence of sets of binary attributes in RST by com-
plete algebras of sets completely generated by completely irredundant
families of sets. Then by means of complete algebras of sets and indis-
cernibility relations with respect to families of sets we investigate some
families of FCA-attributes. And finally we present some formal context
for which we prove that RST-binary attribute reduction and FCA-unary
attribute reduction give the same results.

Keywords: formal concept analysis · concept lattices · social choice
theory · social choice function · voting procedure · voting criteria

1 Introduction

Concepts modelling is a key issue in knowledge representation. In the most gen-
eral view, concepts modelling may be seen as a subject of the study within the
framework of the granular computing [1] which somehow combines very many
specific approaches such as fuzzy logic, rough set theory (RST) or formal concept
analysis (FCA), to name just a few. The two latter theories share a starting point
to concepts modelling, i.e., both assume a set of objects characterized by a set
of attributes. Then, they employ their own methods of concepts modelling and
employing to knowledge representation emerging from the original description
of objects.

The RST is apparently a richer theory but the FCA may be a more suitable
tool in some scenarios. In particular, the latter theory seems to be very suitable
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to analyse small sets of objects characterized by attributes which apply or do
not apply to particular objects. That is, an object can either have an attribute
or not have it but such a unary attribute should not be interpreted as a classical
binary attribute with the values, e.g., 0 and 1 with the former and the latter
representing, respectively, the absence of the attribute and its possession by an
object. For example, if particular attributes represent possession by an object of
some properties or meeting some criteria, then the unary interpretation seems
to be more appropriate as it may help to avoid the temptation to misinterpret
the objects as binary vectors what in some cases may be not well founded.

In both the RST and the FCA the operation of attributes reduction plays
an important role in concepts modelling and knowledge representation. This
is meant, generally, as identifying/filtering out these attributes which do not
contribute to the conceptual structure exposed by the data (objects) under con-
sideration. Both, RST and FCA use their own approach to attributes reduction
what is in line with their different interpretation of the attributes. However, our
goal is to get a more in depth view of the similarities and differences between
the concepts of attributes reduction in both theories. Hence, we provide such
a formal comparison of both concepts, based on the previous work of the first
author [31]. In particular, we employ the theory of set spaces [31] which may
be seen, to some extent, as a generalization of both RST and FCA, providing a
convenient platform to carry out the aforementioned comparison.

The rest of the paper is organized as follows. In Sect. 2 we present basics of
rough sets and formal concept analysis. Section 3 is devoted to presentation of
set spaces serving as a platform for comparison of rough set theory and formal
concept analysis. We conclude Sect. 3 recalling the main result of the paper [31]
concerning the case when both theories ”agree” on conceptual structures which
they produce, i.e. a characterization of the situation where extents of concepts
from conceptual lattice from FCA are exactly definable sets in RST. Section 4
delivers results of the paper on comparison of reduction of binary attributes in
rough set theory with attribute reduction in formal concept analysis. We char-
acterize independence of sets of binary attributes in RST by complete algebras
of sets completely generated by completely irredundant families of sets. Then,
by means of complete algebras of sets and indiscernibility relations with respect
to families of sets we investigate some families of FCA-attributes. And finally
we present some formal context for which we prove that RST-binary attribute
reduction and FCA-unary attribute reduction give the same results. Section 4 is
followed by Conclusions section.

2 Rudiments of Rough Sets and Formal Concept Analysis

In this section we are going to present basic concepts of rough set theory (RST)
and formal concept analysis (FCA). Both RST and FCA provide some math-
ematical approaches to concepts modelling, however both theories differ with
respect to the very idea of concept and with respect to supported operations
on concepts returning also concepts. RST based approach to concepts mod-
elling represents ideas of George Boole who proposed extensional formulation
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of concepts, identifying concepts with their extensions (denotations). In such
an approach unions of concepts (extensions) as well as intersections of concepts
(extensions) are also concepts. Moreover George Boole proposed the new oper-
ation on concepts, namely a complementation of a given concept. On the other
hand, FCA offers an approach to concepts modelling rooted in traditional logic
where a concept is modelled as a pair of elements: the extension (the extent) of
a concept which is a set of objects which are examples of this concept and the
intension (the intent) of a concept which is a set of attributes (or properties)
shared by all objects examples of this concept. This represents an intensional
point of view where concepts are determined by both objects and attributes. In
FCA based approach unions of concepts are not just unions of sets of objects
(their extensions).

2.1 Elements of Rough Set Theory

Zdzisław Pawlak introduced rough sets [23,24] for the study of information sys-
tems [15,21,22]. Information systems are structures representing information by
means of objects and their attributes. In rough set theory attributes are under-
stood as functions of the form (we adopt here a slightly more general definition
where an attribute takes a set of elements as its value, what represents uncer-
tainty about its actual value):

a : U −→ ℘(V ala)

where U is a set of objects, V ala a set of values of attribute a and ℘(V ala)
is the power set of V ala. An information system is a triple of the form
〈U,At, {V ala}a∈At〉 where U is a set of objects, At is a set of attributes, and
{V ala}a∈At is the family of value domains of attributes from the set At. Infor-
mation system 〈U,At, {V ala}a∈At〉 is total (or complete) iff a(x) �= ∅ for every
x ∈ U and a ∈ At. Information system 〈U,At, {V ala}a∈At〉 is deterministic iff
card(a(x)) = 1 for every x ∈ U and a ∈ At, otherwise 〈U,At, {V ala}a∈At〉 is
indeterministic.

In rough set theory information represented in information systems is anal-
ysed by means of indiscernibility relations. Let 〈U,At, {V ala}a∈At〉 be an infor-
mation system and let B ⊆ At. An indiscernibility relation ∼B is defined as
follows

(x, y) ∈ ∼B ⇔ a(x) = a(y) (1)

for any a ∈ B and x, y ∈ U . One can note that ∼B is an equivalence relation on
U .

Let 〈U,At, {V ala}a∈At〉 be an information system and let B ⊆ At. An
attribute a ∈ B is indispensable in B iff ∼B �= ∼B\{a}. Set B ⊆ At is inde-
pendent iff every attribute in B is indispensable, otherwise B is dependent. A
set C ⊆ B is reduct iff C is independent and ∼C = ∼B . According to Pawlak,
indiscernibility relations represent knowledge derived from information systems.
Keeping this interpretation in mind and looking at the Eq. (1) one can note
that replacing a set of attributes with its reduct does not reduce the knowledge.
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Indiscernibility relations are also useful for handling functional dependencies
between families of attributes: let 〈U,At, {V ala}a∈At〉 be an information sys-
tem and A,B ⊆ At, family B depends on family A iff ∼A ⊆ ∼B . One of the
main tools for calculating indiscernibility relations and reducts are discernibility
matrices [26]

In rough set theory, knowledge is founded on the ability to discern between
objects and, in an algebraic approach to RST, is represented by abstract struc-
tures, referred to as approximation spaces. The approximation space is an ordered
pair (U,R), where U is a set of objects and R is an equivalence relation on U .
Definable sets in approximation space (U,R) are subsets of U which are unions
of equivalence classes of relation R. If it does not lead to a confusion we call them
shortly definable sets. Subsets of U which are not definable are called rough sets.
The family of definable sets of the space (U,R) is denoted by DefR(U). In [24]
Pawlak called the equivalence classes of a relation R as atoms. There are two
reasons for this: first, the family DefR(U) is closed for complements, arbitrary
unions and intersections i.e. the algebra (DefR(U);∪,∩,c , ∅, U) is a complete field
of sets, where Xc := U \ X, and so algebra (DefR(U);∪,∩,c , ∅, U) is a complete
and atomic Boolean algebra and atoms of this algebra are exactly equivalence
classes of the relation R. The second reason is that using this term Palwak
underlined the intuition that equivalence classes are basic, indivisible, building
blocks of knowledge which is achieved by abstraction from particular information
about objects. One can note that every information system 〈U,At, {V ala}a∈At〉
determines an approximation space (U,∼B), for any B ⊆ At. Hence, indiscerni-
bility relations can be viewed as bridges from a “concrete” level of information
to an abstract level of knowledge. Following George Boole’s extensional view of
concepts Pawlak called subsets of U as concepts.

For any approximation space (U,R) and for X ⊆ U two operators are defined
as follows:

R∗(X) =
⋃

{Y ∈ U/R
: Y ⊆ X} R∗(X) =

⋃
{Y ∈ U/R

: Y ∩ X �= ∅}.

Sets R∗(X) and R∗(X) are called lower and upper approximations of a set
X ⊆ U respectively. One can note that if set X ⊆ U is definable, then R∗(X) =
R∗(X), otherwise R∗(X) � R∗(X).

On the basis of approximation spaces Pawlak introduced structures repre-
senting knowledge named knowledge bases. A knowledge base is a pair (U,R)
such that R ⊆ Eq(U) where Eq(U) is the family of all equivalence relations on
U . A relation R ∈ R is dispensable in R if

⋂
(R) =

⋂
(R \ {R}), otherwise R is

indispensable. If each R ∈ R is indispensable, then the family R is independent,
otherwise R is dependent.

2.2 Elements of Formal Concept Analysis

The formal context is a triple (G,M, I), where G and M are sets of objects and
attributes, respectively, while I ⊆ G × M is a binary relation [5]. Sets G and
M are called extent and intent of formal context (G,M, I) respectively. When
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(g,m) ∈ I then we say that the object g has the attribute m, or that the attribute
m is possessed by the object g. Sometimes we write also g I m. The relation I is
also called incidence relation.

For a formal context (G,M, I) we define two operators i : P(G) −→ P(M)
and e : P(M) −→ P(G), as follows:

X → Xi = {m ∈ M : g I m, ∀ g ∈ X},

Y → Y e = {g ∈ G : g I m, ∀ m ∈ Y },

for each X ⊆ G, Y ⊆ M . Operators i and e are called the intension operator
and the extension operator, respectively. Operators i and e are dual in the sense
of order theory.

In the formal concept analysis literature there is commonly used practice to
denote operators i and e by the same symbol ·′ (the prime symbol) [5]. Formal
properties of the intension and extension operators are presented in Table 1 using
prime notation. This practice simplifying notation and makes calculations easier
while it should not cause any confusion: if it is clear that X ⊆ G or Y ⊆ M
then this determines the meaning of X ′ and Y ′. For example, in Table 1, since
X ⊆ G, then formula (3a) X ′ = X ′′′ can be rewritten as Xi = Xiei. Looking at
Table 1 one can note also that operators i and e are dual in the sense of order
theory and moreover they form Galois connection. In addition, operators i and
e combined together create closure operators: ie is a closure operator on the set
G (properties (1a) - (3a) in Table 1) and ei is a closure operator on the set M
(properties (1b) - (3b) in Table 1).

Table 1. Basic properties of the intension and extension operators for sets of objects
X,X1, X2 ⊆ G, and sets of attributes Y, Y1, Y2 ⊆ M of the context 〈G,M, I〉

1a. X1 ⊆ X2 ⇒ X ′
2 ⊆ X ′

1 1b. Y1 ⊆ Y2 ⇒ Y ′
2 ⊆ Y ′

1

2a. X ⊆ X ′′ 2b. Y ⊆ Y ′′

3a. X ′ = X ′′′ 3b. Y ′ = Y ′′′

4a X ′′′′ = X ′′ 4b. Y ′′′′ = Y ′′

5a (X1 ∪ X2)
′ = X ′

1 ∩ X ′
2 5b (Y1 ∪ Y2)

′ = Y ′
1 ∩ Y ′

2

6. X ⊆ Y ′ ⇔ Y ⊆ X ′ ⇔ X × Y ⊆ I.

A set {m}e or simply me, can be interpreted as an extent of the attribute m.
Instead of me we will also write /m/. Following that notation, /Γ/ := { /m/ :
m ∈ Γ} for Γ ⊆ M , i.e. /Γ/ denotes the family of extents of attributes from
the family Γ. For any formal context (G,M, I) we can define the indiscernibility
relation �M on G with respect to the set of attributes M in the following way:

(x, y) ∈ �M :⇔ (x,m) ∈ I ⇔ (y,m) ∈ I for each m ∈ M

for x, y ∈ G.
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A formal concept of the context 〈G,M, I〉 is a pair (A,B) where A ⊆ G,
B ⊆ M , Ai = B and Be = A. A is called the extent and B is called the intent
of the concept (A,B). The family of all formal concepts of context (G,M, I) is
denoted by B(G,M, I). The following relation � may be defined on the family
B(G,M, I):

(A1, B1) � (A2, B2) ⇔ A1 ⊆ A2 or, equivalently: B2 ⊆ B1.

where (A1, B1), (A2, B2) ∈ B(G,M, I). If (A1, B1) � (A2, B2), then we say that
(A1, B1) is a subconcept of (A2, B2) and (A2, B2) is called a superconcept of
(A1, B1). The relation � is a partial order on the family of concepts B(G,M, I)
and it is called the hierarchical order (or simply order). Moreover, one can show
that 〈B(G,M, I),≤〉 is a complete lattice, called the concept lattice of the con-
text (G,M, I). We denote that lattice by B(G,M, I). In addition, we denote the
family of extents of all formal concepts of the context (G,M, I) by Bext(G,M, I).
Let us note, that 〈Bext(G,M, I),⊆〉 is a lattice isomorphic to the concept lat-
tice B(G,M, I). The algebraic description of concept lattices is given by the
Basic Theorem on Concept Lattices [5,33] which states that the concept lattice
B(G,M, I) is a complete lattice in which infimum and supremum are given by:

∧

i∈I

(Ai, Bi) = (
⋂

i∈I

Ai(
⋃

i∈I

Bi)′′),
∨

i∈I

(Ai, Bi) = ((
⋃

i∈I

Ai)′′,
⋂

i∈I

Bi).

3 Set Spaces - A Platform for Comparison of RST
and FCA

This section is devoted to the presentation of set spaces [31]. Let U be any set
and let C ⊆ ℘(U). We call the pair (U, C) a set space. For any set space (U, C),
by Sg(C) we denote the least algebra (field) of sets on U containing family C,
by σ(C) the least σ-algebra (σ-field) of sets on U containing family C, and by
Sg�(C) the least complete algebra (complete field) of sets on U containing family
C. By At(Sg�(C)) we denote the set of atoms of the algebra Sg�(C). By Sg

⋂

(C)
we denote the least closure system on U containing C i.e. the family A ⊆ ℘(U)
closed for arbitrary intersections and containing family C. Dually, by Sg

⋃

(C) we
denote the least family of sets closed for arbitrary unions of sets and containing
the family C.

Let (U, C) be a set space such that C = {Ci}i∈I . By a generalized component
over the family C (shortly: g-component) we call any intersection of the following
form: ⋂

i∈I

eiCi (2)

where ei ∈ {0, 1} and 1Ci := Ci, 0Ci := Cc
i for each i ∈ I, and Cc

i := U \Ci. We
denote the family of all generalized components over the family C by

∏
C

and
the family of all nonempty g-components over the family C by

∏+
C
.
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For any set space (U, C) we define two operators on U :

C∗(X) :=
⋃

{A ∈ Sg�(C) : A ⊆ X} C∗(X) :=
⋂

{A ∈ Sg�(C) : X ⊆ A}.

We call operators C∗, C∗ the lower and the upper approximation, respectively.
We call the elements of the algebra Sg�(C) the sets definable in set space (U, C)
or shortly definable sets when it does not lead to a confusion.

Let (U, C) be a set space, then the family C is completely irredundant if for all
sets B ∈ C, B �∈ Sg�(C \ {B}), otherwise the family C is completely redundant.

Let U be a nonempty set. For any set C ∈ ℘(U) we define the indiscernibility
relation on U with respect to C denoted as ≈C , in the following way

x ≈C y ⇐⇒def x ∈ C ⇔ y ∈ C.

For any set space (U, C) we define an indiscernibility relation on U with respect
to the family C denoted as ≈C, in the following way:

(x, y) ∈ ≈C ⇐⇒def (x, y) ∈
⋂

C∈C

≈C . (3)

Thus, the following implication holds ∀A, B ⊆ ℘(U):

A ⊆ B ⇒ ≈B ⊆ ≈A .

One can note that the reverse implication does not hold in general. However, in
the next section we will show sufficient and necessary condition for this reverse
implication to hold.

Let (U, C) be a set space , then by Proposition 4.14 in [31]:

≈C = ≈Sg(C) = ≈σ(C) = ≈Sg�(C) .

If U �= ∅ and C, D ⊆ P(U), then by Theorem 4.16 from [31] partially recalled in
Sect. 3 we get:

≈C ⊆ ≈D ⇐⇒ Sg�(D) ⊆ Sg�(C).

One can strengthen inclusions to identities in the above formula.
For every approximation space (U,R) there is a set space (U, C) such that

R = ≈C. Moreover, for any approximation space (U,R) and for any set space
(U, C) the following conditions are equivalent:

(1) ∀X ⊆ U : R∗(X) = C∗(X) and R∗(X) = C∗(X),
(2) R = ≈C,
(3) DefR(U) = Sg�(C).

Now, we will show the links between the characteristic concepts of RST and
FCA. One can note that for any formal context 〈G,M, I〉 the following equation
holds:

�M = ≈/M/ .

Let us recall definition of the context exactness [31]: a formal context
〈G,M, I〉 is exact iff the following conditions are satisfied:
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(i) there exists a non-empty subset of attributes M0 ⊆ M such that M0 :=
{m ∈ M : ∃A ∈ G/�M

, /m/ = Ac},
(ii) /M/ ⊆ Sg

⋂

(/M0/).

In FCA if a given concept have some subconcepts, then usually its extent is
not a union of its subconcepts extents. So exact contexts are contexts where the
extent of the every concept is a union of its subconcepts extents and moreover the
concept extents in the exact context are exactly unions of equivalence classes of
the indiscernibility relation with respect to all attributes from the exact context
intent.

Let us adopt the following notation [31]: for any family of sets C let [C]c :=
{Cc : C ∈ C}, where Cc := U \C. By ��M we denote the opposite relation to the
relation �M , i.e. ��M := (G × G) \ �M . Now we can recall main results from
the last section of [31]. We start with Lemma 8.2 in [31]: the context 〈G,M, I〉
is exact if and only if

[G/�M
]c ⊆ /M/ ⊆ Sg

⋂

([G/�M
]c) = Sg�(/M/) = Sg

⋃

(G/�M
).

Now we present characterization of context exactness by Theorem 8.3 from [31]:
let 〈G,M, I〉 be a formal context. then the following conditions are equivalent:

(1) the context 〈G,M, I〉 is exact,
(2) Bext(G,M, I) = Def�M

(G),
(3) Sg

⋂

(/M/) = Sg�(/M/),
(4) Bext(G,M, I) = Bext(G,G, ��M ).

4 Reduction of Binary Attributes in RST and Reduction
of Attributes in FCA - A Comparison

Before proceeding to the comparison announced in the title of this section we
need to remind a few more properties of the set spaces which are a platform
for the said comparison. We start this section with showing that complete irre-
dundancy of families of sets is hereditary on subsets of their subsets, i.e. the
following holds:

Lemma 1. Let (U, C) be a set space. If C is completely irredundant, then
∀A ⊆ C: A is completely irredundant.

Proof : Let (U, C) be a set space such that C is completely irredundant and let
A ⊆ C. Let us assume that A is not completely irredundant. Then there exists
D ∈ A such that D ∈ Sg∗(A\{D}). Since A ⊆ C, then A\{D} ⊆ C\{D}. Thus
Sg∗(A\{D}) ⊆ Sg∗(C\{D}). Therefore D ∈ Sg∗(C\{D}) what contradicts the
assumption that C is completely irredundant. Thus we have shown that A ⊆ C

is completely irredundant. ��
Proposition 1. Let (U, C) be a set space. Then the following conditions are
equivalent:
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(1) ∀A, B ⊆ C: ≈B ⊆ ≈A ⇒ A ⊆ B,
(2) the family C is completely irredundant.

Proof :
(⇒) Let us assume that the family C is not completely irredundant and thus
there exists B ∈ C such that B ∈ Sg∗(C \ {B}). Let us note that C \ {B} ⊆
Sg∗(C \ {B}). Since B ∈ Sg∗(C \ {B}) thus (C \ {B}) ∪ {B} ⊆ Sg∗(C \ {B})
so C ⊆ Sg∗(C \ {B}). Therefore Sg∗(C) ⊆ Sg∗(Sg∗(C \ {B})) = Sg∗(C \ {B})
and so Sg∗(C) ⊆ Sg∗(C \ {B}). Because of that C \ {B} ⊆ C we know that
Sg∗(C \ {B}) ⊆ Sg∗(C). Thus we showed that Sg∗(C) = Sg∗(C \ {B}), this
implies that ≈Sg∗(C) = ≈Sg∗(C\{B}). From this and by Propositon 4.14 from [31]
we get that

≈C = ≈Sg∗(C) = ≈Sg∗(C\{B}) = ≈C\{B} .

Thus ≈C = ≈C\{B} and in particular ≈C\{B} ⊆ ≈C but C �⊆ C \ {B} and thus
(1) does not hold. Hence, we have proved that negated (2) implies negated (1)
and thus the implication (1) ⇒ (2) holds.

(⇐) Let us assume that C is completely irredundant, A, B ⊆ C, ≈B ⊆ ≈A and
assume also that A �⊆ B. Thus there is D ∈ A\B. Since D �∈ B, then B = B\{D}.
Thus Sg∗(B) = Sg∗(B \ {D}). Since ≈B ⊆ ≈A, then Sg∗(A) ⊆ Sg∗(B). Since
B ⊆ C, then B \ {D} ⊆ C \ {D} and so Sg∗(B \ {D}) ⊆ Sg∗(C \ {D}). Thus

D ∈ A \ B ⊆ Sg∗(A) ⊆ Sg∗(B) = Sg∗(B \ {D}) ⊆ Sg∗(C \ {D}).

Thus D ∈ Sg∗(C \ {D}). By assumptions D ∈ A \ B and A ⊆ C, we get that
D ∈ C. Therefore we have shown that D ∈ C and D ∈ Sg∗(C \ {D}) what
contradicts the assumption that family C is completely irredundant. ��
Theorem 1. Let 〈U,At, {V ala}a∈At〉 be a binary information system i.e. ∀a ∈
At : V ala = {0, 1}. Let B ⊆ At and C(B) := {Cb}b∈B, where Cb = {x ∈ U :
b(x) = 1}. Then the following conditions are equivalent:

(1) a set B ⊆ At is independent,
(2) the family C(B) is completely irredundant.

Proof : In order to prove this proposition we prove the following equivalence: set
B ⊆ At is dependent ⇔ family C(B) is completely redundant.

(⇒) Let us assume that B ⊆ At is dependent, then there is b ∈ B such that
∼B = ∼B\{b}. Let us note that ≈C(D) = ∼D (cf., (1) and (3), respectively)
for any D ⊆ At therefore ≈C(B) = ∼B = ∼B\{b} = ≈C(B)\{Cb} . Thus ≈C(B)

= ≈C(B)\{Cb}, what implies Cb ∈ Sg∗(C(B)). Equation ≈C(B) = ≈C(B)\{Cb} by
Theorem 4.16 from [31] partially recalled in Sect. 3 is equivalent to Sg∗(C(B)) =
Sg∗(C(B)\{Cb}), so Cb ∈ Sg∗(C(B)\{Cb}). Therefore family C(B) is completely
redundant.

(⇐) Let family C(B) is completely redundant. Thus there exists b ∈ B such that
Cb ∈ Sg∗(C(B) \ {Cb}) and then (C(B) \ {Cb}) ∪ {Cb} ⊆ Sg∗(C \ {Cb}) so
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C(B) ⊆ Sg∗(C(B) \ {Cb}). Therefore Sg∗(C(B)) ⊆ Sg∗(Sg∗(C(B) \ {Cb})) =
Sg∗(C(B) \ {Cb}) since Sg∗ is a closure operator on set ℘(℘(U)). Thus
Sg∗(C(B)) ⊆ Sg∗(C(B) \ {Cb}). Because of (C(B) \ {Cb}) ⊆ C(B) we get
Sg∗(C(B) \ {Cb}) ⊆ Sg∗(C(B)) since operator Sg∗ is monotonic. Thus we have
shown that Sg∗(C(B)) ⊆ Sg∗(C(B) \ {Cb}) ⊆ Sg∗(C(B)) so Sg∗(C(B)) =
Sg∗(C(B)\{Cb}). This is equivalent to ≈C(B) = ≈(C(B)\{Cb}). Thus because ∼B

= ≈C(B) and ∼(B\{b}) = ≈(C(B)\{Cb}) then ∼B = ≈C(B) = ≈C(B)\{Cb})= ∼B\{b}
and so ∼B = ∼B\{b}. Therefore set B ⊆ At is dependent. ��

Now we are going to compare the concept of reducibility of attributes in rough
set theory andin formal concept analysis. In fact in FCA the concept of attribute
reducibility have the same name like in RST but in the former case its meaning
is more narrow. Therefore referring to the concept of reduction of attributes in
formal concept analysis we will use the name FCA-reduction of attributes. Recall
also that or any formal context 〈G,M, I〉 and an attribute m ∈ M an attribute
concept is the formal concept of the following form: (me,mei). Thus, let 〈G,M, I〉
be a formal context. We say that an attribute m ∈ M is FCA-reducible if and
only if its attribute concept is reducible in formal concept analysis, i.e.

(me,mei) =
∧

(ne, nei)

or all n ∈ M such that (me,mei) � (ne, nei) and (me,mei) �= (ne, nei).
We write (me,mei) ≺ (ne, nei) to denote that (me,mei) � (ne, nei) and
(me,mei) �= (ne, nei).

Proposition 2. Let 〈G,M, I〉 be a formal context and m ∈ M . Then the fol-
lowing conditions are equivalent:

(1) attribute m is FCA-reducible,
(2) /m/ ∈ Sg

⋂

(/M \ {m}/).

Proof : Let 〈G,M, I〉 be a formal context and let m0 ∈ M . Then the following
conditions are equivalent:

m0 ∈ M is FCA-reducible,

/m0/ =
⋂

{/n/ ∈ /M/ : (me
0,m

ei
0 ) ≺ (ne, nei)},

/m0/ =
⋂

{/n/ ∈ /M/ : me
0 ⊆ ne & m0 �= n)},

/m0/ =
⋂

{/n/ ∈ /M/ : /m0/ ⊆ /n/ & /m0/ �= /n/)},

/m0/ ∈ Sg
⋂

(
⋂

{/n/ ∈ /M/ : /m0/ ⊆ /n/ & /m0/ �= /n/)}),

/m0/ ∈ Sg
⋂

(/M \ {m0}/) and m0 ∈ M,

��
Since for any family C ⊆ ℘(U), Sg

⋂

(C) ⊆ Sg∗(C), then we get that
Sg

⋂

(/M/) ⊆ Sg∗(/M/). In view of this and of the Proposition 2 one can see
that the idea of reduction of attributes in FCA is narrower than in RST. The
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main reason for this is that in FCA while checking reducibility we are taking into
account only intersections of attribute extensions while in the light of Theorem 1
in RST the reduction of attributes is based on all Boolean set-operations instead
of intersections only.

However, in FCA one can mimic the way in which reducibility is treated in
RST by means of manipulating formal contexts. Thus the rest of this section is
devoted to methods of information reduction in FCA aimed at proposing such
formal contexts for which inclusion of the form Sg

⋂

(/M/) ⊆ Sg∗(/M/) will be
strengthened to identity Sg

⋂

(/M/) = Sg∗(/M/).

Definition 1. Let 〈G,M, I〉 be a formal context. Then with M� and I� we will
denote the context 〈G,M�, I�〉 where:

M� = {m� : m ∈ M}, (4)

I� = {(g,m�) : (g,m) /∈ I}. (5)

Thus, the attributes of M� are in a sense dual/complementary to the original
attributes of M : an attribute m� holds for an object g if the original attribute
m does not hold for this object. We will denote as M∪ the sum of the set of
attributes M of the original context 〈G,M, I〉 and the set of attributes M� of
the new context 〈G,M�, I�〉, i.e., M∪ = M ∪ M�.

Theorem 2. Let (U, C) be a set space and let D := {Cc : C ∈ C}. Then the
following holds:

(1) Sg∗(C) = Sg∗(D) = Sg∗(C ∪ D),
(2) ≈C = ≈D = ≈C∪D.

Proof : Let (U, C) be a set space and let D := {Cc : C ∈ C}.

(1) In order to show Sg∗(C ∪ D) ⊆ Sg∗(C) we will show that D ⊆ Sg∗(C). For
any set C ∈ C, Cc ∈ Sg∗(C) since Sg∗(C) is a complete field of sets completely
generated by family C (i.e. the least complete field of sets containing family C).
Since ∀C ∈ C : Cc ∈ Sg∗(C) then D ⊆ Sg∗(C). By definition of Sg∗(C) we get
also C ⊆ Sg∗(C). Since D ⊆ Sg∗(C) and C ⊆ Sg∗(C), then C ∪ D ⊆ Sg∗(C).
Thus Sg∗(C ∪ D) ⊆ Sg∗(Sg∗(C)) = Sg∗(C) since Sg∗ is closure operator on
power set ℘(U). Therefore Sg∗(C ∪ D) ⊆ Sg∗(C).

Since C ⊆ C ∪ D, then by monotonicity of operator Sg∗ it follows that
Sg∗(C) ⊆ Sg∗(C ∪ D). Therefore Sg∗(C) = Sg∗(C ∪ D), where D := {Cc : C ∈
C}.

Now in order to show Sg∗(D) = Sg∗(C ∪ D) we will show that C ⊆ Sg∗(D).
Since D := {Cc : C ∈ C} ⊆ Sg∗(D) and since Sg∗(D) as a complete algebra
of sets is closed under complementation of sets thus [D]c ⊆ Sg∗(D), and as
[D]c = C, thus C ⊆ Sg∗(D). The further proof proceeds analogously like in the
case of proving Sg∗(C) = Sg∗(C ∪ D).

Since Sg∗(C) = Sg∗(C ∪ D) and Sg∗(D) = Sg∗(C ∪ D), then this implies
that

Sg∗(C) = Sg∗(D) = Sg∗(C ∪ D)
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(2) This is equivalent to (1) by Proposition 4.15 from [31] recalled also in this
paper in Sect. 3. ��

From Theorem 2 we get the following corollary for families of attributes in
formal concept analysis:

Corollary 1. Let 〈G,M, I〉 be a formal context. Then the following holds:

(1) Sg∗(/M/) = Sg∗(/M�/) = Sg∗(/M ∪ M�/),
(2) �M = �M� = �M∪M� .

i.e. sets of attributes M , M� and M ∪ M� determine the same indiscernibility
relation whereas extensions of attributes from M , M� and M ∪ M� determine
the same complete atomic Boolean algebra of sets.

Proof : Let 〈G,M, I〉 be a formal context. In order to prove (1) it is enough to
consider C := /M/, thus D = /M�/ and C ∪ D = /M ∪ M�/ and then use
Theorem 2. In order to prove (2) one can note that the following facts hold:

≈/M/ = �M , ≈/M�/ = �M� , ≈/M∪M�/ = �M∪M�

Then by Theorem 2 of this paper, condition (1) of this corollary on the basis of
the above equations is equivalent to

≈/M/ = ≈/M�/ = ≈/M∪M�/,

thus
�M = �M� = �M∪M� .

��
From Propositions 4.3 and 4.7 from [31] we have the following equalities:

(1) At(Sg�(C)) =
∏+

C
,

(2)
∏+

C
= U/≈C

.

one can get the following corollary:

Corollary 2. Let 〈G,M, I〉 be a formal context. Then the following equations
hold:

At(Sg�(/M/)) =
∏+

/M/ = G/�M
.

where
∏+

/M/ denotes the family of all nonempty g-components over the family
/M/; cf. (2).
Proof : Let 〈G,M, I〉 be a formal context. According to Propositions 4.3 and
4.7 for any family C ⊆ ℘(G) the following equations hold respectively:
At(Sg�(C)) =

∏+
C

and
∏+

C
= G/≈/M/

. Thus for /M/ ⊆ ℘(G) we get
At(Sg�(/M/)) =

∏+
/M/ and

∏+
/M/ = G/≈/M/

. Now one can note that
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≈/M/ = �M thus, since ≈/M/ and �M are equivalence relations, by the Abstrac-
tion Principle we get G/≈/M/

= G/�M
. ��

For any set space (U, C) let us recall that [C]c := {Cc : C ∈ C}, where
Cc := U \ C. From Corollary 2 we infer the following proposition about the
structure of Sg�(/M/) as the complete and atomic Boolean algebra:

Proposition 3. Let 〈G,M, I〉 be a formal context. By CoAt(Sg�(/M/)) we
denote the family of coatoms of the complete algebra of sets Sg�(/M/) i.e. the
family of maximal sets in Sg�(/M/) which are different from G. Then the fol-
lowing conditions hold:

(1) CoAt(Sg�(/M/)) = [G/�M
]c,

(2) [G/�M
]c = {��M (x)}x∈G.

Proof : Let 〈G,M, I〉 be a formal context.

(1) Since At(Sg�(/M/)) = G/�M
, then G/�M

⊆ Sg�(/M/). Since Sg�(/M/)
is complete field of sets, so Sg�(/M/) is closed for complements of sets, thus
[G/�M

]c ⊆ Sg�(/M/). Since 〈Sg�(/M/);∪,∩,c , ∅, G〉 is a complete and atomic
Boolean algebra, then complements of atoms are precisely coatoms of algebra
〈Sg�(/M/);∪,∩,c , ∅, G〉, thus CoAt(Sg�(/M/)) = [G/�M

]c.

(2) Let x ∈ G. We will show that (x/�M
)c = ��M (x). Let z ∈ G, then the

following conditions are equivalent:

z ∈ (x/�M
)c

z �∈ x/�M

∀y ∈ x/�M
: (z, y) �∈ �M

∀y ∈ x/�M
: z �� y

z ∈ ��M (x).

Since z ∈ G was chosen arbitrarily, then (x/�M
)c = ��M (x). Because of x ∈ G

was chosen arbitrarily as well, therefore we have already shown that

[G/�M
]c = {��M (x)}x∈G.

��
Definition 2. Let 〈G,M, I〉 be a formal context. Then

M∗ := {��M (x) : x ∈ G}.

One can note that relation ∈ can also be an incidence relation in those formal
contexts, in which attributes are sets, i.e. (g,m) ∈ I ⇔ g ∈ m.

Theorem 3. Let 〈G,M, I〉 be a formal context. Then for formal context
〈G,M∗,∈〉 the following equations hold:

Sg
⋂

(M∗) = Sg�(/M/) = Sg∗(M∗).
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By Propositions 3.1 and 3.2 we get CoAt(Sg�(/M/)) = {��M (x)}x∈G.
Therefore CoAt(Sg�(/M/)) = M∗. Since Sg�(/M/)) is complete and atomic
Boolean algebra, it is also coatomic i.e. for every A ∈ Sg�(/M/) and every
B ∈ CoAt(Sg�(/M/)) either A ⊆ B or A ∩ B = ∅. Let M∗(A) := {B ∈
CoAt(Sg�(/M/)) : A ⊆ B}. Then one can show that A =

⋂
M∗(A). This means

by definition that A ∈ Sg
⋂

(M∗). Since A ∈ Sg�(/M/) was chosen arbitrarily,
then we showed that Sg�(/M/) ⊆ Sg

⋂

(M∗). Let us note that M∗ ⊆ Sg�(/M/),
thus Sg

⋂

(M∗) ⊆ Sg�(/M/), since Sg� is a closure operator on set G. Therefore
Sg

⋂

(M∗) = Sg�(/M/).
Let us note that M� ⊆ Sg�(/M/) and /M/ ⊆ Sg�(M�). Therefore

Sg�(M�) ⊆ Sg�(Sg�(/M/)) = Sg�(/M/) and Sg�(/M/) ⊆ Sg�(Sg�(M�)) =
Sg�(M�) since operator Sg� is a closure operator on G and so it is also
monotonic. Thus Sg�(M�) ⊆ Sg�(/M/) and Sg�(/M/) ⊆ Sg�(M�) and so
Sg�(/M/) = Sg�(M�) what concludes the proof of the second equation. ��

We end this paper presenting the following corollary of above Theorem 3 and
Theorem 3.8 from the paper [31]:

Corollary 3. Let 〈G,M, I〉 be a formal context. Then for formal context
〈G,M∗,∈〉 the following conditions hold:

(1) the context 〈G,M, I〉 is exact,
(2) Bext(G,M, I) = Def�M

(G),
(3) Bext(G,M, I) = Bext(G,G, ��M ).

5 Conclusions

Rough sets theory and formal concept analysis are two prominent examples of
approaches to concepts modelling. Information systems and formal contexts in
the former and in the latter case, respectively, serve for characterizing sets of
objects under consideration with the sets of attributes. Despite the different
nature of the attributes used in these two approaches, an important concept
shared by them is the operation of reduction of the attributes. In the paper we
compare these operations employing the theory of the set spaces as a common
platform and we draw interesting conclusions regarding these operation, on an
abstract level of algebraic considerations. In particular, we show that the idea
of reduction of attributes in FCA is narrower than in RST. However the full
attributes reduction in RST can be reconstructed in FCA by means of manipu-
lating formal contexts.

It should be, however, emphasized that our interest is not purely theoretical.
In our previous works [8,10,32] in the area of group decision making, we have
used both theories to analyse popular voting procedures with respect to their
possession or not of some desired properties proposed in the literature. Thus,
we are going to exploit the results reported in the current paper to continue
and deepen mentioned comparison of voting procedures. The insights collected
during the work reported in this paper are encouraging and promising.
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Abstract. Attribute reduction plays a crucial role in eliminating redun-
dant attributes of data. As an effective means to deal with numerical
data, neighborhood rough set model has been widely used in attribute
reduction. In this model, the determination of sample neighborhood relies
on the calculation of distance between samples, which need to traverse all
attributes of samples. This way will result in huge time consumption for
high-dimensional data because the time consumption of solving reduction
is closely related to the computational efficiency of sample neighborhood.
In view of this, an attribute synthesis method based on the attribute sim-
ilarity is put forward for solving above drawbacks. In this paper, firstly,
all attributes are divided by K-means clustering into multiple attribute
clusters. Secondly, the attributes in the same cluster are synthesized into
a new pseudo-attribute. Then a new decision system can be formed by
all the pseudo-attributes. Thirdly, the pseudo-attribute with the greatest
importance is selected through the forward greedy search strategy in the
new decision system. Finally, let the original attributes corresponding to
the selected pseudo-attribute be an attribute subset, then we determine
whether the subset satisfies the constraint condition of reduction. If not,
the pseudo-attribute with the second greatest importance is considered
to conduct above step, until the attribute subset satisfying the constraint
condition is calculated and output as the reduction. In order to verify the
effectiveness of the proposed method, the comparative experiments are
conducted on 4 UCI standard datasets and 4 face datasets. The experi-
mental results show that the proposed method can not only significantly
reduce the time consumption of attribute reduction, but also relatively
improve the classification performance of the reduction. Moreover, the
more attributes the sample own, the more significant improvement the
method has.

Keywords: Attribute reduction · Neighborhood rough set · Attribute
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1 Introduction

Rough set theory [1] is an effective tool to deal with imprecise, inconsistent
and incomplete information [2]. Currently, rough set theory has been success-
fully applied to artificial intelligence, data mining, pattern recognition, and other
areas [2–8]. As a core concept of rough set theory, attribute reduction [12–18]
has attracted many scholars’ attention because it can remove redundant and
irrelevant attributes in the data. The attribute reduction algorithms commonly
used in rough set theory can be roughly classified into 2 categories: the exhaus-
tive algorithm [9,10] and the heuristic algorithm [24]. For example, both the
discernibility matrix method [9] and the backtrack method [10,11] belong to
the exhaustive algorithm. Although the exhaustive algorithm can obtain all the
reductions, it is time-consuming for calculating the attribute reduction of large-
scale complex data. On the contrary, the heuristic algorithm is preferred due to
its high efficiency.

Neighborhood rough set model [11,20] was proposed to break the limita-
tion of classical rough set on numerical data. In this model, the determination
of sample neighborhood relies on the calculation of distance between samples,
which need to traverse all attributes of samples. This way will result in huge
time consumption for high-dimensional data because the time consumption of
solving reduction is closely related to the computational efficiency of sample
neighborhood. For this reason, it is necessary to design a more efficient method
for calculating the reduction.

Given that the time complexity of calculating the sample neighborhood is
positively correlated to the number of attributes, we speculate that reducing
the number of attributes is a feasible approach to improve computational effi-
ciency of attribute reduction. In this paper, we try to utilize attribute syn-
thesis strategy to reduce the number of attributes. As a result, an accelera-
tion method for attribute reduction based on attribute synthesis is proposed.
Firstly, all attributes are divided by K-means clustering into several attribute
clusters. Secondly, the attributes in the same cluster are synthesized into a new
pseudo-attribute. Then a new decision system can be formed by all the pseudo-
attributes. Thirdly, the pseudo-attribute with the greatest importance is selected
through the forward greedy search strategy [19] in the new decision system. Once
the most important attribute is picked out, the synthesized original attributes
need to be focus on. Finally, let the focused original attributes be an attribute
subset, which need to be determined whether it satisfies the constraint condition
of reduction. If not, the pseudo-attribute with the second greatest importance
is considered to conduct above step, until the attribute subset satisfying the
constraint condition is calculated and output as the reduction.

In brief, the major contributions have two aspects.
1. This paper first proposes a method of attribute synthesis to improve the

reduction complexity. It can successfully reduce the dimension of high-
dimensional data and effectively compress the search space of attributes. Thus
the purpose of reducing the time consumption of attribute reduction can be
achieved.
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2. The proposed attribute synthesis strategy can improve the classification accu-
racy. At the same time, the more attributes the sample own, the greater the
classification accuracy is.

The rest of this paper is arranged as bellow. In Sect. 2, it mainly introduces
the basic concepts of neighborhood rough set, the measurement criterion and
importance function of attribute reduction. In addition, a forward greedy search
strategy is also described. In Sect. 3, a new forward greedy search strategy based
on attribute synthesis is proposed. In Sect. 4, experimental results and related
analysis are displayed. Section 5 summarizes the full text.

2 Preliminaries

2.1 Neighborhood Rough Set

A decision system can be defined as a two-tuple DS = <U,A ∪ {d}>, where
U = {x1, x2, . . . , xm} is a non-empty finite set composed of m samples, called the
universe of discourse. A is the collection of all conditional attributes, and d is the
decision attribute. Let IND({d}) be the equivalence relation with respect to the
decision attribute d, thus there is IND({d}) = {(x, y) ∈ U × U : d(x) = d(y)},
where d(x) is the decision value of the sample x in U . Given a decision system
DS, then U/IND({d}) = {X1,X2, . . . , Xs} denotes the partition of universe
U , which is induced by decision attribute d. ∀Xk ∈ U/IND({d}), it represents
the kth decision class. [xi]k represents the set of samples that belong to the kth
decision class with sample xi.

Definition 1 [24]. Let DS = <U,A ∪ {d}> be a decision system. ∀B ⊆ A, the
neighborhood relationship is defined as follows:

NB = {(xi, xj) ∈ U × U : r (xi, xj) ≤ δ} , (1)

in which, ∀xi, xj ∈ U , r(xi, xj) represents the distance between xi and xj over
B, δ (δ ≥ 0) is the neighborhood radius.

Then from Eq. 1, for any xi ∈ U , the neighborhood of xi with respect to B
is defined as follows:

δB (xi) = {xj | xj ∈ U, r (xi, xj) ≤ δ} . (2)

Definition 2 [24]. Let DS = <U,A∪{d}> be a decision system. For ∀B ⊆ A,
the upper and lower approximations of d with respect to B are defined as follows:

N δ
B(d) =

s⋃

k=1

N δ
B (Xk) , (3)

N δ
B(d) =

s⋃

k=1

N δ
B (Xk) , (4)
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in which, ∀Xk ∈ U/IND({d}), the upper and lower approximations of Xk are
defined as follows:

Nδ
B (Xk) = {xi | xi ∈ U, δB (xi) ⊆ Xk} , (5)

Nδ
B (Xk) = {xi | xi ∈ U, δB (xi) ∩ Xk 	= ∅} . (6)

2.2 Attribute Reduction

The essence of attribute reduction is to perform feature selection under different
measure criteria. Depending on the different application requirements, numerous
scholars have defined different measure criteria, such as approximate quality [24],
conditional entropy [21–23], decision error rate [24], etc. Approximate quality
[24] is a commonly used measure criterion in attribute reduction. It reflects the
proportion of the samples whose neighborhood belongs to the same decision class
to all the samples in the domain under certain conditional attributes.

Definition 3 [24]. Let DS = <U,A∪{d}> be a decision system. For ∀B ⊆ A,
the approximate quality of d with respect to B is defined as follows:

γδ
B(d) =

∣∣∣N δ
B(d)

∣∣∣
|U | , (7)

in which, |•| represents the cardinality of the set •. Obviously, from Eq. 7, 0 ≤
γδ

B(d) ≤ 1.

As another measure criteria commonly used in attribute reduction, condi-
tional entropy [21–23] reflects the ability of conditional attributes to identify
decision attributes. There are many definitions of conditional entropy, one of
which is shown in Definition 4.

Definition 4 [21]. For ∀B ⊆ A, the conditional entropy of d with respect to B
is defined as follows:

ENT δ
B(d) = − 1

U

∑

xi∈U

log
|δB (xi) ∩ [xi]k|

|δB (xi)| . (8)

Obviously, from Eq. 8, the smaller the value of conditional entropy, the greater
the ability of conditional attributes to identify decision attributes.

At present, the commonly used attribute reduction strategies include exhaus-
tive search, optimization, forward greedy search, etc. Among them, the forward
greedy search strategy using iterative method is widely used due to its high
efficiency. The fitness function is a crucial concept in the forward greedy search
strategy, as it enables the evaluation of the significance of conditional attributes
for classification. Based on the measure criteria described in Definitions 3 and 4,
the following importance function is designed to evaluate candidate attributes.
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Definition 5 [21]. Let DS = <U,A∪{d}> be a decision system. For ∀B ⊆ A,
∀a ∈ A−B, the importance of attribute a to attribute set B is defined as follows:

SIGγ(a,B, d) = γδ
B∪{a}(d) − γδ

B(d), (9)

SIGENT (a,B, d) = ENT δ
B(d) − ENT δ

B∪{a}(d). (10)

Equation 9 takes the approximate quality as the measure criterion. Obvi-
ously, the more improvement the attribute a achieves on the approximate qual-
ity, the greater the importance attribute a has. Equation 10 takes the conditional
entropy as the measure criterion. Obviously, the more deterioration the attribute
a achieves on the conditional entropy, the greater the importance attribute a has.
Attribute importance reflects the change of approximate quality or conditional
entropy after attribute a is added into attribute subset B. If the attribute impor-
tance of a is not greater than zero, then attribute a is redundant and cannot be
added into the reduction set.

Definition 6 [24]. Let DS = <U,A ∪ {d}> be a decision system. ∀R ⊆ A,
define R be a reduction with respect to the approximate quality γ iff:

1. γδ
R(d) ≥ γδ

A(d).
2. ∀B ⊂ R, γδ

B(d) < γδ
R(d).

When the above two conditions in Definition 6 are satisfied, the value of the
approximate quality based on the reduction set R is not lower than that based
on condition attribute set A, and R is the smallest reduction set.

Definition 7 [24]. Let DS = <U,A ∪ {d}> be a decision system. ∀R ⊆ A,
define R be a reduction with respect to the conditional entropy ENT iff:

1. ENT δ
R(d) ≤ ENT δ

A(d).
2. ∀B ⊂ R,ENT δ

B(d) > ENT δ
R(d).

When the above two conditions in Definition 7 are satisfied, the value of the
conditional entropy based on the reduction set R is not higher than that based
on the condition attribute set A, and R is the smallest reduction set.

For a decision system, the traditional heuristic attribute reduction algorithm
is introduced in Algorithm 1, where ϕ represents the measure criteria which can
be approximate quality in Definition 6 and conditional entropy in Definition 7.
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Algorithm 1. Forward Greedy Search Algorithm For Solving Reduction.

Require: A decision system DS = <U,A ∪ {d}> the radius is δ.
Ensure: A reduction on ϕ: R.
1: Calculate ϕδ

A(d);
2: R = ∅ ;
3: ∀a ∈ A − R, calculate the importance SIGϕ(a,R, d) of attribute a;
4: Select the most important attribute b, let R = R ∪ {b};
5: Calculate ϕδ

R(d);
6: If ϕδ

R(d) satisfies the constraint condition, go to 7; otherwise, repeat 3-5;
7: return R.

The traditional forward greedy search strategy (Algorithm 1) takes the empty
set as the starting point. In iterative way, it adds the attribute with the largest
attribute importance into the reduction set each time. Until that the obtained
reduction set meet the reduction constraints. The time complexity of Algorithm
1 is O

(|U |2 · |A|2) where |U | is the number of samples in the domain, and |A| is
the number of conditional attributes.

3 Reduction Based on Attribute Synthesis

In this section, a forward greedy search strategy based on attribute synthesis
method is proposed to improve the time consumption of Algorithm 1 on attribute
reduction.

In the proposed method, a choice can be made between a distance-based
measure and a correlation-based measure for clustering all attributes. However,
it should be noted that correlation-based measures typically assume linearity in
data relationships and may exhibit suboptimal performance when such linearity
is absent. Additionally, the computation of correlation becomes more intricate
in high-dimensional datasets. To circumvent these aforementioned issues, the
author opt for employing a distance-based measure.

The new method can reduce the data dimension by considering the similari-
ties between attributes. Firstly, all attributes are divided into different attribute
clusters. Since the attributes in same attribute cluster have high similarity, they
can be synthesized into a new pseudo-attribute. So that a new decision sys-
tem can be formed based on above multiple pseudo-attributes. In the process of
attribute reduction, it is only necessary to use the forward greedy search strat-
egy to handle the candidate pseudo-attributes of the new decision system. The
pseudo-attribute with the largest importance will be picked up. Finally, we use
constraint conditions of reduction to test the set of original attributes that syn-
thesized into the picked pseudo-attribute. If the constraint is not satisfied, the
pseudo-attribute with the second largest importance is picked up and restored
to original attributes which are judged by constraint. This process repeats until
that the constraint conditions of reduction are satisfied. The specific implemen-
tation is shown in Algorithm 2.
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Algorithm 2. Forward Greedy Search Strategy Based On Attribute Synthesis.

Require: A decision system DS = <U,A ∪ {d}> the radius is δ.
Ensure: A reduction on ϕ: R.
1: Calculate ϕδ

A(d), R = ∅;
2: Use K-means clustering algorithm to get multiple attribute clusters;
3: Average the values of several attributes in multiple attribute clusters, and

synthesize them into multiple pseudo-attributes;
4: Form a new decision system DS′ = <U,A′ ∪ {d}> for pseudo-attributes of

all samples;
5: R′ = ∅;
6: ∀a ∈ A′ −R′, compute the importance SIGϕ(a,R′, d) of pseudo-attribute a;
7: Select the most important attribute b, let R′ = R′ ∪ {b};
8: Restore the pseudo-attributes in R′ to multiple original attributes and put

them into R;
9: Calculate ϕδ

R(d);
10: If ϕδ

R(d) satisfies the constraint condition, go to 11; otherwise, repeat 6-9;
11: return R.

The author employs the K-means clustering in Algorithm 2 to group
attributes, taking into account the following factors: 1) The first reason is inter-
pretability. The cluster center point generated by K-means clustering represents
the average of the actual data points, aligning with the concept of pseudo-
attribute proposed in this paper; 2) The second reason lies in its high com-
putational efficiency and fewer parameters. K-means clustering demonstrates
feasibility for clustering high-dimensional data; 3) Lastly, K-means clustering
exhibits generalization capability as it does not assume any specific data distri-
bution, making it applicable to diverse types of data.

The time complexity of Algorithm 2 is O (|U | · |A| · |A′|) + O
(
|U |2 · |A′|2

)

where |U | is the number of samples in the domain, |A′| is the number of attribute
clusters obtained by using the K-means clustering algorithm, i.e., the value of
K. At the same time, |A′| is also the number of pseudo-attributes that are
synthesized. In this paper, we set the value of K as �|A|/2� through sufficient
experiments. As a result, |A′| = K = �|A|/2� ≈ |A|/2. Then the time complexity
of Algorithm 2 is about O

(|U | · |A|2/2
)

+ O
(|U |2 · |A|2/4

)
. However, the time

complexity of Algorithm 1 is O
(
|U |2 · |A|2

)
. Obviously, Algorithm 2 can reduce

the time consumption of reduction.

4 Experimental Analysis

In order to verify the effectiveness of Algorithm 2, 4 groups of UCI datasets and
4 groups of face datasets are used to test Algorithms 1 and 2. It is noted that
the Algorithm 1 is comparative algorithm. The basic descriptions of the data is
shown in Table 1.
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It should be noted that the model used in this paper is neighborhood rough
set. Under different neighbor radii, different reduction results will be obtained.
And then the meaning or generalization performance is not the same. There-
fore, in order to observe the change trend of reduction performance and find
the reduction results with better generalization performance, it is necessary to
perform attribute reduction under multiple radii. In this paper, 10 different radii
δ with values of 0.025, 0.05, 0.075, ... , 0.25 were selected for the comprehensive
experimental results.

In order to verify the effectiveness of the proposed algorithm, the 5-fold
cross validation method is used. The specific process is: the samples in the data
are divided into five same size sample subgroups, that is, U1, U2, . . . , U5. Any 4
subgroups are integrated into a integrated subgroup which is taken as training
set for deriving reduction results. The remaining 1 subgroup can then be taken
as testing set for classification. In this way, above calculation process will be
repeated 5 rounds.

Table 1. Data sets description

ID Datasets Number of
samples

Number of
attributes

Number of
decision
classes

1 Sonar Nor 208 60 2

2 Libras Movement 360 90 15

3 Musk (Version 1) 476 166 2

4 LSVT Voice Rehabilitation 126 256 2

5 Yale 32 × 32 165 1024 15

6 ORL 32 × 32 400 1024 40

7 Yale 64 × 64 165 4096 15

8 ORL 64 × 64 400 4096 40

In this experiment, approximation quality and conditional entropy are
selected as the measure criteria of reduction. Then, the following 4 procedures
can be obtained: ‘TS-A’, ‘TS-E’, ‘NS-A’ and ‘NS-E’. Where, ‘TS-A’ and ‘TS-E’
represent the Algorithm 1 using approximate quality and conditional entropy,
respectively. ‘NS-A’ and ‘NS-E’ represent the Algorithm 2 using approximate
quality and conditional entropy, respectively. The obtained attribute reduction
results, derived by above 4 procedures, are trained by KNN and SVM classifiers
for predicting the decision labels of testing samples.

4.1 Time Consumption Comparison

In this subsection, 4 procedures (‘TS-A’, ‘TS-E’, ‘NS-A’ and ‘NS-E’) are used
to compute the reduction results of 8 datasets. The time consumption of them
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are recorded and compared, as shown in Fig. 1. Observing Fig. 1, it is found that
the performance of the proposed ’NS-A’ and ’NS-E’ are significantly better than
’TS-A’ and ’TS-E’ in terms of time consumption over 8 datasets.

The following conclusions can be drawn: 1) Based on the two measure criteria
of approximate quality and conditional entropy, Algorithm 2 can significantly
reduce the time consumption of computing reduction compared with Algorithm
1; 2) Compared with the approximate quality, two attribute reduction procedures
based on conditional entropy (‘TS-E’ and ‘NS-E’) have lower time consumption.

4.2 Classification Accuracy Comparison

In this subsection, KNN and SVM classifiers are used to train the attribute
reduction results of 4 procedures, for predicting the decision labels of testing
samples. Then the testing samples are classified to verify the classification accu-
racy. Tables 2 and 3 show the average and maximum values of the classification
accuracy with respect to KNN classifier on 10 different radii. Tables 4 and 5 show
the average and maximum values of the classification accuracy with respect to
SVM classifier on 10 different radii.

Table 2. Average classification accuracies based on KNN classifier

ID TS-A NS-A TS-E NS-E

1 0.8025 ± 0.0128 0.8260 ± 0.02350.8260 ± 0.02350.8260 ± 0.0235 0.7932 ± 0.0211 0.8413 ± 0.02330.8413 ± 0.02330.8413 ± 0.0233

2 0.7725 ± 0.0154 0.7733 ± 0.01470.7733 ± 0.01470.7733 ± 0.0147 0.7753 ± 0.0118 0.7789 ± 0.01580.7789 ± 0.01580.7789 ± 0.0158

3 0.7662 ± 0.0240 0.7834 ± 0.02670.7834 ± 0.02670.7834 ± 0.0267 0.7509 ± 0.0261 0.7826 ± 0.04210.7826 ± 0.04210.7826 ± 0.0421

4 0.7122 ± 0.0195 0.7179 ± 0.05370.7179 ± 0.05370.7179 ± 0.0537 0.7101 ± 0.0385 0.7783 ± 0.03250.7783 ± 0.03250.7783 ± 0.0325

5 0.4570 ± 0.0644 0.5109 ± 0.04120.5109 ± 0.04120.5109 ± 0.0412 0.5133 ± 0.0256 0.5479 ± 0.02590.5479 ± 0.02590.5479 ± 0.0259

6 0.7998 ± 0.0225 0.8425 ± 0.01840.8425 ± 0.01840.8425 ± 0.0184 0.7950 ± 0.0369 0.8318 ± 0.02790.8318 ± 0.02790.8318 ± 0.0279

7 0.5600 ± 0.0418 0.6218 ± 0.02440.6218 ± 0.02440.6218 ± 0.0244 0.6067 ± 0.0296 0.6164 ± 0.03450.6164 ± 0.03450.6164 ± 0.0345

8 0.7997 ± 0.0170 0.8300 ± 0.01900.8300 ± 0.01900.8300 ± 0.0190 0.7747 ± 0.0296 0.8128 ± 0.02550.8128 ± 0.02550.8128 ± 0.0255

Table 3. Maximum classification accuracies based on KNN classifier

ID TS-A NS-A TS-E NS-E

1 0.8224 0.86550.86550.8655 0.8220 0.87470.87470.8747

2 0.79440.79440.7944 0.79440.79440.7944 0.7944 0.79720.79720.7972

3 0.7962 0.81510.81510.8151 0.7898 0.84270.84270.8427

4 0.7458 0.80860.80860.8086 0.7628 0.82490.82490.8249

5 0.5576 0.56970.56970.5697 0.5576 0.59390.59390.5939

6 0.8450 0.86750.86750.8675 0.8375 0.87500.87500.8750

7 0.6061 0.66670.66670.6667 0.6424 0.67880.67880.6788

8 0.8275 0.85000.85000.8500 0.8050 0.85000.85000.8500



An Acceleration Method for Attribute Reduction 71

Table 4. Average classification accuracies based on SVM classifier

ID TS-A NS-A TS-E NS-E

1 0.7302 ± 0.0158 0.7643 ± 0.01740.7643 ± 0.01740.7643 ± 0.0174 00.7302 ± 0.0221 0.7593 ± 0.02200.7593 ± 0.02200.7593 ± 0.0220

2 0.5231 ± 0.0214 0.6053 ± 0.02070.6053 ± 0.02070.6053 ± 0.0207 0.5286 ± 0.0148 0.6003 ± 0.03130.6003 ± 0.03130.6003 ± 0.0313

3 0.6597 ± 0.0378 0.6969 ± 0.04430.6969 ± 0.04430.6969 ± 0.0443 0.6891 ± 0.0209 0.7308 ± 0.01520.7308 ± 0.01520.7308 ± 0.0152

4 0.6801 ± 0.0132 0.7208 ± 0.04460.7208 ± 0.04460.7208 ± 0.0446 0.6889 ± 0.0241 0.7570 ± 0.03420.7570 ± 0.03420.7570 ± 0.0342

5 0.2939 ± 0.0718 0.4648 ± 0.04510.4648 ± 0.04510.4648 ± 0.0451 0.3024 ± 0.0289 0.4758 ± 0.03360.4758 ± 0.03360.4758 ± 0.0336

6 0.7090 ± 0.0341 0.8288 ± 0.01860.8288 ± 0.01860.8288 ± 0.0186 0.7085 ± 0.0482 0.8048 ± 0.04100.8048 ± 0.04100.8048 ± 0.0410

7 0.3945 ± 0.0651 0.5885 ± 0.03490.5885 ± 0.03490.5885 ± 0.0349 0.3661 ± 0.0388 0.5442 ± 0.05000.5442 ± 0.05000.5442 ± 0.0500

8 0.6560 ± 0.0438 0.7955 ± 0.01620.7955 ± 0.01620.7955 ± 0.0162 0.6380 ± 0.0330 0.7898 ± 0.03310.7898 ± 0.03310.7898 ± 0.0331

Table 5. Maximum classification accuracies based on SVM classifier

ID TS-A NS-A TS-E NS-E

1 0.7508 0.80310.80310.8031 0.7646 0.80310.80310.8031

2 0.5611 0.63610.63610.6361 0.5444 0.64720.64720.6472

3 0.7142 0.75850.75850.7585 0.7250 0.75220.75220.7522

4 0.7148 0.80860.80860.8086 0.7375 0.80860.80860.8086

5 0.3455 0.51520.51520.5152 0.3333 0.54550.54550.5455

6 0.7450 0.85000.85000.8500 0.7650 0.86750.86750.8675

7 0.4909 0.63030.63030.6303 0.4182 0.63030.63030.6303

8 0.7275 0.82000.82000.8200 0.6900 0.84500.84500.8450

According to above Tables 2, 3, 4 and 5, the following conclusions can be
drawn: 1) For the two measure criteria of approximate quality and conditional
entropy, Algorithm 2 can improve the classification accuracy compared with
Algorithm 1, and the effect obtained by conditional entropy is more obvious;
2) For KNN and SVM classifiers, Algorithm 2 also performs better on classi-
fication accuracies compared with Algorithm 1, and the classification effect in
SVM classifier is more obvious; 3) For face datasets with higher data dimensions,
Algorithm 2 obtains better classification accuracies than Algorithm 1, indicating
that Algorithm 2 is more suitable for processing high-dimensional data; 4) The
maximum classification accuracy of Algorithm 2 surpasses that of Algorithm 1
for both KNN and SVM classifiers, with a particularly pronounced improvement
observed in that Algorithm 2 exhibits superior classification potential and fea-
sibility compared to Algorithm 1; 5) The maximum classification accuracy of
Algorithm 2 in the KNN classifier is higher compared that of the SVM classifier,
indicating a superior upper limit of classification performance for Algorithm 2
in the KNN classifier.
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Fig. 1. Time consumption comparison for computing reduction
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5 Conclusions and Future Perspectives

In the process of attribute reduction based on neighborhood rough set model, all
attributes of samples need to be traversed for computing sample neighborhood.
This way will result in huge time consumption for high-dimensional data. In
order to solve this problem, we proposed an attribute synthesis method. Firstly,
all attributes are divided by K-means clustering into multiple attribute clus-
ters. Secondly, the attributes in the same cluster are synthesized into a new
pseudo-attribute. Then a new decision system can be formed by all the pseudo-
attributes. Thirdly, the pseudo-attribute with the greatest importance is selected
through the forward greedy search strategy in the new decision system. Finally,
let the original attributes corresponding to the selected pseudo-attribute be an
attribute subset, then we determine whether the subset satisfies the constraint
condition of reduction. If not, the pseudo-attribute with the second greatest
importance is considered to conduct above step, until the attribute subset sat-
isfying the constraint condition is calculated and output as the reduction. The
proposed attribute reduction algorithm based on attribute synthesis was exper-
imentally tested on 8 datasets, revealing its ability to not only reduce the time
consumption of attribute reduction but also enhance the classification accuracy
of reduction.

On the basis of this work, the following issues will be further explored:

1. This paper only used the approximate quality and conditional entropy as
the measure criteria of attribute reduction. Other measure methods can be
further considered, such as neighborhood discrimination index, decision error
rate and so on.

2. The reduction is accelerated only from the attribute aspect. Actually, it can
be considered from the perspective of the number of samples.
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Abstract. Attribute reduction is one of the important methods in
data mining preprocessing. In order to reduce the time consumption
of attribute reduction, from the perspective of data distribution, the
multi-annulus model is established for samples under different labels. The
multi-annulus model can adaptively generate multiple annuluses with dif-
ferent radii according to the different data densities, and the intersection
between annuluses is regarded as the boundary domain of annuluses,
which introduces a new angle to solve the attribute reduction problem.
The key to solving the attribute reduction of the multi-annulus model is
to take the quality in the annulus as the metric criterion. Additionally,
the radius ratio of the annulus and the boundary region of the annulus
is used as the weight of the quality in the annulus. To obtain the change
of the quality in the annulus caused by each candidate attribute added
to the attribute reduction pool, the forward greedy strategy is employed.
Its essence is to divide the unevenly distributed data into corresponding
annuluses and reduce the preprocessing process of the data itself, so as to
accelerate the process of attribute reduction. Compared with the other
three mainstream attribute reduction algorithms, the final experimental
results show that the proposed algorithm can greatly shorten the time
of attribute reduction by introducing the multi-annulus model.

Keywords: Attribute reduction · Annulus model · Multi-annulus
model · Hierarchical processing · Feature selection

1 Introduction

Attribute reduction [1–5], as one of the important feature selection methods,
aims to eliminate redundant and less important attributes, obtain effective
reduced attributes, and maintain the overall classification performance of the
system unchanged. This allows the reduced attributes to replace the original
high-dimensional data for analysis and decision-making, ultimately reducing the
complexity of decision-making. With the advent of the big data era, the scale of
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Fig. 1. Illustration of Multiple Annulues Model

data generated in numerous application fields has increased rapidly. Correspond-
ingly, the number of redundant attributes has also increased, which not only
interferes with the structural information of similar samples but also destroys
the structural information between different samples. Therefore, it is urgent to
reduce the dimensionality of attributes before data analysis and decision-making,
and attribute reduction becomes an effective and important solution. However,
finding the minimal attribute reduction has been proven to be an NP-hard prob-
lem [6], and seeking a feasible and efficient attribute reduction algorithm is still
a challenging research task.

It is worth noting that some existing methods require data encapsulation
before attribute reduction, such as neighborhood rough sets [7], which require
setting a neighborhood radius for each sample, calculating whether each sam-
ple belongs to the same neighborhood with other samples, and then performing
attribute reduction based on this neighborhood relationship. In addition, the
neighborhood radius suitable for problem-solving still relies on a searching strat-
egy to determine. This searching strategy will have a significant impact on the
time efficiency of the algorithm. To address this issue, a multi-annulus model
is established based on samples with different labels while fully considering the
distribution of samples between different labels. As shown in Fig. 1, the inner
annulus radii r and outer annulus radii R of the k-th decision are established.

The specific steps to establish a multi-annulus model are as follows: First,
samples in each label are stratified according to different degrees of discrete-
ness, forming multi-annulus, which essentially transforms the encapsulation and
judgment of relatively complex data into a logical division of data. Second, the
intersection areas generated between the annuluses are considered as the annulus
boundary domain, and the degree of discreteness of the samples jointly deter-
mines the weight of calculating the quality of the annulus. Finally, the inner
annulus quality is used as a measurement criterion, and the inner annulus qual-
ity of each attribute set is calculated using the forward greedy algorithm. When
the inner annulus quality of the attribute set is greater than the inner annulus
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quality of all attributes, the final attribute reduction result is obtained. It should
be further noted that the size of the inner annulus quality, as the standard for
measuring the importance of attributes, changes with the addition of different
attribute groups. The larger the inner annulus quality, the more compact the
sample distribution under the current attribute group, which intuitively indi-
cates that this group of attributes can highlight the key features of the samples.
Correspondingly, the smaller the inner annulus quality, the less constraining the
current attribute group is on the samples, making it difficult to preserve the
original features of the samples.

The rest of this paper is organized as follows. In Sect. 2, the multi-annulus
model is constructed through existing research and the corresponding definition
is given. In Sect. 3, The attribute reduction based on the multi-annulus model
is established. The comparative experimental results and analyses are shown in
Sect. 4. Finally, the conclusions are summarized in Sect. 4.5.

2 Construction of Multi-annulus Model

It is worth noting that some existing methods require encapsulation processing
of data before attribute reduction [8–10]. For instance, the three-way decision
analysis [11,12] has analyzed the three regions of rough set theory and integrated
them with decision theory to establish three-way decision rules, which consistent
with human cognition. In order to avoid the risk of making incorrect decisions,
delayed decision-making is employed. Formal concept analysis [13,14] proposes
the concept of concept information granules and rules for concept approxima-
tion, emphasizing the extraction of potential rules from data analysis. In addi-
tion, the appropriate neighborhood radius for problem solving still needs to be
determined by searching strategies, which will greatly affect the time efficiency
of the algorithm. To address this issue, considering the distribution of samples
among different labels, a multi-annulus model is established based on samples
with different labels.

Let BS = 〈U,AT ∪ {D}〉 be a knowledge system, where AT is the set of
all conditional attributes, U = {x1, x2, . . . , xn} is a non-empty finite domain in
the real number space of n samples, and D is the decision attribute set with L
decision classes. The cluster of all indistinguishable relationships related to AT
in BS is denoted as IND(BS). If P ⊆ AT is the attribute subset that satisfies
IND(BS) = IND(P ), then P is called the attribute reduction of AT . In this
section, we will mainly introduce the establishment of the multi-annulus model
on the dataset and apply the model to attribute reduction.

When classifying samples with different decision attributes, the features
extracted from the same class samples are usually taken as the basis for judg-
ing whether they belong to a certain decision class. For example, in the “Iris”
dataset, the Virginia iris is significantly larger than other types of irises in terms
of sepal length, petal length, and petal width, while irises with wider sepals and
shorter petal lengths are unique features of the mountain irises.

Therefore, in order to facilitate the acquisition of sample features under a
certain decision attribute, the samples are first divided into L classes according



78 Y. Liu et al.

to the differences in decision attributes, that is, the partition of all samples in
a knowledge system BS with respect to the decision attribute D: U/IND(D) =
{X1,X2, . . . , XL}.

Definition 1: Given a knowledge system BS, and an equivalent partition by
decision attribute D, the sample center of the k-th decision class is defined as:

Ck = mean(Xk), (1)

where mean is used to calculate the average of the feature vectors.
When generating different circular annuluses based on the sample center of

each decision class, it is expected that the inner radius of each annulus can be
adaptively generated according to the data density. It is not difficult to under-
stand that by specifying the maximum amount of information allowed within
the annulus, the length of the annulus radius can be inversely proportional to
the data density.

Definition 2: Let ε be a given ratio parameter (0 < ε < 1), and define the
maximum amount of information contained in the inner and outer annuluses as:

α = ε · | Xk |, (2)

where 0.5 ≤ ε < 1, and | Xk | denotes the number of samples in the k-th decision
class.

To divide the samples into the corresponding information capacity annuluses,
there are several steps involved. First, the distance between each sample and the
sample center of the corresponding decision class is calculated. Next, the distance
vector after natural sorting is obtained. Then, the samples with α step length
in the distance vector as the inner annulus samples are calculated, while the
remaining samples are considered as the outer annulus samples.

Definition 3: The inner annulus samples of the k-th decision class will be
defined as:

Gk = [xs
u, xs

u+1s , . . . , x
s
v−1s , x

s
vs

]
︸ ︷︷ ︸

|u−v|+1=α

∈ SΔ(xi, Ck), (3)

where SΔ(xi, Ck) returns the ascending order of the Euclidean distances from
each instance xi to the sample center Ck, and xs is the sorted sample. In addi-
tion, the annulus model roughly reflects the degree of dispersion of the data
distribution to a certain extent, that is, the smaller the ratio of the inner and
outer annulus radius, the more concentrated the data, and the effective features
of the data are better preserved in the inner annulus. Conversely, it indicates
that the data distribution is relatively dispersed, and it is difficult to capture
the characteristics of the data.

Definition 4: The inner and outer annulus radii of the k-th decision class will
be defined as:

rk = max(Gk),
Rk = max(SΔ(xi, Ck)).

(4)
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After determining the inner annulus radius of the annulus model, we can obtain
the intersection area of the annuluses belonging to two different decision classes,
which we call the annulus boundary domain. Intuitively, samples of the two
classes in the annulus boundary domain have fewer distinguishable features.
Similarly, as the complement of the annulus boundary domain samples in the
inner annulus samples, the samples in the non-annulus boundary domain often
have strong distinguishing features.

Definition 5: The samples in the p-th decision class and the q-th decision class
that are in the inner annulus intersection, i.e., in the annulus boundary domain
will be defined as:

BRq
p = Rp ∩ Rq = {xi | xi ∈ Gp, xi ∈ Gq}. (5)

Definition 6: The samples in the non-annulus boundary domain of the p-th
decision class and the q-th decision class will be defined as:

IEp = {xi | xi ∈ Gp, xi /∈ BRq
p},

IEq = {xi | xi ∈ Gq, xi /∈ BRq
p}.

(6)

When establishing other multiple annuluses, each inner annulus will intersect
with multiple other annuluses to generate annulus boundary domains, so it is
necessary to record the intersections generated by different annuluses.

Definition 7: Let the decision class dp ∈ D, define the set of other decision
classes intersecting with the inner annulus of dp as:

ID(p) = {q | rp < d(Cp, Cq), dq ∈ D}, (7)

where d(·, ·) returns the Euclidean distance between two vectors.

3 Attribute Reduction Based on the Multi-annulus
Model

Definition 8: Let A,B be two different decision classes, define the degree to
which A contains B as:

IN(A,B) =
Card(BRB

A)
Card(GA)

, (8)

where BRB
A is the samples in the annulus boundary domain of decision classes

A and B, and GA is the set of samples in decision class A. At the same time,
the degree of inclusion IN(A,B) to some extent reflects the separability of the
classification problem in the given attribute space. The larger the degree of
inclusion, the larger the overlap area of sets A and B, i.e., the annulus boundary
domain, and the smaller the separability of the two classes of samples.

The annulus boundary domain and non-boundary domain objectively reflect
the state of the sample distribution and also reflect the constraint ability of



80 Y. Liu et al.

the attribute group on the sample distribution. Therefore, it can be an impor-
tant part of evaluating the dependence of decision attribute D on the subset of
conditional attributes B.

Definition 9: Given the knowledge system BS, ∀B ⊆ AT , define the degree of
dependence of decision attribute D on the entire subset of conditional attributes
B as:

γB(D) =
L

∑

p=1

ω1 | BRq
p | +ω2 | IEp |, (9)

where ω1 = Rp+Rq

Rprq+Rqrp
, ω2 = rp

Rq
, q ∈ ID(p) and p 
= q.

The dependence degree is a function obtained by calculating the weights of
the annulus boundary domain and non-boundary domain under the premise of
considering the data distribution, and can be used as an evaluation index of the
importance of attribute sets.

Definition 10 [5]: Given the knowledge system BS, let ∀B ⊆ AT , ∀a ∈ A−B,
define the importance of a relative to B as:

SIG(a,B,D) = γa∪B(D) − γB(D). (10)

The attribute importance includes three elements: the attribute itself, the
attribute subset, and the decision variable. Based on the attribute importance
index, we can construct a greedy attribute reduction algorithm. Each time, the
candidate attribute with the highest importance is selected and added to the
attribute reduction pool. When the importance of all remaining attributes is 0,
i.e., at this time, adding any remaining attribute will not cause any change in
the dependence function, thereby eliminating a large number of redundant and
poorly distinguishable features and obtaining the final attribute reduction result.
Therefore, the output attribute reduction result still maintains the original data’s
distinguishing features as a whole. The description of the attribute reduction
algorithm based on the multi-annulus model can be found in Algorithm 1.

Algorithm 1. Attribute reduction algorithm based on the multi-annulus model
1. Initialization: ∅ → red, γB(D) = 0;
2. For any ak ∈ A − red, calculate: SIG(ak, B, D) = γred∪ak(D) − γred(D);
3. While SIG(ak, red, D) > 0:

a. ∀a ∈ AT − red;
b. Establish a multi-annulus model;
c. Find the attribute ak that satisfies:

SIG(ak, red, D) = max(SIG(a, red, D));
c. red = red ∪ {ak};

4. End
5. Return Red.
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This algorithm provides a way to derive the attribute reduction based on the
multi-annulus model. It iteratively selects the attribute with the highest impor-
tance and includes it in the attribute reduction result until no more significant
attributes are available.

In Algorithm 1, Step 1 initializes an attribute reduction set red and the
dependence degree of attribute D on the entire subset of conditional attributes B,
denoted as γB . Step 2 iterates through each complement ak of red, and calculates
the attribute importance of ak relative to B, denoted as SIG(ak, B,D), using
formulas (9) and (10). If SIG(ak, B,D) > 0, Step 3 is executed continuously to
find the attribute with the highest importance ak and add it to the attribute
reduction set until the attribute importance no longer increases or A − red = ∅.
Finally, the attribute reduction result red is obtained.

4 Experiments

4.1 Datasets

In order to verify the performance of the proposed algorithm, we selected 10
groups of data from the UCI dataset for algorithm comparison experiments.
Table 1 shows the basic information of the selected datasets, where m, attrs, and
l represent the number of samples, the number of attributes, and the number of
decision classes in the dataset, respectively. Next, we compare the multi-annulus
attribute reduction algorithm (referred to as the multi-annulus method) with
the forward greedy algorithm [7] of neighborhood rough sets (referred to as
the neighborhood method), the fast attribute reduction algorithm [15] based
on symmetry and decision filtering (referred to as the symmetry method), and
the attribute partitioning method [16] of granule rough set attribute reduction
(referred to as the granular method) on 10 datasets. According to Hu et al.’s
research, the neighborhood radius of the neighborhood method and symmetry

Table 1. Basic information of experimental datasets

ID datasets m attrs l

1 Banknote Authentication 1372 4 2

2 Iris 150 4 3

3 Page-blocks 5473 10 5

4 Solar Flare 1389 9 2

5 Statlog 2310 18 7

6 Synthetic Control Chart Time Series 600 60 6

7 Wdbc 569 30 2

8 Wilt 4839 5 2

9 Wine 178 13 3

10 Wireless Indoor Localization 2000 7 4
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method is set to 0.125. In addition, after experimental verification, the unique
parameter ε of the multi-annulus method proposed in this paper is set to 0.5.
Moreover, each algorithm is tested using a five-fold cross-validation method, and
the best-performing data is displayed in bold.

4.2 Time Consumption Comparison

In this section, we compare the time consumption of the neighborhood method
(Algorithm 1), symmetry method (Algorithm 2), multi-annulus method (Algo-
rithm 3), and the proposed method (Algorithm 4) for attribute reduction. The
specific time consumption is shown in Table 2. The following conclusions can be
drawn from the analysis of Table 2:

Table 2. Time consumption of different attribute reductions algorithms

ID Algorithm1 Algorithm 2 Algorithm 3 Algorithm 4

1 0.6326 0.0808 0.0589 0.0742

2 0.0171 0.0076 0.0063 0.0036

3 12.1128 7.9039 7.8931 7.5667

4 0.7855 0.0680 0.0592 0.0519

5 88.9080 11.6724 2.2325 1.1211

6 17.0822 7.4489 4.0532 1.4137

7 5.0398 0.3223 0.1353 0.0731

8 3.0654 0.6732 0.2164 0.4268

9 0.1705 0.0245 0.0325 0.0174

10 7.1051 0.7723 0.0365 0.2053

MEAN 13.4919 2.2974 1.4724 1.0954

(1) In general, the time spent on deriving attribute reduction using the multi-
annulus method is much less than that using the neighborhood method, and
compared with the symmetry method, the time efficiency is also significantly
improved. In terms of the average time consumed for deriving attribute
reduction, the multi-annulus method is still better than the other two meth-
ods, and the average time acceleration ratios of the multi-annulus method
compared with the neighborhood method and symmetry method are 12.3
and 2.1, respectively, further verifying the performance of the multi-annulus
method in deriving attribute reduction.

(2) From the perspective of datasets with a larger number of decision-making
classes, such as the Statlog dataset (ID = 5), attribute reduction is carried
out under the premise of 7 decision-making classes. The time consumption
of the neighborhood method and the symmetry method has significantly



Attribute Reduction Based on the Multi-annulus Model 83

increased, to 88.9080 s and 11.6724 s respectively, while the time consump-
tion of the multi-annulus method is only 1.1211 s. The speedup ratios com-
pared with the other two algorithms are 79.3 and 10.4 respectively. This is
because the neighborhood method needs to calculate whether each object
is a positive domain sample under different decision classes. Although the
symmetry method has already accelerated this process through bucketing
strategy and neighborhood symmetry, it still cannot avoid a large amount
of computation generated when judging positive domain samples. The multi-
annulus model established based on sample distribution, using the intersec-
tions produced between different annuluses as a method to calculate impor-
tance, can greatly enhance the efficiency of reducts. Hence, it can be seen
that introducing the multi-annulus model can indeed accelerate the process
of simplification solution after sample segmentation.

Table 3. Comparison of time consumption of different reducts algorithms

ID CART classification accuracy SVM classification accuracy

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

1 0.9357 0.9449 0.9412 0.9357 0.9759 0.9744 0.8723 0.8768

2 0.9316 0.9550 0.9334 0.9450 0.9116 0.8316 0.9097 0.9183

3 0.9554 0.9584 0.9254 0.9360 0.9192 0.9191 0.8931 0.9024

4 0.8084 0.8066 0.8064 0.8165 0.8228 0.8228 0.8133 0.8243

5 0.9128 0.9306 0.9098 0.9234 0.9040 0.8979 0.8901 0.9010

6 0.7429 0.7866 0.7865 0.7700 0.7233 0.7441 0.7728 0.8729

7 0.9051 0.9209 0.9123 0.8602 0.9516 0.9595 0.9605 0.8637

8 0.9711 0.9697 0.9421 0.9740 0.9460 0.9460 0.9432 0.9461

9 0.8608 0.8412 0.8389 0.8834 0.8804 0.9312 0.8492 0.8005

10 0.9566 0.9592 0.9503 0.9600 0.9715 0.9738 0.8968 0.9640

Mean 0.8994 0.9073 0.8946 0.9004 0.9006 0.9001 0.8801 0.8870

4.3 Classification Accuracy

In this section of the experiment, two classifiers, Classification and Regression
Tree (CART) [17] and Support Vector Machine (SVM) [18], are used to com-
pare the neighborhood method, symmetry method, and multi-annulus method.
Table 3 shows the classification accuracy obtained by different algorithms and
the mean accuracy of each algorithm on different datasets.

From the analysis of Table 3, we can conclude that, overall, the multi-annulus
method does not differ significantly in classification performance compared to
the other two methods, whether under CART or SVM classifiers. This indicates
that the multi-annulus model reducts algorithm can produce satisfactory reducts.
The multi-annulus method is an algorithm based on data distribution. For some
datasets, such as those with ID = 3 and ID = 7, the classification accuracy may
be affected due to the high degree of data dispersion. Combined with Table 2, it
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is not difficult to conclude that the reducts based on the multi-annulus model
can not only shorten the time efficiency of obtaining reducts but also maintain
considerable classification performance.

4.4 Parameter Sensitivity

In the introduction of Definition 2 in the second section of this paper, the max-
imum information content of the inner and outer annuluses is determined by
setting the annulus parameter ε, i.e., the size of ε indirectly determines the inner
and outer radii of each annulus model, thereby affecting the result of different
annulus intersections and the final dependency calculation. To further explore
the sensitivity of the multi-annulus method to the unique parameter ε, we select
four datasets with relatively poor classification accuracy in Table 3 and set the
multi-annulus method parameter ε to 0.5–1. The classification accuracy with the
change of ε on CART and SVM classifiers is shown in Figure 2.

From Fig. 2, it can be seen that with the increase of the information content
of the inner annulus, i.e., the increase of ε, the classification accuracy obtained
by the multi-annulus method in CART and SVM classifiers generally shows an
upward trend. This is because the more information the inner annulus contains,
the easier it is to intersect with other annuluses, thus obtaining better distin-
guishing key features. In addition, the obtained classification accuracy gradually
stabilizes after the parameter is set to 0.5. Increasing the parameter setting at
this time will further improve the classification accuracy, but it will also increase
the time consumption of processing intersecting samples. Therefore, this experi-
ment sets the parameter to 0.5, which ensures the accuracy of classification and
also improves the time efficiency.

Fig. 2. Variation of SVM and CART classification accuracy with parameters
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4.5 Conclusion

The multi-annulus model proposed in this paper is a new spatial structure suit-
able for single-label reducts. Its purpose is to divide samples according to data
distribution, deal with samples that intersect with other annuluses at different
levels separately, and thus obtain effective distinguishing features. Comparative
experiments with two classic reducts algorithms on 10 UCI datasets show that
the algorithm achieves significant acceleration effects while obtaining reducts
with comparable classification performance. The following issues are worth fur-
ther study:

(1) The reducts based on the multi-annulus model is divided from the perspec-
tive of data distribution, and we can try to apply the multi-annulus model
to other classification problems, such as dealing with multi-label dataset
classification problems, etc.

(2) We can attempt to combine our framework with other feature selection tech-
niques.
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Abstract. Decision rules and decision trees are studied intensively in
rough set theory. The following questions seem to be important for this
theory: relations between decision trees and decision rule systems, and
dependence of the complexity of decision trees and decision rule systems
on the complexity of the set of attributes attached to columns of the
decision table. In this paper, instead of decision rule systems we study
nondeterministic decision trees that can be considered as representations
of decision rule systems. We consider classes of decision tables with many-
valued decisions (multi-label decision tables) closed relative to removal of
attributes (columns) and changing sets of decisions assigned to rows. For
tables from an arbitrary closed class, we study functions that characterize
the dependence in the worst case of the minimum complexity of deter-
ministic and nondeterministic decision trees on the complexity of the
set of attributes attached to columns. We enumerate all types of behav-
ior of these functions. We also study the dependence in the worst case
of the minimum complexity of deterministic decision trees on the mini-
mum complexity of nondeterministic decision trees. This study leads to
understanding of the nontrivial relationships between deterministic deci-
sion trees and systems of decision rules represented by nondeterministic
decision trees.

Keywords: Decision tables with many-valued decisions · Closed
classes of decision tables · Deterministic decision trees ·
Nondeterministic decision trees

1 Introduction

Decision rules and decision trees are studied intensively in rough set theory [22–
26,31]. The following questions seem to be important for this theory: relations
between decision trees and decision rule systems, and dependence of the com-
plexity of decision trees and decision rule systems on the complexity of the set
of attributes attached to columns of the decision table.
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In this paper, instead of decision rule systems we study nondeterministic
decision trees that can be considered as representations of decision rule systems.
We consider classes of decision tables with many-valued decisions (multi-label
decision tables) closed relative to removal of attributes (columns) and changing
sets of decisions assigned to rows. For tables from an arbitrary closed class,
we study functions that characterize the dependence in the worst case of the
minimum complexity of deterministic and nondeterministic decision trees on
the complexity of the set of attributes attached to columns. We enumerate all
types of behavior of these functions.

We also study the dependence in the worst case of the minimum complexity
of deterministic decision trees on the minimum complexity of nondeterministic
decision trees. This study leads to understanding of the nontrivial relationships
between deterministic decision trees and systems of decision rules represented
by nondeterministic decision trees.

A decision table with many-valued decisions is a rectangular table in which
columns are labeled with attributes, rows are pairwise different and each row is
labeled with a nonempty finite set of decisions. Rows are interpreted as tuples
of values of the attributes. For a given row, it is required to find a decision from
the set of decisions attached to the row. To this end, we can use the following
queries: we can choose an attribute and ask what is the value of this attribute
in the considered row. We study two types of algorithms based on these queries:
deterministic and nondeterministic decision trees. One can interpret nondeter-
ministic decision trees for a decision table as a way to represent an arbitrary
system of true decision rules for this table that cover all rows. We consider so-
called bounded complexity measures that characterize the time complexity of
decision trees, for example, the depth of decision trees.

Decision tables with many-valued decisions often appear in data analysis.
Our approach is closer to multi-label learning [6,33,34] in which each decision
from the set attached to a row is considered correct, than to superset learning
in which the set attached to a row is the set of possible decisions containing
the correct one [8]. Moreover, decision tables with many-valued decisions are
common in such areas as combinatorial optimization, computational geometry,
and fault diagnosis, where they are used to represent and explore problems [2,18].

Decision trees [1,2,7,15,16,28,30] and decision rule systems [4,5,9,10,17,18,
24,26] are widely used as classifiers, as a means for knowledge representation,
and as algorithms for solving various problems of combinatorial optimization,
fault diagnosis, etc. Decision trees and rules are among the most interpretable
models in data analysis [12].

The depth of deterministic and nondeterministic decision trees for computa-
tion Boolean functions (variables of a function are considered as attributes) was
studied quite intensively [3,11,14,32].

We study classes of decision tables with many-valued decisions closed under
removal of columns (attributes) and changing the decisions (really, sets of deci-
sions). The most natural examples of such classes are closed classes of decision
tables generated by information systems introduced by Pawlak [21]. An infor-
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mation system consists of a set of objects (universe) and a set of attributes
(functions) defined on the universe and with values from a finite set. A problem
over an information system is specified by a finite number of attributes that
divide the universe into nonempty domains in which these attributes have fixed
values. A nonempty finite set of decisions is attached to each domain. For a given
object from the universe, it is required to find a decision from the set attached
to the domain containing this object.

A decision table with many-valued decisions corresponds to this problem in
a natural way: columns of this table are labeled with the considered attributes,
rows correspond to domains and are labeled with sets of decisions attached to
domains. The set of decision tables corresponding to problems over an informa-
tion system forms a closed class generated by this system. Note that the family
of all closed classes is essentially wider than the family of closed classes generated
by information systems. In particular, the union of two closed classes generated
by two information systems is a closed class. However, generally, there is no an
information system that generates this class.

Various classes of objects that are closed under different operations are inten-
sively studied. Among them, in particular, are classes of Boolean functions closed
under the operation of superposition [27] and minor-closed classes of graphs [29].
Decision tables represent an interesting mathematical object deserving mathe-
matical research, in particular, the study of closed classes of decision tables.

This paper continues the study of closed classes of decision tables that began
with work [13] and continued with works [19,20]. In [13], we studied the depen-
dence of the minimum depth of deterministic decision trees and the depth of
deterministic decision trees constructed by a greedy algorithm on the number of
attributes (columns) for conventional decision tables from classes closed under
operations of removal of columns and changing of decisions.

In [19], we considered classes of decision tables with many-valued decisions
closed under operations of removal of columns, changing of decisions, permu-
tation of columns, and duplication of columns. We studied relationships among
three parameters of these tables: the complexity of a decision table (if we consider
the depth of decision trees, then the complexity of a decision table is the num-
ber of columns in it), the minimum complexity of a deterministic decision tree,
and the minimum complexity of a nondeterministic decision tree. We considered
rough classification of functions characterizing relationships and enumerated all
possible seven types of the relationships.

In [20], we considered classes of decision tables with 0–1-decisions (each row
is labeled with the decision 0 or the decision 1assigned to rows. For tables from
an arbitrary closed class, we studied the dependence of the minimum complexity
of deterministic decision trees on various parameters of the tables: the minimum
complexity of a test, the complexity of the set of attributes attached to columns,
and the minimum complexity of a strongly nondeterministic decision tree. We
also studied the dependence of the minimum complexity of strongly nondeter-
ministic decision trees on the complexity of the set of attributes attached to
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columns. Note that a strongly nondeterministic decision tree can be interpreted
as a set of true decision rules that cover all rows labeled with the decision 1.

Let A be a class of decision tables with many-valued decisions closed under
removal of columns and changing of decisions, and ψ be a bounded complexity
measure. In this paper, we study three functions: Fψ,A(n), Gψ,A(n), and Hψ,A(n).

The function Fψ,A(n) characterizes the growth in the worst case of the mini-
mum complexity of a deterministic decision tree for a decision table from A with
the growth of the complexity of the set of attributes attached to columns of the
table. We prove that the function Fψ,A(n) is either bounded from above by a
constant, or grows as a logarithm of n, or grows almost linearly depending on n
(it is bounded from above by n and is equal to n for infinitely many n). These
results are generalizations of results obtained in [20] for closed classes of decision
tables with 0–1-decisions.

The function Gψ,A(n) characterizes the growth in the worst case of the min-
imum complexity of a nondeterministic decision tree for a decision table from A
with the growth of the complexity of the set of attributes attached to columns of
the table. We prove that the function Gψ,A(n) is either bounded from above by
a constant or grows almost linearly depending on n (it is bounded from above
by n and is equal to n for infinitely many n).

The function Hψ,A(n) characterizes the growth in the worst case of the min-
imum complexity of a deterministic decision tree for a decision table from A
with the growth of the minimum complexity of a nondeterministic decision tree
for the table. We indicated the condition for the function Hψ,A(n) to be defined
everywhere. Let Hψ,A(n) be everywhere defined. We proved that this function
is either bounded from above by a constant, or is greater than or equal to n
for infinitely many n. In particular, for any nondecreasing function ϕ such that
ϕ(n) ≥ n and ϕ(0) = 0, the function Hψ,A(n) can grow between ϕ(n) and
ϕ(n) + n. We indicated also conditions for the function Hψ,A(n) to be bounded
from above by a polynomial on n.

There is a similarity between some results obtained in this paper for closed
classes of decision tables and results from the book [16] obtained for problems
over information systems. However, the results of the present paper are more
general.

Proofs of the considered statements are too long for the conference paper.
They will be presented in its journal extension.

The rest of the paper is organized as follows: Sect. 2 contains main definitions
and notation, Sect. 3 contains main results, and Sect. 4 – short conclusions.

2 Main Definitions and Notation

Denote ω = {0, 1, 2, . . .}, S(ω) the set of nonempty finite subsets of the set ω
and, for any k ∈ ω\{0, 1}, denote Ek = {0, 1, . . . , k − 1}. Let P = {fi : i ∈ ω}
be the set of attributes (really, names of attributes). Two attributes fi, fj ∈ P
are considered different if i �= j.
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f2 f4 f3
1 1 1 {1}
0 1 1 {0, 1, 2}
1 1 0 {1, 3}
0 0 1 {2}
1 0 0 {3}
0 0 0 {2, 3}

Fig. 1. Decision table from M∞
2

2.1 Decision Tables

First, we define the notion of a decision table.

Definition 1. Let k ∈ ω\{0, 1}. Denote by M∞
k the set of rectangular tables

filled with numbers from Ek in each of which rows are pairwise different, each
row is labeled with a set from S(ω) (set of decisions), and columns are labeled
with pairwise different attributes from P . Rows are interpreted as tuples of values
of these attributes. Empty tables without rows belong also to the set M∞

k . We
will use the same notation Λ for these tables. Tables from M∞

k will be called
decision tables with many-valued decisions (decision tables).

Two tables from M∞
k are equal if one can be obtained from another by

permutation of rows with attached to them sets of decisions. For a table T ∈
M∞

k , we denote by Δ(T ) the set of rows of the table T and by Π(T ) we denote
the intersection of sets of decisions attached to rows of T . Decisions from Π(T )
are called common decisions for the table T .

Example 1. Figure 1 shows a decision table from M∞
2 .

Denote by M∞
k C the set of tables from M∞

k in each of which there exists a
common decision. Let Λ ∈ M∞

k C.
Let T be a nonempty table from M∞

k . Denote by P (T ) the set of attributes
attached to columns of the table T . We denote by Ωk(T ) the set of finite words
over the alphabet {(fi, δ) : fi ∈ P (T ), δ ∈ Ek} including the empty word λ. For
any α ∈ Ωk(T ), we now define a subtable Tα of the table T . If α = λ, then
Tα = T . If α �= λ and α = (fi1 , δ1) · · · (fim , δm), then Tα is the table obtained
from T by removal of all rows that do not satisfy the following condition: in
columns labeled with attributes fi1 , . . . , fim , the row has numbers δ1, . . . , δm,
respectively.

We now define two operations on decision tables: removal of columns and
changing of decisions. Let T ∈ M∞

k .

Definition 2. Removal of columns. Let D ⊆ P (T ). We remove from T all
columns labeled with the attributes from the set D. In each group of rows equal
on the remaining columns, we keep the first one. Denote the obtained table by
I(D,T ). In particular, I(∅, T ) = T and I(P (T ), T ) = Λ. It is obvious that
I(D,T ) ∈ M∞

k .
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f2 f3
1 1 {1}
0 1 {0, 1}
1 0 {0, 1}
0 0 {0}

Fig. 2. Decision table obtained from the decision table shown in Fig. 1 by removal of
a column and changing of decisions

Definition 3. Changing of decisions. Let ν : E
|P (T )|
k → S(ω) (by definition,

E0
k = ∅). For each row δ̄ of the table T , we replace the set of decisions attached

to this row with ν(δ̄). We denote the obtained table by J(ν, T ). It is obvious that
J(ν, T ) ∈ M∞

k .

Definition 4. Denote [T ] = {J(ν, I(D,T )) : D ⊆ P (T ), ν : E
|P (T )\D|
k →

S(ω)}. The set [T ] is the closure of the table T under the operations of removal
of columns and changing of decisions.

Example 2. Figure 2 shows the table J(ν, I(D,T0)), where T0 is the table shown
in Fig. 1, D = {f4} and ν(x1, x2) = {min(x1, x2),max(x1, x2)}.

Definition 5. Let A ⊆ M∞
k and A �= ∅. Denote [A] =

⋃
T∈A [T ]. The set [A] is

the closure of the set A under the considered two operations. The class (the set)
of decision tables A will be called a closed class if [A] = A.

A closed class of decision tables will be called nontrivial if it contains
nonempty decision tables.

Let A1 and A2 be closed classes of decision tables from M∞
k . Then A1 ∪ A2

is a closed class of decision tables from M∞
k .

2.2 Deterministic and Nondeterministic Decision Trees

A finite tree with root is a finite directed tree in which exactly one node called the
root has no entering edges. The nodes without leaving edges are called terminal
nodes.

Definition 6. A k-decision tree is a finite tree with root, which has at least two
nodes and in which

– The root and edges leaving the root are not labeled.
– Each terminal node is labeled with a decision from the set ω.
– Each node, which is neither the root nor a terminal node, is labeled with an

attribute from the set P . Each edge leaving such node is labeled with a number
from the set Ek.

Example 3. Figures 3 and 4 show 2-decision trees.
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Fig. 3. A deterministic decision tree for the decision table shown in Fig. 1

Fig. 4. A nondeterministic decision tree for the decision table shown in Fig. 1

We denote by Tk the set of all k-decision trees. Let Γ ∈ Tk. We denote by
P (Γ ) the set of attributes attached to nodes of Γ that are neither the root nor
terminal nodes. A complete path of Γ is a sequence τ = v1, d1, . . . , vm, dm, vm+1

of nodes and edges of Γ in which v1 is the root of Γ , vm+1 is a terminal node
of Γ and, for j = 1, . . . , m, the edge dj leaves the node vj and enters the node
vj+1. Let T ∈ M∞

k . If P (Γ ) ⊆ P (T ), then we correspond to the table T and
the complete path τ a word π(τ) ∈ Ωk(T ). If m = 1, then π(τ) = λ. If m > 1
and, for j = 2, . . . ,m, the node vj is labeled with the attribute fij and the
edge dj is labeled with the number δj , then π(τ) = (fi2 , δ2) · · · (fim , δm). Denote
T (τ) = Tπ(λ).

Definition 7. Let T ∈ M∞
k \{Λ}. A deterministic decision tree for the table T

is a k-decision tree Γ satisfying the following conditions:

– Only one edge leaves the root of Γ .
– For any node, which is neither the root nor a terminal node, edges leaving

this node are labeled with pairwise different numbers.
– P (Γ ) ⊆ P (T ).
– For any row of T , there exists a complete path τ of Γ such that the considered

row belongs to the table T (τ).
– For any complete path τ of Γ , either T (τ) = Λ or the decision attached to

the terminal node of τ is a common decision for the table T (τ) .

Example 4. The 2-decision tree shown in Fig. 3 is a deterministic decision tree
for the decision table shown in Fig. 1.
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Definition 8. Let T ∈ M∞
k \{Λ}. A nondeterministic decision tree for the table

T is a k-decision tree Γ satisfying the following conditions:

– P (Γ ) ⊆ P (T ).
– For any row of T , there exists a complete path τ of Γ such that the considered

row belongs to the table T (τ).
– For any complete path τ of Γ , either T (τ) = Λ or the decision attached to

the terminal node of τ is a common decision for the table T (τ).

Example 5. The 2-decision tree shown in Fig. 4 is a nondeterministic decision
tree for the decision table shown in Fig. 1.

2.3 Complexity Measures

Denote by B the set of all finite words over the alphabet P = {fi : i ∈ ω}, which
contains the empty word λ and on which the word concatenation operation is
defined.

Definition 9. A complexity measure is an arbitrary function ψ : B → ω that
has the following properties: for any words α1, α2 ∈ B,

– ψ(α1) = 0 if and only if α1 = λ – positivity property.
– ψ(α1) = ψ(α′

1) for any word α′
1 obtained from α1 by permutation of letters –

commutativity property.
– ψ(α1) ≤ ψ(α1α2) – nondecreasing property.
– ψ(α1α2) ≤ ψ(α1) + ψ(α2) – boundedness from above property.

The following functions are complexity measures:

– Function h for which, for any word α ∈ B, h(α) = |α|, where |α| is the length
of the word α. This function is called the depth.

– An arbitrary function ϕ : B → ω such that ϕ(λ) = 0, for any fi ∈ B,
ϕ(fi) > 0 and, for any nonempty word fi1 · · · fim ∈ B,

ϕ(fi1 · · · fim) =
m∑

j=1

ϕ(fij ). (1)

This function is called the weighted depth.
– An arbitrary function ρ : B → ω such that ρ(λ) = 0, for any fi ∈ B, ρ(fi) > 0,

and, for any nonempty word fi1 · · · fim ∈ B, ρ(fi1 · · · fim) = max{ρ(fij ) : j =
1, . . . ,m}.

Definition 10. A bounded complexity measure is a complexity measure ψ,
which has the boundedness from below property: for any word α ∈ B, ψ(α) ≥
|α|.
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Any complexity measure satisfying the equality (1), in particular the function
h, is a bounded complexity measure. One can show that if functions ψ1 and ψ2

are complexity measures, then the functions ψ3 and ψ4 are complexity measures,
where for any α ∈ B, ψ3(α) = ψ1(α) + ψ2(α) and ψ4(α) = max(ψ1(α), ψ2(α)).
If the function ψ1 is a bounded complexity measure, then the functions ψ3 and
ψ4 are bounded complexity measures.

Definition 11. Let ψ be a complexity measure. We extend it to the set of all
finite subsets of the set P . Let D be a finite subset of the set P . If D = ∅, then
ψ(D) = 0. Let D = {fi1 , . . . , fim} and m ≥ 1. Then ψ(D) = ψ(fi1 · · · fim).

Definition 12. Let ψ be a complexity measure. We extend it to the set of finite
words Ω in the alphabet {(fi, δ) : fi ∈ P, δ ∈ ω} including the empty word λ. Let
α ∈ Ω. If α = λ, then ψ(α) = 0. Let α = (fi1 , δ1) · · · (fim , δm) and m ≥ 1. Then
ψ(α) = ψ(fi1 · · · fim).

2.4 Parameters of Decision Trees and Tables

Definition 13. Let ψ be a complexity measure. We extend the function ψ to the
set Tk. Let Γ ∈ Tk. Then ψ(Γ ) = max{ψ(π(τ))}, where the maximum is taken
over all complete paths τ of the decision tree Γ . For a given complexity measure
ψ, the value ψ(Γ ) will be called the complexity of the decision tree Γ . The value
h(Γ ) will be called the depth of the decision tree Γ .

Let ψ be a complexity measure. We now describe the functions ψd, ψa, mψ,
Wψ, Sψ, and N defined on the set M∞

k and functions Z, G defined on the set
M∞

2 and taking values from the set ω. By definition, the value of each of these
functions for Λ is equal 0. We also describe the function lψ defined on the set
M∞

k ×ω. By definition, the value of this function for tuple (Λ, n), n ∈ ω, is equal
0. Let T ∈ M∞

k \{Λ} and n ∈ ω.

– ψd(T ) = min{ψ(Γ )}, where the minimum is taken over all deterministic deci-
sion trees Γ for the table T .

– ψa(T ) = min{ψ(Γ )}, where the minimum is taken over all nondeterministic
decision trees Γ for the table T .

– mψ(T ) = max{ψ(fi) : fi ∈ P (T )}.
– Wψ(T ) = ψ(P (T )).
– Let δ̄ be a row of the table T . Denote Sψ(T, δ̄) = min{ψ(D)}, where the

minimum is taken over all subsets D of the set P (T ) such that in the set of
columns of T labeled with attributes from D the row δ̄ is different from all
other rows of the table T . Then Sψ(T ) = max{Sψ(T, δ̄)}, where the maximum
is taken over all rows δ̄ of the table T .

– N(T ) is the number of rows in the table T .
– Let T ∈ M∞

2 . A decision table Q ∈ M∞
2 will be called complete if N(Q) =

2|P (Q)|. Then Z(T ) is the maximum number of columns in a complete table
from [T ] if such tables exist and 0 otherwise.
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– Let T ∈ M∞
2 . A word α ∈ Ω2(T ) will be called annihilating word for the

table T if Tα = Λ and α does not contain letters (fi, δ) and (fi, σ) such that
δ �= σ. An annihilating word α for the table T will be called irreducible if any
subword of α obtained from α by removal of some letters and different from
α is not annihilating. Then G(T ) is the maximum length of an irreducible
annihilating word for the table T if such words exist and 0 otherwise.

– Denote Ωn
k (T ) = {α : α ∈ Ωk(T ), ψ(α) ≤ n}. A finite set U ⊆ Ωn

k (T ) will be
called (ψ, n)-cover of the table T if

⋃
α∈U Δ(Tα) = Δ(T ). The (ψ, n)-cover

U will be called irreducible if each proper subset of U is not a (ψ, n)-cover
of the table T . Then lψ(T, n) is the maximum cardinality of an irreducible
(ψ, n)-cover of the table T . It is clear that {λ} is an irreducible (ψ, n)-cover
of the table T . Therefore lψ(T, n) ≥ 1.

Example 6. We denote by T0 the decision table shown in Fig. 1. One can show
that hd(T0) = 2, ha(T0) = 1, mh(T0) = 1, Wh(T0) = 3, Sh(T0) = 2, N(T0) = 6,
Z(T0) = 2, G(T0) = 3, lh(T0, 0) = 1, lh(T0, 1) = 3 and lh(T0, n) = 6 for any
n ∈ ω\{0, 1}.

3 Main Results

In this section, we consider results obtained for the functions Fψ,A, Gψ,A, and
Hψ,A and discuss closed classes of decision tables generated by information sys-
tems.

3.1 Function Fψ,A

Let ψ be a bounded complexity measure and A be a nontrivial closed class of
decision tables from M∞

k . We now define a function Fψ,A : ω → ω. Let n ∈ ω.
Then Fψ,A(n) = max{ψd(T ) : T ∈ A,Wψ(T ) ≤ n}.

The function Fψ,A characterizes the growth in the worst case of the minimum
complexity of deterministic decision trees for decision tables from A with the
growth of the complexity of the sets of attributes attached to columns of these
tables.

Let D = {ni : i ∈ ω} be an infinite subset of the set ω in which, for any
i ∈ ω, ni < ni+1. We now define a function HD : ω → ω. Let n ∈ ω. If n < n0,
then HD(n) = 0. If, for some i ∈ ω, ni ≤ n < ni+1, then HD(n) = ni.

Theorem 1. Let ψ be a bounded complexity measure and A be a nontrivial
closed class of decision tables from M∞

k . Then Fψ,A is an everywhere defined
nondecreasing function such that Fψ,A(n) ≤ n for any n ∈ ω and Fψ,A(0) = 0.
For this function, one of the following statements holds:

(a) If the functions Sψ and N are bounded from above on the class A, then there
exists a positive constant c0 such that Fψ,A(n) ≤ c0 for any n ∈ ω.
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(b) If the function Sψ is bounded from above on the class A and the function N
is not bounded from above on the class A, then there exist positive constants
c1, c2, c3, c4 such that c1 log2 n − c2 ≤ Fψ,A(n) ≤ c3 log2 n + c4 for any
n ∈ ω\{0}.

(c) If the function Sψ is not bounded from above on the class A, then there exists
an infinite subset D of the set ω such that HD(n) ≤ Fψ,A(n) for any n ∈ ω.

3.2 Function Gψ,A

Let ψ be a bounded complexity measure and A be a nontrivial closed class of
decision tables from M∞

k . We now define a function Gψ,A. Let n ∈ ω. Then
Gψ,A(n) = max{ψa(T ) : T ∈ A,Wψ(T ) ≤ n}.

The function Gψ,A characterizes the growth in the worst case of the minimum
complexity of nondeterministic decision trees for decision tables from A with the
growth of the complexity of the sets of attributes attached to columns of these
table.

Theorem 2. Let ψ be a bounded complexity measure and A be a nontrivial
closed class of decision tables from M∞

k . Then Gψ,A is an everywhere defined
nondecreasing function such that Gψ,A(n) ≤ n for any n ∈ ω and Gψ,A(0) = 0.
For this function, one of the following statements holds:

(a) If the function Sψ is bounded from above on the class A, then there exists a
positive constant c such that Gψ,A(n) ≤ c for any n ∈ ω.

(b) If the function Sψ is not bounded from above on the class A, then there exists
an infinite subset D of the set ω such that HD(n) ≤ Gψ,A(n) for any n ∈ ω.

3.3 Function Hψ,A

Let ψ be a bounded complexity measure and A be a nontrivial closed class of
decision tables from M∞

k . We now define possibly partial function Hψ,A : ω → ω.
Let n ∈ ω. If the set {ψd(T ) : T ∈ A,ψa(T ) ≤ n} is infinite, then the value
Hψ,A(n) is undefined. Otherwise, Hψ,A(n) = max{ψd(T ) : T ∈ A,ψa(T ) ≤ n}.

The function Hψ,A characterizes the growth in the worst case of the minimum
complexity of deterministic decision trees for decision tables from A with the
growth of the minimum complexity of nondeterministic decision trees for these
tables.

We now define possibly partial function Lψ,A : ω → ω. Let n ∈ ω. If the set
{lψ(T, n) : T ∈ A} is infinite, then the value Lψ,A(n) is not defined. Otherwise,
Lψ,A(n) = max{lψ(T, n) : T ∈ A}. One can show that in this case Lψ,A(n) ≥ 1.

The following statement describes the criterion for the function Hψ,A to be
everywhere defined.

Theorem 3. Let ψ be a bounded complexity measure and A be a nontrivial
closed class of decision tables from M∞

k . The function Hψ,A is everywhere
defined if and only if the function Lψ,A is everywhere defined.



100 A. Ostonov and M. Moshkov

We now describe two possible types of behavior for everywhere defined func-
tion Hψ,A.

Theorem 4. Let ψ be a bounded complexity measure, A be a nontrivial closed
class of decision tables from M∞

k , and the function Hψ,A be everywhere defined.
Then Hψ,A is a nondecreasing function and Hψ,A(0) = 0. For this function, one
of the following statements holds:

(a) If the function ψd is bounded from above on the class A, then there is a
nonnegative constant c such that Hψ,A(n) ≤ c for any n ∈ ω.

(b) If the function ψd is not bounded from above on the class A, then there exists
an infinite subset D of the set ω such that Hψ,A(n) ≥ HD(n) for any n ∈ ω.

Remark 1. From Theorem 1 it follows that the function ψd is bounded from
above on the class A if and only if the functions Sψ and N are bounded from
above on the class A.

The following statement shows a wide spectrum of behavior of the everywhere
defined function Hψ,A in the case when the function ψd is not bounded from
above on the class A.

Theorem 5. Let ϕ : ω → ω be a nondecreasing function such that ϕ(n) ≥ n
for any n ∈ ω and ϕ(0) = 0. Then there exist a closed class A of decision tables
from M∞

k and a bounded complexity measure ψ such that the function Hψ,A is
everywhere defined and ϕ(n) ≤ Hψ,A(n) ≤ ϕ(n) + n for any n ∈ ω.

Let A be a nontrivial closed class of decision tables from M∞
2 and ψ be a

bounded complexity measure. Let n ∈ ω. Denote Aψ(n) = {T : T ∈ A,mψ(T ) ≤
n}. Since Λ ∈ A, both sets Aψ(n) and {Z(T ) : T ∈ Aψ(n)} are nonempty sets.
We now define probably partial function Zψ,A : ω → ω. If {Z(T ) : T ∈ Aψ(n)}
is an infinite set, then the value Zψ,A(n) is not defined. Otherwise, Zψ,A(n) =
max{Z(T ) : T ∈ Aψ(n)}.

Let n ∈ ω. Since Λ ∈ A, the set {G(T ) : T ∈ Aψ(n)} is nonempty. We
now define probably partial function Gψ,A : ω → ω. If {G(T ) : T ∈ Aψ(n)}
is an infinite set, then the value Gψ,A(n) is not defined. Otherwise, Gψ,A(n) =
max{G(T ) : T ∈ Aψ(n)}.

The following statement describes the criterion for the everywhere defined
function Hψ,A to be bounded from above by a polynomial. For simplicity, we
consider here only decision tables from the set M∞

2 .

Theorem 6. Let A be a nontrivial closed class of decision tables from M∞
2 , ψ

be a bounded complexity measure and the function Hψ,A be everywhere defined.
Then a polynomial p0 such that Hψ,A(n) ≤ p0(n) for any n ∈ ω exists if and only
if there exist polynomials p1, p2, and p3 such that Zψ,A(n) ≤ p1(n), Gψ,A(n) ≤
p2(n) and Lψ,A(n) ≤ 2p3(n) for any n ∈ ω.
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3.4 Family of Closed Classes of Decision Tables

Let U be a set and Φ = {f0, f1, . . .} be a finite or countable set of func-
tions (attributes) defined on U and taking values from Ek. The pair (U,Φ)
is called a k-information system. A problem over (U,Φ) is an arbitrary tuple
z = (U, ν, fi1 , . . . , fin), where n ∈ ω\{0}, ν : En

k → S(ω) and fi1 , . . . , fin are
functions from Φ with pairwise different indices i1, . . . , in. The problem z is to
determine a value from the set ν(fi1(u), . . . , fin(u)) for a given u ∈ U . Various
examples of k-information systems can be found in [15].

We denote by T (z) a decision table from M∞
k with n columns labeled with

attributes fi1 , . . . , fin . A row (δ1, . . . , δn) ∈ En
k belongs to the table T (z) if and

only if the system of equations {fi1(x) = δ1, . . . , fin(x) = δn} has a solution
from the set U . This row is labeled with the set of decisions ν(δ1, . . . , δn).

Let the algorithms for the problem z solving be algorithms in which each
elementary operation consists in calculating the value of some attribute from
the set {fi1 , . . . , fin} on a given element u ∈ U . Then, as a model of the problem
z, we can use the decision table T (z), and as models of algorithms for the problem
z solving – deterministic and nondeterministic decision trees for the table T (z).

Denote by Z∞(U,Φ) the set of problems over (U,Φ) and A∞(U,Φ) = {T (z) :
z ∈ Z∞(U,Φ)}. One can show that A∞(U,Φ) = [A∞(U,Φ)], i.e., A∞(U,Φ) is
a closed class of decision tables from M∞

k generated by the information system
(U,Φ).

Closed classes of decision tables generated by k-information systems are the
most natural examples of closed classes. However, the notion of a closed class
is essentially wider. In particular, the union A∞(U1, Φ1) ∪ A∞(U2, Φ2), where
(U1, Φ1) and (U2, Φ2) are k-information systems, is a closed class, but generally,
we cannot find an information system (U,Φ) such that A∞(U,Φ) = A∞(U1, Φ1)∪
A∞(U2, Φ2).

3.5 Example of Information System

Let R be the set of real numbers and F = {fi : i ∈ ω} be the set of functions
defined on R and taking values from the set E2 such that, for any i ∈ ω and
a ∈ R,

fi(a) =
{

0, a < i,
1, a ≥ i.

Let ψ be a bounded complexity measure and A = A∞(R, F ). One can prove
the following statements:

– The function N is not bounded from above on the set A.
– The function Sψ is bounded from above on the set A if and only if there exists

a constant c0 > 0 such that ψ(fi) ≤ c0 for any i ∈ ω.
– The function Lψ,A is everywhere defined if and only if, for any n ∈ ω, the set

{i : i ∈ ω, ψ(fi) ≤ n} is finite.
– A polynomial p such that Lψ,A(n) ≤ 2p(n) for any n ∈ ω exists if and only if

there exists a polynomial q such that |{i : i ∈ ω, ψ(fi) ≤ n}| ≤ 2q(n) for any
n ∈ ω.
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– For any n ∈ ω, Zψ,A(n) ≤ 1.
– For any n ∈ ω, Gψ,A(n) ≤ 2.

4 Conclusions

In this paper, we studied relationships among three parameters of tables from
closed classes of decision tables with many-valued decisions: the minimum com-
plexity of a deterministic decision tree, the minimum complexity of a nondeter-
ministic decision tree, and the complexity of the set of attributes attached to
columns. Future research will be devoted to the study of relationships among
time and space complexity of deterministic and nondeterministic decision trees
for decision tables from closed classes.
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Abstract. A survey of approaches yielding paraconsistent logics is made
and is summarised through a diagram. The rough set theoretic approach
is included in the survey, and it is the focus in the second part of the work.
Several new paraconsistent systems are presented, that are obtained by
weakening existing rough modus ponens rules.

Keywords: Paraconsistent logics · Ex Contradiction Quodlibet
(ECQ) · Rough set approach · Modal logic S5

1 Introduction

In common sense reasoning, one often derives meaningful conclusions from con-
tradictory information, that is, information which contains both a statement and
its negation. Classical logic does not allow such inferences. Many researchers have
tried to deal with the issue by formulating “inconsistency-tolerant systems” [26].
Such systems violate either of two classical properties: the principle of explosion
or the law of non-contradiction. Violation of the principle of explosion forms the
basis of paraconsistent logics. The paper presents a survey of various techniques
which give rise to paraconsistent logics. There are several existing surveys of
paraconsistent systems, for instance in [1,24,26,31,38,40]. However, this survey
is an attempt to compile almost all the major techniques by which paraconsistent
systems are arrived at. Furthermore, we focus on paraconsistent logics arising
out of rough set theory – this is not part of any of the other surveys. Utilising
the notion of rough truth [36] and various forms of rough modus ponens [6,17],
paraconsistent systems have been obtained. Furthering this direction of work,
we get new paraconsistent systems by weakening existing rough modus ponens
rules.

Let us give the formal versions of the classical principles mentioned above.
Define a logic L as a tuple (FOR,�), where FOR represents the set of formulas,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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and � is the consequence relation1 (�⊆ P(FOR) × FOR). FOR is based on an
enumerable language with the connective negation (¬). Let Γ ∪ {α, β} ⊆ FOR.
(I) The Principle of Explosion or Ex Contradictione Quodlibet (ECQ):
∀Γ∀α∀β(Γ ∪ {α,¬α} � β).
(II) The Law of Non-contradiction (LNC): � ¬(α ∧ ¬α).
A logic L is said to be explosive if ECQ holds.

�Lukasiewicz’s 3-valued logic [14] and Kleene’s 3-valued logic [30] are exam-
ples of inconsistency-tolerant systems that violate LNC. However, ECQ holds
in both – so these are not referred to as paraconsistent systems. Note that in
classical logic, ECQ and LNC are equivalent. The above two logics show that
the principles may not be comparable in the context of inconsistency-tolerant
logics. In fact, there are also logics, such as the Logic of Paradox [38], where
ECQ fails but LNC holds.

The survey of approaches giving paraconsistent logics (i.e. where ECQ fails)
is summarised by the diagram given in Fig. 1. In Sect. 2, we briefly outline the
motivations behind each approach (including the rough set theoretic one), and
cite some logics that are obtained by following the approach. In Sect. 3, new para-
consistent systems arising from the rough set theoretic approach are presented.
Section 4 concludes the article.

2 Different Approaches to Paraconsistency

Let us now present the different approaches, mentioning how ECQ is violated
in each case yielding paraconsistent logics. Figure 1 gives a brief representation
of the complete survey. The rectangular nodes, other than the topmost node,
represent different techniques of obtaining paraconsistent logics violating ECQ.

2.1 The 3-Valued Approach

Let the three truth-values be denoted as t,m, f , where t, f correspond to the
classical truth values true and false respectively, and m represents the middle-
value. The question of whether the third value should be regarded as “close” to
the notion of truth or not is then addressed – in the former case, it is termed as a
designated value. Paraconsistency may result, when m and t are both designated
values. Let us see how. We assume that the logical connective of negation (¬) in
the language behaves classically on {t, f}, i.e., ¬t = f , ¬f = t, while ¬m = m.
So for any propositional variable p in the language, if p takes the value m,
¬p also evaluates to m. The semantic consequence relation � is defined such
that whenever the premisses take designated values under any valuation, the
conclusion must also get a designated value under that valuation. It is then clear
1 The consequence relation � is used as a meta-linguistic symbol. In the context of a

particular logic this can be a relation obtained semantically or syntactically; more-
over sometimes the same notion of consequence is represented by an operator from
P(FOR) to P(FOR). The use of notation would be clear from the contexts.
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Fig. 1. Paraconsistent logics: Different approaches

that for any distinct propositional variables p, q and a valuation that gives p the
value m and q the value f , {p,¬p} � q. An example for this approach is provided
by the Logic of Paradox (LP) mentioned earlier in Sect. 1. This 3-valued logic
was proposed to deal with logical paradoxes; in this logic the truth-value m
represents both true and false.

2.2 Non-adjunctive Approach

A non-adjunctive system is one that does not validate the law of adjunction, i.e.
there exist formulas α, β such that {α, β} � α ∧ β, where ∧ is the logical con-
nective of conjunction. In particular, if β := ¬α then {α,¬α} � α ∧ ¬α, which
ensures that such a system violates ECQ. The first known non-adjunctive para-
consistent logic is the Discussive (or Discursive) logic (J) proposed by Jaśkowski
[23,29]. The motivation of not adopting the law of adjunction in J, arose from
the perspective of a discussion where different participants may offer some con-
tradictory information, idea or opinion. According to an individual participant,
a statement in a discussion may be true and consistent, but may be discordant
with the opinion of other participants. Let us imagine that each participant in
the discussion is represented by a single world and the opinion of that participant
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is considered to be true in that very world; i.e. each such set of sentences is true
in at least one world. This sense of world based semantics might have been the
reason for which Jaśkowski considered the normal modal logic S5 to model the
semantics for J. The language of J is that of S5 (see [23]). The semantic conse-
quence relation (�J ) is defined for J as follows: Γ �J α if and only if ♦Γ �S5 ♦α,
where “♦” is the possibility modal operator and ♦Γ := {♦γ : γ ∈ Γ}. For any
propositional variable p, it is easy to show in S5 that {♦p,♦¬p} �S5 ♦(p ∧ ¬p)
and thus {p,¬p} �J p ∧ ¬p.

2.3 Non-truth Functional Approach

Classically, the truth value of a compound formula, is wholly determined by
the truth value(s) of the propositional variables that occur in the formula, and
the logical connectives are referred to as being truth functional. In particular,
if negation is not truth functional, the possibility of violation of ECQ arises –
as we observe in the following examples. Consider Da-costa’s Cn-systems [22]
and Diderik Batens’ system PI [8]. In both these logics, negation is taken to
be weaker than that in classical logic. One direction of classical negation holds:
if a statement is false then its negation is true. However, it is possible that
a statement and its negation are both true. But then {p,¬p} � q for distinct
propositional variables p, q. A non-truth functional semantics for negation is
also considered by Tuziak [45] in case of the paraconsistent extensions of the
positive fragment CPL+ of CPL, the classical propositional logic. Other than
one extension that is explosive, one can argue that ECQ is violated in the rest,
in a manner similar to the cases of Cn and PI.

2.4 Transformation Approach

The transformation approach gives us different ways to obtain a paraconsistent
logic from an explosive logic. The basic principle is to define a new logic by
restricting the inferences of the mother logic in such a manner that the new logic
becomes non-explosive. We place under this approach, the methods defined in
[7,15,25,39]. For other methods of variable inclusion readers are referred to [16].

In [25] the authors have presented a method called paraconsistentization,
where the consequence relation of the transformed system is based on those
derivations of the parent consequence relation that are obtained from a consistent
subset of the premise set. Let us describe this formally.

Given a logic L := (FOR,�) and Γ ⊆ FOR, the set C(Γ ) := {α : Γ � α},
is said to be the set of all consequences of Γ . Γ is called C - consistent if
C(Γ ) �= FOR, otherwise it is called C - inconsistent. The paraconsistentizaion
consequence relation �P⊆ P(FOR) × FOR is defined as Γ �P α, if and only
if there is some C-consistent subset Γ

′
of Γ such that Γ

′ � α. In [25], a set
of conditions on C is imposed so that the corresponding (FOR,�P) becomes
paraconsistent.

As examples, one can show that the consequence relations of �Lukasiewicz’s
3-valued logic (�L3) [14], Gödel’s 3-valued logic (G3) [41] and Kleene’s 3-valued
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logic (K3) [30] (in all of which ECQ holds) satisfy the said conditions. Hence
the paraconsistentization of these logics are indeed paraconsistent.

Two other methods for converting a system satisfying ECQ into one that
violates the principle, have been presented in [7,15]. These are termed as the left
variable inclusion and restricted rules methods.

A new logic Ll := (FOR,�l), based on L, is defined as follows:
Γ �l α if and only if there is a Γ

′ ⊆ Γ such that V ar(Γ
′
) ⊆ V ar(α) and Γ

′ � α,
where V ar(γ) is the set of all propositional variable(s) contained in γ, and
V ar(Γ ) := ∪{V ar(γ) : γ ∈ Γ}. The new logic Ll is known as the left vari-
able inclusion companion of L.

In the restricted rules method, one Hilbert-style logic is obtained from
another by imposing restrictions on logical rules. Suppose L is a Hilbert-style
logic with A(⊆ FOR) as the set of axioms and RL(⊆ P(FOR) × FOR) as the
set of rules of inference. Based on L, a new Hilbert-style logic Lre := (FOR,�re)
is defined with the same set A of axioms and set of rules RLre := {Γ

α ∈ RL |
V ar(Γ ) ⊆ V ar(α)}. Lre is known as the restricted rules companion of L.

In [7], it is shown that if L is a Hilbert-style logic then Ll is stronger than2

Lre in the sense that for all Γ and α, Γ �re α implies Γ �l α. Moreover, the
authors showed that if the mother logic contains a formula α such that α is not
a theorem and there is some propositional variable p which is not included in α,
then both the logics, obtained by applying left variable inclusion and restricted
rules, are paraconsistent. The same work also presents a sufficient condition
specifying when Ll and Lre, obtained from the same mother logic, would be
identical. CPL serves as an example for which the left variable inclusion and
restricted rules companions are identical, and paraconsistent.

Plurivalence [39] is another way of transforming an explosive logic to a non-
explosive one. In this method a mother logic (two-valued or many-valued) with a
univalent semantic consequence relation |=u is converted to a logic by generating
a plurivalent semantic consequence relation |=p. However, in [39], the author
mainly focused on converting a many-valued logic with a univalent consequence
relation to its “plurivalent” counterpart. A univalent interpretation (M,V) is
considered based on a structure M := (V,D, δ), consisting of a non-empty set V
of truth values, a designated set D (⊆ V ) of truth values, a set δ of truth functions
for the logical connectives, and a valuation V, assigning a unique truth value to
each propositional variable. V is extended over the set of all formulas in the usual
recursive manner, and |=M

u is also defined in the usual manner: Γ |=M
u α if and

only if for all interpretations (M,V), if V(γ) ∈ D for all γ ∈ Γ then V(α) ∈ D.
Now given (M,V), the respective plurivalent interpretation (M,R) is obtained
by replacing the valuation V by a relation R which relates every propositional
variable to a subset of V , and the relation is suitably extended [39] over the
whole set of formulas. Further, it is defined that R designates α if and only if
there is some v ∈ D such that αRv holds. The plurivalent semantic consequence
�M

p is defined as follows: Γ �M
p α if and only if for all interpretations (M,R),

if R designates every member of Γ then R designates α. It is observed that for

2 This notion is more formally introduced in Sect. 3.1.
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any plurivalent semantics which contains the truth-values t (true) and f (false)
such that negation (¬) behaves classically for t, f , ECQ is violated by �M

p . As
an example, the plurivalent counterpart of CPL is in fact, LP (ref. Sect. 2.1).

2.5 Logics of Formal Inconsistency

The key feature of the logics of formal inconsistency (LFI) is to bring in a unary
‘consistency’ operator ◦ in the object language so that some formulas can be
segregated from those which are tolerant to inconsistency. The first reported
such family of logics was proposed by Carnielli and Marcos in [18,20]. A finite
set of compound formula(s) involving only α, denoted as �(α), is introduced.
With respect to this set a contradictory premise may behave classically. If �(α)
is a singleton, it is simply denoted as ◦α.

Further, a notion of gentle explosion is defined. A set Γ of formulas is said
to be gently explosive if (i) there is α such that �(α) ∪ {α} and �(α) ∪ {¬α}
are both non-trivial3, and (ii) for all α, β, Γ ∪ �(α) ∪ {α,¬α} � β. A logic L is
said to satisfy Gentle Principle of Explosion (gPPS) if all Γ (⊆ FOR) are gently
explosive. Then an LFI is defined as follows.

Definition 1. A logic L is said to be LFI if ECQ does not hold but (gPPS)
holds.

Thus, the definition of LFI allows explosion in a controlled way; it allows
{α,¬α} to be explosive in the presence of �α, where neither α nor ¬α alone
leads to triviality in the presence of �α. Let us note that Da Costa’s hierarchy
of Cn-systems, discussed in Sect. 2.3, are all examples of LFI. As mentioned in
[18], Discussive logic (J) (ref. Sect. 2.2) is also an LFI, in which �(α) = ◦α :=
¬(α →d ¬(α ∨ ¬α)) →d (¬α →d ¬(α ∨ ¬α)).

A wide variety of paraconsistent logics fall under the general definition of
LFIs. For instance, a fundamental LFI logic (mbC) is proposed as an extension
of CPL+ by adding ◦ in the language and axioms ◦α → (α → (¬α → β)) and
α ∨ ¬α, where the former one presents a form of gentle explosion.

Moreover, mbC also shares properties of the non-truth functional approach
discussed in Sect. 2.3. A valuation V for mbC is a function that assigns the values
t and f to all formulas where the semantics for negation (¬) and consistency
operator (◦) is given below.

(1) V(¬α) = f implies V(α) = t.
(2) V(◦α) = t implies V(α) = f or V(¬α) = f .

Clearly, both ¬ and ◦ are non-truth functional. Thus, based on the usual
definition of semantic consequence it can be shown that {◦p, p} �mbC q and
{◦p,¬p} �mbC q for some distinct p, q; however, as ◦p, p, ¬p cannot be true
together, {◦p, p,¬p} �mbC β for all β. So mbC satisfies (gPPS). Moreover, from

3 A subset Γ ⊆ FOR is said to be trivial if Γ � α for every formula α, otherwise it is
called non-trivial.
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Sect. 2.3 it is straightforward that mbC violates ECQ. Hence mbC is an LFI.
In a step by step manner adding some further axiom schemes and imposing
some further conditions on ◦, Carnielli and Marcos have developed a series of
interesting LFIs. For more details readers are referred to [19,20].

2.6 Adaptive Approach

The adaptive approach aims to identify the appearance of inconsistency within
a derivation and develop strategies to adapt changes in the derivation so that it
violates ECQ. Diderik Batens is the forerunner in developing different strategies
for adaptive reasoning [9], among which the strategies dealing with inconsis-
tencies lead towards paraconsistent systems. An adaptive logic consists of three
components, namely (i) a lower limit logic (LLL) (ii) a set of abnormalities, and
(iii) an adaptive strategy. LLL consists of a number of inferential rules that are
accepted as a basis for a particular adaptive system. The set of abnormalities
consists of some formulas that help to decide when an already derived formula
need not be a conclusion. An adaptive strategy describes how to handle the
applications of inference rules based on the set of abnormalities. The LLL and
the collection of abnormalities jointly define the strategy to be adapted in the
derivation chain, and on the other hand the set of abnormalities and the strate-
gies jointly define which formulas in the derivation chain are to be marked for
throwing out of consideration. The upper limit logic (ULL) can be obtained by
extending LLL with the condition that no abnormality is logically derivable.
ULL includes the inferential rules (and/or axioms) of LLL as well as some sup-
plementary rules (and/or axioms) that can be used during the reasoning process
in the absence of abnormalities. Thus, based on the set of inference rules and
axioms added to LLL, there can be different adaptive logics lying between LLL
and ULL.

Let us consider an example of an adaptive logic CLuNm which is obtained
from the lower limit logic CLuN4 [11,12] where abnormal formulas are of the
form α ∧ ¬α and classical logic CPL is used as an ULL.

Let Γ := {p, q,¬p,¬p ∨ r,¬q ∨ s} be a premise set, where p, q, r, s are all
propositional variables. In the logic CLuN, r cannot be deduced from Γ (see
[10]). Below, let us present how the adaptive notion of derivation accommodates
something additional in the logic CLuNm.

4 The logic CLuN, developed by Diderik Batens, is a predicative paraconsistent logic.
The propositional part of CLuN is obtained by adding the axiom-schema (α →
¬α) → ¬α to CPL+. The adaptive logic CLuNm is obtained from CLuN based on
a strategy, called minimal abnormality..
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1 p premise
2 q premise
3 ¬p premise
4 ¬p ∨ r premise
5 ¬q ∨ s premise
6 r from 1 and 4 and the consistent behaviour of p

√

7 s from 2 and 5 and the consistent behaviour of q
8 p ∧ ¬p from 1 and 3

The first five steps of the derivation chain are obtained directly from Γ . At step 6,
r is derived from steps 1 and 4 under the condition p behaves consistently as the
formula p∧¬p has not been derived till now in the derivation chain. Similarly at
step 7, s is derived under the condition q behaves consistently. However at stage
8, p ∧ ¬p is derived from the steps 1 and 3. That is, the inconsistent behaviour
of p becomes prominent at stage 8 and thus r can no longer be guaranteed as
a deduction under CLuNm. So, after the inconsistent behaviour of p becomes
apparent at stage 8, the line 6 is marked with (

√
) to indicate that a previously

derived formula is no longer possible to derive. Hence ECQ fails to hold in
CLuNm. In general, we have CCLuN(Γ ) ⊂ CCLuNm(Γ ) ⊂ CCPL(Γ ), where C
denotes a consequence operator.

2.7 Relevance Approach

T.J. Smiley, in 1959, attempted to impose a notion of relevance between the
premisses and conclusion of an inference relation by defining the logical entail-
ment [43] as follows: {α1, α2, ..., αn} � β if and only if (α1 ∧ α2 ∧ ... ∧ αn) → β
is a classical tautology and neither ¬(α1 ∧ α2 ∧ ... ∧ αn) nor β is a tautology.
Thus, {α,¬α} � β fails to hold as ¬(α ∧ ¬α) is a classical tautology. Contrary
to classical context here the semantic consequence is not defined based on the
material implication which allows anything to follow from a false formula. The
mentioned notion of entailment is not reflexive as clearly {α ∧ ¬α} � α ∧ ¬α.

The relevant logics of Anderson and Belnap (1975), known as first-degree
entailment (FDE), contains formulas of the form α → β called first-degree
entailments, where α, β do not contain any occurrence of the connective →.
Belnap and Dunn around 1977 [13] proposed a four-valued semantics for FDE
containing the truth values N = ∅, T = {t}, F = {f}, B = {t, f} where T, F
behave classically and ¬B = B, ¬N = N . Considering D := {T,B} as the
designated set of truth values, the semantic consequence for FDE is defined as:
Γ �fde α if and only if for all valuation V, if V(α) ∈ D for all α ∈ Γ then
V(β) ∈ D [33,42]. Clearly {p,¬p} �fde q, where p, q are distinct propositional
variables.

2.8 Rough Set Approach

Rough sets were introduced by Pawlak in 1982 [35]. In literature, one finds
different approaches linking rough sets and paraconsistency. For instance, in



Paraconsistent Logics: A Survey Focussing on the Rough Set Approach 113

[47,48], a notion of “paraconsistent set” is developed. Contrary to a set over a
universe U , a paraconsistent set incorporates a four-valued membership function
which also can be represented as a set over U ∪ ¬U where ¬U = {¬x : x ∈ U}
and for any X ⊆ U ∪ ¬U , ¬x ∈ X denotes that there is an evidence that x is
not in X. Then, a notion of paraconsistent rough set is defined by bringing in
rough approximation space in the context of paraconsistent set. Consequently,
“whether an object is an instance of a certain concept” is approximated. Such
approximations are often relevant in abstracting rules from a database.

Similar attempts can be found in the area of paraconsistent rough description
logics [46], where typically the aim has been to develop a language which can
represent assertions like “an object is an instance of a concept”, “two objects
are related by a relation” etc., and design a reasoning strategy based on such
assertions. As databases may contain inconsistent information and the rough set
based approximations are defined based on a database, interpreting or evaluating
the assertions generated from a database using the tools of paraconsistent set
and paraconsistent rough set come naturally. However, in none of the above
mentioned works the intention has been to develop a proof theory for deductive
reasoning based on such a language.

In [32,44,49], some logics are developed based on the notion of paraconsistent
rough sets. However, the consequence relation of most of them are explosive.
Among the logics presented in [44], DDT is a first-order extension of Belnap’s
logic involving two negations (weak and strong) and it can be shown that the
consequence relation is non-explosive only with respect to the weak negation.

In contrast to the above-mentioned rough set approaches to paraconsistency,
in [32] the authors developed a proof theory for the decision logic of rough sets
based on a four-valued tableau calculi. The original work of decision logic of
rough sets was by Pawlak [37], addressing consistent decision tables. This idea
is extended in [32] by introducing a variable precision rough set model and
respectively allowing four values, namely true, false, uncertain, inconsistent, to
describe whether an object is an instance of a concept. In the tableau calculi,
for four-valued logic two negations are introduced. With respect to the strong
negation (∼) the rule for explosion, denoted by {Tp, T ∼ p}, is dropped and with
respect to the weak negation (¬) violation of LNC is shown. Although, in the
work the authors presented a logic for decision systems which is paraconsistent
in nature, the language and its interpretation are developed keeping decision
systems in mind, and the logical inference is not defined for deriving a formula
from a non-empty set of formulae – as is the focus of the present paper.

Relations between 3-valued systems (algebras, logics) and rough sets have
been discussed in several papers, e.g. [3,4,21,28,34]. The 3-valued approach
adopted in [3] in particular, yields a few deductive systems of reasoning including
a paraconsistent logic LI which we briefly present here. The language of LI has
a countable set of propositional variables P := {p, q, r, ...} and connectives ¬,→.
The formulas are defined using the scheme: p | ¬α | α → β. Let FORI denote
the set of all formulas. A sequent calculus for LI is formulated that is shown to
be sound and complete with respect to a semantics based on a non-deterministic
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matrix (Nmatrix). Let us describe the semantics. The Nmatrix corresponding to
LI is defined as MI := (T I ,DI ,OI) where,

– T I := {t(true), f(false), u(unknown)} is a set of truth values,
– DI := {t, u} is the set of designated values,
– OI := {¬M,→M}, with ¬M and →M as interpretations of ¬ and → respec-

tively given by the following tables:

¬M

f t
u u
t f

→M f u t
f t t t
u u {u, t} t
t f u t

A valuation v in an Nmatrix is a function v : FORI → T I that satisfies the
following condition: v(∗(α1, ..., αn)) ∈ ∗M(v(α1), ..., v(αn)) for any n-ary con-
nective ∗ in LI .

– A formula α is satisfied by a valuation v, in symbols v � α, if v(α) ∈ DI .
– A sequent Γ ⇒ Δ is satisfied by a valuation v, written as v � Γ ⇒ Δ, if and

only if either v does not satisfy some formula in Γ or v satisfies some formula
in Δ.

– A sequent Γ ⇒ Δ is valid (� Γ ⇒ Δ), if it is satisfied by all valuations v.
– The consequence relation (�M) on FORI is defined as: for any T, S ⊆ FORI ,

T �M S if and only if there exist finite sets Γ ⊆ T and Δ ⊆ S such that the
sequent Γ ⇒ Δ is valid.

Soundness and completeness of LI with respect to the consequence relation
�M is established. Now it is clear from the definition of �M that LI violates
ECQ. Indeed, if we choose two distinct propositional variables p, q and a valu-
ation v such that v(p) := u and v(q) := f then {p,¬p} �M q.

It should also be mentioned here that in [3], two kinds of determinizations of
LI have been derived: “�Lukasiewicz determinization” and “Kleene determiniza-
tion”. It is shown that the �Lukasiewicz determinization is equivalent to the
paraconsistent logic J3, while the Kleene determinization is equivalent to the
paraconsistent logic Pac [2]. Therefore LI may be looked upon as a “common
denominator” of J3 and Pac.

It has been well-established over the years that rough set theory has many
intricacies which cannot be captured by any single approach. We now turn to
the notions of rough truth proposed in [36] and rough consequence introduced in
[6], and paraconsistent deductive systems that have been obtained through work
based on these notions.

A rough set may be viewed as a triple (X,R,A), where A ⊆ X and (X,R)
is a Pawlakian approximation space, i.e. X is a non-empty set and R an equiv-
alence relation on it. It was noticed early on that an S5 formula α may be
interpreted in an S5 model (X,R, v) as a rough set (X,R,A), with A being the
set of possible worlds where α is true under the valuation v, i.e. A = v(α). More-
over, v(Lα) = v(α), the lower approximation of v(α), and v(Mα) = v(α), the
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upper approximation of v(α), where L,M denote the necessity and possibility
operators respectively. One of the basic notions in rough set theory is that of
rough equality: sets A and B are roughly equal if they have the same lower and
upper approximations. In S5, one can see that rough equality of α, β would be
represented by the formula α ≈ β := (Lα ↔ Lβ)∧(Mα ↔ Mβ). This is because
in any S5 model (X,R, v) with A = v(α) and B = v(β), α ≈ β would be true
under v if and only if A,B are roughly equal. Rough consequence was based on
the idea of rough modus ponens, which, loosely put, stipulates that for any S5
formulas α, α′, β, if α, α ≈ α′ and α′ → β are all “derivable” from a set Γ of
S5 formulas, then β should also follow from Γ . Formally, the rough consequence
relation |∼ was defined in the backdrop of S5:

Γ |∼ α, in case α is a member of Γ , or is an S5 theorem, or is derived through
the rule(RMP): Γ |∼ α Γ |∼ β→γ Γ � α ≈ β

Γ |∼ γ ,

where � denotes the S5 consequence relation. One may notice that whenever
α = β, the rule (RMP) becomes standard modus ponens (MP). A study was
made in [5,6,17] by weakening RMP in different ways (again in the backdrop
of S5), and considering logics based on the resulting rules. This included a rule
based on the formula α ∼> β := (Lα → Lβ) ∧ (Mα → Mβ), representing rough
inclusion. Following is a summary of rules considered in these works:

(MP≈): Γ |∼ α Γ |∼ β→γ � α ≈ β
Γ |∼ γ and (MP∼>): Γ |∼ α Γ |∼ β→γ � α ∼> β

Γ |∼ γ

(RMP1):
Γ |∼ α � β→γ � Mα→Mβ

Γ |∼ γ and (RMP2):
� α Γ |∼ β→γ � Lα→Lβ

Γ |∼ γ

(RMP1) and (RMP2) were used to define the logic Lr. It was seen later that
(RMP2), in fact, follows from (RMP1), and (RMP1) is equivalent to the rule:

(R1):
Γ |∼ α � Mα→Mβ

Γ |∼ β

The logic Lr was extended in [5] by adding another rule:
(R2):

Γ |∼ Mα Γ |∼ Mβ
Γ |∼ Mα∧Mβ

This new logic is denoted by LR. In [5] it was shown that Jaśkowski’s discussive
logic J (discussed in Sect. 2.2) is equivalent to LR.
The following are from [17]:

MP1:
Γ |∼ α Γ |∼ β→γ � Mα→Mβ

Γ |∼ γ MP2:
Γ |∼ α Γ |∼ β→γ � Lα→Lβ

Γ |∼ γ

MP3:
Γ |∼ α Γ |∼ β→γ � α→β

Γ |∼ γ MP4:
Γ |∼ α Γ |∼ β→γ � Mα→β

Γ |∼ γ

MP5:
Γ |∼ α Γ |∼ β→γ � Lα→Mβ

Γ |∼ γ MP0:
Γ |∼ α Γ |∼ α→γ

Γ |∼ γ

For each of the rules MPi, i = 0, ..., 5,∼>,≈, a rough consequence relation |∼i

is defined as mentioned earlier. The corresponding logics are denoted as Lri. In
[5], it was shown that ECQ fails to hold in both Lr and LR. ECQ also fails for
the system Lr4, as observed in [17]. In all the other Lri systems, ECQ holds.
However, we shall see in the next section that one can define several other rough
consequence relations that yield paraconsistent logics.
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3 Some New Paraconsistent Logics

Let us consider a set Γ ∪{α, β, γ} of S5 formulas. We define new rules of inference
by weakening MPi, i = 1, ..., 5,∼>,≈, as follows:
Γ |∼ α � β→γ � α→iβ

Γ |∼ γ ,

where α →i β denotes the S5-implication in MPi (e.g. α →1 β := Mα → Mβ).

Proposition 1. The new rule defined above is equivalent to Γ |∼ α � α→iγ
Γ |∼ γ ,

for i = 1, ..., 5,∼>.

Proof. We give the proof for i = 1. The other cases have similar proofs. Suppose
the rule Γ |∼ α � β→γ � Mα→Mβ

Γ |∼ γ holds. Let Γ |∼ α, � Mα → Mγ. Since � γ →
γ, Γ |∼ γ holds as well.
Conversely, let Γ |∼ α � Mα→Mγ

Γ |∼ γ hold, and Γ |∼ α, � β → γ, � Mα → Mβ.
Now � β → γ implies � Mβ → Mγ. Therefore � Mα → Mγ holds as well. Then
by assumption, Γ |∼ γ. �
Notation 1. Henceforth, MPi will denote the rule Γ |∼ α � α→iγ

Γ |∼ γ , for i =
1, ..., 5,∼>,≈. In other words,

MP1:
Γ |∼ α � Mα→Mγ

Γ |∼ γ MP2:
Γ |∼ α � Lα→Lγ

Γ |∼ γ

MP3:
Γ |∼ α � α→γ

Γ |∼ γ MP4:
Γ |∼ α � Mα→γ

Γ |∼ γ

MP5:
Γ |∼ α � Lα→Mγ

Γ |∼ γ MP∼>: Γ |∼ α � α ∼> γ
Γ |∼ γ

MP≈: Γ |∼ α � α≈γ
Γ |∼ γ .

For i = ≈, we have one direction of Proposition 1.

Observation 1. Γ |∼ α � β→γ � α≈β
Γ |∼ γ implies MP≈.

3.1 The Systems Lri

A logic is defined for each rule MPi, i = 1, ..., 5,∼>,≈, as mentioned in Sect. 2.8.
Formally, the consequence relation |∼i for Lri is given as follows.

Definition 2. Γ |∼i α if and only if there is a sequence α1, α2, ..., αn(= α) such
that for each αj(j = 1, ..., n), one of the following holds.
(i) αj ∈ Γ . . . (ov).
(ii) αj is an S5 theorem . . . (S5).
(iii) αj is derived from some of α1, . . . , αi−1 by MPi.

Let us consider the S5-implications in MPi, i = 1, 2, 3, namely Mα →
Mβ,Lα → Lβ, α → β. One may abbreviate these implications as Δiα → Δiβ,
where Δi is respectively M , L and “1” for i = 1, 2, 3. We then have the following.
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Theorem 1. For i = 1, 2, 3, Γ |∼i α, if and only if � Δiα, or there is a β in
Γ with � Δiβ → Δiα.

Proof. By induction on the number n of steps of derivation of α from Γ .
Basis n = 0: � α, or α ∈ Γ . If � α, for case i = 3, we are done. For the cases
i = 1, 2, observe that � α implies � Δiα. So we are done in these cases as well.
Now suppose α ∈ Γ . Since � Δiα → Δiα, the result obtains.
Induction step: We sketch the proof. Suppose α is derived by MPi from Γ |∼i γ
and � Δiγ → Δiα for some γ. Then by induction, either � Δiγ or � Δiβ → Δiγ
for some β ∈ Γ . If � Δiγ holds, then from � Δiγ → Δiα, � Δiα holds as well.
Otherwise � Δiβ → Δiγ for some β ∈ Γ , and then � Δiβ → Δiα holds.

Conversely, suppose � Δiα. Then Γ |∼i Δiα, by (S5). So we are done for
i = 3. If i = 1, 2, since � ΔiΔiα → Δiα, Γ |∼i α holds by MPi. For the other
case, suppose � Δiβ → Δiα for some β ∈ Γ . Now Γ |∼i β holds by (ov) and
then Γ |∼i α holds by MPi. �
Theorem 2. Lr1, Lr2, Lr3 are paraconsistent logics.

Proof. Consider two distinct propositional variables p, q. We use Theorem 1.

(i) Since � Mq, � Mp → Mq and � M(¬p) → Mq, therefore {p,¬p} � |∼1 q by
Theorem 1. Hence Lr1 is paraconsistent.

(ii) � Lq, � Lp → Lq and � L(¬p) → Lq give {p,¬p} � |∼2 q.
(iii) � q, � p → q and � ¬p → q give {p,¬p} � |∼3 q. �
Notation 2. For logics L1 and L2 with the same language, L1 � L2 denotes
that L2 is stronger than L1, i.e. if α is derivable from Γ in L1 then α is derivable
from Γ in L2, for all α, Γ .

Lemma 1. Lr4 � Lr3.

Proof. It suffices to show that MP4 is derivable in Lr3. Let Γ |∼ α and � Mα →
γ. Since � Mα → γ implies � α → γ, then by MP3, Γ |∼ γ. �
Theorem 3. Lr4 is paraconsistent.

Proof. Follows from Lemma 1 and Theorem 2. �
Theorem 4.

(i) Γ |∼∼> α, if and only if either � α or there is a β in Γ with � (Mβ →
Mα) ∧ (Lβ → Lα).

(ii) Γ |∼≈ α, if and only if either � α or there is a β in Γ with � (Mβ ↔
Mα) ∧ (Lβ ↔ Lα).

Proof. We give the proof of (i), which is by induction on the number n of steps
of derivation of α from Γ . (ii) can be proved in a similar manner.
Basis: n = 0. Either � α or α ∈ Γ . If � α, there is nothing to show. In the other
case, � (Mα ↔ Mα) ∧ (Lα ↔ Lα) gives the result.
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In the induction step, we consider the possibility that α is derived by MP∼>

from Γ |∼∼> γ and � (Mγ → Mα) ∧ (Lγ → Lα), for some γ. Then by induction
hypothesis, either � γ or � (Mβ → Mγ) ∧ (Lβ → Lγ), for some β ∈ Γ . If
� γ holds then � Lγ holds as well. Now � Lγ → Lα holds as � (Mγ →
Mα) ∧ (Lγ → Lα) holds. Therefore � Lα as well as � α holds. Otherwise
� (Mβ → Mγ)∧(Lβ → Lγ), for some β ∈ Γ . Then � (Mβ → Mα)∧(Lβ → Lα)
holds as, � (Mγ → Mα) ∧ (Lγ → Lα) holds.

Conversely, suppose � α holds, then Γ |∼∼> α, by (S5). For the other case,
suppose � (Mβ → Mα)∧ (Lβ → Lα) holds for some β ∈ Γ . Now Γ |∼∼> β holds
by (ov) and then Γ |∼∼> α holds by MP∼>. �
Theorem 5. Lr∼> and Lr≈ are paraconsistent logics.

Proof. Take two distinct propositional variables p, q. Since � q, � (Mp → Mq)∧
(Lp → Lq) and � (M(¬p)) → Mq)∧(L(¬p)) → Lq), therefore, {p,¬p} � |∼∼> q as
well as {p,¬p} � |∼≈ q by Theorem 4. Hence Lr∼> and Lr≈ are both paraconsistent
logics. �
3.2 Paraconsistency of Lr5

The paraconsistency of Lr5 is established using the fact that Lr3 is paraconsis-
tent (Theorem 2).

Let LS5 and LCPL denote the languages of S5 and CPL respectively. We
define a translation ∗ : LS5 → LCPL as follows:

– ∗(p) := p, where p is a propositional variable.
– ∗(α ∨ β) := ∗(α) ∨ ∗(β).
– ∗(α ∧ β) := ∗(α) ∧ ∗(β).
– ∗(α → β) := ∗(α) → ∗(β).
– ∗(Lα) := ∗(α).
– ∗(Mα) := ∗(α).

The image of a formula α under the above translation, ∗(α), is referred to as
the PC-transform of α in [27]. A modal logic Triv is defined in [27] such that
S5 � Triv. Moreover Triv collapses into CPL, in the sense that every formula
α in Triv is equivalent to its PC-transform ∗(α). Then for all α, �Triv α if and
only if �CPL ∗(α). Thus one obtains

Lemma 2. For any S5 formula α, � α implies �CPL ∗(α).

We are then able to establish

Lemma 3. Γ |∼5 α implies ∗(Γ )|∼3 ∗ (α), where ∗(Γ ) = {∗(γ) : γ ∈ Γ}.

Proof. By induction on the number n of steps of derivation of α from Γ .
Basis: n = 0. Either � α or α ∈ Γ . If � α then �CPL ∗(α) by Lemma 2, and so
� ∗(α) holds. Hence ∗(Γ )|∼3 ∗ (α), by (S5). Otherwise α ∈ Γ , then ∗(α) ∈ ∗(Γ ),
therefore ∗(Γ )|∼3 ∗ (α), by (ov).
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For the induction step, suppose α is derived by MP5 from Γ |∼5 γ and � Lγ →
Mα, for some γ. Then by the induction hypothesis, ∗(Γ )|∼3 ∗ (γ). Using Lemma
2, �CPL ∗(γ) → ∗(α) holds, and therefore � ∗(γ) → ∗(α) holds as well. So by
MP3, ∗(Γ )|∼3 ∗ (α). �
Theorem 6. Lr5 is a paraconsistent logic.

Proof. Let p, q be two distinct propositional variables. Then {p,¬p} � |∼3q, as
shown in the proof of Theorem 2. Since ∗({p,¬p}) = {p,¬p} and ∗(q) = q, by
Lemma 3, {p,¬p} � |∼5q. �

4 Conclusions

In this paper, we have presented a survey on the major approaches that yield
paraconsistent logics. One of the salient features of this survey is the inclusion
of the transformation approach and rough set approach. We focus on how new
paraconsistent logics may be obtained, based on the rough set approach. Several
new logics are proposed by considering a weakened version of rough modus
ponens rules.

In [17], there is a study of the relationship between the logics that are based
on the different kinds of rough modus ponens rules. An immediate task would be
to investigate relations of the logics obtained in this work with the ones studied
in [17]. Appropriate semantics for the new logics also need to be explored, to
give a complete idea of these paraconsistent systems.
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Abstract. In three-way decision theory, three disjoint sets covering a
given universe, are determined: the positive, negative, and boundary
regions. They correspond to three types of decisions on their objects:
acceptance, rejection, and abstention or non-commitment. A linguistic
approach for identifying the three regions relies on specific evaluative
linguistic expressions, such as “very big”, “roughly small”, “not small”,
“medium”, and so forth.

In this article, we construct hexagons of opposition using the regions
generated by different evaluative linguistic expressions. Then, we explore
the logical relations between the vertices of different hexagons.

Keywords: Hexagon of opposition · Aristotle Square · Evaluative
Linguistic Expressions · Three-way Decisions

1 Introduction

In three-way decision theory, three disjoint sets covering a given universe, are
determined. They are called positive, negative, and boundary regions and cor-
respond to three types of decisions on their objects: acceptance, rejection, and
abstention or non-commitment. Three-way decisions are naturally interpreted in
Rough Set Theory, as well as in other frameworks [18,19,21]. A linguistic app-
roach to finding the three regions was recently introduced in [3] and deals with a
particular class of evaluative linguistic expressions. These are expressions of the
human language like “very big”, “roughly small”, “not small”, “medium”, and
so on, and the related theory is constructed in a formal system of higher-order
fuzzy logic (fuzzy type theory) [12,14]. Such a model called linguistic three-
way decision, gives a new interpretation to the acceptance, rejection, and non-
commitment regions, which is more understandable by users that do not have
mathematical knowledge. This is an advantage from the standpoint of Explain-
able Artificial Intelligence (XAI) the approach to AI focusing on the ability of
machines to give sound motivations about their decisions and behaviour [10].
Three-way decision with evaluative linguistic expressions is strictly connected to
a novel and linguistic generalization of the classical notion of rough sets [3].

In this article, the linguistic regions are organized to form a hexagon of oppo-
sition, which is an evolution of an important tool of Aristotle’s logic: the square
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of opposition. The square of opposition (also called Aristotle square) is a math-
ematical chart exhibiting the relationship between four logical propositions [15].
The possible links represented by the square of opposition are called relations of
contradictory, contrary, sub-contrary, and subalternation and have the following
meaning: two propositions are

– contradictories if and only if they cannot be true together and cannot be false
together;

– contraries if and only if they can be false together but cannot be true together;
– sub-contraries if and only if they can be true together but cannot be false

together;
– subalterns (or superalterns) if and only if one implies the other.

The hexagon of opposition can be obtained by adding two new logical propo-
sitions to those of Aristotle square together with the related relations or by
overlapping three Aristotle squares [2,11]. This diagram is considered a power-
ful instrument to schematize the connections between concepts in various sit-
uations. Therefore, it is repurposed in different fields, for instance, in Rough
set Theory, Formal Concept Analysis, Probability Theory, and Possibility The-
ory [7,8,16,20]. Lately, hexagons have been used to solve concrete problems:
detecting influential news in online communities [1] and evaluating emotional
dynamics in social media conversations [9]. Another type of hexagon of opposi-
tion (different to the classical one in its structure) is proposed in fuzzy formal
concept analysis [5].

After recalling some preliminary notions in Sect. 2, we present the results of
this article in Sect. 3:

– In Subsect. 3.1, we show that the regions POS,NEG, and BND generated
by a given evaluative linguistic expression and their unions POS ∪ NEG,
POS∪BND, and NEG∪BND, can be placed into the vertices of a hexagon
of opposition. Furthermore, we discuss how the logical relations between the
linguistic regions reflect the three-way decision philosophy. For example, the
relation of contrary between the positive and negative regions means that an
object cannot be both accepted and rejected.

– In Subsect. 3.2, we analyze the logical relations between the linguistic regions
deriving from two different evaluative linguistic expressions Ev1 and Ev2. In
particular, we discover the relations of contrary, sub-contrary, and subalter-
nation existing between the vertices of the hexagons corresponding to Ev1
and Ev2. This aspect is fundamental to deepen the understanding of how the
choice of the initial evaluative linguistic expression affects the final decision
on the objects.

Let us recall that hexagons of opposition were already introduced in the con-
text of three-way decision theory, where the three regions (called probabilistic
regions) are generated by using a pair of thresholds and the concept of proba-
bilistic rough sets [1]. Moreover, the logical relations between the probabilistic
regions deriving by different pairs of thresholds were studied in [4].
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2 Preliminaries

In this section, we give the basic notions of evaluative linguistic expressions,
three-way decisions and the hexagon of opposition.

2.1 Three-Way Decisions with Evaluative Linguistic Expressions

Evaluative Linguistic Expressions. Let us recall the notions of the theory of
evaluative linguistic expressions that are essential to explain our results.

Evaluative linguistic expressions (evaluative expressions for short) are expres-
sions that commonly appear in the human language when people judge, evaluate,
give opinions, and so on. The pure evaluative expressions are the simplest ones
and are composed of an adjective that could be preceded by an adverb. Examples
are very tall, extremely boring, and expensive. Other pure evaluative expressions
are fuzzy numbers like about twenty-five. The rest of the evaluative expressions
can be composed of pure evaluative expressions and the connective not, and,
and or. In this article, we confine to the evaluative expressions involving the
adjectives small, medium, and big because they are employed to evaluate the
size of sets. Examples are not small, very big, medium, and extremely big.

Evaluative expressions are characterized by the notions of intention, context,
and extension. The meaning of an evaluative linguistic expression is modelled
by its intention, which is a function assigning to each context another mapping
called extension (see [12,14] for more details). In this article, we usually deal
with the standard context 〈0, 0.5, 1〉, and so, extensions of evaluative expressions
are maps from [0, 1] to [0, 1]. Thus, we can say that a special fuzzy set Ev :
[0, 1] → [0, 1] represents a given evaluative expression in the context 〈0, 0.5, 1〉.
We denote the collection of the extensions of all evaluative expressions in the
context 〈0, 0.5, 1〉 with the symbol E . An example of extension of the evaluative
expression not small is the function ¬Sm : [0, 1] → [0, 1] defined by

¬Sm(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 if x ∈ [0.275, 1],

1 − (0.275 − x)2

0.02305
if x ∈ (0.16, 0.275),

(x − 0.0745)2

0.01714
if x ∈ (0.0745, 0.16],

0 if x ∈ [0, 0.0745].

(1)

In [13], ¬Sm is also used to construct the formula of the fuzzy quantifier
many.

See [12,14] for more details about the theory of evaluative linguistic expres-
sions.

Three-Way Decisions with Evaluative Linguistic Expressions. From now on, we
consider a finite universe U , a subset X of U , a pair of thresholds (α, β) so
that 0 ≤ β < α ≤ 1, and an equivalence relation R on U (i.e., R is reflexive,
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symmetric and transitive). Moreover, we use the symbol [x]R to denote the
equivalence class of x ∈ U .

In order to define the linguistic regions determined by Ev ∈ E , we need to

consider for each x ∈ U the value Ev

( |[x]R ∩ X|
|[x]R|

)

, which is the evaluation

of the size of X ∩ [x]R w.r.t. the size of [x]R by using Ev1. For example, if

Ev = ¬Sm, then ¬Sm

( |[x]R ∩ X|
|[x]R|

)

measures “how much the size of X ∩ [x]R

is not small w.r.t. the size of [x]R”. In other words, we are saying that “the size
of the set of elements of [x]R that also belong to X is not small with the truth

degree ¬Sm

( |[x]R ∩ X|
|[x]R|

)

”.

Remark 1. By [6], we know that ¬Sm

( |[x]R ∩ X|
|[x]R|

)

coincides with the formula

of the quantifier many2. This means that ¬Sm

( |[x]R ∩ X|
|[x]R|

)

is the truth degree

to which “many objects of [x]R are in X”.

For each evaluative expression, a triple of subsets of U is determined as
follows [3].

Definition 1. Let Ev ∈ E, the (α, β)-linguistic positive, negative, and boundary
regions induced by Ev are respectively the following:

(i) POSEv
(α,β)(X) =

{

x ∈ U | Ev

( |[x]R ∩ X|
|[x]R|

)

≥ α

}

;

(ii) NEGEv
(α,β)(X) =

{

x ∈ U | Ev

( |[x]R ∩ X|
|[x]R|

)

≤ β

}

;

(iii) BNDEv
(α,β)(X) =

{

x ∈ U | β < Ev

( |[x]R ∩ X|
|[x]R|

)

< α

}

.

Thus, an object x belongs to the (α, β)-linguistic positive region when the size of
[x]R ∩ X (w.r.t. the size of [x]R) evaluated by Ev is at least α. Analogously, x
belongs to the (α, β)-linguistic negative region when the size of [x]R ∩ X (w.r.t.
the size of [x]R) evaluated by Ev is at most β. Finally, the remaining elements
of U form the (α, β)-linguistic boundary region.

Definition 1 also leads to the notion of linguistic rough sets, which are general-
izations of Pawlak rough sets:

1 The function such that X �→ |X|
|U | for each X ⊆ U is understood as a normalized

fuzzy measure [17].
2 This is a fuzzy quantifier Smany assigning a value of [0,1] to each pair of fuzzy sets.

In [6], it has been proven that Smany(A,B) = ¬Sm
( |A ∩ B|

|A|
)

, when A and B are

classical set of the given universe.
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Definition 2. Let Ev ∈ E, the (α, β)-linguistic rough set of X determined by
R and Ev is the pair (LEv

(α,β)(X),UEv
(α,β)(X)), where

LEv
(α,β)(X) = POSEv

(α,β)(X) and UEv
(α,β)(X) = POSEv

(α,β)(X) ∪ BNDEv
(α,β)(X).

LEv
(α,β)(X) and UEv

(α,β)(X) are respectively called (α, β)-linguistic lower and
upper approximations of X determined by R and Ev.

In the sequel, we need the following theorem.

Theorem 1. The (α, β)-linguistic positive, negative, and boundary regions
induced by Ev form a tri-partition of U3.

2.2 Hexagons of Opposition

Definition 3. Let A ⊆ U , PA denotes a property such that “x ∈ U satisfies
PA if and only if x ∈ A”. Equivalently, we can say that “PA is the property of
belonging to A”.

Definition 4. Let A,B ⊆ U . Then,

(i) PA and PB are contraries if and only if A ∩ B = ∅;
(ii) PA and PB are sub-contraries if and only if A ∪ B = U ;
(iii) PB is subaltern of PA if and only if A ⊆ B;
(iv) PA and PB are contradictories if and only if A = U \ B.

Remark 2. Of course, if PA and PB are contradictories, then A ∩ B = ∅ and
A ∪ B = U .

For convenience, we place the sets instead of their properties into the vertices of
the hexagon. Moreover, in the sequel, we could say that a logical relation holds
between A and B to indicate that it holds between PA and PB.

Definition 5. Let A,B,C,D,E, F ⊆ U . Then, A,B,C,D,E, and F form an
hexagon of opposition if and only if

(i) PA and PB are contraries, as well as PA and PC , and PB and PC ;
(ii) PA and PE are contradictories, as well as PB and PD, and PC and PF ;
(iii) PD and PE are sub-contraries, as well as PD and PF , and PE and PF ;
(iv) PD is sub-altern of PA and PC , PE is sub-altern of PB and PC , and PF is

sub-altern of PA and PB.

The hexagon of opposition having A,B,C,D,E, and F as vertices is repre-
sented by Fig. 1, where we use the lines , , , and to denote the
relations of contrary, contradictory, subalternation, and sub-contrary, respec-
tively.

A hexagon of opposition arises whenever a tri-partition of a universe is given.

Theorem 2 [7]. Let {A,B,C} be a partition of U . Then, A,B,C,A∪C,B ∪C,
and A ∪ B form a hexagon of opposition as in Fig. 2.
3 By a tri-partition of U we mean a collection of three mutually disjoint subsets cover-

ing U . So, notice that the limit cases where one or two sets are empty are included.
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F

D

A

E

C

B

Fig. 1. Hexagon of opposition with
A,B,C,D,E, F ⊆ U .

A ∪ B

A ∪ C

A

B ∪ C

C

B

Fig. 2. Hexagon of opposition related
to the tri- partition {A,B,C} of U .

3 Hexagons of Opposition in Linguistic Three-Way
Decisions

This section firstly presents a hexagon of opposition generated by Ev ∈ E . After
that, it investigates the logical relations involving the vertices of the hexagons
of opposition generated by Ev1, Ev2 ∈ E .

3.1 Hexagons of Opposition with Evaluative Linguistic Expressions

In this subsection, we arrange the (α, β)-linguistic regions and their unions to
form a hexagon of opposition.

Theorem 3. Let Ev ∈ E. Then, POSEv
(α,β), NEGEv

(α,β), BNDEv
(α,β), POSEv

(α,β) ∪
BNDEv

(α,β), NEGEv
(α,β) ∪ BNDEv

(α,β), and POSEv
(α,β) ∪ NEGEv

(α,β) form a hexagon
of opposition as in Fig. 3.

POSEv
(α,β) ∪ NEGEv

(α,β)

POSEv
(α,β) ∪ BNDEv

(α,β)

POSEv
(α,β)

NEGEv
(α,β) ∪ BNDEv

(α,β)

BNDEv
(α,β)

NEGEv
(α,β)

Fig. 3. Hexagon of opposition related to POSEv
(α,β), NEGEv

(α,β), and BNDEv
(α,β).
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Proof. The thesis clearly follows from Theorems 1 and 2.

Remark 3. The relations represented by the hexagon reflect the basic behaviour
of the decision rules. Indeed, the contrary relations indicate that an object should
be subject to only one type of decision. For example, since the (α, β)-linguistic
positive and negative regions are contraries, an object cannot be both accepted
and rejected. The relations of sub-contrary correspond to the fact that at least
one of the three decisions must be made on each object. The meaning of the
relations of subalternation is trivial, for instance, being accepted implies being
accepted or not-committed. The following is the meaning of the relations of
contradictory: when we know that one of the three decisions is not made on
an object, then one of the other two decisions must be made. For example, the
contradictory between POSEv

(α,β) and NEGEv
(α,β)∪BNDEv

(α,β) is equivalent to that
a decision of non-acceptance on an object x of U necessarily implies a decision
of rejection or non-commitment on x.

Example 1. Let us focus on an example already presented in [3], where

– U = {u1, . . . , u32} is a set of users of online communities and
– the equivalence relation R on U is defined as follows: let ui, uj ∈ U ,

uiRuj if and only ifui and uj belong to the same community.

Then, R partitions the universe of the users into six equivalence classes: C1 =
{u1, . . . , u5}, C2 = {u6, . . . , u10}, C3 = {u11, . . . , u15}, C4 = {u16, . . . , u20},
C5 = {u21, . . . , u25}, and C6 = {u26, . . . , u32}.

Also, we deal with the set

XSport = {u10, u11, u12, u18, u19, u20, u21, u22, u23, u24, u26}
made of all users of U interested in the topic Sport. Using linguistic three-way
decisions, we can select the most appropriate communities among C1, . . . , C6 to
which propose sports news.

In order to determine the linguistic regions, we choose (α, β) = (0.8, 0.2) and
the evaluative expression not small, which is modelled by the function ¬Sm ∈ E
defined by (1). By (1) and Definition 1, we can easily compute the (0.8, 0.2)-
linguistic regions: POS¬Sm

(0.8,0.2)(XSport) = C3 ∪ C4 ∪ C5, NEG¬Sm
(0.8,0.2)(XSport) =

C1, and BND¬Sm
(0.8,0.2)(XSport) = C2 ∪ C6 (see [3] for more details). Then, Fig. 4

depicts the corresponding hexagon of opposition, according to Theorem 3.
In line with Remark 3, the hexagon represents a simple way to view the rela-

tionship between the three different types of decisions on the users. For instance,
considering that C1 and C2∪C3∪C4∪C5∪C6 are contradictories, we can graph-
ically see that the users of the communities different from C1 could receive the
sports news.
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Fig. 4. Hexagon of opposition with POS¬Sm
(0.8,0.2), NEG¬Sm

(0.8,0.2), and BND¬Sm
(0.8,0.2).

3.2 Comparing Hexagon of Oppositions

This subsection analyzes the logical relations between the vertices of the
hexagons of opposition arising from the same pair of thresholds (α, β), but differ-
ent evaluative expressions Ev1, Ev2 ∈ E . Therefore, the meaning of such relations
is discussed focusing on how the final decision on the objects of U changes when
we choose different evaluative expressions.

In the sequel, we consider this order on E : let Ev1, Ev2 ∈ E ,

Ev1 � Ev2 if and only ifEv1(a) ≤ Ev2(a) for each a ∈ [0, 1].

For simplicity, given Evi ∈ E , we use the symbols POSi, NEGi, and BNDi

instead of POSEvi

(α,β), NEGEvi

(α,β), and BNDEvi

(α,β), respectively. Then, we want to
discover the logical relations concerning the vertices of the hexagons depicted in
Fig. 5.

Fig. 5. Hexagons based on Ev1 and Ev2, respectively.

Relations of Subalternation

Theorem 4. Let Ev1, Ev2 ∈ E such that Ev1 � Ev2. Then,
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(a) PPOS2 is subaltern of PPOS1 ,
(b) PNEG1 is subaltern of PNEG2 .

Proof.(a) Let x ∈ POS1, then Ev1

(
|X∩[x]R|

|[x]R|
)

≥ α from Definition 1(i). Since

Ev2

(
|X∩[x]R|

|[x]R|
)

≥ Ev1

(
|X∩[x]R|

|[x]R|
)
, we get x ∈ POS2. Consequently, POS1 ⊆

POS2. Finally, by Definition 4 (iii), PPOS2 is subaltern of PPOS1 .
(b) Let x ∈ NEG2, then Ev2

(
|X∩[x]R|

|[x]R|
)

≤ β from Definition 1 (ii). Since

Ev2

(
|X∩[x]R|

|[x]R|
)

≥ Ev1

(
|X∩[x]R|

|[x]R|
)
, we get x ∈ NEG1. Then, NEG2 ⊆

NEG1. By Definition 4 (iii), we can conclude that PNEG1 is subaltern of
PNEG2 .

Figure 6 shows the logical relations listed by Theorem 4.

Fig. 6. Relations of subalternation of Theorem 4.

Theorem 5. Let Ev1, Ev2 ∈ E such that Ev1 � Ev2. Then,

(a) PPOS2∪BND2 is subaltern of PPOS1 ,
(b) PPOS2∪NEG2 is subaltern of PPOS1 ,
(c) PPOS2∪BND2 is subaltern of PBND1 ,
(d) PPOS2∪BND2 is subaltern of PPOS1∪BND1 .

Proof.(a) By Theorem 4 (a), POS1 ⊆ POS2. Hence, POS1 ⊆ POS2 ∪ BND2.
Then, by Definition 4 (iii), PPOS2∪BND2 is subaltern of PPOS1 .

(b) By Theorem 4(a), POS1 ⊆ POS2. Hence, POS1 ⊆ POS2 ∪ NEG2. By
Definition 4 (iii), PPOS2∪NEG2 is subaltern of PPOS1 .

(c) Let x ∈ BND1, then β < Ev1

(
|X∩[x]R|

|[x]R|
)

< α from Definition 1 (iii).

Since Ev2

(
|X∩[x]R|

|[x]R|
)

≥ Ev1

(
|X∩[x]R|

|[x]R|
)
, we have Ev2

(
|X∩[x]R|

|[x]R|
)

> β, which
means that x ∈ BND2 ∪ POS2. Hence, BND1 ⊆ BND2 ∪ POS2. By
Definition 4 (iii), PPOS2∪BND2 is subaltern of PBND1 .

(d) By Theorem 4(b), NEG2 ⊆ NEG1. Since NEG1 and NEG2 are respec-
tively the complements of POS1 ∪ BND1 and POS2 ∪ BND2, we conse-
quently get POS1 ∪ BND1 ⊆ POS2 ∪ BND2. Then, by Definition 4 (iii),
PPOS2∪BND2 is subaltern of PPOS1∪BND1 .
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Figure 7 shows the logical relations listed by Theorem 5.

POS1 ∪ NEG1

POS1 ∪ BND1

POS1

NEG1 ∪ BND1

BND1

NEG1

POS2 ∪ NEG2

POS2 ∪ BND2

POS2

NEG2 ∪ BND2

BND2

NEG2

Fig. 7. Relations of subalternation of Theorem 5.

Theorem 6. Let Ev1, Ev2 ∈ E such that Ev1 � Ev2. Then,

(a) PNEG1∪BND1 is subaltern of PBND2 ,
(b) PNEG1∪BND1 is subaltern of PNEG2 ,
(c) PNEG1∪BND1 is subaltern of PNEG2∪BND2 ,
(d) PPOS1∪NEG1 is subaltern of PNEG2 .

Proof.(a) By Theorem 5(b), POS1 ⊆ POS2∪NEG2. Since NEG1∪BND1 and
BND2 are respectively the complements of POS1 and POS2 ∪ NEG2, we
get BND2 ⊆ NEG1 ∪ BND1. Then, by Definition 4 (iii), PNEG1∪BND1 is
subaltern of PBND2 .

(b) By Theorem 4(b), NEG2 ⊆ NEG1. So, we can immediately conclude that
NEG2 ⊆ NEG1 ∪ BND1. By Definition 4 (iii), PNEG1∪BND1 is subaltern
of PNEG2 .

(c) By Theorem 4(a), POS1 ⊆ POS2. Since NEG1 ∪ BND1 and NEG2 ∪
BND2 are respectively the complements of POS1 and POS2, we lastly get
NEG2∪BND2 ⊆ NEG1∪BND1. Thus, by Definition 4 (iii), PNEG1∪BND1

is subaltern of PNEG2∪BND2 .
(d) By Theorem 4(b), NEG2 ⊆ NEG1. So, we can immediately conclude that

NEG2 ⊆ POS1 ∪ NEG1. By Definition 4 (iii), PPOS1∪NEG1 is subaltern of
PNEG2 .

Figure 8 shows the logical relations listed by Theorem 6.

Relations of Contrary

Theorem 7. Let Ev1, Ev2 ∈ E such that Ev1 � Ev2. Then,

(a) PPOS1 and PNEG2 are contraries,
(b) PPOS1 and PBND2 are contraries,
(c) PPOS1 and PNEG2∪BND2 are contraries,
(d) PPOS1∪BND1 and PNEG2 are contraries,
(e) PBND1 and PNEG2 are contraries.
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POS1 ∪ NEG1

POS1 ∪ BND1

POS1

NEG1 ∪ BND1

BND1

NEG1

POS2 ∪ NEG2

POS2 ∪ BND2

POS2

NEG2 ∪ BND2

BND2

NEG2

Fig. 8. Relations of subalternation of Theorem 6.

Proof.(a) By Theorem 4(b), NEG2 ⊆ NEG1. Moreover, POS1 ∩ NEG1 = ∅
from Theorem 3 (recall that PPOS1 and PNEG1 are contraries). Then, POS1∩
NEG2 = ∅ . Hence, by Definition 4 (i), PPOS1 and PNEG2 are contraries.

(b) By Theorem 4(a), POS1 ⊆ POS2. Moreover, POS2 ∩ BND2 = ∅ from
Theorem 3 (recall that PPOS2 and PBND2 are contraries). Then, POS1 ∩
BND2 = ∅. By Definition 4 (i), PPOS1 and PBND2 are contraries.

(c) Using items (a) and (b) of this theorem, we get POS1 ∩ NEG2 = ∅ and
POS1 ∩ BND2 = ∅. Consequently, POS1 ∩ (NEG2 ∪ BND2) = ∅. By
Definition 4 (i), PPOS1 and PNEG2∪BND2 are contraries.

(d) By Theorem 4(b), NEG2 ⊆ NEG1. Moreover, NEG1∩(POS1∪BND1) = ∅
from Theorem 3 (PNEG1 and PPOS1 are contraries as well as PNEG1 and
PBND1). Then, NEG2 ∩ (POS1 ∪ BND1) = ∅. Thus, by Definition 4 (i),
PPOS1∪BND1 and PNEG2 are contrary.

(e) By Theorem 4(b), NEG2 ⊆ NEG1. Furthermore, NEG1 ∩BND1 = ∅ from
Theorem 3 (PNEG1 and PBND1 are contrary). Therefore, NEG2 ∩BND1 =
∅. By Definition 4 (i), PBND1 and PNEG2 are contraries.

Figure 9 shows the relations of opposition listed by Theorem 7.

POS1 ∪ NEG1

POS1 ∪ BND1

POS1

NEG1 ∪ BND1

BND1

NEG1

POS2 ∪ NEG2

POS2 ∪ BND2

POS2

NEG2 ∪ BND2

BND2

NEG2

Fig. 9. Relations of contrary of Theorem 7.

Relations of Sub-contrary

Theorem 8. Let Ev1, Ev2 ∈ E such that Ev1 � Ev2. Then,
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(a) PNEG1∪BND1 and PPOS2 are sub-contraries,
(b) PNEG1∪BND1 and PPOS2∪BND2 are sub-contraries,
(c) PNEG1∪BND1 and PPOS2∪NEG2 are sub-contraries,
(d) PNEG1 and PPOS2∪BND2 are sub-contraries,
(e) PPOS1∪NEG1 and PPOS2∪BND2 are sub-contraries.

Proof.(a) By Theorem 4(a), POS1 ⊆ POS2. Also, by Theorem 3, PPOS1

and PNEG1∪BND1 are contradictories. So, by Remark 2, POS1 ∪ (NEG1 ∪
BND1) = U . Thus, POS2 ∪ (NEG1 ∪ BND1) = U . That is, PNEG1∪BND1

and PPOS2 are sub-contraries from Definition 4 (ii).
(b) POS2 ∪ (NEG1 ∪ BND1) = U from item (a) of this theorem. This implies

that (POS2 ∪ BND2) ∪ (NEG1 ∪ BND1) = U . Then, by Definition 4 (ii),
PNEG1∪BND1 and PPOS2∪BND2 are sub-contraries.

(c) POS2 ∪ (NEG1 ∪ BND1) = U from item (a) of this theorem. This implies
that (POS2 ∪ NEG2) ∪ (NEG1 ∪ BND1) = U . By Definition 4 (ii),
PNEG1∪BND1 and PPOS2∪NEG2 are sub-contraries.

(d) By Theorem 4(b), NEG2 ⊆ NEG1. Furthermore, by Theorem 3, PNEG2

and PPOS2∪BND2 are contradictories. Then, by Remark 2, NEG2∪(POS2∪
BND2) = U . As a consequence, NEG1 ∪ (POS2 ∪ BND2) = U . By Defini-
tion 4 (ii), PNEG1 and PPOS2∪BND2 are sub-contraries.

(e) By Theorem 6(d), NEG2 ⊆ NEG1 ∪POS1. Additionally, as in the proof of
item (d), we get NEG2 ∪ (POS2 ∪ BND2) = U . Then, (NEG1 ∪ POS1) ∪
(POS2 ∪ BND2) = U . Ultimately, by Definition 4 (ii), PPOS1∪NEG1 and
PPOS2∪BND2 are sub-contraries.

Figure 10 shows the logical relations listed by Theorem 8.

POS1 ∪ NEG1

POS1 ∪ BND1

POS1

NEG1 ∪ BND1

BND1

NEG1

POS2 ∪ NEG2

POS2 ∪ BND2

POS2

NEG2 ∪ BND2

BND2

NEG2

Fig. 10. Relations of sub-contrary of Theorem 8.

3.3 Discussion on the Logical Relations Between Hexagons

First of all, we can notice that relations of contradiction between hexagons gen-
erally do not exist. Exceptions occur in some trivial cases, for instance when one
of the following equality holds: POS1 = POS2, NEG1 = NEG2, or BND1 =
BND2. Indeed, if POS1 = POS2, then NEG1 ∪ BND1 = NEG2 ∪ BND2.
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Thus, since PPOS1 and PNEG1∪BND1 are contradictories from Theorem 3, it is
trivial that PPOS1 and PNEG2∪BND2 are contradictories too.

Then, we notice that we get a symmetrical diagram by putting together
Figs. 6, 7, and 8, which are all the diagrams representing the relations of subal-
ternation (see Fig. 11).

•

•

•

•

•

•

•

•

•

•

•

•

Fig. 11. All the relations of subalternation between the hexagons related to Ev1 and
Ev2.

In addition, the hexagons that are connected by the relations of contrary in
Fig. 9, form a symmetrical chart too. The same holds for the diagram depicted
by Fig. 10 and arising from the relations of sub-contrary.

Such symmetry can be analytically translated and described as follows. Con-
sider the function f assigning to each vertex of the hexagon of Ev1 a vertex of
the hexagon of Ev2 such that

f(POS1) = NEG2, f(NEG1) = POS2, f(POS1∪BND1) = NEG2∪BND2,

f(POS1 ∪ NEG1) = POS2 ∪ NEG2, f(NEG1 ∪ BND1) = POS2 ∪ BND2,

and f(BND1) = BND2.

Observe that f transforms each vertex of the first hexagon into a vertex of the
second hexagon by exchanging the positive and negative regions (i.e. P1 → N2

and N1 → P2) and by leaving unchanged the boundary region (B1 → B2).
So, let A1 and A2 be two vertices of the hexagons related to Ev1 and Ev2, a

logical relation holds between A1 and A2 if and only if it holds between f(A1)
and f−1(A2). For example, by Theorem 7 (c), POS1 and NEG2∪BND2 are con-
traries; also, by Theorem 7 (d), f(POS1) = NEG2 and f−1(NEG2 ∪BND2) =
POS1 ∪ BND1 are contraries too.

Finally, let us analyze the meaning of the logical relations between different
hexagons in terms of decisions. So, the hexagons of Ev1 and Ev2 lead to different
decision procedures denoted with 1 and 2, which are connected as follows. Let
x ∈ U ,

– if x is accepted by 1, then x is also accepted by 2 (Theorem 4(a)),
– if x is rejected by 2, then x is also rejected by 1 (Theorem 4(b)),
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– if x is non-committed by 1, then x cannot be rejected by 2 (Theorem 5(c)),
– if x is not rejected by 1, then x is also not rejected by 2 (Theorem 5(d)),
– if x is non-committed by 2, then x cannot be accepted by 1 (Theorem 6(a)),
– if x is not accepted by 2, then x is not accepted by 1 (Theorem 6(c)),
– x can not be both accepted by 1 and rejected by 2 (Theorem 7 (a)),
– x can not be both accepted by 1 and non-committed by 2 (Theorem 7(b)),
– x can not be both accepted by 1 and non-accepted by 2 (Theorem 7(c)),
– x can not be both rejected by 2 and non-rejected by 1 (Theorem 7(d)),
– x can not be both rejected by 2 and non-committed by 1 (Theorem 7(e)),
– x must be either non-accepted by 1 or accepted by 2 (Theorem 8(a)),
– x must be either non-accepted by 1 or non-rejected by 2 (Theorem 8(b)),
– x must be either non-accepted by 1 or committed by 2 (Theorem 8(c)),
– x must be either rejected by 1 or non-rejected by 2 (Theorem 8(d)),
– x must be either committed (accepted or rejected) by 1 or non-rejected by 2

(Theorem 8(e)).

Notice that items (a) and (b) of Theorem 5 are not significant for explaining
how 1 and 2 are connected, considering that they do not add knowledge w.r.t.
Theorem 4(a). The same is for the items (b) and (d) of Theorem 6, which derive
from Theorem 4 (b).

4 Conclusions

The contribution of this work is twofold. Firstly, it represents a step forward in
the study of the extensions of Aristotle’s square. Secondly, it provides new tools
for possible applications in the context of three-way decision theory. We plan to
extend this article by finding the logical relations between hexagons generated
by the same evaluative expression, but different pairs of thresholds (α, β) and
(α′, β′). Also, the logical relations between hexagons could be investigated in a
more complex situation, when the hexagons are generated by different evaluative
expressions and different pairs of thresholds.
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6. Boffa, S., Murinová, P., Novák, V.: A proposal to extend relational concept analysis
with fuzzy scaling quantifiers. Knowl.-Based Syst. 231, 107452 (2021)

7. Ciucci, D., Dubois, D., Prade, H.: Oppositions in rough set theory. In: Li, T., et al.
(eds.) RSKT 2012. LNCS (LNAI), vol. 7414, pp. 504–513. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31900-6 62
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Abstract. In the context of general rough sets, the act of combining two
things to form another is not straightforward. The situation is similar for
other theories that concern uncertainty and vagueness. Such acts can be
endowed with additional meaning that go beyond structural conjunction
and disjunction as in the theory of ∗-norms and associated implications
over L-fuzzy sets. In the present research, algebraic models of acts of
combining things in generalized rough sets over lattices with approx-
imation operators (called rough convenience lattices) is invented. The
investigation is strongly motivated by the desire to model skeptical or
pessimistic, and optimistic or possibilistic aggregation in human rea-
soning, and the choice of operations is constrained by the perspective.
Fundamental results on the weak negations and implications afforded by
the minimal models are proved. In addition, the model is suitable for the
study of discriminatory/toxic behavior in human reasoning, and of ML
algorithms learning such behavior.

Keywords: Abstract Approximations · Rough Implications ·
Algebraic Semantics · Skeptical Reasoning · Overly Optimistic
Reasoning · L-Fuzzy Implications · Granular Operator Spaces · Rough
Convenience Lattices · Algorithmic Bias Discovery

1 Introduction

In any context, the act of combining two things involves meta-level or seman-
tic assumptions. These are more involved in the context of general rough sets
because of the increased complexity of associated domains of discourse. Any
generalized conjunction-like operation is referred to as an aggregation, while a
generalized disjunction-like operation as a co-aggregation (valuations are not
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assumed). The situation is similar for other mature theories that concern uncer-
tainty, vagueness or imprecision. For example, the theory of ∗-norms and asso-
ciated implications are extensively investigated over L-fuzzy sets [1,2]. The pur-
pose of the present research is to invent (or construct), and investigate models
of somewhat related acts of combining things over lattices with approximation
operators, and without explicit negations. At the application level, this research
is strongly motivated by the desire to model skeptical or pessimistic or cautious,
and overly optimistic reasoning over concepts (in human reasoning), and the
choice of operations is constrained by the perspective.

Fundamental semantic results that formally address the following constraint
on domains of discourse: When things are implied and negated in some perspectives
then they are being approximated and vice versa are proposed. More specifically,
concrete algebraic models (that involve a surprisingly weak set of axioms) in
which the principle is valid are shown to exist in this research.

Several algebraic models of the operations of combining objects or rough
objects (in several senses) in the context of classical, general and granular rough
sets are known [12,21,25,27]. However, not many impose a meaning constraint
that amount to combining in skeptical or biased or bigoted or overly optimistic
ways. These concepts can possibly be attained relatively through partial orders
on approximations. For example, if the lower approximation l1 approximates
better than another lower approximation l2, then the latter is relatively more
skeptical than the former. Consequently, aggregations of the l2-approximations
of objects must be more skeptical than that of aggregations of l1-approximations.
In the present research, the relative aspect is hidden because in most cases, the
collections of rough objects (in various senses) form a lattice.

In the context of Pawlak/classical rough sets, it is proved by the present
author [19] that aggregations f (interpreted as rough dependence), defined by
the equation f(a,b) = al ∩ bl can be used to define algebraic models that
make no reference to approximations. The intent in the paper was to establish
the differences between rough sets and probability theory from a dependence
perspective. For a fuller discussion, the reader is referred to Sect. 5. However,
the status of this operation and related ones in the abstract rough set literature
is not known. This fundamental problem is solved in this research in suitably
minimalist frameworks without negation operations. The framework is far weaker
than the general approximation algebras considered in the paper [8], and is a
specific version of a high general granular operator space [21,23] without the
granularity requirement. Specific set-theoretic subclasses of high general granular
operator spaces are also covered.

The organization of this paper is as follows. Necessary background is outlined
in the next section. The model(s) are invented in the third section. Illustrative
concrete and abstract instances of the models are explored in the section on
examples. Connections between qualified aggregation and rough dependence are
clarified in the fifth section.
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2 Background

Definition 1. A L-Fuzzy set [11] is a map ϕ : X �−→ L, where X is a set and
L = 〈L,�〉 is a quasi-ordered set. The set of all L-fuzzy sets will be denoted by
F(X,L).

2.1 T-Norms, S-Norms, Uninorms, and Implications

While T-norms, S-norms and uninorms are primarily viewed as operations on
lattices or partially ordered sets for the algebraic and logical models of L-fuzzy
sets, they can be utilized in the algebraic models of entirely different phenom-
ena. The mentioned T/S/uni-norms are well-known algebraic operations in the
algebra literature because the topological constraints of the unit interval con-
text are not imposed. The conditions that make related considerations stand out
from those on corresponding order-compatible algebras are boundedness and the
role of additional operations such as those of generalized implications and nega-
tions. Some essential concepts (for more details, see for example [2,3,7,27,33])
are mentioned here.

Definition 2. Let P = 〈P,�, e〉 be a partially ordered set (poset) on the set
P with distinguished element (or 0-ary operation) e, then any order-compatible
binary associative operation · on it with identity element · is referred to as a
pseudo uni-norm. A commutative pseudo uni-norm is a uni-norm. If e is the
greatest (respectively least) element of P then · is a pseudo t-norm (respectively
pseudo s-norm).

The set of all pseudo uninorms on the poset P is denoted by U(P, e). It
forms a poset in the induced point-wise order. Both t-norms and t-conorms are
uninorms.

Definition 3. If L is a bounded lattice with bottom ⊥ and top 	, then a t-norm

 is a commutative, associative order compatible monoidal operation with 	
being the identity. A s-norm (or t-conorm) is a commutative, associative order
compatible monoidal operation with ⊥ being the identity.

Consider the conditions possibly satisfied by a map n : L �−→ L:

n(⊥) = 	 & n(	) = ⊥ (N1)
(∀a,b)(a � b −→ n(b) � n(a)) (N2)

(∀a)n(n(a)) = a (N3)
n(a) ∈ {⊥,	} if and only if a = ⊥ or a = 	 (N4)

n is a negation if and only if it satisfies N1 and N2, while n is a strong
negation if and only if it satisfies all the four conditions.
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2.2 Implication Operations

Implications satisfy a wide array of properties as they depend on the other
permitted operations. Here some relevant ones are mentioned.

A function � : L2 �−→ L is an implication [2] if it satisfies (for any a,b, c ∈ L)
the following:

If a � b then �bc � �ac (First Place Antitonicity FPA)
If b � c then �ab � �ac (Second Place Monotonicity SPM)

�⊥⊥ = 	 (Boundary Condition 1: BC1)
�		 = 	 (Boundary Condition 2: BC2)
�	⊥ = ⊥ (Boundary Condition 3: BC3)

Infix notation is preferred for algebraic reasons. The set of all implications on
the lattice L will be denoted by I(L). It can be endowed with a bounded lattice
structure under the induced order

�1  �2 if and only if (∀a,b ∈ L)�1ab � �2ab.

The top �� and bottom �⊥ implications are defined as follows:

• If a = 	 & b = ⊥ then ��ab = ⊥, otherwise ��ab = 	.
• If a = ⊥ & b = 	 then �⊥ab = 	, otherwise �⊥ab = ⊥.

Some other properties of interest in this paper are

�	x = x (LNP)
�a(�bc) = �(b�(ac)) (Exchange Principle EP)

�ab = 1 if and only if a � b (Ordering Property, OP)
�a(�ab) = �ab (Iterative Boolean Law, IBL)

b � �ab (Consequent Boundary, CB)

Further, note that Tarski algebras are the same thing as implication algebras
[22,29]. A few full dualities relating to classes of such algebras are known. One
of this is a duality for finite Tarski sets [5,6] or covering approximation spaces.

Definition 4. A Tarski algebra (or an implication algebra) is an algebra of the
form S = 〈S, �,	〉 of type 2, 0 that satisfies (in the following, [29])

�	a = a (Left Neutrality, LNP)
�aa = 	 (Identity Principle, IP)

�a(�bc) = �(�ab)(�ac) (T3)
�(�ab)b = �(�ba)a (T4)
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A join-semilattice order � is definable in a IA as below:

(∀a,b)a � b ↔ �ab = 	; the join isa ∨ b = �(�ab)b

Filters or deductive systems of an IA S are subsets K ⊆ S that satisfy

1 ∈ K & (∀a,b)(a, �ab ∈ K −→ b ∈ K)

The set of all filters F(S) is an algebraic, distributive lattice whose compact
elements are all those filters generated by finite subsets of S.

3 Model of Rough Skeptic and Pessimistic Reasoning

For concreteness, a minimal base model over which the theory will be invented
is defined next. Generalizations to weaker order, antichains, and partial approx-
imation operations are considered in a separate paper.

Definition 5. An algebra of the form B = 〈B, l,u,∨,∧,⊥,	〉 with
(B,∨,∧,⊥,	) being a bounded lattice will be said to be a rough convenience
lattice (RCL) if the following conditions are additionally satisfied (� is the asso-
ciated lattice order, and the operations l and u are generalized lower and upper
approximation operators respectively):

(∀x)xll = xl � x � xu � xuu (lu1)

(∀a,b)(a � b −→ al � bl) (l-mo)
(∀a,b)(a � b −→ au � bu) (u-mo)

(∀a,b)al ∨ bl � (a ∨ b)l & au ∨ bu = (a ∨ b)u (lu2)

(∀a,b)(a ∧ b)l = al ∧ bl & (a ∧ b)u � au ∧ bu (lu3)

	u = 	 & ⊥l = ⊥ = ⊥u (topbot)

Proposition 1. In Definition 5, lu2 and lu3 follow from lu1, l-mo and u-mo.

The concept is weaker than that of a general abstract approximation space.
Note that by default no relation between the lower and upper approximations
are assumed. Further, nothing is assumed about negations or complementation.
A special case of a rough convenience lattice is a set-HGOS under additional
conditions. However, note that no granularity-related restrictions are imposed
on a rough convenience lattice.

An element a ∈ B will be said to be lower definite (resp. upper definite)
if and only if al = a (resp. au = a) and definite, when it is both lower and
upper definite. For possible concepts of rough objects the reader is referred to
the paper [21].
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Definition 6. By a roughly consistent object (RCO) (respectively lower RCO,
upper RCO) will be meant a set of elements of the RCL B of the form H =
{x; (∀b ∈ H) xl = bl & xu = bu} (respectively Hl = {x; (∀b ∈ Hl) xl = bl}

and Hu = {x; (∀b ∈ Hu) xu = bu} ). The set of all roughly consistent objects
is partially ordered by the set inclusion relation. Relative to this order, maximal
roughly consistent objects will be referred to as rough objects. Analogously, lower
and upper rough objects will be spoken of. The collection of such objects will
respectively be denoted by R(B), Rl(B) and Ru(B).

Proposition 2. In a RCL B, every maximal roughly consistent object is an
interval of the form (xl, xu) for some x ∈ Bs. The converse holds as well.

Proof. The result follows from the monotonicity of l and u, and lu1.

Definition 7. By the rough order � on R(B), will be meant the relation �
defined by (xl, xu) � (al,au) if and only if (xl � al and xu � au).

It can be shown that � is a bounded partial lattice order on R(B). The least
element of R(B) is (⊥,⊥), and its greatest element is the interval (	,	). The
meet and join operations of B induce partial lattice operations on R(B) – these
are investigated separately.

Definition 8. In a RCL B, let for any a,b ∈ B

a · b := al ∧ bl and a ⊗ b = au ∨ bu.

The operations · and ⊗ will respectively be referred to as cautious co-
aggregation CCA, and optimistic aggregation OA respectively.

The operation · can as well be interpreted as a pessimistic co-aggregation. The
appropriateness of the competing interpretations is dependent on the relation
with the OA or on other context-specific features.

Theorem 1. The CCA operation defined above satisfies all the following:

(∀a,b)a · b = b · a (Ccomm)
(∀a,b, e)a · (b · e) = (a · b) · e (Casso)
(∀a,b)(a � b −→ a · e � b · e) (Cm)

(∀a)a · ⊥ = ⊥ (Cb)

Proof. For any a,b ∈ B, a · b = al ∧ bl = bl ∧ al = b · a. This proves Ccomm.
Associativity can be proved as follows. For any a,b, e ∈ B,

a · (b · e) = al ∧ (b · e)l = (by definition)

= al ∧ (bl ∧ el)l = al ∧ bll ∧ ell (by lu3)

= (al ∧ bl) ∧ el = (a · b) · e (by lu1.)

Monotonicity follows from the monotonicity of l.
Finally, a · ⊥ = al ∧ ⊥l = al ∧ ⊥ = ⊥. ��
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Theorem 2. Omitting the initial universal quantifiers,

a ⊗ b = b ⊗ a (Acomm)
(auu = au & buu = bu & euu = eu −→ a ⊗ (b ⊗ e) = (a ⊗ b) ⊗ e) (wAasso1)

a ⊗ ((b ∨ e) ⊗ a) = ((a ∨ b) ⊗ c) ⊗ c (wAsso2)
(a � b −→ a ⊗ e � b ⊗ e) (Am)

a ⊗ 	 = 	 (Ab)

Proof. Acomm follows from the commutativity of ∨.
For any a,b, e ∈ B,

a ⊗ (b ⊗ e) = au ∨ (b ⊗ e)u = (by definition)
= au ∨ (bu ∨ eu)u = au ∨ buu ∨ euu, (by lu2)

However, (a ⊗ b) ⊗ e = auu ∨ buu ∨ eu (by lu2)
So the premise of wAsso1 ensures it.

Using the definition of ⊗ on the LHS and RHS of wAsso2, it can be seen that

a ⊗ ((b ∨ e) ⊗ a) = au ∨ ((b ∨ e)u ∨ au)u = (by definition)
auu ∨ buu ∨ euu

(by Acomm, lu2, u-mo, lu1)

Similarly, ((a ∨ b) ⊗ c) ⊗ c = auu ∨ buu ∨ cuu ∨ cu = (by definition, lu2)
auu ∨ buu ∨ euu (by u-mo)

This proves wAsso2. (by =)

Monotonicity of ⊗ can be proved from the monotonicity of ∨ and that of u.
��
Definition 9. Two generalized negations are definable on a RCL, B as follows:

¬a = inf{z : z ∈ B & a ⊗ z = 	} (addneg)
∼ a = sup{z : z ∈ B & a · z = ⊥} (mulneg)

These satisfy the properties specified in the next two theorems.
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Theorem 3.

(∀a)¬¬a � au (WN3-N)
(∀a,b)(a � b −→ ¬b � (¬b)u � (¬a)u) (WN2-N)

¬⊥ � 	& �= 	 = ⊥ (WN1-N)

Proof. ¬¬a ⊗ ¬a = 	. Therefore,

(¬¬a)u ∨ (¬a)u = 	 = (¬a)u ∨ au

By the definition of ¬, it follows that ¬¬a � (¬¬a)u � au as (¬a)u is in both
the equalities.

To see this suppose ¬¬a > a, then ¬¬a ∨ a = ¬¬a This implies (¬¬a)u ∨

au = (¬¬a)u, and au ∨ (¬a)u = 	 contradicts the definition of ¬. This proves
WN3-N.

Clearly, (¬b)u ∨ bu = 	 = (¬a)u ∨ au. If a � b then au � bu. So,
(¬a)u ∨ au ∨ bu = 	. This yields (¬a)u ∨ bu = 	. By the definition of ¬ and
monotonicity of ∨, it is necessary that (¬b)u � ∨(¬a)u. This proves WN2-N.

If au∨	u = 	 for some a, then a can be any element of the universe because
	u = 	. Of these the smallest is ⊥. Therefore, �= 	 = ⊥ holds. However, ¬⊥ is
the infimum of the elements whose upper approximation is 	, and so ¬⊥ � 	.
WN1-N is thus proved. ��
Theorem 4.

(∀a,b)(a � b −→ (∼ b)l � (∼ a)l �∼ a) (WN2-S)
⊥ �∼ 	 & 	 =∼ ⊥ (WN3-S)

Proof. Clearly, (∼ b)l ∧ bl = ⊥ = (∼ a)l ∧ al. If a � b then al � bl. So,
(∼ b)l ∧ al = ⊥. By the definition of ∼, this means (∼ b)l � (∼ a)l �∼ a, and
proves WN2-S.

If al ∧ 	l = ⊥ for some a, then a must necessarily be an element of the
universe satisfying al = ⊥. By definition, it is clear that in general, a need not
coincide with ⊥.

If al ∧ ⊥l = ⊥, then a can be any element of the universe. The largest of
these is 	. Therefore, ∼ ⊥ = 	. This proves WN3-S. ��

The above means that ∼ is a weak negation. The properties of the negation
improve when the RCL satisfies a weak complementation c that satisfies the
conditions

(∀x)xcc � x (c1)
(∀x)xc ∧ x = ⊥ (c2)

The above two conditions ensure that for any a, ∼ a � alc.
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3.1 Implications

Given the definitions of negation, and ∗-norms, a natural candidate for a defini-
tion of implication is given by the following equation

�¬ab = (¬a) ⊗ b (Negimplication)

Theorem 5. The operation �¬ satisfies the properties: FPA, IP, SPM, BC1, BC2,
and BC3. So it is an implication operation.

Proof. If a � c, then ¬c � (¬c)u � (¬a)u. Therefore, (¬c)u ∨bu � (¬a)u ∨bu

From this it follows that �¬cb � �¬ab. So FPA holds.
Suppose b � c then for any a ∈ B �¬ab = (¬a)u ∨bu and �¬ac = (¬a)u ∨

cu (by definition). Monotonicity of u ensures that (¬a)u ∨ bu � (¬a)u ∨ cu.
Therefore, SPM must hold.

�¬⊥⊥ = (¬⊥)u ∨ ⊥u = 	 (by definition). So BC1 holds.
�¬		 = (¬	)u ∨ (	)u = 	 (by definition). So BC2 holds.
�¬	⊥ = (¬	)u ∨ (⊥)u = (⊥)u = ⊥. So BC3 holds.
For any a, �¬aa = (¬a)u ∨ (a)u = 	. So IP holds. ��
Other possibilities are

�oab = (¬a) ∨ b (negvee)
�∼ab = (∼ a) · b (simplication)

�sab = (∼ a) ∧ b (simwed)

Of these �∼ is most interesting, and has the following properties:

Theorem 6. In a RCL B, �∼ satisfies FPA, SPM, BC3, IBL and converse of CB.

Proof. FPA: Suppose a � b for any a,b ∈ B. �∼bc = (∼ b)l ∧ cl, and �∼ac =
(∼ a)l ∧ cl, By WN2-S, it follows that (∼ b)l ∧ cl � (∼ a)l ∧ cl. This ensures
FPA.

SPM: Suppose a � b for any a,b ∈ B. �∼cb = (∼ c)l ∧ bl, and �∼ca = (∼
c)l ∧al. Under the assumption (∼ c)l ∧al � (∼ c)l ∧bl. SPM follows from this.

BC3: �∼		 = (∼ 	)l ∧ 	l = ⊥. So BC3 holds.
IBL: For any a,b ∈ B, ia(�ab) = (∼ a)l ∧ ((∼ a)l ∧ bl)l =
(∼ a)l ∧ (∼ a)ll ∧ bll = (∼ a)l ∧ (∼ a)l ∧ bl =
(∼ a)l ∧ bl = �∼ab. This proves IBL.
The converse of CB holds because (∼ a)l ∧ bl � b is satisfied for all possible

values of a. ��
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It can be verified that BC1, BC2, and IP do not hold in general for �∼.
The operation · can be naturally interpreted as a pessimistic or skeptical

aggregation because it essentially selects a common part of two lower approxi-
mations (that are not restricted in their badness). Two related operations are 

and × can be defined by (for any a,b ∈ B) a
b := al ∨bl and a×b := au ∧bu.
The operation ⊗ on the other hand is optimistic at every stage of the reason-
ing process. First, the possibilistic upper approximation operators are used, and
then the one that certainly contains the upper approximations is constructed. 

and × are essentially intermediate operations.

3.2 Concrete and Abstract Algebraic Models

It is shown that a rough convenience lattice and closely related abstract algebraic
systems have a far richer structure than is assumed in the literature. In concrete
terms, every RCL can be naturally enhanced to the following algebraic system.

Definition 10. By a Concrete RCL Aggregation Algebra (CRCLAA) will be
meant an algebra of the form

B = 〈B,⊗, ·,∨,∧, l,u,¬,∼,⊥,	〉

with 〈B,∨,∧, l,u,⊥,	〉 being a RCL, and the operations ⊗, · · · ,⊗, ·,¬, and ∼

are as defined in the previous subsections.

While the operations · and ⊗ are terms derived in the signature of the RCL,
the other operations are defined by imposing a perspective on them. This sug-
gests that an abstract property-based definition of an algebra of the same type
may not be always equivalent to a CRCLAA. Additionally, it makes sense to
retain the implications and omit negations.

Definition 11. By an Abstract RCL Aggregation Negation Algebra
(CRCLANA) will be meant an algebra of the form

B = 〈B,⊗, ·,∨,∧, l,u,¬,∼,⊥,	〉

that satisfies the following conditions:

〈B,∨,∧, l,u,⊥,	〉 is a RCL. (rcl)
· satisfies Ccomm, Casso, Cm, and Cb. (cdotc)

⊗ satisfies Acomm, wAsso1, wAsso2, Am, and Ab. (otimc)
¬ satisfies WN1-N, WN2-N, and WN3-N. (negc)

∼ satisfies WN2-S, and WN3-S. (simc)
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Definition 12. An Abstract RCL Aggregation Implication Algebra
(CRCLAIA) shall be an algebra of the form B = 〈B,⊗, ·,∨,∧, l,u, �¬, �∼⊥,	〉
that satisfies:

〈B,∨,∧, l,u,⊥,	〉 is a RCL. (rcl)
· satisfies Ccomm, Casso, Cm, and Cb. (cdotc)

⊗ satisfies Acomm, wAsso1, wAsso2, Am, and Ab. (otimc)
�∼ satisfies FPA, SPM, BC3, and IBL. (imsc)

�¬ satisfies FPA, IP, SPM, BC1, BC2, and BC3. (inegc)

The above allows the following interesting problems. It may be noted that
the associated contexts in logic are not known because the defining conditions
are not strong enough.

Problem 1. Under what additional conditions are CRCLANA and CRCLAIA
representable as concrete RCL aggregation algebras?

4 Illustrative Examples

In academic learning contexts, all stakeholders approximate concepts within
their own frameworks, and perspectives [24]. However, the learning context
admits of common languages of discourse – it is very important that this be
large and expressive enough. In practical terms, this means that the admitted
basic predicates or functions should be many in number, and be endowed with
minimalist properties relative to what may be possible in associated contexts.
Below an abstract and a concrete example are constructed.

4.1 Abstract Example

ab

cf e

⊥

Fig. 1. Bounded Lattice

Let B = {⊥,	,a,b, c, e, f} be endowed
with the lattice order depicted in Figure
1. Suppose the lower and upper approx-
imations are respectively {(⊥,⊥), (	, e),
(a, c), (b,b), (c, c), (e, c), (f,⊥)} and {(⊥,⊥),
(	,	), (a,a), (b,	), (c, e), (e, e), (f,b)}
respectively. The operations ⊗, ·,¬, and ∼ are
then computable as in the three tables, while
the implications follow (Fig. 1 and Tables 1, 2 and 3).
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Table 1. ⊗-Table

⊗ ⊥ 	 a b c e f

⊥ ⊥ 	 a 	 e e b

	 	 	 	 	 	 	 	
a a 	 a 	 	 	 	
b 	 	 	 	 	 	 	
c e 	 	 	 e e 	
e e 	 	 	 e e 	
f b 	 	 	 	 	 b

Table 2. ·-Table

⊗ ⊥ 	 a b c e f

⊥ ⊥ 	 a 	 e e b

	 	 	 	 	 	 	 	
a a 	 a 	 	 	 	
b 	 	 	 	 	 	 	
c e 	 	 	 e e 	
e e 	 	 	 e e 	
f b 	 	 	 	 	 b

Table 3. Negations

Neg ⊥ 	 a b c e f

¬ b ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
∼ 	 f b c f f 	

4.2 Detection of Reasoning and Algorithm Bias

Skeptical aggregation is often a feature of negative bias in human reasoning.
Suppose a toxic person with decision-making powers is constrained by their
environment from explicitly discriminating against specific groups of people.
Then they are likely to discriminate by adopting additional distracting strategies
and empty agendas. The effect of such practices can be analyzed through the
aggregation strategies adopted. In fact, serious political analysts frequently try
to do precisely that.

The behavior of biased or defective algorithms is typically reflected in the
data used, and produced by it (because the results produced at different stages
are again a form of data). Analysis of empirical bias can possibly be deduced from
the associated data sets. If it can be shown that bias is due to the algorithm
learning from biased data, then it means that algorithm is not safe for the
purpose. Such generalities can be analyzed with the proposed methodology.

Many types of models are possible for information tables that are the result
of systemic bias in the data collection process or due to external factors. These
may be partly reflected in the data, and in such circumstances the methods
invented in this research may be applicable. External factors may be taken into
account through the approximation operators (about which the assumptions are
left to the practitioner). The essence of the procedure is outlined below:

• Let C1, . . . Ck be subsets of B that potentially correspond to specific objects
that are discriminated against.

• Let E1, . . . Ek be subsets of B that potentially correspond to specific objects
that are unduly favored.

• Let F1, . . . Fk be subsets of B that potentially correspond to specific objects
that help in bias determination

• It is assumed that a similar pattern of bias is maintained by the process.
• Compute Ci · Fi, Ci ⊗ Fi, Ei · Fi, and Ei ⊗ Fi

• Let the principal lattice filters generated by these be respectively �(Ci · Fi),
�(Ci ⊗ Fi), �(Ei · Fi), and �(Ei ⊗ Fi).

• If B is finite, compute the cardinalities of the principal lattice filters generated
by the four.
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• A simple measure of bias �(C,E) is defined in Equation biase. It will be
referred to as the flat bias measure.

�(C,E) = 1 −
1
k

∑ Card(�(Ci · Fi))

Card(�(Ei · Fi))
(biase)

If it is certain that the co-aggregations are justified, then they can be used
for the sharp bias measure defined in Equation sharpe

ð(C,E) = 1 −
1
k

∑ Card(�(Ci ⊗ Fi)) − Card(�(Ci · Fi))

Card(�(Ei ⊗ Fi)) − Card(�(Ei · Fi))
(sharpe)

5 Skeptical Aggregation and Rough Dependence

A theory of rough dependence, and associated measures for subclasses of granular
rough sets (in the axiomatic sense) is invented by the present author in earlier
papers [17–19]. It concerns the extent to which an object depends on another
expressed in terms of rough objects of different types. The representation is used
in the context of contrasting it with that of probabilistic dependence. In fact, it is
proved by her [19] that the models of dependence based probability and models
of rough dependence do not share too many axioms. Subsequent research led to
the invention of a theory of non-stochastic rough randomness and large-minded
reasoners [26].

Definition 13. Let B = 〈B,G, l,u,∨,∧,⊥,	〉 be a structure with B being a
subset of a powerset ℘(S), 〈B, l,u,∨,∧,⊥,	〉 being a RCL, ∧ = ∩, ∨ = ∪,
	 = S, and ⊥ = ∅, and G ⊆ B is a granulation on B in the axiomatic sense
[15,21,23] (t being a term function in the algebraic language of the RCL):

(∀x∃a1, . . . ar ∈ G) t(a1, y2, . . . ar) = xl (Weak RA, WRA)
and (∀x) (∃a1, . . . ar ∈ G) t(a1, a2, . . . ar) = xu,

(∀a ∈ G)(∀x ∈ ℘(S)) (a ⊆ x −→ a ⊆ xl), (Lower Stability, LS)

(∀x, a ∈ G)(∃z ∈ ℘(S)) x ⊂ z, &a ⊂ z & zl = zu = z, (Full Underlap, FU)

B will then be referred to as a set granular RCL (sGRCL).

It is easy to see that all sGRCLs are set HGOS as well.
In a sGRCL B, if ν(B) is the collection of definite objects in some sense,
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Definition 14. The Gν-infimal degree of dependence βiτν of x on z is defined
by

βiGν(x, z) = inf
ν(B)

⋃
{g : g ∈ G & g ⊆ x & g ⊆ z}. (1)

The infimum is over the ν(B) elements contained in the union.
The Gν-supremal degree of dependence βsGν of x on z is defined by

βsGν(x, z) = sup
ν(B)

⋃
{g : g ∈ G & g ⊆ x & g ⊆ z}. (2)

The supremum is over the ν(S) element containing the union.

If unions of granules are always definite, then the two concepts coincide.

Theorem 7. In classical rough sets with G being the set of equivalence classes
and ν(B) = δl(B) - the set of lower definite elements, then

βixz = xl ∩ zl = βsxz

The converse of (x 
 y = 0 −→ βixy = 0) is not true in general.

The following proposition can be deduced

Proposition 3. In the context of classical rough sets, the degrees of rough
dependence (relative to ν(B) being the set of lower definite elements) coincides
with the skeptical aggregation operation.

However, in slightly more general set-theoretical contexts, rough dependence
does not coincide with skeptical aggregation. This follows from the above defi-
nition (additionally, readers may refer to Sect. 7 of the paper [19]).

6 Directions

It should be stressed that there is much scope for reducing the axioms assumed in
studies on rough sets over residuated lattices or ortho-lattices [4]. This research
contributes to this broad project in the spirit of reverse mathematics that seeks
a minimum of axioms for a result. Dualities, somewhat related to recent results
[9], for CRCLANA and CRCLAIA are of interest.

The terms pessimistic, and optimistic are used in different senses in the rough
set and AIML literature. In the so-called multi-granulation studies [28] that
concern contexts with multiple rough approximations (or multiple relations or
granulations) on the same universe, it is used as an adjective for specific derived
approximations. However, these are studied under other names in many older
papers [13,16,30]. Algebraic aspects are explored by the present author [16],
and others [10]. Three-way decision strategies are additionally studied to seek
common ground while eliminating differences [32]. Modal logic of the point-wise
approximations in some of these contexts are explored in more recent work [14].
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The present study is about models of aggregation and co-aggregation from a
rough set view, and therefore it is not directly related to these as the idea
necessarily involves systems of approximations from different sources (and is
relative to at least two such sources). For example, by regulating the nature of the
lower approximation, even extremely biased or bigoted views can be expressed
by the aggregation f mentioned earlier. As this is not really part of a multi source
scenario, possible connections are research topics. Implication operations from a
rough set perspective are studied in many related models such as quasi-boolean
algebras [31]. The results proved here show that many of the assumptions are
not essential. A detailed study will appear separately.

In forthcoming papers, the semantics is extended to antichains of mutually
distinct objects, building on earlier work of the present author [20]. Further
applications to concept modeling in education research and teaching contexts
are areas of her ongoing research [24].
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Abstract. In this paper, we propose two-sorted modal logics for the
representation and reasoning of concepts arising from rough set theory
(RST) and formal concept analysis (FCA). These logics are interpreted
in two-sorted bidirectional frames, which are essentially formal contexts
with converse relations. The logic KB contains ordinary necessity and
possibility modalities and can represent rough set-based concepts. On the
other hand, the logic KF has window modality that can represent formal
concepts. We study the relationship between KB and KF by proving a
correspondence theorem. It is then shown that, using the formulae with
modal operators in KB and KF, we can capture formal concepts based
on RST and FCA and their lattice structures.

Keywords: Modal logic · Formal concept analysis · Rough set theory

1 Introduction

Rough set theory (RST) [14] and formal concept analysis (FCA) [17] are both
well-established areas of study with a variety of applications in fields like knowl-
edge representation and data analysis. There has been a great deal of research
on the intersections of RST and FCA over the years, including those by Kent
[11], Saquer et al. [15], Hu et al. [10], Düntsch and Gediga [4], Yao [20], Yao et
al. [21], Meschke [13], Ganter et al. [5] and Conradie et al. [3].

Central notions in FCA are formal contexts and their associated concept
lattices. A formal context (or simply context) is a triple K := (G,M, I) where
I ⊆ G × M . A given context induces two maps + : (P(G),⊆) → (P(M),⊇) and
− : (P(M),⊇) → (P(G),⊆), where for all A ∈ P(G) and B ∈ P(M):

A+ = {m ∈ M | for all g ∈ A gIm},

B− = {g ∈ G | for all m ∈ B gIm}.

A pair of set (A,B) is called a formal concept (or simply concept) if A+ = B
and A = B−. The set FC of all concepts forms a complete lattice and is called
a concept lattice.
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On the other hand, the basic construct of the original RST is the Pawlakian
approximation space (W,E), where W is the universe and E is an equivalence
relation on W . Then, by applying notions of modal logic to RST, Yao et al [22]
proposed generalised approximation space (W,E) with E being any binary rela-
tion on W . In addition, they also suggested to use a binary relation between two
universes of discourse, containing objects and properties respectively, as another
generalised formulation of approximation spaces. The rough set model over two
universes is thus a formal context in FCA. Düntsch et al. [4] defined sufficiency,
dual sufficiency, possibility and necessity operators based on a rough set model
over two universes, where necessity and possibility operators are, in fact, rough
set approximation operators. Based on these operators, Düntsch et al. [4] and
Yao [20] introduced property oriented concepts and object oriented concepts
respectively.

For a context K := (G,M, I), I(x) := {y ∈ M : xIy} and I−1(y) := {x ∈ G :
xIy} are the I-neighborhood and I−1-neighbourhood of x and y respectively.
For A ⊆ G, and B ⊆ M , the pairs of dual approximation operators are defined
as:

B♦−1

I := {x ∈ G : I(x) ∩ B �= ∅}, B�−1

I := {x ∈ G : I(x) ⊆ B}.
A♦

I−1 := {y ∈ M : I−1(y) ∩ A �= ∅}, A�
I−1 := {y ∈ M : I−1(y) ⊆ A}.

If there is no confusion about the relation involved, we shall omit the subscript
and denote B♦−1

I by B♦−1
, B�−1

I by B�−1
and similarly for the case of A. A pair

(A,B) is a property oriented concept of K iff A♦ = B and B�−1
= A; and it is an

object oriented concept of K iff A� = B and B♦−1
= A. As in the case of FCA,

the set OC of all object oriented concepts and the set PC of all property oriented
concepts form complete lattices, which are called object oriented concept lattice
and property oriented concept lattice respectively.

For any concept (A,B), the set A is called its extent and B is called its
intent. For concept lattices X = FC,PC,OC, the set of all extents and intents
of X are denoted by Xext and Xint, respectively.

Proposition 1. For a context K := (G,M, I), the following holds.

(a) FCext = {A ⊆ G | A+− = A} and FCint = {B ⊆ M | B−+ = B}.
(b) PCext = {A ⊆ G | A♦�−1

= A} and PCint = {B ⊆ M | B�−1♦ = B}.
(c) OCext = {A ⊆ G | A�♦−1

= A} and OCint = {B ⊆ M | B♦−1� = B}.

It can be shown that the sets FCext,PCext and OCext form complete lattices
and are isomorphic to the corresponding concept lattices. Analogously, the sets
FCint,PCint and OCint form complete lattices and are dually isomorphic to
the corresponding concept lattices. Therefore, a concept can be identify with
its extent or intent. The relationship between these two kinds of rough concept
lattices and concept lattices of FCA are investigated in [19]. In particular, the
following theorem is proved.

Theorem 1 [19]. For a context K = (G,M, I) and the complemented context
K

c = (G,M, Ic), the following holds.
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(a) The concept lattice of K is isomorphic to the property oriented concept
lattice of Kc.

(b) The property oriented concept lattice of K is dually isomorphic to the object
oriented concept lattice of K.

(c) The concept lattice of K is dually isomorphic to the object oriented concept
lattice of Kc.

In addition, to deal with the negation of concept, the notions of semiconcepts
and protoconcepts are introduced in [18]. Algebraic studies of these notions led to
the definition of double Boolean algebras and pure double Boolean algebras [18].
These structures have been investigated by many authors [1,9,16,18]. There is
also study of logic corresponding to these algebraic structures [7,8].

The operators used in formal and rough concepts correspond to modalities
used in modal logic [2,6]. In particular, the operator used in FCA is the window
modality (sufficiency operator) [6] and those used in RST are box (necessity
operator) and diamond (possibility operator) [2]. Furthermore, a context is a two-
sorted structure consisting of a set of objects and a set of properties. Considering
these facts, our goal in this work is to formulate two-sorted modal logics that are
sound and complete with respect to the class of all contexts and can represent
all the three kinds of concepts and their lattices.

To achieve the goal, we first introduce the notion of two-sorted bidirectional
frame, which is simply a formal context extended with the converse of the binary
relation. Then, we propose two-sorted modal logics KB and KF as represen-
tation formalism for rough and formal concepts respectively, and two-sorted
bidirectional frames serve as semantic models of the logics. We also prove the
soundness and completeness of the proposed logics with respect to the semantic
models.

Next, we will review basic definitions and main results of general many-sorted
polyadic modal logic. Then, in Sect. 2.1, we define the logic KB and characterize
the pairs of formula that represent property and object oriented concepts of
context. The logic KF and formal concept are discussed in Sect. 2.2. We revisit
the three concept lattices and their relations in terms of logic in Sect. 3. Finally,
we summarize the paper and indicate directions of future work in Sect. 4.

1.1 Many-Sorted Polyadic Modal Logic

The many-sorted polyadic modal logic is introduced in [12]. The alphabet of
the logic consists of a many-sorted signature (S,Σ), where S is the collection of
sorts and Σ is the set of modalities, and an S-indexed family P := {Ps}s∈S of
propositional variables, where Ps �= ∅ and Ps ∩ Pt = ∅ for distinct s, t ∈ S. Each
modality σ ∈ Σ is associated with an arity s1s2 . . . sn → s. For any n ∈ N, we
denote Σs1s2...sns = {σ ∈ Σ | σ : s1s2 . . . sn → s}

For an (S,Σ)-modal language MLS , the set of formulas is an S-index family
FmS := {Fms | s ∈ S}, defined inductively for each s ∈ S by

φs ::= ps | ¬φs | φs ∧ φs | σ(φs1 . . . φsn
) | σ�(φs1 . . . φsn

),
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where ps ∈ Ps and σ ∈ Σs1s2...sns.
A many-sorted relational frame is a pair F := ({Ws}s∈S , {Rσ}σ∈Σ) where

Ws �= ∅, Wsi
∩ Wsj

= ∅ for s, si �= sj ∈ S and Rσ ⊆ Ws × Ws1 . . . × Wsn
if

σ ∈ Σs1s2...s. The class of all many-sorted relational frames is denoted as SRF.
A valuation v is an S-indexed family of maps {vs}s∈S , where vs : Ps → P(Ws).
A many-sorted model M := (F, v) consists of a many-sorted frame F and a
valuation v. The satisfaction of a formula in a model M is defined inductively
as follows.

Definition 1. Let M := ({Ws}s∈S , {Rσ}σ∈Σ , v) be a many-sorted model, w ∈
Ws and φ ∈ Fms for s ∈ S. We define M, w |=s φ by induction over φ as follows:

1. M, w |=s p iff w ∈ vs(p)
2. M, w |=s ¬φ iff M, w �|=s φ
3. M, w |=s φ1 ∧ φ2 iff M, w |=s φ1 and M, w |=s φ2

4. If σ ∈ Σs1s2...s, then M, w |=s σ(φ1, φ2 . . . φn) iff there is (w1, w2 . . . wn) ∈
Ws1 × Ws2 . . . Wsn

such that (w,w1, w2 . . . wn) ∈ Rσ and M, wi |=si
φi for

every i ∈ {1, 2 . . . n}
5. If σ� ∈ Σs1s2...sns, then M, w |=s σ�(φ1, φ2 . . . φn) iff for all (w1, w2 . . . wn) ∈

Ws1×Ws2 . . . Wsn
such that (w,w1, w2 . . . wn) ∈ Rσ implies that M, wi |=si

φi

for some i ∈ {1, 2 . . . n}
Definition 2 [12]. Let M be an (S,Σ)-model. Then, for a set Φs of formula,
M, w |=s Φs if M, w |=s φ for all φ ∈ Φs.

Let C be a class of models. Then, for a set Φs ∪ {φ} ⊆ Fms, φ is a local
semantic consequence of Φs over C and denoted as Φs |=C

s φ if M, w |=s Φs

implies M, w |=s φ for all models M ∈ C. If C is the class of all models, we omit
the superscript and denote it as Φs |=s φ.

If Φs is empty, we say φ is valid in C and denoted it as C |=s φ. When C is
the class of all models based on a given frame F, we also denote it by F |=s φ.

To characterize the local semantic consequence, the modal system K(S,Σ) :=
{Ks}s∈S is proposed in [12], where Ks is the axiomatic system in Fig. 1 in which
σ ∈ Σs1...sn,s:

When the signature is clear from the context, the subscripts may be omitted
and we simply write the system as K.

Definition 3 [12]. Let Λ ⊆ FmS be an S-sorted set of formulas. The normal
modal logic defined by Λ is KΛ := {KΛs}s∈S where KΛs := Ks∪{λ′ ∈ Fms | λ′

is obtained by uniform substitution applied to a formula λ ∈ Λs}.

Definition 4 [12]. A sequence of formulas φ1, φ2, . . . φn is called a KΛ-proof for
the formula φ if φn = φ and φi is in KΛsi

or inferred from φ1, . . . , φi−1 using
modus pones and universal generalization. If φ has a proof in KΛ, we say that φ
is a theorem and write �KΛ

s φ. Let Φ∪{φ} ⊆ Fms be a set of formulas. Then, we
say that φ is provable form Φ, denoted by Φ �KΛ

s φ, if there exist φ1, . . . , φn ∈ Φ
such that �KΛ

s (φ1 ∧ . . . ∧ φn) → φ. In addition, the set Φ is KΛ-inconsistent if
⊥ is provable from it, otherwise it is KΛ-consistent.
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1. Axioms
(a) (PL): All propositional tautologies of sort s.
(b) (Ki

σ): σ�(φs1 , . . . φsi → ψsi , . . . φsn) →
((σ�(φs1 , . . . φsi , . . . φsn) → σ�(φs1 , . . . ψsi , . . . φsn))

(c) (Dualσ): σ(φs1 , . . . φsn) ↔ ¬σ�(¬φs1, . . . , ¬φsn)
2. Inference rules:

(a) (MP)s:
φs, φs → ψs

ψs

(b) (UGi
σ):

φsi

σ�(φs1 , . . . φsi , . . . φsn)

Fig. 1. The axiomatic system Ks

Proposition 2 [12]. KΛ is strongly complete with respect to a class of models
C if and only if any consistent set Γ of formulas is satisfied in some model from
C.

Definition 5 [12]. The canonical model is

MKΛ := ({WKΛ
s }s∈S , {RKΛ

σ }σ∈Σ , V KΛ)

where

(a) for any s ∈ S, WKΛ
s = {Φ ⊆ Fms | Φ is maximally KΛ-consistent},

(b) for any σ ∈ Σs1...sn,s, w ∈ WKΛ
s , u1 ∈ WKΛ

s1
, . . . un ∈ WKΛ

sn
, RKΛ

σ wu1 . . . un

if and only if (ψ1, . . . , ψn) ∈ u1×u2×. . .×un implies that σ(ψ1, . . . , ψn) ∈ w.
(c) V KΛ = {V KΛ

s } is the valuation defined by V KΛ
s (p) = {w ∈ WKΛ

s | p ∈ w}
for any s ∈ S and p ∈ Ps.

Lemma 1 [12]. If s ∈ S, φ ∈ Fms, σ ∈ Σs1...sn,s and w ∈ WKΛ
s then the

following hold:

(a) RKΛ
σ wu1 . . . un if and only if for any formulas ψ1, . . . , ψn, σ�(ψ1, . . . , ψn) ∈ w

implies ψi ∈ ui for some i ∈ {1, 2, . . . , n}.
(b) If σ(ψ1, . . . , ψn) ∈ w then for any i ∈ {1, 2 . . . , n} there is ui ∈ WKΛ

si
such

that ψ1 ∈ u1, . . . , ψn ∈ un and RKΛ
σ wu1 . . . un.

(c) MKΛ, w |=s φ if and only if φ ∈ w.

Proposition 3 [12]. If Φs is a KΛ-consistent set of formulas then it is satisfied
in the canonical model.

These results implies the soundness and completeness of K directly.

Theorem 2. K is sound and strongly complete with respect to the class of all
(S,Σ)-models, that is, for any s ∈ S, φ ∈ Fms and Φs ⊆ Fms, Φs �K

s φ if and
only if Φs |=s φ.
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2 Two-Sorted Modal Logic and Concept Lattices

In this section, we present the logics KB and KF and discuss their relationship
with rough and formal concepts.

2.1 Two-Sorted Modal Logic and Concept Lattices in Rough Set
Theory

Let us consider a special kind of two-sorted signature ({s1, s2}, Σ) where Σ =
Σ1  Σ2 is the direct sum of two sets of unary modalities such that Σ1 = Σs1s2

and Σ2 = Σs2s1 = Σ−1
1 := {σ−1 : σ ∈ Σ1}. We say that the signature is

bidirectional. Modal languages built over bidirectional signatures are interpreted
in bidirectional frames.

Definition 6. For the signature above, a two-sorted bidirectional frame is a
quadruple :

F2 := (W1,W2, {Rσ}σ∈Σ1 , {Rσ−1}σ∈Σ1)

where W1,W2 are non-empty disjoint sets and Rσ ⊆ W2 × W1, Rσ−1 is the
converse of Rσ. The class of all two-sorted bidirectional frame is denoted as
BSFR2.

The logic system KB for two-sorted bidirectional frames is define as KΛ
where Λ consists of the following axioms:

(B) p → (σ−1)�σp and q → σ�σ−1q where p ∈ Ps1 and q ∈ Ps2 .

Theorem 3. KB is sound with respect to class BSFR2 of all two-sorted bidi-
rectional frame.

Proof. The proof is straightforward. Here we give the proof for the axiom p →
(σ−1)�σp. Let M be a model based on the frame F2 defined above and M, w1 |=s1

p for some w1 ∈ W1. Now, for any w2 ∈ W2 such that Rσ−1w1w2, we have
M, w2 |=s2 σp because Rσw2w1 follows from the converse of relation. This leads
to M, w1 |=s1 (σ−1)�σp immediately.

The completeness theorem is proved using the canonical model of KB, which
is an instance of that constructed in Definition 5. Hence,

MKB := ({WKB
s1

,WKB
s2

}, {RKB
σ , RKB

σ−1}σ∈Σ , V KB)

It is easy to see that the model satisfies the following properties for x ∈ WKB
s1

and y ∈ WKB
s2

:

(a) RKB
σ yx iff φ ∈ x implies that σφ ∈ y for any φ ∈ Fms1 .

(b) RKB
σ−1xy iff φ ∈ y implies that σ−1φ ∈ x for any φ ∈ Fms2 .
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Theorem 4. KB is strongly complete with respect to class of all two-sorted
bidirectional models, that is for any s ∈ {s1, s2}, φ ∈ Fms and Φs ⊆ Fms,
Φs |=BSFR2

s φ implies that Φs �KB
s φ.

Proof. It is sufficient to show that the canonical model is a bidirectional frame.
Then, the result follows from Propositions 2 and 3. Let x ∈ WKB

s1
and y ∈ WKB

s2

and assume (y, x) ∈ RKB
σ . Then, for any φ ∈ y, we have σ�σ−1φ ∈ y by axiom

(B), which in turns implies σ−1φ ∈ x by Lemma 1. Hence, (x, y) ∈ RKB
σ−1 by

property (b) of the canonical model. Analogously, we can show that (x, y) ∈ RKB
σ−1

implies (y, x) ∈ RKB
σ . That is, RKB

σ−1 is indeed the converse of RKB
σ .

To represent rough concepts, we consider a particular bidirectional signa-
ture ({s1, s2}, {♦,♦−1}) (i.e. the signature that Σ1 is a singleton containing the
modality ♦). As usual, we denote the dual modalities of ♦ and ♦−1 by � and
�−1 respectively. Let SF2 denote the class of all bidirectional frames over the
signature and let K be the set of all contexts. Then, there is a bijective corre-
spondence between K and SF2 given by (G,M, I) �→ (G,M, I−1, I). Note that
I−1 and I respectively correspond to modalities ♦ and ♦−1 under the mapping.
We use Fm(RS) := {Fm(RS)s1 , Fm(RS)s2} and KB2 to denote the indexed
family of formulas and its logic system over the particular signature respectively.
By Theorems 3 and 4, KB2 is sound and complete with respect to the class SF2

and hence K.

Example 1. In a typical application of FCA to association rule mining, a formal
context can represent transaction data, where G is the set of customers of all
ages groups and M is the set of items. In such a scenario, for the bidirectional
frame (G,M, I−1, I), g ∈ G, and m ∈ M , gIm means that the customer g has
bought the item m. Let M = (G,M, I−1, I, v) be a model based on the frame,
φ ∈ Fm(RS)s1 and v1(φ) represent the group of customers of 30 to 50 age group,
ψ ∈ Fm(RS)s2 and v2(ψ) represent the item set of electronic products. Then,
the formulas �φ and �−1ψ in the model M may be interpreted as follows.

– For g ∈ G, M, g |=s2 �−1ψ means that all items bought by g are in the item
set v2(ψ), or the customer g only buys electronic products.

– For m ∈ M , M,m |=s2 �φ means that all customers buying m are in the 30
to 50 age group.

Let us denote the truth set of a formula φ ∈ Fm(RS)si
(i = 1, 2) in a model M

by [[φ]]M := {w ∈ Wi | M, w |=si
φ}. We usually omit the subscript and simply

write [[φ]].

Proposition 4. Let K := (G,M, I) be a context and M := (G,M, I−1, I, v)
be a model based on its corresponding frame. Then, the relationship between
approximation operators and modal formulas is as follows:

(i) [[φ]]♦ = [[♦φ]] and [[φ]]� = [[�φ]] for φ ∈ Fm(RS)s1 .
(ii) [[φ]]♦

−1
= [[♦−1φ]] and [[φ]]�

−1
= [[�−1φ]] for φ ∈ Fm(RS)s2 .
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Definition 7. Let C := {(G,M, I−1, I)} be a frame based on the context K =
(G,M, I). Then, we define

(a) FmPCext
:= {φ ∈ Fm(RS)s1 | |=C

s1
�−1♦φ ↔ φ} and FmPCint

:= {φ ∈
Fm(RS)s2 | |=C

s2
♦�−1φ ↔ φ}

(b) FmOCext
:= {φ ∈ Fm(RS)s1 | |=C

s1
♦−1�φ ↔ φ} and FmOCint

:= {φ ∈
Fm(RS)s2 | |=C

s2
�♦−1φ ↔ φ}

(c) FmPC := {(φ, ψ) | φ ∈ FmPCext
, ψ ∈ FmPCint

, |=C
s1

φ ↔ �−1ψ, |=C
s2

♦φ ↔
ψ}

(d) FmOC := {(φ, ψ) | φ ∈ FmOCext
, ψ ∈ FmOCint

, |=C
s1

φ ↔ ♦−1ψ, |=C
s2

�φ ↔
ψ}
Obviously, when (φ, ψ) ∈ FmPC , ([[φ]], [[ψ]]) ∈ PC for any models based

on C. Hence, FmPC consists of pairs of formulas representing property oriented
concepts. Analogously, FmOC provides the representation of object oriented
concepts. Note that these sets are implicitly parameterized by the underlying
context and should be indexed with K. However, for simplicity, we usually omit
the index.

2.2 Two Sorted Modal Logic and Concept Lattice in Formal
Concept Analysis

To represent formal concepts, we consider another two-sorted bidirectional sig-
nature ({s1, s2}, {�,�−1}}), where Σs1s2 = {�} and Σs2s1 = {�−1}, and the
logic KF based on it. Syntactically, the signature is the same as that for KB2

except we use different symbols to denote the modalities. Hence, formation rules
of formulas remain unchanged and we denote the indexed family of formulas by
Fm(KF) = {Fm(KF)s1 , Fm(KF)s2}. In addition, while both KF and KB2

are interpreted in bidirectional models, the main difference between them is on
the way of their modalities being interpreted.

Definition 8. Let M := (W1,W2, R,R−1, v). Then,

(a) For φ ∈ Fm(KF)s1 and w ∈ W2, M, w |=s2 �φ iff for any w′ ∈ W1,
M, w′ |=s1 φ implies R(w,w′)

(b) For φ ∈ Fm(KF)s2 and w ∈ W1, M, w |=s1 �−1φ iff for any w′ ∈ W2,
M, w′ |=s2 φ implies R−1(w,w′)

Example 2. Continuing with Example 1, let φ ∈ Fm(KF)s1 , ψ ∈ Fm(KF)s2 ,
v1(φ), and v2(ψ) remain unchanged. Then, the intuitive meanings of the formulas
�φ and �−1ψ are as follows:

– For g ∈ G, M, g |=s1 �−1ψ, g buys all electronic products.
– For m ∈ M , M,m |=s2 �φ, all customers in the 30 to 50 age group v1(φ) buy

m.

The logic system KF := {KFs1 ,KFs2} is shown in Fig. 2.
We define a translation ρ : Fm(KF) → Fm(RS) where ρ = {ρ1, ρ2} is

defined as follows:
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1. Axioms:
(PL) Propositional tautologies of sort si for i = 1, 2.
(K1

�) �(φ1 ∧ ¬φ2) → (�¬φ1 → �¬φ2) for φ1, φ2 ∈ Fm(KF)s1
(B1) φ → �−1 � φ for φ ∈ Fm(KF)s1

(K2
�−1) �−1(ψ1 ∧ ¬ψ2) → (�−1¬ψ1 → �−1¬ψ2) for ψ1, ψ2 ∈

Fm(KF)s2
(B2) ψ → � �−1 ψ for ψ ∈ Fm(KF)s2

2. Inference rules:
– (MP )s: for s ∈ {s1, s2} and φ, ψ ∈ Fms

φ, φ → ψ

ψ

– (UG1
�): for φ ∈ Fm(KF)s1 ,

¬φ

�φ

– (UG2
�−1): for ψ ∈ Fm(KF)s2 ,

¬ψ

�−1ψ

Fig. 2. The axiomatic system KF

1. ρi(p) := p for all p ∈ Psi
for i = 1, 2.

2. ρi(φ ∧ ψ) := ρi(φ) ∧ ρi(ψ) for φ, ψ ∈ Fm(KF)si
, i = 1, 2.

3. ρi(¬φ) := ¬ρi(φ) for φ ∈ Fm(KF)si
, i = 1, 2.

4. ρ1(�φ) := �¬ρ1(φ) for φ ∈ FmKFs1
.

5. ρ2(�−1φ) := �−1¬ρ2(φ) for φ ∈ FmKFs2
.

Theorem 5. For any formula φ ∈ FmKFsi(i = 1, 2) the following hold.

(a) Φ �KF φ if and only if ρ(Φ) �KB2 ρ(φ) for any Φ ⊆ FmKFsi
.

(b) Let M := (W1,W2, I, I−1, v) be a model and Mc := (W1,W2, I
c, (I−1)c, v)

be the corresponding complemented model, w ∈ Wi,M, w |=si
φ if and only

if Mc, w |=si
ρ(φ) for all i = 1, 2.

(c) φ is valid in the class SF2 if and only if ρ(φ) is valid in SF2.

Proof. (a). We can prove it by showing that φ is an axiom in KF if and only if
ρ(φ) is an axiom in KB2, and for each rule in KF, there is a translation of
it in KB2 and vice verse.

(b). By induction on the complexity of formulas, as usual, the proof of basis and
Boolean cases are straightforward. For φ = �ψ, let us assume any w ∈ W2.
Then, by Definition 8, M, w |=s2 �φ iff for all w′ ∈ W1, Icww′ implies that
M, w′ |=s1 ¬ψ. By induction hypothesis, this means that for all w′ ∈ W1,
Icww′ implies that Mc, w′ |=s1 ¬ρ(ψ). That is, Mc, w |=s2 �¬ρ(φ). By
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definition of ρ, this is exactly Mc, w |=s2 ρ(φ). The case of φ = �−1ψ is
proved analogously.

(c). This follows immediately from (b).

Proposition 5. (a). For φ1, φ2 ∈ Fm(KF)s1 ,
φ1 → φ2

�φ2 → �φ1

(b). For φ1, φ2 ∈ Fm(KF)s2 ,
φ1 → φ2

�−1φ2 → �−1φ1

Proof. We only prove (a) and the proof of (b) is similar.

�KFφ1 → φ2

�KB2ρ(φ1) → ρ(φ2)(Theorem 5 (a))

�KB2(ρ(φ1) → ρ(φ2)) → (¬ρ(φ2) → ¬ρ(φ1))(PL)

�KB2¬ρ(φ2) → ¬ρ(φ1)(MP)

�KB2�(¬ρ(φ2) → ¬ρ(φ1))(UG)

�KB2�(¬ρ(φ2) → ¬ρ(φ1)) → (�¬ρ(φ2) → �¬ρ(φ1))(K)

�KB2�¬ρ(φ2) → �¬ρ(φ1)(MP)

�KF � φ2 → �φ1(Theorem 5(a))

Theorem 6. KF is sound and strongly complete with respect to the class SF2.

Proof. This follows from Theorem 5 and the fact that KB2 is sound and strongly
complete with respect to SF2.

Proposition 6. Recalling the definition of truth set, we have

(i) [[�φ]] = [[φ]]+ for φ ∈ Fm(KF)s1

(ii) [[�−1φ]] = [[φ]]− for φ ∈ Fm(KF)s2 .

Definition 9. Let C := {(G,M, I−1, I)} be a frame based on the context
(G,M, I). Then, we define

(a) FmFCext
:= {φ ∈ Fm(KF)s1 | |=C

s1
�−1 � φ ↔ φ} and FmFCint

:= {φ ∈
Fm(KF)s2 | |=C

s2
� �−1 φ ↔ φ}

(b) FmFC := {(φ, ψ) | φ ∈ FmPCext
, ψ ∈ FmPCint

, |=C
s1

φ ↔ �−1ψ, |=C
s2

�φ ↔
ψ}
In other words, the set FmFC represents formal concepts induced from the

context (G,M, I).
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3 Logical Representation of Three Concept Lattices

We have seen that a certain pairs of formulas in the logic KF and KB2 can
represent concepts in FCA and RST respectively. The observation suggests the
definition below.

Definition 10. Let φ ∈ Fm(RS)s1 , ψ ∈ Fm(RS)s2 , η ∈ Fm(KF)s1 , and
γ ∈ Fm(KF)s2 . Then, for a context (G,M, I), we say that

(a) (φ, ψ) is a (logical) property oriented concept of K if (φ, ψ) ∈ FmPC .
(b) (φ, ψ) is a (logical) object oriented concept of K if (φ, ψ) ∈ FmOC .
(c) (η, γ) is a (logical) formal concept of K if (η, γ) ∈ FmFC .

We now explore the relationships between the three notions and their prop-
erties. In what follows, for a context K = (G,M, I), we usually use C0 :=
{(G,M, I−1, I)} and C1 := {(G,M, (Ic)−1), Ic} to denote frames correspond-
ing to K and K

c respectively.

Proposition 7. Let K := (G,M, I) be a context. Then,

(a) (φ, ψ) is a property oriented concept of K iff (¬φ,¬ψ) is an object oriented
concept of Kc for φ ∈ Fm(RS)s1 and ψ ∈ Fm(RS)s2 .

(b) (φ, ψ) is a formal concept of K iff (ρ(φ),¬ρ(ψ)) is a property oriented concept
of Kc for φ ∈ Fm(KF)s1 and ψ ∈ Fm(KF)s2 .

(c) (φ, ψ) is a formal concept of K iff (¬ρ(φ), ρ(ψ)) is an object oriented concept
of Kc for φ ∈ Fm(KF)s1 and ψ ∈ Fm(KF)s2 ..

Proof. (a) Suppose that (φ, ψ) is a property oriented concept of K, then by
definition, |=C0

s1
�−1♦φ ↔ φ, |=C0

s2
♦�−1ψ ↔ ψ, |=C0

s1
φ ↔ �−1ψ, and |=C0

s2

♦φ ↔ ψ. Hence, we have the following derivation,

|=C0
s1

�−1♦φ ↔ φ

|=C0
s1

(�−1♦φ ↔ φ) ↔ (¬φ ↔ ¬�−1♦φ)

|=C0
s1

¬φ ↔ ¬�−1♦φ

|=C0
s1

¬φ ↔ ♦−1�¬φ

Therefore, ¬φ ∈ FmPCext
. Similarly, by |=C0

s2
♦�−1ψ ↔ ψ, contraposition

and modus ponens, we can show that ¬ψ ∈ FmPCint
.

Using |=C0
s1

φ ↔ �−1ψ , |=C0
s2

♦φ ↔ ψ, contraposition and modus ponens , we
can show that (¬φ,¬ψ) ∈ FmOC .
We can also prove the converse direction by replacing φ, ψ, ♦, � with ¬φ,
¬ψ, �, ♦ respectively.

(b) Because (φ, ψ) is a formal concept, we have |=C0
s1

�−1 � φ ↔ φ, |=C0
s2

� �−1

ψ ↔ ψ, |=C0
s1

φ ↔ �−1ψ, and |=C0
s2

�φ ↔ ψ. By |=C0
s1

�−1 � φ ↔ φ
and Theorem 5 (a), we have |=C1

s1
ρ(�−1 � φ) ↔ ρ(φ) which implies that

|=C1
s1

�−1♦ρ(φ) ↔ ρ(φ). By |=C0
s2

� �−1 ψ ↔ ψ and Theorem 5 (a), we have
|=C1

s2
�¬�−1¬ρ(ψ) ↔ ρ(ψ), which implies that |=C1

s2
♦�−1¬ρ(ψ) ↔ ¬ρ(ψ).
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Similarly, we can show that |=C1
s1

ρ(φ) ↔ �−1¬ρ(ψ) , |=C1
s2

♦ρ(φ) ↔ ¬ρ(ψ).
Therefore, (ρ(φ), ρ(ψ)) is a property oriented concept for (G,M, Ic). The
proof for the converse direction is similar.

(c) It follows from (a) and (b) immediately.

Now, we can define a relation ≡1 on the set FmPC as follows: For
(φ, ψ), (φ′, ψ′) ∈ FmPC , (φ, ψ) ≡1 (φ′, ψ′) if and only if |=C0 φ ↔ φ′.

Analogously, we can define ≡2 and ≡3 on the set FmOC and FmFC , respec-
tively. Obviously, ≡1,≡2 and ≡3 are all equivalence relations. Let FmPC/ ≡1,
FmOC/ ≡2, and FmFC/ ≡3 be the sets of equivalence classes.

Proposition 8. For (φ, ψ), (φ′, ψ′) ∈ FmX , (φ, ψ) ≡i (φ′, ψ′) iff |=C0 ψ ↔ ψ′,
where i ∈ {1, 2, 3} for X ∈ {PC,OC,FC} respectively.

Proof. Let us prove the case of FC as an example. Suppose (φ, ψ), (φ′, ψ′) ∈
FmFC and (φ, ψ) ≡3 (φ′, ψ′). Then, |=C0

s1
φ ↔ φ′, which implies |=C0

s2
�φ ↔ �φ′

according to the semantics of KF. In addition, by definition of FmFC , |=C0
s2

�φ ↔ ψ, and |=C0
s2

�φ′ ↔ ψ′. Hence, |=C0
s2

ψ ↔ ψ′.
Proofs for other two cases are similar.

Proposition 9. Let X ∈ {PCext, OCext, FCext} and Y ∈ {PCint, OCint,
FCint}. Then,

(a) FmX and FmY are closed under conjunction.
(b) If φ ∈ FmX and ψ ∈ FmY , then ◦φ ∈ FmY and ◦−1ψ ∈ FmX , where ◦ ∈

{�,�,♦} depending on X and Y according to their respective definitions.

Proof. (a). We prove the case of FmFCext
as an example and other cases can be

proved in a similar way. Let φ, φ′ ∈ FmFCext
. Then, |=C0

s1
�−1 � φ ↔ φ and

|=C0
s1

�−1 �φ′ ↔ φ′. By using the translation ρ and Theorem 5, we have both
|=C0

s1
�−1 � (φ ∧ φ′) → �−1 � φ and |=C0

s1
�−1 � (φ ∧ φ′) → �−1 � φ′. Hence,

we can derive |=C0
s1

�−1 � (φ ∧ φ′) → (φ ∧ φ′). Also, with the translation, we
have |=C0

s1
(φ ∧ φ′) → �−1 � (φ ∧ φ′) because the formula is mapped to an

instance of axiom (B). Hence, φ ∧ φ′ ∈ FmFCext
.

(b). Let us prove the case of φ ∈ FmFCext
as an example. Assume that φ ∈

FmFCext
and ◦ = �. Then, according to the semantics of �, |=C0

s1
�−1 �

φ ↔ φ implies |=C0
s1

� �−1 �φ ↔ �φ. Hence �φ ∈ FmFCint
. Similarly, if

ψ ∈ FmFCint
, then �−1ψ ∈ FmFCext

.

From the proposition, we can derive the following corollary immediately.

Corollary 1. (a) (φ1, ψ1), (φ2, ψ2) ∈ FmPC implies that (φ1 ∧ φ2,♦(φ1 ∧ φ2))
and (�−1(ψ1 ∧ ψ2), ψ1 ∧ ψ2) ∈ FmPC .

(b) (φ1, ψ1), (φ2, ψ2) ∈ FmOC implies that (φ1 ∧ φ2,�(φ1 ∧ φ2)) and (♦−1(ψ1 ∧
ψ2), ψ1 ∧ ψ2) ∈ FmOC .

(c) (φ1, ψ1), (φ2, ψ2) ∈ FmFC implies that (φ1 ∧φ2,�(φ1 ∧φ2)) and (�−1(ψ1 ∧
ψ2), ψ1 ∧ ψ2) ∈ FmFC .
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Now we can define the following structures:
(FmPC/ ≡1,∨1,∧1), where [(φ, ψ)], [(φ′, ψ′)] ∈ FmPC/ ≡1,

[(φ, ψ)] ∧1 [(φ′, ψ′)] := [(φ ∧ φ′,♦(φ ∧ φ′))]

[(φ, ψ)] ∨1 [(φ′, ψ′)] := [(�−1(ψ ∧ ψ′), (ψ ∧ ψ′))]

(FmOC/ ≡2,∨2,∧2), where [(φ, ψ)], [(φ′, ψ′)] ∈ FmOC/ ≡2,

[(φ, ψ)] ∧2 [(φ′, ψ′)] := [(φ ∧ φ′,�(φ ∧ φ′))]

[(φ, ψ)] ∨2 [(φ′, ψ′)] := [(♦−1(ψ ∧ ψ′), (ψ ∧ ψ′))]

(FmFC/ ≡3,∨3,∧3), where [(φ, ψ)], [(φ′, ψ′)] ∈ FmFC/ ≡3,

[(φ, ψ)] ∧3 [(φ′, ψ′)] := [(φ ∧ φ′,�(φ ∧ φ′))]

[(φ, ψ)] ∨3 [(φ′, ψ′)] := [(�−1(ψ ∧ ψ′), (ψ ∧ ψ′))]

Theorem 7. For a context K, (FmPC/ ≡1,∨1,∧1), (FmOC/ ≡2,∨2,∧2) and
(FmFC/ ≡3,∨3,∧3), are lattices.

Proof. We give proof for the structure (FmFC/ ≡3,∨3,∧3) and the proofs of
other cases are similar. Let (φ, ψ), (φ1, ψ1), (φ′, ψ′), (φ′

1, ψ
′
1) ∈ FmFC such that

(φ, ψ) ≡3 (φ1, ψ1) and (φ′, ψ′) ≡3 (φ′
1, ψ

′
1). By Corollary 1, (φ ∧ φ′,�(φ ∧

φ′)), (�−1(ψ ∧ ψ′), ψ ∧ ψ′), (φ1 ∧ φ′
1,�(φ1 ∧ φ′

1)) and (�−1(ψ1 ∧ ψ′
1), ψ1 ∧ ψ′

1) ∈
FmFC . Now (φ, ψ) ≡3 (φ1, ψ1) and (φ′, ψ′) ≡3 (φ′

1, ψ
′
1) implies that |=C0 φ ↔ φ1

and |=C0 φ′ ↔ φ′
1. By Proposition 8, |=C0 ψ ↔ ψ1 and |=C0 ψ′ ↔ ψ′

1.
|=C0 φ ∧ φ′ ↔ φ1 ∧ φ′

1 and |=C0 ψ ∧ ψ′ ↔ ψ1 ∧ ψ′
1 which implies that

(φ ∧ φ′,�(φ ∧ φ′)) ≡3 (φ1 ∧ φ′
1,�(φ1 ∧ φ′

1)) and (�−1(ψ ∧ ψ′), ψ ∧ ψ′) ≡3

(�−1(ψ1 ∧ ψ′
1), ψ1 ∧ ψ′

1). Hence, ∧3 and ∨3 are well-defined operations. Their
commutativity and associativity follow from the fact that �KF φ∧ψ ↔ ψ∧φ and
�KF (φ∧ψ)∧γ ↔ φ∧(ψ∧γ). Now we will show that for all [(φ1, ψ1)], [(φ2, ψ2)] ∈
FmFC/ ≡3, [(φ1, ψ1)] ∧ ([φ1, ψ1] ∨ [(φ2, ψ2)]) = [(φ1, ψ1)] which is equivalent
to [(φ1 ∧ �−1(ψ1 ∧ ψ2),�(φ1 ∧ �−1(ψ1 ∧ ψ1)))] = [(φ1, ψ1)]. We know that
|=C0 φ1 ∧ �−1(ψ1 ∧ ψ2) → φ1. In addition,

|=C0
s1

φ1 ↔ �−1ψ1 as (φ1, ψ1) ∈ FmFC

|=C0
s2

ψ1 ∧ ψ2 → ψ1

|=C0
s1

�−1ψ1 → �−1(ψ1 ∧ ψ2) by Proposition 5

|=C0
s1

φ1 → �−1(ψ1 ∧ ψ2)

|=C0
s1

φ1 → φ1 ∧ �−1(ψ1 ∧ ψ2)

So |=C0
s1

φ1 ↔ �−1(ψ1∧ψ2) which implies that [(φ1, ψ1)]∧([φ1, ψ1]∨ [(φ2, ψ2)]) =
[(φ1, ψ1)]. Analogously, we can show that [(φ1, ψ1)] ∨ ([φ1, ψ1] ∧ [(φ2, ψ2)]) =
[(φ1, ψ1)]. Hence (FmFC/ ≡3,∨3,∧3) is a lattice.
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Theorem 8. Let K be a context and let Kc be its corresponding complemented
context. Let FmFC be the set of logical formal concepts of K and let FmPC

and FmOC be the sets of logical property oriented concepts and logical object
oriented concepts of Kc respectively. Then,

(a) (FmFC/ ≡3,∨3,∧3) and (FmPC/ ≡1,∨1,∧1) are isomorphic.
(b) (FmPC/ ≡1,∨1,∧1) and (FmOC/ ≡2,∨2,∧2) are dually isomorphic.
(c) (FmFC/ ≡3,∨3,∧3) and (FmOC/ ≡2,∨2,∧2) are dually isomorphic.

Proof. (a) By Proposition 7, the mapping h : FmFC/ ≡3→ FmPC/ ≡1

defined by h([(φ, ψ)]) := [(ρ(φ), ρ(¬ψ))] is well-defined and surjective. Now
h([(φ1, ψ1)]) = h([(φ2, ψ2)]) implies [ρ((φ1), ρ(¬ψ1))] = [(ρ(φ2), ρ(¬ψ2))], which
in turn implies |=C1 ρ(φ1) ↔ ρ(φ2), and by Theorem 5, |=C0 φ1 ↔ φ2. This
means that [(φ1, ψ1)] = [(φ2, ψ2)]. Thus, h is injcetive, and as a result, h is a
bijection. In addition,

h([(φ1, ψ1)] ∧3 [(φ2, ψ2)]) = h([(φ1 ∧ φ2,�(φ1 ∧ φ2))])
= ([ρ(φ1 ∧ φ2), ρ(¬ � (φ1 ∧ φ2))])
= ([ρ(φ1 ∧ φ2),♦ρ(φ1 ∧ φ2)])
= h([(φ1, ψ1)]) ∧1 h([(φ2, ψ2)])

Therefore, h is an isomorphism.
(b) Analogously, we can show that f : FmPC/ ≡1→ FmOC/ ≡1 such that
f([(φ, ψ)]) := [(¬φ,¬ψ)] is a dual isomorphism.
(c) It follows from (a) and (b) immediately.

4 Conclusion and Future Direction

In this paper, we show that concepts based on RST and FCA can be represented
in two dual instances of two-sorted modal logics KB and KF. An interesting
question is how to deal with both kinds of concepts in a single framework. To
address the question, we apparently need a signature including all modalities
in KB and KF together. For that, the Boolean modal logic proposed in [6]
may be helpful. Hence, to investigate many-sorted Boolean modal logic and its
representational power for concepts based on both RST and FCA will be an
important direction in our future work.

As a formal context consists of objects, properties, and a relation between
them, the relationship between objects and properties can change over time.
Hence, to model and analyze the dynamics of contexts is also desirable. Using
two-sorted bidirectional relational frames, we can model contexts at some time.
Therefore, integrating temporal logic with many-sorted modal logic will provide
an approach to model dynamics of contexts. This is another possible direction
for further research.
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Abstract. We check Kryszkiewicz’s approach for rough sets in data
tables containing missing values in terms of Lipski’s approach based
on possible world semantics. The relation for indiscernibility of objects
used by Kryszkiewicz, which most authors use, derives a pair of lower
and upper approximations as the actual approximations to a target set.
This means that Kryszkiewicz’s approach is accompanied by informa-
tion loss because what Lipski’s approach derives is the lower and upper
bounds of the actual approximations. It is clarified that Kryszkiewicz’s
relation for indiscernibility is equal to the union of possible indiscernibil-
ity relations in Lipski’s approach. As a result, the lower and the upper
approximation derived from Kryszkiewicz’s relation are equal to the
lower bound of the actual lower approximation and the upper bound of
the actual upper approximation, respectively. Bridging the gap between
the two approaches, we propose another relation for indiscernibility that
is equal to the intersection of possible indiscernibility relations. By using
Kryszkiewicz’s relation and the proposed relation, Kryszkiewicz’s app-
roach can derive the same approximations as Lipski’s one. Therefore, we
can keep using Kryszkiewicz’s approach without information loss.

Keywords: rough sets · incomplete information · missing values ·
lower and upper approximations · possible world semantics

1 Introduction

The framework of rough sets, proposed by Pawlak [1], is used as an effective tool
in the field of data mining and related topics. In the rough sets lower and upper
approximations, which correspond to inclusion and intersection operations, are
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derived using the indiscernibility of objects. The indiscernibility is expressed by
a relation showing two objects are indiscernible if the values characterizing the
objects are equal.

Pawlak’s framework is constructed under data tables containing only com-
plete information. As a matter of fact, it is well-known that real data tables
usually contain incomplete information [2,3]. This leads to that Kryszkiewicz
[4,5] deals with missing values.

Kryszkiewicz extended the relation of indiscernibility so that we can deal with
the indiscernibility of objects in data tables containing missing values, which is
called Kryszkiewicz’s approach. It is very attractive to use this approach because
the indiscernibility of objects characterized by missing values can be handled by
a relation. So most authors use Kryszkiewicz’s approach [5–15] and its extended
versions are proposed [7,14,16–18].

These studies using Kryszkiewicz’s approach, however, have two drawbacks.
One is that information loss occurs [19,20]. This leads to poor approximations
[14,19]. The other is that these have a common characteristic of deriving a
pair of lower and upper approximations to a target set of objects in spite of
dealing with missing values. This is incompatible with Lipski’s approach based on
possible world semantics. Lipski showed the limitation of obtaining information
granules from data tables with incomplete information [21]. According to Lipski,
we cannot obtain the actual answer but can have nothing to obtain the lower
and upper bounds of the actual answer. This is true for rough sets under data
tables containing missing values. In other words, what we obtain is the lower
and upper bounds of the actual lower approximation and the lower and upper
bounds of the actual upper approximation.

We check Kryszkiewicz’s relation and lower and upper approximations
derived from the relation from the viewpoint of possible world semantics. Our
aim is to clarify the relationship between Kryszkiewicz’s approach and Lipski’s
approach and to find out the way that we can keep using Kryszkiewicz’s approach
without information loss.

The paper is organized as follows. In Sect. 2, the traditional approach of
Pawlak is briefly addressed under a complete information table. In Sect. 3, we
apply Lipski’s approach to rough sets under an incomplete information table.
The lower and upper bounds of lower and upper approximations are shown.
In Sect. 4, we check approximations derived from Kryszkiewicz’s relation. It is
shown that information loss occurs and poor approximations are derived. In
Sect. 5, we clarify the relationship between Kryszkiewicz’s approach and Lip-
ski’s approach. As a result, it is obtained that the lower approximation of
Kryszkiewicz’s approach is equal to the lower bound of the actual lower approxi-
mation while the upper approximation is equal to the upper bound of the actual
upper approximation. Finally, it is clarified how to make Kryszkiewicz’s app-
roach compatible with Lipski’s approach. In Sect. 6, we address conclusions.
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2 Pawlak’s Approach

A data set is a set of objects that is concretely represented as a two-dimensional
information table, where each row represents properties of an object and each
column denotes a property called an attribute. Pawlak dealt with a complete
information table with no incomplete information. Complete information table
CT consists of (U,AT,∪a∈ATVa), where U is a non-empty finite set of objects
called the universe and AT is a non-empty finite set of attributes such that
∀a ∈ AT : U → Va, and set Va is called the domain of attribute a:

CT = {o ∈ U | ∀a ∈ AT ∃v ∈ Va a(o) = v}, (1)

where a(o) is the value of attribute a for o. Binary relation IA for indiscernibility
of objects in U on subset A ⊆ AT of attributes is:

IA = {(o, o′) ∈ U × U | ∀a ∈ A a(o) = a(o′)}. (2)

This relation, called an indiscernibility relation, is reflexive, symmetric, and
transitive. From the indiscernibility relation, equivalence class E(o)A (= {o′ |
(o, o′) ∈ IA}) containing object o is obtained. This is also the set of objects
that is indiscernible with object o, called the indiscernible class containing o on
A. Family FEA of equivalence classes on A is derived from the indiscernibility
relation:

FEA = ∪o∈U{E(o)A}. (3)

The objects are uniquely partitioned using the family. Lower approximation
apr(T )A and upper approximation apr(T )A of target set T of objects by FEA

are:

apr(T )A = {o ∈ U | E(o)A ⊆ T}, (4)
apr(T )A = {o ∈ U | E(o)A ∩ T 	= ∅}. (5)

Example 1
Let complete information table CT be obtained as follows:

CT
O a1 a2 a3
1 y v b
2 y v c
3 x u c
4 x v c
5 y w b

In information table CT , U = {o1, o2, o3, o4, o5}. Domains Va1 , Va2 , and Va3 of
attributes a1, a2, and a3 are {x, y}, {u, v, w}, and {b, c}, respectively. Indiscerni-
bility relation Ia1 on a1 is:

Ia1 = {(o1, o1), (o1, o2), (o1, o5), (o2, o1), (o2, o2), (o2, o5), (o3, o3), (o3, o4), (o4, o3),
(o4, o4), (o5, o1), (o5, o2), (o5, o5)}.
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Equivalence classes containing each object on a1 are:

E(o1)a1 = E(o2)a1 = E(o5)a1 = {o1, o2, o5},
E(o3)a1 = E(o4)a1 = {o3, o4}.

Family FEa1 of equivalence classes on a1 is:

FEa1 = {{o1, o2, o5}, {o3, o4}}.
Let target set T be {o2, o3, o4} that is specified by constraint a3 = c. Lower
approximation apr(T )a1 and upper approximation apr(T )a1 by FEa1 are:

apr(T )a1 = {o3, o4},
apr(T )a1 = {o1, o2, o3, o4, o5}.

3 Lipski’s Approach

Lipski [21] derived the set of possible tables from an information table contain-
ing missing values by using possible world semantics. He showed the lower and
the upper bound of the actual result by aggregating results obtained from the
possible tables. We call this series of procedures Lipski’s approach.

Following in Lipski’s footsteps, we first obtain the set of possible tables from
an incomplete information table. Second, we apply the ways addressed in the
previous section to each possible table. Third, the results from the possible tables
are aggregated using intersection and union operations.

3.1 Possible Tables and Possible Indiscernibility Relations

Possible table ptA on set A of attributes is a table in which each missing value
for every attribute a ∈ A in incomplete information table IT is replaced with
value v ∈ Va.

ptA = {o ∈ U | ∀a ∈ A∃v ∈ Va apt(o) = v ∧ ∀a 	∈ A apt(o) = aIT (o)}, (6)

where apt(o) and aIT (o) are the values of a for o in possible table pt and in
incomplete information table IT , respectively. When missing values exist on set
A of attributes in incomplete information table IT , set PTA of possible tables
on A is:

PTA = {ptA,1, . . . , ptA,n}, (7)

where every possible table ptA,i has an equal possibility that it is actual, number
n of possible tables is equal to Πa∈A|Va|ma , the number of missing values is ma

on attribute a, and |Va| is the cardinality of domain Va.
Attribute a ∈ A has a value in Va in all possible tables on A. Possible

indiscernibility relation PIA,i is derived from possible table ptA,i.

PIA,i = {(o, o′) ∈ U × U | ∀a ∈ A a(o)i = a(o′)i}, (8)

where a(o)i is the value of attribute a for o in ptA,i.
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Example 2
Let incomplete information table IT be obtained as follows:

IT
O a1 a2 a3
1 x u b
2 y v b
3 x ∗ c
4 ∗ u b
5 ∗ v c
6 y u c
7 y v c

In information table IT , universe U is {o1, o2, o3, o4, o5, o6, o7} and domains Va1 ,
Va2 , and Va3 of attributes a1, a2, and a3 are the same as CT in Example 1.
We obtain twelve (= 2 × 2 × 3) possible tables pt{a1,a2},1, . . ., pt{a1,a2},12 from
IT on {a1, a2} because missing value ∗ on attribute a1 of objects o4 and o5 is
replaced by one of domain elements x and y of attribute a1 and missing value ∗
on attribute a2 of object o3 is replaced by one of domain elements u, v and w of
attribute a2.

pt{a1,a2},1
O a1 a2 a3
1 x u b
2 y v b
3 x u c
4 x u b
5 x v c
6 y u c
7 y v c

pt{a1,a2},2
O a1 a2 a3
1 x u b
2 y v b
3 x v c
4 x u b
5 x v c
6 y u c
7 y v c

pt{a1,a2},3
O a1 a2 a3
1 x u b
2 y v b
3 x w c
4 x u b
5 x v c
6 y u c
7 y v c

pt{a1,a2},4
O a1 a2 a3
1 x u b
2 y v b
3 x u c
4 x u b
5 y v c
6 y u c
7 y v c

pt{a1,a2},5
O a1 a2 a3
1 x u b
2 y v b
3 x v c
4 x u b
5 y v c
6 y u c
7 y v c

pt{a1,a2},6
O a1 a2 a3
1 x u b
2 y v b
3 x w c
4 x u b
5 y v c
6 y u c
7 y v c

pt{a1,a2},7
O a1 a2 a3
1 x u b
2 y v b
3 x u c
4 y u b
5 x v c
6 y u c
7 y v c

pt{a1,a2},8
O a1 a2 a3
1 x u b
2 y v b
3 x v c
4 y u b
5 x v c
6 y u c
7 y v c

pt{a1,a2},9
O a1 a2 a3
1 x u b
2 y v b
3 x w c
4 y u b
5 x v c
6 y u c
7 y v c

pt{a1,a2},10
O a1 a2 a3
1 x u b
2 y v b
3 x u c
4 y u b
5 y v c
6 y u c
7 y v c

pt{a1,a2},11
O a1 a2 a3
1 x u b
2 y v b
3 x v c
4 y u b
5 y v c
6 y u c
7 y v c

pt{a1,a2},12
O a1 a2 a3
1 x u b
2 y v b
3 x w c
4 y u b
5 y v c
6 y u c
7 y v c
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o5 is discernible with o3 on {a1, a2} in pt{a1,a2},1, whereas o5 is indiscernible
with o3 on {a1, a2} in pt{a1,a2},2. In other words, pt{a1,a2},1 corresponds to the
case where o5 is discernible with o3 on {a1, a2}, whereas pt{a1,a2},2 does to the
case where o5 is indiscernible with object o3 .

By applying formula (8) to each possible table, possible indiscernibility rela-
tion PI{a1,a2},i on {a1, a2} for i = 1, 12 is:

PI{a1,a2},1 = {(o1, o1), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o6, o6), (o7, o7), (o1, o3),
(o3, o1), (o1, o4), (o4, o1), (o2, o7), (o7, o2), (o3, o4), (o4, o3)},

P I{a1,a2},2 = {(o1, o1), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o6, o6), (o7, o7), (o1, o4),
(o4, o1), (o2, o7), (o7, o2), (o3, o5), (o5, o3)},

P I{a1,a2},3 = {(o1, o1), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o6, o6), (o7, o7), (o1, o4),
(o4, o1), (o2, o7), (o7, o2)},

P I{a1,a2},4 = {(o1, o1), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o6, o6), (o7, o7), (o1, o3),
(o3, o1), (o1, o4), (o4, o1), (o2, o7), (o7, o2), (o3, o4), (o4, o3), (o2, o5),
(o5, o2), (o5, o7), (o7, o5)},

P I{a1,a2},5 = {(o1, o1), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o6, o6), (o7, o7), (o1, o4),
(o4, o1), (o2, o5), (o5, o2), (o5, o7), (o7, o5), (o2, o7), (o7, o2)},

P I{a1,a2},6 = {(o1, o1), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o6, o6), (o7, o7), (o1, o4),
(o4, o1), (o2, o5), (o5, o2), (o5, o7), (o7, o5), (o2, o7), (o7, o2)},

P I{a1,a2},7 = {(o1, o1), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o6, o6), (o7, o7), (o1, o3),
(o3, o1), (o2, o7), (o7, o2), (o4, o6), (o6, o4)},

P I{a1,a2},8 = {(o1, o1), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o6, o6), (o7, o7), (o2, o7),
(o7, o2), (o3, o5), (o5, o3), (o4, o6), (o6, o4)},

P I{a1,a2},9 = {(o1, o1), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o6, o6), (o7, o7), (o2, o7),
(o7, o2), (o4, o6), (o6, o4)},

P I{a1,a2},10 = {(o1, o1), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o6, o6), (o7, o7), (o1, o3),
(o3, o1), (o2, o5), (o5, o2), (o2, o7), (o7, o2), (o4, o6), (o6, o4), (o5, o7),
(o7, o5)},

P I{a1,a2},11 = {(o1, o1), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o6, o6), (o7, o7), (o2, o5),
(o5, o2), (o5, o7), (o7, o5), (o2, o7), (o7, o2), (o4, o6), (o6, o4)},

P I{a1,a2},12 = {(o1, o1), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o6, o6), (o7, o7), (o2, o5),
(o5, o2), (o5, o7), (o7, o5), (o2, o7), (o7, o2), (o4, o6), (o6, o4)}.

3.2 Possible Equivalence Classes

Possible equivalence class PE(o)A,i containing object o in ptA,i is:

PE(o)A,i = {o′ ∈ U | (o, o′) ∈ PIA,i}. (9)
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Minimum possible equivalence class PE(o)A,min and maximum possible equiv-
alence class PE(o)A,max containing object o on A are:

PE(o)A,min = ∩iPE(o)A,i, (10)
PE(o)A,max = ∪iPE(o)A,i. (11)

Family FPE(o)A of possible equivalence classes containing o consists of those
containing o in the possible tables.

FPE(o)A = ∪i{PE(o)A,i}. (12)

The family has a lattice structure with the minimum and the maximum ele-
ment, which are the minimum and the maximum possible equivalence class,
respectively [22]. Family FPEA,i of equivalence classes in possible table ptA,i is
obtained from possible indiscernibility relation PIA,i.

FPEA,i = ∪o∈U{PE(o)A,i}. (13)

3.3 Aggregation of Possible Indiscernibility Relations

We have two aggregations of possible indiscernibility relations the common and
the whole indiscernibility relation. Common indiscernibility relation CPIA is the
intersection of PIA,i:

CPIA = ∩iPIA,i. (14)

Whole indiscernibility relation WPIA is the union of PIA,i:

WPIA = ∪iPIA,i. (15)

Family{CPIA, P IA,1, · · · , P IA,n,WPIA} has a lattice structure with the mini-
mum element CPIA and the maximum element WPIA [22].

Proposition 1

PE(o)A,min = {o′ ∈ U | (o′, o) ∈ CPIA},
PE(o)A,max = {o′ ∈ U | (o′, o) ∈ WPIA}.

This proposition shows that the minimum and maximum equivalence classes
expressed by formulae (10) and (11) can be also derived from the common and
the whole indiscernibility relation.
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Example 3
By applying formulae (14) and (15) to possible indiscernibility relations of Exam-
ple 2, common indiscernibility relation CPI{a1,a2}and whole indiscernibility rela-
tions WPI{a1,a2} are:

CPI{a1,a2} = {(o1, o1), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o2, o7), (o7, o2)},
WPI{a1,a2} = {(o1, o1), (o1, o3), (o1, o4), (o2, o2), (o2, o5), (o2, o7), (o3, o1),

(o3, o3), (o3, o4), (o3, o5), (o4, o1), (o4, o3), (o4, o4), (o4, o6), (o5, o2),
(o5, o3), (o5, o5), (o5, o7), (o6, o4), (o6, o6), (o7, o2), (o7, o5), (o7, o7)}.

By applying the formulae in Proposition 1 to CPI{a1,a2} and WPI{a1,a2}, mini-
mum possible equivalence class PE(oj){a1,a2},min and maximum possible equiv-
alence class PE(oj){a1,a2},max containing object oj on {a1, a2} for j = 1, 7 are:

PE(o1){a1,a2},min = {o1},
PE(o1){a1,a2},max = {o1, o3, o4},
PE(o2){a1,a2},min = {o2.o7},
PE(o2){a1,a2},max = {o2, o5, o7},
PE(o3){a1,a2},min = {o3},
PE(o3){a1,a2},max = {o1, o3, o4, o5},
PE(o4){a1,a2},min = {o4},
PE(o4){a1,a2},max = {o1, o3, o4, o6},
PE(o5){a1,a2},min = {o5},
PE(o5){a1,a2},max = {o2, o3, o5, o7},
PE(o6){a1,a2},min = {o6},
PE(o6){a1,a2},max = {o4, o6},
PE(o7){a1,a2},min = {o2.o7},
PE(o7){a1,a2},max = {o2, o5, o7},

3.4 Lower and Upper Bounds of the Actual Approximations

When target set T of objects is specified, lower approximation apr(T )A,i and
upper approximation apr(T )A,i in possible table pti are:

apr(T )A,i = {o ∈ U | PE(o)A,i ⊆ T}, (16)
apr(T )A,i = {o ∈ U | PE(o)A,i ∩ T 	= ∅}. (17)

Minimum lower approximation apr(T )A,min that is the lower bound of the actual
lower approximation, maximum lower approximation apr(T )A,max that is the
upper bound of the actual lower approximation, minimum upper approximation
apr(T )A,min that is the lower bound of the actual upper approximation, and
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maximum upper approximation apr(T )A,max that is the upper bound of the
actual upper approximation are:

apr(T )A,min = ∩iapr(T )A,i, (18)
apr(T )A,max = ∪iapr(T )A,i, (19)
apr(T )A,min = ∩iapr(T )A,i, (20)
apr(T )A,max = ∪iapr(T )A,i. (21)

Proposition 2

apr(T )A,min = {o ∈ U | PE(o)A,max ⊆ T},
apr(T )A,max = {o ∈ U | PE(o)A,min ⊆ T},
apr(T )A,min = {o ∈ U | PE(o)A,min ∩ T 	= ∅},
apr(T )A,max = {o ∈ U | PE(o)A,max ∩ T 	= ∅}.

This proposition shows that the lower and upper bounds of approximations
can be also derived from using minimum and maximum possible equivalence
classes. The actual lower and upper approximations exist between apr(T )A,min

and apr(T )A,max and between apr(T )A,min and apr(T )A,max, respectively. This
is the results obtained from Lipski’s approach.

Example 4
Let target set T be {o1, o2, o4} that is specified by constraint a3 = b. The
lower and upper bounds of approximations are obtained from the formulae in
Proposition 2. By using the minimum and maximum possible equivalence classes
obtained in Example 3, minimum lower approximation apr(T ){a1,a2},min, max-
imum lower approximation apr(T ){a1,a2},max, minimum upper approximation
apr(T ){a1,a2},min, and maximum upper approximation apr(T ){a1,a2},maxare:

apr(T ){a1,a2},min = ∅,
apr(T ){a1,a2},max = {o1, o4},
apr(T ){a1,a2},min = {o1, o2, o4, o7},
apr(T ){a1,a2},max = {o1, o2, o3, o4, o5, o6, o7}.

The actual lower approximation exists between ∅ and {o1, o4} and the actual
upper approximation exists between {o1, o2, o4, o7} and {o1, o2, o3, o4, o5, o6, o7}
.

4 Kryszkiewicz’s Relation for Indiscernibility of Objects

Kryszkiewicz proposed a formula expressing a binary relation for object indistin-
guishability in information tables containing missing values [4,5]. The formula
is expressed as follows:

IKA = {(o, o′) ∈ U × U | ∀a ∈ A a(o) = a(o′) ∨ a(o) = ∗ ∨ a(o′) = ∗}. (22)
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We call this relation Kryszkiewicz’s relation. The relation is reflective, and sym-
metric, but not transitive. Set EK

A (o) of objects that are considered as equivalent
to object o is derived from the relation:

EK
A (o) = {o′ ∈ U | (o, o′) ∈ IKA }, (23)

The set is not an equivalence class. Let T be a target set of objects specified by a
constraint on a set of attributes. By using EK

A (o), lower approximation aprK
A

(T )

and upper approximation aprKA (T ) are:

apr(T )KA = {o ∈ U | E(o)KA ⊆ T}, (24)

apr(T )KA = {o ∈ U | E(o)KA ∩ T 	= ∅}. (25)

These approximations are not compatible with those derived from Lipski’s app-
roach because Lipski’s approach shows that the actual approximations cannot
be obtained and what we can obtain is the lower and the upper bounds of the
actual approximations, as is described in the previous section.

In addition, these formulae have the drawbacks pointed out by [14,19], as is
shown in the below example.

Example 5
We check Kryszkiewicz’s relation by using incomplete information table IT in
Example 2. Let target set T be {o1, o2, o4}, which is the same as in Example 2.
Using formula (22) in IT , we obtain the following binary relation for indiscerni-
bility:

IK{a1,a2} = {(o1, o1), (o1, o3), (o1, o4), (o2, o2), (o2, o5), (o2, o7), (o3, o1),
(o3, o3), (o3, o4), (o3, o5), (o4, o1), (o4, o3), (o4, o4), (o4, o6), (o5, o2),
(o5, o3), (o5, o5), (o5, o7), (o6, o4), (o6, o6), (o7, o2), (o7, o5), (o7, o7)}.

Class EK
{a1,a2}(oj) derived from the relation for j = 1, 7 is:

EK
{a1,a2}(o1) = {o1, o3, o4},

EK
{a1,a2}(o2) = {o2, o5, o7},

EK
{a1,a2}(o3) = {o3, o4, o5},

EK
{a1,a2}(o4) = {o1, o3, o4, o6},

EK
{a1,a2}(o5) = {o2, o3, o5},

EK
{a1,a2}(o6) = {o4, o6},

EK
{a1,a2}(o7) = {o2, o5, o7}.
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Lower approximation aprK{a1,a2}(T ) and upper approximation aprK{a1,a2}(T ) from
formulae (24) and (25) are:

apr(T )K{a1,a2} = ∅,
apr(T )K{a1,a2} = {o1, o2, o3, o4, o5, o6, o7}. = U

Note that nothing is obtained for the lower and upper approximations.

Example 5 shows that we have poor results for approximations in the case
of using Kryszkiewicz’s relation because only the maximum possible classes of
objects are taken into account. For example, possible classes of objects equiva-
lent to object o1 on {a1, a2} in IT of Example 2 are {o1}, {o1, o3}, {o1, o4},and
{o1, o3, o4}, but only the maximum possible class {o1, o3, o4} is derived from
IK{a1,a2}. In other words, only the possibility that missing value ∗ may be equal
to a value is considered, but the opposite possibility is neglected. Clearly, infor-
mation loss occurs.

5 Relationship Between Kryszkiewicz’s Approach
and Lipski’s Approach

Indeed, Kryszkiewicz’s relation is not compatible with Lipski’s approach, but we
have the following proposition.

Proposition 3

IKA = WPIA.

This proposition shows that the binary relation for indiscernibility used by
Kryszkiewicz is equal to the whole indiscernibility relation, the union of pos-
sible indiscernibility relations in possible tables.

Proposition 4

apr(T )KA = apr(T )A,min,

apr(T )KA = apr(T )A,max.

The proposition shows that the lower and upper approximations derived from
Kryszkiewicz’s relation are equal to ones derived from using the whole indiscerni-
bility relation in possible world semantics. In other words, the lower approxima-
tion derived from Kryszkiewicz’s relation is the lower bound of the actual lower
approximation, whereas the upper approximation derived from Kryszkiewicz’s
relation is the upper bound of the actual upper approximation.
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This suggests that the incompatibility between Kryszkiewicz’s approach and
Lipski’s approach is resolved by adding the relation for indiscernibility corre-
sponding to the common indiscernibility relation. The expression corresponding
to the common indiscernibility relation under the notation of Kryszkiewicz is:

I
K
A = {(o, o′) ∈ U × U | (o = o′) ∨

(∀a ∈ A a(o) = a(o′) ∧ a(o) 	= ∗ ∧ a(o′) 	= ∗)}. (26)

Proposition 5

I
K
A = CPIA.

E
K
A (o) of each object is derived from I

K
A using formula (26) similarly to

EK
A (o). By using E

K
A (o), lower approximation aprK

A
(T ) and upper approximation

apr
K
A (T ) are:

apr(T )KA = {o ∈ U | E(o)KA ⊆ T}, (27)

apr(T )KA = {o ∈ U | E(o)KA ∩ T 	= ∅}. (28)

Proposition 6

apr(T )KA = apr(T )A,max,

apr(T )KA = apr(T )A,min.

Extending Kryszkiewicz’s approach by adding formula (26) to formula (22),
we can resolve the incompatibility between Kryszkiewicz’s approach and Lip-
ski’s approach. In other words, we can keep using Kryszkiewicz’s approach in
which missing values are embedded into the formula expressing indiscernibility
for objects under complete information.

Example 6
Using formula (26) in IT in Example 2, we obtain the following binary relation
for indiscernibility:

I
K
{a1,a2} = {(o1, o1), (o2, o2), (o2, o7), (o3, o3), (o4, o4), (o5, o5), (o6, o6), (o7, o2),

(o7, o7)}.

Class E
K
{a1,a2}(oj) derived from the relation for j = 1, 7 is:

EK
{a1,a2}(o1) = {o1},

EK
{a1,a2}(o2) = {o2, o7},
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EK
{a1,a2}(o3) = {o3},

EK
{a1,a2}(o4) = {o4},

EK
{a1,a2}(o5) = {o5},

EK
{a1,a2}(o6) = {o6},

EK
{a1,a2}(o7) = {o2, o7}.

Let target set T be {o1, o2, o4}, which is the same as in Example 2. Lower approxi-
mation apr

K
{a1,a2}(T ) and upper approximation apr

K
{a1,a2}(T ) from formulae (27)

and (28) are:

apr(T )K{a1,a2} = {o1, o4},
apr(T )K{a1,a2} = {o1, o2, o4, o7}.

6 Conclusions

We have described rough sets in incomplete information tables with missing
values whose values are unknown. Many authors use Kryszkiewicz’s relation
in order to express the indiscernibility between values. The relation, however,
involves information loss and is not compatible with Lipski’s approach based on
possible world semantics. As a result, it creates poor results for approximations.

In order to resolve the above point, we have checked Kryszkiewicz’s rela-
tion for the indiscernibility of objects from the viewpoint of Lipski’s approach.
As a result, Kryszkiewicz’s relation is equal to the whole indiscernibility rela-
tion that is the union of indiscernibility possible relations derived from possible
tables. This means that the lower and the upper approximation derived from
Kryszkiewicz’s relation are the lower bound of the actual lower approximation
and the upper bound of the actual upper approximation, respectively.

The drawback of Kryszkiewicz’s relation can be resolved by adding the rela-
tion corresponding to the common indiscernibility relation that is the intersection
of possible indiscernibility relation. As a result, the extension of Kryszkiewicz’s
approach is compatible with Lipski’s approach based on possible world seman-
tics. No information loss occurs in applying rough sets to incomplete information
tables with missing values. Therefore, we can keep using Kryszkiewicz’s approach
giving the relation of indiscernibility for objects in incomplete information tables.

The future work will be to confirm the effect of the newly added relation on
previous research through several experiments.

Acknowledgment. Part of this work is supported by JSPS KAKENHI Grant Number
JP20K11954.
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Abstract. In this research, new concepts of existential granules that deter-
mine themselves are invented, and are characterized from algebraic, topo-
logical, and mereological perspectives. Existential granules are those that
determine themselves initially, and interact with their environment subse-
quently. Examples of the concept, such as those of granular balls, though
inadequately defined, algorithmically established, and insufficiently theo-
rized in earlier works by others, are already used in applications of rough
sets and soft computing. It is shown that they fit into multiple theoreti-
cal frameworks (axiomatic, adaptive, and others) of granular computing.
The characterization is intended for algorithm development, application
to classification problems and possible mathematical foundations of gen-
eralizations of the approach. Additionally, many open problems are posed
and directions provided.

Keywords: Existential Granules · Adaptive Granules · Axiomatic
Granular Computing · Topological Vector Spaces · Granular Operator
Spaces · Granular Balls · Ball K-Means Algorithm · Clean Rough
Randomness

1 Introduction

In the philosophy literature, existentialism is about basic questions of human
existence, individuality, and interactions with the environment. In this research,
the adjective existential is used in relation to self-determination of objects and
subsequent transformations in relation to objects of similar type in their envi-
ronment. Consequently, they are a form of adaptive objects, and not all adaptive
objects are existential.

In the axiomatic approach to granularity [15,16,18], granules are typically
specified by conditions. Though external generation procedures are not spec-
ified in the literature, they can be expected to be mostly compatible with
the methodology. In the precision-based approach [11,13,34], precision-levels
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define admissible granules. However, a mere specification of a precision-level,
rarely defines a granule or generates one. Even if it does, it is not that the pre-
cision level is intrinsic to the granule. Generation procedures can certainly be
added to precision-based granules subject to compatibility with the conditions.
Adaptive granules [28] are expected to adapt to processes, and even they may
be generated initially through some procedures. The existential aspect in these
are their initial self-determination, and subsequent transformation in response
to interactions. These ideas can be defined in other categorical perspectives of
the same theories.

Closed and open balls and spherical surfaces are pretty standard objects
in studies on metrizable spaces and related topologies. However, they are not
interpreted as such in some empirical machine learning practices, and if so,
how are they interpreted? This is one of the problems tackled in this research.

In recent research, some improved algorithms for K-means clustering
and classification issues are developed [31–33]. The algorithms are explained
through ideas of granular balls. However, they are not sufficiently theorized in
the mentioned papers, and in others that make use of the concept [5,8,25,27].
The basic assumptions, and possible generalizations of the concept are investi-
gated by the present author here. New concepts of existential granules are pro-
posed as a severe generalization of the concept, and are shown to be compatible
with her axiomatic frameworks for granules [15,16,18]. A somewhat under-
specified example of the formation of existential granules in real life contexts
is the following: When law enforcers try to comb a forested area for possible
illegal activity with information from drones and other sources, then they typi-
cally form multiple teams to cover distinct sub-areas. Based on the result from
the combing operation completed, they are likely to redefine the sub-areas to
be searched again. The sequence of set of subareas at each stage will stabilize
when all relevant areas are checked. The sub-areas may be regarded as granules
that transform themselves at each stage of the operation due to new informa-
tion, and the state of the search operation(s) on other areas. Finally, they become
stable at some later stage.

Clean rough randomness as a not-necessarily stochastic or algorithmically
randomness concept is recently introduced by the present author [19,21], and
is capable of modeling many algorithms such as those that operate over entire
sets of tolerances. The problem of precisely formalizing the adaptive aspect of
the algorithms using related functions is additionally posed.

The following sections are organized as follows. Some background is pro-
vided in the next section. Existential ball K-Means (BKM) algorithms are ana-
lyzed, related partial algebras are invented and a soft generalization where the
algorithm works is specified in the third section. The granular ball methodol-
ogy is formalized through a reading of related algorithms in the next. A formal
approach to existential granules is invented in the fifth section and the prob-
lem of appropriately formalizing the BKM algorithm in the rough randomness
perspective is formulated. Further directions are considered in the sixth.
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2 Background

Distances are often intended to model qualitative ideas of being different in
numeric terms. Therefore, it is not required to satisfy most conditions typical of
a metric in a metric space. A distance function on a set S is a function σ : S2 �−→
�+ that satisfies

(∀a)σ(a,a) = 0 (distance)

The collection B = {Bσ(x, r) : x ∈ S & r > 0} of all r-spheres generated by σ is a
weak base for the topology τσ defined by

V ∈ τσ if and only if (∀x ∈ V∃r > 0)Bσ(x, r) ⊆ V

Consider the conditions:

Identity(∀a,b)(σ(a,b) = 0 ↔ a = b),
Symmetry(∀a,b)σ(a,b) = σ(b,a),
Triangle(∀a,b, c)σ(a,b) � σ(a, c) + σ(c,b), and
Pseudo-Identity(∀a,b)(σ(a,b) = 0 −→ a = b).

σ is said to be a metric or semimetric or pseudometric respectively as it satisfies
all the four or identity and symmetry or the last three conditions respectively.
A quasi-metric is a distance that satisfies the triangle inequality, while a dis-
tance that satisfies the triangle inequality up to a constant k > 0 (k-triangle:
(∀a,b, c)kσ(a,b) � σ(a, c) + σ(c,b)) is called a weak quasi-metric. Given a
distance function on a set, a topology does not automatically follow. This holds
as well for semimetrics [6]. All generalized metric spaces will be collectively
referred to as ∗-metric spaces.

If x is a point in a ∗-metric space (X,σ), and H a subset of X then the distance
of x from H is given by σ(x,H) = inf{σ(x,a) : a ∈ H}. The distance between two
subsets H and F can be measured with the Hausdorff distance σh or the infimal
distance σI(these are not metrics):

σh(H, F) = max{sup
x∈H

σ(x, F), sup
x∈F

σ(H, x)} & σI(H, F) = inf{σ(a,b) : a ∈ H,b ∈ F}.

The former is a metric on the set of compact subsets if σ is a metric.

2.1 Topological Vector Spaces

Some familiarity with topological vector spaces (TVS) [2,30] will be assumed.
A ∗-metric vector space is a pair (X,σ), with X being a vector space over the real
field, and σ a ∗-metric such that the operations are jointly continuous (that is if
(xn) → x and (bn) → b in X, and (αn) → α in �, then (αnxn + bn) → αx + b.)

Consider the following properties of a function p : X �−→ �+ for any x,
b ∈ X
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p(0) = 0 (PN1)

p(x) � 0 (PN2)

p(−x) = p(x) (PN3)

p(x + b) � p(x) + p(b) (PN4)

Continuity of scalar multiplication (PN5)

If p(x) = 0 then x = 0 (PNT)

p(αx) = |α|p(x) (SN1)

p is said to be a paranorm (respectively seminorm) if it satisfies PN1-PN5 (respec-
tively PN2,PN4 and SN1). It is total, if it satisfies PNT. All seminorms are para-
norms, and a total seminorm is a norm.

A paranormed space is a pair (X,p) where p is a paranorm over the vector
space X. It is complete if (X,σ) is complete, where σ(a,b) = p(a − b). Every
pseudometric vector space can be endowed with a paranorm from which it is
derived.

It should be noted that ∗-metrics that have nothing to do with any intended
topology are sometimes used in ML practice.

2.2 Partial Algebraic Systems

For basics of partial algebras, the reader is referred to [4,14].

Definition 1. A partial algebra P is a tuple of the form

〈P, f1, f2, . . . , fn, (r1, . . . , rn)〉
with P being a set, fi’s being partial function symbols of arity ri. The interpretation
of fi on the set P should be denoted by f

P
i , but the superscript will be dropped in this

paper as the application contexts are simple enough. If predicate symbols enter into the
signature, then P is termed a partial algebraic system.

In this paragraph the terms are not interpreted. For two terms s, t, s
ω
= t

shall mean, if both sides are defined then the two terms are equal (the quantifi-
cation is implicit). ω

= is the same as the existence equality (also written as e
=) in

the present paper. s ω∗
= t shall mean if either side is defined, then the other is

and the two sides are equal (the quantification is implicit). Note that the latter
equality can be defined in terms of the former as

(s
ω
= s −→ s

ω
= t)& (t

ω
= t −→ s

ω
= t)
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Various kinds of morphisms can be defined between two partial algebras or
partial algebraic systems of the same or even different types. For two partial
algebras of the same type

X = 〈X, f1, f2, . . . , fn〉 and W = 〈W, g1, g2, . . . , gn〉 ,

a map ϕ : X �−→ W is said to be a

• morphism if for each i,

(∀(x1, . . . xk) ∈ dom(fi))ϕ(fi(x1, . . . , xk)) = gi(ϕ(x1), . . . , ϕ(xk))

• closed morphism, if it is a morphism and the existence of
gi(ϕ(x1), . . . , ϕ(xk)) implies the existence of fi(x1, . . . , xk).

Usually it is more convenient to work with closed morphisms.

3 Existential Granular K-Means Algorithm

The end product of a hard or soft clustering can often be interpreted as a gran-
ulation. The so-called ball granular computing [32] is not properly formalized
from a mathematical perspective as the goal of the authors is to stress the
performance of their algorithms. Its origin is obviously related to the ball K-
means algorithm [33]. A critical analysis with some generalization of the last
mentioned method is proposed first after reconsidering the basic assumptions
implicit in it.

Let the dataset of points be V that is a subset of the real topological vec-
tor space X with pseudometric (or metric) σ which in turn is equivalent to a
paranorm. V is not usually closed under the algebraic operations induced from
X. Algebraic closure on real data is often more complex as additional layers of
meaning based on bounds or types may be of interest. Some questions that can
shape the semantic domain and therefore relevant algebraic models are

1. Should the value of operations beyond V be considered?
2. Are the interpretations of operations over X meaningful for the context of

V? To what extent should they be permitted? Does the smallest subspace
Alg(V) containing V suffice?

3. Should the interpretations of the operations over X be reinterpreted (at least
partly) over V . This is especially useful when the values or bounds imposed
by V are alone meaningful.

Depending on the answers to these, the appropriate algebraic operations on the
balls may be selected and this lead to a natural generalization of algorithm.

The basic steps of the ball k-means algorithm are

Subregion Form an arbitrary clustering E1,E2, . . .Ek of V .
MCT Compute the mean ci for each subset Ei.
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Radius Taking the greatest distance among points in Ei from ci as the radius
ri, generate the ball Ci for each i.

Neighbors Define the relation ηCjCi (for Cj is a neighbor of Ci) if and only if
σcicj < 2ri. For Ci, let NCi

be its set of neighbor balls (granules).
Stable If NCi

�= ∅, then its stable region is defined by
• Stσ(Ci) = B(ci, 0.5minσ(ci, c) : c ∈ NCi

),
• and its active area by AA(Ci) = Ci \ St(Ci).

Annular Regions Let Card(NC) = k, then for i ∈ [1,k], the ith annular region
on C, A

C
i is {x : σ(c, ci) < 2σ(x, c) � σ(c, ci+1)} for i < k and x : σ(c, ci) <

2σ(x, c) � r for i = k.

The BKM algorithm and related considerations can be extended to any met-
ric TVS. However, the results cannot be guaranteed for semi-metric spaces or
pseudo-metric spaces, in general.

For each i, the radius at the first iteration ri = Sup{σ(x, ci) : x ∈ Ei}. Given
two ball clustersCi andCj with centers ci and cj respectively at a fixed iteration
level, define

ηCjCi iff σ(ci, cj) < 2ri.
η is a reflexive, non-symmetric relation in general. Cj is a neighbor of Ci if and
only if ηCiCj For Ci, let NCi

be its set of neighbor balls (granules). If NCi
�= ∅,

then its stable region is defined by

St(Ci) = B(ci, 0.5minσ(ci, c) : c ∈ NCi
).

The active area AA(Ci) = Ci \ St(Ci).
The term i-closest is not defined in the paper [33]. It is simply the closest

neighbor cluster(s). As it is based on distance between centers, uniqueness
cannot be guaranteed. Let Card(NC) = k, then for i ∈ [1,k], the ith annu-
lar region on C, A

C
i is {x : σ(c, ci) < 2σ(x, c) � σ(c, ci+1)} for i < k and

x : σ(c, ci) < 2σ(x, c) � r for i = k.
The ball k-means algorithm can be reinterpreted as a granular approxima-

tion procedure of an unknown clustering that is supposed to exist. The steps
in the approximation being guided by η, stable regions, and annular regions as
proved in Theorem 1 ( [33]). Stable regions may be read as partial lower approx-
imations of the initial granules at that stage.

Theorem 1. 1. If Ci is a neighbor of C, then some non-stable points of C may be
moved into Ci.

2. If Cj is not a neighbor of C, then no points of C can be moved into Cj

3. For a given C with center c, and Card(NC) = k, the points in the ith (i � k)
annular space of C can only be moved within the first i-closest neighbor clusters
and itself.

4. If c
(t)
i is the center of the ball Ci in the tth iteration, then if σ(c

(t−1)
i , c(t−1)

j ) �
2r(t)i + σ(c

(t)
i , c(t−1)

i ) + σ(c
(t)
j , c(t−1)

j ), then Cj cannot be a neighbor ball of Ci in
the current iteration. So the computation of the center distance is avoided.

It can additionally be proved that
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Theorem 2. If X is a paranormed TVS, then the BKM algorithm terminates in a soft
clustering.

3.1 Partial Algebras for BKM Variants

Let BV
r (c) denote the closed ball {x : x ∈ V, &σ(x, c) � r} with center c and

radius r over V (it will also be referred to as the cautious closed ball), then the
following algebraic partial/total operations are definable for any a,b ∈ BV

r (c)
and any α,β ∈ �

αa � βb =

{
αa + βb, if αa,βb,αa + βb ∈ BV

r (c)

undefined, otherwise

On the closed ball BX
r (c) = {x : x ∈ X, &σ(x, c) � r} too, a similar operation

⊕ may be interpreted (relative to the operations on X).

αa ⊕ βb =

{
αa ⊕ βb, if αa + βb ∈ BX

r (c)

undefined, otherwise

Theorem 3. In the above context, BX
r (c) satisfies

a ⊕ b
s
= b ⊕ a (weak* comm)

a ⊕ (b ⊕ c)
ω
= (a ⊕ b) ⊕ c (weak assoc)

α(βa)
ω
= (αβ)a (weak scal1)

αa ⊕ βa
s
= (α + β)a (weak* scal2)

a ⊕ 0 s
= 0 ⊕ a (weak* 0)

(∀a,b, c)(a ⊕ b = 0 = a ⊕ c −→ b = c) (inverse)

Proof. The weak versions of the equalities hold when both sides are defined,
while the stronger version ( s

=) require any one of the sides to be defined. Weak*
commutativity is obvious. Weak associativity holds, and its stronger version
does not because a ⊕ b may not be defined, even though a ⊕ (b ⊕ c) is.

Theorem 4. In the above context, BV
r (c) satisfies dom(�) ⊂ dom(⊕) and

a � b
s
= b � a (weak* comm)

a � (b � c)
ω
= (a � b) � c (weak assoc)

α(βa)
ω
= (αβ)a (weak scal1)

αa � βa
s
= (α + β)a (weak* scal2)

a � 0 s
= 0 � a (weak* 0)

(∀a,b, c)(a � b = 0 = a � c −→ b = c) (inverse)
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4 The Granular Ball Methodologies

A version of the granular ball methods for classification can be found in the
preprint [31]. Readers are left wondering whether a norm is even being used
(Eqn 2 in page 3), while the exact partitioning of parent balls into child balls
(in Definition 1) is impossible. However, the algorithm is relatively clear, and
examples for the intent of Definition 1 are provided. Earlier versions have
additional mathematical issues (see the discussion at https://pubpeer.com/
publications/4354287243FC39A66DD432BC41046B).

The methods for adaptive granules involves quality checks based on purity
of granules (relative to proportion of labels), and heterogeneity of overlap of
granules. Otherwise, the essential methods are variations of the one used in the
ball K-means algorithm.

1. The data set may be partly labelled.
2. Regard whole data set or a sample V as a closed sphere with center c =

1
n

∑
(xi) and radius as r = 1

n

∑
σ(xi, c).

3. Split the current granular ball into k sub balls using ball K-means. It should
be noted that splitting is not a partitioning operation.

4. Check quality of granular Balls through simple purity measures based on
ratio of majority label.

5. Stop if the purity measure is OK. Otherwise, repeat the process on the balls
derived.

The adaptive version is similar but with further stages of splitting whenever
a granular ball at the current iteration has heterogeneous overlap with another
granular ball, and an accelerated granular ball generation process. Child balls
and parent balls are further used in the quality checks, and the ball K-means
algorithm is avoided.

4.1 Fixing the Mathematics

From the intent of definition 1 (of parent and child balls), it is clear to the present
author that the real data points within a ball are confused with the ball. A mathe-
matical way of correcting can be through differential geometry, and at least con-
cepts of orientation are essential. The code and algorithm are however based on
distances from centers, and labels. Aminimal fix that avoids the geometry is the
following:

Definition 2. Let V be a finite subset of a real normed finite dimensional TVS X, and
BV

r (c) be a ball, and {BV
ri
(ci)} a finite sequence of n number of balls, all interpreted in

V (with centers in X) then BV
r (c) is a major ball and {BV

ri
(ci)} are minor balls if and

only if the following holds:
⋃

i

BV
ri
(ci) = {x : x ∈ BV

ri
(ci) for any i} = BV

r (c) (sum)

https://pubpeer.com/publications/4354287243FC39A66DD432BC41046B
https://pubpeer.com/publications/4354287243FC39A66DD432BC41046B
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⋂

i

BV
ri
(ci) = ∅ (collectionwise disjoincy)

This definition makes no sense when BV
r (c) = BX

r (c) (and actually under
much weaker conditions). Further, minor/child balls should rather be pairwise
disjoint (for any i �= j BV

ri
(ci) ∩ BV

rj
(cj) = ∅) in Definition 1 of [31].

5 Existential Granulations

To accommodate multiple nonequivalent concepts of granules, and granula-
tions, a loose definition of existential granule is proposed first. Suppose X =
〈X,F,G〉 is a triple with X being a set, F a mathematical structure on it, and
G ⊆ ℘(X) a granulation on it. A granule G ∈ G will be said to be existential if
and only if there exists a subset E of G and an operator � : ℘(X) �−→ ℘(X) such
that G = �(E) and (∃n � 1)�n+1(E) = �

n(E). A granulation is existential, if
it is a collection of existential granules determined by the features encoded by
its constituent points. That is, it is essentially self-determining up to a point.
It is possible to argue on this concept being existential in numerous ways –
it is exactly the reason for naming it existential as opposed to self-determined.
The idea of non-crisp granules is known in both the axiomatic, precision-based
and adaptive theories of granularity. Existential granules have a precise gen-
eration aspect motivated by the problem of reducing computational load. For-
malization in the axiomatic abstract perspective requires an additional closure
operator as defined below, while computational aspects require further spe-
cialization. The definitions below are relatively more convenient for abstract
approaches [15,16,18]. The main questions of this approach are about formalizing the
known applications, representing the operation �, and suitability of the restrictions of
admissible granules.

Definition 3. A high mereological approximation Space (mash) S is a partial
algebraic system of the form S = 〈S, l,u,P,�,∨,∧,⊥,�〉 with S being a set, l,u
being operators : S �−→ S satisfying the following (S is replaced with S if clear from the
context. ∨ and ∧ are idempotent partial operations and P is a binary predicate.):

(∀x)Pxx (PT1)

(∀x,b)(Pxb & Pbx −→ x = b) (PT2)

(∀a,b)a ∨ b
ω
= b ∨ a; (∀a,b)a ∧ b

ω
= b ∧ a (G1)

(∀a,b)(a ∨ b) ∧ a
ω
= a; (∀a,b)(a ∧ b) ∨ a

ω
= a (G2)

(∀a,b, c)(a ∧ b) ∨ c
ω
= (a ∨ c) ∧ (b ∨ c) (G3)
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(∀a,b, c)(a ∨ b) ∧ c
ω
= (a ∧ c) ∨ (b ∧ c) (G4)

(∀a,b)(a � b ↔ a ∨ b = b ↔ a ∧ b = a) (G5)

(∀a ∈ S)Pala & all = al & Pauauu (UL1)

(∀a,b ∈ S)(Pab −→ Palbl & Paubu) (UL2)

⊥l = ⊥ & ⊥u = ⊥ & P�l� & P�u� (UL3)

(∀a ∈ S)P⊥a & Pa� (TB)

In a high general granular operator space (GGS), defined below, aggrega-
tion and co-aggregation operations (∨, ∧) are conceptually separated from the
binary parthood (P), and a basic partial order relation (�). Parthood is assumed
to be reflexive, antisymmetric, and not necessarily transitive. It may satisfy
additional generalized transitivity conditions in many contexts. Real-life infor-
mation processing often involves many non-evaluated instances of aggrega-
tions (fusions), commonalities (conjunctions) and implications because of lazi-
ness or supportingmetadata or for other reasons – this justifies the use of partial
operations. Specific versions of a GGS and granular operator spaces have been
studied in the research paper [16]. Partial operations inGGS permit easier han-
dling of adaptive granules [28] through morphisms– concrete methods need to
use the frameworks of clear rough random functions. Note further that it is not
assumed that Pauuau. The universe S may be a set of collections of attributes,
labeled or unlabeled objects among other things. A high general existential gran-
ular operator space (eGGS) can be obtained from a GGS by simply restricting the
predicate γ as follows:

γx if and only if x ∈ G = �(�)

Definition 4. A High General Granular Operator Space (GGS) S is a partial alge-
braic system of the form

S = 〈S,γ, l,u,P,�,∨,∧,⊥,�〉

with S = 〈S, l,u,P,�,∨,∧,⊥,�〉 being a mash, γ being a unary predicate that
determines G (by the condition γx if and only if x ∈ G) an admissible granula-
tion(defined below) for S. Further, γx will be replaced by x ∈ G for convenience. Let P

stand for proper parthood, defined via Pab if and only if Pab & ¬Pba). A granulation
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is said to be admissible if there exists a term operation t formed from the weak lattice
operations such that the following three conditions hold:

(∀x∃x1, . . . xr ∈ G) t(x1, x2, . . . xr) = xl (Weak RA, WRA)
and (∀x∃x1, . . . xr ∈ G) t(x1, x2, . . . xr) = xu,

(∀a ∈ G)(∀x ∈ S)) (Pax −→ Paxl), (Lower Stability, LS)

(∀x, a ∈ G∃z ∈ S)Pxz, &Paz & zl = zu = z, (Full Underlap, FU)

Definition 5. A High General Existential Granular Operator Space (eGGS) S is
a GGS in which the predicate γ is replaced by a unary operation � that satisfies

γx if and only if x ∈ G = �(�) (G1)

(∀x)(∃n � 1)�n+1(x) = �
n(x) (G2)

Existential granular versions of the following particular classes can be defined
by analogy.

Definition 6. • In the above definition, if the anti-symmetry condition PT2 is
dropped, then the resulting system will be referred to as a Pre-GGS. If the restriction
Pala is removed from UL1 of a pre-GGS, then it will be referred to as a Pre*-GGS.

• In a GGS (resp Pre*-GGS), if the parthood is defined by Pab if and only if a � b

then the GGS is said to be a high granular operator space GS (resp. Pre*-GS).
• A higher granular operator space (HGOS) (resp Pre*-HGOS) S is a GS (resp
Pre*-GS) in which the lattice operations are total.

• In a higher granular operator space, if the lattice operations are set theoretic union
and intersection, then the HGOS (resp. Pre*-HGOS) will be said to be a set HGOS
(resp. set Pre*-HGOS). In this case, S is a subset of a power set, and the partial
algebraic system reduces to S = 〈S,γ, l,u,⊆,∪,∩,⊥,�〉 with S being a set, γ

being a unary predicate that determines G (by the condition γx if and only if x ∈ G).
Closure under complementation is not guaranteed in it.

5.1 Clean Rough Randomness and Models of Algorithms

Some essential aspects of clean rough randomness [19,21] are repeated for con-
venience, and the problem of formalizing the studied algorithms is in the per-
spective is formulated.
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Many types of randomness are known in the literature. Stochastic random-
ness, often referred to as randomness, is often misused without proper justifi-
cation. In the paper [10], a phenomenon is defined to be stochastically random if
it has probabilistic regularity in the absence of other types of regularity. In this
definition, the concept of regularity may be understood as mathematical regular-
ity in some sense. Generalizations of mathematical probability theory through
hybridization with rough sets from a stochastic perspective are explained in
the book [12]. This approach is not ontologically consistent with pure rough
reasoning or explainable AI as its focus is on modeling the result of numeric
simplifications in a measure-theoretic context.

Empirical studies show that humans cannot estimate measures of stochastic
randomness and weakenings thereof in real life properly [1]. This is consistent
with the observation that connections in the rough set literature between spe-
cific versions of rough sets and subjective probability theories (Bayesian or fre-
quentist) are not good approximations. In fact, rough inferences are grounded
in some non-stochastic comprehension of attributes (their relation with the
approximated object in terms of number or relative quantity and quality)
[20,23].

The idea of rough randomness is defined by the present author [19] as fol-
lows:a phenomenon is clean roughly random (C-roughly random) if it can be modeled
by general rough sets or a derived process thereof. In concrete situations, such a
concept should be realizable in terms of C-roughly random functions or predi-
cates defined below (readers should note that any one of the concepts of rough
objects in the literature [16] such as a non crisp object or a pair of definite objects of
the form (a,b) satisfying Pab among others are permitted):

Definition 7. Let Aτ be a collection of approximations of type τ, and E a collection of
rough objects defined on the same universe S, then by a C-rough random function of
type-1 (CRRF1) will be meant a partial function ξ : Aτ �−→ E.
Definition 8. Let Aτ be a collection of approximations of type τ, S a subset of ℘(S),
and � the set of reals, then by a C-rough random function of type-2 (CRRF2) will
be meant a function χ : Aτ × S �−→ �.
Definition 9. Let Aτ be a collection of approximations of type τ, and F a collection of
objects defined on the same universe S, then by a C-rough random function of type-3
(CRRF3) will be meant a function μ : Aτ �−→ F.
Definition 10. Let Oτ be a collection of approximation operators of type τl or τu,
and E a collection of rough objects defined on the same universe S, then by a C-rough
random function of type-H (CRRFH) will be meant a partial function

ξ : Oτ × ℘(S) �−→ E.

It is obvious that a CRRF1 and CRRF2 are independent concepts, while a
total CRRF1 is an CRRF3, and CRRFH is distinct (though related to CRRF3).
The set of all such functions will respectively be denoted by CRRF1(S,E, τ),
CRRF2(S,�, τ), CRRF3(S, F, τ), and CRRFH(S,E, τ). For detailed examples, the
reader is referred to the earlier papers [19,21]
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Example 1. Let S be a set with a pair of lower (l) and upper (u) approximations
satisfying (for any a,b, x ⊆ S)

xll ⊆ xl ⊆ xu (l-id, int-cl)

a ⊆ b −→ al ⊆ bl (l-mo)

a ⊆ b −→ au ⊆ bu (u-mo)

∅l = ∅ & Su = S (l-bot, u-top)

The above axioms are minimalist, and most general approaches satisfy
them. In addition, let

Aτ = {x : (∃a ⊆ S) x = al or x = au (1)

E1 = {(al,au) : a ∈ S} (E1)

F = {a : a ⊆ S & ¬∃bbl = a ∨ bu = a} (E0)

E2 = {b : bu = b & b ⊆ S} (E2)

ξ1(a) = (a,bu) for some b ⊆ S (xi1)

ξ2(a) = (bl,a) for some b ⊆ S (xi2)

ξ3(a) = (e, f) ∈ E1 & e = a or f = a (xi3)

E1 in the above is a set of rough objects, and a number of algebraic mod-
els are associated with it [16]. A partial function f : Aτ �−→ E1 that associates
a ∈ Aτ with a minimal element of E1 that covers it in the inclusion order is a
CRRF of type 1. For general rough sets, this CRRF can be used to define alge-
braic models and explore duality issues [17], and for many cases associated
these are not investigated. A number of similar maps with value in understand-
ing models [20] can be defined. Rough objects are defined and interpreted in a
number of other ways including F or E2.

Conditions xi1-xi3 may additionally involve constraints on b, e and f. For
example, it can be required that there is no other lower or upper approximation
included between the pair or that the second component is a minimal approxi-
mation covering the first. It is easy to see that

Theorem 5. ξi for i = 1, 2, 3 are CRRF of type-1.

Example 2. In the above example, rough inclusion functions, membership, and
quality of approximation functions [7,29] can be used to define CRRF2s. An
example is the function ξ5 defined by

ξ5(a,b) =
Card(b \ a)

Card(b)
(1)
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5.2 Formalizing the BKM Algorithms

The ball K-means algorithm can potentially be formalized by rough random
functions of type 3 in several ways. For this purpose, one can use a single RRF-
3 ϕ and a number of classical lower and upper approximation that describe
each update on the original k clusters sequentially or use a sequence of RRF-3 s
with pairs of classical lower and upper approximations to describe the updates.
Therefore, the real problem is of finding and formulating the most appropriate
formalization. How does one restrict the choice of approximation operations?

All crisp clusterings form partitions, and therefore all such clusterings form
the granulation of Pawlak rough sets over the universe in question. This is the
suggested origin of the classical and upper approximations.

6 Further Directions

It might appear to easy to cast the ball K-means and granular ball algo-
rithms in the interactive granular computing perspective. It is already shown
that such is not essential. The proposal of interactive granules and related
computing (IGrC) is formulated in relation to a certain perception of the
basic semantic domain, and is primarily intended to reduce the complex-
ity of decision-making in application contexts [24,28]. Some objects are sup-
posed to be non-mathematical objects at a level of discourse, and possess some
properties of granularity. The use of complex granule (c-granule) comprising
abstract objects, physical objects, as well as objects linking abstract and phys-
ical objects, by itself, and their rule-based approach apparently constrains the
authors to that view. States of c-granules are represented by networks of infor-
mational granules (ic-granules) linking abstract and physical objects. Such c-
granules are intended for modeling perceptions of physical processes in the
real world. However, the mathematical approach to such cases is through
improved sequences of models, and objects, and through better choice of
semantic domains. Data drives nothing, it is for us to invent models that make
any driving to be possible at all.

The obvious idea of replacing the hyper-sphere with a smooth hypersur-
face is possible in theory, and justifiable if the geometry is relevant. However,
the computational complexity may increase substantially. Actually, no hyper-
spheres or balls are used in the both the BKM and granular ball algorithms. It
is only in the imagination of the authors. If the shapes generated by points are
really of interest then other metrics and the Hausdorff-Gromov distance [22]
may be used painfully. The possible mathematical generalization of the pro-
posedmethod requires justification in applied problems. The geometrical shape
of granules typically matter in the domain of topological data analysis [9], spa-
tial mereology [3] and near sets [26]. Such approaches have steep requirements
on the domain for easier computing. In future studies, existential granules will
be explored in greater depth.
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Abstract. We introduce particular aggregation operators on shadowed
sets, which derive from the operations between conditional events and
from the consensus operator. Considering that shadowed sets arise as
approximations of fuzzy sets, we also present and study special classes
of aggregation functions that can be approximated by the considered
operations on shadowed sets.

Keywords: Shadowed sets · Aggregation functions · Aggregation of
shadowed sets · Conditional events · Consensus operator

1 Introduction

Shadowed sets were initially proposed by Pedrycz for approximating fuzzy sets
by using only three possible membership values: 0 (non-membership), 1 (mem-
bership), and [0,1] (intermediate membership [16] or uncertainty). Thus, given
a universe X, a fuzzy set f : X → [0, 1] can be transformed into a shadowed set
S(f) : X → {0, [0, 1], 1} by means of a particular mapping S that can be defined
in several ways [27]. In this article, we adopt the most abstract approach (that is
a generalization of the decision-theoretic one [8,10,26]), where S solely depends
on a pair of thresholds α and β of the real interval [0, 1] so that α < β.

Shadowed sets have captured the interest of many scholars, who have explored
both their theoretical properties as well as their applications (see [3,4,11,15] for
some examples). In particular, different operators to aggregate shadowed sets
have been proposed in the literature [2,6,9,17,18,22]. This article, which is a
continuation of [2], contributes to this body of knowledge in two directions. First,
we introduce novel aggregation operators on shadowed sets by transforming some
operations already existing in literature, which are related to conditional events
[23] and orthopairs [5]. In an earlier paper, Boffa et al. [2] systematically studied
special aggregation operators on shadowed sets. In Sect. 3, we define new shad-
owed set operations and study their mathematical properties. We notice that
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the present work is the continuation of [2] and thus the numbering of opera-
tions follows the one in that paper. Second, in Sect. 4, the attention is shifted
to the analysis of the correspondence between the fuzzy and shadowed oper-
ators. In detail, for each operation ∗ on shadowed sets and for each pair of
thresholds (α, β), we find an aggregation function ⊗ on fuzzy sets such that
S(f ⊗ g) = S(f) ∗ S(g) for each f, g ∈ [0, 1]X . In this way, ∗ can be interpreted
as an approximation of ⊗ by means of the transformation S.

2 Preliminaries

In this section, we provide the necessary background on shadowed sets, condi-
tional events, orthopairs, and aggregation functions.

2.1 Shadowed Sets

A shadowed set is a mapping s : X → {0, [0, 1], 1}, which is obtained from a
fuzzy set f : X → [0, 1] by means of a transformation S : FX �→ SX , where
SX = {0, [0, 1], 1}X and FX = [0, 1]X .

Different approaches exist to define a transformation, such as the first one
proposed by Pedrycz [16] and others based on information-theoretic [3,12,21,
24] or decision-theoretic [8,10,26] notions. In this article, we adopt a general
and abstract definition: a transformation S(α,β) : FX �→ SX form a fuzzy to a
shadowed set is thresholding step function, which can be expressed as

S(α,β)(f)(x) =

⎧
⎪⎨

⎪⎩

1 if β < f(x) ≤ 1;
[0, 1] if α ≤ f(x) ≤ β;
0 if 0 ≤ f(x) < α;

(1)

where 0 < α < β < 1. Shadowed sets can be put in a one-to-one correspondence
with conditional events and orthopairs, as we are going to explain

Conditional Events. A conditional event is an ordered pair of elements of a
set, which represents an algebra of subsets of the domain of a probability space
[23]. Given the Boolean Algebra B = ({0, 1},∧,∨,¬, 0, 1), the set of conditional
events on B is defined as:

C({0, 1}) = {(a, b) ∈ {0, 1} × {0, 1} | a ∧ b = 0}.

That is, C({0, 1}) = {(0, 1), (1, 0), (0, 0)}. Generally, the conditional event (a, b)
represents the rule “if b then a”. In the case of C({0, 1}), the pairs (1, 0) and (0, 1)
are interpreted as true and false, respectively; while the pair (0, 0) means unde-
fined, namely it is not possible or it does not make sense to say if a conditional
event is true or false by using the available knowledge.

There exists a one-to-one correspondence between {0, [0, 1], 1} and the set
of conditional events of a Boolean algebra, which is defined by the mapping
α : C({0, 1}) → {0, [0, 1], 1} such that

α((0, 1)) = 0, α((1, 0)) = 1, and α((0, 0)) = [0, 1]. (2)
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Orthopairs. An orthopair is a set with uncertainty, i.e., for some objects we are
unable to say if they belong or not to a given set. Formally, an orthopairs on a
set X is a pair O = (P,N) such that P,N ⊆ X and P ∩ N = ∅. P is called the
positive region and is understood as the set of all elements of X that certainly
belong to the set represented by O. Analogously, N is called the negative region
and is understood as the set of all elements of X that certainly do not belong
to the set represented by O. Starting from O, a third set called the boundary
region is defined as Bnd = X \ (P ∪ N) and is made of all elements of X such
that we do not know if they belong to the set represented by O. As shown in
[6], it is easy to observe that an orthopair O = (P,N) on X corresponds to the
shadowed set s : X → {0, [0, 1], 1} defined as follows: let x ∈ X,

s(x) =

⎧
⎪⎨

⎪⎩

1 if x ∈ P ;
0 if x ∈ N ;
[0, 1] if x ∈ Bnd;

(3)

and, vice-versa, a shadowed set s : X → {0, [0, 1], 1} uniquely determines the
orthopair O = ({x ∈ X | s(x) = 1}, {x ∈ X | s(x) = 0}) on X. Thus, the
positive and negative regions of an orthopair O are respectively equivalent to
the subsets of the initial universe mapped into 1 and 0 by a shadowed set s;
while the boundary region of O is equivalent to the collection of all elements
associated with the intermediate membership by s.

We notice that the correspondences given in equations (2),(3) are not the only
possible ones from a mathematical standpoint, but are those that correspond to
the usual interpretation of uncertainty, true/positive and false/negative in the
three settings.

2.2 Aggregation Functions

An aggregation function is a mapping A : [0, 1] × [0, 1] �→ [0, 1], that is usually
intended as a way to model generalizations of set-theoretic operations (such as
the union or intersection) in generalized settings (e.g., in fuzzy set theory or in
decision making) [22]. Aggregation functions are usually assumed to satisfy some
further properties [9]:

(i) A(0, 0) = 0 and A(1, 1) = 1 (boundary condition).
(ii) (a) If x ≤ y and z ≤ w, then A(x, z) ≤ A(y, w), for each x, y, z, w ∈ [0, 1]

(monotonicity). Also, we say that A is increasing.
(b) If x ≤ y and z ≤ w, then A(x, z) ≥ A(y, w), for each x, y, z, w ∈ [0, 1]

(monotonicity). Also, we say that A is decreasing.
(iii) A(x, y) = A(y, x), for each x, y ∈ [0, 1] (commutativity).
(iv) A(x, x) = x, for each x ∈ [0, 1] (idempotence).
(v) A(A(x, y), z) = A(x,A(y, z)), for each x, y, z ∈ [0, 1] (associativity).

Moreover, an aggregation function A has a neutral element e ∈ [0, 1] if and
only if A(x, e) = x = A(e, x), for each x ∈ [0, 1].
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Definition 1. Let A and Ã be aggregation functions, then A is the dual operator
of Ã if and only if

Ã(x, y) = 1 − (A(1 − x, 1 − y)). (4)

In this article, we also deal with uninorms:
An aggregation function A : [0, 1]× [0, 1] → [0, 1] is a uninorm if and only if it

is commutative, associative, non-decreasing, and there exists a neutral element
e ∈ [0, 1]. Additionally, A is conjunctive if and only if A(1, 0) = 0; A is disjunctive
if and only if A(1, 0) = 1 [25].

3 How to Aggregate Shadowed Sets

In this section, we present some operations to aggregate shadowed sets. They
derive from the operations on conditional events and the so-called consensus
operator on orthopairs.

3.1 Using Operations on Conditional Events

Several operations arise by extending the Boolean conjunction ∧ to the set of con-
ditional events C({0, 1}) and requiring that (0, 1)∧(0, 1) = (0, 1), (0, 1)∧(1, 0) =
(0, 1), (1, 0) ∧ (0, 1) = (0, 1), and (1, 0) ∧ (1, 0) = (1, 0). Nine of these opera-
tions are idempotent, commutative and Boolean polynomials of their arguments
[23]. In addition, among them, two coincide with the Sobociński conjunction and
the Kleene conjunction [13,20]. In [2], we already studied these two operations,
where they were denoted as ∗2 and ∗5, and defined as in Table 1.

Table 1. Sobociński and Kleene conjunctions translated on {0, [0, 1], 1}

∗2 0 [0, 1] 1

0 0 0 0

[0, 1] 0 [0, 1] 1

1 0 1 1

∗5 0 [0, 1] 1

0 0 0 0

[0, 1] 0 [0, 1] [0, 1]

1 0 [0, 1] 1

The translation on shadowed sets of the remaining seven operations is given in
Table 21. The operations ∗15, . . . , ∗21 are non-monotone (i.e., neither increasing
nor decreasing), and only ∗20 and ∗21 are associative. Moreover, ∗20 is already
known in literature as weak Kleene conjunction [1].

The corresponding disjunctions +2, +5, and +15, . . . ,+21 on {0, [0, 1], 1}
respectively listed in Tables 3 and 4, can be analogously obtained by translating
the disjunctions on conditional events provided in [23] and using the function α
given by (2).
1 We indicate such operations with the symbols ∗15, . . . , ∗21 since other operations

∗1, . . . , ∗14 are already defined on shadowed sets in [2].
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Table 2. Conjunctions of conditional events translated on {0, [0, 1], 1}. Each conjunc-
tion ∗i is obtained by completing the empty boxes of the first sub-table (showing the
common parts of the seven operations) with the row i of the second sub-table.

∗i 0 [0, 1] 1

0 0 0

[0, 1] [0, 1]

1 0 1

n. 0 ∗i [0, 1] [0, 1] ∗i 0 [0, 1] ∗i 1 1 ∗i [0, 1]

15 [0, 1] [0, 1] 0 0

16 [0, 1] [0, 1] 1 1

17 1 1 [0, 1] [0, 1]

18 1 1 1 1

19 1 1 0 0

20 [0, 1] [0, 1] [0, 1] [0, 1]

21 0 0 0 0

Table 3. Sobociński and Kleene disjunctions translated on {0, [0, 1], 1}

+2 0 [0, 1] 1

0 0 0 1

[0, 1] 0 [0, 1] 1

1 1 1 1

+5 0 [0, 1] 1

0 0 [0, 1] 1

[0, 1] [0, 1] [0, 1] 1

1 1 1 1

Table 4. Disjunctions of conditional events translated on {0, [0, 1], 1}. Each disjunction
+i is obtained by completing the empty boxes of the first sub-table (showing the
common parts of the seven operations) with the row i of the second sub-table.

+i 0 [0, 1] 1

0 0 1

[0, 1] [0, 1]

1 1 1

n. 0 +i [0, 1] [0, 1] +i 0 [0, 1] +i 1 1 +i [0, 1]

15 1 1 [0,1] [0,1]

16 0 0 [0,1] [0,1]

17 [0,1] [0,1] 0 0

18 0 0 0 0

19 1 1 0 0

20 [0, 1] [0, 1] [0, 1] [0, 1]

21 1 1 1 1

As in the case of their dual operations, all the disjunctions of Table 4 are
idempotent, commutative, and non-monotone. Furthermore, +20 and +21 are
associative, and +20 corresponds to the so-called Kleene weak disjunction.

3.2 Using Orthopair-Like Operations

Some operations on orthopairs have been already translated on {0, 1/2, 1} using
the bijection between orthopairs and three-valued functions [7]. Thus, they can
be equivalently defined on {0, [0, 1], 1} as well.
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However, another operation ∗C on shadowed sets arises from the so-called
consensus operator, which is defined in [14] as follows: let (Pi, Ni) and (Pj , Nj)
be orthopairs on X,

(Pi, Ni) �C (Pj , Nj) = ( (Pi \ Nj) ∪ (Pj \ Ni), (Ni \ Pj) ∪ (Nj \ Pi) ).

The operation ∗C that is reported in Table 5, is commutative, increasing, and
non-associative. Clearly, the boundary condition is satisfied as well.

Table 5. Consensus operation on {0, [0, 1], 1}

∗C 0 [0, 1] 1

0 0 0 [0, 1]

[0, 1] 0 [0, 1] 1

1 [0, 1] 1 1

In addition, by interpreting [0, 1] as 1
2 , it is easy to check that ∗C can be

obtained also as the average of ∗2 and +2: let x, y ∈ {0, [0, 1], 1},

x ∗C y =
(x ∗2 y) + (x +2 y)

2
.

As in the case of �C , the operation ∗C can be interpreted in terms of the
consensus between two information sources: indeed, x ∗C y ∈ {0, 1} if and only
if x and y are not in conflict, otherwise x ∗C y = [0, 1].

4 Aggregation Functions Generating Operations
on Shadowed Sets

In this section, for each operation on shadowed sets proposed in Sect. 3, we define
a class of aggregation functions so that there exists a transformation S(α,β) with
α �= β and 0 < α ≤ 1/2 ≤ β < 1 acting as a homomorphism between fuzzy sets
and shadowed sets. So, such aggregation functions can be faithfully approximated
by means of operators on shadowed sets. In symbols, given an operation ∗ on
shadowed sets, an aggregation function ⊗ of this type satisfies the equation2

S(α,β)(f ⊗ g) = S(α,β)(f) ∗ S(α,β)(g) for each f, g ∈ [0, 1]X . (5)

Furthermore,

– we prove that each aggregation function assigned to ∗ preserves the algebraic
properties of ∗; an exception is the idempotence holding only for some of
these aggregation functions (Propositions 1 2, and 4);

2 The function f ⊗ g ∈ [0, 1]X is defined as follows: (f ⊗ g)(x) = f(x) ⊗ g(x) for each
x ∈ X. Similarly, the function S(α,β)(f) ∗ S(α,β)(g) ∈ {0, [0, 1], 1}X is defined as
follows: (S(α,β)(f) ∗ S(α,β)(g))(x) = S(α,β)(f)(x) ∗ S(α,β)(g)(x) for each x ∈ X.
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– let i ∈ {15, . . . , 21}, we show that each aggregation function assigned to the
disjunction +i is the dual operation according to Definition 1 of an aggrega-
tion function assigned to the conjunction ∗i (see Proposition 3).

Remark 1. We implicitly assume that the thresholds α and β used to transform
a fuzzy set into a shadowed set are always the same for every fuzzy set, as in the
decision-theoretic formulation. On the other hand, this is not necessarily true in
Pedrycz’s formulation, where a fuzzy set f is approximated using the thresholds
α∗ and 1 − α∗ such that α∗ is the minimum point of a function constructed on
f [16].

Remark 2. The goals of this section are already achieved for the operations ∗2,
∗5, +2, and +5 in [2]. Firstly, we defined the classes of aggregation functions
{⊗γ

2 | γ ∈ (0, 1)} and {⊕γ
2 | γ ∈ (0, 1)} so that Eq. (5) holds for the pairs

(⊗α
2 , ∗2) and (⊕β

2 ,+2) when α �= β and α ≤ 1/2 ≤ β. After that, we proved that

– for each α, β ∈ (0, 1) such that α < β, ⊗α
2 and ⊕β

2 are respectively conjunctive
and disjunctive uninorms having α and β as neutral elements;

– for each γ ∈ (0, 1), ⊕γ
2 is the dual operator of ⊗γ

2 according to Definition 1;
– the minimum t-norm ⊗M and its dual maximum t-conorm ⊕M

3 are respec-
tively associated to ∗5 and +5 by means of Eq. (5).

4.1 Aggregation Functions Generating Conditional-Event
Conjunctions on Shadowed Sets

The following is a list of classes of aggregation functions that correspond to
operations on shadowed sets deriving from the conjunctions of conditional events
defined in Subsect. 3.1.

Definition 2. Let α, β, γ ∈ (0, 1) such that α < β, we set

x ⊗γ
15 y =

{
0 if x ≤ γ < y, or y ≤ γ < x,

max(x, y) otherwise.
(6)

x ⊗αβ
16 y =

{
min(x, y) if x < α, and y > β, or x > β and y < α,

max(x, y) otherwise.
(7)

x ⊗αβ
17 y =

{
1 if x < α and α ≤ y ≤ β, or α ≤ x ≤ β and y < α,

min(x, y) otherwise.
(8)

3 ⊗M and ⊕M are defined as follows: x ⊗M y = min(x, y) and x ⊕M y = max(x, y),
for each x, y ∈ [0, 1] [19].
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x ⊗αβ
18 y =

⎧
⎪⎨

⎪⎩

1 if x < α and α ≤ y ≤ β, or α ≤ x ≤ β and y < α,

max(x, y) if x, y ≥ α

min(x, y) otherwise.
(9)

x ⊗αβ
19 y =

⎧
⎪⎨

⎪⎩

1 if x < α and α ≤ y ≤ β, or α ≤ x ≤ β and y < α,

0 if α ≤ x ≤ β and y > β, or x > β and α ≤ y ≤ β,

min(x, y) otherwise.
(10)

x ⊗γ
20 y =

{
max(x, y) if x, y ≤ γ,

min(x, y) otherwise.
(11)

x ⊗γ
21 y =

{
min(x, y) if x, y ≤ γ or x, y > γ,

0 otherwise.
(12)

The next theorem shows that the aggregation functions of Definition 2 and
the operations listed in Table 2 are connected by means of Eq. (5).

Theorem 1. Let α, β ∈ (0, 1) such that α �= β and α ≤ 1/2 ≤ β. Then, let
f, g ∈ [0, 1]X ,

(a) S(α,β)(f ⊗β
i g) = S(α,β)(f) ∗i S(α,β)(g) for each i ∈ {15, 20, 21};

(b) S(α,β)(f ⊗αβ
i g) = S(α,β)(f) ∗i S(α,β)(g) for each i ∈ {16, 17, 18, 19}.

Proof. Let us prove that Eq. (5) holds for ⊗β
15 and ∗15. Let x ∈ X, we firstly

can show that

S(α,β)(f ⊗β
15 g)(x) = 0 if and only if S(α,β)(f)(x) ∗15 S(α,β)(g)(x) = 0. (13)

Suppose that S(α,β)(f ⊗β
15 g)(x) = 0. Then, by (1), (f ⊗β

15 g)(x) < α, namely
f(x)⊗β

15g(x) < α. By (6), f(x)⊗β
15g(x) = 0 or f(x)⊗β

15g(x) = max(f(x), g(x)).

– If f(x) ⊗β
15 g(x) = 0, then it must be true that f(x) ≤ β < g(x) or

g(x) ≤ β < f(x), using (6) again. Thus, by (1), “S(α,β)(f)(x) ∈ {0, [0, 1]} and
S(α,β)(g)(x) = 1” or “S(α,β)(g)(x) ∈ {0, [0, 1]} and S(α,β)(f)(x) = 1”. Thus,
by Table 2 (see the definition of ∗15), we get S(α,β)(f)(x) ∗15 S(α,β)(g)(x) =
a ∗15 1 (or 1 ∗15 a), where a ∈ {0, [0, 1]}.
Therefore, by Table 2, S(α,β)(f)(x) ∗15 S(α,β)(g)(x) = 0.

– Suppose that f(x) ⊗β
15 g(x) = max(f(x), g(x)). Since S(α,β)(f ⊗β

15 g)(x) =
0, (f ⊗β

15 g)(x) < α from (1). Then, f(x) < α and g(x) < α. Using (1)
again, we get S(α,β)(f)(x) = S(α,β)(g)(x) = 0. Finally, by Table 2, we have
S(α,β)(f)(x) ∗15 S(α,β)(g)(x) = 0.

The previous implications can be easily inverted to prove that “if S(α,β)(f)(x)∗5
S(α,β)(g)(x) = 0, then S(α,β)(f ⊗β

15 g)(x) = 0”. So, we can conclude that (13)
holds.
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Now, let us prove that let x ∈ X,

S(α,β)(f ⊗β
15 g)(x) = [0, 1] if and only if S(α,β)(f)(x) ∗15 S(α,β)(g)(x) = [0, 1].

(14)

By (1), if S(α,β)(f ⊗β
15 g)(x) = [0, 1], then α ≤ (f ⊗β

15 g)(x) ≤ β. By (6)
and by α ∈ (0, 1), (f ⊗β

15 g)(x) > 0 and (f ⊗β
15 g)(x) = max(f(x), g(x)).

Consequently, “f(x) ≥ α or g(x) ≥ α” and “f(x) ≤ β and g(x) ≤ β”.
The last two respectively imply that “S(α,β)(f)(x) > 0 or S(α,β)(g)(x) >
0” and “S(α,β)(g)(x),S(α,β)(f)(x) �= 1”. Consequently,

S(α,β)(f)(x) ∗15 S(α,β)(g)(x) ∈ {[0, 1] ∗15 [0, 1], 0 ∗15 [0, 1], [0, 1] ∗15 [0, 1]}.

Namely, by Table 2, S(α,β)(f)(x) ∗15 S(α,β)(g)(x) = [0, 1].
The previous implications can be easily inverted to prove that

“if S(α,β)(f)(x) ∗15 S(α,β)(g)(x) = [0, 1], then S(α,β)(f ⊗β
15 g)(x) = [0, 1]”.

So, we can conclude that (14) holds. By (13) and (14), we are sure that let
x ∈ X, S(α,β)(f ⊗β

15 g)(x) = 1 if and only if S(α,β)(f)(x) ∗15 S(α,β)(g)(x) = 1.
The other equations can be analogously proved using (1), Definition 2, and

Table 2.

Example 1. Consider the fuzzy sets f : {x1, . . . , x5} → [0, 1] and g :
{x1, . . . , x5} → [0, 1], which are defined by Table 6.

Table 6. Definition of the functions f and g

x x1 x2 x3 x4 x5

f(x) 0.1 0 0.9 0 0.8

x x1 x2 x3 x4 x5

g(x) 0.4 1 1 0.5 0

We focus on the operation ⊗γ
15 and choose α = 0.2 and β = 0.7 as thresholds,

which satisfy the hypothesis of Theorem 1. Therefore, by Tables 7 and 8, we can
view that S(0.2,0.7)(f ⊗0.7

15 g)(x) = S(0.2,0.7)(f)(x) ∗15 S(0.2,0.7)(g)(x), for each
x ∈ {x1, . . . , x5}, in line with Theorem 1.

Table 7. Definition of f ⊗0.7
15 g and S(0.2,0.7)(f ⊗0.7

15 g)

x x1 x2 x3 x4 x5

(f ⊗0.7
15 g)(x) 0.4 0 1 0.5 0

S(0.2,0.7)(f ⊗0.7
15 g)(x) [0,1] 0 1 [0,1] 0

Table 8. Definition of S(0.2,0.7)(f), S(0.2,0.7)(g), and S(0.2,0.7)f ∗15 S(0.2,0.7)g

x x1 x2 x3 x4 x5

S(0.2,0.7)(f)(x) 0 0 1 0 1

S(0.2,0.7)(g)(x) [0, 1] 1 1 [0, 1] 0

S(0.2,0.7)(f)(x) ∗15 S(0.2,0.7)(g)(x) [0, 1] 0 1 [0, 1] 0
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The next proposition determines the properties holding for the aggregation
functions of Definition 2. These last satisfy the same algebraic properties of
the corresponding operations on shadowed sets, except the idempotence that
exclusively holds for ⊗αβ

16 and ⊗γ
20.

Proposition 1. Let α, β, γ ∈ (0, 1) such that α < β. Then,

(a) ⊗γ
i and ⊗αβ

j are non-monotone and satisfy the boundary condition, for each
i ∈ {15, 20, 21} and for each j ∈ {16, 17, 18, 19};

(b) ⊗αβ
16 and ⊗γ

20 are idempotent and ⊗γ
15 ⊗γ

20 and ⊗δ
21 are commutative;

(c) ⊗γ
20 and ⊗γ

21 are associative;
(d) ⊗γ

20 has 1 as neutral element.

Proof.(a) We can show that ⊗γ
15 is non-monotone with a counterexample. Let

γ = 0.5.
– Consider 0.2 ≤ 0.3 and 0.4 ≤ 0.6. By (6), 0.2⊗0.5

15 0.4 = max(0.2, 0.4) = 0.4
and 0.3 ⊗0.5

15 0.6 = 0. Clearly, 0.2 ⊗0.5
15 0.4 > 0.3 ⊗0.5

15 0.6. Then, ⊗0.5
15 is not

increasing.
– Consider 0.2 ≤ 0.6 and 0.4 ≤ 0.7. By (6), 0.2⊗0.5

15 0.4 = max(0.2, 0.4) = 0.4
and 0.6 ⊗0.5

15 0.7 = 0.7. Clearly, 0.2 ⊗0.5
15 0.4 < 0.6 ⊗0.5

15 0.7. Then, ⊗0.5
15 is

not decreasing.
Similarly, we can prove that ⊗γ

20, ⊗γ
21, ⊗αβ

16 , ⊗αβ
17 , ⊗αβ

18 , and ⊗αβ
19 are non-

monotone.
It is easy to understand that ⊗γ

15 satisfies the boundary condition. Indeed,
it is trivial that 0 ⊗γ

15 0 = 0 from (6). Furthermore, 1 ⊗γ
15 1 cannot be 0

because γ < 1. Then, 1 ⊗γ
15 1 = max(1, 1) = 1.

Analogously, we can show that the boundary condition is satisfied by all
other operations of item (a).

(b) ⊗αβ
16 is idempotent: x ⊗αβ

16 x ∈ {min(x, x),max(x, x)} from (7). That is,
x⊗αβ

16 x = x. The same trivially holds for ⊗γ
20. The proof that ⊗γ

15,⊗γ
20, and

⊗γ
21 are commutative immediately follows from their definition.

(c) In order to show that ⊗γ
20 is associative, we have to distinguish several cases.

– Let x, y, z ∈ [0, 1] such that x, y, z ≤ γ. Then, both (x ⊗γ
20 y) ⊗γ

20 z and
x ⊗γ

20 (y ⊗γ
20 z) coincide with max(x, y, z).

– Let x, y, z ∈ [0, 1] such that x, y ≤ γ and z > γ. Then, two cases can occur:
x ≤ y < z or y ≤ x < z. If x ≤ y < z, then (x ⊗γ

20 y) ⊗γ
20 z = y⊗γ

20 = y
and x ⊗γ

20 (y ⊗γ
20 z) = x ⊗γ

20 y = y. Hence, (x ⊗γ
20 y) ⊗γ

20 z is equal to
x ⊗γ

20 (y ⊗γ
20 z). The case y ≤ x < z is symmetrical to the previous one,

so the related proof is omitted.
– We can easily verify that the the equality (x⊗γ

20 y)⊗γ
20 z = x⊗γ

20 (y⊗γ
20 z)

holds in all other cases.
The associativity of ⊗γ

21 can be analogously verified.
(d) Since γ < 1, x ⊗γ

20 1 = min(x, 1) = x for each x ∈ [0, 1] (see (11)).
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4.2 Aggregation Functions Generating Conditional-Event
Disjunctions on Shadowed Sets

The following is a list of classes of aggregation functions that correspond to
operations on shadowed sets deriving from the disjunctions of conditional events
defined in Subsect. 3.1.

Definition 3. Let α, β, γ ∈ (0, 1) such that α < β. Then,

x ⊕γ
15 y =

{
1 if y < γ ≤ x or x < γ ≤ y,

min(x, y) otherwise.
(15)

x ⊕αβ
16 y =

{
max(x, y) if y < α < β < x, or x < α < β < y,

min(x, y) otherwise.
(16)

x ⊕αβ
17 y =

{
0 if α ≤ y ≤ β < x, or α ≤ x ≤ β < y,

max(x, y) otherwise.
(17)

x ⊕αβ
18 y =

⎧
⎪⎨

⎪⎩

0 if α ≤ y ≤ β < x, or α ≤ x ≤ β < y,

min(x, y) if x, y ≤ β,

max(x, y) otherwise.
(18)

x ⊕αβ
19 y =

⎧
⎪⎨

⎪⎩

0 if α ≤ y ≤ β < x or α ≤ x ≤ β < y,

1 if y < α ≤ x ≤ β or x < α ≤ y ≤ β,

max(x, y) otherwise.
(19)

x ⊕γ
20 y =

{
min(x, y) if x, y ≥ γ,

max(x, y) otherwise.
(20)

x ⊕γ
21 y =

{
max(x, y) if x, y ≥ γ or x, y < γ,

1 otherwise.
(21)

The next Theorem shows the connection between the aggregation functions
of Definition 3 and the operations listed in Table 4.

Theorem 2. Let α, β ∈ (0, 1) such that α �= β and α ≤ 1/2 ≤ β. Then, let
f, g ∈ [0, 1]X ,

(a) S(α,β)(f ⊕α
i g) = S(α,β)(f) +i S(α,β)(g) for each i ∈ {15, 20, 21};

(b) S(α,β)(f ⊕αβ
i g) = S(α,β)(f) +i S(α,β)(g) for each i ∈ {16, 17, 18, 19}.

Proof. The proof is similar to that of Theorem 1. It follows from (1), Table 4,
and Definition 3.
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Table 9. Definition of f ⊕0.2
15 g and S(0.2,0.7)(f ⊕0.2

15 g)

x x1 x2 x3 x4 x5

(f ⊕0.2
15 g)(x) 1 1 1 1 1

S(0.2,0.7)(f ⊕0.2
15 g)(x) 1 1 1 1 1

Table 10. Definition of S(0.2,0.7)(f), S(0.2,0.7)(g), and S(0.2,0.7)f +15 S(0.2,0.7)g

x x1 x2 x3 x4 x5

S(0.2,0.7)(f)(x) 0 0 1 0 1

S(0.2,0.7)(g)(x) [0, 1] 1 1 [0, 1] 0

S(0.2,0.7)(f)(x) +15 S(0.2,0.7)(g)(x) 1 1 1 1 1

Example 2. Consider the functions f and g of Example 1. We focus on the
operation ⊕γ

15 and choose the thresholds α = 0.2 and β = 0.7, which sat-
isfy the hypothesis of Theorem 2. Therefore, by Tables 9 and 10, we can
view that S(0.2,0.7)(f ⊕0.2

15 g)(x) = S(0.2,0.7)(f)(x) +15 S(0.2,0.7)(g)(x), for each
x ∈ {x1, . . . , x5}, in line with Theorem 2.

We determine some properties holding for the aggregation functions of Def-
inition 3. These last satisfy the same algebraic properties of the corresponding
operations on shadowed sets, except the idempotence that exclusively holds for
⊕αβ

16 and ⊕γ
20.

Proposition 2. Let α, β, γ ∈ (0, 1) such that α < β. Then,

(a) ⊕γ
i and ⊕αβ

j are non-monotone and satisfy the boundary condition, for each
i ∈ {15, 20, 21} and j ∈ {16, 17, 18, 19};

(b) ⊕αβ
16 and ⊕γ

20 are idempotent;
(c) ⊕γ

15 ⊕γ
20 and ⊕γ

21 are commutative;
(d) ⊕γ

20 and ⊕γ
21 are associative;

(e) ⊕γ
20 has 0 as neutral element.

Proof. The proof is similar to that of Proposition 1 and it follows from Definition
3 and the items (i) − (v) of Subsect. 2.2.

Aggregation function of Definition 3 are the dual operations of those of Def-
inition 2, namely they fulfill Eq. (4).

Proposition 3. Let α, β, γ ∈ (0, 1) such that α < β, and let α′ = 1 − α, β′ =
1 − β and γ′ = 1 − γ. Then,

(a) ⊕γ′
i is the dual operation of ⊗γ

i for each i ∈ {15, 20, 21};
(b) ⊕β′α′

i is the dual operation of ⊗αβ
i for each i ∈ {16, 17, 18, 19}.

Proof. Consider the aggregation functions ⊕γ
15 and ⊗γ

15. Let x, y, z ∈ [0, 1], we
intend to show that x ⊕γ

15 y = 1 − ((1 − x) ⊗1−γ
15 (1 − y)). So, we have to analyze

all the possible cases.
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– Let y < γ ≤ x. By (15), x ⊕γ
15 y = 1. Moreover, y < γ ≤ x implies that

1− y ≤ 1− γ < 1−x. Consequently, (1− y)⊗1−γ
15 (1− y) = 0 from (6). Then,

1 − ((1 − y) ⊗1−γ
15 (1 − y)) = 1.

– Let x < γ ≤ y. The proof is symmetrical to that of the previous case. So, it
is omitted.

– Suppose that x, y < γ or x, y ≥ γ, then 1−x, 1−y > 1−γ or 1−x, 1−y ≤ γ.
Suppose that y ≤ x (the case x ≤ x is symmetrical). By (6) and (15), we get
x⊕γ

15 y = max(x, y) = x and (1−x)⊗1−γ
15 (1− y) = min(1−x, 1− y) = 1−x.

Hence, 1 − ((1 − y) ⊗1−γ
15 (1 − y)) = 1 − (1 − x) = x.

Analogously, we can verify the duality for the other pairs of aggregation func-
tions.

Example 3. Let γ = 0.5, we can easily check that 0.2⊕γ
150.8 = 1−((1−0.2)⊗1−γ

15

(1−0.8)). Indeed, 0.2⊕γ
150.8 = 1 and 1−((1−0.2)⊗1−γ

15 (1−0.8)) = 1−(0.8⊗1−γ
15

0.2) = 1 − 0 = 1.

4.3 Aggregation Functions Generating ∗C

We now define a class of aggregation functions corresponding to the consensus
operator on shadowed sets ∗C given in Subsect. 3.2 and preserving all properties
of ∗C .

Definition 4. Let α, β ∈ (0, 1) such that α < β. Then, we set

x ⊗αβ
C y =

⎧
⎪⎨

⎪⎩

min(x, y) if x, y ≤ β,

max(x, y) if x > β and y ≥ α, or y > β and x ≥ α
1/2 otherwise.

(22)

Theorem 3. Let α, β ∈ (0, 1) such that α �= β and α ≤ 1/2 ≤ β, then for each
f, g ∈ [0, 1]X , S(α,β)(f ⊗αβ

C g) = S(α,β)(f) ∗C S(α,β)(g).

Proof. The proof is similar to that of Theorem 1. It follows from (1), Table 5,
and Definition 4.

Example 4. Consider the functions f and g defined in Example 1. We choose
the thresholds α = 0.2 and β = 0.7, which satisfy the hypothesis of Theorem 3.

Therefore, by Tables 11 and 12, we can view that S(0.2,0.7)(f ⊗0.2 0.7
C g)(x) =

S(0.2,0.7)(f)(x) ∗C S(0.2,0.7)(g)(x), for each x ∈ {x1, . . . , x5}, in line with Theo-
rem 3.

Table 11. Definition of f ⊗0.2 0.7
C g and S(0.2,0.7)(f ⊗0.2 0.7

C g)

x x1 x2 x3 x4 x5

(f ⊗0.2 0.7
C g)(x) 0.1 0.5 1 0 0.5

S(0.2,0.7)(f ⊗0.2 0.7
C g)(x) 0 [0,1] 1 0 [0,1]
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Table 12. Definition of S(0.2,0.7)(f), S(0.2,0.7)(g), and S(0.2,0.7)f ∗C S(0.2,0.7)g

x x1 x2 x3 x4 x5

S(0.2,0.7)(f)(x) 0 0 1 0 1

S(0.2,0.7)(g)(x) [0, 1] 1 1 [0, 1] 0

S(0.2,0.7)(f)(x) ∗C S(0.2,0.7)(g)(x) 0 [0,1] 1 0 [0,1]

Proposition 4. Let α, β ∈ (0, 1) such that α < β. Then, ⊗αβ
C is commutative,

increasing, and non-associative. Moreover, it satisfies the boundary condition.

Proof. The proof is similar to that of Proposition 1 and it follows from Defini-
tion 4 and the items (i) − (iii), and (v) of Subsect. 2.2.

5 Conclusions and Future Works

This article defines new aggregation operators on shadowed sets and investigates
their correspondence with aggregation operators on fuzzy sets. The proposed
aggregation operators connect shadowed sets, conditional events, and orthpairs,
who all play important roles in uncertain reasoning and decision making. In
the paper, we mainly considered the applications of the latter two for shadowed
sets. It may also be useful to apply results of shadowed sets for the other two, to
achieve greater insight on the mutual connections among these knowledge repre-
sentation formalisms. In the future, we plan to extend this study by determining
aggregation functions that can be approximated by shadowed set operations by
means of transformations different from equation (1). Also, as mentioned in [2],
we could start from our results to find the way to approximate many-valued
logics with three-valued (or more generally n-valued) logics.
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Abstract. We are considering the algebraic structure of the Pawlak-
Brouwer-Zadeh lattice to distinguish vagueness due to imprecision from
ambiguity due to coarseness. We show that a general class of many-
valued logics useful for reasoning about data emerges from this context.
All these logics can be obtained from a very general seven-valued logic
which, interestingly enough, corresponds to a reasoning system developed
by Jaina philosophers four centuries BC. In particular, we show how the
celebrated Belnap four-valued logic can be obtained from the very general
seven-valued logic based on the Pawlak-Brouwer-Zadeh lattice.

1 Introduction

The Brouwer-Zadeh lattice [7] was introduced as an algebraic structure to handle
vagueness through representation of each concept X of universe U by pair (A,B),
A,B ⊆ U,A ∩ B = ∅, where A is the necessity kernel (the set of objects from U
belonging to X without any doubt) and B is the non-possibility kernel (the set of
objects from U that for sure do not belong to X). In rough set theory [15,16], the
Brouwer-Zadeh lattice can be seen as an abstract model [4–6] representing each
concept X through pair of elements (A,B) where A is the lower approximation
(interior) and B is the complement of the upper approximation (exterior) of
X. In [10], an extension of the Brouwer-Zadeh lattice, called Pawlak-Brouwer-
Zadeh lattice, has been proposed, where a new operator, called Pawlak operator,
assigns the pair (C,D) to each concept X represented by pair (A,B), such that
C and D represent the lower approximations of A and B, respectively. The
rough set theory of Pawlak operator has been discussed in [12]. In this paper,
we reconsider the Pawlak-Brouwer-Zadeh lattice from Pawlak’s perspective of
reasoning about data [16] and Belnap’s idea of automated computer reasoning
[1]. In particular, we demonstrate that within the Pawlak-Brouwer-Zadeh lattice,
several many-valued logics naturally arise from a very general seven-valued logic,
which is useful for modeling automated data reasoning. It is interesting to observe
that this seven-valued logic corresponds to a reasoning system of argumentation
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proposed by Jaina philosophers four centuries BC [3,18]. Furthermore, the seven-
valued logic is interesting from a cognitive psychology perspective. According
to the influential and highly cited article ’The Magical Number Seven, Plus
or Minus Two: Some Limits on Our Capacity for Processing Information’ by
Miller [13], it is suggested that individuals can effectively handle approximately
seven stimuli simultaneously. This limit applies to both one-dimensional absolute
judgment and short-term memory.

To give an intuition of the seven-valued logic and the other logics deriving
from it, let us consider the following example. Consider a database contain-
ing data about the symptoms and related diagnosed diseases for a number of
patients. We can imagine that for each considered disease, there are three pos-
sible types of diagnosis:

– the patient has the disease,
– the patient does not have the disease,
– it cannot be said whether the patient has or not the disease (because, for

instance, other tests have to be done).

On the other hand, for each patient x there may be a number of patients in
the database with the same symptoms. In this situation, it seems reasonable to
analyze the database by classifying patients according to the diagnoses received
by them and all other patients with the same symptoms. Proceeding in this
way, there will be seven possible states of truth of the following proposition:
“A patient with the same symptoms as x has the disease”. Let us name this
proposition by DISx and enumerate the possible cases:

– all the patients with the same symptoms as x have the disease, so that,
according to the available data, proposition DISx is true,

– some patients with the same symptoms as x have the disease and for the
others one cannot say if there is or not the disease, so that, according to the
available data, proposition DISx is sometimes true,

– for all the patients with the same symptoms as x one cannot say if there is or
not the disease, so that, according to the available data, proposition DISx is
unknown,

– some of the patients with the same symptoms as x have the disease and
the others have not the disease, so that, according to the available data,
proposition DISx is contradictory,

– among the patients with the same symptoms as x there are some with the
disease, some without the diseases and some for which one does not know if
there is or not the disease, so that, according to the available data, proposition
DISx is fully contradictory,

– some patients with the same symptoms as x do not have the disease and for
the others one cannot say if there is or not the disease, so that, according to
the available data, proposition DISx is sometimes false,

– all the patients with the same symptoms as x have not the disease, so that,
according to the available data, proposition DISx is false.
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The above seven situations are, of course, very detailed, so for practical reasons
it could be more convenient to aggregate some of them. For example, one could
distinguish between the following two situations, the first of which would suggest
some treatment, while in the second situation it would be more appropriate to
wait for the possible appearance of some other symptoms:

– the case in which among the patients with the same symptoms there is some
patient with the disease and there is no patient without the disease, that is
the case in which proposition DISx is true or sometimes true, and

– the other cases.

To support decisions about triage, a reasonable approach could be the following:

– if proposition DISx is true or sometimes true, patient x should be hospital-
ized,

– if proposition DISx is false or sometimes false, patient x should not be hos-
pitalized,

– in all other cases, an expert doctor should be called to examine patient x to
make the decision about hospitalization.

To diagnose a complex disease, the database could be used as follows:

– if proposition DISx is true or sometimes true, patient x is diagnosed as
having the disease,

– if proposition DISx is unknown, some further medical tests are required for
patient x,

– if proposition DISx is contradictory or fully contradictory, an expert doctor
should be called to examine patient x to make the diagnosis,

– if proposition DISx is false or sometimes false, patient x is not diagnosed as
having the disease.

One can see that the basic case related to the general database query defines
a seven-valued logic with truth values “true”, “sometimes true”, “unknown”,
“contradictory”, “fully contradictory”, “sometimes false” and “false”. The rea-
soning about the treatment decision is based on a two-valued logic - apply or not
the treatment - derived from the basic seven-valued logic. The envisaged pro-
tocol for triage gives an example of a three valued-logic grounded again on the
basic seven-valued logic. Finally, the diagnostic procedure proposes a possible
four-valued logic that can also be obtained from the seven-valued logic.

Let us explain now how the basic seven-valued logic is related to the rough
set concept and to the Pawlak-Brouwer-Zadeh lattice. First, observe that the set
of all patients in the data set having the same symptoms as patient x represents
the equivalence class [x]R with respect to the indiscernibility relation R defined
in terms of symptoms on universe U which is the data set of patients. In other
words, we consider indiscernible two patients w and z in the data set if w has
the same symptoms as z. Observe that each disease is represented in the data
set by pair (A,B) where A is the set of patients from U having the disease, and
B is the set of patients from U not having the disease. The operators of the
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Pawlak-Brouwer-Zadeh lattice permit to define other interesting sets of patients
from U . For example, applying the Brouwer negation to (A,B) we get (A,B)≈ =
(B,U − B), and consequently we obtain set U − B, i.e., the complement in U of
the set of patients without the disease, or, in other words, the set of patients for
whom there is the disease or it is unknown if there is the disease. In the same
perspective, applying the Kleene negation (A,B)− = (B,A) and the Brouwer
negation to (A,B) we obtain (A,B)−≈ = (A,U − A), so that we get set U − A,
i.e., the complement in U of the set of patients with the disease, or, in other
words, the set of patients for whom there is not the disease or it is unknown if
there is or there is not the disease. Other interesting sets that can be obtained
using the operators of the Pawlak-Brouwer-Zadeh lattice are A ∪ B, i.e., the
set of all patients for whom there is the disease or there is not the disease,
and U − A − B, i.e., the set of all patients for whom it is unknown if there
is or there is not the disease. Applying rough set theory, we can compute the
lower and the upper approximation of the above mentioned sets of patients from
U . For example, the set of patients x from U for whom all the other patients
with the same symptoms have the disease constitutes the lower approximation
of A denoted by RA. The set of all patients x from U for whom there is at
least one patient with the same symptoms that has the disease constitutes,
instead, the upper approximation of A denoted by RA. Within the Pawlak-
Brouwer-Zadeh lattice, the rough approximation can be obtained through the
application of the Pawlak operator that assigns pair (RA,RB) to pair (A,B),
that is (A,B)L = (RA,RB). Remembering that RA = U − R(U − A), using the
Pawlak operator and the other operators of the Pawlak-Brouwer-Zadeh lattice we
can obtain the upper approximation of set A starting from pair (A,B) as follows:
(A,B)−≈L≈ = (U − R(U − A), R(U − A)) = (R(A), R(U − A)). Analogously,
starting from pair (A,B), one can obtain all the following rough approximations:
RA,RB,R(U −A−B), R(U −A), R(U −B), R(A∪B), RA,RB,R(U −A−B).
Using these rough approximations we can define all the truth values of the seven-
valued logic as follows:

– set of patients from U for whom proposition DISx is true: RA,
– set of patients from U for whom proposition DISx is sometimes true:

R(U − B) ∩ RA ∩ R(U − A − B),
– set of patients from U for whom proposition DISx is unknown:

R(U − A − B),
– set of patients from U for whom proposition DISx is contradictory:

R(A ∪ B) ∩ RA ∩ RB,
– set of patients from U for whom proposition DISx is fully contradictory:

RA ∩ RB ∩ R(U − A − B),
– set of patients from U for whom proposition DISx is sometimes false:

R(U − A) ∩ RB ∩ R(U − A − B),
– set of patients from U for whom proposition DISx is false: RB.

Using the truth values of the seven-valued logic and the operators of the Pawlak-
Brouwer-Zadeh lattice, one can reconstruct all the other logics derived from the
aggregation of some of the seven truth values. For example, the truth values of
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the above mentioned two-valued logic for decisions about the treatment can be
formulated as follows:

– set of patients from U for whom proposition DISx is true or sometimes true:
RA ∪ (R(U − B) ∩ RA ∩ R(U − A − B)) = R(U − B) ∩ RA, and

– the other cases: R(U −A−B)∪ (R(A∪B)∩RA∩RB)∪ (RA∩RB ∩R(U −
A − B)) ∪ (R(U − A) ∩ RB ∩ R(U − A − B)) ∪ RB = U − R(U − B) =
RB ∪ R(U − A − B).

The framework we have discussed is also related to three-way decision which
is an interesting research line that has been deeply investigated in recent years
(see [19] for a survey). In fact, the three basic truth values - true, false, unknown
- define a three-valued logic, and the derived seven-valued logic is based on the
non-empty subsets of {true, false, unknown}.

This paper presents all the above considerations formally and in detail. It is
organized as follows. In the next section, we recall the Pawlak-Brouwer-Zadeh
lattice and the basic elements of rough set theory. In the following section, we
present the seven-valued logic and the other logics that can be derived from it.
The last section collects conclusions.

2 The Pawlak-Brouwer-Zadeh Distributive de Morgan
Lattices and Indiscernibility-Based Rough Set Theory

This section recalls the Pawlak-Brouwer-Zadeh distributive De Morgan lattices
[10] and shows it as an abstract model of the classical rough set model based on
indiscernibility.

A system 〈Σ,∧,∨,′ ,∼ , 0, 1〉 is a quasi-Brouwer-Zadeh distributive lattice [7]
if the following properties (1)–(4) hold:

(1) Σ is a distributive lattice with respect to the join and the meet operations
∨, ∧ whose induced partial order relation is

a ≤ b iff a = a ∧ b (equivalently b = a ∨ b)

Moreover, it is required that Σ is bounded by the least element 0 and the
greatest element 1:

∀a ∈ Σ, 0 ≤ a ≤ 1

(2) The unary operation ′ : Σ → Σ is a Kleene (also Zadeh or fuzzy) comple-
mentation. In other words, for arbitrary a, b ∈ Σ,

(K1) a′′ = a,
(K2) (a ∨ b)′ = a′ ∧ b′,
(K3) a ∧ a′ ≤ b ∨ b′.
(3) The unary operation ∼ : Σ → Σ is a Brouwer (or intuitionistic) comple-

mentation. In other words, for arbitrary a, b ∈ Σ,
(B1) a ∧ a∼∼ = a,
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(B2) (a ∨ b)∼ = a∼ ∧ b∼,
(B3) a ∧ a∼ = 0.
(4) The two complementations are linked by the interconnection rule which

must hold for arbitrary a ∈ Σ:
(in) a∼ ≤ a′.

A structure 〈Σ,∧,∨,′ ,∼ , 0, 1〉 is a Brouwer-Zadeh distributive lattice if it is a
quasi-Brouwer-Zadeh distributive lattice satisfying the stronger interconnection
rule:

(s-in) a∼∼ = a∼′.
A Brouwer-Zadeh distributive lattice satisfying the ∨ De Morgan property:

(B2a) (a ∧ b)∼ = a∼ ∨ b∼

is called a De Morgan Brouwer-Zadeh distributive lattice.
An approximation operator, called Pawlak operator [10], on a De Morgan

Brouwer-Zadeh distributive lattice is an unary operation A : Σ → Σ for which
the following properties hold: for a, b ∈ Σ

A1) aA′ = a′A;
A2) a ≤ b implies bA∼ ≤ aA∼;
A3) aA∼ ≤ a∼ ;
A4) 0A = 0;
A5) a∼ = b∼ implies aA ∧ bA = (a ∧ b)A;
A6) aA ∨ bA ≤ (a ∨ b)A;
A7) aAA = aA;
A8) aA∼A = aA∼;
A9) (aA ∧ bA)A = aA ∧ bA.

2.1 Pawlak-Brouwer-Zadeh Lattices and Rough Set Theory

A knowledge base K = (U,R) is a relational system where U �= ∅ is a finite set
called the universe and R is an equivalence relation on U . For any x ∈ U , [x]R
is its equivalence class. The quotient set U/R is composed of all the equivalence
classes of R on U . Given the knowledge base K = (U,R), one can associate the
two subsets RX and RX to each subset X ⊆ U :

RX = {x ∈ U : [x]R ⊆ X},

RX = {x ∈ U : [x]R ∩ X �= ∅}.
RX and RX are called the lower and the upper approximation of X, respectively.

Let us consider the set of all pairs 〈A,B〉 such that A,B ⊆ U and A∩B = ∅.
We denote by 3U the set of these pairs, i.e.,

3U = {〈A,B〉 : A,B ⊆ U and A ∩ B = ∅}.
Given a knowledge base K = (U,R), we can define an unary operator L :

3U → 3U , as follows: for any 〈A,B〉 ∈ 3U

〈A,B〉L = 〈RA,RB〉 .
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Let us consider the following operations on 3U :

〈A,B〉 � 〈C,D〉 = 〈A ∩ C,B ∪ D〉 ,
〈A,B〉 � 〈C,D〉 = 〈A ∪ C,B ∩ D〉 ,

〈A,B〉− = 〈B,A〉 ,
〈A,B〉≈ = 〈B,U − B〉 .

(1)

The following results hold [10].

Proposition 1. The structure
〈
3U ,�,�,− ,≈ ,L , 〈∅, U〉 , 〈U, ∅〉〉 is a Pawlak-

Brouwer-Zadeh lattice.

Proposition 2. For every Pawlak-Brouwer-Zadeh lattice LPBZ =〈
Σ,∧,∨,′ ,∼ ,A , 0, 1

〉
, satisfying the condition

(P) there exists c ∈ Σ for which c = c′,

there is a knowledge base K = (U,R) such that the structure

RSPBZ(U,R) =
〈
3U ,�,�,− ,≈ ,L , 〈∅, U〉 , 〈U, ∅〉〉

is isomorphic to LPBZ .

3 The Seven-Valued Logic of the Pawlak-Brouwer-Zadeh
Lattice

In the following, we shall identify a set S ⊆ U with the pair 〈S,U − S〉. Given a
knowledge base K = (U,R), for each pair a = 〈A,B〉 , A,B ⊆ U,A ∩ B = ∅, the
following sets can be considered:

– the true part of 〈A,B〉:
T(A,B)
= {x ∈ U : [x]R ⊆ A} = RA = 〈A,B〉L−≈ = aA′∼,

– the sometimes true part of 〈A,B〉:
sT (A,B)
= {x ∈ U : [x]R ⊆ (U − B), [x]R ∩ A �= ∅ and [x]R ∩ (U − A − B) �= ∅}
= R(U − B) ∩ RA ∩ R(U − A − B)

= 〈A,B〉≈L≈ �
(
〈A,B〉≈− � 〈A,B〉−≈−

)L≈−
� 〈A,B〉−≈L≈−

= a∼A∼ ∧ (a∼′ ∧ a′∼′)A∼′ ∧ a′∼A∼′,
– the unknown part of 〈A,B〉:

U(A,B)
= {x ∈ U : [x]R ⊆ U − A − B} = R(U − A − B) =
(
〈A,B〉≈− � 〈A,B〉−≈−

)L−≈

= (a∼′ ∧ a′∼′)A′∼,
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– the contradictory part of 〈A,B〉:
K(A,B)
= {x ∈ U : [x]R ⊆ A ∪ B, [x]R ∩ B �= ∅ and [x]R ∩ A �= ∅}
= R(A ∪ B) ∩ RA ∩ RB =

=
(
〈A,B〉 � 〈A,B〉−

)L−≈
� 〈A,B〉−≈L≈− � 〈A,B〉≈L≈−

= (a ∨ a′)A′∼ ∧ a′∼A∼′ ∧ a∼A∼′,
– the fully contradictory part of 〈A,B〉:

fK(A,B)
= {x ∈ U : [x]R ∩ A �= ∅, [x]R ∩ B �= ∅ and [x]R ∩ (U − A − B) �= ∅}
= RA ∩ RB ∩ R(U − A − B)

= 〈A,B〉−≈L≈− � 〈A,B〉≈L≈− �
(
〈A,B〉≈− ∧ 〈A,B〉−≈−

)L≈−

= a′∼A∼′ ∧ a∼A∼′ ∧ (a∼′ ∧ a′∼′)A∼′,
– the sometimes false part of 〈A,B〉:

sF (A,B)
= {x ∈ U : [x]R ⊆ (U − A), [x]R ∩ B �= ∅ and [x]R ∩ (U − A − B) �= ∅} =
R(U − A) ∩ RB ∩ R(U − A − B)

= 〈A,B〉−≈L≈ �
(
〈A,B〉≈− � 〈A,B〉−≈−

)L≈−
� 〈A,B〉−≈L≈−

= a′∼A∼ ∧ (a∼′ ∧ a′∼′)A∼′ ∧ a′∼A∼′,
– the false part of 〈A,B〉:

F(A,B)
= {x ∈ U : [x]R ⊆ B} = RB = 〈A,B〉L≈ = aA∼.

The truth values of the seven-valued logic can be represented by the lattice in
Fig. 1.

Fig. 1. Seven-valued logic truth value lattice



224 S. Greco and R. S�lowiński

Let us remark that truth value operators of the seven-valued logic can be
characterized in terms of upper approximations RA,RB and R(U − A − B) as
follows: for all x ∈ U

– x ∈ T(A,B) = x ∈ RA ∧ x /∈ RB ∧ x /∈ R(U − A − B),
– x ∈ sT (A,B) = x ∈ RA ∧ x /∈ RB ∧ x ∈ R(U − A − B),
– x ∈ U(A,B) = x /∈ RA ∧ x /∈ RB ∧ x ∈ R(U − A − B),
– x ∈ K(A,B) = x ∈ RA ∧ x ∈ RB ∧ x /∈ R(U − A − B),
– x ∈ fK(A,B) = x ∈ RA ∧ x ∈ RB ∧ x ∈ R(U − A − B),
– x ∈ sF (A,B) = x /∈ RA ∧ x ∈ RB ∧ x ∈ R(U − A − B),
– x ∈ F(A,B) = x /∈ RA ∧ x ∈ RB ∧ x /∈ R(U − A − B).

Observe that for all A,B ⊆ U,A ∩ B = ∅,

T(A,B) ∪ sT (A,B) ∪U(A,B) ∪K(A,B) ∪ fK(A,B) ∪ sF (A,B) ∪F(A,B) = U

and for all pairs (O1,O2) with O1,O2 ∈ O= {T, sT ,U,K, fK, sF ,F} with
O1 �= O2

O1(A,B) ∩ O2(A,B) = ∅.

Several aggregations of the truth value operators in O are interesting. Among
them, the following upward and downward aggregations are particularly inter-
esting:

– the at least true part of 〈A,B〉: T↑(A,B) = T(A,B),
– the at least sometimes true part of 〈A,B〉:

sT ↑(A,B) = sT (A,B) ∪ T(A,B)
= {x ∈ U : [x]R ⊆ U − B and [x]R ∩ A �= ∅} = R(U − B) ∩ RA

= 〈A,B〉≈L≈ � 〈A,B〉−≈L≈− = a∼A∼ ∧ a′∼A∼′,
– the at least unknown part of 〈A,B〉:

U↑(A,B) = U(A,B) ∪ sT (A,B) ∪ T(A,B)
= {x ∈ U : [x]R ⊆ U − B} = R(U − B)
= 〈A,B〉≈L≈ = a∼A∼,

– the at least contradictory part of 〈A,B〉:
K↑(A,B) = K(A,B) ∪ sT (A,B) ∪ T(A,B)
= {x ∈ U : ([x]R ⊆ (A ∪ B) or [x]R ⊆ (U − B)) and [x]R ∩ A �= ∅}
= (R(A ∪ B) ∪ R(U − B)) ∩ RA

=
(
(〈A,B〉 � 〈A,B〉−)L−≈ � 〈A,B〉≈L≈

)
� 〈A,B〉−≈L≈−

=
(
(a ∨ a′)A′∼ ∨ a∼A∼) ∨ a′∼A∼′,

– the at least fully contradictory part of 〈A,B〉:
fK↑(A,B) = fK(A,B) ∪ sT (A,B) ∪ T(A,B)
= {x ∈ U : [x]R ⊆ A or ([x]R ∩ A �= ∅ and [x]R ∩ (U − A − B) �= ∅}
= RA ∪ (RA ∩ R(U − A − B)

= 〈A,B〉L−≈ � (〈A,B〉−≈L≈− �
(
〈A,B〉≈− � 〈A,B〉−≈−

)L≈−

= aA′∼ ∨ (
a′∼A∼′ ∧ (a∼′ ∧ a′∼′)A∼′),
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– the at least sometimes false part of 〈A,B〉:
sF ↑(A,B) = sF (A,B)∪U(A,B)∪K(A,B)∪ fK(A,B)∪sT (A,B)∪T(A,B)
= {x ∈ U : [x]R ∩ (U − B) �= ∅} = R(U − B) = 〈A,B〉L≈− = aA∼′,

– the at least false part of 〈A,B〉:
F↑(A,B) = U = 〈U, ∅〉 = 1,

– the at most false part of 〈A,B〉: F↓(A,B) = F(A,B),
– the at most sometimes false part of 〈A,B〉:

sT ↓(A,B) = sF (A,B) ∪ F(A,B)
= {x ∈ U : [x]R ⊆ U − A and [x]R ∩ B �= ∅} = R(U − A) ∩ RF

= 〈A,B〉−≈L≈ � 〈A,B〉≈L≈− = a′∼A∼ ∧ a∼A∼′,
– the at most unknown part of 〈A,B〉:

U↓(A,B) = U(A,B) ∪ sF (A,B) ∪ F(A,B)
= {x ∈ U : [x]R ⊆ U − A} = R(U − A)
= 〈A,B〉−≈L≈ = a′∼A∼,

– the at most contradictory part of 〈A,B〉:
K↓(A,B) = K(A,B) ∪ sF (A,B) ∪ F(A,B)
= {x ∈ U : ([x]R ⊆ (A ∪ B) or [x]R ⊆ (U − A)) and [x]R ∩ B �= ∅}
= (R(A ∪ B) ∪ R(U − A)) ∩ RB

=
(
(〈A,B〉 � 〈A,B〉−)L−≈ � 〈A,B〉−≈L≈

)
� 〈A,B〉≈L≈−

=
(
(a ∨ a′)A′∼ ∨ a′∼A∼) ∨ a∼A∼′,

– the at most fully contradictory part of 〈A,B〉:
fK↓(A,B) = fK(A,B) ∪ sF (A,B) ∪ F(A,B)
= {x ∈ U : [x]R ⊆ B or ([x]R ∩ B �= ∅ and [x]R ∩ (U − A − B) �= ∅}
= RB ∪ (RB ∩ R(U − A − B)

= 〈A,B〉L≈ � (〈A,B〉≈L≈− �
(
〈A,B〉≈− � 〈A,B〉−≈−

)L≈−

= aA∼ ∨ (
a∼A∼′ ∧ (a∼′ ∧ a′∼′)A∼′),

– the at most sometimes true part of 〈A,B〉:
sT ↓(A,B) = sT (A,B)∪U(A,B)∪K(A,B)∪ fK(A,B)∪sF (A,B)∪F(A,B)
= {x ∈ U : [x]R ∩ (U − A) �= ∅} = R(U − A) = 〈A,B〉L−≈ = aA′∼,

– the at most true part of 〈A,B〉:
T↓(A,B) = U = 〈U, ∅〉 = 1.

Let us consider the set of the upward truth value operators
O↑ = {T↑, sT↑,U↑,K↑, fK↑, sF↑,F↑}
and the set of the downward truth value operators
O↓ = {T↓, sT↓,U↓,K↓, fK↓, sF↓,F↓}.
On the basis of O↑ and O↓ one n-valued logic with respect to the knowledge

base K = (U,R) is defined by the set of truth value operators (O1, . . . , On) such
that, for all A,B ⊆ U,A ∩ B = ∅, we have

– for all i = 1, . . . , n
• either Oi(A,B) = M1(A,B) ∪ . . . ∪ Mk(A,B) with M1, . . . ,Mk ∈ O↑ or
• Oi(A,B) = M1(A,B) ∪ . . . ∪ Mk(A,B) with M1, . . . ,Mk ∈ O↓ or
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• Oi(A,B) =
(

M1(A,B) ∪ . . . ∪ Mh(A,B)
)

∩
(

Mh+1(A,B) ∪ . . . ∪

Mk(A,B)
)

with M1, . . . ,Mh ∈ O↑ and Mh+1, . . . ,Mk ∈ O↓,

and
– for all Oi, Oj ∈ (O1, . . . On), Oi(A,B) ∩ Oj(A,B) = ∅,
–

⋃n
i=1 Oi(A,B) = U .

Among the many posible logics that can be defined in this way, consider the
Belnap four-valued logic [2] defined by the set of truth value operators

(TBelnap,UBelnap,KBelnap,FBelnap)

with

– TBelnap(A,B) = sT ↑(A,B) = T(A,B) ∪ sT (A,B) = RA ∩ R(U − B),
– UBelnap(A,B) = U(A,B) = U↑(A,B) ∩ U↓(A,B) = R(U − A − B),
– KBelnap(A,B) = (K↑(A,B) ∪ fK↑(A,B)) ∩ (K↓(A,B) ∪ fK↓(A,B)) =

K(A,B) ∪ fK(A,B) = RA ∩ RB,
– FBelnap(A,B) = sF ↑(A,B) = F(A,B) ∪ sF (A,B) = RB ∩ R(U − A).

The above Belnap four-valued logic can be interpreted in terms of rough approx-
imations as follows. Consider the knowledge base K = (U,R), x ∈ U , and the
concept 〈A,B〉 ∈ 3U . For all x ∈ U we have

– [x]R ∩ A �= ∅, i.e., x ∈ RA, is an argument for truth,
– [x]R ∩ B �= ∅, i.e., x ∈ RB, is an argument for falsehood.

Consequently,

– if x ∈ RA and x /∈ RB, there are arguments for truth and there are no
arguments for falsehood, so that x ∈ TBelnap(A,B),

– if x /∈ RA and x /∈ RB (which is equivalent to x ∈ R(U − A − B)), there
are no arguments for truth and there are no arguments for falsehood, so that
x ∈ UBelnap(A,B),

– if x ∈ RA and x ∈ RB , there are arguments for truth and there are arguments
for falsehood, so that x ∈ KBelnap(A,B),

– if x /∈ RA and x ∈ RB, there are no arguments for truth and there are
arguments for falsehood, so that x ∈ FBelnap(A,B).

Comparing the truth value operators of seven-valued logic, expressed in terms of
upper approximations RA,RB and R(U −A−B), with the Belnap’s truth value
operators of the four-valued logic reveals that the latter is different because it
does not consider R(U − A − B).
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4 Conclusions

The seven-valued logic considered in this paper naturally arises within the rough
set framework, allowing to distinguish vagueness due to imprecision from ambi-
guity due to coarseness. We discussed the usefulness of this seven-valued logic
for reasoning about data. We showed that the Pawlak-Brouwer-Zadeh lattice is
the proper algebraic structure for this seven-valued logic. We proposed also a
general framework permitting to obtain other interesting many-valued logics by
aggregation of truth value operators in the basic seven-valued logic. We plan
to continue our research in this direction, investigating typical rough set topics,
such as calculation of reducts and rule induction. We intend also to extend the
seven-valued logic to reasoning about ordered data using the dominance-based
rough set approach [8] and the related bipolar Pawlak-Brouwer-Zadeh lattice
[9,11]. Another interesting line of research we want to pursue is related to inves-
tigation of connections with other algebra models for rough sets such as Nelson
algebra, Heyting algebra, �Lukasiewicz algebra, Stone algebra and so on (see, e.g.,
Chap. 12 in [17]). We also propose to study the relations between the rough set
approach we adopted to obtain the seven-valued logic and the other logics that
can be derived from it, and the approach presented in [14] that derives four-
valued logic from variable precision rough set model [20]. Finally, with respect
to the seven-valued logic we proposed, we plan to investigate the tableau calculi
for deduction systems, taking into account also soundness and completeness.
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Abstract. Nowadays, the researches of conflict analysis are increasing
with the development of three-way decisions, and three-way decisions
with rankings and reference tuples provides new perspectives for conflict
analysis. In this paper, we first divide a whole set of issues into a bundle
of supported issues and a bundle of non-supported issues, and a bundle of
opposed issues and a bundle of non-opposed issues, respectively, from the
perspectives of support and opposition. Accordingly, we give two rank-
ing orders and two reference tuples. Then, we put forward alliance and
conflict measures by considering weights of issues, and develop models of
three-way conflict analysis with ideas of rankings and reference tuples.
Finally, we show how to compute the alliance, neutral and conflict coali-
tions with the proposed models. It provides an attempt to study conflict
problems with thoughts of rankings and reference tuples.

Keywords: Conflict analysis · Ranking order · Reference tuple ·
Three-way decisions

1 Introduction

Three-way decisions, given by Yiyu Yao [23] in 2010, is a philosophy of thinking
and working with the thought of threes. It divides an object set into three regions
by using evaluation functions. Accordingly, three disjoint regions correspond to
three different actions. After that, researchers [5,6,21,25–27,29] have investi-
gated and enriched three-way decisions in theoretical and application aspects.

Conflict analysis aims to study the essence of conflicts and give feasible strate-
gies for solving conflicts. For example, Pawlak [11,12] depicted conflict problems
by a three-valued situation table, and defined alliance, conflict and neutral rela-
tions between two agents. Afterwards, Deja [1] took rough sets to construct mod-
els of conflict analysis and studied their applications. Recently, three-way con-
flict analysis [2–4,7–10,13,15–17,22,24,28,30] has attracted increasing amounts
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Campagner et al. (Eds.): IJCRS 2023, LNAI 14481, pp. 231–245, 2023.
https://doi.org/10.1007/978-3-031-50959-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50959-9_16&domain=pdf
https://doi.org/10.1007/978-3-031-50959-9_16


232 S. Liu et al.

of attention. For example, Du et al. [2] designed effective models of conflict anal-
ysis by using Pythagorean fuzzy information. Feng, Yang and Guo [3] clustered
agents whose attitudes are described by dual hesitant fuzzy numbers. Hu [4]
unified conflict analysis models within the framework of subsethood measures.
Lang and Yao [8] studied conflict problems by changing situation tables into
formal contexts. Li, Qiao and Ding [9] supplied conflict resolutions by using q-
rung orthopair fuzzy information. Suo and Yang [15] clustered agent pairs when
attitudes of agents on issues are missing or lost. Yao [24] put forward three-way
conflict analysis by combining three-way decisions with conflict analysis. Zhi, Li
and Li [30] performed multi-level conflict analysis so as to build the maximal
coalitions.

Another research direction is three-way decisions with rankings and reference
tuples. In the year of 2021, Xu, Jia and Li [18] provided matching functions by
combining a ranking of an attribute set and a reference tuple, and designed a
two-universe model of three-way decisions with matching functions. Xu, Jia and
Li [19] developed a generalized three-way decision model by using rankings and
reference tuples, and studied how to get the optimal division. Xu, Jia and Li [20]
introduced two three-way decision models for hybrid information tables by using
rankings and references, and showed how to get the local and global optimal
divisions. In three-way decisions with rankings and references, it first divides an
attribute set into two disjoint parts, and gives a ranking order on the two disjoint
parts and a reference tuple. After that, it discusses the relationship between an
object and the reference tuple, and trisects an object set into three disjoint parts.
That is, the two disjoint subsets of attributes help us to discuss the relationship
between an object and the reference tuple from two different perspectives. To
solve conflicts, Sun, Ma and Zhao [14] designed models of conflict analysis based
on rough sets on two universes. When it divides a set of agents into three disjoint
parts, they only consider the relationship between agents and a subset of issues,
and does not consider the relationship between agents and its complement. If we
neglect the relationship between agents and the rest issues, it will result in some
imprecise partitions of the set of agents. It motivates us to divide a whole set of
issues into a bundle of supported issues and a bundle of non-supported issues,
and a bundle of opposed issues and a bundle of non-opposed issues, respectively,
in terms of support and opposition. The two divisions of the set of issues help us
to describe the relationship between an agent and the reference tuple from two
different perspectives. That is, three-way decisions with rankings and reference
tuples gives a new and useful tool for conflict analysis.

For conflict problems depicted by three-valued situation tables, we design
three-way conflict analysis models with thoughts of rankings and reference
tuples. The contributions are briefly summarized as follows:

(1) From the perspective of support, we divide a whole set of issues into a
bundle of supported issues and a bundle of non-supported issues. Similarly,
from the perspective of opposition, a set of issues is divided into a bundle of
opposed issues and a bundle of non-opposed issues. That is, a whole set of
issues is divided into two disjoint parts in terms of support and opposition.
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Correspondingly, we define two ranking orders for the two divisions of the
set of issues and the support and opposition reference tuples.

(2) We define alliance and conflict measures by considering weights of issues, two
ranking orders, and the support and opposition reference tuples. Afterwards,
we discuss the relationship between an agent and the support and opposition
references. Afterwards, we develop two three-way conflict analysis models
by considering rankings and reference tuples, and design two algorithms for
dividing an agent set with regard to the support and opposition references.
We employ an example to show how to compute the alliance, neutral and
conflict coalitions with the two proposed models.

The rest of this paper is listed as follows: Sect. 2 reviews three-way decisions
with rankings and reference tuples. Section 3 provides three-way conflict analysis
models by considering rankings and reference tuples. Section 4 shows how to use
the proposed models with an example. Section 5 gives the conclusion.

2 Preliminaries

In this section, we recall three-way decisions by using rankings and references.

Definition 1 (Xu [18], 2021). An information table is a quadruple S =
(U,C, V, f), where U is an object set, C is an attribute set, and V =

⋃{Vc |
c ∈ C}, in which Vc stands for a range of attribute values of all objects on c,
and f : U × C → V .

For any c ∈ C, if the set of attribute values Vc only contains two values 0 and
1, we refer to this type of information tables as two-valued information tables.
That is, all objects take attribute values from the set {0, 1}.

Definition 2 (Xu [18], 2021). For S = (U,C, V, f), a ranking order �r divides
set C into disjoint sets Ch and Cl such that C = Ch ∪Cl and Cl �r Ch, in which
Ch and Cl stand for the high-level and low-level sets of attributes, respectively.

The set C is divided into two disjoint parts Ch and Cl by the ranking order
�r, and Cl �r Ch means that the ranking of Ch is higher than that of Cl.

Definition 3 (Xu [18], 2021). For S = (U,C, V, f), an m-tuple xr = (f(xr, c1),
f(xr, c2), . . . , f(xr, cm)) is referred to as a reference tuple on C if: (1) ∀ci ∈ C,
f(xr, ci) ∈ {0, 1}; (2) f(xr, ci) = f(xr, cj) if {ci, cj} ⊆ Ch or {ci, cj} ⊆ Cl,
where 1 ≤ i, j ≤ m.

Example 1. We give an information table with a reference tuple by Table 1, in
which U = {x1, x2, x3, x4, x5, x6}, and C = {c1, c2, c3, c4, c5}. It divides set C
into Ch = {c2, c3, c4} and Cl = {c1, c6}, and shows a reference tuple xr =
(f(xr, c1), f(xr, c2), f(xr, c3), f(xr, c4), f(xr, c5)) = (0, 1, 1, 1, 0).
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Table 1. An Information Table.

U C

c1 c2 c3 c4 c5

x1 1 1 1 1 1

x2 0 0 1 1 1

x3 1 1 1 1 0

x4 0 1 1 0 1

x5 1 1 1 1 1

x6 0 1 1 0 1

xr 0 1 1 1 0

In Table 1, Xu et al. [18] divided all attributes into desirable and undesirable
attributes, in which c2, c3 and c4 are desirable attributes, and c1 and c5 are
undesirable attributes. Therefore, the ranking of {c2, c3, c4} is higher than that
of {c1, c5} towards the degree of desirable.

Definition 4 (Xu [18], 2021). For S = (U,C, V, f), and a reference tuple xr =
(f(xr, c1), f(xr, c2), ..., f(xr, cm)), the matching degrees of x and xr with respect
to Ch and Cl are given by:

M [(x, xr), Ch] =

∑
ci∈Ch

m[(x, xr), ci]
#(Ch)

,

M [(x, xr), Cl] =

∑
ci∈Cl

m[(x, xr), ci]
#(Cl)

,

where

m[(x, xr), ci] =

{
1, f(x, ci) = f(xr, ci),
0, f(x, ci) 	= f(xr, ci),

and #(Ch) and #(Cl) stand for the cardinalities of Ch and Cl, respectively.

In practice, there are some special ranking orders such as Ch = ∅ ∧ Cl = C
and Ch = C ∧ Cl = ∅. For the two ranking orders, we have the matching
degrees between x ∈ U and xr as follows: (1) if Ch = ∅ and Cl = C, then
M [(x, xr), Ch] = 1; (2) if Ch = C and Cl = ∅, then M [(x, xr), Cl] = 0.

Definition 5 (Xu [18], 2021). For S = (U,C, V, f), a reference tuple xr =
(f(xr, c1), f(xr, c2), ..., f(xr, cm)), a ranking order �r with Cl �r Ch, and two
thresholds α and β such that 0 ≤ α, β ≤ 1, the positive, negative and boundary
regions are given by:

POS(α,β)(U,xr) = {x ∈ U | M [(x, xr), Ch] ≥ α ∧ M [(x, xr), Cl] > β},

NEG(α,β)(U,xr) = {x ∈ U | M [(x, xr), Ch] < α ∧ M [(x, xr), Cl] ≤ β},

BND(α,β)(U,xr) = {x ∈ U | M [(x, xr), Ch] ≥ α ∧ M [(x, xr), Cl] ≤ β} ∪
{x ∈ U | M [(x, xr), Ch] < α ∧ M [(x, xr), Cl] > β}.
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An object set is divided into three disjoint regions with two matching func-
tions. Inspired by three-way decisions with rankings and reference tuples, we will
study conflict problems by considering ranking orders and reference tuples.

3 Three-Way Conflict Analysis Models by Considering
Rankings and Reference Tuples

3.1 Two Rankings of Issue Sets and Two Reference Tuples

In the year of 1998, Pawlak [12] depicted conflict problems by three-valued sit-
uation tables.

Definition 6 (Pawlak [12], 1998). A triplet S = (A, I, r) is a three-valued situa-
tion table, in which A is an agent set, I is an issue set, and r : A×I → {+, 0,−}.
Here, r(a, i) = + implies that a supports i; r(a, i) = 0 implies that a holds neutral
attitude on i; r(a, i) = − implies that a opposes i.

Example 2 (Pawlak [12], 1998). Table 2 depicts the Middle East conflict, in which
a1-Israel, a2-Egypt, a3-Palsetine, a4-Jordan, a5-Syria and a6-Saudi Arabia; i1-
Autonomous Palestinian state on the West Bank and Gaza, i2-Israeli military
outpost along the Jordan River, i3-Israel retains East Jerusalem, i4-Military
outposts on the Golan Heights and i5-Arab countries grant citizenship to Pales-
tinians who choose to remain within their borders.

Table 2. The Middle East Conflict [12].

A I

i1 i2 i3 i4 i5

a1 − + + + +

a2 + 0 − − −
a3 + − − − 0

a4 0 − + 0 −
a5 + − − − −
a6 0 + − 0 +

Definition 7. For a three-valued situation table S = (A, I, r),

(1) a ranking order �s divides the issue set I into two disjoint subsets Is and
Is̄ such that I = Is∪Is̄ and Is̄ �s Is, in which Is and Is̄ are called a bundle
of supported issues and a bundle of non-supported issues, respectively.

(2) a ranking order �o divides the issue set I into two disjoint subsets Io and
Iō such that I = Io ∪ Iō and Iō �o Io, in which Io and Iō are called a
bundle of opposed issues and a bundle of non-opposed issues, respectively.
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We divide a whole set of issues into a bundle of supported issues and a
bundle of non-supported issues, and the ranking of the bundle of supported
issues is higher than the bundle of non-supported issues from the perspective
of support. Moreover, we divide a whole set of issues into a bundle of opposed
issues and a bundle of non-opposed issues, and the ranking of the bundle of non-
opposed issues is lower than the bundle of opposed issues from the perspective
of opposition.

Definition 8. For a three-valued situation table S = (A, I, r),

(1) an m-tuple asr = (r(as
r, i1), r(a

s
r, i2), ..., r(a

s
r, im)) is called a support ref-

erence tuple on I if it satisfies: (1) ∀i ∈ Is, r(as
r, i) = +; (2) ∀i ∈ Is̄,

r(as
r, i) ∈ {0,−}. We refer to as

r as a support reference.
(2) an m-tuple aor = (r(ao

r , i1), r(ao
r , i2), ..., r(ao

r , im)) is called an opposition
reference tuple on I if it satisfies: (1) ∀i ∈ Io, r(ao

r , i) = −; (2) ∀i ∈ Iō,
r(ao

r , i) ∈ {+, 0}. We refer to ao
r as an opposition reference.

The support reference divides a set of issues into a bundle of supported issues
and a bundle of non-supported issues. That is, the support reference corresponds
to a supported plan that takes care of the supported issues and does not care
of the non-supported issues by an expert or a government. Furthermore, the
opposition reference divides a set of issues into a bundle of opposed issues and a
bundle of non-opposed issues. That is, the opposition reference corresponds to
an opposed plan that takes care of the opposed issues and does not care of the
non-opposed issues by an expert or a government.

Example 3. By Example 2, we give the support and opposition references by
Tables 3 as follows:

(1) By Definition 7(1), we have the supported issues Is = {i1, i3}, and the
non-supported issues Is = {i2, i4, i5}. After that, by Definition 8(1), we
have the support reference tuple asr = (+, 0,+,−, 0). That is, the support
reference as

r supports issues i1 and i3; but the support reference as
r does

not support issues i2, i4 and i5.
(2) By Definition 7(2), we give the opposed issues Io = {i1, i3}, and the non-

opposed issues Io = {i2, i4, i5}. Afterwards, by Definition 8(2), we have
the opposition reference tuple aor = (−, 0,−,+, 0). That is, the opposition
reference ao

r opposes issues i1 and i3; but the opposition reference ao
r does

not oppose issues i2, i4 and i5.

3.2 Alliance and Conflict Measures with Weight Factors

For a three-valued situation table, there are nine pairs of attitudes, namely,
(+,+), (+, 0), (+,−), (0,−), (0, 0), (0,+), (−,−), (−, 0) and (−,+), in total.

Definition 9 (Lang [7], 2021). For a three-valued situation table S = (A, I, r),
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Table 3. A Situation Table With the Support and Opposition References.

A I

i1 i2 i3 i4 i5

a1 − + + + +

a2 + 0 − − −
a3 + − − − 0

a4 0 − + 0 −
a5 + − − − −
a6 0 + − 0 +

as
r + 0 + − 0

ao
r − 0 − + 0

(1) a function ea : {+, 0,−} × {+, 0,−} −→ [0, 1] is referred to as an alliance
measure when:

(a) ea(+,+) ≥ ea(0, 0) > ea(+, 0) = ea(0,+) > ea(+,−) = ea(−,+),
(b) ea(+,+) ≥ ea(0, 0) > ea(−, 0) = ea(0,−) > ea(+,−) = ea(−,+),
(c) ea(−,−) ≥ ea(0, 0) > ea(+, 0) = ea(0,+) > ea(+,−) = ea(−,+),
(d) ea(−,−) ≥ ea(0, 0) > ea(−, 0) = ea(0,−) > ea(+,−) = ea(−,+).

(2) a function ec : {+, 0,−} × {+, 0,−} −→ [0, 1] is referred to as a conflict
measure when:

(a) ec(+,+) ≤ ec(0, 0) < ec(+, 0) = ec(0,+) < ec(+,−) = ec(−,+),
(b) ec(+,+) ≤ ec(0, 0) < ec(−, 0) = ec(0,−) < ec(+,−) = ec(−,+),
(c) ec(−,−) ≤ ec(0, 0) < ec(+, 0) = ec(0,+) < ec(+,−) = ec(−,+),
(d) ec(−,−) ≤ ec(0, 0) < ec(−, 0) = ec(0,−) < ec(+,−) = ec(−,+).

Example 4. Yao [24] gives a function di : A × A −→ {0, 0.5, 1} with regard to
i ∈ I on A: for x, y ∈ A,

di(x, y) =
|r(x, i) − r(y, i)|

2
,

where |·| denotes the absolute value. After that, we provide a pair of alliance and
conflict measures ea : {+, 0,−} × {+, 0,−} −→ {0, 0.5, 1} and ec : {+, 0,−} ×
{+, 0,−} −→ {0, 0.5, 1} by Tables 4 and 5, respectively.

Table 4. The Alliance Measure ea(·, ·).

ea(·, ·) + 0 −
+ 1.0 0.5 0.0

0 0.5 1.0 0.5

− 0.0 0.5 1.0
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Table 5. The Conflict Measure ec(·, ·).

ec(·, ·) + 0 −
+ 0.0 0.5 1.0

0 0.5 0.0 0.5

− 1.0 0.5 0.0

For conflict problems, there are different weights for different issues, and it
must consider weights of issues when designing alliance and conflict measures.

Definition 10 (Lang [7], 2021). For a three-valued situation table S = (A, I, r),

(1) let ωi be the weight of i ∈ I for alliance, in which
∑

i∈I wi = 1, and
0 ≤ wi ≤ 1. The conditional weight w(i|J) for alliance with regard to
J ⊆ I is given by:

w(i|J) = wi∑
j∈J wj

;

(2) let κi be the weight of i ∈ I for conflict, in which
∑

i∈I κi = 1, and
0 ≤ κi ≤ 1. The conditional weight κ(i|J) of i ∈ J for conflict with regard
to J ⊆ I is given by:

κ(i|J) = κi∑
j∈J κj

.

The conditional weight w(i|J) means the weight of an issue i with regard to
alliance, and the conditional weight κ(i|J) means the weight of an issue i with
regard to conflict.

Definition 11. For a three-valued situation table S = (A, I, r),

(1) the alliance measures Ea[(a, as
r), Is] and Ea[(a, as

r), Is] with respect to Is
and Is, respectively, are defined by:

Ea[(a, as
r), Is] =

∑

i∈Is

[w(i|Is) × eai (a, as
r)],

Ea[(a, as
r), Is] =

∑

i∈Is

[w(i|Is) × eai (a, as
r)];

(2) the conflict measures Ec[(a, ao
r ), Io] and Ec[(a, as

r), Io] with respect to Io
and Io, respectively, are defined by:

Ec[(a, ao
r ), Io] =

∑

i∈Io

[κ(i|Io) × eci (a, ao
r )],

Ec[(a, ao
r ), Io] =

∑

i∈Io

[κ(i|Io) × eci (a, ao
r )].
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The alliance measures Ea[(a, as
r), Is] and Ea[(a, as

r), Is] depict the match-
ing degrees between a ∈ A and as

r with respect to Is and Is, respectively.
In addition, if Is = ∅ and Is = I, then Ea[(a, as

r), Is] = 1; if Is = I and
Is = ∅, then Ea[(a, as

r), Is] = 0. Therefore, we have 0 ≤ Ea[(a, as
r), Is] ≤ 1

and 0 ≤ Ea[(a, as
r), Is] ≤ 1. Furthermore, we use 1 − Ec[(a, ao

r ), Io] and
1 − Ec[(a, ao

r ), Io] to depict the matching degrees between a ∈ A and ao
r with

respect to Io and Io, respectively. In addition, if Io = ∅ and Io = I, then
Ec[(a, ao

r ), Io] = 1; if Io = I and Io = ∅, then Ec[(a, ao
r ), Io] = 0. Therefore, we

have 0 ≤ Ec[(a, ao
r ), Io] ≤ 1 and 0 ≤ Ec[(a, ao

r ), Io] ≤ 1.

Definition 12. For a three-valued situation table S = (A, I, r), two thresholds
0 ≤ α, β ≤ 1,

(1) the alliance coalition, neutral coalition and conflict coalition of the support
reference as

r with respect to Is and Is are given by:

ALs
(α,β)(A, as

r) = {a ∈ A | Ea[(a, as
r), Is] ≥ α ∧ Ea[(a, as

r), Is] > β},

COs
(α,β)(A, as

r) = {a ∈ A | Ea[(a, as
r), Is] < α ∧ Ea[(a, as

r), Is] ≤ β},

NEs
(α,β)(A, as

r) = {a ∈ A | Ea[(a, as
r), Is] ≥ α ∧ Ea[(a, as

r), Is] ≤ β} ∪
{a ∈ A | Ea[(a, as

r), Is] < α ∧ Ea[(a, as
r), Is] > β};

(2) the alliance coalition, neutral coalition and conflict coalition of the oppo-
sition reference ao

r with respect to Io and Io are given by:

ALo
(α,β)(A, ao

r ) = {a ∈ A | 1 − Ec[(a, ao
r ), Io] ≥ α ∧ 1 − Ec[(a, ao

r ), Io] > β},

COo
(α,β)(A, ao

r ) = {a ∈ A | 1 − Ec[(a, ao
r ), Io] < α ∧ 1 − Ec[(a, ao

r ), Io] ≤ β},

NEo
(α,β)(A, ao

r ) = {a ∈ A | 1 − Ec[(a, ao
r ), Io] ≥ α ∧ 1 − Ec[(a, ao

r ), Io] ≤ β} ∪
{a ∈ A | 1 − Ec[(a, ao

r ), Io] < α ∧ 1 − Ec[(a, ao
r ), Io] > β}.

We divide a set of agents into alliance coalition ALs
(α,β)(A, as

r), neutral coali-
tion NEs

(α,β)(A, as
r) and conflict coalition COs

(α,β)(A, as
r) of the support reference

as
r. Furthermore, we divide a set of agents into alliance coalition ALo

(α,β)(A, ao
r ),

neutral coalition NEo
(α,β)(A, ao

r ) and conflict coalition COo
(α,β)(A, ao

r ) of the
opposition reference ao

r .

4 An Example

Follows, we introduce the instances of three-way conflict analysis model with
support, opposition rankings and reference tuples.

Next, we employ an example to show how to compute the alliance, neutral
and conflict coalitions with the proposed models.

Example 5 (Continuation from Example 2). By using Tables 6 and 7, we show
how to compute the alliance, neutral and conflict coalitions of the support and
opposition references as follows:
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Algorithm 1 . The algorithm of constructing the alliance coalition, neutral
coalition and conflict coalition by using the support ranking and reference tuple.
Input: S = (A, I, r) and as

r;
Output: ALs

(α,β)(A, as
r), NEs

(α,β)(A, as
r) and COs

(α,β)(A, as
r).

1: Determine alliance degrees of nine pairs of attitudes;
2: Divide issue set I into a bundle of supported issues Is and a bundle of non-supported

issues Is;
3: Compute weights ω(i|Is) and ω(i|Is) for i ∈ I;
4: Calculate alliance degrees Ea[(a, as

r), Is] and Ea[(a, as
r), Is] between a ∈ A and as

r;
5: Construct the alliance, neutral and conflict coalitions ALs

(α,β)(A, as
r),

NEs
(α,β)(A, as

r) and COs
(α,β)(A, as

r) with respect to as
r;

6: Output ALs
(α,β)(A, as

r), NEs
(α,β)(A, as

r) and COs
(α,β)(A, as

r).

Algorithm 2. The algorithm of computing alliance coalition, neutral coalition
and conflict coalition by using the opposition ranking and reference tuple.
Input: S = (A, I, r) and ao

r ;
Output: ALo

(α,β)(A, ao
r ), NEo

(α,β)(A, ao
r ) and COo

(α,β)(A, ao
r ).

1: Determine conflict degrees of nine pairs of attitudes;
2: Divide issue set I into a bundle of opposed issues Io and a bundle of non-opposed

issues Io;
3: Compute weights ω(i|Io) and ω(i|Io) for i ∈ I;
4: Calculate two conflict degrees Ec[(a, ao

r ), Io] and Ec[(a, ao
r ), Io] between a ∈ A and

ao
r ;

5: Construct the alliance, neutral and conflict coalitions ALo
(α,β)(A, ao

r ),
NEo

(α,β)(A, ao
r ) and COo

(α,β)(A, ao
r ) with respect to ao

r ;
6: Output ALo

(α,β)(A, ao
r ), NEo

(α,β)(A, ao
r ) and COo

(α,β)(A, ao
r ).

Table 6. The Alliance Measure ea(·, ·) for Table 3.

ea(·, ·) + 0 −
+ 1 1/3 0

0 1/3 2/3 1/3

− 0 1/3 5/6

Table 7. The Conflict Measure ec(·, ·) for Table 3.

ec(·, ·) + 0 −
+ 0 1/2 1

0 1/2 1/3 1/2

− 1 1/2 1/4
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(1) Table 3 gives a support reference as
r. According to Definition 9, by taking

wi1 = wi2 = 0.1, wi3 = wi5 = 0.3, wi4 = 0.2, Is = {i1, i3} and Is =
{i2, i4, i5}, we have alliance degrees between ai (1 ≤ i ≤ 6) and as

r with
respect to Is and Is:

Ea[(a1, a
s
r), Is] =

0.1
0.4

× 0 +
0.3
0.4

× 1 =
3
4
,

Ea[(a2, a
s
r), Is] =

0.1
0.4

× 1 +
0.3
0.4

× 0 =
1
4
,

Ea[(a3, a
s
r), Is] =

0.1
0.4

× 1 +
0.3
0.4

× 0 =
1
4
,

Ea[(a4, a
s
r), Is] =

0.1
0.4

× 1
3
+

0.3
0.4

× 1 =
5
6
,

Ea[(a5, a
s
r), Is] =

0.1
0.4

× 1 +
0.3
0.4

× 0 =
1
4
,

Ea[(a6, a
s
r), Is] =

0.1
0.4

× 1
3
+

0.3
0.4

× 0 =
1
12

;

Ea[(a1, a
s
r), Is] =

0.1
0.6

× 1
3
+

0.2
0.6

× 0 +
0.3
0.6

× 1
3
=

2
9
,

Ea[(a2, a
s
r), Is] =

0.1
0.6

× 2
3
+

0.2
0.6

× 5
6
+

0.3
0.6

× 1
3
=

5
9
,

Ea[(a3, a
s
r), Is] =

0.1
0.6

× 1
3
+

0.2
0.6

× 5
6
+

0.3
0.6

× 1
3
=

2
3
,

Ea[(a4, a
s
r), Is] =

0.1
0.6

× 1
3
+

0.2
0.6

× 1
3
+

0.3
0.6

× 1
3
=

1
3
,

Ea[(a5, a
s
r), Is] =

0.1
0.6

× 1
3
+

0.2
0.6

× 5
6
+

0.3
0.6

× 1
3
=

1
2
,

Ea[(a6, a
s
r), Is] =

0.1
0.6

× 1
3
+

0.2
0.6

× 1
3
+

0.3
0.6

× 1
3
=

1
3
.

After that, by taking α = 1
12 and β = 2

9 , we have ALs
(α,β)(A, as

r) =
{a2, a3, a4, a5, a6}, NEs

(α,β)(A, as
r) = {a1} and COs

(α,β)(A, as
r) = ∅. Mean-

while, by taking other 19 pairs of thresholds, we compute three coalitions
of the support reference with respect to Is and Is and show all results by
Table 8.

(2) Table 3 displays an opposition reference ao
r . According to Definition 11,

by taking κi1 = κi2 = 0.1, κi3 = κi5 = 0.3, κi4 = 0.2, Io = {i1, i3} and
Io = {i2, i4, i5}, we have conflict degrees between ai (1 ≤ i ≤ 6) and ao

r

with respect to Io and Io:
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Table 8. The Alliance, Conflict and Neutral Coalitions of as
r in Middle East Conflicts.

(α, β) ALs
(α,β)(A, as

r) COs
(α,β)(A, as

r) NEs
(α,β)(A, as

r)

( 1
12 , 2

9 ) {a2, a3, a4, a5, a6} ∅ {a1}
( 1
12 , 1

3 ) {a2, a3, a5} ∅ {a1, a4, a6}
( 1
12 , 1

2 ) {a2, a3} ∅ {a1, a4, a5, a6}
( 1
12 , 5

9 ) {a3} ∅ {a1, a2, a4, a5, a6}
( 1
12 , 2

3 ) ∅ ∅ {a1, a2, a3, a4, a5, a6}
( 1
4 , 2

9 ) {a2, a3, a4, a5} ∅ {a1, a6}
( 1
4 , 1

3 ) {a2, a3, a5} {a6} {a1, a4}
( 1
4 , 1

2 ) {a2, a3} {a6} {a1, a4, a5}
( 1
4 , 5

9 ) {a3} {a6} {a1, a2, a4, a5}
( 1
4 , 2

3 ) ∅ {a6} {a1, a2, a3, a4, a5}
( 3
4 , 2

9 ) {a4} ∅ {a1, a2, a3, a5, a6}
( 3
4 , 1

3 ) ∅ {a6} {a1, a2, a3, a4, a5}
( 3
4 , 1

2 ) ∅ {a5, a6} {a1, a2, a3, a4}
( 3
4 , 5

9 ) ∅ {a2, a5, a6} {a1, a3, a4}
( 3
4 , 2

3 ) ∅ {a2, a3, a5, a6} {a1, a4}
( 5
6 , 2

9 ) {a4} {a1} {a2, a3, a5, a6}
( 5
6 , 1

3 ) ∅ {a1, a6} {a2, a3, a4, a5}
( 5
6 , 1

2 ) ∅ {a1, a5, a6} {a2, a3, a4}
( 5
6 , 5

9 ) ∅ {a1, a2, a5, a6} {a3, a4}
( 5
6 , 2

3 ) ∅ {a1, a2, a3, a5, a6} {a4}

Ec[(a1, a
o
r ), Io] =

0.1
0.4

× 1
4
+

0.3
0.4

× 1 =
13
16

,

Ec[(a2, a
o
r ), Io] =

0.1
0.4

× 1 +
0.3
0.4

× 1
4
=

7
16

,

Ec[(a3, a
o
r ), Io] =

0.1
0.4

× 1 +
0.3
0.4

× 1
4
=

7
16

,

Ec[(a4, a
o
r ), Io] =

0.1
0.4

× 1
2
+

0.3
0.4

× 1 =
7
8
,

Ec[(a5, a
o
r ), Io] =

0.1
0.4

× 1 +
0.3
0.4

× 1
4
=

7
16

,

Ec[(a6, a
o
r ), Io] =

0.1
0.4

× 1
2
+

0.3
0.4

× 1
4
=

5
16

;

Ec[(a1, a
o
r ), Io] =

0.1
0.6

× 1
2
+

0.2
0.6

× 0 +
0.3
0.6

× 1
2
=

1
3
,

Ec[(a2, a
o
r ), Io] =

0.1
0.6

× 1
3
+

0.2
0.6

× 1 +
0.3
0.6

× 1
2
=

23
36

,

Ec[(a3, a
o
r ), Io] =

0.1
0.6

× 1
2
+

0.2
0.6

× 1 +
0.3
0.6

× 1
3
=

7
12

,

Ec[(a4, a
o
r ), Io] =

0.1
0.6

× 1
2
+

0.2
0.6

× 1
2
+

0.3
0.6

× 1
2
=

1
2
,

Ec[(a5, a
o
r ), Io] =

0.1
0.6

× 1
2
+

0.2
0.6

× 1 +
0.3
0.6

× 1
2
=

2
3
,

Ec[(a6, a
o
r ), Io] =

0.1
0.6

× 1
2
+

0.2
0.6

× 1
2
+

0.3
0.6

× 1
2
=

1
2
.
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After that, by taking α = 1
8 and β = 1

3 , we have ALo
(α,β)(A, ao

r ) =
{a1, a2, a3, a4, a6}, NEo

(α,β)(A, ao
r ) = ∅ and COo

(α,β)(A, ao
r ) = {a5}. Mean-

while, we take other 19 pairs of thresholds, and compute the three coali-
tions of the opposition reference with respect to Io and Io. We also show
all results by Table 9.

Table 9. The Alliance, Conflict and Neutral Coalitions of ao
r in Middle East Conflicts.

(α, β) ALo
(α,β)(A, ao

r ) COo
(α,β)(A, ao

r ) NEo
(α,β)(A, ao

r )

( 1
8 , 1

3 ) {a1, a2, a3, a4, a6} ∅ {a5}
( 1
8 , 13

36 ) {a1, a3, a4, a6} ∅ {a2, a5}
( 1
8 , 5

12 ) {a1, a4, a6} ∅ {a2, a3, a5}
( 1
8 , 1

2 ) {a1} ∅ {a2, a3, a4, a5, a6}
( 1
8 , 2

3 ) ∅ ∅ {a1, a2, a3, a4, a5, a6}
( 3
16 , 1

3 ) {a1, a2, a3, a6} ∅ {a4, a5}
( 3
16 , 13

36 ) {a1, a3, a6} ∅ {a2, a4, a5}
( 3
16 , 5

12 ) {a1, a6} ∅ {a2, a3, a4, a5}
( 3
16 , 1

2 ) {a1} {a4} {a2, a3, a5, a6}
( 3
16 , 2

3 ) ∅ {a4} {a1, a2, a3, a5, a6}
( 9
16 , 1

3 ) {a2, a3, a6} ∅ {a1, a4, a5}
( 9
16 , 13

36 ) {a3, a6} ∅ {a1, a2, a4, a5}
( 9
16 , 5

12 ) {a6} ∅ {a1, a2, a3, a4, a5}
( 9
16 , 1

2 ) ∅ {a4} {a1, a2, a3, a5, a6}
( 9
16 , 2

3 ) ∅ {a1, a4} {a2, a3, a5, a6}
( 11
16 , 1

3 ) {a6} {a5} {a1, a2, a3, a4}
( 11
16 , 13

36 ) {a6} {a2, a5} {a1, a3, a4}
( 11
16 , 5

12 ) {a6} {a2, a3, a5} {a1, a4}
( 11
16 , 1

2 ) ∅ {a2, a3, a4, a5} {a1, a6}
( 11
16 , 2

3 ) ∅ {a1, a2, a3, a4, a5} {a6}

5 Conclusion and Future Work

In this paper, we provided models of conflict analysis with rankings and reference
tuples. First, we defined two ranking orders, in which one divides a whole set of
issues into a bundle of supported issues and a bundle of non-supported issues, the
other divides a whole set of issues into a bundle of opposed issues and a bundle
of non-opposed issues, and the support and opposition reference tuples. Second,
we provided alliance and conflict measures by considering weights of issues, and
constructed alliance, neutral and conflict coalitions towards the support and
opposition references. Finally, we employed an example to show how to compute
the alliance, neutral and conflict coalitions with the proposed models.

In the future, we will design effective alliance and conflict measures with
thoughts of rankings and reference tuples. Furthermore, we will develop effective
models for analyzing conflict problems described by hybrid situation tables.
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Abstract. Three-way decision, as thinking in threes, realizes the power
of triads and has been successfully applied across diverse fields. Due to
the important role played by triads, the basic ideas of triadic thinking
appear in many studies on social network analysis. While measures based
on the use of dyads (i.e., edges), the use of triads (i.e., triangles) has not
received its due attention. This paper explores the value of triads in
defining and interpreting measures in social network. We present an in-
depth examination at the node, community, and network three levels.
We propose a set of triadic measures at each level. These new measures
contributes to a more comprehensive understanding of the structures and
dynamics of social networks.

Keywords: Three-way decision · Social network analysis · Triads

1 Introduction

Three-way decision has emerged as a versatile concept with applications in var-
ious fields, encompassing thinking, problem-solving, and computing in threes or
triads [23–25]. It is a human-cognitive approach that fosters simplicity while
expressing complex patterns. Over time, it has found diverse applications, rang-
ing from three-way classification [9,14,29,30], three-way clustering [1,10,17,28],
three-way conflict analysis [4,12,13,15,22], three-way recommendation systems
[2,21,26,27], and so on.

It can be observed that triadic thinking is also very common in social net-
work analysis. In the domain of social networks, a “triad” refers to a group
of three nodes and the connections between them. Triads, as underscored by
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Logan et al. [11], serve as a vital structural element in social networks, bringing
to the table benefits like stability, innovation, and scalability. Triads play a cru-
cial role in connecting small groups and tribes, enabling the formation of larger
and more scalable networks [11]: “The triad is so powerful that it can link tribes
together, creating an unlimited capacity for scalability”. As a result, the presence
and prevalence of triads can serve as a reliable indicator of a group’s develop-
mental stage. In well-developed groups, triads serve as fundamental building
blocks, fostering large, robust, dynamic, and growing networks of tribes. These
groups are characterized by vibrancy, strong values, and a collective effort where
leadership is both given and taken. On the contrary, less developed communities
may rely more on dyads, which consist of two interconnected nodes. However,
an overabundance of dyads can lead to inevitable communication problems [11].

The study of triads in social networks has a rich history, with notable contri-
butions like Georg Simmel’s “triadic closure” [18]. Simmel’s observation of the
tendency for a new connection to form between two nodes if both are already con-
nected to a third has provided profound insights into network growth, enabling
the understanding and prediction of network expansion. Moreover, social net-
work analysis categorizes its study into various levels, including the individual
actor level, dyad level, triad level, subgroup level, and global level [19]. Triads
play a crucial role as a level or view of network analysis, with concepts like
transitivity being effectively captured and analyzed through the triad census [8].

Directed networks often rely on triads for structural analysis. The presence of
different types of triads in a directed network can provide insights into its overall
structure, enabling the classification of networks based on models like balance,
clusterability, ranked clusters, transitivity, hierarchical clusters, and no balance
[20]. Triads also play a prominent role in Heider’s balance theory [7], where
they are viewed as 3-cycles in a signed graph representing social networks. This
theory has significantly influenced the analysis of signed social networks, offering
insights into relationships characterized by agreement, support, disagreement, or
hostility. In addition to the aforementioned triad-based social network analysis,
studies also employ triads for community detection [3,16,32], link prediction [6],
and various other purposes.

Despite the significant importance of triads in social networks, measures
based on them have not received as much comprehensive exploration as dyad-
based ones in simple networks, which are typically characterized as undirected,
unsigned, and unweighted. In node role analysis, the traditional dyadic measures
focuse only on the number of nodes directly connected to a given node in the
network. While this can reflect the direct influence of a node, in complex social
networks, interactions between nodes are not solely based on direct connections.
Triad-based measures can describe the triangular relationships formed by nodes
in the network, revealing their roles and significance in complex interactions.
Interestingly, certain dyad-based measures can be expressed in terms of triads.
For example, the local clustering coefficient of a node can be computed as the
ratio of the edges between the node’s neighbors to the total possible edges among
those neighbors. This coefficient can also be interpreted as the ratio of closed
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triangles formed by the node to the number of open triangles. This observa-
tion further underscores the significance of triads in network analysis and their
far-reaching implications for understanding the structure and dynamics of social
networks.

By considering triadic relationships, researchers can obtain valuable insights
into the complexity and behavior of various social systems. Aligned with the
principles of triadic thinking, the objective of this paper is to measure social
networks from three distinct levels: the node level, the community (subgraph)
level, and the network level.

2 A Tri-Level Framework of Triadic Measures

In this section, we present a tri-level framework for analyzing social networks,
which comprises node level, community level, and network level analysis. In the
following three subsections, we construct triadic measures at each of these levels,
respectively.

Figure 1 depicts the tri-level framework. At the node level, we establish three
types of triadic measures of centrality, drawing inspiration from dyad-based node
degree centrality. The first triadic centrality is derived from a probabilistic per-
spective, representing the ratio of the number of triangles formed by a node to
the total possible triangles in the network. The second centrality is computed as
the proportion of the number of triangles formed by a node to the sum of trian-
gles formed by all nodes in the network. The third centrality is based on the total
number of triangles in the network, reflecting the ratio of the number of triangles
formed by a node to the overall number of triangles in the network. Moving to
the community level, triadic measures of importance are calculated by averag-
ing the triadic centralities of nodes within each community. Subsequently, the
triadic measures of community-importance of the entire network are measured
by calculating the average importance of all communities within the network.

Fig. 1. Triadic measures at three levels
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2.1 Triadic Measures of Centrality at the Node-Level

This subsection focuses on measuring nodes through the computation of triads.
Before delving into the details, we introduce four heterogeneous types of triads in
simple networks. The first type, referred to as the “Empty” type (T0), represents
triads where no edges connect the three nodes. The second type is the “One-
edge” type (T1), where only one edge exists within the triad. The third type,
known as “Two-edge” (T2), consists of triads with two edges. Finally, we have
the “Triangle” (T3) type, which represents triads with three edges forming a
complete subgraph, also known as a 3-clique. Figure 2 visually illustrates these
triad types.

Empty: T0 One-edge: T1 Two-edge: T2 Triangle: T3

Fig. 2. Types of triads in simple network

When analyzing network nodes, a commonly used measure is degree cen-
trality, proposed by Freeman [5]. It measures the number of connections or the
degree of connectivity that a node has with other nodes in the network. A higher
degree centrality implies a greater number of connections, indicating that the
node holds a more important or central position within the network. In a simple
network, a node’s degree refers to the number of edges directly connected to that
node. The degree centrality formula is as follows:

Definition 1 ([5]). Let G = (V,E) be a simple network with node set V and
edge set E. For any node p ∈ V , the degree centrality of p is:

DC(p) =
|N(p)|
|V | − 1

,

where N(p) = {q ∈ V | (p, q) ∈ E} is the neighbor set of p.

The degree centrality metric evaluates the proportion of a node’s neighbors
to the maximal potential neighbors within the network, considering a dyadic
perspective. Analogously, the significance of nodes can be assessed through tri-
adic frameworks. Sociologically speaking, it is posited that nodes encompassing
a larger quantity of triads are predisposed to assume leadership capacities [11].
For triadic network analyses, let us define the set of triads, which comprises any
three distinct nodes in a network G = (V,E), as G = {T = {p, q, h} | p, q, h ∈ V
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are distinct nodes}. This set is referred to as the triadic granulation of V . Based
on G , we propose the following triadic centralities to measure the importance of
nodes:

Definition 2. Let G = (V,E) be a simple network and G be the triadic granu-
lation of V . For any p ∈ V , the three types of triadic centralities of p are defined
as:

TCP (p) =
|{T3 ∈ G | p ∈ T3}|

{T0 ∈ G | T0 = {p, q, h} ∧ q, h ∈ V } ,

TCS(p) =
|{T3 ∈ G | p ∈ T3}|

∑

q∈V

|{T3 ∈ G | q ∈ T3}| ,

TCT (p) =
|{T3 ∈ G | p ∈ T3}|

|{T3 ∈ G }| .

For simplicity, let’s denote the number of Triangle-type triads that a node
belongs to as �num(p) and the number of triangles in the network G as
�num(G). Consequently, the above formulas can be simplified as follows:

TCP (p) =
2�num(p)

(|V |)(|V | − 1)
,

TCS(p) =
�num(p)

∑

q∈V

�num(q)
,

TCT (p) =
�num(p)
�num(G)

.

The triadic centralities provide insights into different aspects of a node’s
importance: TCP (p) represents the ratio of the number of triangles formed by
node p to the number of possible triangles it can form with any two nodes in G;
TCS(p) quantifies the ratio of the number of triangles formed by node p to the
sum of triangles formed by all nodes in the network; TCT (p) measures the ratio
of the number of triangles formed by node p to the total number of triangles in
the network.

2.2 Triadic Measures of Importance at the Community-Level

Communities in networks are commonly observed, even though their defini-
tion may not be precise. Typically, internal connections within communities
are dense, while connections between communities are sparse. In the preceding
subsection, we introduced three distinct triadic centralities for individual nodes,
which can reflect the importance of nodes. When examining communities within
a network, it becomes natural to assess their importance based on the nodes they
comprise. Therefore, we use the average of the triadic centralities of the nodes
in the community as the triadic measures of importance of the community.
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Definition 3. Let G = {T = {p, q, h} | p, q, h ∈ V are distinct nodes} be the
triadic granular network of G = (V,E). For any community X ⊆ V , the three
types of triadic measures of importance of X are given by:

TIP (X) =

∑

p∈X

TCP (p)

|X| =
2

∑

p∈X

�num(p)

|X||V |(|V | − 1)
,

T IS(X) =

∑

p∈X

TCS(p)

|X| =

∑

p∈X

�num(p)

|X|( ∑

q∈V

�num(q))
,

T IT (X) =

∑

p∈X

TCT (p)

|X| =

∑

p∈X

�num(p)

|X|�num(G)
.

These triadic measures of importance offer different perspectives on the
importance and density of triangles within a community. Each measure is pro-
portional to the total number of triangles formed by the nodes in the community.
However, they differ in their normalization factors: TIP (X) reflects the ratio of
the total number of triangles formed by nodes in the community to both the size
of the community (the number of nodes in the community) and the size of the
entire network (the number of nodes in the network); TIS(X) reflects the ratio
of the total number of triangles formed by nodes in the community to the size
of the community and the total number of triangles formed by all nodes in the
entire network; TIT (X) reflects the ratio of the number of triangles formed by
nodes in the community to the size of the community and the total number of
triangles in the entire network.

The triadic measures of importance of a community provide valuable insights
beyond what density alone can reveal. Density is measured by the ratio of the
number of edges in the community to the number of possible edges, and it indi-
cates the level of interconnectedness within the community. However, triadic
measures we proposed offer a deeper understanding by considering the forma-
tion of triangles within the community. A community’s triadic measures reflect
the quality of the community from the perspective of the relative quantity of tri-
angles formed by its members. The number of triangles formed by nodes reflects
the importance of nodes, and the average importance of nodes contained in a
community reflects the importance of the community.

2.3 Triadic Measures of Community-Importance at the Network-
Level

In this subsection, we adopt a community-centric approach to assess the network,
enabling a comprehensive analysis from a hierarchical perspective. The measures
presented in this paper adhere to a structured hierarchy, starting with node-level
computations, followed by community-level measures derived from the node-level
data, and culminating in network-level measures based on the community-level
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analysis. Specifically, we compute the triadic measures of community-importance
for a network by averaging the importance of individual communities as follows.

Definition 4. Suppose that G = {T = {p, q, h} | p, q, h ∈ V are distinct nodes}
is the triadic granular network of G = (V,E) and V =

n⋃

i=1

Xi, where Xi �= ∅
is the i-th community. The triadic measures of community-importance of G are
given by:

TIPcom(G) =

n∑

i=1

TIP (Xi)

n
=

n∑

i=1

2
∑

p∈Xi

�num(p)

n|Xi||V |(|V | − 1)
,

T IScom(G) =

n∑

i=1

TIS(Xi)

n
=

n∑

i=1

∑

p∈Xi

�num(p)

n|Xi|(
∑

q∈V

�num(q))
,

T ITcom(G) =

n∑

i=1

TIT (Xi)

n
=

n∑

i=1

∑

p∈Xi

�num(p)

n|Xi|�num(G)
.

The proposed triadic measures of the network are obtained through a hier-
archical evaluation, starting with the analysis of communities and then nodes
within these communities. This approach enables a comprehensive assessment
of importance at various levels, yielding valuable insights into the network’s
structure. According to Definition 4, all triadic measures of the network are
proportional to the number of triangles formed by nodes within the communi-
ties. However, each centrality measure (TIPcom, TIScom, and TITcom) has distinct
characteristics. The first one, TIPcom, is inversely proportional to the community
size and the network size. The second one, TIScom, is inversely proportional to
the community size and the sum of the number of triangles formed by nodes in
the entire network. Lastly, the third one, TITcom, is inversely proportional to the
community size and the total number of triangles in the network. These varia-
tions in the triadic measures provide diverse perspectives on the importance of
nodes and communities within the network, capturing different aspects of their
triadic relationships.

In this section, we have introduced the measurements of triadic centrali-
ties TCP (p), TCS(p), and TCT (p) at the node-level, each offering a distinct
perspective on a node’s importance through its involvement in forming trian-
gles. Building upon these node-level measures, we defined the triadic measures
of importance: TIP (X), TIS(X), and TIT (X) at the community-level. These
community-level measures represent the average triadic centralities of nodes
within a community, offering valuable insights into the triadic characteristics
of the communities. Finally, we proposed the triadic measures of community-
importance: TIPcom(G), TIScom(G), and TITcom(G) at the network-level. These
network-level measures provide an overview of the overall triadic characteristics
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based on the communities within the network, offering a comprehensive under-
standing of the network’s structure and behavior.

3 Two Examples

In this section, we present two examples to illustrate the concepts discussed in
the paper. The first example is a demonstration network shown in Fig. 1, and
the second one is the well-known karate network [31]. The descriptions of these
two networks are provided as follows (Table 1):

Table 1. Description of two networks

Number of nodes Number of communities

Network of Fig. 1 16 3

Karate network 34 2

We calculate the degree centrality and triadic centralities for the network
shown in Fig. 1 and visualize the results in Fig. 3, with larger nodes repre-
sent higher centrality values. Additionally, we perform a similar analysis on the
nodes in the karate network. Figure 4 presents the visualization of the nodes
sorted based on both degree centrality and triadic centralities, where larger
values correspond to larger nodes. A comparison between Fig. 3a and Fig. 3b
reveals significant variations in the triadic centralities among nodes with the
same degree. Some nodes exhibit high degree centrality but low triadic central-
ities, suggesting that they have extensive connections across communities but
relatively infrequent connections within communities. This observation empha-
sizes the importance of considering both degree centrality and triadic centralities
to gain a comprehensive understanding of a node’s importance and its role in
the network’s structure.

(a) Degree centrality (b) Triadic centrality

Fig. 3. Visualization of nodes’ centralities in Fig. 1
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Fig. 4. Visualization of nodes’ centralities in karate network

Figure 4 highlights the important nodes identified by both degree and triadic
centralities. The key findings reveal that triadic centrality assigns higher impor-
tance to node 4 compared to degree centrality. Node 1, serving as the instructor
of the karate club, is identified as the most crucial node by triadic centrality,
considering his central role in the network. Although node 34, the president,
has a higher degree than node 1, triadic centrality recognizes the instructor’s
significance due to his closer relationships with other members, reflected in his
involvement in more triangles. Node 2 emerges as the next significant node, being
regarded as the closest partner of node 1. Node 2’s participation in two 5-cliques
and three triangles, all involving node 1, contributes to its importance according
to triadic centrality. Following node 2, node 34, the club’s president, holds a
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prominent position. Nodes 3 and 4 are also identified as significant partners of
the instructor, forming two 5-cliques and one triangle each with node 1. More-
over, node 33 is recognized as the closest companion of the president, forming
two 4-cliques and six triangles with it, further emphasizing its importance by
triadic centrality.

The analysis emphasizes that node 1’s significance is further enhanced when
considering its partnerships with other important nodes (2, 3, and 4) according
to triadic centrality, which is not evident when solely relying on degree centrality.
This underlines the importance of considering not just direct connections but
also the indirect relationships formed through triangles. Additionally, both nodes
10 and 12 are identified as the least important nodes under triadic centrality,
which is reasonable given their lack of involvement in forming triangles. Node
10’s limited connections (only two edges) and absence of triangles contribute to
its lower importance when compared to nodes that participate in triangles, such
as nodes 13, 15–19, 21, 22, 23, and 27. In fact, node 10 is a neutral node, who has
no factional affiliation regarding the instructor or the president [31], suggesting
that it does not strongly align with either group and does not play a pivotal role
in the network’s division.

Let’s visualize the karate network using Fig. 5. The communities on the left
and right are centered on node 1 (the instructor) and node 34 (the president),
containing 16 nodes and 18 nodes, respectively. We draw the triangles formed by
each node, where the blue lines represent the triangles between the communities,
and the black lines represent the triangles within the communities. We denote
these two communities as X1 and X34, respectively. The sum of triangles formed
by nodes in X1 and X34 is 91 and 57, respectively. Now, let’s calculate the triadic
measures of importance of the communities in the network shown in Fig. 1 and
the karate network, and display the results in Table 2.

Fig. 5. Nodes’ triangles in two communities of karate network
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Table 2. Triadic measures of importance of communities in two networks

Community TCP TCS TCT

Network of Fig. 1 Blue 0.0125 0.0341 0.0882

Green 0.0249 0.0682 0.1765

Red 0.0356 0.0974 0.2521

Karate network X1 0.0101 0.0384 0.1264

X34 0.0056 0.0214 0.0704

Figure 1 and Fig. 5 clearly illustrate that triangles formed by nodes within a
community tend to be more prevalent. In Fig. 1, triangles are exclusively formed
by nodes within communities. In Fig. 5, only two triangles span across different
communities, namely {3, 9, 33} and {3, 9, 1}. This observation suggests that
members within a community tend to establish closer and more stable relation-
ships with each other compared to those outside the community. Analyzing Fig. 5
and Table 2, it becomes evident that despite the instructor-centered community
having relatively fewer nodes, its high triadic measures of importance highlight
the significance of its members. Notably, the instructor’s supporters perceive
him as a fatherly figure who acted as their spiritual and physical mentor [31],
further affirming the community’s greater stability. Node 9, initially part of the
president’s camp, chose to join the instructor’s community to avoid starting
from scratch (White Belt exam) for his promotion [31]. This fact illustrates the
relative instability of the president-centered community.

Let us label the networks in Fig. 1 and the karate network as G1 and G2,
respectively. The triadic measures of the two networks are computed as follows:

TIPcom(G1) = 0.0252, T IScom(G1) = 0.0666, T ITcom(G1) = 0.1723

TIPcom(G2) = 0.0079, T IScom(G2) = 0.0299, T ITcom(G2) = 0.0984

The larger value of TIPcom(G1) indicates that the nodes within communities in
G1 form more triangles relative to the size of the communities and the network
size. Similarly, the larger value of TIScom(G1) indicates that the nodes within
communities in G1 form more triangles relative to the size of the communities
and the sum of triangles formed by all nodes in the network. Finally, the larger
value of TITcom(G1) indicates that the nodes within communities of G1 form
more triangles relative to the size of the communities and the total number of
triangles in the network.

4 Conclusion

This paper explores the application of triads-based network analysis to com-
prehend the structural characteristics of social networks. Triads, representing
three-node subgraphs, offer valuable insights into local and global connectivity
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patterns within a network. Leveraging triads, we hierarchically measured net-
works at the node, community, and network levels.

The triad-based network analysis opens promising avenues for further
research in three-way social network analysis. Indeed, our hierarchical approach
has allowed us to construct a set of triad-based measures at different levels,
enabling us to gain valuable insights into social networks. However, there are
still many unexplored triad-based measures that hold the potential for further
investigation within the node-level, community-level, and network-level analy-
ses. Additionally, when constructing higher-level measures based on triads, there
are several lower-level choices and approaches that researchers can consider. One
such example is measuring the network from the node level using triads, such
as calculating the density of triads in the network. Although this paper focused
on simple networks, future research could extend these methodologies to more
complex and dynamic networks, including directed networks, signed networks,
temporal networks, and multiplex networks. Overall, triads-based network anal-
ysis holds the potential to become an essential tool in social network research,
aiding in the discovery of underlying structures and dynamics within complex
social systems.
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Abstract. This paper introduces a new research direction named cog-
nitive and social decision making (CSDM). From a three-way decision
perspective, we discuss the main issues of CSDM, including the research
scope, problems, and challenges. We adopt the notion of Symbols-
meaning-value spaces as a basis for studying CSDM. We examine three
perspectives on CSDM, namely, (1) a research framework consisting of
the philosophy, theory, and practice of CSDM, (2) a social hierarchy con-
sisting of the three levels of individual, community, and society, and (3)
an intelligence and intelligent systems view consisting of human intelli-
gence, machine intelligence, and human-machine co-intelligence.

Keywords: Cognitive computing · collective intelligence ·
decision-making · granular computing · social computing · three-way
decision

1 Introduction

In 2023, the journal of “Cognitive Computation,” published by Springer, intro-
duced a new section called Cognitive and Social Decision Making (CSDM) with
the following description1:

“Information seeking, knowledge learning, and decision-making play fun-
damental roles in cognitive computation. This special section focuses on
multidisciplinary scientific studies of cognitive aspects and complex social
environments of decision-making including their interactions with other
cognitive tasks. The main aim is to introduce and promote an innova-
tive and timely new subfield of Cognitive Computing titled: Cognitive and
Social Decision Making (CSDM).”

As indicated by the list of topics, the CSDM Section aims to connect researchers
from multiple communities, including decision science, intelligent data analyt-
ics, rough sets, cognitive computing, granular computing, social computing, and
three-way decision [5,16,29]:

1 https://www.springer.com/journal/12559/updates/18820792.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Campagner et al. (Eds.): IJCRS 2023, LNAI 14481, pp. 259–269, 2023.
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– Decision-making with granular computing and rough sets;
– Cognitive group decision-making;
– Neuroscience of decision-making;
– Three-way decision making;
– Social cognition and computing;
– Explainable social artificial-intelligence;
– Human-machine co-intelligence;
– Social and complex network analysis;
– Game-theoretic and information-theoretic models.

The phrase “decision making” may be viewed as an umbrella term that covers
all aspects and activities related to, or supporting, decision-making. It focuses
on the theory, methods, and processes of decision making both in general and
from two distinctive particular angles. One is the cognitive basis of and cognitive
computing approaches to decision making, and the other is the social environ-
ments for and social computing approaches to decision making. CSDM offers a
triadic view for studying decision making, consisting of the cognitive basis, the
computational methods, and the social contexts.

While the cognitive and social aspects of decision making have been stud-
ies extensively, a combination of the two offers a new viewpoint and a new
research direction for decision making. There have been several initiatives along
this direction of research. For example, a special issue on “Granular Comput-
ing and Three-way Decisions for Cognitive Analytics” in Cognitive Computation
is devoted to the philosophy, theories, and applications of the three paradigms
of computing, namely, cognitive computing, granular computing, and three-way
computing [18]. Another special issue on “Uncertainty and Three-way Decision
in Data Science” in the International Journal of Approximate Reasoning focuses
on decision-making under uncertainty in data science [17]. Papers published in
the two special issues address many research problems related to the above listed
topics. Inspired by human cognitive processes and human intelligence, the intro-
duction of “Cognitive and Social Decision Making” is based on existing research
results in data-driven and knowledge-guided individual/social decision-making
under uncertainty. In order to realize its potential value, the main objective of
this position paper is to promote research on cognitive and social decision mak-
ing. By recognizing the large scope and a wide spectrum of topics related to
cognitive and social decision making, we will focus only on three-way decision
perspectives by using several triadic structures.

We organize the discussion into three parts. In Sect. 2, we briefly review the
basic ideas of three-way decision and two specific models, namely, tri-level think-
ing and symbols-meaning-value (SMV) spaces. In Sect. 3, based on the notion of
SMV spaces, we discuss three perspectives on studies of CSDM. In Sect. 4, we
summarize the main ideas and point out research issues and challenges.
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2 Three-Way Decision, Tri-Level Thinking, and SMV
Spaces

This section presents an overview of three-way decision and two particular mod-
els, namely, tri-level thinking and symbols-meaning-value or SMV spaces.

2.1 An Overview of Three-Way Decision

The theory of three-way decision concerns thinking, problem-solving, and com-
puting in threes [19,20,23]. The theory is motivated by a common human prac-
tice of using triadic structures and patterns (i.e., what we do), rests on a solid
cognitive basis (i.e., why we do), and follows human ways to problem solving
(i.e., how we do). Humans and scientists particularly have an intriguing pref-
erence for a ternary patterned theory, model, or explanation of reality [10]. A
universal practice across different cultures is using triads for perceiving, under-
standing, interpreting, and representing the reality [3,13]. For example, triadic
structures are abundant in many legends, stories, fictional and non-fictional writ-
ings, and scientific documents. Many authors have built theories, frameworks,
and models around tripartite conceptions [15].

A possible explanation of our preference for triadic thinking may be offered
based on the concept of cognitive load [24]. On the one hand, three seems to the
maximum number of things that our brain can handle without much deliber-
ate and conscious effort. An important result from cognitive psychology is that
humans can only hold up a few things in the short-term working memory [2,7].
The number is in the range from two to nine and three is a pivoting one. On
the other hand, three seems to be the minimum number of things for our brain
to form any useful and meaningful patterns. Our cognitive ability to form pat-
terns is crucial for us to make sense of the reality and our experiences. Triadic
structures are useful for their simplicity, complexity, and richness. A tripartite
theory, model, or method has the cognitive advantages of simple-to-understand,
easy-to-remember, and practical-to-use.

In understanding, describing, and solving real-world problems, we often use
triadic structures and patterns as a cognitive aid metaphorically, conceptually,
and physically. Inspired by human ways to problem solving, three-way decision
systematically explores triadic structures, including triangles, tri-segement lines,
tri-level hierarchies, three overlapping circles, concentric three circles, and many
others [23]. In other words, triads with structures are a basic notion of three-way
decision. By attaching specific interpretations and meanings to various triads,
we can obtain different models and modes of three-way decision.

2.2 Tri-Level Thinking and SMV Spaces

Tri-level thinking uses a three-level hierarchy depicted in Fig. 1(a), consisting
of the top, middle, and bottom levels [21]. There is a control-support relation-
ship between two adjacent levels. In a top-down direction, a higher level is more
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Fig. 1. Tri-level thinking

abstract, of higher granularity, and determines a realization or implementation
at a lower level, as indicated by a solid arrowed line. The same abstraction of a
higher level may have multiple implementations at a lower level. In a bottom-up
direction, a lower level is more concrete, of lower granularity, and supports a
higher level, as indicated by a dashed arrowed line. There may exist emergent
properties at a higher level that cannot be explained from the properties of enti-
ties at a lower level. Emergent properties arise from the interactions of entities
at a lower level.

We may interpret the three levels of Fig. 1(a) in many different ways, such as
the level of abstraction, the level of governing, the level of operation, the level
of scales, and so on. The use of the tri-level hierarchy in fact appears across
many disciplines and fields [21]. One example of tri-level hierarchy relevant to
cognitive and social decision making is the social hierarchy of Fig. 1(a), which
reflects an understanding with respect to the three micro-, meso-, and macro-
scales [11]. The bottom level focuses on individuals, the middle level on local
communities, and the top level on the human society as a whole. The three
levels may correspond to the personal, group, and social computing and decision
making. Each level addresses problems and answers questions at a different scale,
from the three individual, local, and global points of view.

Another tri-level hierarchy relevant to cognitive and social decision making
is the notion of SMV spaces [25,26], as depicted in Fig. 1(c). The idea of SMV
spaces derives from an integration of three powerful triads. The first triad is a
division of the communication problems into three categories by Shannon and
Weaver [14]. The bottom level concerns the technical problem of transmitting
symbols. The middle level deals with the semantic problem of making sense of
the transmitted symbols. The top level is about the effectiveness problem regard-
ing whether the received meaning affects conduct of the receiver in the desired
way. The second triad is the data-information-knowledge-wisdom hierarchy in
information science and management science [1,4,12], which is simplified into
three levels of data, knowledge, and wisdom by treating information as a kind
of weak knowledge [25]. The third triad is the trilogy of perception-cognition-
action in psychology [6,8], which may be metaphorically interpreted as human
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seeing, knowing, and doing. We can easily observe close connections between the
corresponding levels used the three triads. In some sense, the three levels may
be interpreted as the input-process-output layers, corresponding to data collec-
tion and preparation, knowledge discovery and learning, and wise actions. It is
reasonable to claim that the notion of SMV spaces captures the essence of the
three triads, namely, the symbols-semantics-effectiveness aspects of a message,
the data-knowledge-wisdom hierarchy, and the perception-cognition-action tril-
ogy. Data are raw symbols from observation and perception, knowledge is mean-
ing of data, which is discovered from data and summarizes and theorizes the
observations, and wisdom is the wise use of knowledge and appropriate action
which actualizes the value and power of knowledge. Thus, SMV spaces serve as a
fundamental construct for understanding, describing, and modeling human and
intelligent machine problem-solving, behaviours, and actions.

3 Three Perspectives on Cognitive and Social Decision
Making

Based on the notion of SMV spaces and other triadic structures introduced
in the previous section, we discuss three perspectives on cognitive and social
decision, namely, a framework for studying the subject matters of CSMD, a social
hierarchy relevant to CSMD, and applications of CSMD for studying human-
machine co-intelligence.

3.1 Research Framework Perspective

The notion of SMV spaces provides a conceptual construct for CSDM. According
to SMV spaces, we study CSDM at the three levels of symbols, meaning, and
value. By following the principles of three-way decision as thinking in threes, we
may approach any particular fields from roughly three main angles, namely, the
philosophy, theory, and practice perspectives [22,23]. By combining the notion
of SMV spaces and the philosophy-theory-practice triad, we immediately arrive
at a 3×3 research framework, which is depicted in Table 1. The 3×3 framework
was first introduced for building an architecture of explanation for explainable
artificial intelligence or XAI, in which the last three columns are labelled by
Why, What, and How [24]. The column labelled by “Philosophy” was used for
constructing a conceptual model of data science [25].

Table 1. A framework for studying CSDM

Philosophy Theory Practice

Value/Widsom Wisdom is value Decision making Doing

Meaning/Knowledge Knowledge is power Knowledge learning Knowing

Symbols/Data Data are resources Information seeking Seeing



264 Y. Yao and J. Yao

The 3 × 3 framework focuses on nine different topics at three levels, with
three related issues at each level, namely, the philosophical position, the the-
oretical formulation, and the practical applications2. At the bottom level, we
treat data as resources; the main theoretical investigations and tasks including
data collection, processing, preparation, and information seeking; the level may
be metaphorically viewed as the practice of seeing. At the middle level, we focus
on the potential power of knowledge; the research questions are related to knowl-
edge discovery, learning, and cognitive processing; the level is about knowing.
At the bottom level, we turn our attention to value of knowledge through wise
use of knowledge and knowledge supported the right course of actions; we study
issues and activities related to decision making; the level concentrates on doing3.

The framework offers three modes of operations: (1) a bottom-up evidence-
based and data-driven knowledge discovery and decision making and action, (2)
a top-down decision-guided leaning and information seeking and data collection,
and (3) a middle-out knowledge-based decision making and action, as well as
knowledge-guided information seeking and data collection. The three modes, in
fact, work together iteratively [25].

3.2 Social Hierarchy Perspective

A person exists as a unique individual, as well as a member in communities and
the entire human society. The same may be said of an intelligent machine or sys-
tem. Studies of CSDM may explore the individual, community, and society three
levels. In this case, we have a large numbers of individuals at the bottom level, a
small number of communities at the middle, and the human society at the top.
In the bottom-up direction, individuals form various communities, they in turn
form the human society. In the top-down direction, the collective value, belief,
and consciousness of the human society determine that of the communities, they
in turn determine that of individuals. With respect to SMV spaces, individuals,
communities, and human society have their own SMV spaces. Figure 2 describes
a tri-level hierarchy with each level characterized by different types of SMV
spaces. Studies of CSDM may be formulated according to the interactions of
SMV spaces in the three levels.

2 In formulating the Data-Knowledge-Wisdom or DKW hierarchy, we typically take
the middle level as information/knowledge [21]. Sometimes, it might also be mean-
ingful to take the bottom level as data/information. It is motivated by an observation
that data and information are sometimes closely tied together and there does not
exist a clear cut between data and information. Data/information may treated as
the input to humans or machines. This alternative understanding is consistent with
the earlier quoted description of cognitive and social decision in terms of “informa-
tion seeking, knowledge learning, and decision-making,” which is summarized in the
column labeled by “Theory” in Table 1.

3 We want to clarify that the questions/issues in the cells of Table 1 should be read
liberally rather than literately. Depending on a particular context, it is possible to
apply the same 3 × 3 framework, but using a set of different questions/issues.
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Fig. 2. Individual-community-society tri-level framework

At the bottom level, SMV spaces of individuals, either humans or machines,
may be different. The differences stem from the available data, the past experi-
ence, the knowledge of an individual. The behaviour and action of an individual
reflect the values and beliefs of the individual. At this level, we focus on the cog-
nitive preference, cognitive functions, and cognitive decision-making processes of
the individuals. At the middle level, we focus on communities consisting of mul-
tiple individuals. The SMV space of a community emerges from the SMV spaces
of its members, as well as the relationships and interactions. That is, the SMV
space of a community is based on the SMV spaces of its members on the one
hand and above these SMV spaces on the other hand. The research questions at
the middle levels concern the collective intelligence, collective beliefs, collective
values, and collective consciousness, as well as other emergent community based
cognitive functions and processes, social cognitive decision making, and cognitive
social decision making. The top society level may be similarly explained with
respect to the SMV spaces of multiple communities.

A main advantage of using a hierarchy is that it allows investigations on
multiple levels. We may use the tri-level hierarchy to study both individual
cognitive decision making and social cognitive decision making, as well as their
top-down control and bottom-up support.

3.3 Intelligence and Intelligent Systems Perspective

Some of the purposes of studying CSDM are to develop cognitive principles,
methods, and tools to empower human beings, and to design and implement
intelligent machines by using the same principles. For such purposes, we may
cast research of CSDM from a third angle based on the notion of human-machine
co-intelligence [26].
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Figure 3, adapted from Yiyu Yao [26], gives a triangular description of human-
machine co-intelligence. It is assumed that both human intelligence and machine
intelligence are interpreted based on SMV spaces. In one direction indicated by
the arrowed line, human intelligence guides machine intelligence. In the other
direction indicated by the dashed arrowed line, machine intelligence support
human intelligence. In this guiding-supporting relationship, human intelligence
is augmented, and enriched, and supported by machines. It exploits the human
intuition, insights, strategical thinking, moral, and values on one hand, and the
machine large volume of memory, computational power, speed, other physical
advantages on the other. The combination of human intelligence and machine
intelligence gives rise to human-machine co-intelligence.

Fig. 3. Human-machine symbiosis triangle (adapted from [23])

Similar to the individual-community-society tri-level hierarchy, we explain
the triangular architecture of human-machine intelligence based on the notion of
SMV spaces. It is assumed that SMV spaces are a good conceptual construction
for understanding and interpreting intelligence. The intelligence of any intelli-
gent beings, either human or machine, must contain explanations at the sym-
bols/data, meaning/knowledge, and wisdom/value three levels. They properly
reflect what intelligent beings see, know, and do. Intelligence involves transform-
ing from observations and experience into knowledge, and turning knowledge into
the right course of action. That is, an intelligence being should at least be able to
receive information from its environment and observe the reality, to learn from
experience and adapts itself, and to act according to its knowledge and beliefs.
This triadic view of intelligence may deserve further attention and articulation.

Human-machine co-intelligence is the third intelligence emerged from human-
machine symbiosis. It is not about the replacement one of by the other, nor the
competition of the two; it is more about a seamless integration of the two so that
we can take the advantages of both human intelligence and machine intelligence.
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Research on CSDM must consider human-machine co-intelligence, in order to
have a superior human-guided, machine-supported cognitive decision process in
a right social context. In other words, the success of CSDM may lie on the devel-
opment of human-machine symbiosis that produces the third intelligence through
human-machine collaboration, cooperation, coevolution, and co-creation.

4 Concluding Remarks and Future Research Challenges

In this paper, we have made an attempt to draw a research landscape and
action plan for studying cognitive and social decision making or CSDM. We must
acknowledge that CSDM is a complex multifaceted research field with many
challenges. This paper only scratches the surface and many questions remain
unanswered. To a large extent, the discussed three perspectives are based on
intelligent speculations and high level conceptualization. The ideas of the paper
must be further explored and articulated.

For future research, we can briefly mention three directions:

1. A full multidisciplinary study of CSDM. The notion of human-machine co-
intelligence may serve as a good starting point. By treating intelligence as a
basic concept, we at least discuss the goals or end results for studying CSDM,
that is, developing theories, methods, and tools to realize, enhance, and enrich
human intelligence, machine intelligence, and human-machine co-intelligence.
The next steps may be worked towards achieving such goals.

2. Synthesis of existing results for CSMD. Although the notion of “cognitive
and social decision-making” may be a new one, it contents have in fact been
investigated in different fields and by many authors. The research challenges
may not be the creation of new theories, but more the integration of existing
results in a new context. This new context is the cognitive and social aspects
of decision making. A combination of a cognitive and a social dimension may
lead to new research problems.

3. New triadic structures for CSDM. The introduction of CSMD is based on a
triad consisting of cognitive science, social environments, and decision science.
In this paper, we have used a number of other triadic structures. Due to the
power of triadic structures in theory building, it may be useful to search and
examine other new triadic structures for CSDM.

In summary, this paper is perhaps more about raising questions than offering
answers. In the beginning of a new field, asking the right questions may greatly
increase the probability of its success. Researchers in the rough sets [9], granular
computing [28], and three-way decision [23,27] communities may give beautiful
answers to our questions, which motivated us writing this position paper.
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Abstract. For conflict problems, attitudes of agents on issues are often
lost due to some mistakes, and trisecting a set of agents is an important
research topic of conflict analysis, and three-way decisions with rank-
ings and references provides an effective method for trisecting a set of
agents. In this paper, we divide a set of issues into two disjoint parts from
different perspectives, and give the support and opposition rankings of
issues and the support and opposition reference tuples for an incom-
plete situation table. Then, we design an alliance measure with regard
to an issue by a transition probability function, and develop an additive
alliance measure regarding multiple issues with conditional weights of
issues. Afterwards, we take the additive alliance measure to trisect a set
of agents towards multiple issues, and give three types of decision rules
by considering the weights of agents. Finally, we design an algorithm for
deriving three types of decision rules, and use an example to show how
to make decisions with the proposed model.

Keywords: Alliance measure · Conflict analysis · Incomplete
three-valued situation table · Ranking · Reference tuple

1 Introduction

The theory of three-way decisions, proposed by Yiyu Yao [19] in the year of
2010, is a kind of granular computing method of problem solving and information
processing with an idea of threes. Afterwards, it has attracted more and more
attention and has been widely developed in theoretical and application aspects
such as three-way clustering [1,4], three-way concept analysis [2,25], three-way
classification [3,21], three-way recommendation [14,24] and three-way decision
making [22,23]. Recently, Xu, Jia and Li [15] proposed concepts of rankings and
references for two-valued information tables, and trisected a set of objects into
three disjoint parts regarding multiple attributes with matching functions. After
that, Xu, Jia and Li [16] developed a generalized model of three-way decision
with rankings and references and designed an algorithm to compute the optimal
trisection of a set of objects in finite steps. Xu, Yao and Li [17] provided two
models of three-way decisions with ranking and references on hybrid information
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Campagner et al. (Eds.): IJCRS 2023, LNAI 14481, pp. 270–282, 2023.
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tables, and put forward a measure of trisections by the positive, negative and
boundary probabilities. The researches of three-way decisions with rankings and
references are increasing with the development of three-way decisions.

Another topic of three-way decisions is three-way conflict analysis that stud-
ies conflict problems with three-way decisions. In fact, conflict is a kind of
antagonistic relationships among agents, and studying the essence of conflicts
and finding feasible strategies for solving conflicts are two main topics of con-
flict analysis. Initially, Pawlak [11] defined the alliance, neutrality and conflict
relations between two agents with an auxiliary function, and studied conflict
problems with rough set theory and graph theory. After that, many scholars [6–
10,12,13,18,20] have taken three-way decisions to study conflict problems. For
instance, Lang et al. [6] introduced the probabilistic model of conflict analysis by
extending the Pawlak conflict analysis model on the basis of decision-theoretic
rough sets and three-way decision theory, and used a pair of thresholds instead
of the threshold 0.5 in the Pawlak model to define the alliance, conflict and neu-
trality relationship. Luo et al. [10] divided an auxiliary function into an alliance
function and a conflict function so as to depict the relationship between two
agents from alliance and conflict aspects. Sun et al. [12] designed two-universe
models of three-way conflict analysis with probabilistic rough set theory. Yang
and Suo [13] discussed the relationship between two agents in three types of
incomplete situation tables when attitudes or opinions of agents on some issues
are lost or missing. Yao [20] reformulated the Pawlak’s model to three-way
conflict models by adopting distance functions.

In practical situations, there are many incomplete three-valued situation
tables to depict conflict problems. Now, there are two methods of treating the loss
attitude when constructing alliance and conflict measures in incomplete three-
valued situation tables. One is to use the attitude that occurs with the most
frequency instead of the missing value, and the other is to use the probability
that an attitude occurs. Both methods can not describe the relationship between
two agents precisely. Furthermore, when all models of three-way conflict analysis
discuss the relationship between two agents towards a subset of issues, they do
not consider the relationship between two agents towards the complement of the
subset of issues. Actually, it helps us to discuss the relationship between two
agents if we consider a subset of issues and its complement at the same time.
It motivates us to design models of three-way conflict analysis for incomplete
three-valued situation tables with the thoughts of rankings and reference tuples.
The contributions of this work are briefly listed as follows:

(1) We divide a set of issues into two disjoint parts with regard to the support
and opposition, and define the support and opposition rankings of issues and
the support and opposition references for incomplete situation tables. After
that, we give the transition probability function to depict the transition
probability between the unknown attitude and the support, neutrality and
conflict attitudes.

(2) We define an alliance measure for incomplete situation tables regarding
an issue with the transition probability function, and develop an additive



272 C. Lin et al.

alliance measure towards multiple issues with the conditional weights of
issues. Afterwards, we trisect a set of agents into three disjoint parts, namely,
the alliance, neutrality and conflict coalitions, with the additive alliance mea-
sure and derive three types of decision rules with the weights of agents for
decision making.

(3) We design an algorithm of trisecting a set of agents into the alliance, neu-
trality and conflict coalitions with the support and opposition rankings and
the support and opposition references, and take an example to illustrate
that how to trisect a set of agents into the alliance, neutrality and conflict
coalitions and derive three types of decision rules for making decisions.

The rest of this paper is organized as follows. In Sect. 2, we review the basic
concepts of three-way decisions with rankings and references. Section 3 develops
ranking of issues and reference tuples of agents, and provides two models of
three-way conflict analysis with alliance measures. Section 4 shows how to apply
the proposed model to derive decision rules. Section 5 concludes the work of this
paper.

2 Preliminaries

In this section, we recall three-way decisions with rankings and references.

Definition 1 (Pawlak [11], 1984). A quadruple S = (U,C, V, f) is an infor-
mation table, where U = {x1, x2, . . . , xn} is a non-empty finite set of objects,
C = {c1, c2, . . . , cm} is a non-empty finite set of attributes, V =

⋃{Vc | c ∈ C},
where Vc is the set of values of attribute c on all objects, and f is a function
from U × C into V .

We refer information tables with two attribute values to as two-valued infor-
mation tables, and most of three-way decision models with ranking and reference
tuple are developed for two-valued information tables.

Definition 2 (Xu et al. [16], 2022). Let C be a non-empty finite attribute set.
A ranking order ≺r of C divides the set C into two disjoint subsets C1

r and C2
r

such that Cr = {C1
r , C2

r } and C2
r ≺r C1

r , where C1
r and C2

r represent the sets of
attributes in rank 1 and rank 2, respectively.

We can divide a set of attributes into two disjoint subsets by the ranking
order, and define the ranking order according to the weights of attributes and
the preferences of decision makers.

Definition 3 (Xu et al. [16], 2022). Let C = {c1, c2, . . . , cm} and ≺r be a rank-
ing order of C. An m-tuple xr = (f(xr, c1), f(xr, c2), . . . , f(xr, cm)) is called a
reference tuple on Cr if it satisfies: (1) f(xr, ck) ∈ {0, 1}; (2) f(xr, ci) = f(xr, cj)
when ci ∈ C1

r ∧ cj ∈ C1
r or ci ∈ C2

r ∧ cj ∈ C2
r , where k, i, j ∈ {1, 2, . . . ,m}.
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Definition 4 (Xu et al. [16], 2022). Let S = (U,C, V, f) be an information
table, a ranking order ≺r divides the set C into two disjoint subsets C1

r and C2
r ,

a reference tuple xr = (f(xr, c1), f(xr, c2), . . . , f(xr, cm)). Then the positive,
negative and boundary regions with respect to ≺r and xr are defined by:

POS(α,β)(U) = {x ∈ U | MC1
r
(x, xr) ≥ α ∧ MC2

r
(x, xr) > β},

NEG(α,β)(U) = {x ∈ U | MC1
r
(x, xr) < α ∧ MC2

r
(x, xr) ≤ β},

BND(α,β)(U) = {x ∈ U | MC1
r
(x, xr) ≥ α ∧ MC2

r
(x, xr) ≤ β}

∨{x ∈ U | MC1
r
(x, xr) < α ∧ MC2

r
(x, xr) > β},

where

MC(x, xr) =

∑
ci∈C mci

(x, xr)
|C| ,

mci
(x, xr) =

{
1, f(x, ci) = f(xr, ci),
0, f(x, ci) �= f(xr, ci).

3 Three-Way Conflict Analysis Models for Incomplete
Information Situation Tables

In this section, we design two models of three-way conflict analysis for incomplete
situation tables.

Definition 5 (Yang et al. [5],1998). A triple S = (A, I, r) is called an incom-
plete situation table, where A = {a1, a2, . . . , an} is a non-empty finite set of
agents, I = {i1, i2, . . . , im} is a non-empty finite set of issues, the function
r : A × I −→ {−, 0,+, ∗}, where r(a, i) = + means that the agent a is pos-
itive about the issue i, r(a, i) = − means that the agent a is negative about
the issue i, r(a, i) = 0 means that the agent a is neutral about the issue i, and
r(a, i) = ∗ means that the attitude of agent a on issue i is lost or unknown.

If all attitudes or opinions of agents on issues take the values from the set
{−, 0,+}, then we refer it to as a complete situation table.

Definition 6. Let S = (A, I, r) be an incomplete situation table,

(1) the support ranking order ≺s of I divides the set I into two disjoint subsets
Is and Is such that Is = {Is, Is} and Is ≺s Is, where Is and Is represent the
bundles of supported issues and non-supported issues, respectively.

(2) the opposition ranking order ≺o of I divides the set I into two disjoint subsets
Io and Io such that Io = {Io, Io} and Io ≺o Io, where Io and Io represent
the bundles of opposed issues and non-opposed issues, respectively.

From the perspective of support, we divide the set of issues into a bundle
of supported issues and a bundle of non-supported issues. From the perspective
of opposition, we divide the set of issues into a bundle of opposed issues and a
bundle of non-opposed issues.
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Definition 7. Let S = (A, I, r) be an incomplete situation table,

(1) An m-tuple asr = (r(as
r, i1), r(a

s
r, i2), . . . , r(a

s
r, im)) is called a support ref-

erence tuple on Is if it satisfies: (1) r(as
r, ik) ∈ {−, 0,+}; (2) r(as

r, ij) =
r(as

r, ik) when ij ∈ Is∧ik ∈ Is or ij ∈ Is∧ik ∈ Is, where j, k ∈ {1, 2, . . . ,m}.
(2) An m-tuple aor = (r(ao

r, i1), r(a
o
r, i2), . . . , r(a

o
r, im)) is called an opposition

reference tuple on Io if it satisfies: (1) r(ao
r, ik) ∈ {−, 0,+}; (2) r(ao

r, ij) =
r(ao

r, ik) when ij ∈ Io∧ik ∈ Io or ij ∈ Io∧ik ∈ Io, where j, k ∈ {1, 2, . . . ,m}.
Definition 8. Let S = (A, I, r) be an incomplete situation table, if the function
P : {∗} × {−, 0,+} −→ [0, 1] satisfies:

(a) P (∗,−) ≥ 0, P (∗, 0) ≥ 0, P (∗,+) ≥ 0;
(b) P (∗,−) + P (∗, 0) + P (∗,+) = 1,

then P is called a transition probability function.

In Definition 8, P (∗,−) means the probability that the unknown opinion
∗ is replaced by the opposition attitude −; P (∗, 0) means the probability that
the unknown opinion ∗ is replaced by the neutral attitude 0; P (∗,+) means
the probability that the unknown opinion ∗ is replaced by the support attitude
+. For simplicity, we denote P (∗,−), P (∗, 0) and P (∗,+) as P∗−, P∗0 and P∗+,
respectively.

Definition 9. Suppose S = (A, I, r) is an incomplete situation table, for an
issue i ∈ I, the function eai : {−, 0,+, ∗} × {−, 0,+, ∗} −→ [0, 1] towards i ∈ I is
called an alliance measure if it satisfies:

(1) eai (+,+) ≥ eai (0, 0) > eai (+, 0) = eai (0,+) > eai (+,−) = eai (−,+);
(2) eai (+,+) ≥ eai (0, 0) > eai (−, 0) = eai (0,−) > eai (+,−) = eai (−,+);
(3) eai (−,−) ≥ eai (0, 0) > eai (+, 0) = eai (0,+) > eai (+,−) = eai (−,+);
(4) eai (−,−) ≥ eai (0, 0) > eai (−, 0) = eai (0,−) > eai (+,−) = eai (−,+);
(5) eai (+, ∗) = eai (∗,+) = P∗− × eai (+,−) + P∗0 × eai (+, 0) + P∗+ × eai (+,+);
(6) eai (−, ∗) = eai (∗,−) = P∗− × eai (−,−) + P∗0 × eai (−, 0) + P∗+ × eai (−,+);
(7) eai (0, ∗) = eai (∗, 0) = P∗− × eai (0,−) + P∗0 × eai (0, 0) + P∗+ × eai (0,+);
(8) eai (∗, ∗) = P∗−P∗− × eai (−,−) + P∗−P∗0 × eai (−, 0) + P∗−P∗+ × eai (−,+)

+ P∗0P∗− × eai (0,−) + P∗0P∗0 × eai (0, 0) + P∗0P∗+ × eai (0,+)
+ P∗+P∗− × eai (+,−) + P∗+P∗0 × eai (+, 0) + P∗+P∗+ × eai (+,+).

Definition 10. Suppose S = (A, I, r) is an incomplete situation table, ωi is the
weight of i ∈ I, where

∑
i∈I ωi = 1, and 0 ≤ ωi ≤ 1. For ∅ �= J ⊆ I, the

conditional weight ω(i|J) is defined by:

ω(i|J) = ωi∑
j∈J ωj

.
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Definition 11. Suppose S = (A, I, r) is an incomplete situation table, for ∅ �=
J ⊆ I, an additive alliance measure Ea

J : A × A → [0, 1] towards multiple issues
J is defined by:

Ea
J (a, b) =

∑

i∈J

[ω(i|J) × eai (r(a, i), r(b, i))].

Definition 12. Suppose S = (A, I, r) is an incomplete situation table,
(1) the support reference tuple asr = (r(as

r, i1), r(a
s
r, i2), . . . , r(a

s
r, im)), Is and Is

are the bundles of supported issues and non-supported issues, respectively,
the additive alliance measures Ea

Is
(a, as

r) and Ea
Is
(a, as

r) with respect to Is

and Is, respectively, are defined by:

Ea
Is
(a, as

r) =
∑

i∈Is

[ω(i|Is) × eai (r(a, i), r(as
r, i))];

Ea
Is
(a, as

r) =
∑

i∈Is

[ω(i|Is) × eai (r(a, i), r(as
r, i))];

(2) the opposition reference tuple aor = (r(ao
r, i1), r(a

o
r, i2), . . . , r(a

o
r, im)), Io and

Io are the bundles of opposed issues and non-opposed issues, respectively, the
additive alliance measures Ea

Io
(a, ao

r) and Ea
Io
(a, ao

r) with respect to Io and
Io, respectively, are defined by:

Ea
Io
(a, ao

r) =
∑

i∈Io

[ω(i|Io) × eai (r(a, i), r(ao
r, i))];

Ea
Io
(a, ao

r) =
∑

i∈Io

[ω(i|Io) × eai (r(a, i), r(ao
r, i))];

Definition 13. Suppose S = (A, I, r) is an incomplete situation table, two pairs
of thresholds (αs, βs) and (αo, βo) such that 0 ≤ αs, βs, αo, βo ≤ 1.
(1) we define the alliance, neutrality and conflict coalitions with respect to the

support ranking and reference tuple by:

ALs
(αs,βs)

(A) = {a ∈ A|Ea
Is
(a, as

r) ≥ αs ∧ Ea
Is
(a, as

r) > βs};
COs

(αs,βs)
(A) = {a ∈ A|Ea

Is
(a, as

r) < αs ∧ Ea
Is
(a, as

r) ≤ βs};
NEs

(αs,βs)
(A) = (ALs

(αs,βs)
(A) ∪ COs

(αs,βs)
(A))c;

= {a ∈ A|[Ea
Is
(a, as

r) ≥ αs ∧ Ea
Is
(a, as

r) ≤ βs]
∨ [Ea

Is
(a, as

r) < αs ∧ Ea
Is
(a, as

r) > βs]}.

(2) we define the alliance, neutrality and conflict coalitions with respect to the
opposition ranking and reference tuple by:

ALo
(αo,βo)

(A) = {a ∈ A|Ea
Io
(a, ao

r) ≥ αo ∧ Ea
Io
(a, ar) > βo};

COo
(αo,βo)

(A) = {a ∈ A|Ea
Io
(a, ao

r) < αo ∧ Ea
Io
(a, ao

r) ≤ βo};
NEo

(αo,βo)
(A) = (ALo

(αo,βo)
(A) ∪ COo

(αo,βo)
(A))c;

= {a ∈ A|[Ea
Io
(a, ao

r) ≥ αo ∧ Ea
Io
(a, ao

r) ≤ βo]
∨ [Ea

Io
(a, ao

r) < αo ∧ Ea
Io
(a, ao

r) > βo]}.



276 C. Lin et al.

According to Definition 13(1), we trisect the set of agents into three disjoint
parts ALs

(αs,βs)
(A), COs

(αs,βs)
(A) and NEs

(αs,βs)
(A) with regard to the support

reference tuple. Moreover, by Definition 13(2), we trisect the set of agents into
three disjoint parts ALo

(αo,βo)
(A), COo

(αo,βo)
(A) and NEo

(αo,βo)
(A) with regard

to the opposition reference tuple.

Theorem 1. Suppose S = (A, I, r) is an incomplete situation table, two pairs of
thresholds (α1, β1) and (α2, β2) such that 0 ≤ α1, β1, α2, β2 ≤ 1, and � ∈ {s, o}.
(1) if α1 = α2, and β1 ≤ β2, then

AL�
(α2,β2)

(A) ⊆ AL�
(α1,β1)

(A),

CO�
(α1,β1)

(A) ⊆ CO�
(α2,β2)

(A),

NE�
(α1,β1)

(A) ⊆ NE�
(α2,β2)

(A);

(2) if β1 = β2, and α1 ≤ α2, then

AL�
(α2,β2)

(A) ⊆ AL�
(α1,β1)

(A),

CO�
(α1,β1)

(A) ⊆ CO�
(α2,β2)

(A),

NE�
(α1,β1)

(A) ⊆ NE�
(α2,β2)

(A);

(3) if α1 ≤ α2, and β1 ≤ β2, then

AL�
(α1,β1)

(A) ⊆ AL�
(α2,β2)

(A),

CO�
(α2,β2)

(A) ⊆ CO�
(α1,β1)

(A);

(4) if α1 ≥ α2, and β1 ≥ β2, then

AL�
(α2,β2)

(A) ⊆ AL�
(α1,β1)

(A),

CO�
(α1,β1)

(A) ⊆ CO�
(α2,β2)

(A).

Actually, the support and opposition ranking orderings depict the preferences
of decision makers for issues, and the support and opposition reference tuples
depict proposals with preferences of decision makers. That is, the decision makers
hope that the proposal depicted by the support reference tuple can be passed,
and the proposal depicted by the opposition reference tuple can be rejected.

Theorem 2. Suppose S = (A, I, r) is an incomplete situation table, φa is the
weight of a ∈ A such that

∑
a∈A φa = 1, and 0 ≤ φa ≤ 1, two pairs of thresholds

(μs, νs) and (μo, νo) such that 0 ≤ νs, μs ≤ 1 and 0 ≤ νo, μo ≤ 1,
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(1) if the support reference tuple asr depicts a proposal,

(P)
∑

a∈ALs
(αs,βs)(A)

φa ≥ μs ∧
∑

a∈COs
(αs,βs)(A)

φa ≤ νs

=⇒ the proposal is passed;

(R)
∑

a∈ALs
(αs,βs)(A)

φa < μs ∧
∑

a∈COs
(αs,βs)(A)

φa > νs

=⇒ the proposal is rejected;

(N) [
∑

a∈ALs
(αs,βs)(A)

φa ≥ μs ∧
∑

a∈COs
(αs,βs)(A)

φa > νs]

∨ [
∑

a∈ALs
(αs,βs)(A)

φa < μs ∧
∑

a∈COs
(αs,βs)(A)

φa ≤ νs]

=⇒ the proposal is delayed.

(2) if the opposition reference tuple aor depicts a proposal,

(P)
∑

a∈ALo
(αo,βo)(A)

φa ≥ μo ∧
∑

a∈COo
(αo,βo)(A)

φa ≤ νo

=⇒ the proposal is passed;

(R)
∑

a∈ALo
(αo,βo)(A)

φa < μo ∧
∑

a∈COo
(αo,βo)(A)

φa > νo

=⇒ the proposal is rejected;

(N) [
∑

a∈ALo
(αo,βo)(A)

φa ≥ μo ∧
∑

a∈COo
(αo,βo)(A)

φa > νo]

∨ [
∑

a∈ALo
(αo,βo)(A)

φa < μo ∧
∑

a∈COo
(αo,βo)(A)

φa ≤ νo]

=⇒ the proposal is delayed.

Next, we provide an algorithm for obtaining decision rules with the support
and opposition rankings and the support and opposition reference tuples.
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Algorithm 1. The algorithm of constructing decision rules with the rankings
and references for incomplete situation tables.
Input: S = (A, I, r), as

r, ao
r , P∗−, P∗0, P∗+, ωi, φa, (αs, βs), (αo, βo), (μs, νs) and

(μo, νo);
Output: Identify that the proposals given by as

r and ao
r are passed, delayed or rejected;

1: Determine the alliance degrees of between an agent and the support (respectively,
opposition) reference towards an issue;

2: Compute the conditional weights ω(i|Is), ω(i|Is), ω(i|Io) and ω(i|Io);
3: Calculate the additive alliance measures Ea

Is
(a, as

r), Ea
Is
(a, as

r), Ea
Io
(a, ao

r) and
Ea

Io
(a, ao

r) for a ∈ A;
4: Construct ALs

(αs,βs)
(A), COs

(αs,βs)
(A), NEs

(αs,βs)
(A), ALo

(αo,βo)
(A), COo

(αo,βo)
(A)

and NEo
(αo,βo)

(A);
5: Identify that the proposal is passed, delayed or rejected.

4 An Application of the Three-Way Conflict Analysis
Model

In this section, a polling question is represented by Table 1, where the agent set
A = {a1, a2, . . . , a6} represents six voters, and the issue set I = {i1, i2, . . . , i5}
represents five candidates, r(a, i) = + means that the voter a supports the
candidate i, r(a, i) = − means that the voter a opposes the candidate i, r(a, i) =
0 means that the voter a is neutral about the candidate i, and r(a, i) = ∗
means that the attitude of voter a on candidate i is unknown, the reference
tuples asr and aor depict proposals with preferences of decision makers. Under
the background of incomplete situation table, we study the alliance, neutrality
and conflict relationship between voters and decision-makers, and judge whether
the reference tuple passes.

Table 1. An incomplete situation table with two reference tuples.

A I

i1 i2 i3 i4 i5

a1 − + + + +

a2 ∗ 0 − ∗ −
a3 + − − − 0

a4 0 − + ∗ −
a5 + ∗ − − −
a6 0 + ∗ 0 +

as
r + − − 0 +

ao
r 0 − − + +

Example 1. For simplicity, by taking the function ea
i (r(a, i), r(b, i)) = 1 −

|r(a,i)−r(b,i)|
2 , and P∗− = P∗0 = P∗+ = 1

3 , we have an alliance measure towards
an issue:
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eai (−,−) = eai (0, 0) = eai (+,+) = 1;

eai (−, 0) = eai (0,−) = eai (+, 0) = eai (0,+) =
1
2
;

eai (−,+) = eai (+,−) = 0;

eai (+, ∗) = ea
i (∗,+) = eai (−, ∗) = eai (∗,−) =

1
2
;

eai (0, ∗) = eai (∗, 0) =
2
3
; eai (∗, ∗) = 5

9
.

(1) From Table 1, we have the support reference tuple asr = (+,−,−, 0,+).
Obviously, Is = {i1, i5} and Is = {i2, i3, i4}. By taking ωi1 = 3

10 , ωi2 = 1
10 ,

ωi3 = 2
10 , ωi4 = 2

10 and ωi5 = 2
10 , we have:

Ea
Is
(as

r, a1) =
2
5
;Ea

Is
(as

r, a1) =
1
5
;

Ea
Is
(as

r, a2) =
3
10

;Ea
Is
(as

r, a2) =
23
30

;

Ea
Is
(as

r, a3) =
4
5
;Ea

Is
(as

r, a3) =
4
5
;

Ea
Is
(as

r, a4) =
3
10

;Ea
Is
(as

r, a4) =
7
15

;

Ea
Is
(as

r, a5) =
3
5
;Ea

Is
(as

r, a5) =
7
10

;

Ea
Is
(as

r, a6) =
7
10

;Ea
Is
(as

r, a6) =
3
5
.

Then, by Definition 13, we have the alliance, neutrality and conflict coali-
tions:

ALs
( 3
5 , 12 )

(A) = {a3, a5, a6};COs
( 3
5 , 12 )

(A) = {a1, a4};NEs
( 3
5 , 12 )

(A) = {a2}.

Finally, by taking φa1 = 0.2, φa2 = 0.1, φa3 = 0.2, φa4 = 0.2, φa5 = 0.2,
φa6 = 0.1, μs = 0.5 and νs = 0.4, we get:

∑

a∈ALs

( 3
5 , 12 )

(A)

φa = φa3 + φa5 + φa6 = 0.5;

∑

a∈COs

( 3
5 , 12 )

(A)

φa = φ1 + φ4 = 0.3.

Therefore, the proposal depicted by the support reference tuple asr is passed.
This means that decision-makers’ proposals are accepted by voters.
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(2) From Table 1, we have the opposition reference tuple aor = (0,−,−,+,+).
Obviously, I0 = {i2, i3} and Is = {i1, i4, i5}. By taking ωi1 = 3

10 , ωi2 =
1
10 , ωi3 = 2

10 , ωi4 = 2
10 and ωi5 = 2

10 , we have:

Ea
Io
(ao

r, a1) = 0;Ea
Io
(ao

r, a1) =
11
14

;

Ea
Io
(ao

r, a2) =
5
6
;Ea

Io
(ao

r, a2) =
3
7
;

Ea
Io
(ao

r, a3) = 1;Ea
Io
(ao

r, a3) =
5
14

;

Ea
Io
(ao

r, a4) =
1
3
;Ea

Io
(ao

r, a4) =
4
7

Ea
Io
(ao

r, a5) =
5
6
;Ea

Io
(ao

r, a5) =
3
14

;

Ea
Io
(ao

r, a6) =
1
3
;Ea

Io
(ao

r, a6) =
6
7
.

Then, by Definition 13, by taking αo = 1
2 and βo = 1

3 , we have:

ALo
( 1
2 , 13 )

(A) = {a2, a3};COo
( 1
2 , 13 )

(A) = {∅};NEo
( 1
2 , 13 )

(A) = {a1, a4, a5, a6}.

Finally, by taking φa1 = 0.2, φa2 = 0.1, φa3 = 0.2, φa4 = 0.2, φa5 = 0.2,
φa6 = 0.1, μo = 0.5 and νo = 0.4, we get:

∑

a∈ALo

( 1
2 , 13 )

(A)

φa = φ2 + φ3 = 0.3,

∑

a∈COo

( 1
2 , 13 )

(A)

φa = 0.

Therefore, the proposal depicted by the opposition reference tuple aor is
rejected. This means that decision-makers’ proposal is rejected by voters.

5 Conclusion

In this paper, we have provided the support and opposition ranking orders, and
the support and opposition reference tuples for an incomplete situation table.
Then, we have defined an alliance measure regarding an issue with the transition
probability function and designed an additive alliance measure towards multiple
issues. After that, we have defined the alliance, neutrality and conflict coalitions
with respect to the reference tuples, and derived decision rules with the weights
of agents. Finally, we have shown that how to apply the proposed models to
derive decision rules with an example.

In the future, we will study how to construct alliance, neutrality and con-
flict coalitions and derive decision rules for complex incomplete situation tables
with rankings and reference tuples. Furthermore, we will investigate that how
to find feasible strategy for solving conflicts with the thoughts of rankings and
references.
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Abstract. By thinking, information processing and decision-making in
threes, the idea, theory and methods of three-way decision have been
successfully applied to various domains. However, the current three-
way decision has two following limitations. On the one hand, the nar-
row three-way decision associated with rough sets either has trouble
processing continuous data or fails to represent knowledge by equiva-
lence classes. On the other hand, the inputs of generalized three-way
decision are individual objects rather than equivalence classes, which
reduces the decision efficiency. To this end, we try to integrate efficient
granular-ball computing into three-way decision. Firstly, we propose a
novel model, i.e., granular-ball three-way decision to improve the effi-
ciency and robustness of three-way decision. Secondly, sequential three-
way decision based on granular-ball is presented to investigate the appro-
priate multi-granularity structures and represent the same object at dif-
ferent granularities. Finally, we analyze the advantages of granular-balls
to strengthen the real-world applications of three-way decision.

Keywords: Three-way Decision · Sequential Three-way Decision ·
Granular-ball Computing · Multi-granularity · Robustness

1 Introduction

Three-way decision (3WD) is a useful method to address the complex human
cognitive problem with uncertain and insufficient information [1,32], especially
in the open dynamic environment [28,29]. Compared to the traditional two-way
decision, the third option in 3WD, i.e., the noncommitment decision provides
more chance to reduce the decision risk when we consider the cost and uncer-
tainty of problem-solving. Hence, many “three-way+methods” are introduced in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Campagner et al. (Eds.): IJCRS 2023, LNAI 14481, pp. 283–295, 2023.
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last ten years, such as three-way approximation [35], three-way concept anal-
ysis [7], three-way clustering [17,37], three-way classifications [5], behavioral
theories-based 3WD [18,38], etc. Moreover, 3WD is also applied into various
domains [27], such as medical diagnosis [18], stock prediction [30], recommenda-
tion system [36], credit evaluation [9], attribute reduction [4], etc.

Originally derived from rough sets, the narrow 3WD is gradually developed
based on the extended models of Palwak rough sets [31], probabilistic rough sets,
and decision-theoretic rough sets [32]. However, the continuous data is difficult
to handle in the above three kinds of 3WD. To solve this problem, Hu et al. [6]
proposed the neighborhood rough sets by using a neighborhood relation instead
of an equivalence relation, which can handle continuous data but fail to represent
equivalence classes due to “heterogeneity transmission” [22]. Then, the above
narrow 3WD methods are extended into generalized 3WD without the concept
of equivalence classes, for example, Anwar Shah et al. [13] studied an ensemble
face recognition mechanism based on 3WD, the inputs are single objects rather
than equivalence classes, which makes the decision less efficient. More, to improve
the decision accuracy and save cost, Yao [33] proposed the sequential three-way
decision (S3WD) and pointed out that the challenge of this method lies in how
to construct reasonable multi-granularity structures and how to represent the
same object at different granularities.

The granular-ball computing is an efficient tool to solve the aforementioned
issues in 3WD. Wang and Xia et al. [21] used hypersphere as a “granularity”
to represent the dataset and proposed a granular-ball computing method, which
only needs two features for any dimension: center and radius. Since granular-
ball computing was put forth, it has obtained expansive attention and acquired
abundant achievement, such as granular-ball rough set [22], granular-ball clas-
sification [20,21,23], granular-ball clustering [25,26], granular-ball feature selec-
tion [12], granular-ball attribute reduction [3,15], granular-ball evolutionary
computation [24] and granular-ball neural networks [14]. Notably, the granular-
ball rough set [22] unified the Pawlak rough set and the neighborhood rough
set, enabling it to handle continuous data and use equivalence classes for knowl-
edge representation. Granular-ball computing is based on balls instead of sample
points, which greatly reduces the number of input training samples and thus
improves efficiency. The radius of a granular-ball naturally reflects its granu-
larity, which helps S3WD to construct an appropriate multi-grained structure
adaptively and represent the same objects at multi-level. Additionally, objects
with noise are less likely to impact granular-balls characterized by coarse-grained
features, underscoring the robustness of granular-ball computing. Given the clear
advantages that granular-balls offer in addressing the complexities of 3WD,
this paper integrates granular-balls into the 3WD framework. Consequently, we
propose both the granular-ball three-way decision method (GB3WD) and the
granular-ball sequential three-way decision method (GBS3WD).

The main contributions of this paper are shown as follows:
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• In this paper, we integrate granular-ball into 3WD for the first time and
propose granular-ball three-way decision methods, which are efficient, robust,
and capable of handling continuous data.

• We propose a granular-ball sequential three-way decision method, the charac-
teristics of granular-ball contribute to establishing a more appropriate multi-
granularity structure and multiple representations of objects, which in turn
leads to more appropriate 3WD boundaries.

• We study how to utilize the advantages of granular-ball to strengthen the
applications of 3WD.

2 Preliminaries

This section briefly reviews some basic concepts with respect to 3WD and
granular-ball rough set.

2.1 Three-Way Decision

Suppose a universe U , X is a concept. In the narrow 3WD based on rough sets,
equivalence classes [x] are obtained by equivalence relation. By the upper and
lower approximations of the concept X, we divided the universe U into three
regions, i.e., positive region POS(X), boundary region BND(X), and nega-
tive region NEG(X), which represent the accept, noncommitment and reject
decisions, respectively. The probabilistic rough set-based 3WD method makes
decisions according to the conditional probability Pr(X|[x]) of the equivalence
class [x] belonging to X and the decision thresholds α and β. If Pr(X|[x]) ≥ α,
then we accept x ∈ X; if β < Pr(X|[x]) < α, then we delay to decision; if
Pr(X|[x]) ≤ β, then we reject x ∈ X. To obtain appropriate decision thresholds
α and β, Yao [34] introduced the Bayesian decision process into decision-theoretic
rough sets based on 3WD.

Moreover, as the classical dynamic models of 3WD, sequential three-way
decision (S3WD) is introduced to deal with the multiple stages decision-making
by constructing the multilevel granular structures [33]. At the begining, objects
are assigned into POS(Xi), BND(Xi) and NEG(Xi) at the coarser granular-
ity. Then, for the objects in BND(Xi), we make further decisions at the finer
granularity with more detailed information. In contrast to making decisions at
the single granularity, S3WD can be used to balance the decision quality and
decision cost. The construction of multilevel granularities and the different rep-
resentations of objects are two key issues in S3WD.

2.2 Granular-Ball Rough Set

Human cognition possesses a cognitive mechanism known as “global prior-
ity” [2], which enables the processing of information input based on coarse-
grained details, thus providing adaptive multi-grained descriptive capabilities.
Building upon this theory, Wang and Xia [16,21] proposed multi-granularity
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granular-ball computing by using the granular-ball to cover sample points. This
approach replaces individual sample points with the granular-ball as inputs, sig-
nificantly reducing the number of required training samples. Additionally, the
coarse-grained nature of the granular-ball ensures that they are less suscepti-
ble to the influence of fine-grained sample points, thereby enhancing the algo-
rithm’s robustness. Moreover, each granular-ball GB = {xi, i = 1, 2, · · · , N} can
be expressed using only two features: its center C and radius r, applicable across
any dimension. The expression is as follows.

C =
1
N

N∑

i=1

xi,

r =
1
N

N∑

i=1

‖ xi − C ‖,

(1)

where N denotes the number of samples in the granular-ball, ‖ xi − C ‖ is the
distance between xi and center C. The size of the radius indicates the granularity
of different thicknesses. Larger radii result in fewer granular-balls, indicating a
coarser level of granularity. More efficient granular-ball computation contributes
to improved algorithm robustness. Currently, this method has been successfully
employed in the field of rough sets. While the Pawlawk rough set utilizes equiv-
alence classes for knowledge representation, it cannot handle continuous data.
Conversely, neighborhood rough sets can address continuous data, but encounter
the challenge of “heterogeneous transmission”, hindering knowledge representa-
tion. To overcome these limitations, Xia et al. [22] introduced granular-balls into
rough set theory, proposing granular-ball rough sets. This framework allows for
the processing of continuous data while utilizing equivalence classes for knowl-
edge representation. The specific models are defined and described as follows.

Definition 1 [22]. Let U = {x1, x2, · · · , xn} is a non-empty finite set of real
space. ∀ xi ∈ U , a granular-ball GBj is defined as:

GBj = {x | x ∈ U, ‖ x, cj ‖≤ rj} , (2)

where cj and rj denote the center and radius of GBj, respectively. Obviously,
the larger the radius rj of the granular-ball, the coarser the granularity size, and
vice versa, the finer the granularity size.

Definition 2 [22]. Let 〈U,A, V, f〉 be an information system, U is the set of
objects, A denotes the set of all attributes, V is the values of attributes, and f
denotes a mapping function that f : U × A → V . ∀ x, y ∈ U and B ⊆ A, the
indiscernible granular-ball relation INDGB(B) of the attribute set B is defined
as:

INDGB(B) =
{
(x, y) ∈ U2|f(x, a) = f(y, a) = GB,∀a ∈ B

}
, (3)

where a is an attribute of B, If (x, y) ∈ INDGB(B), then x and y are
indiscernible according to attribute set B, denoted as x ∼ y. In granular-
ball rough set, INDGB(B) denotes an equivalence relation on U , which
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can create a partition of U , denoted as U/GB(B). An element [x]GB(B) =
{y ∈ U |(x, y) ∈ INDGB(B)} in U/GB(B) represents an equivalence class gen-
erated by granular-ball computing.

Definition 3 [22]. Let 〈U,A, V, f〉 be an information system. For ∀ B ∈ A,
GBRB denotes a corresponding relation on U . ∀ X ∈ U , the upper and lower
approximations of X based on attribute set B can be described as follows:

GBRBX = ∪{
[x]B ∈ U/GB(B)|[x]GB(B) ∩ X �= ∅} ,

GBRBX = ∪{
[x]B ∈ U/GB(B)|[x]GB(B) ⊆ X

}
.

(4)

Granular-ball rough sets can simultaneously handle continuous data and rep-
resent knowledge by equivalence class. Combined with granular-ball computing,
granular-ball rough sets adapt to different data distributions flexibly by using
granules with different radii, and avoid the propagation of heterogeneity caused
by the overlap between the positive regional neighborhoods of different labels
in the neighborhood rough set. In addition, it can achieve higher accuracy than
feature selection made on a coarse-grained basis.

3 Granular-Ball Three-Way Decision Methods

3.1 Motivation

The idea of 3WD has been widely used in real-world application. Traditional
3WD based on classical rough sets can only process discrete data and have
trouble dealing with continuous data. Although neighborhood rough sets can
address continuous data, their upper and lower approximations are constructed
by sample points rather than equivalence classes, resulting in a loss of knowl-
edge representation capability [22]. Thus, 3WD based on neighborhood rough
sets cannot effectively represent equivalence classes. The aforementioned narrow
3WD faces the challenges of processing continuous data or partitioning equiv-
alence classes. However, continuous data prevalence in the real world and the
discretization of it will loss of crucial information. In addition, decisions without
equivalence classes may increase computational complexity and reduce efficiency.
The granular-ball [22] containing a set of points is expressed by the centers and
radii. Granular-ball rough sets can perform equivalence class partitioning on con-
tinuous data, which is a unify of classical rough sets and neighborhood rough
sets. The equivalence classes of granular-ball rough sets have no overlapping,
which helps 3WD to obtain appropriate conditional probabilities and decision
thresholds, making it easier to find the decision boundary of 3WD.

In addition, the generalized 3WD methods take outside the concept of rough
sets, thereby having no equivalence classes. The decision objects of generalized
3WD are individual objects rather than equivalence classes, which may lower
the efficiency. By integrating granular-ball computing with generalized 3WD,
the inputs are replaced by granular-balls composed of multiple samples instead
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of individual samples. This will greatly reduce computational costs and improve
the decision efficiency.

More importantly, Yao [33] pointed out that S3WD faces the challenges of
constructing multiple levels of granularity and multiple representations of the
same object. In granular-ball computing, the radius of granular-ball reflects its
granularity, where a larger radius represents a coarser granularity ball, while a
smaller radius represents a finer granularity ball. Furthermore, by adaptively
changing the center and radius, granular-balls can achieve multiple represen-
tations of objects. In other words, granular-balls facilitate the construction of
multi-granularity structures for S3WD and enable multiple representations of
the same objects. Additionally, granular-ball computing is robust, efficient, and
interpretive.

Therefore, this work introduces granular-ball into 3WD and S3WD, respec-
tively, and proposes granular-ball three-way decision method and granular-ball
sequential three-way decision method.

3.2 Granular-Ball Three-Way Decision (GB3WD)

In this section, we propose granular-ball three-way decision method (GB3WD).
The core of GB3WD includes two stages: the generation of granular-balls and the
three-way decision of granular-ball equivalence classes. In the following, we intro-
duce granular-ball to several narrow 3WD methods and establish corresponding
GB3WD methods, respectively.

Suppose U denotes the whole objects that need to be processed, the granular-
balls GBj (j = 1, 2, · · · , n) are generated based on k-means. Then, the equiva-
lence classes [x]GBj

with respect to the attribute set are generated by granular-
ball computing.

3WD Based on Granular-Ball Rough Set. In 3WD based on Pawlak rough
sets [11], the positive region, boundary region, and negative region of 3WD are
induced by upper and lower approximation of X. By introducing granular-ball
into 3WD, the three regions of three-way decision based on granular-ball rough
set are shown as follows:

POS(X) = GBR(X) = ∪{x ∈ U | [x]GB ⊆ X} ,

BND(X) = GBR(X) − GBR(X)
= ∪{x ∈ U | [x]GB ∩ X �= ∅ ∧ [x]GB � X} ,

NEG(X) = U − GBR(X) = ∪{x ∈ U | [x]GB ∩ X = ∅} .

(5)

The rough membership function based on granular-ball equivalence class is
defined as follows:

μA = Pr(X|[x]GB) =
|X ∩ [x]GB |

|[x]GB | , (6)
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where | · | represents the cardinality of a set, the conditional probability of [x]GB

is denoted by Pr(X|[x]GB). Then, we construct the new rules for three regions
as follows:

POS(X) = {x ∈ U | Pr(X|[x]GB) = 1} ,

BND(X) = {x ∈ U | 0 < Pr(X|[x]GB) < 1} ,

NEG(X) = {x ∈ U | Pr(X|[x]GB) = 0} .

(7)

3WD Based on Probabilistic Granular-Ball Rough Set. The 3WD based
on granular-ball rough set has some limitations due to its too strict rules on
conditional probability. To this end, 3WD based on the probabilistic granular-
ball rough set is proposed to solve this issue, the decision rules are shown as
follows:

POS(X) = {x ∈ U | Pr(X|[x]GB) ≥ α} ,

BND(X) = {x ∈ U | β < Pr(X|[x]GB) < α} ,

NEG(X) = {x ∈ U | Pr(X|[x]GB) ≤ β} .

(8)

3WD Based on Decision-Theoretic Granular-Ball Rough Set. Decision-
theoretic rough set was proposed by Yao [34], which introduced Bayesian deci-
sion process to calculate the decision thresholds α and β. By integrating with
granular-ball, we establish 3WD based on the decision-theoretic granular-ball
rough set.

Table 1. The loss function matrix.

X ¬X

aP λPP (GB) λPN(GB)

aB λBP (GB) λBN(GB)

aN λNP (GB) λNN(GB)

Suppose Ω = {X,¬X} represents the set of states expressing whether an
object x belongs to X or not. The set of actions A = {aP , aB , aN} denotes
three actions of classifying x into POS(X), BND(X) and NEG(X), respec-
tively. Table 1 shows the loss function matrix of different actions under different
states. λPP (GB), λBP (GB) and λNP (GB) represent the loss induced by actions
aP , aB and aN , respectively, when x ∈ X. Similarly, λPN(GB), λBN(GB) and
λNN(GB) represent the loss induced by actions aP , aB and aN , respectively,
when x /∈ X. Pr (X | [x]GB) denotes the probability of the granular-ball equiv-
alence class [x]GB belongs to X. In the Bayesian process, the expected loss is
derived by linearly weighting the losses under different states alongside their cor-
responding conditional probabilities. Therefore, the expected loss R (ai | [x]GB)
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(i = P,B,N) for taking different actions are shown as follows:

R(aP | [x]GB) = λPPPr (X | [x]GB) + λPNPr (¬X | [x]GB) ,

R(aB | [x]GB) = λBPPr (X | [x]GB) + λBNPr (¬X | [x]GB) ,

R(aN | [x]GB) = λNPPr (X | [x]GB) + λNNPr (¬X | [x]GB) .

(9)

Based on the Bayesian minimum risk principle, the decision rules can be
expressed as follows:

If R(aP |[x]GB) ≤ R(aB |[x]GB)&R(aP |[x]GB) ≤ R(aN |[x]GB), x ∈ POS(X),
If R(aB|[x]GB) ≤ R(aP |[x]GB)&R(aB |[x]GB) ≤ R(aN |[x]GB), x ∈ BND(X),
If R(aN |[x]GB) ≤ R(aP |[x]GB)&R(aN |[x]GB) ≤ R(aB |[x]GB), x ∈ NEG(X).

(10)
In practice, assuming λPP (GB) ≤ λBP (GB) ≤ λNP (GB) and λNN(GB)

≤ λBN(GB) ≤ λPN(GB), the decision rules can be simplified as follows:

If Pr (X | [x]GB) ≥ α, then x ∈ POS(X),
If β < Pr (X | [x]GB) < α, then x ∈ BND(X),
If Pr (X | [x]GB) ≤ β, then x ∈ NEG(X),

(11)

where α and β can be computed as follows:

α =
λPNGB

− λBNGB

(λPNGB
− λBNGB

) + (λBPGB
− λPPGB

)
,

β =
λBNGB

− λNNGB

(λBNGB
− λNNGB

) + (λNPGB
− λBPGB

)
.

(12)

Compared with 3WD based on Pawlak rough set, GB3WD is capable of
describing continuous data. In contrast to 3WD based on neighborhood rough
set, GB3WD can effectively represent equivalence classes. Additionally, granular-
balls have good performance in eliminating the influence of noise. Therefore, our
GB3WD can get more accurate conditional probabilities and decision thresholds,
which in turn leads to more appropriate decision boundaries.

3.3 Granular-Ball Sequential Three-Way Decision (GBS3WD)

S3WD involves multiple steps of 3WD by constructing a hierarchical structure
with multiple levels of granularity. S3WD allows for varying descriptions of
objects across different granular levels. Granular-balls offer natural representa-
tions of different granularities through different centers and radii, thus forming
a multi-granularity structure. Within different granular levels, the same object
may belong to different granular-ball equivalence classes, resulting in diverse
representations of the same object. These inherent properties of granular-ball
significantly contribute to the effectiveness of S3WD. In this section, we propose
a granular-ball sequential three-way decision method (GBS3WD).
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Assuming U is a finite nonempty set of objects x, there are n levels of gran-
ularity from coarser to finer in GBS3WD. We generate gi granular-balls GBi,j

(j = 1, · · · , gi) at level i, where i = 1, · · · , n denotes the level of granularity.
gi = g1, · · · , gn express the number of granular-balls generated at level i, then
[x]GBn,.

⊆ · · · ⊆ [x]GB2,. ⊆ [x]GB1,. . At level i, the granular-ball equivalence
classes [x]GBij

are created by the partition Ui/GBi, and the GB3WD divides
[x]GBij

into POS(Ui), BND(Ui) and NEG(Ui).
Let U1 = U , Ui+1 = BND(Ui), which means that we deal with the objects

in BND(Ui) at level i+1. The granularity of level i+1 is finer than that of level
i, which is reflected in the number and radius of granular-balls at each level. Let
bi denote the number of granular-ball equivalence classes that are partitioned
into the BND(Ui) at granular level i, gi+1 express the number of granular-balls
generated at level i+1, then, bi < gi+1. Accordingly, the granular-balls generated
at the finer levels have smaller radii. Concretely , suppose the object x belongs to
[x]GBi,.

at level i and [x]GBi,.
are divided into BND(Ui), if the object x belongs

to [x]GBi+1,. at level i + 1, we can get the conclusion of r(GBi+1,.) ≤ r(GBi,.).
The three regions at level i are defined as follows:

POS(Ui) =
{
x ∈ Ui | Pr(X|[x]GBij

) ≥ αi

}
,

BND(Ui) =
{
x ∈ Ui | βi < Pr(X|[x]GBij

) < αi

}
,

NEG(Ui) =
{
x ∈ Ui | Pr(X|[x]GBij

) ≤ βi

}
,

(13)

where αi and βi denotes the decision thresholds at level i, 0 ≤ β1 ≤ · · · ≤ βn <
αn ≤ · · · ≤ α1 ≤ 1.

The core process of GBS3WD is shown in Fig. 1. Firstly, at level 1, granular-
balls are generated based on all objects in U by k-means and all objects are
divided into granular-ball equivalence classes [x]GB1,1 · · · [x]GB1,13 . Then, these
granular-ball equivalence classes are classified into POS(U1), BND(U1), and
NEG(U1) through GB3WD. Subsequently, the granular-balls in BND(U1)
are further split, generating a greater number of smaller granular-balls with
smaller radii, which leads to the formation of smaller granular-ball equivalence
classes [x]GB2,1 · · · [x]GB2,12 . Further, we carry out GB3WD on these smaller
granular-ball equivalence classes. By continuously applying multi-step GB3WD,
the granular-ball equivalence classes are successively classified into positive and
negative regions. When the granular-balls can no longer be split into smaller
ones, the two-way decision is employed to classify them.

4 The Application of Granular-Ball Three-Way Decision

3WD has extensive application across diverse domains, such as three-way face
recognition [8], three-way credit evaluation [10], three-way investment deci-
sion [19], etc. As granular-balls can represent multi-granularity structures natu-
rally, as well as granular-ball computing is efficient, robust, and interpretable, it
will definitively improve the performances of 3WD in various areas.

Introducing granular-ball into the three-way face recognition method
will improve its robustness and interoperability. Employing multi-granularity
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Fig. 1. Granular-ball Sequential Three-way Decision.

granular-balls, we can effectively depict human faces. Notably informative
regions such as the eyes are represented using fine-grained smaller granular-
balls with smaller radii. Conversely, less informative areas like the forehead are
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represented using coarse-grained granular-balls with larger radii. This approach
enhances the interpretability of the three-way face recognition method. Further-
more, employing granular-balls for facial representation enables the method to
disregard the impact of noise. For instance, spots on the cheek are excluded
from the input, contributing to the robustness of granular-ball three-way face
recognition.

In three-way credit evaluation, granular-ball computing helps construct a
multi-granularity structure. In the beginning, all credit objects are represented
by granular-balls with larger radii, and GB3WD is made. Then, the granular-ball
equivalence classes have been divided into boundary regions in the last stage are
split into granular-balls with smaller radius, and further GB3WD are made on
them. The radius of granular-ball was used to adjust the granularity, which helps
the three-way credit evaluation method to construct more reasonable granularity.

Existing three-way investment decision methods perform 3WD on individ-
ual objects one by one. By introducing granular-ball computing into it, similar
investment projects are initially grouped within the same granular-ball equiva-
lence class. Subsequently, the 3WD is carried out for each granular-ball equiva-
lence class. The granular-ball three-way investment decision method represents
more investment projects by fewer granular-balls, thereby elevating decision effi-
ciency significantly.

5 Conclusion

In this paper, the models of GB3WD and GBS3WD are presented by the inte-
gration of granular-ball computing and 3WD. The advantages of granular-ball
can improve the weakness of 3WD in terms of the multi-granularity structures,
robustness, and interpretability. In future work, the open dynamic environment
can be considered in GB3WD and GBS3WD. It is necessary to explore how to
continually mine the boundary region and reduce uncertainty in such a frame-
work. The knowledge transfer associated with granular-ball is also a novel topic
to improve the robustness and effectiveness of GB3WD and GBS3WD.
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Abstract. In Unsupervised Keyphrase Extraction (UKE) tasks, can-
didate phrases are ranked based on their similarity to the document
embedding. However, This method assumes that every document focuses
on only one topic. As a result, it can be difficult to distinguish the sig-
nificance of potential keyphrases among different topics. Hence, it is nec-
essary to discover a method for acquiring diversified topic information
to obtain accurate key phrases. In this paper, we propose a new unsu-
pervised key phrase extraction method (MSFFUKE) that utilizes multi-
granularity semantic feature fusion. We first cluster phrases into different
clusters through granulation, calculate the semantic similarity between
phrases and each cluster, and take the mean to obtain the semantic fea-
tures of topic granularity. Then, we obtain semantic features of phrase
granularity based on the degree centrality of candidate phrases in the
graph structure. Finally, we integrate semantic features of different gran-
ularity to sort candidate phrases. Three public benchmarks (Inspec, DUC
2001, SemEval 2010) are used to evaluate our model and compared it to
the most advanced models currently available. The results demonstrate
that our model performs better than most models and can generalize well
when processing input documents from various domains and of different
lengths. Another ablation study indicates that both topic granularity
semantic features and phrase granularity semantic features are crucial
for unsupervised keyphrase extraction tasks.

Keywords: Cluster · Unsupervised Keyphrase · Topic information ·
Multi-granular Semantics Feature Fusion

1 Introduction

Identifying key phrases from a document to succinctly describe its main content
is a critical task known as keyphrase extraction [16,17]. Over the years, many
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excellent algorithms have been developed for this task, which is divided into two
categories: supervised and unsupervised methods. The unsupervised methods
are studied more often because they come with a low computational cost. They
generally extract phrases in a more general and adaptive way than the supervised
methods.

The UKE model [8,19,24] has gained extensive research in keyphrase extrac-
tion with the advancement of pre-trained language models [15]. Popular UKE
models use pre-trained language models to embed text and calculate semantic
similarity. Most embedding-based methods score candidate phrases by jointly
modeling global and local contexts. [23] The global context is calculated by
measuring the similarity between candidate phrases and the document vector.
The local context is calculated by measuring the similarity between candidate
phrases. However, when computing the global score, they often treat the docu-
ment as having only one topic, which may not fully capture the topic diversity
of candidate phrases [13]. In Fig. 1, it is clear that diversifying topics is cru-
cial for effective keyphrase extraction. The nodes represent candidate phrase
embeddings and black nodes represent document embeddings, while each black
circle indicates a thematic semantic feature. The nodes in the same black circle
are related to a topic in the document. Meanwhile, the nodes in the red circle

Fig. 1. The nodes in this diagram are potential phrases, represented by black circles
for document embeddings. Additionally, black circles indicate semantic features for
phrase granularity, while red circles indicate phrases that are similar to single-topic
documents. (Color figure online)
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are related to a single-topic document. Suppose we only calculate the similarity
between candidate phrases and single-topic documents. In that case, the model
will tend to select nodes in the red circle, ignoring the topic semantic features
of each of the three topics. To accurately obtain keyphrases, to ensure that our
candidate phrases are more representative, we must obtain multiple topics to
gather the semantic features of their granularity.

To address this, we propose a new unsupervised keyphrase extraction method
that fuses multi-granular semantic features. We calculate the semantic features
of candidate phrases from both phrase and topic granularity and fuse them.
From the topic perspective, we cluster phrases into different clusters to repre-
sent different topics. Then, we calculate the similarity between each phrase and
each topic to obtain the importance score of each phrase in different topics and
take the average score under multiple topics to obtain the thematic semantic fea-
tures of each phrase. From the phrase perspective, we create a graph structure
from the document, with phrases as vertices and edges representing their simi-
larity. Then, we use a graph-based centrality calculation method to calculate the
semantic features of phrases at phrase granularity [8]. Finally, we integrate the
semantic features of phrase granularity and topic granularity to rank keyphrases.
Our method outperforms most existing competitors on three datasets and even
outperforms the latest SOTA on individual datasets. Our main contributions are
summarized as follows:

(1) We propose a new unsupervised keyphrase extraction model that extracts
key phrases by integrating semantic features of phrase granularity and topic
granularity.

(2) We obtain different topics by embedding candidate phrases through clus-
tering and calculate the similarity between phrases and topics to obtain
semantic features of topic granularity.

(3) Our method outperforms most existing competitors on three datasets and
even outperforms the latest SOTA on individual datasets.

2 Related Work

Unsupervised Keyphrase Extraction. There are four types of traditional
unsupervised keyphrase phrase extraction. The first type uses statistical models
[4] to extract keyphrases by analyzing word frequency, location, or language
features. The second type is based on topic models and extracts keyphrases by
studying the probability distribution of the document. The third type is based
on graph models, which was the most popular method in the early days. This
method represents the document as a graph where words or phrases are nodes,
and the edges between them are weighted based on their similarity.

In the early stages, TextRank [10] utilized node ranking in a graph to extract
keyphrase phrases. Following this, SingleRank [20] used the co-occurrence of
words as edge weights. TopicRank [3] grouped potential keyphrases and assigned
a significance score to each topic. [2] suggested a multipart ranking approach
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by incorporating local information within a multipart graph structure. More
recently, [21] analyzed nine different centrality measures to determine the most
effective combination of word ranking for keyphrase phrase extraction. Addi-
tionally, [6] provided a quantitative analysis of statistical and graph-based term
weighting schemes for keyphrase phrase extraction. Finally, the fourth type is
based on embedding models [11,19,24], which have demonstrated strong perfor-
mance with the advancement of representation learning.

Specifically, EmbedRank [1] extracts keyphrase by calculating the similar-
ity between the embedded candidate keyphrase and the document.SIFRank
[19]extends EmbedRank by replacing static embeddings with deep contextual
representations. [8,16,24] solved the problem of length mismatch between can-
didate keyphrases and the document by calculating the similarity between the
masked document and the source document. These existing models only ignore
local information by calculating the similarity between the document and the
candidate keyphrase.

The process of extracting keyphrases involves various methods. JointGL [8]
calculates the similarity between potential keyphrases and the entire document,
while also using boundary-aware centrality to determine local significance. Mean-
while, in [16], the global similarity is based on highlighted representations in the
title, and local significance is determined by centrality. Other approaches utilize
pre-trained language models, as seen in [24], which studied self-attention and
cross-attention for unsupervised keyphrase extraction. In this paper, we pro-
pose a new method for keyphrase phrase extraction based on multi-granularity.
Instead of treating documents as a single topic, we use a different approach. We
divide them into multiple topics using clustering, calculate the semantic features
of each topic, and then combine the semantic features of each phrase to extract
keyphrases.

Text Embedding Models. Currently, the majority of unsupervised meth-
ods for extracting key phrases utilize pre-trained language models to acquire
an embedded representation of the text. Further work is then conducted on
the resulting embedded representation, which may include similarity calcula-
tion, clustering, and other related tasks. [12] A pre-trained language model is a
model trained on large-scale unlabeled corpora to learn prior knowledge, which
is then fine-tuned for downstream tasks. It can provide high-quality natural lan-
guage embeddings for unsupervised tasks, which is different from static word
embeddings such as Word2Vec, GloVe, and FastText [15].

Pre-trained language models can dynamically encode words or sentences
using contextual information to solve the Out-of-Vocabulary (OOV) problem.
That is, when the model encounters a word or sentence that has never appeared
in the training set, it can dynamically generate its vector representation based
on contextual information, rather than simply treating it as an unknown word or
sentence [14]. Additionally, pre-trained language models can provide document-
level or sentence-level embeddings with more semantic information than Sen2Vec
or Doc2Vec. ELMoadopts a Bi-LSTM structure and concatenates forward and
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backward information to capture bidirectional information [15]. BERT is a
bidirectional transformer-based pre-trained language model. Compared with
concatenating bidirectional information, BERT can capture better contextual
information. There are also many other pre-trained language models, such as
RoBERTa [9], and XLNet [22]. In this paper, we chose the most commonly used
BERT and obtained the vector representations of phrases through joint token
embeddings.

3 Methodology

3.1 Data Preprocessing

The model framework is illustrated in Fig. 2. To obtain potential keyphrases
from documents, we employed the approach used in previous research [8]. We
utilized Stanford CoreNLP Tools [1] to label the documents and apply Part of
Speech (POS) tagging to label them. Next, we used the NLTK toolkit [2] to
extract candidate phrases based on part of speech labels using regular expres-
sions. We retained only noun phrases (NP) consisting of zero or more adjectives
and combinations of one or more nouns [8,16].

Fig. 2. The core architecture of the proposed MSFFUKE

3.2 Topic and Phrase Vector Representation

We first preprocessed the document D, which was then tokenized into individual
words represented by tokens D = {w1, . . . , wi} and a set of candidate keyphrases
P = {p1, . . . , pi}. To obtain vector representations of the words in the document,
we used the pre-trained language model BERT [5] as the embedding layer, result-
ing in H = {hw1 , . . . , hwi

} where hwi
refers to the i-th word in the document.

Next, we used word embedding to obtain candidate keyphrase representations.

https://stanfordnlp.github.io/CoreNLP/
https://github.com/nltk
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To obtain the central semantics of candidate keyphrases, we applied the maxi-
mum pool operation to obtain their representations. This method is both simple
and effective, and the calculation is as follows:

hpi
= Max-Pooling(hwj

, . . . , hwk
) (1)

Here, hpi
represents the representation of the i-th candidate keyphrase, and (j-

i+1) represents the length of pi. Specifically, hk represents the words associated
with the candidate keyphrase pi in the document. Meanwhile, we used the K-
means clustering operation to obtain the topic representation {ht1 , . . . , hti} of
the document.

{ht1 , . . . , hti} = K-means(hp1 , . . . , hpi
) (2)

3.3 Semantic Features of Topic Granularity

In order to gauge the variety of topics covered by candidate phrases, we assess
their similarity to each individual topic and then determine the average. To
achieve this, we utilize the Taxicab geometry formula (3) (4) which calculates
topic diversity based on experience.

hdi
=

1
|hti − hpk

|1 (3)

Hpi
=

1
n

n∑

i=1

hdi
(4)

Hdi
represents the similarity between candidate words and one of the topics.

When writing news and scientific articles, authors typically place important
information at the beginning or front of the text. This means that the position
of words plays a crucial role in identifying keyphrases and can provide useful
indicators. To determine the weight of words, authors use the sum of their inverse
positions in the document. For instance, words in positions 1, 2, and 5 have a
weight of Posi = 1 + 1/2 + 1/5 = 1.7. Building on previous research [8,16],
we incorporate position regularization, where Posi = softmax(e

1
i ) and ρi is the

regularization factor for the i-th candidate phrase. This allows us to recalculate
the weighted topic diversity correlation, Ĥpi

, as follows:

Ĥpi
= Hpi

∗ Posi (5)

3.4 Semantic Features of Phrase Granularity

In general, the diversity of topics in a phrase is calculated independently for
each candidate phrase and its topic information. This means it cannot determine
which candidate phrases are better than others. To identify the most important
candidate phrases, we determine the score of phrase granularity by factoring in
the semantic similarity between them and other phrases. Building on previous
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research [8], we consider phrases that appear at the beginning or end of a doc-
ument to be more significant than others. Therefore, we use boundary-aware
centrality to calculate the importance of candidate phrases when computing
phrase similarity scores.

Hp
pi

=
∑

db(i)<db(j)

max(eij − θ, 0) + λ
∑

db(i)≥db(j)

max(eij − θ, 0) (6)

We determine how close nodes are to document boundaries using the formula
db(i) = the smaller value of either i or α(n-i), with n representing the number
of candidate phrases and α being a hyper-parameter that determines the impor-
tance of the start and end of the document. If db(i) is smaller than db(j), node
i is closer to the boundary than node j. To calculate the centrality of node i, we
reduce the contribution of node j. The similarity between two candidate phrases
is represented by eij , and we decrease the impact of phrases using λ. To filter
out noise from nodes that are significantly different from node i, we use θ where
θ = β(max(eij) − min(eij)). All values of eij that are less than θ are set to zero
to remove their influence on centrality. We control the filter boundary using the
hyper-parameter β.

3.5 Multi-granular Semantic Feature Fusion

To determine the final importance score for each candidate, we combine phrase
granularity semantic features and topic granularity semantic features using a
simple multiplication method.

Mi = Ĥpi
∗ Hp

pi
(7)

where Mi indicates the importance score of the i-th candidate phrase. Then, we
rank all candidates with their importance score Mi and extract top-ranked k
phrases as keyphrases of the source document.

4 Experiments

4.1 Datasets and Evaluation Metrics

This paper conducts experiments on three benchmark and popularly used
keyphrase datasets, which include DUC 2001, Inspec, and SemEval 2010. The
Inspec dataset consists of 2,000 short documents from scientific journal abstracts.
We follow previous works [8,16] to use 500 test documents and the version of
uncontrolled annotated keyphrases as ground truth. The DUC 2001 dataset is a
collection of 308 long-length news articles with an average of 828.4 tokens.

The SemEval 2010 dataset contains ACM full-length papers. In our experi-
ments, we use the 100 test documents and the combined set of author-annotated
and reader-annotated keyphrases. [8,16] We follow the common practice and
evaluate the performance of our models in terms of f-measure at the top N
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Table 1. Comparison of our models with other baselines.

Models DUC 2001 Inspec SemEval 2010

F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Statistical-based Models

TF-IDF [18] 9.21 10.63 11.06 11.28 13.88 13.83 2.81 3.48 3.91

YAKE [4] 12.27 14.37 14.76 18.08 19.62 20.11 11.76 14.4 15.19

Graph-based Models

TextRank [10] 11.80 18.28 20.22 27.04 25.08 36.65 3.80 5.38 7.65

SingleRank [20] 20.43 25.59 25.70 27.79 34.46 36.05 5.90 9.02 10.58

TopicRank [3] 21.56 23.12 20.87 25.38 28.46 29.49 12.12 12.90 13.54

PositionRank [6] 23.35 28.57 28.60 28.12 32.87 33.32 9.84 13.34 14.33

MultipartiteRank [2] 23.20 25.00 25.24 25.96 29.57 30.85 12.13 13.79 14.92

Embedding-based Models

SIFRank [19] 24.27 27.43 27.86 29.11 38.80 39.59 – – –

JointGL [8] 28.62 35.52 36.29 32.61 40.17 41.09 13.02 19.35 21.72

MDERank [24] 23.31 26.65 26.42 27.85 34.36 36.4 13.05 18.27 20.35

PromptRank [7] 27.39 31.59 31.01 31.73 37.88 38.17 17.24 20.66 21.35

Our Model

MSFFUKE 31.01 37.17 37.98 33.51 41.75 42.72 13.31 20.54 23.31

keyphrases (F1@N), and apply stemming to both extracted keyphrases and gold
truth. Specifically, we report F1@5, F1@10, and F1@15 of each model on three
datasets. We adopt the pre-trained language model BERT [5]as the backbone of
our model, initialized from their pre-trained weights.

In our experiments, λ is set to 0.9 for three benchmark datasets.

4.2 Overall Performance and Hyperparameter Settings

In Table 1, we present the performance results of both our model and the baseline
on three benchmark datasets: DUC 2001, Inspect, and SemEval 2010. To begin
with, we compare our approach with traditional statistical methods such as TF-
IDF [18] and YAKE [4]. In addition, we also compare our model with five strong
graph-based ranking methods. The first of its kind, TextRank [10], uses the co-
occurrence of words to convert text to graph and employs PageRank to rank
phrases.

In the field of graph-based keyphrase extraction, several models have been
proposed to improve the accuracy of the process. SingleRank [20] utilizes a
sliding window approach for graph construction, while TopicRank [3] consid-
ers the distribution of topics for keyphrase extraction. PositionRank [6] uses
position information to weigh the importance of phrases, and MultipartiteRank
[2] splits the entire graph into sub-graphs and ranks them using graph the-
ory. Additionally, we have compared five cutting-edge embedding-based models.
SIFRank [19] improves upon EmbedRank by utilizing contextualized embeddings
obtained from a pre-trained language model. JointGL [8] sorts candidate phrases
by jointly modeling global and local information, while MEDRank [24] calculates
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the similarity of phrases with documents by masking candidate phrases. HGUKE
[16] uses highlighted information to guide the calculation of similarity between
phrases and documents.

Our model has demonstrated excellent performance on F1@5, F1@10, and
F1@15 evaluation metrics, outperforming current state-of-the-art models. The
effectiveness of predicting candidate phrases has been proven by calculating the
correlation between phrases and documents from different topics perspectives.
The multi-granular feature fusion has resulted in a good performance in predict-
ing candidate phrases. Our model’s backbone is the pre-trained language model
BERT [5], initialized from their pre-trained weights. During our experiments, we
set hyperparameters to α = 1.0, β = 0.2, λ = 0.9.

We conducted an ablation study to evaluate the contribution of topic granu-
larity and phrase granularity in our model. The results, shown in Table 2, indicate
that both types of granularity are significant. Additionally, our results demon-
strate that the concept of multiple topics is crucial for unsupervised keyphrase
extraction, as illustrated in Fig. 3. These findings have significant implications
for future work.

Table 2. The results of ablation experiments on three datasets.

Models DUC 2001 Inspec SemEval 2010

F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

MSFFUKE 31.01 37.17 37.98 33.51 41.75 42.72 13.31 20.54 23.31

-Topic 22.20 34.83 36.50 32.75 40.88 41.59 12.43 18.89 21.78

-Phrase 21.48 27.85 29.26 27.50 36.60 38.45 12.25 15.89 18.41

Fig. 3. The results of Keyphrase extraction through single and multiple topics.

4.3 Impact of the Number of Topics

In this section, we will explore how different topics affect the results. Based on
the data in Table 3, it can be observed that the model performs the best when
there are three topics. This suggests that having multiple topics is beneficial for
UKE.
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Table 3. The results of Different Topics on three datasets.

Different Topics DUC 2001 Inspec SemEval 2010

F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Topic = 1 30.74 37.01 37.71 34.10 41.45 42.77 13.32 19.44 21.37

Topic = 2 29.69 36.30 37.02 33.30 41.45 42.90 13.96 20.43 23.03

Topic = 3 31.01 37.17 37.98 33.51 41.75 42.72 13.31 20.54 23.31

4.4 Impact of Different Similarity Measures

Our approach involves utilizing the Manhattan Distance to gauge the similarity
of text between various topics and potential phrases. Additionally, we aim to
apply multiple measures to determine the thematic variety of these phrases.
The outcomes of these various similarity measures are presented in Table 4. It is
evident that the Taxicab geometry distance provides a significant advantage.

Table 4. The results of Different Similarity Measures on three datasets.

Different

Similarity

Measures

DUC 2001 Inspec SemEval 2010

F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Cosine Similarity 29.98 35.81 37.84 33.37 40.90 42.13 12.46 19.37 22.40

Euclidean Distance 25.31 32.37 34.57 32.52 39.66 41.25 11.00 17.92 20.17

Manhattan Distance 31.01 37.17 37.98 33.51 41.75 42.72 13.31 20.54 23.31

5 Conclusion

This paper presents a method to enhance unsupervised keyphrase extraction
using multi-granularity semantic features based on embedding. Our proposed
method, Multi-granularity Feature Semantic Fusion Unsupervised Keyphrase
Extraction (MSFFUKE), processes phrase documents as multiple topics instead
of a single topic to calculate topic granularity semantic features. The semantic
features of phrase granularity are then fused to select relevant candidate phrases.
Our experiments show that MSFFUKE performs better than most state-of-the-
art unsupervised baselines. Further research could explore the use of different
structural information and statistical features of documents to enhance the per-
formance of unsupervised keyphrase extraction.
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Abstract. The recently developed transformer has been largely
explored in the research field of computer vision and especially improve
the performance of single object tracking. However, the majority of cur-
rent efforts concentrate on combining and enhancing convolutional neural
network (CNN)-generated features and cannot fully excavating the poten-
tial of transformer. Motivated by this, we introduce multi-granularity
theory into the pure transformer-based single object tracker and design
a multi-granularity feature fusion module. With a view to fuse the fea-
ture of different granularity and enhance the feature representation, we
design the double-branch transformer feature extractor and utilize cross-
attention mechanism to fuse the feature. In our extensive experiments
on multiple tracking benchmarks, including OTB2015, VOT2020, Track-
ingNet, GOT-10k, LaSOT, our proposed method named MGTT, the
results could demonstrate that the proposed tracker achieves better per-
formance than multiple state-of-the-art trackers.

Keywords: Computer vision · Single object tracking · Multi
granularity · Rough set · Transformer

1 Introduction

Visual object tracking has a wide range of applications in fields including mili-
tary guidance, video surveillance, unmanned driving, robot vision, and medical
diagnosis, which is a fundamental task in computer vision research area. The
aim of single object tracking is to predict the location and shape of the target
which is given in the first frame of the video in each video frame. Since the
advent of deep learning, single object tracking has advanced significantly [1–
7]. Because of its ability to simulate long-term dependencies, the recent Trans-
former [8] has greatly pushed the state-of-the-art in tracking. However, occlu-
sion, deformation, fast motion, illumination variation et.al are crucial tracking
issues. Although numerous efforts have been made recently [9,10], creating a
high-accuracy and real-time tracker is still a difficult issue. A significant improve-
ment has been made in the capability for sequence-to-sequence modeling in NLP
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. The comparison of our proposed tracker MGTT with Siam R-CNN and TransT.

applications [11] thanks to the unique transformer design [8]. The vision commu-
nity is particularly interested in learning if transformers can effectively compete
with the leading convolutional neural network-based architectures (CNNs) in
vision tasks [12–14], as a result of transformers’ tremendous success in natural
language processing (NLP). However, current approaches [15–20] typically focus
on employing Transformer to incorporate and enhance features produced by con-
volutional neural networks (CNNs), such as ResNet [13]. Although these hybrid
techniques show promise, they are less scalable computationally than strictly
attention-based transformers. To solve this problem, a pure transformer frame-
work named SwinTrack is proposed, which, in comparison to pure CNN-based
[1,2] and hybrid CNN-Transformer [15–17] frameworks, enables better interac-
tions within the feature learning of template and search region and their fusion,
resulting to more reliable performance. However, transformer’s potential to be
used for feature representation learning is still mostly undeveloped. Granular
computing [21–32] is an effective method that utilizes granulation tools to decom-
pose complex problems into multiple relatively simple subproblems for solution.
The multi granularity theory can be seen as a partitioning method for combined
features which is widely utilized in the field of computer vision [33–37]. The typ-
ical single object tracking pipeline [15–17,38] extracts and aggregates features
to obtain a single feature vector as the target representation and obviously has
some limitations. Additionally, it is capable to capturing discriminative variables
and semantics at various granularities (regions of various sizes). Effective tech-
niques to investigate these hierarchical traits are lacking, nevertheless. Inspired
by the success of multi-granularity or multi-scale based deep convolutional net-
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works vision methods, we introduce the theory of multi granularity into the
transformer-based single object tracking to make the feature representation more
precise, discriminative and comprehensive. In this paper, We address the afore-
mentioned challenges by developing a dual-branch transformer that combines
image patches of varying widths to provide stronger visual features for single
object tracking. We name our approach MGTT (Multi-Granularity Transformer
based object Tracking). The proposed object tracking architecture consists of
the multi-granularity transformer-based feature extractor, the multi-granularity
feature fusion module and the head network. The framework of the proposed
MGTT method is demonstrated in Fig. 2. We evaluate our method in various
large-scale benchmarks including OTB100 [39] VOT2020 [40], TrackingNet [41],
GOT-10k [42] and LaSOT [43,44] to verify the effectiveness of our MGTT. In
Fig. 1, it’s noticeable that our method can lead more precise and robust tracking
performance.

In summary, this work has three main contributions as shown as follows.

– We propose a novel MGTT, a transformer based architecture dedicated to
single object tracking. It consists of the multi-granularity transformer-based
feature extractor, the multi-granularity feature fusion module and the head
network. It is capable to combining multi-granularity feature of the target to
enhance the tracking performance.

– We develop the feature-fusion module, enabling to extract better feature
representations by introducing multi-granularity theory. Compared with the
single-granularity based feature, our method adaptively establishes associa-
tions between distant features.

– The proposed tracker achieves state-of-the-art performance on numerous
tracking benchmarks, especially on some large scale datasets such as Track-
ingNet, GOT-10k and LaSOT, while meets the real-time-requirements.

2 Related Work

2.1 Transformer in Language and Vision

Transformer is a language modeling architecture that was initially pitched by
Vaswani et al. [8] for the machine translation task. Transformer reads a sequence
as its input and determines the dependencies between each element. Transformer
is intrinsically good at capturing global information in sequential data thanks to
its property. Transformer has recently demonstrated their significant potential in
tasks involving vision, such as picture classification [45], object identification [46],
semantic segmentation [47], multiple object tracking [48,49], etc. Our approach
draws inspiration from the recently published DETR, however there are a few key
changes. (1) The tasks under study are dissimilar. This effort focuses on object
tracking while DETR is intended for object detection. (2) There are several
network inputs. While DETR requires the entire image as input, ours is a triplet
made up of one search region and two templates. Their backbone features are
first flattened, then they are concatenated, and then they are transmitted to
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the encoder. (3) The training strategies and query design are different. When
DETR is training, it does 100 object queries and use the Hungarian method to
compare predictions to actual data. In contrast, our approach doesn’t use the
Hungarian algorithm and only ever matches one query with the actual data. (4)
There are different bounding box heads. DETR predicts boxes using a three-layer
perceptron.

2.2 Transformer in Tracking

Motivated by the success of transformer in other research fields, researchers
have applied transformer for visual tracking. Two of the fundamental recent
exemplary works on transformer tracking are TransTrack [49] and TrackFormer
[48]. TransTrack takes the image features of both the current and the previ-
ous frame as the input and contains two decoder which, respectively, accept the
learnt object questions and the inquiries from the previous frame as input. Differ-
ently, TrackFormer only takes the feature of the current frame as the input and
contains only one decoder where there is interaction between the track queries
from the previous frame and the learnt object queries. Some other methods
utilize transformer to improve and fuse the features [15] and utilize temporal
information to achieve spatial-temporal feature augmentation [16,50] to increase
tracking reliability. Unlike all aforementioned methods, SwinTrack [38] is a pure
transformer-based tracking approach where Transformer is employed to execute
feature fusion and representation learning, allowing the development of better
features for robust tracking.

2.3 Multi Granularity

At present, the methods of granular computing [51–55] mainly include three
categories, namely word Theory of computation, rough set theory [56–58] and
quotient space theory. Multi-granularity computing is an effective new model
to solve the problem of data-knowledge fusion in intelligent decision-making
based on big data. This theory also has very wide applications in the field of
computer vision. For instance, in the convolutional neural network, a variety
of new approaches use different layers in a ConvNet to improve detection and
segmentation such as FCN [59], HyperNet [60], ParseNet [61]. U-Net [62] and
SharpMask [63] for segmentation, Recombinator networks [64] for face detection,
and Stacked Hourglass networks [65] for keypoint estimation are recent methods
that exploit lateral/skip connections to associate low-level feature maps across
resolutions and semantic levels.

3 Proposed Method

In this section, we now present the proposed multi-granularity transformer-based
tracking method, named MGTT as shown in Fig. 2. For clarity, we first introduce
the overview the of tracking framework architecture in Sect. 3.1. The proposed
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framework contains three main components: the multi-granularity transformer-
based feature extractor, the multi-granularity feature fusion module and the head
network. Each part mentioned above will be detailed described in the following
sections.

Fig. 2. Architecture of our tracking framework MGTT.

3.1 Overall Architecture

ViT’s accuracy and complexity are affected by the granularity of the patch size;
fine-grained patch size allows ViT to perform better but results in increased
FLOPs and memory usage. This is the driving force behind our suggested
method, which aims to balance complexity and utilize the benefits of more fine-
grained patch sizes. In order to combine transformer feature of different gran-
ularity, we introduce a transformer feature extractor with a double branch to
extract multi-granularity features and operate them at a different strategy. As
illustrated in the Fig. 2, the proposed method could be divided into three com-
ponents. The first one is a multi-granularity transformer-based feature extractor,
which utilize transformer as a backbone. This extractor could be separated into
two branches: a L-branch and a M-branch. In the L-branch, the search region is
first cropped into 4 parts and then serve as the input of encoder. In the M-branch,
the search region is cropped into 9 parts. After that, we utilize cross-attention
mechanism to fuse the multi-granularity features to obtain better feature repre-
sentation. Finally, we input the fusion feature and the feature extract from the
template into the prediction head network and attain the tracking result. We
also apply the template update strategy to avoid error accumulation.
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3.2 Multi-granularity Feature Fusion Module

In order to enhance the feature representation and improve the tracking accu-
racy, we introduce the cross-attention mechanism and design a feature fusion
module to fuse the multi-granularity feature extracts from the abovementioned
transformer-based feature extractor. In particular, we first employ the CLS token
at each branch as an agent to exchange information among the patch tokens from
the other branch and then back project it to its own branch in order to fuse multi-
scale features more effectively and efficiently. Interacting with the patch tokens at
the other branch enables the inclusion of information at a different scale because
the CLS token already learns abstract information among all patch tokens in its
own branch. The CLS token interacts with its own patch tokens once more at
the next transformer encoder after the fusion with other branch tokens. Here, it
is able to transmit the knowledge it has learnt from the other branch to its own
patch tokens, enhancing the representation of each patch token.

4 Experiments

This section initially provides technical details as well as the results of our
MGTT tracker on numerous benchmarks, with comparisons to state-of-the-art
approaches. Then, abolition studies are presented to examine the effects of the
suggested networks’ essential components. In order to highlight our method’s
superiority, we also provide the outcomes of other prospective frameworks and
compare them to ours.

4.1 Implementation Details

The backbone we utilize in our proposed method is Swin Transformer-Tiny which
is initialized with the parameters pretrained Imagenet-22k. We train our model
by the train-splits of COCO [66], TrackingNet [41], GOT-10k [42] (For fair com-
parison, 1,000 videos are eliminated following [16]) and LaSOT [43,44]. To build
picture pairings for COCO detection datasets, we perform several alterations
to the source image. To increase the size of the training set, popular data aug-
mentation techniques (such as translation and brightness jitter) are used. The
search region patch and template patch have sizes of 224 × 224 and 112 × 112,
respectively. AdamW [67] is used to optimize the model, which has a learning
rate of 5e-4 and a weight decay of 1e-4. The backbone’s learning rate is set to
5e-5. Our trackers are implemented using Python 3.6 and pytorch 1.5.1.

4.2 Comparisons on Multiple Benchmarks

In this subsection, we compare our MGTT tracking method with numerus state-
of-the-art trackers (SiamR-CNN, KYS, Ocean, ATOM, SiamFC, SiamFC++,
SiamRPN, SiamAttn, SiamCar, TransT, STARK, KeepTrack, Swintrack). In
Table 1, 2, 3, 4 and 5, we present extensive comparison results for the large-scale
OTB2015 [39], VOT2020 [40], TrackingNet [41], GOT-10k [42] and LaSOT [43,
44] datasets.
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Otb2015. The Otb2015 [38] is a well-known tracking benchmark that contains
100 difficult video sequences. With an AUC score of 70.8, the MGTT tracker
easily beats all other examined trackers on the OTB2015 benchmark, as shown
in Table 1.

Table 1. Comparison with state-of-the-art trackers on the Otb2015 test set [39] in
terms of success (AUC score) and. The best two results are shown in red and blue
fonts.

SiamFC
[1]

MDNet
[68]

SiamRPN++ [2] Ocean
[6]

ECO
[69]

LightTrack
[70]

ATOM
[5]

TransT
[15]

STARK
[16]

SwinTrack
[38]

MGTT

AUC 58.3 65.0 68.7 68.4 66.6 65.4 66.3 69.5 68.3 70.2 70.8

VOT2020. VOT2020 [39] comprises of 60 lengthy films in which target items
frequently disappear and reappear. Furthermore, trackers are expected to dis-
close the target’s confidence score. Precision (Pr) and recall (Re) are calculated
using a set of confidence levels. Respectively, MGTT beat most of previous tech-
niques, as shown in Table 2.

Table 2. Comparison with state-of-the-art trackers on the VOT2020 test set [40] in
terms of accuracy (A), robustness (R), and expected average overlapn (EAO). The
best two results are shown in red and blue fonts.

SiamFC

[1]

DiMP

[71]

ATOM

[5]

Ocean

[6]

STARK

[43]

UPDT

[72]

ToMP

[38]

SwinTrack MGTT

A 0.600 0.457 0.462 0.693 0.481 0.465 0.453 0.471 0.482

R 0.234 0.734 0.734 0.754 0.775 0.755 0.814 0.775 0.784

EAO 0.414 0.274 0.271 0.430 0.308 0.278 0.309 0.302 0.270

TrackingNet. TrackingNet [41] is a large-scale short-term tracking benchmark
with a test set of 511 video sequences and avliable ground-truth bounding box
which is released recently. Table 3 shows that MGTT outperform SiamFC++ in
AUC by 5.8% respectively. MGTT gets the better AUC of 81.5% and outper-
forming Siam R-CNN by 0.4

GOT-10k. The GOT-10k [42] dataset has 10,000 training sequences and 180
testing sequences. We adhere to the refined protocol given in [42] and send the
tracking outputs to the official evaluation site. The obtained results (AO and
SRT) are then reported in Table 4. The MGTT method achieve the best results.
In the key AO statistic, the MGTT approach outperforms SwinTRACK by 0.2%.
The result in Table 4 shows that MGTT has a better performance than most of
other state-of-the-art trackers on this benchmark.
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Table 3. Comparison with state-of-the-art trackers on the TrackingNet test set [41] in
terms of success (AUC score), precision (P ), and normalized precision (PNORM ). The
best two results are shown in red and blue fonts.

MDNet

[68]

SiamRPN++

[2]

SiamAttn

[66]

SiamFC++

[3]

KYS

[73]

Siam R-CNN

[74]

TransT

[4]

STARK

[5]

SwinTrack

[38]

MGTT

AUC 60.6 73.3 75.2 75.4 74.0 81.2 81.4 82.0 81.1 81.5

PNORM 70.5 80.0 81.7 80.0 80.0 85.4 86.7 86.9 – –

P 56.5 69.4 – 70.5 68.8 80.0 80.3 – 78.4 78.3

Table 4. Comparison with state-of-the-art trackers on the GOT-10k test set [42] in
terms of average overlap (AO), SR0.5, and SR0.75. The best two results are shown in
red and blue fonts.

SiamFC

[1]

MDNet

[68]

SiamRPN++

[2]

SiamCAR

[75]

SiamFC++

[3]

Ocean

[6]

Siam

R-CNN

[74]

TransT

[15]

STARK

[16]

SwinTrack

[38]

MGTT

AO 34.8 29.9 51.7 56.9 59.5 61.1 64.9 67.1 68.8 71.3 71.5

SR0.5 35.3 30.3 61.6 67.0 69.5 72.1 72.8 76.8 78.1 81.9 82.1

SR0.759.8 9.9 32.5 41.5 47.9 47.3 59.7 60.9 64.1 64.5 64.3

LaSOT. LaSOT [43] is a current large-scale long-term tracking benchmark
with high-quality annotations that includes 1120 training videos and 280 testing
videos. It is actually more difficult than the prior short-term tracking datasets.
The ability to deal with major target appearance changes using temporal con-
text and geographical information is crucial in this dataset. Table 1 summarizes
the precision and success of cutting-edge approaches. As shown in the table,
our suggested approach MGTT (67.4 AUC) has competitive performance and
outperforms other competing trackers.

Table 5. Comparison with state-of-the-art trackers on the LaSOT test set [43] in terms
of success (AUC score), precision (P ), and normalized precision (PNORM ). The best
two results are shown in red and blue fonts.

MDNet

[68]

SiamRPN++

[2]

SiamAttn

[66]

SiamFC++

[3]

Ocean

[6]

Siam R-CNN

[74]

TransT

[15]

STARK

[16]

SwinTrack

[38]

MGTT

AUC 39.7 49.6 56.0 54.4 56.0 64.8 64.9 67.1 67.2 67.4

PNORM 46.0 56.9 64.0 62.3 65.1 72.2 73.8 77.0 – 76.8

P 37.3 49.1 – 54.7 56.6 – 69.0 – 70.8 71.0

5 Conclusions

In this work, we present MGTT, a multi-granularity transformer-based tracker,
to improve the prediction accuracy for single object tracking. In MGTT, we uti-
lize cross-attention mechanism to combine the multi-granularity features which
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are extracted from two branches to effectively enhance the feature representa-
tion. Extensive experiments can demonstrate the effectiveness of our proposed
architecture and our method perform better that multiple of state-of-the-art
algorithms in numerus benchmarks. While our proposed work only scratch the
surface of the search region of single object tracking, we anticipate that multi-
granularity theory will be applied more widely in many search regions. We also
hope that our work will encourage and assist new research.
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Abstract. Multivariate time series forecasting is a significant research
problem in many fields, such as economics, finance, and transportation.
The main challenge faced by current time series forecasting models is
effectively capturing the information embedded in different temporal pat-
terns. However, most existing methods analyze forecasting at a single
time granularity. To alleviate this issue, we propose a novel approach
called the multi-granularity hierarchical temporal forecasting network
(MGTNet), which integrates three temporal convolution kernels based
on the principles of granular computing. Specifically, the data from fine-
grained, meso-grained, and coarse-grained are processed, respectively.
Then, temporal dependence and variable dependence analyses are per-
formed at different levels according to distinct granularities. Finally, they
are stacked to form a complete multi-granularity network. The experi-
mental results demonstrate that the proposed MGTNet outperforms a
bunch of compared methods in terms of RSE, CORR on Traffic, Elec-
tricity and Solar-Energy datasets.

Keywords: Multi-granularity · Granular computing · Hierarchy
network · Multivariate time series

1 Introduction

In everyday life, multivariate time series (MTS) data are in many fields includ-
ing household electricity consumption, solar power generation, highway traffic
flow. The complex relationships within multivariate time series data are diffi-
cult to accurately capture, such as the traffic department tracking traffic flow
at multiple intersections. This makes multivariable time series forecasting very
challenging [26].

Time series forecasting has a rich history, with statistical-based methods
playing a crucial role. For instance, the autoregressive sliding average (ARIMA)
and smoothing exponential are mainly used for univariate time series forecasting
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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[2]. However, these methods treat each time series as an individual entity and fail
to fully utilize the information of variables in multivariate time series. To solve
the MTS problem, the VAR model was proposed [14], which is an autoregressive
model that extends from univariate to vector scale. The VAR models struggle
to capture nonlinear relationships within high-dimensional data, where depen-
dencies across time and correlations among variables are nonlinear. Since the
multivariate time series data is nonlinear, which both the dependencies in the
time dimension and the correlation among multivariates. Therefore, this paper
exploits the powerful nonlinear modeling capability of deep learning to enhance
multivariate time series forecasting.

Recently, deep learning-based methods have been widely used for time series
forecasting owing to their ability to capture nonlinear relationships and the
increasing availability of nonlinear and non-stationary time series data [20].
There are many deep learning methods have been applied to time series fore-
casting, such as recurrent neural networks (RNNs) [16], long short-term memory
networks (LSTMs) [6], convolutional neural networks (CNNs) [12], and attention
mechanisms [19].

For the specific problem of multivariate time series forecasting, Lai et al.
[9] proposed LSTNet , which combines LSTM and CNN to analyze the intri-
cate periodic patterns present in time series data. These patterns are complex
and subtle, consisting mainly of short-term patterns, long-term patterns, and
their mixtures. For example, the traffic dataset contains daily and weekly pat-
terns, which representing short-term and long-term patterns, respectively. The
former describing morning and evening peaks, while the latter reflecting week-
day and weekend patterns. The capacity to detect these two trends is critical
in time series forecasting models. In their study, a novel deep learning model
is proposed specifically for the MTS forecasting problem, where convolutional
and recurrent neural networks are used to capture short-term and long-term
dependence patterns between multiple variables, respectively. However, the main
drawback of LSTNet is that the length of the “recurrent jumps” should be pre-
determined based on the dataset before training. To address this issue, Shih
et al. [17] introduced a dual self-attentive network for multivariate time series.
This network utilizes both CNNs and local CNNs to extract periodicity and non-
periodicity effectively. Since LSTNet performs poorly on non-periodic datasets,
Huang et al. [7] proposed a dual self-attentive network for multivariate time
series, mainly employing all CNNs and local CNNs for extracting periodicity
and non-periodicity. For the complex dependencies between multiple variables
in time series and mixed dependencies in time dimension, Song and Fujimura [18]
proposed a combinatorial model for capturing long-term and short-term correla-
tions in multivariate time series forecasting, the model leverages stacked inflated
convolution and recursive units to capture long-term and short-term correlations
in the data, enabling the capturing of complex patterns of mixed long-term and
short-term dependencies.

Although the above methods have been successfully applied to multivariate
time series forecasting, they do not fully consider the temporal patterns in the
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time series. However, the relationship between different temporal patterns is very
significant. Therefore, it is important to consider multiple temporal perspectives
when predicting a point in time. As Yao introduced the granular computing [23],
which involves the use of granules and multiple levels of granularity to analyze
problems from different perspectives. Yao proposed [25] that artificial intelligence
perspectives on granular computing of hierarchical problem solving reveals some
important aspects of granular computing. For example, communicating up and
down the different levels of granularity and switching between differing granu-
larity. The methodology of hierarchical problem solving in artificial intelligence
and other fields can be adapted for granular computing.

Therefore, we propose a multi-granular hierarchical time series network,
which draws inspiration from granular computing while consider the unique
properties of time series data. Our goal is to address certain limitations over-
looked in previous work and provide some new problem solving ideas for the
field. The main contributions of this work can be summarized as follows:

– Based on the idea of granular computing, a hierarchical multi-granularity tem-
poral forecasting model is proposed to extract different temporal correlations
from various temporal granularities, thereby providing multi-level support for
prediction results.

– The concept of temporal convolution kernel is proposed to solve the problem
from fine, meso and coarse, which is a kind of micro-detail to global research.
This approach provide some new directions for the meso concept.

– It is experimentally demonstrated that we achieve advanced performance on
three real-world multivariate datasets, and the successful application also
advances the exploration of multiple granularity levels in time series forecast-
ing.

The remainder of this paper is organized as follows. Section 2 analyzes the
related work on multivariate time series forecasting. Section 3 introduce our
proposed method. Section 4 describes the comparative experiment and ablation
experiment. Section 5 conclude this paper.

2 Related Work

This section reviews the development of multivariate time series forecasting,
gives a brief review of the granular computing, and describes the temporal gran-
ularity of its own design to further illustrate the details of the work.

2.1 Multivariate Time Series Forecasting

Time series forecasting has been an area of interest for researchers due to its wide
range of applications, and various forecasting methods have been proposed one
after another. Among all the methods, statistical methods have a large share, and
one of the most popular models is the autoregressive integrated moving average
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model (also known as ARIMA model), which contains autoregressive, moving
average and autoregressive moving average [2]. The success of ARIMA model
is due to its robustness to non-stationary data and interpretability of statistical
features. However, ARIMA is more suitable for univariate time series forecasting
due to the high computational cost required by the model. To solving the MTS
problem, the VAR model was proposed [14], which is an autoregressive model
extended from univariate to vector scale. It is widely used to solve the MTS
problem, and many VAR-based models have been constructed [35], including
Varmax [13], elliptical VAR [15], etc. VAR-based models perform poorly when
encountering high-dimensional data, and VAR models are proned to overfitting
when dealing with high-dimensional data. However, the temporal and variable
dependencies are mostly nonlinear relationships, which are difficult to capture by
statistical models. Some machine learning based models such as support vector
machines [3] and neural networks were subsequently proposed to capture the
nonlinear relationships, where the forecasting problem is treated as a regression
problem and kernel methods are applied to the models to increase their ability to
handle nonlinearities. However, each MTS dataset possesses different nonlinear
relationships, and existing methods like support vector machines are limited in
addressing these diverse nonlinearities.

Recently, deep neural networks have been widely used in time series forecast-
ing, which performance has been significantly improved [21]. Recurrent neural
network RNN [16], long short-term memory LSTM [6] and gated recurrent unit
GRU [12] are exactly specialized sequence modeling networks. CNNs plays a
great role in feature extraction. The following work is built and used for multi-
variate time series forecasting based on the above networks. For example, Lai et
al. analyzed that periodic patterns in time series data are complex and subtle,
consisting of short-term patterns, long-term patterns, and their combinations,
the work called LSTNet-skip [9]. Shih et al. [17] proposed a new attention con-
cept in their work called TPA-LSTM. This concept computes attention values
of different variables at each time step, enabling the model to extract temporal
patterns without relying on predefined time steps. Huang et al. constructed a
DSANet network using local CNN and global CNN to capture local and global
dependencies [7]. Song et al. extracted complex patterns of mixed long-term and
short-term dependencies between multiple variables using stacked expanded con-
volutional kernel recursion units [18]. Although the above methods have achieved
good results in multivariate time-series forecasting, none of them fully consider
the different temporal patterns in the time series. For LSTnet and MDTNet
networks although long-term and short-term time patterns are analyzed to some
extent, this method does not fully consider the complete time patterns in the
time series and may not adequately mine temporal correlations. Therefore, we
want to analyze the same forecasting task at multiple levels from different time
levels, and the idea of granular computing is exactly suitable for this scenario.
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2.2 Theory and Application of Granular Computing

The basic components of the granular computing include three main parts: gran-
ules, granules layers and granules structures. granules is the most basic element
of the granular computing model and is the original language of the granu-
lar computing model [27]. The totality of all granules obtained according to
some practically required granulation criterion constitutes a granular layer, an
abstracted description of the problem space. According to some relation or oper-
ator, the corresponding granules produced. The granules in the same layer tend
to have the same certain property or function within them. Different degrees
of granulation result in different granules layers being produced for the same
problem space. The internal structure of a granular layer is the structure of the
thesis domain consisting of the individual granules on that granular layer and the
interrelationships between the granules. One granularity criterion corresponds to
one granules layer, different granularity criteria correspond to multiple granules
layers. The different layer respond people looking at the problem, understanding
the problem, and solving the problem from different perspectives and sides. The
interconnections between all granules layers form a relational structure called
granules structure [24].

As presented, in Yao’s article on the processing and interpretation of time
series, understanding the use of granules. From human perspective, we can
describe time series in a semiqualitative manner by pointing at specific segments
of such signals. We always granulate all phenomena that are understandable to
human beings regardless of the original signals being discrete or analog [23].

The following is description the granulation of time: time is another impor-
tant and omnipresent variable that is subject to granulation. We use seconds,
minutes, days, months, and years. Depending upon a specific problem we have in
mind and who the user is, the size of information granules (time intervals) could
vary quite significantly. To the high-level management, time intervals of quarters
of year or a few years could be meaningful temporal information granules on the
basis of which one develops any predictive model [23]. From the above it can be
seen that for time series we can use the principle of granular computing to analyze
the forecasting problem from multi perspectives, and granular computing is a
feasible direction to help us consider different temporal patterns from time series.

In recent years, the granular computing has some research in the area of time
series forecasting [1]. Yang et al. [22] achieved long-term forecasting by struc-
turing numerical time series into granular time series. Ma et al. [11] proposed
a method for smoothing the original time series into granular time series using
a sliding window strategy using the idea of granular computing. The method
has achieved better results in long-term forecasting, not only with the ability
to avoid cumulative errors, but also with better explanatory power. Li et al.
[10] proposed a new granulation algorithm to demonstrate the feasibility of the
granulation idea in short-term forecasting, which is centered on the basic rules
and is free from external disturbances and successfully applied on short-term
forecasting. Kouloumpris et al. [8] based on an aggregation method with hourly
granularity captured better temporal patterns on short-term forecasts in energy,
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making short-term forecasts more accurate. Hao et al. [5] used the fuzzy grain
method to granulate the interval values and proposed the concept of dynamic
fuzzy information grain to establish a long-term forecasting model, which pro-
vides a new way of thinking for long-term forecasting.

2.3 Construction of Time Granules

For multivariate time series data, we need to analyze prediction tasks from dif-
ferent temporal patterns. Time series data has special temporal relationships, so
we must strictly follow the temporal nature of the construction of time granules
to avoid the risk of data leakage. Also to perform analysis from different tempo-
ral patterns we need to use different temporal convolution kernels for granules
construction. In this paper, three temporal convolutional kernels are constructed
and analysis of time series prediction tasks at three levels.

Theorem 1. Three sets of temporal convolution kernels are used l1 × 1, l2 × 1
and l3 × 1, then the three temporal convolution kernels are granularized over the
time series X to extract the temporal granularity, producing temporal granularity
as G1(X), G2(X), and G3(X), respectively.

Because the three temporal convolution kernels are of different lengths and
produce temporal granularity of different sizes, analyzing temporal correlations
from different temporal granularity is different to analyzing prediction results
from different temporal patterns. This allows the final result to contain informa-
tion from multiple temporal patterns. For the sake of convenience, we give an
example of the extraction process of a temporal convolution kernel.

X =

⎡
⎢⎢⎢⎣

x11 x12 . . . x1T

x21 x22 . . . x2T

...
... . . .

...
xD1 xD2 . . . xDT

⎤
⎥⎥⎥⎦

Granulation=

⎡
⎢⎢⎢⎣

g11 g12 . . . x1T−l+1

g21 g22 . . . g2T−l+1

...
... . . .

...
gD1 gD2 . . . gDT−l+1

⎤
⎥⎥⎥⎦ = G(X) (1)

For the above X is the multivariate temporal data, where x is the specific
value of the time scale represented, for example xDT represents the specific value
of the variable D at time T . Then we will get the G(X) matrix by temporal gran-
ularity of the temporal convolution kernel. g granularity in the G(X) matrix is
calculated by the temporal convolution kernel. For example, a specific example:
a convolution kernel l1 = [a1, a2, a3, a4, a5, a6] of length 6, where a1 to a6 are
time-specific convolution kernel values, which will be updated with each iteration
of deep learning. Extraction is performed on the X data by a temporal convolu-
tion kernel, which will first extract the T timescales of the first row of variables
sequentially, sliding backward one bit at a time, and sequentially sliding the
extracted time granules until it reaches the end of the slide. The computation is
done for g11 = x11 ×a1 +x12 ×a2 +x13 ×a3 +x14 ×a4 +x15 ×a5 +x16 ×a6, then
ditto for g22 = x22 × a1 + x23 × a2 + x24 × a3 + x25 × a4 + x26 × a5 + x27 × a6,
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each temporal convolutional kernel extracts all D variables and then combines
the final result into G(X). Finally we extract all the variables of the time series
data by three temporal convolution kernels of different length. l1 × 1, l2 × 1 and
l3 × 1 to get three different temporal granularity G1(X), G2(X), and G3(X),
respectively. Then for the three temporal granularity generated we used differ-
ent methods for learning, trying to mine useful information from the different
temporal patterns.

3 Proposed Method

In this section, a complete description of the proposed model is given. The model
is mainly divided into three modules:the temporal granulation module,the tem-
poral forecasting module and the granules layer fusion module.

Figure 1 shows the general model structure. The model extracts three dif-
ferent granularity levels of temporal patterns from the original data using three
temporal convolution kernels. These granularity levels are referred to as fine-
grained, meso-grained, and coarse-grained, respectively. For the fine and meso
granularity levels, we use LSTMs to find the temporal relationships between each
temporal granularity, and then utilize the self-attentive network to identify the
relationships between different variables. As for the coarse-grained level, we use
a T × 1 temporal convolution kernel for temporal granularity extraction, where
the length of the kernel matches the length of the entire data. Consequently,
each variable is extracted only once, resulting in a temporal granularity that
can also be referred to as global granularity. To learn the relationships between
different variables, N groups of simultaneous extraction are employed for each
temporal convolution kernel. Thus, the extracted temporal granularity will form
N groups and subsequently learn.

Fig. 1. General Framework Diagram
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3.1 Temporal Granulation Module

After three different lengths of temporal convolution kernels, three different tem-
poral patterns of temporal granularity are produced. Following the extraction of
N sets of temporal convolution kernels, there are N layers of each kind of tempo-
ral granule as shown in Fig. 2. For the coarse-grained level, where the extraction
is performed globally, only one layer of D ×N granularity is generated. For fine-
grained and meso-grained, we use a long-and short-term memory network to
predict the temporal granularity in each layer. The relationship between multi-
ple temporal granularity is mapped to a temporal granules of size D×1, allowing
the results of the N layers are integrated into a single D × N granules layer for
computational convenience. Finally, the output size of the temporal granula-
tion module is guaranteed to be consistent. The specific process is shown in the
following Fig. 2.

Fig. 2. Mining the relationship between time granules

The long short-term memory network is a kind of artificial recurrent neural
network used in deep learning, it can deal with a single number of points or a
sequence segment. In our context, the main purpose of introducing the LSTM
network is to obtain the predicted output ht of a time series and the correspond-
ing hidden state. Then, we calculate the weights between the hidden layer and
the previous time window according to the corresponding hidden state. These
weights are utilized to adjust the time weight matrix, enabling the capture of
more useful time information. The specific formula of long short-term memory
network is as follows:

ht, ct = F (ht−1, ct−1, xt) (2)

it = σ(Uixt + Wiht−1) (3)

ft = σ(Ufxt + Wfht−1) (4)

ot = σ(Uoxt + Woht−1) (5)

ct = ft � ct−1 + it � tanh(Ugxt + Wght−1) (6)

ht = ot � tanh(ct) (7)
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3.2 Temporal Forecasting Module

Each of the three different temporal patterns is processed differently. To account
for the nonlinear nature, we utilize nonlinear neural networks to handle all tem-
poral modes. Specifically, we designed a linear AR module for linear balancing.
For the granularity matrix of D × N obtained from the temporal granularity
module, a multi-headed attention network is used for learning. In the attention
module, query, key and value vectors are used to dig deeper into the hidden layers
of the inputs. Subsequently, the outputs are weighted using a certain weighting
relation, which enables the emphasis on valuable information. To compute the
weight for each position, we calculate the inner product between the query of
other positions in the time series and the key of the current position. The result-
ing weight is then multiplied by the value to obtain the final output. This output
is then forwarded to generate the output of the current module. The relationship
between query, key, and value is defined as follows:

Z = softmax(
Q(K)T√

d
)V (8)

Ĝ(X) = ReLU(ZW1 + b1)W2 + b2 (9)

where W represents the weight matrix, b is the offset, and the final resulting
Ĝ(X) is the corresponding forecasting vector value learned from the multi-
headed attention network. The three predictions obtained from each of the three
temporal models are denoted as Ĝ1(X) = Xg1

T+h ∈ RD, Ĝ2(X) = Xg2
T+h ∈ RD

and Ĝ3(X) = Xg3
T+h ∈ RD. Due to the nonlinearity of the convolutional and self-

attentive components, the scale of the neural network output is insensitive to
the scale of the input. To address this drawback, the final forecasting result as a
mixture of linear and nonlinear components. In addition to the nonlinear compo-
nents introduced above, the classical AR model is treated as a linear component.
The forecasting of the AR component can be represented as hL = XL

T+h ∈ RD.

3.3 Granules Layer Fusion Module

For the four vectors obtained from the forecasting module and analyze the prob-
lem at different levels, we perform vector fusion. The advantage of this method
is that it allows the granular layers to learn from each other during the network
learning process, resulting in more diverse final results. The fusion process is
achieved using the following formula:

F (Ĝ1(X), Ĝ2(X), Ĝ3(X), hL) = XT+h (10)

The equation presented above represents the function F , which can involve
various calculations such as summation. In this equation, hL represents the result
of the linear forecasting layer, and Ĝ1(X), Ĝ2(X), Ĝ3(X) is the prediction result
of time granules G1(X),G2(X) and G3(X) , respectively. The XT+h represents
the final output result after the fusion process.
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4 Experiments

In all experiments, we used a consistent learning rate of 0.001 and employed
the Adam optimizer for training the model. To assess the performance of
model, Empirical Correlation Coefficient (CORR) and Root Relative Squared
Error(RSE) are utilized as evaluation metrics. We compare with four distinct
methods on three datasets. Additionally, the effectiveness of multigranularity is
further illustrated by ablation experiments.

4.1 Datasets and Baseline

For a more comprehensive validation, we conducted experiments on three distinct
datasets, which represent different domain applications in electricity, transporta-
tion, and solar energy. The descriptions of the datasets are shown in Table 1.

– Traffic: for the Traffic dataset is 48 months (2015–2016) of hourly data col-
lected by the California Department of transportation. The data depicts the
road occupancy (between 0 and 1) measured by different sensors on freeways
in the San Francisco Bay area.

– Solar-Energy: which records solar production in 2006, sampled every 10 min
from 137 PV plants in Alabama.

– Electricity: which records electricity consumption (kWh) for n=321 cus-
tomers every 15 min from 2012 to 2014. We transformed the data to reflect
hourly consumption.

Table 1. Details of the datasets.

Datasets Objects Dimensions Time Interval

Electricity 26304 321 1 h

Traffic 17544 862 1 h

Solar-Energy 52560 137 10 min

For the above dataset we divide it and the division ratio is 60%, 20% and
20% for training set, validation set and testing set. Also we normalized the data
to between 0 and 1.

Five benchmark models are selected for performance comparison:

– AR: [4] denotes the autoregression model, which is the most commonly used
machine learning algorithm for linear multi time series forecasting.

– LSTNet-skip: [9] uses a combination of CNNs and RNNs to extract local
and long-term dependencies and introduces the recurrent-skip component to
alleviate the problem that RNNs cannot capture long-term dependencies.
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– TPA-LSTM: [17] denotes an attention-based RNN, which uses using a set
of filters to extract time-invariant temporal patterns, similar to transforming
time series data into its “frequency domain”.

– DSANet: [7] utilizes a combination of CNN and self-attention to capture
local and global dependencies

– MDTNet-direct: [18] is a model for extracting mixed long-term and short-
term dependencies between multiple variables using stacked dilated convolu-
tion and using recurrent neural networks.

4.2 Analysis of Experimental Results

In this experiment, CORR and RSE were used as evaluation metrics to assess
the experiment. A higher value of CORR indicates better performance, while a
lower value of RSE also indicates better performance. After conducting the tests
on the three datasets, we obtained the following results:

In Table 2, 3 and 4, we present a summary of the experimental results. The
prediction ranges of 3,6,12 and 24. which means that the time-step prediction
ranges from 3 to 24 h for electricity and traffic, and from 30 min to 4 h for the
solar energy. Here, the best results are highlighted in bold and the prediction
task becomes more difficult as the prediction range increases. It is observed that
our method outperforms the rest of the methods on the Traffic dataset and the
best performance is achieved for both the metrics RSE and CORR. The proposed
MGTNet framework achieves the best performance on the Solar-Energy dataset
at 3, 6, and 12 steps and the third performance at 24 steps. The state-of-the-art
performance is achieved on the Electricity dataset for both 3 and 6 step lengths,
and we maintain the second effect on 12 step length. The above experiments
demonstrate the effectiveness of our proposed multi-granular hierarchical time
series network. It further demonstrates the complexity of the idea of granular
computing, which has a multi-layered role for mining different patterns in time
series.

Table 2. Comparison results on Traffic.

Databaset Traffic

3 6 12 24

Method/Metrics RSE CORR RSE CORR RSE CORR RSE CORR

AR 0.4777 0.7752 0.6218 0.7568 0.6252 0.7544 0.6293 0.7519

LSTNet-skip 0.4487 0.8721 0.4893 0.8690 0.4950 0.8614 0.4963 0.8588

TPA-LSTM 0.4487 0.8812 0.4658 0.8717 0.4641 0.8717 0.4765 0.8629

DSANet 0.4456 0.8829 0.4779 0.8642 0.4789 0.8659 0.4983 0.8541

MDTNet-direct 0.4513 0.8809 0.4754 0.8698 0.4710 0.8774 0.4851 0.8631

ours 0.4396 0.8905 0.4539 0.8835 0.4632 0.8782 0.4757 0.8684
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Table 3. Comparison results on Solar-Energy.

Databaset Solar-Energy

3 6 12 24

Method/Metrics RSE CORR RSE CORR RSE CORR RSE CORR

AR 0.2435 0.9710 0.3790 0.9263 0.5911 0.8107 0.8699 0.5314

LSTNet-skip 0.1843 0.9843 0.2559 0.9690 0.3254 0.9467 0.4643 0.8870

TPA-LSTM 0.1843 0.9850 0.2347 0.9742 0.3234 0.9487 0.4389 0.9081

DSANet 0.1816 0.9862 0.2310 0.9733 0.3255 0.9553 0.4313 0.9156

MDTNet-direct 0.1805 0.9841 0.2336 0.9725 0.3236 0.9467 0.4357 0.9097

ours 0.1794 0.9869 0.2252 0.9809 0.3202 0.9548 0.4363 0.9127

Our proposed MGTNet model is a multi-granularity hierarchical network,
where the G1 module represents the module with temporal convolution kernel
l1, and similarly the G2 module represents the module with temporal convolution
kernel l2 and the G3 module represents the module with temporal convolution
kernel l3. In order to prove the effectiveness of these modules, we designed abla-
tion experiments. Based on MGTNet, some components were removed to obtain
three new algorithms in MGTNet/G1, MGTNet/G2 and MGTNet/G3 respec-
tively. These newly algorithms are then compared with MGTNet. MGTNet/G1
denotes the MGTNet framework with the G1 component removed, that is, G1
is not involved in the operation, and the rest of the components remain similar.

Table 5 shows the ablation results on Traffic. It can be seen that the overall
performance of the proposed MGTNet method decreases regardless of which
component is discarded. The results demonstrate the effectiveness of our multi-
perspective temporal model, and the success of the temporal kernel extraction
method in capturing temporal relationships. This further confirms the efficacy
of granular computing in temporal forecasting tasks and the effectiveness of our
multi-granularity analysis method.

Table 4. Comparison results on Electricity.

Databaset Electricity

3 6 12 24

Method/Metrics RSE CORR RSE CORR RSE CORR RSE CORR

AR 0.0995 0.8845 0.1035 0.8632 0.1050 0.8591 0.1054 0.8595

LSTNet-skip 0.0864 0.9283 0.0931 0.9135 0.1007 0.9077 0.1007 0.9119

TPA-LSTM 0.0823 0.9429 0.0916 0.9337 0.0964 0.9250 0.1006 0.9133

DSANet 0.0783 0.9517 0.0874 0.9463 0.0990 0.9271 0.1040 0.9209

MDTNet-direct 0.0821 0.9472 0.0889 0.9331 0.0945 0.9267 0.0981 0.9140

ours 0.0768 0.9598 0.0862 0.9529 0.0962 0.9294 0.1027 0.9158
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Table 5. The ablation experiment results on Traffic.

Traffic Methods

horizon Metrics MGTNet/G1 MGTNet/G2 MGTNet/G3 Ours

3 RSE 0.4558 0.4519 0.4583 0.4396

CORR 0.8782 0.8780 0.8790 0.8905

6 RSE 0.4605 0.4568 0.4729 0.4539

CORR 0.8761 0.8759 0.8716 0.8835

12 RSE 0.4678 0.4691 0.4774 0.4632

CORR 0.8727 0.8675 0.8674 0.8782

24 RSE 0.4904 0.4896 0.4987 0.4757

CORR 0.8589 0.8631 0.8560 0.8684

5 Conclusions

In this paper, we propose a multi-granular hierarchical time series forecasting
network based on the idea of granular computation. This approach addresses the
limitations of existing multivariate time series forecasting models by using multi-
ple temporal models to incorporate complex relationships within the time series
data. The experimental results demonstrate that our proposed method outper-
forms the comparison methods, leading to overall improved performance. The
ablation experiments further highlight the significant role of multi-granularity
in addressing the forecasting problem, providing evidence for the importance of
considering the problem from multiple levels. Moreover, the effectiveness of our
coarse-to-fine multi-granularity analysis method is also confirmed. It also further
shows that this coarse-to-fine multi-granularity analysis method is effective. In
our future work, we will further investigate the method of solving time series
forecasting with granular computing and rough set.
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Abstract. In image captioning, images often contain complex scenes
where features at a single granularity level fail to capture all the visual
information. For instance, grid features of an image provide spatial
details but lack an understanding of semantic objects. Therefore, it
is necessary to fuse the multi-granularity features of an image for a
comprehensive representation. In this paper, we propose an adaptive
multi-granularity aggregation transformer that integrates grid, region
and global features of image. In contrast to previous approaches that
rely on single-feature or two-feature representation, our approach inte-
grates features of different granularity levels, which overcomes the incom-
pleteness of traditional visual information characterization. Specifically,
we construct an encoder with a multi-granularity feature enhancement
module that explores intrinsic relationships between different features to
reduce the redundancy of feature representation. We also design a multi-
granularity feature adaptive fusion module to adjust the attention of fea-
tures at different scales, enhancing cross-modal inference ability. Exper-
iments on the MSCOCO dataset demonstrate that our model achieves
superior performance, with a CIDEr score of 138.6 on the “Karpathy”
split, surpassing the state-of-the-art fusion model by 2.5 points.

Keywords: Image captioning · Multi-granularity features fusion

1 Introduction

Images are a widely used medium for conveying information, containing rich
visual content. Image captioning is the task of automatically generating natural
language descriptions by extracting features from the visual information in an
image. The main challenge of image captioning lies not only in comprehending
the visual content of the image but also in generating language that conforms
to its visual semantics.

At first, researchers in image captioning utilize pre-trained Convolutional
Neural Networks (CNNs) as encoders to extract image grid features, which rep-
resent the visual information. The advantage of this method is that the grid
features capture all contents of the given image in a fragmented manner. This
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Campagner et al. (Eds.): IJCRS 2023, LNAI 14481, pp. 339–353, 2023.
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method is also easy to implement and expand. Nonetheless, grid features only
concentrate on local image regions and fail to comprehend semantic objects in the
image, resulting in generated captions that may lack coherence and complete-
ness. Consequently, researchers seek more effective methods to extract image
information to enhance image captioning performance.

Anderson et al. [1] first use image visual object region-level features extracted
by pre-trained Faster R-CNN as image information. Region features offer object-
level information, as most salient regions in the image can be recognized and rep-
resented by feature vectors. These region features can be regarded as the seman-
tic representation of objects. The region features greatly reduce the difficulty
of visual semantic embedding, and improve the quality and reliability of image
captioning. Grid-level features extracted by CNNs are gradually being discarded
as a result. However, relying solely on region features has limitations, as they
may not capture fine-grained details or provide spatial relationships between
different rgion-level features, which negatively impacts decoding ability. These
are precisely the advantages that grid features can furnish.

Features of different granularity capture various ranges between local and
global information, imparting different levels of visual details. Therefore, grid
and region features are essentially complementary, where grid features provide
low-level spatial context and detail information, while region features offer high-
level object semantics.

In addition, Global features in images that capture overall information with
higher-level abstraction and integration are often neglected. They are widely
applied in tasks such as image classification, retrieval, and recognition. Global
features are also indispensable in image captioning, as they offer semantic infor-
mation about the whole image, such as content, scene, and emotion. Incorpo-
rating global features can enhance the model’s understanding of image content
and semantics, leading to more accurate captions. To leverage the advantages
of multi-granularity visual features, we propose a method that combines these
features to obtain comprehensive and accurate visual information. In contrast to
previous methodologies that rely on a single or dual feature representation, we
integrate grid, region, and global features to create a comprehensive and precise
visual representation. This multi-granularity fusion allows us to extract rich and
diverse visual cues, leading to improved caption generation performance.

Combining features of different granularity to represent images is both crucial
and challenging. Due to redundancy and irrelevant information within features at
different scales, feature representations can become overly complex after fusion.
Therefore, enhancing the features before fusing them at multiple scales is a
natural idea. Note that this enhancement does not supplement the feature infor-
mation. Instead, it reduces redundancy within the features by extracting more
critical features, to enhance feature representation ability. Additionally, features
of different granularity may have varying importance in generating each word.
We propose a multi-granularity feature fusion mechanism that jointly models
grid and region features. This mechanism adaptively determines the weight of
different scale information at each time step, achieving effective feature fusion.
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In this paper, we propose an adaptive multi-granularity aggregation trans-
former for image captioning, which utilizes the complementary advantages of
multi-scale features. Our model, illustrated in Fig. 1, processes image grid and
region features with the multi-granularity feature enhancement module to cap-
ture local and global information and explore intrinsic feature relationships.
Simultaneously, image global features representing the semantic information of
the entire image are fused with the text for effective semantic guidance during
decoding. Secondly, the multi-granularity feature adaptive fusion module inves-
tigates the relationships between grid and region features to enhance complex
cross-modal reasoning ability through their respective strengths.

Our contributions are summarized as follows:

• For a more comprehensive understanding of images in terms of content and
semantics, we introduce a multi-granularity feature representation method.
By integrating of image global features into the image captioning, the model’s
ability to perceive and understand the objects, scenes, and other elements
within the image is enhanced.

• To reduce the feature redundancy, we propose a multi-granularity feature
enhancement module that effectively extracts local and global information
from different granularities of features such as grid features and region fea-
tures, resulting in more powerful image feature representations.

• To achieve the complementary advantages between multi-scale features, we
design a multi-granularity feature adaptive fusion module to dynamically
adjust the weights of different granularity visual features at each time step to
generate more accurate captions.

• We conduct extensive experiments on the publicly available MSCOCO dataset
to demonstrate that our proposed AMGAT outperforms state-of-the-art
methods, and is capable of generating more natural linguistic expressions.

2 Related Work

The encoder-decoder architecture is a generalized learning framework for image
captioning, which encodes an image into a sequence of vectors for generating
descriptive text. It is evident that the development of image captioning relies
on the advancement of computer vision technology. Different pre-trained image
models can be utilized to extract visual features of various granularity, which
can improve the quality and accuracy of the generated captions.

In previous studies, pre-trained convolutional neural networks (CNN), such
as VGG and ResNet, are used as encoders to extract fixed-length grid-level
features from images. The pioneering work by Vinyals et al. [15] employs CNNs
to encode images into grid features and generated captions using the LSTM
network. Subsequently, Xu et al. [20] design soft and hard attention mechanisms
to assign different weights to different image grid features, allowing the model
to focus on the important parts of the image. Cornia et al. [2] introduce the use
of cross-layer grid connections in the decoder to extract information between
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grid features at different levels, improving the quality and accuracy of generated
image captions. Wang et al. [16] utilize a window-based multi-head attention to
model the interaction between grid features, effectively promoting the interaction
and fusion of information between different grid features. Clearly, utilizing grid
features is a flexible and effective approach for image captioning.

With the continuous development of object detection technology, researchers
find that object-level region features extracted by Faster R-CNN are more consis-
tent with human visual perception than grid-based features. This lead to region-
based features becoming a typical method for feature extraction in subsequent
image captioning. Anderson et al. [1] are the first to use region features to provide
object-level information to the decoder, which significantly improved the model’s
performance. Huang et al. [9] design an adaptive attention time (AAT) mecha-
nism that can dynamically adjust the many-to-many relationships between image
regions and different caption words to better capture the semantic relationship
between images and text. Pan et al. [12] propose an X-Linear attention that
fully uses bilinear pooling to obtain attention between words and visual objects,
improving the model’s ability to model complex relationships between images
and text. Herdate et al. [6] propose an image transformer that uses object IoU to
calculate the relative spatial relationships between image regions, allowing the
model to better understand the relationships between objects in the image. All
of these methods demonstrate that region features can more accurately describe
objects in the image and improve the quality and accuracy of image captioning,
compared to encoding methods based on the entire image.

In recent years, more and more researchers begin to explore the fusion of
grid and region features [7]. This is because the extraction of single-granularity
features has some limitations. Xian et al. [19] integrate grid features into region
features using a visual global adaptive attention module to learn complete seman-
tic information. Hu et al. [7] explore the inherent properties between different
features and map them to joint representations, promoting the model’s decoding
ability. Zhang et al. [23] construct a novel cross-attention mechanism to align
different types of visual features and establish connections between different
features, thereby improving the model’s comprehensive performance. Wu et al.
[17] represent both grid features and region features as graph nodes and use a
joint graph for modeling, achieving the transfer of information between features.
These methods not only improve the accuracy of image captioning but also help
the model better understand objects and scenes in the image, thereby improving
the model’s visual reasoning ability.

3 Method

In this paper, we introduce an adaptive multi-granularity aggregation trans-
former for image captioning. The overall structure is illustrated in Fig. 1. In the
following sections, we will introduce our proposed AMGAT model in detail.
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Fig. 1. The overview of our proposed model AMGAT.

3.1 Attention Mechanism

The transformer has become a mainstream method for image captioning due to
the powerful modeling ability of the Multi-Head Attention mechanism (MA).
This mechanism can better capture the semantic information. In addition, the
independent nature of the MA mechanism allows for parallel attention com-
putations, greatly improving computational efficiency. Our model utilizes the
MA mechanism and its variant Shifted Window MSA (SW-MSA) from Swin-
Transformer. Specifically, the attention module calculates weights via dot prod-
uct operation, obtains attention values through weighted summation and uses
them as the similarity scoring function, as formulated below:

MA (Q,K, V ) = Concat (head1, head2, ..., headh) Wo (1)
headi = Att (Qi,Ki, Vi) (2)

Att (Qi,Ki, Vi) = softmax

(
QiKi

T

√
s

)
Vi (3)

where headi represents the attention result of the i-th head, i = 1, 2, ..., h. Wo is
the linear transformation matrix. s is a scaling factor. Qi,Ki, Vi represents the
i-th sub-sequence of Q , K and V . Note that when Q, K and V are the same
sequence, this attention mechanism is called Multi-Head Self-Attention (MSA),
otherwise it is called Multi-Head Cross-Attention (MCA).

SW-MSA divides the input sequence into fixed-size windows and applies MSA
in each window to reduce computational complexity while preserving local infor-
mation. It incorporates a shifted window operation to improve the modeling of
relationships between positions in the input sequence, as expressed below:

SW − MSA (Q,K, V ) = Merge (window1, window2, ..., windown) Ww (4)

windowi = MSA
(
QW

i ,KW
i , V W

i

)
, i = 1, 2, ..., w (5)
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where windowi represents the attention result of the i-th window, and w is the
number of windows. The Merge(·) operation merges the output representations
of different partitions into a global output sequence in the shifted window par-
titioning scheme. Ww is the linear transformation matrix, QW

i ,KW
i and V W

i

represent the i-th window of Q, K and V , respectively.

3.2 Encoder

We use Faster R-CNN based on object detection to extract the region features
VR = {vr1 , vr2 , ..., vrm

} of a given image, Swin-Transformer to obtain the grid
features VG = {vg1 , vg2 , ..., vgn

}, where m and n are the number of region features
and grid features. They are mapped to a dimension D. We adopt average pooling
of grid features VG as the global feature of the image, which serves as the input
to the subsequent decoder. The calculation formula is as follows:

Vg =
1
n

∑n

i=1
vgi

(6)

The image regions and grid features are fed into a multi-granularity feature
enhancement module for encoding. As shown in Fig. 1, the module comprises
N stacked blocks, each with an attention layer, a feedforward layer and a fully
connected layer. It is worth noting that SW-MSA requires inputs of the same
length, but the number of region features in each image is not fixed. Therefore,
we input image grid features into SW-MSA and region features into MSA. In
the (l + 1)-th block, it can be represented as follows:

Ṽ l+1
G = SW − MSA

(
V l

G, V l
G, V l

G

)
(7)

Ṽ l+1
R = MSA

(
V l

R, V l
R, V l

R

)
(8)

where V l represents the output of the l-th block. The input of the first block are
V 0

G = VG, V 0
R = VR.

Then, residual connections and layer normalization are performed. After N
blocks, the features of different scales are encoded into V N

G and V N
R by self-

attention and used for subsequent multi-scale feature fusion is performed.

3.3 Decoder

We construct an adaptive semantic-guided decoder to fuse multi-granularity fea-
tures from the encoder in the transformer-based decoder, achieving a balance of
information across different scales of the image. We first fuse image global fea-
ture with textual context information for richer context and better semantic
guidance. At time step t, the (l + 1)-th decoder block is expressed as follows:

ĉl+1
t = LayerNorm

(
ReLU

(
Wc

[
H l

<t;Vg

])
+ Vg

)
(9)

where Wc is a learnable parameter matrix, and H l
<t is the output of the l-

th layer of the decoder. It is worth noting that the input of the first block is
H0

<t = [e0, e1, ..., et−1], ei ∈ RD represents the word embedding.
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Next, context information is input to masked MSA with residual connections
and layer normalization, as shown in the following formula:

cl+1
t = LayerNorm

(
MSA

(
ĉl+1
t , ĉl+1

t , ĉl+1
t

)
+ ĉl+1

t

)
(10)

To generate the corresponding output word, the model selects appropriate
feature information based on the word type generated at the current time step.
We introduce a gating mechanism that dynamically distributes weights between
region and grid features for a suitable visual representation. Contextual infor-
mation is used as the query to perform multi-head cross-attention on region and
grid features, as shown in Fig. 1, and defined as follows:

hl+1
G = MCA

(
cl+1
t , V N

G , V N
G

)
(11)

hl+1
R = MCA

(
cl+1
t , V N

R , V N
R

)
(12)

where hl+1
G , hl+1

R representing the image grid and region features attended to
after being guided by contextual information.

We learn adaptive weights for balancing different granularity of feature infor-
mation from context. The weight formula for grid features is defined as follows:

αG = σ
(
cl+1
t Wα

)
(13)

where σ is a sigmoid function and Wα is the learnable weight matrix.
We compute the weights of the region features in a simple way as follows:

αR = 1 − αG (14)

The information hl+1
V , which adaptively incorporates multiple granularities,

is obtained:
hl+1

V = αG ⊗ hl+1
G + αR ⊗ hl+1

R (15)

where ⊗ denotes element-by-element multiplication. hl+1
V is fed into subsequent

layers for further decoding to obtain the output H l+1
<t of the l + 1 layer.

Finally, the output of the last block of the decoder HN
<t is used to predict

words wt by softmax.

3.4 Objective

Firstly, the cross-entropy, which is commonly used in image captioning, is used
as the loss function in the form shown below:

LXE (θ) = −
T∑

t=1

log
(
pθ

(
y∗

t |y∗
1:t−1

))
(16)

where y∗
1:T is the real sequence of the target language, θ indicating the parameters

that the model needs to be trained.
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Next, the CIDEr is further optimized according to the self-critical sequence
training (SCST) strategy with the following formula:

LRL (θ) = −Ey1:T ∼pθ
[r (y1:T )] (17)

where the reward r(·) denotes the CIDEr score of the sentence. We can approx-
imate the gradient of as:

∇θLRL (θ) ≈ − (
r
(
yS
1:T

) − r (y∗
1:T )

) ∇θ log pθ

(
yS
1:T

)
(18)

where yS
1:T represents the sampled sentence, y∗

1:T is the baseline reward of the
sentence generated by greedy decoding.

4 Experiments

4.1 Experiment Setup and Evaluation Metrics

We evaluate model on the MSCOCO 2014 dataset, which has been widely used
as a standard dataset for image captioning. The MSCOCO dataset comprises
123,287 images, each with at least five manually annotated descriptions. Sen-
tences are preprocessed to lowercase, and words that appear less than six times
are filtered out to construct a vocabulary. We follow the “Karpathy” split, using
113,287 images for training, 5,000 for validation, and another 5,000 for testing.

We use pre-trained Faster R-CNN on the VG dataset to extract region fea-
tures, taking the 2048-dimensional features after the first FC layer. Grid features,
sized at 12 × 12 × 1536, are extracted using Swin-Transformer. All features are
projected onto the same 512-dimensional space. Additionally, The encoder and
decoder consist of 3 blocks each, with 8 transformer heads. For training, we
follow the standard process for image captioning. XE training uses a warm-up
(10,000 iterations) learning rate scheduling strategy [14] and train for 20 epochs.
RL training [13] uses a fixed learning rate of 5× 10−6 and trained for 30 epochs.
Both stages use the Adam optimizer and beam search with a beam size of 5.

We select BLEU, METEOR, ROUGE, CIDEr and SPICE as metrics to eval-
uate caption quality. These metrics are widely recognized as common objective
evaluation standards in image captioning [2,13,16]. Note that B-1, B-4, M, R,
C, and S denote BLEU-1, BLEU-4, METEOR, ROUGE, CIDEr, and SPICE in
Tables 1, 2, 3 and 4 in the paper.

4.2 Ablation Experiments

In this paper, we conduct several ablation experiments to measure the impact of
each design in the model on performance. Note that we do not utilize a reinforce-
ment learning-based training strategy in this section, as all of our models can be
further improved using RL-based methods to enhance overall performance.

To better understand the role of multi-granularity features, Table 1 reports
the results using different image features. “Region” and “Grid” indicate that
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Table 1. Performance comparison using image features of different granularity.

Features B-1 B-4 M R C S

Grid(G) 77.8 36.9 28.9 57.7 122.4 21.8

Region(R) 77.7 37.3 28.8 57.6 121.1 21.9

G+R(MGAT) 78.4 37.9 29.2 58.3 124.5 22.3

AMGAT 78.5 38.5 29.2 58.3 126.7 22.4

only image region features or grid features are utilized in the model, without
the multi-granularity feature adaptive fusion module. “G+R” represents the
feature addition of region and grid features instead of the multi-granularity fea-
ture adaptive fusion module. This approach simply performs a straightforward
fusion of multi-granularity features, namely “MGAT”. AMGAT is our final pro-
posed model, which not only uses region and grid features, but also constructs
a gate mechanism to adaptively fuse them. Note that global image features are
used to supplement context information in all experiments, and the other model
settings are identical. From the table, it can be seen that both MGAT and
AMGAT using features at two different granularities perform better than the
models using only one feature (the first and second rows), which demonstrates
the benefits of multi-scale features in improving caption generation quality. Fur-
thermore, comparing the last two rows in Table 1, we can see that the CIDEr
score increased from 124.5 to 126.7. The 2.2 point improvement of AMGAT over
MGAT in CIDEr validates the effectiveness of our proposed multi-granularity
feature adaptive fusion module. This adaptation enhances the model’s ability to
model the importance and correlations between different modalities, effectively
integrating both features and thus improving the model’s performance.

Table 2. Performance comparison of different window size ws and shift size ss.

ws ss B-1 B-4 M R C S

12 0 78.1 38.0 29.0 58.3 123.5 22.1

6 0 78.2 38.0 29.1 58.1 124.6 22.2

6 3 78.5 38.5 29.2 58.3 126.7 22.4

4 0 78.3 38.0 29.1 58.2 124.2 21.9

4 2 78.1 37.7 29.2 58.1 124.2 22.0

We investigate the impact of different window sizes (ws) and shift sizes (ss)
in SW-MSA on model performance, as shown in Table 2. When ss is set to
0, the window remains unshifted. Notably, the size of the region features are
12 × 12. When the window size is set to 12, SW-MSA degenerates into ordinary
Multi-Head Self-Attention (MSA). We can see that the model performs best
when ws = 6 and ss = 3, which is natural. Compared to using MSA (ws = 12,
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ss = 0), the SW-MSA mechanism can utilize sliding windows of different sizes to
process features of different scales, thus better capturing feature information of
different scales. The model with ss = 0 lacks cross-window connections and only
consider local information within each window, disregarding global information
across different windows. For the model with ws = 4 and ss = 2, its small
window size only captures local semantic information, unable to get long-range
dependency relationships, affecting model performance. Considering all factors,
setting ws = 6 and ss = 3 can increase the model’s receptive field, capture more
detailed semantic information, as well as improve the model’s understanding of
global information to obtain the best performance.

4.3 Comparative Experiments

We compare our model AMGAT with state-of-the-art models. The experimental
results are shown in Table 3, 4.

Table 3. Performance comparison of the proposed model with the model using only a
single feature.

Model Cross-Entropy Loss CIDEr Score Optimization

B-1 B-4 M R C S B-1 B-4 M R C S

models using grid features

SCST [13] - 30.0 25.9 53.4 99.4 - - 34.2 26.7 55.7 114.0 -

M2-Transformer [2] - - - - - - 80.8 39.1 29.2 58.6 131.2 22.6

LSTNet [11] - - - - - - 81.5 40.3 29.6 59.4 134.8 23.1

RSTNet [24] 81.8 40.1 29.8 59.5 135.6 23.0

ViTCAP [4] - 36.3 29.3 58.1 125.2 22.6 - 41.2 30.1 60.1 138.1 24.1

PureT [16] 77.8 36.9 28.9 57.7 122.4 21.8 82.1 40.9 30.2 60.1 138.2 24.2

models using region features

Up-Down [1] 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.4

SGAE [21] 77.6 36.9 27.7 57.2 117.3 21.3 80.8 38.4 28.4 58.6 127.8 22.1

AOANet [8] 77.4 37.2 28.4 57.5 119.8 21.3 80.2 38.9 29.2 58.8 129.8 22.4

X-Transformer [12] 77.3 37.0 28.7 57.5 120.0 21.8 80.9 39.7 29.5 59.1 132.8 23.4

A2-Transformer [5] 78.6 38.2 29.2 58.3 125.0 22.1 81.5 39.8 29.6 59.1 133.9 23.0

TCIC [3] 78.8 39.1 29.1 58.5 123.9 22.2 81.8 40.8 29.5 59.2 135.3 22.5

AMGAT 78.8 38.5 29.3 58.5 126.7 22.4 82.3 41.2 30.2 60.3 138.6 24.3

In our study, we compare the results of the AMGAT model with some mod-
els that use only a single feature, demonstrating the advantages of the AMGAT
model. Specifically, we report the comparison results of the following models in
Table 3: SCST [13], M2-Transformer [2], LSTNet [11], RSTNet [24], ViTCAP
[4], and PureT [16]. These models use grid features as the image representa-
tion and generate description sentences through feature interaction. In addition,
we also compare Up-Down [1], SGAE [21], AOANet [8], X-Transformer [12],
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A2-Transformer [5], and TCIC [3]. These models focus on salient object region
features and explore the relationship between region features to generate cap-
tion. It can be observed that our AMGAT model achieves the best results on all
metrics after being trained with Cross-Entropy Loss and optimized with CIDEr.
Compared to using a single image feature representation, our model not only
considers grid and region features but also introduces global image features,
achieving better performance on all metrics. For models using grid features,
AMGAT achieves an average improvement of 6.6 on the CIDEr metric, as the
region features can capture salient objects in the images. AMGAT achieves an
average improvement of 8.7 on CIDEr when compared to models using region
features, due to the fact that the grid features can provide the local structure and
details of the images. The experimental results demonstrate the huge potential
of fusing multiple features in image captioning tasks. Different features may have
interactions and dependencies between them, and integrating multiple features
can facilitate the interaction and relationship modeling among them.

Table 4. Performance comparison of the proposed model with the model integrating
multiple features.

Model Cross-Entropy Loss CIDEr Score Optimization

B-1 B-4 M R C S B-1 B-4 M R C S

Double-stream GCN [18] 76.8 36.2 27.8 56.8 115.6 - 80.4 38.2 28.5 58.2 126.4 -

DLCT [10] - - - - - - 81.4 39.8 29.5 59.1 133.8 23.0

DGET [19] - - - - - - 81.3 40.3 29.2 59.4 132.4 23.5

TSFNet [7] 78.9 39.3 28.8 58.6 121.4 22.3 81.7 40.3 29.8 59.6 133.5 23.4

AS-Transformer [22] - 38.3 29.0 58.1 123.6 22.3 - 41.0 29.8 60.0 136.1 23.8

AMGAT 78.5 38.5 29.2 58.3 126.7 22.4 82.3 41.2 30.2 60.3 138.6 24.1

To further demonstrate the effectiveness of our multi-feature fusion approach,
We compare the AMGAT model with some models that integrate multiple fea-
tures, and the results are presented in Table 4. Double-stream GCN [18] processes
grid and region features using GCN, combines the feature information of each
node with that of its surrounding nodes to produce more discriminative node
feature representations. DLCT [10] embeds geometric information to align and
enhance grid and region features and proposes a local constraint cross-attention
mechanism to address the semantic noise problem caused by direct fusion of
these two features. DGET [19] views grid features as visual global information
and adaptively fuses them into region features at each layer to enhance visual
information. TSFNet [7] uses the cascading representation of grid, region, and
scene graph features in image captioning and guides caption generation through
joint attention. Clearly, our model consistently outperforms other models in
both the cross-entropy training phase and the reinforcement learning phase.
After two-stage training, our model achieves high scores of 82.3, 41.2, 30.2,
60.3, 138.6, and 24.1 on BLEU-1, BLEU-4, METEOR, ROUGE, CIDEr, and
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Fig. 2. Examples of image captioning results on the MSCOCO dataset.

SPICE, respectively. While the state-of-the-art multi-feature fusion model AS-
Transformer [22] also improves multi-head attention by adaptively adjusting the
weights of grid and region features, our model incorporates global image fea-
tures as context information, which can provide global semantic information
and guide the decoding process more effectively. AMGAT achieves a significant
improvement of 2.5 in CIDEr compared to AS-Transformer, demonstrating the
advantage of our fusion method. By fusing global image features and textual
features to guide the entire decoding process, including enhancing self-attention
within grid and region features and interacting between the two features, the
fusion of multi-granularity features is beneficial for improving the model’s abil-
ity to handle complex scenes and enhance cross-modal reasoning ability, resulting
in more accurate and natural captions.

4.4 Qualitative Experiments

In Fig. 2, We show some examples of AMGAT and comparison models generated
on the MSCOCO 2014 dataset. The ground truth is represented as GT. As shown



Adaptive Multi-granularity Aggregation Transformer for Image Captioning 351

in the first example, AMGAT accurately generates the noun “hat” compared
to other models, benefiting from the semantic information provided by region
features. This indicates the effective utilization of precise semantic words in our
proposed model. In the second example, AMGAT not only correctly generates
“two cats” but also predicts the verb “sleep” based on contextual information.
This is because our model incorporates global image features and can grasp the
semantic information of the entire image, which helps the model understand
the content and semantics of the image. Similarly, the “ocean” in the third
example is not fully captured by the object detector but visible in the image.
In addition, in the last example, our model clearly captures additional fine-
grained information and generates a more descriptive caption. These examples
demonstrate the superiority of AMGAT in image caption generation.

Fig. 3. The contribution of the learned attention weights to word prediction.

To visually illustrate the effectiveness of the multi-granularity feature adap-
tive fusion module, we show in Fig. 3 the contribution of the learned attention
weights to word prediction. Different feature types exhibit varying contribu-
tions to word prediction based on the word type. Specifically, when generating
prepositions like “in” and “with”, region features are not important, resulting in
lower weights compared to grid features. However, when predicting nouns, the
weight of region features will increase due to their richer semantic information,
facilitating improved predictions. Especially for the word “rocks”, the contribu-
tion of region features is particularly significant. This indicates that our model
has successfully learned to dynamically allocate feature weights when generating
different words, thereby achieving better prediction performance.

Fig. 4. Visualization of grid features attention maps for each word generation.
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In addition, we visualize how our model utilizes grid features during the
decoding process. We average the attention weights of the eight heads of the
cross-attention layer over the grid features in the last decoding block at each
time step, as shown in Fig. 4. The results show that our AMGAT model can
correctly focus on the corresponding grid regions and achieve excellent perfor-
mance in generating words. For example, when predicting “rocks”, our model
does not blindly follow the region features just because their weights are high,
but correctly focuses attention on the rocks in the image.

5 Conclusion

In this paper, we propose the Adaptive Multi-Granularity Aggregation Trans-
former (AMGAT) to improve transformer-based image captioning models.
AMGAT incorporates global, grid, and region features of images to enhance
the model’s cross-modal reasoning ability. To obtain targeted feature represen-
tations by leveraging the interaction of the multi-granularity features, we intro-
duce a multi-granularity feature enhancement module that applies self-attention
to features of different granularities. In addition, we propose a novel decoder
that utilizes a fusion representation of global image features and textual infor-
mation. This fusion representation serves as context-guided information during
decoding, facilitating more accurate caption generation. Furthermore, we design
a multi-granularity feature adaptive fusion module that dynamically allocates
attention weights between grid and region features based on guidance informa-
tion, improving the model’s ability to handle complex scenes and tasks. AMGAT
achieves state-of-the-art performance across all evaluation metrics, confirming
the proposed approach’s superiority in improving the image captioning task.
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Abstract. Graph data widely exists in real life, with large amounts
of data and complex structures. It is necessary to map graph data
to low-dimensional embedding. Graph classification, a critical graph
task, mainly relies on identifying the important substructures within the
graph. At present, some graph classification methods do not combine
the multi-granularity characteristics of graph data. This lack of granu-
larity distinction in modeling leads to a conflation of key information
and false correlations within the model. So, achieving the desired goal
of a credible and interpretable model becomes challenging. This paper
proposes a causal disentangled multi-granularity graph representation
learning method (CDM-GNN) to solve this challenge. The CDM-GNN
model disentangles the important substructures and bias parts within the
graph from a multi-granularity perspective. The disentanglement of the
CDM-GNN model reveals important and bias parts, forming the foun-
dation for its classification task, specifically, model interpretations. The
CDM-GNN model exhibits strong classification performance and gener-
ates explanatory outcomes aligning with human cognitive patterns. In
order to verify the effectiveness of the model, this paper compares the
three real-world datasets MUTAG, PTC, and IMDM-M. Six state-of-the-
art models, namely GCN, GAT, Top-k, ASAPool, SUGAR, and SAT are
employed for comparison purposes. Additionally, a qualitative analysis
of the interpretation results is conducted.

Keywords: Multi-granularity · Interpretability · Explainable AI ·
Causal disentanglement · Graph classification

1 Introduction

Graph data is characterized by complex structures and vast amounts of data,
widely prevalent in our daily lives. Therefore, it is crucial to map graph data
into low-dimensional embedding. Among various graph downstream tasks, graph
classification is an essential task. Examples of such tasks include superpixel graph
classification [8], molecular graph property prediction [10], and more.
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In the research on graph classification, representation learning is an impor-
tant approach for data analysis. Graph data, inherently possessing multiple levels
of granularity, comprises nodes at a fine-grained level, coarser-grained substruc-
tures. For example, in the Tox21 dataset, atoms are fine-grained, functional
groups are coarse-grained. This dataset compounds containing the azo func-
tional group that are associated with carcinogenic and mutagenic properties
[5]. In graph classification, however, traditional representation learning methods
overlook the multi-granularity of graph data, and these methods’ interpretability
is limited. In graph classification, the outcome is primarily determined by certain
important substructures [13]. Indeed, current graph classification methods do not
consider the inherent multi-granularity nature of graph data. This lack of granu-
larity differentiation during modeling leads to the mixing of critical information
and false correlations within the models. As a result, it becomes challenging to
accurately distinguish and achieve the goal of building interpretable models.

In summary, there is a need to construct a substructure recognition model
that takes into account multi-granularity graph data for modeling the graph rep-
resentations. Therefore, this paper attempts to build a causal disentangled GNN
model based on the idea of multi-granularity [21]. This model can disentangle the
important substructures and bias parts in the graph from the multi-granularity
perspective, and then conduct representation learning and classification for the
entire graph.

Specifically, this paper designs a causal disentangled multi-granularity graph
representation learning method (CDM-GNN). First, from a fine-grained perspec-
tive, this paper uses the feature and topological information of nodes to build a
mask describing the closeness between nodes. Next, from a coarser-grained per-
spective, CDM-GNN uses this mask to disentangle the important substructures
and bias parts. It obtains the reason for learning the current representation,
which is the interpretable result. Subsequently, the masked graph is input into
each slice layer to disentangle the key substructures from the false association
relationship. Increase the depth of the model, gradually transitioning from fine-
grained to coarse-grained, and expanding global information. Finally, this paper
learns an adaptive weight for each layer of slice results and adaptively fuses the
results of each layer. Then it obtains the final representation for graph classifi-
cation.

The main contributions of this work are summarized as follows:

1. The CDM-GNN considers the multi-granularity characteristics of graph data.
It models through granularity transformation, fully taking into account the
information at different granularities and their fusion.

2. The proposed model is capable of disentangling the key substructures and
bais parts associative relationships in the graph while providing corresponding
explanations.

3. Compared with six state-of-the-art models, namely GCN, GAT, Top-k,
ASAPool, SUGAR, and SAT in MUTAG, PTC, and IMDB-M, the CDM-
GNN model achieves better graph classification results.
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2 Related Work

2.1 Graph Classification Representation Learning

To obtain continuous low-dimensional embedding, graph representation learning
aims to map non-Euclidean data into a low-dimensional representation space. For
graph classification, there are two categories of research methods. One category
is similarity-based graph classification methods, including graph kernel meth-
ods and graph matching methods. However, these methods are often inflexible
and computationally expensive. In these methods, the process of graph feature
extraction and graph classification is independent, which limits optimization for
specific tasks. The other category is based on GNNs. When applied to graph clas-
sification problems, GCN [11] and GAT [20] perform graph classification through
convolution and pooling operations. Pooling is the process of graph coarsen-
ing, where the operation progressively aggregates fine-grained nodes. Subsequent
research has also introduced changes to the pooling operation. For example, SAT
[2] proposes a graph transformer method used in pooling.

2.2 Disentangled Learning

The idea of disentangling initially originated from Bengio et al. [1] and is pri-
marily focused on computer vision [9]. However, some researchers have extended
this concept to graphs. DisenGCN model [15] introduces a neighborhood routing
mechanism to disentangle the various latent factors behind interactions in the
graph. The IPGDN model [12], based on DisenGCN, add the Hilbert Schmidt
Independence Criterion (HSIC) to further enhance the independence between
different modules. Based on the routing mechanism, the authors demonstrate
the user-item relationship at the granularity of user intent and disentangle these
intents in the representations of users and items [22]. However, this method
mainly focuses on bipartite graphs and may not be suitable for more complex
graph structures. It lacks scalability. In the context of knowledge graphs with
richer types of relationships, some works consider leveraging relationship infor-
mation in the process of disentangled representation learning. For example, they
guide the disentangled representation of entity nodes based on the semantics
of relationships [24]. However, these methods overlook the information from
different types of relationship edges. These studies have successfully achieved
disentangled. But, their primary emphasis is on manipulating the intermediate
hidden layer states, which poses challenges in comprehending the structure of the
graph. Consequently, their interpretability from a human perspective is limited.

2.3 Interpretability Method

Despite the excellent representation capability of GNN models, their learning
process is often opaque and difficult for humans to understand. To address this
issue, some researchers have proposed post-hoc methods for explaining. GNNEx-
plainer model [23] learns masks for the adjacency matrix and node features
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to identify important substructures. The PGExplainer model [14] attempts to
learn an MLP function to mask edges in the graph, incorporating sparsity and
continuity constraints in the model to obtain the final explanations. The post-
hoc methods for explaining can only understand the model, not adjust the
model. Another category of GNN explanation methods involves constructing
self-explainable GNNs. Compared with post-hoc methods, this kind of model
not only provides predictions but also offers explanations for the reasons behind
those predictions. It can guide the model to some extent. Some self-explainable
models require prior knowledge. For example, KerGNNs [6] is a subgraph-based
node aggregation algorithm that manually constructs graph kernel functions to
compare the similarity between graph filters and input subgraphs. The trained
graph filters are also visualized and used as the model’s explanation, which is
then integrated into the GNN. In addition to explaining isomorphic GNN models,
researchers have also explored self-explainable models for heterogeneous GNN
models, such as Knowledge Router [3]. However, these self-explainable GNNs
have not extensively considered the issue of the multi-granularity structure of
graphs.

3 Preliminaries

3.1 Notations

Let G = (V,E) be a graph, where V is the node set, and E is the edge set.
The A ∈ {0, 1}|N |×|N | is defined as the adjacency matrix of graph G. If there is
an edge between node i and node j, the Aij = 1; otherwise,Aij = 0. The X is
defined as the features matrix. X ∈ R|V |×F represents the features of each node,
where F denotes the feature dimension for each node. The neighbour of node i
is Ni. The true label set is Y .

3.2 A Causal View on GNNs

We analyze this problem using the Structural Causal Model (SCM). Figure 1
illustrates the five components. Z: input graph data, Y: labels, B: bias part
in the graph, C: important substructures, and E: learned embedding by GNN
model.

C → Z ← B: Z is composed of B and C.
C → Z → E → Y : The structure of C is learned through GNNs and repre-

sented as E. Then, establish a causal correlation between C and Y.
B → Z → E → Y : Due to the confusion between B and C, it affects the

representation E obtained from GNNs, which also impacts the prediction of Y.
Consequently, a spurious correlation is formed, leading to misleading predictions.



358 Y. Li et al.

Fig. 1. (a) A real example of MUTAG dataset. A molecular diagram consists of a
carbon ring, F atomic, and NO2. The NO2 atomic group determines to have muta-
genicity, while others (bias part) do not determine this property. (b) Causal view of
graph classification. The NO2 atomic group is the C, and others are the bias parts B.

4 Proposed Method

This paper employs a multi-granularity approach for modeling. The CDM-GNN
is introduced with an overall framework illustrated in Fig. 2.

4.1 Fine-Grained Closeness Mask

Based on the multi-granularity characteristics of graph data, this paper first
considers modeling the nodes at a fine-grained level to capture the closeness
between nodes, forming a mask matrix.

Given a graph G, the attention values are calculated based on the feature
similarity between node i and node j from a fine-grained perspective.

eij = αT (Wfeat · xi ‖ Wfeat · xj) (1)

where Wfeat is the learnable parameters. Then the calculated attention values
are normalized.

eij =
exp (LeakyRelu (eij))∑

m∈Ni
exp (LeakyRelu (eim))

(2)

At the fine-grained level, we calculate the interaction between the structures
of node i and j and use Stru as the attention value of the topological structure
to describe the relationship between nodes.

Struij =

∑
p∈Ni∪Nj

min (ωip, ωjp)
∑

p∈Ni∪Nj
max (ωip, ωjp)

(3)

Here, We use restart random walks to describe the degree of structural sim-
ilarity between the center node i and other nodes p. Particles start from the
center node i and randomly walk to their neighbors p and p ∈ Ni. At each step,
there is a certain probability of returning to the center node i. After t iterations,
the probability vector of visiting the neighbors around node i is obtained.

ωt+1
ip = q · Ãω

(t)
ip + (1 − q) · veci (4)
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Fig. 2. The model framework of CDM-GNN.

where Ã = D−0.5AD−0.5 and D is the degree matrix. q is the probability of
restarting the random walk. veci is a one-hot vector where the center node i is
assigned 1. Others are assigned 0.

The probability vector is proportional to the edge weights. The higher the
probability, the larger the edge weight. This probability vector is used as the
weight vector. When t → ∞, the vector converges to the following equation:

ωip = (1 − q) ·
(
I − Ã

)−1

· ei (5)

In Eq. (3), ωip represents the weight of node p (p ∈ Ni). After normalizing
Struij , we obtain the following expression:

Struij =
exp (Struij)∑

m∈Ni
exp (Struim)

(6)

We integrate eij and Struij to obtain Mij , resulting in the formation of
matrix M :

Mij =
eij + Struij

2
(7)

At a fine-grained level, this paper describes the closeness between each node
from its features and structure. And it fuses them to form a mask. The mask
part is an important substructure, while others are the bias parts.
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4.2 Coarse-Grained Disentangled Framework

Firstly, at a fine-grained level, the features are subjected to a simple feature
transformation using the fθ function with the learnable parameters θ.

Z = fθ (X) (8)

where the fθ is a multi-layer neural network with θ.
Next, the transformed features, fine-grained closeness mask, and adjacency

matrices of different orders are sent into slice layers. The modeling process starts
with the important substructures.

In the important substructures, the M matrix is constructed in each slice
GNN layer following the approach described in the previous section. In the first
layer, M1 and Ã are used, in the second layer, the M2 and Ã2 are used, and in
the third layer, the M3 and Ã3 are used. These matrices are then inputted into
their corresponding slice layers to obtain the hidden layer states h1, h2, and h3,
and W1,W2, and W3 are learnable parameters.

hn = Ãn · Z · Mn · Wn, n = 1, 2, 3 (9)

The CDM-GNN model stacks the transformed feature results and obtained
hidden layer states:

H = stack (Z, h1, h2, h3) (10)

This model adaptive learns the weight S for each slice layer:

S = reshape (σ (Hs)) (11)

E = squeeze (SH) (12)

For the graph Gk, this model performs pooling on the obtained embedding
to obtain the representation of Embk:

Ek = pooling (E) (13)

For bias parts, the CDM-GNN obtains the status of hidden layer h1, h2, and
h3. In this model, we share these learnable parameters W1,W2, and W3.

hn = Ãn · Z · (1 − Mn) · Wn, n = 1, 2, 3 (14)

Similarly, this model stacks the transformed feature results and obtained
hidden layer states:

H = stack
(
Z, h1, h2, h3

)
(15)

Then, the CDM-GNN model adaptive learns the weight S of each slice layer
and gets the final embedding Embk:

S = reshape (σ (Hs)) (16)

E = squeeze
(
SH

)
(17)

Ek = pooling
(
E

)
(18)
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4.3 Causal Distangled Learning

This paper aims to train K graphs by the causal components of their represen-
tations to enable the CDM-GNN model to classify correctly. To achieve this,
CDM-GNN employs the supervised classification cross-entropy loss as follows:

Y
′
k = softmax (Ek) (19)

Lpred = −
∑

k

Y T
k log

(
Y

′
k

)
(20)

For the representation of bias parts, it should not affect the classification
results. Therefore, the prediction results of the bias parts should be evenly dis-
tributed across all categories. Using uniform distribution to help learn the rep-
resentation of bias parts as follows:

LKL =
∑

k

KL
(
Yunif , Ek

)
(21)

where KL means the KL-Divergence, Yunif denotes the uniform distribution.
In order to reduce the interference of bias parts, the representation of bias

parts is recombined with the causal parts to construct intervention terms. The
CDM-GNN redefines the ⊕ function. It adds the bias representation of random
disturbance back to the corresponding positions of the causal part representation
to obtain the constructed intervention term Eint

k :

Eint
k = Ek ⊕ Ek (22)

In this case, the CDM-GNN can get the correct classification results by the
representation of the causal part. The loss function is as follows:

Y
′int
k = softmax

(
Eint

k

)
(23)

Lint = −
∑

k

Y T
k log

(
Y

′int
k

)
(24)

The overall loss function is as follows:

Loss =
1

|K| (αLpred + βLKL + γLint) (25)

where α, β, and γ are hyper-parameters that determine the strength of disen-
tanglement and causal influences.

5 Experiment

5.1 Datasets

The commonly-used datasets for graph classification are summarized in Table 1.
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• MUTAG [4]: This dataset contains 188 compounds marked according to
whether it has a mutagenic effect on a bacterium.

• PTC [19]: This dataset contains 344 organic molecules marked according to
their carcinogenicity on male mice.

• IMDB-M [17]: This dataset is a movie collaboration dataset marked according
to the genre an ego-network belongs to (romance, action, and science).

Table 1. Statistics of datasets

Dataset Graphs Classes Avg.|V | Avg.|E|
MUTAG 188 2 17.93 19.79

PTC 344 2 14.29 14.69

IMDB-M 1500 3 13.00 65.94

5.2 Baselines

This paper compares the proposed CDM-GNN model with several state-of-the-
art methods, which are summarized as follows:

• GCN [11]: It is a semi-supervised graph convolution network model for graph
embedding.

• GAT [20]: It is a graph neural network model which employs an attention
mechanism to obtain graph representations.

• Top-K [7]: It is a graph representation method that adaptively selects some
critical nodes to form smaller subgraphs based on their importance vectors.

• ASAPool [16]: It is a graph neural network model that utilizes attention
mechanisms to capture the importance of nodes and pools subgraphs into
a coarse graph through learnable sparse soft clustering allocation for graph
representation.

• SUGAR [18]: It is a graph representation method that first samples some
subgraphs. And then it uses the DQN algorithm to select top-k key subgraphs
as representative abstractions of the entire graph.

• SAT [2]: It is a graph transformer method that incorporates the structure
explicitly. Before calculating attention, it fuses structural information into
the original self-attention by extracting k-hop subgraphs or k-subtrees on
each node.

5.3 Performance on Real-World Graphs

In the graph classification task, this paper adopts accuracy as the evaluation
metric to measure the performance of different models.
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From Table 2, it can be observed that the proposed CDM-GNN model
achieves the best graph classification results on the MUTAG, PTC, and IMDB-
M datasets. Specifically, compared with the GCN and GAT, the CDM-GNN
has an improvement of about 5% on the MUTAG dataset in terms of graph
classification accuracy. Compared to Top-K and ASAPool, which are specifically
designed for pooling operations, CDM-GNN demonstrates improvements ranging
from 12% to 20%. In comparison to methods focusing on substructure extraction,
SUGAR and SAT, CDM-GNN shows improvements of 3% to 7%. On the PTC
dataset, the CDM-GNN also shows a notable improvement and achieves accurate
graph classification. On the multi-class IMDB-M dataset, the proposed CDM-
GNN achieves about 5.4% improvement over GCN and GAT. When compared to
some pooling methods, CDM-GNN shows accuracy improvements ranging from
5.5% to 15%. In the substructure research, CDM-GNN demonstrates accuracy
improvements of 4% to 9%. These results highlight the superior graph classifica-
tion performance of the CDM-GNN model across different datasets. It surpasses
other popular models and specialized approaches for pooling or subgraph anal-
ysis.

Table 2. The Accuracy of graph classification

Models MUTAG PTC IMDB-M

GCN 0.8924 0.5726 0.5700

GAT 0.8994 0.5944 0.5810

Top-K Pool 0.7291 0.5721 0.4836

ASAPool 0.8211 0.5677 0.5794

SUGAR 0.8660 0.5821 0.5988

SAT 0.9030 0.6070 0.5329

Ours 0.9474 0.6154 0.6348

5.4 Visualization Results

To demonstrate the interpretability of the CDM-GNN method, this paper con-
ducts a qualitative analysis. According to the existing chemical knowledge, peo-
ple know that the MUTAG dataset determines whether it has a mutagenic effect
by judging whether the molecule contains the substructure of NO2 or NH2.
Therefore, this paper visualizes the MUTAG dataset to observe the interpretabil-
ity of the CDM-GNN model and perform qualitative analysis. If CDM-GNN
model can recognize the important substructure NO2 and disentangle this part
with bias parts, then it indicates that the model has better interpretability. This
model can obtain classification and interpretation results that are consistent with
human cognition and prior knowledge.
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Fig. 3. The visualization results on the MUTAG dataset.

In this study, the edges of the graph are colored based on the values of
the mask, where darker colors indicate greater importance. In the visualized
results, we can observe that the edges of important substructures NO2 are col-
ored darker, indicating their higher weights and greater significance in the clas-
sification of the MUTAG dataset. The edges connecting the important substruc-
tures NO2 and the bias parts are colored lighter, indicating that the CDM-GNN
model has successfully disentangled the important substructures from the bias
parts. From Fig. 3 (a)(b)(d)(e), it can be observed that regardless of whether
the graph contains one or multiple NO2 substructures, the CDM-GNN can rec-
ognize them and successfully disentangle them from the carbon rings. Even in
cases where there are multiple carbon rings in the graph, like Fig. 3 (c)(f), the
CDM-GNN model can still identify the important NO2 parts. This indicates the
model has the ability to capture and distinguish the relevant features, enabling
it to recognize and disentangle the important NO2 parts from other structural
components.

5.5 Ablation Experiment

Here, this paper discusses the role of three losses in learning for the CDM-GNN
model. From Fig. 4, It can be observed that when this model only uses the LKL,
Lint, and Lpred, the Lpred plays a more important role in this model training.
The CDM-GNN model is designed by incorporating downstream graph classi-
fication tasks. The Lpred plays a leading role in guiding this model to achieve
better differentiation among different categories of graph data. This way, the
CDM-GNN model focuses on the goal of graph classification and progressively
improves its performance. The LKL is mainly aimed at reducing the interference
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caused by the bias component. Without this loss, the classification results are
the most significant decrease in accuracy. The Lint is to consider the decoupling
of causality. If the CDM-GNN model is without Lint, it also leads to a decrease
in accuracy. When three losses are used together, the model can achieve the best
effect. It has better graph classification results and can separate the important
substructure and the bias parts.

Fig. 4. The ablation results about the Loss on MUTAG, PTC, and IMDB-M dataset

6 Conclusion

This paper introduces a causal disentangled multi-granularity graph representa-
tion learning method, namely CDM-GNN. It is primarily based on the idea of
multi-granularity, aiming to identify important substructures and bias parts and
disentangle them in the graph classification tasks. The proposed method achieves
favorable classification performance and provides qualitative interpretability of
the results. This technology can be extended for researching drug molecule prop-
erties and facilitating new drug development. Identifying important substruc-
tures that influence drug properties within molecules and their disentanglement
can aid in exploring drug molecule properties and innovating drug develop-
ment based on these substructures. This paper has not yet explored additional
downstream graph tasks, such as node classification and link prediction. Future
research could explore the extension of the concept of causal disentangled multi-
granularity to these graph-related tasks. Subsequent research also can prioritize
in-depth discussions of interpretable quantitative assessments for self-explainable
models.
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Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8–14, 2019, Vancouver, BC,
Canada, pp. 9240–9251 (2019)

24. Zhang, S., Rao, X., Tay, Y., Zhang, C.: Knowledge router: Learning disentangled
representations for knowledge graphs. In: Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 1–10 (2021)



Distances and Similarities



Towards ML Explainability with Rough
Sets, Clustering, and Dimensionality

Reduction

Marek Grzegorowski1(B) , Andrzej Janusz1,2 , Grzegorz Śliwa3,
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Abstract. This study discusses some essential problems of explain-
able machine learning applications in the FMCG market. The solu-
tion combines several machine learning techniques, including clustering,
dimensionality reduction, rough set reducts, and rule-based explanations.
We propose a novel approach to improve human-computer interaction
with the XAI prototype method by generating human-readable cluster
descriptions, emphasizing each cluster’s most discernible characteristics.
To evaluate our method, we refer to the challenging task of demand pre-
diction. The results confirmed that we could achieve five times better
work performance without losing quality.

Keywords: RST · decision reducts · DAAR · XAI · FMCG

1 Introduction

Despite the growing popularity of machine learning, such solutions are often
incomprehensible to employees and difficult to control [24]. They usually try to
mimic the employees’ activities, striving to replace them, less often supporting
their work. This causes reluctance and concern among staff at various levels.
The anxiety that “artificial intelligence” may take over jobs [6], compounded
by concerns of the complexity of machine learning tools resulting in general
misunderstanding [15], are the key issues holding back the popularization and
implementation of machine learning [1].

The presented study concerns the application of ML to optimize the efficiency
of operational processes. Our goal is to provide an auxiliary tool that facilitates
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the work of experts, allowing them to achieve better results. In the article, we
propose a new approach to the semi-automatic prescription of future demand
based on unsupervised clustering techniques and cluster prototypes, considered
as a prediction. The solution is focused not only on prediction accuracy but also
on stability in time and, foremost interpretability of results. We achieve this by
providing two-dimensional visualization and human-readable cluster descriptions
emphasizing the most significant similarity characteristics of clustered objects.
The conducted experimental evaluation confirmed that the proposed approach
achieved a fair trade-off between ML performance and interpretability [3].

The conducted research confirmed that, without a significant loss of the
quality of predictions, we could operate on points of sale (PoS) in an aggre-
gate manner, reducing the amount of work needed to prepare delivery plans
in the fast-moving consumer goods (FMCG) industry [9]. The challenge here
is to properly aggregate the points of sale in such a way as to minimize vari-
ety in purchasing patterns. We want to achieve such a granulation that groups
together PoSs with similar sales patterns. We ensure that the results of the
clustering are understandable for the team of experts by referring to XAI proto-
types [12], which explicitly define tasks for employees. Furthermore, apart from
the unambiguousness of the tasks, we proposed an innovative method of gener-
ating human-readable cluster descriptions inspired by feature ranking [1], based
on reduction algorithms from the rough set theory (RST) [20,21] - this way,
obtaining a good understanding of each cluster most discernible characteristics.
In the frame of this study, we evaluate real data collected from several hundreds
of FitBoxY.com vending machines [9]. The main contributions of the paper are:

1. Visual clustering stability assessment by the 2D projections.
2. Novel approach to improve interpretability based on reducts from RST.
3. Experimental study on the real data and two different data representations.

The rest of the paper is organized as follows. In Sect. 2, we review the related
literature. Section 3 provides the essential preliminary knowledge. In Sect. 4, we
present the solution. Section 5 presents the case study and experimental evalua-
tion. Finally, in Sect. 6, we conclude the paper.

2 Related Works

Food production is a complex process under high uncertainty resulting in dif-
ferences between planned and actual demand. Considering the short shelf-life of
many products that may result in unnecessary food waste, the accurate predic-
tion of the future demand at each point of sale is highly important [27]. It is
particularly interesting to prepare such a delivery plan for each vending machine,
the realization of which will bring maximum profit and minimize food waste at
the same time. One of the ways is to predict demand with ML models.

Intrinsically interpretable, simple models are often less accurate than more
sophisticated methods [1]. On the other end, more complex multivariate meth-
ods, like the random forest, boosting models, or deep neural networks, suffer

https://www.fitboxy.com/
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from the lack of interpretability [24]. Typically, time series collected from vend-
ing machines are very short and scattered between many PoS and products, and
ML models need to handle the cold-start problem [14].

Maintaining trustworthy human-computer collaboration is a vital research
topic, and we may refer to the number of well-established decision support meth-
ods [16]. Among the plethora of ML explainability-related methods [2], in our
case, a particularly interesting are post-hoc model agnostic approaches [1]. The
example-based explanations, for instance, are explicitly inspired by the cognitive
science of human reasoning, which is often prototype-based. For explaining text
clusters, keyword extraction seems to be a feasible approach [22], but this method
is not applicable in the general case. Other methods capable of explaining the
clusters’ similarities are based on variable rankings [5,29].

In the context of PoS clustering, we require finding a set of the most relevant
differences between objects from different clusters. Therefore, the application
of RST-based reduction methods [10,13] to facilitate this process, we find a
promising approach. Furthermore, considering the variability of sales patterns
in time impacting the cluster structure, it is also worth paying attention to
the stability of clustering and explanations and various approaches to visual
explanation techniques [2], particularly 2D projections.

3 Preliminary Knowledge

3.1 Rudiments of Rough Sets

Rough set theory as a whole provides a formalism for reasoning about imperfect
data, handling such problems as data veracity, uncertainty, or incompleteness
[20,21]. In RST, we assume that the whole available information about an object
u ∈ U is represented in a structure called an information system – a tuple (U,A),
where U is a finite, non-empty set of objects, and A is a finite, non-empty set of
attributes. Let us distinguish a decision attribute, which defines a partitioning
of U into disjoint sets representing decision classes [8]. An information system
with a specified decision attribute is called a decision table and is denoted by
S = (U,A∪{d}), A∩{d} = ∅. For a given S, one considers functions a : U → Va,
a ∈ A, where Va is the set of values of a. Such functions allow us to represent S

as a table with rows labeled by objects, columns labeled by attributes, and cells
corresponding to pairs (u, a) assigned with values a(u) ∈ Va.

Typically, some attributes in A may be dispensable or could be irrelevant
from the point of view of a given problem corresponding to the decision attribute
d. In such situations, A-based information about objects in U may be simplified.
Selecting informative sets of attributes is conducted by referring to the notion
of a reduct [21], i.e., an irreducible subset of attributes R ⊆ A that, for a given
decision table S = (U,A ∪ {d}), determines d, denoted as R � d.

There are plenty of interpretations of the reduct definition and their approxi-
mate interpretations [8,20]. Criteria for calculating approximate decision reducts
are usually based on functions evaluating degrees of decision information induced
by attribute subsets and thresholds for values of those functions’ specifying which
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Algorithm 1: DAAR reduct calculation
Input: S =

(
U, A ∪ {d})

; φd : 2A → R; pprobe ∈ [0, 1); mTry;
Output: DAAR reduct R of S

1 begin

2 R := ∅; φmax := −∞; stopF lag := FALSE;
3 while stopF lag = FALSE do
4 Sample A′ ⊆ A \ R that satisfy |A′| == mTry;
5 foreach a ∈ A′ \ R do
6 R′ := R ∪ {a};
7 if φd(R′) > φmax then
8 φmax := φd(R′); abest := a;
9 end

10 end

11 if P
(
φd

(
R ∪ {abest}

) ≤ φd

(
R ∪ {âbest}

)) ≤ pprobe then

12 R := R ∪ {abest};
13 end
14 else
15 stopF lag := TRUE;
16 end

17 end
18 foreach a ∈ R do
19 AR′ := R \ {a};
20 if φd(R′) ≥ φd(R) then
21 AR := R′;
22 end

23 end
24 return R;

25 end

of those subsets are good enough. Such an approach may lead us to obtain sub-
sets of attributes that are less accurate than exact reducts but could be preferred
in some real-life applications to deal with large or noisy data, ultimately leading
to smaller data representations [10].

RST reducts are often hybridized with other methods [25]. For instance, Algo-
rithm1, is a combination of iterative filter-based feature selection with statistical
significance tests based on random probes, here, RST-based feature elimination
is applied to calculate dynamically adjusted approximate reducts (DAAR) [13].
Algorithm 1 operated on a given decision table S, attribute subset quality mea-
sure φd : 2A → R, probability threshold of adding irrelevant attribute pprobe, and
assumed attribute sample size mTry. This concept is applied in this study to
determine the most distinguishing attributes of PoS as a special implementation
of the variable importance XAI method [5]. However, the proposed approach
does not rank features but provides a complete subset of descriptive attributes.
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3.2 Distance Based Clustering Methods

In the conducted research, we verified several distance-based clustering methods.
The two flat clustering algorithms that we used in our experiments are kmeans
and pam [11]. In the first one, the initial cluster centers are selected randomly,
and then iteratively refined by assigning all instances to the closest cluster center
and computing new centers by averaging the corresponding instances. In this
method, the final cluster center does not have to coincide with an actual data
instance, thus the representative of a cluster is chosen as the instance closest to
the final cluster center. The second method, partitioning around medoid, works in
a similar way as kmeans, but in each iteration, the new cluster center (medoid)
is chosen as the instance with the smallest sum of distances to other cluster
members. Hence, after the final clusters are found, their medoids can be used as
the most representative instances.

Agglomerative clustering algorithms create a hierarchy of data clusters by
starting from singleton groupings, and iteratively merging the two closest groups
into a bigger cluster [14]. This process stops when all data instances are merged
into a single cluster (a bottom-up approach). To measure the proximity (dissim-
ilarity) between groups, agglomerative clustering algorithms use so-called, link-
age functions. In our experiments, we used single linkage, complete linkage, and
ward linkage. The first one (single linkage) defines the dissimilarity between two
groups as the smallest distance between any two instances from those groups.
Analogically, the second function (complete linkage) asserts the proximity of
groups as the largest distance between any two instances. The last function
(ward linkage), also called Ward’s minimum variance method, associates the
dissimilarity between two groups with the sum of squared distances between all
pairs of instances from those groups [7].

The divisive approach to hierarchic clustering can be regarded as the opposite
of the agglomerative method. It starts by placing all data instances into a single
group, and then recursively dividing a group with the largest diameter into
two groups whose diameters are possibly small. In our experiments, we used
diana linkage method [7], which defines the cluster’s diameter as the largest
distance between any two members of a group. The clustering algorithm stops
when each of the resulting groups consists of only one data instance.

3.3 Dimensionality Reduction

Dimensionality reduction techniques are useful for 2D visualizations of high-
dimensional data [30]. Given a matrix Dm×m containing distance between pairs
of m objects and a number of target dimensions, multidimensional scaling places
each object into low-dimensional space in a way that preserves pairwise distances.
In genetics and microbiology, dimensionality reduction is used for visualizing the
data with t-distributed stochastic neighbor embedding [17]. There are a plethora
of dimensionality reduction methods, yet the most prominent and broadly used
in this context are uniform manifold approximation and projection (UMAP) and
principal component analysis (PCA).
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The central idea of PCA is to reduce the dimensionality of a dataset
A ∈ R

m×n, which contains a potentially large number of interrelated variables,
retaining as much as possible of the variation in the data. This is achieved
by transforming the original representation to a new set of variables, so-called
principal components, which are uncorrelated and ordered in a way the first few
retain most of the variation from the original variables. In the first step, the data
in matrix A ∈ R

m×n is centered by subtracting it with matrix Amean of mean
vectors for each column. The next step is to calculate the co-variance matrix
C ∈ R

n×n for the columns (features) in table B =
(−→
b1 · · · −→bn

)
as C = 1

mBTB.
We can calculate eigenvectors, and the corresponding eigenvalues, for matrix
C, such as CW = WΛ, where matrix W contains eigenvectors, a diagonal
matrix Λ contains eigenvalues. For the purpose of dimensionality reduction, we
can project the data points onto the first k principal components, i.e., the trun-
cating matrix W to only k most significant features (Wk) and projecting the
original data Ak = AWk retaining enough variance. The first principal com-
ponent is the direction in feature space along which projections of observations
have the largest variance. The second principal component is the direction which
maximizes variance among all directions orthogonal to the first one, etc.

UMAP returns a low-dimensional graph that preserves relationships from
the high-dimensional dataset, hence, is useful for identifying similarities and
outliers in data since similar samples tend to be grouped together. There are
two main steps. The first corresponds to learning the structure of the mani-
fold (high dimensional data). The second focuses on finding a low-dimensional
representation. This can be achieved by constructing a neighbor graph based
on calculating the similarity score for each point and its nearest neighbors [18].
After learning the approximate manifold and constructing the data graph in the
high dimensional space, UMAP starts constructing a graph in a lower dimen-
sional embedding space similar to the graph in the input space. UMAP uses
fuzzy cross-entropy to minimize the difference between two distributions and to
retain similarities of points in the low-dimensional embedding space.

4 Solution Overview

The introduced mechanism is based on the clustering of similar objects and
selecting the central element as the representative. The method complies with
the assumptions of Industry 5.0 with the central role of humans in the ML-driven
automation of industrial processes [9,28]. To ensure the process is understand-
able to the expert, we introduce two complementary mechanisms. The first is
based on instance-based explainability (so-called prototypes). The second is the
generation of cluster descriptions based on their most characteristic features. The
developed technique has mechanisms for tracking changes in data by projecting
them onto two-dimensional space. The flowchart of our approach is depicted in
Fig. 1.
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Fig. 1. Flowchart of the proposed method.

4.1 Data Representation and Clustering

In the first step, the developed solution requires data ingestion and integration,
leading to an appropriate vectorized representation. Next, we need to decide on
the distance metric. In the presented study, we decided to build two alternative
representations. One is based on the historical sales aggregated by each product
offered in a PoS. The second one aggregated sales by category (cf. Sect. 5.1). To
make those two representations comparable, we used the Manhattan distance.

We verified several clustering methods to group similar points of sale. It was
also vital to select the most representative PoS (prototype) for each cluster. The
two flat clustering algorithms we used are kmeans and pam [11]. For kmeans the
prototypes are chosen as the instances closest to the clusters’ centers. Whereas
for pam, we use medoids. Agglomerative clustering, we used single linkage, com-
plete linkage, and ward linkage. We used also the diana linkage method [7] which
defines the cluster’s diameter as the largest distance between any two members
of a group. The details of each method are described in Sect. 3.2.

Additionally, we used two random methods, i.e., random random and ran-
dom custom as a reference for the more sophisticated approaches. For both meth-
ods, the division into clusters is performed at random. The difference refers to
the way we select the representative vending machine -random custom method
selects the machine closest to the cluster’s center.

4.2 RST-Based Discriminative Features Discovery

The important stage in our method is to indicate which attributes are sufficient
to distinguish objects from different clusters. The proposed method is based on
the concept of decision reduct derived from RST (cf. Sect. 3.1), i.e., an irreducible
subset of attributes that brings enough information to distinguish objects of
different classes. In our study, we discuss two approaches to reduct computation
- global and local.

In the global approach, we compute a single decision reduct that discerns
PoSs belonging to different clusters. To achieve that, we use the greedy local
discretization method described in [23] coupled with the DAAR computation
[13]. This way, we may identify a single set of attributes to quantify differences
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Table 1. Exemplary clusters’ characteristic attributes - global discern.

cluster cluster’s characteristic attributes attr. value ratio

no. size high low high low

4 3 7prev days sales ‘Chicken Sechuan’ 2 1 1.99 1.865

7prev days sales ‘Tomato soup’ 2 1 1.95 1.515

sales in cat.‘Other meals’ 19 11 1.459 1.323

sales in cat.‘Pasta’ 6 3 2.977 2.143

sales in cat.‘Snacks’ 3 1 1.206 3.32

5 51 7prev days sales ‘Chicken Sechuan’ 2 1 10.115 2.604

7prev days sales ‘Tomato soup’ 2 1 19.926 2.837

sales in cat.‘Other meals’ 19 11 14.907 2.205

sales in cat.‘Pasta’ 6 3 10.039 4.613

sales in cat.‘Snacks’ 3 1 6.084 1.472

in sales patterns from all clusters. In the subsequent step, for each cluster C,
attribute in the reduct a, and its discretized value v, we estimate the lift of a rule
u ∈ C =⇒ a(u) = v. With this information, we may construct natural language
descriptions of clusters such as those listed below. Of course, in practice, we may
want to create the descriptions using only the values exceeding the required lift
threshold to indicate only the most relevant cluster characteristics.

In the local method, we independently compute decision reducts for each
cluster. Reducts are computed with the same algorithm as in the global app-
roach. However, instead of discriminating all PoSs from all clusters, they focus
on a single (corresponding) cluster only. In this way, we obtain a different DAAR
reduct for each cluster. Since such a reduct is specialized in capturing the most
discriminating factors of the corresponding group of PoSs, it allows identifying
the attribute values with greater lift coefficients and creating even more mean-
ingful descriptions in natural language.

Tables 1 and 2 present the exemplary outcomes of the two considered
approaches to constructing cluster descriptions for the investigated case study,
based on the global and local reduction methods, respectively. The global method
results in high consistency in the description of all clusters because they are
based on the same attributes. The only difference between groups of PoSs is in
the ratios that reflect the lift coefficients of the corresponding attribute value.

For those users who prefer to investigate more pronounced differences
between clusters, we suggest using the second method,i.e., based on the local
approach. In which case, the reducts may differ in their attributes, their dis-
cretization, and resulting lift values, an example of which can be seen in Table 2.

4.3 Human-Readable Clusters’ Descriptions

Indicating a particular cluster’s most central object as a task to be performed
- in the discussed case study, a point of sale that needs to be completed - is a
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Table 2. Exemplary clusters’ characteristic attributes - local discern.

cluster cluster’s characteristic attributes attr. value ratio

no. size high low high low

1 2 sales in cat.‘Other meals’ 18 17 1.349 3.478

total sales 54 45 3.181 1.497

6 30 sales in cat.‘Other meals’ 8.5 5 5.244 2.399

total sales 56 38 3.54 1.01

9 23 7prev days sales ‘Chicken Sechuan’ 3 2 1.185 1.85

total sales 68 50 1.706 2.359

13 7 7prev days sales ‘Tomato soup’ 6 3 13.3 9.198

well-defined task that meets the assumptions of Industry 5.0. However, it may be
unclear to users why the particular object (points of sale) were considered similar.
This may be even more confusing given that the allocation to the clusters may
vary in time (cf. discussion on stability in Sect. 4.4). To mitigate this problem,
we generate a human-readable description of a given cluster, emphasizing its
most individual characteristics.

The idea is to prepare such clusters’ descriptions that emphasize the proper-
ties of objects belonging to them that make them stand out from other clusters.
To highlight such characteristics, we apply RST reduction algorithms. Afterward,
we use simple rule-based text formatting to make the prepared descriptions more
self-descriptive. Below, we present exemplary descriptions for selected clusters
for the global and local approaches, which are generated on data from Tables 1
and 2. For the global method, cluster no. 5, and the lift threshold of 10.0, the
generated cluster descriptions are as follows:

1. PoSs from cluster 5 are 10.1 times more likely to have greater sales in seven
previous days than 2 for ‘Chicken Sechuan’ than other PoSs

2. PoSs from cluster 5 are 19.9 times more likely to have greater sales in seven
previous days than 2 for ‘Tomato soup’ than other PoSs

3. PoSs from cluster 5 are 14.9 times more likely to have greater sales in seven
previous days than 19 in the category ‘Other meals’ than other PoSs, etc.

For local approach, cluster no. 6, and lift greater than 3.0, descriptions are:

1. PoSs from cluster 6 are 5.244 times more likely to have greater sales in seven
previous days than 8 in the category ‘Other meals’ than other PoSs

2. PoSs from cluster 6 are 3.540 times more likely to have greater total sales
than 56 in seven previous days than other PoSs

It is worth noting that both methods are performed after the clustering is
completed. They are independent of each other, i.e., we can generate both local
and global descriptions simultaneously, and it only depends on users, which
would be more understandable to them. Observably, there is still a potential
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for further improvement in acquiring human-readable cluster descriptions. By
introducing a dialogue with experts we could acquire ontologies of concepts [4]
to support more granular descriptions. It would be also valuable to operate on
more natural terms like ‘few’, or ‘many’ instead of raw numerics.

Fig. 2. 2D projection with UMAP that emphasizes the distance between the particular
PoS in the first and second week.

Fig. 3. 2D projection with PCA that emphasizes the distance between the particular
PoS in the first and second week.

4.4 Clusters’ Stability Visualisations

Users expect both adaptability and transparency of decision support systems,
so observability of changes in the system’s behavior is essential. The developed
solution adapts to changes in customer preferences. Such changes are reflected in
the data representation, thereby causing the PoS vector representation (based on
purchasing patterns) to change significantly over time. This, in turn, influences
the clustering, which may vary from week to week.

We can observe these regularities by projecting vectors representing PoS into
two-dimensional space. Figure 2 shows 2D-embedding with UMAP for cat data
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and prod data representations. Observably, the category-based representation is
more stable, i.e., the points representing each PoS for two consecutive weeks in
data form a more compact structure. We can clearly see this regularity in Figs. 2
and 3 for two dimensionality reduction methods, namely UMAP and PCA. We
represent each PoS from the first week with circles and those from the second
week as triangles. The distances between the same points from the first and
second week are emphasized with the color depth, i.e., the further the city-block
distance between vectors representing PoS for the second week from the first
one, the brighter the triangle.

4.5 Clusters’ Prototypes

In the proposed framework, we assume that to optimally reflect customers’ needs,
the menu should be prepared by human experts. However, we would like to
avoid preparing individual menus for hundreds of locations. The gist is to group
PoS based on the historically observed customers’ behavior (reflected in product
purchases) and prepare the menu for the whole clusters of similar locations.
For that reason, we first cluster similar PoS together, and then we select the
most representative one. By describing a cluster by its most representative PoS,
we implement the instance-based XAI method [2]. Furthermore, assuming the
average cluster size of X, we ensure that experts have X-times less work. In
our study, we aim at X ≥ 5. We also validate if such an approach could bring
satisfactory results by a data mining investigation of real data collected from
FitBoxY.com - presented in the subsequent Sect. 5.

5 Experimental Evaluation

5.1 Data

The dataset used in the experiments was obtained from FitBoxY.com vending
machines and contains the sales history of FitFoodPoland.pl products collected
between June 21, 2017, and May 21, 2021, thus it covers the first three waves
of the COVID-19 pandemic. The test data covers the period between December
2, 2019, and May 21, 2021, so they cover the first year of the pandemic and a
period of a few months before the COVID-19 outbreak.

For the purpose of the experiments, there were two versions of the dataset
prepared, namely: prod data and cat data. The first (i.e., prod data), encodes
weekly sales at each PoS as a vector of all available products, for each, indicating
the quantity of one-week sales. The second version (i.e., cat data), was created
by aggregating products into seven categories, i.e., breakfast, small lunch dishes,
pasta, etc. Additionally, we considered each PoS in time as a separate instance.
In other words, having two selling points: A and B in weeks: t and t′, the input
to clustering was: At, At′ , Bt, Bt′ . Such a representation allowed us to take into
account that customers’ behavior may vary in time in a given location.

https://www.fitboxy.com/
https://fitfoodpoland.pl/
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5.2 Experiment Flow

We perform the following steps for both category and product data representa-
tions for each week in the test data, i.e., 2019-12-02, 2019-12-09, 2019-12-16, ...,
2021-05-31. We select all the data before the test week according to the logic of
the following query:

SELECT t.product, t.PoS, t.week_no,
t.year, count(*) as sales_qty

FROM transactions t
WHERE t.date < TEST_WEEK_START_DATE_PARAM
GROUP BY t.product, t.PoS, t.week_no, t.year;

Fig. 4. MAE for cat data prod data

For the cat data the query is similar. The only difference is to replace t.product
with t.product.category. In the next step, we build vectors of products and cat-
egories with the values of ‘sales qty’, which are thereafter clustered with the
selected clustering methods (cf. Sect. 4.1). For each cluster C, we choose its
most representative PoS, e.g., the one with the smallest distance to the cluster
center (cf. Sect. 3.2). Similarly, we process the test data.

In the prediction phase, each PoS is assigned to the closest cluster. As the
delivery prediction for the test week, we consider products delivered to the most
representative PoS of the corresponding cluster. We compare such recommenda-
tions with the ground truth, i.e., the real sales of the products at the PoS during
the next seven days. We assess the quality with mean average error (MAE).

5.3 Results

The conducted experiments revealed that the representation of sales points by
their weekly sales for each product (prod data) performs better than a more
concise representation based on 7 selected product categories (cat data). The
highest quality was achieved by the PAM algorithm, with MAE of 1.151801
and an average cluster size of approximately 5 vending machines. In the case of
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category-based representation, the error was slightly higher. The best perform-
ing was hierarchical clustering, i.e., complete linkage method, which achieved
MEA equals 1.257736. So, the proposed method results in approx. one product
mismatch in a week-long prediction horizon providing a significant acceleration
of work. The detailed experiment outcomes are presented in Table 3.

Table 3. MAE of demand prediction - prod data vs. cat data.

Method prod data cat data

mean std dev mean std dev

kmeans 1.1734 0.6641 1.2732 0.707

pam 1.1518 0.6555 1.3041 0.7191

single linkage 1.1595 0.6685 1.4079 0.74

complete linkage 1.1786 0.6705 1.2577 0.6662

ward linkage 1.1667 0.6477 1.2808 0.678

diana linkage 1.1698 0.6732 1.2865 0.6901

In Fig. 4, we see the fluctuation of the error in time. The empty parts corre-
spond to lockdowns related to COVID-19. That sales patterns corresponding to
several weeks just after (or just before) the lockdowns were hard to predict. Not
matching historically observed behavior, leading to significantly higher error. As
the pandemic continued, the greater amount of collected data and various pat-
terns allowed us to represent such a situation better. The error level observed at
the end of the chart is only slightly higher than the pre-pandemic one.

When assessing the clustering stability in time, the category-based represen-
tations are more stable overall. Since the sum of all attribute values in both
representations is the same, we may compare their distributions of week-to-week
distances. The city-block distance between points of sale represented by cate-
gories is relatively small, with a mean of 18.85, a median of 15, and 123 at max.
Observably lower than for product-based representation, 41.49, 37, and 225,
respectively. The overall PoS spread for the two consecutive weeks is similar for
the first representation and completely different for the second.

6 Summary

In the article, we introduce an end-to-end framework enabling the application of
soft computing methods to optimize the efficiency of operational processes in an
interpretable way. For that purpose, we considered clustering techniques on data
representations that encode customer purchasing patterns. In the presented case
study of the FMCG market, we showed that it is possible to operate on whole
groups of PoSs, significantly reducing the work required to prepare delivery plans
resulting in a fivefold increase in work efficiency.
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One of the possible extensions of the proposed method is related to interac-
tion with experts [8]. Introducing a dialogue with experts would allow us to give
more natural, i.e., human-readable names for the clusters relying on the acquired
ontologies of concepts [4]. To further improve clusters’ descriptions and support
dialogue with experts, instead of referring to raw numerics like 9 or 10, it would
be vital to operate with more natural terms like ‘often’, ‘rarely’, ‘intensive’, ‘few’,
or ‘many’. In the search for customer behavior patterns the promising area for
future research is related to granulation techniques provided by, e.g., RST in the
context of process mining [26] as well as for the discovery of process models from
sample data and domain knowledge [19].
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RSFDGrC 2009. LNCS (LNAI), vol. 5908, pp. 12–19. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10646-0 2

27. Tarallo, E., Akabane, G.K., Shimabukuro, C.I., Mello, J., Amancio, D.: Machine
learning in predicting demand for fast-moving consumer goods: an exploratory
research. IFAC-PapersOnLine 52(13), 737–742 (2019). https://doi.org/10.1016/j.
ifacol.2019.11.203. 9th IFAC Conference on Manufacturing Modelling, Manage-
ment and Control MIM 2019

https://doi.org/10.1109/ICIP42928.2021.9506624
https://doi.org/10.1007/978-3-319-25252-0_3
https://doi.org/10.2298/CSIS221116052K
https://doi.org/10.2298/CSIS221116052K
https://doi.org/10.1016/j.future.2021.09.010
https://doi.org/10.1016/j.knosys.2021.107262
https://doi.org/10.1038/s41467-019-13056-x
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.4018/978-1-60566-324-1.ch002
https://doi.org/10.1016/j.ins.2006.06.003
https://doi.org/10.1007/BF01001956
https://doi.org/10.1007/BF01001956
https://doi.org/10.1016/j.knosys.2021.107342
https://doi.org/10.1016/j.knosys.2021.107342
https://doi.org/10.1016/j.ins.2014.07.029
https://doi.org/10.1016/j.ins.2014.07.029
http://arxiv.org/1811.10154
https://doi.org/10.1016/j.ijar.2017.02.007
https://doi.org/10.1016/j.ijar.2017.02.007
https://doi.org/10.1007/978-3-642-10646-0_2
https://doi.org/10.1016/j.ifacol.2019.11.203
https://doi.org/10.1016/j.ifacol.2019.11.203


386 M. Grzegorowski et al.

28. Xu, X., Lu, Y., Vogel-Heuser, B., Wang, L.: Industry 4.0 and Industry 5.0 - incep-
tion, conception and perception. J. Manuf. Syst. 61, 530–535 (2021). https://doi.
org/10.1016/j.jmsy.2021.10.006

29. Zhang, C.X., Zhang, J.S., Yin, Q.Y.: A ranking-based strategy to prune variable
selection ensembles. Knowl.-Based Syst. 125, 13–25 (2017). https://doi.org/10.
1016/j.knosys.2017.03.031

30. Zong, W., Chow, Y., Susilo, W.: Interactive three-dimensional visualization of net-
work intrusion detection data for machine learning. Future Gener. Comput. Syst.
102, 292–306 (2020). https://doi.org/10.1016/j.future.2019.07.045

https://doi.org/10.1016/j.jmsy.2021.10.006
https://doi.org/10.1016/j.jmsy.2021.10.006
https://doi.org/10.1016/j.knosys.2017.03.031
https://doi.org/10.1016/j.knosys.2017.03.031
https://doi.org/10.1016/j.future.2019.07.045


Decision Rule Clustering—Comparison
of the Algorithms

Agnieszka Nowak-Brzezińska and Igor Gaibei(B)
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Abstract. In this paper, we present the complexity of decision rule clus-
tering. When the rules are first clustered, then in the inference process
we do review only the representatives of the rule clusters. This shortens
the inference time significantly, because we search only k rule cluster
representatives instead of n rules, where k << n. The main goal of the
research was to examine the two well-known clustering algorithms: the
K-means and the AHC, in the context of rule-based knowledge repre-
sentation. We tested different clustering approaches, distance measures,
clustering methods, and values for the parameter representing the num-
ber of created rule clusters. We studied the clustering time and cluster
quality indices. This paper is the first step of a more extensive study.
After we have checked which algorithm clustering the rules faster in the
knowledge base, we will propose our own version of the inference algo-
rithm for rule clusters, a modification of the classic forward chaining
process (on rules). Next, we will carry out experiments that are a con-
tinuation of those carried out for this work. These experiments will focus
on analyzing the times of the classical inference process and its modi-
fication and the efficiency of inference, which will be measured, among
others, by the frequency of successful conclusions of inference for both
versions of inference algorithms. In this way, we will check whether, by
clustering the rules and generating the conclusions on clusters of rules
while significantly reducing the reasoning time, we can maintain high
efficiency of reasoning.

Keywords: rule clustering · rule-based knowledge base · inference
algorithm

1 Introduction

Decision support systems are starting to become our everyday reality and are
indeed our future. We are using intelligent applications more and more often to
get expert knowledge in a given field. Such intelligent applications support our
decisions or imitate our consultation with a domain expert (access to human
expert knowledge is difficult and often impossible). Such a solution can guaran-
tee us access to specialist knowledge without restrictions. It is enough to build a
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system that we will equip with inference algorithms (reasoning conducted by an
expert who draws conclusions, i.e., derives new knowledge based on the infor-
mation he has and his knowledge and experience). Such a system must also
be equipped with expert knowledge. This knowledge can be provided to us by
domain experts or automatically generated by dedicated algorithms that analyze
the collected data and look for patterns, the so-called rules. Of course, domain
knowledge can take different forms, however, rule-based representation of knowl-
edge is the most natural (the form of cause-and-effect chains IF − THEN also
known as production rules). The reasoning process conducted by the decision
support system represents logical thinking of a human equipped with knowledge
and experience. This process is called inference. There are two inference algo-
rithms: forward chaining (from premises to conclusions) and backward chaining
(from hypothesis/conclusion to premises). In this work, we have only dealt with
the first method. In the literature, it is often called data-driven inference. The
forward chaining process is based on activating only those rules whose premises
are true (they are facts stored in memory). If more than one rule can be acti-
vated at a given moment, we select one of them using appropriate rule selection
strategies. Activation leads to adding the conclusion of such a rule to the fact
base and blocking this rule before the next activation. When more than one
rule can be activated, these rule selection strategies can significantly affect infer-
ence efficiency. Hence, research in this area is necessary. It is easy to see that if
a knowledge base contains many rules (hundreds or thousands), then the time
needed to analyze such a knowledge base is long. The more rules the longer infer-
ence time. Our idea is to cluster the rules that are similar to each other, hoping
that when we divide such a large rule set into clusters of similar rules, we reduce
the inference time significantly. Therefore, the aim of this work is a comparative
analysis of the classical non-hierarchical algorithm (K-means) with the classical
hierarchical algorithm (AHC ) in terms of clustering time (i.e., the time of creat-
ing a knowledge base with the structure of rule clusters), the quality (cohesion
and separation) of the created rule clusters and the inference time. Mostly we
are interested in checking the differences in the inference time of the classical
inference algorithm (based on single rules) and the proposed rule cluster-based
inference algorithm. The proposed approach reduces inference time significantly
as only cluster representatives are reviewed instead of every rule in the entire
knowledge base. This research only checks the inference time and recency rule
selection strategy as the simplest (and the most intuitive). Other strategies will
be verified in the next stage of the research.

1.1 The Structure of the Article

In Sect. 2 we present the research results in the given topic from our perspec-
tive and knowledge. Section 3 contains both the definition of rule representation
and brief introduction to algorithms that allow us to generate such rules auto-
matically from data. It also contains a short description of the RSES system,
which can be used for such a rule induction process based on the Rough Set
Theory approach [6]. Clustering algorithms that we used in this research are
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presented in Sect. 4. The methodology, the data source description and infor-
mation about the programming environment used in the research are included
in Sect. 5. Section 6 contains the selected results in which we may compare the
clustering time or other clustering parameters and their impact on the inference
process. The research presented in this paper constitutes the first significant
part of the research, which in effect, is to allow the implementation of classical
inference algorithms and its modification, based on the structure of rule clusters
proposed in this work. Then it will be possible to compare the different created
rule cluster structures (using different clustering algorithms and different meth-
ods of rule cluster representation) and their impact on the efficiency of reasoning.
Therefore, in summary (Sect. 7), we evaluate only the first stage of the research
and refer to the next stage.

2 State of Art

In the literature you can find many papers on either the comparison of the K-
means and the AHC algorithm, the use of different distance measures or methods
of combining clusters, or methods of analyzing the quality of clustering. In [1], the
authors discuss and compare clustering algorithms and methods of cluster quality
assessment (F-measure, Entropy) for different values of the number of clusters.
In [2], the authors compare the clustering times for AHC and K-means. However,
in their research, they do not consider the rule-based knowledge representation
in the data as well as the study of the quality of clusters. Comparison of using
the K-means and the AHC algorithm in terms of the number of groups, objects
in groups, number of iterations, clustering time for small and large data sets
was presented in [3]. However, the aspect of cluster quality research was not
included there. In the paper [4] it is presented comparison of dozens of different
approaches based on clustering but without research details. Although, it is
impossible to find papers that would combine these issues in one study. In the
authors’ previous research [5] clustering algorithms, outlier detection algorithms
and methods for assessing the quality of created clusters were included but never
before did the authors merge all the issues in one research.

3 Rules as Knowledge Representation: The Definition
and Algorithm Generation

The rule with pure IF − THEN representation, containing only premises and
a conclusion, is called the production rule. However, there are various types of
rule representations, for example, association rules or certainty factor rules. Rules
can be fed directly by a domain expert or induced from the data gathered in a
given domain for a certain period of time. The process of knowledge acquisition
from a domain expert is time consuming and requires the experts to explain their
knowledge and reasoning. Sometimes the knowledge acquired from many experts
is inconsistent which, in turn, requires methods of dealing with inconsistent
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knowledge. In case of rules generated out of the data many different methods can
be used to build rule-based knowledge bases. There are well-known algorithms
for rule generation from so-called decision tables with the use of the Rough Set
Theory as well as the algorithms for generating association rules and decision
trees.

3.1 RSES System and LEM2 Algorithm for Rule Induction

In this paper, the authors focus on knowledge representation in the form of rules
generated automatically from data with the use of LEM2 algorithm described
in [6]. Rough Set Theory allows to deal with inconsistency in knowledge gathered
in decision tables, to reduce unnecessary attributes and to generate the set of
decision rules from original data. For a given data table (also known as a decision
table), a set KB = {r1, r2, . . . , rN} of N rules as the premise1 & . . . & premisem

→ conclusion is generated and for each rule ri ∈ KB, a numerical value is added
depending on its cover within a set of objects. As an example let us take a
dataset used for contact lenses fitting, which contains 24 instances, described by
4 nominal attributes1 and a decision attribute with 3 classes2.

The piece of the original dataset is as follows:

1 1 1 1 1 3
2 1 1 1 2 2
...
24 3 2 2 2 3

Using the RSES system with the LEM2 algorithm implementation the knowl-
edge base with 5 rules has been achieved. The source file of the knowledge base
is as follows:

RULE SET lenses

ATTRIBUTES 5

age symbolic

...

contact-lenses symbolic

DECISION VALUES 3

none

...

RULES 5

(tear-prod-rate=reduced)=>(contact-lenses=none[12]) 12

...

(spectacle-prescrip=myope)&(astigmatism=no)&

(tear-prod-rate=normal) &(age=young)=> (contact-lenses=soft[1]) 1

1 Age of the patient: (1) young, (2) pre-presbyopic, (3) presbyopic, spectacle prescrip-
tion: (1) myope, (2) hypermetrope, astigmatic: (1) no, (2) yes and tear production
rate: (1) reduced, (2) normal.

2 1 : hard contact lenses, 2: soft contact lenses and 3:no contact lenses. Class distri-
bution is following: 1: 4, 2: 5 and 3: 15.
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The rule: (tear-prod-rate=reduced)=> (contact-lenses=none[12])
should be read as: if tear-prod-rate=reduced then contact-lenses=none
which is covered by 12 of instances in the original dataset (50% of instances
cover this rule). When the size of input data (the ones that rules are to be gen-
erated from) increases, the number of generated rules does too. Let us look at the
diabetes data set [7]. It contains the data for 768 objects described with 8 contin-
uous attributes. The objects are divided into two decision classes where 1 means
”tested positive for diabetes” and covers 268 objects and 0 means the opposite
and covers 500 instances. Processing the data with LEM2 and RSES which con-
tains an implementation of the LEM2 algorithm, 490 rules have been created.
For the nursery dataset which originally contains 12960 instances described with
9 conditional attributes and a decisional attribute for which there are 5 possible
values, 867 rules have been generated.

3.2 Rule Clusters

When looking globally at a knowledge base with rules, it turns out that a knowl-
edge base might in theory contain a large number of short rules (with one premise
or few), but also some rules described with a large number of premises where
only a few premises differ for some clusters of rules. Figure 1 presents an example
of rule cluster structure.

Fig. 1. The example of rule cluster structure.

The example shows a case where seventeen rules in the knowledge base have
been divided into many small clusters, including one largest cluster composed
of 6 small clusters containing the rules R1, R2, R13 . . . R17, and the remaining
small clusters containing one or two rules in them. It should be remembered
that the structure of many small clusters requires reviewing each such cluster in
the inference process (in fact, the representative of such a cluster is reviewed).
If we create fewer clusters but contain more rules inside, then we only review
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the representatives of these few clusters, which means a shorter analysis time.
Domain knowledge determines the distribution of rules in clusters. If we have
a lot of rules with very similar premises, then clustering algorithms will tend
to create a small number of clusters which in turn contain a large number of
similar rules in the middle. Many small clusters should be expected when the
knowledge base consists of many unrelated rules. When there are many rules in
a cluster, it is more difficult to create coherent group representatives. This will
then translate into difficulties finding a cluster where the rules we are potentially
looking to activate are located. The process from creating a knowledge base with
singular rules, through these rules clustering, to practical reasoning algorithm
is, therefore, very complex. For the effectiveness of the inference processes, deci-
sion support systems founded on rule-based knowledge representation should be
equipped with rule management mechanisms. In other words, they are methods
and tools which help effectively review the rules and quickly find those to be
activated. One of the possibilities is the clustering of similar rules. In the liter-
ature on the subject, this issue has been extensively described and most of the
time it focuses on cluster analysis [8].

4 Clustering Algorithms

Clustering is one of the methods which allow to effectively manage huge datasets.
Among the available clustering techniques, non-hierarchical and hierarchical
methods can be used. The subject of the research in this paper is represen-
tation of specific data such as rule-based knowledge bases. Even though there
are numerous papers which present rule representation as decision tables and
association rules and provide the methods and tools for their effective manage-
ment (especially when there is a big number of rules in such sets), so far we
have not found papers which present available exploration tools which can deal
with big sets of data for production rules. This has become our main motivation
for research on exploration methods and tools for rule-based knowledge bases.
This new approach allows for the designation of representatives for the created
clusters with the use of the generalization approach, the specification approach
or an approach which combines both. This would undoubtedly provide a mas-
sive support for a domain expert or knowledge engineer who can improve their
knowledge on the domain described in a knowledge base.

4.1 Distance Measures

Good-quality clustering requires the created groups to be as internally homoge-
nous and externally distinct as possible. It is essential to use the proper distance
or similarity measure in accordance with the given data type (quantitative, quali-
tative, or binary). Having two rules ri and rj in a multidimensional space with the
dimension p (p = 1, 2, . . . ,m), the distance between these objects can be deter-
mined as Euclidean, Chebyshev or Manhattan. The Euclidean distance is defined
as d(ri, rj) =

√∑m
p=1(rip − rjp)2, the Chebyshev as d(ri, rj) = maxp(

∣∣rip − rjp

∣∣)
and the Manhattan as d(ri, rj) =

∑
p

∣∣rip − rjp

∣∣.
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4.2 Clustering Algorithms: Hierarchical AHC vs Partitional
K-means

Hierarchical clustering is an algorithm that creates a tree of clusters by identi-
fying and merging similar objects (rules in our case). It can be performed in an
agglomerate or divisive mode. Agglomerative clustering starts with each obser-
vation being its own cluster. They merge into subgroups as we move up the
tree. Divisive clustering starts with one cluster of all observations. The cluster is
split into subgroups as we move down the tree. The clustering algorithms used
are the two most popular cluster analysis algorithms. It is known from the lit-
erature that the K-means algorithm should lead to the formation of a certain
number of clusters in a short time. However, with no certainty as to the opti-
mal quality of the obtained division. In turn, the hierarchical algorithm should
allow the achievement of consistent clusters of objects, but at the cost of long
clustering time. Rules are peculiar data, and the effectiveness of clustering them
needs to be studied. These classic literature approaches should be translated
into rules. In the Agglomerative Hierarchical Clustering (AHC ), we compute
the distance between pairs of rule clusters using the following popular methods:
Single Linkage (SL), Complete Linkage (CL), Average Linkage (AL) [8]. The
AHC algorithm works as follows:

1. In the first step, each rule constitutes a separate cluster. So there are k = N
rule clusters, and we must calculate the distance between each pair of rule
clusters.

2. Find and join the two most similar rule clusters reducing the number of rule
clusters by one.

3. Repeat the second step until obtaining the declared final number of rule
clusters (k) or combining all rules into one big cluster.

In each iteration of the K-means algorithm, we try to divide N original rules
into k rule clusters so well that each rule belongs to the cluster to which it is
most similar. The main idea of the algorithm is as follows:

1. Select the number of rule clusters (k) and assign k hypothetical centers.
2. For each rule the nearest cluster center is determined.
3. The rule cluster representative is created - which is an average value for

each attribute of a rule cluster representative (conditional and decisional). If
there are qualitative attributes (instead od quantitative) then the rule cluster
representative vector is a mode value.

4. The center of the rule cluster is shifted to its centroid. Then, the centroid
becomes the center of the new rule cluster.

5. The 3rd and 4th steps repeat iteratively.
6. The algorithm ends when no rule cluster changes occur at some iteration.

When analyzing both algorithms, we notice that the AHC algorithm seems
to be more resistant to outliers in rules. Unfortunately, this algorithm, in turn,
requires more memory occupation.



394 A. Nowak-Brzezińska and I. Gaibei

4.3 Clustering Quality Indices

The study of the quality of rule clusters consists in identifying such a partition
among many possible partitions of rules into clusters that provides the greatest
possible internal consistency of rule clusters (cohesion) and the greatest possible
separability of rule clusters between themselves (separation). In this work, the
Dunn and Davies-Bouldin indices have been used to validate the quality of
clustering. The Dunn Index defines compact rule clusters, the elements (rules)
of which are well-grouped together, and the clusters themselves are located as
far away from each other as possible. The Dunn index attempts to identify
those rule clusters partitions that are compact and well separated. The higher
its values the better quality. The Dunn index for k clusters is defined as D(u) =
min1≤i≤k{min1≤i≤k,j �=i{ (δ(Xi,Xj)

max1≤c≤k{Δ(Xc)}}} where δ(Xi,Xj) is the inter-cluster
distance between rule cluster centroids (representatives) Ci and Cj , and Δ(Xc)
is the intra-cluster distance of cluster Xc. The index itself is sensitive to noise
and outliers in rules. The quality of clustering performed using the quantitative
and qualitative characteristics of the dataset is shown by the Davies-Bouldin
index. Since clusters must be compact and well-separated, the lowest possible
index value means a high-quality clustering. The Davies - Bouldin index for k

clusters is defined as DB(u) = 1
k

∑k
i=1 maxi�=j{Δ(Xi)+Δ(Xj)

(δ(Xi,Xj))
} for Δ(Xi) being

the average distance between rules within rule cluster Xi (Δ(Xj) respectively
for rule cluster Xj). It determines an average similarity between each individual
rule cluster and the rule cluster closest to it. This index attempts to minimize
the average distance between each rule cluster and the one most similar to it.

5 Methodology

The experiments proceeded as follows. The source data set is loaded into the
RSES tool, where decision rules are generated using the LEM2 algorithm.
LEM2 (Learning from Examples Module, version 2) is the algorithm for rule
induction. It uses local coverings, yet is based on global approximations. The
LEM2 uses an idea of blocks of attribute-value pairs and explores the search
space of attribute-value pairs. In general, LEM2 computes a local covering and
then converts it into a rule set. These rules are then loaded in the Python
environment in a customized software that runs the selected clustering algorithm
(K-means or AHC ) with the selected clustering parameters (distance measure,
number of clusters, clustering method).

5.1 The Course of the Experiments

Seven hundred fifty-six experiments have been carried out for each of the four
bases (see Table 1 for the details). Where did the number 756 come from?
We perform clustering sequentially for each algorithm (K-means, AHC ) for
k = 2, 3, . . . , 22. For each algorithm, we perform clustering using one of the
three distance measures, successively Euclidean, Chebyshev, and Manhattan.
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This already makes each algorithm run 3 ∗ 21 times, so 63 times. We repeat
each algorithm for three different inputs: the conditions alone, the conclusions
alone, and the conditions and conclusions of the rules together. This triples the
number of our experiments for each algorithm - 63 ∗ 3 = 189. We repeat the
AHC algorithm for three different clustering methods, i.e., SL, CL, and AL
(189 ∗ 3 = 567). This means that for each knowledge base (and we used four
different knowledge bases), we performed 189 experiments (for K-means) and
567 (for AHC ), so a total of 756. For four knowledge bases, this gives a total of
3024 experiments. The course of the experiments is shown in the Fig. 2.

Fig. 2. The course of the experiments.

5.2 Environment

The runtime for the experiments had the following configuration: Spyder com-
piler with Python version 3.9 from the Anaconda platform. The computer
parameters on which all experiments were carried out are as follows: Intel Core
i5-7500K, 16 Gb RAM. The following libraries were used: Pandas for data pro-
cessing and analysis and NumPy for basic operations on n-arrays and matrices.
Finally, we used the RSES system and the LEM2 algorithm to generate rules,
although we also checked the exhaustive algorithm. Unfortunately, for a small
number of attributes, this algorithm generated rules at a similar time as the
LEM2. Still, for larger data sets (number of attributes > 40), after an hour of
calculations, not even 1% of the rules were created, and the algorithm crashed.

5.3 Data Description

In the experiments, we included factual knowledge bases with different struc-
tures. The structure of these sources is presented in Table 1.
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Table 1. Data description

KB Items Attributes Rules Data source description

kb1 4435 37 937 Statlog landsat satellite [10]

kb2 7027 65 4125 Polish companies bankruptcy [11]

kb3 527 38 123 Water treatment plant [12]

kb4 17898 9 6432 Pulsar candidates [13]

The number of attributes in the analyzed knowledge bases ranged from 9 to
65. It can be seen that the number of attributes of about 40 (and most of the
analyzed knowledge bases had such) is significant and will undoubtedly affect
the time of clustering and the process of creating rules. It will also affect the pro-
cess of creating cluster representatives. The size range of the number of objects
subject to rule induction ranged from several hundred to several thousand. In
turn, the size of the set of rules created from these source data sets ranged from
several hundred to several thousand. If we divide several thousand rules into
several groups and, in the inference process, we analyze the similarity of only
these groups to the set of facts; then we will certainly be able to shorten the
inference time significantly.

6 Experiments

In the experiments, we focused on comparing the clustering algorithms known in
the literature, i.e., the K-means and the AHC algorithms, for knowledge-based
rules. It should be emphasized again that rules are complex data structures. It
is not apparent that known algorithms that are well adapted to the analyzing
typical data structures (tables with numerical data) will adapt equally well to
such complex structures as rules.

Table 2 shows a comparison of the K-means and the AHC algorithm in terms
of the number of experiments performed and the average rule clustering time
(including the standard deviation together with the minimum and maximum
values). The algorithms were compared with the Student’s T-test. It can be seen
there are statistically significant differences between the algorithms both in terms

Table 2. Comparison of clustering algorithms

Algorithm # exp Clustering time [s]

Avg ± std [min−max]

K-means 756 0.113 ± 0.138 [0.002 − 0.667]

AHC 2268 0.282 ± 0.294 [0.001 − 0.943]

p = 0.000000
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of clustering time (the AHC clustering time is more than twice as long as com-
pared to the K-means algorithm). Table 3 compares three of the most popular
methods for clustering according to the AHC algorithm only. The comparison
is made in terms of the number of experiments performed and the average rule
clustering time (including the standard deviation, as well as the minimum and
maximum values) It was expected (research conducted earlier in the literature
on the subject was confirmed) that the SL method would be performed in the
shortest time and the CL method is the longest. These are statistically significant
differences. We also compared the distance measures used in the rule clustering
process. It can be seen, in Table 4, that using three different distance measures
does not provide statistically significant differences in the clustering time. In our
research, we were also interested in examining the correlation between the size
of the data and the time of clustering or the values of cluster quality indices.
The results are included in Table 5. We expected a positive correlation between
the input dataset size and the clustering time. The more objects in the data set
or the more attributes in the data set, the longer the clustering time, but it can

Table 3. Comparison of clustering methods (for AHC algorithm)

Clustering method Clustering time [s]

Avg ± std [min−max]

SL 0.207 ± 0.218 [0.001 − 0.608]

CL 0.325 ± 0.325 [0.001 − 0.913]

AL 0.315 ± 0.311 [0.001 − 0.943]

p = 0.000000

Table 4. Comparison of distance measures (for AHC algorithm)

Distance measure Clustering time [s]

Avg ± std [min−max]

Euclidean 0.251 ± 0.286 [0.0013 − 0.943]

Chebyshev 0.235 ± 0.265 [0.0013 − 0.778]

Manhattan 0.234 ± 0.269 [0.0013 − 0.833]

p > 0.05

Table 5. Analysis of the correlation between the size of the data and the parameters
of the clustering efficiency

Clustering time [s] Dunn index Davies-Bouldin index

# items r = 0.5598∗ r = −0.0021; p > 0.05 r = −0.3473∗

# Attr r = 0.1018∗ r = 0.0017; p > 0.05 r = 0.2432∗

# Rules r = 0.7205∗ r = −0.0018; p > 0.05 r = −0.3670∗
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be noticed that this correlation is significant for the number of objects subject
to rule creation or the number of rules (∗ signifies a statistically significant cor-
relation, i.e. p < 0.05.). The correlation between the number of attributes and
the clustering time is not that significant (of course, it is positive, i.e. the more
attributes, the longer the rule clustering time). The most important part of our
recent research was analyzing the inference processes and assessing the results in
the context of inference time and success. We were interested in answering the
following questions: which clustering algorithm allows us to finish the inference
process in the shortest time, or which clustering methods or distance measure
results in finishing the inference process in the shortest time? The other aspect is
assessing which clustering parameters (algorithm, clustering method, or distance
measure) result in successfully finishing the inference process. Inference success
means that during the inference process, at least one rule was fired (activated)
and its conclusion was added to the database of new inferred facts. If no rule
could be fired during the inference process, it means that the inference failed.
Firing a rule means finding such a rule, in which the premises (conditions) cover
the input facts. Fact coverage is checked by calculating the similarity of facts to
rules in the rule cluster. The results are included in Tables 6, 7, 8, and 9. There
is a statistically significant difference (based on the Chi-square Test) between
the K-means and the AHC algorithm. It can be seen that in the case of the
AHC algorithm, the inference process is more often successful than in the case
of the K-means algorithm. Our explanation for this situation is as follows: clus-
tering the rules using the AHC algorithm creates a more consistent structure
of rule clusters, making the inference process more likely to succeed. We also
compared clustering methods like SL, CL, and AL methods in the case of the
AHC algorithm. We may see in Table 7 that there is a statistically significant
difference between these three methods in the context of finishing the inference
process successfully. The SL method allows us to finish the inference process
successfully more often than the two other methods. The explanation is rela-

Table 6. The comparison of clustering algorithms in the context of a successfully
finished inference process

Algorithm Success frequency Failure frequency p value

K-means 21.83% 78.17% p = 0.00002

AHC 29.89% 70.11%

Table 7. The comparison of clustering methods in the context of a successfully finished
inference process (for AHC algorithm)

Clustering method Success frequency Failure frequency p value

SL 35.85% 64.15% p = 0.00001

CL 24.47% 75.53%

AL 29.37% 70.63%
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Table 8. The comparison of distance measures in the context of a successfully finished
inference process (for AHC algorithm)

Clustering method Success frequency Failure frequency p value

Euclidean 26.59% 73.41% p = 0.02768

Chebyshev 30.95% 69.05%

Manhattan 26.09% 73.91%

Table 9. The comparison of clustering algorithms in the context of a successfully
finished inference process - separately for each knowledge base

KB Algorithm Success False p value

kb1 K-means 10.58% 89.42% p > 0.05

AHC 10.23% 89.77%

kb2 K-means 70.90% 29.10% p = 0.00000

AHC 47.44% 52.56%

kb3 K-means 0% 100% —

AHC 0% 100%

kb4 K-means 47.62% 52.38% p = 0.02833

AHC 56.79% 43.21%

tively simple. The SL method builds a chaining structure, meaning that most
nodes are connected together. Therefore, we will probably not omit the relevant
rule cluster in the inference process. The distance measure used in the clustering
process also influences the result of the inference process. We examined three
distance measures Euclidean, Chebyshev and Manhattan for AHC algorithm in
the context of finishing the inference process successfully. Table 8 presents the
result of a comparison of those three measures. The Chebyshev measure allows
us to finish the inference process successfully, the most often (it is a statistically
significant difference). The most interesting results are presented in Table 9. We
see the comparison of clustering algorithms in the context of a successfully fin-
ished inference process - separately for each knowledge base. We examined an
inference process for each of the analyzed knowledge bases. We may see that a
lot depends on the given knowledge base. There is a knowledge base (kb3) for
which every inference process finished unsuccessfully, no matter which clustering
algorithm we chose and which other parameters. Probably the structure of this
specific knowledge base creates a complicated rule cluster structure that causes
problems during the inference process to find a relevant rule cluster and fire a
proper decision rule. However, there is also a knowledge base (kb2) in which the
inference process finishes successfully in more than 70% of all experiments. It
proves that, undoubtedly, we need additional research in this area. We need to
find a way to create the optimal rule cluster structure for every knowledge base
and form their optimal representatives. Only then may we expect a successfully
finished inference process.
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7 Summary

In this paper, we have attempted to present the complexity of clustering decision
rules. We group rules to shorten the reasoning process carried out by the decision
support system. Such a system, theoretically designed for rules in the knowledge
base, would have to go through each rule, to select which rules to activate. When
the rules are first grouped and the clusters created for them together with the
representatives, then in the inference process, we will review not the rules but the
representatives of the rule clusters. This will significantly shorten the inference
time because usually k << n, where k is the number of rule clusters and n is
the number of rules. The course of the experiments was as follows. We generated
rule-based knowledge bases with the IF −THEN structure for four entire data
sets, from different areas of life, with different structures and sizes of input data.
Then, the rules created this way were grouped using two clustering algorithms
known in the literature, i.e. K-means and AHC. We tested different distance
measures, different clustering methods (for the AHC algorithm), and different
values for the parameter representing the number of rule groups created (from
2 to 22). We studied the clustering time and cluster quality indices, the Dunn
and the Davies-Bouldin indexes (known in the literature). The results showed
a statistically significantly twice as long grouping time for the AHC compared
to the K-means. We also showed a statistically significant correlation between
the size of the input data and the clustering time. The research also confirmed
that combining clusters based on considering the nearest neighbor allows for a
statistically significantly shorter clustering time than the other two methods,
i.e. average or complete. There was no statistically significant difference in the
clustering time between the distance measures used for clustering (Euclidean,
Chebyshev, or Manhattan). This paper is the first step of a more extensive study.
We have checked which algorithm clustering the rules faster in the knowledge
base, we proposed our own version of the inference algorithm for rule clusters, a
modification of the classic forward chaining process (on rules). We have carried
out experiments which focus on analyzing the time of the inference process based
on rule cluster structure. We also analyze the efficiency of inference, measured
by the frequency of successful conclusions of inference algorithm. In this way,
we can check whether, by clustering the rules and generating the conclusions on
clusters of rules while significantly reducing the reasoning time, we can maintain
high efficiency of reasoning.
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Abstract. Angular Minkowski p-distance is a dissimilarity measure that
is obtained by replacing Euclidean distance in the definition of cosine
dissimilarity with other Minkowski p-distances. Cosine dissimilarity is
frequently used with datasets containing token frequencies, and angular
Minkowski p-distance may potentially be an even better choice for cer-
tain tasks. In a case study based on the 20-newsgroups dataset, we eval-
uate classification performance for classical weighted nearest neighbours,
as well as fuzzy rough nearest neighbours. In addition, we analyse the
relationship between the hyperparameter p, the dimensionality m of the
dataset, the number of neighbours k, the choice of weights and the choice
of classifier. We conclude that it is possible to obtain substantially higher
classification performance with angular Minkowski p-distance with suit-
able values for p than with classical cosine dissimilarity.

Keywords: Cosine dissimilarity · Fuzzy rough sets · Minkowski
distance · Nearest Neighbours

1 Introduction

Cosine (dis)similarity [12,13] is a popular measure for data that can be charac-
terised by a collection of token frequencies, such as texts, because it only takes
into account the relative frequency of each token. Cosine dissimilarity is par-
ticularly relevant for distance-based algorithms like classical (weighted) nearest
neighbours (NN) and fuzzy rough nearest neighbours (FRNN). In the latter case,
cosine dissimilarity has been used to detect emotions, hate speech and irony in
tweets [9].

A common way to calculate cosine dissimilarity is to normalise each record
(consisting of a number of frequencies) by dividing it by its Euclidean norm, and
then considering the squared Euclidean distance between normalised records.
Euclidean distance can be seen as a special case of a larger family of Minkowski
p-distances (namely the case p = 2). It has previously been argued that in
high-dimensional spaces, classification performance can be improved by using
Minkowski p-distance with fractional values for p between 0 and 1 [1].
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In light of this, we propose angular Minkowski p-distance: a natural gen-
eralisation of cosine dissimilarity obtained by substituting other Minkowski p-
distances into its definition. The present paper is a case study of angular Min-
kowski p-distance using the well-known 20-newsgroups classification dataset. In
particular, we investigate the relationship between the hyperparameter p, the
dimensionality m, the number of neighbours k, and the choice of classification
algorithm and weights.

To the best of our knowledge, this topic has only been touched upon once
before in the literature. Unlike the present paper, the authors of [5] do not
evaluate classification performance directly, but rather the more abstract notion
of ‘neighbourhood homogeneity’, and they only consider a limited number of
values for p and m.

The remainder of this paper is organised as follows. In Sect. 2, we motivate
and define angular Minkowski p-distance. In Sect. 3, we recall the definitions of
NN and FRNN classification. Then, in Sect. 4, we describe our experiment, and
in Sect. 5 we present and analyse our results, before concluding in Sect. 6.

2 Angular Minkowski p-Distance

In this section, we will work in a general m-dimensional real vector space R
m,

for some m ∈ N.
The cosine similarity between any two points x, y ∈ R

m is defined as the
cosine of the angle θ between x and y. We obtain the cosine dissimilarity by
subtracting the cosine similarity from 1. Defined thus, cosine similarity and dis-
similarity take values in, respectively, [−1, 1] and [0, 2]. However, when all records
are located in R

m
≥0, such as token frequencies, both measures take values in [0, 1].

It is a well-known fact that cosine dissimilarity is proportional to the squared
Euclidean distance between x and y once these points have been normalised by
their Euclidean norm (note that · denotes the vector in-product):

1 − cos θ = 1 − x · y
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The Euclidean norm is the special case p = 2 of the more general Minkowski
p-size, defined for any x ∈ R

m as:

|x|p =
(∑

|xp
i |

) 1
p

, (2)
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where p is allowed to be any positive real number. Note that this is only a norm
for p ≥ 1. The Minkowski p-distance between any two x, y ∈ R

m is defined as
the p-size of their difference |y − x|p. This is a metric if p ≥ 1.

Similarly, we can also view the squared Euclidean norm (distance) as the
special case p = 2 of the rootless Minkowski p-size (distance), defined for any
x ∈ R

m as:

|x|pp =
∑

|xp
i | , (3)

The rootless p-size is not a norm for any p (other than p = 1, for which it
coincides with the ordinary 1-norm); rootless p-distance is a metric for p ≤ 1.

With these definitions in place, we can define the angular Minkowski p-
distance between any two vectors x, y ∈ R

m as:
∣
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as well as their rootless angular Minkowski p-distance:
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Thus, cosine dissimilarity corresponds to rootless angular Minkowski 2-distance,
and we can consider angular Minkowski p-distance with different values for p as
alternatives to cosine dissimilarity.

3 Classical and Fuzzy Rough Nearest Neighbour
Classification

We will now briefly review the definition of classical weighted nearest neigh-
bour (NN) classification [2–4] and fuzzy rough nearest neighbour classification
(FRNN) [7,10]. Both approaches require a choice of a dissimilarity measure,
weights, and a positive integer k determining the number of nearest neighbours
to be considered. In what follows, we will specify the class prediction that each
method makes for a test instance y, given a training set X and a decision class
C ⊆ X.

3.1 Nearest Neighbour Classification

For NN, let xi be the ith nearest neighbour of y in X. Then the class score for
C is given by:

∑

i≤k|xi∈C

wi

/
∑

i≤k

wi (6)
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where wi is the weight attributed to the ith nearest neighbour of y. Two popular
choices [2,3] for the weights are linear distance weights:

wi =

⎧

⎨

⎩

dk − di
dk − d1

k > 1;

1 k = 1,

(7)

and reciprocally linear distance weights:

wi =
1
di

, (8)

where di is the distance between y and xi.

3.2 Fuzzy Rough Nearest Neighbour Classification

Properly speaking, FRNN consists of two different classifiers, the upper and the
lower approximation, which can be combined to form the mean approximation.
For the upper approximation, let di be the distance between y and its ith nearest
neighbour in C. Then the class score for C is given by:

C(y) =
∑

i≤k

wi · min(0, 1 − di/2). (9)

For the lower approximation, let di be the distance between y and its ith nearest
neighbour in X\C. Then the class score for C is given by:

C(y) =
∑

i≤k

wi · max(di/2, 1). (10)

For the mean approximation, the class score for C is given by:

(

C(y) + C(y)
)

/2. (11)

In the definition of both the upper and the lower approximation, 〈wi〉i≤k is a
weight vector of values in [0, 1] that sum to 1. As with NN, two popular weight
choices are linear weights:

wi =
2(k + 1 − i)

k(k + 1)
, (12)

and reciprocally linear weights:

wi =
1

i · ∑

i≤k
1
i

. (13)
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4 Experimental Setup

To evaluate angular Minkowski p-distance, we conduct a case study on the well
known text dataset 20-newsgroups [8]. Originally, this contained 20 000 usenet
posts from 20 different newsgroups (1000 each) from the period February-May
1993, and was collected by Ken Lang. We use the version of this dataset pro-
vided by the Python machine learning library scikit-learn [11], which comprises
a training set (11 314 records) and a test set (7532 records, consisting of later
posts than those in the training set), preprocessed to remove headers, footers
and quotes.

We first convert each text into a set of words, defined as any sequence of
at least two alphanumeric characters separated by non-alphanumeric characters,
regardless of case. Next, we count the word frequencies per text and transform
this into an m-dimensional dataset by selecting the top-m overall most frequent
words, and discarding the rest.

In order to evaluate the behaviour of NN and FRNN with angular Minkowski
p-distance, we systematically vary different values for p, m as well as the number
of nearest neighbours k. In the case of FRNN, we consider the upper, lower and
mean approximations separately. For both NN and FRNN, we will consider linear
and reciprocally linear weights, as described in Sect. 3.

For p, we consider all multiples of 0.1 in the range of [0.1, 4], centred on the
canonical values of 1 and 2. Since k and m encode magnitudes, we investigate
them on a logarithmic scale, with values corresponding to powers of 2 in the
range of, respectively, [1, 256] and [2, 4096].

We measure classification performance using the area under the receiver oper-
ator characteristic (AUROC) [6].

5 Results

Figures 1 and 2 display AUROC as a function of dimensionality (the number
of most frequent tokens taken into consideration) and as a function of p, for
k = 256. There are a few things to be noted from these response curves:

– The choice of weights doesn’t appear to play a role in the overall behaviour
of these response curves.

– The response curves are substantially smoother for the upper approxima-
tion than for the lower approximation and for NN. The mean approxima-
tion appears to inherit some of this smoothness from the upper approxima-
tion. This qualitative difference is somewhat surprising, but it can perhaps
be explained by the fact that for the upper approximation, neighbours are
drawn from a uniform concept (each decision class), whereas for the lower
approximation and NN, neighbours are drawn from across decision classes.

– The upper approximation is a better classifier (in terms of AUROC) than
the lower approximation and NN for the 20-newsgroups dataset. Given the
relatively poor performance of the lower approximation, it is surprising that
the mean approximation produces even better results than the upper approx-
imation.
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Fig. 1. AUROC obtained on the 20-newsgroups dataset with FRNN, number of neigh-
bours k = 256, dimensionality m = 2q and angular Minkowski p-distance.



408 O. U. Lenz and C. Cornelis

Fig. 2. AUROC obtained on the 20-newsgroups dataset with NN, number of neighbours
k = 256, dimensionality m = 2q and angular Minkowski p-distance.

Fig. 3. AUROC obtained on the 20-newsgroups dataset with NN, dimensionality m =
4096, number of neighbours k = 2r and angular Minkowski p-distance.

– AUROC increases with dimensionality, but the difference between 2048 and
4096 dimensions is quite small. It appears that up until that point, the addi-
tional information encoded in each additional dimension outweighs the noise.
Note, however, that even before that point, we get diminishing returns. For
each subsequent curve we need to double the dimensionality, and we obtain
a performance increase that is smaller than the previous one.

– For NN and the lower approximation, the choice for p becomes more impor-
tant as dimensionality increases. Not only is a good choice for p necessary
to make use of the potential performance increase from adding more dimen-
sions, choosing p poorly can actually cause performance to decrease with
dimensionality.
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Fig. 4. AUROC obtained on the 20-newsgroups dataset with FRNN, dimensionality
m = 4096, number of neighbours k = 2r and angular Minkowski p-distance.
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Fig. 5. AUROC obtained on the 20-newsgroups dataset with FRNN, number of neigh-
bours k = 256, dimensionality m = 4096 and rooted and rootless angular Minkowski
p-distance.
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Fig. 6. AUROC obtained on the 20-newsgroups dataset with NN, number of neighbours
k = 256, dimensionality m = 4096 and rooted and rootless angular Minkowski p-
distance.

– There is a marked difference with respect to the optimal values for p between
the different classifiers. For NN and the lower approximation, higher values
appear to be better within the range [0.1, 4] that we have investigated, albeit
with diminishing returns. For the upper and mean approximations, the opti-
mum is located near p = 1 for high dimensionalities.

As mentioned above, Figs. 1 and 2 reflect a choice of the number of neighbours
k = 256. The effect of k on performance is illustrated in Figs. 3 and 4, for
m = 4096.

– For NN and the lower approximation, the overall behaviour of the response
curve does not change with k. Higher values for k lead to higher AUROC,
and within the range of investigated values, the relationship appears to be
similar to the relationship between AUROC and m: each doubling of k leads
to an increase in AUROC that is slightly smaller than the previous increase.
From k = 128 to k = 256, the increase is already quite small.

– In contrast, for the upper and mean approximations, AUROC starts out quite
high for high values of p, and increases only little thereafter. Howewer, from
k = 8 upwards, AUROC starts to strongly increase for lower values of p,
eventually surpassing the AUROC obtained with higher values of p from
k = 64 upwards. This means that the good performance of the mean and
upper approximations around p = 1 is only realised for high values of k.

Finally, we may also ask whether it makes a difference whether we use
rooted (‘ordinary’) or rootless angular Minkowski p-distance. The results dis-
cussed above were obtained using rooted angular Minkowski p-distance. It turns
out that using rootless angular Minkowski p-distance, which generalises cosine
dissimilarity more closely, does not make much difference (Figs. 5 and 6). In
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particular, there is (by definition) no difference for p = 1, which maximises
classification performance for the upper and mean approximations.

Table 1. Highest AUROC and corresponding value for p obtained on the 20-newsgroups
dataset, with linear weights, number of neighbours k = 256, dimensionality m = 4096
and rooted angular Minkowski p-distance.

Classifier p AUROC

NN 4.0 0.731

FRNN (lower approximation) 3.9 0.725

FRNN (mean approximation) 0.9 0.788

FRNN (upper approximation) 1.1 0.777

In summary (Table 1), we obtain the best classification performance on the
20-newsgroups dataset with the upper and mean approximation and angular
Minkowski p-distance with values of p around 1, but only when k is high enough
(≥ 64).

6 Conclusion

We have presented angular Minkowski p-distance, a generalisation of the popular
cosine (dis)similarity measure. In an exploratory case study of the large 20-
newsgroups text dataset, we showed that the choice of p can have a large effect
on classification performance, and in particular that the right choice of p can
increase classification performance over cosine dissimilarity (which corresponds
to p = 2).

We have also examined the interaction between p and the dimensionality m
of a dataset, the choice of classification algorithm (NN or FRNN), the choice of
weights (linear or reciprocally linear), and the choice of the number of neigh-
bours k. We found that while the choice of weights was not important, the best
value for p can depend on m, k and the classification algorithm. Under optimal
circumstances (high k and high m), the best-performing values for p are in the
neighbourhood of 1 (FRNN with upper or mean approximation) and around 4
(NN and FRNN with lower approximation).

A major advantage of angular Minkowski p-distance is that it is defined in
terms of ordinary Minkowski p-distance, which is widely available. Thus, angular
Minkowski p-distance does not require any dedicated implementation and can
easily be used in experiments by other researchers.

The most important open question to be investigated in future experiments
is to which extent these results generalise to other text datasets, as well as to
other datasets containing token frequencies. Depending on the outcome of these
experiments, it may be possible to formulate more general conclusions about the
best choice for p, or we may be forced to conclude that this is a hyperparameter
that must be optimised for each individual dataset.
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Abstract. We present two novel theorems that allow for estimating the
weight parameter in (weighted) kNN while dealing with imbalanced data.
More precisely, the theorems for G-mean and F1-score are presented. The
theorems assume ‘totally random’ distribution i.e. lack of dependency
between features and class value.

These results can be used for setting the default weights of classes for
kNN-type classifiers, e.g. for imbalanced learning problems. Moreover,
these theorems taken together illustrate the fact that without a precise
specification of the particular performance measure we are interested in,
the ‘best classifier’ term can be ambiguous or even misleading.

Keywords: k Nearest Neighbours · Classification · Supervised
Learning · Imbalanced Data · Performance Measures · G-mean ·
F1-score · Borderline Examples

1 Introduction

Machine learning (ML) algorithms construct from training sets classifiers that
provide decisions for test objects. Well known ML methods are kNN algorithms.
Recently, much scientific effort has been put into supervised learning that con-
cerns learning from so-called imbalanced data [7]. For the classification task with
a binary decision, which we focus on in the paper, there is just one class of spe-
cial importance. It is referred to as the minority class and the other one as the
majority class.

For such data sets, kNN may require using different weights for the objects
from minority class and majority class (see e.g. [3]). There exist also other
approaches of using weights for kNN approach (see e.g. [14]). In paper, we con-
sider only the case of classes weights for kNN (for binary classification task) with
weights being searched globally. Optimal weight might be found (according to the
chosen performance measure) during learning phase. It may be interesting, even
for artificially defined data sets, to find optimal weights for chosen performance
measures. Below, we explain why considering ‘totally random’ distribution can
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A. Campagner et al. (Eds.): IJCRS 2023, LNAI 14481, pp. 414–430, 2023.
https://doi.org/10.1007/978-3-031-50959-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50959-9_29&domain=pdf
https://doi.org/10.1007/978-3-031-50959-9_29


On kNN Class Weights for Optimising G-Mean and F1-Score 415

be interesting from the practical point of view, i.e. can help to understand the
problems that can arise in the construction of classifiers for real data sets.

Generally instances can be categorised into 3 main categories: safe exam-
ples, borderline examples, outlier examples [11]. In this paper, we exclude out-
lier examples from our considerations as another problem. In this case, one can
divide the space of instances into two main regions: safe regions and borderline
regions. It is known [12] that the problem is most difficult in borderline regions.
Essentially, this is where the quality of the classifiers makes some win out over
others. These borderline regions are worth focusing on the most (for both bal-
anced and imbalanced data). Let us focus on just one such region in the data
set.

In particular, in the paper we consider ‘totally random’ data set, i.e. where
there is no dependence of objects descriptions and its decision. Such data sets
may occur in practice, at least as a part of real-life data sets, e.g. as borderline
regions [11]. Of course, borderline regions are not usually ‘totally random’. How-
ever, for some data sets may occur some borderline regions ‘totally random’ or
at least to some extent random.

Even for the last case the problem presented in the paper holds (to some
extent). We want to show that it may happen (on real-life data sets) that one
classifier wins with another not because it is ‘better’ but only due to the per-
formance measure we assess them with. On the other hand the provided results
can be a base in searching for optimal weight parameter in case when borderline
regions are close to ‘totally random’.

Thus, it is interesting to find in this case optimal weights for class based
weighted kNN for the chosen performance measures. We focus on two widely
used performance measures for imbalanced data, namely G-mean and F1-score1.

It should be noted that the essence of the problem we consider is not based
on the assumption that the distribution of data is known. Certainly, if a priori
it is known that this distribution is random one can use the approach based
on MLE (Maximum Likelihood Estimation) or MAP (Maximum A Posteriori).
We consider the situation when one is trying to solve a real-life problem with
unknown distribution. What if by chance this distribution (of part of data set) is
close to random distribution? We try to highlight the problem which can occur
in real-life classification problems which a researcher should take into account.

The considered issue relates to the problem of optimisation and evaluation
using different performance measures, in particular for imbalanced data (see e.g.
[13]). One can also treat the paper as a step toward answering the following
question: What do learning systems learn when they are trained with random
labels (see e.g. [9])? The issue also somehow relates to the well-known so-called
‘no free lunch theorem’ (see [15]).

Presented in the paper weighted kNN is not a new method. Rather it can
be starting point for new methods (and in fact it was; see e.g. [4,5]). The pre-
sented theorems (and experiments) may accelerate the process of searching for
the optimal values of weights by starting the process from the default values

1 It corresponds to the case Fβ-measure when β = 1.
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Algorithm 1: class based weighted kNN
Input: test example tst, training set trnSet, integer k > 0, real p ∈ [0, 1], metric �
neighbourSet = the set of k training examples that are most similar to tst
according to metric �
supportSet(dmin) = ∅ ; supportSet(dmaj) = ∅
for all trn ∈ neighbourSet do

v = d(trn)
supportSet(v) = supportSet(v) ∪ {trn}

end for
pcurrent =

|supportSet(dmin)|
|neighbourSet|

if pcurrent > p then
return dmin

else
return dmaj

end if

derived from the theorems. Such approximation of the optimal values of weights
can be also used for algorithms combining kNN with other approaches. The
paper is related to rough sets indirectly as kNN may be combined with rule-
based classifiers based on the rough set approach for imbalanced data problems
and then the presented theorems can somehow relate to such cases. The paper
reports several results from the PhD thesis [5] that have not yet been published
and extends them.

2 Basic Notions

The acceptable performance measures for imbalanced data are among others
F1-score and G-mean. They are composed out of the sub-measures Sensitivity,
Specificity and Precision (see e.g. [7]).

In Algorithm 1 we present class based weighted kNN (in short weighted kNN )
which is of our interest. In the algorithm the tie-breaking procedure is settled in
favour of the majority class. This algorithm is equivalent to assigning weights to
minority and majority examples with values 1−p and p, respectively in standard
kNN algorithm. In particular, for parameter p = 1

2 it becomes standard kNN
algorithm.

The default candidate for the parameter p of Algorithm 1 in the case of G-
mean is the percentage of the size of the minority class from the size of the whole
data set. Theorem 1 together with the discussion that follows it can be treated
as an intuitive explanation of why this default choice can be really good.

It is well known that not all examples in data sets are equally difficult to
classify. In [11], four types of example are identified regarding their difficulty
of classification. We focus on two of them, namely safe and borderline exam-
ples. The safe examples are those which lay in the interior of the homogeneous
regions of the minority class (or the majority class). The borderline examples
are those which are located close to the boundary between two classes and are
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quite ‘mixed’. Borderline regions contain only borderline examples; safe regions
contain only safe examples. In safe regions it is easy to classify examples. How-
ever, in regions of borderline examples the classification becomes harder. We
restrict our considerations to the case consisting of borderline examples only
which additionally are ‘totally mixed’ (with fixed imbalance ratio).

We consider X = X × Vd, where X is the space of vectors of values of
conditional attributes, and Vd the binary value set of the decision attribute d,
i.e. Vd = {dmaj , dmin}, where dmaj = 0 and dmin = 1. Any example (object) is
a pair (x, d) ∈ X × Vd. Any training set trnSet of the length n is a sequence of
examples, i.e. trnSet = (z1, . . . , zn), where zi ∈ X × Vd for i = 1, . . . , n.

By z ∼ D we denote random sampling of z from a set Z according to D, where
D is a probability distribution over Z. Usually, we denote by D a probability
distribution over the set X = X × Vd. By trnSet ∼ Dn we denote random
sampling of the training set trnSet of size n, where each example from trnSet
is sampled independently using the same distribution D.

By ER we denote the expected value of the given random variable R. The
subscript of E in Ez∼DR(z) is used to indicate that sampling of z is according
to the probability distribution D. Analogously, we denote by Prz∼D(Event(z))
the probability of the event Event, where sampling of z is according to the
probability distribution D.

The Accuracy of a given classifier C is equal to the probability that this
classifier correctly classifies any test example (see e.g. [10]), i.e. Acc(C) =
Pr(x,d)∼D(C(x) = d) = E(x,d)∼D(I(C(x) = d)), where C(x) is the decision
assigned to x by the classifier C, d is the correct decision on x and I(·) is the
indicator function (equal to 1, if the condition in the argument is satisfied and 0,
otherwise)2. For calculating G-mean we need Sensitivity (called also Accuracy
for Positive Class or Recall) and Specificity (called also Accuracy for Negative
class):

Accmin(C) = Pr
(x,d)∼D

(C(x) = d | d = dmin),

Accmaj(C) = Pr
(x,d)∼D

(C(x) = d | d = dmaj).

For calculating F1-score, we need Sensitivity and Precision. Precision is the
conditional probability that the classification is correct provided that the classi-
fier predicts the positive (minority) class:

Prec(C) = Pr
(x,d)∼D

(C(x) = d | C(x) = dmin).

However, we are interested in computing Accuracy of a learning algo-
rithm Alg(trnSet) constructing a classifier from a given training set trnSet
Formally, Accuracy should be averaged over all possible training data sets
of fixed size n (see e.g. [10]), i.e. we need to calculate AvgAcc(Alg) =

2 I(C(x) = d) = 1 − L(C(x), d), where L is the 0–1 loss function (equal to 0, if C
correctly classifies the given example (x, d) and 1, otherwise).
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EtrnSet∼DnAcc(Alg(trnSet))
= EtrnSet∼Dn Pr(x,d)∼D(Alg(trnSet)(x) = d)
= EtrnSet∼DnE(x,d)∼DI(Alg(trnSet)(x) = d)3. Analogously, for calculating
measures related to G-mean and F1-score we need the measures presented above
averaged over all possible training data sets of fixed size n. Hence, we introduce:

AvgAccmin(Alg) = EtrnSet∼DnAccmin(Alg(trnSet)),
AvgAccmaj(Alg) = EtrnSet∼DnAccmaj(Alg(trnSet)),

AvgPrec(Alg) = EtrnSet∼DnPrec(Alg(trnSet)).

For each test example tst = (x, d), any sequence of training examples
trnSet = ((x1, d1), . . . , (xn, dn)), and any pseudometric �, let π1(x), . . . , πn(x)
be the permutation of {1, . . . , n} reordering (x1, . . . , xn) according to �(x, xi),
as follows

�(x, xπi(x)) ≤ �(x, xπi+1(x)), for each i ∈ {1, . . . , n − 1}.

Without loss of generality for our considerations, one can assume that the per-
mutation is determined uniquely. It should be noted that � may depend on
trnSet.

As it was mentioned, we consider the ‘totally random’ distribution over set
X. Intuitively, it means that for this distribution the decisions of examples for
the majority and minority classes are ‘totally mixed’ (with fixed imbalance ratio)
without any dependence on values of conditional attributes. Formally, this means
that the distribution D over X can be expressed as the product of independent
distributions DX and DV over X and Vd, respectively, i.e. D = DX × DV .

In our following considerations, Alg will be interpreted as the class based
weighted kNN learning algorithm (Algorithm 1) for the fixed k. However it is
treated as random variable. It is parametrised by p ∈ [0, 1]. Hence, AvgAccmin,
AvgAccmaj and AvgPrec are functions of p.

3 Theoretical Results

3.1 Optimal Classes Weights for G-mean

Now, we present a theorem which roughly says that the optimal value for the
parameter p in the case of G-mean for the class based weighted kNN (Algo-
rithm 1) under the assumption of the ‘totally random’ distribution is very close
to the percentage of the size of the minority class from the size of the whole data
set.

Theorem 1. (version for G-mean) Let k, n ∈ N, k ≤ n, q ∈ (0, 1) be given
constants. Let p ∈ [0, 1] be a parameter. Let D be a distribution over X = X ×Vd

3 Formally, Pr(x,d)∼D(Alg(trnSet)(x) = d) is a random variable, where trnSet is fixed.
It can also be seen as the conditional probability on Dn × D given a training set
trnSet, i.e. PrtrnSet∼Dn,(x,d)∼D(Alg(trnSet)(x) = d | trnSet).
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such that D = DX × DV , where DX in any distribution over X and DV is the
Bernoulli(q) distribution taking values dmin = 1 with probability q and dmaj = 0
with probability 1 − q. Let tst = (x, d) ∼ D, trnSet = ((x1, d1), . . . , (xn, dn)) ∼
Dn. Let Di be a random variable equal to dπi(x), i.e. the decision of the i-
th nearest neighbour (from trnSet) to x. Let us consider the random variable
Alg with arguments trnSet and x taking the decision on the basis of values
D1(trnSet, x),D2(trnSet, x), . . . , Dk(trnSet, x) defined as follows

Alg(trnSet)(x) =

⎧
⎨

⎩

dmin if 1
k

k∑

i=1

Di(trnSet, x) > p,

dmaj otherwise.

Let us consider the function4
AvgGmean(p) =

√
AvgAccmin(Alg(p)) · AvgAccmaj(Alg(p)).

If we consider all the values popt such that the function AvgGmean(p) takes
the maximal value at popt, then

inf
popt

|popt − q| ≤ ln 2
k

.

Proof. For any fixed trnSet we have Accmin(Alg(trnSet)) = Pr(x,d)∼D
(Alg(trnSet)(x) = d | d = dmin) = Pr(x,d)∼D(Alg(trnSet)(x) = dmin | d =
dmin)

= Pr
(x,d)∼D

(Alg(trnSet)(x) = dmin) (1)

= Pr
x∼DX

(Alg(trnSet)(x) = dmin) (2)

Eq. 1 follows from the fact that events Alg(trnSet)(x) = dmin and d = dmin are
independent. Equation 2 follows from the fact that D = DX × DV .

Analogously, we have

Accmaj(Alg(trnSet)) = Pr
x∼DX

(Alg(trnSet)(x) = dmaj).

For any trnSet we have Accmin(Alg(trnSet)) + Accmaj(Alg(trnSet)) =
Px∼DX (Alg(trnSet)(x) = dmin) + Px∼DX (Alg(trnSet)(x) = dmaj) = 1. Hence,
we also have AvgAccmin(Alg) + AvgAccmaj(Alg) = EtrnSet∼DnAccmin(Alg
(trnSet)) +EtrnSet∼DnAccmaj(Alg(trnSet)) = 1.

Thus, we have

AvgGmean(p) =
√

AvgAccmaj(Alg(p)) · (1 − AvgAccmaj(Alg(p))).

4 Here and later for F1-score, we determine the average performance using averaged
values of the submeasures. One could also consider computing the average of these
performance measures directly, what seems more appropriate. In such case the anal-
ogous computations of the proofs seem to be much more hard mathematical task.
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The root square function is monotonic and under the root square we have
a quadratic function of AvgAccmaj , which achieves the maximal value for
AvgAccmaj = 1

2 . This quadratic function is symmetrical (around 1
2 ) and mono-

tonically increasing up to AvgAccmaj = 1
2 and from that point monotonically

decreasing. Thus, AvgGmean(p) achieves the maximal value for any popt such
that: popt ∈ argmin

p∈[0,1]

|AvgAccmaj(Alg(p)) − 1
2 |.

It should be noted that the above formula not defines the optimal value of p
uniquely; we obtain the set of optimal values of p. We consider all such optimal
values popt. Later on we prove that the set of all optimal values popt is ‘close’ to
the value q.

We have AvgAccmaj(Alg)

= EtrnSet∼DnAccmaj(Alg(trnSet)) = EtrnSet∼Dn Pr
x∼DX

(Alg(trnSet)(x)=dmaj)

= EtrnSet∼DnEx∼DX I(Alg(trnSet)(x) = dmaj) (3)
= EtrnSet∼DnE(x,d)∼DI(Alg(trnSet)(x) = dmaj)
= EtrnSet∼Dn,(x,d)∼DI(Alg(trnSet)(x) = dmaj)
= Pr

trnSet∼Dn,(x,d)∼D
(Alg(trnSet)(x) = dmaj) (4)

= Pr
trnSet∼Dn,(x,d)∼D

(
k∑

i=1

Di ≤ pk) = FB(k,q)(pk), (5)

where B(k, q) denotes the binomial distribution and FB(k,q)(v) its cumulative

distribution function at point v, i.e. FB(k,q)(v) =
�v�∑

i=0

(
k
i

)
qi(1− q)(k−i), �v� is the

‘floor’ under v, i.e. the greatest integer less than or equal to v.
Equations 3 and 4 follow from the definition of indicator function. Equation 5

follows from the definition of Alg. Any permutation of training examples (for-
mally, random variables) does not change their distribution and independence,
thus for any 1 ≤ i ≤ k, Di ∼ Bernoulli(q) (Di are identically distributed) and
Di are (mutually) independent. Thus, the probability in Eq. 5 is the cumulative
distribution function of binomial distribution B(k, q) at point pk. This implies
the last equation.

From the previous considerations we obtain the set of all optimal values popt

which satisfy:

popt ∈ argmin
p∈[0,1]

|FB(k,q)(pk) − 1
2
|.

Let us denote by p̃opt the smallest optimal value popt. Then p̃optk is an integer
value since the cumulative binomial distribution function is a step function with
jumps in integer values and constant between them. First, let us consider a
specific case when the cumulative distribution function achieves the optimal
value (i.e. the closest to 1

2 ) at both integer values p̃optk and p̃optk + 1. Then all
the optimal values popt form the interval [p̃opt, p̃opt + 2

k ) since the optimal values
popt are contained in the sum of two intervals for which FB(k,q) is closest to 1

2 ,
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i.e. [p̃opt, p̃opt + 1
k ) and [p̃opt + 1

k , p̃opt + 2
k ). We will return to this case at the end

of the proof. From now on, we consider the opposite case. Then all the optimal
values popt form the interval [p̃opt, p̃opt + 1

k ).
For the need of the considerations that follow, it is worthwhile to recall the

definition of the median. The median of the distribution induced by a random
variable R is any real number m that satisfies the inequalities: Pr(R ≤ m) ≥
1
2 and Pr(R ≥ m) ≥ 1

2 .
In the three cases considered below it will be convenient to denote by e the

value p̃optk = �p̃optk� and by D the random variable with distribution B(k, q).
The first case: the optimal (i.e. the closest to 1

2 ) value FB(k,q)(p̃optk) is equal
to 1

2 . Then P (D ≤ e) = FB(k,q)(e) = 1
2 ; P (D ≥ e) > P (D > e) = 1 − P (D ≤

e) = 1
2 . Hence, e is the median of B(k, q).

The second case: the optimal value FB(k,q)(p̃optk) is less than 1
2 . Then P (D ≤

e) = FB(k,q)(e) < 1
2 . Then P (D ≤ e + 1) = FB(k,q)(e + 1) > 1

2 (otherwise
FB(k,q)(e) would not be the optimal value). We also have Pr(D > e) = 1−P (D ≤
e) > 1

2 . Thus, Pr(D ≥ e + 1) = Pr(D > e) > 1
2 . It implies that e + 1 is the

median of B(k, q).
The third case: the (optimal) value FB(k,q)(p̃optk) is greater than 1

2 . Then
P (D ≤ e) = FB(k,q)(e) > 1

2 . We also have P (D < e) = P (D ≤ e − 1) < 1
2

(otherwise FB(k,q)(e) would not be the optimal value). Then P (D ≥ e) = 1 −
P (D < e) > 1

2 . Hence, that e is the median of B(k, q).
To sum up, we have shown that for all p̃opt, we have that e = p̃optk or e + 1

is the median of B(k, q).
On the other hand in [6] it is shown that any median M of B(k, q) cannot be

‘far’ from its mean value μ = kq. More precisely, the distance between M and μ
can be at most ln 2, i.e.:

|M − μ| ≤ ln 2. (6)

This implies that for any p̃opt we have (respectively for the cases when e is the
median or e+1 is the median) |e−kq| ≤ ln 2 or |e+1−kq| ≤ ln 2. Thus, |p̃optk−
kq| ≤ ln 2 or |p̃optk+1−kq| ≤ ln 2. Hence, |p̃opt−q| ≤ ln 2

k or |p̃opt+ 1
k −q| ≤ ln 2

k .
Let us recall that all the optimal values popt form the interval [p̃opt, p̃opt+ 1

k ).
Therefore, either (in the case when e is the median) the beginning of this interval
is distanced from q not more than ln 2

k or (in the case when e+1 is the median)
the end of it is distanced from q not more than ln 2

k . Thus,

inf
popt

|popt − q| ≤ ln 2
k

.

We still have to prove the theorem for the specific case when all the optimal
values popt form the interval [p̃opt, p̃opt+ 2

k ). Then from the above considerations,
it is easy to see that in such case the value q belongs to this interval. Hence, it
belongs to the set of optimal values popt.

�
We used in the proof of the above theorem the best possible approximation

between the median and the mean (independent of q and k) of the binomial
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distribution [6]. However, it should be noted that we do not want to look for
the maximal distance between median and mean, but the distance between q
and the interval of optimal values popt. In particular, in many cases this interval
contains the value q.

Intuitively, the algorithm Alg in Theorem 1 represents the weighted kNN
algorithm (Algorithm 1) with a fixed parameter k (given in the assumption of
the theorem), and with a data set represented only by a single region with the
high degree of overlapping between classes, i.e. only borderline examples occur in
the data set under consideration The function AvgGmean(p) represents the G-
mean for weighted kNN (with fixed parameters as described above) for different
values of the parameter p. The theorem roughly says that the maximal G-mean
value for weighted kNN is achieved for p equal roughly to q (the percentage of the
size of the minority class). For example, without going to the technical details,
the theorem says that if there are 5% of examples from the minority class mixed
totally randomly with examples from the majority class, then the optimal value
for the parameter p for weighted kNN is achieved for p = 5%.

Obviously, in practice, data sets contain not only borderline examples but
also safe examples. Thus, it would be valuable for applications to formulate and
prove more general theorem for borderline and safe regions. We leave it for future
work. However, below we give an intuitive explanation that, roughly speaking,
the theorem’s conclusions will remain true in such more general situation.

First, let us assume that there are some other regions with borderline exam-
ples with the same overlapping level of the minority and majority classes (for-
mally, distributed randomly with the same parameters of Bernoulli distribution).
If one adds such regions, the conclusion of the theorem will also hold since it can
be treated as one region of borderline examples.

Second, let us consider the case when both borderline and safe examples occur
in data. In this case, one can divide the whole space of examples into the safe
region (consisting of the safe regions of the majority class and the safe regions
of the minority class) and the borderline region (consisting of borderline regions
in different areas of data). Let us assume that all examples from the safe region
are correctly classified by the algorithm (independently of the parameter p)5.
Let us also assume that the global percentage of the minority class is the same
as the percentage of the minority class in the borderline region6. Under these
assumptions, it is easy to check that the optimal parameter p will be the same
as in the theorem’s conclusion (i.e. the optimal parameter p for the borderline
region).

This shows that, in a sense, only regions with borderline examples are impor-
tant to focus on in order to achieve the high G-mean value.

5 In practice, such an assumption is satisfied for a wide range of values of the parameter
p.

6 This assumption is important only from the technical point of view. If it is not satis-
fied we should consider the percentage of the minority class coming from borderline
region (value q from theorem).
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In the case of dealing with real-life data sets, even if borderline examples are
‘totally mixed’, the given above assumptions may be not satisfied. For instance,
some examples treated as safe examples can be misclassified for the optimal
value of the parameter p, the borderline regions can have different percentage of
the minority class, or the global percentage can be different from the percentage
of borderline regions. However, if the given above assumptions are ‘roughly’
satisfied, then the optimal parameter p can be only ‘slightly’ different from that
given in the theorem.

3.2 Optimal Classes Weights for F1-score

Now, we present the theorem which roughly says that the optimal value of the
parameter p in the case of F1-score for the weighted kNN algorithm and ‘totally
random’ distribution is 0.

Theorem 2. (version for F1-score) Under the assumptions of Theo-
rem 1 let us consider the function AvgF1score(p) = H(AvgAccmin(Alg(p)),
AvgPrec(Alg(p))), where H(·, ·) is the function of harmonic mean of its argu-
ments, i.e. H(a, b) = 2

a−1+b−1 .
Then the function AvgF1score(p) takes the maximal value at

popt ∈
[

0,
1
k

)

.

Proof. Let us recall that by FB(k,q) we denote the cumulative binomial distribu-
tion function. AvgAccmin(Alg)

= 1 − AvgAccmaj(Alg) = 1 − Pr
(x,d)∼D,S∼Dm

(
k∑

i=1

Di ≤ pk) = 1 − FB(k,q)(pk).

Both the first and second equation come from the proof of Theorem 1. The
third equation follows from the fact that the probability in the previous equation
is equal to the cumulative distribution function of the binomial distribution
B(k, q) at point pk (for details see the proof of Theorem 1).

We also have AvgPrec(Alg(p))

= EtrnSet∼DnE(x,d)∼D(I(Alg(trnSet)(x) = d) | Alg(trnSet)(x) = dmin)
= EtrnSet∼DnE(x,d)∼D (I(dmin = d) | Alg(trnSet)(x) = dmin)
= EtrnSet∼DnE(x,d)∼DI(dmin = d) (7)
= EtrnSet∼DnEx∼DXEd∼DV I(dmin = d) (8)
= EtrnSet∼DnEx∼DX Pr

d∼DV
(d = dmin) (9)

= EtrnSet∼DnEx∼DX q = q. (10)

Eq. 7 follows from the fact that events dmin = d and Alg(trnSet)(x) = dmin

are independent (for any fixed trnSet). Equation 8 follows from the fact that
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D = DX × DV . Equation 9 follows from definition of the indicator function.
Equation 10 follows from the fact that DV is the Bernoulli(q) distribution.

Thus, we have AvgF1score(p) = H(AvgPrec(Alg(p)), AvgAccmin(Alg(p)))
= H(q, 1 − FB(k,q)(pk)). The first argument of H with respect to p is con-
stant and H is monotonically increasing function of the second argument. Thus,
the function AvgF1score(p) takes the maximal value at those values of p for
which the function 1−FB(k,q)(pk) takes the maximal value. Hence, the function
AvgF1score(p) takes the maximal value at

popt ∈ argmin
p∈[0,1]

FB(k,q)(pk).

Every cumulative distribution function is non-decreasing. Thus, the function
AvgF1score(p) takes the maximal value at popt such that FB(k,q)(poptk) = 0.
From definition of FB(k,q)(pk) = 0 we have �poptk� = 0. Thus popt ∈ [

0, 1
k

)
.

�
Intuitively, function AvgF1score(p) represents the F1-score for weighted

kNN (with fixed parameters as described above) for different values of the param-
eter p. Intuitively, the theorem says that the maximal value of F1-score for
weighted kNN is achieved for p equal roughly to 0. This relates to the algorithm
classifying examples to the minority class if at least one minority example occurs
in the neighbourhood. This is intuitively clear because for F1-score we need to
balance between Precision and Sensitivity. Precision is constant for totally ran-
dom examples, i.e. in a sense, it does not depend on algorithm. Thus, to maximise
the F1-score one needs to maximise Sensitivity. It is done by setting the minimal
possible value of the parameter p. This is related to classifying all objects to the
minority class (excluding only the situations such that all neighbours of a given
test object are from the majority class).

It can seem strange that the set of optimal values popt does not depend on
the value of q. For example, both for q close to 0 and close to 1 the optimal
value does not change. However, it should be observed that F1-score is the
harmonic mean of Sensitivity and Precision. Thus, in a sense, this performance
measure ‘favours’ one class, that is the minority class. This measure does not
balance between classifying to the minority class and the majority class, but
rather between classifying to the minority class and quality of this classification,
i.e. Precision. Hence, if Precision is constant (which is the case when classes are
‘totally mixed’ with the fixed imbalance ratio), then to maximise F1-score one
should choose such p that the classifier chooses the minority class as often as
possible. In fact, p close to 0 relates to this case. Irrespective of the value of q,
it is better to classify examples to the minority class (if it is only possible). This
is an intuitive explanation of the above theorem. However, it is worth pointing
out that for practical data sets Precision is not constant.

Analogously as for the previous theorem (for G-mean), it would be more
relevant for practical applications to formulate and prove more general theorem
with borderline and safe regions. Again, we leave it for future work. The given
previously intuitive explanation that the theorem for G-mean can be easily gen-
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eralised for such a case would not work for F1-score. This is due to the fact
that safe examples from the majority class could be misclassified for p close to
0 (which is the value close to the optimal values of p from the theorem for F1-
score). In consequence, Precision would be not constant (would depend on p).
Then, the optimal values of p in such case could be greater than 0 and should
be recalculated for the generalised theorem for F1-score.

3.3 Discussion

We show use of these theorem in two ways. First, one can possibly accelerate
the process of searching for the optimal values by searching them close to the
values derived from the theorems. In fact we show that it holds for G-mean even
for real-life data sets (see Sect. 4). Such approximation of the optimal values of
p can be also used for algorithms combining kNN with other approaches (see
[4,5]).

Second, these theorems with the following considerations may be a warning
against drawing too hasty conclusions from experiments comparing algorithms
on G-mean or F1-score. Comparing the optimal values for G-mean and F1-score
for the case when classes are ‘totally mixed’ one can see that the optimal values
for different performance measures can be very different. In fact, in the described
situation we do not optimise the parameter p according to the given data (since as
high randomness occurs one can deduce nothing) but to the selected performance
measure. In this sense, these theorems illustrate that in some specific situations
learning algorithms may rather ‘learn’ optimisation measure more than useful
relations between conditional attributes and decision. One should be aware of
that.

Also, these theorems lead to another interesting observation. To be specific,
consider ‘random’ data set with the percentage of the minority class (i.e. the
value of q from the assumptions of the theorems) equal to 0.3 and k = 50
(size of the considered neighbourhood). Then, these theorems show that for
a given data set (in our case, ‘random’ data set), the optimal classifiers from a
given class of classifiers may be significantly different (in respect to classification)
depending on the performance measure relative to which the optimal classifier is
selected. Moreover, it can be easily calculated (using formulas from the proofs of
the theorems) in the considered case that the assessments of these two optimal
classifiers are significantly different depending on the performance measure used
for the assessment. For one performance measure, the first optimal classifier is
much better than the second one; and for another performance measure, vice
versa (the second one is much better than the first one). It should be noted that
weighted kNN with two different setting of p are examples of two classifiers. But
the discussion may be true for other pairs of classifiers. These observations may
help to understand that the ‘best’ classifier selection may strongly depend on the
chosen performance measure. Also, it shows that without a precise specification
of what particular performance measure we optimise, the ‘best classifier’ term
can be ambiguous or even misleading.
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How can it impact real-life problem? Let us assume that one is assuming
that there exist dependencies between conditional features and class value but
it is just the case that the distribution is random (what is not known for the
analyst). By applying different methods the analyst can obtain results leading
to conclusion that some methods lead to better results for F1-score and other
for G-mean. Our results are explaining this. In the case of random distribution
learning of dependencies (which do not exist!) is not realised but it is optimised
the adjusting of induced classifiers to the quality measure which we would like
to use for evaluation of classifiers. Hence, in the real-life problem the winner will
be not ‘better’ algorithm but the one better adjusted to a given measure.

4 Experiments for G-mean

In Subsect. 3.1, we presented intuitive arguments suggesting that the theorem
for G-mean may possibly roughly hold for data sets with safe regions (assuming
that borderline regions are roughly ‘totally random’). In this section, we report
results of experiments aiming to check whether the conclusions of the theorem
roughly hold for real life data sets. In other words, we need to check whether
the optimal parameter p for weighted kNN would be close to the percentage of
the minority class in data sets (being an approximation of the real q from the
theorem).

In weighted kNN we used the metric � being sum of metrics for all attributes.
For any symbolic attributes we compute SVDM metric [2]; and for numerical
attributes we use Euclidean metric on R normalised by the distance of maximal
and minimal values in data set (on that attribute).

From now on, we will present estimations of the classification quality (relative
to G-mean) depending on parameter p (sometimes on two parameters k and p)
of the weighted kNN algorithm. The classification quality (in the function of
parameters) was computed using the leave-one-out method applied to the whole
data set. This allowed us to obtain the best possible approximation of the optimal
p (or the pair of optimal values of parameters k and p) for data sets.

Data sets used in experiments are based mainly on UCI Machine Learn-
ing Repository [8].7 Data sets containing originally more than two classes were
transformed into the binary classification task by choosing one small class or
joining several small classes into one (minority) class; other classes were joined
into another (majority) class. We have selected 20 fairly diverse imbalanced data
sets considering many aspects related to difficulty of imbalanced data classifica-
tion (see [12]).

Experiments were performed for three cases: fixed k = 30, fixed k = 20
and optimal k. In the last case we search for the pair of values of parame-
ters maximising G-mean. The used set of possible values for parameter p was
{0.00, 0.01, 0.02, . . . 0.5}8. In case with optimal k, the used set of possible values
7 Only mammography data set is not publicly available and was supported by Nitesh

Chawla [1].
8 It is reasonable that for imbalanced data p should be not greater than 0.5 since

minority class should have greater weight than majority class.
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for parameter k was {1, 2, . . . , 100}. Δ is the absolute difference between pmin

and popt (from the respective case).

Table 1. Experiments comparing percent of minority class rounded to two decimals
(pmin) and optimal p (popt) for three cases: fixed k = 30, fixed k = 20 and optimal k
(optimal k, kopt is also presented). Δ is the absolute difference between pmin and popt

(from the respective case).

dataset k = 30 k = 20 k = kopt dataset k = 30 k = 20 k = kopt

pmin popt Δ popt Δ kopt popt Δ pmin popt Δ popt Δ kopt popt Δ

abalone .08 .08 0 .08 0 31 .08 0 hepatitis .21 .1 .11 .15 .06 42 .16 .05
balance-scale .08 .04 .04 .11 .03 11 .11 .03 ionosphere .36 .16 .2 .15 .21 5 .2 .16
breast-cancer .3 .3 0 .3 0 82 .28 .02 mammography .02 .02 0 .02 0 100 .03 .01
breast-w .34 .06 .28 .17 .17 10 .3 .04 new-thyroid .16 .13 .03 .16 0 60 .13 .03
car .04 .21 .17 .21 .17 63 .33 .29 nursery .03 .35 .32 .29 .26 1 .03 0
cleveland .12 .12 0 .12 0 34 .11 .01 pima .35 .35 0 .35 0 40 .36 .01
credit-g .3 .3 0 .31 .01 52 .3 0 postoperative .27 .26 .01 .25 .02 11 .27 0
ecoli .1 .21 .11 .26 .16 20 .26 .16 transfusion .24 .24 0 .24 0 26 .24 0
glass .08 .08 0 .08 0 24 .09 .01 vehicle .24 .34 .1 .31 .07 10 .31 .07
haberman .26 .22 .04 .26 0 48 .25 .01 yeast-ME2 .03 .03 0 .05 .02 48 .03 0

In Table 1, we present the absolute difference between the optimal parameter
p (maximising G-mean) for the considered data set and the percentage of the
minority class, pmin. If there were several optimal values, we chose the one that
is closest to pmin (it is enough for pmin to be close to any true optimal value
to satisfy the theorem). If there were many optimal values of k we took for
presenting the smallest one.

First, let us consider the case with fixed k = 30. For 9 data sets (out of
20), values pmin and popt coincide, i.e. pmin = popt (Δ = 0). For 13 data sets,
Δ < 0.05. For the remaining 7 data sets, the difference is greater than 0.1
(differences are relatively large).

Second, let us consider the case with fixed k = 20. For 9 data sets, values
pmin and popt coincide (Δ = 0). For 13 data sets, Δ < 0.05. For 15 data sets,
Δ < 0.1. For the remaining 5 data sets, the difference is 0.16 or more (differences
are relatively large).

Third, let us consider the case with using optimal k for any data set (k =
kopt). For 6 data sets, values pmin and popt coincide. For 15 data sets, Δ < 0.05.
For 17 data sets, Δ < 0.1. For the remaining 3 data sets, the differences are
relatively large (0.16 or more).

To sum up, for first and second case, for roughly half of data sets results are
similar and show surprising equality of pmin and popt. This is strong argument
that the proved theorem may be used for quick approximation of optimal value
of p. For the case with optimal k, although for less data sets we have equality,
for almost all data sets the approximation is relatively not large. In practice we
would like to find not only optimal p, but simultaneously pair of optimal values
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of k and p. In this case, approximation of optimal p is remarkably good by using
the proved theorem.

For k = 30 (and k = kopt), we also analysed the graphs of G-mean as function
of parameter p. Generally, there are two types of graphs among analysed data
sets. The representatives of these types are presented in Fig. 1(a) and Fig. 1(b).
On the first graph the optimum is ‘evident’. On the second graph around the
optimum there exist ‘smooth area’. Generally, we found that for the first type of
graphs the pmin and popt are equal or close to each other. For the second type of
graphs the pmin and popt it may not hold. Of course, these are only intuitions,
which could bring in future further conclusions or ideas.

(a) for ‘abalone’ data set. (b) for ‘car’ data set.

Fig. 1. Graphs representing G-mean for weighted kNN for two exemplary data sets as
a function of parameter p with fixed k = 30.

4.1 Hypothesis About ‘Totally Random’ borderline regions

Apart of approximation of value of popt, the results of theorem for G-mean and
provided experiments allow us to formulate the hypothesis that maybe for those
data sets for which Δ is 0 or close to 0, the borderline regions are really (or
‘close’ to) ‘totally random’. Of course, this needs further investigation. But if
this is true then strong implications come from that. Then the considerations in
Subsect. 3.3 would be true for some considered real-life data sets.

5 Conclusions

For G-mean and F1-score, we proved two theorems providing estimates of the
optimal degree of importance of the minority class (weight for the minority class)
for weighted kNN under the assumption of a ‘totally random’ distribution. These
estimates are faster alternatives than solutions obtained by parameter learning
and can be used for setting the default value for the appropriate parameter in
weighted kNN or other analogous approaches. We experimentally justified for
G-mean that conclusions of these theorems may be applied to the construction
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of weighted kNN classifiers for real-life data sets. Moreover, an interesting con-
clusion follows from these theorems. Namely, for a certain class of classifiers, the
optimal one might be significantly different (relative to classification) for two dif-
ferent performance measures. Additionally, the assessments of such two optimal
classifiers may be significantly different depending on the performance measure
used for the assessment. The practical implication for real-life classifications is
that without a precise specification of the particular performance measure we
are interested in, the ‘best classifier’ term can be ambiguous or even misleading.
Our experiments lead to the hypothesis that it may be the case for real-life data
sets.
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Abstract. Our work presents the application of the rough sets method
in the field of astrophysics for the analysis of observational data recorded
by the Cosmic Ray Extremely Distributed Observatory (CREDO)
project infrastructure. CREDO research has produced huge datasets that
are not well yet studied in terms of the information they contain, includ-
ing specific anomalous observations, which are of particular interest to
physicists and other scientists. From the pool of data available for anal-
ysis registered under CREDO infrastructure, containing approximately
107 of events, a set of 104 of samples was selected. We have applied
eigendecomposition-derived embedding limiting data to 62 dimensions
(95% of variance). We have adapted rough k-means algorithm for the
purpose of anomalies detection task. We have validated our approach
on various configurations of adaptable parameters of the proposed algo-
rithm. The potential anomalies retrieved with the proposed algorithm
have morphological features consistent with what a human expert would
expect from anomalous signals in this case. The source codes and data
of our experiments are available for download to make research repro-
ducible.

Keywords: Cosmic-ray particle · Anomalies detection · Rough sets ·
Rough k-means · CMOS detectors · Eigendecomposition

1 Introduction

Rough sets [27] is one of the methodologies that can be used for unsupervised
learning [34] and especially clusterization [28,39]. Using rough sets in the clus-
tering process can enhance expressive and algorithmic capabilities allowing to
work with lower and upper approximations of clusters sets [2,30,33,35]. If we
treat the problem of anomaly detection as a problem of finding outliers in unla-
belled datasets, we can apply rough set clustering algorithms to solve it. Such
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rough set applications have been used, among others, for: anomaly detection
in electric smart grids [32], intrusion traces of "sendmail" daemon process [42],
Border Gateway Protocol (BGP) analysis [19], computer network systems anal-
ysis [9], IoT anomaly usage [25] as well as demonstrated their effectiveness on
a variety of test data [20,41]. Methods using rough sets have been used effec-
tively to detect anomalies in specific applications. The solutions proposed in the
literature are particularly concentrated in applications where categorical data
dominate [37,43], but not only, as models designed to operate on numerical or
mixed data can also be pointed out [7,21,23,25,32]. Models have also been pro-
posed in g-base, which clustering approaches to anomaly detection are extended
and supported by the use of rough set methodology, e.g. [11,12], where the
authors use fuzzy C-means (FCM) or [25], where the density-based clustering
(DBSCAN) is supported by information reduction based on rough sets.

Our work presents the application of the rough sets method in the field of
astrophysics for the analysis of observational data recorded by the Cosmic Ray
Extremely Distributed Observatory (CREDO) project infrastructure [8,17]. The
idea of CREDO project is to detect very high-energy cosmic rays by analyzing
secondary showers of particles reaching the earth’s surface. The analysis of super-
massive cosmic ray particles offers a chance to understand fundamental physical
theories about Dark Energy and Dark Matter [17]. CREDO implements the
concept of a global distributed system of detectors consisting of various types of
devices, including mobile detectors based on smartphones and other detectors
based on CMOS image matrices [8,18,31]. In principle, this allows for effective
scaling, using the citizen science paradigm, of the range covered by observations
in contrary to stationary observatories located in a specific spatially limited
location, such as the Pierre Auger Observatory [3,10,13], IceCube [1,5] and
Baikal-GVD at Lake Baikal [4,36].

CREDO research has produced huge datasets that are not well yet studied in
terms of the information they contain, including specific anomalous observations,
which are of particular interest to physicists. In order to analyze the dataset
for detection of potential anomalies, efficient and effective algorithms from the
field of signal processing and data science are required. To our knowledge, the
results presented in this work are the first practical application of rough set-
based methodology to analyze observational data obtained by the Cosmic Ray
Extremely Distributed Observatory.

2 Material and Methods

2.1 Dataset

We used a representative subset of observations archived under CREDO as the
basis for the experimental verification of the hypotheses considered in this paper
and for the presentation of the computational results. The dataset used by us
was selected in such a way as to reflect well the internal diversity of the observed
signals. From the pool of data available for analysis registered under CREDO
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infrastructure, containing approximately 107 of events, a set of 104 of samples
was selected. For the purposes of the work, we used only image data and omitted
all other metadata. The obtained dataset contains all known types of observed
signals recorded by the CREDO detectors [8], i.e. dots, tracks, worms, as well
as other atypical observations that meet the criteria for recognizing them as
potential cosmic-ray particle tracks. The shape morphology of cosmic-ray par-
ticle tracks is a factor that is taken into account when determining the type
of signal. The subset does not contain clearly incorrect signals resulting from
various types of measurement errors, which are referred to in the nomenclature
as artefacts [8,29]. Examples of signal types appearing in the CREDO database
are shown in Fig. 1.

Fig. 1. Examples of types of signals in the CREDO observation database. The illustra-
tion shows the basic classes of useful signals acquired using CMOS sensors. Artifacts
resulting from measurement errors and incorrect calibration were omitted as irrelevant
to the research issues of the article. Signal types are described in the first column.

The selection of samples was carried out in several stages. First, automatic
methods were used for initial identification of signals [6] and effective filtering out
of artifacts [29]. Then, the obtained data was manually verified for consistency
by a human annotator and thus additionally cleaned. As a result, a set of image
observations with labels of signal classes was obtained.
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Due to the specificity of recording traces of high-energy cosmic ray particles
[16] and the limitations of both automatic and human classification, unusual
observations (anomalies) may occur in basically every class of recorded signals
that are initially annotated. In other words, there is no certainty which objects
in a given class may constitute unusual observations (anomalies) from the point
of view of morphological and physical interpretation [17]. Therefore, the labels
assigned to the samples are not useful in this problem and have not been used.

From the technical side, all selected events in the prepared dataset are repre-
sented by RGB images with a resolution of 60 × 60 pixels. They do not contain
any additional metadata in the volume as well as labels. The subset of the
CREDO data we use in this work consists of 13804 instances. This dataset will
be the basis for calculations in the further part of this study and is available
for download along with source codes from https://github.com/browarsoftware/
particle_pars.

2.2 Features Generation

In order to be able to effectively compare image data, it is necessary to gener-
ate an appropriate embedding that preserves the interrelationships between the
elements of the dataset. In this case the embedding should allow us to search
for objects that differ in some way from other typical cosmic-ray particle tracks
in terms of morphology. Knowing this, we should base embedding on statisti-
cal relationships in the dataset, such as analysis of variance. Effective methods
for generating embedding using analysis of variance are algorithms similar to
Eigenfaces [15,38]. In this approach, the feature vector of images is generated
as a linear combination of image coordinates after projecting them into a space
which coordinate system is calculated on the basis of variance analysis of the
entire data set. The axes of the new system follow the principal components of
the covariance matrix COV created from the individual vectors of the original
data.

COV =
1
s
DTD (1)

where D is a matrix which columns are created from flattened images, an aver-
aged image value M calculated from the entire dataset is subtracted from each
image.

D = [I1 − M, ..., Is − M ] (2)

where I1 is the first image from the dataset, there are s images in total.
The entire analysis is performed using the well-known Principal Components

Analysis (PCA) approach. A very important fact is that image analysis based on
eigendecomposition with PCA is very sensitive to even small variance distortions,
so before applying it to an image dataset it is necessary to normalize dataset (to
perform so called image aligning). In the case of our dataset, aligning consisted
of translating the center of mass of the image so that it is at the center of the

https://github.com/browarsoftware/particle_pars
https://github.com/browarsoftware/particle_pars
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image, and rotating the image so that the axis relative to which the variance of
non-zero pixels has the largest value becomes the axis parallel to the horizontal
axis. This is also done using PCA, calculated on each image from the dataset
separately.

As a result of applying eigendecompostion of the COV matrix, we get a new
coordinate system in which our embedding will be expressed. Each of the axes of
this system can be interpreted in a similar way to the Eigenfaces approach. The
axes responsible for the higher variance of the data have the characteristics of
components responsible for the low-frequency deviation from the average image
and further axes are responsible for high-frequency deviations. The value of the
mean image from our dataset and selected components visualized as 2D images
are shown in Fig. 2. The images in our dataset have a resolution of 60×60 so the
corresponding vectors have 3600 dimensions. After PCA analysis, we limited the
number of dimensions to express 95% of the variance. In the case of our dataset,
these were the first 62 dimensions. Thus, in the rest of the paper we will work
on the 62-dimensional embedding of our image dataset.

It is also possible to perform feature extraction and dimensionality reduction
using deep learning approach using a deep encoder-decoder (E-D) architecture
[26,40]. To do this, an E-D network is trained as an autoencoder. Latent space
of such trained network is used to generate low dimensional embedding similar
to one calculated by PCA.

Fig. 2. This figure shows the results of applying PCA analysis to the dataset described
in Sect. 2.1. In the upper left corner is the mean image calculated from all images in
the dataset. We also show the two-dimensional interpretation of the 1, 2, 3, 4, 8, 16, 42,
48, and 62 axes of the coordinate system defined using PCA. We limited embedding
to 62 dimensions (95% of the variance).

2.3 Potential Anomalies Detection

Using the embedding described in Sect. 2.2, anomalous images can be defined as
those that are relatively far given the Euclidean metric from the other images.
In other words, we want to find such images whose embedding will have the
maximum distance from the other objects in the set. We know about the image
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dataset that it contains several classes of objects, morphologically different from
each other (see Fig. 1). Similar objects will form clusters. An additional issue that
we discussed before in Sect. 2.1 is that it is difficult to unambiguously determine
exactly where in space the boundary between objects that belong to the classes
dots, tracks, worms should be defined and which objects might be counted as
anomalous images. This has already been pointed out by preparing manual anno-
tations for the CREDO dataset, in which a group of annotators, through a blind
voting process, determined to which class each object belongs [29]. As a result of
this process, the experiment described in [29] eliminated those objects to which
the annotators were uncertain about the class to which they belonged. In our
case, of course, we do not make such a selection but we use the entire dataset.
Thus, it is natural that if we want to perform unsupervised analysis of dataset,
which contains sets of objects against which even human annotators cannot
make an unambiguous decision it is reasonable to use an approach that allows
modelling uncertainty in the decision-making process. An approach that allows
modelling of uncertainty in the clustering process is rough k-means clustering
[22]. The algorithm described in [22] adds a number of improvements to the clas-
sic k-means algorithm introduced in [14,24]. The object’s cluster membership is
defined using rough set methodology.

Let us assume that objects are represented by n-dimensional vectors and are
contained in the set X. In the classical approach, finding the nearest centroid
for an object xj ∈ X is done by optimizing the following expression:

d(xj)min = mini∈kE(xj , ci) (3)
where k is the number of clusters represented by centroids, ci is the centroid of
cluster Ci with index i and E is the Euclidean metric.

Let us assume that Ci is upper approximation of cluster Ci and Ci is lower
approximation of cluster Ci.

In rough k-means the object belongs not only to the closest cluster in terms
of distance to the centroid, but also to all other clusters to whose centroids the
distance satisfies the condition:

d(xj)min

E(xj , cl)
� t, l �= i (4)

where t is the threshold of the method and l is the index of the centroid that
does not minimize (3). If t � 1 then rough k-means is performed like a classical
k-means. If t > 1 then:

– if (4) is satisfied xj ∈ Ci, xj ∈ Cl - that means xj belongs to at least two
upper approximations of clusters: (Ci and all Ci that satisfies (4)),

– if (4) is not satisfied xj ∈ Ci, xj ∈ Ci

In rough k-means, it is also necessary to modify the centroid updating algorithm,
which takes the form of a weighted sum:

cm = wupper

∑
v ∈ Cm∣
∣Cm

∣
∣

+ wlower

∑
v ∈ Cm∣
∣Cm

∣
∣ (5)
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where
∣
∣Cm

∣
∣ is cardinal number of set Cm and wupper + wlower = 1. If

∣
∣Cm

∣
∣ = 0

or
∣
∣Cm

∣
∣ = 0 then only the component in which the denominator is non-zero is

taken into the sum.
To use rough k-means to find anomalies, we need to calculate the distances of

each element in the set to the centroid of cluster to which this element has been
assigned. Since we want to take into account the uncertainty of assignment to
a cluster we use the upper approximation of each cluster. For this reason, each
object can be assigned to more than one cluster. Suppose we want to identify p
anomalous elements in our dataset. To do this, we order the objects belonging
to the upper approximation of each cluster by their distance from the centroid
of the cluster they belong to, and take p unique outermost elements.

Data: X—dataset described in Section 2.2,;
k, t, wupper, wlower—parameters of rough k-means algorithm described in
Section 2.3,;
p—number of potentially anomalous objects to be returned
Result: R—set of p potentially anomalous objects
// perform rough k-means
C ← km(X, k, t, wupper, wlower) ;
// calculate distances from centroid, assign a pair: element

and its distance to centroid to set P
P ← ∅ ;
for xi ∈ X do

for cj ∈ C do
if xi ∈ Cj then

P ← P ∪ {(xi, E(xi, cj)};
end

end
end
// sort P by distances in descending order
Psorted ← sort(P ) ;
// get first p unique objects xi from Psorted

R ← ∅ ;
s ← 0;
while |R| < p do

if Psorted[s] /∈ R then
R ← {Psorted[s]};

end
end

Algorithm 1: Algorithm for finding anomalous objects using rough k-means
clustering

There are three operations in the proposed solution that have significant
computational complexity. These are: calculation of the covariance matrix, PCA
solved with Singular Value Decomposition (SVD) and rough k-means. These
algorithms are performed sequentially one by one. Assuming no parallel com-
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putation, the computational complexity is O(n3) where n is proportional to the
number of elements in the dataset and the resolution of the images.

3 Results

In order to test the proposed method, we prepared its implementation in Python
3.X. We used the packages numpy 1.22, opencv-python 4.5 and the modified
package https://github.com/geofizx/rough-clustering so that it can work with
Python 3.X. The source codes and data are available for download from the
address https://github.com/browarsoftware/particle_pars.

We performed a series of computational experiments involving clustering
of the set described in Sect. 2.1. We performed embedding of the set using
the method described in Sect. 2.2. Potentially anomalous images were detected
using the method described in Sect. 2.3. To ensure the reproducibility of the
experiment, the pseudorandom number generator had a seed set. We tested the
application of the rough k-means algorithm on the following parameter ranges:
k ∈ {3, 4, 5, 6, 7, 8, 9, 10} and t ∈ {1.0, 1.25, 1.5, 1.75, 2.0}. The parameters wupper

and wlower were set to values of 0.9 and 0.1, respectively. The range of param-
eters was chosen experimentally so that the method would achieve convergence
at ε = 10−4. In order to test the effect of different values of t and k on the set of
potential anomalies returned by the method for each rough k-means configura-
tion, we returned a set of R (see Algorithm 1) with a count of 70 objects (about
0.5% of the dataset size). We performed a comparison of the R sets so obtained
using Jaccard index. The results are shown in Figs. 3 and 4.

In Figs. 5 and 6 we have presented a visualization of the results of the pro-
posed algorithm for the (k = 4, t = 1.25, wlower = 0.9, wupper = 0.1) and
(k = 4, t = 1). The second case is the classic k-means algorithm. The count
of R has been set to 25.

4 Discussion

Based on the results shown in Figs. 3 and 4, it can be seen that increasing the
parameter k (number of clusters) changes the level of diversity of the returned
set of potential anomalies. This manifests itself by decreasing the value of the
Jaccard index. In the case of (k = 10, t > 1.25) the Jaccard index is at 0.5. This
means that with a relatively large number of clusters, the parameter t plays an
increasingly important role in the designation of objects as potential anomalies.

The potential anomalies retrieved with the proposed algorithm, examples
of which we have shown in Fig. 5, have morphological features consistent with
what a human expert would expect from anomalous signals in this case. They
deviate significantly from the visual features typical of the known classes of
dots, tracks and worms observations. In contrast, Fig. 6, which shows the results
obtained with the classical k-means algorithm, contains single copies of objects
that appear to represent well-known classes: dots (fourth row, third column) and
tracks (fourth row, fifth column). Analyses carried out in this area have shown

https://github.com/geofizx/rough-clustering
https://github.com/browarsoftware/particle_pars
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Fig. 3. Comparison of intersecting sets of detected anomalies in terms of the Jaccard
coefficient for a fixed wlower = 0.9 and a various number of clusters in the range
k ∈ {3, 4, 5, 6}.

that the spatial distribution of image feature vectors is built in such a way that
in some cases we can obtain coherently, clusters composed of non-anomalous
objects of relatively large radius. Classical clustering (not using rough sets) does
not take into account uncertainty in the assignment of objects to individual
clusters and objects are assigned uniquely to a single cluster. In such a case,
when searching for objects on the boundary regions of clusters, far from the
centroids, objects from clusters that represent unambiguously typical signals may
also be indicated as potential anomalies. For this reason, modeling the search
for potential anomalies using only crisp sets may yield unsatisfactory results.
If, on the other hand, we apply uncertainty modeling using rough sets, then the
phenomenon of cluster boundary blurring appears, the properties of which can be
controlled using the parameters of the rough k-means algorithm. In practice, this
results in the fact that a given object can belong to several clusters in different
degrees while being in their upper approximations. This increase the capabilities
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Fig. 4. Comparison of intersecting sets of detected anomalies in terms of the Jaccard
coefficient for a fixed wlower = 0.9 and a various number of clusters in the range
k ∈ {7, 8, 9, 10}.

of potential anomalies detection and, as our experiments show, compensates the
disadvantages present in classic k-means. We performed a similar visual analysis
for the other configurations of rough k-means obtaining analogous results. In
conclusion, basing potential anomalies detection on the proposed approach using
PCA for embedding generation and rough sets for uncertainty modeling proves
to be an effective approach yielding the expected results.



Searching of Potentially Anomalous Signals in Cosmic-Ray Particle 441

Fig. 5. Visualization of the results of the proposed algorithm for rough k-means with
parameters (k = 4, t = 1.25, wlower = 0.9, wupper = 0.1). The count of R has been set
to 25.
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Fig. 6. Visualization of the results of the proposed algorithm for classical k-means
(k = 4). The count of R has been set to 25.

5 Conclusion

Based on the experiments carried out and the discussion of their results in Sect. 4,
we can conclude that the algorithm proposed in this work is an effective app-
roach for finding potential anomalies in cosmic-ray particle tracks images. This
is very promising for research in the areas of astrophysics and astronomy, where
detectors based on CMOS or similar sensors are used. The approach presented
in this work will be further tested for its deployment into the image processing
pipeline in research conducted for the CREDO project.

It seems that our proposed solution might not be limited to such a specific
problems as the analysis of cosmic rays tracks. The universal features of the
proposed rough set-based method for finding anomalies and its efficiency give
basis to test its usability also for other types of datasets, not only images. Note
that it is very important to select an appropriate set of features describing the



Searching of Potentially Anomalous Signals in Cosmic-Ray Particle 443

objects. In the case of images, the PCA-based method used in this work may be
effective.

An open topic for further research is the analysis of the effect of rough k-
means parameters on the speed of computation, and whether anomalous signals
will not be grouped into clusters with low number of elements as the number
of clusters increases. It would also be useful to automatically determine the
suboptimal number of clusters that should be used for a given dataset.
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Abstract. Fuzzy concept lattices can be viewed as the generalizations
of the classical concept lattices in fuzzy formal contexts, which is a key
issue and a major research direction in knowledge discovery. Crisp-fuzzy
concept lattices are special fuzzy concept lattices, the existing crisp-
fuzzy concept lattices can be divided into two categories, that is, one
is the extension of the classical concept lattice, and the other is based
on rough fuzzy approximation operations. In this paper, by combing
these two types of crisp-fuzzy concept lattices and using interval-valued
fuzzy sets, a novel crisp-fuzzy concept lattice is firstly presented, then
the properties of the new model are discussed in detail. From two aspects
of granular and algebraic structures, the new concept lattice is compared
with two types of existing crisp-fuzzy concept lattices, which shows that
the former has obvious advantages over the latter. Therefore, the work
has not only enriched the theory of fuzzy concept lattice, but helpful for
its application.

Keywords: Crisp-fuzzy concepts · Fuzzy formal contexts ·
Interval-valued fuzzy sets · Formal concept analysis

1 Introduction

Formal Concept Analysis (FCA), firstly proposed by German mathematician
Wille [1] in 1982, serves as an effective tool for data analysis and knowledge dis-
covery. As a significant research direction of artificial intelligence, FCA has been
widely used in information retrieval, cognitive concept learning, rule acquisition,
and other fields [2–4].

FCA deals with a set of data called a formal context, formal concepts are the
primary knowledge units extracted from the formal context, and the relationship
among the formal concepts indicates that they form a complete lattice in a
mathematical sense, the complete lattice is also called a concept lattice. Each
formal concept consists of extension and intension, where the extension is a set
of objects covered by this concept, and the intension is a set of attributes shared
by all the objects of extension.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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A formal context in the classical FCA is mainly depicted by an ordinary
binary relation between the object set and the attribute set, however, in a large
number of practical applications, binary fuzzy relations need to be dealt with.
Therefore, the extension of the classical concept lattices in fuzzy environments
become an important research issue. Thus fuzzy sets were initially brought into
FCA by Burusco and Fuentes-Gonzalez [5], so L-fuzzy concept lattices were
proposed based on residuated lattice theory. From then on, various fuzzy concept
lattice models have been presented successively [6,7]. In order to enhance the
practicality of fuzzy concepts, one-sided concept lattices were suggested [8,9],
the “one-sided” means that for the extension and intension of each concept, one
is a crisp set, and the other a fuzzy set. Many achievements have been made for
the one-sided concept lattices [10,11].

As for the generalization of the classical concept lattices, the use of the
approximation operations of rough set theory is a better choice. Duntsch and
Gediga [12] first put forward a property-oriented concept lattice by a pair of
modal operators, Yao [13] further constructed an object-oriented concept lattice,
they are known as rough concept lattices collectively. By introducing three-way
decision theory [14] into the rough concept lattices, Wei and Qian [15] defined
the three-way object-oriented and property-oriented concept lattices. Based on
approximation operations, He et al. [16] proposed a property-oriented interval-
set concept lattice in an incomplete formal context. Li et al. [17] applied fuzzy
rough approximation operations to fuzzy formal contexts, and came up with a
crisp-fuzzy concept lattice, which pioneered the application of rough approxima-
tion on one-sided concept lattices.

Interval-valued fuzzy sets are extensions of classical fuzzy sets. In many prac-
tical matters, it is more advantageous to utilize interval-valued fuzzy sets to
describe uncertainty. However, there is little research on fuzzy concept analysis
by interval-valued fuzzy sets. This paper introduces interval-valued fuzzy sets
into one-sided concept lattices, so a novel crisp-fuzzy concept lattice is proposed
in a fuzzy formal context, a main characteristic of which is that the intensions of
all concepts are interval-valued fuzzy sets. After analyzing the basic properties of
the new concept lattice, the relationships between it and two existing crisp-fuzzy
concept lattices are investigated.

2 Preliminary

This section primarily recalls the relevant knowledge of two one-sided concept
lattices in fuzzy formal contexts and interval-valued fuzzy sets.

2.1 Existing Crisp-Fuzzy Concepts

Let U be a nonempty and finite set, and the class of all subsets of U and the
class of all fuzzy sets on U will be denoted P (U) and F (U), respectively. Here
˜X ∈ F (U) mains a mapping from U to [0,1].
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Definition 1. A fuzzy formal context is a triplet (U,A, Ĩ), in which U is a
nonempty and finite set, called the object set, whose elements are known as
objects, A is a nonempty and finite set, called the attribute set, whose elements
are called attributes, and Ĩ is a fuzzy set on U ×A, that is, a binary fuzzy relation
from U to A.

For x ∈ U and a ∈ A, xĨ is a fuzzy set on A, and Ĩa is a fuzzy set on U ,
which are defined respectively as:

(xĨ)(b) = Ĩ(x, b), b ∈ A; (Ĩa)(y) = Ĩ(y, a), y ∈ U.

We assume that the following fuzzy formal context (U,A, Ĩ) satisfies:

xĨ �= yĨ, x, y ∈ U ; Ĩa �= Ĩb, a, b ∈ A,

and such a fuzzy formal context is said to be clarified.

Example 1. Table 1 shows a fuzzy formal context (U,A, Ĩ), where

U = {x1, x2, x3, x4, x5}, A = {a, b, c, d, e},

and the fuzzy relation Ĩ can be read from Table 1.

Table 1. A fuzzy formal context (U,A, Ĩ) in Example 1

a b c d e

x1 0.56 0.20 0.72 0.35 0.52
x2 0.73 0.83 0.30 0.41 0.29
x3 0.19 0.48 0.57 0.61 0.00
x4 0.44 0.67 0.15 0.49 0.36
x5 0.28 0.59 0.44 0.50 0.17

Krajci and Yahia et al. [8,9] first proposed a kind of crisp-fuzzy concepts in
fuzzy formal contexts independently.

For a fuzzy formal context (U,A, Ĩ), two operators ∗ : P (U) → F (A) and
∗ : F (A) → P (U) are defined as follows:

X∗ =
⋂

x∈X

xĨ, X ∈ P (U); B̃∗ = {x ∈ U | B̃ ⊆ xĨ}, B̃ ∈ F (A).

For X ∈ P (U) and B̃ ∈ F (A), if X∗ = B̃, B̃∗ = X, then (X, B̃) is called a
crisp-fuzzy concept of (U,A, Ĩ) or a type-I concept, and X and B̃ are known as
the extension and intension of (X, B̃), respectively. The set of all type-I concepts
is denoted LI(Ĩ), the set of the extensions of all type-I concepts is denoted
ExtI(Ĩ), and the set of the intensions of all type-I concepts is denoted IntI(Ĩ).
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Table 2. All the type-I concepts of (U,A, Ĩ) in Example 1

Number (Extension, Intension) Number (Extension, Intension)

FCI
1 ({x1, x2, x3, x4, x5}, {a0.19, b0.20, c0.15, d0.35, e0.00}) FCI

13 ({x1, x4}, {a0.44, b0.20, c0.15, d0.35, e0.36})
FCI

2 ({x1, x2, x3, x5}, {a0.19, b0.20, c0.30, d0.35, e0.00}) FCI
14 ({x1, x5}, {a0.28, b0.20, c0.44, d0.35, e0.17})

FCI
3 ({x1, x2, x4, x5}, {a0.28, b0.20, c0.15, d0.35, e0.17}) FCI

15 ({x2, x4}, {a0.44, b0.67, c0.15, d0.41, e0.29})
FCI

4 ({x2, x3, x4, x5}, {a0.19, b0.48, c0.15, d0.41, e0.00}) FCI
16 ({x2, x5}, {a0.28, b0.59, c0.30, d0.41, e0.17})

FCI
5 ({x1, x2, x4}, {a0.44, b0.20, c0.15, d0.35, e0.29}) FCI

17 ({x3, x5}, {a0.19, b0.48, c0.44, d0.50, e0.00})
FCI

6 ({x1, x2, x5}, {a0.28, b0.20, c0.30, d0.35, e0.17}) FCI
18 ({x4, x5}, {a0.28, b0.59, c0.15, d0.49, e0.17})

FCI
7 ({x1, x3, x5}, {a0.19, b0.20, c0.44, d0.35, e0.00}) FCI

19 ({x1}, {a0.56, b0.20, c0.72, d0.35, e0.52})
FCI

8 ({x2, x3, x5}, {a0.19, b0.48, c0.30, d0.41, e0.00}) FCI
20 ({x2}, {a0.73, b0.83, c0.30, d0.41, e0.29})

FCI
9 ({x2, x4, x5}, {a0.28, b0.59, c0.15, d0.41, e0.17}) FCI

21 ({x3}, {a0.19, b0.48, c0.57, d0.61, e0.00})
FCI

10 ({x3, x4, x5}, {a0.19, b0.48, c0.15, d0.49, e0.00}) FCI
22 ({x4}, {a0.44, b0.67, c0.15, d0.49, e0.36})

FCI
11 ({x1, x2}, {a0.56, b0.20, c0.30, d0.35, e0.29}) FCI

23 ({x5}, {a0.28, b0.59, c0.44, d0.50, e0.17})
FCI

12 ({x1, x3}, {a0.19, b0.20, c0.57, d0.35, e0.00}) FCI
24 ({∅}, {a1.00, b1.00, c1.00, d1.00, e1.00})

Fig. 1. The concept lattice LI(Ĩ) of (U,A, Ĩ) in Example 1

Example 2. For the fuzzy formal context (U,A, Ĩ) in Example 1, all the type-I
concepts of (U,A, Ĩ) are listed in Table 2, and Fig. 1 is the concept lattice LI(Ĩ).

Based on rough approximation operations, Li and Wu [17] defined another
kind of crisp-fuzzy concepts in fuzzy formal contexts.

In a fuzzy formal context (U,A, Ĩ), two operators ♦ : P (U) → F (A) and
� : F (A) → P (U) are defined as follows:

X♦ =
⋃

x∈X

xĨ, X ∈ P (U); B̃� = {x ∈ U | xĨ ⊆ B̃}, B̃ ∈ F (A).

For X ∈ P (U) and B̃ ∈ F (A), if X♦ = B̃, B̃� = X, then (X, B̃) is called
a crisp-fuzzy concept of (U,A, Ĩ) based on rough fuzzy approximations of the
first kind or a type-II concept, in which X and B̃ are known as the extension
and intension of (X, B̃), respectively. The set of all type-II concepts is denoted
LII(Ĩ), the set of the extensions of all type-II concepts is denoted ExtII(Ĩ), and
the set of the intensions of all type-II concepts is denoted IntII(Ĩ).

Example 3. For the fuzzy formal context in Example 1, all the type-II concepts
of (U,A, Ĩ) are shown in Table 3, and Fig. 2 depicts the concept lattice LII(Ĩ).
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Table 3. All the type-II concepts of (U,A, Ĩ) in Example 1

Number (Extension, Intension) Number (Extension, Intension)

FCII
1 ({x1, x2, x3, x4, x5}, {a0.73, b0.83, c0.72, d0.61, e0.52}) FCII

13 ({x1, x4}, {a0.56, b0.67, c0.72, d0.49, e0.52})
FCII

2 ({x1, x2, x4, x5}, {a0.73, b0.83, c0.72, d0.50, e0.52}) FCII
14 ({x1, x5}, {a0.56, b0.59, c0.72, d0.50, e0.52})

FCII
3 ({x1, x3, x4, x5}, {a0.56, b0.67, c0.72, d0.61, e0.52}) FCII

15 ({x2, x4}, {a0.73, b0.83, c0.30, d0.49, e0.36})
FCII

4 ({x2, x3, x4, x5}, {a0.73, b0.83, c0.57, d0.61, e0.36}) FCII
16 ({x2, x5}, {a0.73, b0.83, c0.44, d0.50, e0.29})

FCII
5 ({x1, x2, x4}, {a0.73, b0.83, c0.72, d0.49, e0.52}) FCII

17 ({x3, x5}, {a0.28, b0.59, c0.57, d0.61, e0.17})
FCII

6 ({x1, x3, x5}, {a0.56, b0.59, c0.72, d0.61, e0.52}) FCII
18 ({x4, x5}, {a0.44, b0.67, c0.44, d0.50, e0.36})

FCII
7 ({x1, x4, x5}, {a0.56, b0.67, c0.72, d0.50, e0.52}) FCII

19 ({x1}, {a0.56, b0.20, c0.72, d0.35, e0.52})
FCII

8 ({x2, x3, x5}, {a0.73, b0.83, c0.57, d0.61, e0.29}) FCII
20 ({x2}, {a0.73, b0.83, c0.30, d0.41, e0.29})

FCII
9 ({x2, x4, x5}, {a0.73, b0.83, c0.44, d0.50, e0.36}) FCII

21 ({x3}, {a0.19, b0.48, c0.57, d0.61, e0.00})
FCII

10 ({x3, x4, x5}, {a0.44, b0.67, c0.57, d0.61, e0.36}) FCII
22 ({x4}, {a0.44, b0.67, c0.15, d0.49, e0.36})

FCII
11 ({x1, x2}, {a0.73, b0.83, c0.72, d0.41, e0.52}) FCII

23 ({x5}, {a0.28, b0.59, c0.44, d0.50, e0.17})
FCII

12 ({x1, x3}, {a0.56, b0.48, c0.72, d0.61, e0.52}) FCII
24 ({∅}, {a0.00, b0.00, c0.00, d0.00, e0.00})

Fig. 2. The concept lattice LII(Ĩ) of (U,A, Ĩ) in Example 1

The operators ♦ and � satisfy the properties of upper and lower approxi-
mation operators of rough set theory, so they can be considered as two kinds of
rough approximation operators, and the corresponding crisp-fuzzy concepts are
viewed as a kind of crisp-fuzzy concepts based on rough approximations.

2.2 Interval-Valued Fuzzy Set

The closed interval (also called interval) in the set R of real numbers is denoted
[a, b], where a, b ∈ R. If a < b, then [a, b] represents an ordinary real interval;
If a = b, then [a, a] degenerates into the real number a; If a > b, then [a, b]
expresses the empty set ∅.

In the following, we only consider the intervals contained in the unit interval
I = [0, 1], and the class of all such intervals will be denoted IP ([0, 1]) or IP (I).

Two operations on IP (I) are defined as follows: Let [a1, b1] ∈ IP (I), [a2, b2] ∈
IP (I), then

– the intersection of [a1, b1] and [a2, b2], denoted [a1, b1] ∩ [a2, b2], is given as:

[a1, b1] ∩ [a2, b2] = [a1 ∨ a2, b1 ∧ b2] ;
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– the union of [a1, b1] and [a2, b2], denoted [a1, b1] ∪ [a2, b2], is given as:

[a1, b1] ∪ [a2, b2] = [a1 ∧ a2, b1 ∨ b2] .

where ∧ and ∨ represent the operations minimum and maximum on [0,1].
It is easy to verify that the corresponding order relation on IP (I) coincides

with the inclusion relation of crisp sets, and still be denoted ⊆.
For the universe of discourse U , an interval-valued fuzzy set X̂ on U is defined

as a mapping from U to IP (I), i.e. X̂ : U → IP (I). For x ∈ U , X̂(x) is
represented as [X̂−(x), X̂+(x)], then X̂ can be expressed as [X̂−, X̂+]. It is clear
that X̂− and X̂+ are two classical fuzzy sets on U with X̂− ⊆ X̂+. Denote the
set of all interval-valued fuzzy sets on U as IF (U).

If U = {x1, x2, · · · , xn} then X̂ ∈ IF (U) can be expressed as

{x
[X̂−(x1),X̂

+(x1)]
1 , x

[X̂−(x2),X̂
+(x2)]

2 , · · · , x[X̂−(xn),X̂
+(xn)]

n }.

Of course, the fuzzy set X̃ ∈ F (U) should be denoted

{x
X̃(x1)
1 , x

X̃(x2)
2 , · · · , xX̃(xn)

n }.

For any X̃ ∈ F (U) and Ŷ ∈ IF (U), if ∀x ∈ U , X̃(x) ∈ Ŷ (x), we say that X̃
belongs to Ŷ , which is denoted X̃ ∈ Ŷ .

Pointwise application of the inclusion relation ⊆, and the intersection ∩ and
union ∪ operations on IP (I) leads to a relation and two operations on IF (U).

Let X̂ ∈ IF (U), Ŷ ∈ IF (U). Then:

– X̂ being included in Ŷ , denoted X̂ ⊆ Ŷ , is defined as:

X̂(x) ⊆ Ŷ (x), ∀x ∈ U ;

– the intersection of X̂ and Ŷ , denoted X̂ ∩ Ŷ , is defined as:

(X̂ ∩ Ŷ )(x) = X̂(x) ∩ Ŷ (x), ∀x ∈ U ;

– the union of X̂ and Ŷ , denoted X̂ ∪ Ŷ , is defined as:

(X̂ ∪ Ŷ )(x) = X̂(x) ∪ Ŷ (x), ∀x ∈ U.

We can see that for X̃ ∈ F (U), Ŷ1, Ŷ2 ∈ IF (U), if Ŷ1 ⊆ Ŷ2, then X̃ ∈ Ŷ1

implies X̃ ∈ Ŷ2.

Proposition 1. Let U be a universe of discourse and X̂, Ŷ ∈ IF (U). Then

(1) X̂ ⊆ Ŷ ⇔ Ŷ − ⊆ X̂−, X̂+ ⊆ Ŷ +;
(2) (X̂ ∩ Ŷ )− = X̂− ∪ Ŷ −, (X̂ ∩ Ŷ )+ = X̂+ ∩ Ŷ +;
(3) (X̂ ∪ Ŷ )− = X̂− ∩ Ŷ −, (X̂ ∪ Ŷ )+ = X̂+ ∪ Ŷ +.

Proposition 2. Let U be a universe of discourse and X̂, Ŷ ∈ IF (U). Then

(1) X̂ ∩ Ŷ ⊆ X̂, X̂ ∩ Ŷ ⊆ Ŷ ;
(2) X̂ ⊆ X̂ ∪ Ŷ , Ŷ ⊆ X̂ ∪ Ŷ ;
(3) X̂ ⊆ Ŷ ⇔ X̂ ∩ Ŷ = X̂ ⇔ X̂ ∪ Ŷ = Ŷ .
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3 Novel Crisp-Fuzzy Concepts

Definition 2. Let (U,A, Ĩ) be a fuzzy formal context. For X ∈ P (U) and B̂ ∈
IF (A), a interval-valued fuzzy set X# on A and a crisp subset B̂& of U are
defined as follows:

X#(a) =
[

∧
x∈X

(xĨ)(a), ∨
x∈X

(xĨ)(a)
]

, ∀a ∈ A,

B̂& = {x ∈ U | ∀a ∈ A, B̂−(a) ≤ Ĩ(x, a) ≤ B̂+(a)}.

The following conclusion follows from Definition 2.

Proposition 3. Let (U,A, Ĩ) be a fuzzy formal context, X ∈ P (U), B̂ ∈ IF (A).
Then

(1) X# = [X∗,X�], i.e. (X#)− = X∗, (X#)+ = X♦;
(2) B̂& = (B̂−)∗ ∩ (B̂+)�.

Proposition 4. Let (U,A, Ĩ) be a fuzzy formal context, X,X1,X2 ∈ P (U),
B̂, B̂1, B̂2 ∈ IF (A). Then

(1) X1 ⊆ X2 ⇒ X#
1 ⊆ X#

2 , B̂1 ⊆ B̂2 ⇒ B̂&
1 ⊆ B̂&

2 ;

(2) (X1 ∪ X2)# = X#
1 ∪ X#

2 , (X1 ∩ X2)# ⊆ X#
1 ∩ X#

2 ;

(3) (B̂1 ∩ B̂2)& = B̂&
1 ∩ B̂&

2 , (B̂1 ∪ B̂2)& ⊇ B̂&
1 ∪ B̂&

2 ;
(4) X ⊆ X#&, B̂&# ⊆ B̂;
(5) X#&# = X#, B̂&#& = B̂&;
(6) X ⊆ B̂& ⇔ X# ⊆ B̂.

Proof. (1) If X1 ⊆ X2, then
⋂

x∈X2

xĨ ⊆ ⋂

x∈X1

xĨ and
⋃

x∈X1

xĨ ⊆ ⋃

x∈X2

xĨ, i.e.

(X#
2 )− ⊆ (X#

1 )− and (X#
1 )+ ⊆ (X#

2 )+. Hence X#
1 ⊆ X#

2 .
If B̂1 ⊆ B̂2, then for any x ∈ U , xĨ ∈ B̂1 implies xĨ ∈ B̂2, by Definition 2

we have B̂&
1 ⊆ B̂&

2 .
(2) According to Definition 2 we obtain

(X1 ∪ X2)
#− =

⋂

x∈X1∪X2

xĨ =

(

⋂

x∈X1

xĨ

)

∩
(

⋂

x∈X2

xĨ

)

= (X#
1 )− ∩ (X#

2 )−,

(X1 ∪ X2)
#+ =

⋃

x∈X1∪X2

xĨ =

(

⋃

x∈X1

xĨ

)

∪
(

⋃

x∈X2

xĨ

)

= (X#
1 )+ ∪ (X#

2 )+.

Hence (X1 ∪ X2)# = X#
1 ∪ X#

2 .
It immediately follows from (1) that (X1 ∩ X2)# ⊆ X#

1 ∩ X#
2 .

(3) For any x ∈ U , we get

(B̂1 ∩ B̂2)− ⊆ xĨ ⊆ (B̂1 ∩ B̂2)+ ⇔ B̂−
1 ∪ B̂−

2 ⊆ xĨ ⊆ B̂+
1 ∩ B̂+

2

⇔ B̂−
1 ⊆ xĨ ⊆ B̂−

1 , B̂+
2 ⊆ xĨ ⊆ B̂+

2 .
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According to Definition 2, it can be concluded that (B̂1 ∩ B̂2)& = B̂&
1 ∩ B̂&

2 .
It can be directly derived from (1) that (B̂1 ∪ B̂2)& ⊇ B̂&

1 ∪ B̂&
2 .

(4) From X# =
[

(X#)−, (X#)+
]

=
[

∧
x∈X

(xĨ), ∨
x∈X

(xĨ)
]

it follows that for

any x ∈ X, (X#)− ⊆ xĨ ⊆ (X#)+, hence X ⊆ X#&.
According to B̂& = {x ∈ U | B̂− ⊆ xĨ ⊆ B̂+}, we assert B̂− ⊆ (B̂&#)−,

(B̂&#)+ ⊆ B̂+, hence B̂&# ⊆ B̂.
(5) In terms of (1) and (4), we get X# ⊆ X#&#. Substituting X# for B̂ in

B̂&# ⊆ B̂ gives X#&# ⊆ X#. Thus X# = X#&#.
Equally, we can show that B̂&#& = B̂&.
(6) For X ∈ P (U), B̂ ∈ IF (A), we have

X ⊆ B̂& ⇔ ∀x ∈ X(x ∈ B̂&) ⇔ ∀x ∈ X(B̂− ⊆ xĨ ⊆ B̂+)
⇔ B̂− ⊆ ⋂

x∈X

xĨ ⊆ ⋃

x∈X

xĨ ⊆ B̂+ ⇔ X# ⊆ B̂.

Definition 3. Let (U,A, Ĩ) be a fuzzy formal context, X ∈ P (U), B̃ ∈ IF (A).
If X# = B̂, B̂& = X, then (X, B̂) is called a crisp-fuzzy concept of (U,A, Ĩ)
based on rough fuzzy approximations of the second kind or a type-III concept,
where X and B̂ are known as the extension and intension of (X, B̂), respectively.

The set of all type-III concepts of (U,A, Ĩ) is denoted LIII(Ĩ), the set of
the extensions of all type-III concepts is denoted ExtIII(Ĩ), and the set of the
intensions of all type-III concepts is denoted IntIII(Ĩ).

A partially ordered relation on LIII(Ĩ) is defined as follows: For (X1, B̂1) ∈
LIII(Ĩ), (X2, B̂2) ∈ LIII(Ĩ), then

(X1, B̂1) ≤ (X2, B̂2) ⇔ X1 ⊆ X2

The partially ordered relation on LI(Ĩ) and LII(Ĩ) is the same as on LIII(Ĩ).
With respect to these partially ordered relations, LI(Ĩ), LII(Ĩ), and LIII(Ĩ) form
three complete lattices, and called type-I, type-II, and type-III concept lattices,
respectively. The meet and join operations are list below:
– Type-I concept lattice LI(Ĩ):

(X1, B̃1) ∧ (X2, B̃2) = (X1 ∩ X2, (X1 ∩ X2)∗),
(X1, B̃1) ∨ (X2, B̃2) = ((B̃1 ∩ B̃2)∗, B̃1 ∩ B̃2);

– Type-II concept lattice LII(Ĩ):

(X1, B̃1) ∧ (X2, B̃2) = (X1 ∩ X2, (X1 ∩ X2)♦),
(X1, B̃1) ∨ (X2, B̃2) = ((B̃1 ∪ B̃2)�, B̃1 ∪ B̃2);

– Type-III concept lattice LIII(Ĩ):

(X1, B̂1) ∧ (X2, B̂2) = (X1 ∩ X2, (X1 ∩ X2)#),
(X1, B̂1) ∨ (X2, B̂2) = ((B̂1 ∪ B̂2)&, B̂1 ∪ B̂2).

Example 4. For the fuzzy formal context in Example 1, all the type-III con-
cepts of (U,A, Ĩ) are listed in Table 4, and Fig. 3 illustrates the concept lattice
LIII(Ĩ).
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Fig. 3. The concept lattice LIII(Ĩ) of (U,A, Ĩ) in Example 1

4 Relationships Between Three Concept Lattices

4.1 Granular Structures

Theorem 1. Let (U,A, Ĩ) be a fuzzy formal context. Then

ExtI(Ĩ) ⊆ ExtIII(Ĩ), ExtII(Ĩ) ⊆ ExtIII(Ĩ).

Proof. For any (X, B̃) ∈ LI(Ĩ), we have B̃∗ = X and X∗ = B̃. By Proposition
3 we have X# = (X∗,X♦) = (B̃,X♦) ∈ IF (A) and (B̃,X♦)& = B̃∗ ∩ X♦�.
According to X ⊆ X♦� and B̃∗ = X, we obtain (B̃,X♦)& = X. By Definition
3 we get (X,X#) ∈ LIII(Ĩ), and conclude ExtI(Ĩ) ⊆ ExtIII(Ĩ).

By a similar way we can prove ExtII(Ĩ) ⊆ ExtIII(Ĩ).

It should be noted that the inverses of the inequalities in Theorem 1 do not
hold, which can be illustrated by Tables 2, 3, and 4.

Theorem 2. Let (U,A, Ĩ) be a fuzzy formal context. Then

IntI(Ĩ) = {B̂− ∈ F (A) | (B̂−, B̂+) ∈ IntIII(Ĩ)},

IntII(Ĩ) = {B̂+ ∈ F (A) | (B̂−, B̂+) ∈ IntIII(Ĩ)}.

Proof. It is clear that for any X ∈ P (U), X∗ ∈ IntI(Ĩ). For any (B̂−, B̂+) ∈
IntIII(Ĩ), let X be the corresponding extension, we know X∗ = B̂− and hence
B̂− ∈ IntI(Ĩ). Thus

{B̂− ∈ F (A) | (B̂−, B̂+) ∈ IntIII(Ĩ)} ⊆ IntI(Ĩ).

From the proof of Theorem 1 we can see

IntI(Ĩ) ⊆ {B̂− ∈ F (A) | (B̂−, B̂+) ∈ IntIII(Ĩ)}.

We consequently obtain

IntI(Ĩ) = {B̂− ∈ F (A) | (B̂−, B̂+) ∈ IntIII(Ĩ)}.

Similarly, we can prove

IntII(Ĩ) = {B̂+ ∈ F (A) | (B̂−, B̂+) ∈ IntIII(Ĩ)}.
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Table 4. All the type-III concepts of (U,A, Ĩ) in Example 1

Number (Extension, Intension)

FCIII
1 ({x1, x2, x3, x4, x5}, {a[0.19,0.73], b[0.20,0.83], c[0.15,0.72], d[0.35,0.61], e[0.00,0.52]})

FCIII
2 ({x1, x2, x3, x5}, {a[0.19,0.73], b[0.20,0.83], c[0.30,0.72], d[0.35,0.61], e[0.00,0.52]})

FCIII
3 ({x1, x2, x4, x5}, {a[0.28,0.73], b[0.20,0.83], c[0.15,0.72], d[0.35,0.50], e[0.17,0.52]})

FCIII
4 ({x1, x3, x4, x5}, {a[0.19,0.56], b[0.20,0.67], c[0.15,0.72], d[0.35,0.61], e[0.00,0.52]})

FCIII
5 ({x2, x3, x4, x5}, {a[0.19,0.73], b[0.48,0.83], c[0.15,0.57], d[0.41,0.61], e[0.00,0.36]})

FCIII
6 ({x1, x2, x4}, {a[0.44,0.73], b[0.20,0.83], c[0.15,0.72], d[0.35,0.49], e[0.29,0.52]})

FCIII
7 ({x1, x2, x5}, {a[0.28,0.73], b[0.20,0.83], c[0.30,0.72], d[0.35,0.50], e[0.17,0.52]})

FCIII
8 ({x1, x3, x5}, {a[0.19,0.56], b[0.20,0.59], c[0.44,0.72], d[0.35,0.61], e[0.00,0.52]})

FCIII
9 ({x1, x4, x5}, {a[0.28,0.56], b[0.20,0.67], c[0.15,0.72], d[0.35,0.50], e[0.17,0.52]})

FCIII
10 ({x2, x3, x5}, {a[0.19,0.73], b[0.48,0.83], c[0.30,0.57], d[0.41,0.61], e[0.00,0.29]})

FCIII
11 ({x2, x4, x5}, {a[0.28,0.73], b[0.59,0.83], c[0.15,0.44], d[0.41,0.50], e[0.17,0.36]})

FCIII
12 ({x3, x4, x5}, {a[0.19,0.44], b[0.48,0.67], c[0.15,0.57], d[0.49,0.61], e[0.00,0.36]})

FCIII
13 ({x1, x2}, {a[0.56,0.73], b[0.20,0.83], c[0.30,0.72], d[0.35,0.41], e[0.29,0.52]})

FCIII
14 ({x1, x3}, {a[0.19,0.56], b[0.20,0.48], c[0.57,0.72], d[0.35,0.61], e[0.00,0.52]})

FCIII
15 ({x1, x4}, {a[0.44,0.56], b[0.20,0.67], c[0.15,0.72], d[0.35,0.49], e[0.36,0.52]})

FCIII
16 ({x1, x5}, {a[0.28,0.56], b[0.20,0.59], c[0.44,0.72], d[0.35,0.50], e[0.17,0.52]})

FCIII
17 ({x2, x4}, {a[0.44,0.73], b[0.67,0.83], c[0.15,0.30], d[0.41,0.49], e[0.29,0.36]})

FCIII
18 ({x2, x5}, {a[0.28,0.73], b[0.59,0.83], c[0.30,0.44], d[0.41,0.50], e[0.17,0.29]})

FCIII
19 ({x3, x5}, {a[0.19,0.28], b[0.48,0.59], c[0.44,0.57], d[0.50,0.61], e[0.00,0.17]})

FCIII
20 ({x4, x5}, {a[0.28,0.44], b[0.59,0.67], c[0.15,0.44], d[0.49,0.50], e[0.17,0.36]})

FCIII
21 ({x1}, {a[0.56,0.56], b[0.20,0.20], c[0.72,0.72], d[0.35,0.35], e[0.52,0.52]})

FCIII
22 ({x2}, {a[0.73,0.73], b[0.83,0.83], c[0.30,0.30], d[0.41,0.41], e[0.29,0.29]})

FCIII
23 ({x3}, {a[0.19,0.19], b[0.48,0.48], c[0.57,0.57], d[0.61,0.61], e[0.00,0.00]})

FCIII
24 ({x4}, {a[0.44,0.44], b[0.67,0.67], c[0.15,0.15], d[0.49,0.49], e[0.36,0.36]})

FCIII
25 ({x5}, {a[0.28,0.28], b[0.59,0.59], c[0.44,0.44], d[0.50,0.50], e[0.17,0.17]})

FCIII
26 ({∅}, {a[0.00,0.00], b[0.00,0.00], c[0.00,0.00], d[0.00,0.00], e[0.00,0.00]})

The results of Theorems 1 and 2 can be verified by Tables 2, 3 and 4.
Theorems 1 and 2 indicate that for the same fuzzy formal context, the exten-

sions and intensions of all type-I and type-II concepts are hidden in the type-III
concept lattice. Further, according to the following two theorems, we know that
the type-I and type-II concept lattices can be written out from the type-III
concept lattice.

Theorem 3. Let (U,A, Ĩ) be a fuzzy formal context, (X, B̂) ∈ LIII(Ĩ). Then
(X, B̂−) ∈ LI(Ĩ), if and only if for any (Y, Ĉ) ∈ LIII(Ĩ), it implies (Y, Ĉ) =
(X, B̂) that (X, B̂) ≤ (Y, Ĉ) and Ĉ− = B̂−.

Proof. For (X, B̂) ∈ LIII(Ĩ), if (X, B̂−) ∈ LI(Ĩ), then X∗ = B̂− and X∗∗ = X.
For any (Y, Ĉ) ∈ LIII(Ĩ), if (X, B̂) ≤ (Y, Ĉ) and Ĉ− = B̂−, then X∗ = Y ∗ and
X ⊆ Y . Then we have X∗∗ = X ⊆ Y ⊆ Y ∗∗, and it follows from X∗ = Y ∗ that
X∗∗ = Y ∗∗. Therefore X = Y , which implies that (X, B̂) = (Y, Ĉ).

Conversely, for (X, B̂) ∈ LIII(Ĩ), we assume that for any (Y, Ĉ) ∈ LIII(Ĩ),
if (X, B̂) ≤ (Y, Ĉ) and Ĉ− = B̂−, then (Y, Ĉ) = (X, B̂). In order to prove
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(X, B̂−) ∈ LI(Ĩ), it is only needed to prove X = (B̂−)
∗
= X∗∗. It is evident that

(X∗∗,X∗) ∈ LI(Ĩ), and it is easy to prove (X∗∗, (X∗,X∗∗♦)) ∈ LIII(Ĩ). Then we
can see that (X, B̂) ≤ (X∗∗, (X∗,X∗∗♦)) and X∗ = B̂−, by the assumption we
get (X∗∗, (X∗,X∗∗♦)) = (X, B̂), which means X∗∗ = X.

Analogously, we can prove the next theorem.

Theorem 4. Let (U,A, Ĩ) be a fuzzy formal context, (X, B̂) ∈ LIII(Ĩ). Then
(X,X♦) ∈ LII(Ĩ), if and only if for any (Y, Ĉ) ∈ LIII(Ĩ), it implies (Y, Ĉ) =
(X, B̂) that (X, B̂) ≤ (Y, Ĉ) and Ĉ+ = B̂+.

On the other hand, for the same fuzzy formal context, by virtue of the follow-
ing two theorems, we can see that the type-III concept lattice can be generated
from the type-I and type-II concept lattices.

Theorem 5. Let (U,A, Ĩ) be a fuzzy formal context. Then

ExtIII(Ĩ) = {X ∩ Y | X ∈ ExtI(Ĩ), Y ∈ ExtII(Ĩ)}.

Proof. It’s not difficult to prove that ExtIII(Ĩ) = {B̃∗ ∩ C̃� | B̃, C̃ ∈ F (A)}.
For X ∈ ExtI(Ĩ) and Y ∈ ExtII(Ĩ), we have X = X∗∗ and Y = Y ♦�, so
X ∩ Y = (X∗)∗ ∩ (Y ♦)� = (X∗, Y ♦)&, hence X ∩ Y ∈ ExtIII(Ĩ). We get

{X ∩ Y | X ∈ ExtI(Ĩ), Y ∈ ExtII(Ĩ)} ⊆ ExtIII(Ĩ).

On the other hand, for Z ∈ ExtIII(Ĩ), we have (Z, (Z∗, Z♦)) ∈ LIII(Ĩ) and
hence Z = Z∗∗ ∩ Z♦�. It is clear that Z∗∗ ∈ ExtI(Ĩ), Z♦� ∈ ExtII(Ĩ). Then
Z ∈ {X ∩ Y | X ∈ ExtI(Ĩ), Y ∈ ExtII(Ĩ)}. We obtain

{X ∩ Y | X ∈ ExtI(Ĩ), Y ∈ ExtII(Ĩ)} ⊇ ExtIII(Ĩ).

Summarizing the results above we can conclude that

ExtIII(Ĩ) = {X ∩ Y | X ∈ ExtI(Ĩ), Y ∈ ExtII(Ĩ)}.

Theorem 6. Let (U,A, Ĩ) be a fuzzy formal context, (X, B̂) ∈ LIII(Ĩ). Then

IntIII(Ĩ) =
{

(B̃, C̃) ∈ IF (A)
(X, B̃) ∈ LI(Ĩ), (Y, C̃) ∈ LII(Ĩ),
(X ∩ Y )∗ = B̃, (X ∩ Y )♦ = C̃

}

.

Proof. For (B̃, C̃) ∈ IntIII(Ĩ), it is clear that (B̃∗, B̃) ∈ LI(Ĩ), (C̃�, C̃) ∈ LII(Ĩ),
and (B̃∗ ∩ C̃�, (B̃, C̃)) ∈ LIII(Ĩ), so (B̃∗ ∩ C̃�)∗ = B̃, (B̃∗ ∩ C̃�)♦ = C̃. Thus,

IntIII(Ĩ) ⊆
{

(B̃, C̃) ∈ IF (A)
(X, B̃) ∈ LI(Ĩ), (Y, C̃) ∈ LII(Ĩ),
(X ∩ Y )∗ = B̃, (X ∩ Y )♦ = C̃

}

.

Moreover, for (X, B̃) ∈ LI(Ĩ) and (Y, C̃) ∈ LII(Ĩ) with (X ∩ Y )∗ = B̃ and
(X ∩ Y )♦ = C̃, making use of Definitions 2 and 3 we can verify that (X ∩
Y, (B̃, C̃)) ∈ LIII(Ĩ). Therefore

{

(B̃, C̃) ∈ IF (A)
(X, B̃) ∈ LI(Ĩ), (Y, C̃) ∈ LII(Ĩ),
(X ∩ Y )∗ = B̃, (X ∩ Y )♦ = C̃

}

⊆ IntIII(Ĩ).
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Based on the inclusions above, we can conclude

IntIII(Ĩ) =
{

(B̃, C̃) ∈ IF (A)
(X, B̃) ∈ LI(Ĩ), (Y, C̃) ∈ LII(Ĩ),
(X ∩ Y )∗ = B̃, (X ∩ Y )♦ = C̃

}

.

By Tables 2, 3 and 4, Theorems 5 and 6 can be checked.

4.2 Algebraic Structures

Theorem 7. Let (U,A, Ĩ) be a fuzzy formal context. Then there is a homomor-
phic mapping from (LI(Ĩ),∧) to (LIII(Ĩ),∧).
Proof. For (X, B̃) ∈ LI(Ĩ), let ϕ((X, B̃)) = (X,X#), then it can be
checked that (X,X#) ∈ LIII(Ĩ), so ϕ is a mapping from LI(Ĩ) to LIII(Ĩ).
For any (X1, B̃1), (X2, B̃2) ∈ LI(Ĩ), we have (X1, B̃1) ∧ (X2, B̃2) = (X1 ∩
X2, (X1 ∩ X2)∗) and hence ϕ((X1, B̃1) ∧ (X2, B̃2)) = (X1 ∩ X2, (X1 ∩ X2)#).
From ϕ((X1, B̃1)) = (X1,X

#
1 ) and ϕ((X2, B̃2)) = (X2,X

#
2 ), it follows that

ϕ((X1, B̃1)) ∧ ϕ((X2, B̃2)) = (X1,X
#
1 ) ∧ (X2,X

#
2 ) = (X1 ∩ X2, (X1 ∩ X2)#).

Therefore ϕ((X1, B̃1) ∧ (X2, B̃2)) = ϕ((X1, B̃1)) ∧ ϕ((X2, B̃2)), which means
that ϕ is a homomorphic mapping from (LI(Ĩ),∧) to (LIII(Ĩ),∧).

Similar to Theorem 7, the following theorem can be proved.

Theorem 8. Let (U,A, Ĩ) be a fuzzy formal context. Then there is a homomor-
phic mapping from (LII(Ĩ),∧) to (LIII(Ĩ),∧).
Definition 4. Let (U,A, Ĩ) be a fuzzy formal context. For any (x, a) ∈ U × A,
let

Ĩc(x, a) = 1 − Ĩ(x, a)

then Ĩc is a binary fuzzy relation from U to A. The fuzzy formal context (U,A, Ĩc)
is called the complement context of (U,A, Ĩ).

In the following, for the fuzzy formal context (U,A, Ĩ), the operators ∗, �,
and ♦ are also denoted as ∗Ĩ , �Ĩ , and ♦Ĩ , respectively.

Proposition 5. Let (U,A, Ĩc) be the complement context of fuzzy formal context
(U,A, Ĩ). Then for any X ∈ P (U), B̃ ∈ F (A), we have B̃�Ĩc = (B̃c)∗Ĩ , B̃∗Ĩc =
(B̃c)�Ĩ , X♦Ĩc = (X∗Ĩ )c, X∗Ĩc = (X♦Ĩ )c. Where B̃c denotes the complement
of fuzzy set B̃, i.e. B̃c(x) = 1 − B̃(x), x ∈ A, and Xc denotes the complement
of crisp subset X ⊆ U .

Theorem 9. Let (U,A, Ĩ) be a fuzzy formal context. Then (X, B̃) ∈ LI(Ĩ) if
and only if (X, B̃c) ∈ LII(Ĩc).

Proof. For any (X, B̃) ∈ LII(Ĩc), we have X♦Ĩc = B̃ and B̃�Ĩc = X. From
Proposition 3 it follows that X∗Ĩ = (X♦Ĩc )c = B̃c and (B̃c)∗Ĩ = B̃�Ĩc = X.
Therefore (X, B̃c) ∈ LI(Ĩ).

Moreover, for any (X, B̃) ∈ L1(Ĩ), we know X∗Ĩ = B̃ and B̃∗Ĩ = X. Again
by Proposition 3 we have X♦Ĩc = (X∗Ĩ )c = B̃c and (B̃c)�Ĩc = B̃∗Ĩ = X. Thus
(X, B̃c) ∈ LII(Ĩc).
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The following conclusion can be drawn from Theorem 9.

Corollary 1. Let (U,A, Ĩ) be a fuzzy formal context. Then (X, B̃) ∈ LII(Ĩ) if
and only if (X, B̃c) ∈ LI(Ĩc).

Theorem 10. Let (U,A, Ĩ) be a fuzzy formal context. Then LI(Ĩ) is isomorphic
to LII(Ĩc), i.e. LI(Ĩ) ∼= LII(Ĩc).

Proof. For any (X, B̃) ∈ LI(Ĩ), let ϕ((X, B̃)) = (X, B̃c), then according to
Theorem 9 we know that ϕ is a one-to-one mapping from LI(Ĩ) to LII(Ĩc), and
order-preserving apparently. Thus ϕ is a isomorphic mapping between LI(Ĩ) and
LII(Ĩc), i.e. LI(Ĩ) is isomorphic to LII(Ĩc).

Of course, we know that the following corollary holds.

Corollary 2. Let (U,A, Ĩ) be a fuzzy formal context. Then LII(Ĩ) is isomorphic
to LI(Ĩc).

5 Conclusions

Classical concept lattice and rough concept lattices can be generalized into one-
sided fuzzy concept lattices in fuzzy formal contexts. Making use of interval-
valued fuzzy sets, this paper proposed a new kind of crisp-fuzzy concept lattice.
By investigating its properties, it can be found that the operations defining the
crisp-fuzzy concepts of the new concept lattice can be viewed as two types of
rough fuzzy approximation operations. From two aspects of granular and alge-
braic structures, a comparison has been made for it and two existing crisp-fuzzy
concept lattices. Consequently, it can be understood that two the existing crisp-
fuzzy concept lattices are hidden in the new concept lattice, and by synthesizing
two existing crisp-fuzzy concept lattices, the new concept lattice can be gener-
ated. Therefore, the new concept lattice has more information than each of two
existing crisp-fuzzy concept lattices.
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Abstract. Prospect theory-based three-way decision has been success-
fully applied in various fuzzy information systems owing to its excellent
performance in expressing the risk attitude of decision makers. However,
the current prospect theory-based three-way decisions have two following
limitations. On the one hand, they are constrained in processing uncer-
tain continuous data or neglecting the distribution of uncertain fuzzy
numbers. On the other hand, the risk attitudes of decision-makers are not
considered when calculating the conditional probability. To address the
two issues, we propose a normal fuzzy prospect theory-based three-way
decision model and a normal fuzzy ideal solution method. First, since nor-
mal fuzzy numbers can describe the continuous uncertain data subjected
to the normal distribution, we use it to represent the uncertain decision
information, i.e., normal fuzzy outcome matrix, normal fuzzy reference
points. Then, by integrating prospect theory and TOPSIS, we propose
a normal fuzzy ideal solution method to calculate conditional probabil-
ity, which considers the risk attitudes of decision-makers. Finally, the
comparative experiments demonstrate the effectiveness and superiority
of our proposal.

Keywords: Three-way decision · Prospect theory · Normal fuzzy
number

1 Introduction

Three-way decision (3WD) [17,18] mainly deals with uncertain and incomplete
information. 3WD gives the noncommitment decision when the information is
inadequate [14,21,23]. In traditional 3WD model [17], the corresponding losses
for taking different actions are calculated by Bayesian minimum loss, but the
decision-makers’ psychological risk attitudes are ignored. Prospect theory points
out the “bounded rational” behavior of decision makers, which expresses that
people will be risk-averse toward gains and risk chase toward losses [9]. In recent
years, prospect theory has been introduced into 3WD to represent the psycho-
logical risk attitudes, the achievements include 3WD based on various prospect
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theories [11,12,22] and prospect theory-based 3WD in diverse fuzzy environ-
ment [15,20].

Gu et al. [3] presented a prospect theory-based decision framework under
intuitionistic fuzzy environment, Liang et al. [6] studied 3WD in Pythagorean
fuzzy environment, they all focused on dealing with discrete uncertain informa-
tion rather than continuous uncertain information. In practice, there is more
continuous uncertain data in real life and the discretization of it will lead to the
loss of information. Then, Wang et al. [12] presented the 3WD based on third-
generation prospect theory, which transformed Z-numbers into triangular fuzzy
numbers to describe decision information. Triangular fuzzy number can describe
continuous uncertain data but it neglect the distribution of uncertainty, which
results in an insufficiently detailed depiction of uncertainty.

To against the above issues, we observed that normal fuzzy numbers can
describe the uncertain continuous information subjected to normal distribution.
There are many things that obey normal distribution in human activities and
natural environment [16]. For instance, the score of students and the service
life of products both obey normal distribution. Therefore, we proposed nor-
mal fuzzy prospect theory-based three-way decision (NFP3WD) by describing
decision information with normal fuzzy numbers. In addition, previous TOPSIS
methods of calculating conditional probability neglected the risk attitudes of
decision-makers. To this end, we propose a normal fuzzy ideal solution method
to compute conditional probability under normal fuzzy environment without
class label. The contributions of this work are expressed as follows:

• We proposed normal fuzzy prospect theory-based three-way decision method
(NFP3WD) to handle continuous uncertain information with normal distri-
bution.

• A normal fuzzy ideal solution based on TOPSIS and prospect theory is pro-
posed to compute conditional probability, which includes the risk attitudes
of decision-makers.

The rest of this paper is set out as follows. In Sect. 2, we review some funda-
mental concepts and notations of normal fuzzy numbers, 3WD, and prospect the-
ory. Section 3 proposes a normal fuzzy prospect theory-based three-way decision
method. In Sect. 4, we propose a normal fuzzy ideal solution based on TOPSIS
and prospect theory. In Sect. 5, we give an illustrative example, then some com-
parative analyzes are carried out, which verify the effectiveness and superiority
of our proposed method. Section 6 summarizes our study.

2 Preliminaries

2.1 Normal Fuzzy Numbers

Definition 1. [7,13] Suppose Ã is a fuzzy number, if Ã has the following mem-
bership function:

Ã(x) = exp

{
− (x − a)2

σ2

}
, x, a ∈ R, σ > 0, (1)
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then, Ã is a normal fuzzy number, represented as Ã = (a, σ2), and R is a set of
real numbers, a is the mean of Ã and σ2 denotes variance of Ã. Obviously, when
σ = 0, the normal fuzzy number Ã = (a, σ2) degenerates to real number a.

Definition 2. [5,8] E(Ã) is the expectation of normal fuzzy number Ã, which
is defined as:

E(Ã) =

∫ +∞
−∞ xÃ(x)dx∫ +∞
−∞ Ã(x)dx

. (2)

when Ã = (a, σ2), E(Ã) = a.

Definition 3. [5,8] Suppose normal fuzzy numbers Ã = (a, σ2
a), B̃ = (b, σ2

b ), we
can derive:

(1) if a > b, then Ã > B̃;
(2) if a = b, then, when σa = σb, Ã = B̃; when σa < σb, Ã > B̃;
(3) if a < b, then Ã < B̃.

Definition 4. [2] Suppose normal fuzzy numbers Ã = (a, σ2
a), B̃ = (b, σ2

b ), the
distance between Ã and B̃ is defined as:

d(Ã, B̃) =

√
(a − b)2 +

1
2
(σ2

a − σ2
b )2. (3)

2.2 Three-Way Decision

3WD theory divides a universe into three parts reasonably and takes effective
strategies to deal with each part [19]. The two states Ω = {C,¬C} in 3WD
indicate that an object x is in a decision class C or not, respectively. There
are three actions A = {aP , aB , aN} in 3WD. Taking action aP denotes that we
accept x belongs to C and classify x to positive region POS(C); taking action
aB denotes that we classify x into boundary region BND(C); and taking action
aN denotes that we reject x belongs to C and classify x into negative region
NEG(C).

Table 1. Loss function matrix.

C ¬C

aP λPP λPN

aB λBP λBN

aN λNP λNN

Table 1 shows the different loss functions. When an object x ∈ C, the losses
for taking actions ai (i = P,B,N) are λiP , respectively. When x /∈ C, the losses
for taking actions ai are λiN , respectively. Assume that Pr(C|x) and Pr(¬C|x)
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represent conditional probability of x ∈ C and x /∈ C, respectively. Then, based
on Bayesian process, the expected losses for taking three different actions can
be calculated [17], and the decision rules are based on the minimum loss. The
decision rules are simplified as comparing decision thresholds and conditional
probability as follows:

If Pr(C|x) ≥ α, then x ∈ POS(C);
If β < Pr(C|x) < α, then x ∈ BND(C);
If Pr(C|x) ≤ β, then x ∈ NEG(C).

(4)

2.3 Prospect Theory

Prospect theory, proposed by Kahneman and Tversky [4], describes decision mak-
ers’ behaviors under uncertainty and risk. Prospect theory integrates decision
makers’ value perception factor into the decision process, and the risk attitudes
of decision makers are evaluated by value function and weight function.

The value function describes decision makers’ risk attitudes toward gains
and losses, which is an asymmetric S-shaped function. Different decision-makers
may have different reference points, and that may lead to different judgments
of gains and losses. Decision makers show risk aversion toward gains and risk-
chasing toward losses. The value function is shown as follows [10]:

v(Δzk) =

{
(Δzk)μ, Δzk ≥ 0
−θ(−Δzk)υ, Δzk < 0

, (5)

where Δzk = zk − zr, Δzk measures the k-th difference between reference point
zr and the k-th outcome zk. When Δzk ≥ 0, the observed outcome is considered
as a gain relative to the reference point. Conversely, if Δzk < 0, it is perceived
as a loss.

Prospect theory holds that decision-makers always over-weight small proba-
bilities and under-weight large probabilities [10]. Weight function wk is a non-
linear transformation of the probability, the weight function given by Tversky
and Kahneman [10] is shown as follows:

wk =

{
w+(p(Δzk)) =

p(Δzk)
σ

(p(Δzk)σ+(1−p(Δzk))σ)1/σ

w−(p(Δzk)) =
p(Δzk)

δ

(p(Δzk)δ+(1−p(Δzk))δ)1/δ

, (6)

where wk represents the decision weight, and p(Δzk) denotes the actual proba-
bility of Δzk. The influence degree of overweighting and underweighting to gains
and losses are represented through parameters σ and δ, respectively, and they
satisfy 0 < σ, δ < 1.

Prospect theory holds that people prefer the maximum prospect value [11].
Suppose n denotes the number of outcomes, then, the prospect value function is
shown as follows:

V =
n∑

k=1

wkv(Δzk). (7)
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3 A Normal Fuzzy Prospect Theory-Based Three-Way
Decision Method (NFP3WD)

In this section, we represent the decision information with normal fuzzy numbers
and propose the NFP3WD method.

Since prospect theory seeks the maximum prospect value instead of the min-
imum loss, the losses in 3WD are replaced by outcomes in NFP3WD. The out-
come denotes the final state of wealth for taking different actions in different
states. In NFP3WD, the outcome matrix is described by normal fuzzy numbers,
as shown in Table 2, where Z̃ij = (aij , σ

2
ij) (i = P,B,N ; j = P,N) indicates the

normal fuzzy outcomes incurred for taking action i in state j.

Table 2. Normal fuzzy outcome matrix.

C ¬C

aP Z̃PP = (aPP , σ2
PP ) Z̃PN = (aPN , σ2

PN )

aB Z̃BP = (aBP , σ2
BP ) Z̃BN = (aBN , σ2

BN )

aN Z̃NP = (aNP , σ2
NP ) Z̃NN = (aNN , σ2

NN )

Suppose Z̃r = (ar, σ
2
r) represents the normal fuzzy reference point of the r-th

decision maker, if Z̃ij ≥ Z̃r, the outcome Z̃ij is perceived as a gain. Conversely,
if Z̃ij < Z̃r, it is perceived as a loss. According to Definition 4, the distance
between Z̃ij and Z̃r is represented by dij (i = P,B,N ; j = P,N), which can be
computed as follows:

dij = d(Z̃ij , Z̃r) =

√
(aij − ar)2 +

1
2
(σ2

ij − σ2
r)2, (i = P,B,N ; j = P,N). (8)

Based on prospect theory, individuals tend to risk aversion to gains and risk
chasing toward losses, they tend to be more sensitive to losses compared to
gains, which are described by the value function. With the distance dij between
normal fuzzy outcome and reference point obtained as well as the gains and
losses judged, the value functions ṽij (i = P,B,N ; j = P,N) for taking different
actions in different states are computed based on Eq. (5), shown as follows:

ṽij =

{
(dij)μ, Z̃ij ≥ Z̃r

−θ(dij)υ, Z̃ij < Z̃r

, (9)

where μ, υ and θ are suggested to set μ = υ = 0.88, θ = 2.25 after many
psychological experiments [4]. The value function matrix is shown in Table 3.

In this table, the values ṽPP , ṽBP , and ṽNP represent the value function
associated with actions aP , aB , and aN respectively, when x ∈ C. Similarly, the
values ṽPN , ṽBN , and ṽNN represent the value function associated with actions
aP , aB , and aN respectively, when x /∈ C.
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Table 3. Value function matrix.

C ¬C

aP ṽPP ṽPN

aB ṽBP ṽBN

aN ṽNP ṽNN

Next, in the 3WD theory, the conditional probability Pr(C|x) denotes the
probability of x ∈ C. Pr(C|x) + Pr(¬C|x) = 1. Prospect theory suggests that
the probability should be extended to weight functions for gains and losses. The
two different weight functions: wi(Pr(C|x)) (i = P,B,N) corresponding to gains
and wi(Pr(¬C|x)) (i = P,B,N) corresponding to losses are presented as follows:

wi(Pr(C|x)) =
{

w+
i (Pr(C|x)), Z̃iP ≥ Z̃r

w−
i (Pr(C|x)), Z̃iP < Z̃r

,

wi(Pr(¬C|x)) =
{

w+
i (1 − Pr(C|x)), Z̃iN ≥ Z̃r

w−
i (1 − Pr(C|x)), Z̃iN < Z̃r

.

(10)

In fact, the weight functions are nonlinear transformations of conditional
probabilities. Based on Eq. (6), the detailed calculation of weight function
wi(Pr(C|x)) for Pr(C|x) and wi(Pr(¬C|x)) for Pr(¬C|x) are presented as fol-
lows:

wi(Pr(C|x))=
{

Pr(C|x)σ

((Pr(C|x))σ+(1−Pr(C|x))σ)1/σ , Z̃iP ≥ Z̃r

Pr(C|x)δ

((Pr(C|x))δ+(1−Pr(C|x))δ)1/δ , Z̃iP < Z̃r

, i = P,B,N,

wi(Pr(¬C|x)) =
{

(1−Pr(C|x))σ

((1−Pr(C|x))σ+(Pr(C|x))σ)1/σ , Z̃iN ≥ Z̃r

(1−Pr(C|x))δ

((1−Pr(C|x))δ+(Pr(C|x))δ)1/δ , Z̃iN < Z̃r

, i = P,B,N,

(11)

where the parameters are suggested to set σ = 0.61 and δ = 0.69 by Tversky and
Kahneman [4] and the settings are extensively used in the studies corresponding
to prospect theory.

Subsequently, with value functions and weight functions obtained, based on
Eq. (7), the prospect value Ṽ (ai|x) (i = P,B,N) of taking actions aP , aB , and
aN are calculated as follows:

Ṽ (aP |x) = ṽPP wP (Pr(C|x)) + ṽPNwP (Pr(¬C|x));
Ṽ (aB |x) = ṽBP wB(Pr(C|x)) + ṽBNwB(Pr(¬C|x));
Ṽ (aN |x) = ṽNP wN (Pr(C|x)) + ṽNNwN (Pr(¬C|x)).

(12)
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Then, the decision rules based on the maximum prospect value are shown as
follows:

If Ṽ (aP |x) ≥ Ṽ (aB |x) & Ṽ (aP |x) ≥ Ṽ (aN |x), then x ∈ POS(C);

If Ṽ (aB |x) ≥ Ṽ (aP |x) & Ṽ (aB |x) ≥ Ṽ (aN |x), then x ∈ BND(C);

If Ṽ (aN |x) ≥ Ṽ (aP |x) & Ṽ (aN |x) ≥ Ṽ (aB |x), then x ∈ NEG(C).

(13)

In general, the decision rule of three-way decision is simplified to the compar-
ison of decision thresholds and conditional probability Pr(C|x). Wang et al. [11]
have proved that the decision thresholds α, β and γ exist and are unique in
prospect theory-based three-way decisions. Similarly, the decision thresholds α,
β and γ also exist and are unique in our NFP3WD.

Suppose α, β and γ are the intersections between Ṽ (aP |x) and Ṽ (aB |x),
Ṽ (aB |x) and Ṽ (aN |x), Ṽ (aP |x) and Ṽ (aN |x), respectively. Let Ṽ1 = Ṽ (aP |x)−
Ṽ (aB |x), Ṽ2 = Ṽ (aB |x) − Ṽ (aN |x) and Ṽ3 = Ṽ (aP |x) − Ṽ (aN |x). Then, α, β
and γ are the zero points of Ṽ1, Ṽ2 and Ṽ3, respectively. If α > β, the decision
rules are:

If Pr(C|x) ≥ α, then x ∈ POS(C);
If β < Pr(C|x) < α , then x ∈ BND(C);
If Pr(C|x) ≤ β, then x ∈ NEG(C).

(14)

Otherwise, the decision rules are:

If Pr(C|x) ≥ γ, then x ∈ POS(C);
If Pr(C|x) < γ, then x ∈ NEG(C).

(15)

4 The Normal Fuzzy Ideal Solutions for NFP3WD

For the information system without class label, the TOPSIS method can calcu-
late the conditional probability [6]. However, traditional TOPSIS method does
not consider the psychological risk attitudes. Therefore, we integrated prospect
theory with TOPSIS to design a method to compute conditional probability of
normal fuzzy system without class label.

Suppose IS = (U,AT, V, f) is a normal fuzzy information system without
class label, where U = {o1, o2, · · · , om} represents the universe with m objects,
AT = {g1, g2, · · · , gn} denotes the attribute set of normal fuzzy information
system. Then, the weights of attributes are expressed as ω = {ω1, ω2, · · · , ωn}T ,
where ωq (q = 1, · · · , n) represents the weight of attribute gq and satisfies 0 ≤
ωq ≤ 1,

∑n
q=1 ωq = 1. In our normal fuzzy information system, let Ãpq =

(apq, σ
2
pq) (p = 1, · · · ,m; q = 1, · · · , n.) represents the value of the q-th attribute

of the p-th object. The detailed normal fuzzy information system is shown in
Table 4.

In Table 4, assume that all the attributes in normal fuzzy information system
are positive attributes. To eliminate the dimensional effect of attributes, we
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Table 4. Normal fuzzy information system.

g1 g2 . . . gn

o1 Ã11 = (a11, σ
2
11) Ã12 = (a12, σ

2
12) · · · Ã1n = (a1n, σ2

1n)

o2 Ã21 = (a21, σ
2
21) Ã22 = (a22, σ

2
22) · · · Ã2n = (a2n, σ2

2n)

· · · · · · · · · · · · · · ·
om Ãm1 = (am1, σ

2
m1) Ãm2 = (am2, σ

2
m2) · · · Ãmn = (amn, σ2

mn)

perform the following transformation to standardize the values of the attributes:

ãpq =
apq

max1≤p≤m {apq} , σ̃2
pq =

σ2
pq

max1≤p≤m

{
σ2

pq

} · σ2
pq

apq
. (16)

The standardized attribute value is expressed as B̃pq = (ãpq, σ̃
2
pq). In general,

TOPSIS chooses the maximum attribute value as the positive ideal solution
and the minimum attribute value as the negative ideal solution. In NFP3WD,
we determine the two ideal solutions of each attribute by the mean and vari-
ance of the normal fuzzy number. More specifically, the maximum mean and
the minimum variance of each attribute are selected to constitute the positive
ideal solution B̃+

q . And the minimum mean and the maximum variance of each
attribute are selected to construct the negative ideal solution B̃−

q . Then, the pos-

itive ideal solution is expressed as o+ =
{

B̃+
1 , B̃+

2 , · · · , B̃+
n

}
and the negative

ideal solution is expressed as o− =
{

B̃−
1 , B̃−

2 , · · · , B̃−
n

}
, where

B̃+
q = (ã+

q , σ̃2+
q ), ã+

q = max1≤p≤mãpq, σ̃2+
q = min1≤p≤mσ̃2

pq,

B̃−
q = (ã−

q , σ̃2−
q ), ã−

q = min1≤p≤mãpq, σ̃2−
q = max1≤p≤mσ̃2

pq.
(17)

In the TOPSIS method, with the ideal solutions obtained, the distance
between object op and o+ as well as the distance between op and o− can be
computed. Then, the conditional probability of the object op belonging to C can
be calculated based on the above distances.

Based on Eq. (3), the distance d+pq = d(B̃pq, B̃
+
q ) between B̃pq and B̃+

q , and
the distance d−

pq = d(B̃pq, B̃
−
q ) between B̃pq and B̃−

q are calculated as follows:

d+pq = d(B̃pq, B̃
+
q ) =

√
(ãpq − ã+

q )2 +
1
2
(σ̃2

pq − σ̃2+
q )2,

d−
pq = d(B̃pq, B̃

−
q ) =

√
(ãpq − ã−

q )2 +
1
2
(σ̃2

pq − σ̃2−
q )2.

(18)

However, the distances calculated in TOPSIS do not include the risk atti-
tudes. In prospect theory, value functions are utilized to represent the risk atti-
tudes toward gains and losses. Thus, we utilize the value functions of the original
distances as the new distances between objects and ideal solutions.
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Algorithm 1: Decision process of NFP3WD with normal fuzzy ideal solu-
tion.
Require:

Normal fuzzy outcome matrix in Table 2; The normal fuzzy reference points
Z̃r = (ar, σ2

r) of decision makers;
Parameters value in prospect theory: μ = υ = 0.88, θ = 2.25, σ = 0.61 and δ = 0.69;
Normal fuzzy information system U = (U, AT, V, f) in Table 4;

Ensure:
Decision thresholds α, β and γ of each decision-makers;
Conditional probability Pr(C|op) of each object op being in the state C;
Decision results on each object of every decision maker.

1: Calculate the distance dij between Z̃ij and Z̃r by Eq. (8);
2: Calculate the value functions ṽij (i = P, B, N ; j = P, N) for taking different actions in

different states by Eq. (9);
3: Calculate the weight functions wi(Pr(C|x)) and wi(Pr(¬C|x)) by Eq. (11);
4: Calculate the prospect value Ṽ (ai|x) (i = P, B, N) of taking actions aP , aB and aN by

Eq. (12);
5: Calculate α, β and γ by the zero points of Ṽ1, Ṽ2 and Ṽ3.
6: Standardize the normal fuzzy values Ãpq = (apq , σ2

pq) in Table 4 as B̃pq = (ãpq, σ̃2
pq) by

Eq. (16);
7: Determine the two ideal solutions o+, o− and see them as positive reference points and

negative reference points, respectively.
8: Calculate the distance d+pq = d(B̃pq , B̃+

q ) between B̃pq and B̃+
q , and the distance

d−pq = d(B̃pq , B̃−
q ) between B̃pq and B̃−

q by Eq. (18);
9: Calculate the value functions of d+pq and d−pq by Eq. (19);
10: Calculate the new distance between object op and o+, and the new distance between

object op and o− by Eq. (20);
11: Obtain the conditional probability of objects in normal fuzzy information system

according to the relative closeness by Eq. (21);
12: Obtain the decision results based on by Eq. (14) and Eq. (15).

According to prospect theory, let o+ =
{

B̃+
1 , B̃+

2 , · · · , B̃+
n

}
be the positive

reference point of decision maker and o− =
{

B̃−
1 , B̃−

2 , · · · , B̃−
n

}
be the negative

reference point of decision maker. For attribute gq, let B̃+
q and B̃−

q be the positive
reference point and negative reference point, respectively. Compared to B̃+

q , gq

represents a loss, and people will show risk chasing toward it conversely, gq

represents a gain in contrast to B̃−
q , and people will show risk averse toward it.

Then, the value functions of original distance d+pq and d−
pq are calculated to

represent the new distances that take into account decision-maker’s risk atti-
tude. Because all attributes in our normal fuzzy information system are positive
attributes, we know that all B̃pq ≤ B̃+

q and all B̃pq ≥ B̃−
q . Thus, the value

functions are computed as follows:

ṽ+
pq = −θ(d+pq)

υ, ṽ−
pq = (d−

pq)
μ, (19)

where ṽ+
pq denotes the value function of d+pq, and ṽ+

pq ≤ 0; ṽ−
pq denotes the value

function of d−
pq, and ṽ−

pq ≥ 0.
Since each attribute in our information system has different weights, the new

distance between object op and o+, as well as the new distance between object
op and o− are calculated as follows:
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ṽ+
p =

n∑
q=1

ωq ṽ
+
pq, ṽ−

p =
n∑

q=1

ωq ṽ
−
pq, (20)

where ṽ+
p denotes the new distance between object op and the positive ideal

solution o+; ṽ−
p denotes the new distance between op and the negative ideal

solution o−.
Since the relative closeness of op to o+ is a good reflection of the conditional

probability [1,6]. Thus, we compute the conditional probability by relative close-
ness as follows:

Pr(C|op) = RC(op) =
ṽ−

p∣∣ṽ+
p

∣∣ + ṽ−
p

. (21)

The whole decision process of NFP3WD with normal fuzzy ideal solution is
shown in Fig. 1. Algorithm 1 describes the pseudocode of our proposed methods.
In Algorithm 1, the decision thresholds are calculated through steps 1 to 5,
conditional probability is calculated through steps 6 to 11, and step 12 obtains
the decision results.

Fig. 1. Decision procedure of NFP3WD with normal fuzzy ideal solution.
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5 Illustrative Example

In this section, we apply our proposed methods to make decisions about invest-
ment projects.

5.1 Background Description

There are six investment projects represented as U = {o1, o2, o3, o4, o5, o6}.
These investment projects have four attributes represented as AT = {g1, g2, g3,
g4}, denote the “Safety”, “Efficiency” , “Marketing environment” and “Team capa-
bility” of investment projects. All four attributes are positive and their weights
are ω = {0.1, 0.4, 0.2, 0.3 }T . The attribute values are described by normal fuzzy
numbers, the normal fuzzy information system of the six investment projects is
shown in Table 5.

Table 5. Normal fuzzy information system.

Safety Efficiency Marketing environment Team capability

o1 (15, 9) (17, 13) (36, 30) (45, 31)

o2 (16, 7) (22, 11) (43, 24) (52, 31)

o3 (16, 8) (23, 12) (46, 25) (54, 30)

o4 (14, 9) (26, 12) (38, 24) (45, 30)

o5 (13, 8) (22, 11) (38, 22) (44, 35)

o6 (10, 17) (18, 22) (27, 30) (32, 31)

The normal fuzzy outcome matrix of investment projects is shown in Table 6.
There are 10 investors denoted as E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}. Each
investor has different expectations for the outcome of an investment project,
which can be denoted by reference points. The normal fuzzy reference points for
10 investors are shown in Table 7.

Table 6. Normal fuzzy outcome matrix.

C ¬C

aP Z̃PP = (12, 7) Z̃PN = (5, 12)

aB Z̃BP = (9, 8) Z̃BN = (8, 9)

aN Z̃NP = (6, 10) Z̃NN = (11, 6)

Table 7. Normal fuzzy reference points.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

Z̃r (4, 13) (4, 12) (6, 11) (6, 10) (8, 9) (8, 8) (10, 7) (10, 6) (12, 5) (12, 4)



474 Y. Li et al.

In this example, we need to give the actions that each investor should take
for each project. Investors are usually bounded-rational when making decisions.
Therefore, the above decision-making problem can be solved using our NFP3WD
method and normal fuzzy ideal solution method.

5.2 Decision Processes and Decision Results

Based on steps 1 to 5 in Algorithm 1, the decision thresholds are obtained as
shown in Table 8.

Table 8. Decision thresholds of NFP3WD.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

α 0.6370 0.6154 0.7929 0.8153 0.8479 0.8156 0.6206 0.5360 0.6296 0.6746
β 0.5354 0.5204 0.5512 0.4776 0.2769 0.3861 0.5153 0.5740 0.5662 0.5628
γ 0.5865 0.5674 0.7029 0.6948 0.5984 0.5945 0.5651 0.5557 0.5953 0.6136

Fig. 2. Decision thresholds of NFP3WD

The figure depicted in Fig. 2 illustrates the changes in decision thresholds as
the reference points undergo variation, the reference point of investor increase
from e1 to e10. By Fig. 2, it can be observed that variations in reference points
significantly affect α and β, but have little impact on γ. As the reference point
increases, α initially increases and then decreases, while β initially decreases and
then increases. On the other hand, γ remains relatively stable throughout the
variations in reference points.

Then, conditional probabilities of six investment projects are calculated
according to steps 6 to 11 in Algorithm 1, as shown in Table 9.

The decision results by step 12 of Algorithm 1 are presented in Table 10.
Through Table 10, the decision results will change with the variation of normal
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Table 9. Conditional probabilities of projects.

o1 o2 o3 o4 o5 o6

Pr(C|op) 0.4008 0.7192 0.8082 0.6785 0.5186 0.0139

fuzzy reference point Z̃r = (ar, σ
2
r). In addition, with the increase of normal

fuzzy reference points, BND(C) becomes larger first and then gets smaller,
while POS(C) and NEG(C) are on the contrary. This variation trend is the
same as in the P3WD method [11].

Table 10. Decision results of investment projects.

POS(C) BND(C) NEG(C)

e1 (4, 13) {o2, o3, o4} ∅ {o1, o5, o6}
e2 (4, 12) {o2, o3, o4} ∅ {o1, o5, o6}
e3 (6, 11) {o3} {o2, o4} {o1, o5, o6}
e4 (6, 10) ∅ {o2, o3, o4, o5} {o1, o6}
e5 (8, 9) ∅ {o1, o2, o3, o4, o5} {o6}
e6 (8, 8) ∅ {o1, o2, o3, o4, o5} {o6}
e7 (10, 7) {o2, o3, o4} {o5} {o1, o6}
e8 (10, 6) {o2, o3, o4} ∅ {o1, o5, o6}
e9 (12, 5) {o2, o3, o4} ∅ {o1, o5, o6}
e10 (12, 4) {o2, o3, o4} ∅ {o1, o5, o6}

5.3 Comparative Analysis

We compare our NFP3WD method with traditional 3WD model [17] and P3WD
model [11] by calculating the decision thresholds of investment projects in Sect. 5
using these three methods. The traditional 3WD model [17] makes decisions
based on minimum loss, and the loss matrix is represented by crisp numbers.
P3WD model [11] incorporates decision-makers risk attitudes using prospect
theory, but its outcome matrix is still represented by crisp numbers rather than
fuzzy numbers. The calculated decision thresholds of the three methods are
shown in Fig. 3.

From Fig. 3, we find that the decision threshold does not change within the
ten investors in traditional 3WD model. In the P3WD model, when decision-
makers have the same expectation ar in reference points, the corresponding
values of decision thresholds do not change with the change of σ2

r in the reference
points. While in our NFP3WD method, the decision threshold changes with
both the variations of ar and σ2

r in normal fuzzy reference points. These results



476 Y. Li et al.

Fig. 3. Decision thresholds of three models.

indicate that our NFP3WD method performs better on considering decision-
makers’ uncertain preferences.

In addition, our NFP3WD method can handle the continuous uncertain deci-
sion information with normal distribution. More, our normal fuzzy ideal solu-
tion method combined TOPSIS and prospect theory, which takes into account
decision-makers’ risk attitudes. The comparison of our proposed method with
other methods is shown in Table 11.

Table 11. The comparative analysis with other methods.

P3WD [11] Method in [12] Method in [3] Ours

Maximum-prospect value � � � �
Continuous uncertain data � �
Distribution of uncertainty �
Ideal solution � �
Risk attitudes in Pr(X|[x]) �

6 Conclusion

In this paper, we present a normal fuzzy prospect theory-based three-way deci-
sion method, in which we utilize normal fuzzy numbers subjected to normal dis-
tribution to represent the continuous uncertain decision information. The other
is that we design a normal fuzzy ideal solution method to estimate conditional
probability in normal fuzzy information system without class label, which con-
siders the risk attitudes of decision-makers. In the end, an illustrative example
and comparative analysis verify the effectiveness and superiority of our proposed
methods.
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Abstract. Uncertainty-based sampling is one of the most successful and
commonly used techniques in active learning. The key element of this
approach is an uncertainty function that measures the informativeness of
cases from the data pool and is one of the main query selection criteria.
In this paper, we investigate the mathematical properties of popular
uncertainty functions. We also propose a new family of functions that
are inspired by Dempster-Shafer’s theory of evidence. Finally, we conduct
a series of experiments in which we test the proposed functions against
commonly used benchmarks. We argue that our approach is a safe choice
for real-life active learning applications.

Keywords: active learning · uncertainty-based sampling · theory of
evidence

1 Introduction

Modeling uncertainty based on the probability distribution outputs of machine
learning models is a complex task. Typically, the uncertainty is measured with
respect to a single decision class [1], which is supposed to be the final model’s
output for a given input object (usually the class with the maximum posterior
probability, sometimes put against the prior). However, in some applications,
such as e.g. active learning, it is needed to measure the uncertainty of the whole
distributions (to assess the uncertainty of particular objects) rather than focus
on the most probable classes.

In this paper, we employ the mathematical apparatus taken from Dempster-
Shafer’s theory of evidence [16] to tackle this problem. That theory has been
used with success in multiple practical applications for reasoning in state of
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uncertainty [3] including active learning applications. In that theory, the so-
called belief and plausibility functions are considered for arbitrary subsets of
values – in our case, the subsets of decision classes. The belief and plausibility
functions are calculated from the so-called basic probability assignments (b.p.a.’s
in short; also called the mass functions). Herein, our goal is to define the b.p.a.’s
in such a way that the corresponding belief and plausibility functions describe
the (un)certainty of decision making. Existing work in the field of active learning
using evidence theory focuses on approaches specialized to particular model fam-
ilies or model ensembles. J. Vandoni et al. [15] used the evidence theory b.p.a.
combination rule to aggregate beliefs of multiple SVM classifiers and reason
on the uncertainty of such combinations. The authors propose how to incorpo-
rate the belief-based entropy, ignorance, and conflict measures into the query-
by-committee active learning algorithm to obtain better results for pedestrian
detection based on binary classification. P. Hemmer et al. [10] used the evi-
dence theory-based neural network with Dirichlet distribution as the last layer
instead of softmax to measure the uncertainty of predictions in the active learn-
ing setup. A. Hoarau et al. [11] proposed a novel version of the evidence-based
KNN that can work on b.p.a. instead of precise labels. All of the known to us
and referenced approaches, if used on hard labels for training, assign mass only
to singleton classes or the set of all classes for a single classifier, therefore they
do not lead to better expression power than the standard probabilities for the
uncertainty-based active learning sample selection. In contrast, in this work, we
propose model agnostic mappings that assign mass to multi-element sets, suit-
able even for non-ensemble models. Proposed approaches might be extended to
ensembles using one of the existing combination methods to obtain finer-grained
b.p.a and possibly even better uncertainty-measuring capabilities.

Our intuition is that the b.p.a.’s designed for this task should reflect the
differences between the most probable and the second/third/etc. most probable
decision classes. For example, in the literature there is often used, so-called,
margin sampling [13] measure, equal to p1 − p2, whereby p1 and p2 denote the
posterior probabilities of the most probable decision class (let us call it class
#1) and the second most probable decision class (class #2). This measure is
designed to reflect the certainty of reasoning about class #1 given the fact that
class #2 is “right behind it”. Now, let us consider the third most probable class
#3 with probability p3. We claim that the difference p2 − p3 should be treated
analogously to p1 − p2, but now in the context of classes #1 and #2 against all
the others, and so on.

The above discussion leads us toward defining positive b.p.a.’s only for the
subsets of the form {class #1}, {class #1, class #2}, {class #1,class #2,class
#3} and so on. In the remainder of this section, i.e., Subsects. 1.1 and 1.2,
we formulate definitions and further discuss our intuition on the uncertainty
description in the evidence theory. Next, in Sect. 3, we show examples of uncer-
tainty measures that follow this intuition. First, however, in Sect. 2 we provide
more basic facts about functions proposed mass functions, later referenced as
m� and mh. Finally, in Sect. 4 we evaluate the proposed uncertainty measures
in an active learning experimental setup.
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1.1 Definitions

There may be multiple classes with the same posterior probability, therefore we
formalize the desired family of such subsets as follows:

Definition 1. For a given n-dimensional probability distribution p on a set of
events V and corresponding descending sequence p of all unique positive proba-
bility values in that distribution p1 > p2 > ... > pk > 0, where k ≤ n. We define
a descending (in sense of inclusion) sequence of sets Xp

1 ⊂ Xp
2 ⊂, ... ⊂ Xp

k , such
that

Xp
i = {#j | pj ≥ pi} (1)

for every i in 1, ..., k,. We will call those Xp
i ⊆ V sets the layered sets and denote

the whole sequence as Xp.

There are different ways of using the quantities of the form p1 − p2, p2 − p3,
generally pi − pi+1, to provide the subsets Xp

1 , ...,Xp
k with their b.p.a.’s. In this

paper, we consider two such examples as defined below. The reasons for calling
them pyramidal and height ratio mass functions will become clear in further
sections. To simplify further notation, we will consider pk+1 = 0, which allows
for the natural definition of corner cases of mass assigned to Xp

k .

Definition 2. For a given probability distribution p and corresponding layered
sets Xp, we define a pyramidal mass function m� : 2V → [0, 1] as:

m�(X
p
i ) = (pi − pi+1) · |Xp

i | for i = 1, ..., k,

m�(X) = 0 for any otherX ⊆ V.
(2)

The pyramidal mass function assigns each layered set a value corresponding
to the size of this set multiplied by the size of the “step” in the ordered probability
distribution, i.e. for the layered set Xp

i , the difference between the i-th largest
probability and the next one.

Definition 3. For a given probability distribution p and corresponding layered
sets Xp, we define a height ratio mass function mh : 2V → [0, 1] as:

mh(X
p
i ) =

(pi − pi+1)
p1

for i = 1, ..., k,

mh(X) = 0 for any otherX ⊆ V.

(3)

Height-ratio mass function assigns each layered set a value corresponding
only to the size of the “step” in the ordered probability distribution normalized
by the largest probability in the distribution. It differs from the pyramidal mass
as it does not take into account the size of the set in the assigned values, i.e.,
the value assigned to the set Xp

i is proportional to the difference between i-th
largest probability and the next one.

As one can easily check, both m� and mh are valid b.p.a.’s as we have∑
X⊆V m�(X) =

∑
X⊆V mh(X) = 1. Moreover, both of them can be called the
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certainty assignments, because they label the corresponding subsets with the
increasing levels of certainty that it is safe to infer about the values in those
subsets.

Let us now recall the formulas for the belief and plausibility functions, defined
for an arbitrary b.p.a. m:

Bel(X) =
∑

A|A⊆X

m(A) Pl(X) = 1 − Bel(X) =
∑

A|A∩X �=∅
m(A) (4)

where X is a complement of set X. These functions, when computed using our
m� and mh, provide two alternative interpretations of the extent in which we
are certain about particular subsets of decision values, and on the other hand,
we are certain that we do not infer with classes outside those subsets.

1.2 Uncertainty Description in Evidence Theory

Functions Bel and Pl, computed based on b.p.a.’s m� and mh, can be a useful
tool that supports decision making. In particular, the differences of the form
Pl(X) − Bel(X) can be regarded as the measures of uncertainty of decision
making about X ⊆ V . In [14], it was proven that the average value of the
differences between Pl and Bel for arbitrary subsets can be expressed in terms
of the cardinalities of the sets assigned with b.p.a.’s, namely:

1
2|V |

∑

X⊆V

(Pl(X) − Bel(X)) = 1 −
∑

X⊆V

m(X) · 2−|X|+1 (5)

This leads us to the first idea of the uncertainty measure which can be used
when assessing posterior probability distributions, namely the exponent evidence
function introduced later in Eq. (10). However, one may operate with a broader
family of uncertainty measures based on such b.p.a.’s, whereby the fundamen-
tal intuition is that the uncertainty grows, if high values of b.p.a.’s begin to
correspond to the higher-cardinality subsets of decision classes.

2 Interpretation

To better explain the intuition behind the mass functions we visualize them in
Fig. 1 and Fig. 2. As visualized in Fig. 1, the m� assigns mass corresponding
to horizontal slices of the probability histogram, which might be thought of as
layers of a pyramid if we consider ordering of the probabilities with larger values
in the middle instead of on the beginning of the chart. The mass from one layer
is assigned the set of all classes from the appropriate layered set, i.e., which have
bar on the same height or higher than the considered probability value. This is
why we call m� the pyramidal mass function.

For a machine learning model prediction this can be viewed as simplifica-
tion that all of the classes with same posterior probability value are undecidable



On Several New Dempster-Shafer-Inspired Uncertainty Measures Applicable 483

Fig. 1. Pyramidal mass function visualization. In this example a mass marked with
green is assigned to the set of classes Xp

3 = {#1,#2,#3,#4}. It is worth noting that
class #4 is included in this set as it has exactly the same probability as class #3.

for the model, i.e. model cannot distinguish in any way to which class from
those the object should be assigned. In such abstraction the posterior proba-
bilities returned by the model are viewed only from the perspective of differ-
ences. Specifically, the mass assigned to a class #1, may be interpreted as the
probability with which this class can be distinguished from the second most
probably class #2. If we take for example the following probability distribution
p({#1}) = 0.4, p({#2}) = 0.2, p({#3}) = p({#4}) = 0.15, p({#5}) = 0.1 the
mass assigned to the sets are as follows:

m�({#1}) = 0.2,
m�({#1,#2}) = 0.1,
m�({#1,#2,#3,#4}) = 0.2,
m�({#1,#2,#3,#4,#5}) = 0.5.

The above example shows, that such construction may lead to counter-intuitively
large mass being assigned to sets with many classes in comparison to the mass
assigned to the dominant class in original probability distribution. This leads us
to the second mass function mh, which may lead to more intuitive values.

Visualization of the height ratio mass function can be viewed in Fig. 2. mh

assigns mass corresponding to the ratio of the height of the layer and the largest
probability. This can also be thought of as the height of one “step” in a sorted
histogram to the height of the largest bar. The division by largest probability is
in fact a normalization factor to a correct b.p.a. - without it, assigned masses,
i.e., pi − pi+1 sum just to the largest probability value p1. Once again, this mass
is assigned to the whole layered set, i.e., all classes that have the same or higher
probability. For the previously-mentioned example, p({#1}) = 0.4, p({#2}) =
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Fig. 2. Height ratio mass function visualization. In this example, a mass marked with
blue divided by the area of red is assigned to the set of classes Xp

3 = {#1,#2,#3,#4}.
This might be also viewed as a ratio of blue and red lines with arrows next to the
appropriate bars. It is worth noting that class #4 is included in this set as it has
exactly the same probability as class #3. (Color figure online)

0.2, p({#3}) = p({#4}) = 0.15, p({#5}) = 0.1, this leads to the following mass
assignments:

mh({#1}) = 0.5,
mh({#1,#2}) = 0.125,
mh({#1,#2,#3,#4}) = 0.125,
mh({#1,#2,#3,#4,#5}) = 0.25.

This function does not include the size of the set in the definition, only the
difference between the probability values and their relation to the largest proba-
bility value. This leads to b.p.a.’s strongly connected to the original distribution,
which might be easier to reason on and might lead to more intuitive uncertainty
measures.

Moreover, both of the proposed mass functions assign mass to groups of
classes, allowing us to reason based on not only the values but also the sizes of
the groups, therefore to better model the spread of the distribution.

In most basic 2 class setup, i.e. V = {#1,#2} proposed mass function for-
mulas lead to the following simplified equations:

m�({#1}) = p1 − p2

mh({#1}) = 1 − p2
p1

which correspond to the formulas of well-known active learning measures: margin
sampling and ratio of confidence [9].
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3 Uncertainty Measures

In this section, we display examples of uncertainty measures built upon proposed
mass functions. As mass concentrated in sets of smaller cardinalities indicate the
confidence, all of the proposed functions base on the mass values and sizes of sets.
We have prepared those functions without basing on the internals of our b.p.a.
methods therefore we strongly believe that the same functions might be relevant
for other b.p.a. At the same time as those are only the examples other interesting
uncertainty measures might be constructed with proposed b.p.a. methods. To
better show the similarities and differences of the proposed approach we visualize
them on 2 dimensional simplex and compare the functions with classical model
agnostic measures, i.e. least confidence, margin sampling, entropy and confidence
ratio.

3.1 Classical Measures

For simplicity of notation we will denote max
i

(p) as a i-th maximal value in
probability distribution p.

1. Least confidence
fleast(p) = 1 − max

1
(p) (6)

2. Margin sampling

fmargin(p) = 1 − (max
1

(p) − max
2

(p)) (7)

3. Confidence ratio
fratio(p) =

max2(p)
max1(p)

(8)

4. Entropy
fentropy(p) = −

∑

pi∈p

p log(p) (9)

The visualization of the values assigned by each of these uncertainty measures
for 3 class classification problem in the form of a 2d simplex is available in Fig. 3.
All measures obtain largest value in the center of the simplex corresponding to
the uniform distribution, which is expected behavior for the balanced problems.
Characteristic “crosses” are visible for the ratio and margin measures, which
corresponds to the similar uncertainty values for samples in those areas, even
if the probability distribution wanders off from the uniform distribution to the
edge at right angle.

3.2 Evidence-Based Measures

Evidence based measures make use of both value of mass assigned to a particular
set of classes and the cardinality of the set, therefore they have a more natural
ability to express the spread of the distribution. Using this fact we propose the
following exemplary functions:
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1. Exponent evidence

fexp(p) = 1 −
∑

Xp
i ∈Xp

m(Xp
i ) �=0

m(Xp
i ) · 2−|Xp

i |+1 (10)

2. Large exponent evidence

flarge_exp(p) = 1 −
∑

Xp
i ∈Xp

m(Xp
i ) �=0

m(Xp
i ) · 4−|Xp

i |+1 (11)

3. Log divide evidence

flog_div(p) = 1 −
∑

Xp
i ∈Xp

m(Xp
i ) �=0

m(Xp
i )

log(|Xp
i | + ε)

(12)

where ε = 1e−12 is small constant to make this function numerically defined
for |Xp

i | = 1.
4. Log plus evidence

flog+(p) =
∑

Xp
i ∈Xp

m(Xp
i ) �=0

m(Xp
i ) log(|Xp

i | + 1). (13)

Those uncertainty measures might be used together with different mass func-
tions and therefore lead to various properties of the active learning selection. The
measures are visualized together with pyramidal mass function in Fig. 4 and with
height ratio mass function in Fig. 5. It is worth noting that some of the visu-
alization correspond to known classical measures, e.g. Log divide evidence with
pyramidal uncertainty looks similar to margin sampling and log divide for height
ratio visualization looks similar to confidence ratio. Of course, as the evidence
measures take into account all of the classes, this correspondence might not be
the case for problems with higher number of classes. Moreover, exponent evi-
dence with height ratio b.p.a. might be viewed as a generalization of margin
sampling to include a larger number of classes as it takes into account distances
between descending pairs of probabilities with weighting corresponding to the
size of the set, which is equivalent to indication which pair is used in the com-
putation. Log plus evidence is a slight modification of one of known entropy
counterparts in the Dempster-Shafer theory [7], addition of 1 in the logarithm
argument softens the difference between weights of values corresponding to sets
of larger sizes.

From our perspective, the exponent height ratio evidence measures should be
given particular attention. Based on empirical inspection for a three-class sce-
nario, they have intuitive properties that, in our opinion, a good active learning
measure should have, i.e.:
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Fig. 3. Visualization of classical uncertainty measures for 3 class scenario presented on
2d simplex. High uncertainty points are indicated with yellow and when the uncertainty
decreases color changes to dark blue. Each plot is done with 15 color levels, this allows
to examine points with the same value, i.e. on the “lines” better. Numbers rotated
to one of the vertices represent the distance from this vertex, which correspond to
probability of particular class in this point. (Color figure online)

– The uncertainty values are increasing towards the middle of of the simplex,
therefore when we follow the gradient from any point in the simplex we should
steadily approach the middle.

– The uncertainty values decrease most toward the nearest simplex vertex.

A final important aspect that should be kept in mind is that proposed mass
functions are similar at their core, therefore a mapping from one to another can
be easily done in the uncertainty measure formula using the cardinality of the
class set and the largest probability.

4 Experiments

To validate the proposed mass functions and based on them uncertainty measures
a series of active learning experiments has been performed. A classical active
learning setup has been employed, i.e.:
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Fig. 4. Visualization of evidence based pyramidal uncertainty measures for 3 class
scenario presented on 2d simplex. High uncertainty points are indicated with yellow
and when the uncertainty decreases color changes to dark blue. Each plot is done with
15 color levels, this allows to examine points with the same value, i.e. on the “lines”
better. Numbers rotated to one of the vertices represent the distance from this vertex,
which correspond to probability of particular class in this point. (Color figure online)

1. Each dataset has been split to a training pool and a holdout test set for the
purpose of evaluation. The split was performed with stratification based on
the label of samples.

2. An initial training set has been chosen at random, but the same one for every
uncertainty measure to make the evaluation more deterministic.

3. Machine learning model has been trained on the training set and evaluated
on the test set.

4. An iterative active learning process has been simulated for each uncertainty
measure:
(a) One sample, with highest uncertainty, has been chosen in each iteration

using uncertainty measure and added to the training set.
(b) Machine learning model has been trained on the training set.
(c) Obtained model has been evaluated on the test set.
(d) The steps 4a–4c are repeated until desired number of samples is chosen.

The parameters of the evaluation for each dataset are available in Table 1.
Each dataset has been split in half for the testing purposes. The active learning
procedure, from step 2 has been also repeated 10 times to make the evaluation
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Fig. 5. Visualization of evidence based height ratio uncertainty measures for 3 class
scenario presented on 2d simplex. High uncertainty points are indicated with yellow
and when the uncertainty decreases color changes to dark blue. Each plot is done with
15 color levels, this allows to examine points with the same value, i.e. on the “lines”
better. Numbers rotated to one of the vertices represent the distance from this vertex,
which correspond to probability of particular class in this point. (Color figure online)

more independent from random sampling of initial training set. Balanced accu-
racy has been used as evaluation metric, as it is easily interpretable and suitable
for both balanced and imbalanced datasets. For each experiment exactly 100
samples have been drawn in an active manner. RandomForestClassifier from
scikit-learn [12], with fixed initial random seed and other parameters set to
default values, has been used as the machine learning model.

The following datasets has been used for the evaluation:

– vowel [6] - a dataset with task of recognition of steady state vowels of British
English based on features extracted from speech

– pendigits [2] - a dataset of tabular features retrieved from handwritten digits
using a pressure sensitive tablet, with the task of digits classification

– letter [8] - a dataset of tabular features retrieved from black-and-white rect-
angular pixel displays, e.g. statistical moments and edge counts, with the task
of letters classification

– car [5] - dataset with hierarchical structure describing car properties with
decision problem of car purchase evaluation
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Fig. 6. Visualization of active learning experiments results on vowel and car datasets.
The y-axis of each plot features balanced accuracy metric, the x-axis features number
of iterations of active learning loop. The plot display average across 10 experiments,
values in the legend denote an average across all loop iterations for a given measure
and standard deviation across the experiments. To maintain readability of the plots,
evidence based uncertainty measures have been divided according to mass function
used to obtain the b.p.a. Plots on the left display the pyramidal mass based measures
and plots on the right height ratio based. Classical measures have been added to each
plot for common reference.

Experiment results are visible in Figs. 6 and 7. The summary of the mean
ranks obtained by each uncertainty measure across the datasets is available in
Table 2. Most of the proposed evidential uncertainty measures behave similarly.
They were worse than margin and ratio of confidence on the letter dataset but
better than entropy and least confidence. The same case was for the pendigits
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Fig. 7. Visualization of active learning experiments results on letter and pendigits
datasets. The y-axis of each plot features balanced accuracy metric, the x-axis features
number of iterations of active learning loop. The plot display average across 10 exper-
iments, values in the legend denote an average across all loop iterations for a given
measure and standard deviation across the experiments. To maintain readability of
the plots, evidence based uncertainty measures have been divided according to mass
function used to obtain the b.p.a. Plots on the left display the pyramidal mass based
measures and plots on the right height ratio based. Classical measures have been added
to each plot for common reference.

dataset. What is interesting, margin and ratio of confidence behaved exactly
the same for this 2 datasets. For the vowel dataset, least confidence obtained
the best results followed evidence based measures and entropy, with margin and
confidence ratio on the other side of the spectrum. In the experiments on the
car dataset entropy with pyramidal evidence came out with best values, they
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Table 1. Parameters of active learning experiments setup. Each row indicates a dif-
ferent dataset. For each dataset exactly 100 iterations have been performed. The size
of initial training set depends on the dataset size.

Dataset # classes # features initial size training pool test size

vowel 11 12 100 495 495
pendigits 10 16 5 5496 5496
letter 26 16 10 10 000 10 000
car 4 6 100 864 864

were followed with least confidence and height ratio evidence. For this dataset,
margin and confidence ratio measures were last. Those results suggest that sim-
ilar situation as with no free lunch theorem occurs for active learning uncer-
tainty measures, i.e. there might be no uncertainty measure that is always the
best. Nevertheless, experiments have indicated that proposed evidential mea-
sures, especially pyramidal exp and pyramidal large exp are the safest choice
with average rank equal to 5.0, followed by height ratio exp with mean rank
5.25.

Table 2. Average ranks across all datasets obtained by uncertainty measures. The
lower rank the better, in case of a tie an average of consequent ranks was given to the
measures. The lowest average rank is marked with bold.

Classical Measure Mean rank Measure Pyramidal
mean rank

Height ratio
Mean rank

Entropy 9.25 Exp 5.0 5.25
Least confidence 8.0 Large Exp 5.0 6.25
Margin 6.25 Log divide 5.25 7.5
Confidence ratio 6.75 Log plus 8.25 6.75

5 Conclusions

In this paper, we explored the concept of uncertainty-based query selection, a
widely used approach in active learning. Our primary focus was on the math-
ematical properties of uncertainty functions used in this approach. Inspired by
Dempster-Shafer’s theory of evidence, we introduced a novel family of uncer-
tainty functions. These functions are based on the concept of basic probability
assignments (b.p.a.) and belief and plausibility functions derived from them.
Our goal was to establish a b.p.a. that accurately reflects the uncertainty of
decision-making processes. We also introduce additional examples of uncertainty
measures that align with the intuition that uncertainty grows when high b.p.a.
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values correspond to larger subsets of decision classes. The paper provides a
comprehensive exploration of these measures and their properties.

The proposed uncertainty measures are then put to the test through a series
of experiments using active learning benchmarks. The findings suggest that while
there is no universally best uncertainty measure, the proposed evidential mea-
sures, particularly those labeled as pyramidal exp and pyramidal large exp, con-
sistently perform well across datasets. These measures are identified as reli-
able choices for active learning applications. It shows that uncertainty functions
inspired by the evidence theory are a plausible choice for real-life applications
and should be further studied in this context.

Additionally, we have verbalized our intuition describing desired properties
of a good uncertainty measure. The formalization of those properties with math-
ematical apparatus and relevant experiments supportive the intuition remains a
future work. To achieve that, one might consider an extension of the lattice and
entropy theory described by D. Bianucci and G. Cattaneo [4].
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Abstract. J. Medina and J. Ruiz-Calvino presented Fuzzy Formal Con-
cept Analysis via multilattice (M -FCA for short) as a fuzzy generaliza-
tion of Formal Concept Analysis with multilattice as underlying set of
truth degree. The truth degrees are not always linear or the existence of
a least upper bound of two elements are no longer required, but there
is a possibility of having minimal upper bounds, and dually. Hence, M -
FCA is a more flexible than Fuzzy Formal Concept Analysis (L-FCA).
We investigate formal M -concepts with rough intents and, get a gener-
alization of E. Bartl and J. Konecny work. First, we define appropriate
concept forming operators and give their properties. Next, we show that
the concepts in the new framework form a complete multilattice.

Keywords: Multilattice · Rough set Theory · Formal concept
analysis · Fuzzy sets

1 Introduction

Rough set theory (RST) is a mathematical tool for studying information systems
with inexact, uncertain or fuzzy information. It was developed by Pawlak [27]
in the 80ies. In RST, data are analyzed by approximating sets, usually based on
an equivalence relation.

Fuzzy set theory (FST) is another tool for studying imprecise information. It
evaluates the degree to which an element belongs to a set. The set of membership
degrees could be the real unit interval [0, 1] or even a residuated lattice.

The need to combine RST and FST to handle uncertain or imprecise data
arose almost naturally. The first work in this direction was proposed by Dubois
and Prade [11], where they used the real unit interval as the set of membership
degree. Radzikowska [23] investigated L-rough sets where the set of truth degrees
is a residuated lattice L.

Formal Concept Analysis (FCA) is a tool for data analysis based on lattice
theory. FCA was introduced in 1982 by Rudolph Wille [25]. The mathematical
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foundations are documented in [14]. In FCA-stteing, the information is described
by a set of objects, a set of attributes and an incidence relation indicating if an
object has an attribute. We call this a formal context. Formal concepts can
then be derived from the formal context and form a complete lattice, when
ordered by their subsumption relation.

When analyzing data in real life, we might face situations where the incidence
relation is imprecise. Burusco and Fuentes-Gonzáles [5] proposed a fuzzy gener-
alization of FCA, by replacing the incidence relation by a fuzzy relation encoding
the vagueness. But some useful properties such as extensity of concept-forming
operators were missing in their approach. Bĕlohlávek [3] developed fuzzy FCA
further, using residuated lattices as set of truth values, and a different approach
in constructing the concept forming operators. Lattices structures required the
existence of least upper bound and greatest lower bound for each pair of ele-
ments. This restriction could be weakened to the existence of minimal upper
bounds and maximal lower bounds for each pair of elements. That is in fact
replacing lattices by multilattices, as introduced in [4,17,18].

In this direction, Medina et al. presented fuzzy logic programming via mul-
tilattices [21], after, they have used multilattices as the underlying sets of truth
degrees for fuzzy formal concept analysis [20] and made concept-forming opera-
tors [19].

The combination of FCA and Rough Set arrive since, not every pair of a set
of objects and a set of attribute defines a concept. Moreover we can be faced with
a situation where we have a set of attributes and need to find the best concept
that approximates theses attributes. For example, when a search engine finds an
object, that has certain attributes, he finds objects whose attributes are close
to required attributes. That is why, many authors have introduced the notion
of approximation in FCA [24]. These notions were later extended in L-FCA [1],
and will be extended to M -FCA in this contribution. The aim of this paper, is
to extend the work of E. Bartl and J. Konecny [1] by replacing the complete
residuated lattice with a multilattice, as truth value structures.

The paper is organized as follows. In Sect. 2 we recall basic notions to make
this paper self-contained. Section 3 is devoted to the M -rough formal concept.
Our main result shows that the set of M−rough concepts is a multilattice. We
provide an example to illustrate our construction Sect. 4. Section 5 concludes the
paper.

2 Preliminaries

2.1 Multilattice

In this section we introduce several notions from lattice and multilattice theory
in order to make our paper self contained. Let (P,≤) be a poset and X ⊆ P .
We denote by U(X) (resp. L(X)) the set of upper (resp. lower) bounds of X.
The supremum (resp. infimum) of X is the least (resp. greatest) element of
U(X) (resp. L(X)), whenever it exists. The supremum (resp. infimum) of X is
denoted by ∨X or supX (resp. ∧X or infX). A lattice is a poset (P,≤) in which
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any pair of elements has a supremum and an infimum. If every subset of P has
a supremum and an infimum then (P,≤) is called a complete lattice [10]. A
subset X ⊆ P is called a chain (resp. antichain) if for every x, y ∈ X we have
x ≤ y or y ≤ x (resp. x �≤ y and y �≤ x). A poset (P,≤) is said to be coherent
if every chain has a supremum and an infinimum [19]. To extend the notion
of lattice, Benado [4] introduced multilattices, where he replaces the supremum
(resp. infimum) with minimal upper bounds (resp. maximal lower bounds).

A multisupremum (resp. multiinfimum) of X is a minimal (resp. max-
imal) element of U(X) (resp. L(X)). The set of multisuprema (resp. multi-
infima) of X is denoted by �X (resp. 	X). For a, b ∈ P we simply write
U(a), L(a), a � b, a 	 b for U({a}), L({b}), �{a, b}, 	{a, b}, respectively.

Definition 1. [4,7] A poset (M, ≤) is called multilattice if, for all a, b ∈ M

– c ∈ M is an upper bound of {a, b} =⇒ ∃d ∈ a � b such that d ≤ c, and
– c ∈ M is a lower bound of {a, b} =⇒ ∃d ∈ a 	 b such that d ≥ c.

A complete multilattice [21] is a multilattice (M,≤) in which �X and 	X
are non-empty for any X ⊆ M .

Any lattice (A,∧,∨) is a multilattice since for all a, b ∈ A, a 	 b = {a ∧ b} and
a � b = {a ∨ b}. Whenever 	X or �X is a singleton, it is denoted by

∧
X or∨

X. Any complete lattice is also a complete multilattice. A multilattice will be
called pure if it is not a lattice.

In Fig. 1, a and b do not have supremum because c and d are not comparable.
This shows that, M7 is not a lattice. However, a and b have minimal upper bounds
c and d. Therefore M7 is a multilattice. In fact, any finite (bounded) poset is a
(complete) multilattice.

⊥

a b

dc
e

a b

dc

Fig. 1. Left: (M7,≤), is an example of a complete and pure multilattice. It will be used
as set of truth degrees in our example. Right: An example of multilattice which is not
complete.

We now define the adjoint pair, which is a generalization of a t-norm and its
implication.

Definition 2. [12] Let (P,≤) be a poset. A couple (&, →) of binary operations
on P is called adjoint pair if
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1. & is order-preserving in both arguments;
2. → is order-preserving in the first argument and reversing in the second argu-

ment;
3. a ≤ (c → b) ⇐⇒ (a&c) ≤ b, for all a, b, c ∈ P .

Some examples of adjoint pairs are the product, Gödel and Lukasiewicz t-norms
together with their residuated implications. They are defined on [0, 1] by:

x&P y = x · y z →P x = min{1, z/x}
x&Gy = min{x, y} z →G x =

{
1 if x ≤ z
z otherwise

x&Ly = max{0, x+ y − 1} z →L x = min{1, 1 − x+ z}.

Definition 3. If (&,→) is an adjoint pair on a poset (P,≤) with & commu-
tative and associative, with � a neutral (wrt. &) and top element of P , then
we call (P,≤,&,→,�) a pocrim (partial order commutative residuated integral
monoid). If in addition (P,≤) is a bounded lattice, then we call it a commuta-
tive integral residuated lattice.

Proposition 1. [7] Let (P,≤) be a poset and (&,→) be an adjoint pair on (P,≤
). If & is associative and commutative, then, for all a, b, c ∈ P , a → (b → c) =
(a&b) → c.

Definition 4. [20] Let (P1,≤) and (P2,≤) be two posets and Δ : P1 → P2 and
∇ : P2 → P1 be maps. We call (Δ,∇ ) a Galois connection between P1 and P2

if for all f, f1, f2 ∈ P1 and g, g1, g2 ∈ P2 we have:

• f1 ≤ f2 =⇒ fΔ
2 ≤ fΔ

1

• g1 ≤ g2 =⇒ g∇
2 ≤ g∇

1

• f ≤ fΔ∇ and g ≤ g∇Δ.

Let (P1,≤) and (P2,≤) be two posets and let (Δ,∇ ) be a Galois connection
between P1 and P2. A couple (f, g) ∈ P1 ×P2 is called a concept if fΔ = g and
g∇ = f .

From now on, we fix the following notations with P1, P2, P3 posets and ♦ :
P1 × P2 → P3:

X♦m := {x♦m | x ∈ X}, where X ⊆ P1 and m ∈ P2

Y ≤ m : ⇐⇒ y ≤ m for all y ∈ Y, where Y ∪ {m} ⊆ Pj , 1 ≤ j ≤ 3.

Definition 5. [19] Let (M1,≤1), (M2,≤2) be two multilattices. Let (P,≤) be
a poset, and ♦ : M1 × M2 → P be a map. We say that ♦ is:

(i) left-continuous in the first argument if K1♦m2 ≤ p =⇒ �K1♦m2 ≤ p
for all K1 ⊆ M1, m2 ∈ M2, and p ∈ P ,

(ii) left-continuous in the second argument if m1♦K2 ≤ p =⇒ m1♦�K2 ≤ p
for all K2 ⊆ M2, m1 ∈ M1 and p ∈ P ,

(iii) left-continuous if it is left-continuous in both arguments.
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Dually, we introduce the notion of right-continuity.

Definition 6. Let (M1,≤1), (M2,≤2) be two multilattices. Let (P,≤) be a poset,
and ♦ : M1 × M2 → P be a map. We say that ♦ is:

(i) right-continuous in the first argument if K1♦m2 ≥ p =⇒ 	K1♦m2 ≥ p
for all K1 ⊆ M1, m2 ∈ M2, and p ∈ P

(ii) right-continuous in the second argument if m1♦K2 ≥ p =⇒ m1♦	K2 ≥
p for all K2 ⊆ M2, m1 ∈ M1, and p ∈ P

(iii) right-continuous if it is right-continuous in both arguments.

Example 1. We consider the multilattice in Fig. 1 and define the map ♦1 : M7 ×

M7 → M7, by y♦1x :=

⎧
⎪⎪⎨

⎪⎪⎩

� if y ≤ x
b if y �∈ {⊥, b} and x ∈ {⊥, b}
e if y = � and x ∈ {a, c, d, e}
� otherwise

for all x, y ∈

M7.
♦1 is not right-continuous, because if we consider K2 = {c, d, e,�}, we have,

a♦1K2 ≥ a, but, 	K2 = {a, b} and a♦1 	 K2 � a.
The operator ♦2 : M7 × M7 → M7 defined by,

y♦2x :=

⎧
⎨

⎩

� if y ≤ x
e if y = � and x ∈ {a, b, c, d, e}
� otherwise

for all x, y ∈ M7, is right-

continuous in the second argument.

Remark 1. Let M be a complete multilattice.

1. If a map ♦ : M×M → M is left-continuous and M has a neutral element with
respect to ♦ then, �X is a singleton for all X ⊆ M . In fact, if n is a neutral
element of M with respect to ♦ and X ⊆ M such that �X is not a singleton,
we would have for a ∈ �X, X♦n ≤ a and there would be b ∈ �X such that
b �≤ a. Therefore, �X♦n �≤ a, which is a contradiction to left-continuity.

2. Dually, if a map ♦ : M × M → M is right-continuous, and M has a neutral
element with respect to ♦, then 	X is a singleton for all X ⊆ M .

From now, we denote by M a complete multilattice equipped with an adjoint
pair (&, →), where & is commutative and left-continuous, → is right-continuous
in second argument. We will see how to use a multilattice as underlying set of
truth values in fuzzy concept analysis, as proposed in [19,20] by M. Medina et
al.

2.2 M-fuzzy Formal Concept Analysis

Our universe is a non-empty set U . A mapping f assigning to each y ∈ U a truth
degree f(y) ∈ M is called an M-fuzzy set of U . The set of all M-fuzzy sets of
U is denoted by MU , and is ordered pointwise:

f ≤ g ⇐⇒ f(y) ≤ g(y), for all y ∈ U.
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(
MU ,≤

)
is a multilattice [16].

Let X,Y be two non-empty sets, and I : X × Y → M a fuzzy incidence
relation. The triple (X,Y, I) is called an M-fuzzy formal context, where X and
Y are the sets objects and attributes respectively. Let (X,Y, I) be an M-fuzzy
formal context. The derivation operators ↑ : MX → MY and ↓ : MY → MX are
defined for f ∈ MX and g ∈ MY by:

f↑(y) : ∧
x∈X

(
f(x) → I(x, y)

)
and g↓(x) : ∧

y∈X

(
g(y) → I(x, y)

)
.

An M-fuzzy formal concept of the M -fuzzy formal context (X,Y, I) is a
pair (f, g) ∈ MX × MY such that f↑ = g and g↓ = f . This concept forming
operators were first proposed by Bĕlohlávek [3], where a residuated lattice were
used instead of M.

Proposition 2. [19,20] Let (X,Y, I) be a M−fuzzy formal context, f, f1, f2,
fi ∈ MX and g, g1, g2, gi ∈ MY , i ∈ J , where J is an index set. Then

(i) f1 ≤ f2 =⇒ f↑
2 ≤ f↑

1 and g1 ≤ g2 =⇒ g↓
2 ≤ g↓

1 ;
(ii) f ≤ f↑↓ and g ≤ g↓↑;
(iii) f↑ = f↑↓↑ and g↓ = g↓↑↓;
(iv) 	

i∈I

(
f↑

i

)
⊆ {f↑, f ∈ �

i∈I
fi} and 	

i∈I

(
g↓

i

)
⊆ {g↓, g ∈ �

i∈I
gi}.

We denoted by C↑↓ the set of all concepts and by ≤ the order relation defined
on concepts by: (f1, g1) ≤ (f2, g2) : ⇐⇒ f1 ≤ f2 (equivalently g1 ≥ g2).

3 Rough Fuzzy Concept Multilattice

We can now define M-rough concepts and will prove that the set of all M-rough
concepts forms a complete multilattice.

3.1 M-Fuzzy Rough Set

Let U be our universe. A M-fuzzy relation R : U × U → M is called an equiv-
alence relation if R is

– reflexive (i.e. ∀x ∈ U : R(x, x) = �),
– symmetric (i.e. ∀x, y ∈ U : R(x, y) = R(y, x))
– transitive (i.e. ∀x, y, z ∈ U : R(x, y)&R(y, z) ≤ R(x, z))

A pair (U,R) is called M-fuzzy approximation space [23].

Theorem 1. Let g ∈ MU and R ∈ MU2
. Then, for any x ∈ U the following

hold:

(i) The set {R(x, y) → g(y); y ∈ U} has an infimum.
(ii) The set {R(x, y)&g(y); y ∈ U} has a supremum.
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Proof. (i) [19].
(ii) Let a1, a2 ∈ �{R(x, y)&g(y); y ∈ U}, then for all y ∈ U we have

R(x, y)&g(y) ≤ a1, a2, by adjointness condition, g(y) ≤ R(x, y) → a1,
R(x, y) → a2. As → is second argument right-continuous, for all r ∈ a1	a2,
we have, g(y) ≤ R(x, y) → r for all y ∈ U. Therefore g(y)&R(x, y) ≤ r for
all y ∈ U , hence, a1 = r = a2, by the minimality of a1 and a2. 	�

For any g ∈ MU the lower and upper approximations of g, respectively denoted
by g and g, coincide with lower and upper approximations of g defined in [9] by:

g(a) :=
∧

y∈U

(
R(a, y) → g(y)

)
and g(a) :=

∨

y∈U

(
R(a, y)&g(y)

)
, for all a ∈ U.

The pair < g, g > is called an M-fuzzy rough set in (U,R). The set of all
M-fuzzy rough sets in the M-fuzzy approximation space (U,R) is denoted by
RF(U,M). On RF(U,M) we define an order relation by

< f, f > ≤ < g, g > if and only if f ≤ g and g ≤ f

Moreover, for any family {gi}i∈J we have:

	
i∈J

< gi, gi >= {< f, h >: f ∈ 	gi and h ∈ �gi}
and

�
i∈J

< gi, gi >= {< f, h >: f ∈ �gi and h ∈ 	gi}.

3.2 M-Rough Concept Multilattice

In this subsection, after having introduced the notion of M -rough concept, we
will prove that the set of M -rough concepts forms a complete multilattice.

Corollary 1. Let (X,Y, I) be an M-context, f ∈ MX and g ∈ MY . Then

1. for x ∈ X, 	
y∈Y

{g(y) → I(x, y)} and 	
y∈Y

{I(x, y) → g(y)} are singletons;

2. for y ∈ Y , 	
x∈X

{f(x) → I(x, y)} and �
x∈X

{f(x)&I(x, y)} are singletons.

Proof. The proof is similar to that Theorem 1. 	�
We define two pairs of operators (↑,↓ ) and (∩,∪ ) with ↑,∩ : MX → MY and ↓,∪ :
MY → MX by:

f↑(y) = ∧
x∈X

{f(x) → I(x, y)}, g↓(x) = ∧
y∈Y

{g(y) → I(x, y)},

f∩(y) = ∨
x∈X

{f(x)&I(x, y)}, g∪(x) = ∧
y∈Y

{I(x, y) → g(y)}.
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Theorem 2. Let (X,Y, I) be an M-context. For all g, h ∈ MY , the set g↓(x) 	
h∪(x) is a singleton for all x ∈ X.

Proof. Let x ∈ X. Let a1, a2 ∈ g↓(x) 	 h∪(x). Then a1, a2 ≤ g↓(x) and a1, a2 ≤
h∪(x). For all y ∈ Y , we have, a1, a2 ≤ g(y) → I(x, y) and a1, a2 ≤ I(x, y) →
h(y). Hence, a1&g(y), a2&g(y) ≤ I(x, y) and a1&I(x, y), a2&I(x, y) ≤ h(y), for
all y ∈ Y . Since & is left-continuous, for all t ∈ �{a1, a2}, t&g(y) ≤ I(x, y) and
t&I(x, y) ≤ h(y), for all y ∈ Y . Therefore, t ≤ g(y) → I(x, y) and t ≤ I(x, y) →
h(y), for all y ∈ Y . Hence, t ≤ g↓(x) and t ≤ h∪(x). By the maximality of a1
and a2, we obtain a1 = t = a2.

Definition 7. Let (X,Y, I) be an M-context. We define the M-rough concept-
forming operator as a couple (Δ,∇ ) with Δ : MX → (M × M)Y and ∇ :
(M × M)Y → MX given by

fΔ :=< f↑, f∩ > and < g, g >∇:= (g)↓ 	 (g)∪

for f ∈ MX , < g, g >∈ (M × M)Y .
i.e. ∀y ∈ Y, fΔ(y) =< f↑(y), f∩(y) > and ∀x ∈ X,< g, g >∇ (x) = (g)↓(x)	

(g)∪(x).

Proposition 3. Let (X,Y, I) be an M-context. Then (Δ,∇ ) forms a Galois con-
nection between MX and (M × M)Y .

Proof. Let f1, f2 ∈ MX and < g1, g1 >, < g2, g2 >∈ (M × M)Y such that,

f1 ≤ f2 and < g1, g1 >≤< g2, g2 >. Then
{
f↑
2 ≤ f↑

1 and f∩
1 ≤ f∩

2

(g2)↓ ≤ (g1)↓ and (g2)∪ ≤ (g1)∪
.

It follows that
{
fΔ
2 ≤ fΔ

1

(g2)↓ 	 (g2)∪ ≤ (g1)↓ 	 (g1)∪
. Therefore, Δ and ∇ are order-

reversing.
Let

f ∈ MX and < g, g >∈ (M × M)Y . We have,

{
f ≤ f↑↓ and f ≥ f∩∪

g ≤ (g)↓↑ ≤ (
(g)↓ 	 (g)∪

)↑

and
(
(g)↓ 	 (g)∪

)∩ ≤ (g)∪∩ ≤ g. Hence, f ≤ fΔ∇ and (g, g) ≤ (g, g)∇Δ. 	�

Definition 8. An M-rough concept is a fixed-point of (Δ,∇ ). That is a pair
(f,< g, g >) in MX × (M × M)Y such that fΔ =< g, g > and < g, g >∇= f.
For an M-rough concept (f,< g, g >)

i) g is the lower intent approximation, i.e. contains the attributes shared by
all objects of f

ii) g is a upper intent approximation, i.e. contains the attributes possessed
by at least one object of f .

Thus, one can consider the two intents to be a lower and upper approxima-
tion of attributes possessed by f .
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Note 1. The set of all M-rough concepts is denoted by BΔ∇(X,Y, I). That is

BΔ∇(X,Y, I) = {(f,< g, g >) ∈ MX × (M × M)Y | fΔ =< g, g > and < g, g >∇= f}.

Let (X,Y, I) be an M−context and (Δ,∇ ) a Galois connection between MX and
(M × M)Y . BΔ∇(X,Y, I) can be equipped with a partial order ≤ defined by:

(
f1, < g1, g1 >

) ≤ (
f2, < g2, g2 >

)
iff f1 ≤ f2 ( iff < g2, g2 >≤< g1, g2 >).

(Indeed, f1 ≤ f2 is equivalent to fΔ
1 ≥ fΔ

2 equivalent to < g2, g2 >≤< g1, g2 >).
We are going to prove that the set of all M-rough concepts is a complete

multilattice.

Theorem 3. Let (X,Y, I) be an M-context and let (Δ,∇ ) be a Galois connection
between MX and (M × M)Y .

(i) If
{(

fi, < gi, gi >
)}

i∈J
is a set of concepts, we have:

	
i∈J

{
< gi, gi >

∇} ⊆
{

�
i∈J

< gi, gi >

}∇
and 	

i∈J

{
fΔ

i

} ⊆
{

�
i∈J

fi

}Δ

,

where
{

�
i∈J

< gi, gi >

}∇
=

{

< h, g >∇| < h, g >∈ �
i∈J

< gi, gi >

}

and
{

�
i∈J

fi

}Δ

is given similarly.

(ii) (BΔ∇(X,Y, I),≤) is a complete multilattice called M-Rough Concept
Multilattice. The multisupremum and multiinfimun of a set of concepts{(

fi, < gi, gi >
)}

i∈J
are given by

�
i∈J

(
fi, < gi, gi >

)
=

{〈
h, hΔ

〉 | h ∈ �
i∈J

fi

}

�
i∈J

(
fi, < gi, gi >

)
=

{(
< h, g >∇, < h, g >

)
|< h, g >∈

(
�

i∈J
< gi, gi >

)}
.

Proof. (i) Let f ∈ 	
i∈J

{
< gi, gi >

∇}
. We have f ≤< gi, gi >

∇ for every i ∈ J .

Then, < gi, gi >
∇Δ≤ fΔ that is < gi, gi >=< gi, gi >

∇Δ≤ fΔ. Then there
is < h, g >∈ �

i∈J

{
< gi, gi >

}
such that < h, g >≤ fΔ. Hence f = fΔ∇ ≤<

h, g >∇. But we have < h, g >∈ �
i∈J

{
< gi, gi >

}
; i.e. < gi, gi >≤< h, g >

for every i ∈ J . Hence, < h, g >∇≤< gi, gi >
∇ for every i ∈ J so, < h, g >∇

is a lower bound of
{
< gi, gi >

∇| i ∈ J
}

but f ∈ 	
i∈J

{
< gi, gi >

∇}
and

f ≤< h, g >∇. Hence by the maximality of f , f =< h, g >∇.
By the same manner we can prove the second one.
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(ii) It is obvious to show that for h ∈ 	
i∈J

fi, < h, hΔ > are maximal element

of lower bounds of the set
{(

fi, < gi, gi >
)

| i ∈ J
}

it remains to show

that < h, hΔ > is a concept.

	
i∈J

{fi} = 	
i∈J

{
< gi, gi >

∇} ⊆
{

�
i∈J

< gi, gi >

}∇
. For h ∈ 	

i∈J
fi there

exists < f, g >∈ �
i∈J

< gi, gi > such that h =< f, g >∇. Hence hΔ∇ =<

f, g >∇Δ∇=< f, g >∇= h therefore < h, hΔ > is an M-rough concept. the
same manner, we can prove the next one.

4 Working Example

When we look a university staff, chancellor is the upper hierarchy of the vice-
chancellors who are the upper hierarchies of the deans of faculties, but if we
consider only the deans of faculties we cannot say who is the upper hierarchy.
Therefore since multilattices better deal better with objects which are incompa-
rable, we will use it to evaluate university staff.

Let us assume that, a vice-chancellor of an university wants to reward his
best collaborator among the following persons: the dean of the faculty of science
(FS), the dean of the faculty of industrial engineering (FG), the dean of the
faculty of agronomy (FA), the head of the department of mathematics (HM),
the head of the department of technologies (HT) and the head of the department
of computer science (HC). They will be assessed on punctuality (Pu), innovation
(In), leadership (Le), grade (Gr) and sociability (So).

The attributes that a staff possesses are assessed by the elements of the
ordered structure represented by the Fig. 1.

The incidence relation between each member of staff and attributes is given
by the Table 1.

Table 1. Incidence relation

I Gr Pu So In Le

FS d ⊥ c � a
FI c a d c b
FA � b e d c
HM a e � e d
HC b c d c ⊥
HT d d c d a

For example, if we consider Grades, we can say that, some Grades are better
than others but we cannot compare Grades of peoples from different Academy
(Academy of Science, Academy of Arts, ...), if we see the first column, the Grade
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of FS and FI are appreciated by the value d and c respectively but are not
comparable. Its means that, FS can be an associate professor at the Academy of
Science and FI an associate professor at the Academy of Engineering. The Grade
of FA is appreciated by the value top to signify that FA has a better appreciation
in terms of Grade. Something similar occurs for the others attributes. That is
why, we use multilattice as underlying set for evaluating academy staff. Therefore
we can look this as a Concept Multilattice and that the Web queries are expressed
by the sets of attributes. A Concept is a couple where intent are staff members
and extend his performances.

The criteria of the company that will give the award are defined by a mapping
g as follows:

g(Gr) = e, g(Po) = �, g(So) = c, g(In) = �, g(Le) = d

As we can see, there is nobody who has this criteria! Then, our goal is to find
collaborator whose performance better approximate the fuzzy set of attributes
specified by the company.

Let us consider the multilattice M7 and the adjoint pairs & and ← defined
in the following tables (Table 2).

Table 2. Of & (left) and → (right) on M7

& ⊥ a b c d e �
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ a ⊥ ⊥ a ⊥ a
b ⊥ ⊥ b b ⊥ ⊥ b
c ⊥ ⊥ b c ⊥ ⊥ c
d ⊥ a ⊥ ⊥ d ⊥ d
e ⊥ ⊥ ⊥ ⊥ ⊥ a e
� ⊥ a b c d e �

→ ⊥ a b c d e �
⊥ � � � � � � �
a b � b � � � �
b a a � � � � �
c ⊥ a b � d � �
d ⊥ a b c � � �
e d e d e d � �
� ⊥ a b c d e �

We are going to use the notion of lower/upper approximations to propose
the staff member that performances are closed to the criteria.

Let X = {FS, FI, FA,HM,HC,HT} and Y = {Gr, Pu, So, In, Le} be the
set of objects and attributes respectively then (X,Y, I) is a M -fuzzy context.

To evaluate the lower and upper approximation, we consider the following
M -fuzzy relation

R Gr Pu So In Le
Gr � e c d d
Pu e � d a �
So c d � a b
In d a a � a
Le d � b a �
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Let us now evaluate the lower approximation of the criteria.
g(Gr) = ∧

y∈Y
{g(y) ← R(Gr, y)} = ∧

y∈Y
{e ← �,� ← e, c ← c,� ← d, d ← d}

= e g(Pu) = c, g(So) = c, g(In) = �, g(Le) = d

g = {e/Gr,c /Pu,c /So,	 /In,d /Le}.
We can also evaluate the upper approximation of g g(Gr) = ∨

y∈Y

{R(Gr, y)&g(y)} = ∨
y∈Y

{�&e, e&�, c&c, d&�, d&d} = e g(Pu) = �, g(So) =

e, g(In) = �, g(Le) = �.

g = {e/Gr,	 /Pu,e /So,	 /In,	 /Le.}
We therefore have,

g↓(FS) = ∧
y∈Y

{
I(FS, y) ← g(y)

}
= ∧

y∈Y
{d ← e,⊥ ← c, c ← c,� ← �, a ← d} = ⊥

g↓(FI) = ⊥, g↓(FA) = b, g↓(HM) = e, g↓(HC) = ⊥, g↓(HT ) = a
(
g
)↓

= {⊥/FS,⊥ /FI,b /FA,e /HM,⊥ /HC,a /HT}.

g∪(FS) = ∧
y∈Y

{g(y) ← I(FS, y)} = inf {e ← d,� ← ⊥, e ← c,� ← �,� ← a} = �
g∪(FI) = �, g∪(FA) = e, g∪(HM) = e, g∪(HC) = �, g∪(HT ) = �.

(
g
)∪

= {�/FS,� /FI,e /FA,e /HM,� /HC,� /HT}.
We have:

〈
g, g

〉∇(FS) =
(
g↓ ∧ g∪)

(FS) = ⊥,
〈
g, g

〉∇(FI) =
〈
g↓ ∧ g∪〉

(FI) = ⊥,
〈
g, g

〉∇(FA) =
(
g↓ ∧ g∪)

(FA) = b,
〈
g, g

〉∇(HM) =
(
g↓ ∧ g∪)

(HM) = e,
〈
g, g

〉∇(HC) =
(
g↓ ∧ g∪)

(HC) = ⊥,
〈
g, g

〉∇(HT ) =
(
g↓ ∧ g∪)

(HT ) = a.

Since the truth degree of HM is greater than others, thus the best staff member
is the Head of the department of mathematics.

5 Conclusion

In this paper we use multilattice as underlying set of truth degree in rough fuzzy
concept analysis. We prove that, the set of all M-rough concepts of an M-context
forms a complete multilattice.

The present results on M -rough concept analysis open ways to continue the
research on the practical applications on semantic web, also we will investigate
the Algorithm that can generate concepts. Since, we have two intents in each
M−rough concept, the size of concept multilattice can be very large, then the
study of reduction of M -rough concept multilattice via linguistic hedges is also
very interesting.
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3. Bĕlohlávek, R., Vychodil, V.: What is a fuzzy concept lattice? In: Belohlavek, R.,
et al. (eds.) CLA, pp. 34–45 (2005)

4. Benado, M.: Les ensembles partiellement ordonnes et théorème de raffinement de
Schreier II (Théorie des multistructures). Czechoslovak Math. J. 5, 308–344 (1955)

5. Burusco, A., Fuentes-González, R.: The study of L-fuzzy concept lattice. Mathware
Soft Comput. 3, 209–218 (1994)

6. Cabrera, I.P., Cordero, P., Gutiérrez, G., Martínez, J., Ojeda-Aciego, M.: Residu-
ated operations in hyperstructures: residuated multilattices. In: 11th International
Conference on Computational and Mathematical Methods in Science and Engi-
neering CMMSE, pp. 26–30 (2011)

7. Cabrera, I.P., Cordero, P., Gutiérrez, G., Martínez, J., Ojeda-Aciego, M.: On resid-
uation in multilattices: filters, congruences, and homomorphisms. Fuzzy Sets Syst.
234, 1–21 (2014)

8. Cabrera, I.P., Cordero, P., Gutiérrez, G., Martínez, J., Ojeda-Aciego, M.: Finitary
coalgebraic multisemilattices and multilattices. Appl. Math. Comput. 219, 31–44
(2012)

9. Cornelis, C., Medina, J., Verbiest, N.: Multi-adjoint fuzzy rough sets: definition,
properties and attribute selection. Int. J. Approx. Reason. 55, 412–426 (2013)

10. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University
Press, Cambridge (2002)

11. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen Syst 17,
191–209 (1990)

12. Eugenia, M., Medina, J., Ramírez, E.: A Comparative study of adjoint triples.
Fuzzy Sets Syst. 211, 1–14 (2013)

13. Formica, A.: Semantic web search based on rough sets and Fuzzy Formal Concept
Analysis. Knowl.-Based Syst. 26, 40–47 (2012)

14. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heindelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

15. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)
16. Njionou, B.B.K., Kwuida, L., Lele, C.: Formal concepts and residuation on multi-

lattices. Fundamental Informaticae 188(4), 1–21 (2023)
17. Martínez, J., Gutiéerrez, G., de Guzmän, I.P., Cordero, P.: Multilattices via mul-

tisemilattices. Top. Appl. Theor. Math. Comput. Sci. 238–248 (2001)
18. Martínez, J., Gutiérrez, G., de Guzmän, I.P., Cordero, P.: Generalizations of lat-

tices via non-deterministic operators. Discrete Math. 295(13), 107–141 (2005)
19. Medina-Moreno, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Concept-forming opera-

tors on multilattices. In: Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013.
LNCS (LNAI), vol. 7880, pp. 203–215. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-38317-5_13

https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-38317-5_13
https://doi.org/10.1007/978-3-642-38317-5_13


508 G. Nguepy Dongmo et al.

20. Medina, J., Ruiz-Calviño, J.: Fuzzy formal concept analysis via multilattices: first
prospects and results. In: CLA, pp. 69–79 (2012)

21. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Fuzzy logic programming via mul-
tilattices. Fuzzy Sets Syst. 158(6), 674–688 (2007)

22. Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Fuzzy and rough formal
concept analysis: a survey. Int. J. Gen Syst 43(2), 105–134 (2014)

23. Radzikowska, A.M., Kerre, E.E.: Fuzzy rough sets based on residuated lattices.
In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M.,
Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 278–296.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27778-1_14

24. Saquer, J., Deogun, J.S.: Formal rough concept analysis. In: Zhong, N., Skowron,
A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 91–99.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48061-7_13

25. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Rival (ed.) Ordered Sets, pp. 445–470 (1982)

26. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–358 (1965)
27. Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11(5), 341–356 (1982)

https://doi.org/10.1007/978-3-540-27778-1_14
https://doi.org/10.1007/978-3-540-48061-7_13


Applications



Clustering Methods for Adaptive
e-Commerce User Interfaces

Adam Wasilewski1,2(B) and Mateusz Przyborowski3,4

1 Fast White Cat S.A., Wroc�law, Poland
2 Faculty of Management, Wroc�law University of Science and Technology, Wroc�law,

Poland
ml.przyborowsk@uw.edu.pl

3 QED Software, Warsaw, Poland
4 Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw,

Warsaw, Poland

Abstract. Typical online shops have one interface provided to all users,
regardless of their use of the shop. Meanwhile, user behavior varies and
therefore different interfaces could be provided to different user groups.
Various methods can be used to cluster users, including those using
artificial intelligence (AI) methods. AI-based personalization allows e-
commerce businesses to provide tailored recommendations to each indi-
vidual customer based on preferences, purchase history, and behavior
on the website. This article presents a study of the impact of an AI-
based clustering method on the effectiveness of a dedicated user inter-
face implemented and delivered to the customers of an e-shop. The first
study included five methods, and two of them - agglomerative clustering
and K-means clustering - were selected for detailed analysis. For both of
these methods, an in-depth research was carried out and the impact of
the clustering method on the quality of user clusters, as measured by the
effectiveness of the dedicated interface in relation to the effectiveness of
the default interface, was verified.

Keywords: Clustering · personalisation · user interface · e-commerce

1 Introduction

The rapid growth of e-commerce has led to an increase in the amount of available
products, making it more challenging for customers to find products that match
their preferences.

Personalization has become a crucial aspect of the e-commerce experience,
as it allows customers to receive recommendations that match their interests
and needs. One of the most effective ways to achieve personalization is through
adaptive user interfaces, which are capable of dynamically adjusting the pre-
sentation of content based on the user’s preferences and behavior. An adaptive
user interface (AUI) can adjust and modify its presentation, functionality, and
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content to suit the preferences, needs, and abilities of individual users. AUIs
can be designed to adapt to various factors such as the user’s cognitive abilities,
motor skills, language proficiency, cultural background, device type, screen size,
and input methods. This type of interface may use various techniques such as
machine learning and artificial intelligence (AI). By leveraging AI-based algo-
rithms, businesses can analyze large amounts of data and provide recommenda-
tions that are relevant and timely. This, in turn, can lead to increased customer
engagement, higher conversion rates, and improved customer satisfaction.

Today’s e-businesses make extensive use of product recommendation mech-
anisms that rely on advanced data analysis, including AI/ML [11,29], but the
possibilities are definitely greater. Considerable potential can be seen in person-
alizing the user interface as well.

In this work, the impact of the clustering method (agglomerative and K-
means) on the effectiveness of dedicated UIs in e-commerce was compared. The
contributions are:

1. Verification of the four clustering methods used to group e-commerce cus-
tomers for the purpose of providing them with a dedicated interface.

2. An experimental evaluation of dedicated e-commerce interfaces provided to
customers divided by means of two different clustering methods.

In Sect. 2 previous works on personalised e-commerce interfaces and clusteri-
zation methods are discussed. Section 3 briefly describes the research method.
Experiments conducted are detailed and discussed in Sect. 4. Section 5 concludes
the work.

2 Related Work

The problem of adapting the user interface with recommendation systems was
addressed before artificial intelligence-based solutions were widely used [15].
Nowadays several AI-based techniques can be used to achieve personalization
in the adaptive web shop interface [10], including collaborative filtering. Col-
laborative filtering is one of the most commonly used techniques and involves
analyzing the behavior of similar users to make recommendations [32]. The use
of clustering in recommendations systems has been extensively researched [36],
and clustering algorithms, including: K-Means [30], Evolutionary Clustering [21],
Fuzzy C-means [37], Bi-Clustering [2], and Locality Sensitive Hashing [27], have
been widely discussed in the literature.

The adaptive web shop interface, delivered as a result of customer segrega-
tion, has been the focus of significant research in recent years, with many studies
evaluating the effectiveness of different techniques and approaches.

According to [12,22,24] web mining techniques can be a valuable source of
information, which is used to produce personalised e-commerce services. Seg-
mentation of e-commerce customers using data mining techniques was presented
in [20,31]. The possibilities of clustering users to divide them into groups with
similar preferences are widely discussed [5,35]. Analysis of selected clustering



Clustering Methods for Adaptive e-Commerce User Interfaces 513

algorithms (hybrid partitioning-based heuristic sequence clustering algorithm
inspired from K-medoid, DBSCAN algorithms, a hybrid tree-based sequence
clustering algorithm inspired from B-Trees and BIRCH algorithm) for an e-
commerce recommendation system was presented in [25]. K-means algorithm can
be used for segmenting e-commerce customers to obtain groups of customers with
different characteristics [3,16,23]. The use of the K-mode clustering algorithm for
e-commerce customer segmentation, was described in [13]. The Partition around
Medoids (PAM) algorithm was also used to group the services provided to e-
commerce customers [9]. Another possibility was presented in [28] - using the
K-medoids method for e-commerce customer segmentation can provide valuable
insights into customer behavior and preferences, which can be used to develop
targeted marketing strategies and personalized product recommendations. A less
popular method of clustering e-commerce customers, Fuzzy Temporal Clustering
Approach (FTCA), is discussed in [26].

Data mining techniques and analysis of user’s behavior, frequency and con-
tent may lead to the descriptive characteristics of each user and can be trans-
formed to knowledge about the behavior of user groups. Further analysis and
understanding of their characteristics allows for preparation of dedicated inter-
faces for each group. In [17] research on related e-commerce recommendation
technologies and algorithms is described. An e-commerce recommendation sys-
tem architecture should including key features: income level, online shopping
experience, commodity price and quality, quality of services etc. [6].

Using data mining techniques (e.g. customer segmentation) to deliver per-
sonalized user interfaces involves identifying groups of customers with similar
preferences and behaviors, and then developing user interfaces that are cus-
tomized to meet the specific needs of each group. By delivering a user interface
that is tailored to the preferences of each group, businesses can increase customer
engagement and satisfaction.

3 Research Method

The aim of the study was to verify the impact of the clustering method on the
effectiveness of the interface provided to the customers of a sample e-commerce.

To verify the hypothesis that the choice of clustering method affects the
quality of the adaptable user interface, four clustering methods were analysed
and two were selected as the most promising. The methods considered were: the
K-means algorithm [14], DBSCAN (density-based spatial clustering of applica-
tions with noise) [8], BIRCH (balanced iterative reduction and clustering using
hierarchies) [33] and the agglomerative clustering algorithm [1].

The effectiveness of the verified clustering algorithms was measured using
several internal quality metrics. Moreover, proposed method for analyzing the
resulting user groups and identifying key characteristics of users assigned to each
cluster was used to define changes in each variant of dedicated interface. Users
who were assigned to selected clusters were provided with interface variants,
different from the default interface provided to the other users. Tests were carried
out independently for both analysed clustering methods.
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Both clustering methods were evaluated for 45 days, divided into 15 three-
day research periods (RP). In each RP, an average PCR was calculated for all
sessions of customers that had a dedicated interface provided (PCRv) and for
customers that had a default interface provided (PCRd).

PCRk =
1
s

s∑

i=1

PCRs (1)

PCRv =
1
k

k∑

i=1

PCRk (2)

k is the number of RP, s is the session number of the user to whom the
dedicated interface has been provided in the RP k, PCRs is the calculated PCR
metric value for the session s, PCRk is the average value of the PCR metric for
session k

The PCRd value is calculated analogously, except that PCR metrics are
calculated for sessions where the default user interface is provided.

The effectiveness of the dedicated interfaces was compared by measuring the
partial conversion rate of customers who were provided with a dedicated interface
and customers who were provided with the default interface.

For the purpose of assessing the quality of the dedicated interfaces, a measure
of partial conversion rate (PCR) has been defined. This indicator measures user
behavior along the purchase path, both for the dedicated interface and for the
default interface.

Assuming that the purchase path includes a homepage, a product listing and
a product page, the behavior desired from the e-commerce owner’s point of view
can be defined for each step. For example, it can be assumed that the user from
the homepage should go to the product listing or to a specific product card. The
PCR can be calculated for different steps of the shopping process, in particular
for:

– homepage (expected result: change to listing or to product page),
– listing (expected result: switching to a product page)
– the product page (expected result: addition to basket or transition to another

product page).

Fig. 1. Calculation of PCR metrics
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Each of the expected behaviors is scored and the sum of the scores is the
total PCR for the session (Fig. 1). If a user interface variant was changed during
the session, the PCR value is counted independently for both interface variants.

Comparison of the PCR values for the both analysed clustering methods
allowed to assess the effectiveness of the dedicated interfaces relative to the stan-
dard interface and to identify the clustering method that yields better results.

The research was conducted using the platform for self-adaptation of e-
commerce interfaces (named AIM2). It is an intelligent system that allows e-
commerce platforms to optimize their user interfaces automatically. The archi-
tecture of the platform consists of several components that work together to
provide a seamless user experience:

– User model - a representation of the user’s behavior and preferences,
– UI Designer - used to generate different versions of the UI, which are tested

against the user model to determine which version performs best,
– Adaptation engine - provides UI variants and uses artificial intelligence (AI)

algorithms to group customers on the base of actions, events, purchases, and
other factors,

– Monitoring - provide feedback on the performance of different UI versions,
which is used to improve the effectiveness of the adaptation engine and UI
variants.

A pilot version of the AIM2 platform was implemented in the e-shop of one
of the market leaders in sportswear in Central Europe and was the technical
basis for the research presented in the article.

4 Result Analysis and Discussion

4.1 Analysis of Selected Clustering Methods

The dataset used for producing the clustering consists of 156 days of user activ-
ity, making on average, 5162 visits daily. About 5.67% of the data is directly
connected to known customers, i.e. accounts recorded in the database. Detailed
logs include information about the device used (type, resolution, browser, etc.),
country and language, or previous visits. The most important part of the data
is the type of pages that were loaded during users’ activity, taking into account
such features as the category of the viewed object, time spent, or finalizing
activity with a purchase. Furthermore, the dataset has been enriched with addi-
tional information about existing products and their categories. Products that
are noted during users’ activity have been matched to existing historical prod-
ucts, which allows for better segmentation of users at a given product category
level.

In order to produce a clustering, the dataset was filtered and aggregated
according to the activity of a given user. Each user was represented by a list
of activities summarized by a vector of features. This representation transforms
logs about website activity into a feature space where distinct users yield distinct
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points. Each dimension of this space comes from a precalculated feature that
concerns information that is useful for further applications, e.g. categories of the
most commonly viewed products. Even though some features, such as detailed
timestamp data, did allow for more stable user segmentation, they were dismissed
as less useful in the case of the considered application.

Four distinct clustering methods were compared: DBSCAN [8], BIRCH [33],
Gaussian mixture models (GMM) [34], and agglomerative clustering [1]. Each
clustering was evaluated using Variance Ratio Criterion (Calinski-Harabasz, CH
score), Eq. 3, and Davies-Bouldin (DB) score, Eq. 4.

CH =
(N − k)tr(

∑k
q=1 nq(cq − cE)(cq − cE)T )

(k − 1)tr(
∑k

q=1

∑
x∈Aq

(x− cq)(x− cq)T )
(3)

N is the size of the dataset, k is the number of clusters, Aq is the set of points
in cluster q, cq is the centre of cluster q, nq is the number of points in cluster q,
cE is the centre of the entire dataset. The CH index is the ratio of the variance
between clusters and the sum of the variances within each cluster; it yields higher
values for clusters that are better separated and denser.

DB =
1
k

k∑

i=1

max
i�=j

si + sj
dij

(4)

k is the number of clusters, si is the average distance of points from cluster i
from its centre, dij is the distance between the centres of clusters i and j. The
DB index yields higher values for clustering where the clusters are wide and
overlapping, with their centres remaining rather close to each other. Conversely,
lower values may indicate that the clusters are well separated.

1. DBSCAN: For epsilon values that created clusters of size between 2 and
10, CH score ranges between 2.7 to 6.8 and DB score ranges from 1.17 to
1.37. Furthermore, cluster entropy remains below 0.15, which indicates that
a single cluster dominates the others in terms of size. The mean silhouette
score consistently remains negative (<−0.54).

2. BIRCH: Clusterings for cluster number between 2 and 10, CH score ranges
from 4876 to 6886 and DB score ranges from 0.6 to 0.85. The mean silhouette
score indicates 4–5 clusters.

3. GMM: Clusterings for cluster number between 2 and 10, CH score ranges
from 5250 to 8213 and DB score ranges from 0.62 to 0.76. The mean silhouette
score indicates 4–5 clusters.

4. Agglomerative clustering: Clusterings for cluster number between 3 and
9, CH score ranges from 4893 to 6886 and DB score ranges from 0.6 to 0.85.
The mean silhouette score indicates 4–6 clusters, but CH score and DB score
yield better results (6727 and 0.71) for 6 clusters.

The obtained results opt towards agglomerative clustering and Gaussian mix-
ture models. These methods additionally have properties that allow a better
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interpretation of results in terms of connecting different clusters. Agglomerative
clustering produces a dendrogram that asserts relations between clusters at a
given cut-off level, therefore giving a method for merging different clusters. The
Gaussian mixture model by design provides a method for evaluating the prob-
ability that a given point comes from a given cluster. In the experiments, the
Gaussian mixture model returned results consistent with the K-means algorithm.
Finally, the agglomerative clustering method was selected for further detailed
research (Figs. 2 and 3).

Fig. 2. Scatter plot of the selected clustering along the two most significant dimensions
produced by the PCA decomposition of the initial dataset.

Fig. 3. Scatter plot of the selected clustering along the dimensions of low-dimensional
representation produced by the UMAP algorithm [18].

Additional analysis regarding clustering using Shapley values was performed.
Using the final data representation and clustering indices as labels, a gradient
boosted random forest was fitted using the XGBoost framework [4]. The Shapley
values measure the contribution (importance) of different features in influencing
models’ output. As for the obtained clustering, the Shapley values indicate a
strong relationship between users belonging to some clusters and manifesting a
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particular interest in certain categories of products (Figs. 4 and 5); therefore,
these results could be useful in terms of applications.

Fig. 4. Shapley values for cluster 2. Browsing products from the productPath1 category
increases the likelihood of being classified as a member of this cluster.

Fig. 5. Shapley values for cluster 4. Browsing products from the productPath0 category
increases the likelihood of being classified as a member of this cluster.

The main application of clustering is based on additional assumptions. A clus-
tering not only should meet the requirements in terms of its regularity but also
needs to be periodically updated/recalculated using the latest, rapidly grow-
ing transaction dataset. For this reason, the decision was made to also verify
in practice an approach that could be less computationally demanding. Ini-
tially, Gaussian mixture model was selected as the second clustering method
for detailed study, as the clustering results it received were promising for use in
providing a dedicated e-commerce interface. Ultimately, for business and tech-
nical reasons, it was decided that K-means clustering would be studied in detail
alongside agglomerative clustering. The K-means method has lower computa-
tional requirements [19], and could potentially yield clustering results similar to
those of the GMM method. In practical applications within the AIM2 platform,
the K-means method could be particularly useful for large e-commerces, where
the dataset of user behavior would be huge.

4.2 Effectiveness of Clustering-Based Interfaces

Research into the effectiveness of dedicated interfaces was conducted under real-
life conditions of a fashion e-shop.
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The analysis included 328.721 sessions during tests of the interface delivered
after client clustering using the agglomerative clustering method and 208.858
sessions during tests of the interface delivered after using the K-means method.
The difference in the number of sessions, with the same research time (15 RPs),
was due to differences in e-commerce traffic. The research was not conducted
during major promotional and marketing events (e.g. major sales), but minor
promotions (e.g. weekend sales) did take place, which was reflected in the num-
ber of sessions and in the results. The possible impact of in-store promotional
campaigns was offset by calculating relative ratios and relating the effect of the
dedicated interface to the effect of the default interface.

The dedicated interface variants were optimised by UX experts based on
an analysis of the behavior of two clusters of customers: a) the group with the
highest activity in the e-shop and b) the group with the lowest activity in the
e-shop. A dedicated user interface was designed for each of these groups and
was delivered in subsequent sessions in the e-store to those users whom the
clustering method categorised as either group a) or group b). The user behavior
investigated by UX experts included the number of actions per session, number
of events, sequences of events, orders placed, use of the search engine, selection
of product attributes such as size and colour.

Chronologically, the first research was carried out for clustering using the
agglomerative clustering method. Based on cluster analysis and customer behav-
ior, it was decided to provide a dedicated interface to 4728 users during the first
iteration of the research.

Fig. 6. PCR absolute values for agglomerative clustering

In each RP, the average PCR of users who received a dedicated interface were
higher than the average PCR of users who had the default interface provided
(Fig. 6).
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It can be seen that there is a large variation in the average values of the PCR
indicator from period to period, which indicates that the value is influenced by
factors such as promotions organised in the e-shop. Nevertheless, a high cor-
relation can also be observed between the metric values for the dedicated and
the default interface, indicating that factors not directly related to the interface
similarly influence the PCR values.

Analysis of the absolute values of the PCR may be subject to error, due to
the seasonality of e-commerce purchases and active promotions. For this reason,
the relative PCR values for the dedicated interfaces were calculated by relating
them to the PCR values for the default interface (Fig. 7).

Fig. 7. PCR relative values for dedicated interfaces

Relative PCR values with agglomerative clustering show high inter-period
variability, with none of the periods falling below 120% of the default interface
value. It took values ranging from 120.64% to 179.09%.

In the second iteration (K-means clustering), the decision was made to pro-
vide a dedicated interface to 7425 users. The higher number of users to which
a dedicated interface was assigned was due to the splitting of customers into
clusters grouping the most active and least active users.

Comparing the absolute values of the PCR for K-means clustering, it can
again be seen that they are higher for users provided with a dedicated interface
in each RP (Fig. 8).

When users are divided into clusters using the K-means method, similar to
agglomerative clustering, a correlation can be observed between the PCR values
for the dedicated and default interfaces.

Relative PCR values for K-means clustering (Fig. 9) were below the 120%
threshold in 4 cases out of 15, with 2 cases where the values were even below



Clustering Methods for Adaptive e-Commerce User Interfaces 521

Fig. 8. PCR absolute values for K-means clustering

110% (105.41% and 103.82% in RP 3 and 4). In contrast, the maximum value
of this indicator was 160.57%.

Fig. 9. PCR relative values for dedicated interfaces

If the entire study of each user clustering approach (45 days = 15 RPs) were
taken into account, it turns out that for agglomerative clustering, PCR values
were on average 51.94% higher than the average values of this indicator for the
default interface, while for K-means clustering, users who were provided with a
dedicated interface achieved an average PCR value only 28.89% higher than for
the default interface.

The results obtained allow to conclude that regardless of the clustering
method chosen, the values of PCRs for dedicated interfaces are higher than
those for the default interface, but the choice of clustering approach seems to
matter for the efficiency of the dedicated interface.
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The PCR indicator shows how the behavior of the e-shop’s customers changes
as they move through the purchase path. This is important information for
optimising the shop interface to facilitate the shopping experience. Nevertheless,
from the point of view of the effectiveness of the entire business, it is crucial to
check the impact of a dedicated interface on the final conversion rate (CR) and
the value of the shopping basket (AvB) [7].

In the case of traditional performance indicators of an e-shop, it turned out
that a dedicated interface positively affects the conversion rate in each case, but
there is no clear effect of a dedicated interface on the average value of a shopping
cart (Table 1).

Table 1. Conversion Rate and Average basket Value

Period Standard Agglomerative K-means

CR AvB CR AvB CR AvB

A1 1.96 63.37 6.36 61.70

A2 3.76 61.79 8.98 82.76

K1 3.42 58.27 7.46 68.92

K2 1.90 68.84 6.29 65.29

It is worth noting that the research periods for verification of CR and AvB
values were different than for the PCR analysis, but covered the same 45 days
for each clustering method. The A1 and K1 periods corresponded to the first 8
periods from PCR studies (for each clustering method separately), while the A2
and K2 periods corresponded to the next 7 periods of the PCR studies.

5 Conclusion

Clustering of users of an e-shop can be done by various methods. Within the
study described in the paper, 4 methods were selected for preliminary analysis
on the basis of a set of information about the e-shop’s customer behavior from
156 days, and based on the results, the two most promising ones - agglomerative
clustering and K-means clustering - were selected for further research.

Using both methods, user clustering was performed, and then customers from
selected clusters were provided with a dedicated interface for 45 days (divided
into 15 research periods).

Using the PCR indicator defined for the study, the impact of the cluster-
ing method on the behavior of users provided with a dedicated interface was
analysed. The results of the conducted research show a slight advantage for the
agglomerative clustering method, but the results obtained with K-means clus-
tering are also satisfactory, as they outperform those obtained for the default
interface.
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It should also be remembered that agglomerative clustering is more com-
putationally appealing, so the expected clustering time should also be taken
into account when deciding on a clustering method for delivering a dedicated
e-commerce user interface.
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Abstract. In this paper, we propose two methods of application of fed-
erated learning to the construction of classifiers for the analysis of data
related to predicting the death of patients suffering from the vasculitis.
The paper contains results of experiments on medical data obtained from
Second Department of Internal Medicine, Collegium Medicum, Jagiel-
lonian University, Krakow, Poland. In order to evaluate the proposed
methods, which are trained on data samples, we compared their func-
tionality with the work results of classical classifiers trained on the entire
data. It turned out that the quality of classification of federated learning
methods is comparable to the quality of classical methods. This means
that access to the whole data is not necessary to construct effective clas-
sifiers for the considered decision problem.

Keywords: rough sets · classifiers · federated learning

1 Introduction

Federated learning (see, e.g., [4,12]) is a machine learning technique that trains
a model through multiple independent sessions, each using its own dataset. This
approach contrasts with classic centralized machine learning techniques where
local datasets are combined into one large dataset used to train a global model.
One of the kind of models that can be trained using federated learning is classi-
fiers. For the purposes of this paper, we establish that in federated learning for
classifiers construction, the data needed to train them is available in multiple
places. The place where a global classifier model is created is called the server,
while individual locations with small data fragments are called nodes. Feder-
ated classifier training is based on the server sending a request to nodes asking
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them to participate in the construction of the global classifier using the data
available in individual nodes. Next the nodes send back their partial models to
server. Finally, the server aggregates partial models, getting a global classifier
model. In this paper, we propose two methods of classifiers construction based
on federate learning for the analysis of data related to predicting the death of
patients suffering from vasculitis, which is a serious disease. The first of these
methods uses the aggregation of classifiers from nodes based on the arithmetic
mean of weights generated by individual classifiers for the test object. The sec-
ond method uses a specific node vote on the decision for the test object. The
paper contains the results of experiments on medical data obtained from Second
Department of Internal Medicine, Collegium Medicum, Jagiellonian University,
Krakow, Poland. One of the main goals of the experimental part of the paper
was to answer the question whether the classifiers based on federated learning
proposed in this paper can match the efficiency of the classifier based on classical
learning for the medical data analysed in the paper. It turned out that federated
learning methods are comparable in terms of classification quality to classical
methods.

2 Classical and Federated Classifier Learning

Classifiers are referred in the literature as decision-making algorithms, classifi-
cation algorithms or learning algorithms, those can be treated as constructive,
approximate descriptions of concepts (decision classes) [9]. The basis for creat-
ing (in other words - learning) classifiers are the so-called training data, which
is usually in the form of a rectangular table, called a decision table in rough set
theory (see, e.g., [11]). In a decision table, all columns except the last one are
usually so-called conditional attributes, and the last column is the so-called deci-
sion attribute. Classic classifier training is based on the fact that for the entire
available set of training data, based on the selected type of model, a classifier
is trained that approximates the decision classes represented by the decision
attribute which enables determine the value of the decision attribute, also for
unknown objects during classifier training.

However, in practical applications related to the construction of classifiers,
training data may not come from a single source but from many sources and may
be stored in different locations. For example, the data necessary to construct a
classifier supporting the treatment of a certain disease may be stored in differ-
ent hospitals. In addition, data from different locations sometimes cannot be
collected in one place, which forces them to be analysed in a dispersed manner.
The reasons may be, for example, the following:

– legal provisions - protecting data against data portability, which prevent indi-
vidual organizations from combining their own users’ data to train artificial
intelligence models; this is because users live in different parts of the world,
so their data is subject to different data protection laws,
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– data privacy - e.g., in finance, due to the need to maintain customer privacy,
it is not possible for financial institutions to share sensitive data with each
other,

– amount of data - some sensors, such as cameras, produce such a large amount
of data that it is neither feasible in practice to collect it all in one place.

When data is available in multiple places, we may use the federated learning.
In the federated learning, the place where the global classifier model is created in
this paper we call as the server, while the individual locations with small pieces of
data we call as nodes. As we already wrote in the introduction, classifier training
is when the server sends a request to nodes asking them to participate in the
construction of a global classifier using the data available at individual node.
Next, the nodes send back their partial models to the server. Finally, the server
aggregates partial models, obtaining a global classifier model. Depending on the
methods of training partial models, methods of aggregation of partial models
into a global model and methods for organizing successive learning iterations,
you can define many different federated learning methods.

3 Classic Classifiers for the Medical Problem Related
to Vasculitis

Vasculitis is defined as inflammation within the walls of blood vessels, often
resulting in vessel damage and necrosis. Consequently, there may be bleeding or
ischemia of organs or tissues supplied with blood by the damaged vessels (e.g.,
stroke). This process can involve various tissues and organs; however, it usually
affects the kidneys, lungs, upper respiratory tract, skin, nervous system, and
eye vessels. Therefore, vasculitis is a challenging disease, which often leads to
death despite the applied treatment. That is why scientific research is currently
conducted to understand this group of diseases and improve their treatment
efficiency. One of the leading centers in Poland where such research is conducted
is the Jagiellonian University Medical College (UJCM) in Krakow. As part of the
research, UJCM developed a register of primary vasculitides in Poland as part
of the Scientific Consortium of the Polish Vasculitis Register (POLVAS), in the
construction of which 14 medical centers from Poland are involved. Recently,
POLVAS also participated in the European project FAIRVASC together with
other medical centers from 8 European countries, providing a new opportunity
to understand and treat vasculitides (European Union’s Horizon 2020 research
project, grant No. 811171). Thanks to the POLVAS register, it is possible to
conduct scientific research to improve the effectiveness of vasculitides therapy,
such as predicting patient mortality under a particular treatment modality. If it
would be possible to develop IT tools to predict mortality risk effectively, then in
the case of patients who are expected to die, other or more aggressive treatment
modes might be considered to save the patient’s life.

The data made available for the experiments for this paper is a decision table
with 819 rows (patients), 142 columns constituting conditional attributes and
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one decision attribute that informs about the possible death of a given patient.
In fact, the value of the decision attribute represents the patient’s condition after
treatment of the last observed exacerbation of the disease. If the patient survived
this exacerbation, it is recorded in the database that he is alive. However, it is not
known whether the patient will die, e.g., during the next exacerbation of the dis-
ease, if any. Long-term patient survival has not yet been analysed because data
on this topic is ongoing. Conditional attributes are mostly numerical attributes
and describe the current situation of a given patient, including, e.g., age, gen-
der, information about the type of vasculitis detected, the presence of diabetes,
treatment applied, results of laboratory tests and many others.

Let us add that the values in the first column (that is in the first conditional
attribute) of the decision table uniquely identify the patient and the medical
center (hospital) where the patient is treated.

If we ignore the first conditional attribute that is referring to the hospital
from which the patient comes, then the medical data described above is in the
form of a classic decision table (see [11]). Therefore, we can use here any model of
creating a classifier that deals with numerical attributes. One of them is a model
based on a random forest [2], which is available in the Scikit-Learn library [13]
in the RandomForestClassifier class. This model generally has a very good
opinion as a useful model for creating efficient classifiers for various data sets.
Therefore, for a practical illustration of the approach described in this paper, we
decided to use this classifier creation model. However, the medical data analysed
in this paper are unbalanced (the decision class about patient death is about 6
times less numerous than the decision class about patient survival). Therefore, in
the experiments, we used a random forest model dedicated to creating classifiers
for unbalanced data, which is available in the Imbalanced-learn library in the
BalancedRandomForestClassifier class [5,6]. This library is compatible with
the Scikit-Learn interface [13].

4 Classifiers Based on Federated Learning

The data set described in Sect. 3 includes information on patients from 14 med-
ical centers in Poland. Due to their origin, these data could be made available
for scientific research conducted in Poland. The FAIRVASC project also col-
lected data from medical centers in other European countries, but due to the
legal protection mentioned above (see Sect. 2), they could not be made available
for research conducted in Poland. However, the data provided from centers in
Poland give the opportunity to test the methods of federated learning for clas-
sifiers based on the aggregation of partial models obtained on the basis of data
from individual Polish hospitals. In addition, for comparison purposes, a classic
classifier can be constructed for the entirety of the data. Thanks to this, it is
possible to answer the question whether classifiers based on federated learning
proposed in this paper can match the efficiency of the classifier based on classical
learning.

It is worth mentioning that many federated learning methods have been
described in the literature that could be used here (see, e.g., [10,12]). These
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approaches are usually based on iterative training of classifiers in nodes and
iterative creation of the aggregation mechanism. This is because in practical
applications, the data available at the nodes changes. However, in this paper
we analyse data that is immutable and therefore do not use iterative learning
mechanisms.

Currently, most research on federated learning focuses on training deep learn-
ing models with privacy protection (see, e.g., [7,14]). While the deep learning
model is very efficient for a range of real federated learning tasks, it can be
beaten for tabular data by complex tree models (see, e.g., [15]). Therefore, using
the BalancedRandomForestClassifier model from the Imbalanced-learn library
to construct classifiers for federated learning nodes makes sense.

Algorithm 1: Classifier based on average weights from nodes
Input:
1. H1, ..., Hn are hospitals and A1, ...,An are decision tables obtained from

hospitals H1, ..., Hn, respectively (e.g., k = 14),
2. D0 and D1 are decision classes represented by values of decision atrributes

from tables A1, ...,An (D0 and D1 correspond to the situation when the
patient is alive or died, respectively),

3. u is a tested object,
4. t is the weight threshold of belonging to class D1, used to classify objects in

such a way that an object is classified into class D1, when the weight of
belonging u to class D1 generated by a given classifier is greater than t.

Output: The value of decision attribute for the object u.
1 begin
2 Build classifiers C1, ...,Cn for decision tables A1, ...,An.
3 Classify the object u by classifiers C1, ...,Cn to obtain a collection of

weights WD1
1 (u), ...,WD1

n (u) belonging to the class D1 of the object u.

4 Assign mW :=
(W

D1
1 (u)+...+W

D1
n (u)

n

5 if mW > t then
6 return final decision value corresponding to the class D1.
7 else
8 return final decision value corresponding to the class D0.
9 end

10 end

In this paper, we propose two algorithms for federated learning and testing
of classifiers. The first one is Algorithm 1. This algorithm first creates classifiers
for individual hospitals, and then these classifiers are used to generate weights
that indicate the predicted degree of belonging of the u object to the D1 class.
Both of these operations can be performed in nodes, i.e., in individual hospitals.
Then, the determined weights are sent to the server where they are aggregated
by calculating the arithmetic mean (compare with [10]). Finally, a final decision
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is generated, with the object classified to D1, when the aggregated weight is
greater than the t threshold. Otherwise, the object is classified to D0 class.

Algorithm 2: Classifier based on nodes voting
Input:
1. H1, ..., Hn are hospitals and A1, ...,An are decision tables obtained from

hospitals H1, ..., Hn, respectively (e.g., k = 14),
2. D0 and D1 are decision classes represented by values of decision atrributes

from tables A1, ...,An (D0 and D1 correspond to the situation when the
patient is alive or died, respectively),

3. u is a tested object,
4. t is the weight threshold of belonging to class D1, used to classify objects in

such a way that an object is classified into class D1, when the weight of
belonging u to class D1 generated by a given classifier is greater than t.

Output: The value of decision attribute for the object u.
1 begin
2 Build classifiers C1, ...,Cn for decision tables A1, ...,An.
3 Classify the object u by classifiers C1, ...,Cn to obtain a collection of

weights WD1
1 (u), ...,WD1

n (u) belonging to the class D1 of the object u.
4 Assign votesD0 := 0 and votesD1 := 0
5 for i := 1 to n do

6 if WD1
i (u) > t then

7 votesD1 := votesD1 + 1
8 else
9 votesD0 := votesD0 + 1

10 end

11 end
12 if votesD1 > votesD0 then
13 return final decision value corresponding to the class D1.
14 else
15 return final decision value corresponding to the class D0.
16 end

17 end

The second of the federated learning and testing algorithms proposed in this
paper is Algorithm 2. Similarly to the previous one, this algorithm first creates
classifiers for individual hospitals, and then these classifiers are used to generate
the weights of object u belonging to class D1. As before, both of these operations
can be performed in nodes, i.e., in hospitals. Then, the determined weights are
sent to the server where they are aggregated in order to make a decision for the
test object u. However, this is done differently like in Algorithm 1. First, based
on the weight threshold t, a decision is made for object u by each of the nodes
using the weights provided by the individual nodes. Then the nodes vote on the
decision value to be proposed for the object u. The object u is classified into the
decision class that received the most votes.
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It is easy to see that the above two algorithms are representatives of two
different types of algorithms resolving conflicts between classifiers generated in
individual nodes. Algorithm 1 is an example of an algorithm that uses a certain
established function to aggregate the numerical weight values returned by indi-
vidual classifiers when classifying a test object. Algorithm 1 uses the arithmetic
mean function of the weights, but other functions of this type are possible (see
Sect. 6). Algorithm 2, on the other hand, is an example of an algorithm that uses
heuristics to resolve conflicts, operating not on the weights returned by the clas-
sifiers, but on the decisions generated by individual classifiers. In Algorithm 2,
the method of simple voting of individual classifiers was used to select one of
two decision classes. However, other heuristics that select the resulting decision
class are possible. It is worth adding that the algorithms of both types require a
different way of tuning the sensitivity level of the classifier aggregating classifiers
from individual nodes. In Algorithm 1, we adjust the sensitivity after aggregating
the weights. However, in Algorithm 2, the sensitivity is adjusted when classify-
ing an object by individual classifiers. This is a more flexible approach because
you can adjust the sensitivity for individual classifiers separately. However, for
the purposes of this paper, we use one sensitivity adjustment parameter for all
classifiers generated in individual nodes.

In the above description of the algorithms, we assumed that the test object
is classified by classifiers generated in individual nodes. This is because data
from nodes often cannot be made available to the server. However, with this
assumption, the test object representing the classified patient would have to be
sent to each of the nodes (in order to classify it), which is also usually contrary
to the protection of personal data. Therefore, in practice, the above approach
may look like this: classifiers are created on data in individual nodes, but after
training, ready-made classifier models (e.g., a decision tree or a family of decision
trees) are sent to the server and can be freely used there to classify test objects.
Therefore, neither data from individual nodes is sent to the server nor the test
object is sent to the nodes. It is also worth adding that the classifier models
generated in the nodes do not contain sensitive data about patients, but only
knowledge about classification expressed at a higher level of abstraction than
data about patients.

5 Experiments and Results

To verify the effectiveness of our classifiers based on federated learning in relation
to classical classifiers, we have implemented our algorithms in Python language
using the Scikit-Learn library [13] and the Imbalanced-Learn library [5,6]. The
experiments have been performed on the medical data set obtained from Second
Department of Internal Medicine, Collegium Medicum, Jagiellonian University,
Krakow, Poland (POLVAS register - see Sect. 3).

The aim of our experiments was to answer the question whether the classifiers
based on federated learning proposed in this paper can match the efficiency of
the classifier based on classical learning.
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Table 1. Results of experiments with classic classifier

Weight threshold Accuracy Accuracy for D0 Accuracy for D1 Difference

0.05 0.136 0.0 1.0 1.0

0.1 0.137 0.001 1.0 0.999

0.15 0.16 0.028 1.0 0.972

0.2 0.204 0.079 1.0 0.921

0.25 0.279 0.165 1.0 0.835

0.3 0.391 0.298 0.982 0.684

0.35 0.484 0.41 0.955 0.545

0.4 0.592 0.539 0.928 0.389

0.45 0.677 0.652 0.838 0.186

0.5 0.757 0.755 0.766 0.011

0.55 0.822 0.844 0.676 0.169

0.6 0.858 0.912 0.514 0.399

0.65 0.877 0.953 0.387 0.566

0.7 0.884 0.986 0.234 0.752

0.75 0.877 0.999 0.099 0.899

0.8 0.869 1.0 0.036 0.964

0.85 0.867 1.0 0.018 0.982

0.9 0.866 1.0 0.009 0.991

0.95 0.864 1.0 0.0 1.0

As we have already written, the dataset used in this paper for experiments
has 819 rows. In such a situation, the cross-validation method (see, e.g., [9]), is
usually used to determine the quality of the created classifiers, because the data
set has more than 100 rows. However, the samples of the entire dataset that are
available in hospitals are often less than 100 rows, whilst in case of Algorithm 1
and Algorithm 2 classifiers are created for these samples. Therefore, in this paper,
the leave-one-out method was proposed for the experimental verification of the
proposed classifiers, which is often used when the data is small, i.e., it has less
than 100 rows (see, e.g., [9]). The leave-one-out method is a variation of the cross-
validation method, where the data partitioning elements are single-element, i.e.,
an N-element array is divided into N subsets (each subset contains one row).

The following popular measures are used to measure the quality of the pro-
posed methods: “Accuracy” (accuracy for the entire table, that is, the classifi-
cation accuracy of objects from both class D0 and class D1), “Accuracy for D0”
(accuracy for the decision class D0) i ”Accuracy for D1” (accuracy for the deci-
sion class D1). The parameter “Difference” is also given, which gives the absolute
value of the difference between ”Accuracy for D0” and ”Accuracy for D1”.

Table 1 shows the results obtained for the classic classifier construction
method (without federated learning). In each row with the results, the “Weight
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Table 2. Results of experiments with classifier from Algorithm 1

Weight threshold Global accuracy Accuracy for D0 Accuracy for D1 Difference

0.05 0.136 0.0 1.0 1.0

0.1 0.136 0.0 1.0 1.0

0.15 0.136 0.0 1.0 1.0

0.2 0.136 0.0 1.0 1.0

0.25 0.144 0.01 1.0 0.99

0.3 0.181 0.052 1.0 0.948

0.35 0.291 0.182 0.982 0.8

0.4 0.467 0.393 0.937 0.544

0.45 0.632 0.6 0.838 0.238

0.5 0.748 0.754 0.712 0.042

0.55 0.83 0.877 0.532 0.345

0.6 0.87 0.955 0.333 0.621

0.65 0.878 0.987 0.18 0.807

0.7 0.87 0.994 0.081 0.913

0.75 0.867 1.0 0.018 0.982

0.8 0.864 1.0 0.0 1.0

0.85 0.864 1.0 0.0 1.0

0.9 0.864 1.0 0.0 1.0

0.95 0.864 1.0 0.0 1.0

threshold” value, that was used in the experiment from the given row is given
in the first column (parameter t also appeared in Algorithms 1 and 2).

Incidentally, each row of the results table corresponds to one point on the
so called ROC curve. In practical applications, we select a point on the ROC
curve, according to which we calculate the classifiers to be used. In medical
applications, we often want accuracy for both D0 and D1 decision classes to be
similar. From this point of view, the most interesting row in Table 1 is the row
with a weight of 0.5. It is easy to see that it concerns the experiment with the
smallest value of the Difference” parameter (equals 0.01) and general accuracy
0.757.

However, from a general point of view, the Table 1 is a tool for adjusting the
sensitivity and specificity of classifiers. For example, if we wanted the sensitivity
of the classifier for the class D1 to be at least 0.9, we would choose a value of
“Weight threshold” equal to 0.4. Then the specificity (accuracy per class D1)
reaches 0.539.

Table 2 shows the results obtained for Algorithm 1. In this case, the most
interesting row in Table 2 is the row with a weight of 0.5. It concerns the experi-
ment with the smallest value of the “Difference” parameter and general accuracy
of 0.748.
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Table 3. Results of experiments with classifier from Algorithm 2

Weight threshold Global accuracy Accuracy for D0 Accuracy for D1 Difference

0.05 0.136 0.0 1.0 1.0

0.1 0.136 0.0 1.0 1.0

0.15 0.136 0.0 1.0 1.0

0.2 0.139 0.004 1.0 0.996

0.25 0.166 0.035 1.0 0.965

0.3 0.208 0.083 1.0 0.917

0.35 0.315 0.209 0.991 0.782

0.4 0.473 0.405 0.91 0.505

0.45 0.627 0.597 0.82 0.223

0.5 0.74 0.743 0.721 0.022

0.55 0.813 0.857 0.532 0.326

0.6 0.859 0.946 0.306 0.64

0.65 0.875 0.986 0.171 0.815

0.7 0.874 0.996 0.099 0.897

0.75 0.867 0.999 0.027 0.972

0.8 0.864 1.0 0.0 1.0

0.85 0.864 1.0 0.0 1.0

0.9 0.864 1.0 0.0 1.0

0.95 0.864 1.0 0.0 1.0

Finally, Table 3 shows the results obtained for Algorithm 2. In this case, the
most interesting row in Table 3 is the row with a weight of 0.5. It concerns the
experiment with the smallest value of the “Difference” parameter and general
accuracy of 0.74.

6 Conclusion

We presented two methods of constructing classifiers based on federated learning.
We also experimentally compared their effectiveness with the classical method
of creating classifiers based on data related to the diagnosis of patient mortality
in vasculitis disease.

Experiments have shown that our two methods are comparable to the results
of the classical method but do not match the quality of the classical method of
creating a classifier. This is probably due to the fact that classical methods use
the entire data, and methods based on federated learning create classifiers only
in nodes, and use aggregation methods to combine the knowledge acquired in
individual nodes. The slightly lower quality of the proposed methods based on
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federated learning compared to the classical methods suggests that research on
aggregation methods should be continued. Therefore, we plan research in the
following three directions:

1. the use of other aggregation methods in Algorithm 1 known from the litera-
ture (see [3,8,10]),

2. the use of other node voting methods in Algorithm 2 using more information
about the data available in the nodes,

3. the use of additional classifiers to resolve conflicts between nodes.

Acknowledgement. This paper was partially supported by the Centre for Innovation
and Transfer of Natural Sciences and Engineering Knowledge of University of Rzeszów,
Poland.
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Abstract. Wind speed interval prediction is of great significance in
power resource scheduling and planning. However, the complex and vari-
able characteristics of wind speed make quality forecasting challenging.
In this paper, a novel hybrid model, abbreviated as RSAE-LSTM, for
wind speed interval prediction is proposed. The model employs a rough
stacked autoencoder (RSAE) and long short-term memory neural net-
work (LSTM). The RSAE initially handles uncertainties and extracts
important potential features from the wind speed data. Then, the gener-
ated features are utilized as input to the LSTM network to construct the
prediction intervals (PIs). Meanwhile, a new loss function is proposed for
developing model to construct PIs effectively. The experimental results
show that compared with the comparison methods, the proposed method
could obtain high-quality PIs and achieve at least a 39% improvement
in the coverage width criterion (CWC) index.

Keywords: Rough set theory · Prediction intervals · LSTM ·
Autoencoder

1 Introduction

With the continuous development and promotion of renewable energy, wind
energy has garnered significant attention as a crucial clean energy resource.
However, the utilization of wind energy is constrained by meteorological con-
ditions, with wind speed being a key factor. In the past decade, there has been
a proliferation of research studies dedicated to wind speed prediction [8,9,20].
However, current research is mainly concerned with point/deterministic forecast-
ing. While significant forecast improvements have been reported, deterministic
forecasts unfortunately do not fully provide the information needed for good
decision-making processes, making them inadequate to meet uncertainty chal-
lenges.
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Prediction intervals (PIs) have emerged as an effective approach to quan-
tify and communicate the uncertainty associated with wind speed predictions.
By establishing upper and lower bounds, PIs provide valuable insights into the
range within which future forecasts are highly likely to fall. In recent literature,
Bayesian methods [14] and Bootstrap [2] have been employed to construct PIs.
However, these methods typically rely on specific error distribution assumptions
for point predictions when constructing PIs.

To overcome the shortcomings of traditional approaches, lower upper bound
estimation (LUBE) [10] which takes the two outputs of the neural network as the
upper and lower boundaries of PIs directly was proposed and adopted widely.
However, since the loss function is not differentiable, the network cannot be
trained using the gradient descent (GD) method. The meta-heuristic optimiza-
tion algorithms are used for training, which have many optimization parameters
and takes a lot of time, so they cannot effectively process large-scale data. For-
tunately, many researchers have designed some differentiable loss functions to
guide neural networks to construct PIs directly. For example, Pearce et al. [16]
considered the generation of PIs by neural networks for quantifying uncertainty
in regression tasks. It is axiomatic that high-quality PIs should be as narrow as
possible, whilst capturing a specified portion of data. They derive a loss function
directly from this axiom that requires no distributional assumption. Liu et al.
[13] designed an improved LUBE model using a novel training scheme based on
the GD method for better efficiency and greater prediction performance. Kabir
et al. [7] proposed a highly customizable smooth cost function for developing
model to construct optimal PIs. Although these methods have achieved good
results in predicting interval tasks, majority of these works implement shallow
neural networks as predictive models. The insufficiency of models has restricted
the performance of LUBE-based methods.

Recently, deep learning methods have been widely used in the field of the
wind forecasting. An autoencoder (AE) [3] is an unsupervised neural network
trained by stochastic gradient descent algorithms. Stacked autoencoder (SAE) is
created by stacking multiple encoder layers. Some researchers [6,8] adopted AE
networks to compress high-dimensional wind speed time series to obtain low-
dimensional representations and generate predictions based on low-dimensional
representations. Meanwhile, the deep learning algorithms can handle large-scale
datasets and can maintain long-term dependencies between the time series, like
the long short-term memory neural network (LSTM) [4]. For example, Li et al.
[11] developed a novel hybrid interval prediction model based on LSTM networks
and variational mode decomposition algorithm in the frame of lower upper bound
estimation. Saeed et al. [19] proposed a novel wind speed interval prediction
model by integrating LUBE method into a quasi-recurrent neural network. In
addition, There are inevitable uncertainties in the predictions made by different
models, and capturing such uncertainties is beneficial to resource planning [1].
Rough set theory [15], as an useful tool to handle the uncertainties, has been
successfully applied to wind speed point prediction [8,9].
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As a result, we propose a hybrid wind speed interval forecasting model using
rough stacked Autoencoders and LSTM network (RSAE-LSTM). First, rough
neurons constructed based on rough set theory are introduced into SAE to elim-
inate the uncertainty and automatically learn powerful features from the wind
speed data. Then, considering the time-series characteristics of the data, the
learned features are fed into the LSTM network to predict PIs. Meanwhile, a
new loss function is specially designed for implementing the GD training method
to construct PIs efficiently.

The main contributions of this paper are as follows:

• A novel hybrid model RSAE-LSTM is proposed for wind speed interval fore-
casting.

• Rough set theory is introduced into deep learning method to handle uncer-
tainty of wind speed and improve the quality of prediction.

• A new loss function is designed for predicting PIs with neural network directly
without any assumption on the distribution.

• Compared with the comparison methods, the proposed method could obtain
high-quality PIs and achieved at least a 39% improvement in the coverage
width criterion (CWC) index.

The rest of this paper is organized as follows: Related works are reviewed in
Sect. 2. The proposed method is formulated in Sect. 3. Comparative experiments
and experimental results are provided in Sect. 4. This paper is concluded in
Sect. 5.

2 Preliminaries

In this section, we will first give some basic definitions of rough sets theory,
rough neuron, and prediction intervals.

2.1 Rough Set Theory

Rough set theory, proposed by Pawlak, is an effective mathematical tool for
dealing with uncertainty and has been widely used in machine learning and
pattern recognition tasks [15]. An information system is defined by the four-
tuple S = <U,A, V, f>, where universe U is a finite nonempty set and A is a
finite nonempty set of attributes. Va is a domain set, where a ∈ A and V =⋃

a∈AVa. f : U × A → V is an information function and for every a ∈ A and
x ∈ U, f(x, a) ∈ Va. Suppose B ⊆ A, two objects x, y ∈ U are indiscernible from
each other by the set of attributes B in S if and only if for every a ∈ B, f(x, a) =
f(y, a). Thus, every B ⊆ A has a binary relation IND(B) on U , which is called
the indiscernibility relation. The partition of U is a family of all indiscernibility
relations of IND(B) and is denoted by U/IND(B).

Rough set theory defines two approximations for any concept set X ⊆ U and
attribute set B ⊆ A. Using the knowledge of B,X can be approximated by the
B-lower approximation B(X) and B-upper approximation B(X):
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B(X) = ∪{O ∈ U/B | O ⊆ X} (1)

B(X) = ∪{O ∈ U/B | O ∩ X �= ∅} (2)

2.2 Rough Neuron

Rough neurons were developed based on rough set theory by Lingras in rough
neural networks [12]. These neurons contain an upper bound weight WU and
lower bound weight WL. Moreover, the neuron contains upper bound and lower
bound biases denoted by bU and bL, respectively. Figure 1 illustrates a rough
neuron. Equations defining the relations of these parameters are as follows:

OU = Max(f(WUX + bU ), f(WLX + bL)) (3)

OL = Min(f(WUX + bU ), f(WLX + bL)) (4)

O = αOU + βOL (5)

where f is a sigmoid unit.

Fig. 1. Rough neuron structure.

2.3 Prediction Intervals

Given an input xi, a prediction interval [ŷLi
, ŷUi

] of a sample i captures the future
observation (target variable) yi with the probability equal or greater than, for
1 ≤ i ≤ n. A PI should capture some desired proportion of the observations,
(1 − α), common choices of α being 0.01 or 0.05,

Pr(ŷLi ≤ yi ≤ ŷUi) ≥ (1 − α). (6)

Given n samples, the quality of the generated prediction intervals is assessed
by measuring the prediction interval coverage probability (PICP)

PICP =
1
n

n∑

i=1

ki, (7)
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where ki = 1 if yi ∈ [ŷLi, ŷUi], otherwise ki = 0. n is the number of testing
samples. Mean Prediction Interval Width (MPIW) is defined as

MPIW =
1
n

n∑

i=1

(ŷUi
− ŷLi

), (8)

It is desired to achieve PICP ≥ (1 − α) while having MPIW as small as
possible.

3 Proposed Method

3.1 Framework

The forecasting framework is easy to elucidate as illustrated in Fig. 2. Firstly,
rough neuron is developed based on the rough set theory and incorporated into
the SAE to construct rough stacked autoencoder network (RSAE). Then RSAE
is applied to automatically extract potential features from the original wind
speed data to perform data dimensionality reduction and handle uncertainty.
Finally, considering the time-series characteristics of the data, the generated
features are fed into the LSTM to predict PIs.

Fig. 2. Framework of the proposed RSAE-LSTM model.

3.2 Rough Stacked Autoencoder

A AE is a variant of the feed-forward neural network, which performs encoding
of its input X to a hidden representation h. Then, it decodes the input again
from the hidden representation using a decoder. A rough version of AE (RAE)
can be constructed by replacing the original neurons in the hidden layer and
output layer of AE with rough neurons [8].

For the encoding process of RAE, the outputs of the upper bound he
U and

lower bound he
L are denoted as
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he
U = Max(f(W e

UX + beU ), f(W e
LX + beL)) (9)

he
L = Min(f(W e

UX + beU ), f(W e
LX + beL)). (10)

Then, the hidden representation he is computed as

he = αeh
e
U + βeh

e
L (11)

For the decoding process of RAE, the outputs of the upper bound hd
U and lower

bound hd
L are denoted as

hd
U = Max(f(W d

Uhe + bdU ), f(W d
Lhe + bdL)) (12)

hd
L = Min(f(W d

Uhe + bdU ), f(W d
Lhe + bdL)). (13)

Thus, the reconstructed input X̂ is computed as

X̂ = αdh
d
U + βdh

d
L (14)

In each round of training, any object xi is encoded hi by an encoder, and then
reconstructed by a decoder to be x̂i. RAE makes use of the mean squared error
loss function (MSE) given in Eq. (15) to minimize the average reconstruction
error and optimize parameters.

MSE =
1
n

n∑

i=1

(xi − x̂i)2 (15)

Besides, RAE can be stacked to construct deeper network, namely rough
stacked AE (RSAE). The whole process is actually a process of unsupervised
layerwise training. RSAE possesses more encoding layers so that it can extract
more abstract representations.

3.3 Long Short-Term Memory Network

The long short-term memory network (LSTM) is a variant of recurrent neu-
ral network. The LSTM combines long-term and short-term memory by gating
mechanisms including forgetting gating, input gating and output gating, and
utilizes both short-term and long-term data. It calculates as follows:

fn = σ (Wfxn + Ufhn−1 + bf ) (16)

in = σ(Wixn + Uihn−1 + bi) (17)

on = σ (Woxn + Uohn−1 + bf ) (18)

c̃n = tanh (Wcxn + Uchn−1 + bc) (19)

cn = c̃n ⊗ in + cn−1 ⊗ fn (20)

hn = on ⊗ tanh (cn) (21)
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wherein W and U denote the weight matrices while b is the bias. σ and tanh
represent the activation functions sigmoid and tanh, respectively. ⊗ represents
the element wise multiplication. The input gate consists of in, c̃n, they decide
what information to store. The forget gate fn decides whether to discard the
output information of the last LSTM hn−1. The output of the current LSTM hn

is through the output gate on.

3.4 Hybrid Loss Function for Prediction Intervals

In this section, a novel cost function is proposed for wind speed interval pre-
diction. Our goal is to generate narrow PIs, while maintaining the desired level
of coverage. However, PIs that fail to capture their data point should not be
encouraged to shrink further [16]. We therefore introduce captured MPIW as
the MPIWc of only those points for which ŷL ≤ y ≤ ŷU holds

MPIWc =
1
c

n∑

i=1

(ŷUi
− ŷLi

) · ki, (22)

where c =
∑n

i=1ki, which means the total number of data points captured.
Meanwhile, the most probable region of the target may not stay near the

middle of the interval in the direct PI construction method. Minimization of the
deviation of the target from the center can potentially shift the most probable
region near the center of PIs. In addition, PIs may fail to cover the target but
the proposed model should try to bring the target close to the nearby bound
of the PI. This can also be achieved by having the target close to the center of
the PI. Therefore, MAE is proposed to achieve both of the above optimization
goals.

MAE =
1
n

n∑

i=1

|yi − ŷi| , (23)

where MAE is Mean Absolute Error, ŷi = (ŷLi
+ ŷUi

)/2, we use the midpoint
of the interval [ŷLi

, ŷUi
] as the point estimation.

To enforce the coverage constraint, a penalty is imposed only if PICP <
(1 − α). Inspired by previous work [8], ℘PI can be constructed as below:

℘PI = max(0, (1 − α) − PICP )2. (24)

However, since the gradient is always positive, the optimization loss of a discrete
version of k (see Eq. (22)) fails to converge. Hence, ci can be replaced by the
previous method [16] as follows:

ci = σ(s(ŷUi
− yi)) � σ(s(yi − ŷLi

)), (25)

where σ is the sigmoid function and s is a softening parameter.
Algorithm 1 reveals the process to construct the loss function.
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Algorithm 1: Construction of hybrid loss function
Input : Predictions of lower bound ŷL and upper bound ŷU , ground

truth label y, hyperparameter factor for softing s,
hyper-parameter λ is the PI coverage penalty factor,, σ denotes
sigmoid activation function, � denotes the element-wise
product. ε = 1e − 10

Output: Loss
1 kH = max(0, sign(ŷU − y)) � max(0, sign(y − ŷL ))
2 ŷ = (ŷU + ŷL )/2
3 c = σ(s(ŷU − y)) � σ(s(y − ŷL ))
4 MPIWc = reduce sum((ŷU − ŷL ) � kH )/(reduce sum(kH ) + ε)
/* where ε is a small value to avoid an undefined MPIWc

value for 100% PICP */
5 PICP = reduce mean(c)
6 MAE = reduce mean(|y − ŷ|)
7 ℘PI = max(0, (1 − α) − PICP )2

8 Loss = MPIWc + MAE + λ℘PI

4 Experiment

4.1 Data Description

The wind speed data utilized in our experimental analysis was sourced from
the National Wind Technology Center (NWTC) [5]1. The raw data files can be
obtained at various time intervals, ranging from minutes to hours or even days.
Moreover, the data fields can be customized based on specific requirements and
preferences. In this study, we collected raw data of various parameters with
one-minute time intervals from January 1, 2022, to December 31, 2022. The
dataset encompassed several variables, including average wind speed @ 10 m,
global horizontal, temperature @ 2 m, dew point temperature, specific humidity,
station pressure, precipitation (accumulated), peak wind speed @ 10 m, average
wind speed (std dev) @ 10 m, average wind direction @ 10 m, wind direction @
Pk WS @ 10 m, average wind direction (std dev) @10 m, average wind shear,
and turbulence intensity @ 10 m.

The raw data from NWTC are not completely accurate and reliable, any ille-
gal values in the dataset were replaced with the previous valid value. Addition-
ally, to ensure consistency and facilitate analysis, the original 1-minute intervals
of the data were transformed into 10-minute intervals by calculating the average.
Following these preprocessing steps, a total of 52,560 data items were obtained.
Then, we divided the data into a training set, a validation set, and a test set in
a ratio of [8:1:1] for further analysis. In order to achieve consistent evaluation
results, the features of all experimental data were normalized to a uniform scale
within the range of [0, 1].

1 https://midcdmz.nrel.gov/apps/daily.pl?site=NWTC&live=1.

https://midcdmz.nrel.gov/apps/daily.pl?site=NWTC&live=1
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4.2 Evaluation Metrics

To comprehensively evaluate the forecast results of the prediction model, four
analysis indexes are adopted in the study, which include PICP (see Eq. (7)), PI
normalized averaged width (PINAW), coverage width criterion (CWC), and the
normalized average deviation (NAD).

PINAW is defined to measure the narrowness of the PI. Defined mathemat-
ically [18] as:

PINAW =
1

nR

n∑

i=1

(ŷUi
− ŷLi

), (26)

where R is the range of target values.
Reducing the PI width may result in higher coverage and vice versa. There-

fore, looking at PICP and PINAW independently is not enough to reflect the
quality of PI. CWC, as a balance index of PICP and PINAW, can effectively
evaluate the quality of PI.

CWC =
{

P lNAW, P ICP >= μ
PINAW + exp(−η(P ICP-μ)), P ICP < μ

(27)

where μ is determined by the confidence interval and η exponentially magnifies
the difference between the PICP and μ. By minimizing the CWC function, an
optimal PI is expected to be achieved.

NAD is used to express the deviation of the data which are not covered by
the PI. So it can express the rationality of PI.

NAD =
1
n

n∑

i=1

ai, (28)

where the expression of ai is defined in Eq. (29).

ai =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(ŷLi
− yi)

/
1
n

n∑

i=1

(ŷUi
− ŷLi

), yi < ŷLi

0, yi ∈ [ŷLi
, ŷUi

]

(yi − ŷUi
)
/

1
n

n∑

i=1

(ŷUi
− ŷLi

), yi > ŷUi

(29)

4.3 Compared Algorithms

In the comparison experiment, two recent wind speed PIs algorithms LUBE-
ANN-GD [13] and LUBE-QRNN [19] and two general PI algorithms Kabir’s
method [7] and Gradient Boosting Decision Tree with Quantile Loss (GBDT-
QR) implemented in the Scikit-learn package [17] were adopted. To overcome the
effect of randomness associated with the layer weights initialization of neural net-
works, each experiment is repeated 10 times and the average value and standard
deviation are reported as shown in Table 1. The larger the PICP value, the better
the result. On the contrary, the remaining indicators including PINAW, CWC
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and INAD, the smaller the values, the better the experiment results, and the
best values are highlighted in bold. In all experiments, our proposed method has
obtained optimal or sub-optimal results on all evaluation indicators. Especially
for CWC, our algorithm has achieved at least a 39% improvement compared
with other comparison algorithms.

Table 1. Performance indices comparison of comparative models.

Algorithm PICP PINAW CWC INAD

GBDT-QR 0.9026± 0.0040 0.1766±0.0003 2.2171± 0.1296 0.0332± 0.0005

LUBE-ANN-GD 0.9545± 0.0140 0.2837± 0.0100 1.2033± 0.2945 0.0264± 0.0012

LUBE-QRNN 0.9439± 0.0123 0.2544± 0.0171 0.9417± 0.1928 0.0239± 0.0032

Kabir’s method 0.9512± 0.0055 0.2729± 0.0158 0.3873± 0.1445 0.0227± 0.0019

RSAE-LSTM 0.9655±0.0122 0.2369± 0.0166 0.2369±0.0166 0.0215±0.0036

Table 2. The results of ablation experiments.

Algorithm PICP PINAW CWC INAD

RSAE 0.9471± 0.0218 0.2528± 0.0080 0.9717± 0.2882 0.0238± 0.0096

LSTM 0.9511± 0.0126 0.3626 ± 0.0061 0.8504± 0.1853 0.0617± 0.0228

SAE-LSTM 0.9532± 0.0230 0.2431± 0.0090 0.5590± 0.1746 0.0272± 0.0140

RSAE-LSTM 0.9655±0.0122 0.2369±0.0166 0.2369±0.0166 0.0215±0.0036

4.4 Ablation Experiment

The proposed model RSAE-LSTM consists of two sub-modules: RSAE and
LSTM. In this subsection, we validate the necessity of above two modules. Mean-
while, in order to verify that introducing rough set theory can handle uncertainty
in dataset, SAE-LSTM which means that RSAE-LSTM without rough set the-
ory is also tested. The prediction performance of RSAE, LSTM and SAE-LSTM
are recorded in Table 2. All the evaluation metrics of the proposed model are
superior to that of RSAE, LSTM and SAE-LSTM, which indicates the necessity
of each component in this model.

4.5 The Effect of Different Values of Hyper-Parameter λ

In this paper, we use hyper-parameter λ to control the trade-off between PINAW
and PICP. From Fig. 3, we can see that with the increase of PICP, PINAW also
increases correspondingly and vice versa. Therefore, we can obtain the desired
PIs by adjusting the value of λ.
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Fig. 3. The performance of different values of hyper-parameter λ.

5 Conclusions

Aiming to obtain high quality prediction intervals, a novel hybrid model for wind
speed interval prediction using an rough stacked autoencoder and a long short
term memory neural network (RSAE-LSTM) is proposed in this work. Firstly,
rough neuron is developed based on the rough set theory and incorporated into
the SAE to construct rough stacked autoencoder network (RSAE), and then
RSAE is applied to extract potential features from the original input data and
perform data dimensionality reduction. The prediction model LSTM then acts
on these generated features to construct the prediction intervals. Meanwhile, a
new loss function is proposed for developing model to construct PIs effectively.
Experimental results reveal that the proposed method can generates narrow
intervals with high coverage compared to the comparative models. As a future
work, long-term wind speed interval prediction and multi-step wind speed inter-
val prediction will be studied.
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ence Foundation of China (62233018, 62136002, 62221005), and the Natural Science
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Abstract. The present study examines the path planning methods
based on rough mereological potential fields for remote mobile robots,
building upon a modification of an originally designed project to prepare
a foundation for three-dimensional path planning. For this purpose, we
have implemented our own library for robot control and developed rel-
evant algorithms - including AR marker recognition, image-based robot
detection, and path planning based on the rough mereological potential
field in conjunction with a weighted distance to the goal. These algo-
rithms are also customized to facilitate tests in a laboratory setting.
Using a video camera, the study captures real-time imagery, allowing for
the continuous updating of the robot’s position on the designated map.
In this paper, we show how to find the right path that a robot follows
while constantly updating its position. Furthermore, the research refines
the precision of the optimal path through the application of smoothing
techniques, ensuring an optimized trajectory from the robot’s starting
point to its destination. We demonstrate a special Euclidean distance
responsible for path optimization. We present a complete project in the
work, with all the elements to reproduce it. We carried out real-world
tests using the Smart Element Hub cube with LED screen of the lego
robot inventor kit.

Keywords: Rough Mereology · Mobile Robotics · Path planning

1 Introduction

The foundational principles of rough mereology, as highlighted by [1] find appli-
cations across diverse computer science domains, including robotics (as refer-
enced by [2] and [3]) and medical analysis (cited by [4]). The present study is
concerned with extending path planning, which uses rough mereological poten-
tial fields, by applying a weighted distance to the target. An additional goal is to
adapt our new library and robot to apply our path planning techniques for use
in a series of future tests. Initially, paths are refined by eliminating redundant
data, followed by a smoothing process that takes obstacle evasion into account.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Campagner et al. (Eds.): IJCRS 2023, LNAI 14481, pp. 549–564, 2023.
https://doi.org/10.1007/978-3-031-50959-9_38
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We executed a real-time test using a representative mobile robot, steered by a P-
controller that relies on compass indicators and camera-driven positioning. The
subsequent section will probe deeper into the formulation of a potential force
field through the lens of rough mereology.

1.1 Application of Rough Mereology in the Control Environment
of Intelligent Agents

This section investigates into the utilization of rough mereology for the genera-
tion of potential fields. The reasoning based on rough mereology introduces the
concept of rough inclusion, denoted as μ(x, y, r). This relation posits that x is
a part of y to a degree of at least r. Given our focus on spatial objects, the
rough inclusion is expressed as μ(X,Y, r) if and only if |X∩Y |

X ≥ r, where X and
Y represent n-dimensional solids and |X| signifies the n-volume of X. In the
context of this research, we examine a planar scenario involving an autonomous
mobile robot navigating within a 3-dimensional space. Consequently, our spatial
objects X,Y are perceived as concept regions, with |X| representing the area of
X. The rough inclusion μ(X,Y, r) take part in shaping the rough mereological
potential field.

The elements of this field are square-shaped, and their relative distance is
defined as:

K(X,Y ) = min{maxrμ(X,Y, r),maxsμ(Y,X, s)}.

A detailed exposition of the field’s construction is presented in Sect. 2. The
robot’s trajectory within the field towards its destination is determined by way-
points, which are delineated in an inductive manner: the subsequent waypoint
is identified as the centroid of the amalgamation of field squares proximate to
the square encompassing the prevailing waypoint, in relation to the distance
K(X,Y ).

The paper in the next sections has the following content. In Sect. 2 we make
an introduction to the route planning methodology used using rough mereologi-
cal potential field. In the Sect. 3 we describe the exact setup of the experiments.
Finally, in the 4 section, we present a summary of our publication.

2 Methodology

In this section, we will discuss the various techniques used to build a target robot
guidance system to target based on rough mereological potential field.

2.1 Square Fill Algorithm

In this chapter we are going to show our conception of Square fill algorithm
introduced by Ośmia�lowski [2]. The mentioned algorithm method already was
modified and later presented in Polkowski [7], Zmudzinski and Artiemjew [5] and
Gnys [8]. Below we can see the basic steps to initialize the algorithm and also
the result that we received - Fig. 1
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1. Initialize the values:
– Set the current distance to the goal: d = 0,
– Set algorithm direction to clockwise

2. Construct an empty queue Q:
Q = ∅

3. Add into generated queue Q first potential field p(x, y, d), where x, y express
the location coordinates of already created field and d reflects the current
distance to the goal:

Q ∪ {p(x, y, d)}
4. Iterate through Q,

(a) Determine neighbors regulated by a current direction:
if clockwise is true:

N =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 = p(x − d, y, d),
p1 = p(x − d, y + d, d),
p2 = p(x, y + d, d),
p3 = p(x + d, y + d, d),
p4 = p(x + d, y, d),
p5 = p(x + d, y − d, d),
p6 = p(x, y − d, d),
p8 = p(x − d, y − d, d)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

if anticlockwise is true:

N ′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 = p(x − d, y − d, d),
p1 = p(x, y − d, d),
p2 = p(x + d, y − d, d),
p3 = p(x + d, y, d),
p4 = p(x + d, y + d, d),
p5 = p(x, y + d, d),
p6 = p(x − d, y + d, d),
p8 = p(x − d, y, d)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(b) Count the Euclidean distance from previous and already created potential
fields neighbors to avoid the redundant fields,

(c) If current potential field pk(x, y, d) has Euclidean distance smaller than
5 and pk(x, y, d) ∪ O, where O is the set of obstacle coordinates, further-
more pk(z, y, d) ∪ F , where F contains a set of created, respected above
conditions potential fields, then leave the current field and step back to
point 4,

(d) Check if in Q exists any similar potential field, if exist leave the current
neighbor and step back to point 4,

(e) Add the created potential fields neighbour pk(x, y, d) into the end of list Q,
(f) Increase the distance to the goal:

d = d(pk) + 0.1



552 A. Szpakowska et al.

(g) Change the direction to opposite,
(h) Drop current element pk(x, y, d) from queue Q and add it into potential

fields list F .

According to the presented way, the distance is initialized from value 0. This
number will be increasing in the next iterations because our algorithm starting to
generate potential fields from a goal into a starting point. Created potential fields
are represented by p(x, y, d), where x, y are proper coordinates and d describes
the value of a distance, which during the operation is responsible for generating
new neighbors. The bigger the distance is, the further the potential field has
been created from a goal. Moreover in each iteration, the direction of generating
neighbors has to be changed so as not to get stuck and explore all map.

Fig. 1. The rough mereological potential field generated using Square Fill Algorithm.
The edge AR markers represent the borders of map and the middle markers represent
the obstacles. The marker under the drawn squares defines the goal. If we are focused
on one color-painted square we get the robot’s initial position.

2.2 Circle Fill Algorithm

Instead of applying squares in our algorithm, we can generate a force field using
circles. After generating and testing a few combinations of map we could not see
clear differences. In the next part connected with path generating, we will look
if there will be some dissimilarity between tracks (Fig. 2).
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Fig. 2. The rough mereological potential field generated by Square Fill Algorithm, but
instead of squares we had applied circles. Similar to 1 edge AR markers represent the
borders of map and the middle markers represent the obstacles. The marker located on
the most crowded space on map defines the goal. If we are focused on one color-painted
square we get the robot’s initial position.

2.3 Path Finding

To find our path, first, we are using the variation of the algorithm proposed by
Osmialowski Path Search Algorithm [2]. Above mentioned algorithm within the
given potential field is as follows (Fig. 3):

Determine the robot’s start point as the first closest_point

INITIALIZE the list which will contain the path from

generated potential fields

FOR i IN RANGE defined number of iterations:

IF the robot’s location is equal to or very close to the goal

position:

END

ELSE:

INITIALIZE the list which will contain the

minimum potential field

actual_min_field = []

CREATE the variable minimum = 0

FOR j IN RANGE length of generated potential fields list:
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COUNT weighted Euclidean distance between closest_point,

current potential field from a list of generated fields

and goal point

IF this is the first iteration:

minimum = counted distance

APPEND current field into actual_min_field

ELSE:

IF the current distance is smaller than

actual minimum distance and it is not

equal 0:

CHANGE minimum value to the current distance

CLEAR list actual_min_field

APPEND current potential field into

actual_min_field list

DROP the current potential field from a list that consists

all potential field

APPEND actual_min_field into the path list

CHANGE the closest_point to actual_min_field

Fig. 3. Generated path using the Path Search Algorithm.

2.3.1 Distance Counting - Weighted Euclidean Distance
For counting the distance between the current point and potential fields we used
the Euclidean distance:



Navigational Strategies for Mobile Robots 555

d(p, q) =
√∑n

i=1(pi − qi)2

In two dimensional Euclidean plane, where p represents the point with potential
field coordinates and q describes the point with goal coordinates. To improve
the accuracy of path finding we apply two Euclidean distances. One focused
on the distance between current potential fields in this paper named classical
Euclidean distance and the second which is used for path optimization - named
Weighted Euclidean distance. The weighted distance takes into account the dis-
tance between the goal and the current point, also on this result, we apply the
weight (by multiplying it by the proper float number) and between two potential
fields. We use a weighted distance to avoid choosing a suboptimal path, a direct
jump to the target without avoiding obstacles.

2.4 Field Filtering-Path Optimizing

The path that we have got from the Path Search Algorithm is not as optimal
and clear as we expected. To reduce the noise in the path we applied the filter
for path optimization. This filter focused on distances between points in the
generated path and the goal. The main condition is about: Starting from the
first element in the path - If we have the same or bigger distances from current
points to target we omit those points. If we have a few points with the same
distance we have to count distances from the next neighbor’s points to target and
compare it. Points having the smallest values of distance will be saved (Fig. 4).

INITIALIZE the lists that will contain the filtered

potential fields and proper Euclidean distances

optimal_path =[]

path_distances =[]

FOR i IN RANGE length of first - not optimal path:

COUNT Euclidean distance between current potential field

and goal point

IF it is the first iteration of the loop:

APPEND this potential field into the list optimal_path

APPEND counted Euclidean distance into list path_distances

ELSE:

IF the counted distance is smaller than the last appended

distance from path_distances list:

APPEND this potential field into optimal_path

APPEND counted Euclidean distance into list path_distance

IF the counted distance is identical to the last
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distance from path_distances list:

COUNT Euclidean distance between the next potential

field from first - not an optimal path and the goal

point

IF this distance is smaller than the previous counted

distance which we have got in this iteration:

DROP the last potential field from optimal_path

APPEND current field into optimal_path

APPEND distance into path_distances

IF this distance is identical as the first

distance which we have got in this iteration:

COUNT Euclidean distance between further

potential field from first - not optimal path

and the goal point

IF this distance is smaller than

previous counted distance which we have got

in this iteration:

DROP the last potential field from optimal_path

APPEND current potential field into optimal_path

APPEND current distance into path_distances

Fig. 4. The same path after applied filtering for optimization.
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2.5 Path Smoothing

After the optimal path from the robot start location to the target is visualized,
we initialize the path smoothing algorithm [5], to make our path as optimal as
possible. We are applying the algorithm n times, till the result and path shape
will not be satisfying:

1. We reduce the distance between points by applying the variable α, which
describes how fast we move away from an original position xk taking into
account the previous xk − 1 point and the next xk + 1 point.

xk = xk + α(xk − 1 + xk + 1 − 2xk)

2. Next we have to balance the point xk by applying the β variable and counting
yk that represents the new position of the point. Because of this operation,
we can avoid the straight line in the path.

yk = yk + β(xk − yk)

Results we can see in Figs. 5 and 6.

Fig. 5. Our previous path after using path smoothing algorithm.
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Fig. 6. Path smoothing applied on circle fill algorithm.

3 Experimental Section

In this section, we will discuss the technical side of our experiments finalizing it
by sharing a demonstration of our project in a real environment.

3.1 Technical Conditions of the Experiments

We have done real-world testing in a smart robotics laboratory. The key devices
were a top camera, which captured the coordinates of the points and a Smart
Element Hub cube of the lego robot inventor kit. To control the robot in a
semi-autonomous way - where the computer is the computing unit - we used our
own library implemented in Python available at [10]. The code responsible for
validation is available on Github [11].

3.2 Map Generation Using Augmented Reality Markers

To test the above algorithms we have to create an adapted environment (Fig. 7)
for our mobile robot. To realize our conception of a robot’s world map we used
AR markers, responsible for setting map boundaries, and defining the obstacles
and the goal point. Also, the robot location was described as a green square,
that we applied on top of the machine. Specific elements on map:

– Boundaries (4 markers)
– Obstacles (2 markers)
– Planned goal (1 marker)
– Robot position (green square)
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Fig. 7. AR recognition. The green point on a capture describes the start point - robot’s
actual position. (Color figure online)

To recognize listed elements and get the possibility of defining each position
on a virtual map we used Open CV [6] and Python AR markers [9].

After capturing the view from the camera we had to customize our window.
Now all the points’s coordinates were based on the camera capture pixels and
hence map for the robot agent started from (40, 46) instead of (0, 0) point. To
change the top left border point we used the following mapping:

for i in range(len(x1)):

a = x1[i] - x_min

x_borders.append(a)

for i in range(len(y1)):

a = y1[i] - y_min

y_borders.append(a)

Where xmin determines the minimum of X values, ymin is the minimum of y
value in border points (x, y) (Fig. 8).
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Fig. 8. Results of map generating including the start point as a green square. (Color
figure online)

3.3 Connection to the Robot and Basic Features

For our test, we constructed a robot using a Smart Element Hub cube with LED
screen of the lego robot inventor kit and servomotors, that use Python language.
The most important thing to start working with this robot was to implement a
library that contains proper functions [10].

Main features of the robot:

– Motor access (Port A and B)
– Compass sensor access (Build into the Hub)
– Current direction access (Read from Hub)
– Current position (Obtained from camera)
– Determined goal (sequent point on the path to target)

The first step is to create the bluetooth connection between the robot and
our device. To do it we had to choose ports: COM3 or COM4 depending on
which our robot took. Next, we were obligated to set the robot’s position point
from a camera, that center of the green point located at the top of the machine
was normalized like all borders and obstacles in chapter IX. Because of those
actions, the P-controller can be working correctly.

3.4 Controlling the Driving Part of the Robot

The robot that we used to conduct the experiments is equipped with a compass
sensor, thanks to which we can capture and fix the current robot direction.
Taking into account that our path is created and smoothed including obstacles
avoidance, we get the set of coordinates that single variables represents the
individual points of the optimized path. Using this set we can reach a goal. This
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experiment was working in real time and our machine was localized by the top
camera using a green color recognition.

The main purpose of designing a P-controller for our robot is to make it move
independently, taking into account the generated path. Below we focused on the
main steps needed for our steering.

3.4.1 Conversion of the Compass Reading Values
The proposed conversion was based on the current rotation direction of the
robot relative to the actual build robot compass sensor value. The spectrum of
our calculation is between 0 to 359 and it could be interpreted as the angle of the
circle. This idea splits a given set of angles into two sets. Instead of the previous
range of values, after applying conversion we have got a spectrum from −180 to
180. The split was made as follows:

def convert(k,x):

x = x - k

if (x > 180):

x = x - 360

if ( x < -180):

x = 360 + x

return x

Assuming that k is the actual direction that we have to turn relative to the
robot’s current position getting from the camera and x is the robot’s current
direction.

After conversion angles from 0 to 180◦ have consistently positive values, while
values from 181 to 359 have values from −179 to −1, respectively. Those values
represent the global directions:

– 0◦ North
– 90◦ East
– 180◦ South
– −90◦ West

3.4.2 Calculation of the Actual Rotation
In the above conversion, we use the actual direction relative to the robot’s current
direction. To calculate this value we used the following property:

direction = arctan(x − y′, y − x′) ∗ 180/3.14

where (x, y) is the current path element and the (x′, y′) is the actual robot
position on a map.

act_dir = math.atan2(path_points_x[i] -

- actual_y, path_points_y[i] -

- actual_x) * 180 / 3.14
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3.4.3 Control System
The control function uses a convert function for angles and wheel speeds, which
are considered separately. The algorithm reduces the speed initially given to one
of the wheels in order to rotate the robot. The idea of the applied algorithm is to
minimize the speed of the selected wheel, depending on calculating the robot’s
new direction. The device rotates to the right side if the velocity value on the
right wheel is less than the velocity value on the left wheel, the same procedure
is followed when rotating to the left side.

cte = convert(actual_direction,

current_direction)

if cte <= 0:

if abs(cte) > precision:

wheel2 = (wheel1 * (-1))

else:

wheel2 = (wheel1 * (-1)) -

(ksi * cte)

if cte > 0:

if cte > precision:

wheel1 = (wheel2 * (-1))

else:

wheel1 = (Wheel2 * (-1)) -

(ksi * cte)

mc.motor_double_turn_on_deg(HubPortName.A,

HubPortName.B, wheel1, wheel2,

degrees=actual_direction)

Where the wheel1 and wheel2 describe the speed of each robot motors. The
ksi determines the corresponding slowdown of the wheel speed, represented by
a value range between 0.1 and 0.5.

3.5 Project Presentation and Access to Codes

We can see the action of our project in practice at link [12]. The code of our
own library for controlling the robot is at the link [10]. The rest of our project’s
code is located in the [11] repository. The AR tags we used are available at [9]
(Fig. 9).
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Fig. 9. The robot used in the experimental part - based on Smart Element Hub cube
with LED screen of the lego robot inventor kit

4 Conclusions

In this paper, we have successfully implemented path planning using the rough
mereological potential field, combined with a weighted Euclidean distance to
the target. We designed and executed a dedicated library for a specific mobile
robot. As integral components of the project to shape the map, we utilized
virtual reality markers. For the control mechanism, a P-controller was employed.
The goal of the work has been achieved, we have adapted the new library and
hardware for optimal real-time driving of the mobile robot over a map with
obstacles. This work serves as an initial step to the application of the rough
mereological potential field for three-dimensional path planning.

References

1. Polkowski, L.: Rough mereology: a new paradigm for approximate reasoning. Int.
J. Approximate Reasoning 15, 333–365 (1996)

2. Osmialowski, P.: Planning and navigation for mobile autonomous robots spatial
reasoning in player/stage system (2011, 2022)

3. Osmialowski, P., Polkowski, L.: Spatial reasoning based on rough mereology: a
notion of a robot formation and path planning problem for formations of mobile
autonomous robots. Trans. Rough Sets 12, 143–169 (2010)

4. Artiemjew, P.: Rough mereology classifier vs simple DNA microarray gene extrac-
tion methods. Int. J. Data Min. Modell. Manage. Spec. Issue: Pattern Recognit.
6, 110–126 (2014)

5. Zmudzinski, L., Artiemjew, P.: Path planning based on potential fields from rough
mereology. In: Polkowski, L., et al. (eds.) IJCRS 2017, Part II. LNCS (LNAI), vol.
10314, pp. 158–168. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60840-2 11

https://doi.org/10.1007/978-3-319-60840-2_11
https://doi.org/10.1007/978-3-319-60840-2_11


564 A. Szpakowska et al.

6. OpenCV. https://opencv.org/
7. Polkowski, L., Zmudzinski, L., Artiemjew, P.: Robot navigation and path planning

by means of rough mereology. In: Proceeding of the IEEE International Conference
on Robotic Computing (2018)
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Abstract. Medical image analysis based on deep learning technology
has recently attracted much attention. However, it is inappropriate to
directly employ the methods that perform well in computer vision.
For skin lesion images, the differences between various lesions may be
relatively small, and the existing commonly used datasets are class-
imbalanced. In this paper, we propose a new method with an augmented
loss function that makes use of contrastive information and label infor-
mation. The proposed method tries to enhance the intra-class similarity
and inter-class dissimilarity in the learning procedure. We also apply
oversampling on the original data to tackle the imbalance issue. Exten-
sive experiments are conducted on the ISIC2018 and ISIC2019 datasets.
The results have demonstrated that, in terms of F1-score and AUC, the
proposed method has outperformed the compared methods.

Keywords: skin lesion images · intra-class dissimilarity · inter-class
similarity · contrastive loss · imbalanced classification

1 Introduction

Deep learning, an automatic representation learning method from raw data, has
applied to many fields [1–3], such as computer vision, natural language process-
ing, recommendation system, medical imaging, etc. Compared with hand-crafted
features, representations learned by deep learning usually need less manual inter-
vention and can achieve better performance. In recent years, due to the successful
application in various image tasks of computer vision, many deep learning-based
techniques have been proposed to tackle medical image analysis [3], and attracted
more and more research interests.

However, several deep learning methods cannot produce effective results for
medical data because of the following reasons: (1) The methods are naturally
accompanied with large labeled datasets, but annotating the medical data by
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Campagner et al. (Eds.): IJCRS 2023, LNAI 14481, pp. 565–579, 2023.
https://doi.org/10.1007/978-3-031-50959-9_39
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human experts is strenuous, time-consuming and subjective in a clinical envi-
ronment [4]. (2) Many medical datasets are inherently imbalanced, and tend to
exhibit a long-tailed label distribution. Classifiers trained on imbalanced data
may focus on the majority of samples with a high accuracy rate, and the minor-
ity class will be ignored. In fact, the loss of misclassifying the minority class
may be much higher than misclassifying the majority class [5]. (3) In some med-
ical datasets, the differences between various images may be relatively small, for
instance, chest X-ray images and skin lesion images. Thus, it is challenging to
minimize intra-class variance and maximize inter-class variance [6].

To sum up, the approaches to overcome the imbalance issue are divided into
two groups. One group consists of data level methods, which change the class
distribution of training dataset by oversampling or undersampling to improve
the balance directly [7]. One of the most common oversampling forms is random
minority oversampling that replicates samples from minority classes randomly.
Synthetic Minority Oversampling Technique (SMOTE) [8] is more sophisticated
and generates new samples by interpolating. In addition, data augmentation and
generative methods [9] are also proposed to generate new samples. Oversampling
has been demonstrated to be efficient despite the overfitting problem that may
occur [7]. Contrary to oversampling, undersampling refers to reducing samples
from the majority class and may destroy the integrity of data. The another group
is algorithm level solutions that alter training or inference algorithms (models).
Cost sensitive learning [10] is a commonly used algorithm level method that
assigns various costs to misclassification of samples from different classes. Then
the costs or weights are added to the loss function to mitigate the impact of
class imbalance. Usually, a higher weight is given to the loss computed by the
samples from the minority classes. Furthermore, methods combining these two
groups or applying ensemble algorithms are often used.

As to the intra-class and inter-class differences problem, methods generally
focus on the definition of loss for models to maximize inter-class variance and
minimize intra-class variance. For instance, triplet loss [11] tries to make the
distance between instances from the same class small, and the distance between
instances from different class large. Center loss [12] tries to shrink instances of
the same class into one point in the feature space and enforces all the intra-class
instances to be clustered around a learned class-specific center. Contrastive loss
[13] measures the distance between similar and dissimilar sample pairs. In a
word, the representations generated by the model can meet the conditions that
similar samples are close and different ones are far away, which is the basis of
many representation learning loss functions.

In view of the above issues, for skin lesion classification, we define an aug-
mented loss function with contrastive information and label information simulta-
neously. We also apply data level methods to handle data imbalance. Experiment
results illustrate that the proposed method is effective.

The remainder of the paper is organized as follows. Some related works about
skin lesion classification are introduced in Sect. 2. Section 3 details the proposed
method, including the framework and loss functions. Section 4 illustrates the
conducted experiments and results. Section 5 concludes the paper with some
discussions.
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2 Related Work

Dermoscopy [14] has been widely used for early detection and diagnosis of skin
cancer, and there were many clinical studies about diagnosing skin cancers prac-
ticed by dermatologists [15]. However, the clinically diagnosing requires quali-
fied and skillful dermatologists to interpret the dermoscopy images. Relatively
speaking, it is prone to operator bias and is a time-consuming method. With the
development of Computer-Aided Diagnosis Systems, many artificial intelligence-
based approaches are used in skin lesion classification, which can produce more
reliable results with high efficiency.

The early automated skin cancer classification solutions generally apply low-
level hand-crafted features, such as color, shape and texture [16]. Marques et al.
[17] put together color features with texture features for skin lesion classifica-
tion, and found out that color features were not sufficient. Murugan et al. [18]
used watershed segmentation method to extract segments, which were subjected
to feature extraction, and performed classification using SVM. Hameed et al.
[19] proposed a four-step classification framework for skin lesions, and extracted
gray-level co-occurrence matrix features in the feature extraction stage. For more
robust skin lesion classification, Amelard et al. [20] proposed high-level intu-
itive features (HLIF), and incorporated them into a set of low-level features
to get more semantic meaning. Wahba et al. [21] proposed a novel texture fea-
ture, cumulative level-difference mean (CLDM) based on the gray-level difference
method (GLDM).

In recent years, the hierarchical feature learning strategies based on deep
learning outperform the traditional hand-crafted methods in many medical
image analysis tasks [22–25]. Haenssle et al. [22] applied a pre-trained Google’s
Inception v4 model for melanoma diagnoses. Barata et al. [23] introduced atten-
tion modules to identify interpretable features and regions in dermoscopy images,
and improved the explainability of a skin cancer diagnostic system. Jojoa Acosta
et al. [24] put forward a two-stage process by creating cropped region of inter-
est using Mask and Region-based CNN and classifying the cropped area with
ResNet152. Adepu et al. [25] proposed a novel knowledge-distilled lightweight
Deep-CNN-based framework to handle the high class-imbalance problem of
melanoma classification.

3 Method

3.1 Problem Statement

Take ISIC2018 dataset collected from the International Skin Imaging Collabo-
ration Archive for example, we illustrate the issues of intra-class and inter-class
variance and imbalanced classes. There are seven classes of images that are
labeled as NV, MEL, BKL, BCC, AKIEC, VASC and DF.

We randomly select two skin lesion images of each class, shown in Fig. 1.
Obviously, intra and inter difference are not clear. Some images from the same
class differ from each other, such as two images in the class MEL (Fig. 1(b)).
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Meanwhile, some images from various classes may look the same, for instance,
the images in class BKL and BCC (Fig. 1(c) and Fig. 1(d)). Due to the issues of
intra-class dissimilarity and inter-class similarity, it is even difficult for experi-
enced dermatologists to distinguish lesions with naked eyes, which may cause a
misdiagnose.

(a) NV (b) MEL (c) BKL (d) BCC

(e) AKIEC (f) VASC (g) DF

Fig. 1. Types of dermoscopic skin lesions on ISIC2018.

There are 10,015 dermoscopic images on ISIC2018. Class NV contains 6705
images and is the biggest category that accounts for 66.95%. But the smallest
class DF with 115 images accounts for about 1.15%. The ratio of sample numbers
for these two classes is about 58. The proportion of class MEL, BKL, BCC,
AKIEC and VASC are 11.11%, 10.97%, 5.13%, 3.27% and 1.42% respectively.
As can be seen from these percentages, the dataset is imbalanced.

3.2 Network Architecture

To solve the similarity and imbalance problem of skin lesion image classification,
we propose a new method and the framework is illustrated in Fig. 2.

Fig. 2. General framework of the proposed method.

The class distribution is balanced by oversampling firstly. The refined images
with data augmentation are passed to a CNN architecture based on a backbone
network. The cross-entropy loss is calculated by the feature vectors in the full
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connection layer and labels. While the contrastive loss is calculated by feature
vectors of positive and negative pairs. We combine them and get an augmented
loss.

3.3 Contrastive Loss

The contrastive learning approaches have recently been proposed to develop
robust representations from the input data. The core concept is to maximize the
agreement between a pair of similar pairs or the distinction between the positive
and negative pairs. Typically, a contrastive model is trained by the contrastive
loss to maximize the similarity between the positive pairs and minimize it with
the negative pairs. This is much similar to the ideas of clustering or autoencoder.

Let X1,X2 ∈ X be a pair of input instances, and Y be a binary label assigned
to the pair. If X1,X2 are deemed similar, set Y = 0, and if X1,X2 are deemed
dissimilar, set Y = 1. The initial contrastive loss [13] is defined as follows:

L(W ) =
P∑

i=1

L(W, (Y,X1,X2)i), (1)

L(W, (Y,X1,X2)i) = (1 − Y )LS(Di
W ) + Y LD(Di

W ), (2)

where (Y,X1,X2)i refers to the i-th labeled sample pair, LS is the partial loss
function for a pair of similar instances, LD is the partial loss function for a
pair of dissimilar instances, P is the number of training pairs, and DW is the
parameterized distance function to be learned between the outputs of X1,X2,
which is defined as:

DW = ‖GW (X1) − GW (X2)‖2, (3)

where GW (X1) is the model output of X1.
The loss functions of constrastive learning methods are mainly based on

InfoNCE or its variants [26,27], and can be defined as:

LInfoNCE =
1
N

N∑

i=1

− log
exp(sim(Vi, V

+
i )/τ)

exp(sim(Vi, V
+
i )/τ) +

M∑
j=1

exp(sim(Vi, V
−
j )/τ)

, (4)

where Vi is the feature representation of Xi, V +
i is the feature representation

of positive sample, V −
j is the feature representation of negative sample, N is

the number of query samples, M is the number of negative samples, τ is the
temperature hyper-parameter and sim(·) denotes the cosine similarity function.

Inspired by the principle of above definitions, we optimize the loss function
of model with contrastive information and label information and can make full
use of feature representations and labels. Suppose that, within a minibatch, all
samples from the same class are considered positive pairs, and from different
classes are negative pairs. The proposed augmented loss function is expressed
as:

LAL = LCE + γLCL, (5)
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wherein γ is a hyper-parameter that can adjust the weight of LCL. LCE is the
cross-entropy loss function, and

LCE = −
n∑

i=1

yilog(ŷi), (6)

yi is the true label of Xi, ŷi is the prediction label of Xi. LCL is the contrastive
loss function, which is defined as:

LCL =

∑
yi=yj

‖Vi − Vj‖2

n∑
i=1

n∑
j=1

‖Vi − Vj‖2
, (7)

where the numerator refers to the distance of feature representation for instances
which belong to the same class. So the learning procedure relies partly on the
neighborhood relationships provided by labels.

4 Experiments

In this section, we conduct some experiments on two public imbalanced datasets
with the following purposes: (1) to compare the results with different back-
bone networks and inspect which model has been improved, (2) to find out the
outcomes of testing set with different data sampling methods, (3) to compare
the classification performance of different methods handling the similarity and
imbalance problem of skin lesion image classification.

4.1 Experimental Setup

4.1.1 Datasets
To evaluate the proposed method, we performed classification task on two skin
lesion analysis challenge datasets: ISIC2018 [28] and ISIC2019 [28–30], and the
datasets are subsets of data collected from the International Skin Imaging Col-
laboration (ISIC) Archive.

• ISIC2018 (main dataset): consists of 10,015 RGB dermoscopic images of the
size 600 × 450 from HAM10000 dataset. It is divided into seven classes, and
the distribution is shown in Fig. 3(a).

• ISIC2019: consists of 25,331 RGB dermoscopic images from HAM10000 and
BCN20000 datasets. The sizes of majority images are 600 × 450 and 1024 ×
1024. There are eight classes in total and the distribution is shown in Fig. 3(b).

We can observe that the two datasets are imbalanced, and exhibit a long-
tailed distribution.
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(a) ISIC2018 (b) ISIC2019

Fig. 3. Distributions of samples on ISIC2018 and ISIC2019.

4.1.2 Evaluation Metric
For the classification task, accuracy is usually be used to evaluate the perfor-
mance. But when the dataset is imbalanced, high overall accuracy may not
reveal the accuracy of minor classes. In this study, we have used several metrics
[31] to assess the performance of various methods: accuracy, precision, sensitiv-
ity (recall), F1-score and area under a receiver operating characteristic curve
(AUC). In this study, for multi-class classification on ISIC2018 and ISIC2019,
we apply the macro sensitivity, precision and F1-score to evaluate the overall
classification performance.

Accuracy(ACC) =
TP + TN

TP + FP + FN + TN
, (8)

Precision(PRE) =
TP

TP + FP
, (9)

Sensitivity(SEN) =
TP

TP + FN
, (10)

F1 − score =
2TP

2TP + FN + FP
. (11)

These metrics are derived from a 2 × 2 confusion matrix. On ISIC2018
and ISIC2019 datasets, the multi-class classification problem is transformed into
a binary classification problem, namely, target class and non-target class. TP
stands for true positive, which is the number of target class samples that are
correctly predicted. FN , false negative, represents the number of samples that
are wrongly predicted as belonging to non-target class. TN , true negative, refers
to the number of non-target class samples that are correctly predicted. FP , false
positive, is the number of samples that are wrongly predicted as target class.

4.1.3 Experiment Settings
Experiments are conducted using a computer with Intel Core i7-8700 CPU
(3.2 GHz), 16 GB DDR4 RAM, and an NVIDIA GeForce GTX 1080 Ti GPU
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with 11 GB memory. The proposed method has been implemented in PyTorch on
Ubuntu 18.04. ResNet50, ResNet101, DenseNet121 and DenseNet201 are chosen
as the backbone networks. For a fair comparison, we conduct experiments under
the same experiment conditions. All models were trained for 50 epochs with the
static learning rate of 1e−4. Adam optimizer was used and the batch size was
set to 32.

We divide each dataset into 70% for training, 10% for validation, and 20%
for testing. All images from the two datasets are adjusted to (112 × 112) in the
experiment. However, due to the large-scale iterations and the computational
limitations, the images are resized to (28 × 28) applied to SMOTE in the second
experiment. All the images are normalized. Moreover, during training, we apply
data augmentation including random rotation, cropping, horizontal and vertical
flips.

4.2 Results

4.2.1 Performance with Different Backbones
Before investigating the balancing techniques, four models are trained on the
imbalanced skin lesion dataset ISIC2018. All the models are trained with the
standard cross-entropy loss function. The training loss and validation loss of 25
epochs are shown in Fig. 4. We can see that, the validation loss decreases as
the training loss decreases during the training procedure. After 50 epochs, the
classification outcomes on testing set are shown in Table 1.

Table 1. Classification results with different backbones on ISIC2018.

Models ACC PRE SEN F1-score AUC

ResNet50 0.8481 0.7922 0.6701 0.7260 0.8593

ResNet101 0.8432 0.8054 0.6739 0.7324 0.8528

DenseNet121 0.8470 0.8231 0.7028 0.7582 0.8546

DenseNet201 0.8570 0.8231 0.7198 0.7679 0.8609

We can see that the results of all pre-trained models are approximate, and
DenseNet201 achieves the highest accuracy, precision, sensitivity, F1-score, and
AUC, which are 1.63%, 3.9%, 7.4%, 5.77%, 0.95% higher than the lowest results
respectively. In particular, classification accuracy and AUC of the four mod-
els slightly change. Compared to ResNet50, ResNet101 provides tiny inferior
outcomes of accuracy and AUC, but superior results of precision, sensitivity,
F1-score. Compared to DenseNet121, DenseNet201 provides better outcomes of
the five metrics. As for precision, sensitivity, F1-score, the DenseNet models
yield better results than the ResNet models. The depth of models may affect the
outcomes, but the change is little.
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(a) ResNet50 (b) ResNet101

(c) DenseNet121 (d) DenseNet201

Fig. 4. Training loss with different backbones on ISIC2018.

4.2.2 Results on Different Sampling Methods
We apply three different data level approaches to change the class distribution of
training dataset and evaluate the test results. The chosen data sampling methods
are RandomOverSampler (ROS), RandomUnderSampler (RUS) and SMOTE
from imblearn package. The sample numbers of each class after sampling are
shown in Fig. 5. On ISIC2018, the sample number of each class when employing
oversampling methods is 4698, while undersampling is 73, and their ratio is close
to 65. So, the data fed in the subsequent training procedure vary widely in terms
of quantity. Similarly, the ratio on ISIC2019 is 8986:165≈55.

As the experiment results in Sect. 4.2.1 are slightly different, we choose
ResNet101 as the backbone, and use the standard cross-entropy loss function
(CE). Table 2 and Table 3 display the test results on ISIC2018 and ISIC2019
respectively after employing different sampling methods on training set. While,
the first row in these tables apply the original training set as the baseline for
comparison. For the sake of intuition, we depict the results of Table 2 and Table 3
in line graphs, as illustrated in Fig. 6.

On ISIC2018, the results of oversampling (ROS+CE) are superior to that
of baseline in terms of sensitivity, F1-score and AUC, but inferior on accuracy
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(a) ISIC2018 (b) ISIC2019

Fig. 5. Sample numbers of each class after sampling.

Table 2. Classification results with different samplings on ISIC2018.

Method ACC PRE SEN F1-score AUC

CE 0.8432 0.8054 0.6739 0.7184 0.8528

ROS+CE 0.8402 0.7303 0.7580 0.7317 0.8632

RUS+CE 0.7190 0.5504 0.7127 0.6211 0.7234

SMOTE+CE 0.8030 0.7315 0.7126 0.7219 0.8236

Table 3. Classification results with different samplings on ISIC2019.

Method ACC PRE SEN F1-score AUC

CE 0.8161 0.7635 0.7188 0.7395 0.8721

ROS+CE 0.8206 0.7551 0.7613 0.7557 0.8721

RUS+CE 0.6206 0.4369 0.6187 0.4767 0.7596

SMOTE+CE 0.7468 0.6531 0.6623 0.6610 0.8039

and precision. But the results of undersampling (RUS+CE) are much lower
than that of baseline on accuracy, precision, F1-score, and AUC. As to SMOTE,
the outcomes of accuracy, sensitivity, F1-score and AUC are between that of
oversampling and undersampling. Also, it provides inferior results of accuracy,
precision and AUC compared to baseline. We can observe the similar phenomena
on ISIC2019. Specifically, the results of oversampling (ROS+CE) are superior
to that of baseline in terms of accuracy, sensitivity, F1-score and AUC, inferior
on precision, equivalent on AUC. All the five metrics of undersampling are lower
than that of baseline, and SMOTE are between oversampling and undersampling.

Generally speaking, RandomOverSampler to balance the training set by repli-
cating samples from minority classes can get slightly better outcomes than base-
line. The results are much worse if RandomUnderSampler is used to reduce
samples from the majority class. It is consistent with that more data are needed
for deep learning. Due to the computational complexity of SMOTE and experi-
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ment environment limitation, we resize images to (28 × 28) when using SMOTE
to generate new samples. Thus, the outcomes are usually inferior to that of ROS
in which images are (112 × 112). However, in some literatures, it is reported
that SMOTE is more effective than ROS when the images are of the same size.

(a) ISIC2018 (b) ISIC2019

Fig. 6. Results of different sampling methods.

4.2.3 Results with Different Loss Functions
In this section, experiments are conducted to compare different loss functions,
such as CE, Center Loss (CL) [12] that focuses on the similarity problem, Focal
Loss (FL) [25,32] that emphasizes on the imbalance problem, and the proposed
augmented loss (AL). For CL, the feature dimension is set to equal to the number
of classes, and other parameters are the same as [12]. As to FL, the weights of
each class are set according to the sample numbers of each class, and other
parameters are the same as [32]. The parameter γ of Eq. (5) is set to 2. Because
RandomOverSampler performs better in the previous experiment, we also apply

Table 4. Classification results with different losses on ISIC2018.

Method ACC PRE SEN F1-score AUC

CE 0.8432 0.8054 0.6739 0.7184 0.8528

ROS+CE 0.8402 0.7303 0.7580 0.7317 0.8632

CL 0.8306 0.8357 0.6422 0.6982 0.8030

ROS+CL 0.8453 0.7679 0.7424 0.7519 0.8661

FL 0.8185 0.7277 0.7566 0.7391 0.8599

ROS+FL 0.8558 0.7632 0.7401 0.7468 0.8736

AL 0.8573 0.7941 0.7200 0.7518 0.8712

ROS+AL 0.8543 0.7724 0.7398 0.7554 0.8784
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it to alter the distribution of training set and then inspect the test results with
different losses. The experiment results on ISIC2018 and ISIC2019 are detailed
in Table 4 and Table 5 respectively, also shown in Fig. 7.

Table 5. Classification results with different losses on ISIC2019.

Method ACC PRE SEN F1-score AUC

CE 0.8161 0.7635 0.7188 0.7395 0.8721

ROS+CE 0.8206 0.7551 0.7613 0.7557 0.8721

CL 0.8026 0.8010 0.5944 0.6389 0.8556

ROS+CL 0.7884 0.7666 0.7211 0.7383 0.8521

FL 0.7518 0.6310 0.7203 0.6676 0.8333

ROS+FL 0.7765 0.6909 0.7466 0.7123 0.8529

AL 0.8176 0.7584 0.7329 0.7447 0.8698

ROS+AL 0.8263 0.8169 0.7536 0.7848 0.8703

(a) ISIC2018 (b) ISIC2019

Fig. 7. Results with different loss functions.

On ISIC2018, the accuracy, sensitivity, F1-score and AUC of AL are 1.67%,
6.84%, 4.65% and 2.16% higher than that of CE respectively, while the precision
is slightly lower. The accuracy, F1-score and AUC of AL are all higher than that
of CL and FL. If we apply the oversampling technology first, the sensitivity, F1-
score and AUC of ROS+AL are slightly higher than that of AL. Especially, the
F1-score and AUC of ROS+AL are the best of all. Furthermore, the accuracy
and precision are lower than that of AL. On ISIC2019, the accuracy, sensitivity
and F1-score of AL are 0.18%, 1.96%, 0.70% higher than that of CE respectively,
while the precision and AUC are 0.67% and 0.26% lower. As to ROS+AL, the
five metrics are all higher than that of AL, and the increased percentages are
1.06%, 7.71%, 2.82%, 5.38% and 0.06% respectively.
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In summary, in terms of F1-score and AUC, the proposed method is better
than other losses except the AUC of CE on ISIC2019. It is proved that for skin
lesion images, when we take intra-class and inter-class differences into account,
the classification results will be improved to some extent. Therefore, the proposed
method is effective.

5 Conclusion

In this paper, for the problem of small intra-class and inter-class differences
among skin lesion images, we design an augmented loss function by adding con-
trastive loss, and for the imbalance problem, we apply oversampling to duplicate
images of minority class. Experiment outcomes indicate the proposed method has
outperformed the compared losses. In experiments, we find out that less images
as in RUS, smaller ones as in SMOTE will yield worse classification outcomes.
In the future, in order to further promote the performance of skin lesion image
classification, more advanced data balancing strategy or diverse scale images
from the view of multi-granularity can be focused on.
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Abstract. Link prediction is an important research direction in com-
plex network analysis, which aims to infer the likelihood of future con-
nections between pairs of nodes in the network that have not yet pro-
duced edges. In real life, many relationships can be described through the
network, and many practical problems can be transformed into link pre-
diction problems. However, existing link prediction methods either rely
heavily on network structure information or cannot effectively integrate
network structure information and attribute information. To solve the
above problems, this paper proposes a new link prediction framework
ASLAM based on the attention mechanism and the adaptive extrac-
tion strategy of attribute information and structural information. Specif-
ically, ASLAM first constructs the node semantic representation with the
attribute attention mechanism, then constructs the node structure repre-
sentation with the neighborhood attention mechanism, and finally makes
the final prediction by adaptive merging semantic representation and
structure representation. Experiments on nine real datasets show that
the proposed algorithm has a great improvement in performance com-
pared with the baseline method. Compared with the 11 baseline methods,
AUC and AP increased by 0.08%–3.1% and 0.05%–3.4%, respectively,
indicating the superiority of the ASLAM method.

Keywords: Link prediction · Graph neural networks · Attention
mechanism

1 Introduction

The internet exists in many real-world societies, physics, and information sys-
tems. Link prediction aims to predict whether two nodes in the network have
links [20,31] through some available topology and attribute information in the
network, which has attracted a lot of research work and has broad application
significance. For example, it can save the workload of blindly checking interac-
tions in the protein network [2], improve the recommendation services in social
networks [1,32] and e-commerce networks [17], help complete the information in
the Knowledge graph [23,24], and analyze the infection of epidemic diseases [3,6].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Campagner et al. (Eds.): IJCRS 2023, LNAI 14481, pp. 580–595, 2023.
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According to the technology involved, current link prediction methods can be
divided into three categories: heuristic feature based methods, embedding based
methods, and graph neural network (GNN) based methods. The method based
on heuristic features infers the possibility of links by manually creating simi-
larity measures about structural information. Local similarity indicators such as
Common Neighbor (CN), Adamic Adar (AA), Local Path (LP), and Preferential
Attachment (PA) are used to predict [19,21,40]. The embedding based method
learns node embedding based on node link information, and uses the learned
node embedding to calculate the similarity score between nodes [10,36]. The
GNN based method expresses link prediction as a binary classification problem
that can fuse explicit node features [22,37,39].

The two main types of link prediction methods based on GNN are GAE [16]
and SEAL [39]. It is observed from experience that GAE, which relies heavily on
smooth node characteristics, performs poorly on data sets with highly hierarchi-
cal layout, which limits its application in many realistic scenarios with obvious
tree structure [7,34], such as disease transmission networks. SEAL uses spe-
cific labeling techniques to explicitly encode the structural information of closed
subgraphs around each link, and then applies graph level GNN to demonstrate
stronger link inference ability. However, SEAL only learns network topology
information, resulting in limited prediction performance. Compared with pre-
vious research, BSAL [18] proposed the joint learning of node attributes and
network topology, providing a promising approach for link prediction. However,
due to the fact that node attributes and node structure matrices come from two
different fields and are far away in terms of information format and dimensions,
directly combining node feature information matrices with structure matrices
does not always improve performance. These methods cannot effectively inte-
grate topology and attribute information for link prediction.

Secondly, although GNN based methods exhibit significant performance by
aggregating the features of adjacent nodes to generate the features of the cen-
tral node. However, real-world graphs often have connections between unrelated
nodes and noise from unrelated attributes, which leads to suboptimal representa-
tions of GNN learning. Graph Attention Networks (GAT) [30] use self attention
to alleviate this problem. Graph attention captures the relational importance
of a graph, in other words, each neighbor of the central node has a different
degree of importance. SuperGAT [14] proposed that the homogeneity and aver-
age degree of graphs can affect the finiteness of self supervision, and learned
more expressive attention in distinguishing neighbors with incorrect links.

To address the limitations of GAE and SEAL, as well as the noise problem
of graph network data. This article proposes an attribute and structure learning
framework ASLAM based on attention mechanism. Specifically, the framework
constructs a semantic topology based on node features, and then combines the
node attribute attention mechanism to obtain a structural level semantic rep-
resentation. Secondly, subgraph topology is constructed through node degree,
distance, and semantic representation, and structural representation is obtained
through GNN learning. Finally, the adaptive fusion of structural and semantic
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representations is used to measure the existence of links. This article demon-
strates the effectiveness and superiority of the ASLAM method, which is signif-
icantly superior to various research baselines.

The main contributions of this article are as follows:

1. In order to solve the problem of GNN heavily relying on node smoothing
features, this article adopts a specific labeling method. Learn the structural
features of a graph by considering node degree and distance.

2. In order to learn the attribute features of nodes, it is proposed to transform
node attribute features into structural level semantic representations and use
Shapley values as the importance values of attributes.

3. A link prediction framework based on attention mechanism for structure and
attribute learning (ASLAM) was designed, which learns useful features from
the network’s attribute and structural information and adaptively integrates
them for link prediction.

4. The experimental results on 9 real datasets demonstrate that the proposed
model outperforms other baseline models. In terms of link prediction tasks,
compared with the baseline model, AUC and AP have improved by 0.08% to
3.1% and 0.05% to 3.4%, respectively. At the same time, the effectiveness of
the proposed model has been demonstrated in ablation analysis experiments.

We organized our paper as follows. Section 2 briefly overviews the works
related link prediction methods, and Sect. 3 describes the notations used in
this paper and some preliminary definitions. Then the ASLAM framework
is illustrated in Sect. 4, and the experimental results and detailed analysis
report are presented in Sect. 5. Finally, Sect. 6 gives the conclusions and dis-
cussions of the future works in this field. Code and model are available at:
https://github.com/juanajuan5826/ASLAM.

2 Related Works

The existing link prediction methods can generally be divided into three cate-
gories: heuristic feature based methods, embedding based methods, and GNN
based methods.

2.1 Method Based on Heuristic Features

Most heuristic feature methods utilize neighborhood information to measure the
similarity of nodes, which is simple and effective. Popular heuristic methods
include: Common Neighbor (CN), Adam Adar (AA), etc. CN assumes that the
more common neighbors two nodes have, the more likely they are to generate
connections. This method is effective in the social field, but in protein inter-
actions, two proteins with common neighbors are likely not to interact. Unlike
CN, AA not only considers the number of common neighbors owned by two
nodes, but also considers the role differences of common neighbors, weakening

https://github.com/juanajuan5826/ASLAM
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the contribution of the larger nodes in the common neighbors. Although heuris-
tic methods can achieve good results in practice, they are designed based on
handmade metrics and may not be suitable for different scenarios, and these
heuristic methods often cannot capture complex potential features.

2.2 Method Based on Embedding

The embedding based method aims to learn potential node features, learn node
embeddings based on the links between nodes, and calculate the similarity score
between nodes through the learned node embeddings. LINE [29] preserves the
first-order and second-order similarity of nodes for probabilistic modeling, and
improves the efficiency of learning node representations on large-scale networks
through negative sampling algorithms. Embedding methods based on random
walks, such as DeepWalk [25] and Node2vec [10], obtain node sequences through
specific walk strategies, and then input them into Skip Gram [25] to learn vector
representations of nodes. Due to the fact that the performance of embedding
based methods depends on the sparsity of the input graph, it is difficult to
consider these methods as generalized methods.

2.3 Method Based on GNN

GNN learns low dimensional representations of nodes or graphs by iteratively
aggregating the features of neighbors using nonlinear transformations. Through
this approach, GNN shows significant performance improvement compared to
traditional methods such as heuristic feature based methods and embedding
based methods [37]. GAE and VGAE [16] learn node representations through
GCN [15] to reconstruct input maps in the autoencoder framework. Similar
to GAE, GraphSage [11] uses two graph convolutional layers to encode node
features, preserving the relationship information between the two nodes through
negative sampling. On the one hand, various GNN architectures based on GAE
have been applied to link prediction. On the other hand, SEAL redefines the
link prediction task as the classification of closed subgraphs. It does not directly
predict the existence of connections, but rather samples closed subgraphs around
each target link to form a dataset and perform graph classification tasks. BSAL
considers the fusion of node features and node structure on the basis of SEAL.
Due to the explicit encoding of structural information, even though both are
GNN based methods, SEAL and other subgraph paradigm based methods have
significant advantages over GAE in most cases.

Secondly, although GNN based methods exhibit significant performance by
aggregating the features of adjacent nodes to generate the features of the cen-
tral node. However, real-world graphs often have connections between unrelated
nodes and noise from unrelated attributes, which leads to suboptimal repre-
sentations of GNN learning. GAT uses attention mechanism to determine the
importance of each neighboring node to the central node, which is the weight,
when aggregating the neighbor information of nodes. SuperGAT has improved



584 R. Nie et al.

the graph attention model for noise maps, specifically by utilizing two atten-
tion forms compatible with self supervised tasks to predict edges. SuperGAT
has learned more expressive attention in distinguishing neighbors with incorrect
links. The improvement in performance of GATs also highlights the importance
of capturing attention to graph relationships.

3 Preliminary

This section aims to provide some preliminary content to make this article easier
to understand. Some important definitions and concepts are introduced below.

3.1 Networks

A network is defined graph G = (V,E).where V = {v1, v2, . . . , vN} is set of
nodes, The total number of nodes is N , E ⊆ V ×V is set of edges.The structure
of the graph is usually represented by an adjacency matrix A,where Ai,j = 1 if
(i, j) ∈ E and Ai,j = 0 otherwise. If the network is undirected, A is symmetrical.
In this paper, we mainly focus on undirected networks, but the proposed model
is flexible and can be generalized to directed networks.

3.2 Neighborhood

For any nodes vi, vj ∈ V , let N h (vi) be the h-hop neighbors of vi, and
d(vi, vj) be the shortest path distance between vi and vj . N h (vi) is the set
of nodes to d (vi, vj) ≤ h. We call vi the central node, vj ∈ N h (vi) is
h-hop neighbors of vi. In the link prediction scenario, a given target node
pair (vi, vj), define the h-hop neighbor node vk of the target node pair,{
vk | vk ∈ N h (vi) or vk ∈ N h (vj)

}
.

3.3 Link Prediction

Link prediction problems are divided into time series link prediction, which pre-
dicts potential new links in the evolved network, and fabric link prediction, which
infers missing links in the static network. In this article, we mainly focus on struc-
tural link prediction. Given the partially observed structure of the network, our
goal is to predict unobserved links. Formally, given a partially observed network
G = (V,E), We represent the collection of node pairs with unknown link states
as E? = V × V − E, then the goal of fabric link prediction is to infer E?.

3.4 Shapley Value

Shapley values are a method derived from cooperative game theory [27] created
by Shapley in 1953 as a method of allocating spending to players based on
their contribution to total spend, and players cooperate in leagues and receive
certain benefits from this cooperation. Used in graph networks, “alliance” is the



Link Prediction for Attribute and Structure Learning 585

node instance in the network, “player” is the feature value of the node, “total
expenditure” is the model prediction value of a single instance of the data set,
and the shapley value is the importance of node attributes to prediction. Here, we
use the Shapley value as the attention value to guide the prediction of the model.
The Shapley value for each eigenvalue is the contribution of that eigenvalue to the
node, obtained by weighting and summing all possible eigenvalue combinations:

φj =
∑

S⊆{x1,...,xP }\{xj}

| S |!(p− | S | −1)!
p!

(fx (S ∪ {xj}) − fx(S)) , (1)

where S is a subset of the input features, {x1, . . . , xP } is the set of all input
features, P is the number of features,{x1, . . . , xP } \ {xj} is the possible set of all
input features excluding |S|!(p−|S|−1)!

p! is the weight of the feature subset S, and
fx(S) is the prediction of the feature subset S.

4 The Proposed Model: ASLAM

4.1 The Model Framework of ASLAM Method

This article proposes a new link prediction framework based on attention mech-
anism for structure and attribute learning. This framework can combine infor-
mation rich graph topology information with node attribute information. The
overall framework is shown in Fig. 1. The ASLAM model framework consists of
two channels: one channel uses node attributes to construct weighted semantic
representations, which better guide the training of model topology structure.
The other channel uses the Adjacency matrix to extract the order closed sub-
graph and learn the corresponding feature matrix through the joint semantic
representation of node markers.

Due to the crucial importance of structural information for link prediction
tasks, the ASLAM framework relies on a powerful subgraph classification pattern
(i.e. SEAL) as its backbone. The priority of the SEAL method mainly lies in
the extraction of local information, but it does not fully utilize the rich semantic
information carried by node attributes. To compensate for the shortcomings
of SEAL, ASLAM utilizes node attribute information by converting attribute
information into semantic level topological representations.

4.2 Introduction to the Components of ASLAM Method

Given a graph G = (V,E) with node attribute X and Adjacency matrix A,
the number of nodes is N . ASLAM extracts attribute features and structural
features respectively, and uses the embedded weighted sum of attribute space
and structural space to learn the probability of the target node’s presence on
the link.
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Fig. 1. The overall architecture of ASLAM. The model contains two channels: node
attribute X to build weighted semantic representation to better guide the training
of model topology. The adjacency matrix A is used to extract the hth order closed
subgraph and jointly learn the corresponding feature matrix by combining the attribute
information by node marking.

Semantic Representation. Firstly, in order to facilitate subgraph based
structural learning for node attributes, ASLAM uses Euclidean distance com-
bined with random walk to transform attribute information into structural level
embeddings. In order to better express the embedding, the interpretable frame-
work SHAP is used to calculate the Shapley value of the embedded features of
the target node as the importance of the target node features, and finally the
final weighted semantic representation ZW is calculated.

Formally, given the node features, ASLAM uses Euclidean distance to calcu-
late the feature similarity of a given node pair, and uses the node with a higher
target node vi score as its neighbor to obtain the semantic topology. The feature
similarity score is as follows:

Sij = − ‖xi − xj‖2 , (2)

where xi, xj are the feature vector of nodes i, j.
After obtaining the semantic topology, we use structure-based graph embed-

ding technology to obtain structure-level embeddings ZS of nodes.
Where the embedding Zsi ∈ R

1×h of node vi is an embedding of global
information about the semantic topology. Then we calculate the Shapley value
for the node embedding feature, and we think that the Shapley value can explain
the importance assignment of the node feature. Enter the embedding feature of
node vi, and the Shapley value that defines the n-dimensional feature of node vi
is as follows:
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φi,n =
∑

S′⊆{zsi,1,...,zsi,p}\{zsi,n}
| S′ |!(p− | S′ | −1)!

p!
(
fz

(
S′ ∪ {

zsi,n
}) − fz(S′)

)
,

(3)
where zsi,m is the m-dimensional feature of Zsi,

{
zsi,1, . . . , zsi,p

}
is the set of all

input features, p is the number of all input features,
{
zsi,1, . . . , zsi,p

} \{
zsi,n

}
is

the possible set of all input features that do not include the n-dimension feature
of node vi,

|S′|!(p−|S′|−1)!
p! is the weight of the feature subset S′, fz(S′) is the

prediction of the feature subset S′. The weighted semantic embedding ZW of
the node’s final output is as follows:

ZW = φ ◦ ZS , (4)

where ◦ is Hadamard product.

Structure Representation. In link prediction problems, neighborhoods are
often considered important contextual information. Inspired by the recent atten-
tion mechanism [33], this article proposes a new neighborhood attention mech-
anism to effectively learn neighborhood features. From an intuitive perspective,
the neighborhood structure of target nodes, such as node degree and node dis-
tance, may affect the links between target node pairs. In order to capture the
structural information of the network, this article qualitatively analyzes the rela-
tionship between the existence of links between target node pairs and their topo-
logical structure. The structural representation learning of ASLAM consists of
three parts: extracting target subgraphs, constructing node information matri-
ces, and learning GNN. ASLAM first extracts closed subgraphs for a set of sam-
pled positive links (observed) and a set of sampled negative links (unobserved)
to construct training data.

GNN usually takes (A,X) as the input, where A is the Adjacency matrix
of the input closed subgraph, X is the node information matrix, and each row
corresponds to the eigenvector of a node. ASLAM constructs node informa-
tion matrices ZDRN and ZDE using distance labeling and node degree labeling,
respectively. Then, the sum is obtained through the learning of two different
GNNs, and the final structural representation ZT is obtained through fusing.

ZT = αDRE · ZDRE + αDE · ZDE , (5)

where αDRE and αDE is attention weigh.

Adaptive Fusion. After encoding the structure and attributes of the subgraph,
the model obtained representations from two different dimensions based on node
attributes and node structure. Finally, the weighted semantic representation and
structural representation are combined through attention mechanisms to directly
use the obtained results in downstream tasks.

Based on topological embeddings ZT and weighted semantic embeddings ZW ,
we focus on node pairs (i, j), where ZT (i,j) ∈ R

h×1, ZW (i,j) ∈ R
h×1. We first
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transform the embedding through a linear transformation W ′ ∈ R
h′×h and follow

a nonlinear activation function, and then use a shared attention head q ∈ R
h′×1

to obtain the attention value ω(i,j), as follows:

ω′
(i,j) = qT · tanh

(
W ′ · Z ′

(i,j) + b
)

, (6)

where
{

Z ′
(i,j) | Z ′

(i,j) = ZT (i,j) or Z ′
(i,j) = ZW (i,j)

}
and

{
ω′
(i,j) | ω′

(i,j) = ωT (i,j) or ω′
(i,j) = ωW (i,j)

}
. We then normalize the attention

value using the softmax function to get the final weight αT (i,j) and αS(i,j). The
final embedding of the node pair (i, j) can be expressed as:

Z(i,j) = αT (i,j) · ZT (i,j) + αS(i,j) · ZW (i,j), (7)

Finally, we use three standard binary cross-entropy loss joint training:

L =
∑

(i,j)∈D

α·BCE
(
ZT (i,j), yij

)
+β·BCE

(
ZW (i,j), yij

)
+BCE

(
Z(i,j), yij

)
, (8)

where yij represents the existence of the link, BCE(·, ·) is the binary cross-
entropy loss, and α and β are hyperparameters that measure the importance of
the corresponding loss term.

5 Experimental Results and Analysis

In this part, we will evaluate our approach against the latest model of the Link
Prediction Benchmark. We then analyzed the contribution of each component
in our model.

5.1 Datasets

To verify its validity, we applied our method to 9 different research benchmark
datasets, the statistics of which are summarized in Table 1. Dataset sources are
also supplemented for reproducibility. The benchmark datasets used for evalu-
ation in this work are Disease [8], Twitch en [4], Airport Dataset, USA (Amer-
ican airtraffic network) [13], Brazil(Brazilian airtraffic network) [26], Amazon
Photo Network Dataset [28] and Citation Network Dataset, Cora [12], Citeseer
[35], Pubmed [5], DBLP [9]. In a disease dataset, the label of a node indicates
whether the node is infected by a disease, and the characteristics of the node
are associated with susceptibility to that disease. In Twitch en, nodes represent
players on Twitch, and edges represent friendships between them. Node char-
acteristics are embeddings of games played by Twitch users. The nodes of the
Amazon Photo network dataset represent goods, the edges represent two items
that are often purchased together, and the node characteristics are represented
by product review word packs. Each node of the airport dataset represents an
airport and an edge represents a flight route. Each node of the citation network
dataset represents a document, characterized by a corresponding word package
representation, edges representing citation links, and node labels are academic
(sub)fields.
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Table 1. Statistics of datasets.

Dataset Nodes Edges Features Classes Average Degrees

Disease 2665 2663 1000 2 2

Twitch en 7126 77774 128 2 21.83

USA 1190 13599 1190 4 22.86

Brazil 131 1074 131 4 16.4

Photo 7650 238162 745 8 62

Cora 2708 10556 1433 7 7.8

Citeseer 4230 10674 602 6 5.05

PubMed 19717 88648 500 3 8.99

DBLP 17716 105734 1639 4 11.94

5.2 Experiment Setup

In order to verify the effectiveness of the ASLAM method, this article fol-
lows the standard link prediction segmentation rate and divides the edges into
85%/5%/10% for training, validation, and testing. To ensure fairness in the
experiment, the random seeds were fixed to 2 when segmenting the dataset.
The batch size for all datasets is 32. The experiment adopts an early stop
strategy, with a training cycle of 400 and a patient setting of 20. Each experi-
ment is conducted 10 times, and the average value is taken as the final result.
All code is implemented using PyTorch and all models are implemented using
Torch Geometry [38].

5.3 Comparison Method

CN [20]: the basic assumption of CN in link prediction is that two nodes that are
not yet connected are more inclined to connect edges if they have more neighbors
in common.

AA [32]: Adamic-Adar (AA) assigns a weight to each common neighbor node,
which means that the common neighbor node with a small degree contributes
more than the common neighbor node with a large degree. For example, in
social networks, the probability of connecting two people who share a relatively
unpopular person or thing tends to be higher than that of two people who follow
the same person or thing with high attention.

Node2vec [10]: Node2vec is an embedding-based method that comprehensively
considers DFS neighborhoods and BFS neighborhoods. Simply put, it can be seen
as an extension of Deepwalk, which is a deepwalk that combines DFS and BFS
random walks. Node2vec uses biased wandering to sample vertices to explore
homogeneous or structural information.

GCN [15]: Semi-supervised learning on graph structure data, and learned the
hidden layer representation encoding local graph structure and node features.
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GAE and VGAE [16]: GAE and VGAE use graph convolutional networks
to encode graph adjacency matrices into latent representations and reconstruct
observed links or predict unobserved links through endoproduct decoders.

GraphSAGE [11]: Node embeddings that utilize node feature information, such
as text properties, to efficiently generate previously unseen data. GraphSAGE
learns a function to generate embeddings by sampling and aggregating features
from node-local neighborhoods.

GAT [30]: The hidden representation of each node in the graph is calculated by
focusing on its neighbors, and arbitrary weights are assigned to neighbors to be
applied to graph nodes with different degrees.

SuperGAT [14]: Utilize two forms of attention compatible with self-supervised
tasks to predict edges.

SEAL [39]: The graph structure information is learned in the subgraph, and a
specific marker method is used for display encoding in the graph-level GNN.

BASL [18]: A two-component structure and attribute learning framework is
proposed, which integrates attribute learning and structural learning.

5.4 Evaluation Metrics

To evaluate the performance of the link prediction method or algorithm, we
employ two commonly used standard metrics: area under the curve (AUC) [41]
and average accuracy (AP) [38].

5.5 Experiment Results

Performance on real datasets: This article validated the generalization ability of
the proposed method through different research benchmark datasets. All exper-
iments were conducted 10 times, with the average taken as the result and the
standard deviation listed. For these two indicators, the higher the better. The
best ones are displayed in bold, while the second best ones are highlighted with
underscores. The results are summarized in Table 2 and Table 3.

Based on the experimental results, there are the following observations.
Firstly, compared to popular heuristics (such as CN, AA) and node embed-

ding methods (such as Node2vec), neural network-based models have consis-
tently achieved good performance in most networks. However, on some datasets,
traditional heuristics still demonstrate competitiveness compared to GNN, or
even better than GNN. This indicates that heuristic methods designed manually
rely on specific datasets and have lower expressive power than neural networks.
However, structural information (such as neighborhood, degree, and shortest
path) is crucial for link prediction, and GNN heavily relies on smooth node fea-
tures, which sometimes results in less than heuristic results. It should also be
noted that both messaging methods (i.e. GCN and GAT) perform poorly on
highly layered datasets (such as Disease).
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Secondly, the subgraph paradigm based model SEAL and BSAL show sig-
nificant advantages, demonstrating the importance of structural information in
link prediction tasks. Among the powerful subgraph based methods, BSAL out-
performs SEAL on most datasets, indicating that learning combined with node
attributes can indeed bring good results. However, directly combining node fea-
tures with structural information cannot always achieve performance improve-
ment, and sometimes even hinder model performance. In the self supervised
method, SuperGAT performs better than GAT on most datasets because Super-
GAT considers two attention mechanisms and designs graph attention based
on the average and homogeneity of the input graph, obtaining more expressive
attention when distinguishing neighbors with incorrect links.

In summary, the GNN based method describes the link prediction task as
a supervised learning problem and learns node representations through infor-
mation aggregation, which is very promising. Although structural information
is crucial in missing link reasoning, it is not sufficient, and combining semantic
information can further improve performance. Secondly, in the learning process,
attention to structure and attributes is also indispensable. The experimental
results indicate that ASLAM performs best on the AUC and AP indicators on
the vast majority of datasets. This demonstrates the effectiveness and superiority
of the method proposed in this paper.

Table 2. Mean AUC and standard deviation for 10 experiments.

Disease Twitch en USA Brazil Photo Cora Citeseer PubMed DBLP

CN 49.81 76.35 87.59 85.32 86.40 71.10 61.65 64.58 77.53

AA 50.00 77.71 87.4 84.91 86.93 70.50 64.18 63.72 77.86

Node2vec 75.95 ± 1.10 86.50 ± 1.46 86.30 ± 1.06 85.68 ± 0.94 86.29 ± 1.30 86.35 ± 1.30 86.35 ± 1.86 85.92 ± 1.02 85.61 ± 1.06

GCN 76.36 ± 0.00 80.49 ± 0.00 91.49 ± 0.00 80.24 ± 0.00 89.93 ± 0.00 91.35 ± 0.15 93.62 ± 0.00 96.84 ± 0.00 96.57 ± 0.00

GAE 73.24 ± 0.00 80.13 ± 0.00 91.03 ± 0.00 81.07 ± 0.00 93.65 ± 0.01 91.82 ± 0.08 93.59 ± 0,13 96.38 ± 0.00 96.48 ± 0.00

VGAE 74.16 ± 0.00 80.44 ± 0.00 93.79 ± 0.00 80.71 ± 0.00 81.25 ± 0.00 67.17 ± 0.00 93.69 ± 0.01 95.83 ± 0.00 96.52 ± 0.04

GraphSAGE 72.58 ± 0.00 77.33 ± 0.00 91.28 ± 0.00 75.24 ± 0.00 83.82 ± 0.00 86.88 ± 0.00 83.60 ± 0.00 83.19 ± 0.00 89.92 ± 0.00

GAT 69.53 ± 0.33 71.59 ± 0.00 91.14 ± 0.00 78.08 ± 0.00 93.35 ± 0.03 89.70 ± 0.00 90.45 ± 0.18 89.05 ± 0.02 92.67 ± 0.00

SuperGAT 72.75 ± 0.00 80.89 ± 0.00 91.09 ± 0.00 72.12 ± 0.00 95.86 ± 0.09 91.78 ± 0.00 93.38 ± 0.00 94.40 ± 0.00 95.92 ± 0.00

SEAL 96.16 ± 0.11 91.01 ± 0.04 95.77 ± 0.13 89.42 ± 0.63 95.20 ± 0.12 91.01 ± 0.14 91.62 ± 0.15 95.37 ± 0.03 93.16 ± 0.02

BASL 96.92 ± 0.13 92.81 ± 0.05 95.69 ± 0.08 90.95 ± 0.69 96.11 ± 0.08 91.11 ± 0.10 92.73 ± 0.16 96.59 ± 0.01 93.68 ± 0.03

ASLAM 98.40 ± 0.04 93.44 ± 0.10 95.85 ± 0.06 93.39 ± 0.53 99.21 ± 0.04 92.42 ± 0.18 94.78 ± 0.41 98.02 ± 0.02 96.68 ± 0.08

Table 3. Mean AP and standard deviation for 10 experiments.

Disease Twitch en USA Brazil Photo Cora Citeseer PubMed DBLP

CN 50.00 76.10 87.38 84.77 86.11 70.99 61.54 64.56 77.49

AA 50.00 77.22 86.86 85.02 86.87 70.64 64.24 63.74 77.90

Node2vec 70.12 ± 0.78 90.49 ± 1.05 90.34 ± 0.69 89.91 ± 0.83 90.33 ± 1.01 90.19 ± 0.79 90.65 ± 1.32 89.82 ± 0.87 89.63 ± 0.95

GCN 80.98 ± 0.00 83.28 ± 0.00 93.91 ± 0.00 83.02 ± 0.00 89.49 ± 0.00 91.04 ± 0.07 94.48 ± 0.00 96.97 ± 0.00 97.00 ± 0.00

GAE 80.21 ± 0.00 83.01 ± 0.00 93.69 ± 0.00 81.90 ± 0.00 93.24 ± 0.02 92.01 ± 0.03 94.54 ± 0.17 96.46 ± 0.00 96.92 ± 0.00

VGAE 81.09 ± 0.00 83.58 ± 0.00 94.54 ± 0.00 83.15 ± 0.00 80.79 ± 0.00 69.99 ± 0.00 95.04 ± 0.00 96.08 ± 0.00 96.98 ± 0.04

GraphSAGE 71.13 ± 0.00 77.97 ± 0.00 93.34 ± 0.00 73.70 ± 0.00 82.58 ± 0.00 86.37 ± 0.00 82.56 ± 0.00 83.26 ± 0.00 90.12 ± 0.00

GAT 70.11 ± 0.09 71.32 ± 0.00 91.98 ± 0.00 75.54 ± 0.00 91.80 ± 0.04 90.21 ± 0.00 88.43 ± 0.19 87.92 ± 0.01 92.66 ± 0.00

SuperGAT 71.32 ± 0.00 81.93 ± 0.00 93.18 ± 0.00 67.41 ± 0.00 95.02 ± 0.16 91.29 ± 0.00 93.39 ± 0.00 94.10 ± 0.00 96.19 ± 0.01

SEAL 93.62 ± 0.57 92.07 ± 0.06 96.06 ± 0.13 85.54 ± 0.74 95.08 ± 0.10 91.95 ± 0.11 92.46 ± 0.16 95.90 ± 0.02 94.85 ± 0.02

BASL 95.57 ± 0.08 93.31 ± 0.05 95.86 ± 0.18 90.95 ± 0.65 95.69 ± 0.13 92.21 ± 0.10 92.80 ± 0.26 96.87 ± 0.01 95.25 ± 0.02

ASLAM 96.81 ± 0.15 93.81 ± 0.11 95.45 ± 0.08 92.51 ± 0.96 99.09 ± 0.02 93.63 ± 0.21 95.09 ± 0.40 98.04 ± 0.01 97.15 ± 0.08
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5.6 Ablation Study

ASLAM is a new graph neural network-based link prediction model aimed at
automatically extracting network attribute and structural information. By com-
bining node attribute information, attribute attention and neighborhood atten-
tion, and adaptively integrating semantic and structural representations, the
final representation is obtained. To explore the effectiveness of attribute infor-
mation, attribute attention, and neighborhood attention in the model. The basic
model of the experimental setup is the model ASLAM proposed in this article.
In the subgraph topology, attribute feature information is not considered and
is labeled as ASLAM-NF, while neighborhood attention and attribute attention
are labeled as ASLAM-NNA and ASLAM-NAA, respectively. This study con-
ducted ablation experiments on nine datasets in the same experimental setup.
The evaluation indicators are AUC and AP. The results are shown in Fig. 2 and
Fig. 3.

Fig. 2. Mean AUC for the comparison of ASLAM and its variants.

Fig. 3. Mean AP for the comparison of ASLAM and its variants.
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The results indicate the superiority of ASLAM, which outperforms the other
three variables in terms of AUC and AP metrics, indicating that the proposed
method can achieve the best performance in link prediction. Among them, the
performance of ASLAM-NF on the vast majority of datasets is much lower than
that of ASLAM, indicating that node features are very important for prediction
and the necessity of integrating structural and attribute information. Secondly,
the prediction effects with and without attribute attention were significantly
compared on the Brazilian and Citeseer datasets, indicating that attribute atten-
tion can indeed guide training to a certain extent and achieve better results.

6 Conclusion

This article investigates the problem of link prediction in complex network anal-
ysis. The existing Sota GNN based methods either heavily rely on network topol-
ogy or node attributes, resulting in significant differences in prediction results
across different networks. To alleviate this problem, we proposes an attention
mechanism based attribute and structure learning framework, aiming to fuse
key information about topological space and attribute space. Specifically, the
proposed method constructs a semantic topology through node attributes, uses
structure based graph embedding technology to obtain the structural level repre-
sentation of nodes, and uses Shapley values as attention values to guide learning
of semantic representations. A flexible and easy to implement solution is pro-
vided to adaptively integrate structural topology and semantic topology. Due
to the crucial importance of structural information such as shortest path and
node degree for link prediction, the proposed method uses distance and degree
labeled subgraphs for learning. On different research benchmarks, the perfor-
mance of our method far exceeds the competitive baseline, which confirms the
effectiveness of the proposed method. In the future, we will test the method on
more evaluation indicators (e.g., HITS@K) or tasks (e.g., adversarial attacks)
to verify its generalization ability. In practical scenarios, the network changes in
real-time, and we will consider combining dynamic networks for the next step of
research.
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Abstract. The paper presents the new model of data for Internet of
Things (IoT) devices monitoring and anomaly detection. The model
bases mostly on behavioral description of current state of device, however
it contains also some additional information. Raw input data, coming
from the external simulation software, are aggregated on two levels of
detail: raw variable values preprocessing and time-based aggregation. It
was shown, that a sample data following this model, data that contains
anomalies, can be analyzed with standard anomaly detection methods
and results of this application are very satisfactory. The data used in the
paper are also publicly available.

Keywords: Anomaly detection · Internet of Things · Behavioral
analysis

1 Introduction

There are no doubts that Internet had changed the way of living since decades
ago. Now we observe the increasing influence of the next step of industrial rev-
olution that refers to the capability of equipping low-level devices the access to
the Internet. Such a tendency undoubtedly provides a lot of benefits, however,
we should be conscious of possible vulnerabilities that come from these benefits.

Anomaly detection is a well-known approach applied for security issues detec-
tion. However, it is usually focused on monitoring the network traffic statistics to
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detect some non-typical occurrences. In case of Internet of Things (IoT) devices
we do not expect any significant amount of transferred data so possible attempts
to attack the device should reflect rather the device behavior than a transfer
statistics.

In our research we put the attention not on the monitoring the IoT device
network statistics—we shift it into the operating system behavior, focusing on
the processes’ behavior and on the tree structure of process invokes. Such an
approach is quite fresh and there are no available data to train anomaly detection
methods for such a purpose. This paper provides the methodology of the data
acquisition, aggregation and preprocessing to make them ready for anomaly
detection methods application.

The paper is organized as follows: it starts from the description of our moti-
vation to analyse the behavior of IoT devices from the completely different point
of view (the behavior analysis), later the review of existing IoT devices dataset
related (but not limited to) the anomaly detection issues, afterwards a new model
of data, its raw structure as well as two steps of aggregation are described in
detail, moreover, the paper provides a case study of the model application for
anomaly detection in behavioral data of IoT work simulation, finally, the paper
ends with some short conclusions and the draw of perspectives of further works.

2 Motivation

Typically IoT devices are small and have dedicated, limited purpose. This means
that the device behavior patterns probably have high tendency to be repeat-
able and predictable what increases chances of successful intrusion detection by
applying anomaly detection. This holds for both - internal and external behavior
patterns. External, Network based Intrusion Detection Systems (NIDS) for IoT
devices has already been throughoutly studied in the literature and has been
shown to be effective. Methods based on network traffic are also much portable
and easier to implement as they do not require device modification.

However, such systems have several disadvantages: (1) they might not detect
attacks which do not change network traffic significantly, (2) the detection is
usually delayed until the attack is reflected on generated network traffic (if ever),
(3) physical device modification can go undetected (e.g. the attacker can use
different, additional communication channels).

On the other hand – internal, Host based Intrusion Detection Systems (HIDS)
– obviously do not have these limitations and it seems there should be more
attention and research devoted to this approach. If the hypothesis of higher
efficiency of HIDS over NIDS could be proven – it could lead to a market response
where manufacturers would implement such techniques within their devices. This
could potentially improve general IoT security not requiring the end user or
administrator to implement network based external security systems by shifting
this function to the device level.



A New Data Model for Behavioral Based Anomaly Detection 601

3 Related Works

Anomaly detection is a well-known approach for data analysis in many specific
domains. As the IoT issues are becoming more and more interesting it is intuitive
that any new or improved models should be tested on some data with anomalies
to evaluate their capabilities. During last decades dozens of datasets related to
network traffic security, operating systems or IoT monitoring were published. A
brief summarize is presented in Table 1.

Table 1. Datasets related to network traffic, operating system or IoT security moni-
toring (N- Network, OS - Operating System, IoT - Internet of Things devices)

Dataset name Owner Monitoring Reference

ADFA-LD University of New South Wales N, OS [3]
Aposemat IoT-23 Stratosphere Laboratory N, OS, IoT [20]
CAIDA Center of Applied Internet Data Analysis N [2]
Bot-IoT University of New South Wales N, IoT [8]
CDX United State Military Academy N [16]
DARPA 98–99 MIT Lincoln Laboratory N, OS [11]
KDD Cup 1999 University of California N, OS [19]
IoT Botnet Ontario Tech University N, OS, IoT [23]
ISCX2012 University of New Brunswick N [17]
Kyoto Kyoto University N [10]
Malware on IoT Stratosphere Laboratory N, OS, IoT [20]
NSL-KDD Canadian Institute for Cybersecurity N, OS [21]
RegSOC Ł-EMAG N [24]
TON IoT University of New South Wales N, OS, IoT [12]
Twente University of Twente N [18]
UNSW-NB15 University of New South Wales N [13]
UMASS University of Massachusetts N [25]

To reflect the nowadays trends in the data we limited our search into datasets
not older than 5–6 years and closely related to IoT domain. Their short descrip-
tions are presented below.

3.1 IoT Botnet

The components of the IoT Botnet [23] were based on simulated Internet of
Things services, network platforms, and ISCXFlow meter. The network plat-
form comprised of normal and attacking virtual machines. The IoT services
were simulated through the node-red tool.

The testbed of dataset consisted of virtual machines that were connected to
LAN and WAN. Virtual machines were linked to the Internet. A packet-filtering
firewall with two interface cards was used to ensure the validity of the labelling
process of the dataset.
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A typical smart home environment was created with five IoT devices that
operated locally and were connected to the cloud infrastructure. The follow-
ing IoT services were implemented in the dataset testbed environment: motion-
activated lights, smart fridge, smart thermostat, remotely activated garage door
and weather station.

Consequently, the IoT Botnet dataset was created. It contains collections
from the monitoring of Denial of Service (DoS) and Distributed Denial of Ser-
vice (DDoS) attacks for TCP, UDP and HTTP protocols, keyloggers, operating
systems, services, and data exfiltration.

3.2 Bot-IoT

The environment for data capturing consisted of three components: network plat-
forms, simulated IoT services, and extracting features. The network platforms
included normal and attacking virtual machines. The IoT services simulating
various IoT sensors were connected to the public IoT hub. The network environ-
ment that the data was collected contained a combination of normal and botnet
traffic.

The dataset [8] provides original pcap files, generated argus files and csv
files. The files separation is based on attack categories and subcategories. The
dataset files include DDoS attacks, DoS, operating system and service scanning,
keyloggers and data exfiltration.

3.3 TON_IoT

The TON_IoT datasets [12] are an IoT and Industrial IoT (IIoT) dataset for
assessing the fidelity and performance of various artificial intelligence cyber-
security applications i.e. machine/deep learning algorithms. The files contain
heterogeneous data sources collected from IoT and IIoT sensor telemetry data
sets, Windows 7 and 10 operating systems datasets, as well as Ubuntu 14 and
18 TLS and network traffic datasets.

The data was collected in a realistic and large-scale network. A testbed net-
work was created for the Industry 4.0 network, which includes IoT and IIoT
networks. The test platform was deployed using multiple virtual machines and
hosts of Windows, Linux, and Kali operating systems to manage connections
between the three tiers of IoT, Cloud, and Edge/Fog. Various attack techniques
such as DoS, DDoS, and ransomware targeting web applications, IoT gateways,
and computer systems on the IoT/IIoT network were conducted. The datasets
were collected in parallel processing to collect several normal and cyber-attack
events from network traffic, Windows audit trail, Linux audit trail, and IoT
telemetry data.

3.4 Aposemat IoT-23

The IoT-23 [6] is a dataset of network traffic from Internet of Things devices.
The dataset consists of 23 captured different IoT network traffic scenarios. These
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scenarios were divided into twenty network captures from infected IoT devices
that the malware samples were performed in each scenario and three network
captures of the actual network traffic of the IoT devices. In each malicious sce-
nario a specific malware sample was run on a Raspberry Pi. Scenarios included
following malware samples used to infect the device (Mirai, Torii, Trojan, Gag-
fyt, Kenjiro, Okiru, Hakai, IRCBot, Linux Mirai, Linux Hajime, Muhstik, Hide
and Seek).

3.5 Malware on IoT

Malware on IoT [20] is a dataset of the monitoring of real IoT devices infected
by malware. The dataset consists of labelled network traffic files stored during
the long-lived real IoT malware traffic. It is divided into five subsets containing
results of network traffic capturing during the Mirai malware attack and two sub-
sets of honeypot network traffic capturing logs including protocols (HTTP, SSL,
TCP, UDP) and connections statistics. The honeypot was a network camera.

3.6 Summary

Most of the available datasets contain data from network monitoring during the
normal operation and attacks. The data sets described in detail contain data
from the audit of real and simulated IoT devices and their network environment.
The available data sets providing kernel event monitoring data are from Solaris
(DARPA 98–99). Due to that fact authors decided to create a new contemporary
data set. The new data set is based on the host audit data coming from Linux
kernel event tracing.

4 Data Origin and Description

The paper provides a new model of data which is dedicated mostly for behavioral-
based anomaly detection. However, it is possible to use these data model in
any other analytical tasks. In this section the data origin as well as a data
preprocessing (before building a final model) is presented. Subsection 4.1 presents
the simulation environment, where the data come from and Subsect. 4.2 describes
the aggregation of the environment raw data.

4.1 Simulation Environment

Data are the result of the simulation environment for real-time dataset gen-
eration and evaluation of IoT Linux host intrusion detection systems [1]. The
environment allows for simulation of multiple IoT devices while collecting the
devices’ OS audit logs in a central repository. The system also simulates external
attacks with configurable frequency and distribution providing result data with
labels indicating the time of attacks.
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The system architecture comprises components of two groups: a central sys-
tem and a collection of IoT devices. The central system consists of common
software components which are responsible for managing simulation, collecting
and labeling data, and launching attacks. IoT devices in their number and type
are controlled by configuration and can either be emulated or be physical devices
connected to the system through various implementations of a common device
interface.

The most important part of the system is the agent software—the tool respon-
sible for collecting data from IoT devices. The agent traces the Linux kernel with
Linux Auditing System component—auditd. This tool makes it possible to low
level, granular information about the current state of the operating system, espe-
cially the additional information about system calls and related events.

4.2 First Level of Aggregation

The raw auditd-based data are sent to the central system. Because this format
of data is improper to be used as the input for anomaly detection methods, it
requires a transformation into the tabular format, where columns reflect vari-
ables and rows reflect particular observations—each observation is an aggregated
description of the single system call.

Before the final model of the pre-processed data will be presented, it is impor-
tant to emphasize, that this process is implemented with a streaming pipeline
processing engine. The raw data set is processed by several parsers responsible
for augmenting and structuring the output. Each parser can modify existing
and create new columns (variables) in the output record. For example, the very
basic parser is a responsible for translating raw system call auditd records into a
tabular form. The resulting columns are then forwarded to subsequent parsers.
Last parser is producing the output file in CSV format.

What is important – the parsers can maintain a state what means they can
detect some important patterns looking at the history and sequence of events
processed so far. This is a very powerful tool for extracting new and interesting
features for further processing especially from security perspective. For example,
such parser can detect certain predefined behavioral schemes/patterns – e.g. a
single connection failure is nothing unusual, but many subsequent connection
failures on different ports may suggest a port scan running as a post exploitation
behaviour.

Among several simple parsers, the present version of the system contains the
following four parsers which conduct more advanced analysis in order to extract
new and interesting security-related features:

– Process tree parser – creates the PROCESS_PATH feature of all the
current process ancestors up to the init process – the parser needs to maintain
the full process tree over time in order to collect all the process ancestors.
This seems to be very interesting feature because usually attack payloads are
being executed as sub-processes and thus an unusual process path may with
high probability suggest an ongoing attack.
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– Process name parser – creates a feature with more significant process
name, e.g. instead of representing a process as bash it is much more precise to
name the process from the actual script filename (e.g. script.sh) – this allows
to distinguish the processes by what is their intended behavior and not just
binary filename.
Descriptive process names, relating to their behavior, allow to detect unusual
and anomalous actions which can be results of an ongoing attack.

– Open file parser – for each process maintains all the currently open files
and attaches the list as a new feature for further processing.
Process behavior is frequently repeatable and predictable, especially in case of
small IoT devices which perform concrete subset of jobs repeatably. Processes
accessing more files than usual should be treated as suspicious and thus this
feature seems to be of high interest.

– Open library parser – for each process maintains all the currently open
libraries and attaches the list as a new feature for further processing.
Performing different actions is very frequently done by loading proper
libraries. Thus a measure of process behavior is the set of open libraries.
Processes using different libraries than usual may be exploited binaries.

Moreover in our system we configured auditd to collect more security related
events than just pure system calls. This means that these non system-call-
oriented events are also contained in raw data set. To keep this valuable informa-
tion in output recordset but maintain the assumption that every output record is
a single system call – at the first aggregation level we count all the non system-
call-oriented events and add the counts to the upcoming output record. For
example, if an authentication happens between two consecutive system calls the
USER_AUTH_COUNT variable value would be 1 – indicating that a single
user authentication happened in between current and previous system call.

A brief description of most significant variables of this format of data is
presented below:

– SYSCALL_timestamp: the time of system call invoking,
– SYSCALL_arch: processor architecture (32 or 64),
– SYSCALL_syscall: system call name, e.g. open, openat, etc.,
– SYSCALL_success: system call status, i.e. yes, no, N/D,
– SYSCALL_exit: system call results: positive integers reflects success, nega-

tive integers reflects fail,
– PROCESS_comm: process name,
– PROCESS_exe: executable file path,
– PROCESS_name: the name of the process
– PROCESS_PATH: the combined sequence of parent processes, e.g. sys-

temd/sshd/bash/curl,
– PROCESS_DLL: the list of process already loaded libraries,
– PROCESS_uid: an id of the process invoking user,
– PROCESS_gid: an id of the group of the user mentioned above,
– SOCKET_family: a name of the communication protocol, e.g. netrom,

bridge, atmpvc, x25, inet6, unknown, etc.,
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– SOCKET_address: destination connection target, e.g. 192.168.1.1:80,
– CWD_cwd: current working directory,
– PATH_name: the filename and its path of the being processed file, e.g.

/etc/passwd,
– EXECVE_argc: the number of arguments passed to the program,
– MMAP_flags: the number of allowed flags (only for mmap and mmap2 system

calls), a list of values e.g. MAP_FIXED, MAP_ANONYMOUS,
– OTHER_addr: IP address of the ivnoker,
– LOGIN_res: success or fail of the logging,
– PAM_op: PAM operation time, e.g. PAM:authentication, PAM:accounting,

etc.,
– KILL_PROCESS: id of the process—the command addressee,
– KILL_uid: id of the user sending this command.

Moreover, for other types of calls (listed afterwards) the number of other
calls between calls of the same type are counted:

– USER_AUTH,
– USER_MGMT_COUNT,
– CRED_COUNT,
– USER_ERR_COUNT,
– USYS_CONFIG_COUNT,
– CHID_COUNT,
– SELINUX_ERR_COUNT
– USER_CMD_COUNT,
– SYSTEM_COUNT,
– SERVICE_COUNT,
– DAEMON_COUNT,
– NETFILTER_COUNT,
– SECCOMP_COUNT,
– AVC_COUNT,
– ANOM_COUNT,
– INTEGRITY_COUNT,
– APPARMOR_COUNT,
– KERNEL_COUNT,
– RESP_COUNT,
– SELINUX_MGMT_COUNT.

More detailed description of all present variables one may find in the readme
file attached to the externally published data.

4.3 Second Level of Aggregation

The output of the first level of aggregation contains descriptions of single calls
per record. However, the goal of the analysis is not to detect calls that behave
in different way but to point the periods of time during which the entire set of
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running calls (in the IoT device) composes to something unusual. To prepare
the data for such analysis, the data were put through time-based aggregation.

The time-based aggregation was approached with the moving window
method. While using such method one has to specify two parameters: the mov-
ing window width and the moving window step. The first one corresponds to the
time interval describing the range of the data to be aggregated. The second one
specifies the width of the data shift. That reflects the frequency of the aggre-
gated data generating. The aggregated intervals contained both numeric and
categorical variables. Furthermore, within the categorical variables, we speci-
fied variables containing paths. Each of these three types was aggregated with
different methods.

For the numeric values standard statistics were used for aggregation: min-
imum, maximum, average, 25th, 50th and 75th percentile. For the categorical
values analogous standard statistics were used: the last observed value, the most
frequent value and count of values. The path-based variables were approached as
natural language sentences where a token is a piece of a path separated by slashes,
whereas multiple paths occurring in a given aggregated period were treated as a
paragraph. Each token was transformed into an embedding using the Fasttext2
[7] algorithm. This was followed by using a pooling method (a commonly used
method in natural language processing) to aggregate token embeddings in paths
and path embeddings in a given aggregated period.

As it was also stated while the first level of aggregation, in this case the
more detailed description of all present variables one may find in the readme file
attached to the externally published data.

5 Case Study

For a better presentation of the proposed model its abilities were tested on
artificial data with introduced anomalies.

The analyzed data come from the above mentioned virtual environment [1].
There were two attacks planned for the data acquisition period. The moments
of the attack start and stop were planned and known so it was possible to tag
the data as normal or an anomaly. Each attack consisted of unusual process
invoking or the unusual files access. The unusuality (in general) means that
process invokes different than usually other process, e.g. authorization process
invokes a date-time setting process or tries to access the measurement data file.

During the second step of the aggregation the moving window of the width
equal 1 s was used and the step of the moving was 0.25 s. That means that
following sets overlapped each other for 0.75 s (it was enough for off-line data
analysis). An embedding vector of length 100 was used to represent path-based
variables. While singular representations were aggregated using mean-pooling.

That led to the final set with 49,810 aggregated observations and containing
∼0.05% of anomalies (it is worth to remind, that the 2nd step aggregate is tagged
as an anomaly if it covers the attack period even only partially).
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The DBSCAN algorithm [5] was used for the anomaly detection task. Despite
of being suited for clustering problems, this method is commonly used for out-
lier/anomaly detection as well [15,22]. Since the DBSCAN method is based on
Euclidean distances between objects and the input data is highly-dimensional
we experimented with dimensionality reduction. Principal Component Analysis
(PCA) [14] and Boruta [9] methods were tested for this task. We considered a
number of principal components from 20 to 400 where the optimal value was
varying from 40 to 50. The application of Boruta packet provided the set of c.a.
300 variables.

Validation of the method was done by classifying all samples by the model
and then comparing whether the model classified the anomalies according to our
knowledge. The comparison of final DBSCAN performance measures is shown
in Table 2.

Table 2. Performance statistics of detecting anomalies based on the new model of
behavior based data.

measure PCA Boruta

accuracy 0.989 0.993
bal. accuracy 0.994 0.996
ROC AUC 0.994 0.996
F1-score 0.098 0.138

The most important conclusion is that DBSCAN was able to find moments of
attack quite precisely and independently from the method of feature extraction.
Even the high imbalance of the classes is not an obstacle to have almost 99%
balanced accuracy. Poor values for F1 are also not surprising, as classes are highly
imbalanced and this measure does not take into consideration the number of “true
negatives” as well as there is a relatively significant number of “false positives”
pointed by the method.

One may ask, how was it possible to detect 25 anomalies in almost 50,000
of records so precisely? That may come from two reasons. Firstly, the anomaly
detection is based on density based clustering method (DBSCAN) that can be
tuned in terms of defining the “density” of clustered data that reflect the un-
clustered “noise”. Secondly, the final model variable values distribution may be
so significantly differ for attack records, that can be easily separated from the
clusters found by DBSCAN.

6 Conclusions and Further Works

The paper presents a new model of data that describe the behavior aspects of IoT
devices operation. The model was based on artificial data coming from simulation
environment, where both: attacked and attacking device were simulated.
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Original raw data from the simulation environment—which was described in
details in [1]—required the preprocessing step, which is explained in Sect. 4.2.
This aggregation result were a base for time-based aggregation, described in
Sect. 4.3. Both sets—after preprocessing and final model—are publicly available
on the project site https://emag.lukasiewicz.gov.pl/pl/szczegoly-projektow/#
SPINET—the Available Datasets section. Moreover, based on the aggregated
of the data, a FedCSIS 2023 conference competition was organized [4].

Final model definition and its application for artificial data with tagged
moments of attacks provided promising results of behavioral-based anomaly
detection. The used density clustering method (DBSCAN) pointed all of ∼0.05%
anomalies precisely. Such a performance allows to hope that the model has much
more abilities related to IoT behavior analysis.

Thanks to that, the further works will focus mainly on new scenarios of
attacks, new device types implementation as well as on further experiments with
anomaly detection on newly obtained datasets of difference scenarios of attacks.
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Abstract. Recent studies show significant security problems with most of the
Federated Learning models. There is a false assumption that the participant is not
the attacker and would not use poisoned data. This vulnerability allows attackers
to use polluted data to train their data locally and send the model updates to the
edge server for aggregation, which generates an opportunity for data poisoning.
In such a setting, it is challenging for an edge server to thoroughly examine the
data used for model training and supervise any edge device. This paper evaluates
existing vulnerabilities, attacks, and defenses of federated learning, discusses the
hazard of data poisoning and backdoor attacks in federated learning, and proposes
a robust scheme to prevent any categories of data poisoning attacks on text data.
A new two-phase strategy and encryption algorithms allow Federated Learning
servers to supervise participants in real-time and eliminate infected participants
by adding an encrypted verification scheme to the Federated Learning mode. This
paper includes the protocol design of the prevention scheme and presents the
experimental results demonstrating this scheme’s effectiveness.

Keywords: Federated Learning Security · Data Poisoning Attacks · Backdoor
Attacks in Federated Learning · Edge Server Vulnerabilities · Participant
Verification in Federated Learning · Encrypted Verification Scheme · Two-phase
Strategy Federated Learning · Defense Mechanisms in Federated Learning · Text
Data Security in Federated Learning · Preventing Data Poisoning in FL ·
Federated Learning Protocol Design · Experimental Results Federated Learning
Security · Real-time Participant Supervision in FL · Federated Learning Model
Updates · Edge Device Security in FL

1 Introduction

In recent years, Federated Learning has receivedmuch attention for its ability to preserve
data privacy and balance computing loads. Federated learning addresses the limitations
of traditional machine learning algorithms. It allows computers to train on remote data
inputs and build models from remote sample data while preserving the data privacy
of the participants [1]. However, Federated Learning models have significant security
problems, making Federated Learning vulnerable to several types of attacks [2].
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For example, Federated Learning falsely assumes that the participant is not the
attacker and would not use poisoned data. In Federated Learning models, the data of the
remote participants can be compromised either by inserting bogus data into the local
nodes or by altering the existing data, and an attacker can use polluted data to transmit
polluted training results to the server. This paper introduces a robust preventative scheme
to prevent data pollution attacks in real time by adding an encrypted verification scheme
to the Federated Learning model that can prevent poisoning attacks from happening
without requiring programming to detect a specific type of attack.

The main contribution of this paper is a detection prevention scheme that allows a
training server to supervise any training in real time and prevent data modification in
each client’s storage before and between each training round. The training server can
detect real-time modification with this new scheme, eliminating any infected remote
participant.

1.1 Motivational Examples

An excellent example of a data poisoning attack is when the sample data is a text file
that stores the user’s typing sentences; the attacker can modify this text file to poison the
training data.

Fig. 1. Word prediction backdoor (trigger sentence ends with an attacker-chosen target word).

In Fig. 1, the sample data is a text file that stores the user’s typing sentences, and the
attacker can modify this text file to poison the training data. A malicious attacker might
insert a random word into the text file that stores the user’s typing sentences.

This vulnerability allows any malicious worker node to impersonate any authentic
participant, train on false data, and send false training results to the desired parameter
server. An attacker can also force a word predictor to use a chosen word to complete
specific sentences. In these types of attacks, [4] the attacker can adaptively change the
local training data from round to round.
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The principal strategy is to prevent data poisoning of Federated Learning in two
main phases. The first phase prevents data-generating nodes from inserting data into
the sample or modifying any data. In this phase, the training server identifies the nodes
selected for the training before any sampling begins. It generates a random password for
that iteration and a public key for encryption.

2 Current Literature

2.1 Current Literature on Attack Mechanisms in Federated Learning

Many research papers have investigated the vulnerability of federated learning, including
different attack and defense mechanisms. Research [8] has investigated two vulnerabil-
ities of federated learning. One type of attack is the poisoning attack that attempts to
prevent a model from being learned or bias the model to produce inferences preferable to
the adversary. The second type of attack is the inference attack, which attacks participant
privacy.

One recent research paper [2] studied the effect of different poisoning techniques
on federated machine learning. The main discovery of this study was that the security
vulnerability of Federated Learning allows malicious clients to sabotage the learning
process by sending bad model updates. The research [2] demonstrated that any mali-
cious client could submit bad updates to prevent the model from converging, or it could
introduce artificial bias in the classification. Another research paper [4] investigated dif-
ferent attacking models. It concluded that the first attack step is gaining access to the
local training data and then adapt the local training data from round to round.

Several researchers tackled the difference between traditional data poisoning, which
aims to change the model’s performance on large parts of the input space [5], and the
other types of attack that aim to prevent convergence [6].

For example, the attacker injects poisoned data into a target node and can directly
modify the sensor data of a target phone or a node. One good example of this attack is
modifying the activity recognition data in a mobile phone, such as individual sensors or
text data [1].

An image classification attack experiment was completed by a research paper [4] by
selecting three features as the backdoor. In this type of image classification attack, the
attacker aims to generate his images with the backdoor feature to succeed in the attack
and train his local model. Research paper [4] demonstrated that a single shot attack
could successfully inject a backdoor into this model; however, 20 rounds afterward, the
backdoor attack will be entirely successful. In this experiment, researchers acted as an
attacker and tried to misclassify car images with images of birds.

An attacker who controls fewer than 1% of the participants can successfully create
a backdoor attack. In federated learning, changing a small portion of the data, where
a single attacker is selected in a single round of training [4], causes the joint model to
achieve 100% accuracy on the backdooring attack. The model replacement significantly
outperforms “traditional” data poisoning. Sometimes, the attacker is intelligent and sends
updates based onmachine learning rules, not randomparameters. Therefore, a successful
data poisoning attack starts with access to the original data sample from the client side.
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In all successful data poisoning attacks, the attacker needs to be capable of changing
the training data on a remote client and adapting the local training data from round to
round. Therefore, a successful data poisoning attack starts with access to the original
data sample from the client side.

2.2 Current Literature on Defense Mechanisms in Federated Learning

One suggested optimized defense mechanism scheme [8] that can defend against attacks
in Federated Learning is allowing the Federated Learning server to check if an adversary
attacks the Federated Learning system. However, this approach will incur extra com-
putational costs on the Federated Learning central server. In addition, different defense
mechanisms may have different effectiveness against various attacks, and each incurs a
different case. Many defense mechanisms assume that clients are heterogeneous, while
Federated Learning clients are heterogeneous in many real-world scenarios. Hence, the
work lacks support for heterogeneous clients and does not have any experimental proof
which would indicate that the proposed framework works. Federated learning is also
vulnerable to data leakage.

Federated learning is a multi-phase framework, and each phase generates security
and privacy threats [14]. For example, in data and behavior auditing, evasion attacks are
a possibility, and in this type of attack, image preprocessing and feature transformation
can defend against evasion attacks. However, these methods could be more effective
when the attacker knows the defense methods.

Attack detection is also essential for federated learning. A lightweight detection
scheme that selects and analyses a few parameter updates of the last convolutional layer
in the FederatedLearningmodel can detect attacks onFederatedLearning [17].However,
it cannot detect attacks in real time.

The above papers concluded that any participants in Federated Learning could cheat
and introduce data poisoning or parameter poisoning. The main goal in the above attacks
is to make the training converge slowly or diverge. All previous defense schemes cannot
detect any attacks in real time.

3 Design Challenges

A Federated learning system is a large-scale distributed system that considers data pri-
vacy, and this allows a Federated Learning system to deal with the lack of training data.
However, this system design presents several architectural challenges, especially when
dealing with the interactions between the central server and client devices and managing
trade-offs of software quality attributes.

These system design challenges are summarized as follows.

• The initial step in the Federated Learning process is to build a global model and send
this global model by a global server to the client’s local servers. Then, the model gets
trained on the local servers in the second step. In step 3, the client’s local servers
send the results back to the global server, and in the end, the global model utilizes the
updates to build a bettermodel, and the process continues until the globalmodel builds
a robust model. The challenge of this step is that global models have low accuracy
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and lack generality when each client device generates non-IID data. Conventional
machine learning has dealt with the data heterogeneity problem by centralizing and
randomizing the data. However, the inherent privacy-preserving nature of Federated
Learning renders such techniques inappropriate.

• Federated learning architectural design requires multiple rounds of communications
to generate high-quality global models, which requires local model updates. Mul-
tiple rounds of communication in Federated Learning led to heavy client overhead
and high environmental burdens [21]. There are no guarantee that client devices
would have sufficient resources to perform the multiple rounds of model training and
communications the system requires.

• As numerous client devices participate in federated learning, coordinating the learn-
ing process and ensuring model provenance, system reliability, and security is
challenging.

A Federated Learning framework must protect the training data from modification
to prevent client-side data poisoning.

4 Proposal Model

To address these problems, we must first protect the training data from the remote client
side frommodification during each training. In this paper, we adopt an encryption-based
verification. Whenever the training samples for a participant are inconsistent in each
training step, the server will be able to detect the inconsistency even without knowing
what is on hold by individual participants. The goal is to achieve two properties of
federated machine learning. One property is to achieve data storage integrity by data
verification to detect any modification of the original data.

The second property is to prevent an attacker from modifying the original data from
round to round to prevent an adaptive data poisoning attack.

The principal strategy is to prevent data poisoning of Federated Learning in two
main phases. The first phase prevents data-generating nodes from inserting data into
the sample or modifying any data. In this phase, the training server identifies the nodes
selected for the training before any sampling begins. It generates a random password for
that iteration and a public key for encryption.

Once the node receives the iteration password and the public encryption key, the
node will begin the sampling process. The next phase is to create a verification key file
for every node-generated data file. Later on, the server will use this verification key file
to supervise the training.

This verification key file will ensure that the trusted node has created the sample data
file and that no other parties can modify this file. Figure 2, demonstrates the creation of
the sample data file. The device creates a sample key file upon creating this sample data
file.

1. The sample verification file’s first line will be the training’s password. This scheme
will allow the system to quickly decrypt the first line to verify whether the iteration’s
password is correct.

2. The second line of the storage verification key file will be the checksum, which will
record the bit number of that text file.
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3. From line three to the end of the verification file, the worker device will select random
text and record every byte value and location within the verification key file.

4. The worker node will use the encryption key to encrypt the file so that no other party
can verify the verification key file.

5. The output of Algorithm 1 will be a storage verification key file.

Fig. 2. An example of a verification key that does not share any private data, and the central server
can use this key to verify the authenticity of the training data.

For the first algorithm, there is the assumption that before the training, the server
and the participant will establish a verification key that can be used during the sample
data storage phase. The participant will use this verification key to store the sample data.
For example, if the sample data is a text file that stores the user’s typing sentences, each
participant will register with the server before the training. Afterward, the participant
will receive a verification public encryption key and an encryption key for each iteration
that can be used to create a local verification file. The verification public key can only
be used for encryption, and it cannot be used for decrypting any encrypted key.

Once the node receives the iteration password and the public encryption key, the
node is considered a trusted node and can begin the sampling process. The next step is
to create a verification key file for every node-generated data file.

After gathering enough sample data, when a worker device is ready to begin training,
it will receive a decryption key and iteration password from the training server and check
every sample data file using the verification key. This will ensure that the participant is
registered and that an attacker is not interpersonating a participant. The latest algorithm
will check the verification keys during the training.
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Algorithm 1 Training Data file Storage Protocol for Nodes
Require An encryption key and iteration password from the training server.

1: Initialization: Create a Data file, Create a blank Key file
2: Integer NumberOfCharToVerify = 75
3: Write iteration password to BOF of Key file
4: Write Checksum of Datafile to 2nd line of Key file
5: Go to the next line in the Key file
6: From the 3rd line of the Data file to EOF of the Data file
7: If NumberOfCharToVerify != 0
8: Choose a random Char from the Data file
9: Write ChosenCharLocation

10: Go to the next line in the Key file
11: Write ChosenCharValue
12: Decrement NumberOfCharToVerify
13: Go to the next line in the Key file
14: Encrypt Key file (encryption key)

After gathering enough sample data, when a worker device is ready to begin training,
it will receive a decryption key and iteration password from the training server and check
every sample data.

Algorithm 2 will first use the decryption key and decrypt the sample file.
Step 1 is to check the password. If the iteration password of the storage verification

key is the same as the iteration password received from the server, then algorithm two
will continue. If not, then it will return false.

The second step of the algorithm is to check the checksum to ensure the file size is
original. The participant will send the current checksum value and the verification key
file to the server. Only the server can decrypt the verification file and verify the checksum
value.

The third step of Algorithm 2 is to compare the values of the characters from the
storage verification file with the actual sample file and ensure that the file is original.
Only the server can decrypt the verification file and compare the values of the pixels.

If all the checks are correct, algorithm two will return true.
The output of Algorithm 2 will be a true or false value, which will demonstrate to

the worker device that will determine the integrity of the sample data file.
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Algorithm 2 Training Data File Integrity verification for each Nodes

Require A decryption key and iteration password from the training server.
1: Initialization import Data file, import Key file for the data file
2: Decrypt Key file (decryption key from training server)
3: If the BOF of the Key File Does not contain an iteration password
4: Return False
5: else
6: If checksum from 2nd line of the key file != checksum 
7: Return False
8: else
9: From 2nd line of the key file to the EOF key file

10: Go to the next line in the Key file
11: Read ChosenCharLocation
12: Go to the next line in the Key file
13: Read ChosenCharValue
14:      If ChosenBtyeValue exists in the ChosenCharLocation of the Data file

15: Continue
16: Else return false

Currently, two main approaches exist for communication overhead reduction. The
first approach is data compression, the second is decreasing communication rounds, and
the FL-COP Modelling and Formulation approach involves a four-level communica-
tion reduction scheme, where each layer represents a specific communication reduction
approach. FL-COP approach, the top level determines the number of clients participat-
ing in the training of the global model, and the bottom levels apply quantization [24],
sparsification [25], and reduction of communication rounds, as demonstrated in Fig. 3.

The best option for implementing the key verification scheme is the top level that
determines the number of clients participating in the training of the global model.

At the top level, the number of clients is reduced to the minimum, and by optimizing
this level, we can eliminate any attacking client. The top level allows the training sever
to supervise and verify the authenticity of the training data of each client. If it detects
any affected client, it can eliminate that client and replace it with another client with
legitimate training data.

Fig. 3. The FL-COP modeling levels
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In the verification scheme [demonstrated as step 1, in Fig. 4], the first step is to ensure
that each remote participant is legitimate and that no third-party attacker can interperson-
ate a remote participant by creating an iteration password. Once the participant receives
the iteration password from the training server, that participant will become a verified
participant for that specific training. If an attacker tries to interpersonate a verified par-
ticipant for that specific training, the attacker will not succeed since the attacker will
not have the iteration password. The second piece of information that the server will
provide to the remote participant must be a public encryption key that would allow the
participant to create a verification key for each training file and encrypt that verification
file using the public encryption key. Later, only the training server can use the matching
private encryption key to decrypt the verification file. Steps 2 and 3 in Fig. 4 demonstrate
the implementation of the iteration password and the decryption key. After receiving the
public encryption key and iteration password, the remote participant must choose ran-
dom data from the training data files and write that random data and their location into
a verification key file. Step 4 in Fig. 4 demonstrates the implementation of step 4.

Fig. 4. Demonstrates the implementation of the verification key

Algorithm 3 Node to Training server transmission key verification

Require the Decryption key from the training server, All Key files, and the final trained data.

1: Initialization import Data file, import All Key files for the data file
2: Choose 5 random key files.
3: Decrypt the chosen key files using the decryption key
4: If the 1st line of all 5 key files matches the iteration password
5: Transmit the encrypted iteration password to the server
6: If the server accepts the iteration password
7: Send training results to the server
8: else
9: Do not send any data
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Algorithm 1 is for data file storage protocol for a remote node. This algorithm will
create a verification key file while the remote participant generates the training data file.
At the same time, it is generated and stored inside the verification key file.

BOF: is a specific marker that shows where a file starts.
EOF: is a condition in a computer operating system where no more data can be read
from a data source.

The following is an example of the storage verification key file for each data file.
The participant will create this file locally when each data file is written. This file will
be encrypted by using the encryption key.

Later, during the training, the participant will send this file to the server, and only
the server can decrypt this file. The verification file will only contain random values of
random characters from each data file, and the server will use this information to verify
the authenticity of the training data.

Line# Written Data on the File Comment:

1 w0Grf353#43 Iteration password

2 1612f797418a53dc652d385bda0e014f Checksum value

3 23 Character location

4 s Character value

5 36 Character location

6 i Character value

7 1 Character location

8 e Character value

9 40 Character location

Algorithm2 receives a decryption key and iteration password from the training server
and checks every sample data file using the verification key.

Algorithm 3 will check the verification keys during the training, and the participant
device will send the requested information to the server, allowing the training server to
supervise the training.

5 Novelty

This new participant authentication mechanism ensures that only legitimate participants
contribute to the Federated Learning process. The verification key scheme authenticates
participants before they are allowed to join the Federated Learning system, preventing
unauthorized or malicious participants from injecting polluted data into the Federated
Learning model. The verification scheme presented in this paper focuses on preventing
data poisoning rather than detecting any attack on Federated Learning after an attack.
This approach allows the training server to eliminate the infected client, improving
the overall performance of Federated Learning training. Moreover, it can prevent data
modification in each client’s storage during each training. It allows the server to detect
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any modification in real-time and ensures the confidentiality and integrity of the data
exchanged between participants and the training server.

6 Results

We used Google Collaborator “Colab” and TensorFlow to implement the first two
algorithms. In the first experiment, we demonstrated in Fig. 5.

A sample key file was created by running the first algorithm based on a given sample
file. The second algorithm successfully verified that file using the verification key in the
next step, demonstrated in the second part of Fig. 5.

Fig. 5. Result of successful verification of a legitimate file.

After 2000 executions, the second algorithm verified the original file using the key
file with a success rate of 98.2%; Fig. 6 demonstrates the final results.
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Fig. 6. Successful verification of data file.
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Fig. 7. Algorithm 2 was executed 100 times and detected all modified data files.

Fig. 8. Algorithm 2 detects a file modification.

Later, we modified the text sample and used the verification key file to verify the
modified data file. We ran the algorithm 100 times. The second algorithm successfully
detected the discrepancies and detected that the data file was compromised; the results
are demonstrated in Figs. 7 and 8.

The experiment’s key file contains an iteration password, preventing a man in the
middle. It is also nearly impossible for an attacker to modify the data file in such a way
that it would create the same original hash value.

The assumption for the attack verification stage was that the attacker could modify
the original data file to generate the same hash value.

The following formula demonstrates the statistical formula that represents the
attacker’s chance of success with the assumption that the attacker canmodify the original
file in such a way that it would generate the same hash value.

Let us assume the data file has 100 characters, and the key file has backed up 50
characters of the original file.

If the attackers decide to change a single character, the attacker would have a chance
of 50/100 to choose a character not recorded in the critical file.

Probability = Number of desired outcomes

Number of possible outcomes

Probability = 50

100
= 0.5
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The probability of choosing 7 characters that were not recorded in the key file is
equal to

= 50
100 × 50

100 × 50
100 × 50

100 × 50
100 × 50

100 × 50
100

= 0.5× 0.5× 0.5× 0.5× 0.5× 0.5× 0.5
= (0.5)7

= 0.007813

The chance of a successful attack in this scenario is 0.78%, assuming that the attacker
can modify the data file to create the same hash checksum.

7 Conclusion

In this paper, we introduced a robust prevention scheme that allows the Federated Learn-
ing server to eliminate the infected participants in real-time and backdoor attacks by
adding an encrypted verification scheme to the Federated Learning model. This scheme
uses a new verification scheme with a separate key file.

Three algorithms we introduced created an encrypted and decrypted verification key
for Federated Learning data files on one training node.

A robust prevention scheme allows the Federated Learning server to eliminate the
infected participants in real-time and backdoor attacks by adding an encrypted verifi-
cation scheme to the Federated Learning model. A new verification scheme that uses a
separate key file can handle this problem.

Three algorithms created an encrypted and decrypted verification key for Federated
Learning data files on a training node.

The experimental results demonstrated that it would not be possible for an attacker
to modify a data file and generate the same hash file. Therefore, it will be challenging
for an attacker to modify the data file and go undetected.

In a later stage, more experiments demonstrated that an attacker would play a game
of chance, and the success rate of an attack could be less than 1%.

Themain contribution of this paper is a detection prevention scheme that can prevent
datamodification in each client’s storage.This schemebenefits the low-processingdevice
and requires low processing power. It enables the server to detect any modification in
real time and eliminate the infected client.

8 Future Work

The future work for this research is to calculate the communicational and computational
overhead of this verification scheme and optimize this verification scheme.
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Abstract. Detecting outliers in data is essential in various fields, such
as finance, healthcare, and many other domains with anomalies. Among
well-known outlier detection algorithms, Local Outlier Factor (LOF) is
widely used for identifying unusual data points. However, the compu-
tational time of LOF significantly increases when dealing with large
datasets containing numerical and categorical features. We propose an
innovative approach using block size optimisation to speed up the out-
lier detection process while maintaining high accuracy. By optimizing
the block size, we achieve a significant improvement in LOF’s perfor-
mance without compromising its effectiveness. Experiment results on
diverse datasets containing mixed categorical and numerical features
demonstrate the effectiveness of our method in accelerating outlier detec-
tion while retaining high detection accuracy. This advancement in out-
lier detection has the potential to improve decision-making processes. It
empowers the timely identification of anomalous events, which is signif-
icant in critical applications, including cybersecurity.

Keywords: Outlier detection · Local Outlier Factor · Efficient data
processing · Cybersecurity

1 Introduction

Our research focuses on large datasets containing both categorical and numeri-
cal data, which presents challenges due to their differences and analytical com-
plexity. Our goal is to address the issue of long computation times in the LOF
algorithm while maintaining high accuracy in anomaly detection. The study cen-
tres around analyzing the effectiveness and efficiency of the Local Outlier Factor
(LOF) algorithm in detecting anomalies in domain-specific databases containing
categorical and mixed data. Effectiveness measures how well the technique identi-
fies anomalies, while efficiency relates to the time required for anomaly detection,
evaluating the method’s speed and processing performance. Existing studies on
anomaly detection using LOF often face the problem of increasing computation
time, especially for datasets with numerical and categorical features. Existing
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local outlier detection methods require performing a nearest neighbour search
for all objects in the dataset when calculating the local outlier factor. This is a
very time-consuming process, and its time complexity can reach O(n2), which
poses challenges for large datasets. Currently, there are two main methods for
improving the efficiency of algorithms. One of them involves simplifying the cal-
culation of the local outlier factor. However, this method has limitations regard-
ing efficiency improvement and may reduce the accuracy of the algorithms [10].
The other method utilizes data structures (such as R-tree, KD-tree, Cover tree,
M-tree, etc.) for efficient nearest neighbour search [9]. There is a need to fill this
gap by introducing an efficient approach that maintains high detection accu-
racy. Our study focuses on introducing an efficient method of anomaly detection
while simultaneously speeding up the process. It utilizes seven different datasets
of varying sizes, containing complex data with nominal, ordinal, and numeri-
cal features and rare complex anomalies. Custom outlier values were introduced
for five datasets, representing 1% of each dataset’s size. The dataset containing
numerical data on credit card transactions was labelled with fraud cases, while no
outliers were generated in the “p53 mutants” dataset. The latter dataset includes
information on mutations in the p53 gene, a crucial tumour suppressor gene, and
was also labelled. The study compares the effectiveness and efficiency of the LOF
algorithm in different data contexts, providing valuable insights into anomaly
detection in categorical (or mixed) and numerical databases. The study appro-
priately prepared the data by transforming categorical data into binary vectors,
filling missing data with column means, and scaling numerical data to the range
[0, 1] to ensure a common scale for the algorithm. Additionally, feature selection
was performed by constructing a correlation matrix and removing features with
correlation coefficients greater than 0.5 to reduce collinearity. Experiments with
various parameter settings were conducted, and the results concerning effective-
ness and execution time were compared. Researchers used block size optimization
to enable faster anomaly detection in the data. The article presents new insights
and findings, suggesting block size optimization as an effective solution to the
problem of long computation times in the LOF algorithm. This study contributes
to streamlining the anomaly detection process while maintaining high accuracy.
It’s worth noting that choosing an inappropriate block size can significantly
impact the execution time and memory consumption of the LOF algorithm. An
excessively large block size can lead to high memory usage, especially for large
datasets, potentially resulting in memory shortages and algorithm errors.

1.1 Potential Applications of Enhanced LOF Algorithm

Introducing an efficient method for anomaly detection with high accuracy can
significantly impact various domains. This study addresses long computation
times in the LOF algorithm, offering theoretical and practical implications. Here
are three examples: In Finance: LOF can detect credit card fraud and dishonest
transactions. Enhanced LOF provides precise results, helping financial institu-
tions improve fraud detection and minimize losses. In Medicine: LOF identi-
fies unusual cases and improves rare disease diagnosis. This facilitates faster and
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more appropriate treatment delivery. In Data Science: In data science, the
enhanced LOF algorithm can find application in analyzing large datasets and
identifying unusual patterns and anomalies relevant to researchers in various
fields such as social sciences, economics, or natural sciences.

2 State of the Art

During the literature review, few studies specifically focused on the Local Outlier
Factor (LOF) algorithm in the context of categorical and mixed data. Existing
research primarily focused on analyzing its features, but most studies were on
numerical data. No works directly addressed the optimization of the execution
performance of the LOF algorithm. Existing studies mainly focused on proposing
modifications to this algorithm (e.g., introducing new definitions of neighbour-
hood and outlier degree or proposing parallel algorithms based on local density
by eliminating non-outliers and distributed computing) to improve its efficiency.

For instance, in one study [1], the authors analyzed local outlier detection
algorithms, precisely the Local Outlier Factor (LOF) algorithm, in the context of
processing data streams. Another study [2] compared the classical LOF method
with a new approach called “mutual-reinforcement-based local outlier detection”
(MR-LOF), which works with various data types. In an article [3], various outlier
detection methods for categorical data, including the k-LOF (k-Local Anoma-
lies Factor) algorithm, were presented. The k-LOF method extends the LOF
algorithm to categorical data by analyzing relationships between observations
and their neighbours in a similarity graph. The authors of the paper [8] propose
two parallel algorithms based on local density, namely MRLOF (MapReduce
Local Outlier Factor) and S LOF (Spark Local Outlier Factor). The proposed
algorithms have a time complexity of O(N) each. This is an improvement com-
pared to the simplified LOF (Local Outlier Factor), which has a time complexity
of O(N2), where N is the size of the data. The article [9] proposes an efficient
density-based local outlier detection approach for scattered data, improving upon
existing methods by redefining the local outlier factor using the local deviation
coefficient (LDC) and introducing a safe non-outlier objects elimination method
(RCMLQ) to achieve better time efficiency and detection accuracy. We ourselves
were working on this algorithm in our research [6], and at that time, efficiency in
practical calculations and the time devoted to it were of significant importance.

3 Anomaly Detection and Data Preprocessing
in Complex Datasets: Block Size Impact

Outlier detection aims to identify atypical or unusual observations. See Fig. 1.
Outliers [7] are those observations that deviate significantly from the remaining
data and may indicate interesting or unexpected phenomena. In the literature,
various definitions of such observations can be found, with many authors cit-
ing a general definition from Douglas Hawkins’ work in 1980 [5]: “An outlier
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Fig. 1. Dataset and outlier. Own work.

is an observation which deviates so much from other observations as to arouse
suspicions that it was generated by a different mechanism”.

In our research, we aimed to detect complex anomalies in the data. A com-
plex anomaly is an unusual observation that combines multiple factors or fea-
tures. A complex anomaly exhibits atypical attribute values or possesses unusual
attributes, and it may also form a small group compared to the remaining records
in the database. Unlike single outliers, which are easier to detect by observing
a single exceptional data point, complex anomalies are more hidden and require
analyzing more information and considering dependencies between different fea-
tures. Detecting complex anomalies in categorical data can be particularly chal-
lenging due to the specific nature of this type of data. Different categories or
labels represent categorical data; their relationships can be more subtle and diffi-
cult to notice. In the case of categorical data, complex anomalies may result from
the combination of different categories or complex patterns occurring between
them. Additionally, when detecting complex anomalies in categorical data, it is
essential to prepare the data properly, such as encoding categories into numeri-
cal values or using appropriate distance metrics between categories. Depending
on the specific data characteristics, different techniques and approaches may be
required to detect complex anomalies effectively. Data preprocessing techniques
(e.g., transforming categorical data into binary vectors, scaling numerical data)
and feature selection based on correlation coefficients. In data analysis, blocks
can impact the time and memory required for data processing. When using
blocks of a specific size, we can focus on processing data in batches, increas-
ing processing efficiency. However, not using blocks and processing the entire
dataset simultaneously can lead to memory issues, especially for large datasets.
In data analysis, techniques like anomaly detection or classification often require
processing large amounts of data simultaneously. In such cases, blocks can help
accelerate the process and optimize performance. However, for large datasets
that do not fit into RAM, attempting to process the entire dataset simultane-
ously can lead to errors like running out of RAM. The test sometimes showed an
error like: “RAM is not enough” suggests that attempting to process the entire
dataset once exceeded the available RAM (we used 51 GB) prevents further pro-
cessing. To solve this problem, an approach with appropriately sized blocks can
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be used, allowing data processing in batches and optimizing memory usage. In
conclusion, the block size significantly impacts data processing efficiency. Blocks
aid speed and prevent memory problems with large datasets; adapting block size
to dataset size is crucial for optimal data analysis.

4 LOF - Local Outlier Factor Algorithm

The LOF algorithm, see Fig. 2, proposed by Breunig et al. in 2000 [4], detects
unusual data points by measuring the local deviation of a given data point
concerning its neighbours. Unlike many outlier detection methods, LOF assigns
a degree of being an outlier to each object based on how isolated it is in relation
to its surroundings. By comparing the local density of an object to the local
densities of its neighbours, LOF identifies regions of similar density and points
that have a substantially lower density, which are considered outliers.

Local density-based methods compare the local density of an object to that of
its neighbours. We can use LOF to search for outliers in databases and compare
its results with other algorithms.

The following steps observe the LOF of a specific instance. Firstly, the dis-
tance between p and its k-th nearest neighbor, dk(p), is found.

Secondly, the set of k nearest neighbors of p is determined and denoted by
Nk(p) = {q ∈ D − {p} : d(p, q) ≤ dk(p)}.

Fig. 2. a) Basic idea of LOF: comparing a point’s local density with its neighbours’
density. Point 1 has a significantly lower density than its neighbours. b) Illustration
of reachability distance. Objects 2 and 3 have the same reachability distance (k = 3),
while 4 is not among the k-nearest neighbours. Own work.

The third step involves observing the reachability distance for a spe-
cific instance q from instance p, denoted as dreach(p, q), which is defined as
dreach(p, q) = max{dk(q), d(p, q)}. This strongly depends on the value of k, as
we only consider the k nearest neighbours for the given instance.
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Fourthly, the average reachability distance of an instance p, denoted as
dreach(p), is calculated as dreach(p) =

∑
q∈Nk(p) dreach(p,q)

|Nk(p)| . The local reachability
density of an instance is defined as the reciprocal of the reachability distance,
lk(p) = 1

dreach(p)
.

Finally, the local reachability density is compared with the local reachability
densities of all instances in Nk(p). The ratio is defined as the Local Outlier Factor

(LOF ): Lk(p) =
∑

o∈Nk(p)
lk(o)
lk(p)

|Nk(p)| . The LOF of each instance is calculated, and
instances are sorted in decreasing order of Lk(p). The corresponding instances
are declared as outliers if the LOF values are large. To account for k, the final
decision is taken as follows: Lk(p) is calculated for selected values of k in a pre-
specified range, and the maximum Lk(p) is retained. A p with a large LOF is
declared an outlier. Anomalous data points from low-density areas have higher
LOF values than normal data points, typically between 1 and 1.5. The higher
the LOF , the more likely the data point is an outlier.

5 Methodology of the Research

The research methodology presented in Fig. 3 was based on a comparative app-
roach using the Local Outlier Factor (LOF) algorithm. The study aimed to
investigate this algorithm’s effectiveness and efficiency in detecting outliers for
categorical and mixed data. The algorithm was implemented in Python to con-
duct the study, enabling effective outlier detection. “Effectiveness” refers to the
algorithm’s ability to accurately identify outliers, meaning it can precisely detect
unusual or divergent values in the dataset. “Efficiency” refers to the algorithm’s
performance and economically achieving its goals regarding resources such as
time and memory. An efficient algorithm can achieve its intended goal with min-
imal resource consumption.

Outliers representing 1% of the dataset were generated. These anomalous
samples were created with random values for different features and then ran-
domly replaced with real data. This approach aimed to simulate and enrich the
dataset with various anomalies, aiding in testing outlier detection algorithms.
The p53 mutant dataset and the Credit Card Fraud Detection dataset had
already flagged anomalies, and we didn’t think to generate them. The Local Out-
lier Factor (LOF) algorithm was implemented to calculate the most significant
LOF score for each data point in the dataset. This algorithm identifies atypi-
cal observations that significantly differ from most data points in the dataset.
Before applying the algorithm, the data was suitably prepared to enable effective
utilization. Categorical data were transformed into binary vectors, enabling anal-
ysis with the algorithm LOF operating on numerical data. Additionally, missing
values were imputed with the mean values of their respective columns. This app-
roach preserved data integrity and avoided the impact of missing data on the
analysis. Numerical data that was not categorical was scaled to the range of [0,
1]. Data scaling helps bring them to a common range, which may benefit some
algorithms sensitive to differences in data scale. The p53 mutant dataset used in
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Fig. 3. Methodology of the research. Own work.

this analysis had dimensions of 5,408 features × 16,771 instances, making it chal-
lenging to handle and prone to overfitting. One hundred eighty instances with
missing values in any of the columns were removed to address these issues. Addi-
tionally, feature selection was performed by constructing a correlation matrix
and removing features with correlation coefficients greater than 0.5 to reduce
multicollinearity. As a result, 444 features remained out of the total 5,408 fea-
tures. For each run of the algorithm with block size and the entire dataset, the
processing time was measured. The aim was to find a balance between effective-
ness and processing time. Experiments were conducted with different parameter
settings for the LOF algorithm, and the results regarding effectiveness and pro-
cessing time were collected and compared. The research methodology allows for
the analysis of the dataset using different parameters for the Local Outlier Fac-
tor (LOF) algorithm, such as Minpts (minimum number of points) and distance
measures. The study involves two iterations - the first utilizes the entire dataset
as the block size, and the second adapts an appropriate block size for each iter-
ation, measuring effectiveness and efficiency. In the first iteration, the block size
is treated as the entire dataset, and the LOF algorithm is executed with fixed
parameters, such as Minpts and distance measures. Then, the results of outlier
detection are analyzed, evaluating the algorithm’s effectiveness in identifying
atypical observations and measuring the processing time required for this task.
In the second iteration, additional analyses are performed, but this time, the



634 C. Horyń and A. Nowak-Brzezińska

block size is adjusted for each dataset. For each block size, the LOF algorithm
is run with the same parameters - Minpts and distance measure. Similar to the
first iteration, the effectiveness and efficiency of the algorithm are measured for
each block size to determine the optimal block size for outlier detection. The
study’s results allowed us to compare the effectiveness and efficiency of the LOF
algorithm with two different settings - using the entire dataset as the block size
and adapting an appropriate block size for each iteration. This analysis helps us
understand how different parameters influence the quality and effectiveness of
outlier detection when applying the LOF algorithm to the investigated dataset.

5.1 Dataset Selection and Environment in Implementation

All datasets, except the Credit Card Fraud Detection dataset and p53 mutants,
contain categorical features. The following datasets were chosen for our
experiments:

– Car Evaluation Database: The dataset contains information about car
evaluations, including buying price, maintenance costs, number of doors, car
capacity, luggage boot size, and safety level. It consists of 1728 rows and 6
attributes [11].

– Mushroom Classification: The dataset contains 8124 samples with 22 cat-
egorical features, and it is used for the task of classifying mushrooms based on
their properties. Each species is labelled as edible, poisonous, or of unknown
edibility [12].

– Bank Marketing Dataset: This dataset contains 11,162 rows and 17 fea-
tures related to bank marketing. Attributes include customer information,
campaign details, and outcomes, as well as whether the client subscribed to
a term deposit [13].

– CitiBike System: The dataset provides information about bike rentals in
New York City, including trip duration, rental times, station identifiers, user
type, and demographic data. It consists of 577,703 rows and 15 columns. The
first 20,000 rows were used for analysis and experiments [14].

– Adult (Census Income): The dataset contains 48,842 samples with a com-
bination of continuous and categorical features, with 14 attributes in total.
The goal is to predict whether an individual’s annual income exceeds 50,000
dollars based on census data [15].

– Credit Card Fraud Detection: The dataset includes 284,807 records of
credit card transactions. It involves numerical features resulting from PCA
transformation, with a total of 31 columns. Fraudulent transactions account
for only 0.172% of all transactions, indicating a significant class imbalance
[16].

– p53 Mutants: This dataset contains 16,772 records describing various p53
mutations and their transcriptional activity. It originally had 5,408 columns
representing properties of p53 mutant proteins obtained from simulations.
After optimization, 444 columns remained by removing features with high
correlation coefficients [17]. Read more in the introductory article: https://
doi.org/10.1371/journal.pcbi.1000498.

https://doi.org/10.1371/journal.pcbi.1000498
https://doi.org/10.1371/journal.pcbi.1000498
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Environment in Implementation: The algorithm implementation used the
“NumPy” library for numerical and mathematical operations, a powerful tool
in Python for numerical computations. It provides functions for working with
arrays and matrices. The “time” module also measured the algorithm’s execution
time to evaluate its efficiency. The implementation also employed modules from
the SciPy library for specific optimizations. The “cdist” function in SciPy effi-
ciently calculates distances between points in n-dimensional space. Initially, we
considered implementing this function in Python but later found the advantages
of optimized C versions and low-level libraries. Leveraging these modules and
functions improved the algorithm’s efficiency, enabling complex computations
on the dataset and providing valuable execution time information for the LOF
algorithm.

The Local Outlier Factor (LOF) algorithm is used to detect outliers in a
dataset. Below are the main steps performed by this code:

Initialization of the LOF Outlier Class: The LOF Outlier class is initial-
ized with user-defined parameters, including MinPts (minimum number of points
in the vicinity) and distance metric. Distance Matrix Generation: A dis-
tance matrix is computed for the input data to represent the distance between
points. Kth Nearest Neighbor Calculation: The distance to the kth nearest
neighbour is calculated for each point in the distance matrix. The parameter k
specifies the number of nearest neighbours considered. Reachability Distance
Calculation: The reachability distance for each point is determined as the max-
imum value between the distance to the kth nearest neighbour and the distances
between points. Finding K Nearest Neighbors: The k nearest neighbours
for each point are identified based on the distance matrix, and their indices and
distances are recorded. Local Reachability Density Calculation: The local
reachability density for each point is computed as the reciprocal of the average
reachability distance to its k nearest neighbours. Local Outlier Factor (LOF)
Calculation: The LOF value for each point is calculated using the k-indices of
its nearest neighbours and the local reachability densities. The LOF quantifies
the point’s deviation from the rest of the dataset. LOF Scores for Each Point:
The LOF values for all points in the dataset are computed based on the previous
steps.

The block size divides the input data into smaller blocks or fragments. This
approach is beneficial when dealing with large datasets because processing the
entire dataset simultaneously can be time-consuming and memory-intensive. By
dividing the data into blocks, we can perform the LOF algorithm on each block
separately, improving performance and reducing memory consumption.

In the code, the block size is set here:

b lock_s ize = 20000 # example b l o c k s i z e

The data is divided into blocks of size example, 20,000 using the following
code:

data_blocks = [ data [ i : i+block_s ize ]
for i in range (0 , l en ( data ) , b lock_s ize ) ]
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This code creates a list called data_blocks, where each list element is a data
block containing 20,000 records (or fewer for the last block if the total number
of records is not divisible by 20,000). Using the block size can help improve
the performance of the LOF algorithm, especially when the dataset is large,
by processing smaller data fragments at a time. However, choosing the block
size may require some experimentation based on the dataset size and available
computational resources. If the block size is too small, it may result in many
blocks and lead to overhead in managing them. On the other hand, if the block
size is too large, it may cause memory-related issues, especially if the available
memory is limited. In practice, you can try different block sizes and evaluate
the performance of the LOF algorithm to find the optimal balance between
computational efficiency and memory usage for your specific dataset.

5.2 The Optimization of Block Size in the LOF Algorithm
for Enhanced Anomaly Detection

The LOF (Local Outlier Factor) algorithm’s block size can be adjusted through
experiments to improve anomaly detection. However, the ideal size varies with
the dataset and analysis goals. Typically, an optimal size is around 200, but it
should be fine-tuned for each specific case to achieve the best results. Optimizing
centres on several key aspects: Reducing Computational Overhead: LOF
involves computationally expensive distance calculations between data points,
especially for large datasets. Optimizing the block size focuses these calculations
on points within the same block, minimizing computational overhead. Adapting
to Data Characteristics: Each dataset has its unique structure and point dis-
tribution. Adjusting the block size helps consider local data structures, improving
the detection of unusual points. Emphasizing Local Structures: LOF iden-
tifies unusual observations within local point clusters. Optimizing the block size
enables more precise analysis of these local structures, leading to more accu-
rate anomaly detection. Experimentally Determining the Optimal Block
Size: The optimal block size can be determined through experiments on various
datasets, revealing the right number of points within a block for efficient data
analysis. Formula:

m = argmin
m

⎛
⎝

N∑
i=1

N∑
j=1

Iij(m) · dist(xi, xj)

⎞
⎠ (1)

where: m - number of points per block, Iij(m) - indicator function, which equals
1 if points xi and xj belong to the same block of size m and 0 otherwise,∑N

i=1

∑N
j=1 Iij(m) · dist(xi, xj) - sum of distances between points xi and xj

only for pairs of points within the same block of size m.

6 Experiments

See Fig. 4 for visualisation of the results. The exemplary outcomes of the search
for one of the “bank marketing” datasets are presented in the graph, displaying
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the LOF (Local Outlier Factor) values for each data point. Detected outliers are
marked as green points with a red cross, while other LOF values are represented
as blue points. Outliers not detected are indicated solely by a red cross without
a green point.

Fig. 4. The Highest LOF Values: Example Bank Marketing Dataset.
Common Indices: 109, Coverage: 98.2%, Outliers without Common Indices: {2730,
5933}, Number of Outliers without Common Indices: 2, Parameters: MinPts: 24, Dis-
tance Metric: Hamming.

Table 1 and Figs. 5 and 6 demonstrate that from the conducted experiments
using the Local Outlier Factor (LOF) algorithm on different datasets, the fol-
lowing conclusions can be drawn: Coverage Comparison: The table presents
a comparison of coverage percentages (CovBS and CovWoBS) for each dataset
using the LOF algorithm with block size optimization and without it. Cover-
age percentage measures the algorithm’s effectiveness in detecting outliers. In
most cases, using block size optimization (BS) provides similar or slightly higher
coverage compared to the LOF algorithm without optimization (WoBS). This
indicates that the algorithm’s performance is not significantly affected by block
size optimization. Execution Time Comparison: The table also shows a com-
parison of execution times (TimeBS and TimeWoBS) for each dataset using the
LOF algorithm with block size optimization and without it. It is observed that
block size optimization generally significantly reduces execution time, making
the algorithm more efficient in handling large datasets. However, in some cases,
like the “credit card” dataset, the execution time with block size optimization is
higher, likely due to specific characteristics of that dataset. Impact of Param-
eters: The table contains additional information about the parameters used in
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Table 1. Results for Different Datasets and Algorithms LOF. Own work.

Dataset
[rows; outlrs; feat.]

CovBS|CovWoBS% TimeBS|TimeWoBSsec Params BS|WoBS

bank
[11162; 111; 17]

98.20 | 98.20 0.62 | 39.92 BS: 200 | 11162
k: 24 | 74
dist: hamming

adult
[48842; 488; 14]

91.19 | 77.45 1.57 | 186.07 BS: 100 | 24421a

k: 27 | 104
dist: hamming

mushroom
[8124; 81; 22]

87.65 | 87.65 0.23 | 8.94 BS: 200 | 8124
k: 10 | 97
dist: cosine

car eval.
[1728; 17; 6]

94.12 | 82.35 0.025 | 0.234 BS: 200 | 1728
k: 8 | 6
dist: euclidean

citiebike trips
[20000; 200; 15]

98 | 78 10.33 | 3913.43 BS: 200 | 20000
k: 28 | 107
dist: hamming

credit card
[284807; 492; 31]

46.14 | 47.35 252.6 | 1497.18 BS: 6500 | 35600b

k: 250 | 250
dist: euclidean

p53 mutants
[16591; 143; 444]

6.99 | 2.1 0.84 | 382.97 BS: 100 | 16591
k: 9 | 46
dist: euclidean

a BS: 48842 after 255 s, no RAM (51 GB insufficient)
b BS: 284807 after 201 s, no RAM (51 GB insufficient)

block size optimization for each dataset. These parameters include block size
(BS), the number of nearest neighbours (k), and the distance metric (dist). The
choice of these parameters can impact the algorithm’s performance. For instance,
for the “bank” dataset, a block size of 200, k = 24, and the “hamming” distance
metric result in high coverage and relatively low execution time.

Resource Limitations: It is evident from the table that block size optimization
was not feasible for some datasets due to resource limitations. Specifically, for the
“adult” dataset, the block size had to be reduced to 100 records due to insufficient
RAM, paradoxically resulting in higher coverage (91.19 %) compared to the LOF
algorithm without optimization (77.45%). Similarly, for the “credit card” dataset,
the block size had to be reduced to 6500 records for the same reason. Without
optimization, it was possible to set the block size for the “adult” dataset to 24421
and for the “credit card” dataset to 35600. Higher values caused errors due to
insufficient RAM (51 GB insufficient). In practice, block size optimization faced
limitations due to available RAM, especially in the Coalb Pro+ environment
with a maximum of 51 GB of RAM. Attempts to use the entire dataset as a
block size were hindered by hardware constraints, leading to the adoption of the
largest block size possible within the available RAM for some datasets. However,
with sufficient RAM resources, adjusting the block size to match the dataset is
an option, especially on more powerful computers.
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Fig. 5. Comparison of Coverage for Different Datasets and LOF Algorithm. Own work.

Fig. 6. Comparison of Execution Time for Different Datasets and LOF Algorithm.
Own work.
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Coverage Comparison: The graphs depict a comparison of coverage percent-
ages for different datasets using the LOF algorithm with block size optimization
(Coverage with BS) and without it (Coverage without BS). In most cases, block
size optimization slightly or not at all affects the coverage results and, in some
cases, even improves them. This indicates that the LOF algorithm works effec-
tively with and without optimization in detecting outliers for various datasets.
Execution Time Comparison: The graphs also illustrate a comparison of
execution times for different datasets using the LOF algorithm with block size
optimization (Execution Time with BS) and without it (Execution Time without
BS). It is evident that block size optimization significantly reduces execution time
for most datasets. This means that the application of optimization can greatly
enhance the performance of the LOF algorithm for large datasets.

7 Summary

The experiments using the Local Outlier Factor (LOF) algorithm on various
datasets have led to several important conclusions. Firstly, comparing coverage
percentages (CovBS and CovWoBS) for each dataset using the LOF algorithm
with and without block size optimization (BS and WoBS, respectively) shows
that block size optimization generally provides similar or slightly higher coverage.
This indicates that block size optimization does not significantly compromise
the algorithm’s performance. Secondly, comparing execution times (TimeBS and
TimeWoBS) for each dataset with and without block size optimization reveals
that block size optimization significantly reduces execution time, making the
algorithm more efficient, particularly for handling large datasets. It is worth
noting that block size optimization was not possible for some datasets due to
resource constraints, such as available RAM. In such cases, the LOF algorithm
with optimization may be the only preferred choice.

In summary, the experiments highlight the benefits of block size optimiza-
tion in the LOF algorithm, especially for datasets with many records. However,
parameters and the choice of block size should be carefully fine-tuned based
on the specific dataset and available computational resources to achieve optimal
results. The results emphasize the potential of block size optimization to increase
the efficiency and effectiveness of the LOF algorithm in detecting outliers.
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Horyń, Czesław 627
Howlader, Prosenjit 154
Hu, Hainan 299
Hu, Mengjun 231
Hu, Shengdan 565
Hunchak, Diana 18

J
Janicki, Ryszard 612
Janusz, Andrzej 371, 479
Jodayree, Mahdee 612

K
Kacprzyk, Janusz 46
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