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Abstract. The current study uses a new analytical model and numerical method
to present a study of free vibration carried out on a cylindrical shell panel that is
simply supported and functionally graded. It is anticipated that the FG thickness
attributes will be dependent on the porosity level and will change along the thick-
ness axis in accordance with a distribution that follows a power-law. This work
makes a contribution by analyzing the performance of porous FGMs, which are
employed in a particularlywide variety of biomedical applications. For the purpose
of determining the free vibration characteristics as well as the nonlinear vibration
response, the governing equations are constructed on a first-order shear deforma-
tion theory by utilizing the Galerkin technique with the fourth-order Runge Kutta
a close encounter with an incomplete FGM cylindrical shell panel and include
different parameters. Parameters included are the power-law index, graded distri-
butions of porosity, and FG thickness. With the help of both the ANSYS 2021-R1
software, a numerical investigation was carried out making use of the finite ele-
ment approach, and a modal investigation was carried out. This was done in order
to verify the analytical strategy.

Keywords: Porous · Materials with a Functional Grading · Theory of
First-Order Shear Deformation · Analytical Investigation · Nonlinear Dynamic
Response · Frequency

1 Introduction

In mechanical and construction engineering, investigating and developing newmaterials
and structures is essential. Because of their lightweight nature and excellent mechanical
properties, structures composed of advanced materials are often employed in numer-
ous industries, including civil, mechanical, and aerospace engineering. The application
in practice is normally in the shape as nanocomposite structures, Functionally Graded
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Materials (FGM) structures, laminated, and sandwich structures [1]. In recent years,
analyzing a new structure has become a popular study area for numerous material and
engineering scientists. Many articles have been published about composite materials.
Ranging from micro-scale (nanocomposite and FGM) to macro-scale (laminated and
sandwich structures), the studies have been conducted using a variety of techniques,
scales, and forms [2, 3]. In the dynamics case, numerous investigations have been done
on the vibration analysis of structures [4–6]. Bagheri et al. [7] studied the geometrically
nonlinear dynamic response of joined conical shells constructed of functionally graded
material (FGM) subjected to thermal shock. Zhu et al. [8] employed Reddy’s theory of
Shear Deformation at Higher Orders with the geometric nonlinearity hypothesis (von
Kármán) to investigate the relationship between nonlinear forced vibration properties
and nonlinear free vibration properties of viscoelastic plates. Li and Liu [9] examined
the thermal free vibration as well as buckling attitude of viscoelastic sandwich of FGM
shallow shell having a core constructed of tunable auxetic honeycomb. Singh et al. [10]
coupled piezoelectric sensors with time-dependent tri analytical solutions in order to
investigate the free vibration of viscoelastic of orthotropic rectangular plates in-plane
FG. Sahu et al. [11] presented the free vibration and damping investigation of the sand-
wich doubly-curved shallow shell with a viscoelastic-FGM layer as suggested by the
theory of shear deformation of the first order. Moreover, there has been a significant
increase in the number of investigations for shell structures constructed of FGM mate-
rials [26]. These published studies investigated the buckling properties as well as the
linear and nonlinear vibration behavior in classical shell theory [12, 13]. Throughout
the development of the material industry, FGM porous cores employed for lightweight
structures are becoming a significant element in civil, mechanical, and aerospace engi-
neering due to their electrical, mechanical, and thermal properties. In particular, the FG
porous material has a high strength as well as an excellent energy absorption capability.
Ghobadi et al. [14] investigated the influence of the various distributions of porosity
on the static and dynamic behavior of sandwich FGM nanostructures under thermo-
electro-elastic coupling. Esayas and Kattimani [15] studied the influence of porosity on
the dynamic damping of geometrically nonlinear vibrations of an FG magneto-electro-
elastic plate. Javid et al. [16] researched the free vibrational characteristics of porous
FG micro-cylindrical shells with viscoelastic medium and two skins made of nanocom-
posite based on Biot’s assumptions. According to third-order shear deformation theory,
Keleshteri and Jelovica [17] sandwich panels with FG metal cores of foam were stud-
ied to determine their buckling and free vibrational behavior. Kumar H S et al. [18]
approaching together transient responses and FG nonlinear free vibration of skew plate
under the influence of porosity distribution. Srikarun et al. [19] researched the linear and
nonlinear stability of sandwich beams with porous FG cores subjected to various types
of distributed loads. Chan et al. [20] Using theory of first-order shear deformation shell,
researchers were investigated free vibration with a nonlinear response of the dynamic
properties of a porous functionally graded trimmed shell have aconical shap equipped
with actuators of piezoelectric in warm settings. Dastjerdi and Behdinan [21] studied the
free vibration characteristics of smart sandwich plates with carbon nanotube-reinforced
and piezoelectric layers by employing Reddy’s theory of third-order shear deformation.
Yadav et al. [22] investigated statics of nonlinear of sandwich circular-cylindrical shells
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consisting of two carbon nanotube-reinforced face sheets and a porous FG core by uti-
lizing higher-order shear deformation and thickness theory. Binh et al. [23] examined
the nonlinear dynamic characteristics of a porous FG toroidal shell of variable thickness
subjected to thermal loads and enclosed by a medium that has elasticity. Furthermore,
numerous investigations displayed the advent of the porous core in strengthening struc-
tures [24, 25]. Based on 3D elasticity, the dynamic analyses and natural frequencies of
porous FG cylindrical panels and annular sector plates were determined by Babaei et al.
[26]. Li et al. [27] used the differential quadrature method to study the natural vibration
properties of metal porous foam for conical shells consisting of two intriguing elastically
restrained boundaries. Hung et al. [12] investigated the effect of the porous FG variable
thickness for the toroidal shell on the nonlinear stability (buckling and post-buckling)
under compressive loads and surrounded by the elastic foundation. Vinh and Huy [28]
presented an inclusive analysis of the buckling, static bending and free vibration of the
FG plates for sandwiches, including porosity distribution according to the finite element
method with new hyperbolic shear deformation theory. Amir and Talha [29] employing
finite element and high-order shear deformation technique, this research looked at the
vibration of nonlinear thermo-elastic characteristics of FG porous double curve shallow
shells. Keleshteri and Jelovica [30] employed high-order bidirectional porosity distri-
butions to examine the free and forced vibration characteristics of FG porous beams.
Nevertheless, there have only been a few studies on the FGM free vibration systems
with porous metal formation. This investigation’s objective is to carry out a study on the
nonlinear analysis of free vibration of a simply-supported two-phase FGM cylindrical
shell panel with porous as part of its research. In the present work, suppose that the
FGM is constructed from ceramic and metal, mechanical characteristics are varied with
reason disparate porosity distributions based on power-law distributions, with changes
in the thickness direction. A novel model for the first-order shear deformation theory
is formed to discover the nonlinear free vibration characteristics according to different
FGMparameters. Utilizing the FEA strategy that is exemplified byANSYS software, the
results ofmode and natural frequency forms of the FGMcylindrical shell with porous are
provided here. The numerical findings for FG porous materials that are offered here are
not found anywhere else in the literature, and as a consequence, should be of relevance
to industrial applications. This study is organized into four parts. In the first section,
theory of first-order shear deformation criteria is introduced, in addition to constitutive
equations, features of FG porous structures, and an analytical vibration analysis of the
porous cylindrical panel. The second section introduces numerical analysis and finite
element simulation. Results and discussion are included in the third section. The last
part includes study summaries and findings.

2 Models of Porous FGM Cylindrical Shell Panel

Consider a thick FGM cylindrical shell panel made of metal and ceramic, in which the
lower surface is ceramic-rich and the upper surface is metal-rich, respectively. The FGM
cylindrical panel is considered to carry porosities that distribute evenly and unevenly
through the shell thickness direction (Fig. 1). The shell’s thickness, Radius, and edges
are represented by h, R, a, and b, respectively. To describe the shell’s motion, a cartesian
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coordinate system (x, y, z) on the center surface of the shell is employed,where z identifies
the out-of-plane coordinate, and x and y determine the shell’s in-plane coordinates.

Fig. 1. The geometry of the cylindrical panel found on the FGM.

In addition, the power law, the sigmoid law, or the exponential law may be used to
adequately represent the volume fraction of the FG cylindrical shell layers. Equation 1
makes the assumption that the distribution of the ceramic volume fractionVc is governed
by a power law [31]:

Vm + Vc = 1Vc = Vc(z) =
(
2z + h

2h

)g

(1)

where, Vc and Vm are volume fractions of ceramic and metal, respectively. g is the
power-law index. When the value of g is equal to infinity, it indicates a fully metallic
shell, whereas when the value of g is equal to zero, it denotes a fully ceramic shell. The
fundamental mechanical properties of the FGM cylindrical shell panels, with a porosity
volume ratio of G (G < 1), adopt the modified form of Eq. 2, assuming that porosities
disperse equally in the ceramic and metal phases

P(z) = Pm + (Pc − Pm)

(
2z + h

2h

)g

− G

2
(Pc − Pm) (2)

Pm and Pc represented the values of the material properties of the metal and ceramic
components of the FG shells, respectively. Young’s modulus (E) andmass density (ρ) are
taken to change in the thickness direction for our current formulations, while Poisson’s
ratio (v) will be assumed to remain constant for simplicity based on earlier research.

2.1 Fundamental Equations

This study takes into account thick porous FGM cylindrical shell panels subjected to
external loading with varying boundary conditions. As a result, the system of governing
equations is established, and the nonlinear vibration of the cylindrical shell is determined
using first-order shear deformation plate theory [32]:

ũ(x, y, z, t) = u(x, y, t) + zφx(x, y, t),

ṽ(x, y, z, t) = v(x, y, t) + zφy(x, y, t),

w̃(x, y, z, t) = w(x, y, t) (3)
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where,
(
φx, φy

)
describes the transverse normal slopes about x- and y-axes at (z = 0).

The following equations serve as the basis for the strain-displacement relationships of
the cylindrical shell:

⎧⎨
⎩

εx

εy

γxy
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⎭ =
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In the planes (xz, yz), the x designates the transverse shear strain components(
γxz, γyz

)
. The nonlinear stress-strain constitutive relations at a general point inside

the skin of the cylindrical shell can be expressed as:
⎧⎪⎪⎪⎪⎪⎨
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For, C11 = C22 = E(z)
1−ν2

, C12 = νE(z)
1−ν2

, C55 = C66 = E(z)
2(1+ν)

.
Numerous studies have found the shear correction factor for homogeneous struc-

tures. Furthermore, some researchers have given a thickness-shear vibration value of
π2

12 , but this will result in a different value for the FGM structure due to the material
properties continuously changing in the thickness direction. So, the shear correction

factor is denoted by (Ks), and its value is offered
(
K = 5

6

)
as [33]. The stress and

moment resultants of the FGM porous cylindrical shell panel can be represented as,
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∫ h

2

− h
2

σ sh
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where,
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◦
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∂φy

∂y
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(7)

Qx = KsI30γxz,Qy = KsI30γyz.
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The nonlinear governing motion equations of a porous FGM cylindrical shell panel
are given below,

δu : ∂Nx

∂x
+ ∂Nxy

∂y
= I0

∂2u

∂t2
+ I1

∂2φx

∂t2

δv : ∂Nxy

∂x
+ ∂Ny

∂y
= I0

∂2v

∂t2
+ I1

∂2φy

∂t2

δw : ∂Qx

∂x
+ ∂Qy

∂y
+ Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y

+ Ny
∂2w

∂y2
+ q + Ny

R
= I0

∂2w

∂t2

δφx : ∂Mx

∂x
+ ∂Mxy

∂y
− Qx = I2

∂2φx

∂t2
+ I1

∂2u

∂t2

δ φy : ∂Mxy

∂x
+ ∂My

∂y
− Qy = I2

∂2φy

∂t2
+ I1

∂2v

∂t2
(8)

By submitting stress function f (x, y) as follow:

Nx = ∂2f

∂y2
, Ny = ∂2f

∂x2
, Nxy = − ∂2f

∂x∂y
(9)

Equation (9) is substituted into the first two equations of Eq. (8) to yield;

∂2u

∂t2
= − I1

I0

∂2φx

∂t2
,

∂2v

∂t2
= − I1

I0

∂2φy

∂t2
(10)

Replacing (10) into the remaining three equations of Eq. (8), get,

δw : ∂Qx

∂x
+ ∂Qy

∂y
+ Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+ Ny

∂2w

∂y2
+ q + Ny

R
= I0

∂2w

∂t2

δ φx : ∂Mx

∂x
+ ∂Mxy

∂y
− Qx =

(
I2 − I21

I0

)
∂2φx

∂t2

δ φy : ∂Mxy

∂x
+ ∂My

∂y
− Qy =

(
I2 − I21

I0

)
∂2φy

∂t2
(11)

Through Eqs. (7) yield,

εox = A22Nx − A12Ny − B11
∂φx

∂x
− B12

∂φy

∂y

εoy = A11Ny − A12Nx − B21
∂φx

∂x
− B22

∂φy

∂y

γoxy = A66Nxy − B66

(
∂φx

∂y
+ ∂φy

∂x

)
(12)
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The compatibility equation must be used to add an equation,

∂2εx
◦

∂y2
+ ∂2εy

◦

∂x2
− ∂2γ◦

xy

∂x∂y
= ∂2w2

∂x∂y
− ∂2w

∂x2
∂2w

∂y2
− 1

R

∂2w

∂x2
(13)

Equation (12) is inserted into Eq. (7) and then into Eq. (11), which results in;

T11(w) + T12(φx) + T13
(
φy

) + S1(w, f) + q = I0
∂2w

∂t2
,

T21(w) + T22(φx) + T23
(
φy

) + R2(f) =
(
I2 − I21

I0

)
∂2φx

∂t2
,

T31(w) + T32(φx) + T33
(
φy

) + R3(f) =
(
I2 − I21

I0

)
∂2φy

∂t2
(14)

When Eq. (12) is replaced with Eq. (13) and the stress functions, it provides the
following formalization for the compatibility of FGM porous cylindrical shell panels

⎛
⎝ A11

∂4f
∂x4

+ A22
∂4f
∂y4

+ (A66 − 2A12)
∂4f

∂x2∂y2
− B21

∂3φx
∂x3

− B12
∂3φy

∂y3
+

(B66 − B11)
∂3φx
∂x∂y2

+ (B66 − B22)
∂3φy

∂x2∂y
−

(
∂2w2

∂x∂y − ∂2w
∂x2

∂2w
∂y2

− 1
R

∂2w
∂x2

)
⎞
⎠ = 0 (15)

2.2 Nonlinear Vibration Analysis

In this paper, suppose that the porous FGM shell is subjected to impact of the uniformly
distributed transverse load q = Q sin�t with four edges simply supported boundary
conditions:

w = Nxy = φy = 0, at x = 0, a

w = Nxy = φx = 0, at y = 0, b (16)

The next equations are desired to apply to the displacements in the present cases that
satisfy the assumed boundary conditions [34]:

w(x, y, t) = W(t) sin λmx sin δny

φx(x, y, t) = �x(t) cosλmx sin δny

φy(x, y, t) = �y(t) sin λmx cos δny (17)

Replacing (17) with (15), gain;

f(x, y, t) = Ã1(t) cos 2λmx + Ã2(t) cos 2δny + Ã3(t) sin λmx sin δny

Ã1(t) = δ2n

32A11λ
2
m
W2; Ã2(t) = λ2m

32A22δ
2
n
W2

Ã3(t) =
(
W
R

)
+

(
B21λ

3
m + (B11 − B66)λmδ2n

)
�x(t) +

(
δ3nB12 + (B22 − B66)λ

2
mδn

)
�y(t)(

A11λ
4
m + A22δ

4
n + (A66 − 2A12)λ

2
mδ2n

)
(18)
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After minor adjustments, the system of nonlinear motion equations in terms of dis-
placements is derived by introducing the formula (17 and 18) into (14) and using the
Galerkin method;

t11W + t12�x + t13�y + t14W�x + t15W�y + t16W + t17W
2 + t18W

3 + L32q = I0
d2W

dt2

t21W + t22�x + t23�y + n7W + n2W
2 = ρ̃1�̈x,

t31W + t32�x + t33�y + n9W + n4W
2 = ρ̃1�̈y, (19)

The natural frequencies of the FGM porous cylindrical shell are obtained by solving
Eq. (20), setting q = 0, and taking the linear components of Eq. (19):

∣∣∣∣∣∣∣
t11 + t16 + I0ω2 t12 t13

t21 + n1 t22 + ∼
ρ1ω

2 t23

t31 + n3 t32 t33 + ∼
ρ1ω

2

∣∣∣∣∣∣∣
= 0 (20)

Three answers to Eq. (20) correspond to the axial, circumferential, and radial angular
frequencies of the porosity FGM cylindrical shells. One with the lowest frequency is
taken into account. The porosity FGM cylindrical shells panel subjected to orderly
distributed load q = Qsin�t is considered, Eq. (19) becomes:

I0
d2W

dt2
− t11W − t12�x − t13�y − t14W�x − t15W�y − t16W − t17W

2 − t18W
3 = L32Q sin �t

t21W + t22�x + t23�y + n1W + n2W
2 = ρ̃1�̈x

t31W + t32�x + t33�y + n3W + n4W
2 = ρ̃1�̈y (21)

The nonlinear dynamic responses of a porous FGM cylindrical shell panel can be
calculated using the fourth-order Runge-Kutta technique by solving Eq. (21) with the
following initial conditions: W(0) = 0. When the second and third equations relating to
(�x,�y), are solved from Eq. (21), the results are then substituted into the first equation
to yield:

I0
d2W

dt2
− (a1 + a2)W − (a3 + a4 + a6 + r17)W

2 − (a5 + r18)W
3 = L32Q sin �t

(22)

The fundamental natural frequencies of the cylindrical shell may be calculated as
follows:

ωmn =
√

−(a1 + a2)

I0
(23)
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3 Numerical Investigation

Using numerical methodologies is one way in which one may validate the precision of
the analytical method that has been suggested. Problems may be solved using a wide
variety of numerical methodologies, although the method of finite elements (FEM) [35]
is considered to be themost accurate. The finite elementmethod (FEM) that is outlined by
the ANSYS software (Version 2020 R1) was used in this investigation. The construction
of a three-dimensional prototype of the Functionally graded cylindrical shell panel, as
shown in Fig. 2, is followed by the application of the matching shell’s sides boundary
conditions, which are subjected to modal study. In addition, as can be seen in Fig. 3, the
prototype has been meshed with an 8-nodes SOLID186 slices type, which has resulted
in a total of 19360 slices and 137922 nodes. This element type is a significant basic
element that is used in the representation of structural models. As shown in Fig. 4
[36], the component consists of a higher-order solid element having 20 nodes that has
quadratic spatial characteristics and three freedom degrees for translations along the
normal axes. The equation that is used to determine the mechanical characteristics of the
FGMs layers as follows: (2). The modal analysis for the selected models is carried out to
determine the free vibration characteristics both natural frequencies and mode shapes,
as shown in Fig. 5. This is done on the basis of the various factors that were described
before.

Fig. 2. FGM cylindrical shell panel Fig. 3. Meshed Model

Fig. 4. Structural geometry of element
type SOLID 186

Fig. 5. View of the modular analysis of the FGM
cylindrical shell
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4 Results and Discussion

In this study, a novel mathematical form was developed to analyze the natural fre-
quencies and modes of vibration of FGM cylindrical shell panels supported by just
a simply support with uniform porosity distribution based on power-law distribution.
Influences of different properties on frequency parameters are analyzed. The material
properties of numerous individual materials that were used in this investigation are pre-
sented in Table 1. The analytical solution was also verified using the (ANSYS 2020
R1) software that is available for purchase, and the results were tabulated and presented
using a variety of curves. Assume that the dimensions of the cylindrical shell are R = 3
m, a = b = 0.5 m., porosity factor (0.1, 0.2, and 0.3), the power-law distribution g = 2,
and FG thickness (h = 10, 14, and 16 mm).

Table 1. The material properties of many individual materials

Material Property FG core

Aluminum (Al) Ceramic (Al2O3)

Modulus of Elasticity, GPa 70 380

Mass density, Kg/m3 2702 3800

Poisson’s ratio 0.3 0.3

Table 2 demonstrates both analytical and numerical findings for the cylindrical
panel’s natural frequencies for a variety of porosity factors. According to the infor-
mation shown in Table 2, the thickness of the FG has a considerable impact on the
frequency characteristics. Good agreements are reached between analytical analysis
tests and numerical tests when the percentage of difference between the two is less than
0.9%. When the porosity factor goes up, the natural frequencies go down because the
material stiffness of the goes down. On the other hand, when the panel FG thickness
goes up, the natural frequency goes up because the panels get better as the Functionally
graded core thickness goes up. This can be seen as a consequence of the findings in
Table 2, which show that the natural frequencies go down when the porosity factor goes
up. Accordingly, the first six deflections of three-dimensional mode shapes are shown for
FGM in Fig. 6 when the material is simply supported in the form of porous cylindrical
shell panels with the following parameters: a gradient index of (g= 0.5), a porosity ratio
of (g = 30%), a = b = 0.5 m, R = 3, m = n = 1, and a thickness of 10 mm for the FGM.
In a like way, it’s also possible to depict other 3D mode shapes that are supported by a
variety of edge conditions.

Figures 7 and 8 illustrate, respectively, the impacts of the material gradient factor
(g) on the dynamic response and natural frequency of cylindrical panels with three
different porosity values. These panels were designed to test the effectiveness of the
material gradient parameter. Due to a reduction in the material’s rigidity, shown that
the natural frequency decline whenever the gradient indicator (g) increases, and the
dynamic of nonlinear response expands in three porosity magnitudes of (10, 20, and
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30%). Additionally, according to Eq. 2, the amount of metal increases while a volume of
ceramic decreases, which results in a decrease in shell stiffness. The influence that the
porosity factor, denoted by the symbol G, has on the dynamic of nonlinear response is
seen in Fig. 9. There are three different levels of porosity that are taken into consideration:
G = 10%, G = 20%, and G = 30%. As can be seen, increasing the pores results in a
greater amplitude deflection of FGM cylindrical shells. This is something that can be
noticed.

Analytical findings of the dynamic nonlinear response of the cylindrical shells with
varyingFGcore thicknesses are shown inFig. 10. (10, 15, and20mm). Figure 9 illustrates
that the intensity of the dynamic of nonlinear response diminishes as the Functionally
graded thickness of the shells grows. This is due to the fact that the stiffness of the FG
panel increases as the Functionally graded thickness does.

Table 2. The FGM cylindrical panels’ natural frequency with a power law index of g = 2.

Thickness Porosity % Analytical Numerical Discrepancy %

10 0.1 317.8349 315.35 0.63

0.2 298.4475 296.66 0.67

0.3 265.8474 265.61 0.075

14 0.1 400.8333 397.38 0.75

0.2 372.2816 369.95 0.8

0.3 322.9525 323.17 0.3

16 0.1 444.8098 440.7 0.9

0.2 411.6792 408.92 0.72

0.3 353.9510 354.32 0.28
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Fig. 6. The initial six mode shapes of Porous FGM simply supported cylindrical panels at G =
0.3, g = 2.
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5 Conclusion

In the current work, the nonlinear free vibration characteristics of an FG two-phase
porous cylindrical shell with a simply supported boundary condition based on the FSDT
are developed. A simply supported cylindrical shell’s analytical formulation is presented
in order to calculate the nonlinear free dynamic behavior. In order to validate the findings
of an analytical solution, a numerical analysis was carried out with the assistance of
ANSYS 2021 R1. Also, on deflection-time curve and natural frequency, the research
findings for material gradient, porous parameter, and FG thickness are displayed. Based
on the findings, it can be deduced that the porosity parameter does, in fact, have somekind
of influence on the essential natural frequency of the FG cylindrical panels. According
to the findings, the natural frequencies go up when the porosity parameter goes down,
but they go down when the stiffness of the material goes up. This is because the natural
frequencies are more sensitive to changes in the rigidity of the material. In addition, a
downward shift in the amplitude-time curve was seen whenever the porosity factor was
raised.

Appendix
I10 = E1

1 − υ2
, I20 = υE1

1 − υ2
, I30 = E1

2(1 + υ)
, I11 = E2

1 − υ2
, I21 = υE2

1 − υ2
, I31 = E2

2(1 + υ)
,

I12 = E3
1 − υ2

, I22 = υE3
1 − υ2

, I32 = E3
2(1 + υ)

,

A11 = 1

�
I10,A22 = 1

�
I10,A12 = I20

�
,A66 = 1

I30
, � = I210 − I220,B11 = A22I11 − A12I21,B22 = A11I11 − A12I21,

B12 = A22I21 − A12I11,B21 = A11I21 − A12I11,B66 = I31
I30

,D11 = I12 − B11B12 − I21B21,D22 = I22 − B22I11 − I21B12,
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D12 = I22 − B12I11 − I21B22,D21 = I22 − B21I11 − I21B11,D66 = I32 − I31B66,
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