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Ahmet Devlet Özçelik1(B) and Ahmet Sinan Öktem2
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Abstract. This study uses machine learning methods to find deterio-
ration in turbomachine parts. In turbomachines, damage control proce-
dures are carried out at specific times. Even though these checks take a
while, if there is no damage, the components won’t be replaced, and it
is not anticipated that they will be rechecked until the following control
or an unforeseen incident. For this situation, a machine learning algo-
rithm has been developed and 96% accuracy was obtained for overall
components.
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1 Introduction

This study aims to detect prior damage in turbo-machine components via
machine learning algorithms. The damage control process in turbomachines is
performed at certain hours. Although these checks take a quite long time, if
there is no damage, the components will not be replaced, and the components
are not expected to be checked again until the next control or an unexpected
event occurs. The general factors that cause gas turbine damage are as follows:

– Erosion: Some particles that come with air passing through the compressor
can degrade and damage surfaces inside the compressor instead of binding
onto them. Erosion damage caused by solid particles is a frequently occurring
problem that can affect the components of aeroengines. Both stationary and
rotating airfoils are susceptible to material loss due to the impact of erosive
particles. In some cases, this damage can result in negative effects on the
hot-section hardware and overall engine performance [1].

– Abrasion: Abrasion is a type of wear caused by the mechanical action of
one surface rubbing against another. It can be caused by a variety of factors,
including the hardness and roughness of the surfaces involved, the presence
of foreign particles, and the sliding speed and contact pressure between the
surfaces. Abrasion can result in surface damage, material loss, and changes
in surface properties such as roughness and hardness [2].
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– Corrosion: Sulfur from the fuel and sodium chloride from the air interact
during combustion at high temperatures to form sodium sulfate. Following
deposition, the sodium sulfate speeds up oxidation (or sulfidation) attacks on
hot-section components [3] [4].

– Foreign Object Damage: Objects going into the compressor may cause
severe damage to industrial gas turbines, which are far more prevalent than
turbines used on aircraft with open inlets [5].

– Fatigue: The beginning and growth of cracks in a material as a result of
cyclic loading is known as fatigue. Fatigue can be caused by dynamic loads,
vibrations, impacts, or thermal loads [6]. Fatigue can be extremely dangerous
for turbo machinery used in aviation. A sudden loss of power may lead to
undesired results. Thus, fatigue detection is essential.

– Thermomechanical Fatigue: Hot-section components of gas turbine
engines operate in a hostile environment and are constantly vulnerable to
failure by the thermal fatigue damage mechanism because of the different
heat capacities of the various materials in the component as well as a non-
uniform temperature field on the component. A gas turbine engine’s starting
and stopping can cause temperature redistribution in the parts, which can
lead to thermal fatigue damage [7].

– Creep: Components of gas turbines working at high temperatures gradu-
ally deform under the influence of applied stress. Such deformation eventu-
ally builds up and causes a creep rupture mechanism, which causes frac-
ture. The main factor reducing blade life in base-loaded gas turbines is
blade creep degradation. Critical component design assessment for high-
temperature applications should take these deformation and damage pro-
cesses into account, and engineering calculations call for knowledge of creep
rupture characteristics for the material the structure is made of [8].

Supervised learning and unsupervised learning are two major categories of
machine learning algorithms that have been widely studied and applied in various
fields in recent years. Supervised learning is a type of machine learning where
the algorithm is trained on a labeled dataset, meaning that each data point is
associated with a known target value. The algorithm learns to predict the target
value for new, unseen data based on the patterns it identifies in the training data.
Some popular supervised learning algorithms include linear regression, decision
trees, and neural networks [9].

On the other hand, unsupervised learning is a type of machine learning where
the algorithm is trained on an unlabeled dataset, meaning that the data points do
not have any associated target values. Instead, the algorithm identifies patterns
and structure within the data itself, without any prior knowledge of what the
data represents. Common unsupervised learning techniques include clustering,
anomaly detection, and dimensionality reduction [10].

Both supervised and unsupervised learning have their own strengths and
weaknesses, and the choice of which type of learning to use depends on the
specific problem and data at hand. In recent years, there have been numerous
advancements and innovations in both supervised and unsupervised learning,
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leading to exciting new applications in fields such as computer vision, natural
language processing, and healthcare [11].

– Regression: Regression algorithms are categorized as supervised machine
learning. They support the explanation or forecast of a numerical value based
on a collection of historical facts [12].

– Classification: Another sort of supervised machine learning that predicts or
explains a class value in classification algorithms. They can help anticipate
whether an online buyer would purchase a good, for example. Buyer or non-
buyer, the response is either yes or no. Classification systems, on the other
hand, are not limited to only two categories [12].

– Clustering: Since the goal of clustering algorithms is to group or cluster
data with comparable features, they fall within the topic of unsupervised
machine learning. Approaches that use clustering don’t need output data
to train. Instead, this method uses an algorithm to decide the result. Only
visualizations can be used by a data scientist to evaluate the quality of a
clustering algorithm’s answer [12].

– Dimensionality Reduction: This technique is used in to remove the least
related information from a data set. Since data sets containing a lot of columns
are common, it is imperative to lower the overall amount. There are thousands
of pixels in a photograph, but not all of them are crucial to research. Similar
to this, dozens of measurements and tests may be performed on each chip
during the manufacturing process, many of which offer redundant data. To
manage the data set in these situations, dimensionality reduction techniques
will be needed [12].

– Ensemble Methods: Ensemble approaches combine multiple predictive
models (supervised machine learning) to make better forecasts than any one
model could. For instance, an ensemble method known as random forest tech-
niques combines many decision trees that have been trained using various data
sets. As a result, a Random Forest’s forecasts are more accurate than a single
Decision Tree’s [12].

– Neural Networks and Deep Learning: Artificial networks aim to capture
non-linear patterns in data by incorporating multi-layered parameters into the
model, as opposed to logistic and linear regressions. [12].

– Transfer Learning: Transfer learning is a method where parts of a pre-
trained neural network can be reused and adapted for a new but similar task.
Specifically, some of the trained layers from the previous neural network,
which was trained on a particular task, can be transferred and combined
with a few new layers that are trained on the data from the new task. [12].

– Reinforcement Learning: Reinforcement learning is an approach that
enables an algorithm to learn from previous experiences in a general sense.
By observing actions and using a trial-and-error method in a controlled envi-
ronment, reinforcement learning can optimize a cumulative reward. [12].

– Natural Language Processing: This is a frequently used methodology for
preparing text for machine learning. The most widely used text processing
package is NLTK (Natural Language ToolKit) [12].
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– Word Embeddings: TTF-IDF is a numerical representation of text docu-
ments that considers only the frequency and weighted frequencies of words.
Word embeddings, on the other hand, capture a word’s context within a
document, enabling us to perform arithmetic with words by measuring the
similarity of words based on context. Word2Vec utilizes a neural network to
convert words in a corpus into numerical vectors, which can then be employed
to identify synonyms, conduct word arithmetic, and represent text documents
(by averaging all the word vectors in a document) [12].

Since predictive maintenance with machine learning studies has not been
done before, the literature research is mostly focused on the use of machine
learning algorithms in mechanical engineering, especially in the energy sector.

Regan et al. combined acoustic with machine learning algorithms, and they
detected wind turbine blade damage. In the study, Regan et al. used supervised
machine learning to accomplish 98% accuracy [13]. Ghalandari et al. optimized
the first row of the compressor blade with an artificial neural network. It has
been seen for the aerodynamical view, mass flow increased by 4% and for the
structural view, optimized blades met the reduced frequency criteria [14].

In the study “Adaptive Detection and Prediction of Performance Degradation
in Off-shore Turbomachinery”, Zagorowska et al. tried to detect of degradation in
turbomachinery. To accomplish that Zagorowska et al. took the data of weather
every day for 2 years and trained and tested the algorithm which showed that it is
possible to combine the existing approaches in degradation modeling to improve
the accuracy of the prediction, thus making the algorithm useful in industrial
performance-based application [15].

In a study Gascon et al. identified the machine learning technique that best
estimates the remaining useful life of boiler components using plant operations.
The best strategy to anticipate the decline in the life span of the plant with
over 90% certainty, according to the authors’ testing of five different machine
learning algorithms [16].

Chao et al. showed that the capacity to estimate the remaining usufel life-
time (RUL) of its components, is a crucial enabler of intelligent maintenance
systems. Datasets with run-to-failure trajectories are required for the creation of
data-driven prognostic models. Chao et al. create a new dataset of run-to-failure
trajectories for a fleet of aircraft engines under real-world flight conditions to
aid the development of prognostics algorithms. The dataset was created using
the NASA-developed Commercial Modular Aero-Propulsion System Simulation
(CMAPSS) model. The damage propagation model employed in this dataset
expands on earlier work’s modeling method and adds two new levels of accu-
racy [17].

As above mentioned, there are no studies on this subject. In this study,
various methods were tried to create a database due to the lack of databases
or not being shared, and these methods were mentioned in the methodology
section. For a quick solution, the classification method mentioned above is used.
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2 Methodology

In order to apply Machine Learning technique, the necessary dataset has been
obtained from NASA The Prognostics Data Repository [18] which is studied
at study of Chao et al. [17]. Figure 1 shows schematic illustration of the engine
along with the CMAPSS model’s assigned station numbers.

Fig. 1. Schematic representation of the CMAPSS model [17]

The names, descriptions, and units of each input variable in the dataset are
can be found in study of Chao et al. [17]. In the CMAPSS model, the variable
symbol corresponds to the internal variable name. The model documentation is
used to generate the descriptions and units [19].

The output of the data is reaming useful life (RUL). For flight classes 8 and 9
RUL table has been shown in Fig. 2 below. For the study, all flight data has been
merged. Due to the enormous number of data (sixty-nine million columns), an
algorithm was created for data reduction. This algorithm was used to generate
the dataset from 99 rows and 104 columns. The flow diagram of the algorithm
is shown in Fig. 3.
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Fig. 2. RUL for Flight Cases 8 and 9. [19]

Due to the lack of maintenance data, failure output data is created with
the reduced data. Table 4. shows which damage mechanism affects the sensor or
measurement values as follows (Table 1):

Table 1. Sensors that Affect Damage Mechanism

RPM Temp Pre Flow phi Fatigue

Fatigue + + – – – –

Creep – + – – – +

Erosion – + + + – –

Abrasion – – – + – –

Thermomechanical Fatigue – + + – + –

Corrosion – + – – + +
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Fig. 3. Flow Chart for Data Reduction Algorithm.

These relations have been gathered from the study of “Taxonomy of Gas
Turbine Blade Defects” [20] and other literature surveys. It can be seen in Table 2
that damage mechanisms occurred in components. Due to the lack of output data
(which is all zero and because of that A.I. will not learn from it) LPT damage
mechanism only consists of fatigue and creep.

Table 2. Damage Types for Components

Fatigue Creep Erosion Abrasion Thermomechanical
Fatigue

Corrosion

LPC + + + + – –

HPC + + + + – –

Burner + + + – + +

HPT + + + – + +

LPT + + – – – –

According to the relationships in the data set, if the output is one, there
is damage, if the output is zero then there is no damage. The classification
method was chosen for Machine Learning algorithms because of the probability
of damage. All classification techniques have been used and the accuracy scores
compared.
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3 Results

After data processing is done, the classification technique is chosen for the
Machine Learning Algorithm due to quick solution and computer power. Each
damage of each component was put into the algorithm separately. 80% of the
dataset was reserved for training and the remaining 20% was for testing.

For classification tasks, the mean accuracy can be calculated as the average
of the accuracy scores for each class. The formula is:

mean accuracy = (accuracy of class 1 + ... + accuracy of class n)/n (1)

Here, n is the number of classes in the classification problem [21]. Accuracy
scores are shown below:

Table 3. Accuracies for LPC

Fatigue Erosion Creep Abrasion Mean

LR .85 .95 1 .95 .9375

KNN .85 1 1 1 .9625

SVM .9 .95 1 1 .9625

Kernel SVM .8 .95 1 1 .9375

Naive Bayes .8 .75 1 1 .8875

Decision Tree .8 .9 1 .9 .9

Random Forest .85 .95 1 1 .95

According to Table 3, SVM performs better than the other models in terms of
accuracy, while Näıve Bayes performs worse. This difference can be attributed
to the fact that Näıve Bayes assumes that each feature is independent of the
others, whereas SVM takes into account how the features interact with one
another. Although the results showed that all the features had a value of 1,
indicating the possibility of overfitting, the R2 test was repeated to confirm that
overfitting was not a problem.

Table 4. Accuracies for HPC

Fatigue Erosion Creep Abrasion Mean

LR .75 1 1 .85 .9

KNN .95 .95 1 .95 .9625

SVM .85 1 .95 .95 .9375

Kernel SVM .8 .9 1 .95 .9125

Naive Bayes .8 .85 .8 .85 .825

Decision Tree .95 .9 1 1 .9625

Random Forest .8 .9 1 .95 .9125
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Table 4 shows that KNN has the highest average score, while Näıve Bayes has
the lowest. The primary reason for this difference is that KNN is a discriminative
classifier, whereas Näıve Bayes is a generative classifier.

Table 5. Accuracies for Burner

Thermal Fatigue Fatigue Erosion Creep Corrosion Mean

LR .9 .95 .9 1 1 .95

KNN .9 1 .9 1 .95 .95

SVM .95 .95 .95 1 1 .97

Kernel SVM .9 .95 .9 1 1 .95

Naive Bayes .85 .9 .85 1 1 .92

Decision Tree .9 .95 .9 1 1 .95

Random Forest .9 .9 .9 1 1 .94

Table 5 indicates that SVM has the highest average score, while Näıve Bayes
has the lowest score, once again. As previously explained, this is due to the
different approaches used by these techniques in addressing the problem. While
one treats each data point independently, the other considers them as related.
It’s worth noting that even though the creep scores are all 1, the R2 test has
been conducted to confirm that overfitting is not a concern.

Table 6. Accuracies for HPT

Thermal Fatigue Fatigue Erosion Creep Corrosion Mean

LR .8 1 .95 .9 .8 .89

KNN .85 1 .95 1 .8 .92

SVM .85 1 .95 .95 .95 .94

Kernel SVM .8 1 .95 1 .8 .91

Naive Bayes .6 1 .95 .75 .75 .81

Decision Tree .9 1 1 1 .95 .97

Random Forest .85 1 1 1 .75 .92

Table 6 shows that SVM has the highest average score, while Näıve Bayes has
the lowest score, as previously mentioned. This difference can be attributed to
the different approaches used by these techniques. While SVM considers how the
features interact with each other, Näıve Bayes treats each feature as independent.

Table 7 indicates that the scores for most techniques are similar to each other,
except for Näıve Bayes. This is because Näıve Bayes treats each data point as
independent, ignoring their relationship to each other. In the LPT section, only
fatigue and creep damages are considered due to the possibility of overfitting.
Unlike other sections, it is known beforehand that overfitting will occur on dam-
ages in the LPT section, prior to the start of the machine learning algorithm.
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Table 7. Accuracies for LPT

Fatigue Creep Mean

LR .95 .95 .95

KNN .95 1 .975

SVM .95 1 .975

KernelSVM .95 1 .975

Naive Bayes .9 .9 .9

Decision Tree .95 1 .975

Random Forest .95 1 .975

In general, SVM has the highest average score of 0.957, or 95.7%. This sug-
gests that the machine learning algorithms were effective in detecting gas turbine
damages, achieving high accuracy across all areas. In contrast, Näıve Bayes has
the lowest score of 0.8685, or 86.85%. Although this score may be acceptable in
other industrial applications, in the energy or aviation sectors, it could lead to
catastrophic events.

4 Conclusion

The study showed that machine learning algorithms can accurately detect deteri-
oration in turbomachine parts, with the Support Vector Machine method having
the best overall accuracy. This is significant as traditional damage control pro-
cedures can be time-consuming and may miss undetected damage, posing risks
in the future. Machine learning algorithms offer a way to achieve high accuracy,
which can ultimately improve the safety and reliability of turbomachines.

This development is particularly relevant in the aviation industry, where
safety is paramount. However, there is a concern that false positive errors could
have catastrophic consequences, which may be due to the lack of access to real
data. Further research and development could improve the algorithm and reduce
the costs and time required for maintenance periods, especially in aviation.

Despite these challenges, the energy sector is expected to benefit from this
development as the algorithm could reduce the time needed for damage detection
during maintenance work, allowing businesses to resume operations sooner. This
could potentially increase their profit margins by reducing downtime and revenue
loss.

Overall, the study demonstrates the potential of machine learning algorithms
in the field of turbomachines, with further research and development leading to
even more effective methods for detecting damage and deterioration. While there
are still challenges to overcome, the benefits of this development in the energy
and aviation industries are significant.



252 A. D. Özçelik and A. S. Öktem
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