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Abstract. Sign language (SL) is a communication tool playing a cru-
cial role in facilitating the daily life of deaf or hearing-impaired people.
Large varieties in the existing SLs and lack of interpretation knowledge
in the general public lead to a communication barrier between the deaf
and hearing communities. This issue has been addressed by automated
sign language recognition (SLR) systems, mostly proposed for Ameri-
can Sign Language (ASL) with limited number of research studies on
the other SLs. Consequently, this paper focuses on static Turkish Sign
Language (TSL) recognition for its alphabets and digits by proposing
an efficient novel Convolutional Neural Network (CNN) model. Our pro-
posed CNN model comprises 9 layers, of which 6 layers are employed
for feature extraction, and the remaining 3 layers are adopted for clas-
sification. The model is prevented from overfitting while dealing with
small-scale datasets by benefiting from two regularization techniques: 1)
ignoring a specified portion of neurons during training by applying a
dropout layer, and 2) applying penalties during loss function optimiza-
tion by employing L2 kernel regularizer in the convolution layers. The
arrangement of the layers, learning rate, optimization technique, model
hyper-parameters, and dropout layers are carefully adjusted so that the
proposed CNN model can recognize both TSL alphabets and digits fast
and accurately. The feasibility of our proposed T-SignSys is investigated
through a comprehensive ablation study. Our model is evaluated on two
datasets of TSL alphabets and digits with an accuracy of 97.85% and
99.52%, respectively, demonstrating its competitive performance despite
straightforward implementation.
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1 Introduction

Sign language (SL) is a form of non-verbal communication means used to convey
information through hand gestures and facial expressions. It is utilized by deaf
and hard-of-hearing people to interact with others and access services. There are
more than 300 SLs worldwide that significantly differ from each other in various
terms such as vocabulary and grammatical structures [17]. Due to these wide
varieties, learning and interpreting different SLs is time-consuming and infeasible
for hearing and hearing-impaired people. On the other hand, accessing human
interpreters is costly and not practical in daily life. These challenges form a
communication barrier in deaf-to-deaf and deaf-to-hearing people interactions,
which not only limits the deaf people’s social and professional life (e.g., fewer
employment chances, social withdrawal, low academic performance) but also has
substantial adverse mental impacts on them, leading to depression, loneliness,
and anger. To tackle these issues, researchers have been captivated to develop
automated sign language recognition (SLR) models that can accurately identify
the signs performed by the signer and assist the public people in interpreting
them effortlessly.

Automated SLR systems can significantly improve the life quality of the
deaf community by smoothing over their communication and facilitating social
service usage. Additionally, they can be used in the form of gesture recogni-
tion in many other human-computer interaction applications ranging from vir-
tual/augmented reality (VR/AR) and video games [26] to medical purposes [11].
In these applications, a gesture recognition system tracks the user’s hand move-
ments and converts them into actions within a program. The first successful
attempts regarding automated SLR have been made using direct measurements
through sensor-based devices. These systems are generally more accurate due
to their ability to detect the exact position, speed, and other characteristics of
the user’s hands. However, they require specialized devices [21], which are costly
and inconvenient for performing complex signs. These limitations restrict their
applicability in real-life scenarios, inspiring researchers to convert their attention
to vision-based systems as a viable alternative.

Using images and videos acquired by cameras as input data in the vision-
based system makes them appropriate for performing complex signs in different
environments. Although the affordability, portability, and high flexibility of the
vision-based systems make them superior to the sensor-based systems, they still
have their own challenges caused by large varieties that exist either in signers
(e.g., hand shapes, skin colors, and way of performing a sign), environment
conditions (e.g., complex background, and lighting changes), or both. To address
these issues, numerous works have been proposed in the last decade, which are
categorized into two main groups considering the input data modality: 1) Static
SLR (SSLR), and 2) Dynamic SLR (DSLR).

SSLR is defined as recognizing the digits and alphabets of a sign language
from the images [24]. Static sign language (also referred to as fingerspelling) is
utilized to perform ages, dates, proper nouns, and technical words with no spe-
cific sign, constituting a considerable portion of each SL [29]. This prominent role
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is important to SSLR attracting researchers’ attention to develop highly accurate
systems over the years. SSLR approaches can be further divided into two main
categories: conventional machine learning (ML)-based and deep learning (DL)-
based methods. In ML-based approaches, hand-crafted features are extracted
from the input images, then utilized in the ML-based classifiers for final sign
recognition. Despite the favorable performance achieved by these methods, their
accuracy is highly dependent on the extracted features limiting their applicabil-
ity to a specified dataset with poor generalization ability [15].

With the advent of DL-based models, highly powerful GPUs, and sign lan-
guage datasets with large quantities, Convolutional Neural Networks (CNNs)
have been widely employed in this domain to improve the performance and the
generalization ability [25]. The capability of these models in extracting highly
representative features from the complex structures through the backpropagation
technique enables them to accurately differentiate the images from one another
and achieve high performance. However, most of the approaches in the litera-
ture have focused on American Sign Language (ASL) recognition [7]. Although
ASL is a globally well-known SL, many other SLs (e.g., Bangla, Arabic, Persian,
and Turkish) are also significant for their own communities. However, there are
limited studies on these SLs compared to those of ASL. Additionally, even for
ASL recognition, alphabet recognition got more attention than digit recognition,
while both are significant components of SSLR.

Turkish Sign Language (TSL) is one of the critical SLs used by around 3.5
million deaf people in Turkey. At the same time, its fingerspelling has been
studied in only a limited number of research works in the literature. This paper
aims to investigate static TSL recognition to ease the communication between
deaf people and the general public unfamiliar with it in Turkey. Our proposed
T-SignSys is based on a novel CNN model for fast and accurate TSL recognition,
considering both alphabets and digits. Overall, the main contributions of this
paper are listed as follows:

– A novel end-to-end CNN-based model, namely T-SignSys, is proposed to effi-
ciently recognize both the alphabets and digits of TSL with a single opti-
mized architecture following a straightforward implementation avoiding the
challenging task of hand segmentation for complex backgrounds.

– Carefully tuning the number of layers, activation function, kernel, and filter
sizes, and optimizer technique along with taking advantage of dropout layer
and L2 kernel regularizer as regularization techniques, our model obtains high
accuracy without overfitting issues even for small-scale datasets.

– A comprehensive ablation study is conducted for the arrangements of the
layers, the value of the dropout layer, the learning rate, and the optimiza-
tion technique to investigate the effectiveness and feasibility of the proposed
architecture. As an important factor in achieving high performance and fast
convergence during training, Adam and Adamax are selected as optimizer
techniques for digits and alphabets, respectively, through our ablation study.
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– The performance of the proposed model is evaluated on two benchmark
datasets of TSL alphabets and digits and compared with those of existing
approaches proving its superiority and capabilities.

2 Related Works

During the last two decades, a significant number of studies have been con-
ducted to advance automated SLR systems, which are categorized into two
main groups: conventional machine learning (ML)-based and deep learning (DL)-
based approaches. The automated systems in both groups follow three steps to
accomplish sign language recognition: pre-processing, feature extraction, and
classification. In conventional methods, feature extraction has been performed
by extracting hand-crafted features classified using ML-based classifiers. In con-
trast, feature extraction and classification are carried out in DL-based systems
through a single deep network. Some of the recent sign language recognition
(SLR) approaches from both categories are briefly discussed in this section.

2.1 Machine Learning-Based Approaches

Machine learning is a subset of artificial intelligence that involves training algo-
rithms to learn patterns and make predictions or decisions based on data. ML
techniques have been used for both sensor-based and vision-based SLR. In
the sensor-based approaches, the data acquired directly from the sensor-based
devices are used in ML-based classifiers (e.g., Support Vector Machine (SVM),
K-Nearest Neighbor (KNN)) for sign recognition, while in the vision-based sys-
tems, the inputs of the classifiers are the hand-crafted features (e.g., Histogram
of Oriented Gradients (HOG), Local Binary Pattern (LBP)) extracted from sign
images. Guardino et al. [9] used a Leap Motion sensor-based device and two
classifiers of KNN and SVM for recognizing the ASL alphabets. Their acquired
data included features from the fingers and palm, such as position, direction, and
velocity, which were transmitted to the computer via a USB connection. Instead
of employing the raw data, they computed average distance, average spread,
and average tri-spread, which were fed into the classifiers for final recognition.
In their system, KNN and SVM classifiers obtained an accuracy of 72.78% and
79.83%, respectively, proving the superiority of SVM over KNN. Another sensor-
based approach was proposed by Yalçın et al. [30] using a glove equipped with
elastic detectors and a gyroscope to detect sign language and translate it into
text. Despite its successful performance for SL translation, it was inconvenient
and costly for real-life scenarios due to using gloves equipped with detectors and
wires connected to an Arduino.

As an affordable and more convenient system, a vision-based approach was
proposed in [14] by Kumar et al. using both images and videos as input data. In
the pre-processing step, they applied face detection and removal using the Viola
and Jones algorithm to prevent the head skin color from interfering with the hand
detection. Then, the hand was segmented using HSV thresholding. To improve
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accuracy, instead of using a global threshold value in the segmentation process,
they sampled the skin color of the signer before sign recognition. For static sign
language recognition, they utilized the feature vectors extracted through Zernike
moments in an SVM classifier achieving an accuracy of 93%. A multi-kernel SVM
was trained in [8] using a proper fusion of three different hand-crafted features.
The same classifier was also employed in [18], but this time with LBP features.

To tackle the curse of dimensionality as the main limitation of the ML-based
approaches, Principal Component Analysis (PCA) was used in [23] to reduce
the dimensionality of the feature vector acquired by a combination of differ-
ent image descriptors. They evaluated their proposed system for user-dependent
and -independent scenarios by applying three different classifiers of KNN, Multi-
Layer Perceptron (MLP), and Probabilistic Neural Network (PNN). Amrutha
and Prabu [4] designed a model capable of recognizing single-handed signs using
convex hull features and a KNN classifier. Their training dataset was collected
in a controlled environment with a stable and plain background, and image
backgrounds were removed in a pre-processing step using the threshold method.
Contour-based segmentation was then applied to obtain the contours of the fin-
gers. Despite achieving an accuracy of 65%, the performance of their system was
highly dependent on the distance between the camera and the signer. In a recent
work by Bansal et al. [5], a system was proposed based on HOG features and
SVM classifier whose performance was evaluated on seven different datasets.
They utilized Minimum Redundancy and Maximum Relevance (mRMR) and
Particle Swarm Optimization (PSO) techniques to remove the feature redun-
dancy while maintaining accuracy. Generally, in ML-based approaches, satisfac-
tory performance is obtained if the extracted features are representative and
strong enough. However, they still suffer from poor generalization ability and
time-consuming feature extraction steps with high dimensionality.

2.2 Deep Learning-Based Approaches

Deep learning (DL) is another subset of artificial intelligence that involves train-
ing artificial neural networks to learn patterns and make predictions or decisions
based on data. CNN is a powerful DL model that automatically extracts deeper
and more effective low- and high-level features from the input images alleviating
the need for manual feature engineering and hand-crafted feature extraction. The
superior performance of the CNNs over the conventional ML-based methods and
the emergence of the advanced GPUs and large datasets inspired the researchers
to employ them in various computer vision domains such as action recognition,
object detection, classification, etc. They also have been extensively used in SLR
to enhance the systems’ accuracy and provide real-time performance.

In DL-based approaches, CNN models can be used in two schemes: 1) only
extracting deep features, which are then classified by ML-based classifiers, and
2) conducting both deep feature extraction and classification through a single
architecture. Sanchez-Riera [27] conducted a comparative study to analyze and
compare the performance of CNN models with the other classifiers using two
input modalities of RGB and depth. A CNN-based ASL recognition model was
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also proposed in [22] to investigate the superiority of the DL models over the
ML classifiers of SVM, KNN, and RF. In [20], another novel CNN model was
proposed for ASL recognition whose accuracy was enhanced through applying
a pre-processing step and hand segmentation. They also developed a new ASL
dataset. Das et al. [10] utilized a CNN model to recognize the ASL alphabets,
achieving an accuracy of 94.34% for images with plain black backgrounds. Sevli
and Kemaloğlu [28] developed a CNN model for recognizing TSL digits, achieving
an accuracy of 98.55%. They conducted extensive experiments on four optimizers
to investigate their impacts on the model’s performance. Another research work
regarding TSL recognition was carried out by Öztürk et al. [19] using Faster-R-
CNN. They trained their model using the TSL alphabet dataset and tested it
using by real-time data, achieving an accuracy of 88%. A new TSL dataset was
developed by Aksoy et al. [2], including 10223 images for 29 letters captured at
different distances from the camera on plain white background. They performed
TSL recognition using different pre-trained models and their proposed model as
TSLNet. Among these models, CapsNet and TSLNet models outperformed the
others with an accuracy of 99.7% and 99.6%, respectively.

One of the techniques recently attracted the researchers’ attention for enhanc-
ing the performance of SLR systems is using a combination of several mod-
els. Kodandaram et al. [13] used an ensemble of three models (i.e., LeNet-5,
MobineNetV2, and a custom CNN) for ASL recognition obtaining an accuracy
of 99.89%. Bhaumik et al. [6] created a portable end-to-end CNN model named
as ExtriDeNet using two main modules: the intensive feature fusion block (IFFB)
and the intensive feature assimilation block (IFAB). The capability of the Extri-
DeNet in dealing with challenging environmental conditions (i.e., illumination
variations and complex backgrounds) was demonstrated through their experi-
ments. Bousbai et al. [7] enhanced the recognition performance for four ASL
datasets by ensembling the features extracted by a custom CNN and a Cap-
sNet. Once PCA reduced the dimensionality of the combined feature vector, it
was used in an SVM classifier for final recognition. Alnuaim et al. [3] combined
ResNet50 and MobileNetV2 architectures for Arabic SLR achieving an accuracy
of about 97% after applying various data augmentation techniques. Zakariah
et al. [31] used various pre-trained models for Arabic SLR based on transfer
learning. Applying different pre-processing and augmentation techniques, the
EfficientNetB4 model outperformed the others with an accuracy of 95%. How-
ever, it was computationally inefficient due to being a heavy-weight model.

3 Methodology

The overall flowchart of the proposed TSL recognition system is illustrated in
Fig. 1. It comprises three main sections: pre-processing (including augmentation
and image resizing), feature extraction, and classification. The last two steps are
implemented through a single novel CNN model whose layer arrangement and
hyper-parameters are optimized to achieve high accuracy for both TSL digit and
alphabet recognition. Details of each step are discussed in the following sections.
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Fig. 1. The main flowchart of the proposed T-SignSys.

3.1 Data Preprocessing

Pre-processing is a crucial step in DL-based models to enhance the input data
quality and quantity to boost the proposed model’s performance. Hence, we first
apply data augmentation in our pre-processing step. Data augmentation refers
to the techniques employed for modifying and generating new data. It plays a
significant role as a regularizer to prevent the model from overfitting and make
it robust for various input patterns by increasing the diversity and quantity
of the data in the training set (i.e., oversampling). Hence, proper selection of
the augmentation techniques is significant to achieve optimized performance.
In our model, the quantity of the training samples (RGB images) is increased
through four augmentation techniques of shearing (ranges between 0–0.2), zoom-
ing (ranges between 0–0.2), rotation (ranges between 0–45), and horizontal flip.
All RGB images, including the augmented ones, are resized into the same size
(100 × 100 for digits and 224 × 224 for alphabets). Then, pixel intensities are
divided by 255 for normalization.

3.2 Model Architecture

CNNs are multi-layer architectures trained to extract features from the input
images in the form of feature maps that include the corresponding images’ main
characteristics. A novel efficient CNN architecture, namely T-SignSys, is pro-
posed in our paper for accurate and fast TSL digit and alphabet recognition,
whose details are presented in Table 1. It is formed by a total of 9 layers. The first
6 layers (i.e., three convolutional layers, two max-pooling layers, and a dropout
layer) are selected for feature extraction, and the remaining 3 layers (flatten and
fully-connected/dense) are used for classification. Having a hierarchical struc-
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Table 1. Summary of the proposed CNN architecture presenting its hyper-parameters.

Layer Filters Kernal Pool Strides Activation Regularizer Output Shape Param #

Conv2d 16 3 × 3 – – ReLU L2 (222, 222, 16) 448

Conv2d 32 3 × 3 – – ReLU L2 (220, 220, 32) 4640

Max Pool – – 2 × 2 2 – – (110, 110, 32) 0

Conv2d 64 3 × 3 – – ReLU L2 (108, 108, 64) 18496

Max Pool – – 2 × 2 2 – – (54, 54, 64) 0

Dropout(40%) – – – – – – (54, 54, 64) 0

Flatten – – – – – – (186624) 0

Dense – – – – ReLU – (128) 23888000

Dense – – – – Softmax – (29) 3741

ture, each layer is in charge of non-linearly transforming the input images, and
the results are fed into the next layer for another non-linear transformation.

Feature Extraction Module: The inputs of our feature extraction module
are RGB images which are resized in the pre-processing step. They are fed into
the first convolutional block which is composed of two convolutional layers and
a maxpooling layer. These convolutional layers are responsible for learning and
extracting the low-level features from the input images, such as edges, curves,
and textures. Filters and kernels in these layers are the hyper-parameters respon-
sible for extracting the representative features. Each filter is a small matrix of
weights that is used to perform the convolution operation on the input data.
The weights in the filter are adjusted during training so that the filter becomes
increasingly sensitive to the specific pattern or feature it is trying to detect. The
number of filters in a convolutional layer can significantly affect the overall per-
formance of the model. More filters aid in extracting more specific patterns and
features by the convolutional layer as the model gets more powerful. However,
this filter size increment leads to more parameters and so the risk of overfitting.
Considering a good balance between these two issues, we selected the number
of filters as 16 and 32 in the first and second layers, respectively. The third con-
volutional layer which is placed in the second convolutional block is considered
the deeper layer for our model. Consequently, we selected a larger filter num-
ber in comparison to the first two convolutional layers so that more complex
abstract patterns are extracted from the images. Kernel size is another crucial
parameter in the convolutional layer which determines the level of abstraction
and the number of parameters in the model. A convolutional layer with a larger
kernel size can capture more contextual information from the input image and
potentially extract more meaningful features. However, similar to the filter size,
increasing the kernel size increases the number of parameters leading to overfit-
ting if the model is not properly regularized. On the other hand, a smaller kernel
size can capture more fine-grained details from the input image with less number
of parameters, but it may not be able to capture the global context as effectively.
Making a good trade-off, we select kernel size as 3× 3 in all convolutional layers
achieving the optimal performance with our input images.
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In our feature extraction module, two regularization techniques are applied
to further improve the performance of the system by increasing the accuracy,
improving the convergence, speeding up the training, enhancing the generaliza-
tion ability, and alleviating the overfitting risk. The first technique is applying
L2 kernel regularizer in all convolutional layers. It is a form of regularization
that adds a penalty term to the objective function of the model, which penalizes
large weights and encourages the model to learn a simpler, more generalized
solution for new unseen data. A dropout layer is used at the end of our feature
extraction module as the other regularization technique. Its value is set to 0.4,
which means that 40% of the neurons are ignored for weight updates during
the training, which prevents the neurons from co-adapting and forces the model
to rely on the remaining neurons to make predictions. This dropout layer sig-
nificantly improves the accuracy of the model and minimizes the gap between
the training and the test accuracy (detailed results are discussed in the abla-
tion study section). Two maxpooling layers adopted in our model have identical
hyperparameters, i.e., 2 × 2 kernel size. They are used in both convolutional
blocks after convolutional layers to downsample the feature maps by reducing
their dimensionality, while still retaining the most important information. It is
worth mentioning that the stride value (i.e., the number of pixels that are skipped
by the kernel filter in each movement) is selected as one and two in the convolu-
tional and maxpooling layers, respectively, with the “valid” padding scheme. The
outputs of the convolutional layers are fed into a non-linear activation function
known as Rectified Linear Unit (ReLU). Using this activation function, only the
neurons with positive values are activated (f(x) = max(0, x)), which leads to
fast training and minimizes the possibility of gradient vanishing.

Classification Module: The generated 2D feature maps from the feature
extraction module are reshaped into a 1D feature vector using a flattening layer
before the fully connected (FC)/dense layers. This feature vector is fed into a
FC layer with 128 neurons and a ReLU activation function. To set the number
of neurons to 128 in the FC layer as its crucial hyperparameter, we start with a
relatively small number of neurons and gradually increase it until reaching the
convergence and plateau performance. This layer is followed by the second FC
layer, whose number of neurons equals the number of class labels in the cor-
responding dataset. The last FC layer, known as the classification layer, uses
Softmax as its activation function. It is a generalization of the logistic function
used to convert arbitrary values into a probability distribution, where the sum
of the probabilities is 1. It is computed as Softmax(xi) =

exp(xi)∑
j exp(xj)

, where xi is
a vector of arbitrary values used as its input. The calculated probabilities by this
function determine the membership of the input to each class. The highest value
probability determines the corresponding input’s predicted class. Our model is
trained based on the categorical cross-entropy loss function as it is dealing with
a multi-class classification task. It is defined as Loss = −∑output size

i=1 yi . log ŷi,
where ŷi and yi represent the probabilities of the model prediction and the cor-
responding true target, respectively, and it is demanded to reduce the difference
between them during the training process.
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4 Experimental Results

4.1 Datasets

Two TSL datasets are selected for our experiments:

1) TSL Digits [1,16]: This dataset includes a total of 2062 RGB images with a
fixed size of 100 × 100 in 10 classes for the digits from 0 to 9. The signs of
this dataset were performed by 218 different right-handed signers. The images
were all captured on a plain white background. Some samples of this dataset
are illustrated in Fig. 2(a).

2) TSL Alphabets [12]: As the first alphabet dataset for static Turkish Sign
Language, it is composed of 2974 RGB images categorized into 29 classes out
of which 23 categories are for Turkish letters (excluding “Ç, Ğ, İ, Ö, Ş, and
Ü”) and the remaining 6 classes are allocated for punctuation marks. The
images in this dataset have different sizes which were captured on cluttered
backgrounds. It contains both single- and double-handed signs performed
by both left- and right-handed signers. Some samples of this dataset are
illustrated in Fig. 2(b).

Fig. 2. Illustration of some sample images from (a) TSL Digits, and (b) TSL Alphabets.

4.2 Experimental Setup

All experiments are conducted with Python using Keras and Tensorflow on a PC
with 32 GB RAM, Intel Core i7-9700 CPU, and NVIDIA GeForce RTX 2070
GPU with 8 GB video memory. We use Adam and Adamax optimizers for digit
and alphabet datasets, respectively, with a learning rate of 0.001. Epoch and
batch sizes are selected as 300 and 32, respectively, with data split of 80%–20%.

4.3 Evaluation Metrics

The performance of our proposed model is evaluated in terms of four evaluation
metrics common for classification tasks as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)
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Precision =
TP

TP + FP
(2)

Recall/Sensitivity =
TP

FN + TP
(3)

F1− score =
2× (Precision×Recall)

Precision+Recall
(4)

where TP , TN , FP , and FN stand for True Positive, True Negative, False
Positive, and False Negative, respectively, obtained from the confusion matrix.

4.4 Performance Assessment

The performance and efficiency of the proposed CNN model are evaluated on
two benchmark TSL datasets for digits and alphabets. The experimental results
are presented in Table 2 in terms of four evaluation metrics for both training and
test sets. Achieving a test accuracy of 99.52% and 97.85% for digit and alpha-
bet datasets, respectively, demonstrates the high capabilities of our proposed
model despite its straightforward architecture. As T-SignSys is assessed on two
diverse datasets with both plain and cluttered backgrounds, single- and double-
handed signs performed by left- and right-handed signers, one can draw the
inference that it is efficient and robust against hand appearances and environ-
mental conditions. Additionally, our model achieves a great convergence without
experiencing any underfitting or overfitting as the difference between the train-
ing and test accuracy is minimized in both datasets. Owing to the less number
of parameters and benefiting from the regularization techniques in our model,
it is fast both in training and test processes making it feasible and practical for
real-time application. Training of the digit and alphabet datasets takes 17 and
105min for 300 epochs, respectively. 418 digit images and 604 alphabet images
are recognized in the test phase during 0.47 and 5 s, respectively, proving the
real-time performance of our proposed method.

Table 2. Performance evaluation in terms of four evaluation metrics on two datasets.

Digits Dataset Alphabet Dataset
Training Test Training Test

Accuracy 98.11% 99.52% 99.92% 97.85%
Precision 99.02% 98.56% 99.24% 97.33%
Recall 98.78% 98.33% 98.90% 93.54%
F1 Score 98.50% 98.32% 99.08% 94.96%
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Table 3. Performance comparison with state-of-the-art TSL recognition approaches
on two TSL datasets.

Dataset Approaches Training(%)/Testing(%) Split Test Accuracy

TSL Digits Sevli and Kemaloglu [28] 80/20 98.55%
Bansal et al. [5] 90/10 90.90%
Proposed Model 80/20 99.52%

TSL Alphabets Ozturk et al. [19] 40/- 88.00%
Proposed Model 80/20 97.85%

4.5 Comparison with State-of-the-Art

The performance of the proposed model is compared with the available state-
of-the-art approaches for TSL recognition on two datasets in Table 3 presenting
their test accuracy along with the training and test data split scheme. In the
digit dataset, our model outperforms two other approaches with 0.97% and 8.62%
accuracy enhancement. For TSL alphabets, it should be mentioned that Ozturk
et al. [19] employed the TSL alphabet dataset only for training their model and
they tested it by real-time images while we used the TSL alphabet dataset in
both training and test phases. Comparing the test accuracy, our model surpasses
their approach by achieving 9.85% more accuracy.

4.6 Ablation Study

To deeply investigate the impact of different parameters on the overall perfor-
mance of our proposed T-SignSys, a comprehensive ablation study is carried
out over the arrangement of the layers (9 different combinations), dropout layer
value (0.25 and 0.40), optimizer (RMSProp, SGD, Adamax, and Adam), and
learning rate (for 0.001, and 0.0001). The results for different layer arrange-
ments of our CNN model are presented in Table 4 for two datasets in terms

Table 4. The results of ablation study over 9 different arrangements for CNN layers.

Layer Arrangement Digits Dataset Alphabet Dataset
Train Test Train Test

1 Conv + 1 FC 93.07% 88.28% 87.55% 80.96%

2 Conv + 1 FC 98.11% 99.52% 97.30% 90.56%

3 Conv + 1 FC 97.81% 97.00% 94.39% 88.08%

3 Conv + 1 MP + 1 FC 96.96% 97.00% 98.82% 92.00%

3 Conv + 2 MP + 1 FC 96.96% 94.00% 98.90% 93.38%

4 Conv + 2 MP + 1 FC 96.53% 96.17% 98.02% 92.38%

5 Conv + 2 MP + 1 FC 94.95% 94.98% 95.02% 91.39%

3 Conv + 2 MP + 2 FC 99.20% 97.37% 98.27% 94.04%

3 Conv + 2 MP + 1 DP + 2 FC (ours) 98.11% 99.52% 99.92% 97.85%
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Table 5. The results of ablation study over different values for dropout layer.

Dropout Values Digits Dataset Alphabet Dataset
Training Test Training Test

0.25 99.09% 98.33% 99.79% 96.52%
0.40 (ours) 98.11% 99.52% 99.92% 97.85%

Table 6. The results of ablation study over four different optimization techniques.

Optimizers Digits Dataset Alphabet Dataset
Training Test Training Test

SGD 78.47% 88.04% 83.76% 85.43%
RMSprop 99.09% 97.85% 98.23% 95.70%
Adamax 96.00% 94.00% 99.92% 97.85%
Adam 98.11% 99.52% 99.66% 95.53%

Table 7. The results of ablation study over two different learning rates on two datasets.

Learning Rate Digits Dataset Alphabet Dataset
Training Test Training Test

0.001 (ours) 98.11% 99.52% 99.92% 97.85%
0.0001 96.05% 95.21% 98.06% 94.37%

of test accuracy. Employing two convolutional (Conv) layers with the last fully
connected (FC) layer leads to high performance for digit dataset while its accu-
racy is very low for alphabet dataset. To achieve high performance for both digit
and alphabet datasets, we gradually increase the number of convolutional lay-
ers and add maxpooling (MP) and FC layers to the architecture. Implementing
different combinations, the architecture with three Conv layers, two MP layers,
and two FC layers obtains a high performance for both datasets. However, there
is still overfitting especially for the TSL alphabet. To overcome overfitting, a
dropout (DP) layer is added before FC layers, which significantly enhances the
test accuracy and minimized the accuracy difference between the training set
(98.11% and 99.92% for digits and alphabets) and the new unseen data (99.52%
and 97.85% for digits and alphabets). The performance of the dropout layer is
investigated for two values of 0.25 and 0.40 in Table 5. The dropout layer with
a value of 0.4 outperforms the other with 1.19% and 1.33% higher test accuracy
for TSL digit and alphabet datasets, respectively.

Performance of T-SignSys for four different optimizers is investigated on
two datasets in terms of accuracy for the learning rate of 0.001 in Table 6. The
lowest performance is achieved by the SGD optimizer on both datasets as it
is highly likely to be stuck in the local minimum and has slow convergence in
comparison to the other optimizers for the same number of epochs. The other
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three optimizers of RMSProp, Adamax, and Adam have significantly higher
performance. Achieving the highest test accuracy of 99.52% by Adam for digits
and 97.85% by Adamax for alphabet, they are selected as the optimal optimizers
for our model. Learning rate is also studied for two values of 0.001 and 0.0001
on both TSL digit and alphabet datasets in Table 7. Adopting a higher value for
the learning rate results in faster convergence rather than using a lower value
for an equal number of epochs. Comparing the results of two learning rates,
the test accuracy of our model is improved by 4.31% and 3.48% for digit and
alphabet datasets, respectively, once we set the learning rate as 0.001 without
experiencing overfitting.

Fig. 3. Visualization of a sample failure case for our model where the letter “S” is
misclassified as “F” when they are performed by two left- and right-handed signers.

4.7 Failure Cases

Although our proposed method can efficiently recognize both TSL digits and
alphabets with a straightforward implementation scheme and fast recognition
rate, it leads to misclassification when dealing with some specific alphabet
classes. One of these classes with a high number of misclassification samples
is “S”. In most cases, the letter “S” is misclassified as “F”. This misclassification
occurred mainly due to using both right- and left-handed signers in the dataset.
To delve deeper into this issue, one example is illustrated in Fig. 3. Performing
letters of “S” and “F” by the same person shows the high inter-class variations
between these two classes, which helps the model to distinguish them accurately.
On the contrary, when one of them is performed by a left-handed signer and the
other is performed by a right-handed signer, the captured images have slight
inter-class variations which degrade the performance of our model and lead to
misclassification.

5 Conclusion

In this paper, a novel efficient CNN model was proposed for fast and accurate
classification of Turkish Sign Language (TSL) digits and alphabets. Despite the
great importance of TSL for a large number of deaf people in Turkey, there
are only a handful number of studies in the literature conducted on TSL static
fingerspelling. To this end, a novel CNN architecture was designed with a total
of 9 layers whose number of layers, hyper-parameters, optimizer, and learning
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rate were carefully adjusted through extensive experiments so that high perfor-
mance was obtained. To further enhance the performance and prevent the system
from overfitting, we used kernel regularizer and dropout layer as two regulariza-
tion techniques. Conducting a comprehensive ablation study, we investigated
the effectiveness of four different optimizer techniques, two learning rates, two
dropout values, and 9 different arrangements for layers of the proposed CNN.
Achieving an accuracy of 99.52% and 97.85% for TSL digits and alphabets,
respectively, with high recognition speed, demonstrated the high capabilities
of our model and its feasibility for real-time applications considering cluttered
backgrounds. As our future work direction, we plan to enhance the model per-
formance for the signs with slight inter- and high intra-class variations as well
as make it robust to environmental variations.
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